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Abstract

In this thesis, a dynamic gesture recognition system is presented which requires no
special hardware other than a Webcam. The system is based on a novel method
combining Principal Component Analysis (PCA) with hierarchical multi-scale theory
and Discrete Hidden Markov Models (DHMMs). We use a hierarchical decision tree
based on multi-scale theory. Firstly we convolve all members of the training data with
a Gaussian kernel, which blurs differences between images and reduces their
separation in feature space. This reduces the number of eigenvectors needed to
describe the data. A principal component space is computed from the convolved data.
We divide the data in this space into several clusters using the £-means algorithm.
Then the level of blurring is reduced and PCA is applied to each of the clusters
separately. A new principal component space is formed from each cluster. Each of
these spaces is then divided into clusters and the process is repeated. We thus produce
atree of principal component spaces where each level of the tree represents a different
degree of blurring. The search time is then proportional to the depth of the tree, which
makes it possible to search hundreds of gestures with very little computational cost.
The output of the decision tree is then input into the DHM M recogniser to recognise

temporal information.



Chapter 1 Introduction

Chapter 1 Introduction

In the past decade, the computational power of computers has doubled every eighteen
months, while the human computer interface (HCI) has not changed too much. When
we work with a computer, we are constrained by intermediary devices: keyboards and
mice. However, these are inconvenient and have become a bottleneck in human-
computer interaction especially in a three-dimensional (3D) world. For example, in
virtual environments, keyboards, mice, wands and joysticks are still the most popular
devices. They work in a two-dimensional world and are not suitable for 3D
navigation. In our daily life, we use speech to communicate with each other, and use
gestures to point, emphasise and navigate. They are the more natural and preferable
means to interact with computers for human beings. To make computers understand
this, however, is not an easy job. Apart from HCI, speech and gesture recognition can
also be applied to many other fields, such as Sign language translation, industrial
robot control and teleconferencing etc. Speech recognition has been thoroughly

studied by researchers and many commercial products are available on the market.

This thesis is a study of recognition of human hand gestures. It is worth noting that
although we only concentrate on hand gesture recognition, other parts of human
bodies are also very valuable for correctly understanding gestures. In fact, many

gestures involve co-operation of different parts of the whole body.

1.1 Problem Description

We are interested in recognising human hand gestures using computer vision
principles. One might ask what is meant by gesture? Gestures are usually understood
as hand and body movement that can pass information from one person to another. In

Webster’s dictionary, we can find:

“A gesture is a movement usually of the body or limbs that

expresses or emphasises an idea, sentiment, or attitude.”
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Since we only consider hand gestures, the movement of the hand that expresses or
emphasises an idea, sentiment, or attitude belongs to a gesture. This is a rather broad
and general definition and it will make the system performance test very hard. We
need to divide the whole set of gestures into more detailed subgroups. Wu and Huang
[1,2] state that hand gestures can be classified into four categories according to the
different application scenarios: conversational gestures, controlling gestures,
manipulative gestures and communicative gestures. We use conversational gestures
to help express ourselves more clearly in our daily life. They are very subtle and need
careful psychological studies [1,2]. Controlling gestures can be designed to navigate
in a virtual environment. For example, we can ask the computer to drive a car to the
south by pointing in that direction. Manipulative gestures serves as a natural way to
interact with virtual objects [3]. A famous example is the seminal “put-that-there”
work by Bolt [4,5], Sign language is an important case of communicative gesture.
Deaf people rely on it to talk to each other. It is objective and well defined and rarely
causes ambiguity which makes it suitable as a test-bed for gesture recognition

systems. We will discuss it in more detail in the next section.

Many recognition systems are based on the dataglove, an expensive wired electronic
device. Various sensors are placed on the glove to detect the global position and
relative configurations of the hand. However, even without considering the price of
such a glove (hundreds of dollars in general), this is unnatural and uncomfortable for
users since it needs a physical link between the user and the computer. Because of
this shortcoming, more and more research groups show interest in vision-based
systems, which are wire-less and the only thing needed is one or multiple cameras.
The user then has more freedom and feels more comfortable. In this thesis, we

present a vision-based system using one camera.

Speech recognition has been thoroughly studied by researchers and many commercial
products are available on the market [16, 59], In comparison to speech recognition,
gesture recognition is a more sophisticated task mainly because of the immense
variation of gestures. In general, to extract a voice from its background noise is not a
difficult task. While for a computer vision system, things are much harder. Different

illumination conditions and different background can make the same object look
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extremely different. Even if we ignore the variability of lighting, shading and complex
scenes containing cluttered background, human beings still produce considerably

differing views depending on what they are performing and their position.

1.2 Irish Sign Language (ISL)

Sign language is a formal language employing a system of hand gestures for
communication by the Deaf. As the Deaf are the ultimate recipients of these signs,
great care was taken to devise appropriate signs for specific words in the first place.

This explains why Sign language is highly structural and barely causes ambiguity.

There are different Sign languages for Deaf people from different countries, such as
American Sign Language (ASL), Chinese Sign Language (CSL), British Sign
Language (BSL), Irish Sign Language (ISL), and so on. We use ISL as a performance
test-bed for our system. While there is nearly no problem for Irish people
communicating with American people in English, ISL is totally different from ASL so
that the communication between Irish Deaf people and American Deaf people is just
as hard as the communication between a non-native English speaker and a native
speaker. Helping Deaf people from all over the world talk to each other is one of the

motivations of our research.

ISL is composed of two types of gestures: static gestures and dynamic gestures. Static
gestures are characterised by their different hand shapes. The performer usually puts
his/her hand in front of the chest. Each specific hand shape would represent a special
meaning. ISL contains 26 gestures corresponding to the 26 English letters of the
alphabet. 23 of them are static gestures, while the other 3 have to be expressed by

dynamic gestures. Figure 1.1 shows some static gestures:

Figure 1.1 Three static gesture examples of ISL. From left to

right: A, C, F.
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Dynamic gestures are more sophisticated. Traditionally, there are three major points of
an ISL dynamic sign:

e The shape or configuration of the hand.

e The relative position of the hand against other parts of body.

* Motion of the hand.
A typical description of a dynamic gesture in ISL is like this: right hand in “A”
position, palm to self, move it down from lip to chin. Comparing to static gestures,
which only contains spatial characteristic, dynamic gestures include both spatial and
temporal characteristics. Intuitively, the latter makes it harder to recognise dynamic

gestures than static ones. Figure 1.2 shows two examples that represent “J” and “Z”.

Figure 1.2: Two dynamic gesture examples of ISL. From left to

right: J and Z respectively.

1.3 Qutline of the Thesis

In this thesis, we concentrate our study on human hands and ignore other parts of the
body although these are also very important for understanding gestures. We show how
Principal Component Analysis, Multi-scale theory and Hidden Markov Models are
integrated into a whole system to recognise both static gestures and dynamic gestures.

Gestures from ISL will be used to evaluate the system.

The remainder of the thesis is divided into seven parts. Chapter 2 gives the theoretical
background knowledge used in the thesis. Chapter 3 discusses the application of
gesture recognition systems and reviews previous work. Chapter 4 introduces the aims
of the system. A few assumptions will be given to restrict our research to a reasonable
range. The system framework is given as well. Chapter 5 deals with the pre-processing
procedure and introduces a standard PCA-based system. Various classifiers will be

given. 23 static gestures in ISL corresponding to 23 English letters of the alphabet will
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be used for the purpose of evaluation. These gestures are referred to asfinger-spelling
gestures. Chapter 6 extends this work and introduces a novel method that combines a
hierarchical decision tree with multi-scale theory to speed up the recognition
procedure. In chapter 7, we discuss how to recognise dynamic gestures by combining
the hierarchical decision tree and DHMMs. A set of 35 dynamic gestures taken from
ISL are used to test the system performance. Finally we draw some conclusions and

discuss possible future work in chapter 8.
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Chapter 2 Definitions and Descriptions

In this chapter, we give the definitions and notations which will be used throughout
the rest of the thesis. Meanwhile we describe the theoretical backgrounds of the major

approaches that are employed in our system.

2.1 Basic Definitions in Pattern Recognition

Like face recognition, which is inherently a classification problem in a high
dimensional feature space [7], we also treat the recognition of hand gestures as a
problem in the field of pattern recognition, and indeed, many techniques we employ in
the thesis fall into the class of statistical pattern recognition. Let’s first define some

basic concepts that are commonly used in this area.

Given an object to be classified [8],

- features are the measurements or properties that are used to classify the object,

» the types or categories into which they are classified are called classes,

+ Theindividual objects to be classified will be referred as samples.

Often there is a set of samples used to design the system. The set of samples is called
the training set. In addition, a data set called the test set must also be provided for

testing the system [8].

In most cases | features jo- i=1,2,...,1, are used to form thefeature vector [6]

X =
where T denotes transposition. If we treat each feature as a dimension, | features
constitute an Z-dimensional space, called the feature space. Each feature vector
corresponds to a single point in such a space. Since each of the feature vectors
identifies uniquely a single object, each point in the feature space also represents a

unique object.

In our research, an object is a gesture to be recognised. Given a training set, we

attempt to define a set of features that are able to separate the gestures into several



Chapter 2 Definitions and Descriptions

clusters in the feature space, with each cluster representing a class. ldeally, there

should be no overlapping between the clusters.

2.2 Principal Component Analysis (PCA)

Normally the dimensionality of the feature space is high, for example, in image
processing, the dimensionality can be as high as 320*240, or even higher. However,
the clusters within the space will often lie on a low-dimensional subspace because of
correlations between the features. We need a technique which will find the

dimensionality of the subspace.

PCA is a rather general statistical technique that can be used to reduce the
dimensionality of the feature space. The idea behind PCA is quite old. Pearson [84]
first introduced it in 1901 as linear regression. Hotelling [84] then proposed it for the
purpose of revealing the correlation structures behind many random variables. During
the 1940s, Karhunen and Loeve independently extended it into a continuous version
by using single-parameter functions replacing vectors now called the K-L Transform

(KLT). In this section, we explain the theoretical details of PCA.

Given a set of training objects represented by their feature vectors, x- (L<i<M), where
M is the number of samples, the training set can be written in the format of X = {x/,
X2..., Xm} whose mean vector is xm and covariance matrix is Rx, defined by the

following equations:

.(2.1)

The mean vector is a column vector and the covariance matrix is a real symmetric
square matrix of size N by N, where N is the length of the feature vector. T defines the

transpose of a matrix.

The training set X corresponds to a cluster of data points in an N dimensional feature

space. There exists redundancy in the feature space since the features, i.e. the
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dimensions, are not independent of each other. By PCA we can eliminate the
redundancy by transforming the original feature space into a so-called PC space in
terms of Principal Components (PCs). The transformation is an orthogonal, linear
procedure, formalised in the following way:

y = WTX ...(2.2)
where y is the new feature vector in the PC space, and W is defined as follows:

W [ele2,,5%H]
e, is the ith Principal Component (PC), or the orthonormal basis, of the feature space.
All PCs have to be normalised, thatis, e, Te, = I. The dimensionality of the PC space
is still N, the same as that of the original feature space. However, the correlation
between the features disappears. Thus by the transformation we map a feature vector
from the original feature space into the PC space as a single isolated point where the

basis are independent from each other. See Figure 2.1.

Figure 2.1: The transformation from the feature space into the PC space.
Only 3 dimensions are shown here for the sake of visualisation

convenience.

No information is lost during this transformation. The original feature vector can be
fully reconstructed using the transpose of the PCs:
X'=Wy = WW Tx ...(2.3)

where X' is the reconstructed image. Since there is no loss of information, X'= X.

The question is now how to find the PCs? Various methods have been developed. For
example simple neural network architectures have been suggested for recursively

estimating the subsets of the PCs [83], However, the most widely used method is to
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take advantage of the covariance matrix of the feature values of the training set and

solve the eigenvalue decomposition problem.

Given the mean vector xmand the covariance matrix Rx of a set of training samples,
the eigenvalue decomposition problem is to find the solution for the following
equation:

..(2.4)

where A-is the eigenvalue corresponding to the zth PC. This solution can be found by
solving its characteristic equation; details are shown in [84], Since Rx is positive

semidefinite, all eigenvalues would be non-negative real numbers.

For an N by TVcovariance matrix, N eigenvalues and N PCs exist. In the PC space, the
data lies on a low dimensional subspace because of the correlation between the
features, i.e. the data variation focuses only on some of the dimensions while the
variation along the remaining dimensions is almost zero. Given the fact that each
eigenvalue represents the data variation along its PC, those eigenvalues corresponding

to the small data variation are close to zero. See Figure 2.2.

003
0025
o
kP 015
oa

0005

0 10 150 20
Number of PCs

Figure 2.2: An example of a plot of eigenvalues, extracted from a
data set of 640 images of the human hand. For ease of visualisation,
only the first 200 out of a total of 1024 eigenvalues are shown.
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If we arrange the eigenvalues in decreasing order, y can be represented in a compact
way by maintaining only the PCs corresponding to the first few largest eigenvalues
while ignoring the rest. That is, the feature vector y is computed in the following

reduced way:
y =Wecrx =[elv..,eJd rx ..(2.5)

where Wc is the matrix that contains only the first K PCs. K is the number of PCs that
are retained and e/ corresponds to the largest eigenvalue, e2 the second largest
eigenvalue, and so on. Usually K « N, and the dimensionality is reduced from N to K.

The reconstruction of the original feature vector is given by:
X —Wc.y—e e”[gj e ] x ...(2.6)
However, at this stage, the reconstructed vector is different from the original one:

X'M X. To measure the difference, we define the energy of the training set in Equation

2.7:
K=¢A, ..(2.7)

The error between the reconstructed vector Xx1land the original feature vector X can be
measured using the criterion of percentage of total energy remaining. W e can write the

percentage of the remaining energy as a function of the number of the retained PCs:

...(2.8)
H
PCA minimises the mean square reconstruction error of the training set [84]:
M
£=mm X; =X _ *
i=I )ig‘K+I'
=£-$>.m ...(2.9)
H

=E(lI-EmalK))
The Equation 2.9 tells that the greater K, the smaller the reconstruction error, and the

more PCs retained the more energy remaining.

In essence, PCA assumes the projection of the training samples in the PC space is

bounded by a hyperellipsoid. A, is the variance of the data along the zth PC - more

10
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than 98% of distribution of the data is covered in the range [3AA~,+3A4A7] along this

PC, as depicted in Figure 2.3.

02
0
CL
‘000

02

\%
04
04 02 00 02 04
First PC

Figure 2.3: Bounding ellipse of data cloud along the directions of the first
two PCs. The long axis and short axis of the ellipse are 3*jAl and 3"/X2

respectively.

2.3 Multi-scale Theory

Multi-scale theory is a complementary technique for dimensionality reduction [79],
Let us consider a two-dimensional image 7. In scale space theory, 7 is represented by a
family of smoother versions of 7. 7(a), where 7(0) corresponds to the original image,
and as the value of ctincreases, 7(a) becomes smoother and smoother, i.e., the greater
the scale parameter a, the more details in the original image are eroded. This
procedure can be formalised by:

I(x,y,0) =70*G (x,y,a) ...(2.10)

where * denotes a convolution, lo represents the original image, a is the scale
parameter which is always non-negative, and G(x,y,0) stands for a two-dimensional

Gaussian kernel defined as:

..(2.11)
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The use of different smoothing kernels other than Gaussian is possible. However, the
Gaussian kernel’s remarkable mathematical properties make it the first choice for any
multi-scale analysis. The most important one is that the Gaussian kernel will not
create extra structures when convolved with an image [79], which is crucial for the
system’s stability since a fake structure could attract the system’s attention from the

real useful structures.

Figure 2.4 shows a family of smoother version of an image under different scale
parameters. Image (1) is the original image that represents the hand shape of “d” in
ISL. From image (1) to (6), the scale parameter a increases gradually and as can be
seen, the image details are eroded and fewer details can be recognised. In the extreme
situation, when a becomes very large (see the image (6)), the image has been totally

washed out and the gesture is not recognisable any more.

1
1
1) (2) (3)
(4) (5) (6)

Figure 2.4: A family of smoother versions of the image that represents the
shape “d” in ISL. (1) is the original shape. From (1) to (6) the scale
parameters are 0, 0.5, 1.0, 1.5, 2.0, 10 respectively.

Convolution of an image with a Gaussian kernel is a time-consuming operation in the
spatial domain. Convolution theory tells us that a convolution operation in the space
domain can be computed as a multiplication in the frequency domain. Thus we have
I(x, y,cr)=/0*G(x, )= F~I(F(10)* F(G(x,Vy,a)) ..(2.12)
where « denotes a multiplication operation. F denotes a two-dimensional Fourier

transform:

12
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F(u,v) = 3" J 10(x, y)e~"2n{ucsw)dxdy
and F 1atwo-dimensional inverse Fourier transform:

/(jc,y):Jf_OBJr_mF(u,v)e‘Zr(LxM/)dudv

Original image

Spatial
domain

Frequency
domain

Frequency
domain

Spatial
domain

Figure 2.5: Blurring an image in frequency domain. The scale parameter

of the Gaussian kernel is 2.0.

13

Gaussian kernel

(2.13)

(2.14)
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When the Fast Fourier Transform (FFT) is used to speed up the transform from the
time domain to the frequency domain and its inverse, the most computationally
expensive operation in Equation 2.12 is the two-dimensional FFT. Consequently, the
complexity of Equation 2.12 is bounded by this operation i’;to O{nz(loan)z) when
applying the convolution to an nxn image with an nxn kernel, while the complexity

would be 0(n4) without using FFT.

A diagram of the above algorithm is given in Figure 2.5, where the original image and
a Gaussian kernel are first transformed from the spatial domain into the frequency
domain. In the pictures which visualise the 2-D frequency domain, the frequency
varies from low to high from the comers to the centre. The original image thus
contains some high frequencies (pointed to by the arrows in the frequency domain
picture of the original image), which correspond to the fine structures as well as the
noise in the original image. After the product between the image and the Gaussian
kernel is computed in the frequency domain, the high frequencies disappear, hence
some fine structures and the noise are eliminated. This effect can be seen in the spatial

domain: the image is the blurred version of the original one.

2.4 Hidden Markov Models (HMMs)

In this section, we will briefly introduce the basic ideas of HMMs. We only discuss
the discrete HMMs (DHMMs) here since it is the technique used in our system. A
large number of tutorials about the topic have been published. Good ones include

[64], [65] and [74],

HMMs separate a sequence of observations into several segments, the so-called
“states”. In each state, the observations are relatively stable, and thus can be simulated

using probabilistic models: Gaussian, Mixed Gaussian, and so on. Their power mainly

lies in two aspects: first, they attempt to simulate what state the system is in “now
according to the jth most recent states - the Markov property. If the status of the
system purely depends on the most recent state, then the HMM s first-order. Second,

an HMM makes transitions from one state to another stochastically, and generates

observations from the current state stochastically - the doubly stochastic property. The

14
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transition depends on the so-called state-transition probability, and the generation of

the observation is controlled by the observation symbol probability.

It is the Markov property that simulates but simplifies the events in reality, especially
when first-order HMMs are used. Higher order systems are possible, but their training
and decoding can be a huge problem and certainly will be much slower than the first-
order systems. Our system uses a first-order HMM to encode the dynamic gestures.
On the other hand, it is the doubly stochastic property that enables the application of
HMMs in many real problems because traditional Markov models can only model

stationary processes [64].

Before proceeding to more details, we first give some notation:

e s is astate of the HMM. State i at time t is denoted as st = i.

o is an observation symbol. ot stands for the symbol at time t.

v is the alphabet, i.e. the set of observation symbols, which is a non-empty finite

set { v/, v2,... v*}, where Ais the size of the alphabet.

a is the state-transition probability. Specifically, al} is the probability of the

transition from state i toj.

b is the observation symbol probability. Specifically, bj(k) represents the

probability of generating a certain observation symbol v*in statej.

A DHMM is characterised by a quintuple: A=(N, M, A, B, n) where

iVis the number of states in the model. In practice, there will always be two special
states being used as start and end states. Thus N >2.
* M is the number of distinctive observations in the model, i.e. the discrete alphabet
size. M >0.
* A is the state-transition probability distribution. A={ay} where
av=plsH =] Is =1i], I<i,j<N ...(2.15)
More specifically, when the DHMM is first-order, ay is larger than 0 only when

j=iorj=i+l.

B is the observation symbol probability distribution. B = {bfk.)} where bj(k) is the

observation symbol probability and

15
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bj(k) = P[ot =vk\s, =]], I<k<M, I<j<N ...(2.16)

e Tris the initial state distribution, n - {n, } in which

7C.=P[S] =i] L (2.17)

In practice, although the above 5 items are required to specify a complete DHMM,
people tend to use the following compact notation, ignoring the two parameters N and
M in the representation since they are only two constants and will always be fixed
beforehand:

A =(A,B,n) ...(2.18)

A very simple example of a first-order DHMM with seven states including the start
and end states is given in Figure 2.6. Note that the more states the model has, the more
powerful the model is. However, as the complexity of the model increases
exponentially with respect to the number of sates, larger training set is required for

reliable model estimation [4],

Start i/ \J 1 v/ \i End
O — »( — H -— > K = K.  *0

Figure 2.6: A sample DHMM topology with seven states including the start and end

states.

Given the above form of DHMMs, three basic problems have to be answered [65],

These are:

Question 1:

Given the model A = (A, B, n), and the observation sequence O = (oj, 02,..., oT),
where T is the length of the observation sequence, how do we compute the probability
of occurrence of O, P(0\A)1

Question 2:

16
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How do we adjust the model parameters A - (A, B, n) so that the likelihood function
P{0\A) is maximised?

Question 3:

Given the model A = (A, B, n), how do we choose a state sequence q = (qi, g2 qr)
so that P (0, g\A), the joint probability of the observation sequence O = (07, 02,..., 07-)

and the state sequence is maximised?

These three questions are called the evaluation problem, the estimation problem, and

the decoding problem [92]. We introduce the solutions for them briefly.

2.4.1 Solution to Question 1- the Evaluation Problem

First, let’s compute the likelihood P (0\A) given an observation sequence O = (oj,
02,..., or) according to the model A with the parameters A, B, and n. A number of
methods have been developed to solve the problem. Two of them are important,

namely the forward algorithm and the backward algorithm, and are described below.

The forward algorithm

Given the observation sequence O - (pi, o02,..., 0j), we define the forward variable
a,(i) as the probability of the joint event that oj o2mm ot are observed, and the state at
time tis i. It can be formalised as follows:

at{i)-P{o1o2...ot,qt =i\A) ..(2.19)

When t - 0, the system begins from the start state, and ao(start) = 1 by default. When
t = T, the system stops at the end state, and the forward variable is aj{end), which is
exactly the likelihood P (0\A) we are trying to work out. In practice, we first initialise
the forward variable with ao(start) = 1, and then at{i) can be computed recursively by

simple induction [65]:

1-7-N

The time complexity of the above procedure is 0 (N :T).
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The backward algorithm
The backward algorithm is the reverse of the forward algorithm. Given the
observation sequence O = (pi, o2,..., 07-), we define the backward variable /},(/) as the
conditional probability of the partial observation sequence from t+1 to the end (o,+;
ol+2-m or ) given state i at time t and the model A. Itcan be formalised as follows:

P,(i) = P(o+ol+2...0T Iqt - i,A) ..(2.21)
Similarly, the backward variable can be calculated inductively: we initialise it with
friend) = 1, and the recursive step is given by [65]

A0 =£aA(°*M«)0,,(;). t=T-1. 7-2,....1 ..(2.22)

y-i
1< i <N

This time the likelihood P(0\A) is given by Po(start). Again, the time complexity of

the above procedure is O(N T).

2.4.2 Solution to Question 2 - the Estimation Problem

To solve the estimation problem requires an adjustment of the parameters of the
model according to a set of training data. The result of the adjustment should
maximise the likelihood P{O\A). An iterative procedure, well known as the Baum-
Welch method (essentially an expectation-maximisation method [65]), has been

developed for this task. In this section, we describe the estimation procedure.

Firstly, with the aid of the forward and backward variables, we can define a new
variable yf(0, the probability of being in state i at time t, given the entire observation

sequence O = (o\, 02,..., or):

r,(0= p<<i, =ho,a)=g: (‘* () = -(2.23)
(1" Si,o')ftU)

Since both the forward and backward variables are computable, yt(i) is easy to

calculate as well.
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Secondly, to fully describe the estimation procedure, we need to define another

variable (Z'j), given by the following equation [65]:

e,. . a,(i)a b (ol+)PI+(i)
£,(},% =P(q, =i,ql+1=j\0,A) = ~————-- p(0\A)------—--
a . (OFlj/ft; (0i+l sy, .+ (0 m-(2-24)
N N
=R

Since y,(2) is the probability of being in state i at time t, the sum of yt(i) over t would
be the number of times state i is visited. Since represents the probability of
being in state i at time t and being in state ] at time t+1, we can estimate the initial

state distribution 7ij and the state-transition probability between state i andj by:

m =Y 1(i) ...(2.25)

r=I /I =
and the observation symbol probability b~k) is estimated by:
bi(k)= ¢r,(0 /¢ r,(0 . (2.27)

1= i=l
q,t,0,=vt /

Obviously, based on the above procedure, the parameters of the model can be
estimated inductively. It will maximise the likelihood P(0\A). Methods other than
Baum-Welch method are also possible, such as Gradient Descent and Viterbi Learning

[65, 74],

2.4.3 Solution to Question 3 - the Decoding Problem

The decoding problem is to determine the best state sequence to describe the given
observation sequence. The well-known Viterbi algorithm can be used for this purpose.
For the Viterbi algorithm, we introduce the new variable the highest probability
along a path given the first t observation symbols (0j 02... ot) and path ends in state i.

(5,(0= ma>|<_|1P[qu2...qI_i ,qt =i,0102...0t \A] ...(2.28)

The Viterbi algorithm calculates 8t(i) inductively to find out the most probable path

given the observation sequence O and the model A:
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Initialisation: 8i(i) = njbiioj), 1<i<N
Induction: SH(/) = [”EﬁﬁAi)a”lb {o,+1), 1<t<T-Il, I<j <N
Tennination: P(0 IA) ~ nﬁﬁNSr(z)]

If we keep recording the result of <5, for every step during the induction, we would
be able to trace back the state having the highest probability at each step, and this state
chain would be the best state sequence. The time complexity of the algorithm is
O(NZ2T). Note, that in practice, to speed up the procedure, researchers tend to use the
probability of the best state sequence to approximate the likelihood P(0\A), instead of
using the sum of the probabilities of all possible state sequences, hence the in the

termination.

2.5 Summary

In this chapter, we introduced some basic concepts commonly used in the area of
pattern recognition. We described the theoretical background of PCA. including how
to transform the original feature space into the PC space, and how to measure the loss
of information during the procedure. We introduced the multi-scale theory, where an
image is embedded in a family of smoother versions of the original image. The greater
the scale parameter, the more details in the original image are eroded. In the section of
DHMM, we gave its definition, and discussed the solutions to three important

problems.
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“Good bye keyboard, so long mouse. Hello smart rooms and clothes that recognise
acquaintances, understand speech, and communicate by gesture. And that’s just the

beginning... ”

— Pentland [31]

A lot of effort has been put into hand gesture recognition [1, 2, 3, 4, 30], This work
shows the great potential of gesture recognition in many areas [1, 9, 10], such as
virtual environments, advanced user interfaces, Sign language recognisers, and so on.
Hand gesture recognition falls into the general field of object recognition, which
includes the following applications, such as hand-written character recognition [43],
vehicle detection [44], military target recognition [45], and so on. An important sub-
field is human motion recognition, which includes face [80, 81, 82], lips [38], eyes
[58], and whole body motion recognition [24, 54], A number of promising
applications for human motion recognition have been developed; smart surveillance
for example [32, 33]. Many techniques developed for these applications also can be
used for hand gesture recognition. In this thesis, we are specifically interested in hand
gesture recognition. Hence we only discuss the research in which hand gestures play a

major role.

In hand gesture recognition, an important concept is the degree of freedom (DOF),
which measures the flexibility of the human hand. When the hand configuration is not
so important, for example in human motion recognition, the movements of the hand
fingers are ignored (only the location of the whole hand is considered). The hand
shows in total 3 degree of freedoms (DOFs) in a 2D image. That is, the hand can
change in x and y translation, rotate in the 2D image plane. However, researchers are
usually interested in the details of human hands when recognising hand
configurations. In this case, the hand is treated as a non-rigid object, and there are 27

DOFs corresponding to the 27 bones in a hand, see Figure 3.3.
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This chapter will discuss the previous work and the state of the art in hand gesture
recognition. We will review the work according to the hand models used. The reasons
are, first, most of the systems are model-based systems, and second, feature extraction
and analysis in hand gesture recognition are tightly related to the specific model. In
the remainder of the chapter, we first introduce possible applications of hand gesture
recognition. Then we discuss different systems according to the spatial and temporal

hand modelling techniques they use. Finally, we have the summary.

3.1 Application Systems
The potential applications of human gesture recognition are the driving force of the
research. We consider two main application areas: advanced user interfaces and Sign

language translation.

An important application domain is the advanced user interface or Multimodal Human
Computer Interface [18, 19, 20]. The development of User Interfaces (Ul)
accompanied the evolution of computing technologies. From the original Text-based
User Interface to the current Graphical User Interface (GUI), people have always been
limited to a two-dimensional plane: either keyboards or mice. People are now seeking
for a more natural and convenient way to interact with computers, for instance using
speech and gestures. Due to the advance of speech recognition, a number of
commercial products now allow humans to talk to computers directly [16, 59], Hand
gesture recognition is useful to complement speech recognition in a natural, especially
high-noise, environment. On the one hand, hand gestures can replace the traditional
mechanical devices, i.e. keyboards, mice, and so on, so that users can copy, delete or
execute a program by their hand gestures instead of the normal click; (for example, a
vision-based system, “FingerMouse”, has been presented by Mysliwiec [23] that
allows users to use their fingers to take the place of mice.) On the other hand, hand
gesture recognition makes possible 3D human computer interaction, especially in a
virtual environment. This used to be very hard when controlled by 2D input devices,
or even by speech. Utsumi and Ohya [11] have designed a system where a user can
create virtual 3D objects having predefined primitive shapes and change the objects’
positions, sizes, colours, etc. with hand gestures. Lee[13] uses the user’s hand as a 3D

cursor in a virtual environment which makes the interaction between users and
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computers easier. Lee also presents another gesture recognition system [14] that uses
two sensors attached to the arm and allows users to interact with the computer by the
movement of their arms. “DigitEyes” [15] is a model-based hand tracking system that
can track the 27 DOFs of the configuration of the user’s hand using video cameras,

which has been applied to a 3D-mouse system.

Thanks to the boosting of computer power, people can integrate these state-of-the-art
technologies into their daily life. “Smart Room” is one example [24], A “Smart
Room” is a room (or a building) with lots of sensors and cameras that respond to the
words, movements and gestures of inhabitants. Residents can turn off the TV or lights
by simply waving their hands, or tell the room they feel cold by rubbing both hands;
the room will tum on the heater automatically. In the Artificial Intelligence Lab of
MIT, Moy has a pet robot [25] that responds to the owner’s gestures. The gesture
lexicon includes linear (vertical, horizontal and diagonal) as well as circular
(clockwise and counterclockwise) gestures. Roth et al. [54] in Mitsubishi Electric
Research Laboratories apply gesture recognition theory to various systems: vision-
based computer games, a hand signal recognition system, and a television set
controlled by hand gestures. Some of these applications employ a special artificial

retina chip for image detection or pre-processing.

Another important application for hand gesture recognition is in the field of Sign
language translation. For many Deaf people, Sign language is the principal means of
communication. However, due to the differences between Sign languages from
different countries, it is very hard for the Deaf from different countries to understand
each other. They may be confined in many of their interactions to communicate only
with other Deaf people from their own country. Surely hand gesture recognition has a
role to play here. One of the most famous systems is designed by Stamer and Pentland
[26], which can recognise sentence-level continuous American Sign Language (ASL)
using a single camera. An Irish Sign language Recognition system [27, 28] has also
been reported by the author, where both static and dynamic gestures can be recognised

fast on an entry-level PC.
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3.2 Previous Work

In this section, we review previous work from the technical point of view. Many
systems have been presented previously. To describe them structurally, we need to
first classify them into separate groups. A number of criteria exist that can be applied
to categorise different systems, for example, the type of hand models used (2D-hand
model vs. 3D-hand model), the number of cameras involved (multiple vs. single-
view), dimensionality of the tracking space, and so on. Our review is based on two
criteria; it distinguishes

e single-camera from multiple-camera (Section 3.2.1)

e 2D models from 3D models (Section 3.2.2).

3.2.1 Stereo vs. Single-view

When designing a vision-based system, the first question to ask might be how many

cameras should be employed? One choice is to use two or morecamerasso that the

“ ”

computer can “see” the hand from more than one angle simultaneously. Thiswill

provide extra robustness against some factors: (self-) occlusion and accuracy of hand
models etc., but the price is the expense of computing resources. In general, stereo
systems are expensive and slow and need many resources, which makes them not
suitable for real-time purposes. Furthermore, even with one camera, in the case of
occlusion, we can still recover 3D-hand structures given image sequences that contain

multiple views of the same object. Many researchers have developed their systems

based on a single camera [50, 51, 52, 61, 62, 63],

3.2.2 2D-hand model vs. 3D-hand model

In this section, we discuss the vision-based systems according to the hand models they
use. Unless clearly stated, all systems discussed from now on are based on a single

camera.

The models used up to now can be categorised into two classes: 2D-hand models, also

known as appearance-based models, and 3D-hand models. These two classes of model

are intrinsically different in the following way: given a training set, the parameters or
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features of the 2D-hand model are extracted by analysing the raw image data. In other
words, we do not know what the model looks like before. In contrast, when a 3D-hand
model is used, we start with the model, and search for evidence from the raw data to
support it. We can adapt the model to fit the data. This is essentially a top-down
procedure and a priori knowledge can be embedded into the model beforehand that
makes it often outperform the 2-D appearance-based method. 3D-hand models are
computationally expensive because of the high computational complexity, and 2D-

hand models largely depend on the quality of the training data.

3.2.2.1 2D-hand Model
A large variety of systems that have been presented in this area use a 2D-hand model.
The systems using 2D hand models can be classified into two classes: image property-

based models and statistical models.

Image property-based models employ some simple image features. Commonly used
image features include geometrical features [26, 46], moment features (using the
moments of the image as features) [26, 47, 48, 49, 50, 51, 53], local orientation

histograms [52, 54], and local shape features [55],

W avelets are a relatively new approach and also have become popular in hand gesture
recognition in recent years. This technique reflects the image properties in the
frequency domain. Oren et al. [57] perform non-rigid object detection in still images

using the wavelets analysis method.

A large amount of work falls into the class of statistical models, which are based on
PCA or its extensions. PCA was first applied in the computer vision community to
face recognition by Sirovich and Kirby [17] and later extended by Turk and Pentland
[95], Birk et al. [67] have developed a system recognising 25 static gestures of
International Sign language. They first perform PCA on sets of training images to
generate a Bayes classifier, and then use the classifier in real time. Martin and
Crowley [66] describe a system that is used to interact with a virtual world. They

address the task of hand gesture recognition in a similar manner to Birk et al. They are
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the first two research groups applying PCA to hand gesture recognition [36] although

the two systems were developed independently.

Heap and Hogg [61] present a two-level hierarchy to extract the existing non-linearity
from PC spaces. This approach consists of two main steps: first an initial global PCA
is performed on the training data for dimensionality reduction. Second, a &-means
cluster analysis is carried out to split the data in the global PC space into several
clusters in terms of the Eulidean distance. A sub-region is then produced which is
centred on the cluster mean, and bounded by a hyperellipsoid with a Mahalanobis
radius of some specified value. The idea behind this approach is that a complex, non-
linear region can be approximated by a combination of a number of smaller sub-
regions, which are treated as linear spaces. Figure 3.1 (taken from [61]) demonstrates

the procedure.

sub-regions (taken from [61]); (a) training data projected into a 2D PC
space using PCA, (b) finding out the centers of the sub-regions, (c)
principal axes of the sub-regions, which shows that the non-linearity of

the original trajectory has been reduced significantly.

Cui and Weng [37] present a general framework to recognise hand signs against a
complex background. PCA is applied on the training set to reduce the dimensionality
of the feature space. Then, Linear Discriminant Analysis (LDA) is used to
automatically select the most discriminating PCs after dimensionality reduction. A
space partition tree is used to achieve a logarithmic retrieval time complexity for a
database of n items, and a general interpolation scheme to do view inference. The

system was tested using 28 hand signs in front of the uniform background. The

26



Chapter 3 Literature Review

experiment required the hand area being manually labelled, and hence is not suitable

for a training database with a large number of samples.

Point Distribution Model (PDM), proposed by Cootes [41], is based on the PCA
method. Sometimes, PDM is called the Active Shape Model or “smart snakes”. In a
PDM, objects are defined by landmark points that are placed in the same way on each
of a set of examples from the training set. PCA is performed to estimate the mean
shape and to find out the main “modes of variation” [41], Each mode changes the
shape by moving the landmarks along straight lines passing through their mean
positions. A new image is then expressed as a linear combination of the modes of
variation. PDM can represent non-rigid objects, which makes it very suitable for the
task of hand gesture recognition, and has already been applied to the area of hand

gesture recognition [60, 61, 62, 63],

Many extensions of PCA have been developed. Although these have not yet been
applied in hand gesture recognition, these extensions have been used in the field of

objection recognition, and can be easily employed for the recognition of human hands.

Probabilistic PCA (PPCA), an extension of standard PCA, has been proposed
independently by Moghaddam and Pentland [39], Tipping and Bishop [38] and
Roweis [34], Unlike in standard PCA, where the less important PCs are simply
discarded, in PPCA, these PCs are assumed to contain Gaussian noise. [34] and [38]
present a noise model and derive an expectation-maximisation (EM) algorithm to
estimate the parameters. Moghaddam and Pentland further apply PPCA for face

recognition [40].

Independent Component Analysis (ICA) is another useful extension of PCA. In
contrast to PCA, which de-correlates the features using the covariance matrix (2nd-
order statistics), ICA reduces higher-order statistical dependencies, attempting to
make the features as independent as possible [35]. Recently, Moghaddam et al. use
ICA to recognise objects in cluttered background [42]. Especially, their approach has
the ability to model non-rigid objects [42], which makes it possible to extend the

method for hand gesture recognition.

27



Chapter 3 Literature Review

3.1.2.2 3D-hand Model
A 3D-hand model is an alternative to 2D-hand models. In this section, we discuss the

work that aims to recover 3D articulated pose over time.

3D-hand Models can be classified into two large groups: volumetric models and
skeleton-based models. Volumetric models describe the visual appearance of human
hands and are often used in the field of computer animation. Because of the huge
computational complexity, not many researchers use them to model hands for real-
time purposes. However, it may be helpful to construct training databases for
statistical models: the performance of statistical models depends on the size of
training sets. The more variation within the training sets the better the performance the
system can reach. However, constructing a large training database has always been a
problem. Computer animation is a possible solution for this. Recently, John et al. [68]
made an attempt to use computer animated hand shapes in ASL. Their representation
of the hand consists of sixteen articulated rigid bodies, which represents the palm and
the bones of the fingers and thumb, where the palm is modelled as a single rigid body.

See Figure 3.2.

Fig. 3.2: Computer animation effects from [68]: from
left to right: an open palm, the letter D in ASL, the
letter E from ASL.

The figure shows that many visual features can be simulated well in this model in
terms of both shape and texture, such as the fingers’ shadow on the palm in the shapes
of D and E in ASL. The main deficiency is just as the authors indicated in the paper:
the absence of the metacarpal bones for the little finger and ring fingers makes it
difficult to place the hand in certain configurations where the thumb is touching the

little finger.
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To reduce the computational complexity of volumetric models, some details in the
model have to be eliminated. Often the texture of skin (not to mention the structure of
muscles) is not computed. That is, only shape information is taken into account when
recognising a gesture. This is reasonable because the deformation of the skin of the
human hand does not convey any additional information needed to interpret gesture
[3]. For example, humans have no problem to recognise gestures made by cartoon

characters even though they are much simpler than real humans.

Some approaches treat the homogeneous hand parts by simpler parameterised
geometric shapes, for example cylinders [71, 72], In [71], Shimada et al. use such a
model. In their system, first the pose is estimated roughly by silhouette matching; then
the rough pose and the initial shape model are refined using some knowledge of
human body’s shape, pose and motion restrictions. However, because fingertips are
used to construct the correspondences between the model and the images, the

performance would depend on the accuracy of fingertip detection.

PDM can also be used for 3D modelling. Heap and Hogg [69] apply this idea to track
hands with a full 6-DOF in real-time regardless of the hand configuration (10
frames/second on a standard 134MHz Silicon Graphic Indy workstation). A key issue
for building their model is the collection of landmark coordinate data from training
images. They tackle this problem by capturing training data semi-automatically using
a simplex mesh introduced by Delingette [70], However, this system does not work

well when bending points exist.

For real-time purposes, skeleton-based models are often used for the current hand
gesture recognition tasks. This type of model is based on anatomical knowledge and
treats human hands as articulated objects consisting of a set of sub-objects where each
sub-object is rigid. Thus, only the kinematic relations among these sub-objects have to
be modelled. Each finger is demonstrated as a series of linked chains, shown in Figure

3.3.
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Fig. 3.3: Skeleton-based model of the human hand. The left one mimics all 27 bones of the
hand. While the right one is a simplified version that approximates fingers more accurately
since fingers have more flexibility than palm.

Although a hand contains 27 bones anatomically, most bones in the palm are not as
flexible as in fingers. This gives us a clue that a skeleton-based model can be
simplified by ignoring the bones and their joints in the palm. Thus, we have the
simplified version of the skeleton-based model, which contains 19 links, to mimic
most of the bones and joints and each finger is modelled as a kinematic chain with the

palm as its base reference frame.

To estimate the 3D structure of hands precisely with a skeleton-based model, we have
to solve the so-called “inverse kinematics problem”. That is, to recover the angles of
the joints. One way for solving this is to first construct a feature correspondence
between 2D images and the 3D model. Once the correspondence has been established,
joint angles can be estimated by minimising the distance between the projections from
the 3D model and 2D images. Different systems take different image features for the
correspondence. The performance of this type of approach greatly depends on the
feature detection. If the predefined features can not be decided properly for some
reason, for example self-occlusion, the joint angles would not be able to be recovered.
Next we review some systems that uses skeleton-based models. We only consider the
single camera situation. Thus, 3D structure has to be recovered from a sequence of

images, otherwise severe ambiguity problems could happen.
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Rehg and Kanade [73] use a skeleton-based model to tackle the self-occluding
problem, a problem that always happens during articulated object motion. In their
experiments, a simplified skeleton-based model (only 9 DOFs) of the index and
middle fingers (3 planar joints per finger) of the hand with full translation is

employed. This system does not work in real-time.

Ahmad [75] presents a real-time 3D-hand tracker with 19 DOFs. The tracking speed
reaches up to 30 frames/second on a standard workstation with no special image
processing hardware other than a frame grabber. The main drawback of the system is
that only the hand rotations parallel to camera plane can be recovered, while the

rotations of the hand around the other two axes would confuse the system.

Lathuiliere and Herve [76] have developed a system for robot controlling purposes
where 26 DOFs of the skeleton are modelled. First the pose of the wrist is computed,
and then the value of the finger joint angles is recovered. The fingertips and the
middle point of the wrist are used to construct the correspondence between the model

and the image.

CREFIT presented by Nolker and Ritter [77, 78] is able to recover 3D hand postures
from grey scale images. The recovery of the joint angles is achieved by employing an
artificial neural network, which uses a set of non-linear basis manifolds to construct a
mapping through a number of “topologically ordered” reference vectors. The features
used in this system are the 2D positions of the fingertips, and the DOFs are also
restricted to avoid possible ambiguities of joint angles. Therefore, this system can not

distinguish differences in depth.

A remarkable success from Rehg and Kanade is “DigitEyes” [15] where a full 27
DOF is recovered at the speed of 10 Hz. However, a special image processing board

and two cameras are needed.

One of the issues that is worth mentioning in 3D-hand modelling is that although the
hand is highly articulated, its configuration is also highly constrained. That is, it

cannot make gestures arbitrarily. These constraints help to reduce the size of the
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spatio-temporal space, thus reducing the complexity of gesture recognition. However,
the constraints themselves are quite complex. Some of them are due to the anatomy of
hands, and some are due to the naturalness of hand motions; some of them can be
expressed explicitly, while some can not. Lin et al. [29] investigate these constraints

thoroughly.

3.2.3 Hand Motion Modelling

Both 2D- and 3D-hand models can only extract spatial parameters of human hands,
while a larger number of gestures are performed dynamically. In this section we
discuss the attempts that have been made to model the temporal characteristic in

motion.

Since a human gesture is a dynamic process, it is important to consider the temporal
characteristic of gestures. Although learning the dynamics of hand motion has
attracted much attention [85, 89, 91, 92, 93], there are only a very limited number of
methods partly because of its complexity. One of the methods is called the Finite State
Machine (FSM), which represents dynamic gestures as prototype sequences of states
[85, 91], Recognition is finished by matching an incoming sequence to the prototypes.
To handle variations in temporal behaviour, the match is typically computed using
some form of Dynamic Time Warping (DTW) [89], If the prototype is described by
statistical tendencies, the time warping is often embedded within an HMM [87, 92,
93]. In this section, we investigate the previous work dealing with the hand-motion

modelling issue.

As speech recognition also requires modelling the dynamic features of the speaker,
many of the same techniques can be used to model both dynamic hand gestures and
speech. DTW is one of those, which enables non-linear time alignment of speech
patterns produced with different speech rates. Based on this approach, Darrell et al.

[89] presents a real-time system recognising three gestures under uniform background.

FSM models gestures as sequences of states in spatio-temporal space. Each state in

this model is treated as a multidimensional Gaussian. Thus, each dynamic gesture will
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correspond to a sequence of states. Template matching can be used to perform real-
time gesture recognition. Hong et al. [85] propose a game system based on FSM
which ran at the speed of 25 frames/sec on a 350MHz Pentium 13 PC running
Windows NT 4.0. Davis and Shah [91] use FSM to model distinct phases of a generic
gesture. In their method, gestures are represented as a list of vectors and are then
matched to stored gesture vector models using table lookup based on vector

displacements. FSM is also similar to HM Ms.

The most successful technique in hand motion recognition is certainly HMMs. Stamer
and Pentland [92] first used it for the recognition of ASL sentences. They use a simple
feature set to describe the hand shape which consists of each hand’s x and y position,
angle of axis of least interia, and eccentricity of bounding ellipse. In their experiment,
494 sentences are collected. Of which 395 sentences are used as a training set and the
remaining 99 as a test set. When the grammar is involved in the recogniser, 99.2%
recognition rate was achieved, while without the grammar, the recognition rate is

91.3%.

Vogler and Metaxas [93] also use HM Ms to recognise ASL. They couple 3D-motion
analysis with a context-dependent HM M to recognise 53 gestures. In their system,
HMMs and 3D-motion analysis are two separate modules. Given a sequence of
images, 3D-motion analysis is performed to constrain the recognition process in the
HMM. In their experiment, 486 sentences in total are collected, of which 389
examples are used as a training set and the remaining 97 as a test set. 87.71%
recognition rate is achieved in their experiments when coupling 3D constraints with
HMMs, against 83.63% accuracy using 2D constraints. However, three cameras have

to be used to get 3D information.

The standard HMM [92, 93] is extended by Wilson and Bobick [87] to have the
ability to recognise parametric gestures. A parametric gesture is a movement that
exhibits meaningful, systematic variation [87]. Since the standard HMM approach
tends to model the meaningful variation as noise, it would not be able to handle this
type of gesture. Wilson and Bobick include a global parametric variation in the output

probabilities of the states of the HM M and they formulate an EM method for training
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the parametric HMM. During the online recognition, the parametric HMM

simultaneously recognises the gestures and estimates the quantifying parameters.

HMMs is similar to FSM as they both model dynamic gestures as sequences of state
in spatio-temporal space. However, a couple of differences exist between them. First,
the number of states and the topological structure of an HM M has to be fixed before
training whereas FSM does not have this requirement; second, a few FSMs can be
concatenated together to form a more complex FSM. For example, if gesture C is the
combination of gesture A and B, then the FSM C is constructed by appending the

FSM B to the end of FSM A. While for HMMs, the simple relationship does not hold.

Kalman filters are a relatively old method for modelling hand motion. They allow the
system to predict future behaviour given a spatial hand model to provide some sense
of error correction. Also it enables the system to operate in real-time because the
computer only examines the part of the image where the filter predicts the hand must
be. The Extended Kalman filtering (EKF) technique is an extension of the standard
Kalman filter under the assumption of small motion of the object of interest. Shimada
[71] uses a similar technique in his system. A 3D-hand model is used to capture the
spatial characteristics, and then EKF is used to estimate the hand motion. However,
the Kalman filtering technique is based on the spatial-temporal continuity assumption,

which often fails to hold in real life.

Neural Networks are another alternative for modelling temporal characteristics. Gao et
al. [94] present a Sign language recogniser combining neural networks with HMMs to
recognise continuous large vocabulary in Chinese Sign language. During the training
phase, Neural Networks and DTW are used to supervise the temporal segmentation of
training data, which is very important for an HM M -based system and always affects

the system performance greatly.

3.3 Summary

In this chapter, we have examined past development of the research of hand gesture

recognition. To recognise a hand gesture properly, both spatial and temporal
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characteristics need to be modelled. Although many methods have been shown, none

of them is the best. Different methods are good for different tasks.

For a full and successful gesture recognition system, it is very important to incorporate
face recognition and other parts of body, because to recognise some gestures correctly,

the facial expression and the relative position between the hand and body are essential.

“Overall, at the current state of the art, vision-based gesture tracking and recognition
are still in their infancy. In order to develop a natural and reliable hand gesture
interface, substantial research efforts in computer vision, graphics, machine learning,
and psychology should be made.”

-Wu and Thomas [881
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Chapter 4 System Overview

To design a hand gesture recognition system has never been an easy task. It provides a
lot of challenges. Even if we ignore the variability of lighting, shading and complex
scenes containing cluttered background, human hands still produce considerably
differing views depending on what they are performing and their position and
orientation. A general gesture interpreter needs a broad range of contextual
information, general knowledge, cultural background and linguistic capability [37],

which is far beyond current computational power.

In this chapter, we first introduce our objectives and give some assumptions in Section
4.1; then we discuss the hand model, i.e. 2D or 3D, chosen for our system in Section
4.2. Section 4.3 will give the general framework of our system. We summarise in

Section 4.4.

4.1 Objective end Constraints

In order to make our system widely acceptable, we are aiming at developing a hand
gesture recognition system working on an entry-level workstation, which uses only
one camera and can recognise hand gestures using computer vision principles without
the need of any other special image processing hardware. To make a system widely
acceptable, two factors are important: price and performance. On the one hand, our
system only uses a single camera, and this camera can be as cheap as a common
webcam (in fact that is what we are using for our performance evaluation). The system
also works on an entry-level workstation. These guarantee the cheap price of the
system. On the other hand, our algorithm has low computational cost, which grows
logarithmically proportional to the size of the vocabulary. Even without the help of
any grammar restriction, the recognition accuracy is very high. The above two points

give the system potential for popularity.

The aims are quite ambitious. Some constraints have to be made to limit our research

to a reasonable range. Firstly, our main research interests are in the hand modelling
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and recognition problems. Although segmentation of the hand from a complex
background is also an important issue for a successful system, it is not what we are
concerned about here. Thus we assume the system works under normal office
illumination conditions, which simplifies the task of hand tracking. Secondly, we
employ statistical methods in our system. Such methods need a large amount of
training data, which is another difficult issue to be solved. As in the case of speech
recognition, nearly all the commercial products (for example: IBM ViaVoice, Vocalis
Speechware, etc.) are based on HMMs. The training database of these systems
involved hundreds or even thousands of people’s hard work. In our study, we are more
interested in reducing the computational costs. That is, a user-independent system is
not our target yet. In contrast, a user-dependent system will be shown at the end of the

thesis.

One thing which should be noted is that the computational cost in this thesis is
measured by the time complexity because time complexity is a machine- and

language-independent measurement.

4.2 Hand Mode! selection: 2D or 3D

An important step in the system designation is to choose an appropriate hand model.
In the literature review, we have already shown systems that modelled hands either in
2D or in 3D. 2D modelling is an obvious solution for a single camera system, but 3D
modelling is also possible since the hand structure could be recovered from a

sequence of images. In this section, we discuss which one we should choose.

Classical computer vision theory suggests constructing a 3D model of the human
hand, statistically or anatomically, and then recovering the parameters during the
recognition phase. This is the approach used in [73, 75, 78], Accuracy and flexibility
are the two most obvious advantages of this type of model. In theory, a 3D model can
recover movements of finger joints precisely, but there are some difficulties. Firstly,
such systems estimate 3D parameters by fitting the 3D model to images based on
feature correspondence. However, in many cases, for example when hands move

quickly or self-occlusion exists, it is very difficult to detect such features. Failure to
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detect predefined features would severely affect the system performance or even cause
the failure of the whole system. Unfortunately, in a single camera system, occlusion
and self-occlusion often happen or are even unavoidable [56]. Secondly, even if the
features can be found reliably, to recover the parameters is still not easy. The gesture
needs to be determined by generating the “possible pose” candidates, and then
projecting candidates onto the image plane to find the best match with respect to a
certain similarity measurement. This is essentially a search and optimisation problem,
to which the best solution has not been found yet because the search space is so huge.
Due to the high DOF of the human hand it is nearly impossible to avoid being trapped
in a local optimum. Even finding a sub-optimal solution is computationally intensive.
Consequently, it is infeasible for a system that is aiming at working on an entry-level
computer. Apart from the above two reasons, many 3D modelling systems require a
priori knowledge about the internal camera parameters, which means the camera has
to be carefully calibrated. This makes the 3D model-based systems dependent on users

and impossible for portable applications.

To overcome all these limitations, we choose a 2D (or appearance-based) model. In
this case, no a priori model is used, and the model has to be learned from a collection
of data. After the learning phase, a number of gestures can be recognised. 2D hand

model-based systems benefit from high speed and low computational cost.

4.3 Outline of the System

4.3.1 Hardware Set-up

In our system, the video camera is set up in front of the user. See Figure 4.1. The user
can move his/her hand freely in a certain range. The camera acquires images and
sends them to the machine, which then processes the images using computer vision

principles. The name of the recognised gesture will be shown on the monitor.
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Figure 4.1: System hardware setting up.

4.3.2 Software Architecture

We now describe our software framework. The whole system is divided into three
modules: 1. pre-processing, 2. training and 3. recognition. The first module is
responsible for acquiring the visual data and pre-processing it including segmentation,
noise removal and normalisation. The training module constructs a hierarchical
decision tree and an HMM recogniser. The last module is the recognition module and
responsible for the classification of unknown gestures. When the recognition module
starts up after training, it initialises the HMMs and reads in the hierarchical decision
tree. Then for each frame, it gets the hand data from the data acquisition and pre-
processing module and recognises the gesture made by the user. If there is a
meaningful gesture, it outputs its name. The whole framework is illustrated in Figure

4.2.

As shown in the figure, the system modules are highly structural. Each module is
composed of a few sub-modules, and each sub-module is only connected with one
previous step and sends the results to one following sub-module. This type of
framework gives the system expandability. Each module and sub-module can be
substituted as long as the input and output data structures obey the same syntax. For

instance, the construction of the decision tree affects the final performance of the
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system. If desired, this part can be easily replaced without change to the code of other

parts of the system.

Figure 4.2: System software architecture.

4.4 Summary

In this chapter, we discussed our objectives and made a few assumptions in the first
section. We chose the 2D-hand model for our system, and we showed the hardware
set-up. The software architecture has been demonstrated, which is composed of three
modules: data acquisition and pre-processing, training and recognition. These three

modules include most of our work.
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Chapter 5 Static Gesture Recognition Using PCA

5.1 Introduction

Our work in this chapter is similar to Birk and Martin’s systems [66, 67](see Section
3.2.2.1). We use PCA to recognise the finger-spelling gestures in ISL. The

performance will be evaluated using three types of classifier.

The remainder of the chapter is divided into three parts. We first introduce the pre-
processing procedure in Section 5.2. We then explain how to construct image vectors,
and apply PCA to a set of training images in Section 5.3. The evaluation results of the
recognition of finger-spelling gestures of ISL using three types of classifiers are

presented in Section 5.4. Finally we summarise.

5.2 Pre-processing Procedure

The original images from the camera may contain many objects and various
backgrounds. The first task of any gesture recognition system is to find the hand
object while eliminating the influences from other objects and the background, i.e. to
follow the position of the human hand. This task is accomplished by the pre-

processing module in our system.

The pre-processing procedure includes four steps, which are summarised here. Details
can be found in Appendix A.

Step 1: Standard colour segmentation is applied to the original image.

Step 2: Noise is then removed from the image.

Step 3: The hand is rotated according to its principal axis.

Step 4: The area of the image is scaled so that its resolution is reduced to 32x32, and

the centroid of the image is moved to 16x16.

Figure 5.1 shows the effects of the above procedure.
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Step 2

Step 3 Step 4

Figure 5.1: Pre-processing procedure. The numbers beside the images are the
resolution.

5.3 Construction of Image Vectors

Consider an image composed of mxn pixels, where m and n are the dimensions of the
image. We construct a vector by concatenating the image pixel row by row. See figure

5.2.

Variable a

au,...,ahl,... im
m au.. VY e (YA 1

The pixels in  The pixels in
the first row the mihrow

n

Figure 5.2: Construction of image vector. The grid represents a 32x32
image. Each pixel can be treated as a variable varying from 0 to 255, where
a,™ is the grey value of the pixel at mth row and nth column.

Suppose the grey value of the pixel at ¢th row and /th column is represented by ajj .

The image vector can be written as f = [aj],...,ajn,...,ami,...am,]. In our case, m -n=
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32, hence the length of the vector is fixed as 1024 (32x32). As the numbers of rows
and columns are not important any more here, we rewrite the image vector into f =

where N =mn=1024. Each pixel in such an image vector can be treated as a
random variable varying from 0 to 255, i.e. from total darkness to total whiteness.
Therefore the whole image vector is a random vector containing 1024 random

variables.

Each image vector corresponds to a single point in a 1024-dimensional feature space.
The dimensions in the feature space are not independent from each other since
correlation exists between the pixels. Using the strategy of PCA (see Section 2.2), we
transform the feature space into a new PC space whose dimensionality is much lower

than the original feature space.

Every PC in the PC space represents a mode of variation of the hand structure. The
first PC corresponds to the variation of a large-scale structure where the largest
eigenvalue is its weight, the second PC corresponds to the variation of a jess large-
scale structure where the second largest eigenvalue is its weight, and sc on. Figure 5.3
gives an example. The PC space used in the example was trained by the iraimng set
containing 1200 frames with 600 from class “C” and 600 from class “F . The
variations of the first three PCs are shown. Some typical reconstruction of images
using the first three PCs are given in Figure 5.4, where the two static gestures on the
left side are the original images of “C” and “F” in ISL respectively, while the two

images on the right are their reconstruction.

-28; -a, Mean a, 23;

Figure 5.3: The first three PCs. a, is the standard deviation along the zth
PC, and <7, = JJ, .
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Figure 5.4: Image reconstruction using PCA. The left two
images represent “C” and “F” in ISL respectively, while the
two images on the right are their reconstruction.

In the example, the first 22 PCs included more than 90% of the energy. Therefore we
can reduce the dimensionality from 1024 to 22 with only 10% loss of energy.
Furthermore, the projection of the images on these 22 PCs can be used as features for
classification purpose. Consequently, the processing time is reduced by a factor of 46

(1024/22).

When applying PCA, one problem is to decide the dimensionality of the feature space,
i.e. how many PCs to retain. Generally speaking the task of determining how many
PCs to retain is a matter of representing as much information as possible. The more
PCs the more energy can be preserved. However, retaining more PCs also means
more computation and less dimensionality reduction, and sometimes more PCs will
bring in more noise, such as the variation of the illumination condition or other white
noise. Hence, this is a tradeoff between the loss of the energy and the amount of

computation.

In practice, we take the following strategy: the number of PCs to be retained is
decided using a simple threshold T. The criterion is formalised as

E remain(K )> T 0<T<1. ..(5.1)
where Eremain(K) is defined in Equation 2.8. Empirically, 0.95 would be a fair

threshold for many applications.
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5.4 Static Gesture Recognition

We now evaluate this methodology by recognising the 23 finger-spelling gestures.

The illustration of these gestures is given in Appendix B.

5.4.1 Training Phase

The first thing is to construct the image database, from which both training and test
sets will be extracted. The acquisition of image data is a key issue in the system
evaluation, especially for a system using an appearance-based hand model. If most of
the images in the database concentrate on one or some specific view angles, the
eventual recognition rate would be quite good. However, the system would be
sensitive to the changes of the hand configurations. Hence the recognition rate would

not measure the performance of the system well.

To do a fair test, we use the following strategies:

1) We construct a separate database for each of the 23 finger-spelling gestures, with
each database containing 1200 images. Different view angles are included in the
database as much as possible.

2) A holdout method [43] is applied for selecting the training and test sets from the
databases. First a number of images, say 120, are extracted randomly from each
database for training, then another group of images, say 120, are extracted from
the rest of the images in each database. The procedure assures the independence
between training and test samples.

3) We then train the classifier using the training set and calculate its accuracy using
the test set.

4) We repeat the step 2 to 3 for 10 times and work out the average accuracy.

Figure 5.5 gives some examples that are selected from the training sets randomly. It

can be seen clearly that the samples cover a wide range of view angles.
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Figure 5.5: Different appearances of finger-spelling gestures randomly

extracted from the training set.

5.4.2 Classification Using Three Types of Classifier

In this section, we discuss three types of classifier. For the first two classifiers, we
calculate a single PC space which contains all 23 finger-spelling gestures. We
calculate the mean vector of each gesture class in the PC space. For the third

classifier, we use a different PC space for each gesture.
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(i) Single-space Euclidean Classifier

When confronted with a classification problem, the easiest method is to assign the
unknown object into the cluster with the shortest Euclidean distance between the
unknown object and the mean of the cluster. Suppose we have an unknown feature
vector p = [pi, p2-.., PK] and the j'th class is characterised by its mean vector w, =
[wu, W2,...,Wjx\, where K is the dimensionality of the feature space. The Euclidean

distance between them is defined as:

-11/2

NEPw,)=lp-w (t= £ (Pj-wu)2 ...(5.2)
)=

The classification criterion thus can be formulated as:

wc=min(d£(p,w,.)) ...(5.3)

where wcis an integer number representing the chosen class. This is a simple criterion
with very little computation. We call the classifier that uses the above classification
criterion a single-space Euclidean classifier since only a single PC space is computed
from the overall training samples. When applying it in the experiment, a reasonable

result is achieved, as shown in Figure 5.6.

Number of PCs
Figure 5.6: System performance test: single-space Euclidean classifier

vs. single-space Mahalanobis classifier.
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(ii) Single-space Mahalanobis Classifier

The single-space Euclidean classifier treats the distance along every dimension of the
PC space in the same manner and does not take into consideration the different
variance along different directions. See Figure 5.7. To overcome this problem, we
take advantage of another classifier: the single-space Mahalanobis classifier. It also
works in a single PC space, but uses the Mahalanobis distance, defined in Equation

5.4, rather than the Euclidean distance in the PC space.
12
..(5.4)

where O is the standard deviation along the jth PC. The single-space Mahalanobis
classifier can be formalised by the following equation:

wc=min(dM(p,w,)) ...(5.5)

Since in the feature space, the jth eigenvalue, A, represents the data variance along the

7th PC, the above classification criterion can be rewritten as:
-1/2
...(5.6)

Compared to the Euclidean distance, only a simple scaling factor is added to each
term, which does not make the computation much more complex. Figure 5.6 gives the
performance tests using the two criteria. Each curve represents the average
recognition rate of ten trials. Up to 25% improvement has been achieved with the
classifier using the single-space Mahalanobis classifier compared to the single-space

Euclidean classifier.
Euclidean
Decision Surface

.Mahalanobis
Decision Surface

Figure 5.7: Difference between the single-space
Euclidean classifier and the single-space Mahalanobis
classifier.
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It is worth noting once again that choosing different number of PCs can affect the
ultimate performance greatly. For example, in terms of the Mahalanobis classifier,
70% of test images were correctly classified when 30 PCs corresponding to the 30
largest eigenvalues were used, while 82% can be correctly recognised when 160 PCs
were used. A 12% improvement is achieved with the cost of about 5.3 (160/30) times
more computation. There is a tradeoff between the recognition rate and the
computational speed. When too many PCs are included, noise will affect the final
result and thus cause a drop in recognition rate. For example, in Figure 5.6, using the
Mahalanobis classifier, when more than 330 PCs are included, there is a reduction of
the recognition rate. When the images contain much noise, the drop will become even
clearer. On the other hand, it is always desirable to have less computation. Increasing
the number of PCs means an increase of the online computation. When the
improvement of the performance is not good enough, we prefer a system with less
computation and little reduction in accuracy. That is, we have to ask the question: is it
worth achieving 12% improvement with 5.3 times more computation? There is no
absolute answer and it depends on the working environment. In our experiment, we
use the first few PCs that contain at least 95% overall energy. In this case, the average
dimensionality of the feature space is 87, and the recognition rates from jhe Euclidean

classifier and the Mahalanobis classifier are 57% and 79% respectively.

(iii) Multiple-subspace Classifier

The above procedure gives us an at most 83% recognition rate, which is not a
satisfactory result. An improvement is possible by employing a multiple-PC-space
classifier, which is similar to the subspace pattern recognition method, a statistical
method proposed originally by Watanabe [44, 45]. Instead of using a single PC space,
we use a set of PC spaces, each corresponding to one class. Since each PC space is a
subspace in the original 1024-dimensional global space, we call it a multiple-subspace
classifier. In practice, given N finger-spelling gestures to recognise, we construct one

subspace for each gesture using PCA, and name them Lj, L2, Ls,..., Ln.

Given an image vector f, the distance between f and the ith subspace, L,, is defined

using the original image vector f and the reconstructed image vector f, from L,:

Ms(f,Z H|f-f;f -(5.7)
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The multiple-subspace classifier can be formalised as:

w = min(<i5(f,z-.)) ...(5.8)

Again, wc is an integer number representing the chosen class. The procedure is

visualised in Figure 5.8. Given an unknown image f, it will be classified into L\, i.e.

subspace 1, since the Euclidean distance between f and f, is shorter than the one

between f and f2.

Figure 5.9 shows the average recognition rate for the overall 23 finger-spelling
gestures. Note for visualisation purposes, that the average result in the figure is
worked out under the condition that every subspace has the same dimensionality,
whereas in practice we decide the dimensionality of each subspace separately using
Equation 5.1. That is, for each feature space we reserve the first few PCs that involve
at least 95% overall energy. In this case, the dimensionalities of the subspaces vary
from 22 to 56, and the average recognition rate is 98%, which is very close to the best
performance. A drop in recognition rate can be found when more than 30 PCs are

used. Again, this is because adding more PCs adds more noise.
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Number of PCs
Figure 5.9: System performance test using multiple-subspace

classifier.

5.4.3 Time Complexity of the Classifiers

In terms of the computational complexity, the most expensive computation is the
scalar product operation, i.e. the multiplication between the image vector and the PCs.
Each classifier’s time complexity would be bounded by the number of scalar product
operations. In other words, the time complexity can be computed with respect to the

number of the scalar product operations. See Table 5.1:

Table 5.1: Time complexity of the classifiers

Classifier Time Complexity
Single-space Euclidean Classifier cm
Single-space Mahalanobls Classifier 0(K)
Multiple-subspace Classifier 0 (Nex max(if())
. K is the dimensionality of the single feature space.
. K\ is the dimensionality of the ith subspace in the multiple-subspace methods.

*  Ncis the number of finger-spelling gestures to be recognised, in our case, Nc=23.

In practice, the time complexity of the multiple-subspace classifier would grow

roughly linearly with respect to the number of classes to be recognised, because an
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additional finger-spelling gesture would not affect the dimensionalities of the other

subspaces thus max ("~ () would hardly change much.
f

5.5 Summary

In this chapter, a standard PCA-based system has been designed. First we introduced
the pre-processing procedure. Then, a single PC space or multiple subspaces are
constructed according to the type of the classifier employed. A number of classifiers
have shown quite different accuracy results. The multiple-subspace classifier

outperforms the single-space classifiers.

The time complexity of the multiple-subspace classifier is a linear function of the
number of classes. This would become unacceptably slow when there are many
gestures to be recognised. By utilising a hierarchical decision tree combined with

multi-scale theory, in the next chapter we will develop a fast and reliable system.
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Chapter 6 Decision Tree and M ulti-scale Theory

6.1 Introduction

In the previous chapter, a good recognition rate for the finger-spelling gestures in ISL
was obtained using the multiple-subspace classifier. However, the processing time is
linearly proportional to the number of gestures. For a large set of gestures, the speed
would be unacceptably slow to perform any real-time recognition. This chapter
introduces a novel methodology to reduce the online recognition time by combining
standard PCA with multi-scale theory. A hierarchical decision tree is constructed and

the processing time is only proportional to the depth of the decision tree.

The core technique in this chapter is a hierarchical decision tree, which is somewhat
similar to the two-level hierarchy presented by Heap and Hogg [61] (see Section
3.2.2.1). Their approach is similar to ours in two aspects. First, PDM (Point
Distribution Model) is a statistical method based on PCA. Similarly, our approach ii
also based on PCA. Second, the way they find the linear sub-regions in the global PC

space, &-means, is the one we employ here.

Differences between Heap and Hogg’s method and ours are as follows: first and
foremost, their hierarchy contains only a two-level tree and thus can only handle
single non-linearity. In other words, the efficiency decreases as the number of hand
shapes increases. In comparison to this, we present a multi-layer decision tree, which
contributes the ability to handle the complex non-linearity in a large database and to
recognise gestures quickly. Second, unlike Heap and Hogg’s system where the
number of sub-regions has to be decided manually, the construction of our system is
fully automated, which makes the training and expansion of the system much easier.
Thirdly, our approach will be applied to extract the intermediate hand configurations
from dynamic gestures, so that the configurations can be further fed into a DHMM
(discrete HMM) for the recognition of dynamic gestures. The third point is an
important aspect of the hierarchical decision tree, but to our knowledge has not been
mentioned by either Heap and Hogg or other researchers before. We will discuss the

third point thoroughly in the next chapter together with the DHMMs since the
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recognition of dynamic gestures needs coordination between the decision tree and

DHMMs.

Similar work has been done by Cui and Weng [37] (see Section 3.2.2.1). Their
scheme is also similar to our hierarchical decision tree. The differences between our
systems are 1) no multi-scale theory is embedded in their system and 2) our decision
tree is applied to extract the intermediate hand configurations from dynamic gestures,
while Cui and Weng only use it as a way to manage a large number of training

samples.

In this chapter, we discuss the use of multi-scale theory in our system. We introduce
the construction of the hierarchical decision tree, and consider the selection of the
scale parameters. We evaluate our approach with the finger-spelling gestures. Finally,

we have the summary.

62y Mili-scale Thecry?

Blurring an image gives us two advantages:

1. It reduces the noise level. Since noise is unavoidable when acquiring the training
data, and the quality of training data affects the final performance very much, we
would like to train our system with a set of “clean” data. Most of the unavoidable
noise is white, i.e. independent from the “real” gesture information. In the frequency
domain, the frequency of white noise distributes evenly on all the frequency bands. In
contrast, the energy of the hand images is distributed in the low and middle frequency
bands. Thus most of the high frequencies are caused by the noise. In the field of
digital image processing, a Gaussian kernel is treated as a low-pass filter, which
removes the high frequency elements from the original signal. Consequently,

convolving an image with a Gaussian kernel reduces the level of the white noise.
2. Blurring with a Gaussian kernel reduces the dimensionality of the PC space. The

bigger the scale parameter the smaller the dimensionality of the PC space. This is

because the blurring procedure suppresses the noise and minor structure in the image,
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which makes it possible to use fewer PCs to represent more energy. Empirically, a

dimensionality reduction of more than 50% can be achieved. See Figure 6.1.

We use a training set composed of 5 subsets, i.e. 5 gestures, each of which has 300
samples. Without any blurring, the dimensionality of the PC space is 50. As the scale
parameter increases, the curve drops fairly quickly. When a is 1.3, the dimensionality
of the PC space is reduced to 21. That is, about 58% dimensionality reduction is

achieved with respect to the original PC space.

Sigma

Figure 6.1: Dimensionality of PC space vs. Sigma

Recall the fact that PCA assumes that the projection of the training samples in the PC
space is bounded by a hyperellipsoid (see Figure 2.3). From the hyperellipsoid point
of view, the dimensionality reduction of the PC space means that the shape of the
hyperellipsoid changes according to the scale parameter, i.e. the data distributes on

fewer dimensions.

We can analyse the shape of the hyperellipsoid by examining the shape, i.e. the
curvature, of the eigenvalue curve since each eigenvalue reflects the axis length of the
hyperellipsoid along the corresponding PC. To compare the curvatures of the
eigenvalue curve under different scale parameters, we normalise the eigenvalue curve

to remove the variation in absolute magnitude:
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Since the dimensionality of the PC space is reduced when the scale parameter
increases, which implies that the image energy focuses on the first few PCs,
consequently, the curvature of the normalised eigenvalue curve becomes steeper, as
shown in Figure 6.2. The normalised eigenvalues along some less important PCs are
approaching zero (for example, the normalised 10th eigenvalues are 0.10, 0.07 and

0.01 corresponding to the scale parameters of 0, 2.0 and 4.0).

Number of PCs

Figure 6.2: Varying a, the scale parameter, affects the curvature of
eigenvalue curves. Note only the first 50 eigenvalues are shown.

The dimensionality reduction of the PC space gives us some benefits. First, The
dimensionality reduction of the PC space would improve the speed of both the
training and the recognition phase since it reduces the total amount of computation of
the transform from the original feature space into the PC space. Second, even without
considering the speed, the dimensionality reduction improves the stability of the k-
means algorithm. A disadvantage of the ft-means algorithm is that it is easy to get
trapped in local maxima. The higher the dimensionality of the PC space, the more
local maxima exist. The blurring procedure smoothes the images, hence can reduce
the number of local maxima in the PC space and improve the stability of the £-means

algorithm.
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63Crsruiond Crasian Tree

As stated in the preceding chapter, the computational workload grows linearly
according to the number of gestures when a multiple-subspace classifier is applied.
For a system with a large vocabulary, this could be a crucial disadvantage since
hundreds of gestures would need to be recognised, and the processing speed would
become unacceptably slow. Another drawback of the multiple-subspace method is that
the overlaps among the subspaces would become more and more severe when the
number of gestures increases. Thus the system performance would decrease
significantly. There is a need to develop a new methodology that is able to process the

images fast as well as reliably.

In ISL, some gestures are very similar to each other. The differences between their
images are in the fine structure. This fine structure will be eliminated when the image
is blurred by a Gaussian kernel with a small scale parameter. On the other hand, some
gestures are very different from each other. In this case, the differences between their
images are in the coarse structure. Only when the image is convolved with a Gaussian
kernel with a large scale parameter, can the blurring operation affect the coarse
structure. To illustrate this, we give an example below. In ISL, the hand shape

representing “L” is similar to “B”, and dissimilar to “F”. See figure 6.3:

Figure 6.3: Hand shapes in ISL corresponding to three English characters. From left to
right: “L”, “B” and “F”. For “L”, one fully opens one’s palm. For “B”, one opens the
palm with the thumb closed. For “F”, one crosses one’s thumb and index finger, and
opens the other three fingers to form the shape of “F”. Note, the shape of “L” is shown
in a side view, while the other two are front views.

These three images will be projected to three different points in PC space. Increasing
the scale parameter of the Gaussian kernel means that they would become more and
more similar. Consequently, the points in the PC space would move closer to each

other, as shown in Figure 6.4. Given a threshold T, we ignore the difference between
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the gestures and say the two hand shapes are the same when the distance between their
corresponding points falls below T. As can been seen in the figure, “L” and “B”
would be treated as the same gesture when the scale parameter reaches 0.9, while the
value for treating “F” and “L” as the same is about 2.8. In other words, when cr>0.9,
the differences in the fine structure between “L” and “B” have been eliminated, and when cr

>2.8, the differences in the coarse structure between “L” and “F” are eliminated,

Sigma

Figure 6.4: Distance vs. Sigma. The horizontal axis is the scale parameter
of the Gaussian kernel, while the vertical axis is the distance between the
projection point “L” and other two. Threshold T is set up to 0.04.

Based on the above thoughts, recall the two facts:

1. the large PCs correspond to the variation of the large-scale, i.e. coarse, structures,
while the PCs corresponding to the small eigenvalues represent the variation of the
small-scale, i.e. fine, structures (see Section 5.3).

2. if we convolve aset of images with a Gaussian kernel with a large cr, only the first
few PCs will be retained in the PC space. However, if we convolve them with
Gaussian kernel with a smaller cr, more PCs will be retained (see Section 6.2).

We can construct a hierarchical decision tree: given a training set, we convolve the

training images with a Gaussian kernel with a large a so that these images can be split

into several subgroups according to the differences of the first few PCs, i.e. coarse

structures; then we reduce the value of cr, and split each subgroup into more

58



Chapter 6 Decision Tree and Multi-scale Theory

subgroups according to more PCs. As the process continues, a tree-like structure

would be formed, where each node is a PC space. See Figure 6.5:

Figure 6.5: lllustration of a decision tree.

The detailed procedure of constructing a hierarchical decision tree is as follows: given
a training set X ={fi, fivh where fi, f2,..., fNare the image vectors,

1. Every sample in the training set X is convolved with a two-dimensional Gaussian
kernel whose scale parameter is ct, G(x,y,&):
X' ={f; f2,...1,,} ...(6.2)

where f( is given by:

f' =fi*G(x,y,0) (I<i<N) ...(6.3)
where * defines a convolution. This step blurs the differences between the images
and reduces their separation in the PC space. This reduces the number of
eigenvectors needed to describe the data as well.

2. A PC space is computed from X ":

1). Computing the covariance matrix of X' using Equation 2.1.
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2). A PC space is then computed by solving the eigenvalue decomposition
problem (see Equation 2.4).

3). The dimensionality of the PC space is decided by retaining the first few PCs so
that at least 95% of energy is retained (see Equation 2.8).

3. The standard ¢-means algorithm is then applied to the data in the PC space,
dividing them into C clusters according to what type of tree is wanted, i.e. for a
binary tree C-2, for a quad-tree, C=4, and so on. The original training set X is
then split into C groups: X/, X2,..., Xc-

4. For each of the C clusters, check if the stop criterion is satisfied. If it is, mark it as
a leaf, and if all the clusters at the current level are leaves, stop the splitting

process. Otherwise, for each X, (I<z<C), repeat step 1 to 4 with a smaller scale

parameter ct’ (ct’<o ).

An important parameter during the construction of a decision tree is the termination
condition. Currently we choose the data variance in the PC space as the termination
condition. When the variance of image projections in the PC space reduces to a certain
level, 0.5 for example, the node will be marked as a leaf, and no further splitting
operation will be done on this node. When all the nodes on the current level are

leaves, the construction is stopped and the learning process is finished.

After the construction of the decision tree, the original training set has been divided
into leaves, with each leaf containing some data projections of the training samples.
The data projections in the leaf form several clusters. We need to label these clusters,
i.e. we have to indicate which cluster represents which gesture. The labelling
procedure is implemented in the following way: we search every leaf in the tree.
Given a leaf, we check the training images grouped into that leaf, find the data clusters
included, and label the clusters accordingly. For instance, suppose a leaf contains 100
training images in which, say 35 frames belong to “C” and the rest “L”, this leaf then
contains two data clusters, one of which be labelled as “C” and the other “F”. The
centres of the cluster “C” and the “F” would be recorded respectively. Given an
unknown frame, classified into this leaf by the decision tree, we compute its Euclidean

distance to “C” and “F” and classify it to the one with the shorter distance.
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In our evaluation, we found that most of the leaves contains only one data cluster.
That is, either “C” or “F ” will exist in one leaf but not both. Figure 6.6 shows some
example mean images of the leaves. Most of the images are quite clear, for example,
image (1) represents “O” in ISL, (2) represents “F °, (3) represent “C”, and so on. To
some extent, the purity of the leaves reflects the power of our system - the hand

shapes can be effectively extracted even if the training set contains a large variety of

|

different shapes from different view angles.

(1) (2) (3) (4)
M |
Q) (6) () (8)

Figure 6.6: Mean images of the leaves from the decision tree made from the training data.
These clear images illustrate that most of the leaves contain a single gesture. These images
are not picked up deliberately for the thesis, but selected randomly from the leaves.

The decision tree reduces the time complexity of the gesture recognition task
significantly. Suppose the training set is composed of Nc subsets, i.e. Nc gestures, and
each of the subsets contains M samples. Let d be the depth of the decision tree
constructed from the training set. When doing recognition using a standard multiple-
subspace classifier, the time complexity is bounded by the number of scalar
multiplication operations needed, which is 0(cXmax(Ds,)) (see Table 5.1), where Ds,
represents the dimensionality of the PC space built from the ith subset and 1< i <c.
However, in the decision tree method, the depth of the decision tree, d, is only
logarithmically proportional to the number of the training samples, cM [42], The time
complexity of the online recognition is 0(log(c)xmax(D0))), where D°j stands for the
dimensionality of any PC space in the decision tree, andj is greater than 1 and smaller

than the total number of the nodes. Empirically, the ratio between max(D0D) and
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max(DSi) is bounded from above by 3 (and the lower boundary is not of interest).
Hence the ratio between two time complexities becomes 0(c)/0(\og(c)). Logarithmic
time saving is achieved by taking advantage of the decision tree method. The more

gestures to be recognised, the more time is saved.

6.4 Performance Evaluation

To evaluate the methodology we introduced above, we still use the 23 finger-spelling

gestures as we did in the last chapter.

Again, the first thing is to construct the training set and test set. We select 300 images
for each gesture from the same database used in the last chapter. For the test set, we
select another 300 frames from each gesture, i.e. 6900 frames, excluding those that
have been used for training purposes. This procedure assures the independence
between the training images and the test images, and can reflect the system
performance better. But before we can start to build the decision tree, a few cruciai

problems need to be cleared up.

6.4.1The Selection of Scale Parameters

One important thing, however, is how to select the proper decrement for the scale
parameter. In other words, since the number of PCs of the PC space is increasing from
the root to the leaves, i.e. the dimensionality of the PC space is increasing, we attempt

to address the problem: how fast should the dimensionality increase?

By observing eigenvalue curves such as those in Figure 6.7, we found that empirically
the curve of the normalised eigenvalues fits the following power function:
f(x) =x~n ...(6.4)

where x is the order of the PCs - the horizontal axis in the plot of eigenvalue curves.

For fixed n, the power function is strictly decreasing. The larger the value of n, the
more steeply the function descends. A feature of the power function is that its

curvature increases as n increases. Figure 6.8 depicts this situation. In our
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experimentation, given the eigenvalue curve, it can always be fitted by the power

function surprisingly well (for example, see Figure 6.7).
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Figure 6.7: Results of curve fitting: power function in
Eqation 6.4 is used to fit three eigenvalue curves in
figure 6.2. Only first 300 PCs are shown for the ease
of visualisation.
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Figure 6,8: An example of the power function. Only first 300
PCs are shown for the visualisation reason.

@) (b)
on1 2 3
Scale parameter

Figure 6.9: Relationship between cr, n, and k. In(&) in (b) stands for the natural
logarithm of k

Varying the scale parameter, the eigenvalue curve will change, hence affecting the
value of n in Equation 6.4. The change of the eigenvalue curve will also affect k, the
dimensionality of the PC space. Figure 6.9 shows that there exists a simple

relationship between the scale parameter, n, and k. It reveals the following three facts:

1). See (a). When cris smaller than a certain value v, n keeps constant. At this stage,

noise is being removed but the underlying structure remains unaltered.
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2). See (a). When cris greater than the value v, n increases with respect to a. At this
stage, the image information is concentrated on the PCs corresponding to the first few
greatest eigenvalues. As a increases, the dimensionality is reduced and the eigenvalue
curve becomes steeper, therefore n increase.

3). See (b). n increases linearly as the value of In(k) decreases. Hence, a also increases
linearly with respect to the decreasing of In(k)\ an exponential relationship exists
between o and k. We assume that k should increase linearly so that the fine structures
can also appear in a linear way. Based on this, we have the conclusion that a should

be reduced logarithmically. In practice, we define a new variable t to replace a:

t=clog— ...(6.5)
e

where ¢ and e are two scaling constants (empirical values ¢ = 0.1 and e = 20 are used

in our experiments). The change of t causes the logarithmic change of a.

Although we have revealed the relationship between crand k, we do not know yet the
best value of o to start at the root layer. Neither do we know the best reduction step,
i.e. how much should we reduce the value of t from one layer of the tree to the next
layer. There is no available background theory for these two questions. In our system,
we solve them by trial and error. In practice, we take the value of i=54 to start at the
root level, and then reduce the value by 6 for each next layer. If t reaches zero while
the construction of the decision tree is still continuing, the value of t remains zero, i.e.,
the images will not be further blurred. In our case, t- 54 and the decrement step is 6,
so that after the ninth layer, the data will not be blurred any more since there are few

data left after many splits.

6.4.2 Static Gesture Recognition

Using the principles introduced above, we can construct a hierarchical decision tree
fully automatically based on the training images. Although the system has the
potential for a very large vocabulary, we only show the recognition result for the 23

finger-spelling gestures in ISL. The evaluation results are shown in Figure 6.10.
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R S T U V W Y
Static Gestures

| :Binary tree | :Quadtree :Six-tree

Figure 6.10: Evaluation results of the hierarchical decision tree using 23 static gestures taken
frnm 1ST,

Various types of decision tree were used, including binary tree, quadtree, and six-tree.
The depths of the decision trees are 11,4, and 3 respectively. The experimental results
are 92.2%, 93.4% and 93.3% respectively. The multiple branch trees show a small
advantage against the binary tree. We will use quadtree for our future research,

specifically in the next chapter to recognise dynamic gestures because it obtained the

best recognition rate.

Values of t other than 54 are also possible. In our experience, as long as the value of t
is restricted between 50 and 60, no significant change occurs in the test results. In
terms of the decrement step, empirically, values between 4 to 7 are good choices.
When the scale parameter has reduced to zero, i.e. t =0, even if the decision tree still

keeps splitting data, the data stop blurring.
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The confusion matrix of the classification results using the quadtree is plotted as an
image in figure 6.11. The rows represent the true classes of the test images, while the
columns represent the classes that the images have been classified into. The intensity
of each square pixel indicates the recognition rate. Ideally, only pixels on the diagonal
should be highlighted. That is, the off-diagonal pixels imply the misclassified images.
Note that for visualisation reasons the intensities of the misclassified ones have been

exaggerated.

True
ABCDEFGHI KLMNOPQRSTUVWY

Figure 6.11: Visualisation of the confusion matrix.

e Error analysis

The recognition error is caused by visual similarity and can be divided into two types:

1. Intrinsically, similar gestures will have similar images, which will cause error. In
the above test, most of the errors in “S” were misclassified into “E” and “A”.

Figure 6.12 illustrates the three hand shapes.
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Figure 6.12: Visually similar gestures. From left to right: A, E and S.
The finger-spelling of these three signs are similar. (Pictures taken
from [21].)

2. Using a single camera, from a specific view angle, two intrinsically dissimilar
gestures could look very similar. The vast majority of the errors are due to this
reason. For example, the side views of “H” and “D” are very hard to distinguish
since the little finger would be overlapped with the index finger from the side
view when performing “H”. Another example is “B” and “P”. These look rather

similar from the front view. Figure 6.13 illustrates this type of error.

/N\

B p

Figure 6.13: Two examples to show that some gestures look similar from a
specific view angle. From the side view, “H” looks similar to “D”, and
from the front view, “B” looks similar to “P”.

The error caused by the visual similarity is very hard to eliminate since either gestures
are inherently similar or appear so because of use of a single camera. However, apart
from these errors, the recognition rate is high and the computational cost is little. One
of our main aims is to recognise dynamic gestures. As we will see in the next chapter,
when applied to the recognition of dynamic gestures, the error caused by the visual

similarity is not a problem any more, because most of the dynamic gestures are made
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either by very different hand shapes or by similar hand shapes combined with

completely different hand movements.

 Results Comparison
We now compare the evaluation result using the hierarchical decision tree method
with the other two types of method: multiple-subspace classifier and hierarchical

decision tree method without blurring. Figure 6.14 illustrates the comparison:

Static Gestures

: Ouadtree without blurrine
: Quadtree with blurrine

A Multinle-subsnace classier
Fieure 6.14: Performance comparison usine three tVDes of method.

The average recognition rate using quadtree without blurring is 89.5%, comparing to
93.4% when blurring is used, 3.9% improvement is achieved. When multiple-
subspace classifier is tested, the dimensionality of each subspace is decided by
Equation 2.8, that is, at least 95% of energy is retained. In this case, the average
recognition rate is 97.8%, which outperforms the hierarchical decision tree method by
4.3% even when blurring is used. However, the recognition time is reduced

logarithmically.
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6.5 Summary

In this chapter, the hierarchical decision tree was combined with multi-scale theory to
speed up the recognition procedure. Logarithmic time saving is achieved in
comparison with the system using subspace classifiers. We discussed the construction
of the hierarchical decision tree. A power function was used to model the eigenvalue
curves. The direct result of this model is that increasing the scale parameter
logarithmically reduces the structure in the images - an important point, not only for
gesture recognition but also for any other image processing tasks that needs multi-

scale theory.

All the above ideas are novel and as far as the author knows these ideas have never
been reported by anybody else in any format. More importantly, as we will see in the
next chapter, the hierarchical decision tree plays an important role in the recognition
of dynamic gestures. It will be used as a hand configuration extractor to extract
important static hand shapes from a sequence of images: another new idea presented

in this thesis. We will discuss this in the next chapter.
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Chapter 7 Dynamic Gesture Recognition

7.1 Introduction

In the previous chapters, we discussed how to recognise static gestures as well as
improve the recognition speed using the hierarchical decision tree combined with
multi-scale theory. However in reality people use dynamic gestures to communicate
and express themselves much more often than static gestures. The recognition of

dynamic gestures is an essential task for a good gesture recognition system.

In recent years HMMs have attracted increasing attention. Since Stamer and Pentland
[92] applied them to recognition of ASL sentences many other researchers have
employed them in their systems, such as Vogler and Metaxas [93] and Wilson and
Bobick [87], In fact, HMMs are a rather general mathematical model that are able to
handle the temporal variability of a dynamic process. Different researchers use
various features as the input, hence the differences between their systems. Many of
them only use basic geometric parameters of the hands or other simple features. For
instance, Stamer and Pentland use a simple feature set to describe the hand shape
which consists of the x and y position of each hand, angle of axis of least interia, and
eccentricity of bounding ellipse. Lee and Kim [86J took advantage of the hand
centroid, divided the 2D plane in the image into 16 directions, and used the direction
of the movement of the hand centre as the feature vector. Naturally, we can imagine
that simple feature vectors could cause problems because different complex gestures
could have very similar simple features. In this case, when the size of the vocabulary
increases, the coincidence between features will become more severe. However, using
complex features will increase the workload of the system, and thus slow down the

real-time performance.

In this chapter, we describe a novel methodology that combines the hierarchical
decision tree recogniser and HMMs together to achieve good recognition rate as well
as retaining low time complexity. Three factors are crucial for any dynamic gesture:
hand configuration, hand movement trajectory and the relative position of the hand
and other parts of body. Currently, we only focus on the recognition of the first two

factors. We have developed our algorithm based on the idea that we can consider
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these separately. Firstly, we consider the hand configuration factor. We treat each
frame as a static hand-shape. We do not use information from neighbouring frames to
recognise the shape, although it will be considered in future work. We use the
decision tree recogniser to extract the spatial configurations from the hand image
since each leaf of the tree represents a specific hand shape. Secondly, we represent the
global movement of the hand with a direction code which can only take one of the
eight values: right, up right, up, up left, left, down left, down and down right. If we
label each leaf in the decision tree, the label of the leaf and the direction code
compose a new two-dimensional vector that is then used as the input to the DHMM
(Discrete HMM) recogniser. Since the decision tree has the potential to handle even
complex hand configurations, it overcomes the shortcoming of using simple feature
vectors as used in many of the systems discussed above. In the meanwhile, it still
retains the simplicity of the input feature vector of the DHMM, only two dimensions
in our case; hence the time complexity is low. Both the decision tree recogniser and
DHMM are so fast that theoretically there is no problem for the system to deal with

large numbers of gestures in real-time.

The remainder of the chapter is divided into three parts. Section 7.2 discusses the
construction of the feature vector, including the use of the hierarchical decision tree as
a hand configuration extractor and the direction code of the hand movement. Section
7.3 gives the experimental results where we use our system to recognise 35 dynamic

gestures selected from ISL. Finally we summarise.

7.2 Feature Extraction for the DHMM Recogniser

Different systems use different features. We may classify the previous approaches
based on HMMs into three categories according to the form of their features:
continuous HMMs, semi-continuous HMMs, and DHMMs. The systems based on
both continuous HMMs and semi-continuous HMMs use features with continuous
formats. That is, these features are described by probability density functions, for
instance Guassian or mixed Gaussian. In contrast, the systems based on DHMMs use
features with discrete format. That is, the feature vector space is partitioned into
several regions, and every vector is replaced by the identifier, such as 1,2,... or A,

B,..., of the region it belongs to. Most of the previous systems [87, 92, 93] are of
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continuous or semi-continuous types due to their ability to deal with complex
situations. DHMMs were only used in systems with very small vocabulary [86]. In

terms of the speed, DHMMs have the advantage over the other two types.

To achieve both low computational cost and robustness, we have used DHMMSs in our
system, and have developed our own feature vector, which is completely different

from the single features used in work by others [92, 93].

1 2 3

Figure 7.1: Three examples from ISL. Pictures are taken from [21]. All examples have
specific meanings in ISL, however, this is not important for us. Thus we refer them
as “gesture 17, “gesture 2, and “gesture 3”.

Let’s start from a few dynamic gesture examples that are illustrated in Figure 7.1.

When a tutor teaches others these gestures, he would use the following sentences to

describe them [21]:

» Gesture 1 Hold the hand in the “T” position at chest level, then move it to the
right changing to the “V” position.

» Gesture 2: Hold the hand in the “A” position beside left cheek, then move it to the
right.

» Gesture 3: Hold the hand in the “L” position, then swing it to the right.

T, “Vv”, “A”, and “L” positions are in terms of the static gestures in ISL)

The above teaching method shows three key issues when describing a dynamic

gesture:
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1. The hand configuration is important. For example: “T”, “V”, “A”, or “L” position.

2. The movement of the hand is important- For example: move it to the right, swing
it to the right, and so on.

3. The relative position of the hand against other parts of the body is important. For

example: chest level, left cheek, and so on.

If our system can fully integrate these points together, we should be able to achieve
good results. Unfortunately, the third point is related to segmentation and recognition
of other parts of body, which is beyond our current research. Thus, our current system
attempts to combine the first and second point into the feature vector. Furthermore,
we notice it is harder to handle the first point than the second. People describe the
hand movement in a rough way, such as move your left hand to the right. When
designing a dynamic gesture, the designer will not describe one gesture as “move your
hand to the 63 degree direction up. Be careful, don’t do it along the 70 degree, it
means something else”. As opposed to this, human hands show much more variety in
term of its configurations, or shapes. For example, there are about 40 different hand

configurations in ISL.

Based on the above thoughts, our feature vector is designed to consist of two
elements. One simple direction code represents the global movement of the hand, the
other represents the local configuration of the hand. It can be formalised as:
7=[lc,/J .(7.1)

where 7c is the hand configuration element, and Id is the direction element. Each of
these is a positive integer number. This two-dimensional discrete feature vector gives
the DHMM recogniser the ability to process image sequences at a very fast speed.
Meanwhile, it can fully describe even complex hand shapes, and thus can handle
complex dynamic gestures. A dynamic gesture is then represented by a sequence of
feature vectors. For example, given an example for gesture 1 in figure 7.1, it might be
translated mto:< [366, 7], [509, 6], [509, 5], [509, 4], [359, 4], [148, 3], [23,3], [23,2]
>, while an example of another gesture might be translated into: <[355,1], [509,6],

[441,5], [441,5], [441, 5]>.
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In the rest of this section, we introduce how to apply our hierarchical decision tree as
a hand configuration extractor to handle the configuration change, and how to
construct the direction code to handle the position change of the hand. By combining
the local and global information together, we are able to construct the essential feature

vector for the DHMM recogniser.

7.2.1 Hand Configuration Extractor

The decision tree presented in the preceding chapter can separate a set of training data
into several groups in a hierarchical way according to their similarities. All the images
in one leaf should contain similar gestures: not necessarily the same gesture, but
similar in their two-dimensional images. If we apply the same method to a set of
training images of dynamic gestures instead of static gestures, the leaves in the tree
would contain the different hand shapes, or configurations, that appear in the training
images. In other words, the hand configurations are “extracted” from the training

images. Hence, we call the hierarchical decision tree a hand configuration extractor.

We use gesture 1 as an example. 60 examples with the length varying from 5 frames
to 12 frames are acquired continuously. We then compute a hierarchical decision tree
based on these data. In total seven leaves are extracted out under the termination
condition that the data variance in each leaf is smaller than 0.5. Figure 7.2 shows the

mean images of these leaves.

) vy @
* * *x*
(%) (6) (7)

Figure 7.2: Mean images of the decision tree made from gesture 1. The seven images
show how one performs the gesture 1. starting with a shape of afist in (1) and (2), hold
hand in “T” position (3), and change into “V” position. (4) and (5) are the intermediate
steps of the change.
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By looking at the seven images in Figure 7.2, one can have a basic idea of the
dynamic procedure of gesture 1: starting with the shape of “T”, then changing into the
shape of “V”. If we number these seven leaves from 1to 7, each number actually fully
reflects one specific hand configuration, and thus can be used as a hand configuration

descriptor.

In general, given the training data, we first construct a hierarchical decision tree based
on all training data. Then we give a single number to each of the leaves. Thus each
number now represents a specific hand shape that has been included in the training
gestures. This number is the hand configuration element, 7C in the two-dimensional

feature vector.

7.2.2 Direction Code

The hand configuration extractor is able to extract the hand shapes from the dynamic
gestures. However, it does not involve the information on hand movement, which is
also important for recognition. Our solution is to treat the hand as a whole object
when dealing with the global movement,.and use the movement of its centroid to
represent the movement of the hand. One thing which needs to be noticed is that the
absolute position of the hand centroid is not important. Instead, only the direction of
the hand movement is useful for recognition, for example, “move the hand to the
right”. Thus we define our direction code according to the moving direction of the

hand centroid.

Given a sequence of images, we define the direction code 1D based on every two
consecutive images/, andf t+1. Assume the coordinate of the hand centroid in/, is <x,
y>, and in/,+7 <x\ y’>. A vector is computed as <x’'-x, y-y>. Then we translate this
vector into the direction code IDthat is one of 8 directions. See Figure 7.3. Dividing
the two dimensional image plane into eight directions is enough since we often say “
move to right” or “move up”, sometimes we say “ move your hand to the up left

direction”, and we would never say “move your hand along the 63 degree direction”.
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O f+i :<x\y’>

<xX’-X, y'-y>

f,-<x,y>

1

Figure 7.3: Definition of the direction code. Given two consecutive images,
a vector <x’-x, y ’-y> can be computed, which is then translated into one of
the eight directions.

7.3 Evaluation

To evaluate the method presented above, 35 gestures are selected from ISL. Each of
them has a specific meaning in ISL. For convenience, we name them in the form of
“gesture 17, “gesture 2”,..., and “gesture 35”. Although many gestures in ISL involve

both hands, we only concentrate on the gestures using one single hand. ,

7.3.1 Training of the system

The complete training procedure is composed of two steps. First the hand
configuration extractor needs to be constructed from the given training data. Second,
the DHMM recogniser also needs to be trained for the purpose of recognising
dynamic gestures. These two steps have to be done sequentially. That is, only after we
get the hand configuration extractor, can we train the DHMM recogniser. Figure 7.4

shows the two-step training procedure.

In practice, we took 35 segments of video. Each of which contains one dynamic

gesture with 60 examples recorded continuously.
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Training Images

Figure 7.4: The two-step training procedure: first the hierarchical decision tree has to
be trained. Then the set of training feature vectors can be made to train the DHMM
recogniser.

When training the hand configuration extractor, the procedure introduced in the
preceding chapter is applied to the whole training set. The parameters chosen are ar
follows: t =54 was applied to the root of the quadtree, and the reduction step was set

to 6. After training, the depth of the tree was 7.

After the construction of the hand configuration extractor, the same training set is fed
into the extractor. Meanwhile, the direction code of every two consecutive images is
computed. Combining the outputs of the hand configuration extractor and the
direction codes, we have the training feature vectors that will be used to train the

DHMM recogniser.

A DHMM model was trained for each of the 35 sets of feature vectors, each
representing one dynamic gesture. The DHMM models used here have the same
topology as the one in Figure 2.6, i.e. a first-order DHMM with seven states including
the start and end states. The Hidden Markov Model Toolkit (HTK) produced by
Entropic pic. is used. To avoid the manual segmentation of the training examples, a

standard embedded training procedure, explained in [22], was used.

Note during the above procedure, The 35 video segments are acting as a single

aggregated training set for the training of the hand configuration extractor. Only one
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hand configuration extractor is output from the training procedure. When training for
the DHMM models, each gesture should have its own DHMM. Thus 35 DHMM
models are needed, and each of them should be trained using its corresponding set of

training feature vectors.

7.3.2 Test Results

We grabbed another 35 segments of video; each of which contains one dynamic
gesture with 60 examples recorded continuously, which were never used for any
portion of the training. The test was evaluated offline by HTK’s Viterbi recogniser

[22],

Because both the training and test sets consist of continuous video sequences, which
have not been manually segmented, it is not possible to easily change the size or
membership of the training and test sets. So it would be very difficult to carry out

cross-validation or determine the effects of changing sample size.

Given a video sequence, the recognition procedure is as follows: first every frame
from the video is input into the hand configuration extractor, a sequence of numbeis
represents the hand shapes obtained. Meanwhile, a sequence of direction codes is also
computed. Using these two sequences of numbers, the feature vectors are calculated.
The DHMM recogniser, implemented by the Viterbi recogniser using the Viterbi
algorithm (see Section 2.4.3), reads in the 35 DHMM models as well as the feature
vectors, and classifies the sequence into the DHMM with highest probability. This
sequence might contain a few dynamic gestures. All of them will be extracted by the

recogniser.

The recognition results are given in Table 7.1. For convenience, a bar chart of the

recognition results is also shown in Figure 7.5.

No grammar was used during the test. Three types of error are presented: deletion (D),
insertion (/), and substitution (5). We use an example to illustrate the differences
between them: given a sentence “l am a student”, the deletion error would be “ I a

student”, the insertion error would be “ | am a student student”, and the substitution
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would be “ I am a teacher”. Based on the three types of error, two kinds of
performance measures are presented: the correct percentage (Corr) and the accuracy

percentage (Acc) [22]:

Corr=N ~D ~ S x 100% ..(7.2)
N

N-D-S-I
Acc - — N x100%...(7.3)

where N is the total number of the dynamic gestures in each test set, 60 in our case.
The absolute values of D, S, | are given in the table, while the values of Corr and Acc

are shown in terms of percentage.

Table 7.1: Recognition Results of 35 Dynamic Gestures.

Gesture comey A% D S |
GESTURE 1 75 7 1 14 0
GESTURE 2 100 100 0 0 0
GESTURE 3 100 100 0 0 0
GESTURE 4 o7 97 0 2 0
GESTURE 5 8 8 10 1 0
GESTURE 6 93 %3 2 2 0
GESTURE 7 80 80 0 12 0
GESTURE 8 100 100 0 0 0
GESTURE 9 97 o7 2 0 0
GESTURE 10 100 98 0 0 1
GESTURE 11 100 93 0 0 1
GESTURE 12 100 100 0 0 0
GESTURE 13 100 100 0 0 0
GESTURE 14 93 %3 2 2 0
GESTURE 15 100 93 0 0 1
GESTURE 16 100 100 0 0 0
GESTURE 17 100 87 0 0 8
GESTURE 18 100 % 0 0 1
GESTURE 19 100 100 0 0 0
GESTURE 20 9% % 2 1 0
GESTURE 21 % ®? 1 4 1 0
GESTURE 22 100 100 0 0 0
GESTURE 23 100 % 0 0 1
GESTURE 24 80 80 2 0 0
GESTURE 25 100 100 0 0 0
GESTURE 26 100 100 0 0 0
GESTURE 27 100 98 0 0 1
GESTURE 28 100 98 0 0 1
GESTURE 29 92 2 5 0 0
GESTURE 30 % 92 5 0 0
GESTURE 31 100 90 0 0 6
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GESTURE 32 100 100
GESTURE 33 82 78
GESTURE 34 87 52
GESTURE 35 90 90

21

o1 o o o
» o R o

1 2 3 4 5 6 7 8 9 10 1 12

13 14 15 16 17 18 19 20 21 22 23 24

° 25 26 27 28 29 30 31 32 33 34 3
GESTURE

: The correct percentage (Corr) _:The accuracy percentage (Acc)

Figure 7.5: The bar chart of the evaluation results of 35 dynamic gestures.

The three types of error deserve different treatments. Insertion error, when it is caused
by repetition, is the easiest one to eliminate. A simple restriction, for example no
repetition of the same word, reduces it to zero. However, other types of insertion, for
instance the sentence is interpreted as “l am a teacher student”, are hard to solve. The
deletion problem is more severe than the repetition error but less severe than the
substitution problem. For example, the computer might be able to finish the sentence
“l a student” automatically, while it is nearly impossible to ask the computer to
change “l am a teacher” into “l am a student”. The substitution problem can not be
improved by giving grammar restrictions. Under this criterion, gesture 1, 7 and 33
were badly recognised. 14, 12 and 11 substitution errors happened out of a total

number of 60 respectively.
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Most of the errors in gesture 1 were misclassifed into gesture 27 because of the
similarity between their hand configurations. Gesture 1 holds the hand in the shape of
“D”. Gesture 2 holds the hand in the shape of “W”. From a specific viewpoint, the
two shapes are similar. The ambiguity is essentially caused by using a single camera.

No good solution is available in the current situation.

Most of the errors in gesture 7 were misclassified into gesture 34. Both gestures have
the same change in terms of the hand configurations. The difference is that gesture 7
is moving the hand backwards, while gesture 34 needs to move the hand to the right.
This error shows the weakness of our system on handling 3D hand movements. Since
no depth information was considered during the recognition, the backward movement
sometimes was treated the same as moving to the right. The information on hand area
is not much help either, because the backward movement is not very significant
compared to the distance from the hand to the camera. 3D depth recognition is another

open problem for our system, and more research has to be done in future.

The error in gesture 33 is a different type: most of the errors were misclassifed into
gesture 1. Both gestures hold the hand in the same hand shape of “D”, and both of
them perform similar hand movements: from the upright to down left. The differences
between them is that the hand movement is a curve and is performed at chest level,
while gesture 33 should perform as a straight line at face level. It could be improved
effectively if the system had the ability to recognise the relative positions of the hand

against other parts of body.

7.4 Summary

In this chapter, we presented a novel approach that is able to recognise dynamic
gestures using a hierarchical decision tree combined with multi-scale theory and
DHMMs. Given several training sets, each representing one dynamic gesture, first all
of them are treated as a single but aggregated training set to construct a hierarchical
decision tree using the method discussed in the last chapter. Then the training sets of
feature vectors are computed with the decision tree and direction codes. A number of
DHMMs thus can be trained. The recognition procedure is as follows: given a

sequence of images, each image will be input to the decision tree, and a number that
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represents the leaf to which the image belongs will be obtained. Meanwhile, a set of
direction codes is also computed from the image sequence. The feature vector set is
thus constructed, and is fed into the DHMM recogniser. The images will be classified

into the DHMM(s) with the highest probability.

The Viterbi algorithm is used for recognition. Hence the time complexity of the
recognition using the DHMM recogniser is the same as that of the Viterbi algorithm:
O(NZT), where N is the number of states in DHMM (7 in our case), and T is the
length of the image sequence about to be recognised. Since N is a constant, the time

complexity then becomes 0(7).
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Chapter 8 Conclusion and Perspective

8.1 Summary

This thesis has attempted to address the problem of gesture recognition for low
computational cost using only a single camera, in order to make the system as widely
available as possible. Current approaches are either restricted to recognising a limited
number of gestures so that simple methods can be adopted, or recognising a large
vocabulary using complex methods. Simple methods limit the capability of systems,
while complex methods imply high computational costs so that the applicability
would be restricted. The author has attempted to take into consideration both issues to
develop a system that has the potential to recognise a large set of vocabulary and
maintains as low a computational cost as possible. Given this aim, a gesture
recognition system has been presented, based on a novel method combining a

hierarchical decision tree with multi-scale theory and DHM Ms.

Chapter 2 gave the definitions and notations of the terms. It also introduced the
background knowledge of PCA, multi-scale theory, and DHMMs. Chapter 3

examined the past developments in the research of hand gesture recognition.

Chapter 4 to 7 involved most of the work done by the author. A general overview of
the system was given in Chapter 4. Chapter 5 demonstrates using standard PCA to
recognise 23 finger-spelling gestures in terms of three types of classifier. The
evaluation results of this chapter show that the multiple-subspace classifier
outperformed the other two classifiers which used a single PC space. The
disadvantage of the multiple-subspace classifier is that its time complexity grows
linearly with respect to number of gestures, which makes the recognition hard for a

large vocabulary on an entry-level computer.

To address the linear time complexity problem, we presented a novel method in
Chapter 6: a hierarchical decision tree was constructed from the training set, with each
node being a PC space. The multi-scale theory was integrated into the construction of
the tree to reduce the noise level in the training images and the dimensionality of PC

spaces. When applied to the online recognition, the time complexity of the
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hierarchical decision tree grows logarithmically according to the number of gestures.
This gives our system the potential to recognise a large number of gestures without
increasing the processing time much. During this chapter, a power function model
was proposed for the purpose of scale parameter selection. We revealed that the scale
parameter of Gaussian kernels should be reduced logarithmically from the top to the
leaf level during the construction of the tree. The errors in the experiments were
caused by two reasons: either two gestures are intrinsically similar or appear so due to

the use of a single camera.

To recognise the dynamic gestures, the hierarchical decision tree was further used as a
hand configuration extractor to get the intermediate hand shapes from dynamic
gestures. The movement of the hand was represented by the direction code. A
dynamic gesture was thus represented by a sequence of two-dimensional vectors,
which was fed into a DHMM recogniser, where it would be classified into the DHMM
with the highest probability. The approach was then evaluated by 35 dynamic gestures
selected from ISL. The errors were caused by three reasons: similarity of hand shapes,

similarity of hand movements, or lack of the ability to recognise other parts of body.

Looking through the recognition procedure of a gesture, the time complexity of the
whole system is composed of three parts: data pre-processing, hierarchical decision
tree, and the DHMM recogniser. Since the time spent on the data preprocessing is a
constant cj, i.e. it does not change with the number of gestures, the time complexity
on this part can be ignored. As stated in the last section of chapter 7, given a sequence
of images, the time complexity on each DHMM model is 0(7), where T is the length
of the image sequence. Thus for each frame in the sequence, the average time
complexity is another constant @ (0(7)/7). If the size of the vocabulary is fixed to be
X, the average time spent on each frame would be fixed as Xc2. Hence the time
complexity of the whole system is only based on the hierarchical decision tree, which

is logarithmically proportional to the size of the vocabulary.

8.2 Future Work

First of all, we assumed our system worked under normal office illumination

conditions (see Section 4.1), and currently the user has to wear a glove. More research

85



Chapter 8 Conclusion and Perspective

needs to be done to remove these two constraints. That is, we will attempt to segment
the hand against complex background without requiring the coloured glove. A
relatively new technique could be taken into consideration: the Condensation
algorithm: which is based on sampling theory and can track objects in real-time even
in an environment where many similar colours exist [96]. The algorithm also shows

robustness against the variation of illumination condition [96],

Second, in the current hierarchical decision tree, a still image is classified into one of
the leaves without considering its previous images. The knowledge of the
neighbouring frames could speed up the process, and improve the accuracy of the
classification. For example, given a frame, we can ignore some of the branches in the
decision tree given information from its previous frames. We are attempting to

integrate this feature into our system.

Thirdly, to eliminating the error caused by the similarities of the hand movements
during the recognition of dynamic gestures, we should recover the 3-D world co-
ordinates of the hand rather than 2-D image co-ordinates (as we are doing now).
Using the information of hand area, centroid and neighbouring images, this should be

possible.

Apart from the above, there are many other possible research areas. For instance, one
difficulty in statistical approaches is the acquisition of training data (see Section
3.2.2.2). The training database of speech recognition systems often includes the
contributions from hundreds of people and years of work. We think computer
animation techniques might be able to help us with this issue. By using computer
animation, it is possible to construct a large training database. Since the advantage of
our system will be more obvious when applied to a large vocabulary, we would be
able to make the system recognise hundreds of dynamic gestures with low

computational cost.

Currently, the DHMM recogniser has a fairly simple topology: first-order DHMMs. A
couple of improvements will be researched in future:
1 Adding extra transition paths, i.e. higher order DHMMs, will make the DHMM

recogniser able to deal with more complex situations, such as partially occluded
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gestures. See figure 8.1, where a second-order HMM is given and transitions can
happen between state 1 and 3, 2 and 4, 3 and 5 without passing their intermediate
states. Hence even an occlusion appears, say at state 3, the recognition can still
continue by jumping from 2 to 4 directly. In fact, other members of the research
group are developing a system to recognise partially occluded gestures using
graph matching. We are attempting to assess the advantages and disadvantages of
both techniques so that better understanding of the occluded gestures can be

obtained.

2. Another problem is co-articulation. This is the phenomenon whereby each gesture
is influenced by the preceding and following gestures in a continuous sequence.
This problem also occurs in speech recognition, and requires some adaptation of
the HMMs. We will have to predict transitional forms between one gesture and
another, i.e., predict the transition probability from the end state of one DHMM to
the start state of another DHMM. Our ultimate target is to establish a DHMM
network where each node is an individual DHMM, the links between the paths are

probabilistic and decided by some constraints, grammar for example.

Finally, as we stated in Chapter 3, face and the other parts of body are also very
important for the hand gesture recognition. Thus, it is worthwhile to put efforts into
the recognition of these. On the other hand, the methodology developed in this thesis
can be naturally extended for the recognition of face and other parts of body (or even
in broader areas, for example, hand-written character recognition, vehicle detection,
target recognition, and so on) since all of the tasks fall into the general field of object

recognition.
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A ppendix A

In this appendix, we will denmonstrate how colour can be used to track the hand
reliably without high computational cost, including hand segmentation, noise
removal, rotation with respect to the principal axis, and normelisation.

A.1 Hand Segmentation Using Colour

The colour content of an image is an inportant attribute. It contains a rich amount of
information that can be used to segment objects. In addition, to apply colour to object
segmentation is computationally inexpensive. Thus, for a real-time system it is the
first choice.

Various colour spaces have been used for image processing. In computer graphics, the
most commonly used space is ther ¢ 8 Space. Inthis method, each pixel of the image
contains three primary chanrels: red, green and blue. All colours can be expressed by
combinations of these three primary colours. So every pixel is represented by an
individual point in the three dinensional r e s Space. Other colour spaces include
HSV space and HLS space. They are transformations of r ¢ 5 Space that can describe
colours in terms more natural to an artist. The name HSV stands for hue, saturation,
and value. HLS stands for hue, lightness, and saturation [97]. Qur system adopts the
rep Space. We use the folloing notation: 1) r, g, » are the red, green and blue
values of an individual pixel in the imege; 2) given a two-dimensional imege, rtj, gy
andby represent the red, green and blue values of the pixel at ith row and;«» colurm
in the image. The same notations apply throughout the rest of the appendix.

In our system, the user is asked to wear a coloured glove whase colour is distinct in
the background. The colour of the glove is thus a point inrcs Space. Since the
colour is distinct, we can segment the area with similar colours out of ther s s Space
with a certain threshold. Suppose the glove’s colour IS < r g, G giove, B give > The
areawith similar colours is formulated by

H0-V.)2+(s- -V ,3<1  -(A)
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where T s apredefined threshold. This equation tells us that the shape of the area with
similar colours of the glove is asphere.

The above algorithm assumes an ideal environment. However, often the condition of
the working environment varies from time to time. In practice especially the
illumination condition is different during the daytime from the night. Such a simple
model can not handle this situation. Ve deal with this problem by replacing the
absolute RGB value with intensity, which provides a more robust method for
separating colours since it would result in changes in intensity but not colour when
colours change from shading or lighting difference. The procedure is listed as follows:

1) Wk extract a rectangular area as the sample area fromthe hand area in the image
menually. The size of the sample area is m by n. Note this only needs to be dore
once if the colour of the glove doesn’t change. See Figure A.l.

Houre Al: Sarple area of the hand The
white square in the had area is narked
manually to get the sanple area of the glove.

Hrst the average grey value A of the sample area is computed by the following
equation:
A=A+ AN+ A (A2)

where AR Ac and ABare the average colours of red, green, blue chanrel in the
sample area respectively, and are defined as follows:

1S '
Ar= " - (A3)
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N =

SS*»
A1 — (Ad)
ii» .,

A, - (A5)

where S represents the area of the sample area and is givenby mxn.

2) Second, theaverage colour intensities of each chanrelin the sample area can be
computed by

/i, = AN a (A .8)
hy- Y A -(A.?)
Ib=A ..(A.8)

The colour segmentation is then based on the relative intensities rather than the
absolute RGB values. The glove’s colour intensity is thus given by <lr, 14, h>-

3) The whole image is scanned pixel by pixel and the colour of each pixel is
compared to the sanple intensities. Given a threshold set up by hand, the pixels
with similar colours of the glove will remain, while the rest are set to zero. This is
formulated by

A b>*<i , 1., _>~Y,

ylr2+g2+b2

where <r, g, b> is the colour of an individual pixel; T'is the threshold set up by
the user which ranges fromO to 1; and ¢ denotes the dot product.

Replacing the absolute colour with intensity essentially changes the shape of the area,
with similar colours of the glove, from a sphere into acone, as shown in Hgure A2:
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Figure A.2: The RGB cone in the 3D RGB
space. R, G and B are the axes of red, green
and blue, respectively.

The diagram depicts the RGB cone in the RGB space. The apex of the cone being the
origin, <IR lg, h> represents the average intensity of the sanmple area, whose
megnituce is 1 Thus it is a unit vector in the space. Colours thet fall into the cone
represent similar colours to the glove. T'represents the threshold.

The segmentation, using the average intensity, gives the system extra robustness
against the illumination variation. As the lighting condition changes, the unit vector C
would move along the axis of the cone. Consequently, the size of the cone varies to
include less or more colours in the RGB space.

W\ present the result in Figure A.3. The left image gives the original scene. The white
square in the hand area is marked manually to get the sanple area of the glove. The
right image shows the result, after segmentation using the method introduced above.
For visualisation reasons, We increased the contrast of the remaining area against the
background, while in practice the remaining area still keeps the sane colour as in the
original image. Due to the autonatic colour balancing of the camera, some colours in
the original image have been distorted, which is a usual disadvantage using a cheap
webcam; (however, we have to deal with it since we want to the system to be as cheap
as possible).



Houre A3 Hand Segrentation usn*% colour cle. The colour
of the areapointed by thearrcwmihe eft imege is distorted by
the colour balancing of the welbbcam

Noise exists in the processed image, which is to e expected. However, the largest
object in the image is still the hand. To remove these noises, The Grassfire algorithm
can be used. Details of this algorithm are introduced by Pitas [6]. The algorithm treats
the hand as a connected area in the image, so are the other noises. Under the
assumption thet the hand area is the largest connected area; (this is fair because the
hand is the main object in the image), Grassfire can be used to find the area of each
connected region, and the largest area is be assumed as the hand, as depicted in FHgure
A4,

Houre A4: Hond Segentation usuH colour cle. The left
IMece |std<enfmnﬂ19nm imece of Hgure 4.2

A .2 Rotation According to the Principal AXxis

Next we describe how to reduce the variance of images caused by the hand rotation in
a2D plare.

When performing gestures, users often rotate their hands as well. Fgure A5
illustrates this situation. Although both gestures mean “c”” in ISL, they would not be
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projected onto the same point in the feature space since the image vectors would be
completely different.

Figure A.5: Variance caused by hand rotation. Both
postures mean “C” in ISL, while they look rather
different after rotated a certain angle for a computer.

To handle this type of variance, PCA can be applied to find out the principal axis of
the hand, and then rotate the hand picture according to the angle of the principal axis.
By principal axis, we mean the main axis of the hand posture. It can be computed in
the folloming way: Hrst rather than concatenating the grey values of an image row by
row, we construct a hand coordinates matrix H using the hand pixels’ coordinates, i.e.
those pixels in the image whose grey value is greater than zero, expressed by the
following equation:
H={..,(/- cx.cy- j),..} ..(A.10)

where i andj are the hand pixel’s coordinates in the original image, and cxand cy are
the coordinates of the centroid.

We noralise the hand coordinates in termrs of the centroid. H is thus an Ax2 metrix,
where A is the area of the hand in tenrs of image pixel. The whole procedure is
clearly depicted in Figure A.6.

Totally black, i e.
grey value is o,
thus should not be
included into H.

Grey value isnot 0,
thus will be included
into Hby appending
its normalised
coordinates atthe end
of H.

Figure A.6: Construction of the hand coordinates
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We first compute the covariance matrix of the hand coordinates metrix, and then
using the eigenvalue decomyposition algorithm introduced in the last section to find its
two eigenvalues (Aj,”2) and two eigenvectors (ey, e2. The eigenvector, say e/,
ocorresponding to the greater eigenvalue, say A, is the principal axis of the hand sign,
whose slope Sis:

S—2z/ew ..(A.l)
where [eutezi\" is ¢/.

Hgure A.7 depicts the effect of the rotation in terms of the principal axis. As shown in
the figure, the two postures look quite different before the rotation. Consequently,
their projections are far anay from each other. While after the rotation by their
principal axes respectively, the two postures look nmore or less the same, and the
distance in the feature space becomes so small that they could be roughly treated as
the same ore.

Houre A7: llwstration of the rotation by the principel axis. The left two imeges
represent the sae postures, and the right two are the rotation in tems of te
principal axes of the left postures respectively.

The rotation with respect to the principal axis effectively reduces the variance caused
by the hand rotation in x-y plane. Therefore, reduces the workload of the recognition
as Well because the number of PCs needed to maintain the mejor energy of the images
Is also reduced greatly.
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A.3 Normalisation

So far the user’s hand has been extracted from the background, but it is not enough to
proceed to the feature extraction step. VWhen performing gestures, one would always
intend to move ones hand forwards or backwards with respect to the camera
Consequently, the area of the hand varies significantly during the period. While this is
not a problem for humen eyes, which can automatically focus on the moving hand, it
does disturb the computer classification. This problem can be solved by performing
normelisation.

The first thing we need to do is to find the smallest bounding rectangle of the hand
area, as shown in Figure A8. Suppose its dimension is mrby nr, the centroid (Cx Q)
of the hand is derived by the following equations:

mr n / mr n,

¢ =X £ (Dexi) /£ £ D« <A-12>

<=j j:l 1=1 ;=1

mr nr / mr nr

where Di}is the average pixel intensity which is expressed as

+

D =Jl—#-1 (A 19
J 3

Once the centroid of the hand has been found, the hand can be normelised by its area
Hgure A.8 gives the effect after the nonmalisation.

160 32

Figure A.8: Normalisation by hand area. The white rectangle in
the left image is the smallest bounded rectangle of the hand area.
Note the resolution is decreased from 160x120 to 32x32 after the
normalisation.

After the normelisation, the image resolution is scaled down from 160x120, the
original image size, to 32x32. There are two advantages for doing this. Arst ad
foremost, it makes the hand appearance constant with respect to the conmputer.



Second, the decreased resolution also reduces the recognition time, an inportant
factor for real-time system Different resolutions other than 32x32 are possible,
however, empirically this is enough for ISL recognition since the subtle variation of
the hand texture is not important, i.e., only obvious shape change would make sense
for the audiences.

The 32x32 image needs to be further normalised by energy using the following
equation:
..(A.15)

where Dy is again the average pixel intensity defined above. The nonalisation by
energy makes the later classification procedure nore robust against the variation
caused by the illumination, because it unifies the energy over all images.

A.4 Summary

This appendix has dermonstrated how colour can be used to track the hand effectively
without high computational cost. In aword, we first use the colour to segment the
hand from the background and remove the noise using the Grassfire algorithm
Second, we rotate the hand according to the angle of the principal axis to eliminate the
variance caused by the hand rotation in a 2D plare. Third, we normelise the hand
according to the hand centroid, which keeps the hand area constant with respect to the
camera when the hand moves forward or backwards along the camera axis. Figure A.9

gives the complete pre-processing procedure:

Rotation DYy Prircipa”™xi™Jj

Norrelisation by Area

Figure A.9: Diagram for the pre-processing procedure.
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A ppendix B

This appendix illustrates the 26 gestures in ISL corresponding to the 26 letters in
English alphatet. All the pictures are taken from http:/myparent.com
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A ppendix C

This appendix illustrates the 35 dynamic gestures used for the evaluation purpose in
chapter 7. Each of them has a specific meaning in ISL. For instance, Gesture 1, 3, 10
stand for “X, “J” and “Z’. The pictures of Gesture 1, 3 and 10 are taken from
http://mvparent.com The pictures of Gesture 4, 20 and 28 are taken from [21]. All the
rest are taken from [98].

Gesture 1: Open the
index finger of any
hand, close the rest.
Held out at chest
level, and move it to
self.

Gesture 3: Any hand
in the shape of “I”,
palm to self, held
out. Move the hand
to self.

Gesture 5: Right
hand in the shape of
“R”, palm right-
wards, held out at
shoulder level.

Gesture 7: Right
hand opens in the
shape of “20”, palm
outwards, held out.
Move the right hand
backwards, changing
to clenched “G”.

Gesture 9: Right
hand in the shape of
“c”, palm
sidewards, opposite
to the heart. Move it
down to the right,
turning palm down.
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Gesture 2: Right
hand in the shape of
open “C”, palm wup,
opposite the waist.
Change “C” to “O”
as the hand moves
up.

Gesture 4: Right
hand in the shape of
“T” at chest level,
palm sideaway,
move it to right
changing to “V” and
palm outwards.

Gesture 6: Right
hand in the shape of
“D”, palm to self,
Move tip of the right
index finger along
the left neck to the
throat.

Gesture 8: The tip of
the right hand at the
forehead. Right hand
in the shape of “D”,
palm sidewards.
Move the right hand
out, turning the “D”
downwards.

Gesture 10:  Any
hand in the shape of
“D”, held out. Move
the hand to the right,
then move down left,
then right. (In the
sign of “Z7)


http://mvparent.com

Gesture 11: Right
hand in the shape of
“B”, held out. Make
the sign of the Cross.

Gesture 13: Right
hand in the shape of
“A”, palm outwards,
opposite to the right
shoulder. Zigzag it
downwards.

Gesture 15: Right
hand in the shape of
“D”, palm to the
right. Move the right
hand down slowly
on centre of itself.

Gesture 17: Right
hand in the shape of
“0”, palm to self, at
the chin. Change
“O” to “5”, as the
right hand is moved
outwards.

Gesture 19: Right
hand in the shape of
“E”, palm outwards,
opposite to the right
shoulder. Change
“E” to “5”,
swivelling it up.

Gesture 21: Right
hand in the shape of
“5”, fingers down.
Move the right hand
up, and change it to
the shape of “O”.

J

L

Gesture 12: Right
hand in the shape of
“B”, palm
sidewards, held out
at the chest level.
Move the right hand
to the chest.

Gesture 14: Right
hand in the shape of
“c”, palm
sidewards, held out,
draw it to the chest,
changing “c” to
“AT.

Gesture 16: Right
hand in the shape of
“D”, palm down.
Move the tip of “D”
up from along the
left arm from the
wrist.

Gesture 18: Right
hand in the shape of
“2”,palm sidewards,
thumb-top at the
right cheek. Move
the right hand out
and down briefly.

Gesture 20: Move the right
hand in the shape of “F”,
palm down from right to
left with a slightly upward
arc.

Gesture 22: Right hand in
the shape of “D”, palm to
self, at waist level. Move
the right hand down briefly.
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Gesture 23: Right
hand in the shape of
“F\ palm down-

sides, at left

shoulder. Changing
to “H” as the right
hand is moved out.

Gesture 25: Right
hand in the shape
of bent “L”, palm
to self, fingertips at
the right chest.
Move the right
hQMM /fi tn mo

right waist.

Gesture 27: Right
hand in the shape
of “W”, palm
sidewards. Held
out at side level.
Turn palm down
sharply.

Gesture 29: Right
hand in the shape
of “P”, palm to
self on chin. Move
the right hand
rightwise.

Gesture 31: Right
hand in the shape
of “Y”, palm
sidewards. Swivel
it briskly.

Gesture 33: Right
hand in the shape
of “D”, palm side
wards, at the right
cheek. Turn “D”
down to the left
jaw, turning palm
down.
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Gesture 24: Right hand in
the shape of “V 7, fingertips
at the right waist.

Gesture 26: Right hand in
the shape of “W”, palm to
self. Move the right hand on
self from left chest to left
waist.

Gesture 28: Right hand in
the shape of “A”, palm to
self on forehead. Move
down to chest, then to left
shoulder and right. (As in
the sign of the cross)

Gesture 30: Right hand in
the shape of bent “L”, palm
to self. Move the fingertips
of the right hand to self.

Gesture 32: Right hand in
the shape of “P”, palm
outwards opposite right
shoulders. Shake the right
hand slightly.

Gesture 34: Right hand in
the shape of “G”, palm side
wards. Move the right hand
down opposite the nose and
lips, then from left to right
at the lips.



Gesture 35: Right hand in
the shape of ‘T \ palm
sidewards, at the left
shoulder. Move the right
hand out.
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