

Optimizing Energy-Efficiency for

Multi-Core Packet Processing Systems

in a Compiler Framework

by

Jing Huang, B.Eng.

Submitted in partial fulfilment of the requirements

for the Degree of MEng

Dublin City University

School of Electronic Engineering

Supervisor: Dr. Xiaojun Wang and Prof. Bin Liu

September 2012

 i

DECLARATION

I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award of MEng is entirely my own work, that

I have exercised reasonable care to ensure that the work is original, and does not

to the best of my knowledge breach any law of copyright, and has not been taken

from the work of others save and to the extent that such work has been cited and

acknowledged within the text of my work.

Signed:. .

 Jing Huang (Candidate)

ID No.:. 57125597 .

Date: . 7 September 2012 .

 ii

ACKNOWLEDGMENTS

I would like to thank my supervisor Dr. Xiaojun Wang for giving me the

opportunity to undertake this research programme and helping me heartfully

throughout the past years. My gratitude also goes to my colleagues in Network

Processing Group for the enlightening advices they gave and the pleasant

environment they created. I would also like to thank Prof. Bin Liu in Tsinghua

University who also supervised me during my stay in his group and Dr. Olga

Ormond, the research officer in Network Innovation Centre in RINCE, who

presented me with numerous academic advices here and there.

I am also extremely grateful to my parents who always support me with their

endless love. Whenever I am depressed, their encouragement is the best remedy

to pull me back on track.

 iii

TABLE OF CONTENTS

Declaration .. i

Acknowledgments .. ii

Table of Contents .. iii

Abstract ... vi

List of Figures .. vii

List of Tables ... ix

List of Acronyms ...x

List of Peer-Reviewed Publications ... xii

Chapter 1 - Introduction ...1

1.1 Motivation..2

1.2 Contributions..5

1.3 Structure...6

Chapter 2 – Background on Packet Processing System and its Compilation7

2.1 Introduction ..7

2.2 Multi-Core Packet Processing System...8

2.2.1 Network Applications & Network Processors 10

2.2.2 Advantages of Packet Processing System ... 12

2.2.3 Trends in Packet Processing Systems ... 14

2.3 Compilers for Packet Processing Systems ... 15

2.3.1 Support for Packet Processing .. 16

2.3.2 Support for Parallel Processing ... 17

2.3.3 Re-targetable Compilers ... 19

2.4 Energy-efficient Compiler Techniques .. 21

2.4.1 Dynamic Energy Reduction.. 21

 iv

2.4.2 Leakage Power Control .. 22

2.5 Challenges in Compiler Design and Implementation 23

2.6 Conclusions .. 24

Chapter 3 – Analysis of Network Applications .. 27

3.1 Introduction .. 27

3.2 Dependence Graph ... 28

3.2.1 Control Dependence Graph .. 28

3.2.2 Data Dependence Graph ... 31

3.2.3 Program Dependence Graph ... 32

3.3 Design of PDG Generators ... 33

3.3.1 Graph Construction Algorithms .. 33

3.3.2 Classes Design of PDG Pass... 38

3.4 Implementation of PDG Pass .. 39

3.4.1 Lessons Learned .. 39

3.5 Results ... 39

3.5.1 Example Application IPv4 Forwarding ... 40

3.6 Practical Use of Dependence Graph .. 42

3.7 Conclusions .. 43

Chapter 4 – Energy-Aware Program Bi-Partitioning and Mapping for Packet

Processing System ... 44

4.1 Introduction .. 44

4.2 Preliminaries .. 47

4.2.1 Problem Statement ... 47

4.2.2 Case Study ... 49

4.3 Program Bi-Partitioning and Task Mapping .. 51

4.3.1 Base Algorithm .. 51

4.3.2 Energy-Aware Extension.. 53

4.3.3 Other Approaches .. 54

4.4 Performance and Energy-Consumption Evaluation 55

4.4.1 Testbench Framework .. 55

4.4.2 Performance Results .. 56

4.4.3 Energy Results ... 58

4.5 Conclusions .. 60

Chapter 5 – Performance and Energy Evaluation Model .. 61

5.1 Introduction .. 61

 v

5.2 The Analytical Model ... 62

5.2.1 Motivation ... 62

5.2.2 Performance Model .. 64

5.2.3 Energy Model .. 66

5.3 Evaluation Results .. 67

5.3.1 Correctness Validation ... 67

5.3.2 Simulation Results ... 70

5.4 Summary .. 71

Chapter 6 – Conclusions and Future Work ... 72

6.1 Summary of the Research ... 72

6.2 Future Work ... 73

6.2.1 Cooperation with Runtime Management ... 73

6.2.2 Data Mapping .. 74

6.2.3 Instruction Level Optimizations ... 76

Appendix A – PDG Pass in Detail ... 79

Appendix B – Implementation of PDG Pass... 82

Bibliography .. 86

 vi

ABSTRACT

Optimizing Energy-Efficiency for Multi-Core Packet Processing

Systems in a Compiler Framework

Jing Huang

Network applications become increasingly computation-intensive and the amount

of traffic soars unprecedentedly nowadays. Multi-core and multi-threaded

techniques are thus widely employed in packet processing system to meet the

changing requirement. However, the processing power cannot be fully utilized

without a suitable programming environment. The compilation procedure is

decisive for the quality of the code. It can largely determine the overall system

performance in terms of packet throughput, individual packet latency, core

utilization and energy efficiency.

The thesis investigated compilation issues in networking domain first,

particularly on energy consumption. And as a cornerstone for any compiler

optimizations, a code analysis module for collecting program dependency is

presented and incorporated into a compiler framework. With that dependency

information, a strategy based on graph bi-partitioning and mapping is proposed to

search for an optimal configuration in a parallel-pipeline fashion. The

energy-aware extension is specifically effective in enhancing the

energy-efficiency of the whole system. Finally, a generic evaluation framework

for simulating the performance and energy consumption of a packet processing

system is given. It accepts flexible architectural configuration and is capable of

performing arbitrary code mapping. The simulation time is extremely short

compared to full-fledged simulators. A set of our optimization results is gathered

using the framework.

 vii

LIST OF FIGURES

Fig. 1.1. Intel IXP2805 network processor architecture ... 3

Fig. 1.2. Typical design flow of network processor compiler .. 4

Fig. 2.1. Internet topology .. 9

Fig. 2.2. OSI model & TCP/IP model ... 11

Fig. 2.3. Protocol stack through TCP/IP layers ... 12

Fig. 2.4. Typical design flows of re-targetable compilation ... 15

Fig. 2.5. Topology of architectural configurations .. 18

Fig. 3.1. Three-Address code block .. 29

Fig. 3.2. Control dependency relations.. 29

Fig. 3.3. Classification of Data Dependence ... 31

Fig. 3.4. IPv4 forwarding application code snippet ... 35

Fig. 3.5. CFG of the IPv4 code snippet ... 36

Fig. 3.6. PDT of the IPv4 code snippet ... 37

Fig. 3.7. CDG of the IPv4 code snippet .. 37

Fig. 3.8. Class design of PDG pass ... 38

Fig. 3.9. An example of PDG ... 40

Fig. 3.10. Steps for running PDG pass .. 41

Fig. 3.11. PDG of IPv4 packet forwarding .. 42

Fig. 4.1. Overview of multi-core packet processing system ... 45

Fig. 4.2. Augmented PDG .. 47

Fig. 4.3. Base recursive bi-partition algorithm .. 52

Fig. 4.4. Experiment Framework .. 55

Fig. 4.5. Throughput comparison by number of stages .. 57

Fig. 4.6. Latency comparison by applications ... 58

Fig. 4.7. Energy consumption comparison by applications .. 59

Fig. 4.8. Energy efficiency comparison by applications .. 60

 viii

Fig. 5.1. Simulation model for performance and energy evaluation 64

Fig. 5.2. Performance validation by varying the benchmarks .. 68

Fig. 5.3. Performance validation by varying the number of cores 69

Fig. 5.4. Energy validation by varying the number of cores... 69

 ix

LIST OF TABLES

Table 2.1. Comparison of the three network layers ... 9

Table 2.2. Comparison of the re-targetable compilers ... 19

Table 3.1. CDG construction algorithm 1 ... 34

Table 3.2. CDG Construction Algorithm 2 ... 34

Table 4.1. A partitioning and mapping example .. 50

Table 4.2. Steps in recursive bi-partition ... 52

Table 4.3. Throughput for combinations of three applications on multiple cores 56

Table 5.1. Size of instruction memory .. 63

Table 5.2. Code size of packet process applications .. 63

Table 5.3. Core power estimation ... 66

Table 5.4. Testbench configuration ... 68

Table 5.5. Comparison of Mini-Sim and other simulators ... 70

 x

LIST OF ACRONYMS

ADAG – Annotated Directed Acyclic Graph

ASIC – Application Specific Integrated Chip

ASIP – Application Specific Instruction-set Processors

AST – Abstract Syntax Tree

BB – Basic Block

Bi-Par – Bi-Partitioning

CD – Control Dependence

CDG – Control Dependence Graph

CFG – Control Flow Graph

CFK – Compiler Known Functions

DAG – Directed Acyclic Graph

DD – Data Dependence

DDG – Data Dependence Graph

DF – Dominance Frontier

DiffServ – Differentiated Service

DPI – Deep Packet Inspection

DRAM – Dynamic Random Access Memory

GPP – General Purpose Processors

IDPS – Intrusion Detection and Prevention System

IPTV – Internet Protocol Television

ILP – Integer Linear Programming

 xi

IP – Internet Protocol

IR – Intermediate Representation

ISA – Instruction Set Architecture

LAN – Local Area Network

ME – Micro-Engines

Mpps – Million packets per second

MPSoC – Multiprocessor System-on-Chip

MTU – Maximum Transmission Unit

NAT – Network Address Translation

NP – Network Processors

NPU – Network Processing Unit

OSI – Open System Interconnect

PDG – Program Dependence Graph

PDT – Post-Dominator Tree

PE – Processing Engine

QoS – Quality of Services

RAM – Random Access Memory

RISC – Reduced Instruction Set Computer

SDK – Software Development Kits

SSA – Static Single Assignment

TCP/IP – Transmission Control Protocol/Internet Protocol

TTL – Time To Live

UDP – User Datagram Protocol

VLIW – Very Long Instruction Word

VoIP – Voice over Internet Protocol

VPN – Virtual Private Network

WAN – Wide Area Network

 xii

LIST OF PEER-REVIEWED PUBLICATIONS

Jing Huang, Xiaojun Wang and Bin Liu, ―Energy-aware Compilation for

Network Processors: Frameworks, Techniques and Trend‖, China-Ireland

International Conference on Information and Communication Technologies,

26
th
-28

th
 Sep., 2008

Jing Huang, Xiaojun Wang, ―Program Dependence Graph Generation and Its Use

in Network Application Analysis‖, CIICT 2009, Aug. 2009.

Jing Huang, Olga Ormond, Di Ma and Xiaojun Wang, ―Optimizing

Energy-Efficiency for Program Partitioning and Mapping onto Multi-Core Packet

Processing Systems,‖ the Journal of China University of Posts and

Telecommunications, June 2012, 19(Suppl. 1), pp. 79-86.

1

Chapter 1 - Introduction

Since the world steps into the Information Age, information, the subject it is

named after, becomes increasingly valuable to the society. As such, networks

grow to be indispensable nowadays. Most significantly, the past decade witnessed

the explosive growth of the ―global network of networks‖, i.e. the Internet. At the

beginning, most networks are based on variations of simple store-and-forward

packet switching architecture [1]. The interconnection nodes known as routers

usually just forward the packets without further processing. With the advent of

service-centric networks [2], a large portion of the computation and processing

workload is handed over from end hosts to the edge networks and access networks.

Unlike traditional routers, devices in such an environment should not only simply

deliver packets, but also process them at the same time. To meet the changing

requirements of the services, these devices have to be easily programmable and

configurable; and to keep pace with the soaring line speed, they should be well

powerful to process the packets within an extremely short time scale. Packet

processing systems are therefore specifically proposed to perform this type of

tasks. Packet processing systems usually employ multiple processing cores run in

parallel in data plane to satisfy the computation demand; and the cores are

typically variations of Reduced Instruction Set Computer (RISC) processors that

can be easily programmed via specific software development toolsets. Like

General-Purpose Processors (GPP), the computational power can only be

effectively utilized with well-written software. It implicates the vital importance

of the complier and relevant runtime management tools in packet processing

systems, which translate the high-level code and deploy them onto the underlying

heterogeneous architectures. On the other hand, network processor has distinctive

requirements from general processors. Not all compilation optimizations derived

Chapter 1- Introduction

 2

from general processing techniques would be still valid; and more attention

should be paid with regard to the high parallelism in multi-core architecture and

the soaring energy consumption.

The thesis covers the literature review on this topic and the concrete work on

optimizations for a multi-core packet processing system in a compiler framework,

especially with the awareness of energy-efficiency.

1.1 Motivation

The role of a compiler is always a bridge between the programmers and the

underlying system hardware. It is not an exception in the network processing

domain. A compiler designed for the packet processing system should provide a

decent interface for network application developers and map the high-level user

codes onto the complex Application Specific Instruction-set Processors (ASIPs).

Fig. 1.1 illustrates a commercial network processor from Intel. It has 16

Micro-Engines, a nickname for processing cores given by Intel, running in

parallel [3]. The whole system is a comprehensive solution to process soaring

line-rate traffic as well as to develop applications more flexibly. The features

concluded from the diagram are,

• Parallel fast processing units

• Application-specific instruction set processors

• Heterogeneous system-level architectures

• Hierarchical memory sub-systems

Chapter 1- Introduction

 3

4 SRAM

ME1

T
o
/
F
r
o
m

S
w
i
t
c
h

F
a
b
r
i
c

ME2ME0 ME3

System Interconnection Bus

ME5 ME4ME6ME7

ME9 ME10ME8 ME11

System Interconnection Bus

ME13 ME12ME14ME15

4

3 DRAM

4

Xscale

Core &

PCI Bus

Hash Unit

Timers

Scratch

RAM

2 Crypto

Units

SPI 4.2 &

CSIX

To/From Control
Store Memory

To/From Packet
Store Memory

Fig. 1.1. Intel IXP2805 network processor architecture [3]

Compiler technique is an aged research topic, dating back to the 1960s. Yet it is

still very active since both the programming languages and hardware platforms

incessantly evolve. For example, the problems about re-targetable compilers,

just-in-time compilation and inter-procedural pointer analysis were hardly

envisioned twenty years ago. A classical compiler would execute a sequence of

tasks in sequence, namely pre-processing, lexical analysis, syntax analysis and

validation, semantic transformation, Intermediate Representation (IR)

optimization, code generation and machine code optimization etc. Given the

features of packet processing systems, the compilers in this domain have the

following distinctions,

• Defining user-friendly interface that ease packet-processing applications

programming

• Partitioning parallel tasks and mapping them onto heterogeneous processing

elements

• Bit-stream data (packets) management in multi-level memory subsystems

Chapter 1- Introduction

 4

Fig. 1.2 depicts a typical workflow of the compilers for packet processing

systems.

C

Program

NP

Compiler

Optimization

Passes

Assembly

Code

GNU

Assembler /

Linker

NP simulator

Performance/

Energy

Profiler

Analysis

NP model

specification /

Power Constraint

Fig. 1.2. Typical design flow of network processor compiler

The large number of multi-cores in packet processing system resembles the

hardware platform of Multiprocessor System-on-Chip (MPSoC), whose

architecture is also being heavily researched these days. In a recent paper [4],

Leupters et al. indicated that new methodologies, tools and description languages

are still required to fill in the gap for the following missing tasks,

• optimal task partitioning

• code generation tools for software production and software maintenance

• simulation and debugging environment

The heterogeneity of both MPSoCs and packet processing systems asks for

optimized choices regarding code partitioning, task-to-processor assignment and

on-demand task migration.

Energy-efficiency is another heated issue in designing next-generation network.

Previous researches on the greenhouse impact of the switching and data storage

equipment on the Internet have revealed great potential for power-aware

optimizations [5]. A compiler can also play a part in such a process by either

providing the system with instruction trace information or interacting with the

runtime component, such as power-gating the functional units [6]. The

optimization from the point of energy-efficiency would vary from existing

techniques that are solely performance-oriented. That said, the space for design

exploration in energy-efficient compilation is quite vast.

Chapter 1- Introduction

 5

Bearing these in mind, the author chose the topic of energy–aware compiler

optimizations in multi-core processing systems. The ultimate goal is to develop an

energy-efficient compiler optimization framework for packet processing systems.

1.2 Contributions

In this work, a comprehensive solution for network application code analysis, task

partitioning, task-to-core mapping and a simulation environment is proposed and

validated. The major contributions of the thesis are listed as below.

• Task Partitioning and Mapping

A recursive Bi-Partitioning based algorithm is proposed that consider both

computational cost and energy consumption. In the partitioning and mapping

stage, additional optimization and refinement steps are taken to specifically

enhance the energy-efficiency, which is not investigated before in literature to the

best of the author’s knowledge. The simulation results show that the method is

particularly effective in improving the energy-efficiency compared to the existing

solutions.

• Energy-Aware Simulation Framework for Network Processing System

The thesis provides the design of a simulation tool to benchmark the performance

and energy-consumption of a generic network processing system. State-of-the-art

tools are either execution-driven, too complicated to run the simulation fast

enough in a large search space, or too simple to provide the energy-related data.

The proposed framework is built on an analytical model and takes both

computation and energy parameters into consideration. Its effectiveness and

validity are carefully examined and verified in this work.

• Implementation of a Program Dependence Analysis Tool

The program dependence information is of vital importance in deciding the

quality of task partitioning and mapping. In this work the author implemented a

code analysis tool to collect the program dependence information of a code block

within a full-fledged compiler framework. The tool is built into that framework as

a plugin and has well defined interfaces interacting with partitioning and mapping

modules. All the modules together can work as a complete tool chain.

Chapter 1- Introduction

 6

1.3 Structure

The structure of the thesis is as follows. In chapter 2, the packet processing system

at which the work targets is briefly reviewed. The compilation in packet

processing domain is reviewed in literature from two aspects in this chapter as

well, namely packet processing support and energy-efficiency related issues. The

author briefly described some challenges in network processor compiler design

and implementations. In chapter 3, the work on program dependence analysis is

presented. A compiler module is implemented to generate the program

dependence graph. It is the footstone for further compiler optimizations. Chapter 4

presents an energy-aware approach for program partitioning and mapping the

author used to explore the system at the architecture level. Detailed results and

analyses are given as well. Chapter 5 describes the performance and energy

evaluation model that the author uses to simulate a generic multi-core packet

processing system. A set of simulation results are provided. Finally in chapter 6,

the conclusion and future research fields are introduced as a closure to the thesis.

7

Chapter 2 - Background on Packet Processing

System and its Compilation

2.1 Introduction

As introduced in chapter 1, the network, especially the Internet, has already been

an essential infrastructure for the modern world. Yet the scalability and

complexity of today’s Internet still evolves rapidly. It was estimated that more

than a quarter of the world population use Internet services as of 2011. Beyond

traditional text-based network applications, versatile services come into common

use such as Voice over Internet Protocol (VoIP), web conferencing, Internet

banking and Virtual Private Network (VPN) etc. With the decreasing cost of

computation power and the advancement in distributed computing and

virtualization, a lot more applications are becoming web-based and making use of

the computation power on the network [7]. For instance, ten years ago, when two

authors collaborate on a book, one of them might open a new Microsoft Word

document, fill it in and send it via emails. The other collaborator would have to

write down the reviews on that particular document and send it back and forth. It

is easily messed up with multiple versions of the same file. Fortunately now with

the maturity of online platform such as Google Docs and Microsoft Live, people

can work on the same document simultaneously without any local storage.

Recognizing such a trend, the research on the next generation Internet emphasizes

the importance of programmable components of the network [8].

The packet processing system is such a programmable platform designed to meet

the explosively growing need for higher line-rate processing. The core of the

system is Network Processors (NPs), featuring specially tailored RISC Instruction

Set Architecture (ISA) and parallel multi-core architecture. In this chapter, a brief

Chapter 2- Background

 8

review on the packet processing system embedded with network processors will

be given.

Like any other programmable hardware device, the performance and efficiency

would largely depend on the quality of the software running upon it. The focus of

this research is to optimize the system from a compiler’s perspective. In this

chapter, the author also presents a literature review on the compilation techniques

for packet processing systems. Finally the challenges in compiler design and

implementation are explained and a conclusion is given.

2.2 Multi-Core Packet Processing System

As stated above, the packet processing system is specifically designed for dealing

with the network traffic. Most networks, such as the Internet, are distributed and

layered systems composed of hosts, workstations, switches and routers etc. Bits of

information are encapsulated in packets and flow in the network. And for packet

routing and processing, a protocol is specified describing the packet format. Take

the Internet for example once again. Internet Protocol (IP) is the core for

manipulating data transmission in it. Any type of network, no matter it is Local

Area Network (LAN), Wide Area Network (WAN) or even LAN Wireless which

is not envisioned when Internet first came into being decades ago, can be all

integrated into the Internet as long as they comply with IP (currently version 4 or

6) in packet encapsulation.

Today’s network can be generally divided into three layers, namely Core Network,

Edge Network and Access Network [9]. The topology of the Internet is illustrated

in Fig. 2.1. Core Network consists of gigabit and terabit routers that are backbone

of the Internet. The line-rate of network traffic routing is highest in core network.

Edge network sits at the boundary of one network to others. The processing speed

of edge equipment falls behind those in core network. Finally the access network

connects the terminals of a customer endpoint. And usually the bandwidth and

line-rate requirement is lowest among the three.

Chapter 2- Background

 9

SONET Rings

Gigabit Router

 Core Network Edge Network Access Network

WAN

DWDM Links

Gigabit/
Terabit
Router

Enterprise
Network

Wireless AP

Local Area
Network

Fig. 2.1. Internet topology

The performance requirement and flexibility vary among equipment in different

layers [10]. Table 2.1 gives a qualitative analysis in this regard. The core

equipment, like terabit router, may route packets at 39,813 Mbps line-rate within

OC-768 SONET link for example [11]. Yet for the edge network device, the

line-rate falls slower but the diversity of applications increases. Control-plane and

Table 2.1. Comparison of the three network layers

 Performance Flexibility Example

Core High Low Terabit Packet Routing

Edge Medium Medium Load Balancing

Access Low High Wireless Access Point

even management-plane applications are common to see at this layer. And the

complexity of network applications culminates at access layer, such as packet

encryption, load balancing in access router, packet inspection and network address

translation etc. Fortunately, the traffic in this layer tends to be much lighter in

most cases since the total endpoints are limited. Access equipment could trade the

processing speed for code complexity to meet the stringent packet latency

requirement.

Chapter 2- Background

 10

The packet processing system can be equipped in any layer of the network, either

in the high-end core routers or in the LAN switches. The flexibility of the system

comes from the programmable elements within it, i.e. NPs. And a series of

stacked network protocols guarantee its capability to achieve the performance

specification.

2.2.1 Network Applications & Network Processors

In order to obtain further understanding of the interaction between the software

and hardware of the packet processing system, a profile of the network

applications and the network processors is given below.

As mentioned before, the Internet is built upon a stack of rigidly defined protocols,

especially TCP/IP. Network applications process the workload in the way

specified by the protocol. TCP/IP model defined in RFC1122 [12] describes a

five-layer framework for computer network protocols, which has been

continuously employed in Internet from its very origin. The International

Organization for Standardization formally proposes a more prescriptive model, i.e.

Open Systems Interconnection model (OSI model). Both models divide the

networks into layers, with each layer utilizing the data from the layer immediately

beneath and providing service for the layer directly above. The layered

architecture exemplifies the principles of the modern network design —

end-to-end communication and robustness in implementation. Fig. 2.2 represents

both models and correlations in between.

• Physical layer defines the medium over which signals travel, e.g. electrical or

optical fibre

• Data link layer provides point-to-point link between two network nodes and

protects against data corruption

• Network layer enables transmission of data packets by routing through

intermediate network device

• Transport layer provides end-to-end communication services for upper layers,

like connection-oriented data stream support, reliability and flow control.

Chapter 2- Background

 11

Application

Presentation

Session

Transport

Network

Data Link

Physical

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Application

Transport

Internet

Data Link

Physical

P
ro

v
id

in
g

 S
e

rv
ic

e

D
a

ta
 E

n
c

a
p

s
u

la
tio

n

Peer-to-Peer Communication

Fig. 2.2. OSI model & TCP/IP model

The most distinguished difference between the two models is that the top three

layers defined in OSI – the Application Layer, the Presentation Layer and the

Session Layer are not separate but combined in a single layer in TCP/IP. Because

TCP/IP model evolves in line with the practice of the Internet, it is less attached to

strict layering.

A number of protocols are specified to facilitate data encapsulation and

transmission in a specific layer, e.g. TCP in transport layer and IP in network

layer. Network processing system usually accesses layer 3- 4 information and

process it based on protocol standards. One example application is the IPv4 router

in core network. The protocol stack is presented in Figure 2.3. In a core router, the

data-plane network processor inspects the IP packet header for destination address

and performs a table lookup to determine which output port the packet should be

sent to. This is a layer 3 application which features very high packet rates but

essentially little inter-packet dependency. Another instance of network

Chapter 2- Background

 12

applications is a packet classifier in access network devices. The classifier maps a

packet to one of a finite set of flows using a 5-tuple, i.e. source and destination IP

addresses, source and destination port numbers, protocol number. It makes use of

Layer 3-4 header information, specifically IP header and TCP header that are

illustrated in Fig. 2.3.

GET /pathname/index.html HTTP/1.1

TCP data TCP

header

IP data (TCP Segment)
IP

header

Frame Data (IP Packet)

Frame

Footer

(checksum)

Frame

Header

HTTP Get

TCP Segment

IPv4 Packet

Ethernet Frame

Fig. 2.3. Protocol stack through TCP/IP layers

Other typical network applications deployed in a network processing system

include gateway applications such as Network Address Translation (NAT),

Quality of Service (QoS) applications like Usage-based Accounting and

Differentiated Service (DiffServ), Intrusion Detection and Prevention System

(IDPS) and layer 7 peer-to-peer networking.

2.2.2 Advantages of Packet Processing System

To fit in with high line-rate data processing, Packet processing systems are

specifically tailored in architecture level and instruction-set level, ensuring certain

advantages in network processing system. This section outlines a brief analysis of

the benefits.

Parallel Processing

A parallel architecture is ideally suited for high speed packet processing. Traffic

stream in most network applications render little or no inter-packet dependency.

Chapter 2- Background

 13

Hence, the line-rate can be linearly increased to a certain extent by loading

parallel processing streams.

Two configurations are prevalent in parallel processing: pipelined and parallel.

They are both used in commercial products [13][14][15]. The detailed comparison

and explanation of the two configurations will be given in the next section

together with compiler specific issues.

Flexibility

Packet processing system incorporates a flexible architecture where

heterogeneous hardware components can be easily interfaced. Based upon the

RISC-like processing cores, new data-plane applications can be quickly developed,

which is infeasible using pure Application Specific Integrated Circuits (ASIC)

solutions. And to accelerate common computation-hungry networking tasks,

special hardware is extensively used in packet processing system. For example, a

co-processor specialised in packet classification can be niched in the pipeline

before performing any core applications. A special functional unit like checksum

and hash unit is also available in commercial products like Intel IXP network

processors.

Cost Effectiveness

Traditional network devices using ASIC solutions suffered greatly when it comes

to the issue of cost. Firstly, the services that ASIC-based system can provide are

pre-defined and difficult to change. If one manufacturer plans to release a series of

products from low-end routers excelling in simple Network Address Translation

to high-end systems carrying out complex Deep Packet Inspection (DPI), a

number of circuits have to be synthesized, costing tremendous human efforts.

However, in a network processor based packet processing system, the principal

design remains intact while only software-level configurations and modifications

are required. The shortened time to market also implicates the enhancement in

cost effectiveness for network processors. Secondly, RISC-like processor cores

cost much less than the complex ASIC design [10]. The expense to test and verify

an ASIC design is predominant whereas for RISC-like processors the cost is

largely amortised by the mass production.

Chapter 2- Background

 14

2.2.3 Trends in Packet Processing Systems

Since the influence of the Internet grows exponentially, the complexity of packet

processing system increases accordingly. Several trends were observed in this

area.

Firstly, the functionality of network applications becomes multi-fold and ranges

across layers. Take the application of deep packet analysis and inspection in a

network security system for example. The application scrutinizes not only

traditional layer 3-4 header information like source/destination IP addresses pair

and port numbers, but also high-level data known as layer 7 in OSI model. The

multi-layer applications of this kind are expected to be common in the future [16],

which requires more flexibility from the network processing system end as well as

added computational power.

Secondly, the heterogeneous parallel architecture is becoming a standard

configuration for network processing systems to deal with the fast exploding data

rates. Multi-core processor technology is becoming mature for GPP core

manufacturing in the past decade and consumers are already benefiting from it

[17]. Network processing system can utilize multi-core RISC cores to perform a

highly paralleled processing in data-plane applications. For instance, very recently

NetLogic Microsystems announced its flagship multi-core processor which has

128 CPUs capable of 240 million packets per second [18]. Besides, the progress

on the development of ASIC-based co-processors, i.e. hardware accelerators has

enabled the adoption of heterogeneous elements in the system to execute either

algorithm-specific or task-specific functions.

Last but not least, the flexibility of network processors could never be realized

without well-rounded software development kits (SDK). A typical SDK usually

includes a patched operation system (e.g. Linux kernel), compiler tool-chain

(pre-processor, interpreter, linker and loader etc.), debugger and documentations.

Current solution in system level design embodies defining an application domain

first, and then architecting the platform using software-hardware co-design

techniques, e.g. LISAtek SDK and MAPS described in [19]. It is an open question

that how the partitioning and mapping of applications can be best achieved.

Besides, when programming in such a highly parallel multi-processor

Chapter 2- Background

 15

environment, the problem that how the application code should be mapped onto

the heterogeneous hardware platform is yet to be answered as well. This particular

issue is the research interest of the author and the focus of the thesis.

2.3 Compilers for Packet Processing Systems

This section presents the literature review on the compilation techniques for the

packet processing systems. As noted in previous sections, the research on

compiler techniques for network processors has been a hotspot to tackle with the

flexibility requirement in network application development and the computational

needs for processing rapidly increasing line-rate data. Bit-stream-oriented

programming, multiple processing units and heterogeneous architectures all make

the job of an NP compiler complicated. Meanwhile, energy efficiency has also

become a heated issue while parallel NP system is becoming more powerful and

power-hungry. The text below elaborates on the issues of packet processing

support and the energy-aware optimizations among all compilation stages.

Similar to most traditional GPP compilers, a NP compiler is generally partitioned

into front-end and back-end modules, and linked by one generic Intermediate

Representation (IR). To a great extent, it is possible to port and utilize various

re-targetable compilation frameworks, such as SUIF [20]. The design of

re-targetable compiler frameworks could be illustrated as in Fig. 2.4. Yet the

implementation of NP compiler distinguishes itself by domain specific features,

i.e. bit-stream-oriented packet manipulation and parallel task processing, both in

software (source code) and hardware ends (code generator). Hence a review of

several approaches that take these features into account is conducted.

Fig. 2.4. Typical design flows of re-targetable compilation

Network

Application Code

Profiler,

Compiler

Debugger
System Model

Define/Mapping

Runtime System Hardware Testbench /

Simulator, Debugger

Code

Generator

Chapter 2- Background

 16

2.3.1 Support for Packet Processing

The instruction sets of the network processor cores are often specially tailored to

provide bit-field operations, e.g. finding the first bit set in a register instruction in

Intel IXP ISA. In search of a solution to map high level programming language

code into bit-field operations, generally two directions could be taken. One is to

extend the capability of a compiler for an existing programming language, and the

other is to revisit the language itself as well as to build a domain specific compiler

for this language extension. Both have been explored primitively in academia and

in industry.

In [21], Wagner and Leupers described the implementation of a C language

compiler for an industrial NP, Infineon NP whose architecture includes special

register arrays and extensions for bit-level data access. In order to fully exploit

this processor’s ISA feature, the C compiler employs the use of Compiler Known

Functions (CKF) and renewed register allocation methods for efficient bit

addressing. The main idea of using CKF is to make bit-level packet manipulation

visible to programmers, similar to the #PRAGMA directive in ANSI C. The

compiler is then responsible for mapping function calls to CKFs into a fixed

instruction or a sequence of instructions. As such, the code complexity and

programming difficulty in writing lots of bit operations is hidden. Yet unlike

conventional C function calls and in-line assembly, there is little overhead on

either hardware or programmer’s side.

However, CKF is not quite portable with the existence of machine-specific

compiler intrinsics. More advanced code selection techniques are yet needed.

Budiu and Goldstein presented a compiler algorithm on exact bit-level data-flow

analysis in [22] by using a bit-value lattice. Following this bit-value inference

analysis approach, Wagner and Leupers evolved their C compiler by replacing the

CKF with tree-pattern matching grammar to handle bit-packed addressing in C

[23]. The code generation employs the bit-level data-flow analysis information of

a basic block labelled by a lattice-string and detects bit-level packet operations in

a tree-pattern matching grammar. And with the aid of mature code-generator

generator tools, dynamic cost-functions could be modelled as well. Though the

code quality is not totally comparable to hand-optimized code in this approach, it

Chapter 2- Background

 17

did extricate NP programmers from diverse architectural complexities. And by

taking this path it is able to generate a primitive but integral ―compiler‖ in terms

of its classical definition.

Instead of conforming to ANSI C language rigidly, in [24 , 25] a novel

programming language Baker was proposed as part of the NP compilation

framework named Shangri-la. The framework consists of a hierarchical compiler

and an adaptive run-time system in addition to Baker. Baker is designed to be a

modular, packet-processing-oriented, C-like interface, and Shangri-la takes the

responsibility to automatically target Baker programs at heterogeneous platforms

via the specially optimized compiler and runtime resource management. The

compiler itself leverages a lot of code base from the ORC project [26], originally

targeting Itanium family but innately re-targetable with well-defined annotated IR

named WHIRL. Most of the Shangri-la components are therefore independent of

specific hardware. The front-end Baker, and the profiler inside it, and a

full-fledged pipeline module are all portable at the expense of slight modifications.

As for the back-end, i.e. the code generator and the runtime system, needs to be

manually ported by taking the system model as parameters. This framework has

already been validated, and functioning on IXP 2XXX NP family. Though it is

not applicable to test the performance of Shangri-la directly, it is believed that the

re-targetable model and the general ideas behind it are enlightening when dealing

with the difficulties of packet processing tasks and managing heterogeneous NP

architectures.

2.3.2 Support for Parallel Processing

Besides specialized processing cores dealing with the packet data, an NP, as stated

in the introductory section, needs to process large traffic in short time intervals,

and the architectures are hence preferably to be of a high parallel structure [27].

For instance in Intel IXP 2400 NP [28], 8 micro-engines (ME) are installed for

packet processing, each ME supports 4 or 8 threads and low-overhead context

switching. Additional co-processors, e.g. Packet Classification Unit, as well as

multiple hierarchical memory modules are usually included to reinforce parallel

packets processing in network processing system. The compiler is therefore left

with the intricate job to manage the heterogeneous resources. A high-level

Chapter 2- Background

 18

trade-off in allocating the fixed number of processing cores is on choosing either

parallel or pipelining model, as shown in Fig. 2.5. Note that due to the intrinsic

parallelism of network applications, or rather independent packets data and/or

traffic flows, the same task (sub-program) could be run in parallel. It implies an

optimal scheduling would possibly be a hybrid of the two configurations. Briefly

NP compilers should take on the burden of program partitioning, resource

scheduling and data mapping etc. to support parallel packets processing.

P U P UP U

Pipeline

P U P UP U

Task 1 Task 2,3 Task 4

Parallel

Task A Task B,C Task A

P U
P U

P U

P U P U

Task 1

Task 1 Task 2,3

Task 2,3

Task 4

Hybrid

Packets

Packets

Packets

Fig. 2.5. Topology of architectural configurations

Several heuristic approaches have been reported to solve the partitioning and

mapping problem in a multi-threaded multi-processor environment. Jia Yu

proposed the Resource Balanced Bi-partitioning algorithm for the program

mapping to achieve higher peak throughput [29]. Its top objective is to balance

pipelining through setting appropriate stage numbers. The task graph of a program

is first partitioned into two by calling r-Balanced Min-Cut procedure, where r is

the estimated cut_ratio between two partitions. Processing elements are allocated

in accordance with the execution and communication cost of that stage. A

recursive partition is then performed until the code size can be fit in one

instruction memory. Finally, a local refinement is performed in order to migrate

Chapter 2- Background

 19

tasks from bottleneck stage to non-bottleneck stage. In summary, the time

complexity of this heuristic is reduced to O(x3). In [30] Ramamurthi et al. also

adopted a divide-and-conquer approach but particularly addressing memory

layout and data mapping problem. The sub-tasks of an application are first

mapped to Processing Engines (PE) following procedures similar to Integer

Linear Programming (ILP) formulations. Then optimization is performed based

on the calculated priority of a data item in a task process. Three situations in

regard to the number of threads supported, data spill and idle time are tackled with

specific strategies, aiming at maximizing throughput. Another heuristic presented

by Weng [31] is called randomized mapping, which basically means choosing a

valid mapping by random and compare its performance to previous results. It is

testified to be possible to find near-optimal solutions for mapping parallel tasks,

but naturally the algorithm takes up too much search space and thus low-efficient.

The similarity shared by all the above approaches is the inclusion of real

traffic-based profiling phase when building the IR (e.g. task graph) of a program.

Either analysis of dynamic instruction traces [30, 31] or combination of static and

dynamic analysis [29] is used for profiling programs.

2.3.3 Re-targetable Compilers

Re-targetable compiler contains an adaptive back-end that could be easily

modified to interface with heterogeneous processors. Such a re-targetable

compiler framework could be specifically tuned to construct specific NP

compilers. The Shangri-la compiler [24, 25] is a good example in point. Below in

this section four other models are reviewed and compared. General information

about the compilers/platform solutions is given in Table 2.2 below.

Table 2.2. Comparison of the re-targetable compilers

 DSL Level ASIP target Partitioning Scheduling

Shangri-la Baker IXP series Automatic Compiler-Assisted

PacLang PacLang IXP2xxx Manual Manual

NP-Click Click & extension IXP series Automatic Automatic

NEPAL
C & modular

template
Cisco & IXP Manual Manual

TejaNP C, C++ & extension Many NPs Manual Manual

Chapter 2- Background

 20

PacLang [32] made effort to abstract away the architecture complexities in source

code, where application description could be given in a customized, linear,

strong-typed language. By denoting linear type packets in this language, the

syntax could be statically checked to ensure that no packet is referenced by more

than one thread. If such a kind of unique ownership property is enforced, no

additional locking mechanism is needed anymore. Finally all the linear typed

blocks are connected to each other through queues and freely mapped to low-level

architectures. Compiling the PacLang code has been demonstrated on IXP 2400

with an IPv4 packet forwarding case study, and the program is more lucid in

comparison with traditional C language.

Plishker and Shah managed to evolve a programming model ―NP-Click‖ [33].

Unlike PacLang or Baker, the programming model is based on Click modular

router [34] rather than a brand-new grammar and syntax. Click software router

has been proved competent in industrial practice for efficiently describing

network applications in a modular way. NP-Click fortifies its capability in

data-memory mapping, elements-threads mapping and shared resources

management. The NP-Click itself is implemented in Intel Microengine C [35],

thus the framework is essentially an extension of Intel C compiler. But the

framework of the modular elements facilitates the extraction of parallelism; and

the elements are automatically transformable to task graph. Those innovations

could be applied to various NP compiler platforms.

Also featuring modular programming approach, NEPAL [36] was proposed as

another runtime system for extracting modularization from sequential codes and

mapping the modules into a variety of Network Processing Units (NPUs). The

NEPAL converter and optimizer analyse C programs, C++ binaries etc. to

generate modular codes that could be executed in parallel. The dynamic module

manager, essentially a runtime environment, then is responsible for controlling the

overall execution under different underlying architectures and maximizing

parallelism. This framework has been validated using an ARM simulator where

two different systems are simulated.

TejaNP is yet another software platform focusing on portability, performance, and

ease of use [37]. The model is based on the C language with a minor C extension

Chapter 2- Background

 21

and empowers users’ capabilities in expressing both software and hardware

architectures and managing application mapping. The modular elements are

stitched together then to completely describe the functionality of the application.

2.4 Energy-efficient Compiler Techniques

The compiler of a network processor plays a vital role in ensuring machine code

efficiency. A set of energy-efficient NP compilation techniques is reviewed in this

section.

2.4.1 Dynamic Energy Reduction

Energy-oriented optimization could start from front-end, even at the highest

source-level to translate tool-generated code or newest algorithm implementation

written for better readability into energy efficient counterparts. In [38] Yang et al.

experimented front-end loop transformation, such as loop permutation, loop

fusion and tiling, and evaluated to find their significant contribution to energy

reduction in SimpleScalar, a cycle-accurate architectural simulator [39].

Inside the back-end part, specific energy-efficient optimizations could be

performed at nearly all stages. During the code selection stage, one way is to

attach higher priority to low energy consumption instructions. An example is

shown in [40] where an algorithm is tailored for laying out local variables based

on access patterns to take advantage of auto-increment / auto-decrement

addressing modes available on a commercial NP. Instruction optimizations for

efficient register files access have been exploited as well in [41], especially in the

code generation that are capable of optimizing address instructions. Besides, loop

transformations like unrolling are still tempting at this stage by maximizing

instruction level parallelism that result in energy reduction [38].

During the instruction scheduling phase, special algorithms could be implemented

aiming at reducing the energy contribution due to the change of operations on the

datapath. In [42] Bona et al. proposed a spatial scheduling algorithm for

embedded Very Long Instruction Word (VLIW) processors, based on a low-power

reordering of the parallel operations within the same long instruction by

considering each basic block of the generated code and rescheduling operations

within the same bundle(spatially) to minimise the cost function:

Chapter 2- Background

 22

BlockBasicwwwwV k

n

k

n

k

k

n

k

n)(),(11 (2.1)

where (
 |

) is the additional energy contribution due to the change of

operation

 on the same lane k . Analogous approach is described

and validated by Yun and Kim [43] to reduce the step power and peak power

consumption from performance-critical loop bodies using a power-aware modulo

scheduling algorithm. In this sense, the step power is defined as the difference in

the average power between consecutive clock cycles while the peak power means

the maximum power dissipation during the execution of a whole program.

Another relevant scheduling technique is Lee’s greedy bipartite-matching scheme

for horizontal scheduling and a heuristic method for vertical scheduling for VLIW

architectures [44], especially for achieving the optimal switching activities of the

instruction bus.

2.4.2 Leakage Power Control

Unlike dynamic power consumption, leakage consumption derives from leakage

current as long as the circuit is on regardless of the switching activities. Thus the

methods for dynamic power control cannot be applied. A common approach

nowadays to reduce leakage power is shutting down inactive hardware units,

though the turn-on and turn-off certainly demand additional hardware-based

built-in support. Compiler optimization is a key to improve the leakage power

control benefits, because compiler-based techniques are in charge of data and task

mapping as well as system resource scheduling. If code and data executing on

hardware are optimally scheduled to concentrate the workload on a limited

number of PE, more space can be earned to perform hardware turn-on/off. During

code analysis phase of compilation, an optimized compiler could find the code

region where one or some PEs can be possibly shut down at some stage.

An example following this strategy is illustrated in [45]. Zhang et al. proposed a

technique that first detects the idling functional units based upon a data-flow

analysis along the paths in control flow graph. Then functional unit

activation/deactivation instructions are inserted with regard to estimated basic

block execution cycles and leakage control strategies. In their approach, two

leakage control strategies were taken into account, namely input vector control

Chapter 2- Background

 23

and supply gating. Jia Yu also considered and validated the use of power gating

strategy to reduce leakage power in NP [29]. When zero overhead is assumed to

turn on and off a PE, it is quantified that power gating can save much more power

than clock gating (i.e. reducing dynamic energy solely) for four representative

network applications.

2.5 Challenges in Compiler Design and Implementation

Though many implementations of NP compilers are available at present as

discussed above, several notable challenging issues are still to be addressed.

• Easy programming interface for programmers, together with

packets-oriented code generators for PE

It is common to encompass specific bit-wise operations in instruction set design of

PE for most NP units nowadays, like in Intel IXP NP [28]. An efficient compiler

should optimize its code generation by taking advantage of those domain specific

instructions like bit-packet addressing, and those arithmetic operations such as

comparing and modifying fields in the packet header. Needless to say, the

compiler is even better off to support new high-level languages that are easy to

learn and use, preferably tuned for network applications i.e. tailored for

processing packet data.

• Intelligent program mapping in managing parallel processing resources

As the NP system tends to employ more PEs on chip to provide parallel

processing power to keep pace with the increasing network traffic and

computation complexity, compiler techniques need to be consistently evolved to

go with the trend. At task level, the strategy of merging and replicating

applications and mapping them onto mixed pipeline and parallel hybrid

architecture (i.e. Fig. 2.5) still demands investigation and exploration.

Furthermore, the efficient utilization and arbitration of heterogeneous resources of

a NP system, such as co-processors and special hardware accelerators, also needs

to be further studied. The compiler should be more sensitive or intelligent to

manage all the processing units. Intelligence and flexibility support are also

inadequate at high level currently, e.g. it is not an easy job to add/remove

applications in a multiple application system. For now, usually a complete

Chapter 2- Background

 24

re-compilation and scheduling have to be done every time the configuration

changes, which is neither time-efficient nor energy-efficient.

• Management of packet data in NP memory hierarchy

Just like compilers for general processors, NP compiler is responsible for program

data placement in the NP memory hierarchy. But in the absence of a run-time

system or OS support, NP compiler is even more influential in deciding the

overall memory performance. Packet data usually exhibit low inter-dependence.

And for the sake of achieving higher throughput and lower latency, NP seldom

includes hardware cache mechanism as opposed to general processors. Memory

management in a packet data-aware approach is certainly a challenge anyhow,

especially when the NPs need to support various network application functions as

of now.

• Energy efficiency in compilation

Intense power consumption is observed nowadays in NP since more processing

cores are assembled on a chip and the complexity of packet processing tasks is

increased in advanced network applications (e.g. Firewall, instruction

detection/prevention). Innovation in energy-aware compilation techniques is

deemed promising. Trade-off should be properly addressed among conflicting

metrics, e.g. throughput, latency and power-consumption, as it is observed that

optimization solely for one metric is often realized at the expense of others [29].

2.6 Conclusions

Network Processing System family is an example of heterogeneous on-chip

system with different processor instruction-set architectures, memory hierarchies,

cooperative hardware accelerators and interconnections etc. Network processing

application itself exhibits distinct characteristics in relation to packet processing

as well. The job of programming NPs is thus not wholly complying with

traditional compilation scenarios, asking for innovative approaches tackling

NP-specific difficulties. In this chapter, specific techniques for tackling with these

problems were investigated, from aspects of packet-oriented processing support

and parallel architecture support respectively [46]. Several challenging issues in

NP compilation are also pointed out. The compiler could be tuned more efficient

Chapter 2- Background

 25

by applying specific register allocation algorithm and special code selection

techniques. Given such a heated issue in embedded system on power efficiency

currently, novel compilation techniques on energy saving were also reviewed in

the text. It was observed that though traditional performance enhancement

methods might not always be beneficial for energy-oriented optimizations,

classical heuristics and methodologies can be referred to and extended at all stages

during compilation.

As energy-efficient compilation and compiler techniques for packet processing

further develop, the following trends are worth attention:

• A more flexible compilation model in front-end. It would provide a

programming interface tuned for packet processing and bit-level operations,

so easing programmers’ job. The interface could be modular-based for

conveniently adding/removing applications.

• A more flexible compilation model in machine-specific back-end. An

intelligent compiler could choose best code generation strategies among

different candidate solutions, and/or re-adjust program mapping reflecting the

changing requirement of performance, code size, power consumption and

traffic volume etc.

• The idea of incremental compilation would be incorporated. When new

applications are added into network processing system, the compiler analyses

all the tasks and incrementally re-schedules the hardware resources and

re-maps the program and data. The results should be up to specified metrics.

• Energy efficient compilation for network processing system will receive more

attention. Traditional optimization hotspots are still where energy-aware

techniques can play a part, while constraints are with respect to power

dissipation instead of performance only.

• The interaction and trade-off between energy-efficient optimizations and

those grounded on classical metrics, such as high throughput and low latency,

awaits further exploration. A balanced point needs to be found.

• Energy-aware optimizations for NP compiler will be more interesting at

task-level (besides instruction- or basic-block level reviewed in the thesis),

Chapter 2- Background

 26

where energy classification of code/data blocks could be examined.

27

Chapter 3 - Analysis of Network Applications

3.1 Introduction

In last chapter, it is pointed out that task level allocation of code and data blocks is

worth investigating, especially for parallel processing optimizations in a

multi-core network processing system. In order to perform any further

optimization, it is a prerequisite to obtain a comprehensive profile of the

application to be deployed. This chapter presents the work on developing a

compiler tool to characterize the application dependences. The dependences

information is vital in resolving application partitioning and mapping problem

which is a sub-domain of task scheduling. The focus of this chapter is on the

network application analysis in the eyes of a compiler.

In the internal work flow of compilers, an Intermediate Representation (IR) is a

data structure used to collect the input information, e.g. the semantics of C code.

Most of the compiler optimizations would conduct upon a specific kind of IR.

Classical examples of IRs include the Control Flow Graph (CFG) built for flow

analysis, Abstract Syntax Tree (AST) employed in syntax-directed translation etc.

As said earlier, in the context of task allocation problem for network processor

systems [47], the compiler needs to characterize the dependence profile of an

application. Previous researches have employed Annotated Directed Acyclic

Graph (ADAG) [48], basic-block based task graphs [49], general analytical model

[50], etc. to abstract the applications. However, these representations are generally

generated from runtime traces of the network applications. From the compiler’s

perspective, they are not directly applicable. Rather, efficient representations of

static profiling results are required during compilation. In this regard, Program

Dependence Graph (PDG) was developed by Ferrante et al. [51] around 1990s;

Chapter 3- Analysis of Network Applications

 28

and in [52], it was used as the IR to statically characterize the applications and

was fed into the task partitioning algorithm. The PDG explicitly expresses the

dependences of a given program in a graph, and implicitly indicates the

opportunities for code parallelization. Given its prominent features as an IR, it can

be used extensively in compiler optimizations for parallel systems like network

processors systems. A compiler pass was implemented to efficiently generate the

PDG in Machine SUIF [53] compiler infrastructure. The sections below

summarize the work of the PDG pass implementation and demonstrate its use in

network applications analysis.

3.2 Dependence Graph

In essence, PDG is a form of Directed Acyclic Graph (DAG). It consists of two

sub-graphs, namely Control Dependence Graph (CDG) and Data Dependence

Graph (DDG). CDG expresses the Control Dependence while DDG depicts the

Data Dependence. Its application extends to not only the program dependence

analysis but also subsequent optimizations on top of it. In this section, the

terminologies of the graph and definitions used during the dependence analysis

are introduced before any design and implementation issues are elaborated.

By definition, program dependence comprises CDG and DDG. One can always

regard PDG as an integration of those two sub-graphs, each being a self-contained

component on its own. CDG summarizes control dependence information while

DDG holds data-dependence links. So in the following text, the relevant

background of each sub-graph will be dealt with separately. Note as well that,

PDG can be applied to different levels of the code, i.e. nodes in a PDG may be

basic blocks (BB), statements or individual expressions (operators). This report

concentrates on the BB-level since it exposes more program-level features that

could be utilized in parallelization optimizations, which is much of current

interest.

3.2.1 Control Dependence Graph

A Control Dependence (CD) is a constraint that is relevant to the control flow of

the program. For example in the three-address code block showed in Fig. 3.1,

statement S2 and S3 will be executed only when S1 is evaluated to be false. And

in this case, statements S2 and S3 are control-dependent on statement S1. It is

Chapter 3- Analysis of Network Applications

 29

analogous in the BB-level CFG. Conceptually, in the BB-level CFG, node Y is

control-dependent on X if X has two paths to exit, one through node Y while the

other does not. Fig. 3.2 depicts such a relationship.

Fig. 3.1. Three-Address code block

Fig. 3.2. Control dependency relations

The formal definition of Control Dependence is literally given in the following

procedures. The definition of the Post Dominance in a CFG is given below first.

Definition 3.1: in a Control Flow Graph G, node V is post-dominated by node W,

if every directed path from node V to node EXIT contains W.

With the post dominance given, now control dependence can be formally defined

as follows.

Definition 3.2: in a Control Flow Graph G, node Y is control-dependent on node

X when

(1) A directed path P from X to Y exists with any nodes Z in P post-dominated

by Y (P does not include X and Y);

if a>b goto L1 (S1)

d = a + b (S2)

e = a * b (S3)

L1:

d = a * b (S4)

X

U V

Y

Node y is control
dependent on x
in the graph

EXIT

Chapter 3- Analysis of Network Applications

 30

 (2) Y does not post-dominate X.

In other words, a node Y is control-dependent on X if from X there is a branch to

U and V; from U there is a path to exit that avoids Y, and from V every path to

EXIT (including V) hits Y (e.g. Figure 3.2).

The formal definition may seem a little obscure. It is helpful to keep in mind the

semantic meaning of Control Dependence though. Y being dependent on X

essentially means that the execution of node Y depends on the result of the

conditional statement in node X.

Interestingly, the control-dependence relationship is strongly connected with the

concept of Dominance Frontier (DF). It is not accidental though, as both theories

are proposed by the same group of researchers when they are working on

application dependence analysis [51][54]. Conceptually, DF of one particular

node is the border between the dominated and un-dominated nodes. It is

commonly used in construction of Static Single Assignment (SSA) [54], another

type of compiler IR. The ―interesting‖ link between control dependence and

dominance frontier is that Y is control-dependent on X if and only if Y is in X’s

Reverse DF (N.B. Reverse DF is the nodes’ DF in the Reverse Control Flow

Graph). The theoretical explanation of the relationship is out of the scope of this

report, so only the conclusion is given here.

At this stage all the control dependence of one program can be captured in a graph

representation, i.e. the CDG. The following is the formal definition of CDG.

Definition 3.3: CDG has an edge from X to Y whenever Y is control-dependent on

X.

CDG is built on top of the program CFG, and particularly at BB-level in the

context of this report. So obviously, the nodes in CDG are the same of the nodes

in CFG, i.e. Basic Blocks of the program. Additionally, CDG also contains

special nodes to summarize control conditions, as detailed below.

Four kinds of nodes make up the CDG, namely start (i.e. root), region, predicate

and statement nodes.

Start represents the entry point of the program. It is a dummy node facilitating the

creation of CDG, usually empty. In the CFG, it is also the starting node but with

Chapter 3- Analysis of Network Applications

 31

two edges. The true edge goes to the ―real‖ entry point of the program (BB

containing instructions) while false edge linking the exit point of the program;

Predicate nodes usually end with control transfer instructions. They represent the

True or False conditions to be selected among different control dependence edges;

Statement nodes are those ones comprising pure computations, excluding any

control information within;

Region nodes summarize the set of control conditions for subsequent nodes.

Observation here (and could be verified in theory) is that the statement nodes have

only one exact parent node and no children in the CDG (i.e. nobody is control

dependent on them), while predicate nodes have one parent and two children

linked by edges marked ―T (True)‖ and ―F (False)‖ respectively. As for the region

nodes, they could have multiple children and multiple parents in the CDG. Start

node has no parent but could have multiple children. Finally by definition, the

targets of edges originating from predicate nodes must be region nodes.

3.2.2 Data Dependence Graph

The definition of Data Dependence (DD) is not that straightforward as for CD,

and it is varied in different contexts and applications. Hence, the Data

Dependence Graph (DDG) would not be formally defined in a way that any kind

of DD edges is incorporated as part of the DDG. Usually, different forms of

dependency graph comprise assorted combinations of load and store

dependencies, def/use dependencies, loop dependencies etc.

In a larger sense, typical data dependence information includes def-use

(flow-dependence or true dependence), anti-dependence, and output-dependence,

as depicted in Fig. 3.3. Only the DD that is meaningful to the work will be

elaborated. With regard to the problem of analyzing the communication cost

between tasks, the def-use data dependence is of particular interest.

Fig. 3.3. Classification of Data Dependence

 X :=

 := X

True-Dependence

X :=

X :=

Output-Dependence

:= X

X :=

Anti-Dependence

Chapter 3- Analysis of Network Applications

 32

Def-use DD (i.e. the true dependence) denotes the data flow from node M to N by

assignment at M and use at N. The way to capture the DD in a graph

representation is to make use of the SSA form.

SSA is an intermediate representation introduced by Cytron [54]. Three forms of

SSA are described in literature, namely Minimal SSA, Pruned SSA and

Semi-Pruned SSA [55].

The minimal approach is named in terms of its time consumption, as it requires

less time to compute. But it may insert lots of dead phi-nodes, i.e., one that define

names that aren't used later;

The pruned approach corrects that flaw by doing liveness analysis to avoid

inserting dead phi-nodes. It therefore saves space, while at the expense of doing

data-flow analysis that might not otherwise be needed;

The semi-pruned approach is based on the observation that many

compiler-generated temporaries are never live across a control-flow edge, i.e.

local to a single basic block. Thus, they never require phi-nodes. Semi-pruned

SSA form uses this observation to eliminate many of the phi-nodes that exist in

minimal form and avoid performing the liveness analysis needed for pruned SSA

form.

The SSA form greatly simplifies the def-use analysis for symbols at BB-level

since each variable has only one definition. The space and time to compute the

def-use chain in normal CFG would be a quadratic blow-up. But in SSA, the

def-use is essentially a link rather than a chain. For nearly all realistic programs,

the size of SSA is just in linear relation to the original CFG.

3.2.3 Program Dependence Graph

PDG is a graph IR that is strongly related to the concept of CFG, the classical

graph IR. As the same in CFG, the instructions are grouped together at the

Basic-Block (BB) level. In a BB, the first instruction is the only entry point in the

control flow, while the last instruction is the only exit point. Thus CFG represents

the control flow with its nodes being BBs and its edges being the path of the

control flow.

Chapter 3- Analysis of Network Applications

 33

The very basic kind of CDG is also composed of BBs. However, its edges now

represent the Control Dependences. As explained earlier in the section about CDG,

control dependence (CD) is an abstraction of the execution order. For example,

node x in the CFG (i.e. BB x) ends with a branch instruction and hence has two

paths at the exit point of the node. If node y (i.e. BB y) will be executed only

when the control flow goes through the true path at the exit of node x, it is said

that the node y is Control Dependent on node x on the true edge. Correspondingly

in the CDG, a directed edge is added from node x to y, labeled with a control

condition, e.g. true in this example. After this initial generation of CDG, the

region nodes are inserted in the second phase to represent a set of control

dependences. For instance, if node y is control-dependent on node a on the true

edge and on node b on the false edge, a region node R1 is created to hold the

control dependences of <aT, bF>. The node y is made to be control dependent on

the newly created region node R1 only.

As for the DDG, its nodes are still BBs. The edges now represent the data

dependences. If an instruction in basic block y uses a variable that is defined in

basic block x (i.e. a def-use chain exists between different basic blocks), it is

defined that there is a data dependence edge between x and y. It is also assumed

that the weight of the edge is same with the number of such def-use chains across

two basic blocks. In the DDG, the edges are labeled with the weight.

The PDG can then be easily constructed by combining the CDG and DDG

together. Since the nodes of both graphs are largely the same (i.e. BBs), with a

few additional region nodes in CDG, the merge process is straightforward.

3.3 Design of PDG Generators

As explained in introduction, the PDG has two sub-graphs CDG and DDG. In this

section, the algorithms for constructing CDG and DDG, the specification of the

PDG class and the explanation of its fields and methods will be given.

3.3.1 Graph Construction Algorithms

Firstly the algorithm for the construction of the CDG is introduced. There are two

options here, namely,

Method 3.1: Follow Ferrante’s canonical algorithm described in [51].

Chapter 3- Analysis of Network Applications

 34

Method 3.2: Calculate the reverse dominance frontier, and CDG has edge x -> y

(i.e. y is control-dependent on x) whenever][' yDFx G (i.e. x lies in the reverse

dominance frontier of y).

Table 3.1. CDG construction algorithm 1

INPUT Control Flow Graph

STEP 1 Augment the CFG with an empty (dummy) starting node.

STEP 2
Compute the post-dominators of each node and construct the

Post-Dominator Tree (PDT) of the CFG.

STEP 3
Define an edge set S. Each edge E=(A,B) in the CFG and B is not an

ancestor of A in the PDT is added to the set S.

STEP 4
For each edge in the set S, find least common ancestor L of A and B

in the PDT. L should be either A or A’s parent in PDT.

STEP 5
All the nodes on the path from L to B (except L if L is A’s parent) are

control-dependent on A.

STEP 6 Add the region nodes.

OUTP

UT
Control Dependence Graph

Table 3.2. CDG Construction Algorithm 2

INPUT Control Flow Graph (G)

STEP 1
Add a new dummy predicate entry-node start to G, with its ―T‖

edge running to the original entry and its ―F‖ edge to exit.

STEP 2 Let G’ be the reverse control-flow graph.

STEP 3 Construct the dominator tree of G’.

STEP 4 Calculate the dominance frontier DFG' of the nodes of G’.

STEP 5 The CDG has edge x->y whenever][' yDFx G

OUTPUT Control Dependence Graph

Note that, these two methods are theoretically identical as it was explained in last

section. Under Machine SUIF infrastructure, method 2 tends to be more

straightforward because it has provided a Control Flow Analysis (CFA) library

Chapter 3- Analysis of Network Applications

 35

with reverse dominance frontier calculated off the shelf. Both methods are

included in my generator though, to best illustrate the complete algorithms.

The elaboration of the first method (building from scratch) is given in the Table

3.1. A sequence of data structures are generated throughout the process. First of

all the Post-Dominator Tree (PDT) is derived from the CFG by computing

post-dominators. Then a candidate edge set is identified in step 4. The

control-dependence is calculated by finding least common ancestors in PDT for

the nodes in candidate edge set. The definitions of the data structures used in this

algorithm have been given in section 3.2.1.

The procedure of Method 3.2 is outlined in the Table 3.2. This method finds the

control dependence based on the Reverse DF. The data structures used in this

algorithm sequentially includes reverse control flow graph, dominator tree, and

dominance frontier tree. The two methods can converge to generate the same

CDG because if a node y is control-dependent on node x, then y is in x’s reverse

DF, vice versa.

Fig. 3.4. IPv4 forwarding application code snippet

To exemplify the CDG construction, the corresponding CFG, PDT and CDG for

an IPv4 code snippet are showed below. The C code provided in Fig. 3.4 is

extracted from a radix-based IP forwarding application.

 nleft = len;

 w = addr;

 sum = csum;

while (nleft > 1)

 {

 sum += *w++;

 nleft -= 2;

 }

 if (nleft == 1)

 sum += ((*w<<8) & 0xff << 8 | (*w<<8) & 0xff00 >> 8);

/* add hi 16 to low 16 */

 sum = (sum >> 16) + (sum & 0xffff);

 sum += (sum >> 16); /* add carry */

 answer = ~sum; /* truncate to 16 bits */

 return (answer);

}

Chapter 3- Analysis of Network Applications

 36

Each basic block is numbered in sequence by its appearance in the CFG (i.e. Fig.

3.5). Node exit post dominates all nodes since any node has to pass through it in

execution. So exit always acts as the root node in PDT. PDT exhibits the

hierarchical post-dominance relations. For instance, BB6 immediately post

dominate BB5 and BB4. BB4 post dominates BB2 which post dominates BB3 and

BB1 in turn. PDT showed in Fig. 3.6 clearly illustrates such relational hierarchy.

Further, edge 4->5 would be added into the candidate edge set as BB5 is not an

ancestor of BB4 in the PDT. Next BB6 is found to be the least common ancestor

of BB5 and BB4 in the PDT. Finally it is known that BB5 is control dependent on

BB4 by the step 5 in Table 3.1, and hence the edge 4->5 in Fig. 3.7 labelled T for

true. Other edges in the CDG would be identified through identical procedures

listed above.

B1:nleft = len;
w = addr;

sum = csum;

Entry

Exit

B2:while(nleft>1)

B3:sum += *w++;
 nleft -= 2; B4:if(nleft==1)

B5:sum += ((*w<<8) & 0xff << 8
| (*w<<8) & 0xff00 >> 8);

B6:sum = (sum >> 16) + (sum & 0xffff);
 sum += (sum >> 16);
 answer = ~sum;
 return (answer);

CFG

T

T

F

F

Fig. 3.5. CFG of the IPv4 code snippet

Chapter 3- Analysis of Network Applications

 37

Exit

6

PDT

5

2

1

4

3

Entry

Fig. 3.6. PDT of the IPv4 code snippet

Fig. 3.7. CDG of the IPv4 code snippet

After the construction of CDG, the method for calculating the data dependence

and the construction of the DDG is briefly introduced. As Machine SUIF provides

a SSA library and helping routines to transform the compiler IR to and back from

SSA, the library would be effectively used to gather the data dependence.

To construct the DDG, the CFG is transformed first to SSA in pruned-form.

Pruned-form SSA is chosen since it compresses the number of phi-nodes and the

number of def-use chain as well. The reported data dependence across basic

blocks in pruned-form would be more accurate than those in the other two SSA

CDG

Chapter 3- Analysis of Network Applications

 38

forms, i.e. no ―artificial‖ dependence brought by value re-numbering and

phi-nodes insertion.

In the SSA form, all the def-use chain across basic blocks can be found then. The

total amount of inter-BB def-use chain represents the data dependence weight.

Finally the SSA form should be converted back to the original CFG form.

3.3.2 Classes Design of PDG Pass

In this section, the design of a PDG pass under Machine SUIF infrastructure is

explained. As Machine SUIF recommends using its Optimization Programming

Interface (OPI) model programming, the PDG class is wrapped in a general SUIF

pass employing the OPI to maximize the substrate-independence.

+generate_PDT()
+generate_CDG()
+generate_DDG()

PDG

-suif_list<Pdg_node*> _nodes

+pdg_node_type &get_type()

Pdg_node

-suif_list<Pdg_node*> _parents
-suif_list<Pdg_node*> _children

<<uses>>

Pdg_node_stmt

Pdg_node_region Pdg_node_predicate

Pdg_node_entry

<<refines>> <<refines>>
<<refines>> <<refines>>

+bool operator<()

Ddg_edge

-CfgNode *source, *destination
-int weight

+bool operator==()

CDset

-NatSetSparse CDset::_true_CD
-NatSetSparse CDset::_false_CD

<<uses>> <<uses>>

Fig. 3.8. Class design of PDG pass

Consistent with other built-in SUIF passes, the PDG pass is designed in an

object-oriented pattern. The design model of the classes is given by Fig. 3.8. By

construction, the PDG nodes could be classified further into types of entry node,

statement node, predicate node and region node. Each of them is modelled in an

inherited sub-class of the parent class, i.e. Pdg_node. The dashed lines labelled

with ―refines‖ in the figure represent this relationship. The CDset class models an

arbitrary set of control dependences and is used by the Pdg_node class to

represent the control dependences of a given node. Finally the Ddg_edge class

gives the data dependence information between PDG nodes. It has a weight

property to indicate the number of def-use chains, as explained earlier. There is no

need to have a class to model the CDG edges since the control dependences are

Chapter 3- Analysis of Network Applications

 39

implicitly included in the Pdg_node class, specifically by the properties of

_parents and _children in the class. The anatomy of each class design is included

in the appendix A.

3.4 Implementation of PDG Pass

The algorithm of PDG generation is adopted from [51] and was implemented in

Machine SUIF compiler infrastructure.

The class methods of PDG (see Figure 3.8), namely generate_CDG and

generate_DDG, output the graph results in both a pure text and a graph

description formats (i.e. .dot files). The description formats files can be fed into

Graphviz [56] to generate the actual image files, e.g. in JPEG or GIF format.

The detailed description of the issues in implementation is included in appendix

B.

3.4.1 Lessons Learned

SUIF defines an Optimization Programming Interface for developers to add their

own passes. Abiding by these OPI, it is possible to separate the algorithm details

from the substrate IR (i.e. SUIF IR); thus the portability of code and productivity

of coding are both enhanced. SUIF is also packaged with several built-in libraries

facilitating control-flow and data-flow analysis. Making use of these library

functions greatly reduced the workload of implementations. For example in

data-dependence analysis, the Single Static Form library was used to directly give

the def-use chains and the only work left is to assemble that information in the

PDG form.

3.5 Results

The PDG generator pass was run on a set of network application benchmarks to

testify the validity of the pass and to collect the program dependence information.

A code segment for checking the packets’ integrity, namely the check_sum

function is analysed first. It is one of the most common operations in packet

processing systems. The procedure of check_sum is to calculate the 1’s

complement sum over the packet header octets. It returns true if the results are all

1 bits. The CFG of the function and its corresponding CDG and PDG output by

Chapter 3- Analysis of Network Applications

 40

the generator are given in Fig. 3.9. In the PDG, the edges in solid lines are CDG

edges while those dashed lines are DDG edges. The round vertices represent the

statement nodes and diamonds stand for predicate nodes. These two types of

nodes are also the BBs derived from CFG nodes containing instructions. The

pentagonal vertices are region nodes that summarize a set of control dependences

as explained earlier. By the nature of CDG, the set of nodes that are

control-dependent on the same node, such as node 1 and node 6 in the Fig. 3.9,

could be executed in parallel, as long as they do not entail any data dependences.

A set of tests consisting of several sample code snippets were also conducted. The

results were validated by comparing the generated PDG against those reported in

[51] [52] and some in compiler textbooks. These tests are not necessarily all

relevant to the network applications, but the comparison results ensured the

validity of the developed PDG pass in general.

Fig. 3.9. An example of PDG

3.5.1 Example Application IPv4 Forwarding

As a concrete example the pass is run for a trie-based IPv4-packet forwarding

application. The IPv4 forwarding code was adopted from Packetbench [57]. In

order to generate the PDG of the whole IPv4-packet forwarding application, all

the functions are inined. It is common to do so for network applications, since the

applications themselves are usually small in C code size.

Firstly the PDG of the code snippet presented earlier in Fig. 3.4 is illustrated

below in Fig. 3.9. This is the standard output interfacing with backend Graphviz.

Chapter 3- Analysis of Network Applications

 41

Round vertex indicates statement nodes, then diamond for predicate nodes, and

pentagon for region nodes. Edges in solid lines represent the control dependence,

while dashed ones are for data dependence.

The major procedures of IPv4 forwarding include building a route table during

system initialization; checking the packet type (dropping non-IP packet);

validating the integrity of the packet; checking Time To Live (TTL) field and

decrementing it; updating the checksum; and finally looking up the destination

address in the route table to determine the next-hop port. In the experiment, after

inlining all the major functions, the C code is lowered down to SUIF IR and then

transformed to CFG IR. And then the PDG generator pass takes the CFG IR as the

input and generate the PDG of the whole application as the output. Fig. 3.10

captures the steps through the whole process in Machine SUIF.

SUIF to

Machine

SUIF
C Code

C to

SUIF

Instruction

List to CFG

PDG

Generator
PDG

Fig. 3.10. Steps for running PDG pass

Fig. 3.11 illustrates the generated PDG of the whole packet forwarding

application. Note that the nodes in round and diamond vertices are basic blocks in

CFG. Their numbers are consecutive and consistent with their CFG numbers. The

graph exposes clear hierarchy of control dependences. For example, predicate

nodes 4, 6, 9, 12, 15, 18, 21, 24 and their respective children nodes are all

control-dependent on entry node, and have no remaining entangling control

dependence edges among each other. It means the paths (e.g. from node 9 down to

node 11 in the figure) could be well grouped together and run independently on

one processor. The communication cost, though, is given by the data dependences

edges (i.e. the dashed lines) that connecting any nodes on the path.

Chapter 3- Analysis of Network Applications

 42

Fig. 3.11. PDG of IPv4 packet forwarding

3.6 Practical Use of Dependence Graph

Previous researchers have employed PDG in various ways in static program

analysis. In [58], Gong et al. also constructed PDG in SUIF compiler to facilitate

the logic synthesis. Due to their special application domain, their PDG data

structure was different from the one presented here, with the SSA form

incorporated. Rather in my approach, SSA is directly used to collect data

dependences. The Linda Compiler, a precursor in developing language support for

parallel systems, also explored SUIF to generate PDG for its internal work flow

[59]. Their approach is close to mine except that their intended use of PDG was

for message communication in distributed-memory systems. Moreover, the Linda

Compiler was based on the old SUIF1 that is superseded by the newer SUIF2

employed in this work. The two compiler frameworks are not compatible and

according to SUIF group’s documentation [60], SUIF1 is less flexible in modular

design and code-reuse etc. The contribution here should be more applicable for

today’s use.

In the next chapter, the work on network application partitioning and mapping for

the network processors systems makes extensive use of the PDG generated by this

SUIF pass. In [52] an algorithm adopted from Min-Cut Max-Flow problem was

implemented to take the PDG as the input graph and regard the weight of the

edges as the flow capacities in the Max-Flow problem. It aimed to minimize the

communication cost (including both control dependence and data dependence)

among the partitions and balance the resource utilization of the network

processors. Indeed, other heuristics solving the partitioning and mapping

Chapter 3- Analysis of Network Applications

 43

problems for the network applications should be extensively investigated, and

other performance metrics may be taken into consideration.

Besides, the PDG could be used in other compiler optimizations such as efficient

data mapping in presence of cache system, branch speculation and loop

optimizations. Experiment will be carried out to verify the validity of the

optimizations in network processors systems.

3.7 Conclusions

In order to perform certain analysis and optimizations in compilers, an efficient

representation that explicitly captures the control-flow and data-flow dependence

information of the source code is needed. Program Dependence Graph is an

example of such representation. The design and implementation of a compiler

pass in Machine SUIF infrastructure that generates the Program Dependence

Graph IR is described [61][62]. Taking advantage of the Optimization

Programming Interface programming in SUIF, most part of the pass is largely

independent of the concrete compiler substrate and thus of highly portability. The

PDG generated is made up of two sub-graphs, Control Dependence Graph and

Data Dependence Graph, each summarizing the dependence information

regarding control and data respectively.

The generated PDG was used to analyze the dependence hierarchy of network

application benchmarks. The output of the pass could also be fed into Graphviz to

get visualized image. In the next chapter, the PDG will be input into the

application partitioning and mapping algorithms to evaluate the performance of

different partitioning and mapping heuristics.

44

Chapter 4 - Energy-Aware Program

Bi-Partitioning and Mapping

for Packet Processing System

4.1 Introduction

In chapter 3, a compiler module has been introduced for extracting program

dependence information. Dependence information is vitally important for further

code analysis. This chapter explores an energy-aware approach for program

partitioning and mapping on to multi-core packet processing systems based on the

results obtained from the PDG generator.

As introduced in chapter 2, the main function of a packet processing system is to

perform packets processing tasks at the network level. The popularity of

bandwidth-consuming services and real-time web applications (e.g. VoIP, virtual

world and Internet of things etc.) has already made the traditional routers with

simple store-and-forward structures obsolete. To meet the market demands, the

multi-core platform has grown to be the de facto standard today, in terms of both

the vendors’ choices and researchers’ focuses. The system architecture can be

built upon general purpose processors such as the Intel x86-64 Xeon [63], or

RISC-based network processors like Cavium’s OCTEON [64] and NetLogic’s

XLR processors [65], or FPGA-based chips, for example, the NetFPGA project

[66]. It is a natural choice for deploying packet processing applications on

multi-core system since the packet parallelism can be easily exploited by core

replication. Moreover, as the processing cores can handle a number of varied tasks

at the same time, task-level parallelism can be better achieved in a multi-core

environment.

Chapter 4- Energy-Aware Program Bi-Partitioning and Mapping

 45

Programming in a multi-core platform however implicates several daunting issues

that are not obvious or are non-existent in a single-core processor [67]. This

chapter looks into two of the most prominent, yet correlated, problems. The first

challenge is how to schedule the miscellaneous tasks in the parallel processing

cores; the second correlated challenge is how to control the overall system energy

consumption under a reasonable budget. State-of-the-art network packet

processing cores, such as OCTEON CN58XX, feature fast parallel processing

units and hierarchical memory sub-systems. When developing applications on

such a platform, either the programmer or the compiler has to know how to

partition the parallel tasks and map them onto the processing cores. In theory,

multi-core architectures can be configured into one of three topologies, namely

pipeline, parallel or a hybrid of the two [49]. Fig. 4.1 illustrates a hybrid

scheduling topology, where in stage 2 the cores are run in parallel and the three

stages are run in pipeline connected by FIFO queues. The task mapping is flexible

enough; however, how to obtain an optimal solution for a given set of applications,

limited processing cores and performance / latency metrics is still an open

question.

Processing

Core Processing

Core

Processing

Core

Task

1

Task 2 Task 3

Task 4

Task 5

Queue Queue

Stage 1 Stage 2 Stage 3

Fig. 4.1. Overview of multi-core packet processing system

Another prominent issue accompanying the wide adoption of multi-core systems

is their greater hunger for processing power [68]. When deciding the architectural

topology and scheduling the tasks, it is important to find a comprehensive method

Chapter 4- Energy-Aware Program Bi-Partitioning and Mapping

 46

that includes both consideration of the system energy consumption and throughput.

While it is easy to scale up the number of cores and hence the productivity, it is

sometimes a self-contradictory goal to increase both the power-efficiency and the

overall multi-core performance.

This chapter proposes an integrated approach by extending the traditional

bi-partitioning algorithm (Bi-Par) [69] in program partitioning and mapping to

consider the trade-off between energy consumption and system scalability and

versatility. The specific contributions the author makes include:

1. The author proposes methods for deploying multiple network applications on

a multi-core network processing system based on program partitioning and

task-to-core mapping. The algorithm takes both performance and

energy-efficiency related metrics;

2. The author develops a generic framework with performance and power

models to evaluate the multi-core packet processing system. The system can

be configured in parallel, pipeline or hybrid mode in a flexible way;

3. The author gives the analysis of the proposed approach in respect of

energy-consumption and system throughput;

4. A comparison with other related work is also presented.

The focus of the chapter is on its branch of Bi-Par. To the best of the author’s

knowledge, this is the first work on extending Bi-Par and program mapping with

energy-saving considerations. The remainder of the chapter is organized as

follows. Section 4.2 explains the application model and formally defines the

problem it is solving. Section 4.3 describes the Bi-Par and task mapping algorithm

for task allocation and scheduling in a multi-core packet processing system,

together with a discussion of related approaches. Section 4.4 gives the results of

comparison between the Bi-Par branch and other approaches. Finally section 4.5

concludes the work on this topic.

Chapter 4- Energy-Aware Program Bi-Partitioning and Mapping

 47

4.2 Preliminaries

4.2.1 Problem Statement

The PDG detailed in chapter 3 is used as the task graph to characterize the

network applications. The instructions of a program are grouped together to form

a task by consolidating those instructions within the same Basic Blocks (BB). The

control-flow of instructions and data-flow of variables are both categorized as

dependency among the tasks. Besides dependence information, it is possible to

augment PDG with runtime profiling statistics. Fig. 4.2 shows an example of the

augmented PDG generated the compiler module the author develops. The

additional portfolio it possesses is block execution time, instruction sizes and

branch frequency.

Fig. 4.2. Augmented PDG

As said in last chapter, the round nodes contain only non-branch statements, while

diamond nodes have branch instructions at the exit. Node weight (as depicted by

instr_size in the Fig. 4.2) is equal to the number of instructions each node contains.

As for the edges, green ones depict control-flow dependency and red ones show

data-flow dependency. Green edges can be labelled as ―True‖ or ―False‖ and the

Chapter 4- Energy-Aware Program Bi-Partitioning and Mapping

 48

red edges labelled with number of data transmits. The weight of the edge is equal

to the communication cost to transmit the dependency.

Now it is to define a generic multi-core packet processing system that the

application model (PDG) will be mapped onto. Let N be the number of available

processing cores and each core’s instruction store size is . N cores can be

configured freely in pipeline or parallel fashion like in Fig. 4.1. Suppose the

pipeline has T stages, and in stage i the number of cores used is , then

∑

In a stage, the packet latency will be determined by the sum of three factors,

namely computation time, communication time between two stages, and memory

access time of each stage. In this work the performance is measured from a

system’s viewpoint first, i.e. the system throughput.

If a task is mapped by duplication into M cores in one stage, one can take the

effective computation time as a division of actual stage time by M. Multiple tasks

can be mapped onto different cores in one stage, so the overall stage computation

time and memory access time is subject to the slowest task. Suppose there are W

tasks mapped onto one stage, then the effective stage time will be

 (

)
 (

)

where

The system throughput is decided by the slowest stage in the pipeline, so

 ()

and D is the pipeline length.

As for the energy consumption (E), consider the classical equation

for the computational cost. is a task-processor dependent factor and V is the

voltage neither of which are considered within this paper. But the cycle runtime C

is relevant here. And the energy efficiency (Eff) is measured as

Chapter 4- Energy-Aware Program Bi-Partitioning and Mapping

 49

Instead of reducing the computational energy cost directly, this chapter focuses on

improving the energy efficiency. Due to scheduling constraints (dependency) and

inter-task communication delays among the cores, it is not straightforward to

simply raise the ratio of packets per cycle. The energy consumption of memory

interfaces and inter-stage communication should be taken into account also. The

details will be visited when discussing the simulation model in next chapter when

the evaluation model is discussed.

The formal definition of the problem the author is solving is as follows. Given

 network applications described by a PDG task graph and N processing

cores that can be configured in a hybrid pipeline and parallel topology (subject to

above constraints and equations), find an optimal task allocation and mapping

approach that will increase the throughput rate while keeping the power

consumption under control, resulting in increased energy efficiency.

4.2.2 Case Study

For the case study, this section took a typical packet processing system scenario

with 8 cores, representing the mid-range market product, i.e. the OCTEON

CN5840, and ran two network applications on the system, namely radix-based

IP-forwarding (IP-radix) and AES-based IP packet encryption (IPsec). IP-radix

is a header processing application while IPsec works on the payload. Because

there is no dependency between these two applications, they can run in parallel in

the system.

The simplest configuration by intuition would be two pipelines in parallel with

one application mapped to each pipeline. Within each pipeline, four cores run in

parallel. Theoretically, the throughput could be 8 times higher compared to a

single core solution. However, this straightforward task scheduling and mapping

is far from optimal. The following issues will constrain the overall system

performance dramatically:

1. The computational need for the two applications varies considerably. A

profiling run with a single core simulator [39] showed that the total

Chapter 4- Energy-Aware Program Bi-Partitioning and Mapping

 50

execution time for IPsec is 15000+ CPU cycles, whereas IP-radix counts

for only 4000+ cycles. If configured as above (with 2 pipelines and 4 cores

per application per pipeline), the output interface has to wait for the

payload processing to finish, so the throughput will be much undermined;

2. Many network processors have a limited instruction memory for each

processing core. The code size of IPsec is 3833 and IP-radix is 1551.It is

likely that for some systems (e.g. Agere APP550) one core cannot hold the

entire instruction base and the task has to be divided into pipelines;

3. In the pipeline configuration, it is desirable that each stage has

approximately the same processing time so that very few core cycles would

be wasted. But how to evenly distribute the processing time is not explicit

without any profiling analysis. It is easy to fall into the trap of simply

greedily feeding each core’s instruction store.

Table 4.1 shows a partitioning and mapping example for running the combined

IPsec and the IP-radix applications with the system resources as described. The

configuration described in Table I produces the highest throughput as indicated by

the proposed Bi-Par and also by manual tuning. PE is the number of processing

cores, I denotes the number of instructions mapping to the stage (with Imax

restricted to 2000, simulating conventional network processors) and C means the

effective core cycles each stage would take. As explained previously IPSec is a

computation-consuming application and is accordingly allocated 4 parallel cores

in the first stage to reduce the effective core cycles.

Table 4.1. A partitioning and mapping example

Stages Resources
Applications Parallel Cores

IPsec IP-radix IPsec IP-radix

1
Imax=2000

PE=5

I=1973

C=2645

I=812

C=2121
4 1

2
Imax=2000

PE=3

I=1860

C=2245

I=699

C=1986
2 1

Chapter 4- Energy-Aware Program Bi-Partitioning and Mapping

 51

4.3 Program Bi-Partitioning and Task Mapping

4.3.1 Base Algorithm

The decision problem formulated in section 4.2 is NP-complete [70]. To solve it

the author adopted a divide-and-conquer heuristic, namely program bi-partitioning

and recursive task mapping. The base algorithm is an application of the classical

max-flow min-cut problem from network flow study [71]. The PDG is augmented

as described in Fig. 4.2 to be a flow network with dummy entry and exit nodes. A

min-cut will partition the graph into two sub-sets where the connecting edges

would incur minimum flow values. In the case of PDG, this means that the edges

with lowest dependency weight between two sub-tasks will be chosen. The

workflow is given in Fig. 4.3. A detailed explanation of each step is summarized

in Table 4.2.

Recall the equations that were deduced in section 4.2. The system throughput is

determined by three factors, i.e. communication cost, computation cost and

memory access time. The min-cut ensures that the algorithm always tries to

minimize the communication cost. The balanced-weight property guaranteed by

the step 3 in Fig. 4.3 ensures that the pipeline is evenly loaded so that very little

overhead would be wasted in synchronization. There is of course certain

trade-offs between finding minimum communication cost and balancing the

pipeline. A deviation factor is adopted to allow a flexible exploration between

the two goals, as detailed in Table 4.2. The cutting ratio is measured by the

weights between two cuts, and can be used to find an arbitrary number of cuts of

the original program by recursively running the Bi-Par.

After allocating the sub-tasks as indicated by the PDG cuts, one can assign each

task with appropriate computation resources. In the proposed model, the nodes

weight represents the computational needs (in terms of core cycles) and the edges

weight labels the communication needs (interconnects between cores). So the

author assigns each task with the number of cores in proportion to its nodes

weight and the number communication interconnects in scale with the PDG edges

weight.

Chapter 4- Energy-Aware Program Bi-Partitioning and Mapping

 52

Step 1
Transformation

PDG

Step 2
Min-Cut

Step3
(1-ε)rWt≤W≤(1+ε)rWt

?

Step 4
Left Collapse

Step 5
Right Collapse

Balanced
Cuts

END

True

W too small W too big

Fig. 4.3. Base recursive bi-partition algorithm

Table 4.2. Steps in recursive bi-partition

INPUT Flow Graph, ,

STEP 1 Identify the start and terminal node

STEP 2
Find a min-cut that bi-partitions the network into X and X’. Let W

denotes the weights of X, and W’ for X’

STEP 3 If) , then terminate

STEP 4.1 If , then collapse all nodes in X to start node

STEP 4.2 Select a node in X’ and collapse it to the start node as well

STEP 4.3 go back to step 2

STEP 5.1 If , then collapse all nodes in X’ to terminal node

STEP 5.2 Select a node in X and collapse it to the terminal node as well

STEP 5.3 go back to step 2

OUTPUT Two balanced cuts

Chapter 4- Energy-Aware Program Bi-Partitioning and Mapping

 53

4.3.2 Energy-Aware Extension

The algorithm described in Fig. 3 only takes throughput performance into

consideration and aims solely at increasing throughput. However, as discussed

before, the energy consumption cannot be overlooked nowadays especially with

the increasing number of cores on chip [72]. So the author extended the original

algorithm with refinement steps using power-related data to increase the

energy-efficiency. The data I profiled mainly contains:

1. The average energy consumption on each processing core - Recall that:

 . Since V is constant here and is not modifiable, its

number of cycles (C) for a given task is profiled together with the respective

energy consumption on each core;

2. The energy consumption on interconnects - It comprises two parts, i.e.

leakage energy as a function of running cycles and dynamic power related to

the number of dependences between tasks on different cores;

3. Energy consumption in memory interfaces.

Energy-Aware Bi-Par Algorithm

Input: task graph G(V, E, ,), list of possible cores
numbers
Output: task mapping matrixes;

1: for each number of cores N
2: Bi-Par (G, N)
3: Compute stage time and energy consumption for

two cuts respectively, , , ,
4: for each boundary nodes
5: try migrate to the neighbour cut
6: re-compute

 ,
 ,

 ,

7: if

then

8: update the cut
9: =

 , =
 , =

 , =

10: end if
11: end for

12: allocate cores based on cut_ratio
13: if pipeline not even or code size > limit
14: Bi-Par (Gi, Ni) /* recursive bi-par*/
15: same migration trials in recursive bi-par
16: end if
17: for the number of stages S, record the task

mapping in a matrix M[S,N]
18: end for
19: return (M1[S1,N1], M2[S2,N2]…Mk[Sk,Nk])

Chapter 4- Energy-Aware Program Bi-Partitioning and Mapping

 54

During the task partitioning, each node’s weight is collected in terms of both

execution time and total energy. In the task mapping, the algorithm iterates over

the sub-tasks residing at the edges of the graph between cuts, migrate each of

them to neighbouring cores and find out which migration would reduce the

product of stage time (in cycles) and energy consumption (in Joules) the most,

thus improving the energy-efficiency as given in Equation (6) (line 4 to 11).

The intuition behind the refinement heuristic is that by migrating boundary nodes,

a large search scope is available for optimizing energy-efficiency at the cost of a

small throughput sacrifice. The proposed technique tries to identify any groupings

of nodes with uniform memory accesses in order to minimize memory interface

leakage. Interconnects leakage power is saved by turning off interconnects

within un-balanced pipeline.

4.3.3 Other Approaches

A vast array of literature exists in the area of task allocation and mapping for

multi-threaded and/or multi-core system [73][74][75][76]. As the focus of this

work is on network processing applications, this chapter compares the proposed

approach mainly with the studies in the networking area.

The early work proposed by Weng [31] employed randomization in program

mapping. The tasks are randomly allocated to processing cores without violating

dependency constraints. All valid mappings are recorded and the one with best

throughput is filtered out in the second phase of the strategy. Near-optimal

mapping is not guaranteed especially when the iteration time is limited.

Another heuristic described in [49] is based on greedy algorithm. It packs the task

by filling one processing core with basic blocks until the instruction store is full.

However, it does not take communication cost into consideration; so the mapping

quality could be sub-optimal.

The work described here resembles the approach discussed in [52] most. Yu et al.

also adapted Bi-Par for network processors. Their refinement focuses on

throughput optimization and does not include energy awareness. In the

experiments, the results are compared against these three approaches [31][49][52]

and give a comprehensive comparison analysis.

Chapter 4- Energy-Aware Program Bi-Partitioning and Mapping

 55

In [77] Kuang and Bhuyan took power budget into consideration for task

scheduling in packet processing system. However, their approach is based on

Dynamical Voltage and Frequency Scaling (DVFS) which needs hardware support.

Additionally, their method reduces power by extending the computation time,

rather than optimizing energy-efficiency. In this regard, it is not fair to compare

with their approach in this chapter.

4.4 Performance and Energy-Consumption Evaluation

To validate the proposed solution, the author implemented a simulation framework

to allow easy and large design space exploration. It has the performance and energy

models respectively. In this section the experiments will be described and the

collected results using the proposed models will be discussed.

4.4.1 Testbench Framework

The author extended the SUIF/Machsuif compiler [78] with new passes that

perform code analysis, PDG generation and Bi-Par mapping. Fig. 4.4 depicts the

brief components and workflow of the test-bench. The application is first profiled

with Halt passes provided by Machsuif [78] and the task graph with profiling

analysis is fed into the PDG generation pass. The PDG module will collect all the

information in an internal augmented PDG. Then program partitioning and

mapping is carried out over the PDG. Task mapping results are input to the

simulator to give performance and energy results. This process can be recursively

executed to conduct comparison and optimization for a given application or a set

of applications.

Lower
Instrument

etc.Source Code
Profile

PDG
Pass

Simulation

Need
Optimization?

Binary Task Graph Config

No

Results

Yes

Analysis

Fig. 4.4. Experiment Framework

Chapter 4- Energy-Aware Program Bi-Partitioning and Mapping

 56

4.4.2 Performance Results

In the system-level, the total throughput of a network processing system is the

decisive measurement of the performance. However, the individual packet latency

is also an important factor in many applications, e.g. real-time streaming). For

comparison, the framework is used to evaluate three other approaches from the

literature described in section 4.3. The benchmark applications are LC-Trie

IP-forwarding, IP packet encryption (IPsec) and Port-Scan adopted from

PacketBench [57]. The core frequency was set to 2GHz. Both memory access

time and interconnects transmission time are assumed to be one unit of clock

cycle.

Table 4.3 shows the throughput measurements for different combinations of the

three applications with different numbers of processing cores. Since the code size

limit is seldom a bottleneck for modern multi-core network systems, the number

of pipeline stages in the evaluation were short. Thus the even number of cores is

preferred to enable parallel processing across pipelines. In Table 4.3, application I

is LC-Trie, II is IPSec, and III is Port-Scan. For all of the applications, the

proposed energy-aware Bi-Par exhibits good scalability as the number of cores

increase. The throughput gain is greater than double when cores are added from 8

to 16 and upwards. This is due to the free migration of tasks that have high

communications cost between pipelines when processing resources are abundant.

Bi-Par favours communication-heavy applications over computation-heavy ones

since the base algorithm minimizes inter-stage communication cost. The

throughput increase from 16 to 32 cores for PortScan is 269% while for IPsec is

244% in this case.

Table 4.3. Throughput for combinations of three applications on multiple cores

Ⅰ Ⅱ Ⅲ Ⅰ+Ⅱ Ⅱ+Ⅲ Ⅰ+Ⅲ Ⅰ+Ⅱ+Ⅲ

2 Cores 0.56 0.18 0.11 0.11 0.05 0.07 N/A

4 Cores 0.91 0.33 0.28 0.18 0.11 0.12 0.04

8 Cores 1.65 0.75 0.6 0.41 0.39 0.41 0.12

16 Cores 3.78 1.98 1.43 1.12 0.88 0.9 0.41

32 Cores 8.75 4.85 3.85 3.1 2.12 2.43 1.45

To avoid any potential bias, LC-Trie plus IPsec were used in the performance

comparison experiments. Fig. 4.5 illustrates the results when 16 cores are used for

Chapter 4- Energy-Aware Program Bi-Partitioning and Mapping

 57

mapping the two applications. By varying the number of stages, it is simulating

different requirement for task code sizes. The proposed approach (BiPar-E) shows

33.1% throughput improvement over greedy in a 2-stage pipeline and 50.7% over

randomization in a 4-stage pipeline. Randomization requires very large search

space as discussed. When the pipeline is longer (i.e. more applications) and search

time is predefined, it is hard to reach a good mapping. The energy-aware

extension brings an average of 10% throughput decrease compared to Bi-Par

without migration. It will be revisited with energy consumption data to validate if

the efficiency is improved.

Fig. 4.5. Throughput comparison by number of stages

Fig. 4.6 summarizes the individual packet latency comparison for the three

benchmark applications. For LC-Trie, four approaches generate similar results.

For the other two applications, the latency difference is within 10% margin among

the four approaches. And the proposed extension involved a slight 5% increase on

average. A safe conclusion is that the energy-aware Bi-Par would not sabotage the

individual packet latency even if system throughput is optimized for.

0

0.5

1

1.5

2

2.5

3

3.5

2 3 4

Th
ro

u
gh

p
u

t(
m

p
p

s)

Number of Stages

BiPar-E

Bi-Par

Greedy

Randomization

Chapter 4- Energy-Aware Program Bi-Partitioning and Mapping

 58

Fig. 4.6. Latency comparison by applications

4.4.3 Energy Results

The energy efficiency of the proposed algorithm is measured as the system

throughput divided by total energy consumption (in Joules). The runtime power is

usually an important indication of the energy-efficiency. However, traditional

techniques such as DVFS just try to reduce power at the expense of longer

runtime cycles. The total energy consumption could be well the same if not more

in that case, implying that the energy-efficiency is not improved. Here the energy

data from an efficiency perspective is organized as depicted in Fig. 4.7. The bar

graph shows the total energy consumed by processing one million packets with

three benchmarks respectively and in increasing order by the number of

processing cores. The trend-line illustrates the energy-efficiency by graphing the

throughput (in mpps) over energy consumption (in Joules). In all benchmarks, the

energy-efficiency is clearly on the rise as the number of cores is scaled up. It

proves the energy-aware Bi-Par to be particularly beneficial in a large system with

dozens of processing cores. For LC-Trie, 25.4% increase of energy-efficiency is

noted when cores are populated up from 2 to 16. The corresponding increase for

IPsec is 168% and 29.4% for PortScan. The dramatic rise for IPsec is majorly

attributed to the little heat overhead in interconnects and memory interface,

especially the leakage power (which is considerably larger in LC-Trie).

0

2

4

6

8

10

12

14

16

18

20

LCTRIE IPSec PortScan

La
te

n
cy

(μ
s)

Applications

BiPar-E

BiPar

Greedy

Randomization

Chapter 4- Energy-Aware Program Bi-Partitioning and Mapping

 59

Fig. 4.7. Energy consumption comparison by applications

To explicitly demonstrate the energy-efficiency gains of the proposed Bi-Par and

extension, the energy-related data of other three approaches are collected in the

simulator as well. It used 8 processing cores and set each core’s maximum code

size to be 2000. The results are shown in Fig. 4.8. For all the three benchmarks,

the proposed algorithm not only excels the original Bi-Par without energy-aware

refinement, but also generates better mappings than greedy and randomization. In

IPsec, BiPar-E gained 34% energy-efficiency increase by migrating tasks in the

refinement step. The outstanding gain is mainly because the availability of many

sub-tasks at edges and little back-dependency among them. The power on

processing core is the decisive factor for IPsec so the migration can take

considerable effect. By nature, migration refinement can have little impact on

memory and interconnects energy consumption except for leakage power. Yet in

LC-Trie and PortScan an average of 10% efficiency improvement is still observed

after refinement step. Therefore, the proposed algorithm proves promising and

advantageous both in terms of scalability and universality.

0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0

5

10

15

20

25

2 4 6 8 10 12 14 16

Th
ro

u
gh

p
u

t/
En

er
gy

 R
at

io

En
er

gy
 (J

o
u

le
s)

Number of cores

LCTrie IPSec PortScan

Chapter 4- Energy-Aware Program Bi-Partitioning and Mapping

 60

Fig. 4.8. Energy efficiency comparison by applications

4.5 Conclusions

The sharp increase in bandwidth requirements and versatility of network

applications has prompted packet processing systems to widely adopt a multi-core

multi-threaded architectural design. A challenging issue when programming such

a system is how to fully utilize the processing power in a pipeline-parallel

topology. As the power consumption increases, maintaining the energy-efficiency

of the whole system also becomes delicate.

In this chapter, the author proposed an energy-efficient program partitioning and

mapping algorithm for packet processing systems [79]. The approach is based on

Bi-Par and built into a compiler suite. The algorithm searches for an optimal

configuration of the pipeline depth and the width of each pipeline stage. Steps

taken to optimize the performance include iterations over the sub-tasks at the

pipeline edges, and performing migration of tasks between cores to improve

energy-efficiency. The author also implemented an evaluation framework to

simulate the multi-core network processing system in terms of performance and

energy consumption. The simulation results show that the proposed approach

improves the energy-efficiency in all three benchmarks by between 8.04% and

34%, with a marginal loss in throughput in comparison with three other

partitioning and mapping algorithms, i.e. greedy, randomization and base Bi-Par.

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

LCTrie IPSec PortScan

Th
ro

u
gh

p
u

t/
En

er
gy

 R
at

io

Applications

BiPar-E

BiPar

Greedy

Randomization

61

Chapter 5 - Performance and Energy Evaluation

Model

5.1 Introduction

As explained in chapter 4, optimal configuration of a multi-core packet processing

system at the architecture level is the key to maximize the performance and to

minimize the cost. The author has explored the problem of optimizing

system-level topology as given in the last chapter. However, it is not

straightforward to validate the methodology and present quantitative analysis of

the results without a valid yet efficient simulation tool. The tool needs to feature

at least two strengths,

1. It should be easily configurable at the architectural-level so that a large

number of topologies for a given packet processing system can be simulated

without much manual intervention;

2. The simulation speed needs to be fast enough to allow the search in a large

space with acceptable margin of error. The simulation time should not grow

exponentially with the number of architectural components (e.g. processing

cores).

Existing tools such as NePsim [80] and SimpleScalar [39] are either too

ISA-specific or time consuming. SimpleScalar does include a high-level profiler

that is quick to execute; however, that profiler would not generate any

energy-related statistics. With Sim-Panalyzer [81] add-on, it can collect detailed

and various power data, while the simulation speed drops down to a few hundred

target cycles per second. That means it would take even a day to simulate a typical

network application’s runtime that process just thousands of packets in a few

milliseconds. So the author implemented an analytical simulation framework that

Chapter 5- Performance and Energy Evaluation Model

 62

satisfies the needs. The framework incorporates both performance and energy

models.

This chapter is organized as follows. Section 5.2 elaborates the analytic model of

multi-core packet processing system in detail, classified by performance and

energy models respectively. Section 5.3 presents the evaluation results and

correctness validation results. The chapter concludes in section 4.5 with a

summary of the work.

5.2 The Analytical Model

5.2.1 Motivation

In Fig. 2.5, three possible topologies of network processors configuration are

illustrated, i.e. pipeline, parallel and a hybrid of the former two settings.

Processors run in parallel can execute the same task to properly utilize the

data-level parallelism or packet-level parallelism which is abundant in network

applications. It can also be regarded as a type of task duplication [82]. Multiple

cores can also run in a parallel mode with different tasks. Those tasks would not

bear any inter-task dependence nor shared resources. In other words, they are

independent tasks, with little coupling issues with other tasks. In both ways, the

performance, especially the traffic throughput can be greatly increased by

employing additional cores to run in parallel.

Pipeline configuration is also widely employed in network processing system for

two reasons. One is that compared to data parallelism, the benefits of pipeline

parallelism particularly apply to data-intensive applications, because it

significantly reduces the contention for shared resource (e.g. bus, external RAM)

in a multi-core system. Second reason is due to the rapidly growth of the network

application complexity, the code size of a large network system usually exceeds

the instruction store available in network processors. As discussed in chapter 2,

the network processor is an evolution from ASIC and GPP design. Like many

lightweight RISC embedded processors (e.g. ARMv5TE), the instruction memory

on the die is very limited. Table 5.1 lists the memory size of some commercial

network processors. It can be observed that most processors have instruction

memory in the range of 1KB to 100KB. As a comparison, the code size

Chapter 5- Performance and Energy Evaluation Model

 63

requirement of five typical packet processing tasks is listed in Table 5.2. The code

was derived from PacketBench toolset [57] and manually inlined by the author.

The code size denotes the number of instructions of that application. From the

table, it can be seen that the code size of complex packet processing tasks such as

Portscan has already exceeded the capacity of on chip instruction store. Yet,

modern packet processing system usually has to take on a good many tasks at the

same time. That would definitely worsen the problem. In this case, it is nature to

employ a pipeline of processors to make up the deficiency. This method is similar

to the idea of software decoupling [83], but not exactly the same in the context of

network processors.

Table 5.1. Size of instruction memory

Network
Processors

Instruction
Memory

Size (bytes)

Word Size

(bits)

Frequency
(Hz)

Number of
Cores

Intel IXP2805 8,192 32 1400 16

Hifn 5NP4G 32,768 32 133 16

Agere APP550 256 128 266 3

AMCC

NP3740
16,384 32 700 3

Table 5.2. Code size of packet process applications

Tasks Description Code Size

IPv4 Forwarding 1 Trie-based route table lookup 1548

IPv4 Forwarding 2 Radix-based route table lookup 1551

Flow ID Flow hashing based on 5-tuple 3632

Portscan Monitoring abnormal activity 6443

IPsec AES encryption 3833

A distinct feature of a network processing system is the flexibility in

architecture-level configuration, as was stressed in chapter 2. Ideally, given a

network application, an optimal solution employing a hybrid of parallel and

pipeline architectures can be found, like the one depicted in Fig. 4.1. In chapter 4,

Chapter 5- Performance and Energy Evaluation Model

 64

the author has strived to optimize the topology taking both performance and

energy results into consideration. Yet as explained in section 5.1, the researcher

would need a simulation tool to quickly get a rough idea whether the optimization

will really increase the performance, rather than in the opposite way. For such a

tool, flexibility and speed come in the first place. Then it is for the correctness.

Bearing that in mind, the author chooses an analytical model and implemented it

in a mini simulator. The simulator works seamlessly with the compiler modules as

illustrated in Fig. 4.4.

5.2.2 Performance Model

The model accepts PDG as the task graph. The PDG is augmented to bundle with

profiling analysis information. Thus from the PDG, the simulator can extract a

number of parameters, e.g. the number of instructions executed on each core, the

runtime measured in cycles, communication time between stages and the number

of memory accesses. These parameters can be input to the model together with the

architectural configurations. The overview of the model is depicted in Fig. 5.1. In

0[84] Weng et al. described a similar model for evaluating their Annotated

Directed Acyclic Graph (ADAG) mapping. The author adapted their model to fit

the PDG partitioning and mapping environment.

Processing
Core

Processing
Core

. . .

Processing
Core

Processing
Core

. . .

Memory
Controller

Memory
Controller

I
n
t
e
r
c
o
n
n
e
c
t

I
n
t
e
r
c
o
n
n
e
c
t

...

...

Processing
Core

Processing
Core

. . .

Processing
Core

Processing
Core

. . .

Memory
Controller

Memory
Controller

...

...

I
n
t
e
r
c
o
n
n
e
c
t

M

W

D

Fig. 5.1. Simulation model for performance and energy evaluation

In Fig. 5.1, processing cores represent generic processing units in the data plane;

interconnects are FIFO-like buffer to transmit the tasks along the pipeline; and

memory controllers are interfaces between cores and SRAM.

1) Architectural Parameters

Chapter 5- Performance and Energy Evaluation Model

 65

The major parameters for architecting the system are: pipeline depth (D), width of

each pipeline stage (,), number of memory channels shared by one

stage of cores (,), the number of interconnects and the number of

stages per communication interconnect (I). By setting different architectural

parameters, the simulator can easily explore the effects of different topologies.

For instance, given a fixed number of cores, whether a deep pipeline or high

parallel configuration is favoured can be tested by adjusting D and W accordingly.

When examining the PDG partitioning and mapping, the pipeline depth and width

of each stage should also be setup based on the compiler’s mapping knowledge.

To separate the system specific parameters, the simulator takes a standalone

configuration file (default to config.cfg) for input.

2) Task Mapping Specification

In the performance model, the author re-used most of the information collected in

the annotated PDG. Since the output of the mapping algorithm already gives the

number of instructions and cycles of each stage, the compiler module pass those

values in an array parameter. The number of memory access is also recorded here.

The dependency across processing cores represents the communication cost and it

is a bit tricky to adapt when the simulator duplicates a task mapping (making it

parallel) in one stage. Instead of passing the dependency between stages directly,

the author expands the array into a matrix where inter-core

communication between any two cores can be setup.

The task mapping specification file is generated automatically by the compiler’s

Bi-Par and mapping module.

3) Stage Time and Throughput

The key metrics of the performance model can be deduced by following the

equations 4.2 – 4.4. The pipeline stage time is calculated by Equation 4.2 and

 is the number of core cycles divided by the clock frequency (set in the

architecture file). Memory access time is derived from a Machine Repairmen

model [84] and communication time is a linear function of inter-core

dependencies.

Chapter 5- Performance and Energy Evaluation Model

 66

Finally the system throughput is given in Equation 4.4. Since the proposed model

is capable of mapping multiple applications, the throughput of each application

should be summed up to calculate the overall throughput in that case.

5.2.3 Energy Model

As the aim is to use the simulator to justify the task mapping quality, an analytical

model for estimating the power consumption is included as well. The model uses

a bottom-up method to evaluate the energy data of each component respectively

and sum them up in the end.

1) Core Energy

Core power is dissipated both during idle time and job runtime. The author

adopted the power data from Intel IXP2805 [3] to estimate the core power with

respect to the number of active cores and each core’s utilization. IXP2805 is a

multicore network processor running at 1.4GHz/1.3V from which the proposed

model can take sound samples. In Table 5.3 the power data for even number of

cores (in many real cases even number of stages pipeline is optimal [49]) is

summarized. ―Typical‖ describes the average power consumption (W)

measurement for 70% core utilization, while the worst case row is for 100%

utilization. It is observed that a near-linear increase of dynamic power is in line

with the growth of utilization for the applications given in Table 5.2 in

Sim-Panalyzer [81]. Thus, when estimating the core energy, each core’s dynamic

power would be decided by its utilization multiplied by the worst case power. The

total core power is the dynamic power added to the static power.

Table 5.3. Core power estimation

Number of Cores 2 4 6 8 10 12 14 16

Typical

(W)
18.31 19.19 19.72 20.43 21.13 21.84 22.54 23.25

Worst Case

(W)
21.73 22.59 23.45 24.31 25.17 26.30 26.89 27.75

2) Interconnects Energy

Interconnects can be viewed as FIFOs between stages for transmitting inter-core

dependencies as depicted in Fig. 5.1. To compute the power consumed by this

Chapter 5- Performance and Energy Evaluation Model

 67

component, the simulator also collected static leakage power and average

dynamic power for conveying one-unit (4 bytes) dependency variable in

SimpleScalar. With the number of inter-stage dependencies and runtime cycles

from profiling analysis, it is able to figure out the dependency-related energy

consumption.

3) Memory Interface Energy

The energy consumed on the memory interface is directly related to the number of

memory accesses which is available from the profiled PDG task graph, as the sum

of memory reads and writes. The data on leakage power and average energy per

read / write is extracted from SimpleScalar samples. Briefly, the total data-related

energy is given as

where and are the number of reads and writes on each core respectively;

 and are average read / write energy from sampling run; and is leakage

power per core cycle. is the number of runtime core cycles.

5.3 Evaluation Results

5.3.1 Correctness Validation

Being an analytical tool, the flexibility in accepting a variable number of

architectural parameters and the simulation speed are paramount. However, the

model has to be validated to give sound results for generic multi-core packet

processing systems. In the performance experiment, the author runs the network

applications in Intel Architecture Tool [85] and compare its results against the

analytical model (i.e. the Mini-Sim simulator). The benchmarking network

applications are IPv4-trie, IPv4-radix and PortScan. Table 5.4 shows the hardware

specification that both Intel AT and Mini-Sim are configured to. And the results

are plotted in Fig. 5.2.

In the legend of Fig. 5.2, T-AT stands for system throughput collected from Intel

AT while T-MiniSim is for the analytical simulator. L-AT depicts the individual

packet latency generated by Intel AT and L-MiniSim is for the latency figures

Chapter 5- Performance and Energy Evaluation Model

 68

from the analytical simulator. For IPv4-lctrie and IPv4-radix, all the figures that

Mini-Sim generated are within 15% difference from Intel AT. The most

significant difference lies in latency values of PortScan. Since PortScan occupies

a large instruction store, it is likely that Intel AT has some internal thread (context)

scheduling that results in a larger latency number. Most importantly, the trend and

inclination between the two pairs of lines are nearly identical, meaning that the

tool is valid in identifying the impact on the performance from the benchmarks.

Table 5.4. Testbench configuration

Processor IXP2800

Frequency 1.4GHz

SRAM (on chip) 32MB

DRAM (external) 512MB

Number of Cores 16

Fig. 5.2. Performance validation by varying the benchmarks

Fig. 5.3 gives the throughput and latency data from both tools by varying the

number of cores for just one benchmark, i.e. IPv4-lctrie. The vertical bars covers

15% difference margin from Intel AT and it can be seen that except for one case

in L-MiniSim, all other data Mini-Sim generated fall into that range. The larger

difference in latency for 2 cores results from less detailed modelling of

micro-architectural components in Mini-Sim. When the instructions memory is

denser for 2 core scenario, the inter-instruction latency may have more direct

3.43

2.65

1.12

3.78

2.96

1.43
5.86

7.62

15.72

5.42

7.12

14.78

0

2

4

6

8

10

12

14

16

18

0

0.5

1

1.5

2

2.5

3

3.5

4

IPv4-Lctrie IPv4-Radix PortScan

La
te

n
cy

(μ
s)

Th
ro

u
gh

p
u

t(
m

p
p

s)

Applications

T-AT

T-MiniSim

L-AT

L-MiniSim

Chapter 5- Performance and Energy Evaluation Model

 69

influence where Mini-Sim tends to ignore. However, as can be clearly seen in the

figure, the trends between the two pairs of lines are again nearly the same. The

researcher is thus able to use it to explore the impact of different architectural

settings in a generic multi-core packet processing system.

Fig. 5.3. Performance validation by varying the number of cores

Now it comes to the energy-related data. The energy consumption by processing

cores (core), memory (mem) controller and interconnects (ic) are collected

respectively. As a comparison, the author also implemented the benchmark

IPv4-Lctrie in Sim-Panalyzer and collected the corresponding energy figures. All

data has been normalized into SI unit Joule as the total energy consumption for a

given application is what the researcher really cares.

Fig. 5.4. Energy validation by varying the number of cores

0

10

20

30

40

50

60

70

80

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 4 6 8 10 12 14 16

Th
ro

u
gh

p
u

t(
m

p
p

s)

La
te

n
cy

(μ
s)

Number of Cores

T-AT

T-MiniSim

L-AT

L-MiniSim

0

2

4

6

8

10

2-p 2-m 4-p 4-m 8-p 8-m 16-p 16-m

En
er

gy
 (

Jo
u

le
s)

Number of Cores

ic

mem

core

Chapter 5- Performance and Energy Evaluation Model

 70

Fig. 5.4 illustrates the results in a bar graph. In the x-axis, 2-p means the data is

collected from Sim-Panalyzer by configuring 2 processing cores up running while

2-m meant the data is from Mini-Sim. The processing cores take about 90% of the

total energy consumption in all cases while interconnects usually count for just

1%. The figures generated by Sim-Panalyzer are generally larger than those from

Mini-Sim since the analytical model is coarser-grained. Yet again, it is observed

that the difference is within 15% margin in all settings. As the tool itself is used to

quickly validate the architectural optimization algorithms, this margin of error is

acceptable in measuring the effectiveness of the optimizations.

5.3.2 Simulation Results

Section 4.4 gives some of the simulation results to compare energy-aware Bi-Par

and three other approaches using the analytical model. In Table 5.5 it elaborates

the data Mini-Sim is able to present and compares them to the figures from Intel

AT and Sim-Panalyzer to run IPv4-lctrie for 10000 packets. Most significantly,

the simulation time for running the Mini-Sim is on the order of a few milliseconds

since it is inherently an analytical tool. The Sim-Panalyzer does not support

multi-core simulation natively. As a comparison, the author adopted an extended

Table 5.5. Comparison of Mini-Sim and other simulators

Method Mini-Sim Intel AT/Sim-P

Cores 2 4 8 16 2 4 8 16

Throughput (mpps) 0.56 0.91 1.65 3.78 0.51 0.8 1.59 3.43

Latency (μs) 48.2 22.45 11.12 5.42 65.2 29.3 12.1 5.86

Energy (Joule) 1.41 2.42 4.08 8.04 1.56 2.9 4.76 9.34

Sim Time (s) 0.41 0.34 0.38 0.37 1.14 17.17 172.3 N/A

version of simplescalar to collect the simulation time. Because simplescalar is an

execution-driven simulator and records many fine-grained statistics, the runtime is

soaring with the increasing number of architectural components. In the

experiment, 8-core simulation already took nearly 3 minutes to finish.

Considering that the actual application just took a few thousand cycles (i.e. a few

Chapter 5- Performance and Energy Evaluation Model

 71

milliseconds) to finish, the simulation speed is far from fast enough to allow the

researchers to perform generic topological optimization explorations.

So drawn from the simulation results, it can be concluded that the analytical

simulation model and tool satisfy the requirement proposed in section 5.1, that is,

fast and flexible enough with sound statistics.

5.4 Summary

This chapter has introduced an evaluation model for generic multi-core packet

processing system. The model is analytical and can give both performance and

energy data for various subsystem components. A mini simulator Mini-Sim is

implemented based on the model for exploring architectural optimizations

especially on choosing the best topology among pipeline, parallel and a hybrid

settings. The advantages of the analytical model over heavy-weight simulators are:

it is flexible to change the pipeline-parallel topology parameters so it is easy to

use; the simulation time is extremely fast since it does not actually execute the

code-path. Yet the profiled statistics is close to those figures that the real

simulators generate.

In the experiment, the author validated the correctness of the analytical model by

running three typical network applications on both heavy-weight simulators and

Mini-Sim. The performance results are compared between Intel AT and Mini-Sim

while the energy results are examined between Sim-Panalyzer and Mini-Sim. The

number of processing cores and the number of pipeline stages are also varied in

the experiment. In all cases, the relative differences are all within 15%. When

varying the number of cores, the trend-lines of the output data from the

heavy-weight simulator and Mini-Sim are parallel on the whole. The simulation

time totally favours Mini-Sim since it can always finish within a few hundred

milliseconds. All in all, it is proved that the model and the simulation tool are

valid and efficient in exploring the architectural optimizations for generic

multi-core packet processing systems.

72

Chapter 6 - Conclusions and Future Work

6.1 Summary of the Research

Packet processing system is a comprehensive solution specifically designed to

provide the computation power required in today's computer networks. New

applications could be written to extend the system capability and the number of

processing cores can be scaled up to avail of the workload parallelism. However,

such flexibility and processing power cannot be fully utilized without a suitable

programming environment. The compilation toolset is important in mapping the

handwritten application onto the multi-core platform. The quality of the generated

machine code would largely determine the overall system performance in terms of

packet throughput, individual packet latency, core utilization and energy

efficiency.

This research focuses on the energy-aware optimization for packet processing

systems in a compiler framework. The multi-core packet processing system and

its major characteristics have been reviewed and the particular issues in

networking domain are investigated. The work has been carried out on the

program dependence analysis of network applications, as well as on program

partitioning and mapping based on the dependence information. To fully achieve

the computational potential of the multiple cores, the inherent modularity of the

applications is carefully analysed and the generated modules are mapped onto the

processing cores appropriately. The multi-core architecture can be configured to

be parallel, pipelined or a hybrid of both. An extension of Bi-Par for optimizing

energy-efficiency has also been proposed and carefully validated. In experiments,

an analytical model which is able to quickly evaluate the effectiveness of the

optimizations in a large search space is built and a mini simulator is implemented

Chapter 6- Conclusions and Future Work

 73

based on it. To the best of the author’s knowledge, this is a pioneering piece of

work on extending Bi-Par and program mapping with energy-saving

considerations without much performance loss.

6.2 Future Work

Chapter 4 describes the work on energy-aware recursive program bi-partitioning

and mapping for network processing systems in detail. However, as reviewed in

chapter 2, there is a vast area to explore in network applications domain for

compiler optimizations. In this chapter, a couple of topics that could be the

extension of the existing work are proposed.

6.2.1 Cooperation with Runtime Management

The work conducted in chapter 4 took advantage of a combination of static and

dynamic profile-based analysis. The compiler module of the program dependence

graph generator collects the communication cost by analysing the control flow

graph of the program statically. Dynamic information such as the execution time

and frequency are gathered by profiling the applications with a set of instruction

traces. All the information is incorporated into an augmented program dependence

graph. The subsequent optimizations, such as task scheduling and program

mapping, are performed in turn availing of the graph. This framework is flexible

enough to include additional program analysis. One way to extend such a

framework is to interface it with the runtime management of the packet processing

system.

By the nature of the network applications, many key profiling results are dynamic.

For instance, in a level-compressed trie-based routing table lookup task, the

number of comparisons cannot be determined until the destination address of the

ingress packet is retrieved. The packet that finds its trie pointer in the tree within

two branches would consume much less computation power than those traverse

down to more than five levels. Besides, the traffic is usually dynamic in quantity

as well over different periods of time. Enterprise network is busy in working

hours while the volume of packets in home network is low. And the situation

usually goes the other way around at night. So instead of generating a valid

processor scheduling and program mapping off-line and configure the system

Chapter 6- Conclusions and Future Work

 74

accordingly, to maintain the system’s performance at its maximum, adequate

management must be made during runtime. The program recursive bi-partitioning

and mapping described in chapter 4 could be well employed in runtime for packet

processing system. Nevertheless, the parameters of the model change so fast in

dynamic traces that a given mapping result can lose its optimality very quickly.

Moreover, unlike the compiler module executed off-line, very limited resources

are available for runtime management while the time constraint is of first priority.

If a refined mapping takes a long time to generate whereas the dynamic traces

change considerably quicker, it will be pointless to make any runtime adjustment,

since the new mapping is invalid before it is actually downloaded and up running.

Further research should investigate the trade-off between time frames to perform

runtime adjustment and the changing characteristics of the workload.

Another approach to cooperate with the runtime system is to monitor the power

consumption online and aim to minimize it by adjusting the configuration

dynamically. Like the procedures taken to collect the communication cost and

execution time, given a packet processing system with N processing cores and a

set of traffic traces, the traffic volume can be classified into several groups based

on the power consumption. Such information can be recorded by the compiler.

During runtime, the compiler can bestow the record upon runtime management

module so that the latter can adjusts the power consumption of the whole system

accordingly. When the traffic volume becomes low it can turn off processing

cores to reduce energy consumption and as soon as it detects the increase of traffic

line rate, additional cores are waken up and restored. In addition to the base

algorithm presented in chapter 4, other heuristics can also be applied to preparing

the group of mappings here, such as randomization and greedy duplication.

6.2.2 Data Mapping

In addition to the task mapping described in chapter 4, data mapping algorithm

can also be designed to minimize the energy consumed in data communications.

The problem of data mapping in a Network on Chip (NoC) has been formalized in

[86]. A similar model may be constructed for packet processing systems. For

example, the compiler might auto-detect where to place the route table in an IP

forwarding application (SRAM or Scratchpad depending on the table size and the

Chapter 6- Conclusions and Future Work

 75

available memory), and how to transmit the inter-processor variables in a

pipelined application (via ring memory or message queue).

Apart from energy optimizations, the placement of application data also has direct

and extensive effect on the system throughput and energy efficiency. The

architecture of a packet processing system with homogeneous multiple processing

cores and heterogeneous memories is similar to the Non-Uniform Memory Access

(NUMA) multiprocessor system. In NUMA architecture, the multiple processors

share a single on-chip bus to connect to the system memory and each processor

has its own local data storage. The access latency to the global memory is usually

an order slower than that to the local memory. But the capacity of local memory is

much smaller than the shared memory. So the former is preferred for storing data

that is used most often in a program. The compiler can aid on the decision of

program data placement. Like profiling the control flow and dependence, a

compiler module is able to record the access patterns of a processor to the

memory within a given instruction trace. Optimizations could be made by

migrating elements with high data reusability and similar lifetimes onto the local

memory. The layout of the data elements can be also optimized in the local

memory address space to minimize fragmentation. The local memory is also

designed to take advantage of temporal locality and spatial locality available in

the program. Within a network application, the loop iterations are not that

abundant like those in digital processing or scientific computing. Therefore

careful exploration is needed to evaluate the gains of locality optimizations.

Moreover, in NUMA system, attention should also be paid to the data consistency

in the distributed local memory image. Coherence across the local memory has to

be enforced and maintained by the system at any point during runtime.

In [87], a framework for exploiting task, data and software pipeline parallelism

comprehensively was proposed for stream programs. It is interesting to see how to

combine the aforementioned techniques in a packet processing system as well.

Currently, the task-parallelism and data-parallelism are extracted individually and

corresponding partitioning and mapping heuristics are performed solely with the

knowledge of one or another. The authors in [81] proposed an architecture

independent high-level programming language to describe the program

Chapter 6- Conclusions and Future Work

 76

parallelism explicitly. Other means of representations of the program could be

utilized to expose the parallelism still, i.e. program dependence graph and task

graphs. After extraction, the parallelism can be implemented by both hardware

pipelining and software pipelining. Software pipelining is more flexible to use, e.g.

it can conduct nearly arbitrary partitioning, at the expense of additional prologue

overhead etc. This comprehensive framework of parallelism extraction,

exploitation and implementation is far from complete and vast design space

exploration is yet in need.

In the networking domain, Click modular router [78] provides a well-rounded

framework for the development of new packet processing programs. It maximizes

the use of modularity in essentially all network applications and assembles a

router by a combination of packet processing elements. The rich built-in libraries

with numerous elements empower Click’s functionality and greatly reduce

development complexity. The task-level parallelism is inherently visible in Click

design; yet the parallelism has not been taken advantage of. There has been

symmetric multiprocessing (SMP) version of Click run on Linux kernel, as well

as an adaption of Click to network processors. Still, the framework could be

extended to exploit task, data and pipeline parallelism at the same time. This is an

interesting issue to be delved into.

6.2.3 Instruction Level Optimizations

The work conducted currently is at a relatively high abstraction level. In chapter 3,

the program dependence is summarized based on the basic block of code. In

chapter 4, the whole program is divided into sub-tasks, and the system schedules

and maps them onto different processing cores. The coarse granularity in task

creation is natural because most network applications are inherently modular, a

feature that is also the basis for the success of Click software router [34].

However, the high level optimizations would in no way hinder the employment of

fine-grained instrumentation. One processing core can be dealt with independently

after the task creation and mapping. In such a case, traditional compiler

optimization techniques could still be deployed.

An early work on instruction level optimizations for scientific applications was

presented in [88]. It proposed an estimation model that can calculate the energy

Chapter 6- Conclusions and Future Work

 77

consumption, code size and execution cycles of individual instructions. The model

can be even tuned to give the energy estimation of each instruction in datapath,

cache, memory, bus and clock components respectively. Though the ILP based

optimizations they proposed are not very flexible, the estimation model is

promising in further research on fine-grained optimizations, as long as the

accuracy of the estimation results can be validated.

Network applications can be classified by functionality into two sub-groups, i.e.

header processing and payload processing. Most applications fall into one group

with a few going to both. The computational complexity of payload applications

is usually much higher than that of header applications. Using profiling

benchmarks like Packetbench, one can collect the instruction count and pattern for

a suite of network applications. From previous analyses [57], it is observed that

the complex payload applications, which require heavy data computation and

transformation such as IPSec-AES packet encryption, generated considerably

longer instruction sequences than simple header applications, such as 5-tuple

based flow classification. However, header applications have much tighter latency

constraint than payload applications in most cases. And in a network processor,

certain types of instructions like the conditional branch and floating-point number

arithmetic are expensive to implement while others may cost much less, such as

the unconditional branch and bit-level comparison. Given a thorough instruction

cost and power model, together with an instruction pattern for a given application,

the compiler can trade some expensive instructions (in terms of instruction latency

and energy cost) for lighter ones to reduce either latency or power consumption.

In some extreme cases, the compiler might detect a sequence of self-contained

costly operations. It may be rewarding to remove them from the code, and repack

the operations in a separate task which can be dedicated to a hardware accelerator.

At instruction-level, the compiler could also make use of the special features of

the instruction set provided by the processing cores. For example, Infineon

network processors allow sub-word register access of packet bits. And Intel IXP

micro-engines can find the first bit set in a register using just one instruction. This

kind of packet-level address access not aligned at the processor word boundaries

typically does not exist in general processors. Based on the instruction cost and

Chapter 6- Conclusions and Future Work

 78

power model, an intelligent compiler would be able to identify the hot spot in the

hand-written code where these instruction add-ons can be placed to optimize the

code.

79

APPENDIX A - PDG PASS IN DETAIL

A.1 PDG Class

The PDG class is responsible for generating the PDG representation as introduced

above. The input is a CFG form of the program provided by SUIF. The whole

process of PDG generation is divided into three main phases, namely,

• Generate Post-Dominance Tree (void PDG :: generate_PDT(OptUnit*));

• Generate Control-Dependence Graph (void PDG :: generate_CDG());

• Generate Data-Dependence Graph (void PDG :: generate_DDG(OptUnit*));

And each phase is associated with a corresponding class method with the name

given above.

To maintain the data structure of the PDG during the generation, the following

properties should be kept within the PDG class,

• The set of PDG nodes (suif_list<Pdg_node*> PDG::_nodes);

• The data dependence edges (Set<Ddg_edge> PDG::_ddg_edges);

• The hash table used to map the set of control-dependence to the

corresponding region node (RegionNodeHashMap

*hash_table_region_nodes);

• The underlying CFG form. The PDG generation should avoid changing the

original CFG by all means (Cfg PDG::*cfg);

• The Dominance Tree. Here the existing library in Machine SUIF is used

(DominanceInfo PDG::*d; NatSetDense *_pdom_immd_children);

A.2 PDG Node Class

The control-dependence edges are not explicitly maintained in the PDG class.

Rather, the CD edges are implicitly included as parent-child links of the PDG

node. The class of Pdg_node is responsible for PDG nodes representation. It has

three important properties,

 80

• The parents of the PDG node (suif_list<Pdg_node*> _parents);

• The children of the PDG node (suif_list<Pdg_node*> _children);

• The set of control dependence of the PDG node (CDset _cd_set);

As for the four types of PDG nodes, i.e. region, entry, predicate and statement, a

derived class of the PDG node class for each of them is defined. Properties and

methods specific to that particular kind of node are contained in the sub-class.

To facilitate the region node insertion in the step 6 of the CDG construction (see

Table 3.1), the entry node is especially treated as a combination of predicate node

and region node to some extent (i.e. conceptually in design context but not really

in theory). That is to say, the entry node behaves as control dependence

predecessor (like predicate nodes) but has no TRUE/FALSE labelling on the edge

and it could have multiple children (unlike predicate nodes). The object-design of

the nodes is,

• class Pdg_node_stmt: public Pdg_node

• class Pdg_node_predicate: public Pdg_node{

Pdg_node_region* true_child;

Pdg_node_region* false_child;

}

• class Pdg_node_region: public Pdg_node

Herein, the true_child and false_child implicitly indicates the control

dependence edges in the CDG.

The region node does not include any underlying CFG node as its property (the

*cfg property inherited from the parent node is set to NULL for region node).

While other pdg nodes are simply labelled with underlying CFG node number,

another property field is added for region node in the derived class to number it.

A.3 DDG Edge Class

The Ddg_edge class is a helper class for PDG class to store the data dependence

information between CFG nodes explicitly. It has following properties,

• The source and destination nodes are the two end nodes of the directed edge

(CfgNode *source, *destination);

• The weight of the edge (int weight);

 81

The field of weight is an integer representing the edge weight of the data

dependence between the two nodes, as it was defined in section 3.2.3.

To simplify the DDG graph, only one edge between any two nodes is needed with

an amounted weight property. So in the PDG class, all the Ddg_edge instances

are arranged in a C++ set container. C++ set container asks for a ―less-than

comparison‖ function to perform internal ordering and achieve item uniqueness

storing. Therefore both ―equality‖ and ―less-than‖ comparison methods are

defined for Ddg_edge class explicitly based upon the weight property of the

DDG edge.

A.4 CDset Class

The CDset means a bunch of control dependence (may be just one though), so

the CDset class is responsible for summarizing the control dependence for a

specific node. For example, if node 2 is control-dependent on node 1’s true edge,

the CD is denoted as <1T>. A CD set is thus a sequence of the CD, like <1T, 3F,

7F…> and so on. Its properties include,

• A flag indicating whether the set is empty or not (bool CDset::_is_empty);

• A flag indicating whether the edge originates from entry node or not (bool

CDset::_entry);

• A Natural Set containing control dependence on a node when the branch

evaluates to be true (NatSetSparse CDset::_true_CD);

• A Natural Set containing control dependence on a node when the branch

evaluates to be false (NatSetSparse CDset::_false_CD).

The _entry Boolean tells whether the CD set includes the entry node or not. It is

included because the entry node is treated in a special way in design as described

above. When it’s true, it means the CDset includes entry node, and otherwise

false.

During the region node insertion, the CDset objects are stored in a hash table. So

it is necessary to provide methods for comparing the object equality and

calculating the hash value.

• Comparison methods (bool CDset::operator== (const CDset &cd_set) const);

• Hash function (size_t suif_hash(const CDset s)).

 82

APPENDIX B – IMPLEMENTATION OF PDG PASS

In this section, particular implementation issues in writing the PDG pass are

explained. The core algorithm, as introduced in the section 3.3, consists of PDT

generation, CDG generation and DDG generation. But before they are presented

in detail, the auxiliary classes, data structures and functions are explained first.

By design, the PDG nodes and DDG edges are the two most important classes that

should be implemented. The CDG edges are implicit as part of the PDG,

represented by the nodes’ parent-child relationship so it is not implemented

separately. An important property of PDG node is its control dependence set.

Thus a CDset class is defined to represent it, and a hash table in the PDG node to

store the existing CDset instances.

The true dependencies and false dependencies are kept individually in two

NatSetSparse objects. In essence, NatSetSparse collects a set of natural

numbers, like 1, 2, 3, etc. The hash function implemented for CDset class is

based on those numbers. The equality comparison is tested against the two sets as

well. Both sets should be equal, together with the _entry Boolean, to satisfy the

equality.

typedef suif_hash_map<CDset, Pdg_node_region*> RegionNodeHashMap;

RegionNodeHashMap Pdg:*hash_table_region_nodes;

 83

Now the implementation of the three core methods in generating the PDG is gone

through. First of all, it is to generate the Post-Dominance Tree of the input CFG.

As PDT is directly relevant to CFG rather than PDG, tree information in the

Pdg_node class does not need not to be stored. But instead, the tree structure in

an array of Natural Number Set (NatSetDense provided by Machine SUIF) is

kept in the top-level Pdg class. Each NatSetDense in the array holds

children’s index numbers of the parent node. Also in Machine SUIF CFA [60]

library, OPI provides a class called DominaceInfo to capture the dominators,

post-dominators, dominance frontier, and post-dominance frontier of a CFG. So in

method generate_PDT, each node’s immediate post dominator is found through

iteration, and the parent-child link is put in the particular NatSetDense array.

That is to say, each of the CFG node’s PDT children is stored by visiting each

one’s PDT parent.

The next step is to generate the CDG based on the PDT in method

generate_CDG. The algorithm introduced in section 3.3. The set of CFG edges

S that destination node does not post-dominate source node is identified firstly.

And then for every edge in the set S, one edge is visited at a time. If the edge is

A->B, the method traverse backward from B in the PDT until it reaches A or A’s

CDset& CDset::operator=(const CDset& other){

 if(this!=&other){

 _true_CD = other._true_CD;

 _false_CD = other._false_CD;

 _is_empty = other._is_empty;

 _entry = other._entry;

 }

 return *this;

}

for(h = nodes_start(cfg); h!= nodes_end(cfg);h++){

 v = get_node(cfg,h);

 if (d->immediate_postdominator(v)){

immediate_postdominator.insert(get_number(v));

 }

}

 84

parent. All the nodes met during the traversal are marked as control dependent on

A.

The tricky implementation lies in region node insertion. The basic function of

region node is to summarize the control dependences and after insertion, the

predicate nodes would have only two children, true and false respectively. And

the PDG is organized hierarchically. Ferrante et al. describes the algorithms as a

two-phase process [50]. The first pass is based on the post-order traversal of the

PDT to insert any necessary region nodes. The second pass is a check on the

output of the first pass to ensure that any predicate node has only two children.

For the post-order tree traversal, a separate class method is implemented to do the

work. The method is recursively called on each CfgNode (starting from the exit

node).

Upon each call, the CDset of the visited node is checked in the hash table to see

if any region node already exists. If so, the region node and the visited node are

simply linked up. If not, a new region node is created; the visited node and the

newly created region node are linked up, and the region node is put into the hash

table. Next compute the intersection INT of CD, i.e. check if the set of control

dependences for each immediate child of the visited node in the PDT overlaps or

not. If the intersection INT equals CD, then the corresponding dependences are

deleted from the child and replaced with a single dependence on the region node.

If every control-dependence of the child is in the intersection INT, then the

corresponding dependences are deleted and replaced with a single dependence

edge on the child's control predecessor. The second pass of the region node

insertion works on the predicate node P in the CDG having multiple control

dependence successors with the same associated label L. For each P, a region

node R is created. Each node in the graph that had control dependence

predecessor P with the label L is made to have the single control dependence

predecessor R. Finally, R is made to be the single control dependence graph

successor of P with the same label L.

void Pdg::insert_region_postorder(CfgNode *cfg_node, NatSetDense

*flags);

 85

Finally for DDG generation method, the work is straightforward based on the

Machine SUIF SSA library. After the CFG is transformed to SSA form, each BB

in the procedure is visited. Upon each visit, for each definition that instruction and

phi-nodes defines, mark the corresponding uses along the def-use chain. The C++

code of doing so is given below,

The map_opnds is an OPI function. In the MarkDefUseFilter class, the

function operator() is overridden to do the edge insertion. The filter looks at

each operand of the instruction, refers to the uses of each operand (by calling the

get_def_use_chain method provided by SSA library). If the uses are in different

BB from the defining instructions / phi-nodes, mark the def-use chain as a

candidate DDG edge. The edges are inserted if they do not already exist between

the two BBs. While if not, the candidate edge is not inserted, rather, the

dependence weight is incremented by 1 to avoid multiple DDG edges between

any two nodes.

for (int i = 0; i < nodes_size;i++){

 CfgNode *node_block = get_node(i);

 MarkDefUseFilter mark_def_use;

 for(InstrHandle h =

 start(node_block); h != end(node_block);h++)

{

 Instruction *instr = *h;

 map_opnds(instr,mark_def_use);

 }

 phi_node_list = get_phi_nodes();

 for(PhiHandle phid =

phi_node_list.begin(); phid != phi_node_list.end();phid++)

{

 PhiNode *phinode = *phid;

 map_opnds(phinode,mark_def_use);

 }

 86

BIBLIOGRAPHY

[1] D. Clark, ―The design philosophy of the DARPA internet protocols,‖

Symposium proceedings on Communications architectures and protocols,

Stanford, California, United States: ACM, 1988, pp. 106-114.

[2] J. Rolia, R. Friedrich, and C. Patel, ―Service centric computing - Next

generation Internet computing,‖ Performance Evaluation Of Complex

Systems: Techniques And Tools -, vol. 2459, 2002, pp. 463-479.

[3] Intel Corp. ―Intel IXP 2805 Network Processor, Hardware Reference

Manual‖, April 2006.

[4] R. Leupers, L. Thiele, N. Xiaoning, B. Kienhuis, M. Weiss, and T. Isshiki,

―Cool MPSoC programming,‖ Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2010, pp. 1488-1493.

[5] R. Tucker, ―A green internet,‖ in IEEE Lasers and Electro-Optics Society,

2008. LEOS 2008. 21st Annual Meeting of the, pp. 4-5, 2008.

[6] S. Roy, S. Katkoori, and N. Ranganathan, ―A compiler based leakage

reduction technique by power-gating functional units in embedded

microprocessors,‖ in 20th International Conference on VLSI Design, 2007.

Held jointly with 6th International Conference on Embedded Systems., pp.

215–220, 2007.

[7] A. Weiss, ―Computing in the clouds,‖ netWorker, vol. 11, 2007, pp.

16-25.

[8] A. Feldmann, ―Internet clean-slate design: what and why?,‖ SIGCOMM

Comput. Commun. Rev., vol. 37, 2007, pp. 59-64.

 87

[9] C. Rosewarne, ―Network Processors Evaluating Architectures for Leading

Edge Applications,‖ Calyptech White Paper Issue: 01, March 2004.

[10] N. Shah, ―Understanding Network Processors,‖ 2001.

[11] A.S. Tanenbaum, Computer networks, Prentice Hall PTR, 2003.

[12] R. Braden, ―Requirements for Internet Hosts - Communication Layers,‖

Oct. 1989.

[13] Cisco Systems. ―Parallel eXpress Forwarding in the Cisco 10000 Edge

Service Router.‖ White Paper. October 2000.

[14] Alchemy Semiconductor, Inc. ―The Alchemy Au1000 Internet Edge

Processor.‖ Product brief. 2000.

[15] EZchip Technologies. ―EZchip Technologies Software Development Suite

Now Available For Its 10-Gigabit 7-Layer Network Processor.‖ Press

Release. January 17, 2001.

[16] P.G. Paulin, F. Karim, and P. Bromley, ―Network Processors: A

Perspective on Market Requirements, Processor Architectures and

Embedded S/W Tools,‖ Design, Automation and Test in Europe

Conference and Exhibition, Los Alamitos, CA, USA: IEEE Computer

Society, 2001, p. 0420.

[17] K. Asanovic et al., ―A view of the parallel computing landscape,‖

Commun. ACM, vol. 52, 2009, pp. 56-67.

[18] NetLogic Microsystems. ―NetLogic Microsystems announces

breakthrough multi-core processor solution which integrates

128 NXCPUs™.‖ Press Release. July 2010.

[19] J. Ceng et al., ―MAPS: an integrated framework for MPSoC application

parallelization,‖ Proceedings of the 45th annual Design Automation

Conference, Anaheim, California: ACM, 2008, pp. 754-759.

[20] Stanford SUIF Compiler Infrastructure, ―The SUIF 2 Compiler System‖,

Stanford University, Accessed May. 2011;

http://suif.stanford.edu/suif/suif2/index.html.

 88

[21] J. Wagner and R. Leupers, ―C compiler design for a network processor,‖

Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, vol. 20, 2001, pp. 1302-1308.

[22] M. Budiu et al., ―BitValue Inference: Detecting and Exploiting Narrow

Bitwidth Computations,‖ Lecture Notes in Computer Science, 2001, pp.

969-979.

[23] J. Wagner and R. Leupers, ―Advanced Code Generation for Network

Processors with Bit Packet Addressing,‖ Proceedings of the 1st Workshop

on Network Processors, 2002, pp. 91-115.

[24] M.K. Chen et al., ―Shangri-La: achieving high performance from compiled

network applications while enabling ease of programming,‖ Proceedings

of the 2005 ACM SIGPLAN conference on Programming language design

and implementation, Chicago, IL, USA: ACM, 2005, pp. 224-236.

[25] H. Vin, J. Mudigonda, and J. JASON, ―A Programming Environment for

Packet-Processing Systems: Design Considerations,‖ 3nd Workshop on

Network Processors (NP-3), 10th Intl Symposiun on High Performance

Computing Architectures (HPCA-10), 2004.

[26] J. Roy, C. Sun, and C.Y. Wu, Open Research Compiler for Itanium

Processor Family (IPF)[A]. MICRO-34 Tutorial [C], Texas, USA: ACM

Press, 2001.

[27] L Shi, Y Zhang, J Yu, B Xu, B Liu and J Li, ―On the Extreme Parallelism

Inside Next-Generation Network Processors‖, INFOCOM 2007. 26th

IEEE International Conference on Computer Communications. IEEE, May

2007, Anchorage, Alaska, USA, pp. 1379-1387.

[28] Intel Corp. ―Intel IXP 2400 Network Processor: Flexible,

High-Performance Solution for Access and Edge Applications‖, white

paper, Jan. 2003.

[29] Jia Yu, ―Architectural and Compiler Optimization for Network

Processors‖, Ph.D. Thesis, UC riverside, September 2007.

[30] V. Ramamurthi et al., ―System level methodology for programming CMP

based multi-threaded network processor architectures,‖ VLSI, 2005.

 89

Proceedings. IEEE Computer Society Annual Symposium on, 2005, pp.

110-116.

[31] N. Weng and T. Wolf, ―Profiling and mapping of parallel workloads on

network processors,‖ Proceedings of the 2005 ACM symposium on

Applied computing, Santa Fe, New Mexico: ACM, 2005, pp. 890-896.

[32] R. Ennals, R. Sharp, and A. Mycroft, ―Linear types for packet processing,‖

Lecture notes in computer science, 2004, pp. 204-218

[33] W. Plishker, ―Automated Mapping of Domain Specific Languages to

Application Specific Multiprocessors,‖ Oct. 2006.

[34] E. Kohler et al., ―The click modular router,‖ ACM Trans. Comput. Syst.,

vol. 18, 2000, pp. 263-297.

[35] Intel Corp., ―Intel Microengine C Compiler Language Support: Reference

Manual,‖ Nov. 2003.

[36] G. Memik and W.H. Mangione-Smith, ―NEPAL: A Framework for

Efficiently Structuring Applications for Network Processors,‖ 2nd

Workshop on Network Processors (NP-2) at the 9th International

Symposium on High Performance Computer Architecture (HPCA-9),

Anaheim, CA, 2003, pp. 203-226.

[37] K. Crozier, ―A C-Based Programming Language for Multiprocessor

Network SoC Architectures,‖ Network Processor Design: Issues and

Practices, Morgan Kaufmann, 2003, pp. 427-443.

[38] H. Yang et al., ―Power and Energy Impact by Loop Transformations,‖

Workshop on Compilers and Operating Systems for Low Power 2001,

Parallel Architecture and Compilation Techniques, 2001.

[39] D. Burger and T. Austin, The simplescalar toolset, Version 2.0, Computer

Sciences Dept, University of Wisconsin, 1997.

[40] B. Li and R. Gupta, ―Simple offset assignment in presence of subword

data,‖ Proceedings of the 2003 international conference on Compilers,

architecture and synthesis for embedded systems, San Jose, California,

USA: ACM, 2003, pp. 12-23.

 90

[41] F. Li et al., ―Profile-driven energy reduction in network-on-chips,‖

Proceedings of the 2007 ACM SIGPLAN conference on Programming

language design and implementation, San Diego, California, USA: ACM,

2007, pp. 394-404.

[42] A. Bona et al., ―Energy Estimation and Optimization of Embedded VLIW

Processors Based on Instruction Clustering,‖ Proceedings of the 39th

Design Automation Conference DAC’02, 2002, p. 886–891.

[43] H. Yun and J. Kim, ―Power-aware modulo scheduling for

high-performance VLIW processors,‖ Proceedings of the 2001

international symposium on Low power electronics and design,

Huntington Beach, California, United States: ACM, 2001, pp. 40-45.

[44] C. Lee et al., ―Compiler optimization on VLIW instruction scheduling for

low power,‖ ACM Trans. Des. Autom. Electron. Syst., vol. 8, 2003, pp.

252-268.

[45] W. Zhang et al., ―Leakage-aware compilation for VLIW architectures,‖

Computers and Digital Techniques, IEE Proceedings-, vol. 152, 2005, pp.

251-260.

[46] Jing Huang, Xiaojun Wang and Bin Liu, ―Energy-aware Compilation for

Network Processors: Frameworks, Techniques and Trend‖, China-Ireland

International Conference on Information and Communication

Technologies, 26th-28th Sep., 2008.

[47] Q. Wu and T. Wolf, ―On runtime management in multi-core packet

processing systems,‖ Proceedings of the 4th ACM/IEEE Symposium on

Architectures for Networking and Communications Systems, San Jose,

California: ACM, 2008, pp. 69-78.

[48] R. Ramaswamy, N. Weng, and T. Wolf, ―Application analysis and

resource mapping for heterogeneous network processor architectures,‖

Network Processor Design: Issues and Practices, vol. 3, 2005, pp. 277–

306.

 91

[49] J. Yao, Y. Luo, L. Bhuyan, and R. Iyer, ―Optimal network processor

topologies for efficient packet processing,‖ IEEE Global

Telecommunications Conference, 2005. GLOBECOM'05.

[50] X. Huang and T. Wolf, ―Evaluating Dynamic Task Mapping in Network

Processor Runtime Systems,‖ IEEE Transactions on Parallel and

Distributed Systems, vol. 19, 2008, pp. 1086-1098.

[51] J. Ferrante, K.J. Ottenstein, and J.D. Warren, ―The program dependence

graph and its use in optimization,‖ ACM Trans. Program. Lang. Syst., vol.

9, 1987, pp. 319-349.

[52] J. Yu, J. Yao, L. Bhuyan, and J. Yang, ―Program mapping onto network

processors by recursive bipartitioning and refining,‖ Proceedings of the

44th annual conference on Design automation, San Diego, California:

ACM, 2007, pp. 805-810.

[53] M.D. Smith and G. Holloway, ―An introduction to Machine SUIF and its

portable libraries for analysis and optimization,‖ Division of Engineering

and Applied Sciences, Harvard University, 2002.

[54] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck, ―An

efficient method of computing static single assignment form,‖ Proceedings

of the 16th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, Austin, Texas, United States: ACM, 1989, pp.

25-35.

[55] G. Holloway, ―The Machine-SUIF Static Single Assignment Library,‖

Division of Engineering and Applied Sciences, Harvard University, 2002.

http://www.eecs.harvard.edu/hube/software/nci/ssa.pdf.

[56] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull,

―Graphviz and dynagraph–static and dynamic graph drawing tools,‖ Graph

Drawing Software, pp. 127–148, 2003.

[57] R. Ramaswamy and T. Wolf, ―PacketBench: a tool for workload

characterization of network processing,‖ Workload Characterization, 2003.

WWC-6. 2003 IEEE International Workshop on, 2003, pp. 42-50.

 92

[58] W. Gong, G. Wang, and R. Kastner, ―A High Performance Application

Representation for Reconfigurable Systems,‖ Intl. Conf. on Engineering of

Reconfigurable Systems and Algorithms (ERSA), Las Vegas, NEV, USA,

2004.

[59] J. Fenwick and L. Pollock, Implementing an optimizing linda compiler

using suif, 1996.

[60] http://suif.stanford.edu/suif/suif2/doc-2.2.0-4

[61] Jing Huang, Xiaojun Wang, ―Program Dependence Graph Generation and

Its Use in Network Application Analysis‖, CIICT 2009, Aug. 2009.

[62] Jing Huang, Xiaojun Wang, ―Program Dependence Graph Generator in

Machine SUIF‖, Internal Technical Report, May 2009.

[63] G. Xia, B. Liu, "Accelerating network applications on X86-64 platforms,"

IEEE Symposium on Computers and Communications (ISCC), June 2010.

[64] J. Meng, X. Chen, Z. Chen, C. Lin, B. Mu, and L. Ruan, ―Towards

High-Performance IPsec on Cavium OCTEON Platform,‖ in Trusted

Systems, vol. 6802, 2011.

[65] T. R. Halfhill, ―Netlogic broadens XLP family,‖ Microprocessor Rep., vol.

24 , 2010.

[66] D. Yin, D. Unnikrishnan, Y. Liao, L. Gao, and R. Tessier, ―Customizing

virtual networks with partial FPGA reconfiguration,‖ ACM SIGCOMM

workshop on Virtualized infrastructure systems and architectures (VISA),

2010.

[67] C. A. R. Hoare, ―Communicating sequential processes,‖ Commun. ACM

26, 1, 100-106. Jan. 1983.

[68] P. Chang, I. Wu, J. J. Shann and C. Chung, "ETAHM: An energy-aware

task allocation algorithm for heterogeneous multiprocessor," Design

Automation Conference (DAC), June 2008.

[69] H. H. Yang and D. F. Wong, "Balanced partitioning," Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on, Dec

1996.

 93

[70] W. Plishker, K. Ravindran, N. Shah and K. Keutzer., ―Automated Task

Allocation on Single Chip, Hardware Multithreaded, Multiprocessor

Systems,‖ Proc. Workshop on Embedded Parallel Architectures (WEPA),

2004.

[71] H. Yang and D. F. Wong, ―Efficient network flow based min-cut balanced

partitioning,‖ IEEE/ACM international conference on Computer-aided

design, 1994.

[72] R. Mishra, N. Rastogi, D. Zhu, D. Mosse and R. Melhem;, "Energy aware

scheduling for distributed real-time systems," Parallel and Distributed

Processing Symposium, Proceedings. International, Apr. 2003.

[73] Y. Zhang, K. Ootsu, T. Yokota and T. Baba, "Automatic Thread

Decomposition for Pipelined Multithreading," Parallel and Distributed

Systems (ICPADS), IEEE 16th International Conference on, Dec. 2010.

[74] J. Dai, B. Huang, L. Li, and L. Harrison, ―Automatically partitioning

packet processing applications for pipelined architectures,‖ ACM

SIGPLAN Conference on Programming Language Design and

Implementation, (PLDI), June 2005.

[75] A. Mallik, Y. Zhang, and G. Memik, ―Automated task distribution in

multicore network processors using statistical analysis,‖ in Proceedings of

the 3rd ACM/IEEE Symposium on Architecture for networking and

communications systems - ANCS, 2007.

[76] L. Li, B. Huang, J. Dai, and L. Harrison, ―Automatic multithreading and

multiprocessing of C programs for IXP,‖ in Proceedings of the tenth ACM

SIGPLAN symposium on Principles and practice of parallel programming

- PPoPP, 2005.

[77] J. Kuang and L. Bhuyan, ―Optimizing Throughput and Latency under

Given Power Budget for Network Packet Processing,‖ IEEE Conference

on Computer Communications, 2010.

[78] Monika Lam, ―An Overview of the SUIF2 System‖, ACM Conference on

Programming Language Design and Implementation (SIGPLAN), 1999.

 94

[79] Jing Huang, Olga Ormond, Di Ma and Xiaojun Wang, ―Optimizing

Energy-Efficiency for Program Partitioning and Mapping onto Multi-Core

Packet Processing Systems,‖ the Journal of China University of Posts and

Telecommunications, June 2012, 19(Suppl. 1), pp. 79-86.

[80] L. Bhuyan, Y. Luo, J. Yang and L. Zhao, "NePSim: A Network Processor

Simulator with Power Evaluation Framework‖. Sept/Oct 2004.

[81] T.M Austin, T Mudge, Sim-Panalyzer: the simplescalar-arm power

modeling project, http://web.eecs.umich.edu/~panalyzer/

[82] Wu and T. Wolf, ―Dynamic workload profiling and task allocation in

packet processing systems,‖ in International Conference on High

Performance Switching and Routing, 2008. HSPR 2008, pp. 123–130,

2008.

[83] J. Huang, A. Raman, T. B. Jablin, Y. Zhang, T. H. Hung, and D. I. August,

―Decoupled software pipelining creates parallelization opportunities,‖ in

Proceedings of the 8th annual IEEE/ACM international symposium on

Code generation and optimization, pp. 121–130, 2010.

[84] N. Weng and T. Wolf, ―Pipelining vs. Multiprocessors - Choosing the

Right Network Processor System Topology,‖ in in Proc. of Advanced

Networking and Communications Hardware Workshop (ANCHOR),

2004.

[85] Intel IXP2XXX Product Line of Network Processors, Intel Corporation.

[86] M. Kandemir, O. Ozturk, and V. S. R. Degalahal, ―Enhancing Locality in

Two-Dimensional Space through Integrated Computation and Data

Mappings,‖ in 20th International Conference on VLSI Design, 2007. Held

jointly with 6th International Conference on Embedded Systems., pp. 227–

232, 2007.

[87] M. I. Gordon, W. Thies, and S. Amarasinghe, ―Exploiting coarse-grained

task, data, and pipeline parallelism in stream programs,‖ in Proceedings of

the 12th international conference on Architectural support for

programming languages and operating systems, pp. 151-162, 2006.

 95

[88] I. Kadayif, M. Kandemir, G. Chen, N. Vijaykrishnan, M. J. Irwin, and A.

Sivasubramaniam, ―Compiler-directed high-level energy estimation and

optimization,‖ ACM Transactions on Embedded Computing Systems

(TECS), vol. 4, no. 4, pp. 819-850, 2005.

