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ABSTRACT 

Optimizing Energy-Efficiency for Multi-Core Packet Processing 

Systems in a Compiler Framework 

Jing Huang 

Network applications become increasingly computation-intensive and the amount 

of traffic soars unprecedentedly nowadays. Multi-core and multi-threaded 

techniques are thus widely employed in packet processing system to meet the 

changing requirement. However, the processing power cannot be fully utilized 

without a suitable programming environment. The compilation procedure is 

decisive for the quality of the code. It can largely determine the overall system 

performance in terms of packet throughput, individual packet latency, core 

utilization and energy efficiency. 

The thesis investigated compilation issues in networking domain first, 

particularly on energy consumption. And as a cornerstone for any compiler 

optimizations, a code analysis module for collecting program dependency is 

presented and incorporated into a compiler framework. With that dependency 

information, a strategy based on graph bi-partitioning and mapping is proposed to 

search for an optimal configuration in a parallel-pipeline fashion. The 

energy-aware extension is specifically effective in enhancing the 

energy-efficiency of the whole system. Finally, a generic evaluation framework 

for simulating the performance and energy consumption of a packet processing 

system is given. It accepts flexible architectural configuration and is capable of 

performing arbitrary code mapping. The simulation time is extremely short 

compared to full-fledged simulators. A set of our optimization results is gathered 

using the framework. 
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Chapter 1 - Introduction 

Since the world steps into the Information Age, information, the subject it is 

named after, becomes increasingly valuable to the society. As such, networks 

grow to be indispensable nowadays. Most significantly, the past decade witnessed 

the explosive growth of the ―global network of networks‖, i.e. the Internet. At the 

beginning, most networks are based on variations of simple store-and-forward 

packet switching architecture [1]. The interconnection nodes known as routers 

usually just forward the packets without further processing. With the advent of 

service-centric networks [2], a large portion of the computation and processing 

workload is handed over from end hosts to the edge networks and access networks. 

Unlike traditional routers, devices in such an environment should not only simply 

deliver packets, but also process them at the same time. To meet the changing 

requirements of the services, these devices have to be easily programmable and 

configurable; and to keep pace with the soaring line speed, they should be well 

powerful to process the packets within an extremely short time scale. Packet 

processing systems are therefore specifically proposed to perform this type of 

tasks. Packet processing systems usually employ multiple processing cores run in 

parallel in data plane to satisfy the computation demand; and the cores are 

typically variations of Reduced Instruction Set Computer (RISC) processors that 

can be easily programmed via specific software development toolsets. Like 

General-Purpose Processors (GPP), the computational power can only be 

effectively utilized with well-written software. It implicates the vital importance 

of the complier and relevant runtime management tools in packet processing 

systems, which translate the high-level code and deploy them onto the underlying 

heterogeneous architectures. On the other hand, network processor has distinctive 

requirements from general processors. Not all compilation optimizations derived 
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from general processing techniques would be still valid; and more attention 

should be paid with regard to the high parallelism in multi-core architecture and 

the soaring energy consumption. 

The thesis covers the literature review on this topic and the concrete work on 

optimizations for a multi-core packet processing system in a compiler framework, 

especially with the awareness of energy-efficiency.  

1.1 Motivation 

The role of a compiler is always a bridge between the programmers and the 

underlying system hardware. It is not an exception in the network processing 

domain. A compiler designed for the packet processing system should provide a 

decent interface for network application developers and map the high-level user 

codes onto the complex Application Specific Instruction-set Processors (ASIPs). 

Fig. 1.1 illustrates a commercial network processor from Intel. It has 16 

Micro-Engines, a nickname for processing cores given by Intel, running in 

parallel [3]. The whole system is a comprehensive solution to process soaring 

line-rate traffic as well as to develop applications more flexibly. The features 

concluded from the diagram are, 

• Parallel fast processing units 

• Application-specific instruction set processors 

• Heterogeneous system-level architectures 

• Hierarchical memory sub-systems 
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Fig. 1.1. Intel IXP2805 network processor architecture [3] 

Compiler technique is an aged research topic, dating back to the 1960s. Yet it is 

still very active since both the programming languages and hardware platforms 

incessantly evolve. For example, the problems about re-targetable compilers, 

just-in-time compilation and inter-procedural pointer analysis were hardly 

envisioned twenty years ago. A classical compiler would execute a sequence of 

tasks in sequence, namely pre-processing, lexical analysis, syntax analysis and 

validation, semantic transformation, Intermediate Representation (IR) 

optimization, code generation and machine code optimization etc. Given the 

features of packet processing systems, the compilers in this domain have the 

following distinctions, 

• Defining user-friendly interface that ease packet-processing applications 

programming 

• Partitioning parallel tasks and mapping them onto heterogeneous processing 

elements 

• Bit-stream data (packets) management in multi-level memory subsystems 
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Fig. 1.2 depicts a typical workflow of the compilers for packet processing 

systems. 
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Fig. 1.2. Typical design flow of network processor compiler 

The large number of multi-cores in packet processing system resembles the 

hardware platform of Multiprocessor System-on-Chip (MPSoC), whose 

architecture is also being heavily researched these days. In a recent paper [4], 

Leupters et al. indicated that new methodologies, tools and description languages 

are still required to fill in the gap for the following missing tasks, 

• optimal task partitioning 

• code generation tools for software production and software maintenance 

• simulation and debugging environment 

The heterogeneity of both MPSoCs and packet processing systems asks for 

optimized choices regarding code partitioning, task-to-processor assignment and 

on-demand task migration. 

Energy-efficiency is another heated issue in designing next-generation network. 

Previous researches on the greenhouse impact of the switching and data storage 

equipment on the Internet have revealed great potential for power-aware 

optimizations [5]. A compiler can also play a part in such a process by either 

providing the system with instruction trace information or interacting with the 

runtime component, such as power-gating the functional units [ 6 ]. The 

optimization from the point of energy-efficiency would vary from existing 

techniques that are solely performance-oriented. That said, the space for design 

exploration in energy-efficient compilation is quite vast. 
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Bearing these in mind, the author chose the topic of energy–aware compiler 

optimizations in multi-core processing systems. The ultimate goal is to develop an 

energy-efficient compiler optimization framework for packet processing systems. 

1.2 Contributions 

In this work, a comprehensive solution for network application code analysis, task 

partitioning, task-to-core mapping and a simulation environment is proposed and 

validated. The major contributions of the thesis are listed as below. 

• Task Partitioning and Mapping 

A recursive Bi-Partitioning based algorithm is proposed that consider both 

computational cost and energy consumption. In the partitioning and mapping 

stage, additional optimization and refinement steps are taken to specifically 

enhance the energy-efficiency, which is not investigated before in literature to the 

best of the author’s knowledge. The simulation results show that the method is 

particularly effective in improving the energy-efficiency compared to the existing 

solutions. 

• Energy-Aware Simulation Framework for Network Processing System 

The thesis provides the design of a simulation tool to benchmark the performance 

and energy-consumption of a generic network processing system. State-of-the-art 

tools are either execution-driven, too complicated to run the simulation fast 

enough in a large search space, or too simple to provide the energy-related data. 

The proposed framework is built on an analytical model and takes both 

computation and energy parameters into consideration. Its effectiveness and 

validity are carefully examined and verified in this work. 

• Implementation of a Program Dependence Analysis Tool 

The program dependence information is of vital importance in deciding the 

quality of task partitioning and mapping. In this work the author implemented a 

code analysis tool to collect the program dependence information of a code block 

within a full-fledged compiler framework. The tool is built into that framework as 

a plugin and has well defined interfaces interacting with partitioning and mapping 

modules. All the modules together can work as a complete tool chain. 
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1.3 Structure 

The structure of the thesis is as follows. In chapter 2, the packet processing system 

at which the work targets is briefly reviewed. The compilation in packet 

processing domain is reviewed in literature from two aspects in this chapter as 

well, namely packet processing support and energy-efficiency related issues. The 

author briefly described some challenges in network processor compiler design 

and implementations. In chapter 3, the work on program dependence analysis is 

presented. A compiler module is implemented to generate the program 

dependence graph. It is the footstone for further compiler optimizations. Chapter 4 

presents an energy-aware approach for program partitioning and mapping the 

author used to explore the system at the architecture level. Detailed results and 

analyses are given as well. Chapter 5 describes the performance and energy 

evaluation model that the author uses to simulate a generic multi-core packet 

processing system. A set of simulation results are provided. Finally in chapter 6, 

the conclusion and future research fields are introduced as a closure to the thesis. 
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Chapter 2 - Background on Packet Processing 

System and its Compilation 

2.1 Introduction 

As introduced in chapter 1, the network, especially the Internet, has already been 

an essential infrastructure for the modern world. Yet the scalability and 

complexity of today’s Internet still evolves rapidly. It was estimated that more 

than a quarter of the world population use Internet services as of 2011. Beyond 

traditional text-based network applications, versatile services come into common 

use such as Voice over Internet Protocol (VoIP), web conferencing, Internet 

banking and Virtual Private Network (VPN) etc. With the decreasing cost of 

computation power and the advancement in distributed computing and 

virtualization, a lot more applications are becoming web-based and making use of 

the computation power on the network [7]. For instance, ten years ago, when two 

authors collaborate on a book, one of them might open a new Microsoft Word 

document, fill it in and send it via emails. The other collaborator would have to 

write down the reviews on that particular document and send it back and forth. It 

is easily messed up with multiple versions of the same file. Fortunately now with 

the maturity of online platform such as Google Docs and Microsoft Live, people 

can work on the same document simultaneously without any local storage. 

Recognizing such a trend, the research on the next generation Internet emphasizes 

the importance of programmable components of the network [8]. 

The packet processing system is such a programmable platform designed to meet 

the explosively growing need for higher line-rate processing. The core of the 

system is Network Processors (NPs), featuring specially tailored RISC Instruction 

Set Architecture (ISA) and parallel multi-core architecture. In this chapter, a brief 
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review on the packet processing system embedded with network processors will 

be given. 

Like any other programmable hardware device, the performance and efficiency 

would largely depend on the quality of the software running upon it. The focus of 

this research is to optimize the system from a compiler’s perspective. In this 

chapter, the author also presents a literature review on the compilation techniques 

for packet processing systems. Finally the challenges in compiler design and 

implementation are explained and a conclusion is given. 

2.2 Multi-Core Packet Processing System 

As stated above, the packet processing system is specifically designed for dealing 

with the network traffic. Most networks, such as the Internet, are distributed and 

layered systems composed of hosts, workstations, switches and routers etc. Bits of 

information are encapsulated in packets and flow in the network. And for packet 

routing and processing, a protocol is specified describing the packet format. Take 

the Internet for example once again. Internet Protocol (IP) is the core for 

manipulating data transmission in it. Any type of network, no matter it is Local 

Area Network (LAN), Wide Area Network (WAN) or even LAN Wireless which 

is not envisioned when Internet first came into being decades ago, can be all 

integrated into the Internet as long as they comply with IP (currently version 4 or 

6) in packet encapsulation. 

Today’s network can be generally divided into three layers, namely Core Network, 

Edge Network and Access Network [9]. The topology of the Internet is illustrated 

in Fig. 2.1. Core Network consists of gigabit and terabit routers that are backbone 

of the Internet. The line-rate of network traffic routing is highest in core network. 

Edge network sits at the boundary of one network to others. The processing speed 

of edge equipment falls behind those in core network. Finally the access network 

connects the terminals of a customer endpoint. And usually the bandwidth and 

line-rate requirement is lowest among the three. 



Chapter 2- Background
 

 9 

SONET Rings

Gigabit Router

        Core Network             Edge Network            Access Network

WAN

DWDM Links

Gigabit/
Terabit 
Router

Enterprise 
Network

Wireless AP

Local Area 
Network

 

Fig. 2.1. Internet topology 

The performance requirement and flexibility vary among equipment in different 

layers [10]. Table 2.1 gives a qualitative analysis in this regard. The core 

equipment, like terabit router, may route packets at 39,813 Mbps line-rate within 

OC-768 SONET link for example [11]. Yet for the edge network device, the 

line-rate falls slower but the diversity of applications increases. Control-plane and  

Table 2.1. Comparison of the three network layers 

 Performance Flexibility Example 

Core High Low Terabit Packet Routing 

Edge Medium Medium Load Balancing 

Access Low High Wireless Access Point 

even management-plane applications are common to see at this layer. And the 

complexity of network applications culminates at access layer, such as packet 

encryption, load balancing in access router, packet inspection and network address 

translation etc. Fortunately, the traffic in this layer tends to be much lighter in 

most cases since the total endpoints are limited. Access equipment could trade the 

processing speed for code complexity to meet the stringent packet latency 

requirement. 
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The packet processing system can be equipped in any layer of the network, either 

in the high-end core routers or in the LAN switches. The flexibility of the system 

comes from the programmable elements within it, i.e. NPs. And a series of 

stacked network protocols guarantee its capability to achieve the performance 

specification. 

2.2.1 Network Applications & Network Processors 

In order to obtain further understanding of the interaction between the software 

and hardware of the packet processing system, a profile of the network 

applications and the network processors is given below. 

As mentioned before, the Internet is built upon a stack of rigidly defined protocols, 

especially TCP/IP. Network applications process the workload in the way 

specified by the protocol. TCP/IP model defined in RFC1122 [12] describes a 

five-layer framework for computer network protocols, which has been 

continuously employed in Internet from its very origin. The International 

Organization for Standardization formally proposes a more prescriptive model, i.e. 

Open Systems Interconnection model (OSI model). Both models divide the 

networks into layers, with each layer utilizing the data from the layer immediately 

beneath and providing service for the layer directly above. The layered 

architecture exemplifies the principles of the modern network design — 

end-to-end communication and robustness in implementation. Fig. 2.2 represents 

both models and correlations in between. 

• Physical layer defines the medium over which signals travel, e.g. electrical or 

optical fibre 

• Data link layer provides point-to-point link between two network nodes and 

protects against data corruption 

• Network layer enables transmission of data packets by routing through 

intermediate network device 

• Transport layer provides end-to-end communication services for upper layers, 

like connection-oriented data stream support, reliability and flow control. 
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Fig. 2.2. OSI model & TCP/IP model 

The most distinguished difference between the two models is that the top three 

layers defined in OSI – the Application Layer, the Presentation Layer and the 

Session Layer are not separate but combined in a single layer in TCP/IP. Because 

TCP/IP model evolves in line with the practice of the Internet, it is less attached to 

strict layering. 

A number of protocols are specified to facilitate data encapsulation and 

transmission in a specific layer, e.g. TCP in transport layer and IP in network 

layer. Network processing system usually accesses layer 3- 4 information and 

process it based on protocol standards. One example application is the IPv4 router 

in core network. The protocol stack is presented in Figure 2.3. In a core router, the 

data-plane network processor inspects the IP packet header for destination address 

and performs a table lookup to determine which output port the packet should be 

sent to. This is a layer 3 application which features very high packet rates but 

essentially little inter-packet dependency. Another instance of network 
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applications is a packet classifier in access network devices. The classifier maps a 

packet to one of a finite set of flows using a 5-tuple, i.e. source and destination IP 

addresses, source and destination port numbers, protocol number. It makes use of 

Layer 3-4 header information, specifically IP header and TCP header that are 

illustrated in Fig. 2.3. 

GET /pathname/index.html HTTP/1.1

TCP data TCP

header

IP data (TCP Segment)
IP

header

Frame Data (IP Packet)

Frame

Footer

(checksum)

Frame

Header

HTTP Get

TCP Segment

IPv4 Packet

Ethernet Frame

 

Fig. 2.3. Protocol stack through TCP/IP layers 

Other typical network applications deployed in a network processing system 

include gateway applications such as Network Address Translation (NAT), 

Quality of Service (QoS) applications like Usage-based Accounting and 

Differentiated Service (DiffServ), Intrusion Detection and Prevention System 

(IDPS) and layer 7 peer-to-peer networking. 

2.2.2 Advantages of Packet Processing System 

To fit in with high line-rate data processing, Packet processing systems are 

specifically tailored in architecture level and instruction-set level, ensuring certain 

advantages in network processing system. This section outlines a brief analysis of 

the benefits. 

Parallel Processing 

A parallel architecture is ideally suited for high speed packet processing. Traffic 

stream in most network applications render little or no inter-packet dependency. 
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Hence, the line-rate can be linearly increased to a certain extent by loading 

parallel processing streams. 

Two configurations are prevalent in parallel processing: pipelined and parallel. 

They are both used in commercial products [13][14][15]. The detailed comparison 

and explanation of the two configurations will be given in the next section 

together with compiler specific issues. 

Flexibility 

Packet processing system incorporates a flexible architecture where 

heterogeneous hardware components can be easily interfaced. Based upon the 

RISC-like processing cores, new data-plane applications can be quickly developed, 

which is infeasible using pure Application Specific Integrated Circuits (ASIC) 

solutions. And to accelerate common computation-hungry networking tasks, 

special hardware is extensively used in packet processing system. For example, a 

co-processor specialised in packet classification can be niched in the pipeline 

before performing any core applications. A special functional unit like checksum 

and hash unit is also available in commercial products like Intel IXP network 

processors. 

Cost Effectiveness 

Traditional network devices using ASIC solutions suffered greatly when it comes 

to the issue of cost. Firstly, the services that ASIC-based system can provide are 

pre-defined and difficult to change. If one manufacturer plans to release a series of 

products from low-end routers excelling in simple Network Address Translation 

to high-end systems carrying out complex Deep Packet Inspection (DPI), a 

number of circuits have to be synthesized, costing tremendous human efforts. 

However, in a network processor based packet processing system, the principal 

design remains intact while only software-level configurations and modifications 

are required. The shortened time to market also implicates the enhancement in 

cost effectiveness for network processors. Secondly, RISC-like processor cores 

cost much less than the complex ASIC design [10]. The expense to test and verify 

an ASIC design is predominant whereas for RISC-like processors the cost is 

largely amortised by the mass production. 
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2.2.3 Trends in Packet Processing Systems 

Since the influence of the Internet grows exponentially, the complexity of packet 

processing system increases accordingly. Several trends were observed in this 

area. 

Firstly, the functionality of network applications becomes multi-fold and ranges 

across layers. Take the application of deep packet analysis and inspection in a 

network security system for example. The application scrutinizes not only 

traditional layer 3-4 header information like source/destination IP addresses pair 

and port numbers, but also high-level data known as layer 7 in OSI model. The 

multi-layer applications of this kind are expected to be common in the future [16], 

which requires more flexibility from the network processing system end as well as 

added computational power. 

Secondly, the heterogeneous parallel architecture is becoming a standard 

configuration for network processing systems to deal with the fast exploding data 

rates. Multi-core processor technology is becoming mature for GPP core 

manufacturing in the past decade and consumers are already benefiting from it 

[17]. Network processing system can utilize multi-core RISC cores to perform a 

highly paralleled processing in data-plane applications. For instance, very recently 

NetLogic Microsystems announced its flagship multi-core processor which has 

128 CPUs capable of 240 million packets per second [18]. Besides, the progress 

on the development of ASIC-based co-processors, i.e. hardware accelerators has 

enabled the adoption of heterogeneous elements in the system to execute either 

algorithm-specific or task-specific functions. 

Last but not least, the flexibility of network processors could never be realized 

without well-rounded software development kits (SDK). A typical SDK usually 

includes a patched operation system (e.g. Linux kernel), compiler tool-chain 

(pre-processor, interpreter, linker and loader etc.), debugger and documentations. 

Current solution in system level design embodies defining an application domain 

first, and then architecting the platform using software-hardware co-design 

techniques, e.g. LISAtek SDK and MAPS described in [19]. It is an open question 

that how the partitioning and mapping of applications can be best achieved. 

Besides, when programming in such a highly parallel multi-processor 
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environment, the problem that how the application code should be mapped onto 

the heterogeneous hardware platform is yet to be answered as well. This particular 

issue is the research interest of the author and the focus of the thesis. 

2.3 Compilers for Packet Processing Systems 

This section presents the literature review on the compilation techniques for the 

packet processing systems. As noted in previous sections, the research on 

compiler techniques for network processors has been a hotspot to tackle with the 

flexibility requirement in network application development and the computational 

needs for processing rapidly increasing line-rate data. Bit-stream-oriented 

programming, multiple processing units and heterogeneous architectures all make 

the job of an NP compiler complicated. Meanwhile, energy efficiency has also 

become a heated issue while parallel NP system is becoming more powerful and 

power-hungry. The text below elaborates on the issues of packet processing 

support and the energy-aware optimizations among all compilation stages. 

Similar to most traditional GPP compilers, a NP compiler is generally partitioned 

into front-end and back-end modules, and linked by one generic Intermediate 

Representation (IR). To a great extent, it is possible to port and utilize various 

re-targetable compilation frameworks, such as SUIF [ 20 ]. The design of 

re-targetable compiler frameworks could be illustrated as in Fig. 2.4. Yet the 

implementation of NP compiler distinguishes itself by domain specific features, 

i.e. bit-stream-oriented packet manipulation and parallel task processing, both in 

software (source code) and hardware ends (code generator). Hence a review of 

several approaches that take these features into account is conducted. 

 

Fig. 2.4. Typical design flows of re-targetable compilation 

Network 

Application Code 

Profiler, 

Compiler 

Debugger 
System Model 

Define/Mapping 

Runtime System Hardware Testbench / 

Simulator, Debugger 

Code 

Generator 



Chapter 2- Background
 

 16 

2.3.1 Support for Packet Processing 

The instruction sets of the network processor cores are often specially tailored to 

provide bit-field operations, e.g. finding the first bit set in a register instruction in 

Intel IXP ISA. In search of a solution to map high level programming language 

code into bit-field operations, generally two directions could be taken. One is to 

extend the capability of a compiler for an existing programming language, and the 

other is to revisit the language itself as well as to build a domain specific compiler 

for this language extension. Both have been explored primitively in academia and 

in industry. 

In [21], Wagner and Leupers described the implementation of a C language 

compiler for an industrial NP, Infineon NP whose architecture includes special 

register arrays and extensions for bit-level data access. In order to fully exploit 

this processor’s ISA feature, the C compiler employs the use of Compiler Known 

Functions (CKF) and renewed register allocation methods for efficient bit 

addressing. The main idea of using CKF is to make bit-level packet manipulation 

visible to programmers, similar to the #PRAGMA directive in ANSI C. The 

compiler is then responsible for mapping function calls to CKFs into a fixed 

instruction or a sequence of instructions. As such, the code complexity and 

programming difficulty in writing lots of bit operations is hidden. Yet unlike 

conventional C function calls and in-line assembly, there is little overhead on 

either hardware or programmer’s side. 

However, CKF is not quite portable with the existence of machine-specific 

compiler intrinsics. More advanced code selection techniques are yet needed. 

Budiu and Goldstein presented a compiler algorithm on exact bit-level data-flow 

analysis in [22] by using a bit-value lattice. Following this bit-value inference 

analysis approach, Wagner and Leupers evolved their C compiler by replacing the 

CKF with tree-pattern matching grammar to handle bit-packed addressing in C 

[23]. The code generation employs the bit-level data-flow analysis information of 

a basic block labelled by a lattice-string and detects bit-level packet operations in 

a tree-pattern matching grammar. And with the aid of mature code-generator 

generator tools, dynamic cost-functions could be modelled as well. Though the 

code quality is not totally comparable to hand-optimized code in this approach, it 
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did extricate NP programmers from diverse architectural complexities. And by 

taking this path it is able to generate a primitive but integral ―compiler‖ in terms 

of its classical definition. 

Instead of conforming to ANSI C language rigidly, in [ 24 , 25 ] a novel 

programming language Baker was proposed as part of the NP compilation 

framework named Shangri-la. The framework consists of a hierarchical compiler 

and an adaptive run-time system in addition to Baker. Baker is designed to be a 

modular, packet-processing-oriented, C-like interface, and Shangri-la takes the 

responsibility to automatically target Baker programs at heterogeneous platforms 

via the specially optimized compiler and runtime resource management. The 

compiler itself leverages a lot of code base from the ORC project [26], originally 

targeting Itanium family but innately re-targetable with well-defined annotated IR 

named WHIRL. Most of the Shangri-la components are therefore independent of 

specific hardware. The front-end Baker, and the profiler inside it, and a 

full-fledged pipeline module are all portable at the expense of slight modifications. 

As for the back-end, i.e. the code generator and the runtime system, needs to be 

manually ported by taking the system model as parameters. This framework has 

already been validated, and functioning on IXP 2XXX NP family. Though it is 

not applicable to test the performance of Shangri-la directly, it is believed that the 

re-targetable model and the general ideas behind it are enlightening when dealing 

with the difficulties of packet processing tasks and managing heterogeneous NP 

architectures. 

2.3.2 Support for Parallel Processing 

Besides specialized processing cores dealing with the packet data, an NP, as stated 

in the introductory section, needs to process large traffic in short time intervals, 

and the architectures are hence preferably to be of a high parallel structure [27]. 

For instance in Intel IXP 2400 NP [28], 8 micro-engines (ME) are installed for 

packet processing, each ME supports 4 or 8 threads and low-overhead context 

switching. Additional co-processors, e.g. Packet Classification Unit, as well as 

multiple hierarchical memory modules are usually included to reinforce parallel 

packets processing in network processing system. The compiler is therefore left 

with the intricate job to manage the heterogeneous resources. A high-level 
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trade-off in allocating the fixed number of processing cores is on choosing either 

parallel or pipelining model, as shown in Fig. 2.5. Note that due to the intrinsic 

parallelism of network applications, or rather independent packets data and/or 

traffic flows, the same task (sub-program) could be run in parallel. It implies an 

optimal scheduling would possibly be a hybrid of the two configurations. Briefly 

NP compilers should take on the burden of program partitioning, resource 

scheduling and data mapping etc. to support parallel packets processing. 

P U P UP U

Pipeline

P U P UP U

Task 1 Task 2,3 Task 4

Parallel

Task A Task B,C Task A

P U
P U

P U

P U P U

Task 1
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Fig. 2.5. Topology of architectural configurations 

Several heuristic approaches have been reported to solve the partitioning and 

mapping problem in a multi-threaded multi-processor environment. Jia Yu 

proposed the Resource Balanced Bi-partitioning algorithm for the program 

mapping to achieve higher peak throughput [29]. Its top objective is to balance 

pipelining through setting appropriate stage numbers. The task graph of a program 

is first partitioned into two by calling r-Balanced Min-Cut procedure, where r is 

the estimated cut_ratio between two partitions. Processing elements are allocated 

in accordance with the execution and communication cost of that stage. A 

recursive partition is then performed until the code size can be fit in one 

instruction memory. Finally, a local refinement is performed in order to migrate 
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tasks from bottleneck stage to non-bottleneck stage. In summary, the time 

complexity of this heuristic is reduced to O(x3). In [30] Ramamurthi et al. also 

adopted a divide-and-conquer approach but particularly addressing memory 

layout and data mapping problem. The sub-tasks of an application are first 

mapped to Processing Engines (PE) following procedures similar to Integer 

Linear Programming (ILP) formulations. Then optimization is performed based 

on the calculated priority of a data item in a task process. Three situations in 

regard to the number of threads supported, data spill and idle time are tackled with 

specific strategies, aiming at maximizing throughput. Another heuristic presented 

by Weng [31] is called randomized mapping, which basically means choosing a 

valid mapping by random and compare its performance to previous results. It is 

testified to be possible to find near-optimal solutions for mapping parallel tasks, 

but naturally the algorithm takes up too much search space and thus low-efficient. 

The similarity shared by all the above approaches is the inclusion of real 

traffic-based profiling phase when building the IR (e.g. task graph) of a program. 

Either analysis of dynamic instruction traces [30, 31] or combination of static and 

dynamic analysis [29] is used for profiling programs. 

2.3.3 Re-targetable Compilers 

Re-targetable compiler contains an adaptive back-end that could be easily 

modified to interface with heterogeneous processors. Such a re-targetable 

compiler framework could be specifically tuned to construct specific NP 

compilers. The Shangri-la compiler [24, 25] is a good example in point. Below in 

this section four other models are reviewed and compared. General information 

about the compilers/platform solutions is given in Table 2.2 below. 

Table 2.2. Comparison of the re-targetable compilers 

 DSL Level ASIP target Partitioning Scheduling 

Shangri-la Baker IXP series Automatic Compiler-Assisted 

PacLang PacLang IXP2xxx Manual Manual 

NP-Click Click & extension IXP series Automatic Automatic 

NEPAL 
C & modular 

template 
Cisco & IXP Manual Manual 

TejaNP C, C++ & extension Many NPs Manual Manual 
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PacLang [32] made effort to abstract away the architecture complexities in source 

code, where application description could be given in a customized, linear, 

strong-typed language. By denoting linear type packets in this language, the 

syntax could be statically checked to ensure that no packet is referenced by more 

than one thread. If such a kind of unique ownership property is enforced, no 

additional locking mechanism is needed anymore. Finally all the linear typed 

blocks are connected to each other through queues and freely mapped to low-level 

architectures. Compiling the PacLang code has been demonstrated on IXP 2400 

with an IPv4 packet forwarding case study, and the program is more lucid in 

comparison with traditional C language. 

Plishker and Shah managed to evolve a programming model ―NP-Click‖ [33]. 

Unlike PacLang or Baker, the programming model is based on Click modular 

router [34] rather than a brand-new grammar and syntax. Click software router 

has been proved competent in industrial practice for efficiently describing 

network applications in a modular way. NP-Click fortifies its capability in 

data-memory mapping, elements-threads mapping and shared resources 

management. The NP-Click itself is implemented in Intel Microengine C [35], 

thus the framework is essentially an extension of Intel C compiler. But the 

framework of the modular elements facilitates the extraction of parallelism; and 

the elements are automatically transformable to task graph. Those innovations 

could be applied to various NP compiler platforms. 

Also featuring modular programming approach, NEPAL [36] was proposed as 

another runtime system for extracting modularization from sequential codes and 

mapping the modules into a variety of Network Processing Units (NPUs). The 

NEPAL converter and optimizer analyse C programs, C++ binaries etc. to 

generate modular codes that could be executed in parallel. The dynamic module 

manager, essentially a runtime environment, then is responsible for controlling the 

overall execution under different underlying architectures and maximizing 

parallelism. This framework has been validated using an ARM simulator where 

two different systems are simulated. 

TejaNP is yet another software platform focusing on portability, performance, and 

ease of use [37]. The model is based on the C language with a minor C extension 
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and empowers users’ capabilities in expressing both software and hardware 

architectures and managing application mapping. The modular elements are 

stitched together then to completely describe the functionality of the application. 

2.4 Energy-efficient Compiler Techniques 

The compiler of a network processor plays a vital role in ensuring machine code 

efficiency. A set of energy-efficient NP compilation techniques is reviewed in this 

section. 

2.4.1 Dynamic Energy Reduction 

Energy-oriented optimization could start from front-end, even at the highest 

source-level to translate tool-generated code or newest algorithm implementation 

written for better readability into energy efficient counterparts. In [38] Yang et al. 

experimented front-end loop transformation, such as loop permutation, loop 

fusion and tiling, and evaluated to find their significant contribution to energy 

reduction in SimpleScalar, a cycle-accurate architectural simulator [39]. 

Inside the back-end part, specific energy-efficient optimizations could be 

performed at nearly all stages. During the code selection stage, one way is to 

attach higher priority to low energy consumption instructions. An example is 

shown in [40] where an algorithm is tailored for laying out local variables based 

on access patterns to take advantage of auto-increment / auto-decrement 

addressing modes available on a commercial NP. Instruction optimizations for 

efficient register files access have been exploited as well in [41], especially in the 

code generation that are capable of optimizing address instructions. Besides, loop 

transformations like unrolling are still tempting at this stage by maximizing 

instruction level parallelism that result in energy reduction [38]. 

During the instruction scheduling phase, special algorithms could be implemented 

aiming at reducing the energy contribution due to the change of operations on the 

datapath. In [42 ] Bona et al. proposed a spatial scheduling algorithm for 

embedded Very Long Instruction Word (VLIW) processors, based on a low-power 

reordering of the parallel operations within the same long instruction by 

considering each basic block of the generated code and rescheduling operations 

within the same bundle(spatially) to minimise the cost function: 
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   on the same lane k . Analogous approach is described 

and validated by Yun and Kim [43] to reduce the step power and peak power 

consumption from performance-critical loop bodies using a power-aware modulo 

scheduling algorithm. In this sense, the step power is defined as the difference in 

the average power between consecutive clock cycles while the peak power means 

the maximum power dissipation during the execution of a whole program. 

Another relevant scheduling technique is Lee’s greedy bipartite-matching scheme 

for horizontal scheduling and a heuristic method for vertical scheduling for VLIW 

architectures [44], especially for achieving the optimal switching activities of the 

instruction bus. 

2.4.2 Leakage Power Control 

Unlike dynamic power consumption, leakage consumption derives from leakage 

current as long as the circuit is on regardless of the switching activities. Thus the 

methods for dynamic power control cannot be applied. A common approach 

nowadays to reduce leakage power is shutting down inactive hardware units, 

though the turn-on and turn-off certainly demand additional hardware-based 

built-in support. Compiler optimization is a key to improve the leakage power 

control benefits, because compiler-based techniques are in charge of data and task 

mapping as well as system resource scheduling. If code and data executing on 

hardware are optimally scheduled to concentrate the workload on a limited 

number of PE, more space can be earned to perform hardware turn-on/off. During 

code analysis phase of compilation, an optimized compiler could find the code 

region where one or some PEs can be possibly shut down at some stage. 

An example following this strategy is illustrated in [45]. Zhang et al. proposed a 

technique that first detects the idling functional units based upon a data-flow 

analysis along the paths in control flow graph. Then functional unit 

activation/deactivation instructions are inserted with regard to estimated basic 

block execution cycles and leakage control strategies. In their approach, two 

leakage control strategies were taken into account, namely input vector control 
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and supply gating. Jia Yu also considered and validated the use of power gating 

strategy to reduce leakage power in NP [29]. When zero overhead is assumed to 

turn on and off a PE, it is quantified that power gating can save much more power 

than clock gating (i.e. reducing dynamic energy solely) for four representative 

network applications. 

2.5 Challenges in Compiler Design and Implementation 

Though many implementations of NP compilers are available at present as 

discussed above, several notable challenging issues are still to be addressed. 

• Easy programming interface for programmers, together with 

packets-oriented code generators for PE 

It is common to encompass specific bit-wise operations in instruction set design of 

PE for most NP units nowadays, like in Intel IXP NP [28]. An efficient compiler 

should optimize its code generation by taking advantage of those domain specific 

instructions like bit-packet addressing, and those arithmetic operations such as 

comparing and modifying fields in the packet header. Needless to say, the 

compiler is even better off to support new high-level languages that are easy to 

learn and use, preferably tuned for network applications i.e. tailored for 

processing packet data. 

• Intelligent program mapping in managing parallel processing resources 

As the NP system tends to employ more PEs on chip to provide parallel 

processing power to keep pace with the increasing network traffic and 

computation complexity, compiler techniques need to be consistently evolved to 

go with the trend. At task level, the strategy of merging and replicating 

applications and mapping them onto mixed pipeline and parallel hybrid 

architecture (i.e. Fig. 2.5) still demands investigation and exploration. 

Furthermore, the efficient utilization and arbitration of heterogeneous resources of 

a NP system, such as co-processors and special hardware accelerators, also needs 

to be further studied. The compiler should be more sensitive or intelligent to 

manage all the processing units. Intelligence and flexibility support are also 

inadequate at high level currently, e.g. it is not an easy job to add/remove 

applications in a multiple application system. For now, usually a complete 
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re-compilation and scheduling have to be done every time the configuration 

changes, which is neither time-efficient nor energy-efficient. 

• Management of packet data in NP memory hierarchy 

Just like compilers for general processors, NP compiler is responsible for program 

data placement in the NP memory hierarchy. But in the absence of a run-time 

system or OS support, NP compiler is even more influential in deciding the 

overall memory performance. Packet data usually exhibit low inter-dependence. 

And for the sake of achieving higher throughput and lower latency, NP seldom 

includes hardware cache mechanism as opposed to general processors. Memory 

management in a packet data-aware approach is certainly a challenge anyhow, 

especially when the NPs need to support various network application functions as 

of now. 

• Energy efficiency in compilation 

Intense power consumption is observed nowadays in NP since more processing 

cores are assembled on a chip and the complexity of packet processing tasks is 

increased in advanced network applications (e.g. Firewall, instruction 

detection/prevention). Innovation in energy-aware compilation techniques is 

deemed promising. Trade-off should be properly addressed among conflicting 

metrics, e.g. throughput, latency and power-consumption, as it is observed that 

optimization solely for one metric is often realized at the expense of others [29]. 

2.6 Conclusions 

Network Processing System family is an example of heterogeneous on-chip 

system with different processor instruction-set architectures, memory hierarchies, 

cooperative hardware accelerators and interconnections etc. Network processing 

application itself exhibits distinct characteristics in relation to packet processing 

as well. The job of programming NPs is thus not wholly complying with 

traditional compilation scenarios, asking for innovative approaches tackling 

NP-specific difficulties. In this chapter, specific techniques for tackling with these 

problems were investigated, from aspects of packet-oriented processing support 

and parallel architecture support respectively [46]. Several challenging issues in 

NP compilation are also pointed out. The compiler could be tuned more efficient 
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by applying specific register allocation algorithm and special code selection 

techniques. Given such a heated issue in embedded system on power efficiency 

currently, novel compilation techniques on energy saving were also reviewed in 

the text. It was observed that though traditional performance enhancement 

methods might not always be beneficial for energy-oriented optimizations, 

classical heuristics and methodologies can be referred to and extended at all stages 

during compilation. 

As energy-efficient compilation and compiler techniques for packet processing 

further develop, the following trends are worth attention: 

• A more flexible compilation model in front-end. It would provide a 

programming interface tuned for packet processing and bit-level operations, 

so easing programmers’ job. The interface could be modular-based for 

conveniently adding/removing applications. 

• A more flexible compilation model in machine-specific back-end. An 

intelligent compiler could choose best code generation strategies among 

different candidate solutions, and/or re-adjust program mapping reflecting the 

changing requirement of performance, code size, power consumption and 

traffic volume etc. 

• The idea of incremental compilation would be incorporated. When new 

applications are added into network processing system, the compiler analyses 

all the tasks and incrementally re-schedules the hardware resources and 

re-maps the program and data. The results should be up to specified metrics. 

• Energy efficient compilation for network processing system will receive more 

attention. Traditional optimization hotspots are still where energy-aware 

techniques can play a part, while constraints are with respect to power 

dissipation instead of performance only. 

• The interaction and trade-off between energy-efficient optimizations and 

those grounded on classical metrics, such as high throughput and low latency, 

awaits further exploration. A balanced point needs to be found. 

• Energy-aware optimizations for NP compiler will be more interesting at 

task-level (besides instruction- or basic-block level reviewed in the thesis), 
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where energy classification of code/data blocks could be examined. 
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Chapter 3 - Analysis of Network Applications 

3.1 Introduction 

In last chapter, it is pointed out that task level allocation of code and data blocks is 

worth investigating, especially for parallel processing optimizations in a 

multi-core network processing system. In order to perform any further 

optimization, it is a prerequisite to obtain a comprehensive profile of the 

application to be deployed. This chapter presents the work on developing a 

compiler tool to characterize the application dependences. The dependences 

information is vital in resolving application partitioning and mapping problem 

which is a sub-domain of task scheduling. The focus of this chapter is on the 

network application analysis in the eyes of a compiler. 

In the internal work flow of compilers, an Intermediate Representation (IR) is a 

data structure used to collect the input information, e.g. the semantics of C code. 

Most of the compiler optimizations would conduct upon a specific kind of IR. 

Classical examples of IRs include the Control Flow Graph (CFG) built for flow 

analysis, Abstract Syntax Tree (AST) employed in syntax-directed translation etc. 

As said earlier, in the context of task allocation problem for network processor 

systems [47], the compiler needs to characterize the dependence profile of an 

application. Previous researches have employed Annotated Directed Acyclic 

Graph (ADAG) [48], basic-block based task graphs [49], general analytical model 

[50], etc. to abstract the applications. However, these representations are generally 

generated from runtime traces of the network applications. From the compiler’s 

perspective, they are not directly applicable. Rather, efficient representations of 

static profiling results are required during compilation. In this regard, Program 

Dependence Graph (PDG) was developed by Ferrante et al. [51] around 1990s; 
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and in [52], it was used as the IR to statically characterize the applications and 

was fed into the task partitioning algorithm. The PDG explicitly expresses the 

dependences of a given program in a graph, and implicitly indicates the 

opportunities for code parallelization. Given its prominent features as an IR, it can 

be used extensively in compiler optimizations for parallel systems like network 

processors systems. A compiler pass was implemented to efficiently generate the 

PDG in Machine SUIF [ 53 ] compiler infrastructure. The sections below 

summarize the work of the PDG pass implementation and demonstrate its use in 

network applications analysis. 

3.2 Dependence Graph 

In essence, PDG is a form of Directed Acyclic Graph (DAG). It consists of two 

sub-graphs, namely Control Dependence Graph (CDG) and Data Dependence 

Graph (DDG). CDG expresses the Control Dependence while DDG depicts the 

Data Dependence. Its application extends to not only the program dependence 

analysis but also subsequent optimizations on top of it. In this section, the 

terminologies of the graph and definitions used during the dependence analysis 

are introduced before any design and implementation issues are elaborated. 

By definition, program dependence comprises CDG and DDG. One can always 

regard PDG as an integration of those two sub-graphs, each being a self-contained 

component on its own. CDG summarizes control dependence information while 

DDG holds data-dependence links. So in the following text, the relevant 

background of each sub-graph will be dealt with separately. Note as well that, 

PDG can be applied to different levels of the code, i.e. nodes in a PDG may be 

basic blocks (BB), statements or individual expressions (operators). This report 

concentrates on the BB-level since it exposes more program-level features that 

could be utilized in parallelization optimizations, which is much of current 

interest. 

3.2.1 Control Dependence Graph 

A Control Dependence (CD) is a constraint that is relevant to the control flow of 

the program. For example in the three-address code block showed in Fig. 3.1, 

statement S2 and S3 will be executed only when S1 is evaluated to be false. And 

in this case, statements S2 and S3 are control-dependent on statement S1. It is 
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analogous in the BB-level CFG. Conceptually, in the BB-level CFG, node Y is 

control-dependent on X if X has two paths to exit, one through node Y while the 

other does not. Fig. 3.2 depicts such a relationship. 

 

Fig. 3.1. Three-Address code block 

 

Fig. 3.2. Control dependency relations 

The formal definition of Control Dependence is literally given in the following 

procedures. The definition of the Post Dominance in a CFG is given below first. 

Definition 3.1: in a Control Flow Graph G, node V is post-dominated by node W, 

if every directed path from node V to node EXIT contains W. 

With the post dominance given, now control dependence can be formally defined 

as follows. 

Definition 3.2: in a Control Flow Graph G, node Y is control-dependent on node 

X when  

(1) A directed path P from X to Y exists with any nodes Z in P post-dominated 

by Y (P does not include X and Y); 

if a>b goto L1    (S1) 

d = a + b    (S2) 

e = a * b    (S3) 

L1: 

d = a * b    (S4) 

X 

U V 

Y 

Node y is control 
dependent on x 
in the graph 

EXIT 
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 (2) Y does not post-dominate X. 

In other words, a node Y is control-dependent on X if from X there is a branch to 

U and V; from U there is a path to exit that avoids Y, and from V every path to 

EXIT (including V) hits Y (e.g. Figure 3.2). 

The formal definition may seem a little obscure. It is helpful to keep in mind the 

semantic meaning of Control Dependence though. Y being dependent on X 

essentially means that the execution of node Y depends on the result of the 

conditional statement in node X. 

Interestingly, the control-dependence relationship is strongly connected with the 

concept of Dominance Frontier (DF). It is not accidental though, as both theories 

are proposed by the same group of researchers when they are working on 

application dependence analysis [51][54]. Conceptually, DF of one particular 

node is the border between the dominated and un-dominated nodes. It is 

commonly used in construction of Static Single Assignment (SSA) [54], another 

type of compiler IR. The ―interesting‖ link between control dependence and 

dominance frontier is that Y is control-dependent on X if and only if Y is in X’s 

Reverse DF (N.B. Reverse DF is the nodes’ DF in the Reverse Control Flow 

Graph). The theoretical explanation of the relationship is out of the scope of this 

report, so only the conclusion is given here. 

At this stage all the control dependence of one program can be captured in a graph 

representation, i.e. the CDG. The following is the formal definition of CDG. 

Definition 3.3: CDG has an edge from X to Y whenever Y is control-dependent on 

X. 

CDG is built on top of the program CFG, and particularly at BB-level in the 

context of this report. So obviously, the nodes in CDG are the same of the nodes 

in CFG, i.e. Basic Blocks of the program. Additionally, CDG also contains 

special nodes to summarize control conditions, as detailed below. 

Four kinds of nodes make up the CDG, namely start (i.e. root), region, predicate 

and statement nodes. 

Start represents the entry point of the program. It is a dummy node facilitating the 

creation of CDG, usually empty. In the CFG, it is also the starting node but with 
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two edges. The true edge goes to the ―real‖ entry point of the program (BB 

containing instructions) while false edge linking the exit point of the program; 

Predicate nodes usually end with control transfer instructions. They represent the 

True or False conditions to be selected among different control dependence edges; 

Statement nodes are those ones comprising pure computations, excluding any 

control information within; 

Region nodes summarize the set of control conditions for subsequent nodes. 

Observation here (and could be verified in theory) is that the statement nodes have 

only one exact parent node and no children in the CDG (i.e. nobody is control 

dependent on them), while predicate nodes have one parent and two children 

linked by edges marked ―T (True)‖ and ―F (False)‖ respectively. As for the region 

nodes, they could have multiple children and multiple parents in the CDG. Start 

node has no parent but could have multiple children. Finally by definition, the 

targets of edges originating from predicate nodes must be region nodes. 

3.2.2 Data Dependence Graph 

The definition of Data Dependence (DD) is not that straightforward as for CD, 

and it is varied in different contexts and applications. Hence, the Data 

Dependence Graph (DDG) would not be formally defined in a way that any kind 

of DD edges is incorporated as part of the DDG. Usually, different forms of 

dependency graph comprise assorted combinations of load and store 

dependencies, def/use dependencies, loop dependencies etc. 

In a larger sense, typical data dependence information includes def-use 

(flow-dependence or true dependence), anti-dependence, and output-dependence, 

as depicted in Fig. 3.3. Only the DD that is meaningful to the work will be 

elaborated. With regard to the problem of analyzing the communication cost 

between tasks, the def-use data dependence is of particular interest. 

 

Fig. 3.3. Classification of Data Dependence 
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Def-use DD (i.e. the true dependence) denotes the data flow from node M to N by 

assignment at M and use at N. The way to capture the DD in a graph 

representation is to make use of the SSA form. 

SSA is an intermediate representation introduced by Cytron [54]. Three forms of 

SSA are described in literature, namely Minimal SSA, Pruned SSA and 

Semi-Pruned SSA [55]. 

The minimal approach is named in terms of its time consumption, as it requires 

less time to compute. But it may insert lots of dead phi-nodes, i.e., one that define 

names that aren't used later; 

The pruned approach corrects that flaw by doing liveness analysis to avoid 

inserting dead phi-nodes. It therefore saves space, while at the expense of doing 

data-flow analysis that might not otherwise be needed; 

The semi-pruned approach is based on the observation that many 

compiler-generated temporaries are never live across a control-flow edge, i.e. 

local to a single basic block. Thus, they never require phi-nodes. Semi-pruned 

SSA form uses this observation to eliminate many of the phi-nodes that exist in 

minimal form and avoid performing the liveness analysis needed for pruned SSA 

form. 

The SSA form greatly simplifies the def-use analysis for symbols at BB-level 

since each variable has only one definition. The space and time to compute the 

def-use chain in normal CFG would be a quadratic blow-up. But in SSA, the 

def-use is essentially a link rather than a chain. For nearly all realistic programs, 

the size of SSA is just in linear relation to the original CFG. 

3.2.3 Program Dependence Graph 

PDG is a graph IR that is strongly related to the concept of CFG, the classical 

graph IR. As the same in CFG, the instructions are grouped together at the 

Basic-Block (BB) level. In a BB, the first instruction is the only entry point in the 

control flow, while the last instruction is the only exit point. Thus CFG represents 

the control flow with its nodes being BBs and its edges being the path of the 

control flow. 



Chapter 3- Analysis of Network Applications
 

 33 

The very basic kind of CDG is also composed of BBs. However, its edges now 

represent the Control Dependences. As explained earlier in the section about CDG, 

control dependence (CD) is an abstraction of the execution order. For example, 

node x in the CFG (i.e. BB x) ends with a branch instruction and hence has two 

paths at the exit point of the node. If node y (i.e. BB y) will be executed only 

when the control flow goes through the true path at the exit of node x, it is said 

that the node y is Control Dependent on node x on the true edge. Correspondingly 

in the CDG, a directed edge is added from node x to y, labeled with a control 

condition, e.g. true in this example. After this initial generation of CDG, the 

region nodes are inserted in the second phase to represent a set of control 

dependences. For instance, if node y is control-dependent on node a on the true 

edge and on node b on the false edge, a region node R1 is created to hold the 

control dependences of <aT, bF>. The node y is made to be control dependent on 

the newly created region node R1 only. 

As for the DDG, its nodes are still BBs. The edges now represent the data 

dependences. If an instruction in basic block y uses a variable that is defined in 

basic block x (i.e. a def-use chain exists between different basic blocks), it is 

defined that there is a data dependence edge between x and y. It is also assumed 

that the weight of the edge is same with the number of such def-use chains across 

two basic blocks. In the DDG, the edges are labeled with the weight. 

The PDG can then be easily constructed by combining the CDG and DDG 

together. Since the nodes of both graphs are largely the same (i.e. BBs), with a 

few additional region nodes in CDG, the merge process is straightforward. 

3.3 Design of PDG Generators 

As explained in introduction, the PDG has two sub-graphs CDG and DDG. In this 

section, the algorithms for constructing CDG and DDG, the specification of the 

PDG class and the explanation of its fields and methods will be given. 

3.3.1 Graph Construction Algorithms 

Firstly the algorithm for the construction of the CDG is introduced. There are two 

options here, namely, 

Method 3.1: Follow Ferrante’s canonical algorithm described in [51]. 
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Method 3.2: Calculate the reverse dominance frontier, and CDG has edge x -> y 

(i.e. y is control-dependent on x) whenever ][' yDFx G  (i.e. x lies in the reverse 

dominance frontier of y). 

Table 3.1. CDG construction algorithm 1 

INPUT Control Flow Graph 

STEP 1 Augment the CFG with an empty (dummy) starting node. 

STEP 2 
Compute the post-dominators of each node and construct the 

Post-Dominator Tree (PDT) of the CFG. 

STEP 3 
Define an edge set S. Each edge E=(A,B) in the CFG and B is not an 

ancestor of A in the PDT is added to the set S. 

STEP 4 
For each edge in the set S, find least common ancestor L of A and B 

in the PDT. L should be either A or A’s parent in PDT. 

STEP 5 
All the nodes on the path from L to B (except L if L is A’s parent) are 

control-dependent on A. 

STEP 6 Add the region nodes. 

OUTP

UT 
Control Dependence Graph 

Table 3.2. CDG Construction Algorithm 2 

INPUT Control Flow Graph (G) 

STEP 1 
Add a new dummy predicate entry-node start to G, with its ―T‖ 

edge running to the original entry and its ―F‖ edge to exit. 

STEP 2 Let G’ be the reverse control-flow graph. 

STEP 3 Construct the dominator tree of G’. 

STEP 4 Calculate the dominance frontier DFG' of the nodes of G’. 

STEP 5 The CDG has edge x->y whenever ][' yDFx G  

OUTPUT Control Dependence Graph 

Note that, these two methods are theoretically identical as it was explained in last 

section. Under Machine SUIF infrastructure, method 2 tends to be more 

straightforward because it has provided a Control Flow Analysis (CFA) library 
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with reverse dominance frontier calculated off the shelf. Both methods are 

included in my generator though, to best illustrate the complete algorithms. 

The elaboration of the first method (building from scratch) is given in the Table 

3.1. A sequence of data structures are generated throughout the process. First of 

all the Post-Dominator Tree (PDT) is derived from the CFG by computing 

post-dominators. Then a candidate edge set is identified in step 4. The 

control-dependence is calculated by finding least common ancestors in PDT for 

the nodes in candidate edge set. The definitions of the data structures used in this 

algorithm have been given in section 3.2.1. 

The procedure of Method 3.2 is outlined in the Table 3.2. This method finds the 

control dependence based on the Reverse DF. The data structures used in this 

algorithm sequentially includes reverse control flow graph, dominator tree, and 

dominance frontier tree. The two methods can converge to generate the same 

CDG because if a node y is control-dependent on node x, then y is in x’s reverse 

DF, vice versa. 

 

Fig. 3.4. IPv4 forwarding application code snippet 

To exemplify the CDG construction, the corresponding CFG, PDT and CDG for 

an IPv4 code snippet are showed below. The C code provided in Fig. 3.4 is 

extracted from a radix-based IP forwarding application. 

  nleft = len; 

  w = addr; 

  sum = csum; 

while (nleft > 1)   

    { 

      sum += *w++;             

      nleft -= 2; 

    } 

  if (nleft == 1) 

    sum += ((*w<<8) & 0xff << 8 | (*w<<8) & 0xff00 >> 8); 

 

/* add hi 16 to low 16 */ 

  sum = (sum >> 16) + (sum & 0xffff); 

  sum += (sum >> 16);                 /* add carry */ 

  answer = ~sum;                        /* truncate to 16 bits */ 

  return (answer); 

} 
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Each basic block is numbered in sequence by its appearance in the CFG (i.e. Fig. 

3.5). Node exit post dominates all nodes since any node has to pass through it in 

execution. So exit always acts as the root node in PDT. PDT exhibits the 

hierarchical post-dominance relations. For instance, BB6 immediately post 

dominate BB5 and BB4. BB4 post dominates BB2 which post dominates BB3 and 

BB1 in turn. PDT showed in Fig. 3.6 clearly illustrates such relational hierarchy. 

Further, edge 4->5 would be added into the candidate edge set as BB5 is not an 

ancestor of BB4 in the PDT. Next BB6 is found to be the least common ancestor 

of BB5 and BB4 in the PDT. Finally it is known that BB5 is control dependent on 

BB4 by the step 5 in Table 3.1, and hence the edge 4->5 in Fig. 3.7 labelled T for 

true. Other edges in the CDG would be identified through identical procedures 

listed above. 

B1:nleft = len;
w = addr;

sum = csum;

Entry

Exit

B2:while(nleft>1)

B3:sum += *w++;            
   nleft -= 2; B4:if(nleft==1)

B5:sum += ((*w<<8) & 0xff << 8 
| (*w<<8) & 0xff00 >> 8);

B6:sum = (sum >> 16) + (sum & 0xffff);
  sum += (sum >> 16); 
  answer = ~sum;            
  return (answer);

CFG

T

T

F

F

 

Fig. 3.5. CFG of the IPv4 code snippet 
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Exit

6

PDT

5

2

1

4

3

Entry

 

Fig. 3.6. PDT of the IPv4 code snippet 

 

Fig. 3.7. CDG of the IPv4 code snippet 

After the construction of CDG, the method for calculating the data dependence 

and the construction of the DDG is briefly introduced. As Machine SUIF provides 

a SSA library and helping routines to transform the compiler IR to and back from 

SSA, the library would be effectively used to gather the data dependence. 

To construct the DDG, the CFG is transformed first to SSA in pruned-form. 

Pruned-form SSA is chosen since it compresses the number of phi-nodes and the 

number of def-use chain as well. The reported data dependence across basic 

blocks in pruned-form would be more accurate than those in the other two SSA 

CDG 
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forms, i.e. no ―artificial‖ dependence brought by value re-numbering and 

phi-nodes insertion. 

In the SSA form, all the def-use chain across basic blocks can be found then. The 

total amount of inter-BB def-use chain represents the data dependence weight. 

Finally the SSA form should be converted back to the original CFG form. 

3.3.2 Classes Design of PDG Pass 

In this section, the design of a PDG pass under Machine SUIF infrastructure is 

explained. As Machine SUIF recommends using its Optimization Programming 

Interface (OPI) model programming, the PDG class is wrapped in a general SUIF 

pass employing the OPI to maximize the substrate-independence. 

+generate_PDT()
+generate_CDG()
+generate_DDG()

PDG

-suif_list<Pdg_node*> _nodes

+pdg_node_type &get_type()

Pdg_node

-suif_list<Pdg_node*> _parents
-suif_list<Pdg_node*> _children

<<uses>>

Pdg_node_stmt

Pdg_node_region Pdg_node_predicate

Pdg_node_entry

<<refines>> <<refines>>
<<refines>> <<refines>>

+bool operator<()

Ddg_edge

-CfgNode *source, *destination
-int weight

+bool operator==()

CDset

-NatSetSparse CDset::_true_CD
-NatSetSparse CDset::_false_CD

<<uses>> <<uses>>

 

Fig. 3.8. Class design of PDG pass 

Consistent with other built-in SUIF passes, the PDG pass is designed in an 

object-oriented pattern. The design model of the classes is given by Fig. 3.8. By 

construction, the PDG nodes could be classified further into types of entry node, 

statement node, predicate node and region node. Each of them is modelled in an 

inherited sub-class of the parent class, i.e. Pdg_node. The dashed lines labelled 

with ―refines‖ in the figure represent this relationship. The CDset class models an 

arbitrary set of control dependences and is used by the Pdg_node class to 

represent the control dependences of a given node. Finally the Ddg_edge class 

gives the data dependence information between PDG nodes. It has a weight 

property to indicate the number of def-use chains, as explained earlier. There is no 

need to have a class to model the CDG edges since the control dependences are 
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implicitly included in the Pdg_node class, specifically by the properties of 

_parents and _children in the class. The anatomy of each class design is included 

in the appendix A. 

3.4 Implementation of PDG Pass 

The algorithm of PDG generation is adopted from [51] and was implemented in 

Machine SUIF compiler infrastructure. 

The class methods of PDG (see Figure 3.8), namely generate_CDG and 

generate_DDG, output the graph results in both a pure text and a graph 

description formats (i.e. .dot files). The description formats files can be fed into 

Graphviz [56] to generate the actual image files, e.g. in JPEG or GIF format. 

The detailed description of the issues in implementation is included in appendix 

B. 

3.4.1 Lessons Learned 

SUIF defines an Optimization Programming Interface for developers to add their 

own passes. Abiding by these OPI, it is possible to separate the algorithm details 

from the substrate IR (i.e. SUIF IR); thus the portability of code and productivity 

of coding are both enhanced. SUIF is also packaged with several built-in libraries 

facilitating control-flow and data-flow analysis. Making use of these library 

functions greatly reduced the workload of implementations. For example in 

data-dependence analysis, the Single Static Form library was used to directly give 

the def-use chains and the only work left is to assemble that information in the 

PDG form. 

3.5 Results 

The PDG generator pass was run on a set of network application benchmarks to 

testify the validity of the pass and to collect the program dependence information. 

A code segment for checking the packets’ integrity, namely the check_sum 

function is analysed first. It is one of the most common operations in packet 

processing systems. The procedure of check_sum is to calculate the 1’s 

complement sum over the packet header octets. It returns true if the results are all 

1 bits. The CFG of the function and its corresponding CDG and PDG output by 
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the generator are given in Fig. 3.9. In the PDG, the edges in solid lines are CDG 

edges while those dashed lines are DDG edges. The round vertices represent the 

statement nodes and diamonds stand for predicate nodes. These two types of 

nodes are also the BBs derived from CFG nodes containing instructions. The 

pentagonal vertices are region nodes that summarize a set of control dependences 

as explained earlier. By the nature of CDG, the set of nodes that are 

control-dependent on the same node, such as node 1 and node 6 in the Fig. 3.9, 

could be executed in parallel, as long as they do not entail any data dependences. 

A set of tests consisting of several sample code snippets were also conducted. The 

results were validated by comparing the generated PDG against those reported in 

[51] [52] and some in compiler textbooks. These tests are not necessarily all 

relevant to the network applications, but the comparison results ensured the 

validity of the developed PDG pass in general. 

 

Fig. 3.9. An example of PDG 

3.5.1 Example Application IPv4 Forwarding 

As a concrete example the pass is run for a trie-based IPv4-packet forwarding 

application. The IPv4 forwarding code was adopted from Packetbench [57]. In 

order to generate the PDG of the whole IPv4-packet forwarding application, all 

the functions are inined. It is common to do so for network applications, since the 

applications themselves are usually small in C code size. 

Firstly the PDG of the code snippet presented earlier in Fig. 3.4 is illustrated 

below in Fig. 3.9. This is the standard output interfacing with backend Graphviz. 
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Round vertex indicates statement nodes, then diamond for predicate nodes, and 

pentagon for region nodes. Edges in solid lines represent the control dependence, 

while dashed ones are for data dependence. 

The major procedures of IPv4 forwarding include building a route table during 

system initialization; checking the packet type (dropping non-IP packet); 

validating the integrity of the packet; checking Time To Live (TTL) field and 

decrementing it; updating the checksum; and finally looking up the destination 

address in the route table to determine the next-hop port. In the experiment, after 

inlining all the major functions, the C code is lowered down to SUIF IR and then 

transformed to CFG IR. And then the PDG generator pass takes the CFG IR as the 

input and generate the PDG of the whole application as the output. Fig. 3.10 

captures the steps through the whole process in Machine SUIF. 

SUIF to 

Machine 

SUIF
C Code

C to 

SUIF

Instruction 

List to CFG

PDG 

Generator
PDG

 

Fig. 3.10. Steps for running PDG pass 

Fig. 3.11 illustrates the generated PDG of the whole packet forwarding 

application. Note that the nodes in round and diamond vertices are basic blocks in 

CFG. Their numbers are consecutive and consistent with their CFG numbers. The 

graph exposes clear hierarchy of control dependences. For example, predicate 

nodes 4, 6, 9, 12, 15, 18, 21, 24 and their respective children nodes are all 

control-dependent on entry node, and have no remaining entangling control 

dependence edges among each other. It means the paths (e.g. from node 9 down to 

node 11 in the figure) could be well grouped together and run independently on 

one processor. The communication cost, though, is given by the data dependences 

edges (i.e. the dashed lines) that connecting any nodes on the path. 
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Fig. 3.11. PDG of IPv4 packet forwarding 

3.6 Practical Use of Dependence Graph 

Previous researchers have employed PDG in various ways in static program 

analysis. In [58], Gong et al. also constructed PDG in SUIF compiler to facilitate 

the logic synthesis. Due to their special application domain, their PDG data 

structure was different from the one presented here, with the SSA form 

incorporated. Rather in my approach, SSA is directly used to collect data 

dependences. The Linda Compiler, a precursor in developing language support for 

parallel systems, also explored SUIF to generate PDG for its internal work flow 

[59]. Their approach is close to mine except that their intended use of PDG was 

for message communication in distributed-memory systems. Moreover, the Linda 

Compiler was based on the old SUIF1 that is superseded by the newer SUIF2 

employed in this work. The two compiler frameworks are not compatible and 

according to SUIF group’s documentation [60], SUIF1 is less flexible in modular 

design and code-reuse etc. The contribution here should be more applicable for 

today’s use. 

In the next chapter, the work on network application partitioning and mapping for 

the network processors systems makes extensive use of the PDG generated by this 

SUIF pass. In [52] an algorithm adopted from Min-Cut Max-Flow problem was 

implemented to take the PDG as the input graph and regard the weight of the 

edges as the flow capacities in the Max-Flow problem. It aimed to minimize the 

communication cost (including both control dependence and data dependence) 

among the partitions and balance the resource utilization of the network 

processors. Indeed, other heuristics solving the partitioning and mapping 
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problems for the network applications should be extensively investigated, and 

other performance metrics may be taken into consideration. 

Besides, the PDG could be used in other compiler optimizations such as efficient 

data mapping in presence of cache system, branch speculation and loop 

optimizations. Experiment will be carried out to verify the validity of the 

optimizations in network processors systems. 

3.7 Conclusions 

In order to perform certain analysis and optimizations in compilers, an efficient 

representation that explicitly captures the control-flow and data-flow dependence 

information of the source code is needed. Program Dependence Graph is an 

example of such representation. The design and implementation of a compiler 

pass in Machine SUIF infrastructure that generates the Program Dependence 

Graph IR is described [ 61 ][ 62 ]. Taking advantage of the Optimization 

Programming Interface programming in SUIF, most part of the pass is largely 

independent of the concrete compiler substrate and thus of highly portability. The 

PDG generated is made up of two sub-graphs, Control Dependence Graph and 

Data Dependence Graph, each summarizing the dependence information 

regarding control and data respectively. 

The generated PDG was used to analyze the dependence hierarchy of network 

application benchmarks. The output of the pass could also be fed into Graphviz to 

get visualized image. In the next chapter, the PDG will be input into the 

application partitioning and mapping algorithms to evaluate the performance of 

different partitioning and mapping heuristics. 
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Chapter 4 - Energy-Aware Program 

Bi-Partitioning and Mapping  

for Packet Processing System 

4.1 Introduction 

In chapter 3, a compiler module has been introduced for extracting program 

dependence information. Dependence information is vitally important for further 

code analysis. This chapter explores an energy-aware approach for program 

partitioning and mapping on to multi-core packet processing systems based on the 

results obtained from the PDG generator. 

As introduced in chapter 2, the main function of a packet processing system is to 

perform packets processing tasks at the network level. The popularity of 

bandwidth-consuming services and real-time web applications (e.g. VoIP, virtual 

world and Internet of things etc.) has already made the traditional routers with 

simple store-and-forward structures obsolete. To meet the market demands, the 

multi-core platform has grown to be the de facto standard today, in terms of both 

the vendors’ choices and researchers’ focuses. The system architecture can be 

built upon general purpose processors such as the Intel x86-64 Xeon [63], or 

RISC-based network processors like Cavium’s OCTEON [64] and NetLogic’s 

XLR processors [65], or FPGA-based chips, for example, the NetFPGA project 

[66]. It is a natural choice for deploying packet processing applications on 

multi-core system since the packet parallelism can be easily exploited by core 

replication. Moreover, as the processing cores can handle a number of varied tasks 

at the same time, task-level parallelism can be better achieved in a multi-core 

environment. 
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Programming in a multi-core platform however implicates several daunting issues 

that are not obvious or are non-existent in a single-core processor [67]. This 

chapter looks into two of the most prominent, yet correlated, problems. The first 

challenge is how to schedule the miscellaneous tasks in the parallel processing 

cores; the second correlated challenge is how to control the overall system energy 

consumption under a reasonable budget. State-of-the-art network packet 

processing cores, such as OCTEON CN58XX, feature fast parallel processing 

units and hierarchical memory sub-systems. When developing applications on 

such a platform, either the programmer or the compiler has to know how to 

partition the parallel tasks and map them onto the processing cores. In theory, 

multi-core architectures can be configured into one of three topologies, namely 

pipeline, parallel or a hybrid of the two [49]. Fig. 4.1 illustrates a hybrid 

scheduling topology, where in stage 2 the cores are run in parallel and the three 

stages are run in pipeline connected by FIFO queues. The task mapping is flexible 

enough; however, how to obtain an optimal solution for a given set of applications, 

limited processing cores and performance / latency metrics is still an open 

question. 

Processing

Core Processing

Core

Processing

Core

Task 

1

Task 2 Task 3

Task 4

Task 5

Queue Queue

Stage 1 Stage 2 Stage 3

 

Fig. 4.1. Overview of multi-core packet processing system 

Another prominent issue accompanying the wide adoption of multi-core systems 

is their greater hunger for processing power [68]. When deciding the architectural 

topology and scheduling the tasks, it is important to find a comprehensive method 
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that includes both consideration of the system energy consumption and throughput. 

While it is easy to scale up the number of cores and hence the productivity, it is 

sometimes a self-contradictory goal to increase both the power-efficiency and the 

overall multi-core performance. 

This chapter proposes an integrated approach by extending the traditional 

bi-partitioning algorithm (Bi-Par) [69] in program partitioning and mapping to 

consider the trade-off between energy consumption and system scalability and 

versatility. The specific contributions the author makes include: 

1. The author proposes methods for deploying multiple network applications on 

a multi-core network processing system based on program partitioning and 

task-to-core mapping. The algorithm takes both performance and 

energy-efficiency related metrics; 

2. The author develops a generic framework with performance and power 

models to evaluate the multi-core packet processing system. The system can 

be configured in parallel, pipeline or hybrid mode in a flexible way; 

3. The author gives the analysis of the proposed approach in respect of 

energy-consumption and system throughput; 

4. A comparison with other related work is also presented. 

The focus of the chapter is on its branch of Bi-Par. To the best of the author’s 

knowledge, this is the first work on extending Bi-Par and program mapping with 

energy-saving considerations. The remainder of the chapter is organized as 

follows. Section 4.2 explains the application model and formally defines the 

problem it is solving. Section 4.3 describes the Bi-Par and task mapping algorithm 

for task allocation and scheduling in a multi-core packet processing system, 

together with a discussion of related approaches. Section 4.4 gives the results of 

comparison between the Bi-Par branch and other approaches. Finally section 4.5 

concludes the work on this topic. 
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4.2 Preliminaries 

4.2.1 Problem Statement 

The PDG detailed in chapter 3 is used as the task graph to characterize the 

network applications. The instructions of a program are grouped together to form 

a task by consolidating those instructions within the same Basic Blocks (BB). The 

control-flow of instructions and data-flow of variables are both categorized as 

dependency among the tasks. Besides dependence information, it is possible to 

augment PDG with runtime profiling statistics. Fig. 4.2 shows an example of the 

augmented PDG generated the compiler module the author develops. The 

additional portfolio it possesses is block execution time, instruction sizes and 

branch frequency. 

 

Fig. 4.2. Augmented PDG 

As said in last chapter, the round nodes contain only non-branch statements, while 

diamond nodes have branch instructions at the exit. Node weight (as depicted by 

instr_size in the Fig. 4.2) is equal to the number of instructions each node contains. 

As for the edges, green ones depict control-flow dependency and red ones show 

data-flow dependency. Green edges can be labelled as ―True‖ or ―False‖ and the 
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red edges labelled with number of data transmits. The weight of the edge is equal 

to the communication cost to transmit the dependency. 

Now it is to define a generic multi-core packet processing system that the 

application model (PDG) will be mapped onto. Let N be the number of available 

processing cores and each core’s instruction store size is     . N cores can be 

configured freely in pipeline or parallel fashion like in Fig. 4.1.  Suppose the 

pipeline has T stages, and in stage i the number of cores used is    , then 

∑   

 

   

                                                             

In a stage, the packet latency will be determined by the sum of three factors, 

namely computation time, communication time between two stages, and memory 

access time of each stage. In this work the performance is measured from a 

system’s viewpoint first, i.e. the system throughput. 

If a task is mapped by duplication into M cores in one stage, one can take the 

effective computation time as a division of actual stage time by M. Multiple tasks 

can be mapped onto different cores in one stage, so the overall stage computation 

time and memory access time is subject to the slowest task. Suppose there are W 

tasks mapped onto one stage, then the effective stage time will be 

             
 (      

 )        
 (     

)                             

where 

      
   

      

 
                                                     

The system throughput is decided by the slowest stage in the pipeline, so 

           
 

      
 (      )

                                     

and D is the pipeline length. 

As for the energy consumption (E), consider the classical equation 

                                                              

for the computational cost.    is a task-processor dependent factor and V is the 

voltage neither of which are considered within this paper. But the cycle runtime C 

is relevant here. And the energy efficiency (Eff) is measured as 
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Instead of reducing the computational energy cost directly, this chapter focuses on 

improving the energy efficiency. Due to scheduling constraints (dependency) and 

inter-task communication delays among the cores, it is not straightforward to 

simply raise the ratio of packets per cycle. The energy consumption of memory 

interfaces and inter-stage communication should be taken into account also. The 

details will be visited when discussing the simulation model in next chapter when 

the evaluation model is discussed. 

The formal definition of the problem the author is solving is as follows. Given 

     network applications described by a PDG task graph and N processing 

cores that can be configured in a hybrid pipeline and parallel topology (subject to 

above constraints and equations), find an optimal task allocation and mapping 

approach that will increase the throughput rate while keeping the power 

consumption under control, resulting in increased energy efficiency. 

4.2.2 Case Study 

For the case study, this section took a typical packet processing system scenario 

with 8 cores, representing the mid-range market product, i.e. the OCTEON 

CN5840, and ran two network applications on the system, namely radix-based 

IP-forwarding (IP-radix) and AES-based IP packet encryption (IPsec).  IP-radix 

is a header processing application while IPsec works on the payload. Because 

there is no dependency between these two applications, they can run in parallel in 

the system.  

The simplest configuration by intuition would be two pipelines in parallel with 

one application mapped to each pipeline. Within each pipeline, four cores run in 

parallel. Theoretically, the throughput could be 8 times higher compared to a 

single core solution. However, this straightforward task scheduling and mapping 

is far from optimal. The following issues will constrain the overall system 

performance dramatically: 

1. The computational need for the two applications varies considerably. A 

profiling run with a single core simulator [39] showed that the total 
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execution time for IPsec is 15000+ CPU cycles, whereas IP-radix counts 

for only 4000+ cycles. If configured as above (with 2 pipelines and 4 cores 

per application per pipeline), the output interface has to wait for the 

payload processing to finish, so the throughput will be much undermined; 

2. Many network processors have a limited instruction memory for each 

processing core. The code size of IPsec is 3833 and IP-radix is 1551.It is 

likely that for some systems (e.g. Agere APP550) one core cannot hold the 

entire instruction base and the task has to be divided into pipelines; 

3. In the pipeline configuration, it is desirable that each stage has 

approximately the same processing time so that very few core cycles would 

be wasted. But how to evenly distribute the processing time is not explicit 

without any profiling analysis. It is easy to fall into the trap of simply 

greedily feeding each core’s instruction store. 

Table 4.1 shows a partitioning and mapping example for running the combined 

IPsec and the IP-radix applications with the system resources as described. The 

configuration described in Table I produces the highest throughput as indicated by 

the proposed Bi-Par and also by manual tuning. PE is the number of processing 

cores, I denotes the number of instructions mapping to the stage (with Imax 

restricted to 2000, simulating conventional network processors) and C means the 

effective core cycles each stage would take. As explained previously IPSec is a 

computation-consuming application and is accordingly allocated 4 parallel cores 

in the first stage to reduce the effective core cycles. 

Table 4.1. A partitioning and mapping example 

Stages Resources 
Applications Parallel Cores 

IPsec IP-radix IPsec IP-radix 

1 
Imax=2000 

PE=5 

I=1973 

C=2645 

I=812 

C=2121 
4 1 

2 
Imax=2000 

PE=3 

I=1860 

C=2245 

I=699 

C=1986 
2 1 
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4.3 Program Bi-Partitioning and Task Mapping 

4.3.1 Base Algorithm 

The decision problem formulated in section 4.2 is NP-complete [70]. To solve it 

the author adopted a divide-and-conquer heuristic, namely program bi-partitioning 

and recursive task mapping. The base algorithm is an application of the classical 

max-flow min-cut problem from network flow study [71]. The PDG is augmented 

as described in Fig. 4.2 to be a flow network with dummy entry and exit nodes. A 

min-cut will partition the graph into two sub-sets where the connecting edges 

would incur minimum flow values. In the case of PDG, this means that the edges 

with lowest dependency weight between two sub-tasks will be chosen. The 

workflow is given in Fig. 4.3. A detailed explanation of each step is summarized 

in Table 4.2. 

Recall the equations that were deduced in section 4.2. The system throughput is 

determined by three factors, i.e. communication cost, computation cost and 

memory access time. The min-cut ensures that the algorithm always tries to 

minimize the communication cost. The balanced-weight property guaranteed by 

the step 3 in Fig. 4.3 ensures that the pipeline is evenly loaded so that very little 

overhead would be wasted in synchronization. There is of course certain 

trade-offs between finding minimum communication cost and balancing the 

pipeline. A deviation factor   is adopted to allow a flexible exploration between 

the two goals, as detailed in Table 4.2. The cutting ratio   is measured by the 

weights between two cuts, and can be used to find an arbitrary number of cuts of 

the original program by recursively running the Bi-Par. 

After allocating the sub-tasks as indicated by the PDG cuts, one can assign each 

task with appropriate computation resources. In the proposed model, the nodes 

weight represents the computational needs (in terms of core cycles) and the edges 

weight labels the communication needs (interconnects between cores). So the 

author assigns each task with the number of cores in proportion to its nodes 

weight and the number communication interconnects in scale with the PDG edges 

weight. 
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True
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Fig. 4.3. Base recursive bi-partition algorithm 

Table 4.2. Steps in recursive bi-partition 

INPUT Flow Graph,  ,  

STEP 1 Identify the start and terminal node 

STEP 2 
Find a min-cut that bi-partitions the network into X and X’. Let W 

denotes the weights of X, and W’ for X’ 

STEP 3 If     )                 , then terminate 

STEP 4.1 If            , then collapse all nodes in X to start node 

STEP 4.2 Select a node in X’ and collapse it to the start node as well 

STEP 4.3 go back to step 2 

STEP 5.1 If            , then collapse all nodes in X’ to terminal node 

STEP 5.2 Select a node in X and collapse it to the terminal node as well 

STEP 5.3 go back to step 2 

OUTPUT Two balanced cuts 
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4.3.2 Energy-Aware Extension 

The algorithm described in Fig. 3 only takes throughput performance into 

consideration and aims solely at increasing throughput. However, as discussed 

before, the energy consumption cannot be overlooked nowadays especially with 

the increasing number of cores on chip [72]. So the author extended the original 

algorithm with refinement steps using power-related data to increase the 

energy-efficiency. The data I profiled mainly contains: 

1. The average energy consumption on each processing core - Recall that: 

         . Since V is constant here and    is not modifiable, its 

number of cycles (C) for a given task is profiled together with the respective 

energy consumption on each core; 

2. The energy consumption on interconnects - It comprises two parts, i.e. 

leakage energy as a function of running cycles and dynamic power related to 

the number of dependences between tasks on different cores; 

3. Energy consumption in memory interfaces. 

Energy-Aware Bi-Par Algorithm 

Input: task graph G(V, E,   ,  ),  list of possible cores 
numbers 
Output: task mapping matrixes; 

1: for each number of cores N 
2:     Bi-Par (G, N) 
3:     Compute stage time and energy consumption for 

two cuts respectively,   ,   ,   ,    
4:     for each boundary nodes    
5:         try migrate    to the neighbour cut 
6:         re-compute   

 ,   
 ,   

 ,   
  

7:         if
     

  
    

  
  
    

 

     
then 

8:             update the cut 
9:               =  

 ,   =  
 ,   =  

 ,  =  
  

10:         end if 
11:    end for 

12:    allocate cores based on cut_ratio   
13:    if pipeline not even or code size > limit 
14:       Bi-Par (Gi, Ni)  /* recursive bi-par*/ 
15:       same migration trials in recursive bi-par 
16:    end if 
17:    for the number of stages S, record the task 

mapping in a matrix M[S,N] 
18: end for 
19: return (M1[S1,N1], M2[S2,N2]…Mk[Sk,Nk]) 
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During the task partitioning, each node’s weight is collected in terms of both 

execution time and total energy. In the task mapping, the algorithm iterates over 

the sub-tasks residing at the edges of the graph between cuts, migrate each of 

them to neighbouring cores and find out which migration would reduce the 

product of stage time (in cycles) and energy consumption (in Joules) the most, 

thus improving the energy-efficiency as given in Equation (6) (line 4 to 11). 

The intuition behind the refinement heuristic is that by migrating boundary nodes, 

a large search scope is available for optimizing energy-efficiency at the cost of a 

small throughput sacrifice. The proposed technique tries to identify any groupings 

of nodes with uniform memory accesses in order to minimize memory interface 

leakage.  Interconnects leakage power is saved by turning off interconnects 

within un-balanced pipeline. 

4.3.3 Other Approaches 

A vast array of literature exists in the area of task allocation and mapping for 

multi-threaded and/or multi-core system [73][74][75][76]. As the focus of this 

work is on network processing applications, this chapter compares the proposed 

approach mainly with the studies in the networking area. 

The early work proposed by Weng [31] employed randomization in program 

mapping. The tasks are randomly allocated to processing cores without violating 

dependency constraints. All valid mappings are recorded and the one with best 

throughput is filtered out in the second phase of the strategy. Near-optimal 

mapping is not guaranteed especially when the iteration time is limited. 

Another heuristic described in [49] is based on greedy algorithm. It packs the task 

by filling one processing core with basic blocks until the instruction store is full. 

However, it does not take communication cost into consideration; so the mapping 

quality could be sub-optimal.  

The work described here resembles the approach discussed in [52] most. Yu et al. 

also adapted Bi-Par for network processors. Their refinement focuses on 

throughput optimization and does not include energy awareness. In the 

experiments, the results are compared against these three approaches [31][49][52] 

and give a comprehensive comparison analysis. 
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In [77] Kuang and Bhuyan took power budget into consideration for task 

scheduling in packet processing system. However, their approach is based on 

Dynamical Voltage and Frequency Scaling (DVFS) which needs hardware support. 

Additionally, their method reduces power by extending the computation time, 

rather than optimizing energy-efficiency. In this regard, it is not fair to compare 

with their approach in this chapter. 

4.4 Performance and Energy-Consumption Evaluation 

To validate the proposed solution, the author implemented a simulation framework 

to allow easy and large design space exploration. It has the performance and energy 

models respectively. In this section the experiments will be described and the 

collected results using the proposed models will be discussed. 

4.4.1 Testbench Framework 

The author extended the SUIF/Machsuif compiler [78] with new passes that 

perform code analysis, PDG generation and Bi-Par mapping. Fig. 4.4 depicts the 

brief components and workflow of the test-bench. The application is first profiled 

with Halt passes provided by Machsuif [78] and the task graph with profiling 

analysis is fed into the PDG generation pass. The PDG module will collect all the 

information in an internal augmented PDG. Then program partitioning and 

mapping is carried out over the PDG. Task mapping results are input to the 

simulator to give performance and energy results. This process can be recursively 

executed to conduct comparison and optimization for a given application or a set 

of applications. 

Lower
Instrument

etc.Source Code
Profile

PDG
Pass

Simulation

Need
Optimization?

Binary Task Graph Config

No

Results

Yes

Analysis

 

Fig. 4.4. Experiment Framework 
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4.4.2 Performance Results 

In the system-level, the total throughput of a network processing system is the 

decisive measurement of the performance. However, the individual packet latency 

is also an important factor in many applications, e.g. real-time streaming). For 

comparison, the framework is used to evaluate three other approaches from the 

literature described in section 4.3. The benchmark applications are LC-Trie 

IP-forwarding, IP packet encryption (IPsec) and Port-Scan adopted from 

PacketBench [57]. The core frequency was set to 2GHz. Both memory access 

time and interconnects transmission time are assumed to be one unit of clock 

cycle. 

Table 4.3 shows the throughput measurements for different combinations of the 

three applications with different numbers of processing cores. Since the code size 

limit is seldom a bottleneck for modern multi-core network systems, the number 

of pipeline stages in the evaluation were short. Thus the even number of cores is 

preferred to enable parallel processing across pipelines. In Table 4.3, application I 

is LC-Trie, II is IPSec, and III is Port-Scan. For all of the applications, the 

proposed energy-aware Bi-Par exhibits good scalability as the number of cores 

increase. The throughput gain is greater than double when cores are added from 8 

to 16 and upwards. This is due to the free migration of tasks that have high 

communications cost between pipelines when processing resources are abundant.  

Bi-Par favours communication-heavy applications over computation-heavy ones 

since the base algorithm minimizes inter-stage communication cost. The 

throughput increase from 16 to 32 cores for PortScan is 269% while for IPsec is 

244% in this case. 

Table 4.3. Throughput for combinations of three applications on multiple cores 

 
Ⅰ Ⅱ Ⅲ Ⅰ+Ⅱ Ⅱ+Ⅲ Ⅰ+Ⅲ Ⅰ+Ⅱ+Ⅲ 

2 Cores 0.56 0.18 0.11 0.11 0.05 0.07 N/A 

4 Cores 0.91 0.33 0.28 0.18 0.11 0.12 0.04 

8 Cores 1.65 0.75 0.6 0.41 0.39 0.41 0.12 

16 Cores 3.78 1.98 1.43 1.12 0.88 0.9 0.41 

32 Cores 8.75 4.85 3.85 3.1 2.12 2.43 1.45 

To avoid any potential bias, LC-Trie plus IPsec were used in the performance 

comparison experiments. Fig. 4.5 illustrates the results when 16 cores are used for 
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mapping the two applications. By varying the number of stages, it is simulating 

different requirement for task code sizes. The proposed approach (BiPar-E) shows 

33.1% throughput improvement over greedy in a 2-stage pipeline and 50.7% over 

randomization in a 4-stage pipeline. Randomization requires very large search 

space as discussed. When the pipeline is longer (i.e. more applications) and search 

time is predefined, it is hard to reach a good mapping. The energy-aware 

extension brings an average of 10% throughput decrease compared to Bi-Par 

without migration. It will be revisited with energy consumption data to validate if 

the efficiency is improved. 

 

Fig. 4.5. Throughput comparison by number of stages 

Fig. 4.6 summarizes the individual packet latency comparison for the three 

benchmark applications. For LC-Trie, four approaches generate similar results. 

For the other two applications, the latency difference is within 10% margin among 

the four approaches. And the proposed extension involved a slight 5% increase on 

average. A safe conclusion is that the energy-aware Bi-Par would not sabotage the 

individual packet latency even if system throughput is optimized for. 
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Fig. 4.6. Latency comparison by applications 

4.4.3 Energy Results 

The energy efficiency of the proposed algorithm is measured as the system 

throughput divided by total energy consumption (in Joules). The runtime power is 

usually an important indication of the energy-efficiency. However, traditional 

techniques such as DVFS just try to reduce power at the expense of longer 

runtime cycles. The total energy consumption could be well the same if not more 

in that case, implying that the energy-efficiency is not improved. Here the energy 

data from an efficiency perspective is organized as depicted in Fig. 4.7. The bar 

graph shows the total energy consumed by processing one million packets with 

three benchmarks respectively and in increasing order by the number of 

processing cores. The trend-line illustrates the energy-efficiency by graphing the 

throughput (in mpps) over energy consumption (in Joules). In all benchmarks, the 

energy-efficiency is clearly on the rise as the number of cores is scaled up. It 

proves the energy-aware Bi-Par to be particularly beneficial in a large system with 

dozens of processing cores. For LC-Trie, 25.4% increase of energy-efficiency is 

noted when cores are populated up from 2 to 16. The corresponding increase for 

IPsec is 168% and 29.4% for PortScan. The dramatic rise for IPsec is majorly 

attributed to the little heat overhead in interconnects and memory interface, 

especially the leakage power (which is considerably larger in LC-Trie). 
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Fig. 4.7. Energy consumption comparison by applications 

To explicitly demonstrate the energy-efficiency gains of the proposed Bi-Par and 

extension, the energy-related data of other three approaches are collected in the 

simulator as well. It used 8 processing cores and set each core’s maximum code 

size to be 2000.  The results are shown in Fig. 4.8. For all the three benchmarks, 

the proposed algorithm not only excels the original Bi-Par without energy-aware 

refinement, but also generates better mappings than greedy and randomization. In 

IPsec, BiPar-E gained 34% energy-efficiency increase by migrating tasks in the 

refinement step. The outstanding gain is mainly because the availability of many 

sub-tasks at edges and little back-dependency among them. The power on 

processing core is the decisive factor for IPsec so the migration can take 

considerable effect. By nature, migration refinement can have little impact on 

memory and interconnects energy consumption except for leakage power. Yet in 

LC-Trie and PortScan an average of 10% efficiency improvement is still observed 

after refinement step. Therefore, the proposed algorithm proves promising and 

advantageous both in terms of scalability and universality. 
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Fig. 4.8. Energy efficiency comparison by applications 

4.5 Conclusions 

The sharp increase in bandwidth requirements and versatility of network 

applications has prompted packet processing systems to widely adopt a multi-core 

multi-threaded architectural design. A challenging issue when programming such 

a system is how to fully utilize the processing power in a pipeline-parallel 

topology. As the power consumption increases, maintaining the energy-efficiency 

of the whole system also becomes delicate. 

In this chapter, the author proposed an energy-efficient program partitioning and 

mapping algorithm for packet processing systems [79]. The approach is based on 

Bi-Par and built into a compiler suite. The algorithm searches for an optimal 

configuration of the pipeline depth and the width of each pipeline stage. Steps 

taken to optimize the performance include iterations over the sub-tasks at the 

pipeline edges, and performing migration of tasks between cores to improve 

energy-efficiency. The author also implemented an evaluation framework to 

simulate the multi-core network processing system in terms of performance and 

energy consumption. The simulation results show that the proposed approach 

improves the energy-efficiency in all three benchmarks by between 8.04% and 

34%, with a marginal loss in throughput in comparison with three other 

partitioning and mapping algorithms, i.e. greedy, randomization and base Bi-Par. 
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Chapter 5 - Performance and Energy Evaluation 

Model  

5.1 Introduction 

As explained in chapter 4, optimal configuration of a multi-core packet processing 

system at the architecture level is the key to maximize the performance and to 

minimize the cost. The author has explored the problem of optimizing 

system-level topology as given in the last chapter. However, it is not 

straightforward to validate the methodology and present quantitative analysis of 

the results without a valid yet efficient simulation tool. The tool needs to feature 

at least two strengths, 

1. It should be easily configurable at the architectural-level so that a large 

number of topologies for a given packet processing system can be simulated 

without much manual intervention; 

2. The simulation speed needs to be fast enough to allow the search in a large 

space with acceptable margin of error. The simulation time should not grow 

exponentially with the number of architectural components (e.g. processing 

cores). 

Existing tools such as NePsim [ 80] and SimpleScalar [39] are either too 

ISA-specific or time consuming. SimpleScalar does include a high-level profiler 

that is quick to execute; however, that profiler would not generate any 

energy-related statistics. With Sim-Panalyzer [81] add-on, it can collect detailed 

and various power data, while the simulation speed drops down to a few hundred 

target cycles per second. That means it would take even a day to simulate a typical 

network application’s runtime that process just thousands of packets in a few 

milliseconds. So the author implemented an analytical simulation framework that 
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satisfies the needs. The framework incorporates both performance and energy 

models. 

This chapter is organized as follows. Section 5.2 elaborates the analytic model of 

multi-core packet processing system in detail, classified by performance and 

energy models respectively. Section 5.3 presents the evaluation results and 

correctness validation results. The chapter concludes in section 4.5 with a 

summary of the work. 

5.2 The Analytical Model 

5.2.1 Motivation 

In Fig. 2.5, three possible topologies of network processors configuration are 

illustrated, i.e. pipeline, parallel and a hybrid of the former two settings. 

Processors run in parallel can execute the same task to properly utilize the 

data-level parallelism or packet-level parallelism which is abundant in network 

applications. It can also be regarded as a type of task duplication [82]. Multiple 

cores can also run in a parallel mode with different tasks. Those tasks would not 

bear any inter-task dependence nor shared resources. In other words, they are 

independent tasks, with little coupling issues with other tasks. In both ways, the 

performance, especially the traffic throughput can be greatly increased by 

employing additional cores to run in parallel. 

Pipeline configuration is also widely employed in network processing system for 

two reasons. One is that compared to data parallelism, the benefits of pipeline 

parallelism particularly apply to data-intensive applications, because it 

significantly reduces the contention for shared resource (e.g. bus, external RAM) 

in a multi-core system. Second reason is due to the rapidly growth of the network 

application complexity, the code size of a large network system usually exceeds 

the instruction store available in network processors. As discussed in chapter 2, 

the network processor is an evolution from ASIC and GPP design. Like many 

lightweight RISC embedded processors (e.g. ARMv5TE), the instruction memory 

on the die is very limited. Table 5.1 lists the memory size of some commercial 

network processors. It can be observed that most processors have instruction 

memory in the range of 1KB to 100KB. As a comparison, the code size 
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requirement of five typical packet processing tasks is listed in Table 5.2. The code 

was derived from PacketBench toolset [57] and manually inlined by the author. 

The code size denotes the number of instructions of that application. From the 

table, it can be seen that the code size of complex packet processing tasks such as 

Portscan has already exceeded the capacity of on chip instruction store. Yet, 

modern packet processing system usually has to take on a good many tasks at the 

same time. That would definitely worsen the problem. In this case, it is nature to 

employ a pipeline of processors to make up the deficiency. This method is similar 

to the idea of software decoupling [83], but not exactly the same in the context of 

network processors. 

Table 5.1. Size of instruction memory 

Network 
Processors 

Instruction 
Memory 

Size (bytes) 

Word Size 

(bits) 

Frequency 
(Hz) 

Number of 
Cores 

Intel IXP2805 8,192 32 1400 16 

Hifn 5NP4G 32,768 32 133 16 

Agere APP550 256 128 266 3 

AMCC 

NP3740 
16,384 32 700 3 

Table 5.2. Code size of packet process applications 

Tasks Description Code Size 

IPv4 Forwarding 1 Trie-based route table lookup 1548 

IPv4 Forwarding 2 Radix-based route table lookup 1551 

Flow ID Flow hashing based on 5-tuple 3632 

Portscan Monitoring abnormal activity 6443 

IPsec AES encryption 3833 

A distinct feature of a network processing system is the flexibility in 

architecture-level configuration, as was stressed in chapter 2. Ideally, given a 

network application, an optimal solution employing a hybrid of parallel and 

pipeline architectures can be found, like the one depicted in Fig. 4.1. In chapter 4, 
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the author has strived to optimize the topology taking both performance and 

energy results into consideration. Yet as explained in section 5.1, the researcher 

would need a simulation tool to quickly get a rough idea whether the optimization 

will really increase the performance, rather than in the opposite way. For such a 

tool, flexibility and speed come in the first place. Then it is for the correctness. 

Bearing that in mind, the author chooses an analytical model and implemented it 

in a mini simulator. The simulator works seamlessly with the compiler modules as 

illustrated in Fig. 4.4. 

5.2.2 Performance Model 

The model accepts PDG as the task graph. The PDG is augmented to bundle with 

profiling analysis information. Thus from the PDG, the simulator can extract a 

number of parameters, e.g. the number of instructions executed on each core, the 

runtime measured in cycles, communication time between stages and the number 

of memory accesses. These parameters can be input to the model together with the 

architectural configurations. The overview of the model is depicted in Fig. 5.1. In 

0[84] Weng et al. described a similar model for evaluating their Annotated 

Directed Acyclic Graph (ADAG) mapping. The author adapted their model to fit 

the PDG partitioning and mapping environment. 
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Fig. 5.1. Simulation model for performance and energy evaluation 

In Fig. 5.1, processing cores represent generic processing units in the data plane; 

interconnects are FIFO-like buffer to transmit the tasks along the pipeline; and 

memory controllers are interfaces between cores and SRAM. 

1) Architectural Parameters 
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The major parameters for architecting the system are: pipeline depth (D), width of 

each pipeline stage (  ,      ), number of memory channels shared by one 

stage of cores (  ,      ), the number of interconnects and the number of 

stages per communication interconnect (I). By setting different architectural 

parameters, the simulator can easily explore the effects of different topologies. 

For instance, given a fixed number of cores, whether a deep pipeline or high 

parallel configuration is favoured can be tested by adjusting D and W accordingly. 

When examining the PDG partitioning and mapping, the pipeline depth and width 

of each stage should also be setup based on the compiler’s mapping knowledge. 

To separate the system specific parameters, the simulator takes a standalone 

configuration file (default to config.cfg) for input. 

2) Task Mapping Specification 

In the performance model, the author re-used most of the information collected in 

the annotated PDG. Since the output of the mapping algorithm already gives the 

number of instructions and cycles of each stage, the compiler module pass those 

values in an array parameter. The number of memory access is also recorded here. 

The dependency across processing cores represents the communication cost and it 

is a bit tricky to adapt when the simulator duplicates a task mapping (making it 

parallel) in one stage. Instead of passing the dependency between stages directly, 

the author expands the array into a     matrix where inter-core 

communication between any two cores can be setup. 

The task mapping specification file is generated automatically by the compiler’s 

Bi-Par and mapping module. 

3) Stage Time and Throughput  

The key metrics of the performance model can be deduced by following the 

equations 4.2 – 4.4. The pipeline stage time is calculated by Equation 4.2 and 

      
 is the number of core cycles divided by the clock frequency (set in the 

architecture file). Memory access time is derived from a Machine Repairmen 

model [84] and communication time is a linear function of inter-core 

dependencies. 
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Finally the system throughput is given in Equation 4.4. Since the proposed model 

is capable of mapping multiple applications, the throughput of each application 

should be summed up to calculate the overall throughput in that case. 

5.2.3 Energy Model 

As the aim is to use the simulator to justify the task mapping quality, an analytical 

model for estimating the power consumption is included as well. The model uses 

a bottom-up method to evaluate the energy data of each component respectively 

and sum them up in the end. 

1) Core Energy 

Core power is dissipated both during idle time and job runtime. The author 

adopted the power data from Intel IXP2805 [3] to estimate the core power with 

respect to the number of active cores and each core’s utilization. IXP2805 is a 

multicore network processor running at 1.4GHz/1.3V from which the proposed 

model can take sound samples. In Table 5.3 the power data for even number of 

cores (in many real cases even number of stages pipeline is optimal [49]) is 

summarized. ―Typical‖ describes the average power consumption (W) 

measurement for 70% core utilization, while the worst case row is for 100% 

utilization. It is observed that a near-linear increase of dynamic power is in line 

with the growth of utilization for the applications given in Table 5.2 in 

Sim-Panalyzer [81]. Thus, when estimating the core energy, each core’s dynamic 

power would be decided by its utilization multiplied by the worst case power. The 

total core power is the dynamic power added to the static power. 

Table 5.3. Core power estimation 

Number of Cores 2 4 6 8 10 12 14 16 

Typical 

(W) 
18.31 19.19 19.72 20.43 21.13 21.84 22.54 23.25 

Worst Case 

(W) 
21.73 22.59 23.45 24.31 25.17 26.30 26.89 27.75 

2) Interconnects Energy 

Interconnects can be viewed as FIFOs between stages for transmitting inter-core 

dependencies as depicted in Fig. 5.1. To compute the power consumed by this 
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component, the simulator also collected static leakage power and average 

dynamic power for conveying one-unit (4 bytes) dependency variable in 

SimpleScalar. With the number of inter-stage dependencies and runtime cycles 

from profiling analysis, it is able to figure out the dependency-related energy 

consumption. 

3) Memory Interface Energy 

The energy consumed on the memory interface is directly related to the number of 

memory accesses which is available from the profiled PDG task graph, as the sum 

of memory reads and writes. The data on leakage power and average energy per 

read / write is extracted from SimpleScalar samples. Briefly, the total data-related 

energy is given as 

                                                            

where    and    are the number of reads and writes on each core respectively; 

   and    are average read / write energy from sampling run; and   is leakage 

power per core cycle.   is the number of runtime core cycles. 

5.3 Evaluation Results 

5.3.1 Correctness Validation 

Being an analytical tool, the flexibility in accepting a variable number of 

architectural parameters and the simulation speed are paramount. However, the 

model has to be validated to give sound results for generic multi-core packet 

processing systems. In the performance experiment, the author runs the network 

applications in Intel Architecture Tool [85] and compare its results against the 

analytical model (i.e. the Mini-Sim simulator). The benchmarking network 

applications are IPv4-trie, IPv4-radix and PortScan. Table 5.4 shows the hardware 

specification that both Intel AT and Mini-Sim are configured to. And the results 

are plotted in Fig. 5.2. 

In the legend of Fig. 5.2, T-AT stands for system throughput collected from Intel 

AT while T-MiniSim is for the analytical simulator. L-AT depicts the individual 

packet latency generated by Intel AT and L-MiniSim is for the latency figures 
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from the analytical simulator. For IPv4-lctrie and IPv4-radix, all the figures that 

Mini-Sim generated are within 15% difference from Intel AT. The most 

significant difference lies in latency values of PortScan. Since PortScan occupies 

a large instruction store, it is likely that Intel AT has some internal thread (context) 

scheduling that results in a larger latency number. Most importantly, the trend and 

inclination between the two pairs of lines are nearly identical, meaning that the 

tool is valid in identifying the impact on the performance from the benchmarks. 

Table 5.4. Testbench configuration 

Processor IXP2800 

Frequency 1.4GHz 

SRAM (on chip) 32MB 

DRAM (external) 512MB 

Number of Cores 16 

 

Fig. 5.2. Performance validation by varying the benchmarks 

Fig. 5.3 gives the throughput and latency data from both tools by varying the 

number of cores for just one benchmark, i.e. IPv4-lctrie. The vertical bars covers 

15% difference margin from Intel AT and it can be seen that except for one case 

in L-MiniSim, all other data Mini-Sim generated fall into that range. The larger 

difference in latency for 2 cores results from less detailed modelling of 

micro-architectural components in Mini-Sim. When the instructions memory is 

denser for 2 core scenario, the inter-instruction latency may have more direct 
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influence where Mini-Sim tends to ignore. However, as can be clearly seen in the 

figure, the trends between the two pairs of lines are again nearly the same. The 

researcher is thus able to use it to explore the impact of different architectural 

settings in a generic multi-core packet processing system. 

 

Fig. 5.3. Performance validation by varying the number of cores 

Now it comes to the energy-related data. The energy consumption by processing 

cores (core), memory (mem) controller and interconnects (ic) are collected 

respectively. As a comparison, the author also implemented the benchmark 

IPv4-Lctrie in Sim-Panalyzer and collected the corresponding energy figures. All 

data has been normalized into SI unit Joule as the total energy consumption for a 

given application is what the researcher really cares.  

 

Fig. 5.4. Energy validation by varying the number of cores 
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Fig. 5.4 illustrates the results in a bar graph. In the x-axis, 2-p means the data is 

collected from Sim-Panalyzer by configuring 2 processing cores up running while 

2-m meant the data is from Mini-Sim. The processing cores take about 90% of the 

total energy consumption in all cases while interconnects usually count for just 

1%. The figures generated by Sim-Panalyzer are generally larger than those from 

Mini-Sim since the analytical model is coarser-grained. Yet again, it is observed 

that the difference is within 15% margin in all settings. As the tool itself is used to 

quickly validate the architectural optimization algorithms, this margin of error is 

acceptable in measuring the effectiveness of the optimizations. 

5.3.2 Simulation Results 

Section 4.4 gives some of the simulation results to compare energy-aware Bi-Par 

and three other approaches using the analytical model. In Table 5.5 it elaborates 

the data Mini-Sim is able to present and compares them to the figures from Intel 

AT and Sim-Panalyzer to run IPv4-lctrie for 10000 packets. Most significantly, 

the simulation time for running the Mini-Sim is on the order of a few milliseconds 

since it is inherently an analytical tool. The Sim-Panalyzer does not support 

multi-core simulation natively. As a comparison, the author adopted an extended 

Table 5.5. Comparison of Mini-Sim and other simulators 

Method Mini-Sim Intel AT/Sim-P 

Cores 2 4 8 16 2 4 8 16 

Throughput (mpps) 0.56 0.91 1.65 3.78 0.51 0.8 1.59 3.43 

Latency (μs) 48.2 22.45 11.12 5.42 65.2 29.3 12.1 5.86 

Energy (Joule) 1.41 2.42 4.08 8.04 1.56 2.9 4.76 9.34 

Sim Time (s) 0.41 0.34 0.38 0.37 1.14 17.17 172.3 N/A 

version of simplescalar to collect the simulation time. Because simplescalar is an 

execution-driven simulator and records many fine-grained statistics, the runtime is 

soaring with the increasing number of architectural components. In the 

experiment, 8-core simulation already took nearly 3 minutes to finish. 

Considering that the actual application just took a few thousand cycles (i.e. a few 
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milliseconds) to finish, the simulation speed is far from fast enough to allow the 

researchers to perform generic topological optimization explorations. 

So drawn from the simulation results, it can be concluded that the analytical 

simulation model and tool satisfy the requirement proposed in section 5.1, that is, 

fast and flexible enough with sound statistics. 

5.4 Summary 

This chapter has introduced an evaluation model for generic multi-core packet 

processing system. The model is analytical and can give both performance and 

energy data for various subsystem components. A mini simulator Mini-Sim is 

implemented based on the model for exploring architectural optimizations 

especially on choosing the best topology among pipeline, parallel and a hybrid 

settings. The advantages of the analytical model over heavy-weight simulators are: 

it is flexible to change the pipeline-parallel topology parameters so it is easy to 

use; the simulation time is extremely fast since it does not actually execute the 

code-path. Yet the profiled statistics is close to those figures that the real 

simulators generate. 

In the experiment, the author validated the correctness of the analytical model by 

running three typical network applications on both heavy-weight simulators and 

Mini-Sim. The performance results are compared between Intel AT and Mini-Sim 

while the energy results are examined between Sim-Panalyzer and Mini-Sim. The 

number of processing cores and the number of pipeline stages are also varied in 

the experiment. In all cases, the relative differences are all within 15%. When 

varying the number of cores, the trend-lines of the output data from the 

heavy-weight simulator and Mini-Sim are parallel on the whole. The simulation 

time totally favours Mini-Sim since it can always finish within a few hundred 

milliseconds. All in all, it is proved that the model and the simulation tool are 

valid and efficient in exploring the architectural optimizations for generic 

multi-core packet processing systems. 
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Chapter 6 - Conclusions and Future Work 

6.1 Summary of the Research 

Packet processing system is a comprehensive solution specifically designed to 

provide the computation power required in today's computer networks. New 

applications could be written to extend the system capability and the number of 

processing cores can be scaled up to avail of the workload parallelism. However, 

such flexibility and processing power cannot be fully utilized without a suitable 

programming environment. The compilation toolset is important in mapping the 

handwritten application onto the multi-core platform. The quality of the generated 

machine code would largely determine the overall system performance in terms of 

packet throughput, individual packet latency, core utilization and energy 

efficiency. 

This research focuses on the energy-aware optimization for packet processing 

systems in a compiler framework. The multi-core packet processing system and 

its major characteristics have been reviewed and the particular issues in 

networking domain are investigated. The work has been carried out on the 

program dependence analysis of network applications, as well as on program 

partitioning and mapping based on the dependence information. To fully achieve 

the computational potential of the multiple cores, the inherent modularity of the 

applications is carefully analysed and the generated modules are mapped onto the 

processing cores appropriately. The multi-core architecture can be configured to 

be parallel, pipelined or a hybrid of both. An extension of Bi-Par for optimizing 

energy-efficiency has also been proposed and carefully validated. In experiments, 

an analytical model which is able to quickly evaluate the effectiveness of the 

optimizations in a large search space is built and a mini simulator is implemented 
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based on it. To the best of the author’s knowledge, this is a pioneering piece of 

work on extending Bi-Par and program mapping with energy-saving 

considerations without much performance loss.  

6.2 Future Work 

Chapter 4 describes the work on energy-aware recursive program bi-partitioning 

and mapping for network processing systems in detail. However, as reviewed in 

chapter 2, there is a vast area to explore in network applications domain for 

compiler optimizations. In this chapter, a couple of topics that could be the 

extension of the existing work are proposed.  

6.2.1 Cooperation with Runtime Management 

The work conducted in chapter 4 took advantage of a combination of static and 

dynamic profile-based analysis. The compiler module of the program dependence 

graph generator collects the communication cost by analysing the control flow 

graph of the program statically. Dynamic information such as the execution time 

and frequency are gathered by profiling the applications with a set of instruction 

traces. All the information is incorporated into an augmented program dependence 

graph. The subsequent optimizations, such as task scheduling and program 

mapping, are performed in turn availing of the graph. This framework is flexible 

enough to include additional program analysis. One way to extend such a 

framework is to interface it with the runtime management of the packet processing 

system. 

By the nature of the network applications, many key profiling results are dynamic. 

For instance, in a level-compressed trie-based routing table lookup task, the 

number of comparisons cannot be determined until the destination address of the 

ingress packet is retrieved. The packet that finds its trie pointer in the tree within 

two branches would consume much less computation power than those traverse 

down to more than five levels. Besides, the traffic is usually dynamic in quantity 

as well over different periods of time. Enterprise network is busy in working 

hours while the volume of packets in home network is low. And the situation 

usually goes the other way around at night. So instead of generating a valid 

processor scheduling and program mapping off-line and configure the system 
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accordingly, to maintain the system’s performance at its maximum, adequate 

management must be made during runtime. The program recursive bi-partitioning 

and mapping described in chapter 4 could be well employed in runtime for packet 

processing system. Nevertheless, the parameters of the model change so fast in 

dynamic traces that a given mapping result can lose its optimality very quickly. 

Moreover, unlike the compiler module executed off-line, very limited resources 

are available for runtime management while the time constraint is of first priority. 

If a refined mapping takes a long time to generate whereas the dynamic traces 

change considerably quicker, it will be pointless to make any runtime adjustment, 

since the new mapping is invalid before it is actually downloaded and up running. 

Further research should investigate the trade-off between time frames to perform 

runtime adjustment and the changing characteristics of the workload. 

Another approach to cooperate with the runtime system is to monitor the power 

consumption online and aim to minimize it by adjusting the configuration 

dynamically. Like the procedures taken to collect the communication cost and 

execution time, given a packet processing system with N processing cores and a 

set of traffic traces, the traffic volume can be classified into several groups based 

on the power consumption. Such information can be recorded by the compiler. 

During runtime, the compiler can bestow the record upon runtime management 

module so that the latter can adjusts the power consumption of the whole system 

accordingly. When the traffic volume becomes low it can turn off processing 

cores to reduce energy consumption and as soon as it detects the increase of traffic 

line rate, additional cores are waken up and restored. In addition to the base 

algorithm presented in chapter 4, other heuristics can also be applied to preparing 

the group of mappings here, such as randomization and greedy duplication. 

6.2.2 Data Mapping 

In addition to the task mapping described in chapter 4, data mapping algorithm 

can also be designed to minimize the energy consumed in data communications. 

The problem of data mapping in a Network on Chip (NoC) has been formalized in 

[86]. A similar model may be constructed for packet processing systems. For 

example, the compiler might auto-detect where to place the route table in an IP 

forwarding application (SRAM or Scratchpad depending on the table size and the 
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available memory), and how to transmit the inter-processor variables in a 

pipelined application (via ring memory or message queue). 

Apart from energy optimizations, the placement of application data also has direct 

and extensive effect on the system throughput and energy efficiency. The 

architecture of a packet processing system with homogeneous multiple processing 

cores and heterogeneous memories is similar to the Non-Uniform Memory Access 

(NUMA) multiprocessor system. In NUMA architecture, the multiple processors 

share a single on-chip bus to connect to the system memory and each processor 

has its own local data storage. The access latency to the global memory is usually 

an order slower than that to the local memory. But the capacity of local memory is 

much smaller than the shared memory. So the former is preferred for storing data 

that is used most often in a program. The compiler can aid on the decision of 

program data placement. Like profiling the control flow and dependence, a 

compiler module is able to record the access patterns of a processor to the 

memory within a given instruction trace. Optimizations could be made by 

migrating elements with high data reusability and similar lifetimes onto the local 

memory. The layout of the data elements can be also optimized in the local 

memory address space to minimize fragmentation. The local memory is also 

designed to take advantage of temporal locality and spatial locality available in 

the program. Within a network application, the loop iterations are not that 

abundant like those in digital processing or scientific computing. Therefore 

careful exploration is needed to evaluate the gains of locality optimizations. 

Moreover, in NUMA system, attention should also be paid to the data consistency 

in the distributed local memory image. Coherence across the local memory has to 

be enforced and maintained by the system at any point during runtime. 

In [87], a framework for exploiting task, data and software pipeline parallelism 

comprehensively was proposed for stream programs. It is interesting to see how to 

combine the aforementioned techniques in a packet processing system as well. 

Currently, the task-parallelism and data-parallelism are extracted individually and 

corresponding partitioning and mapping heuristics are performed solely with the 

knowledge of one or another. The authors in [81] proposed an architecture 

independent high-level programming language to describe the program 
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parallelism explicitly. Other means of representations of the program could be 

utilized to expose the parallelism still, i.e. program dependence graph and task 

graphs. After extraction, the parallelism can be implemented by both hardware 

pipelining and software pipelining. Software pipelining is more flexible to use, e.g. 

it can conduct nearly arbitrary partitioning, at the expense of additional prologue 

overhead etc. This comprehensive framework of parallelism extraction, 

exploitation and implementation is far from complete and vast design space 

exploration is yet in need. 

In the networking domain, Click modular router [78] provides a well-rounded 

framework for the development of new packet processing programs. It maximizes 

the use of modularity in essentially all network applications and assembles a 

router by a combination of packet processing elements. The rich built-in libraries 

with numerous elements empower Click’s functionality and greatly reduce 

development complexity. The task-level parallelism is inherently visible in Click 

design; yet the parallelism has not been taken advantage of. There has been 

symmetric multiprocessing (SMP) version of Click run on Linux kernel, as well 

as an adaption of Click to network processors. Still, the framework could be 

extended to exploit task, data and pipeline parallelism at the same time. This is an 

interesting issue to be delved into. 

6.2.3 Instruction Level Optimizations 

The work conducted currently is at a relatively high abstraction level. In chapter 3, 

the program dependence is summarized based on the basic block of code. In 

chapter 4, the whole program is divided into sub-tasks, and the system schedules 

and maps them onto different processing cores. The coarse granularity in task 

creation is natural because most network applications are inherently modular, a 

feature that is also the basis for the success of Click software router [34]. 

However, the high level optimizations would in no way hinder the employment of 

fine-grained instrumentation. One processing core can be dealt with independently 

after the task creation and mapping. In such a case, traditional compiler 

optimization techniques could still be deployed. 

An early work on instruction level optimizations for scientific applications was 

presented in [88]. It proposed an estimation model that can calculate the energy 
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consumption, code size and execution cycles of individual instructions. The model 

can be even tuned to give the energy estimation of each instruction in datapath, 

cache, memory, bus and clock components respectively. Though the ILP based 

optimizations they proposed are not very flexible, the estimation model is 

promising in further research on fine-grained optimizations, as long as the 

accuracy of the estimation results can be validated. 

Network applications can be classified by functionality into two sub-groups, i.e. 

header processing and payload processing. Most applications fall into one group 

with a few going to both. The computational complexity of payload applications 

is usually much higher than that of header applications. Using profiling 

benchmarks like Packetbench, one can collect the instruction count and pattern for 

a suite of network applications. From previous analyses [57], it is observed that 

the complex payload applications, which require heavy data computation and 

transformation such as IPSec-AES packet encryption, generated considerably 

longer instruction sequences than simple header applications, such as 5-tuple 

based flow classification. However, header applications have much tighter latency 

constraint than payload applications in most cases. And in a network processor, 

certain types of instructions like the conditional branch and floating-point number 

arithmetic are expensive to implement while others may cost much less, such as 

the unconditional branch and bit-level comparison. Given a thorough instruction 

cost and power model, together with an instruction pattern for a given application, 

the compiler can trade some expensive instructions (in terms of instruction latency 

and energy cost) for lighter ones to reduce either latency or power consumption. 

In some extreme cases, the compiler might detect a sequence of self-contained 

costly operations. It may be rewarding to remove them from the code, and repack 

the operations in a separate task which can be dedicated to a hardware accelerator. 

At instruction-level, the compiler could also make use of the special features of 

the instruction set provided by the processing cores. For example, Infineon 

network processors allow sub-word register access of packet bits. And Intel IXP 

micro-engines can find the first bit set in a register using just one instruction. This 

kind of packet-level address access not aligned at the processor word boundaries 

typically does not exist in general processors. Based on the instruction cost and 
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power model, an intelligent compiler would be able to identify the hot spot in the 

hand-written code where these instruction add-ons can be placed to optimize the 

code. 
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APPENDIX A - PDG PASS IN DETAIL 

A.1 PDG Class 

The PDG class is responsible for generating the PDG representation as introduced 

above. The input is a CFG form of the program provided by SUIF. The whole 

process of PDG generation is divided into three main phases, namely, 

• Generate Post-Dominance Tree (void PDG :: generate_PDT(OptUnit*)); 

• Generate Control-Dependence Graph (void PDG :: generate_CDG()); 

• Generate Data-Dependence Graph (void PDG :: generate_DDG(OptUnit*)); 

And each phase is associated with a corresponding class method with the name 

given above. 

To maintain the data structure of the PDG during the generation, the following 

properties should be kept within the PDG class, 

• The set of PDG nodes (suif_list<Pdg_node*> PDG::_nodes); 

• The data dependence edges (Set<Ddg_edge> PDG::_ddg_edges); 

• The hash table used to map the set of control-dependence to the 

corresponding region node (RegionNodeHashMap 

*hash_table_region_nodes); 

• The underlying CFG form. The PDG generation should avoid changing the 

original CFG by all means (Cfg  PDG::*cfg); 

• The Dominance Tree. Here the existing library in Machine SUIF is used 

(DominanceInfo PDG::*d; NatSetDense *_pdom_immd_children); 

A.2 PDG Node Class 

The control-dependence edges are not explicitly maintained in the PDG class. 

Rather, the CD edges are implicitly included as parent-child links of the PDG 

node. The class of Pdg_node is responsible for PDG nodes representation. It has 

three important properties, 
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• The parents of the PDG node (suif_list<Pdg_node*> _parents); 

• The children of the PDG node (suif_list<Pdg_node*> _children); 

• The set of control dependence of the PDG node (CDset _cd_set); 

As for the four types of PDG nodes, i.e. region, entry, predicate and statement, a 

derived class of the PDG node class for each of them is defined. Properties and 

methods specific to that particular kind of node are contained in the sub-class. 

To facilitate the region node insertion in the step 6 of the CDG construction (see 

Table 3.1), the entry node is especially treated as a combination of predicate node 

and region node to some extent (i.e. conceptually in design context but not really 

in theory). That is to say, the entry node behaves as control dependence 

predecessor (like predicate nodes) but has no TRUE/FALSE labelling on the edge 

and it could have multiple children (unlike predicate nodes). The object-design of 

the nodes is, 

• class Pdg_node_stmt: public Pdg_node 

• class Pdg_node_predicate: public Pdg_node{ 

Pdg_node_region* true_child; 

Pdg_node_region* false_child; 

} 

• class Pdg_node_region: public Pdg_node 

Herein, the true_child and false_child implicitly indicates the control 

dependence edges in the CDG. 

The region node does not include any underlying CFG node as its property (the 

*cfg property inherited from the parent node is set to NULL for region node). 

While other pdg nodes are simply labelled with underlying CFG node number, 

another property field is added for region node in the derived class to number it. 

A.3 DDG Edge Class 

The Ddg_edge class is a helper class for PDG class to store the data dependence 

information between CFG nodes explicitly. It has following properties, 

• The source and destination nodes are the two end nodes of the directed edge 

(CfgNode *source, *destination); 

• The weight of the edge (int weight); 
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The field of weight is an integer representing the edge weight of the data 

dependence between the two nodes, as it was defined in section 3.2.3. 

To simplify the DDG graph, only one edge between any two nodes is needed with 

an amounted weight property. So in the PDG class, all the Ddg_edge instances 

are arranged in a C++ set container. C++ set container asks for a ―less-than 

comparison‖ function to perform internal ordering and achieve item uniqueness 

storing. Therefore both ―equality‖ and ―less-than‖ comparison methods are 

defined for Ddg_edge class explicitly based upon the weight property of the 

DDG edge. 

A.4 CDset Class 

The CDset means a bunch of control dependence (may be just one though), so 

the CDset class is responsible for summarizing the control dependence for a 

specific node. For example, if node 2 is control-dependent on node 1’s true edge, 

the CD is denoted as <1T>. A CD set is thus a sequence of the CD, like <1T, 3F, 

7F…> and so on. Its properties include, 

• A flag indicating whether the set is empty or not (bool CDset::_is_empty); 

• A flag indicating whether the edge originates from entry node or not (bool 

CDset::_entry); 

• A Natural Set containing control dependence on a node when the branch 

evaluates to be true (NatSetSparse CDset::_true_CD); 

• A Natural Set containing control dependence on a node when the branch 

evaluates to be false (NatSetSparse CDset::_false_CD). 

The _entry Boolean tells whether the CD set includes the entry node or not. It is 

included because the entry node is treated in a special way in design as described 

above. When it’s true, it means the CDset includes entry node, and otherwise 

false. 

During the region node insertion, the CDset objects are stored in a hash table. So 

it is necessary to provide methods for comparing the object equality and 

calculating the hash value. 

• Comparison methods (bool CDset::operator== (const CDset &cd_set) const); 

• Hash function (size_t suif_hash(const CDset s)). 



 

 82 

APPENDIX B – IMPLEMENTATION OF PDG PASS 

In this section, particular implementation issues in writing the PDG pass are 

explained. The core algorithm, as introduced in the section 3.3, consists of PDT 

generation, CDG generation and DDG generation. But before they are presented 

in detail, the auxiliary classes, data structures and functions are explained first. 

By design, the PDG nodes and DDG edges are the two most important classes that 

should be implemented. The CDG edges are implicit as part of the PDG, 

represented by the nodes’ parent-child relationship so it is not implemented 

separately. An important property of PDG node is its control dependence set. 

Thus a CDset class is defined to represent it, and a hash table in the PDG node to 

store the existing CDset instances. 

 

The true dependencies and false dependencies are kept individually in two 

NatSetSparse objects. In essence, NatSetSparse collects a set of natural 

numbers, like 1, 2, 3, etc. The hash function implemented for CDset class is 

based on those numbers. The equality comparison is tested against the two sets as 

well. Both sets should be equal, together with the _entry Boolean, to satisfy the 

equality. 

typedef suif_hash_map<CDset, Pdg_node_region*> RegionNodeHashMap; 

RegionNodeHashMap Pdg:*hash_table_region_nodes; 
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Now the implementation of the three core methods in generating the PDG is gone 

through. First of all, it is to generate the Post-Dominance Tree of the input CFG. 

As PDT is directly relevant to CFG rather than PDG, tree information in the 

Pdg_node class does not need not to be stored. But instead, the tree structure in 

an array of Natural Number Set (NatSetDense provided by Machine SUIF) is 

kept in the top-level Pdg class. Each NatSetDense in the array holds 

children’s index numbers of the parent node. Also in Machine SUIF CFA [60] 

library, OPI provides a class called DominaceInfo to capture the dominators, 

post-dominators, dominance frontier, and post-dominance frontier of a CFG. So in 

method generate_PDT, each node’s immediate post dominator is found through 

iteration, and the parent-child link is put in the particular NatSetDense array. 

That is to say, each of the CFG node’s PDT children is stored by visiting each 

one’s PDT parent. 

 

The next step is to generate the CDG based on the PDT in method 

generate_CDG. The algorithm introduced in section 3.3. The set of CFG edges 

S that destination node does not post-dominate source node is identified firstly. 

And then for every edge in the set S, one edge is visited at a time. If the edge is 

A->B, the method traverse backward from B in the PDT until it reaches A or A’s 

CDset& CDset::operator=(const CDset& other){ 

 if(this!=&other){ 

  _true_CD = other._true_CD; 

  _false_CD = other._false_CD; 

  _is_empty = other._is_empty; 

  _entry = other._entry; 

 } 

 return *this; 

} 

for(h = nodes_start(cfg); h!= nodes_end(cfg);h++){ 

 v = get_node(cfg,h); 

 if (d->immediate_postdominator(v)){ 

immediate_postdominator.insert(get_number(v)); 

 } 

} 
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parent. All the nodes met during the traversal are marked as control dependent on 

A. 

The tricky implementation lies in region node insertion. The basic function of 

region node is to summarize the control dependences and after insertion, the 

predicate nodes would have only two children, true and false respectively. And 

the PDG is organized hierarchically. Ferrante et al. describes the algorithms as a 

two-phase process [50]. The first pass is based on the post-order traversal of the 

PDT to insert any necessary region nodes. The second pass is a check on the 

output of the first pass to ensure that any predicate node has only two children. 

For the post-order tree traversal, a separate class method is implemented to do the 

work. The method is recursively called on each CfgNode (starting from the exit 

node). 

 

Upon each call, the CDset of the visited node is checked in the hash table to see 

if any region node already exists. If so, the region node and the visited node are 

simply linked up. If not, a new region node is created; the visited node and the 

newly created region node are linked up, and the region node is put into the hash 

table. Next compute the intersection INT of CD, i.e. check if the set of control 

dependences for each immediate child of the visited node in the PDT overlaps or 

not. If the intersection INT equals CD, then the corresponding dependences are 

deleted from the child and replaced with a single dependence on the region node. 

If every control-dependence of the child is in the intersection INT, then the 

corresponding dependences are deleted and replaced with a single dependence 

edge on the child's control predecessor. The second pass of the region node 

insertion works on the predicate node P in the CDG having multiple control 

dependence successors with the same associated label L. For each P, a region 

node R is created. Each node in the graph that had control dependence 

predecessor P with the label L is made to have the single control dependence 

predecessor R. Finally, R is made to be the single control dependence graph 

successor of P with the same label L. 

void Pdg::insert_region_postorder(CfgNode *cfg_node, NatSetDense 

*flags); 
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Finally for DDG generation method, the work is straightforward based on the 

Machine SUIF SSA library. After the CFG is transformed to SSA form, each BB 

in the procedure is visited. Upon each visit, for each definition that instruction and 

phi-nodes defines, mark the corresponding uses along the def-use chain. The C++ 

code of doing so is given below, 

 

The map_opnds is an OPI function. In the MarkDefUseFilter class, the 

function operator() is overridden to do the edge insertion. The filter looks at 

each operand of the instruction, refers to the uses of each operand (by calling the 

get_def_use_chain method provided by SSA library). If the uses are in different 

BB from the defining instructions / phi-nodes, mark the def-use chain as a 

candidate DDG edge. The edges are inserted if they do not already exist between 

the two BBs. While if not, the candidate edge is not inserted, rather, the 

dependence weight is incremented by 1 to avoid multiple DDG edges between 

any two nodes. 

 

for (int i = 0; i < nodes_size;i++){ 

  CfgNode *node_block = get_node(i); 

  MarkDefUseFilter mark_def_use; 

  for(InstrHandle h = 

   start(node_block); h != end(node_block);h++) 

{ 

        Instruction *instr = *h; 

        map_opnds(instr,mark_def_use); 

   } 

  phi_node_list = get_phi_nodes(); 

  for(PhiHandle phid =  

phi_node_list.begin(); phid != phi_node_list.end();phid++) 

{ 

   PhiNode *phinode = *phid; 

   map_opnds(phinode,mark_def_use); 

  }   
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