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Abstract 

 

The field of organocatalysis has rapidly expanded over the past decade. Advantages of 

organocatalysts over many metal-based catalysts include air and moisture stability, low cost and 

potential reduced environmental impact. Moreover, there is no possibility of leaching of metallic 

species into the product, an important concern in pharmaceutical synthesis. Successful 

organocatalysts from the chiral pool include examples based on proline and the cinchona alkaloids. 

These alkaloids are cheap, readily available and contain several functional groups that act as 

‘handles’ for further modification. This project investigates the opiates as a hitherto unexplored class 

of alkaloid organocatalysts.  Numerous opioid derivatives are known from the drug design and 

development process and provide a convenient starting point to expedite the synthesis of ‘hit’ 

organocatalyst analogues. The functional groups present also offer potential for further structural 

modification. A series of opioid derivatives have been synthesised, characterised and their potential 

to act as enantioselective organocatalysts has been evaluated. X-ray crystal structure analysis has 

been carried out on a number of opioid derivatives. Although enantioselectivities have been modest, 

our studies prove that the morphinan ‘skeleton’ can be used as a novel chiral scaffold for 

organocatalysis. 
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1.1 Introduction 

Asymmetric catalysis plays an increasingly important role in the chemical industry. In the pharmaceutical 

industry, many medicines are chiral (e.g. Lipitor which is used to lower cholesterol and the antiplatelet 

agent Plavix). The majority of new chiral drugs are single optical isomers.1 The agricultural industry also 

utilises many chiral compounds; the herbicide dichlorprop2 and the anthelmintic levmisole3 are such 

examples. Chiral compounds are often used as additives in the food and drink industry (e.g. the 

sweetener aspartame and (R)-carvone is used as a flavouring agent) and as fragrances (e.g. (R)-limonene 

in cleaning products and (+)-citronellol in cosmetics).  

 

 

 

Figure 1.1: Chiral products from pharma, agricultulture, cosmetic and food sectors 
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Chiral compounds not accessible from natural sources can be sourced by the resolution of enantiomers, 

synthesis using chiral auxiliaries or via synthetic precursors from the chiral pool. All of these methods 

are somewhat wasteful, the maximum yield via resolution of enantiomers is 50%, synthetic precursors 

are required in stoichiometric amounts and an increase in the number of reaction steps are required 

using chiral auxiliaries. The “Twelve Principles of Green Chemistry” advocates atom economy, the use of 

catalytic reagents and the reduction in use of auxiliaries.4 As a result asymmetric catalysis has become 

ever more important. This was highlighted by the 2001 Nobel Prize for chemistry; to Knowles and Noyori 

for their work on enantioselective hydrogenation reactions and Sharpless for his work on 

enantioselective oxidation reactions. 

 

1.2 Organocatalysis 

Organocatalysis is defined as “the use of small organic molecules to catalyse organic transformations”.  

The field has flourished since seminal papers were published by List et al5 and MacMillan et al6 circa 

2000.  Indeed the term “organocatalysis” was created by MacMillan himself to advance and legitimise 

this domain of research. Although they were not the first to use small organic molecules as catalysts in a 

chemical reaction, together with Jacobsen and Jørgensen they have pioneered the field.  

Proline was originally used as an organocatalyst independently by Eder, Sauer and Wiechert7 at Schering 

AG and Hajos and Parrish8 at Hoffman-La Roche. It was 30 years before proline was used again as a 

catalyst by Barbas and List5 in the aldol reaction. List traces the beginnings of aminocatalysis and indeed 

organocatalysis to Knoevenagel in as far back as 1896.9 4-Dimethylaminopyridine (DMAP), 1,4-

diazabicyclo[2.2.2]octane (DABCO) and tetramethylpiperidine N-oxide (TEMPO) are well known 

examples of organocatalysts (Figure 1.2). DMAP is used as a nucleophilic catalyst, DABCO is used in the 

Morita-Baylis-Hillman reaction and TEMPO is a stable radical and oxidising agent used in combination 

with a co-oxidant such as sodium hypochlorite. Other notable examples of the use of organocatalysts 

before the upsurge in interest include the use of 2,6-lutidine as a catalyst by Danishefsky and Cain for a 

stereospecific steroid synthesis.10 Woodward et al used D-proline in the total synthesis of an 

erythromycin derivative.11 Asymmetric epoxidation catalysts were used by Denmark et al12, Shi et al13 

and Yang et al14 during the mid-1990s. An asymmetric Strecker reaction was carried out by Jacobsen et 

al15 using a Schiff base and Corey et al16 using a chiral bicyclic guanidine as a catalyst.   
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Figure 1.2: Structures of DMAP, DABCO and TEMPO 

 

Previously, catalysis research focused predominantly on enzymes and metal based catalysts. From 2000 

onwards, the development of organocatalysis has progressed enormously. It is driven by its inherent 

advantages. Operational simplicity, in particular over many (but not all) metal based catalysts make 

organocatalysts financially attractive. Cost savings due to their stability to air and moisture is appealing, 

especially to industry where many metal based catalysts require special handling techniques and 

stringent anhydrous and anaerobic reaction conditions. Financially also, most organocatalysts are not 

prohibitively expensive. They are normally based on compounds readily available from nature’s chiral 

pool e.g. proline and cinchona alkaloid based catalysts. Availability from renewable resources enhances 

the “green” credentials they offer. As many are derived from natural sources, most have been proposed 

as relatively non-toxic and more environmentally friendly than metal based catalysts. Moreover there is 

no possibility of leaching of metallic species into the product, an important concern in pharmaceutical 

synthesis. The main benefit however is their success at catalysing a variety of organic reactions in high 

yield and enantioselectivity.   

Recently organocatalysts have seen an increasing utility in cascade/tandem and domino reactions.17 

Organocatalysts are ideal for purpose due to the number of activation modes (e.g. enamine, iminium 

and H-bonding), their tolerance of a wide range of functional groups and mild reaction conditions.18 

Activation modes can be combined in the one pot. Advantages of these one pot reactions include a 

reduction in the amount of reaction sequences and the avoidance of purification steps. Multistep one 

pot reactions using organocatalysts have been used to synthesise ABT-341 and (−)-oseltamivir (Tamiflu) 

(Figure 1.3).  
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Figure 1.3: Structures of (−)-oseltamivir (Tamiflu) and ABT-341 

 

(−)-Oseltamivir is an antiviral used to treat influenza. It was originally synthesised from (−)-shikimic acid 

in 10 steps with 21% overall yield by scientists at Gilead Sciences.19 Hayashi et al have published a 2 step 

“one pot” synthesis with a 61% overall yield using an organocatalytic asymmetric Michael reaction as 

the key initial step.20 (R)-α,α-diphenylprolinol trimethysilyl ether catalyst 1 (1 mol%) is used with 20 

mol% of chloroacetic acid to effect quantitative product formation with a syn/anti ratio of 7.8:1 in 97% 

ee (Scheme 1.1).  

 

 

Scheme 1.1: Organocatalysed initial step of (−)-oseltamivir synthesis 
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ABT-341 is a DPP-4 enzyme inhibitor. Hayashi has also developed an elegant one pot synthesis of ABT-

341, similarly the initial step involves an organocatalysed Michael reaction.21 The overall yield is 63% 

over 6 steps in one pot. The first step uses the prolinol based catalyst 1 and proceeds in 93% yield and 

97% ee (Scheme 1.2).  

 

 

Scheme 1.2: Organocatalysed initial step of ABT-341 synthesis 

 

 

Synthetic and medicinal chemists often need to synthesise chiral molecules and organocatalysts can be 

used to generate stereospecific targets. For these reasons, many academics have been attracted to 

research in organocatalysis and it has become a fashionable field of chemistry. Organomulticatalysis; 

defined as the combination of “organocatalysts enabling consecutive reactions to be performed in one 

pot” has become a new avenue of organocatalysis. Macmillan et al has shown that enhanced 

stereocontrol can be achieved using catalyst combinations in sequential reactions over the use of a 

single catalyst.22 Organomulticatalysis, tandem/cascade and domino reactions have shown much 

potential in the synthesis of complex molecules and are likely to be heavily involved in the future of 

organocatalysis.23   
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The low turnover number of most organocatalysts when compared to metal based catalysts is one of the 

major criticisms leveled at the organocatalysis community. Catalyst loadings are often greater than 5 

mol%. Usually however, economy and ease of use of the organocatalyst compensates for this 

shortcoming. 

 

1.3 The Morphine Alkaloids 

Alkaloids are broadly defined as nitrogen containing heterocycles. They are basic in nature, normally 

bitter tasting and found in plants. They are classified chemically by the N- containing heterocycle. 

Examples from the quinoline alkaloids include quinine and quinidine, cocaine is a member of the 

tropane alkaloids and morphine is a benzylisoquinoline alkaloid. IUPAC recommendations for the 

nomenclature of alkaloids allow classification of morphine and similar compounds based on the 

‘morphinan’ skeleton shown below in Figure 1.4.  

 

 

 

Figure 1.4: Morphinan skeleton 

 

Morphine is a potent analgesic named after the Greek god of dreams, Morpheus and the major alkaloid 

constituent of the opium poppy Papaver somniferum. Opium is the sap isolated from the unripe seed 

capsule of the poppy.  Other opiate alkaloids isolated from opium include codeine and thebaine. The 

earliest use of opium has been dated back to 3400 BC to the Sumerians in Mesoptania.24 Opium was 

used during religious rituals and medicinally for analgesia and as a euphoriant; highly addictive, it was 

commonly used recreationally. Morphine was isolated in pure form in 1803;25 it is one of the active 

ingredients of opium and has been widely used since as a powerful analgesic, but similarly to opium 

leads to tolerance and addiction. 
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Radioactive morphine binding research led to the identification of morphine receptors. There are now 

three known opiate receptor types, mu (MOP), kappa (KOP) and delta (DOP) (σ- receptors are no longer 

included as they only bind to non-opioids (NOP)). Morphine binds primarily to the mu receptor and is 

considered the archetypal mu agonist. The µ1-site is responsible for analgesia while the µ2-site is 

responsible for the undesirable side effects that include sedation, emesis, respiratory depression and 

dependence.26 Tolerance can develop, meaning higher doses are required to produce the same 

analgesic action. Binding of an agonist to the receptor results in decreased levels of intracellular cyclic 

adenosine monophosphate (cAMP) and inhibition of the cells calcium channels; consequently the 

release of pain neurotransmitters is blocked.26,27 Agonists such as morphine bind to a receptor and cause 

the maximum pharmacological response.28 Antagonists bind (competitively in some cases) to opioid 

receptors, but lack efficacy. Naloxone is an antagonist used as an emergency treatment to counteract 

respiratory depression caused by opioid overdose.  

Codeine has a weaker affinity to the mu opioid receptors. Codeine itself is inactive, it must be 

metabolised to morphine and codeine-6-glucuronide to produce an analgesic effect.29 The lower 

potency (only 5-10% will be metabolised to morphine)28 and consequent lower addiction potential 

(compared to morphine) mean it is widely used over the counter as an active ingredient in cough syrup 

or painkillers.   

Buprenorphine is a semi synthetic opioid used clinically as an analgesic. “Opiates” are naturally 

occurring compounds distinguished from “opioids” which is the term used to describe synthetic 

derivatives of opiates. Buprenorphine was prepared from thebaine via a Diels Alder reaction by 

Bentley.30 Bentley synthesised many opioid derivatives of this type containing a 6,14-endo-ethenyl 

bridge (oripavin scaffold, see Figure 1.5).31,32,33 By synthesising more complex and rigid opioid derivatives 

it was hypothesised that binding to the receptors would occur selectively and hence the analgesic and 

side effects could be probed and distinguished. Buprenorphine acts as a partial agonist at the mu 

receptor and an antagonist at the kappa receptor. Respiratory depression is a side effect of 

buprenorphine use, but unlike morphine it displays a ceiling effect.34 Another advantage over morphine 

is the availability of a transdermal patch formulation. Norbuprenorphine is an active metabolite of 

buprenorphine.35  
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Figure 1.5: Oripavin Scaffold 

 

Opiate research including the total synthesis and biosynthesis of morphine and the synthesis of novel 

opioid derivatives is relevant today.36,37,38 Despite the many opioid derivatives synthesised, researchers 

are still searching for a potent opiate analgesic which lacks the side effects of respiratory depression, 

tolerance and addiction.39  

 

1.3.1 Opiates as Potential Organocatalysts 

We became interested in the use of opiates as a scaffold for organocatalysis. The abundance of 

synthetic and medicinal chemistry research carried out on opiates and their synthetic derivatives can be 

exploited to expedite the identification of a “hit” organocatalyst analogue. Opiates such as morphine 

and codeine are natural compounds, bio-renewable and are as such readily available (a license however 

is required, and for our research this is obtained from the Irish Medicines Board, for carrying out 

research with opiates). Opiates contain functional groups suitable for manipulation, e.g. in morphine the 

hydroxyl groups at the 3- and 6- position and the Δ7,8 double bond. The tertiary nitrogen can act as a 

base and a H-bond acceptor. There is sufficient chiral bulk present in the scaffold to hypothesise the 

possibility for enantioselective catalysis. A unique chiral architecture is offered by the morphinan 

“skeleton” as a foundation for asymmetric catalysis. Also, the opiate scaffold allows for the synthesis of 

phase transfer catalysts via derivatisation of the tertiary nitrogen to a quaternary salt. Morphinan 

alkaloids are similar to the cinchona alkaloids. Comparing quinine and codeine; both contain an aromatic 

ring, a double bond, a secondary alcohol, a tertiary nitrogen and an aromatic methyl ether (Figure 1.6). 

The cinchona alkaloids have an illustrious history, including their successful application in 

organocatalysis. The literature precedent of cinchona alkaloids and their derivatives as organocatalysts 

led to our investigation of the morphinan alkaloids and their derivatives as a novel class of 

organocatalyst. 
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Figure 1.6: Comparison of quinine and codeine structures 

 

To the best of our knowledge the opiates have never been demonstrated as an organocatalyst class.  

However there have been a couple of reports into the applications of opiates as catalysts. Wells et al 

have published a report in 1994 detailing the use of opiates for enantioselective heterogeneous 

catalysis.40 He later published another report investigating codeine and other alkaloids as chiral modified 

platinum surfaces for the hydrogenation of methyl pyruvate.41 

 

1.4 The Cinchona Alkaloids 

Cinchona alkaloids such as cinchonine, quinine and their respective pseudoenantiomers cinchonidine 

and quinidine are isolated from the bark of several Cinchona species. Quinine is famed for its medicinal 

properties, it has been used as an anti-malarial since the early 19th century. Quinine has a bitter taste; it 

is used in the food and drink industry as an additive most notably in tonic water. Quinidine is used 

medicinally as an anti-arrhythmic. In chemistry, the cinchona alkaloids found use as chiral resolving 

agents.42 Cinchona alkaloids have emerged as useful asymmetric catalysts since pioneering work by 

Wynberg. Quinine and quinidine were originally used as catalysts by Bredig and Fiske in the addition of 

hydrogen cyanide to benzaldehyde giving products with enantiomeric excesses below 10% in 1912. 

Pracejus and Maetje also used cinchona alkaloids in the asymmetric addition of methanol and ethanol to 

ketenes in 1964.43 Wynberg used quinine in an enantioselective Michael reaction,44 in the addition of 

mercaptans to 2-cyclohexene-1-one,45 cinchona alkaloid based phase transfer catalysts in oxidation 

reactions46,47 and the Michael reaction.48 A summary of his work using alkaloids as asymmetric catalysts 

appears in a chapter of “Topics in Stereochemistry”.49  
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Enantioselectivities were not always high at the outset of this field of research. Trost et al used quinine 

as a catalyst in an intramolecular Michael reaction (Scheme 1.3).50 The enantiomeric excess was 

determined to be 30% by NMR using a chiral shift reagent. Enantioselectivities ranged from 0-22% in 

early studies of an asymmetric Michael reaction using a quinine based catalyst 2 (Figure 1.7) carried out 

by Wynberg and Hermann when the reaction solvents, concentration, time and temperatures were 

altered (Scheme 1.4).51 

 

Scheme 1.3: Intramolecular Michael reaction catalysed by quinine 

 

 

Figure 1.7: Quinine based catalyst used by Wynberg and Hermann51 

 

 

 

Scheme 1.4: Early studies on asymmetric induction in the Michael reaction carried out by Wynberg and Hermann
51
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One of the most well known examples of the use of cinchona alkaloids as catalysts is in the asymmetric 

dihydroxylation reaction. Sharpless et al used dihydroquinine (DHQ) and dihydroquinidine (DHQD) based 

C2-symmetric catalysts in combination with osmium tetroxide in the asymmetric dihydroxylation 

reaction.52 Catalytic OsO4 is generated in situ from K2OsO2(OH)4 and the oxidant K3Fe(CN)6 is used in a 

stoichiometric amount to reoxidise the osmium. Potassium carbonate is used as an additive to increase 

the reaction rate. Two DHQ (or DHQD) molecules are linked at the 1- and 4- positions of phthalazine to 

form (DHQ)2PHAL (or (DHQD)2PHAL) as shown in Figure 1.8. Cinchona alkaloid based C2-symmetric 

catalyst is responsible for the stereochemical outcome of the reaction. The synthetic utility of this 

reaction is evidenced by the commercial availability of the catalysts as a mixture; AD-mix-α which 

contains (DHQ)2PHAL and AD-mix-β which contains (DHQD)2PHAL. 

 

 

Figure 1.8: Structures of (DHQ)2PHAL and (DHQD)2PHAL 

 

The major advantage of the cinchona alkaloids is the availability of pseudoenantiomeric pairs; quinine 

and quinidine, cinchonine and cinchonidine. Thus if the product of a reaction using quinine as a catalyst 

gives predominantly the (R)- enantiomer, using quinidine the (S)- enantiomer will be obtained 

predominantly. Contrasting the morphinan and cinchona alkaloids, the morphinan skeleton is more rigid 

due to the fused ring system. There is a certain degree of freedom about the C8-C9 and C9-C4’ axes, 

which leads to the availability of different conformers (see quinidine as an example in Figure 1.9). 



Literature Review 
 

13 
 

Flexibility can be advantageous for substrate binding during the reaction similar to the importance of 

flexibility in biological receptor-substrate interactions.53   

 

 

 

Figure 1.9: Flexibility in cinchona alkaloid scaffold 

 

Quinine and quinidine are examples of natural products with medicinal properties that have been used 

for catalytic purposes. Similarly; natural sugars (e.g. the glycosides digoxin and salicin) and synthetic 

derivatives (e.g. azidothymidine, AZT) have been used medicinally while fructose based catalyst 3 is used 

as a catalyst for the Shi epoxidation reaction (Figure 1.10). 
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Figure 1.10: Structures of glycosides salicin and digoxin, antiretroviral drug AZT and Shi epoxidation catalyst 3 

  

 

1.5 Cinchona Alkaloid based Organocatalysts 

The next section highlights some examples of cinchona alkaloid based organocatalysts from the 

literature. As the field has rapidly expanded, the number of reports detailing their use is enormous. It 

would be far beyond the scope of this review to cover all the literature reports; instead a number of 

examples have been chosen for inclusion. For a comprehensive review of the applications of the 

cinchona alkaloids in catalysis, see “Cinchona Alkaloids in Synthesis & Catalysis”.54
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1.5.1 Thiourea based Cinchona Alkaloid Catalysts  

Thiourea based catalysts were originally pioneered by Jacobsen and Sigman in an asymmetric Strecker 

reaction.15 Jacobsen et al further optimised the catalyst structure,55,56 and also tested the catalyst in a 

Mannich reaction.57 High yields and enantioselectivities were generally obtained (>70% ee in both 

cases). 

Takemoto et al developed a bifunctional thiourea catalyst in 2003 for the Michael addition of diethyl 

malonate to trans-β-nitrostyrene which effected product formation in 86% yield and 93% ee.58 It was 

hypothesised that the bifunctionality arises from the general basic properties of the tertiary nitrogen 

and activation of the electrophile by interaction with the acidic hydrogens of the thiourea moiety.  

In 2005 four research groups independently published catalytic studies using cinchona alkaloid based 

catalysts. Chen et al originally developed a cinchona alkaloid based thiourea organocatalysts for the 

addition of phenyl thiol to an α,β-unsaturated imide.  Cinchonine based 4 (Figure 1.11) catalysed the 

reaction giving a high yield (99%) but a low enantiomeric excess (17%); ultimately an alternative 

thiourea based catalyst was chosen for optimisation.59 Soós et al then used 5 (Figure 1.11) to catalyse 

the addition of nitromethane to various chalcones (Scheme 1.5) in high yields (80-94%) and 

enantioselectivities (89-96% ee).60 

 

 

 

Figure 1.11: Structure of catalysts 4 and 5 
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Reagents and Conditions: (i) 5, toluene, rt, 122 h 

Scheme 1.5: Asymmetric Michael reaction using 5 as a catalyst60 

 

The Connon group published results later in 2005 using 9-epi dihydroquinine and dihydroquinidine 

based (thio)urea catalysts.61 One of the catalysts (5); was identical to that used by Soós et al previously 

(Figure 1.11).60 The results of an initial screen of catalysts are shown below in Table 1.1. Thiourea 

analogues performed slightly better than their urea counterparts. After optimisation studies were 

carried out, high yields (63-95%) and enantioselectivities (75-99% ee) were reported for the reaction of 

dimethylmalonate with a variety of nitrostyrenes at −20 °C using 5 as a catalyst. 

 

 

 

Figure 1.12: Catalysts used by the Connon group in asymmetric Michael reaction61 
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(i) Reagents and Conditions: 5 (2 mol%), toluene, 20 °C 

 

Entry Catalyst Reaction Time (h) Conversion (%) ee (%) Product 

Configuration 

1 5 24 98 90 (S) 

2 6 24 98 88 (S) 

3 7 30 98 85 (R) 

4 8 30 98 79 (R) 

 

Table 1.1: Results of catalyst screen carried out by Connon et al61 

 

Dixon et al62 published an article the same year using similar 9-amino(9-deoxy)  epi-cinchonine  based 

alkaloid catalysts. He again used the Michael addition of diethyl malonate to trans-β-nitrostyrene but 

used 10 mol% of his catalyst, dichloromethane as the solvent and 3 equivalents of the malonate. 4 was 

chosen as the optimum catalyst. Similar to the paper by Connon et al,61 high yields (81-99%) and 

enantioselectivities (82-97% ee) were reported for the Michael reaction of dimethyl malonate to various 

nitroolefins using 4.  

Advantages of cinchona alkaloid based thiourea catalyst include the availability of both diastereomers 

(quinine/quinidine, cinchonine/cinchonidine) and the basic properties of the tertiary nitrogen. The Lewis 

acidic thiourea moiety is valuable as a hydrogen bond donor and for the activation of the electrophilic 

component.   

The importance of the 3D-architecture of the organocatalyst must be underlined. In studies by Soós et al 

thiourea catalyst with the natural configuration 9a showed no catalytic activity in the addition of 

nitromethane to trans-chalcone; however the 9-epimer 9b catalysed the Michael reaction (see Figure 

1.13 and Table 1.2).60  
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Figure 1.13: Structure of catalysts 9a and 9b 

 

 

 

Entry Catalyst % Yield % ee 

1 9a 0 - 

2 9b 59 86 

 

Table 1.2: Importance of position of thiourea functionality at 9-position of quinine60 

 

 

In the Connon paper61 dihydroquinine urea derivative 10 catalysed the Michael reaction (25% 

conversion) giving an enantiomeric excess of 25% while the 9-epimer 6 gave greater than 98% 

conversion and 74% ee. Dihydroquinine 11 catalysed product formation in high yield (98% conversion) 

but the enantioselectivity was low (12% ee). This suggests a bifunctional mode of action; the urea 

moiety is crucial but must be in the right conformation, possibly relative to the nitrogen atom of the 

quinuclidine ring.   
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Figure 1.14: Quinine based catalysts used by Connon et al61 

 

 

 

 

Reagents and Conditions: (i) Catalyst (5 mol%), toluene, 20 °C 

 

Entry Catalyst Reaction Time (h) Conversion (%) ee (%) 

1 6 5 98 74 

2 10 24 26 25 

3 11 24 98 12 

 

Table 1.3: Influence of absence and position of urea moiety at 9-position of dihydroquinine61 
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Hiemstra et al have demonstrated an asymmetric Henry reaction between nitromethane and 

benzaldehyde, a unique cinchona alkaloid based thiourea catalyst is used insofar as the thiourea moiety 

is located at the 6-OMe position of the cinchona derivative.63 Despite the distance of the thiourea 

moiety to the tertiary nitrogen the reaction proceeds in high yield (99% conversion) and 

enantioselectivity (89% ee). The reaction scheme and structure of the catalyst 12 are shown below 

(Scheme 1.6 and Figure 1.15). 

 

 

Reagents and Conditions: (i) 12 (10 mol%), THF, −20 °C, 4-168 h 

Scheme 1.6: Asymmetric Henry Reaction using catalyst with thiourea moiety at 6-position of cinchona derivative 

 

 

 

 

Figure 1.15: Catalyst 12 used by Hiemstra et al in asymmetric Henry reaction63 
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1.5.2 Selected examples using thiourea based catalysts  

Yang et al have developed the first enantioselective synthesis of β-aminoesters bearing a benzothiazole 

moiety using novel thiourea catalyst 13.64 This asymmetric Mannich reaction gives moderate yields (47-

88%) and high enantioselectivities (80-95% ee) (see Figure 1.16 and Scheme 1.7).  

 

 

Reagents and Conditions: (i) Catalyst 13 (10 mol%), xylene, rt, 72-96 h 

 

Scheme 1.7: Asymmetric Mannich reaction using novel catalyst 13 

 

 

 

 

 

Figure 1.16: Catalyst 13 used by Yang et al in an asymmetric Mannich reaction64 
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Soós et al also demonstrated the addition of nitromethane to α,β-unsaturated N-acylpyrroles using 5.65 

The reactions are stable to air and moisture and do not require any additives (Scheme 1.8). This 

methodology was used to devise an enantioselective route to (R)-rolipram. 

 

 

 

Reagents and Conditions: (i) 5 (10-30 mol%), rt, 22-183 h 

Scheme 1.8: Asymmetric Michael reaction catalysed by 5 

 

Stephen Connon has published a couple reviews on thiourea based organocatalysis.66,67 The reactions 

catalysed in the Connon laboratory include asymmetric Michael additions, nitroolefin cyclopropanation, 

meso-anhydride desymmetrisation and the dynamic kinetic resolution of azalactones.67 Various groups 

have worked on the thiourea based organocatalysis of 1,2-addition reactions including the Mannich68, 

Henry63 and aza-Henry69 reaction and many 1,4-addition reactions. Other reactions include the Diels 

Alder70 and the decarboxylative protonation of α-aminomalonate hemiesters.71 Some 1,4-addition 

reactions appear frequently in the literature especially addition to chalcones and the Michael addition of 

diethyl/dimethyl malonate to β-nitrostyrene in particular is widely used as a model reaction.58,61,62   

Various thiourea based catalysts were tested by Chen et al72 for the reaction between α,α-dicyanoolefin 

and β-nitrostyrene. There was some product formation but some insoluble by-products were also 

observed when catalysts 14 and 17 were tested.  The authors postulated a polymerisation took place 

because of the “strong electron withdrawing effects of the thiourea group on nitrostyrene”. To 

counteract this they designed catalysts 15, 16 and 18 (Figure 1.17). Each pseudoenantiomer 15 and 16 

furnished opposite enantiomers of the product in 37 and 64% yield respectively, enantioselectivities 



Literature Review 
 

23 
 

were similar 68 vs 72% (Scheme 1.9 and Table 1.4). 18 was chosen for further investigation as this gave 

the highest enantioselectivity at 82% ee (Table 1.4). Despite optimisation of catalyst mol%, solvent and 

reaction temperature the ee was increased by only 4%. 

 

 

 

 

 

Scheme 1.9: Reaction between nitrostyrene and α,α-dicyanoolefin by Chen et al72 

 

 

 

Entry Catalyst Yield (%) ee (%) 

1 14 20 55 

2 15 37 68[a] 

3 16 64 72 

4 17 18 58 

5 18 44 82 

 

[a] Product with the opposite configuration was obtained 

 

 

Table 1.4: Initial catalysts results from Chen et al72 
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Figure 1.17: Catalysts tested by Chen et al72 

 

 

 

Adamo et al have reported the first catalytic enantioselective addition of sodium bisulfite to chalcones 

using 5 (Scheme 1.10).73  Concentration of bisulfite was shown to affect the reaction rate and 

enantioselectivity.  After optimisation the reaction scope was investigated by varying the chalcone.  High 

yields (87-99%) and enantioselectivities (82-97% ee) were obtained.  The opposite enantiomer of the 

product could be obtained by using the quasi-enantiomeric catalyst 7.  
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Reagents and Conditions: (i) 5 (10 mol%), NaHSO3 (0.48M, 1.2 eq), MeOH/PhMe (3:1), −2 °C 

Scheme 1.10: Addition of bisulfite to chalcones73 

 

A recent paper demonstrates the benefit of using an acid additive in conjunction with a chiral thiourea 

catalyst 19 (Figure 1.18) in the Friedel-Crafts alkylation of indoles with nitroalkenes.74  A synergistic 

effect was reported when D-mandelic acid (40 mol%) and 19 (20 mol%) were used (Scheme 1.11). 

 

 

 

 

Reagents and Conditions: (i) 19 (20 mol%), D-mandelic acid (40 mol%), CH2Cl2, −25 °C, 3-5 days 

 

Scheme 1.11: Asymmetric Friedel-Crafts alkylation 
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Figure 1.18: Catalyst 19 used by Herrera et al74 

 

 

High yields and enantioselectivities in asymmetric Mannich reactions have been reported by Deng et al 

using 9b to synthesise β-amino acids75 and Barbas et al using 5 to synthesise α,β-diamino acid 

derivatives.76 9b has been used as a catalyst by Wang et al in a cascade Michael Aldol sequence (Scheme 

1.12).77 An enantioselective decarboxylative deprotonation has been carried out by Rouden et al using 

quinine based 9b as a stoichiometric base (Scheme 1.13).71 The opposite enantiomer is obtained in 90% 

yield and 93% ee using the quinidine based analogue.  

 

 

 

 

Scheme 1.12: Michael Aldol one pot sequence using 9b (1 mol%) 
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Scheme 1.13: Decarboxylative protonation by Rouden et al71 

 

1.5.3 Miscellaneous Examples 

Primary amine based cinchona alkaloid catalysts have been used extensively in asymmetric 

organocatalysis. Reactions include the epoxidation of cyclic enones,78 the aldol reaction,79 1,3-dipolar 

cycloaddition of cyclic enones,80  aza-Michael Reaction,81 peroxidation of α,β-unsaturated ketones,82 

Michael Addition of ketones to vinyl sulfones,83  Friedel Crafts alkylation of indoles84 and the Michael 

Addition of cyclic enones to nitroalkenes.85   

Some representative examples of the use of primary amine based cinchona alkaloid catalysts are shown 

below. Asymmetric Michael addition of malononitrile to α,β-unsaturated ketones proceeded with 

predominantly high yields (35-99%) and enantioselectivities (88-96% ee) using 20 as a catalyst (Figure 

1.19).  Interestingly no reaction was observed when diethyl malonate or nitromethane were used in 

place of malononitrile.86  The model reaction under the optimised reaction conditions is shown below in 

Scheme 1.14. 

 

 

Reagents and Conditions: (i) 20 (20 mol%), TFA (40 mol%), CH2Cl2, rt, 12 h 

Scheme 1.14: Addition of malonitrile to benzylideneacetone 
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Figure 1.19: Structure of 20 

 

epi-Cinchonine based primary amine based catalyst 21 was used in an aldol reaction between 

cyclohexanone and 4-nitrobenzaldehyde, proceeding in high yield and enantioselectivity (Scheme 1.15, 

Figure 1.20).79 

 

Reagents and Conditions: (i) 21 (10 mol%), TfOH (15 mol%), neat, rt, 9 hours 

 

Scheme 1.15: Aldol reaction between 4-nitrobenzaldehyde and cyclohexanone 

 

 

 

Figure 1.20: Structure of 21 
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C2-symmetric cinchona alkaloid based catalysts are notably used in Sharpless’ asymmetric 

dihydroxylation reaction; there have also been some reports of their use as organocatalysts. Levacher et 

al used 22 as a catalyst for the enantioselective protonation of various silyl enol ethers (Scheme 1.16).87 

22 consists of two dihydroquinine molecules linked by an ether bridge to a molecule of anthraquinone 

(Figure 1.21).  The mixture of benzoyl fluoride and ethanol provides a latent source of hydrogen fluoride 

via quaternary salt formation with 22. 

 

 

 

Reagents and Conditions: (i) 22 (10 mol%), PhCOF/EtOH, DMF, 12 h, rt 

Scheme 1.16: Enantioselective protonation of a silyl enol ether. Please note the configuration of the product was not 

determined 

 

 

 

Figure 1.21: Structure of 22 
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The efforts to develop an organocatalysed enantioselective halolactonisation reaction have increased 

recently.88 The products of the halolactonisation reaction are useful for synthetic purposes in particular 

for natural product chemists.89,90,91 Borhan et al have used 23 to catalyse the chlorolactonisation of 4-

substituted 4-pentenoic acids.88 Poor enantioselectivity was observed for the bromolactonisation 

reaction using the C2-symmetric dihydroquinidine based catalyst 23 (Figure 1.22). However when the 

halogen source was changed to N-chlorosuccinimide (NCS) an increase in enantioselectivity from 35 to 

65% ee was observed. This was further increased using the alternative chlorine source 1,3-dichloro-2,2-

phenylhydantoin 24 (DCDPH) and optimising the reaction conditions to furnish an ee of 89%. The 

catalyst loading can be dropped to 1 mol% while the enantioselectivities are preserved. The 

chlorolactonisation proceeded with various 4-substituted 4-pentenoic acids giving yields and 

enantioselectivities of up to 99% and 90% respectively (Scheme 1.17). 

 

 

 

 

Reagents and Conditions: (i) 23 (10 mol%), 24 (1.1 eq), benzoic acid (6 eq), CHCl3:C6H14 (1:1), 30-180 

minutes, −40°C  

 

Scheme 1.17: Enantioselective chlorolactonisation88 
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Figure 1.22: Structure of 23 and 24 

 

25 was used by Jørgensen et al in an α-amination reaction that gave high yields and enantioselectivities 

(Scheme 1.18).92 The catalyst loading was low, at 5 mol%. Reactions of β-dicarbonyl compounds with di-

t-butyl azodicarboxylate using 25 were also studied. Products of the reactions are important as 

quaternary α-amino acid derivatives can be synthesised by cleavage of the hydrazine bond. 

 

 

 

Reagents and Conditions: (i) 25 (5 mol%), toluene, −78 °C 

 

Scheme 1.18: Amination of substituted cyanoacetates92 
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Figure 1.23: Structure of 25 

 

1.6 Conclusions 

Catalytic asymmetric synthesis is valuable in the synthesis of chiral compounds. Chiral compounds are 

widely used by the chemical and pharmaceutical industry. Organocatalysis has emerged as a means of 

chiral catalysis that is gaining a reputable status alongside metal based and enzyme catalysis in the field 

of asymmetric synthesis. The momentum of the organocatalysis movement is driven by the advantages 

offered; their ease of use, low cost and great potential for promoting Green Chemistry Priniciples4 

including environmentally friendliness, amongst others. Organocatalysts can in some cases, keep pace 

with their metallic counterparts in the high enantioselectivities achieved.  

Organocatalysts are commonly based on biomolecules or their synthetic derivatives for example, 

proline, phenylalanine and the cinchona alkaloids. Cinchona alkaloids have an illustrious history in their 

application as catalysts. Several examples are included in this review discussing their use as 

organocatalysts.  

The structural similarity between the cinchona and morphinan alkaloids was recognised. The goal of our 

research is to investigate the application of the morphine alkaloids and their derivatives as 

organocatalysts. Opiates have been used for medicinal purposes over several millennia. Opiates and 

their semi synthetic derivative are still used today as potent analgesics. There is extensive literature 

detailing the synthesis of opiate analogues. This knowledge can be harnessed in the synthesis of target 

“catalyst” compounds. Can the morphine scaffold act as a foundation for a novel class of 

organocatalyst? The results of the synthesis of opioid derivatives and investigative studies of their 

catalytic activity will be discussed in the following chapters. 
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2.1 Introduction 

This chapter discusses the synthesis, isolation and characterisation of various compounds that were 

screened for potential catalytic activity. Codeine 26 and morphine 27 are the raw materials used for 

structural modification. 26 and 27 differ by the C18 methyl group replacing the hydrogen of 

morphine. The conventional numbering system and ring identification for the morphine alkaloids is 

shown below (Figure 2.1). The rigid fused ring system comprises the benzene A ring, partially 

unsaturated cyclohexyl B and C rings, tetrahydrofuran D ring and the piperidine ring E. Ring C 

contains an allylic secondary alcohol group, a methyl group is attached the nitrogen of ring E and 

ring A of codeine contains a methyl ether; in morphine ring A is phenolic.1 

 

  

 

Figure 2.1: Codeine 26 showing labelled atoms and labelled rings, morphine 27 

 

 

26 and 27 have a T-shape 3D structure.2,3 Rings A, B and D are in the plane of the page, ring B is chair 

shaped and appears perpendicular to A-B-D ring system behind the plane of the page. Ring C is in a 

boat conformation, similarly perpendicular to the A-B-D ring system but above the plane of the 

page. There are five stereochemical centres in 26 and 27, 5(R), 6(S), 9(R), 13(S) and 14(R). Extensive 

research has been carried out on the synthesis of derivatives of the morphine alkaloids for SAR 

studies.1,4 Synthetic chemistry knowledge from these investigations has been exploited for the 

synthesis of catalyst targets. 
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Some of the common manipulations of the opiate scaffold include: 

 Halogenation of the A ring 

 Modification at the 6-position of codeine and 3- and 6- positions of morphine 

 Manipulation of the double bond 

 Functionalisation at the 14-position 

 Modification at the basic nitrogen site 

 C-C bond formation using metal cross coupling reactions at the A ring 

 

Of particular interest is the synthesis of amino derivatives of the parent opiates. Methods of 

enamine/imine catalysis require an amino functionality in the catalyst structure. Demethylation of 

the nitrogen atom generates a secondary amine and there is a literature precedent for a primary 

amine functionality at the 6- and 8- positions of the opiate scaffold. These compounds quickly are 

highlighted for synthesis as promising catalyst targets. 

Thiourea based organocatalysts have emerged in recent years as useful enantioselective catalysts, 

thought to work by a hydrogen bonding mode of action.5,6,7 The presence of the heteroatoms (O, N) 

in the opiate scaffold will provide a source for hydrogen bonding interactions. Accordingly thiourea 

derivatives containing the opiate scaffold were also identified as targets for synthesis. 

 

2.1.1 The Mitsunobu Reaction 

The Mitsunobu reaction was first reported in 1967.8 Triphenylphosphine and an azodicarboxylate are 

used to substitute a primary or secondary alcohol with a nucleophile making the reaction useful for 

C-O, C-N, C-S and C-C bond formation. The Mitsunobu reaction is stereoselective, requires only mild 

reaction conditions and has a wide range of applicability; hence it is extensively used by synthetic 

chemists.9 Drawbacks include difficult product isolation and the quantities of waste generated, by-

products of the reaction are triphenylphosphine oxide and a hydrazine dicarboxylate. In addition the 

pKa of the acidic nucleophile should be below 13, although with the advent of more active 

Mitsunobu reagents a higher pKa can be tolerated.10,11,12 

Nitrogen nucleophiles commonly used in the Mitsunobu reaction include phthalimide 33, 

sulphonamides for example 28-31, diphenyl phosphoryl azide (DPPA) 32 and hydrazoic acid (HN3) 

(28-33 are shown in Figure 2.2 below). The reaction takes place with inversion of configuration and 

the resulting phthalimide, azide or sulphonamide functionality can be transformed to an amine.  
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Figure 2.2: Nitrogen nucleophiles used in the Mitsunobu reaction 

 

2.2 Towards the synthesis of 6-aminocodeine (35) 

Efforts to synthesise 6-β-aminocodeine began by following a literature procedure13 via a two step 

synthesis (Scheme 2.1). The first step was a Mitsunobu reaction using phthalimide as the nitrogen 

nucleophile. A crude 1H NMR showed evidence of 34 but it was not isolated as a pure compound. 

Next, the phthalimide is cleaved using hydrazine to release the free amine. The hydrazinolysis step 

was carried out on the crude 34 however the reaction was not clean. Desired product 35 was not 

isolated and there appeared to be many decomposition products present in the crude reaction 

mixture. 

 

Reagents and Conditions: (i) DEAD (2 eq), PPh3 (2 eq), phthalimide (2 eq), toluene, rt, 12 h (ii) 

Hydrazine hydrate, EtOH, reflux, 2 h  

Scheme 2.1: Attempted synthesis of 6-β-aminocodeine 35 by Mitsunobu reaction followed by hydrazinolysis 
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2.2.1 Protecting Groups 

The use of an alternative nitrogen nucleophile was explored. N-(tert-Butoxycarbonyl)-p-

toluenesulphonamide 28 was originally used in the Mitsunobu reaction by Weinreb et al.14 It was 

anticipated that both the tosyl and Boc groups would be easily cleaved from the nitrogen following 

the Mitsunobu reaction. An extra step is required towards the target, 6-aminocodeine but it was 

thought that the “deprotection” steps would proceed with fewer by products and hence product 

isolation would be easier. 

Protecting groups are routinely used in chemistry to guarantee chemoselectivity during a reaction. 

Protecting groups should be easily attached, stable to the reaction conditions required and easily 

cleaved. The main disadvantages associated with their use are the additional steps required. As a 

consequence the atom economy15 is poor and extra waste is generated.    

The Boc (tert-butyloxycarbonyl) group is frequently used by synthetic chemists as a protecting group 

for amines. Attachment to an amino group is achieved using Boc anhydride and a base in an often 

high yielding reaction. Once attached, it is stable to basic and nucleophilic reaction conditions. 

Cleavage of the Boc group is realised using acid, usually TFA at room temperature with 

dichloromethane as the solvent. By-products of the deprotection step include CO2 and isobutylene 

(Figure 2.3) both of which are gaseous so column chromatography of the desired product can 

sometimes be avoided. 

 

 

 

Figure 2.3: Mechanism of Boc deprotection of an amine 
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2.3 Synthesis of sulphonamide derivatives 

Codeine and nitrogen nucleophile 28 were used in the Mitsunobu reaction to give product 36 in 33% 

yield after column chromatography (Scheme 2.2).    

 

 

Reagents and Conditions: (i) DIAD (1.25 eq), PPh3 (1.5 eq), toluene (20 mL), rt, 36 h 

Scheme 2.2: Synthesis of 6-aminocodeine derivative 36 by a Mitsunobu reaction 

 

The Boc group was cleaved from 36 in 98% yield using trifluoroacetic acid (TFA) (Scheme 2.3). A 

detosylation was carried out on 37 using a combination of Mg powder and sonication following a 

literature procedure.16 Despite the addition of extra equivalents of Mg and further sonication, the 

reaction never went to completion. The outcome was the same when the reaction was repeated 

using 36 with the Boc group present. In both cases there were no side reactions observed, analysis 

of the crude 1H NMR spectra indicated the presence of the starting material and product only. 

Predominantly unreacted starting material 36 was obtained from another detosylation procedure 

using SmI2 and pyrrolidine. 17 
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Reagents and Conditions: (i) TFA, DCM, rt, 30 minutes  

Scheme 2.3: Cleavage of the Boc group 

  

Crystals of sulphonamide 37 were grown from a dichloromethane/hexane mixture and the structure 

was determined by X-ray diffraction studies (Figure 2.4). The proposed mechanism and product 

matched the X-ray crystal evidence. This confirmed an inversion of configuration occurred at 

position 6 of the opioid during the Mitsunobu reaction. Confirmation of the position of the double 

bond was achieved proving that an SN2 reaction had taken place. 

 

 

 

Figure 2.4: Crystal Structure of 37, ellipsoids drawn at the 50% probability level 
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With the difficulties encountered in removing the tosyl group an alternative nitrogen nucleophile 30 

was investigated. 2-(Trimethylsilyl)ethanesulphonamide 30 was prepared by Boc protecting 38 

according to the literature (Scheme 2.4).18 Removal of the 2-(trimethylsilyl)ethanesulfonyl (SES) 

group is readily achieved using TBAF or caesium fluoride in DMF.19 

 

 

Reagents and Conditions: (i) (Boc)2O (1.15 eq), TEA (1.1 eq), DMAP (0.1 eq), DCM (40 mL), 2 h, rt 

 

Scheme 2.4: Synthesis of nitrogen nucleophile 30 

 

39 was isolated in 29% yield after purification. Cleavage of the Boc group (Scheme 2.5) gave 

sulphonamide 40 in 48% yield after column chromatography.  

 

 

Reagents and Conditions: (i) DIAD (1.3 eq), PPh3 (1.5 eq), 30, toluene (20 mL), rt, 36 hours, (ii) TFA, 

DCM, rt, 60 minutes 

 

Scheme 2.5: Synthesis of 6-aminocodeine derivative 39 by a Mitsunobu reaction, followed by Boc deprotection 
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2.4 Synthesis of 6-aminocodeine (35) 

Whilst the synthesis of 39 was ongoing an alternative approach towards the synthesis of 6-

aminocodeine 35 was explored. Di-t-butyl iminodicarboxylate 41 was used as the nitrogen 

nucleophile. 41 has been used previously in a Mitsunobu reaction.20,21 The obvious advantage of this 

nitrogen nucleophile is the one step protection group removal but 41 is not as acidic as the 

sulphonamides, Ts-N(H)-Boc 28 and SES-N(H)-Boc 30. Consequently the pKa will be higher. A study 

carried out by Ragnarsson et al correlated increasing acidities of nitrogen nucleophiles with 

increasing reaction yields in the Mitsunobu reaction.22 The model Mitsunobu reaction studied used 

ethyl (S)-lactate and DEAD/PPh3 in THF with the nitrogen nucleophile. Nitrogen nucleophiles 28 (pKa 

= 8.5, DMSO) and 41 (pKa = 16.9, DMSO) gave yields of 93% and < 5% respectively. The importance of 

the pKa of the nucleophile is seen in the mechanism of the reaction. 

 

Step 1 

Nucleophilic attack of DEAD by the lone pair of electrons on the phosphorus atom results in the 

formation of a relatively stable betaine intermediate.23  

 

 

 

 

 

Step 2 

Deprotonation of either the nucleophile or the alcohol by the betaine intermediate takes place next. 

Current understanding of the mechanism is that the reaction can follow one or both the reaction 

pathways shown below.24 Either way, the end products are DEAD-H2 and an alkoxyphosphonium 

species.25   
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Pathway 1 

 

 

Pathway 2 
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The reaction is limited by the ease of deprotonation of the pronucleophile and also by the 

competition for deprotonation (between the pronucleophile and alcohol starting material) by the 

DEAD betaine intermediate.24 This has been exploited for the development of more active azo-type 

reagents. Replacing the ethoxy groups of DEAD with electron donating groups increases the basicity 

of the DEAD betaine intermediate. Examples include 1,1’-(azodicarbonyl)dipiperidine (ADDP) and 

N,N,N’,N’-tetramethylazodicarboxamine (TMAD) introduced by Tsunoda et al.10,11    

 

Step 3 

An SN2 reaction is the final step which proceeds to give the product with inversion of configuration 

and triphenylphosphine oxide as a by-product. For this step to occur the pKa of the nucleophile must 

be lower than that of the alkoxyphosphonium species. This also plays a role in the restriction of the 

Mitsunobu reaction by the pKa of the nucleophile. In summary, the pronucleophile should be 

suitably acidic for ease of deprotonation in Step 2 but must also be suitably nucleophilic to attack 

the alkoxyphosphonium species in Step 3.  

 

 

 

 

An overall scheme of the Mitsunobu reaction is shown below. 
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Reactivity of 41 was expected to be low due to its higher pKa value, nevertheless the Mitsunobu 

reaction was tried using DIAD/PPh3 (Scheme 2.6).  

 

 

Reagents and Conditions: (i) DIAD (1.4 eq), PPh3 (1.5 eq), toluene (20 mL), rt, 72 h 

Scheme 2.6: Synthesis of 6-aminocodeine derivative 42 by a Mitsunobu reaction (*90% purity) 

 

 

Desired compound 42 was not isolated in high purity after column chromatography. The high 

polarity of opiate derivatives mean they have a strong affinity for the silica stationary phase. 

Triphenylphosphine oxide and hydrazine by products of the Mitsunobu reaction are also quite polar 

but are usually eluted from the column before the opioid compounds using a mobile phase of 2-5% 

methanol in dichloromethane. However with the amine masked by the Boc groups, 

triphenylphosphine oxide eluted with the product (see the region around 7.5 ppm in Figure 2.5). 

Often the 1H NMR after chromatography showed the presence of another opioid compound. This is 

evidenced by the presence of a second pair of doublets in the aromatic region highlighted in Figure 

2.5. In addition, some degradation appeared in the alkyl region from 1.1-1.3. It is postulated that the 

Boc groups were being cleaved during purification by the silica. After multiple attempts at 

purification the decision was made to skip the isolation step of compound 42 (a 1H NMR of 90% 

purity is shown in Figure 2.6). After the removal of the solvent from the Mitsunobu reaction mixture, 

the deprotection step was carried out by the addition of HCl in dioxane (Scheme 2.7).19   
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Reagents and Conditions: (i) HCl in dioxane (4.0 M), 12 h, rt 

 

Scheme 2.7: Cleavage of Boc groups (*overall yield from codeine) 

 

 

 

 

Figure 2.5: 
1
H NMR of compound 42 with impurities highlighted (70% purity) 
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Figure 2.6: 
1
H NMR of compound 42 (90% purity) 

 

An alternative Mitsunobu couple was tested ADDP/PBu3, which can be used for less reactive 

nucleophiles such as sulphonamide 28.9,26 Purification was difficult due to the presence of the polar 

hydrazine by-product which co-eluted with the product. Accordingly, the DIAD/PPh3 protocol was 

adopted for further optimisation. Isolation of the hydrochloride salt 43 was investigated as a white 

solid precipitates from the reaction mixture after addition of the acid and stirring overnight. It can 

also be isolated by removing the solvent in vacuo and filtering the precipitate when 

dichloromethane is added. A 1H NMR confirmed the presence of the hydrochloride salt of the 

aminocodeine with traces of triphenylphosphine oxide. The white solid filtered from the reaction 

mixture was sticky and hygroscopic. The salt can be recrystallised from H2O but it is a slow process. 

As a result the work up was adjusted. 1,4-dioxane was used as a solvent for the Mitsunobu reaction 

so a one pot synthesis can be carried out. After stirring overnight; HCl in dioxane is added and the 

reaction mixture is stirred for a further 24 hours. The reaction mixture is adjusted to pH 8 using 

NH4OH, the solvent is removed and the residue is purified by column chromatography to give 6-β-

aminocodeine in 31% yield. The 1H and 13C NMR spectra matched the literature data.27 Crystals of 

the compound precipitated from a concentrated solution of the product in H2O. The X-ray crystal 

structure confirmed an SN2 reaction with inversion of configuration had occurred (Figure 2.7). 
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Figure 2.7: Crystal structure of 6-aminocodeine 35. Ellipsoids drawn at the 50% probability level. 

 

 

 

Whilst carrying out catalytic screening (Chapter 3) it was recognised that thio(urea) containing 

opioids could  have potential applications as organocatalysts. Hence, particular attention was 

focused on the synthesis of thio(urea) derivatives. With the synthesis of 35, proposed catalyst 

targets based on the 6-aminocodeine framework were envisaged. Thiourea and urea based 

compounds are readily synthesised from amines. Reduction of the double bond in the Δ6,7 position of 

the opiate scaffold can be advantageous in the synthesis of derivatives of catalyst structures with 

differing 3D structures. Acetylation of the primary amine leads to an amide which can potentially be 

transformed to a secondary amine. Greater catalytic activity is possible with the secondary amine as 

they are more reactive than primary amines.  
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Figure 2.8: Proposed targets from 35 
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2.5 Synthesis of 8-aminocodeine (44) 

The synthesis of 8-aminocodeine 44 was first achieved in 1939 from the reaction of ammonia with α-

chlorocodide.28 44 was later synthesised from codeine via a three step process. This reaction 

sequence was carried out and the yields and reaction conditions are shown below in Scheme 2.8. 

 

 

Reagents and Conditions: (i) Pyridine, DCM, TsCl, 0°C, 30 minutes, rt, 12 h, (ii) NaN3, DMF, 90°C, 12 h, 

(iii) LiAlH4 in THF, ether, reflux, 3 h 

Scheme 2.8: Synthesis of 8-aminocodeine 44 

 

The first step involves the tosylation of codeine, achieved in our laboratory in 74% yield; an 

improvement from the literature yield of 58%.29 Substitution of the tosyl group with an azide, occurs 

either via an SN2’ or [3,3] sigmatropic shift reaction. The yield obtained in our laboratory was higher 

than the literature 73% vs. 65%.29 Purification of 46 differed from the literature and was achieved by 

recrystallisation from hot water. A crystal structure was obtained of 46 which confirms the position 

of the azide (Figure 2.9). 46 is reduced using LiAlH4, the yield was lower (20% vs. 46%) than that 

achieved by Bognár et al.29 Purification of 44 is best realised by column chromatography. 
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Recrystallisation from ether occurs slowly, the crystals are waxy and often coated with “grease” 

impurities. Alternatively, ethanol can be used as a solvent for the recrystallisation of the 

hydrochloride salt. Other methods of reducing 46 were examined, including Staudinger reductions 

using PPh3 or PBu3 and a hydrogenation with Lindlar catalyst neither of which proceeded cleanly. 

Purification was not achieved from each of the crude reaction mixtures. 

 

 

 

Figure 2.9: 8-azidocodeine 46, ellipsoids are drawn at the 50% probability level 

 

 

2.6 Evidence of allylic rearrangement during Mitsunobu Reaction 

In a study of the Mitsunobu reaction on morphine and codeine it was noted by the authors that “no 

allylic rearrangement” was observed.30 Similarly, SN2 products were obtained when using the 

nitrogen nucleophiles 28, 30 and 41. However, when DPPA 32 was used as the nitrogen nucleophile, 

a mixture of products was obtained. Analysis of the crude 1H NMR spectrum of the reaction mixture 

identifies the products as 6-aminocodeine 35 and 8-aminocodeine 49. The reaction was carried out 

at room temperature and at 50°C (Scheme 2.9); ratios of the products obtained are stated in the 

table below (Table 2.1). 
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Reagents and conditions: (i) 1) PPh3 (1.2 eq), DPPA (1.2 eq), DIAD (1.1 eq), THF, 3 h, 20°C (Entry 

1)/50°C (Entry 2) 2) PPh3 (1 eq), 1 h, 40°C 3) H2O, 12 h, 40°C 

 

Scheme 2.9: Mitsunobu reaction using DPPA as the nitrogen nucleophile 

 

Entry Temperature 6-Aminocodeine (35) 8-Aminocodeine (44) Codeine (26) 

(1) 20°C 1.6 1.0 0.4* 

(2) 50°C - 1.0 0.2 

 

Table 2.1: Ratios of the products of the Mitsunobu reaction between codeine and DPPA at 20 °C and 50 °C, *ratio was 

difficult to measure accurately due to overlapping signals 

 

The crude 1H NMR of the reaction carried out at 20°C showed the major product was 35 present in a 

60:40 ratio to 44. The presence of starting material was also noted. Attempts to purify the crude 

product were unsuccessful due to the similar Rf values of 35 and 44. 8-Aminocodeine was the major 

product of the reaction carried out at 50°C with the presence of codeine also. 44 was isolated in high 

purity after column chromatography. 

As stated vide supra, no evidence of any SN2’ products were observed using nitrogen nucleophiles 

28, 30 and 41 with codeine in a Mitsunobu reaction. Using DPPA as a nitrogen nucleophile; there is a 

possibility an allylic azide rearrangement can occur. At room temperature, it is postulated an SN2 

reaction occured with formation of the kinetically favoured azide at the 6- position of the opiate. 

Some allylic rearrangement occurs at room temperature to the 8-azide, hence the mixture of amino 

products (see entry 1 in Table 2.1). These products are trapped by the addition of water. At the 

elevated temperature, the possible reaction pathway could be SN2 followed by complete allylic 
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rearrangement to the thermodynamic product (see entry 2 in Table 2.1). Without detailed 

mechanistic studies however; it is impossible to state the exact reaction mechanism. Nevertheless, 

preferential formation of 8-aminocodeine at 50°C can be exploited as an alternative to the literature 

3-step procedure from codeine. In short a one step route to 44 has been elucidated.  

 

2.7 Synthesis of a C2-symmetric derivative 

Synthesis of a C2-symmetric catalyst 47 was achieved following a method by Song et al (Scheme 

2.10).31 Zhang et al32 reported an improvement in the Song synthesis of the C2-symmetric 

compound. Initially the nucleophilic aromatic substitution was attempted following their conditions 

using sodium hydride, DMF as the solvent and heating to 50°C overnight.  This reaction was not 

clean, column chromatography was carried out but the desired product 47 was not isolated. Song’s 

procedure was carried out using a Dean Stark apparatus.  Codeine, the pyridazine 48 and potassium 

carbonate were refluxed in toluene before potassium hydroxide was added.  After the reaction work 

up the desired compound was isolated by flash chromatography on neutral alumina in 13% yield. 

 

 

 

 

Reagents and Conditions: (i) 1) K2CO3, toluene, reflux, 2 h 2) KOH, reflux 12 h  

 

Scheme 2.10: Synthesis of C2-symmetric target 47 
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2.8 Synthesis of nor-opiates             

During the synthesis of the nor-opiate compounds the oxidation step from the tertiary nitrogen to 

the N-oxide was achieved using m-CPBA following the method according to Scammells et al.33   

 

 

Reagents and Conditions: (i) m-CPBA, DCM, -10°C, 30 minutes  

Scheme 2.11: Synthesis of codeine N-oxide 49 

 

Interestingly, the NMR of codeine N-oxide shows only one epimer. Potentially, diastereomers can be 

formed at the nitrogen atom in the molecule. Caldwell et al carried out an NMR study of the 

compound and concluded the N-CH3 group was in the equatorial position.34  A crystal of codeine N-

oxide was obtained from D2O (Figure 2.10).  The crystal structure obtained is in agreement with the 

postulated position of the N-CH3 group. 

 

 

Figure 2.10: Crystal structure of 49, ellipsoids drawn at the 50% probability level (left), portion of 49  illustrated in 

ChemDraw  to highlight axial and equatorial attachments to the nitrogen atom (right) 
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Norcodeine 50 was synthesised via a Polonovski reaction using FeSO4.7H2O (Scheme 2.12).35 

Paraformaldehyde co-eluted with the product during column chromatography. Formaldehyde is a 

by-product of the Polonovski reaction and the paraformaldehyde was probably generated by the 

acidic starting material (codeine N-oxide hydrochloride 49).  The impurity was removed following 

further chromatography and crystallisation from chloroform. Using the procedure optimised for 50, 

normorphine 51 was prepared. 

 

 

Reagents and Conditions: (i) FeSO4.7H2O, MeOH, rt, 1 h  

Scheme 2.12: Synthesis of norcodeine 50 

 

2.9 Synthesis of an amino thiocarbamate derivative (52) 

Synthesis of an amino thiocarbamate derivative 52 was achieved in one step from codeine (Scheme 

2.13).  A literature procedure by Yeung et al was followed.36   

 

 

Reagents and Conditions: (i) NaH, THF, rt, 12 h  

Scheme 2.13: Synthesis of amino thiocarbamate 52 
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2.10 Synthesis of thiourea derivatives 

Compounds 54 and 55 were synthesised in a three step synthesis from codeine (Scheme 2.14).  

Tosylation of codeine is shown in Scheme 2.8. 45 was reacted with potassium thiocyanate in acetone 

to give 56 in 42% yield, which was slightly lower than the literature (48%).37 An SN2 reaction occurs 

giving the thiocyanate at the 6-position of the opiate scaffold, then a [3,3] sigmatropic shift gives the 

isothiocyanate in the 8-position.37 A crystal structure was obtained of 56 which supported the 

reported reaction mechanism (Figure 2.11). Thiourea derivatives 54 and 55 were then synthesised 

by a nucleophilic addition reaction following a procedure according to Bognár et al.37  

 

 

Reagents and Conditions: (i) KSCN, acetone, reflux, 5 h (ii) EtOH, 50°C, 1 h (iii) EtOH, 50°C, 12 h 

Scheme 2.14: Synthesis of thiourea derivatives 54 and 55 at the 8-position of codeine 
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Figure 2.11: Crystal Structure of 56, ellipsoids are drawn at the 50% probability level 

 

6-aminocodeine 35 was reacted with an isocyanate 58 and isothiocyanate 53 to give urea 59 and 

thiourea 60 derivatives respectively (Scheme 2.15). Nucleophilic addition of 35 to isothiocyanate 53 

gave a higher yield vs. the addition to isocyanate 58. 

 

 

 

 

Reagents and Conditions: (i) DCM, rt, 12 h 

Scheme 2.15: Synthesis of urea 59 and thiourea 60  
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The absence of the Δ7,8 double bond will greatly affect the 3D structure of the catalyst scaffold. For 

this reason a thiourea based catalyst was prepared where the double bond of the opiate has been 

reduced. The first route examined was a hydrogenation of 55, it was unsuccessful possibly due to the 

poisoning of the catalyst by the sulphur atom of the thiourea (Route 1). Likewise the reduction of 8-

aminocodeine 44 did not proceed (Route 2).38 Reduction of codeine was examined as a route to the 

desired product also (Route 3). However the Mitsunobu reaction did not take place in the absence of 

the double bond. All the routes are shown in Figure 2.13. In the literature; Mitsunobu reaction of 

phthalimide with codeine gives a 93% yield vs. a 49% yield for the same reaction on dihydrocodeine 

61 (Figure 2.12).13,39 Clearly, presence of the Δ7,8 unsaturation is favourable for the Mitsunobu 

reaction. The allylic hydroxyl is a better leaving group in the case of 26. Sterically also, the reaction 

will be affected by the shape of the C ring. The position of the hydroxyl group of codeine and 

dihydrocodeine is pseudo-equatorial and axial respectively. It is hypothesised that the lowered 

reactivity of dihydrocodeine in the Mitsunobu reaction (in comparison to codeine) and the use of the 

less reactive nitrogen nucleophile 41 (in terms of pKa) meant the reaction was unsuccessful.  

 

  

 

Figure 2.12: Literature reactions of codeine and dihydrocodeine with phthalimide  
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Reagents and Conditions: (i) 10% Pd/C, H2 (1 atm), MeOH, rt, 12 h (ii) 1) 41, DIAD, PPh3, THF (20 mL), 

rt, 12 h 2) HCl in dioxane, (4.0 M), 12 h, rt  

Figure 2.13: Various routes to attempted synthesise thiourea derivatives 63 and 65 with saturated ring C 
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10% Pd on charcoal was used for the hydrogenation of 6-aminocodeine 35  to 64 which took place at 

atmospheric pressure using absolute ethanol as the solvent and an equimolar amount of acetic acid. 

The reaction mixture was filtered through celite and used without subsequent purification to 

synthesise the desired compound 65 in an overall yield for two steps of 55% (Scheme 2.16). 

 

 

 

 

Reagents and Conditions: (i) 10% Pd on activated charcoal, H2 (1 atm), AcOH, EtOH, rt, 4 h (ii) 53, 

DCM, rt, 12 h 

 

Scheme 2.16: Synthesis of thiourea derivative 65 

 

2.11 Infrared Spectroscopic studies of selected compounds 

An organic molecule absorbs light from the infrared (IR) region to give a characteristic spectrum. The 

energy absorbed is converted to vibrational energy.  There are various types of vibrational energy, 

twisting, rocking, wagging, bending (change in bond angle) and stretching (increase/decrease in 

interatomic distance). Energy absorbed by the molecule at a specific wavelength leads to a 

momentary decrease in the amount of light reaching the detector so vibrational spectra appear as 

bands.40 The region of interest lies between 400 and 4000 cm-1.  Similar vibrational modes are 

observed for certain groups of atoms regardless of the structure of the remainder of the molecule, 

thus infrared spectroscopy is useful for the identification of the functional groups in a compound.  It 

is used in conjunction with other spectroscopic techniques to aid characterisation.  
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Two bands appear for sulphonamides 36, 37, 39 and 40 in the regions 1354-1315 cm-1 and 1154-

1139 cm-1. The presence of the Boc group in compounds 36 and 39 is clearly indicated by strong 

signals from the carbamate group in the carbonyl region. Compound 28 is included as a reference.41 

IR frequencies are summarised in Table 2.2 below. 

 

Entry Compound Sulphonamide –N(R)SO2- 

(cm-1) 

Boc C=O Stretch 

(cm-1) 

1 37 1323, 1154 - 

2 40 1315, 1139 - 

3 36 1354, 1147 1722 

4 39 1352, 1143 1724 

5 28 1340, 1149 1750 

 

Table 2.2: IR data for synthesised compounds 36, 37, 39, 40 and reference compound 28 

 

C=S stretching signals normally appear between 1250-1020 cm-1.40  In thiourea compounds 55 and 

65 and the amino thioarbamate 52, two strong bands appear in this region. For thiourea compound 

60, three strong bands occur in the same region. A strong signal appears at 1065 cm-1 in the 

spectrum for compound 54. These bands are likely to represent C=S/C-N stretching. Takemoto’s 

catalyst 66 is included as a reference in Table 2.3 below.42 Reference compounds 28 and 66 are 

shown in Figure 2.14. 

Entry Compound C=S/C-N Stretch (cm-1) 

1 54 1065 

2 55 1171, 1124 

3 60 1180, 1163, 1123 

4 65 1171, 1127 

5 52 1166, 1124 

6 66 1179, 1130 

 

Table 2.3: IR data for synthesised compounds 52, 54, 55, 60 and 65 and reference compound 66 
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Figure 2.14: Reference compounds 28 and 66 used in tables of IR data 

 

The isothiocyanate group of 56 shows a characteristic signal at 2115 cm-1.  The band at 2093 cm-1 is 

indicative of an azide group in compound 46. The carbonyl group of urea compound 59 appears at 

1671 cm-1. A very strong band at 1275 cm-1 represents the C-N stretch. The spectrum is shown below 

in Figure 2.15. 

 

Figure 2.15: IR spectrum of compound 59 
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2.12 NMR Study of 55 

Thiourea 55 was analysed by 1H, 13C, 19F, COSY, DEPT-135, HMQC and HMBC. All were recorded at 

room temperature in DMSO-d6. 55 has the molecular formula C27H25F6N3O2S. The structure of the 55 

and the numbering system (based on the conventional numbering system for opiates) is shown in 

Figure 2.16 below.  

 

 

Figure 2.16: Structure and numbering system for compound 55 

 

2.13 1H NMR 

The majority of the 1H signals can be assigned based on the multiplicity and chemical shift. For the 

most part the 1H spectrum of the compound and the parent opiate codeine are similar. Beginning 

with the opioid moiety, the aromatic protons H1 and H2 appear as a pair of doublets with a coupling 

constant of 8.2 Hz at δ 6.67 and δ 6.76 respectively. This is within the expected range for vicinal 

aromatic protons. Further upfield the vinylic signals appear, in this case H6 and H7 as the double 

bond is shifted in contrast to codeine. Both these protons appear as a singlet which is highly unusual 

and is an example of accidental degeneracy. 3J coupling for a cis double bond is normally in the 

region of 6-15Hz. H5 appears as a doublet with a small coupling constant of 2.3 Hz due to coupling to 

H6. In the single X-ray crystal analysis of 55 the angle between the two protons when viewed along 

the C5 and C6 axis is 56.2 (7)° (standard deviation in parentheses). Comparison of a solid state X-ray 
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analysis to a solution of structure 55 is not ideal but can give a rough guide. According to the Karplus 

relationship, if the angle is 60°, 3J should be in the region of 2.8 Hz.40 This fits the experimental value 

determined. H8 is located at δ 4.63 as a broad singlet. Methyl signals H17 and H18 correspond to the 

singlets at δ 2.31 and δ 3.76 respectively. A doublet of doublets at δ 3.22 with coupling constants of 

5.9 and 2.5 Hz represents H9. It is coupling to H14 and H10a protons. The smaller coupling constant 

is to H14 and the larger coupling is to H10a. Protons attached to C10, C15 and C16 are in different 

chiral chemical environments and so are diastereotopic. A broad doublet at δ 2.97 corresponds to 

H10b. The large coupling constant of 18.5 Hz is due to geminal coupling. H10b does not couple to 

H9. This suggests the protons are perpendicular in accordance with the Karplus curve as 3J = 0. H10a 

is located at δ 2.68 as a doublet of doublets with coupling to H9 (3J = 5.9 Hz) and H10b (2J = 18.5 Hz). 

H16 protons occur as a doublet of doublets and a triplet of doublets at δ 2.45 and δ 2.11 

respectively. Geminal coupling between the H16 protons is 12.2 Hz. A doublet of doublets at δ 2.37 

corresponds to H14; the coupling to H9 is 2.5 Hz while the coupling to H8 is 10.4 Hz. H15 protons are 

represented by a triplet of doublets and a doublet at δ 1.87 and δ 1.62 respectively. The doublet is 

broad at δ 1.62; it usually appears as a doublet of doublets. It is likely the peak has not fully resolved. 

The geminal coupling between the protons does not match (J = 12.4 and 11.1 Hz) possibly as a 

consequence of the poorly resolved signal. 

 

 

Figure 2.17: 1H NMR of compound 55 showing peak assignments 
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The remaining aromatic signals H21, H21’ (δ 8.21) and H24 (δ 7.76) appear as singlets and are easily 

assigned by their integration of 2 and 1 respectively. Two broad singlets at δ 10.02 and δ 8.50 

represent the protons attached to the nitrogens of the thiourea moiety. Presumably H26 is further 

downfield due to the deshielding effect of the aromatic ring. This will be confirmed by the remaining 

NMR analysis. 

 

2.14 1H-1H COSY of 55 
1H-1H Correlation Spectroscopy (COSY) provides additional and complementary information relative 

to the 1H NMR spectrum. It is a two-dimensional experiment; two axes of the 1H spectrum are 

plotted orthogonally, spin-spin coupling is indicated in the form of a contour plot. In the COSY 

spectrum of 55, weak coupling between H25 and H8 is observed. This helps to confirm the 

assignment of the protons attached to the nitrogen’s of the thiourea moiety. Weak coupling (4J) is 

also seen between aromatic protons H21, H21’ and H24. Aromatic protons of the opioid portion of 

the molecule H1 and H2; exhibit strong coupling. H5 couples to the singlet representing protons H6 

and H7. Coupling is seen between H8 and H14, but interestingly not between H8 and H7. H9 couples 

weakly to H14 and strongly to H10a. Geminal coupling is observed between the diastereotopic 

protons H10, H15 and H16 protons. Strong vicinal coupling is seen between H15 (δ 1.87) and H16 (δ 

2.11) whilst weak coupling occurs between H15 (δ 1.62) and H16 (δ 2.11), H15 (δ 1.87) and H16 (δ 

2.45). Analysis of the COSY spectrum shows the peak assignments are in agreement with the 1H NMR 

spectrum. All the coupling is summarised in Table 2.4 below. 
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Figure 2.18: 1H-1H COSY spectrum of compound 55 

 

Proton Coupling 

H1 H2 

H2 H1 

H5 H6 

H8 H14, H25* 

H9 H10a, H14* 

H10a H9, H10b 

H10b H10a 

H14 H8, H9* 

H15 (δ 1.87) H15 (δ 1.62), H16 (δ 2.11), H16 (δ 2.45)* 

H15 (δ 1.62) H15 (δ 1.87), H16 (δ 2.11)* 

H16 (δ 2.45) H15 (δ 1.87)*, H16 (δ 2.11) 

H16 (δ 2.11) H15 (δ 1.62)*, H15 (δ 1.87), H16 (δ 2.45) 

H21, H21’ H24* 

H24 H21, H21’* 

H25 H8* 

 

Table 2.4: Observed coupling in COSY spectrum of 55 (* denotes weak coupling) 
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Figure 2.19: Part (i) of COSY spectrum of 55 with coupling highlighted in red 

 

Figure 2.20: Part (ii) of COSY spectrum of 55 with coupling highlighted in red 
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2.15 13C and DEPT-135 Study of 55 

For NMR activity an atomic nucleus must have a non-zero spin quantum number. Similar to 1H, 13C 

has a spin number of + ½ (12C is NMR inactive due to a spin number of 0). The relative abundance of 

13C is 1.1%; as a result the sensitivity of 13C NMR is lower than that of 1H NMR (with a relative 

abundance of 99.98%). The 13C spectrum is proton decoupled to avoid complex coupling patterns 

and overlapping multiplets. Heteronuclear coupling can occur with other NMR active nuclei such as 

2H, 19F and 31P. The 13C spectrum displays the number of non-equivalent carbons in a molecule. 

Distortionless Enhancement by Polarisation Transfer (DEPT) is useful for determining the number of 

protons attached to a carbon. DEPT-135 displays methyl and methine signals in phase and 

methylene signals out of phase. Quaternary carbons are absent from DEPT spectra. Both 13C and 

DEPT-135 can be used in combination for peak assignment. 

In the 13C spectrum of 55 there are 24 carbon signals corresponding to non-equivalent carbons. Two 

of these signals are quartets because of 13C-F coupling. The signals are easily identifiable as the J 

values differ for each. Geminal coupling of C23, C23’ to fluorine has a value of 225.9 Hz while the 

vicinal coupling of fluorine to C22, C22’ is 27.2 Hz. Both fall within the expected ranges for 1J and 2J 

13C-fluorine coupling constants. The thiocarbonyl signal is the furthest downfield as expected at δ 

180.87, and is absent in the DEPT. There are 11 remaining carbon signals in the region 145-110 ppm, 

representing the aromatic and vinylic carbons, 6 of which are present in the DEPT. The absent signals 

must represent the quaternary aromatic carbons. C5 is identified at 85.89 ppm; it is at an analogous 

chemical shift relative to the 13C spectrum of codeine. Between 56-20 ppm there are 9 signals in the 

13C spectrum. C13 is distinguished as it is absent from the DEPT. Similarly the methylene carbons, 

C10, C15 and C16 are identified as they appear out of phase in the DEPT. Using the codeine 13C 

spectrum as a guide, C10, C15 and C16 should appear respectively from higher (C10 is at δ 20.05) to 

lower (C16 is at δ 46.21) field. These assignments can be confirmed by further analysis using HMQC 

and HMBC. 
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Figure 2.21: 13C spectrum of 55 

 

 

 

Figure 2.16: Structure and numbering system for compound 55 
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Figure 2.22: Part (i) of 13C spectrum of 55 with peak assignments 

 

Figure 2.23: Part (ii) of 13C spectrum of 55 with peak assignments 
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Figure 2.24: Snapshot of 13C spectrum of 55 detailing 13C-F splitting 

 

 

 

 

 

 

Figure 2.25: DEPT-135 spectrum of compound 55 showing peak assignments 
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2.16 HMQC and HMBC Analysis of 55 

Heteronuclear Multiple Quantum Coherence (HMQC) and Heteronulear Multiple Bond Coherence 

(HMBC) are forms of two dimensional correlation spectroscopy between two nuclei, in this case 1H 

and 13C.  1H and 13C axes are plotted orthogonally. In HMQC direct 1H-13C coupling is observed. HMBC 

is used for long range coupling typically three-bond but two- and four-bond couplings can often be 

detected.  

 

 

Figure 2.26: HMQC spectrum of compound 55 

 

 

The HMQC spectrum for 55 corroborates the peak assignments for the methylene carbons. The 

diastereotopic protons correlate to the carbon signal for C10, C15 and C16. C1, C2, C9, C14, C17, 

C18, C21, 21’ and C24 are also assigned by correlation with their proton signals. Their chemical shift 

is comparable to that of codeine. C6, C7 and C8 are dissimilar to codeine as the double bond has 

shifted. C6 and C7 cannot be distinguished; both their carbon signals correspond to a singlet in the 

1H spectrum. A summary of the correlations are shown below in Table 2.5. 
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Assigned Peak 

Number 

δ (ppm) 

Carbon Proton 

10 20.05 2.68, 2.97 

15 34.90 1.62, 1.87 

17 42.77 2.31 

14 44.68 2.37 

16 46.21 2.11, 2.45 

8 49.10 4.63 

9 55.44 3.22 

18 55.83 3.76 

5 85.89 5.01 

2 113.58 6.76 

24 116.35 7.76 

1 118.87 6.67 

21 122.42 8.21 

6/7 134.54, 125.28 5.72 

 

Table 2.5: Observed coupling in HMQC spectrum of 55 

 

 

Figure 2.27: Part (i) of HMQC spectrum of 55 showing observed correlations 
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Figure 2.28: Part (ii) of HMQC spectrum of 55 showing observed correlations 

The HMBC identifies C3 and C12 by three-bond coupling to C1 and C4, likewise C4 and C11 by 

coupling to C2. The remaining aromatic quaternary signal is indicative of C20.  

 

Figure 2.29: HMBC spectrum of compound 55 
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A summary of the coupling seen in the HMBC is shown below in Table 2.6. 

Proton  Coupling to Carbon 

H1 C3, C10*, C12 

H2 C4, C11 

H5 C4, C12, C15 

H6/H7 C5, C8, C13 

H9 C11*, C13*, C16* 

H10a C11* 

H10b C9, C11, C14 

H15 (δ 1.87) C12, C13*, C16* 

H16 (δ 2.45) C9*, C13* 

H17 C9, C16 

H18 C3 

H21, H21’ C20, C23, C23’, C24 

H24 C23, C23’ 

 

Table 2.6: Summary of the observed coupling in the HMBC spectrum of compound 55 (* denotes weak coupling) 

 

 

Figure 2.30: Part (i) of HMBC spectrum of compound 55 showing observed coupling 
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Figure 2.31: Part (ii) of HMBC spectrum of compound 55 showing observed coupling 

 

 

2.17 19F Spectrum of 55 

The 19F nucleus is ideal for analysis by NMR, with a spin number of + ½, is monoisotopic and has a 

high magnetogyric ratio (sensitivity is 0.83 for 19F, 1.00 for 1H and 0.0159 for 13C nuclei).15 The proton 

decoupled 19F NMR spectrum for compound 55 is shown in Figure 2.32 below. As expected the 19F 

signal appears as a singlet as the CF3 groups are equivalent within the molecule. It was noted in the 

19F NMR spectrum of compound 60 that a singlet was observed when the sample was run in CD3CN. 

When the sample was run in CDCl3 multiple signals were observed in the 19F spectrum in CDCl3, 

thought to be due to the presence of rotamers.   
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Figure 2.32: 19F spectrum of compound 55 

 

 

2.18 Collated NMR Data for compounds 52, 54, 55, 59 and 60 

A table of NMR data was collated for compounds 52, 54, 55, 59 and 60. In the following tables please 

note that the solvent used was DMSO-d6, 1H spectra were carried out at 600 MHz and 13C analysis 

was carried out at 125 MHz except for compound 54. The 1H was run at 400 MHz and the 13C at 100 

MHz. CDCl3 was used as the NMR solvent.  All NMR spectra were recorded at 20°C except for 

compounds 60 and 52 which were run at 80°C. 

Aromatic signals H1 and H2, H9, H10a, H15b, H16a, H16b and methyl protons H17 and H18 are all 

located at similar chemical shifts. For protons H10b and H15a, the chemical shifts are similar for 

compounds 52, 59, and 60. When the double bond is shifted to the Δ6,7 position the H10b signal is 

shifted downfield and upfield in the case of H15a. The position of H14 ranges from 2.2-3.1 ppm but 

is similar for compounds 59 and 60. Protons H5, H6, H7 and H8 are also affected by the position of 

the double bond, all the signals are located between 4-6 ppm.   

-20 -40 -60 -80 -100 -120 -140 -160 -180 ppm
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The carbon signals have remarkably similar chemical shifts for most of the compounds. Exceptions 

include C5, C6, C7, C8 and C14 which can be attributed to the position of the double bond. 

Compound 54 is structurally different (p-CF3 group vs. 3,5-disubstituted -CF3 groups) to the other 

compounds and so aromatic signals C20-C24 are slightly shifted as a result. For the remaining 

compounds, C20-C24 are located at analogous chemical shifts. Although in compound 59, C21, 21’ 

appears at a slightly higher field than the other compounds. Likewise, the carbonyl signal (C19) in 

compound 59 is also located at higher field (δ 154) vs. the thiocarbonyl signals (δ 180) in compounds 

54, 55 and 60. The thiocarbonyl signal of the amino thiocarbamate 52 is found further downfield at 

187 ppm.  Based on comparison of the NMR spectra of the similar structures 54 and 55, it is 

reasonable to assign C6 and C7 in compound 55. C6 is located at 134.54 ppm while C7 is at 125.28 

ppm.   

 

 

 H1 H2 H5 H6 H7 H8 H9 H10a H10b 

54* 6.64 6.64 4.85-4.84 5.63 5.72 4.85-4.84 3.34-3.33 3.00 2.91 

55 6.67 6.76 5.01 5.72 5.72 4.63 3.22 2.97 2.68 

60** 6.57 6.71 4.83 4.87 5.88 5.72 3.39 3.00 2.36 

59 6.56 6.70 4.71 4.16 5.79 5.65 3.35 2.98 2.33 

52** 6.53 6.61 5.23 5.90-5.89 5.69/5.57 5.69/5.57 3.36-3.35 2.97 2.37-2.28 

 

 

 H14 H15a H15b H16a H16b H17 H18 H21, H21' H22. H22' H24 

54* 2.26-2.19 1.78-1.76 1.78-1.76 2.47-2.44 2.09 2.35 3.78 7.61 7.26 - 

55 2.37 1.87 1.62 2.45 2.11 2.31 3.76 8.21 - 7.76 

60** 3.06 2.05 1.67 2.57 2.29 2.42 3.80 8.33 - 7.69 

59 3.02 2.02 1.65 2.55-2.53 2.27 2.40 3.80 8.08 - 7.52 

52** 2.80 2.08 1.69 2.54-2.52 2.37-2.28 2.38 3.61 8.28 - 7.75 

 

 

Table 2.7: Collated 
1
H NMR data for compounds 52, 54, 55, 59 and 60 (*CDCl3 used as NMR solvent, 

1
H/

13
C NMR recorded 

at 400/100 MHz respectively, **NMR recorded at 80 °C) 
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 C1 C2 C3 C4 C5 C6 C7 C8 

54* 119.49 113.42 143.21 143.99 86.21 133.18 126.53 50.77 

55 118.87 113.58 141.65 143.79 85.89 134.54/125.28 134.54/125.28 49.10 

60** 118.89 114.59 141.84 145.68 91.85 53.08 127.4 132.88 

59 118.78 114.61 142.39 145.67 92.77 49.66 128.87 131.94 

52** 119.02 114.23 141.59 146.25 87.43 73.81 130.38/127.15 130.38/127.15 

 

 C9 C10 C11 C12 C13 C14 C15 C16 

54* 56.44 20.43 128.34/127.21 128.34/127.21 41.00 46.89 35.49 46.95 

55 55.44 20.05 127.40 129.05 40.46 44.68 34.90 46.21 

60** 58.36 20.29 127.80 130.59 43.59 39.36 35.24 46.46 

59 58.33 20.22 127.55 130.71 43.63 39.34 35.45 46.48 

52** 58.32 20.42 127.15 130.61 40.44 39.99 34.87 46.13 

 

 C17 C18 C19 C20 C21, C21' C22, C22' C23, C23' C24 

54* 43.22 56.29 180.38 139.44 124.15 127.42 128.65 123.64 

55 42.77 55.83 180.87 142.54 122.42 130.10 123.19 116.35 

60** 42.46 56.63 180.60 142.06 121.97 130.36 123.24 116.05 

59 42.51 56.66 154.36 141.82 117.55 130.86 123.35 113.62 

52** 42.46 56.07 187.12 140.36 121.83 130.80 123.06 117.15 

 

Table 2.8: Collated 13C NMR data for compounds 52, 54, 55, 59 and 60 (*CDCl3 used as NMR solvent, 1H/13C NMR recorded 

at 400/100 MHz respectively, **NMR recorded at 80 °C) 

 

2.19 Variable temperature 1H and 13C NMR study 

CDCl3 was used as a solvent initially for amino thiocarbamate 52. Broad peaks were observed in the 

aromatic region and a sharp singlet was absent for the three OMe protons (H18). The 1H NMR was 

rerun in DMSO-d6. The peaks in the aromatic region remained broad. A pair of doublets is usual for 

the aromatic protons of the opioid, H1 and H2. Highlighted inset below in Figure 2.34, the signals in 

the expected region δ 6.7-6.5 resemble a quasi doublet with broad tailing downfield of the signal. 

Integration of the region corresponds to two protons as anticipated. Similar to the 1H NMR in CDCl3, 

there is no sharp singlet indicative of the OMe protons (H18). It is likely that they are obscured by 

the water signal (δ 3.4).   
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Figure 2.33: Structure of amino thiocarbamate 52 

 

 

Figure 2.34: 
1
H NMR spectrum of compound 52 in CDCl3 

 

A variable temperature 1H NMR experiment was carried out at 10°C intervals from 20 to 80°C in 

DMSO-d6. As the temperature increases, the signals sharpen and become more defined. This is 

clearly illustrated in Figure 2.36 in the aromatic region for protons H1 and H2. At 20°C the signals are 

broad and the multiplicity is indecipherable. By 60°C two distinct doublets are visible. At 80°C the 

spectrum is clear and fully discernible. The signal for the OMe protons (H18) is present at δ 3.6. The 

full 1H NMR spectrum of the pure compound at 80°C is shown in Figure 2.37. 
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Figure 2.35: 1H NMR of 52 carried out at variable temperatures in DMSO-d6  

 

Figure 2.36: 1H NMR of 52 carried out at various temperatures with the aromatic region highlighted 
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Figure 2.37: 1H NMR spectrum of 52 carried out at 80°C in DMSO-d6 

 

An X-ray crystal structure of compound 52 shows disorder within the molecule; this helps to explain 

the difficulties with the 1H NMR assignment due to the peak broadening.  There appears to be some 

disorder about the OMe, NMe and CF3 groups (in particular as represented by the “umbrella like” 

appearance of the CF3 groups in Figure 2.38).  It is hypothesised that these rotamers are responsible 

for the complexity in the NMR spectra. 

 

 

Figure 2.38: X-ray crystal structure of 52 
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At lower temperatures the rate of interconversion of the rotamers is slow, leading to spectrum 

complexity and peak broadening. As the temperature increases, so does the rate of interconversion 

of the rotamers. Above the coalescence temperature (Tc) the rotamers are interconverting rapidly, 

sufficient for the NMR signals to coalesce, sharpen and become more defined. This is substantiated 

in the 13C NMR of the compound 52 in DMSO. At 20°C, similar to the 1H NMR it contains broad peaks 

and the carbon signals cannot be interpreted accurately. At 80°C, the 13C spectrum is 

comprehensible, all the signals are well-defined. For example C5 appears as a broad doublet at 20°C 

(δ 87.7-86.8) in Figure 2.39 and as a sharp singlet at 80°C (δ 87.4) in Figure 2.40.  

 

 

 

Figure 2.39: 13C NMR of 52 carried out at 20°C 
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Figure 2.40: 13C NMR of 52 carried out at 80°C 

It should be noted that an inconsistency remained within the 13C NMR spectrum. The signal at 

127.15 ppm appeared to represent a vinylic carbon, C7 or C8. It was not a quaternary signal as it was 

present in the DEPT and in the HMQC it correlated to the vinylic 1H signals. However the HMBC 

showed 3-bond coupling of H2 to the carbon signal at 127.15. The coupling in this region is normal to 

C11. The signal for C11 was missing from the spectrum. It was postulated that the signals were 

overlapping. A DEPTQ NMR experiment was run at high temperature to examine the hypothesis. In a 

DEPTQ 135 experiment the CH and CH3 signals remain in phase while the quaternary carbon and CH2 

signals appear 180° out of phase. Thus if the signals are overlapping the vinylic CH signal 

representing C7/C8 should be seen above the baseline while the quaternary carbon C11 should 

appear below the baseline. This is indeed the case as shown in Figure 2.41 below. 

 

Figure 2.41: DEPTQ NMR spectrum of 52 highlighting the region 119-128 ppm 
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2.20 Conclusions 

Synthesis of a range of target compounds has been achieved. Sulphonamide derivatives 36 and 40 

were synthesised in two steps from codeine 26. A robust procedure for the synthesis of 6-

aminocodeine 35 was developed. 8-Aminocodeine 44 was prepared in three steps from codeine. 

While investigating an alternative synthesis of 35, a one-step route to 44 from 26 was discovered. 

Synthesis of four thiourea derivatives 54, 55, 60 and 65, a urea 59 and an amino thiocarbamate 52 

was achieved. Norcodeine 50 and normorphine 51 were synthesised by oxidation of the parent 

opiate to the N-oxide followed by a Polonovski type reaction. A 1,4 phthalazine linked bis opioid 47 

was prepared from 26 in one step. The synthetic routes are described in detail throughout the text 

vide supra. In the synthesis of many of the known compounds more effective protocols have been 

developed for purification. Yields are somewhat low for the syntheses but most of the reactions 

were not optimised; the purpose was to isolate enough material for analysis.  

Compounds synthesised are relatively stable; no evidence of degradation by light, air or moisture 

was observed with the exception of the amino compounds 35, 44 and 64. The white solids 35, 44 

and 64 tend to turn yellow after a few days. Accordingly, preparation of aminocodeines 35, 44 and 

64 should be carried out only when required and they should be used after purification as quickly as 

possible. Storage of 35, 44 and 64 is preferable under nitrogen in a dark container.  

Characterisation of the products was completed using mp, NMR, IR, [α]D and MS. In addition X-ray 

crystal structure analysis was carried out on a number of compounds. A complete NMR assignment 

study was carried out on compound 55. An example of a variable temperature NMR experiment on 

compound 52 and an IR analysis of selected derivatives have been included.  
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3.1 Introduction 

Cinchona alkaloids are widely used in synthesis and catalysis, as enantioselective catalysts in conjunction 

with metal catalysts in asymmetric reductions, oxidations and carbon-carbon bond forming reactions, as 

enantioselective analytical tools in the resolution of racemates, in enantioselective chromatography and 

as chiral shift reagents and finally as organocatalysts.1 The opiates are a similar class of alkaloids, yet 

they have not been tested for their potential organocatalysis applications. The focus of this research is 

to investigate the ability of the opium alkaloids and their derivatives to act as enantioselective 

organocatalysts. Potential advantages over cinchona alkaloid derivatives include the increased steric 

bulk which could offer increased enantioselectivities, the literature available for the synthesis of opioid 

derivatives and the structural specificity offered by the morphinan “skeleton”. Initial studies were 

concentrated on pharmaceuticals and their synthetic precursors made available to our laboratory to test 

for any catalytic activity.   

3.2 Choice of Model Reaction 

Michael Addition of acetone to trans-β-nitrostyrene appears frequently in the literature.2,3,4,5 It has been 

catalysed in excellent yield (93%) and enantioselectivity (99% ee) by Jacobsen using a chiral primary 

amine-thiourea catalyst.5 Despite the high yields and enantioselectivities attained previously it was 

chosen as a model reaction to test the efficacy of our catalysts. The starting materials (acetone and 

trans-β-nitrostyrene) are readily available; also the product is relatively stable, no racemisation has been 

reported. There is only one chiral centre present in the product, 5-nitro-4-phenylpentan-2-one, so 

synthesis of diastereomers is avoided. Enantiomers of the racemic product were easily separated by 

HPLC. Many of the target catalysts contain an amine functionality. Catalysis of the Michael reaction is 

likely with a chiral amine by an enamine pathway (Figure 3.1).  Acetone forms an enamine with the 

secondary amine and is activated to act as a nucleophile. For these reasons the reaction was deemed 

suitable to test our catalysts.  

3.3 Investigation of catalyst performance in a Michael addition reaction 

A literature procedure was followed using Noyori’s Ts-DPEN catalyst 67 in order to test the reaction 

could be repeated and the results reproduced in our laboratory.1  An isolated yield (62%) and 

enantioselectivity (92% ee) comparable to the report (70% isolated yield, 91% ee) was obtained.  A 

variety of catalysts were then screened for activity. The primary screen included the pharmaceuticals 

codeine 26, morphine 27 and synthetic precursor of buprenorphine, norbuprenorphine 69 (Table 3.1). 
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Figure 3.1: Enamine catalysis pathway 

 

 

 

Figure 3.2: Initial screen of various catalysts in the addition of acetone to nitrostyrene 
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Table 3.1: The initial screening of opioids as catalysts of the Michael Addition of acetone to nitrostyrene.[a] 

 

Catalyst 

 

(%) Yield[b]  (%) ee[c]  

67  

 

70 91 

26  

 

None - 

27 

 

None - 

68 

 

None - 

69 

 

27 13 

[a] Unless otherwise specified, reactions were carried out with acetone (2 mmol), trans-β-

nitrostyrene (0.2 mmol), CH2Cl2 (1 mL) and the catalyst (0.04 mmol) at room temperature. 

[b]  Isolated yields after column chromatography 

[c] The ee values were determined by HPLC using a Lux Cellulose-2 column. 

 

There was no conversion as determined by TLC or NMR using 26, 27 or 68 which is as expected as there 

are no secondary amines present for an enamine catalysis pathway to occur. 69 however, catalysed the 

reaction giving an ee of 13%. After this initial hit, the reaction was repeated twice to verify the result. 69 

again catalysed the reaction. The increase in isolated yield from 27% to 47% (average over the two 

reactions, see Table 3.2) was probably due to better chromatographic technique. The enantioselectivity 

increased slightly, by 3% in one reaction and 4% in the other.  

The secondary amine was postulated as the active site of catalysis, likely by an enamine mechanism. To 

test the theory that the secondary amine was required for catalytic activity, a number of analogues of 

norbuprenorphine were tested including buprenorphine 70 and an N,O-methylated derivative 71. In 

both 70 and 71, the secondary amine is alkylated to form a tertiary amine. This will prevent enamine 

formation at this site. Similarly the hydrochloride salt of norbuprenorphine 72 was also screened. There 

was no conversion to the product using 70, 71 and 72 proving that the secondary amine is essential for 

catalytic activity.  
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Figure 3.3: Buprenorphine 70 and the N,O-methylated derivative of norbuprenorphine 71 and norbuprenorphine hydrochloride 

salt 72 

 

Table 3.2: The screening of norbuprenorphine and derivatives.[a] 

 

Catalyst 

 

(%) Yield[b]  (%) ee[c]  

69 

 

44 17 

69  

 

49 18 

70 

 

None - 

71 

 

None - 

72 

 

None - 

[a] Unless otherwise specified, reactions were carried out with acetone (2 mmol), trans-β-

nitrostyrene (0.2 mmol), CH2Cl2 (1 mL) and the catalyst (0.04 mmol) at room temperature. 

[b]  Isolated yields after column chromatography 

[c] The ee values were determined by HPLC using a Lux Cellulose-2 column. 
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Based on the catalytic activity of norbuprenorphine, nor-14-hydroxymorphinone 73 and nor-14-

hydroxymorphone 74 were screened. Both compounds have a hydroxyl in the 14- position of the opiate 

scaffold. They differ by presence/absence of a double bond at the 7,8 position. Neither 73 nor 74 

catalysed the reaction (Table 3.3).  We postulated that the hydroxyl group in the 14-position was 

detrimental to the catalytic activity. The 14-hydroxy group is absent in norcodeine 50 and normorphine 

51, both 50 and 51 were synthesised and tested but they did not catalyse the reaction either. 

 

Figure 3.4: Nor-opioids screened as catalysts in the addition of acetone to nitrostyrene 

 

Table 3.3: The screening of various nor- opioids.[a] 

 

Catalyst 

 

(%) Conversion [b]  

73 

 

None 

74  

 

None 

50 

 

None 

51 

 

None 

 

[a] Unless otherwise specified, reactions were carried out with acetone (2 mmol), trans-β-

nitrostyrene (0.2 mmol), CH2Cl2 (1 mL) and the catalyst (0.04 mmol) at room temperature. 

[b] By TLC and NMR 
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3.4 Other catalyst targets 

Other catalyst targets were synthesised based on literature information and precedent. It was important 

to identify targets that could be successful in the model reaction chosen. A pyrrolidine sulphonamide 

compound has been used by Wang et al to catalyse amongst others an aldol6, Michael addition7 and 

Mannich type8 reactions. 37 and 40 were synthesised as a result. An example of a catalyst with a dimeric 

scaffold led to the preparation of the C2-symmetric derivative 47. Catalysts with a primary amine 

functionality, including those attached to the cinchona alkaloid scaffold, have widely been used as 

organocatalysts.9,10 Hence, primary amine example 35 was prepared. All are shown in Figure 3.5 below. 

 

Figure 3.5: Catalysts tested in the reaction between trans-β-nitrostyrene and acetone 
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Table 3.4: The initial screening of opioids as catalysts of the Michael Addition of acetone to nitrostyrene.[a] 

 

Catalyst 

 

Conversion[b] (%) Yield[c]  (%) ee[d]  

37 None - - 

40 None - - 

47 None - - 

52  None - - 

54 None - - 

35  25 19 25 

44 5 nd[e] - 

[a] Unless otherwise specified, reactions were carried out with acetone (2 mmol), trans-β-

nitrostyrene (0.2 mmol), CH2Cl2 (1 mL) and the catalyst (0.04 mmol) at room temperature. 

[b] By NMR 

[c] Isolated yields after column chromatography 

[d] The ee values were determined by HPLC using a Lux Cellulose-2 column. 

[e] Not determined 

 

 

No conversion to the product was observed using catalysts 37, 40, 47, 52 and 54 (see Table 3.4). 6-

Aminocodeine 35 catalysed the reaction giving an isolated yield of 19% and 25% ee. 8-Aminocodeine 44 

was identified as a target as it was postulated that the increased steric bulk around the 8- position of the 

scaffold would increase the enantioselectivity. However the conversion was very low (5%, by 1H NMR) 

and the ee was not measured. The next step was to try and increase the reactivity/basicity of 35 by 

synthesising a secondary amine at the 6- position. First the amide was formed by reaction of 35 and 

acetic anhydride (Scheme 3.1). The next step was the reduction of the amide to the secondary amine. 

Despite several attempts at the reduction using LiAlH4 the synthesis and isolation of the desired product 

was not achieved.  
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Reagents and Conditions: (i) Acetic anhydride, H2O, rt, 4 h (ii) LiAlH4 in THF, reflux, 3 h 

Scheme 3.1: Attempted synthesis of 76 

 

3.5 Optimisation studies using norbuprenorphine as a catalyst 

Norbuprenorphine 69 was chosen as a candidate for optimisation. It was envisaged that by altering the 

solvent and testing various additives that the enantioselectivity would improve. Initially a solvent study 

was carried out (Table 3.5). 

Table 3.5: Solvent Study.[a] 

 

Entry Solvent 

 

(%) Yield[b]  (%) ee[c]  

1 Dichloromethane 49 18 

2 DMSO 44 18 

3 Methanol 16 17 

4 Toluene 7 racemic 

5 Water None - 

6 No solvent 49 13 

[a] Unless otherwise specified, reactions were carried out with acetone (2 mmol), trans-β-nitrostyrene (0.2 

mmol), solvent (1 mL) and norbuprenorphine 69 (0.04 mmol) at room temperature. 

[b]  Isolated yields after column chromatography 

[c] The ee values were determined by HPLC using a Lux Cellulose-2 column. 
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DMSO and methanol produced similar enantioselectivities to the example using dichloromethane as the 

solvent (entries 1-3).  The isolated yield was lower using methanol as the solvent. Toluene was used as a 

non-polar example but gave a low yield and a racemic product (entry 4). There was no conversion by 

NMR when water was used as the reaction solvent (entry 5). The reaction was tested in the absence of 

solvent also.  As the solvent screen did not show any improvements in the yield or enantioselectivity it 

was decided to advance to an additive study using dichloromethane as the solvent.  

 

Table 3.6: Study of the concentration of acid additive required.[a] 

 

Entry 

 

Formic acid mol (%) (%) Conversion[b] (%) Yield[c]  (%) ee[d]  

1 10 65 39 16 

2 20 36 27 18 

3 40 11 10 18 

4 60 5 5 18 

[a] Unless otherwise specified, reactions were carried out with acetone (2 mmol), trans-β-nitrostyrene (0.2 

mmol), CH2Cl2 (1 mL), norbuprenorphine 69 (0.04 mmol) and formic acid at room temperature. 

[b] As determined by NMR  

[c] Isolated yields after column chromatography 

[d] The ee values were determined by HPLC using a Lux Cellulose-2 column. 

 

 

The concentration of the acid additive was explored by altering the equivalents of formic acid added to 

the reaction (Table 3.6).  A clear trend emerged, as the equivalents of acid were increased the 

conversion and isolated yield decreased.  The ee remained between 16-18%.  10 mol% was chosen as 

the optimum concentration to proceed with the investigation of various acid additives. Next, an 

examination of various acid additives was conducted (Table 3.7).    
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Table 3.7: The screening of various acid additives.[a] 

 

Entry 

 

Acid (%) Yield[b]  (%) ee[c]  (%) Conversion[d] 

1                Acetic acid  97 10  100 

2                TFA  37  18  37 

3                Salicylic acid  99  10  100 

4                Benzoic acid  76  17 78 

5         (R)-Mandelic acid 37  18 80 

6         (S)-Mandelic acid 27  23 37 

7       (1S)-Camphorsulphonic acid  17  16 22 

8      (1R)-Camphorsulphonic acid  18  18 18 

9         (S)-Mosher’s acid  61  16 62 

10         (R)-Mosher’s acid  16  20 16 

11               Oxalic acid  0 - - 

12               Ytterbium (III) triflate  0 - - 

13               Copper (II) triflate 0 - - 

14               Formic Acid 39 16 65 

[a] Unless otherwise specified, reactions were carried out with acetone (2 mmol), trans-β-nitrostyrene (0.2 

mmol), CH2Cl2 (1 mL), norbuprenorphine 69 (0.04 mmol) and acid additive (0.02 mmol) at room temperature. 

[b]  Isolated yields after column chromatography 

[c] The ee values were determined by HPLC using a Lux Cellulose-2 column. 

[d] By NMR 

 

 

The isolated yields varied from very high (97% for acetic acid (entry 1) and 99% for salicylic acid (entry 

3)) to 16% for (R)-Mosher’s acid (entry 7). The enantioselectivities in Table 3.7 varied from 10 to 23% ee.  

The acids that showed the highest conversions (acetic and salicylic acid) gave the lower 
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enantioselectivities at 10% ee. Two Lewis acids (entries 12 and 13) were tested but they impeded 

product formation. (S)-Mandelic acid gave the highest enantioselectivity and on this basis the chiral 

camphorsulphonic (entries 7 and 8) and Mosher’s (entries 9 and 10) acids were screened. No additional 

improvement in the enantioselectivity was observed. 

Two reactions from Table 3.7 (entries 1 and 3) were repeated in the absence of the catalyst 

norbuprenorphine 69. These reactions were selected as acetic and salicylic acid additives gave the 

highest conversion and also lowest ee’s, both potential outcomes from a competing, preferential 

racemic background reaction. However, there was no conversion by TLC or NMR after 8 days. This 

proves that 69 is catalysing the reaction not the acetic/salicylic acid. The presence of the acetic/salicylic 

acid as a co-catalyst results in complete conversion to the product. 

As (S)-mandelic acid gave the highest ee (23%), a number of substituted mandelic acids were then 

investigated (Table 3.8). The enantioselectivities remained between 10 and 20%.   

 

Table 3.8: The screening of various mandelic acid derivatives.[a] 

 

Entry 

 

Acid (%) Yield[b]  (%) ee[c]  

1            4-Bromomandelic acid  49  20 

2            4-(Trifluoromethyl)mandelic acid  31  19 

3            4-Methoxymandelic acid  44  17 

4            4-Hydroxymandelic acid  46  10 

[a] Unless otherwise specified, reactions were carried out with acetone (2 mmol), trans-β-nitrostyrene (0.2 

mmol), CH2Cl2 (1 mL), norbuprenorphine 69 (0.04 mmol) and acid additive (0.02 mmol) at room temperature. 

[b]  Isolated yields after column chromatography 

[c] The ee values were determined by HPLC using a Lux Cellulose-2 column. 
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Two experiments were carried out at 0 °C to improve the enantioselectivity. As the reaction had gone to 

completion using salicylic acid and acetic acid, these were chosen as candidates for the low temperature 

study. No product formation was observed in either case after 8 days at 0°C demonstrating the 

importance of carrying out the reaction at room temperature. 

 

Table 3.9: Investigation of the reaction temperature.
[a] 

 

Entry 

 

Acid Conversion[b]  

1            Acetic acid  None  

2            Salicylic acid  None  

[a] Unless otherwise specified, reactions were carried out with acetone (2 mmol), trans-β-nitrostyrene 

(0.2 mmol), CH2Cl2 (1 mL), norbuprenorphine 69 (0.04 mmol) and acid additive (0.02 mmol) at 0 °C 

[b]  By NMR and TLC 

 

 

 

Overall the optimisation study has shown that norbuprenorphine in combination with acid additives 

catalyses formation of the Michael adduct, (S)-5-nitro-4-phenylpentan-2-one 77 in moderate to high 

yields and with modest enantioselectivity.  

 

3.6 Conclusions and future work 

Norbuprenorphine catalysed the Michael reaction of acetone and nitrostyrene in excellent yields but 

with modest enantioselectivity. Optimisation of the reaction conditions led to higher isolated yields. In 

the presence of acetic or salicylic acid as an additive the reaction goes to completion and isolated yields 

of 97% and 99% have been obtained respectively. The enantioselectivity in both cases was poor at 10% 
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ee. An isolated yield of 27% and an ee of 23% was obtained when (S)-Mandelic acid was used as an 

additive, showing a slight synergistic effect. No further improvement of the enantioselectivity was 

achieved after optimisation. However, this is the first example of the use of opiates as a scaffold for 

organocatalysis. Although the levels of enantioselectivity are not satisfactory, catalysis has been 

achieved. There is scope for further research to be carried out in order to improve the ee. Manipulation 

of the norbuprenorphine 69 scaffold, in particular the isolation and crystallisation of the 

acetone/norbuprenorphine enamine product would give more information about how to ameliorate 

enantioselectivities. Another option is to use a bulkier alternative to acetone, for example tert-butyl 

acetoacetate 78 or methyl isopropyl ketone 79 (Figure 3.6). There is a possibility these would achieve 

more steric discrimination and thus increase the enantioselectivity. t-Butyl acetoacetate would also be 

more reactive than acetone.   

 

 

Figure 3.6: tert-butyl acetoacetate 78 and methyl isopropyl ketone 79 

 

3.7 Target (thio)urea based catalysts identified   

Catalysts 54, 55, 59, 60 and 65 were specifically designed based on the success of cinchona alkaloid 

based (thio)urea catalysts. A literature precedent for opioids with a thiourea functionality in the 8-

position (Figure 3.7) had been set by Lajos et al.11,12 Novel compound 54 was synthesised initially 

followed by the similar structure 55. The difference between 54 and 55 is the substitution of the 

aromatic ring. 54 contains a 4-(trifluoromethyl)phenyl group, 55 contains a 3,5-

bis(trifluoromethyl)phenyl group. The extra -CF3 group will make the thiourea moiety of 55 more acidic 

by decreasing the electron density of the phenyl ring. A structural analogue (of 55) at the 6-position of 

the opiate scaffold was synthesised. The thiourea moiety of 60 will be in a different chiral environment 

to that of 55; thus the ideal position of the thiourea moiety can be determined. Urea based compound 

59 was synthesised to compare the catalytic activity of a thiourea vs. a urea. Structurally the urea 
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compound 59 is similar to 60, differing only by a heteroatom. Catalyst 65 was designed to investigate 

the correlation between the presence/absence of the double bond in the Δ7,8 position of the opiate and 

catalytic activity. Amino thiocarbamate organocatalysts were originally designed by Yeung et al13 for use 

in a bromolatonisation reaction and have since been used successfully in the literature.14,15,16 The 

similarity of the amino thiocarbamate moiety to the thiourea moiety led to the synthesis of 52 in order 

to evaluate its potential as an organocatalyst in this study. It was important to synthesise as many 

structural analogues as possible for a thorough investigation of the catalytic activity. Catalysts 52, 54, 55, 

59, 60 and 65 are shown in Figure 3.7. 

 

 

 

 

Figure 3.7: Snapshot of cover page of reference 12 
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Figure 3.8: Catalysts 52, 54, 55, 59, 60 and 65 

 

3.8 Choice of model reaction 

Thiourea based catalysts have been used in many reactions, but particularly in 1,4-addition reactions.17 

The addition of diethyl malonate to nitrostyrene was chosen in this study. The products of the reaction 

are the (R)- and (S)- enantiomers of 1,3-diethyl 2-(2-nitro-1-phenylethyl)propanedioate 80 which were 

easily separated by HPLC. 80 is synthetically useful to the pharmaceutical community; the (S)- 

enantiomer has been used to synthesise the antispastic agent Baclofen.18 Also, the same reaction is 

utilised in the synthesis of the antidepressant (R)-Rolipram19 albeit with a substituted aromatic 

nitrostyrene starting material. The Michael addition of malonate to nitrostyrene has been used 
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previously to test the efficacy of (thio)urea based catalysts.20,21,22,23,24 The cinchona alkaloid based 

thiourea catalysts are thought to operate by a bifunctional mode of action, the thiourea being involved 

in hydrogen bonding to the nitro group of the electrophile (Figure 3.8) and the general basic properties 

of the tertiary nitrogen.20,21,25,26   

 

 

Figure 3.9: Proposed activation of the electrophile by thiourea moiety 

 

The reaction between malonate and trans-β-nitrostyrene has also been successfully catalysed by a 

quinine/quinidine based catalyst giving high yields and enantioselectivities (Scheme 3.2).27 The 

difference between quinidine and catalyst 81 is a hydroxyquinoline ring replaces the methoxyquinoline 

ring, likewise for the quinine based catalyst 82 (Figure 3.10). The similarity of the catalyst structure to 

morphine led us to evaluate its ability to catalyse the reaction between diethyl malonate and trans-β-

nitrostyrene.  The results of the catalyst screen are shown in Table 3.10. 

 

 

Reagents and Conditions: (i) 81 or 82 (10 mol%), THF, -20 °C, 36-108 h 

Scheme 3.2: Michael Addition reaction using 81 and 82 as a catalyst 
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Figure 3.10: Structure of morphine 27, 81 and 82 

 

3.9 Initial studies of catalyst performance in model reaction 

Table 3.10: The initial screening of opioids as catalysts for the addition of malonate to nitrostyrene.[a] 

 

Entry Catalyst 

 

Time (h) (%) Conversion[b] (%) Yield[c]  (%) ee[d]  

1 27 137 3 nd[e] - 

2 52 115 19 18 4 

3 54 21 100 76 5 

4 54 69 100 98 4 

5 55 66 100 97 12 

6 59 41 100 98 5 

7 60 41 95 95 3 

8 65 120 95 92 11 

[a] Unless otherwise specified, reactions were carried out with diethyl malonate (0.4 mmol), trans-β-

nitrostyrene (0.2 mmol), CH2Cl2 (1 mL) and the catalyst (0.02 mmol) at room temperature. 

[b] By NMR 

[c] Isolated yields after column chromatography 

[d] The ee values were determined by HPLC using a Lux Cellulose-2 column. 

[e] Not determined 
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When morphine 27 was used as a catalyst the conversion was very low at 3% (entry 1). Similarly for 

amino thiocarbamate 52, the conversion was low at 19%. The ee was 4% (entry 2). The reaction went to 

completion using thiourea compound 54, the ee was low again at 5% (entry 3). The reaction was 

repeated to confirm the result (entry 4). 55, which has a more acidic thiourea moiety than 54, 

performed better than 54 giving an ee of 12% (entry 5). In both cases the reaction went to completion. 

60 which has the thiourea moiety in the 6- position of the opiate scaffold gave 95% conversion and a low 

ee at 3% (entry 7). Its urea isomer 59, gave a similar result; the reaction went to completion but again 

the ee was low at 5% (entry 6). Thiourea 65 has the double bond saturated at position C7 to C8. The 

conversion was high at 95% and the ee was 11% (entry 8). Overall, yields are high using thiourea based 

catalysts 54, 55, 60, 65 and urea based catalyst 59. The two catalysts that gave higher enantioselectivity 

measurements at 12% and 11% ee are 55 and 65 respectively. It appears from Table 3.10 vide supra that 

the majority of the reactions took place by general base catalysis and that the (thio)urea portion of the 

molecule was not involved during the transition state of the reaction.   

 

 

3.10 Further studies on catalyst performance 

In order to increase the enantioselectivity, two experiments were carried out using 54 as a catalyst. 

(These experiments were carried out prior to the initial screening of catalysts 55, 59, 60 and 65.) 5 mol% 

of pyridine was used as an additive in the model reaction. It was postulated that the use of a base as an 

additive would limit the activity of the tertiary nitrogen of 54. In the second experiment, 10 mol% of 

tosic acid (equimolar to catalyst 54) was used as an additive. Likewise it was postulated that the basic 

activity of the tertiary nitrogen of 54 would be limited; although in this case by the formation of a salt. 

The results are shown in Table 3.11. 
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Table 3.11: Additive investigation using 54 as a catalyst[a] 

 

Entry Additive 

 

Time (h) (%) Conversion[b] (%) Yield[c]  (%) ee[d]  

1 Pyridine (5 mol%) 50 100 95 8 

2 Tosic acid (10 mol%) 117 18 18 2 

3 None 21 100 76 5 

4 None 69 100 98 4 

[a] Unless otherwise specified, reactions were carried out with diethyl malonate (0.4 mmol), trans-β-

nitrostyrene (0.2 mmol), CH2Cl2 (1 mL), additive and the catalyst (0.02 mmol) at room temperature. 

[b] By NMR 

[c] Isolated yields after column chromatography 

[d] The ee values were determined by HPLC using a Lux Cellulose-2 column. 

 

 

Using pyridine as an additive, the ee increased from 5% and 4% (entries 3 and 4) to 8% (entry 1). This is 

an improvement in the enantioselectivity. However as the enantioselectivities are so low the result 

should be interpreted with caution. Using tosic acid as an additive was not successful (entry 2). The 

conversion dropped to 18% and the ee to 2%. After catalysts 50, 55, 59 and 60 were screened, 55 was 

chosen as a candidate to test in the presence of pyridine as an additive (Scheme 3.3) as 55 gave the 

highest enantioselectivity (12% ee, entry 5 in Table 3.10) in the initial screen. The reaction went to 

completion but there was no improvement in the enantioselectivity, which was slightly lower at 10% ee. 

55 was also screened using toluene as a solvent for the reaction. The isolated yield remained 

quantitative but again the enantioselectivity was 10%. A wider screen of solvents and additives was not 

carried out as the enantioselectivities were low (all below 12%). Instead efforts were undertaken to 

grow crystals of the catalysts in order to gain information about their 3D structure. Our aim was that the 

structural information can be utilised in the design of future target catalysts.  
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Scheme 3.3: Michael addition reaction using 55 as the catalyst and pyridine as an additive 

 

 

3.11 X-ray crystal structures of 54, 55, 59, 60 and 65 

In the crystal structures of 54 and 65 the thiourea moiety occurs as a trans/cis rotamer (Figure 3.12). 

This is generally thought to be less favourable than the trans/trans rotamer for binding of the nitro 

group and hence activation of the electrophile (see Figure 3.9 and 3.11). Koskinen and Kataja state that 

the trans/cis rotamer is favoured in the solid state with greater 80% of published compounds adopting 

this conformation.28 In solution the thiourea is likely to occur as a mixture of trans/cis and trans/trans 

rotamers.29 So although this may affect the reaction; the catalytic activity should not be extinguished. A 

thiourea based catalyst used by Koskinen et al30 was shown to adopt the trans/cis conformation in the 

solid state yet it still catalysed the reaction between Meldrum’s acid and a nitroolefin giving greater than 

95% yield and 60% ee.   

 

 

 

Figure 3.11: Thiourea rotamers 
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Figure 3.12: X-ray showing trans/cis isomerisation of thiourea moiety of 54 (left) and 65 (right) 

  

In a previous report,31 an asymmetric Strecker reaction was carried out using various thiourea based 

catalysts, however the enantioselectivities were poor. An X-ray crystal structure of one of the thiourea 

based catalysts was solved and it was revealed to exist as a dimer. Tsogoeva et al argue that the 

existence of the catalyst as a dimer could account for the low enantioselectivity observed as it would 

prevent the H-bonding interaction of the nitro group to the thiourea unit; consequently the catalyst 

cannot activate the electrophile.31 One of the polymorphs of 60, 54 and the urea 59, all occur as dimers 

in their crystalline state (Figure 3.13).  

The crystal structures of 54, 55, 59, 60 and 65 (Figure 3.14) will be described in detail in Chapter 5, 

however some general points will be considered in this section. Thiourea moieties and the urea moiety 

of 59 are all planar. In 54 and 55 (both are 8-substituted thiourea derivatives), the major difference 

between the structures is that 54 is in the trans/cis orientation and 55 is in the trans/trans orientation. 

As stated previously 54 exists as an anti-parallel dimer through intermolecular hydrogen bonding. The 

NH (N3A-H3A) of one molecule binds to the sulfur atom (S2) of the other molecule in asymmetric unit 

(Figure 3.15). In the crystal packing there is another intermolecular hydrogen bond from the other 

nitrogen atom of the thiourea moiety; N2A-H2A hydrogen bonds with the oxygen in the furan ring of the 

opiate (Figure 3.16). As both the N-H atoms of the thiourea moiety are participating in intermolecular 

hydrogen bonding, this could prevent hydrogen bonding of the electrophile. Similarly the NH atoms of 

the thiourea moiety of 55 have an intermolecular hydrogen bond to the two oxygen atoms of the opiate 

scaffold (Figure 3.17). 
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Figure 3.13: Dimeric structures of 54 (top), 59 (centre) and 60 (bottom) 
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Figure 3.14: Single X-ray crystal structures of 54 (top left), 55 (top right), 59 (bottom left), 60 (bottom centre) and 65 (bottom 

right). The asymmetric units of 54 and 59 occur as a dimeric pairs, only one of the pair are highlighted above. 

 

Figure 3.15: Asymmetric unit of 54 showing internolecular hydrogen bond (dashed blue line). A close up of the hydrogen bond 

(N3A-H3A…S2) is shown on the right. 
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Figure 3.16: Intermolecular hydrogen bonds of 54, N2A-H2A…O1A and N3A-H3A…S2. 

 

 

 

Figure 3.17: Intermolecular hydrogen bonds of 55, the N-H atoms of the thiourea moiety hydrogen bond to the oxygen atoms 

of the opiate scaffold. 

 



Organocatalyst Investigation in Model Reactions 

121 
 

59 and 60 are very similar structurally, differing by a heteroatom. The 3D structures are similar too; the 

main difference is in the orientation of the disubstituted aromatic ring. In 59 the ring is almost planar in 

relation to the urea moiety (torsion angle for C19B-N3B-C20B-C26B is 175.5°) while in 60 it is twisted 

(torsion angle for C19-N3-C20-C21 is -58.2°), clearly highlighted below in Figure 3.18. In the solution 

state this bond is likely to rotate. Both 59 and 60 gave poor enantioselectivities suggesting substitution 

of the thiourea moiety at the 6-position is not ideal. Again visually the thiourea moieties protrude from 

the opiate scaffold like an outstretched arm. It is proposed that they are too far from the steric bulk to 

impart enantioselectivity. The distance of the thiourea moiety to the tertiary nitrogen may also play a 

role in the poor enantiocontrol observed.  

 

 

 

Figure 3.18: Orientation of disubstituted aromatic ring to urea moiety in 59 (top left) and thiourea moiety in 60 (top right). 

Atoms used to calculate the torsion angles are highlighted underneath. 

 

It must be noted that the crystal structures of 59 and 60 contain solvent molecules, DMSO and water 

respectively. This will influence the 3D crystal structure. Catalytic studies were carried out using 

dichloromethane as a solvent; the 3D structure of the molecules in this solvent may be different and will 

not be static. 
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65 is substituted at the 6-position with a thiourea moiety. 60 and 65 differ by the saturation of the 

C7/C8 bond; in 65 the double bond has been reduced, as a result ring C in 65 is now chair shaped 

compared to the distorted boat conformation of 60 (Figure 3.19). The position of the thiourea 

functionality is affected by the change in shape of ring C, for example the torsion angle for C8-C7-C6-N2 

in 60 is -96°, while in 65 it is 179°, clearly highlighted in Figure 3.20. 65 crystallised as a trans/cis isomer, 

due to an intramolecular hydrogen bond between N3-H3 of the thiourea and the oxygen atom O2 of the 

opiate ring D (Figure 3.21).  

 

 

 

 

Figure 3.19: Opiate ring C of 60 (left) and 65 (right). 

 

 

 

 

Figure 3.20: Difference in the position of the thiourea functionality in 60 and 65. The atoms used to calculate torsion angle C8-

C7-C6-N2 are highlighted. 
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Figure 3.21: Intramolecular hydrogen bond (N3-H3…O2) in 65. 

 

3.11 Future work 

It appears that from the X-ray crystal structures of 54, 55, 59, 60 and 65 and from the low 

enantioselectivity observed in the model reaction, that the thiourea moiety is not exerting enough 

enantiocontrol over the reaction. It is hypothesised that the reaction is being catalysed alone by the 

general basic properties of the tertiary nitrogen. Removal of the availability of tertiary nitrogen by 

demethylation and synthesis of an amide or carbamate derivative may improve the enantioselectivity. 

83 has been synthesised by Schultz et al for instance (Figure 3.22).32 If there is no conversion once the 

basic activity of the nitrogen has been limited then the use of a general base as an additive may be 

required.  

 

 

Figure 3.22: Carbamate derivative of codeine 
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The CF3 disubstituted aromatic ring performed better than the CF3 monosubstituted analogue, thus 

should be retained in future studies (54 vs 55). The 8-position appears to be more suited to substitution 

of the thiourea moiety than the 6-substituted alternative (55 vs 60). It is closer to the tertiary nitrogen 

and the steric bulk of the opiate scaffold. However, the catalytic result of the 6-substituted thiourea 

derivative with the reduced double bond at position C7-C8 (65) was similar to the result obtained using 

55. Thus, it would be ideal in further studies to reduce the C7-C8 double bond if screening 6-substituted 

derivatives. It may be interesting to test the activity of a derivative of 55 with the C6-C7 double bond 

reduced (see 84 in Figure 3.23). Also, the thiourea functionality should be preserved as it performed 

better than its urea counterpart (59 vs 60). 

 

 

 

Figure 3.23: Structure of 84 

 

Initially it was postulated that the increased steric bulk of the morphine alkaloids would be an advantage 

over the cinchona alkaloids. This has not been the case however. Looking at the X-ray crystal structures, 

the oxygen functionality of the furan ring D may be hindering the asymmetric catalytic activity as it is 

involved in hydrogen bonding to the thiourea moiety in 54, 55 and 65. Second generation opiate based 

thiourea catalysts should probe the catalytic activity in the absence 4,5- ether bridge. The following 

structures 85 and 86, synthesised by Sawa et al33 could be used as an alternative scaffold to codeine. 

Alternatively the naturally occurring sinomenine 87 could be utilised. Similarly a scaffold based on 

levomethorphan 88 or dextromethorphan 89 could be interesting as they have the added advantage of 

the availability of opposite stereoisomeric forms. The structures are shown in Figure 3.24. 
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Figure 3.24: Alternative scaffolds for further studies 
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Chapter 4 

Single Crystal X-ray Studies 
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4.1 Introduction to X-ray Crystallography 

X-ray crystallography is the study of the arrangements of atoms in a crystal. The sample being 

analysed must be crystalline, i.e. composed of regularly repeating arrangements of atoms. X-rays are 

diffracted by crystals constructively according to Bragg’s Law (λ = 2d sin θ, λ is the wavelength of the 

incident X-ray in Å, d is the distance in Å between crystal planes and θ is the angle of incidence of the 

X-ray in degrees). The angles and intensities of the diffracted X-ray beams are recorded with the 

diffraction pattern of spots/reflections. Analysis of the diffraction pattern by Fourier mathematical 

methods gives information on the distribution of electron density within the unit cell. A 3D picture of 

the structure is built from the atomic positional coordinates and displacement parameters. Within 

the unit cell, bond lengths and angles measurements can be determined. The dimensions of the unit 

cell, intermolecular interactions and hence the crystal packing is elucidated. 

 

 

 

 

 

4.2 Molecular and X-ray Crystal Structure of 52 

 

 

 

Figure 4.1: Structure of 52 

 

d 
θ 

Bragg’s Law of 

Diffraction 



Single Crystal X-ray Studies 
 

132 
 

As part of the comprehensive study of opioid compounds as potential organocatalysts single crystal 

X-ray analysis has proved useful for confirmation of target synthesis and for analysis of the 3D 

structure. The 3-dimensional picture of the catalyst can aid interpretation of catalytic experiments 

for example, will the substrate be able to bind to the active site of the molecule and is there 

sufficient steric bulk to exhibit enantiocontrol? Of course the structure of a molecule can differ from 

solid to solution state so caution must be exercised. Crystals of 52 were grown from acetonitrile 

yielding colourless needle shaped crystals. The asymmetric unit is shown in Figure 4.2. 

 

Figure 4.2: The molecular structure of 52 showing the atom numbering scheme. Displacement ellipsoids are drawn at the 

30% probability level. Hydrogen atoms are omitted for clarity. 
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52 crystallised in the trigonal R3 crystal system. There is considerable disorder observed about the -

CF3 and -OMe groups. In a crystal structure there are various types of disorder that can occur; atomic 

vibration and atomic disorder. Atomic disorder can be i) static (unit cell can be composed of two 

different conformers), ii) dynamic (movement within unit cell) and iii) a mixture of both. "A common 

manifestation (of atomic disorder in crystals) is the presence of two or more conformers that differ 

only modestly in, for example, the orientations of side chains or the conformations of ring 

structures."1 In Figure 4.2, there appears to be some disorder about the trifluoromethyl- groups and 

the -OMe group of the opiate but the fused ring system of the codeine scaffold and the amino 

thiocarbamate moiety remain as an ordered portion of the molecule, clearly visible from the larger 

ellipsoids in Figure 4.2.  

 

The unit cell contains 9 molecules of 52 (Z = 9) (Figure 4.3). The intermolecular hydrogen bonds 

between the thiocarbamate moiety (N2-H2) and the N1 of opiate E ring (Figure 4.4) form helical 

C(10) chains along the c-axis (Figure 4.5). When viewed along the c-axis the 3,5-trifluoromethyl 

disubstituted aromatic ring points away from the helix in three different positions forming a 

threefold screw axis (Figure 4.6). The intermolecular H-bond parameter data is shown in Table 4.1.  

 

 

 

Figure 4.3: Unit cell of 52. Hydrogen atoms are omitted for clarity. 
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Figure 4.4: Hydrogen bond (dashed red line) network of 52 

 

 

Figure 4.5: Helical pattern of 52. Hydrogen bonds are indicated by the dashed blue lines. The unit cell is included, a-axis in 

red, b-axis in green and the c-axis in blue. Hydrogen atoms are omitted for clarity. 

 

D—H···A D—H (Å) H···A (Å) D···A (Å) D—H···A (°) 

N2-H2...N1
i
     0.86        2.17    2.989(4)         159 

Symmetry code: (i)  = 2/3-x+y,4/3-x,-2/3+z. 

 

Table 4.1: Intermolecular hydrogen bond parameter data for 52. D = Donor, A = Acceptor. 

N1 

N2 N1 

N2 
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Figure 4.6: Threefold screw axis of 52 when viewed along c-axis. Hydrogen bonds are indicated by the dashed blue lines. 

Hydrogen atoms are omitted for clarity. 

 

 

Secondary interactions via S1...H15Bii = 2.93 Å, [(ii) = 4/3-y,2/3+x-y,-1/3+z] and S1...H2B1iii = 2.89 Å, 

[(iii) = 2/3-x+y,4/3-x,1/3+z] lead to the formation of a double helix (Figure 4.7). Contacts from the 

sulphur atom are to different molecules; highlighted in Figure 4.8; S1 of the pink molecule has a 

contact with H2B1 of the yellow molecule and H15B of the orange molecule. S1 of the yellow 

molecule interacts with H15B of the pink molecule while S1 of the orange molecule interacts with 

H2B1 of the pink molecule and so on and so forth. There are other N...H, C...N and C...H contacts 

(Figure 4.7) responsible for the secondary structure of 52; N1...H2iv = 2.17 Å, N1...N2iv = 2.989(5) Å, 

C17...H2iv = 2.65 Å, C17...N2iv = 3.233(8) Å, H17A...H2iv = 2.38 Å, H17F...H2iv = 2.31 Å, H17F...N2iv = 

2.69 Å, [(iv) = 4/3-y,2/3+x-y,2/3+z].   
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Figure 4.7: Secondary structure of 52. Helices are distinguished by colour. Dashed blue lines indicate contacts. Hydrogen 

atoms are omitted for clarity. 

 

 

Figure 4.8: Close up of S...H interactions with atoms labelled. Individual molecules are distinguished by colour. Dashed blue 

lines indicate interactions. 

 

Tertiary interactions aggregate one double helix to another, due to C...F and C...H intermolecular 

interactions; C17...F22v = 3.153(17) Å, [(v) = 1-y,x-y,-1+z], C22...F25vi = 2.958(16) Å, [(vi) = 1/3-

x+y,2/3-x,-1/3+z] and C1...H1vii = 2.87 Å, [(vii) = 1-x+y,1-x,z] (see Figure 4.9). 
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Figure 4.9: Interactions between double helix (pink) and parallel strand of another helix (orange). Contacts are indicated by 

the dashed blue lines. Hydrogen atoms are omitted for clarity. 

 

 

Figure 4.10: Structure of 52 with labelled opioid rings 

 

The principal dimensions of 52 are C1S-S1 = 1.667(3) Å, C1S-O3 1.328(5) Å, C1S-N2 1.324(4) Å and 

C1S-O3-N2 112.8(3)°. Selected bond distances and angles are included in Table 4.2. The opiate 

portion of 52 is in the classic T-conformation (Figure 4.11). The A-B-D rings are almost perpendicular 

to the C and E rings, the angle at the intersection of the two planes is 84.75°. Bond lengths and 

angles for the A-ring range from 1.37 to 1.40 Å and 116-124° respectively. 5-membered D ring 

deviates from planarity at C5, resembling an envelope conformation (Figure 4.12). Torsion angle for 

C4-C12-C13-O1 is -5.66°, for C5-O1-C4-C12 and C5-C13-C12-C4 the torsion angles are -15.64° and 

22.66° respectively. E-ring is in a chair conformation with the methyl group of the nitrogen in the 

equatorial position (Figure 4.13), the hydrogens of the methyl group are disordered. C5-C6-C7-C13 of 
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the C ring is relatively planar with a torsion angle of -3.84. C7-C8-C13-C14 deviates from planarity 

with a much greater torsion angle of -28.81.  

52 Bond Distance (Å) 52 Bond Angles (°) 

C3-O2A 1.44(1) C3-O2A-C2B 124(1) 

C3-O2B 1.344(9) C3-O2B-C2A 140(1) 

C4-O1 1.369(6) C6-O3-C1S 121.3(3) 

C5-O1 1.457(5) C16-N1-C17 111.0(4) 

C6-O3 1.446(4) C17-N1-C9 111.7(4) 

C17-N1 1.47(1) C1S-N2-C21 128.8(3) 

C21-N2 1.418(5) N2-C1S-S1 121.9(3) 

 

Table 4.2: Selected bond distances and angles of 52 

 

The amino thiocarbamate moiety is planar with a torsion angle of -0.68° for S1-N2-O3-C1S and lies 

almost parallel to the A-B-D ring system (Figure 4.14). Both the –CF3 groups of the phenyl ring are 

disordered. Bond lengths and angles of the 3,5-trifluoromethyl disubstituted aromatic ring are 1.37-

1.39 Å and 119-121° respectively. These are more uniform that those of the opiate A ring which is 

sterically strained because of the fused ring system.  

 

 

Figure 4.11: T-conformation of opiate portion of 52. Hydrogen atoms are omitted for clarity. 
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Figure 4.12: Envelope conformation of ring D in 52 with atom labels. 

 

 

Figure 4.13: Portion of 52 highlighting chair shape of ring E and relative planarity of ring C and amino thiocarbamate group. 

Hydrogen atoms are omitted for clarity. 

 

Figure 4.14: Location of amino thiocarbamate section to opiate section of 52. Hydrogen atoms are omitted for clarity. 
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Table 4.3 below displays information on the crystal, data collection and refinement of 52. 

Crystal data 52 

Chemical formula C27 H24 F6 N2 O3 S 

Mr  570.55 

Crystal system, space group Trigonal R3,  (No.146) 

a, b, c (Å) 23.5825(5) , 23.5825(5), 12.8695(3) 

, β,   (°) 90,  90, 120 

Volume (Å3) 6198.3(3) 

Z 9 

 (mm
-1

) 0.189 

Crystal size (mm) 0.21 × 0.32 × 0.54 

Data Collection 

Radiation Mo K 

λ (Å) 0.71073 

Absorption correction2 Analytical (ABSFAC. Clark & Reid, 1998) 

 Tmin, Tmax 0.9047, 0.9613 

No. of measured, independent and observed reflections 16850,  4219,  3785 {I > 2(I)} 

Rint 0.031 

max (°) 27.8 

Refinement 

R[F2 > 2σ(F2)], wR(F2), S 0.0497, 0.1485, 1.03 

No. of reflections 4219 

No. of parameters 427 

No. of restraints 237 

ρmax, ρmin (e Å-3) -0.18, 0.25 

Absolute structure
3
 (Flack, 1983) 

Flack parameter 0.20(10) 

 

Experiments were carried out at 294 K using an Xcalibur, Sapphire3, Gemini ultra diffractometer. Program used 

to solve structure; SHELXS97.4 Program used to refine structure; SHELXL97.5 H atoms were treated by a 

mixture of independent and constrained refinement. 

 

Table 4.3: Pertinent crystal data for 52 
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4.3 X-ray Crystal Study of 46 and 56 

 

 

Figure 4.15: Structure of 46 and 56 

 

46 and 56 are structurally very similar; differing by the group at the 8-position of the opiate scaffold, 

an azide group in 46 and an isothiocyanate group in 56. Both crystallised readily; 46 from acetone 

and 56 from acetonitrile. The 3D structures of 46 (Figure 4.17) and 56 (Figure 4.18) are very similar 

as can be seen when selected bond distances and angles are compared (see Table 4.6). The 

dimensions of the opiate scaffold are almost identical for 46 and 56. Azide group N4-N3-N2 is almost 

linear at 174.89°, similarly for the isothiocyanate group S21-C21-N21 at 177.46°. Torsion angles for 

azide group C8-N2-N3-N4 in 46 and isothiocyanate group C8-N21-C21-S21 in 56 are 162.59° and 

170.03° respectively. Bond lengths between the atoms of the azide and isothiocyanate groups differ 

as expected with the difference in heteroatoms. Another contrast is the angle at which the groups 

protrude from the opiate scaffold. Angle C8-N2-N3 in 46 is 113.92° while it is much more linear in 56 

where C8-N21-C21 is 172.06°. This is seen visually in Figure 4.16 below. When comparing the opiate 

scaffold of 46 and 56 to that of codeine the major difference is the increased planarity of the opiate 

ring C, probably due to the shift of the double bond from Δ7,8 in codeine 26 to Δ6,7 in 46 and 56. The 

torsion angles of ring C in 26, 46 and 56 can be seen in Table 4.7.  

  

Figure 4.16: View of the position relative to the opiate scaffold of the azide group in 46 (left) and the isothiocyanate group 

in 56 (right). Hydrogen atoms are omitted for clarity. 
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Figure 4.17: The molecular structure of 46 showing the atom numbering scheme. Displacement ellipsoids are drawn at the 

30% probability level. 

 

Figure 4.18: The molecular structure of 56 showing the atom numbering scheme. Displacement ellipsoids are drawn at the 

30% probability level. 
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Bond Lengths (Å) 46 Bond Lengths (Å) 56 

C8-N2 1.484(5) C8-N21 1.439(3) 

N2-N3 1.203(4) N21-C21 1.142(3) 

N3-N4 1.137(5) C21-S21 1.581(2) 

 

Table 4.4: Contrast of bond lengths of azide group in 46 and isothiocyanate group in 56 

 

 

Bond Angles (°) 46 56 Bond Angles (°) 45 56 

C2-C3-O2 126.0(1) 125.8(1) C6-C7-C8 124.1(3) 123.5(2) 

C3-O2-C18 117.4(2) 117.4(2) C7-C8-C14 111.6(2) 113.7(1) 

C3-C4-O1 127.0(2) 127.1(1) C11-C1-C2 121.3(2) 120.9(1) 

 

Bond Lengths (Å) 46 56 Bond Lengths (Å) 46 56 

C1-C2 1.386(3) 1.398(2) C7-C8 1.493(4) 1.504(3) 

C2-C3 1.390(3) 1.390(2) C8-C14 1.536(3) 1.525(2) 

C3-O2 1.362(2) 1.372(3) C9-C10 1.555(2) 1.559(2) 

C4-O1 1.379(3) 1.374(2) C13-C15 1.543(3) 1.531(3) 

 

Selected Torsion Angles (°) 46 56 

C1-C2-C3-C4 1.0(4) -0.1(2) 

C1-C2-C3-O2 -179.1(2) -179.5(1) 

O1-C4-C12-C13 -4.0(2) -4.0(2) 

C4-O1-C5-C13 23.5(2) 28.3(1) 

C9-C10-C11-C12 -4.5(2) -4.5(2) 

 

Table 4.5: Comparison of selected bond lengths, angles and torsions in 46 and 56 

 



Single Crystal X-ray Studies 
 

144 
 

 

 

Torsion Angles (°) 46 56 26 

Ring C    

C5-C6-C7-C8  -1.1(5)  -1.1(3)  37.0(7) 

C6-C7-C8-C14  29.2(4)   19.8(3) -4.7(8) 

C7-C8-C14-C13 -49.1(2) -40.1(2) -37.2(6) 

C8-C14-C13-C5  46.7(2)   45.3(2)  46.7(6) 

C14-C13-C5-C6 -20.4(2)  -27.1(2) -16.8(6) 

C13-C5-C6-C7  -4.0(4)  4.4 (3) -23.6(6) 

 

Table 4.6: Comparison of torsion angles of ring C in 46 and 56 to ring C of codeine 
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Crystal data 46 56 

Chemical formula C18 H20 N4 O2 C19 H20 N2 O2 S 

Mr  324.38 340.44 

Crystal system, space group Monoclinic  C2, (No.5) Monoclinic P21, (No.4) 

a, b, c (Å) 15.6888(7) ,  8.2449(3), 13.6531(6) 7.52431(12) , 7.2064(12), 15.5781(2) 

, β,   (º) 90, 114.887(6), 90 90, 95.2604(14), 90 

Volume (Å3) 1602.07(14) 841.14(2) 

Z 4 2 

 (mm-1) 0.732 0.206 

Crystal size (mm) 0.19 × 0.30 × 0.35 0.30 × 0.55 × 0.60 

Data Collection   

Radiation Cu K Mo K 

λ (Å) 1.54184 0.71073 

Absorption correction2 Analytical (ABSFAC. Clark & Reid, 

1998)  

Analytical (ABSFAC. Clark & Reid, 

1998) 

 Tmin, Tmax 0.7837, 0.8735 0.8863, 0.94 

No. of measured, 

independent and observed 

reflections 

3916,   1388, 1373 {I > 2(I)} 7016, 3836, 3659 {I > 2(I)} 

Rint 0.024 0.013 

max (°) 63.2  29.0 

Refinement   

R[F2 > 2σ(F2)], wR(F2), S 0.0307, 0.0872, 1.08 0.0328, 0.0914, 1.05 

No. of reflections 1388 3836 

No. of parameters 208 220 

No. of restraints 1 1 

ρmax, ρmin (e Å-3) -0.11, 0.15 -0.18, 0.22 

Absolute structure
3
 (Flack, 1983) (Flack, 1983) 

Flack parameter 0.1(3) -0.04(7) 

 

Experiments were carried out at 294 K using an Xcalibur, Sapphire3, Gemini ultra diffractometer. Program used 

to solve structure; SHELXS97.
4
 Program used to refine structure; SHELXL97.

5
 Hydrogen atoms were treated by 

a mixture of independent and constrained refinement. 

 

Table 4.7: Pertinent crystal data for 46 and 56 
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4.4 X-ray Crystal Study of 49 and 50 

 

 

 

Figure 4.19: Structure of codeine-N-oxide hydrochloride 49 and norcodeine 50 

 

Crystals of codeine-N-oxide hydrochloride 49 and norcodeine 50 were grown from water and 

chloroform respectively. Both 49 and 50 crystallise as hydrates with a 1:1 ratio of codeine-N-oxide to 

a water molecule in the asymmetric unit of 49 (Figure 4.23) and two norcodeine molecules to one 

water molecule in the asymmetric unit of 50 (Figure 4.24).  Both compounds have similar crystal 

structures to that of 26 (solved by Canfield et al).6 Ring C of 26 is in a distorted boat conformation, 

similar to that of 49 as seen in Table 4.10. Ring C of 50 is in more of a classic boat conformation, this 

can be seen visually in Figure 4.20. The remaining opiate scaffold of 49 and 50 is very similar to 26 as 

seen in Table 4.9 where the bond lengths and angles are compared. 

 

  

 

Figure 4.20: Distorted boat conformation in ring C of 49 (left) and boat conformation of ring C of 50 (right). Ring C is 

highlighted in Figure 4.19. 
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Crystal packing of 49 and 50 is also similar to that of codeine 26.6 All crystallise in the orthorhombic 

crystal system and do not display any classical inter- or intramolecular hydrogen bonds.6 26 and 49 

crystallise in the same space group (P212121)6 with 4 asymmetric units in the unit cell (Figure 4.20). 

50 crystallises in the P21212 space group and has 2 asymmetric units (asymmetric unit is composed 

of two norcodeine molecules to one molecule of water) in the unit cell (Figure 4.22). 

 

 

Figure 4.21: Unit cell of 49 

 

 

Figure 4.22: Unit cell of 50 
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Bond Distance (Å) 49 50 26 

C1-C2 1.382(2) 1.395(6) 1.380(8) 

C3-O2 1.372(2) 1.369(5) 1.367(6) 

C4-O1 1.376(2) 1.376(4) 1.386(5) 

C5-O1 1.462(2) 1.468(4) 1.486(6) 

C6-O3 1.423(2) 1.401(5) 1.427(7) 

C17-N1 1.493(2) - 1.478(7) 

C9-C10 1.535(2) 1.543(5) 1.555(7) 

 

Bond Angle (°) 49 50 26 

C1-C2-C3 122.4(2) 121.5(3) 122.3(4) 

C8-C7-C6 121.8(1) 120.3(3) 121.6(5) 

C9-C10-C11 114.9(1) 114.8(3) 114.1(4) 

C9-N1-C16 112.2(1) 111.9(3) 112.5(4) 

C9-N1-C17 112.5(1) - 112.5(4) 

C13-C14-C8 109.9(1) 108.8(3) 110.4(4) 

C15-C13-C14 109.2(1) 109.3(3) 108.4(4) 

 

Table 4.8: Comparison of bond lengths and angles of 26, 49 and 50 

 

Torsion Angles (°) 49 50 26 

Ring A    

C1-C2-C3-C4  2.5(2)  5.2(5)  2.9(8) 

C2-C3-C4-C12  1.5 (2)  1.4(5)  2.2(8) 

C3-C4-C12-C11 -5.9(2) -8.7(5) -7.8(8) 

C4-C12-C11-C1  5.8(2)  8.8(5)  7.5(7) 

C12-C11-C1-C2 -1.6(2) -2.1(5) -2.3(8) 

C11-C1-C2-C3 -2.5(3) -4.9(6) -2.9(9) 

Ring B    

C9-C10-C11-C12 -3.6(2) -3.1(5)  0.6(7) 

C10-C11-C12-C13  4.7(2)  7.9(5)  1.3(8) 

C11-C12-C13-C14 -33.5(2) -38.0(4) -33.3(7) 

C12-C13-C14-C9  58.8(1)  61.7(3)  60.8(5) 

C13-C14-C9-C10 -61.9(1) -62.1(4) -62.9(5) 

C14-C9-C10-C11  33.0(2)  31.3(4)  30.0(6) 
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Torsion Angles (°) 49 50 26 

Ring C    

C5-C6-C7-C8  37.7(2)  47.1(4)  37.0(7) 

C6-C7-C8-C14 -5.1(2)  -3.4(5) -4.7(8) 

C7-C8-C14-C13 -37.3(2) -43.3(4) -37.2(6) 

C8-C14-C13-C5  48.1(2)  47.0(4)  46.7(6) 

C14-C13-C5-C6 -17.9(2)  -7.0(4) -16.8(6) 

C13-C5-C6-C7 -23.3(2) -38.0(4) -23.6(6) 

Ring D    

C4-O1-C5-C13  25.7(1)  14.6(3)  22.5(5) 

O1-C5-C13-C12 -24.8(1) -16.2(3) -22.3(5) 

C5-C13-C12-C4  16.3(1)  12.7(3)  15.1(5) 

C13-C12-C4-O1              -1.2(2) -4.5(4) -1.7(6) 

C12-C4-O1-C5 -15.8(2) -6.6(4) -13.4(6) 

Ring E    

C9-N1-C16-C15  53.6(2)  59.9(4)  57.0(5) 

N1-C16-C15-C13 -53.2(2) -53.4(4) -52.8(5) 

C16-C15-C13-C14  58.9(1)  54.9(4)  56.8(5) 

C15-C13-C14-C9 -63.4(1) -59.7(3) -62.0(5) 

C13-C14-C9-N1  63.0(1)  64.6(4)  64.9(5) 

C14-C9-N1-C16 -59.0(1) -66.1(4) -63.1(5) 

 

Table 4.9: Comparison of torsion angles of 26, 49 and 50 
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Figure 4.23: The molecular structure of 49 showing the atom numbering scheme. Displacement ellipsoids are drawn at the 

30% probability level.  

 

Figure 4.24: The molecular structure of 50 showing the atom numbering scheme. Displacement ellipsoids are drawn at the 

30% probability level. 
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Crystal data 49 50 

Chemical formula C18 H22 N O4 Cl H2O 2(C17 H19 N O3) H2O 

Mr  369.83 588.68 

Crystal system,  

space group 

Orthorhombic 

P212121,  (No.19) 

Orthorhombic 

P21212,  (No.18) 

a, b, c (Å) 7.91194 (12),  9.13578 (15), 24.2040 (4) 15.8883 (4) , 11.0222 (3), 8.2123 (2) 

, β,   (º) 90, 90, 90 90, 90, 90 

Volume (Å3) 1749.51(5) 1438.17(6) 

Z 4 2 

 (mm-1) 0.247 0.773 

Crystal size (mm) 0.10 × 0.20 × 0.30 0.16 × 0.18 × 0.21 

Data Collection   

Radiation Mo K Cu K 

λ (Å) 0.71073 1.54184 

Absorption correction2 Analytical (ABSFAC. Clark & Reid, 1998) Analytical (ABSFAC. Clark & Reid, 1998) 

 Tmin, Tmax 0.9295, 0.9757 0.8546, 0.8863 

No. of measured, 

independent and 

observed reflections 

12119,   3740, 3603 {I > 2(I)} 7709,   1379, 1273 {I > 2(I)} 

Rint 0.018 0.078 

max (°) 27 63.4 

Refinement   

R[F2 > 2σ(F2)], wR(F2), 

S 

0.0286, 0.0751, 1.07 0.0542, 0.1372, 1.11 

No. of reflections 3740 1379 

No. of parameters 245 208 

No. of restraints 0 0 

ρmax, ρmin (e Å
-3

) -0.16, 0.18 -0.22, 0.30 

Absolute structure3 (Flack, 1983) (Flack, 1983) 

Flack parameter -0.01 (5) 0.6(5) 

 

Experiments were carried out at 294 K using an Xcalibur, Sapphire3, Gemini ultra diffractometer. Program used 

to solve structure; SHELXS97.
4
 Program used to refine structure; SHELXL97.

5
 Hydrogen atoms were treated by 

a mixture of independent and constrained refinement. 

 

Table 4.10: Pertinent crystal data for 49 and 50 
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4.5 X-ray Crystal Analysis of 35 and 37 

 

Figure 4.25: Structure of 35 and 37 

 

35 crystallised as a dihydrate from H2O (Figure 4.26) and 37 crystallised by slow evaporation from a 

dichloromethane/hexane mixture (Figure 4.27). The opiate portion of 37 is structurally identical to 

that of 35; bond angles, torsions and distances of the crystal structures are also very similar to each 

other and to the parent compound, 26. One contrast to 26 is the increase in planarity of ring C in 35 

and 37, see torsion angles C14-C13-C5-C6 and C13-C5-C6-C7 in Table 4.13. The principal dimensions 

for 35 are the C6-N2 bond length which is 1.466(4) and the C5-C6-N2 bond angle which is 109.2(3). 

Similarly for 37; C6-N2 is 1.481(3) and the C5-C6-N2 bond angle is 110.9(2). N2-S1, S1-O3 and S1-O4 

bond lengths are 1.625(2), 1.435(2) and 1.436(2) respectively. The torsion angle for C6-N2-S1-C19 is 

51.8(2).    

The crystal structure of 37 displays two prominent intermolecular H-bonds between the NH of the 

sulphonamide and the NMe of a second molecule. The NH of the sulphonamide of the second 

molecule is H-bonded to the NMe of the first molecule. This is illustrated in Figure 4.28 and the H-

bond parameter data is shown in Table 4.11. 

 

D—H···A D—H (Å) H···A (Å) D···A (Å) D—H···A (°) 

N11-H11...N61i     0.81(3)       2.25(3)    3.041(3)         169 

N43-H43-N29ii 0.86(2) 2.25(2)    3.096(3) 174 

Symmetry codes: (i)  = 3/2-x, 1-y, -1/2+z, (ii) = 3/2-x, 1-y, 1/2+z. 

 

Table 4.11: Intermolecular hydrogen-bond parameter data for 37. D = Donor, A = Acceptor. 
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Figure 4.26: The asymmetric unit of 35 showing the atom numbering scheme. Displacement ellipsoids are drawn at the 
30% probability level. 

 

Figure 4.27: The asymmetric unit of 37 showing the atom numbering scheme. Displacement ellipsoids are drawn at the 

30% probability level. 
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Figure 4.28: Intermolecular H-bond network of 37 

 

Bond Distance (Å) 35 37 26 

C1-C2 1.384(5) 1.394(3) 1.380(8) 

C3-O2 1.372(5) 1.382(3) 1.367(6) 

C4-O1 1.374(3) 1.378(3) 1.386(5) 

C5-O1 1.478(4) 1.482(2) 1.486(6) 

C7-C8 1.319(5) 1.325(3) 1.332(8) 

C9-C10 1.539(4) 1.555(3) 1.555(7) 

 

Bond Angle (°) 35 37 26 

C1-C2-C3 122.5(3) 121.9(2) 122.3(4) 

C8-C7-C6 124.2(3) 123.0(2) 121.6(5) 

C9-C10-C11 114.5(3) 114.8(2) 114.1(4) 

C13-C14-C8 110.8(2) 110.8(2) 110.4(4) 

C15-C13-C14 108.3(3) 108.6(2) 108.4(4) 

 

Torsion Angles (°) 35 37 26 

C1-C2-C3-C4  0.9(5)  1.4(3)  2.9(8) 

C9-C10-C11-C12 -5.8(4) -0.1(3)  0.6(7) 

C14-C13-C5-C6 -24.4(4)  -21.3(3) -16.8(6) 

C13-C5-C6-C7 -6.7(4) -12.4(3) -23.6(6) 

 

Table 4.12: Selected bond lengths, angles and torsions for 26, 35 and 37. 
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Crystal data 35 37 

Chemical formula C18 H22 N2 O2 2(H2 O) C25 H28 N2 O4 S 

Mr  334.41 452.56 

Crystal system, space 

group 

Monoclinic 

C2, (No.5) 

Orthorhombic 

P212121,  (No.19) 

a, b, c (Å) 33.5550(15), 7.0068(4), 15.8119(7) 6.9398(3), 23.1890(9), 27.6391(10) 

, β,   (º) 90, 112.001(2), 90 90, 90, 90 

Volume (Å3) 3446.9(3) 4447.9(3) 

Z 8 8 

 (mm-1) 0.742 0.181 

Crystal size (mm) 0.21 × 0.24 × 0.34 0.11 × 0.21 × 0.34 

Data Collection    

Radiation Cu K Mo K 

λ (Å) 1.54178 0.71073 

Temperature 296 K 100 K 

Absorption correction2 Analytical (ABSFAC. Clark & Reid, 1998) Analytical (ABSFAC. Clark & Reid, 1998) 

 Tmin, Tmax n/a 0.6349, 0.7454 

No. of measured, 

independent and 

observed reflections 

6760,  4152, 3600 {I > 2(I)} 26235,   9111, 8019 {I > 2(I)} 

Rint 0.020 0.046 

max (°) 65.6 26.4 

Refinement   

R[F2 > 2σ(F2)], wR(F2), S 0.0372, 0.1217, 1.19 0.0383, 0.0909, 1.06 

No. of reflections 4152 9111 

No. of parameters 470 591 

No. of restraints 9 30 

ρmax, ρmin (e Å
-3

) -0.36, 0.41 -0.35, 0.39 

Absolute structure3 (Flack, 1983) (Flack, 1983) 

Flack parameter 0.2(3) 0.03(5) 

 

Experiments were carried out using a Bruker APEX II DUO diffractometer.  

 

Table 4.13: Pertinent crystal data for 35 and 37 
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4.6 X-ray Crystal Study of 54, 55, 59, 60 and 65 

Compounds 54, 55, 59, 60 and 65 are thiourea substituted opioid derivatives except for 59 which is a 

urea based compound. Structurally similar compounds will be compared and contrasted in the 

following sections.  

 

4.6.1 Analysis of 54 and 55 

The structures of 54 and 55 are shown in Figure 4.29. 54 crystallised in the orthorhombic P212121 

crystal system. The asymmetric unit consists of an anti-parallel dimer (Figure 4.30) linked by an 

intermolecular hydrogen bond (Figure 4.31). The hydrogen bond parameter data for 54 is shown in 

Table 4.14. 54 differs from 55 in the number of trifluoromethyl- substituents on the aromatic ring. 

55 crystallised from chloroform in the orthorhombic P212121 crystal system also. The asymmetric 

unit contains two molecules of chloroform (Figure 4.32). The solvent molecules and one of the 

trifluoromethyl- substituents are disordered. 

 

 Figure 4.29: Molecular structures of 54 and 55 

 

 

D—H···A D—H (Å) H···A (Å) D···A (Å) D—H···A (°) 

N3A-H3A...S2    0.86        2.49    3.320(4)         163 

N2A-H2A...O1A
i 

0.86 2.47 3.055(4) 126 

Symmetry code: (i)  = -1/2+x,1/2-y,2-z 

  

Table 4.14: Intermolecular hydrogen bond parameter data for 54. D = Donor, A = Acceptor. 
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Figure 4.30: The asymmetric unit of 54. Displacement ellipsoids are drawn at the 30% probability level. 

 

 

 

Figure 4.31: Asymmetric unit of 54 showing internolecular hydrogen bond (dashed blue line). A close up of the hydrogen 

bond (N3A-H3A…S2) is shown on the right. 
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Figure 4.32: The asymmetric unit of 55 showing the atom numbering scheme. Displacement ellipsoids are drawn at the 

30% probability level. 

 

 

The opiate scaffold of both compounds is similar, as highlighted by selected bond distances, angles 

and torsions shown in Table 4.15. The two structures in the asymmetric unit of 54 are distinguished 

by A/B labelling. There is a contrast in the orientation of the thiourea moiety (trans/cis in 54 and 

trans/trans in 55) which was previously highlighted in Chapter 4. The trifluoromethyl- substituted 

aromatic ring is twisted in both 54 and 55. Interestingly it is twisted by different magnitudes in the 

individual structures (54A and 54B) of the asymmetric unit of 54 (Figure 4.33).   
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Figure 4.33: Different torsion angles from thiourea moiety to trifluoromethyl- substituted aromatic ring of 54A (left), 54B 

(centre) and 55 (right) 

  

Bond Distance (Å) 54A 54B 55 

C1-C2 1.383(7) 1.383(7) 1.394(8) 

C3-O2 1.368(6) 1.363(6) 1.390(7) 

C5-O1 1.504(5) 1.480(5) 1.492(6) 

C7-C8 1.493(6) 1.487(6) 1.514(8) 

C9-C10 1.555(6) 1.567(6) 1.542(7) 

 

Bond Angle (°) 54A 54B 55 

C1-C2-C3 122.6(4) 122.5(4) 120.4(6) 

C8-C7-C6 125.4(4) 125.8(4) 123.9(5) 

C9-C10-C11 115.2(3) 114.3(3) 114.4(4) 

C13-C14-C8 111.3(3) 110.8(3) 112.5(4) 

C15-C13-C14 109.0(3) 108.6(3) 108.1(4) 

 

Torsion Angles (°) 54A 54B 55 

C1-C2-C3-C4  3.4(7) 3.5(7)  2.7(9) 

C9-C10-C11-C12 -5.8(5) -4.5(5) -5.5(7) 

C14-C13-C5-C6 -25.2(5) -24.2(5)  -24.1(6) 

C13-C5-C6-C7 0.9(7) -1.5(6) -0.3(8) 

 

Table 4.15: Selected bond lengths, angles and torsions for 54A, 54B and 55. 
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The crystal packing of 54 is influenced by a second intermolecular hydrogen bond (Table 4.14). N2A 

of the thiourea moiety hydrogen bonds to O1A, an oxygen atom of ring D of another molecule 

(Figure 4.34). This intermolecular hydrogen bond only occurs in 54A, not 54B. The 54B molecules 

align themselves at the periphery, while the 54A molecules overlap in the centre (Figure 4.35). This 

resembles a columnar structure at the centre with the 4-trifluoromethyl- substituted aromatic rings 

pointing outwards at the edge (Figure 4.36).  

 

 

Figure 4.34: Intermolecular hydrogen bonds from 54A with labelled atoms. Hydrogen bonds are indicated by the dashed 

blue lines. Hydrogen atoms are omitted for clarity. 

 

Figure 4.35: Secondary structure of 54 held together by intermolecular hydrogen bond network. Hydrogen bonds are 

indicated by the dashed blue lines. Hydrogen atoms are omitted for clarity. 
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Figure 4.36: View of secondary structure of 54 from an alternative angle. Hydrogen bonds are indicated by the dashed blue 

lines. Hydrogen atoms are omitted for clarity. 

 

The secondary structure of 55 is built up by two intermolecular hydrogen bonds. The hydrogen bond 

parameter data is shown in Table 4.16. The nitrogen atoms of the thiourea moiety form 

intermolecular hydrogen bonds with the two oxygen atoms of the opiate scaffold (Figure 4.37). This 

builds to form a zigzag network of intermolecular hydrogen bonds (Figure 4.38). The secondary 

structure is very similar to 54 in that two opiates form a central pillar and the 3,5-trifluoromethyl- 

disubstituted aromatic rings point outwards (Figure 4.39). 

 

 

Figure 4.37: Close up of intermolecular hydrogen bond interactions of 55 (left) and molecule of 55 showing where the 

hydrogen bonding interactions will lie (right). 
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D—H···A D—H (Å) H···A (Å) D···A (Å) D—H···A (°) 

N2-H2...O1i    0.86        2.25 3.026(6)         149 

N3-H3...O2i 0.86 2.21 2.997(5) 153 

     

Symmetry code: (i)  = 1-x,1/2+y,1/2-z 

 

Table 4.16: Intermolecular hydrogen bond parameter data for 55. D = Donor, A = Acceptor. 

 

 

Figure 4.38: Secondary structure of 55. Hydrogen bonds are indicated by the dashed blue lines. Hydrogen atoms omitted 

for clarity. 

 

Figure 4.39: Alternative views of the secondary structure of 55. Hydrogen bonds are indicated by the dashed blue lines. 

Hydrogen atoms omitted for clarity. 
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Experiments were carried out at 294 K using an Xcalibur, Sapphire3, Gemini ultra diffractometer. Program used 

to solve structure; SHELXS97.4 Program used to refine structure; SHELXL97.5 Hydrogen atoms were treated by 

a mixture of independent and constrained refinement. 

 

Table 4.17: Pertinent crystal data for 54 and 55 

Crystal data 54 55 

Chemical formula C26 H26 F3 N3 O2 S C29 H26.55 Cl6 F6 N3 O2 S 

Mr  501.57 807.84 

Crystal system,  

space group 

Orthorhombic 

P212121,  (No.19) 

Orthorhombic 

P212121,  (No.19) 

a, b, c (Å) 12.9099(6), 15.2873(7), 24.2885(16) 12.4174(5), 12.9718(5), 22.4938(8) 

, β,   (º) 90, 90, 90 90, 90, 90 

Volume (Å3) 4793.5(4) 3623.2(2) 

Z 8 4 

 (mm-1) 0.188 0.594 

Crystal size (mm) 0.08 × 0.32 × 0.32 0.16 × 0.20 × 0.39 

Data Collection   

Radiation Mo K Mo K 

λ (Å) 0.71073 0.71073 

Absorption correction2 Analytical (ABSFAC. Clark & Reid, 1998) Analytical (ABSFAC. Clark & Reid, 1998) 

 Tmin, Tmax 0.9243, 0.9851 0.8013, 0.9109 

No. of measured, 

independent and 

observed reflections 

35254, 5738, 3830 {I > 2(I)} 16462, 8004, 4158 {I > 2(I)} 

Rint 0.089 0.041 

max (°) 27.2 28.3 

Refinement   

R[F2 > 2σ(F2)], wR(F2), S 0.0562, 0.1230, 1.04 0.0734, 0.2103, 1.02 

No. of reflections 5738 8004 

No. of parameters 689 486 

No. of restraints 0 6 

ρmax, ρmin (e Å-3) -0.17, 0.17 -0.24, 0.36 

Absolute structure (Flack, 1983) (Flack, 1983) 

Flack parameter
3
 0.49 (11) -0.04(11) 
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4.6.2 Analysis of X-ray Crystal Structures of 60 

Two crystal samples were grown of compound 60 (Figure 4.40). The X-ray crystal structures were 

polymorphic. Both crystallised in the orthorhombic P212121 crystal system but one crystallised as the 

hydrate with a single molecule of 60 in the asymmetric unit (Figure 4.41) while the other contains 

two molecules of 60, a water and chloroform molecule in the asymmetric unit (Figure 4.42). The 

crystal structures are very similar as seen by comparison of selected bond lengths, angles and 

torsions in Table 4.18. The major point of note is the difference in the torsion angles of the thiourea 

moiety to 3,5-trifluoromethyl- disubstituted aromatic ring between each of the molecules of 60 of 

the dimer (Figure 4.43). C19-N3-C20-C21 is 62.1° for 60A and 17.8° for 60B. The C6-N2-C19-S1 

torsion angle is also affected, see Table 4.18.   

 

Figure 4.40: Molecular structure of 60 

 

Figure 4.41: The asymmetric unit of 60 showing the atom numbering scheme. Displacement ellipsoids are drawn at the 

30% probability level. 
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Figure 4.42: The asymmetric unit of 60. Displacement ellipsoids are drawn at the 30% probability level. 
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Bond Lengths (Å) 60 60A 60B 

C3-O1 1.375(4) 1.34(1) 1.33(2) 

C3-C4 1.378(4) 1.39(1) 1.39(1) 

C4-O2 1.376(3) 1.40(1) 1.38(1) 

C6-N2 1.467(3) 1.43(1) 1.48(1) 

C19-S1 1.670(2) 1.65(1) 1.69(1) 

C11-C12 1.373(3) 1.37(1) 1.36(2) 

C7-C8 1.330(4) 1.28(2) 1.31(2) 

 

Bond Angle (°) 60 60A 60B 

C1-C2-C3 122.3(3) 124(1) 123(1) 

C3-O1-C18 116.2(3) 116.1(9) 117.7(9) 

C14-C13-C5 116.8(2) 118.6(8) 113.7(8) 

C5-C6-C7 114.8(2) 112.7(8) 114.3(9) 

N2-C19-N3 113.7(2) 112.7(8) 113.4(8) 

 

Torsion Angles (°) 60 60A 60B 

C1-C2-C3-C4 1.4(4) -1(2) 4(2) 

O2-C4-C12-C13 -7.4(3) -5(1) -8(1) 

C6-N2-C19-S1 3.6(4) 6(1) 13(1)  

C6-C7-C8-C14 -0.4(4) -6(2) -5(2) 

 

Table 4.18: Selected bond lengths, angles and torsions for 60, 60A and 60B. 

 

 

 

Figure 4.43: Different torsion angles from thiourea moiety to trifluoromethyl- substituted aromatic ring of 60A (left) and 

60B (right). Hydrogen atoms omitted for clarity. 
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Crystal data 60 60 

Chemical formula C27 H28 Cl F6 N3 O3 S C27.45 H27.45 Cl2.45 F6 N3 O2.50 S 

Mr  624.03 672.29 

Crystal system, space 

group 

Orthorhombic 

P212121,  (No.19) 

Orthorhombic 

P212121,  (No.19) 

a, b, c (Å) 7.8467(4), 15.8797(8), 22.8383(13) 15.8662(8), 18.7458(5), 20.7528(11) 

, β,   (º) 90, 90, 90 90, 90, 90 

Volume (Å3) 2845.7(3) 6172.4(5) 

Z 4 8 

 (mm-1) 2.541 3.501 

Crystal size (mm) 0.06 × 0.21 × 0.36 0.06 × 0.33 × 0.46 

Data Collection    

Radiation Cu K Cu K 

λ (Å) 1.54184 1.54184 

Temperature 294 K 294 K 

Absorption correction2 Analytical (ABSFAC. Clark & Reid, 1998) Analytical (ABSFAC. Clark & Reid, 1998) 

 Tmin, Tmax 0.4615, 0.8625 0.2958, 0.8174 

No. of measured, 

independent and 

observed reflections 

15858, 4563, 4285{I > 2(I)} 38159, 10007, 4929 {I > 2(I)} 

Rint 0.026 0.091 

max (°) 63.2 64.4 

Refinement   

R[F2 > 2σ(F2)], wR(F2), S 0.0336, 0.0886, 1.05 0.0829, 0.2650, 1.04 

No. of reflections 4563 10007 

No. of parameters 446 811 

No. of restraints 168 38 

ρmax, ρmin (e Å
-3

) -0.20, 0.26 -0.24, 0.32 

Absolute structure3 (Flack, 1983) (Flack, 1983) 

Flack parameter -0.019(15) -0.02(3) 

 

Experiments were carried out at 294 K using an Xcalibur, Sapphire3, Gemini ultra diffractometer. Program used 

to solve structure; SHELXS97.4 Program used to refine structure; SHELXL97.5 Hydrogen atoms were treated by 

a mixture of independent and constrained refinement. 

Table 4.19: Pertinent crystal data for 60 and its dimeric polymorph. 
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4.6.3 X-ray Crystal Analysis of 65 

65 crystallises in the orthorhombic P212121 crystal system (Figure 4.45). The thiourea moiety 

orientates itself parallel to the A-B-D ring system of the opiate due to an N3-H3...O2 intramolecular 

hydrogen bond (Figure 4.46). H3 of the thiourea moiety deviates from planarity due to this hydrogen 

bond (Figure 4.47). Hydrogen bond parameter data is shown below in Table 4.20. Ring C is chair 

shaped as a result of the reduction of the C7-C8 double bond. The chair shape is distorted slightly 

due to strain from the fused ring system (Figure 4.48). 

 

 

 

Figure 4.44: Molecular structure of 65 

 

 

D—H···A D—H (Å) H···A (Å) D···A (Å) D—H···A (°) 

N3-H3...O2  0.84(2)       2.12(2) 2.919(3)         157(2) 

     

 

Table 4.20: Intramolecular hydrogen bond parameter data for 65 
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Figure 4.45: Asymmetric unit of 65 with atom numbering scheme. Ellipsoids are drawn at the 30% probability level. 

 

 

 

Figure 4.46: Intramolecular N3-H3...O2 bond of 65 indicated by the dashed blue line. Thiourea side-chain has aligned itself 

alongside the opiate A-B-D ring system. 
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Figure 4.47: Deviation from planarity of atom H3 of thiourea moiety in 65. 

 

 

 

 

Figure 4.48: Distorted chair shape of ring C in 65. 
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Crystal data 124 

Chemical formula C27 H27 F6 N3 O2 S 

Mr  571.58 

Crystal system, space group Orthorhombic P212121,  (No.19) 

a, b, c (Å) 7.2537(2), 11.7333(3), 31.4564(8) 

, β,   (°) 90, 90, 90 

Volume (Å3) 2677.25(12) 

Z 4 

 (mm-1) 0.193 

Crystal size (mm) 0.08 × 0.26 × 0.53 

Data Collection 

Radiation Mo K 

λ (Å) 0.71073 

Absorption correction2 Analytical (ABSFAC. Clark & Reid, 1998) 

 Tmin, Tmax 0.9046, 0.9847 

No. of measured, independent and 

observed reflections 

10201,   5689, 4498  {I > 2(I)} 

Rint 0.025 

max (°) 27.3 

Refinement 

R[F2 > 2σ(F2)], wR(F2), S 0.0452, 0.0951, 1.03 

No. of reflections 5689 

No. of parameters 417 

No. of restraints 0 

ρmax, ρmin (e Å-3) -0.17, 0.18 

Absolute structure
3
 (Flack, 1983) 

Flack parameter -0.01(8) 

 

Experiments were carried out at 294 K using an Xcalibur, Sapphire3, Gemini ultra diffractometer. Program used 

to solve structure; SHELXS97.
4
 Program used to refine structure; SHELXL97.

5
 Hydrogen atoms were treated by 

a mixture of independent and constrained refinement. 

 

Table 4.21: Pertinent crystal data for 65. 
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4.6.4 X-ray Crystal Structure of 59 

59 crystallises in the triclininc P1 crystal system. The asymmetric unit of 59 contains two molecules 

of 59, and two molecules of DMSO (Figure 4.50). Molecules of 59 are aligned in an anti-parallel 

fashion, and the urea moiety exists as a trans/trans isomer due to hydrogen bonding interactions 

between the nitrogen atoms of the urea moiety and the sulphur atoms of each DMSO molecule 

(Figure 4.51). The urea side chains are relative planar (Figure 4.52) with torsion angles C19-N3-C20-

C21 for 59A and 59B, of −12.7° and −2.5° respectively. 

 

Figure 4.49: Molecular structure of 59 

 

Figure 4.50: Asymmetric unit of 59. Ellipsoids are drawn at the 30% probability level. 
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Figure 4.51: Intermolecular hydrogen bonding indicated by dashed blue lines from thiourea moieties to the sulphur atoms 

of the DMSO molecules. Anti-parallel orientation of 59 molecules is highlighted. 

 

 

 

 

Figure 4.52: Relative planarity of urea and trifluoromethyl-disubstituted aromatic ring, 59A is indicated on the left and 59B 

on the right. 
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Crystal data 59 

Chemical formula C29 H31 F6 N3 O4 S 

Mr  631.63 

Crystal system, space group Triclinic P1,  (No.1) 

a, b, c (Å) 10.2197(9), 12.1435(11), 13.2207(13) 

, β,   (°) 95.421(8), 112.527(9), 95.902(7) 

Volume (Å3) 1491.4(3) 

Z 2 

 (mm-1) 0.185 

Crystal size (mm) 0.03 × 0.20 × 0.23 

Data Collection 

Radiation Mo K 

λ (Å) 0.71073 

Absorption correction2 Analytical (ABSFAC. Clark & Reid, 1998) 

 Tmin, Tmax 0.9586, 0.9945 

No. of measured, independent and 

observed reflections 

11986,   8647, 4075 {I > 2(I)} 

Rint 0.056 

max (°) 28.4 

Refinement 

R[F2 > 2σ(F2)], wR(F2), S 0.0758, 0.1568, 1.02 

No. of reflections 8647 

No. of parameters 822 

No. of restraints 45 

ρmax, ρmin (e Å-3) -0.22, 0.27 

Absolute structure
3
 (Flack, 1983) 

Flack parameter 0.07(15) 

 

Experiments were carried out at 294 K using an Xcalibur, Sapphire3, Gemini ultra diffractometer. Program used 

to solve structure; SHELXS97.
4
 Program used to refine structure; SHELXL97.

5
 Hydrogen atoms were treated by 

a mixture of independent and constrained refinement. 

 

Table 4.22: Pertinent crystal data for 59 
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5.1 General Experimental Methods 

Unless otherwise stated, all chemicals were obtained from commercial sources and used as received.  

Codeine was purchased from Johnson Matthey MacFarlan Smith, Edinburgh. THF was freshly distilled 

from the sodium benzophenone/ketyl radical under a nitrogen atmosphere and used immediately. 

Similarly dry methanol and diethyl ether were distilled from sodium under a nitrogen atmosphere prior 

to use. All other solvents were used as supplied. Flash chromatography was carried out using Davisil 60 

Å silica gel or activated neutral alumina (Brockmann I). TLC analysis was performed on precoated 60F254 

slides or aluminium oxide TLC plates with a fluorescent indicator (254 nm), and visualised by UV 

irradiation. NMR spectra were recorded on a Bruker Avance spectrometer. Compounds are named 

based on IUPAC nomenclature. All melting points are uncorrected and were recorded on a Stuart 

Melting Point (SMP3) apparatus. Optical rotations were measured on a Perkin Elmer 343 polarimeter at 

20 °C. 1H NMR spectra were recorded at 400 or 600 MHz, 13C spectra at 100 or 125 MHz and 19F spectra 

at 378 MHz. Chemical shifts (δ) are reported in ppm relative to TMS (δ = 0.00 ppm) and coupling 

constants (J) in Hz. NMR spectra were recorded at 20 °C unless stated otherwise. Chemical shift 

assignments for 1H and 13C spectra were assisted with COSY, DEPT, HMQC and HMBC. When stating the 

multiplicity of peaks in NMR the following abbreviations are used; s-singlet, d-doublet, t-triplet, q-

quartet, dd-doublet of doublets, td-triplet of doublets, m-multiplet, br-broad. Infrared spectra were 

obtained on a Perkin Elmer Spectrum 100 Fourier Transform spectrophotometer. The appearance and 

strength of reported peaks are described as weak (w), medium (m), strong (s), very strong (vs), broad (b) 

and sharp (sh). High resolution mass spectra were measured with a Waters Micromass LCT Premier mass 

spectrometer at ABCRF laboratory, University College Cork. Low resolution mass spectra analysis was 

performed on an Agilent Technologies 1200 series LCMS with a 6110 quadrupole mass spectrometer. 

Analytical HPLC was carried out on a Waters instrument using a Lux Cellulose-2 column. Single crystal 

studies were undertaken on an Oxford Diffraction Gemini-S Ultra diffractometer at room temperature.  
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5.2 Experimental  

Typical Procedure for the synthesis of (S)-5-nitro-4-phenylpentan-2-one: Norbuprenorphine (17 mg, 

0.04 mmol) was added to a mixture of dichloromethane (1 mL) and acetone (0.147 µL, 2 mmol) and 

after stirring for 5 minutes trans-β-nitrostyrene (30 mg, 0.2 mmol) was added followed by (S)-mandelic 

acid (0.02 mmol). The mixture was allowed to stir for 8 days at room temperature, before the solvent 

was removed in vacuo. The residue purified by column chromatography (SiO2, 6:1-4:1 hexane:ethyl 

acetate) to give title compound as a white solid in 27% yield and 23% ee. All spectroscopic data is in 

agreement with the literature. HPLC (Lux Cellulose-2, hexane/isopropanol/formic acid = 90/10/0.1, 1.0 

mL/min, λ = 220 nm) tR = 21.27 (major) tR = 23.97 (minor). The absolute configuration was determined 

by comparison with a literature protocol. 

Typical Procedure for the synthesis of 1,3-diethyl 2-(2-nitro-1-phenylethyl)propanedioate: Catalyst 65 

(11 mg, 0.02 mmol) was added to a mixture of dichloromethane (1 mL), diethyl malonate (0.064 µL, 0.4 

mmol) and trans-β-nitrostyrene (30 mg, 0.2 mmol). The mixture was allowed to stir for 66 hours at room 

temperature, before the solvent was removed in vacuo. The residue purified by column chromatography 

(SiO2, 9:1-6:1 hexane:ethyl acetate) to give title compound as a white solid in 95% yield and 11% ee. All 

spectroscopic data is in agreement with the literature. HPLC (Lux Cellulose-2, hexane/isopropanol = 

90/10, 1.0 mL/min, λ = 254 nm) tR = 12.31 (minor) tR = 16.60 (major). The absolute configuration was not 

determined. 

 

(1S,5R,13R,14R,17R)-10-methoxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.01,13.05,17.07,18]octadeca-7,9,-

11(18),15-tetraen-14-amine 35 

DIAD (1.84 mL, 9.36 mmol) was added dropwise to a stirring solution of 

26 (2.002 g, 6.69 mmol), triphenylphosphine (2.628 g, 10.04 mmol), 41 

(2.032 g, 9.36 mmol) and 1,4-dioxane (30 mL) at 0 °C. The reaction 

mixture was allowed to warm to room temperature and was stirred for 

24 hours. HCl in dioxane (8 mL, 4.0 M) was added and the reaction 

mixture was stirred 12 hours. The reaction mixture was basified with 

NH4OH, the solvent was removed in vacuo and the residue was purified 

by column chromatography (SiO2, 95:5:0 to 95:5:1 CHCl3:MeOH:NH4OH). 35 was isolated as a white solid 

in 31% yield (0.623 g, 0.36 mmol); mp 108.9-109.7°C, (lit 108-109°C)1.     
   = −165.6 (c = 0.5 in CHCl3), 
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(lit     
   = −156.8 (c = 0.5 in CHCl3))1 NMR data is in agreement with the literature.2 1H NMR (400 MHz, 

CDCl3) δ 6.68 (1H, d, J = 8.2 Hz, H2), 6.57 (1H, d, J = 8.2 Hz, H1), 5.89 (1H, dd, J = 11.8, 3.1 Hz H7), 5.50 

(1H, dd, J = 9.8, 1.8 H8), 4.63 (1H, br s, H5), 3.86 (3H, s, H18), 3.52 (1H, d, J = 5.6 Hz, H6), 3.32 (1H, dd, J = 

5.6, 3.4 Hz, H9), 3.05 (1H, d, J = 18.6 Hz, H10), 3.03 (1H, br s, H14), 2.60 (1H, dd, J = 12.2, 3.9 Hz H16), 

2.46 (3H, s, H17), 2.39-2.29 (2H, m, H10, H16), 2.08 (1H, td, J = 12.5, 5.0 Hz, H15), 1.85 (1H, dd, J = 12.5, 

1.9 Hz, H15) 1.67 (2H, br s, NH2) 13C NMR (100 MHz, CDCl3) δ 145.65 (C4), 142.18 (C3), 132.94 (C8), 

130.66 (C12), 129.51 (C7), 127.25 (C11), 118.63 (C1), 112.65 (C2), 96.37 (C5), 59.11 (C9), 56.30 (C18), 

51.47 (C6), 47.13 (C16), 44.15 (C13), 43.11 (C17), 39.85 (C14), 36.14 (C15), 20.19 (C10) IR νmax (neat) 

3345 (w, sh), 2940 (w), 2901 (w), 2850 (w), 2806 (w), 1607 (w), 1498 (s, sh), 1444 (s, sh), 1271 (s, sh), 

1154 (s), 1056 (s, sh), 1032 (s), 906 (s), 869 (s), 789 (vs, sh), 711 (s, sh) cm-1 MS (ESI) calculated for [M + 

H]+, C18H23N2O2
+, requires 299.18,  found 299.19. 

tert-butyl-N-[(1S,5R,13R,14R,17R)-10-methoxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.01,13.05,17.07,18]-

octadeca-7(18),8,10,15-tetraen-14-yl]-N-[(4-methylbenzene)sulfonyl]carbamate 36 

DIAD (0.74 mL, 3.70 mmol) was added dropwise to a stirring 

solution of 26 (0.897 g, 3.00 mmol), triphenylphosphine (1.179 g, 

4.50 mmol), 28 (1.140 g, 4.20 mmol) and toluene (20 mL) at 0°C.  

The reaction mixture was allowed warm to room temperature and 

it was stirred for 36 hours.  Solvent was removed in vacuo and the 

residue was purified by silica gel column chromatography (4% 

MeOH in DCM). 36 was isolated as a white solid in 33% yield 

(0.572 g, 1.03 mmol); mp  98.7-99.3°C.     
   = −243.6 (c = 0.5 in 

CHCl3). 1H NMR (400 MHz, CDCl3) δ 7.81 (2H, d, J = 8.2 Hz, H23), 

7.25 (2H, d, J = 8.2 Hz, H24), 6.64 (1H, d, J = 8.0 Hz, H2), 6.54 (1H, 

d, J = 8.0 Hz, H1), 5.58 (1H, br d, J = 10.2 Hz, H7), 5.53 (1H, dt, J = 

10.2, 3.2 Hz, H8), 5.01-4.98 (1H, m, H6), 4.84 (1H, br s, H5), 3.84 

(3H, s, H18), 3.23-3.16 (2H, m, H9, H14), 2.96 (1H, d, J = 18.2 Hz, H10), 2.50 (1H, dd, J = 12.1, 3.6 Hz, 

H16), 2.37 (6H, s, H17, H26), 2.28 (1H, dd, J = 18.2, 5.3 Hz, H10), 2.18 (1H, td, J = 12.2, 3.6 Hz, H16), 2.02 

(1H, td, J = 12.1, 4.8 Hz, H15),  2.28 (1H, br d, J = 12.2 Hz, H15), 1.26 (9H, s, H21) 13C NMR (100 MHz, 

CDCl3) δ 150.41 (C19), 144.23 (C4), 144.13 (C25), 143.30 (C3), 137.57 (C22), 130.91 (C12), 129.97 (C7), 

129.31 (C24), 129.00 (C8), 128.09 (C23), 127.22 (C11), 119.27 (C1), 114.39 (C2), 91.82 (C5), 84.71 (C20), 

59.96 (C6), 59.24 (C9), 57.02 (C18), 47.52 (C16), 44.48 (C13), 42.99 (C17), 40.53 (C14), 34.13 (C15), 27.95 
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(C21), 21.66 (C26), 20.50 (C10) IR νmax (neat) 2929 (w), 1722 (s), 1498 (m), 1439 (m), 1354 (s), 1275 (s), 

1147 (vs), 1088 (m, sh), 1029 (m), 930 (m) cm-1 MS (ESI) calculated for [M + H]+, C30H37N2O6S+, requires 

553.2372,  found 553.2350. 

N-[(1S,5R,13R,14R,17R)-10-methoxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.01,13.05,17.07,18]octadeca-7-

(18),8,10,15-tetraen-14-yl]-4-methylbenzene-1-sulfonamide 37 

36 (0.572 g, 1.03 mmol) was dissolved in a solution of TFA in DCM (1:1, 4 

mL).  After stirring for 30 minutes at room temperature a further 2 mL of 

the solution  (TFA/DCM, 1:1) was added.  The TFA was removed using N2 

gas.  The residue was then dissolved in DCM (20 mL) and evaporated to 

dryness (x 7).  37 was isolated as a white foam in 98% yield (0.456 g, 1.01 

mmol); mp 106.3-107.3°C.     
   = −180.0 (c = 0.5 in CHCl3). 1H NMR (400 

MHz, CDCl3) δ 7.72 (2H, d, J = 8.2 Hz, H20), 7.23 (2H, d, J = 8.2 Hz, H21), 

6.58 (1H, d, J = 8.2 Hz, H2), 6.47 (1H, d, J = 8.2 Hz, H1), 5.66 (1H, br s, NH), 

5.54 (1H, ddd, J = 9.2, 5.9, 2.8 Hz, H7), 5.44 (1H, dd, J = 9.8, 1.6 Hz, H8), 

4.77 (1H, s, H5), 3.79 (1H, d, J = 5.9 Hz, H6), 3.75 (3H, s, H18), 3.53 (1H, dd, 

J = 5.4, 3.0 Hz, H9), 3.12 (1H, br s, H14), 2.96 (1H, d, J = 18.9 Hz, H10), 2.76 

(1H, dd, J = 12.3, 4.0 Hz, H16), 2.52 (3H, s, H17), 2.45-2.36 (2H, m, H10, 

H16), 2.34 (3H, s, H23), 2.13 (1H, td, J = 12.9, 4.9 Hz, H15), 1.71 (1H, dd, J = 12.9, 2.0 Hz, H15) 13C NMR 

(100 MHz, CDCl3) δ 145.77 (C4), 143.54 (C22), 142.40 (C3), 137.45 (C19), 131.92 (C8), 129.78 (C21), 

129.59 (C12), 129.34 (C7), 127.23 (C20), 125.54 (C11), 119.19 (C1), 113.81 (C2), 92.54 (C5), 59.21 (C9), 

56.55 (C18), 52.68 (C6), 47.04 (C16), 43.68 (C13), 42.32 (C17), 38.76 (C14), 34.56 (C15), 21.56 (C23), 

20.74 (C10) IR νmax (neat) 2922 (w), 1671 (m), 1503 (m), 1444 (m, br), 1323 (m), 1277 (m), 1201 (m), 

1154 (vs, sh), 1051 (s), 721 (s), 664 (vs, sh) cm-1 MS (ESI) calculated for [M + H]+, C25H29N2O4S+, requires 

453.1848, found 453.1855. 

tert-butyl-N-[(1S,5R,13R,14R,17R)-10-methoxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.01,13.05,17.07,18]-

octadeca-7(18),8,10,15-tetraen-14-yl]-N-{[2-(trimethylsilyl)ethane]sulfonyl}carbamate 39 

DIAD (1.02 mL, 5.20 mmol) was added dropwise to a stirring solution of 26 (1.196 g, 4.00 mmol), 

triphenylphosphine (1.512 g, 6.00 mmol), 30 (1.575 g, 5.60 mmol) and toluene (20 mL) at 0°C. The 

reaction mixture was allowed warm to room temperature and stirred for 36 hours. Solvent was removed 

in vacuo and the residue was purified by silica gel column chromatography (2% MeOH in DCM). 39 was 
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isolated as a white foam in 29% yield (1.15 mmol, 0.648 g); mp 94.6-

96.6°C.     
   = −167.4 (c = 0.5 in CHCl3) 1H NMR (400 MHz, CDCl3) δ 

6.62 (1H, d, J = 8.2 Hz, H2), 6.53 (1H, d, J = 8.2 Hz, H1), 5.56 (1H, br d, 

J = 10.1 Hz, H7), 5.50 (1H, dt, J = 10.1, 3.5 Hz, H8), 4.84 (1H, br s, H5), 

4.70 (1H, br s, H6), 3.82 (3H, s, H18), 3.44-3.29 (2H, m, H22), 3.22 

(1H, br t, J = 3.5 Hz, H9), 3.15 (1H, br s, H14), 2.96 (1H, d, J = 18.1 Hz, 

H10), 2.51 (1H, dd, J = 11.9, 3.4 Hz, H16), 2.37 (3H, s, H17), 2.26 (1H, 

dd, J = 18.1, 5.3 Hz, H10), 2.17 (1H, td, J = 12.1, 3.4 Hz, H16), 2.03 

(1H, td, J = 12.1, 4.7 Hz, H15),  1.65 (1H, br d, J = 4.7 Hz, H15), 1.47 

(9H, s, H21) 1.05-0.96 (2H, m, H23), 0.03 (9H, s, H24) 13C NMR (100 

MHz, CDCl3) δ 151.25 (C19), 144.18 (C4), 143.28 (C3), 130.98 (C12), 130.02 (C7), 128.83 (C8), 127.33 

(C11), 119.34 (C1), 114.63 (C2), 91.72 (C5), 84.90 (C20), 59.53 (C6), 59.27 (C9), 57.09 (C18), 51.61 (C22), 

47.59 (C16), 44.49 (C13), 43.10 (C17), 40.70 (C14), 34.28 (C15), 28.15 (C21), 20.54 (C10), 10.47 (C23), -

1.85 (C24) IR νmax (neat) 2930 (w), 1724 (s, sh), 1439 (m), 1352 (s, sh), 1251 (s, sh), 1143 (vs, sh), 1022 (s), 

856 (s), 833 (s), 696 (s) cm-1 MS (ESI) calculated for [M + H]+, C28H43N2O6SSi+, requires 563.2611,  found 

563.2629. 

N-[(1S,5R,13R,14R,17R)-10-methoxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.01,13.05,17.07,18]octadeca-7,-

9,11(18),15-tetraen-14-yl]-2-(trimethylsilyl)ethane-1-sulfonamide 40 

39 (0.648 g, 1.15 mmol) was dissolved in a solution of TFA in DCM (1:5, 

6 mL). The reaction was stirred for 60 minutes at room temperature. 

TFA was removed using N2 gas and the residue was purified by silica gel 

column chromatography (0.5% MeOH in DCM) followed by a 

recrystallisation from a diethyl ether/hexane mixture. 40 was isolated 

as a white solid in 48% yield (0.254 g, 0.55 mmol); mp 150.8-153.1°C. 

    
   = −202.2° (c = 0.5 in CHCl3)

 1H NMR (400 MHz, CDCl3) δ 6.67 (1H, 

d, J = 8.2 Hz, H2), 6.56 (1H, d, J =  8.2 Hz, H1), 5.87-5.83 (1H, ddd, J = 

9.0, 5.4, 2.9 Hz, H7), 5.62 (1H, dd, J = 9.8, 1.7 Hz, H8), 4.88 (1H, br s, 

H5), 4.84 (1H, br d, J = 6.5 Hz, H22), 4.01-3.93 (1H, m, H6), 3.83 (3H, s, 

H18), 3.35 (1H, dd, J = 5.5, 3.2 Hz, H9), 3.06-2.94 (4H, m, H10, H14, H19), 2.60 (1H, dd, J = 12.2, 3.8 Hz, 

H16), 2.44 (3H, s, H17), 2.37-2.30 (2H, m, H10, H16), 2.12 (1H, td, J = 12.4, 4.9 Hz, H15), 1.82 (1H, dd, J = 

12.4, 1.9 Hz, H15), 1.10-0.94 (2H, m, H20), 0.05 (9H, s, H21) 13C NMR (100 MHz, CDCl3) δ 144.39 (C4), 
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141.38 (C3), 131.74 (C7), 129.07 (C12), 128.23 (C8), 125.81 (C11), 118.15 (C1), 112.39 (C2), 92.52 (C5), 

57.93 (C9), 55.46 (C18), 52.27 (C6), 48.53 (C19), 45.91 (C16), 43.13 (C13), 41.92 (C17), 38.86 (C14), 34.51 

(C15), 19.20 (C10), 9.65 (C20), -2.96 (C21) IR νmax (neat) 3571 (w), 3124 (w, br), 2940 (w), 1605 (w), 1494 

(m, sh), 1315 (s, sh), 1244 (s), 1139 (s, sh), 1020 (s, sh), 698 (vs, sh) cm-1 MS (ESI) calculated for [M + H]+, 

C23H35N2O4SSi+, requires 463.2063,  found 463.2076. 

(1S,5R,13R,14R,17R)-10-methoxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.01,13.05,17.07,18]octadeca-7,9,-

11(18),15-tetraen-14-amine dihydrochloride 43 

DIAD (0.55 mL, 2.80 mmol) was added dropwise to a stirring solution 

of 26 (0.598 g, 2.00 mmol), triphenylphosphine (0.786 g, 3.00 mmol), 

41 (0.608 g, 2.80 mmol) and toluene (20 mL) at 0 °C. The reaction 

mixture was allowed to warm to room temperature and was stirred for 

72 hours. Solvent was removed in vacuo and HCl in dioxane (1 mL, 4.0 

M) was added. The precipitate was filtered and recrystallised from 

water to give 43 as colourless crystals in 24% yield (0.178 g, 0.48 mmol). 1H NMR (400 MHz, CD3OD) δ 

6.58 (1H, d, J = 8.2 Hz, H2), 6.44 (1H, d, J = 8.2 Hz, H1), 5.74-5.69 (1H, m, H8), 5.42 (1H, dd, J = 10.0, 1.8 

H7) 4.49-4.48 (1H, m, H5), 3.70 (3H, s, H18), 3.23-3.20 (2H, m, H6, H9), 2.94 (1H, d, J = 18.7 Hz, H10), 

2.89-2.88 (1H, m, H14), 2.48 (1H, dd, J = 11.1, 3.6 Hz H16), 2.33 (3H, s, H17), 2.30-2.20 (2H, m, H10, H16), 

1.98 (1H, td, J = 12.6, 4.9 Hz, H15), 1.86 (1H, dd, J = 12.6, 3.4 Hz, H15) 13C NMR (100 MHz, CD3OD) δ 

146.95 (C4), 143.77 (C3), 133.58 (C8), 131.89 (C12), 130.14 (C8), 128.64 (C11), 120.09 (C1), 115.51 (C2), 

96.54 (C5), 60.42 (C9), 57.38 (C18), 52.88 (C6), 48.19 (C16), 45.03 (C13), 43.07 (C17), 40.13 (C14), 36.40 

(C15), 21.37 (C10). 

(1S,5R,13S,16S,17S)-10-methoxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.01,13.05,17.07,18]octadeca-7,9,11-

(18),14-tetraen-16-amine 44 

Similar to Bognár et al4, 46 (1.739 g, 5.37 mmol) was dissolved in Et2O and 

LiAlH4 solution in Et2O (8.05 mL, 2.0 M) was added. After refluxing for 4 

hours, the reaction was quenched by addition of aqueous ether and then 

H2O. After separation of organic and aqueous layers, product was 

extracted with ether (3 x 30 mL). Combined organic extracts were washed 

with brine (2 x 30 mL), solvent was removed and the residue was purified 

by column chromatography (SiO2, 95:5:1 CHCl3:MeOH:NH4OH) to give 44 in 
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20% yield (0.321 g, 1.08 mmol); mp 128-130°C, (lit 128-129°C).3     
   = −78.7 (c = 0.5 in EtOH), (lit     

   

= −79.2 (c = 0.5 in EtOH)). 3 1H NMR (400 MHz, CDCl3) δ 6.68 (1H, d, J = 8.2 Hz, H2), 6.61 (1H, d, J = 8.2 Hz, 

H1), 5.72 (1H, dd, J = 10.4, 1.4 Hz, H7), 5.65 (1H, dt, J = 10.4, 3.4 Hz, H6), 4.95 (1H, dd, J = 3.4, 1.4 Hz, H5), 

3.82, (3H, s, H18), 3.57 (1H, dd, J = 6.1, 2.8 Hz, H9), 3.05 (1H, d, J = 18.6 Hz, H10), 2.72 (1H, dd, J = 9.8, 

1.4 Hz, H8), 2.53 (1H, dd, J = 12.1, 3.5 Hz, H16), 2.43 (3H, s, H17), 2.42 (1H, dd, J = 18.6, 6.1 Hz, H10), 

2.27 (1H, td, J = 12.1, 3.8 Hz, H16), 2.01 (1H, dd, J = 9.8, 2.8 Hz, H14), 1.90 (1H, td, J = 12.4, 4.9 Hz, H15), 

1.78 (1H, dd, J = 12.4, 3.8 Hz, H15), 1.31 (2H, s, NH2) 13C NMR (100 MHz, CDCl3) δ 144.25 (C4), 143.13 

(C3), 139.48 (C7), 129.77 (C12), 127.27 (C11), 123.68 (C6), 118.75 (C1), 112.85 (C2), 87.43 (C5), 56.24 

(C18), 56.12 (C9), 49.38 (C14), 46.90 (C16), 46.22 (C8), 43.24 (C17), 40.95 (C13), 35.53 (C15), 19.79 (C10)    

IR νmax (neat) 3354 (w, br), 2921 (m, br), 2837 (w), 2567 (w), 2075 (w, br), 1609 (w), 1508 (s), 1451 (s), 

1441 (s), 1278 (vs, sh), 1191 (m), 1161 (m), 1141 (m), 1102 (m), 1089 (m), 1070 (vs, sh), 1019 (s), 905 (vs, 

sh), 854 (s, sh), 804 (s, sh) cm-1 MS (ESI) calculated for [M + H]+, C18H23N2O2
+, requires 299.18,  found 

299.20.  

(1S,5R,13R,14S,17R)-10-methoxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.01,13.05,17.07,18]octadeca7,9,11-

(18),15-tetraen-14-yl 4-methylbenzene-1-sulfonate 45  

The procedure was followed similarly to Bognár and Makleit.4 26 (0.996 g, 

3.33 mmol), pyridine (1.50 mL) and DCM (20 mL) were charged to a flask 

and cooled to 0 °C before tosyl chloride (0.762 g, 3.99 mmol) was added. 

The reaction flask was allowed to warm to room temperature after 30 

minutes and stirred for 12 hours. Saturated sodium bicarbonate (100 mL) 

was added and the separated organic layer was washed with water (2 x 

50 mL), dried over MgSO4, filtered and concentrated in vacuo. Petroleum 

ether (100 mL) was added and the insoluble material was filtered to give 

45 as a pink solid in 74% yield (1.124 g, 2.48 mmol); mp 118.7-121.1°C , 

(lit 121-121.5°C).5     
   = −202.7 (c = 1.0 in 1,4-dioxane), (lit     

   = 

−209.0 (c = 1.0 in 1,4-dioxane))5 The NMR data was in agreement with the 

literature.6 1H NMR (400 MHz, CDCl3) δ 7.90 (2H, d, J = 8.2 Hz, H20, H20’), 

7.37 (2H, d, J = 8.2 Hz, H21, H21’), 6.65 (1H, d, J = 8.2 Hz, H2), 6.53 (1H, d, J = 8.2 Hz, H1), 5.58 (1H, br d, J 

= 10.0 Hz, H7), 5.39 (1H, dt, J = 10.0, 2.6 Hz, H8), 4.97-4.93 (1H, m, H6), 4.87 (1H, dd, J = 6.2, 0.8 Hz H5), 

3.85 (3H, s, H18), 3.36 (1H, dd, J = 6.1, 3.2 Hz, H9), 3.04 (1H, d, J = 18.7 Hz, H10), 2.65 (1H, br t, J = 2.6 Hz, 

H14), 2.58 (1H, dd, J = 12.2, 4.0 Hz, H16), 2.47 (3H, s, H17), 2.44 (3H, s, H23), 2.38 (1H, td, J = 12.2, 3.5 
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Hz, H16)), 2.28 (1H, dd, J = 18.7, 6.1 Hz, H10), 2.00 (1H, td, J = 12.4, 5.1 Hz, H15), 1.66 (1H, m, H15) 13C 

NMR (100 MHz, CDCl3) δ 146.97 (C4), 144.89 (C22), 142.16 (C3), 133.72 (C19), 130.83 (C8), 130.35 (C12), 

129.83 (C21, C21’), 128.02 (C20, C20’), 127.50 (C7), 126.87 (C11), 119.35 (C1), 114.54 (C2), 89.09 (C5), 

74.41 (C6), 58.75 (C9), 56.99 (C18), 46.32 (C16), 43.31 (C13), 43.09 (C17), 40.82 (C14), 35.44 (C15), 21.73 

(C23), 20.33 (C10) IR νmax (neat) 2946 (w), 1599 (m), 1498 (m, sh), 1443 (m), 1359 (s, sh), 1175 (s, sh), 

974 (s, sh), 866 (vs, sh), 667 (vs, sh) cm-1 MS (ESI) calculated for [M + H]+, C25H28NO5S+, requires 454.17,  

found 454.20. 

(1S,5R,13S,16S,17R)-16-azido-10-methoxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.01,13.05,17.07,18]octa-

deca-7(18),8,10,14-tetraene 46 

45 (3.600 g, 7.94 mmol) and sodium azide (1.032 g, 15.87 mmol) were 

stirred in DMF (7 mL) at 90°C for 12 hours. After cooling, water (200 mL) 

was added and the precipitate was filtered.  Recrystallisation from hot 

water gave title compound 46 as a brown crystalline solid in 73% yield 

(1.886 g, 5.81 mmol); mp 138.3-139.9°C, (lit 137-138°C)7.     
   = −18.6 (c 

= 1.1 in CHCl3), (lit     
   = −20.4 (c = 1.1 in CHCl3)).7 1H NMR (400 MHz, 

CDCl3) δ 6.63 (1H, d, J = 8.2 Hz, H2), 6.56 (1H, d, J = 8.2 Hz, H1), 5.83-5.76 

(2H, m, H6, H7), 4.91-4.90 (1H, m, H5), 3.76 (3H, s, H18), 3.42 (1H, dd, J = 6.2, 2.8 Hz, H9), 3.20 (1H, br d, 

J = 10.1 Hz, H8), 3.01 (1H, d, J = 18.8 Hz, H10), 2.46 (1H, dd, J = 12.2, 3.7 Hz H16), 2.36 (3H, s, H17), 2.36 

(1H, dd, J = 18.8, 6.2 Hz, H10), 2.28 (1H, dd, J = 10.1, 2.8 Hz, H14), 2.20 (1H, td, J = 12.2, 3.7 Hz, H16), 

1.86 (1H, td, J = 12.3, 5.0 Hz, H15), 1.76-1.72 (1H, m, H15) 13C NMR (100 MHz, CDCl3) δ 144.17 (C4), 

143.33 (C3), 131.49 (C6/7), 128.80 (C12), 127.26 (C6/7), 126.82 (C11), 119.17 (C1), 113.39 (C2), 86.45 

(C5), 56.52 (C9), 56.32 (C18), 56.16 (C8), 46.61 (C16), 45.36 (C14), 43.18 (C17), 40.86 (C13), 35.17 (C15), 

19.85 (C10) IR νmax (neat) 2928 (w, sh), 2802 (w, sh), 2093 (m, sh), 1604 (w), 1505 (s, sh), 1448 (s, sh), 

1280 (vs, sh), 1156 (s, sh), 1051 (s, sh), 905 (vs, sh), 891 (s, sh), 784 (s, sh) cm-1 MS (ESI) calculated for [M 

+ H]+, C18H21N4O2
+, requires 325.17,  found 325.10. 

(1S,5R,13R,14S,17R)-10-methoxy-14-[(6-{[(1S,5R,13R,14S,17R)-10-methoxy-4-methyl-12-oxa-4-azapen-

tacyclo[9.6.1.01,13.05,17.07,18]octadeca-7(18),8,10,15-tetraen-14-yl]oxy}pyridazin-3-yl)oxy]-4-methyl-12-

oxa-4-azapentacyclo[9.6.1.01,13.05,17.07,18]octadeca-7(18),8,10,15-tetraene 47 

A literature procedure for a similar quinine based compound was followed.8  26 (0.598 g, 2.00 mmol), 48 

(0.156 g, 1.05 mmol), potassium carbonate (0.426 g, 3.09 mmol) and dry toluene (50 mL) were refluxed 
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under nitrogen using a Dean Stark 

apparatus for 2 hours.  Potassium 

hydroxide (0.173 g, 3.09 mmol) was 

added and the mixture was further 

refluxed for 12 hours.  The reaction 

mixture was allowed to cool, water (50 

mL)  was added and the product was 

extracted with ethyl acetate (3 x 30 mL).  

The organic layer was washed with water (30 mL) and brine (30 mL), dried over MgSO4, filtered and the 

solvent was removed in vacuo.  Purification was achieved by column chromatography on alumina (0.5-

1.5% MeOH in DCM).  47 was isolated as a light brown coloured solid in 13% yield (0.089 g, 0.13 mmol); 

mp 197.7-199.7°C.     
   = −272.6 (c = 0.5 in CHCl3). 1H NMR (400 MHz, CDCl3) δ 7.01 (2H, s, H20), 6.58 

(2H, d, J = 8.0 Hz, H2), 6.47 (2H, d, J = 8.0 Hz, H1), 5.75 (2H, br d, J = 10.0 Hz, H8), 5.57 (2H, dd, J = 5.7, 2.9 

Hz, H6), 5.41-5.38 (4H, m, H5, H7), 3.72 (6H, s, H18), 3.35 (2H, dd, J = 5.8, 3.2 Hz, H9), 2.99 (2H, d, J = 

18.6 Hz, H10), 2.76 (2H, br t, J = 2.5 Hz, H14), 2.55 (2H, dd, J = 12.2, 3.8 Hz, H16), 2.40 (6H, s, H17), 2.34 

(2H, td, J = 12.2, 3.8 Hz, H16), 2.28 (2H, dd, J = 18.6, 5.8 Hz, H10), 2.07 (2H, td, J = 12.2, 4.9 Hz, H15), 1.81 

(2H, br d, J = 11.2 Hz, H15) 13C NMR (100 MHz, CDCl3) δ 160.89 (C19), 147.00 (C4), 142.08 (C3), 130.82 

(C12), 129.50 (C8), 129.16 (C7), 126.90 (C11), 122.34 (C20), 119.02 (C1), 113.89 (C2), 88.16 (C5), 70.36 

(C6), 59.11 (C9), 56.66 (C18), 46.65 (C16), 43.02 (C17), 43.01 (C13), 40.66 (C14), 35.38 (C15), 20.48 (C10) 

IR νmax (neat) 3379 (w, br), 2926 (w), 2909 (w), 1603 (w), 1502 (m, sh), 1438 (vs, sh), 1255 (vs), 1050 (vs), 

1021 (vs), 792 (s) cm-1 MS (ESI) calculated for [M + H]+, C40H43N4O6
+, requires 675.3183, found 675.3178. 

(1S,5R,13R,14S,17R)-14-hydroxy-10-methoxy-12-oxa-4-azapentacyclo[9.6.1.01,13.05,17.07,18]octadeca-7,-

9,11(18),15-tetraen-4-ium-4-olate hydrochloride 49 

The procedure was followed according to Scammells et al.9 26 

(3.025 g, 10.12 mmol) was dissolved in dry DCM (100 mL) and the 

reaction flask was cooled to –10 °C. m-CPBA (2.465 g, 11.00 mmol) 

was added and the reaction mixture was stirred for 30 minutes at –

10 °C. The product was extracted with 1 M HCl (3 x 50 mL) and 

washed with CHCl3 (2 x 40 mL). Solvent was removed in vacuo to 

give 49 as a white solid in 97% yield (3.458 g, 9.83 mmol); 227.7-

229.4°C, (lit 230-232°C).10     
   = −104.2 (c = 0.7 in H2O), (lit     

   = −105.8 (c = 2.0 in H2O)).11 The NMR 
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data is in agreement with the literature.12 1H NMR (400 MHz, MeOD) δ 6.82 (1H, d, J = 8.3 Hz, H2), 6.68 

(1H, d, J = 8.3Hz, H1), 5.82-5.79 (1H, m, H7), 5.38 (1H, dt, J = 9.8, 2.7 Hz, H8), 5.00-4.98 (1H, m, H5), 4.48-

4.47 (1H, m, H9), 4.31 (1H, dd, J = 5.8, 2.7 Hz, H6), 3.86 (3H, s, H18), 3.76 (3H, s, H17), 3.74-3.69 (2H, m, 

H14, H16), 3.61 (1H, td, J = 13.4, 3.8 Hz, H16) 3.46 (1H, d, J = 20.5 Hz, H10), 3.11 (1H, dd, J = 20.5, 6.7 Hz, 

H10), 2.70 (1H, td, J = 13.8, 4.7 Hz, H15), 2.04 (1H, dd, J = 14.1, 2.7 Hz, H15) 13C NMR (100 MHz, MeOD) δ 

148.77 (C4), 144.42 (C3), 135.80 (C7), 129.97 (C12), 125.87 (C8), 123.41 (C11), 121.09 (C1), 116.34 (C2), 

91.99 (C5), 75.59 (C9), 67.58 (C6), 60.22 (C16), 57.24 (C18), 56.71 (C17), 42.59 (C13), 34.99 (C14), 31.52 

(C15), 26.23 (C10) IR νmax (neat) 3290 (m), 2592 (w, br), 1602 (w, sh), 1496 (m, sh), 1438 (s, sh), 1254 (vs, 

sh), 1072 (s, sh), 1021 (s, sh), 952 (s, sh), 776 (s, sh) cm-1 MS (ESI) calculated for [M + H]+, C18H22NO4
+, 

requires 316.15,  found 316.10. 

 

(1S,5R,13R,14S,17R)-10-methoxy-12-oxa-4-azapentacyclo[9.6.1.01,13.05,17.07,18]octadeca-7,9,11(18),15-

tetraen-14-ol 50 

The procedure was followed similarly to Scammells et al.12 49 (3.393 g, 

9.65 mmol) was dissolved in MeOH (30 mL) and FeSO4.7H2O (5.366 g, 

19.30 mmol) was added. The reaction mixture was stirred for 1 hour. 

Solvent was removed in vacuo and the residue was purified by column 

chromatography (SiO2, 95:5:1-90:10:1 CHCl3:MeOH:NH4OH). 

Recrystallisation from chloroform gave 50 in 32% yield as a white 

crystalline solid (0.880 g, 3.08 mmol); 186.9-188.0°C, (lit 186-188°C).13 

    
   = −91.9 (c = 0.2 in CHCl3)

 (lit     
   = −90.9 (c = 0.2 in CHCl3))14 The NMR data was in agreement 

with the literature.12 1H NMR (400 MHz, CDCl3) δ 6.61 (1H, d, J = 8.2 Hz, H2), 6.58 (1H, d, J = 8.2Hz, H1), 

5.67-5.64 (1H, m, H7), 5.20 (1H, dt, J = 9.9, 2.4 Hz, H8), 4.80 (1H, d, J = 6.5 Hz, H5), 4.11 (1H, dd, J = 6.0, 

2.7 Hz, H9), 3.78 (3H, s, H17, 3.59-3.57 (1H, m, H16), 2.93-2.71 (2H, m, H10), 2.53-2.51 (1H, m, H14), 

1.90-1.81 (2H, m, H15) 13C NMR (125 MHz, CDCl3) δ 146.38 (C4), 142.22 (C3), 133.63 (C7), 131.16 (C12), 

128.18 (C8), 127.42 (C11), 119.59 (C1), 112.90 (C2), 91.92 (C5), 66.30 (C6), 56.35 (C18), 52.02 (C9), 43.87 

(C13), 41.30 (C14), 38.57 (C16), 36.66 (C15), 31.46 (C10) IR νmax (neat) 3402 (w, br), 3311 (w, sh), 2929 

(m, sh), 2836 (w), 1632 (w), 1504 (m), 1448 (s), 1284 (s), 1164 (s, sh), 1059 (s), 789 (vs, sh) cm-1 MS (ESI) 

calculated for [M + H]+, C17H20NO3
+, requires 286.14,  found 286.10. 
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(1S,5R,13R,14S,17R)-12-oxa-4-azapentacyclo[9.6.1.01,13.05,17.07,18]octadeca-7,9,11(18),15-tetraene-10,-

14-diol 51 

The procedure was followed similarly to Scammells et al.12 Morphine-N-

oxide hydrochloride (2.170 g, 6.44 mmol) was dissolved in MeOH (20 mL) 

and FeSO4.7H2O (3.580 g, 12.88 mmol) was added. The reaction mixture was 

stirred for 1 hour. Solvent was removed in vacuo and the residue was 

purified by silica gel column chromatography (95:5:1-85:15:1 

CHCl3:MeOH:NH4OH) to give 51 in 22% yield as a brown coloured solid (0.384 

g, 1.42 mmol); mp 254.4-256.6°C, (lit 250-258°C).15     
   = −54.3 (c = 1.0 in 

acetic acid), (lit     
   = −54.0 (c = 1.0 in acetic acid))16 The NMR data is in agreement with the 

literature.17 1H NMR (600 MHz, D2O + TFA) δ 6.66 (1H, d, J = 8.1 Hz, H2), 6.58 (1H, d, J = 8.1Hz, H1), 5.66-

5.63 (1H, m, H7), 5.28 (1H, dt, J = 9.8, 2.6 Hz, H8), 4.95 (1H, dd, J = 6.4, 1.1 Hz, H5), 4.28-4.24 (2H, m, H6, 

H9), 3.26 (1H, dd, J = 13.5, 4.5 Hz, H16), 3.04 (1H, td, J = 13.5, 4.1 Hz, H16), 3.00-2.91 (2H, m, H10), 2.82-

2.81 (1H, m, H14), 2.17 (1H, td, J = 13.9, 5.0 Hz, H15), 2.04 (1H, dd, J = 13.9, 3.2 Hz, H15) 13C NMR (125 

MHz, D2O + TFA) δ 145.64 (C4), 138.18 (C3), 133.05 (C7), 129.48 (C12), 125.87 (C8), 123.57 (C11), 120.38 

(C1), 117.61 (C2), 90.69 (C5), 65.63 (C6), 51.59 (C9), 42.19 (C13), 37.20 (C16), 36.75 (C14), 31.62 (C15), 

25.79 (C10) IR νmax (neat) 3023 (w, br), 2931 (w), 2846 (w), 2647 (w, br), 1621 (m, br), 1486 (m, br), 1439 

(m, br), 1272 (s), 1242 (s), 1121 (vs, sh), 938 (s), 785 (vs) cm-1 MS (ESI) calculated for [M + H]+, 

C16H18NO3
+, requires 272.13,  found 272.10. 

 

N-[3,5-bis(trifluoromethyl)phenyl]-1-{[(1S,5R,13R,14S,17R)-10-methoxy-4-methyl-12-oxa-4-azapenta-

cyclo[9.6.1.01,13.05,17.07,18]octadeca-7,9,11(18),15-tetraen-14-yl]oxy}methanethioamide 52 

The procedure was followed according to Yeung et al.18 26 

(0.998 g, 3.34 mmol), 53 (0.61 mL, 3.34 mmol) and dry THF 

(15 mL) were charged to a flask. Sodium hydride (0.268 g, 

6.69 mmol) was added and the reaction mixture was 

stirred at room temperature for 12 hours. Water (20 mL) 

was added and the product was extracted with DCM (3 x 

40 mL). Organic extracts were washed with brine (30 mL), 

dried over sodium sulphate, filtered and solvent was 
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removed in vacuo. Purification was achieved by column chromatography (SiO2, 0.5-2% MeOH in DCM) to 

give 52 as a white solid in 42% yield (0.803 g, 1.40 mmol); mp 180.4-182.2°C.     
   = −109.1 (c = 0.5 in 

CHCl3) The 1H and 13C NMR were recorded at 80°C. 1H NMR (600 MHz, DMSO-d6) δ 8.28 (2H, br s, H21, 

H21’), 7.75 (1H, s, H24), 6.61 (1H, d, J = 8.1 Hz, H2), 6.53 (1H, d, J = 8.1 Hz, H1), 5.90-5.89 (1H, m, H6), 

5.69 (1H, d, J = 10.0 Hz, H7/H8), 5.57 (1H, d, J = 10.0 Hz, H7/H8), 5.23 (1H, d, J = 6.5 Hz, H5), 3.61 (3H, s, 

H18), 3.36-3.35 (1H, m, H9), 2.97 (1H, d, J = 18.5 Hz H10), 2.80 (1H, br s, H14), 2.54-2.52 (1H, m, H16), 

2.38 (3H, s, H17), 2.37-2.28 (2H, m, H10, H16), 2.08 (1H, td, J = 12.1, 4.7 Hz, H15), 1.69 (1H, d, J = 12.1 

Hz, H15) 13C NMR (125 MHz, DMSO-d6) δ 187.12 (C19), 146.25 (C4), 141.59 (C3), 140.36 (C20), 130.80 (q, 

J = 27.3 Hz, C22, C22’), 130.61 (C12), 130.38 (C7/C8), 127.15 (C7/8, C11), 123.06 (q, J = 268.1 Hz, C23, 

C23’) 121.83 (C21, C21’), 119.02 (C1), 117.15 (C24), 114.23 (C2), 87.43 (C5), 73.81 (C6), 58.32 (C9), 56.07 

(C18), 46.13 (C16), 42.46 (C17), 40.44 (C13), 39.99 (C14), 34.87 (C15), 20.42 (C10) 19F NMR (376 MHz, 

CDCl3) δ −61.68 IR νmax (neat) 2915 (w), 1565 (m), 1371 (s), 1272 (s, sh), 1166 (vs, sh), 1124 (vs, sh), 1110 

(vs, sh), 1041 (s), 939 (m), 680 (s, sh) cm-1 MS (ESI) calculated for [M + H]+, C27H25F6N2O3S+, requires 

571.1490 found 571.1481. 

3-[(1S,5R,13S,16S,17S)-10-methoxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.01,13.05,17.07,18]octadeca-7,9-

,11(18),14-tetraen-16-yl]-1-[4-(trifluoromethyl)phenyl]thiourea 54 

The procedure was followed according to Bognár et 

al.19 56 (0.241 g, 0.71 mmol), 57a (0.13 mL, 1.07 

mmol) and 5 mL of absolute ethanol were charged to 

a flask and stirred for 1 hour at 50 °C. Solvent was 

removed in vacuo and diethyl ether (50 mL) was 

added. The insoluble material was filtered and 

recrystallised from acetonitrile to give 54 as a white 

solid in 49% yield (0.174 g, 0.35 mmol); mp 203.9-

206.7°C.     
   = −97.1 (c = 0.5 in CHCl3) 1H NMR (400 MHz, CDCl3) δ 8.41 (1H, br s, NH), 7.61 (2H, d, J = 

8.4 Hz, H21, H21’), 7.26 (2H, d, J = 8.4 Hz, H22, H22’), 6.64 (2H, q, J = 8.2Hz, H1, H2), 6.03 (1H, br d, J = 

8.8 Hz, NH), 5.72 (1H, dt, J = 9.2, 2.8 Hz, H7), 5.63 (1H, d, J = 10.2 Hz, H6), 4.85-4.84 (2H, m, H5, H8), 3.78 

(3H, s, H18), 3.34-3.33 (1H, m, H9), 3.00 (1H, d, J = 18.7 Hz, H10), 2.91 (1H, dd, J = 18.7, 5.4 Hz, H10), 

2.47-2.44 (1H, m, H16), 2.35 (3H, s, H17), 2.26-2.19 (1H, m, H14), 2.09 (1H, dd, J = 10.1, 2.4 Hz H16), 

1.78-1.76 (2H, m, H15) 13C NMR (100 MHz, CDCl3) δ 180.38 (C19), 143.99 (C4), 143.21 (C3), 139.44 (C20), 

133.18 (C6), 128.65 (q, J = 32.9 Hz, C23) 128.34 (C11/12), 127.42 (C22, C22’), 127.21 (C11/C12), 126.53 
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(C7), 124.15 (C21, C21’), 123.64 (q, J = 270.1 Hz, C24)  119.49 (C1), 113.42 (C2), 86.21 (C5), 56.44 (C9), 

56.29 (C18), 50.77 (C8), 46.95 (C16), 46.89 (C14), 43.22 (C17), 41.00 (C13), 35.49 (C15), 20.43 (C10) 19F 

NMR (376 MHz, CDCl3) δ −62.48 IR νmax (neat) 2905 (w), 1614 (m), 1515 (s), 1504 (s), 1312 (s, sh), 1157 

(s), 1120 (s), 1109 (s), 1065 (vs, sh), 840 (m) cm-1 MS calculated for [M + H]+, C26H27F3N3O2S+, requires 

502.1776, found 502.1774. 

 

1-[3,5-bis(trifluoromethyl)phenyl]-3-[(1S,5R,13S,16S,17S)-10-methoxy-4-methyl-12-oxa-4-azapenta-

cyclo[9.6.1.01,13.05,17.07,18]octadeca-7,9,11(18),14-tetraen-16-yl]thiourea 55 

The procedure was followed according to Bognár et al.19 56 

(0.516 g, 1.52 mmol), 57b (0.36 mL, 2.27 mmol) and 20 mL of 

absolute ethanol were charged to a flask and stirred for 12 hours 

at 50 °C. Solvent was removed in vacuo and diethyl ether (50 mL) 

was added. Insoluble material was filtered and purified by column 

chromatography (SiO2, 3% MeOH in DCM) to give compound 55 

as a white solid in 27% yield (0.234 g, 0.41 mmol); mp 197.9-

198.5°C.     
   = −59.7 (c = 0.5 in CHCl3) 1H NMR (600 MHz, 

DMSO-d6) δ 10.02 (1H, br s, NH), 8.50 (1H, br s, NH), 8.21 (2H, s, 

H21, H21’), 7.76 (1H, s, H24), 6.76 (1H, d, J = 8.2 Hz, H2), 6.67 (1H, 

d, J = 8.2 Hz, H1), 5.72 (2H, s, H6, H7), 5.01 (1H, d, J = 2.3 Hz, H5), 

4.63 (1H, br s, H8), 3.76 (3H, s, H18), 3.22 (1H, dd, J = 5.9, 2.5 Hz, H9), 2.97 (1H, d, J = 18.5 Hz, H10), 2.68 

(1H, dd, J = 18.5, 5.9 Hz, H10), 2.45 (1H, dd, J = 12.2, 4.5 Hz, H16), 2.37 (1H, dd, J = 10.4, 2.5 Hz, H14), 

2.31 (3H, s, H17), 2.11 (1H, td, J = 12.2, 3.4 Hz, H16), 1.87 (1H, td, J = 12.4, 4.5 Hz, H15), 1.62 (1H, d, J = 

11.1 Hz, H15) 13C NMR (125 MHz, DMSO-d6) δ 180.87 (C19), 143.79 (C4), 142.54 (C3), 141.65 (C20), 

134.54 (C6/7), 130.10 (q, J = 27.2 Hz, C22, C22’), 129.05 (C12), 127.40 (C11), 125.28 (C6/7), 123.19 (q, J = 

225.9 Hz, C23, C23’), 122.42 (C21, C21’), 118.87 (C1), 116.35 (C24), 113.58 (C2), 85.89 (C5), 55.83 (C18), 

55.44 (C9), 49.10 (C8), 46.21 (C16), 44.68 (C14), 42.77 (C17), 40.46 (C13), 34.90 (C15), 20.05 (C10) 19F 

NMR (376 MHz, DMSO-d6) δ −61.54 IR νmax (neat) 2906 (w), 1625 (w, br), 1515 (m), 1504 (m), 1470 (m), 

1382 (s, sh), 1273 (vs, sh), 1171 (vs), 1124 (vs, sh), 1047 (m), 886 (s, sh), 681 (s, sh) cm-1 MS (ESI) 

calculated for [M + H]+, C27H26F6N3O2S+, requires 570.1650, found 570.1627. 
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(1S,5R,13S,16S,17R)-16-isothiocyanato-10-methoxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.01,13.05,17.-

07,18]octadeca-7,9,11(18),14-tetraene 56 

The procedure was followed according to Bognár et al.19 45 (2.400 g, 5.29 

mmol), potassium thiocyanate (1.027 g, 10.58 mmol) and dry acetone (50 

mL) were charged to a flask and refluxed for 5 hours. After cooling, the 

reaction was filtered and the solvent was removed in vacuo. The residue 

was purified by silica gel chromatography using chloroform as the mobile 

phase. Recrystallisation from a diethyl ether/cyclohexane mixture gave 56 

as a crystalline solid in 42% yield (0.764 g, 2.24 mmol); mp 109.7-111.5°C, 

(lit mp 110-111°C)19.     
   = 151.7 (c = 0.5 in CHCl3), (lit     

   = 151.5 (c = 0.5 in CHCl3))19 1H NMR (400 

MHz, CDCl3) δ 6.63 (1H, d, J = 8.2 Hz, H2), 6.57 (1H, d, J = 8.2 Hz, H1), 5.78-5.71 (2H, m, H6, H7), 4.90-

4.89 (1H, m, H5), 3.75 (3H, s, H18), 3.1 (1H, d, J = 10.1 Hz, H8), 3.41 (1H, dd, J = 6.0, 2.8 Hz, H9), 3.04 (1H, 

d, J = 18.9 Hz, H10), 2.48-2.45 (2H, m, H16, dd, J = 10.1, 2.8 Hz, H14), 2.38 (2H, dd, J = 18.9, 6.3 Hz, H10) 

2.37 (3H, s, H17), 2.20 (1H, td, J = 12.2, 3.6 Hz, H16), 1.85 (1H, td, J = 12.5, 5.0 Hz, H15), 1.74 (1H, dd, J = 

12.5, 3.6 Hz, H15) 13C NMR (100 MHz, CDCl3) δ 144.23 (C4), 143.40 (C3), 133.33 (C19), 131.32 (C6/C7), 

128.07 (C12), 126.55 (C11), 126.42 (C6/C7), 119.33 (C1), 113.54 (C2), 86.13 (C5), 56.33 (C18), 56.17 (C9), 

53.12 (C8), 46.82 (C14/C16), 46.47 (C14/C16), 43.22 (C17), 40.88 (C13), 35.20 (C15), 19.76 (C10) IR νmax 

(neat) 2926 (m, sh), 2911 (m), 2789 (w), 2161 (m), 2115 (m, br), 1606, (w) 1501 (s, sh), 1275 (vs, sh), 

1155 (s, sh), 1076 (s, sh), 1029 (s, sh), 888 (vs, sh) cm-1 MS (ESI) calculated for [M + H]+, C19H21N2O2S+, 

requires 341.14,  found 341.10. 

1-[3,5-bis(trifluoromethyl)phenyl]-3-[(1S,5R,13R,14R,17R)-10-methoxy-4-methyl-12-oxa-4-azapenta-

cyclo[9.6.1.01,13.05,17.07,18]octadeca-7,9,11(18),15-tetraen-14-yl]urea 59 

35 (0.160 g, 0.54 mmol), 58 (93 µL, 0.54 mmol) 

and DCM (10 mL) were charged to a flask and 

stirred for 12 hours at room temperature. The 

solvent was removed in vacuo and the residue 

purified by column chromatography (SiO2, 3% 

MeOH in DCM) to give 59 as a white solid in 31% 

yield (0.092 g, 0.17 mmol); mp 228.1-228.8°C. 

    
   = −267.5 (c = 0.2 in CHCl3) The 1H and 13C NMR were recorded at 105°C. 1H NMR (600 MHz, DMSO-
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d6) δ 9.06 (1H, s, NH), 8.08 (2H, s, H21, H21’), 7.52 (1H, s, H24), 6.70 (1H, d, J = 8.2 Hz, H2), 6.56 (1H, d, J 

= 8.2 Hz, H1), 6.50 (1H, d, J = 7.4 Hz, NH), 5.79 (1H, ddd, J = 9.2, 5.7, 3.1 Hz, H7), 5.65 (1H, dd, J = 9.8, 1.7 

Hz, H8), 4.71 (1H, s, H5), 4.16 (1H, br t, J =  6.5 Hz, H6), 3.80 (3H, s, H18), 3.35 (1H, br s, H9), 3.02 (1H, br 

s, H14), 2.98 (1H, d, J = 18.5 Hz, H10), 2.55-2.53 (1H, m, H16), 2.40 (3H, s, H17), 2.33 (1H, dd, J = 18.5, 5.9 

Hz, H10), 2.27 (1H, td, J = 12.2, 3.4 Hz, H16), 2.02 (1H, td, J = 12.5, 5.0 Hz, H15), 1.65 (1H, dd, J = 12.5, 2.0 

Hz, H15) 13C NMR (125 MHz, DMSO-d6) δ 154.36 (C19), 145.67 (C4), 142.39 (C3), 141.82 (C20), 131.94 

(C8), 130.86 (q, J = 27.1 Hz, C22, C22’), 130.71 (C12), 128.87 (C7), 127.55 (C11), 123.35 (q, J = 225.9 Hz, 

C23, C23’), 118.78 (C1), 117.55 (C21, C21’), 114.61 (C2), 113.62 (C24), 92.77 (C5), 58.33 (C9), 56.66 

(C18), 49.66 (C6), 46.48 (C16), 43.63 (C13), 42.51 (C17), 39.34 (C14), 35.45 (C15), 20.22 (C10) 19F NMR 

(378 MHz, CD3CN) −63.59 IR νmax (neat) 3291 (w), 2925 (w), 1671 (m, sh), 1548 (m), 1524 (m, sh), 1501 

(m), 1475 (m), 1385 (m, sh), 1275 (vs, sh), 1186 (s), 1171 (s), 1126 (s), 1115 (s), 680 (s, sh) cm-1 MS (ESI) 

calculated for [M + H]+, C27H26F6N3O3
+, requires 554.1878, found 554.1870. 

1-[3,5-bis(trifluoromethyl)phenyl]-3-[(1S,5R,13R,14R,17R)-10-methoxy-4-methyl-12-oxa-4-azapenta-

cyclo[9.6.1.01,13.05,17.07,18]octadeca-7,9,11(18),15-tetraen-14-yl]thiourea 60  

35 (0.100 g, 0.34 mmol), 53 (62 µL, 0.34 mmol) and 

DCM (5 mL) were stirred at room temperature for 

12 hours. Solvent was removed in vacuo and the 

residue was purified by column chromatography 

(SiO2, 3-5% MeOH in DCM) to give 60 as a white 

solid in 50% yield (0.098 g, 0.17 mmol); mp 222.4-

223.7°C.     
   = −285.7 (c = 0.3 in CHCl3) The 1H 

and 13C NMR were recorded at 80°C. 1H NMR (600 MHz, DMSO-d6) δ 9.97 (1H, br s, NH), 8.33 (2H, s, H21, 

H21’), 8.12 (1H, br s, NH), 7.69 (1H, s, H24), 6.71 (1H, d, J = 8.1 Hz, H2), 6.57 (1H, d, J = 8.1 Hz, H1), 5.88 

(1H, ddd, J = 9.6, 5.8, 2.6 Hz, H7), 5.72 (1H, dd, J = 9.6, 1.8 Hz, H8), 4.87 (1H, br s, H6), 4.83 (1H, s, H5), 

3.80 (3H, s, H18), 3.39 (1H, br s, H9), 3.06 (1H, br s, H14), 3.00 (1H, d, J = 18.5 Hz, H10), 2.57 (1H, dd, J = 

3.9, 12.1 Hz, H16), 2.42 (3H, s, H17), 2.36 (1H, dd, J = 18.5, 5.9 Hz, H10), 2.29 (1H, td, J = 12.1, 3.4 Hz, 

H16), 2.05 (1H, td, J = 12.4, 5.1 Hz, H15), 1.67 (1H, dd, J = 12.4, 1.9 Hz, H15) 13C NMR (125 MHz, DMSO-

d6) δ 180.60 (C19), 145.68 (C4), 142.06 (C20), 141.84 (C3), 132.88 (C8), 130.59 (C12), 130.36 (q, J = 27.1 

Hz, C22, C22’), 127.80 (C11), 127.40 (C7), 123.24 (q, J = 225.9 Hz, C23, C23’), 121.97 (C21, 21’), 118.89 

(C1), 116.05 (C24), 114.59 (C2), 91.85 (C5), 58.36 (C9), 56.62 (C18), 53.08 (C6), 46.46 (C16), 43.59 (C13), 

42.46 (C17), 39.36 (C14), 35.24 (C15), 20.29 (C10) 19F NMR (378 MHz, CD3CN) −63.57 IR νmax (neat) 3260 
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(w, br), 3035 (w, br), 1607 (w), 1506 (m), 1454 (m), 1385 (m, sh), 1273 (vs, sh), 1180 (s), 1163 (s), 1123 

(vs, sh), 944 (s, sh), 678 (s, sh) cm-1 MS (ESI) calculated for [M + H]+, C27H26F6N3O2S+, requires 570.1650, 

found 570.1656. 

(1S,5R,13R,14R,17R)-10-methoxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.01,13.05,17.07,18]octadeca-7,9,-

11(18)-trien-14-amine 64 

35 (0.098 g, 0.33 mmol), 10% Pd on charcoal (0.010 g), acetic acid (19 µL, 

0.33 mmol) and absolute ethanol (10 mL) were charged to a flask and a 

hydrogen balloon was attached. After stirring at room temperature for 4 

hours, the balloon was removed and the reaction flask was flushed with 

nitrogen and stirred for approximately 1 minute.  The reaction mixture 

was then filtered and solvent was removed in vacuo to give 64 as a white 

solid in 98% yield (0.097 g, 0.32 mmol). Crude product was used in the 

next reaction without any further purification. mp 138.6-139.9°C, (lit 139°C)2 MS (ESI) calculated for [M 

+ H]+, C18H25N2O2
+, requires 301.19,  found 301.15.   

N-[(1S,5R,13R,14R,17R)-10-methoxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.01,13.05,17.07,18]octadeca-7,-

9,11(18),15-tetraen-14-yl]acetamide 75 

35 (1.663 g, 5.57 mmol), acetic anhydride (1.00 mL, 10.60 mmol) and 

H2O (15 mL) were stirred at room temperature for 4 hours.  The pH 

was adjusted >8 using K2CO3 and a white precipitate filtered.  The 

precipitate was dissolved in DCM (50 mL), dried over sodium sulphate 

and solvent was removed by rotary evaporation to give 75 as a white 

solid in 19% yield (0.372 g, 1.09 mmol); 91.7-93.2°C.     
   = −226.1 (c 

= 0.5 in CHCl3) 1H NMR (400 MHz, CDCl3) δ 6.61 (1H, d, J = 8.2 Hz, H2), 

6.49 (1H, d, J = 8.2 Hz, H1), 5.78 (1H, dd, J = 9.7, 3.1 Hz, H7), 5.56 (1H, dd, J = 9.7, 1.8 Hz, H8), 5.32 (1H, d, 

J = 6.8 Hz, NH), 4.75-4.62 (1H, m, H5), 4.37 (1H, t, J = 6.5Hz, H6), 3.79 (3H, s, H18), 3.31 (1H, dd, J = 5.6, 

3.2 Hz, H9) 2.99 (1H, d, J = 18.6 Hz, H10), 2.93 (1H, br s, H14), 2.54 (1H, dd, J = 12.5, 4.3 Hz, H16), 2.40 

(3H, s, H17), 2.35-2.25 (2H, m, H10, H16), 1.99 (1H, td, J = 12.5, 5.0 Hz, H15), 1.91 (3H, s, H20), 1.78 (1H, 

dd, J = 12.5, 2.0 Hz, H15) 13C NMR (100 MHz, CDCl3) δ 169.75 (C19), 146.06 (C4), 142.27 (C3), 132.73 

(C8), 130.23 (C12), 129.21 (C7), 126.74 (C11), 118.87 (C1), 113.56 (C2), 92.29 (C5), 59.08 (C9), 56.64 

(C18), 49.63 (C6), 46.94 (C16), 43.92 (C13), 43.06 (C17), 40.26 (C14), 36.03 (C15), 23.35 (C20), 20.20 
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(C10) IR νmax (neat) 3267 (w, br), 2919 (m), 1643 (s, br), 1529 (s), 1507 (vs, sh), 1440 (vs), 1276 (vs, sh), 

1250 (s), 1151 (s, sh), 1042 (s, sh), 928 (s, sh), 786 (s, sh) cm-1 MS (ESI) calculated for [M + H]+, 

C20H25N2O3
+, requires 341.1865, found 341.1860. 

1-[3,5-bis(trifluoromethyl)phenyl]-3-[(1S,5R,13R,14R,17R)-10-methoxy-4-methyl-12-oxa-4-azapenta-

cyclo[9.6.1.01,13.05,17.07,18]octadeca-7,9,11(18)-trien-14-yl]thiourea 65 

Compound 64 (0.097 g, 0.32 mmol), 53 (93 µL, 

0.54 mmol) and DCM (10 mL) were charged to a 

flask and stirred for 12 hours at room 

temperature. The solvent was removed in vacuo 

and the residue was purified by column 

chromatography (SiO2, 3% MeOH in DCM) to give 

65 as a white solid in 56% yield (0.103 g, 0.18 

mmol); mp 129.4-130.4°C.     
   = −109.9 (c = 0.2 in CHCl3) The 1H and 13C NMR were recorded at 80°C. 

1H NMR (600 MHz, DMSO-d6) δ 9.84 (1H, s, NH), 8.32 (1H, s, NH), 8.26 (2H, s, H21, H21’), 7.69 (1H, s, 

H24), 6.78 (1H, d, J = 8.1 Hz, H2), 6.69 (1H, d, J = 8.1 Hz, H1), 4.60 (1H, d, J = 7.8 Hz, H5), 4.06 (1H, br s, 

H6), 3.80 (3H, s, H18), 3.08 (1H, dd, J = 4.6, 2.6 Hz, H9), 2.99 (1H, d, J = 18.4 Hz, H10), 2.48 (1H, dd, J = 

12.2, 3.7 Hz, H16), 2.39 (1H, dd, J = 18.4, 5.6 Hz, H10), 2.36 (3H, s, H17), 2.21 (1H, dt, J = 12.8, 3.6 Hz, 

H14), 2.11 (1H, td, J = 12.1, 3.7 Hz, H16), 2.00-1.97 (1H, m, H7), 1.86 (1H, td, J = 12.2, 4.9 Hz, H15), 1.60-

1.54 (2H, m, H8, H15), 1.36-1.30 (1H, m, H7) 0.97 (1H, qd, J = 12.8, 2.5 Hz, H8) The 13C signals for the 

major rotamer are reported below. 13C NMR (125 MHz, DMSO-d6) δ 180.77 (C19), 144.02 (C4), 143.22 

(C3), 142.17 (C20), 130.30 (q, J = 28.2 Hz, C22, C22’), 130.18 (C12), 124.16 (C11), 123.67 (q, J = 225.8 Hz, 

C23, C23’), 122.35 (C21, C21’), 119.07 (C1), 115.94 (C24), 115.83 (C2), 92.38 (C5), 58.76 (C9), 57.08 

(C18), 56.32 (C6), 46.65 (C16), 42.93 (C13), 42.36 (C17), 41.90 (C14), 35.06 (C15), 27.64 (C7), 23.63 (C8), 

20.12 (C10) 19F NMR (378 MHz, DMSO-d6) −61.61 IR νmax (neat) 3301 (w, br), 2930 (w), 1606 (w), 1504 

(m), 1382 (s, sh), 1274 (vs, sh), 1171 (s), 1127 (s, sh), 941 (m, sh), 883 (m, sh), 680 (s, sh) cm-1. 
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8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm

Current Data Parameters
NAME                 May09-2011

EXPNO                        30
PROCNO                        1

F2 - Acquisition Parameters
Date_                  20110509

Time                      18.49
INSTRUM                   spect

PROBHD           5 mm QNP 1H/13
PULPROG                    zg30
TD                        65536

SOLVENT                   CDCl3
NS                           16

DS                            2
SWH                    8278.146 Hz
FIDRES                 0.126314 Hz

AQ                    3.9584243 sec
RG                        143.7

DW                       60.400 usec
DE                         6.00 usec
TE                        291.2 K

D1                   1.00000000 sec
TD0                           1

======== CHANNEL f1 ========

NUC1                         1H
P1                        12.00 usec
PL1                        0.00 dB

SFO1                400.1324710 MHz

F2 - Processing parameters
SI                        32768
SF                  400.1300000 MHz

WDW                          EM
SSB                           0

LB                         0.30 Hz
GB                            0
PC                         1.00

200 180 160 140 120 100 80 60 40 20 0 ppm

Current Data Parameters

NAME                 May09-2011

EXPNO                        31

PROCNO                        1

F2 - Acquisition Parameters

Date_                  20110509

Time                      19.49

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                  zgpg30
TD                        65536

SOLVENT                   CDCl3

NS                         1024

DS                            4

SWH                   23980.814 Hz

FIDRES                 0.365918 Hz

AQ                    1.3664756 sec

RG                         3251

DW                       20.850 usec

DE                         6.00 usec

TE                        292.2 K
D1                   2.00000000 sec

d11                  0.03000000 sec

DELTA                1.89999998 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        13C

P1                        10.00 usec

PL1                        0.00 dB

SFO1                100.6228298 MHz

======== CHANNEL f2 ========

CPDPRG2                 waltz16

NUC2                         1H

PCPD2                     80.00 usec

PL2                       -3.00 dB

PL12                      12.00 dB

PL13                      12.00 dB

SFO2                400.1316005 MHz

F2 - Processing parameters

SI                        32768

SF                  100.6127690 MHz

WDW                          EM

SSB                           0

LB                         1.00 Hz

GB                            0

PC                         1.40

45 



 

 

7 6 5 4 3 2 1 0 ppm

Current Data Parameters
NAME                 Oct06-2010

EXPNO                        30
PROCNO                        1

F2 - Acquisition Parameters
Date_                  20101006

Time                      20.16
INSTRUM                   spect

PROBHD           5 mm QNP 1H/13
PULPROG                    zg30
TD                        65536

SOLVENT                   CDCl3
NS                           16

DS                            2
SWH                    8278.146 Hz
FIDRES                 0.126314 Hz

AQ                    3.9584243 sec
RG                         71.8

DW                       60.400 usec
DE                         6.00 usec
TE                        294.2 K

D1                   1.00000000 sec
TD0                           1

======== CHANNEL f1 ========

NUC1                         1H
P1                        12.25 usec
PL1                        0.00 dB

SFO1                400.1324710 MHz

F2 - Processing parameters
SI                        32768
SF                  400.1300096 MHz

WDW                          EM
SSB                           0

LB                         0.30 Hz
GB                            0
PC                         1.00

200 180 160 140 120 100 80 60 40 20 0 ppm

Current Data Parameters

NAME                 Oct06-2010

EXPNO                        31

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20101006

Time                      21.15

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                  zgpg30

TD                        65536
SOLVENT                   CDCl3

NS                         1024

DS                            4

SWH                   23980.814 Hz

FIDRES                 0.365918 Hz

AQ                    1.3664756 sec

RG                       2298.8
DW                       20.850 usec

DE                         6.00 usec

TE                        294.2 K

D1                   2.00000000 sec

d11                  0.03000000 sec

DELTA                1.89999998 sec
TD0                           1

======== CHANNEL f1 ========

NUC1                        13C

P1                        10.00 usec

PL1                        0.00 dB

SFO1                100.6228298 MHz

======== CHANNEL f2 ========

CPDPRG2                 waltz16

NUC2                         1H

PCPD2                     80.00 usec

PL2                       -3.00 dB
PL12                      12.00 dB

PL13                      12.00 dB

SFO2                400.1316005 MHz

F2 - Processing parameters

SI                        32768

SF                  100.6128728 MHz

WDW                          EM

SSB                           0

LB                         1.00 Hz

GB                            0

PC                         1.40

40 

40 



 

 

10 9 8 7 6 5 4 3 2 1 0 ppm

Current Data Parameters
NAME                 Jul04-2011

EXPNO                        10
PROCNO                        1

F2 - Acquisition Parameters
Date_                  20110704

Time                      17.14
INSTRUM                   spect

PROBHD           5 mm QNP 1H/13
PULPROG                    zg30
TD                        65536

SOLVENT                   CDCl3
NS                           16

DS                            2
SWH                    8278.146 Hz
FIDRES                 0.126314 Hz

AQ                    3.9584243 sec
RG                          128

DW                       60.400 usec
DE                         6.00 usec
TE                        293.2 K

D1                   1.00000000 sec
TD0                           1

======== CHANNEL f1 ========

NUC1                         1H
P1                        12.00 usec
PL1                        0.00 dB

SFO1                400.1324710 MHz

F2 - Processing parameters
SI                        32768
SF                  400.1300346 MHz

WDW                          EM
SSB                           0

LB                         0.30 Hz
GB                            0
PC                         1.00

180 160 140 120 100 80 60 40 20 0 ppm

Current Data Parameters

NAME                 Jul04-2011

EXPNO                        11

PROCNO                        1

F2 - Acquisition Parameters

Date_                  20110704

Time                      18.13

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                  zgpg30
TD                        65536

SOLVENT                   CDCl3

NS                         1024

DS                            4

SWH                   23980.814 Hz

FIDRES                 0.365918 Hz

AQ                    1.3664756 sec

RG                         6502

DW                       20.850 usec

DE                         6.00 usec

TE                        294.2 K
D1                   2.00000000 sec

d11                  0.03000000 sec

DELTA                1.89999998 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        13C

P1                        10.00 usec

PL1                        0.00 dB

SFO1                100.6228298 MHz

======== CHANNEL f2 ========

CPDPRG2                 waltz16

NUC2                         1H

PCPD2                     80.00 usec

PL2                       -3.00 dB

PL12                      12.00 dB

PL13                      12.00 dB

SFO2                400.1316005 MHz

F2 - Processing parameters

SI                        32768

SF                  100.6127690 MHz

WDW                          EM

SSB                           0

LB                         1.00 Hz

GB                            0

PC                         1.40

54 
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-20 -40 -60 -80 -100 -120 -140 -160 -180 ppm

Current Data Parameters

NAME                 Jul18-2011

EXPNO                        30

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20110718

Time                      11.12

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                  zgflqn

TD                       131072

SOLVENT                   CDCl3

NS                           16

DS                            4

SWH                   75187.969 Hz

FIDRES                 0.573639 Hz
AQ                    0.8716788 sec

RG                        912.3

DW                        6.650 usec

DE                         6.00 usec

TE                        293.2 K

D1                   1.00000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        19F

P1                        40.50 usec
PL1                       -3.00 dB

SFO1                376.4607164 MHz

F2 - Processing parameters

SI                        65536

SF                  376.4983660 MHz

WDW                          EM

SSB                           0

LB                         0.30 Hz

GB                            0

PC                         1.00

SL1146

54 



 

 

 

11 10 9 8 7 6 5 4 3 2 1 0 ppm

Current Data Parameters

NAME                 Jun10-2011

EXPNO                       240

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20110610

Time                      17.05

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                    zg30

TD                        65536
SOLVENT                   CDCl3

NS                           16

DS                            2

SWH                    8278.146 Hz

FIDRES                 0.126314 Hz

AQ                    3.9584243 sec
RG                        322.5

DW                       60.400 usec

DE                         6.00 usec

TE                        292.2 K

D1                   1.00000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                         1H

P1                        12.00 usec

PL1                        0.00 dB

SFO1                400.1324710 MHz

F2 - Processing parameters

SI                        32768

SF                  400.1300365 MHz

WDW                          EM

SSB                           0

LB                         0.30 Hz
GB                            0

PC                         1.00

SL1115

200 180 160 140 120 100 80 60 40 20 0 ppm

Current Data Parameters

NAME                 Jun14-2011

EXPNO                        13

PROCNO                        1

F2 - Acquisition Parameters

Date_                  20110614

Time                      13.33

INSTRUM                   spect

PROBHD           5 mm PABBO BB-

PULPROG                  zgpg30
TD                        65536

SOLVENT                    DMSO

NS                         1024

DS                            4

SWH                   36057.691 Hz

FIDRES                 0.550197 Hz

AQ                    0.9088159 sec

RG                         2050

DW                       13.867 usec

DE                         6.50 usec

TE                        353.2 K
D1                   2.00000000 sec

D11                  0.03000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        13C

P1                         9.71 usec

PL1                        1.50 dB

PL1W                78.77777863 W

SFO1                150.9664335 MHz

======== CHANNEL f2 ========

CPDPRG2                 waltz16

NUC2                         1H

PCPD2                     70.00 usec

PL2                       -5.30 dB

PL12                      10.02 dB

PL13                     120.00 dB

PL2W                25.53414154 W

PL12W                0.75010353 W

PL13W                0.00000000 W

SFO2                600.3254013 MHz

F2 - Processing parameters

SI                        32768

SF                  150.9514145 MHz

WDW                          EM

SSB                           0

LB                         1.00 Hz

GB                            0

PC                         1.40

52 
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-20 -40 -60 -80 -100 -120 -140 -160 -180 ppm
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Current Data Parameters

NAME                 Apr23-2012

EXPNO                        11

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20120423

Time                      11.35

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                  zgflqn

TD                       131072
SOLVENT                    DMSO

NS                           64

DS                            4

SWH                   75187.969 Hz

FIDRES                 0.573639 Hz

AQ                    0.8716788 sec

RG                       1824.6
DW                        6.650 usec

DE                         6.00 usec

TE                        293.2 K

D1                   1.00000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        19F

P1                        40.50 usec

PL1                       -3.00 dB

SFO1                376.4607164 MHz

F2 - Processing parameters
SI                        65536

SF                  376.4983660 MHz

WDW                          EM

SSB                           0

LB                         0.30 Hz

GB                            0
PC                         1.00

52 



 

 

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm

Current Data Parameters
NAME                 Mar21-2011

EXPNO                        10
PROCNO                        1

F2 - Acquisition Parameters
Date_                  20110321

Time                      17.09
INSTRUM                   spect

PROBHD           5 mm QNP 1H/13
PULPROG                    zg30
TD                        65536

SOLVENT                    MeOD
NS                           16

DS                            2
SWH                    8278.146 Hz
FIDRES                 0.126314 Hz

AQ                    3.9584243 sec
RG                          128

DW                       60.400 usec
DE                         6.00 usec
TE                        290.2 K

D1                   1.00000000 sec
TD0                           1

======== CHANNEL f1 ========

NUC1                         1H
P1                        12.00 usec
PL1                        0.00 dB

SFO1                400.1324710 MHz

F2 - Processing parameters
SI                        32768
SF                  400.1300000 MHz

WDW                          EM
SSB                           0

LB                         0.30 Hz
GB                            0
PC                         1.00

200 180 160 140 120 100 80 60 40 20 0 ppm

Current Data Parameters

NAME                 Mar21-2011

EXPNO                        11

PROCNO                        1

F2 - Acquisition Parameters

Date_                  20110321

Time                      18.09

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                  zgpg30
TD                        65536

SOLVENT                    MeOD

NS                         1024

DS                            4

SWH                   23980.814 Hz

FIDRES                 0.365918 Hz

AQ                    1.3664756 sec

RG                         6502

DW                       20.850 usec

DE                         6.00 usec

TE                        291.2 K
D1                   2.00000000 sec

d11                  0.03000000 sec

DELTA                1.89999998 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        13C

P1                        10.00 usec

PL1                        0.00 dB

SFO1                100.6228298 MHz

======== CHANNEL f2 ========

CPDPRG2                 waltz16

NUC2                         1H

PCPD2                     80.00 usec

PL2                       -3.00 dB

PL12                      12.00 dB

PL13                      12.00 dB

SFO2                400.1316005 MHz

F2 - Processing parameters

SI                        32768

SF                  100.6126261 MHz

WDW                          EM

SSB                           0

LB                         1.00 Hz

GB                            0

PC                         1.40

49 

49 



 

 

-19 8 7 6 5 4 3 2 1 0 ppm

Current Data Parameters
NAME                 Apr05-2011

EXPNO                       130
PROCNO                        1

F2 - Acquisition Parameters
Date_                  20110405

Time                      15.26
INSTRUM                   spect

PROBHD           5 mm QNP 1H/13
PULPROG                    zg30
TD                        65536

SOLVENT                   CDCl3
NS                           16

DS                            2
SWH                    8278.146 Hz
FIDRES                 0.126314 Hz

AQ                    3.9584243 sec
RG                        322.5

DW                       60.400 usec
DE                         6.00 usec
TE                        291.2 K

D1                   1.00000000 sec
TD0                           1

======== CHANNEL f1 ========

NUC1                         1H
P1                        12.00 usec
PL1                        0.00 dB

SFO1                400.1324710 MHz

F2 - Processing parameters
SI                        32768
SF                  400.1300350 MHz

WDW                          EM
SSB                           0

LB                         0.30 Hz
GB                            0
PC                         1.00

SL1017

200 180 160 140 120 100 80 60 40 20 0 ppm

Current Data Parameters

NAME                 Apr05-2011

EXPNO                        41

PROCNO                        1

F2 - Acquisition Parameters

Date_                  20110406

Time                       6.57

INSTRUM                   spect

PROBHD           5 mm PABBO BB-

PULPROG                  zgpg30
TD                        65536

SOLVENT                   CDCl3

NS                         4096

DS                            4

SWH                   36057.691 Hz

FIDRES                 0.550197 Hz

AQ                    0.9088159 sec

RG                         2050

DW                       13.867 usec

DE                         6.50 usec

TE                        294.6 K
D1                   2.00000000 sec

D11                  0.03000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        13C

P1                         9.71 usec

PL1                        1.50 dB

PL1W                78.77777863 W

SFO1                150.9664335 MHz

======== CHANNEL f2 ========

CPDPRG2                 waltz16

NUC2                         1H

PCPD2                     70.00 usec

PL2                       -5.30 dB

PL12                      10.02 dB

PL13                     120.00 dB

PL2W                25.53414154 W

PL12W                0.75010353 W

PL13W                0.00000000 W

SFO2                600.3254013 MHz

F2 - Processing parameters

SI                        32768

SF                  150.9513390 MHz

WDW                          EM

SSB                           0

LB                         1.00 Hz

GB                            0

PC                         1.40

50 

50 



 

 

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm

Current Data Parameters
NAME                 Jun21-2011

EXPNO                        60
PROCNO                        1

F2 - Acquisition Parameters
Date_                  20110621

Time                      17.54
INSTRUM                   spect

PROBHD           5 mm PABBO BB-
PULPROG                    zg30
TD                        65536

SOLVENT                     D2O
NS                           16

DS                            2
SWH                   12335.526 Hz
FIDRES                 0.188225 Hz

AQ                    2.6564426 sec
RG                          101

DW                       40.533 usec
DE                        10.73 usec
TE                        293.0 K

D1                   1.00000000 sec
TD0                           1

======== CHANNEL f1 ========

NUC1                         1H
P1                        11.65 usec
PL1                       -5.30 dB

PL1W                25.53414154 W
SFO1                600.3267072 MHz

F2 - Processing parameters
SI                        32768

SF                  600.3230000 MHz
WDW                          EM

SSB                           0
LB                         0.30 Hz
GB                            0

PC                         1.00

200 180 160 140 120 100 80 60 40 20 0 ppm

Current Data Parameters

NAME                 Jun21-2011

EXPNO                        61

PROCNO                        1

F2 - Acquisition Parameters

Date_                  20110621

Time                      18.47

INSTRUM                   spect

PROBHD           5 mm PABBO BB-

PULPROG                  zgpg30
TD                        65536

SOLVENT                     D2O

NS                         1024

DS                            4

SWH                   36057.691 Hz

FIDRES                 0.550197 Hz

AQ                    0.9088159 sec

RG                         2050

DW                       13.867 usec

DE                         6.50 usec

TE                        293.0 K
D1                   2.00000000 sec

D11                  0.03000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        13C

P1                         9.71 usec

PL1                        1.50 dB

PL1W                78.77777863 W

SFO1                150.9664335 MHz

======== CHANNEL f2 ========

CPDPRG2                 waltz16

NUC2                         1H

PCPD2                     70.00 usec

PL2                       -5.30 dB

PL12                      10.02 dB

PL13                     120.00 dB

PL2W                25.53414154 W

PL12W                0.75010353 W

PL13W                0.00000000 W

SFO2                600.3254013 MHz

F2 - Processing parameters

SI                        32768

SF                  150.9513390 MHz

WDW                          EM

SSB                           0

LB                         1.00 Hz

GB                            0

PC                         1.40

D2O/TFA 

D2O/TFA 

51 

51 



 

 

9 8 7 6 5 4 3 2 1 0 ppm

Current Data Parameters
NAME                 Jun22-2011

EXPNO                        20
PROCNO                        1

F2 - Acquisition Parameters
Date_                  20110622

Time                      17.36
INSTRUM                   spect

PROBHD           5 mm QNP 1H/13
PULPROG                    zg30
TD                        65536

SOLVENT                   CDCl3
NS                           16

DS                            2
SWH                    8278.146 Hz
FIDRES                 0.126314 Hz

AQ                    3.9584243 sec
RG                         28.5

DW                       60.400 usec
DE                         6.00 usec
TE                        293.2 K

D1                   1.00000000 sec
TD0                           1

======== CHANNEL f1 ========

NUC1                         1H
P1                        12.00 usec
PL1                        0.00 dB

SFO1                400.1324710 MHz

F2 - Processing parameters
SI                        32768
SF                  400.1300233 MHz

WDW                          EM
SSB                           0

LB                         0.30 Hz
GB                            0
PC                         1.00

200 180 160 140 120 100 80 60 40 20 0 ppm

Current Data Parameters

NAME                 Jun22-2011

EXPNO                        21

PROCNO                        1

F2 - Acquisition Parameters

Date_                  20110622

Time                      18.36

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                  zgpg30
TD                        65536

SOLVENT                   CDCl3

NS                         1024

DS                            4

SWH                   23980.814 Hz

FIDRES                 0.365918 Hz

AQ                    1.3664756 sec

RG                       2298.8

DW                       20.850 usec

DE                         6.00 usec

TE                        293.2 K
D1                   2.00000000 sec

d11                  0.03000000 sec

DELTA                1.89999998 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        13C

P1                        10.00 usec

PL1                        0.00 dB

SFO1                100.6228298 MHz

======== CHANNEL f2 ========

CPDPRG2                 waltz16

NUC2                         1H

PCPD2                     80.00 usec

PL2                       -3.00 dB

PL12                      12.00 dB

PL13                      12.00 dB

SFO2                400.1316005 MHz

F2 - Processing parameters

SI                        32768

SF                  100.6127690 MHz

WDW                          EM

SSB                           0

LB                         1.00 Hz

GB                            0

PC                         1.40

56 

56 



 

 

8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm

Current Data Parameters

NAME                 May09-2011

EXPNO                        50

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20110509

Time                      10.25

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                    zg30

TD                        65536
SOLVENT                   CDCl3

NS                           16

DS                            2

SWH                    8278.146 Hz

FIDRES                 0.126314 Hz

AQ                    3.9584243 sec
RG                         90.5

DW                       60.400 usec

DE                         6.00 usec

TE                        291.2 K

D1                   1.00000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                         1H

P1                        12.00 usec

PL1                        0.00 dB

SFO1                400.1324710 MHz

F2 - Processing parameters

SI                        32768

SF                  400.1300000 MHz

WDW                          EM

SSB                           0

LB                         0.30 Hz
GB                            0

PC                         1.00

SL1068

200 180 160 140 120 100 80 60 40 20 0 ppm

Current Data Parameters

NAME                 Jul12-2010

EXPNO                        91

PROCNO                        1

F2 - Acquisition Parameters

Date_                  20100713

Time                       5.07

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                  zgpg30
TD                        65536

SOLVENT                   CDCl3

NS                         1024

DS                            4

SWH                   23980.814 Hz

FIDRES                 0.365918 Hz

AQ                    1.3664756 sec

RG                       3649.1

DW                       20.850 usec

DE                         6.00 usec

TE                        294.2 K
D1                   2.00000000 sec

d11                  0.03000000 sec

DELTA                1.89999998 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        13C

P1                        10.00 usec

PL1                        0.00 dB

SFO1                100.6228298 MHz

======== CHANNEL f2 ========

CPDPRG2                 waltz16

NUC2                         1H

PCPD2                     80.00 usec

PL2                       -3.00 dB

PL12                      12.00 dB

PL13                      12.00 dB

SFO2                400.1316005 MHz

F2 - Processing parameters

SI                        32768

SF                  100.6127690 MHz

WDW                          EM

SSB                           0

LB                         1.00 Hz

GB                            0

PC                         1.40

46 

46 



 

 

8 7 6 5 4 3 2 1 0 ppm

Current Data Parameters
NAME                 May21-2010

EXPNO                        30
PROCNO                        1

F2 - Acquisition Parameters
Date_                  20100521

Time                      22.14
INSTRUM                   spect

PROBHD           5 mm QNP 1H/13
PULPROG                    zg30
TD                        65536

SOLVENT                   CDCl3
NS                           16

DS                            2
SWH                    8278.146 Hz
FIDRES                 0.126314 Hz

AQ                    3.9584243 sec
RG                         80.6

DW                       60.400 usec
DE                         6.00 usec
TE                        294.2 K

D1                   1.00000000 sec
TD0                           1

======== CHANNEL f1 ========

NUC1                         1H
P1                        12.25 usec
PL1                        0.00 dB

SFO1                400.1324710 MHz

F2 - Processing parameters
SI                        32768
SF                  400.1300332 MHz

WDW                          EM
SSB                           0

LB                         0.30 Hz
GB                            0
PC                         1.00

200 180 160 140 120 100 80 60 40 20 0 ppm

Current Data Parameters

NAME                 May21-2010

EXPNO                        31

PROCNO                        1

F2 - Acquisition Parameters

Date_                  20100521

Time                      23.14

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                  zgpg30
TD                        65536

SOLVENT                   CDCl3

NS                         1024

DS                            4

SWH                   23980.814 Hz

FIDRES                 0.365918 Hz

AQ                    1.3664756 sec

RG                       2580.3

DW                       20.850 usec

DE                         6.00 usec

TE                        294.2 K
D1                   2.00000000 sec

d11                  0.03000000 sec

DELTA                1.89999998 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        13C

P1                        10.00 usec

PL1                        0.00 dB

SFO1                100.6228298 MHz

======== CHANNEL f2 ========

CPDPRG2                 waltz16

NUC2                         1H

PCPD2                     80.00 usec

PL2                       -3.00 dB

PL12                      12.00 dB

PL13                      12.00 dB

SFO2                400.1316005 MHz

F2 - Processing parameters

SI                        32768

SF                  100.6127690 MHz

WDW                          EM

SSB                           0

LB                         1.00 Hz

GB                            0

PC                         1.40

47 

47 



 

 

-17 6 5 4 3 2 1 0 ppm

Current Data Parameters
NAME                 Aug03-2010

EXPNO                       100
PROCNO                        1

F2 - Acquisition Parameters
Date_                  20100804

Time                       7.17
INSTRUM                   spect

PROBHD           5 mm QNP 1H/13
PULPROG                    zg30
TD                        65536

SOLVENT                   CDCl3
NS                           16

DS                            2
SWH                    8278.146 Hz
FIDRES                 0.126314 Hz

AQ                    3.9584243 sec
RG                           16

DW                       60.400 usec
DE                         6.00 usec
TE                        294.2 K

D1                   1.00000000 sec
TD0                           1

======== CHANNEL f1 ========

NUC1                         1H
P1                        12.25 usec
PL1                        0.00 dB

SFO1                400.1324710 MHz

F2 - Processing parameters
SI                        32768
SF                  400.1300093 MHz

WDW                          EM
SSB                           0

LB                         0.30 Hz
GB                            0
PC                         1.00

200 180 160 140 120 100 80 60 40 20 0 ppm

Current Data Parameters

NAME                 Aug03-2010

EXPNO                       101

PROCNO                        1

F2 - Acquisition Parameters

Date_                  20100804

Time                       8.17

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                  zgpg30
TD                        65536

SOLVENT                   CDCl3

NS                         1024

DS                            4

SWH                   23980.814 Hz

FIDRES                 0.365918 Hz

AQ                    1.3664756 sec

RG                       1824.6

DW                       20.850 usec

DE                         6.00 usec

TE                        294.2 K
D1                   2.00000000 sec

d11                  0.03000000 sec

DELTA                1.89999998 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        13C

P1                        10.00 usec

PL1                        0.00 dB

SFO1                100.6228298 MHz

======== CHANNEL f2 ========

CPDPRG2                 waltz16

NUC2                         1H

PCPD2                     80.00 usec

PL2                       -3.00 dB

PL12                      12.00 dB

PL13                      12.00 dB

SFO2                400.1316005 MHz

F2 - Processing parameters

SI                        32768

SF                  100.6127556 MHz

WDW                          EM

SSB                           0

LB                         1.00 Hz

GB                            0

PC                         1.40

39 

39 



 

 

9 8 7 6 5 4 3 2 1 0 ppm

Current Data Parameters
NAME                 Dec15-2010

EXPNO                       210
PROCNO                        1

F2 - Acquisition Parameters
Date_                  20101215

Time                      22.01
INSTRUM                   spect

PROBHD           5 mm QNP 1H/13
PULPROG                    zg30
TD                        65536

SOLVENT                   CDCl3
NS                           16

DS                            2
SWH                    8278.146 Hz
FIDRES                 0.126314 Hz

AQ                    3.9584243 sec
RG                         71.8

DW                       60.400 usec
DE                         6.00 usec
TE                        294.2 K

D1                   1.00000000 sec
TD0                           1

======== CHANNEL f1 ========

NUC1                         1H
P1                        12.00 usec
PL1                        0.00 dB

SFO1                400.1324710 MHz

F2 - Processing parameters
SI                        32768
SF                  400.1300348 MHz

WDW                          EM
SSB                           0

LB                         0.30 Hz
GB                            0
PC                         1.00

200 180 160 140 120 100 80 60 40 20 0 ppm

Current Data Parameters

NAME                 Dec15-2010

EXPNO                       211

PROCNO                        1

F2 - Acquisition Parameters

Date_                  20101215

Time                      23.01

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                  zgpg30
TD                        65536

SOLVENT                   CDCl3

NS                         1024

DS                            4

SWH                   23980.814 Hz

FIDRES                 0.365918 Hz

AQ                    1.3664756 sec

RG                       5160.6

DW                       20.850 usec

DE                         6.00 usec

TE                        294.2 K
D1                   2.00000000 sec

d11                  0.03000000 sec

DELTA                1.89999998 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        13C

P1                        10.00 usec

PL1                        0.00 dB

SFO1                100.6228298 MHz

======== CHANNEL f2 ========

CPDPRG2                 waltz16

NUC2                         1H

PCPD2                     80.00 usec

PL2                       -3.00 dB

PL12                      12.00 dB

PL13                      12.00 dB

SFO2                400.1316005 MHz

F2 - Processing parameters

SI                        32768

SF                  100.6127690 MHz

WDW                          EM

SSB                           0

LB                         1.00 Hz

GB                            0

PC                         1.40

37 

37 



 

 

9 8 7 6 5 4 3 2 1 0 ppm

Current Data Parameters
NAME                 May21-2010

EXPNO                        10
PROCNO                        1

F2 - Acquisition Parameters
Date_                  20100521

Time                      17.06
INSTRUM                   spect

PROBHD           5 mm QNP 1H/13
PULPROG                    zg30
TD                        65536

SOLVENT                   CDCl3
NS                           16

DS                            2
SWH                    8278.146 Hz
FIDRES                 0.126314 Hz

AQ                    3.9584243 sec
RG                         45.3

DW                       60.400 usec
DE                         6.00 usec
TE                        294.2 K

D1                   1.00000000 sec
TD0                           1

======== CHANNEL f1 ========

NUC1                         1H
P1                        12.25 usec
PL1                        0.00 dB

SFO1                400.1324710 MHz

F2 - Processing parameters
SI                        32768
SF                  400.1300340 MHz

WDW                          EM
SSB                           0

LB                         0.30 Hz
GB                            0
PC                         1.00

200 180 160 140 120 100 80 60 40 20 0 ppm

Current Data Parameters

NAME                 May21-2010

EXPNO                        11

PROCNO                        1

F2 - Acquisition Parameters

Date_                  20100521

Time                      18.06

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                  zgpg30
TD                        65536

SOLVENT                   CDCl3

NS                         1024

DS                            4

SWH                   23980.814 Hz

FIDRES                 0.365918 Hz

AQ                    1.3664756 sec

RG                         3251

DW                       20.850 usec

DE                         6.00 usec

TE                        294.2 K
D1                   2.00000000 sec

d11                  0.03000000 sec

DELTA                1.89999998 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        13C

P1                        10.00 usec

PL1                        0.00 dB

SFO1                100.6228298 MHz

======== CHANNEL f2 ========

CPDPRG2                 waltz16

NUC2                         1H

PCPD2                     80.00 usec

PL2                       -3.00 dB

PL12                      12.00 dB

PL13                      12.00 dB

SFO2                400.1316005 MHz

F2 - Processing parameters

SI                        32768

SF                  100.6127690 MHz

WDW                          EM

SSB                           0

LB                         1.00 Hz

GB                            0

PC                         1.40

36 

36 



 

 

7 6 5 4 3 2 1 0 ppm

Current Data Parameters
NAME                 Dec09-2010

EXPNO                       220
PROCNO                        1

F2 - Acquisition Parameters
Date_                  20101209

Time                      20.24
INSTRUM                   spect

PROBHD           5 mm QNP 1H/13
PULPROG                    zg30
TD                        65536

SOLVENT                    MeOD
NS                           16

DS                            2
SWH                    8278.146 Hz
FIDRES                 0.126314 Hz

AQ                    3.9584243 sec
RG                        161.3

DW                       60.400 usec
DE                         6.00 usec
TE                        294.2 K

D1                   1.00000000 sec
TD0                           1

======== CHANNEL f1 ========

NUC1                         1H
P1                        12.00 usec
PL1                        0.00 dB

SFO1                400.1324710 MHz

F2 - Processing parameters
SI                        32768
SF                  400.1300480 MHz

WDW                          EM
SSB                           0

LB                         0.30 Hz
GB                            0
PC                         1.00

200 180 160 140 120 100 80 60 40 20 0 ppm

Current Data Parameters

NAME                 Dec09-2010

EXPNO                       221

PROCNO                        1

F2 - Acquisition Parameters

Date_                  20101209

Time                      21.24

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                  zgpg30
TD                        65536

SOLVENT                    MeOD

NS                         1024

DS                            4

SWH                   23980.814 Hz

FIDRES                 0.365918 Hz

AQ                    1.3664756 sec

RG                         6502

DW                       20.850 usec

DE                         6.00 usec

TE                        294.2 K
D1                   2.00000000 sec

d11                  0.03000000 sec

DELTA                1.89999998 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        13C

P1                        10.00 usec

PL1                        0.00 dB

SFO1                100.6228298 MHz

======== CHANNEL f2 ========

CPDPRG2                 waltz16

NUC2                         1H

PCPD2                     80.00 usec

PL2                       -3.00 dB

PL12                      12.00 dB

PL13                      12.00 dB

SFO2                400.1316005 MHz

F2 - Processing parameters

SI                        32768

SF                  100.6126261 MHz

WDW                          EM

SSB                           0

LB                         1.00 Hz

GB                            0

PC                         1.40

43 

43 



 

 

 

8 7 6 5 4 3 2 1 0 ppm

Current Data Parameters

NAME                 Dec09-2011

EXPNO                        70

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20111210

Time                       6.37

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                    zg30

TD                        65536
SOLVENT                   CDCl3

NS                           16

DS                            2

SWH                    8278.146 Hz

FIDRES                 0.126314 Hz

AQ                    3.9584243 sec
RG                          114

DW                       60.400 usec

DE                         6.00 usec

TE                        290.2 K

D1                   1.00000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                         1H

P1                        12.00 usec

PL1                        0.00 dB

SFO1                400.1324710 MHz

F2 - Processing parameters

SI                        32768

SF                  400.1300000 MHz

WDW                          EM

SSB                           0

LB                         0.30 Hz
GB                            0

PC                         1.00

200 180 160 140 120 100 80 60 40 20 0 ppm

Current Data Parameters

NAME                 Dec09-2011

EXPNO                        71

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20111210

Time                       7.36

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                  zgpg30

TD                        65536
SOLVENT                   CDCl3

NS                         1024

DS                            4

SWH                   23980.814 Hz

FIDRES                 0.365918 Hz

AQ                    1.3664756 sec

RG                         6502
DW                       20.850 usec

DE                         6.00 usec

TE                        291.2 K

D1                   2.00000000 sec

d11                  0.03000000 sec

DELTA                1.89999998 sec
TD0                           1

======== CHANNEL f1 ========

NUC1                        13C

P1                        10.00 usec

PL1                        0.00 dB

SFO1                100.6228298 MHz

======== CHANNEL f2 ========

CPDPRG2                 waltz16

NUC2                         1H

PCPD2                     80.00 usec

PL2                       -3.00 dB
PL12                      12.00 dB

PL13                      12.00 dB

SFO2                400.1316005 MHz

F2 - Processing parameters

SI                        32768

SF                  100.6127690 MHz

WDW                          EM

SSB                           0

LB                         1.00 Hz

GB                            0

PC                         1.40

35 

35 



 

 

 

 

 

10 9 8 7 6 5 4 3 2 1 0 ppm

Current Data Parameters

NAME                 Mar16-2012

EXPNO                        20

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20120316

Time                      18.14

INSTRUM                   spect

PROBHD           5 mm PABBO BB-

PULPROG                    zg30

TD                        65536
SOLVENT                   CDCl3

NS                          128

DS                            2

SWH                   12335.526 Hz

FIDRES                 0.188225 Hz

AQ                    2.6564426 sec
RG                          228

DW                       40.533 usec

DE                        10.73 usec

TE                        293.0 K

D1                   1.00000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                         1H

P1                        11.65 usec

PL1                       -5.30 dB

PL1W                25.53414154 W

SFO1                600.3267072 MHz

F2 - Processing parameters

SI                        32768

SF                  600.3230537 MHz

WDW                          EM

SSB                           0
LB                         0.30 Hz

GB                            0

PC                         1.00

SL-1358

64 



 

 

 

-2-116 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ppm

Current Data Parameters

NAME                 Mar06-2012

EXPNO                        60

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20120309

Time                      15.29

INSTRUM                   spect

PROBHD           5 mm PABBO BB-

PULPROG                    zg30

TD                        65536
SOLVENT                    DMSO

NS                           16

DS                            2

SWH                   12335.526 Hz

FIDRES                 0.188225 Hz

AQ                    2.6564426 sec
RG                          228

DW                       40.533 usec

DE                        10.73 usec

TE                        353.0 K

D1                   1.00000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                         1H

P1                        11.65 usec

PL1                       -5.30 dB

PL1W                25.53414154 W

SFO1                600.3267072 MHz

F2 - Processing parameters

SI                        32768

SF                  600.3230000 MHz

WDW                          EM

SSB                           0
LB                         0.30 Hz

GB                            0

PC                         1.00

SL-1346

200 180 160 140 120 100 80 60 40 20 0 ppm

Current Data Parameters

NAME                 Mar06-2012

EXPNO                        61

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20120309

Time                      16.22

INSTRUM                   spect

PROBHD           5 mm PABBO BB-

PULPROG                  zgpg30

TD                        65536
SOLVENT                    DMSO

NS                         1024

DS                            4

SWH                   36057.691 Hz

FIDRES                 0.550197 Hz

AQ                    0.9088159 sec

RG                         2050
DW                       13.867 usec

DE                         6.50 usec

TE                        353.0 K

D1                   2.00000000 sec

D11                  0.03000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        13C

P1                         9.71 usec

PL1                        1.50 dB

PL1W                78.77777863 W

SFO1                150.9664335 MHz

======== CHANNEL f2 ========

CPDPRG2                 waltz16

NUC2                         1H

PCPD2                     70.00 usec

PL2                       -5.30 dB
PL12                      10.02 dB

PL13                     120.00 dB

PL2W                25.53414154 W

PL12W                0.75010353 W

PL13W                0.00000000 W

SFO2                600.3254013 MHz

F2 - Processing parameters

SI                        32768

SF                  150.9514145 MHz

WDW                          EM

SSB                           0

LB                         1.00 Hz
GB                            0

PC                         1.40

SL-1346

59 

59 
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Current Data Parameters

NAME                 Mar06-2012

EXPNO                       191

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20120306

Time                      16.54

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                  zgflqn

TD                       131072
SOLVENT                   CD3CN

NS                           16

DS                            4

SWH                   75187.969 Hz

FIDRES                 0.573639 Hz

AQ                    0.8716788 sec

RG                       2580.3
DW                        6.650 usec

DE                         6.00 usec

TE                        291.2 K

D1                   1.00000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        19F

P1                        40.50 usec

PL1                       -3.00 dB

SFO1                376.4607164 MHz

F2 - Processing parameters

SI                        65536

SF                  376.4983660 MHz

WDW                          EM

SSB                           0

LB                         0.30 Hz

GB                            0
PC                         1.00

SL1347

59 



 

 

11 10 9 8 7 6 5 4 3 2 1 ppm

Current Data Parameters

NAME                 Oct27-2011

EXPNO                        10

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20111027

Time                      17.11

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                    zg30

TD                        65536
SOLVENT                    DMSO

NS                           16

DS                            2

SWH                    8278.146 Hz

FIDRES                 0.126314 Hz

AQ                    3.9584243 sec
RG                         71.8

DW                       60.400 usec

DE                         6.00 usec

TE                        293.2 K

D1                   1.00000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                         1H

P1                        12.00 usec

PL1                        0.00 dB

SFO1                400.1324710 MHz

F2 - Processing parameters

SI                        32768

SF                  400.1300000 MHz

WDW                          EM

SSB                           0

LB                         0.30 Hz
GB                            0

PC                         1.00

200 180 160 140 120 100 80 60 40 20 0 ppm

Current Data Parameters

NAME                 Nov01-2011

EXPNO                        31

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20111102

Time                      11.39

INSTRUM                   spect

PROBHD           5 mm PABBO BB-

PULPROG                  zgpg30

TD                        65536
SOLVENT                    DMSO

NS                        16384

DS                            4

SWH                   36057.691 Hz

FIDRES                 0.550197 Hz

AQ                    0.9088159 sec

RG                         1150
DW                       13.867 usec

DE                         6.50 usec

TE                        293.0 K

D1                   2.00000000 sec

D11                  0.03000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        13C

P1                         9.71 usec

PL1                        1.50 dB

PL1W                78.77777863 W

SFO1                150.9664335 MHz

======== CHANNEL f2 ========

CPDPRG2                 waltz16

NUC2                         1H

PCPD2                     70.00 usec

PL2                       -5.30 dB
PL12                      10.02 dB

PL13                     120.00 dB

PL2W                25.53414154 W

PL12W                0.75010353 W

PL13W                0.00000000 W

SFO2                600.3254013 MHz

F2 - Processing parameters

SI                        32768

SF                  150.9514145 MHz

WDW                          EM

SSB                           0

LB                         1.00 Hz
GB                            0

PC                         1.40

55 

55 
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-
6
1
.
5
4

Current Data Parameters

NAME                 Oct27-2011

EXPNO                        16

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20111027

Time                      19.38

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                  zgflqn

TD                       131072
SOLVENT                    DMSO

NS                           16

DS                            4

SWH                   75187.969 Hz

FIDRES                 0.573639 Hz

AQ                    0.8716788 sec

RG                       3649.1
DW                        6.650 usec

DE                         6.00 usec

TE                        292.2 K

D1                   1.00000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        19F

P1                        40.50 usec

PL1                       -3.00 dB

SFO1                376.4607164 MHz

F2 - Processing parameters
SI                        65536

SF                  376.4983660 MHz

WDW                          EM

SSB                           0

LB                         0.30 Hz

GB                            0
PC                         1.00

55 



 

 

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm

Current Data Parameters

NAME                 Dec05-2011

EXPNO                        60

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20111206

Time                       1.01

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                    zg30

TD                        65536
SOLVENT                   CDCl3

NS                           16

DS                            2

SWH                    8278.146 Hz

FIDRES                 0.126314 Hz

AQ                    3.9584243 sec
RG                         45.3

DW                       60.400 usec

DE                         6.00 usec

TE                        291.2 K

D1                   1.00000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                         1H

P1                        12.00 usec

PL1                        0.00 dB

SFO1                400.1324710 MHz

F2 - Processing parameters

SI                        32768

SF                  400.1300000 MHz

WDW                          EM

SSB                           0

LB                         0.30 Hz
GB                            0

PC                         1.00

200 180 160 140 120 100 80 60 40 20 0 ppm

Current Data Parameters

NAME                 Dec05-2011

EXPNO                        61

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20111206

Time                       2.01

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                  zgpg30

TD                        65536
SOLVENT                   CDCl3

NS                         1024

DS                            4

SWH                   23980.814 Hz

FIDRES                 0.365918 Hz

AQ                    1.3664756 sec

RG                         6502
DW                       20.850 usec

DE                         6.00 usec

TE                        291.2 K

D1                   2.00000000 sec

d11                  0.03000000 sec

DELTA                1.89999998 sec
TD0                           1

======== CHANNEL f1 ========

NUC1                        13C

P1                        10.00 usec

PL1                        0.00 dB

SFO1                100.6228298 MHz

======== CHANNEL f2 ========

CPDPRG2                 waltz16

NUC2                         1H

PCPD2                     80.00 usec

PL2                       -3.00 dB
PL12                      12.00 dB

PL13                      12.00 dB

SFO2                400.1316005 MHz

F2 - Processing parameters

SI                        32768

SF                  100.6127690 MHz

WDW                          EM

SSB                           0

LB                         1.00 Hz

GB                            0

PC                         1.40

44 

44 



 

 

10 9 8 7 6 5 4 3 2 1 ppm

Current Data Parameters

NAME                 Jan31-2012

EXPNO                        50

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20120201

Time                       3.47

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                    zg30

TD                        65536
SOLVENT                   CDCl3

NS                           16

DS                            2

SWH                    8278.146 Hz

FIDRES                 0.126314 Hz

AQ                    3.9584243 sec
RG                        143.7

DW                       60.400 usec

DE                         6.00 usec

TE                        289.2 K

D1                   1.00000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                         1H

P1                        12.00 usec

PL1                        0.00 dB

SFO1                400.1324710 MHz

F2 - Processing parameters

SI                        32768

SF                  400.1300328 MHz

WDW                          EM

SSB                           0

LB                         0.30 Hz
GB                            0

PC                         1.00

SL-1278

200 180 160 140 120 100 80 60 40 20 0 ppm

Current Data Parameters

NAME                 Jan31-2012

EXPNO                        51

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20120201

Time                       4.46

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                  zgpg30

TD                        65536
SOLVENT                   CDCl3

NS                         1024

DS                            4

SWH                   23980.814 Hz

FIDRES                 0.365918 Hz

AQ                    1.3664756 sec

RG                         6502
DW                       20.850 usec

DE                         6.00 usec

TE                        289.2 K

D1                   2.00000000 sec

d11                  0.03000000 sec

DELTA                1.89999998 sec
TD0                           1

======== CHANNEL f1 ========

NUC1                        13C

P1                        10.00 usec

PL1                        0.00 dB

SFO1                100.6228298 MHz

======== CHANNEL f2 ========

CPDPRG2                 waltz16

NUC2                         1H

PCPD2                     80.00 usec

PL2                       -3.00 dB
PL12                      12.00 dB

PL13                      12.00 dB

SFO2                400.1316005 MHz

F2 - Processing parameters

SI                        32768

SF                  100.6127690 MHz

WDW                          EM

SSB                           0

LB                         1.00 Hz

GB                            0

PC                         1.40

SL-1278

75 

75 



 

 

12 11 10 9 8 7 6 5 4 3 2 1 ppm

Current Data Parameters

NAME                 Jan20-2012

EXPNO                        20

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20120122

Time                      12.19

INSTRUM                   spect

PROBHD           5 mm PABBO BB-

PULPROG                    zg30

TD                        65536
SOLVENT                    DMSO

NS                           16

DS                            2

SWH                   12335.526 Hz

FIDRES                 0.188225 Hz

AQ                    2.6564426 sec
RG                          228

DW                       40.533 usec

DE                        10.73 usec

TE                        353.0 K

D1                   1.00000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                         1H

P1                        11.65 usec

PL1                       -5.30 dB

PL1W                25.53414154 W

SFO1                600.3267072 MHz

F2 - Processing parameters

SI                        32768

SF                  600.3229996 MHz

WDW                          EM

SSB                           0
LB                         0.30 Hz

GB                            0

PC                         1.00

200 180 160 140 120 100 80 60 40 20 0 ppm

Current Data Parameters

NAME                 Jan20-2012

EXPNO                        21

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20120122

Time                      13.12

INSTRUM                   spect

PROBHD           5 mm PABBO BB-

PULPROG                  zgpg30

TD                        65536
SOLVENT                    DMSO

NS                         1024

DS                            4

SWH                   36057.691 Hz

FIDRES                 0.550197 Hz

AQ                    0.9088159 sec

RG                         2050
DW                       13.867 usec

DE                         6.50 usec

TE                        353.0 K

D1                   2.00000000 sec

D11                  0.03000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        13C

P1                         9.71 usec

PL1                        1.50 dB

PL1W                78.77777863 W

SFO1                150.9664335 MHz

======== CHANNEL f2 ========

CPDPRG2                 waltz16

NUC2                         1H

PCPD2                     70.00 usec

PL2                       -5.30 dB
PL12                      10.02 dB

PL13                     120.00 dB

PL2W                25.53414154 W

PL12W                0.75010353 W

PL13W                0.00000000 W

SFO2                600.3254013 MHz

F2 - Processing parameters

SI                        32768

SF                  150.9514145 MHz

WDW                          EM

SSB                           0

LB                         1.00 Hz
GB                            0

PC                         1.40

60 

60 
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Current Data Parameters

NAME                 Feb22-2012

EXPNO                        91

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20120222

Time                      12.04

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                  zgflqn

TD                       131072

SOLVENT                   CD3CN

NS                           16

DS                            4

SWH                   75187.969 Hz

FIDRES                 0.573639 Hz

AQ                    0.8716788 sec

RG                       2896.3
DW                        6.650 usec

DE                         6.00 usec

TE                        293.2 K

D1                   1.00000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        19F

P1                        40.50 usec

PL1                       -3.00 dB

SFO1                376.4607164 MHz

F2 - Processing parameters
SI                        65536

SF                  376.4983660 MHz

WDW                          EM

SSB                           0

LB                         0.30 Hz

GB                            0

PC                         1.00

SL1319

60 



 

 

 

10 9 8 7 6 5 4 3 2 1 ppm

Current Data Parameters

NAME                 May14-2012

EXPNO                        10

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20120515

Time                      22.51

INSTRUM                   spect

PROBHD           5 mm PABBO BB-

PULPROG                    zg30

TD                        65536
SOLVENT                    DMSO

NS                          128

DS                            2

SWH                   12335.526 Hz

FIDRES                 0.188225 Hz

AQ                    2.6564426 sec
RG                          161

DW                       40.533 usec

DE                        10.73 usec

TE                        353.0 K

D1                   1.00000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                         1H

P1                        11.65 usec

PL1                       -5.30 dB

PL1W                25.53414154 W

SFO1                600.3267072 MHz

F2 - Processing parameters

SI                        32768

SF                  600.3229883 MHz

WDW                          EM

SSB                           0
LB                         0.30 Hz

GB                            0

PC                         1.00

SL-1392

200 180 160 140 120 100 80 60 40 20 ppm

Current Data Parameters

NAME                 May14-2012

EXPNO                        11

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20120516

Time                      12.25

INSTRUM                   spect

PROBHD           5 mm PABBO BB-

PULPROG                  zgpg30

TD                        65536

SOLVENT                    DMSO

NS                        16384

DS                            4

SWH                   36057.691 Hz

FIDRES                 0.550197 Hz

AQ                    0.9088159 sec

RG                         2050
DW                       13.867 usec

DE                         6.50 usec

TE                        353.1 K

D1                   2.00000000 sec

D11                  0.03000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        13C

P1                         9.71 usec

PL1                        1.50 dB

PL1W                78.77777863 W

SFO1                150.9664335 MHz

======== CHANNEL f2 ========

CPDPRG2                 waltz16

NUC2                         1H

PCPD2                     70.00 usec

PL2                       -5.30 dB
PL12                      10.02 dB

PL13                     120.00 dB

PL2W                25.53414154 W

PL12W                0.75010353 W

PL13W                0.00000000 W

SFO2                600.3254013 MHz

F2 - Processing parameters

SI                        32768

SF                  150.9514145 MHz

WDW                          EM

SSB                           0

LB                         1.00 Hz
GB                            0

PC                         1.40

SL-1392

65 

65 
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Current Data Parameters

NAME                 May14-2012

EXPNO                       171

PROCNO                        1

F2 - Acquisition Parameters
Date_                  20120514

Time                      14.02

INSTRUM                   spect

PROBHD           5 mm QNP 1H/13

PULPROG                  zgflqn

TD                       131072
SOLVENT                    DMSO

NS                           16

DS                            4

SWH                   75187.969 Hz

FIDRES                 0.573639 Hz

AQ                    0.8716788 sec

RG                       1149.4
DW                        6.650 usec

DE                         6.00 usec

TE                        295.2 K

D1                   1.00000000 sec

TD0                           1

======== CHANNEL f1 ========

NUC1                        19F

P1                        40.50 usec

PL1                       -3.00 dB

SFO1                376.4607164 MHz

F2 - Processing parameters
SI                        65536

SF                  376.4983660 MHz

WDW                          EM

SSB                           0

LB                         0.30 Hz

GB                            0
PC                         1.00

SL1392

65 


