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ABSTRACT 

The liver X receptor (LXR), peroxisome proliferator activated receptor γ (PPARγ) and 

retinoid X receptor (RXR) are members of the nuclear receptor superfamily. Once 

activated these receptors can form heterodimers with each other in order to control key 

processes within the cell. The role of these NRs in immune cells is relatively 

uncharacterized; therefore we examined the effects of their activation on cytokine 

production and cell surface marker expression on murine bone marrow-derived 

dendritic cells (BMDC). We demonstrated that these NR agonists can specifically 

modulate the IL-12 family of cytokines as well as altering the expression of co-

stimulatory markers on the cell surface. We also show that the effect of LXR activation 

on these IL-12 family of cytokines is a result of heterodimerising with RXR. 

Furthermore, we found that expression of LXR was regulated during inflammatory 

disease. In order to determine the mechanism by which LXR exerts its anti-

inflammatory effects we next examined its effects on DCs activated by a panel of TLR 

ligands. These results showed that the target of LXR was a common element of the TLR 

pathways; therefore we determined its effects on NFκB and IRF3 activation.  

Interestingly, we show that LXR: RXR heterodimers are important in NFκB inhibition 

but not IRF3. We next showed that LXR can specifically target the p35, p40 and EBI3 

subunits of the IL-12 cytokine family. Given that these subunits are directly under the 

control of the NFκB subunit p50, we examined the effect of LXR activation on this p50 

subunit and showed that LXR colocalises in DC with p50 and that LXR activation 

prevents translocation of the p50 subunit into the nucleus. In summary our study 

provides evidence for an anti-inflammatory role for LXR in DCs and highlights its 

potential as a therapeutic target for chronic inflammatory diseases. 
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1.0 INNATE IMMUNITY: AN OVERVIEW 

The mammalian immune system is comprised of 3 branches: innate immunity, acquired 

immunity and physical and chemical barriers. Physical and chemical barriers are 

considered the first line of a host’s defence and prevent harmful microbes from entering 

the body. These barriers consist of the skin, low stomach pH, lysozyme that hydrolyses 

the cell wall of bacteria, mucus that traps and removes the bacteria, IgM that also traps 

the invading organism and also secreted antimicrobial peptides that can kill some 

pathogens (Turvey, Broide 2010). If pathogens somehow penetrate these chemical and 

physical barriers, the innate immune system is alerted. Speed is a defining characteristic 

of this system – within minutes of pathogen exposure, the innate immune system 

generates an inflammatory response by activating both chemical and cellular 

elements(Basset et al. 2003). 

 The cellular element of this system comprises of non-hematopoietic and hematopoietic 

cells such as macrophages, dendritic cells mast cells, neutrophils, eosinophils and 

natural killer (NK) cells. The principal function of these immune cells is to eliminate 

harmful pathogens by phagocytosis. However they also release biologically active 

molecules such as cytokines, chemokines and chemotactic lipids which alert other 

circulating cells, causing them to migrate to the site of infection to aid in the destruction 

of the pathogen (Si-Tahar, Touqui & Chignard 2009). These active molecules represent 

the chemical element of the immune system and can also include proteins/peptides that 

can hydrolyse microbes.  Immune cells such as DC also have a unique function in 

activating the adaptive immune response (Maldonado-Lopez et al. 1999). 
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1.1 OVERVIEW OF ADAPTIVE IMMUNITY 

Unlike the innate immune system which takes minutes to take effect, the adaptive 

immune system can take between 3-5 days to mount an efficient response to an 

infection. This system is only alerted if the innate immune system is unable to 

effectively clear an infection. Although the innate immune system acts rapidly, it is 

unspecific and only recognizes conserved molecular patterns on pathogens (PAMPs) 

through an array of pattern recognition receptors (PRR) (Janeway, Medzhitov 2002). 

The adaptive immune system however is highly specific and includes T lymphocytes, 

which mature in the thymus and antibody producing B lymphocytes which arise in the 

bone marrow (Maldonado-Lopez et al. 1999, Mitchell, Miller 1968, Owen, Raff 1970). 

These cells have a diverse repertoire of antigen receptors with random specificities 

which are clonally expressed. Consequently the specificities of these cells are endless. 

However, because the adaptive immune system uses these randomly generated antigen 

receptors it cannot reliably distinguish between self and non – self antigens (Palm, 

Medzhitov 2009). Thus an important role of the innate immune system is to instruct the 

adaptive immune system as to the origin of the antigen, i.e. self or non self and what 

type of response, if any, it should mount to effectively clear the pathogen. Antigen 

presenting cells (APC) such as dendritic cells (DC) are central to this process and 

integrate information from the innate immune system and relay it to lymphocytes of the 

adaptive immune system (de Jong, Smits & Kapsenberg 2005). 
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1.2 DENDRITIC CELLS: LINKING INNATE AND ADAPTIVE 

IMMUNITY 

DC are a heterogeneous family of cells of haematopoietic origin that act as professional 

APC. They link innate and adaptive immunity by capturing, processing and presenting 

antigens to T cells. They are found in most tissues such as heart, kidney and liver. 

However they are most abundant in those tissues that reside between both external and 

internal environments such as the skin and GI tract. Here, their job is to sample the 

environment and alert the immune system to the presence of infections and other 

harmful stimuli (Coquerelle, Moser 2010). DC express a large array of phagocytic 

receptors such as lectins and scavenger receptors which enable them to phagocytose 

pathogens. They also express a variety of Toll-like receptors (TLRs) and other PRR 

which enable them to respond appropriately to these specific pathogens (Palucka, 

Banchereau 1999).  DC that sample antigen in the peripheral tissues are classified as 

immature DC or phagocytic DC. However once they have encountered a pathogen, or 

infected or apoptosing cells these immature DC undergo phenotypic and functional 

changes referred to as maturation. This includes induction of costimulatory molecules, 

antigen processing and increased major histocompatibility complex (MHC) expression. 

Activated DC presenting pathogen- derived antigens on MHC I or II molecules also 

migrate to the draining lymph node where they activate and instruct naïve T cells 

(Blanco et al. 2008). 

 T cells are essential for the clearance and elimination of pathogens from the body. They 

control the extent and duration of an immune response against a wide variety of 

pathogens and are also important mediators in immunological memory. CD4
+ 

T cells 

can be divided into 4 different cell populations T helper 1 (Th1), T helper 2 (Th2), T 
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helper 17 (Th17) and T regulatory cells (Treg) based on the different cytokines they 

secrete and thus the different functions they have in the adaptive immune response 

(Zhu, Yamane & Paul 2010). 

Th1 cells are defined by the production of their signature cytokine interferon γ (IFNγ). 

Their primary role in the body is to protect the host against intracellular microbes and 

viruses. However if this Th1 response becomes dysregulated, it can contribute to 

inflammatory diseases such as inflammatory bowel disease (IBD), multiple sclerosis 

(MS) and rheumatoid arthritis (RA) through tissue damage and self reactivity (Gutcher, 

Becher 2007). Th2 cells are defined by the production of IL-4, IL-5, IL-9 and IL-13. 

This Th lineage is essential in protecting the host from extracellular parasites such as 

helminths and nematodes. These cells are also associated with humoral responses which 

utilize high levels of immunoglobulins to neutralize extracellular organisms. It is now 

known that chronic inflammatory airway diseases such as asthma and allergy are 

characterised by abnormally high levels of Th2 cells, therefore the regulation of these 

cells is crucial (Paul, Zhu 2010). CD4
+
 T cells are classified as Th17 cells based on the 

secretion of their signature cytokine IL-17A, however these cells can also produce high 

levels of the pro-inflammatory cytokines IL-17F, IL-22 and IL-21. Th17 cells are 

critical for protection against a wide array of both Gram negative and Gram positive 

bacteria as well as certain fungi and parasites such as Candida albicans and Toxoplasma 

gondii, respectively. This protection is due to the recruitment of neutrophils and the 

induction of antimicrobial peptides (O'Connor, Zenewicz & Flavell 2010). Although 

Th17 cells have essential role in host protection, it has emerged that they can also 

become critical mediators of autoimmune diseases if the Th17 response becomes 

dysregulated. Treg cells, which predominantly secrete IL-10 and TGFβ, are 

immunosuppressive cells which dampen down the immune response after a pathogen 
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has been cleared thus preventing excessive inflammation and tissue damage. {{186 

Mills,K.H. 2004}}.  

In order for an effective T cell response to be initiated three important signals are 

required; costimulation, presentation of antigen as well as a specific cytokine milieu. 

Indeed the cytokine milieu present at the time of antigen encounter is said to be the most 

influential factor in deciding Th cell fate. Interestingly, each Th cell lineage can produce 

a cytokine that plays a role in promoting its own differentiation while simultaneously 

inhibiting the differentiation of other Th cell lineages (Zhu, Paul 2010).  IL-12 and IL-

27, which are produced by innate immune cells following infection, potently induce the 

differentiation of Th1 cells (Wan, Flavell 2009). IFNγ is another key cytokine that can 

regulate Th1 differentiation as well as playing a crucial role in phenotype stabilization. 

Th2 cells fail to produce IFNγ. Instead the signature cytokines associated with this 

subset are IL-4, IL-5 and IL-13. The presence of IL-2 and IL-4 is essential in driving the 

differentiation of these Th2 cells (Agnello et al. 2003). The presence of TGFβ and IL-6 

are essential and non-redundant in driving a Th17 response while TGFβ in conjunction 

with the anti-inflammatory cytokine IL-10 are involved in the differentiation of Treg 

cells (Wan, Flavell 2009). In order for these Th responses to be generated however, 

costimulation and presentation of antigen to the T cell receptor (TCR) via MHC must 

also occur. 

 

1.3 MHC PRESENTATION 

APCs such as DC express MHC molecules I and II which allow antigens to be 

presented on their surface and are critical in communicating the type and source of an 

infection to adaptive immune cells such as T cells. Although structurally MHCI and 
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MHCII are very similar, notably their most striking difference is in the antigen peptide 

binding groove, which is closed on MHCI molecules but open at both ends on MHCII 

molecules. This structural difference allows only limited sized peptides (8-10 amino 

acids) to bind to class I molecules while much larger peptides (15-20 amino acids) are 

free to bind to class II MHC molecules. Primarily class I molecules present peptides 

from endogenous antigens that are found in the cytosol. These antigens are normally 

derived from viral proteins which are synthesized in any virally infected cell. Antigens 

loaded onto MHCI molecules are typically presented to CD8
+
 cytotoxic T cells which 

results in cell death (Savina, Amigorena 2007). These molecules are present on all 

nucleated cells and thus provide the body with protection from viral infection. MHCII 

molecules however are only expressed on APCs and are induced by innate immune 

recognition receptors such as TLRs. These receptors lead to APC activation, further 

upregulation of MHCII and most importantly the phagocytosis of the pathogen in 

question (Villadangos, Schnorrer & Wilson 2005). These pathogens become degraded 

in endocytic vesicles however an important role for MHCII is to display peptides from 

these pathogens and present them to CD4
+
 helper T cells. T cell receptors on the surface 

of these cells recognize the MHC – peptide complex and proliferate and differentiate 

into specific T cell subsets (Kapsenberg 2003). 

  

1.5 COSTIMULATION  

Costimulation is an essential process necessary to facilitate complete T cell activation 

and pathogen clearance. CD80 and CD86 are costimulatory markers that are also 

members of the B7 family of coreceptors. These coreceptors are expressed on APC and 

provide vital costimulatory signals to enhance and maintain a T cell response via an 
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interaction with CD28 (Sharpe, Freeman 2002). CD28 is a type I transmembrane 

glycoprotein constitutively expressed on naive T cells that promotes T cell activation 

and proliferation through interacting with these B7 molecules (Stuart, Racke 2002). 

Although both CD80 and CD86 bind to the same receptor on T cells, there are slight 

differences in their function. CD80 is almost absent from immature DC whereas CD86 

is expressed in low amounts (Orabona et al. 2004). CD80 is thought to play a role in 

Th1 differentiation mainly through the induction of IL-2 and IFNγ production, whereas 

CD86 promotes Th2 differentiation through the induction of IL-4 and IL-10. CD86 is 

also upregulated on APCs earlier than CD80 in response to activation signals (Stuart, 

Racke 2002). Cytotoxic T lymphocyte –associated Antigen 4 (CTLA 4) is also 

expressed on T cells and can bind to the B7 molecules with higher affinity than that of 

CD28. However unlike CD28 which is a positive regulator of T cell function CTLA 4 

ligation downregulates the T cell response by interfering with T cell receptor (TCR) 

signals and thus is a negative regulator of T cell activation (Sharpe, Freeman 2002). 

 CD40 is another essential costimulatory marker that is expressed on DC, macrophages, 

Langerhan cells and B cells and is upregulated following exposure to activation signals. 

It binds to CD40L (CD154), a member of the TNF receptor family found on activated T 

cells and leads to the upregulation of CD80 and CD86 as well as inducing IL-12 

production from the APC (Watford et al. 2003). It is therefore essential in maintaining T 

cell activation and differentiation. Costimulation is therefore a vital mechanism present 

in the adaptive immune response that allows the host to efficiently mount specific T cell 

responses against an invading organism while simultaneously putting in place 

regulatory mechanisms that can terminate an immune response if needed. This process 

is essential in maintaining immunological homeostasis and preventing autoimmunity.  
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Fig 1.1: Signals required for effective T cells activation [adapted from (Bayry et al. 2004)]. 

 

1.6 CYTOKINES  

Cytokines are chemical immunomodulators that are released by cells following 

infection, stress or trauma. They initiate intracellular signalling cascades which 

ultimately results in cellular development, homeostasis and immunity. Typically, 

cytokines act in an autocrine and paracrine fashion and are mostly small polypeptides or 

glycoproteins between 6-30kDa (Zidek, Anzenbacher & Kmonickova 2009). Cytokines 

that are produced by leukocytes and primarily act on other leukocytes are termed 

interleukins, while those that inhibit viral replication are known as IFNs. Cytokines that 

cause differentiation and proliferation of stem cells are called colony stimulatory factors 

whereas those that have chemoattractant capabilities are termed chemokines (Parkin, 
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Cohen 2001). IL-6, TNFα and IL-1β are examples of pro-inflammatory cytokines 

released by DC in response to a stimulus. These cytokines aid in the recruitment of 

phagocytes, induce fever and induce the production of C-reactive protein and enzymes 

such as ceruloplasmin and metallothionine that all aid in the elimination of the infection 

(Basset et al. 2003). Cytokines can also be released in response to injury, whereby their 

production recruits neutrophils and macrophages to the site of injury to remove 

damaged or dead cells. However overproduction of these cytokines and subsequent 

overactivation of these cells can lead to the further tissue damage, excessive 

inflammation and ultimately contribute to the pathogenesis of autoimmune and 

inflammatory diseases (Feldmann, Brennan & Maini 1998). Therefore the production of 

IL-10 an anti-inflammatory cytokine is essential in maintaining immunological 

homeostasis within the cell. IL-10 downregulates the production of cytokines from T 

cells, and inhibits NK cell, CD8
+  

 and macrophage function (Conti et al. 2003). 

 

1.6.1 THE IL-12 FAMILY 

The IL-12 family of cytokines consists of 4 members, IL-12, IL-23 IL-27 and the newly 

identified IL-35. These cytokines are unique in that they are heterodimeric proteins 

composed of both an alpha chain and beta chain that are structurally related to each 

other. IL-12 for example is a 70kDa protein that is composed of a disulphide linked p35 

alpha chain and a p40 beta chain that are expressed on different chromosomes.  IL-23 

another pro-inflammatory IL-12 related cytokine, is also composed of a beta p40 chain 

which is linked to the alpha p19 chain, an IL-12p35 – related molecule (Collison, 

Vignali 2008). Indeed there is a great deal of redundancy between the components of 

these cytokines. IL-27 is composed of Epstein – Barr virus-induced gene 3 (EBI-3) , a 
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p40 related molecule and p28, a p35 related molecule, and finally IL-35 is composed of 

EBI-3 and the IL-12 alpha chain p35 (Yoshida, Miyazaki 2008). IL-12, IL-23 and IL-27 

are all secreted by APCs such as macrophages and DC whereas IL-35 secretion has only 

been described in Treg cells. It is possible that IL-35 given its overlapping structure 

with IL-27 and IL-12 may also be produced under certain circumstances by APC 

however this remains to be proven (Collison, Vignali 2008). 

 

 

 

Figure: 1.2 The IL-12 family of cytokines and their shared or unique cytokine/cytokine receptor 

subunits [adapted from(Collison, Vignali 2008)]. 

These cytokines have important implications for innate immunity by activating and 

recruiting nearby cells however they can also determine the type and duration of the 

adaptive immune response by driving specific T cell responses. They can also play a 

role in NK cell activation as well regulating antibody production from B cells 

(Trinchieri 2003). 
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1.6.1.1 IL-12 

IL-12, which was the first heterodimeric cytokine to be discovered is a potent inducer of 

IFNγ from T cells and NK cells and is also essential for the differentiation of the Th1 

response. This cytokine also plays an essential role in T cell trafficking and migration 

through the induction of adhesion molecules such as P and E selectin. Interestingly, IL-

12 only induces the expression of these adhesion molecules on Th1 cells and not other T 

helper cell subsets thus recruiting these cells to sites where only a Th1 response is 

needed (Hamza, Barnett & Li 2010). IL-12p40 is produced predominantly by innate 

immune cells such as monocytes, macrophages, neutrophils and DC whereas p35 

transcripts are found in many cell types. However, because IL-12 is a heterodimeric 

cytokine and both the alpha and beta chains need to be coexpressed in the same cell, its 

production thus becomes limited due to the  low expression of p35 compared with p40 

(Goriely, Neurath & Goldman 2008). 

These cytokines, like most cytokines are synthesized and then released following 

PAMP recognition via PRRs on the surface of immune cells. The effects of IL-12, IL-

23, IL-27 and IL-35 are all mediated through their interactions with their specific 

receptors. This interaction initiates the JAK/STAT pathway which ultimately leads to 

the expression of a profile of genes that is typical of the given cytokine (O'Shea, Murray 

2008). In order for effective IL-12 signalling both IL-12Rβ1 and IL-12Rβ2 receptors are 

required. These receptors are conserved amongst mouse and human with 68% amino 

acid sequence homology in the IL-12Rb2 protein and 54% homology in the IL-12Rb1 

protein. IL-12Rβ1 is required for the high affinity binding of IL-12 and it is associated 

with the Jak family member Tyk2 while IL-12Rβ2 mediates signal transduction via 3 

tyrosine residues that act as a docking site for STAT proteins (Hamza, Barnett & Li 

2010). Following IL-12 occupancy of its receptor, Jak2 and Tyk2 proteins are 
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phosphorylated leading to the activation of STAT1, STAT3, STAT4 and STAT5. 

STAT4 however is the only STAT protein that is indispensable in IL-12 signalling. 

Similarly p38, a member of the mitogen-activated protein kinase pathway (MAPK) has 

also been shown to be essential in order for IL-12 to exert its cellular effects (Collison, 

Vignali 2008). 

As outlined above, there are numerous immunomodulatory benefits to IL-12 production 

in the body however if this production becomes dysregulated, it has the potential to 

contribute to inflammatory and autoimmune diseases. More specifically, in a mouse 

model of rheumatoid arthritis, collagen induced arthritis (CIA) and multiple sclerosis, 

experimental autoimmune encephalomyelitis (EAE) IL-12 has been implicated as a 

major contributor to host pathology (Hamza, Barnett & Li 2010). In humans a study in 

Spanish IBD patients has shown an association with IL-12Rb and IL-23 R 

polymorphisms and disease severity (Marquez et al. 2008). Increased expression and 

activation of IL-12 induced STAT4 signalling has also been identified in the mucosa of 

ulcerative colitis (UC) patients (Pang et al. 2007). IL-12 and IL-23 are highly expressed 

in the gut of humans and mice with IBD and anti p40 antibody treatment can reduce 

inflammation and disease severity (McGovern, Powrie 2007). 

 

1.6.1.2 IL-23 

IL-23 is composed of the IL-12 subunit p40 and the newly identified p35 related 

subunit, p19. It is important for immunity against fungal infections and similar to IL-12, 

IL-23 is a proinflammatory cytokine that can induce IFNγ production and promote a 

Th1 response. However in the absence of IL-23, IFNγ production and Th1 

differentiation are normal suggesting that IL-23 can synergize with IL-12 to induce 
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these Th1 cells but is not an absolute requirement for their differentiation (Wang et al. 

2011). IL-23 is however essential for the survival and maintenance of Th17 cells. 

Originally thought as an essential cytokine for Th17 polarization along with TGF-β, IL-

6 and IL-21, it is now generally accepted that IL-23 does not act on naive cells to induce 

Th17 differentiation.  Instead it believed that IL-23 is involved in the expansion, 

maturation and maintenance of these cells (Stritesky, Yeh & Kaplan 2008). 

The IL-23 receptor is composed of the IL-12Rβ1, which is required for high affinity 

binding and the novel IL-23R chain which is involved in signal transduction. The IL-

23R gene is on human chromosome 1 within 150kb of IL-12Rβ2 (Watford et al. 2003). 

It is weakly expressed on NK cells, monocytes and DC and although it is not expressed 

on naive T cells it is highly upregulated on Th17. This is consistent with the central role 

for IL-23 in the maintenance and homeostasis of Th17 effector cells. Although a 

number of STAT proteins are activated in response to IL-23 only STAT3 appears to be 

indispensable in IL-23 signalling (Yang et al. 2007).  

IL-23 has also been shown to drive local intestinal inflammation and in animal models 

of colitis is essential for maintaining chronic disease. IL-23 is also responsible for T-cell 

mediated inflammation, as seen in animal models of MS. Studies have shown that p19 

and p40 knockout (KO) mice are resistant to EAE however upon the addition of 

exogenous IL-23, mice become susceptible to disease again (Gee et al. 2009). IL-23 can 

thus be seen as a cytokine that, when functioning normally has a protective role in the 

host, however if its production becomes dysregulated inflammatory disorders can be 

induced. 
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1.6.1.3 IL-27 

As mentioned earlier, IL-27 is composed of two subunits the alpha subunit - p28 and the 

beta subunit - EBI3. EBI3 harbours its name from its initial discovery in B lymphocytes 

infected with the Epstein-Barr virus. P28 is normally expressed in activated innate 

immune cells where it is non-covalently linked to EBI3 (Carl, Bai 2008). However IL-

27 has also been shown to be expressed in other cell types such as cells of the central 

nervous system (CNS) including astrocytes and microglia (Fitzgerald, Rostami 2009). 

IL-27 is strongly induced in response to Gram positive and Gram negative bacteria 

(through recognition via TLR2 and TLR4 respectively) and in response to viral DNA 

(TLR9). Following TLR stimulation, the transcription factor nuclear factor κ B (NFκB) 

binds to a promoter region of the EBI3 gene (Yoshida, Nakaya & Miyazaki 2009). 

Unlike other IL-12 related cytokines, IL-27 can exert both pro and anti-inflammatory 

effects by promoting Th1 differentiation while also inhibiting Th17 differentiation. IL-

27 upregulates T-bet, the master regulator of Th1 differentiation which subsequently 

leads to the upregulation of the IL-12Rβ2. These cells then become more responsive to 

IL-12 stimulation and thus are driven into a Th1 phenotype (Fitzgerald, Rostami 2009). 

IL-27 signals through the gp130 and WSX-1 receptors. Gp130 is ubiquitously expressed 

and is a component of receptors for many cytokines including IL-6 and IL-11 

(Villarino, Huang & Hunter 2004). The WSX-1 receptor, more commonly known and 

the IL-27Rα is primarily expressed on T cells however it also expressed to a lesser 

extent on naive and memory B cells as well as alternatively activated macrophages 

(Carl, Bai 2008). The signalling pathway initiated by IL-27R engagement activates 

JAK1 and JAK2 which subsequently results in the phosphorylation of STAT1, STAT2, 

STAT3 and STAT5. Only STAT1 and STAT3 are critical to IL-27 signalling however, 
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as demonstrated by the loss of IL-27 activity in STAT1 and STAT3 knockout mice 

(Villarino, Huang & Hunter 2004). 

IL-27 has thus proven to be an exciting target in the treatment of Th1 mediated 

inflammatory diseases given its role as a differentiating factor in the differentiation of 

these Th cells. Indeed the severity of adjuvant induced arthritis in rats and mice can be 

ameliorated using IL-27 specific antibodies (Villarino, Huang & Hunter 2004). IL-

27p28 and EBI3 transcripts were significantly elevated in active CD highlighting the 

diverse role that this cytokine can play in disease (Rogler, Andus 1998). It is clear that 

despite their similarities, IL-12, IL23, IL-27 and IL-35 have unique and distinct 

functions within the immune system 

1.7 PATTERN RECOGNITION RECEPTORS 

Cells of the innate immune system express a series of germline encoded receptors 

known as PRR. These receptors can sense the presence of an infection via recognition 

of conserved microbial PAMPs (Palm, Medzhitov 2009). Given that invading pathogens 

can have large variability and molecular heterogeneity amongst each other, it is 

essential that these PRRs have specific characteristics to recognize all of these 

pathogens (Medzhitov, Janeway 1997). PRRs must recognize PAMPs that are unique to 

pathogens and are not found on any eukaryotic cells, thus ensuring that the innate 

immune system is only alerted during an infection. PAMPs must also be common to a 

vast amount of pathogens to ensure that a limited number of PRRs can detect all 

infections. Finally, it is vital that these PAMPs are essential for the survival or 

pathogenicity of the micro organism and therefore are difficult to alter (Medzhitov, 

Janeway 1997). PRRs can be divided into 3 types which include humoral proteins that 

circulate in the plasma, endocytic receptors that are expressed on the cell surface and 
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signalling receptors that can be expressed either on the cell surface or intracellularly. 

TLRs are an example of the latter and are the receptors that are relevant to this study. 

 

1.7.1 THE TLR FAMILY 

TLRs are type I integral membrane glycoproteins characterized by the extracellular 

domains containing varying numbers of leucine-rich repeat motifs and a cytoplasmic 

signalling domain homologous to that of IL-1R, termed the Toll/IL-1R homology (TIR) 

domain (O'Neill, Bowie 2007). These TLRs are found on a wide range of cells such as 

mast cells, macrophages, dendritic cells and epithelial cells and to date 12 members 

have been identified - 9 of which are conserved amongst human and mouse (Mogensen 

2009). 

 TLR4 is undoubtedly the most extensively studied TLR to date. It was the first member 

of the family to be discovered and was identified as the receptor for bacterial 

lipopolysaccharide (LPS) from the outer membrane of Gram-negative bacteria. TLR4 is 

not the only receptor involved in LPS recognition. At the plasma membrane, LPS 

binding protein (LBP) is thought to transfer LPS monomers to CD14, a GPI-linked cell 

surface protein. A small protein known as MD2 also binds to the extracellular region of 

TLR4 and aids in LPS-recognition (Janeway, Medzhitov 2002). In addition to binding 

LPS, TLR4 is also involved in the recognition of respiratory syncytial virus fusion 

proteins, mouse mammary tumour virus envelope proteins, Streptococcus pneumonia 

pneumolysin and the plant-derived cytostatic drug paclitaxel (Hennessy, Parker & 

O'Neill 2010). In addition to TL4, TLR2, 6 and 5 are also expressed on the cell surface 

and typically recognize bacterial and fungal components. TLR2 does not recognize 

these PAMPs independently, but instead functions by forming heterodimers with either 



18 
 

TLR1 or TLR6 (Janeway, Medzhitov 2002). Specifically TLR2-TLR1 recognizes 

triacylated lipopeptides from Gram-negative bacteria and mycoplasma, whereas the 

TLR2-TLR6 heterodimer recognizes diacylated lipopeptides from Gram positive 

bacteria and mycoplasma. TLR5 recognizes flagellin, the protein subunits that make up 

bacterial flagella. Flagellin is highly conserved at the N and C terminal and it is in this 

region that TLR5 is thought to bind (Kawai, Akira 2010). TLR 3, 7, 8 and 9 are found 

in intracellular compartments such as endosomes lysosomes and endoplasmic reticulum 

(ER). Here they play a role in microbial and viral nucleic acid recognition. TLR 9 

recognizes unmethylated CpG motifs present in the bacterial genome. Since mammalian 

DNA is methylated and bacteria lack CpG methylation enzymes this is an effective way 

to ensure that only bacterial DNA and not host DNA is recognised (Janeway, 

Medzhitov 2002). TLR7 recognizes imidazoquindine derivatives such as resiquimad 

and imiquimod and guanine analogs such as loxoribine as well as recognizing ssRNA 

viruses such as human HIV and vesicular stomatitis virus (VSV). TLR7 can also 

recognize synthetic poly (U) RNA and certain small interfering RNAs. TLR3 

specifically recognizes dsRNA from dsRNA viruses such as neovirus as well as the 

synthetic analogue polyinosinic-polycytidylic (PolyIC). Stimulation of TLR3 induces 

anti-viral immune responses by promoting the production of both type I interferons as 

well as inflammatory cytokines (Blasius, Beutler 2010). 
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Figure 1.3: TLR receptors, ligands and adaptor molecules [adapted from (Kawai, Akira 2006)]. 

 

1.7.2 TLR SIGNALLING – MyD88 DEPENDENT PATHWAY 

Upon recognition of their ligands, TLRs induce the expression of a variety of defence 

genes that are necessary for fighting invading pathogens. These genes include 

inflammatory cytokines, chemokines, antimicrobial peptides, MHC and co-stimulatory 

molecules (Janeway, Medzhitov 2002). Recognition of PAMPs by TLRs leads to the 

recruitment of a unique set of intracellular TIR-domain-containing adaptors including 

myeloid differentiation factor 88 (MyD88), Mal, TIR-domain-containing adaptor 

inducing interferon-β (TRIF) (Akira, Uematsu & Takeuchi 2006),(Oshiumi et al. 2003) 

Trif-related adaptor molecule (TRAM) (Oshiumi et al. 2003). All TLRs with the 

important exception of TLR3 depend, to some degree on MyD88 in order to signal (Fig 

1.3). MyD88 contains a C-terminal TIR domain that mediates its interaction with the 

TLR and an N-terminal death domain that interacts with its downstream target, the IL-

1R associated kinases (IRAKs) (Wesche et al. 1997).  Ligand binding to the TLR causes 
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MyD88 to associate with the cytoplasmic portion of the receptor leading to the 

recruitment of IRAK-4 and IRAK-1. These IRAK proteins, once phosphorylated 

dissociate from MyD88 and interact with TNF receptor associated factor 6 (TRAF6) – 

and E3 ubiquitin ligase (Kawai, Akira 2007). TRAF6 promotes the synthesis of 

polyubiquitin chains which activate TGFβ activated kinase 1 (TAK1) (Chen 2005). 

TAK1 in combination with TAK1 binding proteins TAB1 and TAB2 activate 

downstream pathways involving IκB kinase (IKK) (discussed further in section 1.8.2) 

and the MAPK family. This interaction ultimately leads to the induction of NFκB and 

MAPK.  

1.7.3 TRIF- DEPENDENT/ MYD88 INDEPENDENT PATHWAY 

The TRIF dependent pathway results in activation of both interferon regulatory factor 3 

(IRF3) and NFκB and is utilised by TLR3 and TLR4 activation (Kawai, Akira 2008). 

TLR4 is unique in that it has two arms to its signalling pathway – a MyD88 dependent 

component that promotes fast activation of NFκB activation and induction of 

proinflammatory molecules and also a MyD88-independent pathway (also used by 

TLR3) that results in the slow activation of NFκB and IRF3. Ultimately IRF3 activation 

leads to the production of type-1 interferons, IFN-α and IFN-β, other IFN inducible 

genes and co-stimulatory molecules (Moynagh 2005).  

TRIF interacts with the TIR domain of TLR3 to mediate downstream signalling, 

whereas another adaptor molecule TRAM acts as a bridging receptor between TLR4 

and TRIF (Fig 2.4) in order to signal (Oshiumi et al. 2003). The N- terminal and C-

terminal regions of TRIF have two distinct functions following TLR3 or TLR4 ligation. 

The N-terminal of TRIF recruits IKKs, which phosphorylate the C-terminal region of 

IRF3 (Sharma et al. 2003). Phosphorylated IRF3 subsequently forms a dimer, which 
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translocates to the nucleus to induce expression of target genes. The C-terminal region 

of TRIF however contains a Rip homotypic interaction motif (RHIM), which mediates 

its interaction with RIP1, a member of the ribosome inactivating protein (RIP) family 

involved in NFκB activation (Meylan et al. 2004). RIP1 is polyubiquitinated and forms 

a complex with TRAF6 which ultimately leads to NFκB activation (Kawai, Akira 

2007). 

 

 

 

Fig 1.4: The MyD88 dependent and independent TLR pathways [adapted from (Takeda, Akira 

2005). 
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1.8 NFκB 

NFκB is a eukaryotic transcription factor that exists in virtually all cell types (Ghosh, 

May & Kopp 1998).  It can be activated by a wide range of various stimuli, including 

cytokines, bacteria, viruses, viral proteins, double-stranded RNA and physical and 

chemical stresses (Siebenlist, Franzoso & Brown 1994). NFκB responsive sites (known 

as κB sites) have been identified in the promoters of numerous genes encoding proteins 

involved in the acute phase response, cytokines, immunoreceptors and cell adhesion 

molecules (Schmid, Adler 2000). 

NFκB consists of five family members which form homo and heterodimeric complexes 

with each other in other to function. Each family member contains an N-terminal 300 

amino acid conserved region known as the Rel homology domain (RHD) which 

mediates DNA binding, nuclear localisation and dimerisation between subunits (Beinke, 

Ley 2004). These NFκB members include NFκB1, NFκB2, Rel A (p65), RelB and c-

Rel. On the basis of their structure, these proteins can be further divided into 2 

subclasses. The first consists of NFκB1 and NFκB2 which are both produced as 

precursor proteins of 105 and 100 kilodaltons respectively. These proteins are then 

processed to form functionally mature NFκB proteins known as NFκBp50 and 

NFκBp52. The second class of NFκB proteins consists of the Rel proteins – Rel A 

(p65), RelB and c-Rel which are all synthesised as mature proteins and contain 

transactivation domains in their C-termini (Schmid, Adler 2000). Most of these proteins 

are transcritpionally active; however some combinations are thought to act as repressive 

complexes. Thus p50/p65, p65/p65, p65/c-Rel and p50/c-Rel are all transcriptionally 

active whereas p50 homodimers and p52 homodimers are transcritpionally repressive 

(Ghosh, May & Kopp 1998). 
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1.8.1 NFkB1 & NFκB2 PROCESSING  

Both NFκB1 and NFκB2 encode precursor proteins that are much larger than the mature 

functional products, p50 and p52. NFκB1 and NFκB2 must therefore be processed first 

to generate their mature by-products. Although the exact mechanism of NFκB 

processing is not known, there are some aspects of its mechanism that have been widely 

accepted. Similar to IκB, these NFκB precursors are phosphorylated by IKK, where 

p105 processing is associated with IKKβ and p100 processing is associated with 

phosphorylation by IKKα. Numerous studies have also suggested the need for post-

translational processing via the ubiquitin-proteasome system however as of yet the 

ubiquitin enzymes required for p50 and p52 generation have not been identified. 

Interestingly, ubiquitin regulated proteolysis is usually a progressive event that yields 

small peptides but not partial protein fragments (Chen 2005). Therefore the generation 

of p50 and p52 are exceptional. The mechanism involved is unclear however the 

identification of a 23 amino acid glycine rich region (GRR) within the N terminal of 

p105 is believed to play an important role in this process. It is believed that processing 

is initiated by ubiquitination which is followed by protosomal degradation of the p105 

precursor from the C terminal end. Once the proteasome hits the GRR, it stops 

processing p105 and mature p50 is released (Ben-Neriah 2002). 
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Figure 1.5: Structure of immature p105 and mature p50; Processing of p105 to p50 

1.8.2 NFκB ACTIVATION PATHWAYS 

In the cell, two main NFκB pathways exist – the canonical and non- canonical 

pathways. The canonical pathway is induced by signalling through cytokine receptors, 

antigen receptors and pattern recognition receptors and relies on the degradation of IκB 

proteins. IκB’s are inhibitory proteins that sequester NFκB in the cytoplasm in the 

absence of activating signals. However, in the presence of an appropriate activating 

stimulus, IκB is degraded, releasing NFκB and enabling it to translocate to the nucleus 

where it can initiate the transcription of specific target genes (Beinke, Ley 2004). 

Degradation of IκB is mediated through its phosphorylation by the IκB kinase complex 

(IKK) which targets the proteins for ubiquitination and subsequent proteasomal 

degradation (Oeckinghaus, Hayden & Ghosh 2011). In contrast, the non-canonical or 

RHD = Rel Homology Domain 

GRR= Glycine Rich Region 

AR= Ankyrin Repeats 
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alternative pathway relies on the processing of p100 instead of the degradation of IκB 

and involves the formation of RelB/p52 complexes (Sun 2011). This pathway is induced 

by specific members of the TNF cytokine family, such as CD40 ligand, B cell activating 

factor (BAFF) and lymphotoxin β. Therefore in this pathway, the processing of p100 

serves two purposes. Processing of p100 generates mature p52 which is needed to 

complex with RelB in order to signal. However p100 also functions as an IκB-like 

molecule, preventing the translocation of RelB in the absence of an appropriate 

activating signal (Oeckinghaus, Hayden & Ghosh 2011). 

 

Figure 1.6: The canonical and alternative pathways of NFκB activation (adapted from 

(Oeckinghaus, Ghosh 2009)) 
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1.8.3 NFκB AND DISEASE 

Dysregulated cytokine production and signalling mechanisms by a variety of immune 

cells has been implicated in the pathogenesis of inflammatory diseases such as RA and 

IBD. NFκB is a major regulator of these processes and is therefore likely to contribute 

to these diseases. Indeed, enhanced NFκB activation has been reported in the synovium 

of RA patients (Jimi, Ghosh 2005). Furthermore, in transgenic mice expressing a 

dominant negative form of IκBα which repressed NFκB activation, disease severity in 

response to CIA was decreased compared to wildtype (WT) (Brown, Claudio & 

Siebenlist 2008). 

The expression and activation of NFκB is also strongly induced in the inflamed gut of 

IBD patients (Atreya, Atreya & Neurath 2008). The amount of activated NFκB was also 

reported to correlate with the severity of intestinal inflammation (Rogler et al. 1998). 

Many of the established immunosuppressive drugs used to treat IBD currently, such as 

corticosteroids, sulfasalazine, methotrexate and anti-TNFα antibodies are known to 

mediate their antiinflammatory effects partly via NFκB inhibition (Auphan et al. 1995, 

Guidi et al. 2005, Thiele et al. 1999). Therefore, NFκB may prove to be a promising 

therapeutic target for the treatment of these diseases in the future. 

1.9 NUCLEAR RECEPTORS 

Nuclear receptors are a large family of ligand activated transcription factors, consisting 

of 48 members. Depending on their DNA and ligand binding properties these receptors 

can then be subdivided into three categories. The steroid and thyroid hormone receptors 

such as the Vitamin D Receptor (VDR) are one class of nuclear receptor and are the 

most extensively studied nuclear receptors to date. Indeed the VDR has proven to be a 

promising drug target in the treatment of certain cancers, autoimmune diseases, 
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infections, cardiovascular disease (CVD) as well as bone and mineral disorders. The 

orphan nuclear receptors are structurally similar to the steroid and thyroid receptors 

however their physiological ligands in vivo are still unknown (Szatmari, Nagy 2008). 

The NR4a receptors are an example of a subfamily of orphan nuclear receptors 

consisting of nerve growth factor-induced clone B (Nur77), nuclear receptor related 1 

(Nurr1) and neuron derived orphan receptor 1 (NOR-1). Much work has been done in 

this area to discover the natural ligands for these receptors however it is also thought 

that these receptors may possess ligand independent transcriptional activities as their 

activity is tightly controlled at the level of expression (Benoit et al. 2006). The third 

classes of nuclear receptors are known as the “adopted” orphan nuclear receptors and 

until recently their natural ligands and physiological role had yet to be defined. These 

receptors form heterodimers with the Retinoid X Receptor (RXR) and can be activated 

by either or both of the heterodimers ligands, referred to as dual ligand permissiveness 

and synergism (Son, Lee 2010). Other adopted orphan receptors that have been the 

focus of intense research recently are the Liver X receptors (LXRα and LXRβ), 

peroxisome proliferator activated receptor γ (PPARγ) and the Farnesoid X Receptor 

(FXR). The nuclear receptors in general, upon activation control target genes involved 

in a number of key cellular processes such as lipid metabolism, differentiation, and 

energy homeostasis (Huang, Glass 2010). The nuclear receptors that were of particular 

interest to us in this study were LXR, RXR and PPARγ – members of the adopted 

orphan nuclear receptor family. 

1.9.1 GENERAL STRUCTURE OF NUCLEAR RECEPTORS 

Nuclear receptors are organized into four functional domains, two of which are well 

characterised both structurally and functionally and are well conserved throughout 

evolution (Waku et al. 2009). The DNA binding domain (DBD) (C domain) is the most 
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highly conserved region of all the functional domains. This domain contains two zinc 

finger like motifs that initiate the binding of the receptor to the promoter of its target 

genes. Besides these zinc fingers, there are also amino acid motifs that determine 

DNA:Receptor recognition sites. A large part of this domain is also responsible for 

dimerising (Waku et al. 2009). Studies have also shown that this domain encodes both 

nuclear localization signals as well as nuclear export signals (Franco, Li & Wei 2003). 

The C terminal hydrophobic ligand binding domain (LBD) is the largest domain (E/F 

domain) and is responsible for the binding of a specific ligand to the receptor. This 

region also contains a ligand dependent activation function (AF-2) which recruits co-

activators to the receptor complex in order to aid transcription (Hall, Quignodon & 

Desvergne 2008). The other two domains are variable in both length and sequence. The 

hinge region (domain D) is less conserved than the other domains and contains between 

approximately 30-50 amino acids that links the DBD to the LBD. This domain is also a 

docking site for cofactors. When phosphorylated it is also correlated with increased 

transcriptional activity (Leibovitz, Schiffrin 2007). Finally there is the N terminal A/B 

domain whose size ranges from 20 amino acids in the VDR, 140 in PPARγ, to over 600 

in the steroid ligand subfamily. In some cases these A/B regions can act as 

transcriptional activators, provide sites of protein phosphorylation or form direct 

interactions with other receptor domains or regulatory proteins. This domain also 

contains a ligand independent function (AF-1) which shows weak conservation across 

the entire nuclear receptor family (<15%). Although this domain can act as a ligand 

independent transcriptional activator, it is also known to synergise with the AF-2 

domain (Waku et al. 2009). 
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Figure 1.7: General structure of nuclear receptors [adapted from (Bain et al. 2007)]. 

 

1.9.2 MECHANISM OF ACTION 

Although all three classes of nuclear receptors have a similar overall structure, there are 

subtle differences in the mechanism by which they carry out gene expression.  

Typically, members of the steroid/thyroid nuclear receptor group are located in the 

cytoplasm and upon receptor occupancy with its ligand, release heat shock proteins, 

translocate to the nucleus and bind as homodimers in a head to head orientation to target 

gene sequences (palindromic) (Leibovitz, Schiffrin 2007). As mentioned earlier both the 

orphan and adopted nuclear receptors, unlike the steroid receptors, typically function as 

heterodimers and bind in a head-to-tail orientation. These heterodimers can be located 

in the nucleus even in the absence of a ligand and are bound to their response elements. 

The presence of specific and potent co-repressors prohibits the transcription of these 

target genes. However activation of these receptors in the presence of their ligands 

promotes the release of the co-repressors while simultaneously encouraging the 

recruitment of co-activators which ultimately leads to transcription. The co-repressor 

complex is replaced by a chromatin remodelling complex that includes the ATP-
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coupled SWI/SNF complex. This facilitates the recruitment of another complex 

containing histone acetylases (SRC/p160), histone methylases, members of the basal 

transcription machinery & RNA polymerase II (Gelman et al. 2006). These co-

activators contain LxxLL motifs that dock to the LBDs. Most co-activator complexes 

initiate transcription by these three mechanisms i.e. interacting with the basal 

transcription machinery (e.g. TRAP/DRIP), by inducing histone protein modifications 

or by local chromatin remodelling. Most of the 300 nuclear receptor co-activators that 

have been identified to date have enzymatic activities that result in phosphorylation, 

acetylation, methylation, ubiquitination and SUMOylation of target proteins. 

Acetylation of histones is one of the best studied mechanism in which these co-

activators can initiate transcription. The conserved lysine residue in the N terminal of 

histones is acetylated and this results in the loosening of the nucleosome structure, 

making the DNA more accessible to transcription factors (Szeles, Torocsik & Nagy 

2007). The co-activators recruited to the response elements may also have a specific 

preference for either or both partners of the heterodimer e.g. The TRAP220/DRIP205 

complex of co-activators contains two LxxLL motifs with one of the motifs displaying 

preference for RXR, whereas the other motif interacts with either the TR or the VDR. 

So far, the expression of these co-activators is not thought to be limited to a particular 

tissue or subset of cells but instead, is believed to be ubiquitously expressed (Berger, 

Moller 2002). Co-repressors, on the other hand can inhibit transcription when the NR is 

in an unligand state, by directly interacting with the hinge / ligand binding domain. 

These co-repressors may also act by deacetylating histones which compacts 

nucleosomes into tight and inaccessible structures and thus prevents the initiation of 

transcription (Jenster 1998). 
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Figure 1.8: Mechanism of action of nuclear receptors [adapted from (Berger, Moller 

2002)] 

1.9.2.1 TRANSREPRESSION 

Described above, is the most common mechanism in which nuclear receptors can exert 

their effects. This mechanism, which is also known as transactivation, usually results in 

the alteration of metabolic pathways or components within the cell. However these 

receptors can also carry out their functions in a ligand dependent transcriptional 

independent manner. This is more commonly known as transrepression and is different 

to active repression in that, although it antagonises gene expression it does not involve 

sequence specific binding by the nuclear receptor DBD. Instead it involves protein-

protein interactions between ligand bound nuclear receptors and transcription factors or 

co-regulatory complexes located at the promoter elements of target genes (Straus, Glass 

2007). Transrepression mainly results in anti-inflammatory effects by directly 

interfering with inflammatory response pathways and transcription factors such as 

NFκB, AP-1, NFAT and STATs. Indeed molecular studies have shown that PPARγ can 
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interfere with NFκB by physically interacting with the p50 and p65 subunits (Pascual, 

Glass 2006). 

Although it is understood that a ligand bound NR can physically interact with TFs or 

coregulatory complexes and repress gene expression, the exact mechanism in which this 

occurs is not fully understood or indeed may vary depending on the cell type, ligand or 

type of stimulus applied. Some of the models that have been proposed thus far suggest 

that NRs may compete with NFκB /AP-1 for coactivators that are essential for their 

signalling since the coactivators required to drive these inflammatory responses overlap 

with those needed to initiate transcription of nuclear receptor target genes (Lee, Kim & 

Baek 2008). Indeed, it has been shown that the GR, a member of the steroid/thyroid 

class of nuclear receptors can negatively affect AP-1 signalling by sequestering the 

cAMP response element (CREB) binding protein CBP/p300, a coactivator that is 

necessary for this signalling (Martens et al. 2005). This has also since been proven to be 

the case for RXR and the androgen receptor (AR) (DiSepio et al. 1999, Aarnisalo, 

Palvimo & Janne 1998). It has also been proposed that NRs can alter coactivator use as 

well as regulating components of signal transduction pathways involved in NFkB and 

AP-1. In addition, these receptors may also physically interact with NFκB and AP-1, 

sequestering it from its transcription target site (Berger, Moller 2002). 

It has been described recently by a number of independent groups that SUMOylation 

may be a key mechanism in which NRs can actively transrepress other inflammatory 

transcription factors. SUMOylation of transcription factors has previously been linked 

with both increased and decreased transcriptional activity (Pascual et al. 2005). SUMO 

or small ubiquitin-related modifier is a family of proteins consisting of SUMO1, 2 and 3 

that carry out post translational modifications within a cell. Pascual et al showed that 

SUMOylation of a single lysine residue in the PPARγ LBD resulted in its adherence to 
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the NcoR corepressor complex on the inos promoter, preventing the clearance of the 

complex upon exposure to inflammatory stimulus and thus resulting in the inos gene 

remaining repressed (Pascual et al. 2005). 

Similarly Ghisletti et al demonstrated that LXR transrepression also uses SUMOylation 

and an NcoR-dependent pathway. However in contrast to PPARγ, LXRs are 

SUMOylated by SUMO2 and SUMO3 rather than SUMO1, as is the case for PPARγ. 

These studies provide increasing evidence that NR can transrepress inflammatory genes 

by distinct and parallel pathways that ultimately effect corepressors associated with 

target genes or indeed the transcription factors that induce their transcription (Ghisletti 

et al. 2007). 

 

1.10 PPARγ 

PPARγ is a subtype of the peroxisome proliferator activated receptor family in which 

two other isoforms PPARα and PPARβ also exist. As members of the adopted nuclear 

orphan receptor superfamily they form obligate heterodimers with the RXR and are 

activated endogenously by fatty acids, fatty acid metabolites/derivatives, lipophilic 

hormones and also synthetically by the Type 2 diabetes class of drug known as the 

glitazones. PPARγ was originally thought of as regulator of nutrient metabolism and 

energy homeostasis due to its presence in high concentrations in adipocytes (Berger, 

Akiyama & Meinke 2005, Berger, Akiyama & Meinke 2005). However after its 

discovery in monocytes and macrophages a role in the immune system and 

inflammatory disease began to emerge. It has since been found in a number of immune 

cells including B cells, T cells and DC.  PPARγ activated DC differ from conventional 

mature DC in that they have diminished migratory capabilities, increased phagocytic 
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abilities, altered differentiated phenotype and the ability to induce T cell tolerance. 

Murine splenic CD11c
+
 DC express PPARγ and it has also been detected in bone 

marrow derived DC (Szatmari, Nagy 2008). The receptor itself is highly and acutely 

unregulated during DC differentiation. In addition more than 1000 transcripts are 

regulated by PPARγ during DC differentiation, most of which represent genes involved 

in lipid metabolism and transport and alterations in immune function appear to be 

secondary to these changes in gene expression (Szatmari et al. 2007). PPARγ instructed 

DC differentiate into less stimulatory DC compared to untreated counterparts as seen by 

an altered cell surface expression pattern of costimulatory molecules i.e. they express 

less CD80, TLR4 and CD36. These PPAR instructed DC also have an altered cytokine 

and chemokine profile as reported by a decrease in production of IL-12 and TNFα as 

well as reduced secretion of MCP2, IP-10 and RANTES (Szatmari, Rajnavolgyi & 

Nagy 2006). Alteration in cell surface marker expression and cytokine production 

undoubtedly affects signals 2 and 3 which are needed for effective T cell priming by 

DC. As expected, PPAR activated DC severely impaired CD4
+
 T cell priming both in 

vitro and in vivo (Klotz et al. 2009). These PPAR ligand treated DC reportedly skew the 

differentiation of these APCs to a special DC subset that has a reduced Th1 capacity but 

an enhanced Th2 profile (Gosset et al. 2001). Thus activation of PPARγ in DC has 

consequences not only for its differentiation but also for adaptive immunity. In addition 

PPARγ activated DC express less CD1a but more CD1d, which results in enhanced 

capacity to activate a CD1d dependent cell type, the iNKT – invariant Natural killer T 

cell (Szatmari et al. 2004). Recent studies have shown that PPARγ strongly enhanced 

the expression of the co-inhibitory molecule B7H1 in DC (Klotz et al. 2009). Therefore, 

not only do PPARγ instructed DC have decreased signalling via signals 1 and 2 but 

increased co-inhibitory signals via B7H1 ultimately leading to diminished CD8
+
 and 
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CD4
+
 T cell responses. The receptor has also been discovered in murine Langerhan cells 

and its activation inhibited TNFα induced migration of these cells from the epidermis to 

the draining lymph node (DLN) (Angeli et al. 2003). Since it has also been reported that 

PPARγ prevents the expression of CCR7, a key chemokine receptor involved in DC 

motility, it seems likely that PPARγ activation may affect DC migration and their 

subsequent accumulation in lymphoid organs (Hanley et al. 2010). 

1.11 LXR 

The Liver X Receptors consists of two subtypes, LXRα and LXRβ which are 77% 

structurally identical to each other (Repa, Mangelsdorf 2000). However their expression 

pattern differs greatly. While LXRβ is expressed ubiquitously, the expression of LXRα 

is primarily in liver, intestine, kidney, adipose tissue and certain immune cells such as 

macrophages and DC (Zelcer, Tontonoz 2006). LXR plays a key role in cholesterol 

homeostasis. In the intestine, LXR controls the reabsorption of cholesterols via the 

transporter proteins ABCG5 and ABCG8 (Repa, Mangelsdorf 2000). Furthermore 

activation of these receptors in vivo leads to increased HDL levels, reduced cholesterol 

levels and reduced risk of atherosclerosis (Bradley et al. 2007). Unlike PPARγ whose 

role in DC has been well described, the role liver X receptors may play in DC function 

still remains somewhat elusive. LXR activation in mature human DC results in a 

significant decrease in proinflammatory cytokines IL-12p40, IL-12p70 as well as an 

increase in IL-10 secretion (Geyeregger et al. 2007). Interestingly, fascin an actin-

bundling protein that is strongly related to dendrite formation, was shown to be 

abolished in mature human DC when treated with an LXR synthetic agonist. Lack of 

fascin in these cells prevented adequate immunological synapse formation between DC 

and T cells, thus showing the potential role LXRα may play in both innate and adaptive 

immunity (Geyeregger et al. 2007). It has also recently been shown that both human and 
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mouse tumours produce endogenous LXR ligands and that in the presence of these 

ligands and synthetic LXR agonists, CCR7 expression on maturing DC is inhibited. 

CCR7 acts as a homing receptor, directing mature dendritic cells to the lymph node to 

present antigen to naïve T and B cells. Inhibition of CCR7 results in impaired migration 

of DC to the draining lymph nodes thus affecting the initiation of the adaptive immune 

response (Villablanca et al. 2010). This could have important consequences for 

immunotherapy and cancer biology. 

1.12 RXR 

The Retinoid X receptor consists of 3 members – RXRα, RXRβ and RXRγ that are 

encoded on chromosome 9, 6 and 1 respectively. RXRα is predominantly expressed in 

the liver, kidney, skin and intestine whereas RXRβ is widely distributed and can be 

detected in almost every tissue (Dolle et al. 1994). The expression of RXRγ is restricted 

to the muscle and certain parts of the brain (Haugen et al. 1997). As mentioned 

previously, these subtypes can form homodimers or heterodimers with a large number 

of other nuclear receptors including the vitamin D receptor (VDR), FXR, the PPARs, 

LXR and thyroid hormone receptor (TR) (Mangelsdorf et al. 1992). Therefore, due to 

RXR’s wide distribution pattern and its ability to heterodimerise with a number of other 

receptors, it can control a large number of genes in developmental, metabolic and 

immune processes (Germain et al. 2006). All three RXRs are activated endogenously by 

the vitamin A metabolite 9-cis retinoic acid (9CRA). Synthetic compounds known as 

rexinoids have also been developed to activate RXR however similar to 9CRA, these 

compounds activate all three RXR subsets. To date, no RXR agonist with particular 

subtype specificity has been reported (Kagechika, Shudo 2005). RXR is also expressed 

to varying degrees in immune cells such as macrophages, T cells, Langerhan cells and 

dendritic cells. RXRα is the most abundantly expressed RXR subtype in DC and has 
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been shown to have anti-inflammatory properties (Szeles et al. 2010). Activation of this 

receptor in vitro decreased the expression of CCR7 on maturing DC which as 

mentioned earlier, aids in the migration of DC to the draining lymph nodes where they 

can interact and instruct naive T cells (Villablanca et al. 2008). Chemotaxis of DC 

towards the CCR7 ligand MIP3β was also decreased in the presence of an RXR agonist 

(Zapata-Gonzalez et al. 2007). Taken together, these reports highlight the anti-

inflammatory potential RXR may exhibit in vivo. 

1.13 REGULATION OF NUCLEAR RECEPTORS BY MicroRNAs 

Although the benefits of nuclear receptor activation are vast, ranging from anti-

inflammatory, anti-atherosclerotic  and anti-diabetic effects, dysregulated expression or 

activation of these receptors can result in unwanted side effects such as weight gain, 

increased risk of congestive heart failure and fatty liver disease (Osman 2012, Gregoire, 

Kersten & Harrington 2007). Therefore the regulation of these receptors is essential in 

order to maintain homesostasis. MicroRNAs represent a newly explored avenue in 

which these nuclear receptors are regulated. MicrRNAs are a family of short (21-25 

nucleotides), non-coding RNAs that control gene expression at the post-transcriptional 

level. miRNAs are initially transcribed as long primary transcripts (pri-miRNA) which 

are subsequently cleaved by two ribonuclease (RNase) III endonucleases (Droshe and 

Dicer) to yield mature miRNA. These mature miRNAs can negatively regulate gene 

expression by base pairing to partially complementary segments in the 3’ UTR (miRNA 

response element MREs) of target mRNAs. This leads to cleavage of the target mRNA 

and/or translational inhibition thus ultimately leading to the negative regulation in target 

gene expression (Osman 2012). Nuclear receptors are negatively regulated by miRNAs 

but can also positively regulate miRNA expression themselves. Upon activation with its 

synthetic ligand GW3965, LXR can induce the expression of mature hsa-miR-613 in 



38 
 

primary human hepatocytes. This positive regulation of hsa-miR-613 by LXR is 

mediated by the sterol regulatory element binding protein (SREBP)-1c, a known LXR 

target gene. Hsa-miR-613 can subsequently target the 3’UTR of LXRα, inhibiting its 

translation thus ensuring the tight regulation of this nuclear receptor (Ou et al. 

2011).Recent work by Sun et al also identified miR-26 as an LXR suppressed gene. 

Mir-26 inhibits the expression of ABCA1 thus negatively effecting cholesterol efflux. 

However LXR once activated can inhibit miR-26 to further enhance cholesterol efflux 

and control metabolic regulation (Sun et al. 2012). Targeting these miRNAs may also 

be beneficial in maximising the effects of these receptors in response to their respective 

ligands. High doses of PPARγ agonists for example are used clinically to exert their 

therapeutic effects. However such high doses of these drugs often leads to unwanted 

side effects. It has therefore been proposed that targeting miR-27b, a microRNA that 

negatively regulates PPARγ, could increase its expression and responsiveness to its 

ligands (Karbiener et al. 2009). Targeting miRNA that regulate these receptrors may 

prove beneficial in the treatment of disease, however previous work has also highlighted 

that targeting these nuclear receptors directly may also be beneficial in a clinical setting. 

1.14 TARGETING NUCLEAR RECEPTORS IN DISEASE 

The Thiazolidinedione’s (TZD) are a class of insulin sensitizing drugs known to 

potently activate PPARγ. These drugs are FDA approved for the treatment of type 2 

diabetes and represent an excellent example of the benefits to targeting nuclear 

receptors in disease (Lehmann et al. 1995). Although PPARγ is predominantly 

expressed in liver and adipose tissue, its expression in a number of immune cells and in 

the intestinal epithelium led to the hypothesis that targeting PPARγ in inflammatory 

disorders may be beneficial. Indeed PPARγ expression has previously been associated 

with IBD, where patients with UC, but not Crohns disease (CD) showed reduced 
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PPARγ expression in colonic epithelial cells compared to healthy controls (Dubuquoy et 

al. 2003). 5-aminosaliclylic acid (5-ASA), a drug currently used to treat IBD, 

ameliorates colitis in WT mice but not heterozygous PPARγ
+/-

 mice, suggesting that 

drugs currently used to treat IBD can mediate their effects via PPARγ (Rousseaux et al. 

2005). Furthermore, in mouse models of chemically induced colitis, colonic 

inflammation was significantly reduced following treatment with PPARγ agonists (Su et 

al. 1999). A study undertaken by Desreumaux et al also highlighted RXR as a potential 

therapeutic target in the treatment of IBD. RXRα
+/- 

mice displayed significantly 

increased susceptibility to chemically induced colitis compared to WT mice. 

Interestingly, by administering low doses of both PPARγ and RXR agonists, chemically 

induced colitis was significantly reduced (Desreumaux et al. 2001). This suggests that 

targeting a specific nuclear receptor heterodimer rather than individual receptors could 

be beneficial in treating disease. Lower doses of agonists could be used to activate both 

receptors therefore reducing off target and undesirable side effects in patients. Although 

the possible anti-inflammatory properties of LXR have been relatively unexplored, a 

link between the receptor and IBD has already been reported. Work undertaken by 

Anderson et al concluded that polymorphisms in LXR were strongly associated with an 

individual’s susceptibility to UC (Andersen et al. 2011). 

MS is generally viewed as an autoimmune inflammatory disease that is characterised by 

the destruction of CNS myelin due to persistent inflammation in the brain and spinal 

cord (Lassmann, Bruck & Lucchinetti 2007). Due to the expression of nuclear receptors 

in immune cells and their proven ability to control inflammatory processes, it is likely 

that a therapeutic link between them and disease exists. In an experimental mouse 

model of MS (known as EAE), PPARγ
+/-

 mice developed an exacerbated form of 

disease compared to WT mice and the treatment of both WT and PPARγ
+/- 

mice with a 
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specific PPARγ antagonist increased both the severity and duration of disease in these 

mice (Natarajan et al. 2003)(Raikwar et al. 2005). Administering PPARγ agonists to 

EAE mice also reduced the incidence and severity of disease (Feinstein et al. 2002). 

Oligodendrocyte precursor cells (OPC) are a population of adult stem cells that are 

involved in remyelination of the CNS. However during the course of MS, the 

population of these cells declines and symptoms become more pronounced. Huang et al 

demonstrated that RXR agonists were positive regulators of OPC differentiation and 

survival whereas RXR antagonists several impaired OPC differentiation indicating a 

possible role for RXR in MS recovery (Huang, Franklin 2011). Indeed, RXR agonists 

administered in conjunction with PPARγ agonists decreased proinflammatory cytokine 

production from primary mouse astrocytes – a cell type implicated in the pathology of 

MS (Xu et al. 2006). 

RA is a final example of an autoimmune inflammatory disease. It is characterised by 

progressive joint destruction and infiltration to the synovium of CD4
+
 T cells, 

macrophages and B cells (Firestein 2003). The expression of PPARγ was significantly 

increased at both the protein and mRNA level in macrophages, fibroblasts and 

endothelial cells in RA patients compared to healthy controls (Jiang et al. 2008). It was 

also reported that PPARγ agonists inhibited the release of proinflammatory cytokines 

from RA synovial membrane cells (Sumariwalla et al. 2009). Similarly in a model of rat 

adjuvant induced arthritis, PPARγ agonists reduced bone erosions and therefore reduced 

disease severity (Koufany et al. 2008). Interestingly, the role of LXR or RXR in RA has 

not been extensively explored however given the antiinflammatory effects they have 

displayed this far it seems likely that their activation could ameliorate disease. 
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AIMS AND OBJECTIVES  
 

In this study we examined three prominent nuclear receptors; PPARγ which has already 

been well characterised and LXR and RXR which are less well studied. As the study 

progressed a greater focus was placed on LXR. Our overall objectives were as follows: 

 To assess the effects of nuclear receptor activation in DC. In particular we 

focused on parameters important for the generation of Th cell responses i.e. 

costimulatory marker expression, MHC expression and cytokine secretion. We also 

examined particular nuclear receptor heterodimers in order to identify which 

partnerships were important for the anti-inflammatory effects of nuclear receptors in 

DC. 

 

 To determine if nuclear receptors exerted their effects on a common element 

within the TLR signalling pathway. 

 

 To determine the intracellular molecular target of LXR. 

.  
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2.1 MATERIALS 

TISSUE CULTURE MATERIALS/REAGENTS 

 

Materials  Source  

Tissue culture flasks T-75 cm
2
/T-

175cm
2
 

Nunc
™ 

Sterile Petri Dishes Nunc
™

 

6, 24, 96-well tissue culture plates Nunc
™

 

96 round bottom plates Sarstedt 

Dimethyl sulphoxide (DMSO) Sigma
®

 

GMCSF  J558 GMCSF producing cell line 

Trypan blue (0.4% v/v) Sigma
®

 

CellTiter 96
®
 Aqueous One Solution Pierce 

RPMI-1640 Invitrogen
™

 

Foetal Calf Serum (FCS) Invitrogen
™

 

Penicillin Streptomycin Invitrogen
™

 

LPS (E.Coli serotype R515) Alexis Biochemicals 

PGN Invitrogen
™

 

PamC3S4 Invitrogen
™

 

Poly:IC Invitrogen
™

 

Zymosan Invitrogen
™

 

Flagellin Invitrogen
™

 

CPG Invitrogen
™

 

DMEM Invitrogen
™

 

Hygrogold Invitrogen
™

 

Blasticidin Invitrogen
™

 

TABLE 2.1: All tissue culture materials/reagents and corresponding sources. 
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PROTEIN PURIFICATION REAGENTS 

Materials Source 

BCA Protein Assay Pierce 

Potassium Chloride (KCl) Sigma
® 

Sodium phosphate dibasic (Na2PHO4) Sigma
®

 

Dithiothreitol (DTT) Sigma
®

 

Potassium phosphate (KH2PO4) Sigma
®

 

Glycerol 99.99 % Sigma
®

 

Trizma Base Sigma
®

 

Sodium dodecylsulphate (SDS) Sigma
®

 

Tween
®
 20  Sigma

®
 

N,N,N′,N′-Tetramethylethylenediamine 

(TEMED) 

Sigma
®

 

Ammonium persulphate (APS) Sigma
®

 

Phenylmethanesulfonyl fluoride (PMSF) Sigma
®

 

Propan-2-ol (isopropanol) VWR International Ltd. 

30 % (w/v) Acrylamide/Bis solution Bio-Rad 

Sodium Orthovanidate Sigma
®

 

Leupeptin Sigma
®

 

Aprotinin Sigma
®

 

Benzamidine Sigma® 

Trypsin Inhibitor Sigma® 

Immobilon Western HRP Substrate Millipore 

Re-Blot Plus Solution (10 X) Millipore 

Ponceau S Solution Sigma
®

 

Nitrocellulose membranes  Biosciences 

Fuji SuperRX film FujiFilm Ireland Ltd. 

Precision Plus Protein
™

 Dual Color Standard Bio-Rad 

TABLE 2.2: All protein purification reagents and corresponding sources. 
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WESTERN BLOTTING/ CO-IMMUNOPRECIPITATION REAGENTS 

Antibody  Source Clone  

Anti-Phospho NFκB-p65 Cell Signalling   

Anti-NFκBp105/p50 Merck Millipore   

Anti- Total NFκBp65 Cell Signalling   

Anti-β actin Sigma
®

   

Anti-LXR Sigma
®

   

Anti-mouse IgG 

peroxidase  

Sigma
®

   

Anti-rabbit IgG 

peroxidase 

Sigma
®

   

Anti- goat IgG 

peroxidase 

Sigma®   

Protein A/G Agarose 

beads 

Santa Cruz 

Biotechnology Inc 

  

TABLE 2.3: Antibodies and reagents used for immunoblotting and immunoprecipitation 

experiments. 

 

NUCLEAR RECEPTOR AGONISTS/ANTAGONISTS 

Materials Source 

Rosiglitazone (RSG) Sigma
®

 

GW9662 Sigma
®

 

T0901317 Sigma
®

 

TABLE 2.4: All commercially available nuclear receptor agonists/antagonists and sources 

 

ELISAS 

Materials Source 

96-well microtitre plate Nunc
™

 

3,3’,5,5’-tetramethyl-benzidine (TMB) Sigma
®
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Tween
®
 20 Sigma

®
 

Bovine serum albumin (BSA) Sigma
®

 

Sodium Azide (NaN3) Sigma
®

 

DuoSet ELISA kits R&D Systems
®

 

1X PBS Biosciences 

TABLE 2.5: All ELISA materials/reagents and corresponding sources. 

 

FLOW CYTOMETRY 

Antibody Fluorochrome Source Isotype Control Concentration/ 

10
6
 cells 

               

TLR4-MD-2 PE BD RatIgG2a 0.5 μg                

CD11c APC BD Ham IgG1 0.5 μg                

CD40 FITC/PE BD Ham IgM 0.5 μg                

CD80 PE BD Ham IgG 0.5 μg                

CD86 FITC BD Rat IgG2a 0.5 μg                

MHCII FITC/PE BD Rat IgG2a 0.5 μg                

TABLE 2.6: Antibodies used for FACS analysis of cell surface markers; suppliers and 

concentrations used. 

 

 

FACS MACHINE/PREPARATION FACS MACHINE/PREPARATION 

Materials Source 

FACS Flow BD 

FACSRinse BD 

FACSClean BD 

37% (v/v) paraformaldehyde Sigma
®

 

TABLE 2.7: Materials/reagents used for flow cytometry and FACS preparation. 
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DNA MANIPULATION AND LUCIFERASE ASSAYS 

Materials Source 

geneJuice
® 

Transfection Reagent Novagen
®

 

10 X Passive Lysis buffer Promega 

Colentrazine Argus Fine Chemicals 

Luciferin Sigma
®

 

Coenzyme A Sigma
®

 

ATP disodium salt hydrate Sigma
®

 

Ethylenediaminetetraacetic acid 

(EDTA) 

Sigma
®

 

Magnesium Sulphate (MgSO4) Sigma
®

 

Dithiothreitol (DTT) Sigma
®

 

TABLE 2.8: Materials used for manipulation of DNA plasmids in transient transfections. 

 

PLASMIDS 

 

Figure 2.1: NFκB vector map 
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Figure 2.2: ISRE vector map 

 

 

 

RNA ISOLATION AND cDNA SYNTHESIS  

Materials Source 

Nucleospin RNA II Columns Fisher Scientific
®

 

DEPC treated water Invitrogen 

High Capacity cDNA Reverse                        

Transcription Kit 

Applied Biosystems 

TABLE 2.9: Materials used for mRNA isolation from cells 

 

 



49 
 

RT-PCR 

Materials Source 

TaqMan® Universal Mastermix Applied Biosystems 

MicroAmp® Optical 96-well plate Applied Biosystems 

MicroAmp® Optical Adhesive Film Applied Biosystems 

TaqMan® Gene Expression Assays Applied Biosystems 

TABLE 2.10: Primers and Mastermix used for RT-PCR reactions. 

 

CONFOCAL MICROSCOPY 

Materials Source 

AlexaFluor® 488/ 546 2
o 

Antibody
 Invitrogen 

Propidium Iodide Milltenyi 

Mounting Media Dako 

TABLE 2.11 Materials used to prepare confocal slides 

2.2 METHODS  

 

2.2.1 PREPARATION OF MAIN BUFFERS/ ELECTROPHORESIS GELS  

Buffer Composition 

1 X Phosphate Buffered Saline (1 X 

PBS) 

8 mM Na2HPO4, 1.5 M KH2PO4, 137 Mm 

NaCl, 2.7 mM KCL, pH 7.4 

PBS-Tween (PBS-T) 1 X PBS with 0.05% Tween
®
 20 

1 X Tris Buffered Saline (10 X TBS) 20 mM Trizma, 150 mM NaCl pH 7.2 – 

7.4 

TBS-Tween (TBS-T) 1 X TBS with 0.05% Tween
®
 20 

TAE Running Buffer (1X) 40mM Tris Base, 0.35% Glacial Acetic 

Acid, 50mM EDTA         

TABLE 2.12: Composition of most commonly used buffers. 
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2.2.2 PREPARATION OF NUCLEAR RECEPTOR AGONISTS AND 

ANTAGONISTS 

RXR agonists/antagonists were a kind gift from Prof Hiroyuki Kagechika in Tokyo 

Medical and Dental University. Upon arrival, compounds were dissolved in sterile 

filtered DMSO to a stock concentration of 10mM and sterile filtered again. Aliquots of 

20μl were stored at 4ᴼC for subsequent experimental use. Further stocks of 

agonists/antagonists received throughout these studies were tested for reproducibility. 

RSG and T0901317 were also dissolved in sterile filtered DMSO to a stock 

concentration of 100mM and sterile filtered again. Aliquots of 20μl were stored at 4ᴼC 

and -20ᴼC respectively for subsequent experimental use. The PPARγ antagonist 

GW9662 was dissolved in the same way to a final concentration of 10mM, aliquoted 

and stored for future use at 4ᴼC.  

2.3 CELL CULTURE 

All tissue culture was carried out using aseptic techniques in a class II laminar airflow 

unit (Holten 2010- ThermoElectron Corporation, OH, and USA). Cells were maintained 

in a 37°C incubator with 5% CO2 and 95% humidified air (Model381- ThermoElectron 

Corporation, OH, and USA). Cells were grown in complete RPMI-1640 medium 

(cRPMI) [see Appendix]. FCS was heat inactivated to order to inactivate complement 

and then aliquoted for storage at -20°C. Supplemented medium was stored at 4°C. 

2.3.1 CELL ENUMERATION AND VIABILITY ASSESSMENT 

Cell viability was assessed using the Trypan blue exclusion method. This method is 

based on the principle that dead or dying cells which do not have an intact cell 

membrane will take up the dye and subsequently be stained blue. 100μl of cell 

suspension was mixed with 150μl PBS and 250μl of trypan blue solution (0.4% (v/v)).  
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After ~2 min cells were applied to a brightline haemocytometer (Sigma
®
) and examined 

under high-power magnification (40) using an inverted microscope (Olympus CKX31, 

Olympus Corporation, Tokyo, Japan). Cells that were inside the central grid of 25 

squares were counted. 

 

Figure 2.3: Cell enumeration using the haemocytometer 

2.3.2 HUMAN EMBRYONIC KIDNEY CELL LINES HEK293 

Human embryonic kidney cell line HEK293 stably transfected with TLR4, CD14 and 

MD-2, (HEK293-MTC) were a kind gift from Prof. Luke O’Neill, School of 

Biochemistry, Trinity College Dublin. The HEK293-MTC cell line was cultured with 

appropriately supplemented complete DMEM media [see Appendix]. Cells were 

cultured in 175cm
2

 flasks as follows; complete DMEM supplemented with 50µg/ml 

Hygrogold and 1µg/ml Blasticidin to maintain expression of TLR4, CD14 and MD-2. 

Cells were passaged every 3 to 4 days based on confluency. For subculture, the media 

was removed from the flasks and cells washed twice with 5ml ice cold sterile PBS 

(Invitrogen
™

). Following this cells were removed from the surface of the flasks by 

A viable cell count was achieved by 

using the following formula: 

Cells/ml= N x 5 x 10
4  

Where N = total number of cells 

counted, 5 = dilution factor and 10
4
 

= constant. 
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incubating them with 2ml of 1 X Trypsin solution (Sigma
®
) for 5 min at 37 C. 10ml of 

complete media was then added to resuspend cells and cells were spun at 1200rpm for 

5min. Finally cells were resuspended in media, subcultured or counted for experiments. 

2.3.3 PREPARATION OF CELL STOCKS 

Cells were grown to a state of sub-confluency and were harvested and counted as 

previously described in section 2.3.1-2.3.2. Cells were removed from culture and 

resuspended in 1ml cryoprotectant (10 % (v/v) dimethylsulphoxide (DMSO), 40 % 

(v/v) FCS and 50% RPMI) and transferred to labelled and dated cryovials (Nalgene
®
, 

Cryoware). These aliquots were placed at -20ºC for 2hrs and then at -80ºC for 3hrs 

before being stored in a liquid nitrogen vessel. 

2.3.4 REVIVAL OF FROZEN STOCKS 

Cryovials were carefully removed from the liquid nitrogen tank and quickly thawed in a 

37 C water bath. Thawed cells were transferred to 10ml RPMI on ice and carefully 

resuspended. Cells were spun at 1200rpm for 5min to remove excess DMSO. Following 

this, supernatant was discarded and cells resuspended in 10 ml of room temp RPMI. 

Cells were spun again and a third wash carried out using 37 C RPMI. After the final 

wash cells were resuspended in 1ml of the appropriate medium and transferred to a 

75cm
2
 flask with appropriately supplemented media [see Appendix]. 
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2.3.5 ISOLATION AND CULTURE OF MURINE BONE MARROW DERIVED 

DENDRITIC CELLS 

 

2.3.5.1 DAY 1 – HARVESTING CELLS 

DC were harvested from Balb/c mice (Charles River). Bone marrow from the tibia and 

femurs was extracted by flushing cRPMI through the bones using a 27.5g needle into a 

sterile Petri dish. The bone marrow was broken up gently using a 19.5g needle and 

transferred to a sterile falcon tube and centrifuged for 5min at 1200rpm. Supernatant 

was then removed and the remaining pellet was resuspended in sufficient cRPMI to 

allow for 1ml of cells per Petri dish required. A cell count was performed using the 

trypan blue exclusion method to ensure an adequate number of viable cells have been 

harvested. 9ml of cRPMI and the growth factor GMCSF (40ng/ml) and 1ml of cells 

were added to each dish and the appropriate amount of agonists/antagonists or vehicle 

control was added. 

2.3.5.2 DAY 4 – FEEDING CELLS 

Petri dishes were tipped slightly in order to easily see the monolayer of cells adhered to 

the dish. Using a transfer pipette 6mls of media was removed gently without disturbing 

the layer of cells. 10mls of prewarmed cRPMI with GMCSF was added to the culture 

with the appropriate agonist/antagonist or vehicle control. Cells were incubated at 37ᴼC. 

2.3.5.3 DAY 7 – COUNTING AND PLATING CELLS 

To remove semi-detached and therefore immature dendritic cells, cells were scraped 

gently using cell scrapers and transferred to a falcon tube. Each Petri dish was examined 

under a microscope to ensure ~ 90% of cells were recovered. Cells were centrifuged at 

1200rpm for 5min, resuspended and counted using the trypan blue exclusion method. 
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The cell concentration was adjusted with cRPMI – generally cells were plated at 1 

x10
6
cells/ml. The appropriate agonists/antagonists or vehicle control were readded 

before cells were plated. 

2.3.6 CULTURE OF THE J558 GMCSF- SECRETING CELL LINE 

The murine gene for GMCSF was cloned into a mammalian expression vector 

(Karasuyama) and transfected into the plasmacytoma line X63-AgS. Cell stocks were 

kindly donated by Professor Kingston Mills (Trinity College, Dublin). After removal 

from liquid nitrogen and rapid thawing, cells were washed in 30mls cRPMI, and then 

resuspended in 5mls of selection medium consisting of 1mg/ml G418 Geneticin 

(GibcoBRL) in complete RPMI for 2 passages. Cells were seeded at 1x10
6 

cells/ml each 

time and culture flasks were left in the upright position in the incubator. After the 

second passage cells were washed twice in cRPMI, counted and seeded in cRPMI at 1 x 

10
6
 cells/ml. When cells reached a medium density they were seeded at 2.5x10

5
 cells/ml 

at each passage. Supernatant was collected from J558 from the first 9 passages and the 

amount of secreted GMCSF was quantified by ELISA (R&D). In order to differentiate 

bone marrow cells into CD11c positive BMDC, GMCSF was used at a concentration of 

40ng/ml. 

 

2.3.7 ADDITION OF NUCLEAR RECEPTOR AGONISTS/ ANTAGONISTS 

 

Cells were cultured for 7 days in the presence of the vehicle control DMSO, and nuclear 

receptor agonists/antagonists. Addition of nuclear receptor agonists/antagonists from 

Day 1 of  BMDC harvest was necessary in order to alter the differentiation process of 

the DC and concurs with previous reports published within this field (Klotz et al. 2007) 
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(Zapata-Gonzalez et al. 2007, Torocsik et al. 2010). RSG was added at a concentration 

of 10μM, T0901317 at a concentration of 2μM and RXR agonists PA024 and HX630 at 

a concentration of 1μM. Nuclear receptor antagonists were added where appropriate, 

2hrs prior to agonist treatment at a concentration of 1μM.  

2.3.8 TOLL-LIKE RECEPTOR ACTIVATION 

Cells were activated with TLR ligands which are outlined in Table 2.13, and incubated 

for 24hrs before being used in the relevant assays. 

 

 

TLR     LIGAND  STOCK 

CONCENTRATION 

WORKING 

CONCENTRATION 

   2/1 Pam3CsK4  1mg/ml 1μg/ml 

   2/6 Zymosan  1mg/ml 10μg/ml 

   3 Poly:(IC)  1mg/ml 10μg/ml 

   4 LPS  1mg/ml 100ng/ml 

   5 Flagellin  100μg/ml 5μg/ml 

   7 Loxoribine  10mM 1mM 

   9 CpG  500μM 2μM 

 

 

2.3.9 CYTOTOXICITY ASSAY FOR AGONIST/ANTAGONIST TREATED 

BMDC 

The Cell Titer 96 Aqueous One Solution (Promega) is a colourimetric method for 

determining the number of viable cells in a sample. It contains an MTS terazolium 

compound that is bioreduced by cells into a soluble coloured formazan product. The 

TABLE 2.13: Concentrations of the TLR ligands used for the maturation of dendritic cells  
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quantity of this formazan product is measured at an absorbance reading of 490nm and is 

directly proportional to the number of living cells in the culture. 

BMDC were cultured for 7 days in the presence of specific agonists and antagonists at 

different concentrations. Compounds were added on day 1 of culture.  After 7 days cells 

were collected, counted and plated (100μl per well at 1x10
6
 cells/ml) in a 96-well plate 

and stimulated with LPS (100ng/ml) for 24hrs. 20μl of CellTiter 96 Aqueous One 

solution was then added to each well and plates were incubated for 2 hours at 37ᴼC in 

5% CO2. After this time the absorbance was read at 490nm. The cell viability of each 

sample was calculated by treating the absorbance of the vehicle control (DMSO) as 

100% and comparing the remaining samples to this and expressing these values as 

percentage viability. 

2.4 ENZYME LINKED IMMUNOSORBANT ASSAY (ELISA) 

 

ELISA can be used to quantify cytokine secretion from a particular sample. The 

principles of a sandwich ELISA are illustrated below. In general, a 96 well plate is 

coated with a suitable capture antibody. These antibodies are usually diluted in a buffer 

such as PBS and incubated overnight at room temperature. A blocking buffer such as 

BSA is then added to block any remaining protein- binding sites on the plate. The 

sample which contains unknown concentrations of the cytokine along with a series of 

standards of known concentrations is then added to the plate and incubated overnight at 

4ᴼC to allow the antigen to bind to the specific capture antibody. The following day a 

biotinylated detection antibody for the cytokine of interest is added and incubated for 

2hrs at room temperature. Horseradish peroxidase conjugated to streptavidin is then 

added to the plate. Streptavidin binds biotin with high affinity so when the substrate 
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TMB is added, the enzyme HRP catalyzes the TMB substrate to form a blue compound. 

The blue colour that is formed increases in intensity with increasing concentrations of 

cytokine. This reaction is then stopped by adding sulphuric acid which converts the blue 

colour to a yellow colour that can be detected at 450nm on a spectrophotometer. Thus 

the intensity of the colour formed is proportional to the amount of cytokine present.  

Throughout this study the concentrations of specific cytokines were determined using 

ELISA Duoset kits from R & D systems according to manufacturer’s instructions. 

 

 

 

Figure 2.4 The principle of a sandwich ELISA [adapted from 

http://www.epitomics.com/products/product_info/6111-1] 

2.4.1 DETECTION OF IL-12p40, IL-12p70, IL-23, IL-27, IL-10, TNFα AND IL-6 

 

96-well Nunc
™ 

microtitre plates were coated with 100μl of the relevant capture antibody 

diluted to working concentration in PBS see Table 2.14 and incubated overnight at 

room temperature.  After washing plates x 3 with wash buffer (PBS/0.05% Tween
®

 20), 

wells were blocked with 300μl of reagent diluent (1% w/v BSA/PBS) for at least 1 h at 

room temperature.  After repeating the washing step, 50μl of reagent diluent and 50μl of 

http://www.epitomics.com/products/product_info/6111-1
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supernatant or serially diluted standards (top standard serially diluted in reagent diluent 

– see Table 2.14) were added to wells in duplicate. Plates were incubated overnight at 

4
o
C. The following day plates were washed x 3 with wash buffer. 100μl of the relevant 

biotinylated detection antibody, diluted in reagent diluent (1:180 dilution), was added to 

each well and plates were incubated for 2hrs at room temperature. Plates were washed x 

3 with wash buffer and 100μl of streptavidin-HRP (1:200 dilution in reagent diluent) 

was added to each well. Plates were incubated for 20min in the dark at room 

temperature.  Finally, wells were washed x 3 with wash buffer and 100μl of TMB was 

added to each well. Plates were incubated in the dark until colour developed. The 

reaction was stopped by adding 50μl 2N H2SO4 per well. Optical densities were read 

immediately at 450nm on VERSA Amax microplate reader (Molecular devices, CA, 

USA). Cytokine concentrations in supernatants were determined from standard curves. 

2.4.1.1 IL-12p40, IL-6 

Samples were diluted 1:100 in reagent diluent and 50µl of diluted samples and 

undiluted standards were added to the plates in duplicate. Concentrations of samples 

were multiplied by the dilution factor once calculated from the standard curve. 

2.4.1.2 TNF-α 

Samples were diluted 1:10 in reagent diluent and 50µl of diluted sample and undiluted 

standards were added to the plates in duplicate. Concentrations of samples were 

multiplied by the dilution factor once calculated from the standard curve. 

2.4.2 DETECTION OF IL-1β 

The method above was followed with two variations: 
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Blocking buffer used was 1% (w/v) BSA/PBS + 0.05% (w/v) NaN3 and the reagent 

diluent was 0.1% (w/v) BSA/TBS + 0.05% (w/v) Tween. 

 

CYTOKINE CAPTURE  

ANTIBODY (μg/ml) 

DETECTION  ANTIBODY 

(ng/ml) 

TOP 

STANDARD 

IL-12p40 4.0  400  2000 

IL-12p70 4.0  400  2500 

IL-23 4.0  200  2500 

IL-27 4.0  400  1000 

IL-10 4.0  500  2000 

TNFα 0.8  75  2000 

IL-1β 4.0  400  1000 

IL-6 2.0  200  1000 

TABLE 2.14: Concentration of standards, capture and detection antibodies used in sandwich 

ELISA assays. 

 

2.5 FLOW CYTOMETRY 

 

2.5.1 BASIC PRINCIPLES OF FLOW CYTOMETRY  

 

Flow Cytometry is a process by which the size, granularity and expression of protein 

markers can be identified on a particular cell. Each cell is suspended within a stream of 
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liquid and in a very short space of time is passed through a light source to be 

individually examined.  

 

 

 

Figure 2.5 Examination of individual cells by flow cytometry [adapted from 

http://www.sonyinsider.com/2010/02/12/sony-acquires-icyt-and-officially-enters-flow-

cytometry-business/] 

In order to examine the expression of a particular protein, cells are incubated with a 

specific monoclonal antibody designed to target the protein of interest. These antibodies 

are conjugated to fluorochromes which emit light at various wavelengths once they have 

been excited by the laser. Throughout this study three main fluorochromes were used: 

1) FITC - Fluorescein isothiocyanate which is excited at 495nm and has a maximum 

emission intensity of 520nm is detected using the FL1 channel. 

http://www.sonyinsider.com/2010/02/12/sony-acquires-icyt-and-officially-enters-flow-cytometry-business/
http://www.sonyinsider.com/2010/02/12/sony-acquires-icyt-and-officially-enters-flow-cytometry-business/
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Figure 2.6 Excitation and emission spectrum of FITC 

2) PE- Phycoerythrin which is excited at 495nm and has a maximum emission intensity 

of 578nm is detected using the FL2 channel. 

 

Figure 2.7 Excitation and emission spectrum of PE 

3) APC- allophycocyanin which is excited at 635nm and has a maximum emission 

intensity of 660nm is detected using the FL4 channel. 

 

Figure 2.8 Excitation and emission spectrum of APC [2.4 -2.6 adapted from 

http://www.bdbiosciences.com/research/multicolor/spectrumguide/index.jsp] 

 

http://www.bdbiosciences.com/research/multicolor/spectrumguide/index.jsp
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2.5.2 CELL SURFACE MARKER STAINING 

 

BMDC were cultured for 7 days in the presence of specific agonists/antagonists or 

vehicle control. On day 7 cells were plated on a 6 well plate at 2 x 10
6
 cells per well (in 

2mls) and stimulated for 24hrs. Cells were then carefully scraped from the wells and 

incubated in a falcon with equal amount FCS for 15 mins to reduce non specific 

binding. Cells were then centrifuged for 5 mins at 1200rpm and the resulting pellet was 

resuspended in FACS buffer. 200μl of cells were then plated on a 96 well round bottom 

plate giving approximately 400,000 cells per well. 1 well per treatment group (i.e. RXR 

agonist +/- LPS) was allocated for each antibody group plus 1 well for each 

corresponding isotype control group. Plates were spun at 2000rpm for 10min and 

supernatant carefully removed from the wells.  100μl of the relevant antibody or isotype 

mixture was added to the appropriate wells.  Plates were incubated in the dark at 4 
o
C 

for 30min.  Following incubation, plates were spun at 2000rpm for 10min at 4ºC.  Cells 

were washed by resuspending in 200μl FACS buffer twice. Cells were then fixed in 

200μl 4% (v/v) formaldehyde/PBS before being transferred to labelled FACS tubes.  

Samples were acquired immediately or left overnight in the dark at 4 ºC. 30,000 events 

were acquired per sample using a 4-colour Becton Dickinson (BD) FACSCalibur 

(fluorescence activated cell sorter). CD11c positive cells were gated using FlowJo 

software and subsequent analysis was carried out on this population. 
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2.6 DNA MANIPULATION 

 

2.6.1 LUCIFERASE ASSAY BY TRANSIENT TRANSFECTION OF HEK293 

CELLS  

The ISRE luciferase plasmid, NFκB luciferase plasmid, Renilla luciferase plasmid and 

empty pcDNA3.1 vector along with luciferase assay reagents were kind gifts from Prof. 

Luke O’Neill, School of Biochemistry, Trinity College Dublin.  All transfections were 

performed in 24-well tissue culture plates with a total volume of 500µl/well. Cells were 

seeded as follows at 4 x 10
5
 cell/ml. Cells were incubated overnight and transfected the 

following morning using geneJuice
® 

transfection reagent according to the 

manufacturers’ instructions. GeneJuice
® 

(Novagene) transfection reagent is a liposomal 

based transfection reagent.  For
 
ISRE/NFκB luciferase assays, 75 ng of ISRE/NFκB 

luciferase plasmid, 30
 
ng of Renilla luciferase, and 115 ng empty pcDNA3.1 vector 

made up
 
to a total of 220ng of DNA were transfected into each well

 
of a 24-well plate.  

For both ISRE and NFκB luciferase assays cells were left to rest for 24h after 

transfection before stimulating with 100 ng/ml LPS for 6h. Following stimulation media 

was aspirated from each well and cells were lysed in 100µl
 
of 1 X passive lysis buffer 

(Promega, Southampton, UK) for 15min.
 
Firefly luciferase activity was assayed by the 

addition of 40µl of luciferase assay mix (20 mM Tricine, 1.07 mM (MgCO3)4Mg (OH) 

2·5H2O,
 
2.67 MgSO4, 0.1 M EDTA, 33.3 mM DTT, 270 mM coenzyme

 
A, 470 mM 

luciferin, 530 mM ATP) to 20µl of the lysed
 
sample. In addition, Renilla luciferase was 

read by the addition of 40µl
 
of a 1:1000 dilution of Coelentrazine (Argus Fine 

Chemicals)
 
in PBS to 20µl of lysed sample. Luminescence was read using a Reporter 

microplate luminometer (Turner Designs). The Renilla
 
luciferase plasmid was used to 

normalize for transfection efficiency
 
in all experiments. 
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2.7 RNA ANALYSIS 

 

2.7.1 RNA EXTRACTION 

BMDC were plated at 1 x10
6 

cells/ml (in 2mls) and left to rest overnight before being 

stimulated over a course of 24hrs with 100ng/ml LPS. After this time total RNA was 

isolated using the Nucleospin® RNA II spin columns according to manufacturer’s 

instructions. Cells were lysed in a solution containing large amounts of chaotropic ions. 

RNA and DNA then bind to the silica membrane within the column and the 

contaminating DNA is removed by using a rDNase solution. The columns were then 

washed using a number of different buffers to remove salts, metabolites and 

macromolecular cellular components and finally the pure RNA was then eluted from the 

columns into RNAse free water. RNA was then quantified using the Nanodrop 1000 

spectrophotometer (Thermo Scientific). DNA contamination was assessed by measuring 

the absorption at 260nm and 280nm and calculating the ratio between them. Ratio’s that 

fell between 1.8 and 2.1 were considered pure RNA samples. 

 

2.7.2 RNA ANALYSIS BY GEL ELECTROPHORESIS 

To check RNA integrity, samples were run on a 2% (w/v) agarose SYBR® safe gel in 

order to visualise clear and unsmeared 18S and 26S ribosomal bands. The appropriate 

amount of agarose was dissolved in 100mls 1X TAE buffer by boiling for 1 min. After 

cooling 10μl of SYBR® safe (10,000X concentration) was added to gel mix, poured, 

protected from light and subsequently allowed to set. The RNA samples (1μl) were 

prepared for electrophoresis by adding to 2μl RNA sample buffer (Sigma®). Samples 

were heated for 10 mins at 65ᴼC before being loaded onto the gel. The gel was run in 1 
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X TAE buffer [see Appendix] at 100V for 1 hr before being visualised using the G-Box 

Gel Imaging system (Syngene). 

 

2.7.3 cDNA SYNTHESIS 

In order to convert total RNA to single stranded cDNA the High Capacity cDNA 

Reverse Transcription kit (Applied Biosystems) was used. Using this assay the enzyme 

reverse transcriptase was used on a single strand of mRNA to generate complementary 

DNA, based on the pairing of RNA base pairs i.e. A, U, G and C to their DNA 

complements T, A, C and G respectively. Random primers were also used to produce 

pieces of cDNA from all over the mRNA. Up to 2μg of total RNA was converted to 

cDNA as follows: 

 

Component  Volume/Reaction μl 

10X RT Buffer 2μl 

25X dNTP Mix 0.8μl 

10X Random Primers 2μl 

Reverse Transcriptase 1μl 

Nuclease Free H20/ RNA 14.2μl 

TOTAL PER REACTION 20μl 

                  TABLE 2.15: Components of cDNA Reaction 
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Reverse transcription was then performed using the following settings on a 

Thermacycler 

 STEP 1 STEP 2 STEP 3 STEP 4 

Temperature 

(ᴼC) 

25 37 85 4 

Time 10 min 120 min 5 min ∞ 

TABLE 2.16: Thermocycler settings for cDNA synthesis 

 

2.7.4 QUANTITATIVE REAL TIME POLYMERASE CHAIN REACTION (qRT-

PCR) 

  

2.7.4.1 OPTIMIZATION OF RT-PCR ASSAY 

In order to ensure our assays had high reproducibility, consistency and accuracy our 

reactions were tested for the following: 

Linear standard curve (R
2
 > 0.980) 

High amplification efficiency (90–105%) 

Consistency across replicate reactions 

In order to test these parameters and ensure each assay was optimized we ran a serial 

dilution of template cDNA and used these results to generate a standard curve for each 

primer. The standard curve was constructed by plotting the log of the dilution factor 

against the Ct value obtained during amplification of each dilution. The equation of the 

line, along with the coefficient of determination (R
2
), was then used to evaluate whether 
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the assay was optimized. The slope of the line should then fall between 3.1 and 3.3 thus 

showing that the amplification between each serial dilution is evenly spaced. Similarly 

an R
2 

value >0.980 represents data that is linear. 

Amplification efficiency, E, was then calculated from the slope of the standard curve 

using the following formula: 

E = 10^ 
(-1/slope)

 – 1 x 100 

Assays that generated efficiencies between 90 – 105% were used for subsequent relative 

RT quantification experiments. 

 

2.7.4.2 RELATIVE QUANTIFICATION USING RT-PCR 

RT-PCR was then carried out using TaqMan Gene expression assays (Applied 

Biosystems). These assays consisted of two unlabeled primers for amplifying the 

sequence of interest (final concentration of 900nM each) and one dual- labelled TaqMan 

MGB probe (6-FAM dye and TAMRA –labelled) for the sequence of interest (final 

concentration of 250nM). These reactions exploit the 5’-3’ nuclease activity of DNA 

polymerase to cleave the TaqMan probe during PCR as illustrated in Figure 2.9. The 

PCR reaction mix was prepared for each sample in triplicate by addition of the reagents 

listed in table 2.13 to individual wells of a 96 well reaction plate (Applied Biosystems). 

The plate was covered with an optical adhesive cover and centrifuged at 2,000rpm for 2 

mins to eliminate air bubbles. Plates were then run on the ABI Prism 7500 sequence 

detection system using the conditions highlighted in Table 2.18 
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Component Volume/Reaction (μl) 

TaqMan Mastermix 10μl 

Primer/Probe 1μl 

DEPC H2O 5μl 

cDNA 4μl 

TOTAL  20μl 

                    TABLE 2.17: Components of RT reaction   

 

 STEP 1 STEP 2 STEP 3 (a) STEP 3 (b) 

Temperature 

(ᴼC) 

50 95 95 60 

Time 2 min 10 min 15 sec* 1 min* 

    * Repeat for 40 cycles 

TABLE 2.18: Thermocycler settings for RT-PCR 

 

The reporter dye signal was measured against the internal reference dye (ROX) signal to 

normalise for non-PCR-related fluorescence occurring from well to well. The relative 

levels of different transcripts were then calculated using the ΔΔCt method, after 

normalizing with S18 as the endogenous control. The relative level of mRNA in 

untreated control cells was adjusted to 1 and served as the basal reference value 

throughout experiments 
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Figure 2.9: Principle of TaqMan Gene Expression Assays [adapted from 

http://www3.appliedbiosystems.com] 

In addition to sequence specific primers, TaqMan Gene Expression Assays also contain 

fluorescently labelled oligonucleotide probes called the TaqMan probe. The probe 

contains a fluorescent reporter at the 5' end and a quencher at the 3' end. When intact, 

the fluorescence of the reporter is quenched due to its proximity to the quencher. During 

the combined annealing/extension step reaction, the probe hybridizes to the target and 

5'—>3' exonuclease activity of Taq polymerase cleaves off the reporter. As a result, the 

reporter is separated from the quencher, and the resulting fluorescence signal is 

proportional to the amount of amplified product in the sample. (Adapted from Applied 

Biosystems TaqMan Gene Expression Assays 

http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocu

ments/cms_041280.pdf ) 

http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocuments/cms_041280.pdf
http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocuments/cms_041280.pdf
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2.8 PROTEIN ANALYSIS 

2.8.1 PREPARATION OF WHOLE CELL LYSATES  

Cells were seeded at 1 x 10
6
 cell/ml in a 6-well plate (2 ml/well) with/without relative 

treatments and left overnight to rest. Cells were then stimulated with LPS (100ng/ml) at 

the times indicated. Following activation, cells were washed with PBS and scraped in 

100μl of lysis buffer (50 mM Tris-HCl, pH 7.5, containing 150 mM NaCl, 0.5% (w/v) 

igepal and 50 mM NaF, with 1 mM Na3VO4, 1 mM dithiothreitol (DTT), 1 mM 

phenylmethylsulfonyl fluoride (PMSF) and protease inhibitor mixture (leupeptin (25 

μg/ml), aprotinin (25 μg/ml), benzamidine (1 mM), trypsin inhibitor (10 μg/ml). 

Protease and phophatase inhibitor were added just before use. Cells were then incubated 

with gently agitation at 4ᴼC for 30 mins. Following this incubation period samples were 

scraped into prechilled tubes and centrifuged at 12,000 x g for 10 mins at 4ºC. The 

protein concentration of the samples was then determined using the BCA assay and 

aliquots containing equal amounts of protein were mixed with 4X SDS sample buffer,  

boiled at 100ᴼC for 10 min and separated using SDS denaturing polyacrylamide gel 

electrophoresis.  

2.8.2 SDS DENATURING POLYACRYLAMIDE GEL ELECTROPHORESIS 

(SDS- PAGE) 

Proteins were separated by SDS denaturing polyacrylamide gel electrophoresis (SDS- 

PAGE). Acrylamide gels (12 % (w/v)) [see Appendix] were cast between two glass 

plates and affixed to the electrophoresis unit using spring clamps. Electrode running 

buffer [see Appendix] was added to the upper and lower reservoirs. 10μl of prepared 

samples were loaded into the wells and run at 30 mA per gel for approximately 45 mins. 
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Pre-stained protein molecular weight markers (Bio-Rad laboratories) ranging from 10 – 

250 kDa were added to the first lane in each gel. 

2.8.3 PROTEIN TRANSFER 

Proteins were quantitatively transferred to nitrocellulose membranes using the iBlot® 

Dry Blotting System (Invitrogen™). The iBlot® efficiently and reliably blots proteins 

from polyacrylamide gels in 7min without the need for additional buffers or an external 

power supply in a self-contained unit. Following transfer, the nitrocellulose membrane 

was removed and processed for immunoblotting. 

2.8.4 IMMNUNOBLOTTING AND DETECTION 

Following transfer, non-specific sites on the membrane were blocked with freshly 

prepared blocking buffer, 5 % (w/v) dried skimmed milk/TBS-T for 1hr on a slow 

rocker at room temperature. Membranes were then washed x 3 with TBS-T (wash 

buffer) and incubated with appropriate primary antibodies. Incubation details including 

reagent diluent and the concentration of antibodies used are listed in Table 2.19. 

Membranes were gently agitated with the primary antibodies overnight at 4 ºC. 

Following overnight incubation, membranes were washed eight times for 2min in wash 

buffer. Membranes were then incubated with the relevant secondary antibodies 

(horseradish peroxidase (HRP) conjugated secondary antibody) [see Table 2.19] and 

incubated with gentle agitation at room temperature for 1hr. Following incubation with 

secondary antibody, membranes were washed eight times for 2min with washing buffer.  

HRP-labelled antibody complexes were visualised using the enhanced 

chemiluminescence (ECL) method. Membranes were incubated for 5 minutes in 3 ml of 

Immobilon Western HRP Substrate (Millipore). Excess substrate was decanted and the 

membrane placed between acetate sheets and immediately exposed to FujiFilm 
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SuperRX film in a dark room under red light. The film was developed using a film 

Hyperprocessor (Amersham Pharmacia Biotech). Exposure times varied depending on 

the concentration of protein used and the intensity of signals obtained. In general 

exposure times varied between 30sec to 5min. The density of resultant bands was 

calculated using the densitometry program on the Syngene gel analysis and 

documentation system (Syngene NJ USA). 

2.8.5 STRIPPING AND RE-PROBING MEMBRANES  

To reprobe membranes, antibody complexes were removed by incubating membranes in 

10 ml 1 X Re-Blot Plus Solution (made according to manufacturer instructions) for 

15min with gentle agitation. Following this membranes were washed in 5 ml of 

blocking buffer twice for 5min to remove excess stripping solution. At this point 

membranes were either re-probed with antibodies or stored in TBS-T at 4ᴼC. 

 

1o Antibody Dilution 2o Antibody Dilution 

NFκBp105/p50 1:1000 Anti rabbit IgG  1:8000 

NFκBp65 1:1000 Anti rabbit IgG  1:2000 

Total NFκBp65 1:1000 Anti rabbit IgG  1:2000 

Β Actin 1:10,000 Anti mouse IgG  1:20,000 

LXR 1:1000 Anti goat IgG 1:5000 

Table 2.19 Concentrations of antibodies used for western blotting 
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2.9 CO-IMMUNOPRECIPITATION 

Cell extracts were generated on ice or at 4
o
C according to the following experimental 

strategy. Cells were first washed with pre-chilled 1X PBS (ml) then lysed with pre-

chilled CoIP lysis buffer (50 mM Tris-HCl, pH 7.5, containing 150 mM NaCl, 0.5% 

(w/v) igepal and 50 mM NaF, with 1 mM Na3VO4, 1 mM dithiothreitol (DTT), 1 mM 

phenylmethylsulfonyl fluoride (PMSF) and protease inhibitor mixture (leupeptin (25 

μg/ml), aprotinin (25 μg/ml), benzamidine (1 mM), trypsin inhibitor (10 μg/ml)) for 30 

min on a rocker at 4
o
C. Lysates were scraped into pre-chilled 1.5 ml eppendorf tubes 

and centrifuged at 12,000 g for 10min at 4
o
C. Supernatants were removed to fresh tubes 

(a sample retained for whole cell lysate analysis) and incubated overnight with primary 

antibody (2μg). The following day Protein A/G agarose beads (30-40 μl) were added to 

each sample and they were again incubated at 4
o
C overnight. The subsequent day 

samples were centrifuged at 16,000 g for 1min. The beads were washed with CoIP lysis 

buffer (600μl) and subject to re-centrifugation. This step was repeated four times. The 

2X sample buffer (0.125 M Tris-HCl, pH 6.8, containing 20% (w/v) glycerol, 4% (w/v) 

SDS, 1.4 M β-mercaptoethanol and 0.0025% (w/v) bromophenol blue) was added to the 

beads for 30min at RT. Samples were boiled at 100
o
C for 10min and analyzed using 

SDS polyacrylamide gel electrophoresis and western blotting as described in section 

2.8.2 to 2.8.4. Light chain specific secondary antibodies were used to detect 

immunoprecipitated proteins. 

2.10 CONFOCAL MICROSCOPY 

BMDC were cultured for 7 days in the presence or absence of agonists/antagonists as 

described in section 2.3.5 and 2.3.7. Glass coverslips were sterilised in 100% ethanol, 

passed through a flame and inserted into 6 well culture plates. Plates were further 
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sterilized under an ultraviolet lamp for 30 min. Cells were harvested from culture and 

counted. Cells were plated at 2 x 10
5
 cell/ml (2ml/well) and left to rest overnight. 

Agonists and antagonists were readded at appropriate times as previously described. For 

the investigation of NFκBp50 and NFκBp65 localization and LXR:p50 or p65 

colocalization cells were stimulated for 15min with 100ng/ml LPS. Following 

stimulation media was removed and cells were washed on ice three time with ice cold 

PBS. Cells were fixed by incubating with 2% (v/v) paraformaldehyde/PBS, pH 7.4 for 

30min on ice. Slides were then blocked for 1hr at room temperature using 100μl of 

blocking buffer (Filtered PBS/Glycine/Fish gelatin). Following this, slides were washed 

3 times for 5 min each with 50μl filtered PBS. Slides were then incubated at 4ᴼC 

overnight in a humidified chamber with the relevant specific primary antibody. Slides 

were then washed 3 times for 5 minutes with filtered PBS before being incubated at 

room temperature with species specific appropriate secondary antibodies. After this 

time, slides were washed a further 2 times before being incubated with Propidium 

Iodide (PI) nuclear stain for 10 min (for nuclear translocation experiments). After a 

further 2 more washes, coverslips were mounted onto slides using fluorescent mounting 

media (Dako) and sealed with varnish. Cell preparations were analysed using the Zeiss 

LSM 710 confocal microscope 

2.11 STATISICAL ANALYSIS  

One-way analysis of variance (ANOVA) was used to determine significant differences 

between conditions.  When this indicated significance (p<0.05), post-hoc Student-

Newmann-Keul test was used to determine which conditions were significantly 

different from each other.  
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3.1 INTRODUCTION 

The nuclear receptor family of transcription factors consists of 48 members which, upon 

activation, play pivotal roles in reproduction, development and overall homeostasis 

within an organism. They can heterodimerise with other members of the nuclear 

receptor superfamily to carry out these effects. Functions such as these are carried out 

by the receptors ability to both positively and negatively regulate gene expression 

(Ogawa et al. 2005). However a key emerging feature of these nuclear receptors is their 

novel anti-inflammatory properties. 

 PPARγ, for example, which is activated endogenously by fatty acids, fatty acid 

metabolites/derivatives and lipophilic hormones was originally thought to be a regulator 

of nutrient metabolism and energy homeostasis due to its presence in high 

concentrations in adipocytes (Berger, Akiyama & Meinke 2005). However after its 

discovery in a number of innate and adaptive immune cells including B cells, T cells 

dendritic cells monocytes and macrophages a role in the immune system and  

potentially in inflammatory disease began to emerge. Similarly, the discovery of LXR 

and RXR in immune cells led to the conclusion that these receptors could have potential 

immunomodulatory properties (Berger, Moller 2002). Although expression of these 

receptors has been documented in dendritic cells, their effects on DC maturation and 

function have not yet been extensively explored. Indeed the role of these receptors in 

macrophage biology and lipid metabolism has dominated this area of research in the 

past (Castrillo, Tontonoz 2004). 

DC are essential antigen presenting cells that efficiently link the innate immune system 

with the adaptive immune system. Without these cells, an appropriate and highly 

specific T cell response cannot be generated. DC are strategically positioned at sites of 
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potential pathogen entry, where they remain in an immature state and constantly patrol 

the environment for invading pathogens. These cells are equipped with a set of germ-

line encoded PRR such as the TLRs which recognise conserved PAMPs shared by a 

large group of pathogens. Following a DC encountering a pathogen and subsequent 

TLR engagement, a program of DC maturation is initiated. Only after this DC 

maturation is complete can the mature effector DC drive the development and 

differentiation of T helper cells from naive precursors (de Jong, Smits & Kapsenberg 

2005). 

Specifically, the process of DC maturation involves the upregulation of the 

costimulatory markers CD80 and CD86. These accessory molecules can then interact 

with counter receptors on T cells in order to sustain T cell activation and initiate T 

helper cell polarization. CD40 is another important costimulatory marker expressed on 

immature DC and highly upregulated on mature DC. Ligation of CD40 to CD40L on T 

cells further promotes the DC maturation process by upregulating the expression of 

CD80 and CD86 as well as initiating the secretion of cytokines from DC (Palucka, 

Banchereau 1999). 

High levels of both pro and anti-inflammatory cytokines are typically secreted from DC 

exposed to a maturation stimulus. These cytokines strongly influence the type and 

duration of a T helper cell response. IL-12, for example, is essential in driving a Th1 

response while the IL-12 related cytokine IL-23 is responsible for maintaining a Th17 

response (Hunter 2005). Since these T cell responses have also been implicated in 

several debilitating autoimmune diseases (notably IBD, RA and MS) any means to 

control these subsets and therefore ameliorate disease has therapeutic potential. For this 

reason we first investigated the effects of nuclear receptor activation on DC maturation 

and function to assess if LXR, RXR or PPARγ could alter cytokine secretion or surface 
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marker expression on mature DC. In order to effectively do this, we used potent 

synthetic nuclear receptor agonists to activate the nuclear receptor in question. PPARγ 

is highly activated upon exposure to the Type II diabetes drug, Rosiglitazone and LXR 

can be activated synthetically with the use of a benzenesulfonamide compound known 

as T0901317. Specific RXR agonists are to date, unavailable commercially however we 

received two selective RXR agonists as a kind gift from Prof Hiroyuki Kagechika, 

Tokyo Medical and Dental School. PA024 and HX630 are two dibenzodiazepine 

compounds which have the unique ability to selectively activate specific heterodimer 

pairs. Specifically PA024 activates RXR when it is associated to LXR whereas HX630 

can activate RXR when it is associated with LXR or PPARγ (Kagechika, Shudo 2005). 

The importance of these differential affects between the two compounds will be 

highlighted further in Chapter 4. 

 We also examined the expression of these nuclear receptors and specific pro-

inflammatory cytokines in two mouse models of IBD. The dextran sulfate sodium 

(DSS) model of IBD is a chemically induced model in which mice develop acute and 

chronic colonic inflammation. Citrobacter rodentium is an infection induced model of 

IBD whereby this gram negative pathogen is administered to mice and subsequently 

results in acute colonic inflammation (Mundy et al. 2005, Melgar et al. 2007). It was our 

aim to investigate if these nuclear receptors and proinflammatory cytokines were altered 

during disease. 
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3.2    RESULTS 

3.2.1 INCREASING CONCENTRATIONS OF THE LXRα AGONIST    T0901317 

DOES NOT ALTER CELL VIABILITY IN BMDC 

BMDC were harvested from Balb/c mice, differentiated in the presence of GMCSF 

(40ng/ml) and concurrently cultured with DMSO (vehicle control) or T0901317 at 

varying concentrations (20μM, 10μM and 2μM) over 7 days. Viability was assessed 

using the Cell Titer 96 Aqueous One Solution (Promega, WI, USA) according to the 

manufacturer’s instructions. The concentrations of agonist used i.e. 20μM, 10μM and 

2μM were not found to be cytotoxic to the cells and subsequently do not affect DC 

viability. [Figure 3.1] 

3.2.2 INCREASING DOSES OF THE LXR AGONIST T0901317 MODULATES 

CYTOKINE PRODUCTION FROM BMDC 

BMDC were harvested from Balb/c mice, differentiated in the presence of GMCSF 

(40ng/ml) and concurrently cultured with DMSO (vehicle control) or T0901317 at 

varying concentrations (20μM, 10μM and 2μM) over 7 days. DC were then stimulated 

with LPS (100ng/ml; E.Coli serotype R515) for 24hr, supernatants were removed and 

levels of the DC representative cytokines IL-10, IL-12p40 and TNFα [Figure 3.2] were 

assessed using ELISA. All concentrations of T0901317 used (20μM, 10μM and 2μM) 

significantly decreased the production of the pro-inflammatory cytokines IL-12p40 and 

TNFα (p<0.001) compared to DMSO vehicle control. In contrast the levels of the anti-

inflammatory cytokine IL-10 were significantly increased in T0901317 treated cells 

(20μM, p<0.001, 10μM p<0.05 and 2μM p< 0.01) compared to DMSO control [Figure 

3.2]. 
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3.2.3 LONG TERM EXPOSURE TO T0901317 MODULATES CYTOKINE 

PRODUCTION IN DC MORE EFFICIENTLY THAN SHORT TERM 

EXPOSURE. 

Data obtained from the MTS assay and T0901317 dose response experiments allowed 

us to determine the optimum dose of LXR agonist to use for future experiments. A 2μM 

dose was selected and used for all future LXR work. We next compared short term 

exposure versus long term exposure to T0901317. BMDC were harvested as previously 

described and treated with T0901317 2μM for 7 days (long term exposure) or 1hr prior 

to LPS stimulation (short term exposure). There was a significant decrease in IL-12p70, 

IL-12p40 and IL-23 cytokine production following long term exposure with T0901317 

(p<0.001, p<0.05) [Figure 3.3]. However there is no significant decrease in these 

cytokines following short term treatment with T0901317, however a significant increase 

in IL-23 production was observed in short term treated cells (p<0.01) [Figure 3.4]. 

Therefore for all subsequent experiments we used 2μM T0901317 over a long term 

(7 day) treatment period. 

3.2.4 THE LXR AGONIST T0901317 MODULATES LPS - INDUCED 

CYTOKINE PRODUCTION IN BMDC 

Following confirmation of the optimum dose and exposure time to T0901317, we next 

examined a wider range of cytokines. BMDC were harvested from Balb/c mice, 

differentiated in the presence of GMCSF (40ng/ml) and concurrently cultured with 

DMSO (vehicle control) or T0901317 for 7 days. DC were then stimulated with LPS 

(100ng/ml; E.Coli serotype R515) for 24hr, supernatants were removed and levels of 

IL-12p40, IL-12p70, IL-27 and IL-23 [Figure 3.5], TNFα, IL-6, IL-1β and IL-10 

[Figure 3.6] were assessed using ELISA. 
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T0901317 had a significant affect on the IL-12 family of cytokines as seen by a 

significant decrease in IL-12p40 (p<0.001), IL-12p70 (p<0.01), IL-27 (p<0.001) and IL-

23 (p<0.01) production [Figure 3.5]. This decrease was not seen with TNFα or IL-6 

[Figure 3.6], however a significant increase (p<0.001) in IL-1β was observed in 

T0901317 treated cells compared to DMSO vehicle control [Figure 3.6]. 

3.2.5 THE LXRα AGONIST T0901317 MODULATES CELL SURFACE 

MARKER EXPRESSION IN LPS MATURED BMDC. 

BMDC were harvested from Balb/c mice, differentiated in the presence of GMCSF 

(40ng/ml) and concurrently cultured with DMSO (vehicle control) or T0901317 for 7 

days. Cells were then stimulated with 100ng/ml LPS for 24hr before being washed and 

stained with fluorochrome labelled monoclonal antibodies for specific costimulatory 

and cell surface markers (CD11c, CD40, CD80, CD86, and TLR4). Cells were then 

gated on the CD11c positive population. 

LPS induced the upregulation of the surface markers CD86, CD80, CD40 and TLR4 

[Figure 3.7] compared to unstimulated cells. The upregulation of these markers is 

typical following DC exposure to LPS. Mean Fluorescent Intensity values for each 

group are represented in the associated group colour and are displayed on the top 

corners of each histogram.  

Following treatment of DC with T0901317, the increase in expression of CD40 by LPS 

was significantly decreased [Figure 3.8]. While T0901317 treatment had the most 

potent effect on CD40 expression, it also decreased the expression of the costimulatory 

markers CD86, CD80 and TLR4 following LPS stimulation [Figure 3.8]. 
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3.2.6    INCREASING CONCENTRATIONS OF THE PPARγ AGONIST 

ROSIGLITAZONE (RSG) AND PPARγ ANTAGONIST GW9662   DO NOT 

ALTER CELL VIABILITY IN BMDC 

BMDC were harvested from Balb/c mice, differentiated in the presence of GMCSF 

(40ng/ml) and concurrently cultured with DMSO (vehicle control), the PPARγ agonist 

RSG (10μM) or the PPARγ antagonist GW9662 (2.5μM) for 7 days. Viability was then 

assessed using the Cell Titer 96 Aqueous One Solution (Promega, WI, USA) according 

to the manufacturer’s instructions. The concentration of agonist used i.e. 10μM and 

concentration of antagonist used (2.5μM) were not found to be cytotoxic to the cells and 

consequently do not affect DC viability. [Figure 3.9] 

3.2.7 INCREASING DOSES OF THE PPARγ AGONIST RSG MODULATES 

CYTOKINE PRODUCTION FROM BMDC 

BMDC were harvested from Balb/c mice, differentiated in the presence of GMCSF 

(40ng/ml) and concurrently cultured with DMSO (vehicle control) or varying 

concentrations of RSG (10μM, 1μM and 100nM) over 7 days. DC were then stimulated 

with LPS (100ng/ml) for 24hrs, supernatants were removed and levels of the DC 

representative cytokines IL-10, IL-12p40 and TNFα [Figure 3.10] were assessed using 

ELISA. There was a significant decrease in IL-12p40 production in RSG treated cells 

across all concentrations of agonist used (p<0.001). PPARγ activation also significantly 

decreases TNFα production following exposure to 10μM RSG (p<0.001), 1μM RSG 

and 100nM RSG (p<0.01) [Figure 3.10]. RSG treatment also significantly decreases the 

production of the anti-inflammatory cytokine IL-10 [Figure 3.10]. 
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3.2.8 THE PPARγ AGONIST RSG MODULATES LPS- INDUCED CYTOKINE 

PRODUCTION IN BMDC 

The results of the previous experiment highlighted the potent effect a 10μM dose of 

RSG can have on DC cytokine production. Therefore for all subsequent PPARγ related 

experiments we used this dose. We next examined its effects on a wider range of 

cytokines. 

BMDC were harvested from Balb/c mice, differentiated in the presence of GMCSF 

(40ng/ml) and concurrently cultured with DMSO (vehicle control) or RSG (10μM) over 

7 days. DC were then stimulated with LPS (100ng/ml) for 24hrs, supernatants were 

removed and levels of IL-12p40, IL-12p70, IL-23 and IL-27 [Figure 3.11] TNFα, IL-6, 

IL-1β and IL-10 [Figure 3.12] were assessed using ELISA. 

Treatment of BMDC with RSG decreased the production of all the IL-12 family 

cytokines i.e. IL-12p40, IL-12p70, IL-23 and IL-27 (p<0.001) [Figure 3.11] in response 

to LPS. A significant decrease in the anti –inflammatory cytokine IL-10 (p<0.001) as 

well other proinflammatory cytokines TNFα and IL-6 (p<0.01) was also seen in RSG 

treated cells [Figure 3.12]. 

3.2.9 THE PPARγ AGONIST RSG MODULATES CELL SURFACE MARKER 

EXPRESSION IN LPS MATURED BMDC. 

BMDC were harvested from Balb/c mice, differentiated in the presence of GMCSF 

(40ng/ml) and concurrently cultured with DMSO (vehicle control) or RSG (10μM) over 

7 days. Cells were then stimulated with 100ng/ml LPS for 24hr before being washed 

and stained with fluorochrome labelled monoclonal antibodies for specific 

costimulatory and cell surface markers (CD11c, CD40, CD80, CD86, and TLR4). Cells 

were then gated on the CD11c positive population. 
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As expected LPS upregulated the expression of CD86, CD80, CD40 and TLR4 [Figure 

3.13]. Treatment of cells with RSG resulted in suppression of CD80, CD86 and CD40 

following LPS stimulation as seen by a significant downregulation in their expression 

compared to DMSO control cells [Figure 3.14]. RSG treatment also decreased TLR4 

expression but not to the same extent as CD80, CD86 and CD40 [Figure 3.14]. 

3.2.10 INCREASING CONCENTRATIONS OF THE RXR AGONIST HX630 

AND LOW CONCENTRATIONS OF THE SPECIFIC RXR AGONIST PA024 

DO NOT ALTER CELL VIABILITY IN BMDC 

BMDC were harvested from Balb/c mice, differentiated in the presence of GMCSF 

(40ng/ml) and concurrently cultured in the presence of the RXR agonist PA024 or 

HX630 over 7 days. Viability was then assessed using the Cell Titer 96 Aqueous One 

Solution (Promega, WI, USA) according to the manufacturer’s instructions. 10μM 

PA024 decreased cell viability by 40% however lower concentrations i.e. 1μM and 

100nM were not cytotoxic to the cells and subsequently did not affect DC viability. All 

doses of HX630 tested (10μM, 1μM and 100nM) also did not affect DC viability 

[Figure 3.15] 

3.2.11 INCREASING DOSES OF THE RXR AGONISTS PA024 AND HX630 

MODULATE CYTOKINE PRODUCTION FROM BMDC 

BMDC were harvested from Balb/c mice, differentiated in the presence of GMCSF 

(40ng/ml) and concurrently cultured with DMSO (vehicle control) or varying 

concentrations of PA024 or HX630 (10μM, 1μM and 100nM) over 7 days. DC were 

then stimulated with LPS for 24hr and supernatants were analysed for the DC 

representative cytokines IL-10, IL-12p40 and TNFα [Figure 3.16 & Figure 3.17] using 

ELISA. Both RXR agonists had similar effects on cytokine production from DC with 
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both compounds significantly decreasing IL-12p40 production (p<0.001). All three 

doses of PA024 tested significantly increased the production of the anti-inflammatory 

cytokine IL-10 in a dose dependent manner [Figure 3.16]. 1μM of HX630 significantly 

increased the production of IL-10 (p<0.01) however the higher (10μM) and lower 

(100nM) dose do not affect IL-10 production in DC [Figure 3.17]. RXR activation in 

these cells does not significantly alter the production of TNFα [Figure 3.16 & Figure 

3.17]. 

3.2.12 LONG TERM AND SHORT TERM EXPOSURE TO RXR AGONISTS 

MODULATES CYTOKINE PRODUCTION IN DC  

Data obtained from the MTS assay and dose response experiments allowed us to 

determine the optimum dose of RXR agonist to use for future experiments. A 1μM dose 

was selected and used for all future RXR work. BMDC were harvested from Balb/c 

mice, differentiated in the presence of GMCSF (40ng/ml) and concurrently cultured 

with DMSO (vehicle control), PA024 or HX630 for 7 days (long term exposure) or 

treated for 1hr (short term exposure) prior to LPS. Supernatants were subsequently 

analysed for IL-12p70, IL-12p40, IL-23 and TNFα. Long term exposure to both HX630 

and PA024 resulted in a significant decrease in both IL-12p40 and IL-12p70 production 

(p<0.001) [Figure 3.18 ] Short term exposure to these RXR agonists also resulted in a 

significant decrease in IL-12p40 (p<0.001) and IL-12p70 production (HX630 p<0.01; 

PA024 p<0.001) [Figure 3.19]. Long term but not short term exposure to PA024 and 

HX630 also resulted in a significant increase in IL-23 (p<0.001 and p<0.01 

respectively) [Figure 3.18]. PA024 also caused a significant increase in the 

proinflammatory cytokine TNFα when treated over a short term period (p<0.001) 

[Figure 3.19]. For these reasons we chose to use these RXR agonists over a long term 
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treatment period as this resulted in a decrease in IL-12p40 and IL-12p70 as well as 

having no effect on TNFα. 

3.2.13 THE RXR AGONIST PA024 MODULATES LPS-INDUCED CYTOKINE 

PRODUCTION IN BMDC 

Following optimisation of the RXR dose and time of exposure, we then examined its 

effects on a wide range of cytokines. BMDC were harvested from Balb/c mice, 

differentiated in the presence of GMCSF (40ng/ml) and concurrently cultured with 

DMSO (vehicle control) or PA024 (1μM) for 7 days. DC were then stimulated with 

LPS (100ng/ml) for 24hr, supernatants were removed and levels of IL-12p40, IL-12p70, 

IL-27 and IL-23 [Figure 3.20], and TNFα, IL-10, IL-6 and IL-1β [Figure 3.21] were 

assessed using ELISA. RXR activation in these cells significantly decreases the 

production of IL-12p40 (p<0.001), IL-12p70 (p<0.01) and IL-27 (p<0.001) in response 

to LPS while also increasing the production of IL-23 (p<0.05) [Figure 3.20]. PA024 

treatment also resulted in a significant increase in the anti-inflammatory cytokine IL-10 

(p<0.01) whilst having no affect on other DC related cytokines such as IL-1β, TNFα 

and IL-6 [Figure 3.21]. 

3.2.14 THE RXR AGONIST PA024 MODULATES CELL SURFACE MARKER 

EXPRESSION IN LPS MATURED BMDC. 

BMDC were harvested from Balb/c mice, differentiated in the presence of GMCSF 

(40ng/ml) and concurrently cultured with DMSO (vehicle control) or PA024 (1μM) for 

7 days. Cells were then stimulated with 100ng/ml LPS for 24hours before being washed 

and stained with fluorochrome labelled monoclonal antibodies for CD11c, CD40, 

CD80, CD86, and MHCII. Cells were then gated on the CD11c positive population. 
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As expected LPS upregulated the expression of CD86, CD80, CD40 and MHCII 

[Figure 3.22]. PA024 had the most potent effect on MHCII as seen by a significant 

downregulation in its expression following LPS stimulation compared to DMSO 

control. PA024 treatment also significantly decreased CD86, CD80 and CD40 

expression [Figure 3.23]. 

3.2.15 THE EXPRESSION OF THE NUCLEAR RECEPTORS, LXR AND RXR 

IN THE COLON ARE SIGNIFICANTLY DECREASED IN DSS INDUCED 

COLITIS. 

Total RNA was isolated from colonic tissue of mice at various stages after induction of 

colitis with DSS (early acute, late acute and chronic disease) along with controls. 1μg of 

RNA was converted to cDNA and used to examine the expression of LXRα, RXRα and 

PPARγ. The relative levels of these transcripts were then calculated using the ΔΔCt 

method, after normalizing with S18 as the endogenous control. The relative level of 

mRNA in untreated control tissue was adjusted to 1 and served as the basal reference 

value throughout experiments. Results are representative of fold change within the 

sample. 

The expression of LXRα is significantly increased during the initial onset of disease i.e. 

the early acute stage (p<0.001), however its expression is then at normal levels by the 

late acute phase and then significantly decreased compared to healthy controls in mice 

that have chronic colitis (p<0.01) [Figure 3.24]. There is no increase in RXRα, 

however its expression is also decreased in mice with chronic colitis (p<0.01) and to a 

lesser extent in mice that are in the late acute stage of disease (p<0.001). The expression 

of the nuclear receptor PPARγ does not change in the late phase or chronic stages of 
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disease however there is a significant increase in the expression of this receptor in the 

early acute stage of colitis (p<0.001) [Figure 3.24]. 

3.2.16 THE EXPRESSION OF THE IL-12, IL-23 AND IL-27 CYTOKINE 

SUBUNITS ARE UPREGULATED IN DSS INDUCED COLITIS 

Total RNA from healthy and diseased mice was converted to cDNA as previously 

described and used to examine the expression of all the subunits of the IL-12 family; IL-

12p35, IL-12p40, IL-27p28, EBI3 and IL-23p19 by RT-PCR. The relative levels of 

these transcripts were then calculated using the ΔΔCt method, after normalizing with 

S18 as the endogenous control. The relative level of mRNA in untreated control tissue 

was adjusted to 1 and served as the basal reference value throughout experiments. 

Results are representative of fold change within the sample. 

The expression of IL-12p35 is significantly increased in the early acute (p<0.001), late 

acute (p<0.05) and chronic stages (p<0.05) of DSS induced colitis [Figure 3.25]. The 

expression of IL-12p40 was significantly increased only in the early acute stage of 

disease (p<0.001) whereas IL-23p19 expression was not significantly increased until the 

chronic stage of colitis (p<0.001) [Figure 3.25]. The expression of the IL-27 cytokine 

subunits i.e. IL-27p28 and EBI3 were both significantly increased only in the early 

acute stage of DSS induced colitis (p<0.001) [Figure 3.26]. 

 

3.2.17 THE EXPRESSION OF LXR IS SIGNIFICANTLY INCREASED 

FOLLOWING Citrobacter rodentium INFECTION. 

We also examined the expression of the nuclear receptors in another model of intestinal 

inflammation, which is induced with Citrobacter rodentium infection. Total RNA from 
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healthy controls and mice infected with Citrobacter rodentium over a period of 28 days 

was converted to cDNA as previously described. The expression of LXRα, RXRα and 

PPARγ was then assessed using RT-PCR. The relative levels of these transcripts were 

then calculated using the ΔΔCt method, after normalizing with S18 as the endogenous 

control. The relative level of mRNA in untreated control tissue was adjusted to 1 and 

served as the basal reference value throughout experiments. Results are representative 

of fold change within the sample. 

The expression of RXR and PPARγ does not significantly change over the course of 

infection however LXRα expression is significantly increased after 21 days exposure to 

the Citrobacter rodentium bacteria (p<0.01) [Figure 3.27]. 

3.2.18 THE EXPRESSION OF THE IL-12 FAMILY OF CYTOKINES ARE 

SIGNIFICANTLY INCREASED DURING Citrobacter rodentium INFECTION. 

Total RNA from healthy controls and mice infected with Citrobacter rodentium over a 

period of 28 days was converted to cDNA as previously described. The expression of 

IL-12p35, IL-12p40, IL-23p19, IL-27p28 and EBI3 was then assessed using RT-PCR. 

The relative levels of these transcripts were then calculated using the ΔΔCt method, 

after normalizing with S18 as the endogenous control. The relative level of mRNA in 

untreated control tissue was adjusted to 1 and served as the basal reference value 

throughout experiments. Results are representative of fold change within the sample. 

The expression of IL-12p35 was significantly increased after 14 and 21 days infection 

(p<0.05). However by day 28, the expression of this cytokine subunit has returned to 

normal [Figure 3.28]. IL-12p40 expression increases early in infection with a 

significant increase by day 14 (p<0.05) whereas the expression of IL-23p19 was not 

significantly increased until towards the end of the infection period at day 28 (p<0.01) 
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[Figure 3.28]. The IL-27 subunit p28 is significantly increased after 9, 14 and 21 days 

of infection (p<0.05) whereas EBI3, the remaining IL-27 subunit is only increased after 

9 days of infection (p<0.05) [Figure 3.29]. 
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FIGURE: 3.1  
Increasing concentrations of a specific LXR agonist (T0901317) does not alter the 
viability of bone marrow derived dendritic cells (BMDC) 
BMDC where differentiated in GMCSF for 7 days in the presence of varying concentrations of 
T0901317 (20μM, 10μM or 2μM) or DMSO (vehicle control). After this time cellular viability 
was assessed using an MTS assay (Cell Titer 96 Aqueous One Solution). Results are expressed 
as a percentage of untreated cells. 
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FIGURE: 3.2 
Activation of LXR with T0901317 modulates the production of cytokine from BMDC:   
BMDC were differentiated in GMCSF for 7 days in the presence of a specific LXR agonist 
(T0901317) at increasing concentrations (2μM, 10μM and 20μM). After 7 days cells were 
stimulated for 24hr with 100ng/ml LPS. Supernatants were then harvested and assessed for 
levels of IL-10, IL-12p40 and TNFα using immunospecific assays. Results are ± SEM of triplicate 
assays and represent three independent experiments.  ***p<0.001, **p<0.01, *p<0.05 
comparing DMSO/LPS vs. T0901317/LPS groups as determined by one-way ANOVA test. 
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FIGURE 3.3 
Long term exposure of DC to the LXR agonist T0901317 is needed to suppress the IL-12 
family of cytokines:  
BMDC were differentiated in GMCSF in the presence of 2μM T0901317 for 7 days and 
stimulated for 24hrs with 100ng/ml LPS. Supernatants were then harvested and assessed for 
levels of IL-12p40, IL-12p70, IL-23 and TNFα using specific immunoassays. Results are ± SEM of 
triplicate assays and represent three independent experiments.  ***p<0.001, **p<0.01 
comparing DMSO/LPS vs. T0901317/LPS groups as determined by one-way ANOVA test. 
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FIGURE 3.4 
Short term exposure of DC to the LXR agonist T0901317 does not suppress the IL-12 
family of cytokines: BMDC were differentiated in GMCSF for 7 days and stimulated for 24hrs 
with 100ng/ml LPS. 1hr prior to LPS stimulation 2μM T0901317 was added to cells. 
Supernatants were then harvested and assessed for levels of IL-12p40, IL-12p70, IL-23 and 
TNFα using specific immunoassays. Results are ± SEM of triplicate assays and represent three 
independent experiments.  ***p<0.001, **p<0.01 comparing DMSO/LPS vs. T0901317/LPS 
groups as determined by one-way ANOVA test. 
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FIGURE 3.5 
Activation of LXR with T0901317 suppresses the production of the IL-12 family of 
cytokines: BMDC were differentiated in GMCSF in the presence of 2μM T0901317 for 7 days 
and stimulated for 24hrs with 100ng/ml LPS. Supernatants were then harvested and assessed 
for levels of IL-12p40, IL-12p70, IL-23 and IL-27 using specific immunoassays. Results are ± SEM 
of triplicate assays and represent three independent experiments.  ***p<0.001, **p<0.01, 
comparing DMSO/LPS vs. T0901317/LPS groups as determined by one-way ANOVA test. 
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FIGURE 3.6 
Activation of LXR with T0901317 increased the production of IL-1β. BMDC were 
differentiated in GMCSF in the presence of 2μM T0901317 for 7 days and stimulated for 24hrs 
with 100ng/ml LPS. Supernatants were then harvested and assessed for levels of TNFα, IL-6, IL-
1β and IL-10 using specific immunoassays. Results are ± SEM of triplicate assays and represent 
three independent experiments.  ***p<0.001 comparing DMSO/LPS vs. T0901317/LPS groups 
as determined by one-way ANOVA test. 
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FIGURE 3.7 

LPS stimulation enhances the expression of the surface markers CD86, CD80, CD40 and 
TLR4: BMDC were differentiated over 7 days in the presence of GMCSF and DMSO and 
subsequently stimulated for 24hr with LPS (100ng/ml). Cells were washed and stained with 
antibodies specific for CD86, CD80, CD40 and TLR4. Cells were gated on the CD11c positive 
population. Grey shaded peaks represent DMSO control cells and the red overlaid line 
represents LPS stimulated DMSO cells. 
 

 

 

 

FIGURE 3.8 

Activation of LXR decreases surface marker expression in LPS matured BMDC: BMDC 

were differentiated over 7 days in GMCSF in the presence of DMSO or LXR (T0901317 2μM), 

and subsequently stimulated for 24hr with LPS (100ng/ml). Cells were washed and stained 

with antibodies specific for CD86, CD80, CD40 and TLR4. Cells were gated on the CD11c 

positive population. Grey shaded peaks represent LPS treated cells and the red overlaid line 

represents T0901317 treated LPS stimulated cells.
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FIGURE: 3.9 
The PPARγ specific agonist Rosiglitazone (RSG) and specific antagonist GW9662 do not 
alter the viability of (BMDC) 
BMDC where differentiated for 7 days in GMSCF in the presence of RSG 10μM, GW9662 2.5μM 

or DMSO (vehicle control). After this time cellular viability was assessed using an MTS assay 

(Cell Titer 96 Aqueous One Solution). Results are expressed as a percentage of untreated cells. 
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FIGURE 3.10 
Activation of PPARγ modulates cytokine production by BMDC: BMDC were differentiated 
GMCSF for 7 days in the presence of increasing concentrations of RSG (10μM, 1μM and 100nM 
and stimulated for 24hrs with 100ng/ml LPS. Supernatants were then harvested and assessed 
for levels of IL-10, IL-12p40 and TNFα using specific immunoassays. Results are ± SEM of 
triplicate assays and represent three independent experiments.  ***p<0.001, **p<0.01 
comparing DMSO/LPS vs. RSG/LPS groups as determined by one-way ANOVA test. 
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FIGURE 3.11 
Activation of PPARγ suppresses the production of the IL-12 family of cytokines by 
BMDC: BMDC were differentiated in GMCSF in the presence of 10μM RSG for 7 days and 
stimulated for 24hr with 100ng/ml LPS. Supernatants were then harvested and assessed for 
levels of IL-12p40, IL-12p70, IL-23 and IL-27 using specific immunoassays. Results are ± SEM of 
triplicate assays and represent three independent experiments.  ***p<0.001 comparing 
DMSO/LPS vs. RSG/LPS groups as determined by one-way ANOVA test. 
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FIGURE 3.12 
Activation of PPARγ decreases the production of TNFα, IL-6 and IL-10 from BMDC: 
BMDC were differentiated in GMCSF in the presence of 10μM RSG for 7 days and stimulated 
for 24hrs with 100ng/ml LPS. Supernatants were then harvested and assessed for levels of 
TNFα, IL-6, IL-1β and IL-10 using specific immunoassays. Results are ± SEM of triplicate assays 
and represent three independent experiments.  ***p<0.001, **p<0.01 comparing DMSO/LPS 
vs. RSG/LPS groups as determined by one-way ANOVA test. 
 

 

 

 

TNF

-LPS + LPS
0

1000

2000

3000

**

T
N

F


 p
g

/m
l

IL-6

-LPS + LPS
0

5000

10000

15000

20000

**

IL
-6

 p
g

/m
l

IL-1

-LPS + LPS
0

100

200

300

400

IL
-1


 p
g

/m
l

IL-10

-LPS + LPS
0

100

200

300

400
CTRL

RSG

***

IL
-1

0
 p

g
/m

l

A 

A 



102 
 

 

 

FIGURE: 3.13 
LPS stimulation enhances the expression of the surface markers CD86, CD80, CD40 and 
TLR4: BMDC were differentiated over 7 days in GMCSF in the presence of DMSO and 
subsequently stimulated for 24hr with LPS (100ng/ml). Cells were washed and stained with 
antibodies specific for CD86, CD80, CD40 and TLR4. Cells were then gated on the CD11c 
positive population. Grey shaded peaks represent DMSO control cells and the red overlaid line 
represents LPS stimulated DMSO treated cells. 

 
 

 

 

FIGURE 3.14 
Activation of PPARγ decreases surface marker expression in LPS matured BMDC: BMDC 

were differentiated over 7 days in the presence of DMSO or RSG 10μM and subsequently 

stimulated for 24hr with LPS (100ng/ml). Cells were washed and stained with antibodies 

specific for CD86, CD80, CD40 and TLR4. Grey shaded peaks represents LPS stimulated cells 

and the red overlaid line represents LPS stimulated RSG treated cells. 
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FIGURE: 3.15 
Effect of the RXR agonists PA024 and HX630 on the viability of BMDC: BMDC where 
differentiated for 7 days in GMCSF in the presence of varying concentrations of PA024 and 
HX630 (10μM, 1μM or 100nM) or DMSO (vehicle control). After this time cellular viability was 
assessed using an MTS assay (Cell Titer 96 Aqueous One Solution). Results are expressed as a 
percentage of untreated cells. 
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FIGURE 3.16 
Activation of RXR with PA024 dose dependently inhibits the IL-12 family of cytokines: 
BMDC were differentiated in GMCSF for 7 days in the presence of increasing concentrations of 
PA024 (10μM, 1μM and 100nM) and stimulated for 24hrs with 100ng/ml LPS. Supernatants 
were then harvested and assessed for levels of IL-10, IL-12p40 or TNFα using specific 
immunoassays. Results are ± SEM of triplicate assays and represent three independent 
experiments.  ***p<0.001 comparing DMSO/LPS vs. PA024/LPS groups as determined by one-
way ANOVA test. 
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FIGURE 3.17 
Activation of RXR with HX630 dose dependently modulates IL-10 production from 
BMDC: 
BMDC were differentiated in GMCSF for 7 days in the presence of increasing concentrations of 
HX630 (10μM, 1μM and 100nM) and stimulated for 24hr with 100ng/ml LPS. Supernatants 
were then harvested and assessed for levels of IL-10, IL-12p40 and TNFα using specific 
immunoassays. Results are ± SEM of triplicate assays and represent three independent 
experiments.  ***p<0.001, **p<0.01 comparing DMSO/LPS vs. HX630/LPS groups as 
determined by one-way ANOVA test. 
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FIGURE 3.18 
Long term exposure to RXR agonists modulates the production of the IL-12 family of 
cytokines by BMDC: 
BMDC were differentiated in GMCSF in the presence of 1μM PA024 or HX630 for 7 days and 
stimulated for 24hrs with 100ng/ml LPS. Supernatants were then harvested and assessed for 
levels of IL-12p40, IL-12p70, IL-23 and TNFα using specific immunoassays. Results are ± SEM of 
triplicate assays and represent three independent experiments.  ***p<0.001, **p<0.01 
comparing DMSO/LPS vs. PA024/LPS groups or HX630/LPS groups as determined by one-way 
ANOVA test. 
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FIGURE 3.19 
Short term exposure to RXR agonists is less potent in modulating the production of the 
IL-12 family of cytokines by BMDC: 
BMDC were differentiated in GMCSF for 7 days and then exposed to 1μM PA024 or HX630 1hr 
prior to LPS (100ng/ml) stimulation. After 24hr LPS stimulation, supernatants were harvested 
and assessed for levels of IL-12p40, IL-12p70, IL-23 and TNFα using specific immunoassays. 
Results are ± SEM of triplicate assays and represent three independent experiments.  
***p<0.001, **p<0.01 comparing DMSO/LPS vs. PA024/LPS groups or HX630/LPS groups as 
determined by one-way ANOVA test. 
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FIGURE 3.20 
Activation of RXR with PA024 modulates the IL-12 family of cytokines in BMDC: BMDC 
were differentiated in GMCSF in the presence of 1μM PA024 for 7 days and stimulated for 
24hr with 100ng/ml LPS. Supernatants were then harvested and assessed for levels of IL-
12p40, IL-12p70, IL-23 and IL-27 using specific immunoassays. Results are ± SEM of triplicate 
assays and represent three independent experiments.  ***p<0.001, **p<0.01, *p<0.05 
comparing DMSO/LPS vs. PA024/LPS groups as determined by one-way ANOVA test. 
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FIGURE 3.21 
Activation of RXR with PA024 enhances the production of the anti-inflammatory 
cytokine IL-10 while decreasing the production of IL-6 from LPS matured BMDC: 
 BMDC were differentiated in GMCSF on the presence of 1μM PA024 for 7 days and stimulated 
for 24hr with 100ng/ml LPS. Supernatants were then harvested and assessed for levels of 
TNFα, IL-6, IL-1β and IL-10 using specific immunoassays. Results are ± SEM of triplicate assays 
and represent three independent experiments. **p<0.01, *p<0.05 comparing DMSO/LPS vs. 
PA024/LPS groups as determined by one-way ANOVA test. 
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FIGURE: 3.22 
LPS stimulation enhances the expression of the surface markers CD86, CD80, CD40 and 
MHCII: BMDC were differentiated over 7 days in GMCSF in the presence of DMSO and 
subsequently stimulated for 24hr with LPS (100ng/ml). Cells were washed and stained with 
antibodies specific for CD86, CD80, CD40 and MHCII. Cells were then gated on the CD11c 
positive population. Grey shaded peaks represent DMSO control cells and the red overlaid line 
represents LPS stimulated DMSO treated cells. 

 
 

 
 
 

FIGURE: 3.23 

Activation of RXR decreases surface marker expression in LPS matured BMDC: BMDC 

were differentiated over 7 days in the presence of DMSO or PA024 (1μM) and subsequently 

stimulated for 24hr with LPS (100ng/ml). Cells were washed and stained with antibodies 

specific for CD86, CD80, CD40 and MHCII.Cells were gated on the CD11c population. Grey 

shaded peaks represents LPS stimulated cells and the red overlaid line represents LPS 

stimulated PA024 treated cells. 
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FIGURE: 3.24 
The expression of LXR, RXR and PPARγ in DSS induced colitis. Total RNA was isolated from 
colonic tissue of mice at various stages after induction of colitis with DSS (early acute, late 
acute and chronic disease) along with controls. 1μg of RNA was converted to cDNA and used 
for subsequent RT-PCR experiments.  Results are expressed as fold change after normalising to 
the endogenous control S18. Results are ± SEM of triplicate assays and represents 5 seperate 
mice per group ***p<0.001, **p<0.01, * comparing control vs. disease groups as determined 
by one-way ANOVA test. 
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FIGURE: 3.25 
The expression of the IL-12 and IL-23 cytokine subunits is upregulated in DSS induced 
colitis. Total RNA was isolated from colonic tissue of mice at various stages after induction of 
colitis with DSS (early acute, late acute and chronic disease) along with controls. 1μg of RNA 
was converted to cDNA and used for subsequent RT-PCR experiments.  Results are expressed 
as fold change after normalising to the endogenous control S18. Results are ± SEM of triplicate 
assays and represents 5 seperate mice per group ***p<0.001, *p<0.05 comparing control vs. 
disease groups as determined by one-way ANOVA test. 
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FIGURE: 3.26 
The expression of IL-27 is upregulated in early acute colitis in DSS induced mice. Total 
RNA was isolated from colonic tissue of mice at various stages after induction of colitis with 
DSS (early acute, late acute and chronic disease) along with controls. 1μg of RNA was 
converted to cDNA and used for subsequent RT-PCR experiments. Results are expressed as fold 
change after normalising to the endogenous control S18. Results are ± SEM of triplicate assays 
and represents 5 seperate mice per group ***p<0.001 comparing control vs. disease groups as 
determined by one-way ANOVA test 
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FIGURE: 3.27 
The expression of LXRα but not RXRα or PPARγ is significantly altered following 
Citrobacter rodentium infection. Total RNA was isolated from colonic tissue of healthy mice 
and mice infected with Citrobacter rodentium over the course of 28 days. 1μg of RNA was 
converted to cDNA and used for subsequent RT-PCR experiments.  Results are expressed as 
fold change after normalising to the endogenous control S18. Results are ± SEM of triplicate 
assays and represents 4 seperate mice per group **p<0.01 comparing control vs. infected 
groups as determined by one-way ANOVA test. 
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FIGURE: 3.28 

The expression of the IL-12 and IL-23 cytokine subunits is significantly increased during 
Citrobacter rodentium infection. Total RNA was received from colonic tissue of healthy mice 
and mice infected with Citrobacter rodentium over the course of 28 days. 1μg of RNA was 
converted to cDNA and used for subsequent RT-PCR experiments. Results are expressed as fold 
change after normalising to the endogenous control S18. Results are ± SEM of triplicate assays 
and represent 4 seperate mice per group **p<0.01, *p<0.05 comparing control vs. infected 
groups as determined by one-way ANOVA test. 
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FIGURE: 3.29 

The expression of the IL-27 cytokine subunits is significantly increased during 
Citrobacter rodentium infection. Total RNA was received from colonic tissue of healthy mice 
and mice infected with Citrobacter rodentium over the course of 28 days. 1μg of RNA was 
converted to cDNA and used for subsequent RT-PCR experiments. Results are expressed as fold 
change after normalising to the endogenous control S18.  Results are ± SEM of triplicate assays 
and represents 4 seperate mice per group *p<0.05 comparing control vs. infected groups as 
determined by one-way ANOVA test. 
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TARGET EFFECT 

OF LXR 

 EFFECT OF 

PPARγ 

EFFECT OF RXR 

 ↓  IL-12p40    

 ↓ IL-12p70    

 ↓  IL-23    x 

 ↓ IL-27    

 ↓ CD80     

 ↓CD86    

 ↓CD40    

↓TLR4    n/a 

↓MHCII n/a  n/a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1: The effect of nuclear receptor activation on cytokine production and cell 

surface marker expression on BMDC. 
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TARGET EARLY 

ACUTE DSS 

INFECTION 

 LATE ACUTE 

DSS INFECTION 

CHRONIC DSS 

INFECTION 

 ↑  IL-12p40   x x 

 ↑ IL-12p35    

 ↑  IL-23p19 x  x 

 ↑ IL-27p28   x x 

 ↑ EBI3    x x 

  LXR ↑  No Change ↓

  PPARγ ↑  No Change No Change 

 RXR No Change  ↓ ↓

Table 3.2: The expression of nuclear receptors and the IL-12 family of cyokines in 

early acute, late acute and chronic DSS induced colitis. 

 

TARGET DAY 9 

Citrobacter 

rodentium 

 DAY 14 

Citrobacter 

rodentium 

DAY 21  

Citrobacter 

rodentium 

DAY 28 

Citrobacter 

rodentium 

 ↑  IL-12p40 x   x x 

 ↑ IL-12p35 x    x 

 ↑  IL-23p19 x  x x 

 ↑ IL-27p28     x 

 ↑ EBI3    x x x 

 ↑ LXR x  x  x 

  ↑ PPARγ x  x x x 

 ↑ RXR x  x x x 

Table 3.3: The expression of nuclear receptors and the IL-12 family of cytokines in 

Citrobacter rodentium induced colitis. 
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3.3 DISCUSSION 

 

The results presented in this chapter provide evidence that nuclear receptors, 

specifically PPARγ, LXR and RXR can affect DC maturation in vitro. DC are essential 

APCs that are capable of efficiently responding to danger signals and initiating a 

specific immune response. However a number of studies in human autoimmune 

disorders have indicated that DC are found in autoimmune lesions. Similarly, in animal 

models of autoimmune disease, DC are amongst the first cells to infiltrate target tissues 

(Bayry et al. 2004). Given that these cells are unique in their ability to drive T helper 

cell responses and these responses are also implicated in autoimmune diseases, they are 

ideal targets for the treatment of these conditions  

Interestingly, our results show that activation of LXR, RXR or PPARγ in DC can 

specifically and significantly inhibit the production of the IL-12 family of cytokines. 

Although these cytokines are structurally related to one another and have unique 

functions within the immune system, they have also been implicated in inflammatory 

and autoimmune disorders.  

IL-12p70 for example which consists of IL-12p40 and IL-12p35 is a potent inducer of 

IFNγ from T cells and NK cells and is also essential for the differentiation of naive T 

cells to Th1 cells in vitro and in vivo. However mRNA expression of IL-12p40 has been 

detected in acute MS lesions – specifically it has been found in early disease cases 

suggesting that this cytokine may be important in initiating disease (Duvallet et al. 

2011). Similarly IL-12p35-/- mice have been shown to develop exacerbated CIA 

compared to WT mice (Vasconcellos et al. 2011). A role for IL-12p40 in CD has also 

been highlighted in murine models of the disease where anti- IL-12p40 antibodies 

lessened disease severity (Benson et al. 2011). Our data shows that PPARγ, LXR and 
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RXR agonist treatment significantly reduces the production of IL-12 (both IL-12p40 

and IL-12p70) from LPS matured DC. Given that this cytokine has been widely 

implicated in autoimmune diseases, this result suggests that there is promising 

therapeutic potential for targeting these nuclear receptors in such diseases. 

Our results also show that both LXR and PPARγ activation result in a significant 

decrease in the production of the IL-12 related cytokine IL-23. Interestingly, this 

reduction is not seen following RXR activation, suggesting that despite the structural 

and mechanistic similarities between these nuclear receptors and their ability to interact 

with each other they still have their own distinct roles. IL-23 is composed of the IL-12 

subunit p40 and the newly identified p35 related subunit, p19. Although it is important 

for protection against fungal infections it is also essential for maintaining a Th17 

phenotype (Wang et al. 2011). This Th17/IL-23 axis has been established as a major 

player in intestinal inflammation and the development of CD. Indeed, a significant 

association between the IL-23R and CD was established following a genome wide 

association study undertaken by Duerr et al (Duerr et al. 2006). IL-23 is also increased 

in DC isolated from MS patients (Vaknin-Dembinsky, Balashov & Weiner 2006). 

Therefore suppressing the production of this cytokine could be beneficial in 

ameliorating disease.  

We also see a significant decrease in IL-27 following LXR, PPARγ and RXR activation 

in DC. As well as inhibiting the differentiation of Th17 cells, IL-27 also synergises with 

IL-12 to promote Th1 differentiation and expansion. However as with other IL-12 

related cytokines, IL-27 has also been linked to disease. A study undertaken by 

Goldberg et al showed that in a rat model of arthritis and a murine model of MS, 
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disease severity was reduced upon administration of IL-27p28 neutralizing antibodies 

(Goldberg et al. 2004). 

The remaining DC secreted cytokines i.e. TNFα, IL-6, IL-1β and IL-10 are all affected 

differently depending on which nuclear receptor is activated. TNFα for example is a 

proinflammatory cytokine which activates other immune cells such as macrophage and 

NK cells and enhances further proinflammatory cytokine and chemokine production. 

PPARγ activation significantly suppresses the production of this proinflammatory 

cytokine in LPS matured DC. TNFα production can also synergize the effect of IL-23 

on IL-17 production from Th17 cells (Notley et al. 2008). Given that PPARγ activation 

also significantly decreases IL-23, this result further emphasises the effect PPARγ may 

have downstream on Th17 polarisation. Since the production of TNFα has long been 

associated with increased disease severity in RA, MS and IBD, any changes in its 

cytokine levels could prove beneficial in the treatment of such autoimmune diseases 

(Kollias et al. 1999).  

The production of the proinflammatory cytokine IL-6 can also be regulated by both 

RXR and PPARγ as its production is significantly decreased following activation of 

these nuclear receptors in DC. IL-6 is a powerful proinflammatory cytokine that not 

only stimulates T and B cells but also leads to the infiltration of further immune cells, 

thus heightening the immune response. The expression of this cytokine is also increased 

in many inflammatory diseases and treatments blocking IL-6 have been proven 

successful in treating models of colitis and rheumatoid arthritis (Gabay 2006). Given 

that RXR and PPARγ have the ability to decrease this cytokine; this again highlights 

their potential as novel therapeutic targets in the treatment of inflammatory diseases. 
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IL-10 is a potent anti-inflammatory cytokine which is necessary for downregulating 

pro-inflammatory cytokines after bacterial clearance and is therefore essential in 

maintaining immunological homeostasis. Its production is increased following RXR 

activation, again emphasising the receptors anti-inflammatory capabilities. PPARγ 

activation however decreases the production of IL-10. Although high levels of this 

cytokine are ideal in the treatment and prevention of dysregulated inflammatory 

diseases, targeting one or several of the proinflammatory cytokines that contribute to the 

disease has also been used as a successful approach. Therefore PPARγ can still be 

considered as having potent therapeutic potential in the treatment of these diseases. 

It is important to note that although the results represented in this chapter represent a 

consistent trend in the effect of these nuclear receptors on proinflammatory cytokine 

production i.e. decrease in the IL-12 cytokines, there are however batch to batch 

variations in the levels produced in each experiment. While some experiments resulted 

in large amounts of proinflammatory cytokine production, others produced only modest 

levels of the cytokines examined. Throughout these studies BMDC were harvested from 

Balb/c mice between the ages of 6-12 weeks. It is therefore possible that the age of each 

mouse prior to BMDC harvest had an effect on its ability to respond efficiently to LPS 

or other TLR maturation signals. Indeed, work by Paula et al (2008) reported that aged 

mice are less responsive to LPS than younger mice and show diminished DC maturation 

(Paula et al. 2009).While the ages of mice used in this study ranged from 2 months 

(young) to 18 months (aged), the conclusion of this report still highlights that age can 

affect DC function. The immune function of Balb/c mice can also be affected by the 

housing densities in which they are caged. Laber et al reported that mice caged at a high 

density (10 per cage) have lower levels of CD4
+
 T helper cells compared to those 

housed at lower housing densities (Laber et al. 2008). Throughout these experiments 
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mice where initially housed at 10 mice per cage, however this number decreased as 

mice were culled for BMDC experiments. We aimed to minimise the variability in our 

experiments were possible in relation to these factors, however slight changes in 

housing numbers in combination with slight changes in age could account for batch to 

batch variability in cytokine production observed throughout this study and those 

following in the remaining chapters. 

The cytokines examined in this chapter have important and nonredundant roles in T 

helper cell differentiation. However in the absence of signal 2 i.e. costimulation 

between the T cell and DC, naive T cells fail to differentiate and polarize into their 

specific subsets. Therefore we also examined the effect of nuclear receptor activation on 

costimulatory marker expression in LPS matured DC. Treatment with agonists specific 

for LXR, PPARγ and RXR resulted in a significant decrease in the costimulatory 

marker CD40 whereas LXR has the most potent effect on this surface marker. CD40 

can interact with CD40L on T cells to further differentiate the subset while 

simultaneously enhancing T cell activation and expansion through upregulation of the 

B7 costimulatory markers CD80 and CD86(Sharpe, Freeman 2002). CD40 has also 

been implicated in a number of autoimmune diseases such as MS and IBD. A study 

undertaken by Polese et al showed a significant increase in CD40 expression in lamina 

propria leukocytes in both Crohns and Ulcerative colitis patients compared to healthy 

controls elegantly highlighting a link between CD40 and disease (Polese et al. 2003). 

Therefore inhibiting this CD40-CD40L interaction should induce T cell tolerance and 

subsequently reduce inflammatory cytokine expression. Indeed Neurath et al effectively 

used a CD40L antibody (anti-gp39) in colitis induced in mice to significantly prevent 

disease activity (Neurath et al. 1995). Further studies demonstrated that the loss of 
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disease activity following anti-gp39 treatment was due to an inhibition in IL-12 

signalling (Stuber, Strober & Neurath 1996). 

CD80 and CD86 are also upregulated in DC maturation and again these receptors 

contribute to T cell differentiation via interaction with CD28 on naive T cells. Taken 

together these costimulatory markers are referred to as the B7 markers and both have 

been detected in MS lesions (Boylan et al. 1999). In support of the hypothesis that these 

markers contribute to MS disease progression Perrin et al both showed that 

administering anti-CD80 injections to mice during the initiation of the murine model of 

MS –EAE significantly reduced disease severity (Perrin et al. 1996). RXR, LXR and 

PPARγ activation results in a downregulation in both CD86 and CD80. Although there 

have been reports on the implications of targeting one of the B7 molecules as potential 

therapeutic targets, one of the most successful costimulatory blockers on the market to 

date, Abatacept (Orencia) targets both. Abatacept is a fusion protein that binds with 

very high affinity to CD28 on T cells thus preventing B7 ligation. This ultimately 

prevents signal 2 from being effectively delivered, thus turning down the T cell 

response (Chen 2010). Similarly our results show that through nuclear receptor 

activation, B7 expression is inhibited with possible downstream effects on T helper cell 

polarization. 

PPARγ activation decreases the expression of the LPS signalling receptor, TLR4. Since 

LPS is solely recognized by TLR4, a reduction in this pattern recognition receptor could 

reduce DC responsiveness to LPS thus inhibiting downstream cytokine and surface 

marker expression. RXR activation has the most potent effect on MHCII as 

demonstrated by a significant downregulation in its expression suggesting that the 

antigen presentation capabilities in these cells would be diminished. Presentation of 

antigen on MHC and subsequent interactions with T cells is considered signal one and 
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so changes in this marker could have effects for downstream T cell differentiation and 

expansion (Kunz, Ibrahim 2009) 

Activation of these nuclear receptors in immune cells has also been previously 

documented and results generated from these studies show similarities with results 

presented in this chapter. A study by Gosset et al showed the effect of PPARγ activation 

on LPS matured human monocyte derived dendritic cells (MDDC). These cells showed 

a significant decrease in IL-12p70 production as well as a downregulation in CD80 

expression. Similarly these cells show no change in IL-1β production which correlates 

with the data presented here (Gosset et al. 2001). PPARγ activation in BMDC was also 

shown to downregulate CD86, CD80 and CD40 as well as suppressing IL-12 production 

by Klotz et al (Klotz et al. 2007). Another study undertaken by Xu et al showed that 

RSG treated – LPS stimulated microglia cells also showed an inhibition in IL-12p40, Il-

12p70, IL-23 and IL-27p28 secretion – again correlating with the data we have 

presented (Xu, Drew 2007). 

Work undertaken by Zapata-Gonzalez et al on the role of RXR in human immature and 

mature DC also complements our work on RXR activation in DC (Zapata-Gonzalez et 

al. 2007). In this study a natural ligand for RXR (9-cis-Retinoic Acid -9cRA) was used 

to determine the effects of RXR activation on LPS-matured DC. This group reported a 

significant downregulation in the co-stimulatory marker CD86, CD80 as well as a 

decrease in MHCII expression.  

Given the anti-inflammatory properties these nuclear receptors displayed in vitro, we 

next examined if the expression of these receptors were altered over the course of an 

inflammatory disease – in this case experimentally induced colitis. The DSS model of 

colitis is a chemically induced model of disease which involves the administration of 
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DSS to mice via their drinking water. Mice exposed to DSS for 5 -7 days develop acute 

inflammation whereas those exposed to repeated cycles of DSS for 5 days followed by 

administration of normal drinking water for 3 weeks, develop chronic inflammation 

(Kawada, Arihiro & Mizoguchi 2007). Since IBD is classed as a condition with acute, 

recovery and chronic phases of inflammation, the DSS model represents an excellent 

colitis model for examining proteins or therapies of interest. Our results show that the 

expression of LXR is significantly increased in early acute inflammation but becomes 

significantly decreased in chronic inflammation compared to healthy controls. Given 

that we previously reported an antiinflammatory role for LXR in response to an acute 

inflammatory signal (LPS), it is possible that during the early onset of colitis this 

receptor is increased in order to regulate and suppress the production of 

proinflammatory cytokines that contribute to disease. During this early onset of 

inflammation there is also increased infiltration of immune cells such as dendritic cells, 

macrophages and T cells to the colon (Kawada, Arihiro & Mizoguchi 2007). Given the 

receptors expression in these cells, this could also account for increased LXR 

expression in early acute colitis. However a loss in the expression of this receptor – as 

seen during chronic inflammation could then subsequently account for increased disease 

severity as inflammation progresses. Interestingly the expression of RXR is also 

significantly decreased during chronic inflammation and also in late acute 

inflammation. Since these receptors function by heterodimerising with each other, if one 

receptor is significantly decreased i.e. LXR the expression of its associated signalling 

partner could also be affected. PPARγ, undoubtedly the most widely studied nuclear 

receptor in inflammatory disease, is significantly increased in early acute inflammation. 

This observation could also be a result of increased infiltration of immune cells 

expressing PPARγ to the inflamed colon. This receptor may also be upregulated as a 
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protective mechanism within the gut to negatively regulate acute inflammation. Indeed 

it already widely accepted that activation of this nuclear receptor in models of colitis 

greatly attenuates disease severity (Desreumaux et al. 2001, Shah, Morimura & 

Gonzalez 2007). 

We also examined expression of the IL-12 family of cytokines in this model of colitis to 

emphasise the role that these cytokines play in disease. The expression of IL-12p35, IL-

12p40, IL-27p28 and EBI3 are all significantly upregulated in early acute inflammation 

with their expression decreasing over the course of disease. The expression of IL-23p19 

however is not significantly increased until chronic disease, suggesting that the 

production of IL-12 and IL-27 is involved in the acute phase of intestinal inflammation 

whereas IL-23 is increased later in disease to mediate chronic inflammation in the 

colon. Since both IL-12 and IL-27 are involved in the differentiation of Th1 cells and 

IL-23 drives the differentiation of Th17, our results suggest acute intestinal 

inflammation is associated with a Th1 response were as the maintenance of chronic 

inflammation is regulated predominantly by a Th17 response. This observation has been 

seen by other groups who have also come to this conclusion (Alex et al. 2009, Fichtner-

Feigl et al. 2007). 

Given the multifactorial mechanisms underlying IBD, we also examined the expression 

of nuclear receptors and the IL-12 family of cytokines in another model of experimental 

colitis. Citrobacter rodentium is a gram negative bacterium which, upon infection, 

colonises the distal colon and results in IBD-like symptoms and responses within the 

mouse (Mundy et al. 2005). Colonisation of the intestinal mucosa following infection of 

C.rodentium, peaks after 1 -2 weeks and is then cleared over the following 3-4 weeks 

(Eckmann 2006). Our results show that there is a significant increase in LXR expression 

after 3 weeks (Day 21) of infection whereas there are no significant changes in any of 
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the other nuclear receptors examined. This suggests that the expression of LXR is 

upregulated as the infection begins to clear. Since this model results in a bias towards a 

Th1 response to effectively clear the C.rodentium infection, it is fitting that the 

expression of LXR would not be upregulated early in infection - we have previously 

shown that LXR can inhibit the production of IL-12 and IL-27 both of which are 

essential for Th1 differentiation. Increased expression of LXR during the initial onset of 

infection could result in an inhibited Th1 response and thus affect the clearance of the 

pathogen from the mouse. However once the infection begins to clear, it is possible that 

LXR expression is increased to inhibit the production of these cytokines and 

subsequently reduce the Th1 response. As expected, the expression of the IL-12 and IL-

27 cytokine subunits are significantly increased during the first 2 weeks of infection, 

again emphasising the need for a Th1 response for bacterial clearance. Interestingly the 

expression of the IL-23 subunit p19 does not become significantly increased until day 

28 – when the infection has been cleared. Although it has previously been reported that 

IL-23 is essential and nonredundant for the full clearance of C. rodentium infection 

(Mangan et al. 2006) our results would suggest that an increase in the IL-12p40 subunit 

of IL-23 is sufficient in increasing the production of IL-23 early in infection.  

To the best of our knowledge, this is the first time the expression of these nuclear 

receptors has been characterised following C. Rodentium infection and (with the 

exception of PPARγ) following DSS induced colitis. Although an increase in IL-12 and 

IL-23 expression has previously been reported following C. rodentium infection 

(Higgins et al. 1999, Zheng et al. 2008), this is the first time the expression of IL-27 has 

been characterised over the course of infection. Similarly this is the first time a 

complete profile of the entire proinflammatory IL-12 family over both acute and chronic 

DSS induced colitis has been described. The results presented in this study highlight the 
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importance of targeting these IL-12 cytokines and also how the presence of these 

nuclear receptors could be a promising method to do so. 

The role of LXR in immunobiology still remains somewhat elusive. Although numerous 

studies have determined the receptors role in lipid metabolism and cholesterol efflux, its 

role in dendritic cell function still remains relatively unexplored. However two 

conflicting reports have been described recently. Two separate studies undertaken by 

Geyeregger et al and Hanley et al identified an anti-inflammatory role for LXR in 

human MDDC. Geyeregger et al reported a downregulation in CD86 and a significant 

decrease in both IL-12p40 and Il-12p70 cytokine production in LXR activated LPS 

matured DC whereas Hanley et al reported similar findings as seen by a decrease in 

CD86 and CD80 expression (Hanley et al. 2010, Geyeregger et al. 2007) These reports 

correlate with the results presented above and would suggest an anti-inflammatory role 

for LXR activation in DC. However a recent study by Torocsik et al reported a pro-

inflammatory role for this receptor in LPS matured human MDDC as seen by an 

increase in CD80 and CD86 expression as well as an increase in IL-12p70 production 

(Torocsik et al. 2010). This study involved the treatment of MDDC with a synthetic 

partial agonist known as GW3965 where as we and other studies carried out by Hanley 

et al and Geyeregger et al used the full agonist T0901317. It has previously been 

reported that these two ligands can differentially regulate LXR target genes. Although 

both ligands, upon LXR occupancy can induce conformational changes at helix 12, 

there are distinct differences in the ligand-binding pocket of those treated with GW3965 

compared with those treated with T0901317 (Farnegardh et al. 2003). This suggests that 

the induction of LXR dependent genes is ligand-specific and would account for the 

variability seen amongst these studies. These studies also highlight the importance of 
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synthetic ligand design and suggest that it may be possible to design LXR ligands in the 

future which have more specific targets and less unwanted side effects. 

Although certain aspects of this work have been shown previously to some extent 

amongst other groups, this is the first time that a comprehensive examination of DC 

secreted cytokines and surfaces markers has been reported following nuclear receptor 

activation. Indeed, we show for the first time the effect of LXR, RXR and PPARγ on 

many of the IL-12 family of cytokines i.e. IL-12 p70, IL-12p40, IL-23 and IL-27p28 in 

LPS matured DC. Although previous work has shown the effect of RXR activation on 

DC surface marker expression, this is the first time that selective RXR agonists have 

been used i.e. compounds which activate RXR depending on whether it is associated 

with LXR or PPARγ. This result therefore gives us greater understanding into the 

mechanism of action of RXR and which nuclear receptor it heterodimerises with in 

order to function. The results reported for the role of LXR in DC are extremely novel. 

We highlight the receptors ability to not only downregulate CD80 and CD86, but also 

the costimulatory marker CD40 and TLR4 as well as showing for the first time this 

receptors overall effect on a panel of DC secreted cytokines. 

The results presented here provide evidence that nuclear receptors have anti-

inflammatory properties and can modulate DC maturation in vitro. In the next chapter 

we will explore the mechanism in which these receptors can carry out these effects. 
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4.1 INTRODUCTION 

It is widely accepted that in order to function, nuclear receptors must form homodimers 

with each other or heterodimers with other members of the nuclear receptor family. 

These heterodimers can be activated by agonists to either or both receptors and can 

subsequently control numerous biological processes by regulating gene expression 

(Huang, Glass 2010). Indeed, these nuclear receptors can act in very different ways 

depending on their heterodimerisation partner. RXR for example can positively regulate 

the expression the ATP- binding cassette transporters A1 and G1 (ABCA1 and ABCG1) 

when it associates with LXR (Uehara et al. 2007). Rosemary et al also confirmed this 

observation, however they also expanded this study and showed that while RXR:LXR 

can significantly induce ABCA1 when RXR heterodimerises with PPARγ the ability to 

regulate these proteins is lost and it becomes a weak activator of ABCA1 (Cesario et al. 

2001). We therefore aimed in this study to elucidate the dimer partners for each nuclear 

receptor of interest. Through the use of selective nuclear receptor antagonists we 

investigated the effect of inhibiting one nuclear receptor while simultaneously activating 

another. We used the synthetic compound GW9662 which has been described as a 

potent PPARγ full antagonist that covalently modifies a cysteine residue in the PPARγ 

LBD thus inhibiting its activation (Leesnitzer et al. 2002). Similarly HX531 and PA452 

have been described as two synthetic pan antagonists that inhibit RXR transactivation. 

Interestingly HX531 acts as an antagonist toward the PPARγ-RXR heterodimer but 

does not affect other RXR heterodimers. Whereas PA452 has been described as a more 

potent antagonist which can inhibit PPARγ- RXR activation as well as LXR-RXR 

activation (Kagechika, Shudo 2005). Thus this antagonist can selectively inhibit certain 

nuclear receptor interactions that are of interest to us. As of yet there is no commercially 

available LXR antagonists and so our study is limited to inhibiting these two nuclear 
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receptors. By using these antagonists in this way, we aimed to identify they heterodimer 

partner for each of the nuclear receptors we examined in Chapter 3. 

As mentioned earlier, DC are positioned at sites of potential pathogen entry and thus are 

one of the first cells to come in contact with invading organisms. For this reason it is 

essential that DC can respond to a wide variety of pathogens to prevent an infection 

from occurring. In order to do this, DC and other APC are equipped with a set of 

germline encoded receptors known as pattern recognition receptors (PRR) which 

recognise conserved pathogen associated molecular patterns (PAMPs) on eukaryotic 

cells (Janeway, Medzhitov 2002). The most common PRRs are the TLRs- an 

evolutionary ancient set of conserved proteins that have been found in plants, insects 

and mammals (Basset et al. 2003). As shown in Chapter 3, TLR4 signalling via LPS 

initiates a program of DC maturation and nuclear receptor activation in these cells can 

interfere with this maturation process. However, TLR4 is just one member of the TLR 

family which consists of 10 other members. These TLRs use different intracellular 

signalling molecules which ultimately lead to different transcriptional responses. We 

therefore aimed to examine the effects of nuclear receptor activation on DC matured 

with a panel of TLR ligands to examine if these nuclear receptors have a specific target 

within the TLR pathway. 

Although TLR4 is undoubtedly the most extensively studied TLR to date, our 

understanding of the remaining TLR members has improved dramatically in recent 

years. Similar to TLR4, TLR2 is also expressed on the cell wall and responds to 

bacterial antigens. However unlike other TLRs, TLR2 can only respond to PAMPs by 

dimerising with either TLR1 or TLR6. The ligands for these are PGN or Pam3CSK4 for 

TLR2/1 or Zymosan for TLR2/6 (Kawai, Akira 2007). TLR5 is also expressed on the 

cell surface and recognizes flagellin – the protein that makes up bacterial flagella. TLR 
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9 which is expressed in endosomes recognizes unmethylated CpG motifs present in the 

bacterial genome.  TLR7 recognizes guanine analogs such as loxoribine as well as 

recognizing  ssRNA viruses such as HIV. Finally TLR3 specifically recognizes dsRNA 

from dsRNA viruses such as neovirus as well as the synthetic analogue PolyIC (used in 

this study)(Kawai, Akira 2010). 

After recognizing PAMPs TLRs activate intracellular signalling pathways that lead to 

the activation of the transcription factor NFκB or IRF. TLRs can then activate either the 

MyD88 dependent or MyD88 independent pathway/TRIF dependent pathway. MyD88 

is a universal adaptor that is shared by all TLRs with the important exception of TLR3. 

Recruitment of MyD88 leads to the activation of MAP kinases and NFκB which 

subsequently controls the expression of inflammatory genes. Although TLR2 and TLR4 

signal through the MyD88 dependent pathway, unlike other TLRs they also use the 

adaptor molecule Mal to mediate downstream signalling (Kawai, Akira 2008). TLR3 

and TLR4 use the adaptor molecule TRIF to signal and thus utilize the MyD88 

independent pathway leading to the induction of IRF3 and IFNβ production and late 

NFκB activation. TLR4 is unique in its ability to signal through both the MyD88 

dependent and independent pathway (Moynagh 2005). We therefore used this 

information on the TLR pathway to decipher if nuclear receptors target a specific 

signalling element within this pathway. 
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4.2    RESULTS 

4.2.1    THE EFFECT OF THE LXR AGONIST T0901317 ON THE IL-12 

FAMILY OF CYTOKINES IS COMPLETELY REVERSED IN THE 

PRESENCE OF THE RXR INHIBITOR PA452. 

BMDC were harvested and differentiated as previously described and treated with 

T0901317 (2μM) for 7 days in the presence or absence of the RXR inhibitors PA452 

and HX531 (1μM). RXR inhibitors were added 2hr prior to LXR agonist treatment. DC 

were then stimulated with LPS (100ng/ml) for 24hr, supernatants were removed and 

levels of IL-12p40, IL-23, IL-12p70 and IL-27 [Figure 4.1] were assessed using 

ELISA. 

As shown in Chapter 3, T0901317 has a profound and significant effect on the IL-12 

family of cytokines as seen by a significant decrease in IL-12p40, IL-23 (p<0.001), IL-

12p70 (p<0.05) and IL-27(p<0.01) [Figure 4.1]. Addition of PA452 but not HX531 

reversed the effect of T0901317 on these cells with the suppression of IL-12p40, IL-23, 

IL-12p70, and IL-27 no longer present.  

4.2.2    THE MODULATION OF CELL SURFACE MARKER EXPRESSION IN 

T0901317 TREATED BMDC IS NOT ALTERED IN THE PRESENCE OF THE 

RXR INHIBITOR PA452  

BMDC were harvested and differentiated as previously described and treated with 

T0901317 (2μM) for 7 days in the presence or absence of the RXR inhibitor PA452 

(1μM). The RXR inhibitor was added 2hr prior to LXR agonist treatment. Cells were 

then stimulated with 100ng/ml LPS for 24hr before being washed and stained with 

fluorochrome labelled monoclonal antibodies for specific costimulatory and cell surface 
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markers (CD11c, CD40, CD80,and CD86). Cells were then gated on the CD11c 

positive population. 

As expected LPS upregulated the expression of CD86,CD80 and CD40 [Figure 4.2; 

Row 1] where DMSO unstimulated cells are represented by the shaded grey peak and 

LPS stimulated DMSO control cells are overlaid with a red line. As seen previously in 

Chapter 3, expression of the costimulatory marker CD40 was significantly 

downregulated in LPS stimulated T0901317 treated cells compared to LPS stimulated 

DMSO control cells [Figure 4.2 Row 2]. T0901317 treatment also decreases the 

expression of the costimulatory markers CD86 and CD80 [Figure 4.2 Row 2] compared 

to DMSO vehicle control. With the presence of the RXR inhibitor PA452 in T0901317 

treated cells the decrease in CD40, CD80 and CD86 expression was still observed and 

thus the effect of LXR activation in these cells was not reversed when RXR was 

inhibited [Figure 4.2;Row 3] 

4.2.3    THE EFFECT OF THE LXR AGONIST T0901317 ON THE IL-12 

FAMILY OF CYTOKINES IS PARTIALLY REVERSED IN THE PRESENCE 

OF THE PPARγ INHIBITOR GW9662. 

BMDC were harvested and differentiated as previously described and treated with 

T0901317 (2μM) for 7 days in the presence or absence of the PPARγ inhibitor GW9662 

(1μM). GW9662 was added 2hr prior to LXR agonist treatment. DC were then 

stimulated with LPS (100ng/ml) for 24hr, supernatants were removed and levels of IL-

12p40, IL-12p70 and IL-23 [Figure 4.3] were assessed using ELISA. 

As expected, T0901317 significantly decreased the production of IL-12p40, IL-23 

(p<0.001) and IL-12p70 (p<0.01) [Figure 4.3]. The suppressive effect of T0901317 on 

IL-23 was reversed in the presence of the PPARγ antagonist GW9662 [Figure 4.3]. 



137 
 

However, the effect of LXR activation on IL-12p70 and IL-12p40 was not reversed in 

the presence of the PPARγ antagonist GW9662 since a significant decrease in both 

cytokines was still observed (p<0.01 and p<0.001 respectively). 

4.2.4    THE MODULATION OF CELL SURFACE MARKER EXPRESSION IN 

T0901317 TREATED BMDC IS NOT ALTERED IN THE PRESENCE OF THE 

PPARγ INHIBITOR GW9662.  

BMDC were harvested and differentiated as previously described and treated with 

T0901317 (2μM) for 7 days in the presence or absence of the PPARγ inhibitor GW9662 

(1μM). The inhibitor was added 2hr prior to LXR agonist treatment. Cells were then 

stimulated with 100ng/ml LPS for 24hr before being washed and stained with 

fluorochrome labelled monoclonal antibodies for specific costimulatory and cell surface 

markers (CD11c, CD40, CD80 and CD86). Cells were then gated on the CD11c 

positive population. 

As expected LPS upregulated the expression of CD86, CD80 and CD40 in DMSO 

control cells [Figure 4.4 Row 1]. T0901317 treatment decreased the expression of the 

cell surface markers CD80, CD86 and CD40 [Figure 4.4; Row 2]. In T0901317 cells 

that were pretreated with the PPARγ antagonist GW9662, the effect of LXR activation 

on CD40 and CD86 was not reversed as a decrease in the expression of these surface 

markers was still observed. In the presence of GW9662 however, the effect of LXR 

activation on CD80 appears to be partially reversed [Figure 4.4;Row 3].  
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4.2.5    THE EFFECT OF PPARγ ACTIVATION ON THE IL-12 FAMILY OF 

CYTOKINES IS NOT REVERSED IN THE PRESENCE OF SPECIFIC RXR 

INHIBITORS 

BMDC were harvested and differentiated as previously described and cultured with 

RSG (10μM) for 7 days in the presence or absence of the RXR inhibitors PA452 and 

HX531 (1μM). RXR inhibitors were added 2hr prior to RSG treatment. DC were then 

stimulated with LPS (100ng/ml) for 24hr, supernatants were removed and levels of IL-

12p70, IL-12p40 and IL-23 [Figure 4.5] were assessed using ELISA. 

As seen in Chapter 3, PPARγ activation in BMDC significantly decreased the 

production of IL-23, IL-12p70 (p<0.001) and IL-12p40 (p<0.05). The effect of PPARγ 

activation was not reversed in cells that were pretreated with the RXR inhibitors PA452 

and HX531 as IL-23, IL-12p70 and IL-12p40 remain decreased [Figure 4.5]. 

4.2.6 THE MODULATION OF CELL SURFACE MARKER EXPRESSION IN 

PPARγ ACTIVATED BMDC IS NOT ALTERED IN THE PRESENCE OF THE 

RXR INHIBITOR PA452. 

BMDC were harvested and differentiated as previously described and treated with RSG 

(10μM) for 7 days in the presence or absence of the RXR inhibitor PA452 (1μM). The 

inhibitor was added 2hr prior to RSG treatment. Cells were then stimulated with 

100ng/ml LPS for 24hr before being washed and stained with fluorochrome labelled 

monoclonal antibodies for specific costimulatory and cell surface markers (CD11c, 

CD40, CD80,CD86 and TLR4). Cells were then gated on the CD11c positive 

population. 
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As expected LPS upregulated the expression of CD86, CD80, CD40 and TLR4 in 

DMSO control cells [Figure 4.6 Row 1]. RSG has a significant effect on the 

costimulatory markers CD80, CD86, CD40 and TLR4 as seen by a downregulation in 

their expression following LPS stimulation compared to DMSO control [Figure 4.6 

Row 2]. In RSG treated cells that have been pretreated with the RXR antagonist PA452,  

the decrease in these costimulatory markers CD40, CD80 and CD86 aswell as TLR4 is 

not reversed and instead a more enhanced affect is observed compared to RSG treated 

cells [Figure 4.6;Row 3]. 

4.2.7    THE EFFECT OF RXR ACTIVATION ON THE IL-12 FAMILY OF 

CYTOKINES IS NOT REVERSED IN THE PRESENCE OF THE SPECIFIC 

PPARγ INHIBITOR GW9662 

BMDC were harvested and differentiated as previously described and cultured with 

PA024 (1μM) for 7 days in the presence or absence of the PPARγ inhibitor GW9662 

(1μM). Inhibitors were added 2hr prior to PA024 treatment. DC were then stimulated 

with LPS (100ng/ml) for 24hr, supernatants were removed and levels of IL-12p70, IL-

12p40 and IL-23 [Figure 4.7] were assessed using ELISA. 

RXR activation in BMDC significantly decreased the production of IL-12p40 (p<0.001) 

and IL-12p70 (p<0.05) as well as potently increasing the production of IL-23 (p<0.001). 

However the effect of RXR activation on these cytokines was not reversed in the 

presence of the PPARγ antagonist GW9662 as IL-12p40 and IL-12p70 were still 

decreased while IL-23 was also still increased compared to DMSO control [Figure 4.7] 
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4.2.8 THE MODULATION OF CELL SURFACE MARKER EXPRESSION ON 

BMDC BY RXR IS NOT ALTERED IN THE PRESENCE OF THE PPARγ 

INHIBITOR GW9662. 

BMDC were harvested and differentiated as previously described and treated with 

PA024 (1μM) or DMSO for 7 days in the presence or absence of the PPARγ inhibitor 

GW9662 (1μM). The inhibitor was added 2hr prior to PA024 treatment. Cells were then 

stimulated with 100ng/ml LPS for 24hr before being washed and stained with 

fluorochrome labelled monoclonal antibodies for specific costimulatory and cell surface 

markers (CD11c, CD40, CD80,CD86, and MHCII). Cells were then gated on the 

CD11c positive population. 

As expected LPS upregulated the expression of CD86, CD80 and CD40 in DMSO 

control cells [Figure 4.8 Row 1]. As shown in Chapter 3, PA024 has the most potent 

effect on MHCII as seen by a significant decrease in its expression compared to DMSO 

control. RXR activation in LPS matured cells also decreased CD86, CD40 and to a 

lesser extent CD80 expression [Figure 4.8 Row 2]. In PA024 cells that were pretreated 

with the PPARγ antagonist GW9662, the effect of RXR activation on CD80, CD86, 

CD40 and MHCII was not reversed as a decrease in the expression of these surface 

markers was still observed.  

4.2.9 LXR ACTIVATION IN DENDRITIC CELLS MODULATES THE IL-12 

FAMILY OF CYTOKINES FOLLOWING STIMULATION WITH A PANEL OF 

TLR LIGANDS 

BMDC were harvested and differentiated as previously described and treated with 

T0901317 (2μM) or DMSO for 7 days. Cells were then stimulated for 24hr with either 

LPS (100ng/ml), Pam3CSK4 (5μg/ml), CpG (2μM) Zymosan (10μg/ml), Poly:(IC) 
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(10μg/ml), Flagellin (5μg/ml) or Loxoribine (5μg/ml). Supernatants were removed and 

levels of IL-12p40, IL-12p7, IL-27 and IL-23 were assessed using ELISA. 

T0901317 had a significant effect on the production of IL-12p40 in TLR stimulated 

cells as seen by a significant decrease in its production following stimulation with LPS 

(p<0.05), Poly:(IC) (p<0.001), Loxoribine (p<0.01) and Zymosan (p<0.01) [Figure 

4.9]. However there was no change in IL-12p40 production in LXR activated cells 

following stimulation with the TLR5 ligand Flagellin or the TLR2/6 ligand Pam3CSK4 

[Figure 4.9]. In LXR activated cells the production of IL-12p70 was also significantly 

decreased following stimulation with either LPS (p<0.01), CpG or Loxoribine 

(p<0.001) [Figure 4.9]. 

LPS, Loxoribine, Zymosan and Flagellin stimulated DC to produce IL-27 [Figure 

4.10]. T0901317 treatment resulted in a significant decrease in IL-27 following LPS 

(p<0.001) Zymosan (p<0.05) Loxoribine (p<0.001) stimulation but not following 

stimulation with Flagellin or Pam3CSK4 [Figure 4.10]. 

IL-23 was also significantly decreased in T0901317 treated cells stimulated with LPS 

(p<0.05), Pam3CSK4 (p<0.01) and Zymosan (p<0.001) however there was no change 

in IL-23 in treated cells that were stimulated with Loxoribine. [Figure 4.10]. 

 

4.2.10 LXR ACTIVATION IN DENDRITIC CELLS MODULATES CELL 

SURFACE MARKER EXPRESSION FOLLOWING STIMULATION WITH A 

PANEL OF TLR LIGANDS. 

BMDC were harvested and differentiated as previously described and treated with 

T0901317 (2μM) for 7 days. Cells were then stimulated for 24hr with either LPS 
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(100ng/ml) ,Zymosan (10μg/ml), Pam3CSK4 (5μg/ml), Poly:(IC) (10μg/ml), Flagellin 

(5μg/ml), Loxoribine (5μg/ml) and CpG (2μM). Cells were washed and stained with 

fluorochrome labelled monoclonal antibodies for specific costimulatory and cell surface 

markers (CD11c, CD40, CD80,CD86, and MHCII). Cells were then gated on the 

CD11c positive population. 

Stimulation with a panel of TLR ligands caused an upregulation in the expression of the 

surface markers CD86, CD80, CD40 and MHCII [Figure 4.11 – 4.14 A & B Row 1]. 

As seen previously T0901317 treatment in LPS stimulated cells caused a decrease in the 

expression of the costimulatory markers CD80, CD86 and CD40 as well as a significant 

decrease in the antigen presentation receptor MHCII. T0901317 treated cells stimulated 

with Pam3CSK4 [Figure 4.11 B Row 2], Zymosan [Figure 4.12 A Row 2], PolyIC 

[Figure 4.12 B Row 2], CpG [Figure 4.13 B Row 2] or Flagellin [Figure 4.12 Row 2] 

all show a decrease in expression of CD86, CD80, CD40 and MHCII compared to 

DMSO stimulated cells. Cells that were stimulated with the TLR7 ligand Loxoribine 

also showed a decrease in CD86, CD80 and MHCII expression however there was no 

change in CD40 expression in these cells [Figure 4.13 A Row 2]. 

4.2.11 PPARγ ACTIVATION IN DENDRITIC CELLS MODULATES THE IL-12 

FAMILY OF CYTOKINES FOLLOWING STIMULATION WITH A PANEL OF 

TLR LIGANDS 

BMDC were harvested and differentiated over 7 days in the presence or absence of the 

PPARγ agonist RSG (10μM) as previously described. Cells were then stimulated for 

24hr with either LPS (100ng/ml), Pam3CSK4 (5μg/ml), CpG (2μM) Zymosan 

(10μg/ml), Poly:(IC) (10μg/ml), Flagellin (5μg/ml) and Loxoribine (5μg/ml). 
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Supernatants were removed and levels of IL-12p40, IL-12p70 IL-23 and IL-27 [Figure 

4.15; Figure 4.16] were assessed using ELISA. 

PPARγ activation had a significant effect on the production of IL-12p40 in all TLR 

stimulated cells (except those stimulated through TLR9) as seen by a significant 

decrease in its production following stimulation with LPS (p<0.05), Pam3CSK4 

(p<0.01), Poly:(IC) (p<0.001), Loxoribine (p<0.05), Zymosan (p<0.001) and Flagellin 

(p>0.01) [Figure 4.15]. Following stimulation with either LPS, CpG or Loxoribine in 

RSG treated cells there was a significant decrease in the production of IL-12p70 

(p<0.01; p<0.001 respectively) [Figure 4.15].  

Similarly PPARγ activation can inhibit IL-23 production from DC matured with a panel 

of TLR ligands as seen by a significant decrease in the cytokine following stimulation 

with LPS (p<0.01), Zymosan (p<0.001) and CpG (p<0.05) [Figure 4.16]. As 

highlighted in the previous chapter, RSG treatment can also inhibit the production of 

IL-27 from LPS stimulated cells. Again we see a significant decrease in IL-27 following 

this stimulation (p<0.001) and also in those cells stimulated with the CpG (p<0.01) and 

Zymosan (p<0.001) [Figure 4.16] 

4.2.12 PPARγ ACTIVATION IN DENDRITIC CELLS MODULATES CELL 

SURFACE MARKER EXPRESSION FOLLOWING STIMULATION WITH A 

PANEL OF TLR LIGANDS. 

BMDC were harvested and differentiated over 7 days in the presence or absence of the 

PPARγ agonist RSG (10μM) as previously described. Cells were then stimulated for 

24hr with either LPS (100ng/ml), Zymosan (10μg/ml), Pam3CSK4 (5μg/ml), Poly:(IC) 

(10μg/ml), Flagellin (5μg/ml), Loxoribine (5μg/ml) and CpG (2μM). Cells were then 

washed and stained with fluorochrome labelled monoclonal antibodies for specific 
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costimulatory and cell surface markers (CD11c, CD40, CD80,CD86, and MHCII). Cells 

were then gated on the CD11c positive population. 

Stimulation with a panel of TLR ligands caused an upregulation in the expression of the 

surface markers CD86, CD80, CD40 and MHCII [Figure 4.17 – 4.20 A & B Row 1]. 

The expression of the costimulatory marker CD80 was decreased in RSG treated cells 

stimulated with LPS, Pam3CSK4 [Figure 4.17 A and B Row 2] Zymosan, Poly:(IC) 

[Figure 4.18 A and B Row 2] and Flagellin [Figure 4.20]. However the expression of 

this surface marker remained unchanged in RSG treated cells that were stimulated with 

Loxoribine and CpG [Figure 4.19]. CD86 was also decreased in RSG treated cells 

stimulated with LPS, [Figure 4.17 A Row 2] PolyIC, Zymosan [Figure 4.18 A and B 

Row 2] and Flagellin [Figure 4.20].  CD86 expression however remained unchanged in 

RSG treated cells that were stimulated with Pam3CSK4 [Figure 4.17 B], Loxoribine 

and CpG [Figure 4.19].The expression of the surface marker CD40 fluctuated the most 

depending on which TLR stimulation was used. In LPS, Zymosan and Poly:(IC) 

stimulated RSG treated cells there was a decrease in CD40 expression. However 

following Pam3CSK4, Loxoribine, CpG and Flagellin stimulation there was a small 

upregulation in its expression in RSG treated cells [Figure 4.17 B, Figure 4.19 & 4.20]. 

Finally, the expression of the antigen presentation receptor MHCII was  increased in 

RSG treated cells that were activated with any of the TLR ligands used within this 

study. 
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4.2.13 RXR ACTIVATION IN DENDRITIC CELLS MODULATES THE IL-12 

FAMILY OF CYTOKINES FOLLOWING STIMULATION WITH A PANEL OF 

TLR LIGANDS 

BMDC were harvested and differentiated over 7 days in the presence or absence of 

PA024 or HX630 (1μM) as previously described. Cells were then stimulated for 24hr 

with either LPS (100ng/ml), Pam3CSK4 (5μg/ml), CpG (2μM) Zymosan (10μg/ml), 

Poly:(IC) (10μg/ml), Flagellin (5μg/ml) or Loxoribine (5μg/ml). Supernatants were 

removed and levels of IL-12p40, IL-12p70 IL-23 and IL-27 [Figure 4.21; Figure 4.22] 

were assessed using ELISA. 

The RXR agonist PA024 significantly suppressed the production of IL-12p40 in LPS 

(p<0.001), Zymosan (p<0.001), Poly:(IC) (p<0.001)  and Flagellin (p<0.001) stimulated 

cells. However PA024 did not suppress the production of IL-12p40 when stimulated 

with the TLR7 ligand Loxoribine, the TLR2/1 ligand Pam3CSK4 and the TLR9 ligand 

CpG [Figure 4.21]. PA024 also significantly inhibited IL-12p70 production following 

stimulation with LPS (p<0.05) and Loxoribine (p<0.001). The production of IL-27 was 

also significantly decreased in PA024 treated cells that were stimulated with either LPS 

(p<0.001) or Zymosan (p<0.01) however there was no inhibition in the production of 

this cytokine in CpG stimulated cells [Figure 4.22]. The production of IL-23 was 

increased significantly in PA024 treated LPS (p<0.001), Pam3CSK4 (p<0.001), and 

Loxoribine (p<0.001) stimulated cells. However PA024 decreases the production of IL-

23 in Zymosan stimulated cells (p<0.01) [Figure 4.22] 

HX630 was less potent at inhibiting the IL-12 family of cytokines than PA024 which 

can activate a larger variety of nuclear receptor heterodimerisation partners. There was 

no change in IL-12p40 production in HX630 treated cells following stimulation with 
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LPS, Pam3CSK4, Loxoribine, Zymosan CpG or Flagellin however there was a 

significant decrease in its production following stimulation with the TLR3 ligand 

Poly:(IC) (p>0.001). The production of IL-12p70 was not affected following HX630 

treatment and different TLR stimulations however IL-27 was significantly decreased in 

HX630 treated LPS stimulated (p<0.001) or Zymosan stimulated cells (p<0.01). Finally 

HX630 significantly increased the production of IL-23 from LPS (p<0.001), 

Pam3CSK4 (p<0.001) and Loxoribine (p<0.001) stimulated cells. Stimulation of these 

cells through TLR9 caused a significant decrease in the production of IL-23 (p<0.01). 

However there was no significant change in the production of IL-23 in Zymosan 

stimulated cells [Figure 4.22]. 

4.2.14 RXR ACTIVATION IN DENDRITIC CELLS MODULATES CELL 

SURFACE MARKER EXPRESSION FOLLOWING STIMULATION WITH A 

PANEL OF TLR LIGANDS. 

BMDC were harvested and differentiated over 7 days in the presence or absence of the 

RXR agonist PA024 (1μM) as previously described. Cells were then stimulated for 24hr 

with either LPS (100ng/ml) ,Zymosan (10μg/ml), Pam3CSK4 (5μg/ml), (10μg/ml), 

Poly:(IC) (10μg/ml), Flagellin (5μg/ml), Loxoribine (5μg/ml) or CpG (2μM). Cells 

were then washed and stained with fluorochrome labelled monoclonal antibodies for 

specific costimulatory and cell surface markers (CD11c, CD40, CD80,CD86, and 

MHCII). Cells were gated on the CD11c positive population. 

Stimulation with a panel of TLR ligands caused an upregulation in the expression of the 

surface markers CD86, CD80, CD40 and MHCII [Figure 4.23 – 4.29 Row 1]. PA024 

treatment caused a decrease in the expression of CD86 in cells that were stimulated with 

either LPS, Pam3CSK4, Flagellin, Poly:(IC), Loxoribine, CpG or Zymosan. Similarly 
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CD80 expression was also decreased following PA024 treatment with LPS, 

Pam3CSK4, Flagellin, Poly:(IC), CpG or Zymosan however there was a small increase 

in the expression of this surface markers following Loxoribine stimulation [Figure 4.27 

Row 2].There was also a small increase in CD40 expression following CpG and 

Loxoribine stimulation [Figure 4.27 & 4.28 Row 2] however a decrease in the 

expression of this costimulatory maker was seen following stimulation with all other 

TLR ligands. PA024 treatment also decreased the expression of MHCII following 

stimulation with this panel of TLR ligands with the exception of Flagellin-stimulated 

cells which showed an increase in MHCII expression [Figure 4.29 Row 2]. 

The HX630 treatments also had potent effects on the expression of these surface 

markers on TLR stimulated cells. CD86 expression was decreased on HX630 treated 

cells that were stimulated with all the TLR ligands examined in this study. There was 

also a decrease in the expression of CD80 on HX630 treated cells following stimulation 

with LPS, Pam3CSK4, Flagellin, CpG or Zymosan however the expression of this 

receptor remained unchanged following Poly:(IC) and Loxoribine stimulation [Figure 

4.26 & Figure 4.27 Row 3]. CD40 expression was also decreased following LPS, 

Pam3CSK4, Flagellin and Zymosan stimulation [Figure 4.23, 4.24, 4.25 & 4.29 Row 

3] however there was no change in the expression of this costimulatory marker 

following Poly:(IC), Loxoribine or CpG stimulation [Figure 4.26, 4.27 &4.28]. Finally, 

HX630 also decreased the expression of MHCII following stimulation with all of the 

TLR ligands used within this study. 
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4.2.15 NUCLEAR RECEPTOR ACTIVATION SELECTIVELY INHIBITS THE 

ACTIVATION OF NFκB AND IRF3 DOWNSTREAM OF TLR4 ACTIVATION 

Results thus far have led us to believe that nuclear receptors, once activated must target 

an element of the TLR pathway which is common to all receptors. Consequently we 

next examined the effect of nuclear receptor activation on two important downstream 

transcription factors – NFκB and IRF3. HEK293 cells stably expressing TLR4-CD14-

MD2 (HEK-MTC) were cultured for 7 days in the presence of DMSO, T0901317 

(2μM), RSG (10μM), PA024 (1μM) or HX630 (1μM). These cells were then plated and 

transiently transfected with either NFκB or ISRE luciferase reporter plasmid. 

As expected, NFκB and ISRE were both activated following exposure to LPS [Figure 

4.30]. LXR (T0901317) and PA024 treatment significantly suppressed NFκB and ISRE 

compared to DMSO vehicle control (p<0.001) whereas PPARγ activation specifically 

and significantly suppressed ISRE and not NFκB compared to DMSO control (p<0.001) 

 

4.2.16 THE ADDITION OF THE RXR INHIBITOR PA452 REVERSES THE 

SUPPRESSIVE EFFECT OF LXR ON NFκB AND NOT IRF3 

Results thus far have highlighted an association of LXR with RXR and not PPARγ in 

order to exert its effects. Consequently we examined the effect of LXR activation in the 

presence of RXR inhibitors on NFκB and IRF3. HEK293 cells stably expressing TLR4-

CD14-MD2 (HEK-MTC) were treated for 7 days with T0901317 (2μM) in the presence 

or absence of the PPARγ inhibitor GW9662 (1μM) or RXR inhibitors PA452 or HX531 

(1μM). These cells were then plated and transiently transfected with either NFκB or 

ISRE luciferase reporter plasmid. As seen here and previously in Figure 4.30 LXR 

activation significantly inhibits both NFκB and IRF3 (p<0.001). In the presence of the 

RXR inhibitor PA452 (1μM) the suppressive effect of LXR on NFκB but not IRF3 is 
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reversed. The addition of the PPARγ inhibitor does not change the effect of LXR on 

NFκB or IRF3 [Figure 4.31]. 
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FIGURE: 4.1 
The effect of LXR activation on the IL-12 family is completely reversed in the presence of 
a specific RXR inhibitor: 
BMDC were differentiated in GMCSF for 7 days in the presence of the LXR agonist T0901317 
(2μM) or DMSO. Specific RXR antagonists HX531 and PA452 (1μM) were added 2 hours prior to 
the LXR agonist. Cells were stimulated for 24hrs with 100ng/ml LPS. Supernatants were then 
harvested and assessed for levels of IL-12p70, IL-12p40, IL-27 and Il-23 using immunospecific 
assays. Results are ± SEM of triplicate assays and represent three independent experiments.  
***p<0.001, **p<0.01, *p<0.05 comparing DMSO/LPS vs. T0901317/LPS groups as determined 
by one-way ANOVA test. +++ p<0.001, + p<0.05   comparing T0901317 v’s T0901317 + RXR 
inhibitor as determined by one-way ANOVA test. 
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FIGURE 4.2 

The effect of LXR activation on mature BMDC surface marker expression is not reversed 

in the presence of specific RXR inhibitors. 

BMDC were differentiated in GMCSF over 7 days in the presence of either DMSO or LXR 
(T0901317 2μM) and the specific RXR inhibitor PA452 (1μM) and then stimulated for 24hrs 
with LPS (100ng/ml). Cells were washed and stained with antibodies specific for CD86, CD80 
and CD40. Mean Fluorescent Intensity values for each group are represented in the associated 

group colour and are displayed on the top corners of each histogram. Row 1 represents DMSO  
control (shaded grey) overlaid with LPS stimulated cells. Row 2 represents LPS stimulated 
DMSO cells (shaded grey) overlaid with LXR activated LPS stimulated cells.Finally Row 3 
represents samples shown in Row 2 overlaid with the RXR inhibitor (orange thick line). 
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FIGURE: 4.3 
The effect of LXR activation on the IL-12 family is only partially reversed in the presence 
of a specific PPARγ inhibitor: 
BMDC were differentiated in GMCSF for 7 days in the presence of the LXR agonist T0901317 
(2μM) or DMSO. The specific PPARγ antagonist GW9662 (1μM) was added 2 hours prior to the 
LXR agonist. Cells were then stimulated for 24hrs with 100ng/ml LPS. Supernatants were 
harvested and assessed for levels of IL-12p70, IL-12p40 and IL-23 using immunospecific assays. 
Results are ± SEM of triplicate assays and represent three independent experiments.  
***p<0.001, **p<0.01 comparing DMSO/LPS vs. T0901317/LPS vs. T0901317/GW9662/LPS 
groups as determined by one-way ANOVA test. . +++ p<0.001 comparing T0901317 v’s 
T0901317 + GW9662 as determined by one-way ANOVA test. 
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FIGURE 4.4 

The effect of LXR activation on mature BMDC surface marker expression is not reversed 
in the presence of a specific PPARγ inhibitor.  
BMDC were differentiated in GMCSF over 7 days in the presence of either DMSO or LXR 
(T0901317 2μM) and the specific PPARγ inhibitor GW9662 (1μM) and stimulated for 24hrs 
with LPS (100ng/ml). Cells were washed and stained with antibodies specific for CD86, CD80 
and CD40. Mean Fluorescent Intensity values for each group are represented in the associated 

group colour and are displayed on the top corners of each histogram. Row 1 represents DMSO  
control (shaded grey) overlaid with LPS stimulated cells. Row 2 represents LPS stimulated 
DMSO cells (shaded grey) overlaid with LXR activated LPS stimulated cells.Finally Row 3 
represents samples shown in Row 2 overlaid with the GW9662 inhibitor (thick blue line). 
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FIGURE 4.5 

The effect of PPARγ activation on the IL-12 family is not reversed in the presence of 

specific RXR inhibitors 

BMDC were differentiated in GMCSF for 7 days in the presence of either DMSO or the PPARγ 
agonist RSG (10μM). The specific RXR antagonists PA452 and HX531 (1μM) were added 2 hours 
prior to the PPARγ agonist and cells were stimulated for 24hrs with 100ng/ml LPS. 
Supernatants were then harvested and assessed for levels of IL-23, IL-12p70 and IL-12p40 
using immunospecific assays. Results are ± SEM of triplicate assays and represent three 
independent experiments.  ***p<0.001, *p<0.05 comparing DMSO/LPS vs. RSG /LPS vs. 
RSG/RXR/LPS  groups as determined by one-way ANOVA test. 
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FIGURE 4.6 

The effect of PPARγ activation on mature BMDC surface marker expression is not 

reversed in the presence of a specific RXR inhibitor. 

BMDC were differentiated in GMCSF over 7 days in the presence of DMSO or RSG (10μM) and 
the specific RXR inhibitor PA452 (1μM). Cells were then stimulated for 24hrs with LPS 
(100ng/ml). Cells were washed and stained with antibodies specific for CD86, CD80 and CD40, 
and TLR4. Mean Fluorescent Intensity values for each group are represented in the associated 

group colour and are displayed on the top corners of each histogram. Row 1 represents DMSO  
control (shaded grey) overlaid with LPS stimulated cells. Row 2 represents LPS stimulated 
DMSO cells (shaded grey) overlaid with PPARγ activated LPS stimulated cells. Finally Row 3 
represents samples shown in Row 2 overlaid with the PA452 inhibitor (thick blue line). 
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FIGURE 4.7 

The effect of RXR activation on the entire IL-12 family is not fully reversed in the 
presence of  a specific PPARγ inhibitor 
 BMDC were differentiated in GMCSF for 7 days in the presence of the RXR agonist  PA024 
(1μM). The specific PPARγ antagonist GW9662 (1μM) was added 2 hours prior to the RXR 
agonist and cells were then stimulated for 24hrs with 100ng/ml LPS. Supernatants were then 
harvested and assessed for levels of IL-12p40, IL-12p70 and IL-23 using immunospecific assays. 
Results are ± SEM of triplicate assays and represent three independent experiments.  
***p<0.001, *p<0.05 comparing DMSO/LPS vs. PA024/LPS vs. PA024/GW9662/LPS groups as 
determined by one-way ANOVA test. ++ p<0.01 comparing  RXR  vs. RXR +GW9662 as 
determined by one-way ANOVA test.
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FIGURE 4.8 

The effect of RXR activation on mature BMDC surface marker expression is not reversed in 

the presence of a specific PPARγ inhibitor. 

BMDC were differentiated in GMCSF over 7 days in the presence of DMSO or PA024 1μM and the 
specific PPARγ antagonist GW9662 (1μM). Cells were then stimulated for 24hrs with LPS 
(100ng/ml). Cells were washed and stained with antibodies specific for CD86, CD80 and CD40 and 
MHCII. Mean Fluorescent Intensity values for each group are represented in the associated group 

colour and are displayed on the top corners of each histogram. Row 1 represents DMSO  control 
(shaded grey) overlaid with LPS stimulated cells. Row 2 represents LPS stimulated DMSO cells 
(shaded grey) overlaid with RXR activated LPS stimulated cells.Finally Row 3 represents samples 
shown in Row 2 overlaid with the GW9662 inhibitor (thick orange line). 
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FIGURE 4.9 
Activation of LXR modulates the IL-12 family of cytokines in BMDC matured with a 
panel of TLR ligands  
BMDC were differentiated in GMCSF for 7 days in the presence of either DMSO or the LXR 
agonist T0901317 (2μM) after which cells were plated and stimulated for 24hrs with a panel of 
TLR ligands. Supernatants were then harvested and assessed for levels of IL-12p40 and IL-
12p70 using immunospecific assays. Results are ± SEM of triplicate assays and represent three 
independent experiments.  ***p<0.001, **p<0.01, *p<0.05 comparing DMSO/LPS vs. 
T0901317/LPS groups as determined by one-way ANOVA test. 
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FIGURE 4.10 
Activation of LXR modulates the IL-12 family of cytokines in BMDC matured with a 
panel of TLR ligands  
BMDC were differentiated in GMCSF for 7 days in the presence of either DMSO or the LXR 
agonist  T0901317 (2μM) after which cells were plated and stimulated for 24hrs with a panel of 
TLR ligands. Supernatants were harvested and assessed for levels of IL-27 and IL-23 using 
immunospecific assays. Results are ± SEM of triplicate assays and represent three independent 
experiments.  ***p<0.001, **p<0.01, *p<0.05 comparing DMSO/LPS vs. T0901317/LPS groups 
as determined by one-way ANOVA test. 
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FIGURE 4.11 
LXR activation modulates DC surface marker expression regardless of mode of TLR activation 
BMDC were differentiated in GMCSF for 7 days in the presence of either DMSO or the LXR 
agonist T0901317 (2μM) before being plated and stimulated with a panel of TLR ligands for 
24hrs. Cells were washed and stained with antibodies specific for CD86, CD80 and CD40 and 
MHCII. Mean Fluorescent Intensity values for each group are represented in the associated 
group colour and are displayed on the top corners of each histogram.  
Row 1 represents DMSO vehicle control (shaded grey) overlaid with DMSO stimulated with LPS 
100ng/ml [A]or Pam3CSK4 (5μg) [B]. Row 2 represents DMSO with the TLR ligand stimulation 
(shaded grey) overlaid with LXR (2μM T0901317) with the TLR ligand stimulation.  
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FIGURE 4.12 
LXR activation modulates DC surface marker expression regardless of mode of TLR activation 
BMDC were differentiated in GMCSF for 7 days in the presence of either DMSO or the LXR 

agonist T0901317 (2μM) before being plated and stimulated with a panel of TLR ligands for 

24hrs. Cells were washed and stained with antibodies specific for CD86, CD80 and CD40 and 

MHCII.  

Row 1 represents DMSO vehicle control (shaded grey) overlaid with DMSO stimulated with 

Zymosan (10μg/ml) [A] or Poly: (IC) (10μg) [B]. Row 2 represents DMSO with the TLR ligand 

stimulation (shaded grey) overlaid with LXR (2μM T0901317) with the TLR ligand stimulation.  
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FIGURE 4.13 
LXR activation modulates DC surface marker expression regardless of mode of TLR activation 
BMDC were differentiated in GMCSF for 7 days in the presence of either DMSO or the LXR 

agonist T0901317 (2μM) before being plated and stimulated with a panel of TLR ligands for 

24hrs. Cells were washed and stained with antibodies specific for CD86, CD80 and CD40 and 

MHCII.  

Row 1 represents DMSO vehicle control (shaded grey) overlaid with DMSO stimulated with 

loxoribine (1μM) [A] or CpG (2mM) [B]. Row 2 represents DMSO with the TLR ligand 

stimulation (shaded grey) overlaid with LXR (2μM T0901317) with the TLR ligand stimulation. 
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FIGURE 4.14 
LXR activation modulates DC surface marker expression regardless of mode of TLR activation 
BMDC were differentiated in GMCSF for 7 days in the presence of either DMSO or the LXR 

agonist T0901317 (2μM) before being plated and stimulated with a panel of TLR ligands for 

24hrs. Cells were washed and stained with antibodies specific for CD86, CD80 and CD40 and 

MHCII.  

Row 1 represents DMSO vehicle control (shaded grey) overlaid with DMSO stimulated with 

flagellin (5μg). Row 2 represents DMSO with flagellin (shaded grey) overlaid with LXR (2μM 

T0901317) with flagellin. 
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FIGURE 4.15 
Activation of PPARγ modulates the IL-12 family of cytokines in BMDC matured with a 
panel of TLR ligands  
BMDC were differentiated in GMCSF for 7 days in the presence of the PPARγ agonist  RSG 
(10μM) after which cells were plated and stimulated for 24hrs with a panel of TLR ligands. 
Supernatants were then harvested and assessed for levels of IL-12p40 and IL-12p70 using 
immunospecific assays. Results are ± SEM of triplicate assays and represent three independent 
experiments.  ***p<0.001, **p<0.01 comparing DMSO/LPS vs. RSG/LPS groups as determined 
by one-way ANOVA test. 
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FIGURE 4.16 
Activation of PPARγ modulates the IL-12 family of cytokines in BMDC matured with a 
panel of TLR ligands  
BMDC were differentiated in GMCSF for 7 days in the presence of either DMSO or the PPARγ 
agonist RSG (10μM) after which cells were plated and stimulated for 24hrs with a panel of TLR 
ligands. Supernatants were then harvested and assessed for levels of IL-23 and IL-27 using 
immunospecific assays. Results are ± SEM of triplicate assays and represent three independent 
experiments.  ***p<0.001, **p<0.01, *p<0.05 comparing DMSO/LPS vs. RSG/LPS groups as 
determined by one-way ANOVA test. 
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FIGURE 4.17 
PPARγ activation modulates DC surface marker expression regardless of mode of TLR activation 
BMDC were differentiated in GMCSF for 7 days in the presence of either DMSO or  the PPARγ 
agonist RSG (10μM) before being plated and stimulated with a panel of TLR ligands for 24hrs. 
Cells were washed and stained with antibodies specific for CD86, CD80 and CD40 and MHCII. 
Row 1 represents DMSO vehicle control (shaded grey) overlaid with DMSO stimulated with LPS 
100ng/ml [A]or Pam3CSK4 (5μg) [B]. Row 2 represents DMSO with the TLR ligand stimulation 
(shaded grey) overlaid with RSG (10μM) with the TLR ligand stimulation.  
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FIGURE 4.18 
PPARγ activation modulates DC surface marker expression regardless of mode of TLR activation 
BMDC were differentiated in GMCSF for 7 days in the presence of either DMSO or the PPARγ 

agonist RSG (10μM) before being plated and stimulated with a panel of TLR ligands for 24hrs. 

Cells were washed and stained with antibodies specific for CD86, CD80 and CD40 and MHCII.  

Row 1 represents DMSO vehicle control (shaded grey) overlaid with DMSO stimulated with 

Zymosan (10μg/ml) [A] or Poly: (IC) (10μg) [B]. Row 2 represents DMSO with the TLR ligand 

stimulation (shaded grey) overlaid with RSG (10μM) with the TLR ligand stimulation.  
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FIGURE 4.19 

PPARγ activation modulates DC surface marker expression regardless of mode of TLR activation 
BMDC were differentiated in GMCSF for 7 days in the presence of either DMSO or the PPARγ 

agonist RSG (10μM) before being plated and stimulated with a panel of TLR ligands for 24hrs. 

Cells were washed and stained with antibodies specific for CD86, CD80 and CD40 and MHCII.  

Row 1 represents DMSO vehicle control (shaded grey) overlaid with DMSO stimulated with 

loxoribine (1μM) [A] or CpG (2mM) [B]. Row 2 represents DMSO with the TLR ligand 

stimulation (shaded grey) overlaid with RSG (10μM) with the TLR ligand stimulation.  
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FIGURE 4.20 
PPARγ activation modulates DC surface marker expression regardless of mode of TLR activation 
BMDC were differentiated in GMCSF for 7 days in the presence of either DMSO or the PPARγ 

agonist RSG (10μM) before being plated and stimulated with a panel of TLR ligands for 24hrs. 

Cells were washed and stained with antibodies specific for CD86, CD80 and CD40 and MHCII.  

Row 1 represents DMSO vehicle control (shaded grey) overlaid with DMSO stimulated with 

flagellin (5μg). Row 2 represents DMSO with the TLR stimulation (shaded grey) overlaid with 

RSG (10μM) with the TLR stimulation 
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FIGURE 4.21 
Activation of RXR modulates the IL-12 family of cytokines in BMDC matured with a 
panel of TLR ligands  
BMDC were differentiated in GMCSF for 7 days in the presence of the RXR agonists PA024 or 
HX630 (1μM) after which cells were plated and stimulated for 24hrs with a panel of TLR 
ligands. Supernatants were then harvested and assessed for levels of IL-12p40 and IL-12p70 
using immunospecific assays. Results are ± SEM of triplicate assays and represent three 
independent experiments.  ***p<0.001, *p<0.05 comparing DMSO/LPS vs. RXR/LPS groups as 
determined by one-way ANOVA test. 
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FIGURE 4.22 
Activation of RXR modulates the IL-12 family of cytokines in BMDC matured with a 
panel of TLR ligands  
BMDC were differentiated in GMCSF for 7 days in the presence of the RXR agonists PA024 or 
HX630 (1μM) after which cells were plated and stimulated for 24hrs with a panel of TLR 
ligands. Supernatants were then harvested and assessed for levels of IL-23 and IL-27 using 
immunospecific assays. Results are ± SEM of triplicate assays and represent three independent 
experiments.  ***p<0.001, **p<0.01, *p<0.05 comparing DMSO/LPS vs. RXR/LPS groups as 
determined by one-way ANOVA test. 
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FIGURE: 4.23 
RXR activation modulates DC surface marker expression regardless of mode of activation. 
BMDC were differentiated in GMCSF for 7 days in the presence of the RXR agonists PA024 or HX630 
(1μM) before being plated and stimulated with a panel of TLR ligands for 24hrs. Row 1 represents 
DMSO vehicle control (shaded grey) overlaid with DMSO vehicle control stimulated with LPS 
100ng/ml. Row 2 represents DMSO with LPS (shaded grey) overlaid with PA024 (1μM) with LPS and 
Row 3 represents DMSO + LPS  (shaded grey) overlaid with HX630 (1μM) with LPS. 
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FIGURE: 4.24 

RXR activation modulates DC surface marker expression regardless of mode of activation. 

BMDC were differentiated in GMCSF for 7 days in the presence of the RXR agonists PA024 or HX630 
(1μM) before being plated and stimulated with a panel of TLR ligands for 24hrs. Row 1 represents 
DMSO vehicle control (shaded grey) overlaid with DMSO vehicle control stimulated with Pam3CSK4 
(5μg). Row 2 represents DMSO + Pam3CSK4 (shaded grey) overlaid with PA024 (1μM) + Pam3SK4 and 
Row 3 represents DMSO + Pam3CSK4 (shaded grey) overlaid with HX630 (1μM) + Pam3CSK4. 
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FIGURE: 4.25 
RXR activation modulates DC surface marker expression regardless of mode of activation. 
BMDC were differentiated in GMCSF for 7 days in the presence of the RXR agonists PA024 or 
HX630 (1μM) before being plated and stimulated with a panel of TLR ligands for 24hrs. Row 1 
represents DMSO vehicle control (shaded grey) overlaid with DMSO vehicle control stimulated 
with Zymosan (10μg/ml)). Row 2 represents DMSO + Zymosan (shaded grey) overlaid with 
PA024 (1μM) + Zymosan and Row 3 represents DMSO + Zymosan (shaded grey) overlaid with 
HX630 (1μM) + Zymosan. 
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FIGURE: 4.26 
RXR activation modulates DC surface marker expression regardless of mode of activation. 
BMDC were differentiated in GMCSF for 7 days in the presence of the RXR agonists PA024 or 
HX630 (1μM) before being plated and stimulated with a panel of TLR ligands for 24hrs. Row 1 
represents DMSO vehicle control (shaded grey) overlaid with DMSO vehicle control stimulated 
with Poly:(IC) (10μg). Row 2 represents DMSO + Poly: (IC) (shaded grey) overlaid with PA024 
(1μM) + Poly:(IC) and Row 3 represents DMSO + PGN (shaded grey) overlaid with HX630 (1μM) 
+ Poly:(IC). 
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FIGURE: 4.27 
RXR activation modulates DC surface marker expression regardless of mode of activation. 
BMDC were differentiated in GMCSF for 7 days in the presence of the RXR agonists PA024 or 
HX630 (1μM) before being plated and stimulated with a panel of TLR ligands for 24hrs. Row 1 
represents DMSO vehicle control (shaded grey) overlaid with DMSO vehicle control stimulated 
with loxoribine (1μM). Row 2 represents DMSO + loxoribine (shaded grey) overlaid with PA024 
(1μM) + loxoribine and Row 3 represents DMSO + loxoribine (shaded grey) overlaid with 
HX630 (1μM) + loxoribine. 
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FIGURE: 4.28 
RXR activation modulates DC surface marker expression regardless of mode of activation. 
BMDC were differentiated in GMCSF for 7 days in the presence of the RXR agonists PA024 or 
HX630 (1μM) before being plated and stimulated with a panel of TLR ligands for 24hrs. Row 1 
represents DMSO vehicle control (shaded grey) overlaid with DMSO vehicle control stimulated 
with CpG (2mM). Row 2 represents DMSO + CpG (shaded grey) overlaid with PA024 (1μM) + 
CpG and Row 3 represents DMSO + CpG (shaded grey) overlaid with HX630 (1μM) + CpG. 
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FIGURE: 4.29 
RXR activation modulates DC surface marker expression regardless of mode of activation. 
BMDC were differentiated in GMCSF for 7 days in the presence of the RXR agonists PA024 or 
HX630 (1μM) before being plated and stimulated with a panel of TLR ligands for 24hrs. Row 1 
represents DMSO vehicle control (shaded grey) overlaid with DMSO vehicle control stimulated 
with Flagellin (5μg/ml)). Row 2 represents DMSO + Flagellin (shaded grey) overlaid with PA024 
(1μM) + Flagellin and Row 3 represents DMSO + Flagellin(shaded grey) overlaid with HX630 
(1μM) + Flagellin. 
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FIGURE 4.30 
LXR and RXR activation suppress the induction of both NFκB and IRF dependent gene 
transcription 
Hek293 stably expressing CD14, MD2 and TLR4 were cultured for 7 days with specific PPARγ 
(RSG 10μM), LXR (T0901317 2μM) and RXR (PA024, HX630 1μM) agonists. Cells were then 
plated and transiently transfected with either NFκB or ISRE luciferase reporter constructs for 
24hrs before being stimulated with LPS (100ng/ml). Firefly luciferase activity was quantified 6 
hrs after LPS stimulation and subsequently all samples were normalised to Renilla Luciferase. 
Results are ± SEM of triplicate assays and represent three independent experiments.  
***p<0.001 comparing DMSO/LPS vs. Nuclear Receptor agonist/LPS groups as determined by 
one-way ANOVA test. 
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FIGURE: 4.31 
The suppressive effect of LXR on NFκB is reversed in the presence of the specific RXR 
inhibitor PA452 
Hek293 stably expressing CD14, MD2 and TLR4 were cultured for 7 days in the presence of the 
specific LXR agonist (T0901317 2μM) and specific PPARγ and RXR antagonists. The RXR 
antagonists (PA452, HX531 1μM) and the PPARγ antagonist where added 2 hours prior to LXR 
activation. Cells were then plated and transiently transfected for 24hrs with NFκB and ISRE 
luciferase constructs before being stimulated with LPS (100ng/ml). Firefly luciferase activity 
was quantified 6 hrs after LPS stimulation and all samples were normalised to Renilla 
Luciferase. Results are ± SEM of triplicate assays and represent three independent 
experiments.  ***p<0.001 comparing DMSO/LPS vs. T0901317/LPS vs. 
T0901317/Antagonist/LPS groups as determined by one-way ANOVA test.  
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Effect of 

LXR 

TLR4 TLR2/1 TLR2/6 TLR3 TLR7 TLR9 TLR5 

↓ CD86  



    

↓ CD80  



    

↓ CD40  



  x  

↓ MHCII 



     

       
↓ IL-12p40  x 



   x x 

↓ IL-12p70  Not 

produced 

Not 

produced 

Not 

produced 

  

 

Not 

produced 

↓ IL-27  x  Not 

produced 

 x x 

↓ IL-23    Not 

produced 

x x Not 

produced 

 
Table 4.1: Summary of results from LXR treated cells stimulated with a panel of TLR 

ligands 
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Effect of 

PPARγ 

TLR4 TLR2/1 TLR2/6 TLR3 TLR7 TLR9 TLR5 

↓ CD86  x



  x x 

↓ CD80  



  x x 

↓ CD40  x 

 

  x x x 

↓ MHCII x 

 

x x x x x x 

        
↓ IL-12p40  



   x 

↓ IL-12p70  Not 

produced 

Not 

produced 

Not 

produced 

  Not 

produced 

↓ IL-27  x  Not 

produced 

x 

 

 x 

↓ IL-23  x  Not 

produced 

x  Not 

produced 

 
Table 4.2: Summary of results from RSG treated cells stimulated with a panel of TLR 

ligands 
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Effect of 

PA024 

TLR4 TLR2/1 TLR2/6 TLR3 TLR7 TLR9 TLR5 

↓ CD86  



    

↓ CD80  



  x  

↓ CD40  



  x x 

↓ MHCII 



     x 

        
↓ IL-12p40  



x  x x 

↓ IL-12p70  Not 

produced 

Not 

produced 

Not 

produced 

 x Not 

produced 

↓ IL-27  x  Not 

produced
x x x 

↓ IL-23 x x  Not 

produced 

x x Not 

produced 
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Effect of 

HX630 

TLR4 TLR2/1 TLR2/6 TLR3 TLR7 TLR9 TLR5 

↓ CD86  



    

↓ CD80  



 x x  

↓ CD40  



 x x x 

↓ MHCII 



     

        

↓ IL-12p40 x x 

 

x 

 

 x x 

 

x 

↓ IL-12p70 x Not 

produced 

Not 

produced 

Not 

produced 

x x 

 

Not 

produced 

↓ IL-27   x  Not 

produced

x 

 

x 

 

x 

 

↓ IL-23 x x 



x 

 

Not 

produced 

x  

 

Not 

produced 

 
Table 4.3: Summary of results from RXR treated cells stimulated with a panel of TLR 

ligands 
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4.3 DISCUSSION 

 

The aim of this study was to investigate which nuclear receptor heterodimers are 

important for how they exert their effects and also to investigate the mechanism of 

action of these nuclear receptors in DC. Our results show that the ability of LXR to 

suppress the IL-12 family of cytokines (IL-12p40, IL-12p70, IL-23 and IL-27) is 

abrogated in the presence of the specific RXR inhibitor PA452. PA452 inhibits RXR 

when it is heterodimerised with LXR, PPARγ and other members of the nuclear 

receptor family. We see no reversal with the HX630 inhibitor which only inhibits RXR 

when it dimerises with PPARγ, thus highlighting that LXR must heterodimerise with 

RXR in order to inhibit the production of these cytokines. This hypothesis was 

established based on our understanding of these specific nuclear receptor agonists and 

antagonists.  

Upon nuclear receptor ligation, the LBP of the receptor undergoes a conformation 

change – specifically altering the orientation of Helix 12 and thus sealing this LBP. 

This stabilizes the receptor and leads to the recruitment of coactivators which ultimately 

lead to a targeted response. However following the use of nuclear receptor antagonists 

the conformation of the receptor is left in a less compact form by displacing H12 thus 

preventing co-activator recruitment and subsequent downstream signalling (Perez et al. 

2012). LXR activation suppresses the IL-12 family of cytokines however given that 

cytokine levels remain unchanged in cells in which RXR is antagonised, we propose 

that the formation of a LXR:RXR heterodimer is important in how LXR suppresses 

these cytokines. 
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Interestingly no other association could be identified amongst the other nuclear 

receptors examined suggesting that PPARγ and RXR may exert their anti-inflammatory 

effects through an interaction with a nuclear receptor not examined within this study 

e.g. FXR, or Pregnane X receptor (PXR). We also show that LXR activation can still 

suppress the expression of the costimulatory markers CD86 and CD40 in the presence 

of the RXR antagonist however CD80 expression remains unchanged upon RXR 

inhibition. This suggests that although LXR must associate with RXR to inhibit 

production of the IL-12’s, this association may not be important in how LXR regulates 

surface marker expression. 

 

Following on from this work we next determined if nuclear receptor activation could 

modulate cytokine production and cell surface marker expression in DC matured with a 

panel of TLR ligands. TLRs are classified into several groups depending on the 

particular PAMP they recognise. TLR1, 2, 4 and 6 for example recognise lipids, TLR 5 

and 11 recognize protein ligands and TLR3, 7, 8 and 9 which are located intracellularly 

detect nucleic acids derived from viruses and bacteria (Akira, Uematsu & Takeuchi 

2006). Following TLR ligation, two individual signalling pathways can be initiated. 

TLR 1,2,4,5,7,9 signal through the MyD88 dependent pathway where MyD88 acts as a 

nonredundant adaptor protein that promotes the induction of pro-inflammatory 

molecules through NFκB activation. In this pathway TLR 2 and TLR 4 also use the 

adaptor molecule known as Mal which distinguishes them from other TLRs. TLR3 and 

TLR4 use the adaptor molecule TRIF to mediate downstream signalling and so initiate 

the MyD88-independent pathway which results in the later activation of NFκB and IRF 

(Kawai, Akira 2010). 



 
 
 

187 
 

Our results show that in DC matured with a panel of TLR ligands, LXR activation 

suppressed the production of IL-12p40, IL-12p70, IL-23 and IL-27 irrespective of the 

mode of activation. However there are some notable exceptions to this observation. In 

TLR5 matured DC the levels of Il-12p40 and IL-27 remained unchanged following 

LXR activation. Similarly in TLR7 matured DC, LXR activation did not suppress IL-23 

production however the cytokine levels of IL-12p40, IL-12p70 were significantly 

inhibited. Following stimulation with the TLR2/1 ligand Pam3CSK4 there was no 

change in either IL-27 or IL-12p40 production in LXR activated cells however there 

was a significant decrease in the production of IL-23. LXR activation in TLR9 

stimulated cells also failed to suppress the production of these IL-12 family of 

cytokines. 

As shown in Chapter 3, LXR activation in LPS matured DC can also downregulate the 

expression of costimulatory markers. Here we show that LPS stimulated LXR activated 

DC have reduced expression of CD86, CD80, CD40 and MHCII. This decrease is seen 

to varying degrees in LXR activated cells stimulated with the panel of TLR ligands. 

However in one case – CD40, the expression remains unchanged following TLR7 

ligation.  This result is surprising given that the TLR7 pathway is identical to the 

pathway utilized by TLR 5 and 9. Similarly the varying effects of LXR activation on 

the secretion of the IL-12 family of cytokines following TLR5 and TLR7 are also 

surprising. Therefore these results have led us to believe that LXR is unlikely to directly 

target a single common TLR element – but instead have differential effects depending 

on the stimulus used to initiate DC maturation. Indeed, if LXR activation failed to 

suppress these cytokines following TLR3 ligation, this would suggest a requirement for 

MyD88 to carry out its function. Similarly if a decrease in IL-12 secretion and 

costimulatory marker expression was only seen following maturation with TLR2 and 
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TLR4 ligands, then perhaps the adaptor Mal would be highlighted as a potential LXR 

target. Since this is not the case however, we concluded LXR must target an element of 

the TLR pathway that is common to all and is further downstream in this inflammatory 

pathway. 

Interestingly this hypothesis also applies to the remaining two nuclear receptors 

investigated in this study – PPARγ and RXR. PPARγ activation suppressed IL-12p40, 

IL-12p70, IL-23 and IL-27 following stimulation with all TLR ligands. As seen with 

LXR there are three exceptions to this observation. TLR7 matured DC treated with the 

PPARγ agonist RSG showed no inhibition in IL-27 however there was a significant 

decrease in IL-12p40, IL-12p70 and IL-23 following TLR7 stimulation. TLR9 

stimulated cells also showed no change in IL-12p40 production in RSG treated cells 

whereas TLR2/1 matured DC showed no significant change in the production of IL-23 

and IL-27 following PPARγ activation. 

 The expression of costimulatory and cell surface marker expression was also 

differentially regulated in PPARγ activated DC following exposure to these TLR 

ligands. TLR2/1,7 5 and 9 stimulation resulted in an upregulation of CD40 whereas 

TLR3 and TLR2/6 stimulation caused a small upregulation in CD40 expression. This 

suggests that depending on how these cells are stimulated, PPARγ can effect DC 

maturation in very distinct ways. 

At the cytokine level RXR activation affected the IL-12 family of cytokines 

differentially depending on the TLR stimulus used. Notably in TLR7 stimulated cells 

there was no change in the production of IL-12p40 and IL-27. In TLR9 stimulated cells 

there was also no change in IL-12p40, IL-12p70 or IL-27 production. Interestingly 

TLR2/6 ligation also resulted in decreased IL-23 production were previously following 

TLR4 maturation RXR did not affect the production of this cytokine. RXR activated 
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cells that were stimulated through this TLR also do not have decreased IL-12p40 

expression. Stimulation with the remaining TLR ligands resulted in changes consistent 

with those shown in Chapter 3 following LPS maturation. 

RXR activation in LPS matured DC resulted in a downregulation in CD86, CD80, 

CD40 and MHCII. This profile was also seen, again to varying degrees in DC matured 

with a panel of TLR ligands. However cells stimulated through the TLRs 3, 7 and 9 

were the exceptions to this observation. Following TLR7 ligation in RXR activated DC 

there was an increase in CD80 and CD40 expression. Similarly in TLR9 stimulated 

cells there was also an increase in CD40. There was also no decrease in MHCII 

following exposure to the TLR5 ligand flagellin. Finally in TLR3 stimulated cells there 

was no decrease in CD80 and CD40 expression following exposure to the RXR ligand 

HX630. 

The results of this TLR ligand study highlight that LXR, RXR and PPARγ do not have 

utilise a specific TLR adaptor molecule but instead function further downstream in this 

inflammatory pathway and perhaps modulate the transcription factors NFκB and IRF. 

To further investigate this hypothesis we examined the affect of LXR, RXR and PPARγ 

activation on the transcription of both NFκB and IRF dependent genes using a 

luciferase reporter gene assay. 

Our results showed that LXR and RXR activation can significantly reduce both NFκB 

and ISRE activity therefore concurring with the results presented within the TLR study. 

It is interesting to note that of the two RXR agonists used throughout this work HX630 

and PA024, only PA024 was capable of inhibiting both NFkB and IRF whereas HX630 

did not significantly change either transcription factors. Work undertaken by our 

collaborators in Japan Kagechika et al has highlighted key differences between these 

ligands in their ability to distinguish heterodimer partner receptors. PA024 activates 
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both a RXR-PPARγ and RXR-LXRα heterodimers whereas HX630 only activates a 

RXR-PPARγ heterodimer and does not affect RXR-LXRα heterodimers (Kagechika, 

Shudo 2005b, Kagechika, Shudo 2005). Since we have previously shown that an LXR: 

RXR partnership is necessary to suppress the production of the IL-12 family of 

cytokines, the difference between these two RXR agonist’s highlights that the inhibition 

of NFκB and IRF could also be via an LXR:RXR heterodimer. 

To further investigate this theory we examined the effects of LXR activation on NFκB 

and IRF in the presence of both PPARγ and RXR antagonists. Interestingly, the ability 

of LXR to downregulate NFκB was abrogated only in the presence of the RXR 

antagonist and not the PPARγ antagonist. Even in the presence of this RXR inhibitor, 

LXR activated cells could still suppress IRF however thus indicating that the formation 

of a LXR:RXR partnership is important for inhibiting NFκB but not IRF transcription.  

The work presented in this chapter is novel and to the best of our knowledge no other 

published study has examined nuclear receptor activation following stimulation with an 

entire panel of TLR ligands. We have examined both surface marker expression and 

cytokine production in LXR, RXR and PPARγ activated DC. Similarly no other group 

has examined the effect of LXR and RXR activation on the IRF and NFκB transcription 

factors. We have also reported for the first time that an association between LXR and 

RXR may be important in the regulation of the IL-12 family of cytokines.  

Although most of the work shown in this chapter is extremely novel, there are certain 

aspects of the results presented above that concur with work previously published. One 

recent study undertaken by Hanley et al concluded (as we have) that nuclear receptors, 

specifically glucocorticoid receptor (GR), PPARγ and LXR could carry out their effects 

irrespective of their mode of activation but instead by affecting NFκB. This study 

showed that NR activation could inhibit TLR-activated HIV-1 transcription in primary 
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macrophages and this repression was reported in response to a wide range of NFκB 

stimulators such as TL4, TLR2/1 and TLR2/6 ligands (Hanley et al. 2010). There have 

also been reports suggesting that there is a reciprocal regulation between nuclear 

receptors and the TLRs whereby activation of TLRs can downregulate the functions of 

nuclear receptors but (as seen in this work) activation of nuclear receptors can 

downregulate TLR responses. Castrillo et al reported that TLR3 and TLR4 stimulation 

inhibit LXR activity and this inhibition was reliant on the MyD88 independent pathway 

(Castrillo et al. 2003). A study undertaken by Hanley et al in which they proved that 

PPARγ and LXR signalling could inhibit DC-mediated HIV1 capture reported that 

monocyte derived DC matured with the TLR2 ligand Pam3CSK4 and treated with the 

LXR agonist T0901317 had decreased MHCII, CD80 and CD86 expression (Hanley et 

al. 2010). This correlates with the results presented in this chapter. Although it has 

previously been published that LXR can inhibit NFκB activation, this is the first time an 

association with RXR has been reported.  

The effects of RXR activation following exposure to ligands of the TLR pathway has 

not been explored by other groups. However consistent with our results, one published 

study by Zapata-Gonzalez et al reported that RXR activation in DC inhibited both 

CD86 and CD80 expression following TLR4 and TLR3 ligation (Zapata-Gonzalez et al. 

2007). 

Consistent with our PPARγ work, Gurley et al reported a decrease in IL-12p40 

following PPARγ activation in microglial cells stimulated with ligands to TLR 2,4, 3, 7 

and 5 (Gurley et al. 2008). However no other pro-inflammatory cytokines or surface 

markers were examined within this study. 

The results of this study highlight that an association with LXR and RXR results in 

inhibition of NFκB but not IRF downstream of TLR ligation. It also provides evidence 
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that nuclear receptors can exert their targeted effects independent of their mode of 

activation. In the next chapter we aim to determine the molecular target of these 

LXR:RXR heterodimers upstream of NFκB. 
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5.1 INTRODUCTION 

NFκB is a transcription factor whose activation is essential for the regulation of cellular 

immunity, stress responses, apoptosis and differentiation (Ruland 2011). In particular 

its activation in immune cells, in response to injury or infection controls the expression 

of pro and anti-inflammatory mediators such as cytokines. In vertebrates, NFκB 

consists of five members – Rel A (p65), RelB, c-Rel, NFκB1 (p50/p105) and NFκB2 

(p52/p100). These members form homo or heterodimers with each other and 

subsequently bind to specific target sites within the genome (Siggers et al. 2011). 

NFκB1 and NFκB2 are synthesised as large precursors known as p105 and p100 

respectively. These are partially proteolysed by the proteosome, which removes their C- 

terminal halves to produce active NFκBp50 and NFκBp52 (Beinke, Ley 2004). The 

subunits p65 and c-Rel both have strong C-terminal transactivation domains and can 

strongly activate transcription of target genes. RelB also contains a transactivation 

domain and can function as an NFκB activator when complexed with p50 or p52. 

NFκBp50 and NFκBp52 lack a transactivation domain and therefore can only promote 

transcription when heterodimerised with another Rel subunit (Amit, Ben-Neriah 2002). 

Under resting conditions, these NFκB dimers are bound to inhibitory proteins known as 

the IκB proteins. Here, IκB sequesters NFκB complexes in the cytoplasm and prevents 

dysregulated gene activation. However, in the presence of an activation stimulus, these 

IκB proteins become degraded, releasing NFκB and allowing the dimer complex to 

translocate to the nucleus. Degradation of IκB is initiated through phosphorylation by 

the IKK complex, which leads to ubiquitination and ultimately proteasomal degradation 

(Beinke, Ley 2004). 

Within the cell, there are two main NFκB pathways known as the canonical and the 

alternative pathway. The canonical pathway is induced in response to activation of 
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cytokine receptors such as TNFα or in response to activation of pattern recognition 

receptors such as TLR4 and is therefore the more common of the two pathways (Ghosh, 

May & Kopp 1998). Each NFκB family member and indeed each dimeric complex is 

known to regulate a specific set of genes. The generation of mice deficient in each of 

these family members provided the strongest evidence for this, with each deficiency 

resulting in a different phenotype (Ghosh, May & Kopp 1998). While redundancies 

among NFκB members has made it more difficult to identify specific target genes, due 

to the essential role the IL-12 family of cytokines play in immunity and disease, the 

NFκB mechanism associated with their production has been extensively studied. The 

production of IL-12p40 has been linked to the formation of p65/p50 heterodimers in 

response to LPS (Sanjabi et al. 2000) whereas the production of its cytokine partner IL-

12p35 is associated with p50/c-Rel dimer complexes (Kollet, Petro 2006). The 

expression of EBI3, one of the subunits of IL-27, is induced by p50/p65 heterodimers 

binding to the NFκB response element in the promoter of the gene (Wirtz et al. 2005). 

Finally IL-27p28 and IL-23p19 are produced in response to LPS by the formation of c-

Rel/p65 heterodimers (Zhang et al. 2010, Carmody et al. 2007) [Figure 5.5].  

We have previously shown in Chapter 3 the effect of LXR activation on the IL-12 

family of cytokines and its ability to significantly downregulate their production. In 

chapter 4 we demonstrated that LXR can specifically decrease NFκB activation. 

Therefore in order to gain more information on the specific NFκB subunits targeted by 

LXR, we examined the expression of the individual cytokine subunits that make up IL-

12 (p40 and p35), IL-23 (p40 and p19) and IL-27 (p28 and EBI3) which are all under 

the control of different NFκB subunits. It was our aim, through this experimental 

approach to thus identify which subunits were responsive to LXR activation and 

ultimately to identify a possible NFκB target.  
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5.2 RESULTS 

5.2.1 LXR ACTIVATION IN DENDRITIC CELLS POSITIVELY REGULATES 

THE EXPRESSION OF ITSELF AND THE EXPRESSION OF ITS 

HETERODIMERISATION PARTNER, RXR. 

BMDC were harvested and differentiated in GMCSF in the presence of T0901317 

(2μM) or DMSO for 7 days. Cells were then stimulated over the course of 24hr with 

LPS (100ng/ml). Total RNA was extracted, converted to cDNA and subsequently used 

to assess the expression of LXRα RXRα and PPARγ. The relative levels of these 

transcripts were then calculated using the ΔΔCt method, after normalizing with S18 as 

the endogenous control. The relative level of mRNA in untreated control tissue was 

adjusted to 1 and served as the basal reference value throughout experiments. Results 

are representative of fold change within the sample. 

Following LPS stimulation in DMSO control cells there was a significant increase in 

the expression of LXR over the course of 24hr [Figure 5.1]. LXR activation 

significantly enhances this expression at 4hr (p<0.001), 6hr (p<0.001) and 12hr 

(p<0.01) post LPS stimulation [Figure 5.1]. in contrast the expression of RXR 

decreases following LPS stimulation in DMSO control cells, however LXR activation 

in these cells significantly increased the expression of RXR at 30 min, 2hr (p<0.05),4hr, 

6hr and 12hr LPS stimulation (p<0.001). The expression of PPARγ is also decreased 

following LPS stimulation in DMSO cells. LXR activation does not significantly alter 

PPARγ expression in these cells however in unstimulated cells (0hr) there is a 

significant decrease in the expression of the receptor (p<0.001) [Figure 5.1]. 
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5.2.2 LXR ACTIVATION IN DENDRITIC CELLS SPECIFICALLY TARGETS 

THE IL-12p40, IL-12p35 AND EBI3 CYTOKINE SUBUNITS. 

BMDC were harvested and differentiated in GMCSF in the presence of T0901317 

(2μM) or DMSO for 7 days. Cells were then stimulated over the course of 24hr with 

LPS (100ng/ml). Total RNA was extracted, converted to cDNA and subsequently used 

to assess the expression of EBI3, IL-12p40, IL-12p35, IL-23p19 and IL-27p28. The 

relative levels of these transcripts were then calculated using the ΔΔCt method, after 

normalizing with S18 as the endogenous control. The relative level of mRNA in 

untreated control tissue was adjusted to 1 and served as the basal reference value 

throughout experiments. Results are representative of fold change within the sample. 

The expression of the IL-27 cytokine subunit EBI3 was significantly increased after 2hr 

LPS stimulation in DMSO cells with its expression peaking at 6hr post LPS. LXR 

activation in these cells significantly decreased the expression of EBI3 in unstimulated 

cells and cells stimulated from 30 min to 4hr (p<0.001), 6hr (p<0.01) and 12hr (p<0.05) 

[Figure 5.2]. Similarly the expression of IL-12p40 was also increased following LPS 

exposure, with changes in expression seen as early as 30min. LXR activation in these 

cells significantly decreased the expression of IL-12p40 in cells stimulated for 30min 

(p<0.01) and those stimulated from 1hr to 24hrs (p<0.001) [Figure 5.2]. The expression 

of IL-12p35 is significantly increased after 2hr LPS stimulation in DMSO cells and 

continued to increase over this 24hr stimulation period. LXR activation in these cells 

significantly inhibited IL-12p35 production after 2hr (p<0.001), 4hr, 6hr and 12hr LPS 

stimulation (p<0.05) [Figure 5.3]. LXR activation did not significantly decrease the 

remaining IL-12 related subunits i.e. IL-23p19 and IL-27p28 following LPS [Figure 

5.4]. Following LPS stimulation in DMSO control cells IL-23p19 was increased 
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immediately after stimulation, peaking at 1hr and was back to control levels by 12hr.  

LXR activation did not decrease this, indeed there is a significant increase at 30min 

(p<0.001). Similarly the expression of IL-27p28 was also increased after LPS exposure; 

with its expression peaking 4hr post LPS. LXR activation in these cells significantly 

increases the expression of IL-27p28 after exposure to LPS for 2hr (p<0.001) however 

there was also a significant decrease in its expression at 12hr and 24hr (p<0.001) 

[Figure 5.4] 

5.2.3 LXR ACTIVATION IN DENDRITIC CELLS SPECIFICALLY 

DECREASES THE EXPRESSION OF THE NFκB SIGNALING SUBUNIT p50. 

Given that LXR activation decreased IL-12p40, IL-12p35 and EBI3 and these subunits 

are regulated by NFκBp50, this suggested that LXR may directly affect this NFκB 

subunit [Figure 5.5]. We therefore examined this in greater detail. BMDC were 

harvested and differentiated as previously described and treated with T0901317 (2μM) 

or DMSO for 7 days. Cells were then stimulated over the course of 30min with LPS 

(100ng/ml). Lysates were generated as described in [section 2.8.1] and run on SDS gels, 

transferred onto nitrocellulose membranes and immunoblotted for NFκB-p50 and its 

precursor protein p105. 

NFκBp50 was found to be expressed in both unstimulated and LPS stimulated BMDC 

[Figure 5.6]. Interestingly, following LXR activation in these cells there is a significant 

decrease in the expression of this protein after 10 min LPS stimulation. Densitometric 

analysis of these immunoblots confirmed that changes in p50 expression after 10 mins 

stimulation were statistically significant (p<0.05). 

NFκBp105, the precursor protein of p50, is also present in unstimulated and stimulated 

BMDC and its expression does not significantly change following LPS stimulation. 
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LXR activation in these cells does not affect the expression of this protein, as there is 

no significant change compared to DMSO control. Densitometric analysis confirmed 

this observation. 

In order to confirm that LXR can specifically target the p50 subunit of NFκB and not its 

other signalling subunits, we also examined the effect of LXR activation on NFκBp65 

expression in BMDC. NFκBp65 is present in unstimulated cells and its expression is 

significantly increased following LPS stimulation [Figure 5.7]. However LXR 

activation in these cells does not significantly alter the expression of the p65 subunit 

compared to DMSO controls. Densitometric analysis also confirmed this observation. 

5.2.4 LXR ASSOCIATES WITH NFκBp50 AND THIS ASSOCIATION IS 

INCREASED FOLLOWING LXR ACTIVATION. 

Given that we have shown a decrease in NFκBp50 expression following LXR activation 

we next wanted to examine whether LXR could physically associate with this subunit. 

BMDC were harvested and differentiated as previously described and treated with 

T0901317 (2μM) or DMSO for 7 days. Cells were then stimulated with LPS for 15 

minutes and lysates were generated as described in [section 2.8.1] and lysates were then 

immunoprecipitated (IP) with an LXR antibody using A/G sepharose beads as 

described in section [section 2.9]. Lysates were then run on SDS gels, transferred onto 

nitrocellulose membranes and immunoblotted (IB) for NFκBp50. Total levels of LXR 

were used as a loading control.  

A small amount of association is present in DMSO control cells between LXR and 

NFκBp50 and this association increases in response to LPS. LXR activation however 

significantly increases this association. [Figure 5.8]. In both unstimulated and LPS 

stimulated LXR activated cells there is a significant increase in the receptors association 
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with NFκBp50. Densitometric analysis confirmed that these changes were significant 

(p<0.01, p<0.001). 

5.2.5 CONFOCAL MICROSCOPY CONFIRMS AN ASSOCIATION BETWEEN 

LXR AND NFκBp50 

In order to confirm the association between LXR and NFκBp50, we carried out 

confocal microscopy experiments. BMDC were harvested and differentiated as 

previously described and treated with T0901317 (2μM), PA452 (1μM) or DMSO for 7 

days. Cells were plated on sterilised coverslips, left overnight to adhere and 

subsequently stimulated with LPS (100ng/ml) for 15 min. Slides were then incubated 

with LXR, NFκBp50 or NFκBp65 specific primary antibodies followed by incubation 

with appropriate fluorescently labelled secondary antibodies. Slides were then imaged 

using the Zeiss LSM 710 confocal microscope.  

Firstly LXR expression is increased in response to LPS in both DMSO and LXR 

activated cells. Colocalisation was observed between LXR and NFκBp50, as indicated 

by a yellow signal in merged images [Figure 5.9]. This colocalisation can be seen 

clearly in unstimulated and stimulated cells, however in stimulated cells the level of 

colocalisation appears to be increased; particularly in LXR treated cells [Figure 5.9 A 

& B]. Given that our previous chapter highlighted an important requirement for RXR in 

LXR signalling, we also examined if an RXR inhibitor could interfere with 

colocalisation of LXR with NFκBp50. As can be seen in Figure 5.10 LXR and 

NFκBp50 still associate with each other in PA452 treated cells however we can see that 

the level of association between these two proteins appears to be decreased compared to 

LXR treated cells. 
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Next we examined if the colocalisation between LXR and NFκB was specific to the p50 

subunit. We therefore examined the level of colocalisation between LXR and 

NFκBp65. As we can see in Figure 5.11, although LXR and p65 are abundantly 

expressed in the cell they do not colocalise with each other in untreated, LXR activated 

or stimulated cells. 

5.2.6 LXR ACTIVATION IN DENDRITIC CELLS SPECIFICALLY INHIBITS 

THE TRANSLOCATION OF NFκBp50 TO THE NUCLEUS 

Given that we have shown an association between LXR and NFκBp50, we next wanted 

to determine if this association interfered with the translocation of p50 into the nucleus. 

BMDC were harvested and differentiated as previously described and treated with 

T0901317 (2μM), PA452 (1μM) or DMSO for 7 days. Cells were plated on sterilised 

coverslips, left overnight to adhere and subsequently stimulated with LPS (100ng/ml) 

for 15 min. Slides were then incubated with NFκBp50 or NFκBp65 specific primary 

antibodies followed by incubation with appropriate fluorescently labelled secondary 

antibodies. The nucleus was stained using a propidium iodide solution. Slides were then 

imaged using the Zeiss LSM 710 confocal microscope. 

In DMSO unstimulated cells NFκBp50 is localised on the membrane and in the 

cytoplasm and following exposure to LPS for 15 min, p50 translocates to the nucleus 

where it is needed to signal. This is shown by the colocalisation seen in Figure 5.12 in 

merged images. However, in LXR activated cells, p50 is localised mainly on the 

membrane in unstimulated cells and following LPS stimulation, p50 does not 

translocate into the nucleus and remains cytoplasmic. We also show in Fig 5.13 that as 

expected NFκBp65 translocates to the nucleus following LPS exposure in DMSO 



 
 
 

202 
 

treated cells, however LXR activation does not affect the translocation of p65 as it is 

still present in the nucleus following LPS exposure in LXR treated cells [Figure 5.13] 
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FIGURE: 5.1 

The expression of LXR and its heterodimerisation partner, RXR is positively regulated 
following LXR activation in BMDC. 
BMDC were differentiated in GMCSF in the presence of 2μM T0901317 or DMSO for 7 days 
and stimulated over the course of 24hrs with 100ng/ml LPS. Total RNA was isolated, converted 
to cDNA and used for subsequent RT-PCR experiments.  Results are expressed as fold change 
after normalising to the endogenous control S18. Results are ± SEM of triplicate assays and 
represent 3 independent experiments ***p<0.001, **p<0.01, *p<0.05 comparing control vs. 
LXR treated groups as determined by one-way ANOVA test. 
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FIGURE: 5.2 

The expression of IL-12p40 and EBI3 are significantly decreased following LXR 
activation in BMDC. 
BMDC were differentiated in GMCSF in the presence of 2μM T0901317 or DMSO for 7 days 
and stimulated over the course of 24hrs with 100ng/ml LPS. Total RNA was isolated, converted 
to cDNA and used for subsequent RT-PCR experiments.  Results are expressed as fold change 
after normalising to the endogenous control S18. Results are ± SEM of triplicate assays and 
represent 3 independent experiments ***p<0.001, **p<0.01, *p<0.05 comparing control vs. 
LXR treated groups as determined by one-way ANOVA test. 
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FIGURE: 5.3 

The expression of IL-12p35 is significantly decreased following LXR activation in BMDC. 
BMDC were differentiated in GMCSF in the presence of 2μM T0901317 or DMSO for 7 days 
and stimulated over the course of 24hrs with 100ng/ml LPS. Total RNA was isolated, converted 
to cDNA and used for subsequent RT-PCR experiments.  Results are expressed as fold change 
after normalising to the endogenous control S18. Results are ± SEM of triplicate assays and 
represent 3 independent experiments ***p<0.001, *p<0.05 comparing control vs. LXR treated 
groups as determined by one-way ANOVA test. 
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 FIGURE: 5.4 

The expression of the cytokine subunits IL-23p19 and IL-27p28 are differentially 
regulated following LXR activation in BMDC. 
BMDC were differentiated in GMCSF in the presence of 2μM T0901317 or DMSO for 7 days 
and stimulated over the course of 24hrs with 100ng/ml LPS. Total RNA was isolated, converted 
to cDNA and used for subsequent RT-PCR experiments.  Results are expressed as fold change 
after normalising to the endogenous control S18. Results are ± SEM of triplicate assays and 
represent 3 independent experiments ***p<0.001, *p<0.05 comparing control vs. LXR treated 
groups as determined by one-way ANOVA test. 
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FIGURE: 5.5 

The production of each IL-12 related cytokine subunit is controlled by specific NFκB 
dimers. 
We have previously shown in Chapter 4 that LXR activation can inhibit NFκB and we 

also show here that LXR activation can specifically target IL-12p40, IL-12p35 and EBI3. 

We therefore used these observations and our knowledge of the specific NFκB dimers 

shown above to determine the molecular target of LXR. We hypothesised that the 

NFκB subunit p50 or its precursor p105 may be a direct target for LXR. 

Diagram adapted from results published by (Sanjabi et al. 2000)(Kollet, Petro 

2006),(Wirtz et al. 2005, Zhang et al. 2010, Carmody et al. 2007). 



 
 
 

208 
 

 

 

 

 

 

 

FIGURE: 5.6 

LXR activation decreases the expression of NFκBp50 in BMDC. 
BMDC were differentiated in GMCSF in the presence of 2μM T0901317 or DMSO for 7 days 
and stimulated over a course of 30 min with 100ng/ml LPS. After this time, cells were lysed 
and immunoblotted for p50 and p105. Total cellular levels of β actin were used as a loading 
control. Densitometric analysis was conducted on 3 representative immunoblots and graphical 
representation of NFκBp50 expression in arbitrary units (AU) is shown. *p<0.05 comparing 
control vs. LXR treated groups as determined by one-way ANOVA test. 
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FIGURE: 5.7 

LXR activation does not affect the expression of NFκBp65 in BMDC. 

BMDC were differentiated in GMCSF in the presence of 2μM T0901317 or DMSO for 7 days 
and stimulated over a course of 30 min with 100ng/ml LPS. After this time, cells were lysed 
and immunoblotted for NFκBp65. Total cellular levels of total NFκBp65 were used as a loading 
control. Densitometric analysis was conducted on 3 representative immunoblots and graphical 
representation of NFκBp65 expression in arbitrary units (AU) is shown. 

n=1 

 

n=3 

 

n=2 

 



 
 
 

210 
 

 

NFBp50

0 15
0

2000

4000

6000

8000

10000
DMSO

LXR

Mins

**
***

A
rb

it
ra

ry
 U

n
it

s
 (

A
U

)

 

 

FIGURE: 5.8 

LXR activation in BMDC significantly increases association of LXR with NFκBp50.  
BMDC were differentiated in GMCSF in the presence of 2μM T0901317 or DMSO for 7 days 
and stimulated for 15 min with 100ng/ml LPS. After this time, cells were lysed, 
immunoprecipitated with an LXR antibody and immunoblotted for NFκBp50. Whole cell lysates 
were immunoblotted with LXR as a loading control. Densitometric analysis was conducted on 
3 representative immunoblots and graphical representation of NFκBp50 expression in 
arbitrary units (AU) is shown. ***p<0.001, **p<0.01 comparing control vs. LXR treated groups 
as determined by one-way ANOVA test. 
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FIGURE: 5.9 

LXR and NFκBp105/p50 colocalise in unstimulated and stimulated BMDC.  
BMDC were differentiated in GMCSF in the presence of 2μM T0901317 or DMSO for 7 days 
and stimulated for 15 min with 100ng/ml LPS. Cells were subsequently stained for LXR and 
NFκBp105/p50 and colocalisation between these proteins was assessed by confocal 
microscopy. Colocalisation between LXR and NFκBp105/p50 can be seen in the merged image 
(yellow). 
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FIGURE: 5.10 

LXR and NFκBp105/p50 colocalise in PA452 treated BMDC.  
BMDC were differentiated in GMCSF in the presence of 2μM T0901317, 1μM PA452 or DMSO 
for 7 days and stimulated for 15 min with 100ng/ml LPS. Cells were subsequently stained for 
LXR and NFκBp105/p50 and colocalisation between these proteins was assessed by confocal 
microscopy. Colocalisation between LXR and NFκBp105/p50 can be seen in the merged image 
(yellow). 
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FIGURE: 5.11 

LXR and NFκBp65 do not colocalise in LXR treated and untreated BMDC. 

BMDC were differentiated in GMCSF in the presence of 2μM T0901317 or DMSO for 7 days  
and stimulated for 15 min with 100ng/ml LPS. Cells were subsequently stained for LXR and 
NFκBp65 and colocalisation between these proteins was assessed by confocal microscopy. 
Colocalisation between LXR and NFκBp65 is not present in these cells (lack of yellow signal).
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FIGURE: 5.12 

LXR activation in LPS matured BMDC alters the translocation of NFκBp50 to the 
nucleus.  
BMDC were differentiated in GMCSF in the presence of 2μM T0901317 or DMSO for 7 days 
and stimulated for 15 min with 100ng/ml LPS. The nuclei of cells were subsequently stained 
using P.I. and cells were also stained for NFκBp50. The translocation of NFκBp50 to the nucleus 
was assessed by confocal microscopy.  
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FIGURE: 5.13 

LXR activation in LPS matured BMDC does not affect the translocation of NFκBp65 to 
the nucleus.  
BMDC were differentiated in GMCSF in the presence of 2μM T0901317 or DMSO for 7 days 
and stimulated for 15 min with 100ng/ml LPS. The nuclei of cells were subsequently stained 
using P.I. and cells were then stained for NFκBp65. The translocation of NFκBp65 to the 
nucleus was assessed by confocal microscopy.  
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5.3 DISCUSSION 

In this chapter, we examined the effect of LXR activation on nuclear receptor 

expression and on the expression of each of the IL-12 cytokine subunits. The results 

from this study lead to the identification of the molecular target downstream of LXR 

activation which is necessary for the receptor to exert its anti-inflammatory effects. Our 

results show that the expression of LXR, RXR and PPARγ are regulated in response to 

TLR4 activation and are altered in response to LXR activation. The expression of LXR 

increases over the course of 24hrs in response to LPS whereas the expression of both 

PPARγ and RXR decreases over this period. Consistent with this result, in chapter 3 we 

also see that the expression of LXR is increased during acute inflammation in DSS 

induced colitis. It has previously been reported that there may be a reciprocal 

relationship between the TLR pathway and the nuclear receptor pathway, in that 

activation of TLRs can inhibit or enhance the expression of nuclear receptors or indeed 

as we have shown, activation of nuclear receptors can inhibit the TLR pathway (Ogawa 

et al. 2005). The functional consequences of these effects have not yet been established 

however given the wide variety of genes each nuclear receptor may regulate, and their 

need to heterodimerise with each other it seems likely that their expression may be 

positively and negatively regulated at different stages of inflammation. 

Upon activation LXR can directly regulate and induce its own expression, therefore as 

expected we saw a significant increase in LXRα expression following treatment with 

the LXR agonist (Glass, Ogawa 2006). Given that the LXRα gene is direct target of the 

LXR receptor, it is important to note that this result also highlights the specificity of the 

LXR agonist used throughout these experiments and its ability to efficiently activate the 

LXR receptor. Interesting, we also see a significant increase in RXRα expression 
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following LXR activation, whereas there is no significant increase in PPARγ 

expression. This result emphasises the findings we presented in Chapter 4, where the 

formation of LXR:RXR heterodimers and not LXR:PPARγ heterodimers were 

important in how LXR exerted its effects. LXR activation in these cells may thus 

positively regulate the expression of its heterodimerisation partner, as seen by a positive 

increase in RXRα expression and not PPARγ. 

We also examined the effect of LPS and LXR activation on the expression of the IL-12 

cytokine subunits. Our results showed that IL-23p19 was rapidly induced following 

LPS stimulation with a peak in expression seen after just 1hr stimulation. After 2hr LPS 

stimulation the expression of both IL-27p28 and IL-12p35 peak whereas the expression 

of EBI3 and IL-12p40 were highest at 6hr and 12hr post stimulation. It is clear that the 

kinetics of IL-12, IL-23 and IL-27 mRNA vary considerably amongst family members; 

however it is possible that this variation is due to different signalling complexes 

required for different cytokine subunits. LXR activation in these cells significantly 

decreases the expression of EBI3, IL-12p40 and IL-12p35 over the course of 

stimulation without significantly affecting IL-23p19 and IL-27p28. Since we have 

previously shown a decrease in IL-12, IL-23 and IL-27 secretion by DC following LXR 

activation, these results have highlighted that the reduction shown in IL-12 is a result of 

decreased IL-12p40 and IL-p35 expression; the reduction shown in IL-23 is a result of 

decreased IL-12p40 expression and finally the reduction shown in IL-27 is a result of 

decreased EBI3 expression. The specific expression of these subunits has also been 

implicated in disease. IL-12p35 KO mice were reported to develop significantly milder 

experimentally induced arthritis compared to WT (Vasconcellos et al. 2011) while 

increased expression of EBI3 has been described in patients suffering from ulcerative 

colitis (Gehlert, Devergne & Niedobitek 2004). IL-12p40 has also been widely 
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implicated in numerous inflammatory diseases such as psoriasis IBD, RA and MS (Fuss 

et al. 2006) (Lee et al. 2004).Therefore directly targeting these subunits through LXR 

activation could prove beneficial in the treatment of these diseases. 

Upon further examination of the NFκB dimer complexes that control IL-12, IL-23 and 

IL-27 production, NFκBp50 was highlighted as a potential LXR target. The formation 

of p65:c-Rel complexes are necessary for the production of both IL-23p19 and IL-

27p28. However as we have shown in this chapter, LXR activation does not 

significantly decrease the expression of these subunits. LXR activation does however 

significantly affect the production of EBI3, IL-12p40 and IL-12p35 which are all under 

the transcriptional control of either p50:p65 or p50:c-Rel NFκB complexes. We 

therefore hypothesised that LXR must target the NFκBp50 signalling subunit in order to 

exert its effects on the IL-12 family of cytokines. 

Our data shows that LXR activation in DC can significantly decrease the level of 

NFκBp50 without affecting the levels of p105. NFκBp105 is now known to have two 

functions within the NFκB signalling system. First, NFκB activation can lead to the 

proteolytic degradation of p105 to p50. Furthermore p105, similar to IκB proteins can 

associate with other members of the NFκB family in the cytoplasm and prevent nuclear 

translocation of these subunits (Martinez-Micaelo et al. 2012). Our data shows that 

LXR activation did not affect p105 expression. This suggests that the cells capability to 

sequester the NFκB subunits that are not required for signalling, away from the nucleus 

remains unchanged. However LXR activation can significantly decrease the levels of 

NFκBp50, consequently affecting the levels of the NFκB dimers required for IL-12 

production i.e. p65:p50 and p50:c-Rel. Increased levels of p50 in addition to the IL-12 

family of cytokines has also been implicated in disease. Visekruna et al reported an 
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increase in the capacity of proteasomes isolated from Crohns disease patients to process 

p105 to p50 where increased levels of p50 correlated with disease severity (Visekruna et 

al. 2006). Furthermore in a mouse model of MS, a deficiency in p50 was sufficient to 

block the induction of disease (Hilliard et al. 1999). Therefore targeting this NFκB 

subunit could prove to be beneficial in targeting the IL-12 cytokines and ameliorating 

disease. Interestingly, our results also demonstrate that LXR specifically affects the p50 

subunit and not other NFκB subunits, as no significant change in NFκp65 was observed 

in LXR activated cells. 

We also show by co-immunoprecipitation experiments and visually using confocal 

microscopy that LXR associated with NFκBp105 and NFκBp50 in resting, stimulated 

and LXR activated cells. Co-immunoprecipitation experiments confirmed that LXR 

activation significantly increased the level of association between NFκBp50 and LXR in 

these cells. Interestingly, the level of LXR: p50 association in these cells also appeared 

to be less but not abrogated in cells treated with the specific RXR inhibitor. This 

indicates that although LXR:RXR heterodimers are important in the ability of LXR to 

exert its effects this association may not control LXR ability to target the p50 subunit of 

NFκB. No association between LXR and p65 was observed in resting, stimulated or 

LXR activated cells emphasising once more the specificity of LXR for p50 and not 

other NFκB subunits. 

Following efficient processing of p105 to p50, the p50 signalling subunit translocates to 

the nucleus, associates with its specific dimerisation partner, binds to NFκB response 

elements and initiates transcription (Ruland 2011). We hypothesised that given LXR 

ability to associate with p50; this association could inhibit the translocation of p50 to 

the nucleus, thus inhibiting transcription. Our results showed that as expected, upon 
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NFκB activation, p50 translocates to the nucleus to initiate transcription of target genes. 

However following LXR activation in these cells, p50 is retained in the cytoplasm and 

is prevented from translocating to the nucleus. This event is specific for p50 as LXR 

activation does not affect the translocation of p65 to the nucleus.  

While aspects of the results presented in this chapter concur with previous studies in the 

literature; we have proposed a novel mechanism to explain the anti-inflammatory 

effects LXR exerts in DC. The expression of nuclear receptors following TLR4 

activation has previously been examined and the data presented here concurs with these 

results. Welch et al also reported a decrease in PPARγ expression in LPS stimulated 

macrophages after 6hrs while Castrillo et al showed that the expression of LXRα is 

increased in peritoneal macrophages following E.Coli infection (Castrillo et al. 2003, 

Welch et al. 2003). The expression of RXRα has previously been reported to decrease in 

the kidney and liver following LPS administration (Berczi 1998, Feingold et al. 2008). 

However, this is the first time that the kinetics of nuclear receptor expression over the 

course of 24hr LPS exposure in DC has been reported. Similarly this is also the first 

time the expression of RXR and PPARγ has been reported in response to LXR 

activation. A study undertake by Schuetze et al in which the expression of IL-12p40, 

p35, EBI3,  IL-12p28 and IL-23p19 were examined following TLR4 activation 

correlated with the mRNA profile we have reported within this chapter (Schuetze et al. 

2005). Although it has previously been reported that LXR activation can decrease the 

expression of IL-12p40 (Myhre et al. 2008), here we present for the first time a 

comprehensive analysis of LXR activation on all other members of the IL-12 family of 

cytokines. 
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We also present for the first time a novel mechanism to describe the anti-inflammatory 

effects LXR exerts in DC. However a link between nuclear receptors and NFκB has 

previously been described. Chen et al demonstrated a physical association between 

PPARγ and NFκBp65 in colon cancer cells resulting in a decrease in NFκB 

transcriptional activity (Chen et al. 2003). The glucocorticoid receptor, once activated 

has been reported to increase the nuclear export rate of Rel A, therefore reducing the 

duration of an NFκB transcriptional response (De Bosscher et al. 1997). The VDR, 

upon activation has been reported to reduce the phosphorylation of p65 and its 

subsequent translocation to the nucleus (Penna et al. 2007). There have also been 

previous reports to suggest a possible LXR: p65 related mechanism in which LXR 

activation in DC prevented the association of p65 to a set of NFκB target gene (Hanley, 

Viglianti 2011). However it is important to note that although LXR activation in this 

study inhibited a p65 response, no association between LXR and p65 was reported. 

Therefore it is difficult to determine if LXR activation has a direct effect on NFκBp65 

or if the effect reported is a result of an interaction with p65’s heterodimerisation 

partner i.e. p50 or c-Rel. We therefore propose a model (illustrated below) whereby 

LXR activation in DC results in the formation of LXR:RXR heterodimers where LXR 

physically associate with NFκBp50, preventing its translocation to the nucleus. 

Inhibited p50 translocation subsequently decreases the transcription of EBI3, IL-12p40 

and IL-12p35 expression leading to a decrease in the production of IL-12 family of 

cytokines. 
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FIGURE: 5.14 

Proposed mechanism of action of LXR in BMDC. LXR activation in DC results in the 

formation of LXR:RXR heterodimers where LXR physically associate with NFκBp50, 

preventing its translocation to the nucleus. Inhibited p50 translocation subsequently 

decreases the transcription of EBI3, IL-12p40 and IL-12p35 expression leading to a 

decrease in the production of IL-12 family of cytokines. 

TLR 



 
 
 

223 
 

 

 

  

 

 

CHAPTER 6 

GENERAL 

DISCUSSION 

 

 



 
 
 

224 
 

CHAPTER 6 GENERAL DISCUSSION 

 

Nuclear receptors are a large unique family of ligand- regulated transcription factors 

that are involved in almost every aspect of development, physiology and disease 

(Venteclef et al. 2011). RXR, for example can be detected in almost every tissue in the 

body, highlighting the importance of these receptors in cell signalling (Szeles et al. 

2010). In recent years, our understanding of these receptors and their signalling and 

transcriptional capabilities has improved immensely. The PPAR subset of nuclear 

receptors are best known for their ability to regulate lipid metabolism, adipocyte 

differentiation and glucose homeostasis. LXR is commonly referred to as a cholesterol 

sensor and is known to play a pivotal role in regulating cholesterol metabolism 

(Rigamonti, Chinetti-Gbaguidi & Staels 2008). FXR, a bile acid sensor was originally 

identified as a regulator of glucose, lipid and bile acid homeostasis (Lefebvre et al. 

2009). The RXR receptor is however considered the master regulator in the nuclear 

receptor family. Considering activation of this receptor has been reported to control cell 

growth, differentiation, survival and death, and given that RXR can also heterodimerise 

with a large number of other nuclear receptors to control their effects; the network of 

genes regulated by RXR is vast (Germain et al. 2006). Despite the unique and diverse 

roles these receptors play in key physiological processes once their expression was 

discovered in a number of immune cells, a possible role for these receptors in 

inflammation began to emerge. Interestingly, expression profiling experiments have 

documented the expression of 28 members of the nuclear receptor family in primary 

mouse monocytes alone, highlighting an important role these receptors may have in 

inflammation.(Barish et al. 2005). 
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Inflammation is a normal defence mechanism that the body uses to protect itself from 

invading microorgansims and tissue injury. It is characterised by increased blood flow, 

vascular permeability and the induction of chemokines, cytokines and adhesion 

molecules which all aid in the recruitment and infiltration of effector cells to the site of 

infection/injury (Serhan et al. 2007). Once the infection has been cleared; tissue 

remodelling processes are activated, leading to a resolution of the inflammatory 

response and a return to normal. However if this response becomes dysregulated, 

excessive inflammation can lead to extensive tissue damage, acute and chronic 

inflammatory disease and even death (Andreakos, Foxwell & Feldmann 2004). Given 

the fundamental roles cytokines play in the development and pathogenesis of many 

inflammatory diseases, there has been extensive research focused on identifying novel 

compounds to inhibit proinflammatory cytokines or indeed enhance antiinflammatory 

cytokine production.  

DC are essential antigen presenting cells which link both the innate and adaptive 

immune response. Recognition of invading pathogens through PRR on their surface 

initiates a distinct maturation programme, ultimately leading to increased cytokine 

production and upregulated cell surface and costimulatory marker expression (Janeway, 

Medzhitov 2002).  Mature DC can subsequently interact with and differentiate naive Th 

cells, thus initiating the adaptive immune response. Although Th cells are essential in 

clearing intra and extracellular infections they have also been widely implicated in 

inflammatory disease (Palmer, Weaver 2010). The aim of this study was to examine the 

effect of nuclear receptor activation on DC maturation and determine if targeting these 

receptors could alter cell surface marker expression and cytokine production from these 

cells - thus having potential downstream effects for Th cell differentiation and disease. 
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Our results showed that activation of LXR, RXR and PPARγ resulted in a significant 

decrease in the IL-12 family of cytokines. Interestingly, while activation of LXR or 

PPARγ resulted in a decrease in IL-12 (p70 and p40), IL-23 and IL-27, RXR activation 

resulted in decreased IL-12 (p70 and p40) and IL-27 production without decreasing the 

production of IL-23. Therefore, although there are structural similarities between these 

nuclear receptors, it is likely that each receptor controls a distinct set of target genes. 

Indeed, it is also possible that the activation of these receptors is regulated in a tissue or 

cell specific manner. It has previously been reported that the GR displays potent anti-

inflammatory properties in immune cells, however upon activation in the liver, it can 

positively regulate the expression of acute phase response (APR) proteins (Wang et al. 

2001). The selectivity of these nuclear receptors offers a great advantage in treating 

inflammatory diseases. Following RXR activation the specific decrease in IL-12 and IL-

27 could prove beneficial in specifically targeting Th1 mediated disease, given that both 

these cytokines are necessary for the generation of a Th1 response. 

There is a significant body of evidence demonstrating the role of IL-12, IL-23 and IL-27 

in the pathogenesis of inflammatory disease. Murphy et al reported, through the use of 

IL-12p35 and IL23p19 specific KO mice that the production of IL-23 was essential in 

mediating autoimmune inflammation in the joints (Murphy et al. 2003). In humans, 

overexpression of the IL-12p40 and IL-12p35 was detected in the intestinal tissue of 

patients with Crohns disease (Berrebi et al. 1998).Indeed, we ourselves report in this 

study that the expression of individual IL-12 cytokine subunits is significantly increased 

in both chemically induced and infection induced models of colitis in mice. 

Ustekinumab and briakinumab represent two therapeutic monoclonal antibodies that 

target the p40 subunit of both IL-12 and IL-23. Use of these mAb has proved effective 

in the treatment of psoriasis and psoriatic arthritis in Phase III clinical trials (Leonardi et 



 
 
 

227 
 

al. 2008). Ustekinumab has also showed benefits in the treatment of Crohns disease, 

especially in patients that failed to respond to the TNFα targeting drug, Inflixamab 

(Sandborn et al. 2008). However the cost in generating and ultimately using these drugs 

is extremely high. Therefore it is necessary to continually discover new therapeutic 

targets for the treatment of these diseases. Given that LXR, RXR and PPARγ can 

significantly and specifically alter the production of the IL-12 family of cytokines, there 

is promising potential for targeting these receptors in disease. The therapeutic potential 

for these receptors is further increased with the identification of LXRs 

heterodimerisation partner, RXR. In this study we showed that LXR activation, through 

a specific interaction with RXR could decrease the IL-12 family of cytokines. It has 

previously been reported that activation of both receptors in the nuclear receptor dimer 

resulted in more potent affects than activation of a single receptor (Perez et al. 2012). 

This result highlights the potential of using combination treatments to activate both 

LXR:RXR heterodimers. Indeed Desreumaux et al reported that co-administration of 

both PPARγ and RXR agonists to mice with chemically induced colitis significantly 

reduced disease severity (Desreumaux et al. 2001). Combinational therapy may not only 

be beneficial because of its synergistic effects, it is likely that lower doses of the 

respective agonists would be needed to activate the heterodimer, thus decreasing the 

possibility of off target effects and undesirable side effects. Interestingly in this study 

we also showed that the expression of these nuclear receptors is regulated throughout 

the course of DSS induced colitis, further suggesting that activation of these receptors 

can regulate inflammation. Specifically, the expression of LXR and not RXR or PPARγ 

is increased in response to both an acute inflammatory stimulus (in vitro) and also in the 

acute stages of DSS induced colitis (in vivo). This suggests that LXR expression and 

subsequent activation may limit the extent of inflammation in autoimmune diseases. 
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Indeed, Xu et al reported that treatment of EAE mice with specific LXR agonists 

significantly reduced disease severity while a study undertaken by Park et al highlighted 

that activation of LXR in CIA mice could suppress the onset of disease while reducing 

inflammation and joint destruction (Xu et al. 2009, Park et al. 2010). These reports 

further highlight a potential therapeutic role for LXR in autoimmune diseases. 

LXR, RXR and PPARγ activation not only resulted in a decrease in cytokine 

production, a downregulation in the expression of the costimulatory markers CD40, 

CD80 and CD86 was also observed. Costimulation between these markers and 

coreceptors (CD40L and CD28 respectively) on the surface of naive T cells is necessary 

to drive specific T helper cell responses (Palucka, Banchereau 1999). Numerous reports 

have also shown increased expression of these surface markers in disease. Increased 

expression of CD40 in the lamina propria of patients with Crohns disease has been 

reported while the expression of CD86 was also increased in the inflamed mucosa of 

IBD patients (Polese et al. 2003, Rugtveit, Bakka & Brandtzaeg 1997). Therefore 

targeting these costimulatory markers may be of therapeutic interest as it provides the 

means to terminate or repress Th cell responses and ameliorate disease.  The production 

of T cell costimulatory blockers such as Abatacept has thus far proven beneficial in the 

treatment of RA (Chen 2010). Also in three separate murine models of colitis the use of 

anti-CD40L therapy has shown promising results and treatment with specific CD80 and 

CD86 inhibitors also prevented the initiation of EAE in mice (Stuber, Strober & 

Neurath 1996, Nishikawa, Matsuo 1999). These reports therefore support our evidence 

that targeting these nuclear receptors in disease may have therapeutic potential as a 

downregulation in costimulatory marker expression is seen following their activation. 
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It is clear that LXR, RXR and PPARγ display potent anti-inflammatory effects in DC 

and negatively affect DC maturation. However, in order to elucidate this mechanism, 

we examined the TLR pathway in greater detail. LPS signals through TLR4, and was 

the main receptor utilised in this study. However there is a large family of TLR 

receptors which have overlapping but distinct signalling pathways. Upon TLR 

occupancy by its ligand, specific adaptor molecules are recruited to the receptor to 

mediate downstream signalling (Moynagh 2005). We therefore examined the effects of 

nuclear receptor activation following DC maturation with a panel of TLR ligands in 

order to identify a possible TLR specific target. Interestingly our results highlighted that 

within the TLR signalling pathway, these nuclear receptors did not exclusively utilise a 

specific TLR adaptor or signalling protein. Instead the effects of these receptors were 

mediated through a common element within all TLR signalling pathways – NFκB and 

IRF3. Our data shows that activation of these receptors can inhibit NFκB and IRF3 

activation however, upon further examination we highlighted that LXR:RXR 

heterodimers were implicated in the suppression of NFκB and not IRF3. Previous 

reports have highlighted a link between the TLR pathway and the nuclear receptor 

pathway, whereby activation of one can negatively affect the response of the other 

(Hanley et al. 2010). This emphasises again a role for these receptors in the regulation 

of the inflammatory response. This study also examines for the first time markers of DC 

maturation in response to entire panel of TLR ligands, providing further insight into the 

specific anti-inflammatory properties they can display in DC in vitro. 

Given that the role of LXR in DC biology has been relatively unexplored, and that the 

findings of our initial studies indicated the formation of LXR:RXR heterodimers to 

inhibit NFκB activation, and suppress IL-12, we therefore focused the remainder of our 

study on LXR and the identification of its specific molecular target. Our results show 
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that LXR activation specifically targets the IL-12p35 subunit of IL-12, the IL-12p40 

subunit of both IL-12 and IL-23 and the EBI3 subunit of IL-27. However, the question 

still remained how activation of LXR could specifically affect the transcription of these 

three subunits and not IL-27p28 or IL-23p19. Given the importance of the IL-12 family 

of cytokines in disease and Th cell responses, numerous studies in the past ten years 

have focused on understanding how the production of these cytokines is regulated. 

Through the use of specific KO mice and luciferase transfection systems the mechanism 

by which IL-12p40, IL-12p35, IL-27p28, IL-23p19 and EBI3 are regulated in immune 

cells, in particular DC has been identified. The production of IL-12p40, IL-12p35, and 

EBI3 all require the involvement of the NFκB signalling subunit p50. Therefore we 

hypothesised that LXR may directly affect NFκBp50 in order to specifically target the 

expression of individual IL-12 subunits.  Our results show that LXR activation can 

significantly reduce the expression of this subunit without affecting other NFκB 

subunits such as p65. Furthermore, we have also shown that LXR associates with p50 

and subsequently sequesters NFκBp50 in the cytoplasm, preventing its translocation to 

the nucleus thereby inhibiting the transcription of NFκBp50 dependent genes. 

Interestingly, the effect of LXR on NFκBp50 may not directly depend on an association 

with RXR. As we have shown in this study, even in the presence of an RXR inhibitor, 

the association between LXR and NFκBp50 is still present, however it appears that the 

level of association is reduced. To date, numerous studies have identified the specific 

heterodimer combinations required in the regulation of specific proteins and indeed 

there have also been a number of studies indicating that activation of one particular 

nuclear receptor results in a physical interaction with transcription factors such as NFκB 

or AP-1. However the exact mechanism in which heterodimerisation affects this 

association still remains elusive. We therefore hypothesize that the formation of 
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LXR:RXR heterodimers control the production of the IL-12 family of cytokines where 

LXR directly associates with NFκBp50 in order to exert its affects. Although it was not 

examined in this study it may be possible that RXR targets p50’s heterodimerisation 

partner i.e. c-Rel or p65 to have a combined affect on the transcription of their target 

genes. 

The ability of LXR to directly target NFκBp50 in DC and ultimately inhibit IL-12 

production highlights the potential of targeting this receptor in disease. It has previously 

been shown that while p50 is essential in EBI3 transcription in DC, the expression of 

this IL-27 subunit is not controlled by p50 in B cells (Wirtz et al. 2005). This finding 

suggests that activation of LXR could target the production of the IL-12 family of 

cytokines specifically released from the DC and not other immune cells. Therefore 

activation of LXR could directly target cytokines important for the differentiation of Th 

cells without compromising the ability of other immune cells to respond normally to 

infections. Given that the current treatments for inflammatory diseases can leave 

patients immunosuppressed, targeting LXR in these diseases could improve on the 

therapies that are already available.  

Although the maintenance of appropriate levels of NFκB activity is critical for 

immunological homeostasis and normal cellular proliferation, excessive activation of 

this pathway can also lead to disease (Yamamoto, Gaynor 2001). NFκB has been 

reported to be highly activated in RA, MS, IBD, asthma and atherosclerosis (Tak, 

Firestein 2001). The association between NFκB and disease is also highlighted in 

animal models of inflammation. In experimentally induced colitis in mice, NFκB 

activation was enhanced in the colonic epithelium (Yang et al. 1999). Similarly in 

collagen induced arthritis in mice; increased NFκB activity was reported in the 
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synovium (Han et al. 1998). Therefore the development of drugs targeting the NFκB 

pathway shows promise in the treatment of these diseases. Tacrolimus (or FK-506) is an 

approved immunosuppressive agent that is used after organ transplantation to prevent 

graft-versus host disease. It has been shown that FK-506 can inhibit the NFκB pathway 

by preventing the translocation of c-Rel from the cytoplasm to the nucleus 

(Venkataraman, Burakoff & Sen 1995). Similarly the use of terpenoids, small secondary 

metabolites released from plants, in NFκB inhibition is currently being explored. Pinene 

and Lycopene are two members of this family which have been indicated in the 

treatment of arthritis and atherosclerosis by affecting the translocation of p65 to the 

nucleus (Zhou et al. 2004, Heber, Lu 2002). Interestingly, ablation of p50 in mice has 

reduced detrimental affects compared to other NFκB subunits, for example NFκBp65 

deficient mice die in utero, while RelB deficient mice develop normally but suffer from 

severe disorders ranging from splenomegaly to chronic microbial infections (Sha et al. 

1995). Therefore targeting p50 through activation of LXR may suppress IL-12 

production with minimal unwanted side effects and therefore represents a potential 

therapeutic target in disease. However it has been reported that p50 deficient mice are 

more susceptible to intracellular and extracellular Gram positive bacterial infections 

(Sha et al. 1995). It is therefore essential that activation of LXR is limited to situations 

with increased p50 expression or activation as is the case with numerous inflammatory 

diseases. However, targeting this receptor in the treatment of these diseases shows 

substantial potential and represents a means to directly target the IL-12 cytokines via 

NFκBp50 without having off target effects. 

In the future, the design of specific LXR agonists which promote the preferential 

partnership between one nuclear receptor over another will be instrumental in targeting 

a specific subset of genes. Similarly, the production of tissue specific agonists would 
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also be beneficial in the treatment of inflammatory disorders characterised by site 

specific inflammation. Kaneoko et al described the first such agonist YT-32,whereby 

the expression of ABCA1, ABCG5 and ABCG8 were regulated in the intestine 

following oral administration of YT-32 without any effect on the expression of these 

genes in the liver (Kaneko et al. 2003). More recently Wyeth has developed a tissue 

specific LXR agonist known as WYE-672 which has been shown to modulate functions 

in the kidney but not the liver (Hu et al. 2010). Developments such as these are essential 

in maximising the full beneficial potential of LXR activation in disease while ultimately 

inhibiting unwanted adverse side effects in the patient. 
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CHAPTER 7 APPENDIX 

 

CELL CULTURE MEDIA 

 

COMPLETE RPMI 1640     500ml 

5% Heat inactivated Foetal Calf Serum (FCS)  25ml 

Penicillin/streptomycin/L-glutamine Culture Cocktail 10 ml 

(Gives a final concentration of 2 mM L-glutamine,  

100 μg/ml penicillin and 100 U/ml streptomycin) 

 

COMPLETE DMEM      500 ml 

5% Heat inactivated Foetal Calf Serum (FCS)  25ml 

Penicillin/streptomycin/L-glutamine Culture Cocktail 10 ml 

(Gives a final concentration of 2 mM L-glutamine,  

100 μg/ml penicillin and 100 U/ml streptomycin) 

 

10X PHOSPHATE BUFFERED SALINE (PBS) 

Na2HPO4.2H2O (8 mM)    23.2 g 

KH2PO4 (1.5 mM)     4 g 

NaCl (137 mM)     160 g 

KCl (2.7 mM)      4 g 

Make up to 2 L pH to 7.4  
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10 X TRIS BUFFERED SALINE (TBS) pH 7.6 

NaCl       48.4 g 

Trizma Base      160 g     

Dissolve in 2 L dH2O pH to 7.6 

 

2N H2SO4 

H2SO4 (36 N)      11.1 ml 

dH2O       88.9 ml 

 

FACS BUFFER  

2%FCS 

0.05% NaN3 

PBS 

 

10X TAE Buffer 

Tris Base      242g 

 Glacial Acetic Acid     57.1ml 

.5M EDTA      100ml 

dH20       750ml    

Make up to 1L and pH to 8.5 
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5X SAMPLE BUFFER 

125 mM Tris       6.25 ml 1M Tris HCl pH 6.8 

10 % Glycerol      5 ml 

2 % Sodium dodecyl sulphate (SDS)   10 ml (10 % (w/v) SDS) 

0.05 % (w/v) Bromophenol Blue   0.01 g 

dH2O       28.75 ml 

 0.25 M Dithiothreitol (DTT)*   250 μl 1 M DTT S 

* Added to 1 ml 5X Sample Buffer just before use 

 

SEPARATING GEL (10 % (v/v)) 

33% w/v Bisacrylamide (30% stock) 

1.5M Tris-HCl pH8.8 

1% w/v SDS 

0.5% w/v Ammonium persulpate 

dH2O 

0.1% v/v TEMED 

 

STACKING GEL 

6.5% v/v Acrylamide/Bisacrylamide (30% stock) 

0.5M Tris-HCl pH6.8 

1% w/v SDS 

0.5% w/v Ammonium persulphate 

dH2O 



 
 
 

238 
 

0.1% v/v TEMED 

 

ELECTRODE RUNNING BUFFER 

25mM Tris base 

200mM Glycine 

17mM SDS 

 

ELISA STANDARD CURVES 

 

 

 

 

IL-12p40 
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IL-23 

IL-12p70 

IL-27 
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TNFα 

IL-1β 

IL-6 
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