
SCOOTER: A Compact and Scalable Dynamic
Labeling Scheme for XML Updates.

Martin F. O’Connor and Mark Roantree

Interoperable Systems Group, School of Computing,
Dublin City University, Dublin 9, Ireland

{moconnor,mark}@computing.dcu.ie

Abstract. Although dynamic labeling schemes for XML have been the
focus of recent research activity, there are significant challenges still to be
overcome. In particular, though there are labeling schemes that ensure
a compact label representation when creating an XML document, when
the document is subject to repeated and arbitrary deletions and inser-
tions, the labels grow rapidly and consequently have a significant impact
on query and update performance. We review the outstanding issues to-
date and in this paper we propose SCOOTER - a new dynamic labeling
scheme for XML. The new labeling scheme can completely avoid rela-
beling existing labels. In particular, SCOOTER can handle frequently
skewed insertions gracefully. Theoretical analysis and experimental re-
sults confirm the scalability, compact representation, efficient growth rate
and performance of SCOOTER in comparison to existing dynamic la-
beling schemes.

1 Introduction

At present, most modern databases providers support the storage and query-
ing of XML documents. They also support the updating of XML data at the
document level, but provide limited and inefficient support for the more fine-
grained (node-based) updates within XML documents. The XML technology
stack models an XML document as a tree and the functionality provided by a
tree labeling scheme is key in the provision of an efficient and effective update
solution. In particular, throughout the lifecycle of an XML document there may
be an arbitrary number of node insertions and deletions. In our previous work,
we proposed a labeling scheme that fully supported the reuse of deleted node
labels under arbitrary insertions. In this paper, we focus on the more press-
ing problem that affects almost all dynamic labeling schemes to-date, the linear
growth rate of the node label size under arbitrary insertions, whether they are
single insertions, bulk insertions, or frequently skewed insertions.

1.1 Motivation

The length of a node label is an important criterion in the quality of any dy-
namic labeling scheme [2] and the larger the label size, the more significant is



the negative impact on query and update performance [6]. In the day-to-day
management of databases and document repositories, it is a common experi-
ence that more information is inserted over time than deleted. Indeed in the
context of XML documents and repositories, a common insertion operation is
to append new nodes into an existing document (e.g.: heart rate readings in
a sensor databases, transaction logging in financial databases) or to perform
bulk insertions of nodes at a particular point in a document. These insertion
operations are classified as frequently skewed insertions [20]. Over time, such in-
sertions can quickly lead to large label sizes and consequently impact negatively
on query and update performance. Furthermore, large label sizes lead to larger
storage costs and more expensive IO costs. Finally, large node labels require
higher computational processing costs in order to determine the structural re-
lationships (ancestor-descendant, parent child and sibling-order) between node
labels. Our objectives are to minimize the update cost of inserting new nodes
and while minimizing the label growth rate under any arbitrary combination of
node insertions and deletions.

1.2 Contribution

In this paper, we propose a new dynamic labeling scheme for XML called
SCOOTER. The name encapsulates the core properties - Scalable, Compact,
Ordered, Orthogonal, Trinary Encoded Reusable dynamic labeling scheme. The
principle design goal underpinning SCOOTER is to avoid and bypass the conges-
tion and bottleneck caused by large labels when performing fine-grained node-
based updates of XML documents. SCOOTER is scalable insofar as it can sup-
port an arbitrary number of node label insertions and deletions while completely
avoiding the need to relabel nodes. SCOOTER provides compact label sizes by
constraining the label size growth rate under various insertions scenarios. Order
is maintained between nodes at all times by way of lexicographical compari-
son. SCOOTER is orthogonal to the encoding technique employed to determine
structural relationships between node labels. Specifically, SCOOTER can be de-
ployed using a prefix-based encoding, containment-based encoding or a prime
number based encoding. SCOOTER employs the quaternary bit-encoding pre-
sented in [9] and uses the ternary base to encode node label values. SCOOTER
supports the reuse of shorter deleted node labels when available.

This paper is structured as follows: in §2, we review the state-of-the-art in
dynamic labeling schemes for XML, with a particular focus on scalability and
compactness. In §3, we present our new dynamic labeling scheme SCOOTER
and the properties that underpin it. We describe how node labels are initially
assigned and we analyse the growth rate of the label size. In §4, we present our
insertion algorithms and our novel compact adaptive growth mechanism which
ensures that label sizes grow gracefully and remain compact even in the presence
of frequently skewed node insertions. We provide experimental validation for our
approach in terms of execution time and total label storage costs by comparing
SCOOTER to three dynamic label schemes that provide similar functionality
and present the results in §5. Finally in §6, our conclusions are presented.



2 Related Research

There are several surveys that provide an overview and analysis of the principle
dynamic labeling schemes for XML proposed to date [15], [4], [16], [12]. In review-
ing the state-of-the-art in dynamic labeling schemes for XML, we will consider
each labeling scheme in its ability to support the following two core proper-
ties: scalability and compactness. By scalable, we mean the labeling scheme can
support an arbitrary number of node insertions and deletions while completely
avoiding the need to relabel nodes. As the volume of data increases and the size
of databases grow from Gigabytes to Terabytes and beyond, the computational
cost of relabeling node labels and rebuilding the corresponding indices becomes
prohibitive. By compact, we mean the labeling scheme can ensure the label size
will have a highly constrained growth rate both at initial document creation and
after subsequent and repeated node insertions and deletions. Indeed almost all
dynamic labeling schemes to-date [14], [9], [2], [3], [8], [7], [13], [1] are compact
only when assigning labels at document creation, but have a linear growth rate
for subsequent node label insertions which quickly lead to large labels.

To the best of our knowledge, there is only one published dynamic labeling
scheme for XML that is scalable, and offers compact labels at the document
initialisation stage, namely the QED labeling scheme [9] (subsequently renamed
CDQS in [10]). The Quaternary encoding technique presented in [9] overcomes
the limitations present in all other binary encoding approaches. A comprehen-
sive review of the various binary encoding approaches for node labels and their
corresponding advantages and limitations is provided in [10]. We now briefly
summarise their findings and supplement them with our own analysis.

All node labels must be stored as binary numbers at implementation, which
are in turn stored as either fixed length or variable length. It should be clear that
all fixed length labels are subject to overflow (and are hence, not scalable) once all
the assigned bits have been consumed by the update process and consequently
require the relabeling of all existing labels. The problem may be temporarily
alleviated by reserving labels for future insertions, as in [11] but this leads to
increased storage costs and only delays the relabeling process. There are three
types of variable encoding: variable length encoding, multi-byte encoding and
bit-string encoding. The V-CDBS labeling scheme [10] employs a variable length
encoding. Variable length encodings require the size of the label to be stored in
addition to the label itself. Thus, when many nodes are inserted into the XML
tree, at some point the original fixed length of bits assigned to store the size
of the label will be too small and overflow, requiring all existing labels to be
relabeled. This problem has been called the overflow problem in [9]. The Ordpath
[14], QRS [1], LSDX [3] and DeweyID [17] labeling schemes all suffer from the
overflow problem. In addition, Ordpath is not compact because it only uses odd
numbers when assigning labels during document initialisation.

UTF-8 [21] is an example of a multi-byte variable encoding. However UTF-8
encoding is not as compact as the Quaternary encoding. Furthermore, UTF-8
can only encode up to 231 labels and thus, cannot scale beyond 232. The vector
order labeling scheme [19] stores labels using a UTF-8 encoding. Cohen et al.



[2] and EBSL [13] use bitstrings to represent node labels. Although they do not
suffer from the overflow problem they have a linear growth rate in label size
when assigning labels during document initialisation and also when generating
labels during frequently skewed insertions - consequently they are not compact.
The Prime number labeling scheme [18] also avoids node relabeling by using
simultaneous congruence (SC) values to determine node order. However, order-
sensitive updates are only possible by recalculating the SC values based on the
new ordering of nodes and in [9], they determined the recalculation costs to be
highly prohibitive.

Lastly, we consider the problem of frequently skewed insertions. To the best
of our knowledge, there are only two published dynamic labeling schemes that
directly address this problem. The first is the vector order labeling scheme [19]
which as mentioned previously uses a UTF-8 encoding for node labels which
does not scale. We will detail in our experiments section that for a relatively
small number of frequently skewed insertions that are repeated a number of
times, the vector order labels can quickly grow beyond the valid range permitted
by UTF-8 encoding. The second labeling scheme is Dynamic Dewey Encoding
(DDE) [20] which has the stated goal of supporting both static and dynamic
XML documents. However, although the authors indicate their desire to avoid a
dynamic binary encoding representation for their labels due to the overhead of
encoding and decoding labels, they do not state the binary representation they
employ to store or represent labels and thus, we are not in a position to evaluate
their work.

In summary, there does not currently exist a dynamic labeling scheme for
XML that is scalable, can completely avoid relabeling node labels and is com-
pact at both document initialisation and during arbitrary node insertions and
deletions, including frequently skewed insertions.

3 The SCOOTER Labeling Scheme

In this section, we introduce our new dynamic labeling scheme for XML called
SCOOTER, describe how labels are initially assigned at document creation and
then, highlight the unique characteristics of our labeling scheme.

SCOOTER adopts the quaternary encoding presented in [9] so we now briefly
introduce quaternary codes. A Quaternary code consists of four numbers, “0”,
“1”, “2”, “3”, and each number is stored with two bits, i.e.: “00”, “01”, “10”,
“11”. A SCOOTER code is a quaternary code such that the number “0”, is re-
served as a separator and only “1”, “2”, “3” are used in the SCOOTER code it-
self. The SCOOTER labeling scheme inherits many of the properties of the QED
labeling scheme, such as being orthogonal to the structural encoding technique
employed to represent node order and to determine relationships between nodes.
Specifically, node order is based on lexicographical order rather than numerical
order and SCOOTER may be deployed as a prefix-based or containment-based
labeling scheme. The containment based labeling schemes exploit the proper-
ties of tree traversal to maintain document order and to determine the various



Algorithm 1: Assign NodeK.
input : k - the kth node to be labelled.
input : childCount
input : base - the base to encode in.
output: label - the label of node k.

1 digits = dlogbase (childCount + 1)e
2 divisor = basedigits

3 quotient = k
4 label = null

5 while (i=1; i < digits; i++) do
6 divisor ←− divisor / base
7 code ←− b quotient / divisor c + 1
8 label ←− label ⊕ code
9 remainder ←− quotient % divisor

10 if remainder == 0 then
11 return label
12 else
13 quotient ←− remainder
14 end

15 end
16 return label ←− label ⊕ (quotient + 1)

presented in algorithm 2. The SCOOTER codes presented in Figure 1(b) are
examples generated using algorithm 2. The algorithm takes as input a parent
node P (the root node is labeled ’2’), and childCount - the number of children of
P. When childCount is expressed as an positive integer of the base three, Line 1
computes the minimum number of digits required to represent childCount in the
base three. The minimum number of digits required will determine the maximum
label size generated by our AssignInitialLabels algorithm.

There are a small number of rules used to determine the assignment of labels
in order to ensure a compact label size and to maintain lexicographical order be-
tween labels. The first 4 of these rules concern the first label while the remaining
2 rules, determine remaining labels.

– The first label must terminate with “2”.

– It must have no other “2” other than the final digit.

– It can never have the digit “3”.

– It will always be the maximum allowable length.

– The second and remaining labels can never end in “1”.

– The second and remaining labels can be of any allowable length.

As previously stated, the first label will always end with a ’2’ symbol but as
it must be of maximum length, it is preceded by a sequence of ’1’ symbols. The
sequence of ’1’ symbols may be zero (empty) if the minimum number of digits
required to represent childCount in the base three is one digit. All subsequent
child labels after the first label are generated by incrementing the child label
immediately preceding it. Figure 1(b) shows the sequence of labels for both 2-
and 3-digit initially assigned labels. The maximum number of labels that may
be assigned with D digits is 3D - 1 labels.

(a) Function AssignNodeK.

Total Size 104 100

Decimal SCOOTER SCOOTER QED
2 digits 3 digits

1 12 112 112
2 13 113 12
3 2 12 122
4 22 122 123
5 23 123 13
6 3 13 132
7 32 132 2
8 33 133 212
9 2 22
10 212 222
11 213 223
12 22 23
13 222 232
14 223 3
15 23 312
16 232 32
17 233 322
18 3 323
19 312 33
20 313 332

Total Size  104 100

(b) SCOOTER & QED labels

Fig. 1

structural relationships between nodes. Two SCOOTER codes are generated
to represent the start and end intervals for each node in a containment-based
scheme. In a prefix-based labeling scheme, the label of a node in the XML tree
consists of the parent’s label concatenated with a delimiter (separator) and a
positional identifier of the node itself. The positional identifier indicates the po-
sition of the node relative to its siblings. In the prefix approach, the SCOOTER
code represents the positional identifier of a node, also referred to as the selflabel.

3.1 Assigning Labels

A SCOOTER code must end in a “2” or a “3” in order to maintain lexico-
graphical order in the presence of dynamic insertions due to reasons outlined
in [10]. For the purpose of presenting our algorithms, we shall assume a prefix-
based labeling scheme in this paper. The QED labeling scheme adopts a recur-
sive divide-and-conquer algorithm to assign initial labels at document creation
[9]. The SCOOTER AssignInitialLabels algorithm presents a novel approach
described in algorithm 1. The SCOOTER codes presented in Figure 1(b) are
examples generated using algorithm 1. The algorithm takes as input a parent
node P (the root node is labeled ’2’), and childCount - the number of children of
P. When childCount is expressed as an positive integer of the base three, Line 1
computes the minimum number of digits required to represent childCount in the



Algorithm 1: Assign Initial Labels.
input : P - a parent node
input : childCount - the number of child nodes of P
output: a unique SCOOTER selflabel for each child node.

1 maxLabelSize = dlog3 (childCount + 1)e
2 selfLabel[1] = null

/* Compute the SCOOTER selflabel of the first child. */
3 while (i=1; i < maxLabelSize; i++) do
4 selfLabel[1] ←− selfLabel[1] ⊕ 1 ; // ⊕ means concatenation.
5 end
6 selfLabel[1] ←− selfLabel[1] ⊕ 2

/* Now compute the SCOOTER selflabels for all remaining children. */
7 while (i=2; i <= childCount; i++) do
8 selfLabel[i] ←− Increment (selfLabel[i - 1], maxLabelSize)
9 end

base three. The minimum number of digits required will determine the maximum
label size generated by our AssignInitialLabels algorithm.

There are a small number of rules used to determine the assignment of labels
in order to ensure a compact label size and to maintain lexicographical order be-
tween labels. The first 4 of these rules concern the first label while the remaining
2 rules, determine remaining labels.

– The first label must terminate with “2”.
– It must have no other “2” other than the final digit.
– It can never have the digit “3”.
– It will always be the maximum allowable length.
– The second and remaining labels can never end in “1”.
– The second and remaining labels can be of any allowable length.

As previously stated, the first label will always end with a ’2’ symbol but as
it must be of maximum length, it is preceded by a sequence of ’1’ symbols. The
sequence of ’1’ symbols may be zero (empty) if the minimum number of digits
required to represent childCount in the base three is one digit. All subsequent
child labels after the first label are generated by incrementing the child label
immediately preceding it. Figure 1(b) shows the sequence of labels for both 2-
and 3-digit initially assigned labels. The maximum number of labels that may
be assigned with D digits is 3D - 1 labels.

The Increment algorithm (algorithm 2) takes as input a node label and the
maxLabelSize and returns a new node label that is the immediate lexicographical
increment of the input node. The Increment algorithm will never receive a la-
bel longer than maxLabelSize. Furthermore, the Increment algorithm will never
receive a label with a length of maxLabelSize and consisting of all ’3’ symbols
by virtue of line 1 in algorithm 1. Lastly, although the Increment algorithm will
never receive a node label from the AssignInitialLabels algorithm that ends with
a ’1’ symbol, we may pass substrings of labels that end with a ’1’ symbol to the
Increment algorithm when handling dynamic node label insertions and deletions
(discussed in the next section).



Algorithm 2: Increment
input : Nleft - a node label; maxLabelSize - maximum number of symbols allowed in label.
output: Nnew - a new self label such that Nleft ≺ Nnew

1 Ntemp ←− Nleft

2 if Length(Ntemp) == maxLabelSize then
3 if Last symbol in Ntemp is ’1’ then
4 Nnew ←− Ntemp with last symbol changed to ’2’
5 else if (Last symbol in Ntemp is ’2’ then
6 Nnew ←− Ntemp with last symbol changed to ’3’
7 else if (Last symbol in Ntemp is ’3’ then
8 while last symbol of Ntemp is ’3’ do
9 Ntemp ←− Ntemp with last symbol removed.

10 end
11 if Last symbol in Ntemp is ’1’ then
12 Nnew ←− Ntemp with last symbol changed to ’2’
13 else if (Last symbol in Ntemp is ’2’ then
14 Nnew ←− Ntemp with last symbol changed to ’3’
15 end

16 end

17 else if Length(Ntemp) < maxLabelSize then
18 while (i = Length(Ntemp) + 1; i < maxLabelSize; i++) do
19 Ntemp ←− Ntemp ⊕ 1
20 end
21 Nnew ←− Ntemp ⊕ 2

22 end
23 return Nnew

SCOOTER’s AssignInitialLabels algorithm has three distinct properties which
make it quite different from the QED labeling scheme.

1. Firstly, each SCOOTER label can be determined solely based on the label
of the node to the immediate left (and immediate right but we omit the
Decrement algorithm due to lack of space). This is a key property which
we will exploit to enable and maintain compact node labels in the presence
of an arbitrary number of node insertions and deletions. This property also
facilitates the reuse of deleted node labels. In contrast, the QED encoding
algorithm employs the mathematical round function which introduces an
approximation function into the QED assign initial labels process. In order
words, the label value of node n is not and cannot be determined solely from
the label values of node n+1 or node n-1. The QED encoding algorithm can
guarantee lexicographical order but cannot guarantee the accurate calcula-
tion of the size of a node label n or indeed the label n itself, based solely on
the node labels immediately adjacent to node n. It follows that when node
n is deleted, the QED labeling scheme cannot guarantee the accurate cal-
culation of the deleted node label n (and its size), and consequently cannot
guarantee that the deleted node label n will be reused.

2. One significant limitation arising from the sequential determination of ini-
tially assigned node labels is that to generate a label for node n, we must first
generate all n-1 node labels. This limitation can be a significant bottleneck
when processing very large XML files. Hence, the second distinct property:
the SCOOTER initially assigned labels may also be computed independent
of each other as illustrated in function AssignNodeK in Figure 1(a). Specif-



ically, given n child nodes to be labeled, the function AssignNodeK can de-
termine an arbitrary k th child node label without having to compute any
other child node label. When parsing very large XML documents, the ability
to compute node labels independent of one another opens up the possibility
of parallel processing in a multi-threaded and multi-core environment and
may offer sizeable gains in computation time.

3. The third distinct property: the SCOOTER label encoding mechanism is in-
dependent of the underlying numeric base, as illustrated by function Assign-

NodeK in Figure 1(a). Our SCOOTER dynamic labeling scheme and compact
adaptive growth mechanism may be applied and implemented using any nu-
meric base greater than or equal to two. In mathematical numeral systems,
the base or radix is the number of unique symbols that a positional numeral
system uses to represent numbers. For example, the decimal system uses the
base 10, because it uses the 10 symbols from 0 through 9. The highest symbol
usually has the value of one less than the base of that numeric system. In [5],
the authors demonstrate the most economical radix for a numbering system
is e, the base of the natural logarithms, with a value of approximately 2.718.
Economy is measured as the product of the radix and the number of digits
needed to express a range of given values. Consequently the economy is also
a measure of how compact is the numerical representation of a given radix.
In [5], the authors also demonstrate that the integer 3, being the closest
integer to e, is almost always the most economical integer radix or base. For
this reason, in this paper, we have chosen to use the numeric base 3 and
consequently quaternary codes to represent SCOOTER labels.

4 Compact Adaptive Growth Mechanism

In this section, we present our novel compact adaptive growth mechanism and
related node label insertion algorithms which ensure a highly constrained label
growth rate irrespective of the quantity of arbitrary and repeated node label
insertions and deletions. We will begin with a simple example to provide an
overview of the conceptual approach followed by a more detailed analysis of the
underlying properties.

Consider an XML tree consisting of a root node R and two child nodes with
selflabels ’2’ and ’3’. We insert a sequence of 100 nodes to the right of the
rightmost child node. Table 1 in Figure 2(a) illustrates the first 18 insertions.
The first two (31 − 1) node labels generated consist of a prefix string ’3’ and a
postfix string that mirrors the labels normally generated for a maxLabelSize of
1 digit (i.e.: ’2’ and ’3’). For the next 8 (32 − 1) insertions, from the third to
the tenth insertion inclusive, the newly generated labels consist of a prefix string
’33’ and a postfix string that mirrors the labels generated for a maxLabelSize of
2 digits (e.g.: ’12’, ’13’, ’2’ and so on). For the next 26 (33 − 1) insertions, from
the 11th to the 36th insertion inclusive, labels consist of a prefix string ’3333’
and a postfix string that mirrors the labels generated for a maxLabelSize of 3



Insert 
after 
rightmost 
node 

SCOOTER
Label 

  2 
  3 
1  32 
2  33 
3  3312 
4  3313 
5  332 
6  3322 
7  3323 
8  333 
9  3332 
10  3333 
11  3333112 
12  3333113 
13  333312 
14  3333122 
15  3333123 
16  333313 
17  3333132 
18  3333133 

 

 

(a) Table 1.

SCOOTER – Node Insertion Adaptive Growth Rate – Detailed Analysis 
 

Range 
Start  

Range 
End 

Node Start  Node End Prefix 
Length 

Postfix 
Length 

Maximum
SCOOTER 
SelfLabel 
Length 

SCOOTER 
SelfLabel 
Total bits 

30  31 – 1  1  2 1  1  2  4 
31  32 – 1  3  10 2  2  4  8 
32  33 – 1  11  36 4  3  7  14 
33  34 – 1  37  116 7  4  11  22 
34  35 – 1  117  358 11  5  16  32 
35  36 – 1  359  1,086 16  6  22  44 
36  37 – 1  1,087  3,272 22  7  29  58 
37  38 – 1  3,273  9,832 29  8  37  74 
38  39 – 1  9,833  29,514 37  9  46  92 
39  310 – 1  29,515  88,562 46  10  56  112 
310  311 – 1  88,563  265,708 56  11  67  134 
311  312 – 1  265,709  797,148 67  12  79  158 
312  313 – 1  797,149  2,391,470 79  13  92  184 
313  314 – 1  2,391,471  7,174,438 92  14  106  212 
314  315 – 1  7,174,439  21,523,344 106  15  121  242 
315  316 – 1  21,523,345  64,570,064 121  16  137  274 
316  317 – 1  64,570,065  193,710,226 137  17  154  308 
317  318 – 1  193,710,227  581,130,714 154  18  172  344 
318  319 – 1  581,130,715  1,743,392,180 172  19  191  382 
319  320 – 1  1,743,392,181  5,230,176,580 191  20  211  422 

 
 
(b) Table 2. Label Insertion - Compact Adaptive Growth Rate

Fig. 2

digits (e.g.: ’112’, ’113’, ’12’ and so on). This process is repeated as many times
as required.

We now provide an analysis of the underlying properties. Conceptually, we
consider a label as comprising of two components: a prefix and a postfix. We
define the smallest permissible prefix length to be 1 symbol. When the prefix
has length 1, we define the maximum postfix length permissible to be 1 also
(please refer to Table 2 in Figure 2(b)). The maximum label length will always
equal the sum of the prefix length and the maximum postfix length.

– When inserting a new rightmost node label, we extend the length of the
prefix if and only if the current rightmost label consists of all ’3’ symbols
and the length of the current rightmost node label equals the sum of the
current prefix length and maximum postfix length. For example, given the
current rightmost node label ’33’ with a prefix length of 1 and a maximum
postfix length of 1; in order to insert a new node after node ’33’, we must
extend the prefix and postfix lengths.

– The rule governing the adaptive growth rate of the prefix and postfix lengths
is simple: the new prefix length is assigned the value of the previous max-
imum label length; the new maximum postfix length is assigned the value
of the previous maximum postfix length plus 1. This rule is codified in lines
6–13 in algorithm 3.



Algorithm 3: Insert New Node After Rightmost Node.
input : left self label Nleft, Nleft is not empty.
output: New self label Nnew such that Nleft ≺ Nnew

1 if first symbol in Nleft is ’1’ then
2 Nnew ←− ’2’
3 else if first symbol in Nleft is ’2’ then
4 Nnew ←− ’3’
5 else if first symbol in Nleft is ’3’ then
6 numConsecThrees ←− the number of consecutive ’3’ symbols at start of Nleft

7 prefixLength ←− postfixLength ←− 1
8 labelLength ←− prefixLength + postfixLength

/* Compute the prefixLength and postfixLength based on numConsecThrees. */
9 while labelLength <= numConsecThrees do

10 prefixLength ←− prefixLength + postfixLength
11 postfixLength ←− postfixLength + 1
12 labelLength ←− prefixLength + postfixLength

13 end
14 postfix ←− substring(Nleft, 1 + prefixLength, length(Nleft))
15 if postfix is not empty then

/* An arbitrary number of nodes may have been deleted, thus the label may be
longer than the postfixLength. If it is longer, trim it. */

16 postfix ←− substring(postfix, 1, postfixLength)
17 if last symbol in postfix is ’1’ then
18 postfix ←− postfix with last symbol changed to ’2’
19 else
20 postfix ←− Increment (postfix, postfixLength)
21 end

22 else if postfix is empty then
23 while i=1; i < postfixLength; i++ do
24 postfix ←− postfix ⊕ 1
25 end
26 postfix ←− postfix ⊕ 2

27 end
28 prefix = null
29 while i=1; i <= prefixLength; i++ do
30 prefix ←− prefix ⊕ 3
31 end
32 Nnew ←− prefix ⊕ postfix

33 end
34 return Nnew

All bit-string dynamic labeling schemes (including QED) have a label growth
rate of one bit per node insertion. Therefore, after one thousand insertions and
one million insertions, the largest selflabel sizes are 1,000 and 1,000,000 bits
respectively. In contrast, after one thousand insertions and one million insertions,
the largest SCOOTER selflabels are 44 bits and 184 bits respectively. Thus,
SCOOTER labels may be several orders of magnitude smaller than the labels
of all existing bit-string labeling schemes when processing frequently skewed
insertions. Furthermore, in contrast to all existing dynamic labeling schemes,
SCOOTER generates compact labels without requiring advance knowledge of
the number of nodes to be inserted. The compact adaptive growth mechanism is
made possible by virtue of the deterministic property of our AssignInitialLabels
algorithm. The compact adaptive growth mechanism may also be applied when
inserting new nodes before the leftmost node, however in this case we count the
number of consecutive ’1’ symbols to determine the length of the prefix.



Algorithm 4: InsertBetweenTwoNodes LessThan.
input : left self label Nleft; right self label Nright; both labels not empty.
output: New self label Nnew such that Nleft ≺ Nnew ≺ Nright.

1 if length(Nleft) < length(Nright) then
2 if Nleft is a prefix of Nright then
3 if symbol at Nright[length(Nleft)+1] is a ’3’ then
4 Nnew ←− Nleft ⊕ 2
5 else if symbol at Nright[length(Nleft)+1] is a ’2’ then
6 Nnew ←− Nleft ⊕ 12
7 else
8 Ntemp ←− Nleft

9 Let P ←− length(Nleft) + 1
10 while symbol at position P in Nright is ’1’ do
11 Ntemp ←− Ntemp ⊕ 1
12 P ←− P + 1

13 end
14 if symbol at Nright[P] is a ’3’ then
15 Nnew ←− Ntemp ⊕ 2
16 else
17 Nnew ←− Ntemp ⊕ 12
18 end

19 end

20 else if Nleft is not a prefix of Nright then
21 Let P ←− first position of difference between Nleft and Nright

22 if P == 1 then
23 Nnew ←− Increment (first symbol in Nleft, 1)
24 else if P > 1 then
25 Ntemp ←− substring(Nleft, 1, P - 1)
26 Nnew ←− Ntemp ⊕ Increment (symbol at position P in Nleft, 1)

27 end

28 end

29 end
30 return Nnew

4.1 Insertion between Two Consecutive Non-Empty Node Labels

The most difficult insertion scenario is between two non-empty consecutive node
labels. Between any two consecutive nodes, there may have been an arbitrary
number of node deletions. The ability to determine whether deletions have oc-
curred must be determined from the information encoded in the label alone. In
addition, there are 4 distinct insertion scenarios permitted when inserting a new
node between two consecutive node labels:

1. The left label is a prefix string of the right label;
2. The left label is shorter than the right label but not a prefix of the right

label;
3. The left label is the same length as the right label; or
4. The left label is longer than the right label

The SCOOTER labeling scheme provides the same highly constrained adaptive
growth rate when processing node label insertions in all four scenarios. In the
remainder of this section, we analyse the four algorithms and highlight some
observations.

In algorithm 4, the InsertBetweenTwoNodes LessThan algorithm processes
the first two insertion scenarios. The new label returned will always be shorter



Algorithm 5: InsertBetweenTwoNodes GreaterThan.
input : left self label Nleft; right self label Nright; both labels not empty.
output: New self label Nnew such that Nleft ≺ Nnew ≺ Nright.

1 if length(Nleft) > length(Nright) then
2 Let P ←− first position of difference between Nleft and Nright

3 if P < length(Nright) then
/* If the position of difference is not the last symbol of Nright */

4 Ntemp ←− substring(Nleft, 1, P)
5 Nnew ←− InsertBetweenTwoNodes LessThan (Ntemp, Nright)

6 else if P == length(Nright) then
7 Ntemp ←− substring(Nleft, 1, P - 1)
8 if (symbol at position P in Nleft is ’1’) and (symbol at position P in Nright is

’3’ ) then
9 Nnew ←− Ntemp ⊕ 2

10 else
11 Affix ←− substring(Nleft, 1, P)
12 Ntemp ←− substring(Nleft, P + 1, length(Nleft))
13 numConsecThrees ←− the number of consecutive ’3’ symbols at start of Ntemp

14 if numConsecThrees == 0 then
15 postfix ←− Increment (first symbol of Ntemp, 1)
16 Nnew ←− Affix ⊕ postfix

17 else if numConsecThrees > 0 then
/* Replace the PLACEHOLDER with lines 7 through 31 inclusive from

Algorithm 3, substituting all references to Nleft with Ntemp. */
18 PLACEHOLDER
19 Nnew ←− Affix ⊕ prefix ⊕ postfix

20 end

21 end

22 end

23 end
24 return Nnew

than both input labels if and only if a shorter deleted node label is available for
reuse. By available, we mean a shorter unique and valid SCOOTER code that
is lexicographically ordered between the left and right node labels. If no shorter
label is available (such as when the left label is a prefix of the right label), the
algorithm will still return the smallest valid label lexicographically ordered be-
tween the two input labels. When the two labels are the same size, if the position
of difference between the two input labels is the last symbol in both labels, then
both input labels must be lexicographical neighbours with no deleted node label
available between them. Consequently a new label is generated by concatenating
a ’2’ symbol to the end of the left input label. Otherwise, the left input label
is trimmed and algorithm InsertBetweenTwoNodes LessThan is invoked which
will reuse a shorter deleted node label lexicographically ordered between the two
input labels. Finally, in algorithm 5, the InsertBetweenTwoNodes GreaterThan
algorithm processes the fourth insertion scenario: the left input label is longer
than the right input label. Algorithm 5 will reclaim and reuse the shortest deleted
node label, if one exists. Otherwise, it will ensure that all newly generated la-
bels will be assigned according to our compact adaptive growth rate insertion
mechanism.



1

10

100

1000

10000

100000

1000000

10000000

10000000

St
or
ag
e 
Co

st
s 
(b
its
)

10^2 nodes 10^3 nodes 10^4 nodes 10^5 nodes 10^6 nodes 10^7 nodes
SCOOTER 1104 15004 190008 2300010 27000014 310000012
QED 968 13828 180336 2222876 26405704 305651124
Vector 1600 16000 215504 2936880 36441376 444690176
VCDBS 880 12987 163631 2068946 23951445 273222809

10^2 
nodes

10^3 
nodes

10^4 
nodes

10^5 
nodes

10^6 
nodes

SCOOTER 1104 15004 190008 2300010 27000014

QED 968 13828 180336 2222876 26405704

Vector 1600 16000 215504 2936880 36441376

VCDBS 880 12987 163631 2068946 23951445

1

(a) AssignInitialLabels Storage Costs.

1

10

100

1000

10000

100000

1000000

Ex
ec
ut
io
n 
Ti
m
e 
(m

s)

10^3 nodes 10^4 nodes 10^5 nodes 10^6 nodes 10^7 nodes
SCOOTER 2 21 235 2530 26677
QED 12 132 1372 14440 141589
Vector 4 38 375 3760 38060
VCDBS 6 63 653 6635 69033

10^3 
nodes

10^4 
nodes

10^5 
nodes

10^6 
nodes

10^7 
nodes

SCOOTER 2 21 235 2530 26677

QED 12 132 1372 14440 141589

Vector 4 38 375 3760 38060

VCDBS 6 63 653 6635 69033

(b) AssignInitialLabels Execution Time.

Fig. 3

5 Experiments

In this section, we evaluate and compare our SCOOTER labeling scheme with
three other dynamic labeling schemes, namely QED [9], Vector [19] and V-CDBS
[10]. The three labeling schemes were chosen because they each offer those prop-
erties we have encapsulated in SCOOTER - scalability, compactness and the
ability to process frequently skewed insertions in an efficient manner. QED is
the only dynamic labeling scheme that offers a compact labeling encoding at
document initialisation, while overcoming the overflow problem and completely
avoiding node relabeling. The SCOOTER labeling scheme inherits these proper-
ties by virtue of the quaternary encoding. The Vector labeling scheme is the only
dynamic labeling scheme that has as one of its design goals, the ability to process
frequently skewed insertions efficiently. SCOOTER has also been designed with
this specific property in mind. Lastly, V-CDBS is the most compact dynamic
labeling scheme presented to-date, as illustrated in [10]. Although V-CDBS is
subject to the overflow problem and thus, cannot avoid relabeling nodes, we
want to compare SCOOTER against the most compact dynamic encoding avail-
able. All the schemes were implemented in Python and all experiments were
carried out on a 2.66Ghz Intel(R) Core(TM)2 Duo CPU and 4GB of RAM. The
experiments were performed 10 times and the results averaged.

In Figure 3(a), we illustrate the total label storage cost of 102 through 106

initially assigned node labels. As expected V-CDBS is the most compact, QED
in second place and SCOOTER has marginally larger storage costs than QED.
However, SCOOTER has the most efficient processing time, illustrated in Fig-
ure 3(b), when generating initially assigned labels, due to the efficient Increment
algorithm. Although SCOOTER theoretical scales efficiently under frequently
skewed insertions - a result that was validated by experimental analysis - it was
necessary to evaluate SCOOTER under multiple frequently skewed insertions
and in this process, revealed some interesting results. Figure 4(a) illustrates
large skewed node label insertions performed at a randomly chosen position and
repeated a small number of times. Figure 4(b) illustrates small skewed node



1000
10000
100000

1000000
10000000
10000000

1E+09

Co
st
s 
(b
its
)

100 
insertions 
x 10 times

200 
insertions 
x 20 times

500 
insertions 
x 50 times

1000 
insertions 
x 100 
times

SCOOTER 49669 242226 2736355 16072693

QED 94358 876376 22766866 217649216

Vector 57240

VCDBS 86235 806358 17496678 232421978

St
or
ag
e 
C

(a) Large and Infrequent Skewed Random
Insertions.

100000

1000000

10000000

10000000

1E+09

Co
st
s (
bi
ts
)

10 
insertions x 
100 times

20 
insertions x 
200 times

50 
insertions x 
500 times

100 
insertions x 
1000 times

SCOOTER 35171 141173 1505118 9037869

QED 33288 152080 2670636 25325716

Vector 45139 172464

VCDBS 27102 137924 2510338 24100698

10000

St
or
ag
e 
C

(b) Small and Frequent Skewed Random
Insertions.

Fig. 4

label insertions performed at a randomly chosen position and repeated many
times. SCOOTER initially performs best in the former case, because our adap-
tive growth mechanism is designed to give greater savings as the quantity of
insertions increase. As the quantity or frequency of insertions scale, SCOOTER
offers significant storages benefits in all cases. The vector labeling scheme is ab-
sent from some of the results because the label sizes grew beyond the storage
capacity permitted by UTF-8 encoding.

6 Conclusions

Updates for XML databases and caches provide ongoing problems for both aca-
demic and industrial researchers. One of the primary issues is the labeling scheme
that provides uniqueness and retrievability of nodes. In this, there are two major
issues for researchers: the length of the label as it may negatively impact perfor-
mance; and an efficient insertion mechanism to manage updates. In this paper,
we introduced the SCOOTER labeling scheme and algorithms for assigning node
labels and inserting new labels. We developed new algorithms for assigning la-
bels and a novel highly compact adaptive insertion mechanism that compare
favourably to all existing approaches. Our evaluations confirmed these findings
through a series of experiments that examined both a very large number of label
assignments and similarly large insertion operations.

Although SCOOTER offers compact labels at document initialisation, we
are investigating the possibility of an improved AssignInitialLabels algorithm
that generates deterministic labels as compact as the labels initially assigned by
V-CDBS. Secondly, SCOOTER generates and maintains compact labels under
frequently skewed insertions, such as appending a large number of node labels
before or after any arbitrary node. However, when a large number of node labels
are inserted at a fixed point, the label size grows rapidly. We are investigating a
modification to our compact adaptive growth mechanism, such that label sizes
will always have a highly constrained growth rate under any insertion scenario.



Lastly, we are adapting SCOOTER to work in binary (and not use the quater-
nary encoding) and we are investigating a new binary encoding to overcome the
overflow problem that the quaternary encoding set out to address.

References

1. Amagasa, T., Yoshikawa, M., Uemura, S.: QRS: A Robust Numbering Scheme for
XML Documents. In: ICDE. pp. 705–707 (2003)

2. Cohen, E., Kaplan, H., Milo, T.: Labeling Dynamic XML trees. In: PODS. pp.
271–281. ACM, New York, NY, USA (2002)

3. Duong, M., Zhang, Y.: LSDX: A New Labelling Scheme for Dynamically Updating
XML Data. In: ADC. pp. 185–193 (2005)

4. Härder, T., Haustein, M.P., Mathis, C., Wagner, M.: Node Labeling Schemes for
Dynamic XML Documents Reconsidered. Data Knowl. Eng. 60(1), 126–149 (2007)

5. Hayes, B.: Third Base. American Scientist 89(6), 490–494 (2001)
6. Kay, M.: Ten Reasons Why Saxon XQuery is Fast. IEEE Data Eng. Bull. 31(4),

65–74 (2008)
7. Kobayashi, K., Liang, W., Kobayashi, D., Watanabe, A., Yokota, H.: VLEI code:

An Efficient Labeling Method for Handling XML Documents in an RDB. In: ICDE.
pp. 386–387 (2005)

8. Li, C., Ling, T.W.: An Improved Prefix Labeling Scheme: A Binary String Ap-
proach for Dynamic Ordered XML. In: DASFAA. pp. 125–137 (2005)

9. Li, C., Ling, T.W.: QED: A Novel Quaternary Encoding to Completely Avoid
Re-labeling in XML Updates. In: CIKM. pp. 501–508 (2005)

10. Li, C., Ling, T.W., Hu, M.: Efficient Updates in Dynamic XML Data: from Binary
String to Quaternary String. VLDB Journal 17(3), 573–601 (2008)

11. Li, Q., Moon, B.: Indexing and Querying XML Data for Regular Path Expressions.
In: VLDB. pp. 361–370 (2001)

12. O’Connor, M.F., Roantree, M.: Desirable Properties for XML Update Mechanisms.
In: EDBT/ICDT Workshops (2010)

13. O’Connor, M.F., Roantree, M.: EBSL: Supporting Deleted Node Label Reuse in
XML. In: XSym. pp. 73–87 (2010)

14. O’Neil, P.E., O’Neil, E.J., Pal, S., Cseri, I., Schaller, G., Westbury, N.: ORDPATHs:
Insert-Friendly XML Node Labels. In: SIGMOD Conference. pp. 903–908 (2004)

15. Sans, V., Laurent, D.: Prefix based Numbering Schemes for XML: Techniques,
Applications and Performances. PVLDB 1(2), 1564–1573 (2008)

16. Su-Cheng, H., Chien-Sing, L.: Node Labeling Schemes in XML Query Optimiza-
tion: A Survey and Trends. IETE Technical Review 26, 88–100 (2009)

17. Tatarinov, I., Viglas, S., Beyer, K.S., Shanmugasundaram, J., Shekita, E.J., Zhang,
C.: Storing and Querying Ordered XML using a Relational Database System. In:
SIGMOD Conference. pp. 204–215 (2002)

18. Wu, X., Lee, M.L., Hsu, W.: A Prime Number Labeling Scheme for Dynamic
Ordered XML Trees. In: ICDE. pp. 66–78 (2004)

19. Xu, L., Bao, Z., Ling, T.W.: A Dynamic Labeling Scheme Using Vectors. In: DEXA.
pp. 130–140 (2007)

20. Xu, L., Ling, T.W., Wu, H., Bao, Z.: DDE: From Dewey to a Fully Dynamic XML
Labeling Scheme. In: SIGMOD Conference. pp. 719–730 (2009)

21. Yergeau, F.: UTF-8, A Transformation Format of ISO 10646, Request for Com-
ments (RFC) 3629 edn. (November 2003)


