
TRECVid 2010 Experiments at Dublin City

University

Colum Foley1, Jinlin Guo1, Dave Scott1, Paul Ferguson2, Peter Wilkins1,
Kealan Mc Cusker2, Emma Sesmero Diaz2, Cathal Gurrin1, Alan F. Smeaton1,2

Xavier Giro-i-Nieto3, Ferran Marques3, Kevin McGuinness2, Noel E. O’Connor2
1School of Computing and 2CLARITY: Centre for Sensor Web Technologies

Dublin City University, Glasnevin, Dublin 9, Ireland
3Technical University of Catalonia (UPC) C. Jordi Girona, 31. 08034 Barcelona

colum.foley@computing.dcu.ie

Abstract

This year the DCU-CLARITY-iAD team participated in the both the instance search and
interactive known-item search tasks of TRECVid 2010. For our instance search submission, we used
classifiers to search for candidate objects in each keyframe. This was achieved by a coarse-to-fine
search based on a hierarchical representation of the regions in the keyframes. Our results proved
inconclusive, but we believe the method warrants further investigation. The 2010 interactive search
task at TRECVid represents a number of firsts for the community and for our team it represents
the first time that many of our team has participated in TRECVid. Our approach this year was
to develop a simple and intuitive system which we felt could be used by video information seeking
specialists and complete novices alike. To this end we have developed our 2010 TRECVid KIS
system on an Apple iPad, the iPad is a new tablet computer developed by Apple, it represents a
lean-back, relaxed and easy to use computer, likewise our search engine was designed to be easy
to use by all users. Our underlying search engine allows for the three commonly used video search
methods: text search, concept search and image search. For our experiments we compared the
performance of our system when used by standard users from our research group versus novices
with no technical expertise. Our results show that the two groups gave identical performance in
terms of mean elapsed time.

1 Introduction

This year the team at Dublin City University from CLARITY: Centre for Sensor Web Technolo-
gies, and iAD: Information Access Disruptions participated in the instance search and interactive
known-item search task (DCU-CLARITY-iAD).

The CDVP has participated in TRECVid for a number of years [12, 7, 3]. However, for most
of the core team working on the interactive known-item search task, this year represented their
first participation in TRECVid and we developed most of the components of the system from the
ground-up. As such our approach this year was to develop simple, robust technologies for each of
the major components of the search engine with a view to developing these further in the coming
years.

Through our experiments we were interested in developing a system that could be used by
users with no experience in using a sophisticated content-based video retrieval system. These
users typify the majority of users that search through video collections such as YouTube daily, and
represent the biggest audience for any new search technologies. In our research group we are also
interested in exploring multi-modal access to video archives, and previously we have built video
search engines that could be accessed through mobile phones and tabletop devices.

To this end we have developed a simple-to-use search engine that runs on the Apple iPad. The
iPad is a new tablet computer developed by Apple and aimed at users of all ages and technical
prowess. Our system attempts to support the main components of a state-of-the-art video search
engine in a simple iPad App which users can interact with using their fingers.



Through our TRECVid experiments we were interested in exploring how novice users compare
to expert users when using our TRECVid system: how they interact with the system, the types
of search strategies they employ and how they perform in the search task.

For our interactive search experiments we submitted two official runs: one run that used users
from our own team research group in CLARITY and iAD Dublin, (I A YES DCU-CLARITY-
iAD run1 1) and another run that used business management students from the BI School of
Management in Oslo, Norway (I A YES DCU-CLARITY-iAD novice1 1), these students represent
our novice users, none had used an iPad before and have no experience using a content-based video
search engine such as those used in TRECVid.

The results from our official experiments place our runs at 6th and 7th overall, which puts us
mid-table. Our results show that the performance of novices versus experts is identical in terms
of mean elapsed time.

Our instance search submission (‘UpcSvmBor”) was based upon decomposing each keyframe
into a set of hierarchical regions represented as a binary partition tree, then matching these re-
gions against the query topics using visual codebooks. There were, unfortunately, errors in the
implementation that affected our results.

In this paper we describe in detail our work in TRECVid 2010, in Section 2 we describe our
experiments in the instance search task and following that in Section 3 we describe our experiment
in interactive known-item search.

2 Instance Search

The submitted run was the result of applying an object detection algorithm on the keyframes
suggested in the test set and ranking the shots according to the highest obtained among their
keyframes. This report describes the techniques involved in the process. Please note, however, the
authors believe that the software implementation contained bugs at submission time, and as such
the obtained results may not be an accurate reflection of the image analysis techniques, but as a
consequence of errors in the source code.

The image representation considered in this experiment is based on a hierarchy of regions
represented by a Binary Partition Tree (BPT). Every keyframe involved in the retrieval process
was preprocessed with a segmentation algorithm that, in the first stage, creates an initial partition
of the images and, in the second stage, iteratively merges the two most similar neighbouring
regions. As a result, a hierarchical structure is obtained, where the root of the tree represents the
complete keyframe and the leaves of the tree represent the regions in the initial partition. In our
experiments we manually set the number of segments in the initial partition to n = 200, producing
a final BPT containing n2 − 1 = 399 nodes.

Once a BPT for each keyframe had been generated, the next step was to extract a set of visual
descriptors for every region. The features we used for these visual descriptors were the region
area, the aspect ratio of their oriented bounding box, the mean and variance of their dominant
colours, and the texture edge histogram. The latter of the two features followed the implementation
guidelines defined in the MPEG-7 standard.

The region-based descriptors were not directly used to generate the feature vectors used for
retrieval, but to create a visual codebook specific for every query topic. The visual words repre-
sented in the codebooks were designed to match the different subparts over which every object
class can be decomposed in a BPT. This intermediate level was motivated by the fact that in many
cases the perceptual criteria used to merge the nodes in the BPT does not match the semantic
criteria that would drive to the representation of every object by a single BPT node.

The visual codebooks were built after mapping the query masks provided by NIST in a set of
BPT nodes. This mapping provides an estimation of the amount of sub-parts over which every
object will be decomposed. The final amount was chosen as the maximum amount of sub-parts
found among the five query instances. This figure was taken as the size of the codebook, and its
words were defined by running the k-means algorithm among all annotated sub-parts and using
specific distances for every region-based descriptor considered. These distances were averaged after
a normalisation stage that tries to map every descriptor distance to a similar perceptual response.

Once a visual codebook had been built for every query topic, two feature vectors were used to
represent each node in the BPT. The first of these feature vectors consisted of the similarity scores
(1− distance) between the BPT node and every visual word in the codebook. The second feature
vector represented the maximum similarity score of all nodes in the subtree. In this way, every
BPT node was represented by a feature vector representing the associated region, and a second



feature vector describing the regions in the subtree below.
Our search algorithm was based on training a collection of four region-based SVM classifiers for

every query topic. Two of the classifiers referred to the complete object and the two others to the
parts that composed the objects. In every case, the first of the classifiers evaluated whether the
subtree defined by a region contained an instance of the modelled object or part, while the second
classifier directly assesses if the considered region represents itself an instance of the modelled
object or part.

The trained classifiers were evaluated on every BPT in the test set. The object detection
started by assessing the object inclusion classifier on the BPT root, so that all negative detections
discarded any further analysis on the test keyframe. Those BPTs whose root was classified as
container of an object were top-down explored by applying the second type of classifiers: the
part inclusion classifier. Whenever this classifier discarded a subtree, no further exploration was
performed through it. Every BPT node considered as a potential candidate to include an object
part was also analysed with the part detection classifier. When the BPT was completely processed,
all detected parts were combined to define new regions not contained in the input BPT, this
way, avoiding object-split problems generated during BPT creation. The part combinations were
evaluated with the last type of classifier: the object detection classifier. The combination with the
best similarity score was assigned to the keyframe for retrieval.

The results that we obtained, and further development that was completed after submission,
suggest that the implemented software contained bugs that preclude drawing conclusions about
the virtues and drawbacks of the described technique.

The Image Processing Group of the Technical University of Catalonia has developed most tools
used in the experiments. These engines were implemented in Java, C and C++ and, whenever
possible, adopted MPEG-7/XML file format for data exchange. The SVM classifier implementation
used libsvm by Chih-Chung Chang and Chih-Jen Lin from the National Taiwan University [1].

3 Interactive Known-Item Search

This year’s interactive search task at TREVid represents a significant departure from the interac-
tive search of previous years: the task this year is known-item search, where a user is attempting to
locate a single item from the collection; the unit of retrieval is the whole video, rather than a video
shot; the video data this year is general internet video, rather than broadcast content; the time per
topic is down to 5 minutes. With these changes, the interactive search task more closely models
a typical internet user’s interactions with an online video search engine like YouTube. With this
in mind, our approach in DCU this year was to attempt to build a content-based video retrieval
system which could be used by everyday internet users such as the millions using YouTube daily.

Figure 1 provides an overview of our video search system. The user interface for the system
was built as an application running on the iPad. The back-end search engine runs as a web service
on a separate laptop and the front and back ends communicate through the HTTP Post protocol.

The search engine supports the three commonly used search methods for video retrieval:

• Text search

• Concept search

• Similarity search

We will now provide a detailed description of each of the main components of our search system.

3.1 Search Middleware

We developed a .NET web service as the backbone of our middleware layer, this communicates
with our iPad user interface through the usage of HTTP POST calls. Each call invokes one of the
two types of search functions within the web service:

• Primary. Achieved by using a combination of text and concept search methods. Users can
input text queries directly, search based solely on concepts or use a combination approach.
The return type of this type of searching is an XML document pertaining to the top 100
ranked videos.

• Secondary. An image similarity method used to invoke searching. After completing a
primary search users can invoke the image similarity method to query-by-example, providing
a keyframe as input. Results are also in the form of an XML document though this relates
to the top 50 similar images.



Figure 1: System Overview

The message passing layer is illustrated in Figure 2, the top portion of the search middle-
ware shows the methods used during the primary and secondary searches, the web service is also
responsible for the additional features:

• Return Shot Timing. This method is used to inform the interface of start and end time
of a particular shot when its keyframe image is selected on the iPad device.

• Query Oracle: This method is used to check if a selected video is the relevant known-item
for a search topic by querying the TRECVid oracle database.

The final responsibility of the web service is to log each interaction with the system based on
which methods are invoked by the user, these logs form an invaluable source of information which
will be used to analyse how users use the search engine and to aid in the implementation of future
systems.

3.2 Text Search Engine

The text search engine we have chosen to use is the Terrier project developed by the University of
Glasgow [11], we were able to invoke the interactive search component from our web service and
receive ranked lists based on initial search criteria on three created indexes:

• Source Data. Contains metadata information pertaining to the entire video attained from
the crawling of the internet archive and provided to us by NIST. The information stored in
this index are generally considered author comments and give a good overview of each video
in the collection.

• Automatic Speech Recognition. This index was created by utilising the spoken word in
the video and was provided by LIMSI and Vecsys Research [5]. This information was indexed
on the shot level by aligning the spoken word to its relevant shot bounds.

• Phonetic Encoding. Phonetic Encoding is concerned with representing the pronunciation
of a word with a code made up of letters and numbers [6, 2]. Similar words will have the
same code and can therefore be matched by the search engine. Having performed an analysis
of several techniques we found that the NYSIIS system [10] was the best choice for our needs.



Figure 2: Overview of the message passing layer of .net web service

The output of this process is a set of similar sounding words to the words in the metadata
and ASR which is then indexed by the search engine.

Separate indexes were employed to allow us to train different weighting schemes and make a
decision as to which would give the greatest recall and precision, we achieved this by utilising
the 122 training topics. We used TF × IDF ranking scheme on the indexed documents, this was
chosen due to higher performance on the training set when compared to that of BM25 and PL2.

3.3 Semantic Concept Detection

In TRECVid 2010, we adopt two methods for semantic concept detection in videos utilising the
SVM classification framework. One is based on a combination of three MPEG-7 descriptors and
SURF. The other is based on the very popular Bag of Visual Word (BoW) model.

3.3.1 Method Based on MPEG-7 Descriptors and SURF

The approach flowchart is indicated in Figure 3. We build concept detectors by combing MPEG-7
colour and texture descriptors and SURF.
In most of existing literature on concept detection SVM has proven to be a solid choice, and indeed,
it has become the default choice in most concept detection schemes. In this work the classification
framework is implemented using LIBSVM (Version 2.91) [1]. The RBF kernel is chosen for its
good classification results compared to polynomial and linear kernels.

Visual Feature Extraction: In this year, we only consider visual features, three MPEG-7 [9]
colour and texture descriptors and SURF are extracted.

• Colour Layout: a compact descriptor which captures the spatial layout of the representative
colours on a grid superimposed on an image.

• Scalable Colour: derived from a color histogram defined in the HSV color space which uses
a Haar transform coefficient encoding, allowing scalable representation.

• Edge Histogram: represents the spatial distribution of edges in an image, edges being
categorised into either vertical, horizontal, 45

◦
diagonal, 135

◦
diagonal and non-directional.

• SURF: Since an object can appear in each part of a keyframe, the feature about SURF we
adopt is a histogram by grouping the interest points into regions. Given a keyframe and a
set of keypoints, a 3× 3 grid is defined. A 9-bin histogram which is a count of the keypoints
that occur in each square is created (See Figure 4).



Figure 3: Flowchart for Concept detection based on MPEG-7 descriptors and SURF

Figure 4: SURF feature Extraction

3.3.2 Method Based on BoW Model

For the past few years, systems based on the BoW model produced the best results on several large
scale content based image and video retrieval benchmarks. In this year, we also try to employ the
baseline of BoW model for concept detection. The flowchart for this method is shown in Figure 5.

SIFT Feature Extraction: the SIFT feature proposed by Lowe [8] has proved to be very
successful in applications such as object recognition and image retrieval. To compute SIFT features
we use the version described by Lowe [8].
Construction of Visual Vocabulary: In the construction of the visual vocabulary we employ
the Hierarchal K-means algorithm to construct the visual vocabulary based on its advantages of
simple and fast implementation. Five million SIFT descriptors were extracted from keyframes from
the training data and these were clustered hierarchically using K-means to generate a vocabulary
tree with 1296 leaf nodes (i.e 1296 visual words).
Visual Vocabulary Transformation: Soft assignment is utilised in the step of visual vocabulary
transformation. For each keypoint in an image, instead of mapping it only to its nearest visual
word, in soft assignment we select the top-100 nearest visual words. Suppose we have a visual
vocabulary of K visual words, we use a K-dimensional vector [ω1, ω2, ...ωK ] with each component
representing the weight ωt of a visual word t in an image such that

ωt =
∑100

i=1

∑Mi

j=1
1

2i−1 sim (j, t)

where Mi represents the number of keypoints whose ith nearest neighbour is the visual word t.
The measure sim(j, t) represents the Euclidean similarity between keypoint j and the visual word
t. In this equation, the contribution of a keypoint is its similarity to word k weighted by 1

2i−1 ,
representing that the visual word is its ith nearest neighbour.
In the final system we developed 33 concepts based on types of concepts used in the training top-
ics. They are: Animal, beach, beard, Black and White video, boat/ship, building,bus, car charts,
cityscape, computers, computer screen, crowd, daytime outdoor,face, flower, ground vehicle, in-
door, indoor sports, landscape,map,meeting, military, nighttime, office, outdoor, person, road, sky,



Figure 5: Flowchart for Concept detection based on BoW model

snow, stadium, tree, and vegetarian

3.4 Content-based Image Search

Content-based image search allows users to select a shot on the interface and to find shots visually-
similar from the collection. For each keyframe in the collection we extracted three low level
MPEG-7 features namely: Colour Layout, Edge Histogram and Scalable colour as described in
Section 3.3.1.

For each feature we calculated the similarity between each pair of images in the collection. In
order to reduce the space requirement for storing the resulting indexes we only stored the top
1000 similar keyframes for each keyframe. Having calculated the set of similar keyframes for each
keyframe in the collection we then combine the scores for each feature into an overall similarity
score for a pair of keyframes. For data fusion we we first normalise using MinMax normalisation,
formally formally given by equation 1 before using CombSUM [4] fox to combine the normalised
resultlists. The final similarity measures are then stored in the database for retrieval at query-time.

Normscore(x) =
Scorex − Scoremin

Scoremax − Scoremin
(1)

3.5 Fusion Framework

Figure 6: Overview of fusion (a) Text Fusion (b) Text and Concept Fusion

Our system has multiple data sources which require alignment, weighting and re-ranking, this



is achieved by the utilisation of the following methods:

• Text Only Fusion. As seen previously, outputs from our text search engine are three ranked
lists, one from each of our created indexes. We employ data fusion techniques to combine
the data. First the ASR and Phonetic indexes are aggregated to video level, this aids the
merger with the metadata which is already at video level, the unit of retrieval. Next we
use MinMax normalisation before applying the weighting scheme on the resultant lists and
evoking CombSUM [4] to combine the weighted normalised resultlists. This is illustrated in
Figure 6, image A.

• Text and Concept Fusion. Our concepts differ from their usage in previous TRECVid
systems and as such do not act as filters but instead are employed in a boosting technique
when used in tandem with our text search. As illustrated in Figure 6 image B the text
fusion described previously is used an input to our text and concept fusion. The resultlist
is averaged based on the number of indexes, in this case three, and sent to merge with the
normalised concept lists.

3.6 iPad User Interface

From a user interface (UI) perspective our goal was to develop a system that was easy and intuitive
to use for both novice and expert users, while still allowing the user to utilise the underlying search
technologies. This trade-off between the power of functionality and simplicity of use is a well know
design issue. By using an iPad device with a touch screen input and by developing a new interface
specifically designed for that device we aimed to strike a balance between functionality and ease
of use.

Figure 7: Search Panel

Upon starting the application the user is required to enter a unique user id, which allows the
system to control the tasks assigned to the user and the system can then track the progress of the
user. Once the user has chosen to start a new topic they are presented with a search panel (as
shown in Figure 7). Here they can input a text query as well as select from a list of 33 predefined
semantic concepts. The video results are returned in ranked order to the user: for each video the
title and description as well as a set of keyframes for each shot is shown (the user can scroll to the
right to see more for each video) as shown in Figure 8. The top ranked shot for each video appears
first in the list, with a maximum of 10 keyframes being displayed (selected temporally throughout
the video).

By tapping on a keyframe the video will playback from that point and the user can also use
the video seek bar to quickly scan through the video (shown in Figure 9). Once the user finds
what they believe to be the correct video they can use the “check” button which queries the Oracle



Figure 8: Search Results

webservice and provides feedback to the user to let them know if they have found the correct video.
At any point during the search the user can tap on the search icon, which displays the search panel
and allows them to refine their search. In addition to this, by double tapping on any keyframe the
user can invoke a content-based image similarity search that returns video keyframes that appear
visually similar to the one they have selected, as shown in Figure 10. After the allocated 5 minutes
have elapsed or after the user successfully finds the relevant video the system returns to a topic
start page.

Figure 9: Video Playback

3.7 Experiments

Through our experiments in TRECVid this year we wanted to compare the performance of novice
users against our in-house expert users. In particular we wanted to see if our attempts to develop a



Figure 10: Similarity Search

content-based video search system which could be used by novices and experts alike were successful.
Also, we wanted to compare the performance of our iPad search system against others from the
community.

We recruited 6 users from our research group to complete the task in-house. All of these users
had experience working with content-based video search systems and many had participated as
users in previous TRECVid experiments completed in DCU, as such this group represents our
expert users. We also recruited 12 users to participate through our iAD partners in the BI School
of Management in Oslo, Norway. None of these users had experience using a sophisticated content-
based video search system and none had hands-on experience with using an iPad before. These
users represent our novice users.

Each participant completed 12 search topics and one training topic during the experiments.
We used the latin-squares experimental design in order to assign users to topics and the ordering
of presenting topics to each user was randomised in order to reduce the effects of learning bias.

The interactive known-item search task at TRECVid 2010 had 6 teams submit a total of 14
runs. Each run belonged to a certain category depending on the training type and whether the
metadata XML was used or not. For both of our runs we used the metadata XML (condition:
“YES”) and used only the IACC training data (training type: “A”). Figure 11 presents the results
for all submissions to the interactive known-item search, our two runs are highlighted. Both runs
represent results from multiple users where we have picked the best time for each topic in order to
populate our submission. Overall our runs came 6th and 7th, however when we compare ourselves
against groups with the same condition and training type both runs move one place up to 5th and
6th.

In the expert run there were a total of 9 topics (out of a total of 22 ) for which none of our
participants found the correct video, interestingly the novice users only missed 8. The fact that
users could not find the correct video for these topics is not surprising, having observed the user
experiments it was clear that users found the topics to be either very easy or very difficult.

Figure 12 presents the results for user satisfaction as compared across the groups. Again our
results here are about mid-table. Perhaps more interestingly for us, as part of our post-experiment
questionnaire we asked our users to score the system in terms of ease-of-use on a scale of 1-7, for
this our novice users gave the system a median score of 6, with experts giving a median score of
6.5.



Figure 11: Results from the 2010 TRECVid known-item search, the results of our two runs are high-
lighted

Figure 12: User-Satisfaction results from the 2010 TRECVid known-item search, the results of our
two runs are highlighted

4 Conclusions

In this paper we presented our experiments in Instance Search and Interactive search at this year’s
TRECVid workshop.

Our instance search system was based on using support vector machines trained on each query
topic to classify objects and parts of objects in each keyframe. To achieve this, keyframes were
first decomposed into a hierarchical region representation using binary partition tree segmentation.
Using this representation permitted extracting descriptors of the objects and regions in an image
on a coarse-to-fine scale. Classifiers were then applied to these representations in a top-down
approach, recursively checking if the query object was likely to be found somewhere below the
current node in the tree. The tree nodes found in this recursive search were then combined and
matched against the query topic using a second object matching classifier. Although there were
problems with our implementation, we believe that the general approach has promise, and plan to
continue the work in the future.

For interactive known-item search our approach this year was to develop a system which appeals
to the vast majority of users which search for video daily on YouTube. To this end we attempted
to develop a video search engine which supports content-based searching and is accessible to users
of all abilities. The results from our official experiments place our runs at 6th and 7th overall and
5th and 6th when we compare against systems using the same conditions. Our results show that
the performance of novices versus experts is identical in terms of mean elapsed time. Through



our post-experiment analysis we are investigating why this is the case. One explanation would
be that our attempts to build a search engine that could be used by novices and experts alike
was successful. Another explanation could lie in the topics used in the search task. Through
observations of the experiments we found that both sets of users found the majority of topics to
be either very easy or very difficult. The lack of topics of medium difficulty may have constrained
our ability to distinguish the differences in performance of different users. Nonetheless through
our experimental logs and questionnaires we can still gain valuable insights into the techniques
used by both sets of users and their experiences in using our system.

Acknowledgements

We would like to thank Espen Andersen and his students in BI, Oslo for participating in our
experiments. The research was funded by by Science Foundation Ireland under grant 07/CE/I1147
and through iAD - information Access Disruptions, a centre for research-based innovation with
CRI number: 174867, funded in part by the Norwegian Research Council.

References

[1] C. Chang, C.C. And Lin. Vector machines. LIBSVM: a Library for Sup-
port:http://www.csie.ntu.edu.tw/˜cjlin/libsvm/, 2001.

[2] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detection: A survey.
IEEE Transactions on Knowledge and Data Engineering, 19:1–16, 2007.

[3] C. Foley, C. Gurrin, G. Jones, H. Lee, S. M. Givney, N. O’Connor, S. Sav, A. F. Smeaton,
and P. Wilkins. Trecvid 2005 experiments at dublin city university. In TRECVid 2005 - Text
REtrieval Conference TRECVID Workshop, MD, USA, 2005. National Institute of Standards
and Technology.

[4] E. A. Fox and J. A. Shaw. Combination of Multiple Searches. In Text {REtrieval} Conference,
pages 243–249, 1994.

[5] J.-L. Gauvain, L. Lamel, and G. Adda. The limsi broadcast news transcription system. Speech
Commun., 37(1-2):89–108, 2002.

[6] A. M. Khan, K. S. Mckinley, R. Bentzur, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. Eliot, B. Moss, A. Phansalkar, D. Stefanovi?, T. Vandrunen,
D. V. Dincklage, P. Christen, and P. Christen. A comparison of personal name matching:
Techniques and practical issues. In in Workshop on Mining Complex Data (MCD06), held at
IEEE ICDM06, Hong Kong, pages 290–294, 2006.

[7] M. Koskela, P. Wilkins, T. Adamek, A. F. Smeaton, and N. O’Connor. Trecvid 2006 exper-
iments at dublin city university. In TRECVid 2006 - Text REtrieval Conference TRECVid
Workshop, 2006.

[8] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int’l J. Computer
Vision, 60:91–110, 2004.

[9] MPEG. MPEG-7 Overview(Version 10). http://mpeg.chiariglione.org/standards/mpeg-
7/mpeg-7.htm.

[10] NYSIIS. Comprehensive perl archive network. [online].
http://search.cpan.org/?krburton/String-Nysiis-1.00/Nysiis.pm.

[11] I. Ounis, G. Amati, V. Plachouras, B. He, C. Macdonald, and C. Lioma. Terrier: A High
Performance and Scalable Information Retrieval Platform. In Proceedings of ACM SIGIR’06
Workshop on Open Source Information Retrieval (OSIR 2006), 2006.

[12] P. Wilkins, T. Adamek, G. Jones, N. O’Connor, and A. F. Smeaton. Trecvid 2007 experiments
at dublin city university. In TRECVid 2007 - Text REtrieval Conference TRECVid Workshop,
2007.


