

 Open Source Software Development

Process for the Development of Open

Source E-Learning Systems

Aarthy Krishnamurthy

M.Sc.

Thesis Submitted for the degree of

Master of Engineering

School of Electronic Engineering,

Dublin City University,

Dublin 9, Ireland.

Supervisors: Dr. Jennifer McManis and Dr. Rory V. O’Connor

August 2012

Declaration

I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award of Master of Engineering is entirely my

own work, that I have exercised reasonable care to ensure that the work is original,

and does not to the best of my knowledge breach any law of copyright, and has not

been taken from the work of others save and to the extent that such work has been

cited and acknowledged within the text of my work..

Signed: __________________________ (Candidate) ID No: 59117061

 (Aarthy Krishnamurthy)

Date: ___________________________________

1

Abstract

Over the last decade, numerous educational institutions and corporate world have

employed various kinds of e-learning software solutions. One of the major

components of end-to-end e-learning solution is the learning management system

(LMS). These LMS are either developed as open source software (OSS) or close

source software (CSS) product. In this regard, CSS for e-learning systems has a

major drawback of being expensive and this hinders its widespread use. On the other

hand, OSS is virtually free and not restricted by the licensing costs. The benefits of

OSS can be completely realized only if there is an effective contribution from OSS

community towards its development.

It is clear from the literature that the OSS development community does not follow

an explicitly defined and documented software development process. This in turn

results in lack of detailed information in the literature about the problems arising due

to the absence of a defined process. Nevertheless, some of the major issues with

regard to OSS development for LMS that have been identified include software

design issues, week user Interface, lack of complete and accessible documentation,

lack of co-ordination between unknown developers, etc.

This research develops a generalized OSSD process that could be used for the

development of an open source (OS) e-learning system. To begin, in order to

understand the current development practises of the existing OS e-learning systems,

a detailed analysis was carried out for three different and popular OS e-learning

systems (Moodle, ILIAS and Dokeos). The result of this analysis was represented as

an Activity Flow Diagram which enabled precise identification of the implicit

software development stages. In the next stage, in order to identify the output

produced for each and every stage of development, a DEMO methodology was

applied and DEMO models were built for three e-learning systems (Moodle, ILIAS

and Dokeos). This is a particularly novel contribution that helps enable the

development of the generalized OSSD process.

In order to select the different stages of development for the proposed process, the

output resulting from each stage of the DEMO model was compared with the outputs

prescribed by the ISO/IEC 12207:2008 standard. Further, in order to validate the

2

proposed process, an expert review method was employed by preparing a web-based

questionnaire and circulating it along with the proposed process to three different

and geographically separated OS experts. The proposed process was subsequently

refined based on the feedback received from these experts. It is anticipated that the

proposed OSSD process had the potential to streamline the future development of

OS e-learning systems.

3

Acknowledgements

The period of my research had been a great learning experience, both on and off the

campus. There have been days when it had been very enjoyable while there had also

been very challenging times. However, I almost always found support from many

different people around. It is very difficult to acknowledge everybody. But still, I

would like to thank atleast few of them.

To begin with, I would like to thank my two supervisors, Dr. Jennifer McManis and

Dr. Rory V. O’Connor for not only motivating and inspiring me regularly, but also

providing all possible technical support during the entire duration of my research

project. My research area was highly inter-disciplinary and required strong technical

inputs from both e-learning and software engineering domain. In this regard, I have

been extremely fortunate to have two supervisors from two different schools (School

of Electronic Engineering and School of Computing respectively). They not only

guided me in my research, but also ensured that I meet the technical requirements of

both domains. Secondly, I would like to thank all open-source practitioners and

experts who provided their valuable inputs to understand the basics of the Open

Source Software Development (OSSD) practices. Further, I am grateful to the

different technical experts who helped me in validating the proposed OSSD process

by providing their valuable and timely feedback. At this stage, I would also like to

thank IRCSET (Irish Research Council for Science Engineering and Technology) for

supporting this inter-disciplinary and highly challenging research work.

Importantly, I would like to thank the DCU staff members, particularly, Dr. Gabriel

Muntean, Dr. Olga Ormond, Ms. Breda McManus, Mr. Johny Hobson for helping

me at different stages. A special word to all my colleagues in the University,

especially, Aakash, Andrea, Bogdan, Irina, Lejla, Paul, Quang, Ramona, Sabine (and

all others whom I have skipped here) for their regular and continuous interaction;

and for pulling me to participate in different social activities which in turn helped me

in broadening up my mind. Further, I would like to thank my family back home,

especially my parents, my sister and my in-laws for their constant motivation and

support. Lastly yet most importantly, I would like to thank my husband Hrishikesh

whose love, kindness, patience, and understanding during the last few years

transcend mere words.

4

Table of Contents

ABSTRACT .. 1

ACKNOWLEDGEMENTS ... 3

TABLE OF CONTENTS ... 4

LIST OF FIGURES ... 7

LIST OF TABLES ... 8

ACRONYMS .. 9

1. INTRODUCTION ... 10

1.1 RESEARCH BACKGROUND ... 10

1.2 RESEARCH PROBLEM AND RESEARCH QUESTIONS 12

1.3 RESEARCH CONTEXT ... 13

1.4 RESEARCH CONTRIBUTION ... 14

1.5 STRUCTURE OF THE THESIS .. 14

2. LITERATURE REVIEW ... 16

2.1 INTRODUCTION .. 16

2.2 E-LEARNING SYSTEMS... 17

2.2.1 LEARNING MANAGEMENT SYSTEM (LMS) ... 18

2.3 SOFTWARE DEVELOPMENT PROCESS ... 19

2.3.1 OPEN SOURCE AND CLOSED SOURCE SOFTWARE DEVELOPMENT 21

2.4 COMPARISON BETWEEN OSSD AND CSSD PROCESSES 22

2.5 SUMMARY .. 24

3. RESEARCH APPROACH ... 25

3.1 INTRODUCTION .. 25

3.2 FOUNDATION STAGE .. 26

3.3 EXECUTION STAGE ... 27

3.3.1 DEVELOPMENT OF OSSD PROCESS .. 27

3.3.2 VALIDATION OF THE OSSD PROCESS ... 30

3.4 DEMO METHODOLOGY ... 31

3.5 SUMMARY .. 33

4. ANALYSIS OF OS E-LEARNING SYSTEM DEVELOPMENT

PRACTICES ... 34

4.1 INTRODUCTION AND BACKGROUND INFORMATION 34

5

4.2 MOODLE DEVELOPMENT ACTIVITIES ... 35

4.3 ILIAS DEVELOPMENT ACTIVITIES .. 37

4.4 DOKEOS DEVELOPMENT ACTIVITIES .. 39

4.5 COMPARISON OF OS E-LEARNING SYSTEM DEVELOPMENT

PRACTICES ... 40

4.5 SUMMARY .. 44

5. DEMO METHODOLOGY .. 46

5.1 INTRODUCTION .. 46

5.2 DEMO MODELS ... 46

5.3 DEMO MODELS FOR MOODLE .. 47

5.4 DEMO MODELS FOR ILIAS .. 51

5.6 DEMO MODELS FOR DOKEOS ... 55

5.7 DISCUSSION ... 59

5.8 SUMMARY .. 60

6. DEVELOPMENT OF OSSD PROCESS .. 61

6.1 INTRODUCTION .. 61

6.2 COMPARATIVE RESULTS OF VARIOUS DEVELOPMENT STAGES

OF THREE OS E-LEARNING SYSTEMS ... 61

6.3 ISO/IEC 12207:2008 .. 62

6.4 PROPOSED GENERALISED OSSD PROCESS ... 67

6.4.1 OVERVIEW OF DEVELOPMENT STAGES ... 67

6.4.2 STAGE 1 – FEATURE SELECTION STAGE.. 70

6.4.3 STAGE 2 – REQUIREMENT SPECIFICATION STAGE ... 71

6.4.4 STAGE 3 – DESIGN SPECIFICATION STAGE .. 72

6.4.5 STAGE 4 – IMPLEMENTATION STAGE .. 73

6.4.6 STAGE 5 – SOFTWARE TESTING STAGE ... 74

6.4.7 STAGE 6 – INTEGRATION AND RELEASE STAGE .. 75

6.4.8 SUMMARY OF OSSD PROCESS - STAGES AND ACTIVITIES 76

7. VALIDATION OF PROPOSED OSSD PROCESS ... 78

7.1 INTRODUCTION .. 78

7.2 EXPERT REVIEW APPROACH .. 79

7.3 VALIDATION QUESTIONNAIRE ... 81

7.4 RESULT INTERPRETATION AND PROCESS AMENDMENT 83

7.5 SUMMARY .. 90

6

8. CONCLUSION AND DISCUSSION ... 91

8.1 INTRODUCTION .. 91

8.2 RESEARCH INSIGHTS - REVISITING RESEARCH QUESTIONS 91

8.3 IMPLICATION .. 93

8.4 RESEARCH OUTCOMES ... 94

8.5 LIMITATIONS .. 95

8.6 FUTURE WORK ... 96

REFERENCES ... 99

APPENDIX A ... I

 A.1 BENEFITS .. I

A.1.1 BENEFIT TO THE LEARNERS .. I

A.1.2 BENEFITS TO THE INSTRUCTOR/EDUCATOR ... II

A.1.3 BENEFITS TO THE INSTITUTION/ORGANIZATION .. II

A.2 DRAWBACKS ... III

A.2.1 DRAWBACKS TO THE LEARNERS ... III

A.2.2 DRAWBACKS TO THE ACQUIRING INSTITUTIONS ... III

APPENDIX B .. V

B.1 OS EXPERT-VALIDATION QUESTIONNAIRE .. V

B.1.1 PURPOSE OF THE QUESTIONNAIRE FOR VALIDATION..V

B.1.2 STRUCTURE OF THE QUESTIONNAIRE ...V

B.1.3 QUESTIONNAIRE .. VI

APPENDIX C .. XVIII

C.1 OS EXPERT-VALIDATION RESULTS .. XVIII

C.1.1 EXPERT – 1 ... XVIII

C.1.2 EXPERT – 2 ... XXVI

C.1.3 EXPERT – 3 .. XXXVII

7

List of Figures
FIG. 2.1 RELATIONSHIP BETWEEN E-LEARNING SYSTEM AND SOFTWARE 16

FIG. 2.2 DIFFERENT COMPONENTS OF END-TO-END INTEGRATED E/M-LEARNING 18

FIG. 3.1 TWO STAGE RESEARCH APPROACH 25

FIG. 3.2 METHODOLOGY FOR DEVELOPING OSSD PROCESS 29

FIG. 4.1 ACTIVITY FLOW REPRESENTATION FOR MOODLE DEVELOPMENT 36

FIG. 4.2 ACTIVITY FLOW REPRESENTATION FOR ILIAS DEVELOPMENT 38

FIG. 4.3 ACTIVITY FLOW REPRESENTATION FOR DOKEOS DEVELOPMENT 40

FIG. 5.1 ATD REPRESENTATION FOR MOODLE DEVELOPMENT 48

FIG. 5.2 PSD FOR MOODLE FEATURE SELECTION AND REQUIREMENT SPECIFICATION 49

FIG. 5.3 PSD FOR MOODLE IMPLEMENTATION 50

FIG. 5.4 PSD FOR MOODLE TESTING AND RELEASE 50

FIG. 5.5 ATD REPRESENTATION FOR ILIAS DEVELOPMENT 52

FIG. 5.6 PSD FOR ILIAS FEATURE SELECTION 53

FIG. 5.7 PSD FOR DEVELOPING REQUIREMENT SPECIFICATION 53

FIG. 5.8 PSD FOR ILIAS FEATURE IMPLEMENTATION 54

FIG. 5.9 PSD FOR ILIAS TESTING AND RELEASE 55

FIG. 5.10 ATD REPRESENTATION FOR DOKEOS DEVELOPMENT 56

FIG. 5.11 PSD FOR DOKEOS FEATURE SELECTION 57

FIG. 5.12 PSD FOR DOKEOS FEATURE DEVELOPMENT 57

FIG. 5.13 PSD FOR DOKEOS TESTING AND BUG FIX 58

FIG. 5.14 PSD FOR DOKEOS FEATURE RELEASE 58

FIG. 6.1 SOFTWARE LIFECYCLE GROUPS IN ISO/IEC 12207 63

FIG. 6.2 DIFFERENT STAGES IN THE PROPOSED GENERALISED OSSD PROCESS 69

FIG. 7.1 VALIDATION PROCEDURE 80

FIG. 7.2 DEVELOPMENT AND USAGE OF THE QUESTIONNAIRE 82

8

List of Tables
TABLE 2.1 SOFTWARE DEVELOPMENT ACTIVITIES .. 20

TABLE 2.2 COMPARISON BETWEEN OSSD AND CSSD PROCESSES.............................. 24

TABLE 4.1 COMPARISON BETWEEN THREE OS E-LEARNING SYSTEM DEVELOPMENT ... 41

TABLE5.1 P-FACTS PRODUCED DURING MOODLE DEVELOPMENT 51

TABLE 5.2 SUMMARY OF ILIAS P-FACTS.. 55

TABLE 5.3 SUMMARY OF DOKEOS P-FACTS .. 58

TABLE 5.4 INPUTS FOR THE PROPOSED OSSD PROCESS ... 59

TABLE 6.1 DEVELOPMENTAL STAGES CARRIED OUT BY OS E-LEARNING SYSTEMS 61

TABLE 6.2 ISO/IEC 12207 PROCESS GROUPS ... 64

TABLE 6.3 COMPARISON WITH ISO/IEC 12207 PROCESS GROUPS 65

TABLE 6.4 PERCENTAGE OF PROCESS COVERAGE PER STAGE 66

TABLE 6.5 CATEGORY BASED ON PERCENTAGE OF PROCESS COVERAGE ACHIEVED 68

TABLE 6.6 IMPORTANT ACTIVITIES SUGGESTED FOR ALL STAGES OF OSSD PROCESS . 77

TABLE 7.1 INFORMATION ON THE EXPERT’S PROFESSIONAL EXPERIENCE 83

TABLE 7.2 AMENDMENTS TO PROCESS ACTIVITIES .. 89

9

Acronyms

ATD – Actor Transaction Diagram

C-act – Coordination act

C-fact – Coordination fact

CS - Closed Source

CSS - Closed Source Software

CSSD - Closed Source Software Development

DEMO - Design and Engineering Methodology for Organization

GPL – General Public License

ICT - Information and Communication Technology

ILIAS – Integriertes Lern-, Informations- und Arbeitskooperations-System or

Integrated Learning Information and co-operAtion System

ISO/IEC – International Standard Organisation / International Electrotechnical

Commission

LMS - Learning Management System

Moodle – Modular Object-Oriented Dynamic Learning Environment

OS - Open Source

OSS - Open Source Software

OSSD - Open Source Software Development

P-act – Production act

P-fact – Production fact

PSD – Process Structure Diagram

RQ - Research Question

UP - Unified Process

10

1. Introduction

1.1 Research Background

Over the last decade, the rapid advancements in Internet and multimedia

technologies have resulted in e-learning techniques moving from a marginal

education mechanism to being an accepted form of education - across all

primary education, secondary education, university education, etc (Allen and

Seaman, 2008; Allen and Seaman, 2010; Allen and Seaman, 2011). This gives

an opportunity for the learners and the teachers to opt for technology enhanced

education which could be delivered virtually over a long distance, without

having any time barrier. In addition, e-learning provides an excellent

opportunity for both the learners and the teachers to quickly learn and teach

new and relevant topics. This has resulted in a continuous increase in the

demand for high-quality e-learning systems (Selim, 2007; Bernard, et al.,

2007).

In order to meet the demand, many e-learning systems have been developed

over the last decade or so. While some of them are developed as commercial

closed-source software (CSS) product(s), others are developed as an open-

source software (OSS) product(s). Both types of systems co-exist in the current

market though they follow different development and business principles.

Notably, most of the OSS e-learning products are developed in an ad-hoc

manner and the software products are distributed free of charge by networks of

large volunteering group of computer programmers. On the other hand, the

CSS products are developed for-profit and for commercial purposes by trained

software professionals.

Over the years, OSS products have gained considerable popularity and

recognition as compared to CSS products (Paulson, et al., 2004; Nakakoji, et

al.,2002). However, there are still numerous and significant software

development issues especially in the context OS e-learning system

development. In an OSS development environment, the individual/group of

people initiates a project to meet their immediate requirement (Krogh and

11

Hippel, 2006). More often than not, OSS community does not follow a well-

defined/ well-documented software process (Scacchi, 2003; Glosiene, and

Manzuch, 2004; Jensen, et al., 2006), which raises development problem

within the OSS community during product development. Due to the absence of

an explicitly defined and documented software development process for OSS

development, the drawbacks which arise due to the absence of a process are

also not documented elaborately in the literature. However, few specific

problems were identified and debated in detail within the OS e-learning

development community (Boufford, 2004). The major problems that were

identified include software design issues, lack of complete and accessible

documentation (technical as well as user documentation), not addressing all

user requirements, etc. Since, the OS systems and its features are mainly

developed to address the developer’s immediate requirement; it mainly results

in less attention being paid to design issues. The poor design and requirement

analysis in-turn leads to factors like, misunderstood features, poor user

interface, etc. Also, due to the absence of a defined process, the co-ordination

between unknown developers might be difficult and the new comers to OSS

development might find it complicated to understand the development process,

etc. All these issues significantly affects the OS e-learning system

development and thereby the product quality itself. This in turn could make the

users to prefer commercially developed proprietary software products which

are much easier to work with.

Importantly, an OSS development (OSSD) process has several advantages

(Jensen and Scacchi, 2008). Having a defined process prepares the community

in developing the OS e-learning system for likely eventualities that might arise

during development due to unforeseen circumstances. Further, it would assist a

new comer to the OS community to clearly understand the development

practices/activities and also the required deliverables from each of the tasks.

This would indirectly help the OS community to gain an increased amount of

valuable contributions from the new comers. However, the above benefits of

OSS can be realized only if there is an effective contribution from the OSS

community towards the OSS product development. Further, a defined OSSD

process will facilitate the developer to understand the gaps in development

12

practices followed, thereby enabling the OSS community to efficiently

contribute towards the product development. Once an OSSD process is

defined, it will be much easier for the core team to manage the development.

Also, it will enable the core team to predict and validate the development of

software and easily productizing the end product (Scacchi, 2001). Hence, the

fundamental premise for this research is to develop a generalised open source

software development process for the OSS community.

1.2 Research Problem and Research Questions

Having identified the downsides of not using a defined process; and at the

same time, the benefits of following a defined development process, the

research problem and the research questions are presented in this section. The

main goal of this research is:

“To develop a generalised open source software development

process (OSSD process) that can be used for implementation of

an OS e/m-learning system in an OSS environment.”

However, the fundamental problem that needs to be addressed in order to

achieve the above mentioned research goal is:

“What approach should be followed in order to design a

generalised OSSD Process?”

The research problem is further divided into three fundamental research

questions:

RQ1: What are the current development practices followed by

the OS e-learning product development communities?

RQ2: How should the current development practices be

assessed in order to design a generalised OSSD

Process?

RQ3: How is the OSSD process designed based on previous

findings?

13

RQ4: What approach should be followed to assess the

proposed process and also to evaluate results of the

appraisal?

Answering these questions will provide a platform for improving the OS e-

learning system and its development; thereby addresses the shortcoming of not

having a defined OSSD process.

 1.3 Research Context

The research work carried out in this thesis is based on three popular OS e-

learning systems, i.e., Moodle, ILIAS and Dokeos. All three e-learning

systems are developed as free OSS products – specially an OS learning

management system (LMS). The three systems are selected based on their high

popularity and also the OSS community’s commitment in developing the e-

learning system.

Moodle: Moodle is an abbreviation of Modular Object-Oriented Dynamic

Learning Environment. It is one of the early and successful OS e-learning

platforms that had been developed following strong pedagogical principles. Its

focus is to help the educators with creating the course content and delivering it

to learners keeping the interaction and collaboration as one of the major

criteria. Notably, Moodle has 58,207,428 users as of 2
nd

 June 2012 (Moodle,

2012).

ILIAS: ILIAS stands for Integriertes Lern-, Informations- und

Arbeitskooperations-System (in German) which was released as an OSS in

2002 (ILIAS, 2012). It was the first open source learning management system

to follow SCROM 1.2 compliance completely. Also, unlike other OS e-

learning system, ILIAS does not restrict learning to be confined to courses but

offer a flexible environment for learning and working online with integrated

tools. Interestingly, more than 2000 new users log onto ILIAS every month on

an average that on an average every month with constant increase in number of

users each year (Balogh and Budai, 2009).

14

Dokeos: Dokeos provides both commercial and OSS for e-learning purposes.

Dokeos strictly follows SCORM principles and has one of the largest user-

base. Although Dokeos have both the commercial and OS version of the

product, even the free/OS version provides all the features that are need for

blended learning management – from authoring to reporting. Dokeos has

42,45,929 users using the system for e-learning purposes (Dokeos, 2012).

1.4 Research Contribution

The main contribution of this research work is to propose and develop a

generalised OSSD process, which could be used during the development of an

OS e-learning system. The main benefit of the proposed OSSD process is that

it would streamline the development of next generation OS e-learning systems.

To begin with, the current problems in OSSD, especially in OS e-learning

system development were identified. Secondly, in order to understand the

current development practises of the existing OS e-learning systems, a detailed

analysis was carried out. The results of the analysis were then interpreted using

Activity flow diagrams for three different and popular OS e-learning systems

(Moodle, ILIAS and Dokeos). Thirdly, in order to identify the output produced

for each and every stages of development, DEMO methodology was applied

and DEMO models were built for all three e-learning systems.

Subsequently, the generalised OSSD process and its various development

stages were then proposed based on the conjunctive results of Activity flow

diagrams, DEMO models and ISO/IEC 12207:2008 standard. This is a

particularly novel and significant contribution of this research work.

1.5 Structure of the Thesis

The thesis is organised into eight chapters. Chapter 1 introduces the research

background and the motivation of the work before dwelling onto the research

problem and the research questions. Notably, the research contribution and

the structure of the thesis are also presented in chapter 1. In chapter 2, the

research background is elaborated and the main topics, i.e., e-learning systems

15

and software development process are discussed in detail along with related

works. Chapter 3 provides an overview of the research approach followed in

this work along with corresponding detailed information of the same. Chapter

4 describes the review process carried out for the three OS e-learning systems,

i.e., Moodle, ILIAS and Dokeos and the results of this study is modelled and

presented as activity flow diagrams. The comparisons of the results are

detailed along with the advantages and drawback of such modelling technique

and ways to overcome the same. Chapter 5 describes the modelling of current

practices using DEMO methodology and how it overcomes the drawbacks of

activity flow diagram. Further, the DEMO models are evaluated with the help

of software implementation processes as described in ISO/IEC 12207:2008.

Chapter 6 then elucidates the process of designing the OSSD process in detail.

Chapter 7 details the procedure followed for validating the proposed OSSD

process along with the validation results. Finally, chapter 8 concludes the

thesis with information on major research finding, the limitations and future

work.

16

2. Literature Review

2.1 Introduction

This chapter begins with identifying two important topics related to this

research work; e-learning systems and software development process. The two

topics are then described in detail followed by the challenges in developing e-

learning systems. Further, various types of e-learning system and their

development principles are discussed.

E-learning systems and software development processes are independent topics

on their own. At the same time, software development process plays an

important role in the development of e-learning systems. This is being depicted

in Fig 2.1 and is highlighted in green colour. The entire research work focuses

on this green shaded area.

E-Learning

Systems

Software

Development

Process

Fig. 2.1 Relationship between e-learning system and software

development process

Software development process employed during the implementation influences

the quality of the final product (Zahran, 1994; Clarke, P. and O'Connor, R.

2010). This is very crucial for an e-learning system as it directly affects the

perceived satisfaction and usefulness of an e-learning system for both the

educators and learners (Liaw, 2008). Therefore, it is important to make use of a

suitable and appropriate development process during OS e-learning software

implementation.

17

2.2 E-Learning Systems

E-learning can be defined as “technology-based learning in which learning

materials are delivered electronically to remote learners via a computer

network” (Stockley, 2003; Oguzor, 2011; Zhang, et al., 2004; Yong, 2008).

Further, e-learning systems are those software systems that supports e-learning

such as, computer based learning, web based training/learning, virtual

classroom, etc (Tavangarian et al., 2004). These software systems can

potentially remove barriers of space, time and location and importantly,

provide knowledge in different media formats, anytime and anywhere (Shea,

2002; Milojevic, 2011). The usages of such systems also enables self-paced

learning, provide consistent learning materials to its learners, allow the

educators to easily and quickly update the learning materials and is usually less

expensive to provide education as a whole. Also, it could potentially lead to an

increased retention and a stronger grasp on the subject; while at the same time

could be easily managed for large groups of students (Cantoni, et al., 2004).

Further, the advancement of computer and networking technologies provide

highly diverse means to support learning in a more personalized, flexible,

portable, and on-demand manner.

An effective e-learning system can be viewed as an integrated, end-to-end

learning system comprising of three major components and is depicted in Fig.

2.2.

Component 1: The first component is the transmission network and seamless

communication mechanism between the different electronic and handheld

mobile devices and falls under the realm of wireless networks and Internet-

supported solutions.

Component 2: The second component is the learning content. This includes

course materials for different courses and modules, content authoring, etc.

However, these aspects come under the category of content developers.

Component 3: The third component is the e/m-learning application software

which is the learning management system (LMS). This is the bridge that links

the first and second component in the end-to-end learning system. In other

words, an effective LMS connects the different components of the integrated

18

learning system efficiently. Therefore, it is not only vital to develop this

component efficiently but also imperative to have a structure/system that

would facilitate seamless and flexible learning to the users, taking into account

the diverse set of devices with different features and capabilities.

Fig. 2.2 Different components of end-to-end integrated e/m-learning
system framework

These LMS’s are not only an integral part of an e-learning system but also

form a basis/platform to impart technology-based-education to the learners.

There are several LMS’s available and the most popular ones includes Moodle,

Blackboard, Dokeos, Sakai, Blue apple, ILIAS, Adobe acrobat e-learning suite

and several others. The LMS is briefly explained in sub-section 2.2.1. Notably,

since LMS is an important component for an effective end-to-end e-learning

system, these two terms would be used interchangeably and whenever e-

learning is used, it in fact refers an LMS.

2.2.1 Learning Management System (LMS)

LMS is a software application for the administration, documentation, planning,

delivering, tracking and managing the learning events within an organization,

which include online/web based learning, virtual classroom, instructor-led

courses, etc (Ellis, 2009). A robust LMS should be able to do the following six

tasks efficiently and these include; centralize and automate administration, use

self-service and self-guided services, assemble and deliver learning content

rapidly, consolidate training initiatives on a scalable web-based platform,

19

support portability and standards, deliver online training and webinars and

personalize content and enable knowledge reuse (Ellis, 2009).

It should be noted that, the selection of parameters (like mode of operation and

usage, intended audience, etc.) and the system design will also depend on

program goals, the infrastructure/facilities and importantly, the

culture/background/diversity of the learners (Kruse, 2009). Based on these

parameters, an LMS is selected for an institute/ organisation. LMS’s are

available either as a commercial CSS product or as an OSS product. Some of

the popular CS e-learning systems are Adobe e-learning suite, Blackboard,

Blue apple, etc. Likewise, popular examples of OS e-learning systems are

Moodle, Dokeos, .LRN, Sakai, ILIAS, etc. However, not all LMS’s have been

successful. This is because, not all LMS are able to meet/satisfy the different

challenges – educational challenges, technological challenges, sociological &

cultural challenges, and psychological challenges (Cemal Nat, et al., 2008). In

this research however, only the technical challenges of LMS is focussed.

Importantly, in order to make an e-learning system successful it should satisfy

the need of different types of users involved. An in-depth understanding of the

benefits and drawbacks of LMS/e-learning systems from the perspective of

each player - a learner, instructor and the institution is essential. These are

summarised in Appendix A for further reading. The next section describes the

software development process, its roles, goals and finally the broad

classification of software development processes.

2.3 Software Development Process

A software development process is defined as “a coherent set of policies,

organizational structures, technologies, procedures, artefacts and activities that

are needed to conceive, develop, deploy and maintain software” (MingshuLi et

al., 2006; Fuggetta, 2000; Humphrey, 1988; Sommerville, 2004). Further, a

software development process describes the internal relationships among

different phases of development by expressing their order and frequency, as

well as by defining the deliverables of the project. It also specifies criteria for

20

moving from one phase to another phase (Curtis, et al., 1992). In addition, a

software process also describes a series of actions or steps to be taken in order

to achieve a particular goal (Fuggetta, 2000).

Any software development process includes various roles, goals and activities.

In fact, there are four key roles and seven goals for any given software

development process (Kruchten, 2000).

 The first and foremost role of a software process is to provide guidance

in ordering and following various software development activities, as

mentioned in Table 2.1.

 The second role is to clarify when and what are the different artefacts

that are to be produced during and at the end of each activity.

 The third important role is to direct the tasks of the development team.

 Lastly, the software process should monitor and assess the project

progress and henceforth its success.

These four roles are applied during the software development in order to

achieve product goals like effectiveness, maintainability, predictability,

repeatability, quality, improvement and tracking (Tyrrell, 2000). The process

activities form a major aspect of software development processes. These

activities form the basis to realize the process goals. The broad set of activities

carried out during the development of a software product is represented in

Table 2.1 (Sommerville, 2004).

Development Activities Description

Inception The software product is conceived and defined.

Planning Initial schedule, resource and cost are determined.

Requirement Analysis Defines what the software should do.

Design Specifies the parts and how they fit.

Implementation Software code is written.

Testing Execute and test the application with test input data.

Maintenance Repair defects and add capabilities/ functionalities.

Table 2.1 Software development activities

21

A software process model can be defined as a “simplified description of a

software process that presents one view of a process and may also include

activities that are part of software process and products, along with the

constraints that apply to the process and roles of the people involved”

(Sommerville, 2004). Further, a software development model differs from

software development method; where the primary goal of a software

development method is to “focus on how to navigate through each phase by

determining data, control, or uses hierarchies; partitioning functions;

allocating requirements and how to represent phase products such as structure

charts; stimulus-response threads; state transition diagrams” (Boehm, B.W.

1988). Some of the popularly known and used software development process

models and methods are Waterfall model, Evolutionary development,

Exploratory model, Component based development, Unified software

development and Agile methodology.

Notably, the software development processes can also be broadly classified

into two categories – Closed Source Software Development (CSSD) process

and Open Source Software Development (OSSD). The main difference

between OSSD and CSSD are in their development principles (Devine, 2008;

Raymond, 1998) which are presented in the following section.

2.3.1 Open Source and Closed Source Software Development

The development of software can also be broadly classified into OSSD and

CSSD. CSSD can be defined as the one where, trained software professionals

are employed in developing a software product (termed as CSS products). In

many cases, these software professionals follow a defined and documented

software development process. CSS products are developed for commercial

purposes (for-profit) and only the executables are sold through sales

team/person to the licensed customers. Also, the source code is not released to

public and cannot be modified as most of the products would be protected

under the copyright license or patents (Stephan Donovan, 1994; Tysver, 2008).

Further, CSSD in general has a formalised organisation and structure. Some

well known examples of CSS products are Microsoft Windows, Adobe

Acrobat Suite, Oracle solutions, Blackboard, etc. On the other hand, OSSD is

22

oriented towards the joint development of a community of developers

(Scacchi, 2001; Krogh, 2006). OSS products are developed by volunteers out

of interest and any person could volunteer to play any role in its development,

based on their skills and interest. Usually, the volunteers self assigns tasks that

they would like to perform. Also, OSS is built as an open-source project

initiated by an individual/group of people to meet their immediate requirement

(Krogh, 2006). The people involved in OSS and its development share ideas,

ideologies, technologies, source code and yet work independently in a

geographically distributed environment and are spread across the world

(Scacchi, et al., 2006). They communicate through Internet forums, e-mails,

informal chats or through any other communicative channels (Scacchi, 2007).

Also, majority of the OSS does not have corporate owner or management

staffs to organize, direct, monitor, and improve the software development

practices that are followed for development (Scacchi, et al., 2006). Some well

known examples of OSS products are Linux, Firefox, Moodle, etc. The next

section will specify the major similarities & differences between OSSD and

CSSD.

2.4 Comparison between OSSD and CSSD Processes

There are several aspects in which the OSSD and CSSD process differ. These

differences apply in the case of e-learning systems as well and are listed below

(Open source initiative; Raymond, 1998; Ghosh et al., 2002; Feller and

Fitzgerald, 2002; Fuggetta, 2003; Ye and Kishida, 2003; Paulson, 2004).

Underlying principle: CSSD is purely for commercial purposes and focuses

completely on business perspective and thereby, the financial growth. On the

other hand, OSSD mainly aims at constantly providing software solutions and

improving the software through open contributions from entire community of

developers.

Availability of source code and software license: In any CSS developed using

CSSD processes; only the executables/binaries are made available to the

customers. The number of users is based on the number of licenses purchased

by the customer. On the other hand, the source code of OSS is publicly

23

available. There is no need of any intermediate vendor for downloading the

software. Further, OSS’s are in general published under general public license

(GPL) where anyone can download OSS products, make modifications and

redistribute it under same GPL. Notably, there is no restriction on the number

of user(s) licenses.

Structure of the organization: In case of CSSD, the team and their hierarchy

are completely defined. Tasks are allocated to the team members and plans are

drawn for the development. On the other hand, in case of OSSD, anyone

interested in the proposed idea could join in and contribute based on their

ability and interests. There are no strict hierarchy and the developer’s self-

assign tasks. Usually, the administrative executive has a weak control over the

development. A rough plan would be drawn by the developer as a check point

to check their output and to answer any queries that arises in the community.

People and location: In most of the cases, people working in CSSD know each

other and may or may not be geographically distributed. On the other hand, in

case of OSSD, unknown people work together from different part of the world

on the same module.

Defined process: Many of the CSSD process follow a defined and documented

software development process and most commonly it happens to be the

conventional software development process or a customised form of the same.

However, in an OSS environment, the software development process is not

defined or documented. The OSS community follow their own development

practices (ad-hoc practices) which reflect their expertise on software

development.

Need for software: In CSSD, the products are developed, with main focus on

the customer’s requirement. Therefore, the development is user-oriented and

the developers are paid for their efforts. However, in case of OSSD, most of

the development is initiated due to the developer’s personal requirement/need.

It should be however noted that this difference is slowly fading out, especially

in designing e-learning systems like Moodle, Sakai, ILIAS, etc.

Developer/Tester: In general, most of the popular OSS products are developed

by more than hundreds of developers and testers. However, in CSSD, only

24

major software companies can afford to have a huge number of

developers/testers for a single project.

S.No. Attributes OSSD CSSD
1. Formalised Organisation No Yes

2. Defined structure No Yes

3. Follow a defined and documented development process No Yes

4. Most often the development happens in ad hoc fashion Yes No

5. Source code made available to all its user Yes No

6. Developed for commercial benefits and financial profits No Yes

7. Wider space for testing Yes No

8. Reliable and responsible 24X7 software support No Yes

9. Up to date technical reports/documents No Yes

10. Up to date user documents No Yes

11. Very intuitive and outstanding software design No Yes

12. Append many new feature to cope competition No Yes

13. Burdened with license cost No Yes

Table 2.2 Comparison between OSSD and CSSD processes

The comparison between the OSSD and CSSD are tabulated and shown in

Table 2.2. Also, this table enables pointing out the weaknesses of OSSD

practices which is then subsequently addressed partially in this research work.

2.5 Summary

This chapter provided a brief definition of an e-learning system and discussed

its various components, including a major component of an end-to-end e-

learning system – the Learning Management System (LMS). This was

followed by a definition of software development process, its activities, roles,

goals along with a broad classification of software development processes. The

underlying principles of the two main classifications of software development

processes – OSSD and CSSD were then explained along with a comparison

between the two. Since this research work focuses on OS e-learning system, a

further analysis is subsequently carried out for OS e-learning systems.

25

3. Research Approach

3.1 Introduction
This chapter discusses the approach followed for carrying out this research

work. The research approach is divided into two distinct stages as shown in

Fig.3.1 and involves various tasks at each stage. The first stage is called the

foundation stage (described inside a box with dotted line) while the second

stage is called the execution stage (described within a box with regular lines).

The two stages are described in detail in section 3.2 and section 3.3

respectively. Further, the methodology followed in proposing a generalised

OSSD process – a major contribution of this research work is also described in

section 3.3.

Background study

Formulation of

research question

Analysis of current OS

development

practices

Identify and compare

development patterns

Problem identification

Devise appropriate

research methodology

Development of the

OSSD process

Refined OSSD

Process

Expert

Validation

Foundation Stage

Execution Stage

Fig. 3.1 Two stage research approach

26

3.2 Foundation Stage

The first task in the foundation stage was to carry out an initial background

study of open source software, open source e-learning systems and open source

software development. Based on this study, the research problems were

identified which was followed by various research questions. The research

problem and the precise research questions were described in detail in Chapter

1. Answering the different research questions led to the solution for the

identified research problem(s); which are summarised in Chapter 8.

The first task towards the solution is to understand the current development

practices; followed by the OS e-learning system development community.

Unfortunately very little literature is available with respect to the OS e-learning

system development. Only few of the OSS communities had updated their

development practices in the form of blogs, wiki pages or as guidelines to its

members. Also, this information was distributed randomly across their web-

pages. This made it very difficult to capture all the required information.

Hence, there was a need to do individual analysis on the development of each

of the three OS e-learning systems.

For each of the three OS e-learning systems, an in-depth analysis was done in a

manner that is comparable/ consistent with the case study. This approach was

chosen as it is comparable with case studies and it answers questions like

‘how’ and ‘why’ (similar to case studies). This method is particularly

beneficial for an OSSD environment where there is little/ no control over the

events. The final task of the foundation stage was to evaluate the results

obtained through analysis. The results are represented using the activity flow

diagrams for easier and quicker understanding. Further, these results were

compared and their similarities and differences were identified. This led to the

identification of development patterns followed by these OSS development

communities. A detailed explanation along with its advantages and

disadvantages are described in chapter 4.

27

3.3 Execution Stage

The second stage of this research is called the execution stage. The first task

under execution stage is to device an appropriate research approach to be

followed that would answer the research questions. This research approach was

developed and refined over number of iterations. It can be viewed as two sub

stages towards the solution.

 Development of OSSD Process - This task forms the core of this

research work and is the focus of this chapter. The tasks carried out are

described in detail in section 3.3.1.

 Validation of OSSD Process - The second task is to validate the research

outcomes using appropriate validation method. The validation methods

selected for validating the proposed OSSD process is described in

section 3.3.2.

3.3.1 Development of OSSD Process

In order to develop a generalised OSSD process, the best developmental

practises from different OS e-learning systems needs to be incorporated.

However, in-order to do that, it is essential to understand how it is being

performed currently. As a part of foundation stage, analysis similar to case

study was carried out and the development practices were identified. As a first

step, the development practices are represented using an activity flow diagram.

This representation was used as it would provide a dynamic aspect of an

overall flow of the development practices followed by the OS communities.

This type of representation is preferred for this research over the state

diagrams or event driven process diagrams. This is because, what is required

is not an abstract model or an exhaustive detail about various events carried out

for each of the activities; but an overall flow of activities carried out within the

community for its software development. In this regard, the activity flow

representation of each OS e-learning system indicates different stages of its

software development.

28

However, this representation was not independent of the technique followed

during development and also does not identify the outcomes produced when

these development activities are carried out. Further, the analysis done for

activity flow diagram revealed that there are considerable variations in

activities performed by various OS e-learning systems. Therefore, it is

extremely complex to arrive at a generalized OSSD process for OS e-learning

systems, based on the above analysis alone. Hence, there is a strong need for a

level of abstraction in order to model the OSSD process (Lonchamp, 2005).

There have been couple of works carried out for modelling the OSSD process.

However, each of them has its own limitations. For instance, the model

proposed by Jensen and Scacchi (Jensen and Scacchi, 2008) for discovering

the process followed for OSS development does not provide a complete

clarification for investigating the results obtained. This inhibits its use for

generalising the OSSD process. Likewise, the model developed by Basili and

Lonchamp uses a multi-level approach (3 layer approach - definitional, general

and specific) for modelling the OSSD process (Basili and Lonchamp, 2005).

However, its main drawback is that it does not provide precise notations for

specifying the relationship between the product and the role. In addition, both

the models are dependent on the development activities carried out in

modelling the process. Hence, an alternate approach - DEMO methodology - is

considered in this research work. This model was selected because it could

overcome the drawbacks of the activity flow representation and also, is

independent of how the development activities were carried out. For deeper

understanding, the DEMO methodology is further explained in section 3.4

Results of activity flow diagrams and DEMO models constructed for OS e-

learning system development led to the identification of various implicit

software development stages, activities carried out in each of its development

stages and also the outcome of each such activity along with the actor who was

responsible for producing an outcome. As mentioned before, various e-

learning communities follow different approaches towards software

development thereby differing in execution of various development stages and

activities within each stage. Thereby, all of them produce a mix of various

29

other outcomes. Based on these finding, it is difficult to generalise the OSSD

process for OS e-learning systems.

ILIASMoodle Dokeos

ISO/IEC 12207:2008

OSSD

Process

Activity flow diagram and DEMO model results

Fig. 3.2 Methodology for developing OSSD process

Therefore, there is need to use a well defined standard as a base tool in

selecting different stages of development, ordering them and also to iterate as

required. For this purpose, ISO/IEC 12207:2008 standard (ISO/IEC

12207:2008) was selected and was used as a foundation for proposing an

OSSD process. This standard acts as a guide for both system life cycle

processes and also software specific processes. The standard also lists various

sub-processes along with its lower level processes. For each of these; the

standard defines the purpose, list of outcomes, activities and tasks. This

research work utilises the outcomes listed for software specific process and in

particular the software implementation process as a base tool in selecting

different software development stages. This is done by comparing the

outcomes listed in the standard with the outcomes that are identified for each

OS e-learning system development (activity flow diagrams and DEMO model

results). In other words, these outcomes were selected in conjunction with the

outcome achieved by the OS e-learning systems. The OSSD process is thereby

generalised as shown in Fig. 3.2. These are explained in detail under chapter 5

and chapter 6.

30

3.3.2 Validation of the OSSD Process

Once the OSSD process is generalised, it has to be validated to see if it is

feasible in the real-world OSS environment. This forms the second part of the

execution stage, i.e., validation (Fig. 3.1). The best way to validate is to

develop a feature following the recommendations provided in the proposed

OSSD process and assess the proposed process as a post-mortem.

Unfortunately, this method could not be followed due to time constraint and

other practical problems. Another alternative approach for validation is to

present the proposed OSSD process to the OS developers and ask them to

follow the process recommendations during development. This was not

practical as well, because in this case, we would not have had any control over

the development activities and the way it might be adopted during

development. Also, it would require considerable time in order to carry out a

feasible longitudinal study. At this stage, it should be noted that the best

person(s) to validate the OSSD process will be the OSS developers and/or its

community member as they know exactly how it can be adapted to best suit the

development of OS e-learning system; while also maintaining the integrity of

the proposed OSSD process with OSS development. Therefore, another

approach called ‘expert review’ method was selected for carrying out the

validation process.

In the ‘expert review’ method, the experts (OSS developers or its community

members) were provided with information about the proposed OSSD process

and are asked to review it. Once reviewed, the experts were then provided with

a web-based questionnaire and their feedback on the proposed process was

then collected. Notably, the experts who could perform the validation were

selected based on pre-set criteria’s which are further discussed in chapter 7.

This was considered to be a viable approach to validate the process since it did

not require the experts to spend lot of time, thereby reducing the overall

response time. Also, this approach was simple to implement and could be done

at no monetary cost. An additional advantage of the ‘expert review’ method

was that the analysis of the results was also easier, especially since the

questionnaire had both objective and subjective questions. Moreover, the

31

questionnaire allowed sufficient space for the experts to provide their

feedback/comments at all stages. The feedback obtained from the reviewers

was then used to refine the OSSD process and is shown as iteration in Fig.3.1

under the execution stage.

3.4 DEMO Methodology

DEMO is abbreviated for Design and Engineering Methodology for

Organisations and has its origin from organisational engineering domain. This

methodology is used for developing high-level and abstract models of

construction and operation of organizations. This methodology applies

enterprise ontology theory and ‘Ontology’ can be simply defined as ‘‘an

explicit specification of a conceptualization” (Gruber, 1994). Enterprise

ontology theory is described as the implementation independent essence of an

enterprise (Dietz, 2006) and has a strong theoretical foundation. The strong

theoretical foundation ensures that DEMO models can be claimed to be

coherent, comprehensive, consistent, concise and essential (Albani and Dietz,

2011).

It is essential to understand briefly the enterprise ontology theory and

importantly its terms in order to understand how DEMO methodology and its

models can be used for modelling OS e-learning system development.

Therefore, Enterprise ontology theory and its axioms are first explained along

with the different terms used.

Enterprise Ontology Theory

The enterprise ontology theory consists of four axioms which form the basis

for DEMO methodology and its models. They are Distinction Axiom,

Production Axiom, Transaction Axiom and Composition Axiom. The

distinction axiom differentiates between three human abilities which are

required to fulfil certain actions - datalogical actions, infological actions and

ontological actions (Stamper, 1973). Ontological actions are considered to be

the fundamental human actions in a process flow. Since, the actions on the

infological and datalogical level do not introduce new products/ services/

32

information, if is sufficient to focus on the ontological level actions in-order to

describe its essence using DEMO.

The production axiom states that social individuals/ actors fulfil the goals of an

enterprise by performing ‘acts’. The result of successfully performing an act is

recorded in a ‘fact’. On the ontological level, two kinds of acts occur:

production acts (P-acts) and coordination acts (C-acts). Performing a P-act

correspond to the delivery of products, services and information to the

environment of an organization. By performing a P-act, a new production fact

(P-fact) is brought into existence. In order to complete the performance of a P-

act, social individuals / actors have to communicate, negotiate and commit

themselves. These activities are called coordination acts (C-acts), and they

result in coordination facts (C-facts).

The transaction axiom states that the coordination involved to successfully

complete a P-act can be expressed in a universal pattern, which is called a

‘Transaction’. A transaction consists of three phases: order phase, execution

phase and result phase. In the order phase, the actors negotiate about the P-fact

that is the subject of the transaction. Once an agreement is reached, the P-fact

is produced in the execution phase. In the result phase, the actors can negotiate

and discuss about the result of the transaction. These phases are subdivided

into process steps, which consist of four coordination acts and one production

act. C-act includes request, promise, state and accept. While the production act

includes execute (process step). In DEMO, exactly two actors are associated

with a transaction: an initiator and an executor. The authority over the

execution of a single transaction is assigned to the executor (Huysmans et al.,

2010). This authority can be attributed to individuals or groups of individuals.

Some processes may produce more than one P-fact for the organization. In that

case, a DEMO transaction needs to be created for each P-fact. This requires

coordination between transactions. The composition axiom describes how

these transactions can interact. One aspect of interaction is how transactions

are initiated. Any transaction is either initiated by an external party (e.g., a

request for a bug fix by a user) or a time-based trigger (e.g., the nightly

building of the software), or enclosed in another transaction. In the case of an

33

enclosed transaction, an information dependency usually exists between the

enclosing and the enclosed transaction. The models created using the DEMO

methodology for this research are based on these four axioms.

Further, DEMO methodology focuses on the communication pattern and

various outputs produced during various software developments (Huysmans, et

al., 2010). From the context of this research, DEMO methodology gives a high

level overview of how the OS e-learning software products are developed

without taking into consideration the technology or technique used for the

development. Yet, it identifies precisely who is responsible for producing an

output. Also, the DEMO methodology has been already applied to OS systems

and has been proved to provide a high quality, abstract model (Huysmans, et

al., 2010). Unlike other modelling methods used for modelling OSS

development, DEMO exhibits two specific features within the context of

OSSD process modelling that adds strength to this approach.

 DEMO analyses processes at the ontological level and provides high-

level process descriptions, instead of focusing on the implementation

level.

 DEMO studies the communication pattern between human actors,

instead of the sequences in which activities are performed.

These characteristic of DEMO makes it extremely appropriate for modelling

the development practices of software products and therefore OS e-learning

systems by extension. The DEMO models and its application are explained in

detail in chapter 5.

3.5 Summary

This chapter introduced the two-stage research approach and also explained

each stage in detail. Further, the various tasks performed under each of these

stages were explained that provided a comprehensive overview of this research

work. A detailed and individual explanation of each tasks are provided in the

remainder of this thesis under chapter 4, 5, 6 and 7.

34

4. Analysis of OS E-Learning

System Development

Practices

4.1 Introduction and background information

In this chapter, three OS e-learning systems, i.e., Moodle, Dokeos and ILIAS

are analysed in detail. These three e-learning systems were selected mainly

because of the following two factors:

 Popularity: All three e-learning systems selected are currently used and

are quite popular among the institutions offering e-learning courses.

 Development Activities: The OSS communities constantly perform

various development activities and have significant contributions

towards its developmental.

The development activities of these three OS e-learning systems were

identified using two different approaches. The first approach was to collect

information from their websites, blogs, wiki pages and/or from any social

network/media used by the community to broadcast the information. In

addition to these, information was also collected from bug tracking system (or

any other tracking systems), as some of the OSS communities track each of its

development activities in such systems.

The second approach was applied only when the information collected from

the first approach was either incomplete and/or ambiguous. This was in-fact a

direct method whereby, questions were posted in public OSS community

forums. The rationale was; anyone with the information can directly provide

his/her answer(s) through the same forum or could even send e-mail or private

messages. This helped in identifying many of its current development

activities. However, the disadvantage of this approach was that, many-a-times,

there were no clear consensus from the contribution of the community

member’s. In these scenarios, separate e-mails had to be sent to the core

35

members and other experienced developers within the OSS development

communities. Importantly, no analysis was done until all the information was

gathered. This was strictly followed to avoid any ambiguity or misconception

due to wrongly assuming the current development practices.

Once the information on the development practices of each of the three e-

learning systems was gathered, they were then modelled using activity flow

diagrams. The flowing three sections will explain the development practices of

Moodle, ILIAS and Dokeos. The development practices were then compared

and are presented in section 4.5.

4.2 Moodle Development Activities

The different activities in case of Moodle development are shown in Fig. 4.1.

The first step of development involves selecting the right candidate feature.

For selecting a candidate feature, the community pools the entire feature

requests raised in the Moodle moot discussions, user’s feature request from

forums and feature request from moodle vendors. These candidate features are

then voted for entering into the release roadmap list. At this stage, it should be

noted that there is no clear boundary between various development stages in

Moodle when compared with ILIAS/Dokeos (these are explained latter in this

chapter).

Any developer interested in developing the new feature listed in the release

road map will initiate a discussion with other fellow community developers, in

order to ensure that no one else is working on that requirement/feature. The

developer(s) will then discuss their ideas with others, confirm the merits and

the need for the particular feature, and importantly, evaluate theirs and other’s

ideas.

Once the feature is selected for development by a Moodle developer, he/she is

expected to come with design documents along with other specification

documentations. These documents are then posted in the Moodle wiki. In

addition, a tracker item is created for the feature and assigned to the developer.

36

Subsequent changes are to be made, based on the feedback received by the

developer in the respective documents which are then updated in the wiki.

Candidate

requests are

pooled

Selection of

feature for

development

Discuss, develop

and refine

specification

document

Is specification

clear?

Implement the

feature

Test for bugs to

be fixed

Merge code.

Validation by

the community

Add feature to

the major

release.

 Fig. 4.1 Activity flow representation for Moodle development

Once the changes are made and agreed by the Moodle community, the

developer begins coding. Once the development is completed or a major

milestone is reached, it is the responsibility of the developer to advertise the

feature for testing. Testing could be done by interested candidate(s) within the

37

moodle community. Subsequently, bugs (if any) are then reported and fixed. It

is then integrated with the main version of Moodle and then released as a new

version, which would be open and freely available.

4.3 ILIAS Development Activities

ILIAS (ENG: Integrated Learning Information and co-operAtion System) is

one of the popular OS e-learning systems and comprises of six stages of

development. They are; Vision/Concept, Specification, Implementation,

Documentation, Testing and Release & Maintenance. In each of these stages,

the OSS community perform various developmental activities which can be

observed clearly in Fig. 4.2.

1
st
 Stage: The first stage is about developing the vision or the concept. In this

stage, ideas are proposed and published in wiki. The core development team

will then decide on how to start the development. If the idea is already been

put on to the feature wiki, people with similar interest are requested to work

with them and develop the feature collaboratively.

2
nd

 Stage: The second stage is the specification stage whereby, all major

development is expected to have corresponding use cases or mock up screen-

shots. For other minor developments/enhancements, developers would start

with the feature wiki where it will describe the feature in detail, the purpose,

etc.

3
rd

 Stage: The third stage in the development of ILIAS is implementation. In

this stage, the coding/programming is done by the developers. Each module

that is developed in this stage is tested by the developer who also fixes the

initial bugs that comes across. Further, the developer would either perform a

unit-testing using PHP Unit, or get it done by a tester. Subsequently, the code

is then merged with CVS.

4
th

 Stage: The fourth stage is documentation. There are two types

documentation prepared for a feature developed for ILIAS - technical

documentation and user documentation. The technical documentation consists

38

of the class and functional documentation generated by PHPDoc. The user

documentation will be mainly instructions for the average user on how to use

it. The user documentation is only released at the time of release of the

product.

Idea are

Proposed.

Implementation.

Is unit testing

successful ?

Core team

selects

proposals.

Develop

specification.

Is Alpha testing

successful?

Module is

released

Technical and

user

documentation

Alpha release

1

2

3

4

5

6

Fig. 4.2 Activity flow representation for ILIAS development

5
th

 Stage: The fifth stage is the testing stage which mainly follows the

implementation stage. In this stage, once the unit-testing and code merger is

done, an alpha release is carried out for further testing and bug fixing. It is the

39

responsibility of the developer to appoint a tester to test the module developed

by him. If the developer is unsuccessful in finding a tester to test his/her

module, then the core team would carry out the required testing. However, in

any case, the developer himself cannot be a tester for his own developed

module.

6
th

 Stage: The sixth and the last stage is the release stage wherein, the new

modules that have undergone alpha testing are released under the beta version.

Errors/bugs encountered after the beta release are then entered into the bug

tracker (Mantis bug tracker). These bugs are then fixed and released as the

main stable version.

4.4 Dokeos Development Activities

Dokeos is developed both as commercial and OSS version. The development

of OSS version is the responsibility of the Dokeos community – from initiation

of idea through release. Although there are two different existing systems, the

OS version does provide all the basic features for free without any licensing

cost to its users.

Dokeos community does not follow any defined stages as in ILIAS, but often,

they do perform some activities in a particular order as shown in Fig. 4.3.

Development of a feature starts with feature selection where the selected

feature is added to the roadmap for development. The feature is then developed

by the community of developers. The features are first tested before it is given

it to the users for further testing. If any anomalies are found they are fixed and

then passed on to the users for user testing.

The users would test the developed feature and if they do find any bug(s), they

would report it. These bugs are then fixed and once again sent to the user for

testing.

Once the user is satisfied with the features, they are subsequently released to

the community as a stable version. All the users could then download it for

free and use it.

40

Different features

are requested for

development

Feature

Implementation

Is unit testing

successful ?

Are users

satisfied?

Feature is

released

User testing

Feature is

selected for

implementation

Fi
x

A
no

m
al

ie
s

B
ug

s
ar

e
re

po
rt

ed
 a

nd
 fi

xe
d

Fig. 4.3 Activity flow representation for Dokeos development

4.5 Comparison of OS E-Learning System Development

Practices

The individual analysis of the three OS e-learning systems provide interesting

insights into their software developed practices. Each of the three OS e-learning

system has executed different activities at different stages of development.

Notably, the manner in which each stage is carried out depends entirely on the

expertise, experience and availability of resources and skills. There are distinct

similarities and differences between Moodle, ILIAS and Dokeos on different

aspects. These are summarized in Table 4.1.

41

 Moodle ILIAS Dokeos

Number of

development

stages

Do not categorize

development stages

Does categorize six

development stages

Does not categorize

stages

Who validates

the proposed

idea

Anyone can

validate the idea

and comment on it

Only the core team

validates the

proposed idea

Does not validate

the proposed idea at

this stage

Detailed

development

plan
No plan is produced No plan is produced

No plan is

produced

Person(s)

responsible for

development

A person who

volunteered initially

& the team that was

formed latter on the

fly.

A person who

volunteered initially

& the team that was

formed latter on the

fly.

Any interested

volunteer engages

in developing the

software.

Testing
Anyone can test at

any time.

Anyone can test at

anytime.

Anyone can test till

the product is

released.

Release
Two stage release

process is followed.

Two stage release

process is followed.

Once the testing is

done & bugs are

fixed, the product is

released. There is

no beta release.

 Table 4.1 Comparison between three OS e-learning system development

The comparative analysis is based on the development activities carried out by

the OS e-learning communities. It begins with differences in number of

developmental stages (as defined in chapter 2). The common developmental

activities in each of the stages are then compared, based on factors like, how it

has been performed, who performs it, etc. Each of these differences and

similarities are discussed briefly and is described as an observation and

critique. The critique is one of the inputs (recommendation) towards the

development of the proposed OSSD Process.

 Number of software development stages

Observation: In ILIAS, it is easy to identify different development stages

/phases during development. However, Moodle and Dokeos do not

categorize different software development stages, even though it has

many tasks similar to ILIAS.

LMS
Parameter

s

42

Critique: Having defined stages or phases of development are important

as it aids in easy tracking of the development activities as well as assists

in planning and testing different phases independently.

 Scrutiny of the proposed idea

Observation: New ideas proposed to Moodle and ILIAS is scrutinized

immediately after its proposal. At the same time, there is one major

difference between Moodle and ILIAS. In case of Moodle, anyone who is

interested in the new idea, including the core team, co-developers, testers,

users, etc. can read the proposal document and comment on it. Based on

the received feedback, the core team or the core members will signal the

development. However, in case of ILIAS, only the core members will

review the idea/feature and would decide its future. On the other hand in

Dokeos, specifications are not detailed or developed for idea

scrutinization.

Critique: Assessing the features credibility and need even before the

specifications are developed might lead to inappropriate judgment with

regard to the features need and importance.

 Person(s) responsible for specification scrutiny

Observation: In case of Moodle, the entire community could scrutinize

the specification by reading the proposal document and commenting on

it. Based on the feedback the core team/ members would either agree/

disagree with the idea. On the other hand, as compared to Moodle, ILIAS

has a different approach. In case of ILIAS, only the core members would

scrutinise the idea/feature decide its future. On the other hand, Dokeos

does not have any such activity and therefore the community is not

responsible for the same.

Critique: Being open source and built by users for users, the

specification validation should be kept open. This will make sure that the

specification is acceptable from the OSS user’s point of view. This is

very important because, in all cases, development happens based on the

specification. If the specification happens to be wrong, then the

developed feature would go wrong. This is true for all the software

43

products including OS e-learning systems, irrespective of the

development method followed.

 Developmental plan

Observation: In all three systems i.e., Moodle, ILIAS and Dokeos, there

are no explicit plans portrayed for its development. It is the responsibility

of the person in-charge to develop the feature as agreed upon. At the

same time, it is the individual or team’s responsibility to answer all

queries regarding the module/feature development.

Critique: Even though having a defined plan is beneficial in tracking the

development; it is very complicated to come up with plans and follow it

strictly in the OSS environment where the volunteers develop the

product during their free time.

 Person responsible for development

Observation: In Moodle and ILIAS the person who agreed to develop the

feature takes responsibility of its implementation. Further, the team

formation happen on-the-fly based on the personal interest of the

community member(s). If anyone is interested in its implementation,

testing, documentation, etc. they volunteer to the working group/person.

Critique: Even though having a defined plan for developing a feature

may seem to be a ‘failsafe’ approach, it is not practical to follow such a

structure in an OSS environment. This is especially so, when a feature is

developed by geographically distributed community members who

volunteer to do the same in their spare time not just for themselves but

also for others.

 Testing

Observation: In all the three OS e-learning systems, any individual from

the community who is interested in a particular feature can test the

developed code for any potential bug(s). However, there is one notable

difference. In case of Moodle and ILIAS, the common ground testing

could be carried out even after new versions are released. On the other

44

hand, in case of Dokeos, this type of common ground testing could be

done only till the product is released.

Critique: Testing is one of the important activities in producing a quality

software product. OS software products are usually well-tested due to the

large number of user-base/testers, who are geographically distributed,

have varied skill sets and could test the module/feature independently.

 Product Release

Observation: A two-stage testing process is employed in case of Moodle

and ILIAS. Once the initial testing is over, both Moodle and ILIAS

release their features as a ‘beta’ version. Subsequently, this is tested

again. Once the testing is completed, the features are then finally

released along with other items as final version of the major product

release. On the other hand, Dokeos does not have any beta release. The

feature(s) are tested by users/community once it is developed and the

bugs are reported. Once the encountered bugs are fixed, the feature is

subsequently released.

Critique: Having a beta test stage will enable identification of problems

before the integration to the stable version. This would potentially save

any additional costs (in most cases it’s the time spent by the OSS

community) that might have to be incurred if the stable version is

corrupted.

4.5 Summary

This chapter provided a state-of-the-art overview of the developmental

activities followed by three different OS e-learning systems. The development

activities were presented using an activity flow representation, primarily

because, it is easy to use, understand, interpret and compare. Following this,

the corresponding developmental activities were compared. This demonstrated

the clarity and explicitness of the different stages of development for each of

the OS e-learning systems. At the same time, there were two main limitations

with this type of representation. Firstly, this representation does not identify

precisely which actor(s) were involved in carrying out a particular task/

45

activity. Secondly, the activity flow representation does not specify the

outcome of a particular activity. In-order to overcome these drawbacks, a

model that gives a high level view, needs to be constructed which will in-turn

focus on the actors activity and outcome, instead of just looking at how a

particular activity have been performed. Hence, DEMO methodology has been

used subsequently. A DEMO model prescribes various models that can be

drawn to depict the development practices followed; and is described in detail

in chapter 5.

46

5. DEMO Methodology

5.1 Introduction

This chapter describes the DEMO models for OS e-learning systems, based on

DEMO methodology and subsequently, explains in detail, the two critical

models used to model all three OS e-learning systems selected for this research

work. The resulting information from these models forms the basis for

developing the proposed OSSD process.

5.2 DEMO Models

There are several ways (i.e., numerous diagram representations) for modelling

a development process using DEMO methodology. They include: State model,

Action model, Interstriction model, Process structure diagram (PSD) and

Actor transaction diagram (ATD). Of these, the last two - PSD and ATD -

enable in obtaining a high-level and abstract overview of the process used for

development. Hence, they are very essential models that are always developed

for a given process or organization.

The PSD details the interactions of each transaction and also between the

transactions. On the other hand, the ATD shows the various actors’

involvement in specific communication for executing a task. Also, it shows

which actor actually produces the P-fact. This is a major advantage over the

activity flow representation. In addition, ATD provides an overview of the

actors and transactions within the scope of the enterprise/project and therefore

aggregates the information contained within the PSD.

In-order to make the diagrams compact, the act and fact related to each process

step were merged into single symbol. A combination of a P-act and P-fact was

represented by a diamond in a square, while a combination of a C-act and C-

fact was represented by a circle within a square. Also, an arrow with a solid

line represent the normal process flow, while an arrow with a dotted line

represent a wait condition.

47

For an ATD, a single symbol was used for each transaction, which contained

all the process steps. This symbol was represented by a diamond in a circle ,

in order to represent the combination of the P-fact and C-facts related to the

transaction. The initiator was connected to the transaction symbol by a solid

line (). The executor was connected to the transaction by a solid line ending

in a black square ().

DEMO models (ATD & PSD) were constructed for all three OS e-learning systems

(Moodle, ILIAS and Dokeos) and elaborated in section 5.3, 5.4 and 5.5 respectively.

Further, the achieved P-facts are also described for the corresponding activities carried

out for each OS e-learning system development. Importantly, these diagrams were

constructed under the assumption that all the activities carried out during the

development of e-learning system have been successfully completed at once. This

might not be the case in the real world as not all activities are successful until the

activities are iterated/ customized whenever required.

5.3 DEMO Models for Moodle

The ATD for moodle development is shown in Fig. 5.1, wherein the

information of each of the PSD is aggregated. The actors involved in

developing Moodle include; the Moodle community, core team/owner,

developer, triage, integration reviewer, tester and a maintainer. Notably,

Moodle carries out 11 transactions in total, from inception to release. These are

denoted by ‘T0x’, where ‘x’ ranges from 1 to maximum number of

transactions. In addition, Fig. 5.1 demonstrates two important points: Firstly, it

shows which actor starts communicating with the other for executing a

particular task. Secondly, it shows which actor actually executes the task to

produce corresponding output (P-fact). For instance, ‘Community’ starts

communicating with the ‘Core team’ for performing a transaction ‘T01’. It is

the ‘Core Team’s’ responsibility to carry out the task and is denoted by a ‘’

at the end of the line. Each of the transactions (T01 through T011) can be

further expanded into individual PSD’s.

In the PSD, each transaction is detailed with expressions of communication

(rq, pm, st & ac) and indicates the execution phase (ex) which when

48

successful, produces a P-fact. Fig. 5.2, Fig. 5.3 and Fig.5.4 describes various

activities carried out from the conception of the idea till the idea is productized

and released. These PSD’s are divided based on the general developmental

stages such as Moodle feature selection & requirement specification,

construction, testing and release.

Feature

released &

published

Request for

testing

integrated

feature

Bug fixing

Items

Prioritized

for bug

fixing

Bugs are

tested and

reported

Specification

document

Reviewed/

updated

Feature

implem-

entation

Selected feature

added to

roadmap

Voting process

for feature

selection

Community

Developer

Developer
Core

team

Developer TriageCommunity

T01

T01T01T01T01
T05

T03

T04

T08

T02

T010

T09

T011

Community

T06 T07

Integration

Reviewer

Tester

Community

Maintainer

Specifica-

tion

document

created

Request for

feature

integration

 Fig. 5.1 ATD representation for Moodle development

In Moodle, there are 4 transactions to be executed in order to select a feature

and develop requirement specification for the selected feature(s). They are

T01, T02, T03 and T04. The roles that execute the tasks corresponding to these

transactions are the Moodle community, owner/core team and the developer.

P-fact is produced on successful execution of T01 which implies successful

completion of voting process for selecting the feature. Once the voting is done,

the features with highest number of votes are selected (immediate requirement)

and are added to the roadmap list. Therefore, the P-fact of T02 is the roadmap

developed for feature implementation. In Moodle, specification document are

to be created for each of the feature added to the roadmap. Hence the

corresponding P-fact produced by executing T03 is the specification document.

49

Finally, the P-fact for the transaction T04 is the suggestions and discussion on

the specification document which the entire community provides, based on the

specification released earlier.

T01

rq

T01

ac

T03

pm

T03

ex

T03

ex

T04

pm

T04

st

T04

ex

T03

st

OWNER

DEVELOPER

COMMUNITY

T01

pm

T01

st

T01

ex

T01

rq

T02

pm

T02

st

T02

ex

T02

ac

T04

rq

T04

ac

COMMUNITY

COMMUNITY

T03

rq

T03

ac

Fig. 5.2 PSD for Moodle feature selection and requirement specification

The next stage in moodle development is the implementation of the selected

moodle feature. The PSD for Moodle development is shown in Fig. 5.3. Two

transactions were executed for implementing and verifying the implementation

of the moodle feature (T05 & T06). The owner/core team starts

communicating with the developer by placing a request ‘T05 rq’ for

developing a particular feature. The developer promises to do the work which

is indicated as ‘T05 pm’ and executes the task denoted by ‘T05 ex’.

The developer then requests the community to verify his work before merging

the code ‘T06 rq’. The community promises to verify the code ‘T06 pm’,

verifies it and changes its status as verified ‘T06 st’. Further, it sends the

50

feedback to the developer who in turn acknowledges the work, ‘T06 ac’. It

then changes the status ‘T05 st’ and sends the code to the owner/core team.

They in turn acknowledge the developer ‘T05 ac’. The P-fact of transaction,

T05 implies the successful implementation of the moodle feature. P-fact of

T06 is the completion of initial testing and bugs found in this testing are then

reported for a fix.

T05

ac

T05

Rq

T05

pm

T06

rq

T05

st

T06

pm

T06

st

T05

ex T06

ex

T06

ac

OWNER

DEVELOPER COMMUNITY

Fig. 5.3 PSD for Moodle implementation

T08

ex

T07

Rq

T07

pm

T07

ac

T07

st

T07

ex

T02

rq
T08

rq

T08

pm

T08

st

T09

rq

T09

pm

T09

ex

T09

st

T09

ac

T08

ac

T010

rq

T010

ac

T010

pm

T010

st

T010

ex

T011

Rq

T011

pm

T011

T011

st

T011

ac

INTEGRATION

REVIEWER

DEVELOPER

TRIAGECOMMUNITY

TESTER

MAINTAINER

Fig. 5.4 PSD for Moodle testing and release

51

Transaction(s) P-facts

T01 Voting process is completed.

T02 Development road map is created.

T03 Specification document created.

T04 Selected features are discussed.

T05 Feature is developed.

T06 Developed feature is tested by the

community and bugs are reported.

T07 Reported bugs are prioritised.

T08 Bugs are fixed.

T09 Features are added to the integration queue.

T010 Features are integrated and tested.

T011 A stable feature is released.

Table5.1 P-facts produced during Moodle development

Once the implementation was successfully finished, the feature is then tested

and released to the Moodle-using community. Fig. 5.4 depicts the roles

involved in carrying out the transactions T07 through T011 (for testing and

releasing the moodle feature developed). The P-fact of T07 is the prioritized

list of items developed by the triage for fixing & testing. These are then sent to

the developer. The developer then fixes the issue and tests it. The bugs that are

fixed form the P-fact of T08 and are then added to the integration queue. The

integration reviewers are responsible for integrating the same - the P-fact of

T09. In transaction T010, the integrated code is tested and verified. The

corresponding P-fact is the updated tracker item. The P-fact of the final

transaction T011 is latest version of the software which would be freely

available for download from production repository. For a quick review, the P-

facts produced during Moodle development are summarised in Table 5.1.

5.4 DEMO Models for ILIAS

The ATD for ILIAS feature development is shown in Fig.5.5. The various

actors’ involved in its development are: the user community, core team,

developer, tester and maintainer. The transactions carried out for its

development are denoted from T01 through T09.

52

User

Community

Core

Team

Developer

T01 T02

Request

verification

T06

Alpha

Testing

Feature

Selection

Specification

Development

Tester T06

Beta

Testing

T09

Request

for

Release

T07

Core

Team

T04

T05

Request

verification

Request

code

develop

Verify with

Core TeamT08Maintainer

T03

Fig. 5.5 ATD representation for ILIAS development

The PSD is divided based on the general software development phases. Fig.5.6

shows the PSD for ILIAS feature selection. The user community and the core

team communicate with each other and subsequently, the core team executes

the transaction T01. The P-fact produced for this transaction is a feature wiki

page which includes the selection decision along with the discussions that led

to the final decision.

Fig. 5.7 represents the PSD for ILIAS requirement specification development.

The various actor’s involved in developing and verifying the requirement

specifications are: core team, user community and the developer. There are

three transactions involved in developing the specification (T02, T03 and T04).

The P-facts produced for each transaction (T02, T03 & T04) are the creation of

requirement specification document, discussions on the specification

document. Subsequently, the core team improves the specification doc by

implementing some of the suggestions.

53

T01

Rq

T01

rq

T01

pm

T01

ac

T01

st

T01

ex

User

Community
Core Team

 Fig. 5.6 PSD for ILIAS feature selection

T02

pm

T02

ex

T02

st

T03

ac

T03

pm

T03

st

T03

ex

T02

rq

T04

rq

T03

rq

T04

ac

T04

pm

T04

ex

T04

st

Core Team

Core Team Developer

User

Community

T02

ac

 Fig. 5.7 PSD for developing requirement specification

54

Fig. 5.8 shows the PSD for feature implementation. This involves 3 main

actors: the core team, the developer and the user community over 2

transactions T05 and T06. The P-fact produced by successful execution of T05

is the successful implementation of the feature selected. The P-fact of T06 is

the bug reported on that feature in their bug reporting system.

Fig. 5.9 shows the transactions involved in testing and releasing the ILIAS

feature. The actors involved are developer, maintainer, core team and tester.

There are three transactions T07, T08 & T09 executed by these roles. The P-

facts achieved by the transactions are:

 Released working feature

 Updated roadmap with the released feature included in it and

 The bugs reported after the release in the bug tracking system.

T05

pm

T05

ex

T05

st

T06

ac

T06

pm

T06

st

T06

ex

T05

rq

T06

rq

Core Team

User

Community

T05

ac

Developer

Fig. 5.8 PSD for ILIAS feature implementation

In this sub-section, each transaction represented in ATD is elaborated with

corresponding process structure diagram for ILIAS. Also, the P-facts are

highlighted for each of the transactions assuming they were successful. The P-

facts have been summarised and are presented in Table 5.2 for a quick review.

55

T08

rq

C

o

r

e

T

e

a

m
T08

st

T09

pm

T09

st

T09

ex

T

e

s

t

e

r

T07

pm

T07

ex

T07

st

Maintainer

T07

rq

T08

rq

T08

ex

T08

ac

Maintainer

Developer

T09

ac

Developer

T07

ac

Developer

T09

rq

Fig. 5.9 PSD for ILIAS testing and release

Transactions P-facts

T01 Feature wiki with selected features is created.

T02 Specification document is developed.

T03 Specification document is discussed.

T04 Specification document is improved.

T05 Feature is developed.

T06 Feature is tested and bugs are reported.

T07 Accepted feature is released.

T08 Release road map is developed.

T09 Tested the released feature and bugs are

reported to bug tracking system.

Table 5.2 Summary of ILIAS P-facts

5.6 DEMO Models for Dokeos

The ATD for Dokeos development is shown in Fig. 5.10. The actors involved

in Dokeos development are user community, core team and the Dokeos

Company. In all, 7 transactions are executed in developing a feature

successfully for Dokeos (T01 through T07). ATD will be followed by the PSD

56

and the ATD’s are split into PSD’s based on the general software development

stages.

Dokeos features are selected by the core team from the dream map (user

community requests are polled in dream map) to road map. This is done in a

single transaction T01 as shown in Fig.5.11. The transaction is initiated by the

user community by adding the feature’s request to the dream map. The core

team would then select the feature and add it to the roadmap - the P-fact of the

transaction T01.

Feature

release

Bug

Fixing

Bug

Reporting

Feature

Testing

Implementation

Verification

Core

Team
T01 T02

T03T03

Core

Team

Developer T04T04

User

Community
User

Community

T04T05

Core

Team
T04T06 Developer

T04T07

Dokeos

Company

Feature selection
Feature

implementation

 Fig. 5.10 ATD representation for Dokeos development

Once, the feature is selected by the core team for development, the developers

are requested to build the feature which is depicted in transaction T02 in Fig.

5.12. The P-fact for T02 is the developed feature itself. Once the feature is

developed, the developer requests the core team (T03) to verify and fix

anomalies, if any. The P-fact of T03 is the verified and fixed feature.

57

T01

Rq

T01

pm

T01

ac

T01

st

T01

User community Core team

 Fig. 5.11 PSD for Dokeos feature selection

T02

 T02

T02 ac

T02 ex

Core Team Developer

T02 Rq T02 pm

T02T02 st

T02T03 rq

Core Team

T02T03 pm

T03 ex

T02T03 stT02T03 ac

 Fig. 5.12 PSD for Dokeos feature development

Fig. 5.13 shows the PSD depicting the communication pattern between the

developer, core team and the user community for testing and fixing the bug.

The developer requests the user community to carry out testing on the newly

developed feature (T04). Once the user finishes testing, the bug fixes are

reported to the core team which is the P-fact of T04. The core team in turn

verifies, categorizes and organizes all the reported bugs. This list of verified,

categorised and organized bugs is the P-fact of T05. These are then forwarded

to the corresponding developer to fix the issues (T06). The fixed and working

feature becomes the P-fact of T06.

58

T04 exT05 ex

T04 rq T04 pm

T05 rq

T04 stT04 ac

T04 exT04 ex

T05 stT05 ac

Developer User community Core team

T05 pm

T06 rq T06 rq

T06 st

T06 exT06 ex

T06 ac

Developer

 Fig. 5.13 PSD for Dokeos testing and bug fix

T07 ac

Core team

To7 rq T07 pm

T07 st

T07 exT06 exT07 ex

Dokeos company

 Fig. 5.14 PSD for Dokeos feature release

Transactions P-facts

T01 Feature is selected for development.

T02 Feature is implemented.

T03 Implemented feature is verified.

T04
Feature is tested and bugs are

reported.

T05 Bugs are prioritised.

T06 Bugs are fixed.

T07 Feature is released.

Table 5.3 Summary of Dokeos P-facts

59

Fig. 5.14 depicts the release process in the PSD. The core team initiate the

release process by requesting the Dokeos Company with a request. Then the

feature is released by the Dokeos Company which is executed in transaction

T07. Table 5.3 represents the summary of various P-facts that are produced

during the development of Dokeos.

5.7 Discussion

Chapter 4 and chapter 5 provide sufficient details with regard to the

development practices followed by the three OS e-learning systems. The

activity flow diagrams provided information about the implicit/explicit

software development stages and also helped in classifying the same. On the

other hand, DEMO models provided information about what outcomes have

been produced in each of the development stages (by executing a particular

transaction) and by whom was that transaction executed.

Development
stages

Moodle ILIAS Dokeos

Inception 
[T01, T02]


[T01]


[T01]

Planning   

Requirement

Analysis


[T03, T04]


[T02, T03, T04]



Design 
[T03, T04]


[T02, T03, T04]



Implementation 
[T05, T06]


[T05, T06]


[T02, T03]

Testing 
[T07, T08]


[T08, T09]


[T04, T05, T06]

Release and

maintenance


[T09, T010, T011]


[T07]


[T07]

Table 5.4 Inputs for the proposed OSSD process

Table 5.4 presents various transactions executed (chapter 5) for different basic

development stages (chapter 2, 4). For each of the three OS e-learning system

development, if a particular development stage was identified as being

executed (chapter 4 – Activity flow diagrams), then a tick mark ‘’ is placed

in the corresponding cell in Table 5.4; otherwise a cross mark ‘’ is placed.

Also, the transaction executed (Chapter 5 – DEMO models) under a particular

60

development which produces a successful outcome is mentioned inside the

parentheses ‘[]’. However at this stage it is not clear that, to what extent each

of the OS e-learning systems had carried out each of the activities

corresponding to various development stages. Therefore, though it is an

important input for the proposed process, the proposed OSSD process cannot

be generalised based on this information alone.

5.8 Summary

This chapter described DEMO models and its associated terms. These include

detailed information on the two key models (ATD & PSD) and its application

on the three selected OS e-learning systems. Further, the application of DEMO

methodology helped in identifying different actors involved in carrying out

various development activities, along with the output of each such activity.

Importantly, the results were found to be totally independent of how each of

the development activities were carried out within each OS e-learning system

community. The drawbacks of activity flow representation could thus be

overcome. Further, a detailed discussion was carried out on the important

inputs towards the proposed OSSD process. The next chapter discusses on how

these results are used in conjunction with the standard ISO/IEC 12207:2008 in

order to generalise the proposed OSSD process.

61

6. Development of OSSD

Process

6.1 Introduction

This chapter begins with consolidating the results of DEMO model and

activity flow diagram. This is followed by an overview of ISO/IEC

12207:2008 standard, the software-specific processes prescribed in the

standard and the list of expected outcomes for each software development

activity conveyed in the standard. Subsequently, the proposed generalized

OSSD process is explained in detail; along with the different development

stages, the ordering and the frequency at which each stage has to be carried out

and the major activities in each stage.

6.2 Comparative Results of Various Development Stages of

Three OS e-learning Systems

The activity flow diagrams and DEMO models constructed for Moodle, ILIAS

and Dokeos had two major benefits. Firstly, it helped in identifying different

implicit stages of development. Secondly, it helped in identifying the outputs

of various activities in each stage of development and the actors involved in

the same.

 OSS Systems
Development
Stages

Moodle

ILIAS

Dokeos

Requirement analysis   

Detailed design   X

Implementation   

Testing   

Integration   

Release   

Table 6.1 Developmental stages carried out by OS e-learning systems

62

Table 6.1 shows whether the three e-learning systems has carried out an

activity pertaining to particular development stage. It can be seen from Table

6.1 th at Moodle and ILIAS have carried out few/many developmental

activities for all six stages while Dokeos has not performed any activity with

regard to detailed design stage. However, the results of activity flow diagram

and the DEMO models do not specify the extent to which the different

activities are carried out in each development stage. Hence, selecting different

development stages for the proposed generalized OSSD process just based on

the stages shown in Table 6.1 is not adequate. Before designing a generalized

OSSD process, it is important to understand the extent to which the different

activities are carried out for the three e-learning systems.

For proposing a generalized OSSD process, there are two key inputs that assist

in identifying the extent to which each activity is carried out. The first key

input is the result obtained from the DEMO models that identifies the output

created by each of the development activities. The second key input for

proposing the OSSD process is the ISO/IEC 12207:2008 standard. The

standard provide complete details of various software development processes,

different activities carried out in each processes and also their corresponding

set of all outcomes. With this information, it is possible to judge how much

effort has been spent by each of the OS e-learning system development

community on these stages. At this point it should be noted that proposing a

generalized OSSD process based on the ISO standard not only makes the

process more consistent and reliable but also signifies its applicability in real

world situation. The next section describes the ISO/IEC 12207:2008 standard.

6.3 ISO/IEC 12207:2008

ISO/IEC 12207:2008 standard is a fully integrated suite of system and software

life cycle processes which explains seven process groups, forty three

processes, hundred and twenty one activities and four hundred and six tasks.

Each of the processes within those process groups is described in terms of its

(a) scope, (b) purpose, (c) desired outcomes, (d) list of activities and tasks

which need to be performed in order to achieve the outcomes. Further, each of

the process groups is divided into various lower level processes (International

63

Standard, 2008). The interesting domain for our research is the various

outcomes listed for the software implementation processes which in fact, are a

sub-division of software specific processes.

Fig. 6.1 Software lifecycle groups in ISO/IEC 12207

Software implementation processes is divided into six lower level processes as

shown in Fig. 6.1. These are software requirement analysis processes, software

architectural design processes, software detailed design processes, software

construction processes, software integration processes and software quality

testing processes. The numbers mentioned within the parentheses in Fig. 6.1

indicates the number of desired outcomes for each of the processes. According

to ISO/IEC 12207:2208 standard, there are 29 outcomes that can be achieved

by successfully carrying out the software implementation process and its

corresponding activities and tasks. These 29 outcomes are divided among their

six lower-level process. Table 6.2 lists all possible outcomes that can be

expected when these lower level processes are completed successfully.

64

Lower Level Process Possible Outcomes

Software

Requirement

Analysis

Process

RA1 Requirements of software element & interfaces are

defined

RA2 Requirements analysed for correctness & testability

RA3 Understand the impact of the requirement on

operating environment.

RA4 Consistency and traceability between s/w and system

requirement are drawn

RA5 Software requirement for implementation are defined

RA6 Software requirements are approved and updated

RA7 Changes to the s/w requirement are evaluated for

cost, schedule & technical impact

RA8 Software requirements are base-lined and

communicated to all affected parties

Software

Architectural

Design

Process

AD1 Software architecture is designed and base-lined

AD2 Internal and external interfaces of each s/w item are

defined

AD3 Consistency and traceability is established between

requirement and design

Software

Detailed

Design

Process

DD1 Detailed design of each software component is

defined

DD2 External interfaces of each software units are defined

DD3 Consistency and traceability are established between

architectural design, requirement and detailed design

Software

construction

process

CP1 Verification criteria defined for all s/w units against

their requirement.

CP2 Software units defined by design are produced.

CP3 Consistency and traceability are established between

software unit, design and requirement.

CP4 Verification of the software unit against requirement

and design is accomplished

Software

Integration

Process

Qualification

and Testing

Process

IP1 Integration strategy is developed

IP2 Verification criteria for s/w items are developed

IP3 Software items are verified using defined criteria

IP4 Software item defined by integration strategy are

produced.

IP5 Results of integration testing are recorded.

IP6 Consistency and traceability are established between

s/w design & s/w item.

IP7 Regression strategy is developed and applied for re-

verifying s/w items when change occurs in s/w unit

QT1 Criteria for the integrated software are developed that

demonstrates compliance with the software

requirements.

QT2 Integrated software is verified using the defined

criteria.

QT3
Test results are recorded.

QT4 A regression strategy is developed and applied for re-

testing the integrated software when a change in s/w

item is made.

Table 6.2 ISO/IEC 12207 process groups

65

Outcomes Moodle ILIAS Dokeos

RA1 T02 T02 —

RA2 T01 T03 —

RA3 T01 T01 T01

RA4 — — —

RA5 — — —

RA6 T01 & T02 T04 T01

RA7 — — —

RA8 Road maps* Feature wiki* Road maps*

AD1 — — —

AD2 — — —

AD3 — — —

DD1 T03 T02 —

DD2 — — —

DD3 T04 T03 —

CP1 T04 — —

CP2 T05 T05 T02

CP3 T06 T06 T03

CP4 T06, T07 & T08 T06 T03

IP1 T09 — —

IP2 — — —

IP3 T09 T07 T04

IP4 T010, T011 T07 T07

IP5 T010 — T05, T06

IP6 — T08 —

IP7 — — —

QT1 — — —

QT2 T010 T09 —

QT3 T010 T09 —

QT4 — — —

Table 6.3 Comparison with ISO/IEC 12207 process groups

The ISO/IEC 12207:2008 standard is used as a foundation for this research as

it provides a detailed guideline for software specific processes. The major

advantage of using ISO/IEC 12207:2008 standard is that the outcomes

mentioned by the standards can be compared directly with the P-Facts that

were identified from the DEMO models. The comparative details are presented

in Table 6.3. For each outcome mentioned by the standard, the corresponding

transaction for Moodle, ILIAS and Dokeos have been mapped. Further, any

particular outcome stated in the standard that is not met by the OS

development community is denoted with an ‘−’. Notably, in case of RA8, all

66

three OS e-learning systems produce data logical information (marked with ‘*’)

whereas outcomes of other transactions correspond to ontological information.

It can be observed from Table 6.3 that Moodle meets 16 out of 29 outcomes

mentioned by the standard by executing 11 transactions. On the other hand,

ILIAS meets 14 out of 29 outcomes by executing 9 transactions while Dokeos

meets only 8 out of 29 outcomes by executing 7 transactions. Even though

Moodle and ILIAS has achieved higher number of outcomes as compared to

Dokeos, all three OS e-learning systems till have a huge scope for

improvement in different stages of development. A percentage of achievement

is calculated for each of the development stages based on the ratio between the

number of outcomes achieved and the number of outcomes listed in the

standard. For instance, in case of requirement analysis, the standard had

prescribed eight outcomes as desired outcome of which Moodle satisfied four.

Therefore, the achievement for Moodle under RA is 50%. Table 6.4 shows the

percentage of achievement for each of the six stages for all three OS e-learning

systems, along with the overall achievement ratio.

Moodle ILIAS Dokeos

Requirement

analysis process

50% 50% 25%

Architectural design

process

0% 0% 0%

Detailed design

process

66% 66% 0%

Construction

process

100% 75% 75%

Integration process 57% 42% 42%

Qualification and

testing process

50% 50% 0%

Overall percentage 53% 47% 23%

 Table 6.4 Percentage of process coverage per stage

The achievements listed in Table 6.4 shows the achievement ratio (approx.)

and thereby, the weakness in the different development stages of all three OS

e-learning systems. Moodle with 53% has the highest achievement rate. On the

other hand, with an achievement rate of only 23%, Dokeos performs very

Development

stage

OS Systems

67

poorly. Notably, all three OS e-learning systems have significant weakness in

most of the development stages, except for construction stage. The next

section describes the proposed generalized OSSD process.

6.4 Proposed Generalised OSSD Process

A generalized OSSD process could be used by the OS community to develop

new e-learning systems or could be applied to the existing e-learning system

development. Particularly, according to the software development process

definition (Chapter 2), the generalized OSSD process would specify the

following:

 The different stage of development and their ordering

 The frequency with which each development stage is executed

 The important activities involved in each development stage.

At this stage, it should be noted that the proposed OSSD process does not

specify on how a particular activity should be carried out. Further, it does not

enforce the community on who should carry out a particular activity but rather

provides guidelines on various stages of development, along with the major

activities for each development stage that the OSSD community should follow,

while developing OS e-learning systems.

6.4.1 Overview of Development Stages

The three OS e-learning systems considered in this study have activities

performed in five out of six stages. However, the degree of completion with

respect to each development stage is different for each OS e-learning systems.

Hence, the percentage of outcome achieved by the OS e-learning systems for

each of the lower-level processes stated by the standard is considered as an

important criterion for selecting the different stages of development. In-order

to do so, a four-level classification is considered for the percentage of outcome

achieved; and is shown in Table 6.5. If a particular e-learning system has

achieved 0 - 15% of the outcome it is considered to be ‘NIL’. If it is 15.01 -

50%, then it is stated as ‘Partial’. If an OS e-learning system has achieved

50.01 - 90%, it is stated as ‘Major’. Finally if a particular e-learning system

68

has satisfied 90.01 - 100% of the outcomes as stated by the standard then it is

termed as ‘Complete’. If any of the three OS e-learning systems’ outcomes

prescribed for the lower level process in the standard is in the category,

‘Complete’ or ‘Major’, then that particular lower level process/development

stage is added to the proposed OSSD process. In addition, if two out of three

OS e-learning systems has performed a particular lower level process and the

expected outcomes are categorized under ‘Partial’, then again, it is added to

the proposed OSSD process, with some suggestions for improvement.

Outcome Achieved in % Category
0 – 15% NIL

15.01 – 50% Partial

50.01 - 90% Major

90.01 – 100% Complete

Table 6.5 Category based on percentage of process coverage achieved

For the proposed OSSD process, five development stages are selected from the

existing OS e-learning systems. They are: design specification stage,

implementation stage, software testing stage and integration & release stage.

Notably, the architecture design stage is not selected from Table 6.4. There are

two reasons for the same. Firstly, none of the three major OS e-learning

systems have considered it in the design, Secondly, OS e-learning system is a

continuously evolving software product and hence, there is no specific stage

allotted for architecture design. However, at the same time, an additional stage

is considered. This is the feature selection stage that is added as the first

development stage. Though feature selection and its corresponding activities

have been carried out implicitly by the OSS community, the proposed OSSD

process makes this an explicit development stage. This is because; it is a

crucial starting point for any feature to be developed for an OSS system.

Hence, the proposed OSSD process has six development stages. They are:

 Feature selection stage

 Requirement specification stage

 Design specification stage

 Implementation stage

 Software testing stage

 Integration and release stage

69

Feature selection

stage

Requirement

specification

stage

Design

specification

stage

Implementation

stage

Software testing

stage

Integration and

release stage

 Fig. 6.2 Different stages in the proposed generalised OSSD process

Fig. 6.2 depicts the proposed OSSD process with six development stages. Of

these six stages, the first four stages are iterated before proceeding to the next

stage. Further, the iterations between the stages prescribed in the proposed

OSSD process can be seen commonly in many development processes and also

within the OSS development community’s current development practices.

These iterations are proposed to be carried out based on the following:

 Iterations are proposed for the stages where many number of

geographically dispersed community members work together in

achieving a particular activity/task; or if more than one type of actor is

involved in finishing a particular activity.

 Iterations are prescribed for those stages where the completion of an

activity of one development stage depends upon the activity of another

stage.

70

Further sections in this chapter will present each development stage along with

the suggested important activities, followed by a detailed discussion on the

same.

6.4.2 Stage 1 – Feature Selection Stage

Description: It is the first development stage where the right candidate

feature(s), are selected for development by the OSS community.

Suggested Important Activities:

(a) Development of ‘feature requirement document’ and its further review,

before they are selected for development.

(b) Selection of the feature by the entire community, based on the feature

requirement document.

(c) Addition of all selected features to the feature development roadmap.

Discussion: A feature requirement document can be a wiki document/ general

document that could be attached in the community forum or any other

mechanism that the community is comfortable with. This document can be

very brief and should state the purpose of the feature, the beneficiary of the

feature and other user related and technical details (depending upon the

proposed feature). This document should be reviewed by the core team and

once reviewed and satisfied, these documents should be published openly to

the entire community. This document not only helps in identifying the correct

candidate feature but also helps the community as a whole to understand what

is going to be developed for their OSS.

In addition, the selection of the feature should be based on the feature

requirement document. The entire community members are required to

participate in its selection and are a mandatory activity. The OSS community

can adopt any mechanism to encourage its community to involve themselves in

this activity (feedbacks, voting, etc.). Once the feature is selected by the

community these are then added to the feature development roadmap. This

roadmap would contain the entire list of features that are selected for further

development. Further, a person/team is initially appointed / selected for each of

71

the selected candidate features. Having a dedicated contact person makes it

easy to manage/ engage with the community at the initial stages of

development.

Iteration: The feature selection stage can be iterated few times in order to

make sure that the feature requirement document is clear enough for the

community to understand and also to encourage more and more community

members to participate in the selection process.

6.4.3 Stage 2 – Requirement Specification Stage

Description: Requirement specification is the second stage in the OSSD

process where the software requirements are identified and elucidated before

proceeding towards software development.

Suggested Important Activities:

(a) Development of the requirement specification documents; and

subsequent iteration until it is widely accepted.

(b) Identifying the developers/team of developers who would work on the

selected feature.

(c) Verifying and freezing the requirement-specification document for the

latest product release.

Discussion: The requirement specification document that is developed in this

stage should briefly reiterate the purpose of the feature, followed by

identification of the clients/stakeholders/users. In addition, this document

should list the constraints, along with functional and non-functional

requirement. Further, they can also specify any open issues or any new

problems in the software requirement specification document, so that the

community members when reading might help the developer/developer’s team

with some suggestions. Also, the OSS community should start identifying the

team members/developers (volunteers) who would be working on each of these

selected candidate features for development. Notably, the core team should

review the requirement specification documents along with newly formed team

of developers before being published openly to the entire community. At this

72

stage, the core team can freeze these documents once the community is happy

with the requirements.

Iteration: The requirement specification stage is iterated until the document is

clear and satisfies the user requirement.

6.4.4 Stage 3 – Design Specification Stage

Description: Design specifications are developed based on the accepted

requirements which will be the basis for software implementation.

Suggested Important Activities:

(a) Development of design specification document for the selected feature

that would satisfy the requirements.

(b) Amendment of the design document, if required, based on the core teams

feedback/suggestions and its publication to the entire community.

Discussion: The design specification that is developed for the selected feature

should describe how the feature is going to be implemented (coding). It is

totally up to the OSS community to decide upon the language that they are

going to use within their community. The newly formed team

(selected/volunteered in the development stage) should come up with this

design document. The core team would review these design documents and

would give comments/feedbacks on the same in order to improve the design

document. The developers are required to make the necessary changes and

make it available to the entire community. This gives a clear picture to the

community members about the feature to be developed. Also, it would give an

idea on how to use the feature and clear other basic doubts that they might

have. In addition, design experts within the community could give their

opinions/suggestions during development which might be helpful for the

developer/developer’s team.

Iteration: This stage is iterated few times in order to make sure that the design

document is representing the feature requirement and is clear enough for the

community to understand.

73

6.4.5 Stage 4 – Implementation Stage

Description: Implementation stage is a one where the developer/developers

team implement the feature (coding) based on the design document to satisfy

the user requirement and produce a workable software feature.

Suggested Important Activities:

(a) Development of a brief implementation document.

(b) Implementation of the selected feature based on its design specification.

(c) Development of unit testing strategy.

Discussion: The developers should be encouraged to decide how they are

going to approach the implementation. They should ensure that it is clear

enough to be written as a brief implementation document; along with initial

and tentative deadlines for the feature to be implemented. Developing an

implementation document encourages the community to actively participate in

testing the feature once the local release is done. In-addition, the developer/

developer’s team needs to update the community regarding the implementation

periodically using community wiki’s, blogs or any other social media that is

used within the community. An important task in this stage is to actually

implement the feature. In addition to this, the developer/ developer’s team are

required to come up with a simple unit testing strategy. The OSS community

could identify/volunteer/elect/appoint a person/team from within the

development team and can use their own template to develop the unit testing

strategy. This unit testing strategy can be published publically for anyone to

use it after the local release. Unit testing helps the OSS developer/developer’s

team to identify any issues early in the development cycle, facilitates any

changes that need to be done, simplifies the integration process, etc. Defined

unit testing strategy enables them to identify the bugs before the local release

and can also be fixed.

Iteration: The implementation stage is iterated few times until the

development team/developer is satisfied with what is already implemented.

Also, these are iterated to fix any issues identified during unit testing.

74

6.4.6 Stage 5 – Software Testing Stage

Description: In the software testing stage, the implemented software is tested

to satisfy the design document that was developed based on the user

requirements.

Suggested Important Activities:

(a) Development and verification of initial and important test cases for the

OSS community.

(b) Testing the locally released OSS feature.

(c) Reporting the bugs encountered and fixing the same.

Discussion: The OSS environment has the biggest advantage of having a huge

number of testers/community members to identify any issues/bugs before the

feature is released as a part of major product release. In order to take advantage

of this, the initial and important test cases are published openly to the

community members. This may help the community to head start the testing

process and they may then further explore the feature through testing. In

addition, this might help any new testers within the community to understand

how to perform testing before the major release. The developer/developer’s

team could propose these test cases which the core team or any person

appointed by the core team could approve/make changes as required and post it

to the community. The entire community should be encouraged to take part in

the testing activity. The community member could use the initial test cases to

commence testing. Also the community could be given a time frame within

which they could carry on testing and at their ease. For instance, the time

frame can be until a week or two before a major product release. Also, the

proposed OSSD process suggests the OSS community to have their bug

tracking system in place. This will help the community to report all the

identified bugs/issues in one common place from which the

developers/volunteers from within the community can fix the issues without

missing any important fixes they are suppose to do before the major product

release.

75

Iteration: There is a need for multiple iteration of this stage for developing,

correcting and approving the initial test cases. Once the bugs are identified, it

has to be fixed by the developer/developer team and therefore there is a need

for iteration between the implementation stage and testing stage until the

developed feature satisfies the users.

6.4.7 Stage 6 – Integration and Release Stage

Description: This is the final development stage wherein, the developed and

tested feature is integrated with the main OSS product and released as a part of

the main product to all its community members and users.

Suggested Important Activities:

(a) Verifying the list of features under developed roadmap and making sure

that they are developed and tested.

(b) Developing release roadmap before the actual release.

(c) Verifying the implemented feature before integration and release.

(d) Updating the release roadmap list if required; followed by integration

and release of the OSS feature as a part of main OSS product.

Discussion: It is important to make sure that all the items listed under the

development road map (6.4.1.1) are developed and tested successfully before

the final integration and release. The release roadmap is then developed which

lists all the items that would be integrated and released. These features should

be released along with all the necessary supporting documents for all such

items. Further, the core team has to verify if all the features implemented

satisfies the requirement and design specification that are developed for that

item (6.4.1.2, 6.4.1.3). Once these release items are verified and signed off by

the core team/ responsible person, the final list of release items are published

along with its supporting documents, which are then integrated and released in

public domain.

Iteration: The OSS development supports continuous evolution. Hence, once

the feature is integrated and released, it is iterated back to the ‘feature selection

stage’ (6.4.1.1). The process starts again with identifying the right candidate

76

feature and its development as the successful OSS products are evolving

products which will be always ready to address the need of its

users/community at all given time.

6.4.8 Summary of OSSD Process - Stages and Activities

The proposed OSSD process has six development stages. Specific activities

pertaining to each stage are suggested in the proposed process. In total, there

are 18 important activities that are suggested. These are summarised in Table

6.6 for each development stage for a quick review.

Development
Stages

Suggested Important Activities

Feature selection

stage (single-phase

stage with

iterations)

Develop and further review the ‘feature requirement

document’ before they are used for feature selection.

Entire community should use the feature requirement

document and also take part in selecting the right candidate

feature for development.

All selected features should be added to the development

roadmap.

Requirement

specification stage

(single-phase stage

with iterations)

Develop ‘requirement specification document’ and refine it

in ‘n’ iterations, until widely accepted.

Identifying the developers/team of developers who would

work on the selected feature.

Verify and freeze the requirement specification document

for the latest product release.

Design

specification stage

(single-phase stage

with iterations)

Develop design specification document for the selected

feature that should satisfy the requirements.

Update the design document based on the core teams

feedback/suggestions (wherever necessary) and then publish

it to the entire community.

Implementation

stage (single-phase

stage with

iterations)

Develop a brief implementation document.

Implement the selected feature based on design

specification.

Develop unit testing strategy.

Software testing

stage (single-phase

stage)

Develop and verify initial and crucial test cases for the OSS

community.

Test the locally released OSS feature.

Report the bugs encountered and fix the same.

77

Integration and

release stage

(single-phase stage)

Verifying the list of features under developed roadmap and

making sure that they are developed and tested.

Develop release roadmap before the actual release

Verify the implemented feature before integration and

release.

Update the release roadmap list if required; followed by

integration and release of the OSS feature as a part of main

OSS product.

 Table 6.6 Important activities suggested for all stages of OSSD process

6.5 Summary

This chapter began with a brief comparison of the results of the activity flow

diagram along with DEMO methodology results for all three OS e-learning

systems. This was followed by a brief description of ISO/IEC 12207:2008

standard and a mapping between the standard and the outcomes achieved by

the three OS e-learning systems. Subsequently, this chapter presented the

proposed ‘generalised OSSD process’ in detail. The proposed process

identified six development stages and its order of execution, along with the

corresponding iteration pattern. Further, the major activities for each

development stage were suggested along with a detailed discussion. The next

step is the validation of the proposed OSSD process, which is explained in

detail in the next chapter.

78

7. Validation of Proposed OSSD

Process

7.1 Introduction

Any new software development process that has been proposed needs to be

first validated in order to ensure that it is complete and acceptable. Hence, this

chapter describes the validation of the proposed OSSD process. The validation

approach is explained in detail along with its results and inference. In addition,

this chapter addresses the feedbacks and comments received from the experts.

The proposed OSSD process can be validated in many different ways. The first

technique that was considered was to handover the proposed OSSD process to

the OS development community and develop an OSS feature for an e-learning

system. Similarly, the second technique that was considered was to develop an

OSS feature for an e-learning system in an academic environment. Both these

techniques had the advantage of precisely pointing out the advantages and the

drawbacks of the OSSD process. In fact, handing it over to the OSS

community would have provided a very clear picture on the practical issues

faced during the development of OSS feature.

However, the main drawback of both these techniques was the time constraint.

It would take considerable time for the OS community/academic researchers to

develop a new OS feature based on the proposed OSSD process; and then

provide their suggestions and feedback. Further, since the OS development

community is usually geographically distributed, it would require me to be

personally involved in the development of the OSS feature, in order to

meaningfully evaluate the results of the proposed OSSD process. However,

this was again not possible because of the time constraint.

A third technique, known as ‘expert review’ method was therefore considered

in this research work (Vredenburg, et al., 2002). It is a simple yet reliable

approach with an added advantage of quick turn-around time. It is a well-

79

known approach in computing (Budgen, et al., 2008), specifically in software

process area (Dyba, 2003). It is also described as an “Evaluation method”

(Holz, et al., 2006). Importantly, the ‘expert review’ method is seen as an ad-

hoc method used by one or more experts for evaluation (Molich and Jeffries,

2003). Therefore, in this research, the OSS experts were requested to review

the proposed OSSD process and give their feedback. Based on their

reviews/feedback, the proposed ‘generalised OSSD process’ was then further

improved.

7.2 Expert Review Approach

The expert review approach can be divided into six different phases as seen in

Fig. 7.1. In the first phase, the experts were identified, taking into account

three key criteria. These are:

 The experts should have sufficient knowledge about the various software

development processes and models.

 The experts should actively participate or should have actively

participated in the OSS development.

 The experts should have a good knowledge about how the OSS products

are developed as a whole in an OSS development environment

While selecting the experts, preference was given to those people who had

prior experience in OS e-learning system development. Once the experts were

identified, individual request were sent to them along with a two-page

document. This document briefly explained the back ground of this research,

the expected outcome, the validation process in order to provide them a fair

idea of what is expected from them. Depending on the received feedback and

the willingness to serve as reviewers, three experts were selected for the

validation process. The proposed OSSD process was then e-mailed to them so

that they could study and examine it well in advance.

80

Experts

Identification

Request

Identified

Experts & get

their approval

Select the tool

for collecting

validation results

Develop

Questionaire

Send OSSD

Process &

Validation

Questionnaire

Get their

feedback and

improve the

OSSD Process

 Fig. 7.1 Validation procedure

The next task for validation was to select an appropriate instrument/tool that

could be used as a means to collect the validation results. There are various

tools like diary method, interviews (online/telephonic/personal/mail),

questionnaire, observation, etc. However, the questionnaire based approach

was selected for this research work. This is because of the following three

reasons:

 The experts were geographically distributed. Hence, having a

questionnaire-based approach enabled them to give their feedback at

their own time and was not confined to do in a particular time.

 The questionnaire-based approach formed a direct basis where they

would have to answer specific questions with regard to the proposed

OSSD process. This would enable us to streamline the received

feedback; and improve the process accordingly. Further, this

questionnaire facilitate in collecting detailed information as compared to

interview/paper based surveys (constraint on time and length/pages of

questionnaire). In addition having a questionnaire helps in structuring the

questions especially when it has many branches, as in this work.

 Implementing a questionnaire was quick and cheap as compared to other

methods (Munn and Drever, 1990; Basili, et al., 1998).

Section 7.3 will present in detail the various aspects of the questionnaire and

how it was being developed. Further, once the questionnaire was developed, it

81

was sent to the OS experts for validation. They were initially given two weeks

time for completing the questionnaire and submitting the same. In case of any

further delay, a reminder e-mail was sent to them every week until they

responded to the e-mail or submits the questionnaire. Also, the experts were

free to ask any doubts or concerns with regard to either the questionnaire or the

proposed process itself. This helped in collecting the information as accurately

as possible. Once the experts completed the review and clicked on the ‘submit’

button, the results were emailed to me and also, a copy of their feedback was

saved for any future record. The results were then evaluated; and based on this

evaluation; the proposed OSSD process was improved. The next section

presents the format and the structure of the questionnaire for validation

purpose.

7.3 Validation Questionnaire

The validation questionnaire was developed as a web-based questionnaire. The

tool used to create the questionnaire was a web-service provided by ‘JotForm’

and can be accessed from www.jotform.com. The questionnaire was structured

into different sections based on various development stages of the proposed

OSSD process. This made it possible to collect and analyse the results easily

for each individual development stage. The questionnaire started with a section

dedicated for collecting personal/background information about each of the

experts. This helped in identifying the experts. Each of the sections had a title,

the instructions to answer the questions and followed by the question itself. At

the end of each section, the experts were provided a choice of either going to

the next section or go back to the previous section, in order to modify any

details/information provided. Importantly, the experts had to finish all the

sections and only then could submit their responses.

The questionnaire was composed of both close-ended questions like ‘Yes/No’;

‘Multiple choice’ questions and at the same time, also had open-ended

questions. The motive was to get their response on each and every

development stage and also about the over all process. In-addition, the experts

could provide their comments for each close-ended question. This helped in

http://www.jotform.com/

82

getting a detailed feedback from them. The word limit was restricted to 100

words for close-ended questions while it was 500 words for open-ended

questions. Importantly, all questions were mandatory. Hence, the experts had

to answer all questions in each section, though providing comments were kept

optional. For further details, please see Appendix B, which includes the entire

questionnaire that was used by the expert reviewers for validation.

The final three phases of validation shown in Fig. 7.1 comprised of six tasks

and is shown in Fig. 7.2.

Identify

Validation

Goal(s)

Design & refine

the questionnaire

Develop the

questionnaire as

a web-based tool

Send it to the

experts

Collect the

validation results

(feedbacks)

Analyse results

for improving the

process

 Fig. 7.2 Development and usage of the questionnaire

Before preparing a questionnaire for validating the OSSD process, it is

important to understand the need and the aims of such a process. Hence, as a

first task, the validation goals and aims were identified. The aim of validation

is four fold and is listed below.

 Verify whether the proposed OSSD process is feasible to be used in an

OS development environment.

 Verify whether the proposed OSSD process is ‘complete’ with all the

required stages of development.

 Get the experts feedback on the proposed process so that it can be

improved wherever required.

83

 Identify the concerns of the OS experts in using the process for

developing an OSS product in an OS environment.

Once the goals have been made clear, the questionnaire was structured,

developed and refined accordingly. The questionnaire was sent to three experts

for validation via e-mail with a personalised request, along with a web-link.

The professional experience of the three experts could be seen from Table 7.1.

The first two experts had worked in OSS development for 4 years and 3 years

respectively while the third expert had been working on OSS development as a

developer for less than a year. However, all the experts had sufficient

knowledge about various software development processes and also were well-

informed about the OSS development practices. Notably, all three experts

could directly access the questionnaire using the web-link. Further, the experts

validated the proposed OSSD process and submitted their comments/feedback

using the online tool.

Expert(s)

EXPERT 1 EXPERT 2 EXPERT 3

Years of experience 4 3 0.6

Number of OSS projects

worked on
2 2 1

Knowledge on OSS

Development Practises
Proficient Proficient Proficient

Table 7.1 Information on the expert’s professional experience

The questions asked in the questionnaire are available in Appendix C which

also includes the expert’s feedback/answers in a tabular representation.

Particularly, in case of objective-type questions; if the experts had

contradicting answers for a particular question, then the decision on OSSD

process alteration was done based on their comments.

7.4 Result Interpretation and Process Amendment

This section presents the feedback received from the experts for each of the

development stages along with the corresponding comments/opinion given by

the experts for improving the process. The experts gave their

84

opinion/comments for improving few stages which they were not completely

satisfied.

The results are discussed for each of the development stages, taking into

account the feedback received from individual experts. For each stage, the

individual experts’ feedback/concern is reported along with the reason for

concern. Further, a response is provided for each concern raised by the experts.

Finally, the proposed OSSD process is amended depending on the feedback/

comments and is presented accordingly. These amendments include - an

alteration to the development stage as a whole, alteration with regard to the

activities carried out or the frequency with which the development stage/

activities of a development stage are preformed, wherever necessary.

7.4.1 Feature Selection

7.4.1.1 Expert 1:

Feedback/Concern: According to the first expert, the ‘feature selection’ stage

was not realistic, especially because the proposed process suggests that the

entire community should participate in feature selecting before it is developed.

Reason for Concern: Going through the feedback of expert 1, it could be

made out that that the expert had compared the proposed process with the OSS

that the expert had been working with. His major concern was that the features

were developed only when funding was approved.

Response to the Concern: The issue of funding approval is not true for most

of the OSS products, as many of them are developed for addressing the

immediate need and hence, the OS developer does not wait for funding. The

OS community mainly invests time and effort in developing a feature. Hence,

the expert’s concern would not be significant, especially if the OS feature is of

high importance.

7.4.1.2 Expert 2:

Feedback/Concern: According to the second expert, there should not be an

over dependence on the core team.

85

Reason for Concern: According to this expert, the proposed way of feature

selection might be appropriate for small and very crucial features but might not

suit a very large feature. In fact, this might make the core team to spend lot of

time in feature selection.

Response to the Concern: Although he points out the core team cannot be

given too much authority, he also mentions that only the core team is capable

and hence, should be responsible for selecting and finalising the feature for

development. This was a self-contradicting statement.

7.4.1.3 Expert 3:

The third expert did not suggest any changes to this stage.

7.4.1.4 Amendment in Proposed OSSD Process:

The feature selection process was explicitly divided into two phases, based on

the feedback of the second expert. In the first phase, the OSS community

would take a lead in selecting the feature for development (for instance, voting

and suggestions). In the second phase, the core team would take the final call.

This would provide equal opportunity to both the core team and the

community in selecting the feature for development and would not make

anyone in the OSS community to feel less important.

7.4.2 Requirement Specification Stage

7.4.2.1 Expert 1 and Expert 3:

The first and third expert did not suggest any changes to this stage.

7.4.2.2 Expert 2:

Feedback/Concern: Freezing the feature requirement specification is too strict

for an OSS environment.

Reason for Concern: Freezing the feature requirement might result in the

feature not being improved/ elaborated. Further, in an OSS community, the

86

document should be kept open even during its development to the entire

community.

Response to the Concern: The proposed OSSD process suggests freezing the

feature requirement specification only for the immediately occurring feature

release. Also, the core team can freeze the requirement only if the entire

community or at least the working team agrees on the proposed feature

specifications. In addition, it is important to understand that the proposed

OSSD process visualises the OSS development as a continuously evolving

process. Hence, freezing the requirement would assist the community to focus

on developing the feature. Notably, if someone requires the feature to be

elaborated later, the OSS community would allow them to raise a request for

new development.

With regard to keeping the requirement document open at all stages to the

entire community, it is not a major issue and could be decided by the

respective OS community. However, an important point to be noted is that

publishing an incomplete, unclear document might create confusion among the

entire community. This was the main reason why the proposed OSSD process

suggested making the document open to the community once the initial version

is developed. The community could then provide suggestions/

recommendations for improving the same.

7.4.3 Design Specification Stage

7.4.3.1 Expert 1:

Feedback/Concern: The first expert again had a comment with regard to

arranging the finances for the design activities.

Response to the Concern: As previously mentioned; not all the OSS

developing community, aim to have finances arranged for developing an OSS

feature.

87

7.4.3.2 Expert 2 and 3:

Feedback/Concern: Allowing the entire community to validate the design

specification may be too tedious. Hence, only the core team should be given

full authority to validate the design process.

Response to the Concern: The proposed OSSD process suggested a similar

approach, with the additional prospect for the OS community to give their

suggestions with regard to improving the design. This was because; there could

be occasions where the unseen problems could be identified by third parties.

7.4.3.3 Amendment in Proposed OSSD Process: Having the design

specification validated by the entire OSS community is not mandatory but

would be highly recommended. The decision could be taken appropriately by

the core team depending upon the feature under development.

7.4.4 Implementation Stage

All three experts stressed and acknowledged the importance of the unit-testing

strategy adopted in this stage, in the proposed OSSD process.

7.4.4.1 Expert 1 and Expert 3:

The first and third expert did not suggest any changes to this stage.

7.4.4.2 Expert 2:

Feedback/Concern: The proposed OSSD process should emphasis on

publishing the inter-mediatory milestones that are usually achieved during the

software implementation stage.

Response to the Concern: This is an important point to be considered, as the

proposed process only suggested periodic update about development stage.

7.4.4.3 Amendment in Proposed OSSD Process:

The proposed OSSD process is modified such that, as and when the

community achieves a milestone (even if it is an intermediary one); it should

88

be published to the entire community. This would have an added advantage

that the development progress would be periodically revealed to all stake

holders.

7.4.5 Software Testing Stage

7.4.5.1 Expert 1:

The first expert did not raise any major concern and did not suggest any

changes to this stage.

7.4.5.2 Expert 2 and 3:

Feedback/Concern: Providing explicit criteria for testing before the OS

community start the actual testing might limit the overall testing scenario.

Further, the community as a whole should use a bug tracking system.

Reason for Concern: The tester might not look beyond the test case that is

already provided. The bug tracking system would ensure that all the bugs are

fixed.

Response to the Concern: Providing an explicit criterion for testing would

enable the new comers is the OS community to kick start their testing

expedition.

7.4.5.3 Amendment in Proposed OSSD Process:

The proposed OSSD process would stress the OSS community to incorporate a

bug-tracking system. Further, the process suggests performing testing activities

during various stages of development especially when multiple components

interact with each other.

7.4.6 Integration and Release Stage

One of the experts overlooked the necessity of verifying the software unit

produced with the requirement and design before release. On the other hand,

89

the other two experts stressed the importance of verifying it against the

requirement and design.

Hence, due to the majority of experts (two out of three) are in favour of

verification, the verification stage was maintained as originally proposed.

7.4.7 Summarizing the Process Amendment

All three OSS experts were fairly content with the proposed OSSD process and

also provided their feedbacks/comments for each individual development

stage. Out of six development stages, significant concerns were raised for three

stages. They were Feature Selection Stage, Design Specification Stage and

Software Testing Stage. Further, there was a concern with regard to the

Implementation Stage. These stages were amended in order to address the

reviewers concerns and to improve the overall process. Table 7.2 lists the

amendments with respect to the important activities carried out in major

development stages.

Development
Stages

Amendment(s) to the Process Activities

Feature selection

stage (Two-phase

stage with

iterations)

Feature selection is divided into two phases.

(i) In the first phase, community selects feature for

development.

(ii) In the second phase, core team takes the final call on all

the selected features before adding it to the roadmap.

Design

specification stage

(single-phase stage

with iterations)

Recommends that the entire community take part in

validation of the design documents but is optional.

Implementation

stage (single-phase

stage with

iterations)

(i) Publish all the inter-mediatory milestones to the entire

community.

(ii) Publish updates periodically regarding the development.

 Software testing

stage (single-phase

stage)

(i) Stresses on the usage of bug-tracking systems.

(ii) Recommends performing testing/review activities at

different stages of development rather than putting it as a

last one.

Table 7.2 Amendments to process activities

90

The amendment for Feature Selection stage includes dividing this stage into

two sub-stages. In the first sub-stage, the OSS community would select the

feature for development. In the second sub-stage, the core team would decide

on the features based on the community’s choice. For the Design Specification

Stage, the proposed process recommends that the entire community take part in

validation of the design documents. However it is not mandatory and could be

decided by the core team based on the feature under development. The

amendment to the Implementation Stage includes publishing the inter-

mediatory milestones along with the periodic updates. Finally for the Software

Testing Stage, the proposed process stresses on using bug-tracking systems.

This would help in tracking all the important bugs so that it can be fixed before

the release. Further, the proposed OSSD process suggests performing testing

activities during various stages of development, especially when multiple

components interact with each other.

Notably, a concern was raised by one of the expert on the Requirement

Specification Stage and Integration and Release Stage. However the reason

given by the expert was either inconsequential and/or biased. Therefore, no

changes were recommended to these two development stages.

7.5 Summary

In this chapter, various validation approaches appropriate for this research

work were discussed. Further, an explanation was provided on the selected

‘expert review’ approach followed by a detailed explanation on the

questionnaire-based technique that was selected to realize the ‘expert review’

approach. The feedback from the experts were then interpreted along with their

major concerns and the reasons for those concerns, Importantly, all the major

concerns were addressed and the proposed generalized OSSD process was

improved as when and where required. The next chapter would conclude the

thesis and particularly, revisit the research questions. Notably, it would point

out the advantages and limitations of this work, along with the potential future

research direction.

91

8. Conclusion and Discussion

8.1 Introduction

This is the final chapter of this thesis. It provides a brief insight to the research

work by revisiting the various research questions formulated at the beginning

of this thesis. The implication of the proposed OSSD process is then described

with respect to OS e-learning system development. Further, the limitations of

this work are presented along with the possible future work pertaining to this

research.

8.2 Research Insights - Revisiting Research Questions

The goal of this research work was to develop a generalised OSSD process that

would enable the OS community to work together and develop more efficient

OS e-learning systems. The fundamental question that defined the

development of new OSSD process was, “What approach should be followed

in order to design a generalized OSSD process?” Answering this broad

question required it to be broken down into four basic yet important research

questions. These are revisited in order to ensure that answers to these research

questions were considered completely while developing the new OSSD

process.

RQ1: What are the current development practices followed by the OS e-

learning product development communities?

To begin with, different OS e-learning systems were sampled and three

popularly used OS e-learning systems were selected as the basis. These

include, Moodle, ILIAS and Dokeos. Subsequently, the development practices

were analysed for each of the three OS e-learning systems which resulted in

deeper understanding of their current practices.

RQ2: How should the current development practices be assessed in order

to design a generalised OSSD process?

92

Each of the three selected OS e-learning systems was modelled using activity

flow diagrams. However, it had two major drawbacks. Firstly, this

representation did not identify exactly which actors were involved in carrying

out a particular activity/ task. Secondly, the activity flow representation did not

specify the outcome of a particular activity. In order to overcome these

drawbacks, DEMO methodology was adopted and DEMO models were

created for each of the three OS e-learning systems. These models facilitated in

identifying the following:

 Various implicit and explicit development stages

 Various activities carried out for each development stage

 Different actors involved in the development activities and

 Outcome of each development activities.

RQ3: How is the OSSD process designed based on previous findings?

The activity flow diagram and the DEMO models assisted in identifying the

output created by each activity. However, consolidating these results alone did

not help in developing the generalized OSSD process. This is because, various

e-learning communities followed different approaches towards software

development. Thereby, they differed in the execution of various development

stages and the corresponding activities. All of them produced a mix of various

other outcomes which made it difficult to generalise. Therefore, a well defined

standard, ISO/IEC 12207:2008 was used as a foundation tool in designing and

proposing the generalised OSSD process. The ISO/IEC 12207:2008 standard

provided a list of all desirable outcomes that one could produce when

executing the lower level process. These outcomes were comparable with the

outcomes identified using DEMO models. Subsequently, the result of DEMO

models and activity flow diagrams were used in conjunction with the standard

in order to develop the proposed OSSD process.

RQ4: What approach should be followed to assess the proposed process

and also to evaluate results of the appraisal?

93

This question could also be written as, “How should the proposed OSSD

process be evaluated?” In this research work, considerable deliberation was

done with regard to selecting an appropriate validation mechanism. Though the

proposed OSSD process was designed mainly for the OS development

community, in this case, it has been developed as a Master’s research work

carried out in an academic environment. Hence, due to the time and resource

constraints, the proposed OSSD process was validated using an ‘expert review’

method. Accordingly, the proposed generalised OSSD process was presented

to three external experts along with a detailed web-based questionnaire. Based

on their feedback, the results were then analyzed and the proposed OSSD

process was modified accordingly wherever required.

8.3 Implication

The proposed OSSD process described the different stages of development and

their ordering, the frequency with which each development stage is executed

and notably, the important activities involved in each stage. There were three

major issues identified with respect to OS e-learning systems – issues with

respect to software design, the user requirement not being addressed

sufficiently and lack of proper documentation (Chapter 2). These issues are

addressed in the proposed OSSD process and are mentioned below:

 The requirements should be verified not only by the core team but also

by the entire community. In fact, this should start with the feature

selection itself where the entire community should be encouraged to

select the features based on the initial description provided to them.

 Implementing a detailed design stage should be mandatory, wherein the

design documents would be produced by the development team. This

would enable the core team to access the feature to be developed and

also provide a clear picture of the feature, thereby advancing easily from

design to development. Further, having the design document would assist

the core team to verify whether the design had completely satisfied the

user requirements before development.

94

 Documents should be developed at various stages, starting from feature

selection stage till integration and release stage. However, in order to

reduce the amount of documentation, the proposed process suggested

keeping the documents brief, while encouraging the community to

follow their own template in developing these documents.

8.4 Research Outcomes

This research work began with understanding the current development

practices of three major OS e-learning systems (Moodle, ILIAS and Dokeos).

An in-depth analysis (comparable with case studies) of the three e-learning

systems was then performed. The result of this analysis was then presented

using activity flow diagrams. These activity flow diagrams identified the

implicit and explicit stages of development followed by the OS community.

This is the first and one of the quintessential inputs towards the proposed

OSSD process.

In order to build an abstract model independent of the development techniques,

the DEMO methodology was adopted to model the development activities of

Moodle, ILIAS and Dokeos. This identified both the outcome of each

development activity and also the persons responsible for bringing such

outcomes into existence. This type of modelling has not been done before for

interpreting the development practices followed by the OS e-learning

community. Hence, the DEMO models for OS e-learning systems are an

important research contribution and form a crucial input towards developing a

generalised OSSD process for e-learning systems.

Importantly, a generalized OSSD process has been proposed, taking into

consideration the ISO/IEC 12207:2008 standard. The proposed process has six

explicit development stages. These are:

1. Feature selection stage

2. Requirement specification stage

3. Design specification stage

4. Implementation stage

95

5. Software testing stage

6. Integration and release stage

It should be noted, that the feature selection stage mentioned in the proposed

OSSD process is unique to the OSSD and has not been explicitly considered

before. Significantly, specific activities pertaining to each stage have also been

suggested for the proposed OSSD process. In total, 18 important activities

have been suggested across the six development stages. However, the proposed

OSSD process does not specify the techniques to be used for performing the

various activities and keeps it flexible for the community to decide.

8.5 Limitations

It is important to understand that even though the proposed OSSD process has

undergone iterations based on the feedback received from external OSS

experts, the current form of the proposed OSSD process does have some

limitations. Some of the limitations are:

 The proposed generalised OSSD process has been designed based on the

comparison of current development practises followed in OS e-learning

systems development and the standard’s prescription. Subsequently, the

proposed process highlights only the major activities under each

development stage and does not list all the activities that have to be

performed during development of OS e-learning system.

 The success of an e-learning system depends to a large extent on the

ease-of-use/usability. This is because e-learning systems are used

simultaneously by different users with varied skill sets. For instance, an

e-learning system could be used simultaneously by a student with no

prior experience, by a teacher experienced in developing learning

contents; and also by an administrator who might be good in managing

the system as a whole but might not have experience in developing the

content itself. However, the proposed OSSD process does not explore the

usability aspect. Though its importance is understood, due to the time

constraint, the usability aspect is not explored in this research work.

96

 The proposed OSSD process provided a high level, abstract process for

OSS community. But it did not investigate extensively on other process

areas and activities. Specifically, it did not suggest precise activities

pertaining to any of the six development stages that could enable the

community to improve the product’s usability and there by the product

quality.

 In this research work, three different OS e-learning systems and their

current development practices were considered for developing a

generalized OSSD process for e-learning systems. However, other

popular OSS product’s development practises (e.g., OS web-browser)

were not considered for developing the proposed OSSD process.

 With regard to validation, when the experts were questioned about the

proposed process, they were inclined to compare it with the development

practices followed in their current OSS project. This hinders obtaining a

completely unbiased response.

 In this research, the validation was carried out by seeking reviews from

three OS experts. However, it is slightly debatable whether three reviews

are sufficient for improving an OSSD process. Further, the best method

of validation would be to follow the process for developing an OS e-

learning system feature. However, this could not be done in this work

due to time and resource constraints.

Some of the above mentioned limitations could be overcome and the proposed

OSSD process could be further adapted in the future.

8.6 Future Work

The proposed OSSD process is an initial, generalised, exemplification of the

process that could be followed in developing an OSS product. The software

process could be further adapted depending on the need and necessity of a

particular OSS community and/or the feature developed by them. Some of the

notable directions in which this research work could be extended are as

follows:

97

 Usability: It is a non-functional requirement of a software development

process. Also, it is an extremely important qualitative attribute that

assesses the ease-of-use of interactive software like an e-learning system.

This in fact has a direct influence towards the success of the e-learning

system. In this regard, it should be noted that the OS community could

be easily motivated to follow software development process as compared

to motivating them to follow usability guidelines (Twidale and Nichols,

2005). Hence, a notable future direction would be to work on integrating

the usability guidelines into the proposed OSSD process. This is quite a

challenging task in itself. The two big questions that need to be answered

here would be:

a. How to consolidate the usability guidelines specifically for e-learning

system?

b. What aspects are to be considered in consolidating the usability

guidelines for OS e-learning system?

 Inclusion of all Tasks and Activities: The generalised OSSD process

could be further elaborated such that it lists all required activities that are

to be performed by each of the OSS community during the different

stages of development. Further, the process could include all specific

tasks and activities pertaining to usability and all other quality attributes.

This would not only help in improving the product quality but also

enable the users to effectively use the product.

 Inclusion of Other OSS development Practices: In order to develop an

efficient OSSD process, the best developmental practises of different

OSS products needs to be incorporated. Currently, the best practices

from popular OS e-learning systems are alone considered for developing

the generalised OSSD process. However, other popular OSS product’s

(Apache, Mozilla, Linux, etc.) development practises should also be

considered and their best practices should be incorporated to enhance the

proposed generalised OSSD process.

 Comprehensive Validation: A best approach to validate the proposed

OSSD process is to develop different OS features based on the proposed

98

process. This approach would provide a much clearer picture, aide in

understanding the inherent weakness of the proposed process, provide a

deeper understanding of real world issues and importantly, identify the

areas where the proposed process would provide significant benefits.

99

References

Albani, A. and Dietz, J.L.G. 2011. Enterprise ontology based development of

information systems. Internet and Enterprise Management. 7(1). pp. 41-63.

Allen, E.I. and Seaman, J. 2008. Staying the Course. Online Education in

United States. United States of America: Babson Survey Research Group.

Allen, E.I. and Seaman, J. 2010. Class Differences. Online Education in

United States. United States of America: Babson Survey Research Group.

Allen, E.I. and Seaman, J. 2011. Going the Distance. Online Education in

United States. United States of America: Babson Survey Research Group and

Quahog Research Group, LLC.

Balogh, A. and Budai, A. 2009. Organizational Integration of ILIAS Services

at Dennis Gabor Applied University. IN: 8th International ILIAS Conference,

Nov 12-13, 2009.

Boehm, B.W. 1988. A Spiral Model of Software Development and

Enhancement. Journal of Computer, Publisher: IEEE Computer Society. 21(5).

pp. 61-72.

Basili, V., Shull, F., Lanubile, F. 1998. Using experiments to build a body of

knowledge. IEEE Transaction on Software Engineering. 25(4). pp. 456–474.

Basili, V. R. and Lonchamp, J. 2005. Open source software development

process modelling IN: Acuña, S. T. and Juristo, N. (eds.). Software Process

Modelling, 10. US: Springer. pp. 29-64.

Bernard, R.M., Abrami, P.C., Wade, C.A. 2007. A Summary of “Review of E-

Learning in-Canada A Rough Sketch of the Evidence, Gaps,and Promising

Directions”. Horizons policy research initiative. 9(3), pp.32-37. [Online]

Available from: http://www.horizons.gc.ca/doclib/HOR_v9n3_200702_e.pdf,

[Last accessed 02 July 2012].

100

Boufford, B. 2004. Issues with Open Source Software Development.

Community discussion: Social forum [online], 21 April. Available from:

http://moodle.org/mod/forum/discuss.php?d=7208. [Last accessed: 23 July

2011].

Budgen, D., Turner, M., Brereton, P. and Kitchenham, B. 2008. Using

Mapping Studies in Software Engineering. IN 20th Annual Workshop.

Psychology of Programming Interest Groups, Lancaster, UK.

Cantoni, V., Cellario, M. and Porta. M. 2004. Perspectives and challenges in e-

learning: towardsnatural interaction paradigms. Visual Languages and

Computing. 15(2004). pp. 333–345.

Cemal Nat, M., Dastbaz, M. & Bacon, L. 2008. Research and Design

Challenges for Developing Personalised eLearning Systems. IN: C. Bonk et al.

(Eds.), Proceedings of World Conference on E-Learning in Corporate,

Government, Healthcare, and Higher Education 2008. pp. 2536-2542.

Clarke, P. and O'Connor, R. 2010. Towards the identification of the influence

of SPI on the successful evolution of software SMEs IN: Dawson, R., Ross,

M., Staples, G. (eds.). Proceedings of the 18th International Conference on

Software Quality Management. pp. 29 – 40.

Curtis, B., Kellner, M.I. and Over, J. 1992. Process Modelling.

Communications of ACM, 35(9). pp.75–90.

Devine, J. 2008. Difference between Open, Free and Closed Source Software.

Ezine article, Computers and Technology: Software [online]. Avalibale from:

http://ezinearticles.com/?Differences-Between-Open,-Free,-and-Closed-

Source-Software&id=1329290, [Last accessed on 4th July 2011].

Dietz, J.L.G. 2006. Enterprise Ontology. Theory and Methodology. Springer-

Verlag, Berlin Heidelberg.

Dokeos. 2012. A 4 Million User Community [Online]. Available from:

http://dokeos.com/en/community.php

http://dokeos.com/en/community.php

101

Donovan, S. 1994. Patent, copyright and trade Secret protection for software.

IN: IEEE Potentials. 13(3). pp. 20-24.

Dyba, T. 2003. Factors of software process improvement success in small and

large organizations: an empirical study in the scandinavian context. IN:

Proceedings of the 9th European Software Engineering Conference held

jointly with 11th ACM SIGSOFT International Symposium on Foundations of

Software Engineering (ESEC/FSE-11).

Ellis, R.K. 2009. Field Guide to Learning Management Systems. American

Society for Training & Development - Learning Circuits [online]. Available

from: http://www.astd.org/NR/rdonlyres/12ECDB99-3B91-403E-9B15-

7E597444645D/ 23395/LMS_fieldguide_20091.pdf. [Last accessed 10 July

2011].

Feller, J. and Fitzgerald, B. 2002. Understand Open Source Software

Development. London: Pearson Education Limited.

Fuggetta, A. 2000. Software process: A Roadmap IN: International

Conference on Software Engineering: Proceedings of the Conference on

Future Software Engineering, Ireland. pp.25-34.

Fuggetta, A. 2003. Open source software – an evaluation. Journal of Systems

and Software. 66(1), pp. 77-90.

Ghosh, R.A., Glott, R., Krieger and Robles, G. 2002. Free/Libre and Open

Source Software: Survey and Study. International Institute of Infonomics

University of Maastricht, The Netherlands.

Glosiene, A., & Manzuch, Z. 2004. Usability of ICT-Based Systems, State-of-

the-Art Review. Calimera Project Deliverable 9 [online]. Available from:

www.calimera.org. [Last accessed on: 3rd July 2011].

Gruber, T. 1994. Toward Principles for the Design of Ontologies Used for

Knowledge Sharing. IJHCS. 43(5/6): 907-928.

http://www.astd.org/NR/rdonlyres/12ECDB99-3B91-403E-9B15-7E597444645D/
http://www.astd.org/NR/rdonlyres/12ECDB99-3B91-403E-9B15-7E597444645D/

102

Holz, H.J., Applin, A., Haberman, B., Joyce, D., Purchase, H. and Reed, C.

2006. Research methods in computing: what are they, and how should we

teach them?. SIGCSE Bull. 38(4). pp. 96-114.

Humphrey, W.S. 1988. Characterizing the Software Process: A Maturity

Framework. IEEE Software. 5(2). pp. 73-79.

Huysmans, P., Ven, K. and Verelst, J. 2010. Using the DEMO methodology

for modeling open source software development processes. Information and

Software Technology. 52(2010) pp. 656–671.

ILIAS. 2012. Open Source E-Learning System [Online]. Available from:

http://www.ilias.de/

International Standard 2008. ISO/IEC 12207:2008 Systems and software

engineering —Software life cycle processes. Second Edition (01/02/2008)

[Online]. Available from: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?

punumber=4475822

Jensen, C. and Scacchi, W. 2006. Experiences in Discovering, Modelling, and

Re-enacting Open Source Software Development Processes. IN: Li, M.,

Boehm, B. and Osterweil, L. (eds), Unifying the Software Process Spectrum.

Heidelber:Springer Berlin. pp. 449-462.

Jensen, C., Scacchi, W. 2008. Reference model based open source software

process discovery. Technical report. [online]. Available from:

http://rotterdam.ics.uci.edu/ papers/jensen-scacchi-oss07/Jensen-Scacchi-

OSS2007.pdf.[Last accessed on 10 July 2010].

Krogh, G.V. and Hippel, E.V. 2006. The promise of research on open source

software. Management science. 52(7). pp. 975-983

Kruchten, P. 2000. Rational Unified Process. Reading. Addison Wesley

publication.

http://www.ilias.de/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?%20punumber=4475822
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?%20punumber=4475822
http://rotterdam.ics.uci.edu/

103

Kruse K. 2009. The Benefits and Drawbacks of e-Learning [online].Available

from: http://e-learningguru.com. [Last accessed 9th October 2010].

Liaw, S. 2008. Investigating students’ perceived satisfaction, behavioural

intention, and electiveness of e-learning: A case study of the Blackboard

system. IN: Computers & Education. Vol.51(2008). pp. 864–873.

Lonchamp, J. 2005. Open source software development process modelling. IN:

Software Process Modeling, International Series in Software Engineering.

Vol.10. pp. 29–64.

Milojevic, Z.M. 2011. Web based training as a factor of quality improvement

for applying CNC technology. IN: 5th International Quality Conference –

Quality Research. pp. 553-564.

Mingshu Li, Barry W. Boehm, Leon J. Osterweil. 2006. Unifying the

Software Process Spectrum. Journal of Software. 17(4). pp.649−657.

Molich, R. and Jeffries, R. 2003. Comparative Expert Reviews. IN: CHI ’03

extended abstracts, Ft. Lauderdale, FL. pp. 1060–1061.

Moodle. 2012. Moodle Statistics[Online]. Available from:

http://moodle.org/stats/ [Last Accessed June 2012].

Munn, P. and Drever, E. 1990. Using questionnaires in small-scale research: a

teacher's guide. Scottish Council for Research in Education.

Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K. and Ye, Y. 2002.

Evolution Pattern of Open-Source Software Systems and Communities. IN:

Proceeding of Int.Workshop on Principles of Software Evolution (IWPSE

2002), Orland, Florida. pp. 76-85.

Oguzor, N.S. 2011. E-learning technologies and adult education in Nigeria.

Educational Research and Reviews. 6(4). pp. 347-349.

Open Source Initiative. 2012. Mission. [Online]. Available from:

http://opensource.org/

http://moodle.org/stats/
http://opensource.org/

104

Paulson, J.W. 2004. An empirical study of open-source and closed-source

software products. IEEE transactions on software engineering. 30(4). pp 246-

256.

Paulson, J. W., Succi, G., and Eberlein, A. 2004. An Empirical Study of Open-

Source and Closed-Source Software Products. IEEE Transaction on Software

Engineering. 30(4). pp.246-256.

Raymond, E.S. 1998. The Cathedral and Bazaar. First Monday, Peer Reviewed

Journal. 3(3). [online]. Available from: http://firstmonday.org/htbin/

cgiwrap/bin/ojs/index.php/fm/article/view/578/499, [Last accessed: 04th July

2011].

Scacchi , W. 2001. Software Development Practices in Open Source Software

development communities: A Comparative Case Study Making Sense of the

Bazaar. IN: First Workshop on Open Source Software Engineering, 23rd

International Conference on Software Engineering. [online]. Available from:

http://opensource.ucc.ie/icse2001/scacchi.pdf. [Last accessed 05 July 2011].

Scacchi, W., 2003. Issues and experiences in modelling open source

development. 3rd Workshop on Open Source Software Engineering.

Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S. and Lakhani, K. 2006.

Understanding Free/Open Source Software Development Processes. Software

Process: Improvement and Practice. 11(2). pp. 95-105. [online] Available

from: http://onlinelibrary.wiley.com/doi/10.1002/spip.255/pdf. [Last accessed

on 05 July 2011].

Scacchi, W. 2007. Free/Open Source Software Development: Recent Research

Results and Methods. Advances and Computers. 69. pp. 243-295.

Selim. H.M. 2007. Critical success factors for e-learning acceptance:

ConWrmatory factor models. Computers & Education. 49 (2007). pp.396–413.

http://firstmonday.org/htbin/%20cgiwrap/bin/ojs/index.php/fm/article/
http://firstmonday.org/htbin/%20cgiwrap/bin/ojs/index.php/fm/article/

105

Shea, R.H. 2002.E-learning today—As an industry shakes out, the survivors

offer no-frills education for grown-ups.U.S. News & World Report. October

28, 2002.

Sommerville, I. 2004. Software Engineering. 7th ed. Published by Pearson

Education: England.

Stamper, R.K. 1973. Information in business and administrative systems. B. T.

Batsford: London and New York: Wiley.

Stockley D (2003). E-learning Definition and Explanation. ECampus.com.au.

Tavangarian D., Leypold M.E., Nölting K., Röser M.,Voigt, D. (2004). Is e-

learning the Solution for Individual Learning? Electronic Journal of e-

Learning. 2(2). pp. 273-280.

Twidale, M.B. and Nichols, D.M. 2005. Exploring usability discussion in open

source development. IN: Proceedings of the 38th Annual Hawaii International

Conference on System Sciences, HICSS'05.

Tyrrell, S. 2000. Many Dimensions of the Software Process. The ACM

Crossroad Student Magazine, 6(4). pp.22-26.

Tysver, D.A. 2008. Why Protect Software Through Patent. [Online]. Available

from: http://www.bitlaw.com/software-patent/why-patent.html

Vredenburg, K., Mao, J.Y., Smith, P.W. and Carey, T. 2002. A survey of user-

centered design practice. IN: Proc. of the SIGCHI Conference on Human

Factors in Computing Systems:Changing Our World, Changing Ourselves pp.

471-478.

Ye, Y. and Kishida, K. 2003. Towards the understanding of the motivation of

open source software developers. IN: Proceedings of 2003 International

Conference on Software Engineering, Oregon, pp 419-429, May 3-10.

Yong, J. 2008. Enhancing the Privacy of E-Learning Systems with Alias and

Anonymity. IN: Proceedings of CSCWD 2007, LNCS 5236. pp 534-544.

http://www.bitlaw.com/software-patent/why-patent.html

106

Zahran S. 1994. The software process—what it is, and how to improve it. IN:

Proceedings of Software Quality Management II. Vol.1: Managing Quality

Systems, Computational Mechanics Publications: Glasgow, UK, 215–231.

Zhang, D., Zhao, J.L., Nunamaker, Jr., J.F. 2004. Can E-learning Replace

classroom Learning?. The Communications of ACM. 47(5). pp. 75-79.

I

APPENDIX A

Benefits and Drawbacks of E-Learning Systems

In general, there are three classes of users for any e-learning system. This

includes,

 Learner

 Instructor

 Organization intending to use and provide the e-learning system

It should be noted that the benefits and drawbacks of an e-learning system will

be different for different classes of people.

A.1 Benefits

A.1.1 Benefit to the Learners

From the learner’s perspective, there are several significant benefits of using

an e-learning system. These include (Kruse, K. 2009; Rosenberg, M. 2009):

 On-demand availability of learning materials that enables the learner to

learn anywhere and anytime.

 On-line learning materials enable the learner to learn at his/her own pace

which not only leads to higher satisfaction but also assists the learner in

achieving his/her learning objective, with significantly reduced stress.

 Interactively engage users, thereby creating inquisitiveness among the

users to learn.

 Confidence building measure among the learners by providing them with

quick reference materials.

 Decreased time to learn through an intelligent combination of different

media formats and animations.

II

A.1.2 Benefits to the Instructor/Educator

The benefits of e-learning to the instructor are (Bates, A.W. 1997; Kruse, K.

2009).

 Assistance in improving access to education, training materials and

support.

 Improvement in the overall quality of learning which benefits the

instructor

 Reduction in the energy and cost of travelling (Fletcher, J.D. 1991)

 Training and knowledge transfer in very specific domains can be

accomplished easily, efficiently and in a cost-effective manner. This is

true in higher-educational institutions and also in industries/corporate

world (Fletcher, J.D. 2009).

 Tedious and laborious mechanisms of learning like providing written

materials, proofs, documentation, etc. can be automated.

Reduced cost is said to be one of the prominent factor in adopting e-learning

systems and is seen not only in educational sector; but also in industrial level,

e-learning is used extensively for training purposes.

A.1.3 Benefits to the Institution/Organization

The benefits hold to both the institution acquiring the e-learning system and

also the organization that actually develops and provides the e-learning system

(Kruse, K. 2009). The benefits are:

 Provide consistent, worldwide training to its employees/learners.

 Reduce delivery cycle time.

 Increase learner convenience.

 Reduce information overload.

 Improve tracking and

 Significantly lower expenses compared to multi-location class room

coaching.

III

An important point to be noted from above is that, an e-learning system

provides a clear and distinct benefit to each class of people.

A.2 Drawbacks

An e-learning system has few drawbacks as well, both due to technical and

non-technical aspects. These are mentioned as follows:

A.2.1 Drawbacks to the Learners

The drawbacks of an e-learning system from the learner’s perspective are:

(Rosenberg, M. J. 2001; Kruse, K. 2009).

 Many learners, especially those who are not from the ICT background

are techno-phobic, i.e., they either do not understand or are too awed by

the technological component of the system design.

 Huge number of learners does not have access to adequate technological

resources. This serves as a major hindrance to the potential learners.

 Reduced social and cultural interaction, which in-turn narrows the

thinking ability of the learner.

A.2.2 Drawbacks to the Acquiring Institutions

 Acquiring an e-learning system requires huge upfront investments. This

is usually a major bottleneck that prevents an institution in acquiring a

high-quality learning system.

 The institution has to ensure that that the instructor or any 3rd party

vendor produces sufficient learning content. This is a major task and

requires huge investment in terms of time and energy.

 The technology and the infrastructure of the institution should be

compatible with the requirements of the e-learning system.

Over the recent years, with wider acceptance of technology and with a greater

understanding of the holistic benefits that could be accrued through e-learning,

most of the drawbacks have been losing their importance, especially in

developed countries and economies. However, the issues are still relevant and

IV

cannot be ignored completely. Further, OS LMS, if and when effectively

designed, could overcome several disadvantages. For instance, the upfront

investments for using commercial e-learning system can be avoided by going

for an OS e-learning systems. Continuing further, several

individuals/organizations would switch/have been switching from CS to OS e-

learning products if and when they find the e-learning product to be:

 Flexible

 Inclusive

 Authentic

 Relevant

 Effective and

 Globally accepted

V

APPENDIX B

B.1 OS Expert-Validation Questionnaire

B.1.1 Purpose of the Questionnaire for Validation

The purpose of this questionnaire is to validate the proposed OSSD process for

developing OS e-learning systems. This questionnaire aims to extract

information on the following:

 Whether the proposed OSSD process supports all necessary stages of

development that are required for developing an OS e-learning system.

 Whether the developmental stages are in correct order.

 Whether the development stages iterated sufficiently.

 In the proposed OSSD process, some of the activities and their respective

outcomes are made mandatory. The questionnaire aims to verify whether

it is necessary and feasible in OS environment.

In addition to these, the experts are also requested to give:

 Details of any changes that they consider to be beneficial to the OSSD

process.

 Critique on all the stages of development, highlighting both the negative

and positive aspects of the OSSD process.

B.1.2 Structure of the Questionnaire

The questionnaire is developed as a web-form (using jot forms –

www.jotforms.com) which the experts can access from anywhere and can

submit it online once they are done with it. The questionnaire itself is divided

into various sections for ease of analysis. It starts with expert’s identification

and their OS experience in order to identify their credentials. Then the

questionnaire advances towards the validation of OSSD process where it is

divided based on different stages of development.

http://www.jotforms.com/

VI

Most of the questions are objective type questions where the experts are

requested to select the answer(s). On an average, there are four objective type

questions per section. The experts also have an option of providing

comments/feedback for each of the questions and it can be of maximum 100

words.

There are few subjective type questions and its focus is to get the experts

personal opinion/experiences, their critique on the OSSD process and further

feedback. Maximum of 500 words is allowed for the same. Finally, the experts

have to answer all of the questions and submit it once it is done.

B.1.3 Questionnaire

Expert Identification

First Name: _______________________________

Last Name: ________________________________

E-mail ID: _________________________________

SECTION 1 - Background Details

[Please answer all the questions.]

1. How many years of experience do u have in open source (OS)

development?

___________ (in years).

2. For how long are you working in the current project?

___________ (in years).

3. What is your current project role?

 Project leader

 Developer

 QA analyst

 Others

Others (Please specify): ______________________

VII

4. What are the activities do you currently work on? (Please select all

that applies)

 Software requirement

 Design

 Coding & unit testing

 Testing/Integration

 Software quality assurance

 Process improvement

5. Do you follow any specific software development process?

 Yes

 No

If YES, please give details: ________________________

6. Do you have any previous experience in software process

improvement?

 Yes

 No

If YES, Please brief on your role: ______________________

SECTION 2 – Software Practice – Feature / Requirement selection

[Please answer all the questions. If you have answered “No” / “Don’t know”,

please provide your comment(s) in the comment text box]

1. Do you think a particular feature should be developed, only after the

selection and approval of the same by the core community?

 Yes

 No

 Maybe

 Don’t know

Comments: __________________________

VIII

2. Do you think it is a good practice to demonstrate the necessity of a

feature before selecting the same?

 Yes

 No

 Maybe

 Don’t know

Comments: __________________________

3. Whom do you think is responsible for selecting and finalising the

feature for development?

 Community

 Core team

 Both

 Don’t know

Comments: __________________________

4. Proposed OSSD process requires a brief description of each candidate

feature to be published for better selection. Do you think it is a good practice to

be carried out?

 Yes

 No

 Maybe

 Don’t know

Comments: __________________________

5. Do you think it is necessary to publish the contact details of a

person/team for each of the candidate feature (which might helps in further

discussions) before the selection process?

 Yes

 No

 Maybe

IX

 Don’t know

Comments: __________________________

6. Do you think the proposed OSSD process needs any change with

respect to feature selection? If so, please provide details in the comment text

box below. (Max. 500words)

Comment: ___

7. Please provide your detailed critique on OSSD process’s feature

selection in the comment textbox below. (Max. 500words)

Comment: ___

SECTION 3 – Software Practice – Requirement Management

[Please answer all the questions. If you have answered “No” / “Don’t know”,

please provide your comment(s) in the comment text box]

1. Do you think that the OS community will appreciate the idea of

developing the requirement specification for all selected feature before

development?

 Yes

 No

 Maybe

 Don’t know

Comments: __________________________

2. Do you think it is feasible in an OS environment to develop a

requirement specification document for all selected feature before

development?

 Yes

 No

X

 Maybe

 Don’t know

Comments: __________________________

3. Do you think the OS community will use the requirement

specification document as a basis for developing/adjusting development

plan/development activities that are to be carried out for implementing a

feature?

 Yes

 No

 Maybe

 Don’t know

Comments: __________________________

4. Do you think it is important to review the requirement specification

before proceeding further?

 Yes

 No

 Maybe

 Don’t know

Comments: __________________________

5. Do you think the proposed OSSD process needs any change with

respect to the requirement management? If so, please provide details in the

comment text box below. (Max. 500words)

Comment: ___

6. Please provide your detailed critique on OSSD process’s requirement

management in the comment textbox below. (Max. 500words)

Comment: ___

XI

SECTION 4 – Software Practice – Design Process

[Please answer all the questions. If you have answered “No” / “Don’t know”,

please provide your comment(s) in the comment text box]

1. Proposed OSSD process makes it necessary to develop a brief and

clear design document. Do you think it is practicable in an OS environment?

 Yes

 No

 Maybe

 Don’t know

Comments: __________________________

2. Do you think it is sufficient, if the core team alone validates the

design documents?

 Yes

 No

 Maybe

 Don’t know

Comments: __________________________

3. Do you think it is important to communicate and share these design

documents with the entire community before proceeding towards

implementation?

 Yes

 No

 Maybe

 Don’t know

Comments: __________________________

4. Do you think it is practical to allow the entire community to validate

the design document before implementation?

XII

 Yes

 No

 Maybe

 Don’t know

Comments: __________________________

5. Do you think the proposed OSSD process needs any change with

respect to design process? If so, please provide details in the comment text box

below. (Max. 500words)

Comment: ___

6. Please provide your detailed critique on OSSD process’s design

process in the comment textbox below. (Max. 500words)

Comment: ___

SECTION 5 – Software Practice – Software Implementation

[Please answer all the questions. If you have answered “No” / “Don’t know”, please

provide your comment(s) in the comment text box]

1. Proposed OSSD process makes it necessary to develop and share a

very brief implementation document before proceeding further. Do you think it

is a good practice?

 Yes

 No

 Maybe

 Don’t know

Comments: __________________________

2. Do you think that sharing implementation document will enable the

community to easily and actively participate in the feature development?

 Yes

XIII

 No

 Maybe

 Don’t know

Comments: __________________________

3. Do you think developing a unit testing strategy and validation of the

same by the core team is practical in an OS environment?

 Yes

 No

 Maybe

 Don’t know

Comments: __________________________

4. Do you think the unit testing strategy should be shared with the entire

community for better verification and validation of the feature?

 Yes

 No

 Maybe

 Don’t know

Comments: __________________________

5. Do you think the proposed OSSD process needs any change with

respect to software implementation? If so, please provide details in the

comment text box below. (Max. 500words)

Comment: ___

6. Please provide your detailed critique on OSSD process’s software

implementation process in the comment textbox below. (Max. 500words)

Comment: ___

XIV

SECTION 6 – Software Practice – Quality Assurance

[Please answer all the questions. If you have answered “No” / “Don’t know”,

please provide your comment(s) in the comment text box]

1. Do you think the proposed OSSD process provides sufficient room

for quality assurance activities?

 Yes

 No

 Maybe

 Don’t know

Comments: __________________________

2. Do you think the proposed OSSD process allows sufficient space for

providing reviews/feedbacks by its community towards feature development?

 Yes

 No

 Maybe

 Don’t know

Comments: __________________________

3. Do you think there is enough space for addressing the

feedbacks/reviews before the feature is released?

 Yes

 No

 Maybe

 Don’t know

Comments: __________________________

4. Should the community be provided with a defined set of criteria for

testing?

 Yes

XV

 No

 Maybe

 Don’t know

Comments: __________________________

5. If ‘YES’, should the criteria be created/validated by the core team

before giving it to the community members for testing?

 Yes

 No

 Maybe

 Don’t know

Comments: __________________________

6. Do you think the proposed OSSD process needs any change with

respect to software quality assurance? If so, please provide details in the

comment text box below. (Max. 500words)

Comment: ___

7. Please provide your detailed critique on OSSD process’s quality

assurance activities in the comment textbox below. (Max. 500words)

Comment: ___

SECTION 7 – Software Practice – Software Integration and Release

[Please answer all the questions. If you have answered “No” / “Don’t know”,

please provide your comment(s) in the comment text box]

1. Do you think identifying the release-item(s) well before the release

will help the community to plan/develop efficiently?

 Yes

 No

 Maybe

 Don’t know

XVI

Comments: __________________________

2. Do you think developing and sharing an integration strategy before

release will help the OS community?

 Yes

 No

 Maybe

 Don’t know

Comments: __________________________

3. Proposed OSSD process requires verification of the software unit

produced with the requirement & design before release. Do you think it is a

necessary step to be carried out before release?

 Yes

 No

 Maybe

 Don’t know

Comments: __________________________

4. Do you think it is a good practice to explicitly communicate about the

release and the release items to all the affected parties?

 Yes

 No

 Maybe

 Don’t know

Comments: __________________________

5. Do you think the proposed OSSD process needs any change with

respect to software integration and release? If so, please provide details in the

comment text box below. (Max. 500words)

XVII

Comment: ___

6. Please provide your detailed critique on OSSD process’s software

implementation & release process in the comment textbox below. (Max.

500words)

Comment: ___

SECTION 8 – General Feedback on the Proposed OSSD Process

1. Do you think the proposed OSSD process have all the necessary

stages of development? (Max. 500words)

Feedback:

__

2. Do you think the development stages are ordered correctly and are

iterated sufficiently? (Max. 500words)

Feedback:

__

3. Please highlight both the negative and positive aspects of the

proposed OSSD process. (Max. 500words)

Feedback:

__

XVIII

APPENDIX C

C.1 OS Expert-Validation Results

C.1.1 Expert – 1

Question Answer

1. Full Name Expert 1

2. E-mail -

3. How many years of experience do you have

in open source software (OSS) development?
4

4. How many different OSS projects have you

worked on?
2

5. For how long are you working on your latest

OSS project ? (in years)
4

6. What is your current project role? (select as

many as applies and others please specify)
Others

Others:

E-Learning

Consultant in

university, using a

open-source Learning

Management system

7. What are the different software development

activities do you currently work on? (select as

many as applies and others please specify)

Software requirement

Testing/Integration

8. Do you follow any documented software

development process?
Yes

If 'YES" can you very briefly describe it?

At we do see the dev

guideline of ILIAS.

There we can see

who the maintainers

are, and who is

testing the different

components. Every

summer, we do test

some components,

and for this we do get

XIX

a large xls-document

with all test-cases.

At , we write all our

feature-requests.

Everyone of the

community can then

add comments. Then

we can add the

feature-request to a

jour-fixe. Everyone

can take part in this

jour-fixe, but in most

cases, only the core-

team does join this

jour-fixe. If a feature-

request is accepted,

then we must find

funding, and a

programming-

"company". We do

also have a feature-

freeze.

At , we do see the

roadmap.

At , we do report

bugs.

There are also

accepted and

implemented

guidelines: . If a

guideline is not used,

we can add a bug-

report.

1. Do you think a particular feature should be

developed only after its selection and approval

by the core community?

No

Comments / feedback:
No, not every feature

must have an

XX

approval by the core

community. But

every big feature

(like e-Portfolio in

ILIAS) must be

accepted by the core

community. But the

community should

have the possibility to

add comments to a

particular feature.

2. Do you think it is a good practice to

demonstrate the importance and need of a

particular feature before selecting the same?

Don't know

Comments / feedback:

It is a good procedure

that every feature for

the core must be open

to the community, so

every feature must be

described in a wiki or

another tool. It is also

important, that

feature-descriptions

do explain why this

feature is important.

3. Whom do you think is responsible for

selecting and finalizing the feature for

development?

Both

Comments / feedback:

Both. The community

does have the needs,

the ideas, the end-

users. But only the

core-team does know

exactly the whole

concept of a system.

4. The proposed OSSD process requires a brief

description of each candidate feature to be

published for selecting the right feature. Do

you think that performing this task is a good

practice?

No

XXI

Comments / feedback:

This is overkill. In

(our) open source

community, most

features will only be

developed if there is

some funding. So

selecting the right

feature is in most

cases not an option.

OS-Communities can

only say: "Good idea

- we like and accept it

/ and give

comments", or "Bad

idea - develop it in a

branch, or develop a

plug-in".

5. Do you think it is necessary to publish the

contact details of a person/team for each of the

candidate feature (which might help in further

discussions) before the selection process?

Both

Comments / feedback:

6. Do you think the proposed OSSD process

needs any change with respect to feature

selection? If so, please provide your details in

the text box below.

The first stage is not

realistic. There is

really (in our LMS)

no selection possible.

Important features

will be financed with

funding of the

institutions-members

of the community.

All other features will

only be developed if

someone has the

funding. And all

feature-requests can

be open to the

community from the

beginning.

7. Please provide your detailed critique on the

proposed OSSD process's feature selection in
No more comments

XXII

the text box below.

1. Do you think that the OSS community will

agree with the idea of developing requirement

specification for all selected feature before

development?

Maybe

Comments / feedback:

2. Do you think it is feasible in an OSS

environment to develop a requirements

specification document for all selected features

before the development starts?

Maybe

Comments / feedback:

Not for all

developments, but for

the big ones, a

requirement

specification

document is useful.

3. Do you think the OSS community will use

the requirement specification document as a

basis for developing/adjusting development

plan/development activities that are to be

carried out for implementing a feature?

Yes

Comments / feedback:

4. Do you think it is important to review the

requirements specification by the OSS

community even before the design process?

Maybe

Comments / feedback:

5. Do you think the proposed OSSD process

needs any change with respect to requirements

management? If so, please give us your

feedback / comments in the text box below.

No

6. Please provide your detailed critique on the

proposed OSSD process's requirements

management in the text box below.

The question is: Who

does finance the

design-experts in the

design specification

stage. This is an

important thing, but i

do not see a solution

yet. Programming

XXIII

companies do have

knowhow in writing

specifications and

programming, the

community knows

their needs, but we do

need a usability and

design-team, who can

give good feedback.

1. The proposed OSSD process makes it

necessary to develop a brief and clear design

document. Do you think it is practicable in an

OSS environment?

Yes

Comments / feedback:

2. Do you think it is sufficient for the core team

alone to validate the design document?
Maybe

Comments / feedback:

3. Do you think it is important to communicate

and share these design documents with the

entire community before proceeding towards

the implementation phase?

Yes

Comments / feedback:

4. Do you think it is practical to allow the

entire community to validate the design

documents?

Yes

Comments / feedback:

5. Should the entire community be involved in

the validation of design documents?
Yes

Comments / feedback:

6. Do you think the proposed OSSD process

needs any change with respect to the design

process? If so, please give us your feedback /

comments in the text box below.

Already written.

7. Please provide your detailed critique on the

proposed OSSD process's design process in the

text box below.

-

1. The proposed OSSD process makes it Yes

XXIV

necessary to develop and share a very brief

implementation document before actually

implementing (coding). Do you think it is a

good practice?

Comments / feedback:

2. Do you think, that sharing the

implementation document will enable the

community to easily and actively participate in

the feature development?

Yes

Comments / feedback:

3. Do you think developing a unit testing

strategy and validation of the same by the core

team is practical in an OSS environment?

Yes

Comments / feedback:

4. Do you think the unit testing strategy should

be shared with the entire community for better

verification and validation of the feature?

Yes

Comments / feedback:

5. Do you think the proposed OSSD process

needs any change with respect to software

implementation? If so, please give us your

feedback / comments in the text box below.

-

6. Please provide your detailed critique on the

proposed OSSD process's software

implementation in the text box below.

-

1. Do you think the proposed OSSD process

provides sufficient room for quality assurance

activities?

Yes

Comments / feedback:

2. Do you think the proposed OSSD process

provides sufficient space for providing

reviews/feedback by its community towards

feature development?

Yes

Comments / feedback:

3. In the proposed OSSD process, do you think

there is enough space for addressing the
Yes

XXV

feedback/reviews before the feature is

released?

Comments / feedback:

4. Should the community be provided with

explicit criteria (on - what they should look for)

before they start the testing?

Yes

Comments / feedback:

5. If 'YES', should the criteria be created

/validated by the core team before giving it to

the community members for testing?

Yes

Comments / feedback:

6. Do you think the proposed OSSD process

needs any change with respect to software

quality assurance? If so, please give us your

feedback / comments in the text box below.

-

7. Please provide your detailed critique on the

proposed OSSD process's quality assurance

activities in the text box below.

-

1. Do you think identifying the release item(s)

well before the release will help the community

to plan/develop the feature efficiently?

Yes

Comments / feedback:

2. Do you think developing and sharing an

integration strategy before release will help the

OSS community?

Yes

Comments / feedback:

3. The proposed OSSD process requires

verification of the software unit produced with

the requirement and design before release. Do

you think it is a necessary step to be carried out

before release?

Yes

Comments / feedback:

4. Do you think it is a good practice to

explicitly communicate about the release and

the release items to all the affected parties

(entire community, commercial users, etc.)?

Yes

XXVI

Comments / feedback:

5. Do you think the proposed OSSD process

needs any change with respect to the software

integration and release? If so, please give us

your feedback / comments in the text box

below.

-

6. Please provide your detailed critique on the

proposed OSSD process's software

implementation & release process in the text

box below.

-

1. Do you think the proposed OSSD process

has all the necessary stages of development?
Yes

2. Do you think the development stages are

ordered correctly and are iterated sufficiently?

Stage1 is in some

OS-Software-

developments not

possible.

3. Please highlight both the negative and

positive aspects of the proposed OSSD process.

Negative: Testing is

not fun, but

necessary.

Positive: Design

process! - this is

really a necessary

stage.

C.1.2 Expert – 2

Question Answer

1. Full Name Expert 2

2. E-mail -

3. How many years of experience do you

have in open source software (OSS)

development?

3

4. How many different OSS projects have

you worked on?
2

5. For how long are you working on your

latest OSS project ? (in years)
1

6. What is your current project role? (select Project leader

mailto:iovanalex@gmail.com

XXVII

as many as applies and others please

specify)

Developer

Others:

7. What are the different software

development activities do you currently

work on? (select as many as applies and

others please specify)

Design

Coding & unit testing

8. Do you follow any documented software

development process?
No

If 'YES" can you very briefly describe it?

1. Do you think a particular feature should

be developed only after its selection and

approval by the core community?

May be

Comments / feedback:

if the developer want to do

that in his spare time, why

not;

if the result is ok it can be

proposed to the community

and will be included in the

process with some

improvements if necessary

2. Do you think it is a good practice to

demonstrate the importance and need of a

particular feature before selecting the

same?

May be

Comments / feedback:

as i said above, if someone

want to work on that in his

spare time why

demonstrating ?

if the feature is already

requested by the

community than it's value

is already validated;

if the implementation if

difficult than it might be

useful to make a demo as a

proof of concept and recruit

more developers;

3. Whom do you think is responsible for Core team

XXVIII

selecting and finalizing the feature for

development?

Comments / feedback:

they already know the inner

workings of the existing

code and could see where

the tweaking has to be done

4. The proposed OSSD process requires a

brief description of each candidate feature

to be published for selecting the right

feature. Do you think that performing this

task is a good practice?

Yes

Comments / feedback:

5. Do you think it is necessary to publish

the contact details of a person/team for

each of the candidate feature (which might

help in further discussions) before the

selection process?

Both

Comments / feedback:

I’m not sure if the

questionnaire options are

correlated with the

question;

anyway the contact

coordinates have to be

published so that a

prospective person

interested in finding more

info regarding the feature

know whom to contact;

6. Do you think the proposed OSSD

process needs any change with respect to

feature selection? If so, please provide

your details in the text box below.

depending on the project i

would propose switching

between core team and

community as that in the

first phase community

should propose and vote a

specific set of features to

be submitted for analysis to

the community and in the

second phase the core team

will give their feedback on

what can/can't be done and

XXIX

why;

in a large project you

solution can waste the time

of the core team and

anyway if the project has a

big community (eg.

Drupal) there are a lot of

skilled developers who can

spot interesting features;

you solution gives to much

power to the core team and

they can misguide the

project by not

implementing some of the

features at their free will;

7. Please provide your detailed critique on

the proposed OSSD process's feature

selection in the text box below.

see above

1. Do you think that the OSS community

will agree with the idea of developing

requirement specification for all selected

feature before development?

Maybe

Comments / feedback:

it depends of the project

and the adopted

development methodology;

most of the small projects

won't use that and some of

the large projects won't use

either because not having

requirements gives them

more freedom to

implement the feature as

they wish and make some

shortcuts in the

development

2. Do you think it is feasible in an OSS

environment to develop a requirements

specification document for all selected

features before the development starts?

Maybe

Comments / feedback: see above

XXX

3. Do you think the OSS community will

use the requirement specification

document as a basis for

devoloping/adjusting development

plan/development activities that are to be

carried out for implementing a feature?

Maybe

Comments / feedback:

if they agree (see question

3.1) they should use it

because they have it;

if someone from the core

team will advocate 'pro'

this methodology it will be

used for one feature and

depending on how it's

working (if it is good for

the final outcome) they will

decide to use it or not for

the following features

4. Do you think it is important to review

the requirements specification by the OSS

community even before the design

process?

No

Comments / feedback:

5. Do you think the proposed OSSD

process needs any change with respect to

requirements management? If so, please

give us your feedback / comments in the

text box below.

the requirements should be

public entirely; it's and OS

process and the

development documents

are part of the project so

why not showing to the

community that you are

working on something...;

as i said in section 2 and 3

my opinion is to involve

the community before the

core team; it does not

worth investing time and

resources for developing all

this documentation if the

community does not want

this particular feature;

regarding the final

XXXI

statement of this section: it

is too early to freeze

anything; we are not a

corporation and we are

working for our own

pleasure;

if you will impose too strict

guideline you risk loosing

people endangering the

project

6. Please provide your detailed critique on

the proposed OSSD process's requirements

management in the text box below.

see above

1. The proposed OSSD process makes it

necessary to develop a brief and clear

design document. Do you think it is

practicable in an OSS environment?

Maybe

Comments / feedback:

2. Do you think it is sufficient for the core

team alone to validate the design

document?

Yes

Comments / feedback:

they know the inner

workings of the project;

they are the only

responsible for the well

being of the project and can

understand possible

problems that will arise

from a particular design;

the community is not

interested on how it will

implemented but only that

is will be there, when and

how will they be able to

use it;

3. Do you think it is important to

communicate and share these design

documents with the entire community

before proceeding towards the

implementation phase?

Maybe

XXXII

Comments / feedback:

to share but not to discuss;

in a large project there will

be always 'wise' people

with ideas but if they don't

want to work on the

particular feature let them

keep their ideas; if they

want to work then they will

be on the dev team and

obviously they will discuss

the design decisions;

the documents should be

published because they

prove that something is

happening on the feature;

4. Do you think it is practical to allow the

entire community to validate the design

documents?

No

Comments / feedback: see above

5. Should the entire community be

involved in the validation of design

documents?

No

Comments / feedback: see 3

6. Do you think the proposed OSSD

process needs any change with respect to

the design process? If so, please give us

your feedback / comments in the text box

below.

...

7. Please provide your detailed critique on

the proposed OSSD process's design

process in the text box below.

...

1. The proposed OSSD process makes it

necessary to develop and share a very brief

implementation document before actually

implementing (coding). Do you think it is a

good practice?

Maybe

Comments / feedback:

depending on the type of

project and structure of the

dev team;

XXXIII

on a small project it is

useless and also on a

geographically localized

one or when the coders

have a good

communication between

them; there might be 5 devs

which already know each

other and work

symbiotically;

in large projects or when

the coders don't work

together it is a good

document;

2. Do you think, that sharing the

implementation document will enable the

community to easily and actively

participate in the feature development?

Maybe

Comments / feedback:

the selected coders will

work most actively; if in

the middle of the project

someone wants to join

them it may benefit from

such a document but is

quite unlikely;

3. Do you think developing a unit testing

strategy and validation of the same by the

core team is practical in an OSS

environment?

Maybe

Comments / feedback:

the strategy as a political

guideline but nothing

specific;

4. Do you think the unit testing strategy

should be shared with the entire

community for better verification and

validation of the feature?

Yes

Comments / feedback:

5. Do you think the proposed OSSD

process needs any change with respect to

software implementation? If so, please

...

XXXIV

give us your feedback / comments in the

text box below.

6. Please provide your detailed critique on

the proposed OSSD process's software

implementation in the text box below.

in this phase it might be

useful to implement some

clear and publicly available

milestone system because

usually after the coding

starts it never ends :)

community should be able

to clearly see that

something is happening

and exactly what is

happening;

1. Do you think the proposed OSSD

process provides sufficient room for

quality assurance activities?

Yes

Comments / feedback:

2. Do you think the proposed OSSD

process provides sufficient space for

providing reviews/feedback by its

community towards feature development?

Yes

Comments / feedback:

3. In the proposed OSSD process, do you

think there is enough space for addressing

the feedback/reviews before the feature is

released?

Yes

Comments / feedback:

4. Should the community be provided with

explicit criteria (on - what they should look

for) before they start the testing?

Maybe

Comments / feedback:

depending on the specific

feature and phase of the

dev;

obviously in the first cycles

there will be interest in

validating the functional

requirements of the feature

and there should be more

effort on testing that as it is

XXXV

obvious that the non critical

parts will be buggy

5. If 'YES', should the criteria be

created/validated by the core team before

giving it to the community members for

testing?

Don't know

Comments / feedback:
i selected Maybe on the

previous question

6. Do you think the proposed OSSD

process needs any change with respect to

software quality assurance? If so, please

give us your feedback / comments in the

text box below.

you should emphasize on

bug tracking;

bugs are the physical

manifestation of any

problem that should be

covers by unit testing; but

you may have the best unit

testing and don't catch

some bug because it's

caused by the interaction of

the components;

if you have a bug you

should solve it regardless

of unit testing, and this is

where the community of

good; they will report bugs

because they can see and

understand them; unit

testing is for the dev team,

bugs are for mere mortals

:))

7. Please provide your detailed critique on

the proposed OSSD process's quality

assurance activities in the text box below.

all ready stated above

1. Do you think identifying the release

item(s) well before the release will help the

community to plan/develop the feature

efficiently?

Yes

Comments / feedback:

2. Do you think developing and sharing an

integration strategy before release will help

the OSS community?

Maybe

XXXVI

Comments / feedback:

depends of the complexity

of the project and the size

of the development team

3. The proposed OSSD process requires

verification of the software unit produced

with the requirement and design before

release. Do you think it is a necessary step

to be carried out before release?

Maybe

Comments / feedback:

only for internal usage

and/or personal

satisfaction;

4. Do you think it is a good practice to

explicitly communicate about the release

and the release items to all the affected

parties (entire community, commercial

users, etc.)?

Yes

Comments / feedback:

5. Do you think the proposed OSSD

process needs any change with respect to

the software integration and release? If so,

please give us your feedback / comments

in the text box below.

...

6. Please provide your detailed critique on

the proposed OSSD process's software

implementation & release process in the

text box below.

...

1. Do you think the proposed OSSD

process has all the necessary stages of

development?

it has

2. Do you think the development stages are

ordered correctly and are iterated

sufficiently?

i would iterate more on the

design and implementation,

implementation being

interleaved with testing;

it there are really good

architects the design can be

good from the start but on a

lot of smaller projects there

is also an

adventurous/exploratory

XXXVII

part when the team is not

sure of what and how they

want to achieve;

3. Please highlight both the negative and

positive aspects of the proposed OSSD

process.

good: introducing order,

structure and discipline in

OS dev; usually there are a

bunch of people writing

code and this should give

them some guidelines

not so good: to much order

can deter them form the

project; if the core team or

the leader if a

methodology-nazi some of

the prospective contributors

can decide not to join the

project only because of the

rules especially if they are

not having training in

software development;

C.1.3 Expert – 3

Question Answer

1. Full Name Expert 3

2. E-mail -

3. How many years of experience do you

have in open source software (OSS)

development?

.5

4. How many different OSS projects have

you worked on?
1

5. For how long are you working on your

latest OSS project? (in years)
.5

6. What is your current project role? (select

as many as applies and others please

specify)

Developer

Others:

7. What are the different software Design

XXXVIII

development activities do you currently

work on? (select as many as applies and

others please specify)

Coding & unit testing

8. Do you follow any documented software

development process?
No

If 'YES" can you very briefly describe it?

1. Do you think a particular feature should

be developed only after its selection and

approval by the core community?

Yes

Comments / feedback:

2. Do you think it is a good practice to

demonstrate the importance and need of a

particular feature before selecting the

same?

Yes

Comments / feedback:

3. Whom do you think is responsible for

selecting and finalizing the feature for

development?

Both

Comments / feedback:

4. The proposed OSSD process requires a

brief description of each candidate feature

to be published for selecting the right

feature. Do you think that performing this

task is a good practice?

Yes

Comments / feedback:

5. Do you think it is necessary to publish

the contact details of a person/team for

each of the candidate feature (which might

help in further discussions) before the

selection process?

Both

Comments / feedback:

6. Do you think the proposed OSSD

process needs any change with respect to

feature selection? If so, please provide

your details in the text box below.

No change needed in my

opinion.

7. Please provide your detailed critique on Due the amount of work

XXXIX

the proposed OSSD process's feature

selection in the text box below.

for a new feature for

participating institutions

it leads to custom

implementations that

never find their way into

the OO-project.

1. Do you think that the OSS community

will agree with the idea of developing

requirement specification for all selected

feature before development?

Yes

Comments / feedback:

2. Do you think it is feasible in an OSS

environment to develop a requirements

specification document for all selected

features before the development starts?

Yes

Comments / feedback:

3. Do you think the OSS community will

use the requirement specification

document as a basis for

developing/adjusting development

plan/development activities that are to be

carried out for implementing a feature?

Yes

Comments / feedback:

4. Do you think it is important to review

the requirements specification by the OSS

community even before the design

process?

Yes

Comments / feedback:

5. Do you think the proposed OSSD

process needs any change with respect to

requirements management? If so, please

give us your feedback / comments in the

text box below.

No

6. Please provide your detailed critique on

the proposed OSSD process's requirements

management in the text box below.

Nothing

1. The proposed OSSD process makes it

necessary to develop a brief and clear
Yes

XL

design document. Do you think it is

practicable in an OSS environment?

Comments / feedback:

2. Do you think it is sufficient for the core

team alone to validate the design

document?

Maybe

Comments / feedback:

Not sure whether the

community should be

part of this as well.

3. Do you think it is important to

communicate and share these design

documents with the entire community

before proceeding towards the

implementation phase?

Yes

Comments / feedback:

4. Do you think it is practical to allow the

entire community to validate the design

documents?

Yes

Comments / feedback:

5. Should the entire community be

involved in the validation of design

documents?

No

Comments / feedback:
Just some core

community members

6. Do you think the proposed OSSD

process needs any change with respect to

the design process? If so, please give us

your feedback / comments in the text box

below.

-

7. Please provide your detailed critique on

the proposed OSSD process's design

process in the text box below.

-

1. The proposed OSSD process makes it

necessary to develop and share a very brief

implementation document before actually

implementing (coding). Do you think it is a

good practice?

No

XLI

Comments / feedback:

I think the requirements

and design specs are

enough

2. Do you think, that sharing the

implementation document will enable the

community to easily and actively

participate in the feature development?

Don't know

Comments / feedback:

3. Do you think developing a unit testing

strategy and validation of the same by the

core team is practical in an OSS

environment?

Yes

Comments / feedback:

4. Do you think the unit testing strategy

should be shared with the entire

community for better verification and

validation of the feature?

Yes

Comments / feedback:

5. Do you think the proposed OSSD

process needs any change with respect to

software implementation? If so, please

give us your feedback / comments in the

text box below.

-

6. Please provide your detailed critique on

the proposed OSSD process's software

implementation in the text box below.

-

1. Do you think the proposed OSSD

process provides sufficient room for

quality assurance activities?

Yes

Comments / feedback:

2. Do you think the proposed OSSD

process provides sufficient space for

providing reviews/feedback by its

community towards feature development?

Yes

Comments / feedback:

3. In the proposed OSSD process, do you

think there is enough space for addressing
Yes

XLII

the feedback/reviews before the feature is

released?

Comments / feedback:

4. Should the community be provided with

explicit criteria (on - what they should look

for) before they start the testing?

No

Comments / feedback:

Explicit criteria makes

that the community

members only test those

things.

5. If 'YES', should the criteria be created

/validated by the core team before giving it

to the community members for testing?

Yes

Comments / feedback:

6. Do you think the proposed OSSD

process needs any change with respect to

software quality assurance? If so, please

give us your feedback / comments in the

text box below.

-

7. Please provide your detailed critique on

the proposed OSSD process's quality

assurance activities in the text box below.

-

1. Do you think identifying the release

item(s) well before the release will help the

community to plan/develop the feature

efficiently?

Yes

Comments / feedback:

2. Do you think developing and sharing an

integration strategy before release will help

the OSS community?

Don't know

Comments / feedback:

3. The proposed OSSD process requires

verification of the software unit produced

with the requirement and design before

release. Do you think it is a necessary step

to be carried out before release?

Yes

Comments / feedback:

XLIII

4. Do you think it is a good practice to

explicitly communicate about the release

and the release items to all the affected

parties (entire community, commercial

users, etc.)?

Yes

Comments / feedback:

5. Do you think the proposed OSSD

process needs any change with respect to

the software integration and release? If so,

please give us your feedback / comments

in the text box below.

-

6. Please provide your detailed critique on

the proposed OSSD process's software

implementation & release process in the

text box below.

-

1. Do you think the proposed OSSD

process has all the necessary stages of

development?

Yes

2. Do you think the development stages are

ordered correctly and are iterated

sufficiently?

Yes. Iterations are fine

as long the features

aren't too big. Else there

are bigger iterations

needed (over multiple

stages, not only within a

single stage).

3. Please highlight both the negative and

positive aspects of the proposed OSSD

process.

-

