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Abstract

Visual lifelogging is the term used to describe recording our everyday

lives using wearable cameras, for applications which are personal to us and

do not involve sharing our recorded data. Current applications of visual

lifelogging are built around remembrance or searching for specific events from

the past. The purpose of the work reported here is to extend this to allow

us to characterise and measure the occurrence of everyday activities of the

wearer and in so doing to gain insights into the wearer’s everyday behaviour.

The methods we use are to capture everyday activities using a wearable

camera called SenseCam, and to use an algorithm we have developed which

indexes lifelog images by the occurrence of basic semantic concepts. We

then use data reduction techniques to automatically generate a profile of

the wearer’s everyday behaviour and activities. Our algorithm has been

evaluated on a large set of concepts investigated from 13 users in a user

experiment, and for a group of 16 popular everyday activities we achieve an
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average F-score of 0.90. Our conclusions are that the the technique we have

presented for unobtrusively and ambiently characterising everyday behaviour

and activities across individuals is of sufficient accuracy to be usable in a

range of applications.

Keywords: Patient monitoring, Wearable camera, SenseCam, Activity

classification, Lifelogging
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1. Introduction

One of the most significant technological developments in our modern

world is the development, and deployment, of various types of sensors through-

out our society. As a result we can monitor, in an ambient way, many aspects

of our lives and our environment. We are particularly interested in wearable

sensors which include sensors to directly monitor human behaviour as well

as sensors in the mobile devices that we can carry around with us.

Lifelogging is the term used to describe the process of automatically, and

ambiently, digitally recording our own day-to-day activities for our own per-

sonal purposes, using a variety of sensor types. This is opposed to having

somebody else record what we are doing and using the logged data for some

public or shared purpose. For example, an athlete recording his or her daily

training and logging distance, time, etc. would count as a form of lifelog

whereas a security firm monitoring a train station to detect anti-social be-

haviour, would not.

One class of personal lifelogging called visual lifelogging is based on using

wearable cameras, of which there are several examples now available including

SenseCam [14], LooxcieR©, GoProR©, Vicon Revue and the recently-announced

Memento. These record either still images or video and are taken from a first-

person view meaning they reflect the viewpoint that the wearer normally sees

and usually they also record data from other wearable sensors. Applications

for visual lifelogging are manyfold. Sometimes they are job- or task-related,

sometimes we lifelog for leisure, and more recently we’re seeing lifelogging

used for health applications as well as applications for real time lifelogging

[34].
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In this paper we use visual lifelogging in the task of characterising the

activities of the user of a wearable camera, SenseCam. The major contri-

bution of this paper is the proposal of HMM-based models to characterize

everyday activities by merging time-varying dynamics of high-level features

(concepts). Utilizing concept-concept relationships to map concept vectors

to a more compact space by LSA and the extensive experiments on various

concept detection performances generated by Monte Carlo simulations are

another contribution of this paper, which have not been reported before in

semantic analysis of visual lifelogging, to the best of our knowledge. We de-

scribe related work in lifelogging followed by an overview of the approaches

to managing lifelog data. In section 3 we introduce the background to our

experiments including how we define a vocabulary of 85 base semantic con-

cepts. Section 4 presents a Hidden Markov Model approach to deal with

the activities to be detected. We then present our experiments using both

‘clean’ or perfect annotation as well as automatic detection of base semantic

concepts, followed by an analysis of two different sampling methods. We con-

clude the paper with a re-cap on our contribution and directions for future

work.

2. Related work

Lifelogging is a very broad topic both in the technologies that can be

used, and the applications for lifelogged data. For the most part, lifelogging

applications are based around health and wellness, though we have seen

applications as diverse as theatre and dance [48]. We describe related work

in visual lifelogging where we broadly divide this into applications for memory
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recall and applications for lifestyle analysis, though new application areas are

emerging.

The seminal work in visual lifelogging for memory recall as part of a med-

ical treatment was reported by Berry et al. [4] who used the SenseCam to

record personally experienced events so that SenseCam pictures would form

a pictorial diary to cue and consolidate autobiographical memories. The

SenseCam is a sensor-augmented wearable camera designed to capture a dig-

ital record of the wearer’s day (as shown in Figure 1) by recording a series

of images and other sensor data. By default, images are taken at the rate of

about one every 50 seconds while the onboard sensors can help to trigger the

capture of pictures when sudden changes are detected in the environment of

the wearer. This was used as a form of reminiscence therapy for research into

memory and dementia where the visual lifelog acted as a stimulus for recall

of short-term events rather than as a memory prosthesis or substitute. Since

that initial work many teams have explored the clinical application of visual

lifelogging, including Lee and Dey [25] who capture photos, ambient audio,

and location information to create a summary of the wearer’s recent life for

stimulating short-term recall. Another good example of this is the work by

Browne et al. [5] who used the visual lifelog from a SenseCam to stimulate

autobiographical recollection, promoting consolidation and retrieval of mem-

ories for significant events. All these clinical explorations seem to agree that

visual lifelogging provides a “powerful boost to autobiographical recall, with

secondary benefits for quality of life” [5].

Besides research into the clinical observation of how visual lifelogging

helps recall, there is also research into why this seems to work. St. Jacques
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Figure 1: The Microsoft SenseCam (right as worn by a user).

et al. [42] has experimented with using fMRI scans to observe which parts of

the brain are most active when subjects are benefitting from the stimulating

effects of their own visual lifelogs and while this work and the similar work

of others is still ongoing, it is observed that viewing the visual lifelog of

one’s own recent past stimulates and opens the pathways for autobiographical

recall which may otherwise have been blocked or closed as a result of memory

impairments caused by acquired brain injury or various forms of early-stage

dementia. How to keep these pathways open or understanding how this

happens is not yet known or understood.

Visual lifelogging has also been used to analyse lifestyles and behaviours

in individuals and in groups. This is typically done by developing automatic

classifiers or software detectors for individual base concepts or even for ob-

jects, and then applying these to visual lifelogs to infer different lifestyle

traits or characteristics Doherty et al. [9]. The accuracy of these automatic

detectors will vary because it is a difficult problem to overcome anyway and,

for example, determining whether a wearer was actually outdoors or just

looking out a window from indoors, or recognising the difference between a
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wearer eating or just preparing food, is very challenging.

In addition to characterising overall activities, visual lifelogging can also

be used to analyse and characterise specific activities. For example, recent

results from a pilot study have examined both the sedentary and the travel

behaviour of a population of users and early results have shown considerable

potential in the field of travel research where the duration of journeys to/from

work or school, as a specific targeted activity, can be accurately estimated

just from SenseCam images [20]. Other approaches to analysis of human

behaviour in the home such as by [37] have required expensive investment in

infrastructure in the home whereas by using wearable sensors, our work is

more scalable.

What all this related work has in common with ours is that visual lifelogs

are large and often unstructured collections of multimedia information and

there is a real problem across all applications of how to access this informa-

tion in a structured way. To make progress on this, naturally we turn to

any relevant theories in the area to help and guide us here and if there is

guidance it should come from the area of information science. Unfortunately,

information science has not (yet) addressed the challenges of how to manage

information access to lifelogs, possibly because the area is still so young so

we default and use whatever guidance we can find from information access

to less complete personal media, such as our personal photos, for example.

In managing personal media we find that some metadata like date, time and

perhaps even location, may help but what we really want is access to vi-

sual lifelogs based on their content rather than their metadata. In the next

section we look more closely at how access to lifelog data can be managed.
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3. Managing Lifelog Data

The application of lifelogging, especially visual lifelogging, to analysis of

the activities of the wearer creates challenging problems for retrieval due

to the large volume of lifelog data and the fact that much of that data

is repetitive with repeated images of the same or nearly the same thing.

Recording every activity of a wearer’s life will generate a large amount of

data for a typical day, not to say for a longer term, for example, a month

or even a year. Detecting events or activities which are distinct from such

a mass of homogeneous lifelog data without efficient indexing and retrieval

tools, poses a real problem.

Our approach to managing lifelog data is to index visual lifelogs on simple

or “base” semantic concepts automatically detected from within the lifelog

images. The challenges here include defining which base concepts we should

try to detect as well as determining which methods we should use in order

to achieve high accuracy in a computationally efficient way.

3.1. Concept-based Lifelog Retrieval

Concept-based lifelog retrieval has not received much attention from the

lifelogging community because it is such a new and emergent area. Using

automatically-detected simple or base semantic concepts for multimedia re-

trieval has attracted interest in other domains however, including broadcast

TV news video, movies and surveillance video [40, 39]. In principle this is

very attractive – a concept is either present, or absent, from an image or video

clip which makes retrieval a straightforward binary search – but in practice

there is always a degree of (un)certainty associated with the detection, which
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we can regard as a probability of the concept being present. To further com-

plicate things, the actual detection process is not perfect and so it will have

an accuracy or effectiveness level, on top of a probability of occurrence.

Toharia et al. [45] have artificially varied the level of detection accuracy

to determine the “tipping point” for detection accuracy above which seman-

tic concepts become useful aids in multimedia retrieval. With continuing

progress in the development of techniques for automatic concept detection

in various domains we have now reached this point of being able to achieve

satisfactory results. For example, Aly et al. [1] worked in the domain of TV

news video where semantic concepts can be detected directly from the video

and they developed and tested a probabilistic model which accounts for the

uncertain presence of such concepts. This was then evaluated in the applica-

tion of retrieving news stories from TV news broadcasts. In [13], the semantic

model vector (the output of concept detectors) has already been shown to

be the best-performing single feature for IBM’s multimedia event detection

task in the annual TRECVid video retrieval benchmarking evaluation [38].

This whole approach has now moved to the point where we could develop

techniques to then fuse the automatically detected base concepts into higher

level semantics and achieve levels of indexing for which the usual methods

are not capable.

According to research results in the neuroscience area, we tend to remem-

ber our past experiences when structured in the form of events [51]. This

poses a requirement for lifelogging tools to provide high-level concept de-

tection facilities to categorize lifelog data, including images, into events for

organization or for use as a re-experience. Such real events as sitting on a
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bus, walking to a restaurant, eating a meal, watching TV, etc. consist of

many, usually hundreds, of individual images taken from a wearable camera

such as SenseCam. In many cases, where the wearer is moving around, a

large number of images which are quite dissimilar in appearance, may be

generated. The variety of SenseCam images in lifelogging introduces chal-

lenges for event detection when compared to traditional TV news broadcast-

ing video, for example. The image capture rate which is not continuous, also

makes dynamic spatial-temporal features like HOG (Histograms of Oriented

Gradients) and HOF (Histograms of Optical Flow) descriptors, inapplicable

because frame-to-frame differences can be so large whereas when we classify

moving video into events, such approaches are well-matched and quite well

developed [19, 16, 13]. In lifelogging, when concept detection is usually car-

ried out it is at the level of individual images rather than at the event level,

which is where it is required. The variety of concepts within one event makes

event detection and event categorization difficult and this is the problem we

tackle here. We now describe how to apply concept-based indexing of visual

lifelogs using a new approach of classifying everyday activities.

3.2. Analysing Activities from Visual Lifelogs

In our research, the problem of detecting events and base concepts from

lifelog images taken by a SenseCam wearable camera, is simplified into a

classification problem, that is, we find the most likely concept(s) for an event

from a lexicon set with regard to the event input.

Suppose we are given an annotated training set {(x(1), y(1)), ..., (x(N), y(N))}
consisting of N independent examples. Each of the examples x(i) represents

the i-th event in the corpus. The corresponding annotation y(i) ∈ [1, |T |]
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is one of the concepts in the lexicon T . The task for event-based concept

detection can be described as: given the training set, to learn a function

h : X �→ Y so that h(x) is a predictor with an unlabeled event input x for

the corresponding value of y.

Progressing through the concept detection procedure, each image is as-

signed labels indicating if specific concepts are likely to exist in the image or

not. If we have the universe of concept detector set C, event x(i) is represented

by successive images I(i) = {Im
(i)
1 , Im

(i)
2 ...Im

(i)
m }. The concept detection re-

sult for image Im
(i)
j can be represented as an n-dimensional concept vector,

as C
(i)
j = (c

(i)
j1 , c

(i)
j2 ...c

(i)
jn)T , where n is equal to the cardinality of C and c

(i)
jk = 1

if concept k is detected in the image, otherwise c
(i)
jk = 0.

While the SenseCam wearer is performing an activity which requires

him/her to be moving around, the first-person view may change over time,

though not, for example, if he/she is watching TV or sitting in an office

looking at a computer. We need to map time-varying concept patterns from

individual images into different activities for events. To classify an event

consisting of a series of images in temporal order is very similar to recog-

nizing a phoneme in an an acoustic stream, to some extent. The event is

analogous to a phoneme in the stream and every image within this event is

analogous to an acoustic frame. The task of temporal activity classification

is thus suitable to be addressed by a classical Hidden Markov Model (HMM),

which has proved to be efficient in speech recognition [35]. In addition to the

systematic theory of HMM and many successful applications in computer

vision, its powerful framework for temporal modeling of time-varying fea-

tures makes it very flexible when applied to this kind of problem like event
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recognition, especially when cardinality (i.e. the length of the stream) differs

across different event segments and is unforseen. HMM can be adaptive in

this situation and hence avoid extra processing like time warping as used in

[7], or vector quantization as used in [16], which is necessary for other learn-

ing algorithms demanding feature vectors of fixed dimension (such as SVM

and KNN). Due to its intrinsic advantages, HMM has been widely adopted

in multimedia retrieval area by much research on classification or recognition

tasks such as [50], [10], [12], [27], [13] and [19], just to name a few, though

different features or forms are applied. We now elaborate the construction

of HMMs for the solution to our problem.

3.3. Selecting Base Concepts for Activity Analysis

Before automatically categorizing everyday activities, we first need to ex-

plore the activities to be analyzed in building and testing our algorithm.

Theories from psychology can guide our selection of human activities and

then the subsequent set of related concepts which can help us to construct

a meaningful semantic system for our classification task. Maslow’s hierarchy

of needs [28, 31] is one such theory of human motivation, organizing different

levels of needs in the shape of a pyramid, with the largest and most funda-

mental levels of need at the bottom, and the need for self-actualization at the

top. This theory analyzed the relationships between various needs and their

impact on human motivation. Another source of guidance for choosing target

activities is taken from occupational therapy, in which the occupation and its

influence on health and well-being are studied as one important topic. The

relationship between our engagement in everyday activities and well-being

for individuals has been shown and evidence has demonstrated the existence
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of this relationship within various age groups [24, 29]. As improving human

health and well-being is an important goal of lifelogging research, we bor-

rowed more outcomes from occupational therapy research and applied them

into the selection of our target activities and concepts. Applying Maslow’s

motivation theory might suffer from a deficiency in finding activities with

high enough generality across groups of people with different backgrounds

since the hierarchy may vary with culture [11, 21] or circumstance [43, 44].

Investigations and surveys in the area of occupational therapy have shown

that most of our time is spent on activities such as sleeping and resting

(34%), domestic activities (13%), TV/radio/music/computers (11%), eating

and drinking (9%), which collectively count for nearly 70% of the time in a

typical day [6]. For example, according to the UK Government, Office for

National Statistics (ONS) [46], [47] and Chilvers et al. [6], some activities

like “sleeping”, “housework”, “watching TV”, “employment/study”, “eat-

ing/drinking”, etc., are the most prevalent activities on which most of the

time in our daily lives is spent. Some of these activities like “sleeping”,

“eating/drinking”, “personal care”, “travel”, etc., are engaged across all age

groups and thus achieve very high participation agreement among all people

investigated in those surveys.

Though there exist numerous activities in our everyday lives, as demon-

strated above in occupational therapy research, recent work utilizing wear-

able computing devices to improve human health tries to concentrate on

those activities which are more frequent or prevalent in our lives. For exam-

ple, eating is the focus of diet monitoring [36, 17] while instrumental daily

activities such as “making coffee”, “cooking”, etc., are targets in analysis for
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the diagnosis of dementia [30]. In [18], a similar set of 16 everyday activities

is explored to rate their level of enjoyment when people experience these

activities. The impact of everyday activities on our feelings of enjoyment

also affect our health, which makes these activities important in an analysis

of well-being and lifelogging which is our focus. An investigation into the

automatic detection of these activities would be of great value for medical

applications like obesity analysis, and chronic disease diagnosis, to name just

two. After carefully considering the activities we discussed above, we se-

lected 23 activities as targets for our further experiment and analysis which

are listed in Table 1, which have shown their effectiveness in validating man-

ual and automatic concept selection methods in [49]. These activities were

chosen based on the following criteria:

Table 1: Target activities for our lifelogging work

1 2 3 4
Eating Drinking Cooking Clean/Tidy/Wash
5 6 7 8
Wash clothes Using computer Watch TV Children care
9 10 11 12
Food shopping General Shopping Bar/Pub Using phone
13 14 15 16
Reading Cycling Pet care Go to cinema
17 18 19 20
Driving Taking bus Walking Meeting
21 22 23
Presentation (give) Presentation (listen) Talking

• Time dominance: As described above, a small number of activities

occupy a large amount of our time. The analysis of these activities
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can maximize the analysis of the relationship between time spent and

human health. The selected activities should collectively cover most of

the time spent in a day.

• Generality: Even though the time spent on activities varies from age

group to age group, there are some activities that are engaged in by

multiple age groups. The selection of activities with high group agree-

ment will increase the generality of our activity analysis in lifelogging

so the output can be suited to a wider range of age groups.

• High frequency: This criteria helps to select activities which have

enough sample data in our lifelogging records. High sample frequency

can improve the detection and other processing qualities, such as clas-

sification and interpretation.

Note that detecting base concepts is the first step when performing activ-

ity classification. Among the efforts in building semantic lexicons for concept-

based retrieval, the Large-Scale Concept Ontology for Multimedia (LSCOM)

is the most comprehensive taxonomy developed for standardizing multimedia

semantics in the broadcast TV news domain [32]. The LSCOM consortium

tried to bring together experts from multiple communities including mul-

timedia, ontology engineering and others with domain expertise. Multiple

criteria were also considered including utility, coverage, etc. in the selection

procedure. In order to systematically examine automated concept detection

methods, Snoek et al. manually extended both the number of concepts and
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the number of annotations by browsing the training video shots for TV news

broadcast programmes [41]. The manual annotation process finally yielded

a pool of ground truth for a lexicon of 101 semantic concepts. Since there is

no theoretical way to precisely define the lexicon for a given domain, manual

concept selection is an important approach for the evaluation of automatic

concept detection and thus concept-based retrieval methods. This can also

be shown by the light scale multimedia concept ontology which is also em-

ployed in TRECVid 2005 [33]. In [15], manual selection of concepts for query

tasks is presented as one benchmark, together with the comparison with the

other benchmarks generated from an extensively tagged collection based on

mutual information [26]. A human-generated ontology of everyday concepts

is employed in [49] and compared with a density-based concept selection

approach through semantic reasoning.

To utilize concepts to reflect domain semantics appropriately, a user ex-

periment was carried out to identify topic-related concepts with regard to

activities listed in Table 1, as presented in [49]. Although individuals may

have different contexts and personal characteristics, a common understand-

ing of concepts that is already socially constructed and allows people to

communicate according to Lakoff [22] and Huurnink et al. [15], also makes

it possible for users to define suitable base concepts which are relevant to

activities.

A total of 13 respondents took part in our user experiment, chosen from

among researchers within our own research group, most of whom are work-
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ing in computer science and some of them also log their own everyday lives

with the SenseCam. This means the group are sympathetic to and familiar

with the idea of indexing visual content by semantic concepts. In the ex-

periment, target activities were first described to the respondents to make

them familiar with the activity. Participants were then shown SenseCam

images for selected activity examples and surveyed by questionnaire about

their common interpretation of the SenseCam activity images as well as of

the concepts occurring regularly in those SenseCam images. The aim of the

user experiment was to determine candidate semantic concepts which have

high correlation with human activity semantics. After several iterations and

refinements we selected 85 base concepts which have the highest agreement

among respondents, i.e. more than half of respondents think each of them are

relevant to the underlying activity. These 85 concepts described in Table 2 as

a universal set organized into general categories of objects, scene/setting/site,

people and events, were then employed as the base concepts for the rest of

the work in this paper. Note that these 85 concepts are borrowed as the

small concept set from [49] and more details about the user experiment and

the use of this concept ontology can be found in [49].

4. Experimental Setup and Variables

In this paper, the methodology we proposed for the investigation of every-

day activity characterization can be demonstrated by the algorithm pipeline

shown in Figure 2. The algorithm consists of four main components which
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Table 2: Set of 85 Experimental Concepts

plate, cup, cutlery, bowl, glass, bottle, milk, drink, fridge, microwave,
cooker, water, cloth, clothes, glove, soap, hanger, screen, keyboard,

Objects monitor, TV, remote control, basket, trolley, plastic bag, mobile phone,
phone screen, book, newspaper, notebook, paper, handle bar,
steering wheel, car, bus, bicycle, pet, road sign, traffic light, cat,
yellow pole, chair, laptop, projector, pram/buggy

Scene/ indoor, outdoor, office, kitchen, table, sink, basin, toys, shelf, cashier,
Settings/ door, building, fruit, vegetable, deli, food, road, path, cycle lane, sky,
Site tree, dark, window, inside bus, shop, inside car, projection

People face, people, group, child, hand, finger

Event hand washing, hanging clothes, hand gesture, finger touch,
page turning, presentation, taking notes

are concept identification from raw SenseCam images, vocabulary construc-

tion for visual semantics, the modeling of time-varying patterns by HMM

and activity classification through trained HMM models. The vocabulary

construction module can further be boiled down to LSA (Latent Semantic

Analysis) and vector quantization, which we will discuss in more detail later

in this section. The activity modeling using HMM and the training of pa-

rameters will also be elaborated in this section and the simulation of concept

detection results will be discussed in Section 5 when varying concept detec-

tion accuracy, aiming to drill down the analysis of algorithm performance.
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Figure 2: The algorithm pipeline.

4.1. Vocabulary Construction for SenseCam Images

Concept detection provides us with a way to determine the appearance of

concepts in images which can be used as high-level semantic features for later

concept-based retrieval or even further statistical classification. Concepts can

play different roles in representing event semantics, and some will interact

with each other through their ontological relationships. This means that if

we plot the concepts in a vector space, the dimensions in a concept vector C
(i)
j

are not independent because of their relationships to each other. Ignoring

concept-concept relationships would likely degrade the performance of any

subsequent classification of activities.

We address the underlying semantic structure using Latent Semantic

Analysis (LSA) [8]. In the traditional Vector Space Model, LSA can rep-
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resent index terms and documents by vectors and can analyze document

relationships in terms of the angle between two vectors, each representing

a document. The advantage of LSA is that the terms and documents are

projected to a concept space and retrieval performance is improved by elim-

inating the “noise” in the original space. In LSA, the similarity of meaning

between terms is determined by a set of mutual constraints provided by term

contexts in which a given term does and does not appear [23]. The applica-

tion of LSA in our research can be described as the following:

Assume that we have n concept detectors and a corpus consisting of m

SenseCam images. We can construct an n × m concept-image matrix:

X =




x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xn1 xn2 . . . xnm




(1)

where each element xij = 1 if concept ci appears in image Ij, otherwise

xij = 0. In the matrix X, each row represents a unique concept and each

column stands for an image. LSA is carried out by applying Singular Value

Decomposition (SVD) to the matrix. The concept-image matrix is decom-

posed into the product of three matrices as shown:
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X = UΣVT (2)

where U and V are left and right singular vectors respectively, while Σ is

the diagonal singular matrix of scaling values. Both U and V have orthog-

onal columns and describe the original row entities (concepts) and column

entities (images) separately. Through SVD, the matrix X can be recon-

structed approximately with fewer dimensions k < n using the least squares

manner. This can be done by choosing the first k largest singular values in

Σ and the corresponding orthogonal columns in U and V. This yields the

approximation as:

X ≈ X̂ = UkΣkV
T
k (3)

The reduced matrix not only retains the semantic relationship between orig-

inal base concepts and images, but also removes “noise” induced by base

concepts which are similar to each other. Since Uk is an orthogonal matrix,

it is not hard to calculate the projection of any sample vector Cj in the new

concept space as:

Ĉj = Σ−1
k UT

k Cj (4)
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After the concept vectors are mapped to the new concept space, vector quan-

tization is employed to represent similar vectors with the same index. This is

performed by dividing the large set of vectors into groups having a number of

points similar to each other. In this way, the sample vectors characterizing

concept occurrences are modeled only by a group of discrete states which

is referred to as the vocabulary. Vector quantization is done by clustering

sample sets in an n-dimensional space, to M clusters, where n is the number

of space bases (k after LSA), while M is the vocabulary size.

For vector quantization, we applied a k-means clustering algorithm to

categorize the samples in the k-dimensional space. To avoid local optimiza-

tion of quantization error, we carried out 10 iterations of k-means clustering

with different randomly initialized cluster centers. The clustering result with

minimum square error is selected as the final vocabulary. One example of

vocabulary construction is shown in Figure 3, in which sample points are

projected in a 2 − d concept space and clustered for a vocabulary of size 5.

4.2. HMM Model Structure

In our activity detection, each segmented lifelog event is treated as an in-

stance of an underlying activity type, constructed from a series of SenseCam

images. A Hidden Markov Model [35] is a very efficient machine learning

tool to model time-varying patterns. In our activity classification, the HMM

treats the event instances as mutually independent sets of concepts generated

by a latent state in a time series. The model structure as shown in Figure
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Figure 3: Vocabulary construction example in 2D space.

4 is used in modeling the temporal pattern of dynamic concept appearances

in an activity.

… … …

    35  35  35  35  35  25  25  25 … 46  46 25 25 25 32 32 32 … 32 6 25 25 25

Time

Hidden States 

Observations

Figure 4: HMM structure for activity modeling.
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In Figure 4, one ‘Cooking’ event is demonstrated by the change of states

and observation sequences, through the time line. The fully connected state

transition model is shown in Figure 5:

O1

O2

OM

...
O1

O2

OM

...

Figure 5: Two states transition model.

4.3. Parameter Training

The choice of k and M , which determine the amount of dimension re-

duction in the concept space and vocabulary size will affect the performance

of our algorithm. The choice of k should be large enough to reflect the real

structure in a new concept space but be small enough to avoid sampling errors

or unimportant details introduced in the original matrix. It is a similar case

in selecting an appropriate value for M for which the representation of obser-

vation and modeling complexity should also be balanced. Finding choices of

k and the cluster number M in a theoretical way is beyond the scope of our

work and is an open issue in the information retrieval and machine learning

communities. In our work, we regard k and M as two parameters and test

the best combination with the criterion of maximising retrieval performance,

namely mean average precision (MAP ).
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We trained an HMM model for each activity class, that is, for each ac-

tivity type described earlier we trained the model with multiple observation

sequences to find the optimal parameters. This is done using the Baum-

Welch algorithm which optimally estimates the probability of the HMM

model by iteratively re-estimating model parameters. In our experiment we

cross-validated the HMM models on training data with leave-one-out cross

validation. After a number of iterations, the best-initialized HMM parame-

ters are selected and the HMM model is trained on all training data sets for

the activity type. The models for different activity types are then evaluated

on the final test data to assess retrieval performance. The detailed model

training and parameter searching will be presented in the next section, Sec-

tion 5.

5. Experimental Results

5.1. Evaluation Data Set

In the experiment on evaluating activity classification, we carried out an

assessment of our algorithm on data sets using both clean (correct) concept

annotation and on concept annotation with errors. The data sets we used

are event samples of the 23 activity types from Section 3.3 collected by 4

people with different demographics (older people vs. younger researchers),

one older participant who is less functional in terms of capacity for household

and community activities from an occupational therapist’s standpoint. The

choice of these four people can help to test if our algorithm is applicable from
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among a group of different people.

Privacy is the first issue to be considered during the preparation for ex-

periment data since the SenseCam can record quite detailed activities uncer

certain constraints and conditions. Ethical approval was obtained from Re-

search Ethics Committee in our university for the use of participants’ Sense-

Cam images. Another reason why we chose these four people’s data in the

experiment is that all of them have been wearing the SenseCam consecutively

for more than 7 days. This guarantees a variety of activities (for example,

‘Eating’ at home or outside, ‘Walking’ in the street or countryside, etc.)

needed in our experiment and one week’s recording can also better reflect

the life pattern of the participants and semantic dynamics of their activities.

Note that the SenseCam images of these four participants have very good

image quality as the observability of visual concepts is another criterion for

us to choose the experiment data. Due to the limited number of positive

samples of each activity type, we use 50% of each sample for training and

50% for testing. Event types with more than 5 positive samples are selected,

giving the 16 event types shown in Table 3 with sample number and numbers

of images contained.

5.2. Evaluation on Clean Concept Annotations

The clean concept annotation means the concept annotations on each im-

age are error-free. This is achieved by manually annotating the 85 base con-

cepts we proposed in Section 3.3 for the data sets. For annotation purposes,
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Table 3: Experimental data set for activity classification

Type Eating Drinking Cooking Clean/Tidy/Wash

# Samples 28 15 9 21
# Images 1,484 188 619 411

Type Watch TV Child care Food shopping General shopping

# Samples 11 19 13 7
#Images 285 846 633 359

Type Reading Driving Use phone Taking bus

# Samples 22 20 12 9
# Images 835 1,047 393 526

Type Walking Presentation Use computer Talking
(listen to)

# Samples 19 11 17 17
# Images 672 644 851 704

a concept annotation software tool was developed to inspect the SenseCam

images and judge if each concept exists or not. The temporal relationship is

kept during annotation by providing a series of SenseCam images within the

same event. This helps to improve annotation speed for the user by selecting

positive image examples and the unselected samples will be annotated as

negative examples. Thus a group of images can be annotated in one click

and the whole event can be annotated for one concept in just a few clicks.

The performance of activity classification on this clean annotation is now

described.

As described in Section 4, the selection of parameters k and M will affect

the performance of our algorithm. In our experiment, we evaluated the final

retrieval performance with different settings of these parameters. The search
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graph of parameters k and M in order to tune MAP is shown in Figure 6,

for which a 3-state HMM model is used.

Figure 6: Search graph for MAP optimisation (3 states).

The search graph is built by varying k and M in the ranges [10..80] and

[10..100] respectively. The best performances (MAP ≥ 0.9) appear in the

range [30..50] and [80..100] for k and M . When the value of k is increased, the

value of M also needs to increase to achieve better performance. The worst

case happens when selecting a large k value and small M value, when more

‘noise’ is introduced from the concept space and the vocabulary clusters can

not adapt to this noise. The situation is better when k is low, say, k = 20, for

which most choices of M have MAP above 0.8. Meanwhile, large M values

can also complement the choice of k, when M is large enough (M ≥ 90),

most MAP remain at a satisfactory level, even though the best cases are in

the range k ∈ [30..50]. A similar pattern can be seen when choosing different
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state numbers.

In our training experiment, we trained and tested different settings of

model parameters including the dimensions of concept space and the vocab-

ulary size. After testing different combinations, we selected a concept space

dimension of 35 and vocabulary size of 80 for further investigation. Different

numbers of hidden states were tried in 5 runs and the overall performance

(average MAP ) is considered in choosing the state number. In our experi-

ment, 2 states achieves best overall performance which is then used to train

HMM models for each type of activity. Because each HMM model can return

the likelihood of an observation sequence, we perform activity classification

by selecting the class of activity with highest likelihood for the input obser-

vation. The performance is then evaluated by precision, recall and F-Score

as shown in Table 4.

5.3. Concept Detection with Errors

In order to assess the performance of our activity detection algorithm

on automatically detected rather than manually annotated base concepts

which will have some errors in their detection, we manually controlled the

simulated concept detection accuracy, based on the groundtruth annotation.

The simulation procedure is borrowed from Aly et al. [3], in which they

use Monte Carlo simulations to generate various accuracy performances for

concept detection.

The notion of this simulation is based on the approximation of confidence
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Table 4: Event detection results
Event type Precision Recall F-Score

Child care 0.68 1.00 0.81
Clean/Tidy/Wash 0.86 0.86 0.86
Cooking 0.80 0.89 0.84
Drinking 0.75 0.80 0.77
Driving 1.00 1.00 1.00
Eating 0.95 0.75 0.84
Food shopping 1.00 1.00 1.00
General shopping 0.86 0.86 0.86
Presentation (listen) 1.00 1.00 1.00
Reading 1.00 0.95 0.98
Taking bus 1.00 0.89 0.95
Talking 0.85 0.65 0.73
Use computer 1.00 1.00 1.00
Use phone 0.92 1.00 0.96
Walking 0.86 0.95 0.90
Watch TV 1.00 0.82 0.90

score outputs from concept detectors as a probabilistic model of two Gaus-

sians. In other words, both the densities for the positive and negative classes

of a concept are simulated as Gaussian distributions. The concept detector

performance is then controlled by modifying the models’ parameters [3]. The

method also assumes that the confidence scores of different detectors for a

single object such as an image are independent from each other. All concepts

are assumed to share the same mean µ1 and standard deviation σ1 for the

positive class while the mean µ0 and the standard deviation σ0 are for the

negative class. The performance of concept detection is affected by the inter-

section of the areas under the two probability density curves whose shapes

can be controlled by changing the means or the standard deviations of the
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two classes for a single concept detector.

Our implementation of the simulation involves the following processes.

First, we simulate the confidence observations of concept detector as N(µ0, σ0)

and N(µ1, σ1) for the negative and positive classes respectively. The prior

probability P (C) for a concept C can also be obtained from the annotated

collection. Then the sigmoid posterior probability function with the form

of Equation 5 is fit for the generation of a specified number of S training

examples.

P (C|o) =
1

1 + exp(Ao + B)
(5)

After parameters A and B are decided, the posterior probability of the

concept is returned using the sigmoid function for each shot with a random

confidence score o drawn from the corresponding normal distribution. A

more detailed description of the simulation approach can be found in [3] and

[2].

In setting up the “concept detectors with errors” in our experiment, we

modified the concept detection performance with the simulation based on

the groundtruth annotation described in Table 3, for which each image is an-

notated with the existence of all concepts. During the simulation procedure,

we fixed the two standard deviations and the mean of the negative class.

The mean of the positive class was changed to the range of [0.5 .. 10.0] to

adjust the intersection area within the two normal curves, thus changing the
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detection performance. For each setting of parameters, we executed 20 re-

peated runs and the averaged concept detection MAP and averaged activity

detection MAP were both calculated.

5.4. Evaluation on Concept Detection with Errors

The evaluation on erroneous concept detection was carried out by training

and testing the activity detection algorithm described in Section 4, on the

simulated concept detections with variable detection accuracy. We increased

the mean of the positive class µ1 for each concept in our lexicon from 0.5 to

10.0 with step 0.5. For each value of µ1, we executed 20 simulation runs, and

for each run the concept detection MAP was calculated.

Figure 7: Averaged concept MAP with different positive class means.

In Figure 7, the concept MAP for all 20 runs are averaged and plotted with

the increase of positive class mean µ1. The x-axis shows the changes of µ1

with the setting of the other parameters as σ0 = 1.0, σ1 = 1.0 and µ0 = 0.0.

The y-axis depicts the value of averaged concept MAP for each µ1. From
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Figure 7 we can see that increasing µ1 achieves better concept detection

performance. When µ1 reaches the value 5.5, the concept detectors almost

have the same performance as the ground truth and can be regarded as

perfect.

For each run, the simulated concept annotations were analyzed by LSA

first and projected to a new concept space with a lower dimension of k =

35. Vector quantization was then carried out in the new space by k-mean

clustering, representing every SenseCam image with one observation from

the vocabulary constructed. After vector quantization, the SenseCam image

which was formerly represented with a 85-dimensional vector, was indexed

with only the number of the cluster. In this step, we still choose M = 80

and achieve 80 clusters in the new concept space. The dynamic pattern of

observations was modeled by the HMM model whose parameters were trained

in the same process as described in Section 4. The testing was performed on

the data set described in Section 5.1.

Figure 8: Averaged activity MAP with different positive class means.
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Figure 8 depicts the changes in averaged activity detection MAP with re-

spect to the µ1 values, using the half-and-half sampling method for training

and testing data. The x-axis has the same meaning as it has in Figure 7 while

the y-axis is the averaged MAP of activity detection over 20 runs. As ex-

pected, the activity detection performance increases with improving concept

detection performance. Note that the activity detection performance does

not drop significantly when the concept MAP is low. The smooth change of

activity detection MAP shows that our algorithm is robust and tolerant to

the errors introduced in automatic concept detection.

6. Discussion

6.1. Varying the Sampling Method

As described in Section 5.1, each event sample is divided into two halves,

of which the first half is used as training data and the other is used as testing

data. To evaluate the effect of this sampling method for training and test

data, we also carried out the same experiment on another sampling method,

odd-and-even sampling, to distinguish from half-and-half sampling. That

is, in each event sample, we used the odd numbered images as training data

while the images with even number are used as testing data. The performance

comparison of the two sampling methods on the clean data set is shown in

Figure 9.

For evaluation purposes, the training and testing are carried out for 10

runs with each of the two sampling approaches. During the procedure, we
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Figure 9: Comparison of two sampling methods (clean data).

used the same parameter settings as above, k = 35, M = 80, and 2 hid-

den states. The activity detection AP is calculated for each activity and

then averaged on these 10 runs. The two sampling approaches are compared

on the activity basis out of the 16 activities investigated. In Figure 9, the

averaged AP for each activity and averaged MAP are shown. The half-and-

half sampling and odd-and-even sampling are represented as sampling1 and

sampling2 respectively in the figure. From Figure 9, there is no obvious dif-

ference between two sampling methods for most activities, compared using

AP . Only two activities show obvious performance differences, which are

‘Cooking’ and ‘General shopping’. The drop in performance for odd-and-

even sampling shows that this sampling method can disrupt the intrinsic

observation transition, especially for activities in which the observation of
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concepts during the event changes frequently like ‘Cooking’. For those activ-

ities in which base concepts appear with greater stability during the event

like ‘Driving’, ‘Taking bus’, ‘Watch TV’, etc., the performances of two sam-

pling methods are almost the same. The overall performance also dropped

using odd-and-even sampling as reflected by averaged MAP which is 0.89

for sampling1 and 0.86 for sampling2. The performance difference shows

that base concept observation patterns can be changed by the odd-and-even

sampling method. On the other hand, this also reflects that our algorithm

can capture the pattern of concept dynamics and apply these patterns in ac-

tivity classification for better performance. The evaluation of two sampling

methods on erroneous concept detection is now described.

Similar to using clean concept annotation data, we also compared the

two sampling methods on simulated concept detection. This is performed by

changing the mean of positive class µ1 for each concept and 20 runs are carried

out for each value of µ1. For each simulation run, the evaluation procedure

involved training and testing steps which are the same as using clean data

and we use exactly the same parameter settings. Activity detection MAP

is calculated in each run and then averaged on all 20 runs to obtain the

overall performance on one simulation configuration. The performances of

two sampling methods are shown in Figure 10.

In Figure 10, the x-axis shows the configurations of µ1, varying from 0.5

to 10.0. The settings for the parameters are the same as in Figure 7, that

is σ0 = 1.0, σ1 = 1.0 and µ0 = 0.0. The averaged activity detection MAP
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Figure 10: Comparison of two sampling methods (simulated data).

over 20 runs is shown on the y-axis. In Figure 10, two curves of sampling1

(half-and-half) and sampling2 (odd-and-even) are the performances of two

sampling methods. The overlap of two curves shows that there is no signifi-

cant difference between two sampling methods, especially when µ1 ≤ 5.0, for

which the concept detection MAP is relatively low. While µ1 increases, both

of the performances of two samplings increase. When µ1 is large enough, say,

µ1 ≥ 6.5, the concept detection MAP remains at a stable level (nearly per-

fect as shown in Figure 7), and the curve of sampling1 remains higher than

that of sampling2. This is consist with the comparison using clean data as

described in Section 5.2. However, when concept detection is not perfect

(µ1 ≤ 5.0), the appearance of concept detection errors will definitely change

the underlining concept observation patterns, therefore the two sampling ap-

proaches will perform equally. This can be depicted by the overlap of two

curves when the value of µ1 is small.
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6.2. Interpreting the Results

From the experimental results we find that our algorithm achieves sat-

isfactory performances in categorizing and detecting various types of daily

activities. The experiments were carried out on both perfect concept detec-

tion and detection with errors. The application of dynamic concept patterns

in activity classification has shown promising result especially for better con-

cept detectors. As shown in Table 4, among the 16 activities investigated,

‘Driving’, ‘Food Shopping’, ‘Presentation (listen)’ and ‘Using computer’ have

the highest accuracy with both precision and recall being 1.00. Other activ-

ities like ‘Reading’, ‘Taking bus’, ‘Using phone’, ‘Walking’ and ‘Watching

TV’ have an F-Score above 0.90.

From Table 4, we find that the highest performances are achieved for

activities in which the visual similarity of SenseCam images are high. The

stability of concepts decided by image visual features makes it easier to detect

these activities. As to the activities involving higher concept diversity, such as

‘Child care’, ‘Cooking’, ‘Talking’, etc. where the subject is likely to be moving

around and changing his/her perspective on the environment, the overall

accuracies are degraded but still remain at an acceptable level. Only ‘Talking’

and ‘Drinking’ have an F-Score lower than 0.80. Note that similar concept

dynamics also introduces more misclassifications for activities like ‘Drinking’

and ‘Eating’. In this evaluation, 1 out of 15 ‘Drinking’ samples are detected

as ‘Eating’ while 3 out of 28 ‘Eating’ samples are classified as ‘Drinking’

activities. From Table 4, we notice that ‘Talking’ has the lowest recall at 0.65.
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This is because 6 of these 17 ‘Talking’ instances are misclassified as ‘Drinking’

(1 instance), ‘General shopping’ (1 instance), ‘Walking’ (3 instances) and

‘Child care’ (1 instance), due to the very similar concepts like ‘Face’, ‘Hand

gesture’, etc., which are the cues for ‘Talking’, but also frequently appear in

other activities.

Results also shows the robustness of our algorithm for handling errors in

concept detection. Though the performance of activity classification declines

with less accurate concept detection (as shown in Figure 7 and Figure 8), the

activity detection MAP remains at an acceptable level when more errors are

introduced in concept detection, say when µ1 ∈ [2..4]. Similar performances

are achieved by using both sampling methods as shown in Figure 10 when

using erroneous concept detectors. More extreme evaluation is also tested

with very poor concept detectors. When µ1 is assigned very small values,

for example, µ1 ≤ 1, the distribution of positive and negative classes are

seriously overlapped. In such extreme circumstances, the overall performance

of activity classification still drops at a reasonable rate.

7. Conclusions

In this paper we have described a novel application of visual lifelogging

where a subject wears a camera that records images of their day-to-day activ-

ities, ambiently. Our particular interest is in characterizing the activities and

everyday behaviour of the wearer which is distinct from other applications

of visual lifelogging like remembrance or re-finding previous events from the
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past. The novelty of our contribution lies in the fact we have used visual

images as the raw source of user observation data, albeit it observation data

taken by the rather than of the subject.

Our approach to characterising the wearer’s activity profile is to automat-

ically detect the presence or absence of a series of base concepts from the raw

lifelong images and to aggregate the appearance of these concepts to indicate

higher level activities like eating, shopping, in a meeting or using a phone,

which indicate behaviour. The technique we have developed for this is to

automatically detect the presence of a set of up to 80 of these base concepts

and then to apply a combination of dimensionality reduction to reduce the

concept space and k-means clustering, followed by the application of a series

of pre-trained HMM models to detect pre-defined specific activities.

Our algorithm was evaluated on a set of SenseCam images and our best

results for 16 everyday activities show an F-score which varies from 0.73

to 1.0, with an average of 0.90 across the activities. These results take into

account the errors that will inevitably appear in automatic concept detection

and the fact that concepts may appear and disappear during an activity or

event.

Automatic detection of concepts is already a very active area in multime-

dia research in general and is applied to video from broadcast TV, movies,

TV news etc. as well as to still images. In such work the concepts are quite

simple, semantically, mostly corresponding to the appearance of objects (face,

person, TV screen, etc.) or characteristics of the environment (indoor, out-
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door, sky, etc.). In our work on analysing visual lifelogs, detecting such

concepts is useful for helping to find particular events within the lifelong for

applications like remembrance. What we have done in this paper is to aggre-

gate the detection of these concepts and from this to infer the appearance of

everyday activities, corresponding to a higher level of semantics. The overall

performance of our technique makes it usable for characterizing the lifestyle

and behaviour of subjects. Using the techniques we have presented in this

paper we can now explore the lifestyles and behaviors of subjects in visual

lifelogging which represents the next step in our future work.
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