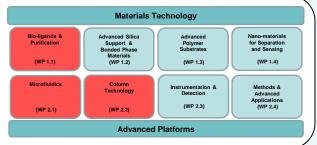


# GENETICALLY ENHANCED RECOMBINANT LECTINS FOR GLYCO-SELECTIVE ANALYSIS AND PURIFICATION

Damien Keogh<sup>1</sup>, Ruth Larragy<sup>1,2</sup>, Roisin Thompson<sup>2</sup>, Michael O'Connell<sup>1</sup>,

# Brendan O'Connor<sup>1,2</sup>, Paul Clarke<sup>2</sup>

1. School of Biotechnology, Dublin City University, Dublin, Ireland 2. Irish Separation Science Cluster, Dublin City University, Dublin, Ireland

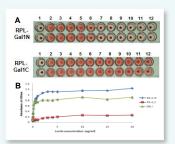







# Aims:

- Generation of a library of recombinant prokaryotic lectins (RPL's) through random mutagenesis of the carbohydrate binding sites of bacterial lectins.
- Characterisation of mutant lectins with respect to structure and specificity
- Provision of mutant RPL's with enhanced affinity and/or altered specificity, alongside wild-type RPL's, for glycoprotein analysis and purification in WP 2.1 and WP 2.2.




### 1. Random Mutagenesis of Prokaryotic Lectins

RPL-Gal1 is derived from a bacterial lectin with a specificity for terminal  $\alpha$ -linked galactose. It was cloned into an *E. coli* expression vector with purification tags at either the N- or C-terminus, then expressed and purified.

#### Figure 1: (A)

Haemagglutination assay comparing RPL-Gal1 tagged at the N- (RPL-Gal1N) or C-terminus (RPL-Gal1C). RPL-Gal1C is the most active of the two lectins. However, only RPL-Gal1N is detectable in an Enzyme Linked Lectin Assay (ELLA) (B).



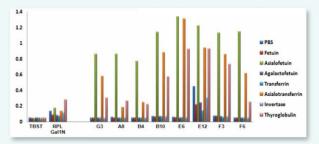
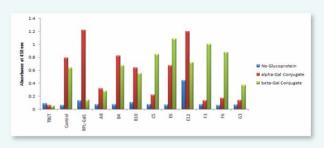
Since a high throughput assay is required for screening RPL-Gal1 mutants, further studies were performed using RPL-Gal1N.

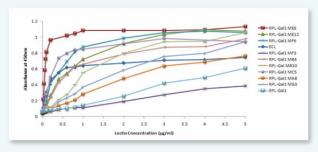


Figure 2: RPL-Gal1 monomer with a single bound galactose molecule (green). Galactose binds directly to a calcium ion in the binding site (yellow). Calcium binding amino acids are coloured red. Mutagenesis experiments were designed to alter the residues coloured blue.

## 2. High-Throughput RPL Mutant Expression & Screening

Random mutagenesis within the nucleotide sequence encoding the RPL-Gal1 carbohydrate binding site was performed, resulting in approximately 1000 *Escherichia coli* KRX transformants. Highthroughput protein expression of selected RPL-Gal1 mutants was performed through a 96-deepwell format array with an *E. coli* strain harbouring mutant clones. *In-situ* chemical lysis facilitated screening of the entire array through ELLA.



Figure 2: ELLA analysis of selected mutants from clone library demonstrating altered carbohydrate specificity. The RPL mutants were screened against a panel of glycoproteins displaying a range of glycan structures.

## 3. Functional Evaluation of RPL Mutants

Neoglycoproteins, BSA conjugated to Gal- $\alpha$ -1,3-Gal or Gal- $\beta$ -1,4-GlcNAc, were used to determine the specificity and affinity of the most active mutants. Affinity analysis was performed through lectin dilution ELLA and through competitive carbohydrate inhibition ELLA.



**Figure 4:** Investigation of RPL-Gal mutants by ELLA using neoglycoproteins. The parent lectin, RPL-Gal1, is specific for terminal  $\alpha$ -linked galactose, but the mutants show a capacity to interact with  $\alpha$ -or  $\beta$ -linked galactose (RPL-Gal1 MB10, RPL-Gal1 MB4) or display a switch in specificity for  $\beta$ -linked galactose (. RPL-Gal1 MC5, RPL-Gal1 MF6).



**Figure 5:** Association constants of the lectins on the Lactosamine-BSA neoglycoconjugate were determined by ELLA. Binding affinities on this substrate range from 55 ng/mL (RPL-Gal1 ME6) to 2.8 mg/mL (RPL-Gal1).

# 4. Project outputs

- This work is encompassed in a patent application which is in preparation.
- Publication will be withheld pending patent submission.
- An Enterprise Ireland Commercialisation grant has been awarded to Dr Paul Clarke to commercialise this research: CF 2011 1052 "ProLegere – Glycoseparation Solutions for the Life Science Industries"

This research has been funded by Science Foundation Ireland under grant number 08/SRC/B1412 and by Dublin City University Office of the Vice-President for Research







