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Abstract  

 

Myeloperoxidase (MPO) is a member of the mammalian heme peroxidase (MHP) multigene 

family. Whereas all MHPs oxidize specific halides to generate the corresponding hypohalous 

acid, MPO is unique in its capacity to oxidize chloride at physiologic pH to produce 

hypochlorous acid (HOCl), a potent microbicide that contributes to neutrophil-mediated host 

defense against infection. We have previously resolved the evolutionary relationships in this 

functionally diverse multigene family and predicted in silico that positive Darwinian selection 

played a major role in the observed functional diversities (2008, 8; DOI:10.1186/1471-2148-8-

101).  In this work we have replaced positively selected residues asparagine 496 (N496), tyrosine 

500 (Y500) and leucine 504 (L504) with the amino acids present in the ancestral MHP and have 

examined the effects on the structure, biosynthesis, and activity of MPO. Analysis in silico 

predicted that N496F, Y500F or L504T would perturb hydrogen bonding in the heme pocket of 

MPO and thus disrupt the structural integrity of the enzyme. Biosynthesis of the mutants stably 

expressed in HEK cells yielded apoproMPO, the heme-free, enzymatically inactive precursor of 

MPO, that failed to undergo normal maturation or proteolytic processing. As a consequence of 

the maturational arrest at the apoproMPO stage of development, cells expressing MPO with 

mutations N496F, Y500F, L504T, individually or in combination, lacked normal peroxidase or 

chlorinating activity. Taken together, our data provide further support for the in silico predictions 

of positive selection and highlight the correlation between positive selection and functional 

divergence. Our data demonstrate that directly probing the functional importance of positive 

selection can provide important insights into understanding protein evolution. 
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Introduction 

 

 The relationship between positive selective pressure, as measured by nucleotide 

substitution processes and codon based models of evolution (Yang 1997, Yang et al. 2000), and 

functional divergence has rarely been investigated at both the genotypic and phenotypic level. 

Levasseur et al. studied the fungal lipase/feruloyl esterase A family to determine if a correlation 

existed between evolutionary, functional and environmental shifts (Levasseur et al. 2006). The 

signature of positive selection was detected across independent lineages of the multigene 

phylogeny. By integrating functional data from in vitro site-directed mutagenesis, they revealed 

that certain amino acids under positive selection were involved in the observed functional shift. 

The relationship between positive selection and protein functional shift has also been examined 

in antimicrobial peptides, with the conclusion that the conventional Dn/Ds ratio method to detect 

positive selection accurately identifies protein functional divergence (Tennessen 2008). 

Yokoyama et al. (2008) investigated the evolution of phenotypic adaptations using visual 

pigments in vertebrates, however, upon in vitro mutagenesis these sites revealed no significant 

influence on the adaptation of rhodopsin sensitivity, refuting the link between positive selection 

and functional divergence (Yokoyama et al. 2008). In contrast, Moury and Simon (2011) 

demonstrated how sites under positive Darwinian selection were involved in adaptive trade-offs 

between different fitness traits such as viral accumulation and transmissibility in Potato virus Y 

(Moury and Simon 2011). Studies involving the experimental validation or refuttal of 

computational predictions such as detection of positive selection are challenging but provide us 

with far greater understanding of protein evolution. The need for experimental validation of these 

in silico predictions of positive selection has been clearly argued (Hughes 2008). 
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   Previously, we identified a strong signature of positive selective pressure on the four main 

members of the mammalian heme peroxidase (MHP) family: myeloperoxidase (MPO), 

eosinophil peroxidase (EPO), thyroid peroxidase (TPO) and lactoperoxidase (LPO) (Loughran et 

al. 2008). We proposed that this positive selection contributed to the observed functional 

diversity in these enzymes (see Figure 1 for summary of this work). MPO (EC 1.11.1.7) is a 

homodimeric heme-containing protein found predominantly in the azurophilic granules of 

neutrophils, where its function is critical for optimal oxygen-dependent killing of ingested 

microbes (Johnson et al. 1987, Klebanoff 1970, 1991). All members of the MHPs participate in 

both peroxidation and halogenation cycles, whereby compound I produced by reaction with H2O2 

catalyzes one- and two-electron oxidations, respectively. However, MPO is unique amongst the 

MHPs in its capacity to catalyze the two-electron oxidation of chloride at physiologic pH, 

thereby generating hypochlorous acid (HOCl). Thus, the unique chlorinating capacity of MPO is 

ideally tailored for its role in killing ingested microbes within neutrophils. We predicted that a 

small number of amino acid residues played an important role in the evolution of the unique 

capacity of MPO to chlorinate targets.  

 

To test our hypothesis, we performed targeted mutagenesis followed by biochemical 

analyses to assess the functional consequences of replacing specific amino acids in MPO, an 

approach that we have employed successfully in the past to dissect the consequences of inherited 

mutations on the synthesis, structure, and function of MPO [Supplementary S1] (DeLeo et al. 

1998, Goedken et al. 2007, Nauseef et al. 1996). The biosynthesis of mature MPO includes a 

series of critical structural modifications involving the incorporation of heme that leads 
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ultimately to the production of an active homodimer (see Figure 2 for a schematic of normal 

human MPO biosynthesis). In the endoplasmic reticulum (ER) the primary 80-kDa translation 

product, preproMPO, undergoes co-translational N-linked glycosylation to yield the 

enzymatically inactive apoproMPO (90-kDa). Subsequent insertion of heme into the peptide 

backbone of apoproMPO generates the active 90-kDa heme-containing precursor, proMPO, 

which exits the ER into the Golgi. Heme incorporation during MPO biosynthesis is a prerequisite 

for its activity and for proper proteolytic processing and trafficking to produce the mature 

homodimer in the azurophilic granule. The two identical monomers are linked by a disulphide 

bridge at position C319 resulting in mature dimeric MPO of approximately 150-kDa (Hansson et 

al. 2006), with each monomer consisting of a heavy and light subunit of 59-kDa and 13.5-kDa 

respectively.  

 

Based on the resolved phylogenetic history of the MHPs (Figure 1) and positive selection 

identified in our in silico evolutionary study (Loughran et al. 2008), we mutated three sites (both 

in silico and in vitro), N496 (posterior probability (PP) = 0.999), Y500 (PP = 0.731) and L504 

(PP = 0.970), to their more ancestral state, phenylalanine (F), F, and threonine (T), respectively. 

These positions were chosen based on: (i) the confidence score (PP) of being under positive 

selection from the in silico predictions (Loughran et al. 2008), (ii) their spatial relationship with 

the proximal heme ligand, His 502, and (iii) their proximity to R499 and G501, inherited 

mutations of which cause MPO deficiency (Goedken et al. 2007). Based on the resolved 

phylogenetic history of the MHPs (Figure 1), we mutated N496, Y500 and L504 sites in vitro. 
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 We demonstrate that the substitutions N496F, Y500F and L504T, independently and in 

combination (i.e. double/triple mutants), disrupted normal MPO biosynthesis and severely 

compromised enzymatic activity. Our findings indicate that these residues are indeed closely 

associated with MPO-specific enzymatic function and support the hypothesis that the predicted 

residues positively selected in the MPO lineage contributed to its functional divergence from 

other MHP family members. Furthermore, these studies validate the experimental approach of 

directly testing in vitro the impact of in silico evolutionary predictions on protein function. 
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Materials & Methods 

Reagents 

Human embryonic kidney 293 (HEK) cells were obtained from American Type Culture 

Collection (Manassas, VA), ATCC CRL-1573. Mutagenesis kit was obtained from Stratagene, 

pcDNA3.1(-) Neo expression vector, G-418 sulphate antibiotic, the EnzChek® Myeloperoxidase 

(MPO) Activity Assay Kit and all tissue culture reagents were obtained from Invitrogen. 

[35S]methionine (EasyTagEXPRESS Protein Labeling Mix, >37 TBq/mml) was obtained from 

Perkin-Elmer. Monospecific rabbit antibody against human myeloperoxidase was generated as 

noted previously (Nauseef et al. 1983). The SuperSignal® west pico chemiluminescent substrate 

was obtained from Thermo Fisher Scientific. All other reagents used in this study were obtained 

from Sigma-Aldrich. 

 

Ancestral State Reconstruction, 3D Modeling and In Silico Mutational Analysis 

In our previous study (Loughran et al. 2008), the phylogeny for the MHP multigene 

family of enzymes was fully resolved. Using this phylogeny and corresponding alignment, the 

ancestral node (amino acid level) of each clade on the phylogeny was reconstructed using the 

maximum likelihood (ML) marginal reconstruction algorithm implemented in PAML v3.15 

(Yang 1997). Homology modeling and ancestral state in silico mutational analysis of the three 

MPO-specific positively selected sites (positions Asn496, Tyr500 and Leu504) were performed 

using SWISS-MODEL and DeepView v3.7 respectively (Arnold et al. 2006, Guex and Peitsch 

1997). The effects on hydrogen bonding of the single mutations, N496F, Y500F and L504T, and 

of the double/triple mutations; DB1: N496F/Y500F, DB2: N496F/L504T, DB3: Y500F/L504T 

and N496F/Y500F/L504T, were assessed by in silico analysis as described previously (Loughran 
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et al. 2008).  The human MPO structure (PDB accession code 1d2vC) was used as a homology 

model template. A summary table for N496F, Y500F and L504T is available as Supplementary 

S2). 

 

In vitro Mutational Analysis 

cDNA encoding normal human MPO (Johnson et al. 1987) was cloned into the expression 

vector pcDNA3.1(-). Neo and site directed mutagenesis was performed using the Stratagene 

QuickChange®II XL Site-Directed Mutagenesis Kit as per the manufacturer’s protocol. Primers 

were designed to incorporate the three single (N496F, Y500F and L504T), the double mutants 

(N496F/Y500F, N496F/L504T, Y500F/L504T), and the triple mutant (N496F/Y500F/L504T). 

N496F forward primer: 5'-CGTCTTCACCTTTGCCTTCCGC-3'; reverse primer: 5'-

GCGGAAGGCAAAGGTGAAGACG-3'. Y500F forward primer: 5'-

CCTTCCGCTTTGGCCACACCC-3'; reverse primer: 5'-GGTGTGGCCAAAGCGGAAGGC-3'. 

L504T forward primer: 5'-GGCCACACCACCATCCAACCC-3'; reverse primer; 5'-

GGGTTGGATGGTGGTGTGGCC-3'.  Letters in boldface indicate the specific nucleotide base 

changes required to alter the amino acid coded. Presence of the desired mutant and absence of 

unintentional mutations were verified by sequencing (Eurofins MWG Operon, London, U.K. and 

Integrated DNA Technologies, Iowa, U.S.A) 

 

Stably Transfected Cell Lines 

HEK cells were maintained in Dulbecco’s modified Eagle’s medium/Ham’s nutrient 

mixture F-12 medium supplemented with 10 % (v/v) fetal bovine serum, 100 U/mL penicillin, 

100 µg/mL streptomycin, 100 mM HEPES and 2 mM L-glutamine. HEK cells were then 
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transfected with mutant cDNA using the Qiagen® PolyFect Transfection Reagent and 

transfection procedure guidelines. Stable transfectants were selected using G-418 sulphate, as 

described previously (Goedken et al. 2007). 

 

MPO Biosynthesis 

Stable HEK transfections expressing wild type and mutant MPO were maintained in 

medium supplemented with 2 µg/mL hemin for 24 h prior to metabolic labeling and 

immunoprecipitation as described previously (Bulow et al. 2002, DeLeo et al. 1998, Goedken et 

al. 2007, Nauseef 1986, 1987, Nauseef et al. 1988, Nauseef et al. 1992, Nauseef et al. 1995, 

Nauseef et al. 1996, Nauseef et al. 1998). Briefly, cells were incubated in RPMI methionine-free 

medium supplemented with dialyzed fetal bovine serum, antibiotics and 2 µg/mL hemin for 1 h. 

Cells were pulse labeled with [35S] methionine for 1 h and chased for 20 h by the addition of 

cold-methionine. Radiolabeled MPO-related protein in the cell lysate and medium was 

immunoprecipitated with rabbit polyclonal antiserum directed against human MPO. Samples 

were separated by SDS-PAGE followed by autoradiography and radioisotopically labelled MPO-

related protein was quantified by densitometry using a PhosphorImager (Typhoon 9410, 

Amersham Biosciences). 

 

MPO Activities  

In addition to its classic peroxidase activity, MPO oxidizes chloride in the presence of 

H2O2 to generate the potent cytotoxic agent, HOCl. Consequently, we compared both peroxidase 

activity and chlorinating activity of mutant species and normal MPO. Nontransfected HEK cells 

and stably transfected lines expressing wild type and mutant MPO were maintained in medium 
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supplemented with 2 µg/mL hemin for 48 h prior to cell recovery to assess MPO activity. To 

determine the relative amounts of MPO-related protein in lines expressing mutant MPO, cell 

lysates were separated by SDS-PAGE, blotted, and probed with monospecific anti-MPO 

antibody. MPO-related proteins in the immunoblot were quantified by densitometry using the 

Syngene Genegenius Bioimaging System and the amounts of MPO-related protein per cell were 

normalized relative to that in HEK cells stably expressing normal MPO, as done previously 

(Goedken et al. 2007). 

 

(i) Peroxidase Activity Assay: 

Cell pellets were solubilized in 0.01 % (v/v) Triton X-100/1X PBS at a density of 1 × 106  

cells/18 µL and stored on ice. Peroxidase assay was performed in a waterbath held at 37 ºC. The 

reaction mixture contained 18 µL of cell lysate, 3.5 mL of assay buffer [1.4 mM tetramethyl 

benzidine (TMB), 8 % (v/v) dimethylformamide (DMF), 50 mM sodium acetate (pH 5.4)] and 

2.1 µL of 0.49 M H2O2 (verified spectrophometrically using E240nm = 43.6M-1cm-1). The 

reaction was stopped after 3 min by the addition of 100 µL of 0.35 mg/mL catalase and 3.4 mL of 

ice-cold 0.2 M acetic acid. Absorbance at 655 nm was measured spectrophotometrically. 

 

(ii) Chlorination Activity Assay – Technique 1 (performed for all non-N496F variants): 

Cell pellets were resuspended in 1X PBS to a density of 1 × 106 cells/50 µL and sonicated 

on ice at 40 % amplitude for 30 sec with 6 sec pulses using a Branson Digital Sonifier (200W). 

Cleared lysate was collected by centrifugation for 10 min (10,000 × g). The chlorination assay 

was performed in a microtiter plate using the EnzChek® Myeloperoxidase (MPO) Activity Assay 

Kit. Briefly, 50 µL of 2X 3'-(p-aminophenyl) fluorescin (APF) working solution was added to 50 
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µL of sample. The reaction mixture was then incubated in the dark at 37 ºC for 5 min. 

Fluorescence intensity of each sample was recorded at 485 nm excitation and 530 nm emission 

on a Perkin Elmer luminescence spectrofluorometer. 

 

(iii) Chlorination Activity Assay – Technique 2 (performed for all N496F variants): 

 MPO-specific chlorinating capacity was quantitated for N496F variants using a sensitive 

and specific assay for detection of HOCl-dependent generation of taurine monochloromine 

(Goedken et al. 2007). HEK cells, both wild-type (negative control) and transfectants were 

treated with diisopropylfluorophosphate (1 mM) for 20 minutes and sonicated for 10 seconds on 

ice. Cell sonicates were centrifuged (228 x g) to remove intact cells and the supernatant spun 

(10,800 x g) to recover the membrane-bound compartment containing normal or mutant MPO, as 

previously described (Goedken et al. 2007). The pellet was subjected to three sequential freeze-

thaw cycles in phosphate buffered saline (without calcium or magnesium) with 0.3% 

cetyltrimethylammonium bromide and 1% protease inhibitor cocktail. The solubilized pellet was 

clarified by centrifugation (50,000 X g, 10 min, 4°C, in TL 120.2 rotor) and the clarified contents 

used in the assay as described (Dypbukt et al. 2005), with a standard curve for HOCl production 

generated using purified MPO (0-500 fmoles).  Data are expressed as nmoles of HOCl produced 

per 106 cell equivalents and all assays were performed in triplicate and each experiment was 

performed at least three times. 
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Results 

Impact of mutation of positively selected sites on the structural integrity of MPO in silico 

Performing detailed in silico site-directed mutagenesis, we previously assessed the impact 

of positively selected sites on the hydrogen bonding around the heme group in MPO (Loughran 

et al. 2008) and hence on the structural integrity of the enzyme [Supplementary S3-5]. Three 

positions, N496, Y500 and L504, are located up- and down-stream of the proximal heme ligand 

His 502. Based on our in silico mutagenesis of the positively selected residues in MPO, we 

predicted that the mutants N496F, Y500F and L504T were highly likely to compromise the 

heme-binding pocket of human MPO.  

 

Position N496 shares a hydrogen bond with N587, which in turn is connected to the heme 

ligand, H502, via an additional hydrogen bond. Upon mutation of position 469 to phenylanine 

(F), the 496-587 link is lost, potentially upsetting the structural integrity of the enzyme and 

indeed the 502-587 (heme ligand) bond (Supplementary S3). Data from the 3D structure of the 

enzyme indicate that Y500 covalently links R499 and G501, two residues that are critical for 

stability of H502, as inherited mutations R499C or G501S result in MPO deficiency (Goedken, 

McCormick et al. 2007). The proximal heme ligand, H502, is connected to R499 via a hydrogen 

bond and covalently links G501 and T503. Y500 shares putative hydrogen bonds with Y462, 

A497 and T503. By mutating position 500 to a phenylalanine, we predict that the hydrogen bond 

with Y462 would be lost (see Supplementary S3). Residue L504 is directly bound to T503 and 

shares hydrogen bonds with G501 and K556. Mutating leucine at position 504 to threonine 

(L504T) is likely to create an additional hydrogen bond with G501 (see Supplementary S3). All 

possible combinations of N496, Y500 and L504 mutated to their respective ancestral states 
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should not change the outcome of the above predictions; N496F would result in the loss of a 

hydrogen bond, Y500F would also result in the loss of a hydrogen bond and L504T in the 

formation of an additional hydrogen bond (Supplementary S3-5). Other non-covalent interactions 

and steric hindrances were not assessed, but may also result from these mutations and, in turn, 

further compromise the structural integrity of MPO. To test the validity of our predictions as to 

the impact of these mutations on the structure of MPO, we examined the biosynthesis and 

enzymatic activity of mutant proteins expressed in a heterologous system.   

 

Effect of mutating positively selected sites on the biosynthesis of MPO 

 We created HEK cell lines stably transfected with normal, wild-type (WT) or mutant 

MPO [Single: N496F, Y500F, and, L504T. Double: N496F-Y500F (DB1), N496F-L504T (DB2), 

and, Y500F-L504T (DB3), and Triple: N496F-Y500F-L504T (TRI)]. All cell lines were 

biosynthetically radiolabeled with [35S]-methionine for 1 h and chased for 0 and 20 h prior to 

immunoprecipitations of cell and culture medium with MPO antiserum.  

 

 HEK cells expressing normal MPO synthesized the 90-kDa precursors, apoproMPO and 

proMPO, which subsequently underwent proteolytic processing to yield mature MPO, 

represented by the appearance of the 59-kDa heavy subunit, as previously reported (Goedken, 

McCormick et al. 2007). Like transfectants expressing normal MPO, each of the mutant-

expressing cell lines synthesized a 90-kDa precursor and 75-kDa intermediate species of MPO to 

varied degrees after pulse-labeling (Figure 3a-g). However, in contrast to the fate of normal 

MPO, mutant MPO precursors were not efficiently processed into mature enzyme. To assess the 

overall fate of MPO precursors in stable transfectants during the chase period, we directly 
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measured the amount of radioisotopically labeled MPO-related proteins and calculated the ratio 

of 90-kDa precursor to 59-kDa mature heavy subunit (90-kDa:59-kDa) at the end of the chase 

period as an approximation of the extent of processing (Table 1). For cells expressing normal 

MPO, the 90-kDa:59-kDa ratio was 0.79 ± 0.13 (n = 10). In contrast, the failure of mutant MPO 

precursors to be processed was best illustrated by the excess 90-kDa relative to mature MPO, 

with 90-kDa:59-kDa for five of seven mutants more than two-fold that of normally processed 

MPO (Table 1). Taken together, these data demonstrate that N496F, Y500F and L504T, 

individually or in combination, compromised efficient and normal processing of MPO precursors 

into mature subunits.  

 

Effects of N496F, Y500F and L504T on peroxidase and chlorinating activity in MPO 

 Heme acquisition by apoproMPO to form proMPO is the rate limiting step in MPO 

biosynthesis, as chemical inhibition of heme synthesis or mutagenesis of critical residues arrests 

normal proteolytic processing (Castaneda et al. 1992, Nauseef et al. 1992, Pinnix et al. 1994). 

Consequently, we reasoned that the defective processing of MPO with mutations N496F, Y500F 

and L504T, individually and in combination, may reflect reduced heme acquisition, thus resulting 

in lower enzymatic activity of the mutant protein products. To assess the impact of N496F, 

Y500F and L504T on the enzymatic activities of MPO, we measured both peroxidase and 

chlorination activity of lysates from cells stably expressing mutant MPO. Enzymatic activities 

were normalized to the level of MPO-related proteins in each mutant, as judged by 

immunoblotting and subsequent densitometry, thereby allowing a comparison of relative specific 

activities of the various products. 
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 There was a significant reduction in the peroxidase activity of each mutant relative to that 

of WT MPO, with variation in relative activity among the individual mutants (Table 2). Single 

mutations N496F and Y500F preserved peroxidase activity better than did the L504T mutant, 

whereas the loss of peroxidase activity among the double mutants and the triple mutant was very 

similar, with the exception of N496F/Y500F. Residual peroxidase activity indicates that each of 

the mutants incorporated heme, and it is thus reasonable to conclude that these mutations in the 

heme pocket did not completely inhibit the incorporation of heme. However, none of the mutants, 

single or in combination, had more than trace chlorinating activity relative to that of normal 

MPO, a depression far greater than the reduction in peroxidase activity (Table 2). Given the 

greater oxidation potential required for chlorination than for peroxidase activity, the discordance 

between the two enzymatic activities suggests that the mutations compromised the functional 

potential of the heme environment without fully inhibiting heme acquisition. Like members of 

the MHP family of proteins excepting MPO, the mutants were capable of supporting the single 

electron oxidation in peroxidase reactions, but not the two electron transfer necessary to 

chlorinate substrates.  

 

 Overall our results demonstrate that the residues under positive selection, namely N496, 

Y500, and L504, had important functional effects on the resultant protein. The analyses show that 

these residues were essential for: (i) the proper proteolytic processing of MPO precursors to 

mature MPO, (ii) stable acquisition of heme to support maximal peroxidase activity, and (iii) 

creation of a heme environment that supports the distinctive chlorination activity of normal MPO. 



 17 

Discussion 

Positive Darwinian selection is the process by which beneficial mutations in a population 

are retained and fixed, and it is considered synonymous with protein functional shift. In general, 

one of the resultant copies following gene duplication has increased freedom to explore 

mutational space while the other copy executes the original function of the gene (Lynch 2002, 

Ohta 1988a, b). The epistatic (compensatory) interactions between coevolving residues also 

influence the evolutionary trajectories of gene duplicates (Dean and Thornton 2007, Hayden et al. 

2011). Mutations that prove beneficial are retained in this extra copy through the process of 

positive selection, and over time selective pressure can give rise to new functions through a 

process known as neofunctionalisation (Hughes 1999). Therefore, it follows that to a large extent, 

protein selection drives functional shift or protein diversification as well as protein specialisation 

within multigene families (Levasseur et al. 2006). Based on our recent in silico analysis of the 

biologically important MHP family of enzymes, we proposed that residues N496, Y500 and L504 

were critical for the diversification of enzyme function in this family (Loughran et al. 2008) and 

were positively selected with respect to the unique capacity of MPO to oxidize chloride and 

thereby chlorinate substrates at physiologic pH.   

 

 To test the hypothesis that positive selection of these three residues was a driving force in 

the evolutionary diversification of MPO, we examined the impact of mutations N496F, Y500F, 

N496F-Y500F, L504T, N496F-L504T, N496F-Y500F-L504T and Y500F-L504T on biosynthesis 

and function of MPO. The pulse-chase and functional analyses of stably transfected cell lines 

expressing mutant forms of MPO revealed a profound effect on the cellular fate and activity of 

MPO. Although the biosynthesis of a 90-kDa MPO precursor proceeded normally in transfectants 
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expressing mutant MPO, subsequent proteolytic processing was impaired in all seven mutants. 

Failure to generate mature enzyme from precursor was most profound in the three double 

mutants, where the 90-kDa: 59-kDa ratio, a reflection of the efficiency of proteolytic processing, 

was ~ 4-fold greater in comparison with that seen in normal MPO. Given that formation of 

proMPO is a prerequisite for generation of mature MPO and that heme acquisition by 

apoproMPO results in proMPO, we reasoned that mutations at N496, Y500 and L504 

compromised stable heme binding by mutant apoproMPO. In fact, cell lysates from transfectants 

expressing mutant MPO exhibited depressed peroxidase activity. It is noteworthy that L504T 

impaired peroxidase activity much more dramatically than did any of the other mutants 

generated, whereas there was relatively more 90-kDa MPO-related protein at 20 hours in L504T- 

than in Y500F-expressing cells. Taken together, these two observations suggest that the bulk of 

the 90-kDa MPO-related protein recovered from L504T cells was the enzymatically inactive 

precursor, apoproMPO.  

 

 It is also noteworthy that the mutants supported minimal to no chlorination, the enzymatic 

activity uniquely associated with normal MPO, despite the presence of substantial peroxidase 

activity in some of the mutants (e.g. N496F and Y500F). Residues N496, Y500, and L504 are in 

close proximity to H502, the heme-ligating residue in the proximal heme pocket that is conserved 

in all members of MHP protein family.  Acquisition of heme by apoproMPO in the ER is 

required not only for MPO activity but also for proper proteolytic processing and targeting of the 

mature enzyme, as chemical inhibition of heme synthesis (Castaneda et al. 1992, Nauseef et al. 

1992, Pinnix et al. 1994) or inherited defects in synthesis of normal proMPO (Nauseef et al. 

1994, Nauseef et al. 1996) arrests MPO processing at the apoproMPO stage. Patients with 
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inherited mutations R499C or G501S, residues also in the proximal heme pocket, have MPO 

deficiency (Goedken et al. 2007) (see Supplementary S1).  Although the heme group in all 

members of the MHP family is covalently bound to the protein backbone by ester bonds with 

conserved aspartate and glutamate residues, MPO is unique in having a third covalent bond 

between the 2-vinyl group of the heme and M409. This additional covalent linkage between heme 

and the protein backbone results in distortion of the heme ring, with secondary effects on the 

spectroscopic properties and, most importantly, oxidizing capacity of MPO. Thus, 

conformational features of the heme pocket in MPO uniquely enable it to support oxidation of 

chloride and the generation of the potent antimicrobial agent HOCl. The profound reduction in 

chlorinating capacity of all the mutants studied, even those with residual peroxidase activity, 

suggests that N496F, Y500F and L504T, like the inherited mutations at R499 and G501, altered 

the environment around H502 in MPO and compromised optimal activity by perturbing the wild 

type hydrogen bonding pattern in the heme binding pocket.  

 

 Taken together, these data have implications that apply both specifically to the MHP 

protein family as well as more generally to studies of protein functional shifts during evolution. 

Our studies support the concept that positively selected sites, N496, Y500 and L504 within the 

MPO protein, contribute to the observed protein functional shift in the MHP protein family. The 

impact on the peroxidation and chlorination activity caused by mutating these positions in MPO 

revealed the biological significance of the in silico predictions. The unique property of MPO to 

produce the potent oxidant HOCl was significantly disrupted following mutation of positively 

selected residues, and this loss of function suggests that these residues have accommodated the 

beneficial new function of chlorination activity and the production of HOCl in the MPO protein 
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lineage. Considered from a broader perspective, these studies demonstrate that biochemical and 

molecular approaches can be applied to test predictions generated in silico. Using targeted 

mutagenesis to probe predictions regarding evolutionary biology has a major role to play in the 

future elucidation of protein biology and evolutionary medicine.  
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Supplementary Material 

 

Supplementary Tables:  

Supplementary S1: Summary of mutations associated with MPO deficiency. Known 

causative and putative mutations identified by genotyping MPO deficient patients.  

 

Supplementary S2: Summary of the effect of the mutations on hydrogen bonding within the 

myeloperoxidase structure. Mutation of positively selected residue in human MPO to more 

ancestral state (using human MPO model PDB accession code 1d2vC). Effect on H-bonds; “-” 

represents the loss of a putative hydrogen bond, whereas, “+” represents the gain of a putative 

hydrogen bond, respective to the order of their corresponding mutants. 

 

Supplementary Figure Legends:  

Supplementary S3: Effect of mutating individual positively selected sites on hydrogen 

bonding within the myeloperoxidase structure.  (a) N496/F496 are shown in black and 

hydrogen bonding in grey. (b) Y500/F500 and (c) L504/T504 are shown in black, the heme 

ligand H502 in blue and hydrogen bonding in grey. Wild type is on the left and mutant on the 

right throughout. The “*” denotes a positively selected site.  

 

Supplementary S4: Effect of double mutations on hydrogen bonding within the 

myeloperoxidase structure.   (a)  N496/F496 and Y500/F500 are seen in black, (b) N496/F496 

and L504/T504 are seen in black, and (c)  Y500/F500 and L504/T504 are seen in black. The 

heme ligand H502 can be seen in blue and hydrogen bonding in grey. Wild type is on the left and 
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mutant on the right throughout. The “*” denotes a positively selected site and the “^” denotes the 

unique covalent linkage site in MPO. 

 

Supplementary S5: Effect of the triple mutation N496F/Y500F/L504T on hydrogen bonding 

within the myeloperoxidase structure.  N496/F496, Y500/F500 and L504/T504 are seen in 

black, the heme ligand H502 in blue, and hydrogen bonding in grey. Wild type is on the left and 

mutant on the right. The “*” denotes a positively selected site and the “^” denotes the unique 

covalent linkage site in MPO. 
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 Table 1: Biosynthesis of normal and mutant MPO. Ratio of the densitometric calculations of 

immunoreactive MPO-related protein precipitated following pulse-chase analysis at 20 h (Mean ± 

SEM).  

 

Cell type 90kDa:59kDa 

Normal 0.79 ± 0.13 (n=10) 

N496F 2.85 ± 0.79 (n=3) 

Y500F 2.06 ± 0.36 (n=3) 

L504T 1.65 ± 0.39 (n=4) 

DB1: N496F-Y500F 3.31 ± 0.70 (n=3) 

DB2: N496F-L504T 2.97 ± 0.87 (n=3) 

DB3: Y500F-L504T 3.22 ± 0.56 (n=3) 

TRI: N496F-Y500F-L504T 1.82 ± 0.41 (n=3) 

 



 28 

 

Table 2. Relative Specific Activity. Percentage peroxidase activity and chlorination of each 

mutant MPO with respect to wild type MPO, normalized to amount of MPO-related protein 

stably expressed by HEK cells (Mean ± SEM, n = 4). 

 Activity % 

 Peroxidation Chlorination 

MPO 100* 100** 

N496F 55.2 ± 1.2i 0.00 

Y500F 72.4 ± 5.8ii 0.00  

L504T 1.1 ± 1.1iv 0.00 

DB1: N496F-Y500F 46.4 ± 1.7iii 0.23 ± 0.03  

DB2: N496F-L504T 23.6 ± 1.7 v 0.33 ± 0.03 

DB3: Y500F-L504T 20.71 ± 2.31 vii 0.00  

TRI: N496F-Y500F-L504T 19.3 ± 1.3 vi 1.00 ± 0.06  

* The value for normal MPO, represented as 100%, is 0.113 ± .003 ΔA655.    
** The value for normal MPO, represented as 100%, is 5.46 ± 0.05 nmoles HOCl/million cell 
equivalents. The significance values are as follows:   
i: p < 0.0001 
ii: p <0.02  
iii: p < 0.0001 
iv: p <0.0001 
v: p < 0.0001 
vi: p < 0.0001 
vii: p <0.0001 
[Note: The significance values for mutants exhibiting trace levels of chlorinating activity were p 
< 0.0001] 
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Figure Legends 
 

Figure 1: Phylogeny of the mammalian heme peroxidases.  

Evolutionary relationship of the mammalian heme peroxidases (MHP); myeloperoxidase (MPO), 

eosinophil peroxidase (EPO), lactoperoxidase (LPO) and thyroid peroxidase (TPO), as resolved 

in Loughran et al. 2008. Bootstrap support values from 1000 replicates are shown. The star 

denotes the branches that were tested for signatures of positive selection. Number of  sites under 

positive selection for each superfamily with their corresponding posterior probabilities 

(confidence scores) are shown to the right of each clade. 

 

Figure 2: Normal myeloperoxidase biosynthesis.  

The 80-kDa primary translation product (preproMPO) consists of a prepeptide, a propeptide 

region, and codons destined to become the small and large subunits of mature MPO. 

Cotranslational N-linked glycosylation of preproMPO yields the inactive 90-kDa precursor 

(apoproMPO). ApoproMPO associates with molecular chaperones in the ER, resulting in the 

incorporation of heme and thereby generating the active precursor (proMPO). Subsequently, 

proMPO exits to the Golgi for further processing and granule targeting. A short-lived 75-kDa 

intermediate lacking the propeptide region is subsequently cleaved into a two-subunit (13.5- and 

59-kDa) monomer form. A 150-kDa homodimer (mature MPO) is formed with each monomer 

linked by a disulphide bond. Some of the immature MPO (90-kDa) undergoes modification of its 

oligosaccharide side-chains and is secreted constitutively. 

 

Figure 3: Biosynthesis of wild type and mutant MPO. HEK cells stably expressing wild type 

(WT) or mutant MPO (single; N496F, Y500F, L504T, double; N496F-Y500F, N496F-L504T 
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and Y500F-L504T - denoted as DB1, DB2 and DB3 respectively, and the triple mutant; N496F-

Y500F-L504T – denoted as TRI) were pulse-labeled with 35S-cysteine/methionine and chased at 

0 and 20 h intervals. Cell lysates at 0 and 20 h, and culture medium at 20 h (data not shown), 

were collected and MPO-related protein was immunoprecipitated. Immunoprecipitates were 

analysed by SDS-PAGE and autoradiography.  

 

 


