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Abstract

Glottal source information has been proven useful in many applica-
tions such as speech synthesis, speaker characterisation, voice trans-
formation and pathological speech diagnosis. However, currently no
single algorithm can extract reliable glottal source estimates across a
wide range of speech signals. This thesis describes an investigation
into glottal source parametrisation, including studies, proposals and
evaluations on glottal waveform extraction, glottal source modelling
by Liljencrants-Fant (LF) model fitting and a new multi-estimate fu-
sion framework.

As one of the critical steps in voice source parametrisation, glottal
waveform extraction techniques are reviewed. A performance study
is carried out on three existing glottal inverse filtering approaches
and results confirm that no single algorithm consistently outperforms
others and provide a reliable and accurate estimate for different speech
signals.

The next step is modelling the extracted glottal flow. To more ac-
curately estimate the glottal source parameters, a new time-domain
LF-model fitting algorithm by extended Kalman filter is proposed.
The algorithm is evaluated by comparing it with a standard time-
domain method and a spectral approach. Results show the proposed
fitting method is superior to existing fitting methods.

To obtain accurate glottal source estimates for different speech signals,
a multi-estimate (ME) fusion framework is proposed. In the frame-
work different algorithms are applied in parallel to extract multiple
sets of LF-model estimates which are then combined by quantitative
data fusion. The ME fusion approach is implemented and tested in
several ways.

The novel fusion framework is shown to be able to give more reliable
glottal LF-model estimates than any single algorithm.

ix
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Chapter 1

Introduction

1.1 Motivation of the thesis

Glottal source parametrisation is useful in a number of speech applications such

as:

•Glottal source parameters can be used to produce more realistic source signal

then a pulse train, and when used by a HMM-based speech synthesis system the

naturalness of the corresponding synthetic speech can be improved [Cabral et al.,

2007, 2008, 2011]

• Glottal flow model parameters can be applied to speaker identification

[Plumpe et al., 1999]. It is shown that the glottal features contain significant

speaker dependent information by utilising a Gaussian mixture model speaker

identification system to a large TIMIT database subset.

• Prosody analysis and modification needs not only intonation information but

also voice source control rules for quality improvement [Strik and Boves, 1992],

where we need to understand the relation between glottal source parameters and

voice quality.

• Voice source features are established to be useful to detect speech patholo-

gies [Drugman et al., 2009c; Dubuisson et al., 2009]. The relevancy of the glottal

source-based features, speech signal-based features and prosodic features is as-

sessed and it is demonstrated the glottal features such as the glottal formant,

glottal open quotient and amplitude of the main excitation can be incorporated

1



to detect pathological voice.

For its usefulness, over recent decades, much research effort has been devoted

to estimating the glottal source from the speech waveform signals. Generally,

speech is considered to be produced by a source-filter model, where source is the

glottal source and filter is the vocal tract effect. Thus, to track the glottal source

parameters we need to decompose speech into its two components. The most

widely used method is glottal inverse filtering (GIF) [Wong et al., 1979; Alku

and Vilkman, 1994], which is to remove the vocal tract effect from the speech

signal to yield the glottal source waveform. Subsequently the source component

parameters are obtained by fitting a parametric model [Fant et al., 1985] to the

glottal waveform [Strik et al., 1993].

The diversity and complexity of human speech (and extraneous factors such

as recording device characteristics and ambient noise) pose significant challenges

to any single glottal source parametrisation algorithm. Currently, no individual

algorithm performs the best for all kinds of speech signals. The Iterative Adaptive

Inverse Filtering (IAIF) algorithm [Alku, 1992] has its limitation in estimating

the glottal flow for speech with low frequency of the first formant. Closed Phase

Inverse Filtering (CPIF) [Wong et al., 1979] may generate inaccurate glottal es-

timate when the analysed speech signal has short or no duration of the closed

phase. Zero of Z-transform analysis [Bozkurt, 2005] decomposes the speech into

maximum- and minimum-phase components, where the maximum-phase compo-

nent represents the glottal source, however, the return phase information cannot

be extracted. In addition, there is still no scientific tool to analyse and extract

the glottal source parameters for arbitrary input speech signals, which is useful

to study the variation features of the source parameters across different speakers

and sounds. Also, in the area of glottal source parametrisation, based on no a

priori information of the real glottal component it is difficult to make comparisons

between different algorithms.

Under these circumstances, a glottal source parametrisation algorithm is re-

quired, which should be able to

• accurately estimate the voice source parameters across a wide range of

speech,

• extract all the useful glottal parameters from the original speech signal,
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• present the trajectories of the source parameters for an arbitrary input

speech signal, such as a word or an utterance and,

• offer useful information as references to study the performance of different

algorithms.

The goal of this study is to attempt to find a such solution. To develop

a completely new approach as defined above is a difficult task, which requires

a comprehensive study of various features of a large number of speech signals.

However, it is reasonable to develop a system which can intelligently combine

estimates from multiple algorithms, by utilising the data fusion technique. Such

a fusion algorithm is theoretically more reliable than individual algorithms for its

ability to automatically lock to well performing local algorithms.

1.2 Research Question and Hypothesis

Multi-sensor data fusion (MSDF) aims to enhance the stability, accuracy and

robustness of applications trying to track, identify and extract features of objects

by collecting, filtering and fusing information from different sources. Generally,

the source can be sensors for capturing static images, video and audio streams,

object locations and so forth. MSDF combines multiple sets of data from dif-

ferent sensors to estimate one or more properties of the object, providing more

robustness and accuracy than a single sensor.

Where no a priori information is available for selecting the optimal approach

for analysing input speech signals, it may be more reasonable to apply a selection

of different algorithms in parallel to extract multiple sets of source parameter

estimates and to combine them by MSDF techniques. For voice source parameter

estimation, different algorithms can be regarded as different sensors tracking the

same set of source parameters. Accordingly, multiple sets of estimates will be

obtained and if combined in an appropriate way, the reliability and accuracy of

the estimates may be enhanced.

This idea of combining multiple sets of estimates for glottal source parametri-

sation has the potential to overcome the limitations of single algorithms and

improve the accuracy of the estimated source parameters across different speech

signals, which is crucially important for relevant applications. In addition, it will
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give direction to future investigation for utilising more advanced techniques to

further improve the performance of the fusion algorithm, and will be a useful

reference for researchers working in the area. Thus, it is a worthy investigation.

1.3 Contributions of the thesis

This thesis contributes the following to the area of glottal source estimation:

• A comprehensive review and investigation of the performance of existing

techniques for glottal source extraction.

• A review of existing approaches to fitting glottal Liljencrants-Fant (LF) model

[Fant et al., 1985] to extracted glottal estimates.

• Proposal and evaluation of a new time-domain LF-model fitting algorithm,

by extended Kalman filtering.

• Proposal of a novel general multi-estimate fusion framework for accurate

glottal source estimation, which draws on different algorithms in parallel to obtain

multiple sets of estimates and combine them in the fusion centre.

• Implementation and evaluation of the newly proposed fusion approach.

1.4 Structure of the thesis

The thesis is structured as follows:

Chapter 2 briefly describes the human speech anatomy and some important

features of the speech signal. The source-filter model is presented which is widely

used for speech signal generation and analysis. Also in this chapter, the glottal

source model, vocal tract model and lip radiation model are introduced. The va-

lidity of the source-filter model is the basic assumption for all relevant techniques

in the thesis.
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Chapter 3 focuses on techniques for glottal source extraction. Accurate glot-

tal source extraction is crucial before fitting the parametric model to the glottal

estimates. Although a large number of glottal source extraction algorithm ex-

ist, less work has been carried out to study and compare the performance of

different approaches. In this chapter, several effective glottal inverse filtering ap-

proaches are reviewed and the performance of each is studied by applying it to

real speech signal segments. Results confirm that no single algorithm consistently

outperforms others. In addition, some non-linear-prediction based techniques for

speech decomposition are discussed.

Chapter 4 investigates model fitting methods and introduces a new approach

for automatically fitting the LF-model (introduced in Chapter 2) to the glottal

source component obtained by the approaches studied in Chapter 3. Firstly, curve

fitting is briefly explained, which is the basis for the LF fitting method before

several existing LF-model fitting algorithms are reviewed, including both time-

domain and frequency-domain based methods. Subsequently, a new time-domain

fitting approach by extended Kalman filter is proposed. The novel algorithm

is compared with a standard time-domain method and a typical spectral fitting

approach. Experimental results show the effectiveness of the new algorithm.

Chapter 5 firstly introduces some techniques relevant to quantitative data fu-

sion including Millman’s fusion formula, state-vector fusion, measurement fusion

and Kalman filtering. Subsequently, a multi-estimate fusion framework for voice

source parametrisation is proposed. The fusion framework operates across four

stages: multiple glottal source estimation, multiple LF-model parameter estima-

tion, fusion of multiple estimates and Kalman filter smoothing. The functions of

each stage are discussed in detail, and the advantages and disadvantages of the

algorithm are considered. Also, possible factors that may affect the performance

of the fusion method are presented.

Chapter 6 tests the effectiveness of the proposed multi-estimate fusion algo-

rithm by presenting several evaluations. Firstly, the fusion algorithm is imple-

mented incorporating three inverse filtering approaches and one LF-model fitting
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method. It is applied to synthetic speech signals and the results are compared

with those of single algorithms. Subsequently, this implementation is tested with

real speech utterances. Analysis is carried out by presenting several examples to

illustrate the performance of each algorithm across various speech frames. In a

further evaluation, the fusion algorithm is applied to to an all voiced utterance

by difference speakers for which hand-labelled glottal source parameters exist. To

test the effect of adding another algorithm to the existing framework, an addi-

tional LF fitting approach is integrated by two alternatives, where one is poorly

performing and the other is well performing. It can be observed from the results

that the fusion algorithm can generate acceptable estimates and overall it is more

reliable than single algorithms, since the fusion method can automatically assign

more weight on good estimate.

Chapter 7 presents conclusions. In this section, the main findings are sum-

marised and the contributions of the thesis are presented. Finally, further inves-

tigations that would extend the work described here are suggested.
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Chapter 2

Background

2.1 Introduction

For better understanding the extraction of glottal source parameter estimates, it

is necessary to outline the human speech production system. Indeed, an under-

standing of the source-filter model of speech signal production is central to the

thesis.

One of the most prominent differences between human beings and other ani-

mals is that we can speak. Speech is our most natural method of communication

and it is an exclusive skill of human beings. We learn to speak from our par-

ents and other individuals during infancy. We learn foreign languages because

we want to communicate with people outside our countries and understand their

cultures. Speech is also an important identifying feature because each of us has a

different set of vocal organ parameters giving rise to unique pronunciation char-

acteristics. Identification by voice has already been used in many areas such as

criminal investigation and security systems. The actual human speech produc-

tion system is very complex and even now has not been accurately modelled or

fully understood. However, the basic mechanism for pronunciation is clear and

we can mimic it with a relatively simple model.

In Section 2.2 we will firstly give an introduction to the basic aspects of

speech production. Afterwards, a classical model, the source-filter model, which

is simple but widely used by many speech processing applications is presented
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and all components of the model are described in Section 2.3.

2.2 Human Speech Production

In this section we give an introduction to the human speech production system

and describe some basic characteristics of speech signals. For further information

see [Fant, 1970; Flanagan, 1972; Rabiner and Schafer, 1978; Deller et al., 1993].

2.2.1 Speech Anatomy

For the development of useful speech processing applications, it is necessary to

understand how human speech is produced. The anatomy of our vocal mechanism

determines the generation of different speech sounds. Presented in Fig. 2.1 is a

schematic of the anatomy of speech production.

In general, a speech signal is an air pressure wave that travels from the

speaker’s mouth to the listener’s ears. The main organs of the production sys-

tem include the larynx, vocal tract and nasal tract. The vocal tract starts at

the opening of vocal cords, which is the glottis, and ends at the lips. For male

adults the average length of the vocal tract is approximated as 17 cm. The cross

sectional area of the vocal tract depends on the positions of the tongue, lip, jaw

and uvula; it varies from zero (fully closed) to about 20 cm2. The nasal passage

starts at the uvula and ends at the nostrils. The nasal passage and the vocal

tract work together to generate the nasal sounds [Taylor, 2009].

The complete speech production system also includes the sub-glottal system

which includes the lungs, bronchus and trachea. Air moves from the lungs along

the vocal tract, impeded by constrictions at certain positions in the vocal tract,

exiting as a speech sound wave at the lips.

2.2.2 Speech Categorisation

Speech can be divided into three categories according to different inputs to the

vocal tract:

a) Voiced Speech When air flows across the glottis, if it makes the vocal
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Figure 2.1: An overview of the human vocal system (from [Mannell, 2009])
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folds vibrate repeatedly, the vocal tract is excited with a quasi-periodic input

source and a voiced sound is generated.

b) Unvoiced Speech When air flows through the glottis, if the vocal folds

shrink instead of vibrating, which makes the airflow pass through the constric-

tion with a high velocity and produces a turbulent flow, an unvoiced sound is

generated.

c) Plosive Speech If the vocal folds or lips are fully closed and the air pressure

increases, a plosive speech sound is created after the abrupt release of the airflow.

Fig. 2.2 shows example waveforms of the three kinds of speech sounds.

Figure 2.2: a) Voiced, b) Unvoiced and c) Plosive sounds

2.2.3 Fundamental Frequency

When a voiced sound is generated, airflow passes through the glottis and causes

the vocal cords to vibrate, producing a quasi-periodic excitation pulse train. Such

a typical glottal flow waveform is presented in Fig. 2.3. The period of the

pulse train is generally represented by T0, and its reciprocal is the fundamental

frequency, usually represented by f0.

f0 is related to the length, thickness, tenacity of an individual’s vocal cords.

Generally, the fundamental frequency of an adult male speaker has a distribution
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Figure 2.3: A typical glottal excitation pulse train

in the range from 50∼250Hz. For an adult female speaker or child, the range is

120∼500Hz [Deller et al., 1993].

2.2.4 Formants

The vocal tract can be considered as a tube of heterogeneous sections, and each

resonance frequency of the tube is called a formant frequency (typically shortened

to formant for convenience). Formants depend on the positions of the vocal

organs, which means that formant frequencies are related to the shape of the vocal

tract. Each vocal tract shape has its corresponding set of formant frequencies.

Therefore, if the shape of the vocal tract changes, a different sound is generated,

and the spectrum of the speech signal will also change. Formants are numbered

from low-to-high frequencies by F1, F2, F3, etc. In voiced speech, generally

five formants can be distinguished, with the first three of vital importance in

discriminating different speech sounds [Childers, 1999]. A typical vowel spectrum

with labelled four formants is shown in Fig. 2.4.

2.3 The Source-Filter Model

According to [Fant, 1981], the human speech signal can be modelled by a source-

filter model depicted in Fig. 2.5.

For voiced sounds, the source is defined as the glottal volume velocity signal

through the glottis, which is represented by Ug. The vocal tract filter V has a

particular configuration which filters the source. A lip radiation effect R com-
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Figure 2.5: The Source-Filter modela

aobtained from https://www.msu.edu/course/asc/232/index.html
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pletes the model. If we represent the output speech signal as S, the source-filter

model can be defined by equation (2.1) (in the complex Z-domain):

S(z) = Ug(z)V (z)R(z) (2.1)

In fact, the effect of the lip radiation can be combined with the glottal flow

to give the differentiated glottal flow signal, also called glottal flow derivative Ud.

So equation (2.1) can be re-written as:

S(z) = Ud(z)V (z) (2.2)

One typical application of the source-filter model is the linear predictive coding

(LPC) [Makhoul, 1975]. LPC utilises a simple pulse train as the glottal source,

whose amplitude and F0 are obtained by linear prediction analysis. The vocal

tract and lip radiation effect are modelled by filters which are described below.

Speech is generated by putting the pulse train through the vocal tract and lip

radiation filters. The disadvantage of LPC is the lack of naturalness of the output

signal resulting from its simplified glottal source representation. To improve the

quality of synthetic speech, a more complex parametric model must be used to

describe the shape of the voice source. Such a model is presented in the following

section.

2.3.1 Glottal Source Modelling

In section 2.2, we described how the glottis produces different kinds of speech

sounds. For voiced speech, the vocal cords vibrate one cycle after another, which

gives rise to a quasi-periodic waveform. Fig. 2.6 shows a diagram of a typical

glottal flow in the time domain.

Generally one pitch period of the glottal source has three phases: the open

phase, the return phase and the closed phase. The open phase is so-named

because of the opening of the glottis during this period due to the pressure coming

from the lungs. The return phase starts at the glottal closing instant and ends

when the glottis is just fully closed because of the vocal tract tension. During

the closed phase, the vocal folds are closed before the next pitch cycle.
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Figure 2.6: Plot of an idealised glottal source (from [Taylor, 2009])

Accurate modelling of the movement of the glottis is a difficult problem and

has not been solved completely. Oscillation of the vocal folds is a non-uniform

pattern which is too complex to be represented by simple mathematical equa-

tions. Many attempts have been made to improve the modelling of the glottal

movement, such as a body-cover vocal-fold structure model introduced by Titze

and Story. This consists of two “cover” masses coupled laterally to a “body” mass

by non-linear springs and viscous damping elements to mechanically simulate the

vocal fold vibration [Story and Titze, 1995; Titze and Story, 2002; Story, 2002].

In the absence of sufficiently adaptable physical models, parametric models for

directly representing the glottal flow are often applied to fit the inverse filtered

glottal waveform.

These models include the LF-model [Fant et al., 1985], the KLGLOTT88

model [Klatt and Klatt, 1990], the Flanagan model [Flanagan et al., 1975] and

the R++ model [Veldhuis, 1998]. The most widely used is the LF-model [Fant

et al., 1985], which describes the glottal flow derivative. The glottal open phase,

return phase, and closed phase are given by equation (2.3), where e(t) is the

derivative signal.

e(t) =


E0e

αt sin(ωgt), 0 ≤ t ≤ te open phase

−Ee
εta

[
e−ε(t−te) − e−ε(tc−te)

]
, te < t ≤ tc return phase

0, tc < t ≤ T0 closed phase

(2.3)

A typical single pitch period LF-model and its undifferentiated equivalent
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Figure 2.7: A typical LF-model pulse and its parameters in time domain

waveform are presented in Fig. 2.7, where t0 is the instant of the glottal opening

(here t0 is equal to 0), tp is the instant when the undifferentiated flow reaches its

maximum, te is the time of the negative peak, which is also the glottal closing

instant, tc is the instant of glottal closure (tc=T0 in this example), ta controls the

return phase. The α, ωg and ε parameters are the shape-controlling parameters.

E0 and Ee are the positive and negative peak values of the derivative function.

The transformed LF-model parameters were introduced by [Fant, 1995] and

are presented in equation (2.4)

T0 = tc − t0
Rg = T0/(2tp)

Rk = (te − tp)/tp
Ra = ta/T0

OQ = te/T0 = (1 +Rk)/(2Rg)

(2.4)

where the Rg parameter increases with a decreasing tp, Rk determines the dura-
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tion of the falling interval from the glottal flow peak at time tp to the glottal flow

derivative negative peak at time te, Rg and Rk together determine the glottal

open quotient OQ, and Ra is the return phase parameter ta normalised by pitch

period and it accounts for the degree of glottal spectral tilt. This set of trans-

formed parameters describes the shape of the LF-model compared to the original

timing parameters.

2.3.2 Vocal Tract Modelling

Generally, the vocal tract for most voiced sounds such as vowels can be modelled

by an all-pole infinite impulse response (IIR) filter [Rabiner and Schafer, 1978;

Deller et al., 1993]. This is because the vocal tract can be represented by the

multiplication of transfer functions of a cascade of formant resonances. One single

formant can be expressed by a second-order IIR filter. Therefore, the order for

the all-pole model is double the number of formants. For some other types of

sounds such as nasal sounds, the corresponding spectra contain not only poles

but also zeros required to model the nasal cavity [Taylor, 2009]. Because of the

complexity introduced by zeros, most researchers use the all-pole model for all

types of voiced sounds. The all-pole vocal tract model is given by equation (2.5)

in Z-domain

V (z) =
G

1−
N∑
k=1

akz−k
(2.5)

where G is the gain and ak are the coefficients related to the formant frequencies

and bandwidth, and N is the order of the model. For a four-formant model for

example, the order N is eight. Fig. 2.8 shows the spectrum (top) of the model

and the poles calculated from ak in Z-plane (bottom) for the vowel sound /a:/.

2.3.3 Lip Radiation Modelling

It is known that the speech signal waveform is influenced by the volume velocity

at the lips through a radiation impedance, R(z) in Z-domain. Unfortunately to

accurately model the effect of lip radiation is a complicated and difficult problem

[Taylor, 2009]. The overall effect of the lip radiation is to apply a +6 dB/octave
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emphasis to the air flow at the lips, thus researchers commonly use a first order

differentiation function

R(z) = 1− a0z−1 (2.6)

where a0 has a value less than but quite near to 1 (e.g. 0.95), to model the

radiation function.

In most studies, the differentiation of the lip radiation function is applied

directly to the glottal flow yielding the differentiated glottal flow modelled by the

LF-model [Fant et al., 1985]. In this study, we also use the glottal flow derivative

signal, or glottal waveform to refer to the glottal excitation.

2.4 Conclusion

In this chapter, the human speech production system was introduced. According

to different excitation methods speech can be categorised as voiced, unvoiced and

plosive. Important parameters of the speech signal, the fundamental frequency

and vocal tract formants, were introduced. Subsequently, the source-filter model

was presented. The speech signal can be effectively regarded as the multiplica-

tion of three components: glottal source, vocal tract filter and lip radiation in

the frequency domain. We introduced the most widely used parametric model,

the LF-model, which is used to represent the glottal excitation in voiced speech.

We have shown that the vocal tract can be modelled by an all-pole IIR filter,

and finally we noted that the lip radiation function can be effectively modelled

by a first-order differentiator. In the next chapter we examine a range of algo-

rithms whose aim is to recover the original glottal excitation from a given speech

waveform.
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Chapter 3

Glottal Waveform Extraction

3.1 Introduction

As mentioned in Chapter 2, speech production can be simply modelled by a

source-filter model. Although this model has its limitations such as not taking

into consideration the interaction between the glottal source and vocal tract [Fant,

1993], it has proved to be useful and works well for many speech processing

applications.

The aim of glottal waveform extraction is to separate the glottal source from

the vocal tract component by decomposing speech signals. To obtain a perfect

‘clean’ glottal waveform is a very difficult task for real speech. It is known that

speech is a unique characteristic of individuals. Thus an approach which works

well for one individual’s speech may not work well for others. The fundamental

frequency of female speech is higher than that of male speech, which means there

is less data per individual pitch period to be used for analysis making it more

difficult to analyse female speech [Walker and Murphy, 2007]. Efforts have been

made attempting to obtain more reliable glottal and vocal tract estimates for

speech with less data for e.g., female speech and transition sounds. A “multi-

cycle covariance method” proposed by Yegnanarayana & Veldhuis utilises data

from consecutive pitch cycles to average the estimates by the covariance LP anal-

ysis [Yegnanarayana and Veldhuis, 1998]. McKenna applied the Kalman filter to

automatically detect the closed phase and utilise the non-independence of neigh-
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bouring closed phases to combine estimates. This method overcomes the short

duration of the closed phase, and more accurate LP estimates can be obtained

[McKenna, 2001].

In addition, the environment (noise level) and the recording device may cause

distortion in the recorded speech. Also, because of source-vocal tract interac-

tion[Fant, 1993], it is difficult to perfectly and completely remove the formants

from speech signals.

Many research efforts have been made to decompose speech into glottal source

and vocal tract components. Although limitations exist, some of these approaches

have proved useful and have been widely adopted. In Section 3.2 of this chapter,

the most widely used speech decomposition approach - glottal inverse filtering

(GIF) is introduced in detail, and three state-of-the-art fully automatic GIF al-

gorithms are presented. Details of a performance study comparing the three are

also presented in Section 3.3. In addition in section 3.4, other speech decomposi-

tion methods, such as mixed-phase speech deconvolution [Bozkurt et al., 2004b,a;

Bozkurt, 2005] and the higher order statistics method [Nikias and Raghuveer,

1987; Mendel, 1991], are briefly described.

3.2 Glottal Inverse Filtering

Glottal inverse filtering is a technique which aims to remove the spectral effect

caused by the vocal tract from speech signals and leave only the glottal source.

Fig. 3.1 shows the process of inverse filtering in both the time and frequency

domains.

In Chapter 2, the source-filter model was introduced, according to which most

voiced speech can be regarded as the result of applying the glottal source signal

through a particular vocal tract filter. Based on this, if the process is inverted,

which means putting the speech signal through a filter which is the inverse of the

vocal tract filter, the effect of the resonances will be cancelled, and ideally the

voice source will be obtained. If we use Ug(z) to represent the glottal flow, where

V (z) is the transfer function of the vocal tract filter, R(z) is the lip radiation

function and S(z) is the speech signal spectrum, the process of glottal inverse
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Figure 3.1: The process of glottal inverse filtering in the frequency (upper plot)
and time domains (lower plot) (from [Gobl, 2003])

filtering can be expressed by equation (3.1).

Ug(z) =
S(z)

V (z)R(z)
(3.1)

R(z) can be considered as a first order FIR filter, thus Ug(z) multiplied by

R(z) gives the glottal flow derivative Ud(z).

Ud(z) =
S(z)

V (z)
(3.2)

Currently there are many different glottal inverse filtering techniques avail-

able ranging from manual methods (see [Gobl et al., 1999]) to fully automatic

algorithms (see [Wong et al., 1979; Alku and Laine, 1989; Alku, 1992; Alku and

Vilkman, 1994; Vincent et al., 2007; McKenna, 2004; Moore and Clements, 2004;

Akande and Murphy, 2005; Backstrom and Alku, 2006]). Most are based on

the linear prediction techniques [Makhoul, 1975]. Using linear prediction, for an

assumed linear and time invariant system, future values can be predicted by a

difference equation which is derived from the previous input. For speech signals,

it is known that the short-term speech signal can be regarded as linear and time
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invariant; this means that linear prediction can be used to estimate the coef-

ficients of the vocal tract all-pole filter by minimizing the error (covariance or

autocorrelation methods) between the predicted sample values and the original

inputs.

In this section we will introduce three glottal inverse filtering techniques

which can be applied fully automatically to extract the glottal waveform: Closed

Phase Inverse Filtering (CPIF), Iterative Adaptive Inverse Filtering (IAIF) and

Weighted Recursive Least Squares analysis with Variable Forgetting Factor based

inverse filtering (WRLS-VFF). These three techniques were successfully imple-

mented by the author, their performance studied and the three methods will be

used later in Chapter 6 for evaluating the proposed multi-estimate fusion frame-

work.

3.2.1 Closed Phase Inverse Filtering (CPIF)

The assumption underlying closed phase inverse filtering is that during each pitch

period of voiced speech there is an interval which is free of the influence of the

glottal flow. In that interval, the glottis is closed and the interval is called the

closed phase. During the closed phase, the speech signal consists only of the

decaying vocal tract resonances. Thus, linear prediction analysis applied to this

time interval will only model the vocal tract filter and the glottal excitation

influence will be excluded [Wong et al., 1979]. The glottal waveform can then

be extracted by performing inverse filtering with the vocal tract filter, with its

coefficients estimated from the closed phase, on the entire pitch period of the

original speech signal.

In the conventional CPIF method, the crucial step is to find the glottal

closure instant (GCI) which is the start point of the closed phase. Inaccurate

GCI estimates will introduce artefacts to the process of inverse filtering. Many

epoch-detection algorithms exist for finding the GCIs, ranging from manual pitch-

marking to fully automatic implementations [Cheng and O’Shaughnessy, 1989;

Kounoudes et al., 2002; Ma et al., 1994; Naylor et al., 2007; Drugman and Dutoit,

2009].

One limitation of CPIF is that it is sensitive to inaccurate GCI estimates
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[Alku et al., 2009]. In addition, for speech signals which have non-zero excitation

during the closed phase interval, such as glottal leakage resulting from incomplete

glottal closure [Gobl and N Chasaide, 1999], or have short or zero duration closed

phases, CPIF may generate poor results [Walker and Murphy, 2005].

Many efforts have been made to improve the performance and accuracy of

closed phase inverse filtering. In [Krishnamurthy, 1984], a second channel signal,

called the electroglottograph (EGG), is used to better identify the closed phase

in cases where the duration of the closed phase is short, e.g. in higher funda-

mental frequency speech (females, children), or breathy speech. In [Alku et al.,

2009], Alku proposed a modified closed phase algorithm based on imposing cer-

tain predefined values on the gains of the vocal tract inverse filter at normalised

angular frequencies of 0 and π in order to optimise filter coefficients, which makes

the algorithm less sensitive to the location of the covariance frame position than

the conventional closed phase technique. McKenna [McKenna, 2001, 2004] intro-

duced an algorithm to determine the glottal closed phase locations and separate

the source and filter from the speech signal using Kalman Filtering. The method

overcomes some of the flaws in conventional linear prediction and closed phase

analysis such as the non-stationary interval analysis issue, the requirement of a

minimum number of closed phase data samples and high fundamental frequency

speech issue.

In this work, an Iterative Closed Phase Inverse Filtering (ICPIF) method

based on [Moore and Clements, 2004] was implemented. This method is less

sensitive then standard CPIF to the identification of the glottal closing instants.

A replotted block diagram of the approach is presented in Fig. 3.2.

sk[n] is the input speech signal frame covering three or more pitch periods.

Firstly a Glottal Closure Instant detection technique is applied to extract the

initial GCI locations. The estimated GCI points are then used as midpoints for

an iterative procedure. The actual starting point (C) of the closed phase interval

is determined by subtracting the order of the model (P ) from the GCI locations.

Afterwards, the vocal tract filter coefficients are obtained by applying covariance

LP analysis (the poles outside of the unit circle are checked and reflected for

stability assurance) to the time interval with length=2P . The corresponding

glottal component G is obtained by filtering with the inverse vocal tract transfer
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Figure 3.2: A block diagram of the ICPIF algorithm

function A(z). For each pitch period, a total of 2P iterations are performed with

the window centred at C being updated by one sample resulting in a series of

sliding windows and the glottal estimates G[k], k = 1, 2, ..., 2P are stored.

For each estimated glottal component G, the essential difference is that some

exhibit noisy properties while others are relatively smooth. For each glottal es-

timate, a first-order LP autocorrelation analysis is applied and the coefficient

a1[k], k = 1, 2, ..., 2P are stored. The reason for this is that the first term a1 of

the LP analysis describes the ratio of the autocorrelation function at lag 1 to the

autocorrelation function at lag 0, given by equation (3.3).

a1 =
−r(1)

r(0)
(3.3)

In fact, a1 represents the extent to which two consecutive samples are correlated

with each other. For an ideal glottal flow derivative waveform (like an LF-model

pulse), two consecutive samples are highly correlated, especially for the glottal
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open phase (where in the LF-model it is described by a sinusoidal function).

Although for real speech, incompletely cancelled formants and other noisy com-

ponents will affect the smoothness of the glottal estimate, it is still reasonable to

claim that a good glottal estimate should result in the value of a1 closer to 1 than

a more noisy estimate. Accordingly, the index (e) of the vector a1 with value

closest to 1 is picked from G as the best glottal waveform estimate. An example

illustrating the glottal estimates and their corresponding a1 values is presented in

Fig. 3.3. It can be observed that values of a1 which are closer to 1 are smoother

(compared with, e.g., |a1| = 0.056981 and |a1| = 0.16141). (This ‘a1 criterion’

was also used in [O’Cinneide et al., 2011b] for automatically selecting the order

of the vocal tract filter.)

By running closed phase LP analysis iteratively with varying closed phase in-

terval and choosing the best glottal waveform estimate from all iterations, ICPIF

requires no precise glottal closure information. The limitation of this approach is

the lack of robustness of the a1 criterion. Sometimes inaccurate inverse filtered

glottal flow derivatives (e.g. in the presence of incomplete formant cancellation)

may show a1 close to 1. Also, as for conventional CPIF, for speech signals with

short or zero closed phase durations, ICPIF may produce poor estimates.

3.2.2 Iterative Adaptive Inverse Filtering (IAIF)

Introduced and developed by Alku [Alku and Laine, 1989; Alku, 1992], Iterative

Adaptive Inverse Filtering (IAIF) operates based on the assumption that the

overall spectral tilt of the speech signal can be attributed to the glottal source

component, and the glottal flow waveform can be represented by a low order pole

model. In the process of IAIF, the gross features of the glottal flow are repeat-

edly estimated by performing low order linear prediction analysis, and the effect of

the glottal source is removed from the speech signal by means of inverse filtering.

Subsequently, a more accurate estimation of the vocal tract filter can be obtained

by using higher order LP analysis on the speech signal free of the estimated glot-

tal effect. In the last step, the original speech signal is inverse filtered by the

estimated vocal tract filter coefficients and the final glottal waveform estimate is

derived. In his later work [Alku and Vilkman, 1994], Alku suggested using dis-
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Figure 3.3: Glottal component estimates and the a1 values by iteration (from
[Moore and Clements, 2004])
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crete all-pole (DAP) analysis to better estimate the vocal tract model coefficients

instead of using the conventional linear prediction method. A schematic diagram

of the IAIF algorithm is given in Fig. 3.4. Firstly, as shown in block 1 the

input speech signal is high-pass filtered by a FIR filter to remove low frequency

component under 50 Hz. The first estimation of the glottal flow is implemented

from blocks 2 to 6. In block 2, a first-order DAP analysis is applied to model

the effect of a combination of the glottal flow and lip radiation on the speech

spectrum, after which the speech signal is inverse filtered to remove such effects

in block 3. In block 4, an order p (double the number of formants so generally we

choose p = Fs/1000 + 2) DAP analysis is applied to extract the first estimation

of the vocal tract impulse response. The results are used in block 5 to inverse

filter the speech signal to obtain a gross estimation of the glottal flow derivative

(GFD). The GFD is integrated and high-pass filtered with a cut-off frequency 50

Hz to remove low frequency drift to obtain the first estimate of the glottal flow

waveform in block 6, which will be used for further analysis. Blocks 7 to 12 make

up the second phase of IAIF. In block 7, the gross estimated glottal flow signal

is analysed by a g (2 or 4) order DAP analysis to obtain a new estimation of the

glottal source contribution to the speech spectrum. For the remaining blocks 8

to 12, the process is the same as the first phase (generally the order r is set equal

to p, but can be adjusted manually to improve the performance) and finally a

refined estimation of the glottal flow waveform is obtained.

An example of applying IAIF to a male speech segment is shown in Fig.

3.5. The top plot presents the spectra of the speech signal, the final glottal flow

estimate, the estimated glottis filter and the vocal tract filter, the bottom plot

shows the glottal and vocal tract poles in Z-plane.

The limitation of IAIF lies with speech signals which have a low frequency

formant, where the glottal formant (the peak of the glottal spectrum) overlaps

the first formant of the vocal tract. In such situations, it is difficult to remove

the glottal effect from the speech signal spectrum and the estimated vocal tract

filter coefficients are not reliable.
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Figure 3.4: Block diagram of the Iterative Adaptive Inverse Filtering (IAIF)
algorithm. (from [Airas, 2008])
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3.2.3 Weighted Recursive Least Squares with Variable For-

getting Factor Analysis (WRLS-VFF)

Proposed and developed by Ting and Childers [Ting and Childers, 1990; Childers

et al., 1995], the “Weighted Recursive Least Squares with a Variable Forget-

ting Factor” (WRLS-VFF) algorithm can be used to extract many features from

speech signals. With the variable forgetting factor, which indicates the reliability

of previous data for future prediction, WRLS-VFF can: 1) estimate the input

excitation (white noise or periodic pulse train), 2) track vocal tract formants, 3)

perform voiced/unvoiced speech segmentation, 4) detect glottal closure instant

and 5) performn glottal inverse filtering [Lee and Park, 1999].

WRLS-VFF assumes that the speech signal is generated by an ARMA model

given in equation (3.4):

yk = −
p∑
i=1

ai(k)yk−i +

q∑
j=1

bj(k)uk−j + uk (3.4)

where yk is the kth speech sample, uk is the input excitation, p and q are the

number of the poles and zeros respectively of the ARMA model, ai and bj are the

time-varying AR and MA parameters. It can be observed that to estimate the

AR and MA coefficients, it is necessary to estimate the input excitation uk.

Three vectors are defined as follows,

θtk = [a1(k), ..., ap(k), b1(k), ..., bq(k)]

θ̂tk = [â1(k), ..., âp(k), b̂1(k), ..., b̂q(k)]

φtk = [−yk−1, ...,−yk−p, ûk−1, ..., ûk−q]
(3.5)

where θk is the parameter vector, θ̂k is its estimate and φk is a data vector. Then

the speech signal and its estimate can be calculated from

yk = φtkθk + uk

ŷk = φtkθ̂k + ûk
(3.6)
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Accordingly, the error residual of the ARMA process is expressed as

rk = yk − φtkθ̂k (3.7)

Then a weighted least square error criterion or a cost function can be defined as

the weighted sum of the residual error squares given in equation (3.8)

Vk(θ) =
k∑
i=1

λk−ir2i =
k∑
i=1

λk−i(yi − φtiθ̂i)2 (3.8)

where λ is the forgetting factor.

For an ARMA speech production process, the residual error rk can be used

to indicate the state of the estimator at each step k. If rk is small, the forgetting

factor λ should be close to unity and the current estimate is obtained by using

most of the previous information in the speech signal. Accordingly, the estimated

model parameters are sufficiently reliable. On the other hand, if rk is large, a

smaller λ value will decrease the weighting of the error and shorten the effective

memory length of the estimation procedure. This results in estimating of the

model parameters with the most recent data, and reducing the error. To obtain

the appropriate weighting the algorithm should be able to choose the appropriate

forgetting factor λ. one iteration of the WRLS-VFF algorithm is presented in

Table 3.1 [Ting and Childers, 1990], and the results of applying the algorithm to

a male vowel sound segment /aa/ are shown in Fig. 3.6.

ûPk is the pulse input (for voiced sound) and its magnitude is estimated as the

prediction error, and ûNk is the white noise input (for plosive sound) determined

by the residual error. It can be observed that when the prediction error is large,

the forgetting factor decreases. A small value of λk implies an abrupt change of

the current data, which occurs at the glottal closure instant (GCI). Accordingly,

by using a suitable threshold value λ0, the GCI positions can be identified and

subsequently the glottal inverse filtering can be performed. A block diagram of

the WRLS-VFF based glottal inverse filtering algorithm is presented in Fig. 3.7.

The speech signal sn is firstly pre-emphasised and then analysed by the WRLS-

VFF method, where the variable forgetting factor is obtained sequentially (sample

by sample). The smallest value of λk within a pitch period indicates the instant of
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Table 3.1: Equations of the WRLS-VFF algorithm

Prediction error: ξk = yk − φtkθ̂k−1
Gain update: Kk = Pk−1φk[λk−1 + φtkPk−1φk]

−1

Forgetting Factor: λk = 1− ξ2k(1− φtkKk)/V1(θ)

Input Estimate: a) Pulse train

If λk < λ0 then

ûWk = 0

ûk = ûPk = ξk = yk − φtkθ̂k−1
b) White noise

If λk > λ0 then

ûPk = 0

ûk = ûWk = rk = yk − φtkθ̂k = ξk(1− φtkKk)

Parameter update: θ̂k = θ̂k−1 +Kk(yk − φtkθ̂k−1 − ûPk )

Covariance update: Pk = λ−1k [Pk−1 +Kkφ
t
kPk−1]
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k
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Figure 3.6: Applying WRLS-VFF analysis to a male speech segment /aa/
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Figure 3.7: Glottal inverse filtering by WRLS-VFF algorithm (from [Ting and
Childers, 1990])

the main excitation, which is actually the glottal closure point. All the estimated

vocal tract filtering coefficients ai during the adaptive process are stored and the

set of coefficients for glottal inverse filtering is determined by the convergence

of the adaptive process, where the minimal data length for convergence is equal

to twice the filter order. In addition a root-solving and formant construction

procedure is applied to check stability and ensure the poles outside the unit circle

are reflected back into the unit circle. The refined filter coefficients are then used

to inverse filtering the speech signal to achieve the glottal flow waveform.

WRLS-VFF and CPIF have similarities. The major difference of WRLS-VFF

to standard CPIF is that CPIF calculates the vocal tract filter coefficients by

applying the LP covariance method to the closed phase interval, while WRLS-

VFF estimates multiple coefficients during the recursive least square procedure

and chooses one set from the closed phase. According to Ting and Childers, there

are two main limitations for the WRLS-VFF algorithm: 1) its computational

complexity and 2) the lack of a priori information guiding the model type and

model order selection for tracking the parameters. The first detracting factor can
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be improved with more computational resources and the second disadvantage

can be solved by ARMA model order selection techniques [Bhansali, 1993; Liang

et al., 1993; Haseyama and Kitajima, 2001; Broersen and de Waele, 2004; Stoica

and Selen, 2004].

3.3 Performance Study

To evaluate the quality of the estimated glottal waveform, it is necessary to use

some numerical measure of quality. In this study, three glottal waveform quality

measures (GQM) are used and described as follows:

• Phase-plane measures. [Backstrom et al., 2005] presented two glottal wave-

form quality measures based on phase plane analysis. As the vocal tract can be

modelled by a cascade of second order resonators [Rabiner and Schafer, 1978],

while the glottal waveform can be considered by a second order harmonic equation

[Edwards and Angus, 1996]:
d2x

dt2
+ x = 0. (3.9)

To analyse this system in the phase-plane (x=glottal flow,y=differentiated glottal

flow), equation (3.10) can be obtained:

dx

dt
= y and

dy

dt
= −x (3.10)

Integrating the first order differential equation dy/dx = −x/y, we have x2 + y2 =

C, where C is a constant. Accordingly, a glottal waveform which is resonance-

free should be cyclic in the phase-plane corresponding to the pitch period. Vocal

tract resonances yield different periodic solutions to form a subset of solutions.

Therefore, formants which are not completely removed by glottal inverse filtering

will appear as minor loops within the fundamental loop in the phase-plane. This

results in two measures to quantify the quality of inverse filtering based on the

phase-plane plot: the number of cycles per pitch period (ppcper), and the the mean

sub-cycle area (ppcyc) which directly corresponds to the magnitude of formant

ripple. The smaller the ppcper and ppcyc, the better the glottal estimates, and

if ppcyc is null it means that sub-cycles can hardly be detected. Examples to
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illustrate the phase-plane measures are shown in Fig. 3.8 and Fig. 3.9. It can be

observed for higher quality glottal estimates, where the formants are cancelled,

the phase-plane plot is a closed loop and the corresponding ppcper and ppcyc are

quite small. However for poor glottal estimates, where the formants are not fully

removed, the phase-plane plot involves sub-cycles and the calculated ppcper and

ppcyc values are higher.

• Kurtosis. Also proposed by [Backstrom et al., 2005], kurtosis can be used

to measure the success of the deconvolution process of glottal inverse filtering.

In probability theory and statistics, kurtosis is a measure of the ‘peakedness’ of

the probability distribution of a real-valued random variable [Dodge et al., 2006].

Thus it describes the similarity of a distribution to the Gaussian distribution.

For a discrete signal sequence, kurtosis is calculated by equation (3.11):

kurtosis =
m4

m2

=
1/n

∑n
i=1 (xi − x̄)4

(1/n
∑n

i=1 (xi − x̄)2)2
(3.11)

where m4 is fourth sample moment about the mean and m2 is the second sample

moment about the mean (variance). For a normal Gaussian distribution, the kur-

tosis is 3. To make the kurtosis of the normal distribution equal to zero, the excess

kurtosis is defined as kurtosis− 3, which has a range of [-3, +∞], where positive

and negative values correspond to supergaussian (sharper peak distribution) and

subgaussian distributions (flatter peak distribution), respectively.

According to the central limit theorem, summation of equally distributed sig-

nals converges to the Gaussian distribution by increasing the number of samples.

Convolution by the vocal tract transfer function involves summing copies of the

glottal waveform at different time delays, thus the distribution of the convolu-

tion output should be closer to a normal Gaussian distribution than the glottal

waveform. In addition, Backstrom observed that the idealised glottal flow, with

a flatter distribution, is naturally subgaussian, and therefore should have a kur-

tosis value less than 3. Thus, the lower the value, the more accurate the glottal

waveform estimate. Fig. 3.10 shows the histograms of a segment of voiced speech

and the corresponding glottal estimate. It is visible that the speech signal has a

distribution closer to normal distribution and thus a larger kurtosis value. Also,

it can be observed in Fig. 3.8 and Fig. 3.9 that higher quality glottal estimate
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has a smaller kurtosis value compared to the poor glottal estimate.

• Mean harmonic richness factor. The harmonic richness factor (HRF) is

an objective frequency domain measure to characterise the inverse filtered glot-

tal flow waveform [Childers and Lee, 1991; O’Cinneide et al., 2011b]. HRF is

calculated as the ratio between the sum of the harmonic amplitudes above the

fundamental frequency and the amplitude of the fundamental frequency. A large

HRF value indicates the presence of energy in the higher harmonics of the glottal

spectrum, and often corresponds to impulse-like signals. On the other hand, low

HRF values imply that there is more energy around the fundamental frequency

of the spectrum and the signal should be more like a sinusoidal wave. Since the

idealised glottal waveform open phase is a sinusoidal function (the return phase

affects just the spectral tilt), the corresponding HRF value should be low, as can

be observed from Fig. 3.8 for a well estimated glottal waveform. For the poor

glottal estimate in Fig. 3.9, the HRF is relatively higher.

To evaluate the performance of the GIF algorithms, six sustained vowel sounds

were extracted from the CMU-Arctic database [Kominek and Black, 2004]. Ex-

amples of the vowels /æ/, /@/and /O/1 were taken from recordings of the male

speaker bdl and of the female speaker slt. The six vowel segments were applied

to each of the GIF algorithms to extract the corresponding glottal flow deriva-

tive waveforms. The sampling frequency was 10kHz and a 256-point hamming

window is applied for analysis. The results are presented in Figs. 3.11 - 3.16 and

Tables. 3.2 - 3.7.

It can be observed from the waveforms that in most cases, reasonable glottal

flow derivatives were successfully extracted by the three GIF methods. However,

across different speech segments, performance varies. For the vowel sound /æ/

for both male and female speakers, it is visible that the ICPIF and WRLS-VFF

outperform the IAIF method, by generating smoother glottal waveforms and

relatively small GQM scores. Especially for the male /æ/, the glottal estimates

by IAIF contain several noisy pitch periods and formant ripples that result in

larger ppcper and ppcyc values. For male /@/, ICPIF and WRLS-VFF generate

similar results and overall the performances are similar, although IAIF has noisier

estimates. For the female segment /@/, noisy estimates and formant ripples

1phonetic transcriptions from the International Phonetic Alphabet (IPA)
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Figure 3.11: Waveform of male speech frame /æ/ and corresponding glottal esti-
mates by the three inverse filtering algorithms.

Table 3.2: Glottal waveform quality measures by the three GIF methods for male
speech frame /æ/

GIF ppcper ppcyc Kurtosis mHRF

ICPIF 1.4706 0.0228 2.2614 1.0976
IAIF 2.9408 0.1021 2.4507 1.1211

WRLS-VFF 1.5313 0.0163 2.2648 1.1206
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Figure 3.12: Waveform of female speech frame /æ/ and corresponding glottal
estimates by the three inverse filtering algorithms.

Table 3.3: Glottal waveform quality measures by the three GIF methods for
female speech frame /æ/

GIF ppcper ppcyc Kurtosis mHRF

ICPIF 0.9640 null 1.6498 0.3981
IAIF 0.9726 null 1.6746 0.8490

WRLS-VFF 0.9671 null 1.6851 0.8411
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Figure 3.13: Waveform of male speech frame /@/ and corresponding glottal esti-
mates by the three inverse filtering algorithms.

Table 3.4: Glottal waveform quality measures by the three GIF methods for male
speech frame /@/

GIF ppcper ppcyc Kurtosis mHRF

ICPIF 0.9378 null 1.8627 0.9981
IAIF 1.1025 0.0147 1.8841 1.0334

WRLS-VFF 0.9365 null 1.8806 0.9966
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Figure 3.14: Waveform of female speech frame /@/ and corresponding glottal
estimates by the three inverse filtering algorithms.

Table 3.5: Glottal waveform quality measures by the three GIF methods for
female speech frame /@/

GIF ppcper ppcyc Kurtosis mHRF

ICPIF 0.9900 null 1.8476 0.8603
IAIF 0.9814 null 1.8307 1.1929

WRLS-VFF 0.9811 null 1.8625 0.8126
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Figure 3.15: Waveform of male speech frame /O/ and corresponding glottal esti-
mates by the three inverse filtering algorithms.

Table 3.6: Glottal waveform quality measures by the three GIF methods for male
speech frame /O/

GIF ppcper ppcyc Kurtosis mHRF

ICPIF 2.0239 0.0393 2.2368 0.9195
IAIF 1.1674 0.0103 2.2582 0.9989

WRLS-VFF 2.6248 0.0192 2.2620 0.9167
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Figure 3.16: Waveform of female speech frame /O/ and corresponding glottal
estimates by the three inverse filtering algorithms.

Table 3.7: Glottal waveform quality measures by the three GIF methods for
female speech frame /O/

GIF ppcper ppcyc Kurtosis mHRF

ICPIF 1.1581 0.0628 2.0215 0.9150
IAIF 0.9281 null 1.5753 0.8393

WRLS-VFF 1.0592 0.0261 1.5924 0.7507
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can be observed from the last several pitch periods of the IAIF and the ICPIF

estimates, respectively. Consequently, ICPIF has a larger ppcper score and IAIF

generates a bigger mHRF value, where as WRLS-VFF results in reasonably small

scores for all the three GQM and overall it outperforms the other two approaches.

Finally, for both male and female /O/, the IAIF method is superior, since it

generates more consistent glottal estimates for most pitch periods, while noisy

components and formant ripples can be observed from the estimates by the other

two approaches. In addition, it is visible that the values of ppcper and ppcyc for

IAIF are much smaller than ICPIF and WRLS-VFF’s scores. The IAIF’s mHRF

score is slightly higher, which may be caused by several highly noisy samples

appearing early in the estimated glottal waveform. The kurtosis score by IAIF

for the male speaker is slightly higher than that of ICPIF, and for the female

speaker is the smaller than the other two approaches.

From the experimental results and analysis above, we can conclude that no

single algorithm performs best for all kinds of speech signal. Thus it is reasonable

to suggest that improved estimate may be obtained by combining the algorithms

in an informed fashion. In Chapter 5, we will present a general framework for

multi-estimate fusion and study the performance of the framework when combin-

ing the glottal estimates from the above three glottal inverse filtering methods.

3.4 Other Speech Decomposition Methods

Despite the effectiveness of the glottal inverse filtering approach, many other

methods have been proposed to decompose speech into its source and vocal tract

components. Some of them are briefly described in this section. While not

incorporated into our fusion framework, their addition is later suggested as a

possible extension to the framework.

3.4.1 Mixed-phase Speech Decomposition

The mixed-phase speech decomposition method separates speech into its source

and vocal tract components relying on the mixed-phase speech model [Bozkurt

and Dutoit, 2003]. This model assumes that speech consists of both minimum-

46



phase (causal) and maximum-phase (anticausal) components. In [Doval et al.,

2003], it has been shown that the voice source can be considered as a causal/anti-

causal linear filter, where the glottal open phase is a maximum-phase component

and the glottal return phase is a minimum-phase component. The vocal tract,

which is generally modelled by an all-pole linear filter, is also minimum-phase.

Accordingly, the key idea of the mixed-phased decomposition algorithm is to sep-

arate both maximum- and minimum-phase components from speech. There are

primarily two mixed-phase decomposition methods: Zeros of Z-transform (ZZT)

decomposition [Bozkurt et al., 2004b,a; Bozkurt, 2005] and Complex Cepstrum-

based Decomposition (CCD) [Drugman et al., 2009b].

• Zeros of Z-transform decomposition. Unlike linear prediction that

tries to predict future values, the ZZT [Bozkurt et al., 2004b,a; Bozkurt, 2005]

decomposes the speech signal along two groups of zeroes which are the roots of the

signal’s Z-Transform. Using the distribution of zeros in the z-plane, the glottal

flow contribution (zeros outside the unit circle) can be separated from vocal tract

contributions (zeros inside the unit circle). For a discrete time sequence x[n],

the ZZT representation is defined as the set of roots (zeros) of its corresponding

Z-Transform polynomial X(z), which is shown in equation (3.12), where N is the

length of the signal, and Zm is the mth root.

X(z) =
N−1∑
n=0

x(n)z−n = x(0)z−N+1

N−1∏
m=1

(z − Zm) (3.12)

Accordingly, if s(n) is the speech signal, the corresponding ZZT representation is

given in (3.13)

S(z) = s(0)z−N+1

N−1∏
m=1

(z − Zm) = s(0)z−N+1

K−1∏
g=1

(z − Zg)
J−1∏
v=1

(z − Zv) (3.13)

where Zg are the zeros of the open phase of the voice source and Zv are the

zeros for the vocal tract and the voice source return phase. Therefore, if we

calculate the polynomial from Zg, the obtained coefficients of the polynomial are

the time domain signal samples contributed by the glottal open-phase component.

An example showing the glottal waveform estimated by ZZT from a real speech
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frame is given in Fig. 3.17, where there is no return phase information.
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Figure 3.17: Waveforms of a voiced real speech frame and the corresponding
glottal estimate by ZZT

• Complex Cepstrum-based Decomposition. Based on the same princi-

ples as ZZT, CCD [Drugman et al., 2009b] has been shown to be much faster to

compute than ZZT. The complex cepstrum (CC) ŝ(n) of a discrete speech signal

s(n) is calculated by the following equations:

S(ω) =
∞∑

n=−∞

s(n)e−jωn (3.14)

log[S(ω)] = log(|S(ω)|) + j∠S(ω) (3.15)

ŝ(n) =
1

2π

∫ π

−π
log[S(ω)]ejωndω (3.16)

where equations (3.14) - (3.16) are respectively the Discrete-time Fourier Trans-

form (DTFT), the complex logarithm function and the inverse DTFD (IDTFT).
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The CCD method works based on the assumption that the complex cepstrum

ŝ(n) of a causal component is zero for all negative n, and of an anticausal com-

ponent is zero for all positive n. Thus, to estimate the glottal contribution which

is anticausal, only the negative part of the CC should be retained.

The limitations of the mixed-phase speech decomposition approach lie in:

• Choice of windowing function is crucial to the algorithm performance.

Bozkurt [Bozkurt et al., 2005] argued that the performance of ZZT decompo-

sition depends highly on the windowing functions and the accuracy of the glot-

tal closure instant (GCI) estimates. He suggested using a two-pitch-period long

Blackman window centred on the GCI of the speech signal for better performance.

Recently, Drugman proposed using chirp group delay processing to enhance the

robustness of mixed-phase decomposition [Drugman et al., 2009a; Drugman and

Dutoit, 2010].

• Noisy speech sensitivity. Bozkurt also tested the algorithm’s sensitivity

on synthetic speech with additive noise and concluded that the ZZT algorithm

is sensitive to noisy speech, which distorts the maximum- and miminum-phase

distribution of the speech signal [Bozkurt et al., 2005].

• No glottal return phase information. It should be pointed out that the

glottal return phase is a minimum-phase system and is estimated together with

the vocal tract component by the mixed-phase decomposition. It is difficult to

separate the return phase from the vocal tract contribution.

3.4.2 Higher Order Statistics Approaches

Higher order statistics (HOS) refers to functions of the third or higher power

of a sample as extensions to second order measures (such as the autocorrelation

and power spectrum). For HOS techniques applied to speech analysis, additional

properties of the input speech signals can be exploited. Taking the bispectrum

(third-order spectrum) for example, it is theoretically immune to white Gaussian

noise (in practice noise exists because of the fixed length of data) [Nikias and

Raghuveer, 1987; Mendel, 1991]. Also, the phase information is retained in the

bispectrum. Walker proposed an algorithm to analyse the glottal pulse based on

bispectrum [Walker, 2003] with limited success. In the study, voiced speech is
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modelled as a non-Gaussian coloured noise driven system, and linear bispectrum

analysis can be applied to obtain glottal pulse and vocal tract estimates in a

hybrid Iterative Adaptive Inverse Filtering (hIAIF) framework. In addition, the

HOS approach has proved useful in recovering the transfer function of a speech

production system, particularly for nasal sounds [Hinich and Shichor, 1991]. Such

a system can be non-minimum phase (including both poles and zeros) and when it

is inverse filtered, the residual is much closer to a pure pseudo-periodic pulse train

than the outputs of pole-only inverse filtering. For example, in [Chen and Chi,

1993], a two-step method is applied to estimate the input pulse train and vocal

tract filter. The first step is to estimate the input non-Gaussian pseudo-periodic

positive pulse train by HOS based inverse filters; subsequently the ARMA coef-

ficients are estimated by an input-output system identification method [Chi and

Kung, 1992].

The main drawback with HOS methods is that they require a large amount of

data to reduce the variance in the spectral estimates to ensure reliability [Hinich

and Wolinsky, 1988]. Also, for ARMA system identification there is no a priori

information about the number of poles and zeros. Finally, for HOS based de-

convolution, the glottal return phase information is contained in the vocal tract

effect and cannot be extracted easily.

3.5 Conclusion

Several approaches to glottal waveform extraction were introduced in this chap-

ter. We described the most widely used method to estimate the glottal compo-

nent: glottal inverse filtering (GIF). Subsequently, three effective GIF approaches

(ICPIF, IAIF, WRLS-VFF) were described in detail. A performance study was

carried out to apply the three methods to real speech segments. From the ex-

perimental results it can be observed that no single algorithm works best for all

kinds of speech signals. Thus, it is reasonable to expect more reliable glottal

estimates by combining the estimates from multiple algorithms. This is the mo-

tivation of the work in Chapters 5 and 6 of this study. In addition, some further

speech decomposition methods, such as the mixed-phase (Zeros of Z-transform

and Complex Cepstrum) decomposition and higher order statistic analysis-based

50



speech decomposition were introduced. The limitations of these approaches were

discussed. With the multi-estimate fusion framework to be introduced in Chap-

ter 5, it is possible to combine the estimates from different speech decomposition

approaches.
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Chapter 4

Automatic Glottal LF-model

Fitting

4.1 Introduction

Once the glottal flow waveform has been obtained by the approaches described

in Chapter 3, it is necessary to model the flow with a specific set of parameters.

This leads us to fit a parametric model to the glottal flow waveform. Due to the

popularity of the Liljencrants-Fant (LF) model [Fant et al., 1985] for modelling

the voice source, much research had been carried out toward fitting this model

to the extracted glottal flow derivative.

In Section 4.2, we introduce the basic concept of curve fitting for better under-

standing the theory of the LF-model fitting method. Related work is presented in

Section 4.3, including both time-domain and the frequency-domain approaches

for automatic LF-model fitting. Our own work, a new time-domain LF-model

fitting algorithm based on the Extended Kalman Filter (EKF) is proposed in

Section 4.4. To evaluate its effectiveness, in Section 4.5 we compare this method

to both a standard time-domain LF fitting method and a spectral fitting ap-

proach. Experimental results are presented and discussed.
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4.2 Curve Fitting

In real world applications, it is often difficult to interpret the observed output of

a system. This is because the output of the system is affected by many factors

such as the environment, the system operator, the stability of the system itself

and other factors leading to noisy output data. To remove noise and provide

insight, scientists and engineers often seek to represent the observed data with a

mathematical model [Press et al., 1986; Motulsky and Christopoulos, 2004]. If

the data is appropriately modelled, some important characteristics of the data

can be determined conveniently, such as the rate of change anywhere on the curve

(first derivative), the local minimum and maximum points of the function (zeros

of the first derivative), and the area under the curve (integral) [Ledvij, 2003]. In

general, the goal of curve fitting is to find the parameter values that best fit a

series of data points.

One popular way for the curve fitting procedure is performed by minimising

a pre-defined error function to optimise the model parameters. Initially, a set of

parameters is given to bootstrap the model, and the corresponding fitting errors

are calculated. Subsequently, the fitting algorithm runs in an iterative manner

varying the parameters to minimise the error function. The algorithm stops when

a certain condition is achieved, such as a maximum number of iterations or the

value of the error function falls below a threshold. The estimated parameters

are assumed to generate the best fit to the observed data. Two examples of

the curve fitting procedure are shown in Fig. 4.1 and 4.2 by utilising functions

from the Matlab curve fitting toolbox. It can be observed that for Fig. 4.1, a

straight line is successfully fitted to the data samples and for Fig. 4.2, a fifth

order polynomial model is fitted to the noisy measurements which are actually

samples of a sinusoidal signal.

4.3 Automatic LF-model Fitting Related Work

In this section, the LF-model is firstly reviewed, then related work for automatic

LF-model fitting is discussed along with the factors that affect the performance

of the LF fitting methods.
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Figure 4.1: Data set and curve fitting results (linear fitting)
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Figure 4.2: Data set and curve fitting results (fifth order polynomial fitting)
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4.3.1 Review of the LF-model

The Liljencrants-Fant (LF) model [Fant et al., 1985] is a four-parameter model

for describing the shape of the differentiated glottal flow. It is preferred by many

researchers for a variety of reasons. Firstly, by choosing different sets parameters,

the LF-model can accommodate a wide range of natural speech variations such

as modal, vocal fried and breathy voices [Lu and Smith, 2002]. Also, Childers has

shown that the LF-model is superior to other glottal source models for natural

voice source modelling [Childers and Ahn, 1995; Childers, 1995] since the LF-

model can not only represent the glottal open phase, but also the return phase

which is important for describing voice quality. Strik pointed out that the LF-

model is suitable for use in speech synthesis [Strik, 1998] and Cabral integrated

the LF-model into an HMM-based speech synthesiser to improve the naturalness

of synthetic speech [Cabral et al., 2008, 2011].

Undifferentiated LF-model pulse
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Figure 4.3: A typical LF-model pulse (bottom) and its undifferentiated waveform
(top)

An illustration of a typical single pitch period LF-model pulse and its undif-

ferentiated equivalent waveform are given in Fig. 4.3. The model consists of two
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phases: the open phase and the return phase. The open phase starts from the

glottal opening instant, t0, until the closing instant te, the main glottal excita-

tion point which has an amplitude value of −Ee. tp is the positive peak of the

undifferentiated flow. This segment is modelled by equation (4.1)

E(t) = E0e
αt sinωgt for t0 ≤ t ≤ te (4.1)

where it can be observed that the LF-model open phase is a sinusoidal function

which grows exponentially in amplitude. ωg determines the frequency of the sine

wave and α controls the amplitude increasing rate. E0 is a scalar ensuring the

required ‘area-balance’ of the open phase and the return phase (the positive area

of the pulse should equal the negative area to ensure zero-flow across the whole

pulse duration).

The LF-model return phase is given by equation (4.2)

E(t) =
−Ee
εTa

(e−ε(t−te) − e−ε(tc−te)) for te < t ≤ tc (4.2)

which is an exponential function from the maximum excitation to the end of

the pitch cycle. The duration of this segment is tc − te. The most important

parameter for the return phase is Ta, which is a measurement of the duration

of this segment and defined by a tangent fitted at te. Thus it has a duration

from te to the point where the tangent intersects the horizontal axis. ε is the

time-constant of the exponential function which is determined iteratively from Ta

and tc − te by the following equation (4.3):

ε =
1

Ta
(1− e−ε(tc−tp)). (4.3)

4.3.2 Time-domain LF-model Fitting

Many efficient approaches have been proposed to fit the LF-model to the inverse

filtered time-domain glottal flow derivative waveform. In this section, an overview

of the different methods proposed and developed by researchers in the past is

given, and their effectiveness is discussed.
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4.3.2.1 Strik’s Method

Strik introduced an effective time-domain LF-model fitting approach in his works

[Strik et al., 1993; Strik and Boves, 1994; Strik, 1998]. Firstly, the inverse filtered

glottal flow derivative (GFD) signal is low-pass filtered to remove ripples and noise

appearing in the waveform which might affect the initial parameter estimates.

Strik suggested using a 7-point Blackman window as the low-pass filter because

it does not cause significant alteration to the waveform. The initial estimates for

the LF parameters t0, tp, te, Ee are obtained directly from the low-pass filtered

GFD signal as follows:

• te: the instant of maximum negative peak.

• Ee: the amplitude of point te.

• tp: the instant of the first zero-crossing to the left of te.

• to: the time-point to the left of tp whose amplitude falls below a threshold

value.

The return phase parameter Ta is initialised using a frequency-domain pro-

cedure: the value of the maximum amplitude (normalised by Ee) of the return

phase spectrum is proved to be a good predictor of Ta, where probably this am-

plitude closely resembles the DC-component of the return phase and an increase

of Ta would result in a larger DC-component [Strik et al., 1993]. This initial set

of parameters is used to construct an initial LF-model pulse, before the following

two optimisation procedures are applied.

The first optimisation technique used by Strik is the Nelder-Mead simplex

search algorithm [Nelder and Mead, 1965]. It has been shown in [Strik and

Boves, 1994] that simplex search approaches generally have a better performance

at finding a global minimum than gradient descent methods when fitting the

LF-model to the inverse filtered GFD signal.

When the estimate is close to a minimum, a gradient descent approach leads

to faster convergence. Thus, during the second optimisation procedure Strik uses

the Levenberg-Marquardt gradient descent algorithm [Marquardt, 1963] to refine

the LF-model parameter estimates.

In further research [Strik, 1997], Strik studied the effect of low-pass filter-

ing on fitting the LF-model to the inverse filtered GFD signal. He showed that
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a low-pass filter might cause alteration of the shape of the GFD waveform. To

obtain more accurate LF-model estimates, he suggested applying a 7-point Black-

man windowing as the low-pass filter to the constructed LF-model pulse during

the optimisation stage to ensure the consistency with the low-pass filtered GFD

signal.

The basic idea of Strik’s LF-model fitting method is adopted by many authors

with various modifications for both the initialisation and optimisation procedures.

• Airas implemented an automatic LF fitting approach and integrated it into

the TKK Aparat speech analysis toolkit [Airas, 2008]. The initial LF parameter

estimates are obtained by searching the inverse filtered GFD waveform as in

Strik’s method. The difference is that the glottal openings t0 are located by:

firstly searching for the point tmin having the minimum amplitude of the glottal

flow estimate after the glottal closing instant te, secondly a threshold is defined as

10% (relative to the maximum amplitude of the glottal flow) above the amplitude

of tmin and the corresponding time instant is acquired, thirdly scanning backwards

as long as the GFD is positive or the preceding 5% of the glottal flow shows limited

variation. Also, instead of using a two-stage optimisation procedure to refine the

estimates, Airas performs the optimisation in a single stage using an interior trust

region least-squares non-linear optimisation algorithm [Coleman and Li, 1996].

• Lu proposed a modified LF-model fitting approach based on Strik’s method

[Lu and Smith, 2002]. Firstly, the inverse filtered GFD signal is low-pass filtered

by a 7-point Blackman window to remove ripples and noisy components, and the

LF-model timing parameters tc, tp, te and Ee are then directly obtained from the

smoothed waveform. Different to Strik’s method, the return phase parameter Ta

is initialised as Ta = 2/3 · (tc− te). The refinement of the LF estimates is based on

a non-linear constrained optimisation by the sequential quadratic programming

method [Gill et al., 1991]. At this stage, te, Ee and tc are held constant, while tp

is allowed to vary within a range of 20% of its initial value. The value of Ta is also

restricted to 0 < Ta < (tc − te). The optimisation algorithm seeks to minimise

the root-mean-square error between the reconstructed LF-model pulse and the

GFD waveform.
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4.3.2.2 Riegelsberger’s Study

Riegelsberger studied the performance of three techniques applied to fit the LF-

model to the inverse filtered GFD signal [Riegelsberger and Krishnamurthy, 1993].

First, the LF-model equations were modified and expressed in terms of com-

plex exponentials for both the open phase and the return phase, which are given

by equation (4.4):

E(n) =

{
Coz

n
go + C∗o (z∗go)

n, n = 0, ..., N − 1

Crz
n−N
gr , n = N, ...,M − 1

(4.4)

where N, M correspond to the glottal closing and closure instants, respectively

and
Co = 0.5Agoe

j(φgo−π/2),

zgo = eαgo+jωgo ,

Cr = −Agr,
zgr = e−αgr

(4.5)

and Ago, Agr, αgo, αgr, ωgo are the corresponding LF-model scale factors and

shape parameters, and φgo is the phase term added to the open phase sinusoid.

This modified LF-model is in the form of a sum of complex exponentials in both

the open and return phases. Subsequently, Prony’s method [de Prony, 1795]

can be applied in each phase to fit these equations to the GFD signal. Experi-

mental results show that the direct application of Prony’s method may result in

discontinuities when the glottal opening instants (GOIs) are poorly located.

To improve the discontinuity problem, Riegelsberger introduced an extended

Prony’s method. In this approach, the estimated glottal opening location is disre-

garded and the damped sinusoid of the open phase is simply extended backwards

in time until it reaches zero, where this point is assumed to be the new GOI

estimate. Consequently, the good fit over the open phase by Prony’s method is

retained and the fit at the opening point can be improved.

As there is still no guarantee that the GOI estimate by the extended Prony’s

method is accurate, Riegelsberger also implemented a gradient descent approach

for the LF-model fitting. The major advantage of gradient descent is that since

it is a search technique, the range of the parameters can be constrained. Ac-
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cordingly, we can constrain the search to the valid ranges of these parameters

regardless of the noise content of the GFD waveform. The disadvantage of this

method is that manually adjusting the gradient descent solution is necessary to

avoid convergence to poor local minima.

In this study, Riegelsberger concluded that the two Prony-based methods are

inferior to the gradient descent approach, since although for synthetic waveforms

both techniques can produce reasonable fits to clean glottal flow waveforms, in

real speech a gradient descent method outperforms the Prony-based algorithms.

4.3.2.3 Childers and Ahn’s Method

Childers and Ahn begin their LF fitting approach [Childers and Ahn, 1995] by

locating the tc parameter (the end of one pitch cycle) at the point when the GFD

waveform falls to 1% of the maximum negative amplitude value. Subsequently,

the glottal closing instant te and the corresponding amplitude Ee are approxi-

mated. tp is estimated by searching for the first zero-crossing to the left of te. Ta

is initialised by approximating the spectral tilt of the inverse filtered GFD signal.

Afterwards, an initial set of LF estimates is obtained.

Subsequently, the GFD signal is divided into two segments: the open phase

and the return phase. The open phase segment, from 0 to te, is used to optimise

tp, E0, α and ωg. Ta and ε are adjusted using the return phase signal, from

te to tc. All parameters are optimised by minimising the squared errors of the

two phases between the reconstructed LF-model pulse and the inverse filtered

data. The optimisation procedure acts iteratively and the LF-model estimates

are varied until the total fitting error is minimised or reaches a certain threshold

value.

4.3.3 Frequency-domain LF-model Fitting

Kane et al. introduced and developed a frequency-domain LF-model fitting ap-

proach for voice source parametrisation, since for a phase distorted speech sig-

nal, standard time-domain LF fitting algorithm cannot generate a valid estimate

[Kane et al., 2010].
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Firstly, a codebook is generated covering a wide range of LF-model param-

eter sets and the corresponding differences between the amplitudes (in dB) of

the first two harmonics (H1*-H2*) are calculated. Fant proposed an empirical

formulation relating the glottal open quotient (OQ) and H1*-H2* with respect

to the LF-model: H1∗ − H2∗ = −6 + 0.27exp(5.5OQ) [Fant, 1995]. Thus, the

H1*-H2* measure can be utilised to find an initial set of LF estimates. For each

pitch period of the GFD signal, a 256-point Hamming window (centred on the

glottal closing instant) is applied. The GFD spectrum is calculated by the Fast

Fourier Transform. Subsequently, the H1*-H2* of the glottal waveform spectrum

is measured and a search procedure is applied to the codebook to find the closest

H1*-H2* value and the corresponding set of LF-model parameters are selected as

the initial estimates.

The refinement of the estimate uses a two-step optimisation procedure. The

first step is to adjust the initial estimates of the LF-model parameters by min-

imising the difference between the first six harmonics (which as low frequency

components characterise the glottal pulse) of the GFD spectrum HGFD and the

LF-model spectrum HLF , by the Nelder-Mead multidimensional unconstrained

non-linear algorithm [Nelder and Mead, 1965]. The difference for the first two

harmonics is doubled to prioritise their matching (as they are more important to

the glottal contribution) and the cost function is given by:

D1 = 2 ·
2∑

n=1

(HGFD(n)−HLF (n))2

+
6∑

n=3

(HGFD(n)−HLF (n))2.

(4.6)

The second step is to adjust the estimate of the return phase parameter Ta,

leaving Tp and Te unchanged. As the LF-model return phase is an exponential

function, Ta mainly contributes to higher frequency components. Thus, the fitting

error, D2 between the two spectra is minimised to obtain a more accurate Ta

estimate. A flowchart of Kane’s algorithm is given in Fig. 4.4.
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Figure 4.4: Flow chart of the spectral LF-fitting algorithm [Kane et al., 2010].
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4.3.4 Factors Affecting LF-model Fitting

In order to obtain accurate estimates when fitting the LF-model to the glottal

flow derivative, it is necessary to consider different factors that may affect the

fitting procedure. The four main such factors are listed below:

• Quality of the extracted glottal waveform [Strik et al., 1993]. The goodness

of inverse filtering is the most important factor that affects the fitting procedure.

Clearly, the better the performance of the inverse filtering, the cleaner, the fewer

ripples and noisy components in the extracted glottal waveform. This makes it

easier for the fitting procedure to find a more accurate set of initial LF estimates.

However, if the performance of the inverse filtering is poor, there will remain

incompletely removed formants appearing in the glottal waveform. This can lead

to an inaccurate estimate of the glottal openings for the time-domain method,

and for the frequency-domain method, the amplitude values of the low frequency

harmonics will be affected and poor initialisation ensues.

• Source-tract interaction [Fant, 1993]. The mechanism for real speech produc-

tion is more complex than that assumed by the ideal source-filter model which

assumes that the source and vocal tract components are independent of each

other. In fact, because of the sudden closure and gradual opening of the vocal

cords, a source-tract interaction effect exists, resulting in the true glottal flow

always containing components that can not be easily modelled by an all-pole

model. Thus, after inverse filtering, the derivative may exhibit some degree of

such interaction in the glottal open phase as multiple peaks, which may affect

the LF-model fitting by increasing the difficulty of finding the glottal opening

instants.

• Optimisation techniques [Strik and Boves, 1994]. After initial estimation,

the LF-estimates must be refined. Different optimisation techniques such as

Nelder-Mead [Nelder and Mead, 1965] and Levenberg and Marquardt’s gradi-

ent descent algorithm [Marquardt, 1963], can be applied to improve the accuracy

of estimates. We should carefully choose among these approaches to avoid local

minima.

• Error criterion. An error criterion is crucial for the optimisation procedure.

Generally, the root-mean-square error measure is used to find a global minimum
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[Childers and Ahn, 1995]. However, because of ripples resulting from poor inverse

filtering and source-interaction, there is no guarantee of a global minimum error

corresponding to the best fit of the LF-model. Consideration should be given to

the fitting error especially the open phase fitting error which is directly related

to poor glottal opening instant estimation.

4.4 A New Time-domain LF-model Fitting Al-

gorithm by Extended Kalman Filtering

To overcome the difficulty of accurately estimating the LF-model return phase

parameter in the time-domain [Strik et al., 1993], and improve the accuracy to

locate the glottal opening instant (which is crucial of locating the estimation

of the open phase parameters), a novel time-domain LF-model fitting approach

is introduced in this section. Firstly, a brief introduction to extended Kalman

filtering (EKF) is given, before the LF-model equation is re-written in a discrete

time format to conveniently use the EKF equations. Subsequently, we show how

to apply EKF to track the LF-model shape-controlling parameters. Finally, the

full algorithm for LF-model parameter estimation is described.

4.4.1 Extended Kalman Filtering (EKF)

In estimation theory, the EKF is the nonlinear version of the classic Kalman

filter [Kalman, 1960] which operates recursively on streams of noisy input data to

produce a statistically optimal estimate of the underlying system state (a more

detailed introduction to the Kalman filter is given in Chapter 5). The primary

limitation of the Kalman Filter is that it offers the optimal estimate for linear

system models with additive independent white noise in both the process and

the measurement systems while most of the practical systems are nonlinear. The

EKF was developed as a solution [Welch and Bishop, 1995; Ribeiro, 2004] and has

been effectively utilised in many applications [Hoshiya and Saito, 1984; Dhaouadi

et al., 1991; Lee and Ricker, 1994; Tuan Pham et al., 1998; Zeng et al., 2011;

Kumari et al., 2011].
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As with basic Kalman filtering, EKF makes use of past measurements to

produce an a priori estimate. Subsequently, the current measurement is used

to update and generate an a posteriori estimate. The process model and the

measurement model are given by equation (4.7):

xk = f(xk−1, uk−1, k) + wk

zk = h(xk, k) + vk
(4.7)

where xk is the state vector of the process model at step k, uk is a control signal,

zk is the observed measurement, wk and vk are random variables representing the

process and measurement noise with white Gaussian distribution p(w) = N(0, Q)

and p(v) = N(0, R). f and h are the nonlinear functions controlling the transition

and measure processes.

The EKF optimisation procedure has two steps: time update and measure-

ment update. The time update equations are expressed by the following two

equations:

x̂−k = f(x̂k−1, uk−1, k)

P−k = FkPk−1F
T
k +Q

(4.8)

where x̂−k is the a priori estimate at step k, xk−1 is the a posteriori estimate at

step k − 1, P−k and Pk−1 are their corresponding error covariances. Fk is the

partial derivative function of with respect to x where

Fk =
∂f

∂x
(x̂k−1, uk−1, k) (4.9)

The EKF measurement update equations are given by equation (4.10):

Kk = P−k H
T
k (HkP

−
k H

T
k +R)−1

x̂k = x̂−k +Kk(zk − h(x̂−k , k))

Pk = (I −KkHk)P
−
k

(4.10)

where Kk is the Kalman gain, Hk is the partial derivative function of h with

respect to x where

Hk =
∂h

∂x
(x̂k−1, k) (4.11)
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It can be seen that once a proper set of initial parameters x̂0, P0, Q and R

are given, the extended Kalman filter runs iteratively, and eventually an optimal

estimate for the state vector of the process model can be obtained, although

sufficient data is necessary for the convergence of the estimation process. For

further information on EKF, see [Welch and Bishop, 1995].

4.4.2 Discrete Time LF-model representation

It is convenient to convert the LF-model timing parameters to ratio format for

discrete time signals. For a single pitch period of the inverse filtered glottal flow

derivative signal, if the length (or the number of samples) of the pitch cycle is N ,

the start point is the glottal opening t0, the three LF-model timing parameters

normalised by pitch period are expressed as:

Te = te−t0
N

,

Tp = tp−t0
N

,

Ta = ta
N
,

(4.12)

and because tc is the end point of this pitch period (see Fig. 4.3), Tc is set to 1.

The constraints of the LF-model are given by equation (4.13):

Tc∫
0

E(t)dt = 0

E0 = − Ee
eαTe sin(ωgTe)

ωg = π
Tp

εNa = 1− e−ε(1−Te)

(4.13)

Accordingly, the LF-model equations (4.1) and (4.2) can be re-written as

follows:

E(k) =


− Ee
eαTe sin( π

Tp
·Te)e

αk
N sin( π

Tp
· k
N

), 0 ≤ k ≤ TeN

− Ee
εTa

[e−ε(
k
N
−Te) − e−ε(1−Te)], TeN < k < N

(4.14)

where k is the kth sample of the data.

66



4.4.3 LF-model Shape-controlling Parameter Tracking by

EKF

For a single pitch period of the glottal flow derivative signal, the LF-model pa-

rameters are constant. Thus, the extended Kalman filtering can be applied to

track the two LF-model shape controlling parameters, α for the open phase, and

ε for the return phase, where the best fit of the LF-model can be obtained.

4.4.3.1 Tracking for α by EKF

The open phase signal Eo (normalised) extends from the glottal opening t0 (which

is set to 0 here) to the main excitation point te. Accordingly, a nonlinear open

phase function ho is defined by the following equation:

Eo(k) = ho(αk, k) = − Ee
eαTe sin( π

Tp
· Te)

e
αk
N sin(

π

Tp
· k
N

), 0 ≤ k ≤ TeN (4.15)

As α is the single constant for estimation, there is no input of the control signal

u and the process noise vector w, and the corresponding covariance Q is zero.

Subsequently, the process model and the measurement model can be expressed

by equation (4.16):

αk = αk−1

Ek = ho(αk, k) + vk
(4.16)

where Ek is the kth sample of Eo, ho is a nonlinear function defined in equation

(4.15), vk is the measurement noise with a white Gaussian distribution p(v) =

N(0, Ro). The corresponding EKF time update equations are given by equation

(4.17):

α̂−k = α̂k−1

P−k = Pk−1
(4.17)

where the current a priori state estimate α̂−k is simply a duplicate of the previous

a posteriori estimate α̂k−1, and the a priori covariance P−k is set to be equal to

the previous calculated covariance Pk−1.
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The EKF measurement update equations are presented as follows:

Kk = P−k Ho(α̂
−
k )(Ho(α̂

−
k )P−k Ho(α̂

−
k ) +Ro)

−1

α̂k = α̂−k +Kk(Ek − ho(α̂−k , k))

Pk = (1−KkHo(α̂
−
k ))P−k

(4.18)

Kk is the Kalman gain, which is updated in each iteration. α̂k is the current a

posteriori state estimate and it is actually a linear weighted sum of the a priori

estimate and the prediction error term Ek − ho(α̂−k , k). The covariance term Pk

is also updated and will be used in the next iteration. Ho is a partial derivative

function of ho with respect to α:

Ho(α̂
−
k ) =

∂ho
∂α

(α̂−k , k) (4.19)

Unlike its linear counterpart, generally the EKF is not always an optimal

estimator especially if the initial estimate of the state is not reasonable, or if

the process is modelled incorrectly. Thus, to obtain an accurate estimate of the

open phase shape-controlling parameter α, it is crucial to find appropriate initial

values for the EKF parameters.

It was empirically found that Ro = 0.01 and P0 = 1 is a reasonably good

choice for the EKF tracking procedure. Selecting the value of α0 is much more

important, as it directly affects the accuracy of the state estimate α̂ by EKF.

Without a priori information on the shape of the glottal flow derivative, it is

difficult to set an appropriate value for α0. Fortunately, the LF-model is a para-

metric model which has its constraints to construct a valid LF pulse. Thus, there

is a limited range of variation of α values. Based on the discrete time LF-model

representation given by equation (4.14), our experiments show that the open

phase shape-controlling parameter α has a value in the range 0-100 for a valid

LF-model. Thus it is reasonable to use multiple values for α0 to perform the EKF

tracking. Each α estimate according to different α0 values is used to re-construct

the LF-model open phase and the mean squared error (MSE) between open phase

signals of the newly constructed LF-model and the glottal flow derivative is cal-

culated. The best initial value of α0 is the one resulting in the minimal MSE and

the optimal estimate of α is obtained. Fig. 4.5 shows an example of the final
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fitted LF-model open phase signals by different α0 values. It can be observed

that when α0 = 15, the EKF performs the best and the the optimal estimate of

α is achieved.

Figure 4.5: Fitted LF-model open phase signals according to different α0 values

4.4.3.2 Tracking for ε by EKF

Tracking of the return phase shape-controlling parameter ε is similar to the pro-

cedure for estimating α. The return phase of the glottal flow derivative extends

from the negative peak point te and ends at the last sample of this pitch period.

The return phase derivative signal is normalised, and a nonlinear function for the

return phase is defined by equation (4.20):

Er(k) = hr(εk, k) = − Ee
εTa

[e−ε(
k
N
−Te) − e−ε(1−Te)], TeN < k < N (4.20)

Similar to the open phase parameter α, the process and measurement models

for ε are:
εk = εk−1

Ek = hr(εk, k) + vk
(4.21)
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where Ek is the kth sample of Er, hr is a nonlinear function defined by equation

(4.20), vk is the measurement noise with white Gaussian distribution p(v) =

N(0, Rr).

The EKF time update equations are expressed as:

ε̂−k = ε̂k−1

P−k = Pk−1
(4.22)

where the current a priori state estimate ε̂−k is equal to the previous a posteriori

estimate ε̂k−1, and the a priori covariance P−k retains the value of the previous

calculated covariance Pk−1.

The EKF measurement update equations are written as follows:

Kk = P−k Hr(ε̂
−
k )(Hr(ε̂

−
k )P−k Hr(ε̂

−
k ) +Rr)

−1

ε̂k = ε̂−k +Kk(Ek − hr(ε̂−k , k))

Pk = (1−KkHr(ε̂
−
k ))P−k

(4.23)

Kk is the Kalman gain. ε̂k is the current a posteriori state estimate updated by

a linear weighted combination of the a priori estimate and the prediction error

term Ek − ho(α̂
−
k , k) in terms of Kk. The error covariance Pk is also updated

and will be used for the time update step in the next iteration. Hr is a partial

derivative function of hr with respect to ε:

Hr(ε̂
−
k ) =

∂hr
∂ε

(ε̂−k , k) (4.24)

To initialise the return phase EKF tracking procedure, Rr is set to 0.01 and

P0 is set to 1, as good initial values for the normalised signal by our empirically

observation. To obtain an accurate estimate of ε, it is necessary to find an appro-

priate value for ε0 to avoid inaccurate estimate by deviated tracking. According

to the LF-model [Fant et al., 1985], ε ≈ 1
Ta

, and for different voice qualities

Ta varies by 1% to 20% [Kane et al., 2010]; thus the value of a valid ε0 has the

range from 1 to 200. The optimal estimate of ε is obtained by fitting the re-built

LF-model return phase signal to the original glottal flow derivative return phase

using multiple ε0 values to find the one giving the minimal mean squared error.
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4.4.4 Algorithm Implementation

The implementation of the new time-domain LF-model fitting algorithm is de-

scribed in this section. Above, we have shown that extended Kalman filtering

can be used to track the LF-model shape-controlling parameters and the corre-

sponding optimal fit to the glottal flow derivative can be obtained. According to

the LF-model constraints (see equation 4.13), the full set of the LF parameters

can be extracted by iteratively applying EKF tracking across a range of initial

values.

For a segment of voiced speech signal, firstly a glottal waveform estimation

approach (e.g., a glottal inverse filtering technique introduced in Chapter 3) is

applied to extract the GFD signal. Next the GFD signal is segmented into indi-

vidual pitch periods using initial estimates of the glottal opening instants derived

from a threshold-based procedure [Airas, 2008]. Subsequently, for each pitch pe-

riod of the GFD, the LF-model parameters are estimated by the new time-domain

LF fitting approach presented in Table 4.1. The details of each step are explained

as follows:

Step 1: The negative peak point te with its absolute amplitude Ee and the

positive peak point tm are found by searching the waveform, and the GFD signal

is separated into the open phase and the return phase.

Step 2: The initial tp estimate tp0 is obtained by searching for the first zero-

crossing point to the left of te.

Step 3: The optimal fitting of the open phase mainly depends on the values

of Tp (at this stage the initial estimate Tp0 is used) and Te, which are calculated by

Tp = (tp− t0)/N , Te = (te− t0)/N . We set the dynamic range of t0 from 1 to the

point which is 0.1N samples before tm. To locate the optimal t0, a rectangular

window from t0 to te is used to extract the glottal open phase. Subsequently

the windowed GFD open phase signal is used by the EKF to estimate the open

phase shape-controlling parameter α with multiple values of α0 as introduced in

last section. The minimal mean squared fitting error (MMSEf )is calculated and

stored. For all of the t0 points, the one which gives a global MMSEf is selected

as the optimal glottal opening estimate t0opt. Accordingly, Tp0 and Te is updated,

and Te and Ee are output.
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Table 4.1: Implementation of the new time-domain LF-model fitting algorithm
to the GFD train

For each pitch period of the signal E of length N do

Find the negative peak point te and its amplitude Ee, and Step 1

the positive peak point tm

Find tp0 which is the first zero-crossing point to the left of te Step 2

For t0 = 1 : tm − 10%N do Step 3

GFD open phase signal Eo = E[k](k = t0 : te)

Tp0 = (tp0 − t0)/N
Te = (te − t0)/N
EKF for α with multiple α0 (see Section 4.4.3.1), the

optimal α results in the minimal mean squared fitting error

Store the MMSEf for the current t0

End For

Find the optimal t0opt with the smallest MMSEf across different t0

Update Tp0 = (tp0 − t0opt)/N
Te = (te − t0opt)/N

Output Te

For Tp = Tp0 − 5% : Tp0 + 5% do Step 4

EKF for α as done in Step 3

End For

Find the optimal Tp with the smallest MMSEf across different Tp

Output Tp

GFD return phase signal Er = [E[k](k = te : N), zeros(1, t0 − 1)] Step 5

EKF for ε with multiple ε0 (see Section 4.4.3.2)

Find the optimal ε̂ having the MMSEf

Calculate Ta = 1−e(−ε̂(1−Te))
ε̂

Output Ta

End For
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Step 4: A dynamic searching procedure similar to Step 3 is used to refine

the estimate of Tp: a reasonable range Tp0± 5% is applied to the EKF to find the

optimal Tp as the output of this stage.

Step 5: To fit the return phase, t0−1 zeros (associated with the closed phase

of the previous pitch cycle and not used in the open phase fitting procedure)

are appended to the current pitch period of the GFD signal to ensure there is a

sufficient number of samples for the EKF. Subsequently, an optimal estimate ε̂

of the return phase controlling parameter ε is obtained by using multiple initial

values of ε0 for initialising the EKF tracking procedure and searching for the

global MMSEf . Finally the return phase timing parameter Ta is calculated

according to the LF-model constraints.

Applying the proposed new fitting algorithm, the whole set of LF-model pa-

rameters can be extracted. In the following section, the performance of the new

LF fitting approach is studied by comparison with other LF fitting methods.

4.5 Performance Study

To test the effectiveness of the new fitting algorithm introduced above, we com-

pared it with two other LF fitting methods: one a typical time-domain approach

and the other a modified frequency-domain approach.

4.5.1 Comparison with a Standard Time-domain Method

In this section, the newly proposed Extended Kalman filtering LF-model fitting

(EKFLF) algorithm was compared with a standard time-domain LF-model fitting

algorithm (STDF) [Airas, 2008]. The latter and our new method were applied to

both synthetic and real speech data. The evaluation results [Li et al., 2012b] are

presented below.

4.5.1.1 Synthetic Speech

Three sets of LF-model parameters of different voice qualities including modal,

vocal fry and breathy voice qualities (used in [Fu and Murphy, 2006] and pre-

sented in Table 4.2) were used to generate the glottal source signals, and the
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corresponding glottal pulse trains were obtained by concatenating ten identical

pitch periods. Afterwards, the three sets of LF-model pulse trains were passed

through three all-pole vocal tract filters modeling three vowel sounds (formant

frequencies and bandwidths were taken from [Akande and Murphy, 2005] and

are presented in Table 4.3), and a total of nine sustained synthetic speech seg-

ments were created. In addition, for breathy voice, simulated noise of 30dB SNR

was added to mimic breathy speech quality. All vowel segments were inverse fil-

tered by an iterative closed phase inverse filtering approach, ICPIF (introduced

in Chapter 3), to extract the GFD signal. The GFD signals were divided into

individual pitch periods by the initial estimation of glottal opening points. Sub-

sequently, the EKF fitting approach (EKFLF) and the standard time-domain

LF-model fitting algorithm (STDF) were applied respectively to all pitch cycles

of the GFD signals. The mean squared error (MSE) for the estimated LF-model

timing parameters for both algorithms with respect to the true values were calcu-

lated, and the results are presented in Fig. 4.6. It is observed that for modal and

vocal fry voice qualities the MSE scores are consistently lower for the proposed

fitting algorithm compared to STDF. For breathy voice the results are less clear.

The estimated Tp and Te for breathy vowels /IH/, /UH/ by EKFLF are more

accurate, however for Ta the standard fitting method performs better. This may

be explained by additive noise to breathy voice and imperfect inverse filtering

caused by short duration of the closed phase for breathy voices.

Overall these experimental results demonstrate the validity of the proposed

LF-model fitting algorithm to estimate glottal LF-model parameters for a wide

range of synthetic speech signals, and it is superior to the standard time-domain

fitting method in most cases.

Table 4.2: LF-model parameters for three voice qualities

Voice Quality Tp(%) Te(%) Ta(%)

Model 45.66 57.50 0.91
Vocal fry 18.99 25.14 0.83
Breathy 52.89 75.75 8.19
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Figure 4.6: MSE scores of estimated LF-model parameters for a) modal voice, b)
vocal fry voice and c) breathy voice
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Table 4.3: Formant frequencies and bandwidths of three vowels

Vowel Formant frequencies (Hz) Formant bandwidths (Hz)

F1 F2 F3 F4 B1 B2 B3 B4

/AE/ 826 1187 3081 4045 99 159 299 330
/IH/ 319 2182 2890 3643 97 100 157 780
/UH/ 273 753 2296 3185 90 105 91 105

4.5.1.2 Real Speech

Two segments of real speech were extracted from the CMU-ARCTIC database

[Kominek and Black, 2004] for speakers bdl (a male voice) and slt (a female

voice). Both segments were inverse filtered by ICPIF to extract the glottal flow

derivative signals. Afterwards the two LF-model fitting algorithms were applied.

The original speech waveforms, the GFD waveforms and the fitted LF-model

pulses by the two methods (LFPN and LFPM) are presented in Figs. 4.7 and

4.8. A single pitch period of GFD and fitted LF-model waveforms are shown in

Fig. 4.9. In the absence of a priori knowledge of the glottal source component

for real speech, it is difficult to measure the accuracy of the estimated source

parameters. Instead we compare the goodness of fit to the estimated GFD signals

of the two algorithms. Therefore the mean squared error (MSE = E[(r− rLF )2]

) between the estimated GFD signals r and the reconstructed LF-model pulses

rLF across the full speech segments were calculated and the results are presented

in Table 4.4. It can be observed from the waveforms and the MSE scores that for

both male and female speech segments, the proposed algorithm outperforms the

standard time-domain fitting approach by generating smaller MSE scores. For

EKFLF, the male subject has a larger MSE than female because of the ripples

appearing in closed phases.

From the results above it can be observed that the novel fitting algorithm

outperforms the standard fitting approach. In the next section, the proposed

fitting method is compared to a frequency-domain approach with both synthetic

and real GFD signals.
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Figure 4.7: Top: male speech waveform, Bottom: GFD signals and fitted LF-
model pulses (LFP) from the two algorithms
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Figure 4.8: Top: female speech waveform, Bottom: GFD signals and fitted LF-
model pulses (LFP) from the two algorithms

Table 4.4: MSE scores for real speech segments from two automatic time-domain
LF-model fitting algorithms

Algorithm\ Subject BDL SLT

EKFLF 0.1851 0.0671
STDF 0.3448 0.7432
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Figure 4.9: Single pitch period of GFD and fitted LF waveforms for top: male
and bottom: female

4.5.2 Comparison with a Modified Frequency-domain

Method

To compare our proposed fitting approach to a frequency-domain LF fitting

method, a modified version of Kane’s method [Kane et al., 2010] was imple-

mented. Because of the correlation between the glottal open quotient and the

difference between the amplitude of the first and second harmonics (H1*-H2*) of

the glottal flow spectrum [Fant, 1995], Kane initialises the LF estimate by search-

ing for the H1*-H2* value in the codebook closest to the GFD spectrum. However,

it is shown in [Henrich et al., 2001] that multiple sets of LF-model parameters can

generate very similar H1*-H2* values, therefore the spectral optimisation proce-

dure may become stuck in a local minimum caused by poor initialisation, and

correspondingly inaccurate estimates will be obtained.

We made some modifications to the approach. Firstly, a codebook is generated

of over two thousand LF-model parameter sets and including the corresponding

amplitudes of the first six harmonics. For each pitch period of the GFD, a 256-

point Hamming window (with the glottal closing instant in the centre as with
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Kane’s method) is applied. The GFD spectrum is obtained by the Fast Fourier

Transform. Subsequently, the mean squared error (MSE) between the first six

harmonic amplitudes of the GFD spectrum and those in the codebook is calcu-

lated. The set of LF-model parameters generating the minimal MSE is selected

as the initial estimate.

The second step of Kane’s method to refine the estimate of Ta. How this is

achieved is not clearly stated in his study. In our implementation the Itakura-

Saito distance [Itakura and Saito, 1968] is minimised during this refinement pro-

cedure. This distance is given by equation (4.25):

DIS =
1

N
·
∑

(
PGFD(ω)

PLF (ω)
− log(

PGFD(ω)

PLF (ω)
)− 1). (4.25)

where the frequency ω has a range from after the sixth harmonic to half the

sampling frequency, P is the amplitude and N is the number of the frequency

samples.

To compare these two LF-model fitting methods, both artificial and real glot-

tal source signals were used. The experimental details [Li et al., 2012a] are pre-

sented below.

4.5.2.1 Artificial Glottal Source

50 sets of LF-model pulses were randomly generated from the range presented in

Table 4.5 corresponding to a wide range of voice qualities. Subsequently, the time-

domain EKF and the modified frequency-domain LF-model fitting (EKFLF and

MFDF) algorithms were applied to extract estimates of the three LF parameters.

Results are presented in Fig. 4.10 (all values of Te were increased by 0.3

for better illustration). In addition, the mean squared error (MSE) between the

estimates and their true values were calculated and are presented in Table 4.6.

It can be observed that for a clean, artificial glottal source signal, both EKFLF

and MFDF can generate reasonably good estimates. It can also be seen that in

most cases, EKFLF outperforms MFDF.
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Figure 4.10: Artifical glottal source LF-model parameter true values and the
estimates by EKFLF and MFDF

Table 4.5: Range of LF-model parameters

LF Parameter Range

Tp [0.2, 0.72]
Te [0.3, 0.8]
Ta [0, 0.2]

Table 4.6: RMSE scores for the three LF-model parameters by EKFLF and
MFDF applied to artificial speech data

LF Parameter EKFLF MFDF

Tp 0.0196 0.0257
Te 0.0182 0.0258
Ta 0.0086 0.0191
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4.5.2.2 Real Glottal Source

The real speech data used for the evaluation here was supplied by Dr. Irena

Yanushevskaya of Trinity College Dublin1. The data are based on the all-voiced

utterance “We were away a year ago”. The inverse filtered glottal source waveform

and corresponding hand-labelled LF-model parameters for one male speaker were

selected, and 100 pitch periods of the source signal were extracted (the poorly

inverse filtered glottal signal were excluded).

The EKFLF and MFDF algorithms were applied to the glottal source wave-

form. The hand-labelled LF-model parameters and the estimates by both algo-

rithms are presented in Fig. 4.11 (again all values of Te were increased by 0.3

for better illustration). The MSE scores between the hand-labelled data and es-

timates were calculated and are presented in Table 4.7. It can be observed that

overall EKFLF has a better performance than MFDF. For pitch periods 2-12

and 18-27, MFDF generated inaccurate Tp and Te estimates while the estimates

obtained by EKFLF are very close to the true values. For the remaining 79 pitch

periods, performance of the two approaches varies. Fig. 4.12 shows an example

where EKFLF performs better. It can be observed that the LF-model waveform

obtained by MFDF is poorly fitted to the glottal waveform open phase. An in-

accurate fit of the third harmonic in the spectrum can also be seen. Fig. 4.13

illustrates a case where MFDF outperforms EKFLF. Due to the weak amplitude

of the glottal waveform and a large number of ripples appearing in the open

phase, EKFLF failed to locate the glottal opening instant. In addition, it can

be observed in the spectrum that the first and third harmonic of the estimated

1Phonetics & Speech Laboratory, Centre for Language and Communication Studies, Trinity
College Dublin

Table 4.7: RMSE scores for the three LF-model parameters by EKFLF and
MFDF applied to real speech data

LF Parameter EKFLF MFDF

Tp 0.0543 0.0852
Te 0.0527 0.1017
Ta 0.0111 0.0274
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Figure 4.11: Real glottal source LF-model parameter hand-labelled values and
the estimates by EKFLF and MFDF

82



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-100

-80

-60

-40

-20

0

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

 

 

0 50 100 150 200 250

-1

-0.5

0

0.5

1

Sample

A
m

pl
itu

de

 

 

Glottal Source Waveform
LF Waveform by MFDF
LF Waveform by NTDF

Glottal Source Spectrum
LF Spectrum by MTDF
LF Spectrum by NTDF

EKFLF

EKFLF

Figure 4.12: An example where the LF-model is better fitted by EKFLF to the
real glottal source

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-100

-80

-60

-40

-20

0

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

 

 

0 50 100 150 200 250
-1

-0.5

0

0.5

Sample

A
m

pl
itu

de

 

 

Glottal Source Waveform
LF Waveform by MFDF
LF Waveform by NTDF

Glottal Source Spectrum 
LF Spectrum by MFDF
LF Spectrum by NTDF

EKFLF

EKFLF

Figure 4.13: An example where the LF-model is better fitted by MFDF to the
real glottal source

83



LF-model by EKFLF is not very well fitted to the glottal spectrum compared to

MFDF.

It can be observed from the results above that, for an artificial glottal source

signal, both methods can generate accurate LF-model estimates, where the time-

domain approach performs better. For a real speech glottal source with hand-

labelled data, the time-domain method shows generally more reliable estimates of

the LF parameters compared to the spectral fitting method. It can be observed

that in general the spectral fitting approach is more sensitive to the quality of

the inverse filtered glottal source. Even small fitting errors to low frequency

harmonics of the glottal spectrum may result in inaccurate estimates of the open

quotient parameter Te and the asymmetrical parameter Tp. In addition, Fant

claimed that different sets of LF-model parameters may produce similar glottal

spectra [Fant, 1995]. Therefore, the frequency-domain criterion is less robust

compared to the time-domain criterion. Also, Kane put more weight on the

time-domain information in his LF-model fitting algorithm [Kane, 2012].

To the above reasons, we decide to use the time-domain error criterion to eval-

uate the multi-estimate fusion framework incorporated with both the time- and

frequency-domain LF-model fitting methods proposed in the following chapters.

Further investigation is required by perception tests to measure which criterion

is more significant when dealing with the LF-model fitting problem.

4.6 Conclusion

This chapter provided an introduction to glottal source parametrisation by LF-

model fitting. General curve fitting was briefly discussed before an overview

of widely used LF-model fitting algorithms (including both time-domain and

frequency-domain approaches) was presented.

Subsequently, we proposed a new time-domain LF-model fitting algorithm

based on extended Kalman filtering. The process of tracking the LF-model shape-

controlling parameters was described in detail and a full implementation of the

newly proposed algorithm was presented.

To test the effectiveness of this new fitting approach, it was firstly compared

to a standard time-domain method and the experimental results showed that
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in most cases the new algorithm is superior for both synthetic and real speech

signals. In a further test, the new fitting approach was compared to a frequency-

domain method. Results shown that for clean synthetic glottal source signal, both

methods can result in reasonable LF-model estimates, while the time-domain

approach performs slightly better. For a real speech glottal source with expertly

hand-labelled data, the time-domain method is more robust than the frequency-

domain approach for estimating the source parameters.

Improved performance of the LF-model fitting algorithms requires further

developments not only of the fitting approach, but also in speech decomposition.

It is obvious that the cleaner the glottal source waveform, the easier it is to

fit the LF-model to it. It is interesting to note that (as with inverse filtering

algorithms) no single fitting method consistently outperforms all others. This

suggests that for accurate source parameter estimation, a hybrid approach that

combines estimates from multiple algorithms is worthy of further investigation.

In the next chapter, we will introduce a general framework to combine multiple

sets of LF-model estimates (obtained from different glottal source extraction and

LF fitting algorithms) to generate more consistent and reliable results.
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Chapter 5

A Multi-estimate Fusion

Framework for Glottal Source

Parameter Estimation

5.1 Introduction

Previously, we observed that no single algorithm can give consistently reliable

glottal source parameter estimates for different speech signals. Thus, it is reason-

able to consider combining estimates from different approaches instead of propos-

ing a ’flawless’ algorithm. In this chapter, a general framework to generate and

combine multiple sets of glottal LF-model parameter estimates by quantitative

data fusion is introduced. We propose that an appropriate combination of esti-

mates obtained from a range of speech decomposition and LF fitting algorithms

should result in more reliable results than those from a single algorithm.

This chapter is scheduled as follows. In Section 5.2 an introduction is given

to quantitative data fusion techniques. After a brief introduction to data fusion,

two general data fusion structures, state vector fusion and measurement fusion,

are described. Subsequently, a simple example illustrating Millman’s fusion for-

mula is presented. Also, Kalman filtering, which is one of the most widely used

techniques for multi-sensor data fusion, is discussed. In Section 5.3, a general fu-

sion framework is proposed for combining multiple glottal source estimates. The

86



hierarchical structure of the framework is described and the input and output of

each level are explained in detail. The advantages and limitations of the fusion

approach are discussed. In addition, the factors that may affect the performance

of the fusion algorithm are considered.

5.2 Quantitative Data Fusion

With the continuing advancement of micro-electronics, integrated circuit and

sensor technologies, multi-sensor fusion has received significant attention and is

widely used in both military and commercial applications. A data fusion algo-

rithm aims to combine data from multiple sensors and obtain improved accuracy

of estimates of the target than obtainable from a single sensor alone. In the mid-

1980s, the Joint Directors of Laboratories (JDL) data fusion group introduced a

model for data fusion [Hall and Llinas, 1997]. The JDL fusion model is a univer-

sal model covering all levels of data fusion and is widely utilised. In this section

we will give a general outline of data fusion and introduce some commonly used

techniques for combining quantitative data from different sensors, which can be

applied to construct the glottal LF-model multi-estimate fusion framework.

5.2.1 An Introduction to Data Fusion

Data fusion, or information fusion, while a useful concept, is one for which no uni-

fied definition exists. Generally, data fusion is regarded as a framework for, or the

process of combining data from multiple sources to provide a robust representa-

tion of a target [Klein, 2004]. Data fusion is an information processing procedure

used in information technology to automatically analyse and integrate the ob-

servations from several sensors according to certain criteria, and consequently to

complete the anticipated tasks such as making decisions and target estimations.

Because most of the information sources in data fusion systems are sensors, data

fusion is also widely known as multi-sensor data fusion (MSDF) [Mitchell, 2007].

There is a wide variety of sensors, e.g. according to different measurands sensors

may be needed as acoustic, biological, chemical, optical, magnetic etc [Richard,

1987]. Thus different sensors and fusion targets lead to different data fusion algo-
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rithms. Data fusion is an inter-disciplinary research area, although at its core are

mathematical techniques [Hall and McMullen, 2004]. All data fusion applications

can be considered as finding optimal solutions for uncertain problems.

Generally multi-sensor data fusion systems have the following advantages

[Mandic et al., 2005]:

1) System reliability and robustness can be enhanced when more than one

sensor is used.

2) Time and space measurement range can be extended if sensors are located

in different positions and activated in different periods.

3) Estimation accuracy improvement. Various noise components are unavoid-

able during the process of sensor measuring; utilising multiple pieces of informa-

tion describing identical features may reduce the uncertainty caused by inaccurate

measurements.

4) Target inspection and identification. Different sensors can represent dif-

ferent features of the target; these complementary pieces of information result in

the reduction of distortion for comprehending the target.

With the above benefits, multi-sensor data fusion found applications originally

mainly in the military field [Tong et al., 1987; Linn et al., 1991; Bass, 2000]. For

example, in the Second World War an optical ranging system was incorporated

into anti-aircraft guns in order to utilise information from both the radar and

optical sensors and consequently to improve the distance measurement accuracy

and defense interference. Nowadays the significance of multi-sensor data fusion is

widely accepted; together with the appearance of novel sensor devices, enhance-

ment and improvement of processing techniques and software, data fusion systems

are widely used not only for military purposes, e.g. territorial waters monitor-

ing, air-to-air and ground-to-air defence and strategic early-warning, but also for

civilian convenience, e.g. medical diagnosis, air traffic management, automatic

industrial process control, non-destructive testing and remote sensing [Luo et al.,

1988; Hall and Linn, 1991; Franklin and Blodgett, 1993; Filippidis et al., 2000;

Majumder et al., 2001].

Data fusion algorithms in general can be classified into three groups [Sasiadek,

2002] : probabilistic model based data fusion, least-squares techniques based data

fusion, and intelligent fusion. The probabilistic model fusion method includes
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Bayesian reasoning, evidence theory, robust statistics and recursive operators;

the least-squares techniques are Kalman filtering, optimal theory, regularization

and uncertainty ellipsoids; the intelligent information fusion algorithms are fuzzy

logic, genetic algorithms and neural networks. For practical applications, there is

no absolute best choice and different algorithms may result in equivalent answers.

One should choose one or some of the data fusion algorithms according to the

requirements of the problem.

For glottal source estimation applied to real speech signal, there is no a priori

information of the true glottal component. Also, there is no a priori informa-

tion can be used for combining data from different source estimation algorithms.

Kalman filtering is shown to be effective [Chang et al., 1997; Gao and Harris,

2002] to track the state vectors of a system lacking of useful information. Thus,

for our multi-estimate fusion framework we choose to use a measurement fusion

method based on Kalman filtering to fuse the estimates obtained by individual

algorithms, where the corresponding multiple sets of estimates are combined by a

Millman’s fusion formula and then smoothed by a Kalman filter. Details of these

techniques are presented below.

5.2.2 Two General Fusion Structure: State-Vector Fusion

and Measurement Fusion

State vector fusion and measurement fusion are two broad approaches for data

fusion based on Kalman filtering. Measurement fusion directly combines the

observations without pre-processing and there is no loss of information from the

observations, thus the optimal state vector estimate is obtained [Raol, 2009]. In

practical applications, this may not always be feasible because the amount of data

to be transmitted to the fusion centre would be quite large, and problems might

occur due to the channel’s limited transmission capacity. For such situations,

state-vector fusion is preferable, since each sensor uses a Kalman filter to track

the state vector and its associated covariance matrices from the measurements

at the corresponding sensor. These state vector estimates are transmitted to

the fusion centre and combined to obtain the fused estimate. Transmitting state

vector rather than raw data reduces the overload of the channels. The problem
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with state-vector fusion arises since the input noise associated with the target

and different target sensors could be correlated, and the corresponding cross-

correlation is difficult to calculate without a priori information thus often ignored

by real applications, which might result in inaccurate estimation. The two fusion

structures are described in more detail below.

5.2.2.1 State-Vector Fusion

.  .  .

1y

2y x̂

1KF

2KF

1 1ˆ ,x P

2 2ˆ ,x P

ˆ ,n nx Pny
nKF

Figure 5.1: State-vector fusion structure

The basic structure of state-vector fusion is shown in Fig. 5.1, where yn(n =

1, 2, ..., n) is the measurement of the nth sensor, KFn is the nth local Kalman

filter, x̂n and Pn are the state vector estimate and corresponding error covari-

ance obtained by Kalman filtering, and x̂ is the optimal state vector estimate

produced by combining all the local estimates. It can be observed that in state-

vector fusion, all the measurements yn of individual sensors are put through a

group of Kalman filters to obtain individual sensor-based state estimates, before

these estimated state vectors are combined in the fusion centre according to the

corresponding estimated state error covariances from n Kalman filters, to achieve

an optimal fused state estimate.

Further details on state-vector fusion and some of its applications can be

found in [Roecker and McGillem, 2002; Saha, 1996; Chang et al., 1997; Saha and

Chang, 1998; Wang et al., 2003; Mitchell, 2007].
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5.2.2.2 Measurement Fusion

.  .  .

y

1y

2y

Ny

x̂KF

Figure 5.2: Measurement fusion structure

Fig. 5.2 presents the basic structure of measurement fusion, where yn(n =

1, 2, ..., n) is the measurement of the nth sensor, y is the fused measurement and

x̂ is the optimal state vector estimate obtained by Kalman filtering. It is clear

that in contrast to state-vector fusion, measurement fusion directly fuses the

measurements from individual sensors to obtain a composite measurement and

the final state estimate is achieved by applying a single Kalman filter to the fused

observations.

Extended descriptions of measurement fusion and corresponding applications

can be found in [Palmieri et al., 2001; Gan and Harris, 2002; Lee, 2003; Deng

et al., 2006; Ran et al., 2008; Gao et al., 2009].

For speech signals, since the number of pitch periods and corresponding LF-

model parameter estimates for a voiced frame is relatively small, the analysis is

done off-line and requires no transmission. Also, there is no a priori informa-

tion that can be used to measure the cross-correlation between the “noise” by

individual algorithms, thus the fused estimate by state-vector fusion might be

inaccurate because of the weight assigned to poor estimates. In such a scenario,

a measurement fusion structure is more appropriate to combine the estimates

from different algorithms and thus is applied in this study.
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5.2.3 A Basic Fusion Formula: Millman’s Formula

Millman’s formula is a useful tool used in many data fusion applications for

directly combining data from different sources [Ajgl et al., 2009]. To illustrate

how Millman’s fusion formula works, we provide a simple example.

Suppose we have some apples of weight x that we seek to estimate. We

have two scales, and they generate two measurements z1 and z2, with random,

independent and unbiased measurement errors (zero mean), v1 and v2. Because

we do not know which one of the two scales is more reliable, it is reasonable to

combine the two measurements and obtain an optimal estimate of x. Accordingly,

the measurements are described by equation (5.1):

z1 = x+ v1

z2 = x+ v2
(5.1)

Without a priori information, we could assume that an estimate of x (denoted

by x̂) is a linear combination of the measurement as followings:

x̂ = a1z1 + a2z2 (5.2)

where a1 and a2 are the weights we need to derive, where a1 + a2 = 1. If the

estimation error x̃ is defined as:

x̃ = x̂− x (5.3)

we should minimise the mean squared value of x̃ as the criterion of optimality.

Given v1 and v2 are unbiased and independent of x, from equations (5.1)-(5.3)

we can derive the following:

E[x̃] = E[x̂− x] = E[a1(x+ v1) + a2(x+ v2)− x] = 0 (5.4)

E[v1] = E[v2] = 0, E[x] = x (5.5)

E[v21] = σ2
1, E[v22] = σ2

2, E[v1x] = E[v2x] = 0 (5.6)
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where E is the mean, and σ2
1 and σ2

2 are the covariances of v1 and v2. Then the

mean squared error of x̂ is given by equation (5.7):

MSE[x̂] = E[x̃2] = a21σ
2
1 + (1− a1)2σ2

2 (5.7)

If we differentiate this quantity with respect to a1 and set the result to zero, the

following expressions can be obtained:

2a1σ
2
1 − 2(1− a1)σ2

2 = 0 (5.8)

a1 =
σ2
2

σ2
1 + σ2

2

(5.9)

Accordingly the minimum mean squared estimation error is:

E[x̃2] = (
1

σ2
1

+
1

σ2
2

)−1 (5.10)

which it can be observed is smaller than either of σ2
1 and σ2

2. Finally we have an

optimal estimate of x:

x̂ = (
σ2
2

σ2
1 + σ2

2

)z1 + (
σ2
1

σ2
1 + σ2

2

)z2 (5.11)

For this example, if σ2
1 = σ2

2, the estimate is simply the average value of the two

measurements; and if one measurement is perfect, which means σ1 or σ2 equals

to zero, the other has in fact a zero weight and makes no contribution to the

estimate.

This example illustrates the application of Millman’s fusion formula to com-

bine the measurements from two sensors. A more general form for combining

an arbitrary number of local estimates, called the generalised Millman’s formula

[Choi et al., 2004; Shin et al., 2006], is given by the following equations:

x̂ = a1x̂1 + a2x̂2 + a3x̂3 + · · ·+ anx̂n (5.12)
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a1 + a2 + a3 + · · ·+ an = 1 (5.13)

ai =
1

P ii
(

1

P 11
+

1

P 22
+ · · ·+ 1

P nn
)−1 (5.14)

P ii = E[(x− x̂i)2] (5.15)

where x̂1,..., x̂n are local unbiased estimates of an unknown random variable x

obtained by independent sensors and P 11,..., P nn are the associated error covari-

ances. It can be observed that given a set of estimates from different sensors and a

priori information of the corresponding covariances, the weights for each estimate

can be calculated and an optimal estimate is obtained from linear combination

of all sensor estimates.

Millman’s formula assumes that the measurement noises from different sen-

sors are uncorrelated, which simplifies the fusion procedure and is very efficient

for many problems. In fact, for practical applications the measurement noises

of multiple sensors are correlated and the corresponding cross-covariance is not

zero. Bar-Shalom and Campo [Bar-Shalom and Campo, 1986] proposed their

fusion formula while taking into account the correlated noise from different sen-

sors. However, a priori information of such correlation is required for appropriate

initialisation.

5.2.4 A Data Fusion Tool: Kalman Filter

A Kalman filter is an optimal recursive data processing state estimator first intro-

duced by Kalman [Kalman, 1960]. It has been widely used for over thirty years

in the areas of control, multi-sensor data fusion, navigation, military, computer

image processing, etc.

The basic idea behind the Kalman filter is: update the current state vector

by the previous estimate and the current measurement according to the state

space model of signal and noise, and subsequently calculate the current estimate.

The Kalman filter is in fact a data fusion technique since the current estimate is

obtained from combining previous estimate and the current measurement.
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The basic Kalman filter equations are given below. An under-test system is

described by the following linear stochastic difference equation

xk = Axk−1 +Buk + wk (5.16)

and the measurement equation

zk = Hxk + vk (5.17)

where xk is the system state at time step k, uk is the controlling variable, A

and B are the system parameters which are matrices for multi-model (linearly

parameterised) systems. zk is the measurement at the kth step, H is the parameter

of the measurement system which is a matrix for multi-model systems. wk and

vk are the process noise and measurement noise which are assumed to be white

Gaussian noise with zero mean and covariance Q and R respectively.

Kalman filter can be applied to obtain an optimal state vector estimate. The

Kalman filter can be simply expressed by two sets of equations: two time update

equations and three measurement update equations [Welch and Bishop, 1995]

which are presented in Fig. 5.3. x̂k is the a posteriori state estimate at time

Prediction

      (1) Predict the priori state estimate

      (2) Predict the priori error covariance
1 1ˆ ˆk k kx Ax Bu
  

1
T

k kP AP A Q
 

Update

      (1) Compute the Kalman gain

      (2) Update the estimate with 

      (3) Update the error covariance

1( )T T
k k kK P H HP H R   

ˆ ˆ ˆ( )k k k k kx x K z Hx   

( )k k kP I K H P 

kz

Initial estimates for              and1ˆkx  1kP 

Figure 5.3: Kalman filter prediction and update equations

step k, Pk is the corresponding error covariance, x̂−k is the a priori state estimate

with an error covariance P−k , and Kk is the Kalman gain. The two time update

equations predict the estimate at step k according to the estimate at previous
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step k − 1. Afterwards the measurement update equations correct and update

the current state estimate using the measurement at the current time step. The

obtained a posteriori state estimate and the error covariance then will be used

for the next iteration. This filtering procedure runs recursively and stops when

there is no more data.

The Kalman filter is an optimal estimator which can be used for prediction,

filtering and smoothing. The standard Kalman filter can deal only with linear

systems, but it has been extended by researchers to provide a solution to nonlin-

ear problems, e.g. the extended Kalman filter and the Unscented Kalman filter

[Julier and Uhlmann, 1997]. It is often difficult to get the best implementation of

Kalman filtering for a real system due to the difficulty of obtaining good estimates

of the system and measurement noise covariances. To enhance performance, a

machine learning technique such as the Expectation Maximisation (EM) algo-

rithm [Dempster et al., 1977] can be applied to optimise the initial parameters

for Kalman filtering.

5.3 Glottal LF-model Parameter Multi-estimate

Fusion

It has been shown in our previous experimental results that different algorithms

(glottal source extraction and LF-model fitting) result in different estimates. As

there is no a priori information about the true glottal source parameter values, it is

reasonable to regard different algorithms as individual sensors and a more reliable

estimate can be obtained by combining the measurements from these sensors. In

this section, a general framework for glottal LF-model parameter multi-estimate

fusion is introduced and the main factors affecting the performance of the fusion

algorithm are discussed.

5.3.1 Multi-estimate Fusion Framework

The proposed fusion framework is depicted in Fig. 5.4 and the details are de-

scribed in the following sections.
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Figure 5.4: A general framework of the multi-estimate fusion algorithm
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5.3.1.1 Multiple Glottal Source Extractions

A voiced speech segment is firstly divided into overlapping frames F1,...,FL. Next,

two or more speech decomposition (SPD) algorithms are applied to each frame

in parallel to extract multiple sets of glottal estimates. These algorithms may

include Linear Prediction-based glottal inverse filtering techniques [Alku, 1992;

Childers et al., 1995; Moore and Clements, 2004] or any other source-vocal tract

separation methods [Bozkurt et al., 2004a; Walker and Murphy, 2005, 2007; Drug-

man et al., 2009b]. Each SPD algorithm separates the speech signal into glottal

source and vocal tract components. With the extracted vocal tract coefficients

the speech signal can be inverse filtered to cancel the vocal tract effect. Once

the vocal tract component is removed the glottal flow derivative is obtained. For

each of the overlapping frames the corresponding inverse filtered GFD signals

obtained from the same SPD algorithm are concatenated by an overlap-and-add

procedure and the outputs of this stage are n GFD (where n is the number of

speech decomposition algorithm applied) signals for the original voiced segment.

5.3.1.2 Multiple LF-model Fitting algorithms

Next the glottal source parameters are estimated. Because of its effectiveness for

approximately 83% of natural phonations [Strik and Boves, 1992], the LF-model

[Fant et al., 1985] is currently utilised in the proposed framework for representing

the glottal source. Each GFD signal is divided into consecutive pitch periods

according to the initial estimated glottal opening instants [Airas, 2008]. Sub-

sequently, one or more LF-model fitting (LFF) algorithms are applied to each

pitch period of the GFD signal. An LFF algorithm is used to estimate the glot-

tal LF-model parameters (LFP) by fitting the LF-model to the GFD estimate.

Given n speech decomposition algorithms and m LF-model fitting algorithms, a

total of n×m sets of LF-model parameter estimates are obtained for each pitch

period. In addition, for each set of estimated LF parameters, an error covariance

P is calculated from the fitting error between the reconstructed LF pulse and the

GFD signal.
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5.3.1.3 Multiple Estimates Combination

At this stage, the fusion procedure is applied. For a single pitch period the n×m
sets of estimated LF-model parameters are combined by the generalised Millman’s

fusion formula (introduced by equations (5.12) - (5.15)) given as follows:

LFPfused = a11LFP11 + · · ·+ aijLFPij + · · ·+ anmLFPnm (5.18)

a11 + a12 + · · ·+ aij + · · ·+ anm = 1 (5.19)

aij =
1

Pij
(

1

P11

+ · · ·+ 1

Pij
+ · · ·+ 1

Pnm
)−1 (5.20)

where i = 1, ..., n, j = 1, ...,m, and aij is the weighting factor of the corresponding

set of LFP , which is calculated from the error covariances Pij. It can be observed

that the smaller the covariance of a particular estimate, the more weight is given

to that estimate. The measurement fusion procedure is applied across all pitch

periods in the speech signal to produce a single, fused set of LF-model parameter

estimates.

5.3.1.4 Fused Estimates Smoothing

In order to obtain reliable parameter trajectories, it is necessary to smooth the

fused LF-model parameters across all pitch periods. It is reasonable to assume

limited variation in glottal source parameters across adjacent pitch periods es-

pecially for sustained vowel sounds. It has been shown that the variation of

LF-model parameters can be regarded as a linear process [Tooher and McKenna,

2003]. Thus, assuming that the true glottal source parameters are the system

state to be tracked, and the fused LF-model parameter estimates are the mea-

surement, the corresponding state-space process and measurement equations can

be described by equations (5.21) and (5.22):

rLFPk = ΦrLFPk−1 + wk (5.21)
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estLFPk = rLFPk + vk (5.22)

where rLFP is the vector of true glottal source parameters for estimation, estLFP

is the vector of fused voice source parameter estimates, Φ is a parameter con-

trolling the linear variation of the glottal source parameters, w and v are the

process and measurement noise respectively, with white Gaussian distributions

p(w) = N(0, Q) and p(v) = N(0, R).

The above equations are based on the following two premises: 1) that the

variation of the voice source parameters across adjacent pitch periods is small,

so that the true glottal source parameters of the pitch cycle can be represented

by source parameters of the pitch cycle plus process noise; 2) that the estimated

source parameters can be considered as a summation of true parameter values and

measurement noise. With such correlation, it is reasonable to use a Kalman filter

(KF) to track the glottal source parameters. The KF performs best when the

process and measurement noise covariances are exactly known. However, for real

speech signals there is no such a priori information available. The expectation-

maximisation (EM) algorithm [Dempster et al., 1977] is a machine learning tech-

nique for optimisation by iteratively adjusting the estimates to maximise the

corresponding log-likelihood. Here in our fusion framework, implementation of

the EM technique by Shumway [Shumway and Stoffer, 1982] is utilised to refine

the KF parameters. The details and equations of the EM algorithm are discussed

and listed below.

Firstly, the EM algorithm involves a backward smoothing procedure [Rauch

et al., 1965], the corresponding equations are given below

Jn−1 = Pn−1Φn(P−n )−1

xNn−1 = xn−1 + Jn−1(x
N
n − Φnxn−1)

PN
n−1 = Pn−1 + Jn−1(P

N
n − P−n )JTn−1

PN
n,n−1 = PN

n J
T
n−1 + Jn(PN

n+1,n − Φn+1P
N
n )JTn−1

(5.23)

where Jn−1 is a smoothing gain, xNn−1 and PN
n−1 are the smoothed backward esti-

mate and error covariance, respectively. PN
n,n−1 is the lag-1 estimate error covari-
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ance for n = N − 1, N − 2, ..., 1. For n = N ,

PN
N,N−1 = (I −KNHN)ΦNP

N−1
N−1 (5.24)

Subsequently, three terms are calculated as

A =
N∑
n=1

[PN
n−1 + (xNn−1)(x

N
n−1)

T ]

B =
N∑
n=1

[PN
n,n−1 + (xNn )(xNn−1)

T ]

C =
N∑
n=1

[PN
n + (xNn )(xNn )T ]

(5.25)

which are used to reestimate the Kalman filters for the next iteration after the

rth iteration:

Φ(r + 1) = BA−1

Q(r + 1) = 1
N

(C −BA−1BT )

R(r + 1) = 1
N

N∑
n=1

[(zn −Hnx
N
n )(zn −Hnx

N
n )T +HnP

N
n H

T
n ]

x0(r + 1) = xN0

(5.26)

The log-likelihood function of each iteration’s forward pass to the end of the data

is calculated by

logL = −1
2

N∑
n=1

log
∣∣HnP

n−1
n HT

n +Rn

∣∣
−1

2

N∑
n=1

(zn −Hnx
n−1
n )T (HnP

n−1
n HT

n +Rn)
−1

(zn −Hnx
n−1
n )

(5.27)

To integrate the EM algorithm into the fusion framework, x is the LF-model

parameter to be optimised, z is the fused estimate, H is a constant of value 1. The

initial KF parameters are empirically selected as: Φ = 1, Q = 1e−5, R = 0.01 and

x0 = mean(x). The EM algorithm stops at the convergence of the log-likelihood

function, or the maximum number of iterations, which is set to 300 in this study,

is reached. Afterwards, with these re-estimated parameters the Kalman filtering

is applied to estimate the optimal glottal source parameters across pitch periods
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of the full voiced segment.

5.3.2 Advantages and Limitations

Compared to a single glottal source parameter estimation algorithm, the fusion

algorithm has the following advantages:

1) More reliable. Based on quantitative data fusion technology, the pro-

posed fusion algorithm combines estimates obtained from multiple glottal source

extraction and LF-model fitting methods and outputs an overall optimal set of

estimates. Thus the fusion approach is more reliable than applying a single algo-

rithm to estimate the glottal source parameters.

2) Convenient for extension. Instead of inventing another new algorithm,

the fusion algorithm is basically a framework that intelligently integrates different

voice source estimation algorithms. Thus, it is convenient to add new algorithms

to the framework keeping other components unaffected.

3) Fusion centre updating. The fusion algorithm has a clear structure

across all functional levels. Thus, it is not difficult to update the fusion centre if

different fusion formulas and fusion rules are proved to be more effective.

4) High flexibility. The local glottal source extraction and LF-model fit-

ting algorithms can be regarded as individual sensors running in parallel. It is

possible to open or close certain “sensors” to satisfy the requirements of different

applications.

5) Optimal estimation for an individual algorithm. Although the fu-

sion algorithm is described as combining estimates from different glottal source

estimation methods, in fact it also works for an individual algorithm with dif-

ferent configurations. Taking the iterative adaptive inverse filtering for example,

if different filter orders or pre-emphasis values are utilised, the extracted glottal

waveform can be quite different. Generally, higher filter orders result in a lower

least squares error. However, it is possible that a lower analysis order is in fact

more appropriate. To deal with this situation, we can utilise multiple error crite-

ria in the fusion framework, such as the fitting errors for both the waveform and

the spectrum, and some measures to evaluate the quality of the glottal estimate,

to decide which set of configuration should have more weight.
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The proposed multi-estimate fusion algorithm has three main limitations:

1) High computational load. By applying multiple algorithms to extract

the glottal source component and fit the LF-model to it in parallel, the fusion

approach has a higher computational load compared to utilising a single method.

2) Contribution from poor estimates. The fusion approach tries to com-

bine the estimates obtained from a series of local algorithms; it guarantees that

the fused estimates are globally optimal. However, estimates from a local algo-

rithm although having the best performance for a specific segment of speech are

weighted and combined with estimates from all other algorithms make contribu-

tions. This is a limitation for all data fusion approaches: all estimates, even poor

ones, make some contribution.

3) Inaccurate glottal source modelling. In the proposed fusion algorithm,

we utilise the LF-model to track the shape of the glottal source waveform because

of its effectiveness for most voiced sounds. However, there are some characteristics

of the glottal source that the LF-model cannot model, such as source and vocal

tract interaction. Such information cannot be captured by the fusion method. To

solve this problem, a more complex and accurate glottal source model is required.

5.3.3 Factors Affecting the Performance of the Proposed

Fusion Algorithm

Before implementing and evaluating the glottal LF-model multi-estimate fusion

approach, it is necessary to discuss the possible factors that might affect the

algorithm’s performance. The main factors are listed below:

• Quality of the recorded speech. Obviously, the cleaner the speech

recordings, the easier to extract the glottal source parameters accurately. On the

contrary, if the speech signal has a low SNR level, the characteristics of the speech

and its corresponding glottal waveform and spectra will be distorted, resulting in

an inaccurate source parameter estimation.

• Glottal source extraction quality. The glottal source extraction meth-

ods are the ‘sensors’ in the fusion framework to generate the measurements of

the glottal source components. Thus, outputs of these ‘sensors’ may affect the

performance of the fusion algorithm. It is reasonable to consider that if all the
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selected algorithms perform well the fused estimate will be accurate. On the con-

trary if all approaches generate poor estimates the combined estimate will be less

accurate, although one poorly performing local algorithm will not significantly

affect the performance if other approaches are reliable.

• LF-model fitting quality. A LF-model fitting approach is responsible

for estimating the shape parameters of the glottal flow derivative. For a similar

reason to that discussed above, outputs of such methods are also important in

determining the effectiveness of the fusion approach, since they directly generate

the observations to be combined in the fusion centre.

• Error criterion. The multi-estimate fusion approach is a fully automatic

method to estimate the voice source parameters. Based on no a priori information

of the real source parameters and the goodness and poorness of the algorithms

combined at the fusion centre, it is critical to select an appropriate error criterion

as the numerical measure of goodness of estimate. A reasonable error measure is

the fitting error covariance, which can be calculated from the fitting error between

the re-constructed LF-model pulses from a particular set of estimates and the

original inverse filtered glottal flow derivative signals. Such covariance values can

be utilised by the generalised Millman’s formula as the error covariance.

• Duration of the voiced speech segment for analysis. The length of

the voiced speech frame to be analysed affects the effectiveness of the smoothing

procedure. Each pitch period of the glottal flow derivative corresponds to a fused

set of LF-model estimates. If the speech segment contains a sufficient number of

pitch periods, the smoothing procedure can generate optimal trajectories of the

LF parameters; however, if the number of pitch periods of the GFD is insufficient

for the smoothing procedure, the estimated parameter trajectories may be of poor

quality.

5.4 Conclusion

The main contribution of this chapter is the introduction of a general glottal LF-

model multi-estimate fusion framework. To combine the multiple estimates from

different source estimation and fitting algorithms, it is necessary to understand

the basic idea and techniques of quantitative data fusion. State-vector fusion,
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measurement fusion, generalised Millman’s fusion formula and Kalman filtering

were introduced. The framework for the multi-estimate fusion was presented and

each of the functional levels in the framework was fully detailed. The advantages

of the fusion algorithm over a single approach were presented and potential lim-

itations were discussed. In the next chapter we describe the implementation and

evaluation of the proposed fusion framework.
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Chapter 6

Multi-estimate Fusion Evaluation

6.1 Introduction

The aim of this chapter is to evaluate the multi-estimate (ME) fusion algorithm

proposed in Chapter 5. Firstly, in Section 6.2 the ME-fusion approach is im-

plemented with three glottal inverse filtering methods and one time-domain LF-

model fitting algorithm, all of which were introduced previously. To combine the

estimates from different approaches, it is necessary to synchronise the estimates

according to pitch cycles. To solve the problem, a synchronisation by glottal

closing instants procedure is then described in Section 6.3.

To test the effectiveness, in Section 6.4 the implemented fusion algorithm is

firstly applied to a synthetic voiced segment, for which the true values of the

glottal source parameters are known and comparison can be made conveniently.

Subsequently, in Section 6.5 the ME-fusion algorithm is applied to utterances

selected from the CMU-ARCTIC database. Each sentence is segmented into

voiced/unvoiced frames and thus we can observe the estimated LF-model trajec-

tories across a complete utterance by local individual algorithms and the fusion

approach.

In addition, in Section 6.6 several voiced frames are extracted from the utter-

ances used in the test above to study the performance variation across individual

algorithms, which is useful for further investigation of glottal source parametri-

sation by different approaches and improvement of the multi-estimate fusion al-
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gorithm.

In a further evaluation in Section 6.7, the ME-fusion method is applied to an

all voiced utterance spoken by different speakers for which hand-labelled “gold

standard” LF-model estimates exist in order to provide numerical evidence for

the validity of the fusion approach.

In Section 6.8, a final evaluation is carried out, to measure the effect of adding

another algorithm to the framework, where the ME-fusion algorithm is extended

by adding an additional LF-model fitting methods. In one experiment a poorly

performing frequency-domain LF-model fitting approach is integrated in the fu-

sion framework to test its effectiveness to cope with poor estimates. In a second

experiment a well performing hybrid TD/FD fitting approach is incorporated.

The experimental results from the two new versions of the ME-fusion approach

are presented and discussed.Finally, a critical assessment of the the fusion ap-

proach is made in Section 6.9.

6.2 Implementation of the Fusion Algorithm

The flow chart of our implementation of the multi-estimate fusion algorithm is

shown in Fig. 6.1. The details of this implementation are described below with

a brief review of the relevant source parameter estimation approaches.

The input voiced speech segment is divided into individual frames of length

40ms with 50% overlap. Each frame is processed by three glottal inverse filter-

ing speech decomposition approaches which were introduced and described in

Chapter 3. Here we give a review of these algorithms as follows:

• The first algorithm is the iterative adaptive inverse filtering (IAIF) [Alku

and Laine, 1989; Alku and Vilkman, 1994], which is based on the assumption that

the glottal flow waveform can be represented by a low order all-pole model. The

IAIF algorithm operates by repeatedly estimating and removing the glottal and

radiation effects using low order Linear Prediction analysis and inverse filtering.

This removes the overall spectral tilt of the speech and allows estimation of the

vocal tract filter using higher order linear prediction analysis. The estimated

vocal tract filter is used to inverse filter the original speech signal to extract the

glottal flow derivative (GFD).
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Figure 6.1: Implementation of multi-estimate fusion algorithm
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• Iterative closed phase inverse filtering (ICPIF) [Moore and Clements, 2004] is

also used in this implementation. Typically, closed phase inverse filtering [Walker

and Murphy, 2007] operates on the assumption that for several milliseconds af-

ter the glottal closing instant the glottis remains closed and during this time

the speech signal is due solely to the decaying vocal tract response. Thus, lin-

ear predictive analysis performed across this time interval models only the vocal

tract filter and excludes any components due to the glottal source. The glottal

waveform can be determined by inverse filtering the entire pitch period with the

coefficients obtained from the closed phase. The first-order autocorrelation pa-

rameter can be used to measure the smoothness of the estimated glottal source

waveform [Moore and Clements, 2004; O’Cinneide et al., 2011b] and an iterative

analysis procedure is applied to select the smoothest GFD signal across several

estimated closed phase intervals. In our implementation of ICPIF, the initial

glottal closing instants are estimated by analysing the variable forgetting fac-

tor obtained from the “weighted recursive least squares with variable forgetting

factor” (WRLS-VFF) method [Childers et al., 1995].

• WRLS-VFF analysis is the third speech decomposition method. The ap-

proach assumes that the speech signal is generated by an ARMA model. WRLS-

VFF analysis operates by recursively minimising the prediction error for speech

samples and allowing variation of the forgetting factor. During the analysis pro-

cess, the forgetting factor and the ARMA coefficients are obtained. Generally the

maximum prediction error occurs at the glottal closure instant. Accordingly, the

model coefficients at the instant of glottal closure can be used to do the inverse

filtering.

For each inverse filtering algorithm applied to the speech segment frame by

frame, the corresponding consecutive and overlapped GFD frames are obtained.

These GFD frames are concatenated to generate the entire glottal flow derivative

signal containing all pitch periods corresponding to the original input voiced

speech segment. Thus, three inverse filtering approaches result in three sets of

GFD signals.

Subsequently, the Extended Kalman filtering LF-model fitting (EKFLF) al-

gorithm introduced in Chapter 5 is applied to the three sets of GFD signals to
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estimate the glottal LF-model parameters period by period. For one particu-

lar set of LF estimates, the corresponding error covariance P is calculated from

the fitting error between the inverse filtered GFD signal and the reconstructed

LF-model pulse.

Thus, for each pitch period of the speech signal, three sets of LF-model pa-

rameter estimates are obtained. The fusion centre applies the generalised Mill-

man’s formula to combine these estimates with the corresponding covariance P

and generates a fused set of estimates across all pitch periods. Subsequently, a

Kalman filtering with its parameters re-estimated by the EM algorithm described

in Section 5.3.1 is applied to smooth the fused parameter trajectories.

6.3 Synchronisation by Glottal Closing Instants

The fusion algorithm applies different speech decomposition approaches to extract

multiple sets of glottal estimates. If the estimated glottal components have the

same glottal closing instants, representing individual pitch periods, then the cor-

responding LF-model parameter estimates are ready to be combined. However,

glottal estimates obtained by different algorithms may have inconsistent glottal

closing instants. This is because the multiple sets of GFD estimates may contain

unanalysable frames. A simple example is presented in Table 6.1 for illustration.

Table 6.1: Asynchronous glottal estimates

Pitch cycle 1 2 3 4 5 6 7 8 9 10

DetectedIAIF
√
×
√ √ √ √ √ √ √

×
DetectedICPIF

√ √ √
×
√ √ √ √

×
√

DetectedWRLS−V FF
√ √ √ √

× × ×
√ √ √

The first row means that for the true GFD signal there are ten pitch periods

numbered from 1:10. The remaining three rows stand for the GFD estimates by

three different inverse filtering methods. ‘
√

’ represents successful glottal pitch
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cycle detection and ‘×’ means this pitch period of the glottal component is not

extracted by the related algorithm. In this example it can be observed that

IAIF failed to generate a GFD estimate at pitch cycles 2 and 10, ICPIF yielded

unanalysable GFD estimates for pitch cycles 4 and 9 and WRLS-VFF generated

three continuous problematic GFD estimates from pitch periods 5 through 7. A

problematic GFD estimate means the glottal closing instant cannot be located.

Subsequently, if we apply the LF-model fitting approach to the three sets of

glottal estimates, the corresponding LF parameter (LFP) estimates are not pitch

synchronous, which is illustrated in Table 6.2. It is obvious that these estimates

cannot be directly combined because they are not in sync with the same glottal

pitch cycle.

Table 6.2: Asynchronous glottal estimates

LFPTrue 1 2 3 4 5 6 7 8 9 10

LFPIAIF 1 3 4 5 6 7 8 9

LFPICPIF 1 2 3 5 6 7 8 10

LFPWRLS−V FF 1 2 3 4 8 9 10

Thus, it is necessary to develop a procedure to deal with the inconsistent

multiple glottal estimates problem. The procedure applied is described below:

Step 1 Three sets of GCI estimates (GCIIAIF , GCIICPIF , andGCIWRLS−V FF )

are estimated from the three GFD estimates respectively.

Step 2 Calculate the neighbourhood differences for the three sets of GCI

estimates, e.g., diff [i] = GCIIAIF [i + 1] − GCIIAIF [i] is the difference between

the ith and the (i+ 1)th GCI estimates by IAIF. If the difference is smaller than

a threshold (for e.g., 0.3 ∗ T0), this GCI estimate is considered as invalid and

removed from the full set. This step validates the GCI estimates.

Step 3 Synchronise the three sets of GCI and the corresponding LF-model

parameter estimates. Here an iterative procedure is applied. The GCI estimates

set 1 and 2, set 2 and 3, set 3 and 1, are compared by finding the optimal

alignment of the GCIs time markers (sample numbers), respectively. If a certain
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set has a smaller number of estimates it means that there are one or more missing

estimates due to unanalysable pitch cycles from this set compared to the other

set. In such a case, the GCI estimates from the compared set are assigned to this

set and the LF parameters are obtained by linear interpolating the previous and

succeeding estimates. The checking procedure runs iteratively until all sets have

the same number of estimates.

Step 4 T0 values for each pitch period are updated by calculating the differ-

ences between adjacent GCI time markers. This step is necessary to ensure the

final LF-model parameter trajectories are in sync with the original input speech

signal.

Afterwards, the GCI estimates and the corresponding LF parameter estimates

are synchronised period by period. The measurement fusion procedure can then

be applied to combine the multiple LF-model estimates.

6.4 Evaluation on Synthetic Voiced Segments

This evaluation was carried out as a preliminary performance study. An artificial

voiced segment was used for this test and the experimental details are presented

below.

To test the validity of the fusion algorithm, a segment of synthetic speech was

generated as follows:

1. 50 LF-model pulses were created from a set of LF parameters t0 = 0,

tp = 0.48, te = 0.65, Ta = 0.035, T0 = 1.

2. The first 20 were passed through a formant synthesizer for the vowel /AH/

and the last 20 pulses for the vowel /IH/ (thus two sustained vowel segments

were obtained).

3. A “coarticulatory” segment was generated by synthesizing the middle 10

pitch periods with line spectral frequencies calculated by linear interpolation from

/AH/ to /IH/.

4. The three segments were concatenated.

The multi-estimate fusion algorithm was applied to this synthetic speech seg-

ment and the LF-model shape parameters were calculated, which are the open

quotient Oq = (tp− t0)/T0, the asymmetry coefficient αm = (tp− t0)/(te− t0) and
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the return phase parameter Ta, where

Oq = (tp − t0)/T0
αm = (tp − t0)/(te − t0).

(6.1)

The root mean square error (calculated by RMSE(x̂) =
√

1/n
∑

((x̂− x)2),

where x is the true value and x̂ is the corresponding estimate) of the estimated

LF-model shape parameters by each algorithm and by the fusion method are pre-

sented in Table 6.3, with the corresponding mean error covariances Pm in the last

column. It can be observed that the fusion algorithm shows consistently smaller

RMSE scores compared to other methods. For all three LF-model parameters,

both IAIF and ICPIF performed well, and a relatively bigger RMSE was gener-

ated by WRLS-VFF. It is worth mentioning that more weight was given to the

IAIF estimates by the fusion procedure, due to its producing the smallest mean

error covariance.

Table 6.3: RMSE scores of LF-model parameters estimated by different algo-
rithms for clean synthetic speech

Oq αm Ta Pm

IAIF 0.0298 0.0174 0.0247 0.0317

ICPIF 0.0311 0.0194 0.0289 0.0626

WRLS-VFF 0.0422 0.0205 0.0383 0.0691

ME-FUSION 0.0272 0.0142 0.0239

In this preliminary performance study, it is observed that the fusion approach

can accurately estimate the LF-model parameters for the coarticulatory synthetic

speech segment. Based on limited knowledge to produce more realistic synthetic

speech, where the source-tract interaction, variation of the glottal source param-

eters especially for transition sounds and other speaker correlated characteristics

should be considered, it is reasonable to test the fusion algorithm on real speech

recordings. When generation of synthetic speech could be better controlled, a

more comprehensive evaluation should be made to facilitate the evaluation of the
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fusion method. In the following sections, the evaluations will made on natural

speech signals.

6.5 Evaluation on Utterance Recordings

In this section, several recorded utterances were chosen from the CMU-ARCTIC

database [Kominek and Black, 2004] to test the performance of the fusion al-

gorithm. These utterance signals were firstly divided into voiced and unvoiced

segments and then analysed by the multi-estimate fusion approach.

The proposed fusion algorithm works only on voiced speech signals having

glottal contributions, thus it is necessary to extract the voiced segments from

an utterance. Many existing approaches can be utilised for this task including

the wavelet transform [Janer et al., 1996; Erelebi, 2003], bispectrum analysis

[Wells, 1985], LPC distance measure [Rabiner and Sambur, 1977b,a], pattern

classification [Siegel and Steiglitz, 1976; Siegel, 1979] and zero-crossing rate and

energy [Bachu et al., 2010]. In our work, a robust pitch tracking approach (RAPT)

[Talkin, 1995] implemented as a function in the VOICEBOX toolbox 1 is applied

to identify and extract individual voiced segments, since it is open source and

convenient for integration.

Three sentences spoken from each of bdl and slt speakers were selected giving

six utterances for analysis. The sentences were:

1. Robbery, bribery, fraud.

2. Shall I carry you.

3. He did not rush in.

For each utterance, all voiced segments were identified by the RAPT algorithm

and for each segment the multi-estimate fusion algorithm was utilised to estimate

the LF-model parameters. To make a fair comparison with the fusion algorithm,

estimates from individual algorithms were smoothed by the same Kalman smooth-

ing procedure as used in the fusion method. Estimates by all approaches were

concatenated and padded with zeros for unvoiced frames to generate the LF pa-

rameter trajectories for the full utterance. The experimental results are presented

1available from www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox. html
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in Fig. 6.2 - Fig. 6.7, where the six utterances are marked as M1, F1, M2, F2,

M3, F3, and the voiced segments of each utterance are named by V1, V2,...,Vn.

Detailed analysis of the results is presented below.

M1 Analysis For the utterance M1, there are five voiced segments V1-V5.

For V1-V4, all approaches generated similar trajectories of Tp and Te. The dura-

tion of the four segments are relatively short and consequently the performance

of the smoothing procedure can be affected by outliers, which is observed from

the rapidly increasing trajectory for Ta of V2 by IAIF. For V5, IAIF resulted

in smoother trajectories for the whole segment, although an outlier of the Tp

estimate can be observed. However, the last several pitch cycles contain the tran-

sitions and generally there should be variations of the glottal source parameters

and thus estimates by ICPIF and WRLS-VFF might be more accurate. Com-

pared to ICPIF and IAIF, Tp and Te estimated by WRLS-VFF are smaller. The

fused trajectories are most similar to the ICPIF ones.

F1 Analysis For F1, there are three voiced segments (V1-V3) according to

the automatic segmentation procedure. V1 covers the entire word “robbery”

and among the three glottal inverse filtering approaches, WRLS-VFF achieves

the most consistent LF-model parameter estimates. By combining the three sets

of estimates, the fusion algorithm gives smoother Tp and Te trajectories than

IAIF and ICPIF while exhibiting decrease of Tp at the transition sound. In

addition, it can be observed an increase of Ta at the transition from /rO/ to

/b/ for all approaches. V2 consists of the phonemes in the word “bribery” and

the estimated LF-model parameter trajectories are less consistent for ICPIF. The

fused estimates show consistent trajectories since more weight is given to the IAIF

and WRLS-VFF estimates. The segment V3 contains the /rO/ segment and the

corresponding source parameter trajectories by all methods are relatively smooth

except the Te estimates by WRLS-VFF which are noisier across the segment.

M2 Analysis The utterance M2 has two voiced segments. V1 contains the

phonetic /@l/ from “shall” and “I”. From the extracted parameter trajectories of

all algorithms we can see that estimated parameters are consistent for the main

part of this segment, except for the final pitch periods where there is an increase

for Te and Ta. ICPIF and WRLS-VFF generated similar results although it is

evident that estimates by the fusion method are more similar to ICPIF. V2 covers
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Figure 6.2: Speech waveform and the corresponding LF-mode parameter trajec-
tories by different approaches for the male utterance “Robbery, bribery, fraud.”
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Figure 6.3: Speech waveform and the corresponding LF-mode parameter trajec-
tories by different approaches for the female utterance “Robbery, bribery, fraud.”
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Figure 6.4: Speech waveform and the corresponding LF-mode parameter trajec-
tories by different approaches for the male utterance “Shall I carry you.”
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Figure 6.5: Speech waveform and the corresponding LF-mode parameter trajec-
tories by different approaches for the female utterance “Shall I carry you.”
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Figure 6.6: Speech waveform and the corresponding LF-mode parameter trajec-
tories by different approaches for the male utterance “He did not rush in.”
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Figure 6.7: Speech waveform and the corresponding LF-mode parameter trajec-
tories by different approaches for the female utterance “He did not rush in.”
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the sound /æri/ from “carry” and the entire word “you”. There are visible outliers

of the Tp and Te estimates by IAIF and WRLS-VFF. Estimated trajectories by

the fusion algorithm are similar to the IAIF and WRLS-VFF ones but more

consistent.

F2 Analysis Similar to M2, the female utterance F2 also has two voiced

segments. For V1, the estimated LF-model parameter trajectories by all the four

approaches are quite smooth except that at the end there is a decrease of Tp and an

increase of Ta. For V2, IAIF and WRLS-VFF generate more consistent estimates

compared to ICPIF. Also, it is visible that the fused estimates draw more weight

from the estimates by IAIF and WRLS-VFF for the similar trajectories.

M3 Analysis Three voiced segments (V1-V3) are extracted from utterance

M3. V1 is a long segment containing the phonetic /i/ in “he”, and the words “did”

and “not”. For this segment, it is visible that ICPIF and WRLS-VFF perform

better than IAIF by generating relatively smoother trajectories. Consequently,

estimates from these two algorithms make more contribution to the estimates by

the fusion method. For V2, which is the sound /r2/ from “rush”, all approaches

show an increasing trend for all the three LF-model parameters especially for Te,

which is probably caused by the large Te estimates by the three algorithms at

the end of this segment. For the voiced segment V3, estimated trajectories by

all methods are similar, although the fused estimates were mainly contributed by

ICPIF and WRLS-VFF.

F3 Analysis The last utterance F3 has three voiced segments, which is the

same as M3. For V1, WRLS-VFF generates relatively smooth parameter trajec-

tories except for the first transition and it is visible that these estimates contribute

more to the fused estimates. The estimated trajectories for V2 by all algorithms

are quite similar, although the fusion algorithm resulted in estimates closer to

ICPIF. For V3, the fused trajectories are comparably consistent to WRLS-VFF

and retained some properties of IAIF estimates.

From the experimental results above, we can see the performance of the tested

algorithms vary across different speech signals. It cannot be concluded that one

algorithm always outperforms the other two methods. In fact, variation of per-

formance can be observed across different segments and pitch periods by different

approaches. The performance of IAIF, ICPIF and WRLS-VFF is highly related
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to the type of the sustained voiced sound, the length of the transition sound, the

consistency of continuous pitch cycles.

The proposed multi-estimate fusion algorithm makes combinations of the esti-

mates obtained from the three individual algorithms and can generate reasonably

consistent LF-model parameter trajectories. Because there is no a priori infor-

mation about the real glottal source, it is difficult to measure the accuracy of the

fused estimates numerically. The convergence of the error covariance by Kalman

filter can show some degree of confidence of the estimates since the prediction

error is getting smaller and smaller. One reasonable way to evaluate the accu-

racy of the estimates is to re-synthesise the speech signals with the estimates and

make perception tests. Also, by applying the fusion approach to a large number

of data with respect to individual speakers, some properties of the glottal source

parameters could be revealed.

However, according to the assumption of limited variation for the glottal

source parameters across continuous pitch periods, it is reasonable to conclude

that the corresponding parameter trajectories should exhibit consistency. In ad-

dition, it can be observed that the performance of the fusion algorithm depends

on various factors such as, the length of the segment, the reliability of the esti-

mates and the corresponding error covariances, the number and the position of

the outliers.

6.6 Detailed Analysis of Performance Variation

across Individual Algorithms

It is still unclear which algorithm performs the best for arbitrary speech signals

because of the complexity and variety of human speech. However, it is worth-

while to extract some speech frames and observe the results obtained by different

algorithms. Such analysis may lead to further investigation of glottal source ex-

traction by different approaches and improvement of the multi-estimate fusion

algorithm.

Three voiced speech frames from the utterances tested in the last section were

extracted and the corresponding waveform, spectrum, estimated GFD signals and
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the pole positions by the three inverse filtering approaches are presented in Fig.

6.8 - Fig. 6.10. The details of the analysis are as follows.

In the first example, a voiced frame of sound /O/ in “robbery” was extracted

from utterance M1, and the corresponding spectrum, GFD estimates and poles

by the three approaches are presented in Fig. 6.8. It can be observed that

as a typical vowel sound of this frame, the spectrum shows clear formants at

frequencies around 700Hz, 1200Hz, 2100Hz and 3000Hz, where the corresponding

poles can be accurately predicted by linear prediction. This can be proved by

the clean GFD estimates and pole locations by all the three approaches. GFD

estimates by IAIF and ICPIF are quite similar, which is in accordance with the

fact that poles for the first four formants by the two algorithms fall into almost the

same locations. Although poles for formants of higher frequencies are different,

they make relatively small contributions to the inverse filtering procedure. The

GFD estimated by WRLS-VFF shows similarity to the estimates by the other

two approaches but is more noisy. This is caused by a poorly estimated pole

around 1300Hz which increases the bandwidth of the second formant.

A frame of sound /i/ in “robbery” was chosen from utterance M1 as the

second example. The waveform, spectrum and the estimates are shown in Fig.

6.9. IAIF works firstly by removing the glottal effect and subsequently applying

the linear prediction technique to estimate the vocal tract filter coefficients. For

this frame of speech signal, the formants are less clear in the spectrum plot, and

the first formant has a large bandwidth from the spectrum, which may lead to

a poor estimate of the glottal pole. In such a case, the estimated vocal tract

parameters might be inaccurate. This can be seen from the poles and zeros plot

by IAIF, where the first two poles have large bandwidth values judging by their

distances to the unit circle, thus they were incorrectly estimated. For ICPIF and

WRLS-VFF, the estimated GFD signals are reasonably good. A possible reason

is that ICPIF extracts the vocal tract filter coefficients by utilising only data of

the closed phase. If the closed phase interval is sufficiently long and is free from

noise, accurate estimates can be obtained; and WRLS-VFF tries to minimise the

prediction error recursively and optimal estimates are obtained after convergence

of the algorithm. The GFD estimate by ICPIF is smoother than that of WRLS-

VFF, which is because the second and third formants were relatively inaccurately
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Figure 6.8: Example 1: Waveform, spectrum, estimated GFD and poles by mul-
tiple algorithms of sound /O/ in “robbery” by male speaker
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Figure 6.9: Example 2: Waveform, spectrum, estimated GFD and poles by mul-
tiple algorithms of sound /i/ in “robbery” by male speaker
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Figure 6.10: Example 3: Waveform, spectrum, estimated GFD and poles by
multiple algorithms of sound /i/ in “carry” by female speaker
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estimated according to the second, third, and fourth poles locations.

The third frame was obtained from the utterance F2, the speech waveform

and the corresponding estimates are presented in Fig. 6.10. It can be observed

from the spectrum of the speech signal that the amplitude of the first harmonic

is relatively large which has the effect of increasing the bandwidth of the first

formant, where the frequency of the first formant is about 500 Hz. For this

frame, IAIF and WRLS-VFF provided similar GFD estimates which are clean

and consistent for contiguous pitch periods, since it can be seen that the poles,

especially those correlated to the first three formants estimated by the two ap-

proaches, have a similar distribution. For IAIF, the removal of the glottal effect

might help decrease the amplitude of the first harmonic and subsequently the

vocal tract parameters can be estimated accurately. For WRLS-VFF it is prob-

ably the recursive optimisation procedure sample by sample which enhances the

accuracy of the vocal tract parameter estimation. For ICPIF, the corresponding

GFD estimate is quite noisy, which is caused by the wrongly estimated poles.

The first two poles contribute to a wide bandwidth first formant, the second

formant corresponding to the third pole has a frequency about 1900 Hz which

is inaccurate and the fourth pole is close to the unit circle which resulted in a

narrow bandwidth third formant. The possible reasons for poor performance of

ICPIF are the short duration and inappropriate selection of the closed phase of

the female speech.

The three examples above show that for different speech by the same speaker,

or the same sound by different speakers, the performance varies across multiple

approaches. More research is required to fully explore the strengths and weak-

nesses of each algorithm. We concentrate here on their intelligent combination.

6.7 Evaluation on Hand-labelled Data

In the absence of a priori information of the glottal component, it is difficult

to measure the accuracy of the glottal source estimate for a real speech signal.

Although it is useful to observe the variation of the estimated parameters, to

further demonstrate the effectiveness of the multi-estimate fusion algorithm, it

is necessary to test the algorithm against reliable LF estimates. In this section,
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the fusion approach is applied to an all-voiced utterance “we were away a year

ago” spoken by three speakers and the estimated LF-model parameters by both

individual algorithms and the fusion approach are compared with expertly hand-

labelled LF parameter data1. These estimates were obtained by semi-automatic

inverse filtering and LF-model fitting procedures [Gobl and N Chasaide, 1999].

For the inverse filtering procedure, a sliding window is used to automatically

and continuously select the voiced frames, the corresponding speech waveform,

inverse filtered glottal flow and the spectrum plots are presented. The optimal

vocal tract parameters can be obtained by tuning the formant frequencies and

bandwidths by the experimenter while observing the resulted glottal derivative

waveform and spectrum plots. For the LF-model fitting, each pitch period of the

inverse filtered glottal pulse and the corresponding spectrum was plotted, then

by marking the timing points and the negative amplitude point in the waveform

manually, the LF-model pulse is constructed and fitted to both the waveform

and the spectrum. The optimal set of the LF-model parameters is obtained

by observing the goodness-of-fit and fine-tunes of the markers. Although time-

consuming, these manually estimated LF-model parameters are more reliable then

other automatic approaches. Therefore, it is worthy of making comparisons of

different algorithms by using the hand-labelled data as a ‘gold-standard’, where

good estimates should be closer to these estimates.

In this test, the ME-fusion method was utilised to estimate the LF-model

parameter trajectories for the utterance by three speakers (JK, JD and LP). The

speech waveforms and the smoothed LF parameter trajectories obtained by dif-

ferent algorithms and the hand-labelled TCD data are presented in Fig. 6.11,

6.13 and 6.15. Weights applied to each algorithm are plotted in Fig. 6.12, 6.14

and 6.16 and from where the contribution to the fused estimates by different algo-

rithms can be observed. The corresponding LF-model estimates were compared

to the hand-labelled data and their root mean squared error (RMSE) scores were

calculated and given in Tables. 6.4, 6.6 and 6.8. Also, the mean error covariances

and weights are shown in Tables. 6.5, 6.7 and 6.9.

1Kindly supplied by Dr. Irena Yanushevskaya of Phonetics & Speech Laboratory, Centre
for Language and Communication Studies, Trinity College Dublin, Ireland
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Figure 6.11: Speech waveform and the corresponding LF-mode parameter trajec-
tories by different approaches for JK
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Figure 6.12: Weights by different approaches across JK
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Figure 6.13: Speech waveform and the corresponding LF-mode parameter trajec-
tories by different approaches for JD
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Figure 6.14: Weights by different approaches across JD
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Figure 6.15: Speech waveform and the corresponding LF-mode parameter trajec-
tories by different approaches for LP
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Figure 6.16: Weights by different approaches across LP
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Table 6.4: RMSE scores to hand-labelled data for JK

TDiaif TDicpif TDwrlsvff METD
fusion

Tp 0.0932 0.1014 0.1623 0.0813

Te 0.0997 0.1133 0.3256 0.0982

Ta 0.0144 0.0174 0.0464 0.0172

Table 6.5: Means of fitting error covariance and weight for JK

TDiaif TDicpif TDwrlsvff

Covariance 0.0325 0.0207 0.5990

Weight 0.3815 0.5158 0.1026

• Speaker JK. It can be observed from Table. 6.4 that the fusion method has

the smallest RMSE scores for Tp and Te with respect to the hand-labelled data.

For Ta, the fusion algorithm has the second smallest RMSE. From the smoothed

trajectories in Fig. 6.11 we can see that IAIF, ICPIF and the fusion approach

resulted in similar trajectories to the hand-labelled estimates, while WRLS-VFF

obviously generated larger, inaccurate estimates. Accordingly, the mean error

covariance and weight in Table 6.5 by WRLS-VFF are larger compared to the

other two algorithms. Also, it can be observed in Fig. 6.12 that for most pitch

periods, it is the estimates by ICPIF mainly contributing to the fused estimates.

Estimates by WRLS-VFF only have small contributions when combined with

the other two sets of estimates. Especially for pitch cycles 85 through 97, the

weights by WRLS-VFF are nearly zero. The discrepancy in larger RMSE scores

but lower mean error covariance and weight by ICPIF is probably because only

the waveform fitting error criterion is used for the current implementation of the

fusion algorithm, where it is possible that a poor GFD estimate can be well fitted

and result in a low error covariance.

• Speaker JD. It is clear that for this speaker the glottal source parameters are

more consistent across the full utterance, by observing the estimated trajectories

by different approaches in Fig. 6.13. In this case, the fusion algorithm generated
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Table 6.6: RMSE scores to hand-labelled data for JD

TDiaif TDicpif TDwrlsvff METD
fusion

Tp 0.0449 0.0478 0.0644 0.0493

Te 0.0692 0.0743 0.0885 0.0747

Ta 0.0174 0.0133 0.0175 0.0137

Table 6.7: Means of fitting error covariance and weight for JD

TDiaif TDicpif TDwrlsvff

Covariance 0.0160 0.0155 0.0330

Weight 0.3921 0.3949 0.2131

the RMSE scores for Tp and Te close to but slightly higher than IAIF and ICPIF.

For Ta, the fusion approach has an RMSE value near to the smallest one by

ICPIF. WRLS-VFF resulted in the highest RMSE scores for all three parameters.

It can be observed from Table 6.7 that IAIF and ICPIF have similar mean error

covariances, and approximately 39% weights are assigned to the estimates by

these two methods. WRLS-VFF has a higher mean error covariance score and

approximately 21% weight in average is given to its estimates. Contributions to

the fused estimates by different algorithms can also be seen from the weight plot

in Fig. 6.14.

• Speaker LP. It can be seen from the trajectory plot in Fig. 6.15 that the

three algorithms and the fusion method generated similar LF-model trajectories.

From Table 6.8, WRLS-VFF has the lowest RMSE score for Tp, while Te and Ta

are most accurately tracked by the fusion approach. For this utterance, WRLS-

VFF resulted in the largest error covariances and thus less weight was given to

its estimates, by observing the mean error covariance and weight shown in Table

6.9. Also it can be seen from Fig. 6.16 that for several pitch cycles, WRLS-VFF

resulted in weights less than 0.2. Accordingly, contributions by WRLS-VFF to

the fused estimate are less than the other two approaches. This explains the

slightly higher RMSE for Tp by the fusion method than WRLS-VFF.
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Table 6.8: RMSE scores to hand-labelled data for LP

TDiaif TDicpif TDwrlsvff METD
fusion

Tp 0.0719 0.0613 0.0589 0.0627

Te 0.0704 0.0692 0.0793 0.0690

Ta 0.0147 0.0120 0.0129 0.0111

Table 6.9: Means of fitting error covariance and weight for LP

TDiaif TDicpif TDwrlsvff

Covariance 0.0188 0.0198 0.0263

Weight 0.3579 0.3574 0.2847

From the experimental results presented above, it can be seen that the ME-

fusion algorithm can be applied to accurately estimate the glottal source param-

eters. In most cases, the estimated LF-model parameters by the fusion approach

are close to the hand-labelled data. In other cases, the fusion method resulted

in less accurate estimates compared to the estimates by certain local algorithm,

which is caused by various reasons such as the weakness of quantitative data fu-

sion [Raol, 2009], the imperfect selection of the error criterion, the complexity of

speech signals and limitations of local algorithms. In the future, the most effec-

tive way to improve the fusion algorithm is to investigate multiple error criteria

and constraint based LF-model fitting, avoiding the problem of a good fit to a

poor GFD estimate. To sum up, compared to single algorithms, the ME-fusion

algorithm is more reliable at tracking the glottal source parameters across a wide

range of speech signals.

6.8 Extending the Fusion Framework

To measure the benefit of integrating another method with an existing frame-

work, a further evaluation is carried out. The three inverse filtering methods

(IAIF, ICPIF and WRLS-VFF) are kept the same, but another LF-model fitting
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approach is added to the framework with two alternatives: one is a spectral fit-

ting method similar to [Kane et al., 2010] which was introduced in Chapter 4,

the other is a new LF-model fitting method proposed by Kane in a recent paper1

[Kane, 2012].

The spectral fitting approach was shown to be less robust than our time-

domain method in Chapter 4. Kane’s new method utilises both time and fre-

quency features for the fitting. In this evaluation, we will examine the effect of

adding both a poorly and a well performing LF fitting algorithm to the fusion

framework. The experimental details and results are presented in the following

contents.

6.8.1 Adding FD-LF Fitting to the Fusion Framework

In this test, the frequency domain fitting method is added to the fusion frame-

work. Three inverse filtering approaches multiplied by two LF-model fitting al-

gorithms results in six sets of LF estimates. As discussed in Section 4.5.2.2, the

frequency-domain error criterion is less robust than the time-domain one. Thus,

we decide to use the time-domain fitting error as the error criterion for both the

TD and FD fitting methods. The estimated LF-model parameters by the FD fit-

ting approach are used to re-construct the time-domain waveforms corresponding

to the inverse filtered GFD signals. Afterwards, the error covariances for both

the TD and FD approaches can be obtained from the waveform fitting errors

and then are used to calculate the weights in the fusion centre. At the mea-

surement fusion stage, the fusion formula is also expanded to combine all sets

of estimates. Subsequently, this modified multi-estimate fusion algorithm was

applied to the utterance “we were away a year ago” by three speakers (JK, JD

and LP) with hand-labelled data. The smoothed estimated LF-model parameters

by individual algorithms and estimates by the fusion approach were compared to

the TCD hand-labelled data, and the RMSE scores were calculated and presented

in Tables. 6.10, 6.12, and 6.14 for the three speakers respectively, where in the

last columns are the results from the original framework. Also, the mean error

1John Kane, Phonetics & Speech Laboratory, Centre for Language and Communication
Studies, Trinity College Dublin, Ireland, provided the matlab code for the implementation used
in this study
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Table 6.10: RMSE to TCD-labelled data by different algorithms for JK

TDiaif TDicpif TDwrlsvff FDiaif FDicpif FDwrlsvff METD−FD
fusion METD

fusion

Tp 0.0932 0.1014 0.1623 0.1303 0.1422 0.1536 0.0810 0.0813

Te 0.0997 0.1133 0.3256 0.1217 0.1578 0.1715 0.0995 0.0982

Ta 0.0144 0.0174 0.0464 0.0210 0.0352 0.0320 0.0181 0.0172

Table 6.11: Means of fitting error covariance and weight for JK

TDiaif TDicpif TDwrlsvff FDiaif FDicpif FDwrlsvff

Covariance 0.0325 0.0207 0.5990 0.0420 0.0355 0.1028

Weight 0.2117 0.2804 0.0574 0.1736 0.1968 0.0801

covariances and weights are shown in Tables. 6.11, 6.13, and 6.15.

It is observable that estimates by the FD fitting method are less accurate than

the TD approach in most cases for all the three speakers for their higher RMSE

scores. For speaker JK, WRLS-VFF resulted in poor glottal estimates and thus

the two fitting methods generated higher RMSE and larger error covariances in

Tables. 6.10, 6.11, and small weights were assigned to their estimates. For IAIF

and ICPIF, the FD fitting method performed poorly and resulted in higher RMSE

scores for all the three LF-model parameters. Also it can be seen that TDicpif

has the highest mean weight and thus the corresponding estimates contributed

most to the fused estimates. Compared to the framework using only TD fitting

in the last section, the fused estimates were not significantly affected by adding

another poorly performed fitting approach, since their RMSE scores for the three

parameters are similar.

Similarly for speaker JD, the FD fitted estimates are consistently mere inaccu-

rate compared to the three sets of TD estimates for their higher RMSE in Table

6.12. The FDwrlsvff has the poorest performance and on average contributed

approximately 7% to the fused estimates from Table 6.13. TDiaif and TDicpif

performed best and generated lower RMSE scores for all three LF parameters,

and greater weights were given to their estimates in the fusion procedure. Accord-
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Table 6.12: RMSE scores to TCD-labelled data by different algorithms for JD

TDiaif TDicpif TDwrlsvff FDiaif FDicpif FDwrlsvff METD−FD
fusion METD

fusion

Tp 0.0449 0.0478 0.0644 0.0937 0.1022 0.1273 0.0496 0.0493

Te 0.0692 0.0743 0.0885 0.1006 0.0898 0.1288 0.0620 0.0747

Ta 0.0174 0.0133 0.0175 0.0359 0.0259 0.0332 0.0157 0.0137

Table 6.13: Means of fitting error covariance and weight for JD

TDiaif TDicpif TDwrlsvff FDiaif FDicpif FDwrlsvff

Covariance 0.0160 0.0155 0.0330 0.0414 0.0403 0.0763

Weight 0.2698 0.2736 0.1450 0.1253 0.1177 0.0688

ingly, the combined estimates by the fusion method show similar RMSE scores to

the two approaches, and are only slightly different compared to the results from

the original framework.

For LP’s utterance, RMSE scores by the spectral fitting methods are much

higher than the TD approaches observed from Table 6.14. Since in total about

30% weight was given to the estimates by the three FD algorithms, the fused

estimates exhibit slightly higher RMSE scores for Tp and Te than the TD based

estimates and the fused estimates by original framework. The RMSE for Ta by

the fusion approach is the smallest one of all the approaches, which is probably

because the fused Ta values place more weight on the TD estimates because

of their smaller fitting error covariances where these estimates are close to the

hand-labelled data, and according to the smoothing procedure the Ta trajectory

was well captured because of its slower variation compared to the other two

parameters.

In this test, we can see that the frequency-domain LF-model fitting algorithm

is not as robust as the time-domain approach, since the FD methods consistently

generated higher RMSE scores and the fitting error covariances are large. This is

because initialisation is crucial for a FD fitting method. However, the H1-H2 value

or the mean squared error of the first six harmonic amplitudes is not sufficiently
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Table 6.14: RMSE scores to TCD-labelled data by different algorithms for LP

TDiaif TDicpif TDwrlsvff FDiaif FDicpif FDwrlsvff METD−FD
fusion METD

fusion

Tp 0.0719 0.0613 0.0589 0.1889 0.1343 0.1601 0.0916 0.0627

Te 0.0704 0.0692 0.0793 0.2064 0.1313 0.1282 0.0911 0.0690

Ta 0.0147 0.0120 0.0129 0.0346 0.0219 0.0472 0.0107 0.0111

Table 6.15: Means of fitting error covariance and weight for LP

TDiaif TDicpif TDwrlsvff FDiaif FDicpif FDwrlsvff

Covariance 0.0188 0.0198 0.0263 0.0446 0.0316 0.0576

Weight 0.2262 0.2266 0.1830 0.1252 0.1455 0.0936

robust for choosing the initial estimate values. This conclusion was also reached

in Chapter 4 by comparing the TD and FD fitting methods for artificial and real

glottal source signals.

Also, it can be observed that by combining all six sets of estimates, the fusion

algorithm can be affected by the FD fitted estimates (especially for speaker LP).

However, although the FD fitted estimates are not as accurate as the estimates

by TD approaches, the multi-estimate fusion algorithm can still generate good

estimated results for different utterances. This is because the combination of the

estimates is based on the fitting error covariances of all estimates: the smaller the

covariance the more weight is given to that set. Obviously in this test, more weight

was given to the TD-based estimates because of their smaller error covariances

in most cases. Also, the Kalman filter smoothing procedure ensures the optimal

estimate trajectory can be obtained.

In the next section, we will replace the poorly performing frequency-domain

LF fitting method with a more robust approach, and the results will be presented

following with analysis.
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Table 6.16: RMSE to TCD-labelled data by different algorithms for JK

TDiaif TDicpif TDwrlsvff JKNiaif JKNicpif JKNwrlsvff METD−JKN
fusion METD

fusion

Tp 0.0932 0.1014 0.1623 0.0470 0.0611 0.0820 0.0629 0.0813

Te 0.0997 0.1133 0.3256 0.0705 0.0666 0.1182 0.0820 0.0982

Ta 0.0144 0.0174 0.0464 0.0312 0.0308 0.0318 0.0168 0.0172

Table 6.17: Means of fitting error covariance and weight for JK

TDiaif TDicpif TDwrlsvff JKNiaif JKNicpif JKNwrlsvff

Covariance 0.0325 0.0207 0.5990 0.0363 0.0301 0.0814

Weight 0.2121 0.2849 0.0579 0.1708 0.1986 0.0756

6.8.2 Adding JKN-LF Fitting to the Fusion Framework

In this test, the frequency domain fitting method is replaced by John Kane’s new

(JKN) LF-model fitting algorithm [Kane, 2012]. Instead of considering only the

time-domain waveform or the spectral information, this algorithm takes both into

account and accordingly tries to minimise a weighted (more weight is given to

the waveform fitting error) sum error criterion to obtain the optimal Rd estimates

which control the main shape of the LF-model [Fant, 1995]. Subsequently, Tp,

Te and Ta can be derived from Rd and subsequently refined by the “simplex”

optimisation procedure [Nelder and Mead, 1965].

This new version of the multi-estimate fusion algorithm was also applied to

the utterance “we were away a year ago”, spoken by three speakers as in the pre-

vious section. The RMSE scores for the three LF-model parameters by different

methods are shown in Tables 6.16, 6.18, and 6.20 and the corresponding mean

values of the fitting error covariances and weights were calculated and presented

in Tables 6.17, 6.19, and 6.21.

Obviously, the new JKN estimates are more accurate compared to the FD fit-

ted estimates presented in the last section, since the RMSE scores for all the three

parameters are consistently lower than the FD methods across different speakers.

For JK’s utterance, the JKN estimates are more accurate than estimated LF pa-
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Table 6.18: RMSE to TCD-labelled data by different algorithms for JD

TDiaif TDicpif TDwrlsvff JKNiaif JKNicpif JKNwrlsvff METD−JKN
fusion METD

fusion

Tp 0.0449 0.0478 0.0644 0.0662 0.0910 0.1005 0.0596 0.0493

Te 0.0692 0.0743 0.0885 0.0719 0.1132 0.1264 0.0780 0.0747

Ta 0.0174 0.0133 0.0175 0.0176 0.0193 0.0220 0.0122 0.0137

Table 6.19: Means of fitting error covariance and weight for JD

TDiaif TDicpif TDwrlsvff JKNiaif JKNicpif JKNwrlsvff

Covariance 0.0160 0.0166 0.0330 0.0216 0.0206 0.0340

Weight 0.2380 0.2377 0.1291 0.1535 0.1506 0.0911

rameters by the TD-based methods for Tp and Te in Table 6.16. RMSE for Ta

by JKN is higher compared to TD estimates, which is mainly because the JKN

method derives Ta under the assumption that Ta and Rd are linearly correlated,

although this relationship may not be robust across different sounds and speakers.

The discrepancy for lower RMSE scores but larger mean error covariance in Table

6.17 by JKN methods is mainly caused by the error criterion: although Tp and

Te were accurately estimated and the open phase was fitted well, Ta is less accu-

rate which might yield a large fitting error for the return phase and result in an

increase of the overall error. Also it can be observed that TDicpif has the largest

weight in average, and different from the FD-fitting-added framework, there are

similar weights given to TDiaif , JKNiaif and JKNicpif . WRLS-VFF generated

an inaccurate glottal estimate and thus the two fitting methods contributed less to

the fusion procedure. Accordingly, RMSE scores of the fused estimates are close

to the JKN estimates and lower than the TD estimates, and the results from the

previous two tests, thus the performance of the fusion method is improved.

For speaker JD, RMSE scores in Table 6.18 for Tp and Te by JKNicpif and

JKNwrlsvff are higher than the corresponding TD estimates. However, compared

to the mean covariances by FD methods in Table 6.13, the error covariances by

JKN are relatively smaller compared to the FD estimates in the last section and
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Table 6.20: RMSE to TCD-labelled data by different algorithms for LP

TDiaif TDicpif TDwrlsvff JKNiaif JKNicpif JKNwrlsvff METD−JKN
fusion METD

fusion

Tp 0.0719 0.0613 0.0589 0.0582 0.0486 0.0583 0.0575 0.0627

Te 0.0704 0.0692 0.0793 0.0583 0.0475 0.0575 0.0571 0.0690

Ta 0.0147 0.0120 0.0129 0.0205 0.0206 0.0197 0.0135 0.0111

Table 6.21: Means of fitting error covariance and weight for LP

TDiaif TDicpif TDwrlsvff JKNiaif JKNicpif JKNwrlsvff

Covariance 0.0188 0.0198 0.0263 0.0228 0.0254 0.0277

Weight 0.1976 0.1982 0.1570 0.1627 0.1499 0.1346

accordingly there was more weight given to their estimates during fusion. Con-

sequently, the fused estimates have lower RMSE values than the JKN estimates

but higher scores than the TD estimates and the FD-fitting-added framework. In

this case, the overall performance of the fusion approach is affected.

For the third utterance by LP, all the six approaches performed well for their

relatively low RMSE scores for the three LF parameters in Table 6.20. Also, the

mean error covariances by these algorithms do not have significant differences.

Consequently, the weights are almost averagely assigned to the corresponding es-

timates as can be observed in Table 6.21. For Tp and Te, the fused estimates are

less accurate compared to the estimates by JKNicpif but more reliable than the

other five sets of estimates. The fused Ta has a slightly higher RMSE score than

that of TDicpif and TDwrlsvff . Compared to the results by the original frame-

work and the FD-fitting-added, the overall performance of this implementation

is enhanced.

In this section, two new versions of the multi-estimate fusion algorithm were

applied to an all voiced utterance spoken by three speakers and the results were

compared to the corresponding hand-labelled data. From the experimental re-

sults, it can be observed that with an added frequency-domain fitting method

lacking of robustness, the ME-fusion approach can still generate accurate LF-
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model estimates due to more weight being assigned to the time-domain fitted

estimates.

By integrating Kane’s new fitting algorithm, the ME-fusion approach can

generate estimates closer to the hand-labelled data compared to the FD-fitting-

added framework for speakers JD and LP. This is consistent with the fact that in

the fusion algorithm the better the performance of an individual algorithm, the

more accurate the fused estimates obtained.

Some discrepancies can be observed in the results, such as lower RMSE scores

resulting from larger error covariances. This is mainly caused by the imper-

fect error criterion currently used in the framework, where only the time-domain

waveform fitting errors are considered. As mentioned in the last section, to im-

prove the performance of the fusion algorithm, further investigation on criteria

to calculate the error covariance much be carried out.

6.9 Assessment of the Fusion Framework

After the evaluations and discussions presented in previous sections, the fusion

framework can be assessed as follows.

Firstly, multiple estimates extracted by individual algorithms are combined in

the fusion centre to produce an optimal set of glottal source parameters. Thus, for

a wide range of speech signals, the fusion approach can more accurately estimate

the voice source parameters compared to individual algorithms. From the exper-

imental results, it can be observed that overall the fusion algorithm is superior

than other approaches, although in some cases certain local algorithm performed

the best. This is because the lack of a perfect error criterion for combining data.

The fitting error criterion used currently in the framework is a significant in-

dicator for the performance of individual algorithms, however, it is sensitive to

formant ripples and noise. A further investigation should be made to use multiple

error criteria, such as the GQMs used in Chapter 3, to improve the performance

of the fusion method.

Secondly, by utilising appropriate algorithms, the most important glottal

source parameters can be extracted. In our implementation of the fusion frame-

work, different glottal inverse filtering and LF-model fitting approaches are ap-
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plied and the three timing parameters of the LF-model describing the shape of

the full cycle of the glottal waveform are estimated. Other algorithms such as

the mixed-phase decomposition method which cannot estimate the glottal return

phase parameter, are not incorporated. As a general framework for glottal source

parametrisation, procedures for estimating other glottal source features such as

the glottal formant, amplitudes of the positive and negative peaks of the glottal

waveforms can be conveniently incorporated.

Thirdly, an automatic speech segmentation procedure is incorporated to sep-

arate arbitrary input speech signal to individual voiced/unvoiced frames, thus

the corresponding full glottal source parameter trajectories can be extracted. In

addition, the Kalman smoothing procedure ensures the consistency of the esti-

mates. Further investigation can be made to analyse these trajectories for the

purpose of improving the naturalness of synthetic speech, or enhancing the accu-

racy for speaker identification system. It is always a problem to give quantitative

measures for the quality of the glottal parameter estimates based on no a priori

information about the true glottal component, however it is worthy of looking at

the ‘by-product’ of the fusion approach, such as the covariances by Kalman filter-

ing and the log-likelihood functions obtained from the EM algorithm, to present

some pictures.

Finally, the fusion framework offers the measure to compare the performance

of different algorithms. Glottal source parameter estimates by multiple ap-

proaches are calculated corresponding to the same input speech segment, thus

we can make comparisons of these methods based on the information obtained

by the fusion approach, such as the fitting error covariance and weights. Also,

because of the flexibility, it is convenient to incorporate a ‘gold’ algorithm for

specific speech signals into the framework and evaluate the performance of other

or new proposed algorithms. Therefore, the multi-estimate fusion framework is a

useful scientific tool for researchers in this area.

6.10 Conclusion

In this chapter, the effectiveness of the multi-estimate fusion algorithm introduced

in Chapter 5 was evaluated. The ME-fusion method was firstly implemented
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according to the fusion framework by utilising three inverse filtering techniques

(IAIF, ICPIF and WRLS-VFF) and a time-domain LF-model fitting algorithm. A

procedure to synchronise the multiple sets of estimates by glottal closing instants

was introduced. By applying this implementation to an artificial “coarticulatory”

voiced speech segment, it can be observed that the fusion algorithm can generate

more accurate estimates than local individual methods.

In the second evaluation, the implemented ME-fusion algorithm was applied

to three utterances spoken by a male and a female speaker taken from the CMU-

ARCTIC database. The estimated LF-model parameter trajectories from differ-

ent algorithms were presented. It is demonstrated that the estimated trajectories

by the fusion method are reasonably consistent, the outliers obtained by local

algorithms were smoothed to be more correlated to neighbouring estimates and

some properties of estimates by individual algorithms were retained.

Several voiced segments were extracted and three inverse filtering methods

were applied. Analysis was made of the performance variation across individual

algorithms. It is clear that no single algorithm outperforms others and more

comprehensive research is required to fully explore the strengths and weaknesses

of each algorithm.

A further evaluation was carried out by applying the ME-fusion algorithm

to an all voiced utterance for which expertly hand-labelled data exist. Results

showed that the fusion algorithm can automatically lock to estimates with small

error covariances and the fused estimates are comparable to the hand-labelled

data. Overall, the fusion algorithm is more reliable than individual algorithms.

In a final evaluation, to measure the effect of adding another algorithm to the

current fusion framework, two alternative LF fitting methods were integrated:

one is a spectral fitting approach which lacks robustness, and the other a new

method taking into consideration both waveform and spectral fitting errors which

is more robust. It is observed that the fusion framework can intelligently avoid

to poor estimates since integration of the poorly performing FD method does

not significantly affect the performance. In addition, further improvement can be

obtained when a well performing approach is added.
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Chapter 7

Summary & Conclusions

7.1 Introduction

The aim of this chapter is to firstly summarise the research described in this thesis,

secondly, to list the contributions of this study to the field of speech processing

and thirdly to suggest possible directions for future work.

7.2 Summary of the thesis

In this thesis, we aimed to investigate approaches to estimate the glottal source

parameters. For this purpose, four studies were undertaken:

• speech signal source-filter model representation,

• glottal waveform extraction,

• automatic LF-model fitting and finally,

• proposal and evaluation of the multi-estimate (ME) fusion algorithm.

Chapter 2 As background to the thesis, we introduced a basic model of

human speech production. The classic source-filter model assumes that speech

signals can be considered as the response of an IIR filter to a source signal. For

voiced speech the source signal is a simple pulse train, and for unvoiced speech

it is white noise. By changing the positions of the poles of the IIR filter the

generated speech signals will vary. To more realistically model the voice source,

the Liljencrants-Fant (LF) model [Fant et al., 1985] was introduced, which is
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currently the most widely used parametric model to describe the shape of the

glottal source. It not only describes the open phase shape of the glottal flow

derivative, but also captures the return phase of the GFD signal which can affect

the speech quality. The LF-model was applied throughout the thesis for the

purpose of glottal source parametrisation.

Chapter 3 Based on the assumption that the speech signal can be decom-

posed into its source and vocal tract filter components, various approaches were

introduced to extract the glottal waveform. Many speech decomposition methods

are based on Linear Prediction (LP) analysis [Makhoul, 1975]. For voiced speech,

successive samples are highly correlated and by applying the LP technique the

obtained prediction coefficients are in fact the coefficients of the vocal tract filter.

If the original speech signal is put through the inverse of the vocal tract filter, the-

oretically the vocal tract effect can be removed and the glottal source component

is recovered. In this work, three LP analysis based algorithms were described

in detail. A performance study was carried out to show the performance vari-

ations across different approaches for different speech signals. In addition, two

additional glottal waveform extraction methods, mixed-phase speech decomposi-

tion [Bozkurt et al., 2004b,a; Drugman et al., 2009b] and higher order statistics

analysis [Chen and Chi, 1993; Walker, 2003], were briefly introduced and their

limitations were discussed.

Chapter 4 Once the glottal waveform estimate is obtained, we need to fit a

parametric model to it to capture the parameters of the model. As mentioned

previously, the LF-model is utilised as the parametric glottal source model and

generally there are two approaches to fitting the LF-model to the GFD signal:

time-domain and frequency-domain methods. For a time-domain fitting method,

it is necessary to find suitable initial values a priori to optimisation because this

is a non-linear multi-dimensional optimisation problem. In general, the initial

values are directly obtained by searching the GFD waveform. One or more op-

timisation algorithms are then applied to refine the estimates by minimising the

fitting error between the LF-model pulse and the GFD signal, period by period.

In Chapter 4, we reviewed three different time-domain LF fitting algorithms.

For a frequency-domain fitting method, the LF-model parameter estimates are

obtained by minimising the spectral distance between the LF-model and the in-
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verse filtered GFD spectra. A typical spectral fitting approach was introduced

in the thesis, which initialises the estimates by searching a codebook. Subse-

quently, optimisation procedures are applied to adjust the estimates. As the

extended Kalman filter (EKF) can be used to track the state vector of a non-

linear process, we proposed a new time-domain fitting algorithm based on EKF.

This method separates the GFD signal into its open phase and return phase and

the corresponding LF-model shape controlling parameters can be estimated by

EKF. By comparing the proposed fitting algorithm to both standard time-domain

and modified frequency-domain fitting approaches, it was observed that the new

method is superior.

Chapter 5 Several techniques for quantitative data fusion were introduced

such as Millman’s fusion formula, the Kalman filter for data fusion and the state-

vector fusion and measurement fusion structures. The main purpose of this thesis

is to propose an approach that can accurately track the glottal source parameters.

To this end, we proposed a multi-estimate fusion framework which is general and

flexible enough to support varying requirements. As we saw from our experimen-

tal results and other references, there is no single algorithm that performs best

for all kinds of speech signals. To obtain more reliable glottal source estimates,

the multi-estimate fusion algorithm firstly utilises several different approaches

in parallel to generate multiple sets of estimates. Subsequently, all sets of esti-

mates are combined by a measurement fusion procedure where the corresponding

weights are calculated from their respective fitting error covariances. In addi-

tion, a Kalman smoothing procedure is applied to reduce the variation of the

estimates and make them more correlated to their neighbouring estimates along

the time axis, which is consistent with the assumption that the glottal source

parameters should have limited variation across adjacent pitch periods especially

for sustained vowel sounds. Afterwards, the advantages, limitations and factors

which may affect the performance of the fusion framework were discussed.

Chapter 6 Several evaluations were carried out to test the effectiveness of the

algorithm. In a preliminary evaluation, in which the fusion approach was applied

to an artificial voiced speech segment and compared to the estimates obtained

by individual algorithms, the validity of the fusion method was established. In

addition, the fusion method was applied to different male and female utterances
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to extract LF-model trajectories. Results were compared to the smoothed tra-

jectories by individual algorithms and it was observed that the fused estimates

are more consistent than those of a poorly performing single algorithm across dif-

ferent utterances. A detailed analysis was made of performance variation across

individual algorithms over several extracted voiced segments. In a further evalu-

ation, an all-voiced utterance by different speakers with hand-labelled data was

used to test the effectiveness of the fusion method. The RMSE scores of differ-

ent approaches were calculated and compared, and the mean error covariances

and weights were presented. It can be observed that the fusion algorithm can

automatically give greater weight to more accurate estimates. Consequently, the

fused estimates were more reliable than estimates by single algorithms across

different speakers. To measure the effect of adding another fitting algorithm to

the existing framework, two tests were carried out. The first one integrated the

frequency-domain fitting method into the framework and the augmented frame-

work was applied to the same set of utterances with hand-labelled data. Results

showed that the poorly performing FD fitting method did not significantly affect

the performance of the fusion algorithm. In the second test, a more robust LF-

model fitting method was added to the original framework and it can be observed

that its performance was further improved.

7.3 Contribution of the thesis

The thesis has made a number of contributions to voice source parametrisation

including a review and evaluation of existing techniques and the proposal of new

algorithms. These contributions are reviewed below.

1. Review and performance evaluation of existing glottal inverse fil-

tering algorithms. Three Linear Prediction based glottal inverse filtering tech-

niques were reviewed in detail, which were closed phase inverse filtering (CPIF),

iterative adaptive inverse filtering (IAIF) and weighted recursive least square

with variable forgetting (WRLS-VFF) inverse filtering. The three approaches

were evaluated by applying them to different speech signals and observing the

glottal source estimates and calculating corresponding quality measures. It was
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observed that no single algorithm consistently outperformed other methods across

different speech signals.

2. Review of LF-model fitting algorithms. Several glottal source LF-

model fitting algorithms were reviewed in this study, including three time-domain

methods [Strik et al., 1993; Riegelsberger and Krishnamurthy, 1993; Childers and

Ahn, 1995] and a frequency-domain fitting method [Kane et al., 2010]. Time-

domain approaches estimate the LF parameters by fitting the LF-model pulses

to the inverse filtered glottal source signals. The main challenge is obtaining ac-

curate initial estimates from the glottal waveform to facilitate multi-dimensional

optimisation. The spectral fitting approach attempts to find a set of LF param-

eters generating the spectrum best matching the glottal source spectrum. To

achieve accurate estimates by this method, high quality inverse filtering of the

glottal source signal is required.

3. A new time-domain LF-model fitting algorithm was proposed

and evaluated. This approach aims to improve the accuracy of the estimated

LF-model parameters. The basic theory of the proposed approach is that the

LF-model has two phases: the open phase which is an exponentially growing

sinusoidal waveform and the return phase which is a decaying exponential, and

the shape-controlling parameters for both phases can be tracked by an extended

Kalman filter (EKF) [Welch and Bishop, 1995]. Because of the non-linear prop-

erty of the model, multiple initial values are utilised by the EKF to estimate

the two LF-model shape-controlling parameters and the one giving the mini-

mum mean squared fitting error between the LF-model pulse and the glottal flow

derivative signal is chosen as optimal. The proposed time-domain LF-model fit-

ting method was compared to both standard time-domain method and spectral

fitting approach. Results showed that the new algorithm can more accurately

estimate the glottal source parameters.

4. Proposal of a multi-estimate fusion framework for glottal source

parametrisation. Aiming to obtain more reliable estimates of the glottal source

parameters, a multi-estimate (ME) fusion framework was introduced. Different

from previous approaches which may generate poor estimates under certain cir-

cumstances, the ME fusion method utilises multiple algorithms to extract mul-

tiple sets of glottal LF-model estimates and combines them appropriately to en-
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sure one overall optimal set of estimates can be obtained. A measurement fusion

structure [Raol, 2009] is applied to the fusion framework by the generalised Mill-

man’s formula [Shin et al., 2006]. Afterwards, the fused set of estimates are

smoothed by a Kalman filtering [Kalman, 1960] procedure, where the parameters

are re-estimated by the EM algorithm [Shumway and Stoffer, 1982], with the as-

sumption that the variation of the glottal source parameters is roughly a linear

random process across continuous pitch periods.

5. Evaluation of the ME-fusion algorithm. The ME fusion algorithm

was implemented and evaluated to test its effectiveness. Firstly, the fusion algo-

rithm was implemented with three inverse filtering methods and one LF-model

fitting approach. This implementation was tested with a synthetic voiced speech

segment as a preliminary evaluation. In the second evaluation, the ME-fusion al-

gorithm was applied to both male and female utterances to extract the LF-model

parameter trajectories across complete utterances. In a further test, the ME-

fusion approach was applied to an all-voiced utterance spoken by three speakers

with hand-labelled LF-model parameter data, the corresponding RMSE scores,

mean error covariances and weights of different algorithms were calculated and

compared. A final evaluation was carried out by integrating an additional fitting

algorithm, with two alternatives, to the current framework to test its perfor-

mance. Results from all evaluations showed the effectiveness of the ME-fusion

algorithm.

7.4 Further work suggestions

Several potential opportunities for future research have been inspired by the work

described in this thesis. They are discussed below.

• More appropriate error criteria. One crucial factor that affects the perfor-

mance of the fusion algorithm is the error criterion used to combine multiple sets

of estimates. Currently, the fitting error covariance calculated from the fitting

residuals between the reconstructed LF-model pulses and the extracted glottal

pulses is the only error criterion considered by the fusion method. However, be-

cause of the complexity of real speech production and the limitation of glottal

148



source extraction techniques, vocal tract filtering cannot be completely removed

from speech signals. Consequently, the fitting error criterion may result in poor

decisions for the fusion procedure, e.g., ripples appearing in the glottal flow es-

timate may increase the fitting error even if the estimated LF-model parameters

are accurate. Thus additional criteria should be considered to enhance the fusion

approach, such as spectral distance and glottal estimate quality measures. In ad-

dition, how to allocate the weights among these measures should be investigated.

• Investigation of more robust candidate algorithms. To obtain better esti-

mates by the fusion algorithm, it is necessary to improve the performance of

individual algorithms including both the glottal source extraction method and

the LF-model fitting approach. The inverse filtering methods utilised in this the-

sis have been demonstrated to generate reasonably accurate glottal flow estimate

under most circumstances. However, it is still a problem to obtain a robust glot-

tal estimate when the first formant of the vocal tract is close to the fundamental

frequency. Also, source-tract interaction cannot be fully accounted for by state-

of-the-art inverse filtering techniques. Therefore, it is difficult to obtain accurate

glottal source parameter estimates by a curve fitting when a poor glottal flow

estimate is obtained. Further investigation is required into these problems, and

a more robust LF-model fitting algorithm which is less sensitive to glottal open

phase ripple is necessary for better locating the glottal opening instant.

• Integration of joint source-filter estimation methods. Besides the approaches

introduced and utilised in this thesis for glottal source extraction and LF-model

parameter estimation, it is also possible to add joint source-filter estimation al-

gorithms into the multi-estimate fusion framework. Generally, a joint estimation

method firstly tries to find an initial set of glottal source parameter estimates and

then applies one or more optimisation techniques to minimise an error criterion

between the original speech signal and the source-filter model. In [Fu and Mur-

phy, 2006], Fu proposed a joint estimation algorithm for glottal source estimation,

where the LF-model and the vocal tract parameters are optimised by minimising

the predictive errors between the speech samples and the ARX model repre-

sentation. O’Cinneide [O’Cinneide et al., 2011a] introduced a frequency-domain

method to jointly estimate the glottal LF-model and vocal tract parameters. This

method uses a codebook to find a set of parameters giving the minimal spectral
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distance and refines the estimates in later stages.

• Improvement of automatic speech segmentation. Another factor that may

affect the performance of the fusion algorithm is the automatic speech segmenta-

tion. If a voiced segment is too short, there may not be sufficient data to be used

by the Kalman smoothing procedure. In this thesis a pitch tracking [Talkin, 1995]

based speech segmentation procedure is utilised. To achieve further improvement,

it is necessary to investigate some other approaches such as the method proposed

in [Rabiner and Sambur, 1977b] that uses the Itakura distance to identify voiced

and unvoiced frames; in [Janer et al., 1996; Erelebi, 2003] the author applied the

wavelet transform to segment speech.

• Investigation of fuzzy Kalman filtering of more complex speech signals. Cur-

rently the ME fusion algorithm works under the assumption that the variation

of glottal source parameters across continuous pitch periods is roughly a linear

process. However, there are situations where this assumption is invalid such as

a voiced speech segment containing voice quality variation. In such a case, the

variation of voice source parameters is roughly a piecewise linear process and a

standard Kalman filter may generate poor results. For this problem, it is neces-

sary to utilise a more complex tracking technique to achieve robust estimates and

fuzzy logic adaptive Kalman filtering [Remus, 1992; Chen et al., 1998; Han, 2004]

may be a solution. A fuzzy logic controller allows adjusting of the KF parameters

according to the changes of mean and covariance of the state estimate and uses a

weighting factor to deal with variation of process and measurement noise covari-

ance, thus helping KF perform better than standard KF for non-linear tracking

tasks.

• Integration of state-vector fusion structure. Measurement fusion is applied

to the current fusion framework, where it has the advantage that estimates from

individual algorithms are directly combined and thus there is no information

lost. However, it is worth studying the performance of the fusion approach when

state-vector fusion is applied. A rational implementation of the modified fusion

framework is shown in Fig. 7.1, where the output LFP of all algorithms are

firstly smoothed by individual Kalman filters and subsequently the corresponding

smoothed estimates are combined at the fusion centre with the covariances P

obtained from LF fitting. Comparison of the two fusion structures should be
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made. It would be also possible to investigate a mixed structure.

Finally, it will be interesting to investigate integrating the ME fusion al-

gorithm output into glottal source parametrisation related applications such as

speaker characterisation, voice transformation, speech synthesis and pathological

voice diagnosis.

Voiced 

Segment

Windowing

State-vector Fusion

…

… … …

1SPD 2SPD SPDn

1GFD 2GFD nGFD

1LFF LFFm 1LFF LFFm 1LFF LFFm

1,..., LF F 1,..., LF F 1,..., LF F

11 1,...,
LF FGFD GFD

Overlap&Add

12 2,...,
LF FGFD GFD

Overlap&Add

1
,...,

LnF nFGFD GFD

Overlap&Add

11KF KFnm1KF m 2KF m 1KFn21KF

optLFP

11optLFP

11LFP 1mLFP 21LFP 2mLFP 1nLFP
nmLFP

optnmLFP

1optnLFP

21optLFP 2opt mLFP

1opt mLFP
11P

21P

1nP

nmP

2mP

1mP

Figure 7.1: Implementation of the state-vector multi-estimate fusion algorithm
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