The role of rapid prototyping technology in the development of electromaterial demonstrator projects

<u>Stephen Beirne¹, Cormac Fay², Brian Corcoran², Noel E. O'Connor², Geoff Spinks¹, Dermot Diamond² and Gordon G. Wallace¹</u>

¹Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, NSW, Australia ²CLARITY: Centre for Sensor Web Technology, Dublin City University, Glasnevin, Dublin 9, Ireland

11-Feb-2011

Outline

- ANFF Funded Rapid Prototyping Systems
 - Dimension uPrint Plus
 - Objet Connex 350
 - Realizer SLM-50
- WANDA Project
- Design and Fabrication
- Current Challenges

A.I.I.M Processing and Devices

Rapid Prototyping

- Rapid prototyping is the automatic layer-by-layer production of physical objects using <u>additive</u> manufacturing technology.
- Differs from **conventional machining**, i.e., mill or lathe, which are <u>subtractive</u> processes.
- First RP systems emerged in 1986
- New systems and techniques are being continually developed to include a greater range of "printable" materials with increased resolution.
- Parts are designed in 3D CAD software, saved as .stl files, which can be processed by machine specific software.

IPRI Rapid Prototyping Systems

Dimension uPrint Plus		
Build size	203mm x 203mm x 152mm	
Print Resolution	0.33mm / 0.254mm layers	
Machine Dimensions	635mm x 660mm x 953mm	
Technique	Fused Deposition Modelling	
Materials	ABS Plastic (varied colours)	
Status	Commissioned Nov 2010	

IPRI Rapid Prototyping Systems

Objet Connex 350		
Build size	342mm x 342mm x 200mm	
Print Resolution	600 x 600 x 1600 dpi	
Machine Dimensions	1420mm x 1120mm x 1130mm	
Technique	Polyjet printing	
Materials	Multi-modulus photo curable acrylics	
Status	Commissioned Nov 2010	

IPRI Rapid Prototyping Systems

Realizer SLM-50		
Build size	Ø70mm x 40mm	
Resolution	20-50μm Layers	
Machine Dimensions	800mm x 700mm x 500mm	
Technique	Selective Laser Melting	
Materials	Initially - Stainless Steel & Titanium Possible - Tool steel, Gold, Cobalt Chrome, Aluminium	
Status	To be delivered July 2011	

- Demonstrator mobile sensing platform
- Propelled by conducting polymer actuators (bending)
- Low-cost distributed sensor interrogation method (optical).
- Current limitations include
 - Restricted internal volume tricky assembly
 - Limited operating lifespan electrolyte leaching

WANDA (2010 Redesign)

- Replace syringe with watertight printed body (elliptical cross section)
- Maintains existing dimensions but increases useable internal volume.
- Modular design allows for interchangeable tail components.
- Different tail styles and configurations can be examined.
- Potentially printed tail to encapsulate actuators, retain electrolyte and extend operating lifespan.

WANDA (2010 Fabrication)

Present Challenge (Tail Design & Fabrication)

- Target Reliable encapsulation of actuators within tail structure
- Manual removal of support material
 Not practical
- Structure to be printed around actuator – interrupt printing routine

We would like to acknowledge the funding support of the Australian National Fabrication Facility

Thank You

