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Abstract

Developing broadband access networks is one of the most urgent needs in the 

telecommunications world The wireless systems provide an efficient solution to 

address the requirements for last mile connectivity of data, Internet and voice 

services Radio systems using millimetre-wave frequencies can supply home users 

with capacities in the order of 50-200 Mbit/s Such bit rates allow the transmission of 

broadband applications including digital TV, video-on-demand etc In order to 

provide the massive capacities that are required for the distribution of such broadband 

data between Central Station and Base Stations, optical fiber can be employed The 

enormous transmission bandwidth and low loss of the fiber ensure that high capacity 

microwave signals can be encoded on an optical carrier and successfully transmitted 

from a Central to Base Station

The goal of this project was to^develop and test a radio over fiber communication 

system This involved investigating the generation of microwave optical signals for 

transmission in optical fiber, followed by an examination of the effect of fiber 

propagation on the microwave optical signals
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1 Introduction

11  Introduction to radio/fiber systems

The ever growing demand for high bandwidth, allowing broadband applications to be 

delivered to end-users, forces the system operators to seek new ways to increase the 

bandwidth and capacity of telecommunication systems It is expected that radio over 

fiber may be a solution to many problems associated with bandwidth issues 

Combining optical and radio techniques makes use of both their merits fiber 

provides a high capacity medium with electromagnetic interference immunity and 

low attenuation, while radio solves the problem of “the last mile” enabling 

broadband data to be delivered to the end-users in a quick and cheap manner It can 

also serve mobile users The architecture of the radio part of the system is likely to be 

realised in a similar way that is used in mobile systems This means that the terrain 

over which the system operates is going to be divided into a number of cells Such an 

organisation ensures the best usage of the available spectrum The radio/fiber 

systems are likely to use frequencies ranging from around 2 5 GHz up to 200 GHz 

Frequencies from 18 GHz and above are especially attractive for high capacity 

networks due to the large bandwidth available for data transfer Furthermore the high 

oxygen absorption in this range of frequencies gives a large frequency reuse factor, 

thereby implying a small cell size Subsequently a large number of Remote Antenna 

Units (RAU) is required to transmit the signals to users in each cell Therefore the 

deployment of microwave wireless networks would strongly depend on the cost and 

complexity of the RAU

Future millimetre wave access networks are likely to employ an architecture in which 

signals are generated at a central location and then distributed to remote RAU using 

optical fibre, before being transmitted over small areas using millimetre wave 

antennas Optical feeding of RAU in such systems is an attractive approach, because 

it enables a large number of RAU’s to share the transmitting and processing 

equipment remotely located from the customer serving area Such architecture should 

prove to be extremely attractive and cost effective for the provision of future 

broadband services to a large density of customers
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The radio/fiber system consists of the Control Station (CS), RAU and the user 

terminal The CS is responsible for generating optical signals transmitted through the 

fiber to the RAU, and also for the interaction between the users of the system with 

other networks The responsibility for opto-electronic conversion of the signal 

received from the CS and its transmission through air to the user is handled by RAU 

The end terminal consists of an RF receiver and a transmitter [1] The schematic of a 

basic configuration of the radio/fiber system is shown in the Figure 1-1

Data signals

i î
Control Station Remote /

Optical O Antenna Unit
transmitter & -/W Optic/RF &

receiver <— RF/optic
converter

<e
î

User Terminal
RF 

Receiver & 
Transmitter

Ftgure 1-1 Radio/fiber system - basic configuration

The advantages of such a realization of the system are

> Simplicity -  there is no need for RF frequency conversion or receiver 

hardware at the Remote Antenna Unit Therefore the RAU is simple, of small 

size, light weight and low power consumption,

> Increased flexibility - dynamic RF carrier allocation can be implemented 

from CS,

> Stability of the radio earner frequency -  signals are generated in CS - away 

from severe climate variations,

> Repairs and services upgrades at a centralized location are most convenient 

and cost effective

The disadvantage of centralized infrastructure is that the signal travels in analogue 

form in the fiber Since the detection of the transmitted data is not performed until 

the RF signal is received at the user end, the noise and nonlinearity generated by the 

optical transmitter and receiver will combine with interference and multipath effects 

from the wireless environment to degrade the system quality of the service [2]

The architecture described above can find its applications in broadband 

communications systems such as
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> Satellite communications -  earth stations can be situated away from the 

control area, in order to improve the visibility or reduce interference with 

terrestnal systems, and fed using optical fiber,

> Multipoint Video Distribution System (MVDS) -  transmit-only service which 

can deliver many TV channels to areas the size of a small town,

> Vehicle communications and control -  transmission of low rate signals along 

major roads,

> Wireless LANs -  allowing a broadband connection to the Internet over the 

air

1 2 Basics o f the cellular systems

Wireless communication systems have become an indispensable part of our life The 

popularity of the mobile telephone, which allows only voice and low data rates 

transmission, has now surpassed even the most optimistic anticipations In the near 

future, services such as video on demand, interactive multimedia and high speed 

Internet will make mobile telephony even more desirable Continuous development 

of the technology brings the date of introduction of these new systems nearer and 

nearer

12 1 Fundamentals of the cellular communication 

12  11 Organisation of the cellular system

The typical cellular system consists of a Central Station (CS), which controls a set of 

Base Stations (BS) and is responsible for exchanging the data between a cellular 

system and the other systems e g Public Switched Telephone Network (PSTN) The 

terrain over which the cellular system works is divided into cells, each one being 

served by one BS The BS is responsible for communication with the Mobile Station 

(MS) The cellular system also includes registers, which store information about all 

subscribers of the system as well as the guest users This information is used to find a 

MS in the system, identify it, encode and decode data exchanged between the MS 

and BS [3, 4]

The cellular concept was the breakthrough in solving the problem of spectrum 

congestion and user capacity Because of the small area of the cell, the transmitting 

antenna can operate at a much lower power then in other radio systems This makes
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the usage of the spectrum much more efficient Each BS is assigned a portion of the 

total number of channels available to the entire system and nearby stations are 

allocated different groups of channels The same frequency can be reused many 

times, in cells physically separated since the co-channel interference from cells 

transmitting on the same frequency are considerably low As the demand for services 

increases the number of BS may be increased (along with reduction m the 

transmitting power) thereby providing additional radio capacity with no additional 

increase in radio spectrum The other method of enhancing the capacity of the system 

is cell splitting This is used to handle the additional traffic within particular existing 

cell and involves changing the boundary of the cells, height and the power of the BS

[5]

1 2 1 2  Sources of the interference in cellular systems

The frequency reuse implies that in the system there is more than one BS 

transmitting data using the same frequency Cells using the same set of channels are 

called co-channel cells and signals generated by them are the source of co-channel 

interference The Signal to Interference Ratio (SIR) in case of co-channel 

interference, for the system where the size of the cells is approximately the same, 

does not depend on the power of the transmitter and becomes a function of the radius 

of the cell (R) and the distance to the centre of the nearest co-channel cell (D) The 

ratio D/R is called the co-channel reuse ratio (Q) Small values of Q provide larger 

capacity since the cluster size is small, whereas large values of Q improve the 

transmission quality due to smaller level of co-channel interferences Thus the trade 

off must be made between these two objectives in cellular design [4, 6]

Another source of interferences are signals transmitted using adjacent frequencies to 

the desired channel This is called the adjacent channel interference This problem is 

especially important in case of the near-far effect, when two stations transmitting on 

adjacent channels are different distances from the BS In this case the BS may have a 

difficulty in receiving the signal transmitted by the weaker MS The adjacent channel 

interference may be limited by using narrowband filters in the BS and careful 

channel distribution, which means that the adjacent frequency will be assigned to the 

different BS [6, 7]

Reducing the interference in the cellular system is also achieved by constant power 

control, which assures that each MS transmits with the minimum power required for
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maintaining good quality of the link This also helps to prolong the battery life, 

which is a vital matter for mobile equipment [8]

12 2 Characteristic of the radio channel

The organisation of the cellular system is determined in high degree by 

characteristics of the radio channel The radio channel is a very specific transmission 

medium In contrast to other transmission environments the signal from the 

transmitter can travel and reach the receiver after propagating along different paths 

This is known as multipath phenomena and is due to the fact that there is usually no 

“Line -  Of -  Sight” (LOS) between transmitter and receiver since the antenna of a 

mobile unit may he below the surrounding buildings etc Radio waves undergo 

scattering and diffraction from the nearby obstacles, thereby making the energy reach 

the receiver via many paths and at varying times This results in a phase difference 

between particular components of the signal, which may interfere constructively and 

destructively with each other [4] Because the receiver antenna may be on the move, 

the surrounding constantly changes thereby changing the phase of particular signal 

components This means that the received signal at the particular moment in time can 

experience constructive interference and at the next moment face destructive 

interference This phenomenon is known as the signal fading In mobile radio 

communication we distinguish two different fading characteristics short-term fading 

and long-term fading [4, 9] The first one manifests itself as rapid fluctuations caused 

by the local multipath It is usually observed over a short distance of about half a 

wavelength The long-term fading is caused by the movement over distances large 

enough to produce gross vanations in the overall path between BS and MS 

Therefore the mobile radio signal consists of a short-term fast-fading signal 

superimposed on a local mean value (see Figure 1-2) [10]
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Short Term Fading

Figure 1-2 Variation offield strength as a function o f distance from the transmitter [7]

The multipath phenomenon has one more contribution in the signal degradation it 

causes the Inter-Symbol Interference (ISI) Since the signal from each path arrives at 

a different time, the initial pulse is being spread in time The phenomenon known as 

a delay spread seriously limits the transmission bit rate [7, 11]

The other signal distortion in mobile communication is caused by the Doppler shift 

If the vehicle is moving at a speed v the received carrier is Doppler shifted by 

_ v cos (p
i d " -------------, Equation l-l

K

where (p -  path angle,

\  -  carrier wavelength

The Doppler frequency is directly related to the phase change caused by the change 

in the path length The waves arriving at the receiver from head on to the MS 

experience a positive Doppler shift and waves arriving from behind the moving MS 

experience a negative Doppler shift [4, 5]

12 3 Antennas characteristics

The proper operation of the wireless system highly depends on the design and the 

deployment of antennas Since mobile systems are duplex systems, mobile and fixed 

antennas should have the same performance This is not always possible because the 

MS has a lower output power and is placed at a lower level above the ground than the 

BS

The most significant antenna parameter is its gain A high gain can be achieved by 

increasing the aperture area of the antenna Antenna gain is defined either with
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respect to an isotropic antenna or with respect to the half-wave dipole An isotropic 

antenna is an idealized system that radiates equally m all direction The gain of the 

antenna m a particular direction is the ratio of the power density produced by it in 

that direction divided by the power density that would be radiated by an isotropic 

antenna with the same input power [4, 9]

For an isotropic antenna the power density is constant for all directions Real 

antennas have stronger power densities in some directions and weaker m other The 

ratio of the maximum power density of the antenna and the power density from an 

isotropic antenna defines the directivity of an antenna [6]

The shape of the antennas radiation pattern describes the directionality of the 

antenna The direction of the maximum power is called the primary beam, major lobe 

or the front lobe Lobes adjacent to the front lobe are called the side lobes and finally 

the lobe in the direction exactly opposite to the mam lobe is called the back lobe The 

design goal is to create an antenna with power concentrated m the desired direction 

and with its side and back lobes as weak as possible The lobes other then the main 

lobe are a source of interferences between adjacent cells [11]

12 4 Link analysis

The power received by an antenna depends on the transmitted power Pt, distance 

between receiver and transmitter, gain of the receiving antenna and the topography of 

the terrain over which the signal is transmitted

If w e d en ote the p o w er  at the rece iver as P r , then the rece ived  p ow er can  be  

calcu lated  from

Pr —
471 r

PT G t G r > Equation 1-2

where PT -  transmitted power,

Gt -  gain of the transmitting antenna,

G r -  gain of the receiving antenna, 

r -  distance between transmitter and receiver

The formula above includes only the power loss from the spreading of the 

transmitted wave, but it does not take into account other losses such as absorption or 

scattering [4] The complete version of Equation 1-2 includes the factor L
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representing these additional losses {Figure 1-3) In terms of decibels received power 

can be calculated from

Pr=20 log
471 r

+ P t+ G t+ G r-L, Equation 1-3

The term 20 log
4rc r

refers to free-space loss (Lios) in dB and the product P t G t  is

called the Equivalent Isotropic Radiated Power (EIRP) [10]

30 40 50 60 70 80 90100
Frequency [GHz]

200 3C

Figure 1-3 Atmosphere attenuation profile [10]

From Equation 1 -3 one can see that the received power is inversely proportional to 

the carrier frequency and to the squared value of the transmitter -  receiver distance 

The second statement is true only when there are no reflected waves In most cases 

this condition is not fulfilled The existence of many waves causes the signal to fade 

much faster than the formula indicates In fact considering only two beams of the 

signal one can find out that the received power drops not with r2 but with r4 For 

different environments the exponent changes from 2 to 5 [4]

In practise, due to a high complexity of the calculations, the Equation 1-3 is not used 

Instead there are few models for predicting the propagation loss in the system for 

example Okumura, Lee method or Hata formulas Although these are models based 

on the measurements made in Japanese cities, by using modification factors they can 

also be applied to other cities or even to the countryside [5, 6, 8]



V

1 3 Fiber - optic systems

Fiber systems have revolutionised the world of telecommunication The possibilities 

offered by them are much broader then those offered by the traditional systems built 

using copper wires The two most important advantages that result from using fiber 

are very low attenuation (around 0 2 dB/km) and enormous bandwidth These two 

advantages make optical fiber one of the most popular transmission mediums for all 

kind of services The simplest fiber system consists of a light source, fiber and a 

detector as shown in Figure 1-4

Transmitter
8 D Receiver

(Light Source) Transmission Medium (Optical Detector)

(Optical Fiber)

Figure 1-4 Optical communications system

13 1 Light sources for optical telecommunication

Light sources are used to convert the electrical signals into optical ones, which can 

then be sent through the fiber There are two basic types of light sources used in fiber 

telecommunications Light Emitting Diodes (LED) and laser diodes

A LED consists of a forward biased “pn” junction Light in a LED is generated by 

the process of spontaneous recombination of electron -  hole pairs The spectrum line 

width of the light emitted by a LED is very wide Because of chromatic dispersion in 

the fiber, the wide spectrum of the generated light limits the possible applications of 

the LED The other drawbacks of the LED are generally low optical power coupled 

into a fiber (due to wide beam of LED) and relatively small modulation bandwidth 

(hundreds of MHz) [14] Nevertheless, LED’s have also some advantages, which 

make them a useful source of light for such applications as transmission over short 

distances and applications requiring low data rates The above mentioned advantages 

are simple fabrication, low cost, reliability, low temperature dependence, simplicity 

of the drive circuit and linear relation between driving current and optical power 

[20]

Unlike LED’s the laser light is generated by the process of stimulated emission i e 

the atom transition takes place as a result of interaction between an atom and the
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photon, which has energy equal to the energy gap in the material The new photon 

generated in this way has the same characteristics as the photon, which interacted 

with the atom This means that their frequency, phase, polarization and direction are 

equal Light emitted by a laser is thus coherent, in contrast to light emitted by LED’s 

[20, 12]

13 11 Characteristics of Laser Diodes

The static and dynamic characteristics of lasers have a vital influence on the 

performance of a communication system employing a laser transmitter They 

determine the usefulness of the source for various applications Some of the most 

important characteristics amongst them are the dependence of the laser output power 

on the bias current, the frequency response of the laser, the power vs wavelength 

dependence (optical spectrum of the laser) and the influence of direct modulation on 

the laser spectrum

Power/current relationship

The P/I curve of a typical laser is shown in the Figure 1-5 From the plot it can be 

seen, that the output power of a laser increases slowly with the increase of the bias 

current till the current reaches a threshold value Beyond this point the optical power 

increases significantly even for a small increment in current The threshold current is 

usually in the range of about 15 to 40 mA The linearity of the laser P/I curve is 

especially important in applications such as direct modulation of the laser [12]

Figure 1-5 Power-current relationship fo r  a laser diode

The digital modulation of a laser diode is illustrated in Figure 1-6 A dc bias current 

is used in conjunction with the modulation signal, which places the current at
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threshold when there is a logical zero Biasing above threshold results in a shorter 

rise time of the pulse and allows the laser to be modulated at a higher bit rate and 

with a smaller signal [14]

I

Figure 1-6 Digital modulation o f a laser diode

For analogue modulation the dc bias has to be higher to ensure that the laser is 

operating in the linear region of the P/I curve throughout the whole period of the
rt

modulating signal {Figure 1-7) [2]

Figure 1-7 Analogue modulation o f a laser diode
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Modulation of a laser diode

A laser diode can be modulated directly by combining the modulating electrical 

signal with a bias current This leads to an intensity modulated output signal Typical 

modulation bandwidths of a laser vary from 2 -5  GHz 
1 0

Pm

-10

-20

0 2 4 6 8 10 12 14 13 20
Frequency [GHz]

Figure 1-8 Frequency response o f a laser

Figure 1-8 shows a response of a 1 55 fim Distributed Feedback Laser (DFB) biased 

at 35 mA It can be seen that the 3-dB bandwidth of this laser is 9 GHz It can also be 

seen that the output power of the laser increases at frequencies of 6 -  8 GHz This 

peak is present in laser responses and is due to the interactions between the photon 

density and the excess carrier density in the cavity The modulation bandwidth and 

the resonance frequency peak rise with the increase of the bias current The ultimate 

limitation for the modulation speed is set by the stimulated photon lifetime

Modulation of the laser drive current not only changes the output power of the laser, 

but also the emission frequency The carrier density in the cavity varies with changes 

in current and this in turn leads to a change in the refractive index n of the cavity 

Because the wavelength generated by the laser depends on the value of n the 

frequency emitted by the laser fluctuates with changes in injected current This 

phenomenon is known as chirp and causes spectral broadening [14] Chirp has 

negative influence on the transmission system performance because it increases the 

effect of dispersion on the signal propagating along the fiber The spectrum of a FP 

laser running CW and under direct modulation is shown in Figure 1-9 We can see 

that the spectral width of each mode is broadened due to chirp
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Figure 1-9 Spectrum o f  a FP laser (a) CW (b) under direct modulation 

Laser output spectra

The spectrum of the laser diode depends on its structure The simplest laser consists 

of a p-n junction closed between two mirrors This structure is called a Fabry-Perot 

(FP) resonator In such a device the light travelling in the laser cavity is reflected 

from the mirror If for a particular wave, the round-tnp time along the cavity equals 

an integral number of wavelength, the incident and reflected waves interfere 

constructively Otherwise the destructive interference takes place and the wave is 

attenuated [13] In effect the output of the laser consists only of wavelengths that 

fulfil the following condition

2 D n = N X , Equation 1-4

where D - distance between the mirrors, 

n - refractive index of the laser material,

N - an integer 

X - wavelength [14]

Out of the infinite number of wavelengths that fulfil Equation 1-4, the laser emits 

only those, for which the gam (due to the resonance) exceeds the mirrors reflection 

loss and the attenuation of the laser cavity A typical spectrum of an FP laser is 

shown in Figure 1-9 (a) The spacing between laser modes depends on the length of 

the laser cavity and typically is of the order of few nanometres [19] Signals 

generated by multimode lasers suffer from dispersion, while propagating along the 

fiber and they are not suitable for long haul communication This is due to their large 

spectral width In order to avoid signal degradation, while transmitting over long 

distances, single mode lasers such as Distributed Feed -  Back (DFB) or Distributed 

Bragg Reflector (DBR) are used In these devices the Bragg grating is used to limit
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the numbers of wavelengths generated by laser In the first case the grating is applied 

over the whole active region, while in DBR the grating replaces the mirror at the end 

of the cavity [19] Single mode lasers can be used in long haul communications, 

because signals generated by them are less prone to the fiber dispersion

13 2 Optical fiber

The typical medium used for the transmission of the optical signals generated by 

lasers and LED’s is the optical fiber It is usually made of silica glass The light 

propagates through the core, which is the central part of the fiber Surrounding the 

core is a cladding Because the cladding has a lower refractive index than the core, 

light incident on the boundary between both of them is reflected back into the core 

(Total Internal Reflection)

One of the important fiber parameters is the core - cladding index difference defined 

as

a n i n 2A = ---------- , Equation 1-5

where n , , n 2 - refractive index of core and cladding respectively

The simplest type of fibre is known as a ‘step-index’ fibre {Figure 1-10), since there

is a step in the value of the refractive index at the boundary between the core and the

cladding

Figure 1-JO Step index fiber (a) refractive index profile (b) end view (c) cross-section side view

1 3  2 1 F/ber characteristics

The main fiber characteristics are attenuation, dispersion and fiber nonlineanty 

Attenuation Since it determines the maximum transmission distance, attenuation is 

one of the most important parameters of the transmission medium Attenuation of 

presently produced fiber is equal 0 2 dB/km around the normally used transmission
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window of 1550 nm, and is much lower than the attenuation of copper wires The 

main contributing factors of fiber attenuation are

Material absorption -  the maximum absorption of the silica falls on the ultraviolet 

and on the far -  infrared region The main impurity leading to absorption is the 

hydroxide (OH) ion, which has a fundamental vibratory absorption peak at about 

2 73 nm Overtones of this peak give rise to the dominant peak near 1 37 \im (Figure 

1- 11)

Rayleigh scattering -  is an intrinsic loss mechanism caused by the interaction of 

photons with the molecules of silica itself

Bending loss -  loss introduced by physical stress on the fiber

The attenuation of a fiber determines the light wavelength used for transmission In 

the attenuation profile one can distinguish three regions with the minimum losses -  

so called transmission windows The most exploited is one with its centre wavelength 

of 1550 nm because of existence of optical amplifiers for this range of frequencies

WAVELENGTH (nm)

Figure 1-11 Attenuation profile fo r  a silica glass fiber [19]

Dispersion This factor causes pulse broadening as a data signal propagates in the 

fiber, and limits the bandwidth -  distance product of optical transmission systems 

Dispersion is not constant but depends on operating wavelength (Figure 1-12) There 

are two main types of dispersion in standard step index single mode fiber 

Chromatic dispersion -  is caused by the fact that the refractive index of the core is 

not constant but is a function of the wavelength Since the speed of the light in the 

fiber depends on the refractive index with the law
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c
V =  —r , Equation 1-6

'  n(©)

(c -  speed of light, n -  refractive index, co -  frequency of the light), different 

frequencies travel in the fiber with different speed and again arrive the detector at 

different moments The broader the spectrum of the light, the stronger the effect of 

chromatic dispersion That is one of the most important reasons why we use lasers 

instead of LED and also why single mode lasers are preferable to multimode lasers 

for long haul systems

WAVELENGTH (/¿m)

Figure 1-12 Total dispersion fo r  conventional fiber [19]

Waveguide dispersion -  this type of dispersion arises when the optical signal is not 

completely confined to the core Because the refractive index in the core is higher 

that in the cladding, shorter wavelengths, which are more confined to the core will 

travel slower that longer wavelengths The waveguide dispersion has a much smaller 

effect on the propagation of optical signals than chromatic dispersion but can be used 

for altering overall dispersion in the fiber

Nonlinearity For the high intensity of the light the refractive index of the fiber 

becomes non-linear and reveals a dependency on the intensity of the electromagnetic 

field The nonlinearity in the fiber manifests itself as two main effects self-phase 

modulation (SPM) and Cross-Phase Modulation (XPM) [15-17]
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The opto-electronic conversion, at the receiver in any optical communication system, 

is done by a photodetector This is a crucial component for an optical system, which 

to a large degree determines the overall system performance There are two basic 

types of photo detectors that can be used the pm photodiode and the Avalanche 

PhotoDiode (APD)

The pin photodiode is formed from a reversed bias pn junction where the n layer 

consists of two sub - layers, a lightly doped n layer and a highly doped n+ layer The 

n type material can be considered to be an intrinsic one and it makes the depletion 

region of the structure wider than in the case of a simple pn junction The light 

incident on the photodiode is absorbed and the electron - hole pair is generated A 

long depletion region increases the efficiency of the photodiode (more photons are 

absorbed in the depletion region), but at the same time decreases the bandwidth of 

the detector (carriers have to travel longer distances, before being collected at the 

photodiode terminals) thus slowing down device operation

The APD construction is more complicated in order to achieve an extremely high 

electrical field The APD consists of an absorption region where the primary carriers 

are generated and the gain region, where earners are accelerated in order to achieve 

sufficient energy to excite new electron -hole pairs This process is known as an 

impact ionisation and it leads to an avalanche breakdown in ordinary reverse biased 

diodes APD requires very high reverse bias but in turn multiplication factors as great 

as 104 can be obtained

13 3 1 Parameters of the photodiodes

Quantum efficiency The quantum efficiency r| is defined as the fraction of incident 

photons that are absorbed by the photodiode and generate electrons collected at the 

detectors terminals 

re
T| =  —  , Equation 1-7

rp

where rp - incident photon rate (photons per second), 

re - corresponding electron rate (electron per second)

Responsivity It gives the transfer characteristic of the photodetector and is defined 

as

13 3 Optical detectors
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R = — 
P.

Equation 1-8
W

where: Ip - output photocurrent in amperes,

P0 -  incident optical power in watts.

Bandwidth. The speed, at which a detector responds to changes in an optical input 

signal, is a vital parameter. Generally this value is expressed as the rise time or 

bandwidth of the detector. Rise time is the time the output signal takes to increase 

from 10% to 90% of the final level after the input is turned on instantaneously. The 

rise time factor can be connected to the 3 dB bandwidth of the detector by using the 

formula:

_ 0.35B = ----- , Equation 1-9
Tr

where: B - the bandwidth, 

xr - the detectors rise time.

The detector bandwidth is very important for high-speed communications. In digital 

systems insufficient bandwidth can lead to pulse deformation and InterSymbol 

Interference (ISI), while in analog systems it will reduce the power of the signal [14].

Long wavelength cut off. Photodiodes will only detect photons with its energy being 

equal or greater than the energy gap of the material used to build the detector. 

Therefore for each photodetector there is a maximum wavelength, which can be 

detected. This cut off wavelength can be calculated from:

« he
k r = ----- , Equation 1-10

where: h -  Plank’s constant, c -  speed of light, Eg band - gap of the material [18, 19]. 

1.3.4 System design

The dominant criteria in designing an optical system are the desired transmission 

distance and the rate of information, which can be transmitted. Thus in order to 

design an optical communication system the power and the rise time budgets have to 

be considered.

1.3.4.1 Power budget

Correctly constructed power budget ensures that the signal after propagation over the 

entire system has enough power to achieve a desired Signal-to-Noise Ratio (SNR) or
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Bit Error Rate (BER) at the receiver Power budget takes into account the transmitted 

power, receiver sensitivity (power required at the receiver to ensure “errorless” 

detection), amplification and total loss of the link It also includes a safety margin to 

allow system aging, fluctuations and repairs (extra splicing of broken fiber etc ) In 

the simplest form the power budget is

Powertransmmer -  total loss + amplification = margin + receiver sensitivity [14, 19, 20] 

13 4 2  Rise-time budget

A rise-time budget determines the total capacity of the system It takes into account 

the response times of all the system components The bandwidth of a system can be 

calculated from Equation 1-11 In the simplest case, the rise-time of a system is the 

cumulative rise-time of a transmitter, receiver and fiber and can be calculated from

2 I 2 2 2
^system \  ^transmitter ^ receiver  ̂fiber * E q u a t i o n  1-11

The rise-time of a fiber depends on its dispersion properties and spectral width of the 

transmitter and is much lower for single mode fiber than for multimode fiber It also 

depends on the length of the fiber The longer the link, the slower the response [14, 

19]
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2 Radio/Fiber Systems -  Overview

2 1 Applications o f radio/fiber systems

As mentioned in the Introduction radio/fiber systems present many advantages over 

standard wired systems The bandwidth offered by them can be utilised to transmit 

many different signals and hence can be used for numerous applications 

The radio spectrum has been divided by regulatory bodies into frequency bands 

devoted to different applications and systems The spectrum allocation is shown in 

Figure 2-1
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Figure 2-1 Spectrum allocation fo r broadband wireless systems

PCS- Personal Communications System 

ISM- Industrial, Scientific and Medical 

MDS- Multi-channel Distribution System 

PMP-Point-Multi-Point

GWCS- General Wireless Communications Service

Nil- National Information Infrastructure 

LMDS- Local Multipoint Distribution System 

MVDS- Microwave Video Distribution System 

LOS- Line of Sight

As it can be seen from Figure 2-1 radio/fiber system could be applied in systems 

using the frequencies from 2 5 to 60 GHz [1] With respect to the target users the 

systems are loosely divided into two groups

1 Point -  to -  multipoint communications (PMP) for low and medium subscriber 

densities (around 3 5 and 10 GHz)
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2 PMP for high subscriber densities (24-26, 27-29 and above 40 GHz)

Many standards have been proposed for above-mentioned systems [2, 37]

1 IEEE 802 11 Standardisation Committee develops standards for the following 

frequency bands [3]

• 2 4 GHz -  wireless-Local Area Network (W-LAN) supporting 11 Mb/s 

data rates with frequency hopping and direct spread spectrum techniques

[4]

• 5 GHz -  system using Orthogonal Frequency Division Multiplexing 

(OFDM) [5]

• 10 -66  GHz -  PMP system providing peak capacities up to 2 -155 Mb/s 

and supporting two modes of transmission continuous and burst 

transmission streams

• 2 -1 1  GHz PMP systems offering flexible connection for asymmetric 

traffic [6]

2 European Telecommunications Standards Institute/Broadband Radio Access 

Networks (ETSI/BRAN) develops new standards for networks providing 

transparent connectivity for licensed and license-exempt applications 

HIPERACCESS group focuses on systems using 40 GHz frequency band 

This system will use 25 MHz channels with a single carrier transmission for 

each BS [7, 8]

3 Local Multipoint Distribution System - technology used to deliver voice, data, 

Internet and video services with the use of 25 GHz and higher frequencies It 

offers data rates of 155 Mb/s It is a solution to local-access bottleneck [9]

4 Microwave Video Distribution Service (MVDS) -  system design mainly to 

deliver digital video program It is being adapted for two-way connectivity [9]

5 Frequencies above 60 GHz can be also used for vehicle communications and 

control (Europe) Systems fulfilling this task will distribute a low data rate 

along major Europeans roads [6-10]
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2 2 Architecture of Radio/Fiber system

In hybrid radio/fiber systems the connection between the Central Office (CO) and 

Remote Antenna Unit (RAU) may be realised with the use of fiber Wavelength 

Division Multiplexing (WDM) may also be employed in above-mentioned systems, 

similar to other optical networks [11, 12] Utilisation of WDM allows many BS’s to 

be fed by common fiber, reducing the cost of the system Many different topologies 

maybe employed for hybrid radio/fiber distribution systems The choice of 

architecture depends on numerous considerations such as crosstalk, efficient 

utilisation of fiber bandwidth etc

There are two main proposals for the architecture of a radio/fiber system employing 

WDM star - tree and star -  ring topology A combination of all three (star- nng-tree) 

is also possible [13, 14]

In the star-ring configuration the CO is connected to many BSs BSs are divided into 

groups, each group being connected to one unidirectional fiber - ring Each ring uses 

the same set of wavelengths Each RAUis assigned one wavelength and uses it for the 

up- and the downlink A simplified schematic of the star-ring configuration is shown 

m Figure 2-2

BSK BSL

\  %
COOADM ► "* OADM

Figure 2-2 Star - ring architecture

In the star-tree topology, a bidirectional fiber lmk routes traffic to a single 

multiplexer/demultiplexer, which distributes different wavelengths to individual BSs

[15] The up- and downlinks use different wavelengths unless two unidirectional 

fibers are installed (separate fiber for up- and downlink) The star-tree architecture is 

shown m Figure 2-3
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Figure 2-3 Star-tree topology

The topology chosen for a system will have an influence on system performance 

mainly due to the crosstalk In radio/fiber systems two reuse scenarios are used 

optical -  the same wavelength can be used many times in separate rings (trees) and 

electrical - RF frequency can be reused in separate rings and trees, but also within the 

same ring (tree) for non-adjacent BS Because of components imperfections, signals 

transmitted in the network can leak and appear at ports that they are not supposed to 

These signals are the source of the crosstalk There are two types of crosstalk

1 in-band interfering signal is at the same wavelength as the required signal,

2 out-of-band interfering signal is at a different wavelength

The in-band crosstalk can be caused for example by imperfections m Optical Add 

Drop Multiplexers (OADM) In a ring configuration the signal on a certain 

wavelength, carrying the data from CO to BS, is dropped at an OADM This 

component will not remove the whole signal, thereby allowing some of it to leak 

through and continue propagating along the fiber If the same wavelength is used for 

communications for transmitting information from BS, the dropped signal will 

interfere with the added one The in-band crosstalk cannot be optically filtered It can 

be filtered electrically under the condition that the “add” and “drop” signals carry data 

on different RF frequency

Out-of-band crosstalk occurs for example in tree topology, when part of signal is 

reflected at the demultiplexer and travels back towards CO Out-of-band crosstalk can 

be filtered out optically [13]

2 3 Component design issues for radio/fiber systems

The realisation of a radio/fiber system presents a challenge in terms of both the 

required components and system design This is mainly due to the high frequencies 

that are used in radio/fiber networks The concerns that are raised could be 

categorised to be from two major areas within the radio/fibre networks
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On the electrical side we need high-speed electronics, such as signal generators, 

amplifiers, mixers e tc , to drive the optical transmitters and process the signals 

Furthermore, the required microwave filters and antennas must also be capable of 

handling these high frequencies [9] There is a lot of research earned out m these 

areas and the main problem is associated with the design of components capable of 

delivering high powers at millimeter-wave frequencies This can be achieved by 

semiconductor components only in the lower millimeter-wave frequency range At 

higher frequencies electron tubes have to be used The travelling wave tube is the 

most common amongst them [16, 17] Similarly, in the case of filters for low power 

applications and frequencies not exceeding 10 GHz a novel technology known as the 

surface acoustic wave is becoming more and more popular However, for high powers 

and frequencies, waveguide and coaxial filters have to be used Also a lot of research 

has been undertaken in the field of antennas Even though the parabolic dish reflectors 

are still a popular solution, new configurations are also making considerable inroads 

(in many systems) This includes flat-plate, modular lensed antennas, active arrays 

and phased arrays [18 - 20] Fathy et al propose an innovative concept of a plasma- 

reconfigurable antenna, which can be modified dynamically to enable different 

functions The aperture of such an antenna can be specially tailored towards an 

application in order to increase its efficiency and signal processing speed The 

reconfigurable antenna enables frequency hopping, beam shaping and steering in a 

simple manner [21] Another type of reconfigurable antenna is the multibeam active 

phase array [22] The main advantage of using such antennas is their high 

reconfigurability, which means that almost any shape of coverage and any shape of 

low sidelobe area can be designed

Important issues m designing antennas for millimeter-wave systems are small size, 

low weight and high gam The latter cntenon arises from the low output powers of 

opto/electronic converters, which in turn occurs as a direct consequence of the 

requirement for minimal power consumption of a RAU [10]

2 3 2 Optical domain

The optical domain also creates many obstacles that have to be overcome if 

radio/fiber systems are to be successfully employed The main challenge here is the

2 3 1 Electrical domain
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generation of high frequency signals in an optical manner The most commonly used 

method of electro/optic conversion involves direct modulation of the laser drive 

current This allows the generation of frequencies that typically do not exceed 10 -  

15 GHz (due to the limited modulation bandwidth of a laser) The commercial 

realisation of very high-speed laser diodes still has a long way to go, even though 

there are reports involving the design of lasers that exhibit a 3 dB bandwidth of 40 

GHz and output powers around 35 mW [23] Another technique associated with the 

generation of an optical RF signals entails external modulation In the optical domain, 

one of the most popular modulators is the Mach-Zehnder Interferometric modulator 

(MZI) However the Elector-Absorption (EA) modulators have recently attracted 

more and more interest because of their better linearity and easy integration with 

semiconductor lasers Even though external modulators with bandwidths of 70 GHz 

have been reported [24, 25], commercially available external modulators do not go 

beyond 40 GHz Therefore a lot of effort has been put into the search for alternate, 

cheap and reliable techniques of generating high frequency optical microwave signals 

A detailed description of the possible methods that could be used to achieve the fore

mentioned goal can be found in the next chapter

Increasing the performance of optical detectors is another challenge, faced within the 

optical domain, on the way to realising radio/fiber systems Nevertheless, researchers 

have demonstrated photodiodes with bandwidths of hundreds of gigahertz [26, 27] 

One of the up and coming architectures of photodiodes involves the use of side- 

llluminated structures, which in comparison to the common surface illuminated ones 

realise greater bandwidth and better efficiency As with the modulators, the possibility 

of integrating the photodetector with other optic and optoelectronic components is an 

important issue that offers high-speed operation, compactness and cost reduction It 

also enhances the coupling efficiency between the fiber and detector [28] Giraudet 

et al [29] have demonstrated the evanescently coupled waveguide-fed photodiode, 

which is a type of side-illuminated diode, with responsivity as high as 0 93 and 

0 74 A/W for 60- and 100-GHz diodes respectively Another type of photodiode, 

which could find its application in future hybrid radio/fiber systems, is the Um- 

Travellmg-Camer Photo-Diode (UTC-PD) In this type of structure the only active 

carriers travelling through the junction depletion region are electrons UTC-PD’s 

provide large bandwidth and high-saturation output powers [30] Ito et al show an

1 <
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UTC-PD with a bandwidth of 310 GHz and an output power 12 dBm at 60 GHz [31] 

Nevertheless, current commercial photodiodes with bandwidths up to 50 GHz are 

expensive and exhibit low efficiency [10] Another important factor, as mentioned 

before, is the power consumption of detectors This requirement for energy saving 

diodes has led to the creation of zero electrical power photodiodes, which do not 

require bias voltage to perform the O/E conversion [30, 32]

Apart from transmitters and receivers, one of the other important optical components 

of radio/fiber system employing WDM is the optical filter Typically demultiplexing 

of signals at the RAUwould require a flat transmission profile and a sharp roll-off 

Presently available Fibre Bragg Gratings (FBG) fulfil these requirements [33] 

However the cost of these FBG’s has to be reduced

2 4 Transmission of RF signals 

2 4 1 Radio transmission

Propagation of RF signals in the air strongly depends on the frequency of the signal 

Generally the links can be classified with respect to the path that the wave travels 

before arriving at the receiver Namely the three classes are non- Line-Of-Sight (LOS) 

links, poor LOS and LOS links as shown in Figure 2-1 Low frequency signals do not 

need LOS since they can reach the receiver on being reflected by obstacles These 

frequencies undergo diffraction, which also allow them to overcome the shadowing 

effect caused by many disturbances on the way Unfortunately, in the case of short 

wavelengths the loss caused by diffraction is too high and hence the need for LOS 

transmission However these waves can still be reflected from buildings and other 

obstructions, which could result in multipath fading [34]

Another hindrance to the propagation of millimetre-waves is the attenuation caused 

by walls High frequency radio waves do not have the ability to penetrate buildings In 

order to ensure access to the network inside the buildings one has to install an indoor 

BS This obviously increases the cost of employing the system The need for 

mounting a RAUinside the building, forces the system designers to consider two 

different cases They are regarded separately as the indoor and outdoor propagation 

environments, since the propagation conditions for each of them are different

28



The main problem in designing the outdoor system using millimeter-wave carriers is 

the attenuation First of all the oxygen and water vapour attenuation line are situated 

in the millimeter-wave frequency band Thus, the attenuation is highest for 

frequencies around 60, 119 and 183 GHz, which correspond to the resonance of the 

oxygen molecule (first and second) and water vapour absorption respectively These 

attenuation peaks can be used advantageously in very high capacity communications 

systems, since high attenuation offers high separation between cells and allows the 

frequencies to be reused much more often than in other (e g GSM) systems [35] 

Beside the molecular absorption, the influence of rain, snow or hail is much more 

severe on high frequency signals This makes the designing of millimeter-wave 

systems even more difficult, since the act of precipitation cannot be predicted In the 

system design process, rain statistics for the particular terrain are used to calculate the 

necessary power margins for required link availability [36]

The indoor transmission of millimeter-wave signals is free from fading due to ram 

and other weather conditions The main problem here is the multipath fading caused 

by the reflections from walls and other obstacles, and time variation of the channel 

due to constant movement, mainly of people, within the buildings Multipath 

propagation causes not only fading of the signal but also results in different travel 

times of the data transmitted The latter causes broadening of the data pulses as they 

travel in the channel Furthermore, if the delay of the signal from the reflected path is 

longer than the bit duration, multipath propagation causes Inter-Symbol Interference 

(ISI) The spread of power due to delay depends on the size of the room and its 

architecture It is important to note that even small rooms can have large delay 

spreads if their walls are highly reflective Reflected waves experience low 

attenuation and multiple reflections with significant delays will still have a strong 

effect on the overall delay spread [37] Delay spread limits the maximum bit rate at 

which the system can operate

Whether indoors or outdoors, the effects of multipath fading can be overcome by 

using the diversity techniques [34, 38] This is due to the fact that since the 

probability of simultaneous fading of signals transmitted either on different 

frequencies, different polarizations or from different places is very low There are 

many different diversity techniques

1 spatial diversity -  signals are transmitted from two or more different antennas,

2 multicarrier transmission -  data is sent using more than one frequency,
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3 polarization diversity - transmitted signals have e g circular polarization 

instead of linear

Also wide band signals (e g spread spectrum) are more immune to fading then 

narrowband ones since multipath fading affects only a small portion of the signal 

bandwidth Different equalization methods could also be used to overcome the lll- 

effects of multipath fading, but they usually are complicated and require high 

processing powers [39]

2 4 2 Transmission over fiber

The most important of fiber parameters, while considering the transmission of optical 

millimeter-wave signals over the fiber, are attenuation and dispersion Attenuation 

causes a reduction in power of an analog signal propagating along the fiber in the 

same way as in digital systems On the other hand, the effect of dispersion is more 

complicated In digital systems dispersion causes a linear degradation of the 

transmitted signal due to pulse broadening Chromatic dispersion is caused by the fact 

that refractive index of the glass changes depending on the wavelength of the light 

Because the velocity of the light depends on the refractive index, different frequencies 

of the light travel in the fiber with different speeds The effect of chromatic dispersion 

becomes more important as the spectral width of the data signal increases

In analog millimetre-wave systems, dispersion causes the signal to degrade not 

linearly, but in a periodic manner In hybrid radio/fiber systems one wants to generate 

the radio carrier remotely in the CS, and then send it through the fiber to BS The 

radio frequency ranges between 18 -  200 GHz Intensity modulation of the light at the 

radio frequency produces two main components in the optical spectrum (Double Side 

Band modulation - DSB), each distant from the light carrier by the radio frequency 

The space between these side bands equals two times the RF frequency These 

components are affected by chromatic dispersion, which causes them to travel at 

different speeds in the fiber, which means that their relative phase also changes The 

higher the RF frequency, the faster the change in phase When the signal arrives at the 

receiver, both sidebands beat together producing the electrical RF output However, if 

the sidebands have opposite phases, they will interfere destructively and no RF signal 

will be obtained at the output of the receiver Fading is also a periodical occurrence 

because as the optical microwave signal continues to propagate the two side bands go
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from being out of phase to being in phase and out of phase etc [40] The 

dependence of the electrical power of the received signal (16 GHz) on the 

transmission length is shown in Figure 2-4 The first null in the received power 

appears at the length where the difference in travel times between side bands equals 

half of the carrier period The second and further nulls occur after double this length 

(difference in travel time equals full period of the RF signal) [41]

Fiber length [km]

Figure 2-4 Received RF power v i fiber length fo r  transmission o f  16 GHz signal

DSB signals are thus unsuitable for transmission of RF signals due to dispersion 

Dispersion caused fading could be overcome by employing Single Side Band (SSB) 

modulation [42] The effect of dispersion on the propagation of RF signals along the 

fiber, and the methods of overcoming this problem will be discussed in more detail at 

a latter stage in this thesis

As mentioned before, future radio/fiber systems may employ WDM When the 

number of channels and power level of signals transmitted over the fiber increases, 

the effect of the fiber nonhneanty become more severe [43] Nonlinear effects such as 

Four Wave Mixing (FWM) or Cross Phase Modulation (XPM) can have a serious 

impact on system performance They can cause crosstalk not only between WDM 

channels but also between RF carriers carried by particular wavelength

Analog lightwave systems are more sensitive to noise and distortion than digital 

systems In order to overcome receiver and optical amplifier noise the average power 

in analog systems must be higher than for digital signals That is why, even though in
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radio/fiber systems fiber link is not very long, fiber induced nonhneanty have a strong 

influence on system performance [44, 45]

While considering the transmission of RF signals in a radio/fiber system one has to 

separate the downlink case from the uplink case Signals travelling from the CO to 

RAU (downlink) experience distortions from fiber attenuation, nonhneanty and 

dispersion Because the RF signals are not processed in the BS, but sent straight to a 

user, any degradation of the signal caused by propagation over the fiber will add to 

those introduced by the radio link This puts huge constraints on signal quality and 

performance of system components [46] The uplink connection is even more 

challenging In this case the RAU receives signals from many users, each transmitting 

at a different frequency These signals are distorted by thermal noise of the RF 

receiver and by co-channel interference Adjacent channel interference from users 

transmitting on different frequencies is also present Adjacent channel interferences 

can be filtered out, while the mixing products of these signals, generated by 

nonhneanty of the system components, cannot It is important to note that the power 

level of the received signals would differ since the distance between users and the 

RAU can vary In the worst-case scenario, if the desired signal is weak or expenences 

fading, impact of mtermodulation distortion can become severe [46] The wide 

variation in signals amplitudes in the uplink means that the impact of fiber 

nonhneanty will be much stronger for the uplink than the downlink case

2 5 Protocols for future radio/fiber systems

Performance of the radio/fiber system depends on characteristics of the radio channel 

such as multipath fading, weather, changing propagation conditions etc Furthermore, 

the quality of signal for each user in the network is different, depending on the users 

position as well as locations of other interfering users, traffic load and so on Proper 

design of the traffic management and connection control can improve the 

performance of the system In future radio/fiber systems the mam challenge in 

choosing the network protocol arises from the requirement to support many different 

applications and types of traffic As regards applications there is a need for 

transmitting real-time data, by providing necessary bandwidth seamlessly across the 

network (wireless and wired) On the other hand dealing with different types of traffic 

brings about the problem of coping with symmetnc and asymmetric traffic,

3
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continuous and burst data etc In addition, protocol for a wireless system has to 

operate m situations, where users are moving, which changes the traffic pattern 

dynamically [39] Wireless links suffer from high BER due to fading The protocol 

used for radio/fiber systems will need an additional data link control sub-layer for 

error recovery Furthermore the finite frequency resources for radio transmission 

means that resource control will also be needed Finally mobility requires new 

functions to support hand-off, location management, MS authentication and 

registration and routing of mobile connections [47]

There are two main competitors for wireless broadband systems protocol Internet 

Protocol (IP) and Asynchronous Transfer Mode (ATM) IP has dominated the data 

world due to the growth in the Internet and hence it would be a natural choice for 

wireless Internet [48] Mobile users demand the possibility of receiving all the 

services available to fixed Internet users The current version of IP is not capable of 

coping efficiently with huge traffic variations and diversity of user devices while also 

taking care of the mobility issue Hence a lot of effort has been put into developing a 

new version of IP for mobile systems resulting in the so-called Mobile IP (MIP) [49, 

50] Other problems associated with implementing IP in future radio/fiber systems lies 

in the fact that IP is a best effort delivery model and it does not allow different 

treatment of users This makes it unsuitable for many broadband, real-time 

applications [51] Adapting Internet to transmission of real-time traffic requires 

changing Transmission Control Protocol (TCP), which cannot guarantee a necessary 

quality of service (QoS) for such type of data This is a reason for developing Real- 

Time Transport Protocol (RTP), which is usually implemented on top of User 

Datagram Protocol (UDP) The next step towards ensuring the required QoS for real

time applications is the employment of Resource Reservation Protocol (RSVP) This 

is a control protocol, which allows the Internet real-time applications to reserve 

resources before they start transmitting data Nevertheless, RSVP is not designed for 

mobile communications This is why RSVP has to be adapted for usage in mobile 

system [52, 53]

Contrary to IP, ATM is known for its flexibility and resource management 

capabilities Because ATM cells are generated according to the need of the data 

source, this protocol can meet dynamic requirements of connections with variable 

data rates The mam advantages of ATM are 

• Flexible bandwidth allocation
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• Efficient multiplexing burst as well as continuous data traffic

• Improved service reliability with packet-switching techniques

• Ease of interfacing with Broadband Integrated Services Digital Network (B- 

ISDN)

All these advantages make ATM the most suitable choice of protocol for radio/fiber 

systems [37, 54, 55] Consequently in 1996 the ATM Forum and ETSI started the 

work on the extension of the wired ATM to wireless ATM (WATM) [56]
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3 Generation of Millimeter-Wave Signals

Developing an optically fed microwave wireless network requires the amalgamation 

of many different technologies The main challenge on the transmission side is to 

generate the millimetre wave optical data signals, which would be suitable for 

subsequent transmission over optical fibre

There are many different techniques that could be used for the remote generation of 

millimetre wave signals The most important ones are listed below

1 direct modulation of a laser diode

2 external modulation

3 heterodyning

4 frequency conversion

5 remote upconversion using a phototransistor

The rest of this chapter consists of a detailed description of the above-listed 

techniques

3 1 Direct modulation of a laser

Direct modulation of laser is the simplest and the cheapest technique to generate the 

optical millimeter-wave signals This is achieved by applying the RF signal 

combined with the bias current to the laser transmitter The variation of the excitation 

current (l e number of electrons injected into the device) causes the variation in the 

number of photons generated and thus variation m the optical power generated by the 

laser The population of the electrons and photons in the cavity of a single mode laser 

and the phase of the generated light are described by the rate equations

dt qV r„
Equation 3-1

= r go (N(t) -  a l  )s(t) -  ̂  + ry? ̂ , Equat,»« 3 -2
dt r  r

dt 2 r
v  p  J

- c 0 , Equation 3-3

where N(t) -  carrier number in the active volume, 

I(t) -  drive current, 

q -  electron charge,
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V -  volume of the active layer, 

xn - earner lifetime, 

g 0 - gain coefficient,

Nom -  earner density at threshold,

S(t) - photon density,

T - optical confinement factor, 

t p -  photon lifetime,

P - spontaneous emission coefficient 

cp(t) -  phase of the light, 

a  - linewidth enhancement factor, 

w - frequency of the laser

Equation 3-1, Equation 3-2 and Equation 3-3 describe the evolution of the carrier and 

photon densities and phase respectively These are simple single mode equations 

The first term on the R H S of the Equation 3-1 shows that the number of electrons in 

the conduction band and holes in the valence band increases with the drive current 

and is dependent on the ratio of the injected current and the volume of the active 

layer of the laser

The carrier number decreases due to spontaneous emission, which is inversely 

proportional to the earner lifetime (second term), and due to stimulated emission, 

which takes place when the laser is biased above its threshold (third term) In this 

case the photons in the active region interact with electrons causing their transition 

from higher to lower energy bands and lasing occurs

The photon population is governed by Equation 3-2 The main contribution to the 

increase of the photon number is stimulated emission The photon number increases 

due to the spontaneous emission and decreases due to losses m the cavity such as 

absorption and resistive losses

The Equation 3-3 is important when one considers both the amplitude and phase 

modulation It also plays important role in determining the influence of the optical 

feedback and external injection The first term on the R H S of the equation is 

brought about due to the fact that the vanation in earner density changes the 

refractive index of the laser cavity This in turn changes the phase of the generated 

light The second term is the frequency of the generated light
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The rate equations can be used to calculate the modulation response of a laser diode 

The driving current is assumed to consist of a DC value and an AC component

/ ( / )  =  I Q +lxejmm' , Equation 3-4

and the small signal response /?, and nx is defined by

S(t) =  S 0 + s}eJlUmt, Equation 3-5

N(t) — N q +  n]ejaTmt, Equation 3-6

where So and No are the steady state values of photon and carrier densities obtained 

by solving the rate equations with the L H S set to zero (as shown in Equation 3-7 

and Equation 3-8) and is the modulating frequency [1]

° = go(No _ N )S , E q u a t l o n  3 . 7

qV x

o =  r go(NB -  Nom)Sa -  ̂  -  7 7 ? ^ ,  Equation 3-8
tp

The full derivation of the formulas shown below is presented in Appendix A

The small signal response of a directly modulated laser is found by inserting 

Equation 3-4, Equation 3-5 and Equation 3-6 into Equation 3-1 and Equation 3-2 and 

performing the differentiation

-jG7n. = — — +
qV

1

VTn
n. H j , , Equation 3-9

tpt

JWSl = g 0S0r n {, Equation 3-10

Since the main interest focuses on the dependence of the photon density on the 

modulation frequency one can substitute n, calculated from Equation 3-9 into 

Equation 3-10 As a result one obtains a photon density -  frequency relation

y \ qVS{(in) —--------------- j---------------r------------- , Equation 3-11

w 1 -  jm

The typical frequency response of a laser is shown in Figure 1-8 (Chapter 1) For 

low frequencies the response remains flat It increases rapidly for a particular 

frequency called the relaxation oscillation frequency - o>r and drops sharply for to

42



higher than cor The value of cor can be obtain by finding the minimum of the 

dominator in Equation 3-11 (maximum value of p,)

§0^0 1
r - \ 2

^  g 0So Equation 3-12

The oscillation frequency can be, with good accuracy, treated as a measurement of 

the laser modulation bandwidth Typical modulation bandwidths of commercially 

available lasers diodes do not exceed 20 GHz A lot of effort has been put to enlarge 

the intrinsic modulation bandwidth, which includes sophisticated fabrication 

techniques and broadband matching techniques This however results in the increase 

of cost and complexity of these lasers

As it can see from Equation 3-12, the modulation bandwidth of a laser diode can be 

increased by reducing carrier and photon lifetime or by increasing bias current of the 

laser The initial condition could be achieved by altering the internal structure of the 

laser (e g varying cavity length), while the latter has to be kept within practical 

limits (maximum current rating of the device) Furthermore, operating the laser at a 

higher level than the optimum current could cause a faster ageing of the device

There are two other novel techniques namely external light injection [2, 3] and 

resonant modulation [4], which could be used to enhance the modulation bandwidth 

of a laser diode and are described in detail further on in this section

3 11 External light injection

Many recent experiments have shown that the modulation bandwidth can be 

increased significantly by employing external light injection The factor of 

improvement with the above-mentioned experiments could be as high as three [5 - 

9] A typical set-up involves the usage of two lasers m a master-slave configuration 

The actual transmitter (laser under direct modulation) is the slave laser, while the 

master laser is a Continuous Wave (CW) source

The external light injection introduces a new term into laser rate equations, which is 

responsible for the increase in laser modulation bandwidth The equation describing 

the rate of change in photon population, after the external injection, can be expressed 

as
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^  =  Tg0(N(t) -  A',,,,, )S{t)-  — + r / ? ^  + 2 /rcp mjS(t)Cos(A<p) Equahon 3-13 
dt r  r  v

The corresponding phase can be calculated form

where Smj -  injected power 

cp(t) - phase of the injected light,

Kc -  coupling coefficient for the injected light into slave laser,

Aco ~ m -  cotnj - detuning frequency between the slave and master laser

The equation for carrier population remains unchanged

Solving the equations in the same way as for the free running laser we obtain the 

following frequency response of the injected laser

We can see that by setting the injection level to zero we obtain the original response 

of a laser

Initially, simulations were carried out to examine the effects of external light 

injection Subsequent expenments where then performed to validate the simulation 

results obtained

'.rgo-Sp 
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Equation 3-15
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Where

X  = 2 K £ cos(^ 0 ) ,

P = jo) + —  + g05’0
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The external light injection was simulated using Virtual Photonics Inc (VPI). 

Transmission Maker. The simulation model is shown in Figure 3-1.

3.1.2 External light injection -  simulation

fcC I
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ButfP.

m ....
m

Figure 3-1: Simulation model - external injection

It consists of two lasers: a Fabry-Perot laser, which is the transmitter and the 

continuous wave (CW) source, from which light is injected into the FP laser. A DC 

bias of 90 mA, to which a sinusoidal modulation signal (amplitude 30 mA) is added, 

is applied to the transmitter. The frequency response is plotted by calculating the 

instantaneous power and frequency of an optical waveform, when the laser is directly 

modulated with a sine wave at frequencies ranging from 300 MHz to 26.6 GHz. The 

resulting frequency response of the laser in the free running case and under external 

injection ( 6  mW optical power at a detuned wavelength of 15 GHz from the slave 

laser) is shown in Figure 3-2. This result shows that by using external injection the 

modulation response can be significantly increased from 8 GHz in the free running 

case to 23 GHz under the injection.
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Figure 3-2 Frequency response o f the free running laser (squares) 
laser under the external injection (circles)

Another interesting factor was observed when no modulation signal was applied to 

the externally injected laser The optical spectrum of the un-modulated laser output 

signal with and without injection is shown in Figure 3-3 (a) and (b) respectively

(a) . _ (b)

Frequency to 1931 THz (GHi) Freque^c* reiatw to 1931 TMz [GHz'

Figure 3-3 Optical spectrum (a) under external injection (b) free running

The detected optical signal was displayed using an RF spectrum analyser and an 

oscilloscope The electrical spectrum and the temporal signal are displayed in Figure

3-4 and Figure 5-5 respectively The temporal signal is passed through a filter 

(Gaussian pass-band) in order to see the actual oscillation at 21 GHz From the 

diagrams it can be seen that laser under external injection begins to self-pulsate [1 0 , 

11] Multiple side bands are clearly visible in the optical spectrum even though no 

modulating signal is applied to the transmitter The distance between the side bands
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corresponds to the components present in the RF spectrum of the detected optical 

signal The laser oscillation can also be observed in the time domain in Figure 3-5

Figure 3-4 RF spectrum o f the signal from se lf pulsating laser

Figure 3-5 21 GHz detected waveform from se lf pulsating laser

The frequency of the self-pulsation can be varied by changing the power injected to 

the laser Figure 3-6 presents the dependence of the oscillation frequency as a 

function of injected power
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Figure 3-6 Self-pulsating frequency vs injected optical power

It can be seen that the frequency can be tuned between 16 5 to 22 GHz by increasing 

the optical power injected into the laser form 0 2 to 11 mW

The results obtained clearly show that the enhanced response at these frequencies is 

caused by the external injection inducing instability in the laser diode The instability 

m turn results in the output power from the laser undergoing strong oscillations due 

to beating between the optical field components in the laser cavity [ 1 2 , 13]

3 13 External light injection - experiments

The experimental set-up used to investigate the effect of external light injection as 

well as to verify the simulation results is shown in Figure 3-7 This configuration 

involves the use of a master laser (external cavity tunable laser), a slave 1 5 |im 

single mode laser diode, a detector (pin diode) and a network analyser (HP-85IOC) 

The isolator used prevents any reflected light from coming back to the master laser 

Light from the master laser was coupled into the slave laser using a 3-dB coupler 

A Polarization Controller (PC) was used in order to optimise the coupling of the 

injected light into the laser cavity The total insertion loss introduced by the PC and 

the isolator was about 3 dB The modulation signal from the network analyser was 

combined with a bias current of 60 mA using a 40 GHz bias tee and then applied to 

the slave laser The modulated light emitted by the laser was detected using 50 GHz 

photodetector and the frequency response was measured using the network analyser
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Isolator

Figure 3-7 External light injection - experimental set-up

The frequency response of the laser obtained by using the network analyser is shown 

in the Figure 3-8 The line denoted by (a) shows the free running case, where the 

inherent bandwidth of the laser was measured to be around 8 GHz The lines 

designated by (b) - (d) show the response, when strong external injection was applied 

to the laser The different cases correspond to different injection powers The best 

enhancement in modulation bandwidth (up to 21 GHz) of the slave laser was 

achieved, when the injected power was 6  dBm It is important to note that the 

injected powers mentioned are the powers at the output of the tunable laser The 

actual signal injected into laser cavity is much smaller due to losses introduced by 

isolator (around 2 dB), coupler (3 dB), polarisation controller (1 dB) and finally the 

coupling loss between fiber and laser (3 -4  dB)

Figure 3-8 Enhancement o f  the modulation bandwidth o f the laser diode achieved 
by external light injection (a) f e e  running with injection level set to (b) 4 dBm (c) 5 dBm (d) 6 dBm
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From the plot one can easily see that external light injection can not only 

significantly enhance the bandwidth of the laser but also increase the relative 

response of the laser at specific modulating frequencies

As in the case of the simulation, the enhanced response at these frequencies is caused 

by the external injection inducing the laser to self-pulsate Figure 3-9 displays the 

optical spectrum from the laser when it is biased at 60 mA and the externally injected 

power from the external cavity laser is 3 5 mW One can clearly see the modulation 

on the spectrum at a frequency of around 20 GHz

Figure 3-9 Optical spectrum o f the se lf pulsating laser

To further investigate the oscillation from the laser, the optical output from the laser 

under external injection was detected using a 50 GHz photodiode and displayed on a 

50 GHz oscilloscope Tnggenng was achieved by splitting the electrical signal after 

the detector in two, and using one of the outputs as the trigger Figure 3-10 shows 

the detected temporal optical output from the laser under external injection An 

oscillation at a frequency of around 20 GHz can clearly be seen Also noticeable is 

a significant level of noise and jitter on this signal This noise and jitter on the 

oscillation from the laser is also evident in the detected electrical spectrum (Figure

3-11) The broad linewidth is caused by the jitter between the DFB laser diode and 

the tunable cavity laser This is due to the instability of the wavelength generated by 

the DFB laser, which does not have any temperature control
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Figure 3-10 Temporal output o f the laser under external injection

Figure 3-11 Electrical spectrum o f the self-pulsating laser

It is important to note that by applying a modulating signal of a sufficient power 

level the self-pulsation frequency can be change to generate the desired signal It was 

measured that the minimum modulating power required to obtain a stable output 

signal was 5 dBm

As mentioned before, varying the injection level can also control the frequency of 

self-pulsation This phenomenon is illustrated in Figure 3-12, which shows the 

dependence of the generated signal as a function of the injected optical power
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Figure 3-12: Self-pulsating frequency as a function o f injected optical power

In addition, by measuring the peak-to-peak voltage of the oscillation on the 

oscilloscope, we were able to determine that the optical output from the laser was 

essentially 1 0 0 % modulated (using the average power level falling on the detector 

and the responsivity of the detector) [14, 15].

The self-pulsation of the externally injected laser has two main implications. First, it 

is the reason for a huge increase in the laser resonance peak. On the other hand 

though, the range of frequencies, which are enhanced at any injection level is quite 

narrow, the bandwidth of the signals that could be generated using direct modulation 

of the externally injected laser would be limited.

It can be seen that the experimental results agree very well with the results obtained 

from the simulations.

3.1.4 Resonant modulation

Resonant modulation of a laser diode is a low-cost technique of generating high 

frequency narrow band (< 1 GHz) signals. This method is capable of generating 

frequencies approaching 100 GHz [4]. To achieve the resonantly enhanced operation 

a mirror is placed before the laser diode to form an external cavity. The length of the 

cavity is chosen such that its round trip time equals a multiple round trip time of the 

laser cavity. The optical feedback from the mirror causes the modulation response of 

the system to be enhanced at frequencies that correspond to the multiples of the 

cavity round trip. The laser’s parasitic causes roll-off of the modulation response and
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it ultimately limits the maximum modulation frequency [16] Resonant modulation 

can achieve modulation efficiencies that are higher than the low frequency response 

of a laser without an external cavity Georges et al [17] present a resonantly 

enhanced modulation of a laser with a modulation efficiency of 5 dB (in comparison 

to low frequency modulation) and a modulation bandwidth of 110 MHz and a carrier 

to noise ratio (CNR) that exceeds 90 dB (for 1 Hz bandwidth)

3 2 External Modulation

Another method for the generation of RF signals using intensity modulation of light 

is external modulation This makes a use of the fact that the refractive index of 

certain materials varies with applied electric field This phenomenon is known as the 

electro-optic effect [14] The most common and cheapest type of external modulators 

is the Mach-Zehnder Modulator (MZM) The MZM basically consists of two Y 

junctions The first one splits the incoming signal into two arms One of the arms 

(made of an electro-optic material e g lithium niobate) runs between two electrodes 

The modulating signal is then applied to the electrode, and it generates a changing 

electric field This field varies the phase of the light passing through the modulator 

arm The phase modulation is converted into intensity modulation after combining 

the light from both arms of the modulator using the second Y junction [18] The 

MZM exhibits a sinusoidal transfer function Figure 3-13 shows a transfer function 

of EOspace MZM, which was used in the experiments described further on in 

Chapter 5

Bias voltage [V] 

Figure 3-13 MZM transfer function

The output signal of the modulator can be described as
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out = E,n(t)cOS 71 V m o d (t)

V Equation 3-16

Where Ein(t) is the incident optical field applied to the modulator, Vmod(t) is the 

modulating voltage and Vn is the modulating voltage required to change the phase of 

the light by 180° If we denote the modulating signal as

V mod = V!t(l+ e)+  aV„cos(<Dt), Equation 3-17

where e and a  are normalised bias and drive levels respectively and oo is the 

modulating signal frequency, then the output field can be expressed as

E c u ,  = cos j  [(l + e)+ acos(cot)]jcos(i2t) > Equation 3-18

where Q is the angular frequency of the applied optical signal This expression can 

be expanded into a series of Bessel functions [19]

E o m  (0 =   ̂J«(af ]C0S(f ('+ 8)jcos(iit)

[af ]sin(f (] + s)]cos(nt ± “')
+ - J 2 

2 2
71

a — |cos 
2

— (l + e) cos(^t ± 2 c6>t)
Equation 3-19

i  J3(af )sin(f ̂ +£̂)coŝ t ± ̂
From Equation 3-19 one can see, that the generation of different frequency 

components is dependent on the bias Usually the bias voltage (normalised) is chosen 

between 0  and 1 and the dominant frequency component in the output signal is cot 

For analog modulation the modulator is biased at 0 5, which ensures its most linear 

operation (Figure 3-14)

Commercially available external modulators are generally capable of generating RF 

signals up to 40 GHz Though, 60 GHz generation using Electro-Absorption 

Modulators (EAM) has been reported [20 - 22], these devices are still too expensive 

for commercial use
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Figure 3-14 Analog modulation using MZM

In order to increase the frequency a novel technique has been proposed This 

technique makes use of the nonlinear transfer function of an MZM From 

Equation 3-19 one can see that by setting the bias voltage to 0, frequency 

multiplication could be achieved If s = 0 the main component at Q as well as all 

other even components are suppressed The optical spectrum consists of two main 

elements at D±to, which when mixed in a pin diode will generate an electrical signal 

at a frequency of 2co [23] This method is known as 2f generation and the basic 

operational principle associated with this method is shown in Figure 3-15

Figure 3-15 2 /generation using MZM
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By choosing the bias voltages = land adjusting the modulator drive current we can 

generate an RF signal at a frequency that is four times the modulating signal If the 

bias voltage is set to 1 then the odd components are suppressed The optical spectrum 

consists of an optical carrier at Q and two sidebands separated by 2 co from the 

central component By modifying the drive voltage a  the central spectral element can 

also be suppressed This happens for a = 1 53 [19] As a result we obtain a spectrum 

consisting of only two sidebands separated by 4o, which will mix in the photodiode 

to generate signal at frequency equal to 4co This method is called a 4f generation

In both cases (2f and 4f generation) the two sidebands are correlated, which means 

that the quality of the generated signal does not depend on the phase noise of the 

optical signal but mainly on the quality of the drive generator used for modulation 

This also means that 2f and 4f methods are capable of generating very high quality 

RF signals at frequencies well beyond the bandwidth of the external modulator

3 21 Simulation of 2f and 4f generation

2f and 4f generation have been simulated using VPI Transmission Maker The 

simulation model is shown in Figure 3-16

Figure 3-16 Simulation mode! - 2 f and 4 f generation 

The light from a continuous wave (CW) source is passed through the MZM 

A 10 GHz sine wave is applied to the electrical input of the MZM The sine wave has 

a bias voltage of 0 V and 1 V and an amplitude of 1 V and 1 53 V for 2f and 4f 

generation respectively The output of the MZM is split between an optical spectrum 

analyzer (OSA) (Figure 3-17 (a) and (b)) and a photodiode
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Figure 3-17 Optical spectrum (a) 2 f generation (b) 4 f generation 

One can see from Figure 3-17 that for 2f and 4f generation the optical spectrum 

consists of two main elements at ±10 GHz and ±20 GHz respectively and that the 

optical carrier is suppressed in both cases The RF spectrum of the detected electrical 

signal is displayed using an RF spectrum analyzer (Figure 3-18 and Figure 3-19)
P -

30 

35 

40 

15

50 

55

ao
65 

70

90

-as 

s>o 

95

too

05 
0 
5

lil
o 2 4 6 e 10 12 14 M  1« 20 22 24 2S 29 30 32 3« M »  40 42 44 49 4« 50 «2 U  5 * SB 60 62 M S

f Qw«nCY [CM |
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Figure 3-19 Electrical spectrum - 4 f generation

The electrical spectrum consists of many components, as a result of the mixing 

between the optical side bands Hence in order to obtain the desired signal electrical 

filtering is necessary The RF carrier in the time domain, after filtration, is presented 

in Figure 3-20
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Figure 3-20 Generated sine wave (a) 2 f (h) 4 f

3 3 Heterodyning

Heterodyning or optical beating is yet another method of generating RF signals that 

is free from dispersion caused fading This technique is based on the principle that 

when two coherent optical earners are incident on a high-speed photodiode, the 

signal obtained at the output of the detector would have a frequency that is equal to 

the difference between the two carriers This is due to the fact that a mixing process
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takes place in the detector The result of mixing two sine waves at frequencies fi and 

f2 would be the sum of two sine waves at frequencies fi- f2 and fj+ f2 The optical 

beating is capable of producing signals with 1 0 0 % modulation depth, but it suffers 

from phase noise, if the two carriers are not correlated In this situation the generated 

RF signal will have hnewidth of the order of combined spectral widths of the two 

optical modes Essentially what this means is that in order to generate a high purity 

RF signal, a laser with a very narrow hnewidth is needed e g gas laser [24] In the 

case of semiconductor lasers the typical value of the laser’s hnewidth ranges from 1 0  

-  100 MHz [25] The hnewidth of an RF signal generated by heterodyning can be 

decreased by reducing the laser spectral width The latter could be achieved with the 

help of an external cavity and electrical or optical feedback techniques to control and 

lock frequency or phase Nevertheless, systems using narrow hnewidth lasers suffer 

from the effects of Stimulated Bnllouin Scattering (SBS) [14, 15], which ultimately 

limits the maximum power in the fiber [19] On the other hand controlling the 

frequency or the phase of the signal increases the cost and complexity of the system

The quality of the generated signal using optical mixing can be improved if the two 

modes were correlated l e the phase noise of the optical carriers would be cancelled 

out during the mixing process in the detector and the RF signal obtained at the output 

would have a very narrow hnewidth (order of few hertz) Numerous techniques to 

correlate the optical waves have been proposed This correlation could be achieved 

by using the feed forward technique [26], an optical phase-locked loop (OPLL) [27] 

and sideband injection locking [33] It is important to note that a combination of the 

latter techniques is also possible The OPLL consists of a phase detector, a 

microwave reference oscillator and a loop filter The signal generated by 

heterodyning is compared with the signal from the reference source m the phase 

detector The resulting phase error is fed back to the slave laser, which is then forced 

to track the master laser [28] The main challenge in the realisation of OPLL is the 

need for wide-band electronics, since the hnewidth of semiconductor lasers are 

relatively large The required bandwidth of the feedback is determined by the sum of 

the laser linewidths Because the PLL receiver has only a limited bandwidth, which 

is much smaller than the bandwidth of data signal, it provides only a limited tracking 

of the RF carrier The residual phase jitter between the carrier and the reference
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employed for demodulation will increase the CNR required to achieve a desired BER 

and produce an error floor [29]

Another problem that has to be addressed is the frequency stability of the generated 

signal The stabilization of optical waves is not sufficient for radio/fiber 

requirements Rather than stabilising the optical wavelength, the difference 

frequency could be stabilized This could be achieved using either an optical 

frequency locked loop (OFLL) [30] or opto-electromc automatic frequency control 

loop (AFC) Equally good results could be obtained by using the PLL and injection- 

locking techniques, which as mentioned before can be utilised to suppress the phase 

noise [31]

The experiments illustrating the phase noise problems and ways to overcome it have 

been described in [31] First the millimeter-wave carrier was generated using two 

different lasers, one of which was directly modulated with a 140 Mb/s data signal 

The RF signal received at the output of the photodiode had a hnewidth of 4 MHz 

This proves that heterodyning of two separate lasers, without any phase cancellation 

is not a suitable method for the generations of millimeter-wave signals

If two optical carriers are generated in the same cavity, their phase noise is expected 

to be correlated Lima et al [32] describe an experiment involving a Distnbuted 

Feed - Back laser (DFB) This laser had its phase shift m the Bragg grating, ensuring 

single mode oscillation, removed In this case the laser generated two modes with 

one on each side of the Bragg frequency, separated by the stop band of the filter 

Such a dual-mode laser has been used to generate millimeter-wave signals The mode 

separation was 0 48 nm, which corresponds to a beating frequency of around 57 

GHz The RF signal obtained had a hnewidth of 150 MHz, which shows that the two 

modes were uncorrelated

The two experiments described above show that some special arrangements have to 

be used in order to eliminate the phase noise in the heterodyning process, especially 

if carriers generated this way are to be used in future radio/fiber systems 

One of the simplest techniques of achieving the phase correlation between the laser 

modes involves phase locking of millimeter-wave signals by subharmonic 

modulation of the laser This is realized by applying a drive signal to a laser The 

locking process can be explained as follows direct modulation of the laser with a
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subharmonic signal of the desired RF signal generates multiple side bands on each of 

the modes When one of the side bands belonging to one laser mode overlaps the 

neighbouring mode then this overlapping side band provides the injection-locking 

signal for that mode Because each mode has side bands, both modes will be 

injection-locked Locking causes most of the power to be transferred to the locking 

sideband, making it possible to achieved injection-locking using a subharmonic of 

the required RF frequency [33] Heterodyning with subharmonic phase locking is 

capable of producing RF signals that exhibit high power and purity This is simple 

and cheap essentially because there is no need for a high-speed signal generator since 

locking can be achieved with a subharmonic of the RF carrier [34] Wake et al [35] 

report on generating a 60 GHz signal with a linewidth that is less than 10 Hz and 

phase noise less than -73 dBc/Hz at an offset of 10 kHz This was achieved using a 

dual-mode DFB laser injection-locked by the ninth harmonic of the desired beat 

signal Another advantage of injection-locking is that the modulating frequency does 

not have to be the exact subharmonic of the beat signal Locking ranges of 500 MHz 

for multisection DFB laser has been reported [33] This allows for compensation of 

any inaccuracy in adjusting the mode spacing, to obtain the required frequency The 

authors in [33] also show that the frequency of the beat signal can be tuned between 

40 and 60 GHz by varying the individual contact bias currents, and in range of 1 

GHz at each of these frequencies by changing single contact current

In the experiments mentioned above the modulation depths varied within a range of 

10-20% This is due to the high power at the fundamental drive frequency and is an 

unavoidable consequence of subharmonic injection locking as opposed to 

fundamental injection-locking [33]

Generation of an RF carrier using a dual-mode laser requires a specially fabricated 

laser This can be avoided if a mode-locked laser is used [36] Sato et al [37] 

demonstrate a method of generating millimeter-waves using a DBR laser integrated 

with an Electro-Absorption Modulator (EAM) By driving the modulator at a 

frequency corresponding to the mode spacing of the laser, the mode-locking occurs 

Furthermore, since the EAM is capable of doubling the modulating frequency, the 

modulator can be driven at half of the desired RF frequency Mode-locking ensures 

the dual-mode operation of a laser and a phase correlation of both modes The 

authors m [37] report on the generation of a 60 GHz carrier with -78 dBc/Hz phase

61



noise at an offset of 100 kHz and a modulation depth of 90% This method 

overcomes the problem of low modulation depth since no fundamental drive 

frequency is present in the locking signal

A recent report by A J Vieira et al [38] demonstrates another method of generating 

millimeter-wave signals using a mode-locked laser The experiment describes 

a microchip laser that is situated in a millimeter-wave cavity, whose length was 

chosen to match the axial mode spacing of the laser and the desired RF frequency 

The laser’s modes are locked by an electrical signal coupled into the cavity using 

a small loop antenna The tuning of the generated frequency can be achieved by 

scaling the length of the cavity The electrical signal generated using the above

described laser had a phase noise o f - 1 10 dBc/Hz at an offset of 10 kHz The mam 

advantages of this method, according to the authors, are simplicity, compactness, 

high level of integration of millimeter-wave and optic components and good 

performance The cost of the system based on this type of transmitter can be further 

reduced by using a subharmomc frequency of the RF signal to lock the modes

3 3 1 Heterodyning - simulation

Millimeter-wave generation by heterodyning was simulated using the VPI package 

The generation as a result of beating between two correlated and uncorrelated 

sources was considered as different cases Figure 3-21 illustrates the simulation 

model for the case, when the RF carrier was generated using two independent laser 

diodes
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Figure 3-21 Heterodyning using two lasers - simulation model
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The lasers were biased at 50 mA DC bias current The outputs of the lasers were 

combined using a power combiner and transmitted over 2 km Standard Single Mode 

Fiber (SSMF) Output signal form the fiber was split between optical spectrum 

analyser and a photodiode The spectrum of the detected electrical signal was then 

displayed using an electrical spectrum analyser Figure 3-22 shows the optical 

spectrum at the output of the coupler The wavelengths of lasers were set to be 

40 GHz apart

Figure 3-22 Combined optical spectrum - uncorrelated lasers

As mentioned in the previous section, an RF signal generated by the beating of two 

uncorrelated modes (generated by two independent lasers) has a spectral width equal 

to the sum of the linewidths of the lasers used for heterodyning In the simulation 

lasers had linewidths of around 17 MHz each Figure 3-23 present the RF spectrum 

of the generated radio carrier
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Figure 3-23 Electrical specti um - lasers hnewidth 40 MHz

From Figure 3-23 the quality of the RF signal could be seen to be rather poor, solely 

due to the spectral width being approximately 40 MHz

The simulation results prove that heterodyning of two independent lasers is not 

suitable for the generation of high quality RF carriers and that the signal obtained at 

the output of the pin is determined by the hnewidth of the laser modes used for the 

generation

Having established the fact above, the next step was to investigate, whether using 

side-band injection locking would lead to the generation of higher quality RF signals 

The model used to perform this simulation is shown in Figure 3-24 The simulation 

model is very similar to one from Figure 3-21 This time though the side-band 

injection locking was used to correlate two DFB lasers
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Figure 3-24 Heterodyning using bimodal laser - simulation model
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Light from a CW laser was externally modulated using 20 GHz electrical signal By 

biasing the MZM at its null point the frequency multiplication was achieved The 

output of the MZM consisting of two modes separated by 40 GHz (see Figure 3-17

(a)) was split and the modes were separated using two Band Pass (BP) optical filters 

Each mode was then injected into a different laser providing the locking signals [39, 

40] The optical spectrum of the lasers after the power combiner is Figure 3-25
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Figure 3-25 Optical spectrum o f injection-locked lasers

The spectral widths of the modes were again around 17 MHz The electrical 

spectrum of the received signal after filtration is shown in Figure 3-26

Figure 3-26 Electrical spectrum o f the generated RF carrier

From Figure 3-26 it can be seen that quality of the signal generated using 

heterodyning of two modes from a single laser is much better than that of the
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independent lasers The spectral width in this case is around 3 5 MHz, much lower 

than the hnewidth of the lasers

3 4 Optical frequency conversion

This method makes the use of the fact that any physical component of a system has a 

nonlinear transfer characteristic such that it manifests m creation of new frequency 

components in the output signal A lot of effort is put in the reduction of the scale of 

the component nonlineanty since harmonics and Inter-Modulation Distortion (IMD) 

degrade the performance of a system However, this feature could also be used 

advantageously in order to generate new frequencies for example higher frequency 

signals using only low speed signal generators The main components used for 

frequency conversion in radio/fiber systems are photodiodes and external 

modulators

In photodiodes the nonlineanty, which can be used for RF generation is caused by 

saturation of the photodetector When the incident optical power falling on the 

detector increases and the reverse bias of the diode decreases, the response of the 

detector is distorted When two optical carriers, each one modulated with a different 

frequency, fall on the detector with a nonlinear response, the mixing between the 

electncal signals occurs and components fi ± f2 are generated If one of the signals 

cames data, the data signal will be upconverted to a higher frequency band [41 - 43]

In the case of external modulators, the nonlineanty used for optical mixing and 

frequency conversion come about due to their sinusoidal transfer function Usually 

for analog systems the external modulator is biased at the most linear part of the 

transfer function to minimize the power in the generated harmonics and 

intermodulation products On the other hand, biasing the modulator at the minimum 

or maximum transmission point can maximize the frequency conversion By 

applying two electncal signals to the modulator optical mixing can by realised This 

can be used to achieve both up- and downconversion of the signals [44, 45]

3 5 Remote upconversion using heterojunction bipolar 

phototransistor

Heterojunction bipolar phototransistors (photoHBT) can perform as a photodetectors 

with gam, optically injection locked oscillators and mixers When placed in a RAU
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the photoHBT can be used for detection and remote upconversion of data sent from 

the CS using an Intermediate Frequency (IF) The base-collector junction of a 

photoHBT is photosensitive, allowing an optical signal to be detected Mixing is 

achieved by applying a Local Oscillator (LO) signal to the third terminal of the 

transistor [25] The output signal of the transistor consists of mixing products of the 

received signal and the LO (at frequencies ± n*fLo), because photoHBT is 

inherently a nonlinear device High conversion efficiency can be achieved even for 

higher order harmonics This is due to the internal gain of the transistor A 

phototransistor can also be employed in the uplink to downconvert the incoming 

signal from a Mobile Station (MS) to allow a simple low frequency return path [46, 

47] Experimental and theoretical investigation of an optoHBT can be found in [48, 

49]

3.6 Comparison of different methods

The choice of a particular method for the generation of RF signals will have a serious 

impact on system cost and flexibility Each of the methods described above has its 

advantages and disadvantages Hence the final decision, which one to choose is 

rather difficult This section presents a bnef comparison of all the methods 

mentioned above

Direct and external modulation are the most common and oldest ways of generating 

optical microwave signals The main advantages of direct modulation is its low cost, 

the main problem associated with it is the bandwidth limitation The experiments 

presented in this chapter show that by using external injection this problem could be 

overcome at the expense of using an additional laser On the other hand resonant 

modulation is free from this hindrance The mam difficulty here lies in obtaining 

enough power Also this method is suitable only for transmission of narrowband 

signals, since the bandwidth of the resonantly enhanced laser dose not exceed 1 GHz 

External modulation brings about high insertion loss of the modulator In the case of 

If  generation a high-speed modulator is required, which increases the cost of system 

realisation This can be overcome by using 2f or 4f generation at the price of high 

driving voltage, which is required to overdrive the modulator

All above-mentioned methods involve intensity modulation, which generates Double 

Side Band (DSB) signals As mentioned in Chapter 2 this format suffers from 

dispersion effects of the fiber and transmission of such signals requires additional
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arrangements (see Chapter 4) to overcome this problem Another disadvantage of 

these methods (except 2f and 4f generation) is that a high speed RF signal generator 

is required to produce the radio carrier On the other hand, a very important 

advantage of intensity modulation is its flexibility in regard to the choice of 

frequency A laser as well as an external modulator can generate any frequency as 

long as it is within their respective bandwidth capabilities The exception here is the 

resonant modulation, for which the frequency of the generated signal is determined 

by the length of the external cavity

The remaining methods described in this chapter are new and their practical 

implementation would be much more difficult As mentioned before heterodyning is 

one of the most promising ways for generating high-speed optical signals It is very 

flexible and dispersion resistant [23] It is also cheap, but there are still many 

difficulties in realising a hybrid system based on heterodyning First of all achieving 

dual mode operation of a laser requires the usage of either three lasers (to lock the 

modes), or two lasers, one of which has to be directly or externally modulated Mode 

locking gives the flexibility in choosing the RF frequency, which is to be generated 

Heterodyning can also be realised with a use of an injection locked bimodal laser, but 

this requires special design and limits the range of frequencies that could be 

produced m this way Other important difficulties include stability problems (small 

drift in wavelength of the generated light results in large changes in generated RF 

signal) and phase noise cancellation

Generation of millimeter-wave signals using frequency conversion has one important 

disadvantage This involves the distribution of optical or electrical power over a large 

range of harmonic frequencies, which limits the modulation depth at the desired 

frequency [33, 50] This obviously reduces the efficiency of the system 

Transmission of many different optical components is also spectrally inefficient 

The mam method used for the generation of RF signals in this thesis is direct 

modulation essentially due to its simplicity and cost efficiency Hence the following 

chapters will mainly focus on the characterisation of this technique and its 

applications
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4 Radio/Fiber System Based on Externally Injected 

Laser Transmitter

The generation of millimeter-wave signals using various techniques was described m 

detail in the previous chapter Direct modulation is seen to be one of the simplest and 

most cost effective amongst these methods One of the major limitations experienced 

in using this technique is due to the insufficient inherent modulation bandwidth of 

the laser diode However, it has already been shown that this could be overcome by 

using external light injection Hence in this chapter the experimental realisation of a 

simple radio/fibre system employing external light injection is presented

4 1 Single Channel System

The experimental set-up to examine the use of a directly modulated laser diode with 

external injection in a hybrid radio/fibre system is shown in Figure 4-1

Dala.
Generator

Signal 
Genera lor

Rise Time 
Filter

RF Splitter

Scope and 
Error Analyser

Rise Tinte 
Filter

-CÇHS>—<J
Mixer RF Amplifier

Figure 4-1 Experimental set-up fo r radio/fiber system using directly modulated laser
with external injection

Initially, an Anntsu Pulse Pattern Generator (PPG) was used to generate a Non- 

Retum to Zero (NRZ) Pseudo Random Bit Sequence (PRBS) at 155 Mbit/s The 

signal was then filtered using a 117 MHz rise-time filter in order to limit its spectral 

width The resulting electrical spectrum is shown in Figure 4-2
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Frequency [MHz]

Figure 4-2: Electrical spectrum o f the data signal from the pattern generator

The filtered signal was then mixed with an 18 GHz RF-carrier to generate a Binary 

Phase Shift Keyed (BPSK) data signal (Figure 4-3). The RF carrier was generated 

with the use of a 20 GHz signal generator (HP83731B) that had a maximum output 

power of 20 dBm.

Frequency [GHz]

Figure 4-3: Electrical spectrum o f  the data signal mixed with signal from Local Oscillator

The upconverted data signal was then used to directly modulate a 1543 nm NTT 

Distributed Feed-Back (DFB) laser (KELD 1551 CCC1). Basic characterisation of 

the laser was performed before the laser was used in the experiment. The output
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power vs current dependence is shown in Figure 4-4 Using the P/I curve the 

threshold current was determined to be 24 5 mA

Current [mA]

Figure 4-4 Output power vs bias current fo r laser used in experiments

The frequency response of the device was characterised using a HP vector Network 

Analyser The response is shown in Figure 4-5 (a)

Figure 4-5 Modulating response o f the laser (a) free running (b) under external injection

The 18 GHz RF data signal was applied in turn to both the free running laser and the 

laser under external injection External injection was realised (as described in 

Chapter 3) using a tunable External Cavity Laser (ECL) diode (HP8168F) The ECL 

had a resolution of 1 pm and a maximum output power of 5 mW across the whole 

range of tunability As outlined in Chapter 3 the external injection greatly enhances
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the modulation response of the laser and in this work an injection level was used that 

optimized the response at the operating frequency of 18 GHz (injection power 

5 dBm) In both cases (free running conditions and external injection) the RF data 

signal was combined with a DC bias current of 60 mA with the use of a 40 GHz bias 

tee The resulting optical microwave data signal from the laser (Figure 4-6) was 

amplified with the use of an Erbium Doped Fiber Amplifier (EDFA) The EDFA had 

a gain of 28 dB and a saturation output power of 14 dBm The amplified signal was 

then coupled into 3 km of Dispersion-Shifted Fibre (DSF) and finally detected with 

the use of a high-speed photodiode The latter had a bandwidth of about 50 GHz and 

a responsivity of 0 62 A/W The effect of propagation along the DSF did not have a 

great influence on the system performance since the total dispersion of such a fiber at 

1550 nm is negligible (3 ps/nm km)

Figure 4-6 Optical spectrums o f the laser (a) in free running conditions (b) under external injection

In a complete system the output signal of the detector would be transmitted through 

an RF antenna to the mobile network stations where the data would be received by 

down-converting the incoming signal using a Local Oscillator (LO) However, the 

experiment was focused on the optical part of the system, hence the down 

conversion takes place after the photodiode, by mixing the data signal with an 

18 GHz LO After the detector the RF carrier was amplified using an amplifier 

(Agilent 83017A) The amplifier had a bandwidth of 26 GHz, gain of 25 dB and 

maximum output power of 15 dBm The downconverted data signal was then 

amplified by using another amplifier (Picosecond 5840) that had an operational 

frequency that ranges between 80 kHz and 1 0 GHz, gain of 22 dB and a maximum 

output power of 12 dBm The resulting 155 Mbit/s data signal was then displayed on 

the oscilloscope as well as fed into the Anntsu error analyser to determine the Bit-
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Error-Rate (BER) of the received signal Figure 4-7 displays the received eye 

diagrams for the cases when the directly modulated laser was (a) free running, and

(b) had an external injection level of 5 dBm from the ECL The received optical 

power in both cases was -12 dBm to ensure that variation in received power does not 

play a part m the enhancement/degradation of the eye diagram Figure 4-7 (a) clearly 

shows that the eye is almost completely closed However, the eye in Figure 4-7 (b) is 

wide and fully open Hence we can conclude that there is a major improvement in

the system per ormance w len externa injection is employed
(a)

Time, 2 ns/div Time, 2 ns/div

Figure 4-7 Received eye diagrams o f 155 Mbit/s signal from the optically fed  microwave system 
using (a) free running laser (b) laser with the external injection level o f 5 dBm

In order to carry out the BER measurements the optical power falling on the detector 

was varied with the aid of a variable optical attenuator This yielded values of BER 

at different received optical powers Here again the measurements were carried out 

for both cases (free running and external injection) These results were then plotted 

as shown in Figure 4-8

The enhancement in the frequency response obtained by injecting the light from the 

master laser (.Figure 4-5 (b)) manifests itself as an improvement in system 

performance, which is visible in Figure 4-8 The 14 dB improvement corresponds to 

a 28 dB increment in the electrical modulation response This is less than would be 

expected (38 dB) from the enhanced electrical frequency response at the operating 

frequency of 18 GHz shown m Figure 3 7 This may be attributed to the fact that the 

external injection reduces the laser threshold, and thus increases the average output 

power from the laser [ 1 ] This additional power is a DC component, which does not 

improve the BER of the signal Also the self-pulsation of the laser may introduce 

additional noise, which affects the BER
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Figure 4-8 BER against received optical power o f  155 Mbit/s signal from the optically fe d  microwave 
system using a) free running laser b) laser with an external injection level o f 5 dBm

The results obtained demonstrate that external light injection enhances the

performance of a single channel hybrid radio/fiber system Because the millimeter-

wave systems are expected to utilise Sub-Carrier Multiplexing (SCM) it was

important to venfy, whether external injection can support the generation of multiple

channels If the self-pulsation frequency was locked to only one of modulating

frequencies, a laser with external injection could not be used for multichannel

systems The next section aids m the validation of the latter statement

4 2 Two channel system 

4 2 1 Data transmission

In order to verify the usefulness of external light injection for multichannel 

transmission a two-channel system was built The experimental set-up used is shown 

m Figure 4-9 This set up is very similar to the single channel one from Figure 4-1 

A filtered 155 Mbit/s NRZ data stream from an Anritsu pattern generator was split 

using an RF coupler Each one of the two data streams was then mixed with a 

different RF-camer (18 6  GHz and 19 GHz), resulting in two BPSK data signals 

The RF data signals were then combined in another RF coupler, and the resulting 

multi-carrier signal was used to directly modulate the DFB laser The two RF earners 

could be applied either to the free running laser or to the laser diode under external 

injection (injection power 5 dBm) In both cases the RF data signal was combined 

with a DC bias current of 60 mA The resulting optical microwave data signal from 

the laser was then passed through 3 km of DSF before being detected with a 50 GHz 

pin photodiode
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Figure 4-9 Two channel system - experimental set-up

The RF spectrum of the combined electrical channels used to modulate the 

transmitter is presented in Figure 4-10

F r e q u e n c y  [Hz]

Figure 4-10 RF spectrum o f  the modulation signal

The electrical spectra of the resulting detected signal without and with injection are 

shown in Figure 4-11 (a) and (b) respectively
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Figure 4-11 Spectra o f the detected signal (a) without injection (b) with injection

From the electrical spectra it can be seen that external injection has significantly 

increased the received RF signal power The 18 6  GHz signal is 23 dB and 19 GHz 

signal 25 dB stronger than for the free running case The detected signal was than 

split using an RF coupler and each data channel was downconverted by mixing the 

incoming signal with a signal from the appropriate signal generator After the 

downconversion process the adjacent RF channels and the LO signal are still present 

These unwanted components were then filtered out by using a 117 MHz low-pass 

filter The improvement can also be seen in the temporal version of the signal The 

eye diagrams of the downconverted data channels are shown in Figure 4-12 Figure 

4-12 (a) shows the eye diagram of the signal generated by externally injected laser, 

while Figure 4-12 (b) eye for free running laser The received optical power in this 

case was -3 dBm

Time, 2 ns/div Time, 2 ns/div

Figure 4-12 Received eye diagrams (a) laser with external injection (b) free running laser

The eye diagram in Figure 4-12 (a) is clearly open, while in Figure 4-12 (b) it is 

completely closed The final verification of the system performance was done by 

carrying out BER measurements Figure 4-13 illustrates the BER as a function of
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received optical power The circles denote the BER for 18 6  GHz data, while the 

squares BER for 19 GHz signal In the case of the free running laser the quality of 

the signal was very poor Hence the lowest BER that could be measured was 105 

The curve for lower BER values had to be extrapolated, which is indicated by the 

broken line Also it can be seen that the quality of the two data channels was 

different (difference of around 2 5 dB for laser with external injection) This was due 

to the poorer quality of the 19 GHz carrier, which was generated using a sweep 

generator
-2

^  -4 
PiW
B
bJjo

-8

_1-15 -10 -5  0 5 10 15
Optical Power [dBm]

Figure 4-13 BER vs received optical power with and without injection 
(circles - 18 6 GHz squares -19 GHz)

From the Figure 4-13 it can be seen that external light injection improved the BER of 

both data channels In case of 18 6  GHz this improvement was an equivalent of 

around 20 dB and in case of 19 GHz around 17 dB

The experiment described above proves that external light injection is capable of 

enhancing the quality of more than one signal simultaneously From this we can 

conclude that the technique of generating multiple RF earners using externally 

injected lasers is viable The next chapter comprises more detail investigation of 

multiple channel generation using direct modulation This includes the nonlinear 

distortion characterisation

4 2 2 Two-tone test

An important parameter of the desenbed system is the Dynamic Range (DR) This 

could be defined as the maximum range of powers that a system can receive

with * * without
\  injection * \  injection

\

\

* m\

* *
\

* \
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correctly The verification of the DR of a system could be performed by carrying out 

a basic two-tone test on the system in question The DR could be measured, from the 

results of this two-tone test, by finding the difference in power between the received 

signal and the IMD signal, when the IMD signal reaches the noise floor of the overall 

system A high DR is especially important in the radio/fiber system due to large 

variations in the received powers of the signals transmitted by the Mobile Stations 

(MS) (near-far effect)

In order to measure the DR of our system, the laser was directly modulated with two 

carriers at frequencies of 18 and 18 4 GHz The two-tone test was performed for the 

laser with and without injection and the results are shown in Figure 4-14 and Figure

4-15 respectively The power of the detected signal and the IMD3 component was 

measured, as the power of the modulating signal was varied

Modulating power [dBm]

—h— Signal — IMD3

Figure 4-14 Two-tone measurement - laser with external injection

Modulating power [dBm]

— Si gnal  —* — IMD3

Figure 4-15 Two-tone measurement - free running laser
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For the free running laser the DR was 28 dB (the noise floor was -85 dBm) On the 

other hand for the externally injected laser the DR was limited not by the noise floor 

but by the minimum modulating power that is required to obtain a stable carrier 

(suppress the self-pulsation) As mentioned earlier (in Chapter 3), this power was 

5 dBm Thus from Figure 4-14 it can be seen that the minimum output power was -  

82 dBm This then gives a DR of around 27 8 dB

In both cases the DR was very poor In the case of the free running laser it was due to 

the fact that laser was operating well beyond its bandwidth while for the externally 

injected laser the main limitation was the requirement for the modulating power to 

exceed 5 dBm to generate a stable RF carrier

4 3 Chromatic Dispersion in Millimetre-wave Transmission 

Systems

The performance of an optical system strongly depends on the fiber dispersion, 

which limits the bandwidth-distance product of the link In digital systems dispersion 

causes a linear degradation of the transmitted signal due to pulse broadening as the 

signal propagates in the transmission fiber Chromatic dispersion is caused by the 

fact that refractive index of glass changes depending on the wavelength of light 

Different frequencies of the light travel m the fiber with different speeds because the 

velocity of the light depends on the refractive index The effect of chromatic 

dispersion becomes more important as the spectral width of the data signal increases 

P , 3]

4 31 Effect of the chromatic dispersion on the millimeter-wave 

transmission

In analogue millimetre-wave systems dispersion can have much more serious effect 

on the system performance then in other systems In radio/fiber systems the radio 

carrier is generated remotely, in the CS and then transmitted via fiber to a RAU 

Modulation of the optical carrier normally generates two main components in the 

optical spectrum that are equi-distant from the light earner by the radio frequency, 

which may be in the range of 2 -  200 GHz The space between these side bands 

equals twice the radio frequency These components are affected by chromatic 

dispersion, which cause them to travel at different speeds This introduces a phase
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difference between them The larger the distance between the frequency components 

(higher modulation frequency), the faster the change When the signal is detected 

using a photodiode, each side band beats with the optical carrier to give an electrical 

signal at the modulation frequency All the RF components that are generated in this 

way are summed together at the output of the detector If the upper and lower side 

bands have opposite phases, the components created by them will interfere 

destructively thereby causing the output signal to fade [4] Because of the sinusoidal 

nature of the optical carrier, the phase difference between side bands changes 

continually between 0 and 2n radians as the signal travels along the fiber This means 

that the power of the received RF signal will fade and rise as a function of 

transmission length [5]

It can be shown that for small modulation depths the detected signal power of the RF 

carrier is approximately proportional to [6 ]

( - n i l  r r l \
, Equation 4-1P =  COS2

nDArLf'
c

where D -  chromatic dispersion,

X - the optical wavelength, 

c -  speed of the light,

L -  length of the fiber 

f -  modulating frequency

Equation 4-1 shows that the phase of the output signal of the fiber depends on the RF 

frequency If the signal transmitted over a fiber consists of two or more frequency 

components, each of them will reach the output of the fiber with a different phase 

That means that in the photo-detector these waves will beat together and interfere 

constructively or destructively, depending on their phases For a simple sinusoidal 

wave, complete extinction of the signal will take place when the phase difference 

between frequency components equals 180° (90° for each side band relatively to the 

optical earner) The transmission distance at which the first complete extinction 

occurs can be calculated from [7]

c. 7iDA2L f 2 k
for ------------ = —, Equation 4-2

2DA, f c 2

For a millimeter-wave earner at 18 GHz transmitted on an optical wavelength of 

1550 nm over a standard fiber with a chromatic dispersion of 17 ps/km nm the signal
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will fade for the first time after propagating over 11 335 km of fiber As mentioned 

before thus is a cyclic behaviour and the periodic length (AL) could be found using 

N the following formula

c r  7rDA2L f 2AL = ---- — - for ----------- = 71, Equation 4-3
DX fc c

From the formula above one can see that the transmission distance is inversely 

proportional to fiber dispersion (1/D dependence) It can also be seen that the 

frequency of signal fading increases with the square of the modulation frequency An 

increase in either dispersion or carrier frequency significantly limits the obtainable 

transmission distance Using the formula above a plot of the RF power of a received 

signal against the fiber length is presented in Figure 4-16

Fiber length [km]

Figure 4-16 Theoretical plot o f RF power as a function offiber length

4 3 2 Overcoming the chromatic dispersion -  SSB Modulation

The influence of chromatic dispersion can be overcome by employing the Single 

Side Band (SSB) modulation [8 ] In most systems using direct or external 

modulation of the laser the signal generated consists of an optical carrier and the two 

side bands equally spaced from the carrier by the modulating frequency This type of 

modulation is known as Double Side Band (DSB) In mm-wave systems, because of 

the significant distance between both side bands, the influence of chromatic 

dispersion on system performance can be very serious and can significantly limit the 

length of the optical link This problem can be overcome by ensuring that there is
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only one side band travelling along the fiber In systems employing the external 

modulation a SSB signal could be achieved by using a dual-drive modulator In this 

type of device the modulating signal is split into two branches before being applied 

to the modulator The phase of one of the branches is shifted by 90° in regards to the 

original signal [8  - 10] For the direct modulation the only way of achieving a SSB 

signal is by using an optical filtering A Band-Stop Filter (BSF), which will filter out 

one of the side bands, could be used However in practice modulation results in more 

than two sidebands being generated because it is not a perfectly linear process The 

components created as a result of transmitter nonlmeanty, interfere with the signal in 

the photodiode Although they carry much less power than the mam sidebands these 

components still cause degradation of the data signal Hence the BSF has to be 

substituted with a Band-Pass Filter (BPF), which will allow only one sideband and 

the optical carrier to propagate along the fiber [4, 11 - 13]

4 3 3 Experimental investigation of dispersion

The dispersion induced fading of the signal was investigated experimentally by 

measuring the power of the RF signal for different fiber lengths The experimental 

set-up used is shown in Figure 4-17

Figure 4-17 Transmission o f DSB and SSB signals over the fiber  -experimental set-up

In the experiment the 1550 nm laser diode, biased at 60 mA, was directly modulated 

by 155 Mb/s data upconverted to 18 GHz The output signal from the laser was first 

transmitted through the fiber An optical attenuator was used to ensure that equal 

power level fell on the photodiode, regardless of the length of the fiber used 

Downconversion of the received signal requires constant tracking of the phase of the 

incoming signal and adjusting the phase of the LO in accordance with the signal 

Such an action is required due to fluctuations in the phase of the signal travelling
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along the fiber (due to changes of the temperature, polarisation and other factors) 

Lack of phase tracking equipment made it difficult to measure the BER of the 

received signal The performance of the system was thus verified by measuring the 

peak-to-peak voltage of the signal on the scope screen The results were plotted as a 

function of fiber length for two cases

1 signal travels through the fiber in DSB format

2 BPF is inserted into link after the laser to select out just the carrier and one 

side band

Optical spectra of the DSB and SSB signals are shown in Figure 4-18 and Figure

4-19 respectively

Wavelength [nm]

Figure 4-18 Optical spectrum o f  the DSB signal

Wavelength [nm]

Figure 4-19 Optical spectrum o f  the SSB signal



From Figure 4-19 (b) it can be seen that the side band is not completely removed 

This is due to insufficient sharpness of the filter response (Figure 4-20)

Res 0 lnm(0 098nm) /  Avg Off ✓ Smplg 501 /

Figure 4-20 Frequency response o f the fillet

Figure 4-21 presents the dependence of the power of the received RF signal on the 

fiber length for two cases mentioned above signals in DSB (diamonds) and SSB 

format (circles) Eye diagrams of a received signal for three different fiber lengths 

11, 23 and 37 km can also be seen as an inset in Figure 4-21 These lengths are the 

length for which the 18 GHz signal travelling along the fiber has the lowest 

(complete fading), highest and intermediate power respectively From Figure 4-21 it 

is clear that by converting the DSB signals, which are generated by intensity 

modulation of the laser, into SSB format one can overcome the dispersion induced 

fading
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5 Multichannel System

It is expected that fixture hybrid systems will divide the available RF spectrum into 

many frequency bands [1,2] This will allow the system designers to make use of 

Subcarrier Multiplexing (SCM) or Orthogonal Frequency Multiplexing (OFDM) 

These techniques are used in high capacity multi-path environments in order to 

overcome multi-path fading effects and to simplify the complexity of the radio links 

and the management of the available spectral bandwidth [3 - 5] In addition to the use 

of SCM and OFDM, it is also expected that hybrid radio/fiber distribution networks 

may employ Wavelength Division Multiplexing (WDM) in order to allow different 

Remote Antenna Units to be fed with a common optical fiber [6 , 7]

The following section examines two multiplexing techniques (electrical) used in 

multichannel systems SCM and OFDM

5 1 Multiplexing techniques used in multichannel systems 

511  Subcarrier Multiplexing

SCM has been widely utilized in Cable TV systems, radio and satellite applications It 

provides low cost and highly bandwidth efficient transmission [8 ] Recently it has 

been considered as one of the methods to increase the bandwidth utilization in optical 

systems Furthermore, the building of hybrid WDM/SCM systems and employing 

SCM to generate multiple radio carriers using a single laser diode for radio-fiber 

systems has been proposed [9] In an optical SCM system individual data channels are 

upconverted to a desired RF frequency, combined together and used to modulate light 

The latter could be achieved by performing either direct or external modulation The 

use of SCM brings about many advantages one of them being the ability to transmit 

many channels using one optical transmitter These channels are completely 

independent of each other since they are carried by separate RF frequencies This in 

turn allows the transmission of many different formats and types of data within a 

system without the need for signal conversion or clock rate adjustment Another 

advantage of SCM is that all channels would be available at all points and nodes [10]

SCM is orthogonal to Time Division Multiplexing (TDM) and WDM This means 

that SCM could be combined with either of these techniques The WDM/SCM system 

is especially attractive because of better utilization of the available spectrum [11-13]

93



The attained spectral efficiency is due to WDM being a well-established technique 

that results in the increase of system capacity and SCM enhancing the system 

efficiency and flexibility even further SCM achieves the latter by employing 

Bandwidth Efficient Modulation (BEM) formats, pulse shaping, Forward-Error 

Correction (FEC) coding and Single Side Band (SSB) modulation [10]

Quadrature Amplitude Modulation (QAM) is one of the most common higher-order 

modulations used in SCM In this type of modulation scheme, the value of an 

information bit is encoded using not only the amplitude of the signal but also its 

phase By doing so, multiple bits can be transmitted in a single signalling interval 

A typical example would be the case of a QAM using four bits per symbol (4-QAM) 

Here each transmitted symbol represents two information bits, identifying one of four 

different symbols (Qn), depending on the phase and amplitude as shown in Figure

5-1 This translates into much lower clock rates (decreasing the required speed of 

electronics) and into an ability to transmit more information within the available 

bandwidth Thus these types of modulations are referred to as BEM [10]

>
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a 2
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q 3 Q4

Figure 5-1 4 QAM amphtude-phase plane

In addition to the utilization of BEM, Digital Signal Processing (DSP) could also be 

employed in SCM systems The shape of the pulse is changed in order to concentrate 

most of the signal energy in a minimum frequency band This reduces the required 

spacing between channels thus enhancmg the spectral efficiency of the system 

However, sending more information during each period increases the likelihood of 

error The performance of systems using QAM is enhanced by using Forward Error 

Correction (FEC) coding algorithms at the transmitter and a linearization process at 

the demodulator [14, 15] The first measure taken decreases the optical power
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necessary to close the link while the second reduces distortion introduced by fiber 

nonlmearity [16, 17]

Frequency

Optical
Transmitter

Figure 5-2 SCM - basic configuration

The block diagram of a typical SCM transmitter is shown in Figure 5-2 Initially the 

data signal undergoes BEM The next stage of the signal processing is frequency 

conversion During this phase each data channel is upconverted to a different 

frequency band All the channels are then multiplexed in the frequency domain The 

combined signal is used to modulate the laser diode and the modulated light is then 

sent over optical fiber to the destination

As mentioned before the usage of BEM decreases the bandwidth requirements of the 

system This could be further reduced by employing SSB modulation on the optical 

part of the transmitter One of the side bands could easily be filtered out since the data 

is spectrally spaced by a large amount from the optical earner (depending on the RF 

carrier) This results in the spectral occupation being almost halved (Figure 5-3)
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Figure 5-3 Employment o f SSB modulation increases spectral efficiency o f the system [18]

SSB not only reduces the bandwidth of the signal, but also minimizes the effect of 

chromatic dispersion Distance (restricted by dispersion) over which the data can be 

sent would be limited only by the single channel symbol rate Since the latter is 

relatively low transmission over very long lengths of fibers is possible Though SSB 

does not increase the system tolerance to Polanzation-Mode Dispersion (PMD), the 

inherent bandwidth of the SCM limits the impact of PMD [18]

As shown before, SCM provides an additional dimension of multiplexing, which 

increases the efficiency and flexibility of optical transport networks SCM divides the 

available spectrum into many channels by using different frequency bands In TDM 

the data from each channel is combined together by assigning one time slot for each 

channel As a result the TDM circuits operate at an aggregate data rate of all the 

multiplexed channels In SCM, each channel is upconverted to a different 

Intermediate Frequency (IF) Subsequently they are combined together and then used 

to modulate a laser In such a scenario the circuits operate only at the individual 

channel data rate {Figure 5-4)
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Figure 5-4: Optical spectral efficiency o f SCM system in comparison to TDM system

Simplicity and cost efficiency of the receiver end of a system are other advantages 

that are encountered. In order to receive a particular channel the optical signal has to 

be detected using a photodiode, mixed with a signal from the appropriate signal 

generator, and finally filtered using a low-pass filter. Equally important is that each 

channel can be detected at any point of the system [1 0 ].

While SCM is used to carry different channels on different frequencies in order to add 

flexibility and reduce the cost of a telecommunication system, the goal of employing 

OFDM is different.

5.1.2 Orthogonal Frequency Division Multiplexing

OFDM is a special case of multicarrier transmission, where a single data stream is 

transmitted over a number of lower rate subcarriers [19]. This technique finds its 

application in broadband wireless systems, for which the delay spread becomes a real 

problem [20]. The shorter the bit period, the more severe the Inter-Symbol 

Interference (ISI). This limitation could be overcome by employing OFDM, where the 

bits generated by one source are split into a few streams at a lower bit rate. Each of 

these streams is sent to the user on a different radio carrier. By increasing the bit 

period, the signal becomes less sensitive to propagation delays in the radio channel. 

Additionally, introducing a temporal guard-band in every OFDM symbol can almost 

completely eliminate the ISI [19]. To improve the frequency utilisation data streams 

are sent using a set of frequencies, which are orthogonal to each other. Hence the data 

can be sent using overlapping frequencies without suffering from interference. At the 

receiver a convolution of the incoming signal with a desired frequency is performed.
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At the output of the receiver only data carried by this frequency will be present since 

the convolution of all other carriers will result in zero output (due to the frequencies 

being orthogonal)

On the whole, OFDM is very advantageous for high-speed radio systems since it 

allows higher bit rates to be transmitted even in environments with high delay spreads 

and at the same time it is spectrally efficient [2 1 , 2 2 ]

5 2 Distortions associated with multicarrier transmission

In order to make use of all the advantages of the techniques described above one 

needs an optical transmitter capable of generating multiple RF carriers Linearity is 

the main criteria used in evaluating the sources for multiple earner generation If a 

signal consisting of many frequencies is applied to an ideally linear transmitter, the 

output signal will consist only of the frequency components corresponding to the 

input signal In reality each device has a nonlinear transfer function, which means that 

mixing products will be present in the output signal These additional spectral 

components are one of the sources of distortion They interfere with the desired signal 

reducing its quality and thereby degrade the overall system performance

5 2 1 Sources of distortion

The RF to optic conversion could be earned out by direct or external modulation 

However, both these techniques suffer from interference caused by mixing products 

In the case of direct modulation mixing products result from static and dynamic 

nonlineanty of the laser Static nonlmeanty is caused by an imperfect power-versus- 

current (PI) characteristic of the laser [23] Distortions caused by this kind of 

nonlineanty dominate in low frequency applications On the other hand, in broadband 

systems using frequencies near the relaxation resonance frequency, the main problem 

is the dynamic nonlineanty This type of nonlineanty is caused by the coupling 

between photons and electrons in the laser cavity [24 - 26]

In the case of external modulation, distortion is caused by the nonlinear transfer 

characteristic of the modulator (sinusoidal dependence -  as shown Figure 5-21) [27] 

There are two mam types of Inter-Modulation Distortions (IMD) caused by the above- 

mentioned nonlineanty One is Second order Harmonic Distortions (SHD), which 

appear at frequencies 2fj, 2f2, fi+ f2, and the other is third order IMD (IMD3), which
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can be found at frequencies 2f2 ± fi fj+ f2 + f3 f| 4- f2 - f3 etc In hybrid radio/fiber 

systems the frequency band occupied by the channels is much smaller then the carrier 

frequency Thus SHD do not have much of an impact on the system since they fall 

outside the above-mentioned signal spectral band On the contrary, the IMD3 

components fall directly in-band with the data channels thereby seriously limiting 

system performance There is no way to filter those components out, hence other 

methods have to be employed m order to reduce their impact on the quality of the 

signal

5 2 2 Methods of combating distortion in multichannel systems

The nonhneanty can be suppressed using predistortion [28, 29], electro-optic 

feedback and feed-forward compensation techniques The electronics required for the 

predistortion process for broadband systems are not readily available thereby 

restricting the usage of such electrical methods Consequently the electro-optic 

schemes become more favourable [30]

In the case of direct modulation of a laser, the nonhneanty increase when the 

modulation frequency approaches the Relaxation Oscillation Frequency (ROF) [31] 

By increasing the ROF of a laser the power of the IMD3 components could be 

significantly reduced This increment can be achieved by using external light injection

[24] Another method of suppressing the nonlinear distortion in directly modulated 

lasers was proposed by Jung et al [32] This novel method exploits the fact that the 

phase of the generated light depends on the bias current By parallel modulation of 

two lasers biased at different, carefully chosen bias currents, distortion products 

having opposite phases could be generated By combining the output signals from 

both the lasers, a 20 dB suppression of IMD3 was achieved by the authors

The above-mentioned techniques of combating IMD3 have a couple of disadvantages 

One such drawback involves the requirement of additional hardware, which increases 

the cost of the system Another hitch is that these techniques only overcome the 

distortion generated by the optical transmitter In hybnd radio/fiber systems both 

optical and electrical devices produce IMD3 components Electrical amplifiers, 

antennas etc are all nonlinear devices that would produce IMD and thus degrade the 

signal quality To avoid distortion due to IMD3 generated by both electrical and 

optical system components, a special frequency assignment scheme could be used
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Essentially this entails assigning particular frequency carriers to different BS’s in such 

a way that the IMD3 components do not fall onto any of the signal channels in use

[33] This does not require a large amount of hardware and can greatly improve the 

quality of the signal Nevertheless, as the number of carriers increases so does the 

number of IMD3 generated by these carriers Thus the number of IMD3-free channels 

becomes very small (e g for 62 channels there are only 9 IMD3-free channels) In 

such a case rather than excluding all the channels that are affected by IMD, one could 

eliminate only the channels with the highest amount of IMD3 Simple and efficient 

frequency assignment algorithms can be found in [33, 34]

5 3 Multichannel system -  experiments

The performance of the multichannel system based on direct and external modulation 

was experimentally verified

5 31 Five-channel system based on direct modulation

The process of generating multiple RJF channels using direct modulation has been 

experimentally verified using a five-channel system Experiments with multiple 

channels allowed the characterization of the nonlineanty of the laser diode and its 

dependence on the modulation frequency Hence the following cases were examined

1 Laser with external injection modulated at a frequency close to relaxation 

frequency

2 Free running laser modulated at a frequency close to relaxation frequency

3 Free running laser modulated at a frequency where the laser modulation 

response is flat

It should be noted that the power of the modulating signal was kept constant (at 

11 dBm) throughout the experiments described in the following section, as any 

change in the signal amplitude could have a great impact on the effect of the 

transmitter nonlineanty

5 3 11 Five-channel system based on an externally injected laser

The experimental set-up used is shown in Figure 5-5
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Figure 5-5 Experimental set-up o f a five-channel system based on an externally injected laser

Initially, a 155 Mb/s Pseudo Random Bit Sequence (PRBS) from an Anntsu pattern 

generator was upconverted to five RF carriers (centre frequency 18 5 GHz) 

A 117 MHz rise-time filter was used prior to mixing in order to limit the spectral 

width of the data signal The SCM signal was combined with 60 mA of bias current 

and then applied to a commercially available NTT Distributed Feed-Back (DFB) laser 

(KELD 1551 CCC1)  External injection was realized the same way as mentioned in 

the previous experiments (Chapter 3) The injection power was set to 5 dBm, which 

resulted in the maximum response of the laser occurring around 18 GHz The output 

signal of the laser was then detected using a 50 GHz photodiode The detected signal 

was then amplified and the central channel was downconverted The latter was 

achieved by mixing the SCM signal with the LO, which was set to 18 5 GHz (f3 as in 

Figure 5-5) After filtering out all the unwanted components, the desired data signal 

was analyzed with the aid of a digital sampling oscilloscope and the Bit Error Rate 

(BER) was measured using an Anntsu error analyzer

The initial experimental procedure involved finding the feasible channel spacing, 

which would be used throughout the subsequent experiments This was achieved by 

measuring the BER vs received optical power for different values of spacing between 

the channels At this juncture it is vital to note that there is a trade off between the 

performance and the spectral efficiency of the system From Figure 5-6 it can be seen 

that about -12 dBm is required to achieve an acceptable BER of 10 9 at a spacing of 

400 MHz A further increase of the channel spacing does reduce the required power, 

however this is achieved at the expense of system spectral efficiency Hence it was 

concluded that 400 MHz was the channel spacing that yielded reasonable system 

performance and spectral efficiency
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Figure 5-6 BER as a function o f received optical power fo r different channel spacing

The effect on laser nonlinearity was examined by measuring BER of the central data 

channel for equal and unequal channel spacing When the distance between all SCM 

channels is the same, the IMD3 products fall exactly m the centre of the data band 

This is the worst-case scenario, since the centre of the signal (around the carrier) 

carries the majority of the power However, the IMD3 could be shifted by moving the 

two extreme channels (ch 1 and ch 5) away from their adjacent channels Shifting the 

IMD3 towards the edges of the data band reduces the interference and enhances the 

system performance The change in BER as the channel spacing is varied could be 

treated as a measure of the laser nonlmearity In the experiment the channel spacing 

between three central channels was kept constant at 400 MHz The spacing between 

the first and second channels and the fourth and fifth channels was varied from 

400 MHz to 550 MHz at intervals of 50 MHz This resulted in IMD3 falling at a 

distance of 0 to 150 MHz away from the centre of the data channel It is important to 

note that the improvement in system performance is only due to the removal of IMD3 

and not due to reduction of adjacent channel interference The fact that the adjacent 

channel interference does not change is because only the extreme channels are moved 

while the measurement of the BER is carried out on the central channel The eye 

diagrams of the downconverted central channel with IMD3 (a) 50 and (b) 150 MHz 

away from the centre of the channel for received optical power o f-18 dBm are shown 

in Figure 5-7 As expected the eye in Figure 5-7 (a) is noisier in comparison to the 

eye shown in Figure 5-7 (b)
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Figure 5-7 Eye diagrams fo r IMD's at (a) 50 MHz (b) 150 MHz -  received optical power -18 dBm

The effect of IMD3 on system performance was quantified by measuring the BER as 

a function of the received optical power and is shown in Figure 5-8

Received optical power [dBm]

— l MD s @0 MH z  —S -IM D s @ 5 0 M H z  ~-&— IMDs @ 100 MHz —®— IMDs @ 150 MHz

Figure 5-8 Influence o f IMD s on system performance

From Figure 5-7 and Figure 5-8 it can be seen the IMD3 has a strong influence on the 

performance of a system based on an externally injected laser From the plot above 

(Figure 5-8) it can be seen that this performance improves by 4 5 dB when the IMD3 

are almost completely removed (150 MHz away from centre of the channel) The 

effect of the laser nonlineanty could also be seen in the electrical spectrum of the 

detected SCM signal (Figure 5-9) Significant mixing products are clearly visible at 

frequencies both lower and higher than the data signals This implies that the response 

of the laser with external injection is highly nonlinear around the relaxation 

frequency Such a degree of nonlineanty could be expected since the relaxation peak 

in the frequency response of an externally injected laser is very high and steep
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Figure 5-9 Electrical spectrum o f SCM signal - laser with external injection - equal channel spacing

It should be noted that in most devices, a nonlinear frequency response does not imply 

that the device is nonlinear Nevertheless, in the case of a laser the resonance peak is 

an effect of nonlinear interactions between electrons and photons Thus the stronger 

the nonlinearity the higher the resonance peak

In order to compare the nonlinearity of an externally injected laser with a free running 

one, further experiments were performed Five-channel system based on a free 

running 8 5 GHz DFB chip laser

5 3 12  Free running laser modulated at relaxation frequency

First the IMD3 generated by a free running laser modulated at a frequency around its 

relaxation oscillation was investigated The set-up used for all the experiments 

described in this section is shown in Figure 5-10
Bias

Source of 5 Currenl

Figure 5-10 Five-channel system based on free running laser

The DFB laser (KELD 1551 CCC_1) used here was the same as that used in the 

external injection case In free running conditions this laser had its relaxation 

frequency around 8 5 GHz Hence this frequency was chosen for the central channel 

The same channel spacing that was used before is employed here as well (400 MHz)
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As in the previous section 5 3 1 1 the channel spacing between the extreme channels 

was varied from 400 MHz to 550 MHz at intervals of 50 MHz The eye diagrams 

when the IMD3 falls at 50 MHz and 150 MHz away from centre of the data channel 

are shown in Figure 5-11 (a) and (b) respectively (received optical power-11 dBm)

Time, 2ns/div

Figure 5-11 Eye diagrams fo r IMD's at (a) 50 MHz (b) 150 MHz- received optical power -1 1  dBm

The build-up of the noise, caused by IMD’s, can be seen to be higher in Figure 5-11

(a) than in Figure 5-11 (b) Another interesting aspect that could be noticed is that the 

influence of the nonhneanty seems to be much lower in comparison to the externally 

injected laser (rationale for this is already explained in section 5 3 11) Here again the 

effect of IMD3 was determined by measuring the BER as a function of the received 

optical power Figure 5-12 illustrates this plot of the BER against the optical power, 

when the IMD3 are moved away from centre of the data channel

As already observed from the eye diagrams, the system improvement due to removal 

of IM D 3 is much smaller for the free running laser Here the improvement in 

performance is around 0 3 dB, which is much less than the 4 5 dB improvement 

achieved in the externally injected laser
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Figure 5-12 Influence o f IMDj -  free running laser modulated at relaxation frequency

5 3 1 3  Free running laser modulated at flat part of the frequency 

response

Further verification of the dependence of nonhnearity of a laser on the modulating 

frequency is carried out here The previously descnbed experiment is repeated at a 

frequency where the modulating signal falls on the flat part of the laser frequency 

response The frequency chosen was 6  GHz The eye diagrams of the received central 

data channel for IMD’s at 50 and 150 MHz are shown in Figure 5-13 (a) and (b) 

respectively The same trend is seen here in the eye diagrams in that Figure 5-13 (a) is 

more noisy than Figure 5-13 (b) (received optical power -9 dBm)

Time, 2ns/div
Figure 5-13 Eye diagrams for IMD’s @ (a) 50 MHz (b) 150 MHz - laser modulated @  6 GHz -

received optical power -9  dBm

The BER plot for different distances of IM D 3 from centre of data channel is shown in

Figure 5-14
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Figure 5-14 IM D 3 influence - laser modulated at 6 GHz

As in the previous case the power penalty induced by laser nonhneanty is very small 

and equals around 0 2  dB By comparing Figure 5-12 and Figure 5-14 one can see 

that for the DFB laser used m the experiment the IM D 3 are very low even when the 

laser is modulated at its relaxation oscillation frequency This is not the case for all 

lasers The reason for this is due to different lasers exhibiting variable levels of 

nonhneanty The latter was clarified by carrying out the same experimental 

procedures, as in this section, using a higher speed packaged DFB laser

5 3 1 4  Five-channel system based on a free running 21 GHz packaged 

DFB laser

A high-speed DFB Multi-Quantum-Well (MQW) laser (KELD 1552 SSC) from NTT 

Electronics was used here in order to verify the statement made in the previous 

section (different lasers yielding dissimilar levels of the nonhneanty) The frequency 

response of this high-speed laser when biased at 60 mA is shown in Figure 5-15 The 

same set of experiments, as described in the previous section, were performed 

(modulation frequency set close to the relaxation frequency and at the flat part of the 

frequency response) The two points marked on the plot are the modulating frequency 

used for the experiments As can be seen the triangle denotes the modulation at the 

flat part of the response ( 6  GHz), while the circle represents the modulation close to 

the relaxation frequency (14 8 GHz)
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Frequency [GHz]

Figure 5-15 Frequency i esponse o f the NTT Electronics laser

The BER versus received optical power plot obtained for the modulation frequency 

set close to the relaxation peak is shown in Figure 5-16

Received optical power [dBm]

—« — IMP at 0 MHz IMP at 50 MHz IMP at 100 MHz —0 — IMP at 150

Figure 5-16 Influence ofIMD's for laser modulated at relaxation frequency

The BER against received optical power plot obtained from the flat part of the 

frequency response of the laser is illustrated in Figure 5-17
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Received optical power [dBm]
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Figure 5-17 Influence o f 1MD3 on system performance - laser modulated @ 6GHz

From Figure 5-16 it can be seen that the difference in system performance when the 

IMD3 are moved away from the centre of the data channel is around 0 7 dB while in 

Figure 5-17 this difference is less than 0 2 dB The difference in the level of the 

nonhneanty depending on the modulating frequency could also be noticed when 

comparing the RF spectra of the detected signals

Figure 5-18 RF spectrum o f the detected signal- modulating frequency close to relaxation oscillation
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Figure 5-19 RF spectrum o f the detected signal - laser modulated at the flat part o f the frequency
response

In the case of Figure 5-18 the multiple mixing products are clearly visible The 

unwanted spectral components are around 20 dB lower than the data signals 

However, in Figure 5-19 it can be seen that laser operation is much more linear 

Hence the mixing products at frequencies below the data band are well suppressed It 

is important to note that some mixing products are present for frequencies above the 

modulating frequencies

The degradation of system performance becomes worse as the number of channels 

increases For a system transmitting tens of channels using one wavelength the IM D 3 

would pose a real problem In order to overcome this obstacle some sort of 

linearization scheme (see section 5 2 2) must be used [28]

5 3 2 Five-channel system based on external modulator

One of the alternative techniques (as mentioned in Chapter 3) that could be used to 

generate millimeter-wave signals in an optical way involves the use of an external 

modulator The reasons for carrying out experiments m this section are twofold 

Firstly, it would aid in the analysis of the level of the non linearity associated with the 

external modulator technique Secondly, it would serve as a comparator between the 

two techniques (direct and external modulation) to show which of them suffers more 

from the nonlineanty The experimental set-up that was used to generate optical 

millimeter-wave signals involving an external modulator is shown in Figure 5-20
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Figure 5-20 Five channel system based on external modulator - experimental set-up

An EOspace external modulator with a modulation bandwidth of 18 GHz was used 

Its transfer characteristic is shown in Figure 5-21 In the experiment the modulator 

was biased at 2 V, which ensured that the device was operated at one of the most 

linear part of its transfer characteristic

Bias voltage |V]

Figure 5-21 Transfer characteristic o f  the external modulator

The experimental procedure conducted here was similar to that of the direct 

modulation section In this case though the laser was used as a source of CW light 

The output of the diode was then modulated externally with the five data channels 

The optical signal was then detected using a photodiode after which it was amplified 

Subsequently the central channel was downconverted by mixing with a signal from 

the LO
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The channel spacing was set to 400 MHz as this was found to be an optimum value 

The electrical spectrum of the detected SCM signal is shown in Figure 5-22

Frequency [GHz]

Figure 5-22 Electrical spectrum o f SCM signal

It is quite clear from the electrical spectrum in Figure 5-22, that there are less mixing 

products than in the case of the spectrum m Figure 5-9 This suggests that the external 

modulation technique is more linear when compared to the direct modulation of an 

externally injected laser However, the level of nonlmearity associated with the 

external modulation technique is closely comparable to that of the free running case

Subsequent to establishing the fact that this technique is less susceptible to nonlinear 

effects m comparison to the direct modulation of an externally injected laser, BER 

measurements for the verification of the IMD3 influence on system performance were 

carried out The channel spacing for the two extremes channels were then varied and 

the BER rate against the received optical power was measured (as described in 

previous experiments within this chapter) The BER as a function of the received 

optical power is plotted and shown in Figure 5-23
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Figure 5-23 Influence o f IMD3 - system based on external modulator

From the Figure 5-23 it can be seen that the systems performance worsens due to 

IMD3 by around 0 4 dB The power penalty here is much smaller than that of the 

externally injected laser However, it is very similar to the values obtained in the case 

of the directly modulated free running lasers It is important to note that the 

performance of the system based on external modulation strongly depends on the 

amplitude of the modulating signal Thus an increase in the power of the RF signal 

could severally degrade the BER of the received signal due to generated IMD3

5 4 WDM/SCM transmission system

The final step in building the optical part of a hybrid radio/fiber system entailed the 

simultaneous employment of two multiplexing techniques namely WDM and SCM 

One of the objectives of this experiment was to test the adjacent channel interference 

between the WDM channels Different schemes of demultiplexing the optical 

channels were another aim

One of the main problems encountered in hybrid radio/fiber systems is the need for an 

optical SSB signal at the base-station in order to overcome dispersion effects in the 

transmission fiber [35] Previous work in this area has used either complex signal 

generation techniques to produce optical SSB signals, followed by simple optical 

filtering at the Remote Antenna Unit [3, 4], or a complicated demultiplexing 

technique using a Fabry-Perot etalon and an Array Waveguide Grating (AWG) to 

select out just one carrier and one side-band from the WDM/SCM signal [5] In this
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section a simpler and cheaper method to overcome dispersion caused fading is 

demonstrated It is shown that by the correct use of a simple Bragg filter at the 

receiver BS, not only is the selection of one of the wavelengths made possible, but 

also the elimination of one the sidebands in order to overcome dispersion effects m 

the transmission fiber is achieved [36]

The experimental set-up used is shown in Figure 5-24

Figure 5-24 WDM/SCM experimental set-up

The lasers used were all high-speed devices from NTT Electronics (Appendix B) The 

composite SCM signal (consisting of five data channels) was split into three and used 

to directly modulate the transmitters Electrical attenuators were used in order to 

ensure that all modulating signals had equal powers Each of the SCM signals was 

transmitted over a different length of cable (20, 45 and 130 cm) in order to decorrelate 

the signals applied to different lasers All the lasers had a 3-dB bandwidth of around 

18 GHz and a central wavelength of about 1550 nm at 20°C By varying the 

temperature control the emission frequency could be changed The operating 

wavelengths were set to 1549 9, 1550 3, and 1550 7 nm All lasers were biased at 

60 mA The output of the lasers were combined together using a 4x1 optical coupler 

The appropriate wavelength channel was then demultiplexed from the WDM signal 

using a circulator in conjunction with a Fiber Bragg Grating (FBG) The FBGs used 

are designed specifically for WDM systems with 50 GHz spacing, and have reflection 

bandwidths of around 0 35 nm The reflection and transmission profiles of the filter 

are shown in Figure 5-25 (a) and (b) respectively
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Figure 5-25 Bragg grating profiles (a) reflection (b) transmission

After filtering out one of the optical wavelength channels the signal was then detected 

using a 50 GHz pin diode As in the previous experiments the detected signal was 

downconverted by mixing with the LO The down-converted signal (central channel 

of the 5-channel RF data signal) was then passed through a low-pass filter to ensure 

that only the required base-band signal is examined using a 50 GHz oscilloscope and 

an error analyzer

Figure 5-26 displays the 3-channel optical data signal after passing through the 

optical coupler

Wavelength [nm]

Figure 5-26 Optical spectrum o f the WDM/SCM signal

In order to select out only one carrier and one side-band of the central optical channel 

the positioning of the Bragg filter is vital The latter is done in such a way that the 

central carrier is at the longest wavelength that is correctly reflected by the Bragg 

filter The Bragg filter having a sharp cut-off, ensures that only one-side band is
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reflected The reflected signal is illustrated in Figure 5-27 and it can clearly be seen 

that only one-side band of the central channel is reflected by the filter

W avelength [nm]

Figure 5-27 Demultiplexed central WDM channel

In addition, the filter also selects out one of the side-bands from the lower wavelength 

optical channel, and suppresses the carrier of this channel by 20 dB relative to the 

power in the central channel The longer wavelength optical channel is suppressed by 

23 dB relative to the central channel

On filtering out the central wavelength channel as described above, the optical signal 

is received with the aid of a high speed pm diode and then down-converted by mixing 

it with a 18 5 GHz LO The unwanted components were filtered out with a use of the 

rise-time filter Figure 5-28 displays the received eye diagrams of both (a) back-to- 

back case and (b) the demultiplexed WDM case for the central channel when the 

received power is about -10 dBm

Time, 2ns/div

Figure 5-28 Received eye diagrams o f 155 Mbit/s data signal (a) back-to-back set-up and 

(b) after demultiplexing o f  WDM signal fo r central optical channel
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To completely characterize the system performance two stages of BER vs received 

optical power measurements were earned out (for the down-converted 155 Mbit/s 

data signal at an RF carrier frequency of 18 5 GHz (central WDM channel)) Figure

5-29 displays both the system performance of the three optical channels multiplexed 

together and also the back-to-back performance of the central wavelength channel It 

can be seen from this plot that the degradation in system performance is only in the 

order of 0 4 dB This impairment is caused by the interference from the adjacent 

optical channels The negligible effect of the channel demultiplexing is also clear 

from the eye diagrams shown in Figure 5-28 (a & b)

18 17 16 15 14 13 12 11 10 9 8

Received optical power [dBm]

Figure 5-29 BER vs received optical power fo r central optical channel demultiplexed from WDM 
system (squares) central optical channel back-to-back case (circles)

To confirm that the demultiplexing technique used does indeed overcome dispersion 

effects in transmission fiber, a 12 km length of Standard Single Mode Fiber (SSMF) 

was inserted after the optical coupler that combines the three wavelength signals This 

fiber length has been determined to yield minimal received power of the DSB optical 

signal due to fiber dispersion effects (for the modulating frequency of 18 GHz) 

Figure 5-30 displays the received eye diagrams after propagation through the 

transmission fiber followed by demultiplexing, detection, and down-conversion of the

(a) SSB and (b) DSB signal
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Time, 2 ns/div
Figure 5-30 Received eye diagrams o f 155 Mbit/s data signal after propagation o f WDM/SCM signal 

through 12 km o f standardfiber with Bragg filter positioned to (a) select single side band optical 

signal (b) select double side band optical signal

The received optical power level is -10 dBm By comparing Figure 5-30 (a) with the 

eye diagrams in Figure 5-28 one can see that the degradation in system performance 

due to the fiber is negligible The Bragg filter was then positioned in such a way that 

the carrier of the central wavelength channel was at the centre of the filter’s reflection 

band In this case the filter selected out the complete DSB optical signal, and the 

received eye confirms how the fiber dispersion greatly affects the system performance 

{Figure 5-30{b))

The results presented show that by correct positioning of the Bragg filter relative to 

the optical channel to be demultiplexed, it would be possible to select out only the 

carrier and one side band in order to overcome dispersion effects in the distribution 

fiber In this scenario the degradation in system performance due to interference 

between the optical data channels after demultiplexing is negligible This work shows 

that it may not be a necessity to generate SSB at the transmitter in a radio/fibre system 

incorporating WDM technology, as correct optical filtering at the receiver RAU may 

be used to overcome system limitations imposed by DSB generation at the 

transmitter

5 41 Wavelength interleaving

The method of combating dispersion and demultiplexing a signal using a single filter 

at the receiver has one major disadvantage in that the spectral efficiency is very poor 

Sending a DSB signal over the fiber means that the WDM channels have to be 

separated by more than twice the highest modulating frequency At the receiver, in 

order to avoid dispersion caused fading, only one of the side-bands is detected The
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effect of this drawback could be significantly reduced by employing a process called 

wavelength interleaving In systems using this method the channel spacing between 

the WDM channels is reduced to values that are less than twice the RF frequency The 

different possible multiplexing schemes are schematically presented in Figure 5-31

[37]
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Figure 5-31 Different schemes o f WDM channel allocation

Scheme 1 in Figure 5-31 presents the conventional channel allocation in WDM/SCM 

systems Scheme 2 illustrates the case when the channel spacing fulfils the condition 

fRF < AX < 2fRF, where fRF is the radio carrier frequency and Ak is the channel 

spacing If this relationship is preserved the demultiplexing and SSB filtering could be 

performed using a single Bragg grating as was presented in the previous section In 

case of scheme 3 ( AX < fRF ) in order to demultiplex the WDM signal a specially 

designed filter or two filters in a cascaded arrangement must be used to choose one 

side-band and the optical carrier [38] In this scenario the wavelength drift and 

frequency of the RF carrier have to be monitored closely to ensure correct 

demultiplexing [39, 40] Even though scheme 3 is spectrally efficient it bnngs about a 

lot of complexity (additional components, monitoring etc ) Hence scheme 2 was 

chosen because of its simplicity and cost efficiency

The chosen scheme of interleaving was then employed in the WDM/SCM system 

experiment The BER was measured as the wavelength channel spacing was varied 

The result is illustrated in Figure 5-32
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Channel spacing [nm]

Figure 5-32 BER vs channel spacing

From the plot it can be seen that BER is low when the channel spacing is greater than 

twice the RF frequency (AX>2fRF) The BER gets worse as the channel spacing 

approaches 0 29 nm This value of AX corresponds to the frequency of around 2 fRF 

For such a channel spacing the side-bands from the adjacent WDM channels start 

interfering The BER improves again when the AX reaches 0 26 nm At this point the 

channel spacing is such that the WDM channels are wavelength interleaved Similar 

levels of system performance are achieved between 0  26 nm and 0  2  nm (range of 

0 06 nm) as can be seen in Figure 5-32 After that BER increases rapidly (not shown 

in the plot) This rapid degradation of the signal quality is due to the imperfection of 

the filter response (not square) When the channel spacing is reduced below 0 2 nm, 

the adjacent WDM carrier starts leaking through the pass band, making the detection 

of the signal impossible This happens even though the optical carrier and the adjacent 

side-band do not overlap The experiment shows that the minimum channel spacing 

between WDM channels will be ultimately defined by the roll-off of the filter 

response

Figure 5-33 shows the optical spectrum of the demultiplexed signal when the channel 

spacing was set to 0 23 nm The limited resolution of the spectrum analyzer (0 05 nm) 

did not allow distinguishing side-bands for lower values of AX
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W avelength [nm]

Figure 5-33 Optical spectrum o f  the demultiplexed signal (channel spacing = 0 24 nm)

From the plot above it can be seen that the lower side band of is suppressed by 

around 15 dB in comparison with upper one X2 on the other hand is more than 20 dB 

lower than Xj

The experiments presented in this chapter show that WDM/SCM system could be 

realized in a simple and cost effective way by using an FBG at the receiver to 

demultiplex the incoming signal and to combat dispersion caused fading This method 

could be used even when wavelength interleaving is used in order to increase the 

spectral efficiency of the system
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6 Modelling of a Radio/Fiber System

The design of photonic systems has reached a stage in which simulations are no 

longer a luxury, but a necessity [1] The hybridization of radio and optical networks 

and the exponential growth in the number of channels1 operating with channel 

spacings that are reduced to a few times the channel bit rate bring about new 

problems In order to solve these problems and achieve optimized operation of high

speed optical links, many design variables have to be assessed This assessment 

could be addressed with the help of software design tools [2] Just as Electronic 

Design Automation (EDA) tools have become an essential part of the semiconductor 

and electronics industry, Photonic Design Automation (PDA) tools have brought in 

huge advances in the optical communications world Matlab (a high performance 

software environment) and Virtual Photonics Incorporated -  Transmission Maker 

((VPI - TM) a PDA) are employed as the modelling tools in this work 

This chapter consists of the simulations2that confirm the multi-channel experimental 

results obtained in the previous chapter Transmission over fiber was also modelled3 

here, giving an insight into the effects of fiber characteristics on the propagating 

signal The latter is especially important since the same could not have been 

experimentally verified (using long lengths of fiber) due to drifting of the phase of 

the transmitted signal

6 1 SCM System based on a directly modulated laser

The performance of the system based on a directly modulated laser was modelled 

using Matlab The first stage of the modelling process, in this section, looks at the 

improvement in system performance brought about by external injection The 

subsequent simulation step involved the examination of third order Inter-Modulation 

Distortions (IMD3) influence on system performance in a five-channel system The 

latter was carried out with both the free running as well as the externally mjected 

laser

‘ DWDM
2 Using MATLAB
3 Using VPI
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611  Improvement of performance -  Free running versus 

externally injected laser

A fully lumped laser model in terms of three ordinary differential equations (for 

phase, electron and photon concentrations), commonly known as the laser rate 

equations, is well established [3, 4] Hence the above-mentioned method was chosen 

to model the laser in this work The laser rate equations for the single mode laser 

with external injection are

where

N -  carrier number in the active volume,

I -  is the drive current, 

e -  electron charge,

V -  volume of the active layer, 

x - carrier lifetime, 

g 0 -  gain slope constant,

Nom -  carrier density at threshold,

S -  photon density,

T - optical confinement factor, 

tp -  photon lifetime, 

p - spontaneous emission coefficient,

Kc - coupling coefficient for the injected light,

Smj - photon density of the injected light 

cp(t) -  phase of the light, 

a  - linewidth enhancement factor,

A at — or — o)mj - detuning frequency between the slave and master laser

The Matlab code for the system model is presented in Appendix C The parameters 

used for the laser model are given in the table below

dt qV r„
Equation 6-1

+  2 Kc ̂ JSinJS(t) COs(^?(/)), Equation 6-2

Equation 6-3
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go le - 1 2

Nom 1 4e23

V lle-17

tp 2 e-l 1

Tn 0 3e-9

r 0 35

P 0 0

<i 1 6e-19

a 6 8

Aco 2nAf

Smj varied

Kc 2 5el 1

Ar 03e-12 m2

c 3e8 ms 1

n 3 63

h 6  625e-34

f 1 935el4 Hz
R 0 32

Table 6-1 Laser model parameters

The power - current (P/I) dependence for the single mode laser modelled (free 

running case) is shown in Figure 6-1 From the P/I curve one can see that the laser 

threshold current is around 18 mA
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Bias Current (mA)

Figure 6-1 Laser P/1 curve

The bias current for the simulation was chosen to be 60 mA The frequency response 

of the laser at this bias is shown in Figure 6-2 The free running case is depicted by 

curve (a) while the external injection case is portrayed by curve (b) The injection 

ratio for the latter was set to be Sinj/S = 0 04

Frequency (GHz)

Figure 6-2 Frequency response o f (a) free running laser (b) laser under external injection

From the plot it can be seen that the modulation bandwidth of the free running laser 

is around 7 GHz, while external injection increases the modulation bandwidth up to 

around 16 GHz (ROF @ -  12 GHz) Another important point to be noted is that the 

relaxation oscillation peak in case of external injection is around 12 dB higher than 

for the free running laser
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The central RF frequency was chosen to be 12 GHz, to make use of the enhanced 

response at this frequency The simulations were performed for two cases a single 

channel and a multichannel system

Single channel system

First a single channel system was modelled A 140 Mb/s data stream was 

upconverted to 12 GHz and used to directly modulate the laser 

The output signal of the laser was detected using a photodiode It was modelled as a 

simple optoelectronic conversion with the addition of noise For simplicity, thermal 

noise was considered but shot noise was ignored The equation for thermal noise is 

given as 

2 4 kTf0
<Jth = — —— , Equation 6-4

where k is Boltzmann’s constant, T is the temperature in degrees Kelvin, R is the 

receiver impedance, and f 0 is the receiver bandwidth Noise is random in nature so it 

cannot be predicted what it will do to the signal To model the noise in this system it 

was assumed that the noise had zero mean and a Gaussian distribution These 

assumptions allows the noise model to be greatly simplified A responsivity of 

0 6  A/W was used

The RF spectrum of the modulating signal is shown in Figure 6-3
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Figure 6-3 Electrical spectrum o f  the modulating signal - single channel system

This signal was first applied to the free running laser and subsequently to the laser 

under the external injection The detected RF spectra of signals generated by the free
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running and externally injected laser are shown in Figure 6-4 and Figure 6-5 

respectively
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Figure 6-4 Electrical spectrum o f the detected signal - free running laser
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Figure 6-5 Electrical spectrum o f the detected signal - laser with external injection

From the figures above it can be seen that the signal generated by the externally 

injected laser is much stronger than that of the free running laser The corresponding 

eye diagram of the downconverted signal for the free running laser and laser under 

external injection are shown in Figure 6-6 and Figure 6-7 respectively
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Figure 6-6 Eye diagram - free running laser
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Figure 6-7 Eye diagram - externally injected laser

In both cases the received optical power was -17 dBm In case of the free running 

laser the eye height is less than ljiA, while for the externally injected laser the eye 

height exceeds 2 0  pA

To quantify the improvement in system performance brought about by external light 

injection, BER measurements were performed The equation used to calculate the 

BER in the model was

BER = -  
4

erfc V ' . '
4ic

+ erfc
- 1,(o)

V
Equation 6-5
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where is the mean of the current when the signal is high 

1 is the mean of the current when the signal is high low

<7 1 is the standard deviation of the current when the signal is high 

ao is the standard deviation of the current when the signal is low

The resultant plot of the BER versus received optical power for the free running laser 

and laser under external injection is shown in Figure 6-8
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—•—  Laser w rth external injection a  -  Free running laser

Figure 6-8 BER vs received optical power free running laser (squares) externally injected laser
(diamonds)

From Figure 6-8 it can be seen that external injection improves the system 

performance by around 12 dB (in terms of optical power) It corresponds to a 24 dB 

increase in electrical power, which is less than that observed in the frequency 

response of the laser (around 30 dB - Figure 6-2) The difference could be attributed 

mainly to two factors Firstly, as mentioned in Chapter 4 1, external injection 

decreases the threshold current of the laser This results in an increase in the power 

due to DC, thus decreasing the improvement in system performance Secondly, 

signals generated by externally injected lasers are noisier than signals generated by 

the free running lasers Both these features result in this response increment not 

being directly reflected in the improvement in system performance 

Five channel system

In case of the multichannel system five PRBS data streams each at 140 Mb/s were 

amplitude modulated onto five RF carriers The channel spacing between the carriers
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was set to 400 MHz (carriers ranging from 11 2 to 12 8 GHz) The spectrum of the 

modulating signal is shown in Figure 6-9
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Figure 6-9 Electrical spectrum o f the modulating SCM signal

As in the previous section the combined SCM signal was initially applied to the free 

running laser and subsequently to the laser under external injection The detected 

spectra and the resulting eye diagrams were used to compare the difference m 

performance between the two simulation cases The disparity between them was then 

quantified with the aid of a plot of the BER versus received power 

The electrical spectrum of the detected SCM signal generated by a free running laser 

is shown in Figure 6-10
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Figure 6-10 Electrical spectrum o f the detected signal - free running laser

The eye diagram of the received and downconverted central channel again of the free 

running laser is shown in Figure 6-11

x 10

Figure 6-11 Eye diagram - free running laser

The received optical power was about -  17 dBm From the figure it can be seen that 

the eye height is around 0 75 jaA

Figure 6-12 shows the electncal spectrum of the received SCM signal generated by 

the externally injected laser
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Figure 6-12 Electrical spectrum o f the detected signal -  laser under external injection

In comparison to Figure 6-10 there are many more frequency components present in 

the signal generated by the laser under external injection These components are the 

mixing products of the input RF signals and are caused by the nonlineanty of the 

laser Their presence suggests that when the laser transmitter is subjected to external 

light injection, it becomes much more nonlinear than in the free running condition 

This was also indicated by the height of the resonance peak in the modulation 

response of the laser with injection At this juncture it is necessary to reiterate that in 

most devices, a nonlinear frequency response does not mean that the device is 

nonlinear Nevertheless, in the case of a laser the resonance peak is an effect of 

nonlinear interactions between electrons and photons Thus the stronger the 

nonlineanty the higher the resonance peak

The above-mentioned mixing products would have a negative influence on system 

performance since they could fall directly into the signal band and consequently 

cannot be filtered out Another important fact to be noted, as mentioned in Chapter 5, 

is that the effect of laser nonlineanty becomes more severe as the number of carriers 

and their amplitudes increase However in spite of the shortcomings, the power in the 

signal is much higher This could be attnbuted to the response of the laser being 

comparatively higher than the free running case at the modulating frequency 

Figure 6-13 presents the eye diagram of the downconverted central channel 

generated by the laser under external injection As in the previous case the detected 

optical power was -  17 dBm It can be seen that the height of the eye is much bigger 

in comparison to the free running case The eye height can be estimated to be around

10 105 11 11 5 12 125 13 135 14
Frequency (GHz)
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15 fiA, which again reflects the fact that the power in the signal is higher here when 

compared with the free running case
x 10*1 -------------------------------------------------------------------------

Bit Period

Figure 6-13 Eye diagram - laser under external injection

As mentioned earlier, the quantification of the differences in the performance of the 

system based upon the free running and externally injected laser was performed by 

carrying out BER vs received optical power measurements for both cases The BER
f

was measured for the central SCM channel since it is the channel with the highest 

number of mixing products falling into its band The results are shown in Figure 

6-14

Received optical power [dBm]
—♦— Free running laser —A...Laser with injection

Figure 6-14 BER vs received optical power fo r  the central SCM channel free running laser 
(diamonds) laser under external injection (triangles)
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From the Figure 6-14 one can see that the external injection improves system 

performance by around 10 dB This is improvement in terms of the optical power, 

which corresponds to 20 dB in electrical power Again this is significantly less than 

what could be expected in comparison to the difference between the frequency 

responses of the free running and externally injected laser shown in Figure 6-2 

(30 dB improvement at 12 GHz) It is also less than the single channel case This 

disparity could be attributed to a few aspects First of all the reasons given in the 

previous section (increase in DC power and in noise) apply here as well Secondly, 

the frequency response is plotted by modulating the laser with one frequency at a 

time and measuring the power of the detected signal Thus the actual increase in 

response for a laser modulated with multiple carriers (simultaneously) may be 

different than that for single carrier modulation Finally and most importantly, since 

the laser becomes more nonlinear with external injection, the mixing products 

resulting from laser nonlineanty will distort the received signal These IMD3 

products will reduce system performance of the externally injected transmitter much 

more severely than in case of a free running laser

The following section looks at the increase in laser nonlineanty in more detail

6 1 1 1  Influence of laser nonlineanty on system performance 

Laser modulated at 12 GHz

In order to verify how mixing products influence system performance, the channel 

spacing between the extreme carriers (first & second and fourth & fifth) was varied 

from 400 MHz to 600 MHz using a step interval of 50 MHz The effect of IM D 3 was 

established by measuring BER for the central SCM channel As mentioned before 

this channel suffers the most from mixing products Varying the channel spacing 

moves the IM D 3 products away from the centre of the detected channel thereby 

reducing their influence IM D 3 components are most harmful when they fall in the 

centre of the signal band since the majonty of the signal energy is concentrated 

around the carrier (centre of the signal band) The removal of IM D 3 from the signal 

band can be noticed by looking at Figure 6-15 and Figure 6-16 These figures 

illustrate the electrical spectra of the detected SCM signal with the central channel 

(laser with external injection) switched off By doing so, the mixing products falling 

in band with the filtered signal can be seen clearly Figure 6-15 shows the spectrum
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when all the channels are equally spaced The mixing products fall exactly at 12 GHz 

and they are only around 30 dB below the carrier level
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Figure 6-15 Electrical spectrum o f detected signal with even channel spacing 
( central channel switched off)

Figure 6-16 on the other hand shows the spectrum when the channel spacing

between the extreme channels is 500 MHz For such channel spacing the IMD3

components fall 100 MHz away from centre of the signal band
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Figure 6-16 Electrical spectrum o f detected signal with uneven channel spacing 
(central channel switched off)

The BER was measured with different channel spacing in order to quantify the

influence of IMD3 on system performance The tests were performed for both the

free running laser and the laser under external injection The results are shown in

Figure 6-17 and Figure 6-18 respectively
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Figure 6-17 Influence o f IMD3 on system performance - free running laser
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Figure 6-18 Influence o f IMD3 on system performance - externally injected laser

From the figures above, it can be seen that the performance of the system based on 

the free running laser could be improved by around 0 4 dB by removing the IMD3 

components from the signal band In the case of the laser with external injection this 

improvement is around 1 5 dB The biggest improvement is achieved when the 

channel spacing between the extreme channels is changed from 550 to 600 MHz 

This could be ascribed to the fact that the IMD3 products are completely removed 

from the signal bandwidth
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Laser modulated at 5 GHz

The same measurements were performed here for the free running laser modulated at 

its relaxation frequency This was done in order to verify whether laser nonlmeanty 

actually increases with external injection4 The relaxation oscillation frequency of the 

simulated laser was found to be at about 5 GHz The electrical spectrum of the 

detected signal when the central channel is switched off for channel spacings of 400 

and 500 MHz (even and uneven spacing) is shown in Figure 6-19 and Figure 6-20 

respectively

4 5  5
Frequency (GHz)

6 5

Figure 6-19 Electrical spectrum o f laser modulated at relaxation frequency - even channels spacing

4 5 5
Frequency (GHz)

Figure 6-20 Electrical spectrum o f laser modulated at relaxation frequency 
uneven channels spacing

6 5

4 Where the modulation was also carried out at the relaxation oscillation frequency
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The IM D 3 are more than 80 dB below the carrier level as can be seen from Figure 

6-19 It can be seen from both figures that the IMD3 products for the free running 

laser are higher when modulated at the relaxation frequency than when it is 

modulated away from oscillation frequency However, it is also important to note 

that the IMD3 components of both cases above are lower (-5 0  dB) than those of the 

laser under external injection (shown in Figure 6-15)

The BER vs received optical power for free running laser modulated at its relaxation 

oscillation frequency is presented in Figure 6-21

Received optical power [dBm]

IMD3 @ 0 MHz - m — IMD3 @ 200 MHz

Figure 6-21 Influence o f IMD3 on system performance fo r free running laser modulated
at relaxation frequency

Removal of the IMD3 components from the signal band improves the system 

performance as revealed in Figure 6-21 In aiming to achieve a BER of 10 8 in the 

case of even channel spacing a power penalty of 0 6  dB is incurred in companson to 

the case when the IMD3 products are completely removed from the signal band 

(extreme channels spaced by 600 MHz) This penalty is higher than that sustained in 

the case of the free running laser modulated at 12 GHz (0 4 dB)5, but less than the 

case where the laser with external injection is modulated at 12 GHz (1 5 dB) 6 

The results presented above confirm that as the modulating frequency approaches the 

relaxation frequency, the power of the mixing products increases This phenomenon 

has important implications especially in regard to multichannel systems where the

5 Figure 6-17
6 Figure 6-18
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impact of the nonlinearity proves to be crucial as regards system performance. The 

results obtained and the power penalty trends show that external light injection 

increases nonlinearity in the laser transmitter. Furthermore, the simulations results 

obtained here are in good agreement with experimental results presented in 

Chapter 4.

The modelling in this section has established the dependence of the nonlinearity on 

the modulating frequency and external injection and the subsequent degradation in 

multichannel system performance. The following section focuses on the influence of 

fiber nonlinearity on these multichannel systems.

6.2 Multichannel transmission over the fiber

The response of any dielectric to lightwaves is nonlinear. Nevertheless, as long as the 

signal power in a fiber is at a low level, fiber can be considered as a linear system. 

When the optical power in a fiber increases, the nonlinear effects become non 

negligible. These nonlinear effects in fiber may have a significant impact on the 

performance of WDM optical communication systems [5, 6 ].

When considering multichannel transmission, it is vital to realise that apart from 

taking into account the nonlinearity of the transmitter, the degradation of the signal 

due to the nonlinear characteristic of the fiber has also to be taken into consideration. 

Even though the power for individual channels is low the total power of the 

WDM/SCM signal for a large numbers of channels can exceed 100 mW, hence the 

effect of fiber nonlinearity can still be observed [7].

In the hybrid radio/fiber system employing WDM and SCM there are two groups of 

interactions that have to be taken into account: interactions between SCM carriers 

and interactions between WDM channels [8 ]. While the distortion due to propagation 

of multiple optical channels along the fiber are well known and studied, extent of the 

mixing between channels and degradation of the signal due to SCM transmission is 

still relatively unknown. The influence of fiber nonlinearity on the hybrid radio/fiber 

system employing WDM/SCM could be especially severe since data is transmitted in 

an analog form, which is much more sensitive to noise and distortion than the digital 

signals [9].

The most important types of nonlinearity that could affect WDM/SCM systems are 

Four Wave Mixing (FWM) [10, 11], Cross-Phase Modulation (XPM) [12] and 

Stimulating Raman Scattering (SRS) [13]. FWM falls into a broad class of harmonic
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mixing processes It causes two or more frequencies to combine to generate emission 

at a different frequency, which is the sum or difference of the signals that are mixed

[14] These newly generated waves, which are effectively mtermodulation products, 

can cause crosstalk in a multichannel system, if the channels are equally spaced [15] 

The efficiency of FWM depends on the degree of optical phase matching This 

means that the distortion caused by FWM would depend on fiber dispersion and 

channel spacing (higher dispersion and larger channel spacing causes faster walk-off 

between wavelengths) [16] FWM thus will degrade the performance of a hybrid 

radio/fiber system especially due to its small channel spacing 

XPM is caused by a variation in the refractive index of glass due to a variation in the 

intensity of light travelling along the fiber The amplitude modulation of one channel 

thus causes a phase modulation of the signal earned by other channels This phase 

modulation is then converted into intensity modulation by fiber dispersion [15, 17] 

XPM increases with the number of channels and becomes stronger when the channel 

spacing is reduced [15]

SRS is caused by light interfering with molecular vibrations Scattered light is 

generated at longer wavelengths than that of the incident light Hence SRS causes the 

transfer of energy to a different frequency band The newly created signals cause 

crosstalk, thereby degrading the performance of a WDM system [15] In WDM/SCM 

systems the subcamers comprises of only a small fraction of the total optical power 

thus the mam source of distortion due to SRS would be the interaction between 

subcarriers and optical earners (not between subcarriers in different WDM channels) 

The strength of SRS crosstalk depends on fiber dispersion (decreases for higher 

dispersion) and on the subcamer frequency as a result of the subcamer walk-off due 

to dispersion [8,18] In the case of SRS, the crosstalk increases when the channel 

spacing increases

The effects of fiber nonhneanty increase as the optical power launched into the fiber 

increases Introducing new channels also degrades system performance since it 

usually means increasing the power and also the number of mixing products 

generated e g by FWM Furthermore, a higher optical modulation index causes more 

signal distortion [19] Finally, even for relatively low optical power travelling along 

the fiber, the effects of fiber-mduced distortion could become significant if the signal 

propagates over long distances, since nonlinear effects accumulate along the fiber
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The effects of fiber nonlmearity on SCM and WDM/SCM signals were simulated 

using the VPI-TM The results obtained are shown in the forthcoming section

6 2 1 SCM transmission over the fiber

Initial work here involved the characterization of the laser used in the model The 

module parameters and the frequency response of this laser module are shown in 

Figure 6-22 and respectively Figure 6-23
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Figure 6-22 Laser module parameters
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Figure 6-23 Frequency response o f laser used in the simulation

From this figure it can be seen that the laser bandwidth was around 26 GHz The 

modulation frequency was then chosen close to the relaxation oscillation peak of the 

laser (~ 20 GHz) The laser was biased at five times its threshold current with the 

ratio of the modulation amplitude to the threshold current set to one 

The simulation model used to verify the influence of fiber transmission on an SCM 

signal is shown m Figure 6-24
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Figure 6-24 Simulation model 

Figure 6-25 presents an insight into the SCM module used in the simulation
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Figure 6-25 SCM module

The parameters of the photodiode and fiber modules are shown in Figure 6-27 and 

Figure 6-26 respectively
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Figure 6-26 Parameters o f the pm  module used
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Figure 6-27 Parameters o f  the fiber module used

Five data channels consisting of a PRBS module followed by Non-Retum-to-Zero 

(NRZ) coder and nse-time filter were upconverted to five different RF frequencies 

ranging from 19 2 to 20 8 GHz (see Figure 6-25) The upconverted data channels 

were then combined together and used to directly modulate the laser 

The optical spectrum of the generated SCM signal is shown in Figure 6-28
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Figure 6-28 Optical spectrum o f the SCM signal

The five RF channels are clearly visible in Figure 6-28 In addition, a second pair of 

side bands together with some mixing products are also visible These extra 

components do not cause signal degradation in case of a single wavelength system, 

since they can be easily filtered out in the optical domain7 However, these 

components can cause a significant interference if many optical channels (WDM) are 

to be transmitted

The optical signal from the transmitter was then amplified using an EDFA Two 

variable optical attenuators were used, one to vary the optical power launched into 

the fiber while the other to vary the power falling on the detector The output signal 

of the fiber was converted into SSB format using an optical BPF and is shown in 

Figure 6-29

7 Also possible lo be filtered in the electrical domain
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Figure 6-29 The output o f  the fiber after optical filtering

The received signal was then amplified and the central SCM channel was 

downconverted by mixing the signal with the signal from the LO Subsequently the 

downconverted data was filtered out and its quality was verified by performing the 

BER measurements The detected SCM signal is shown in Figure 6-30
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Figure 6-30 RF spectrum o f the detected signal

It could be seen (Figure 6-30) that there are hardly any observable mixing products 

outside the signal band From this it could be inferred that the laser has a low level of 

nonhneanty In order to verify this statement, BER measurements were performed
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for the central channel at different spacings between the extreme channels The 

results obtained are presented in Figure 6-31

Optical power [dBm]

Figure 6-31 Influence o f IMD’s fo r laser modulated at relaxation frequency

The system performance in order to achieve a BER of 10” 9 is improved by only 

0 3 dB even with the complete removal of IMD3 components from the signal band 

This confirms that the laser is more linear than the devices characterised earlier 

(experiments and simulations)

In order to verify the influence of fiber induced distortion on SCM system 

performance the fiber length in the model was set to 20 km The optical power 

launched into the fiber was varied by modifying the attenuation (using an optical 

attenuator) before the fiber To ensure a constant level of power falling on the 

detector another optical attenuator was used at the output of the fiber The resultant 

BER dependence on the optical power injected into the fiber is shown in Figure

6-32 The power falling on the detector was maintained at 60 |iW
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Figure 6-32 BER vs input optical power for 20 km fiber link

From Figure 6-32 it can be seen that the system performance remains unchanged as 

the optical input power increases to 11 dBm Above this value rapid signal 

degradation is observed The received eye diagrams of the detected central SCM 

channel at a power level of 7 and 16 dBm are shown in Figure 6-33 and Figure 6-34 

respectively

Time [ns]

Figure 6-33 Eye diagram o f the central SCM channel for 7 dBm optical power level
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Figure 6-34 Eye diagram o f the central SCM channel fo r  16 dBm optical power level

Figure 6-32 also presents the BER versus the optical power launched into the fiber 

for a single channel at a solitary wavelength In this case a lower BER is achieved for 

low levels of optical power This could be attributed to the fact that the single 

channel system is free from IM D 3 The BER remains low until the power exceeds 15 

dBm Further increase in optical power travelling along the fiber degrades the system 

performance in a similar manner to that of the SCM system Self-Phase Modulation8 

(SPM) is the mam source of distortion for the single channel system The difference 

in power levels at which the system performance become degraded shows that the 

optical SCM signals suffer more from fiber nonlmearity than the single channel 

systems even if only a single wavelength channel is transmitted This proves that 

fiber nonlmearity cause interactions between the SCM channels, which result in 

signal degradation It is expected that increasing the number of SCM channels would 

cause the system performance to degrade even faster

6 2 2 WDM/SCM transmission over the fiber

The simulation model used in investigating the impact of fiber nonlmearity on a 

WDM/SCM system is shown in Figure 6-35 It is very similar to the model used in 

the previously descnbed simulation (Figure 6-24) The major difference in this case 

is the increase in the number of optical channels to five The output of the lasers were

8 SPM causes phase modulation of the signal due to a variation in the refractive index of glass, which 
in turn is a result of a variation in the intensity of light travelling along the fiber
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combined together using a passive optical coupler The central SCM channel earned 

by the central wavelength was chosen for BER measurements since this is the 

channel, which suffers the most from nonlinear distortions
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Figure 6-35 WDM/SCMsystem - simulation model

Initially the fiber length was set to 1 km in order to eliminate any distortion that 

could be brought about by the fiber characteristics The optical spectrum of the five 

combined optical channels is shown in Figure 6-36
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Frequency relative to 193 6 THz [GHz]

Figure 6-36 Optical spectrum o f WDM/SCM signal

The channel spacing was initially set to 50 GHz This was big enough to 

accommodate DSB signals and still leave a 10 GHz clearance between the side bands
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of neighbouring WDM channels Such a configuration is not bandwidth efficient, 

since at the receiver only one side band is needed Thus if the signal was converted to 

SSB format at the transmitter, the spectral efficiency (channel spacing) could be 

improved (reduced) by a factor of two, while keeping the same optical power falling 

at the receiver Nevertheless, an SSB format is not achievable by direct modulation 

One possible solution to this problem involves the employment of wavelength 

interleaving (as explained in Chapter 5) This technique allows the reduction of the 

channel spacing to a value lower than twice the modulating frequency Thus by 

employing such a technique the spectral efficiency of the system could be improved 

without the need for SSB conversion at the transmitter The optical spectrum of the 

optically filtered central channel in a 25 GHz spaced WDM system is shown in 

Figure 6-37
pei |------  1---------------- ----------------
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Figure 6-37 Optical spectrum o f the demultiplexed central WDM channel fo r 25 GHz channel
spacing

The side bands of the adjacent WDM channels can be seen at distance of 5 GHz on 

either side of the optical carrier These side bands will beat with the optical earner at 

the receiver generating extra electrical components at 5 GHz, which can easily be 

filtered out The electrical spectrum of the detected signal is shown in Figure 6-38 

The 5 GHz as well as the 25 GHz components (caused by mixing between adjacent 

optical carriers) are clearly visible
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Frequency [GHz]
Figure 6-38 Detected RF spectrum o f the central WDM channel (25 GHz channel spacing)

In order to find the minimum channel spacing that can be used without causing 

signal degradation, the BER was measured as a function of WDM channel spacing 

These measurements were performed for three different cases Initial measurements 

were earned out for the first SCM channel since this channel would be the first to 

suffer from crosstalk when the wavelengths are interleaved Secondly BER for the 

last SCM channel was measured with the wavelength channel spacing varied 

between the range of 42 to 55 GHz Finally the BER for the central SCM channel 

with a spacing variation of 22 -  55 GHz was also measured The results are 

presented in Figure 6-39

Channel Spacing [GHz]

—♦ — First channel —Q— Third channel —A— Fifth channel

Figure 6-39 BER va WDM channel spacing fo r first channel (diamonds) central channel (squares)
and fifth channel (triangles)
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From the figure above it can be seen that if wavelength interleaving is employed the 

channel spacing can be reduced to a range within 25 and 38 GHz Two factors set the 

lower limit for the channel spacing first is the sharpness of the filter response If the 

roll-off of the filter is not steep enough, then crosstalk could occur between the SCM 

signal and optical earner The phase noise of the laser is the second factor that limits 

the channel spacing The transfer function of the optical BPF used in the simulation 

is shown in Figure 6-40

Frequency relative to 193 1 THz [GHz]

Figure 6-40 Optical filter response

The filter used had 3 dB bandwidth of 20 GHz while the 20 dB cut-off was about 37 

GHz Such a filter should allow closer placement of the WDM channels The factor, 

as regards this simulation, which ultimately limited the minimum channels spacing 

was the phase noise of the laser As the channel spacmg decreases, the SCM signal 

moves closer to the optical carrier of the adjacent channel From Figure 6-37 it can 

be seen that by reducing channel spacing by 2 GHz would increase noise in the 

signal band by 5 dB Reducing the spacmg by 3 GHz would increase the noise by 

10 dB This noise degrades the quality of the signal, which in turn makes the channel 

spacing of 25 GHz unfeasible

Figure 6-39 also illustrates the BER vs the channel spacing without wavelength 

interleaving being employed (channel spacing greater than twice the RF frequency) 

Here the BER was measured for the highest frequency (fifth SCM channel) of the 

SCM carrier In this case the minimum channel spacing is determined by interference 

between SCM signals from adjacent WDM channels In order to achieve a BER
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lower than 10~9 a channel spacing of 44 GHz is required It can be seen that channel 

spacings ranging between 38 to 44 GHz cannot be used At these values the side 

bands of neighbouring optical channels overlap resulting in an unacceptable BER 

The optical and electrical spectrum of the demultiplexed signal at a channel spacing 

of 44 GHz is shown in Figure 6-41 and Figure 6-42 respectively

Figure 6-41 Optical spectrum o f the demultiplexed central WDM channel (44 GHz channel spacing)

I

Frequency [GHz]
Figure 6-42 Detected RF spectrum o f the central WDM channel (44 GHz channel spacing)

The optical spectrum in Figure 6-41 contains not only the upper side band of the 

desired signal but also a part of the lower side band that belongs to the adjacent 

WDM signal These signals beat at the receiver with the optical carrier to generate 

new frequency components at 24 GHz as seen in Figure 6-42 After the
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downconversion of the desired signal, an electrical rise time filter could be used to 

remove these unwanted components

The remainder of this chapter concentrates on the influence of fiber nonhneanty on a 

WDM/SCM system The simulations were performed with a modulating frequency 

of 20 GHz and the channel spacing set to 50 GHz (no wavelength interleaving)

The fiber length in the simulation model was set to 20 km in order to verify how an 

increase in the optical power launched into a fiber influences the quality of the 

signal As in section 6  2 1 the optical power launched into the fiber was varied using 

an optical attenuator placed before the fiber The power falling on the detector was 

maintained constant with the help of another attenuator situated before the receiver 

The BER of the central electrical channel that belongs to the central WDM channel 

was plotted as the fiber input power was varied and is displayed in Figure 6-43

Optical power [dBm]

Figure 6-43 BER vs fiber input power fo r central WDM channels fo r 50 GHz channel spacing

From Figure 6-43 it can be seen that when optical power launched into the fiber is 

relatively low (below 5 dBm) the quality of the signal remains unchanged 

Nevertheless, as the power increases above 6  dBm, the BER gets degraded In 

comparison to Figure 6-32 it can be noticed that the power at which the degradation 

of the signal becomes visible is much lower for the WDM/SCM than for the SCM 

system This result tends to confirm the previous statement that the influence of fiber 

induced distortion increases with the number of channels propagating over the fiber 

Finally the eye diagrams of the downconverted signal for fiber input power of 7 and 

15 dBm are presented m Figure 6-44 and Figure 6-45 respectively
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Figure 6-44 Eye diagram o f the central WDM central SCM channel after propagation over 20 km o f
fiber (fiber input power 7 dBm)

Figure 6-45 Eye diagram o f the central WDM central SCM channel after propagation over 20 km o f
fiber (fiber input power 15 dBm)

The results presented above illustrate the system degradation due to fiber 

nonhneanty This issue has an equally important impact as dispersion caused fading 

of RF signals in the transmission of signals using a hybnd radio/fiber system 

employing the WDM/S CM techniques The results obtained prove that fiber induced 

distortion becomes an important problem even when only one optical channel 

carrying SCM signals is transmitted over the fiber In order to minimize the 

degradation of a signal due to fiber nonlmearity, the WDM/SCM system has to be 

carefully designed by taking various influencing parameters into account This
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involves choosing optimum power levels, optical modulation indices, channel 

spacing and modulating frequency since all these factors could have a huge impact 

on system performance
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Conclusions

As the demand for broadband mobile services such as video-on-demand and mobile 

computing increases, so does the need to develop high capacity mobile 

communication networks which are capable of delivering broadband signals to remote 

areas “over the air” Microwave and millimeter wave fiber/radio systems are a very 

attractive option to realize such broadband networks In these hybrid radio/fiber 

systems, the microwave or millimeter wave data signals are modulated onto an optical 

carrier at a central location, and then distributed to remote Remote Antenna Units 

using optical fiber The Remote Antenna Units then transmit the 

microwave/millimeter-wave signals over small areas using microwave antennas Such 

an architecture should prove to be highly cost efficient, since it allows sharing the 

transmission and processing equipment (remotely located in the central control 

station) between many Remote Antenna Units

The realisation of future radio/fiber systems presents a challenge to the system 

designers almost at every stage Problems associated with these systems include the 

generation of high frequency optical signals, transmission of these signals over the 

fiber with minimum distortion and finally delivering the high bit data rate signals over 

the air to both stationary and mobile users are very important issues This work 

concentrated on the two first challenges

Initial investigations were carried out on the generation of optical millimeter wave 

signals There have been many methods proposed to achieve the above-mentioned 

goal and most of them have been discussed in detail in Chapter 3 This involved 

looking at their main advantages and disadvantages Prominence was then given to a 

simple and reliable technique (amongst the listed methods), which involves the direct 

modulation of a laser diode to generate millimeter-wave optical signals However, one 

of the shortcomings in using this method is associated with the generation of high 

frequencies This difficulty is brought about by the limited (insufficient) modulation 

bandwidth of currently available commercial laser diodes One effective technique for 

overcoming the above-mentioned limitation was then examined, namely external light 

injection into the directly modulated laser This fairly novel concept was then verified 

by carrying out simulations and experiments The results obtained exhibited that the
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inherent modulation bandwidth of the laser could be enhanced by a factor of around 

three, thereby allowing high frequency signals to be generated in this manner 

The usefulness of the direct modulation of an externally injected laser to be employed 

in a radio/fiber system was verified by building a signal channels system based upon 

an externally injected laser In the experiment, a single mode DFB laser with inherent 

modulation bandwidth of around 8 GHz was directly modulated with a 155 Mb/s data 

signal upconverted to 18 GHz The experimental results showed a 14 dB 

improvement in the performance of the system using the external injection, when 

compared with the free running case

The subsequent investigations led to scrutinizing the performance of an externally 

injected laser when it was modulated with multiple carriers This is an important issue 

in future hybrid radio/fiber systems, since they are expected to use Sub-Camer 

Multiplexing (SCM) to deliver data signals to many users utilizing single laser 

transmitter The use of SCM technology not only assists in cutting down cost but also 

renders many of its other advantages to the overall radio/fiber system Experiments 

and simulations employing a two-channel system based on an externally injected laser 

were performed to quantify the BER as a function of the received optical power This 

yielded a 17 dB improvement for one and 20 dB improvement for the other channel 

The disparity m the performance between the two channels arose from the fact that 

the quality of the signal generated differed (different signal generators used) The 

achievement of such a result tended to prove that external light injection could be 

used effectively to support multichannel transmission At this juncture an in-depth 

analysis was carried out on millimeter-wave transmitters to determine the influence of 

laser nonlineanty on multiple channel system performance Initial investigation 

involved five-channel system based on an externally injected laser Results obtained 

here showed that the power penalty incurred due to Inter-Modulation Products (IMD3) 

was 4 5 dB (worst-case scenario) Further measurements were carried out on a free 

running laser at the flat part and the peak of its frequency response Amongst the 

above-mentioned cases the system based on externally injected laser suffered the most 

from IMD3

Another multiplexing technique, which is likely to be employed in future radio/fiber 

systems, is Wavelength Division Multiplexing (WDM) In a system that utilises 

WDM, a single fiber could be used to feed many RAU at the same time In this 

scenario each RAU would be assigned one wavelength channel to carry the data
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traffic for users communicating with this RAU by means of SCM To examine such 

a multi-wavelength - multi-channel network, a WDM/SCM system was built One of 

the issues, which was looked at experimentally was the verification of the influence of 

adjacent channel interference (WDM channels) Another aspect examined, within the 

same context of this work, was the possibility of employing the wavelength 

interleaving technique The SCM channels in hybrid radio/fiber systems would 

occupy a relatively small fraction of spectrum in comparison to the RF carrier 

frequency Spacing the wavelength channels in the same way as is done in other 

WDM systems (channels spacing > twice the modulating frequency) would not be 

spectrally efficient (large slice of unused spectrum between optical carrier and SCM 

channels) In order to improve the spectral efficiency the channel spacing between 

WDM channels could be reduced to values lower than the radio frequency Such an 

arrangement is known as wavelength interleaving The experiments performed proved 

that this technique is a viable way to reduce the required spectrum for system 

transmission without compromising the system performance By measuring BER for 

different channel spacing it has been established that the optimal channel spacing for 

an RF frequency of 18 GHz is 0 2 nm (25 GHz) (for the given filter)

The effect of propagation over fiber on the radio signals has also been examined This 

mainly involved the investigation of dispersion caused fading of Double Side Band 

(DSB) radio signals propagating along a fiber Direct modulation of a laser with a 

high frequency signal results m two side bands being generated These side bands 

experience different phase shifts (due to dispersion being dependent of wavelength) 

while propagating along the fiber When the signal is detected by the photodiode each 

side band beats with the optical carrier to produce two electrical RF signals These 

two components are then combined together to produce the received output signal 

(electrical) If the side bands were out of phase the RF components generated by them 

would interfere destructively in the photodiode causing the output signal to fade This 

phenomenon makes it unfeasible to transmit high frequency DSB signals over large 

distances of fiber This problem could be overcome by using Single Side Band (SSB) 

modulation However, SSB signals cannot be generated using the direct modulation 

Hence SSB conversion would have to be performed to avoid signal degradation if one 

is to employ the direct modulation technique The experiments performed have 

proved that by simply employing an optical Band Pass Filter (BPF), a DSB signal 

generated by a directly modulated laser could be converted into an SSB format
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The investigation of the propagation of the radio signals over fiber also involved the 

verification of nonlinear effects in the fiber on a multichannel system This was done 

using the Virtual Photonics Inc Transmission Maker simulation package First the 

influence of fiber nonlineanty on the single wavelength SCM system was verified 

The results show that even though there is only one wavelength channel propagating 

over fiber, the fiber nonlineanty cause significant crosstalk between the SCM 

channels resulting in degradation of system performance This degradation becomes 

even more serious when additional wavelength channels are appended WDM/SCM 

system design requires a careful choice of several system parameters due to fiber- 

induced distortion Some parameters that would have strong beanng on system design 

are the optical power level, channels spacing, number of channels etc 

The demultiplexing of the WDM/SCM signal and its influence on system 

performance was also examined The manner in which demultiplexing could be 

performed would depend on the network architecture For a ring network, where the 

wavelengths designated for particular RAU are dropped as the signal travels along the 

loop, utilisation of an optical Fiber Bragg Grating (FBG) in conjunction with an 

optical circulator is an attractive option The possibility of using a single filter to 

perfonn both the demultiplexing and conversion of a signal into SSB format were 

examined This proves to be a cost effective and simple solution since it avoids the 

use of optical BPF at the transmitter site This method would have to be used in 

conjunction with the wavelength interleaving technique to ensure optimal spectral 

efficiency In the experiments performed a reflective FBG was used to demultiplex 

the required WDM channel and to filer out only one side band, converting the 

demultiplexed signal into an SSB format The above-mentioned not only gave a very 

small power penalty (0 4 dB) but also proved to be a feasible method of overcoming 

the dispersion caused fading of the signal
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Appendix A

Rate Equations -  Steady State Solution

The rate equations for a single mode laser diode with injection are as follows By 

simply setting the external injection term Sinj to zero the equations revert back to the 

free running form

dt qV r„
A 1

^  = r go{.N(t) -  Nom)S{t) - +  r / Ä  + 2Kcp m]S{t) cosO(O) A 2
dt

d<f>(f) _ a  
dt ~~2 r * .  ( * ( / ) - a u - —

xpj
A3

For simplicity, in the further calculations the spontaneous emission factor is 

neglected

The steady state solutions can be obtained by setting the left-hand side of the 

equations (A 1) -  (A 3) to zero

0 = I ± - ^ > - go(No- NJ s c A 4

o = r g 0(tfD -  N j s 0 -  +  2Kc cos(p0) A 5

0  = “
2

- A to - K  U!!LSin(0o) A 6

Manipulating (A 6 ) gives



Squaring both sides

Manipulating (A 5)

' aTgl){N „ -N vm) a
2 T.

-A  co
p /

2 cos(<p0) = T g ^N , -  K -  —
t p

fs~
Multiply by ^=L  = 1

2KcS0 l^-cos(<p0) = ^ - r g0(N0- N j S (

A 8

A 9

A 10

Dividing across by So

2d ^ c°sM  = ± - r go(N0 - N0„ ) A l l

Squaring both sides and dividing by 4

- - r g „ 0 v „ - . 0^ c2 ~ cos2 (^o) = T

\ 2

vr p

Adding (A 8 ) and (A 12) gives 
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Using the relationship cos2 0 + sin2 6 -  1 gives
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Manipulation of (A 4) yields an expression for So as follows

h — 1 o 
q v  rn

s S n . - n J  0

Substituting the expression for SQ from (A 15) into (A 14) yields after much 

manipulation, a following expression in N0 which can be solved very simply in 

Matlab

a N ^  + b N ^ + c N Q + d  = () 

where

fl = f a i l  (2 1 - 1)
4r 4
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4 r

I
4qV
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A 16
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0 / ;V om2(rg0)2Af„m + ■N__ +

2 x.
+ &a£g0a

4r

W o J s  (rgo<*y N 2 Nomrga 1 AfflTgo g „
4 rr„  16r

A® 2

4r
1 _ a _ Acoa A 19

tl= 7° Tg.Wj T» o 0 o4rpqV
2  , rg 0a a

r g 0^„„ + — +  :— + —  + A act
A 20

4r
1 c c  , A  2

—  + ------ + Aa>a+Aa) r
r_ 4r "

Dynamic solutions

The dynamic solutions of the laser rate equations (A 1) -  (A 3) can be found by using 

small signal analysis In such an approach the assumption is made that the variable 

changes slightly from its DC value Thus the variables m the equations (A 1) -  (A 3) 

consists of an DC and AC components
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I(t) = I0 +MejarJ A 21
S{t) = S0 +ASeĴ 1 A 22

N(t) = N0 + ANeJU,mt A 23

A 24

Where Io, S0, N0 and cpo denote the steady state values of the current, photon and 

carrier density and phase respectively

Substituting the above expressions to the laser rate equations yields the following 

d(N 0 + ANejmJ ) __I 0 + AIeJC7J N 0 + ANeJ0ml

dt <IV rn A  25

- g ^  + A N e ^ '- N , ,m\ s 0 +ASe’”"')

d i j^ )  + d A N e ^  = _ ^  + ^ gIW ,_ N ± _ ^ Ne,„ l _ ^  _ N  j g
dt dt qV t„ A 26

' - g . A A f e "  ' - g 0AJVeJ”7 ' A '

The term

A 27
dt qV t„

is a steady solution for the earner density No is a constant thus the above equation 

equals zero and can be removed from (A 26) By doing so and dividing both sides of 

(A 26) by eJ0mt one obtains

1 d iANe^ 1) = AI _ AN _ ^  ^  _ A 28
e ' " eft qV Tn

Since

dANeJG,mt
= j m  AAfe-'®”' A 29

dt
(A 28) can be rewritten as

j a W  = — - g 0( N , - N „ ) * S - gl£ N S 0 A 30

The term g 0 (Nq -  N om) can be substituted using the steady state solution to rate 

equations

& (No - K m) = ~ - 2K, 4 P - C O S * , A 31
F tp TSo

Inserting (A 31) to (A 30) yields
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AI AN AS J S,„jSojcoAN = — ---------- ——  + 2ATC —  cos <j>aAS- g0ANS0
qV r. rr„ r s0

Similarly the photon density can be written as

d(S° +f e,a'~) = Tg0 (jV0 + ANe^-‘ -  Nom \ s o + ASe^ ‘) 
at

+ 2Kc p „ vS,+ A Seja-' cosfa, + A<pe,a~‘)
Using the trigonometric identities one can wnte

cos(^?0 + A<peja,ml)= cos <p0 cos(Ape7CV)-sin  (p0 sin(A^eJ'®ffl/)

Because (a (peJCJm‘) is a small one can wnte

c o s (a  (peJt*m,)~  1

sin^pe-7̂ ) «  A (peJEImi

Thus (A 34) can be rewritten as

cos#?0 cos(A$ae;0V )- s in (p0 sin(A(peJUJmi)~  cos^ 0 -  A<pejmJ sin ?̂0 

Thus the last term in (A 33) can be written as 

=> 2K C(cos(0o -  A<pejmJ sm<p0\ ] S mjS0 + ASeJ"J 

Furthermore

o

Because ASeJ m is small one can add a term 'a s ^ 2

v ,

A 32

A 33

A 34

A 35

A 36

A 37

to the last expression in

equation above ( 0) Thus one can wnte

25.
ASej®,

2S,0 J

1 +
2  S

1 +
ASeJVmt

0 J 2Sr
A 38

Thus (A 36) can be written as follows
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The steady state equation for photon density is as follows 

^  = I * . K  -  ).S’0 -  + 2KC cos(i30)

A 41

A 42

As is case of (A 27) this term is equal zero, hence the (A 41) reduces to
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A 43

Inserting (A 31) to (A 43), performing the derivation and dividing both sides by ejmj 

yields
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ja)AS = —  -  2Kc '¡S‘”jSo cos 0OAS + r ^ 0AA'50 -  —
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A 44

Grouping the terms yields

1$ $
jcoAS = r g 0AMS0 -  2KC cos^0AS -  2KC sin 0oyfs^S ^A 0  A 45

lo n

Finally the phase equation for the small signal modulation can be written as follows

A(pejmj) _ a
dt
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-A  0)

A 46

- K .
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Similarly to (A 34) and (A 38) the last term in the equation above can be written as 
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The final term in (A 46) can be written as
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Thus (A 46) can be written as follows
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The steady state version of the equation above is
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As is case of (A 27) and (A 42) this term is equal zero, hence it can be removed from

(A 51) Additionally, term K KcA<pe} m ASeJ m cos^ 0 (very small) can also be
2  JS,

neglected Therefore (A 51) reduces to
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After dividing by eJ m one obtains the final version of the equation (A 52)
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So the linearized laser rate equations are as follows

. . .  AI AN AS A A  ,jcoAN = — --------- —  + 2Kc v cos AS -  g0AWS0
<7^  r „  T t p YSo

ja>AS = rg 0ANS0 -2 K c ^ ^ CQŜ As - 2 K c s m l ^ niS0Al/>

yeyA^ T g 0A/V +  -^ ^ = sm < p0AS - K c - ^ p S -c o s ^ 0A ^
2

Letting *  = 2A:c cos A and 7 = Kc ̂  sin ¿ 0

A 53

A 54

A 55

A 56
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. . .  AI AN AS X  .„jcoAN =  —— -— -  + —  A S -g 0AyVS0
^  T r T50

./«AS = rgoS0 AN -  —  AS -  2KC f t ^ S 0 sin ¿A<*
zo.

A 57

y*>AS = rg 0S0AW -  J L  AS -  2Kc y[ s ^  &  sm ¿ A *
^ 0  yj SQ

X
jcoAS = Tg0S0A N ------- A S -  2K cS0J -^ -  sm

2 S0

jcoAS = rg0S0AN - £ - & S -  2S0YA</> A 58

j a A t ^ T g ' W  + K ' + k  
2  V45o

sin ¿A S -  Kc cos ¿ A 0
P o

jcoA^ = ^ T g 0AN + Ki £ .  s m h / u - K ' & J j i  cos ¿ A ^

;®A^ = -  Tg0 AN + £ -
2 2S0 7 ^

s in ^ A S - cos

a
JcoA<!> = -  r g 0A/V + —  a ;  - 1 =  sm ¿A S -  2K:

1  y J S o

ja)A<j> = - r g(.AN + —  A S -  —  Ad>
2  5 0  2 S0 2 S0 y

2 S„
cos^0A^

A 59

Tidying (A 57), (A 58), and (A 59)

r i « i 1 X
JO) + —  + g0SQ AN +

J r p r s 0_
a s + [ o] a ^  =

A/

[ - r g 0S0]AÂ  + JO ) +
_x_

2 S„
AS + [2Soy]A ^  = 0

a  ^ Y " X  "A/V + AS + 7 ^  + ttt-~~2 0 250 _
.  25o_

=  0

P u ttin g  in to  m atrix  form  y ie ld s the fo llow ing

r ja> + a n a \2 * ,3  ] AAf'j '  MjqV^

a 2l jO ) + a 22 a 2i AS = 0

K fl3l a n ja> + aiiy v 0  ,

A 60

A 61

A 62

A 63
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where

1 c  1  x
& l l  + # 0 5 0  ^ 1 2  - p i  0r f r ,  rs0 a,3=o

fl2l — -rgo^O a 22 - 25,

*31=—T ^O  3̂2 =

«23 = 250r

25, 25,
and

X  = 2KcJ s ^ C o s { f a )

The frequency response is and to obtain this one must eliminate the other two

time varying components from the set of equations (A 61) will be used as the main 

equation and remove the two terms for it by substitution 

So to remove A<f> one takes (A 62)

ANX Y " a  „
J0) + -------

;  2V
A(j> -

i i

A5 +
2  0

X
Letting O -  jco +  one obtain

2 5a

7A5 ct+ ~ T g 0 a n

o

Subbing (A 64) into (A 61) then gives

[ - r g 0s 0]AW + JO) +
25„

A s+ [2 s„y]

Y A S ^ a r + “ Fg0 AN
250 2

O

A 64

= 0 A 65

[ - I * 0S0]AN +
X  "JO) + ----- A5 +

> 2A5 f S0Yarg0AN~
250_

0  0

= 0 A 6 6

Regrouping terms yields an expression in AS without A(¡>

X



SpYoSTg,
O

AN + X  Y2
/CO + ---------- +  —

2 S0 O
AS = 0 A  67

Now AN needs to be eliminated from (A 67) so taking (A 60)

jco + — + g0S0 AN = —  + 
qV

1 X+
r r ,  F50

AS A 6 8

Letting P -  jco + ~  + g0S0 we obtain

AN =

AI_ 
qV r * ,  r s 0

AS

A 69

Substituting (A 69) into (A 67) yields

W o  +
SpYaTg,

O

AI AS XAS  
qV + T r + TS0 X  Y2

JCO + ------- + -------
2 S0 O

AS = 0 A 70

Multiplying out

0  =
X  Y2 ico + ---- + —

2 S0 O
^  | S Ja T g .A I S J a g 0AS | r a g 0^A 5

PqVO OPr. PO

AITg0SQ t ASg0S0 XASg0
Pt.P qv

Grouping all AS terms

X  | X2 S0Yag0*S | Yag0X * S  ( ASg0S0 XASg0 
2S0 O OPt p PO Prp P

M Tg0S0 S0YaTg0AI

AS

PqV PqVO

A 71

A 72

Dividing both sides by the coefficient of AS yields

AITg0S0 S0Yarg0AI

AS = ___________ ,_____ M . ______- Æ -  _  -■ . A 73
X  [ Y S0Y a g 0AS | Y a g 0X A S  [ ASg„S0 * A S g 0

2 S„ 0  OPrp PO Prp P

Factonng the numerator leaves the equation used in the Matlab code to plot the

modulation response

XI



AS =

M Tg0S0
PqV

1 -
Ya
~0

A 74

250 0  OPrp PO Prp P

S o  and (¡>o are known from the Steady state solution co is the frequency range over 

which we wish to plot the modulation response A/  is simply the amplitude of the 

modulating sine wave and every other term is a constant Hence one can plot the 

modulation response
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Current [mA]

Figure 1 PI curve fo r i 5 NTTDFB (KELD Ì55Ì C C C J)

Figure 2 Frequency response o f I 5 NTT DFB (KELD 1551 CCC_l) (a) free running with injection
level set to (b) 4 dBm (c) 5 dBm (d) 6 dBm
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Current [mA]
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Figure 3 PI curve fo r i 5 MQW DFB (KELD 1552 SSC) fo r  different temperatures

Frequency [GHz]

Figure 4 Frequency response o f  1 5 MQW DFB (KELD 1552 SSC)

XIV



Temp eratureCC)

Figure 5: Temperature vs. resistance fo r  1.5 MQW DFB (KELD 1552 SSC)
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Appendix C 

Steady state solution to rate equations

f u n c t i o n  d p  -  R a t e _ E q u a t i o n s ( S i ]

%%%%%%%%%%%^'0'o'b''o''o'B'o'o'D'o’b'o'o'o'a'o'o'o'o'o'0'i)'o'o'oT)'B'o'o'o'o'o'o'o'o'o'6‘&-&'o'o'o'&'ii'6
%%%%This p r o g r a m  f i n d s  t h e  s t e a d y  s t a t e  s o l u t i o n  t o  l a s e r  r a t e  
e q u a t i o n s
% % It  t h e n  p l o t s  t h e  O u t p u t  P o w e r  a s  a  f u n c t i o n  o f  B i a s  c u r r e n t  a n d  
t h e  % % M o d u l a t i o n  R e s p o n s e  a s  a  f u n c t i o n  o f  F r e q u e n c y

~0 'O 'O o o o

c l e a r

%%%%%%%%%%Laser Parameters%%%%%%%%%%%%%
gO = l e - 1 2 ,
Nom = 1 4 e 2 3 ,
V = l l e - 1 7 ,  
t p  = 2e - l l , 
t n  =  3 e - 9 ,
OCF = 0 3 5 ,
B = 0 0 0 0 0 ,  
q  = 1 6 e - 1 9 ,  
a l p h a  = 6  8 ,
A c  = 8 e - 3 ,
I _ b i a s  = 7 0 e - 3 ,  
d e l t a f  = - 5  5 e 9  
d e l t a w  = 2 * p i * d e l t a f ,  
Kc  = 2 S e l l ,  
i f  S i  = =  0 ,

d e l t a w  = 0 ,
e n d

% D i f f e r e n t i a l  g a i n  c o e f f  
% T r a n s p a r e n c y  d e n s i t y  (mA- 3 )
% V o l u m e  o f  a c t i v e  l a y e r  
% P h o t o n  l i f e t i m e  ( s )
% C a r r i e r  r e c o m b i n a t i o n  l i f e t i m e  
% M o d e  c o n f i n e m e n t  f a c t o r  
% B e t a ,  s p o n t a n e o u s  e m i s s i o n  f a c t o r  
% C h a r g e  o f  e l e c t r o n  (C)
% L m e w i d t h  E n h a n c e m e n t  F a c t o r  
% A m p l i t u d e  o f  c a r r i e r s  
% B i a s  C u r r e n t  
% F r e q u e n c y  D e t u n i n g  
% C o n v e r t  f r e q u e n c y  t o  r a d i a n s  
% I n j e c t e d  l i g h t  c o u l p i n g  c o e f f i c i e n t

% i t  t h e r e ' s  n o  i n j e c t i o n  t h e n  i g n o r e  t h e  
% d e t u n i n g  m  t h e  p h a s e  e q u a t i o n

h  = 6 6 2 5 e - 3 4 ,
R = 0 3 2 ,  
c  = 3 e 8 , 
n  = 3 6 3 ,
A r  = 0 3 e - 1 2 ,
l a m d a  = 1 5 5 0 e - 9 ,  
f _ l a s e r  = c / l a m d a ,  
r e s p o n s i v i t y  = 0 6

% P l a n c k s  c o n s t a n t  
% R e f l e c t i v i t y  i n  c a v i t y  
% S p e e d  o f  l i g h t  
% R e f r a c t i v e  i n d e x  
% A r e a  o f  t h e  a c t i v e  r e g i o n  
% W a v e l e n g t h  o f  o u t p u t  l i g h t  
% F r e q u e n c y  o f  t h e  o u t p u t  l i g h t  
, % R e s p o n s i v i t y  o f  t h e  d e t e c t o r

f m l  = l e 7 ,  
b i t p e n o d  = 1 / f m l ,  
n u m c a m e r s  = 5 ,

% D a t a  M o d u l a t i o n  R a t e
% D a t a  b i t  p e r i o d  P e r i o d  = 1 / f
% n u m b e r  o f  s u b c a r r i e r s

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%
%THIS S EC T I O N  CALCULATES THE STEADY STATE VALUES 
C AR RI E R %DENSITY AND I N I T I A L  PHASE AND USES THEM 
SMALL S IG NAL  %RESP0NSE OF THE LASER

%%%%%%%

FOR PHOTON AND 
TO CALCULATE THE

%%%%%%%%%%%%%%%%%%
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%T0 OBTAINE NO (STADY STATE VALUE FOR C ARRI E R D ENS I TY )  ROOTS OF THE 
%FOLLOWING EQUATIONS HAVE TO BE FOUND

% a _ v a r * N 0 A3 + b _ v a r * N O A2 + c _ v a r * N 0  + d _ v a r  = 0
"o'o 'o 'o 'o^^ 'o 'o 'oo 'o 'o^ 'o 'o 'o^^oo' o'o^ 'o^ ' i ' i^ ' a 'o 'o 'o ' ^^^ 'oo^^ 'o^^ 'o 'o^^ 'o^o 'o 'o 'o 'o 'o '^^ 'o^^^o^^ 'o

QrQ’ Q * 9 r 5 * 9 * 2 * 9 - 9 r 2 r Q r Q r Q ‘ Q *9 'Q + 9 -  15 O 'O O ' Q O ’O ' O O ' O O ' O O ' O O ’O' O

C = O C F * g O ,
E = I_ b ia s / ( q * V ) ,

a _ v a r  = -  ( C A2 + C A2 * a l p h a A2 / 4 ) / ( 4 * t n )  ,

b _ v a r = l / ( 4 * t n ) * ( 2 * C A2 * N o m + 2 * C / t p + C A2 * a l p h a A2 / 2 * N o m + C * a l p h a A2 /  ( 2 * t p )  + 

+ d e l t a w * C * a l p h a ) + E / 4 * ( C A2 + C A2 * a l p h a A2 / 4 )

c _ v a r = - E / 4 * ( 2 * C A2 * N o m + 2 * C / t p + C A2 * a l p h a A2 / 2 * N o m + C * a l p h a A2 / < 2 * t p ) + 

+ d e l t a w * C * a l p h a ) - 1 / ( 4 * t n ) * ( N o m * C * ( N o m * C + 2 / t p + C * a l p h a A2 / 4 * N o m +  

+ a l p h a A2 / t p + d e l t a w * a l p h a ) + l / t p A2 + a l p h a A2 / ( 4 * t p A2 ) + d e l t a w * a l p h a / t p + d e l  

t a w A2 ) - K c A2 * S i * g O

d _ v a r = E * C * N o m / 4  * ( C * N o m + 2 / t p + C * a l p h a A2 / 4 * N o m + a l p h a A2 / t p + d e l t a w * a l p h a )  + 

+ E / ( 4 * t p A2 ) + E * a l p h a A2 / ( 1 6 * t p A2 ) + d e l t a w * E * a l p h a / ( 4 * t p ) + 

+ E * d e l t a w A2 / 4 + K c A2 * S i * g O * N o m

% G e t  t h e  r o o t s  o f  t h e  a b o v e  e q u a t i o n  
N 0 _ e q  = [ a _ v a r  b _ v a r  c _ v a r  d _ v a r ] ,
N O ^ R o o t s  = r o o t s ( N 0 _ e q )
NO = ( N 0 _ R o o t s ( 3 ) ) ,  %N0,  t h e  s t e a d y  s t a t e  c a r r i e r
d e n s i t y

%S0 THE STEADY STATE PHOTON DE NS I TY I S  CALCULATED U S I N G THE NO 
OBTAI NED %ABOVE

SO = { ( I _ _ b i a s * t n )  -  ( N 0 * q * V ) ) / ( t n * g O * ( N O - N o m ) * q * V )

% I n j e c t i o n  R a t i o  
r a t i o  =  S i / S O

i f  S i  - =  0 ,
P h i O  = 0 ,  

e l s e
P h i O  = a s m  ( ( - a l p h a /  ( 2 * t p )  -  ( d e l t a w )  + ( ( a l p h a / 2 ) * O C F * g O *  (NO-
N o m ) ) ) / ( K c * s q r t ( S i / S O ) ) ) ,
e n d

f r e q  = [ 1 0 e 6  1 0 e 6  2 0 e 9 ] , %RANGE OF FRE QUENCI ES TO PLOT THE
RESPONSE
wm = 2 * p i * f r e q ,

;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%
%%CALCULATE THE SMALL SI GNAL  RE SP ONS E AND PLOT THE MODULATION 
RESPONSE %%OF THE LASER 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%- 
%%%%%%%%%%%%%%%%%%%%
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X -  2 * K c * s q r t ( S i * S O ) * c o s ( P h i O ) ,
Y = K c * s q r t ( S i / S O ) * s i n ( P h i O ) ,
0  = ( j  *wm + ( X /  ( 2 * S 0 ) ) ) ,
P = (3 *wm + ( 1 / t n )  + g O * S O ) ,

i f  S i  = =  0
s i  = - ( ( A c / ( q * V ) ) * g O * S O * O C F )  / (wm A2 -  (wm) * ( i * g O * S O )  +
(wm) * ( 1 /  ( t n ) ) -  ( g O * S O ) / t p ) ,  

e n d
i f  S i  > 0

s i  = ( ( ( O C F * A c * g O * S O )  / ( P  * q * V ) ) * ( 1  -  Y * a l p h a  / O ) ) / (  ( 3  *wm) + 
( X / ( 2 * S 0 ) )  + ( Y A2 / O )  + ( X * Y * a l p h a * g 0  / (P * 0 ) ) -  
( S O * Y * a l p h a * g O  /  ( P  * 0 * t p ) ) - (X*gO / P )  + ( g 0 * S 0  / (P * t p ) ) ) ,

e n d

%%%%%%%%% P l o t  R e s o n a n c e  F r e q  %%%%%%%%% 
f i g u r e  ( 2 ) ,
s  = a b s ( s l ) ,  % G e t  a b s o l u t e  v a l u e s  o f  t h e  c h a n g e  m

p h o t o n  % d e n s i t y
l o g s  = 2 0 * l o g l 0 ( s / A c ) , % Ge t  t h e  l o g  o f  c h a n g e  i n  p h o t o n  n u m b e r

w i t h  % r e s p e c t  t o  c h a n g e
% i n  i n p u t  c u r r e n t  ( T h e  m o d u l a t i o n  r e s p o n s e )  

n o r m s  = l o g s  -  l o g s ( l ) ,  % N o r m a l i s e  i t  t o  t h e  f i r s t  v a l u e
p l o t ( f r e q  * l e - 9 , n o r m s ) ,  % a n d  p l o t
a x i s ( [ 0  2 0  - 3 0  4 0 ] ) ,  
t i t l e  ( ' M o d u l a t i o n  R e s p o n s e ' ) ,
x l a b e l ( ' F r e q u e n c y  ( G H z ) ' ) ,  y l a b e l ( ' R e s p o n s e  ( d B ) 1 ) ,  
h o l d  o n ,  g r i d ,

f o r  I _ _ b i a s  = [ 0  0 0 0 1  1 0 0 e - 3 ]  % E a c h  c u r r e n t  v a l u e  t o  t a k e  t h e  p o w e r
a t
a _ v a r  = - <CA2 + C A2 * a l p h a A2 / 4 ) /  ( 4 * t n ) ,

b _ v a r = l / ( 4 * t n ) * ( 2 * C A2 * N o m + 2 * C / t p + C A2 * a l p h a A2 / 2 * N o m + C * a l p h a A2 / ( 2 * t p ) + 
+ d e l t a w * C * a l p h a ) + E / 4 * ( C A2 + C A2 * a l p h a A2 / 4 )

c _ v a r = - E / 4 * ( 2 * C A2 * N o m + 2 * C / t p + C A2 * a l p h a A2 / 2 * N o m + C * a l p h a A2 / ( 2 * t p ) + 
d e l t a w * C * a l p h a ) - 1 / ( 4 * t n ) * ( N o m * C * ( N o m * C + 2 / t p + C * a l p h a A2 / 4 * N o m +  
+ a l p h a A2 / t p + d e l t a w * a l p h a ) + l / t p A2 + a l p h a A2 / ( 4 * t p A2 ) + d e l t a w * a l p h a / t p + d e l  
t a w A2 ) - K c A2 * S i * g 0

d _ v a r = E * C * N o m / 4 * ( C * N o m + 2 / t p + C * a l p h a A2 / 4  * N o m + a l p h a A2 / t p + d e l t a w * a l p h a )  + 
+ E / ( 4 * t p A2 ) + E * a l p h a A2 / ( 1 6 * t p A2 ) + d e l t a w * E * a l p h a / ( 4 * t p ) + E * d e l t a w A2 / 4  
+ K c A2 * S i * g 0 * N o m
%Ge t  t h e  r o o t s  o f  t h e  a b o v e  e q u a t i o n  
N 0 _ e q  = [ a _ v a r  b _ v a r  c _ v a r  d _ v a r ] ,
N 0 _ R o o t s  = r o o t s ( N 0 _ e q ) ,
NO = ( N 0 _ R o o t s ( 3 ) ) ,  %N0,  t h e  s t e a d y  s t a t e  c a r r i e r
d e n s i t y

SO = ( ( I _ b i a s * t n ) -  ( N 0 * q * V ) ) / ( t n * g 0 * ( N O - N o m ) * q * V ) ,

%F ro m t h e  p h o t o n  d e n s i t y  t h e  p o w e r  c a n  b e  o b t a i n e d  a n d  t h e n  p l o t t e d  
P o u t  = SO * c  / ( 2 * O C F * n ) * h * f _ l a s e r * A r * ( 1 - R ) , 

f i g u r e ( 1 0 0 ) ,
p l o t ( I _ b i a s * 1 0 0 0 ,  P o u t * 1 0 0 0 ,  ' k ' ) ,
a x i s ( [ 0  100  0 1 6 ]  )
t i t l e ( ' P l o t  o f  " P  v s  I "  C u r v e ' ) ,
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x l a b e l ( ’ B i a s  C u r r e n t  ( m A ) ' ) ,  y l a b e l { ' O u t p u t  P o w e r  ( m W ) ' )  
g r i d ,  h o l d  o n ,

e n d
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SCM system

% % % % % % % % % % % % % % % % % % % 0/o % % % % % 0/o % % % % % % % % % % % % % % %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% This Program
m o d e l s  t h e  t r a n s m i s s i o n  o f  a  m u l t i c h a n n e l  d a t a  s i g n a l  %% o v e r  o p t i c a l  
f i b e r  T h e  l a s e r  i s  m o d e l l e d  b y  s o l v i n g  t h e  o p t i c a l  r a t e  e q u a t i o n s  
u s i n g  t h e  O D E - 4 5  f u n c t i o n  i n  M a t l a b  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
c l e a r  a l l  % c l e a r s  a l l  v a r i a b l e s

% d e f i n e s  t h e  g l o b a l  v a r i a b l e s
g l o b a l  A r  Nom OCF t p  B q  V n u m c a r r i e r s  s p a c i n g  m o d i n g _ s i g
i n p u t _ s i g n a l  s a m p l e _ n u m b e r  s p a n  f c l  A c  A I _ b i a s  t n  gO x  f m l  T F i n a l  F s
n u m b i t s  f  T e x  b i t s e q u e n c e  T s  f i l t e r e d _ m o d i n g _ s i g  b i t v a l u e  d e l t a w  
a l p h a  S i  Kc  f ,

5%%%%%Laser  Parameters%%%%%%%%%%%%% 
gO = l e - 1 2 ,  % D i f f e r e n t i a l  g a i n  c o e f f i c i e n t
Nom = 1 4 e 2 3 ,  % T r a n s p a r e n c y  d e n s i t y  (mA- 3 )
V = l l e - 1 7 ,  % V o l u m e  o f  a c t i v e  l a y e r
t p  = 2 e - l l ,  % P h o t o n  l i f e t i m e  ( s )
t n  = 3 e - 9 ,  % C a r r i e r  r e c o m b i n a t i o n  l i f e t i m e
OCF = 0 3 5 ,  % M o d e  c o n f i n e m e n t  f a c t o r
B = 0 0 0 0 0 ,  % B e t a ,  s p o n t a n e o u s  e m i s s i o n  f a c t o r
q  = 1 6 e - 1 9 ,  % C h a r g e  o f  e l e c t r o n  (C)
a l p h a  = 6  8 , % L x n e w i d t h  E n h a n c e m e n t  F a c t o r
A c = 6 e - 3 ,
A = [ 3  2 e - 3  2 9 e - 3  0 e - 3  3 e - 3  3 2 e - 3 ] ,  % A m p l i t u d e  o f  c a r r i e r s
I _ b i a s  = 7 0 e - 3 ,  % B i a s  C u r r e n t
d e l t a f  = - l l e 9 ,  % F r e q u e n c y  D e t u n i n g
d e l t a w  = 2 * p i * d e l t a f ,  % C o n v e r t  f r e q u e n c y  t o  r a d i a n s
S i  = 3 0 e 2 0 ,  % I n j e c t i o n  L e v e l  ( I n j e c t e d  p h o t o n  d e n s i t y )
Kc  = 2 5 e l l ,  % I n j e t e d  l i g h t  c o u l p i n g  c o e f f i c i e n t
i f  S i  = =  0 ,

d e l t a w  = 0 , % i t  t h e r e ' s  n o  i n j e c t i o n  t h e n  i g n o r e  t h e  d e t u n i n g
i n
e n d  % t h e  p h a s e  e q u a t i o n

h  = 6 6 2 5 e - 3 4 ,  % P l a n c k s  c o n s t a n t
R = 0 3 2 ,  % R e f l e c t i v i t y  i n  c a v i t y
c  = 3 e 8 ,  % S p e e d  o f  l i g h t
n  = 3 6 3 ,  % R e f r a c t i v e  i n d e x
A r  = 0 3 e - 1 2 ,  % A r e a  o f  t h e  a c t i v e  r e g i o n
l a m d a  = 1 5 5 0 e - 9 ,  % W a v e l e n g t h  o f  o u t p u t  l i g h t
f _ l a s e r  = c / l a m d a , %  F r e q u e n c y  o f  t h e  o u t p u t  l i g h t
r e s p o n s i v i t y  = 0 6 , %  R e s p o n s i v i t y  o f  t h e  d e t e c t o r

f m l  = 1 4 0 e 6 ,  % D a t a  M o d u l a t i o n  R a t e
b i t p e n o d  = 1 / f m l ,  % D a t a  b i t  p e r i o d  P e r i o d  = 1 / f
n u m c a r r i e r s  =  5 ,  % n u m b e r  o f  s u b c a r r i e r s

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% T H I S  S EC T I O N  USES THE RATE_EQUATI ONS FUNCTION TO OBTAIN THE 
C AR RI E R %% D E N S I T Y ,  CALCULATES THE P H I 0  AND SO AND PLOT THE FREQUENCY 
RESPONSE %% OF THE LASER 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
N 0 = R a t e  E q u a t i o n s ( S i )
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% SO t h e  s t e a d y  s t a t e  p h o t o n  d e n s i t y  i s  w o r k e d  o u t  b y  r e a r r a n g i n g  t h e  
% c a r r i e r  d e n s i t y  r a t e  e q u a t i o n

SO = { ( I _ b i a s * t n ) -  ( N 0 * q * V ) ) / ( t n * g O * ( N O - N o m ) * q * V )

% I n j e c t i o n  R a t i o  
r a t i o  = S i / S O

% O u t p u t  p o w e r  i s  w o r k e d  o u t  u s i n g  P h o t o n  D e n s i t y  
% P o u t  = SO * c  / ( 2 * O C F * n ) * h * f _ l a s e r * A r * ( 1 - R ) ,

i f  S i  = =  0 ,
A = [ 6 e - 3  6 e - 3  6 e - 3  6 3 e - 3  6 4 e - 3 ] , %CARRIER AMPLITUDES FOR FREE 
P h i O  = 0 ,  % RUNNING LASER

e l s e
P h i O  = a s m  ( ( - a l p h a /  ( 2 * t p )  -  ( d e l t a w )  + ( ( a l p h a / 2 ) * O C F * gO * (NO-
Nom) ) ) / ( K c * s q r t ( S i / S O ) ) ) ,
e n d

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% T H I S  SE C TI ON  I S  WHERE THE DATA CHANNELS WHICH MODULATE THE LASER 
ARE %% SET UP AND MODULATED ONTO THE LASER 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%RANDOM B I T  SEQUENCE 
n u m b i t s  = 1 0 0 ,
b i t s e q u e n c e  = R a n d o m _ B i t _ A l l o c a t o r  ( f m l , n u m b i t s ,  n u m c a r n e r s )  
n u m b i t s  = s i z e ( b i t s e q u e n c e , 2 ) ,

f c l  = 11 2 e 9 ,  % F r e q u e n c y  o f  1 s t  c a r r i e r  ( Hz )
s p a c i n g  = 0 ,  % C a r r i e r  s p a c i n g  d e f i n e d  l a t e r  o n
s p a n  = 1 6 e 9 ,  % F r e q  S p a n  o c c u p i e d  b y  c o m b i n e d  c a r r i e r s

F s  = 2 9  9 6 e 9 ,  % S a m p l i n g  F r e q u e n c y
T F i n a l  = n u m b i t s * b i t p e n o d ,  % T i m e  f o r  f u l l  p a t t e r n
T s  = 1 / F s ,  % t i m e  i n t e r v a l

c h a n n e l _ B W  = 7 * f m l ,  % F i l t e r  B a n d w i d t h

% N o i s e  p a r a m e t e r s  
k = 1 3 8 0 7 e - 2 3 ,
T = 2 9 5 ,
M = 1 ,
F = 1 ,
I m p  = 5 0 ,
n u m s a m p l e s  =  ( T F i n a l * F s )  + 1 ,

% S e t  u p  t h e r m a l  n o i s e
t h e r m a l _ n o i s e  =  ( s q r t ( ( 4 * k * T * c h a n n e l _ B W ) / I m p ) * r a n d n ( n u m s a m p l e s , 1 ) ) ,

% S e t  u p  c a r r i e r  s p a c i n g  d e p e n d i n g  o n  n u m b e r  o f  c a r r i e r s  a n d  t h e  
t o t a l  % s p a n  t h e y  o c c u p y  
i f  n u m c a r n e r s  > 1 ,

s p a c i n g  = [ 5 0 0 e 6  4 0 0 e 6  4 0 0 e 6  5 0 0 e 6 ] , % s p a n  /  ( n u m c a r n e r s  -  1 ) ,  
e n d  % S p a c i n g  b e t w e e n  s u c c e s s i v e  c a r r i e r s  i n
S y s t e m

% P u t s  t h e  b i t  p a t t e r n  i n t o  b i t s l o t s  f o r  m o d u l a t i o n  
m o d m g _ s i g  = 0 ,
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m o d i n g _ s i g  = B i t _ A l l o c a t o r ( b i t s e q u e n c e ,  f m l ,  n u m c a r r i e r s ,  F s ,  0 ,  
T F m a l )  ,

% S e t s  u p  a  l o w  p a s s  f i l t e r  a n d  f i l t e r s  t h e  d a t a  p a t t e r n  
[ b , a ]  = c h e b y 2  ( 5 , 7 0 ,  0 2 8 ) ,  
f o r  x  = 1 1 n u m c a r r i e r s ,
f  i l t e r e d _ m o d m g _ s i g  ( x ,  ) = f i l t f i l t ( b ,  a ,  m o d i n g _ s i g  ( x ,  ) ) ,  %
F i l t r a t i o n  o f  R e c e i v e d  C u r r e n t  s i g n a l
e n d

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% USES THE FUNCTION D a t a _ O D E 4 5  TO CALCULATE THE VALUE OF PHOTON 
%% DE N SI TY ,  C AR RI E R DE NS ITY AND PHASE FOR D IF F E R E N T  TIME SAMPLES FOR 
%% MODULATING CURRENT

1515 ^ "o "o ”5 o o j$ '6 * 6 '6 t5 o 'o^^ 'o 'o 'o ' i^^'S'o^'o^'S^'oo^^'o'oo'o^'o'o 'oooo'o'o 'o 'o^'o'o^'o'o'o^'o^o^^'a 'o^'o'o^^
& 9-
t s p a n  = [ 0  T s  T F i n a l ] ,  % t i m e  s p a n  w i t h  s a m p l i n g  f r e q

yO = [ P h i O , S O , N O ] ,% i n i t i a l  C O N D I T I O N S  ( s t e a d y  s t a t e  v a l u e s  f r o m  
a b o v e )
[ t , p ]  = o d e 4 5 ( ' D a t a _ O D E 4 5 ’ , t s p a n , y O ) ,
%%%%%%%%%%%%%%%%%%%%%%%%
f c l =  f c l - ( s p a c i n g ( 1 ) - 4 0 0 e 6 )
f c ( 1 ) = f c l ,

i n p u t _ s i g n a l  = 0 ,
f o r  x  = 2 1 n u m c a r r i e r s ,
f c ( x )  = f c ( x - l )  + s p a c i n g  ( x - 1 ) ,  % s e t s  t h e  c a r r i e r  f r e q u e n c i e s  
% T h i s  l i n e  u p c o n v e r t s  t h e  d a t a  s i g n a l  t o  t h e  c a r r i e r  f r e q u e n c y  
e n d ,
f o r  x = l  1 n u m c a r r i e r s ,  

m o d e d _ s i g (  , x )  = ( ( f i l t e r e d _ m o d i n g _ s i g  ( x ,  ) ’ ) * ( A ( x )  *
c o s  ( 2 * p i * f c ( x ) * t ) ) ) ,
% T h i s  m o d e l s  t h e  e l e c t r i c a l  p o w e r  c o u l p e r  f o r  e a c h  c a r r i e r
i n p u t _ s i g n a l  = m p u t _ s i g n a l  + m o d e d _ s i g (  , x ) ,
e n d

% B i a s  t e e
I  = I _ b i a s  + i n p u t _ s i g n a l ,

% T a k e  v a l u e s  o f  P h a s e ,  P h o t o n  D e n s i t y  a n d  C a r r i e r  D e n s i t y  b a c k  f r o m  
ODE 4 5
P h i  = p (  , 1 )  ,
S = p ( , 2 ) ,
N = p  ( , 3 )  ,

% C o n v e r t  P h o t o n  D e n s i t y ,  t o  O p t i c a l  P o w e r  i n  W a t t s  
P o u t  = S * c / ( 2 * O C F * n ) * h * f _ l a s e r * A r * ( 1 - R ) ,

%%%%%%%%
% N e x t  3 l i n e s  m o d e l  t h e  v a r i a b l e  a t t e n u a t o r  u s e d  m  t h e  BER 
m e a s u r e m e n t s  
%%%%%%%% 
a t t e n  = 1 5 ,
r a t i o  = 1 0 A ( a t t e n / 1 0 ) ,
P o u t  = P o u t / r a t i o , %
P o w e r  =  1 0 * l o g l 0 ( m e a n ( P o u t ) ) % A v e r a g e  P o w e r

%%%%%%%% CALCULATE F L F C T R I C A L  SPECTRUM %%%%%%%%%%%%%%%

%%%%%%%%
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% No o f  p o i n t s  F o r  F o u r i e r  T r a n s f o r m  
%%%%%%%%
1 = 3 2 7 6 8 * 1 6 ,  
g  = i / 2 ,
f r e q  = F s * (0  g ) / 1 , % I m p o r t a n t  h a l f  o f  ' F '  a x i s

F P m  = f f t  ( I , i )  , %
I n p u t  s i g n a l
F i n  = F P m  * c o n }  ( F P m )  /  1 , %
F i n  ( 1 )  = F i n  ( 2 ) ,  %
L F i n  = 2 0 * l o g l 0 ( F i n ) , %

G e t t i n g  f a s t  f o u r i e r  t r a n s f o r m  o f

R e m o v e  c o m p l e x  c o m p o n e n t s  
R e m o v e s  t h e  DC v a l u e  
P u t s  i n t o  l o g  s c a l e

F P o u t  = f f t ( P o u t , 1 ) ,  % F o u r i e r  t r a n s f o r m  o f  o u t p u t  s i g n a l
F o u t  = F P o u t  * c o n j ( F P o u t )  /  1 ,
F o u t  ( 1 )  = F o u t ( 2 ) ,
L F o u t  = 2 0 * l o g l 0  ( F o u t ) ,

%%%%%%%% D i s p l a y  o u t p u t  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% P l o t  t h e  i n p u t  t o  a n d  o u t p u t  f r o m  t h e  l a s e r  m  t h e  t i m e  a n d  
f r e q u e n c y  d o m a i n s
‘6'o'o'o,ot>15^'o'oo15'o’i^15'0'o'6o'i'o'o15'l515o'o'oo15'o15'o'oi>^ioo'ol5'o'o'6ij'o^ooL5'o^5'6
f i g u r e ,
s u b p l o t ( 2 , 1 , 1 ) ,  
p l o t ( t , I ) ,
y l a b e l ( ’ I n p u t  P u l s e ’ ) ,  
g r i d ,
s u b p l o t ( 2 , 1 , 2 ) ,  
p l o t  ( t , P o u t ) ,
y l a b e l ( ' O u t p u t  P o w e r ' ) ,  x l a b e l ( ' T i m e ' ) ,  
g r i d ,

f i g u r e ,
% s u b p l o t ( 2 , 1 , 1 ) ,
p l o t ( f r e q  * l e - 9 , L F i n ( l  g + 1 ) ) ,
y l a b e l ( ' P o w e r  ( d B m ) ' ) ,
g r i d ,
f i g u r e
% s u b p l o t ( 2 , 1 , 2 ) ,
p l o t ( f r e q  * l e - 9 , L F o u t (1 g + 1 ) ) ,
y l a b e l  ( ' P o w e r  ( d B m ) ' ) ,  x l a b e l ( ' F r e q u e n c y  ( G H z ) ' ) ,  
g r i d ,

0 O O O “O *Q X  0 O O ' O ' O ’G ’O ' l S o O  O O O "o Cl Q "O "Q Q O O ^ i ' O ' O ' O ^ O ^ ^ ' O ' O t ^ O ' O O ^ ^ ^ ' O O ' S ^ ' O ' Q ' Q ^ ^ ' O O O ' O '

% T h i s  l i n e  m o d e l s  t h e  d e t e c t o r  

I _ r e c e i v e d  = ( P o u t  * r e s p o n s i v i t y ) ,

f o r  x  = 3 %ONLY THE CENTRAL CHANNEL
d o w n c o n v e r t  = d e m o d ( I _ r e c e i v e d ,  f c ( x ) ,  F s ,  ’ a m ' ) /  % D o w n c o n v e r t  

b a c k  t o  b a s e b a n d

% S e t  u p  t h e  l o w  p a s s  f i l t e r ,  a n d  f i l t e r  w i t h  t h e  a d d i t i o n  o f  n o i s e  
[ b , a ]  = c h e b y 2 ( 8 , 8 0 ,  0 2 8 ) ,

R x _ D a t a _ s i g n a l  =  f i l t f i l t ( b ,  a ,  d o w n c o n v e r t ) + t h e r m a l _ n o i s e ,  
f o r  i = l  1 1 0 * 2 1 4
R x _ D a t a _ s i g n a l ( 1 ) = R x _ D a t a _ s i g n a l ( 1 + 1 0 * 2 1 4  + 1)  , 

e n d ,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% T h i s  p l o t s  t h e  i n i t i a l  d a t a  s i g n a l  a n d  t h e  r e c o v e r e d  d a t a  s i g n a l
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o'o^'o’o'ox'o'o'oo'a'o^x'o'o^o'o'o^x'o'Sx'o'o^'o'o'oo'o'oo'«
m o d _ x n t e r e s t  -  f i l t e r e d _ m o d i n g _ s i g ( x ,  ) ,  %The  i n i t i a l  d a t a  s i g n a l  
f i g u r e ,
s u b p l o t  ( 2 , 1 , 1 ) ,  
p l o t ( t ,  m o d _ i n t e r e s t ) , 
y l a b e l ( ' I / P  D a t a  S i g n a l ' ) ,  
g r i d ,
s u b p l o t  ( 2 , 1 , 2 ) ,
p l o t  ( t ,  R x _ D a t a _ s i g n a l ) ,
y l a b e l ( ' 0 / P  D a t a  S i g n a l  [ m A ] 1 ) ,
x l a b e l ( ' t i m e  ( n s )  ' ) ,
g r i d ,

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% T h e  f i n a l  s e c t i o n  p l o t s  t h e  e y e  d i a g r a m  a n d  c a l c u l a t e s  t h e  BER
5 - 5 - ^ 3 - 5 - 9 . ^ 5 - 9 - 9 - Q . S ' 2 - 9 - 5 - Q * £ ^ 5 . 9 . 3 . 5 - 5 - a - ^ ^ 5 . 9 - S - 5 - 9 - 9 . 9 . 9 . ^ ^ Q . o , 5 - 9 , Q - 5 - ^ Q . C . o . g , o a o o a o . o . ' l o Q . Q . o . o . g , q ,"o o x o"o'©’o'o15 o -o "o x *o o x 15 "O "S "o <5 o o “o *0 "o o 15 o oxx'oo'o'o'o'o'o'o'o'o'o'o'o'oo'o'o'oxoo'o' i 'o'ooxo'ox
i n t e r v a l  =  b i t p e n o d  * F s ,  % n u m b e r  o f  s a m p l e s  p e r  b i t  i n t e r v a l  
f i g u r e ,
t i t l e  ( ’ E y e  D i a g r a m ' ) ,  
y l a b e l ( ' C u r r e n t  [ A m p s ] ' ) ,  
x l a b e l  ( ' B i t  P e r i o d ' ) ,  
h o l d  o n ,
x _ v a l u e s  = - 0  5 1 / i n t e r v a l  1 5 ,  % 2 0 0 0  s a m p l e s  f r o m  - 0  5 t o  1 5 
H I _ v a l u e s  = 0 ,  % I n i t i a l i s e  V a r i a b l e s  
L O _ v a l u e s  = 0 ,

% S e t s  t h e  s a m p l e  r a n g e  f o r  e a c h  b i t  l e  (1 2 0 0 1 ) ,  ( 2 0 0 1  4 0 0 1 )  e t c
f o r  z  = 1 n u m b i t s ,

y _ l o w e r  = ( z - 1 ) * i n t e r v a l  + 1 , 
y _ h i g h e r  = y _ l o w e r  + i n t e r v a l ,

% N e x t  l i n e s  s e t  u p  4 0 0 0  s a m p l e s  (2 b i t  p e r i o d s )  t o  p l o t
% I t  s t a r t s  h a l f w a y  t h r o u g h  1 s t  t h e n  t h e  f u l l  2 n d  t h e n  h a l f  3 r d  t o
g i v e  % e y e  d i a g r a m
% ( - 9 9 9  3 0 0 1 )  d o e s n t  p l o t ,  ( 9 9 9  5 0 0 1 )  p l o t s  e t c  

s t a r t  = y _ l o w e r  -  ( m t e r v a l / 2 ) , 
f i n i s h  = y _ h i g h e r  + ( i n t e r v a l / 2 ) , 
i f  ( s t a r t  > 0 ) & ( f i n i s h  < ( n u m b i t s  * i n t e r v a l ) )

p l o t  ( x _ v a l u e s ,  R x _ D a t a _ s i g n a l ( s t a r t  f i n i s h ) ) ,  % U s e s  t h e  X 
e n d  % v a l u e s  -  5 u p  t o  1 5

M e a n _ R x _ S i g n a l  = m e a n ( R x _ D a t a _ s i g n a l ) ,  % G e t s  t h e  a v e r a g e  t o  w o r k  o u t
% t h e  t h r e s h o l d  f o r  t h e  BER 

% I f  t h e  a v e r a g e  b i t  v a l u e  i s  g r e a t e r  t h a n  t h e  t h r e s h o l d  t h e n  t a k e  i t  
% a s  a  1 o t h e r w i s e  t a k e  i t  a s  0
i f  ( m e a n ( R x _ D a t a _ s i g n a l ( y _ l o w e r  y _ h i g h e r ) ) > M e a n _ R x _ S i g n a l ) , % b i t  

H I _ v a l u e s  = [ H I _ v a l u e s , R x _ D a t a _ s i g n a l ( y _ l o w e r  + % v a l u e  i s
HI

f l o o r  ( i n t e r v a l / 4 ) y _ h i g h e r  -  f l o o r ( i n t e r v a l / 4 ) ) ] ,  
e l s e  % b i t  v a l u e  i s

LO
L O _ v a l u e s  = [ L O _ v a l u e s ,  R x _ D a t a _ _ s i g n a l  ( y _ l o w e r  +

f l o o r  ( m t e r v a l / 4 )  y _ h i g h e r  -  f l o o r  ( i n t e r v a l / 4 )  ) ] ,
e n d

e n d
% T a k e s  m e a n  v a l u e s  a n d  s t a n d a r d  d e v i a t i o n s  t o  w o r k  o u t  t h r e s h o l d  
v a l u e
^ a c c o r d i n g  t o  t h e  e q u a t i o n  
m e a n _ H I  = m e a n ( H I _ v a l u e s ) , 
m e a n _ L O  = m e a n ( L O  v a l u e s ) ,
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s i g m a _ H I  = s t d ( H I _ v a l u e s ) , 
s i g m a _ L O  = s t d ( L O _ v a l u e s ) ,

T h r e s h _ L e v  = ( ( s i g m a _ L O * m e a n _ H I )  + ( s i g m a _ H I * m e a n _ L O ) ) / ( s i g m a _ L O  + 
s i g m a _ H I ) ,

% U s e s  t h e  e q u a t i o n  f o r  BER t o  w o r k  i t  o u t  f o r  e a c h  c h a n n e l
B E R ( x )  = 0 2 5  * ( e r f c { ( m e a n _ H I  -  T h r e s h _ L e v ) / ( s q r t ( 2 ) * s i g m a _ H I ) ) +

e r f c ( ( T h r e s h _ L e v  -  m e a n _ L O ) / ( s q r t ( 2 ) * s i g m a _ L O ) ) ) ,
e n d
BER % P r i n t s  o u t  t h e  B i t  E r r o r  R a t e s
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Random Bit Allocator

9-5.9-^5-S-Q.5.Q.5.5.9.9-5-^5.^9.^9-9.9.5*2.5-9-9-^9«9-^9'9-2.5.£*5-^5-9-9-9-9.9.5.5.^Q.45.9.5.9-Q.5-0.o.i9.^9.5.e-5.^5- 
%  'O  O ^ X X ' O ' O O O O ' O ' O  O X ' O ' O  O ' Q ' O ' O ’ O ' O ' O ' O ' O  O X  *0 ^  15 O X O O  O O ' O X ' O ' O X ' O X ' O ' O ' O X X ’O ' O ' O X O O O ' O X ^ ' O ' O ' O ' O ' O ' O ' O

% T h i s  f u n c t i o n  i s  c a l l e d  w h e n  t h e  u s e r  w a n t s  a  r a n d o m  r a t h e r  t h a n  
% a  f i x e d  b i t  p a t t e r n  I t  a c c e p t s  t h e  m o d u l a t i o n  r a t e ,  t h e  n u m b e r  
% o f  b i t s  An t h e  n u m b e r  o f  c h a n n e l s  a n d  u s e s  t h e  r a n d  f u n c t i o n  t o  
% a s s i g n  a  v a l u e  o f  1 o r  0 t o  e a c h  T h e  l a s t  b i t  o f  e a c h  p a t t e r n  i  
% s e t  t o  0 t h i s  w a s  d o n e  t o  a v o i d  s o m e  s p u r i o u s  v a l u e s

3xx-ot>*6i5'o~6''o'o'ô t>'6'6xx'o'oxxx'a'6xx'o'o'ô xx'6o

f u n c t i o n  [ x , n ]  = R a n d o m _ B i t _ A l l o c a t o r ( m o d _ r a t e ,  n u m _ b i t s ,  
n u m _ c h a n n e l s }

b i t p e n o d  = ( l / m o d _ r a t e ) ,

x  = r a n d ( n u m _ b i t s ,  n u m _ c h a n n e l s ) ,

f o r  3 = 1 1  n u m _ c h a n n e l s ,  
f o r  i = l l  n u m _ b i t s - l ,  

i f  x ( i ,  3 ) > =  0 5 ,  
x ( i ,  3 ) = 1 , 

e l s e
x( i ,  3 ) = 0 ,

e n d
e n d
x ( n u m  b i t s ,  3 ) = 0 ,

e n d

x  -  x  ’ , %
f o r

%
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Bit Allocator

% T h i s  f u n c t i o n  i s  c a l l e d  t o  c o n v e r t  f r o m  a  s e q u e n c e  o f  I s  a n d  Os t o  
% a  s e t  o f  s a m p l e s  d e p e n d i n g  i n  t h e  t i m e  a n d  t h e  m o d u l a t i o n  r a t e  e t c  
% I t  b a s i c a l l y  s e t s  t h e  s a m p l e s  t a k e n  u p  b e  e a c h  b i t  p e r i o d  t o  t h e  
% r e l e v a n t  v a l u e  1 o r  0 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n  [ x , n ]  = B i t _ A l l o c a t o r ( b i t s e q ,  m o d _ r a t e ,  n u m _ c h a n n e l s , 
F _ s a m p l e ,

t _ i n i t ,  t _ f i n a l )

b i t p e n o d  = ( l / m o d _ r a t e )  ,

n u m b i t s  = s i z e { b i t s e q , 2 ) ,

n m i n  = t _ i n i t * F _ s a m p l e ,  
n m a x  = t _ f i n a l * F _ s a m p l e ,

%n = n m i n  1 / s t e p  n m a x ,  
x  = z e r o s ( n u m  c h a n n e l s ,  n m a x + 1 ) ,

n _ l o w e r  = 0 , 
n _ h i g h e r  =  0 ,
b i t _ i n t e r v a l  = f l o o r  ( b i t p e n o d * F _ s a m p l e )  ,

f o r  i = l l  n u m _ c h a n n e l s ,  
f o r  3 = 1 1  n u m b i t s ,

b i t v a l u e  = b i t s e q ( i ,  3 } ,  
n _ l o w e r  = n m i n  + {3 - I ) * b i t _ i n t e r v a l ,  
n _ h i g h e r  =  n _ l o w e r  + b i t _ i n t e r v a l ,  
x ( i ,  n _ l o w e r + l  n _ h i g h e r + l )  = b i t v a l u e ,

e n d
e n d
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Data Ode45 m

'O 'OO'O^^ 'i 'O 'iX 'O O^'OOO^^ 'O 'O 'O 'OD'O 'O OOO^'O 'i 'O '^ '^ '^OOOO'O ^^ 'O 'O 'i ' i ' ^^ 'O 'O 'O 'O 'O^^^ 'O ^^^^ 'O ' i 'O 'O ^ ' 

%%%%%%%%%%%%%
% T h e  c a l l  t o  O D E - 4 5  m  D a t a  m c a l l s  t h i s  f u n c t i o n  a n d  i n t e g r a t e s  
% t h e  o d e s  d e s c r i b e d  m  t h i s  M - f i l e  o v e r  t h e  t i m e  p e r i o d  t - i m t i a l  t o  
% t - f i n a l  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%
f u n c t i o n  d p  = D a t a _ O D E 4 5 ( t , p )
g l o b a l  A r  Norn OCF t p  B q  V n u m c a r n e r s  s p a c i n g  m o d i n g _ s i g  
m p u t _ s i g n a l  s a m p l e _ n u m b e r  s p a n  f c l  A c  I _ b i a s  t n  gO x  f m l  T F i n a l
F s  n u m b i t s  f  T e x  b i t s e q u e n c e
T s  f i l t e r e d _ m o d i n g _ s i g  b i t v a l u e  d e l t a w  a l p h a  S i  Kc  f ,

I'OO'OO^'O'O'O'O'O^^OOOO'O^'O'^

%%%%%%%% S e t u p  t h e  E l e c t r i c a l  i n p u t  s i g n a l  %%%%%%%%%%%%%%%% 
i n p u t _ s i g n a l  = 0 ,  
s a m p l e _ n u m b e r  = f l o o r ( t / T s ) ,
b i t v a l u e  = f  i l t e r e d _ m o d m g _ s i g  ( , s a m p l e _ n u m b e r + l ) , 
f o r  x  = 1 1 n u m c a r n e r s ,

f c ( x )  = f c l  + ( i x - 1 )  * s p a c i n g ) ,
c a m e r _ v a l u e  ( , x )  = ( ( b i t v a l u e ( x ,  ) )  * ( Ac  *

c o s  ( 2 * p i * f c ( x ) * t ) ) ) ,
m p u t _ s i g n a l  = i n p u t _ s i g n a l  + c a r r i e r _ v a l u e ( , x ) ,

e n d
% * * * * * * * * * * * * * * * * * * * * * * * * * *  C o m p o s i t e  I n p u t  S i g n a l

I  = I _ b i a s  + i n p u t _ s i g n a l , % P a s s  t h i s  v a l u e  t o  t h e  e q u a t i o n s  t o  g e t
% c o r r e s p o n d m g  v a l u e s  o f  P h o t o n & C a r n e r  D e n s i t y  &

P h a s e
S ^ ' k ' k - k ' k - k ' k - k - k ' k i e ' k ' k ' k ' k ' k - k ' k - k l ' - k ' k ' k - k - k ' k ' k ' k ' k ' k ' k ' k l c ' k - k - k ' k ' k - k ' k ' k ' k ' k ' k - k - k i c ' k - k ' k ' k ' k ' k ' k - k - k ' k - k ' k ' k ' k ' k ' k ' k ' k - k i t i c ' k

•k

% R a t e  E q u a t i o n s  
P h i  =  p ( l ) ,
S = p  ( 2 )  ,
N = p  ( 3 )  ,
d p  = [ ( a l p h a / 2 ) * ( O C F * g O * ( N - N o m )  -  1 / t p )  -  ( d e l t a w )
( K c * s q r t ( S i / S ) * s i n ( P h i ) ) ,
( ( O C F * g O * ( N - N o m )  -  ( l / t p ) ) * S )  + ( ( O C F * B * N ) / t n )  +
( ( 2 * K c ) * s q r t ( S i * S ) * c o s ( P h i ) ) ,
1/ ( q * V ) ) -  ( g O * ( N - N o m ) * S )  -  ( N / t n ) ] ,
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