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ABSTRACT

Laser-produced plasmas are formed when shott pulse, high power lasers are focused
onto a surface Applications range from VUV / X-ray sources for hthography,
microscopy and radiography to X-ray lasers, thin film deposition, analytical spec-
troscopy and electron / 1on beam generation A battery of particle and optical
techniques are currently being used to fully characterise the properties of laser-

produced plasmas

Over the past forty years much experimental and theoretical / computational work
has focussed on the generation and expansion of LPP’s in vacuum Recently how-
ever, the dynamics of LPP’s expanding mto background gasses has received 1n-
creased interest This has been driven by the need to control the growth condi-
tions of thin films produced using pulsed laser deposition The dynamics of LPP’s
expanding into background gasses are very different from that of the vacuum case

and leads to plume splitting and shairpening effects

Although much 1s known about the properties of laser-produced plasmas expanding
1n vacuum and 1nto background gasses, very httle 1s known about the expansion and
mteraction of a LPP into another LPP The aim of this project is the study of this
system, colliding laser-produced plasmas Colliding plasma experiments may be
cast as a model system for atmospheric and / or astrophysical colliding systems, for
example when tracer elements are injected 1nto supersonic winds at high altitude or
collisionless plasma interaction in young supernova remnants Colliding plasmas
have also been considered as a possible solution to the problem of particulate
deposition in PLD

In order to study colliding plasmas in this work we have used, primarily, three
diagnostic techniques VUV photoabsorption imaging was used n order to track
the evolution of dark plume matter, or non-emitting plasma species residing n
ground and metastable states We have also performed combined conventional
gated CCD 1maging and 1mmaging spectroscopy to study excited species in the

mteraction region

XX



CHAPTER 1

INTRODUCTION

1.1 Thesis Structure

This thesis has been divided into eight chapters A short desciiption of the contents

of each chapter 1s given below to aid the reader in navigating this thesis

Chapter One gives a brief overview of the motivations for studying colliding
laser-produced plasmas A short suivey of the important papers published

to date on colliding plasmas has been provided

Chapter Two discusses all of the relevant theoretical background required for
the analysis and discussion of the experimental and computational results
presented i the results chapters of the thesis Basic atomic processes 1n

plasmas and thermodynamic equilibrium models are outlined

Chapter Three outhnes the specific theory relating to the plasma diagnostics
used 1n this work A broad introduction to plasma diagnostics is followed
by a detailed description of photoabsorption imaging as well as the theory
behind the extraction of plasma parameters from such images A discussion
on spectral line broadening mechanisms and methods for extracting plasma

parameters from spectroscopic measurements has been presented

Chapter Four provides a detailed description of the experimental systems used
during this work The VUV photoabsorption imaging facihity (VPIF), spec-
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trally filtered time-resolved emission imaging and time-resolved imaging spec-
troscopy setups are discussed The capabilities and limitations of these sys-

tem are outlined

Chapter Five presents results and analysis of VUV photoabsorption imaging
studies of single and colliding laser-produced plasmas Equivalent width 1m-
ages and column density maps are calculated and discussed Data acquisition

procedures using the VPIF are also outhned

Chapter Six presents time and space-resolved 1maging spectroscopy results of
the interaction region between colliding calcium plasmas Results from spec-
trally filtered time-resolved ICCD imaging of the evolution and interaction

dynamics are also presented, discussed and analysed

Chapter Seven describes 1n detail the implementation and application of a ra-
diation transport model developed to explain spectroscopic results obtained

during this work and presented in chapter six

Chapter Eight concludes the work by providing a summary of all of the results
presented 1n the thesis Suggestions for possible future experimental and

computational work are discussed

Appendix A provides reference material to aid the reader A list of all notation
used m this thesis along with a description of their meaning and the location
of the first mstance of their use A list of abbreviations used m this thesis

and their meanings 1s also provided
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1.2 Review of Colliding Laser-Produced Plasmas

Plasmas produced by the focussing of laser beams onto solhd targets have been
the object of intensive theoretical and experimental work since the development of
high-power lasers in the eaily 1960°s This research 1s still vigorous to this day and
1s fuelled both by the fundamental physics interest in laser-solid / laser-plasma
interactions and by the more recent applied requirements of materials process-
ing technology The number of applications of laser-produced plasma’s (LPP’s)
has steadily grown throughout the years and now ranges from Vacuum Ultiavio-
let (VUV) / X-ray sources for hithography, microscopy and radiography to X-ray
lasers, thin film deposition, analytical spectroscopy, electron / 10on beam generation

and quantitative elemental analysis of samples [1, 2, 3, 4, 5]

As the number of applications of LPP’s grew so too did the list of particle and
optical diagnostic techniques available to study their characteristics, these include
emission / absorption spectroscopy, laser-induced fluorescence, mass spectrome-
try, Langmuir probes, interferometry, Thompson scattering and a host of imaging
techmiques (6, 7, §|

In spite of these developments the majority of the research carried out on LPP’s to
date has been on the study of single element, single plasma expansion in vacuum
Even though considerable effort has been spent on this specific system the expan-
sion dynamics of laser-produced plasmas remains incompletely understood This 1s
due mainly to the transient nature of laser-produced plasmas, whose characteristics
evolve quickly and are strongly dependent on uradiation conditions such as laser
intensity, wavelength, pulse length and spot size, as well as the number of mecha-
nisms that are involved m the laser-solid / laser-plasma interaction and subsequent
plume expansion These mechanisms include laser absorption, heating, melting,

evaporation, expansion, lonisation, radiation, recombination and condensation

Improvements in laser technology throughout the 60’s and 70’s shifted the theoret-
1cal and experimental research focus from the moderate energy regime (10% — 10
Wem™2) to the ultra-intense (> 10'® Wem™2) drniven primarily by fusion experi-
ments [6] and more recently by X-ray lasers [3] However since the early 90's the
growth mn the semiconductor industry and the need to manufacture thm films has

generated strong interest in Pulsed Laser Deposition (PLD) of thm films, which



1 2 REVIEW OF COLLIDING LASER-PRODUCED PLASMAS 4

predominantly uses plasmas generated with moderate energy nanosecond pulses [9)]
A detailed understanding of the processes involved 1n the generation, expansion
and deposition of plasmas in this energy regime 1s critically important to control

and optimise the processing of these films

PLD has also recently focussed attention on the interaction of laser-produced plas-
mas with a background gas due to the need in PLD to tailor the composition of
the thin films and control the conditions under which the films are grown The
expansion dynamics of a laser-produced plasma expanding into a background gas
18 very different to that of a plasma expanding »n vacuo and 1s poorly understood
Ablation 1nto a gas results in shock waves and expansion fronts as well as plume
sphtting and sharpening effects [10] that are not seen 1n expansion nto vacuum
Although little work has been done on the expansion of laser-produced plasmas
mnto a background gas, considerably less work has been carried out on the inter-
action of plasmas expanding mto other plasmas During this collision process, the
plasmas do not merge and decay 1n a simple manner, 1nstead a dramatic configura-
tional transformation 1s observed during which increased emission from the overlap
or interaction region 1s recorded [11] This plasma-plasma mteraction 1s a major

focus of this work and this thesis

Collding plasmas occur 1n very many situations, predominantly astrophysical but
recently a number of possible applications of colliding laser-produced plasmas have
emerged These include, in the design of indirect drive mertial confinement fusion
hohlraums [12], in the field of X-ray lasers [3] and as a possible solution to cluster

formation and deposition problems in PLD [13)

Astiophysically, the free expansion of stellar ejecta into interstellar media 1s a
naturally occurring colhiding plasma phenomenon that has been subject to high
resolution astronomical observation The scale and complexity of the events in-
volved make them a significant challenge for current numerical simulation, making
a direct experimental approach particularly helpful [14] Although the absolute
physical scales (lengths, times, densitics) of these astrophysical phenomena differ
greatly from that of collding laser-produced plasmas the relevance and abihity of
laboratory experiments to simulate these events rests on detailed scaling analysis
of specific properties of the plasmas Recently Woolsey et al {14] published re-
sults of just such experiments in which they address specific aspects of collisionless

plasma interaction i a young supernova remnant using millimetre-scale counter
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streaming colliding laser-produced plasmas

Initial experiments on colliding plasmas were performed 1n the late 1960’s and early
1970’s Rumsby et al [15] published the first significant paper on colliding plasma
plumes during this period in 1974 They investigated the expansion and interac-
tion of two laterally colliding carbon plasma plumes generated next to each other
on a flat surface Time-integrated photographs and photon scattering techniques
were used to study the expansion dynamics and the plasma parameters from the

interaction region for different plume separations

After this paper very little was published on colliding plasmas until the early 1990’s
Since then there has been considerably increased experimental and computational
interest 1n the field of colliding laser-produced plasmas Numerous target configu-
rations and diagnostic techniques have been employed to elucidate the interaction
dynamics of plasmas nitiated with various irradiance conditions In what follows,

results of the most important of these papers are summarised

In 1992 Begumkulov et al [16] investigated the collision of two plasmas generated
next to each other on a flat surface in vacuum and at various background gas pres-
sures They generated the plasmas by splitting a high-power (8 J 1n 8 ns) ruby laser
into two parts by placing a glass wedge prism into the beam, deflecting a portion
at a slight angle before focussing the two beams onto berylllum and aluminium
targets They recorded time and wavelength (visible) integrated photographs of
the colliding plumes as well as charge specific spectrohehiograms to track the dis-
tribution of selected 10n stages Figure 1 1 shows an example image set taken from
this paper 1n which they vary the separation (Ar) between the two beryllhum plas-
mas, to examine the effect 1t has on the iteraction region formed between the two
plumes Their mam concein however was the angular scatter pattern of 1ons of
different multiplicity within the interaction region and they developed a numerical

model which gave good agreement with the pattern observed 1n their experiments

The following year Vick et al [12] used the technique of buried tracer layers and
an X-ray pinhole camera as well as X-ray spectroscopy to study the interaction of
alumimium plasmas The aluminiim target was buried beneath layers of parylene
(CH) of varying thickness The Nd-YAG laser (9 6 J 1n 900 ps) needed to ablate the
CH overcoat before reaching the aluminium taiget, hence by varymng the overcoat

thickness the time history of the evolution could be studied with a time-integrated
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tal (o)

(g}

Figure 1 1 Region of interaction of Be plasma flows (a) A1 = 6 mm, {c) Ar = 4 mm,
(b) and (d) A1 = 25 mm (bcan cnergies differ)  (After Begunkulov et al [16])

camera Emission from the CH overcoat was filtered out using a beryllium filter
Figure 1 2 shows a sequence of images taken from this paper in which targets with
varying overcoat thickness were used X-ray spectra were recorded (55 — 8 A)
fiom the region between the two plasmas Theoretical spectra were fitted to the
experimental spectra using the RATION code, yielding electron temperatures of
~ 580 €V and densities of the order of 102 em™2 A 2-D single fiuid hydrodynamic
code (IZANAMI) was used to model the expansion of a single plasma under the

same conditions and was compared with the recorded images

The most active group 1 the field of colliding laser-produced plasmas 1s located
in the Institut fur Experimentaphysik Ruhr-Universat in Bochum Germany Be-
tween 1997 and 2001 they produced eight papers on colliding plasmas The first
of these papers Ruhl et al [17] examined the possibility that charge-exchange col-
lisions during the interaction of a “hot” (C (VII)) and “cold” (C (III)) plasma
could be responsible for enhanced emission from the C (VI) Balmer-alpha line
The premise of their experiment was based on the fact that for certain collision
processes, theoretical calculations predict large charge exchange cross-sections n
spite of strong Coulomb repulsion for highly charged 1ons These cross-sections
are only large 1f the relative collision velocities of the ions 1s very high (~ 107
cms™!)  Counter streaming laser-produced plasmas provided the high collision

velocities required, thereby providing an ideal scenario to test these theoretical
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Figure 1 2 Time-integiated x-ray pinhole images fiom four CH-AI-CH layeted targets
irrachated by a nonuniform laser beam of spatial periodicity 112 gum The x-ray emission
onginates pnimarily from the aluminium layer buried at depths of 054, 024, 0 12 and
0 0 pm for targets (a)-(d) respectively (After Vick et al [12])

predictions Time-integrated XUV spectroscopy (6 — 24 nm) of the collision region
was used as a diagnostic and increased emission was observed from the C (VI)
Balmer-alpha line from the collision region when compared with spectra obtained
from single plasma expansion This paper was followed by five more papers on

charge-exchange collisions 1in colliding LPP’s

The second paper 1n 1998 by Hené-Bartolic et al [18] examined the lateral collision
of two boron-mtride plasmas using time-integrated VUV spectroscopy (16 — 34
nm) Intensities of mtrogen and boron lines were compared between colliding and
non-colliding plasmas generated using the same 1rradiance conditions The authors
observed a significant decrease 1n the intensity of boron emission, while no effect
was witnessed 1n the nitrogen lines The authors ruled opacity out as a possi-
ble explanation for this observation, as the line profiles do not show pronounced
symptoms of optical thickness A slight enhancement however was observed 1n
the emission from the B (V) Balmer-alpha line, which was interpreted as a sign of

charge-exchange between fully 1onised boron and B (III) 1ons

In the third paper by the Bochum group on colliding laser-produced plasmas,
charge-exchange collisions between a “hot” dense and a “cold” rarefied Al plas-
mas were studied In an addition to the previous experiments time-resolved XUV
pinhole photography was performed on the colliding plasmas, as well as XUV
spectroscopy A head-on collision between the two plasmas was enabled by a novel
target configuration A naitow capillary was drilled through a 1 mm thick Al

plate with a diameter equal to the beam waist of the laser A second Al plate was
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placed 2 mm behind 1t A cold plasma 1s generated at the edges of the capillary as
the laser passes through and strikes the back plate Electron temperatures were
estimated to be 60, 15 and 18 eV for the hot, cold and collision region respectively
No evidence of charge-exchange was observed 1n the collision region from analysis

of line intensity ratios

The next three papers Aschke et al[19], Harlal et a![20] and Hanlal et al[21], used
the same experimental setups and diagnostic techniques Time-resolved XUV pin-
hole imaging and time-resolved XUV spectroscopy were used to search for charge-
exchange collisions In all three cases the plasmas were generated using a 6 J in
15 ns ruby laser, that was focussed onto an angled target configuration thereby

producing orthogonally colliding plasmas

Aschke et al [19] again attempted to confirm theoretical predictions of very high
cross-sections for charge-exchange collisions, this time however between He-like
aluminium and Al (IV) 1ons Intensity comparisons were made between the sum
of the individual spectra of the non-colliding plasmas with the spectra obtained
from the collision region A significant increase in the intensity of emission from
the n = 3 level of Al (XI) was observed at early time-scales, when the plasmas first

collide, as was predicted by the charge-exchange calculations [19]

Two papers by Harlal et al [20, 21] in 2001 both explored the interaction of “hot”
and “cold” magnesium plasmas XUV pinhole images and spectra of the collision
region were presented in both papers Figure 1 3 shows an 1mage set taken from
Harilal et al [20], and represents the highest quality sequence of 1mages published
on colliding plasmas to date Time-resolved spectra showed selective enhancement
of certain transitions at short time delays and general enhancements at longer time
delays, leading the authors to conclude that the plasmas interpenetrate at short
time delays and stagnate at longer time delays enhancing emission purely due to

density build-up at the stagnation front

The final two papers by the Bochum group, Harilal et ol [11] and Atwee et al [22]
concentrate on the characterisation of the collision region between colliding plasma
plumes Harilal et al [11] use time-resolved XUV pin-hole imaging only to study
the mteraction between counter-propagating magnesium plasmas In particular
they studied the cffect that two different target geometrics had on the mnteraction

region produced In the first case pulses from a Ruby laser (6 J, 15 ns) were
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by performing time-integrated XUV pinhole imaging and time-integrated XUV
spectroscopy on orthogonally colliding boron-mtride plasmas Electron temper-
atures were calculated using relative line intensities 1n the case of orthogonally
colliding and single plasma expansion on a flat surface A temperature increase
of up to 50% was observed 1n the collision region for certain distances from the
target surface The conversion of directed kinetic energy into thermal energy as
the plasmas slow down and stagnate 1s considered to be the most probable reason

for the observed temperature enhancement

The most serious attempt made to date at computational modelling of the in-
teraction region between colliding laser-produced plasmas was performed at the
Lawrence Livermore National Laboratory in the US A Rambo and Denavit [23]
developed a one-dimensional multi-fluid hydrodynamics model to study the transi-
tion regime between stagnation and interpenetration Stagnation was said to occur
at the interface between the two plasmas if the 1on-10n mean-free path A,, was much
smaller than the gradient scale length D of the colliding fronts (A,, < D), which
1n this case 1s taken to be the inter-target separation In this situation the interac-
tion takes place over a narrow interface region between the two plasmas, resulting
in large temperature increases and the formation of shock waves On the other
hand interpenetration was said to occur when the 1on-10n mean-free path was much
greater than the characteristic scale length (A, > D) Here, the plasmas nter-
penetrate considerably and interact over a large extended spatial region Rambo
and Denavit [23] endeavoured to study the intetmediate regime where A, = D, 1n
this situation partial interpenetration followed by a moderate stagnation occurs
A collisionality parameter { was dehned to relate the two factors that dictate the
form the interaction will most likely take, (¢ = D/},,) The hgher the value of
the collisionality parameter the more likely 1t 1s that stagnation will occur at the
plasma interface Changing the collisionality of a system experimentally may be
performed n a number of ways The two most important of these are (1) changing
the separation between the plasmas, (11) changing the particle number density 1

the plume by varying the on-target irradiance

The Rambo and Denavit [23] paper of 1994 was followed up 1n 1995 by a paper
by Rambo and Procassini [24] in which direct comparisons were made between
the multifiuid model previously developed and a kinetic Monte-Carlo Particle-In-

Cell (MC-PIC) code The two differing approaches to modelling colliding plasmas



1 2 REVIEW OF COLLIDING LASER-PRODUCED PLASMAS 11

were 1n substantial agreement on the dominant output features, typrcally within
10 — 20% of each other

The final two papers of note on colliding laser-produced plasmas were led by a
French group at Laboratoire pour I'Utilisation des Lasers Intenses, CNRS, Ecole

Polytechnique, Palaiseau Cedex

Rancu et al [25] studied the collision of laser-exploded Al / Al and Al / Mg foils
using X-ray spectroscopy A very flexible target geometry was used in these ex-
periments, plasmas are produced at the rear side of two thin foils placed in close
proximity to each other This configuration allows easy and accurate manipulation
of the inter-target separation This allowed the authors to precisely vary the veloc-
1ty and density with which the plasmas collide, giving them complete control over
the colhsionality of the system Thus allowed them explore the boundary between
1nterpenetration and stagnation regimes Two X-ray spectrometers, with differing
spectral resolutions simultaneously observed the interaction region between the
foils Ion temperatures were mferied from the recorded spectra by fitting them
with simulated spectra generated by the collisional radiative code FLY Ion tem-
peratures of the order of 20 — 27 keV were determined and electron densities of

> 10%? cm—3 were calculated for laser irradiances of 5 x 103 Wem ™2

Finally Chenais-Popovics et al [26] (1996) studied 1n greater detail the interaction
of Al / Al and Al / Mg foils with the same X-1ay spectrometers Monochromatic
X-ray mmaging of the interaction region was also employed as well as multi-fluid
modelling using the MULTIF code They observed that when the mter-target sep-
aration 15 large (1 e the relative collision velocity 1s large) the plasmas interpene-
trate considerably leading to a broad collision region The larger the separation the
more cfficient the mterpenetration duc to the almost lincar relationship between
the inter-target separation and the relative collision velocities For low velocities
and high densities the plasmas did not interpenetrate and the 1on kinetic energy
was converted very locally in time and space into thermal energy, generating shock

fronts that propagate back mto the plasmas [26]

In this work we have examined a parameter space that has been largely over-looked
in the hterature to date The majonty of the work published on colliding plasmas
has focussed on the study of X-ray and XUV emission from the mteraction region

Emission 1n these spectral ranges enables authors to study the dynamics of hot,
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dense, highly charged regions of the plumes at short time delays after plasma inmi-
tiation and mteraction We have concentrated our efforts on the interaction of low
density, low temperature PLD-like plasma plumes using predominantly diagnostic

techniques n the visible spectral range and over relatively long time-scales (< 1

p15)

We have performed spectrally filtered time-resolved visible emission 1maging and
spatially and temporally-resolved visible imaging spectroscopy on the interaction
between counter-streaming colliding calcium plasmas We have also performed
VUV photoabsorption imaging of single and colliding calcium plumes in order
to determine the spatial distribution of ground state non-emitting plume species
During the course of our spectroscopic work we encountered very strong radiation
trapping 1n the 3p®4s(®Sy/2)-3p®4p(*P3/21/2) Ca™ doublet at 393 36 and 396 68
nm A computational model was 1mplemented to simulate this effect and was
subsequently used as a diagnostic tool to extract plasma parameters from spectra

obtained from the interaction region between colliding calcium plasmas
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 Plasma Definition

Plasma 1s matter 1n a state of partial or complete 1omisation Ionisation occurs when
electrons are removed from neutral atoms during the absorption of energy from
an external source The resultant assembly of electrons and 1ons needs to satisfy
certain criteria in order that 1t be defined as being plasma One such criterion
stipulates that the electrons and 1ons maintain overall electrical neutrality for the

lifetime of the plasma such that

Ne = anz (21)

where n. 15 the election density and =, 1s the density of 1ons of charge z [1|] An-
other defining characteristic of a plasma 1s 1ts “collective response”’ to perturbing
agents This 1s due to the fact that the Coulombic forces between charged par-
ticles 1n plasmas are strong and long-range By this we mean that each particle
interacts and has influence over many of its near neighbours, whereas neutral (gas)
particles interact weakly and only over short distances Collective phenomena may
be regarded as the basic defiming criterion [1] for plasmas The distance beyond
which collective influences dominate over Coulombic force due to an individual 1on

1s known as the Debye length Ap

Ap = (“”“BT) 22)

nee?

16
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where ¢g 18 the permitivity of free space, kp 1s the Boltzmann’s constant, T 1s the
plasma temperature and e 1s the electron charge In order to satisfy the collective
response criterion [1], the length of the plasma L, must be at least one order of

magmitude greater than the Debye length [2]
L > 10Ap (23)

An extension of the Debye length defimition is the concept of the Debye sphere
Np Tt states that the number of particles contained within a sphere of radius Ap
must be much larger than umty
d7n
Np = 7;%?3»1 (2 4)

An 10n can only influence and be influenced by the 1ons that reside within 1ts Debye

sphere This 1s the case for most plasmas but at extremely high 1on densities the
relationship (equation 2 4) may break down due to the fact that the Debye length
decreases with mcreasing 1on density and may become smaller than the 1on sphere
radius [2] The most important collective characteristic of plasmas are the wavehke
motions that are superimposed onto the random motions of individual particles
The electron wave 1s the most basic of these and oscillates at the plasma frequency
wp given by

2

- 25
wP Me€p ( )

where m, and e are the electron mass and charge Such plasma waves are due to
electrons oscillating 1n umson relative to the comparably static 10n background (3|
The plasma frequency plays a critical role in the laser-plasma interaction, as will

be discussed 1n section 2 2 2

2.2 Plasma Initiation

Laser produced plasmas are formed when high intensity laser hght interacts with a
target The properties and expansion dynamics of the plasmas produced are very
sensitive to the conditions used to generate them Laser pulse length, wavelength,
spot size, intensity, even pulse shape are all important factors, equally so are the
properties of the target matenal such as, atomic weight, density, surface reflectiv-
1ity, conductivity, melting and boiling points The generation of LPP’s with high
irradiance pulses can be divided into three distinct regimes
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(1) The interaction of laser ight with the target material, causing heating, melt-

ing and evaporation

(1) The interaction of laser hight with the evaporated material as well as an

1sothermal expansion, perpendicular to the target surface
(1) An adiabatic expansion of the plume 1n vacuum

The first two of these regimes take place during the laser pulse, while the third
begins at its termination The following two sub-sections will deal with the laser-
sohd and laser-plasma interaction ab inito, while 1n section 2 3 we will discuss

plasma expansion dynamics during and after the laser pulse

221 Laser-Solid Interaction

When laser light impinges on a metallic target some fraction of the radiation 1s

reflected at the surface while the rest penetrates to a distance known as the skin

depth &
2
5= /"JEE (2 6)

where w 1s the angular frequency of the radiation, u 1s the target’s magnetic per-
meability and o 1s 1ts conductivity [4] The skin depth 1s typically a small fraction

of the wavelength of the incident radiation

During the rising edge of the laser pulse, radiation 15 absorbed by electrons n
the skin depth layer, raising them to higher energy states in the conduction band
These electrons then pass this energy on to the lattice during collisions [4], which
quickly heat and melt the surface This results 1n a decreased 1eflectivity of the
surface, thereby increasing the proportion of the laser-light that 1s absorbed by the
target For nanosecond time-scale pulses a signihicant amount of heat 1s conducted
from the skim depth layer into the bulk of the material, to a depth known as the
heat penetration depth L;,

LLh ~ (2Dpr) (2 7)

where D;= kg/pc, (p = mass density, ¢ = speed of light) 1s the heat diffusion

coefhicient and 7, 1s the laser pulse length [5] For nanosecond pulses the heat
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penetration depth 1s much larger than the skin depth
Ly, >0 (28)

This relationship does not however hold true for pico or femto-second pulses, be-
cause at very short time-scales there 1s insufficient time for thermal conduction
nto the target to take place [5] This means that the heated zone runs only to the
skin depth Plasmas generated with these ultrashort pulses are considered to have
undergone a solid-vapour only transition as opposed to the nanosecond solid-liquid-
vapour path [5] For this reason short-pulse lasers are more efficient at generating
plasmas from the incident radiation, because energy losses while heating the bulk

material are neglighle

Due to the fact that metals require substantially more energy to vaporise them
than to melt them, evaporation of the molten metal layer occurs when the energy
absorbed by the skm depth becomes larger than the latent heat of evaporation
This leads to an evaporation or ablation depth AZ,

AZ, = M (29)
pL,

where F} 1s the laser fluence!, L, 1s the latent heat per umit mass and Fy, 1s the
threshold fluence above which significant evaporation occurs and A; 1s the surface

absorbance (5]

During the vaporisation stage, electrons are stripped from atoms by direct and
multi-photon 1onmisation The free electrons so produced further absorb laser ra-
diation by the process of Inverse Bremsstrahlung (IB) (see section 24 3) This
dramatically improves the absorption rate of incident photons The electrons sub-
sequently transfer their increased kinetic energy to the Ebtoms and 1ons through
colhsional 1onisation and excitation processes These 10msation processes increase
the election density thereby further enhancing the absorption of incident radia-
tion The ncreasing 1on density allows us to now refer to the vaporised material

as plasma

'fluence = energy apphed per unit area (Jem™2)
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2 2 2 Laser-Plasma Interaction

Despite the fact that the initial plasma vapour generated by the rising edge of the
laser pulse may not have a very high density of free electrons, the efficiency of IB
absorption of photons (cspceially mn the infrared (IR)) mecans that 1t 15 difficult
to effectively couple energy to the target surface [6] For this reason the ablated
vapour density and ablation depth remain low for short pulses, even at high inten-
sities Visible (VIS) and Ultia~violet (UV) photons are less efficiently absorbed by
the IB process, therefore are not as prone to this form of target shielding, allowing
them access denser 1egions of the plume [5] The absoiption coefficient K;g (7]
due to inverse Bremsstrahlung may be calculated using the following
o 2nilnA(w) 1

Kig=78x10 w2(kpT.)? (1 — (W2 /w?))/?

(2 10)

where w and w, are the laser and plasma frequency respectively and InA(w) 1s the
“Coulomb loganthm” for particle collisions, which typically has a value between 5

and 10 for laser-produced plasmas [1, 8, 9

Another form of plasma shielding of the target arises from the plasma frequency w,
(equation 2 5) and the dispersion relation for an electromagnetic wave travelling

In a plasma
w? = wﬁ + Pk (2 11)

where ¢ 15 the speed of hight in vacuum and k, (=27/), A=wavelength) 1s the
wave’s propagation constant If w, < w, then k, 15 real, allowing the wave to
propagate, on the other hand when w, > w, k, 1s imaginary, and the wave cannot
propagate As was shown in equation 2 5, w, varies linearly with electron density
An ncadent electiomagnetic wave travelling in a plasma will propagate until 1t
reaches an electron density sufficiently large that w, becomes greater than w At
this boundary where the wave 1s reflected, this electron density 1s known as the

critical electron density n, [1] and 1s given by

€0Mew?

n, =

(2 12)

2
this gives us a value of ~ 2 x 10'® em™ for the fundamental wavelength of the

Nd YAG lasers (A = 1064 nm) used n this work As the plasma expands, the

electron density decreases and drops below n, This once again allows radiation
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to reach and ablate the surface, which again increases the electron density to the
critical level, where shielding of the target surface re-occurs This dynamic “self-
regulation” of the ablation process continues until the termination of the laser
pulse While most of the laser’s energy 1s being deposited 1n the thin layer around
the critical density boundary (deflagration zone) the plasma in front of this zone ex-
pands 1sothermally, relatively transparent to the laser light due to its lower electron
density The expansion can be considered to be i1sothermal at this stage because
the plasma still has a small velocity and volume Therefore 1t can thermalise faster

than the characteristic plasma expansion time [10]

2.3 Plasma Expansion

Following the termination of the laser pulse the plasma expands rapidly into 1its
surroundings The expansion velocity of the electrons far exceeds that of the
heavier 1ons This leads to the generation of a strong electric field caused by the
steep spatial distribution of charged particles as the electrons try to separate from

the 1ons The electric field serves to slow the electrons while accelerating the 1ons

Ablation of sohd targets in vacuum with low intensities and very low material
vaporisation rates results in the formation of a colhsionless low-density vapour in
front of the target surface In this situation the angular and velocity distributions of
the expanding vapour can be described by a simple cos(f#) law [5, 10] However, at
the irradiances used 1n this work the expansion dynamies arc considerably different
As mentioned previously during the laser pulse the plasma can be described by an
1sothermal expansion Another mechanism supporting this 1sothermal expansion
1s the dynamic equilibrium that exists between the absorption of incident radiation
and the rapid conversion of thermal to kinetic energy The isothermal expansion

of the plasma plume 1s given by [10]

1dX d&’X 1dY d?Y
X{t) (z—dt‘ + W) = Yo (zg + W)

1dZ d*Z
= Z0) (za*m)
kgT
= = 213
L (213)

where T 1s the plasma temperature, X(t), Y (¢) and Z(¢) are the plume dimensions

as a function of time, on the z, y, z coordinate system, with the z-axis normal to
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the target surface and m 1s the particle mass From the termination of the pulse

onwards the plume 1s best described by an adiwabatic expansion (in vacuo) given
by [10]

X d2y d*Z ksTo\ [ XoYoZo\ ™"
= V(N— =27 = 2
X(t) dt? (t) dt? (t) dt2 ( m ) < XYZ ) (214)

where 7y 1s the ratio of specific heat capacities at constant pressure and volume, T

1s the plasma temperature at the end of the laser pulse and Xy, Yy and Z; ate the

values of X, Y and Z at the termination of the laser pulse

Equation 2 14 1s a gas dynamics model, used to calculate expansion velocities of the
plume It depends on the imtial dimensions, temperature and atomic weight of the
plasma species, but 1t does not discriminate between 10ns of differing charge states,
whose velocity profiles can be quite different from each other The model more
accurately describes the expansion of a high pressure, high temperature neutral
gas 1 vacuum but 1t 18 found 1n practice that 1t predicts the motion of the overall
material in the plasma quite well The plasma expansion velocity 1s extiemely rapid
at the leading edge of the plasma due to very large piessure gradients between the
plasma and the vacuum Plume front velocities up to 10® cm/s are common for

LPP’s generated using medium nradiance pulses (typically 101° W/cm?)
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2.4 Atomic Processes

The manner m which radiation 1s absorbed by, transported within and emitted
from plasmas 1s governed by atomic processes within the plasma The relative
importance of each of these processes at any given time depends on local plasma
conditions Parameters such as temperature, 1omisation stage, electron / 1on /

photon densities all influence what processes dominate

In this section we will discuss the twelve most important atomic processes relating
to laser-produced plasmas Six of the twelve are excitation processes and the other
six are their inverse de-excitation processes The twelve can be divided up into
three distinct categories bound-bound, bound—free and free-free We will discuss
four bound—bound, six bound—free and two free—free processes, which will involve
electrons, 1ons and photons Table 2 1 shows all of the processes 1n their various
sub-categories It should be noted from table 2 1 that each process has been further
described to be either collisional or radiative, depending on the main method of

energy transfer in the process

Table 2 1 Classification of the main atomic processes in laser-produced plasmas (B<=B
Bound-Bound, B<=F Bound-Free F<=F Flee-Fiee)

Process Excitation De-Excitation Type
B<—=DB Impact Excitation Impact De-Excitation Collisional
B<=B Photoabsorption  Spontaneous Decay Radiative
B<—=F Impact Ionisation 3-Body Recombination Collisional
B<=F Photoionisation Radiative Recombination Radiative
Fe=F — Inverse Bremsstrahlung Radiative
F<=F Bremsstrahlung — Collisional
B«<—=F Autolonisation Dielectronic Recombination Special

In the forthcoming sub-sections we will discuss in detail the three classes of tran-
sitions and thenr relative importance under different plasma conditions In each
category collisional processes will be discussed first, then radiative ones The pro-

cesses have been numbered (1 through xi1) and are discussed individually below
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2.41 Bound-Bound Processes

A bound-bound transition occurs when an electron occupying a discrete
energy level 1n an atom or 1on, 1s promoted or demoted to another discrete
energy level during a colhision with another electron or by the absorption or

emission of a photon

As mentioned 1n the previous section there are four processes that fall under
the heading of bound-bound processes Two of these processes are considered
collisional and two radiative Likewise two are excitations and two are de-

excitations

Bound-Bound Collisional Pathways

Electron-impact excitation of an ion occurs when an electron moving
near the 1on induces a transition of a bound electron to a higher excited
bound state The free electron looses kinetic energy equal to the energy dif-
ference between the upper (7) and lower (z) bound states Thus 1s graphically
represented by the left-hand side of figure 21 [2] and symbolically by the
left-to-right reaction in the balance equation 2 15 [2]|, where A* represents an

1on of charge 2z, and e; and ey the incident and scattered free electrons

l
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Figuie 21 Electron impact excitation and de-excitation

Electron-impact de-excitation is the second bound-bound process It
1s the mverse of electron-impact excitation and 1s also described by equa-
tion 2 15 but from night-to-left, 1t 1s graphically depicted on the right-hand

side of figure 2 1 Electron-impact de-excitation occurs when a free electron
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()

()

induces a downward transition of an excited bound electron 1n a nearby 1on
to a lower bound state, converting the excess energy into mcreased kinetic

energy for the free electron

Af +e A; + es (61 > 82) (2 15)

Bound-Bound Radiative Pathways

Spontaneous decay 1s the first radiative bound-bound transition to be
discussed It 1s one of only two of the processes discussed here in which,
there 1s no mteraction with any other particle or field In this process a
photon 1s emitted stochastically in a completely spontaneous transition from
an excited energy level to a lower discrete energy level, as 1s shown on the

left of figure 2 2 and left-to-right 1n equation 2 16

i
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Figure 2 2 Spontaneous decay and resonant photoabsorption

Resonant photoabsorption is the mverse process of spontaneous decay
It occurs when an electron in a bound state of an atom or 1on 1s excited to
a higher discrete state by absorbing a photon whose energy (hv = |E, — E,|)
matches the difference between the imtial (z) and final (y) state Resonant
photoabsorption 1s given by the right-to-left reaction i equation 2 16 and

depicted by process on the right-hand side of figure 2 2

AP = A 4 by (2 16)
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(v)

242 Bound-Free Processes

Bound-free processes occur when an 1on either receives enough energy to
eject one of 1ts bound electrons into the continuum, thereby incrementing 1ts
1onmsation state by one, or an electron in the continuum loses energy and falls
into a discrete energy level of an 1on thereby reducing 1ts 1omisation state by

one

There are six atomic processes of interest that can be categorised as being

bound—free, three of these are collisional and three are radiative

Bound—Free Collisional Pathways

Electron-impact 1omsation 1s extremely important in “low density” op-
tically thin plasmas, whereas its inverse process 1s important only in high
density plasmas It occurs when a free electron collides with an atom or 1on
and provides enough energy to 1onise 1t, thus releasing a bound electron from
the atom or 10n mto the continuum This process 1s shown (left-to-right) in
equation 2 17 and by the left-hand side of figure 2 3

A%+ SR —r AZ_H + €9 + €3 (61 > 82) (2 17)

where e; 15 the energy of the incoming electron, e, denotes its energy after

the interaction and e; 1s the energy of the newly liberated free-electron
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Figuie 23 Election mmpact 1omsation and 3-body recombination

Three-body recombination occurs when two fiee electrons simultaneously

enter the Debye sphere of an 10n, one of the two 1s captured into a bound































































































































































































































































































































































































































































































































































