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Abstract

This is an investigation of the causes of oscillatory behaviour in solutions of stochastic
delay differential equations. Delay equations are used to study phenomena. in which some
part of the history of the system determines its evolution. Real-world interactions are
often characterised by inefficiency and such equations are therefore widely used in ap-
plications. Real-world processes are also subject to interference in the form of random
external perturbations or feedback noise. This interference can have a dramatic effect on
the qualitative behaviéur of these processes and so should be included in the mathematical
analysis.

Specifically, we consider the roles played by delayed feedback and noise perturbation in
the onset of oscillation around an equilibrium solution. To this end, we consider a nonlinear
equation with fixed delay, and a linear equation with asymptotically vanishing delay.
Where necessary, resﬁlts guaranteeing the global existence and uniqueness of solutions
are presented. To facilitate the analysis of the linear equation, we present two difference
schemes that are designed to mimic the oscillatory behaviour of its solutions. The first,
a discretisation on a uniform mesh, is unsuccessful. We determine the reasons for this
failure, and design a successful scheme based on this analysis.

These choices allow the empirical manipulation of the relative involvement of the delay
in the behaviour of solutions. In this way, and by comparison with the known qualitative
behaviour of the corresponding deterministic delay differential equation, a picture of the

mechanisms underlying oscillatory behaviour can be developed.

iv
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Chapter 1

Introduction

1.1 Discussion

Feedback mechanisms guide the evolution of many réal—world phenomena. Such mecha-
nisms rarely process information flawlessly.

For instance, a neural network is a system of nodes, each producing output that is a
function of the outputs of other nodes in the network. In the physical implementation
of a neural network, communication delays due to capacitance arise, and imperfect data
transmission tends to disrupt the input signals of each node.

The population dynamics of a single species are also determined by a feedback mecha-
nism. Changes in biomass will affect the reproductive potential, and therefore the growth
rate, of the species within the confines of its habitat. Ordinary differential equations are
a natural mathematical tool for describing these dynamics, assuming that feedback condi—n
tions are ideal. In reality, gestation, maturation, and incubation periods result in feedback
delays, and disease, weather, and other environmental factors disturb the feedback mech-
anism.

Clearly then, processes that model real-world phenomena are often characterised by
interactions that are inefficient in the sense that some part of their history determines °
their evolution. They can also be subject to interference in the form of random external
perturbations or feedback noise. This interference can have a dramatic qualitative effect
on these processes and should therefore be included in any analysis of their behaviour.
Returning to the example of population dynamics, it has been shown in Mao, Marion &
Renshaw [31] that a stochastic perturbation of a pqpulation model can radically change its
qualitative behaviour. Physically impossible characteristics, such as a finite—time explosion
in the unperturbed model, can be suppressed.

The primary focus of this work is the effect that noise and delay can have on the
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qualitative behaviour of feedback processes. More specifically, we seek to describe the roles
played by feedbaék delay and noise perturbation in the oscillatory behaviour of solutions
of scalar stochastic delay differential equations. Substantial evidence can be found in the
literature to suggest that delayed feedback and noise perturbation are the main players in
this behaviour, and that their roles are complementary.

The importance of delayed feedback in oscillatory behaviour can be seen by considering

the first order linear differential equation

'(t) = bz(t), t>0,

z(0) € R7,

with solution z(t) = 2(0)e”, a strictly positive function. Contrast this with Gopalsamy’s

analysis {11] of the solutions of the linear delay differential equation

Z'(t) = bx(t—7), t>0, (1.1.1a)

z(t) = (), te[-r,0]. (1.1.1b)

When b < 0, the combination of a long delay and a weak feedback intensity, in the
sense that —ber > 1, are sufficient to guarantee that all nontrivial solutions of (1.1.1) are
oscillatory. However, if the delay is short and the feedback intensity strong, in the sensé
that —ber < 1, then nonoscillatory solutions exist. It is the introduction of a sufficiently
long delay that underlies the onset of oscillation in the solutions of‘(l.l.l).

Noise perturbations in themselves are not the cause of oscillatory behaviour in equations
that admit an equilibrium solution. For example, where B is a standard Brownian motion,

a geometric Brownian motion satisfying

TdX(t) = bX(t)dt+oX(t)dB(t), t>0, (1.1.2a)
X(0) e [0,00), (1.1.2b)
02
can be written in closed form as the strictly positive process X (t) = X(0)elb—F)t+oB(),

Note that (1.1.2) admits the equilibrium solution X () = 0 when X (0) = 0. By contrast,

Appleby & Buckwar [1] give an analysis of the oscillatory behaviour of the linear stochastic
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differential equation with fixed delay

dX(t) bX(t — 7)dt + o X (£)dB(t), t> 0,

il

X)) = ¢@), -te[-70

This equation aiso adﬁlits the equilibrium solution X (t) = 0, when ¥(¢) = 0. For b < 0 all
solutions are a.s. oscillatory regardless of the magnitude of the delay 7, or the strength
of the feedback b. Under the influence of a stochastic perturbation, any nonzero delay is
enough to guaxaﬁtee oscillation. It appears that oscillation is in somé way facilitated by
the presence of noise. It is the nature of this relationship that we seek to describe.

Continuous—time stbchastic processes driven by standard Brownian motion naturally
fluctuate as they evolve. For this reason it is important to distinguish between stochastic
fluctuation and true oscillation, which occurs around an equilibrium solution and so cannot
be attributed solely to the presence of noise. A precise definition of this kind of oscillatory
behaviour will be given in Section 1.4.

In order to investigate the roles played by feedback delay and noise perturbation in the
oscillatory behaviour of stochastic differential equations, we consider a nonlinear equation
with fixed delay in Chapter 3, and a linear equation with asymptotically vanishing delay
in Chapters 5, 6, and 7. These choices allows us to empirically manipulate the relative
involvement of the delay in the behaviour of solutions. In this way, and by comparison. ‘
with the known qualitative behaviour of the corresponding deterministic delay differential
equatig)n, due to Gopalsamy [11] and Ladde, Lakshmikantham & Zhang (9], we develop a
picture of the mechanisms underlying oscillatory behaviour. It is important to emphasise
that these choices are illustrative. We do not present a comprehensive treatment of oscilla-
tion in stochastic delay equations. Equations, both linear and nonlinear, with unbounded -
delay, multiple delays, distributed delays and so on are equally deserving of attention.

We begin in Chapter 2 by developing the global existence and uniqueness theory for solu-
tions of nonlinear stochastic delay differential equations to include all continuous processes
analysed in this thesis. We consider equations that can be guaranteed to have unique con-
tinuous local solutions up to a possible explosion time, and investigate the circumstances

under which the explosion time cannot be finite.

3
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Once the existence theory is in place, we generalise the analysis of the oscillatory be-
haviour of linear stochastic equations with fixed delay, due to Appleby & Buckwar [1], to
equations vﬁth nonlinear coefficients in Chapter 3.

Once again, it emerges that the strength of the restoring force is the primary engine
for oscillation. This strength is represented as a specivﬁc property of the nonlinear drift.
coefficient. It turns out that, even if the restoring force is strong, the unperturbed delay
equation requires that the delay be of a minimum length for oscillation to occur. This
length is determined by the strength of the equilibrium-restoring force. However, the
inclusion of a stochastic perturbation allows oscillation to occur in the presence of the
same restoring force, but with a feedback delay of aﬁy length.

In Chapter 3 we also determine sufficient conditions on a weak equilibrium-restoring
force that allow for nonoscillatory behaviour to take place with positive probability.

The asymptotic'behavi()ur of increments of standard Brownian motion will be seen
to pia.y an important role in the remaining analysis. Technical lemmata describing this
behaviour are gathered together in Chapter 4, there to be referenced from the chapters -
that follow.

An attempt to characterise the oscillatory behaviour of a linear stochastic differential
equation with va.nishing delay is met with partial success in Chapter 5. We find clear
indications that the solutions of this equation display singular behaviour in a two—fold way,
in that the limiting stochastic equation without delay displays nonoscillatory behaviour, as
does the corresponding deterministic equation with vanishing delay. However, by allowing
the delay to vanish sfowly enough, the presence of a noise perturbation is sufficient to
induce oscillation in the solution. Nonetheless, the picture that develops is incomplete in
several important ways.

Throughout our research we have used simulation to inform our intuition as to the roles
of feedback delay and noise perturbation in oscillatbry behaviour. A welcome development
of this practice was thé discovery that a more detailed picture of the qualitative behaviour
of the linear vanishing delay equation could be determined by the construction of a discrete
process defined by an Euler—type difference scheme. However, the randomness inherent in

these processes gave us reason to be cautious in our choice of discretisation.
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A nice illustration of the care that must be taken when using Euler methods to discretise -
even the simplest of ordinary differential equations can be found in the introduction to the
paper by Mohamad and Gopalsamy [26]. There, examples are given of ordinary differential

equations, including the logistic equation and the simple linear equation
(1) = —y(t), t>0,

that have an Euler discretisation displaying spurious behaviour that arises from the dis-
cretisation process. This uncharacteristic behaviour is misleading, and its occurrence must
be carefully avoided if our intent is to develop a clearer picture of the behaviour of the
original differential equation. Indeed, in Chapter 6, we show that a successful method for
discretising a deterministic differential equation with vanishing delay, found in Karoui &
Vaillancourt [18], induces spurious oscillatory behaviour in a similar stochastic difference
equation.

However, by identifying and preserving the essential characteristics of the stochastic
process over its lifetime, this problem can be fixed. In Chapter 7, we develop an alternative
difference scheme yielding a complete picture of the oscillatory behaviour of the process,
and a full description of the roles of the equation parameters in this behaviour. Thus, the
picture of oscillatory behaviour that is begun in Chapter 5 can be completed.

Where possible, we have illustrated our analysis through the simulation of examples.
This was done in Java, using the IEEE-754 floating—point standard to represent real
numbers with 64-bit precision. To make qualitative comparisons easier, all plots appearing
in Chapters 2 and 3 were generated from the same set of Gaussian numbers with a standa.rci
Euler-Maruyama scheme, running on a uniform mesh of size 10™%, and with constant,
unit—valued initial data. All plots appearing in Chapter 6 were generated with a direct
implementation of the discrete process described in that chapter, again with constant,
unit—valued initial data. Other relevant information is provided on a case-by—case basis.

The remainder of this chapter gives a summary of ideas and results in stochastic analysis

and dynamical systems theory that will be used throughout this thesis.
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1.2 Fundamentals of stochastic processes.

In order to provide a background for the analysis in the chapters ahead, we begin by con-
sidering some of the fundamental ideas underlying the theory of stochastic processes. All
of the material presented here can be found in such texts as Lamberton & Lapeyere [23],
Mao [25], or @ksendal [27]. The primary focus in the chapters to follow is on the qualita-
tive behaviour of scalar stochastic processes, and the background given will reflect that.
Generalisation to finite dimensions is possible, speciﬁcally for the global existence theory.
in Chapter 2, and an example is given in Appendix A. For this reason, the definition of a
standard Brownian motion in finite dimensions is presented, and it should be noted that
finite dimensional versions of Lemmata 1.3.2 and 1.3.3 exist, and can be found in any of

the texts referenced above.

o—algebras and measurable spaces. If § is a given set, then a o—algebra F on £ is

a family F of subsets 6f 1 with the following properties:
1. QerF
2. If A€ F then A € F, where A = Q\A
3. If A1, Ay € ]—' then {2, 4; € F.
Given any family U of subsets of Q) there is a smallest o—algebra Hy, containing 2/, namely
Hy = |{H; H a o-algebra of Q, U C H}.

This is called the o-algebra generated by U. For example, if U is the collection of all open
subsets of a topological space (), say 2 = R, then the Borel c-algebra B is the o—algebra

generated by U. The pair (Q, F) is called a measurable space.

Probability spaces. A probability measure P on (Q, F) is a function B : F — [0, 1] such
that

1. P[f] =0, and P[] = 1
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2. If Ay, Ay --- € F and {4;}{2, is disjoint, then
o0 oo

P [U Al} = P4
=1 i=1

The triple (€2, F,P) is called a probability space. It is complete if F contains all P-zero
valued subsets of 2.

Events, measurability and random variables. The subsets A of 2 which belong to
F are called F-measurable sets, or events. The number P[A] represents the probability of -
A occurring. In particular, if P[A] = 1, then we say that A occurs almost surely (a.s.).
Let {An}n>o be a sequence of events. If infinitely many of the events 4, occur, then we

say that the event ‘4, infinitely often (i.0.)’ has occurred, where

0 oo

Anior=( 4

n=0 j=n

If all the events A, occur from a certain rank on, then we say that the event ‘A, eventually

{e.v.) has occurred, where

[S o TN o]
Anev’ =] ) 4

n=0j=n
Given a probability space (Q, F,P), we say that a function X : 2 — R® is F-measurable
if
X M) ={wehXwelUleF

for all open sets U € R%. X is called a random variable.

Stochastic processes. A stochastic process X = {X(t) : t € T} is a collection of
random variables parameterised over the time set 7. Every random variable is defined on
the same probability space (2, F,P) and assumes a value in R9.

For every fixed w € Q, The process X{(-,w) is a function
T3t X(t,w) € RY,

called a sample path, or simply path, of the process. For every fixed t € 7, X(t,-) is a
random variable

05w X(t,w) e R%
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Thus the stochastic pfocess may be regarded as a function of two variables (t,w) from
T x Q2 to R%.

A stochastic process is continuous if for almost all w € Q the function X (t,w) is continu-
ous on t > 0. Left and right continuity can be defined similarly. It is an increasing process .
if, for almost all w € Q, X(t,w) is nonnegative, nondecreasing, and right-continuous on
t>0. Itis integmblev if for every t > 0, X (t) is an integrable random variable. It is a
process of finite variation if X (t) = X(t) 45(" (t), with X and X both increasing processes.

It is square integrable if E| X (¢)|* < oo for every t > 0.

Filtered stochastic processes. We can associate a family of increasing sub—cr—algebras-
of F with the probability space (Q, F,P). This family represents the increasing set of
information available to an observer regarding the evolution of the process.

A filtration is a family {F(t)}:>0 of increasing sub—o-algebras of F. Therefore, for all
0<t<s<oo, F(t) C F(s) C F. The filtration is right-continuous if F(t) = ,5, F(s)
forallt>0. ‘

A stochastic process {X(t)}¢>0 is sald to be adapted to a filtration {F(t)}:>0 if, for
every ¢, X(t) is F(t)-measurable. Let P denote the smallest c—algebra on R* x Q with

respect to which every left continuous process is a measurable function of (¢,w). Then a

stochastic process is predictable if it is P-measurable.

Brownian motion. A Brownian motion is a real valued stochastic process {B(t)}t>0

satisfying the followihg:
1. Almost all sample paths of B are continuous: s — B(s) is a.s. continuous.

2. Nonoverlapping increments are independent: If s < ¢, then B(t) — B(s) is indepen-

dent of F(s).

3. Increments are étationary: If s < ¢, then B(t) — B(s) and B(t — s) — B(0) have the

same distribution.

4. Increments are Gaussian: B(t) — B{(0) is Normally distributed with mean ut and

variance o°t, where y and ¢ are constant real numbers.
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In fact the first three properties are sufficient to guarantee the fourth [10]. However, for
convenience, we include it here as part of the definition. .

This definition cén be extended to finite dimensions: A d-dimensional process {B(t) =
(Bi(t), ..., Ba(t}) }i>0 is a d—dimensional Brownian motion if every component { B;(t)} is
a Brownian motion, and {B;(¢)},...,{Ba(t)} are i_ndepehdent.

If the Normally distributed increments of a Brownian motion B satisfy p =0and ¢ =1

in Property 4 above, then B is a standard Brownian motion.

Properties of Brownian motion. A Brownian motion {B(t)} has the following prop-
erties which we will find useful in our analysis:

1. {—B(t)} is a Brownian motion with respect to the same filtration {F(¢)}.

2. For all ¢t > 0, the random variables |B(t)| and maxo<s<; B(s) are identically dis-

tributed.
3. The strong law of large numbers states that lim; o B(¢)/t =0 a.s.
4. For almost every w € {2, the Brownian path ¢ — B(t,w) is nowhere differentiable.

We also have the following lemma which can be found, for example, in Karatzas &

Shreve [17], describing the asymptotic behaviour of the deviations of Brownian motion.

Lemma 1.2.1 (Law of the Iterated Logarithm). For almost every w € §2, we have

Nk B(t)(w) -1 i) Lim inf B(t)(w) -1
(1) lmsupt_—»o+ \/m ) (“) 1mini;_,p+ \/—Ztloglog(%) ’

N B SN P _B(t)w)
(ii) limsup, . % =1, (w) liminfi_e ,7%(12;‘1‘2“ = 1.

Stopping times and martingales. A random variable T : Q — [0, 00] is called an
F(t)-stopping time if {w : T(w) < t} € F(t) for any ¢ > 0. A real-valued {F(¢)}-adapted

integrable process {M(t)};>o is called a martingale with respect to {F(¢)} if
E[M(t)|F(s)] = M(s), as. forall0<s<t< 0.

The gquadratic variation of a martingale is the unique continuous integrable adapted

increasing process {(M)(t)}:>0, where M = {M(t)};>0 is a real-valued square integrable

9



Chapter 1, Section 3 Introduction

continuous martingale, such that {M(t)? — (M)(t)} is a continuous martingale vanishing
att=0.
The following result is a consequence of the strong law of large numbers, given as

Property 3 of Brownian motion.

Lemma 1.2.2 (Law of large numbers for martingales.). Let M = {M(t)}:>0 be a

real-valued continuous martingale vanishing at t = 0. If lim;—o{(M)(t) = 0 a.s., then

M(t)

tll_I}’é W = 0, a.s.
Also, if limsup,_, (M) (t)/t < 00 a.s., then

lim M—(t) =0, as.

t—oo i

The next well known result shows how to express a martingale as a standard Brownian

motion on a new time scale.

Lemma 1.2.3 (Martingale time—change theorem.). Let M = {M(t)};>0 be a real-
valued continuous martingale such that M(0) = 0 and lim;_,.o(M)(t) = 00 a.s. For each

t > 0, define the stopping time
9(t) = inf{s : (M)(s) > t}.

Then {M(9(t))}iz0 is a standard Brownian motion with respect to the new filtration

{F@(t))}t>0. In other words, there exists a standard Brownian motion B such that

M(t) = B((M)(t)), for allt >0 a.s.

1.3 Stochastic calculus.

In order to describe a stochastic process as the solution of a stochastic delay differential
equation, it is necessary to develop a valid calculus within which we can work. It will be

necessary to integrate with respect to a standard Brownian motion. The lack of regularity

10



Chapter 1, Section 3 Introduction

in the paths of Brownian motion excludes the possibility of developing a differential calcu-
lus. There is more than one way to define a stochastic integral. For example, a discussion
of the definition of the Stratonovich integral can be found in @ksendal [27]. Nonetheless

we will exclusively use the 1t6 integral in our analysis.

1.3.1 Definition of the stochastic integral.

It is first necessary to develop a definition of the stochastic integral

1)) = /0 f(s)dB(s), (13.1)

for simple stochastic processes. A stochastic process {Y(t);0 <t < T} is a simple process

if, forsome 0 =ty <t < <tp =T,
Y() =Y(t;), t;<t<tin.

The Ité integral of a simple stochastic process adapted to the filtration {F(t)},>¢ is defined

to be
p—1

T
In(Y) = /0 Y(s)dB(s) = 3. Y (t;) (Bts+1) — B(t;)).

j=0
Similarly, for t < T, we put

-1

L(Y) = /0 Y(e)B(s) = 3 () B 1) = Bt5)) + Y (B() — B(t),

J=

where [ is the last, t—dependent, index of the last jump before ¢.
It is now possible to define the 1t6 integral for more general processes, by expressing
it as the limit of a sequence of integrals of simple processes. Thus, the Itd integral of a

B x F-measurable, {F(t)}-adapted, square-integrable process X is defined by

t t
/ X(s)dB(s) = lim / Y. (s)dB(s), (1.3.2)
0 n—eo Jp
where {Y,} is a sequence of simple processes such that
. 2
lim E{ / (X(s) — Ya(s) ds} —0. (1.3.3)

Oksendal [27] shows that a sequence {Y,} satisfying (1.3.3) exists for every X, and that
the limit on the right hand side of (1.3.2) exists and is independent of the actual choice
of {Y,.}, as long as (1.3.3) holds.

11



Chapter 1, Section 3 Introduction

Finally, we show the conditions under which the stochastic integral defined in (1.3.1) is
a martingale. The following is the martingale representation theorem, and can be found

in, for example, Mao [25].

Lemma 1.3.1 (Martingale representation theorem.). Let {f(t)}:>0 be a real-valued,

mean square—integrable adapted process. Then the process

J(t) = /O (s)dB(s), t>0,

is a square—integrable martingale, null-valued at zero, with quadratic variation
t
(J)(t) = / f(s)%ds, t>0.
0

1.3.2 1Ito processes.

Let B be a one-dimensional Brownian motion on (Q,F,P). A one-dimensional Ité
process, also known as a semimartingale, or stochastic integral, is a stochastic process

X = {X(®)}t>0 on (R, F,P) of the form
¢ t
X(t) = X(0) + / w(s)ds + / v(s)dB(s), (1.3.4)
0 0 .
where v is B x F—measurable, {F(t)}-adapted, and square—integrable, so that

t
]P’[/ v(s)%ds < oo for all t > 0} =1
0

We also assume that u is adapted to an increasing family of o-algebras {H(t)}>0 such

that, for all £ > 0, B is a martingale with respect to #;, and that
t
]P’[/ |u(s)|ds < oo for all ¢ > 0} =1.
‘ 0
(1.3.4) is sometimes written in the shorter differential form
dX(t) = u(t)dt + v(t)dB(t),

and in fact this notational convention will be used almost exclusively from here on.

12



Chapter 1, Section 3 Introduction

Semimartingale form of solutions of stochastic functional differential equa-
tions. \We ‘can now explicitly represent the processes that are the focus of this work as
1t processes. Given any standard Brownian motion B, and a filtered probability space
(2, F, {F(t)}¢>0,P), where F(t) = o(B(s) : 0 < s < t) is the natural filtration of B,
we can define X as the the adapted stochastic process that satisfies the semimartingale

decomposition

X(t)

t t

X(0) + / £(X,)ds + / h(X(s))dB(s), (1.3.50)
0 JO

X)) = @), te[-70], (1.3.5b)

almost everywhere. According to.the standard differential notation, (1.3.5) is written as

dX(8) = f(Xo)dt+h(X())dB(),

X(t) = 9(t), te[-7.0]

The initial data function ¢ : [-7,0] — R* is an F(0)-measurable random variable such
that E||1]|? < co. Since the probability space and the Brownian motion are predefined,
X is a strong solution of (1.3.5).

The functional f : C([-T, s] x Q; R) — R is known as the drift coefficient, or simply drift,
and represents a deterministic feedback component processing information from subsets
of the sample path, X; = {X(s+6) : -7 —s < 8 < 0}. In fact it will be seen in Chapter 2
that there will always be a gap separating historical feedback from instantaneous feedback: |
hence the ‘delay’ of the title.

The function h : R — R is known as the diffusion coefficient, or simply diffusion, and
represents the state-dependent stochastic perturbation processing instantaneous informa-
tion, denoted X (s) in (1.3.5) for a particular time s. The integral fot h(X(s))dB(s) taken

as a whole is often called the noise.

1.3.3 Properties of Itd processes.

We state the change—of-variable formula for stochastic integrals in the standard differential

notation.

13



Chapter 1, Section 4 Introduction

Lemma 1.3.2 (It6’s Rule). Let X(t) be a continuous scalar Ité process given by
dX(t) = u(t)dt + v(t)dB(t),

where [°u(s)ds < oo, and [°v(s)ds < co. Let V € C2(R;R). Then V = {V(X(t)}iz0
s again an Ité process, and
4V (X (1)) = V(X ()X (1) + 5 V(X ()l
We also present the formula for stochastic integration by parts.

Lemma 1.3.3 (Stochastic integration by parts formula). Let {X (t)}:>0 be a con-

tinuous scalar Ité process satisfying
dX(t) = u(t)dt + v(t)dB(t).
Let {Y(t)}+>0 be a continuous, real-valued adapted process of finite variation. Then

dX (Y (0] = Y()dX () + X ()Y (2).

Lemmata 1.3.2 and 1.3.3 are proved as Theorems 6.2 and 6.5, respectively, in [25].

1.4 Oscillation of stochastic processes.

The phenomenon of oscillation must be distinguished from the path fluctuation that promi-
nently distinguishes most stochastic processes. Oscillation occurs around an equilibrium
solution (which is X{t) = 0 in our analysis) and as such cannot be attributed solely to the
effect of a multiplicative, and therefore equilibrium—preserving, noise perturbation. This

distinction is illustrated in Figure 1.4.1.

Definition 1.4.1. We say that a nontrivial continuous function y : [ty,00) — R is oscil-

latory if the set
Zy={t2to : y(t)zO}

14



Chapter 1, Section § . Introduction

1

0.5

-0.5

Figure 1.4.1: Red: An oscillatory solution of the delay differential equation ' (t) = —z(t —
1). Green: An oscillatory path of the stochastically perturbed equation dX(t) = —X(t —
1)dt + X(t)dB(t). Blue: When the delay is zero, solutions of the equation dX(t) =

—X (t)dt + X (t)dB(t) are a.s. nonoscillatory, although the paths fluctuate.

satisfies sup Z,, = co.

A function which is not oscillatory is called nonoscillatory.

In [2], a continuous stochastic process was determined to be a.s. oscillatory if these
notions were extended in the following intuitive manner:
Definition 1,4.2.-A stochastic process { X (¢, w)}s>¢,, defined on (2, F,P), and with con-
tinuous sample paths, is said to be a.s. oscillatory if there exists Q* C Q with P[Q*] =1
such that for all w € %, the path X(-,w) is oscillatory.

A stochastic process is a.s. nonoscillatory if there exists O* C Q with P[2*] = 1 such

that for all w € 0%, the path X (-,w) is nonoscillatory.

15



Chapter 1, Section 5 Introduction

1.5 Classifying oscillatory behaviour in deterministic delay

equations.

Our analysis relies heavily on a transformation that results in a continuous stochastic
process with oscillatory behaviour that is identical to that of the solutions of (1.3.5), but

the paths of which satisfy

Y(tw) = —pltw)ylt—r{t)w), (15.1a)

y(t) = (), te[-7,0]. (1.5.1b)

As a result, we can apply results from deterministic theory on a pathwise basis to develop
an understanding of the qualitative behaviour of the solutions of (1.3.5). The following

result concerning oscillatory solutions of (1.5.1), is a special case of Theorem 2 in Staikos

& Stavroulakis [30], and originally appeared in Ladas et al [8].

Theorem 1.5.1. Suppose p is a continuous, nonnegative function defined on [tg, 00) which
satisfies

t
limsup/ p(s)ds > 1 (1.5.2)
¢

t—00 —7(t)
where T is a continuous function with the properties that t — t — 7(t) is nondecreasing on

(to, 00}, T(t) > 0 on [ty,00), and t — 7(t) — oo as t — co. Then all solutions of (1.5.1)

are oscillatory.

Proof. Without loss of generality, let ¥ be a nonoscillatory solution of (1.5.1) such that
y(t) > 0 for all t > t, and therefore that y(t — 7(t)) > 0, for all t > t; > to. Integrating
(1.5.1a) from t — 7(t) to t, we have that

t

u(t) — y(t — 7(8)) + / p(s)u(t — 7(s))ds = 0.

t—r(t)
Since y is decreasing and positive, we have
t

)+t - ) [ | P

<. (1.5.3)
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Chapter 1, Section 5 ‘ Introduction

By (1.5.2),

t
/ p(s)ds > 1,
t—7(t)

'

for t sufficiently large, thereby contradicting (1.5.3) under the assumption that y is a
nonoscillatory solution. V : O
Similarly, a method of proving the existence of nonoscillatory solutions is furnished by

the following result, which may be found in Ladde, Lakshmikantham & Zhang [9]. The

result originally appeared in Ladde [22].

Theorem 1.5.2. Suppose that p is a continuous, nonnegative function defined on [0, 00)

which satisfies

t
limsup/ p(s)ds < l,
¢ e

t—00 Jt-r(t)
where T is a continuous function with the properties that T(t} > 0, and t — 7(t) — o0 as

t — 00. Then (1.5.1) has a positive solution.

The proof of Theorem 1.5.2 is somewhat longer than that of Theorem 1.5.1, and we do

not present it in full here.

Sketch of Proof. 1t is sufficient to find a solution of (1.5.1) that has the form
u(t) =eh O 4>,

for some tp > 0. Substituting into (1.5.1a) gives

Mt) = —p(t)e™ Jemrw X%, (1.5.4)

The right hand side of (1.5.4) is used to construct a nondecreasing and continuous operator
T on a particular space of continuous functions. The remainder of the proof involves

showing that T possesses a fixed point, and hence that A exists. 0
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Chapter 2

Global Existence and Uniqueness

Before any consideration is given to the qualitative behaviour of the solutions of stochas;
tic delay differential equations, we must know the circumstances under which unique so-
lutions exist.

There is a well-developed theory of the existence and uniqueness of strong solutions of
stochastic functional differential equations of Ité type, due to Itd & Nisio [15] and Berger
& Mizel [5], among others. The existence of such unique global solutions is often proveci
under the assumption that the functional coefficients of the equation are locally Lipschitz
continuous, and satisfy global linear growth bounds. These requirements are indicated in
Mao [25] and Kolmanovskii & Myskis [20].

In this chapter, we drop the requirement that the drift coefficient satisfy a global linear
bound. Mao [24] has given examples of stochastic delay differential equations which have
unique global solutions, despite fhe absence of a linear growth bound, by assuming the
presence of strongly nonlinear negative feedback in an instantaneous drift term. Such con-
ditions are often called one-sided linear bounds. In these cases however, the corresponding
deterministic equation has a global solution. It is also interesting, therefore, to investigate
the circumstances under which solutions of a stochastic delay differential equations exist
globally if solutions of the unperturbed equation explode.

Protter [28] has shown that unique strong solutions can exist up to an explosion time
under the assumption that the fuﬁctionals are locally Lipschitz continuous. This result
gives us a starting point, and can be used as the basis of an investigation into the minimal
set of regularity and growth hypotheses on the coefficients that will ensure that a stochastic
functional differential equation has a unique and almost surely nonexploding solution.

We begin with a desCrilption of the delay structure that characterises our equations, and
define a mesh that will piay a vital role in our analysis, not only in this chapter, but
throughout the thesis. Following this, our primary goal is to develop a global existence

and uniqueness theory for a class of functional differential equations with drift coefficients
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Chapter 2, Section 1 Global Existence and Uniqueness

that are completely characterised by delayed feedback. In order to motivate our method
of proof, and to allow a direct comparison to be made with the stochastic equation, we will
describe the proi)erties of the deterministic equation. Qur secondary goal is to consider
equations with instantaneous feedback in the drift coefficient. Since the solutions of such
equations can explode in finite time, we seek to develop a theory describing the roles of
noise and feedback delays in guaranteeing the absence of such explosions, and therefore
global existence of the solutions. We compare the properties of equations constructed from
varying combinations Iof instantaneous feedback terms, delayed feedback terms, and noise
perturbation, some of which are already described in the literature. The analysis in this
chapter can be found in Appleby & Kelly [4].

The delay structure that we consider is quite general, and is characterised by a distinct .
time lag between the most recent information in the feedback and the present. We begin
by defining the delay'.structure precisely in finite dimensions. Several special cases of
this general structure in one dimension will be used to construct the equations under

investigation throughout the the remainder of this thesis.

2.1 Structure of the delay.

Let r > 0. For each t > 0 denote by C([—r, t];R%) the family of continuous functions from
[~7,t] to R% with the norm |¢| = SUP_ <<t i=1,..d|¥:(8)|. For ¢ € C([-r, t]; R%), the

history of w0, up to time t, will be defined by

0, = {o(s): —r <s<t}.

Our investigations deal with functional differential equations in which the influence of the
past is distinct from that of the present. To make this idea precise, define the functional

g(-7) to be a mapping from C([—7, t}; R?) to R where 7 is a real number which obeys
7 € [0, 00), _ (2.1.1)
and 7 is a function satisfying

7 : [0,00) — (0,00) : t — 7(t) is continuous, (2.1.2)
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Chapter 2, Section 1 Global Existence and Uniqueness

such that
for all t > 0 and ¢ € C([-7,t];R%)

(t,) — g7 {t,p;) dependsonly on  {p(s): -7 <s<t-7(t)}. (2.1.3)

There is always a distinction between the dependence of solutions on the past and depen-

dence on the present, because (2.1.2) implies that the function 7 obeys
7(t) >0, forallt>0. (2.1.4)

We impose (2.1.1) so as to exclude equations with infinite delay. However, this does not
rule out the study of equations with unbounded delay, in which ¢t — 7(t) — o0 as t — oc.
Finally, we address the continuity requirements on the functional g(, 7. We suppose

that

for each continuous function ¢ € C([—7,c0); R%)
t— g7 (t w;) Isa continuous function from [0, 00) to RY. (2.1.5)

We say that a functional g, 7) is continuous with delay structure (7,7) if there is a function
7 and a number 7 which obey (2.1.1), (2.1.2) and (2.1.4), so that g, 7 obeys (2.1.3) and
(2.1.5).

Examples of the delay functional g(, 7. There are many specific delay types that
are chaxacterised by the functional g(; . For example, we may consider very general
equations with discrete delay. Suppose § € C{R% R), and 71,79, . .. T are n functions each
of which obeys (2.1.2) and (2.1.4). Then, with 7(¢t) = minj=q._,7;(t), —7 = infi>o{t —

max;—; n»7;(t)}, and ¢ € C([-7,t);R), the functional

97 (o) = Gt — (1)), ot — 12(t)), - - ., o(t — Tn(t)))

is continuous with delay structure (7, 7). It is this case, with n = 1, that will characterise
the processes in this thesis.
Note that equations with distributed delay also have this general structure. As an

example, suppose that 71, T2 are continuous nonnegative functions on R* obeying 71 (t) <
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t1—7(t1) t2-T(t2) t3—7(t3) tg—T(tg)

——— - -

s SN 7 = Y
a ¥ y/ I ..
to =90 3] to i3 ts tg

Figure 2.2.1: Construction of the sequence {t, }n=0.

7o(t) for ¢ > 0, 71(t) > 0 for all t > 0. Then 7y and 7» obey (2.1.2} and (2.1.4). Set
7 =7, and —T = infy>ot — (t). Let § € C([~T,0) x [-T,00) x R;R). Then with
v € C([-7,t];R), the functional
t—'rl(t) _
Gy (b 00) = / §(s,t,0(s)) ds.
t—r2(t) .

is continuous with delay structure (7, 7).

2.2 Discussion — The method of steps.

The primary technique used in this chapter is the so—called method of steps. The applica-
tion of this technique requires the partitioning of R into intervals so that at every time
point on a given interval the drift coefficient receives feedback from the previous interval.
We can thus use the existence of a continuous local solution on any interval to guarantee
the existence of a continuous local solution on the next interval. In a sense, this technique
is analogous to proof by induction.

We must construct an appropriate mesh with which to partition RT. Define the sequence
{tn}nZO by

to=0, tpr1=inf{t>0:t—7(t)=tu}, n=20. (2.2.1)

A schematic of this sequence for a nonspecific delay function 7 is given in Figure 2.2.1.
Either there are finitely many members of this sequence, or there are infinitely many.
Suppose first that there are infinitely many. Then we see that the sequence {tn}n>0

diverges. A similar result appears as Lemma 1.1 in Shreve [29].
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Chapter 2, Section 3 . : Global Existence and Uniqueness

Lemma 2.2.1. Suppose that the function T obeys (2.1.2), and (2.1.4). Then the sequence
{tn}n>0 defined by (2.2.1) is strictly increasing and obeys lim,_.o t, = oo.

Proof. By (2.2.1), tne1 = tn + 7(tns1), s0 by (2.1.4), tny1 > tn. Suppose that ¢, — L~

where 0 < L < o0 as n — o0. Then, by (2.1.2) and (2.2.1)
0= lim thy1 — 7(tnt1) —ta =L —7(L) — L = —7(L).
. n—oQ
But by (2.1.4), 7(¢) > 0 for all ¢ > 0, so no such finite L can exist. Hence t,, — oc. O

On the other hénd, if there are finitely many members of the sequence, there exists -

N €N and ty > 0 such that t — 7(¢) <ty for all t > 0.

2.3 Global existence theory.

In order to properly illustrate the method of steps, and motivate its use, we consider here
a deterministic equation with delayed feedback. This result will also serve as a useful

comparison to the stochastic equation.

2.3.1 The deterministic equation.

Suppose that g(-7) is continuous with delay structure 7, and consider the deterministic

functional differential equation

xl(t) = g(‘r,?) (t) Xt), t Z 0) (231&)

x(t) = %), te[-7,0] (2.3.1b)

where ¥ € C([-7,0];R?). We avail of the continuity and positivity properties of the the
delay function 7 expressed in (2.1.2} and (2.1.4), in order to solve (2.3.1). We will apply

the method of steps over a mesh defined by the sequence (2.2.1).

If {tz}n=0 has infinitely many members: Define I, = [tn, tnt1], 50 Unenln = RT.

Suppose a unique solution of (2.3.1) exists on [—7, t,]. Then, for each t € {t,, tnt1],

¢
x(t) = x(t) +/t g(r7) (8, Xs) ds. (2.3.2)

22



Chapter 2, Section 3 . Global Existence and Uniqueness

We now wish to show that the quantity on the righthand side of (2.3.2) is finite, ensuring
that x(t) can be uniquely defined. This guarantees the uniqueness and existence of a
solution on the subinterval [tn, tnt1]. For each t € [tn, tntal, g(~7)(t,xt) does not depend
on {x(s) : t, < 8 < tyy1}, by (2.1.3) and Lemma 2.2.1. Furthermore, by (2.1.5) t —
g(-7{t,%¢) is a continuous function. So (2.3.2) uniquely defines a C* solution of (2.3.1) on -
[tn,tn+1], and consequently on [—7,t,+1]. Therefore, by induction, a unique continuous

solution exists on [T, 00).

If {¢7}n=0 has finitely many members: The same argument as above guarantees that
(2.3.1) has a unique continuous solution on [~7, ty]. For t > ty, notice that ¢ —7(t) < tn,
so referring to (2.3.2), the delay property (2.1.3), the delay continuity property (2.1.5), and
Lemma 2.2.1, we see that a unique continuous solution is again guaranteed on [—7, 00).

" Hereinafter we assume, without loss of generality, that the sequence {¢,} contains in-

finitely many members.

2.3.2 The stochastic equation.

We ask whether a scalar stochastic perturbation of the scalar deterministic functional
differential equation (2.3.1a}, (2.3.1b) still has a unique global solution. To provide a source
of randomness for this perturbation, let B = { B(t); F2(t);0 < t < oo} be a standard one-
dimensional Brownian motion defined on the probability triple (2, F,P). Here {FZ(t)}:>0

is the natural filtration of B in the sense that FZ(t) = c({B(s) : 0 < s < t}). |

We study the scalar stochastic functional differential equation

dX(t) = gum(t Xi)dt +h(X())dB(), (2.3.32)

X(t) = v(t), te[-7,0. (2.3.3b)

We request that h € C(R;R) be a locally Lipschitz continuous function, % € C([-7,0]; R)‘
and that g(, 7) is continuous with delay structure (7, 7), obeying (2.1.1), (2.1.2), and (2.1.4).
By Theorem 5.3 in Protter [28], the existence of a unique strong solution is guaranteed
up to a, possibly random, ezplosion time 7¥. Note the dependence on the initial function

. At time 0 < ¢ < 7¥, this solution can be denoted X (t,[-7,0],v), but we will generally
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suppress the dependence on the initial function by writing the solution at time t as X (t):

The explosion time is defined to be

¥ = inf{t >0 : lir?_ | X (s, [-7,0],¢)| = oo}. (2.3.4)

Theorem 2.3.1. Suppose that g,z is continuous with delay structure (1,7) obeying
(2.1.1), (2.1.2), and (2.1.4). Let h be a locally Lipschitz continuous function. If T is
defined by (2.1.1}; and ¢ € C{[-T,0};R), then there is a unique continuous adapted pro-

cess X which is a strong solution of (2.8.8) on RT.

The statement of the Theorem is equivalent to saying that Tﬁ' defined by (3.5.14) obeys
¥ = 00, almost surely.

Given the hypotheses (2.1.2) and (2.1.4), the sequence {¢,} defined in (3.5.7) is increas-
ing, and, by the assﬁmption at the end of Section 2.3.1, infinite.” So, by Lemma 2.2.1,
it obeys lim, oo tn = oo.v Just as for the det'erministic equation (2.3.1), we prove the
existence of a unique strong solution of (2.3.3) on each of the subintervals I,, = [tn, tny1]

successively.

A generalisation of this theorem in finite dimensions can be found in Appendix A.

Proof of Theorem 2.5.1. Define

0 = wf{t € [0,7¥) : X(t,[-7,0,%) & (—k, k)} (2.3.5)

and, as {74} is increasing, we may define 1% = limg oo T;f . Clearly T;/'o < r;” , a.8. There-

fore, if % = oo as. for each af, then r;ﬁ = o0o0. We prove 'rgé, = o0 by contradiction,
assuming that ‘r;po = o0, a.s. is false. First, we show that T;po > t1, a.s. Consider the
negation of this statement, namely that there exists some ¢ such that IP’[T;/’o > 4] < L

Hence there is ky € N sufficiently large, and € = £(+) € (0, 1) such that IP’[TZ’ <t >e,

k> ky.
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Chapter 2, Section 3 Global Existence and Uniqueness

Consider a function V € C%(R;R) which obeys

V(z) >0, forallzeR, (V1)

V(z) =V(-z), x>0, ' (V2)

V' is bounded on R, (V3)

There is z* > 0 such that V”(z} < 0 for all |z| > z*, (V4)'
Jm V(z) = 0. - (V5)

We note that functions obeying these properties exist. Examples are provided at the end
of the proof.
Define F(z, p) = V'(z)p + $V"(z)h(x)? and G(z) = V'(z)h(z), where x,x € R. Then

Itd’s rule gives
» T‘?/\tl
V@A) = VO + [ GX(s) dBls)
0
'rff/\h
+ / F(X(s), gtrimy(5, Xs)) ds. (2.3.6)
0
It can be shown by (V3) and (V4) that sup,cg |[F(z, p)| < F(u) := C1|u| + Ca, where C,
Cy are p-independent constants. Using this in (2.3.6) gives
TEAL th
VXY ) <V@O)+ [T GEENABE) + [ Flan(s X)) ds.

This is true as 7 Aty < t1. The F(0)-measurability of Fy (£) = Flgerm)(t, Xy)) fort € [0,41] -

implies that

t1 :
E[V(X(r¥ At))] S V@O) + [ Fi(s)ds < oo.
0
Hence for k 2 ko

0> V() + [ Fuls)ds 2 EV(X(r A1) > Bl
0

N2 Bl VX))

> Plr¥ < 6]V (k) > eV (k) — oo as k — oo,
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by (V2) and (V5), yielding a contradiction. We therefore conclude that (2.3.3) has a
unique adapfed continuous solution on [0, ¢1].

On [t1,t2) we need to show that
E[I{T£>t2}|f(t1)] =1, as. N (2.3.7)

for each v € C([-7,0];R), implying that 7% > t3, a.s. If we can do this, it can be
established, by induction and an identical argument, that there is a unique continuous
adapted process which obeys (2.3.3) on R*. We suppose, contradicting (2.3.7), that there

exists ¥ and A C Q, with P[4] > 0 such that
]E[l{TApo>t2}|f(t1)](w) <1 forallwe A

So there exists ¢ € (0,1) and A* C A with P[A%] > 0 such that E[I{ngsm}lf(tl)] > € on

Af. Now define the sequence of random variables
b= E[l{"ff <ta) |F(t1)] ‘ (2.3.8)

and the limiting random variable of (2.3.8) in k, namely P = E[1 (% <t2) |F(t1)]- So P, > P
and Py is decreasing in k. So for all k sufficiently large, P, > P > £ on A°. Consequently,
we can say that there is ¢ € C([—7,0|;R) such that there is an € € (0,1) and a set of

positive probability A® such that ]E[l{Tw <T2}].7-'(t1)] > ¢ on A° for k € N. Now
2 V<

T;f/\tz
VAR =VEXE) + [ PO, g (s X)) ds

4

+ / " x(s)) dB(s).

t1

If we consider in turn the three possibilities T;;b <t 6 < T;g) < t3, and T,’f > to, we get

/ T R (S), g (5, X)) ds

3]
t

< max [ F(X(s), g (s X)) ds \/ /t ®Rs)ds. (239)

- te [Ovtll t1
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Chapter 2, Section 3 Global Existence and Unigueness

The right hand side of (2.3.9) is F(¢1)-measurable. Because X does not explode on [—7, t1],
the conditional expectation relative to F(¢;) is bounded by an a.s. finite random variable.

Therefore, if we can bound

E [ / i G(X(s)) dB(s)

13}

F (tl)}
we are done.
Consider the process G(t) = G(X(t)) = V/(X(t))h(X(t)). Define a martingale M on
[0, (¥ A t2) V 11] by
M(t) = /  G(s) dB(s). (2.3.10)
0

By Lemma 2.3.3

E[ / s G(s) dB(s)

4

‘r;f/\tl ‘r:f
f(tl)] - / Gls)dB(s) = 10y, /t C(s) dB(s)

i3

since foh G(s) dB(s) is F(t1)-measurable. Thus

E {/Tfmz G(s)dB(s)

t1

F(tl)} < max tG(s) dB(s).

0<i<ty t

So

]E[V(X(T,’f At2))

]
F)| < VX)) + g [ 6(6)dB()
to . 1 t ’
+/h |F(g(r7) (5, Xs))| ds oD /t1 F(X(s), 9(r7) (8, Xs)) ds. (2.3.11)

The right hand side of (2.3.11) is F(¢;)-measurable and independent of k. By (V1), we

have

E[V(X(T;f Atg))

f(tl)J >E [1 {TESQ}V(X(TZ’ A tg))|f(t1)]
—E [1 {T,?Stz}V(X(T;p))lf(tl)] > V(R)E[L ) \F(81)] = V(k)e on A°.

Since limyx) o0 V(k)e = oo, by (V5) and (V2), the induced contradiction implies that

7% > ty a.s. for each 1. We can proceed in this way, as in Section (2.3.1), to show that
*ro’f) = 00 a.s. for each . O -
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Chapter 2, Section 4 Global Existence and Uniqueness -

The same method of proof ensures the existence of & global solution of a more general
stochastic functional differential equation.
Theorem 2.3.2. Let h € C(R;R) be locally Lipschitz continuous, and g(,7) and h(p 7 be
continuous functionals with delay structures (7,7) and (7/,7’) respectively, obeying (2.1.1),
(2.1.2), (2.1.4). Define =TV 7, and ¢ € C([-7,0];R). Then the stochastic functz'onaé

differential equation

L dX(t) Gy (t, Xe)dt + [R(X () + her (8, X)) dB(2) (2.3.12a)

X(2)

B(t), tel[-7,0) (2.3.12b)

has o unique adapted continuous strong solution on RY.
. Observe that the function V defined for = > 0 by

log{x), T>e
V(z) = (2.3.13)

T+e a2 —1e742%, 0<z<e,
and which obeys V(—z) = V{(z), for z < 0, satisfies all the conditions (V1)-(V5) in
Theorem 2.3.1.
Finally we prove a technical result required in the proof of Theorem 2.3.1, which will be

recognised as part of the Doob martingale stopping theorem [17].

Lemma 2.3.3. Let T > 0, and p a bounded stopping time for the process M, which is well

defined on (0,p v 7]. If moreover, M is a martingale adapted to {F(t)}¢>0, we have
B[M(p)|F(r)] = M(p A ).
Proof. Since M(7) + M(p) = M(p A7)+ M(pV 7), we have
EMOIFE)] = EM(pAr)+M(py ) — M(r)|F(7)
= EM{pv1)IF()]+EMpATHF)] - E[M(T)lﬂ")]
= M(r)+M(pAT)—M(t)=M(pAT),
since M(r), M(p A1) are F(7)-measurable, and M is a martingale. O
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Figure 2.4.1: Red: The solution of (2.4.2), with f(z) = 234, does not explode. Green:

When f(z) = z2, the solution explodes.

2.4 Prevention of explosion by noise.

Consider the scalar equation

dX(t) = (F(X®) + g (t, X)) dt + (X (2)) dB(2), (2.4.1a)

X (1)

M

$(t), te[-7 0. (241b)

We suppose here that f and h are locally Lipschitz continuous functions on R. We assume
that the functional g(,r) is nonnegative, so that g, (¢,¢:) > 0 for all £ > 0 and ¢ €
C([-7,t];R), and that it is locally Lipschitz continuous in the second argument.

Our goal ié to understand the manner in which the interactions between noise and delay
affect the explosive behaviour of the solutions of (2.4.1). Initially, we will consider the
behaviour of a deterministic equation with instanténeous feedback. The effect of adding a
delayed feedback terrﬁ and, subsequently, a stochastic perturbation to this equation will

be investigated. Figures 2.4.1 to 2.4.4 illustrate the discussion with examples.
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Chapter 2, Section 4 Global Existence and Uniqueness

The deterministic equation with instantaneous feedback. We remove the delayed
feedback and noise perturbation from (2.4.1). Let f be a locally Lipschitz continuous
function such that there is some z* € R such that f(z) > 0 for z > z*. Consider the
initial value problem

Z'(t) = f(z(t)), t>=0, z(0)=xo, (2.4.2)

where zg = z*. The following proposition gives a well-known sufficient condition for the

solutions of (2.4.2} to explode in finite time.

Proposition 2.4.1. If
: .

5 m dz < oo, (2.4.3)

then there exists 0 < T < > such that

1i t) = 4.4)
Jim a(t) = co, (2.4.4)

~ where z is the um’que‘ continuous solution of (2.4.2).

Proof. By (2.4.2), and since zg > 0, f(x(t)) > f(zo) > 0 for all ¢ > 0. Hence, by (2.4.2),
z'(t)/f(z(t)) = 1. Integrating both sides with respect to ¢, and applying the change of

variables u = z(t) gives

t 3)’(8) L "L‘(t)i B |
A f(a':(s))ds_/xo f(u)du_t' (2.4.5)

Assume that z exists on [0, c0}. There are two possibilities.

Case 1: Suppose lim;—.o z{t) = L < 0o. Then, by (2.4.5}, ,

z(t) 1 L‘ 1
- lim ——du = 0.

—du =
t—=o0 Joo f(u) Zp f(u)
But this leads to a contradiction, as the integral of a continuous, positive function over a
compact interval cannot be infinite.

Case 2: Suppose lim;, 2(t) = co. By (2.4.5),

m —au = —au = 0.
t=00 oy f(u) zo (1)
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140 | i
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Figure 2.4.2: Red: The solution of (2.4.2) with f(z) = 2%%. Green: When a delay term

90,0 (=(t)) = (=(t - 1))}/2 is introduced, an explosion is not induced.

But this directly contradicts (2.4.3). Therefore, (2.4.4) holds. O

Including delayed feedback in the deterministic equation. It is natural to ask
how the addition of the delay component g, ) to (2.4.2) affects the explosion of solutions
of the perturbed equation, when f(z) > 0 for all z > 0, and satisfies (2.4.3).

Consider the functional differential equation
a'(t) = f(@(t)) + gyt 3), t>0, ax(t) =4(t), te[-7,0], (2.4.6)

where ¢ € C([-7,0;R) and g(; 7 : [0,00) x C([-T,t];R) — [0,00). The local Lipschitz
continuity on h guarantees that there is a unique solution to this equation, up to an
explosion time. A comparison argument establishes that the solution of (2.4.6) dominates
that of (2.4.2) pointwise if the initial value of (2.4.6) is greater than or equal to the

initial value of (2.4.2). Therefore, since the solution of (2.4.2) explodes in finite time, the
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Chapter 2. Section 4 Global Existence and Uniqueness

Figure 243; Rod: The solution of (24.2) with f(x) = x2 Green: When a delay term
0(L,1)(*(0) = (z(i —1))42 is introduced, the explosion is not qualitatively affected. Blue:
The explosion can be suppressed by the introduction of a noise term h(x) = x2

solution of (2.4.6) explodes in finite time. Moreover, (2.4.3), the condition which ensures
the explosion of (2.4.6), does not involve the delay functional O(Tr* It does not appear
that the explosion of (2.4.6) is influenced by the delay term.

Including a stochastic perturbation. If we perturb (2.4.6) stochastically to form
(24.1) then the following theorem applies.

Theorem 2.4.2. Suppose that O(Ty) is continuous with delay structure (r,r) obeying
(211), (212), and (214)- £\ G C([-r,0;R), / and h are locally Lipschitz con-

tinuous, and
*[(*) ~ M*)2 /
e, s
(

then there is a unique, continuous, adapted process which is a strong solution of (2.4

47
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on [0, 00).

This result can be proved in a manner similar to that of Theorem 2.3.1, using the
function V' defined in (2.3.13).

The condition (2.4.7) ensures that if the intensity of the diffusion term k is sufficiently
large relative to f, the explosion exhibited by the solution of (2.4.6) can always be sup-
pressed. Moreover, since the condition (2.4.7) does not involve the delay functional g(T,;);
it appears that the delay term does not play a role in causing or preventing explosions of

(24.1).

Removing the delayed feedback from the stochastic equation. By comparison,

consider the equation
dX(t) = f(X(@))dt + h(X(¢))dB(t), te€ [to,T] (2.4.8)

where f and h obey a local Lipschitz condition. Mao [25] guarantees the existence of a
unique solution to (2.4.8) on [tp,00) by requiring that, for every T > tg, there exists a

positive constant K¢ such that for all z € R
1 -
zf(z) + §lh(ﬂﬂ)l2 < Kr(L+ |z). (24.9)

This result is interesting because of the similar forms of (2.4.7) and (2.4.9). However,
in (2.4.7) it can be seen that the counteracting effect of the diffusion coefficient prevents
explosion in the solutions of (2.4.1), whereas (2.4.9) guarantees existence through the
action of a drift coefficient that is strongly directed toward equilibrium. Existence in thié
case is guaranteed despite, rather than because of, the noise perturbation.

In fact, if the relative sizes of f and h in (2.4.8) are as given in Feller’s test for ex-
plosion and nonexplosion, then we can again suppress an explosion in the corresponding

deterministic equation (2.4.2).

Proposition 2.4.3 (Feller’s test). There is a unique solution of (2.4.8) on [0, 00) almost
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Figure 24.4: Green: The solution of (24.8) with f(x) = a2 h(x) = x3/2. The noise
perturbation is insufficient to suppress the explosion. Red: When h(x) = x2, the explosion
IS suppressed.

surely if and only if both of the following conditions hold for all xq:

[X-CAGTHN ) - -» <>

The statement of Feller's test as given in Lemma 2.4.3 can be found in Klebaner [19).
A proof can be found in Karatzas & Shreve 17],

When the delay functional is absent, the condition (2.4.7) is sufficient to guarantee the
Feller’ test conditions for the solutions of (2.4.8).

Proposition 2.4.4. Let f and h be continuous, real-valued functions. 1If (2.4-7) hold,
then the Fellers test conditions (2.4-10a) and (2.4.100) are satisfied.
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Proof. In the context of the discussion, only (2.4.10b) is relevant, and so we restrict
ourselves to showing that (2.4.10b) is satisfied. The integral on the left hand side of

(2.4.10b) can be rewritten as

X [T _9 fF g, 1
I{zp) = / / e 'Y A dydz.
) Ty zp h’(y)2

By (2.4.7), there exists ¢ < oo large enough that

2f(x) S —2c(1+2%) 1
Ch@)? T zh(z)?2

. 2 . . . .
Since u — l—t»_‘;‘— is a strictly decreasing function on (0, ), we can define a constant

&(xo) = SUPy>z, cl—‘;“rz € (0,00) so that

x f(u z 22 u
e-2fy #IT))'Z > ge_chy %—.h(u)zdu
T .
> ge—?.?:(zo)f; ﬁgdu.
z
Therefore
P L —28(wo) [ gdu [T 28(wo) [¥ Aydu Y
I{(zp) > —|e 0 AW e 0 MW ——dy | dz. (2.4.11)
zo T g h(y) .

Define L(z) = [ ayrdu. We can rewtite (2.4.11) as

I(zo) > / l{e—%(mo)“w) / e25($°)L(y)L’(y)dy}dx. (2.4.12)
zg T zp

Applying a change of variables,

'z L(x
/ g28(zo) L{y) L'(’y)dy — / ( )eQE(zo)udu
x ' L

0 (z0)

_ ;[625(%)1;(2) _ ¢2e(z0)L{ao)]|

25(:E())
Therefore, regardless of whether lim,_,., L(z) is finite or infinite,

1. f:l’j‘vg eQé(xU)L(y)L,(y)dy
0 2(z0)L(z)

< 0. (2.4.13)
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Now define

T
H(z) = e—Zé(zo)L(z)/ 825($O)L(9)L’(y)dy, (2.4.14)

zo

so that H{z) - H* > 0 as z — co0. By (2.4.12) and (2.4.14)

1
I{zg) 2 ~H{z)dz.
zg L
Hence, by (2.4.13), I{zg) = oo for all zg, and (2.4.10a) holds. O

Final comment. The analysis of (2.4.1), (2.4.2), (2.4.6), and (2.4.8) suggests that a
sufficiently large state-dependent noise perturbation can suppress an explosion in the so—.
lution of a scalar deterministic equation. Moreover, if the delay term is strictly in the
past, in the sense that it is present as a functional 9(r7) With confinuous delay structure
(7,7), then the presence of an explosion does not depend on the structure of the delay

term, but purely on the instantaneous terms.
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Chapter 8
Oscillatory Behaviour — The Nonlinear Stochastic
Differential Equation with Fixed Delay

In order to begin t.o sketch the influence of feedback delay and noise perturbation in
the oscillatory behaviour of solutions of stochastic delay differential equations, we fix the
delay and the noise, and adjust the nonlinearity of the drift coefficient. We find that this
illustrates the role played by the noise perturbation. To this end, we analyse the oscillatory.

properties of the stochastic delay. differential equation

4X (1)

i

—g(X(t — 7))dt + ch(X (£))dB(2), (3.0.12)

X)) = o), te[-n0] (3.0.1b)

where ¢ # 0, 7 > 0 are real constants. This analysis can also be found in Appleby
& Kelly (3]. The initial data 7 is a continuous function on [—7,0]. Suppose that g 6,
C(R;R), and both g and h are locally Lipschitz continuous on R. It is shown in Chapter
2 that (3.0.1) has a unique strong continuous solution on [0, 00), almost Surely. By way
of comparison, we describe the oscillatory behaviour of the corresponding deterministic

equation.

3.1 The deterministic equation.

Gopalsamy [11] and Ladde, Lakshmikantham & Zhang [9], consider the oscillatory be-

haviour of the nonlinear delay differential equation

Z'(t) = —g(z(t — 7)). : (3.1.1)

The existence of an equilibrium solution z(t) = 0 is ensured by requiring that g(0) = 0.
The continuous forcing function g must act towards the equilibrium in order to generate an
environment conducive to oscillatory behaviour, and therefore it is required that zg(z) > 0

for x # Q.
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Figure 3.1.1: Red: The solution of (3.1.1), where g{z) = z is linear, does not oscillate
when there is short delay, 7 = 0.3. Green: When there is long delay, T = 1, oscillation

occurs.

From Theorem 1.5.2 in Gopalsamy [11], a linearisable g at equilibrium is the primary
guarantor of oscillatory solutions of (3.1.1). That is to say, if there is co > L > 0 such
that

i 9% _ (3.1.2)
z—0 T '

then oscillatory solutions exist. Oscillation can be guaranteed for every solution by ensur-
ing that the delay term 7 is large enough. More specifically, if 7L > % and (3.1.2} is true,
then every solution of (3.1.1) oscillates.

From Theorem 3.2.8 in Ladde, Lakshmikantham & Zhang [9], it can be seen that if g
does not obey (3.1.2), but the restoring force towards the zero equilibrium is weaker, in
the sense that .
li |lg(z)| -7

3%
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for some v > 1 and L > 0, solutions of (3.1.1) do not have to oscillate. In fact, if ¢ is.
any positive, continuous function on [—7,0], there-exists a* > 0 such that the solution of
(3.1.1), with z(¢t) = ay(t) for t € [-7,0] and 0 < a < o*, is nonoscillatory.

Nonlinear equations with forcing coefficients are also considered by, among others, Ladas
et al [8], Shreve [29], and Staikos & Stavroulakis [30]. For example, Shreve gives an analysis

of the equation

o' (t) = —a(t)g(z( — (1)), (3.1.4)

where 7 is a continuous positive function satisfying lim; ..ot — 7(t}) = o0 and a is a
locally integrable function that is nonnegative almost everywhere. He finds that if g is
sublinear in the sense that lim,_,. z/g(z) = M < o0, and limsup,_,, fzt—T(t) a(s)ds > M,
then every solution of (3.1.4) is oscillatory. However if g is superlinear in the sense that
lim;_oz/g(z) = oo, then the first zero can be delayed for an arbitrarily long time b};
choosing a sufficiently small constant initial data function. In fact, if [;° a(s)ds < oo,
then the existence of a nonoscillatory solution can be guaranteed. It is the strength of the
forcing function a, rather than the length of the delay, that drives the oscillatory behaviour

of solutions of (3.1.4).

3.2 Properties of the coeflicients of the stochastic equation.

Our goal is to determine the behaviour of the solutions of (3.1.1) following the inclusion
of a noise perturbation, generating a stochastic process solving (3.0.1). The question of
how to structure this perturbation is an important one. In order that we may apply the
definition of oscillation for stochastic processes given in Definition 1.4.2, it is crucial that
the equilibrium solutibn be preserved, and this will partially determine the conditions we
place on the diffusion coefficient.

We impose the following hypotheses on the continuous function A. Let h(0) = 0, and

suppose there exists 0 < A < 1 < A such that

hlz|* < zh(z) < hlz|?, (3.2.1)
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and
lim hiz) =1 (3.2.2)
—0 T f
In addition, the continuous function g has the prdperties
g(0)=0, =zg(z)>0, z#0. (3.2.3)

Notice now that if ¢(t) = 0 for all ¢ € [—7,0] that the unique solution of (3.0.1) is
X(t) = 0 for all t > 0, a.s. It is the oscillation, or absence of oscillation, about this_
equilibrium solution that we intend to study. The existence of this equilibrium solution

also rules out any possibility of oscillation if 7(¢) = 0.

3.3 The decomposition of solutions.

Our proofs of oscillation and nonoscillation rely upon the representation of the solution
of (3.0.1) as the produpt of a nowhere differentiable but;, positive process, with asymptotic
behaviour that is readily understood, and a process with continuously differentiable sample
paths, obeying a scalar random delay differential equation. To this end, we introduce the

continuous function h

] MO, x40 .
h(z) = , (3.3.1)

so that b < A(z) < h, z € R. We may then define the process {p(t)}i>—-r by p(t) =1, t€
[—7,0] and for t > 0 by

o(t) = e Jo X ()dB(e) =507 g H(X () ds. (3.3.2)
The process is uniquely defined 6n [0,00), as X is a well-defined process. We call the

almost sure set on which ¢ exists Qf C Qf, with P[Q]] = 1. Observe further that ¢

. satisfies

d(t) = oh(X (t))p(t)dB(2). (3.3.3)

Since ¢ is positive, we may define

Z(t) = X))~ t> - . (3.3.4)
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Then Z(t) = ¥(t) for t € [—7,0], and using stochastic integration by parts, (3.0.1) and

(3.3.3) imply that
20 =9(0)+ [ ~9X(s=r)pls) s, ¢20
The continuity of the integrand implies that Z is continuously differentiable, and satisﬁeg
Z'(t) = —p(t) tg(X(t — 7)), t>0. (3.3.5)

The following lemma places upper and lower bounds on the rate 6f decay of the process

P.

Lemma 3.3.1. Let ¢ be defined by (3.3.2), where h is given by (8.8.1). Then

lim supllog p(t) < —-lazf, a.s. (3.3.6)
t—o0 t 2
. . 1 1 272
liminf ~logp(t) > —=o°h", a.s. (3.3.7)
t—oo 1 2
Proof. Define _
t .
M) = / R(X(s))dB(s), t>0, (3.3.8)
0

and the associated qﬁadratic variation process
t -~
(M)(8) = / R(X(s))? ds. (3.3.9)
0
Then ¢ may be rewritten as () = e?M©O=37°(M () By (3.2.1) and (3.3.1),
B2 < (M)(t) < Rt (3.3.10)

To prove (3.3.6) and (3.8.7), note that, by (3.3.10), lim; ..o (M)(t) = o0, a.s., s0 by Lemma
1.2.2, the law of large numbers for martingales, M(¢)/{M)(t) — 0 as t — oo, a.s., and

therefore, as

- R el <7 |

we get M(t)/t — 0 as t — oo, a.s. Since h%t < (M)(t) < T°t, the estimates (3.3.6) and

(3.3.7) follow. O
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3.4 Almost sure oscillation of solutions.
Consider the stochastic delay differential equation (3.0.1) where, in addition to the earlier
hypotheses on g and h, we request that there exists L € (0, oo} such that

lim inf 9(z) =L (3.4.1)
z—0 x .

A drift coefficient satisfying (3.4.1) is said to be sublinear at zero. This definition is similar

to that used in Shreve [29].

3.4.1 Main result.

Theorem 3.4.1. Suppose that the continuous function g obeys (8.2.3) and '(3.4.1 ), and
the locally Lipschitz continuous function h obeys (8.2.1) and (3.2.2). If ¢ € C([-7,0],R),

then all solutions of (3.0.1) are a.s. oscillatory.

Proof. Note that if 1(t) = 0 on [—7,0), then X(¢) = 0, for all ¢t > 0. So, in this case,
the solution is oscillatory. Therefore we assume that (t) # 0 on [—7,0). By Theorem
2.3.1, the solution exists on a set * C , where IP’[Q*] =1. So Q* = ) Uy with
€1 N Q9 = @ such that the solution is a.s. oscillatory on £2; and a.s. nonoscillatory on
. Suppose P[] > 0, contradicting the statement of the theorem. Take w € Q*. Let
 be the process defined in (3.3.2) which obeys (3.3.3). Let Z be the process defined in
(3.3.4) which satisfies the random delay differential equation (3.3.5). Now suppose w € Q.
Then there exists 7* (w) < oo such that, for all t > 7*(w), X(¢,w) # 0. Therefore, either
X(t,w) >0 for all t > 7*(w), or X(t,w) < 0 for all ¢+ > 7*(w). Suppose, without loss of
generality, that X (¢,w) > 0 for all ¢ > 7*(w). Then, for all £ > 7*(w) + 7, (3.2.3), (3.3.4)
and (3.3.5) imply that

Z'(t,w) <0, Z(t,w)>0.
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Figure 34.1: Green: The solution of (3.1.1), where g{x) = x is linear and r = 0.3, does
not oscillate. Red: The inclusion of a noise term h(x) = x does not appear to cause
oscillation in plot (a). However, a closer inspection of the simulated path highlights sign-
changes on [0.15] at t = 1.3048, 4.2498, 6.466, 10.3591, and 11.4957. Close up views of
two of these are presented in (b) and (c). Extending the path further yields sign changes
on [1530] at t = 16.2373, 18,6332, 19.0507, 22.2824, 230114, 24.4985, and 26.5472
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1.5 T —T T 7

0.5

-0.5

-1.5 L 1 L 1

Figure 3.4.2: Red: The solution of (3.1.1), where g(z) = sgnz/z is sublinear, oscillates
when there is long delay, 7 = 1. Green: The introduction of a noise term h(z) = = does

not qualitatively affect the oscillatory behaviour.

Hence 0 < X (t) < @(t)Z(r* + 7) for all t > 7* + 7. Therefore, for all t > 7* + 7

X(™*+7)

X< |2

o(t).

Since 7* < 00 a.s. on Qp and ¢t — X(t), t — ¢(t) are continuous, and therefore bounded,

on [0, 7* 4 7], the quantity

X(r* + ,w)
o(t* + 1,w) |

o) = |

is positive and finite for all w € 9, and
Xt w) < Cw)pltw), t>7(w)+r.
By (3.3.8), p(t) — 0 as t — oo. Thus X(t) — 0 as t — o0, on Q. For t > 7* + 27, the
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1.2 - T T T T

0.2 - I I { 1

Figure 3.4.3: Red: The solution of (3.1.1), where g(z) = sgnz/z is sublinear, oscillates
when there is short delay, 7 = 0.3. Green: The introduction of a noise term h(z) = «

does not qualitatively affect the oscillatory behaviour.

function g, given by

gX(t—7))

="%—n

is well defined. Then §(t). >0 fort > 7" 4+ 27 and, as X(t) — 0 as t — o0, (3.4.1) implies
lminfg(tw) =L >0, we (3.4.2)
Letting P(t) = o(t)"lp(t — 1)§(t), t > 7* + 27, we see that P(t,w) > 0 for all w € 2y,
t > 7*(w) + 27, and (3.3.5) can be rewritten as .
Z't)=-P)Z(t— 1), t>T"+2r1. (3.4.3)

Therefore, if we can show

t
lim sup/ P(s,w)ds = oo, (3.4.4)
t -

t—o0 -7
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for almost all w € 9, then t — Z(t,w) is oscillatory for a.a. w € §, by applying
Lemma 1.5.1 for each w € . But as the zeros of X(t,w) and Z(t,w) coincide, this
implies that t — X(t,w) is oscillatory for a.a. w € £25. This contradicts the construction

of 0, and so the result follows from (3.4.4). By (3.4.2), we see that (3.4.4) is true if

lim sup (/;t ©(s) " Lo(s — 7) ds) (W) =00, a.a wes. (3.4.5)

t—*OQ -7

We now turn to proving this claim. For ¢ > 7, we have

t t
/ o(s) (s — 7)ds = / 307 ((M)(8)=(M) (5=7)) oo (M(s=7)=M(s)) 4.
t

-7 t—7

But (M)(s) — (M)(s —T) > h®r, so

t . " ¢ - ~
/ wo(s) " ro(s —7)ds > e%"zﬁzT/ e~ (BUM)(s)=B((M)(s—7)) 4o
t t—r

—T
Note that ¢ — (M)(t) is a strictly increasing and C! function, with h2 < (M)'(t) < h".

Therefore, (M)(s) > Rt for s > 527'/ h?, and moreover,

B(M)(s—7))< max  B((M)(s)-w), s>R1/h% (3.4.6)
uelh?r,h 7

Next we suppose, without loss of generality, that o < 0. It then follows from (3.4.6) for

t>71 +527/h2 that
, ) ) _
52/ e~ (BUMN8)=B({M)(s—7))) 44
t-7r
¢ = -
> / -0 BUME-BUM-T) 11y (5) ds
t—7

(M) (s)ds

N / b B max, ) BUM)(s)—u)
t

—T

> /<M)(t) oo B)mex, o g2 Bl-w))
(M)(¢—)
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Since (M)t —7) < (M)(t) —h*r fort > 1 +527/@2, we have

[ etorets - r)as

v

(Lot /‘ ~o(BUM)(s)~BUM)(s=7) g

| V

Lotk _/(M)(t) a(é(v)—maxue[hzm B(v—u)) do.
M){ty—h2T

Thus, as {M)(t) — oo as t — o, a.s., and since it is clearly true that for o < 0 and any

standard Brownian motion W

: t
limsup/ , e W) mmax g2 Wl—w) 4o 00, a.s., (3.4.7)
t—h

[ o]
we have established (3.4.5), and completed the proof. A statement similar to (3.4.7) is

proved in Lemma 1 of Appleby and Buckwar [1]. O

3.4.2 Some remarks on Theorem 3.4.1.

The zero set of X(w). It is possible to comment upon the structure of the zero set
Zx(w) = {t > 0: X(t,w) = 0}. From (3.4.3), and the fact that P(¢t,w) > 0 for all
t > 7% + 27, it can readily be seen that the zeros of Z (w), and hence of X (w), must be
isoléted. In fact, this property of the zero set is also clearly visible in Figures 3.4.1, 3.4.2,

and 3.4.3.

Complementary analysis in theliterature. Theorem 1 in Gushchin and Kiichler [12]
guarantees the oscillation of solutions of (3.0.1) in the special case where h(z) = z. The
following condition is imposed, requiring a weaker regularity, but stronger monotonicity,
condition on g:

If g is nondecreasing on R, and there exist real numbers § and b with § > 0, b > 0, such
that

5’% > b ~ (3.4.8)

for all z # 0 satisfying |z| < 4.
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For example, g(z) = sgn(z) satisfies (3.4.8), and Gushchin and Kuchler guarantee the
existencev of a unique strong solution of (3.0.1) for this choice of g, and h{z) = z.

In Chapter 2, the existence of unique solutions of (3.0.1) has been established with a
continuity requirement on g, excluding functions with discontinuities, like g{x) = sgn(x),
from consideration. But, given the precedent set by the deterministic theory, it may be
possible to prove the existence and uniqueness of a strong solution of (3.0.1) with a weaker

regularity requirement on g.

3.5 Nonoscillation of solutions.

We now study nonoscillation of solutions of (3.0.1). Naturally, this requires that g act
weakly towards equilibrium in the vicinity of equilibrium. Suppose that there exists v > 1

and 0 < L < L such that

lim 9 _ L, (3.5.1)
z—0 |;1;]’Y
and A
lg(z}| < Liz|”, z€eR. (3.5.2)

As g obeys condition (3.5.1), it is superlinear at zero. The significance of this property
of g is emphasised in Shreve [29], where examples are given of deterministic equations
with nonlinear coefficient satisfying (3.5.1) and (3.5.2) which do not oscillate. In fact the
conditions imposed on f here are somewhat stronger than those imposed in [29].

If g satisfies a global linear bound of the form |g(z)| < K(1+|z|) for all z € R and some
K > 0 then this along with (3.5.1) implies (3.5.2). Such a global linear bound, together
with the local Lipschitz continuity of g, and with similar global linear bounds and local
Lipschitz continuity on h, guarantees that (3.0.1) has a unique strong solution [25], without
any need for the analjsis in Chapter 2.

However, a global linear bound on ¢ is not required for (3.5.2) to hold, and therefore
the main result in this section, Theorem 3.5.2, applies to processes for which the existence

theory in Chapter 2 is required.
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3.5.1 Preliminary analysis.

In advance of proving a result on the nonoscillation of solutions of (3.0.1), we require a

technical result, the proof of which will require some further auxiliary processes. If M is

the process defined in (3.3.8), we see that, by (3.3.10), limy_,o{M)(t) — oo a.s. Therefore,

by Lemma 1.2.3, the fnartingale time change theorem, there exists a standard Brownian

motion B such that

M(t) = B{(M)(t)) for all t >0 a.s.

We also introduce the process B given by

B(t)= min B(w).
t$1115t+7'ﬁ2

Lemma 3.5.1. Let B and B be the processes defined in (3.5.3) and (3.5.4). If

I= / (s — T)To(s) " ds,
0
and

TEZ - 7 .
7= %{\/ e"—:u—aB(u) du + 6%02#7 /°° e_%az(’}’*l)u-‘ra'yB(u)—aB(u) du},
L 0 0

then

I<I<x.

Proof. We assume, without loss of generality, that o > 0. First, we prove that

T 1 Tﬁz ”2 —
/ p(s —1)0(s) 1 ds < ;{5/ e7v 9B gy, as.
0 h* Jo

(3.5.3)

(3.5.4)

(3.5.5)

(3.5.6)

(3.5.7)

(3.5.8)

where B is defined via (3.3.8) and (3.5.3). Let M be the process defined by (3.3.8), with

quadratic variation given by (3.3.9). Ast — (M)(t) is strictly increasing, and continuously

differentiable, we may define S(u) = (M)~}(u). Note also that (M)'(t) > h?, a.s. Hence

T T T 2
/ o(s—1)%p(s) Mds = / @(s)"1ds = / T M) (&) —aM{s) g
0 0 0

MY (T
_ /( X )eﬁ';u—aM((M>_l(u))—1—du'
: | (M)'(S(w))
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Now by (3.5.3), {3.5.8) is immediate. Next, we prove that

/oo (p(S)‘Y(p(S + T)_ldS < %e%gzﬁ T /00 e{_%02(7«1)u+v'y§(u)—a§(u)}du (359)
0 112 0

where B satisfies (3.5.4) above. Define 7(u) = (M)(S(w) + 7) — (M){(S(w)). Then 7(u) <

Tﬁz, a.s. Let B be defined by (3.5.4). Observe that

lim Bl =0, as. (3.5.10)

U—00 u

and

[ax)}

(u) < Blu+7(w), u> 0, as.

Thus (3.5.10) and ~y >1 imply that

o0 12 - ~
/ e~ 29" (r=NutayBu)-oB(u) g, 00, a.s.
0

Now, as 0 >0

oo L, B B
/ o= 392 (r=VutorB(w)-oB(w) gy,
0
- R -
> / 8_%02(7—1)u+073(u)—‘75("+"(u))d’u
0

_ / ™ e+ BUMN N - BAMNs+) (A1Y/(5) ds
0

/ o(s)To(s + T)—16%02(<M)(S)—(M>(s+r)) (MY (s)ds
0

> h?é—%az.ﬁz‘r * ¥ -1
> A p(s)p(s+7)" " ds
0
which is (359) Combining (3.5.8) and (3.5.9) yields (3.5.7). a

3.5.2 Main result.

We now prove the main result in this section. To show that solutions of (3.0.1) do not
-oscillate with positive probability when g obeys (3.5.1) and (3.5.2), we show, for certain
positive initial data, that solutions can remain positive with nonzero probability. This

result highlights the distinction between the memory driven processes that are the focus
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of this thesis, and the Markovian processes that obey classical zero—one laws. Suppose

P(t)>0forallte [—%, 0] and define the stopping time
7y = inf{t > 0: X(t,¢) = 0}, (3.5.11)

where we set Ty(w) = +oc if X(t,w) > 0 for all ¢ > 0. Suppose the solution of (3.0.1) is
defined on Qf, with P[Qf] = 1, and define, as before O} C Qf the almost sure set on which

 exists, is strictly positive, and obeys conditions (3.3.6) and (3.3.7).

Theorem 3.5.2. Let {X(t)};>0 be the unique continuous strong solution of (3.0.1). Sup-
pose g satisfies (3.2.8), (3.5.1) and (3.5.2) and h satisfies (3.2.1) and (3.2.2). Suppose

that () > 0 for all t € [—7,0] and 7y is defined by (3.5.11). Then

1. There exists a*, possibly infinite, such that for all o < o™

]P)[Tayj, < OO] <1

2. Moreover

limOIF’[TW < ] =0. (3.5.12)
a—

Proof. Define ||9|| := sup;g( g %(t) > 0, Qy = {w € O} : 7y(w) < 00} and also

Dy = {w e} I(w) < ”zﬁ)z} (3.5.13)

where T is given by (3‘.5.6), and L is given by (3.5.2). The main step in the analysis is to

prove the following: if I is defined by (3.5.5), then

w € Qw. (3514)

If (3.5.14) is true, by (3.5.13), Lemma 3.5.1, and (3.5.7), we have Q, C D,
Since I < oo, a.5., there exists some C > 0 such that
A={weQ: I(w)>C}
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Figure 3.5.1: Red: The solution of (3.1.1), where g(x) = z3 is superlinear, and 7 = 1, is
nonoscillatory. Green: The introduction of a noise term h{z) = x does not qualitatively
affect the behaviour. (b) is a close up view of (a), confirming that the simulated path of

dX(t) = —X(t — 1)3dt + X (t)dB(t) remains negative.

satisfies P[A] < 1. Now, define o* by _a‘_w(L = C. Hence, for a < o*, w € D,y implies
La*? ||| 4

- 1 ay(0) " p(0)
)2 25T~ e~ ©

sow € A, or Doy C A. Therefore, for a < a*,

P[Qay] < P[Day] < P[A] <1,

as required for Part 1.
To prove Part 2, note from (3.5.6), that T < 0o, a.s. Hence, by (3.5.13), as v > 1,

lim P[Doy] = lim P {7 > ﬂ] =0
a=0 a0 oY7L
Since P{Qqy] < P[Dyy), (3.5.12) now follows.

It remains to justify (3.5.14). Now, suppose that w € 2 and for ¢ < 7, + 7 define

9XC=1)  X(t-71)#0
L) = ) X(t-7)

L, X{t—71)=0.
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By (3.5.1) and (3.5.2), t — L(t) is continuous, strictly positive and bounded, with 0 <

L{t) < L. Also define
P(t) = L{t)p(t —m)Tp(t)™}, 0<t<my+r
For 0 <t < 7y + 7, we have X(t —7) > 0, so
Z(8) = —P$)Z(t—1)T, 0<t <1+ (3.5.15)

For t =7y + 7, X(¢ —VT) =0. Then Z(t —7) = 0,50 Z'(t) = 0. But —P(t)Z(t - 7)" =0,
so Z'(ty = ~P(t)Z(t — )" once more. Hence Z'(t) < 0 for t < 7 + 7. Thus Z(t) < ¢(0)
for all t € [0,7y + 7]. Another way of writing this is to say that Z(t — 1) < (0) for
all t € [1,27 4+ 7). Also, Z(t —7) = ¢(t—7) < |¢| for all £ € [0,7]. So Z(t — 1) S
|| for all ¢ € [0, 7 + 27], which implies that Z(¢ - 'r) < 1Y for all ¢t € [0,7y]. Using

this, and (3.5.15), we get

T "
$(0) = ~Z(ry) + Z(0) = fo P(s)Z(s —7)7ds < /0 P(s)|%|" ds

SThl” [ ols = el ds < Tl [ pls = r)ple) s

Therefore

== < /Ooo (s = 7)7p(s)Tlds = I(w),

as required. O

3.5.3 Further Remarks.

The use of T in the proof of Theorem 3.5.2. On a first viewing, it is perhaps not
immediately apparent why the random variable T is introduced, as one might expect to
be able to prove the results of Theorem 3.5.2 with

¥(0)
l¥I"L

Dipz{w E'Q;{A:I(w)< }, and A ={weQ;: I{w)>C}.
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It is not automatic that iima_,g ]P’[wa] = 0, as the random variable I depends on «,
because it depends on X through the initial data ay. However, the random variable T has
the same distribution as a random variable indepen‘dent of the initial data, and thereforg
independent of the scaling factor «. Indeed,

]P’[Daw]=IP[T'2 v(0) }

a¥ Yy |7L

where the random variable T is given by

I S
I = ?{/ eTUu 0B (W) gy
1 0

— [
+ e%azh T/ 6—%0'2(7-1)U+0"/B’(U)—0miﬂu5w5u+-r B'(w) d’ll,}
0

and B’ is any standard Brownian motion. As Tis independent of the initial data,

IimIP’{T’> () ]

a=0 | 7 o lp7L

)

50 P[Dgy] — 0 as a — 0.

If 1 is supported on (0, o) then there is a positive probability of nonoscillation for any
positive and continuous initial function +. I is an integral function of Brownian motion,
and the distributions of some similar functionals are known. For example, Dufresne has
shown in [7] that if B* is a standard Brownian motion, a > 0 and ¢ # 0, then the random

variable

oo
I = / e-—as—+—oB*(s)d'S
0 .

is a.s. finite, continuous and supported on (0,00). In fact, Dufresne has determined the
probability density of L.

While this is not direct evidence for T to be supported on [0, %), the similar functional
forms of L and I mean that the possibility cannot be automatically ruled out.

For any positive initial function ¥, a knowledge of the distribution of T allows us to.
construct explicitly the scaling factor o* which guarantees the existence of nonoscillatory

solutions with positive probability.

Final comment. The most obvious consequence of adding a noise perturbation to the
solutions of {3.1.1) is that a.s. oscillation can be guaranteed without any minimum re- .

quirement on the length of 7. Clearly then, noise facilitates the onset of oscillation in
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circumstances where ilt does not otherwise occur. Because of the existence of an equilib-
rium solution, a nonzero delay is nonetheless still required, indicating that an equilibrium—
preserving noise perturbation is insufficient on its own to induce oscillation. This is anal-
ogous to the analysis of of the linear stochastic differential equation with fixed delay by
Appleby & Buckwar in [1]. We will now study in further detail the interdependent roles

played by noise and delay in the oscillatory behaviour of stochastic delay equations, by

allowing the delay to fade asymptotically.
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Chapter 4

Asymptotic Behaviour — Brownian Increments

In Chapter 3 we varied the emphasis placed on the delayed feedback by the equation,
rather than altering the delay itself. The remainder of this thesis will consider the effect
of a variable delay on the qualitative behaviour of a linear stochastic delay differential

equation. We will study the solutions of

dX(8) = (aX(t)+bX(t—7(t)))dt +oX(t)dB(t) (4.0.1a)

X(t) P(t), -T<t<0, (4.0.1b)

Il

where b < 0,and T is a c;)ntinuous function. By varying 7 appropriately, we can build up a
picture of the complementary roles of delay and noise in oscillatory behaviour. Specifically,
we fade out the delay, allowing it to vanish asymptotically, while keeping the intensity of
the noise fixed.

The manner in which the variation of 7 affects the behaviour of solutions of (4.0.1)
is therefore of crucial importance. Just as in Chapter 3, our methods rely on applying a
traﬁsformation to (4.0.1) yielding an auxiliary process with identical oscillatory behaviour,
and differentiable sample paths. For this linear equation, the qqalitative behaviour of this
auxiliary process is explicitly governed by the evolution of Brownian increments that are
scaled by the length of . The purpose of this chapter is to develop a theory describiné
the asymptotic behaviour of these increments and their large deviations, for various decay
rates of 7, over continuous and discrete time sets. We will draw upon this theory over the

next three chapters.
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4.1 The role of Brownian increments in oscillation.

Geometric Brownian mation plays the role of the strictly positive process in the decom-

position from here on. Define {¢(¢)}:>_7 to be the solution of

de(t) = ap(t)dt + op(t)dB(t), (4.1.1a)
o) = 1, te€[~-7,0]. (4.1.1b)

Define y(t) = X (t)/(t) for t > —7, where X solves (4.0.1). Hence, by Lemma 1.3.3,

stochastic integration by parts, y satisfies

t
y(t) = y(0) + /0 by(s - 7(s)) (s — 7(s)) p(s) " ds, 20,

which can be written as’

YO = b)) elt - Tyl - (1)), ¢ >0 (4.1.22)

y() = (8, te[-7,0) (4.1.2b)
Clearly, y € C*((0,00); R), and moreover, we have

y'(t) = —p(t)y(t — 7(t)), t > 0. (4.1.3)

Since t ~— t — 7(t) is nondecreasing, there exists t* = inf{t > 0 : ¢t — 7(t) = 0}, so that
t—7(t) > 0 for all ¢ > t*. Then, letting A = a — %02, the path dependent function p

satisfies

e M BWW)-BU-r@)@), ¢ > g
p(t)(w) = (4.1.4)
e N-oBEw), t< e,

Therefore, the solution of (4.0.1) can be written as the product of the geometric Brow-
nian motion ¢ and the solution of a random delay differential equation which admits a
continuously differentilable solution.

The significance of this transformation lies in the relationship that y bears to X. Since
y(t}) = X(t)/¢(t), and ¢ is an a.s. strictly positive process, the zeros of the process
y correspond almost surely to the zeros of the process X. Therefore it is sufficient to
analyse the oscillatory behaviour of y in order to determine the oscillatory behaviour of
X. The advantage of .t‘his approach is that there is a set of deterministic results that apply

directly to the paths of the solutions of (4.1.3), given by Theorems 1.5.1 and 1.5.2.
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Chapter 4, Section 2 Asymptotic Behaviour ~ Brownian Increments
Apblying déterministic theory. We will require knowledge of the asymptotic be-
haviour of the process p. If p takes on values that are large enough, often enough, it will
induce oscillation in the process y, and therefore X. Notice in the definition of p, given
in (4.1.4), the presenée of the Brownian increment B(t) — B(t — 7(¢)). The asymptotic
behaviour of the large devfations of these increments, for delay functions T exhibiting var-
ious behaviours, will determine the behaviour of p. This chapter is devoted to analysis

describing the behaviour of these increments.

Mills’ estimate. An estimate of the rate of decay of the tail of the distribution of a

standard Gaussian random variable will be useful in our analysis of Brownian increments.

If
1 (o 9]
Vo)== [ e, (4.1.5)
T
then
1 11
T SUe S = s20 (4.16)
T T

The result may be found, for example, in Chapter 2.9.22 of Karatzas & Shreve [17].

4.2 Continuous time processes.

We prove some results on the asymptotic behaviour of the large deviations of the Brownian

increment B(t) — B(t — 7(t}) when the delay function T obeys
tlim 7(t) =0, 7(t) > 0, t — ¢t — 7(t) is nondecreasing. (4.2.1)
—00

These results have been published previously by Appleby & Kelly in [2].

Lemma 4.2.1. If 7 is a continuous, eventually decreasing function satisfying (4.2.1) and

o log(1/7() _

t—oo \ /7(t)logt B
then

¢
li'msup/ eI BEBl-T) g5 = 00,  a.s.
' t—r(t)

t—00
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Proof. Since T is eventually decreasing and 7(t) — 0 as ¢t — oo, there exists N € N such
that forallt > N, 7(¢t) < %, and 7 is decreasing on (N, 00). Let ap =nforalln> N +1
and consider the sequenée of random variables Z,, = Y{a,), where Y is defined by (5.2.4).
We may use the indepgndence of nonoverlapping inérements of Brownian motion to observe
that {Z,}n>n is a sequence of independent random variables, as each Zn is a functional
of increments of Brownian motion on a subinterval of [n — 1,n). It now suffices to show
that im sup,,_, o, Zn = 00, a.s.

Suppose now that 7y is a continuous function such that 0 < 7 (¢) < 7(¢). Let n > N+1.

The monotonicity of T implies that

s€ln—71(n)n] 7(s) = 7(n — 11 (n)), SE[nr—I%riI%n),n] 7(s) = 7(n) > 11(n).

Therefore for n — m1(n) < s <mn,

B(s)—B(s—17(s))> min B(u)~ max B(u).

T weemi(n)al u€ln—m (n)—r{n—m1(n)),n—7(n)]
Observe that the intervals [n — 71(n),n] and (n — 7 (n) — 7(n — 7 (n)),n — 7(n)] do not
overlap as n — m1(n) > n — 7(n).
Without loss of generality, we consider ¢ < 0 in the sequel. Next, let 8 > 0, and definé

an(B) so that 7y (n)e=*n(8) = 3. Define the event

An(B)

= {w b min  Bl{u,w) — max B(u,w) > an(ﬂ)}-

n—71(n),n] u€ln—r(n)—7(n—m1(n))n-7(n)

Then for w € A,(8), we have

e~ (B(s:0)~B(s—(s) ) g

n—7(n)

/ T e o(Blew)-B-T(9))) g
n—T1 (n)

Zn(w)

v

v

/n e B g5 = 1y (n)e=o® = g,
n—r1(n) ‘
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Chapter 4, Section 2 Asymptotic Behaviour — Brownian Increments

Therefore P[Z, > §] > P[An(8)], and so, by the second Borel-Cantelli Lemma (given,
along with the first Borel-Cantelli Lemma, as Theorem 2.7 in GThman & Skorohod [10]),
proving

> PlAn(B) = oo, forall >0 (4.2.2)
n=N+1

is enough to show lim sup,,_,., Zr = 00, a.s.

Next, we see that the random variable

U,= min Bu)-— max B{u)

u€[n—r1(n),n] u€n—ri(n)~7(n—7i(n)),n—7(n))

may be rewritten as -

min  (B(u) - B(n—(m) + (B(n - m1(n) — Bln - (n)))

u€n—71(n),n)

(B(n —7(n)) ~ Bw)). .

min
u€n—m (n)—T(_n—T1 (n))m—7{n)]

The independence of the increments of B means that U, has the same distribution as

min WO (s) + WO (r(n) - + i w®
se[O,ﬂ}Rn)] ( ) ( ( ) Tl(n)) 56[0,71(n)+'rr(r1lzl£l7'1(n))"T(")] (8)

where W), W(zj, W® are independent Brownian motions. Recalling that the distribu-
tion of max,eip 4 W(s) is the same as |W(t)|, when W is a standard Brownian motion,
and that minsejp g W(s) has the same distribution as —max,e[ g W(s), we see that Uy,

has the same distribution as

—V7rM)| 21+ V7(n) = (n) 2, — /1(n — 11(n)) — 7(n) + 11(n)|Z;3]

where Z1, Z3, Z3 are independent standard Gaussian random variables. Thus, by defining

71(t) = 37(t), and setting

k)

T1(n)

o \/T(n — 7(n)) — 7(n) + 1o (n)
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Chapter 4, Section 2 Asymptotic Behaviour — Brownian Increments

we see that

Pl-vm(n)|Z1| + v/ 7(n) — 11(n) 2>

=1 = 1(n)) = 7(n) + 1 (n)] Zs| > an(6)]

an(ﬁ)
Vv7i(n)

PlA-(5)]

Il

P[—|Z1] + Z5 — pn|Z3| > ]

The independence of Z1, Zy, Z3 now implies

P(A(0)] > Pl|22] > 1,20 > 22D 414 p0 izl > )
T1 n) '
> Pz < UP(Zo > 220 4y piB)zs) < 11
Tl(n)
Hence there exists ¢ > ( such that
an ()
P[ATL(IB)] > C\I[ (m + 1 +pn> bl

where ¥ is as given earlier. Since p,\/71(n) — 0 as n — oo, it now follows that (4.2.2) is

true if we can show, for some N; > N + 1, that,
o0
> U(ya) = o0, (4.2.3)
n=N1

where v, = Wook Now, condition (5.2.3) implies that lim; . 7(t)logt = oo, so for

every 3 >0, 0 <0, we get

lim sup — 2 log(B/71(t)) + 1 _

t—o0 Vn(t)2logt

Hence limy— o0 —\/3—7{—’:7-—?5 =0, and so v, < y/2logn for all n > Ny. Hence, by (4.1.6), for all

n > N3 > No, we get

1.2 1

1 Yn o _1 1 1 1
U(yn) > = o2 > 2 =y
(¥n) 2 Vor 1+ 42 V2r 22logn n
This estimate now yields (4.2.3), and hence the result. d
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Lemma 4.2.2. If 7 is a continuous function satisfying (4.2.1) and
lim 7(t)logt =0,
t—oo

then

tliglo B(t) - B(t—7(t))=0, a.s

Proof. Note that W (t) = tB(}) is standard Brownian motion, so we may rewrite B(t) -

B(t—7(t)) as

B(t) - B(t - T(t))v= r(t)W(%) +(t—1(t) (W (%) - W(t—_—l;(a))

Because 7(t) — 0 as t — oo, 7(t)W(}) — 0 as t — co. Hence proving that

Jim (¢ - T(t))(W(%.) - W(ﬁ)) -0, as. (4.2.4)

will suffice. 7(¢) — 0 implies both that 7(¢)log(7(t)} — 0 as t — oo and that E#t—) -1

as t — oo. For t > Tj, we have 1 < t — 7(t) < t. Therefore
7(t) log(t} < 7(t) log[t(t — 7(t))] < 27(¢) log(t),

so 7(t)log[t(t — 7(t))] — 0'as t — oo, since 7(¢)log(t) — 0. Thus

) Wi~ (1)
- T(t”\/;t — ) 1°g< =) )

= W\/r(t) logft(t — 7(t))] — 7(t)log 7(t) > 0 as t — c0. (4.2.5)

. l o
Forallt>Tand0<%< L <1,let6(u)=1—17'—£i;)—,for0<u<%. Note that

) T3
t—-lrt —%:5(%% and5(u)—>0asu—>0.
Fort>T
1\ 1 :
‘WH - W( )‘ < o hex  [W(s)-W(r)l
b t—1(t) 0<s<r<1, r—s<8(L)
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Therefore, for ¢t > T

u—fmﬂw(%> (t—ﬂtﬂ

(t - 7(t) \/25 log 5( )> MaXg<s<r<t, r—s<6(}) [W(s) - W(r)| (4.2.6)

26(3) log(575)
tt — (%))
gy ()

MaXg< or<1, r— —s<8(3 ’W(S) W(r)|
25(3)10g(m)

IA

Because §(3) — 07 as t — o0, Lévy’s result on the maximum modulus of continuity of
standard Brownian motion (see, for example, Theorem 2.9.25 in Karatzas & Shreve, 1991)
implies that

MaXo<s<r<i, r—s<s(L |W(5) W{r)|

lim sup

teo ‘ 25(?)10g(m)

— limsup maxpo<s<r<l, r—s<§ |W(T‘) - W(S)l

60+ \/261og(3)

We see from (4.2.7), (4.2.6) and (4.2.5) that

O

< limsup(t— T“”\/Qm Tm( ok g(t(t ;<t7>(t))>

MaXygser<t, ros<a(l) W () = W(r)|

=1, as. (4.2.7)

-lim sup = -
oo 26(3) log( 3%
= 0, a.s.,
which proves (4.2.4), and the result. a

Lemma 4.2.3. If b > 0, 7 is continuous and obeys 7(t) — 0 as t — oo then

hsup B0 = BE=7(®)

t—00 V2r(t)logt

Proof. Since 7(t) — 0 as t — o0, we have 7(¢,)} < 1 for all n > Nj, and therefore there

1, a.s.

exists No > Ny such that t, < nfor all n > No.
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By the construction of {¢,}, tr — tn—1 = 7(tn). Thus the sequence of random variables

Y, = B(tn) — B(tn-1)
7(tn)

is a'sequence of independent standard Normal random variables. Therefore

. Yn
limsup ——= =1, a.s.
Nn—00 2 log n

Hence

B(ta) — B(tn—l) B(tn) - B(t.n—l)

lim sup

lim sup >
n—oo - 1/27(ty)log in n—00 27(tn) logn
: . Yr
= lims =1, as.
n—>olc1>p v2logn

a

If 7(t) vanishes quickly enough, we can also derive an upper bound.

Lemma 4.2.4. If 7 is continuous, 7(t) — 0 and 7(t)logt — 0o as t — oo, then
B(t) - B{t — 7(t

limsup BO —BE TN _ 5o (4.2.8)

t—ro0 v/ 27(t)logt
Proof. Just as in the proof of Lemma 4.2.2, W (t) = tB(3) is standard Brownian motion,

so we may rewrite (4.2.8) as

B(t) — B(t —7(t)) loglogt 'r(t B(%)
V27 (t) logt log t \/Qt—bg_l()g_
O (N D
+m<w (t) W(t—q-(t)))' (4.2.9)

By Lemma 1.2.1 - the law of the iterated logarithm ~ and because 7(t) — 0, we only need

consider

(") ¥ (=)

since the rest of the right hand side of (4.2.9) vanishes as t — 0.
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7(¢) — 0 implies that t — 7(t) — oo and that there exists T' > 0 such that, for all ¢t > T,

80

7(t)
<=y

We can define function & : [0,771) — R, by §(0) = 0 and

< L.

u—l
“w:u4m4—7w4»’0<“<%' (4.2.10)

Note that 5(%) — 0 as t — oo. Again, we appeal to Lévy’s result on the maximum

modulus of continuity of standard Brownian motion,

R 1nax0§s<r§l,r~s§6(%) {W(S) - W(T)|
lim

t—oo L 1

= lim MaXp<s<r<l, r—s<8 |W(S) - W(T‘)|

607 \/26log(3)

=1, as. (4.2.11)

It is also trué that

t—7(t) 7(t) t(t — (1))
t]ioo —27(1‘) Tog 2t(t — ) log( @ ) (4.2.12)

L t—7(t) log(t —7(t)) 7(t)log7(t)
h hr?o t \/1+ logt ~7(t)logt

t—

- Vo

Now, for ¢t > T,

s (5 -7 (el
t—7(t) 5 7(t) o (t(t — T(t))>
Vrmhost ) i) 0

MaXg<s<r<i, r—s<o(d) |W(s) —W(r)|

28(3) log(575;)
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So, letting ¢t — oo we see, by (4.2.11) and (4.2.12), that

lim sup |5() — Bt — 7(1))] < \/5, a.s.

t—o0 v 27(¢t) logt

a

Note that if we require that ¢t — 7(t) be strictly increasing, then, when 7(¢)logt — co, -

- limsup |B() — Bt —7(t))| =1, a.s.
t—00 27(t)logt

4.3 Discrete time processes.

In Chapters 6 and 7, we will find that a useful description of qualitative behaviour can be
developed by considering discrete processes that mimic the properties of the solutions of
(4.0.1a). For this reason, we require results which give bounds on the asymptotic behaviour
of the Brownian increment B(t) — B{t — 7(t}) as discretised on the delay dependent time

set defined in (2.2.1). The delay function 7 is continuous and obeys

tlim 7(t) =0, 7(t) > 0, t — 7(t) is strictly decreasing on [0, 00). (4.3.1)
— 00
The following result- is a consequencev of Lemma. 4.2.3.

Lemma 4.3:1. If T is continuous and obeys T(t}) — 0 as t — oo then

lim sup Bltn) - Bltn 1) >

n—oo 4/ 2T(tn) logt, =~

If we further require that 7(t)logt — oo when ¢ — oo, and that 7 is strictly decreasing,

1, a.s.

then the following result holds.

Lemma 4.3.2. If  is continuous, T(t} — 0 as t — o0, 7 is strictly decreasing, and

T(t)logt — 0o as t — oo, then

|B(tn) — Bltn-1)| <

lim sup
. M—00 QT(tn) log tn

a.s.
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Proof. It is sufficient to show that

lim sup B(t) - Bt — (%)) <1, a.s.,

t—00 V2r(t)logt
as this bound will also apply over the discrete time set defined in (2.2.1). First, define
71 = max{r — 7(n) = 0}. W(t) = tB(}) is standard Brownian motion. For ¢ > 7 we

may rewrite B(t) — B(t — 7(¢)) as

B(t) — B(t __7-(_7:)) = T(t)W(%) + (¢ —7(t)) <W<%) h W(ﬁ))
and so

(t)~ (t —7(t \/@ &) B()
V2r(t)logt logt t 2tloglogt |
(v () - (=)

The first term has zero limit, by 7(¢t}) — 0 and Lemma 1.2.1, the law of the iterated

logarithm. Therefore it suffices to prove that

. t—7(t) ( (1) ( 1 > >
limsup ———(W{- | -W| ——= <1, as.
o V27 (t)logt t \t—=7(t))) ~
Now, because 7(t) — 0 and 7(t) logt — oo as t — oo, for every £ > 0 there is a T(e) > 0

such that for ¢ > T(¢) we have

1
T(t) <e, 7(t)logt > o

So
o> () > —
T
elogt
and
loge _ log7(t) _ —(loge + loglogt)
> > .
logt log ¢ logt
Hence
1 t
m 10870 _ ' (4.3.2)
t—eco  logt
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Let g{t) = t — 7(t), so t — g(t) is increasing and g(t) — oo as t — o0, g(t) > 0 for all
t > 71. Define ¢ : [0,00) — R by 6(0) = 0 and

1

ey

u > 0.

Note that 6(u) > 0 for v > 0 and 6(u) — 0 as u — 01. Define u(t} = Rlﬂ' for t > n.
Then ¢ — u(t) is a positive and decreasing function on (71, 00) with lim;_, u(t} = 0. For

t > 71, we note that

B 1 1 T(t)
. 0 < é(u(t)) = TSt i)
Henqe |
8wy du(d)) . T()
ST TR Ty ARy =0
Next we have the identity _
t—7(t) 7(t) t(t — r(tj) 1 ' ‘
2r (1) logt\/Zt(t — ) 1°g( 1) t- r(t)> (43.3)
_ Ji=r@ [ o)
- t logt
&(u)

By (4.3.2), this has limit one when ¢t — co. Since — 0 as u — 07. Lévy’s result on

u

the maximum modulus of continuity of standard Brownian motion yields

lims maXpgs<rLu(t), r-s<6(u(t)) |W(S) - W(T)|
im sup
t—o0 V26 (u(t)} log(u(t)/8(u(t)))

maXp<s<r<u, r—s<(u) |W(8) - W(T‘)|

= limsup =1, as. (4.34
— /26(u) log(u/6(u)) ( )
Taking (4.3.3) and (4.3.4) together gives the result. a

We can combine these lemmata into a Corollary.

Corollary 4.3.3. If 7 is continuous, 7(t) — 0 as t — oo, T is strictly decreasing, and

T{t)logt — oo as't — oo, then

lim sup
n—00 27(t,) log ty
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We can also prove the following result.
Lemma 4.3.4. Suppose that T is continuous, 7(t) — 0 as t — 0o, T is strictly decreasing,

log 7(t) -
m =-1 4.3.5
ety log log ¢ ' ( )

and

7(t)logt
oo (loglog )2 0 (4:3.6)

Then

i oup L) = B~ 7(0)

=0, a.s.
t—00 loglogt a8

Proof. W(t) = tB(%) is standard Brownian motion. Since lim; T(t)W(%) = (0, and

B(t) - B(t —7(8)) = t(W (%) - W(t—f?(t—))) + ’r(t)W(ﬁ),

it is sufficient to show that

W) - W)
lim
=00 loglogt

=0, a.s.

Define the new time variable T = ﬁt—, and the transformed delay function é so that

6(t_i(tj) = t(tz(:zt)). Thus T — 6(T') = 1 and limp_g+ 6(T) = 0. It is also true that

- ‘ log log £
TG R dk | D Nt BT g, (4.3.7)
T—0+ T T—0+ T T—-0+ log IOg m

Therefore we now require that

V(D) - W(T - ()
T-0+ log log(#:)

=0, as. (4.3.8)

Next we have that

§(T) log(%) _ t—7(t)log(t — 7(t)) ( loglog t % 7(t)logt
(Tlog log;l(%))2 Tt logt loglog(t — T(t))> (loglogt)?”

which, by (4.3.1), (4.3.6), and (4.3.7), has limit zero when t — oco. We also have that

! _
logé(T) 1+ 01%;9) + log(ltogrt(t))
logT log(t—7(1))
logt
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Chapter 4, Section 3 Asymptotic Behaviour — Brownian Increments .

Since, by (4.3.1), and (4.3.5),

t 1 t
i log 7(1)  lim og 7(t) loglogt -0
t—oo logt t—oo loglogt logt

?

we can therefore say that

log 6(T)

Since
W(T - §(T) - W(T)| _ |W(r) - W(s)|
Tloglog(+) T 0<r<s<T, 0<r—s<6(T) Tloglog(3)

and if we define new variables ' = r/T and s’ = s/T so that r'T — §'T < §(T), we can

say that

W(T - §(T) ~w(T)| _ _ VT

W(r') = W(s'
. T'loglog(z) ~ Tloglog(7) 0<r'<s'51,r0n<arbf(—s'56(tf‘)/T| () ()

where W(r’ ) = #W(r) is a standard Brownian motion. Again, Lévy’s result on the

maximum modulus of continuity of standard Brownian motion yields

lim~,ma-xo<r'<s'<1, O<r' —8' <6 |W("“’> - W(s)]
6=0 \/20 log

So, by (4.3.10),

=1, as. (4.3.10)

L W - 8(T) - W(T)
T—0+ Tloglog(+)

, VT o(T) 1
- lim T1/2 log
T—0+ T'log log(#) T 0

.ma'x0<r’<s’<1, r'—s'<§(TY/T {W(/rl) - W(‘sl),

247
T
I 6(T) log(%) log(;;m)zo e
T 0% (T loglog(%))2 log(%) o
as required. ‘ - O
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Chapter 5
Oscillatory Behaviour — The Linear Stochastic
Differential Equation with Vanishing Delay

We are now ready to turn our attention to the oscillatory behaviour of the scalar linear

stochastic delay differential equation

a
Jal
I

(aX(t) +bX(t — 7(t))) dt + o X () dB(t) (5.0.1a)

X({t) = (), -T£tL0, (5.0.1b)

where b < 0, and 7 is a continuous function which vanishes as ¢ — oco. As indicated in

Chapter 4, we specifically require that the delay function satisfy

lim 7(t) =0, 7(¢t) >0, t — t — 7(¢) is nondecreasing. (5.0.2)

t—ro0

Roughly speaking, when the delay function T vanishes sufficiently slowly, then all solutions
of (5.0.1) are a.s. oscillatory. A quickly vanishing 7 allows for the existence of a nonoscil-
latory solution. This behaviour contrasts dramatically with that of the corresponding
deterministic equatiori, which always admits a nonoscillatory solution, and with that of
the stochastic equation with zero delay, which is a.s. nonoscillatory. The analysis in this

chapter has been published in Appleby & Kelly [2].

5.1 The deterministic equation.
In [2], we give an analysis of the asymptotic behaviour of the solutions of
z'(t) = ax(t) + bx(t — 7(t)), t>0, (5.1.1)

where b < 0 and 7(t) — 0 as t — oo, under the additional technical restriction that

Jo” 7(s)ds < co. We reproduce the statement of the relevant theorem here.
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Theorem 5.1.1. Suppose that 7(t) — 0 as t — oo is continuous, and f0°° T(s)ds < c0.

Then for every solution of (5.1.1), there exists ¢ € R such that

Jim ggi% =c | (5.1.2)

where g is a positive function (independent of the initial function) which satisfies
o1
lim —logg(t) =a+b. (5.1.3)
t—oo t

Moreover, for every finite ¢ € R there is a solution which satisfies (5.1.1), where g satisfies

(5.1.3).

The proof makes use of results due to Castillo & Pinto [6], and is a special case of the
proof of Theorem 4 in [2], which describes the asymptotic behaviour of the solutions of

(5.0.1), when f° 7(s)ds < oo, and (5.0.2} holds.

5.2 The stochastic equation.

Theorem 5.2.1, below, gives us a general idea of the nature of the switch from oscillatory
to nonoscillatory behaviour. However, as it stands, the analysis is incomplete in several
ways that will be discussed in Section 5.3. Chapters 6 and 7 describe our attempt to
de\{elop a complete picture of the qualitative behaviour of the solutions of (4.0.1) using

difference equations.

Theorem 5.2.1. Let b < 0. Suppose T is a continuous, positive function, which is eventu-
ally decreasing. Suppose further thatt — t—7(t) is increasing, and that there is o € (0, oo}

such that

—a = lim log T(t).
t—oo loglog t

(5.2.1)

Let T > 0, and suppose that X = {X(t);T < t < oo; FB(t)} is the strong solution of the
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equation

=¥
Jal
I

(eX(t) +bX(t—7(1)))dt + o X(t)dB(t), t>T (5.2.2a)

Xt =1, te[T-7(T)),T). (5.2.2b)
Then we have the follbwz'ng case distinction:

1. If a < 1, then for every T > 0, the path X (w) is oscillatory for all w in a set which

has probability one.

2. If a > 1, then for each € > 0, there is a T = T'{(e) > 0 such that the path X (w) is

positive for all w in a set which has probability at least 1 — &.

A better result for nonoscillation can be obtained if it is stipulated that f§° 7(s)ds < oc.
In Appleby & Kelly [2], it is shown that, for every outcome w in an almost sure set Q* C 2,
there exists an initial data function ¥{w)} such that X({w), the realisation of the process
satisfying (5.2.2a) with T’ = 0 and initial data 1(w), is nonoscillatory. However, we present
the result with fewer technical restrictions here.

The two cases of Theorem 5.2.1 are a summary of the results obtained in Theorems

5.2.3 and 5.2.2. We consider each case in turn.

5.2.1 Case 1: Oscillatory behaviour.

Theorem 5.2.2. Let b < 0. Suppose 7 is eventually decreasing, satisfies (4.2.1), and

(5.2.1) with « < 1. Then all nontrivial solutions of (4.0.1) are a.s. oscillatory.

Note that if 5.2.1 holds with o < 1, then

log(1/r() _

(5.2.3)
t—oo |\ /T(t)logt

We proceed by showing that (5.2.3) is sufficient for X to be a.s. oscillatory.
A sufficient condition that implies (5.2.3) is lim;—,oo 7(t)(log t)Y = oo, for any v € (0,1).

This illustrates the idea that solutions of (5.0.1) oscillate if we require that 7 converge to -
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zero slowly. Notice moreover that (5.2.3) implies lim,, 7(¢)logt = oo. This indicates
that the critical rate of decay of the delay function is around (log t)~!. If the delay
function decays more slowly, in some sense, then all solutions are oscillatory. If it decays
more rapidly, then by choosing an initial interval with a sufficiently large minimal element,

an arbitrarily high proportion of the paths of the process can be shown to be positive.

Proof of Theorem 5.2.2. With v defined by (4.1.1) and y(t) = X(t)/go.(t), y obeys (4.1.3)

for t > 0, and p in (4.1.3) is given by (4.1.4). If we can show that the process.
¢
Y(t) = / g0 (Bl)=Bls=1(s)) gg (5.2.4)
t—7(t) ’

satisfies limsup, ., Y (t) = oo, a.s., then limsup;_, ., f:b () p(s).ds = oo. This holds as

lim;_,00 7(t) = 0 and

t t
/ p(8)ds = —b/ e—(“—f’z)f(s)5—0(5’(5)—3(5—7(5))) ds.
t—7(t) t—7(t)

By Theorem 1.5.1, and the equivalence of the oscillation of y(w) and X (w), all solutions

of (4.0.1) are as. osciilatory. The result is therefore secured by Lemma 4.2.1. O

5.2.2 Case 2: Nonoscillatory behaviour.

If (5.2.1) holds when a > 1, then
lim 7(t)logt = 0. (5.2.5)
t—o0

We cannot prove that there is a solution that is nonoscillatory on almost all sample paths.
The best that can be achieved with this approach is to show that an arbitrarily high
proportion of paths are nonoscillatory if the initial value problem starts at a sufficiently

large and deterministic time.

Theorem 5.2.3. Let b < 0. Suppose that T is continuous, positive, t — t — 7(t) is

increasing, and (5.2.5) holds. Then, for every ¢ > 0, there is a tp(e) > 0, and a set
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Q. € FB(oo) with P[%] > 1 — € such that for each w € Q., X(w) is a positive function,

where X = {X(t);]-'g(t);to(s) < t < oo} is the strong solution of

dX(t) (aX () +bX (¢t —7(t)))dt + o X(t)dB(t), t> tole)

X(t) 1, teltole) — 7(to()), tole)].

Proof. Let 70 > 0 be.given by 1o —7(79) = 0, 1 > 19 by 71 — 7(11) = 7, and 72 > 71
by 72 — 7(72) = 7. Then for t > 79, t — 7(t) > 0. Hence, for ¢ > 7, we can define the

FB(oco0)-measurable random variable

O(t) = sup | B(s) — B(s — 7(s))!.

s>t

This is well-deﬁped on a set of probability one as lim;—., B(t) — B(t — 7{(t)) = 0 a.s.
Thus limy—,o C(t) = 0, a.s. Therefore, for every. e € (0,1), there is T5(¢) > 0 such that
t > T;(e) implies P[|C(t) > 1]] < § for t > T(g). Since 7(t) — 0 as t — oo, for every

£ € (0,1), there is T¥(e) > 0 such that t > T7(e) > 0 implies

1 €
Y < -,
(VT(t)) 1
where ¥ is as defined in (4.1.5). Since 7(t) — 0 ast — oo, and t — 7(t) — o0 as t — o0,

there exists 75 > 0 such that for ¢ > 75 we have
bt 7)) < &, T(t)<1, and [pleMHolr() < .
3e’ B ‘ 3e

Define t*(e) = 72 + (T5(¢) V Ty (e) vV T2). Since t*(g) > 72 and t — t — 7(t) is increasing,

there exists a unique t3(e) > 71 such that

t*(e) = 7(t*(e)) = to(e)-

Note morever that to(e) — 7(toe)} > 70 and |b|T(tp(e)) = |b|T(t*(e) — T(t*(e))) < i,

75



Chapter 5, Section 2 Oscillatory Behaviour — The Linear Stochastic Differential Equation with Vanishing Delay

because t*(¢) > Tp. Define the sets

) = {w : sup |B(s,w)— B(s—7{(s),w)| < 1},

s>t*(e)

ng) =(w: sup B(s,w) — B(to(e},w) <1, .
0<s—to(e)<7(t*(€))
Let Q, = le) A ng). We already have ]P[le)] >1- % Next, if W is another standard
Brownian motion, then
1— ]P[Qg)] = }P’[ sup B(s) — B(to(e)) > 1]
. 0<s—tg(e)<7(t*(e))

= IP[’ sup W(s/)>1]

0<s'<7(2*(e))

= PW(r(t*(e))| > 1] = 2PW(7(£"(e))) > 1]

1

where ¥ is given by (4.1.5). These equalities hold because maxg<s<t W {(s) has the same

,

| ™

distribution as |W(¢)}, and t*(¢) > Ty (g). Thus ]P’[ng)] >1-5,50PQ]>1-e¢.
Define {¢(t)}t>0 by @(t) =1 for 0 < t < ¢p(e), and

¢ t :
o(t) =1+ /t( )am(s) ds + /z( )Ucp(.é) dB(s), t>tole).

Then for t > to(e) — 7{to{e)), as t > 7o, we have t — (¢t} > 79 — 7(79) = 0. Hence we can
define

p(t) = [Blp()"rp(t — 7(), > to(e) — 7(to(e)).

Without loss of generé,lity, let o < 0. Then, with A=a — %02, we have

Ible—)\’T(t)e—O'(B(i)—B(t—T(t))), t Z t*(s)
p(t) = |b|eﬂ\(zvtu(s))e—U(B(t)—B(to(E))), to(e) <t < t*(e)
], to(e) — T(to(e)) <t < tole).

Now, let w € ¢ and t > t (e). We consider three cases:
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Case 1: t — 7(t) > t*(e).
For w € Q, |B(s,w) — B(s — 7(s),w)| < 1, for s > t — 7(t) since t — 7(t) > t*(g) > Tg{e).
Also 7(s) < 1,as s >t — 7(t) and t — 7(t) > t*(¢) > To. Hence, w € Q, t — 7(t).> t*(¢)

gives

IA

([, reras)w

t
/ [bleIm(lol|Bls.w)=Bls=r(s) )] g
t—7(t)

IN

¢
/ blelMelol ds = 7(t)]pleM el < i,
t—7(t) ' ‘ de

ast > t*(e) +7(t) > * (€) > T». Therefore

we N, t = 1tp(e), t — () > t*{e) implies (/tt o p(s) ds) (w) < %. (5.2.6)
-
Case 2: t — 7(t) < t*(g), t < t*(e).
First, as t < t*(¢),
sup ,B(s,vw) - B(tg(s),w) < sup B(s,w) — B(tg(e),w)
to(e)<s<t O<s—to(e)<t*(e)—to(e)

I}

sup B(s,w) — B(ty(e),w) < 1.
0<s~to(e)<r(t*(e))

Therefore, as ¢ — 'r(t)'z to(e) — 7(to(e)), t < t*(e), t*(¢) — 7(t* () = to(e), we get

(/:T(t)p(s)ds)@) = [bl(to(e) — (t — 7(¥)))

t
+/ |b|6—/\(5—60(E))e—U(B(S,w)—B(to(e),w)) ds
t

o(e)

IA

bl (to(e)) + [bleME—tolE Do (1 — to(e))

IA

1 . 2
il |AlT(t*(e))+lo), -4+ =
” + |ble T(t*(e)) < 3

Thus,

w € e, to(e) <t < t*(e), t — 7(t) < t*(¢) implies (/t p(s) ds> (w) < (5.2.7)
: ¢

—7(t)
Case 3: t — 7(t) < t*(g), t > t*(¢).
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Note that supy)<s<i(e) B(s,w) — B{to(e),w) < 1, and B(s,w) — B(s — 7(s),w) < 1 for
s > t*(g). Furthermore t > #y(g) implies t—7(¢) > tg(e)—7(to(€)), so |bl{ta(e)—(t—7(t))) <

|b|7(to(e)) < (3e)~!. Therefore

(f ;m 0 gs) @)

Ibl(to(e) — (¢ — (1)) + /

to(E)

*

) =A(s—to(e)) ,—o(B(s,.w)—B(to(€)w))
|ble e ds

t
+/ |b|e-—)\7(s)e—a(B(s,w)—B(s—T(s),w)) ds
t~(e)

< oo BT O (0) — t0(e)) + [l (s — 14(c)
S |b|e Aol r (2% (e)) + [plePFIolr (1) <L
3e g e
Thus,
: ) )
we R, t>t(e), t — 7(t) < t"(e) implies (/ p(s) ds) (w) < > (5.2.8)
t—7(t)

Combining (5.2.6), (5.2.7) and (5.2.8), for w € O, and t > to(e)

( /;m o(s) ds) (@) < % (5.29)

Next, consider the following delay differential equatién, which has a unique continuous

solution for almost all w € Q:

.y,(t’w) = —p(t,w)y(t - T(t)!W)u t> tO(E) (52103)

y(t) 1, t€ [tole) = 7(to(e)), tale)]. (5.2.10b)

Then, for w € Q¢, by Theorem 1.5.2, y(t,w) > 0 for all t > t3(¢) and w € Q. Consider the
process X defined by X (t) = o(t)y(t), t > to(e) — 7(to(e)). Then X(f,w) > 0 for t > to(¢)
and w € Q.. Moreover, as X(t} = 1 for t € [tg(e) — 7{to(€)), to(€)], and for ¢ > to(e),

integration by parts gives

i t

aX(s) +bX(s—7(s))ds+ / oX(s)dB(s),

to(e)

X(t)=1+/

to(e)

thereby proving the result. ' a -
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5.3 A critique of Theorem 5.2.1.

The statement of Theorem 5.2.1 provides an incomplete classification of the qualitative
behaviour of the solutions of (5.0.1). First, when a > 1, where « is as defined in (5.2.1)
the positivity result given in Case 2 of the theorem applies only to a process that is
similar to that satisfying (5.0.1), but with strong technical restrictions on the initial data..
Additionally, the positivity result cannot apply with probability one to any such process.
Second, we have no information regarding the qualitative behaviour of solutions of {5.0.1)
when « = 1. In other words, we have not found with any precision the rate of decay of
the delay function where the behaviour of solutions of (5.0.1) switches from oscillatory to
nonoscillatory.

In order to develop our picture of the behaviour of this process, we require a different ap-
proach. The continuity oflthe sample paths of solutions of (5.0.1) imposes some limitations
on the effectiveness of our analysis. However it is not necessary that all of the information
in the evolving filtration be available to us. Our pathwise definition of oscillation does not
involve a continuous use of information from the pa_th — we place no emphasis on amplitude
or period and we _only require that its value change sign ad infinitum. Therefc;re we seek
to show that the fundéménta.l oscillatory behaviour of the solutions of (5.0.1) can survive
an appropriate discretisation. Following such a discretisation, oscillatory behaviour will
prove to be more vulnerable to analysis.

There is evidence suggesting that this is a reasonable line of attack. The disparity in
the behaviours of the solutions of {5.0.1) for fast and slow decay rates of 7 is foreshadowed

by differences in the aéymptotic behaviour of the feedback ratio

p(t) = X(tﬁtg(t)) t>0, (5.3.1)

for fast and slow decay rates of 7. As a consequence, p will play a key role in the construc-

tion of a nonuniform mesh in Chapter 7, suggesting a distribution of mesh points that will

be sufficient to capture the oscillatory behaviour of the solutions of {5.0.1).
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5.4 The feedback ratio.

It must be emphasised that since the initial data function ¥, defined in (5.0.1b), is con-
tinuous and strictly positive, p(t) is only well defined for all ¢t € [0,00) if X is strictly
pbsitive. To guarantee this, we set b > 0 for the duration of this analysis. Initially we

consider the asymptotic behaviour of p when 7 obeys (5.2.5).

5.4.1 Asymptotic behaviour of X via p.

We will see that p is in some sense well behaved when 7 decays quickly. In fact it is possible
to calculate a Lyapunov exponent for X using a knowledge of the asymptotic behaviour

of p.
Theorem 5.4.1. Suppose 7(t)log(t) — 0 as t — ¢o, b > 0 and 9(t) > 0. Then there is a

process p* such that
lim p*(t) =0, a.s.
t—o0
and
X(t) = X(0)eleberaBOL [ o (o)
Therefore
lim  log | X(2)] = ih Ly
ti»n;:»tOgl =a 50" @5.
Proof. Since 7(t) — 0 as t — 00, there is a {g > 0 such that ¢t — 7(t) > 0 for all £ > t5. Let
p be given by (5.3.1), a well defined and positive process if X(¢) > 0 for all ¢ > —7.

The definition of p means that (5.0.1a) can be restated as
dX(t) = (a + bo(t)) X (t)dt + o X (1)dB(2),

SO

X(t) — X(O)e(a+%02)t+63(t)+bf(;' p(s)ds, t> 0.
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Thus, for ¢ > tp, we get, with A = a — 302,

p(t) = e*7(®) e—o(B(t)—B(;-r(t)))e—bJ;‘_T(t) p(s)ds

) t
If 7(t) log(t) — 0 as t — oo, we have p(t) = u(t)e'b Je—r(ey p(s)ds

, where u(t) — 1ast — oo,
by Lemma 4.2.2. Therefore, as p(t) >0 for all ¢ >0, and b > 0, p(t) < u(t). This means
that limsup, ., p(t) < 1, and for every £ > 0 and w € Q" there is T*(¢,w) > 0 such that

p(t,w) > 1 —¢ and p(t,w) < 1+¢ for all t — 7(¢t) > T*. Then,
p(t) > (1 - €)e—bff_r(g) P(S)ds’

and

t
0< b/ p(s)ds < b(1 + &)7(t).
t—r(t) :

Hence p(t) > (1 — ¢)e(1+9)7(0) Therefore, for each w € Q*,
liminf p(t,w) > 1 —¢.
t—oo
Letting € — 07 yields
liminf p(t,w) =1 -
t—o0
for all w e Q*. Thus p(t) — 1 as t — o0, a.s. So, when b > 0, the result follows with

p(t) = p(t) 1. =

5.4.2 Asymptotic behaviour of p when 7(¢)logt — oc.

In Theorem 5.4.1, we saw that the asymptotic behaviour of p is mild when 7(t)logt — 0 as
t — oo. However, when the rate of decay of the delay is slower, the asymptotic behaviour
of p is more complicated. We will show here that almost all paths of p, when 7(t) logt — oo

as t — 00, are recurrent on (0, 00), in the sense that

liminf p(t) =0, limsupp(t) =00, as. (5.4.1)
. t—oo t—o0
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Although it is possible to define p only when X does not oscillate, this recurrence arises at
a similar rate of decay of 7 as the onset of a.s. oscillation of X. It appears as though the
rapid fluctuation in p, arising when the rate of decay of the delay is slower than (logt)™!,

may be symptomatic of the oscillation of all solutions of (5.0.1).

Theorem 5.4.2. Ifb > 0, T is continuous and obeys 7(t}) — 0 and 7(t) logt — oo, then

p, defined by (5.3.1), obeys (5.4.1).

Proof. We start by proving limsup;_,, p(t) = 00, a.s. Note first that, as has been shown

in Lemmata 4.2.3 and 4.2.4, when 7(¢)logt — oo,

o |B(t) - B(t — 7(2))]
1§Alutrisogp O <V2, as. (5.4.2)

We assume that the set {w : limsup, ., p(t,w) < oc} has positive probability. This

implies that there exists m € N such that

Ap = {w : limsup p(t,w) < m}
t—00

has positive probability. For each w € Am there is a T(w,m) > 0 such that for all

t > T(w, m), p(t) < 2m. Since t — 7{t) — oo, for all t > T'(w, m)

2m > p(t,w)
e A= (B(tw)—B(t—7(t)w)) ;b iy pls) ds

> e—AT(t)—a(B(t,w)—B(t—f(t) ,w))e~2bm7'(t) )

So

lim sup e~ A +2m)T()—o(B(t)=B{t-(1)))

t—o0

< oo on Ag.

Without loss of generality, we now let ¢ < 0. Then the exponent

(A +2bm)7(t) — o(B(t) — B(t — 7(t)))

= VTR 2m [T BOZ BT,

log ¢ 7(t) log t
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has infinite limsup as't — oo, because 7(t)logt — oo, and (5.4.2) holds. Therefore

lim sup e—()\+26m)7'(t)—r;(B(t)—B(t—‘r(t))) =00, a.s.,
l—oo

leading us to a contradiction, and proving the result.

We now turn to the proof of liminf,_,o p(t) = 0, a.s. Note that, as stated in (5.4.2),

V2> limsup |B(t) — B(t —7(t))] > liminf |B(t) — B(t — 7(t))|
T 27(t)logt Tt 2r(t)logt

We can assume that p(t) > 0 for all t. This time, we assume that the set
{w : liminf p(t) > 0}
t—oo
has positive probability. That is, there exists m € N such that
A = {w :liminf p(t, w) > m}
t—oo

has positive probability. A similar approach to that used when lim SUPt_,0 P(t) = 00 a.s.,

yields the required contradiction. O
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Chapter 6
A Uniform Discretisation of the Auxiliary Process

Yields Spurious Oscillatory Behaviour

The most natural way to construct a discrete process with identical properties to those
of the solutions of (5.0.1), would appear to be to discretise the eqﬁation directly, using a
stochastic Euler—-Maruyama scheme on a uniform mesh. We have not done this. We only
need to reproduce a single property of the solutions of (5.0.1) — oscillatory behaviour —
and the techniques employed in Chapter 5 are easily adapted to a discrete setting. As a
consequence we have chosen to discretise the auxiliary process (4.1.3).

Nonetheless, our first attempt turns out to be a failure, albeit an interesting failure.
It is terﬁpting to assume that the most straightforward route to take would be to use
a pilecewise Euler-Maruyama scheme on a uniform mesh, replacing the delay term with
an instantaneous term once the delay has become sufficiently small. Karoui and Vaillan- -
court [18] take this approach for general deterministic nonlinear vanishing delay equations,
and we apply a similzn; methodology in this chapter. This technique, although valid in the
deterministic case, cannot reasonably be expected to work in the stochastic case. Since it
appeé.rs that the presence of a noise perturbation allows the delay to affect the qualitative
behaviour of the process regardless of how small it has become, the asymptotic effect of the
delay must be present aﬁer discretisation. By removing the delay after a finite interval we
are effectively ignoring the very phenomenon we are trying to reproduce — the interaction
between the delay and the noise.

In this chapter we present this failed attempt to construct an Euler process on a uniform
mesh. It will be seen that a discretisation of this kind induces spurious behaviour that
directly contradicts the statement of Theorem 5.2.1, and that is dependent on the mesh

size. A successful discretisation is developed in Chapter 7.
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6.1 An Euler difference scheme.

A discrete process is characterised by the sequence {Yr} representing the solution of a
difference equation, &ith.appropriate initial data, and the set of discrete points, called
the mesh, on which {¥,} evolves. Qur method involves the use of an Euler scheme to
discretise the paths of the auxiliary process (4.1.3) with initial data (4.1.2b). We study

the solutions of a class of difference equations of the form
‘ Y1 =Y, - ANPH(W)YnnrM(n)’ n>0 (6.1.1)

evolving on some mesh M, with positive initial data on a finite discrete subset of [—7, 0]
that includes the endpoints. The form of the delay function rs depends on the structure
of the mesh. Each term of the sequence of random variables { P, (w)}52, is defined to be
(4.1.4) on the corresponding path, sampled at the n** mesh point. We generally suppress
the w-dependence and write {F,},. The lack of differentiability in almost every path of
the- process p, defined in (4.1.4), ensures that the convergence results in [14] do not apply.

Finally, as i_ndicated in Chapter 4, the definition of the delay function must be restricted

slightly. Let T be a continuous function obeying

lim 7(t) =0, 7(t) > 0, t — 7(t) is strictly decreasing on [0, 00). (6.1.2) -

t—oo

6.2 Definitions of oscillation.

We cannot use the same definition of oscillation for discrete and continuous processes.
When we develop the definition of oscillation of a discrete process, we cannot automatically
base it on the zeros of the process. A discrete process can jump across an equilibrium
without ever taking dn bits value. Because of this, we prefer to use sign changes rather
than zeros to for-m a valid definition of the a.s. oscillation of a discrete process defined
by (6.1.1). This approach is taken for deterministic difference equations in, for example,

Koplatadze [21].
Definition 6.2.1. Let {Y,}n>0 be a real valued stochastic process such that

P[Y, # 0 for all n] = 1.
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We say that {Y,}n>o is a.s. oscillatory if

P[% <0 i.ol =1

n

The process is a.s. nonoscillatory if P[T < oo] = 1, where

T(w)zinf{veN: Z;f—l(w) >0 for alanv}. (6.2.1)

n

6.3 Constructing a discrete stochastic process.

Initial construction of the discrete process. Let Ma be a uniform mesh of mesh

size A. The difference equation (6.1.1) becomes
Yop1=Yn — APn(W)Yn—r(n) (6.3.1)

where

r(n) =sup{k > 0: kA < 7(nA)}. (6.3.2)

By (6.1.2), we can define a constant Ny < oo to be
Np = inf{n € N:n - r(n) > 0}.
Thus, the initial data for (6.3.1) is an ordered set

"»b = (wf)) ¢1, s :'llZ)No—li %), ) (633)

where 9; = ¥i_,q) for all i < No, and ¥ng_1 = o if (No — 1)A — #((No — 1)A) = 0, a
condition that can be guaranteed for any 7 satisfying (6.1.2) by choosing A appropriately.
However, in general it will not hold. Nonetheless, (6.3.3) is well defined for any given 7,
regardless of the size of A. Note that is enough to associate an initial data value with each
mesh point up to and including the mesh point at NgA, without specifying the location
of the initial data values on R. However, as an aid to visualisation, Figure 6.3.1 shows the
placement of initial data for a nonspecific vanishing delay function 7 defined so that No = 3

and N = 6, in order to motivate the structure of (6.3.3) when (No—~1)A—r({No—1)A) # Q.
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3A — 7(34)
26 -71(28) _~777 7= -<
B=r(d) omTT e AN
0TO TS NN
:f’// :’/ —?’\\: L, y 5
Yo Y1 Y2 0 A 2A 3A

Figure 6.3.1: Visualising the possible placement of initial data points, when Ng = 3, and

2A — 7(24) £ 0.

For technical reasons, we require that
Y%

¢o¢m.

(6.3.4)

Once again, (6.3.4) can be satisfied by choosing A appropriately. We also require that
; € R*, for all j < Np. (6.3.5)
The rapdom variable P, satisfies
|ple=AT(n ) lol(BrA)~BnA-1(nA)) | Ny < m,
Po=1 |plem nlelolB(rA), 0 <n < Np,
|b], n=90.
By (6.1.2), we can define a constant Ny > Nj to be
Ny =inf{n > Ng:n —r(n) —1—r(n—r(n) —1) > 0}.

By (6.3.2) and (6.1.2), there exists N* < oo large enough that for alln > N* 7(nA) < A,

and therefore r(n) = 0. So, for all n > N*, each term of {¥,,} satisfies
Yor1 = Yol — AR,).

The problems with the mesh Ma begin at N*, when the length of the delay drops

below the mesh size. From this point onwards r(n) = 0, and we have once again ignored
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the interaction between the delay and the noise. In fact we see that the process which
evolves on this mesh is capable of producing spurious behaviour, both oscillatory and
nonoscillatory. This behaviour is a result of the discretisation rather than any interaction

between the delay and the noise.

A discrete-time filtration. Rather than prove a result describing the behaviour of
solutions of (6.3.1) direcfly, we will replaée each P, with a random variable P, of identical
distribution. In order to db this, we must define a new filtration.

Consider a sequence of independent standard normal random variables (&} The

filtration generated by this sequence is {gﬁ}zgo, where
Gf = o({&}Hopi0 <5 < k).
We associate with each & a number 62, where the sequence {5232, is defined as follows:
1. Define a sequence {a;}}2,, where a; = kA for every k.
2. Define a sequence {bx}32,, where by = (k + No)A — 7({(k + No)A) for every k.

3. From {ax}32, and {b}32, we can construct a new sequence {cx}3>, as follows: For

every n < oo, let cop, = ap, and

- if there exists 0 < j < oo such that b; € (an,an+1), then ¢onyy = b;.

- Otherwise copy1 = %

4. Now, for every 0 < k < oo, let
52 = Ck41 — Ck-

A visualisation of this construction is given for an arbitrary vanishing delay function 7 in -
the set of schematics given in Figures 6.3.2, 6.3.3, and 6.3.4.
Finally, we define a sequence of independent, gg—measurable random variables {{x}22,

so that, for each k%,

CIC f— e|a|6k£k_
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6A — 7(64)
5A — 7(5A) e~
A -T(48) _----- \/’ \\
D e m—— 7 ~ \
3A—-7(34) - Rt e AN \
______ -_— / \\ ! \ A
- // ~~o 7/ ~ ! \ \
e S S— A Sy ¥ ) —
A 2A 3A 4A 5A 6A

Figure 6.3.2: A uniform mesh of size A overlaid with the feedback positions of the con-

tinuous delay function 7 at each mesh point. Ny = 3, N =6.

t
|
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3A —7(3A)
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JUUREE S ——

4A — 7(44A)

5A — 7(54)

3A+4A
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4A

R ——

6A — T(6A)

1
T

5A

6A

SA+6A
2

Figure 6.3.3: Addition of artificial sepafators where there are no feedback positions on the

intervals (3A,4A) and (5A,6A).

B & % & & & & & & & & &
T T ‘ AL S | —
0o ! A1 2A ' 3A 4A ! 54 1 6A

I | l
|
3A — T(3A) ! 5A — 7(5A) 6A — r(6A)
4A — 7(44) 34444 BA+64A

Figure 6.3.4: Labelling the lengths of the newly defined intervals.
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Final construction of the difference equation. We introduce the functions h,%,j :

Ny — Ny, where

hMn) = 2n—-1,

) - 2(n — r(n)), T(nA)/A € Ny,
2(n—r(n)) — 1, otherwise,
) 2(n-r(n)—1-—r(n—rn)—1)), 7((n —r(n) — 1)A)/A € Ny,
in) = 9 '
{ 2(n—r(n)—1-r(n—r(n)—1)) —1, otherwise.

For every n < N*, there is a ggn—measurable random variable ﬁn with an identical

distribution to that of P, defined to be

Ible_/\T(nA)Ch(n): ) n> N,
- [Ble ATMAYG s Chiny, Np <mo< N,
P, = -
ble™ ™20+ - Chiny 0<n<N,
lbla n = 0,

\
We consider the oscillatory behaviour of the sequence of random variables {?n}nZO obeying

Yni1=Yn = APYoriny, (6.3.6)

with initial data (6.3.3) satisfying (6.3.4) and (6.3.5). By (6.3.6) and the definition of P,,

each )7,1 is Qg(n_l)—measurable.

6.4 Main Result.

The main result in this section shows that, in many cases, the oscillatory behaviour of Y
depends on the mesh size A. Figures 6.4.1 and 6.4.2 illustrate the statement of Theorem
6.4.1 with examples.

Theorem 6.4.1. Let Ma be a uniform mesh. Then the behaviour of the discrete process
defined by the solution of the difference equation (6.8.6) with initial data (6.3.3) obeying

(6:3.4) and (6.3.5) can be classified as follows:
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1. Let imy_ oo 7(t)logt = 0. If

(o) A > |—11,J, then Y is a.s. oscillatory.

(b) A< %[, then Y is a.s. nonoscillatory.

2. Letlimy o 7(t)logt = c > 0. If

|

(a) A > W, then Y is a.s. oscillatory.

(b) A< W, then Y is a.s. nonoscillatory.

3. Let limg oo T(t)logt = co. Then Y is a.s. oscillatory.

Note the dependence on the mesh size in Cases 1 and 2. It is only when the rate of

decay of 7 is very slow, in Case 3, that the oscillatory behaviour of this difference equation

corresponds to that of the solutions of (5.0.1).

Proof. By Lemma 6.5.7, the quotient Z%ﬂ exists for all n > 0. By the definitions of the
delay functions 7 and r, there exists N* < oo large enough that, for all n > N*, r(n) = 0.

Therefore, for all n > N*, (6.3.1} can be rewritten as

Y, -
ol _ 1 _ AP,

n
Therefore, in order to prove that Y is as. oscillatory, it is enough to show that IP’[ISn >
% i’.ov.] = 1. Similarly, in order to prove that Y is as. nonoscillatory, it is enough to

show that P[P, < % ev.] = 1. Define ¥, = £p(,) for all n > N*, and consider that, since

() =0,

lim sup ]Sn = |b|limsup e~ T(nd) Chin)s
n—00 n—oo

— |b|e|a] limsup,,_, o 5h(n)19n,

— |b| elcrj limsup,, ., v/ 7T(nAYn ’

_ |b|e|cr} limsup,_, o v/ 27(nA) log'rr,—2’5\/..1%g=n ,
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(@) (b)
Figure 6.4.1: Spurious behaviour. Case L1 Simulations of sgn{Y) log\Y\, where Y is
the solution of (6.3.6), witha- 1,b—-10,a= L andr(t) = U(t+ 2. In(a), alarge
mesh size of A= 0.2 > " yields spurious oscillatory benaviour. In (b), a small mesh
size of A = 0.05 < jgy results in nonoscillation. Observe that in (a) and (b), qualitative
behavioural changes are visible at t = 3 and t = 18 respectively. These arc the times at
which the delay length drops below the mesh size.

Since {tfn}n>v* is a sequence of independent, standard Normal random variables, we know

that limsup,, ™ = 1, as,, and therefore we need only consider the asymptotic

behaviour of ~2r(nA) logn under the conditions laid out in the statement of the theorem,
Case 1. Where limn oo r(nA) lognA = 0. Since

t(iiA) lognA = r(riA) logn + r(«A) log A,
it follows that limsup,,.” r(nA) logn= 0. Thus
Iimglgp Pn=16, as.

Therefore, if A > j|j, Y is as. oscillatory, and if A < j|j, Y is a,s. nonoscilatory.
Case 2 \We have Um_:xr(nA)logriA = ¢ > 0. As in Case 1, this implies that
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20 T T T T 50

s

-300 -

350

400 -

(a) (b)
Figure 6.4.2: Spufious behaviour. Case 2: Simulations of sgn(f’) log |Y|, where Y is

the solution of (6.3.6), witha=1,b= —1, 0 =1, and 7(t) = 1/ log v/t + 3, so that ¢ = 2.

In (a), a large mesh size of A = 0.5 > ‘b—f;}ﬁ yields spurious oscillatory behaviour. In

(b), a small mesh size of A = 0.005 < W results in nonoscillation.

lim,_,o 7(nA)logn = ¢. Thus

= Jb]e"’l‘/z_c, a.s..

lim sup }Sn
n—oo

Therefore, if A > MT:W’ Y is as. oscillatory, and if A < W, Y is a.s. nonoscilla-
tory.
Case 3: Let lim,_,o, 7(nA) lognA = oc. Letting ¢ — co in Case 2 implies that Y is a.s -

oscillatory. , ad

6.5 Technical Lemmata.

6.5.1 Motivating discussion.

The reason for the structure of the filtration {g,ﬁ},;“;o may not be immediately clear.
Neither may it be clear why the sequence { 17} must be considered, rather than {Y'}. These

seemingly arbitrary constructions appear unnecessary at first glance, simply because we

93



Chapter 6, Section 5 A Uniform Discretisation of the Auxiliary Process Yields Spurious Oscillatory Behaviour

Py B ST RO B¢ G |G| -
2 (s Ga |G| C6 | ¢
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B . 1 1 ] e @@
& o6 & 6 & 8 & 65 & 0 o &
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o1 a1 24 s a1 A 6A
| | [} |
3A —7(3A) ) 5A — r(5A) 6A — 7(64)
4A — T(4A) 34140 sasea

Figure 6.5.1: A representation of the decomposition of the nonindependent distributions

of ]33, ﬁq, 135, and 136, into functions of independent Lognormal random variables.

have not yet demonstrated an explicit use for them. However, one important question
remains, and the rest of this chapter is devoted to answering it. Can Definition 6.2.1 be
applied to the sequence {¥; }n>0 that obeys (6.3.6)?

The main barrier to analysis here is the lack Qf independence between each Y,, P,, -
and Y, _,nyon the right hand side of (6.3.1). P, depends on an increment of Brownian
motion longer than A.. Therefore, each éuccessive P, is not independent of its predecessors.
Neither is P, independent of Y,,. These dependencies must be explicitly handled. Thus
we consider the distribution of the Brownian increment following its subdivision into a
sequence of independent standard Normal random variables.

It can be seen in Figures 6:3.2 to 6.3.4 that altliough the mesh itself imposes a natural

partition on the Brownian increment, we must go further, splitting each subdivision of
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the Brownian increment of length A into two smaller subdivisions. This is necessary
because, in general, nA — 7{nA) is not a multiple of A, and thus the mesh Ma is not
sufficient to define a sequence of independent Normal random variables that will allow .
us to analyse the dependencies of the components of (6.3.1). Consider also that (6.1.2)
places no upper limit on the rate at which 7 can converge to zero, and therefore the delay
function may ‘jump’ acrosé mesh intervals. A need to define {gg},?;o precisely, in spite of
these considerations, determines the structure of the filtration. The sequence {}A}n}nzg is
then simply an expression of the solutions of (6.3.1) evolving on the new filtration.

We can explicitly show the dependencies between Yn ; ISn, and ?n_,(n) with the example
illustrated in Figure 6.5.1. This figure gives a schematic representation of the dependence
of each random variable f’k, for Ng > k < N , on Lognormlal random variables, for some
arbitrary delay function 7. For instance, let n = 5. The term }75 can be explicitly written
in terms of the sequence of Lognormal random variables {(;}i>0 by iterating (6.3.6) back

to the zero-th term. We know from (6.3.6) and Figure 6.5.1 that
Ys=Yi— ARY:.

Clearly Y4 depends on {Co, C1, (2, (3, ¢4, (5}, Py depends on {(s, (s, G5, 6, (7}, and Ya de-
pends on {(p,{1}. Although )74, Py, and Ys are not fully independent, we can see that Y;
depends on {¢2}, whereas 154 and Y> do not, and P, depends on {(g, (7}, whereas Y, and
Y» do not. It is possible to use this partial independence to prove that Ys # 0 a.s. In fact,
if we can prove that it is a characteristic of all terms of the sequence defined by (6.3.6),
then we can prove that all terms are nonzero almost surely. This provides the motivation

for the analysis that remains in this chapter.

6.5.2 Analysis.

The following lemma is an application of Jacobi’s Transformation Formula [16] to the

density functions of random variables.

Lemma 6.5.1. Let X = (Xy,...,Xn) have joint density f. Let g : RNt1 — RN+1 pe

continuously differentiable and injective, with nonvanishing Jacobian. Then Y = g(X)
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has density

Fx (g7 (y)) det(Jg-1())|, if y is in the range of g,
frly) =

0, otherwise.
Lemma 6.5.2. Suppose that the independent random variables ng,m1,...,nn have joint

density fin,,..an)s and

X = h{no,m,-..,nn) :==hi(no, ..., an—1) + h2(no, ..., N1}V

Define

SO ::‘{(y[); Ya,. .. 7yN) : h?(y()) R )yN—l) = 0’ YN € R+} (651)

If Sy has measure 0 in RNT1 then

1. X has density fx defined by

T —hi{yo, y1,-.-Yn-1)
fX(IE):/ / / f (y07y17"'7yN—1,
yo Ju1 YN-1 (10,7357) hZ(yanl1'.“1yN—l)

) dyn_1dyn—_2- - dyo.

X
|h2(y07y11 S YN-1

2. P[X =0} =0.

Proof. Part 1 relies on Lemma 6.5.1. Define the continuous function g : RV *1 — RN+1 ¢

be

9o, ¥1, - yN) = (W0, Y1y - - yn—1, A(Yo, .- .. yN))
Thus, if (yo,%1,...,yn) & So, then g is injective in its last argument, and the inverse is
given by

YN — hl(y()a- .- 5yN—1)>

—14: .
g (yanl,"',yN =(y01y1,"'a -1,
) U Wor - N 1)
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-1

The Jacobian of g7 is given by

1 0 0 0

01 0 0
Jg-1(¥0, Y15+ -, YN) =

00 -~ 1 0

00 --- 0 1

Thus, det(Jg-1(vo,...,yn)) = and so, by Lemma 6.5.1,

1
h2 (Yo, Yn-1)"

f(?’]o,...,’nN)(yUa v ,yN)

5 N yN —h1 (b, VNvﬁ)
N0 NN T R (yg, YN 1)
R2(yo,--ynN—1) v ha(yo,- - uw-1) # 0,

0, ha(yo, - -, yn-1) =0.

Thus

x - h{yo, y1,-- . yv-1)
fx«’c=//"'/ Fono,.. (yo,--v,yN—,
(x) o 41 YN -1 (m0,-0) Y halyo uts - YN_1)

1
y L
lha(yo, 1, - yN—1

)|dyN—1dyN—2 - - dyo.

Part 2 is an immediate consequence of the existence of a continuous density function as

established in Part 1, since
a
P[X = 0] = IP’[ lir£1+/ Fx(s)ds = 0] —0.
) a— —a
a
Note that, by (6.1.2) and (6.3.2}, there exists a constant Ny < N7 < N* defined to be
M =inf{n>Ng:n—r{n)~1—r(n—-r(n)—1)>0}. (6.5.2)

In order to account for varying degrees of dependence on the initial data, it turns out
that it is actually necessary to prove that P[?n = 0] = 0 separately over 0 < n < Ny,

'N0_<n$N1',N1 <n< N* and n > N*.
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Preliminary sequences of functions. Given any sequence of positive real numbers
{a:;c}:(:é') we can define the following interdependent sequences of functions. Note that

where required in par't's 1-4, the sequence {ﬂ;f} is defined over (6.5.12)—(6.5.17) in part 5.
1. For each 2 <k < Ny, define the function g : R**~1+1 _, R 5o that
G (20, - - Tn(h-1)) = —Alble™¥Cx0 -+ Zpge 1y (6.5.3)
If Ng — r(Np) = 1, then further define the function gy,41 : R¥M)+1 R so that
INo(T0y - - +» Th(Np-1)) = —Alble™ Ny, .. -mh(No_l)g]I/’. (6.5.4)
By (6.5.3) and (654) for each 2 < k < Ng + 1, the surface
St = {(z0,..,Thr)) : (o, ,Tak-1)) = O, Th)1Zay € R} (6.5.5)
has measure 0 in RM®)+1,
2. For each Ny + 1< k < N*, define the function f;, : RAM*¥~ D=2 _, R so that
TelZos -+ -, Tigky—as Tigkys - - - » Th(k—1))
= —Agz”ﬁr(k)_l(azg, .. ,wi(k)_4)|b|e_)‘kAxi(k) -+ Thiky  (6.5.6)
3. For each Ny +1 < k < Ny, define the function g : R**~1 — R so that '
9k(Z0, - -+ Ti(ky—2, Zi(ky - - > Th(h—1))

= —A(=A)|ple Az -z _alble T F Nz - ThgyYk_r -1 (65.7)

If No — r(Ng) = 1 and N1 — r(N1) = Ng + 1 then further define the function

gn, : RMMI-D) R 5o that

9Ny (205 - - -3 Ti(Ny ) =25 TiN1)s - « - » Th(N3 1))
= —A(-A)ple™M8z0 - zynyy o ble TN B zp 5P (6.5.8)
By (6.5.6), (6.5.7), an(i (6.5.8) for each Ng + 1 < k < Ny + 1, the surface
S5 = {(z0, -, znmy) © Fi(@0, -, Trge—ny)
+ 9&(%0s -+ s Thgk—1)) = 0, Thk)-1Znk) € RT}  (6.5.9)
has measure 0 in RAM*)+L,
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4. For each Ny + 1 < k < N*, define the function wy : R**~1)-1 _ R so that

wi (o, - - - » Tj(k)=2> Tj(k)s - - - Fi(k)—2y Ti(k)» - - - ,ﬂvh(k—l))
=.—‘A(—A)|b|€_/\m$0 s xi(k)*2|b|6_)‘7—(ka)wi(k) - Thk)
~1p
X yk—r(k)—l—?‘(k—?‘(k)—l)(zo’ PN ,.’Ej(k)_2). (6510)

By (6.5.6) and (6.5.10) for each N; + 1 < k < N*, the surface

Séc = {(Sco, - ;xh(k)) : fk(l'o, S :-Th(k—l))
+ k{0, .-, Zhgk—1)) = 0, Znky—1Znx) € R} (6.5.11)
has measure 0 in RM*)+1,

5. Now define the sequence of functions {7}~ recursively so that

gt = Yo — Alblgo, (6.5.12)
and
(a) For 2 <k < Ny,
—
Tes1(To,s - -+, Th(ky—2, Th(k)~1Th(k))
_
= G5 (Z0, - - - s Th(k=1)—2 Th(k—1)—1Th(k—1))

+ gx(Z0, - -+, Th(k—1))Th(k)-1Znk)-  (6.5.13)

(b) If Ny — T(No) = 1 then,

?Jﬁmq(xo, e 7xh(No)—%Ih(No)—lmh(No))
= GNo (Z0s -+ -y Th(Ny—1)—2> Th(Np—1)~1Th(No—1))
+ ano (T, - - - s Th(Np 1)) Ta(No)~1Zh(Ng)  (6-5.14)
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and for Ng+2 <k < Ny,

G (Z0s - Thik)-2> (R —1Th(k))
= g% (zo, - -- » Th(k—1)—2s Th(k—-1)-1Th(k—1))
+ [f1{Tos - - s Tigky—ds Ti(k)s - - - » Th(k=1))
+ G1(0, - - - Ti(ky—2, Ti(kys - - - >fﬂh(k—1))]$h(k)-iwh(k)~ (6.5.15)

Otherwise §;” satisfies (6.5.15) for Np + 1 < k < Ny.

(c) If No—r(No)=1and Ny —r(N1) = No + 1, then,
b ‘
le+1($0, <oy Th(Ny)-2s ib‘h(Nl)-livh(NI))
_
=7, (o, - - s TR(N; ~1) =25 TA(N; —1)—1TR(N1—1))
=+ [fN1 (-TOu et wi(N;)—‘b zi(Nl),m:xh(Nl))
+ an (.’L'(), s ’mi(N1)—2v mi(N1)) fee 1xh(N1))}

X xh(Nl)—lxh(Nl): (6.5.16)

and for Ny +2 <k < N* -1,

ﬂfﬂ(ﬂ?o» sy TR(E) -2 Th(k)~1Th(k))
= G2 (T0, - - Th(ko1)~2» Th(k~1)=1Zh(k—1))
+ [Frl®os - - -+ Tigry—0 Tigk)s - > Thk—1))
+ W (Z0s - - - Ti(k) =25 Tj(k)s - - - 2 Tik)~2> Tick)r - - - » Th(k-1))]

X Th(k)—1Zh(k)- (6.5.17)

Otherwise g};f satisfies (6.5.17) for Ny +1 < k < N* — 1.

Lemma 6.5.3. If {?n}nzg is the sequence of random variables defined by (6.3.6), and

with an initial data set (6.3.3) obeying (6.3.4) and (6.3.5), then for all 0 < n < Ny,
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1. Yo=92Co,- - Crin=1)—2> Chin~1)=1Ch(n-1))s

Proof. For every 0 < n < Np,
Py = [ble™™2 (0 umy-
Note first that ¥; = Yo — Ab|¥o_,0) = Yo — Alb|wo. By (6.3.4) and (6.3.5), ¥1 # 0.
We proceed by induction. Assume that, for 2 < k < Np,

Yo =906 Ch: )

Ye =0, (Cos- - -5 Ch(k—1)—2> Cr(k—1)—1Ch(k—1) )»
Since k < Ny, ?k—'r(k) = 1. Thus

Yer1 = Y- Aﬁk?k—r(k)
= 50(Co,- -+ Crle1)—2 Calh-1)-1Ch(k-1y) — AlBleT 4o Criry Y.
Since k < Ny, ?k—r(k) € ¥ Therefore, by (6.5.3) and (6.5.13),
Yirr = 30(G,- - s Ch(k—1)-2 Ch(k—-1)—1Ch(k—1))

+qx(C0s - - - » Chik—1))Sh(k)—1Ch(k)s

= G2 (Cor -, Crgry—2s Chaiy—1Cnk))-
We now consider the base case when & = 2. By (6.5.12),

Yo = 171—A131}~’1-r(1),

= g¥ — Aple" oGy,

3 (Co, C1)-

Therefore, by induction, for all 0 < n < Np,

Yo = 72(Co, - > Chin-1)-2> Ch(n=1)=1Chin—1))- (6.5.18)
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Since the surface ST defined in (6.5.5) has measure 0 in RA™ L Lemma 6.5.2 gives that

]P.’[f’n =0] =0 for 0 < n < Ny, where g,—1 plays the role of hy in Lemma 6.5.2. O

Lemma 6.5.4. If {?n}nzg is the sequence of random variables defined by (6.3.6), and

with an initial data set (6.8.3) obeying (6.8.4) and (6.3.5), then for all Ng < n < Ny,

1. Y=o, Chin—1)—2> Ch(n—1)—1Ch(n-1))»

Proof. For every Ny < n < Ny,
P, = [ble ) Gy - “Ch(n)-

Additionally, n — r(n) — 1 < Ny, and therefore ﬁl_r(n)_l_,(n_r(n)_l) € . Iterating once,

we can say that

Yori = Yo—A n?n—r(n)

!

I
=

n - A‘~7.1?n—-r(n)Al - A(_A)ﬁnﬁn—r(n)—l?n—r(n)—l—r(n—r(n)—l)’

By (6.5.18) in Lemma 6.5.3, for all Ny < n < Ny,

Yo-rmy-1 = @:f’_,(n)_l(Co, o ,Ch(n_r(n)-l_l)-1Ch(n—r_(n)—1-1)),

L= g:f)—'r(n)—l(co’ ces Qi(n)—ﬁ: C’i(n)—SCi(n)—ll))

and

Pn—'r(n)—l = ije—/\nAgO T Ch(n—r(n)—l)a

= [ble™2C0 - Gigny—a-

For Np + 1 < n £ Nj, we proceed by induction. Assume that

Y =3¢ o, Crik—1)—2> Shik—1)—16R(k—1))- (6.5.19)

102



Chapter 6, Section 5 A Uniform Discretisation of the Auxiliary Process Yields Spurious Oscillatory Behaviour

Then, by (6.5.6), (6.5.7), and (6.5.15),
Vi
- _
= §7(Cos- - Chp—1)—2s Ch{k—1)=1Ch(k-1))
+[“Az7,:p_,(k)_1(é'o, e s Cigky—69 Gi)—5Ci(r)—4)
x|ble My -+ Cagry] + [~ A(=A)ble™ 20 CGiggy—2
x Bl TR ¢y - (h(k)?k—r(k)—l'—r(k—r(k)—l)],
= G200\ Chlh-1)-2: Ch(b—1)-1Ch(s=1))
+Hfr(Cor - -+ Cigky—41 Ciks - - - » Shk—1))
+9k(C0s - - - Cagky—25 Cigk)> - - - » Ch(k—1))ICh(k) —1Cn (k) s
..‘d) A .
Yer1(C0s - -+ Chthy—2s Criw)—1Ch(k) -

We first determine the form of }7}\,’04_1. We can then show that the induction proposition

(6.5.19) holds for the base case Yy, +o. By (6.3.6),
Yvos1 = Yoo — APN Yivg—r(vo)

There are two poséible forms for ?No+1-
Form 1: Let Ny — r(No) ~ 1 = 0. Since Yi,—r(ng) = Y1, and, by Lemma 6.5.3, Yn, =

1]',\/}'0 (€0, - -+ Ch(ap—1))» We have, by (6.5.4) and (6.5.14),

Yuorr = 85,(Cor - Camiomry) = AIble >N Gy oo Gy 5
~
= 3, (G0, - - - s Cu(tvo—1)—21 Ch(No—1)~1Ch(No—1))
+qnp (C0s - -+ 5 Ca(No—1) )Sh(No)—1CR(IVo) 5

= ﬁ.rd\;oﬂ(io, -3 Cr(Nog)=2> Ch(1o)=1Ch(No) )-
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Form 2: Let' Ng —7(Np) — 1 > 0. From Lemma 6.5.3, we know that

= )
YNo-r(No) = Fng—r(io)

($0s -+ +» Ch(Np=r(No)=1)=2» Sh(No—r(No)—1)=1Ch(No—r{(No)—1))>

ﬂﬁo_,(No)(Co’ ooy Cignvg) =4 Cig o) =38k N ) —2)-

So, by (6.5.6), (6.5.8), and (6.5.14),

Yo 41
= 27}60((0, oo+ > Ch(No—1)—21 Sh(No—1)~1Ch(Ng—-1))
+[—A?7;30_T(N0)_1(C0, ++ o5 Gi(No) =65 Ci(No)~5Gi(Noy—4)
x[ble M2 i) -+ Criv)]
S ACAIE8 G
x [ble A NOR) ¢y Ch{Ng)
X ¥ No—r(No)~1~r(No—r(No)~1))>
= 7% .(Cor- - ChVo—1)-2 Ch(No—1)-1Ch(No—1))
AN (Gos -+ > Civoy—4s Gl - - - 1 Ch(No 1))
+9N, (C0» - -+ Cigvo)—25 Ci(o) » - - + » Sh(No —1)))
X Ch(No)—1Ch(No) s

= §§¢0+1(Co, <3 Ch{Ng)~2> Ch(io)— 18R(Ng) )+
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Now we can say, by (6.5.6), (6.5.7), and (6.5.15), that

Yot2
37?’30“((0-, ++ - Ch(No)~2> Ch(No)~1Gh(No))
+[—A?3}50-+1_T(N0+1)_1(C0, e s CilNo+1) =65 CiNo+1)—5Ci( N +1)—4)
x |ble ANOFDBC oy Ch(No+1))
H[~A(=A)[pe™MNADAL v 11y—2
x [bje AN DA ¢ 1y CaVo )
x?No+l—r(No+l)~1—r(Ng+l—T(No+1)—1)]:
= % 1000 -+ Chirie) -2, Ch(No)—lgh(Ng))‘
+{fno+1{C0s -+ s Gigvp 1) =45 Ci(No+1)s - - - 5 Sh(G))
+9No+1(C0 - GiVo+1) -2 Ci(No+1)s - - -+ Ch(v))]
X Cn(No+1)—18h(No+1)

T 12(G0 -, Ch(No+1)-2 Ch(No+1) -1 Ch(No-+1) )

Therefore, for all Ny < n < Ny,

Yo =2, - Chin-1)-2: Chtn—1) 1 Ch(n1))-

Since the surfaces 57 and S§ defined in (6.5.5) and (6.5.9) have measure 0 in RM™+1

Lemma 6.5.2 gives that P[Y,, = 0] =0 for Ny < n < M. O

Lemma 6.5.5. If {i;n}nzo 1s the sequence of random variables defined by (6.5.6), and

with an initial data set (6.5.3) obeying (6.3.4) and (6.8.5), then for all Ny <n < N*,

1. Y = %G, - -, Chine1)=2> Chin1)—1Chin—1)),

2. PlY, = 0] =0.
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Proof. Iterating once, we can say that

?n+l = Yp— Aﬁn?n—r(n)

= Y- Aﬁn n—r(n)-1 — A(_A>ﬁn15n—r(n)—l?n—r(n)—l—r(n—r(n)—l):

For all N} <n < N*,-

Yortn)-1 = yn_r(n)_l(COa o+ s Chn=r(n)=1-1))»
= Q;p_r(n)_l((oa e Gitny—a)s
Vomr(m)-1or(nor(m)-1) = T rny—1—r(ner(m)—1)
(€0 -+ s Ch(n—r(n)—1=r(n—r(n)—1)=1)—2
Ch(n—r(n)=1-r(n—r(n)=1)-1)—1
xCh(n—r(n);l—r(n—r(n)~1)—1))a
= ?n—r(n)-l—r(n—T(n)—l)
(€0 -+ Ci(n)—4s Cj(n)—Séj(n)—?))

By = |ble NG 1) Ch(nmr(m) =1

= |ble PR Gy —2-

If No —r(Np) =1 and N1 —r(Nq) = Np + 1 then, by (6.5.6) and (6.5.8}, we can calculate

that

Y1 = @ﬁl(Co, e o CR{Ny —1)=25 Sh(N1 —1)—1$R(N1 -1))
F N (Cor e+ -5 GiNy) =45 SitNa)» - - - Sr(A))
+9m (Cos -  CigNyy =25 CigNy)a - - - 5 Sy
XCh(Ny)—1Ch(Ny)

= §I1€1+1(Co~, e v s Ch(an) =2 Ch(vy) ~1Ch(Ny) )
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Just as in Lemmata 6.5.3 and 6.5.4, we can show, by induction, (6.5.6), (6.5.10), (6.5.17),
and Lemma 6.5.4, that for all My < n < N*, and for n = Ny + 1 if either Np — r(Ng) # 1

or Nl - T(N]_) # Np + 1, that

Yo = 32.10Co,- - Chin2)-2: Chin-2)-1Ch(n—2))
+[fa-1{¢0, - Ci(n—1)—a> Q(n—l),...,ch(n_l))
FwWn-1(60s - - - » Gitn—1)-2+ G(n—1)s - - - » Gitn=1)=21 Cin—1)» - - - » Ch{n—-1))]
x(h(n—1)~1<h-(-n—1):

= ¥, Chin-1)-2> Chin—1)~1$h(n1))-

So, for Ny < n < N*,.

Yo = 2(Co, - -+ Chn1)—2> Crtn-1)-1Ch(n—1))-

Since the surfaces S and S} defined in (6.5.9) and (6.5.11) have measure 0 in RM®)+1,

Lemma 6.5.2 gives that P[Y, =0] =0 for Ny <n < N*. O

Lemma 6.5.6. If {f’n}nzg is the sequence of random variables defined by (6.3.6), and

with an initial data set (6.3.3) obeying (6.8.4) and (6.3.5), then for alln > N*,

Proof. When n. > N*, 7(nA). < A, and therefore rma(n) = 0. Additionally, by Lemma

6.5.5, Yn+_1 # 0 a.s. So (6.3.1) can be rewritten as

?n+1 = ?n(l_Aﬁn), n > N*,

?N*—l # Oa

where ]37, = |b|e_’\T(nA)Ch(n)~
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Since ﬁn is independently distributed for all n > N*, each ?n is Qﬁ(n)—measurable and
gi(n_l)—independent. )7n+1 is Qi(n)—measurable for all n and therefore )7n is Qﬁ(n_l)—'
measgrable. Thus 2, is independent of ¥, for all n > N*.

Define the complementary events A, = {w : Yn(w) = 0}, and 4, = {w :.Yn(w) # 0}, for

n > N*. Note that, for each n > N*, and by the definition of {Py},

P4,

S ~ 1
a] =efp= 1] =0
Since Yn+—1 # 0, we can infer, by induction, that P[A,] = 0 for all n > N*. O

Lemma 6.5.7. If {Y,}n>o is the sequence of random variables defined by (6.3.6), and

with an nitial data set (6.3.3) obeying (6.5.4) and (6.3.5), then
P[Y,, # 0 for all n] = 1.

Proof. By Lemmata 6.5.3, 6.54, 6.5.5, and 6.5.6, P[?n =0 =0foralln >0 We
extend the definitions of A, and A, from Lemma 6.5.6 to define the complementary

events B, = {w : Y, (w) = 0}, and B, = {w : Y,(w) #0}, for n > 0. Now,
IP[?n # 0 for all n]

e VR W

1-> P[Ba] =1

v
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Chapter 7
A Nonuniform Discretisation of the Auxiliary

Process

The solution to the problem of avoiding spurious oscillatory behaviour is to allow the
structures responsible for the true oscillatory behaviour to remain in place. In Chapters .
3 and 5, we compared the qualitative behaviour of stochastic delay differential equations
to that of deterministic delay equations, and to stochastic equations without delay. All
the evidence indicates that the delay structure and the noise perturbation must be kept
intact if the properties of the solutions are to be preserved. In fact, the failure to allow the
feedback delay to persist indefinitely was the cause of the spurious qualitative behaviour
observed in Theorem 6.4.1. In this chapter, we avoid this problem by building the effect of
the delay into the structure of the mesh. Since we are concerned solely with the replication
~of oscillatory behaviour, we will continue to use the auxiliary process satisfying (4.1.3) as
the basis for an Euler-type discretisation.

It must be emphasised that although there is no mechanism for a global tightening of
the nonuniform mesh presented in this chapter, the mesh size becomes arbitrarily small
after a finite number of time steps. Since oscillation is a tail phenomenon (in the sense
that it is not an F(t)-measurable event for any finite value of t) a strong argument can
be made that the oscillatory behaviour of this nonuniform discretisation is characteristic
of the continuous process.

Alternatively, this chapter can be viewed as an attempt to develop a discrete—time model
that is behaviourally consistent with the solutions of (5.0.1), by identifying and preserving

the essential characteristics of the solution through the discretisation.
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7.1 Constructing a discrete process displaying nonspurious

behaviour.

We consider the oscillatory behaviour of a two-step Euler difference equation evolving on

a nonuniform mesh.

7.1.1 A nonuniform mesh.

In order to avoid a situation where spurious behaviour arises, it seems that the mesh must
adapt itself to the decay of 7. Recall the definition of the feedback ratio p in (5.3.1‘).‘
The asymptotic behaviour of p appears to mirror the onset of oscillatory behaviour in the
solutions of (5.0.1). This can be taken as a good indication of the frequency at which
we must sample information from the path in order to preserve qualitative behaviour.
Because of this, we take p as a guide to the distribution of mesh points.

We define the mesh M, to be a sequence of points {t,}n>0 defined by
Ctp=0, tpp=inf{t>0:t—7(t) =ta}. |

t+> t.— 7(t) is a strictly increasing function, {¢,} is strictly increasing in n and it was
shown in Section 2.2 of Chapter 1.1 that lim, o ¢, = co. Therefore the sequence {¢n}
partitions the time set into into a union of disjoint intervals: RT = UiZolts ti+1). The

length of the nt” interval [tn—1,1n) is denoted
A, = T(tn) =ty —th_1.

A schematic of M, for a nonspecific vanishing delay function 7 is given in Figure 7.1.1
From Definition 6.2.1, and the construction of this mesh, it should now be clear that
the ratio of consecutive terms in the final difference equation will be the discrete-time
equivalent of the feedback ratio 2, and will form the basis of our analysis of the oscillatory
behaviour of the final discrete process.
The construction of this mesh for a general vanishing delay function 7, as part of a nu-
merical implementation of this discretisation, will require the approximation of successive

mesh points by fixed point iteration. Given only the knowledge of a single mesh point,
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ﬁ]—_'l'(h) tz—‘r(tz) ty—7(tz) tg—T(tg)

NN L
tg =10 i 1o ts t7 tg

:_7 : : 41 .............. H
A1 Ag As Ag

Figure 7.1.1: Construction of the nonuniform mesh M..

and the form of 7, the problem of choosing an interval on which the next mesh point must

be unique is nontrivial, and we have not attempted to present a solution here.

7.1.2 The difference equation evolving on M..

On the mesh M, = {{g,%1,...}, ram, (n) = 1. The length of each step of the difference
equation is equal to the value of the delay function 7 at the end of the step, and so thé
delay has been precisely encoded in the mesh rather than approximately encoded in the
difference equation. We can now refine (6.3.1). In fact the equafion that we will study

can now be fully defined as
Y?‘H-l = Yn - An+1Pn(w)Yn_1, n> 0, (711&)

(Y_,Yy) € R* xRF, (7.1.1b)

with P, = p(tn).

7.1.3 Useful properties of the difference equation (7.1.1).

In order to validate the use of Definition 6.2.1, it is necessary to show that the process
obeying (7.1.1) is never zero valued. This will prove an easier task here than in Chapter

6.
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Lemma 7.1.1. If {¥,}n>0 is the sequence of random variables defined by (6.1.1), then
P[Yy # 0 for all n] = 1.

Proof. On the left hand side of (7.1.1), Y11 is an F(t,)—measurable random variable.

Therefore, ¥, and Y,_; are F(t,—1)-measurable and F(¢,_2)-measurable random vari-

ables respectively. Clearly

P, = |b|e—)\T'(tn)ela|B(tn)_B(zn_l)}

being F(tn)-measurable and F (tn—1)-independent, is independent of all other random
variables in the right hand side of (7.1.1).

Define the sequence of events {Cp}n>0 by
Cp={w:Y,1(w) =0, Yo(w) =0}
Since (Y_1,Ys) € R* x RY, P[Cy] = 0. Assume now that P[Cy] = 0 for k > 0. If we can

show, under this assumption, that P[Yy.; = 0|C¢] = 0, then we have that P[Cyy1] = 0 for

k > 0, and we can infer, by induction, that
P[An] = 0 for all n > 0,

where {An}n>0 is a sequence of events, each defined as A, = {w : Y,(w) = 0}. The
remainder of the proof then follows that of Lemma 6.5.7.
It remains to show, under the induction hypothesis, that P[Yi41 = 0|Ck]) = 0 for k > 0.
By (6.1.1), |
P[Yis1 = 0|Ck] = P[Yz + Ags1PiYi—1 = O[Cy).

="

Note that the event Cj, admits the partitioning Cy = Cy, U T}, UC} , where

Ciy = {w:Y1(w)= 0, Yi(w) # 0},

Q)
-
Il

{w : Yk—l(w) 7é O’ Yk(w) = O}a

{w: Y (w) # (j, Y (w) # 0}.

Q
=
!
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So, since P, is a continuous random variable supported on R*,
PV + Ago1 PiYi1 = 0[Cy) =0,

and

_ Y. —
P[Yy + Apy1 PiYeo1 =0[Cy] = P|P=——+~ _|CLUC},
A1 Yy

a

The F(t,—1)}—measurability of ¥;, in the proof of Lemma 7.1.1 deserves explicit mention
because it highlights the fact that the random process satisfying (7.1.1) is a predictable
process. If this were not the case then P, would not be independent of ¥, and the proof
would be invalid. In fact, the independence of P,-and Y, removes.the need to construct-
a new discrete-time filtration. It is enough to sample the natural filtration of Brownian
motion {F(t)};>p at each mesh point. The predictability of ¥ also suggests that an implicit
discretisation of the auxiliary process satisfying (4.1.3) may prove to be a fruitful research
topic in the future.

The following lemma shows that if any path of a solution of (7.1.1) oscillates, its value
cannot cross equilibripm twice over any two consecutive time steps, except possibly for

paths contained in a subset of the sample space with probability zero.

Lemma 7.1.2. Consider the solution of (7.1.1), evolving on M,. For alln > 0,

Yn+1 Yn :|
P <0 <0 =0.
[ Yn Yn—l
Proof. For all n,
Yn+1 Yn :,
P <0 <0
): Yn Yn-l
= ]P{(l — D1 Po) + Ap1 Py (1 - Y"‘l) <ol < o]
: Yn Yo
Y1 1 ‘ Y, }
= P|- + <0 <0
[ Yn An+1P'n. Y'n.—l
= @,
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by Lemma 7.1.1, and the a.s. positivity of A 41 P, for all n. O

7.2 Oscillation and nonoscillation.

We consider the effect of varying decay rates of + on the oscillatory asymptotic behaviour
of solutions of (7.1.1), evolving on the mesh M.
The following lemma is a special case of Corollary 4.1(a) in Gyéri [13], and will be useful

in proving nonoscillation results.

Lemma 7.2.1. Let N > 0 be a nonnegative integer. For alln > N assume that

1

Then almost all solutions of the difference equation

Yntl = Yn — Paln-1, N = N,

(yn,ynv-1) € RYT xRT,

are positive.

We know from Chapter 5 that the main factor influencing the qualitative behaviour of

solutions of (7.1.1) is the decay rate of 7. Assume that 7 is such that

log 7(t) _
Jim loglogt — a, ae (0,00 (7.2.1)

and, when o = 1,

T{t)logt

Jim oz log )° =3, Be€l0,00] (7.2.2)

The values of & and 5- allow us to classify the behaviour of Y.

Theorem 7.2.2. Let a and (3 be defined as in (7.2.1) and (7.2.2). Letb< 0. Ift isa

continuous functz’bn satisfying ({.3.1), then the following classification holds. If

1 a=1, and
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(a) 3> E%g', then all solutions of (7.1.1) evolving on M, are a.s. oscillatory.

(b) g < %g then all solutions of (7.1.1) evolving on M;, are a.s. nonoscillatory.
2. a < 1, then all solutions of (7.1.1) evolving on M, are a.s. oscillatory.

8. a > 1, then all solutions of (7.1.1) evolving on M., are a.s. nonoscillatory.

For purposes of comparing our knowledge of the behaviour of the discrete and continuous

processes, we reproduce the corresponding oscillation result from Chapter 5 here.

Theorem 7:2.3. Let b < 0. Suppose T is a continuous function satisfying (4.2.1), and
- that (7.2.1) holds. Let T > 0, and suppose that X = {X(¢); T <t< oo; FB(t)} is the

strong solution of the equation

Q.
>
T~
o
S
It

(eX(t)+bX(t - T(t)))dt +oX(t)dB(t), t>T

>
—

o~
~—

1, teT-7(T),T)
Then the following classification holds. If

1. o < 1, then for every T > 0, the path X{(w) is oscillatory for all w in a set which

has probability one.

2. o > 1, then for each € > 0, there is a T = T(g) > 0 such thatAthe path X(w) is

positive for all w in a set which has probability at least 1 — €.

Notwithstanding the different monotonicity conditions on 7, there is a clear correspon-
dence between the results in Theorems 7.2.3 and 7.2.2. However, in Theorem 7.2.3, positi.v-
ity in the solutions of the differential equation with arbitrarily high probability is achieved
by translating the necessarily positive and constant initial data forwards in time. The
lower bound on this probability depends on the magnitude of the translation. By con-
trast, in Theorem 7.2.2, we consider a.s. nonoscillation of the solutions of the difference

equation with untranslated positive initial data, which does not have to be constant. So
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when o # 1, we recover, and somewhat extend, the behaviour of the differential equation
in our discretisation.

In addition, the simplified analysis afforded us by discretising the problem allows us to
extend our results to the critical case a = 1.

Note that in this critical case, whether or not the solutions of (7.1.1) are a.s. oscillatory -
depends on the relationship of the decay rate of 7 to the intensity of the noise. This
relates back to the idea that, rega.rdless; of the strength of the returning force in the drift, .
or the rate of decay of the delay, oscillations cannot persist without some kind of noise
perturbation.

The three cases of Theorem 7.2.2 are a summary of the results obtained in Theorems
. 7.2.10-7.2.9. The proofs of these theorems compr.ise the remainder of the chapter. Our -
analysis is broken dov;n into subsections according to the ranges of the parameters « and

B as they appear in the statement of the Theorem 7.2.2. We begin with the critical case.

7.2.1 Case 1, part (a). Oscillatory behaviour.

We consider the behaviour of (7.1.1) when o = 1. In this case

Jim ;zg;fgt)t =1, (7.2.3)"
and
tir&&)(gt)l% =p€ (%,oo]. (7.2.4)
As a consequence of (7.2.4),
» tl_lgg 7(t)logt = oo. (7.2.5)

Lemma 7.2.4. Suppose that T is o continuous function satisfying (4.8.1), (7.2.4), and
(7.2.8). Let {€,} be a sequence of independent standard Normal random variables and

define two sequences of random variables {Wn} and {Wy,} by

Wn = 1Og'r(tn) + 10|V T(tn)n, (7'2'6)
and
Wy, = log 7(tnt1) + 0|V T(tn)én. (7.2.7)
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Then

P[Wp '> ) > P[Wn_{_l > ¢, forallc>0, andn eN.

Proof. The statement of the lemma is true if and only if

¢~ log T(tn+1) c—log 7(tny1)
lo|\/7(tn) lolv/T(tns1) '

This holds since, by (4.3.1), 7(tn) > 7(tns1) for all n, and each &, is a standard Normal

o> B

random variable. O

Lemma 7.2.5. Let b < 0. Suppose that T is a continuous function satisfying (4.3.1),
(7.2.3), and (7.2.4). If B(t) is a standard Brownian motion and M, = {tp}n>0 is the
mesh defined in Section 7.1.1, then
lim sup 7(t,,)elolBtn)=Bltn-1)) — o0 g.5.
n—r00

Proof. We consider the case where f € (323, 00) first. Consider the random variable

7(ty)e O Bln}=Blin-1)), (7.2.8)
For every n > 0, (7.2.8) has the same distribution as the random variable Z,, defined as

Zn = T(tn)e|‘7]v T(tn)én

where {£,} is a sequence of independent standard Normal random variables. It is in fact

sufficient to prove that limsup,,_, ., log Z, = co, a.s. For any £ > 0,

logZn = log7(ta) + |o|v/T(En)én

log 7(tn) + (1 — €)|o|\/7(tn)/21logn

+;o|\/2r(tn)1ogn(\/% —a- 5)]).

By (4.3.1), there exists an No(¢) € N large enough that for all n > Ny(e), ¢, < n, and

i

therefore that 7(t,) > 7(n). So, by (7.2.5), and since

i &n
imsup

=1,
n—oo V2logn
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it follows that, for each fixed € > 0,

li?jolip{_|0|\/m(\/2_§lga -(1- e)]) } =00, es. (7.2.9)

It remains to quantify the large deviations of

log 7(t,) + (1 — e}|o|\/7T(tn)/210gn.

Since, by (7.2.4),
7(n)logn 1

n-co (loglogn)2 ~ ~ 7 202’

we have that for every € € (0, 1), there is an Ni(e) € N such that n > Ny(e) implies

7(tn) logn
(log log n)? > B0 - E»)'

Hence

B(1 — €)(log log n)?

t
7(ta) > logn

, n> N(e).
Thus, for n > Ny(e) V Ni(e),

log 7(tn) + (1 —e)lo|\/T(tn)v/2logn

B(1 — £)(log log n)?
> log(ﬂ.( l)o(gf g )

loglogn

) + (1= 9ol Fogny /Bl ~ ) Ak,

log B(1—¢} 2logloglogn
= logl 1-¢e)v/B(1—¢)—15%.
o8 ogn{ loglogn + loglogn +V2lol(1 —e) Al-e) -1

By (7.2.4), V2|o|(1 —€)/B(1 —€) —1> 0, forall e > 0. So

limsup{log 7(t,) + (1 — &)lo]/7(t,)/2logn} = 0, a.s. (7.2.10)

n—oo

for all € > 0. Combining this with (7.2.9) allows us to conclude that
limsuplog Z, = 00, a.s.

n—oo

Therefore, the statement of the lemma holds when 8 € (5%5, 00).
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The statement of the lemma also holds in the case where B8 = oo, since (7.2.9) is
independent of 3, and (7.2.10) is still true. This can be seen by noting that for every

B > 51z, there is an N(ﬁ) € N such that n > N(3) implies that (115% > 8. 0

Theorem 7.2.6. Let b < 0. Suppose that T is a continuous function satisfying (4.8.1),

(7.2.4), and (7.2.3). If 8 > 5, then all solutions of equation

Yoy1 = Ya—An1PYs1, n2>20

’ (Yo,Y_l) € Rt x R+,
evolving on the mesh M, are a.s. oscillatory.

Proof. Assume first, without loss of generality, that ¢ < 0. We proceed by contradiction.

Assume that there exists N1{w) € N such that the event

Y,
D={w:—ﬁ+—l(w)>0 fora11n>N1}
Y.

has probability greater than zero. hy, is positive for all n and P, is a.s. positive for all n.

So for every n > N1+ 2, and w € D,

(w) <0 (7.2.11)

We can rewrite (7.1.1) as

Y, Y,
;1/:1 — (1 - An+1Pn> + An+1Pn <1 — Ynl ) .

By (7.2.11), we can elicit the required contradiction, and therefore show that P[D] = 0, if

we can show that (5.2.3) implies
Pl — App1 Py <0i0] =1 (7.2.12)
for all b < 0. It is sufficient to show that

: lim sup 7 (tp1 )elPlBlEnI=Blta1)) — o g5, (7.2.13)

n—eo
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Consider W, and W, as defined in (7.2.6) and (7.2.7). Lemma 7.2.5 implies that
Yoo P[W, > ¢} = oo for all ¢ > 0. Therefore, by Lemma 7.2.4, % P[W, > ¢] = oo for

all ¢ > 0. Therefore, (7.2.13) holds, and the proof is complete. o

7.2.2 Case 1, part (b). Nonoscillatory behaviour.

We again consider the behaviour of (7.1.1) when o = 1. However, in this case

7(t)logt 1
Pl (loglogt)? pel, 202)' (7:2.14)

As a consequence of (7.2.14),

tlim 7(t) logt = 0.

Lemma 7.2.7. Let b < 0. Suppose that T is a continuous function satisfying ({.8.1), o =
1, and (7.2.4). If B € (0, z_l;g) then there ezists N € N such that, for eﬁery N> 1\7, there is
an e(N) € (0,1) and @ set Qn € FZ{00) with P[Qx] > 1 — &(N) and imy . P[QN] = 1,

such that for each w € Qy, almost all solutions of

Yn+1 = Yn — An+1pn(LL))Yn_1, n 2 N,

(Yn,Yn-1) € RY xRT,
evolving on M;, are positive.

Proof. By Lemma 7.2.1, the statement of the theorem is true if, for every N > N , there
exists e(N) € (0, 1), and a set Qy € FB(co), with P{Qn] > 1—&(N), and limy o P[Qn] =

1, such that for each w € Qp,
1
ApPr(w) < 1 for alln > N.

Without loss of generality, set o < 0. Let 7 = 7(0) and 7, be given by 4 — 7(m1) = 0.

Define v > 0 by

1
" fovas "
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Now consider the function
H(t) — ‘b‘T(t)e|>\}m+|01(1+7)\/27'(t) logt

T(t)logt _ 1
(loglogt)? — 242%(1+7)%°

Since o = 1, and since lim;,

log H(tn) i {log|b|e|’\|TO + log 7(tn) . lo|\/27(tn) logtn}

nooo loglogt, oo loglogtn log log t,, loglog ty,

< 0.

and therefore lim, o, H(t,) = 0. Choose N large enough that H (tn) < % forall n > N.

Now, for ¢t > 71, we can define the FZ({co)-measurable random variable

e sup 1B = Bl = (s

s>t V27(s)log s

C(t) is well defined on a set of probability one as, by Corollary 4.3.3,

i sap [B(5) — Bs — 7(5))

=1, as. 7.2.15
300 27(s)log s ( )

Therefore, for every N > N, there is an £(V) € (0,1) such that n > N implies that
PC(tn) > 1+ 7] < e(N).

Therefore we can define the set

o {B(tn) = B(tn-1))(w)
o = {w €f: o 97 (tn) 10g t =i+ 7}
satisfying P[Qx] > 1 — (), since
[B(tn) — B(ta-1)| > Blta) — Bltn_1) (7.2.16)

for all n. By (7.2.15), Pllimy_o C(tn) = 1] = 1. Because a.s. convergence implies

convergence in probability,

Jim PIC(n) ~ 1/ <4 =1
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Since C(t) is nonincreasing for all ¢t > 7, and lims— oo C(t)=1las,C(t) > 1forallt > 7.
Consequently,

lim P[C(ty) <1+4] =1.

N—oo

By (7.2.16),

im P|sup Bltn) — B{tn1)

] <149 =1,
N—oo a>N /27(tn)log it K

and therefore limy_o P[Q2v] = 1. So for all N > N, there is a set Qy with PQn] >

1—-¢(N) and limy 00 P[Q2x] = 1 such that for all n > N and w € Qp,

T(t _ _ :
hnt1Po(w) = |b|r(tn)_£(1;i)1_)e, M (tn) olo|(B(tn) ~ B{tn-1))
n

< [bl7(ty) eI elol(1+7) 27 (tn) log tn
. .
4
as required. O

Lemma 7.2.8. Let b < 0. Suppose that T is a continuous function satisfying (4.8.1),
a=1, and (7.2.4). If 3 =0 then there exists N € N such that, for every N > N, there is
an £(N) € (0,1) and a set Qn € FB(oc) with P[Qy] > 1 — e(N) and limy_,o0 P[Qn] = 1,

such that for each w € Qp, almost all solutions of

Yorr = Yo— A‘r7.+1P‘n(w)y.n—la n > N,

(Yv,Yn-1) € R¥xRT,

evolving on M., are positive.

Proof. Since limy .o €20 = 1, and because %’;)‘—) < 1 for all n it is sufficient to show-

that

Hm 7(t,)elolBln)=Bltn-a)) — g, (7.2.17)
n—o
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Because o = 1, and by Lemma 4.3.4,

tl_igz{logT(t) + |o|(B(t) — B(t — 7(t)))}

L log 7(t) B(t)— B{t—7(t)) B
N tli)rgo{loglogtaog logt *lo] log logt =T

Therefore (7.2.17) holds. The rest of the proof follows in the manner of Lemma 7.2.7. O

Theorem 7.2.9. Let b < 0. Suppose that T is a continuous function satisfying (4.3.1),
a=1 and (7.2.4), with B € [0, 527). Then all solutions of (7.1.1) evolving on M are a.s.

nonoscillatory.
Proof. Define the set Dy, by
Dy ={weQ:YT(w)=m}
for all m, where Y is as defined in (6.2.1). By Lemmata 7.1.2, 7.2.7, and 7.2.8,
Tgi_r’%o]P’[Dm] =1

Now for every 6 > 0, there is an M(§) > 0 such that m > M(§) implies that P[Dp] < 6.

Then, for m > M(6), .

0 e o]
]P’{U Dm} :P[ﬂ D_m} < P[Dy] < 6.
m=1 m=1
So P[Us—; Dm] = 0, and therefore P[|J;-_; Dm] = 1. So,
P[YT <o0] =1

and therefore the solution of (7.1.1), evolving on M, is a.s. nonoscillatory. O

7.2.3 Case 2. Oscillatory behaviour.

We consider the behaviour of (7.1.1) when a < 1. This implies that 8 = co.
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.Theorem 7.2.10. Suppose T is a continuous function satisfying (4.3.1) and (5.2.3). Then

all solutions of (7.1.1) are a.s. oscillatory.

Proof. Because o < 1 and 8 = ob, the results stated in Lemmata 7.2.4 and 7.2.5 hold.

Therefore the proof of Theorem 7.2.6 is valid in this case. |

7.2.4 Case 3. Nonoscillatory behaviour.
We consider the behaviour of (7.1.1) when a > 1. This implies that (5.2.5) holds.
Lemma 7.2.11. Let b < 0. Suppose that T is a continuous function satisfying (4.3.1)
and (5.2.5). Then, for every N > 0, there is an (N) € (0,1) and a set Qy € FB(x0),
with P[Qn] > 1 — e(N), and limy_,o P[Qn] = 1, such that for each w € Qu, almost all
sollutions of

Yor1 = Y= Aps1Pu(w)¥no1, n> N,

(YN’YNhl) € R+ XR+7
evolving on M, are positive.

Proof. By Leruma 7.2.1, the statement of the theorem is true if, for all N > 0, there exists
e(N) € (0,1), and a set Qn € FB(00), with P[Qy] > 1 — &(IV), and limy—.c P[2y] = 1,
such that for each w € Qy,

1
Ap1Pp(w) < 1 for all n > N.

Without loss of generality, set o < 0. Let 75 = 7(0) and 7, be given by 7 —7(m) = 0. For

t > 71 we can define the F& {co)-measurable random variable
C(t) = sup |B(s) — B(s — 7(s))|.

s>t

This is well defined on a set of probability one as, by Lemma 1 in [2], (5.2.5) implies that
lim B(t) - B(t - (1)) = 0, as. (7.2.18)
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Thus lims—,. C(t) = 0, a.s. Now define the deterministic constant

1= o= (ap ) ~ P

For every N > 0, there is an ¢(N) € (0, 1) such that n > N implies that

PIC(t,) > n) < e(N).
Therefore we can define the set

Oy ={w € N : sup |[B(tn,w) — B(tn-1,w)| < n}
n>N .

which has P[Qy] > 1 — e(N). By (7.2.18),
P[ lim C(ty)=0]=1.
N—00
Because a.s. convergence implies convergence in probability,
lim P{C(ty) <n]=1
N—oo
and therefore limy_.oo P[Q2x] = 1. Now,

T{t _
DnirP, =|b|T(tn)%e—wn)ew(mn) Bltn-)),

n

Since 7(t) is strictly decreasing, ltnt1) < 1 for all n. Also, forallw € Qy and n > N,
{En)

1

An—}-lP’n < lb'Tﬂel)\'TOHgln < Za

as required. O
Theorem 7.2.12. Let b < 0. Suppose that T is a continuous function satisfying (4.8.1)
and (5.2.5). Then all solutions of (7.1.1) evolving on M, are a.s. nonoscillatory.

Proof. Using Lemmata 7.1.2 and 7.2.11, the proof follows in a similar manner to that of

Theorem 7.2.0. O

Theorems 7.2.6, 7.2.9, 7.2.10, and 7.2.12 together comprise the statement of Theorem
7.2.2. ‘
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Chapter 8

Summary of Findings

In this final chapter, we gather together the principal results of the thesis.

8.1 Global existence and uniqueness.
For the deterministic equation

() = g9emtz), t20, (8.1.1a)

z(t) = o), te[-7,0] (8.1.1b)
with delay structure as described in (2.1.1}, (2.1.2), (2.1.3), and (2.1.4) we merely require
that g(,=) be continuous to ensure a unique global solution. The stochastic perturbation
of (8.1.1) embodied in

dX(t) = 9(-m(t Xe)dt + h(X(¢t))dB(t),
X(@#) = 9@), te[-70.

can be shown to have a unique global solution if A is locally Lipschitz continuous. Thus,

in this case, the addition of noise does not prevent the solution from existing globally. In

fact if some of the feedback in the drift is instantaneous, as given by

dX(1) = (FX) + gprm (b X)) di+ h(X()) dB(),

>
o
p—_
1

¢(t)1 te [__7—-) 0]’

it is possible to suppress an explosion in the solution of the deterministic equation with a

carefully chosen noise term. Specifically,

bl

gives a sufficient condition on the relative intensity of the diffusion coefficient for a given

drift coefficient. It is interesting to note that the delayed feedback component of the drift
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appears to play no role whatsoever in either causing or suppressing an explosion in such
* equations. A generalisation of this result to finite dimensions can be found in Appendix

A,

8.2 The nonlinear stochastic equation with fixed delay.

Consider the deterministic equation

CZ@t) = —g(zit-71), t>0, ' (8.2.1a)

z(t) = (), te[-7,0] (8.2.1b)

where g is a continuous function satisfying zg(z) > 0 for all z € R. Additionally g(0) =0
guarantees the existence of an equilibrium solution.
Oscillatory solutions exist if the drift is sublinear, in the sense that there is 0o > L > 0

such that

lim 2@ = L.
z—0 T

Oscillation can be guaranteed for every solution by also ensuring that 7L > %

If g provides a weaker action towards equilibriuxh, in the sense that

ol _
nlalg%)_ o L (8.2.2)

for some v > 1 and L > 0, solutions of (8.2.1) do not have to oscillate. In fact, it is always
possible to choose a sufficiently small scaling factor for the initial data function + which
guarantees the nonosciltation of the solution of (8.2.1a). .

The addition of a stochastic perturbation removes the requirement that 7 have a mini-

mum length in order to guarantee oscillation. Consider the stochastic equation

dX(t) = —-g(X({t—7))dt+ ch(X(t))dB(t), (8.2.3a)

X(t)

Y(), tel-7,0], (8.2.3b)

where £ is locally Lipschitz continuous, h(0) = 0 preserves the equilibrium solution and

there exists 0 < h < 1 < A such that
hlz|* < zh(z) < hlz|?, (8.2.4)
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and

lim @ -1 (8.2.5)
* If the drift coefficient is sublinear at zero, in the sense that (8.2.2) holds, then all solutions
of (8.2.3) are a.s. oscillatory.

If the drift coefficient is superlinear, in the sense that there exists v > 1and 0 < L < L

such that

o)
z—0 ]13]7

K

and

lg{z)] < Llz|", z€R,

then the solutions of (8.2.3) are nonoscillatory with positive probability. This probability

can be made arbitrarily close to one by choosing an appropriate initial data function.

8.3 The linear stochastic equation with vanishing delay.

Finally, we look at the properties of the solutions of

au
D
—~
=

il

(aX(t) +bX(t — 7(t)) dt + o X (¢) dB{t), (8.3.1a)
Xty = ¥@), -T<t<L0, , (8.3.1b)
where b < 0, and 7 is a continuous function which vanishes as t — co. To begin with it is
useful to consider the properties of the corresponding limiting equations.
Consider the stochastically unperturbed equation
Z'(t) = az(t)+bz{t—7(t), t>0, (8.3.2a)
z(t) = ¢(t), [-7,0. ' (8.3.2b)

If the delay function T is integrable, then there exists a nonoscillatory solution of (8.3.2).

Consider also the stochastic equation with zero delay

ax(t) = (aX(£) + bX(2) dt + 0 X(t) dB(), (8.3.3a)

.X(O) e R*. | (8.3.3b)
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This is geometric Brownian motion, and thus all solutions of (8.3.3) are nonoscillatory.
The combination of a vanishing feedback delay and a stochastic perturbation, however,
allows for the possibility of oscillatory behaviour. 'We can parameterise the rate of decay

of T as follows. Suppose that 7 obeys

log 7(t) _ '
Jim Toglogt —a, a € (0,00] (8.3.4)

and, when o =1,
7(t) logt
1o (log log t)?

=0, B€[0,). (8.3.5)

When a < 1, all solutions of (8.3.1) are a.s. oscillatory. When & > 1, by keeping the
initial data constant, and scaling the delay function 7 appropriately, we can construct an
equation related to (8.3.1) that has a nonoscillatory solution with probability arbitrarily
close to one.

By discretising the auxiliary form of (8.3.1) over a nonuniform mesh, we can build a .

more complete picture of this behaviour. Define the sequence M- = {t,}n>0 by
t0=0, tpp1=inf{t>0:t—7(t)=1tn}.
Now let A, = 7(t,) = t, ~ tp—1. Consider the two—step Euler difference equation

Yﬂ-+1 = Y, - An+1P‘n,(L‘))Yn—1a n > 0, (8363)

(Y_1,Yy) € R*¥ xR, (8.3.6b)

Then the oscillatory b‘ehaviour of (8.3.6) can be classified in a more complete fashion.

If o < 1, then all solutions of (8.3.6) evolving on M, are a.s. oscillatory. This result
coincides with the behaviour of the solutions of (8.3.1) in the same parameter region.

If o > 1, then all solutions of (8.3.6) evolving on M, are a.s. nonoscillatory. This result
coincides with, and extends, the equivalent result for the behaviour of solutions of (8.3.1).

Finally, we can descfibe the dynamical behaviour of the solutions of (8.3.6) in the critical
region around the switch from a.s. oscillation to a.s. nonoscillation. If « = 1, and 3 > %2’,
then all solutions of (8.3.6) evolving on M, are a.s. oscillatory. If 8 < %7 then all solutions
of (8.3.6) evolving on M., are a.s. nonoscillatory. The significance of the noise intensity
o in this parameter region is noteworthy in this instance.

The evidence suggests that this behaviour is also characteristic of the solutions of (8.3.1).
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Appendiz A

Existence and Uniqueness in Finite Dimensions

Theorem 2.4.2 can be generalised to cover the global existence of solutions of a class of
finite dimensional stochastic equations. Such equations find application in modelling the
population dynamics of several interacting species. See Mao, Marion and Renshaw [31],

for example.

Theorem A.O0.1. Let hy be a lécally Lipschitz continuous function from R to R, and
h(x) = ho(x)x for all x € R%. Suppose that g(r;7) 18 continuous with delay structure (1,T)
obeying (2.1.1), (2.1.2), and (2.1.4). If ¥ € C([-7,0;R%), f and h are locally Lipschitz
continuous, and |

(x, £(x)) — 5]|h(x)|*

sup - < 00, (A.0.1)
xERd 1+|x|1?

then there is a unique, continuous, adapted R%-valued process which is a strong solution

of .

dX(t) = (£(X(1)) + g7 (¢, X)) dt + h(X(2)) dB(2), (A.0.2a)

X(t) = (), tel[-7,0. (A.0.2b)
on [0, 00).
Note that the condition (A.0.1) reduces to (2.4.7) when (d = 1).

Proof of Theorem A.0.1. Let V; be the scalar function defined by (2.3.13). Define V €
C(R%R) by V(x) = V(1 + 1x]|?), x € R%. We redefine the explosion time given in (2.3.4)

for finite dimensional processes as

¥ =inf{t>0: lir?, IX,(s, [-T7,0],%)| = co for some i = 1,...,d},
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where X; = (X, e;), and e; is the vector with 1 in the i-th component, and zeros elsewhere.
Let k* € R be sufficiently large that the initial data of each component of X lies within

[—k*,k*]. Then for every integer & > k*, we can define the stopping time

7';/’ = inf{t € [0,7¥) : Xi(t,[-7,0],%) & (—k, k), for some i =1,...,d}.

Clearly, 7’,:/’ is an increasing sequence. Set Tgﬁ = limg_ o T:’ , as before. We show that

(A.0.1) is sufficient to ensure that 7% = 0o, and therefore that 7¥ = 0o, by assuming the

converse. That is, for some % € C{[—7,0]; R?) there exists a pair of constants 7 > 0 and

e € (0,1) such that lP’[‘r;"é < T] > &. Hence there is an integer k1 > k* such that
P[T,:/’ <T]>e,foral k > k.

We define a sequence of times {t, }»>0 depending on the delay structure {7, 7) as in (2.2.1).

Up to the truncated stopping time T,:/’ A t1, Itd’s rule shows that the semimartingale
decomposition of V (X(¢)) is given by
- ¥ Aty

VK At) =VXO) + [ POX(). (e X)) ds

v

+ /O G(X(s)) dB(s)
where F(x, ) = L(x) + 2V (|x]1*)(x, ), G{x) = 2V/([|x]))*(x, h(x)), and

(0 F69) — AIBGOI?
100 =2( )

L is a globally bounded function by virtue of condition (A.0.1). Therefore (A.0.1) guar-
antees that supycge |F(x, u)| < C1||p] + C2 where C1, C» are positive and p-independent
constants. Letting |k| — oo delivers the contradiction required to show that % is not
on (0,¢1]. We can continue this proof, as before, on successive intervals (t,—1,%s]. Thus,
by induction, condition (A.0.1) ensures that a unique, strong solution to (A.0.2) exists on

(-7, 00). O
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