Automated Tutoring for a Database Skills Training Environment

Claire Kenny

Bachelor of Science in Computer Applications

A dissertation submitted in fulfilment of the
requirements for the award of

Master of Science (M.Sc.)

to the

e

Dublin City University
School of Computing

Supervisor: Dr. Claus Pahl

September 2006

Declaration

I hereby certify that this material, which | now submit for assessment on the
programme of study leading to the award of Master of Science is entirely my own
work and has not been taken from the work of others save and to the extent that such

work has been cited and acknowledged within the text of my work.

Signed: Ceare J(emull
ID No.: 99495481
Date: September 2006

Acknowledgments

[wish to thank all those that supported me during my research time.

In particular, sincere thanks to my supervisor, Dr. Claus Pahl, for his unending
patience and invaluable guidance. |

Thanks also to my friends, both inside and outside DCU. | am especially grateful
to those - you know who you are - who gave me much encouragement and feedback
while 1 was writing up, and afterwards.

Finally, a special thanks to my family; my parents Fintan and Margaret, brother

Ray and sister Maria. Words cannot say how appreciative I am.

Contents

Chapter
ABSTRACT
1 INTRODUCTION
1.1 INTRODUCTION
1.2 BACKGROUND
1.2.1 Educational Technology
1.2.2 Database Systems
1.2.3 Structured Query Language
1.2.4 Introduction to Databases CA218
1.3 MOTIVATION
1.4 OBJECTIVES
1.5 OUTLINE OF WORK
2 LITERATURE REVIEW
2.1 INTRODUCTION
2.2 LEARNING TECHNOLOGY SYSTEMS
2.3 COMPUTER AIDED LEARNING
2.3.1 Guided Discovery

2.3.2 Personalisation and Adaptive Hypermedia

2.3.2.1 Personalisation

2.3.2.2 Adapative Hypermedia

2.3.3 Recommender Systems and Web Usage Mining

2.3.3.1 Recommender Systems
2.2.3.2 Web Usage Mining
2.4 INTELLIGENT TUTORING
2.4.1 Intelligent Tutoring Systems (ITSs)
2.4.1.1 Architecture
2.4.1.2 Pattern Matching
2.4.1.3 Adaptivity
2.3.2 Variations of the ITS
2.5 HUMAN-COMPUTER INTERACTION

Page

R XN N0 9 N W NN

e e e e e e e e e e el e b e
NoR =R S B =) U O, B O, B - R - T T S ° N | R - R

2.6 PEDAGOGY AND TYPES OF LEARNING
2.6.1 Constructivism
2.6.2 Apprenticeships
2.6.2.1 Traditional Apprenticeship
2.6.2.2 Cognitive Apprenticeship
2.6.2.3 Virtual Apprenticeship
2.6.3 Authentic / Situated learning
2.6.4 Levels of Teaching and Learning
2.7 CHAPTER SUMMARY
RELATED WORK
3.1 INTRODUCTION
3.2 INTELLIGENT TUTORING SYSTEMS
3.2.1 TAOITS
3.2.2 Andes
3.3 SQLCOURSE.COM
3.4 SQLATOR
3.5 ACHARYA
3.5.1 Architecture and Workings of System
3.5.2 Adaptivity / Personalisation
3.5.3 Learner Support / Scaffolding

3.5.4 Human-Computer Interaction / Learner Control

3.6 SQL-TUTOR

3.6.1 Architecture

3.6.2 Adaptivity / Personalisation

3.6.3 Learner Support / Scaffolding
3.7 CONCLUSION

3.7.1 Correction Techniques

3.7.2 Feedback and Guidance

3.7.3 Positive Aspects and Limitations
OBJECTIVES AND SYSTEM REQUIREMENTS
4.1 INTRODUCTION
4.2 OBJECTIVES

4.2.1 First Objective

4.2.1.1 Second Objective

20
20
22
22
26
27
27
28
30
3]
31
31
31
32
33
34
35
35
36
37
37
38
38
42
42
43
44
45
46
48
48
48
48
49

4.2.1.2 Third Objective 50

4.2.1.3 Fourth Objective 50
4.2.2 Fifth Objective 50
4.2.3 Sixth Objective 51
4.2 REQUIREMENTS 52
4.3.1 First Requirement 52
4.3.2 Second Requirement 52
4.3.3 Third Requirement 52
4.3.4 Fourth Requirement 33
4.3.5 Fifth Requirement 53
4.3.6 Sixth Requirement 54
4.3.7 Seventh Requirement 54
5 SYSTEM DESIGN 55
5.1 INTRODUCTION 55
5.2 SYSTEM ARCHITECTURE 56
5.2.1 Requirements 56
5.2.2 Definition 57

5.3 INFORMATION MODELLING FOR THE SQL TUTORING SYSTEM 58
5.3.1 Tables to Query 59
5.3.2 Ideal Solutions 59
5.3.3 Student Records 60
5.3.4 Content 60
5.4 INTERFACE COMPONENT 61
5.4.1 Preferences Setting 61
5.4.2 Index of Queries 62
5.4.3 Interface 62
5.5 SOLUTION AND CORRECTION TECHNIQUE DESIGN 64
5.5.1 Select Statement Variations 66
5.5.2 Abstract Notation for Ideal Solutions 67

5.6 AN ERROR CLASSIFICATION SCHEME FOR SQL SELECT

STATEMENTS 69
5.7 CORRECTION COMPONENT 74
5.8 STUDENT COMPONENT 80

5.9 PEDAGOGICAL COMPONENT 81

5.9.1 Feedback 83

5.9.2 Guidance 86
5.10 STUDENT-SYSTEM INTERACTION 88
5.10.1 Login and Query Menu 89
5.10.2 Configuration Page 90
5.10.3 Query Interface 91
5.10.4 Feedback , 93
5.10.5 Guidance 96
5.11 CHAPTER SUMMARY 98

EVALUATION 101

6.1 INTRODUCTION AND MOTIVATION 101

6.2 EVALUATION METHODS 103

6.2.1 Student Performance 103

6.2.2 Student Opinion 103

6.2.3 Student Behaviour 103

6.2.4 Fulfilment of Objectives and Requirements 103

6.3 EVALUATION RESULTS 104

6.3.1 Student Performance 104

6.3.2 Student Opinion 104

6.3.2.1 Demogfaphic Information ‘ 105

6.3.2.2 Usability of the SOL Tutoring System 107

6.3.2.3 Course Content and Material 108

6.3.2.4 Learning Experience 110

6.3.3 Student Behaviour 116

6.4 DISCUSSION 117

6.4.1 Student Related Evaluation 117

6.4.1.1 Student Performancé 117

6.4.1.2 Student Opinion 118

6.4.1.2.1 Usability of the SQL Tutoring System 118

6.4.1.2.2 Course Content and Material 119

6.4.1.2.3 Learning Experience 120

6.4.1.2.4 Further Opinion about the System 121

6.4.1.3 Student Behaviour 123

6.4.2 Software Evaluation 124

6.4.2.1 Achievement of Goals
6.4.2.2 Usability '
6.5 CONCLUSION
7 CONCLUSION
7.1 SUMMARY OF WORK
7.1.1 Focus of Work
7.1.2 Context of Work
7.1.3 Objectives
7.1.4 Implementation
7.1.5 Evaluation
7.2 CONCLUSIONS
7.3 RECOMMENDATIONS FOR FUTURE WORK
REFERENCES
APPENDIX

124
125
127
129
129
129
129
130
131
132
134
137
139
A-1

List of Figures

Figure Page
2.1.LTSA 9
2.2. Components of a Web-based Learning System 11
2.3. Typical ITS Architecture 17
2.4. AIWBES 18
5.1. Design Model 55
5.2. Architecture of SQL Tutoring System ' 57
5.3. System Sequence Diagram 58
5.4. Information Objects and Component Interactions 59
5.5. Storage Structure Interactions 60
5.6. Interface Component Zoom 61
5.7. Multi-level Error Classification Scheme 72
5.8. Correction Component Zoom 74
5.9. Correction Model Sequence Diagram 75
5.10. Ideal Solution Tree Structure 78
5.11. Pedagogical Component Zoom 81
5.12. Pedagogical Model Sequence Diagram 83
5.13. Inter-Web Page Design ' 89
5.14. Section of Menu of Questions 90
5.15. Section of Configuration Page 90
5.16. Section of Question Interface 91
5.17. Section of Page with Tables to be Queried 91
5.18. Section of Interface with Correct Answer 92
5.19. Incorrect Answer 92
5.20. Syntax Error Message 92
5.21. Correct Output and Correct Result Scaffolding 93
5.22. Level One Hint 94
5.23, Level Two Himt o4

5.24, Level Three Hint 94

5.25.
5.26.
5.27.
5.28.
5.29.
5.30.
5.31.
5.31.
6.1.

6.2.

- 6.3.

6.4.
6.5.
6.6.
6.7.
6.8.
6.9.
6.10.
6.11.
6.12.
6.13.
6.14.
6.15.

Level Four Hint

Level Five Hint

Level Five Hint and Link
Level One Guidance
Level Two Guidance
Level Three Guidance
Level Four Guidance
Menu of Further Questions to Practise
Question 1 Result
Question 2 Result
Question 3 Result
Question 4 Result
Question 5 Result
Question 6 Result
Question 7 Result
Question 8 Result
Question 9 Result
Question 10 Result
Question 11 Result
Question 12 Result
System Elements Rating

Reasons for Use

Pre Mid-Semester Examination Usage Breakdown

95
95
96
96
97
97
98
98
107
107
108
108
109
109
109
109
110
110
11
111
112
113
116

Table

Table 2.1.
Table 3.1.
Table 5.1.
Table 5.2.
Table 5.3.
Table 5.4.
Table 6.1.
Table 6.2.
Table 6.3.
Table 6.4.
Table 6.5.
Table 6.6.
Table 6.7.
Table 6.8.

List of Tables

Bloom’s Taxonomy

Summary of System Features

s (supplier)

sp (shipment)

p (parts)

Employees

Demographic Information
Demographic Information

Online Tutoring Experience
Combined Results of Likert Scale Questions
System Elements Rating

Reasons for Use

Human Tutor Replacement Rating

Improved Exam Results Perception

Page

30
44
64
64
65
70
105
105
106
106
112
113
114
115

Abstract

The emergence of educational technology and the growth of the Internet, coupled
with the rise in the number of students entering third level education, has led to a
surge of online courses offered by universities. These online courses may be part of a
traditional classroom based course, or they may act as an entire course by themselves.
Student engagement, assessment, feedback and guidance are important parts of any
course, but have an added importance for one that is presented online. Together, in the
absence of a human tutor, they can greatly aid the student in the learning process.

We present an automated skills training system for a database programming
environment that will promote procedural knowledge acquisition and skills training.
An SQL (Structured Query Language) select statement tutoring tool is an integral part
of this. Targeted at students with a prior knowledge of database theory, and as part of
a blended learning strategy, the system allows the student to practice SQL querying at
his own time and pace. This is achieved by providing pedagogical actions that would
be offered by a human tutor. Specifically, we refer to synchronous feedback and
guidance based on a personalised assessment. Each of these features is automated and
includes a level of personalisation and adaptation. A high-level of interaction and
engagement exists between the student and the system. Students assume control of

their learning experience.

Chapter 1

Introduction

1.1 Introduction

This work is based on the two expansive domains of university education and
Internet technologies. Specifically, our work deals with using Internet technologies to
teach Structured Query Language, a database programming language, to university
. students. Student-system interaction, feedback and guidance are important features of
our tutoring system, as is an individually tailored learning experience. Together they
will aid the system to promote procedural knowledge acquisition and skills training.

In this ’chapter we will provide a background to the work, beginning with an
overview of educational technology and continuing with a look at database systems.
Our motivation and key objectives of the work will then be outlined. The chapter will

conclude with a synopsis of the chapters that follow.

1.2 Background

1.2.1 Educational Technology

The field of teaching and learning has been developed, modified, studied and
evaluated throughout the ages to the present day. Various methods of teaching have
been suggested, and many theories have been put forward as to how students learn.
All of these methods and theories, however, have a common goal: to help people in
education to work to the best of their ability and to reach their greatest potential.

In modern times vast advances in the technological world have also been made.
The computer has become a feature in the daily lives of a large number of individuals
and organisations across the world. There can be little doubt that technology and
computation methods will continue to grow into the future.

Both education and technology are large, interesting fields which, despite immense
research being completed, will always lend themselves (o studies and improvements.

Education can be viewed as something that is both a basic right and a vital asset.

Technology and computing are often regarded as a powerful means of making tasks
easier for the individual. It is little surprise then that education and technology have
been fused together to form the area of educational technology. We are specifically
concerned with education through Internet technolégies.

The growth in this area, coupled with the boom in Internet usage, has led to an
increasing number of universities and training colleges using educational technology,
specifically computing and the Internet, to provide online courses to students. Some
offer online modules as part of a traditional lecture-based structure. Others allow
students to access entire courses online which are complemented with occasional

classroom-based tutorials.

1.2.2 Database Systems

A database is “a shared collection of logically related data, and a description of this
data, designed to meet the information needs of an organisation” [Connolly and Begg,
2002]. In essence it is a central repository of information that is necessary or relevant
to a person or persons. Databases are very important to organisations as they facilitate
the storage and retrieval of a wide array of information. ‘

A database management system (DBMS) is a software system that allows users to
define and create access to a database, and then control and maintain this access
[Connolly and Begg, 2002]. The user should therefore be able to define and
manipulate data. A database can be defined and created using a Data Definition
Language (DDL). This lets users specify data types and structures, and the constraints
that are applied to them. Data manipulation is done using a Data Manipulation
Language (DML). This means that users can insert, update, retrieve, and delete data
from the database. SQL is both a DDL and a DML.

1.2.3 Structured Query Language

Structured Query Language, or SQL, is a formal declarative database
programming language composed of about thirty English words such as select, from,
where, delete, insert, etc. It is non-procedural, meaning the user specifies the
information that is required as opposed to indicating how to get it. SQL is essentially
free-format. Developed in the late 1970s, it was originally an [BM concept but was
soon adapted by other vendors. In the present day there are hundreds of SQL-based

products on the market. SQL is the most common of database query languages, and is

the formal and de facto standard language for relational DBMSs [Connolly and Begg,

2002].
The aims of SQL are [Connolly and Begg, 2002]:

e To create a database and its relation structures

e To carry out basic data management jobs, including the insertion, modification,
and removal of data

e To perform queries, ranging from the simple to the cqmplex. This should be done
with minimal user effort, so the language’s syntax and command structure should
not be to difficult to learn

¢ To remain portable — it must adhere to a certain standard, so that the same syntax

and command structure can be used if DBMS is changed

1.2.4 Introduction to Databases CA218

The School of Computing in Dublin City University (DCU) offers a four-year
degree course in Computer Applications. For the most part this course is given in a
traditional lecture-based format.

Second year students take an Introduction to Databases module (CA218). This
module is both compulsory and examinable. It differs from most other modules in that
for the last number of years students used purpose-built online courseware to learn.
Human-presented tutorials and lab sessions are also scheduled as part of the module.
This combination results in a blended learning module, meaning both computer aided
learning and traditional classroom-based teaching are provided.

Courseware is comprised of lectures, tutorials and labs covering database topics
such as ER modelling, normalisation, database creation and querying, and so on.
Lectures are available in textual and audio format. Tutorials are made up of a series of
animations. Interactive labs are also present, one of which is an SQL execution
environment. The extension of this execution environment is the area our work is

most concerned with.

1.3 Motivation

Computer-Aided Learning systems are becoming acceptable ways of teaching
various topics to a range of students. Naturally, it is important that technical issues are
addressed during the development of such a system. What is sometimes forgotten,
however, is that pedagogical details must also be given adequate thought. With these
issues in mind, we want to develop an automated SQL tutoring system to be delivered
online. This system will attempt to mimic typical actions of a human tutor.

The delivery of feedback is very important; it is an integral part of the learning
process [Heaney and Daly, 2004]. A human tutor offers the student various forms of
feedback; an online tutor should do this also. This feedback should be relevant,
precise and understandable.

The level a student reaches when learning a skill is often proportional to the
student’s engagement with a teacher or the skill. Interaction between the student and
the online tutor is important, therefore. Ravenscroft et al. [Ravenscroft, Tait, and
Hughes, 1998] describe a system where the student can interact with the topic being
taught. In their system, the student interacts with knowledge (by annotating text, etc.)
to create tailored knowledge representations. This concept can also be applied to the
teaching of procedural knowledge. In our tutoring system, instead of interacting with
text, the student will interact with the system through the submission of answers and
the receipt of feedback. Thus, as with Ravenscroft et al.’s system, the student can
tailor knowledge representations.

The above issues can be applied to any online tutoring system. In the computing
domain, formal languages are particularly suitable for addressing these issues; we will
use SQL. SQL is vital for the definition, manipulation and retrieval of information
from a database system. Therefore, it is natural that it will be part of an introductory
database course, such as CA218. Indeed, by studying SQL the student will acquire a
conceptual understanding of database engineering by working within a data model’s
structures, operations and constraints [Pahl and Kenny, 2005].

We will focus on the fundamental SQL select statement. This statement can be
quite simple but also has the capacity to become considerably complex. Thus, the
teaching and leaming of the SQL select statement suits a large group of students with
a wide range of ability. CA218 students are such a group, and class numbers typically

exceed one hundred students. SQL will therefore suit those that can work with simple

or complex queries. Also, because of such (possibly unexpected) chance of
complexity, students can form misconceptions about the language early on, which
leads to difficulties with it at a later time.

A simple SQL execution environment currently exists as part of the CA218 online
courseware. This system allows the student to select a question from menu and then
submit his answer to the tutor. His result and the correct result are then displayed in
table format. The student must himself determine if his answer is correct or incorrect.
In cases, the student’s solution may accidentally produce the correct output even
though the actual query is incorrect. It would be helpful if the system could explicitly
mark the student’s query as being correct or incorrect. In addition, the current system
offers feedback only if the student makes an error with the query syntax. There is no
automated assistance available if the student makes a non-syntax error. We wish,
therefore, to produce an online system that will help students to learn SQL. We will
refer to this system as a tutor as it will offer features that a human tutor would offer.
In particular, it will provide feedback for the student that will be of a contextually
high quality. Furthermore, by automating the tutoring process students can
individually tailor their learning environment by defining feedback preferences and
choosing their own learning paths through the system’s curriculum. SQL is a suitable
topic to explore these issues, but they apply equally to other formal languages. In
summary, in such a learning system, execution and manipulation of feedback are
paramount [Kenny, McMullen, Melia and Pahl, 2005].

The design and implementation of our new system should benefit a range of
stakeholders:

e The learner will benefit from a system that corrects a submission and offers
feedback and guidance based on the results of this. He will be able to use the
system at times when a human tutor would not normally be available for
consultation.

e The instructor will benefit from the information he can access from student
records and web access logs. Through these he will be able to tell, for example,
the questions students are having most and least difficulty with.

e The instructional designer will benefit because the design of the system will

allow the system’s questions and solutions to be updated with relative ease.

e The software developer will benefit from an architecture that is created to be

modular and maintainable.

1.4 Objectives

Our project is guided by six objectives. Our primary objective is to extend the SQL
execution environment currently in use as part of the CA218 module. Specifically,
this means designing and implementing an automated tutoring system to teach the
SQL select statement. This system should include domain specific feedback and
personalised guidance features. Before beginning the first objective we need to fulfil
three others — our second, third and fourth objectives. The second objective is to
develop an architecture for an automated tutoring environment. This architecture
should be based on research into various online learning systems, thus allowing us to
use the positive aspects of standard architectures currently functioning. Following
this, as our third objective, we must develop techniques to analyse the SQL select
statement in order to ascertain difficulties a typical novice student might encounter
while creating these statements. These errors will be categorised according to a multi-
level error classification scheme that we will define. This will allow us to alert the
student to an error in a very specific manner, thus minimising confusion and leading
to a quicker and less frustrating learning experience. Our fourth objective aims to
determine adaptivity techniques for use in a knowledge-based feedback and guidance
system. These will be used to develop a system that lets content and navigation to be
adapted by feedback and guidance features. Following the design, implementation,
and testing of the system it will be made available for use as part of the CA218
module. Our fifth objective is to evaluate the system, which will begin after the mid-
semester SQL exam. This stage of the project involves evaluating the results,
behaviour, and opinion of this year’s CA218 students, along with assessing the system
based on the fulfilment of our objectives and general software engineering goals. Our
final objective consists of carrying out the all of the tasks outlined above in
accordance with educational principles and pedagogical considerations. This is to
ensure that the student has access to a complete and pedagogically sound learning

experience.

1.5 Qutline of Work

This chapter has outlined the background to and the core objectives of the project.

In chapter two we will discuss the wider context in which the project is situated by
reviewing the relevant literature encountered throughout this research time. This
chapter will include a review of online tutoring methods and traditional classroom-
based pedagogical theories.

The following chapter will describe related work and similar systems that are
currently available. We will comment on how these systems relate to our proposals.

[n chapter four we will elaborate on our set of objectives. We will also list a
number of requirements relating to the project.

Chapter five contains information regarding the actual design and implementation
of our project. Here will we describe the architecture of the system before moving
onto a detailed analysis of each of the system’s components. We will also define our
multi-level error classification scheme and detail the manner in which the student
interacts with the automated tutor.

The system will be evaluated in chapter six. This will be done by providing the
motivation of our evaluation, outlining our evaluation methods, and then presenting
and discussing our results.

Finally, this work will be concluded with a discussion of the entire project, along

with recommendations for future work.

Chapter 2

Literature Review

2.1 Introduction

Many studies on online tutoring have been made. A wide range of online learning
technologies and teaching methods exist, some of which have unique merits and
hence stand on their own, and some that cross-over. We will look at some of these
online learning technologies and teaching methods to determine if they can be of
benefit to our project.

Online learning systems are often developed without much thought being given to
pedagogical issues that apply either to an online or traditional environment. The
primary aim of any learning system is for people to learn. Learning technologies as
well as pedagogical theories need to be addressed.

In this chapter we will first look at Computer Aided Learning theories and
techniques. This will be followed by a description of Intelligent Tutoring Systems and
Human-Computer Interaction issues. Finally we will study traditional classroom-
based pedagogical theories that could be applied to an online domain.

This chapter deals primarily with theory. Implementations of Computer Aided

Learning systems and Intelligent Tutoring Systems will be outlined in chapter three.

2.2 Learning Technology Systems

The IEEE has drafted a learning technology systems architecture (LTSA) [IEEE
P1484.1/D9] that specifies a high level architecture for information technology-
supported learning, education, and training systems, such as computer assisted
instruction and intelligent tutoring. It describes the high-level system design and the
components of these systems. Being a standard, it is pedagogically, content, and
platform neutral. It claims to be neither prescriptive nor exclusive.

Its chief aims are to:

¢ Provide a framework for understanding existing and future systems

$8 *%6&
n %

M-)-353%-G 2N(

(Q
. $ &.
$ &. $
& $! &
$! & $ & $
& I %
. @ @
% A

able to create our own architecture directly from it, but we can take inspiration from
it,
Both CAL and Intelligent Tutoring Systems (ITS) are examples of learning

technologies. We will outline both in sections 2.3 and 2.4 respectively.

2.3 Computer Aided Learning (CAL)

Recent emerging learning theories, such as situated learning and cognitive
apprenticeship (discussed in section 2.6.2) have caused the design of instructional
systems to change from teaching to learning, and for learning environments to
become more facilitative. Such theories have also greatly influenced the design of
technology-based learning environments [Feng-Kwei and Bonk, 2001].

Computer Aided Learning refers to learning where the Internet is used as the main
tool. It excludes aspects that can be part of “distance learning” but are not electronic
(books, for example) [Hadjerrouit, 2004]. This area is undergoing rapid developments
in terms of pedagogy and technology [Pahl, 2003a], hence gaining impartance in both
education and industry.

Positive characteristics of computer-aided learning environments include
[Abdelraheem, 2003]:
¢ Enabling active engagement in construction of knowledge
o A powerful navigation system
o Self-paced student learning to suit the individual needs of each student

¢ Student autonomy is encouraged as he is effectively in charge of his own

learning.

Generic architecture of CAL systems

Pahl [Pahl, 2003a] characterises the evolution of teaching and learning
environments along four dimensions, each of which provides a different perspective
of such environments. They are:
o Content — the subject-oriented perspective
e Format — the organisational perspective

e Infrastructure — the technical perspective

» Pedagogy — the educational perspective

While originally used to describe the changes that can occur in online courses, the
same categories can be used to define the areas that need to be considered when
designing an online learning system. Attention needs to be given to each perspective
during the design and implementation of a CAL system. The last perspective
(pedggogy) is of notable interest. Currently, technologies, not pedagogical
considerations, are the driving force behind web-based learning [Hadjerrouit, 2004];
there is little understanding of the relevant learning issues. This problem needs to be
addressed when designing and developing a CAL system.

Figure 2.2 shows the components of a typical Web-based learning system. The
final system should lend itself to management, modification (including updates) and

reusability.

Technalogy
Internet. Web, progranming fanguages.
wobile, pérvasive devices

Organization Pedagogy
Teachors, students Objectivism
: Coustructivism

Corvicular issues '
Web-Based
L-earning

Fimmeipd issues Ntwated lestrning

Lewal cihivn) dssues Collaborative leaming

e

Fogineering Content

Nolbwire eogineering Subject matter

Web amd mulizmedia design Topics. subtopics
Flanman-compuier interaction Prereqguisite knowledgy

Culture
Vithues, traditions. narms

Figure 2.2. Components of a Web-based Learning System [Hadjerrouit, 2004|

2.3.1 Guided Discovery

Guided discovery refers to a form of navigation within a learning system. With this
the emphasis is placed on the student and his ability to seek information, rather than
the system overwhelming him with data. The student’s intelligence is thus both
exploited and supported. It is a move from teacher controlled learning to student
controlled learning. The control we refer to includes, but is not limited to, pace and
timing, choice of content, management of learning activitics, and responses to

exercises [Stephenson, 2001]. In particular, the student can customise the pace of

11

learning to his own ability. Students should have the option of autonomous learning
[Pahl, 2003a]; the student should have the opportunity to take control of his own
learning organisation and to self-navigate to any part of the course.

A mixed locus of control in a CAL environment has been advocated [Masthoff,
2002]. With this, both the student and the system can be the chief navigator
throughout the courseware. Only one of these can be in control at any single time.
This controlling decision is made based on the general interaction and the student’s

performance.

2.3.2 Personalisation and Adaptive Hypermedia

2.3.2.1 Personalisation

The trend in Computer Aided Learning environments has turned towards
personalisation in recent times. By this we mean a teaching and learning strategy that
is tailored to the personal needs of the learner. According to Dagger et al. [Dagger,
Wade, and Conlan, 2005], the goal of personalisation in e-learning is “to support e-
learning content, activities and collaboration, adapted to the specific needs and
influenced by specific preferences of the learner and built on sound pedagogic
strategies”. Ideally, the e-learning experience should be based on activity and, because
pedagogy is fundamental for the success of an online course [Dagger, Wade, and
Conlan, 2004], it needs to be created around sound teaching and learning principles. A
personalised method of instruction is characterised by [Liegle and Woo, 2000]:

e Pace controlled by the learner
o The ability to retake assessments until mastery is demonstrated
e Immediate feedback
o Small units of instructional' material
e The use of peer proctors to deliver feedback and testing
e Optional lectures.
Personalisation prevents content and navigation from being common to all users,

and allows the presentation of non-static learning material.

2.3.2.2 Adaptive Hypermedia

Adaptive hypermedia is a method of personalisation. Brusilovsky [Btrusilovsky,

2000] defines adaptive hypermedia systems as those that “build a model of the goals,

12

preferences and knowledge of each individual user, and use this model throughout the
interaction with the user, in order to adapt the hypertext to the needs of the user”.

Hypertext here refers to, for the most part, page content and hyperlinks. This process

is repeated as the user’s goals and preferences change. So, for instance, an adaptive

hypermedia system may customise a selection of examples and hints, and recommend
appropriate hyperlinks.

Adaptive teaching and learning can be provided at two main levels [Boyle, 1997].
The first is the selection of presentation of content. The second is navigational
guidance at the link level.

Adaptive navigation support (the second of the two named just previously) aims to
help users find relevant paths in hyperspace based on the user’s individual
characteristics. This can be done in the following ways [De Bra and Stash, 2004]:

e Direct guidance: The system visually indicates which of the links on the page is
the best link to follow. The system may also dynamically generate an additional
link (usually called “next”) which links to the “next best” page.

e Link sorting: The system utilises the user model to sort all links on a particular
page. The most relevant links appear at the top of the page whereas less relevant
links appear towards the bottom of the page.

o Link annotation: Links are augmented with comments to help the user to make an
informed decision himself. These annotations are usually provided in the form of
visual cues, such as icons, font colours, sizes and types.

o Link hiding, disabling, and removal: A user is prevented from following links
that are not relevant for him at a particular point in time. For non-contextual
links, this may be achieved through link hiding (for example, by changing a
hotword into a normal word), or by disabling the link so that there is no outcome
from clicking on a hotword. When a link is non-contextual it can simple be
removed.

Brusilovsky [Brusilovsky, 2000] suggests that adaptive presentation and adaptive

navigation support both form an adaptive hypermedia system.

2.3.3 Recommender Systems and Web Usage Mining

2.3.3.1 Recommender Systems

According to Patel [Patel, Russell, and Kinshuk, 1999] an e-learning task
recommender is “a recommendation system that would recommend a learning task to
a learner based on the tasks already done by the learner and their successes, and based
on tasks made by other ‘similar’ learners.” In short, it is a system that produces
individualised recommendations, or guides the user in a personalised manner to
objects that might interest him.

In a web-based learning environment, the course administrator could track the
activities occurring in the course website, find patterns and behaviours in these, and
use them to change, improve or adapt the contents of the course [Zaiane, 2001]. This
idea is normally used in the area of e-business, but in the last number of years the
theory is being applied to the area of education online. In this e-learning context, a
recommender system may also utilise information about other users. Thus, such a
system takes the added role of “a software agent that tries to ‘intelligently’
recommend actions to a learner based on the actions of previous learners” [Zaiane,
2002]. These previous learners would normally be deemed to be ‘successful’ learners.
Web usage mining (discussed in the following section) could be used to develop this
agent.

Knowledge-based recommendation systems [Manouselis and Sampson, 2004],
while slightly different, may also be of benefit to the learner. Such systerﬁs form a
representation of how a particular item matches a certain user need, and can connect

this need with an appropriate recommendation.

2.3.3.2 Web Usage Mining

Information about all pages accessed on our website is stored by the web server in
a web access log. Each entry is ordered chronologically. The log gives information

about:

o The [P address or domain name of the request
e The username (in some cases)

o The method of the request (Get or Post)

e The name of the requested file |

o The result of the request (success, error, and so on)

14

e The amount of data sent back
e The URL of the referring page

These logs typically need to be reformatted for them to be easily read by a human.
These cleansed logs can then be used for the purposes of web usage mining.

Web usage mining is a form a data mining that is suited to the web context. It is
defined as “the process of applying data mining techniques to the discovery of usage
patterns from web logs data, to identify users’ behaviour” [Batista and Silva, 2002]. (

Data mining (or knowledge discovery of data, as it is sometimes called) refers to
the process of extracting information or knowledge from a data set for the purposes of
decision making. The whole process of knowledge discovery generally consists of the
following steps [Chang, Healey, McHugh and Wang, 2001]: data cleansing, data
integration, data transformétion, data reduction, data mining, pattern evaluation, and
knowledge presentation.

The information gleaned from this can then be used to improve the effectiveness of
a website, by adaptiﬁg the relevant pages tvo suit the users’ behaviour.

Integrated web mining [Zaiane, 2002] uses any patterns found on-the-fly to

improve a system, by inputting them into an intelligent software system.

2.4 Intelligent Tutoring

2.4.1 Intelligent Tutoring Systems (ITSs)

An Intelligent Tutoring System (ITS) can be defined as a computer-based
instructional system with models of instructional content that specify what to teach,
along with teaching strategies that specify how to teach [Murray, 1999].

ITSs have been shown to be highly effective at increasing students’ performance
and motivation [Beck, 1996]. Further benefits, according to McArthur et al.
[McArthur, Lewis, and Bishay, 1993], include offering micro-tutoring (meaning they
can produce very detailed feedback for the user), their ability to merge into the
classroom environment, their adoption a popular method of teaching and learning, and
the tutor controlling the learning.

This last point, regarding tutor control, can be seen as both an advantage and

disadvantage. Dagger et al. [Dagger et al., 2004] explain that early ITSs “imposed a

15

strict learning path” on the user, thus limiting his control of his own learning
experience, which is not in keeping with constructivist theory. Further disadvantages
are that they have been developed for a relatively small amount of topic areas, so
learning outcomes can be limited, and that they have limited pedagogical expertise

[McArthur et al., 1993].

2.4.1.1 Architecture

A traditional ITS has four distinct components — an expert model, a student model,
an instructional, tutorial or pedagogical model, and an instructional environment or

user interface (Figure 2.3).

Expert model

The expert model, sometimes known as the domain model, contains knowledge of
the domain or subject area. This forms a basis for what needs to be communicated to
the student as well as the standard the student will be compared to. Knowledge is

normally represented as a set of facts or rules [Chou, 2002].

Student model

The student model holds information about the student {personal details, learning
style, learning preferences, etc.), along with a representation of the knowledge he
holds (which will have been or will be matched against that in the expert model).
[deally, this will be updated every time the student answers a question or solves a
problem that has been presented by the ITS.

Student modelling is sometimes done using an overlay model [Chou, Chan, and
Lin, 2002]. With this, the student’s knowledge is looked at as being a subset of thé

expert / domain knowledge.

Pedagogical model

The pedagogical model makes pedagogical decisions such as what needs to be
presented or stated at a particular time, when an intervention is needed, and so on. In
short, the pedagogical model has knowledge of teaching strategies to determine when
and in what manner to instruct the student. Hence, it needs to make decisions about

the topic, the problem, and feedback.

16

Interface
The interface acts as the means of communication between the student and the

ITS, receiving input and presenting information.

Student
modelling

Expert
domain
knowledge

Tutorial
management

l Interface handling I

Figure 2.3. Typical ITS Architecture |Boyle, 1997]

2.4.1.2 Pattern Matching

Pattern matching or pattern recognition is a method that can be used in ITSs or
intelligent teaching and learning environments. The Free Online Dictionary of
Computing [FOLDOC] defines pattern recognition as “a branch of artificial
intelligence concerned with classification or description of observations”. Such a
system can compute numeric or symbolic information from these observations and
then classify or describe them. Wikipedia [Wikipedia] defines pattern matching as
“the act of taking in raw data and taking an action based on the category of the data”.

Pattern matching can be used in ITSs and general CAL systems for a variety of
purposes. For instance, it can be used as a means of correcting work the student has
done. CAPIT’s [Mayo and Mitrovic, 2001] student modeller is a pattern matcher that
takes the student’s solution to a problem and determines which constraints are
violated. Pattern matching can also be used to ascertain a higher level of student
understanding. For example, the Tactical Action Officer (TAO) ITS [Stottler and
LCDR Vinkavich, 2000], developed for the U.S. Navy by SHALI, teaches tactical rules
of engagement to officers who direct the sensors and weapons aboard cruisers. This
system applies pattern-matching rules to detect sequences of actions that indicate

whether the student does or does not understand.

*%3%6%>

% - "
"3 &
" M 7@ . 622,N
M % 622CN% -

%
003% A -
- @ $6@ &% . M# %. 622>N(
@)
O F
O) %
st 22
+ #
&3+ I3E F,
™3 13 3, +
$GC C)!+)?#,- # BB
- $-T &M
) . *++>N /

$8 *%3&%

65

“building a model of the goals, preferences and knowledge of each individual student
and using this model throughout the interaction with the student in order to adapt to
the needs of that student”. A level of intelligence is included by acting as a human

tutor would in some cases, for example diagnosing the student’s misconceptions.

2.5 Human-Computer Interaction (HCI)

HCI involves the design, implementation and evaluation of interactive systems in
the context of the user’s task and work [Dix, Finlay, Abowd, and Beale 1998].
Systems used by humans, including the various systems described previously in this
chapter, should strive to meet a set of usability goals [Preece, Rogers, and Sharp,
2002]. These are:

e Effectiveness — how good the system is at doing what it was designed to do

o Efficiency — efficient when supporting the user as they perform various tasks

o Safety — protects the user from unsafe or undesirable situations, such as causing
an action accidentaliy

o Ultility — provide the right kind of functionality, allowing users to do what they
want or need to do

e Learnability — how quickly the use of the system can be learned. Preece et al.
[Preece et al., 2002] refer to the “ten-minute-rule” — the system fails if the novice
user cannot learn how to use it in ten minutes or less

e Memorability — once learned, is the system easy to remember how to use?

User experience goals can also be looked at. In short, these goals determine if the
system is satisfying, enjoyable, helpful, motivating, aesthetically pleasing, supportive

of creativity, rewarding and emotionally fulfilling.

Users’ memories can often become overloaded with detail about how to carry out
certain procedures. This should be avoided. Interfaces should be designed to be
intuitive and consistent. Exploration should be encouraged to some extent, but
sometimes interfaces need to contain the user slighily so that they are guided iowards

selecting the appropriate actions [Preece et al., 2002].

19

2.6 Pedagogy and Types of Learning

Learning, the fundamental aim of our system, is a broad term used to describe a
considerably complex domain. Indeed, the complexity of the subject area has resulted,
as Biggs [Biggs, 1999] commented, in its being an area of interest for psychologists
for the entire twentieth century. Put briefly, it can be defined as a change in one’s
conceptual understanding {Herrington, Oliver, and Stoney, 2000]. This however, is a
quite an abstract description of what happens in the learning process. Let us look at

the area in more detail.

Theory / design

Traditionally, learning was largely divided into two types — didactic teaching and
learning (for example, based in the classroom) and practical teaching and learning
(such as when a trade is being studied). These we can refer to knowledge and skills,
respectively. Let us be clear that while many similarities exist between the two there
is also a distinct difference between the elements involved, and thus different
educational approaches are required [Pahl, Barrett, and Kenny, 2004]. Knowledge
acquisition is much more of a passive act than skills training. A student would read,
assimilate, and probably memorise. There does not have to be interaction between the
student and the teacher. Skills training involves a level of interaction however. The
student learns mainly by practising a task. There is usually some amount of
interaction between the student and the teacher.

John Stephenson suggests that “experience is the foundation of, and the stimulus
for, learning”, and that learning itself is never a passive act. “Learning is primarily
developed through activity” [Stephenson, 2001]. The ultimate aim of our system is for
students to learn the SQL database programming language. This is a practical task,
therefore we focus on skills training as opposed to knowledge acquisition.

Throughout the ages, practical tasks have been learnt through apprenticeships. We

will look at apprenticeship theory in more detail later in this chapter.

2.6.1 Constructivism
Constructivism has emerged as one of the most important learning theories to date.
Specifically, it means that that a learner learns through the active construction of

knowledge [Herrington and Oliver, 2000]. Rather than acquiring knowledge through

20

transmission from some medium (such as instruction or teaching), knowledge is
constructed by the individual learner. This knowledge will normally be unique to each
person. Boyle [Boyle, 1997] suggests that the learner understands the world by
interacting with it to construct, test, and refine various cognitive representations of it.
The key emphasis is not on the synthesis of facts and detail, but on various processes
and skills needed to become an expert in the domain. Kunz [Kunz, 2004] elaborates
on this by stating that the basic elements of constructivist teaching and learning
environments are active construction of knowledge, teamed with social collaboration
and negotiation, along with meta-cognition and awareness of the thinking and
learning process itself, all in a contextually situated and authentic environment. As
such, interaction is deemed to be a major part of constructivism. [t allows learners to
obtain experience through active participation, as described by Pahl et al. [Pahl et al.,
2004]. The process of constructing, interpreting and modifying representations of the
world is continuous [Hedberg, 2002].

Very often, construction of knowledge is deemed to be deeper than instruction or
transmission of knowledge [Pahl et al., 2004]. Deep and surface approaches to
learning, explained by Biggs [Biggs, 1999], are outlined in more detail later in this
chapter. Surface learning means students remember a set of disjoint but have little
comprehension of the inner meaning or point of the topic. Deep learning on the other
hand is when the student has a true understanding of the topic; they see the “big

picture”.

Theory / design
Boyle [Boyle, 1997] outlines seven principles for constructivist design:
e Provide experience of the knowledge construction process
e Provide experience in and appreciation of multiple perspectives
e Embed learning in realistic and relevant contexts
e Encourage ownership and voice in the learning process
e Embed in the social experience
o Encourage the use of multiple models of representatinn
e Encourage self-awareness of the knowledge construction process
From this, we can summarise that constructivism is a multi-faceted learning theory

of some complexity that is based on experience and realism. It has been

21

acknowledged as being the most suitable theory for computer-based learning

environments [Abdelraheem, 2003].

2.6.2 Apprenticeships

Let us now look at the concept of apprenticeships in more detail. As outlined
previously, an apprenticeship is mostly concerned with procedural knowledge
acquisition and skills training. We will look at three types of apprent'iceship -

traditional apprenticeship, cognitive apprenticeship and virtual apprenticeship.

2.6.2.1 Traditional Apprenticeship

Traditional apprenticeship is a form of teaching and learning that has been used

successfully throughout the ages, primarily for practical tasks.

Theory / design .

Apprenticeship is, for the most part, a three-step process involving a master and an
apprentice, the former being the teacher and the latter the student. Initially the master
demonstrates the completion of the various stages of the task while the apprentice
observes. For example, this step is achieved in the CA218 module by a series of
animated tutorials. in time the apprentice works at the task while the master observes
and offers advice when he feels the apprentice needs it, or when the apprentice
requests aid. By doing this the apprentice can practise the various parts of the task in a
controlled and safe environment. Finally the apprentice will achieve competency in
the domain and can complete the task unaided. He is ready to assume responsibility
and work in a self-reliant and independent manner. The apprenticeship environment
allows learners to receive individual attention; this can enhance their learning

experience.

Traditional apprenticeship is a blend of modelling, scaffolding, fading and

coaching.

Modelling
Modelling is the demonstration and observation process outlined above. The
apprentice observes the master as he demonstrates the various portions of the task,

often explicitly showing the apprentice what to do.

22

Scaffolding

Often, when a structure is being built or repaired, meta!l scaffolding is placed
around it as a means of supporting the workers and the building. This is removed
when the structure is strong enough to stand by itself.

Scaffolding in the educational context is similar in ways to the scaffolding
described in the previous paragraph. The term was originally coined when used in the
area of language learning where it referred to effective interactions between a teacher
and a student [Winnips, 2001]. Since then it has gained popularity in many aspects of
education, and is now not limited to language learning. Consequently, there are many
definitions for what exactly scaffolding is. One definition describes it as “providing
learners with just enough assistance to help them construct their own answer to a
probiem” {Lajoie and Derry, 1993]. Another states it is the supports provided by the
teacher to help the student carry out a task [Collins, Brown, and Holum, 1991]. In
short, it is a temporary support while completing a task or activity. The key idea
behind scaffolding is to provide the learner with timely support at an appropriate
level. So, it should be granted when the learner needs it, and it should suit the
learner’s level of understanding and progress in the domain.

Collins et al [Collins, 1991] refer to scaffolding as being a set of limited hints and
feedback. It has been proposed [Greenfield, 1984] that scaffolding has five major
characteristics:

e [t provides support

e [t functions as a tool

e [t extends the range of the worker

» [t permits the accomplishment of tasks not otherwise possible
e [t is used selectively when needed

Scaffolding may also be strategies, guides or tools.

Various levels of scaffolding exist. At the highest level it might be the teacher
carrying out most of the task for the learner. At a low to moderate level it can be the
teacher giving occasional hints or prompting the learner on what to do next.

As well as this, scaffolds can be deemed to be either soft or hard [Brush and Saye,
2002]. Soft scaffolds are dynamic and situation specific, while hard scaffolds are
static and can be anticipated and planned in advance. Soft scaffolding is usually done

“on-the-fly” when support is needed. Hard scaffolding, on the other hand, is generally

23

based on typical student difficulties and can be embedded within multimedia or
hypermedia systems.

Ideally, scaffolding will be faded, meaning it will be removed gradually, thus
encouraging the learner to work in a self-regulated and self-reliant manner. The level
of scaffolding shoﬁld therefore move from high to low over time. Usually, the level of
support given by the teacher is decreased as the learner’s ability in the domain
increases. This will, ideally, improve the learner’s performance [Kelly and Tangney,
2002].

In conclusion, the purpose of scaffolding is to enable learners to complete tasks
that they would be unable to perform without this particular support. Scaffolding
should be subject to fading.

Feedback

The Oxford English dictionary [Soanes and Hawker, 2005] defines feedback as
“information given in response to a product, performance etc. used as a basis for
improvement”. It can also be described as information regarding the level of success
something has or is being done at [Sadler, 1989]. [t may also be the conveyance of
information about a completed action or something that has been achieved, thus
allowing the student to continue with the task in hand [Preece et al., 2002]. In the
educational context in question here, feedback is strategically useful advice given to a
student based on tasks he has previously attempted or completed. Its objectives are
self-reliant learning and competency in a domain. It may be synchronous or
asynchronous, that is it may be returned immediately or returned after a period of
time,

Sadler [Sadler, 1989] identifies three essential conditions for effective feedback:

e A knowledge of standards
e The necessity to compare these standards to one’s own work and
e Taking action to close the gap.

Feedback can be further defined as being local or global [Melis and Ullrich, 2003].
Local feedback aims to help correct the student’s attempt at solving a specific
problem. Global feedback uses several aspects of the whole learning process to coach
the student in a more general manner. Local and global feedback differs in terms of

content, realm, aim and point in time.

24

Local feedback alerts the learner to the correctness or incorrectness of his proposed
solution to a question, and may provide hints and suggestions specific to that solution.
Global feedback, however, can focus on the student’s learning process as a whole, and
thus provide guidance on topics and further questions that should be viewed to plan
for future learning (content and realm). Therefore, local feedback objectives are
concerned with one specific exercise whereas global feedback considers a range of
exercises (aims). Local feedback is relatively immediate; it can be provided after each
of the student’s attempts to answer a question. Global feedback is more suited to a
delayed delivery, such as when the learner has attempted a range of questions (point
in time).

[deally, the delivery of feedback should be delayed slightly i.e. the student should
type his answer and submit it for correction rather than receiving immediate feedback,
where the answer is corrected as the learner types. Immediate feedback may have
negative motivational consequences and prevent students from learning error-
detection skills [Corbett and Anderson, 2001]. This is reinforced by research
[Bangert-Drowns, Kulik, Kulik, and Morgan, 1991] indicating that the introduction of
a small delay between a learner’s response and the system’s feedback increases the
positive impact of error-correcting feedback. This research also found that feedback is
more effective when students make a genuine attempt at answering the question
before being able to look ahead at the correct answer. Also, feedback is more effective
when it includes details of the correct answer, rather than simply indicating if the
answer was correct or incorrect.

In conclusion, feedback is the response to a particular action, with a primary
function of correcting future iterations of the action or related actions. It is offered, for
example, when the learner responds incorrectly to a question. It helps to encourage
the student to attempt tasks and to feel satisfaction on solving these tasks [Daly,
1999]. The learner should use this feedback to re-evaluate the question and make

adjustments to his answer accordingly.

Coaching

Briefly, coaching is the process of overseeing the student’s learning [Collins et al.,
1991]. It involves formulating the course of work the apprentice should take, such as
choosing and ordering tasks the student should attempt, providing timely scaffolding

at the appropriate level and fading it accordingly, and evaluating the apprentice to

25

% 8]

. ' M
%. 6226N(
O =
O - /
O - %
M Rl 8 a4 L %
%’%%*
% - "
% M ", 1" % 6252N. "
K
N !
/
FJ%
. F 7T .
K L M %. 6226N. 0
) [M; . *++>N%
. ["
% 8 :
) S " F %
N M#E ...) . *++>N%
@ .
% - . (
O 7 "
O : 7 7 " '
o / 7 "l

2.6.2.3 Virtual Apprenticeship

The virtual apprenticeship model [Murray et al., 2003] applies cognitive
apprenticeship to the web context, and is therefore a suitable concept for web-based
learning. This model uses scaffolding and activity based learning to allow the student
to construct knowledge, practise skills and gain experience. The construction of
artefacts, a realistic setting, and the “possibility to produce and manipulate the ‘real

thing’” are vital for success in this model {Murray et ai., 2003].

2.6.3 Authentic / Situated learning

In an authentic learning environment, students are required to actively engage in
real-world problem solving that reflects both the context and complexity of the
practical situations in which the need for learning was created [Herrington and Oliver,
2000]. For example, it is widely viewed that learning a foreign language is easier by
immersion is the language and culture rather than learning from textbooks and
vocabulary lists. An authentic setting is regarded in many camps as being a central
success factor in knowledge and skills training [Pahl et al., 2004].

An authentic activity should reflect the natural complexity of real-world
environments [Murphy, 2003]. By its very nature, this setting lets the learner directly
manipulate course-relevant artefacts [Murray et al., 2003], and thus it reflects the way

the knowledge and skills being taught will eventually be used.

Theory / design
The following is a list of characteristics of authentic activities, based on a range of
activities described by a variety of researchers [Herrington, Oliver, and Reeves,
2003].
e “Authentic activities have real-world relevance”.
They are as similar as possible to the actual tasks a professional performs in the
real world.
e “Authentic activities are ill-defined, requiring students to define the tasks and
sub-tasks need to complete the activity”.
The activities can be interpreted in multiple ways, and so the learner first needs to

identify and define the tasks and subtasks he will attempt to complete.

27

“Authentic activities can be integrated and applied across different subject areas
and lead beyond domain-specific outcomes”.

Authentic activities encourage inter-disciplinary perspectives. Learners’
knowledge is robust rather than limited.

“Authentic activities are seamlessly integrated with assessment”.

Assessment that is removed from the task may seem artificial, and does not
reflect the nature of the real-world assessment.

“Authentic activities allow competing solutions and diversity of outcome™.
Activities lend themselves to multiple solutions, rather than a single correct

outcome based on the application of strict rules.

Situated learning is a slight variation authentic learning. Collins [Collins, 1988]

defines situated learning as “the notion of learning knowledge and skills in contexts

that reflect the way the knowledge will be useful in real life”. It is critical that the

learner performs tasks and activities in an environment that will imitate the multiple

ways in which their skills will be used in the future.

Theory / design

Oliver et al. [Oliver, Herrington, Herrington, and Sparrow, 1996] state that a

situated learning environment must include variants of the following features:

An authentic context for learning that reflects the way in which the knowledge
and skills will be used in the real world

Learning derived from authentic activities

Access to expert performance and process modelling

Coaching and scaffolding

Promote articulation to allow tacit knowledge to be made explicit

Integrated assessment

2.6.4 Levels of Teaching and Learning

Bloom [Bloom, 1956] and Biggs [Biggs, 1999] have both detailed elements of

successful teaching and learning skills.

Biggs describes a good teaching system as being one that is based on constructive

alignment. This method incorporates the twin principles of constructivism in learning

28

and teaching and assessment alignment in teaching. All aspects of the system should
then work together to support appropriate student learning. Part of this alignment
concept is that graded practices are integrated with the teaching and learning
activities, and should encourage students to take a deep learning approach rather than
enforce a surface one.

Biggs also describes how students relate to a teaching and learning environment in
a surface or deep manner. Surface learning is when students remember a list of
disjointed facts, but they understand little of the point that the author is trying to
make. Deep learning happens when the student understands and interprets the author’s
meaning as well as being aware of the accompanying details and facts. The student is,
in a sense, aware if the ‘big picture’. According to Biggs, the surface approach arises
“from an intention to get the task out of the way with minimum trouble, while
appearing to meet the requirements”, while the deep approach arises when the student

feels a need “to engage the task appropriately and meaningfully”.

Theory / design
Bloom’s Taxonomy categorises the level of abstraction of questions that would
occur in an educational setting. These categories are knowledge, comprehension,

application, analysis, synthesis and evaluation, and are outlined in Table 2.1

Knowledge
observation and recall of information

knowledge of major ideas

Comprehension
understanding information
interpret, compare and contrasts facts

translate knowledge into new meaning

Application
use information
use methods, concepts and theories in new situations

solve problems using required skills or knowledge

Analysis

seeing patterns

29

organisation of parts

identification of components

Synthesis
use old ideas to create new ones
generalise from given facts

predict and draw conclusions

Evaluation
compare and discriminate between ideas
make choices based on reasoned argument

recognise subjectivity

Table 2.1. Bloom’s Taxonomy

Bloom [Bloom, 1984] states that one-on-one human tutoring is a more effective
method teaching then traditional classroom-based instruction. Generally, the greater

that engagement of the student the higher to level achieved in the taxonomy.

2.7 Chapter Summary

In this chapter we have looked at various online learning techniques. We began by
looking at geheral computer aided learning, which is a multi-faceted area. We then
described Intelligent Tutoring Systems, followed by an overview of Human-Computer
Interaction issues. Finally, we discussed a number of pedagogical methods that are

used in a classroom-based environment, with a view to applying them to our online

tutoring system.

30

Chapter 3
Related Work

3.1 Introduction

Our project draws on ideas in the Intelligent Tutoring System and the Computer-
Aided Learning domains, specifically in the area of SQL tutoring. For this reason it is
important to be aware of similar systems.

In this chapter we will first look at the workings of two general ITSs. While both
systems aim to teach the user, their domains are very diverse. The first aims to teach
users a very practical skill. The second deals with teaching a university curriculum
subject. By studying both systems we can see the subject range over which an ITS can
spread. We will theﬁ move onto a non-intelligent SQL tutor to see how SQL can be
taught at its most basic level. Finally, we will describe and discuss a further three
SQL select statement tutors. The first of these is described as an interactive SQL tutor.
The second and third systems are modelled on an ITS architecture and so have ITS

properties. Our system will be related to these last three high-level tutors.

3.2 Intelligsent Tutoring Systems (ITSs)

Let us first look at two ITSs, the TAO ITS and Andes. Both systems are examples
of ITSs that deal with very different subject areas. The first deals with teaching a
slightly unusual and very practical based subject. The second shows how a
conventional school or university subject can be taught by a computer. By studying
these examples of ITSs we will learn about the range and ability of such a system

when used for different teaching purposes.

3.2.1 TAOITS
TAO ITS [Stottler and LCDR Vinkavich, 2000] is an intelligent training program

designed to train U.S. Navy ofticers in high-level tactical skills. Its main aim is to

31

increase the active training given to officers, thus improving their ability to apply the
tactical conceptual knowledge they possess.

There are three parts to the system. The first is a scenario generator, used by
instructors and programmers to create any amount of simulated scenarios. An element
within this (for example, an airplane) can be given its own characteristics and
behaviours, thus allowing it to react in a realistic manner. The second part if the
system is the actual ITS. This allows the user to practice various tactical concepts on
certain simulated scenarios. The user can choose the scenario, or the system can select
them based on tactical concepts the user has recently failed or has yet to practise,
determined using pattern matching. Feedback is given here through an evaluation
summary, which lists the situations in which the student has demonstrated
understanding of principles by applying them correctly. The final section of the
system is the instructor interface tool, with which the instructor can review the user’s
work.

Surveys show that users have had a favourable reaction to the TAO ITS.

3.2.2 Andes _

Andes [Gertner and VanLehn, 2000] is an ITS designed to teach introductory
physics at college. The key aims of the system are to:

e “Encourage the student to construct new knowledge by providing hints that
require them to derive most of the solution on their own,

o Facilitate transfer from the system by making the interface as much like a piece
of paper as possible,

» Give immediate feedback after each action to maximise the opportunities for
learning and minimize the amount of time spent going down wrong paths, and

o Give the student flexibility in the order in which actions are performed, and allow
then to skip steps when appropriate™.

The system uses coached problem solving. With this, the system takes a
background role as long as the student is proceeding along a correct solution. Should
the student begin to encounter difficulty the system provides hints.

Students may use the system to perform a qualitative analysis of a given problem
as well as calculating the quantitative solution. They may use a drawing tool draw, for

example, force vectors. They are then asked to define the complete object that they

32

have drawn. This allows the system to provide feedback on what the student has
drawn as well as on what they meant by the drawing. When the student writes a
formula they must also define elements of it in the same way, and for the same reason.
Andes uses Bayesian networks to store information about the user in the student
model. This allows uncertain information to be stored correctly about his beliefs,
goals, and the level of knowledge he has about the domain. For example, Andes
cannot presume that the student does not know how to perform a certain action just
because he has not attempted it.

The system returns feedback to the user about whether his action was correct or
incorrect, along with hints and help messages. Feedback is immediate, so when an
answer is correct its colour is changed to green, or changed to red when it is incorrect.
Hints are given when the student asks for help, and are generated based on the
student’s model. An English text string is created, based on the topic the student needs

help with, by using a hint template.

3.3 SOLcourse.com

SQLcourse [SQLcourse] is an introductory SQL course available on the Internet,
free to all to use. It aims to teach students the basics of SQL statements.

The system’s select statement tutorial is comprised of a number of pages with text
about various types of statements, along with code snippets and tables. At the bottom
of most of these pages is a section where the student can answer a set of questions
based on a pre-defined table. Answers, in the form of SQL select statements, are
typed into a text box, and are then submitted. Once submitted, a page is displayed
with the resulting table. From here the user may press the back button to try
submitting again or to continue with the tutorial.

The system is not intelligent and does not correct the submitted queries. However,
there are links to the correct answers (i.e. the correct query text), allowing the user to
check the accuracy of his attempt himself by comparing the code of each query. There
is no help given to the user if he makes a mistake, nor is there any degree of

personalisation.

33

3.4 SQLator

SQLator [Sadiq, Orlowska, Sadiq, and Lin, 2004] is described by its developers as
a “web-based interactive tool for learning SQL”, rather than an ITS. It is presented to
the user as an online learning workbench. With it, the user can create his own learning
space in a secure environment. The main features of the workbench include [Sadiq et.
al, 2004]:

e A short multimedia tutorial explaining basic concepts of SQL

e A collection of tables and accompanying practise queries

e The opportunity for the student to create and execute a query based on the
aforementioned tables

e An evaluation of said practise queries and student executions (this is deemed by
the authors to be the key function of the system, and will be described in more
detail later)

e Users may makes notes for each attempt

e Users may see individual and group status reports

e Users and staff may interact with each other using the tool.

As with our and similar systems, SQLator looks at the select statement rather than
any other type of SQL statement.

The main idea behind the tool is that user solves a set of questions that cover
various aspects of select statement theory. This will be the case with our system also.
These student solutions are corrected by an “intelligent engine™ [Sadiq et. al, 2004]. A
form of feedback is then provided. The authors note that a number of variations of a
select statement can all produce the correct answer. They state that their tool allows
for this and maintains consistency.

As mentioned previously, the key function of the system is to evaluate queries
submitted by the user. To do this, the system’s Equivalence Engine judges if the
student’s SQL solution correctly corresponds to the given English question. The query
is not actually executed by an actual database server at this stage — this is done
separately if the student wishes. The system alerts the user as to whether his solution
is correct or not, and a record of correct answers is stored. The user may also view the

system’s correct answer if he wishes. Delayed feedback is present in the form of

34

emails or posts by staff members when they wish. The authors say that in the future
they would like to provide a hint system. '

From the evaluation presented in [Sadiq et. al, 2004], this system seems to provide
benefit to a large class of novice SQL users. As this system is not available for

general use we could not evaluate it ourselves.

3.5 Acharya

Acharya [Bhagat, Bhagat, Kavalan, and Sasikumar, 2002] is a system that teaches
its users how to program in SQL. Used in a Database Management System course, it
aims to let users attempt questions posed by the system and receive “qualitative

feedback” on their submitted solutions.

3.5.1 Architecture and Workings of System

The authors describe Acharya as an Intelligent Tutoring System, and later it is
deemed to be a Web-based learning environment. The architecture is similar to both
of these. It is composed of an interface, a pedagogical module, a database containing
~ the set problems and solutions, a student module and student records.

The system’s interface is made up of three areas. The top area shows the schema of
the database the student will query, along with the question in text from. The middle
area allows the user to type in his answer. This section is divided up so that the user
types the select clause in one part, the from clause in another part, and so on for all six
SQL clauses (i.e. select, from, where, group by, having, order by). Finally, the bottom
section of the interface contains the result of the user’s query.

The student, having chosen a particular question to attempt, submits his proposed
solution via this interface. This is then corrected by comparing it to a predefined
expert solution. This comparison is further split into six parts, based on the six SQL
clauses. The comparison process is made up of three stages — pre-processing, atom
processing, and truth table processing. The student’s submission is not executed in the

database.

Pre-processing: Here, the query to be corrected is checked for certain keywords (such

R R TP b R 1

as “between”, “in”, “exist”). These keywords are replaced with equivalent words or

35

symbols. For example, a clause with ‘between’ will be reconstructed to include
appropriate greater-than-or-equal-to and less-than-or-equal-to signs. By doing this,
‘AND’ or ‘OR’ can be used to evaluate conditions, which will be needed later in the

comparison process.

Atom processing: At this stage, every individual condition in the where clause is

referred to as an atom. This is needed in the next stage for two main reasons:

1. To find negated conditions used by the student

For instance, if the expert solution contains a condition “age > 25” and the user’s
solution includes “age < 25” instead, the expert condition can be called | and the
user’s condition can be called not 1. This will be important in the next stage of the
comparison.

2. To identify some kinds of mistakes that might occur in a query.

For example, if the student types “age = 25 instead of the correct “age > 25”.

Truth table processing: The system uses truth tables to test if the expert solution and

the user’s solution are equivalent. The developers work under the assumption that if
two Boolean expressions with the same set of variables have the same truth table then
the Boolean expressions are equivalent. The ‘where’ clause of both the expert and
user solution is analysed as outlined above to form their Boolean expressions. The
truth table of these expressions is then generated. This is done, firstly, by counting the
number of variables present and then finding all combinations of 0 and /or 1 for the
set of variables. The system then looks at the output of the Boolean expression for
every combination calculated. Then, to evaluate if two expressions are equivalent, the

relevant truth tables are constructed and compared the same as outlined above.

It is unclear what types of structures are required to answer the questions posed by
this system. For example, we cannot tell, from the literature available, if the student

needs to use nesting structures, union structures, etc. in his answers.

3.5.2 Adaptivity / Personalisation
Adaptivity in the Acharya system is achieved in two main ways. Firstly, the
student module contains general information about the student, along with his

knowledge level of all concepts and the number of hints he has been given. It also

36

stores the certainty factor of concepts he has learned; that is, how much the system
thinks the student has learned about the concept. The course material is broken into a
set of units, each of which corresponds to a particular SQL concept. A unit may or
may not have pre-requisites. The system recommends units or concepts that the
student should study based on the pedagogical module and information in the student
module. The student is also free to follow his own path through the system if he
wishes.

Secondly, the pedagogical module decides what feedback actions are to be taken if

the student answers a question incorrectly (discussed in the next subsection).

3.5.3 Learner Support / Scaffolding

As previously stated, students enter their query in a maximum of six parts based on
the six select statement clauses. This, it is said, is to limit the cognitive load on the
student, so that he can concentrate on the “higher-level query formulation issues”
rather than on certain syntax issues.

Feedback is displayed if the student submits an incorrect answer. Specifically, this
feedback is text indicating where an error was made and a link to appropriate course
material is displayed. If the answer submitted is correct the result set formed by the
query is displayed. Should the student make a number of mistakes in one question, the
system chooses the most basic one and displays hints for this only.

The overall learning-by-doing method follows a constructivist path. The system is
not stand alone in that, unlike with SQLcourse, its primary emphasis is on SQL
practice alone rather than on SQL theory and content. However, a set of tutorials has

been designed for instances when the student gets a question wrong and may need to

see some theory.

3.5.4 Human-Computer Interaction / Learner Control

Acharya recommends questions for the student to attempt, but he can choose to
ignore this recommendation and pick the next question by himself. It is thus a
variation of a recommender system, as it suggests questions based on the tasks

previously completed by the student.

As with SQLator, Acharya deals with select statements only. In the future, the

developers hope to enhance the student module so that it will contain a representation

37

of the student’s reasoning process, although we are not told exactly how this will be
used to improve the system. The current system selects from a set of pre-written
stored questions. The developers state that, in the future, they would like to
automatically generate problems for the user to attempt. They point out, however, that
some issues lie with this. For example, Acharya aims to give students problems of an
appropriate complexity. With automatic question generation, the complexity of the
question will have to be correctly set. They hope to develop an automatic question
generation module that will set and correct questions according to a various templates.
These templates will be predefined to suit the various select statement topics within
the system. |

Java servlets form the bulk of the system. Acharya is not available for open use on

the Internet.

3.6 SOL-Tutor

SQLTutor [Mitrovic, 1997] [Mitrovic and Martin, 2000] is a learning-by-doing
Intelligent Tutoring System developed in the second part of the 1990s by Antonija
Mitrovic and her team in New Zealand. It aims to provide an environment for upper-
level undergraduate students to practise and receive feedback on the SQL select
statement. It is meant to be used as a complement for classroom-based teaching and
learning, as opposed to acting as a replacement for it. For this reason, the developers
work under the assumption that users have already been exposed, probably through
lectures, to the theory behind database management systems. This assumption will
also apply to our system.

SQL-Tutor is not available for general use on the Internet.

3.6.1 Architecture

The underlying principle behind SQL-Tutor is Constraint-Based Modelling, a
method used to describe what the student does not know, rather than what the student
does know. Originally proposed by Ohlsson [Ohlsson, 1992], Constraint-Based
Modelling uses abstraction to “overcome the overspecificity problem” [Mitrovic and
Ohlsson, 1999]. Knowledge about a domain is represented by constraints on correct

solutions in that domain. Basically, each constraint represents a set of incorrect

38

solutions. Every constraint is made up of two main units: the relevance condition and
the satisfaction condition. Mitrovic and Ohlsson explain that the relevance condition
identifies the class of problem states for which the constraint is relevant, while the
satisfaction state identifies the class in which the constraint is satisfied. Checking if a
problem violates a constraint is then a two part process. First, the problem is checked
against the relevance condition of the constraint. Then, all constraints that are deemed
to be relevant are checked to see if the satisfaction constraint is met. If a relevant
constraint is not satisfied, then that constraint has been violated.

A simple constraint, specifying that the select clause cannot be empty, is as follows

[Mitrovic, 1997]:

(p 2

“The SELECT clause is a mandatory one.

Specify the attributes/expressions to retrieve from the database.”
t

(not (null (clot-value ss ‘select)))

“SELECT”)

Constraint-based modeling is moved to an intelligent tutoring environment by
creating a set of constraints for the educational domain and telling the student about
any constraint violations that he may make while he progresses through a tutorial. If
enough time is spent in making the constraints “psychologically appropriate” (such as
creating useful feedback messages) then they should correct the student’s answers as
an expert in the domain would. Ohlsson [Ohlsson, 1992] explains that constraints can
be designed so that they are triggered only when there is some pedagogically useful
information about the student; if a particular type of information is not useful then the
constraint can be written so as that information is always ignored by the relevance
condition. According to Mitrovic and Ohlsson [Mitrovic and Ohlsson, 1999] a useful
set of constraints does not necessarily have to be a complete set. Feedback on
common errors can prove to be valuable, even if uncommon errors are missed.
However, writing any set of constraints can be time-consuming [Martin, 2003] in
terms of designing psychologically suitable messages, and choosing and coding a
constraint to cover every possible error type.

The architecture of a constraint-based ITS differs slightly from the architecture of

a typical intelligent tutoring system in that the student module is replaced with a

39

pattern matcher. A stored set of constraints acts as an input into this, and into the
pedagogical module.

The architecture of the SQL-Tutor [Mitrovic, 1997] is a variation of this
constraint-based ITS. It is composed of stored student models, constraints, the
system’s problems and solutions, and the accompanying databases. Along with this,
there is a constraint-based modeller, a pedagogical module, and an interface.

The system uses a store of ideal solutions as there is no domain module present,
and so the system cannot solve problems by itself. The developers’ reason for this is
that select statements are written in natural language, so using a predefined set of
solutions will be easier to design and easier for the system to use. This will also apply
to our system. SQL-Tutor is not connected to an actual DBMS, which removes some
element of realism.

The system’s interface is similar in many ways to that of Acharya (section 3.5),
although it seems this system was developed before Acharya was. The text of the
question is displayed in the upper part of the interface. The middle section of the
interface window has space for the user to type in his query. This is divided according
to the six SQL clauses — select, from, where, group by, having and order by. The user
types each clause into the appropriate section.

Constraints are used here, coded in Lisp, to compare the user’s solution to the
stored ideal solution. The constraints used are divided into two categories; those that
deal with syntax, as there is no connection to an actual DBMS, and those that deal
with semantic issues. The constraints for this particular system were designed based
on the domain knowiedge and by analysing differences between possible correct and
incorrect sdlutions. A constraint class has been defined in the first version [Mitrovic,
1997] of the system, and has persisted in more recent versions. It is composed of:

» The unique identification number of the constraint

e The relevance and satisfaction patterns mentioned previously

e A description of the constraint

e An error message that will be displayed to the user (hint) should the user violate
the constraint in question

e The SQL clause the constraint refers to which is used as feedback (error-

flagging).

40

The patterns described in point two can be a combination of Lisp functions and
conditions that match the user’s solution to the ideal solution. Examples of actual
constraints are given in [Mitrovic, 1997].

A PhD thesis by Brent Martin [Martin, 2003] describes extensions to the SQL-
Tutor. Constraints are used in the same way as before. Martin explains that some
constraints (e.g. HAVING constraints) are practically identical to others (e.g.
WHERE constraints). An extra category of constraint, the tidying constraint, has been
added to the already present syntactic and semantic constraints. [t’s used to
discourage undesirable properties in the user’s solution. In Martin’s version of the
system, tidying constraints are used for over-qualification only, to avoid superfluous
elements.

Martin also deals with the issues of improving the partial solution feature and with
automatically generating problems. In the original version of SQL-Tutor partial
solutions displayed are fragments of the ideal solution based on one of the clauses in
which an error has occurred. While this fragment is correct when applied to the
overall ideal solution, it may not be correct in the context of the student’s proposed
solution. Therefore, displaying a pre-written fragment of SQL may be of no help to
the user. Indeed, it may serve to confuse the user even more. To overcome this,
Martin develops a constraint representation that makes information about that
constraint more accessible so that it can be satisfied by a partial solution generated by
an algorithm. Specifically, this information is about how to generate a valid partial
solution from a group of inputs that are relevant to the constraint in question. The
algorithm needed reverses the logic of the constraint evaluator. So, when given a
satisfaction condition it generates a partial solution that satisfies the constraint with
respect to both the ideal solution and the student’s solution. While this is a good idea,
its implementation would also be very time-consuming.

Martin’s extended SQL-Tutor also attempts to generate problems automatically.
He works under the key assumption that a SQL statement can be produced from a
suitable starting point. An individual constraint is chosen, relevant to a student’s
information in the student model, and an algorithm is applied to it. This algorithm
produces the ideal solution of a problem involving the particular constraint. This same
algorithm can be applied to the full constraint set, hence producing problems that

cover the entire domain.

41

3.6.2 Adaptivity / Personalisation

The student model contains personal information about the student (name and
stereotype), a history of the problems that the student has solved, and an idea of what
the student ‘knows’, that is a measure of how often a relevant constraint was
successfully used by the student. These are updated using a simple increment
function.

The pedagogical model is an important part of the overall architecture and
adaptivity of the system as it selects problems to be given to the student and generates
actions based on the student’s answers. Through this, it aims to provide individualised
instruction. Problems are selected based on the contents of the student model, by
choosing the constraints it appears the student is having problems with. This is
determined by selecting the constraint that has been used the most and has been
violated the most (i.e. maximum (used — correct)). Alternatively, a constraint that has
not been used at all may be selected. The student may choose his own problem to

attempt.

3.6.3 Learner Support / Scaffolding

Using the interface students enter their query in six parts, based on the six SQL
clauses. The developers explain that this is to minimise the cognitive load on the
student; students do not need to remember keywords or the correct ordering of
clauses. The lower part of the interface contains a visualization of the database
schema the student is working with. Primary keys are underlined. The student can ask
for a description of any select statement element, for example functions, expressions
and predicates. The same issues regarding fading of scaffolding that apply to Acharya
also apply to this one.

The pedagogical model also deals with feedback to be returned to the student.
There are five levels of feedback [Mitrovic, 1997]:
1. Positive or negative feedback — tells the student if his proposed solution is correct
or incorrect
2. Error-flag — indicates in which clause an error has occurred. If an error occurs in
more than one clause only one will be selected for display. This is selected based on
maximum (used — correct).
3. Hint — this is taken directly from the constraint that has been violated. Again, only

one constraint is selected if more than one has been violated.

42

