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SUBEXPONENTIAL SOLUTIONS OF SCALAR LINEAR
INTEGRO– DIFFERENTIAL EQUATIONS WITH DELAY

J. A. D. APPLEBY ∗, I. GYŐRI† AND D. W. REYNOLDS ‡

Abstract. This paper considers the asymptotic behaviour of solutions of the scalar
linear convolution integro-differential equation with delay

x′(t) = −
n∑

i=1

aix(t− τi) +
∫ t

0

k(t− s)x(s) ds, t > 0,

x(t) = φ(t), −τ ≤ t ≤ 0,

where τ = max1≤i≤n τi. In this problem, k is a non-negative function in L1(0,∞)∩C[0,∞),
τi ≥ 0, ai > 0 and φ is a continuous function on [−τ, 0]. The kernel k is subexponential
in the sense that limt→∞ k(t)α(t)−1 > 0 where α is a positive subexponential function. A
consequence of this is that k(t)eεt →∞ as t →∞ for every ε > 0.
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1. Introduction and Results. This paper examines the asymptotic
behaviour of solutions of the scalar linear integrodifferential equation with
delay

x′(t) = −
n∑

i=1

aix(t− τi) +
∫ t

0
k(t− s)x(s) ds, t > 0,(1)
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subject to the initial condition

x(t) = φ(t), −τ ≤ t ≤ 0.(2)

The following hypotheses are postulated.
(H1) τi ≥ 0, ai ≥ 0,

∑n
i=1 ai > 0 and τ = max1≤i≤n τi.

(H2) The characteristic equation

p =
n∑

i=1

aie
τip,

has a real root.
(H3) The kernel k is a non-trivial function in L1(0,∞)∩C[0,∞) with k(t) ≥ 0

for all t ≥ 0.
(H4)

∫∞
0 k(s) ds <

∑n
i=1 ai.

(H5) limt→∞ k(t)/α(t) > 0 for some positive subexponential function α.
(H6) The initial function φ is in C[−τ, 0].

The significance of (H2), and sufficient conditions for it to hold, are
discussed in Section 2. The definition of positive subexponential functions
and some of their important properties are also reviewed there. The main
result of this paper is the following theorem.

Theorem 1. Suppose that (H1)–(H6) hold. Then the solution of (1)
and (2) satisfies

lim
t→∞

x(t)

k(t)
=

φ(0)−∑n
i=1 ai

∫ 0
−τi

φ(s) ds

(
∑n

i=1 ai −
∫∞
0 k(s) ds)2 ,(3)

lim
t→∞

x′(t)

k(t)
= 0.(4)

The decay rate given in (3) can also be written as

lim
t→∞

x(t)

k(t)
=

∫∞
0 x(s) ds∑n

i=1 ai −
∫∞
0 k(s) ds

,

It is shown in [1, 2] that the decay rate of two classes of stochastic Volterra in-
tegrodifferential equations with subexponential kernels, can also be expressed
in this form.

In order to prove Theorem 1 we introduce the resolvent for (1), which is
the solution of the equation

r′(t) = −
n∑

i=1

air(t− τi) +
∫ t

0
k(t− s)r(s) ds, t > 0,(5)
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which satisfies the initial condition

r(t) =

{
1, t = 0,
0, −τ ≤ t < 0.

(6)

The significance of r is that the solution of (1) which obeys (2) is given by
the variation of parameters formula

x(t) = φ(0)r(t) +
∫ t

0
r(t− s)φ̃(s) ds, t ≥ 0,(7)

where

φ̃(t) = −
n∑

i=1

aiφ(t− τi)χ[0,τi](t), t ≥ 0,(8)

and χJ denotes the indicator function of a set J . The asymptotic behaviour
of the resolvent is described in the next theorem.

Theorem 2. Suppose that (H1)–(H4) hold. Then the resolvent r, defined
by (5) and (6), is in L1(0,∞), r(t) > 0 for all t ≥ 0 and r(t) → 0 as t →∞.
If, in addition, (H5) holds,

lim
t→∞

r(t)

k(t)
=

( n∑
i=1

ai −
∫ ∞

0
k(s) ds

)−2

, lim
t→∞

r′(t)

k(t)
= 0.(9)

Moreover

lim
t→∞

∫ t
0 r(t− s)r(s) ds

r(t)
= 2

∫ ∞

0
r(s) ds.(10)

Theorems 1 and 2 are generalisations of [3, Theorem 6.2], which concerns
linear scalar convolution integro-differential equations with subexponential
kernels but without delays. Theorem 2 has the following converse, which is
an extension of [3, Theorem 6.4].

Theorem 3. Suppose that (H1)–(H4) hold, and that k(t) > 0 for all
t ≥ 0. If the resolvent r satisfies (9), then k is a positive subexponential
function and (10) is true.

2. Mathematical Preliminaries. The convolution of two appropriate
functions f and g defined on [0,∞) is denoted, as usual, by

(f ∗ g)(t) =
∫ t

0
f(t− s)g(s) ds, t ≥ 0.
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We recall a definition from [3], based on the hypotheses of Theorem 3 of
[5].

Definition 1. A positive subexponential function is a continuous in-
tegrable function α : [0,∞) → (0,∞) satisfying

lim
t→∞

(α ∗ α)(t)

α(t)
= 2

∫ ∞

0
α(s) ds,(11)

lim
t→∞

sup
0≤s≤A

∣∣∣∣α(t− s)

α(t)
− 1

∣∣∣∣ = 0, for all A > 0.(12)

It is noted in [3] that the class of positive subexponential functions in-
cludes all positive, continuous, integrable functions which are regularly vary-
ing at infinity. It is known that (12) implies for every ε > 0 that

α(t)eεt →∞ as t →∞,(13)

(cf., e.g., [4, Lemma 2.2]), and hence by (H5) that k(t)eεt →∞ as t →∞ for
every ε > 0.

If α is a positive subexponential function and f is a function on (0,∞)
such that limt→∞ f(t)/α(t) exists, we define

Lαf = lim
t→∞

f(t)

α(t)
.

An important result is the following lemma. It is essentially Theorem 4.1 of
[3]. Perusal of the proof of this theorem shows that the hypotheses that f/α
and g/α be bounded continuous functions on [0,∞) are redundant, and are
therefore omitted here.

Lemma 1. Suppose that α is a positive subexponential function. Let f
and g be integrable functions on (0,∞) for which Lαf and Lαg both exist.
Then Lα(f ∗ g) exists and is given by

Lα(f ∗ g) = Lαf
∫ ∞

0
g(s) ds + Lαg

∫ ∞

0
f(s) ds.(14)

Next we introduce the resolvent z associated with the purely point delay
part of (1). It satisfies the equation

z′(t) = −
n∑

i=1

aiz(t− τi), t > 0,(15)
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and the initial condition

z(t) =

{
1, t = 0,
0, −τ ≤ t < 0.

(16)

We collect in a lemma some salient properties of z.
Lemma 2. Suppose that (H1) and (H2) hold. Then z(t) > 0 for t ≥ 0

and ∫ ∞

0
z(t) dt =

1∑n
i=1 ai

,(17)

z(t) → 0 exponentially as t →∞.(18)

Thus if α is a subexponential function

Lαz = 0.(19)

The positivity of z and (17) are part of Proposition 2.1 of [7]; (18) follows
from the same proposition and Lemma 6.5.3 of [8]; (19) is a consequence of
(13) and (18).

It is shown in [9] that a necessary condition for (H2) to be true is∑n
i=1 aiτi ≤ e−1, and that τ

∑n
i=1 ai ≤ e−1 is a sufficient condition. In the case

of a single delay with n = 1, a1 = a > 0, τ1 = τ , a necessary and sufficient
condition for (H2) to hold is aτ ≤ e−1.

The following yields a representation of the solution of

y′(t) = −
n∑

i=1

aiy(t− τi) + f(t), t > 0,(20)

y(t) =

{
1, t = 0,
0, −τ ≤ t < 0.

(21)

Lemma 3. Let f be in C[0,∞). Then the solution of (20) and (21) can
be represented as y(t) = z(t) + (z ∗ f)(t), t ≥ 0.

3. Proofs. Proof. (Theorem 2) The resolvent r of (1) satisfies (5) and
(6). It is a consequence of Lemma 3 that r satisfies

r = z + z ∗ (k ∗ r) = z + h ∗ r,(22)

where h = z∗k. Due to (H3) and Lemma 2, h(t) ≥ 0 for all t ≥ 0. A standard
argument shows that r(t) > 0 for all t ≥ 0. By taking the convolution of
each term in (22) with k, we see that

ρ = h + h ∗ ρ,
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where ρ = k ∗ r. Since by (17) and (H4),∫ ∞

0
h(s) ds =

∫ ∞

0
z(s) ds

∫ ∞

0
k(s) ds =

1∑n
i=1 ai

∫ ∞

0
k(s) ds < 1,

it can be deduced from a theorem of Paley and Wiener (cf., e.g, [6, Theo-
rem 2.4.1]) that ρ is in L1(0,∞). It is then an immediate consequence of
Lemma 2 and

r = z + ρ ∗ z,

that r is in L1(0,∞). It then follows from this equation that r(t) → 0 as
t →∞, since z is a bounded continuous function obeying (18).

Integration of (5) gives

−1 = −
n∑

i=1

ai

∫ ∞

0
r(t− τi) dt +

∫ ∞

0
r(s) ds

∫ ∞

0
k(s) ds,

which the aid of (6) leads to∫ ∞

0
r(s) ds =

1∑n
i=1 ai −

∫∞
0 k(s) ds

.

Also we can deduce from Lemma 1, (17) and (19) that

Lαh = Lα(z ∗ k) = Lαz
∫ ∞

0
k(s) ds + Lαk

∫ ∞

0
z(s) ds =

Lαk∑n
i=1 ai

.

Suppose now that Lαr exists. Then we can infer from Lemma 1, (19),
(22) and the above formulae that

Lαr = Lαz + Lαh
∫ ∞

0
r(s) ds + Lαr

∫ ∞

0
h(s) ds

=
Lαk∑n

i=1 ai(
∑n

i=1 ai −
∫∞
0 k(s) ds)

+ Lαr
1∑n

i=1 ai

∫ ∞

0
k(s) ds.

Rearranging yields the first formula in (9). To obtain the second, note that
(12) implies Lαr(· − τi) = Lαr, so then, by applying Lα to (5) and using
Lemma 1, we get that

Lαr′ = −Lαr
( n∑

i=1

ai −
∫ ∞

0
k(s) ds

)
+ Lαk

∫ ∞

0
r(s) ds = 0.

We note that by Lemma 1

Lα(r ∗ r) = 2Lαr
∫ ∞

0
r(s) ds,
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which immediately implies (10).
To complete the proof, it only remains to show that Lαr exists. For the

sake of brevity a proof is indicated here under the additional (and unneces-
sary) assumption that k(t) > 0 for all t ≥ 0. It follows then that h(t) > 0
for all t > 0. Then by Lemma 4.3 of [3], h is a subexponential function. By
applying Theorem 5.2 of [3] to (22), we conclude that Lhr exists and hence
Lαr.

Proof. (Theorem 1) First, we observe from (8) that Lαφ̃ = 0 and

∫ ∞

0
φ̃(t) dt = −

n∑
i=1

ai

∫ 0

−τi

φ(s) ds.

Then, by applying Lα to (7) and using Lemma 1, we obtain

Lαx = φ(0)Lαr + Lαr
∫ ∞

0
φ̃(s) ds + Lαφ̃

∫ ∞

0
r(s) ds.

Therefore we can conclude that

Lαx = Lαk
φ(0)−∑n

i=1 ai

∫ 0
−τi

φ(s) ds

(
∑n

i=1 ai −
∫∞
0 k(s) ds)2 ,

and hence that (3) holds.
It also follows easily from (7) that

∫ ∞

0
x(t) dt =

φ(0)−∑n
i=1 ai

∫ 0
−τi

φ(s) ds∑n
i=1 ai −

∫∞
0 k(s) ds

.

By applying Lemma 1 to (1), we then see that

Lαx′ = −
n∑

i=1

aiLαx(· − τi) + Lαx
∫ ∞

0
k(s) ds + Lαk

∫ ∞

0
x(s) ds

=
(∫ ∞

0
k(s) ds−

n∑
i=1

ai

)
Lαx + Lαk

∫ ∞

0
x(s) ds

= −Lαk
φ(0)−∑n

i=1 ai

∫ 0
−τi

φ(s) ds∑n
i=1 ai −

∫∞
0 k(s) ds

+ Lαk
∫ ∞

0
x(s) ds = 0.

Therefore (4) is true.
Proof. (Theorem 3) For convenience we introduce

η =
n∑

i=1

ai −
∫ ∞

0
k(s) ds.
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Dividing (5) by k(t), we see that

r′(t)

k(t)
= −

n∑
i=1

ai
r(t− τi)

k(t)
+

(k ∗ r)(t)

k(t)
.

By letting t →∞ and using (9),

lim
t→∞

(k ∗ r)(t)

k(t)
=

1

η2

n∑
i=1

ai.

Hence (k ∗ r)(t)/r(t) → ∑n
i=1 ai as t → ∞. Since r and k are positive and

limt→∞ k(t)/r(t) > 0, Lemma 3.8 of [3] applies. We can conclude from it
that k satisfies (12) and

lim
t→∞

(k ∗ k)(t)

k(t)
=

n∑
i=1

ai +
∫ ∞

0
k(s) ds− η2

∫ ∞

0
r(s) ds = 2

∫ ∞

0
k(s) ds.

Thus k satisfies (11), finishing the proof.
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[7] I. Győri, Interaction between oscillations and global asymptotic stabilty in delay
differential equations, Differential Integral Equations, 3(1990), 181–200.

[8] J. K. Hale and S. M. Verduyn Lunel, Introduction to functional differential equations,
Applied Mathematical Sciences, Springer-Verlag, 1993.

[9] G. Ladas and I. P. Stavroulakis, Oscillations caused by several retarded and advanced
arguments, J. Differential Equations, 44(1982), 134–152.


