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Abstract

Vibration training is a novel strength training method that has gained popularity in 
the last five years. However, current findings on vibration training are contradictory 
about whether vibration training is an effective training method for strength and 
power development. A critical review o f  the relevant literature reveals that vibration 
training effect m ay be dependent on a number o f  factors, in particular vibration 
characteristics (vibration amplitude and frequency) and exercise protocol (type o f  
exercise and exercise intensity). However, there is a lack o f  study o f  many o f  these 
factors. The aim o f this study is to investigate the influence o f  these factors on the 
acute effect o f  vibration training on neuromuscular performance.

Methods: A portable muscle-tendon vibrator with variable vibration amplitude (0.2 
to 2 mm) and frequency (30 to 200 Hz) capacity was developed in the thesis. The 
vibration is produced by a number o f  rotating eccentric masses. The vibrator is 
strapped to the muscle tendon during the strength training exercise. Neuromuscular 
performance was assessed during strength training exercise by examining EM G and 
various mechanical outputs. The mechanical outputs included: angular velocity, 
moment and power assessed in terms o f peak, average, rate o f  development and 
initial (first 100 ms) measures.

Findings:

Study 1: The vibration amplitude on the vibrator and the muscle was affected by the 
eccentric mass, with a large eccentric mass (ems-II) producing significantly greater 
amplitude (1.2 mm) than the small eccentric mass (0.5 mm) (ems-I) (p<0.05). The 
vibration frequency on the vibrator and the muscle was not effected by the eccentric 
mass size (p>0.05). The transmissibility o f  vibration amplitude from the vibrator to 
the muscle was significantly higher with ems-I (p<0.05). The transm issibility o f  
vibration peak frequency to the muscle was not affected by the eccentric mass 
(p>0.05), and was 100%. Vibration induced a significant increase in EMGrms o f the 
biceps in sub-maximal isometric elbow flexion (p<0.05), with ems-II producing 
greater increase than ems-I (0.053 vs. 0.026 mV, p<0.05). All o f  the above results for 
amplitude, frequency, transmissibility and EM G response were not significantly 
effected by test day, joint angle or strapping force (p>0.05), indicating the 
repeatability o f  the vibration load under various operational conditions.

Study 2 : The vibration peak frequency o f  the vibrator was determined only by the 
motor rotating speed (p<0.05). The vibration amplitude o f  the vibrator was 
determined by both the eccentric mass and the motor rotating speed (p<0.05). The 
transm issibility o f  the vibration amplitude to the muscle was affected by both the 
eccentric mass and motor speed o f  the vibrator (p<0.05). The higher the vibration 
amplitude (eccentric mass) and vibration frequency (motor rotating speed) on the 
vibrator, the lower the transmissibility o f  vibration amplitude to the muscle (p<0.05). 
The transm issibility o f  peak frequency was 100%, and was not affected by the 
eccentric mass and motor rotating speed (p>0.05). Vibration induced a significant 
increase in EMGrms o f  the biceps in sub-maximal isomctfic ClbOW flexion (p^Q.QS), 
with the greatest increase o f  EMGrms being induced by vibration with a frequency o f  
65 Hz and an amplitude o f  1.2 mm (p<0.05). The above amplitude, frequency,

XVI



)

transm issibility and EM G results were not significantly effected by joint angle 
(p>0 05)

Study 3 Vibration training induced enhancements m EM Grms o f  the vastus lateralis 
(VL) and vastus medialis (VM) during sub-maximal isometric extension o f  the knee 
(p<0 05), but not o f  the rectus femons (RF) (p>0 05) Resistance load had a 
significant effect on the enhancement, with the greater load (20% 1RM) producing a 
significantly higher EM Grms than the smaller load (10% 1RM), on both the VL 
(0 049 vs 0 038 mV, p<0 05) and VM (0 069 vs 0 049, p<0 05)

Study 4 During training, direct vibration did not enhance the mechanical (angular 
velocity, moment and power) and EM G output o f  a maximal isotonic bicep curl 
exercise (p>0 05) Similarly, after training there was no enhancement m the 
mechanical and EM G output when either the muscle was trained maximally or the 
muscle was rested (untrained) (p>0 05)

Study 5 Direct vibration did not enhance the mechanical (angular velocity, moment 
and power) and EMG output o f  a ballistic knee extension exercise during and after 
training On the contrary, vibration significantly increased the time to peak power 
(4%, 10% and 16% in set 1, 2 and 3, respectively, p<0 05) and decreased EMGrms 
o f the RF (10%, 14% and 15% m set 1, 2 and 3, respectively, p<0 05) and EM Gm pf 
o f  the VL (7% in set 2, p<0 05) during training, and decreased EMGrms o f the RF 
measured 1 5 minutes (16%, p<0 05) and 10 minutes (15%, p<0 05) after training

Study 6 W ith both resistance loads (40% and 70% 1RM), direct vibration did not 
have an acute or acute residual facilitatory effect on the neuromuscular performance 
o f  a maximal isotonic bicep curl exercise (p>0 05) On the contrary, vibration 
significantly decreased mean power with the 70% 1RM load (16 8%, 13% and 18 5% 
in set 1, 2 and 3, respectively, p<0 05) and the initial power with both loads (19 5%, 
p<0 05)

Conclusion A portable muscle tendon vibrator has been successfully developed to 
allow investigation o f  the effect o f  vibration at different frequencies and amplitudes 
during sub-maximal and maximal isometric and isotonic contractions The vibrator 
can produce the required vibration load consistently across different operational 
conditions For sub-maximal isom etnc contractions, vibration could induce a 
significant increase o f  EMG The enhancement was greater with the increase o f 
vibration amplitude (1 2 vs 0 5 mm) and frequency (100 and 65 Hz vs 30 Hz) In 
addition, the higher resistance load could induce greater EM G response to vibration 
training with sub-maximal isom etnc contraction For maximal isotonic contractions, 
vibration did not enhance neuromuscular performance, and in fact had a negative 
effect on some mechanical and EM G outputs both dunng and after training 
Vibration alone (with no exercise) had no significant acute residual effect on the 
mechanical and EM G outputs o f  maximal isotonic contractions The neuromuscular 
measurements m  this thesis are repeatable across different test days
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Neuromuscular performance, as determined through measures o f  muscle strength and 

power, is important for successful performance o f  athletic activities as well as for the 

preservation and improvement m functional aspects o f  daily life Resistance training 

is presently the most popular way to improve muscle strength and power (1) In a 

search o f techniques to enhance resistance traimng, Russian scientists have combined 

vibration stimulation with resistance training (2) This has been termed vibration 

traming(3) or vibration exercise (4) During the last five years, this method o f 

strength training has gained in popularity with a number o f systems now 

commercially available (e g Nemes®, Nemesis, Netherland, Galileo 2000®, 

Novotech, Germany, PowerPlate®, Netherland)

However, current findings from vibration training studies are contradictory as to 

whether vibration stimulation is effective in facilitating strength and power 

enhancement A number o f  acute and chronic vibration training studies have 

demonstrated that conventional strength training exercise with superimposed 

vibration may achieve significantly more strength and power gain than the same 

training without vibration (3,5-7) However, some studies have not found any 

beneficial effect to superimposed vibration (8-10) It is thus apparent that the effect 

o f  vibration training need further investigation in order to facilitate the application o f 

this new training method in sports and health The present study will examine the 

effect o f  vibration training on neuromuscular performance

Chapter 1

Introduction

1



A critical review o f the literature indicates that the vibration training effect on 

neuromuscular capacity may be related to its methodology, which includes the 

vibration characteristics (vibration amplitude, frequency and the method o f  vibration 

application) and the exercise protocols (type o f  exercise, exercise intensity and 

volume). There may be optimal vibration training programs that could induce the 

greatest enhancement on neuromuscular performance. Investigation on this issue is 

the central topic o f  the present study.

The vibration amplitude and frequency determine the load that vibration imposes on 

neuromuscular system(17). The review o f the literature reveals that these factors 

need to be high enough for vibration training to elicit an effect. However, most o f  the 

present vibration training devices employed indirect method o f  vibration in which 

vibration was transmitted from a vibrating source (e.g. vibrating platform or handle) 

to target muscles being trained. The disadvantage o f  this method is that the vibration 

load further away from the vibration source may not be high enough to elicit the 

effect because the vibration amplitude and frequency may be attenuated during the 

transmission through the soft tissues (22). Moreover, the agonist and antagonist 

muscles are both stimulated by vibration in indirect method, which may decrease the 

force output o f agonist because o f  the reciprocal inhibition (8). These limitations may 

explain the contrasting results found with the indirect method o f vibration (3 ,8,12). 

On the other hand, few studies to date have employed direct method o f vibration in 

which vibration was applied directly to the muscle belly or the tendon o f  the muscle 

being trained (10,14,18);. M oreover, the vibration devices used in these studies are 

all cumbersome and not suitable for dynamic movement during strength training 

exercise. The present study, therefore, is going to design and construct a portable

2



vibration training device that could stimulate the muscle-tendon directly In addition, 

this portable vibration training device will have the capacity to produce different 

vibration amplitudes and frequencies that have been employed in the vibration 

training studies to date, as the present study is also going to examine the effect o f 

vibration amplitude and frequency o f direct method o f  vibration on neuromuscular 

performance c

The exercise protocol is also an important factor influencing the vibration training 

effect (3,8) However, there is a lack o f  study investigating the exercise protocol in 

vibration training with direct method The present study, therefore, will examine the 

influence o f  different type o f  exercises (isom etnc and dynamic), different intensities 

o f  exercise (sub-maximal contraction and maximal voluntary contraction) on 

neuromuscular response to vibration training by using the portable vibration device 

developed in this study

3



Chapter 2

Literature review

2.1 Introduction

In the only review on vibration training that could be found, Cardinale and 

B osco [(ll), pp4] suggest that “vibration can effectively enhance neuromuscular 

performance”. However, their review on neuromuscular performance enhancement 

has a number o f  notable limitations. Firstly, only six studies were reviewed and half 

o f  these failed to include an appropriate control group (see inclusion/exclusion 

criteria below). Secondly, the review failed to include any studies where vibration 

training had either no effect on (8,12) or a reduction in neuromuscular performance 

(13,14). Finally, the authors did not address the effect o f  different vibration 

characteristics (method o f application, frequency, amplitude and duration) or the 

time-effect (acute, acute-residual and chronic) o f  vibration training. In addition, the 

vibration training devices, especially those used in direct method o f  vibration were 

not systematically introduced in this review.

Thus, the purpose o f  this review is to critically examine the effect o f  vibration 

training on neuromuscular performance, with the focus on muscle strength and 

power, and to investigate the influence o f  the vibration characteristics (method o f 

application, frequency and amplitude) and exercise protocol on this effect. The 

vibration training devices that have been used in vibration training studies will also 

be introduced. Consideration is given to the different time-effects o f  vibration: (i) 

during the application o f  vibration (acute effect), (ii) immediately after the

4



application o f  vibration (acute residual effect) and (iii) following a series o f bouts o f  

vibration training over an extended period (chronic tra in ing effect). In each o f  these 

categories the effect on force, power and electromyography (EMG) during isometric 

and dynamic force production will be examined. Purported mechanism o f vibration 

training will also be discussed. This review will provide sufficient detail to guide the 

reader on current designs o f  vibration training devices and their use, and clearly 

outline those areas that need further research in order to advance our understanding 

o f  vibration training.

2.2 Inclusion/exclusion criteria for studies in this review

Studies that fulfilled the following criteria were included in this review:

•  A control group element was employed and subjects were randomly allocated to 

the treatment and control groups. In those studies examining the acute and acute 

residual effects o f  vibration, the control group was the same subjects being tested 

under repeated measures. However, these studies were only included provided the 

order o f testing (vibration versus non-vibration) was randomized. Moreover, 

studies were included provided subjects in the control group performed the same 

exercise as in the treatment group. This is essential as otherwise it is not possible 

to determine if  the outcome is due to the exercise or the vibration.

•  Healthy subjects were examined. This therefore negates those studies that 

examined the facilitatory effect o f vibration on patients with neuromuscular 

disease and those which investigated the potential for neuromuscular disorder

5



associated with long term (years) exposure to vibration in the occupational 

environment,

•  The outcome measures were related to muscle force, power or EMG and a 

statistical analysis was undertaken

• The study was published in the form offull-text and in English 

2 3 Literature search

A literature search was performed on M EDLINE database (1966-2003), the 

Cochrane Central Register o f  Controlled Trails (CENTRAL) and Sports Discus The 

keywords used were vibration AND (muscle OR tendon OR exercise OR training) 

The identified papers were used to locate other appropnate research papers

A total o f  14 articles m et our inclusion criteria, eight o f  them studied the acute effect 

o f  vibration treatment, five o f  them studied the acute residual effect o f  vibration 

treatment, and three o f  them studied the chronic effect o f  vibration treatment Details 

o f  these studies are listed in tables 2 1 to 2 6

The vibration training studies that were specifically excluded from this review based 

on our criteria relating to inclusion o f  a control group were listed in Appendix A  to 

2 3 Only m the discussion o f  vibration training mechanism will some o f these 

studies be mentioned (section 2 9 o f  this review)
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2.4 Methodology of vibration training

Vibration is a mechanical oscillation that can be defined by frequency and amplitude. 

Frequency is defined as the cycles per unit time, and is generally measured in the 

unit o f hertz (Hz, cycles per second) (15). Amplitude is defined as the half 

difference between the maximum and the minimum value o f  the periodic 

oscillation(16).

The methodology o f vibration training includes the vibration characteristics and 

exercise protocol. Vibration characteristics include the method o f  vibration 

application, vibration amplitude, vibration frequency and the duration o f vibration. 

The intensity o f  the vibration load on neuromuscular system is determined by the 

vibration amplitude and frequency (17). The exercise protocol includes the type o f 

exercise, training intensity, training volume, number and duration o f  the rest period 

and the frequency o f  training.

There are two methods o f  applying vibration to the human body during exercises. In 

the first method, vibration is applied directly to the muscle belly (10,14,18) or the 

tendon (13) o f  the muscle being trained, by a vibration unit that may either be held 

by hand (13,18) or be fixed to an exterior support (10,14). In the second method, 

vibration is applied indirectly to the muscle being trained, i.e. the vibration is 

transmitted from a vibrating source away from the target muscle, through part o f the 

body to the target muscle (3,6). For example, during the training o f the quadriceps, 

the subject may stand on a vibrating platform that oscillates up and down in the
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vertical direction and perform various exercises (such as squatting); the vibration is 

transmitted from the platform through the lower extremities to the quadriceps 

(3,7,12). This method has been termed ‘whole body vibration training’ (3). As 

another example, during the training o f the biceps brachii, the subject may grasp a 

vibrating handle while performing a bicep curl exercise (6). Although the main 

direction o f  vibration application was different between direct method [transversal to 

the muscle fibers and muscle tendon (10,14,18)] and indirect method [longitudinal to 

the muscle fibers and muscle tendon (3,7,12)], both methods will result in 

longitudinal stretching (vibration) o f the muscle fibers and muscle tendon. It is this 

longitudinal stretching that is related to the purported mechanisms o f enhancement 

associated with vibration training.

Various vibration training devices have been used in vibration training to apply 

vibration directly or indirectly to muscles. These devices will be introduced in the 

following paragraphs.

1) Vibration devices for directly applied vibration

In the study by Humphries et al. (10), vibration was produced by using a 4KW, 3- 

phase electrical induction motor running at 50 Hz which was directly coupled to a 2- 

cylinder air conditioning compressor with exposed piston faces driven by an offset 

cam. The subject’s leg was held against piston with Velcro straps. Jackson et al. (14) 

used an electromagnetic vibration unit (V201; Ling Dynamics, UK) to apply 

vibration directly to the femoris muscles. The size o f  this vibration unit was 0 1 0 2  

mm (diameter) x 121 mm (height), and its weight was 1.8 kg (19). Curry et al. (18)
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used a hand-held vibrator (Wahl Clipper Corp, Sterling, IL 61081, USA) to apply 

vibration directly to forearm muscles The former two vibration units introduced 

above need to be fixed to an extenor support (10,14), while the later one (18) can be 

held by hand dunng the vibration training Unfortunately, these devices are therefore 

not suitable for strength training where dynamic exercises are commonly executed 

and where it is necessary to move easily from one exercise action to another No 

portable device with direct vibration capabilities for strength training appears either 

to feature in the literature or is commercially available This may significantly reduce 

the widespread use o f vibration training

2) Vibration devices for indirectly applied vibration

i

In whole-body vibration training, the person stands on a vibrating platform and 

performs vanous exercise (e g squatting) The vibration is transmitted from the 

platform through the lower extremities to target muscles, such as the quadnceps 

(3,4) There are several such devices commercially available, such as the Galileo 

fwww galileo2000 nl), the Nemes fwww nemes nO and the Power Plate 

(www powerplateusa com) In the Galileo, vibration is applied by rotational 

oscillation around the centre o f  the platform (figure 2 1) The user places their feet on 

either side o f  the rotational centre o f  the vibration platform In the Nemes and Power 

Plate, vibration is applied by an up-down oscillation o f  the platform in the vertical 

direction

9



Figure 2 1 W hole-body vibration device (Galileo) [adapted from Rittweger et al 

(20)]

Issunn et al (6) undertook a number o f  studies (6 ,21) using a custom designed 

vibration device (figure 2 2) This device consisted o f  an electromotor (1500 W, 

2800 rev/min) that rotated an axis which supported two wheels o f  different diameters, 

thus allowing speed reduction (frequencies 44 Hz and 60 Hz) Subjects were exposed 

to vibration by grasping a vibrating handle The center o f  rotation o f  the wheel could 

be displaced eccentrically to 3, 6 , 9 and 12 mm A counter-weight pulley system 

provided the resistance for training The load was held by a stiff cable, which was 

passed through the eccentric wheel o f  the vibratory device via the pulleys Attached 

to the far end o f  the cable, a bar was used to perform bicep curl exercise
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Piiliey System

Amplitude* 3 mm 
Frequency: 44 Hz

I  Load I
t = 3 ________ £

stimu

Figure 2 2 Vibration training device [adapted from Issunn et a l , (6)]

While there is a clear difference between the indirect and direct methods on the way 

m which the vibration reaches the target muscle, both are reviewed together, as they 

both produce vibration to stimulate the muscle The key difference m  these methods 

is only the magnitude o f  amplitude and frequency o f  the original vibration that 

reaches the target muscle W ith direct vibration, the amplitude and frequency does 

not differ notably from the reported values measured at the vibration source 

(13,14,18) In contrast, with indirectly applied vibration (3,6,7,12,21), the amplitude 

and frequency m ay be attenuated in a non-linear manner by soft tissues during 

transmission o f  the vibration to the target muscle (17,22) The effect o f  this will be 

addressed within the relevant sections
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Duration o f vibration is also a factor that should be considered in examining the 

effect o f vibration training Its influence should be analysed in conjunction with the 

point o f  time when the neuromuscular performance was evaluated As shown in 

figure 2 3, if  vibration stimulation is short in duration, resulting in the measurement 

o f neuromuscular capacity without fatigue, any enhancement is indicative o f an 

increase in neuromuscular performance by vibration stimulation [Ma(unfatigued) and 

Mar(unfatigued) in figure 2 3a] This will be discussed as a facihtatory (positive) 

effect o f vibration on neuromuscular performance later in this review W ith increases 

in the duration o f vibration, fatigue will become more predominant Therefore an

M a (unfatigued) (unfatigued) 

▼ ▼

a) Vib Post vibration

~ D 1 * I
------ D 2----------------— ►

b)

M a (unfatigued) Ma(fatigued) Mar (fatigued)

Figure 2 3 Diagram o f vibration duration and the measurement o f neuromuscular 

performance during unfatigued (a) and fatigued (b) training D l=short duration, 

D2=long duration, M a=measurement o f  the acute effect o f  vibration stimulation on 

neuromuscular performance, Mar=measurement o f the acute residual effect o f 

vibration on neuromuscular performance, vib=vibration
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increase in neuromuscular performance, above a no vibration condition, measured in 

the unfatigued state [Ma(unfatigued) in figure 2 3b], will still indicate a facilitatory 

effect o f vibration However, a decrease in neuromuscular performance measured 

when fatigued [Ma(fatigued) and M ar(fatigued) in figure 2 3b] may be due to either 

1) an increase in neuromuscular performance earlier in the exercise, resulting in 

greater fatigue, which can be viewed positively, or 2) an inhibition effect o f  vibration 

on neuromuscular capacity These two effects are discussed in section 5 1 and 5 2 

These factors are pertinent in both acute and acute residual effects, as shown in 

figure 2 3 However, these factors have no relevance in interpreting the chronic 

studies, as the retest is not undertaken during or immediately following vibration 

stimulation

Both isometric (10,13,18,23,24) and dynamic(6,21,25) exercises have been 

employed during vibration training The intensity o f  these exercises range from sub- 

maximal contractions (3,4,7,8,12,23) to maximal contractions (6,13,18,21,24,26) 

The duration o f  exercise with applied vibration also vanes among studies, ranging 

from only 5 seconds (10,18,21) to 30 minutes (14) m each set, and with different 

numbers o f sets employed, ranging from one set (4,7,10,12,13,24) to several sets in a 

training session (3,6,8,21) The protocol appears indicative o f  whether or not the aim 

was to investigate the effect o f  fatigue (10,13,14,18,21,24)

2 5 Acute effect of vibration on neuromuscular performance
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2 5 1 Acute effect o f  vibration on strength and electromyography activity (EMG) 

during isometric actions (Table 2 1)

2 5 11 M aximal isometnc contraction

As shown in table 2 1, four studies have investigated the acute effect o f  vibration on 

maximal isom etnc contraction (10,13,18,24) The duration o f  vibration and 

contraction was short in two o f these studies [5 seconds(10,18]] and prolonged in the 

two other studies [1 minute(13) and until exhaustion (24)] In the latter two studies, 

measurement o f  neuromuscular performance was made both in an unfatigued and 

fatigued state (figure 2 3b) (13,24)

W hen the neuromuscular system was unfatigued, only one o f  the four studies found 

that vibration had a significant facilitatory effect on maximal force (18) The authors 

(18) in this study found that vibration induced a 3 7% significant increase (p<0 05) in 

maximal isom etnc contraction force o f  the w nst extensors, and the contraction force 

tested without vibration had a 3 9% significant decrease (p<0 05) from their baseline 

force levels Thus, the net increase was approximately 7 8% Sameulson et al (24) 

and H um phnes et al (10) also found net increases in. maximal knee extensor force 

with vibration (6% and 17 8%), but these increases were not significant (p>0 05) due 

to the vanabihty m response Bongiovanm et al (13) found that vibration induced a 

non-significant net decrease in maximal ankle dorsiflexion force o f about 5% 

(p>0 05)
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Table 2.1 Acute effect of vibration on isometric muscle performance

Study Subject Vibration characteristics Neuromuscular performance change

method
(location)

amp freq 
(mm) (Hz)

Contraction
Performed

force EMG

Bongjovanruet 25 UT

Curry et al [181

Humphries et 
a l l,0J

D (ankle dorsiflexor 15 150
tendon)

JCor&bli NA i sa
^  i t 1?

lmm dorsiflexm ( 100% 
MVQ

1 “‘^lctafl© aon/(100%

Fm

Fd 5% i  NS

NR

^ y ^ r  m u

30 UT (15=male D (Wrist extenisor 15
15=female) muscle)
30UT (20=maJe Cortrol NA1
lO rfenale)-" ^
16 UT D (upper thi^i) 013

120

*n a %:
iv

50

5-second wnst extension 
(100%MVQ 

3 X t S seocS  \li£ :Mensionlr 
1 * ^(100% N ® q:^^

5 second knee extension 
(100% MVQ

Fra37%t*

1- î,̂ :yFnS3j%i*fe- <.

i  t  ‘T & Ä
j— Fm. 581N 
I RFDboi 983 N/s —

NM

T  ^  '
EMGrms RF 8474%

17 8%T NS

Control- N A r^p % J®  : 5 sectókneeexteì^on *

RFDbffi 1349N/s 
RFDb! 1525 N/s 
RFDb. 913 N/s —

n

NS

NS

*  i t #

sS»aW*SiHS*f» “• t s i t »
J

RFD^4240N/sl

JVo/e amp=vibration amplitude, D=directly applied vibration EMGnns=!OOt-mean-9qiiared value o f EMG, Fd=decline o f maximal voluntary contraction force, Fm=maximal voluntary contraction 
force, freq=vibration frequency, MVC=maximaI voluntary contraction force, N=Newton, NA=not applicable, NM =no measurement, NR=not reported, N S=not statistically significant, 
N/s=Newton per second RF=rectus femoris, RFD=rate o f force development UT=untrained, t =  increase, 4=decrease, *=statistically significant compared with pre-vibration +=statistically 
significant compared with control,
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Table 2 1 (continued) Acute effect o f vibration on isometric muscle performance

Study Subject Vibration characteristics Neuromuscular performance change

method
(location)

amp
(mm)

freq
(Hz)

Contraction
Performed

force EMG

KihfcergetaLla| 15 UT

Sameulson et 14UTmale 
al l24l

I (hand) Hand gnp and arm push 
(30N)

NM IEMG Forearm flexor ~  
Forearm extensor

ofthesubject) s|e3dffistéd t̂ J

&*■** ffHM n ¿ #

"|y w

3* w *-ïÆ 45^4i«fj"’ *»? 

/S ‘gv K** s *  »

Note a=amplitude reported in the form o f weighted acceleration, amp=vibration amplitude, Fm=maximal voluntary contraction force, freq=vibration frequency, I=indirectly applied vibration, 
MVC=maximal voluntary contraction force, N=Newton, NA=not applicable, NM=no measurement, NR=not reported, N S-not statistically significant, RFD=rate o f  force development, Td=time 
to exhaustion UT=untrained, f =  increase, 4=decrease, WBV=whole body vibration, -^statistically significant compared with control,
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Only one study (10) reported the EMG activity o f maximal isometric contraction 

during vibration. The authors (10) found that vibration did not have a significant 

effect (p>0.05) on the root-mean-squared value of the EMG (EMGrms), measured on 

the rectus femoris muscle during maximal knee extension.

Humphries et al.(10) also examined the rate o f force development (RFD) at times 

0.05, 0.01, 0.1 and 0.5 seconds during a 5-second maximal isometric knee extension. 

The authors((10)) found that vibration did not enhance the RED at any of these time 

points (p>0.05).

Neuromuscular performance was also measured in a fatigued state in two of the 

studies (13,24). In the study of Sameulson et al.,(24) subjects performed sustained 

maximal knee extension until exhausted. The time to exhaustion decreased 

significantly (p<0.05) by 30% in the vibration condition in comparison to a control 

group. In a study by Bongiovanni et al.,(13) subjects were asked to maintain their 

maximal contraction for 1 minute. The results showed that the decline of the 

maximal isometric force measured at the end of the 1 minute contraction was 

significantly greater (13%; p<0.05) when vibration was applied. These findings 

indicate that vibration could accentuate the muscle fatigue of sustained maximal
•

contractions. However, as discussed above, the maximal isometric contraction force 

measured in both studies( 13,24) at the unfatigued state did not have any significant 

enhancement by vibration. Thus, it is unlikely that prolonged vibration accentuate the 

fatigue by recruitment o f more motor units during the early stage of contraction.
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Bongiovanni et al.(13) suggested that vibration had a suppression effect that 

increased gradually with the sustained vibration on motor output o f maximal 

voluntary contractions. This suppression effect decreased mainly the subject’s ability 

to generate high firing rates in high-threshold motor units (13). Thus, it appears that 

prolonged vibration decreases the neuromuscular performance of maximal voluntary 

contraction by inhibiting motor units from recruitment, rather than by fatiguing the 

motor units by recruitment.

2.5.1.2 Sub-maximal isometric contraction

Only one study in table 2.1 investigated the acute effect o f vibration on sub-maximal 

isometric contraction. The study could not directly determine if vibration enhances 

sub-maximal isometric force because the subjects were asked to maintain contraction 

force at a constant level during vibration treatment [e.g. 30N(23)]. However, the 

muscle activity measured by electromyography (EMG) showed that the integrated 

EMG value (IEMG) was enhanced significantly (p<0.05) by vibration,(23) indicating 

that applied vibration is likely to enhance the sub-maximal contraction force (27).

2.5.2 Acute effect o f vibration on strength and power during dynamic actions 

(Table2.2)

2.5.2.1 Maximal dynamic contraction
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Table 2 2 A cute  effect o f  v ib ra tio n  on d ynam ic m uscle perform ance

method amp freq contraction Performed Performance measure EMG
(location) (mm) (Hz)

Study Subject Vibration characteristics Neuromuscular performance change

Is sunn et 
al[211

28 T male I(hand) 03-04 44 Oonoentnc bicep cud (MVC) Pmax. Ehte*104%T* , Amateur 73%T*
(14= elite |_____  i  |

14= amateur) |-----Prrcan. Elite- 102%f* , Arralar 107%t*

n
NM

Laebermannet
aL^

Rittwegaret aLffl

41Tma]e 
(8= Olympic 
ll=Naüonal 
ll=amaieur 
ll=Jumor)

19UT
(10=female
9=male)

I (hand) 03-04 44 Cbncentnc beep curl (MVQ 1RM strength.
Olympic National

NM
Junior Amateur

6 2% t  + 4 9% t3%T+# 4 8% t

Squattô onplaífbnnwilhkjad Endurancetime 58minutes ----1I(WBV) 26 Squattô onplaifbnnwilhload Endurancetime 58minutes 
till exhaustion

NM

Note amp=vibration amplitude, freq=vibration frequency, I=indirectly applied vibration, MVC=maximal voluntary contraction, NA=not applicable, NM=no measurement, 
NS=not statistically significant, Pmax=maximal power, Pmean=mean power, T=trained, UT=untrained, WBV=whole-body vibration, T=increase, i=decrease, 
*=statistically significant compared with pre-vibration, +=statistically significant compared with control, ^statistically significant compared between elite and amateur, 
#=statistically significant compared with national, junior and amateur
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Only two studies have examined this effect, both employing indirect vibration o f the 

biceps through a grasped vibrating handle (21,26) Maximal force (26) and power 

(21) dunng concentric elbow flexion were enhanced significantly (p<0 05) by 

vibration (Table 2 2) This facihtatory effect may be greater in elite athletes Issunn 

et al (21) found that the vibration induced a significantly larger (p<0 05) increase in 

maximal power for elite athletes (10 4% increase), than for amateurs (7 9% increase) 

consisting of participants in club or college sports Liebermann et al (26) examined 

the 1RM strength in four groups of athletes with different expertise levels They 

found that all groups could lift significantly (p<0 05) heavier loads with vibration 

and that the enhancement was significantly larger (p<0 05) for Olympic athletes 

(8 3%) than the other groups (4 8% for national senior level, 6 2% for national junior 

level and 4 9% for amateurs)

2 5 2 2 Sub-maximal dynamic contraction

In a study by Rittweger et al (4) subjects performed exhaustive squatting with an 

additional load of 40% of the body mass, both with and without whole body 

vibration It was found that the time to exhaustion was significantly (p<0 05) shorter 

with vibration than that without vibration Oxygen consumption dunng the squatting 

exercise was also enhanced significantly (p<0 05) by whole body vibration, leading 

the authors (4) to suggest that the shorter time to fatigue was due to greater muscle 

activity during squatting
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From the discussion of section 2.5.1 and 2.5.2, it appears that the muscle activity in 

sub-maximal dynamic and isometric contractions may be enhanced by vibration. 

During maximal effort dynamic contractions, vibration appears to be able to facilitate 

force and power output. This facilitatory effect has been shown to be greater in elite 

athletes. It is unclear whether the maximal isometric contraction force can be 

enhanced by vibration. However, prolonged vibration induces more muscular 

fatigue in both the maximal and sub-maximal isometric and dynamic muscle 

contractions. This exacerbated muscle fatigue by vibration may be due to 1) a 

facilitatory effect o f vibration on muscle contraction force and activity during the 

early part o f exercise; and/or 2) a suppression effect o f vibration on neuromuscular 

performance.

2.5.3 Acute residual effect o f vibration on force and EMG during isometric actions 

(Table 2.3)

The strength of maximal voluntary contraction (MVC), EMG of MVC and rate of 

force development (RFD) have been assessed by four studies at different time points, 

from immediately after vibration (4,21) to 60 minutes after vibration(7,12) (Table 

2.3). Among them, two studies measured the neuromuscular performance of muscle 

in an unfatigued state (7,12). Both studies were by Torvinen et al. (7,12) and 

examined maximal knee extension strength two minutes and 60 minutes after four- 

minutes o f whole body vibration. The studies differed only by the amplitude of 

vibration [4 mm(7) vs. 1 mm(12)]. Neither study found a significant effect o f  

vibration training 60 minutes post training. However, a small but significant
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Table 23 A c u te  residual effect o f  v ib ra tio n  on isom etric  m uscle perfo rm ance
Study

Jadoan et 
aLM

Subject

10UT,
male

Vibration and exercise charactensbes Neuromuscular Performance change

Riffiwsgeret
aL[41

Tavirmd
aL0

Torvmen et 
a l^

method
(location)

amp freq 
(mm) (Hz)

duration contraction
(ran) performed

19UT 
(ICHemale 
9=male)

16UT
(8=male
8=femak)

16UT
(8=male
8=fema]e)

u
”'oanrtroll:"'" 3" 30"

I(WBV)

Knee extension (100% 05
MVQ
Knee extension (100% 05

(ran)
Force or 
torque

RFD EMG

L 30%i*

* I IEMG RF 15mv̂ i*,
I VL.8mv.siNS

r70%i*
VL.8mv̂ 4,NS 

=  /̂û r + ŒMG RF 7mv.siNS,
1 * VT 7 m i / c l N S

r  —  p —  - —  /LILV̂LNO,
NS I N S    I VL.7mv.slNS

jU i&AÀws-

Note amp=vibration amplitude, freq=vibration frequency, D=directly applied vibration, I=indirectly applied vibration, EMGmf= EMG median frequency, 
MVC=maximal voluntary contraction, NA=not applicable, NM=no measurement, NS=not statistically significant, RF=rectus femons, RFD=rate of force development, 
tp=test time from the end of vibration, UT=un trained, WBV=whole-body vibration, VL=vastus lateralis, f = increase, 4=decrease, ^^statistically significant compared with 
pre-vibration, += statistically significant compared with control, /¿ ŝtatistically significant compared with 120 Hz
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enhancement m strength was found two minutes post vibration training in 

comparison to sham vibration group (1% vs -2%, p<0 05) when the larger amplitude 

of vibration was employed [4mm (7)] No difference was evident with a 1 mm 

amplitude of vibration This indicates that with sufficient amplitude, vibration has a 

small transient residual effect which could improve maximal isometric strength 

output Two studies measured neuromuscular performance in a fatigued state (4,14) 

One of them assessed the maximal voluntary isometric contraction force (14) and 

one assessed sub-maximal contraction muscle activity (4) Jackson and Turner (14) 

found that both the MVC strength and the RFD were significantly reduced (p<0 05) 

following 30 minutes vibration treatment (30Hz), compared to a control group This 

finding suggests that vibration can elicit greater neuromuscular fatigue

One study by Rittweger et al (4) measured the EMG activity o f a sub-maximal 

isometric contraction (70% MVC), performed in a fatigued state, immediately and 10 

minutes after vibration Spectrum analysis on these EMG signals found that the 

median frequency (EMGmf) was significantly higher than that performed by a 

control group (4) Similar to the force evaluation, this effect on EMG was only 

observed immediately after vibration (4) The authors (4) therefore suggested that the 

facilitatory effect o f vibration observed in an unfatigued state may be due to an 

enhanced central motor excitability which appears to recruit predominantly large 

motor units as shown by the shift o f EMGmf to a higher frequency (4,28,29) It is 

also noted that the vibration amplitude and duration in this study are 6 mm and 5 6 

minutes respectively, which is similar to those in the study by Torvinen et al [4mm 

and 4 minutes(7)] that found the facilitatory effect on maximal isometric strength 2
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minutes post vibration This suggests that sufficient vibration amplitude is also 

necessary for the enhancement o f central motor excitability

2 5 4 Acute residual effect o f vibration on strength and power during dynamic 

actions (Table 2 4)

Three studies have examined the residual effect o f vibration on power during 

dynamic actions in an unfatigued state (7,12,21), although none of them have 

examined the effect on strength (Table 2 4) Only one of these studies found that 

vibration treatment had a facilitatory effect Torvmen et al (7) found that a four- 

minute whole body vibration training session could induce a small but significantly 

larger increase m counter movement jump height than the sham-vibration group, two 

minutes after vibration treatment (2% vs 0%, p<0 05) Two other studies found no 

significant effect on dynamic muscle performance after vibration (12,21) (Table IV) 

The first o f these two studies (12) was identical to the study by Torvmen et al (7) 

which found the positive residual enhancement in vertical jump performance, except 

the vibration amplitude was smaller [lmm(12) vs 4mm(7)] In the second study, the 

amplitude o f vibration on the muscle was also small (less than 0 3 - 0 4  mm) and the 

duration o f vibration was fairly short [6-7 seconds(21)] It is possible that with small 

amplitudes and short durations of stimulation no residual effect is produced

The facilitatory effect o f vibration on dynamic muscle performance also appears 

transient (7) The significantly larger increase in counter movement jump height at
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Table 2 4 A c u te  residual e ffec t o f  v ib ra tio n  on d ynam ic m uscle  perform ance

Study Subject Vibration and exerase characteristics____________ Neuromuscular performance change
method amp freq exercise duration contraction tp Performance measure EMG
(location) (mm) (Hz) (mm) performed (ran)

Issunnd
aLpl]

Ritttaeger
etal**1

28 T male

(14=elite

14=amateur)

19UT
(ICHemale
9=male)

03-
04

I(hand)
04

- C3ortPol#r_̂  NAri^ NA ̂  ^iBioepaM^;

6 26 Squaftmgon
platform with 
load

I(WBV)

Bicep curl

'»■mf .^  ^  ^  iff-*»
tepcuri^ i^O kl^v Bicep curl

58

Bicep cud 
(MVQ

it?  "NMKv - 
***">*“>■

Tcxvmen et
al171

16 ur
(8=maie
JHemale)

CornA l / , N A N A

* •■  ̂' if -or
I(WBV) 4

Tcgvman et 
a l^

Note amp=vibration amplitude, CMJ=counter movement jump, freq=vibration frequency, I=indirectly applied vibration, MVC=maximal voluntary contraction, 
NA^not applicable, NM=no measurement, NS=not statistically significant, T=tramed, Tg=ground contact time, tp=test time from the end of vibration, T=trained, 
UT^untramed, WBV=whole-body vibration, t=  increase, 4=decrease, +=statistically significant compared with control
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two minutes after vibration treatment was not present at 60 minutes after vibration 

(7,12)

Only one study examined dynamic muscle performance following a fatiguing 

vibration exercise Rittweger et al (4) examined the jump height and the ground 

contact time of a series o f continuous jumps, immediately and 10 minutes after 

whole body vibration The results showed that vibration treatment did not have any 

significant effect on these parameters (p>0 05) (4)

From the discussions in section 2 5 3 and 2 5 4, it is suggested that a bout of 

vibration treatment may have a small transient facihtatory residual effect on 

isometric and dynamic muscle performance This faciltatory effect on muscle 

strength and power performance could be observed in an unfatigued state and may be 

due to an enhanced central motor excitability to recruit predominantly large motor 

units during isometric and dynamic contractions (4) It appears that the vibration 

amplitude and duration o f vibration may need to be o f sufficient magnitude to elicit 

this facihtatory effect In addition, a bout o f prolonged vibration training may 

exacerbate muscle fatigue, which can decrease subsequent muscle performance

2.6 Chronic effect of vibration on neuromuscular performance

2 6 1 Chronic cffect o f vibration on isometric strength (Table 2.5)
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Table 2 5  C h ro n ic  e ffe c t o f  v ib ra tio n  tra in in g  on  isom etric  m uscle perfo rm ance

Study Subject Vibration and exercise characteristics
method
(location)

amp
(mm)

freq
(Hz)

exercise timing
Neuromuscular performance change 
performance test test results

Dekduse et 20UT I(WBV) 
aL H female

125- 35-40 Standing on platform, static 3nm-2Qrnm/sessm Knee extension
25 and dynamic knee extensor 3tnnesA\eek; 12w«eks (100%MVQ

exercise

166%t*

î̂.ùSf̂ pÈsa»“'.
fendei#~ .â

"NeglH
legible y-

- 35^  ; • - Standm on platfonn, stadc  ̂3min-20min/sessm  ̂ Knee extension
feand|c^igwi;tàe*extensa^3 ömesSveek,)»!?vreeks * (I00%MVG) ,

exercise, o s e :
De Rider et 10UT 
al H 6=maJe

4=female

I(WBV) 30 Standing anplatform, 
lsomdncsquaitmg 
(knee angle 110°)

60sX5sets- 60s X8 sets Knee extension
3 sessxWwsek, 11 (100%MVQ
weeks

MVC 0% NS 
RFD 33%ÎNS

|yoyT*^,1iÆonàt)l NA NA, Standing on planomi -   ^ ^ MVCWotNSi
     _ _

*  *5*i
fe

RFl>j46%ÌN

Note amp=vibration amplitude, freq= vibration frequency, ¡ îndirectly applied vibration, MVC^maximal voluntary contraction force, NA=not applicable, NS=not 
statistically significant, RFD=rate of force development, UT=untrained, WBV=whole body vibration, ^statistically significant compared with pre-training level, t=  
increase, ¿^decrease
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Only two studies (3,8) have appropriately examined the chronic effect o f vibration on 

isometric strength (Table 2.5). Their results are contradictory. Deleculse et al.(3) 

found that 12-weeks o f whole body vibration training could induce a significant 

increase (p<0.05) in knee extensor MVC strength (16.6%), while the placebo group 

only produced a non-significant increase (5%). In contrast, however, De Ruiter et 

al.(8) reported no significant difference in knee extensor isometric strength between 

the vibration group and the control group after 11 -weeks o f training. The vibration 

frequency was similar in these two studies [35-40 Hz (3) vs. 30 Hz (8)], but the 

vibration amplitude was slightly smaller in the study which found the significant 

increase of MVC strength [1.25-2.5 mm (3) vs. 4mm (8)]. Thus, it appears that 

vibration amplitudes and frequencies in both studies are sufficient to activate the 

muscle, and the difference in results may be due to the different exercise intensity 

and volume undertaken in these two studies (8). Firstly, Delecuse et al. (3) included 

both dynamic and isometric exercises, such as the squat, deep squat, wide-stance 

squat, one-legged squat, and lunge. In contrast, de Ruiter et al. (8) only asked 

subjects to stand on the vibrating platform with their knee angle flexed at 110°. Thus, 

the exercise intensity in the study of Deleculse et al. (3) appears to be significantly 

higher. Secondly, in the training program of Delecluse et al., (3) the total duration of 

vibration training of the study increased with time, initially lasting 3 minutes, but 

reaching 20 minutes by the end. However, in the study o f de Ruiter et al., (8) the total 

duration of vibration training increased from 5 minutes initially, to only 8 minutes by 

the end of the study. Thus it seems that the exercise intensity and volume was greater 

in the study o f Delecluse et al. (3) and may indicate that these parameters must be o f  

significant magnitude to induce benefits associated with vibration training.
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De Ruiter et al found no chronic effect on RFD following vibration training (8), but 

again this may be due to insufficient training volume and intensity employed in that 

study (8)

y
2 6 2 Chronic effect of vibration on dynamic strength and power (Table 2 6)

Three studies (3,6,8) examined the chronic effect o f vibration on dynamic strength 

and power Two studies (3,6) found that vibration enhanced the gam o f dynamic 

muscle performance Three weeks of heavy strength training by untrained males, 

employing a seated bicep curl with vibration, could induce a significantly larger 

increase of concentric elbow flexion strength, than that in a control group where only 

the heavy strength training was performed (49 8% vs 16%, p<0 05) (6) Isokinetic 

knee extension strength and counter movement jump height were also enhanced 

significantly (9%, p<0 05 and 7 6%, p<0 05) after 12 weeks o f training with 

superimposed whole body vibration, while the same training without vibration 

(control group) did not show any significant mcrease (3) However, the authors (3) 

did not find any significant mcrease m the maximal speed of ballistic knee extension 

with resistances of 0%, 20%, 40% and 60% of maximal isometnc strength, in either 

the whole body vibration training group or the control group In contrast to the 

reported enhancement in counter movement jump height (3), de Ruiter et al (8) found 

no significant difference between a vibration trained group and a control group, after 

11-weeks of training This lack o f effect following vibration training may be due to 

the low level o f exercise intensity and volume employed, as outlined in section 2 6 1
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Table 2 6  C h ro m e effect o f  v ib ra tio n  tra in in g  on  d yn am ic  m uscle  perform ance

Author Subject Vibration and exercise characteristics Neuromuscular performance change
method
(location)

amp
(mm)

freq
(Hz)

exercise timing performance test test results

Standing on plalfam, 60sX5 sets- 60sX8 sets 
isometnc Squatting 3 sesaonŝ wsek, 11

Junp height 3 0%ÎNSDeRmter I(WBV)

Ï0ÜP riGontrol
, 6 = ™ ? ■ -  -Y, r *  ̂ ■>*
4=fernale A ̂  # i * - ¿ '

30
3 sessionŝ wsek, 
wseks

CMJ

^Standif^^on^ii^aifeiTt^^'öOsXSÄ^eOsXSsetei ^CMT|T *** JiJump height 3 7%tNS:iâ2,T î_.. -Z* K*- t 14
<~5ä ¡F«̂^^  ̂ ■<-* ßs^% ^k •*? ¡'“V Jfe*

Delecluse
etalPJ

Issurm et

20 UT 
female

I(WBV) 125-
25

3S40 Standing an platform, 3mn>20rrnn/sessiQn 
static and dynamic knee 3tone&Sw2ek; 12wtcks 
extensor exetase Jump height 7 6%i * 

Maximal speed. 0%NS

Isokinetic knee extension Maximal strength 9%T* 
(100%)
CMJ
Balhsdc knee extension 
(resistance- 0%, 20%, 40%,
60% of maximal isomedc 

  strength)

$*4̂ , _

.    extensK3n̂ ^MÉmrìal speécLf 0% N S|£i;: & ■

J^V«6Q% opmæamal öomebc a ; j -  &* ̂  •*hfeA^
Sittmg bsxp curi with 6sets,3timesA*rek 
(80%-100% 1RM) 3 weeks

Sdtirgbiœpcuri

ïS ^n g to R ^ iS ^

Maximal sliengäi 49^%î* I
+

0 nßik ^  w,
Note amp=vibration amplitude, CMJ=counter movement jump, freq= vibration frequency, 1=indirectly applied vibration, NA=not applicable, NS= not statistically significant,
UT=untrained, WBV=whole body vibration, *=statistically significant compared with pre-training level, +=statistically significant compared with control,t=increase, ^decrease
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Issunn et al (6) employed a heavy resistance traimng program in which subjects 

were asked to complete seated bicep curls, with a load o f 80% - 100% 1RM This 

exercise intensity was the largest among the three studies (3,6,8) It was also noted 

that the gams in maximal strength in this study were also the largest, both with and 

without vibration [49 8% vs 16%, p<0 05(6)], although the length o f this study was 

the shortest [3 weeks(6) vs 11 weeks(8) and 12 week(3)]

i

These findings indicate that vibration training can induce chronic adaptations,

provided the exercise intensity and volume is sufficient to, and that the higher the
*

exercise intensity and volume, the greater the strength and power gain that may be 

achieved However, it is also clear that there is a lack of research into chronic 

vibration training with a stnct control group design This area in particular requires 

addressing as chronic adaptation is the mam aim of resistance training

2 7 Effect of vibration characteristics on the enhancement in neuromuscular 

performance

The acute and chronic effects o f vibration on neuromuscular performance seem to be 

affected by the vibration training methodology, which includes vibration 

characteristics (vibration amplitude, vibration frequency, the method of vibration 

application, vibration duration) and exercise protocols (type of exercise, intensity and 

volume o f exercise) As shown in tables 2 1 to 2 6, there is diversity in the vibration 

traimng methodology employed among the studies to date While it is difficult

)
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therefore to identify the optimal vibration characteristics and exercise protocols for 

vibration training, some useful information about the effect o f vibration methodology 

can still be obtained from these studies.

2.7.1 Influence of vibration amplitude

Two studies by Torvinen et al.(7,12) were identical except for the vibration 

amplitude [4 mm (7); 1 mm (12)] employed. Therefore, comparison of their findings 

provides insights into the influence of vibration amplitude on vibration training effect. 

In both studies (7,12), subjects undertook a four-minute whole body vibration 

training session in which light exercises (e.g. light squatting, standing in erect 

position, standing with knee flexed, light jumping, standing on heels) were 

performed on the vibrating platform. EMG activity was measured on calf muscles 

and thigh muscles during the vibration training process, but was not measured in the 

sham-vibration condition. While it is therefore not possible to determine the absolute 

effect o f vibration training on EMG activity, it is possible to examine the relative 

effect o f vibration amplitude on muscle EMG response by comparing these studies.

Both o f the above studies measured the change o f EMG activity on the soleus and 

vastus lateralis muscles during the four-minute vibration training process (7,12). The 

larger vibration amplitude (4 mm) induced a significant decrease (p<0.05) o f mean 

power frequency o f EMG (EMGmpf) on both muscles (soleus: 18.8%; vastus 

lateralis: 8.6%) and a significant increase (p<0.05) o f EMGrms in the soleus muscle 

(21.6%), from the first minute to the fourth minute o f the training process. The latter
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finding was suggested to be indicative o f more pronounced muscle fatigue on soleus 

muscle (7) In contrast to this study, there was no significant change (p>0 05) of  

these EMG parameters on either muscle in the study with the smaller vibration 

amplitude (1 mm) during the four minutes training process (12) These results 

suggest that the larger vibration amplitude was more able to activate both muscles 

during training and thus induced more pronounced muscle fatigue

In addition, analysis o f the acute residual effects m these two studies (table 2 3 ,2  4) 

showed that only the vibration with the larger amplitude (4 mm) induced a 

significantly larger increase (p<0 05) m MVC strength and jump height than the 

sham-vibration group (7,12) These results support our above analysis that the whole 

body vibration with larger amplitude may activate the leg muscles more effectively, 

inducing a facilitatory residual effect on MVC strength and jump height It may also 

be suggested that the vibration amplitude may have to be o f a sufficient threshold 

level m order to effectively activate the muscle being trained The study by Rittweger 

et al (4) also indicated that the enhancement of central motor excitability was 

elicited by whole body vibration with sufficient amplitude (6 mm) This summary 

finding is likely to be equally applicable to chronic based adaptations, as chronic 

adaptations are reflective of acute responses However, no studies to date have 

directly examined this

2 7 2 Influence of vibration frequency
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A variety o f frequencies, ranging from 15 to 137 Hz, have been used in indirect
t

vibration studies' (tables 2 1 to 2 4) In these studies, there are also differences in 

vibration amplitude, vibration duration and exercise protocol For indirectly applied 1 

vibration only one study has specifically investigated the effect o f vibration 

frequency (table I) (23) Subjects gripped a vibrating handle and pushed 

isometncally away from their body while standing EMG activity of the forearm 

flexor, forearm extensor and triceps brachu muscles were examined under two 

vibration frequencies [50 and 137 Hz (23)] At both vibration frequencies, the 

integrated EMG (IEMG) of the forearm flexors and forearm extensors increased 

significantly more than in the control group (p<0 05) However, the amount of  

increase appears to be larger with the 50 Hz vibration than 137 Hz (flexor 83 3% vs 

40%, extensor 45 5% vs 27 3%) For the triceps brachu muscle, only 50 Hz 

vibration induced a significant increase o f IEMG (p<0 05) (23) This result suggests 

that low frequency (50 Hz) may be more effective in activating the muscle in 

indirectly applied vibration than high frequency (137Hz) However, care should be 

taken in employing frequencies that are much lower Mester et al (17) suggest that m 

whole body vibration training, frequency in the range less than 20 Hz should be 

avoided because o f the resonance o f human body which may induce injury effect

For directly applied vibration, only Jackson and Turner (14) have specifically 

examined the effect o f vibration frequency In this study, vibration was applied to the 

muscle belly o f the rectus femons (14), and the acute residual effect on knee 

extension strength, following 30 minutes vibration training with two different 

vibration frequencies (30 and 120 Hz), was investigated The authors (14) found that 

the reductions o f knee extension MVC strength and RFD were significantly greater
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in the 30 Hz vibration group, than in the 120 Hz vibration group and the control 

group (p<0.05). The IEMG was also attenuated significantly (p<0.05) by 30 Hz 

vibration only. The results o f this study suggest that low frequency vibration (30 Hz) 

may induce more muscle fatigue, possibly by activating muscle more effectively.

The results o f the above two studies suggest that low frequency (30 -  50Hz) 

vibration may have a greater acute effect in vibration training. As in the discussion 

of vibration amplitude, it is likely that the observation of greater enhancements from 

low frequency is applicable to chronic based adaptations, although no studies have 

directly investigated this.

2.7.3 Influence o f method of vibration application

Two methods of vibration application have been used in vibration training studies: 

indirectly applied vibration (3,21,26) and directly applied vibration (10,13,14,18). 

The method of vibration application may influence the magnitude of vibration 

amplitude and frequency, i.e. the intensity o f vibration load, on the muscle being 

trained.

Two studies on whole body vibration training by Torvinen et al., (7,12) will be 

examined here to demonstrate the influence of vibration application method. As 

introduced in section 2.7.1, the design of these two studies was identical, except for 

the vibration amplitude employed. In order to exclude the influence of exercise on 

measured EMG activity during vibration treatment, the muscles (soleus and vastus
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lateralis) on which EMG activity was measured in both studies will be selected in 

this analysis In the study with the smaller amplitude [1 mm (12)], EMGrms and 

EMGmpf on both the soleus and the vastus lateralis did not change significantly 

(p>0 05) during the four minutes vibration training process As discussed in section 

2 7 1, this may be due to the fact that vibration amplitudes on both of these muscles 

was not sufficient to elicit any effect However, in the second study with the larger 

amplitude [4mm (7)], four minutes of vibration training did significantly decrease 

EMGmpf on both the soleus and the vastus lateralis (p<0 05) Importantly, the 

amount o f decrease was larger on soleus (18 8%) than on vastus lateralis (8 6%) It 

was also found in this second study (7) that EMGrms increased significantly (p<0 05) 

only on the soleus The authors (7) suggested that fatigue o f the soleus was more 

pronounced because the increase m EMGrms indicated that more motor units were 

recruited to compensate for fatigue during training This finding clearly 

demonstrated that the muscle group which was nearer to the vibration platform 

(soleus) may be more activated than the muscle group which was further away from 

the platform (vastus lateralis)

Kilberg et al (23) found that when employing a vibrating handle, 50 Hz vibration 

could induce a significant increase (p<0 05) in IEMG on forearm flexor, forearm 

extensor and triceps brachn muscles However, when vibration frequency was 

increased to 137 Hz, only the IEMG on the forearm flexors and forearm extensors 

was enhanced significantly (p<0 05) The IEMG of the triceps brachn did not change 

significantly (p>0 05) The authors (23) also found that 50 Hz vibration could 

transmit to the elbow without attenuation, while 137 Hz vibration was attenuated by
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about 20 dB at the wrist, and therefore would have less influence on the muscle 

activity o f the triceps brachii.

These studies discussed above all employed the method of indirectly applied 

vibration. These findings suggest that with indirectly applied vibration there may 

have a greater vibration training effect on the muscles closer to the vibration source 

because o f the attenuation of the vibration by the body structures during transmission. 

This attenuation may also result in the vibration amplitude on the muscle groups 

further from vibration source being less than the threshold level necessary for muscle 

activation, which has been discussed in section 2.7.1. Moreover, the attenuation of  

vibration appears to be larger with the increase o f vibration frequency (22,23). This 

may be the reason that almost all vibration training studies with indirectly method 

have used a frequency less than 50 Hz (tables 2.1 to 2.4).

There are two ways to apply vibration directly to a muscle. One is by applying 

vibration on the muscle belly (10,14,18), the other is by applying vibration on the 

muscle tendon (13). Compared with indirectly applied vibration, there are few 

studies employing the direct vibration method (4 studies with direct vibration vs. 11 

studies with indirect vibration, as shown in tables 2.1 to 2.6). There have been no 

chronic vibration training studies to date employing direct vibration. Although it has 

been suggested that indirectly applied vibration may be able to stimulate more 

muscle groups at the same time (6), the method of direct vibration may have its 

advantage in stimulating the target muscle without signal attenuation. Thus, given the 

same amplitude of vibration source, direct vibration may facilitate more effective
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utilization of this amplitude In addition, vibration with a higher frequency may be 

employed m direct vibration Some studies (30) have suggested that the most 

effective location to stimulate the muscle by vibration is the muscle tendon

2 7 4 Influence of vibration duration in a training session

The duration of vibration was normally the same length as the duration of exercise 

employed It may be an important factor to influence the vibration training effect 

when sub-maximal contractions were performed with vibration Available chronic 

vibration studies suggest that the longer duration o f vibration m a training session 

may achieve more strength gam when sub-maximal contractions are performed 

during training (3,8) This was shown in the studies by Delecluse et al [maximal 

duration of 20 minutes(3)] and de Ruiter [maximal duration of 8 mmutes(8)] m 

which only the study with longer duration whole body vibration training achieved 

significant gam in knee extension strength and jump height (p<0 05) Delecluse et 

al (3) suggested that prolonged vibration stimulation may result in full motor unit 

activation, which may be necessary for strength gam While it is tempting to 

conclude that increased vibration training duration is necessary for chronic 

enhancement when sub-maximal contractions are employed, these two studies(3,8) 

also had differences in vibration amplitude and the traimng exercises employed 

Clearly this issue requires direct investigation

2 7 5 Influence of exercise protocol
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Acute studies have shown that it is unclear whether the maximal isometric 

contraction force can be enhanced by vibration (10,13,18,24), but vibration may 

increase the sub-maximal isometric contraction force, as evident by increased EMG 

activity dunng vibration (23) For dynamic contractions, vibration can increase the 

maximal voluntary contraction force (26) and power (21) The exercise protocols 

used in chronic vibration training studies appear to be consistent with the above 

findings on exercise type and intensity (see section 2 6 1 and 2 6 2) To date, 

however, maximal isometric contractions have not been employed in chronic 

vibration training studies In whole body vibration training studies, sub-maximal 

isometric and dynamic contractions were always used, such as standing on the 

platform with knee flexed (8), squatting (3), and light jumping (7,12) Maximal effort 

has only been used with dynamic exercises in chronic vibration training studies (6), 

and the results showed that this kind of exercise protocol, with applied vibration, 

could achieve significantly more strength gam (p<0 05) (6)

As discussed in section 2 6 1 and 2 6 2, the increase in exercise intensity and volume 

tends to induce greater muscle performance improvement in chronic vibration 

training (3,8) However, because of the lack o f chronic vibration training studies and 

the diversity o f the training programs employed, the optimal vibration training 

programs remains unclear

2 8 Summary of vibration treatment on neuromuscular performance
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Although there is a lack of strictly controlled studies, the available studies on 

vibration training to date still allow us to make some conclusions about this new 

training method. It appears that vibration training can induce enhancements in 

strength and power, both acute and chronic (3,6,7,18,21,23,26). However, vibration 

training may also have some limits, e.g. it is still unclear whether the maximal 

isometric contraction force can be enhanced by vibration. Moreover, the inhibition 

effect o f vibration on motor unit recruitment should be taken into consideration. It 

also seems that the methodology of vibration training, both the vibration 

characteristics and exercise protocols, plays an important role in eliciting this 

enhancement (8,12).

Vibration amplitude and frequency are very important in vibration training because 

they determine the load that vibration imposes on the neuromuscular system during 

training (17). Present studies indicate that vibration amplitude may need to be of a 

sufficient magnitude if it is to elicit an enhancement o f strength and power (7,12). 

Due to the lack of studies directly comparing different amplitudes, it is not currently 

possible to stipulate the specific optimum magnitude of this minimum amplitude for 

either direct or indirect vibration methods. There may also be a frequency range (e.g. 

30-50 Hz) that is able to activate the muscle most effectively (14,23). However, there 

is a lack o f study examining the effect o f vibration frequency, especially in direct 

vibration method. These findings need further investigations.

The vibration amplitude and frequency that are delivered to a muscle being trained 

are influenced by the method of vibration application. With indirectly applied
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vibration, a situation may exist where the vibration amplitude and frequency on a 

muscle close to the vibration source may be sufficient to activate the muscle 

effectively, but they may not be sufficient when they reach a muscle further away 

from the vibration source (7,23). This is because vibration amplitude and frequency 

may be attenuated during its transmission through soft tissues (17,22). Moreover, this 

attenuation is increased with the increases in vibration frequency (22). In contrast, 

direct vibration may stimulate a specific muscle group more effectively because the 

distance of transmission is shorter and the amount o f attenuation is less. However, 

the effect o f direct vibration is more localized and indirect vibration may be able to 

activate more muscle groups during its transmission (6). Compared with indirect 

method of vibration, there have been far fewer studies examining the effect of the 

direct method of vibration.

Vibration duration appears to be an important factor when vibration is employed 

with the exercise o f sub-maximal effort, a sufficient duration may be needed to fully 

activate motor units (3) and enhance central motor excitability (4).

The exercise protocol employed in vibration training appears influence on the 

training effect. Insufficient exercise intensity and volume may reduce or prevent any 

vibration effect (8).

Vibration appears to induce greater strength and power gain in elite athletes than 

non-elite athletes. Although this vibration training effect was only examined in two 

studies, which investigated the acute responses (21,26), it suggests that vibration
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training may have a great potential for use with elite athletes, as it is harder to 

produce an enhancement m neuromuscular performance in elite athletes than non- 

elite athletes when conventional strength training methods are used

2 9 Purported mechanism for vibration training effect

Currently there is no clear consensus on the mechanism by which vibration may
j

enhance neuromuscular performance, and m fact there is a lack of research in this 

area However, a number of mechanisms have been postulated upon, which are 

discussed below It should be noted that only in this section will some of those
i

studies that did not fulfil our inclusion/exclusion criteria be reported because some 

purported mechanisms for vibration training were suggested by these studies In the 

following discussions, the neuromuscular mechanisms will be discussed first (section 

2 9 1 to 2 9 3), followed by the hormonal mechanisms (section 2 9 4)

2 9 1 Superimposed vibration increases muscle activity and contraction force 

dunng strength training

1) Tome vibration reflex (TVR)

Mechanical vibration applied to a skeletal muscle produces a sustained discharge of 

the la afferent and a tome reflex contraction in the muscle being vibrated This

phenomenon is called tome vibration reflex (TVR) (30,31) Park and Martin (32)

found that sub-maximal contraction force and neural activity o f a muscle could be 

enhanced by TVR

42



2) Vibration induced afferents facilitate maximal voluntary muscle

Motor units need to fire at a very high frequency (60 to 120 Hz) in the initial phase 

of a maximal voluntary contraction performed as fast and hard as possible (33) In 

addition, an excitatory inflow of la afferents are needed for the generation of the high 

motor unit firing rates (34) Thus the continuous firing of la afferents induced by 

vibration may facilitate the high firing rates o f motor units that are needed in 

maximal voluntary contractions Cardinale and Bosco (11) suggest that vibration 

may stimulate the secondary endings and Golgi tendon organs o f the muscle, and the 

joint receptors and cutaneous mechanoreceptors The afferent signals from these 

sensory organs may facilitate the activity of y motoneurons (11), which may increase 

the sensitivity o f the primary endings, leading to enhanced force and power output in 

maximal voluntary contractions

3) Increased synchronization of motor units

There is some evidence that, in elite power and strength athletes, motor units are 

activated synchronously during maximal voluntary efforts (35) It has also been 

found that the increased mechanical output o f muscle induced by short-term training 

might have been brought about by the neural adaptations in terms of greater muscle 

activation levels and more synchronous activation patterns (36)

Muscle vibration may drive motor units to fire more synchronously (37,38) Martin 

& Park (38) and Lebdev & Polyakov (37) studied the synchronization of motor units
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under vibratory stimuli by using spectral analysis o f the EMG Their results showed 

that there were peaks m EMG power spectrum at the vibration frequency and its 

harmonics, which indicated that the discharge of motor units became synchronized 

with vibration pulses (37,38) Issunn et al (6) suggested that the synchronization of  

motoneurons by vibration may result in a more efficient use o f the force production 

potential o f the muscle being trained

4) Muscle tuning

Muscle has an ability to damp the vibration or shock input from the lower limbs 

during running (39) A ‘muscle tuning’ hypothesis has been suggested to explain this 

phenomenon (39,40) This hypothesis suggests that the soft tissues of the lower limbs 

may damp vibrations with the frequencies o f 10 to 20 Hz (resonance frequency o f  

lower limb) by increasing the muscle stiffness of lower limb (40) This ‘muscle 

tuning’ hypothesis has also been suggested to be a possible mechanism for whole 

body vibration training effect (41) Cronin et al (42) found that the muscle stiffness 

of lower limbs tended to increase after a bout o f whole body vibration training 

Therefore, it is possible that the increase of muscle stiffness to damp vibration may 

also be a reason for the enhancement o f contraction force and power

5) Decreased sense of effort

Liebermann et al (26) found that when subjects performed the same isotonic elbow 

flexion exercise with and without vibration, their perception of effort was lower 

when there was applied vibration dunng exercise The authors also found that



maximal strength during elbow flexion was greater with supenmposed vibration The 

authors (26) thus suggested that the improved maximal isotonic contraction force 

associated with vibration may in part be due to the decreased sense o f effort, as 

people have the feeling o f lifting lighter loads (26)

2 9 2 Vibration has a residual effect to facilitate the subsequent contraction

As discussed above m section 2 5 3 and 2 5 4, muscle contraction force and power 

may be enhanced immediately after the vibration treatment This faciliatory effect 

may be due to the following mechanisms
<

1) Increased motoneuron excitability

TVR may induce a facilitatory after-effect which decreases motor unit recruitment 

thresholds during the subsequent voluntary contraction (43) This post-vibration 

facilitation has been interpreted as a post-tetanic potentiation of the motoneurons, 

since Granit (44) has demonstrated that the muscle spmdle la afferents can produce 

an effect of this kind A remanent sensitization o f the muscle spindles is also 

suggested as a mechanism for this post-vibration facilitation effect (43)

Several studies also report that the stretch reflex could be potentiated after vibration 

treatment (30,45) Eklund et al (30) found that the TVR in the quadriceps muscle 

could be facilitated by a preceding 90 seconds vibration applied to the patellar 

tendon In addition, tendon reflex elicited in the soleus muscle of normal human is 

markedly potentiated after 1-2 minutes duration of Achille tendon vibration
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(30,45,46) It is suggested that the enhanced stretch reflex after vibration treatment 

results in the improved counter movement jump (CMJ) performance because the 

CMJ is characterised by the so-called stretch-shortening cycle (SSC) which could be 

potentiated by the stretch reflex activity (35)

Rittweger et al (4) suggests that the motor unit recruitment pattern may be changed 

after vibration treatment The authors (4) undertook spectral analysis on the EMG 

signal recorded dunng isometric contraction (70% MVC) after an exhaustive 

exercise with and without vibration It was found that the median frequency was 

significantly higher in the vibration group than the control group (4) It has been 

demonstrated that the EMG median frequency may be an indicator of central nervous 

recruitment patterns, as smaller motor units have a smaller conduction velocity (and 

hence EMG frequency) and amplitude (and hence EMG power) than larger units 

(28) This finding on EMG median frequency suggests that a central nervous
i

recruitment o f predominantly larger motor units occurs after vibration training (4) 

Therefore, the after vibration facilitation of isometric and dynamic muscle 

performance may be due to an enhanced central motor excitability, particularly with 

respect to the fast twitch fibres and motor units (4)

Furthermore, the study by Kossev et al (47) demonstrated that muscle vibration 

caused augmentation of motor evoked potentials (MEPs) following transcramal 

magnetic stimulation (TMS) but not following transcramal electrical stimulation, 

indicating that cortical excitability was altered by muscle vibration Cardinale and 

Bosco (11) suggested that vibration training may influence the excitatory state o f the 

peripheral and central structures, which could facilitate subsequent voluntary
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movements. This may be one of the mechanisms for improvement in acute muscle 

performance following a bout of vibration training.

2) Increased neuromuscular efficiency by increased muscle blood flow after 

vibration

Bosco et al. (48) found that the neural efficiency index, which is the EMGrms 

divided by mechanical power, decreased significantly after a bout o f vibration 

treatment (48). The authors (48) therefore suggested that the neuromuscular 

efficiency was significantly enhanced by vibration. This increase of neuromuscular 

efficiency after vibration treatment may probably be the result of increased muscle 

blood flow and muscle temperature (48), which could accelerate the supply o f  

substrates and removal o f the waste substances produced by the muscle contractions 

and therefore decrease fatigue (49).

The increase o f muscle blood flow and muscle temperature after vibration treatment 

was found in a number of studies (50-52). Nakamura et al. (51) found that muscle 

vibration can induce vasodilation. Kerschan-Schindl et al. (50) found that whole- 

body vibration training may increase the muscle blood volume, as power doppler 

indices indicated that muscular blood circulation in the calf and thigh significantly 

increased after 3 minutes o f whole-body vibration exercise. With localized vibration, 

Oliveri et al. (52) found that after 15 min of 100 Hz vibration applied to the forearm 

muscle, the skin temperature increased significantly. The authors (52) also noted that 

all subjects had an erythematous reaction around the area where the vibrator was
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placed, which suggested that there was vasodilation of cutaneous vessels from 

vibration stimulation

3) Inhibition of antagonist muscle

Tonic vibration reflex (TVR) may also induce a decrease m the excitability o f the 

motoneurons innervating the antagonist muscle through reciprocal inhibition (31) 

Cardmale and Bosco (11) suggested that vibration may alter the inter-muscular 

coordination patterns leading to a decreased braking force However, no study 

appears to have analysed antagonist muscle EMG to date In order to clarify this 

mechanism, further studies are needed

2 9 3 Muscle hypertrophy by vibration training

To date there have been no reports on the effect o f vibration training on human 

muscle hypertrophy However, some animal experiments have shown enlargement 

of the muscle fibres following vibration Applying vibration 5 hours a day for 2 days 

to the hindhmb of rat, Necking et al (53) found increased cross-section areas o f the 

vibrated muscle fibres, which, he suggested, may be due to increased intracellular 

oedema Flamping et al (54) found that 192-seconds o f mechanical vibration each 

day for 14 days applied to the Achilles tendon of rat during hindhmb unloading 

significantly reduced the decrease in soleus muscle mass and fibre size when 

compared with the control soleus It is possible that vibration may also have a similar 

effect on human muscle hypertrophy
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2 .9 .4  H o rm on al response to v ib ration  tra in ing

Several hormones secreted by different glands in the body affect skeletal muscle 

tissue. These effects are classified as either catabolic, leading to the breakdown of  

muscle proteins, or anabolic, leading to the synthesis o f muscle proteins from amino 

acids. Among the anabolic hormones are testosterone, growth hormone, and 

somatomedins (35,54).

Hormonal response to vibration training was examined by a number of studies (55- 

57). However, it should be noted that none of these studies employed an appropriate 

control. Thus the influence o f the exercise associated with vibration can not be 

excluded. In two of these three studies, increased hormonal secreation was found 

after vibration treatment (55,57). Bosco et al. (55) found that immediately after a 

bout of 10-minutes whole body vibration training (10 sets o f 1-minute treatment with 

1-minute rest in between, except after fifth set where the rest time between the fifth 

and sixth set was 6-minutes), there was a significant increase of blood levels of 

testosterone (7%) and growth hormone (460%). McCall et al. (57) found that after 

10-minutes of muscle vibration (100Hz, 1.5mm) applied to the tibialis anterior 

muscle of human subjects, plasma growth hormone concentration determined by 

bioassay (BGH) was elevated significantly by 94%. However, in another study by 

Bosco et al. (56), it was found that hormonal levels (the serum testosterone) 

decreased significantly after a bout o f 7-minute vibration training (7 sets o f 1-minute 

treatment with 1-minute rest in between). The possible reason for the above 

contrasting results may be the different vibration training protocols employed. It has 

been found that the change of anabolic hormone concentrations after a resistance
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exercise workout is determined by factors such as intensity o f the workout, amount 

o f rest between sets and exercises, volume of total work and training level o f the 

individual (1). Thus, the different vibration training durations and rest times may 

induce different hormonal responses after a bout o f vibration treatment.

It was also noted that the different hormonal profile corresponded to the different 

neuromuscular performance in the two studies by Bosco et al. (55,56). In the study 

which demonstrated decreased serum testosterone, both counter movement jump and 

continuous jump height tested immediately after vibration treatment decreased 

significantly (56). However, in the study which demonstrated increased serum 

testosterone, both counter movement jump height and dynamic leg press power 

increased significantly (55).

The decrease o f testosterone in blood accompanied by the decrease in neuromuscular 

performances suggests that vibration treatment may act on the biological system in a 

similar manner to heavy resistance training (56). According to training theory, at the 

beginning of heavy resistance training both neuromuscular performances and 

testosterone concentration in the blood decrease (56). After several weeks, a period 

of overcompensation follows, where enhancement o f the muscle performance and an 

increase o f serum testosterone are found (56). On the other hand, Bosco et al. (56) 

suggested that an adequate male sex hormone level may compensate for the effect of 

fatigue by ensuring a better neuromuscular efficiency in the fast twitch fibres, which 

supports the finding that the potentiated neuromuscular performance after vibration 

treatment was accompanied by the increase of testosterone.
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2 .1 0  Justification o f  the present study

It is clear from this review that the contradictory findings on vibration training are 

evident and they may be related to training factors including vibration 

characteristics (amplitude, frequency and method of application) and exercise 

protocols (type of exercise and exercise intensity). However, there is a lack of 

research into many of these factors. Therefore, investigation on this issue is the aim 

of the present study. In particular, the following factors will be examined:

Firstly, the review of literature suggests that vibration amplitude needs to be high 

enough to activate a muscle during vibration training (7,12). There also appears to 

have a frequency range that may activate the muscle most effectively (14,23). 

Therefore, the vibration load (amplitude and frequency) on a muscle may be closely 

related to the vibration training effect. However, the vibration load on a muscle is 

affected by the method of vibration application. To date, most vibration training 

studies have employed the indirect method of vibration, which may limit the 

vibration load on a muscle further away from the vibrating source because o f the 

vibration attenuation. In addition, it is very difficult to examine the relationship 

between the vibration load and vibration training effect on a muscle by indirect 

method because the actual vibration and frequency on the muscle is unquantifiable 

after the transmission of vibration through soft tissues.

Few vibration training studies to date have employed direct method of vibration 

(10,14,18,49). None o f them have examined the influence of vibration amplitude. 

Only one of them directly examined the influence o f vibration frequency (14).
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Moreover, the vibration devices used in these studies are cumbersome and not 

suitable for dynamic movement during strength traimng (10,14,18) Therefore, the 

present study will develop a portable vibration training device that can directly 

stimulate the muscle during training exercise This device should also have the 

capacity to produce different ranges o f vibration amplitude and frequency to allow 

the present study to examine the influence of vibration characteristics (amplitude 

and frequency)

Secondly, the present review indicates that supenmposed vibration may enhance the 

strength and power of maximal isotonic contractions (6,21,25) This is of great 

potential in strength training because o f the general acceptance that dynamic 

training is more beneficial to neuromuscular performance in athletes than isometric 

training However, only three studies to date with appropriate control have 

examined vibration training with maximal isotonic effect (6,21,25) All o f these 

studies employed an indirect method of vibration Therefore, the present study will 

investigate the effect o f vibration training with a direct method, on the 

neuromuscular performance of maximal isotonic contractions

Finally, it is evident from the review that exercise intensity may have an influence 

on the vibration training effect (3,8) However, no vibration training studies to date 

have directly examined this possibility Therefore, this will be undertaken m the 

present study
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Development of a portable muscle-tendon vibrator with variable 

amplitude and frequency for vibration training

3 1 Introduction

Although vibration training gained popularity in the last five years as a novel 

strength training method (11,17) The study results in this area are not consistent as 

to whether vibration has facilitatory effect on strength and power development A 

number of acute and chronic vibration training studies have demonstrated that 

vibration training could achieve significantly more strength and power gain than the 

same conventional training without vibration (3,6,7,12,21,26) However, some 

studies did not find any beneficial effect to superimposed vibration (8,9) A critical 

review of the literature suggested that the vibration training effect may be dependent 

on the methodology employed

The methodology of vibration training includes the vibration charactenstics and 

exercise protocol Vibration charactenstics include vibration amplitude, frequency 

and the method of vibration application Vibration load imposed on neuromuscular 

system during vibration training is determined by vibration amplitude and frequency 

(17) The review of the literature reveals that these factors need to be high enough for 

vibration training to elicit an effect However, the method of vibration application 

could influence the vibration amplitude and frequency that imposed on the target 

muscle dunng vibration training There are two methods of applying vibration to the 

muscle dunng strength training In the direct method, vibration is applied directly to 

the muscle belly or the tendon of the muscle being trained (14,18,49) In the indirect

Chapter 3
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method, vibration is applied indirectly to the muscle being trained, i.e. the vibration 

is transmitted from a vibrating source away from target muscles, through part o f the 

body to the target muscle (5,6).

Although the indirect method has the advantage of stimulating more muscle groups 

during vibration transmission (6), there are some disadvantages with this method. 

Firstly, the energy of vibration, especially vibration of high frequency, may be 

attenuated when transmitted through the soft tissues. This attenuation may elicit the 

effect that the vibration load (amplitude and frequency) on the muscle groups further 

away from vibration source may not be high enough for muscle activation. Secondly, 

both the agonist muscle and antagonist muscle are stimulated by vibration in indirect 

method, which may induce some amount of inhibition on the activation of agonist 

muscle (8,58).

Compared with indirect method, vibration training with direct method may stimulate 

specific muscle group more effectively because the distance of transmission is 

shorter and the amount o f attenuation is less. To date, however, there have been few 

vibration training studies with appropriate control design used this method (10,14,18). 

The results o f these studies are inconsistent because different vibration load was 

imposed. No study to date has examined the relationship between the vibration load 

and the vibration training effect in direct method. In addition, the vibration unit used 

in direct method to date either has to be held by another person (18) or needed to be 

fixed to an exterior support (14) during their operations. Thus they are not suitable 

for strength training where dynamic exercises are normally executed and where it is 

necessary to move easily from one exercise action to another.
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It is thus the primary objective o f this study to develop a vibrator that was firstly 

portable and could stimulate the muscle-tendon directly dunng strength training 

exercise, and secondly, provide varied amplitude and frequency capacity to 

investigate the effect o f the different vibration loads on neuromuscular performance

s

3 2 Methods

3 2 1 Requirements for the muscle-tendon vibrator

1) Size and weight As the vibrator will stimulate the muscle-tendon directly dunng 

strength training exercise, a key design cntenon was to make it as small and light 

as possible so that it can be attached to the muscle-tendon conveniently and 

accommodate the movement necessitated by different training exercises

2) Vibration charactenstics (amplitude and frequency ranges) Another important 

requirement for the vibrator design was its ability to produce vibrations with an 

amplitude and frequency range appropnate for vibration traimng It is expected 

that the vibrator could encompass the ranges o f amplitudes and frequencies that 

have been employed in the vibration training studies to date This could facilitate 

our study for searching the optimum vibration amplitudes and frequencies for 

vibration traimng To establish these ranges of amplitudes and frequencies, a 

review was made on the vibration charactenstics applied in the vibration training 

studies reported to date This review was limited to studies employing direct 

method because the studies with indirect vibration only reported the vibration 

charactenstics o f the vibration source(3,5-7,12) which were attenuated by the
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time they reach the target muscle group(59) Frequencies were found to range 

from 30 Hz(14) to 200 Hz(32), while amplitudes ranged from 0 2 mm(32) to 3 3 

mm(30) It was reported however, that vibration with amplitude greater than 2 

mm induced discomfort for subjects(30) Thus it was decided that our vibrator 

design should encompass an amplitude and frequency range of 0 2 mm to 2 mm, 

and 30 Hz to 200 Hz respectively to facilitate optimization of the design for 

vibration training applications

3) Repeatability The output o f vibration characteristics should be repeatable during 

vanous operation conditions m strength training exercises

3 2 2 Concept generation of the vibrator design

1) Selection of the methods to develop vibrator

The common types o f vibration machine were reviewed and their advantages and 

disadvantages were compared in order to select the methods to build our vibrator

a) Direct-dnve mechanical vibration machine

The direct-dnve vibration machine consists o f a rotating eccentnc or cam dnving a 

positive linkage connection which force a displacement between the base and output 

table o f the machine (figure 3 1) The frequency can be changed by employing a 

direct-coupled vanable-speed motor with electronic speed control(60)
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low operating frequencies and large displacement can be provided 

conveniently

The disadvantage of this method

- the machine must be designed to provide a stiff connection between the 

ground or floor support and the table This is not suitable for our vibrator 

because we want to develop a portable vibrator that can be used in dynamic 

strength training exercises

- The allowable range of operating frequencies is small m order to remain 

within beanng loading ratings

- The waveform of acceleration is normally sufficiently distorted The 

fundamental dnven frequency is usually un-recogmzable

The application of this kind of method in vibration training device

- In the study by Issunn et al (6,21), this method was used to build a vibration 

device for indirect vibration training The device has to be fixed to the 

ground and can produce vibration with frequencies o f 44 Hz and 60 Hz The 

detail of this vibration device can be found in section 2 4

- In the study by Warman et al (49), this method was used to build a vibration 

device for direct vibration training The device also has to be fixed to an 

extenor support and can only produce vibration with frequency o f 50 Hz 

The detail o f this vibration device can be found m section 2 4

T he advantage o f  this m ethod
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Figure 3 1 Example o f direct-dnve mechanical vibration machines 

(A) Eccentnc connecting link (B) Scotch yoke (C) Cam and follower [Adapted 

from Unholtz (60)]

b) Reaction-type mechanical vibration machine

This kind of vibration machine using a rotating shaft carrying a mass whose center- 

of-mass is displaced from the center-of-rotation of the shaft for the generation of 

vibration (figure 3 2) The force resulting from the rotating unbalance is transmitted 

through bearings directly to the table mass, causing a vibratory motion without 

reaction of the force against the base (60)
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Figure 3 2 Example o f reaction-type mechanical vibration machine [Adapted from 

Unholtz (60)]

The advantage of this method

- The force generated by the rotating unbalance are transmitted directly to the 

table without dependence upon a reactionary force against a heavy base or 

rigid ground connection Thus, there is no need to fix the vibration machine 

to an exterior support when it is used on stimulating muscles during vibration 

training, i e vibration machine could be portable by using this method 

The output waveform of vibration is superior to that attainable in the direct- 

drive type of vibration machine

The disadvantage of this method

- frequencies up to 120 Hz and higher can only be obtained for smaller

machines
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To date, there has been no vibration training device that employed this kind of

method

c) Electrodynamic vibration machine

This kind o f vibration machine system is comprised of an electrodynamic vibration 

machine, electrical power equipment which dnves the vibration machine, and 

electrical controls and vibration monitoring equipment The force which causes 

motion o f the table is produced electrodynamically by the interaction between a 

current flow in the armature coil and the intense magnetic dc field which passes 

through the coil(60)

The advantage of this method

- A wide range of operating frequencies is possible, from 0 to above 30,000Hz

- Frequency and amplitude are easily controlled

- Good output waveform can be generated at all frequencies and amplitudes

The disadvantage of this method

- Extenor ngid support is needed for the operation

- The size is usually too big and the weight is too heavy for portable operation

- Quite expensive

The application of this kind of method in vibration training device

T h e  application  o f  this k in d  o f  m ethod in  vib ration  tra in ing  device
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- In the study by Jackson et al (14), a vibrator o f this kind (Ling Dynamics, 

V201, Ling Dynamics, UK) was used to apply vibrations with two different 

frequencies (30 and 120 Hz) directly to the femons muscles The size o f the 

vibration unit is 0102  mm (diameter) x 121 mm (height), and its weight is 

1 8 kg(19)

d) Hydraulic vibration machine

The hydraulic vibration machine produces vibration by flow of high-pressure fluid 

from a pump to the vibration output device Usually, an electrohydrolic valve is used 

to deliver the high-pressure fluid(60)

The advantage of this method

- Large generated force and large amplitude of vibration can be produced 

relatively easily

The disadvantage of this method

- A rigid connection to firm ground or a large massive base is necessary to 

anchor the machine in place

- Hydraulic fluid cleanliness, seepage and leakage are problems

- Quite expensive (electrohydraulic valve, hydraulic source)

*

The application of this kind o f method in vibration training device 

No vibration training device has used this method

61



A comparison of the above mentioned four methods was made as shown m table 3 1 

After the comparison, the method of reaction-type vibration machine was selected as 

small size can be achieved by this method

Table 3 1 Comparison of different types o f vibrator

Type of Frequency 
vibrator

Amplitude Waveform Size Exterior 
support 

structure

Application

in
vibration
training

Direct-dnve Operating 
frequency 
low and 
variable

Variable Bad Big Needed Yes(6 )

L Reaction-type ^Operating ariabiejHwSuperioräoi£SmaüjyNot^^^ 

! 1 f 'i l m o r e j t h a n ^ =* wdnv 0 type ' • -w

ÏL,lh J.ZILxJL 7 fr.!..!? vi-

P^äBSSPSSS

& ■ llEife-

Electrodynamic Wide range 
operating 
frequency 
and
variable

Variable Good Big Needed Yes(14)

Hydraulic Wide range 
operating 
frequency 
and
variable

Variable Good Big Needed No

2) Two concepts o f vibrators and their attachment methods

1st concept* The vibrator is in the shape of a cylinder, with a motor housed inside it 

There are two eccentnc masses attached to the front and rear shaft respectively The

62



vibrator was fastened to the muscle-tendon with elastic Velcro strap The orientation 

of the longitudinal axis of the vibrator was perpendicular to the arm or leg (figure 

3 3)

Figure 3 3 Sketch of the first concept

2nd concept The shape of the vibrator is a cylinder, with the motor housed inside it 

There is only one eccentric mass attached to the front shaft of the motor Thus the 

length of the vibrator can be shorter compared with the first concept The vibrator is 

fastened to the muscle-tendon with elastic Velcro strap Because the vibrator is 

shorter, the orientation of the longitudinal axis of the vibrator is parallel to the arm or 

leg (figure 3 4)
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strap

Figure 3.4 Sketch of the second concept

Compared with the first concept, the advantages and disadvantages of the second 

concept are as follows

Advantage

a) The vibrator can be made shorter in 2nd concept

b) The rear shaft o f the motor is not needed and the price o f the motor is lower

c) The attachment by the elastic strap is easier 

Disadvantage

a) It may influence the training exercise because the longitudinal axis o f the 

vibrator is parallel to the arm or leg

b) The balance of the vibrator is poor because there is only one eccentric mass on 

one side o f the shaft
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The first concept was chosen fo r the v ib ra to r design.

3.2.3 Detailed design of vibrator 

1) Eccentric mass

Different vibration amplitudes are to be produced by different eccentric mass sizes 

that attached to the shaft of motor. In order to produce the vibration amplitude 

consistent with the required range, an estimation of the eccentric mass that should be 

used for the vibrator was made. A single degree-of-freedom system model was used 

for this estimation calculation (figure 3.5). Eccentric mass Mu was mounted on to the 

mass M  (mass of the motor and housing, i.e. 430 g). The eccentric radius ( e ) was 

8.4 mm, and co the angular velocity of the eccentric mass (frequency of vibrator). K  

and C represented the stiffness and damping coefficient of the muscle-tendon under 

the vibrator. A was the displacement amplitude of the mass M  in the X  -direction.

Figure 3.5 Single degree-of-freedom system model of vibrator

The displacement amplitude of the vibrator can be calculated as follows(61):

A   xexR a  (Equation 3.1)
M
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where

M u -  eccentnc mass 

M  = mass of the motor and housing 

e = eccentnc radius

Ra = dimensionless response factor, and is calculated as

(V 2)
Ra = - _  _ - ' =— -  = — (Equation 3 2)

0 - ( V  2)) + (2 x Ç x 0) /  y

where

con = natural frequency of muscle-tendon under the vibrator 

£ = fraction of the cntical damping

To identify the values of con and £ for muscle-tendon, the data from Wakeling et al

(62) which investigated the free vibration behavior of quadnceps muscles were used 

The damped natural frequency ranged from 8 85 Hz to 30 39 Hz (62) An average 

value of 19 8 Hz was used in this study The fraction of the cntical damping in the 

study of Wakeling et al (62) ranged from 0 14 to 0 73 and thus an average value of  

0 44 was used m our study According to the calculation using Equation-3 2, Ra 

ranged from 1 24 at 30 Hz to 101 at 200 Hz Using these values, the eccentnc mass 

could be calculated from Equation-3 1 The calculation showed that if  the amplitude 

ranged from 0 2 to 2 mm at frequencies between 30 and 200 Hz, the eccentnc mass 

should range from 8 g to 100 g (table 3 2)
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T a b le  3 .2  Estim ation  o f  eccentric mass at required range o f  v ib ra tion  am plitude

and frequency

Frequency
(Hz)

Ra Eccentric mass 
(g)

(amp=0.2mm)

Eccentric mass 
(g)

(amp=lmm)

Eccentric mass 
(g)

(amp=2mm)

30 1.24 8.29 41.46 82.91

50 1.09 9.34 46.70 93.41

70 1.05 9.76 48.78 97.57

90 1.03 9.94 49.71 99.42

110 1.02 10.04 50.19 100.38

130 1.01 10.09 50.47 100.94

150 1.01 10.13 50.65 101.29

170 1.01 10.15 50.77 101.53

200 1.01 10.18 50.88 101.77

Note: amp = vibration amplitude

Three different materials, i.e. plastic, aluminium and copper were used to make 

eccentric masses. For each material, there were four pieces which functioned as 

eccentric masses, i.e. two eccentric masses on each side o f the shaft. The thickness of 

each eccentric mass was 4mm. The weight o f each eccentric mass was 3.5 g (plastic), 

8 g (aluminium), and 20 g (copper) respectively. Therefore, the amplitude that could 

be produced ranged from 0.14 mm (with only one plastic eccentric mass on each side
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of shaft) to 2 5 mm (with 2 copper eccentric masses on each side o f shaft) Moreover, 

m order to fine-tune the weight contribution of the eccentric mass, there will be one 

piece o f eccentric mass attached to each end of the motor shaft by set screw, and 

another one piece of adjustable eccentric mass attached to each fixed eccentric mass 

The angle between the fixed and adjustable eccentric masses constituting the 

eccentric masses on each side of the shaft could be adjusted to several different 

angles (figure 3 6) 0°, 83°, 120°, 150°, 173° and 180°

Eccentric mass 
/  \ m  (adjustable)

Eccentric mass 
(fixed)

F

Figure 3 6 Sketch of fixed and adjustable eccentric masses 

Note F = eccentric force produced by one eccentric mass

Therefore, the eccentric force will vary with the angle, which could be calculated by 

the following equation ^

Ft = F x tJ2x (1 + cos0) (Equation 3 3)

where

Ft = total eccentric force produced by the fixed and the adjustable 

eccentric masses 

F = eccentric force produced by one eccentric mass
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6 =  the angle betw een the fixed  eccentric mass and the adjustable one

According to the calculation of equation 3.3, the produced eccentric force at angles 

of 0°, 83°, 120°, 150°, 173°, and 180° were 100%, 75%, 50%, 25%, 6.25% and 0% 

of full eccentric force respectively.

3) Selection of motor

Several factors will decide the motor selected, which will be discussed as follows.

a) Weight and size: The size should be as small as possible, and the weight as light 

as possible

b) Rotating speed: the highest vibration frequency is about 200 Hz, which 

correspondences to the rotating speed capacity o f motor up to 12,000 RPM

c) Stall torque: the motor should be able to drive the eccentric mass to the required 

rotating speed at the start o f operation during a specific period (e.g. 2 seconds). Thus 

the stall torque should exceed the peak torque required at the start of operation. The 

maximal torque during the start phase could be calculated by (88):

M  = J  x  —  x —  (Equation 3.4)
At 30

Where

M  = maximal torque during operation, in Nm

An =  rotating speed change in  R P M  (fro m  0 to 12 ,000  R P M )
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where

At = duration for speed change from 0 to 12000 RPM in second (the value

of 2 seconds was used for estimation)

J  = moment inertia o f eccentric mass m kgm2, calculated by

1 ,
J  = —x mx  R (Equation 3 5)

m ~ eccentric mass in kg (the maximal possible eccentric mass o f 100 g 

was used for estimation calculation)

R = radius of eccentric mass m meter (2 cm was used for calculation)

According to the calculation of Equation 3 4 and Equation 3 5, the maximal torque 

was 12 6 mNm

d) Maximal power capacity the maximal power that may be required by operation 

was calculated by (88)

P = ( M + M f ) x n x ^  (Equation 3 6)

where

P  = maximal power in W

M  = maximal torque to start the eccentric mass to 12, 000 RPM, m Nm 

M f  = friction torque of motor in Nm (10 mNm was used for estimation)

n = maximal speed in RPM (12,000RPM)

Using the values o f M calculated above, the maximal power was 28 W as calculated 

from equation-3 6
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e) Eccentric load capacity the load o f eccentnc force during operation has to be 

taken by the ball bearing and shaft o f the motor The maximal eccentnc load that 

may be loaded on the ball beanng was calculated by

F  = mxco2 xe  (Equation 3 7)

where

F = maximal eccentnc load dunng operation in N 

m = maximal eccentnc mass on one side of shaft, in kg (50 g was 

used for estimation) 

co -  maximal frequency, in rad/s (200Hz was used for estimation) 

e = eccentnc radius' m meter (0 8 mm was used for estimation)

The calculation by equation-3 7 gave the result o f maximal eccentnc load of 63N

f) Control o f the rotating speed control o f the vibration frequency was realized by 

control of the motor rotating speed The speed should be easily changed and set to a

specific value because in the later test o f the vibrator, several vibration frequencies
/

may be tested in turn m a short penod of time on human subjects In addition, the 

motor speed should be maintained accurately at the preset value dunng operation

The brushless DC motor was selected because o f its long-life, high power and broad 

speed range charactenstics The speed control is also favourable in this kind o f  

motors because these motors often incorporate either internal or external position 

sensors to sense the actual rotor position
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Several motors from two different companies were selected and compared as to the 

requirements stated above (table 3 3) It can be seen that all five motors could satisfy 

the requirement o f maximal torque, power and speed Motor 1 and 5 have the 

smallest size and the lightest weight However, only motor 3 and 4 had the shaft 

radial load capacity that is greater than the maximal eccentric load requirement 

Motor 4 was selected because it is smaller and lighter compared with motor 3, and it 

also has greater shaft radial load capacity

Table 3 3 Comparison of motor parameters

Dia­ Length Weight Power No-load Stall Shaft

Motor Company meter

(mm)

(mm) (g) (W) speed

(RPM)

torque

(mNm)

radial

load

(N)

1 Maxon 22 62 7 120 50 27000 332 16

2 Maxon 32 60 263 80 13100 420 28

3 Maxon 40 70 390 120 12300 1353 70

* * /*..... !*. r.
$ *Mimmotor ,35 ¡A

4 if § * #- 3- V i M s
Ivl'PO« S o i ' ^ i

-Jr* ■'*", <16.
M m M

5 Mimmotor 24 44 100 37 23000 115 30

4) Power supply and control o f the motor

The motor performance including its speed and hence the vibration frequency was 

controlled by a motion controller (MCBL 2805, Faulhaber, Germany). A DC power 

supply unit (3 gen, 400 W, Excelsys, Ireland) was used to provide 24 V power supply 

to the motion controller and the motor The motion controller was connected by RS-
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232 cable to a computer on which a controlling program (Faulber Motion Manager, 

Faulber, Germany) was run The change of motor speed (vibration frequency) is 

simple by using this controlling program

5) Housing for motor

A hollow cylinder housing made of plastic was fixed external to the motor by two 

rings to protect the human body from the motor-eccentnc mass construct The outer 

diameter o f the housing was 50 mm, with a wall thickness o f 2 5 mm Two plastic 

caps were made to conceal both ends of the housing The total length of the housing 

with the caps was 118 mm A slot [6 0 mm (width) x 33 mm (length)] was made on 

the end of the housing for two purposes firstly, to dissipate the heat o f motor during 

its operation, secondly, to facilitate the change o f eccentric mass during test

6) Strap of the vibrator
i

A strap made o f elastic band was used to attach the vibrator to the muscle

The size of the vibrator is 0 5 0  mm (diameter) x 118 mm (length), and the weight 

430 g Figure 3 7 illustrates the design features described above together with 

ancillary components for construction of the vibrator unit The detailed drawings of 

the vibrator parts were presented in appendix B

3.3 Validation of the vibrator design
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With the vibrator successfully built it was necessary to run the device in order to 

verify that it can produce the vibration amplitudes and frequencies that are required 

It is also necessary to test whether this vibrator is able to operate stably when it is 

used in different operation conditions dunng vibration traimng All these were tested 

m the following two studies [study 1 (chapter 5) and study 2 (chapter 6)]

/
3 4 Discussion

The size and weight o f the vibrator was influenced by the motor size that was 

chosen In the present design, the lightest motor that satisfies our requirement of 

maximal rotating speed, power and torque was not chosen because of the shaft 

eccentric load (see table 3 3) It is possible to optimise the present design by 

incorporating a small bearing outside o f the motor that could still be housed in the 

vibrator This bearing will absorb the most of the eccentric load produced by 

eccentric mass rotating, and therefore smaller size motor could be used for vibrator

3 5 Conclusion

A portable muscle-tendon vibrator for vibration training was developed The unit 

developed makes use of a rotating eccentric mass system to produce a desired 

amplitude and frequency range capable o f investigating the influence of different 

amplitudes and frequencies on vibration training effect The vibrator can be strapped 

to muscle tendon dunng vanous strength training exercises
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Figure 3 7 Exploded view o f vibrator parts (l=motor, 2 and 3=eccentnc mass, 4 and 

5=nng for fixation of housing to motor, 6=housing for motor, 7=cap for housing)
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Chapter 4 

Generic methods

4 1 Introduction

A series experiments are undertaken in the present study to examine the acute effect 

of vibration training on neuromuscular performance The common methods 

employed in these expenments are detailed below Each methods section for the 

various experiments (Chapters 5, 6, 7, 8, 9, 10) will refer to this chapter to avoid 

unnecessary repetition Not all o f the expenments employed all of the methods 

detailed below

4 2 Subjects

Dublin City University’s ethics committee approved all expenments Subjects were 

in general good health and free from neuromuscular disease and injury Before 

participation subjects completed a health questionnaire (Appendix C) and provided 

informed consent (Appendix D) Subjects were not allowed to undertake any strength 

training exercise dunng the expenment penod

4 3 Measurement of mechanical and EMG signals

4 3 1 Vibration acceleration measurement
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Vibration acceleration was measured both on the vibrator and muscle. An 

accelerometer (one-axis, measuring range ±25g, Vernier Software & Technology, 

USA) was attached with double-sided sticky tape to a flat surface built on the 

vibrator housing. The accelerometer measured vibration acceleration on the vibrator 

itself. A second accelerometer (three axis, measuring range ±5g, Vernier Software & 

Technology, USA) was attached by double-sided sticky tape to the muscle belly of 

the biceps about 10 cm from the center of the vibrator. This accelerometer was used 

to measure the vibration acceleration on the muscle. The size o f both accelerometers 

was 26x26x20 mm, and the weight was 16g. Five seconds o f vibration acceleration 

was captured (250 Hz) by computer via an interface (Vernier LabPro®, Vernier 

Software & Technology, USA).

4.3.2 Joint angle measurement

Joint angle was measured in study 4, 5 and 6 by an electro-goniometer (XM110, 

Biometrics, UK). The output o f the goniometer was connected via an amplifier 

(DataLink, Biometrics, UK) and sampled at a frequency of 50 Hz.

4.3.3 Electromyography measurement

Electromyography (EMG) was measured on the bicep brachii, tricep brachii and 

quadriceps (rectus femoris, vastus lateralis, and vastus medialis). The EMG electrode 

on the bicep brachii was placed at l/3rd of the distance along a line connecting the 

tendon of the bicep brachii muscle in the cubital fossa to the acromion process (63). 

The EMG electrode on the tricep brachii was placed at l/3rd of the distance along a
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line connecting from the olecranon to the acromion (63) The EMG electrode on the 

rectus femons was placed at half o f the distance along a line connecting the anterior 

supenor spina lliaca to the supenor patella (64) The EMG electrode on the vastus 

lateralis was placed at 2/3rd of the distance along a line connecting the anterior 

supenor spma lliaca to the lateral border of the patella (64) The EMG electrode on 

vastus mediahs was placed at 4/5th of the distance along a line connecting the 

antenor supenor spina lliaca and the joint space in front o f the antenor border of the 

medial ligament (64) A pen mark was used effectively to relocate the EMG 

electrodes when EMG was measured on different days The skin was abraded and 

cleaned, and a bipolar electrode (AE-131, NeuroDyne Medical, USA), with a centre- 

to-centre distance o f 2cm, was attached to the muscle The resistance between the 

electrodes was measured to ensure it was less than 5 kQ (65) The EMG signals were 

connected to the differential amplifier (bandwidth = 10-1000 Hz, input impedance = 

100 MQ, Common Mode Rejection Ratio >75 dB from DC to 100 Hz) of a Powerlab 

4/20T unit (Powerlab®, ADInstruments, USA) The sampling frequency for the 

EMG signal was set at 1000 Hz The raw EMG signal was converted on-line to a 

root-mean-squared value of EMG (EMGrms data) by Powerlab (averaging constant 

50ms), and both the raw EMG data and the EMGrms data were stored for later 

analysis

4 4 Analysis of measured mechanical and EMG data

4 4 1 Vibration acceleration data
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From the measured vibration acceleration data, the following parameters were 

calculated 1) vibration amplitude (both on the vibrator and the m uscle), 2) vibration 

peak frequency (both on the vibrator and the muscle), 3) transmissibihty o f vibration 

amplitude and peak frequency from vibrator to muscle

An example o f the vibration acceleration measured on the vibrator (study 1) is shown 

in figure 4 1 The motor speed was set at 3900 RPM It can be seen that the 

acceleration signal consisted of several periodic components FFT analysis (1024 

points) performed on the acceleration signal showed that the mam component o f the 

vibration centred around 65 Hz The frequency at which the peak acceleration 

component was present is termed peak frequency in this study It was found that the 

acceleration component at peak frequency accounted for more than 95% of the whole 

vibration acceleration measured Thus, the vibration amplitude was calculated by 

using the following formula

^ cc
^  (2 x k  x Freq)2  ̂ (Equation 4 1)

where Acc -  acceleration component at peak frequency (m/s2)

Amp -  displacement amplitude (m)

Freq = peak frequency (Hz)

Transmissibihty of vibration amplitude and frequency was calculated as

Transmissibihty amplitude = ^!̂ P musch, x 100 (Equation 4 2)
Ampvlbrator

Transmissibihty _ frequency = x 100 (Equation 4 3)
F r e q  vibrator

where dmpmuscle = vibration amplitude on muscle(m)

A m p v lb r a to r  = vibration amplitude on vibrator (m)
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Freqmuscle = peak frequency on muscle (Hz) 

Freqvlbmtor ~ Peak frequency on vibrator (Hz)

Figure 4 1 Example o f measured vibration acceleration (motor speed 3900RPM)

4 4 2 Joint angle data

In study 4, 5 and 6, the joint angle data were used for the calculation of angular 

velocity, acceleration, moment and power for the bicep curl (study 5 and 6) and knee
'i

extension (study 5) by the following method

Firstly, the joint angle data were filtered by a windowed-sinc filter (66), which has a 

much better stopband attenuation than the butterworth filter (66) The residual 

method (67) was used to determine the optimal cut-off frequency for filtering of joint 

angle data, and the optimal cut-off frequency was found to be 2 Hz

Secondly, the angular ve lo c ity  data w ere calculated as (6 7 )
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(E quation  4 4 )

where co(i) is the angular velocity at data point i , and 6(1 +1) and 0(i -1 ) are the 

filtered angle values at data points (/ +1) and (/ -1 ) ,  respectively At is the 

sampling interval

The angular acceleration data was calculated as

where a(i) is the angular acceleration at data point / ,  and co(i +1) and cd( i - 1) are 

the filtered angle values at data points (z +1) and (z -1 ) ,  respectively

Thirdly, the concentric phase o f the joint angle data was determined as the time from 

when the joint angular velocity changed from negative to positive to the time at 

which the elbow joint angular velocity changed to negative again 1

Fourthly, the angular moment and power data in the concentric phase were calculated 

by the following different methods for bicep curl and ballistic knee extension, 

respectively

1) Calculation method for bicep curl (68)

Elbow flexion moment in the concentric phase was calculated as

where M ^  is the muscle moment produced to oppose the gravitational forces 

acting on the forearm, hand and dumbbell and was calculated as

(Equation 4 5)

^  elbow ^ g r a v  ^  inertia (Equation 4 6)
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Mgrav = (.mf x9  81 x rf  + md x9  81 x rrf)x co sO  (Equation 4 7)

where mf (kg) is the mass of the forearm and hand, rf  (m) is the distance from the 

elbow joint center to the center o f mass o f the forearm and hand, md (kg) is the mass 

of the dumbbell, rd (m) is the distance from the elbow joint center to the center of 

mass of the dumbbell, and O (radius) is the angle o f the forearm relative to the
r

horizontal The mass mf is estimated as mf -  0 022 x body mass (67), rf  is

estimated by 0 682x lf  (67), where ^ is  the length of the forearm and hand, and is

measured as the distance from elbow axis to the ulnar styloid rd is measured as the

distance from the elbow axis to the center o f the dumbbell M inertia is the muscle

moment produced to accelerate or decelerate the forearm and the dumbbell and was 

calculated as

M ,ner„a = (7/  + Jd) x a  (Equation 4 8)

where a  is the angular acceleration at the elbow joint (rad/s2), If  is the moment o f  

inertia o f the forearm and hand, and Id is the moment o f inertia of the dumbbell If 

is calculated as I f -  mf x p 2, with the mass mf estimated as detailed above and the 

radius of gyration, p  , estimated as p  = 0 827 x lf  (67) Id was calculated as 

I d = /n l/xr(i2, with the md and the rd calculated as detailed above

Muscle power (Pelbow) is calculated as

êlbow = M elbow x °> (Equation 4 9)

where co is the angular velocity, and M elbow is the muscle moment, which was 

calculated as detailed above
i

2) Calculation method for knee extension (69)

K n ee extension m om ent in  the concentnc phase was calculated as
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where M ^  was the muscle moment produced to oppose the gravitational forces

acting on the shank, foot and the weight and was calculated as

M = m x 9 81 x r x sin O + mw x 9 81 x rw x sin <X> (Equation 4 11)

where m (kg) is the mass o f the shank and foot, r (m) is the distance from the knee 

joint angle axis to the center of mass o f shank and foot, and O (radius) is the angle of 

the lower leg relative to the vertical plane, mw (kg) is the mass o f the weight, rw(m) 

is the distance from the knee joint angle axis to the center o f mass o f the weight The 

mass m is estimated as m = 0 06lxbody mass (67), r is estimated by 0 606 x lshank

where lshank is the length of the shank lshank is measured as the distance between the 

lateral malleolus and the lateral femoral epicondyle rw is measured as the distance 

from the center of knee joint to the point where the weight contact the shank M inertia

is the muscle moment produced to accelerate or decelerate the lower limb and the 

weight and is calculated as

M merua = (L + L  ) x a  (Equation 4 12)

Where a  (rad/s ) is the angular acceleration of the knee joint, Is (kg nr ) is the 

moment of inertia of the shank and foot and I w (kg m2) the moment of inertia o f the

weight 15 is calculated as Is =m x p 2 with the mass m estimated as detailed above

\
and the radius of gyration p estimated as p  = 0 735 x lshank (67) Iw is calculated as 

I w = mw x rw2 with the mw and rw detailed above

M  knee = M gray +  M \nerua (Equation 4 10)

P knee =  M  toee X  ®

Muscle power ( P ^ )  was calculated as
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where co is the angular velocity and M ^  is the muscle moment, which are 

calculated as detailed above

4 4 3 EMG data (EMGrms data and raw EMG data)

Two methods were used in the present study to analyse the EMGrms data In the first 

method, the voltage values of the EMGrms data were used (study 1, 2, 3 and 6) In 

the second method, the EMGrms data were normalized to the EMGrms data 

measured m a maximal voluntary contraction (study 4 and 5)

In study 4, 5 and 6, power spectrum analysis was performed on the raw EMG data of 

concentric phase using discrete Fourier transform method (512 points, Hamming 

window) The mean power frequency of EMG (EMGmpf) was calculated according 

to the method by Nakazawa et al (70)

400

EMGmpf = ^ ----------  (Equation 4 14)

2 > ( / )
/=o

where /  was the frequency of EMG power spectrum, P( f )  the power density at 

frequency /
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Study 1 : Mechanical characteristics of muscle-tendon vibrator and 

EMG response to vibration of different amplitudes

Chapter 5

5.1 Introduction

Given that the vibration load experienced by the target muscle is dependent upon the 

vibration amplitude and frequency that reaches the muscle, it would seem reasonable 

to assume that the amplitude of the vibration load may influence the magnitude of 

the neuromuscular response to vibration training. A comparison of two studies by 

Torvinen et al. (7,12) that differ in the magnitude of vibration amplitude employed 

(1mm vs. 4 mm) indicates that an amplitude of 4 mm whole body vibration could 

induce a significant enhancement of muscle performance, while the amplitude of 1 

mm could not. Unfortunately, to date no studies appear to have directly examined the 

influence of vibration amplitude on neuromuscular response to vibration training.

In order to directly examine the influence of vibration amplitude and have 

confidence in the application of the results to different training conditions, the day to 

day repeatability o f the amplitude and frequency o f the vibration signal on both the 

vibration device and the targeted muscle needs to be demonstrated. Similarly the 

repeatability o f the neuromuscular response of the targeted muscle needs to be 

established. However, various operating conditions may influence the vibration load 

produced by the vibrator and subsequently imposed on the muscle, as well as 

influencing the neuromuscular response it elicits. Practical experience indicates that
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important operational conditions may include the eccentric mass o f the vibration 

device, the joint angle employed and the force at which the vibrator is strapped to the 

muscle In addition, the vibration load produced by the vibration device may be 

attenuated by soft tissue as it travels through the body to the target muscle (22,59)

The combined effect o f these operational conditions on the magnitude of the 

vibration load and the neuromuscular response it elicits do not appear to have been 

examined previously

Therefore the aims of the present study are

1) To examine the effect o f different operational conditions on the vibration output 

characteristics (amplitude, frequency) o f the vibrator

2) To determine the effect o f different operational conditions on the transmissibility 

of the vibration amplitude and frequency from the vibrator to the target muscle

3) To examine the electromyography (EMG) response of muscle to vibration training 

under different operational conditions

The operational conditions examined are eccentric mass, test day, joint angle and
)

strapping force 

5 2 Method

Only key aspects o f the methods are presented below A more detailed account o f the 

methods is presented in the genenc methods section (chapter 4)

86



J

Eight healthy adult male volunteers took part m this study The average age, mass 

and height o f the subjects were 31 8±7 4 (years), 74±6 4 (kg), and 174 9±4 2 (cm) 

respectively

5 2 2 Expenment design

One motor rotating speed (3900RPM), which corresponded to a vibration frequency 

of 65 Hz, was selected for use in this study This speed was the middle speed of the 

three motor speeds that would be tested m study 2 (see chapter 6) Two eccentric 

mass sizes (ems-I and ems-II) that were selected for the vibration amplitudes to be 

produced were tested in this study For ems-I, one aluminium eccentric mass and one 

plastic eccentnc mass were mounted on each side of the motor shaft, with no relative 

angle between them The total eccentnc mass weight was 23 g, which produced a 

vibration amplitude of 0 5 mm at 65 Hz (Equation 3 1 and 3 2, section 3 2 2) For 

ems-II, one aluminium and one copper eccentnc mass were similarly mounted on 

each side o f the motor shaft The relative angle between them was 60°, giving a total 

effective eccentnc mass weight o f 59 g This produced a vibration amplitude of 1 2 

mm at 65 Hz (Equation 3 1 and 3 2, section 3 2 3)

Dunng the expenment, the subject sat on a preacher curl bench, and placed both 

arms over a chest/arm support pad, while leaning forward so that their chest was 

firmly pressed against the support pad The subject was asked to hold a 2 kg 

dumbbell for 20 seconds using their dominant arm while maintaining the elbow joint

5 2 1 Subjects
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straight (180°) or at an angle of 120° The vibrator was strapped to the biceps muscle 

tendon Figure 4 1 illustrates the vibrator attached to a test subject

Figure 5 1 Experiment set-up

Thus, there were eight test conditions taking account of two eccentric mass (ems-I 

and ems-II), two joint angle (180° and 120°) and two vibration conditions (vibration 

and no vibration) as shown in table 4 1 The eight experimental conditions were 

applied to each subject in random order The above test conditions were applied 

during a single day for each subject and were repeated on two further occasions to 

examine the day-to-day repeatability o f the vibration characteristics and the EMG 

response of the biceps to the training There was always at least two days rest in 

between test days
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The same test was repeated on a fourth occasion for seven of the eight subjects m 

order to examine the effect o f the compression force by which the vibrator is 

strapped to the muscle (see figure 5 2)

Table 5.1 Test conditions

Vibration No vibration

ems-I ems-II ems-I ems-II

180° 120° 180° 120°

oOCNoOoo 180° 120°
Note ems-I= eccentric mass size I, ems-II= eccentric mass size II, 180°= elbow joint kept straight, 120°= elbow 
joint angle kept at 120°, * = the eight test conditions were tested and retested on three different days with a small 
strapping force and on a fourth day with a large strapping force

Large

<--------------- — Small strapping force ----------►

2 day 

rest

srapping

force 
*--------------►

Day 1 %■# * > h* i c / h k 
a f A

(8 test
Ci»1!:*

conditions)
^  & % J- ....

2 day 

rest

S Î 8 &

a

ì i M M m

2 day 

rest
iìS ì e SiotS Iì ¡É!

Figure 5 2 Study design

5 2 3 Measurements

Vibration acceleration on the vibrator and on the muscle (10 cm from the vibrator) 

were measured
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The compression force that loads the vibrator to the muscle-tendon was measured 

using a load cell (Model 53, RDP Electronics Ltd, UK) This load cell was in the 

shape of a cylinder (diameter 31 75 mm, height 8 mm) with a raised button (diameter 

8 13 mm, height 1 78 mm) An arc shaped adaptor was built to hold the force sensor 

onto the vibrator housing The bottom surface o f the adaptor was fitted to the 

cylinder housing of the vibrator A hole on the top surface o f the adaptor held the 

button of the force sensor The force sensor was thus anchored on the top of the 

vibrator, and was then strapped together with the vibrator to the biceps muscle 

tendon The output o f the force sensor was connected to the computer via Musclelab 

(Musclelab®, Ergotest Technology, Norway) After the vibrator was strapped to the 

muscle tendon, the strapping force was measured and recorded Two magnitudes of 

strapping force (small, large) were used during the experiment During the three test 

and re-test days, the vibrator was strapped firmly (small strapping force) to the arm 

without any discomfort to the subject (the feedback of each subject was sought after 

the vibrator had been strapped to the arm) The average strapping force in this 

situation was 15 1 ± 2 3  N Dunng the fourth test day, the strapping force was 

deliberately increased (large strapping force) until all subjects witnessed a feeling of 

mild discomfort The average strapping force m this situation was 18 2 ± 1 8 N

In order to evaluate the muscle response to different vibration amplitudes, EMG 

signal was measured on the bicep brachn for 20 seconds in each experiment 

condition
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The joint angle was monitored by means of a goniometer (XM110, Biometrics, UK) 

and an amplifier (DataLink, Biometrics, UK) in order to locate the elbow joint angle 

at 180° (straight) or 120°

5 2 4 Data analysis

Vibration amplitude and frequency (both on the vibrator and the muscle) and the 

transmissibility o f vibration amplitude and frequency were calculated from the 

measured vibration acceleration data (section 4 4 1) These are the mechanical 

variables in this study

The representative raw EMG data and the EMGrms data were shown in figure 5 3 

The first 5-second segment of EMG signal was discarded in the calculation of  

average EMGrms to eliminate any transient effect(32) The EMGrms was averaged 

for the left 15 seconds as the EMG variable in this study

4 i i
f T

Z ' 1
”3

y g k y ^ | | |

a3
1

R aw  F M G  da ta  (m V ) ...&

ak

E M G rm s da ta  (m V )

f J H k

Time (s)

Figure 5.3 Representative raw EMG data and the EMGrms data
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5 2 5 Statistical analysis

To determine the effect of test day, joint angle and eccentric mass on the vibration 

amplitude, frequency, transmissibility and EMG, 3 (test day) by 2 (joint angle) by 3 

(eccentric mass) ANOVAs with repeated measures on the subjects were employed

To investigate the effect o f strapping force, joint angle and eccentric mass on the 

vibration amplitude, frequency, transmissibility and EMG, 2 (strapping force) by 2 

(joint angle) by 3 (eccentric mass) ANOVAs with repeated measures on the subjects 

were employed

EMG repeatability was also assessed by using mtra-class correlation analysis (ICC)

For all analysis a probability value of p<0 05 was employed Where significant mean 

differences were observed, the main effects and simple effects were analysed with 

planned comparison with appropriate Bonferrom adjustment SPSS® was used for all 

statistical analyses

5 3 Results

5 3 1 Vibration amplitude and peak frequency measured on the vibrator

The results o f vibration amplitude measured on the vibrator are shown in figure 5 4 

Statistical analysis shows that the eccentric mass had a significant effect on vibration 

displacement (p < 0 001), with eccentric mass II (ems-II) producing a larger
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vibration amplitude (circa 1 2 mm) than eccentric mass I (ems-I) (circa 0 5 mm) 

These results were consistent, with no effect o f test day (p>0 05), or joint angle 

(p>0 05)

E
E
a>

“O3
a
Ero
co
«p
2.Q
>

1 a*
■ ems-ll (180°) 

Uems-ll (120°)

□ ems-I (180°)

□ ems-I (120°)

Figure 5 4 Vibration amplitude on the vibrator (mean±S D)

The vibration peak frequencies on the vibrator are shown in figure 5 5 All the mean 

peak frequencies were in the range of 62 0 -  65 5 Hz Statistical analysis showed that 

the test day, eccentric mass and the joint angle did not have a significant effect on 

frequency (p>0 05)
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■ ems-ll (180°) 
tHemsJI (120°)
□ ems-l (180°)
□  ems-l (120°)

Figure 5 5 Vibration peak frequency on the vibrator (mean±S D)

5 3 2 Vibration amplitude and peak frequency measured on the muscle

The vibration amplitudes measured on the muscle are shown in figure 5 6 The larger 

eccentric mass (ems-II) induced significantly larger vibration amplitude on the 

muscle than the smaller eccentric mass (ems-I) (016 mm vs 0 08 mm, p<0 05) The 

test date and joint angle did not have significant effect on amplitude, indicating good 

repeatability
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■ ems-ll (180°) 

Hems-ll (120°)

□  ems-l (180°)

□  ems-l (120°)

Figure 5.6 Vibration amplitude measured on the muscle (mean±S D)

The vibration peak frequencies on the muscle are shown in figure 5 7 The mean 

peak frequencies were in the range of 62 0 -  65 5 Hz Statistical analysis showed 

that the test day, eccentric mass and joint angle did not have significant effect on the 

peak frequency (p>0 05)

1 2 3
Days

■ ems-ll (180°) 
Hems-ll (120°)
□ ems-l (180°)
□ ems-l (120°)

Figure 5 7 Vibration peak frequency on the muscle (mean±S D)
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5 3 3 T ransm issib ility  o f  v ib ra tion  am plitude and peak frequency

The transmissibility o f the vibration amplitude is shown in figure 5 8 On average, 

across all condition, transmissibility ranged from 8 4% to 17 4% Statistical analysis 

showed that with the small eccentric mass (ems-I) there was significantly greater 

transmissibility o f vibration amplitude than with ems-II (15 6% vs 12 8%, p<0 05) 

The test day and joint angle did not have a significant effect (p>0 05) on the 

transmissibility of the vibration amplitude

1 2 3

Days

Figure 5.8 Transmissibility o f the vibration amplitude (mean±S D)

The transmissibility of vibration peak frequencies is shown in figure 5 9 The 

transmissibility was 100% and was unaffected by test day, joint angle and eccentric 

mass (p>0 05)

■ ems-ll(180°)

Eems-ll(120°)

□ ems-l(180°)

□ ems-l(120°)
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1 2 3

Days

■ ems-ll(180°) 
0ems-ll(12O°)
□  ems-l(180°)
□ ems-l(120°)

Figure 5 9 Transmissibihty of the vibration peak frequency (mean±S D)

5 3 4 Influence of strapping force on vibration amplitude and peak frequency 

measured on the vibrator

The vibration amplitude and peak frequency measured on the vibrator under different 

strapping forces (large, small) are shown in table 5 2 Although the measured 

strapping force was significantly different (small=15 1±2 3 vs large=18 2±1 8 (N), 

p<0 01), strapping force did not have a significant effect on vibration amplitude and 

frequency (p>0 05) Eccentric mass had a significant effect on the vibration 

amplitude (p<0 05), but did not have significant effect on the vibration frequency 

(p>0 05) Joint angle did not have significant effect on the vibration amplitude and 

frequency (p>0 05)
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on the vibrator (mean(S D)

Table 5 2 In flu en ce o f  strapping force on v ib ra tion  am plitude and peak frequency

Eccentric Vibration 180° 120°

mass size output Large Small Large Small

strapping force strapping force strapping force strapping force

I Amp (mm) 0 52(0 11) 0 52(0 04) 0 48(0 11) 0 53(0 06)

Freq (Hz) 63 4(3 3) 63 9(1 9) 64 9(1 8) 63 8(2 5)

II Amp (mm) 1 24(0 23) 1 31(0 09) 1 27(0 16) 1 23(0 04)

Freq (Hz) 64 2(2 1) 62 6(1 3) 63 5(1 2) 64 1(1 6)

Note Amp=vibration amplitude, Freq= vibration peak frequency, 180°= elbow joint kept straight, 120°= 
elbow joint angle kept at 120°,

5 3 5 Influence o f strapping force on vibration amplitude and frequency measured 

on the muscle

The vibration amplitudes and frequencies on the muscle under the different strapping 

forces are shown in table 5 3 Strapping force had no significant effect on the 

amplitude or peak frequency (p>0 05) Eccentric mass had a significant effect on the 

vibration amplitude (p<0 05), but did not have significant effect on the vibration 

frequency (p>0 05) Joint angle did not have significant effect on the vibration 

amplitude and frequency (p>0 05)
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measured on the muscle (mean(S D)

Table 5 3 In fluence o f  strapping force on v ib ra tion  am plitude and peak frequency

Eccentric Vibration 180° 120°

mass size output Large Small Large Small

strapping force strapping force strapping force strapping force

I Amp (mm) 0 14(0 09) 0 09(0 06) 0 08(0 03) 0 08(0 03)

Freq (Hz) 63 4(3 3) 63 9(1 9) 64 9(1 8) 63 8(2 5)

II Amp (mm) 0 23(0 14) 0 16(0 09) 0 20(0 08) 0 18(0 04)

Freq (Hz) 64 2(2 1) 62 6(1 3) 63 5(1 2) 64 1(1 6)

5 3 6 Influence of strapping force on transmissibility o f vibration amplitude and 

peak frequency

The transmissibility o f vibration amplitude and frequency to the muscle under 

different strapping forces are shown m table 5 4 Strapping force had no significant 

effect on the transmissibility o f vibration amplitude (p>0 05) The transmissibility of  

the peak frequency was 100% and was not influenced by strapping force Eccentric 

mass had a significant effect on the transmissibility o f vibration amplitude (p<0 05), 

but did not have significant effect on the transmissibility of vibration frequency 

(p>0 05) Joint angle did not have significant effect on the transmissibility o f both 

the vibration amplitude and the frequency (p>0 05)
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Table 5 4 Influence of strapping force on the transmissibility (%) of vibration 

amplitude and peak frequency (mean(S D)

Eccentric Vibration 180° 120°

mass size output Large Small Large Small

strapping force strapping force strapping force strapping force

I Amplitude 24 8(13 6) 17 4(12 9) 16 5(7 2) 14 7(4 6)

Frequency 100 100 100 100

II Amplitude 18 1(12 3) 12 3(7 0) 16 3(6 5) 14 3(3 8)

Frequency 100 100 100 100

5 3 7 EMG response to vibration 

5 3 7 1 Reliability o f EMG measurement

EMGrms results are shown in figures 5 10 and 5 11 The Inter-day reliability (ICC) 

o f EMGrms measurement ranged from 0 76 to 0 90 Because the EMGrms with no 

vibration at each joint angle (180° or 120°) was measured twice in each day, the 

intra-day variability of EMGrms measurement with no vibration was also analysed 

and it ranged from 0 85 to 0 96

5 3 7 2 EMGrms change induced by vibration interventions
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Statistical analysis showed that only eccentric mass had a significant effect on 

EMGrms value (p < 0 001) Mam effects analysis showed that vibration with both 

eccentric masses induced significant increase o f EMGrms from no vibration value 

(p<0 05), but vibration with the large eccentric mass (ems-II) induced a significantly 

higher increase in EMGrms than the smaller eccentric mass (ems-I) (0 053 mV vs 

0 026 mV, p<0 05) These results were consistent, with no effect of test day or joint 

angle (p>0 05)

1 2 3
Days

Figure 5 10 EMGrms measured with arm straight (mean±S D)
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Figure 5.11 EMGrms measured with arm flexed at 120 degree (mean±S.D)

5.3.7.3 Influence of vibrator strapping force on EMGrms

The EMGrms response to vibration under different strapping forces are shown in 

table 5.5. Strapping force did not have significant effect on EMGrms values 

(p>0.05). Eccentric mass had a significant effect on EMGrms (p<0.05). Joint angle 

did not have significant effect on EMGrms (p>0.05).

Table 5.5 Influence of strapping force on EMGrms (mean(S.D)

Eccentric OO o o 120°

mass Large strapping Small strapping Large strapping Small strapping

size force force force force

I 0.06(0.05) 0.06(0.04) 0.06(0.03) 0.08(0.03)

II 0.08(0.04) 0.09(0.06) 0.07(0.04) 0.10(0.05)

1 0 2



5 4 Discussion

It was shown by the results o f this study that the two eccentric mass sizes (ems-I) and 

ems-II), and one motor rotating speed that were selected by calculation could 

produce the vibration characteristics required (vibration frequency o f 0 5 and 1 2 

mm, vibration frequency of 65 Hz) This demonstrated that the muscle-tendon 

vibrator was able to produce the different vibration amplitude and frequency as 

required m our vibration training studies

In addition, it was also found in this study that the vibration amplitude and frequency 

on the vibrator and the muscle are repeatable across days and this repeatability is 

unaffected by joint angle and strapping force Therefore, it may be suggested from 

these findings that the muscle-tendon vibrator could impose a consistent vibration 

load on the targeted muscle during vibration training under different operational 

conditions This is crucial for the later application of this vibrator in our vibration 

training studies

Although various vibration traimng apparatus have been used in vibration training 

studies to date (3,6,14,18,49), none of their repeatability during operation has been 

reported In addition, no study has examined the repeatability of the vibration load 

imposed on the target muscle dunng vibration training However, the investigation m 

this direction is needed, especially for the indirect method This may be due to that 

the repeatability o f the vibration load on a muscle in indirect method may be 

influenced by both the vibration apparatus and the factors that could influence the
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vibration transmission These factors may include posture, muscle contraction 

performed and the contraction force (22), and they are highly variable during 

strength training exercises The influence o f these factors may therefore induce the

low repeatability o f vibration load on a muscle, leading to the inconsistence in
/

vibration training effect ^

However, in direct vibration, the repeatability of vibration load on muscle may be 

higher than the indirect method because it is mainly dependent on the repeatability o f  

the apparatus itself, from which the vibration output is delivered directly to the 

muscle In addition, the direct vibration traimng apparatus to date are either held by 

hand (18) or fixed to a extenor support (14,49), which could facilitate the high 

repeatability o f vibration load on the targeted muscle However, for the portable 

muscle tendon vibrator in this study, the repeatability o f vibration load on a muscle 

need to be established because no extenor support is provided The results o f the 

present study demonstrated that this muscle-tendon vibrator is able to impose 

repeatable vibration load on a muscle

Similarly the transmissibihty is repeatable across test days, joint angle and strapping 

force These results provide the evidence that besides the point on the muscle where 

the amplitude and frequency were measured in this study, the vibration amplitude 

and frequency on other part o f the targeted muscle may also be repeatable The 

results o f transmissibihty in this study also showed that the peak frequency of the 

vibration source could be delivered without change to the target muscle in direct 

vibration method This may facilitate the examination of the effect of vibration with 

high frequency m vibration training In indirect method, however, the high frequency
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vibration are normally attenuated during the transmission (22). In addition, this study 

found that the transmissibility o f vibration amplitude was also related to the vibration 

amplitude of vibration source. This may be due to the non-linear mechanical property 

of the soft tissues during the transmission of vibration (22).

The results o f this study showed that the EMGrms response to vibration was 

repeatable across days and this repeatability is not affected by joint angle and 

strapping force. This repeatability in EMG response may result from the repeatable 

vibration load (amplitude and frequency) that the muscle tendon vibrator imposed on 

the muscle. In addition, it was found in this study that the EMG activity o f a sub- 

maximal contraction could be enhanced significantly by superimposed vibration, 

suggesting that the direct muscle vibration may have a facilitatory effect on 

neuromuscular performance of the sub-maximal isometric contractions. This is in 

line with several vibration training studies showing that the acute and chronic 

vibration training with sub-maximal contraction may induce more strength and 

power gain (3,7).

It was found in this study that the increase o f EMGrms by vibration with large 

amplitude (1.2 mm) was significantly higher than that induced by small vibration 

amplitude (0.5 mm). This result demonstrated that acute vibration training effect on 

sub-maximal contraction could be enhanced by the increase in vibration amplitude. 

To date, there have been no acute or chronic vibration training studies that directly 

examined the influence o f vibration amplitude on training effect. However, the 

comparison of the two studies by Torvinen et al. (7,12) that differed only in vibration 

amplitude indicated that larger vibration amplitude (4 mm) in whole body vibration
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training with sub-maximal contraction exercise could induce significant acute 

enhancement in strength and power, while the smaller amplitude (1 mm) in the same 

whole body vibration training could not induce this acute enhancement Our results 

in this study are line in with these findings However, although the above findings 

suggest that an increase m vibration amplitude may enhance the vibration training 

effect on neuromuscular performance, the optimal vibration amplitude m both direct 

and indirect vibration training still needs further investigations

Vibration applied to a muscle tendon coukTsimulate the sense organs in the muscle, 

particularly the la afferent endings o f muscle spindles, and produce a heavy sustained 

discharge o f the la afferents, eliciting a tonic reflex contraction m the muscle being 

vibrated This phenomenon is called tonic vibration reflex (TVR) (30) It was 

suggested that TVR may be a possible mechanism for the vibration training effect, as 

more motor units could be recruited by TVR during the strength training (6,11) 

Current findings suggest that the recruitment o f muscle spindle la afferents dunng 

vibration is related to the vibration amplitude (71) The microneurographic recording 

from single muscle afferents demonstrated that the increase o f vibration amplitude 

could enhance the sensitivity of muscle spindle afferents to tendon vibration (71) In 

addition, the vibration amplitude appears to determine the amount of muscle spindle 

la afferents that will be recruited dunng vibration (72) It was observed in the study 

by Eklund et al (30) that a larger vibration amplitude (18  mm) was more efficient 

than a smaller amplitude (0 6 mm) in eliciting TVR Therefore, the increase of 

vibration amplitude may increase the vibration load on a muscle in vibration training 

by recruiting more muscle spindle la afferents, and subsequently activate more a- 

motoneurons
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5 5 Conclusion

1 The different eccentric mass sizes (ems-I and ems-II) had a significant effect on 

the vibration amplitude measured on the vibrator (p<0 05), with the large eccentnc 

mass size (ems-II) producing a greater amplitude than the smaller eccentnc mass size 

(ems-I) (12  mm vs 0 5 mm, p<0 05), but did not have significant effect on the 

vibration frequency measured on the vibrator (p>0 05) These effects were not 

significantly effected by the different joint angles (180° and 120°), test days and 

strapping forces (15 1 and 18 2 N)

2 The different eccentnc mass sizes (ems-I and ems-II) had a significant effect on 

the vibration amplitude measured on the muscle (p<0 05), with the large eccentnc 

mass size (ems-II) producing a greater amplitude than the smaller eccentnc mass size 

(ems-I) (0 16 mm vs 0 08 mm, p<0 05), but did not have significant effect on the 

vibration frequency measured on the vibrator (p>0 05) These effects were not 

significantly effected by the different joint angles (180° and 120°), test days and
r

strapping forces (15 1 and 18 2 N)

3 The different eccentnc mass sizes (ems-I and ems-II) had a significant effect on 

the transmissibihty o f vibration amplitude to the muscle (p<0 05), with the large 

eccentnc mass size (ems-II) producing a smaller transmissibihty than the smaller 

eccentnc mass size (ems-I) (12 8% vs 15 6%, p<0 05), but did not have significant 

effect on the transmissibihty o f frequency to the muscle (p>0 05) The different joint
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angles (180° and 120°), test days and strapping forces (15 1 and 18 2 N) did not have 

significant effect on the transmissibility of amplitude and frequency

4 Vibration resulted in a significant increase (p<0 05) in EMGrms, with the larger 

eccentric mass size (ems-II) producing greater increase than the smaller eccentnc 

mass size (ems-I) (0 053 mV vs 0 026 mV, p<0 05) These enhancement were not 

significantly affected by test day, joint angle or strapping force, indicating the 

repeatability o f the results under various operational conditions
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Chapter 6 

Study 2 Mechanical characteristics of muscle-tendon vibrator and 

EMG response to vibration of different frequencies

6 1 Introduction

Vibration frequency is a factor that may have anfluence on the vibration training 

effect (14,23) In order to study this influence, the muscle tendon vibrator developed 

in this study was designed to have the capacity to produce the vibration with 

different frequencies According to this design, the change of the frequency of the 

vibrator should be realized by the change of the motor rotating speed Therefore, 

different vibration frequency on the muscle could be achieved also by the change of 

the motor rotating speed However, the vibration frequency on a muscle is also 

influenced by its transmission from the vibration device through soft tissues High 

frequency vibration tends to be attenuated more than the low frequency vibration, 

and these attenuations were also related to the contraction status o f the muscle (22) 

As the muscle-tendon vibrator developed in this study will be employed in vibration 

training studies with dynamic exercise It is therefore important to examine the 

influence o f different muscle contraction status (e g different joint angles) on the 

vibration frequency on the muscle

Therefore, the aims of this study are

1) To examine the effect o f motor rotating speed and joint angle on vibration 

amplitude and frequency both on the vibrator and on the muscle
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2) To determine the effect o f motor rotating speed and joint angle on the 

transmissibility of the vibration amplitude and frequency from the vibrator to the 

target muscle

3) To examine the electromyography (EMG) response o f muscle to vibration 

training with different motor rotating speed and joint angle

6 2 Methods

Only key aspects o f the methods are presented below A more detailed account of the 

methods is presented in the generic methods (chapter 4)

6 2 1 Subjects

Nine healthy adult male volunteers took part in this study The average age, mass and 

height o f the subjects were 29 8±7 6 (years), 78 7±12 4 (kg), and 177 8±6 0 (cm), 

respectively

6 2 2 Experiment design

t

Three rotating speeds o f motor (1800, 3900 and 6000 RPM) were selected to produce 

vibration with frequencies of 30, 65 and 100Hz, respectively The eccentric mass size 

(ems-II) that produced the greater response o f muscle activity was used in this study

During the experiment, the subject sat on a preacher curl bench, and placed both 

arms over the chest/arm support pad while leaning forward so that their chest was
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firmly pressed against the support pad The subject was asked to hold a 2 kg 

dumbbell using their dominant arm while maintaining the elbow joint angle straight 

(180°) or at 120° The vibrator was strapped to the biceps muscle tendon (see figure 

5 1 m chapter 5)

Thus, there were eight test conditions as described in table 6 1 The test conditions 

employing vibration took account o f three motor speeds and two joint angles 

Measures for no vibration at both joint angles were also recorded The order of 

completion o f the eight test conditions was randomised for subjects during the test

Table 6.1 Test conditions

Vibration No vibration

1800 RPM 3900 RPM 6000 RPM

oOoo 120° 180° 120° o
o o o 120°

oO<No©O
O

Note 180°= elbow joint kept straight, 120°= elbow joint angle kept at 120°

6 2 3 Measurement

Vibration accelerations on the vibrator and on the muscle (10 cm from the vibrator) 

were measured

In order to evaluate the biceps muscle response to different vibration amplitudes, 

EMG signal was measured on the bicep brachn for 20 seconds in each experiment 

condition
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The joint angle was monitored by means o f a goniometer (XM110, Biometrics, UK) 

and an amplifier (DataLink, Biometrics, UK) in order to locate the elbow joint angle 

at 180° (straight) or 120°

6 2 4 Data analysis

Vibration amplitude and frequency (both on the vibrator and the muscle) and the 

transmissibility of vibration amplitude and frequency were calculated from the 

measured vibration acceleration data

The first 5-second segment of EMG signal was discarded in the calculation of  

average EMGrms to eliminate any transient effect (32) The EMGrms was averaged 

for the next 15 seconds The increases o f EMGrms from no vibration value (in mV) 

was calculated and used for analysis

6 2 5 Statistical analysis

A two factor ANOVA with repeated measures on the subjects was utilized [3 

(rotating speed) x 2 (joint angle)] For all analysis a probability value o f p<0 05 was 

employed Where significant mean differences were observed, mam effects and 

simple effects were analysed using multiple comparison with appropriate Bonferrom 

adjustment SPSS® was used for all statistical analysis

6 3 Results

6 3 1 Vibration amplitude and peak frequency on the vibrator

112



Vibration amplitudes and peak frequencies o f the vibrator at different motor speeds 

were shown in figure 6 1 to 6 2 Statistical analysis showed that motor speed had a 

significant effect on both the vibration frequency (p < 0 001) and vibration amplitude 

(p < 0 001) measured on the vibrator, with significant differences being evident 

between all three levels of motor rotating speed for both variables (p < 0 001) For 

vibration frequency the smaller the motor speed the smaller the frequency produced 

1800RPM (30Hz) < 3900 RPM (65Hz) < 6000 RPM (100Hz)(p < 0 001) For 

vibration amplitude the smaller the motor speed the larger the amplitude produced 

1800RPM (1 4mm) > 3900 RPM (1 2mm) > 6000 RPM (1 0mm)(p < 0 001) Joint 

angle had no significant effect on either vibration amplitude or frequency (p > 0 05)

1800 3900 6000
Motor speed(RPM)

■  180°  

□  120 °

Figure 6 1 Vibration amplitude at different motor speed
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1800 3900

Motor speed(RPM)

6000

■  180°  

□  120°

Fig 6 2 Vibration frequency at different motor speed

6 3 2 Vibration amplitude and peak frequency on the muscle

An identical pattern of results was found for the examination of vibration amplitude 

and frequency measured on the muscle as found on those measured on the vibrator 

While the frequency responses are the same the amplitudes are reduced

Vibration amplitude and frequency measured on muscle about 10 cm from vibrator 

are shown in figure 6 3 and 6 4 Statistical analysis showed that motor speed had a 

significant effect on both the vibration frequency (p < 0 001) and vibration amplitude 

(p < 0 001) measured on the muscle, with significant differences being evident 

between all three levels o f motor rotating speed for both variables (p < 0 001) For 

vibration frequency the smaller the motor speed the smaller the frequency produced 

1800RPM (30Hz) < 3900 RPM (65Hz) < 6000 RPM (100Hz)(p < 0 001) For 

vibration amplitude the smaller the motor speed the larger the amplitude produced
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1800RPM (1 Omm) > 3900 RPM (0 16mm) > 6000 RPM (0 04mm)(p < 0 001) Joint 

angle had no significant effect on either vibration amplitude or frequency (p > 0 05)

1800 3900 6000

Motor speed (RPM)

■  180°  

□  120 °

Figure 6 3 Vibration amplitude measured on the muscle

■  180°  

□  120 °

1800 3900 6000

Motor speed(RPM)

Figure 6 4 Vibration peak frequency measured on the muscle
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6 3 3 T ransm iss ib ility  o f  v ib ration  to m uscle

The transmissibility of vibration amplitude and frequency from the vibrator to the 

muscle are shown in figure 6 5 and 6 6 Statistical analysis showed that motor speed 

had a significant effect on the transmissibility o f the vibration amplitude (p < 0 001), 

with significant differences being evident between all three levels of motor rotating 

speed (p < 0 001) The smaller the motor speed the greater the vibration 

transmissibility 1800RPM (67%) > 3900 RPM (14%) > 6000 RPM (5%) (p < 

0 001) The transmissibility o f vibration frequency was unaffected by motor rotation 

speed (p > 0 05) and was 100% for all speeds Joint angle had no significant effect on 

transmissibility of either vibration amplitude or frequency (p > 0 05)

1800 3900

Motor speed(RPM)

6000

Figure 6 5 Transmissibility o f vibration amplitude
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1800 3900 6000

Motor speed(RPM)

Figure 6 6 Transmissibility o f vibration peak frequency

6 3 4 EMG response to vibration produced by different motor speed

The increases o f EMGrms from no vibration value at three different motor speeds 

and two joint angles are shown in figure 6 7 Statistical analysis showed that the 

different motor speeds had a significant effect on the increase in EMGrms (p<0 001) 

Mam effects analysis showed that the increases of EMGrms at 3900 RPM (0 044 

mv) and 6000 RPM (0 046mV) were significantly higher than that at 1800 RPM 

(0 019mV) However, there was no significant difference between 3900 RPM and 

6000 RPM (p>0 05) Joint angle did not have any significant effect on the EMGrms 

response (p>0 05)
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1800 3900

■  180 '  

□ 120(

6000

Motor speed(RPM)

Figure 6 7 Increase in EMGrms at different motor speeds

6 4 Discussion

The vibration frequencies measured on vibrator at three different motor rotating 

speeds (1800, 3900 and 6000 RPM) were around 30, 65 and 100 Hz respectively 

(figure 6 2) The different joint angles did not have any significant effect on vibration 

frequencies (p>0 05) It has also been found in the previous study that the different 

eccentric masses did not have any significant effect on vibration peak frequency It 

may be suggested that the vibration peak frequency of the muscle tendon vibrator is 

determined only by the motor rotating speed In the following discussion, the 

implication of the findings will be discussed in terms of vibration frequencies (30? 65 

and 100 Hz) rather than motor rotating speeds
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As shown in figure 6 1, the vibration amplitude measured on vibrator was the largest 

at 30 Hz, followed by 65 and 100 Hz Joint angle did not have any significant effect 

on amplitude The same eccentric mass size (ems-II) has been used in this study at all 

three frequencies This eccentric mass size (ems-II) was the larger o f the two 

eccentric mass sizes (ems-I and ems-II) used in the last study (see chapter 5) It has 

been found m the last study that ems-II induced significant larger vibration amplitude 

(around 1 2 mm) than ems-I (around 0 5 mm) (p<0 05) In this study, although the 

average vibration amplitudes were all around 1 to 1 5 mm, there were significant 

differences among them (p < 0 05) Thus, it can be concluded that the vibration 

amplitude o f the vibrator was influenced by both eccentric mass size and the motor 

rotating speed

The influence of motor rotating speed on vibration amplitude could be explained by 

the analysis o f the vibrator model as introduced in section 3 2 3 As discussed in 

section 3 2 3, the vibration amplitude (A )  can be calculated as

A = xex Ra  (Equation 6 1)
M

where

M u ~ eccentric mass 

M  = mass o f the motor and housing 

e = eccentric radius

Ra = dimensionless response factor, and is calculated as
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Ra = (Equation  6 2 )
2

2 ))2 +(2xÇ x c

where

co = the angular velocity o f the eccentric mass 

con = natural frequency of muscle-tendon under the vibrator 

£ = fraction of the critical damping

As mentioned m section 3 2 3, a value of 0 44 was used for £ according to the work 

by Wakehng et al (62) Thus we can plot the relationship between Ra and (m/mn ) 

at the value o f Ç = 0 44 (figure 6 8)

1 4

5
w/wn

Figure 6 8 Relationship between Ra and co/con at Ç = 0 44

It can be seen from figure 6 8 that when the vibration frequency is around the natural 

frequency (C7/W„ around 1), the dimensionless response factor (Ra ) value reaches

its maximum Ra decreases when the vibration frequency is higher than the natural



eccentric radius ( e ) have constant values in Equation 6.1, the vibration amplitude 

A should be the largest when Ra reaches its maximal value. It has been reported that 

the natural frequency of the quadriceps muscle is around 8.85 to 30.39 Hz(62). It is 

possible that the natural frequency of the muscle-tendon of the biceps brachii is 

around 30 Hz, which would explain why the amplitude around 30 Hz was the biggest 

in our experiment. With the increase o f frequency from 30 Hz to 65 and 100 Hz, Ra 

keeps decreasing so that the amplitude of the vibrator decreases from 30 Hz to 100 

Hz when the eccentric mass was the same at these three frequencies.

It was found in the present study that the vibration amplitude was significantly less 

on the muscle than on the vibrator, and that the transmissibility was the highest at 30 

Hz and lowest at 100 Hz (figure 6.5). It has been found that the vibration amplitude 

is attenuated when it is transmitted through soft tissues(22), as demonstrated in study 

1 (chapter 5). Moreover, the attenuation is greater when the vibration frequency is 

higher(59). Our results on transmissibility are in line with these findings. This result 

on transmissibility suggests that low frequency vibration may be better than the high 

frequency vibration in activating the muscles further away from the vibrating source 

when indirectly applied vibration method is used in vibration training. This however 

needs to be confirmed experimentally.

In addition, the peak vibration frequency is the same on the vibrator and on the 

muscle for all the three frequencies examined (30, 65, 100 Hz) (figure 6.6), which 

means that the transmission of peak frequency was always 100%, and not influenced 

by the frequency being transmitted. This finding suggests that this muscle tendon

frequency. Because eccentric mass ( M u ), mass o f  the m o to r and housing ( M ) and
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vibrator may be used for the examination of the effect of high frequency vibration, as 

the high vibration frequency can be delivered without change to the muscle In the 

indirect vibration, however, vibration with high frequency may be attenuated during 

transmission(6) Therefore the peak frequency o f the vibration device may not be 

delivered to the muscle without change in indirect method

This study found that the transmission of peak frequency to the muscle was not 

influenced by different joint angles This finding indicates that the consistence of the 

vibration frequency on the target muscles may be achieved in different vibration 

training exercise (isometnc and dynamic) by using the1 muscle tendon vibrator 

developed m this study This is also crucial for our later vibration training studies, m 

which different exercise protocols will be employed It is also suggested that the 

short distance o f transmission in direct vibration method may be the reason for this 

consistent frequency transmission to muscle under different joint angles

The mam goal o f this study is to identify the vibration frequency that could stimulate 

the muscle optimally because we found m the last study that the vibration amplitude 

around 1 2 mm could stimulate the muscle more effectively than the amplitude 

around 0 5 mm Thus, the same eccentnc mass used in study 1 (chapter 5) to produce 

an amplitude around 1 2 mm was used in this study, with three different frequencies 

(30, 65 and 100 Hz)

A frequency o f 30 Hz was selected as the lowest frequency in this study because it is 

the lowest frequency range used in the vibration training studies to date(3- 

8,12,21,48,73) The frequency of 100 Hz was chosen as the highest frequency
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because it has been found that the increase of EMGrms during Tonic vibration reflex 

(TVR) increased with vibration frequencies up to 100 to 150 Hz, but decreases 

beyond(32). As has been found by Martin et al.(72), the recruitment of muscle 

spindle la afferents is determined by vibration amplitude. Once the muscle spindle la 

afferents are recruited by vibration, a change of the vibration frequency will change 

the firing rate o f the recruited la afferents and then induce a change in TVR(38,74). 

Thus, it was expected in this study that the increase of EMGrms would be the largest 

at 100 Hz. The frequency of 65 Hz was chosen as an intermediary frequency in this 

study. There have been only two study to date that directly investigated the influence 

of frequency on vibration training effect(14,23). Their findings suggested that 

frequency around 30 to 50 Hz may induce a greater acute effect in vibration 

training( 14,23).

The results of the present study showed that the increases o f EMGrms at both 100 Hz 

and 65 Hz were significantly higher than 30 Hz (figure 6.7). It was also noted that 

the vibration amplitude on the muscle and the vibrator were the largest at 30 Hz 

(around 1.4 mm and 1.0 mm), followed by 65 Hz (around 1.2 mm and 0.16 mm) and 

100 Hz (around 1 mm and 0.04 mm) (figure 6.1 and 6.3). It was thus inferred that the 

recruitment of muscle spindle endings should be the most effective at 30 Hz. 

However, the EMGrms results were contradictory to the results o f vibration 

amplitude as discussed above. It may be suggested that although vibration 

amplitudes were significantly different among the above three frequencies, the 

amplitude difference at three frequencies were small (1 vs 1.2 vs 1.4 mm). In 

addition, most of the muscle spindle la afferents may have been recruited when the 

vibration amplitude was around 1 mm. Therefore, the increase o f la afferents firing
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rates driven by the increasing vibration frequency(74) may play a more important 

role in the increase o f EMGrms

However, the results o f the present study also showed that the increase o f EMGrms 

had no significant difference between 65 Hz and 100 Hz It is noted that the vibration 

amplitudes on the muscle at 65 Hz were significantly larger than at 100 Hz Thus, 

larger displacement at 65 Hz may have recruited more la afferents than 100 Hz, 

while higher frequency o f 100 Hz may have increased the finng rates o f la afferents 

more than 65 Hz The function of these two effects may counter balance each other 

so that the increase of EMGrms at 65 and 100 Hz did not have any significant 

difference

The EMGrms response to different vibration frequencies was not influenced by 

different joint angles as shown m this study This may be due to the consistent 

vibration load (amplitude and frequency) imposed on the muscle by the vibrator 

under different joint angles Therefore, the application o f this muscle tendon vibrator 

in our later vibration training studies with different contraction exercise performed is 

warranted

While frequencies o f 65 Hz and 100 Hz produced the greatest EMGrms response, 

indicating their possible greater potential for vibration training, most subjects 

reported that 100 Hz vibration felt quite uncomfortable This may be due to the large 

vibration force and acceleration found at 100 Hz (measured vibration acceleration 

was about 2 times larger at 100 Hz than at 65 Hz and about 8 times larger than at 30 

Hz) placing the soft tissues under vibrator under greater stress
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In summary, when the eccentric mass size is kept constant at ems-II, vibrations of 65 

Hz and 100 Hz were better than vibration of 30 Hz in activating the muscle, although 

both the vibration amplitude of the vibrator and the transmissibility o f vibration to 

muscle were the largest at 30 Hz. There is no significant difference in EMGrms 

increase between 65 Hz and 100 Hz vibration, but the 100 Hz vibration was quite 

uncomfortable because o f its larger vibration force. From the above results, it may be 

suggested that vibration with a frequency of around 65 Hz and an amplitude of  

around 1.2 mm is more suitable for our muscle tendon vibrator to stimulate the 

muscle during vibration training.

6.5 Conclusion

Combining the results from this and the previous experiment (study 1, chapter 5), the 

following conclusions can be drawn for sub-maximal contractions:

1. The vibration peak frequency o f the muscle-tendon vibrator is determined only 

by the motor rotating speed and is stable at different eccentric mass sizes, test 

days, joint angles and strapping forces.

2. The vibration amplitude of the muscle-tendon vibrator is determined by both the 

eccentric mass and the motor rotating speed and is stable at different test days, 

joint angles and strapping force.

3. The transmissibility o f vibration amplitude to muscle is effected by both the 

eccentric mass and motor rotating speed of the vibrator. The higher the vibration
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amplitude (eccentric mass size) and frequency (motor rotating speed) on the 

vibrator, the lower the transmissibility of vibration amplitude to the muscle Thei

different test days, joint angles and strapping forces did not have significant 

influence on the transmissibility o f vibration amplitude

4 The transmissibility o f peak frequency is always 100%, and is not effected by the 

eccentric mass size, motor rotating speed, test day, joint angle or strapping force

5 The greatest increase of EMGrms was induced by vibration with a frequency of  

around 65 Hz and an amplitude o f around 1 2 mm, which may be the optimal 

vibration characteristics for our muscle-tendon vibrator to stimulate the muscle 

dunng vibration treatment
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Study 3 Influence of load on acute vibration training effect -  a study 

on sub-maximal isometric contraction

Chapter 7

7 1 Introduction

Vibration training with a sub-maximal contraction load has been shown to induce 

strength gam within a short period o f time (12 weeks) and without much effort (3) 

Therefore, vibration training was suggested to have a great potential in strength 

training of people with injury or the elderly who are not attracted to or are not able to 

perform standard strength training exercise programs (3,75) However, some 

vibration training studies with very light exercise (standing with knee flexed without 

extra-load) did not find any effect o f vibration (8) On the other hand, a slight 

increase m the training intensity (squat, deep squat without extra-load) could induce 

the significant increase in strength and power by vibration (3) Therefore, the sub- 

maximal contraction exercise intensity employed in vibration training appears have 

an influence on the vibration training effect However, there has been no study to 

date that has directly examined the influence of sub-maximal contraction exercise 

intensity on the acute effect of vibration training on neuromuscular performance In 

order to establish scientific-based optimal vibration training programs to achieve 

strength and power improvement, studies on this issue are needed Therefore, this 

study will investigate the increase of a sub-maximal contraction load on the acute 

neuromuscular response to vibration training
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Electromyography (EMG) will be used in this study to assess the muscle response to 

vibration training with different loads. However, the variability in muscle activity 

response to vibration training was found to be quite high in some studies, possibly 

because of the individual response to the vibration loads (10,17). There has been no 

study to date involving the examination of the day-to-day repeatability o f EMG 

response to vibration training. In study 1 (chapter 5), the day-to-day repeatability of 

the EMG response to vibration with different characteristics (amplitude) has been 

established. In this study, we will also examine the repeatability o f EMG response to 

vibration when different resistance loads are employed.

The aims of this study are:

1) To examine whether resistance load has an influence on the acute effect o f 

vibration training with sub-maximal isometric contraction

2) To examine the repeatability o f EMG measurement during vibration training

7.2 Method

Only key aspects o f the methods are presented below. A more detailed account o f the 

methods is presented in the generic methods (chapter 4).

7.2.1 Subjects

Sixteen healthy adult male volunteers took part in this study. The average age, mass 

and height o f the subjects were 21.4 ± 2.1 (years)7 77.1 ± 14.5 (kg)7 179 ± 8 (cm) 

respectively.

1 2 8



Subjects performed isometric knee extension under four experiment conditions in 

random order 1) load of 10% 1RM with no vibration (10%NV), 2) load of 20% 

1RM with no vibration (20%NV), 3) load o f 10% 1RM with vibration (10%V), 4) 

load of 20% 1RM with vibration (20%V) During the test, subjects were instructed to 

sit on a leg extension machine and were firmly secured to the seat by elastic band

over the hip and both thighs (figure 7 1) The pophtal fossa o f the subject was
)

aligned to the rotation axis o f the weight on the machine The subjects were 

instructed to hold their arms crossed their chest and keep their back straight dunng 

exercise Only nght leg was used in lifting the weight The subjects were instructed 

to extend their knee joint to an angle o f 150° and keep this joint angle for 20 seconds 

m each experiment condition

7 2 2 E xp erim en t design
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Figure 7.1 Experiment setup

The 1RM strength of the knee extension was estimated on each subject by testing 

with a 10RM load on a separate day, at least 3 days before the start of the 

expenment(76) Subjects were also familiarized themselves with the test procedure 

on that day

i
For thirteen of the sixteen subjects, each test condition was re-tested on another day 

to establish the repeatability o f the experiment There was at least two days interval 

between test days

7 2 3 V ib ra tio n
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Vibration was produced by a portable muscle tendon vibrator (section 3 2 3) that was 

strapped onto the quadnceps muscle-tendon about 5 cm proximal to the knee cap 

Vibration amplitude and frequency were set at 1 2 mm and 65 Hz, respectively 

These were determined to be optimum in studies 1 (chapter 5) and 2 (chapter 6)

7 2 4 Measurements

x

EMG signals on rectus femons (RF), vastus lateralis (VL) and vastus medialis (VM) 

were measured for 20 seconds in each expenment condition Knee joint angle was 

monitored by a goniometer (XM180, Biometrics, UK) to ensure that the knee joint 

angle was at 150° at the start of each test

7 2 5 Data analysis

EMGrms data measured on the RF, VL and VM were used for analysis The first 5- 

second segment of EMGrms data was discarded to eliminate the transient effect (32) 

The EMGrms was averaged for the left 15 seconds This average EMGrms is the
i

dependent variable in this study

/

7 2 6 Statistical methods

The mter-day reliability o f the EMG measurement was calculated using Intraclass 

correlation (77) Paired t-test was also employed to examine whether there was a 

difference in EMG response from test to re-test

To determine the effect o f vibration (vibration, no vibration) and load (10% 1RM, 

20% 1RM) on EMG variables, a two factor ANOVA (load (2) x vibration (2)) with
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repeated measures was employed Where a significant mam effect or interaction 

involving the independent variable o f vibration was found, a planned comparison 

with appropriate Bonferrom adjustment was employed to locate where the significant 

difference rests SPSS® was used for all statistical analysis

7 3 Results

7 3 1 Typical EMG results during test

Typical raw EMG signals under the different test conditions are shown in figure 7 2

10%NV 20%NV 10%V 20% V

Time (s)

Figure 7.2 Raw EMG signals measured during test on RF, VL and VM
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The EMGrms measurements on RF, VL and VM on two different test days, and the 

reliability o f these measurements are shown in tables 7 1 to 7 3 Both the ICC and 

the paired t-test results indicated that EMGrms measurements on two different days 

were reliable Therefore the test and retest results o f these 13 subjects were averaged 

and analyzed with the results o f the other 3 subjects

7 3 2 R e lia b ility  o f  measurements

Table 7.1 Reliability o f EMGrms measurement on the RF

Condition EMGrms(Dayl)

(nV)

EMGrms(Day2)

(HV)

p value o f t 

test

Reliability

(ICC)

10%NV 29 2±15 9 27 8±16 3 0 739 0 70

20%NV 46 6± 203 42 3±169 0 349 0 78

10%V 31 6±132 30 9±132 0 735 0 78

20%V 48 9+14 1 49 7±17 8 0 838 0 91

Table 7 2 Reliability o f EMGrms measurement on the VL

Condition EMGrms(Dayl)

0 * 0

EMGrms(Day2)

G*V)

p value o f t 

test

Reliability

(ICC)

10%NV 33 5±8 8 37 0+14 1 0 385 0 44

20%NV 45 3±13 8 49 6+17 1 0 281 0 76

10%V 48 4± 209 44 9+18 6 0 503 0 74

20%V 60 2±21 3 57 6±17 8 0 572 0 78
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Table 7 3 R e lia b ility  o f  E M G rm s  m easurem ent on the V M

Condition EMGrms(Dayl)

(HV)

EMGrms(Day2)

(HV)

p value o f t 

test

Reliability

(ICC)

10%NV 36 Oil 1 5 39 8+13 5 0 358 0 53

20%NV 59 1±21 1 58 1+17 2 0 859 0 63

10%V 66 2125 6 64 1±220 0 778 0 59

20%V 86 8±286 83 5±22 5 0 623 0 73

7 3 3 EMGrms under different load and vibration conditions

EMGrms measured on the RF was shown m figure 7 3 Statistical analysis showed 

that vibration did not have a significant effect on EMGrms (p >0 05), but load did 

have a significant effect (p < 0 01) Mam effects analysis showed that the load of 

20% 1RM induced significantly higher EMGrms (48 (aV vs 31 |iV , p < 0 05)

10% 1RM 20%1RM

load

Figure 7 3 EMGrms measured on RF under different conditions

EMGrms measured on the VL is shown in figure 7 4 Statistical analysis showed that 

both vibration and load had significant effects on EMGrms (p < 0 01) Main effects
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analysis showed that the EMGrms with vibration was significantly higher than no 

vibration (49 jiV vs 39 jiV , p < 0 05), and the load of 20% 1RM induced a 

significantly higher EMGrms (49 jaY vs 38 jiV , p < 0 05)

10% 1RM 20%1RM

load

Figure 7 4 EMGrms measured on VL under different conditions

EMGrms measured on the VM is shown in figure 7 5 Statistical analysis showed 

that both vibration and load had a significant effect on EMGrms (p<0 01) Main 

effects analysis showed that the EMGrms with vibration was significantly higher 

than no vibration (74 |iV vs 46 jiV , p < 0 05), and the load of 20% 1RM induced 

significantly higher EMGrms (69 jaV vs 49 j i V  , p < 0 05)
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10% 1RM 20%1RM

load

Figure 7.5 EMGrms measured on VM under different conditions

7.4 Discussion

The results of this study showed that vibration could induce significantly higher 

muscle activity on the VL and VM in both 10% 1RM and 20% 1RM load conditions 

(p<0.05). In addition, the load had a significant influence on the EMG response to 

vibration on the VL and VM, i.e., the higher the load, the greater the EMG response 

to vibration. It may be suggested from this study that vibration training with high 

resistance load may be able to activate more motor units during training, and 

therefore may induce greater strength and power gain.

Although the EMG on RF tended to be enhanced by vibration (p<0.1), the increase 

was not significant. This may be due to several reasons. Firstly, the length of a 

muscle has been found to have an influence on its response to vibration 

stimulation(30). Eklund et al. (30) found that when a muscle is in a stretched position 

it is more responsive to vibration. In the present study, subjects were asked to extend
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their knee joint angle to 150° The lack o f response in RF may be due to its shortened 

muscle position However, this argument may not be supported by our results in 

study 1 (chapter 5) and 2 (chapter 6), m which the EMG response to vibration was 

not affected by the joint angle Secondly, the different responses of RF, VL and VM 

to vibration may be related to the load sharing among these muscles Zhang et al (78) 

measured m vivo the load sharing among the quadnceps components m a sub- 

maximal knee extension The authors (78) found that with an increase in total knee 

extension moment, the VL and VM contributed significantly more with the 

increasing demand (p<0 01), while the relative contribution by the RF did not change 

significantly (p>0 05) It is possible that a similar load sharing pattern existed in the 

quadnceps response to vibration load

There have been no studies to date that have directly examined the influence o f  

resistance load on neuromuscular performance in vibration training with sub- 

maximal exercise performed Rittweger et al (20,79) indirectly examined the 

influence of exercise load on acute vibration training effect by measunng the oxygen 

uptake during a bout o f whole-body vibration exercise The authors (20) found that 

the specific oxygen uptake  ̂(the instantaneous oxygen uptake divided by the body 

mass) dunng a sub-maximal isometnc contraction exercise (standing with knee 

flexed at 170°) could be enhanced by whole body vibration In addition, a further 

increase m specific oxygen uptake was observed when extra-load was applied to the 

exercise The authors (79) suggested that a pre-loading of muscles dunng vibration 

training may enhance the activation of these muscles Therefore, our results in the 

present study are in line with this argument, and provide the direct evidence
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indicating that the higher muscle activation by vibration can be achieved with higher 

resistance load in vibration training with sub-maximal contraction exercises.

A comparison of three chronic vibration training studies (3,6,8) that each employed 

different exercise intensities indicates that exercise intensity may elicit different 

vibration training effects. De Ruiter et al. (8) reported no significant enhancement in 

knee extension strength after 11-weeks o f whole body vibration training. However, 

Delecluse et al. (3) employed a higher intensity o f exercise and found that 12-weeks 

of whole body vibration training could induce a significant increase (16.6%, p<0.05) 

in knee extension strength. The higher exercise intensity involved exercise such as 

the squat, deep squat, wide-stance squat, one-legged squat and lunge during 

training(3), while in the former study (8) the subjects were only asked to stand on the 

vibrating platform with knee angle flexed at 110°. In addition, Issurin et al.(6) 

employed a heavy resistance training program in their vibration training studies in 

which a load of 80%-100% 1RM was used. This exercise intensity was the largest 

among these three vibration training studies. It was also noted that the gains in 

maximal strength in this study were also the largest, both with and without vibration 

(49.8% vs. 16%; p<0.05), although the length of this study was the shortest [3 

weeks(6) vs. 11 weeks (8) and 12 weeks (3)]. These findings support our analysis 

that vibration may achieve greater acute muscle performance enhancement when the 

exercise intensity was increased during vibration training.

As a possible mechanism for the above findings, it has been found that muscle 

spindle endings are very sensitive to vibration (80). Muscle vibration could induce a 

sustained discharge of la afferents and cause a reflex contraction of the muscle being
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vibrated, 1 e tonic vibration reflex (TVR) (30) The initial voluntary contraction o f  

the muscle may be accompanied by an increase o f gamma motor activity which 

could keep the intrafusal fibers tense (30) This increased tension of intrafusal fibers 

could therefore increase the sensitivity o f muscle spindle endings, and in 

consequence would increase the positive response from the vibration stimulation(30) 

Thus it may be suggested that the increase in exercise intensity in vibration training 

has the function to increase the sensitivity o f muscle spindles to vibration stimulation 

and induce a greater activation of motor units

7 5 Conclusion

The muscle activation during vibration traimng with sub-maximal isometric 

contraction is effected by the resistance load employed Higher muscle activation 

may be achieved when vibration is applied with a higher load in a sub-maximal 

contraction, implying that increase the exercise intensity may be' able to induce a 

greater vibration training effect The muscle activity response to vibration with 

different resistance load is repeatable in different test days
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Study 4 Acute and acute residual effect of vibration training on 

neuromuscular performance with maximal isotonic contractions
r

8 1 Introduction

Vibration stimulation has been suggested to be able to facilitate the fully activation 

of muscle dunng maximal isotonic contraction, which may not be achieved by 

voluntary effort (21) This is o f great potential for the application of vibration 

training because the isotonic contractions are more common in strength training 

exercises Only three studies with appropriate control have investigated this kind of 

vibration training to date (6,21,26) All o f them employed the indirect method 

vibration (6,21,26) It is therefore necessary to investigate whether greater 

enhancement in neuromuscular performance for isotonic contractions can be 

achieved by direct method

In addition to the enhancement on neuromuscular performance dunng maximal 

isotonic contraction (acute effect o f vibration), vibration has been found to facilitate 

the maximal dynamic contractions performed following a bout o f vibration training 

(acute residual effect o f vibration) This acute residual effect was found only after 

vibration training with very light exercise (7) It is reasonable to argue whether an 

exercise is needed to induce this acute residual effect

The aims of this study are

Chapter 8
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1) to examine the acute (during) effect of direct vibration on neuromuscular 

performance of maximal isotonic contractions.

2) to examine the acute residual (following) effect of direct vibration training with 

exercise or without exercise

8.2 Methods

Only key aspects of the methods are presented below. A more detailed account of the 

methods is presented in the generic methods section (chapter 4).

8.2.1 Subjects

Fourteen young adult male volunteers took part in this study. The average age, mass 

and height of the subjects were 26.3±6.6 (years), 77.8+12.6 (kg), and 177.3±6.8 

(cm), respectively.

8.2.2 Experiment design

Subjects were exposed to four training conditions in random order: 1) exercise with 

superimposed vibration (E+V); 2) exercise with sham-vibration (E+SV); 3) no 

exercise with superimposed vibration (NE+V); 4) no exercise with sham-vibration 

(NE+SV). The exercise condition comprised of three sets of dynamic bicep curls 

with a load of 70% 1RM, performed by the dominant arm while sitting on a preacher 

curl bench (figure 8.1). Each set comprised of 10 repetitions. In the exercise 

condition, subjects attempted to move the weight as fast as possible in the concentric
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phase, and to fully extend their elbow joint in the eccentric phase There was a 3 to 5 

minutes rest time between each set In the conditions without exercise, subjects 

rested their dominant arm on the pad with their elbow joint fully extended, with no 

weight The duration of the no exercise condition was set to be the same as the 

exercise condition (30 seconds)

Figure 8 1 Experiment setup 

8 2 3 Experimental procedure

The 1RM strength of the bicep curl was measured for each subject on a separate day, 

at least 3 days before the start of the experiment Subjects were also familiarized with 

test procedures on that day In order to normalize EMG data, subjects performed a 1
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RM bicep curl and tncep extension on each test day, after a warm-up exercise (12 

repetitions of bicep curls and tncep extensions with 25% of 1RM load, rest for 3 

minutes, followed by 12 repetitions of the bicep curl and tncep extension with 50% 

of 1RM load) After 5 minutes rest, a set of 5 bicep curl repetitions with 70% 1RM 

load was performed as the pre-trainmg test (pre-test) After 5 minutes rest, subjects 

performed one of four training conditions (E+V, E+SV, NE+V, NE+SV) Two sets 

of 5 bicep curl repetitions with 70% 1RM load were performed, one at 1 5 minutes 

and the other at 10 minutes after the end of training as the post-training tests (post­

test-1, post-test-2) (figure 7 2) The subjects were asked to perform the concentric 

phase of contractions as hard and as fast as possible during all sets This procedure 

was undertaken on four occasions that were separated by at least 3 days, once for 

each experimental condition
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8 2 4 V ib ra tio n

Vibration was produced by a portable muscle tendon vibrator (section 3 2 3) that was 

strapped onto the biceps tendon Vibration amplitude and frequency were set at 1 2 

mm and 65 Hz, respectively, as they were previously identified as appropriate values 

[study 1 (chapter 5) and study 2 (chapter 6)] In the sham vibration condition, the 

eccentric masses were removed so that there was only the noise of the motor running 

but no notable vibration was produced

8 2 5 Measurements

Elbow joint angle and EMG on the bicep brachn and the tncep brachn were 

measured both during training and m pre and post training tests EMG measurement 

was also mad during the contraction with 1RM load

Two single axis accelerometers (ET-Acc-01, Ergotest Technology, Norway) were 

taped together with their sensitive axis aligned and attached to the wrist of the 

exercised arm of the subject The sensitive axis of both accelerometer were aligned 

with the forearm One accelerometer was connected to Powerlab, and the other to the 

amplifier of goniometer The output from the two accelerometers allowed 

synchronization of the EMG and joint angle signals
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8 .2 .6  D a ta  analysis

The elbow joint angular velocity (co),  acceleration ( a ) ,  moment ( M elbow), and

power ( Pelbow) data were calculated from the filtered joint angle data (section 4.4.2).

For co , M elbow and Pelbow , initial (at 100 ms), mean and peak measures were

determined. In addition, concentric phase duration, time to peak power ( T p), and rate 

of power development ( RPD ), calculated as the peak power divided by the duration 

from the start of the concentric phase to the time when peak power was achieved, 

were also determined (figures 8.3 and 8.4). These dependent mechanical variables 

were selected because they have been identified as important to movement 

performance outcome in maximal effort tasks(81).

Finally, EMGrms data on the biceps and triceps were averaged for the concentric 

phase of the bicep curl (EMGrms). The average value of EMGrms data (biceps) for a 

period of 120ms from the start of concentric phase was calculated [initial EMGrmS(o- 

120ms)]. These EMGrms values were then normalized to the average EMGrms value in 

the concentric phase of the 1RM contraction. The mean power frequency of EMG 

(EMGmpf) of the biceps in the concentric phase was also calculated. These were the 

dependant EMG variables.

The mechanical and EMG variables (detailed above) of the second, third and fourth 

repetitions of each set were selected and averaged to represent the variables for each 

set. This procedure was employed because the repeatability for the variables, as
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assessed via Cronbach’s alpha coefficient, was higher when the first and fifth 

repetitions were not included in the analysis (82)

8 2 7 Statistical analysis

As the pre-training test was repeated on each of the four test conditions performed on 

four different days, the inter-day reliability of all dependent variables was calculated 

using mtraclass correlation (77)

To determine the acute effect of vibration (vibration, no vibration) and set (setl, set2, 

set3) on mechanical and EMG variables during training, a two factor ANOVA 

[vibration treatment (2) x training set (3)] with repeated measures on the subjects 

was employed

To examine the acute-residual effect of vibration (vibration, no vibration), exercise 

(exercise, no exercise) and test time (pre-test, post-test-1 , post-test-2) on mechanical 

and EMG variables after training, a three factor ANOVA [vibration treatment (2) x 

exercise (2) x test time (3)] was employed

For all analyses a probability value of significance of p<0 05 was employed Where a 

significant mam effect or interaction involving the independent variable of vibration 

was found, planned comparisons with appropnate Bonferrom adjustment were 

employed to identify where the significant difference rests SPSS® was used for all 

statistical analysis
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8 3 Results

Typical angle, angular velocity, moment and power data during the concentric phase 

are shown in figures 8 3 and 8 4

8 3 1 Representative data

o>
5oQ.

time(s)

Figure 8 3 Angle and velocity curves during concentric phase

time (s)

Figure 8 4 Moment and power curves during concentric phase

8 3 2 Reliability of measurement
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The mean (± standard deviation) values o f  all variables measured in the pre-training 

tests for the four different test conditions (4 different days) are shown in table 8.1. 

The inter-day reliability (ICC) o f measurement ranged from 0.58 to 0.99.

Table 8.1 Reliability o f pre-training baseline test measurements

Variable E+V E+SV NE+V NE+SV ICC

Concentric 
duration (ms)

883+184 890+192 911+218 859+201 0.88

Mean angular 
velocity(rad/s)

1.5±0.4 1.5+0.3 1.4+0.3 1.6+0.3 0.78

Peak angular 
velocity(rad/s)

2.8±0.7 2.7+0.6 2.8+0.5 3.0+0.5 0.77

Initial angular 
velocity(rad/s)

0.6+0.3 0.6+0.2 0.6+0.2 0.7+0.3 0.78

Mean moment 

(N.m)

27.3+6.2 27.7±6.6 26.9+6.6 26.9+6.2 0.99

Peak moment 

(N.m)

39.9±8.2 39.3±8.6 39.2+9.7 41.8+9.3 0.98

Initial moment 

(N.m)

35.3±6.8 35.6±6.9 33.5+8.1 37.0+7.2 0.94

Mean power 

(W)

41.2±8.3 40.9+10.3 40.4+13.6 43.5+11.3 0.91

Peak power 

(W)

93.7±26.3 89.7+27.1 93.6+31.8 104.3+31.6 0.89

Time to peak 
power (ms)

506±134 483+109 511+175 448+105 0.86

Initial power 

(W)

22.9+13.8 22.5+7.9 19.9+11.0 27.5+14.0 0.74

RPD

(W/s)

207.8±108.5 201.4+87.8 198.4+84.7 264.4+113.8 0.85

Normalized
EMGrms(biceps)

70.8±24.0 74.0+20.5 79.5+22.9 72.4+19.5 0.72

Nomai ized
EMGrms(0-
120ms)(biceps)

111.5±22.2 112.4+26.2 111.0+28.5 107.4+18.6 0.58

EMGmpf(biceps) 79.5+13.1 80.2+11.9 76.9+8.4 81.3+12.4 0.69

Normalized
EMGrms(triceps)

35.9±22.4 32.9+14.3 31.6+14.5 36.8+18.2 0.89
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Vibration, training set and their interaction did not have any significant effect on the 

mechanical variables measured (p>0 05) (table 8 2 to 8 4)

Table 8 2 Acute effect of training on concentnc duration and velocity variables

(mean±S D)

8 3 3 M ec h a n ic a l and E M G  output during tra in ing  (acute effect)

Variable Condition Setl Set2 Set3

Concentnc 

duration (ms)

E+V

E+SV

906±211 

866±145

913+222

868±141

913±234 

881±168

CO mean E+V 1 4±0 4 1 5+0 5 1 5+0 5

(rad/s) E+SV 1 5±0 4 1 5+0 4 1 5+0 4

CO peak E+V 2 6±0 6 2 8±0 8 2 8±0 9

(rad/s) E+SV 2 7±0 7 2 7±0 6 2 7+0 6

O) 100 E+V 0 7±0 3 0 6±0 3 0 6±0 3

(rad/s) E+SV 0 6±0 2 0 6±0 3 0 6±0 3

Note co mean = mean angular velocity, co peak = peak angular velocity, 

co ioo = initial angular velocity
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Table 8 3 A cute  effect o f  tra in ing  on m om ent variables (m ean±S  D )

Variable Condition Seti Set2 Set3

Mmean E+V 27 4±6 6 27 3±6 4 27 1±6 2

(N m) E+SV 27 4±6 5 27 4±6 4 27 3±6 5

Mpeak E+V 39 7±8 1 39 9±7 9 39 9±7 9

(Nm) E+SV 39 7±9 1 39 6±8 7 38 9+7 9

Mioo E+V 36 3±6 4 34 9+6 4 34 6±6 9

(Nm) E+SVn 35 6±6 9 35 7+7 0 35 5±6 7

)te Mmean “ mean moment, Mpeak = peak moment, Mioo = initial mor

Table 8 4 Acute effect of training on power vanables (mean±S D)

Variable Condition Seti Set2 Set3

Ppeak E+V 86 7±23 2 93 8±332 95 4± 383

(W) E+SV 90 9± 287 91 5±252 88 0±240

Tp E+V 451±134 497±163 485±141

(ms) E+SV 456±79 4701105 481±116

Pmean E+V 39 5±7 6 40 3±10 8 41 1±11 8

(W) E+SV 41 5±9 4 41 5±9 2 40 3+8 7

Pioo E+V 26 2±11 5 22 4+10 5 21 1±10 5

(W) E+SV 22 9±7 2 23 6±11 2 23 8+11 8

RPD E+V 211 9±88 9 209 3±95 8 216 7±114 7

(W/s) E+SV 206 0±73 5 206 3±74 0 197 4±79 6

Note Pmean = mean power, Ppeak = peak power, Pioo = initial power, 
TP = time to peak power, RPD = rate of power development
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For biceps EMGrms(<M20ms)> only training set had a significant acute effect (p<0 0 1) 

Main effects analysis showed that EMGrms(o 120ms) in set 3 was significantly lower 

than that in set 1 (p<0 05) (table 8 5) Vibration and the interaction between vibration 

and set were not significant (p>0 05)

For biceps EMGrms, vibration, training set and their interactions did not have any 

significant effect (p>0 05) (table 8 5)

For biceps EMGmpf, only training set had a significant acute effect (p<0 01) Main 

effects analysis showed that EMGmpf both m set 2 and set 3 were significantly 

higher than that in set 1 (p<0 05) (table 8 5) Vibration and the interaction between 

vibration and set were not significant (p>0 05)

For tnceps EMGrms, vibration, training set and their interaction did not have any 

significant acute effect (p>0 05) (table 8 6)
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(mean±S D)

Table 8 .5  A cute effect o f  tra in ing  on E M G  variables on the bicep brachn

Variable Condition Setl Set2 Set3

Normalized

EMGmns (0-

120ms)

E+V
1

120 3±29 7

-  * -----------

112 7±46 4
1

100 4±30 9

E+SV
1

111 2±23 4 103 5±19 5
1

,106 3±31 0

Normalized E+V 76 3±223 75 8±30 1 69 9±239

EMGrms E+SV 73 9±205 71 1±19 6 70 6±19 7

E+V
f F  *

77 9+10 5

—  *  -----
1

84 9±13 1 83 9±11 7

EMGmpf
E+SV

11 * 
81 2 ±107

*
1

84 0±13 3
1

84 5±12 6

Note *=sigmficant difference (p<0 05)

ible 8 6 Acute effect of training on EMG variable on the tncep bracl

(mean±S D)

Variable Condition Setl Set2 Set3

Normalized E+V 33 1±21 6 33 9±21 3 34 0±21 4

EMGrms
E+SV 32 3±13 3 31 3±10 9 30 3±11 8

8 3 4 Mechanical and EMG output after training (acute residual effect)

1 5 2



For all the mechanical variables analysed, vibration, exercise, test time and their 

interactions did not have any significant acute residual effect (p>0.05) (table 8.7 to 

8.9).

Table 8.7 Acute residual effect of training on concentric duration and angular

velocity variables (meanlS.D)

Variable Condition Pre Post-1.5min Post-1 Omin

Concentric E+V 8831184 9531305 8921210

duration (ms)
E+SV 8901192 8581170 8261121

NE+V 9111218 9101211 9291239

NE+SV 8591201 9261198 8571176

E+V 1.510.4 1.510.5 1.610.4

CO mean E+SV 1.510.3 1.510.4 1.610.3

(rad/s) NE+V 1.410.3 1.510.2 1.410.3

NE+SV 1.610.3 1.410.2 1.610.3

E+V 2.810.7 2.910.9 2.910.8

CO peak E+SV 2.710.6 2.810.6 2.810.6

(rad/s) NE+V 2.810.5 2.710.4 2.710.5

NE+SV 3.010.5 2.810.4 2.910.5

E+V 0.610.3 0.610.2 0.710.3

CO 100 E+SV 0.610.2 0.610.3 0.610.2

(rad/s) NE+V 0.610.2 0.710.3 0.610.2

NE+SV 0.710.3 0.610.3 0.710.3

Note: co mean = mean angular velocity; co peak = peak angular velocity;

co ioo = initial angular velocity; *=significant difference (p<0.05)
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Table 8 8 A c u te  residual effect o f  tra in ing  on m om ent variables (m ean±S  D )

Variable Condition Pre Post-1 5min Post-1 Omin

E+V 27 3±6 2 27 0±6 3 27 0±6 5

Mmean E+SV 27 7±6 6 27 4±6 7 27 2±6 6

(Nm) NE+V 26 9±6 6 26 9±6 7 26 9±6 5

NE+SV 26 9±6 2 26 8±6 4 26 9±6 4

E+V 39 9+8 2 39 7±8 7 39 5+7 9

Mpeak E+SV 39 3±8 6 39 8±8 9 39 9+8 8

(Nm) NE+V 39 2±9 7 39 4±9 3 39 3+9 9

NE+SV 41 8±9 3 40 1+7 5 41 5±8 9

E+V 35 3±6 8 34 9+6 6 35 5±7 1

Mioo E+SV
1

35 6±6 9 35 4±7 4 35 8+7 5

(N m) NE+V 33 5+8 1 34 9±7 8 34 5±7 5

NE+SV 37 0+7 2 35 5±8 1 37 1±7 2

Note Mmean = mean moment, MPeak- peak moment, Mioo = initial moment

(
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Table 8 9 A cute  residual effect o f  tra in ing  on p ow er variables (m ean±S  D )

Variable Condition Pre Post-1 5min Post-1 Omin

E+V 93 1 + 2 6  3 96 1±388 96 6±267

P peak E+SV 89 7±27 1 93 9±28 8 95 5±269

(W) NE+V 93 6±31 8 91 9±27 1 91 5±34 9

NE+SV 104 3±31 6 92 4±16 4 101 4±25 8

E+V 506+134 573+285 493±140

Tp E+SV 483±109 478±108 452+79

(ms) NE+V 511±175 530±291 465±152

NE+SV 448±105 514±153 465±165

E+V 41 2±8 3 40 8±113 42 6+9 9

Pmean E+SV 40 9±10 3 41 5±9 6 42 6±10 5

(W) NE+V 40 4±13 6 40 7±120 40 1±14 1

NE+SV 43 5±11 3 39 1±11 1 43 2±10 1

E+V 22 9± 138 21 1±7 2 24 4±11 3

Pioo E+SV 22 5±7 9 22 1±10 9 22 7±8 1

(W) NE+V 19 9±110 24 3±112 20 8±11 3

NE+SV 27 5+14 0 22 3±13 9 28 5±15 2

E+V 207 8+108 5 200 8±101 7 214 4+89 5

RPD E+SV 201 4±87 8 208 5+83 4 218 4±69 2

(W/s) NE+V 198 4±84 7 205 8±82 1 209 1±76 2

NE+SV 264 4±113 8 202 0±84 7 253 6+118 3

Note Pmean = mean power, Ppeak = peak power, Pioo = initial power, 
T p = time to peak power, RPD = rate of power development,
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For biceps EMGrmS(o-i20ms), test time and the interaction between exercise and test 

time had a significant acute residual effect (p<0 05) Mam effects analysis showed 

that EMGrms(o 120ms) measured both at 1 5 minutes and 10 minutes after training was 

significantly lower than that in pre-training test (p<0 05) (table 8 10) Vibration and 

all interactions involving vibration were not significant (p>0 05)

For biceps EMGrms, test time and the interaction between exercise and test time had 

a significant effect on EMGrms (p<0 05) Mam effects analysis showed that 

EMGrms measured 1 5 minutes after training was significantly lower than pre- 

traming test (p<0 05) (table 8 10) Vibration and all interactions involving vibration 

were not significant (p>0 05)

For biceps EMGmpf, exercise, test time and the interaction between exercise and test 

time had a significant effect on EMGmpf (p < 0 05) Mam effects analysis showed 

that exercise induced significantly higher EMGmpf (p<0 05) EMGmpf measured 

both at 1 5 minutes and 10 minutes after exercise were significantly higher than that 

in pre-traming test (p<0 05) (table 8 10) Vibration and all interactions involving 

vibration were not significant (p>0 05)

*
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Table 8 10 Acute residual effect of training on EMG variables on the bicep brachn

(mean±S D)

Variable Condition Pre Post-15min Post-lOmin

w

I I * — I I
E+V 1 1 1  5±22 2 93 1±21 8 90 0±19 2

I  I * — i* i
g 2  E+SV 112  4126 2 98 9133 3 103 6141 7

5 O ' I  * -------1 1
2  2  NE+V 111 0128 5 107 5133 5 108 1135 1

W i----------------------- *  1
I | * | I

NE+SV 107 4118 6 105 1120 3 104 1117 2

•o<U 
N^  <=>

---------------------------------------------------------------  s|e

o
E+V 70 8124 0 68 6123 2 66 0121 3

2 r  * ' 1
w E+SV 74 0120 5 69 3121 7 68 3123 1
N \---------  * ‘ 1

NE+V 79 5122 9 73 1119 6 77 8126 5
g 1 * 1w

2 NE+SV 72 4119 5 66 8118 9 70 3117 9

E+V 79 5113 1 88 1112 3 84 9111 3

•a. I l *r=~ l *  I
J  E+SV 80 2111 9 87 1112 3 84 8111 5

NE+V 76 918 4 75 5110 7 78 1110 3'

NE+SV 81 3112 4 80 519 9 78 918 3
J

Note *=sigmficant difference (p<0 05)

Vibration, exercise, test time and their interactions did not have any significant acute 

residual effect on EMGrms on the triceps (p>0 05) (table 8 11)
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(mean±S D)

Table 811 A cute  residual effect o f  tra in ing  on E M G  variab le  on the tncep  brachu

Variable Condition
t

Pre Post-1 5min Post-lOmin

E+V 35 9±224 34 5±209 33 9±209
c/)

§
O

r

SPQ
E+SV 32 9±14 3 31 1+10 9 33 4±129

8
NE+V 31 6+14 5 33 3±155 32 8±146

o
z NE+SV 36 8+18 2 34 1+167 35 7±18 8

8 4 Discussion

For the acute effect, the results of the present study showed that the mechanical 

output and muscle activity dunng maximal isotonic contractions were not enhanced 

by supenmposed vibration This is different from the other vibration training studies

To date, there have been only three studies examining the effect of vibration training 

on maximal isotonic contractions with appropriate control design (6,21,26) Issunn et 

al (2 1 ) found that vibration could significantly enhance the acute maximal and mean 

power of explosive bicep curl by 10 4% and 10 2% respectively in elite athletes, and 

by 7 9% and 10 7% respectively in amateur athletes Lierbermann et al (26) found 

that the maximal strength of bicep curl was enhanced significantly by 4 9% in 

amateurs and 8 3% in Olympic athletes by superimposed vibration Finally, a three 

weeks vibration training study by Issunn et al (6) indicated that supenmposed 

vibration could induce significantly greater strength gam in maximal isotonic
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strength than the conventional strength training without vibration (49.8% vs. 16%). 

All these findings suggested that the neuromuscular performance of maximal 

isotonic contraction could be enhanced by superimposed vibration.

The different results may be due to the vibration training methodology (vibration 

amplitude and frequency, method of vibration application, exercise protocol and 

subjects) employed in the present study, which is different from the above studies.

Firstly, vibration amplitude and frequency may be a possible reason for the different 

results. The vibration amplitude and frequency used in this study was 1.2 mm and 65 

Hz respectively, and this vibration amplitude and frequency was applied directly to 

the tendon of the biceps. In all three of the above studies, vibration was applied to the 

biceps by an indirect method, in which subjects held a vibrating handle that vibrated 

at the amplitude of 0.3 to 0.4 mm and at the frequency of 44 Hz (6,21,26). The 

vibration amplitude on the biceps should be less than 0.3 to 0.4 mm because of the 

attenuation of the vibration signal during its transmission to the biceps (22 ,59). 

Therefore, it seems that vibration amplitude and frequency were higher in our study. 

However, an examination of other studies do not lend support to the argument that 

the vibration amplitude and frequency may be the reason for different results.

A comparison of the two studies by Torvinen et al. (7,12) suggested that larger 

vibration amplitude may be able to activate muscle more effectively. The higher 

vibration amplitude could irritate more muscle receptors, particularly the primary 

endings of muscle spindles, and may activate more motor units into contraction (30). 

As also shown by the results from study 1 (chapter 5), the amplitude of 1.2 mm was
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more effective in stimulating the biceps than the amplitude of 0.5 mm in a sub- 

maximal contraction. In addition, study 2 (chapter 6) also showed that the frequency 

of 65 Hz was more effective than 30 Hz in muscle activation. Therefore, the 

vibration load, which is determined by the vibration amplitude and frequency, is 

higher in the present study than those studies (6,21,26) in which facilitatory effect of 

vibration on maximal isotonic contraction was found. Thus a facilitatory effect of 

superimposed vibration on muscle neural activity, contraction force and power was 

expected in this study. However, although the same vibration amplitude and 

frequency used in this study was able to activate more motor units in sub-maximal 

contraction, they were unable to induce the same effect in maximal isotonic 

contraction.

Secondly, the method of vibration application may also be a possible reason for the 

different results. A direct method was employed in this study to facilitate the optimal 

utilization of vibration signals during vibration training. Although the direct method 

could facilitate delivering a high vibration load to the target muscle, vibration 

stimulation was localized to the specific muscle group. On the other hand, with an 

indirect method, vibration signal was transmitted through distal-to-proximal muscle 

groups, which may stimulate more muscle groups, and may be more suitable for the 

training of athletes (6). In addition, recent studies showed that the muscles in lower 

limb was able to damp the vibration input with the frequencies of 10 to 20 Hz 

(resonance frequency of lower limb) from the foot during walking and running by 

increasing muscle stiffness (39,40). Therefore indirect vibration may enhance the 

muscle stiffness of the upper limb or lower limb muscles during its transmission, 

which may facilitate the muscle performance. Recent studies have also shown that
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the stiffness regulation may play an important role in the power performance of 

contractions such as drop jump (83).

Finally, subject pre-training may also offer an explanation for the different results in 

the present study. Issurin et al. (21) recruited elite and amateur athletes as the 

subjects in their study to perform the explosive bicep curl exercise. These subjects 

were familiar with power exercises, and were able to perform contractions with 

maximal effort and high reproducibility. On the other hand, the subjects in our study 

were all untrained individuals, who will have had less experience with the maximal 

effort contraction with free weights, in which the requirement of coordination is 

higher than with an exercise with machine. It is noted that the variability of response 

to vibration are quite large among subjects in this study (e.g. peak power in set 1 

with vibration ranged from 55 W to 116 W), and therefore lends some support to the 

influence of subject background being important.

In addition to the above reasons on vibraiton training methodology, the data analysis 

methods employed in the present study may also have influence on the results. 

Firstly, the selection of low cut-off frequency (2 Hz) to filter the joint angle data may 

have a influence on the mechanical ouput results. In the future studies, the influence 

of different cut-off frequency (higher than 2 Hz) on the mechanical output data 

during vibration training should be examined. Secondly, it was found that the 

reliability of EMG measurements was lower than the mechanical output 

measurements in the present study (table 8.1), which suggested that more cautions 

should be taken as to the interpretation of the EMG results.
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Vibration training has been suggested to be able to increase the excitability of 

peripheral sense organs (3) and the central motor system (4,11), which may have a 

faciliatory effect on the subsequent contractions Torvmen et al (7) found that the 

knee extension strength and counter movement jump height were significantly 

increased immediately after a bout of 4 minutes whole body vibration training 

Rittweger et al (4) found that mean power frequency of EMG (EMGmpf) was 

significantly enhanced immediately after a bout of 6 minutes vibration training The 

authors (4) therefore suggested that an increase of central motor excitability to recruit 

predominantly large motor units may account for the muscle performance 

improvement after vibration However, it was found in this study that vibration did 

not have any facilitatory effect on the force and power output of maximal isotonic 

contraction measured at both 1 5 minutes and 10 minutes after vibration training The 

EMGmpf measured after vibration training in this study did not show any significant 

increase by vibration This may be due to the short duration of vibration m this study 

(30 seconds for each set, 3 sets) Issunn et al (21) found that the mean and maximal 

power of explosive bicep curl was not enhanced immediately after a bout of vibration 

training The authors (21) suggested that the short duration of vibration stimulation 

(6-7 seconds) may not be sufficient to affect the subsequent muscle performance

In order to examine the influence of exercise on the acute residual effect, this study 

incorporated vibration training both with exercise and without exercise in the 

experiment conditions However, as no acute residual effect of vibration was found 

m the present study, it is therefore unclear which exercise protocol is better for the 

acutc residual effect The vibration training studies with longer duration of vibration 

stimulation are needed in the future to examine this issue
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The EMG of antagonist muscle during and after vibration training was measured in 

this study This has not been reported in any previous studies It has been suggested 

that vibration may inhibit the activation of the antagonist muscles, leading to an 

enhanced overall force and power output around the joint (11) However, 

simultaneous vibration stimulation of the agonist and antagonist muscles with 

indirect method of vibration application may induce the reciprocal inhibition on the 

activation of agonist muscle (8,58) Therefore, it is plausible that the direct vibration 

of the agomst muscle tendon, as in the present study, may have the advantage in 

decreasing the antagonist muscle activity without eliciting any negative effect on 

agonist activation However, this was not found in the present study, with the 

EMGrms of the triceps, both dunng and after the vibration treatment, being 

unaffected by vibration It was thus suggested that vibration may not have the acute 

or acute residual effect of decreasing the antagonist muscle activity in maximal 

isotonic contractions

8 5 Conclusions

This study found that direct vibration did not enhance the neuromuscular 

performance of maximal isotonic contraction dunng training Direct vibration 

training with maximal isotonic exercise or without exercise did not have any residual 

effect on maximal isotonic contractions

<
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9 1 Introduction

Although it has been found by several vibration training studies that maximal force 

and power of isotonic contractions could be enhanced by superimposed 

vibration(6,21,26), this was not found in our previous study (chapter 8) in which no 

facihtatory acute effect of vibration on maximal isotonic contraction was found It 

was noticed that the subjects m the previous study had to decelerate the free weights 

(70% 1RM) dunng the concentric phase of each contraction, it was suggested that 

this deceleration mechanism may reduce the facihtatory effect of vibration, and may 

be the possible reason for the different results found m the previous study Therefore 

in this expenment, another kind of isotonic exercise in which subjects can contract in 

a ballistic manner and release the free weight at the end of concentnc phase will be 

employed It is expected that vibration may exert its faciltatory effect on this kind of 

isotonic contraction to enhance the maximal force and power

The aim of this study is to examine the acute (during) and acute residual (following) 

effects of direct vibration training on neuromuscular performance with ballistic 

contractions

Chapter 9

Study 5 Acute and acute residual effect of vibration training on

neuromuscular performance with ballistic contractions

9 2 Methods
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Only key aspects of the methods are presented below. A more detailed account of the 

methods is presented in the generic methods section (chapter 4).

9.2.1 Subjects

Fourteen young adult male volunteers took part in this study. The average age, mass, 

and height of the subjects were 21.6±2.2 (years), 77.1±15.1 (kg), and 178.6±8.7 (cm) 

respectively.

9.2.2 Experiment design

Subjects were exposed to two training conditions in random order: 1) exercise with 

superimposed vibration; 2) exercise with sham vibration. The exercise condition 

comprised of three sets of ballistic knee extensions with a load of 60%-70% 1RM 

performed on a leg extension machine (figure 7.1). Each set comprised of 5 

repetitions.

Subjects sat on the machine and were firmly strapped to the seat. The poplital fossa 

of the subject was aligned to the rotation axis of the weight on the machine. The 

subjects were instructed to hold their arms across their chest and keep their back 

straight during exercise. Only the right leg was used in lifting the weight. The 

subjects were instructed to lift the weight as hard and as fast as possible in the 

concentric phase, and not to decelerate it at the end of concentric phase. A bar that
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was firmly fixed to an extenor frame support was positioned before the subject to 

stop the weight from hitting the subject

9 2 3 Expenmental procedure

The 1RM strength for the knee extension was estimated on each subject by testing 

with a 10RM load on a separate day, at least 3 days before the start of the 

expenment(76) Dunng all visits, subjects famihanzed themselves with the test 

procedure and the ballistic knee extension exercise

Dunng the actual test day, subjects performed a warm-up exercise first (1 set of 10 

repetitions of the knee extension with 25% of 1RM load), followed by a maximal 

effort isometnc knee extension for 5 seconds with a knee joint angle of 120° (see 

figure 9 1) After five minutes rest, a set of 5 repetitions ballistic knee extensions 

with 60%-70% 1RM load was performed as the pre-traming test (pre-test) After a 

further five minutes, subjects performed 3 sets of training exercise (with sham 

vibration or with vibration), with five minutes rest between each set Two sets of 5 

repetitions ballistic knee extension contractions were performed at 1 5 min and 10 

mm after the end of training as the post-training tests This procedure was undertaken 

on two occasions that were separated by at least three days, once for each expenment 

condition (vibration and sham vibration)
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Figure 9.1 Study design

9.2.4 Vibration

The vibration was produced by a portable muscle tendon vibrator that was strapped 

onto the quadriceps muscle about 10 cm from the superior surface of the patella. 

Vibration amplitude and frequency were set at 1.2 mm and 65 Hz, respectively. In 

the sham vibration condition, the eccentric masses were removed so that there was 

only the noise of the motor running, but no notable vibration was produced.

9.2.5 Measurements

Knee joint angle and EMG of the rectus femoris (RF) and vastus lateralis (VL) were 

measured during training and in pro and post training tests. EMG measurement was 

also made during the maximal isometric knee extension. Synchronization of
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goniometer and EMG measurements was achieved by connecting an output 

stimulation signal from the Powerlab to the DataLmk

9 2 6 Data analysis

The knee joint angular velocity ( co), acceleration ( a ), moment ( M elbow), and power 

( Pelbow) data were calculated from the filtered joint angle data (section 4 4 2) The 

following variables were calculated for the concentric phase 1) peak angular 

velocity (tf>peak), 2) time to peak angular velocity ( Tco), 3) peak moment ( M  peak)3 4)

time to peak moment ( T m), 5) peak power ( P  peak), 6) time to peak power ( Tp) They 

were the dependent mechanical variables (figure 9 3 and 9 4)

EMGrms data on the RF and VL dunng the concentric phase were averaged and then 

normalized to the average EMGrms measured dunng the 5 seconds maximal 

isometnc knee extension The mean power frequency of EMG (EMGmpf) in 

concentnc phase was also calculated These were the dependent EMG vanables

The mechanical and EMG vanables (detailed above) of the second, third and fourth 

repetitions of each set were selected and averaged to represent the vanables for each 

set This procedure was employed because the repeatability for the vanables, as 

assessed via Cronbach’s alpha coefficient, was higher when the first and fifth 

repetitions were not included m the analysis(82)

9 2 7 Statistical methods
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As the pre-training test was made on both of the two test conditions performed on 

two different days, the inter-day reliability of all dependant vanables was calculated 

using mtraclass correlation(77) A paired t test was also performed to determine 

whether there was a significant difference between the baseline test values measured 

on the two different test days

To determine the acute effect of vibration (vibration, no vibration) and set (setl, set2, 

set3) on the mechanical and EMG vanables dunng training, a two factor ANOVA 

(vibration treatment (2) x training set (3)) with repeated measures on the subjects
i

was employed

To examine the acute residual effect of vibration (vibration, no vibration) and test 

time (pre-test, post-test-1, post-test-2) on the mechanical and EMG vanables after 

training, a two factor ANOVA (vibration treatment (2) x test time (3)) was 

employed

For all analyses a probability value of significance of p<0 05 was employed Where a 

significant mam effect or interaction involving the independent vanable of vibration 

was found, a mam or simple effects analyses was undertaken with appropnate 

Bonferrom adjustment to show where the significant difference rests SPSS® was 

used for all statistical analysis

\

9 3 Results
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9 3 1 Representative data

Typical angle, angular velocity, moment and power data during the concentric phase 

were shown in figures 9 2 and 9 3

time(s)

Figure 9 2 Angle and velocity curves during the concentric phase

time(s)

Figure 9 3 Moment and power curves during the concentric phase



9 3 2 R e lia b ility  o f  measurements

The mean values of all the variables in pre-trainmg test m the two experimental 

conditions are listed in table 9 1 There was no significant difference between the two 

days measurement on pre-training test values (p>0 05) The reliability of 

measurement (ICC) ranged from 0 61 to 0 95

Table 9 1 Reliability of pre-training baseline test measurements

Sham p value Reliability

Variables vibration vibration of t-test (ICC)

«peak (rad's) 3 2+0 6 3 1±0 6 0 32 0 82

Ta (ms) 414 3±88 9 398 1±105 4 0 37 0 87

M peak (N m) 68 7+26 8 66 9±222 0 61 0 92

Tm (ms) 3114+115 1 286 7+133 9 0 25 0 90

Ppeok W 194 8+64 9 179 2±48 6 0 34 0 68

Tp (ms) 368 6±96 8 350 0±112 9 031 0 89

Normalized EMGrms 
(RF)

173 4±36 6 153 8±42 4 0 07 0 73

Normalized EMGrms 
(VL)

209 1±79 6 199 3±41 2 0 59 061

_ EMGmpf (RF) (Hz) 89 9±157 91 9±12 6 0 39 0 90

EMGmpf (VL) (Hz) 77 6±10 5 73 2±7 6 0 19 0 71

9 3 3 Mechanical and EMG variables dunng training (acute effect)

Vibration, training set and their interactions did not have a significant acute effect on 

o> peak, Ta , M peak, Tm and Ppeak (p>0 05) (table 9 2)
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Vibration had a significant acute effect on TP (p<0.05). Main effects analysis showed 

that Tp was significantly higher with vibration than with sham-vibration condition 

(p<0.05). The increase of Tpby vibration was approximately 4%, 10%, and 16% in 

set 1, set2 and set3 respectively (table 9.2).

Table 9.2 Acute effect of training on mechanical variables (meanlS.D)

Variable Condition Seti Set2 Set3

®  peak V 3.0±0.6 3.0±0.7 3.0±0.7

s v 3.2±0.6 3.210.5 3.1±0.6

T û) V 405±107 402±99 425±109

s v 389±92 382186 380195

M peak V 65.3±19.5 63.9118.9 65.8118.7

s v 68.7±23.9 69.3124.5 71.8127.2

Tmm V 304±135 3011123 3271141

s v 280±122 2761106 2651117

ppeak V 179±49 173152 1861155

s v 205±66 2081162 212168

T1 p V 361±118 1 3691107 1 3831116—1
* * *

s v 347±99 J 335±93J 331198J

Note: V=vibration, SV=sham vibration
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Vibration had a significant acute effect on EMGrms of the RF (p<0 05) Main effects
t

analysis showed that EMGrms was significantly lower with vibration than with 

sham-vibration condition (p<0 05) The decrease of EMGrms by vibration was 

approximately 10%, 14% and 15% in sets 1,2, 3 respectively (table 9 3)

Vibration, training set and their interactions did not have a significant acute effect on 

EMGrms of theVL (p>0 05) (table 9 3)

Table 9.3 Acute effect of training on EMG variables (meanlS D)

Variable Condition Seti Set2 Set3

Normalized V 

EMGrms —  

(RF) SV

153±45 - |  147±40 ~| 143±38 “ |
*  *  *

170±35 J  170±39 J  168±43 J

Normalized V 

EMGrms —  

(VL) SV

185±38 197144 181141

191165 198174 197172

EMGmpf

(RF)

V

SV

92 8113 0 94 9112 9 94 5112 7

89 5113 6 92 9115 4 93 4115 4

EMGmpf

(VL)
V

SV

I r ^ = n
74 9±7 0 74 7±7 3 - |  77 4±7 5
  * ______

78 2±9 8 80 5±11 6-1 78 4±10 3

Note V=vibration, SV=sham vibration
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Vibration did not have a mam effect on EMGmpf of the RF (p>0 05) Training set 

had a significant effect on EMGmpf of the RF (p<0 01), with values significantly
j

higher both in set 2 and 3 than in set 1 (p<0 05) (table 9 3)

Vibration did not have a mam effect on EMGmpf of the VL (p>0 05) The 

interaction between vibration and training set had a significant effect on EMGmpf on 

VL (p<0 05) Simple effects analysis showed that with vibration the EMGmpf in set 

2 was significantly lower than that with sham-vibration (p<0 05) This decrease of 

EMGmpf by vibration was 7% (table 9 3) EMGmpf in set 3 was significantly higher 

than those in set 2 and set 1 (p<0 05) (table 9 3)

9 3 4 Mechanical and EMG variables after training (acute residual effect)

Vibration, test time and their interactions did no have any significant acute residual 

effect on any of the mechanical variables (p>0 05) (table 9 4)
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Table 9 4 A cute residual effect o f  tra in ing  on m echanical variables (m ean±S  D )

Variable Condition Pre Post_l Post_2

&  peak V 3 1±0 6 3 110 7 3 110 7

1 s v 3 2±0 6 3 210 7 3 210 6

T0)
V 398±105 4081112 389184

s v 414±89 402197 396196

Mpeak V 66 9±222 64 7119 7 65 8120 2

s v 68 7±268 70 4126 9 72 3128 1

Tm V 2871134 3071134 2791110

s v 3111115 2941124 2901116

P
peak

V 179165 175151 179157

s v 195165 201164 207167

TP V 3501113 3711113 351193

s v 369197 358199 3491101

Note V=vibration, SV=sham vibration

Vibration and test time had significant acute residual effects on EMGrms of the RF 

(p<0 05) With vibration the EMGrms was significantly lower than with sham-

vibration (p<0 05) The decrease in EMGrms by vibration was 16% and 15% m post-
\

training test 1 and post-training test 2, respectively However, the EMGrms in the 

vibration condition before the training was 12% lower than that in sham-vibration 

condition (table 9 5) In addition, the EMGrms in post training test 1 was 

significantly lower than during the pre-training test (p<0 05) (table 9 5)
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T a b le  9 5 A cute residual effect o f  tra in ing  on E M G  variables (m e a n iS  D )

V a r ia b le  C o n d it io n P re Post 1 Post 2

Normalized
V

EMGrms

(RF) " ¡7

153±42 ~1 136±39 “ | 141±41 “ 1
f *  $  a(s

173+37 J  162+38 J  165+42 J

Nomalized
V

EMGrms

(VL) sv

EMGmpf

(RF)

SV

EMGmpf V 

(VL)

SV

199±42 179±41 191+46

209±79 189±68 193±67
I  *  I

91 9+12 6 93 9112 2 96 4113 9

89 9+15 7 92 1113 8 93 8+14 9
I________  *  I

73 2±7 6 75 4±7 7 76 417 5

77 6±10 5 78 2±12 0 81 3110 2

I _______  I- * —________  u* ____________

Note V=vibration, SV=sham vibration 

Vibration did not have a significant acute residual effect on the EMGrms of the VL 

(p>0 05) Only test time had a significant acute residual effect on the EMGrms of the 

VL (p < 0 0 1 ) Main effects analysis showed that the EMGrms in post-traimng test 1 

was significantly lower than that in pre-training test (p<0 05) (table 9 5)

Vibration did not have a significant acute residual effect on the EMGmpf of the RF 

(p>0 05) Only test time had a significant acute residual effect on the EMGmpf of the
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RF (p<0.01). Main effects analysis showed that EMGmpf in set 3 was significantly 

higher than that in set 1 (p<0.05) (table 9.5).

Vibration did not have a significant acute residual effect on the EMGmpf of the VL 

(p>0.05). Only test time had a significant effect on the EMGmpf of the VL (p<0.01). 

Main effects analysis showed that EMGmpf in post-training test 2 was significantly 

higher than those in both pre-training test and post-training test 1 (p<0.05) (table 

9.5).

9.4 Discussion

This study found that vibration did not have a facilitatory acute effect on the 

neuromuscular performance of ballistic knee extensions. Similar results were also 

found in study 4 (chapter 8), which showed that the muscle activity and mechanical 

output of maximal isotonic contraction (bicep curl) were not enhanced by vibration. 

Because the subjects had to decelerate the free weight (dumbbell) during the 

concentric phase of the maximal isotonic contraction (bicep curl) in study 4, it was 

speculated that this deceleration mechanism may inhibit the enhancement of 

neuromuscular performance associated with vibration in the whole concentric phase. 

It was also postulated that when subjects performed an exercise in which the free 

weight could be released at the end of contraction, the enhancement in 

neuromuscular performance may be facilitated.

The contraction performed in the study was a ballistic knee extension with a load of  

60%-70% 1RM which reduced the requirement to decelerate the joint and hence
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worked the muscle harder. However, despite these changes, vibration still had no 

faciltatory effect on maximal muscle contraction force and power.

The vibration amplitude and frequency used in the present study was the same as 

study 4 (chapter 8), which was 1.2 mm and 65 Hz respectively. These vibration 

characteristics were chosen because they were shown to induce the greatest 

enhancement of muscle activity in study 1 (chapter 4) and 2 (chapter 6), in which 

sub-maximal isometric elbow flexion was performed. In addition, it was found in 

study 3 (chapter 7) that these vibration characteristics could significantly enhance the 

EMGrms on the VL and the VM (p<0.05) during a sub-maximal knee extension. 

Therefore, these results suggested that direct muscle vibration may enhance 

neuromuscular performance in sub-maximal effort contractions, but may not in 

maximal effort contractions.

No study to date has directly compared the effect of vibration on sub-maximal and 

maximal isotonic contractions. It was found in isometric contractions that muscle- 

tendon vibration could enhance the muscle activity and contraction force of sub- 

maximal contraction, but may not in maximal contractions (13,84). As a possible 

explanation for the different effect of vibration on maximal and submaximal 

isometric contractions, Bongiovanni and Hagbarth (84) have suggested that with sub- 

maximal contraction the la afferent inflow induced by vibration may be able to 

exceed the pre-existing fusimotor-driven la afferent discharges and induce reflex 

contraction to increase the contraction force. However, with the maximal voluntary 

contraction, vibration may not be able to cause further increase of la afferent inflow, 

and thus may not have a facilitatory effect on maximal voluntary contractions (84).
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In addition, the results of this study indicated that vibration tended to have a 

suppression effect on neuromuscular performance during vibration training. The time 

to peak power ( Tp) with superimposed vibration was significantly longer than that 

with sham-vibration (table 9.2), indicating that the peak power was developed more 

slowly when vibration was applied. The EMGrms measured on the RF was 

significantly decreased and the EMGmpf on the VL in set 2 was significantly lower 

in the vibration condition than in sham-vibration condition (table 9.3). These findings 

suggest that during vibration training, the recruitment of motor units, especially the 

large motor units, was suppressed by vibration, as the increase of EMGmpf has been 

postulated to reflect the recruitment of more large motor units(4).

Vibration may activate the primary afferent endings of the muscle spindle which 

activate a-motoneurons and elicit a reflex contraction called the tonic vibration refex 

(TVR) (31). However, at the same time la afferent inflow induced by vibration may 

induce presynaptic inhibition which would reduce the further recruitment of motor 

units (85), and depresses the H-reflex and tendon-reflex (58,85). Bongiovani and 

Hagbarth (13) suggest that this suppression effect is developed quickly after the 

onset of vibration. There may also be a slowly developing suppression effect by 

prolonged vibration on voluntary contraction force, which is suggested to be due to 

‘transmitter depletion’ and exhaustion of polysynaptic la excitatory pathways (13). It 

has been shown that this later suppression effect of vibration could affect the 

subject’s ability to generate high firing rates in high-threshold motor units (13). As 

shown by the results (table 9.2 and 9.3), the Tp and EMGrms of the RF decreased by 

vibration from set 1 to set 3. The EMGmpf on VL decreased in set 2 by vibration. It

179



is thus possible that both the quickly developing and the slowly developing inhibition 

effect of vibration may account for these findings

Similar to the previous study (study 4, chapter 8), no facihtatory acute residual effect 

was found after vibration training This may also result from the very short duration 

of vibration stimulation in the training process (15 seconds each set for three sets) 

(21) In addition, an inhibition effect of vibration can be seen from the EMG 

measurements performed post training in this study The average EMGrms of the RF 

in the vibration condition was significantly lower than the sham-vibration condition 

at 1 5 minutes and 10 minutes after vibration training (table 9 5) This may be 

explained by the findings made by Bongiovanm and Hagbarth (13) that the inhibition 

effect of vibration on high threshold motor units may remain several minutes after 

the end of vibration

9 5 Conclusion

This study found that vibration stimulation had no facihtatory acute or acute residual 

effect on neuromuscular performance of ballistic knee extensions in which subjects 

did not need to excessively decelerate the free weight during the concentric phase of 

contraction Vibration appears to have a suppression effect on some muscle 

mechanical and EMG output measures during training and some EMG measures 

immediately after vibration training This phenomenon has not been reported m prior 

vibration training studies and should be taken as an important issue in future studies 

on vibration training
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Study 6: Influence of load on neuromuscular response to vibration 

training -  a study on maximal isotonic contractions

10.1 Introduction

The study on vibration training with sub-maximal contractions (study 3, chapter 7) 

demonstrated that the resistance load employed may have a influence on the acute 

enhancement of neuromuscular performance by vibration. However, it is unclear 

whether the similar effect of resistance load exists in vibration training with other 

kind of exercise, e.g. maximal isotonic contractions. Although several studies have 

examined the effect of vibration training with maximal isotonic contractions, none of 

them investigated the influence of different resistance loads (6,21,26). In the 

previous two studies on vibration training with maximal isotonic contractions 

(chapter 8 and 9), a similar range of resistance load (60-70% 1RM) was employed. It 

is necessary therefore to examine whether other range of resistance load will elicit a 

different neuromuscular response to vibration. Another load range of 40% 1RM will 

be employed with the 70% 1RM load in this study, as it has been suggested that the 

load of 40% 1RM executed at maximum speed may be able to train the speed 

component of power (86).

The aim of this study is to examine whether different training loads (40% and 70% 

1RM) have influence on the acute (during) and acute residual (following) effect of

Chapter 10
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direct vibration training on neuromuscular performance of maximal isotonic 

contractions.

10.2 Methods

Only key aspects of the methods are presented below. A more detailed account of the 

methods is presented in the generic methods section (chapter 4).

10.2.1 Subjects

Eleven young adult male volunteers took part in this study. The average age, mass 

and height of the subjects were 25.3±7.4 (years), 76.6±5.6 (kg) and 175±6 (cm), 

respectively.

10.2.2 Experiment design

Subjects were exposed to four training conditions in random order: 1) training with 

vibration and 40% 1RM load (40%V); 2) training with sham vibration and 40% 1RM 

load (40%SV); 3) training with vibration and 70% 1RM load (70%V); 4) training 

with sham vibration and 70% 1RM load (70%SV). The exercise was three sets of 

dynamic bicep curls, performed by the dominant arm while sitting on a preacher curl 

bench (see figure 8.1). Each set comprised of five repetitions. During exercise, 

subjects were instructed to place both arms over the chest/arm support while leaning 

forward so that their chest was firmly pressed against the support pad. They 

attempted to move the weight as fast as possible in the concentric phase, and to fully
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extend their elbow joint in the eccentric phase There was 3 to 5 minutes rest time 

between each set

10 2 3 Experimental procedure

The 1RM strength of for the bicep curl was measured for each subject on a separate 

day at least three days before the start of experiment Subjects were also familiarized 

with the test procedure on that day During the actual test day, subjects first 

performed a warm-up exercise (10 repetitions of bicep curls with 25% 1RM load) 

after the measunng equipments were placed on subjects After 2 minutes rest, a set of 

5 repetitions bicep curl with the employed load (40% or 70% 1RM) was performed 

as the pre-training test (pre-test) Then after 5 minutes rest, subjects performed one of 

the four traimng conditions as stated above One set of 5 repetitions with the 

employed load (40% or 70% 1RM) was performed 5 minutes after the end of traimng 

as the post-training test (post-test) (figure 10 1) The subjects were asked to perform 

the concentric phase of contractions as hard and as fast as possible during all sets 

This procedure was undertaken on four occasions that were separated by at least 3 

days, once for each experimental condition
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Figure 10 1 Study design

10 2 4 Vibration

Vibration was produced by a portable muscle tendon vibrator (section 3 2 3) that was 

strapped onto the biceps tendon Vibration amplitude and frequency were set at 1 2 

mm and 65 Hz, respectively In the sham vibration condition, the eccentric masses 

were removed so that there was only the noise of the motor running, but no notable 

vibration was produced

10 2 5 Measurements

Elbow joint angle and EMG of the bicep brachn were measured both during training 

and in the pre and post training tests Synchronization of goniometer and EMG 

measurements was achieved by connecting an output stimulation signal from the 

Powerlab to the DataLmk

184



10 2 6 D a ta  analysis

The elbow joint angular velocity ( co), acceleration ( a ) ,  moment ( M elbow), and

power ( Pelbaw) data were calculated from the filtered joint angle data (section 4 4 2)

For co, M elbow and Pelbow, mean and peak measures were determined In addition,

initial power (at 100 ms, Pioo) and time to peak power ( 7 P) were also determined 

These were the dependent mechanical variables

EMGrms data were averaged for the concentric phase of the bicep curl (EMGrms) 

The mean power frequency of EMG (EMGmpf) of the biceps in the concentnc phase 

was also calculated These were the dependent EMG variables

The mechanical and EMG variables (detailed above) of the second, third and fourth 

repetitions of each set were selected and averaged to represent the vanables for each 

set This procedure was employed because the repeatability for the variables, as 

assessed via Cronbach’s alpha coefficient, was higher when the first and fifth 

repetitions were not included in the analysis(82)

10 2 7 Statistical analysis

As the pre-training test was made on two different days when the same load 

condition was employed (40% or 70% 1RM), the inter-day reliability of all vanables 

was calculated using mtraclass correlation (77) A paired t-test was performed to 

determine if there was significant difference between the pre-training test
f

measurements with the same load but on different days
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To determine the acute effect of vibration (vibration, no vibration), load (40% and 

70% 1RM) and set (setl, set2, set3) on the mechanical and EMG variables during 

training, a three factor ANOVA (vibration treatment (2) x load(2) x training set (3)) 

with repeated measures on the subjects was employed

To examine the acute residual effect of vibration (vibration, no vibration), load (40% 

and 70% 1RM) and test time (pre-test, post-test) on the mechanical and EMG 

variables after training, a three factor ANOVA (vibration treatment (2) x load (2) x 

test time (2)) was employed

For all analyses a probability value of significance of p<0 05 was employed Where a 

significant mam effect or interaction involving the independent variable of vibration 

was found, a mam or simple effects analyses was undertaken with appropriate 

Bonferrom adjustment to show where the significant difference rests SPSS® was 

used for all statistical analysis

10 3 Results

10 3 1 Reliability of measurements (tables 10 1 and 10 2)

The mean results and repeatability analysis for all the vanables measured m the pre- 

training test, on the two different days with the same exercise load (40% 1RM or 

70% 1RM)? are shown in tables 10 1 and 10 2, respectively There was no significant 

difference between the two test days for the pre-training test measures on any
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variable (p>0 05) It can also be seen from the tables 10 1 and 10 2 that the reliability 

for mean velocity, peak velocity, mean power and peak power was significantly 

lower with 40% 1RM load than with the 70% 1RM load

Table 10.1 Pre-training test measurements with the 40% 1RM load

Vanable Vibration Sham

vibration

p value of 

t-test

ICC

Mean velocity 

(rad/s)
2 0±0 5 2 0±0 3 0 61 0 50

Peak velocity 

(rad/s)
3 6 ±0 8 3 6±0 5 0 85 0 59

Mean moment 

(Nm)

16 1±2  1 15 8±2 1 0 27 0 96

Peak moment 

(Nm)
26 6±4 2 26 2±3 1 0 61 0 85

Mean power 

(W)

34 3±6 1 32 8±4 0 05 0 22

Peak power 

(W)
79 7±19 9 77 4±122 0 72 0 38

Time to peak 
power (ms)

304±86 307±82 0 87 0 76

Initial power 

(W)
33 8±22 3 30 3±14 7 0 52 0 73

EMGrms (mV) " 0 80±0 59 0 63±0 50 0 27 0 72

EMGmpf 82 5±8 1 82 0±18 8 0 92 0 49

r
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T a b le  10 .2  P re-tra in ing  test measurements w ith  the 7 0 %  1 R M  load

Variable Vibration Sham

vibration

p value of 

t-test

ICC

Mean angular 
velocity(rad/s)

1.3±0.2 1.510.4 0.13 0.68

Peak angular 
velocity(rad/s)

2.310.5 2.710.7 0.05 0.70

Mean moment 

(N.m)
30.614.8 30.715.0 0.92 0.93

Peak moment 

(N.m)
40.817.1 42.517.4 0.17 0.91

Mean power 

(W)

39.817.6 45.1114.2 0.11 0.76

Peak power 

(W)

79.7118.9 97.3134.9 0.06 0.68

Time to peak 
power (ms)

5141212 4641148 0.29 0.81

Initial power 

(W)

25.1114.7 30.1127.6 0.50 0.61

EMGrms (mV) 0.7510.46 0.6910.43 0.39 0.92

EMGmpf 80.416.3 80.119.1 0.93 0.18

10.3.2 Mechanical and EMG variables during training (acute effect)

Vibration had no significant acute effect on mean angular velocity (p>0.05). Load 

had a significant effect on mean angular velocity (p<0.01). Main effects analysis 

showed that the mean angular velocity with the load of 40% 1RM was significantly 

higher than that with 70% 1RM load (2.1 vs. 1.3 rad/s, p<0.05) (table 10.3).
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Vibration had no significant acute effect on peak angular velocity (p>0 05) Load had 

a significant effect on peak angular velocity (p < 0 001) Main effects analysis 

showed that the peak angular velocity with the load of 40% 1RM was significantly 

higher than that with 70% 1RM load (3 7 vs 2 4 rad/s, p<0 05) (table 10 3)

Table 10 3 Acute effect of training on angular velocity variables (meaniS D)

Velocity Condition Seti Set2 Set3

40% Vib 2 0±0 5“ | 2 1±0 4 [ 2 1±0 4 J
G) mean

(rad/s)
SV I— 2 0±0 3 *J -------- J

‘ 1— 2 1±0 3 * 

17+0 3"^

J— 2 0±0 3 * 

* 1 2±0 3 —̂70% Vib * 1 2±0 3~ 1
I I I

SV L  1 5±0 4 1 -1 5 + 0  4 L  1 510 4

40% Vib 3 6+0 8” j 3 7±0 6- |  
1

3 710 6 -1
peak

( rad/si
SV r— 3 710 6 *

..1... _ ...........  I
1—  3 8±0 6 * 
1 I

1
j—  3 710 6 *

11 UW ü J
70% Vib * 2 1±0 4—1 * 2 310 5-1 * 2 210 5-JI

SV L  2 6±0 7 L  2 6±0 8 L  2 810 8

Note *=sigmficant difference,

Vibration had no significant acute effect on mean moment (p>0 05) Load had a 

significant effect on mean moment (p < 0 001) Mam effects analysis showed that the 

mean moment with the load of 70% 1RM was significantly higher than that with 

40% 1RM load (30 6 vs 15 8 N m, p<0 05) (table 10 4)

Vibration had no significant acute effect on peak moment (p>0 05) Load had a 

significant effect on peak moment (p < 0 001) Mam effects analysis showed that the
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peak moment with the load of 70% 1RM was significantly higher than that with 40% 

1RM load (41 8 vs 26 8 N m, p<0 05) (table 10 4)

Table 10 4 Acute effect of training on moment variables (mean±S D)

Moment Condition Seti Set2 Set3

Mme an

(Nm)

40% Vib 16 0±2 2 —1 15 9±2 1-j 15 9±1 9 “ j

70%

SV

Vib

j— 15 7±2 2 *
1 ---------------- 1
* 30 7±4 8 —1 
1

(— 15 6±2 3 *
J. . I
* 30 5±4 7—*1

1— 15 6±2 4 *
J  _ 1.

* 30 6+4 5 - 1 1
SV L  30 9±5 1 L  30 5±5 0 L  30 6±5 4

Mpeak

(N m)

40% Vib 26 1+4 0 —1 26 3±4 2H I 26 6±4 3 “ j

SV 1— 27 1±3 8 *
1

1— 27 3+3 7 *
I 1

(— 27 3±3 6 *
I 1 I

70% Vib * 40 9±7 0 —1
I

*  41 2±6 5 — ^
I

1 * 39 9±5 9 
1

SV L  42 8±7 9 L  41 8±8 0 L- 43 8±8 1

Note *=sigmficant difference,

Vibration, load and the interaction between vibration and load had a significant effect 

on mean power (p<0 05) Simple effects analysis showed that the mean power in the 

vibration condition with 70% 1RM load was significantly lower than sham vibration 

with 70% 1RM load (16 8%, 13% and 18 5% in set 1, 2 and 3, respectively, p<0 05) 

The mean power with 70% 1RM load with sham vibration was significantly higher 

than that with 40% 1RM load with sham vibration (table 10 5) (p<0 05)

Vibration, load, training sets and their interactions did not have any significant effect 

on peak power (p>0 05) (table 10 5)
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Only vibration had a significant effect on initial power (p<0 05) Main effects 

analysis found that initial power with vibration was significantly lower than that with 

sham-vibration (27 1 vs 33 7 W, p<0 05) (table 10 5)

Vibration had no significant acute effect on time to peak power ( Tp) (p>0 05) Only 

load had a significant effect on time to peak power (p<0 05) Mam effects analysis 

showed that Tp with the load of 70% 1RM was significantly higher than that with the 

load of 40% 1RM (518 vs 300 ms, p<0 05) (table 10 5)
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Table 10 5 A cute  effect o f  tra in ing  on P ow er variables (m e a n iS  D )

Variable Condition Seti Set2 Set3

P  peak

(W)

40% Vib 33 516 9

s v — 33 8±4 4

34 4±4 9

—  34 4±4 4

34 4±5 2 

—  33 2±3 7

(w ) 70% Vib * 37 6+8 9 * 38 p±8 5 * 37 0+8 9

SV
I

45 2±14 6 44 7+13 7
I

* - 45 4±12 8

40% Vib 77 7+19 5 79 4±15 5 80 6+15 7

SV 80 5+14 0 83 6+15 0 82 1±14 8

70% Vib 77 9±19 0 79 6±20 1 74 4±16 9

SV 97 2±36 4 96 5138 8 103 9±40 3

40% Vib 30 9+20 9— | 30 9+21 9 — | 31 6±22 9 ~ \
* * *

Pioo(W) s v  35 2+16 5—  ̂ 35 9 1 1 6 4 3 3  6115 9 — ^

70% Vib 24 2115 4 — I 23 2113 5 — | 21 6111 7 — |

JSV 33 2128 2 —1 30 6118 6 —1 33 3132 3J J

40% Vib 313167--j 315172—j 310175—j

Tp(ms) SV 1— 287180 * «— 283±76 +

I 1 1
1— 293+86 *
r

70% Vib * 5121291“ * 552+30/I * 5791246“ ^

SV 480+181 L  5201212 4651163

Note *=significant difference,

Vibration, load, training set, and their interactions did not have any significant effect 

on EMGrms and EMGmpf (p>0 05) (table 10 6)
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T a b le  10 6 A cute  effect o f  tra in ing  on E M G  variables (m ean±S  D )

Variable Condition Setl Set2 Set3

40% Vib 0 82+0 59 0 82±0 58 0 82±0 59

EMGrms s v 0 64±0 50 0 61±0 48 0 62+0 49

(mV) 70% Vib 0 74±0 42 0 80±0 51 0 80+0 57

SV 0 70±0 44 0 69±0 44 0 66±0 43

40% Vib 80 5±9 5 80 9±9 5 82 1±9 3
EMGmpf

SV 81 9±19 4 83 5±234 81 6+16 7
(Hz)

70% Vib 78 9±8 3 80 3±6 9 78 3+4 9

SV 79 9±9 9 80 5±9 9 804±9 1

10 3 3 Mechanical and EMG variables after training (acute residual effect)

Vibration had no significant acute residual effect on mean angular velocity (p>0 05) 

Load and the interaction between load and test time had a significant effect on mean 

angular velocity (p<0 05) Mam effects analysis showed that mean angular velocity 

with the load of 40% 1RM was significantly higher than that with 70% 1RM load 

(2 1 vs 14 rad/s, p<0 05) (table 10 7)

Vibration had no significant acute residual effect on peak angular velocity (p>0 05) 

Only load had significant effect on peak angular velocity (p<0 05) Mam effects 

analysis showed that peak angular velocity with the load of 40% 1RM was

193



significantly higher than that with 70% 1RM load (3 7 vs 2 4 rad/s, p<0 05) (table 

10 7)

Table 10 7 Acute residual effect of training on angular velocity variables

(meanlS D)

Velocity Condition Pre Post

40% Vib 2 0±0 5 “ I 2 110 3“ |
G) mean

(rad/s)
SV

1
1— 2 010 3 * 
1 _  I

1
1— 2 1±0 4 *

70% Vib * 1 310 2—1 
1

* 1 3±0 3-1
1

SV L  15+0 4 L  1 4±0 5

40% Vib 3 6±0 8—1 3 7+0 6 -j
G) peak

(rad/s)
SV 1—  3 6±0 5 * p  3 9±0 7

70% Vib * 2 3±0 5-1
I

* 2 3±0 5-1
I

SV L  2 710 7 L  2 6±0 8

Note *=sigmficant difference,

Vibration had no significant acute residual effect on mean moment (p>0 05) Only 

load had a significant effect on mean moment (p<0 05) Mam effects analysis 

showed that the mean moment with the load of 70% 1RM was significantly higher 

than that with 40% 1RM load (30 6 vs 15 8 N m, p<0 05) (table 10 8)

Vibration had no significant acute residual effect on peak moment (p>0 05) Only 

load had significant effect on peak moment (p<0 05) Mam effects analysis showed 

that peak moment with the load of 70% 1RM was significantly higher than that with 

40% 1RM load (41 8 vs 26 7 N m, p<0 05) (table 10 8)
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Table 10 8 A cute residual effect o f  tra in ing  on m om ent variables (m ean±S  D )

Moment Condition Pre Post

Mmean

(Nm)

40% Vib 16 1±2 1 - | 15 7±2 1-j

70%

SV

Vib

r— 15 8+2 1 *
-_ .L  - ! . . .

* 30 614 8-1
I

1— 15 6±2 3 * 

* 30 5±4 6—1
I

SV L  30 7±5 0 L  30 5±5 6

Mpeak

(Nm)

40%

70%

Vib 

SV 

~ Vib”

26 6±4 2 - |

f— 26 2±3 1 * 
— L . . .  i___ 

* 40 8±7 1—1
I

26 3±4 9“ |

I-  27 7±3 8 * 
1-------  I
* 41 5±6 2—*1

SV 1—42 5±7 4 L 42 5±8 7

Note *=sigmficant difference,

Vibration had no significant acute residual effect on mean power (p>0 05) Only load 

had a significant effect on mean power (p<0 05) Mam effects analysis showed that 

the mean power with the load of 70% 1RM was significantly higher than that with 

40% 1RM (41 9 vs 34 0 W, p<0 05) (table 10 9)

Vibration, load, test time and their interactions did not have any significant effect on 

peak power and initial power (p>0 05) (table 10 9)

Vibration had no significant acute residual effect on time to peak power ( TP) 

(p>0 05) Only load had significant effect on time to peak power (p < 0 001) Main 

effects analysis showed that the TP with the load of 70% 1RM was significantly 

higher than that with 40% 1RM (514 vs 300 ms, p<0 05) (table 10 9)
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Table 10 9 A cute  residual e ffect o f  tra in ing  on pow er variab les (m ean±S  D )

Power Condition Pre Post

P mean

(W)

40% Vib

s v

34 3±6 1 - |

1—  32 8±4 0 *
j

34 9±5 7 - |

r  34 1±5 5 * 
1

70% Vib

SV

_}
* 39 8±7 6 - 1 

L  45 1±14 2

1 j
* 39 019 9 

43 9114 4

40% Vib 79 7±19 9 79 9117 6

Ppeak SV 77 4±12 2 85 9118 3

(W) 70% Vib 79 7±18 9 79 1121 9

SV 97 3±349 90 5139 4

40% Vib 33 8±223 36 9121 9

Pi oo (W) SV 30 3114 7 35 7118 8

70% Vib 25 1±14 7 25 2113 1

SV 30 1±276 31 7125 8

40% Vib 304186—j 299170 —j

TP (ms) SV ,— 307182 * 
1 I

,— 289178 * 
1 I

70% Vib * 514±212I * 5391218“ ^

SV 464+148 5411243

Note *=sigmficant difference,

Vibration had no significant acute residual effect on the biceps EMGrms (p>0 05) 

Only test time had a significant effect on EMGrms (p<0 05) Main effects analysis 

showed that EMGrms in post-training test decreased significantly from pre-training 

test (0 68 vs 0 71, p<0 05) (table 10 10)
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Vibration had no significant acute residual effect on the biceps EMGmpf (p>0 05) 

Only test time had significant effect on EMGmpf (p<0 05) Mam effects analysis 

showed that the EMGmpf in post-triamng was significantly increased from the pre- 

training test (82 6 vs 813 Hz, p<0 05) (table 10 10)

Table 10 10 Acute residual effect of training on EMG variables (mean±S D)

Variable Condition Pre Post)

EMGrms

(mV)

40% Vib

SV

1
0 80±0 59

r~ ~
0 63±0 50

* 1
0 77±0 58

* ----1
0 62±0 49

70% Vib

SV

..... 1.....
0 75±0 46 

1
0 69±0 43

"*■ 1 .......
0 70±0 48 

* "'1 
0 67±0 41

40% Vib
1— ‘ 

82 5±8 1
* 1 

84 6±8 1
EMGmpf 1----- * ----1

(TI/'l
SV 82 0+18 8 83 1±13 9

1 ‘
70% Vib 80 4±6 3 83 8±7 9 

— * ----1
SV

1
80 1±9 1

1
82 0±9 4

Note *=significant difference

10 4 Discussion

The mam goal of this study is to determine whether the different loads employed had 

an effect on the acute response of neuromuscular performance with vibration training 

when maximal isotonic contraction is performed No previous studies have directly 

examined this
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When the lighter load (40% 1RM) was used, the velocity of the movement was 

significantly greater than with the heavier load (70% 1RM) while the moment was 

significantly smaller (table 10.3 and 10.4). This is in line with our understanding of 

muscle mechanics (force-velocity relationship), whereby the lower the force used the 

greater the magnitude of velocity produced (31). The present study also found that 

the 70% 1RM load could achieve greater mean power during and after training. This 

may be due to the heavier load of 70% 1RM being able to optimize the force 

(moment) production contribution to power output (81). The peak power output, 

however, was not significantly affected by the use of the two different loads. As the 

angular power is equal to the product of moment and angular velocity, the values of 

angular velocity (40%1RM > 70% 1RM) and moment (70%1RM > 40%1RM) 

appear to nullify each other, leading to the reported no effect.

The results showed that with both training loads (40% and 70% 1RM), vibration 

seems to have no facilitatory effect on the muscle activity and mechanical output 

during training (acute effect). This is in consistent with our findings in the previous 

experiments which demonstrated that vibration stimulation had no facilitatory effect 

on neuromuscular performance in three sets of vibration training with the bicep curl 

exercise (chapter 8) and a ballistic knee extension exercise (chapter 9). In fact, it was 

found in this study that vibration had a suppression effect on mechanical variables. 

The mean power in vibration training group was significantly smaller (37.9 vs. 45.1 

W, p<0.05, table 10.5) than those in sham vibration group when the training load was 

70% 1RM. The initial power was decreased significantly by vibration in both the 

40% and 70% 1RM load conditions (27.1 vs. 33.7 W, pc0.057 table 10.5). These 

results are in line with our previous study on the acute effect of vibration training on
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ballistic knee extension exercise (see chapter 9). It is thus suggested that no matter 

what training load is used in the maximal isotonic contraction exercise, vibration 

appears to have no facilitatory effect. On the other hand, vibration tends to have a 

negative effect on the neuromuscular performance.

However, it was found in study 3 (chapter 7) that the resistance load did have an 

acute effect on the enhancement from vibration training. When a sub-maximal 

isometric knee extension was performed, vibration could induce greater 

neuromuscular response with the heavier load (20% 1RM) than with the lighter load 

(10% 1RM). The possible reason for these contrasting findings on the influence of 

resistance load on the vibration training effect, may be related to the different 

exercise protocols employed. It was suggested that the increased tension of intrafusal 

fibers induced by the greater resistance load in sub-maximal contraction could 

increase the sensitivity of muscle spindle endings, and subsequently enhance the 

effectiveness of the vibration training (30). However, Bongiovanni and Hagbarth(84) 

found that although the la afferent inflow induced by vibration may be able to exceed 

the pre-existing fiisimotor-driven la afferent discharges and induce reflex 

contractions to increase the contraction force when sub-maximal contraction are 

performed, vibration may not be able to cause further increase of la afferent inflow 

when the maximal voluntary contraction is employed, and thus may not have a 

facilitatory effect on maximal voluntary contractions.

Again in this study no acute residual effect of vibration was found (table 10.7 to 

10.10). This may still result from the short duration of vibration stimulation during 

the training (15 seconds each set for three sets).
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10 5 Conclusion

This study found that with both resistance loads (40% and 70% 1RM), direct 

vibration did not have an acute or an acute residual facihtatory effect on the 

neuromuscular 'performance of maximal isotonic contractions On the contrary, 

vibration appears to have a suppression effect on some muscle mechanical and EMG
r

output meausres
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Chapter 11

Summary, conclusions and directions for future research 

11 1 Summary

As a novel strength training method, vibration training has gained popularity in the 

last five years However, there are still controversies in current findings on whether 

vibration training is an effective training method for strength and power 

development A critical review of the literature in this area indicated that the 

vibration training effect is dependent on a number of factors, in particular vibration 

character!sties (vibration amplitude and frequency) and exercise protocols (type of 

exercise and exercise intensity) However, there is a lack of research into many of 

these factors Therefore, the aim of this thesis was to investigate these issues

Vibration amplitude and frequency determine the load that vibration training imposes 

on the neuromuscular system In order to examine the influence of different vibration 

loads on vibration training, a portable muscle-tendon vibrator with variable vibration 

amplitude and frequency capacity has been developed in the present study The 

vibrator was designed to produce vibrations with amplitudes ranging from 0 2 mm to 

2 mm and frequencies from 30 to 200 Hz The portable vibrator can be strapped to 

the muscle tendon dunng various strength training exercises

Two studies [study 1 (chapter 5) and study 2 (chapter 6)] showed that the vibrator 

could produce the different vibration amplitudes and frequencies required for a series 

of studies In addition, it could also produce a repeatable vibration load on the
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muscle under different operational conditions, including different test days, joint 

angles and strapping forces, leading to a consistent muscle activity (EMG) response 

under these operational conditions. This ensured that valid and reliable data could be 

attained from use of the vibrator in the later studies on vibration training effect.

Sub-maximal isometric contractions

The influence of vibration amplitude, frequency and exercise intensity on the acute 

effect of vibration training with sub-maximal contractions were examined in studies 

1, 2 and 3 (chapter 5, 6 and 7, respectively). It was found that direct vibration could 

induce a significant increase (p<0.05) in EMGrms response to vibration, with the 

larger vibration amplitude (1.2 mm) producing greater increase in EMGrms than the 

smaller vibration amplitude (0.5 mm) (p<0.05). Among the three vibration 

frequencies (30, 65 and 100 Hz) tested, both 65 and 100 Hz could induce 

significantly greater EMGrms increase than 30 Hz (p<0.05), with no significant 

difference between 65 and 100 Hz (p>0.05). Since the use of 100 Hz resulted in 

many subjects reporting discomfort from the vibration, the use of 65 Hz was 

preferred. Therefore, an optimal vibration amplitude and frequency (1.2 mm and 65 

Hz) that could induce the greatest EMGrms increase was determined from the above 

results. This vibration amplitude and frequency was used in the later studies.

The results of study 3 demonstrated that both resistance loads (10% 1RM and 20% 

1RM) had significant effect on the acute effect of vibration with sub-maximal 

isometric contractions (p<0.05). However, significantly greater muscle activation 

was achieved when vibration was applied with the higher load (20% 1RM). This
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indicates that if  muscle performance is to be maximised through vibration training, 

higher loads should be employed

Maximal isotomc contractions

The acute effect o f vibration traimng with maximal isotonic contractions was studied 

in the three remaining studies (study 4, 5 and 6), as maximal isotonic contractions are 

more commonly employed m strength training than sub-maximal isometnc 

contractions Vibration training in this area has greater potential for application

In study 4, it was found that supenmposed direct vibration did not enhance the acute 

mechanical and EMG output o f a maximal effort bicep curl contraction with 70% 

1RM load (p>0 05) It was also found that the neuromuscular performance of 

maximal effort bicep curl was not enhanced after vibration training, both with 

exercise or no exercise

As the subjects in study 4 had to decelerate the free weights in each concentric phase, 

which may inhibit the enhancement o f neuromuscular performance associated with 

vibration, study 5 examined the acute effect o f direct vibration on a ballistic knee 

extension in which the need for deceleration was reduced No facilitatory acute or 

acute residual effect o f vibration was found in this study On the contrary, the results 

showed that vibration appears to have a suppression effect on some mechanical 

and/or EMG output measures, both dunng and after training

Study 6 examined the possible influence o f the resistance load on vibration training 

with maximal isotonic contractions Two ranges o f loads (40% 1RM and 70% 1RM)
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were employed The results showed that no matter what resistance load was 

employed, direct vibration did not have any facihtatory acute or acute residual effect 

on neuromuscular performance of maximal isotonic contractions On the contrary, 

vibration appears to have a suppression effect on some mechanical and EMG output 

measures ^

. 112 Conclusions f

A review of literature indicated that vibration training effect is dependent on a 

number of factors, but in particular vibration characteristics (vibration amplitude and 

frequency) and exercise protocols (type of exercise and exercise intensity) However, 

there is a lack of study on this dependence to date By developing a portable vibrator 

that can directly stimulate the muscle-tendon during strength training exercise, this 

thesis systematically examined the influence o f these factors It is demonstrated in 

this thesis that the acute vibration training effect on neuromuscular system is 

dependent on vibration amplitude, frequency, type of exercise and the exercise 

intensity Therefore, the work in this thesis is important for the better understanding 

and application of this novel strength training method

In general, for sub-maximal isometnc contractions, vibration could induce a 

significant increase of EMG The enhancement was greater with the increase of 

vibration amplitude (1 2  vs 0 5 mm) and frequency (100 and 65 Hz vs 30 Hz) A 

higher resistance load could induce greater EMG enhancement to vibration training 

with sub-maximal isometnc contractions However, for maximal isotonic 

contractions, vibration did not enhance neuromuscular performance, and had a
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negative effect on some mechanical and EMG outputs, both during and after training 

Vibration alone (with no exercise) had no significant acute residual effect on the 

mechanical and EMG outputs of maximal isotonic contractions

113 Directions for future research

This thesis is the first study that employs a portable muscle-tendon vibrator in 

vibration training Although the results demonstrated that it is an effective way to 

stimulate the muscle dunng strength training, there is still a need to improve the 

design of the vibrator In addition, a number o f questions that arise from this thesis 

about the effect o f vibration training on neuromuscular performance need further 

investigations All these issues will be discussed below as the directions for future 

research

113 1 Vibrator design

The size and weight o f the vibrator was limited by the radial load capacity o f the 

motor shaft The lightest motor that fulfils our requirement o f maximal rotating speed, 

power and torque was not chosen because of the low eccentric load capacity To 

optimise the vibrator design, a lighter and smaller motor may be selected by 

incorporating a small bearing outside of the motor that could still be housed in the 

vibrator This bearing will absorb most o f the eccentric load produced by eccentric 

mass and therefore a smaller motor may be used This optimization may also 

decrease the cost o f the vibrator
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In addition, the present design has only one operating vibrator However, muscles on 

both sides o f the limbs are usually trained together in strength training exercises 

Thus two or more vibrators are needed to operate simultaneously to fulfil this 

requirement This problem should be solved in the future design of the vibrator

113 2 Vibration training with the sub-maximal contraction exercise

The present study showed that vibration had an acute faciliatory effect on 

neuromuscular performance when sub-maximal efforts were employed This finding 

suggests that vibration training may be an effective training method for rehabilitation 

of athletes with injury or the improvement o f muscle strength m elderly people In 

addition, vibration training may also be an effective way for athletes to warm-up in 

order to enhance their maximal strength and power in their subsequent movements 

However, studies are still needed to solve the following questions

1) The optimal vibration training programs with sub-maximal contraction exercises

We examined in this thesis the influence of vibration amplitude, frequency and 

resistance load on the acute vibration training effect However, the effectiveness of 

these findings needs to be examined m chronic vibration training studies

2) The acute residual effect and the influence o f vibration characteristics and 

exercise intensity
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In the present study, we only investigated the acute effect o f vibration on the 

neuromuscular performance of sub-maximal isometric contractions. In the future 

studies, the acute residual effect o f vibration training with sub-maximal contractions 

should also be examined, together with the influence of the factors such as vibration 

amplitude, frequency, duration of vibration and the resistance load. This could 

facilitate the application of vibration training as an effective means of warm-up.

3) Sub-maximal dynamic contractions

We only investigated the acute vibration training effect on sub-maximal isometric 

contractions. Future study should also examine the vibration training effect on 

dynamic contractions with sub-maximal effort, as this type of contraction may be 

more common during some strength training programs.

11.3.3 Vibration training with maximal effort dynamic exercises

It was found in this study (chapter 8, 9 and 10) that direct vibration did not have an 

acute facilitatory effect on maximal isotonic contraction and ballistic contractions. 

This is different from the studies that demonstrate that indirect vibration can 

facilitate the maximal strength and power of isotonic contractions (21,49). In 

addition, it was found in this study that vibration actually had a suppression effect on 

some mechanical and EMG output during maximal isotonic contractions. As 

discussed in chapter 8, several reasons may account for this difference and research 

in the following issues should be undertaken in future studies.

207



1) Indirectly applied vibration vs. directly applied vibration

Indirect vibration was applied in all of the previous studies that found a facilitatory 

effect of vibration on maximal isotonic contraction, implying that the difference in 

method of application (indirect vs. direct) may be a possible reason. Indirect 

vibration may be able to stimulate more muscle groups during its transmission to the 

target muscle. In addition, it has been found that a ‘muscle tuning’ mechanism 

regulating the muscle stiffness may exist in indirect vibration to dampen the 

vibration transmission (39,40). Recent studies have shown that the stiffness 

regulation may play an important role in the power performance of contractions such 

as drop jumps (83). Therefore it is possible that the increase o f muscle stiffness of 

the whole limb to dampen the vibration, rather than the vibratory stimulation of the 

muscle spindles o f the target muscle, is the reason for the enhancement o f maximal 

isotonic contraction force and power. This hypothesis could be tested by an 

experiment directly comparing the indirectly applied vibration and the directly 

applied vibration.

2) The timing of vibration

It has been found that the timing of the mechanical stimulation may be important for 

the neuromuscular response (87). The study by Layne et al. (87) found that if the 

mechanical stimulus was applied shortly before the agonist muscle activation, the 

neuromuscular performance of a contraction with maximal effort could be greatly 

enhanced. If the stimulus was applied during the agonist activation, the enhancement 

in neuromuscular performance was less. It is possible that the same timing effect
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may be important in vibration training This could be examined by a study 

employing two types o f vibration one is a continuous one as used in this thesis, the 

second is a short duration of vibration before each contraction with no vibration 

dunng the contraction

3) Subject prior training

It has been previously found that vibration induces greater enhancements in maximal 

strength and power in isotonic contractions for elite athletes than amateur athletes 

(21) In the studies that found the positive effect o f vibration training, elite athletes 

and/or recreational athletes were recruited as subjects (6,21,26) In the present thesis 

however, untrained subjects were recruited for the vibration training studies These 

untrained subjects may not have a sufficiently developed neural and muscular system 

necessary for vibration to have a similar affect as in the studies in which athletes 

were usually used Future studies are needed to examine this possibility

)
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Appendix A List of vibration training studies excluded for literature review

Table A_1 Vibration training studies without control

Author
(year)

Title Journal Reason for 
exclusion

Bosco et 
al (2000)

Hormonal responses to whole-body 
vibration in men

Eur J Appl Physiol 2000, 
81(6) 449-54

No control 
group

Bosco et al 
(1999)

Effect of acute whole body 
vibration treatment on mechanical 
behavior of skeletal muscle and 
hormonal profile

In Muscolo-skeletal interactions, 
Lyntis(ed) Proceedings of the 2nd 
International 1999b Vol 2 67-76

No control 
group

Clarkson et 
al (1980)

Post vibratory effects on 
fractionated reaction time and 
maximum isometric strength

Am J Phys Med 1980 
Dec,59(6) 271-9

No control 
group

De Ruiter et 
al (2003)

Short-term effects of whole-body 
vibration on maximal voluntary 
isometric knee extensor force and 
rate of force rise

Eur J Appl Physiol 2003, 88 472- 
5

No control 
group

Rittweger et 
al (2000)

Acute physiological effects of 
exhaustive whole-body vibration 
exercise in man

Clinical Physiology 2000 Mar, 
20(2) 134-142

No control 
group



Table A_2 Vibration training studies with intervention (vibration) and control not
randomised

Author
(year)

Title Journal Reason for 
exclusion

Cardinale et 
al (2003)

Electromyography activity of vastus 
lateralis muscle during whole-body 
vibrations of different frequencies

J strength cond res 
2003, 17(3) 621-624

Intervention 
(vibration) and 
control not 
randomised

Gabriel et 
al (2002)

Vibratory facilitation of strength in 
fatigued muscle

Arch Phys Med 
Rehabil, 2002, 83 
1202-5

Intervention 
(vibration) and , 
control not 
randomised

Griffin et al 
(2002)

Muscle vibration sustains motor unit 
firing rate during submaximal isometric 
fatigue in humans

J Physiol 2001 Sep 
15,535(Pt 3) 929-36

Intervention 
(vibration) and 
control not 
randomised

Kouzaki et 
al

Decrease in maximal voluntary 
contraction by tonic vibration applied 
to a single synergist muscle in 
humans

J applied Physiology 
2000,89(4) 1420-24

Treatment and 
control not 
randomised

Martin etal 
(1997)

Analysis of the tonic vibration reflex 
influence of vibration variables on 
motor unit synchronization and fatigue

Eur J Appl Physiol 
1997,75 504-511

Treatment and 
control not 
randomised

Park et al 
(1993)

Contribution of the tonic vibration 
reflex to muscle stress and muscle 
fatigue

Scan J Work Environ 
Health 1993, 19 35- 
42

Treatment and 
control not 
randomised

Warman et 
al (2002)

The effects of timing and application of 
vibration on muscular contractions

Aviat Space Environ
Med 2002
Feb 73(2)119-27

Treatment and 
control not 
randomised



Table A_3 Vibration training studies with control group and vibration group
undertake different exercise

Author (year) Title Journal Reason for exclusion

Bosco et al. 
(1998)

The influence of 
whole body vibration 
on jumping 
performance

Biology of sport. 
1998; 15(3): 157-64

Vibration group: squatting 

Control group: maintain usual

Bosco et al. 
(1999)

Influence of vibration 
on mechanical 
power and 
electromyogram 
activity in human 
arm flexor muscles.

Eur J Appl Physiol 
Occup Physiol. 1999 
Mar;79(4):306-11.

Vibration group: elbow flexion 

Control group: rest

Bosco et al. 
(1999)

Adaptive responses 
of human skeletal 
muscle to vibration 
exposure.

Clin Physiol. 1999 
Mar;19(2):183-7.

Vibration group: squatting 

Control group: rest

Torvinen et al. 
(2002)

Effect of four-month 
vertical whole body 
vibration on 
performance and 
balance.

Med Sci Sports 
Exerc. 2002 
Sep;34(9): 1523-8.

Vibration group: standing on 
platform with light exercise

Control group: not change the 
subjects’ current physical activity

Torvinen et al. 
(2003)

Effect of 8-month 
vertical whole body 
vibration on bone, 
muscle
performance, and 
body balance: a 
randomized 
controlled study.

J Bone Miner Res. 
2003 May;18(5):876- 
84

Vibration group: standing on 
platform with light exercise

Control group: not change the 
subjects’ current physical activity

Russo et al. 
(2004)

High-frequency 
vibration training 
increase muscle 
power in 
postmenopausal 
women

Arch Phys Med 
Rehabil. 2003 Dec; 
84:1854-7

Vibration group: standing on 
platform with knee joint flexed

Control group: not receive any 
training

Roelants et al. 
(2004)

Effects of 24 weeks 
whole body vibration 
training on body 
composition and 
muscle strength in 
untrained females

Int J Sports Med. 
2004; 25:1-5

Vibration group: standing on 
platform with light exercise

Control group: not receive any 
training



Table A_3 (continued) Vibration training studies with control group and vibration
group undertake different exercise

Author (year) Title Journal Reason for exclusion

Verschueren et al 
(2004)

Effect of 6-month 
whole body vibration 
training on hip 
density, muscle 
strength, and 
postural control in 
postmenopausal 
women a 
randomized 
controlled pilot study

J Bone Miner Res 
2004 Mar,19(3) 352- 
9

Vibration group standing on 
platform with light exercise

Control group not receive any 

training

Roelants et al 
(2004)

Whole-body- 
vibration training 
increases knee- 
extension strength 
and speed of 
movement in older 
women

J Am Geriatr Soc 
2004 Jun,52(6) 901- 
8

Vibration group standing on 
platform with light exercise

Control group not receive any 

training

(
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Appendix B Detailed drawings of vibrator design
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Part name Eccentric mass(fixed)X6 

Material CopperX2, AluminiumX2, PlasticX2 

Designer Luo Jin 

Date 30 Apr , 2002





Item No #3

Part name Eccentric mass(adjustable)X6 
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Part name Ring(Front)
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Item No #5

Part name Ring(rear) 

Material Polycarbonate 

Designer Luo Jin 
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Item No #7

Part name CAP X2

Material Polycarbonate 

Designer Luo Jin 
Date 30 A p r , 2002





Name Item Qty Material

MOTOR 1 1

ECCENTRIC MASS(F IXED) 2 2 copper,

Aluminium,
plastic

ECCENTRIC 

M A S S (  ADJUSTABLE)

3 2 Copper,

Aluminium,

Plast ic

RING(FRONT) 4 1 plastic
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Appendix C Health questionnaire form

Name_____________________________

Date________________________________

Age______________________________

Height_____________________

Weight___________________________

t Please tick the appropriate boxes, answering all questions
/

I am currently in general good health 

I presently have no injuries to the muscles

Signature



DUBLIN CITY UNIVERSITY 

RESEARCH - INFORMED CONSENT FORM

I Proiect Title Mechanical characteristics o f  muscle-tendon vibrator and EMG 
response to vibration o f different amplitudes

II Introduction to the study Applying an external vibration to muscle has 
emerged m recent years as a potential for developing muscle strength We 
have developed a portable vibrator that can be strapped to the skin above a 
muscle dunng various strength-training exercises The aim o f this study is to 
investigate the response o f  muscle to different sizes o f  vibration with the 
purpose o f  finding out which size o f  vibration is best, that is, which size o f  
vibration will result m the largest muscle contraction

III I am being asked to take part m this research study The purpose o f the study 
is to determine the size o f  vibration that will cause the largest contraction o f  
my bicep muscle (upper arm)

IV This research study will take place at Dublin City University and will require 
me to attend the University on four occasions Each occasion will last for a 
period o f approximately one hour

V This is what will happen dunng the first visit to the laboratory
1 I will be asked by the investigator to see if  I am suitable for the study and 

asked to fill out a questionnaire on my health
2 I will be asked to read and sign this consent form to show that I 

understand the study and my role withm the study
3 One muscle electrode, one accelerometer and one goniometer will be 

placed on my skm, with sticky tape, m order to measure the response o f  
my muscle to vibration

4 A  muscle-tendon vibrator will be strapped to my arm above my bicep 
muscle

5 I will then be asked to sit in a bench and grasp a 2 kg dumbbell with my 
dominant hand

6 I will be asked to feel the different size o f  vibration and check whether I 
am comfortable with them

7 I will be asked to lift and hold the weight on eight occasions, dunng four 
o f them the vibration will be applied The vibration will last about 20 
seconds

8 I will be given plenty o f  time to rest between each experimental condition

On my second and third visits to the laboratory, steps 3 to 8 o f  the above 
steps will be repeated on me On the fourth visits to the laboratory, the 
strapping force o f  the vibrator to the muscle will be increased and steps 3 to 8 
o f the above steps will be repeated on me

Appendix D Informed consent forms for studies 1 to 6
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VI Sometimes there are problems associated with this type o f  study These are

1 I may find it mildly uncomfortable when my muscle is vibrated, but I 
understand that it will only be for a short time, and that it will not do harm to 
my arm I know that I am free to withdraw from the study whenever I want

VII There will be no direct benefit to me form participating in this study other
than helping to increase knowledge in the area

VIII My confidentiality will be guarded Dublin City University will make 
reasonable efforts to protect the information about me and my part in this 
study and no identifying data will be published This will be achieved by

 ̂ assigning me an ID number against which all data will be stored Details
linking my ID number and name will not be stored with the data The results 
o f the study maybe published and used in further studies

/
IX If I have any questions about the study, I am free to call Jm Luo at (01) 

7008470 or Dr Kieran Moran at (01) 7008011

X Taking part in this study is my decision If I do agree to take part, I may 
withdraw at any point including during the exercise test There will be no 
penalty i f  I withdraw before I have completed all stages o f  the study

XI I have read and understood the information in this form My questions and 
concerns have been answered by the researchers, and I have a copy o f this 
consent form Therefore, I consent to take part m this research project entitled 
‘ Mechanical characteristics o f  muscle-tendon vibrator and EMG response to 
vibration o f  different amplitudes’

Signature_______________________________________________________________________

Printed name 
Date____________________

W itness_________________
Signature

W itness_________________

Printed name

i



DUBLIN CITY UNIVERSITY

I. Project Title: Mechanical characteristics o f muscle-tendon vibrator and EMG 
response to vibration o f  different frequencies

II. Introduction to the study: Applying an external vibration to muscle has 
emerged in recent years as a potential for developing muscle strength. We 
have developed a portable vibrator that can be strapped to the skin above a 
muscle during various strength-training exercises. The aim o f this study is to 
investigate the response o f muscle to different frequencies o f  vibration with 
the purpose o f  finding out which frequency o f vibration is best; that is, which 
frequency o f  vibration will result in the largest muscle activation

III. I am being asked to take part in this research study. The purpose o f  the study 
is to determine the frequency o f vibration that will cause the largest 
contraction o f my bicep muscle (upper arm)

IV. This research study will take place at Dublin City University and will require 
me to attend the University on one occasion. This occasion will last for a 
period o f  approximately one hour

V. This is what will happen during this visit to the laboratory
I will be asked by the investigator to see if  I am suitable for the study and 
asked to fill out a questionnaire on my health
1. I will be asked to read and sign this consent form to show that I 

understand the study and my role within the study
2. One muscle electrode, one accelerometer and one goniometer will be 

placed on my skin, with sticky tape, in order to measure the response o f  
my muscle to vibration.

3. A muscle-tendon vibrator will be strapped to my arm above my bicep 
muscle.

4. I will then be asked to sit in a bench and grasp a 2 kg dumbbell with my 
dominant hand

5. I will be asked to feel the different frequencies o f  vibration and check 
whether I am comfortable with them

6. I will be asked to lift and hold the weight on eight occasions, during six o f  
them the vibration will be applied. The vibration will last about 20 
seconds.

7. I will be given plenty o f  time to rest between each experimental condition

VI. Sometimes there are problems associated with this type o f  study. These are:

1. I may find it mildly uncomfortable when my muscle is vibrated, but I 
understand that it will only be for a short time, and that it will not do harm to 
my arm. I know that I am free to withdraw from the study whenever I want.

RESEARCH - INFORMED CONSENT FORM
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VII There will be no direct benefit to me form participating in this study other 
than helping to increase knowledge in the area

VIII My confidentiality will be guarded Dublin City University will make 
reasonable efforts to protect the information about me and my part m this 
study and no identifying data will be published This will be achieved by 
assigning me an ID number against which all data will be stored Details 
linking my ED number and name will not be stored with the data The results 
of the study maybe published and used in further studies

IX If I have any questions about the study, I am free to call Jm Luo at (01) 
7008470 or Dr Kieran Moran at (01) 7008011

X Taking part in this study is my decision If I do agree to take part, I may 
withdraw at any point including dunng the exercise test There will be no 
penalty if  I withdraw before I have completed all stages o f  the study

XI I have read and understood the information m this form My questions and 
concerns have been answered by the researchers, and I have a copy o f this 
consent form Therefore, I consent to take part in this research project entitled 
‘ Mechamcal characteristics o f  muscle-tendon vibrator and EMG response to 
vibration o f  different frequencies’

Signature

Printed name 

D ate____________________

W itness_________
Signature

W itness_________

Printed name



DUBLIN CITY UNIVERSITY

I. Project Title: Influence o f load on acute vibration training effect -  a study
on sub-maximal isometric contraction

II. Introduction to the study: Applying an external vibration to muscle has 
emerged in recent years as a potential for developing muscle strength. We 
have developed a portable vibrator that can be strapped to the skin above a 
muscle during various strength-training exercises. The aim o f this study is to 
investigate the influence o f  load on muscle response to vibration when sub- 
maximal knee extension is performed

III. I am being asked to take part in this research study. The purpose o f  the study 
is to investigate the acute neuromuscular effect o f  a bout o f knee extension 
strength training with superimposed vibration.

IV. This research study will take place at Dublin City University and will require 
me to attend the University on two occasion. Each occasion will last for a 
period o f  approximately one and half hour

V. This is what will happen during the first visit to the laboratory
I will be asked by the investigator to see if  I am suitable for the study and 
asked to fill out a questionnaire on my health
1. I will be asked to read and sign this consent form to show that I 

understand the study and my role within the study
2. I will be asked to perform knee extensions with a sub-maximal load to my 

exhaustion. This is for the measurement o f my knee extension strength 
(1RM).

This is what will happen during the second visit
1. Three EMG electrodes will be placed on my rectus femoris, vastus 

lateralis and vatus medialis respectively. One goniometer will be attached 
to my leg. A muscle-tendon vibrator will be strapped to my right leg on 
the tendon o f quadriceps.

2. I will be asked to sit on a leg extension machine and extend my knee to a 
specific angle which is monitored by the investigator. Four experiment 
conditions will be randomly tested on me: A- no vibration with light load; 
B- no vibration with heavy load; C- vibration with light load; D -  
vibration with heavy load. Each condition will last for about 20 seconds. 
There will be a 3 minutes rest between each condition.

The same will happen in the third visit as in the second visit

VI. Sometimes there are problems associated with this type o f  study. These are:

RESEARCH - INFORMED CONSENT FORM



1 I may find it mildly uncomfortable when my muscle is vibrated, but I 
understand that it will only be for a short time, and that it will not do harm to 
my arm I know that I am free to withdraw from the study whenever I want

VII There w ill be no direct benefit to me form participating m this study other
than helping to increase knowledge in the area

VIII My confidentiality will be guarded Dublin City University will make 
reasonable efforts to protect the information about me and my part in this 
study and no identifying data will be published This w ill be achieved by 
assigning me an ID number against which all data will be stored Details 
linking my ID number and name will not be stored with the data The results 
o f the study maybe published and used in further studies

IX If I have any questions about the study, I am free to call Jm Luo at (01)
7008470 or Dr Kieran Moran at (01) 7008011

X Taking part in this study is my decision If I do agree to take part, I may 
withdraw at any point including during the exercise test There will be no
penalty if  I withdraw before I have completed all stages o f  the study

XI I have read and understood the information in this form My questions and
concerns have been answered by the researchers, and I have a copy o f this 
consent form Therefore, I consent to take part m this research project entitled
‘Influence o f  load on acute vibration training effect -  a study on 
sub-maximal isometric contraction’

Signature_______________________________________________________________________

Printed name
Date_______________________________________________________ >_______________

W itness___________________________________________________________________
Signature

Witness__________________________________________________________

Pnnted name

\
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DUBLIN CITY UNIVERSITY

I. Project Title: Acute and acute residual effect o f vibration training on 
neuromuscular performance with maximal isotonic contractions

II. Introduction to the study: Applying an external vibration to muscle has 
emerged in recent years as a potential for developing muscle strength. We have 
developed a portable vibrator that can be strapped to the muscle tendon during 
various strength-training exercises. The aim of this study is to investigate acute 
neuromuscular response to a bout o f vibration training with maximal effort bicep curl 
exercise

III. I am being asked to take part in this research study. The purpose of the study 
is to investigate the acute neuromuscular effect o f a bout o f bicep curl 
exercise with superimposed vibration.

IV. This research study will take place at Dublin City University and will require 
me to attend the University on five occasions. Each occasion will last for a 
period of approximately one and half hour

VI. This is what will happen during the first visit to the laboratory
I will be asked by the investigator to see if  I am suitable for the study and 
asked to fill out a questionnaire on my health
1. I will be asked to read and sign this consent form to show that I 

understand the study and my role within the study
2. I will be asked by the investigator about my height and weight
3. The 1RM strength of my elbow flexor muscles will be measured by the 

investigator
4. I will be asked to perform some training protocol that will be used in the 

experiment to let me be familiar with the experiment

This is what will happen during the second, third, fourth and fifth visit to the 
laboratory

1. I will be asked to do a warm-up exercise (12 repetition biceps curl and 
triceps curl with 25% of 1RM load, rest for 3 min, 12 repetition biceps 
curl and triceps curl with 50% of 1RM load).

2. My skin will be prepared over the bicep brachii and the tricep brachii 
muscles for attaching EMG electrodes

3. Two EMG electrodes (for biceps and triceps), one accelerometer and one 
goniometer will be attached to my dominant arm using double sided tape

4. A muscle-tendon vibrator will be strapped to my dominant arm.
5. I will be asked to perform 5 repetitions o f maximal dynamic elbow 

flexion with 70% 1RM load as a pre-training test
6. The vibration will be applied to my muscle for several seconds and I will 

be asked if  there is any discomfort

RESEARCH - INFORMED CONSENT FORM



7 I will be asked to do 3 sets 10 repetitions elbow flexor strength training 
with 70% 1RM load I will be asked to do the concentric phase o f each 
repetition as hard and fast as possible There will be 2 minutes rest 
between each set

8 Immediately after training, I will be asked to perform a test protocol again 
which is a 5 repetitions maximal dynamic elbow flexion with 70% of 
1RM load Then I will perform this test protocol again at 10 minutes 
after the training

VI Sometimes there are problems associated with this type o f study These are
1 I may find it mildly uncomfortable when my muscle is vibrated, but I 

understand that it will only be for a short time, and that it will not do harm 
to my arm I know that I am free to withdraw from the study whenever I 
want

2 There will be no direct benefit to me form participating in this study other 
than helping to increase knowledge in the area

VII There will be no direct benefit to me form participating in this study other
than helping to increase knowledge m the area

VIII My confidentiality will be guarded Dublin City University will make 
reasonable efforts to protect the information about me and my part in this 
study and no identifying data will be published This will be achieved by 
assigning me an ID number against which all data will be stored Details 
linking my ID number and name will not be stored with the data The results 
of the study maybe published and used in further studies

IX If I have any questions about the study, I am free to call Jin Luo at (01) 
7008470 or Dr Kieran Moran at (01) 7008011

X Taking part in this study is my decision If I do agree to take part, I may 
withdraw at any point including during the exercise test There will be no 
penalty if  I withdraw before I have completed all stages o f the study

XI I have read and understood the information m this form My questions and 
concerns have been answered by the researchers, and I have a copy o f this 
consent form Therefore, I consent to take part in this research project entitled 
4 Acute and acute residual effect of vibration training on neuromuscular
performance with maximal isotonic contractions

Signature

Printed name



W itness___________
Signature

W itness___________

Printed name



DUBLIN CITY UNIVERSITY

I. Project Title: Acute and acute residual effect o f vibration training on 
neuromuscular performance with ballistic knee extension exercise

II. Introduction to the study: Applying an external vibration to muscle has
emerged in recent years as a potential for developing muscle strength. We 
have developed a portable vibrator that can be strapped to muscle tendon 
during various strength-training exercises. The aim of this study is to
investigate acute neuromuscular response o f quadriceps to a bout of vibration
training with ballistic knee extension exercise

III. I am being asked to take part in this research study. The purpose o f the study 
is to investigate the acute neuromuscular effect of a bout of knee extension 
strength training with superimposed vibration.

IV. This research study will take place at Dublin City University and will require 
me to attend the University on three occasions. Each occasion will last for a 
period of approximately one and half hour

V. This is what will happen during the first visit to the laboratory
I will be asked by the investigator to see if I am suitable for the study and 
asked to fill out a questionnaire on my health
1. I will be asked to read and sign this consent form to show that I 

understand the study and my role within the study
2. I will be asked to perform knee extensions with a sub-maximal load to my 

exhaustion. This is for the measurement of my knee extension strength 
(1RM).

This is what will happen during the second and third visits to the laboratory
1. Two EMG electrodes will be placed on my rectus femoris and vastus 

lateralis respectively. One goniometer will be attached
to my leg. A muscle-tendon vibrator will be strapped to my right leg on 
the tendon of quadriceps.

2. I will be asked to do a warm-up exercise (12 repetition knee extension 
with 25% of 1RM load, rest for 3 min, 12 repetition knee extension with 
50% of 1RM load).

3. I will be asked to do a maximal isometric knee extension with the joint 
angle o f 120°.

4. I will be asked to perform 5 repetitions o f maximal dynamic knee 
extension with 60-70% 1RM load as a pre-training test

5. The vibration will be applied to my muscle for several seconds and I will 
be asked if  there is any discomfort

6. I will be asked to do 3 sets 5 repetitions knee extension strength training 
with 60-70% 1RM load. I will be asked to do the concentric phase o f each 
repetition as hard and fast as possible. There will be 5 minutes rest 
between each set

RESEARCH - INFORMED CONSENT FORM
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7. Immediately (with 2 minutes) after training, I will be asked to perform a 
test protocol again which is a 5 repetitions maximal dynamic knee 
extension with 70% of 1RM load. Then I will perform this test protocol 
again at 10 minutes.

VI. Sometimes there are problems associated with this type o f study. These are:

1. I may find it mildly uncomfortable when my muscle is vibrated, but I 
understand that it will only be for a short time, and that it will not do harm to 
my arm. I know that I am free to withdraw from the study whenever I want.

VI. There will be no direct benefit to me form participating in this study other 
than helping to increase knowledge in the area.

VIII. My confidentiality will be guarded. Dublin City University will make 
reasonable efforts to protect the information about me and my part in this 
study and no identifying data will be published. This will be achieved by 
assigning me an ID number against which all data will be stored. Details 
linking my ID number and name will not be stored with the data. The results 
of the study maybe published and used in further studies.

IX. If I have any questions about the study, I am free to call Jin Luo at (01) 
7008470 or Dr. Kieran Moran at (01) 7008011.

X. Taking part in this study is my decision. If I do agree to take part, I may 
withdraw at any point including during the exercise test. There will be no 
penalty if  I withdraw before I have completed all stages o f the study.

XI. I have read and understood the information in this form. My questions and 
concerns have been answered by the researchers, and I have a copy of this 
consent form. Therefore, I consent to take part in this research project entitled 
‘Acute and acute residual effect o f vibration training on neuromuscular 
performance with ballistic knee extension exercise’

Signature:.

Printed name 

Date:_______________________
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W itness__________
Signature

Witness

Pnnted name
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I Proiect Title Influence of load on neuromuscular response to vibration traimng -
a study on maximal isotonic contractions

II Introduction to this study Recent findings suggest that vibration could represent 
an effective exercise intervention for enhancing neuromuscular performance 
(muscular strength) m athletes While a number o f studies in the area have found 
an enhancement in the neuromuscular system after vibration, others have found 
no effect This controversy over the effect on the neuromuscular system may be 
due to the lack of control groups in some of the published studies It is also 
unclear whether the level o f intensity (the load lifted) during the vibration has a 
significant result on the acute effect o f training, for example the rate o f force 
development A greater understanding of the acute effect will increase our 
understanding o f the possible chronic effect o f vibration training In turn which 
will lead to better- designed resistance training programs for athletes This study 
aims to see what acute effect muscle vibration has on the varying intensity o f 
resistance power training of the biceps

III I am being asked to participate in this research study The study has the 
following purpose This study aims to see what acute effects o f muscle vibration 
has on the varying intensity of resistance power traimng of the biceps

IV This research study will take place at the Centre for Sport Science and Health,
Dublin City University, and will last approximately 2 week

V This is what will happen during the research study
I will visit the Centre for Sport Science and Health on 5 separate days I will be 
required to abstain from resistance training and heavy physical work that 
requires use o f my upper arm during this time

Dunng the first visit I will perform a one repetition maximum test for my 
dominant (writing) arm This will involve seeing how much weight I can lift 
one time maximally in an arm curl

Dunng the remaining visits I will be asked to lift a percentage of my one 
repetition maximum 1 e 70% while my arm is vibrated I will be asked to follow 
certain instructions and perform the lifts as demonstrated A warm up of the arm 
muscles will precede all o f the above

To gam data several small pieces o f equipment that measure the angle o f the arm 
dunng motion (goniometer) and the electncal activity o f the arm muscle 
(electromyogram machine) will be placed on my arm and secured with medical 
tape They will not cause any pain and can be 
removed easily at any time if  I feel discomfort

DUBLIN CITY UNIVERSITY

RESEARCH - INFORMED CONSENT FORM

D 13



VI Sometimes there are side effects from performing exercise tests These side 
effects are often called risks, and for this project, the risks are Resistance 
training often causes delayed muscle soreness in the area after it was trained 
This usually appears 12-24 hours after training and disappears 48 hours after 
training Some mild discomfort such as shaking and/or tickling of the muscle 
may occur when the muscle is vibrated However the experimental procedure 
has been designed so the likely occurrence of this is minimal

VII There may be benefits from my participation m this study These are 
No benefits have been promised to me f

VIII My confidentiality will be guarded
Dublin City University will protect all the information about me and my part in 
this study My identity or personal information will not be revealed, published 
or used m future studies The study results will be used as part o f a study 
involving an undergraduate student at DCU In addition, the study findings 

may be presented at scientific meetings and published in scientific journals

IX If I have questions about the research project, I am free to call Jin Luo at 01- 
7008470 or Dr Kieran Moran at 01-7008011

IX Taking part in this study is my decision If I do agree to take part in the
study, I may withdraw at any point, including dunng the test There will be
no penalty if  I withdraw before I have completed all stages of the study
However, once I have completed the study, I will not be allowed to have my 
personal information and results removed from the database

XI Signature
I have read and understood the information m this form I have completed the 
questionnaire The researcher has answered my questions and concerns, and I 
have a copy of this consent form Therefore, I consent to take 
part m this research project entitled “Influence o f load on neuromuscular 
response to vibration training -  a study on maximal isotonic contraction”

Signature_______________________________________________________________________

Printed name
D ate_______________________

Witness_________________
Signature

W itness_________________

Pnnted name
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