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Abstract

Cardiac morphology 1s a key indicator of cardiac health Important metrics that
are currently mn chmcal use are left-ventricle cardiac ejection fraction, cardiac
muscle (myocardium) mass, myocardium thickness and myocardium thickening
over the cardiac cycle Advances 1n 1maging technologies have led to an increase
i temporal and spatial resolution Such an increase in data presents a laborious
task for medical practitioners to analyse

In this thesis, measurement of the cardiac left-ventricle function 1s achieved
by developing novel methods for the automatic segmentation of the left-ventricle
blood-pool and the left ventricle myocardium boundaries A prelimimary chal-
lenge faced 1n this task 1s the removal of noise from Magnetic Resonance Imaging
(MRI) data, which 1s addressed by using advanced data filtering procedures Two
mechanisms for left-ventricle segmentation are employed

Firstly segmentation of the left ventricle blood-pool for the measurement of
ejection fraction 1s undertaken in the signal intensity domain Utilising the high
discrimination between blood and tissue, a novel methodology based on a sta-
tistical partitioning method offers success 1n localising and segmenting the blood
pool of the left ventricle From this imtialisation, the estimation of the outer wall
(ept-cardium) of the left ventricle can be achieved using gradient information and
prior knowledge

Secondly, a more 1nvolved method for extracting the myocardium of the left-
ventricle 1s developed, that can better perform segmentation mn higher dimen-
sions Spatial information 1s incorporated in the segmentation by employing a
gradient-based boundary evolution A level-set scheme 18 implemented and a
novel formulation for the extraction of the cardiac muscle 1s introduced Two
surfaces, representing the mner and the outer boundaries of the left-ventricle, are
simultaneously evolved using a coupling function and supervised with a proba-
bilistic model of expertly assisted manual segmentations

Finally, to fully utilise all data presented from a single 4D cardiac (3D + t)
MRI scan a novel level-set segmentation process 1s developed that delineates and

XV



XV1 - ABSTRACT

tracks the boundanes of left ventricle By encoding prior knowledge about car-
diac temporal evolution in a parametric framework, an expectation-maximisation
algorithm tracks the myocardium deformation and 1teratively updates the level-
set segmentation evolution 1n a non-ngid sense

Both methods for the extraction of cardiac functions have been tested on pa-
tient data and provide positive qualitative and quantitative experimental results
when compared against expertly assisted segmentations



Chapter 1

Introduction

An estimated 17 million people die annually from Cardiovascular Disease (CVD)

In general, CVD claims more lives each year than the next five leading causes of
death combined The World Health Orgamsation’s 2002 report [119], states that
29 3% of deaths 1n 1ts 191 countries were as a result of CVDs It 1s these alarming
statistics that has mnitiated the substantial research into accurate measurements
of the heart for the determination of cardiac health through diagnostic i1maging

The diagnosis and momtoring of cardiovascular disease, and the planning for ap-
propriate treatment rehies on accurate 1maging, analysis and visuahisation of the
heart

Advances 1n diagnostic imaging technology, in particular Computer Tomog-
raphy (CT) and Magnetic Resonance (MR), has enabled greater amounts of 1n-
formation, 1 both the spatial and temporal dimensions to be generated This
high-resolution volumetric data, as a function of time, can give important phys-
10logical mformation about the heart The increase m data available has made
the hand annotation performed by the physician a very time-consuming task
This has pushed the advancement toward semi-automated and fully-automated
approaches to quantify the results obtained from these high resolution scanners
A substantial amount of research 1s focusing on the accurate measurement of
shape, volume and shape dynamics of the heart structure This thesis develops
the methodology for the automatic, quantitative and climcally relevant cardiac

analysis in multidimensional data
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11 Motivation

Quantitative measurement of the left ventricle of the heart 1s used as a key indi-
cator of cardiac health The left ventricle 1s 1mportant as 1t pumps oxygen-rich
blood around the body The increased volume of data generated by the latest
medical scanners presents a vast amount of high resolution volumetric data to
be interpreted by the specialist Interpreting and analyzing this large amount of
data represents a tedious and time-consuming task for the cardiologist Manual
or highly supervised tracing of the cardiac boundaries 1s a widely used method
to segment the left ventricle myocardium in current clinical studies In one such
scenar1o, a skilled operator, using a tracking ball or a mouse, manually traces
the region of interest on each shce of the volume [100, 46, 164] Manual shce
editing suffers from many drawbacks These include the difficulty in achieving
reproducible results, operator bias, forcing the operator to view each 2-D slice
separately to deduce and measure the shape and volume of 3-D structures, and
operator fatigue Since manual segmentation 1s labour-intensive, tune-consuming
and can suffer from inter- and ntra-cbserver variability, the prospect of an au-
tomatic and accurate segmentation 1s highly desirable Automatic segmentation
will therefore enhance comparability between and within cardiac studies and
Increase accurate evaluation of volumes by allowing acquisition of thinner MRI-

slices

12 Aims

The main objective of this thesis 1s to outline the work carried out for the extrac-
tion of volumetric data and shape descriptors from MR images of the heart and
to quantify the analysis against a standard of reference Analysis of the heart
function is achieved through segmentation of the left ventricle (LV) From this
accurate segmentation prognostic measurements used 1n the diagnosis of CVDs
are obtained, these include the ejection fraction (EF) of the left ventricle cavity,
left ventricle mass (LVM) of the myocardium and wall thickness and thicken-
ing (WT) of the left ventricle myocardium Therefore the expected outcome of
the work 1s to assist the cardiologist in the prognosis of CVDs by delineating
the true anatomical features present in the 1mage and avoid making assumptions
over reading what 1s present Cardiac Magnetic Resonance (CMR) 1s the imaging
modality chosen for this study It 1s non-invasive, provides high temporal and
spatial resolution and high contrast between blood and the myocardium
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This thesis describes the methodology that identifies the boundaries of the
left ventricle of the heart with minimum user interaction The delineation allows
for the calculation of key measurements that may show anomalous heart function

and therefore may indicate CVD

13 Challenges

There are a number of challenges involved in the delineation of the left ventricle
from MR 1mage Med:cal 1mages are acquired using the natural and unique re-
sponse of the bodies tissues to metabolic or nuclear changes These changes are
not 1deal and this introduces noise into the 1mage acquisition process in the form

of image distortions

Image distortions can be attributed to many factors, for example there is
random image noise, blurring effects due to patient movement and coil intensity
fall-off Added to this, 1s the heterogeneous properties of the tissues, partial
volurming effects between the endocardium and the left ventricle blood pool, par-
ticularly at the apex and at end-systole due to the presence of trabeculae carneae
In cine-MRI the variation of intensity within a tissue 1s increased because 1t may
take several cycles of inducing a signal followed by measurement to image the

entire sequence This leads to gray-scale variations between image shces

In short, there are many challenges that prevent the accurate delineation of
the left ventncle myocardium due to the presence of noise 1n the image, heart
dynamics and uneven breath-holds The developed procedure must remove the
ambiguous nature of the images while maintaining the strong anatomical features

before an accurate segmentation 1s achieved

As previously mentioned, modern scanners create a large amount of data 1n
both temporal and spatial domains Therefore the developed algorithms should
utilise all the information available Anatomical structures are represented i 3D
and therefore the segmentation process of such structures are most accurately
extracted using 3D algorithms Temporal coherence can also be mtroduced to
increase the robustness of the segmentation Prior knowledge 1s often used 1n med-
1cal imaging analysis schemes to localise and extract anatomical features This
thesis incorporates prior knowledge 1n the temporal domain as a generic measure

of temporal coherence which 1s 1teratively refined, as opposed to prior models
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encoded 1n the image domain where there may be large variation 1n anatomical
morphology Hence, one of the largest challenges undertaken mn this thesis 1s to
incorporate both spatial and temporal information 1n a meamngful way to um-

prove the accuracy and robustness of the segmentation

14 Contnibutions

Based on the challenges outlined 1n the previous section, the major contributions
of this work lie in the segmentation of the left ventricle myocardium in multidi-
mensional MRI data There are a number of stages that are adopted and these

constitute the major contributions to this work

Firstly, 1n order to reduce the mherent noise associated with MRI images,
a performance characterisation of advanced smoothing filters 1s performed The

characterisation 1s performed 1 both 2D and in 3D

A novel method for segmentation and localisation of the left ventricle blood
pool using an unsupervised clustering techmque 1s presented m Chapter 4 Ths
technique 15 approached 1n both a slice by shice and volume image context After
the segmentation of the left ventricle blood pool cawvity, an heuristic approach 1s
developed to extract the outer walls of the myocardium in each image shce This
technique 1s based on gradient information in the mmage and where such infor-
mation 1s lacking, a prior model of previously segmented myocardium 1mages 1s
mncorporated nto the segmentation While this approach gives favorable results
in good quality data, mtroduction of temporal information mnto this framework
1s cumbersome Therefore a more mvolved approach 1s proposed that can easily

incorporate extension to 4D data

Describing a contour as a particular instance of a higher dimensioned func-
tion in the Eulerian space has many advantages Firstly, errors associated with
sampling of the contour are eliminated as the approach 1s non-marker based
The deformation 1s numerically stable and has the ability to handle topological
changes during the deformation In Chapter 5 a novel methodology of level-sets
1s introduced that evolves a coupled surface, representing the inner and outer wall
of the left ventricle myocardium The deformation 1s guided using a probabilistic

mode! of manual segmentations



15 THESIS OVERVIEW 3

Finally, the Eulerian formulation of the level-set 1s exploited in a novel fash-
10n to extend the deformation in a supervised way to 4D A temporal model is
constructed for each grid point 1n Eulerian space using prior knowledge about
cardiac motion This parametric model 1s then iteratively refined duning the seg-
mentation process to capture the myocardium boundaries This novel approach
has many advantages Firstly, it performs a temporal smoothing of the segmented
contours through the cardiac cycle that follows the temporal model from the user
defined motion model Secondly, the model 1s defined in temporal space and 1s
therefore free from the highly varnable anatomical features of the cardiac muscle
n image space The human left ventricle has a harmonic pumping motion which
can be modelled for both healthy and unhealthy hearts and 1s relatively inde-
pendent of the highly vanant cardiac anatomy Thirdly, imtial estimates for the
parametric model found through a fast marching algonthm and the parameters

are then iteratively updated using an expectation-maximisation algorithm

Hence, segmentation of the left ventricle in cardiac MRI data 1s approached
m a systematic way, at each step increasing the dimensionality of the problem
and incorporating more knowledge and information 1n more involving method-
ologies Imitial approaches are based on signal intensity values in 2D and 3D
mages for the segmentation of the cardiac blood pool followed by a 2D model
assisted segmentation of the outer wall of the left ventricle myocardium In the
second phase, a coupled deformation of surfaces 1s mntroduced for both the mnner
and outer boundary which 1s also guided by models of manually annotated mod-
els In the final stages, temporal information 1s introduced 1n a knowledge based
way to model the left ventricle motion and ensure smooth temporal transition of

segmented surfaces

15 Thesis Overview

This thesis details the progression of 1deas for the segmentation of the left ventricle
of the heart from multi-dimensional MRI data Based on the challenges outlined

1n the previous sections, the thesis details each of the steps

Chapter 2 gives a background to the problem This chapter deals mainly with
!

cardiac anatomy, dynamics and clinically relevant measurements associated

with diagnosing CVDs An introduction to some of the most common med-

1cal imaging modalities, an in-depth discussion on MRI and the difference
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acquisition procedures And finally a brief overview of image processing

and 1n particular on medical image analysis

Chapter 3 details the methods employed in 1mage nowse suppression The ad-

vantage of non-linear smoothing over linear smoothing 1s investigated 1n 2D
before a performance characterisation of three non-linear filters applied to
MRI data 1s performed in 3D

Chapter 4 gives the particulars on how statistical based segmentation algo-

rithms can be used to accurately measure the left ventricle blood pool
volumes and consequently the measurement of ejection fraction Heuristic
methods for the segmentation of the outer boundary of the cardiac mus-
cle m 2D are detailed and deficiencies associated with this approach are

discussed

Chapter 5 introduces boundary based methods as an alternative approach 1n

order to circumvent some of the imitations of the statistical based ap-
proaches An overview of previous approaches are detailled Gradient based
level-set segmentation approaches are proposed as an accurate method of
segmentation in hmigher dimensioned data A novel method for the segmen-
tation of 3D+¢ (4D) 1s mmtroduced This method employs a parametric prior
model encoded in the temporal domain which 1s 1teratively updated using

a expectation-maximisation algorithm

Chapter 6 concludes the thesis, outhning the novel methods developed, dis-

cussing the results obtained and recommending how these approaches may
be advanced or can be applied to other temporally variant anatomical struc-

tures

Appendix 1 describes the application of an expectation-maximisation algorithm

for partitioning data 1n medical images

Appendix 2 details the application of the level-set algorithm to perform accu-

rate segmentation of polyps in CT colonography



Chapter 2

Background

This chapter gives a brief overview of three distinct areas involved in this project
Firstly, an introduction to the heart, 1ts function, some terminology and the clin-
1cal measurements that are to be extracted from cardiac specific 1mages acquired
of the thorax Next, an overview of the imaging modalities used 1n cardiac imag-
mg, moving to explain why MRI 1s the chosen modality for this investigation
This 15 followed by a discussion on the basics of MRI also mentioning the mam
protocols 1n common use will ensue Finally, a background 1s given on work that
has being investigated 1n the 1mage processing area and in particular 1n the field
of medical imaging and cardiac analysis In this section a review 1s given of the

most relevant literature publhished on the subject

21 The Heart

The heart can be thought of as the “pumping station” of the body Situated
between the third and sixth rbs 1n the center of the thoracic cavity of the body,
the heart 15 a hollow conically shaped muscle about the size of a clenched fist,
12-13cm along 1ts major axis and 7-8cm at 1ts widest pont [101, 58] It rests
on the diaphragm between the lower part of the two lungs Its function 1s to
pump oxygen and nutrient rich blood around the cardiovascular system, where
1t supplies the oxygen to the cells The de-oxygenated blood then returns to the
heart before being pumped to the lungs to collect more oxygen The oxygen-rich
blood then proceeds back to the heart before 1t 1s sent around the cardiovascular

network again
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211 Morphology

The heart 1s a hollow muscle that is divided internally imto four separate cham-
bers The heart muscle itself 1s divided into three layers, the ep:-cardium 1s the
outer protective layer, the middle muscular layer 1s referred to as the myocardium

while the inner layer 1s known as the endo-cardium

The heart 1s divided down the cen-
ter with a strong muscle wall called
the wnteratrial-interventricular sep-
tum mto a cyhndncal left side PN - R \- Eeftenc
and a more crescent shaped right :
side The right side of the heart 1s
agan divided 1n two with the upper
atrium or auricle separated from the
lower ventricle with a one-way valve
called the - Tricusprd valve Simi-
larly, the left side 1s divided nto the

left-artrium and left-ventricle with

Azl ner prpsdlory mascle

the B d tral val I
¢ becuspud or mitrar valve  in Figure 21 Anatomy of the heart From

order of size, the left-atrium 1s the Gray's Anatomy [58]
smallest chamber, holding approx-

mmately 45ml at rest, and having

a wall thickness of approximately

3mm This 15 followed by the right-atrium, with a typical capacity of 63ml
and wall thickness of 2mm, the left ventricle with a 100m! capacity and a wall
thickness as high as 12mm and finally the right atrium which can hold up to
130m! with a wall thickness of 4mm The varying wall thickness 1s a result of the
normal operating pressure of each of the chambers and 1s explained 1n the next
section Each of the chambers has an associated major vessel either supplying
blood or transporting blood away The left ventricle has the aorta, joined using a
one-way gortic valve, the left atrium has the pulmonary vein, the right ventricle
has the pulmonary artery which 1s closed with the pulmonary sema-lunar valve
while the right atrium 1s supplied from the superior and wnferior venae cavae and
the coronary sinus Disease associated with the valves 1s mainly caused from con-
genital abnormalities, degeneration or infection and can result in leakage through
the valve In the most common type of valvular disease the mutral valve or aortic

valves are frequently affected With mutral dysfunction, the blood 1s allowed to
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regurgitate back to the left atrium increasing pressure in that atrium

Also present 1 both ventricles are thin columns of muscle along 1ts length,
these are referred to as trabeculae carne The papillary muscles are thin muscles
protruding from the walls of both ventricles and are connected to their respec-
tive atrioventriculor valves Both the trabeculae carne and papillary muscles are

more pronounced 1n the left-ventricle

The heart 1tself needs to be supplied with oxygen-rich blood and the measure
of blood supphed to the heart 1s called myocardium wability Coronary circu-
lation 1s achieved through two mam arteries, the right coronary artery and left
coronary artery Both of these arteries stem from the ascending aorta Blood 1s
returned via the coronary sinus Over time, the coronaery arteries may become
clogged from a buld-up with fat, cholesterol, triglycerides and calcrum This
build-up prevents the coronary arteries from functioning properly, and interferes
with the delivery of an adequate supply of blood to the heart muscle Ninety five
percent of all coronary artery disease 1s due to this atherosclerosis, the build-up
of fatty substances The insufficient blood supply to the heart 1s called 1schemaa
Myocarditis 1s inflammation of the myocardium, the muscular part of the heart
It 1s generally due to mfection (viral or bacterial) It may present with rapid

signs of heart failure

For clinical evaluation of cardiac anatomy and motion, a standard left ventri-
cle representation has been developed [24] whereby the cardiac muscle 15 divided
mto 17 segments, Figure 22 These 17 segments creates a distribution of 35%,
35% and 30% for the basal, mid cavity and apical thirds of the heart, which 1s

close to the observed autopsy data

212 Dynamics

The heart has two distinct phases, diastole and systole The diastole, or filling
cycle, occurs when the muscle relaxes and the left and right ventricles fill with
blood from the respective atria, this can take 480 ms of the complete 750 ms
cycle During this cycle the tricuspid and mitral valves are open while the aor-
tic and semi-lunar pulmonary valves are closed When the end-diastole volume
(EDV) has being reached the heart sends an electromc pulse for the systole cycle
to start The systole phase 1s much shorter where the muscle contracts and closes
the tricuspid and mitral valves while opening the aortic and pulmonary valves
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Figure 2 2 Diagram of the vertical long-axis, horizontal long-axis and short-axis
planes showing the name, location and anatormcal landmarks for the selection of
basal, mid-cavity and apical short axis shees for the 17 segment system

Approximately half of the ventricles capacity 1s emptied during the systolic phase,
the remainder 1s called the cardiac reserve volume The cardiac cycle 1s timed
using the hearts own intrinsic nervous system and can survive in-vitro for several
hours The main switch in the nervous system 1s called the Sinus Node, this
triggers the AV Node which in turn connects to the Bundle of His to conduct
the triggering pulse through the septum of the heart

The ventricular working pressures are much higher than atria pressures The
left and nght ventricles have an approximate working pressure of 140 mmHg
and 40 mmH g respectively, this gives rise to the left ventricle muscle being three
times thicker than that of the right ventricle

213 Measurements

The volumetric data acquired with time can produce a number of important mea-
surements that can indicate disease of the heart [48] While these descriptors are
well documented 1n research literature [43] they are not always chnically assessed

mn everyday practice
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In practice, clinical measurements still rely on global volumetric measure such
as left-ventricle end-diastolic volume (EDV), end-systolic volume (ESV) and mass
(LVM) These are then used mn conjunction with other measurements to calculate
the stroke volume (SV), cardiac output (CO) and ejection fraction (EF) The n-
clusion of papillary muscles and trabeculations 1s still undecided and 1s usually
dependent on the center performing the scan Recent research [138] has shown
that the difference between subtracting and not subtracting the papillary muscles
and trabeculations has little clinical relevance when calculating the left ventricu-
lar volumes and ejection fractions The extraction of the epi-cardium boundary
aids the accurate measurement of wall thickening (WT) over the cardiac cycle,

this can indicate areas with reduced contractibility

¢ End-diastolic volume (EDV) and End-systolic volume (ESV) 1s the
amount of blood contained 1n the left ventricle at 1ts maximum and mini-

mum respective capacities, measured 1n mi

e Left ventricle mass (LVM) 1s an mmportant indicator for left ventricle
hypertrophy (LVH) LVH 1s an enlargement of the muscle fibers of the
left ventricle, mainly around the interventricular septum LVH 1s a late
complication of congestive heart disease and cardiac arrhythmas The LVM
15 measured to be the volume {cm?) enclosed by the epi-cardium boundary
minus the left ventricle cavity and multiplied by the density of muscle tissue
(1 05g/cm3)

LVM =105 X (Vep, — Vondo) (21)

¢ Stroke Volume (SV) 1s the volume (cm3) of blood ejected from the left
ventricle between the end-diastole and the end-systole This value can then
be normalised to body surface area and called the stroke-volume 1ndex
(SVI)

SV = Vendo(tD) - Vendo(tS) (2 2)



12 CHAPTER 2 BACKGROUND

where Venq, 15 the volume of the left ventricle cavity, Vengo(tp) = maz: [Vendo(t)]
at end-diastole and Vepgo(ts) = mang{Vends(t)] 1s the end-systole

e Ejection Fraction (EF) 1s the percentage of blood ejected from the left
ventricle with each heart beat, and can be represented by the equation

Vendo (tD) - Vendo (t-S')

x 100 23
Vendo(tD) ( )

EF(%) =

e Cardiac output (CO) 1s the amount of oxygenated blood supplied to
the body (ml/man) This can be normalised to the body surface area and
called the cardiac index (CI) The calculation 1s shown in Eq 2 4 where HR
1s the heart rate

CO = (Vendo(tD) - Vendo(tS)) x HR (2 4)

e Wall thickening (WT) 1s the measurement of the myocardium thickness
over time (mmy) This can give a direct indication to the myocardial viabil-
ity and therefore can forecast ischemic disease The wall thickness can be
computed using the centerline method, along lines that are perpendicular to
a curve that is equidistant from both the endo- and epi-cardial boundaries

2 2 Imaging Modalities

In this section the reader 1s given a brief introduction into the imaging modalities
that are commonly used for cardiac analysis A brief description of each method
1s given along with their advantages and disadvantages This 1s followed by a
brief discussion on the suitability of MRI in cardiac analysis, a more 1in-depth
background describing some of the physics involved and the different protocols

mn chinical use

221 X-Ray with Angilocardiology

X-ray angiocardiography (XRA) 1s a projection image of the left ventricle usually
n the oblique view after a contrast agent has being injected mto the ventricle via
a pigtail catheter In XRA the contrast agent 1s not uniformly spread throughout
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the left ventricle because of the dilution with blood at the mitral valve It may
not reach to the apex of the heart and there 1s also a linitation on the amount of
contrast agent used due to the risk to the patient Surrounding structures such
as r1bs can be removed from the image using Digital Subtraction Anglography
(DSA) DSA mvolves a temporal subtraction where the 1mage obtained without
a contrast agent 1s subtracted from the contrast image Complications associated
with cardiac anglography are cardiac arrhythmias (irregular heartbeat) and em-
bolism (by dislodging plaque from the artery wall while treading the catheter)
XRA can be used for the calculation of the ejection fraction using geometric ap-
proximatsions (43] but cannot be used for the calculation volumes or delineating

the epi-cardial boundary

222 Cardiac Ultrasound

Cardiac ultrasound 1s a tomographic 1imaging system, 1t 1s relatively cheap, non-
mvasive and can image on arbitrary planes [24] It gives low contrast when
compared to MR and X-ray, cannot image through gaseous mediums and has a
low signal-to-noise ratio due to frequency attenuation in the tissue The signal-
to-noise ratio 1s further reduced 1n cases where the patient presents obesity 3D
ultrasound [88, 125] has being introduced and can quantify ventricular volumes
and myocardium mass without the need for geometric models Ultrasonographic
heart images suffer from the need for acoustic windows, operator subjectiveness
and are often characterised by weak echoes, echo dropouts and hgh levels of

speckle noise causing erroneous detection of the LV boundaries

223 SPECT/PET

Single-photon Emission Computed Tomography (SPECT) and Positron Emission
Tomography (PET) scans are part of the non-invasive nuclear imaging techniques
SPECT was ntroduced mn the 1970’s and 1s used to detect subtle metabolic
changes 1n the organ under investigation PET was introduced shortly after
SPECT because of 1ts increased temporal resolution Both methods work by the
mjection of radionuchides (radioactive 1sotopes) into the organ under investiga-
tion These radionuchde tracers are absorbed at different rates by the healthy
and dysfunctional muscle While these methods are good for the measurement of
metabolic changes, the resolution does not lend to the dehneation of anatomical

structures i the image
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224 Computer Tomography

A traditional X-Ray Computer Tomography (CT) scan 1s an X-Ray procedure
which combimnes many X-Ray images with the aid of a computer to generate
cross-sectional views of the body CT 1s increasingly used in cardiac analysis It
provides increasing resolution m data with the introduction of the 64 shce CT
and 18 particularly useful for evaluating coronary atherosclerosis With conven-
tional CT, cardiac motion causes blurring and artifacts in the 1mage but advances
such as Electronic Beam Computer Tomography (EBCT), Ultrafast® and Dual-
Source CT have ncreased the acquisition time sufficiently to capture the beating
heart These approaches can be gated to capture information at a precise phase
in the hearts cycle However CT suffers from low contrast between soft tissues

like blood and myocardium and the patient 1s exposed to 1onising radiation

225 Magnetic Resonance Imaging

Magnetic Resonance Image (MRI) was first introduced in medical imaging 1n
1971 Since 1ts introduction cardiac magnetic resonance (CMR) has progressively
improved with increased spatial and temporal resolution CMR 1s considered by
some authors [43, 128, 130] to be the standard of reference for evaluating the
cardiac function MR has proved to be more accurate than echo-cardiology and
cardiac angiography in the calculation of the ejection fraction and also has shown
superior results in endo-cardium border segmentation [128] MRI boasts a wide
topographical field of view and high contrast between soft tissues without the
need for a contrast agent It 1s non-invasive with high spatial resolution and
can be gated using an electrocardiogram (ECG) at different phases during the
hearts pulse [158, 102] However, 1t can suffer from noise and grey scale variation

between adjacent slices More details are discussed 1n the next section

23 MRI for Cardiac Imaging

Cardiac Magnetic Resonance (CMR) has very clear advantages over the other
imaging modalities, discussed 1n the previous section It has proved to be more
accurate [43] for the evaluation of cardiac function measurements due mainly to
1ts independence from any geometric assumptions about the ventricle shape and
can be used without the need for a contrast agent Cine-MR has being introduced
to capture a collection of 1mages over one or several phases of the cardiac cycle
MRI tagging has been introduced to obtain heart twist through the cardiac cycle
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The use of MRI has many benefits over other types of acqusttion

e Images of soft-tissue structures such as the heart and major vessels are

clearer and more detailed when compared to other 1maging methods

e The detail of MRI makes 1t an 1nvaluable tool in early detection and eval-

uation of coronary disease

o Even without the use of contrast material, MRI often shows sufficient detail

of the heart to be valuable 1n diagnosis and treatment planning

e When 1t 1s used, MRI contrast material 1s less likely to produce an aller-
gic reaction than the 10dine-based materials used for conventional X-Rays
and CT scanming and does not contain the radioisotopes used 1n nuclear

medicine exams

e MRI enables the detection of abnormalities that might be obscured by bone

tissue with other imaging methods

¢ MRI provides a fast, nonmvasive and often less expensive alternative to

other techniques of cardiac diagnosis

e MRI can help physicians evaluate the function, as well as the structure, of

the heart muscles and valvqs

e MRI does not require exposure to radiation or the mtroduction of radioiso-

topes 1n the body
e MRI has the advantage that images can be obtained from arbitrary planes
The use of MRI also has the following associated risks or limitations
¢ An undetected metal implant may be affected by the strong magnetic field

e MRI s generally avoided 1n the first 12 weeks of pregnancy Doctors usually
use other methods of imaging such as ultrasound on pregnant women,

unless there 1s a strong medical reason to conduct an MRI exam

In this section an overview of the basic physics of MRI 1s given to the reader,
the imaging planes used 1 a conventional heart examimation are shown and
finally the different protocols that have being introduced with their advantages

and disadvantages
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231 MRI Physics

MRI applies a Radio Frequency (RF) excitation pulse to the protons that sit m a
static magnetic field When the protons return to a state of equilibrium they emit
a quantified energy as an RF signal This signal 1s then collected and analysed
On the scan this corresponds to high intensity meaning high signal collected by
that group of protons

MR uses the magnetisation effects of hydrogen to create the intensity map,
or image Hydrogen 1s an abundant atom in almost all biological systems As
can be seen 1n figure 2 3 these atoms do not naturally align m any particular
direction but instead spin around their own axes in arbitrary orientations and
therefore the magnetic effect 1s neglhgible If however, a strong static magnetic
field Bg 1s applied to these atoms they align themselves either in the parallel
or anti-parallel direction to the direction of the field (1n most cases they ahgn
parallel) The atoms do not strictly align parallel to the magnetic field but at a
small angle 8, or flip-angle, and precess around the magnetic field at a frequency
f, or the Larmor frequency If an external frequency Bj 1s pulsed at the Larmor
frequency perpendicular to By the atoms absorb the energy and tend to precess
away from By and toward B; momentarily When the pulse has finished the atom
returns to the static magnetic field and releases the energy as a small RF signal
This signal 1s collected and used to produce the image TE 1s the echo time, the
time at which the signal echoes are obtained after the excitation pulse TR 1s the
repetition time, the time 1in which the excitation pulse 1s repeated to obtain the

1mage lines

In order to locate the position of the signal spatially, a third magnetic field
called a gradient magnetic field that varies the magnetic field strength with re-
spect to 1ts position 1s applied The most common type of reconstruction used
to create the image 15 a two-dimensional Fourier transform Measurements are
taken at important relaxation tumes 11 and 72 T1, or spin-lattice relaxation
time, 1s the settling time for the atoms to return to equabbrium after being dis-
turbed by the RF pulse while T2, also called the spin-spin relaxation time, 1s
the decay of the RF signal after it has being created, both these measures are
tissue dependent which gives the MRI 1ts ability to distinguish between different
tissues in the body For example water has a longer T'1 time when compared to
fat because 1t does not give up 1ts energy as quickly as fat, ssmilarly water has a
longer T2 time when compared with fat Using these and other properties a host
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of different imaging protocols have being devised to optimize image quality
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Figure 23 The basics of MRI Figure (a) shows random hydrogen atoms, (b}
shows the aligned atoms after the introduction of a static magnetic field By,
(c) shows results after applied RF pulse B; and (d) plots the 7'1 and T2 decay
graphs

Image derwed from U S Department of Health and Human Services, Food and
Drug Admanistration, Center for Devices and Radiological Health, Magnetic Res-
onance Working Group

232 Protocols

Echo planar mmaging (EPI) 1s a fast mmaging technique, introduced 1n the late
1970s that reads multiple lines of the unage with just one excitation pulse This
method greatly increased the speed of MRI meaning images could be acquired in

fractions of a second compared to minutes with early MRI

Gradient Echo

Gradient Echo 1mages are also called bright-blood images due to the high signal
intensity of the blood Gradient echo 1mages are acquired using either 7’1 and 772
weighting or a combination of both The RF excitation pulse 1s applied once and
the signal 1s obtained after a short T'E, usually between 1-10 ms Due to the low
TE time, the blood does not have the opportunity to flow away from the imaging
plane, explaining the high intensity mn the blood but this can cause heterogeneity
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within the blood-pool especially pronounced along the endo-cardium and the
matral valve TRs are also short, < 50 ms, which allows for rapid acquisition
cime-MR

Spin Echo

Spin-Echo, or dark-blood sequences, apply two RF pulses, usually at both 90° and
180° This second pulse, applied at T'E/2, reorients the atoms It 1s the resulting
echo signal that 1s used to construct the image The T'R for spin echo sequences
15 much higher than that of gradient echo Spin Echo 1s therefore not used for
the generation of cme-MR sequences because of this increased acqusition time
Spin-echo does however provide higher contrast-to-noise ratio (CNR) between the
blood and the myocardium Fast spin-echo sequences, also called turbo spin-echo,
Rapid Acqusition and Relaxation Enhancement (RARE), increase the temporal
resolution but at the cost of soft tissue contrast Typical images taken from both

spm-echo and gradient-echo 1mages can be seen 1 figure 2 4

Balanced Sequences

Steady-state free precession (SSFP) method has been recently developed where
the contrast of the tissues depends more on the T1 and 72 contrast and less
on the flow dynamics It involves rapid excitation using the RF pulse, never
allowing the MR signal to completely decay This means that the images can
have the high tissue contrast of 7’1 and the high blood tissue contrast of 1'2-
weighted acquisition There are a whole family of SSFPs which include Balanced
Fast Field Echo (bFFE), Balanced Turbo Field Echo (bTFE), Fast Imaging with
Steady Precession (TrueFISP), Completely Balanced Steady State (CBASS) and
Balanced SARGE (BASG)

Recently, methods such as Sensitivity Encoding (SENSE) have being intro-
duced to speed up imaging and therefore mcrease the resolution This method
15 based on the use of multiple RF coils and receivers Other advances include
Prospective Acquisition and CorrEction (PACE) which allows free breathing dur-
ing the exam by detecting the diaphragm and correcting for 1ts movement MRI
tagging has been a well documented method of evaluating the twist and torque
of the myocardium during the heart-beat by non-invasively placing a grid, known

as tagging, on an image with changing radio frequencies
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Figure 24  Shows two short axis images of the heart (a) gradient-
echo 1mage, TE= 16ms, TR= 32ms, flip angle = 60° and (b) spmn-
echo 1mage, T'1-weighted approximate times of TE=10-20ms and TR=300-
600ms Image (b) used courtesy of the Auckland MRI Research Group
(http //www scmr org/education/atlas/intro/)

233 ECG Gating

An electrocardiogram (ECG \ EKG) 1s a recording of the hearts electrical pulses
as 1t stimulates the myocardium In imaging, ECGs are used to establish the
hearts R-wave which 1s a lugh peak wave, 1n a normal patient and depending
on acqusition, coming between the  and S wave and indicates the start of the
myocardium contraction This 15 used to trigger the imaging at the correct time
in the hearts phase ECG gating suffers in MRI from a phenomenon called the
magnetohydrodynamacs effect where the signal gets distorted when the patient
enters the static magnetic field However, this can be ehminated with Vector-
cardiogram (VCG) which uses multiple ECG-channels to accurately detect the

R-wave

234 Imaging Planes

MRI has the advantage that images can be obtained in arbitrary planes This 1s
useful to obtain the best orientation for the images to be viewed, as the orien-
tation of the heart changes from patient to patient Traditional views in cardiac
imaging are saggital, which divides the body into left and right, orthogonal where
the images are taken from the head to feet direction and long axis where the 1m-
ages are oriented to show the best view of the four chambers of the heart (see
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figure 2 4) In practice the orientation for the evaluation of the left ventricle 1s the
short-axis view as 1t gives the best view of the left ventricle chamber for volume
calculations The short-axis 1s the plane perpendicular to center line running

from the mitral valve to the apex of the heart

235 Image Formats

All 1mages used mn this work were encoded m the DICOM (Digital Imaging and
Communications in Medicine) format, taken along the short axis plane traversing
the left ventricle cavity from the base to the apex of the heart as shown in Figure
22

24 Overview of related Image Processing and Analysis

Techniques

Image processing first evolved in the late 50s and early 60s where simple al-
gortthms were implemented 1in hardware Many of these implementations were
derived from signal processing ideas It wasn’t until the md to late 1960’s and
early 1970s that digital image processing became an active area for research Ap-
plications such as the NASA 1964 project aimed to remove imperfections from
lunar 1mages returned on the Ranger 7 expedition It was at the early stages of
image processing that ideas into medical image analysis were first investigated
and many of the first projects 1n 1mage processing were funded by the National
Institute of Health (NIH) as well as the National Science Foundation (NSF) in the
US One of the earhest publications on medical image analysis by Strauss et al
[153] where nuclear images of the heart were obtained using a scintiphotographic
method and the computer semi-automatically outlined a region of interest for the

quantitative measurement of the ejection fraction

Image processing 1s nextricable tied to the advancement of the computer and
1t was 1n the past and still 1s the increase in computational power that drives the
level of complexity entailed 1n image processing technmques As the disciphine of
1mage processing grew, more sophisticated algorithms were developed to achieve
more complex tasks Today, the major problems where 1mage processing are 1n

the areas of

¢ Photography
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e Satelite Imaging

Face Detection

e Medical Imaging

Natural Scene Analysis

The field of 1mage processing includes acquisition where the main challenges
are the reduction of distortion and develop sensors that aim to 1mprove the signal-
to-nose ratio (SNR) Image storage has always stretched the boundaries of com-
puter memory capacities and therefore 1mage compression mn both still and video
data has also attracted researchers Post processing of images include geometric
transformations of the object or coordinate system, colour corrections for im-
age enhancements, distortion corrections to rectify camera maccuracies, noise
suppression and filtering to correct sensor accuracies, edge detection to define
boundaries between objects in the image, segmentation of an image nto distinct
regions and pattern recognition for the localisation and classification of objects

from a scene

Many of these operations that are common 1 1mage processing and 1mage
analysis can also be 1mplemented 1n medical image analysis, but with subtle dif-
ferences For instance, problems such as illumination difficulties are replaced by
more acquisition specific himitations such as coil intensity fall off in MRI Many
image processing and computer vision tasks deal with the extraction of 3D data
from stereo 1mages but 1n medical 1image analysis, very often with modern scan-
ners, the data can easily be reconstructed mnto 3D and therefore accurate shape
recovery and tracking in 3D 1s the major 1ssue Pattern recognition 1s also imple-

mented 1n medical images using prior knowledge of anatomical shape or structure
The main 1ssues that drive research in medical 1mage analysis are
e Image segmentation

o Image matching / registration

e Motion tracking

The 1n plane resolution of modern scanners are i the domain of 0 5-2 5mm
for CT and MRI scanners, therefore, medical image analysis 18 performed at

macroscopic or organ level as opposed to microscopic or atomic level
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Image segmentation deals with the accurate dividing up of an 1mage or a
volume into smaller relevant collection of pixels or voxels In the case of medical
mage analysis these smaller subgroups generally represent anatomical features
such as tissue, blood or bone It 1s the methods by which these divisions can be
made that 1s the subject of segmentation Segmentation 1s a deceptively diffi-
cult problem to solve and many approaches require much user intervention such
as live-wire techmques [164, 46] Image segmentation has received a significant
amount of attention 1n the past number of decades With the exponential growth
of computational power and memory, more complex algorithms can be applied
to larger amounts of data There are a number of proposed techmques which can
be broadly classified in bottom-up approaches and top-down approaches

241 Bottom-up Approaches

Bottom-up approaches perform the separation normally based on no prior knowl-
edge and divisions are made based on the ntensity or gray level values The most
basic form of bottom-up or intensity based segmentation is thresholding Thresh-
olding 1s a binary classification problem where all elements 1n an 1mage with gray
level values higher than a user defined number are classified as one object and all
elements with gray level value below are classified as a second object, adaptive
methods to find the threshold values have also been evaluated [175, 57] Other
methods for selecting thresholds mclude histogram analysis and global and lo-
cal thresholding Thresholding methods are susceptible to noise i low contrast
images and are therefore normally combined with some morphological operators
such as opemng and closing to remove outhers Other bottom up approaches
search for divisions of objects within the image called edge detectors This di-
vision 1s charactensed by a difference n local grayscale values This differential
operator can give information regarding the strength of the division returned
by the gradient and also the direction returned by the orientation Common
edge detector operators include Canny and Sobel Similar to thresholding, these
methods are limited in images with low Signal-to-Noise Ratio (SNR) In these
circumstances, methods such as edge linking [55] and non-maximum suppression

[20] may be employed

More advanced methods involve partitionming the 1mage into a greater number
of final classes, how best to classify the objects into the appropnate classes and

how to determine the appropriate number of classes 1n a specific image Statis-
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tical partitioning of 1mages into higher than two classes 1s a very active area of

research

Clustering methods have evolved and try to mimimise the variance of pixels
within clusters while maximising the variance between clusters Inclusion mto
a certain cluster may be based on gray level value or a number of other met-
rics Cluster membership may be a hard classification, as 1s the case in k-means
clustering, or a soft membership classification, as 1s the case with fuzzy c-means
clustering or Expectation-Maximisation classification [40, 14] In the first case,
each element 1s assigned to a particular class but on the other hand, 1n a soft
classification, membership to a cluster 18 given as a probabilistic measurement
More advanced clustering methods use multiple scales [136] to alleviate over seg-
mentation whereby the object to be extracted 1s divided into multiple regions

Delibasis et al [38] implemented a number of standard bottom-up techmques
for evaluating the segmentation of the left ventricle cavity from cine MR se-
quences m a small number of normal and abnormal patients These included an
adaptive region growing techmque from a seeded position, where the new voxels
are added to the object of interest if 1ts value 1s close to the mean of all the voxels
contained 1n the object A k-means algorithm, which partitions voxels 1n feature
space mto a predefined number of classes [65] using a distance metric of each
voxel feature from the class feature average A fuzzy C-means algorithm [118],
sumilar to the k-means with the introduction of a fuzzy function which defines the
probability of membership to each class A neural network based Self Orgamzing
Maps (SOMs) based on Kohonens [75] work Delbasis et al [38] proved that
k-means gave the most robust results on average over the normal and abnormal

data when compared to manual segmentations

A more n-depth discussion on statistical partitioning of data 1s continued n
Chapter 3 but these methods may suffer 1n noisy images where there 1s a sig-
nificant variation 1n gray scale values In medical segmentation, 1ts 1s often the
task to extract a closed structure, however these partitiomng algorithms based
on mtensity values do not take spatial relationships into consideration This 1s
why many researchers have investigated the value of approaching the problem

from a top-down angle
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242 Top-down Approaches

Top-down approaches apply some information about the desired results and then
tries to perform some sort of fitting and deformation to achieve the final seg-
mentation and aums to closer resemble a cognitive approach to segmentation
Template matching s an example of top-down segmentation 1n which a prede-
fined shape 1s fitted to the data by means of scaling, rotating and translating
(see Figure 2 5) This method performs a search of the 1mage using a predefined
template and tries to fit the template to gradients in the image which mimimises
the error and maximises the overlay Of course, n this case, the template 15 a
rgid structure and can only be used for localisation of the object and only in
cases where there the template does not differ greatly from the final object to be

located

(a) (b) ()

Figure 25 Top-down approach to image segmentation (a) Shows the prior
model to be fitted to the data in (b) giving the resulting image shown 1n (¢) [56]

One significant advancement on this idea Active Shape Models {ASMs) was
proposed by Cootes et al [34], (see also [168, 48]) whereby the template consisted
of numerous shapes which were encoded mto a shape model Also encoded 1nto
this model where the principal modes of variability and this was used 1n the defor-
mation process to rmnimise the template to object error This is a very powerful
1dea 1n medical 1imaging and the extension of this method to include other param-
eters 1n the model, such as Active Appearance Models (AAMs) which integrates
texture nto the model [151, 150, 152, 78, 77, 17] All model-based approaches
are hmited by the number and vanation of the prior templates used in the model

building process

Active contours or Snakes which were first proposed by Kass et al [68] are an

extension of this top-down approach where a closed contour or surface 1s located 1n
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the 1mage and 1s then deformed until the final segmentation 1s achieved Normally
this deformation 1s constituted from two separate parts, the first 1s the intrinsic
properties of the contour 1n order to maintain 1ts shape through rigidity or elas-
ticity and the second part of the deformation energy This form of segmentation
has been employed 1n medical image analysis, where the anatomical feature mn
question can be encapsulated within a closed contour [25, 26, 121, 4, 52, 67, 66]
Segmentation 15 then achieved by evolving this closed contour using intrinsic
properties such as curvature and external properties obtained from the image
Combinations of snakes and statistical shape models have also being developed
[60] whereby snake evolution 1s additionally guided using a predefined model of
what the final shape should approximate Non-parametric snakes were intro-
duced 1n order to address some of the himitations of traditional snakes and have
proved successful in medical 1mage analysis [86, 110, 6, 2, 163] These techniques

are discussed 1 more detail in Chapter 5

While these approaches have been shown to perform robust segmentation,
even 1n noisy images, accuracy of the segmentation 1s bounded by the imitial
shape This 1s particularly the case in medical imaging, where anatomical fea-
tures present a sigmficant variation between patients none more so than in the

presence of disease

There are many algorithms which try to employ a combination of bottom-up
and top-down approaches to segmentation to capture the advantages from both
approaches {16] Prior knowledge about a particular segmentation task can be
mcorporated as low level information such as expected intensity values, gradient
strength of orientation or incorporated at a higher level such as texture variation

over an object and object shape

With the increasing temporal resolution available in modern scanners, the
tracking of climcal structures over time may hold particular chnical significance
This area has being investigated in the myocardium of the heart more than in
any other biological structure (a excellent reviews of applying image process-
ing techniques to left ventricle segmentation can be found mn [156, 49, 44, 167])
Deformation tracking of the cardiac muscle over the temporal cycle has being
investigated 1n many studies 1n order to measure the regional function of the left
ventricle (LV) 1n an effort to 1solate the location, severity and extent of wschemic
myocardium [137) Myocardium twist and torque can be measured with using
tagged-MRI
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Single breath hold images means registration of the 1mages 1s not as signifi-
cant a factor as in multiple breath hold images Registration methods [84] deal
with the registration of cardiac images from multiple modalities Registration
techmques were first performed in brain 1mages for the registration of higher res-
olution 1mages acquired using MRI or CT to images of lower resolution such as
Magneto-Encephalo-Graphy (MEG) or Electro-Encephalo-Graphy (EEG) Reg-
1stration 1 cardiac 1mages is more complicated due to the non-rigid and mixed
motions of the cardiac muscle and thorax structures Much attention 1s focussed
on registration of the modalities MRI and PET (85, 139], MRI and SPECT [62]
or CT and PET [179, 19]

25 Conclusions

This chapter mtroduces the key areas associated with this thesis Firstly, an
overview of the heart 1s given with particular emphasis on anatomical morphol-
ogy and cardiac dynamics Ths 1s followed by some of the most common CVDs

and the chmically acquired measurements used in their diagnosis

In the second part of this chapter, an overview of mmage acquisition 1s pro-
vided MRI s the chosen modality for this study, based on the outlined advan-
tages over other modahties This 1s followed with a fundamental background in

MRI physics and common protocols

Finally, n order to extract the chnically relevant features from the data pre-
sented from the 1mage acquisition, 1mage processing 1s proposed and introduced
The remainder of the chapter 1s devoted to the exploration of how medical i1mage
analysis has evolved by classifying the approaches into two rudimentary method-

ologies (see review [44])



Chapter 3

Advanced Data Filtering

Image smoothing 1s a procedure employed 1n 1mage processing to reduce or sim-
plify the data present in an image 1n order to make image understanding more
attamnable In a practical sense, this can be achieved by the removal of noise or
redundant signal intensities from the 1mage 1n order to obtain a more appropriate

model of the underlying structures within the image

The motivation behind smoothing images 1s therefore two-fold, firstly 1t re-
moves unwanted noise from the image to facihitate further processing and secondly
to eliminate features irrelevant to the given problem to reduce the complexity for
subsequent processing Specifically in MRI, increased magnet strength may re-
solve somewhat the associated low SNR, but advances to 3T magnets are limited
by the higher RF power disposition 1n the body [8] Nayak et al [105] showed 1n
2004 how 3T imaging improved SNR. and CNR on cine sequences but note signal
fall-off due to decreased RF penetration

There are two main types of smoothing, linear and non-linear Both of these
types have been extensively studied 1n hiterature {116, 140, 159] When filtering
umages, 1t 1s mostly an advantageous property of the smoothing filter to smooth
areas of homogeneity while preserving areas of interest in the image such as
edges Ths 1s typically achieved by means of a convolution of a number of pixels
or voxels with a smoothing kernel, this 1s also called Finite Impulse Response
(FIR) filtering Linear filters convolve an image patch with a smoothing kernel
that 1s independent of the data in the image Standard hnear smoothing tech-
mques based on local averaging or Gaussian weighted spatial operators reduce
the level of noise but this 1s achieved at the expense of poor feature preservation

27
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Consequently, the filtered data appears blurry as step intensity discontinuities
such as edges are attenuated Non-lnear filters smooth the image but try to
maintain edges by smoothing less Among these, the median filter 1s the sim-
plest non-hnear operator to remove 1mpulse-like noise {142, 116] More complex
non-hinear techniques include statistical approaches based on non-parametric es-
timation [140, 160] However, while these methods do alleviate somewhat the
shortcomings associated with linear techniques, they still perform only modestly
when the data 1s affected by long tailed noise distributions To complement
these filtering approaches, a number of adaptive techniques have been proposed
[140, 53, 33, 124, 28] These methods try to achieve the best trade-offs between
smoothing efficiency, feature preservation and the generation of artefacts Koen-
derink [73] expressed the blurring operation of smoothing as heat conductance or
diffusion Diffusion-based filtering was oniginally developed by Perona and Malik
[115] in order to implement an optiumal feature preserving smoothing strategy
Many implementations follow their original approach where the main aim was to
improve numerical stability [172) This was advanced by Weikert [171] where he
developed a new smoothing algorithm by permitting diffusion along the direction
of edges Geng et al [53] extended this work to 3D and evaluated 1ts usefulness
when applied to medical 2D and 3D datasets

In this chapter, a performance characterisation 1s evaluated on some advanced
smoothing filters both 1n 2D and 3D The performance of a filter 1s evaluated as
a means of simplifying the image before segmentation Therefore, advantageous
characteristics are defined as their ability to flatten the signal intensity values
within a structure while maintaining a strong separation of signal intensity values
between structures Firstly, five filters are introduced and assessed, two hnear fil-
ters (Gaussian and Savitzky-Golay) and three non-linear filters (Diffusion-based,
Adaptive and Anisotropic) are evaluated to detail the advantage of non-linear
filters over hinear filters Finally, a rigorous performance characterisation 1s per-
formed on the three non-linear filters using homogeneity within regions and edge

strength as the indicators of performance

31 Linear Methods

Traditional linear filters such as mean, average and Gaussian attempt to remove
noise by replacing pixels by an average or weighted average of 1ts spatial neigh-
bours [116] While this reduces the amount of noise present 1n the 1mage, 1t also
has the disadvantage of removing or blurring the edges The Savitzky-Golay [127]
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linear filter smoothes the 1mage but tries to preserve higher moments, like edges,
in the image It achieves this by selecting coefficients that are the least squares

approximation of a higher degree polynomial

Firstly, let us look at the basic linear causal smoothing filter given 1n equation
31 Ths 1s the 2D case where each pixel in the smoothed 1mage g at position
(z,y) 1s calculated to be the average or weighted average of the original image f’s
spatial neighbours The convolution matrix C 1s of size N x N where N =2n+1

and the sum of 1ts elements 1s normalised to umty

n n
z,y = Z Z Coy frtryts (31)

J=—ni=—n

This type of filtering introduces a blurring effect to the image which 1s unde-
sirable for most image processing applications The basic filter illustrated in
Equation 31 1s hnear and 1s independent of the data bemng processed Some

common causal filters are mean, Gaussian and Savitzky-Golay

311 Gaussian Filter

The Gaussian smoothing technique 1s very straightforward and 1s similar to the
average filter The Gaussian filter differs from the average filter in that it involves
the convolution of the original image with a Gaussian mask where the standard
deviation and the si1ze of the smoothing kernel selects the scale and size of the

blurring operation The resulting 1mage S, 1s defined as,
Szy = Izy 0 Gauss(z,y,0) (32)

where I, 1s the original image, Gauss(z,y, o) represents the Gaussian kernel

with scale parameter o and o 1mplements the 2D convolution operation

This form of smoothing has the advantage of giving more influence to the
pixels or 1n close neighbourhood to the element being replaced, with exponentially
less influence the further away the pixels are from the center of the kernel In 2D

the Gaussian mask 1s constructed using the following equation,

1:2 2
Gauss(z,y,0) = —\/_E:e— % (33)

2mo?
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where (x,y) are the 2D position of the element and o represents the diffusive

properties of the filter

The standard blurring operation involving Gaussian filtering attempts to re-
move the noise from the image From Equation 3 3 1t 1s obvious that the smooth-
ing becomes more pronounced for higher values of the scale parameter but at the
same time we can notice a significant attenuation of the optical signal associated
with 1mage boundaries This result 1s highly undesirable for many applications
including 1mage segmentation and edge tracking where a precise 1dentification of

the object boundary 1s required

312 Savitzky-Golay Filter

The Sawvitzky-Golay [127] smoothing filter was introduced for smoothing one-
dimensional tabulated data and for computing the numerical derivatives The
smoothed pomnts are found by replacing each data point with the value of its
fitted polynomial These filters preserve edges far better than a moving average
filter but this 1s achieved at the expense of not removing as much noise The
process of the Savitzky-Golay 1s to find the coefficients of the polynomial which
are hinear with respect to the data values Therefore the problem 1s reduced to
finding the coefficients for fictitious data and applying this linear filter over the

complete data

Savitzy-Golay can be used for smoothing image data by extending the filter
to two dimensions with a two dimensional polynomial The size of the smoothing
window 1s given as N x N where N 1s an odd number, and the order of the poly-
nomial to fit 1s k, where N > k+1 The general smoothing causal filter equation

IS given as

oy = z Z Cp fatry+) (34)

J=-ni=-n

n1s equal to &2 g, , 15 the resulting smoothed data, C 1s the convolution

matnx and fgy 1s the onginal image data

7@ ) = ago + 6102, + a1t + a0 + anz + a2yt +  +agky®  (35)
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We then want to fit a polynomial of type 1n equation (3 5) to the data Solving the
least squares we can find the polynomal coefficients We start with the general

equation

where a 1s the vector of polynomial coefficients

Aa=f

a=(aoo apgy  aio

aok)T

We can then compute the coefficient matrix as follows

(AT A) a=(AT f)

a= (AT A7 (AT f)

Due to the least-squares fitting being hinear to the values of the data, the
coefficients can be computed independent of data To achieve this we can replace
f with a umt vector thus, the coefficient matrix becomes C = (ATA)71AT C
can then be reassembled back into a traditional looking filter of size N x N

The resulting coefficient matrix from a polynomial of order 3 and with a
matrix window size of 5 (1e nz and ng i1s 2) In order to smooth the image the
first coefficient 1s used, higher order coefficients are used to calculate derivatives
Here are the values for the first coefficients using a 5 x 5 windowing and orders

of 3 and 4 respectfully

—00742 001142
001142 009714
Cr=z =1 003999 012571
001142 009714
-00742 001142

004163 —00808
—00808 —00196
Cr=s = | 007836 020082
-00808 -00196
004163 —00808

007836
020082
044163
0 20082
007836

004001 001142
012571 009714
015428 012571
012571 009714
004001 001142

—0 0808

—0 0742
001142
003999
001142
—-00742

004163

—00196 —0 0808

0 20082

007836

—00196 —00808

—0 0808

004163

(39)

(3 10)
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The advantage Savitzky-Golay filters have over moving average and other
FIR filters 15 1ts ability to preserve higher moments n the data and thus reduce
smoothing on peak heights It can be seen 1 Equations 3 9 and 3 10 that the
higher the order of the polynomial the lugher moments are preserved, this leads
to less smoothing over data peaks and line widths In more homogeneous areas

the smoothing approaches an average filter over the smoothing kernel

3 2 Non-Linear Filters

Nonlinear filters, the most common being the median filter, modifies the value of
the pixel by some nonlinear function of the pixel value and 1ts spatial neighbours
Nonlnear filters aim to maintain the edges but the filtering may result in a loss
of resolution by suppressing fine details Three non-hnear filter are investigated
Firstly a non-hnear diffusion based filter based on gradient information, secondly
an adaptive filter which uses both gradient and variance within a neighbourhood
as a measure of inhomogeneity and finally an anisotropic filter which changes
the shape and strength of the smoothing kernel based on gradient strength and

orientation

A more useful way to think of smoothing 1s as a type of diffusion of intensities
within an 1mage, first expressed by Koenderink {73] Diffusion occurs according
to Fick’s Law, given n equation 3 11[115], where AI 1s the Laplacian of the 1n-
tensity value, ¢(z,y,t) = constant represents the conductance coefficient and I

15 the recovered value at 1teration ¢

When this equation 1s implemented 1t acts as a linear filter, similar to a Gaus-
s1an, but 1t becomes more effective when the non-linear terms are introduced into

the diffusion equation A review of nonlinear diffuston 1s compiled n {171}

321 Nonhnear Diffusion Filtering

To alleviate the problems associated with the standard Gaussian smoothing tech-
nique, Perona and Malik [115] proposed an elegant smoothing scheme based on



32 NON-LINEAR FILTERS 33

non-linear diffusion* In their formulation the blurring would be performed within
homogeneous 1mage regions with no nteraction between adjacent or neighbour-
ing regions that share a common border The non-linear diffusion procedure can

be written in terms of the derivative of the flux function

¢(VI)=VI D(|VI]) (312)

where ¢ 1s the flux function, 7 1s the image and D 1s the diffusion function Equa-
tion 3 12 can be implemented 1n an iterative manner and the expression required

to implement the non-linear diffusion 1s 1illustrated in Equation 3 13

4
I =Ly + A ) [D(VR)VaI] (313)
R=1
where I* represents the image at iteration ¢, R defines the 4-connected neigh-
bourhood, D 1s the diffusion function, V 1s the gradient operator that has been
implemented as the 4 connected nearest-neighbour differences and A 1s a param-

eter that takes a values in the range 0 < A <025

lex,y =1 v -[z,y

Valpy = Iop1y — Ioy (3 14)
VBIz,y =dzy-1— Ix,y

Valoy = Ipys1 — Iny

The diffusion function D(z) should be bounded between 0 and 1 and should
have the peak value when the mnput z 1s set to zero This would translate with
no smoothing around the region boundary where the gradient has high values In
practice, a large number of functions can be implemented to satisfy this require-
ment and 1in the implementation detailed 1in this thesis the exponential function

proposed by Perona and Malik [115] 1s used

D(|vI|)) = e~ &’ (3 15)

*Perona and Mahk discuss 1n their paper the topic of scale-space This has not been nves-
tigated as 1t 1s beyond the scope of this thesis and a single scale space proved to be sufficient
for the apphcations detailed m this document
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where k 1s the diffusion parameter The parameter k selects the smoothness

level and the smoothing effect 1s more noticeable for high values of &k

322 Adaptive Smaothing

The algorithm for adaptive smoothing implemented 1n this evaluation 1s adapted
from Chen [28] The technique measures two types of discontinuities in the image,
local and spatial Local variable discontinuities can detect local intensity changes
but 15 susceptible to errors where there 1s a lot of noise, so 1n addition to the lo-
cal discontinuities the contextual information 1s also utihised given the attributes
of neighboring pixels From both these measures a less ambiguous smoothing
solution 1s found In short, the local discontinuities indicate the detailed local

structures while the contextual discontinuities show the important features

Local Vanable Discontinuties

In order to measure the local discontinuities, four detectors are set up as shown

B, = lsr1y — Io-14]s (3 16)
By, = Iey+1 — Iz y-1l, (317)
Ep,, = lpp1y+1 — Lzc1y-1; (318)
Ec,, = Hes1y-1 — Lo 1441, (319)

I, 1s the mtensity of the pixel at the position (x,y) We can then define a

local discontinuity measure E;, as

_ Bn,, + Ev,, + Ep,, + Ec,,

y (3 20)

Egy

These pixel positions are 1llustrated below 1n Figure 3 1

Contextual Discontinuities

In order to measure the contextual discontinities, a spatial variance 1s employed

Firstly, a square kernel 1s set up around the pixel of interest, Ny,(R) The mean
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Figure 31 The four local discontinmty detectors

intensity value of all the members of this kernel 1s calculated for each pixel as

follows I
z(m)eNmy(R) hJ
R) = 321

From the mean the spatial variance 1s then calculated to be

Z(%J)ENI;,(R) (Iw - ﬂzy(R))z
|Nay (R)]

o2 (R) = (322)

Ty

Thus value of sigma 1s then normahsed to &gy between the mmimum and max-
imum variance in the entire image A transformation 1s then added into cﬁy to
alleviate the influence of noise and trivial features It is given a threshold value
of 8, = (0 < 6, < 1} to it the degree of contextual discontinuities

Overall Adaptive Algonthm

Finally, the actual smoothing algorithm runs through the entire 1mage updating

each pixels intensity value I? , where ¢ 1s the iteration value

2y7
p3R e, (I, — I
1’;—51 — Iiy +77.'J:y ()J)Egﬂiy(l)/{( :y)}nJ’yJ( Jt .‘y) (3 23)
(1.2)ENay (1) {(=)} T Ty
where,
ny = exp(—a®(35,(R),05)), (324)
'7:] = exp(—Ef]/S) (3 25)

The vaniables S and « determine to what extent the local and contextual
discontinuities should be preserved during smoothing If there are many contex-
tual discontinuities 1n the image then the value of 7,, will have a large influence
on the updated intensity value On the other hand, if there are a lot of local
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discontinuities then both v;; and 7,; will have the overriding effect, as 7,5 1s used

for gain control of the adaption

323 Anisotropic Gaussian Smoothing

An anisotropic filter based on the familiar Gaussian model 1s 1mplemented 1n
order to provide edge enhancing, directional smoothing The goal 1s to develop a
versatile smoothing filter based on a straightforward and highly adaptable form
The approach reduces to a convolution with a scaled and shaped Gaussian mask,
where the determination of the mask weights becomes the key step governing
the performance of the filter By calculating the local grayscale gradient vector
and favouring smoothing along the edge over smoothing across 1t can achieve an
effective boundary preserving filtering approach, where regions are homogemsed

while edges are retained

The weight wt(pg, Vu) at each location 1n the mask 1s a function of the local
gradient vector at the centre of the mask and the distance of the current neighbour
from that centre There are a large number of possibihities for the formulation
of the mask weight calculation, based on the desired form for the non-linear and
anisotropic components of the filter The weight for some neighbour ¢ 1s calcu-
lated as a function of the gradient of point p, at the mask origin, and the distance
from the ongin to the neighbour ¢ The relationship used 1n our approach 1s given
i Equation 3 26, where pg 1s the vector from the mask centre pomnt p to some
neighbour g, Vu 1s the gradient vector at p, A 1s the scale parameter, controlling
smoothing strength, and y 1s the shape parameter, controlling anisotropy When
4 equals zero the anisotropic term (@)2(211 + 12?) has a negligible effect and
the filter reduces to the non-hnear, 1sotropic form, where smoothing decreases
close to strong edges but 1s appled equally 1n all directions, at any given location

1n the 1mage

wi(p, Vu) = e~ (R ) @) (3 26)

The images 1n Figures 3 2 and 3 3 1llustrate the operation of the anisotropic
filter As the smoothing strength and the number of iterations 1s increased more
noise and small features are eliminated, but even n extreme cases the most 1m-

portant edges 1n the 1mage are well preserved 1n both location and strength
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33 Experiments and Results

The aim of each filter evaluated 1n the first study 1s to measure the linear and
non-linear filters ability to smooth areas of homogeneity while preserving areas
of interest such as edges Smoothing of homogeneous areas 1s measured using the
standard deviation while the preservation of edges 1s measured using the strength
and spread of the edge in the filtered images To show the advantage of using
non-lmear filters, both the linear are tested on two 2D 1mages, see figures 3 2(a)
and 3 3(a) The first image of a laboratory having a high SNR (signal-noise-rat10)
and high CNR (contrast-to-noise-ratio) with a high density of edges The second
medical 1mage has a much lower SNR and CNR Parameters were chosen to give
the optimal results on visual inspection Visual results are presented 1 Figures
32and 33

To be statistically relevant [42] the standard deviation should be calculated
over a large region but on the other hand the results will be affected by small
non-uniformities such as intensity gradients or structural image variations [53]
This requirement 15 quite difficult to be accomplished 1f we want to develop an
automatic performance characterisation scheme where user intervention is not
required One solution has been advanced by Canny [20] when he decided to
select the threshold parameters for an edge detector based on analysis of the cu-
mulative histogram of the gradients However due to the nature of MR datasets
this criteria to 1dentafy the gradients generated by noise proved to be 1nefficient
Thus, 1n this implementation an alternative strategy based on observation has
been developed In this sense, we computed the standard deviation for all data
points 1n the original dataset 1n a 7 x 7 neighbourhood These values were sorted
with respect to their magmitude and from these values the 25% of the highest val-
ues were eliminated, as they are likely to belong to edges and 25% of the lowest
values are also eliminated as they are calculated from areas that have no signifi-
cant texture (such as 1mage regions defined by air) This strategy was appled to
select the seed points that belong to image regions defined by a low SNR Then,
the standard deviation for each of the filtered datasets 1s measured at the same
data point locations (also in a 7 x 7 neighbourhood) The results are presented in
Table 3 3

For the laboratory image, Adaptive smoothing gives the best results followed
by the two other non-linear filters Both linear Savitzky-Golay and Gaussian
filters have the highest deviation after smoothing In the medical 1mage there
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Figure 3 2 Smoothing results Original image (a) 1s shown after the applcation of
the Savitzky-Golay (b), Gaussian (c), Diffusion (d), Adaptive (e) and Anisotropic
(f) filters
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Figure 3 3 Smoothing results Orniginal image (a) 1s shown after the application of
the Savitzky-Golay (b), Gaussian (c), Diffusion (d), Adaptive (e) and Amsotropic
(f) filters

are more significant differences with the amsotropic and adaptive giving the best

results while the gaussian suffers in the low SNR 1mage

The strength, shift and spread of the edge 1s evaluated on each of the images
Histogram plots across two edges, see the white lines across edge features 1n fig-
ures 3 2 and 33 In Figure 3 4, the histogram plots show both the image pixels
and the gradient for the lab image and medical image For the lab image the
results are similar for all filters with more significant differences between filters in
the medical image Two measurements are taken from these histograms which 1n-
dicate edge strength and spread where edge spread 1s taken as the Full Width Half
Maxamum (FWHM) of the gradient plot These results are compiled in Table 3 2
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Laboratory Image MR Image
Orngmal 574 277 65
Savitzky-Golay 40 804 61 232
Gaussian 40 966 102 08
Diffusion 27 658 69 633
Adaptive 24 241 42 99
Anisotropic 31 905 3505

Table 31 The RMS of the standard deviation of the homogeneous areas for the
onginal and each filtered 1mage

Laboratory Image MR Image
Edge height Edge width | Edge height Edge width

Onginal 31 2 26 219 204
Savitzky-Golay 23 25 158 248
Gaussian 15 44 196 216
Drffusion 25 217 214 200
Adaptive 26 213 211 200
Anisotropic 30 217 219 199

Table 32 Shows the edge strength and edge spread on the gradient image after
each filtering While Savitzky-Golay and Gaussian filters spread the edge, the
other three maintain and even enhance the edge characteristics

From all the experiments detailed above, 1t 1s clear that the non-linear fil-
ters outperform the linear filters using the criteria specified at the beginning of
the test The next step 18 to perform a more rigorous characterisation of the
non-hnear filter described above 1n medical images The following experiments
have been performed 1n 3D using the extension of the 2D to 3D of the non-linear

algorithms described previously

331 Performance Charactenisation of Non-Linear Filters

The first set of experiments 1s conducted on a synthetic dataset that 1s defined
by a homogeneous cubic object with a known grayscale value surrounded by
background pixels To test smoothing algorithms on this artificial dataset 1s ad-
vantageous as the ground truth data 1s known and the smoothing results are easy
to evaluate The efficiency of the algorithms when the artificial dataset was cor-
rupted with various types of 3D 1mage noise 1s tested, including Gaussian, Poisson
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"

Figure 34 Pixel intensities and gradient intensities along white lines from im-
ages figure 3 2 and figure 33 (1) and (1n) show the pixel intensities and (u) and
(1v) show the gradient values from the lab image and the medical image respec-
tively (a) 1s the original 1mage, (b) image after Savitzty-Golay, (c) Gaussian, (d)
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Nowse | S Dev S Dev S Dev S Dev Graysale Graysale Graysale Graysale
Type | noise F1 F2 F3  Expected F1 F2 F3
G-15 | 1372 191 162 206 127 127 128 128
G-30 | 3193 764 303 557 127 128 129 133
P-15 | 1302 107 076 174 127 139 138 138
P-30 | 2697 96 7 62 369 127 141 141 142
W-15 | 463 15 021 069 127 126 127 127
W-30 | 856 171 06 114 127 125 126 127

Table 33 Performance characterisation results when the algorithms have been
applied to an artificially created dataset F1, F2, F3 denote the standard diffu-
sion, adaptive smoothing and amsotropic diffusion respectively

and additive umformly distributed white noise [42}] Similar to the previous ex-
periments, as quantitative values the local umformity sampled by the 7 x 7 x 7
standard deviation 1s evaluated at the location situated at the centre of the cube
and the alteration of the grayscale value at the same position when compared
with the expected known value Some experimental results are depicted in Table
33

In Table 3 3 the symbols G-15 and G-30 indicate that the synthetic dataset
has been corrupted with Gaussian noise (standard deviation 15 and 30 grayscale
values) Similarly P-15 and P-30 denote the fact that the test dataset has been
corrupted with Poisson noise (distribution 15 and 30 grayscale values) and W-15
and W-30 indicate that the dataset has been corrupted with umformly distributed
white noise (mean deviation 15 and 30 grayscale values) In order to evaluate
globally the noise removal efficiency on real datasets we need to define quantita-
tive measures that indicate the overall performance of the smoothing algorithms
that are evaluated In this regard, we propose to evaluate jontly two quantitative
measurements the smoothness factor that assesses the global umiformity and the
edge preservation factor that indicates to what extent the strong edge features
are retained and enhanced To this end, the standard deviation as a measure
to evaluate the image local homogeneity was employed As before, the standard
deviation 1s measured 1n a 7 x 7 x 7 window over the entire original image These
values were sorted with respect to their magmtude and 25% of the highest values
were eiminated as belonging to edges in the image and 25% of the lower values
as having no significant texture The standard deviation for each of the filtered
images 1s then taken at the same pixel locations To evaluate a quantitative esti-

mation we calculate the RMS value of the standard deviations from the original
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and smoothed datasets resulting after the application of the smoothing strategies
described in previous sections (for details refer to Table 3.3).

(@) (b)

Original
— 3D diffusion
3D adaptive
— 3D anisotropic

(©

Figure 3.5: (a) Slice of the heart MR dataset. Pixel (b) and (c) gradient inten-
sities are plotted for the highlighted edge illustrated in image (a).

The edge strength is evaluated by plotting the intensity and gradient data
at selected locations where edges are located, before and after the application
of the smoothing operations. Some graphical results are depicted in Figures 3.5
to 3.8. The experimental data illustrated in Figures 3.5 to 3.8 indicate that the
3D adaptive smoothing and 3D anisotropic smoothing algorithms perform bet-
ter than the standard diffusion. The 3D adaptive smoothing algorithm returned
better results than the 3D anisotropic when applied to heart, brain and whole

body datasets. The 3D anisotropic algorithm performed better when applied to
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(©

Figure 3.6: (a) Slice ofthe MRCP dataset. Pixel (b) and gradient intensities (c)
are plotted for the highlighted edge illustrated in image (a).

Magnetic Resonance Cholangiopancreatography (MRCP) dataset.

The graphs illustrated in Figures 3.5 and 3.8 demonstrate the edge enhance-
ment around image data defined by step-like edges. It can be noticed that the
edge localisation is significantly improved. The effect of edge strengthening is
even more pronounced for weaker edges in an MRI brain sequence (see Figure
3.7) or in image areas affected by a high level of noise, as is the case of the MRCP
dataset illustrated in Figure 3.6. The performance of the non-linear smoothing
algorithms described in this section is remarkable in discriminating a true edge
from image noise (see Figure 3.6c). Also notice the improved performance of

the adaptive 3D smoothing algorithm as compared with the performance of the
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Figure 3.7: (a) Slice of the brain MRI dataset. Pixel (b) and gradient intensities
(c) are plotted for the highlighted edge in image (a).

standard diffusion and the 3D anisotropic diffusion algorithms. In order to em-
phasise the effectiveness of the smoothing strategies described in this chapter the
segmentation resulting after the application of a 3D clustering algorithm [42] to
the original and smoothed data is presented. Samples ofthe segmentation results

are depicted in Figures 3.9 to 3.12.

3.4 Conclusions

In this chapter, the performance in smoothing for a number of linear and non-
linear filters was evaluated. In the first part, experiments were performed in
order to show the advantage of non-linear filters over linear filters. In the second

part, three diffusion-based smoothing schemes were implemented and their appli-
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(b)

—  Original
3D diffusion
3D adaptive
3D anisotropic

Figure 3.8: (a) Slice of the whole body MRI dataset. Pixel (b) and gradient
intensities (c) are plotted for the highlighted edge illustrated in image (a).

Heart
Original data 4.95
3D diffusion 1.88
3D adaptive 1.73

3D Anisotropic 2.08

Brain

9.21
6.28
6.16
6.48

Whole body MRCP

20.46 18.8
14.47 10.96
14.05 10.83

16 9.77

Table 3.4: The RMS ofthe standard deviations of the homogeneous areas for the
original and filtered MRI datasets used in our experiments.
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Figure 3 9 3D data clustering results - heart dataset (First row) Ornginal dataset
(shice 9), and corresponding 1mage resulted after clustering (Second row) 3D duf-
fusion smoothed data (slice 9) and corresponding 1mage resulted after clustering
(Third row)} 3D adaptive smoothed data (slice 9) and corresponding 1mage re-
sulted after clustering (Forth row) 3D anisotropic smoothed data (slice 9} and
corresponding 1mage resulting after clustering
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Figure 310 3D data clustering results - bramn dataset (First row) Orginal
dataset (shce 4), and corresponding image resulted after clustering (Second
row) 3D diffusion smoothed data (shce 4) and corresponding 1mage resulted after
clustering (Third row) 3D adaptive smoothed data (shice 4) and corresponding
image resulted after clustering (Forth row) 3D amisotropic smoothed data (slice
4) and corresponding 1mage resulted after clustering
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Figure 311 3D data clustering results - MRCP dataset (First row) Orngnal
dataset (shce 10), and corresponding 1mage resulted after clustering (Second
row) 3D diffusion smoothed data (slice 10) and corresponding image resulted after
clustering (Third row) 3D adaptive smoothed data (shee 10) and corresponding
image resulted after clustering (Forth row) 3D anisotropic smoothed data (shce
10) and corresponding 1mage resulted after clustering
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Figure 3 12 3D data clustering results whole body dataset (First row) Ornginal
dataset (slice 6), and corresponding 1mage resulted after clustering (Second
row) 3D diffusion smoothed data (slice 6) and corresponding 1mage resulted after
clustering (Third row) 3D adaptive smoothed data (slice 6) and corresponding
1mage resulted after clustering (Forth row) 3D anisotropic smoothed data (shce
6) and corresponding image resulted after clustering
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cation to medical 3D data was described The main interest was focused on MRI
acquisition modalities as MRI datasets are characteristically defined by a low
signal to nose ratio (SNR) Hence, the aim was to demonstrate that far superor
results are achieved if the MRI data 1s imtially filtered in order to reduce the
level of image noise and improve the SNR In this regard, a detailed performance
characterisation was performed for each smoothing operators evaluated on both
synthetic and real data (including heart, brain, whole body and MRCP 1mage
sequences) We conclude that 1n our experiments the non-linear diffusion-based
smoothmg techmque provided the most efficient approach to noise reduction, and
more 1mportantly this advantage 1s not achieved at the expense of feature preser-
vation in our experimentation Computational time was higher for the non-linear
iterative approaches, but as computational expense 1s not a limiting factor 1n
our application this parameter was not included in the charactenisation The
experimental data presented and discussed 1n this chapter highlights the abihity
of the diffusion-based smoothing schemes to distinguish the high gradient image

features from the MRI image acqusition noise

Publications associated with this chapter

Journal Publication

Owvidiu Ghita, Kevin Robinson, Michael Lynch and Paul F Whelan (2005), MRI
diffusion-based filtering A note on performance characterisation, Com-

puterized Medical Imaging and Graphics

Conference Publication

Michael Lynch, Kevin Robmson, Ovidiu Ghita and Paul F Whelan (2004),
A Performance Characterisation 1n Advanced Data Smoothing Tech-
niques, IMVIP 2004 Irish Machine Vision and Image Processing Conference,
September 2004, Trimty College, Dublin, Ireland



Chapter 4

Statistical Partitioning of Data
for LV Localisation and
Extraction

The advanced filtering techmques employed 1n the last chapter alleviates much
of the work needed 1n the classification process Preprocessing the data has re-
moved much of the inherent noise associated with MRI therefore the process of
segmenting the data into the relevant anatomcal features can be achieved using
data partitioning techmque To this end, 1t 1s the aim of this chapter to use
cluster analysis to successfully segment the left ventricle blood pool The left
ventricle blood pool can then be automatically located using shape characteris-
tics before a more heuristic method 1s employed to segment the outer boundary

of the left ventricle muscle

Data clustering remamns a very active topic m 1mage processing The appli-
cation of robust techniques for object 1dentification 1n 1mages are extensive, none
more so than 1n the rapidly advancing field of medical 1imaging [30, 117] Region-
based methods [117] are used to segment the image, this 1s generally achieved
without using a priort information The most basic form of region-based seg-
mentation 1s thresholding Thresholding techmques create a binary image of
pixels above and below a user defined threshold value Thresholding does not
take 1nto account the structure or connectivity of the points that it segments and
the threshold value 1s seldom automatically determined Segmentation results
can sometimes be filled with holes or ragged edges, which 1n a crude way can be

53
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eluminated with a combination of morphological operators [63, 141] In medical
imaging, thresholding 1s not widely used without some advanced preprocessing
steps due to 1ts sensitivity to noise More complex statistical methods, hike clus-
tering, join pixels of similar intensities to create a segmentation of structures in

the image

All statistical based classification methods [61, 40, 64, 42, 65, 114, 113] aim
to optimise the results based on an mitialisation This mitialisation 18 commonly
chosen randomly, and as a consequence results are not reproducible, do not take
advantage of inherent patterns in the data or may be imitialized on outlers
Methods for automatic imtialisation of clusters have been proposed in literature
{3,97,71] Al-Daoud and Roberts [3] proposed two methods, the first picks points
randomly 1n evenly spaced cells across the entire histogram of the data and re-
duces the number until the required seeds are found The second method tries to
optimze the sum of squares of the distances from the cluster centers Mitra et al
[97] describe a rough-set 1mtialisation provided by graph-search methods Khan
and Ahmad [71] assume a normal distribution over the data attributes and divide
the normal distribution curve 1nto equal percentile cells The seeds are chosen as
the midpoints of the interval of each of these partitions In Appendix A, a novel
method developed by the VSG for the imtialisation of cluster centers i1s given
where the cluster centers are automatically detected using histogram analysis

and applied to medical images

In order to extract clhinical measurements from the smoothed data, a novel
method 1s proposed whereby data 1s first clustered in order to segment highly
differentiated features, 1e the blood and myocardium A localisation of the left
ventricle 1s detalled Using this preliminary step, a new method for the extrac-
tion of the epi-cardlum boundary 1s developed which 1s based on a knowledge
driven search of gradient information Where appropriate gradient information
1s lacking prior knowledge 1s used to augment the segmentation solution

41 Data Clustering

Clustering 1s a well documented 1mage segmentation technique which classifies
pixels mnto groups or clusters using a distance criteria to join data values to each
cluster The most basic form of clustering 1s Hierarchical clustering, off which

there are two types — agglomerative and divisive Agglomerative clustering in-
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volves creating n clusters from the data X, = {z;,z2,23 z,} where n 1s the
amount of elements and X € R™ The process then iteratively combines this
clusters m a branching formation until there 1s just one cluster containing all n
elements The clusters are joined using a distance criteria, which can be measured
in different ways, single-hnking, complete linking, unweighted average pair and
weighted average pair Divisive clustering works 1n the opposite way by creating
one cluster with n elements and then dividing the clusters until n clusters remain
Successful analysis of both these joining methods comes from knowing at which
iteration 1n the process will return the optimal amount of clusters to create a

meaningful segmentation

The k-means, or c-means, clustering method 1s a well established as a parti-
tioning method [61, 136] Dehbasis et al [38] proved how the k-means algorithm
performed more robustly 1n a comparative study with an adaptive region growing,
fuzzy C-means clustering and Kohonen self-organising maps for the segmentation
of the left ventricle blood pool from cardiac MRI images This comparison was
performed on both normal and abnormal cases and results were evaluated against

a manual delineation of the left ventricle cavity

Unlike the Hierarchical methods, the k-means algornithm requires a user de-
fined set of clusters The process then exchanges the elements between clusters
with two aims, to mimimise the vanation within each cluster and to maximise
the variation between clusters The algonthm has four main steps to find the
image clusters, this 1s also 1llustrated in figure 4 1 The process terminates when
no more elements are exchanged between clusters and 1t can be shown that the

method 1s always convergent The process is the mimmization of the following
!

E =mm Z(xJ — mc(xj))"’ (41)
2

equation

where 7 1s the number of data points index and m, ) 1s the class centrod
closest to the data powmnt

In this thests, the smoothed MRI images are then clustered using an im-
proved version of the k-means algorithm proposed by Duda and Hart [42, 61]
An adaptive form of clustering 1s developed whereby the mitial user defined num-
ber of clusters 1s 1teratively reduced until a more appropriate number of clusters
1s achieved This 1s based on thresholding the inter and intra cluster vanability
Firstly, the image 1s clustered using an initial guess of 15-20 independent cluster
centres which 1s sufficient to capture all the relevant features The pixels are
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Figure 4 1 Two iterations in the k-means clustering technique on 2D data The
objects change with each 1teration to join the cluster whose centre 1s closest

clustered together using the following strategy Tlus algorithm has four steps to

find the 1mage clusters

(1) Intiahse the position of the means my — my
(1) Assign each of the k-items to the cluster whose mean 1s nearest

(12) Recalculate the mean for the cluster gaming the new item and the mean
for the cluster loosing the same item  Recalculation 1s made using the intra

cluster variance
() Loop through steps (1) and (12:) until there are no movements of 1tems

Imitiahsation of cluster centres can have a sigmificant effect on the results of
the classifier, therefore random 1mtialisation 1s avoided Alternatively, seeds may
be placed at specific reglons or equidistantly in the 1mage space or n grayscale
space A better solution to maximise the use of input data in imtiahsing the
cluster centres 1s choosing them based on histogram analysis of the data This

approach 1s detailed in Appendix A

In the second phase of the algorithm, each of the k clusters are sorted and
compared The number of clusters 1s then optimised by merging clusters with
simular attributes This 1s repeated until there are no more clusters to be merged
The stopping criterion for this joining process 1s defined using a threshold on the
intra cluster variability and 1s chosen experimentally Given the high differentia-

tion 1n intensity signal between the blood pool and the myocardium, experimental
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results display robust separation of the blood pool from the myocardium As can
be seen in Figure 4 2 the generality of the method as 1t 1s applied to two separate
protocols, spin-echo and gradient echo with satisfactory results

(c) (d)

Figure 4 2 Shows four 1mages, a gradient-echo images before (a) and after clus-
tering (b), and a spin-echo 1mage before (c) and after clustering (d)

411 Automatic Detection of Iv cavity

The 1mmage has now been segmented 1nto separate clustered regions The next
step 1s to automatically detect which of these clusters represents the lv cavity
on the first shce The lv cavity 1s located using shape descriptors only and not
using the gray scale values which allows for apphication of this method 1n various
MRI imaging protocols The 1mages are short axis, therefore we assume that
the lv cavity approximates a circular shape and that the lv feature 1s present

1n successive slices Approximation to a circle 1s calculated as the error of the
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fitted areas of a least squares approximation to a circle The approximation 1s
obtained my mimmusing the error of the areas of the fitted circle and the areas of
the associated circles at each data pomnt (see mathematical background Appendix
C1) It 1s also assumed that the lv 1s not located on the periphery of the image

The volume of the left ventricle i1s then extracted using two critena
(1) Overlapping area of the regions contained 1n successive shces
(1) Gray scale value of the regions under 1nvestigation

The regions cannot be connected using just gray scale values alone due to the
variation 1n the intensity values through the volume caused, to some extent, by
coil intensity falloff The lv regions are then connected 1n 3D and the volumes axe
then rendered for visuahsation purposes {see Figure 4 8) The ejection fraction
1s calculated using the systolic and diastolic volumes The ejection fraction 1s
defined as “the proportion, or fraction, of blood pumped out of your heart with
each beat” [104] and can be calculated using the equation

Vendo(tD) — Vendo(tS)
1/endo(tD) (4 2)

where V,,,4, 15 the volume of the inner walls of the heart, Venao(tp) = maz:[Vendo(t)]

1s the end-diastolic volume and Veng,(ts) = mang|Vendo(t)] 1s the end-systolic vol-

EF =

ume

The corresponding region 1s found by maximising the result of a cost func-
tion where the overlapping and the mean gray-scale value of the areas under
mvestigation are used as parameters

This works well on basal and mid-cavity slices, the blood pool is large and
relatively homogeneous The apical region 1s more challenging due to the increase
n trabeculoe carne and papillary muscles, the low volumes of blood present,
partial voluming along the z axis and blurring due to movement of the diaphragm
The extension of this segmentation algonthm to 3D 1s appropriate as the higher
level of knowledge leads to 1mproved segmentation resuits plus 1t eliminates the
need to match relevant clusters through the volume using overlapping criterion

4 2 Extension to 3D

In order to improve the robustness of the segmentation technique 1t 1s favorable
to extend the clustering to the third dimension The extension means that the

blood pool 1s clustered as a whole and therefore 1t 1s more robust 1n areas where
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Figure 4 3 The top three 1mages from left to right show the original short axis
image, after smoothing and after clustering The graph plots the intensity values
for the white line running through the original image

artifacts such as the papillary muscles are present This is particularly the case

around the apical regions of the left ventricle cavity

The end-systole and end-diastole volumes are smoothed n 3D, as in the pre-
vious chapter Once smoothed they are then clustered using the 3D k-means
technique using the volume data The left-ventricle can be manually picked or
automatically using the volumetric shape properties of the cavity, as developed

m the following section

421 Automatic Detection of lv cawity using 3D information

In order to locate the left-ventricle in the image a number of shape descriptors
were used The 1mages are short axis so therefore we use the anatomical knowl-
edge that the lv cavity approximates a circular shape and that the v feature 1s
continuous 1n successtve slices In the 2D scenario, approximation to a circle 1s
calculated as the error between the shape and the least squares approximation to

it’s aircle  Also, a smooth interpolation of the curves 1s achieved using a spline
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fitting

In the 3D case, the left ventricle cavity 1s located using its shape description
In this case 1t 18 known that on the short axis the left ventricle approximates an
ellipsoid 1n shape, although 1t 1s flat at one end, perpendicular to 1ts major axis
The approximation to an ellipsoid parameters (radu and centres) 1s calculated
using the first three principal axes of the PCA of the boundary data pomnts
The error 15 then calculated between the shape and the fitted ellipsoid using
the summation of the normalised point deviations with respect to the calculated

ellipsoid radn (see mathematical background in Appendix C 2)

4 3 Segmentation of epi-cardum border

Once the left ventricle blood pool has been successfully segmented, the outside of
the myocardium or epi-cardium boundary presents a more challenging problem
Parts of the outer wall of the left ventricle displays low gradient information and
low differentiation between neighbouring tissues, as in Figure 4 4

Figure 44 Tllustrating the low grayscale differentiation between the outer wall
of the myocardium and other organs in the body, before (top row) and after
(bottom row) data partitioning

This 1s especially true 1n areas close to the lungs and hiver Therefore clus-
tering techniques are not applicable because the differentiation between tissues

1s so low and edge detection will only have limuted success when used without
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supervision or a more involved approach Noble et al [107] attempt to change
the coordinate system to polar coordinates followed by a constrained snake seg-
mentation to capture the epi-cardium boundary In order to address these 1ssues,
a novel heuristic approach 1s developed which uses all the available information
m a supervised way and where information does not exist or 1s not found, the
segmentation 1s augmented using prior information of the epi-cardium boundary

shape

Calculation of the wall-thickness and wall-thickenming 1s dependent on the ac-
curate segmentation of the epi-cardium boundary The main problem associated
with the segmentation 1s the low contrast-to-signal ratio along the epi-cardial
boundary 1n particular on the inferior and inferolateral side where the muscle
becomes idistinguishable from the lung To this end two novel approaches are
explained and have been evaluated, both a robust approximation for the epi-
cardium thickness to determine strong features of the epi-cardium present in the
immage Where strong information 1s lacking, the algorithms aim to approximate
the epi-cardium boundary using in the first case an arc, centered at the center of
gravity of the blood pool and connecting two known segrments of the epi-cardium
boundary In the second approach, where no information 1s present, the algorithm
uses 1nformation obtained from a probabilistic model consisting of manually seg-

mented 1mages to complete the epi-cardium boundary

431 First Approach Robust-Arc epi-cardium segmentation

The robust arc approximation technique works on the 2D shice taken from the
previously segmented blood pool volume Firstly the centre of gravity of the left
ventricle blood pool 1s located The least squares approximation for the radius
of the endo-cardium border 1s calculated on each slice The original image 1s
re-clustered again around a smaller region of interest with a smaller predefined
number of clusters 1n order to find the right ventricle blood pool The right ven-
tricle blood pool 1s found to be the largest cluster close to the left ventricle cavity
with similar intensity attributes to the left ventricle blood pool The interven-
tricular septum between the two ventricles 1s measured and this measurement

gives an approximate thickness for the myocardium around the left ventricle

A Canny edge-detection [20] 1s performed on the onginal image shce A 1D
radial search 1s carried out from the centre of gravity on the gradient 1mage and
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Figure 45 From left to nght Onginal unseen 1mage, calculated edges, robust
segments of epi-cardium and the complete segmentation using arcs to complete
the epi-cardial boundary

image edge ponts are connected together into edge segments using an Euchdean
distance criteria Spurious segments are eliminated by length, orientation away
from the endo-cardium border and using the approximation for the myocardium

from the septum

In between these segments are parts of the epi-cardium border that do not
have any gradient Therefore there 1s no other information in the 1mage to help
find the correct path between these segments In this case the end points of the
robust segments are joined with an arc, pivoted around the center of gravity of

the endo-cardium Results can be seen 1n figure 4 5

The procedure for segmenting the epi-cardium can be followed 1n the diagram
illustrated in Figure 4 6, Stage II The position of the lv cavity is already known
i each shce as explained n the previous section In order to determine the epi-
cardium border a region of interest 1s defined around the lv cavity Two copies of
this region of interest are taken The first image Imagel 1s used to find a value
for the approximate radius of the myocardium and the second 1mage Image2 1s
used to find real borders around the myocardium The two are combined to find

the true value of the epi-cardium around the [v

I'magel 1s again clustered using a predefined low number of clusters around
the region of interest A low number of clusters 1s chosen because of the scarcity of
important features around the {v cavity Anatomically, the closest blood pocket
to the lv cavity 1s the right ventricle cavity, 1t 1s also assumed that the thickness
of the myocardium will not change drastically over the entire circumference The
thickness of the wall, or septum, between the two blood pockets can give a reli-

able estimate for the thickness of the rest of the myocardium
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Figure 4 6 A schematic representation of the two phases involved in the segmen-
tation of the endo- and ep1- cardium border Stage I shows the preprocessing and
segmentation processes, the automatic detection of the lv cavity and the connec-
tion of the cavity through the volume Stage II shows the method for segmenting
the epi-cardium border 1n each 1mage
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Image?2 1s zoomed using an area averaging technique around the area of inter-
est The image 1s then segmented using a thresholded edge-based algorithm {20]
The zooming operation 1s applied to increase the edge separation The largest
connected segments within certain bounds of the estimated thickness found from
Imagel are taken as potential border segments There 1s an angular restraint
placed on the transition of these segments around the epi-cardium to eliminate

stepping into the endo-cardium border or stepping out to other organs

A closed natural cubic spline is fitted around the points on the epi-cardium
[144, 12], for the formulation see section C3 The spline 1s used to close the
epi-cardium contour by connecting all the points on the curve in a smooth way
Splines are piece-wise polynomials with the pieces smoothly joined together The
jomming points of the polynomal pieces are called control points which do not have
to be evenly spaced Each segment of a spline 1s a polynomial of degree n, for
this implementation n was chosen to be n =3 More details on the mathematical

formulation of the natural cubic spline can be found in Appendix C 3

432 Second Approach Model assisted Epi-cardium segmentation

In order to incorporate more realistic approximations for missing data, a new
method 1s developed which uses a probabilistic model of previously segmented
heart images Once each slice 1s taken from the volume the centre of gravity
of the left ventricle blood pool 1s located The least squares approximation for
the radius of the endo-cardium border 1s calculated By re-clustering the orig-
mnal 1mage again around a smaller region of interest with a predefined number
of clusters in order to find the right ventricle blood pool The right ventricle
blood pool 1s found to be the largest cluster close to the left ventricle cavity with
similar intensity attributes to the left ventricle blood pool The myocardium wall
(septum) between the two ventricles 1s measured and this measurement gives an

approximate thickness for the myocardium around the left ventricle

An edge-detection 1s performed on the original image slice A 1D radial search
15 carried out from the centre of gravity on the gradient 1mage and image edge
points are connected together into edge segments using a Euchdean distance cri-
terion Spurious segments are eliminated by length, by orientation away from the
endo-cardium border and using the approximation for the myocardium from the

septum
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A database of contour points 1s created based on manual segmentations of the
endo and ep1 cardium boundaries This database contained 180 2D contours with
the associated radu calculated using the least squares approximation based on
muinumsing the error of the areas (detailed in AppendixC 1) Where epi-carcal
boundary 1s not defined by the edge information, the boundary 1s then completed
from a generic database of hand-segmented shapes The database 1s searched us-
ing the ratio of epi-cardium and endo-cardium radn The searching uses the two
end-points of the robustly located segment from the gradient image Prior to
searching, each contour 1s scaled with respect to radn parameters extracted from
the model FEach scaled contour in the database 1s searched to minimise the Eu-
clidean distance from these endpoints to their nearest corresponding points on
the contour The contour that mimmises this error 1s chosen The appropriate
section 1s extracted from the contour and joined to the edge defined boundary

using a natural closed spline (see figure 4 7)

Figure 4 7 From left to night Ongnal unseen 1mage, calculated edges, robust
segments of epi-cardium and the complete segmentation using an e preor: knowl-
edge database

In figure 4 7(b) the segment points obtained from gradient image figure 4 7(a)
are 1llustrated In between these segments are parts of the epi-cardium border
that do not have any gradient Therefore there 1s no other information in the
image to help find the correct path between these segments In this case o preor:
knowledge about the shape of the epi-cardium border, obtained from previously
hand-segmented can be used to join the segments In this way we introduce a
form of supervision, and by inferring previously drawn contours we hope to main-
tamn continuity of the shape Because the contours contain the origmnal segments
while the manually drawn contours are only inferred where there 1s no informa-
tion to be rendered from the image, 1t 1s beheved that this approach generates
more app;‘oprlate results than the previous technique, when the model provides a
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good approximation to the object being segmented When complete models are

inferred onto the image there 1s a danger that details may be lost

4 4 Results

In order to assess the performance of the automatic segmentation, results were
compared against those obtained by manually segmenting volume 1mage sequences
for the endo- and epi-cardium borders The manual segmentation was assisted by
an experienced cardiologist* Each volume includes 5-12 images contaiming the
Iv, transversing the lenght of the cavity and includes the papillary muscles The
automatic segmentation results can be seen 1n figure 4 12 The method shows
good visual results for bright blood images 4 12(a)-(f) and dark blood images
4 12(g)-(1) The errors are calculated on volumes, endo and ep: contours areas,
myocardium thickness and finally point correspondence

Table 4 1 shows the signed average and root mean square error of the ejec-
tion fraction from eight volumes from the sequence The ejection fractions were
worked out using pairs of volumes, not necessarily the end-systole and end-
diastole and compared with the ejection fraction calculated from the manually
segmented volumes We can see 1n Table 4 1 low errors between the manual and
automatic results

The errors for the manually segmented endo-cardium area and the automat-
ically traced area are given in Table 41 The signed average and root mean
square errors are shown Errors around the apex have a significant effect because
the errors are described in proportion to the overall area calculated from the
manual segmentation Linear regression analysis was also performed mn Figure
4 9(a) and high correlation value of » = 0 98 1s obtained Reproducibility is as-
sessed using the Bland-Altman plot, Figure 4 9(b) [15] From the Bland-Altman
plot we can see that there 1s a tendency to underestimate the areas of the endo-
cardium boundary, this 1s due to the inclusion of some endo-endocardium fat in
the manual segmentation and perhaps due shghtly to partial voluming effects
Also evident from the graphs 1s the accurate performance of this procedure in
both systolic and diastolic phases, represented by the lack of skew in the plots
as the areas increase Note that the graphs are relatively zoomed to show the

detailed distribution and the plots are graphed in units of mm?

*The validation was performed by Dr John Murray, Cardiologist, Mater Misericordiae
Hospital, Dubln, Ireland
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The epi-cardium area was assessed using the hnear regression and Bland-
Altman plots It shows a shightly lower percentage error for both the average
signed and the rms errors This can be attributed to the increased overall area
of the manually traced contours Linear analysis, Figure 4 10(a), gives a value of
7 = 0 94 while Figure 4 10(b) gives a similar regression value of r = 0 95 which 1s
shightly lower than that produced for the endo-cardium This lower correlation is
a result of low contrast on the lateral side of the heart making the segmentation
of the epi-cardium border difficult In this case our algorithm connects two end-
points of robust segments, how these segments are connected can incorporate a
priort information [83] Manual segmentation 1s also problematic 1n areas of low
gradient and 1s dependent on the users own interpretation of ‘what looks appro-
priate’ Reproducibility was again assessed with the Bland-Altman plot, figure
4 10(b) Agamn, both methods produced sumilar results, both bands of two times
the standard deviation are similar and not as tight as thase achieved mn the blood
pool segmentation There 1s not a significant difference between both methods as
robust gradient information is used when available and both approaches are only
apphied 1n areas that are lacking gradient information Both plots show no bias
from the zero error or skew 1n the data Although, the second approach which
uses a prior database of contours does produce a larger number of outhers for the
smaller apical regions where the outer wall may be undefined and approximation
1s difficult Using this approach, more appropriate segmentations are achieved
when compared to full manual segmentations However, these methods still have
the limitation that they are only working on shce data and not incorporating

volume or temporal mnformation

Table 41 Mean Percentage Errors + 1SD for manual versus automatic

Average Signed Error RMS Error
Ejection Fraction 1593 + 082 3176
Endocardium Areas 3623 £514 4 765
Epicardium Areas -0 556 + 4 29 375

Table 4 2 gives the Euclidean point to curve error in mm’s for all images
through a heart sequence It gives the mimmum and maximum distance between
the manual and automatic segmentation contours The average distance, stan-
dard deviation (SD) and root-mean-square (RMS) are also given The results
for the epi-cardium boundary point to curve errors are shown in Table 4 3 and

llustrated 1n figure 4 11
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Figure 4 8 The rendered images of (a) the end-diastole lv cavity, (b) the end-
systole lv cawity, (c) and (d) the diastohic myocardium These volumes are con-

structed from the true segmentation of the images excluding fat and papillary
muscles
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Figure 4 10 (a) illustrates the results using the Robust arc techmque and (b)
shows the results using the Prior model technique
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Table 42 Point to curve Errors between manual and computer segmentation for
clustering technique for the endo-cardium boundary segmentation(mm)

Endo-cardium

Method | Average (mm) Std Dev (mm) RMS (mm)

3D k-means Clustering

069 0 88 112

Table 43 Poimnt to curve Errors between manual and automatic segmentation
for the epi-cardium boundary(mm) segmentation

Figure 4 11

Epi-cardium
Method | Average (mm)} SD (mm) RMS (mm
g
Robust Arc 131 186 214
Prior Model 126 127 194
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Plot shows the error frequency using a pomnt to curve error metnc
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45 Conclusion

A fully automatic detection and segmentation of the left ventricle myocardium
has been detailed 1n this chapter Edge preserving data filtering 1s performed and
followed by an unsupervised clustering to successfully segment the left ventricle
cavity from short axis MR images of the heart Once the cavity volume 1s ex-

tracted the ejection fraction can be calculated

In the second part of the chapter the epi-cardium border 1s successfuily seg-
mented using an edge-based techmque The thickness of the wall 1s approximated
by measuring the thickness of the interventricular septum The interventricular
septum 1s an anatomically sound feature of the heart and because 1t 1s surrounded
by blood on both sides it can be robustly segmented This measurement 1s then
used as an itial estimate for the thickness of the complete wall A gradient
image of the area around the v 1s computed and the use of the approximate wall
thickness, gradient points potentially belonging to the epi-cardium border are se-
lected If there are no viable gradients found on the epi-cardium border then the
outer wall 1s estimated using the approximation found using the mterventricular

septum

Statistical partitioning of the 1mages allows the extraction of the lv blood
pool without the use of prior constraints on shape Abnormahties in the image
data can indicate disease Model based approaches approximate to the closest
plausible instance shape from the training set Point Distribution Model (PDM),
but this may not be sufficiently accurate Also model based approaches that in-
corporate texture are himited 1n their use when the texture in the object images
varies significantly from those contained in the model tramning set The method
proposed 1n this chapter presents a robust, fully automated method to identify
the endo-cardium and epi-cardium borders that does not rely on a prior: knowl-
edge nor does 1t use shape constraints to find the left ventricle cavity

Left ventricle segmentation 1s primarily motivated by the need to chinically
diagnose a feature of the heart with potential problems Models that approximate
left ventricular boundaries try to fit variations of boundaries that have already
been segmented The left ventricle 1s anatomically variant, the scanners are 1n-
consistent and the variations of pathologies found 1n patients 1s vast To build a
model to accommodate such diversity would be an immense task Our algorithm

makes no approximations based on observed data but instead produces a true
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evaluation of the heart structure by segmenting the true borders 1 the image
It should be remembered that the aim 1s not to segment hearts that are part of
a model but to assist the cardiologist 1n the prognosis by delineating the true
anatomical features present in the image Therefore, 1t 15 the aim of this thesis
to approach the problem from a bottom-up strategy n as far as possible Image
segmentation can be augmented using prior information in the case where no
1mage nformation 1s present and also to supervise the segmentation from spilling

nto other anatomical structures

Evaluating the endo-cardium and epi-cardium borders usmg this approach
could provide a more appropriate technique for flagging problems like wall thin-

ning and low ejection fraction

However, while this method provides good results 1n well imaged data and has
been successful 1n segmenting the left ventricle blood pool 1n 2D and 3D data and,
1t 18 the aim of this thesis to increase the robustness of the segmentation approach
by mcorporating the entire data presented from the patient scan and remove the
heunistic approach by creating a well defined mathematical framework The aim
of this approach 1s to create a more involved technique which segments both
myocardium boundaries as opposed to two separate steps and also facilitate the
mncorporation of temporal information The investigation of evolving surfaces,
their parameterisation, termination and incorporating advanced information 1s

performed 1n the next chapter

Publications associated with this chapter

Journal Publication

Michael Lynch, Ovidiu Ghita and Paul F Whelan (2005), Automatic Seg-
mentation of the Left Ventricle Cavity and Myocardium in MRI Data,
Computers 1n Biology and Medicine 36(4) pp389-407

Conference Pubhcations

Michael Lynch, Ovidiu Ghita and Paul F Whelan (2004), Extraction of Epi-
Cardial Contours from Unseen Images Using a Shape Database, IEEE
NSS-MIC 2004 Medical Imaging Conference, October 16-22, 2004, Rome, Italy
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(e) (h) (1)

Figure 412 The left ventricle contours obtained using our automatic segmen-
tation method 1n short axis cardiac MR, images Figures (a)-(f) show images
taken at both the end-diastolic phase and end-systolic phase of a gradient-echo
sequence Figures (g)-(1) show images from a spin-echo study

Michael Lynch, Ovidiu Ghita and Paul F Whelan (2004), Comparison of 2D
and 3D clustering on Short Axis Magnetic Resonance Images of the left
ventricle, CARS 2004 Computer Assisted Radiology and Surgery, June 23 - 26,
2004 Chicago, USA
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Michael Lynch, Ovidiu Ghita and Paul F Whelan Calculation of Ejection
Fraction (EF) from MR Cardio-Images Paper in the Insh Machine Vision
and Image Processing Conference 2003, Coleraine, Northern Ireland



Chapter 5

Boundary-Based and Model
Driven Segmentation in
Multidimensional Data

In this chapter, a review of current boundary based and model based segmenta-
tion schemes 1s detailed and their application to medical image analysis Partic-
ular emphasis 1s placed on cardiac left ventricle segmentation in MRI (156, 117,
30, 48] In Section 5 6 the level set framework 1s described and novel approaches
to segmentation with level sets 1s introduced, in particular the extension to 4D

data analysis

Many boundary based segmentation (also called Active Contours) methods
for object segmentation have been developed for use in medical image object
extraction Generally, the aim of boundary based segmentation methods 1s to
deform a closed curve using both intrinsic properties of the curve and image
based 1information to capture the target object [158] This form of segmentation
has many advantages over statistical intensity based partitioning algorithms as
boundary shape 1s one of the key factors in the evolution of the contours One of
the most popular forms of boundary based segmentations are snakes, which were
first mtroduced by Kass et al [68] From their introduction snakes have recerved
a large amount of interest from the research community and much work has been
done on derivations of the original snake Further work 1n controlling the snakes
propagation was achieved using parametrically deformable models and also by the
introduction of a prior: model driven segmentation with Active Shape and Active

75
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Appearance Models A Eulenan formulation of the active contour 1s mtroduced
by means of a level set algorithm The advantages of this formulation include
a more robust mathematical theory, capability to follow topological changes in
shape, and other computational advantages like curvature measurement Work
on the level set formulation for segmentation will constitute the mam part of
this chapter A number of key issues in the level set are then addressed which
include the chotce of stopping term, the introduction of a prior: information, the
couphng of two level sets for the extraction of both the epi- and endo-cardium
boundary and finally the introduction of an Expectation-Maximisation extension
of the level-set framework to fully segment data in 4D (3D + t)

51 Active-Contours

Firstly, a 2D simple contour can be defined as v(s) = [x(s) y(s)]7 for s € [0, 1]
The main 1dea 15 to deform this contour smoothly to extract certain features in
an mmage [92] In a segmentation scheme this usually apples to extracting an
area of homogeneous signal intensity, this may represent an object in a medical
image such as the liver organ or a pool of blood Therefore the deformation of
the curve should flow globally outwards or inwards but should be inhibited from

crossing areas of high frequency 1n the 1mage data

In this sense, the energy used to deform the boundary 1s a combination of a
smoothing term, relating to the intrinsic properties of the boundary curve v(s),
and an image dependent term, obtained directly from the underlying image data

E = Ep + Eext (51)

511 Internal Energy

The internal energy aims to smooth the deforming contour, as in most cases 1n the
segmentation of natural objects the boundary 1s defined as relatively smooth To
this end, the internal energy uses a combination of first derivative to determine
tension or elasticity of the local contour and second order differential in order
to calculate the bending of the local contour The resulting values present high
energy levels in irregular contours wath shape corners and low energy in contours

with a smooth transition between evenly separated points If the contour was to
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deform with the deformation energy obtained solely from the internal energies,

the contour would achieve a perfect circle

1 ov, v ,
B = [ (oI5 + 8155 s (2

In Equation 5 2, a and 3 are weighting factors In practice 8 may be set to
zero, both to reduce the complexity of the derivation of the curve evolution to a
geometric space and also because curve smoothing can be obtained with the first

regularisation term alone [22]

512 External Energy

The external energy uses the 1mage data to stop the deformation at the desired
position Stopping criterion may involve image data intensity, free end of bound-
ary termination, corners or 1n this case high frequency or high gradient data The
resulting energy should return low values on high gradient points and high values

on low gradient points

1
Eegt = —)\[0 [VI(v(s))|ds (5 3)

In Equation 53, A 1s a user defined weighting function and I(v(s)) 1s the
image intensity To suppress the influence of noise on the deformation the data
may be smoothed using a Gaussian filter, thus becoming V|G, * I(v(s)] where o

parameter controls the variance of the Gaussian

Therefore, the active contour can be described as an energy mimmusation
problem that seeks to deform a closed contour to rest on high image gradients
while maintaining a smooth transition between points An nflation term may be
appended to the energy terms, this can take the value of 1 along the normal
direction to the curve [31] This inflation term grows or shrinks the contour from

its mtial position to aid with the 1nitialisation

The main advantages of active contours are their extension to 3D, (where
they are referred to as active surfaces), their abihity to capture a closed structure
and the users ability to select different features as stopping terms In medical
imaging, many of the natural anatomical structures are represented by closed

smooth active surfaces It 1s for this reason that many researchers have investi-
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Figure 51 Curve propagating with a force 'F’, in the normal direction of the
local boundary

gated methods and extensions to employ active contours for the segmentation of
medical images, and this will be mvestigated further in the following section

There are however disadvantages associated with the snake method One of
the key limitations of the snake algorithm 1s the problem of itialisation The
active contours aim to deform until the stopping energy overpowers the influence
of the intrinsic energies and 1n some cases the inflation term Also, the selection
of the parameter space and sampling rule also has a large influence on the final

segmentation result

513 Application of Active Contours

Active contours have been used extensively for segmentation n the field of med:-
cal imaging, a full review of deformable models 1n medical imaging can be found
m [92] McInerney and Terzopoulos [90] apply a 3D dynamic balloon model using
triangle-based fimite elements to segment the left ventricle from cardiac CT data

Much attention has been given to improving the snake computational frame-
work, for instance Amin et al [4] suggests using dynamic programming in order
to minmmise the energy function This approach 1s claimed to produce the opt:-
mal local contour by searching all the possible solutions Geiger [52] describes an

non-iterative dynamically programmed method to extract the optimal contour,
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providing the mnitial contour 1s a close approximation To speed up this algorithm
and to improve robustness, multi-scale images are used Ronfard [121] introduces
region-based energy by building statistically models of the background and ob-
ject data These model distributions are used 1n place of edge information to

determine the contour termination

Chakraborty et al [25, 26] also introduce region based information into the
evolution of the active contour Molloy and Whelan [98] introduce active meshes
that imitiahse a deformable triangular mesh on corner data 1n the images and used
the forces between nodes to deform the mesh 1n order to track the data through
an 1mage sequence Sermesant et al [131] introduce a novel function which per-
forms an affine transformation of a deformable model in order to optimally fit
to 1mage data Jolly et al [67, 66] employ active contours, semi-automatically
immtialise on each slice in the short axis view and then propagate through the
cardiac cycle Santarelli et al [126] introduce a Gradient-Vector-Flow (GVD)
snake which proceeds a diffusion filter to segment the inner and outer boundaries
of the left ventricle of the heart

Reuckert et al [122] applies active contours for localisation of the aorta
Neubauer[1] presented a myocardium segmentation following a manually placed
‘skeleton’ nside the myocardium The results are then propagated through all
other shces i the volume Spreeuwers[145] attempts to address the 1ssue of ro-
bustness 1 the presence of erroneous local mimima by applying a coupled active
contour for the extraction of both the epi- and endo-cardium boundaries stmul-
taneously Mikic [93] uses optical flow estimates to guide the evolution of the

active contour 1n echocardiographic sequences

52 Parametrically Deformable Maodels

Staib and Duncan [146, 39] introduce a deformable model based on parametric
contours These models are commonly used when some prior information about
the geometric shape of the final contour can be determined This geometric shape
can then be encoded using a small number of parameters The model 1s then
deformed, maintaining the overall consistency of the global model, by optimising
the parameters on the image data Most commonly, the global model can be
defined by a set of analytical curves Staib and Duncan [146] use elliptic Fourier
decomposition for objects with shape irregularities, where a Fourier shape model
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1s used that represents a closed boundary as a sum of trigonometric function of
vanious frequencies They then perform an iterative energy mimmisation to fit
the model to the image data This method may provide robust localisation of
features, where the feature matches the template, however, this technique does
not provide an appropriate basis for capturing shape variabihty and the generic
models built using a prion knowledge need to be good approximations of the final

segmentation result

521 Applcation of Parametrically Deformable Models to Medical

Imaging

Parametrically deformable models have been applied in the segmentation of car-
diac MRI mmages For mnstance, Staib and Duncan [147] propose a geometric
surface matching The model uses a Fourier parameterisation which decomposes
the surface into a weighted sum of sinusoidal basis functions In [147], four basis
functions are used, torl, open surfaces, closed surfaces and tubes The surface
finding 1s formulated as an optimisation problem which attracts the surface to

strong 1mage gradients in the vicinity of the model

The mamn disadvantage of parametically deformable models 1s the effects of
the choice of coefficients as this determines the complexity of the curve Placing
limuts on each coefficient constrains the shape to an extent but not in a systematic
way While these models work well for localisation of the left ventricle, a derived
model could not completely hold all the variation of the true left ventricle These
models have problems to define the complex shape of the left ventricle which

varies from patient-to-patient and between healthy and dysfunctional ventricles

53 Active Shape Models

Cootes et al [36) propose a method to fit a shape model to 1image data Recently,
this has been applied to a wide range of image classification and segmentation
problems This method has had reasonable success in the case where

e the target object has a well defined shape,
e can be represented with a set of examples and
e can be approximately located within the image

There are limitations associated with this method where
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e the objects present a high vaniation in shape,

e grayscale or when the position/size/orientation of the target are not ap-

proximately known and

e the models themselves can contain human bias 1n annotation or error in

pomt correspondence of landmarks

Firstly, manual delineation of the object in a sample set of images 1s performed
From the manually drawn contours, positional landmarks are extracted in the
form x = [z1,T2 Zn,Yy1,¥2 Yn)T for each of the 2D images n the training set
The principle behind landmarking may be conceptually simple, but 1n practice
1s a cumbersome and time consuming job The tracer must manually position,
sometimes hundreds, of markers along the traced contours, with constant refer-
ral to previous annotations to ensure correspondence This becomes increas-
mgly more difficult as more and more data presents itself from 3D and 4D
medical scans Some work mm automatic landmarking has been researched 1n
[170, 129, 50, 169, 135] Once the landmark points have been selected, they are
then aligned commonly with Procrustes shape distance metric with respect to
scale, position and orientation As stated, pomt correspondence 1s one of the
limitations for model based approaches and Hamarneh [60] addresses this prob-
lem by represented n the shapes by descriptors obtained after the application of
Discrete Cosine Transform (DCT)

To model the shape variation, the classical statistical approach of eiminating
redundancy in the database 1s achieved through Principal Component Analysis
(PCA) or Karhunen-Loeve transform PCA performs a variance maximising rota-
tion of the original variable space, this 1s best illustrated graphically in Figure 5 2
where the two principal axes of a two dimensional data set 1s plotted and scaled
according to the amount of variation that each axis explains [149, 45] The axes
are also ordered according to their variance, meaning the first axis contains the
highest vanation In practice the PCA 1s performed as an eigenanalysis of the

covariance matrix of the aligned shapes

The overall 1dea behind ASMs 1s to generate a shape instance using the data
obtained from the traiming set of shape landmarks This can be seen in Equa-
tion 5 4 where x 1s the new shape nstance and X 1s the mean shape (see Equa-

tion 5 5
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Figure 52 Principal axes A 2D example where axis 1 and axis 2 are the first
two eigenvectors

x =%+ ®,b, (54)
1 N

i:Nsz (5 5)
=1

The matrix ®; = [®; ;) 15 made up of the eigenvectors corresponding to
the t largest eigenvalues A,, where ¢ 1s the number of modes b 1s a vector defining

the set of parameters of the deformable model and 1s defined i Equation 5 6

b, = &Y (x — %) (5 6)

There are some disadvantages associated with ASMs, mainly thewr lack of
robustness 1 the presence of high gradients not associated with the target ob-
Ject, their dependence on mmitialisation close to the target object, tume consuming
database construction and the inherent problem of model generality versus accu-

racy

531 Application of ASMs to Medical Imaging

In 1994, Cootes [34] published s work on localisation of medical features using
ASMs and used the left ventricle in echocardiographic sequences Hamarneh and
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Gustavsson [60] also apply the ASM to echocardiographic sequences to locate
the left ventricle and then i a second phase uses the active contours described
in Section 5 1 to accurately determine the true boundaries of the left ventricle
van Ginneken et al [168] uses a non-linear kNN-classifier mstead of the more
commonly used linear Mahalanohis distance metric to steer the active shape seg-
mentation scheme to optimal local features Duta and Sonka [45] improve the
ASM by constraining the deformation of the shape model to appropriate shapes
defined by the segmentation task, in thewr case the segmentation of brain images
in MRI Rogers and Graham [120] perform a robust parameter estimation to 1m-
prove tolerance of outliers 1n the model and improve the ASM search

54 Active Appearance Models

In order to address some of the ASMs lack of tolerance to grayscale variation of
the unseen data, Cootes et al [35] introduce Active Appearance Models (AAMs)

AAMs build on ASMs by including shape and textural information about the
manually delineated training data Textural information 1s defined as the pixel
intensity values across the object and these values are stored 1n a vector g =
91,02, gm)T where m denotes the number of pixels contained within the object
surface Alignment of the texture shapes 1s achieved through image warping, one
such method of 1mage warping 1s Piece-wise affine using Delaunay triangulation
(refer to [149] for more details) This 1s followed by normalsation with respect
to illumnation of the images before the PCA 1s constructed as described 1n
Section 5 3 or mn more detail 1n [149] A single instance from the texture model

can then be extracted as,

g=g+ ®b, (57)

In order to combine the shape and texture models, the shape and model
parameters bs and bg can be combined using a third PCA to make the represen-

tation more compact

There are many advantages to the method For instance,
o due to the traiming phase, the segmentation 1s very task specific,
e once imtialised, convergence 1s fast,

e AAMs are non-parametric and
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e 1n certain sttuations, are robust against noise
There are also some himitations associated with the AAM

e the model must contain distinct features, unpredictable objects such as

pathologies cannot be handled,
e the annotation of the training set 1s an arduous task,

e the results are inherently dependent on close imtialisation to the target

object

e the size and variation of the traimng set can restrict the AAM from con-

verging on the correct solution and

e the AAM assumes point correspondence of the traiming data

541 Application of AAMs to Medical Imaging

A AMs have recerved much attention in medical imaging in recent years Stegmann
[148, 149] performed a segmentation of the left ventricle of the heart using the
AAM on 2D perfusion images In [151], Stegmann and Larsson use a cluster-
ing method of the texture variation to create a set of texture subspaces, which
could represent the phases of bolus passage 1n cardiac perfusion MRI Mitchell et
al [96] [94] demonstrate the results when a 3D AAM\ASM combination 1s per-
formed on the left ventricle of the heart in cardiac data in MRI (see Figure 5 3)
and ultrasound images The model 1s created using manually traced contours
on 2D slices and extended 1n the z direction using linear interpolation between
slices Van der Geest [165, 166] investigates the semi-manual use of AAMs for
the segmentation of the myocardium 1n MRI data over the entire cardiac cycle
Firstly, the contours are initialised on one 1image and the model iterates over the
entire cardiac cycle until convergence Finally, manual readjustment of the final

model! fittings can then be performed

Bosch et al [17] examine the use of Active Appearance Motion Models (AAMMs)
in MRI and echocardiographic AAMMSs introduces a time factor mto Active Ap-
pearance Models which aims to minimise the appearance-to-target differences
Lelheveldt et al [79] and Sonka et al [143] also use AAMMs 1n segmentation
of cardiac 2D+time MRI sequences The major advantage of this method over
AAMs 1s the error feedback parameters are calculated for the full image sequence

ensuring a segmentation consistent with cardiac motion
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Figure 53 Onginal image (left) following segmentation using AAM (mddle) and
method described in Mitchell et al [95] (left)

55 Atlas Based Segmentation

Atlas based approaches are parameter free deformations of a priorm models to
extract the target object in an unseen 1mage (for a full review of model based
approaches see [48]) In this case, prior knowledge about the shape and intensity
values of the object are incorporated Unhke parametrically deformable models,
which use geometric shapes to model the desired shape, atlas based approaches

construct the model from manually segmented data

551 Application of Atlas Based Methods in Medical Imaging

Kaus et al [69] use coupled triangular surface meshes to segment the epi- and
endo-cardial contours Prior knowledge 1s encapsulated from the manually seg-
mented data using a pomnt distribution model as well as the grey level appearance
within the myocardium Lorenzo-Valdes et al [82] construct a probabilistic at-
las of manually segmented temporally aligned data Automatic segmentation
1s achieved by registering the atlas on the data, using the atlas as the 1mtial
values for a Expectation-Maximisation (EM) The EM 1s then iterated until con-
vergence before a final classification step using Markov Random Fields (MRF)
and Largest Connected Components (LCC) Leleveldt et al [80] proposes a
method for thoracic volume segmentation by building a model of the anatormcal
structures contained n the thoracic cavity The method uses blended fuzzy 1m-
pheit surfaces and a solid modelling technique called constructive solid geometry
(CSG) Imtiahisation of the model with respect to position, orientation and scal-

ing 15 one limitation of Leleveldt’s argument
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56 Level-set Method

Level sets were first introduced by Osher and Sethian [108], following previous
work 1n Sethian’s Ph D thesis [132] on flame propagation Like snakes, the theory
behind this boundary-based segmentation 1s largely based on work in partial
differential equations and the propagation of fronts under intrinsic properties
such as curvature [133] While level-set methods can be appled to a host of
1mage processing problems, for example unage restoration, mnpainting, tracking,
shape from shading and 3D reconstruction, segmentation 1s the man focus of this
work An extensive review of level-set methods 1s given by Suri [157] and also by
Angelm et al [5] It can also be thought of as transforming the earher work of
Kass et al [68] on active contours from a Langrarian to a Eulerian formulation
Like active contours, the deformation of the level set 1s seen as a gradient flow
to a state of mimimal energy, providing the object to be segmented has clearly
identifiable boundaries [22, 21, 23, 87, 86]

However, by extending the dimensionalhity of the problem to N + 1, where
N 1s the imitial dimension of the problem, some advantageous properties can be
exploited The formulation of the problem 1s conceptually simple The evolving
curve, or front I", evolves as the zero level-set of a higher dimensional continuous

function ¢

a¢ ~
5 +EIVel =0

¢(s,t = 0) = grven

(58)

This function deforms with a force F' that 1s dependent on both curvature of
the front and external forces in the image The force acts in the direction of the
normal to the front The imtial position for the contour 1s given, so therefore the

function ¢ can be constructed

The use of level-sets for the segmentation of the cardiac muscle in MRI 15

appropriate for the following reasons

e one can perform numerical computations involving curves and surfaces on a
fixed Cartesian grid without having to parametrize these objects (Eularan,

non-marker based solution),

e 1t becomes easy to implicitly track shapes which change topology, for ex-
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77 -

Figure 54 Level-set representation of the evolution of a circle

ample when a shape sphts 1n two, develops holes, or the reverse of these

operations,

e intrinsic geometric properties of the front, such as the curvature and the

normal, can be easily calculated and
o the method may be extended to higher dimensions

However, there are some 1ssues associated with the basic level set formalisation
In the latter stages of this chapter, the author attempts to address these 1ssues

¢ the algorithm 1s computationally expensive,

o the front may leak through boundaries of low gradient information,

o the level set function requires imtialisation close to the target object and
¢ the evolution does not use prior shape or texture based mformation

Level-set segmentation has also been successfully applied to other medical

imaging modalities as described in Appendix B

561 Level Set Formuhsation

The fundamental objective behind level-sets 1s to track a closed interface I'(t),
for which F(¢) [0,00) — R™, as 1t evolves 1n the data space The interface 13
represented by a curve m 2D and a surface 1n 3D or the set of points that are on
the boundarnies of the region of interest  The theory behind level-set segmenta-
tion 15 largely based on work 1n partial differential equations and the propagation
of fronts under mtrinsic properties such as curvature [108, 133] Level-set theory

aims to exchange the Lagraman formalisation and replace 1t with Eulerian, imtial
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valued partial differential equation evolution By extending the dimensionality
of the problem to N+1,where N 1s the initial dimension of the problem, some
advantageous properties can be exploited Representing the boundary as the
zero level set instance of a higher dimensional function ¢, the effects of curvature
can be easily incorporated ¢ 1s represented by the continuous Lipschitz function
¢(s,t = 0) = +d, where d 1s the signed distance from position s to the mmtial
interface I'g (see Equation 5 9) The Lipschitz condition imples that the function
has a bounded first derivative The distance 1s given a positive sign outside the
mitial boundary ( D € ), a negative sign 1nside the boundary ( 2\ 8Q ) and zero
on the boundary ( 00 )

—d Vs € 0\ 0
#(s,t=0)=40 Vs € 69 (59)
+d Vse R*"\

From this definition of ¢, intrinsic properties of the front can be easily deter-
7= 4 Y% _ v
mined, hike the normal 1 = iIW*I and the curvature k =V W%

Also from this definition, ¢ can be considered as a function in two different
ways Firstly, ¢ can be considered as a static function ¢(s) that is evaluated
at particular instances or isovalues, this leads to the formulation of the Eikonal
equations and 1s discussed m more detail in the Fast Marching section (Sec-
tion 56 5) Alternatively, ¢ can be described as a dynamic function ¢(s,t) that
evolves through time, and the closed contour or front 1s the special case where the
value of ¢(s,t) equals zero Using this definition, 1t can also be said that at any
time tg the set of points that define a curve can be represented as the function
#(s,to) = 0 It 1s also clear that as the curve evolves through time, the function ¢
also evolves Consider a point s(t) on the contour that 1s evolving through time,
we constrain the value of that point 1n the level-set function to be ¢(s(t),t) =0
By chain rule,

o¢ ,
5 TV s'(t) =0 (5 10)

Define the force, F = s(t) 1 to be the force moving the point s(¢) mn the
normal direction i1 If i 15 replaced with i = :l:%‘%, the equation takes the form
of a Hamilton-Jacobu as expressed m Equation 5 8 If the force term 1s rewritten
as F' = Fy+e¢x to include an advection force Fy to move the curve and a curvature
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based term ex to regulate the evolution, the evolution of ¢ now becomes,
¢ = —Fy|Vo| + ex| V| (5 11)

Classic finite difference schemes for the evolution of this equation tend to
overshoot and are unstable Sethian [134] has proposed a method which reles
on a one-sided derivative that looks in the up-wind direction of the moving front
to control the outward expansion, and thereby avoids the over-shooting associ-
ated with fimte differences (see Equation 5 12) while the second derivative can
be approximated using central differences Level-set theory uses a combination

of derivative approximations to enable smooth curvature evolution

|V = \/maz(D;f, 0)2 + mzn(D:'f, 0)% -+ maz(D;},0)2 + mm(D;Zy, 0)?,
(512)
where, for example D}* = $t1)=¢(s) 4nqg D" = —L___"’(W)_A“f’z"lﬂ)

Az
Caselles et al [22] and Mallad: et al [87] used the above theory to indepen-
dently formalise the impheit minimisation of the classic energy function used mn

snake evolution, seen 1 Equation 5 1, for the extenswon to level set theory

min / o(IVI], L) (s))ds (513)

This mmimsation mncludes a stopping term g(|VI(I'(s)}|) where g 1s a stop-
ping function (reciprocal or exponential) based on gradient of pixel intensities and
curvature term I'(s) based on the intrisic properties of the curve and calculated
by

/S I (s)Pds = / o(IVIT(s)[)ds (5 14)
S

From [22] 1t can be shown that the Euler-Lagrange gives a mummising curve

that 1s of the form
d . o
al“(s) = g(|VI))kii — (Vg #)d (5 15)

The term Vg 1 adds a naturally occurring attraction force vector normal
to the surface ntroduced by Yezzi et al [177] and « 15 the curvature term By
representing the boundary as the zero level set instance of a higher dimensional
function ¢ as described 1n Equation 59, the effects of curvature can be easily
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incorporated [86, 21]

% — g(VID(c+en)|Ve| + B(Vg V) (5 16)

In this segmentation scheme, a non-zero internal advection or ballooning force, c,
1s added to the evolution to evolve the either outward (¢ = 1) or inward (c = —1)
depending on whether the 1mtialisation curve is enclosing or enclosed by the
target object for segmentation 3 and e are user defined parameters that control
the effects of attraction to gradients and curvature respectively and are chosen
experimentally Reducing the 3 parameter slows down the convergence time as
the front 1s not attracted to edges, however increasing the parameter may have
the effect of causing the evolution to jump past appropriate gradients leading to
spilling of the curve into other areas The parameter ¢ controls the smoothness of
the contour or surface Reducing the value of this parameter allows the algorithm
to converge on less smooth object boundaries

Curvature Term

From differential geometry any shape (no matter how complex) collapsing as a
function of 1ts curvature & will evolve to a circle before disappearing [59] Using
this relationship, a force F' = —« 1s defined to always shrink a contour to a
point This 1s a favourable quahty for advancing fronts for segmentation, as 1t
can be shown that this minimises the contour length As discussed earler, using
the partial differential equations perspective, intrinsic geometric properties such
as the curvature and normal can be easily calculated For example, for a 2D
propagating front, the curvature « can be found using partial differentials of the

function ¢,

V¢ — ¢:m:¢§ - 2¢y¢z¢my + ¢yy¢§
Vel (62 +47)3/2

The normal can undergo a jump at corners, and this 1ssue 1s addressed 1n the

work of Sethian and Stan [134] where the normal 18 normalised

k=V (517)

However, in 3D there are two measures of curvature, the mean and Gaussian
curvature The mean curvature (kp), 18 connected to the physical evolution of

soap bubbles and the heat equation
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_y V¢
ky=V Vol (5 18)

Gaussian curvature (kg ), has also being used to model physical problems such
as flame propagation It has been shown that a convex curve evolves to a point
under curvature evolution, but 1t can also be shown that evolution of non-convex

surfaces can be unstable

_ V¢ Ad) (H(¢))Vé
Vol
where H(¢) 1s the Hessian matrix of ¢, and Adj(H) 1s the adjoint of the matrix
H [173]
Neskovic and Kimia’s [106] propose a measure of curvature which involves

(5 19)

both mean and Gaussian In this approach, the direction of flow 1s obtained from
the Mean curvature while the magmtude of the flow 1s dictated by the Gaussian
curvature This 1s appropriate as the Mean curvature alone can cause singularities

when evolving
Knes = SZQn(ﬂH) vV kg + |"5G| (5 20)

Stopping Cniterion

The evolution force F 1s an energy minimisation problem where the speed ap-
proaches zero at positions of high gradients to exert a halting to the front prop-
agation To this end, two diffusive stopping criteria have been proposed The
first and most common stopping term 15 a reciprocal of the gradient of the image
intensity signal convolved with a Gaussian smoothing mask G,, where o 1s the

variance of the Gaussian mask

1
1+ |VG, I(s)P

9(IVI|) = P21 (521)

The convolution with a Gaussian eliminates the effects of noise on the 1mage
Other methods of noise removal, such as non-hnear or anisotropic which were
discussed 1n Chapter 3 can be used in place of the Gaussian to improve the re-

sults
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Alternatively, if the circumstances require the stopping term to fall to zero
faster than the reciprocal function, the following defimition can be applied This
may allow the front to overshoot the object boundary in the presence of weak
gradients or can cause errors 1n the presence of noise Therefore a new stop-
ping term 1s devised that incorporates texture This 18 performed by means of
a Gaussian membership func:clon used to determine whether the voxel 1s mnside
or outside the target object This membership function 1s constructed using the
texture analysis of the object region after immitialisation A Gaussian member-
ship function 1s chosen as MRI response mn tissue can be modeled as a Gaussian
distribution (76, 70]

g(IV1}) = exp™IVC 16 (5 22)

where exp 1s the exponential function

56 2 Non-gradient based curve propagation

Image segmentation and classification has also been approached by incorporating
level sets mto the partitioning of images based on intensity values These methods
have also been called Region-competition snakes and are deformable models that
are governed by local probabilities that determine 1f the snake 1s imnside or outside
the structure to be segmented Chan and Vese [27] show how the Mumford-Shah
functional can be used 1n a level set framework The Mumford-Shah functional
aims to partition the image I mto a smooth approximation f set of regions

separated using contours, S

E(S, f) = v(S)+a/Q(f—I)2dz+,6/QS|Vf|dz (523)

The problem 1s approached as a energy function which tries to minimise 1ts var-
ables (a) the length of the set of contours v(S), (b) the deviation from the original
mnage a [o(f — I)?dz and (c) the smoothness within each region 8 [, |V fldz

Another approach 1s developed 1n a level set framework by assuming a two
class problem of an 1mage I defined on Q@ The problem 1s then posed as follows

E(C) =/ II—Co|2dQ+/ 11 ~C1|%dQ (5 24)
insideC outsideC

where C 1s the front, and (Cp, C}) are the average intensity values for inside and
outside the curve ¢ While this methods addresses boundary leakage and 1m-
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tialisation problems 1t assumes a low class of intensity features and grey scale
homogeneity across the object Yezz1 et al [177], Tsai et al [163], Cohen and
Kimmel [32], Deschamps et al [41] and Angelin1 et al {6] adopt vanations on

this approach to segmentation 1n medical umages

In [111], Paragios and Deriche unifies both region and boundary information
mn a level set framework Following on from (109], Paragios incorporates an
intensity based component taken from the grey scale distmibutions of cardiac
features and a prior shape model to deform a coupled level set over the endo
and epi-cardium of the heart Taron et al [161] perform a variational technmique
for the segmentation of the Corpus Callosum of the brain They use estunated
uncertainties of the registration when applying model priors to the segmentation

process

56 3 Introduction of A-Priori Knowledge

Leventon [81] introduced a prior: knowledge by building a prior model that was
embedded in a level set formalisation and evaluating 1ts modes of variation using
PCA analysis This has been the basis for much work 1n level set formulation 1n-
corporating shape priors into the propagation Due to the model being defined 1n
Eulenian space, 1t circumvents the problem of point correspondence encountered

in the previous sections

Tsa1 et al [163] provide some work, leading from the initial work performed
by Leventon and perform segmentation on cardiac images in 3D In (162}, Tsax
et al construct a model of a prior1 shapes as the zero level set of a number of
separate segmented 1mages The database of level sets are then classified nto
a user defined number of statistical shape classifications using an Expectation
Maximisation algorithm This method was applied to medical images where con-
gemtal bram malformation of the cerebellums was used to create a two class
(healthy/diseased) classification scheme As mentioned, Paragios et al {110, 112]
use a shape model built from previously segmented data to guide the segmenta-

tion of his level set

56 4 Coupling of Level Sets

Zeng et al [181] first introduced the idea of coupled level sets for segmentation
of the cortex of the brain The coupled level set can use the constant thickness or
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distance between the level-sets as a constraint to avoid spilling or over segmenta-
tion The 1deas introduced by Zeng were extended by Paragios [109] who applied
a stmilar coupling constraint for the segmentation of the myocardium of the heart

565 Imtialisation using Fast Marching

In order to overcome the 'myopic’ characteristics of level set propagation, Sethain
[133] introduced a Fast Marching methods This is the unique case of the level
set theory where the force F' 1s always greater than zero, and this propagates
a monotonically advancing front The formula takes the form of the Eikonal
Equation 5 25, a nonlinear, static Hamilton-Jacobi equation If the 2D case 1s
considered again, a set 1s created T'(z,y) that defines the time at which the front

[ crosses the position (z,y) T satisfies the equation,

IVT|F =0 (5 25)

1) Evaluate T for all

1} Select neighbouring s
neighbours

pixels

)) Select the 1) Add C to abject
neighbour with the lowest T (=C) and select all neighbours

Figure 55 Front propagation using Fast Marching Adapted from Sethian {134]

The evolution 1s 1teratively assessed by solving the roots of the quadratic
equation of the Eikonal equation and sorting the values of T with respect to size
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This can be shown graphically in Figure 55 The value of the force at each pomnt
can be calculated using the upwind scheme approximations to derivatives of the

function ¢

The stopping term 1s based on the diffusion of the gradient and can be calcu-

lated as
Fy=eVh (5 26)

The fast-marching approach gives an approximate segmentation and 1s used for

the evaluation of the imitial contour for the dynamic level-set method

566 Narrow-band Methods

In order to increase the computational efficency of the algorithm, Adalsteinsson
and Sethian [2] extensively review narrow-band methods The main disadvan-
tage of formulating the problem in Eulerian space as opposed to the Langrarian
space 1s the increase memory and computational expense of propagating the front
across the full matrix of the image To ehminate this 1ssue, a narrow band (2D),
or narrow tube (3D}, around the front 1s defined and 1t 1s 1n this narrow band that
the ¢ values are updated at each iteration The narrow-band 1s first 1mtialised
by including all data points within a certain bandwidth of the front, this can be
achieved by using the values of the ¢ As explamned, at each 1teration, only the
values of ¢ within the narrow band are updated With each iteration the front
points are evaluated to see 1if they are close to the edge of the narrow band If
yes, the narrow band 1s re-initialised otherwise the algorithm 1terates as normal
It has been shown m (2] that these boundary conditions do not adversely affect
the motion of the level-set Implementation of this narrow band method can
greatly improve speed of execution and some level set approaches prove real-time

execution [37]

57 Ilmtialisation

To counteract the 'myopic’ characteristics of these deformable models, the 1ni-
tiahsation process 18 very influential and 1s performed in MRI data as follows
Firstly, 1t 1s known that the endocardium boundary can be characterised by the
high contrast between the blood and the heart muscle in standard (TruFISP)
cine imaging of the heart This characteristic i1s used when a fast marching algo-
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rithm 1s applied to find a fast efficient imtialisation for the blood following the
manual nsertion of a seed point The fast marching approach 1s driven by a force
F, = e~®V!s which has a diffusive effect aimed at halting the fronts progress at
regions of high gradient This fast-marching approach falls short of the gradient
defining the transition from blood to muscle Therefore the contour found by the
fast marching algorithm 1s used as the mmtial curve of the level-set algorithm to
find the endocardium boundary The results from the Fast Marching imitiahsa-

tion are illustrated in Figure 5 6

Figure 5 6 Results show the imtiahsation (marked in white) from a seeded Fast
Marching algorithm The method was applied to perform a robust initial estimate
of left ventricle cavity of the heart on four separate datasets displaying a high
vaniability of left ventricle shape

To find the epi-cardial boundary the endocardium inmitialisation 1s dilated
shghtly and the inner gradients are masked Both curves are given a positive
advection force to propagate outwards It 1s known that both the endo- and
epi-cardium boundanes of the left ventricle are approximately circular, therefore
the € 1s given a high significance in the evolution, the evolution 1s illustrated in
Figure 57 High curvature constraints, the distance inhibitor and the a prior
constraints all act to limit the epi-cardium front from joming the inner front or

spilling 1n areas of low gradient, like the liver or the lungs

58 Coupling Force between Fronts

To further control the level-set evolution we employ a coupling function between
two level-sets The coupling adds an extra constraint by ntroducing a second
level-set that 1s dependent on the first and coupling the level-sets with an n-
hibitor function, which allows the curve to change direction of growth This 1s
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() (b) (c) (d)

Figure 57 The images above show evolution of the front at four different 1t-
erations (a) iteration = 0, (b) wteration = 5, (¢) weration = 10 and (d)
iteration = 15

(a (b} (c}
Figure 58 Segmentation results of the same slice at three separate phases
through the hearts cycle, (a) end-diastolic, (b) mid-diastolic and (c) end-systolic

achieved without any extra computational expense as the distance between any
point to the level-set boundary 1s the value of ¢ at that point, see Equation 5 9
The piecewise mhibitor function, which 1s used as the interaction between the
two level-sets, 1s defined below, where d 1s the preferred distance between the
curves and w controls the slope between inward and outward growth The result
n2(¢1) changes value from +1 to -1, which changes the direction of the evolution
for o between inwards and outwards In practice the values of d and w are taken

from the scaled a prior: model

-1 for ¢1(s) < —d—w
m(¢1) = § Y1224 for ~d—w < ¢i(s) <d+w (5 27)
1 for ¢1(s) > d+w

For this segmentation scheme, 1t 1s assumed that the gradient between the
blood pool and the endo-cardium boundary 1s significantly high to halt the evo-
lution of the level-set Also 1t 1s known that in some cases there 1s lhittle or no
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Figure 59 Graph of the nhibitor function where the values of d = 6 and w = 4

gradient information between the epi-cardium boundary and the lungs or liver
Therefore, the level-set segmenting the epi-cardium boundary 1s controlled by the

endo-cardium level-set using the mhibitor function described

59 Improved Stopping term

To 1llustrate the improved performance of the advanced stopping term, the fol-
lowing phantom images were created and tested Two situations are described
as illustrated 1n Figures 5 10 and 5 11, the first where low gradient information
1s present between two regions and the second where the grayscale difference

between two regions 1s low The stopping term, 1s defined as

1

VI
1+ +

(5 28)

g:

uses a combination of the gradient and change in texture The change in tex-
ture (I;) 15 calculated after the mutialisation with the fast marching algorithm
described 1n Section 5 7 Within the imtialised region the mean g and vanance
o of the voxels are calculated From these values, a Gaussian 1s constructed and

the I, (s) 1s calculated as,

L(s) = J;Wejiﬁﬁ (5 29)

where z 15 the value of the voxel at each position s 1in the image The value of I,

18 normalised between 0-1
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The user defined parameters ¢ and § represent the influence of the curvature
and attraction to gradient on the evolving boundary In the following tests, we
want to evaluate the influence of the improved stopping term, so the value of ¢
15 given less sigmficance to reduce the influence of curvature on the evolution
In the segmentation of the left-ventricle boundaries, the value of € 1s given a
higher sigmificance as we know the boundaries approximate circles Similarly, 8
controls the attraction of the level-set boundary to gradients that are normal to
the curve Again, this value 1s given a reduced weighting in the proceeding tests
The results shown in Figures 5 10 and 5 11 demonstrate the improved robustness

aganst boundary leaking between regions

|
|

Figure 510 The origmal phantom image with a diffused segment (a) and the
Sobel edge 1mage to illustrate the gradient information (b) The second row

shows the evolution with the exasting g = ﬁ at 1iteration @, 25 and 50 while

the third row shows the evolution with our proposed approach where g = ﬁlvr

Ia

at 1teration 0, 25 and 50

510 Introduction of Priors Models

A prior information 1s imcorporated with a probability density function (PDF),

P(s) = 2520z 5(8) Zj%l £(s) (5 30)

which 1s defined as
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(a) (b}

Figure 5 11 The oniginal phantom 1mage with a close region (a) and Sobel edge
mmage to 1illustrate the gradient information (b) The second row shows the
evolution with the existing ¢ = WIV'I at 1teration 0, 25 and 50 while the third

row shows the evolution with our proposed approach where g = l—_i_lv_'r at 1teration
=

0, 25 and 50

where f, 1s the outline of the ep: and endo cardium boundaries used for training,
N 1s the number of training examples and s defines the image coordinates The
model 18 bullt from a set of hand segmented boundaries, a probability density
function 1s created of both the endo-cardium and epi-cardium boundaries that

are then interpolated in the z direction, scaled and aligned 1n the zy direction

The PDF 1s constructed by aligning the binary manually segmented boundary
images and summing the boundary elements This 1s done for both the endo-
cardium boundary and the epi-cardium boundary It 1s mncorporated into the
evolution 1n a global context, after each iteration the value p; 1s evaluated as,

pe=Y &(t)s* P, (5 31)

Ces
where ¢(t)s 1s the value of ¢ at time ¢ at the position s and Ps 1s the probability
density at position s and this value 1s summed over the narrow band C which 1s
a subset of the image space The parameter p; 1s calculated at each iteration 1s
then normalised between the bounds -1 and 1 as 1t can have negative and positive
values This 1s as a result of ¢ also having positive values outside the contour

and negative values mside the contour This means p; will have a more positive
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value if the current contour 1s inside the prior model and more negative 1If the

contour 18 outside the prior model

In order to obtam the full evolution equation for the level-set we have to incor-

porate both the coupling function and the a prior: knowledge into Equation 5 32

%0 — oV D)+ ex)|V6] + B(Yg Vo) (5 32)

Firstly, the output from the coupling function 1s either 1 or -1 and we want
1t to change the direction of the curve evolution From Equation 5 32 we can
see that the advection force defines the direction of the evolution, therefore we
incorporate the couphng function by multiplying 1t with the advection force ¢
This has the result of changing the direction of the contour, depending on the
results from the coupling function In this sense, both the ep1 and endo cardium

boundaries are tied together _We_also_assume_that_the boundary between the

left ventricle blood pool and the myocardium has a stronger gradient term than
that of the epi-cardium boundary and the lhiver or lungs Therefore, this term
is applied to the evolution of the level-set surface designed to extract the epi-
cardlum Hence, based on the parameters of the coupling function which can
be automatically obtained using the distance between the blood pools the outer
surface 1s prohibited from spilling into other organs beyond a certain distance

from the endo-cardium boundary

The a prior: model 1s designed to disregard inappropriate gradients and to
give significance only to gradients that are situated close to previously manually
segmented boundaries For this reason, we mncorporate the a priort information
n the attraction term from Equation 5 32 As explained, this 1s taken on a global
sense whereby we define for both the mnner surface and the outer surface whether
or not they are inside or outside the PDF of previously segmented images Thus,

the complete evolution for the coupled level-set 1s defined as,

bua = g+ V(e + )|Vl + o= (Ve V) (589)

where 7 15 the result of the coupling function between the level-sets and 1s defined
in Equation 5 27 and p; 1s the a prior: knowledge and 1s defined 1n Equation 5 31
The results in Figure 5 13 illustrate the performance using four unseen datasets
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Figure 5 12 Images show the probabihity density functions from a prior1 hand
segmented 1mages Figure (a) shows the combined contours while (b) and (c)
show the endo- and epi-cardium boundaries respectively Darker gray tone defines
a higher probability of the boundaries

(a) (b) (c) (d)

Figure 5 13 The 1images above show the segmentation using our method on the
four previously unseen datasets

511 Extension to 4D

Cardiac data. 1s increasingly available in 3D + time, therefore 1t 1s believed that
the best approach for a complete data driven segmentation 1s to apply an ap-
propnate techmque to the complete data presented from a patient scan Due
to the increasing amount of data that 1s available in 4D and growing resolution,
some researchers have attempted to address the segmentation problem Many
have evaluated the result of sequential approaches, where from a robust imtial
segmentation (maybe manually assisted) forms the imitialisation for subsequent

volumes throughout the cardiac cycle

While the level set formulation lends itself easily to extension in multidi-
mensional data analysis, the author found few researchers have investigated the
application of level set to analysis of 4D data Fritscher et al [51] aum to apply
full 4D information into boundary driven and region-competition geodesic con-
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tours In imtial work, PCA analysis 1s performed on signed distance maps to
create models, the mean of these models serve as the imitialisation step 1n a level
set segmentation More generally, 1n the earlier 4D segmentation work (9, 91], the
temporal dimension was considered 1n a sequential approach where the segmen-
tation from the previous time frame served as the imtialisation for the current
time frame Rueckert and Burger [123] also used this sequential approach where
the shape of (¢ + 1) was a deformation of the shape in time frame (¢) The de-
formation 1s achieved using energy numimisation of the deformable template 1n a
Bayesian formulation Sun et al [155] create a non-linear dynamic model learned
from traiming data A manual tracing of the first image 1n the sequence 1s used to
create a posterior density estimate of the lv at each time frame A curve evolution
1s then performed with the maximum posterior estimate McEachen and Dun-
can [89] perform tracking of the left ventricle by performing point correspondence
of points from time ¢ to time ¢ + 1 and assume a small degree of motion between
time frames Based on these assumptions, smooth transition of the parametric
contours 1s achieved using an optimisation algorithm Paragios [109] introduced
an energy into his variational level set approach that enforced a consistency of in-
tensity through the temporal cycle A transformation 1s calculated between time
I; and I;; based on a bounded error function, where I, represents the intensity
value at time ¢ In Montagnat and Delinette [99] in 2005, the deformable model
18 influenced by introducing time-dependent constraints These consist of prior

temporal knowledge through either temporal smoothing or trajectory constraints

Segmentation 1 4D should perform a segmentation of the 3D volumes and
use information i the time domain To this end, a number of approaches are

proposed with the advantages and disadvantages of each discussed

e Sequential Approach, consists of naively using the results from time
sequence t as the initialisation for time sequence ¢t + 1 This approach
assumes no prior knowledge about the temporal dynamics of heart The
only assumption is that the cardiac muscle boundaries do not exhibit large

movements between time sequences

e Temporal subtraction, can give some indication as to the direction of
movement of the cardiac boundaries Again, this does not utilise prior
knowledge about the global dynamics of the heart and may be overly sen-
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sitive to noise and artifacts Some optical flow approaches may elimimate

these limitations and are being investigated n [10]

o Temporal Smoothing, basically constitutes performing the segmenta-
tion of the 3D volumes in parallel while forcing the boundaries to move
i a physically consistent way using temporal smoothing In 1ts simplest

form, temporal smoothing could be achieved using an averaging function,

-T
r, = EE)TM, where I'; represents the boundary curve at time ¢

e Temporal consistency of intensity values across the left ventricle cavity
and the left ventricle myocardium and was employed by Paragios and De-
riche [111] Again, artifacts mn the left ventricle cavity due to the dynamics
of the blood through the cardiac cycle may restrict the application of this
method

e Database of Prior Image Models, built from a selection of images at
particular temporal instances, may be registered to the unseen 1mage Lake
many database models, this approach relies on building generic models that
are applicable to a wide range of heart morphology Variations in cardiac
morphology caused by individual anatomical features or disease may not

be accounted of 1n such models

» Prior Temporal Parameterised Model proposes to model the dynamics
of the cardiac cycle and further refine this model as the parallel segmenta-
tion 1s performed on the 3D volumes Unlike database models constructed
1n 1mage space, broader classification of the cardiac boundaries movement
through the entire cycle can be applied to all variations of heart morphol-
ogy Exploiting the construct of the ¢ function 1n level set segmentation
(see Equation 5 9) enables fast function fitting that may be incorporated
into the update of ¢

512 Applying level set on 3D+t data

From the options above, segmentation of the 4D data should be approached in a
parallel sense using temporal constraints to infer prior knowledge 1n an effort to
control the boundary deformation away from erroneous spilling or over segmenta-
tion To this end, a novel approach to control a level set deformation 1s proposed

The control 1s achieved by means of prior knowledge about the deformation of

the cardiac muscle through a complete cardiac cycle In the majority of cases,
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Figure 5 14 Volume, 1n pixels, of left-ventricle cavity over the cardiac cycle

the temporal volume change of the cardiac cavity over the complete cardiac cycle
can be illustrated as show in Figure 5 14 where the phase starts at end-diastolic,
decreases 1n volume during the systolic phase until 1t reaches end-systole before

returning to end-diastole during its diastolic phase

The next question to pose 1s how this information about the overall shape of
the cardiac phase can be implemented 1n a loosely fitting way to the deformation

of the level set

5121 Modelling the temporal movement

From Figure 5 14, the cardiac cycle can be approximated using an inverted Gaus-
sian curve Values for the general Gaussian defined in Equation 5 34,4, B, p and
o are found by fitting a Gaussian curve to the volume data extracted using the
Fast Marching algorithm from each time frame Gaussian fitting 1s achieved using
least squares approximation Non-hnear fitting 1s unstable due to the low number
of volumes 1n the temporal resolution (~ 25) For nonlinear least squares fitting
to a number of unknown parameters, linear least squares fitting may be appled
iteratively to a linearized form of the function until convergence 1s achieved How-
ever, 1t 1s often also possible to linearize a nonhnear function at the outset and
still use hnear methods for determining fit parameters without resorting to 1iter-

ative procedures

y(z) = A+ Be A" (5 34)
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This fitted Gaussian represents the model for the dynamics of the cardiac cy-
cle over a single heartbeat It follows that the displacement of the endo-cardium
boundary can also be modelled using this fit In this regard, the deformation of
the boundary surface of the level-set 1s constrained by this Gaussian model Ex-
ploiting the inherent definition of the level-set function ¢ as the distance function
of a single position from the evolving surface, the incorporation of the Gaussian
model 1s straightforward and can be applied 1n a non-rigid sense to every point

within the narrow-band

This 1s further illustrated in Figure 5 15, where a 2D 1mage 1s taken and a
single pomnt 1s selected within the narrow-band From the definition of ¢, the
value at this point 1s the distance from that point to its closest point on the zero
level-set boundary In the illustration, the boundary contracts and then expands
agan i much the same way as the left ventricle boundary evolves from end-
diastole to end-systole and back agam to end-diastole As this evolution takes
place the value at the position grows and shrinks as the distance to the boundary
mcreases and decreases, this evolution can be modelled using the Equation 5 34
and the parameters B, i and o determined from the fast marching imtialisation
The value of A represents the offset of the Gaussian model Figure 5 16 1llustrates
the model appled to the long axis view

N “@ ooy

Figure 515 Change of a single point on ¢ as the boundary evolves over the
cardiac cycle 1n the short axis view

VARV ERVERVARY

Figure 516 Change of a single point on ¢ as the boundary evolves over the
cardiac cycle n the long axis view

In this way, the evolution of the zero level-set boundary can be constrammed
to contract and expand under Gaussian motion, where the saddle pont 1s the

temporal position given by u and deformation occurs at a rate o Initialisation
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Figure 5 17 Volume, 1n pixels, of left-ventricle cavity over the cardiac cycle with
fitted model using an Adaptive Gaussian Model

of the Gaussian model parameters are determined after a primary segmentation
of the left ventricle cavity using a Fast Marching method

Level Set influenced by an Adaptive vanance Gaussian

In order to model the dynamics estimated using the Fast Marching algorithm,
an adaptive Gaussian model 1s developed Similar to the general Gaussian model
givenr 1n Equation 5 34, the aim 1s to mmprove the models fit on the imtialised
data This results in the deformation of the boundary that maintains closely the
temporal dynamics of the immtial segmentation using the Fast Marching algorithm
and therefore the model resembles the shape of the raw data and does not re-
semble the Gaussian curve In practice, this model 1s created by a least squares
fitting of a Gaussian model where the variance, ¢ 1s calculated separately at each
temporal position, 1n essence this means that the least squares error 1s close to
zero at each temporal position This 1s 1llustrated in Figure 5 17 where the model

curve mrrors the real data

Models created from initialisation may not represent the final segmentation
of the target object It places too much confidence in the nitial model created
using the fast marching approach For an example using the worst case scenario,
if the fast marching algorithm falls into a local minima nside the left ventricle
blood pool at one particular time sequence then the temporal model incorporates
this Using the curvature constraint, the level-set algorithm can overcome this

error, however, the temporal model that 1s created may not allow the level-set to
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deform greatly from the model created from the imtialisation Therefore, a new
approach 1s proposed, which uses the information obtamned from the imitiahisation
step but 1teratively updates this model based on the evolving level-set This cre-
ates a smoothing effect on the level-set surfaces over the cardiac cycle but also

redresses poor nitialisation

Level Set influenced using Expectation-Maximisation

In order to address the hmitations associated with the Adaptive varniance model
described 1 the previous section, a novel approach 1s introduced which 1teratively
updates the imtial parameters of the model This acts as a form of Expectation-
Maximusation (EM) algorithm The EM algorithm 1s a two step approach which
aims to fit some model to data, and 1s particularly useful where there 1s unknown
or incomplete data In the case of cardiac boundary segmentation, the observed
data 1s defined as the value of the level-set function ¢ at a particular position over
the entire cardiac cycle The unknown or missing data 1s a final Gaussian model
which 1s inferred on a single point in the grid over the complete cardiac cycle
This application to each point on the grid has the advantage that the model 1s
fitted non-rigidly and can allow for less or no deformation, which 1s the case in

diseased hearts

The EM algorithm takes mitial parameters for the model, in this case the
information obtained from the Fast Marching segmentation of the left ventricle
cavity, and performs an expectation or fit of the data at a particular spatial po-
sition over the entire temporal data These model parameters are stored 1n an
array for each grid point Then during the maximisation step when the level-set
1s updated, the information about point position with respect to its expected val-
ues are calculated The results from this expectation stage 1s the difference or 1n
EM terms, the hikelihood, between the model and the observed data From this
expectation calculation, a maximisation 1s performed to correct for the differences
found This maximisation step 1s the level-set deformation of the boundary sur-
face The process 1s iterative and the parameters for the model are re-evaluated

at each 1iteration

This addresses many 1ssues associated with the previous method Firstly, be-
cause the parameters for the model using the Fast Marching approach are just
used as the imtial parameters for the EM algorithm, there 1s less dependence
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Figure 5 18 Volume, 1n pixels, of left-ventricle cavity over the cardiac cycle with
fitted Gaussian model

placed on these imtial parameters as they are re-evaluated at each iteration Sec-
ondly, the iteratively fitting a Gaussian to the data results in giving a Gaussian

smoothing of the zero level-set boundary over the temporal cycle

513 Results

In order to assess the validity of this approach, the results of the segmentation
using the 1teratively optimised algorithm are compared against those obtained
from expertly vahdated® segmentations of the left ventricle Figures 5 19 display
a linear plot and Bland-Altman plot for the areas in 2D of the manually traced

boundaries

Comparative results between the adaptive variance approach and those ob-
tained from the 1iteratively optimised algorithm can be seen on a point-to-curve
error calculation in Table 5 1, showing less error using the optimisation algorithm
This 15 also confirmed 1n a linear plot of the blood pool areas when compared
against manual segmentation where the Gaussian curve with adaptive variance
produced a regression value of 0 71 while the optimised approach yields a regres-
sion of 0 77

The 1teratively optimised algorithm also 1s guaranteed convergent [174, 40, 13]
and also reduces the error between the observed data and the model at each

*The vahdation was performed by Dr John Murray, Cardiologist, Mater Misericordiae
Hospital, Dublin, Ireland
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Figure 5 19 Results of the 4D segmentation of the left ventricle cavity boundary
compared against those obtamed from manual segmentation

Table 51 Table representing the point to curve error for Method I using the
Gaussian curve with adaptive varlance and Method 2 using the Expectation-
Maximisation of the Gaussian parameters

Endo-cardium
Average Std Dev RMS
Method 1 | 1649013 1584626 2 309887
Method 2 | 0 844075 0914422 1 268981

iteration This means that convergence 1s faster than using the static model
This 1s characterised 1n Figure 5 20 by measuring the error decay between the

two methods based on known phantom data



513 RESULTS 111

5
4 51
41
3 51 }
y o 37
0
I
5 25 Var Method
g . EM Method
2 1
1 51
11
0 57
g +———r—T—T—— T T T T T T T T T T T T

11 13 15 17 1% 21 23 25 27 29
Iterations

Figure 5 20 Results of the 4D segmentation of the left ventricle cavity boundary
compared against those obtained from manual segmentation

5131 Testing under different motion approximation

In order to show the generality of the method, an implementation of the 4D
segmentation was performed using a different prior temporal model In this ex-
periment, the temporal function 1s given a linear function In Figure 5 21 a cube
1s expanded using a hinear function Thus 1s illustrated better in Figure 5 22 which
graphs the volume acquired using the Fast Marching algorithm over time In this
graph, the fitting of a linear function to the data 1s also given

Figure 521 Selected images from a 4D sequence demonstrating a linear volume
expansion

5132 Coupled Approach

Coupling of two level-sets can also be achieved 1n a coherent and thorough way by
employing two Gaussian models, as illustrated m Figure 523 Again, 1n a non-
rgid sense each point on the grid has associated with 1t the parameters for two
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Figure 523 Estimation using prior knowledge of the Epi-cardium and Endo-
cardium deformation through the cardiac cycle using inverse Gaussian curves

Gaussian models representing the evolution of the epi-cardium and endo-cardium
boundary The evolution of the epi-cardium boundary 1s less pronounced and
therefore the Gaussian model 1s shallower Results from a coupled segmentation

are 1llustrated 1in Figure 5 24 for different phases and slices

514 Conclusions

In this chapter, deformable contours for feature extraction in medical imaging
were ntroduced and discussed An overview of current methods employed 1n the

segmentation of the left ventricle of the heart was performed
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Figure 524 Results from a coupled 4D segmentation of a cardiac sequence for
dastolic, systolic and mid-phase for a basal (top row), mid-slice (middle row),
and apical shce (bottom row)

A novel formulation for the segmentation of the left ventricle 1s developed
using a coupling of two level-set surfaces representing the endo- and epi-cardium
boundaries This was then extended to incorporate prior knowledge about left
ventricle anatomy from manually segmented 1mages encoded in a probabilistic
model This method provides adequate results in mid and basal slices where
spilling 1s avoided by adding the additional constramts imposed by the prior
knowledge However, this method encountered difficulty in data representing
high vanation and in particular in the 1rregular shapes present near the apical re-
gions In these approaches, strengthening the a prior’s influence on the evolution

may result 1n loss of segmentation detail, patient abnormalities, muscle dysfunc-
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tion etc Investigating ways of improving accuracy without removing generality
are addressed in the following methodology A new supervision 1s proposed that
does not encodes the prior knowledge based on nformation from the image space

A new general solution to left ventricle segmentation from 4D MRI data 1s
presented Temporal information obtained from the imitialisation based on a fast-
marching segmentation is encoded m a parametric model The model 1s based
on non-rigid deformation of the left ventricle boundaries over time using prior
knowledge about cardiac dynamics After each evolution of the level-set algo-
rithm, the model 1s optimised to the data using an expectation-maximisation to
reduce to target to object error This approach has the following advantages,
firstly, 1t provides a temporal smoothing over the cardiac cycle that 1s consistent
with the motion of the cardiac muscle, secondly 1t constrains the boundaries from
spilling 1n the event that a particular time instance lacks appropriate gradient
mformation and finally, the temporal model 1s defined on each grid voxel within
the narrow-band, this has the advantage that 1t can incorporate longitudinal con-
traction and expansion along the short axis into the model This unuque property

of the temporal model can be realised due to the formulation of the level-set

Excellent results are obtained when compared to expertly assisted segmenta-
tions of the boundaries This method also gives comparable performance against
other methods described m literature, for example Kaus et al [69] report a
mean error of 2 4540 75mm for the end-diastolic phase and 2 84+1 05mm for
end-systolic phase using a deformable model techmque

This method did not perform as accurately against the manual segmentation
when comparing results to those illustrated in Chapter 4 In this applcation,
supervision was achieved in the evolution of the boundaries by incorporating
knowledge both 1n the temporal and space domain Manual segmentation or the
statistical partitioning techmques described in earlier chapters do use temporal
information when segmenting the left ventricle In this way, we believe that the
3D+t approach provides more accurate results, ensuring the cardiac boundaries
evolve 1n a smooth fashion more consistent to the physical motion of the muscle
By incorporating the 4D data, we can remove inconsistencies in signal intensity
values by smoothing the values over the high resolution temporal and spatial data

The results are illustrated for a coupled surface segmentation where the left

ventricle inner and outer boundaries are tracked in a computationally efficient
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way using two separate models of temporal motion

Fimally, this techmique represents a framework for incorporating temporal 1n-
formation nto the evolution of an evolving surface Also, demonstrated is a
variation of this approach where temporal information 1s applied using a hnear
temporal model as the prior information This may be associated with tracking
the movement of passing objects The complexity of the temporal model 1s not
a hmiting factor in this methodology and further apphications of this technique

are discussed 1n the following chapter

Pubhlications associated with this chapter

Journal Publications
In Submussion

Michael Lynch, Ovidiu Ghita, Paul F Whelan Segmentation of the left
ventricle in 3D + ¢t MRI data using an optimised non-rigid temporal
model Submitted to IEEE Transactions in Medical Imaging, March 2006

Michael Lynch, Ovidiu Ghita, Paul F Whelan Left-Ventricle myocardium
segmentation using a Coupled Level-Set with A-Prior1 knowledge Sub-
mitted to Computerized Medical Imaging and Graphics, November 2005



Chapter 6

Conclusions and Further
Developments

In this concluding chapter of the thesis, an overview of methods developed for the
segmentation and tracking of the left ventricle myocardium 1s discussed With
particular emphasis on the aims and challenges outlined in Chapter 1, the mo-
tives for choosing particular paths in research are examined The relevant results
from each of the processes are also discussed 1n relation to the objectives In the
final part of the chapter, the prospect of further work 1is investigated 1n relation
to the application of the proposed methods in different scenarios and also the

advancement of the developed methodologies

61 Summary

Diagnosis of cardiac disease can be achieved through the accurate measurement
of cardiac function [103, 128] In order to extract the most relevant clinical mea-
surements from the heart, the thoracic cavity must be imaged and the cardiac
muscle of the left ventricle needs to be segmented MR 1maging gives relatively
high spatial and temporal resolution of the beating heart without the need for
iomsing radiation The 1maging of the heart 1s fast, non-invasive, painless and

entails mummum discomfort to the patient

In order to increase the accuracy, speed and repeatability of the functional
measurements of the cardiac data, much research has focussed on the image anal-

117
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ysis tasks involved in the segmentation of the cardiac muscle of the left ventricle
In this thesis, novel methods are employed 1n the segmentation of the left ventn-
cle myocardium By increasing the dimensionality of the solution thus expanding
the amount of data being processed a more involved techmque 1s developed that
incorporates the three dimensional 1mage data plus the temporal data obtained

from the MRI scanner

The problem 1s addressed in a systematic approach, first dealing with the
inherent noise associated with the medical imaging procedures A performance
characterisation of the main diffusive based non-linear filters 1s provided both 1n
2D and 3D The performance 1s evaluated using two measures, firstly the filters
ability to smooth the noise in homogeneous areas and secondly the filters facihity
to preserve strong edges 1n the 1mage using edge strength and edge spread as the
criteria The evaluation was performed in MRI data of varying protocols From
these measurements an approprate filter 1s chosen as a tool to accurately remove

unwanted noise from the images

When the unwanted artifacts have been removed from the input data, sta-
tistical partitioning 1s successfully employed to automatically segment the image
into appropriate anatomical structures based on signal intensity in both 2D and
3D data A novel localisation of the left ventricle blood pool 1s achieved using
shape descriptors before segmentation of the outer wall of the left ventricle my-

ocardium 1s accomplished using gradient information and prior knowledge

To fully utihise all the data presented from a single patient scan, methods were
investigated for the introduction of temporal information into the segmentation
process Temporal information 1s useful, as predictions of spacial deformation
can be used to increase robustness segmentation Level-set theory 1s introduced
as a numerically stable method of evolving a surface in 3D based on intrinsic
properties of the surface and external forces obtained from the image In this
thesis, a successful extension of Malladi and Sethians [86] formalisation for shape
recovery 1s employed which incorporates a texture component and a probabilistic
model of previously segmented cardiac boundaries to avoid the surface spilling
into other anatomical structures in the presence of low gradient Employing the
1dea of a coupled level-set introduced by Zeng et al [181], the inner and outer
wall of the left ventricle are segmented simultaneously using coupled surfaces that

teracts using a coupling function
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Exploiting the Eulerian formalisation of the level set, the extension to com-
plete 4D segmentation introduces a parametric model of left ventricle deformation
over a cardiac cycle to aid the segmentation This model 1s then iteratively refined
using a optimisation algorithm The model 1s re-parameterised for each position
on the grid within a narrow-band of the evolving surface or surfaces, giving 1t a
non-rigid deformation to take account of areas of the cardiac muscle that do not
demonstrate significant spatial deformation, for example in the case of diseased

tissue

Each of the methods introduced have been tested on synthetic images and
real patient scans Performance 1s evaluated by comparing results against ex-
pertly* assisted manual delineation of the cardiac contours In the next section,
the strategies employed and advantages of this methods over existing methods

commonly used n the cardiac segmentation will be discussed

6 2 Contributions

In assessing the research conducted in this project toward the goal of cardiac
image analysis, 1t 15 clear that a number of significant contributions have been
made as well as other minor contributions One of the objectives of the project
1s to integrate all the data available from a single patient scan into the segmen-
tation process in an appropriate and functional manner A full characterisation
1s attained at each stage in the development of the hypothesis The major con-

tributions of this thesis are as follows

¢ A novel method for the segmentation of 4D information using prior knowl-
edge about temporal deformation 1s introduced m a level-set framework
This prior knowledge 1s then iteratively optinused through the segmenta-

tion process

e Produced a novel formulation for a coupled segmentation scheme, 1n a level-
set framework, using a probabilistic model which segments the myocardium

of the left ventricle

e Developed an improved methodology for cardiac 1mage analysis using sta-

tistical data partitioning

*The vahdation was performed by Dr John Murray, Cardiologist, Mater Misericordiae
Hosp1tal, Dublin, Ireland
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s Formed a gradient based segmentation of the left ventricle muscle outer

wall using prior knowledge

e Performed a full characterisation of advanced data filtering algorithms 1n

medical 1mages
There were also some minor contributions resulting from this research

» Developed a novel seed generator for imnitiahising seed positions for automatic

data partitioning algorithms based on histogram analysis

o Apphed the level-set segmentation technique in CT data for the extraction

of polyp morphology for colon cancer detection

¢ Designed a basic graphical user interface, see Figure 6 1, for visualising data
and patient information and a separate back-end repository of algorithms

for medical data processing and analysis

6 3 Discussion

At the start of this thesis, a brief overview of two opposite approaches to seg-
mentation were outlined, bottom-up and top-down approaches Some examples
of how both methodologies have been applied in the field of medical umaging were
also given From this imitial discussion, a number of advantages and disadvan-

tages for both were provided

Firstly, bottom-up approaches offer a general solution without making any
assumptions about the data being processed or about the final solution to the
problem Spatial information may be used locally about a small neighbourhood
(edge-detectors, region-growing) or may not be used at all (thresholding, signal
mtensity clustering) These methods perform effectively in well defined data such
as in CT data or 1n data after performing advanced filtering but in the case of
poor or noisey data, bottom-up techmques can produce unpredictable and un-

controllable results

On the other hand, top-down approaches such as template matching, ASMs
and AAMs perform the segmentation using purely information that has been
used 1n a training process For example, template matching uses information in
a global sense to munimise the error in order to find the most appropnate fit

between the image data and the template Such methods have demonstrated
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robust localisation 1n the presence of low SNR [150] Incorporating other metrics
mnto the model such as texture has been shown to mimmise the model to tar-
get differences Other methods have been developed for minmimising the model
to target differences involving alternative approaches to model construction such
as PCA, where the principal components of the models variation are utilised in
the deformation process Top-down approaches are limited in their use where
the structure of the target object varies significantly from those contained 1n the
training data For example in cardiac imaging, the general models employed by
ASMs\AAMs that are obtained from traiming sets are hmited in their application
for accurate segmentation to the variety of heart shapes Abnormalities 1n the
mage data can indicate disease Model based approaches approximate to the
closest plausible instance shape from the traiming set Point Distribution Model
(PDM), but this may not be sufficiently accurate Also, AAMs cannot deal well

with the changes in texture

Also included in Chapter 2 was a note on how to combine both top-down and
bottom-up approaches in order to obtain a more appropriate solution In this
thesis, methods of effectively combining prior information and local image prop-
erties are investigated Following the removal of unwanted noise from the image,
the process of partitioning the structural features wathin the 1mage 1s achieved
using a statistical based clustering algorithm Localisation of the left ventricle
cavity 1s achieved using prior knowledge about the shape of the structure based
on prior knowledge Once the left ventricle cavity has being successfully localised
and extracted, a novel method for the outer wall of the left ventricle cavity 1s
pursued Approximate knowledge about the myocardium thickness 1s obtained
from the distance between the left and right blood pools, assuming that the nght
ventricle blood pool 1s close to the left ventricle blood pool and the separating
muscle (interventricular septum) approximates the thickness of the myocardium
around the left ventricle This knowledge 1s used when extracting local gradient
mnformation that may form part of the epi-cardium boundary By linking ap-
propriate edges together, segments are produced These segments can then be
elminated with respect to orientation Where gradient information 1s lacking, a
top-down approach 1s adopted whereby missing segments are inserted by means

of a probabilistic model of previously segmented 1mages

To further advance the concept of using the top-down approaches to guide
bottom-up approaches, the idea of an evolving surface 1s introduced in Chap-
ter 5 In a level-set framework, prior knowledge about the distance between
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the ep1- and endo-cardium boundaries as well as a probabilistic model of previ-
ously segmented 1mages were used to influence a coupled level set deformation
The probabilistic model 1s mtroduced as a cost function, penalising growth away
from model instances Unlike the vanational framework proposed by Paragios
[110, 111] that uses both probabihstic measures for signal intensity obtained from
an expectation-maximisation algorithm and prior shape information encoded m
a level-set framework, our method uses high gradient information as the predomi-
nant stopping term and can therefore be applicable 1n situations where variations

In grayscale are encountered

Extending this methodology to 3D + ¢ space, the aim was to remove the
confidence attributed to the prior knowledge of the anatomical shape of the left
ventricle, as 1t 1s known to contain a high degree of vanation especially in abnor-
mal or unhealthy specimens It 1s proposed to model the temporal motion of the
heart, as temporal motion 1n healthy and unhealthy hearts maintain the systole
and diastole phases Using this characteristic, a temporal model 1s constructed
and iteratively updated to guide the local deformation of the level-set algorithm
This method of top-down knowledge about temporal deformation, optimised 1n
order to influence the bottom-up approach gives a significant step towards a ro-
bust, elegant and complete solution to the 3D + ¢ segmentation problem The
idea of encoding the temporal motion 1in a parametric model can be appled n

different scenarios In the next section, some possible situations are discussed

64 Further Work

While this work addresses a specific research question, there 1s further work which
can be undertaken 1 a broader sense as a result of the 1deas put forward In this

section a number of areas are proposed which warrant further investigation

Initiahsation of the level-set algorithm could be improved Fast-marching al-
gonthm does not take curvature terms into 1ts evolution Further advancement
of the fast marching method can improve the imtialisation of the temporal model

parameters used in the 4D case described mn this thesis

From a theoretical aspect, the level-set formulation 1s robust and numerically
stable Further work may involve a more involved formalisation of the level-set

evolution 1n order to incorporate the 4D information Further advances may n-
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clude the extension of the temporal model using non-linear approximations with
more advanced functions The temporal motion model may also be encoded n
PCA or other method to reduce the dimensionality of the model These models
may be derived using data from prior information based on expertly segmented

cardiac images

In this thesis, a novel method for applying top-down information 1n a bottom-
up approach to segmentation 1s achieved The application chosen to demonstrate
the 1deas proposed 1n this thesis are in multi-dimensional cardiac data Apph-
cation of these 1deas in different areas would warrant further investigation The
work may be transfered to perform segmentation in the right ventricle or the
measurement, of valve regurgitation may also be achieved Modelling temporal
characteristics using more advanced functions can be utilised outside of the med:-
cal domamm Measuring growth 1n plants may be one application of this technique
1)

6 5 Concluding Remarks

In this work, a thorough mvestigation mto multidimensional image analysis of
cardiac data in MRI has been performed which was the main contribution of this
research The primary steps mvolved advancing the framework from a purely
bottom-up approach based on statistical analysis to a more mvolved approach
based on surface propagation using increasing dimensional data and incorporat-
ing top-down information to aid the segmentation This 1s achieved n a novel
and intuitive fashion Optimisation of the algorithms performance from a com-
putational expense point of view was performed but advanced developments in
this area was not one of the man goals for this project Additional research has
been investigated outside the topic and contribute to mimor advances 1n research

These are explained 1n detail 1n Appendix A and B
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Appendix A

Application of the
Expectation-Maximisation
Algorithm to Medical Images

This appendix details the Expectation-Maximisation (EM) for partitioning image
using pixel intensity values A novel approach for the initiahsation of parameters

1s detailed using analysis of the intensity histogram of the image

The application of the EM algorithm for the partitioning of medical images
mto anatomical structures has being documented, particularly in brain segmen-
tation in MRI [47] The EM algorithm shows robust and repeatable performance
mn the segmentations of heart, brain and abdominal images The EM algorithm
1s locally convergent [174, 40, 13] so we have introduced an automatic seeding
method that uses local maxima m the intensity histogram In this appendix the
novel mmtialisation of the EM algorithm 1s investigated and analysis is presented
Also results against manual 1nitialisation and apply the algorithm to some com-

mon medical image processing tasks are demonstrated

A.1 EM Algorithm

The EM algorithm [40, 14] attempts to classify data using a soft membership func-
tion as a weighted sum of a number of Gaussian distnibutions called a Gaussian
Mixture Model (GMM) The generation of this GMM 1s achieved through an EM

127
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Figure A 1 Image intensity histogram overlayed with an illustration of the asso-
ciated Gaussian Mixture model

techmque, which aims to find the maximum likelihood estimate for an underlying
distribution from a given data set when the data 1s incomplete Its advantage over
the k-means clustering techmque [42] 1s 1ts ability to provide a statistical model of
the data and 1ts capability of handling the associated uncertainties Consider the
general case of a d-dimensional random variable X = [z, 22,73, ,z4)7 and sup-
pose 1t follows a k-component finite mixture distribution Its probability density

function (pdf) could be wnitten as,

k
p(z|0) = Z amp(z|Om) (A1)

m=1

where k 1s the number of mixtures, a,, 1s the mixing parameter for each of the
Gaussian’s in the GMM and and p(z|8,,) 1s the probability that variable z belongs
to class €, and 1s defined in Equation A 2

Tt (A2)

p(xlem(:u’rmom)) = 0\},};

where 8, = {itm,om} are the Gaussian’s parameters This can be displayed
graphically in Figure A 1 The value of a,, 1s defined as,
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k
am > 0, and Za=1 (A3)
m=1
The algorithm 1s built on an iterative scheme and consists of two steps The first,
the E-step, calculates the expected log-hkelthood function for the complete data,
defined by Q using the estimates for the parameters §(t) X defines the input
data and Y defines the output classified data

Q(8,4(t)) = Ellog p(X, Y|8)|X,8(2)] (A4)

The second, M-step, uses the maximized values of this result to generate the next

set of parameters

gt +1) = arg max Q(8,4(¢)) (A 5)
The algorithm 1terates between (A 4) and (A 5) until convergence 1s reached It
1s important to note that local convergence of the EM algorithm 1s assured since
# 1s smaller at each iteration [174, 40, 13]

The updates for the parameters for the GMM are the muxture values arn,
and the Gaussian’s parameters 6,, = {im,0m} These can be calculated from
Equations A6, A7 and A8

k

1 .
™V = 7 Z p(m|z,,0(t)) (A 6)
m=1
k ~
’u’&ew - an:l :Cip(m|zhné)) " 7)
Zk p(mlz, é)(zl — unew) (g, — pnev T
o.;zew — m=1 ) m N toj (A 8)

ZZ}:] p(m|z,, é)

Al1 Seed Generation

To address the mmtialisation step a novel approach to collect relevant seed points
for cluster centers based on histogram analysis 1s developed A hstogram of the
image data 1s constructed, n,, where n 1s the number of pixels contained in the
bin with value 3 This histogram 1s then divided into M evenly distributed bins
This value M 1s manually set, typically to a higher number than the number of
perceived relevant regions mn the image For the images shown 1n this appendix,
the value of M was set experimentally to 25 From each bin, the highest peak m
the histogram 1s assigned to a seed center, Cp,
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Cm = argmax(n,) (A9)
7

These M seed centers are then clustered together using their closeness in the
grayscale space until the desired number of seeds, k, 1s reached The clustering
18 an 1terative process where clusters are jomned together by evaluating the Eu-

chdean distance between the cluster centers

A 2 Results

The described scheme was applied to gated MRI short-axis images of the heart,
MRI coronal brain slices and a section from a whole body MRI showing the lower
abdomen The results are compared against those obtained when the cluster
means and variances are manually extracted from the image From Figure A 2
and Table A 1, 1t 1s clear that using the automatic seed imtiahsation gives a
better distribution of imtial seeds across the data Table A 1 presents the manu-
ally selected means of the Gaussians and automatically selected means using the
method described above Also, the Gaussian means following the EM algorithm

has been appled are presented

To evaluate the performance of the described algorithm, the EM segmenta-
tion algorithm 1s applied to each of the MRI datasets As mentioned previously,
the algonithm 1s locally convergent and therefore imtialisation of the algorithm 1s
crucial to the final solution A comparison 1s made between the results obtained
using the automatically seeding process and the results obtained when the 1ni-
tial seeds for the EM segmentation are chosen manually To achieve this, areas
are selected 1n each of the 1mages that attempt to represent the most sigm:ficant
regions This 1s objective and related to the purpose of the segmentation but
the overriding motivation 1s to pick regions that are chnically sigmficant and also
have a high degree of variation between regions In each of the images given, 6
regions were manually selected In these selected regions the mean pixel inten-
sity values and the variance of the pixel intensity values are calculated These
manually selected values are used as the imitial 8,,’s, where 1 < m < 6 1n the EM

algorithm, the mixing parameters a,, were each set to %

Figure A 21llustrates the strategy applied to short axis images from a cardiac
MRI study The areas manually selected are shown in Figure A 2 (b) and the
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Figure A 2 Figures show the short axis view of cardiac MRI (a) shows the
original image (b) indicates the manually selected areas (c) represents the results
after applying the EM using the manually picked mitialisation and (d) 1s the
result after applymg the automatic seed picking

resultant segmentation after applying the EM segmentation using these nitial
parameters 1s shown 1n Figure A 2 (¢) The final Figure A 2 (d) shows appropri-
ate results after the automatic parameter selection, 1n particular the results show
a better distribution within the grayscale distribution of the analysed image Fig-
ure A 3 shows a coronal shce from a T1-weighted head MRI Again the automatic
segmentation method performs well in differentiating the white matter from the
gray matter Figure A 4 shows a coronal slice from an abdominal section of a full
body MRI
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Table A1 Changes i cluster means 1n the Cardiac data

Manual y4's Manual p’s after EM  Automatic p’s  Automatic y’s after EM
©(0) 57 31914 55 2806 57 31 33457
u(l) 125 366 112 0961 137 125 284
©(2) 194 0437 151 1044 167 171 6872
w(3) 19 84193 16 74244 12 17 75531
w(4) 225 1899 112 8278 255 254 2933
w(5) 28 87568 28 43651 92 79 93145

It 1s clear from Tables A 1, A 2 and A 3 that the described automatic seed
picking algorithm demonstrates better performance when compared to the man-
ual selection technique This 1s evident from the lower differences between 1ni-
tialised seeds and the final values after optimisation through the EM algorithm

Most medical 1images obtamed from MRI are 3D and in some cases 4D, but
because the described algorithm works on the data histogram (hence, intensity
values) and 1s not dependent on spatial position, therefore as a result the al-
gorithm can be appled equally successfully to any dimensioned data This 1s
illustrated in Figure A 5 where the algorithm 1s successfully applied in 3D MRI
mmages This aspect 1s examined further in Section A 3 where the results are used
n conjunction with a diffusion based filtering [54, 115] to extract some chimcally

relevant regions from the 1mages

It 1s worth noting that statistical classification of pixels 1s a more appropriate
way to segment medical images as the standard region growing technique will fail
to produce appropriate results in 1mages that exhibit a low signal to noise ratio
(SNR) Also, medical 1mages generally show good separation between sigmficant
regions as this is one of the aims 1n the acqusition This 18 application dependent

some common medical applications are investigated 1n the following section

A 3 Applications in Medical Imaging

One of the key indicators of cardiac health 1s left ventricle ejection fraction, a
measure of the volume of blood pumped from the left ventricle with each heart-



A3 APPLICATIONS IN MEDICAL IMAGING 133

Figure A 3 Figures show an coronal slice from a brain MRI (@) shows the original
mmage (b) indicates the manually selected areas {c) represents the results after
applying the EM using the manually picked imtiahisation and (d) 1s the result
after applying the automatic seed picking

beat{48] Cardiac cine MRI 1s a standard procedure where 3D volume 1mages are
acquired at gated temporal positions through the cardiac pumping cycle Such
1mages are frequently taken using gradient echo imaging, which exhibits a rela-
tively high differentiation between the blood and the myocardium Figure A 6
shows the end-diastole segmented left ventricle blood-pool after the apphcation of
the EM algorithm to identify the left ventricle cavity Figure A 6(e) 1s a rendered
volume of the blood pool nside the cavity of the left ventricle when the muscle

1s at 1ts end-diastole phase



134 APPENDIX A EXPECTATION MAXIMISATION

Table A 2 Changes in cluster means 1n the brain data

Manual ¢£’s Manual p’s after EM  Automatic p’s  Automatic p’s after EM
u(0) 164 6 123 922 116 117 66
u(1) 131 18 120 03 96 97 8356
1(2) 23 203 13 207
w(3) 66 59 3301 44 27 48
w(4) 901 94 49 73 70 836
w(5) 164 21 194 81 153 140 6223

Figure A 4 Figures show a coronal slice from a section of a full body MRI (a)
shows the original image (b) indicates the manually selected areas (c¢) represents
the results after applying the EM using the manually picked initialisation and
(d) 1s the result after applying the automatic seed picking

The classification of brain MRI’s white matter, gray matter, cerebrospinal
fluid and 1n some cases lesions, 1s a fundamental first step for surgical planning,
radiotherapy planning and the identification of brain disease [180] Illustrated in
Figure A 7 1s a segmentation of white matter of the brain

The accurate measurement of body fat from whole-body MRI images 1s becoming
an increasingly important metric as high body fat level is recognised to play a
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Table A3 Changes m cluster means in the whole body data

Manual p’s Manual p’s after EM  Automatic u’s Automatic p’s after EM
1(0) 170 92 169 4365 183 178 41
u(l) 42 29 44 45 52 50 484
©(2) 384 4177 o 427
u(3) 123 61 118 868 151 153 720
w(4) 95 35 82 99 124 121 496
u(5) 572 55 897 92 85 687

significant role 1n a variety of serious health problems [18] MRI 1s the modality of
choice due to 1ts repeatability and high spatial resolution Figure A 8 1llustrates
the results from one section of a whole-body MRI dataset where the fat tissue

has being segmented out of the volume

The developed method shows appropriate results with respect to the gray scale
values for all datasets From these results we can conclude that this approach
offers robust, reproducible and accurate estimation of the initial parameters for
the EM algorithm and the segmentation scheme described 1s capable of providing

useful chnical measurements when applied to a large range of medical datasets
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ages, European Society of Cardiac Imaging, ESCR 2005, October 2005, Zurich,

Switzerland
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Figure A 5 3D space partitioning using EM Images show a single shce of a
3D dataset from (a) the onginal volume, (b) after segmentation with the EM
algorithm
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Figure A 6 Images show shces 1 ((a) and (b)) and 4 ((c) and (d)) from the
original volume (left) and with left ventricle blood cavity segmented (right) and
(e) shows the rendered volume of the segmentation
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(e}

Figure A 7 Images show slices 1 ((a) and (b)) and 14 ((¢) and (d)) from the
oniginal volume (left) and with segmented white matter (right) and (e) shows the
rendered volume of the segmentation
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(e)

Figure A 8 Images show slices 2 ( (a) and (b)) and 6 ((c) and (d)) from the
original volume (left) and with body fat segmented (right) and (e) shows the
rendered volume of the segmentation



Appendix B

Level-set Segmentation for
Candidate Polyp extraction in
CTC

The extraction of candidate polyps from Computer Tomography Colonography
(CTC ) 1s a primary and 1mportant step in candidate polyp classification, where
polyps are a precursor to colon cancer Such a classification step 1s necessary
due to the high frequency of false positive polyp detections which are apparent 1n
previous computer aided diagnostic techniques Previous work 1n this area uses
curvature constramnts on candidate polyps to establish morphology {176] This
type of classification encounters difficulty when determining folds, a naturally
occurning nstance 1n the colonography exam In this work, we have used surface
normal ntersection to determine possible polyp candidates, we then proceed to
segment the polyp using a level set curve evolution algorithm to extract an ac-
curate segmentation of the polyp features Results are presented using point to
surface error and the reduction in false positives after the extracted surfaces were

classified using a statistical classifier

Much of the previous work m polyp extraction uses local curvature and shape
constraints to determine polyp candidates and to estabhsh morphology [154, 178,
72] This type of classification encounters difficulty when determining folds, a
naturally occurring mstance in the colonography exam Yao et al [176] proposed
a segmentation of method which used a knowledge guided deformable model to
extract the surface of the polyp and compared 1t to manual segmentation of
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experts The knowledge was provided by the curvature of the deformable model
and the signal intensities of the pixels surrounding the polyp The segmentation
was performed 1n 2D and the 2D 1mages were combined together to create the

local 3D volume

B 1 Convex Surface Extraction

Initially, the colon 1s segmented using a seeded 3D region growing algorithm that
was applied to segment the air voxels, which assures the robust identification of
the colon wall In some situations the colon 1s collapsed due to either msufficient
mnsuflation or residual water In order to address this 1ssue we have developed
a novel colon segmentation algorithm that 1s able to correctly 1dentafy the colon
segments using knowledge about their sizes and location within the body 1n all
maging conditions After the 1dentification of the colon wall, for each colon wall
voxel the surface normal vector 1s calculated using the Hummel-Zucker operator
[182] The normal vectors sample the local orientation of the colomic surface
and the suspicious candidate structures that may resemble polyps are extracted
using a simple convexity analysis In this regard, the colonic suspicious surfaces
have convex properties and are determined using the 3D histogram and Gaussian
distnibution of the Hough points (full details about this developed algorithm can
be found 1n [29]) This method 1s able to correctly 1dentify all polyps above 3mm
but 1t 1s worth nothing that this 1s achieved at a cost of high level of false positives
In order to reduce the level of false positives, the surface 1s extracted using a
level-set method and the results are classified using a statistical morphological

features

B 2 Level-Set Imtialisation Fast-Marching Algonthm

As previously outlined 1n Chapter 5 formulation of the problem 1s conceptually
simple The evolving curve or front I', evolves as the zero level-set of a higher
dimensional function ¢ This function deforms with a force F' that 1s dependent
on both curvature of the front and external forces in the image The force acts

1n the direction of the normal to the front

o1+ F|Vg| =0
¢(z,y,t = 0) = given

(B1)

The implementation employed 1s a standard two step approach which includes
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Convex surface
extraction

Candidate Polyp
centers

FastMarching
and
Level-set &

Surface
Classifier

Figure B1 Flow-chart of proposed algorithm

a fast-marching initial step to speed up the segmentation Fast marching 1s a
special case of the above equation where F(z,y) > 0 Let T(z,y) be the time
that the front I' crosses the pomnt (x,y) The function T'(z,y) then satisfies the

equation,
IVT|F =1 (B 2)

which simply says that the gradient of the arrival time 1s inversely proportional
to the speed of the surface The T function 1s evaluated using the diffusion and
attraction to pixels within the front The front grows out from 1ts init:al position
to points with the smallest value of T'(z,y) The T'(z, y) function 1s then updated
and continued until the front does not grow

B 3 Level-Set Analysis

The theory behind level-set segmentation 1s largely based on work 1n partial dif-
ferential equations and the propagation of fronts under mntrinsic properties such
as curvature [108, 133, 41, 74] By extending the dimensionahty of the problem

to N+1,where N 1s the mnitial dimension of the problem, some advantageous prop-
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erties can be exploited Representing the boundary as the zero level set instance
of a higher dimensional function ¢, the effects of curvature can be easily incor-
porated ¢ 1s represented by the continuous Lipschitz function ¢(s,t = 0) = +d,
where d 15 the signed distance from position s to the initial interface I'y (see Equa-
tion B 3) The distance 1s given a positive sign outside the mitial boundary ( D Q
), a negative sign inside the boundary ( 2\ 0 ) and zero on the boundary ( 9Q)

~d Vs e 0\ 80
¢(s) =<0 Vs € 090 (B 3)
+d Vs € R*\ Q

From this defimtion of ¢, intrinsic properties of the front can be easily deter-
rmned, like the normal 77 = i%%

Since curvature of the polyp should be a pertinent factor 1n the segmentation
evolution, particular emphasis 1s given to this measure The mean curvature (H),
1s connected to the physical evolution of soap bubbles and the heat equation
While smooth, 1t may not necessarily be convex and can lead to singularities

V¢
H=V — (B 4)
Ve

Gaussian curvature (K), has also being used to model physical problems such
as flame propagation It has being shown that a convex curve evolves to a point
under curvature evolution, but 1t can also be shown that evolution of non-convex

surfaces can be unstable [7]

_ V4T Ad) (H(4))V
Vo[

where H(¢) 1s the Hessian matrix of ¢, and Adj(H) 1s the adjont of the matrix H

K (B 5)

Due to the charactenstic curvature features of polyps it 1s proposed to use
Neskovic and Kima'’s [106] measure of curvature, which mvolves both mean and
Gausstan In this approach, the direction of flow 1s obtained from the Mean
curvature while the magmtude of the flow 1s dictated by the Gaussian curva-

ture This 1s appropriate as the Mean curvature alone can cause simgularities and
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extracts the strictly convex surface of the polyp candidate

k= swn(H)\/K + |K| (B 6)

Using this value for &, the level set 1s 1teratively updated within a defined
narrow band around the segmented boundary to increase efficiency The following

equation details the update parameters
be+1 = + ki (1 — €x)|Ve| + BVI V¢ (B7)

where ¢ and beta are user defined parameters (see Table B 1), # 1s the curvature
term defined in Equation B 6 and kj 1s the gradient dependent speed term and
18 given by TIV_I The third term, VI V¢ represents the attractive force vector
normal to the front The level-set segmentation 1s performed in 3D

Possible polyp candidate centres are calculated over the entire data set by
calculating the normal vectors at each voxel on the lumen wall Polyp candidates
are defined as regions of high convexity, therefore the centres for possible polyp
candidates are located at pomts that contamn high concentration of normal 1nter-

N

sections [29]

The level set 1s initialised at the polyp candidate centres and grows outwards
until a boundary 1s encountered The convex surface is maintained by placing a
high influence on the curvature parameter (see Figure B 2) Once the level-set
has converged or completed 1ts 1iterations, the surface of the polyp candidate 1s
taken as all boundary points that have an associated gradient This ensures that

just the lumen surface is extracted

Figure B 2 Extracted polyp surface (dotted) using the levelset approach based
on curvature
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B 4 Classifier

Once the true surface of the polyp candidates has being extracted, they are passed
to a classifier to determine whether they are polyps or folds The classifier 1s a
statistical model of known polyps and folds and uses statistical features of the
candidates morphology such as least squares ellipsoid fitting error, normalised
distribution of the surface curvature and the Gaussian sphere radius {29] These
features are used to classify the candidate polyp surfaces into polyps or folds using
a feature normalised nearest neighbour classification scheme [55] The classifier
was tramed with 64 polyps and 354 folds that were selected as true positives by

a radiologist

B.5 Results

The segmentation algorithm described above was performed on 10 full CTC data
set, converted to 1sotropic dimensions using cubic mnterpolation Visual represen-
tations of the segmentation are shown in Figure B 3 and the extracted surface
renderings are shown 1 Figure B5 Table B 1 lists the user defined parameters
used 1n the level-set algorithm From this table 1t can be seen that curvature is
given a large influence to maintain the convexuty of the polyp candidate surface
The narrow bandwidth 1s grven a small value of 10 to increase the efficiency of
the update

A classifier, traimned on expertly categorised unseen data, 1s then used to
determine whether the extracted surface 1s classified as polyp or non-polyp Small
folds 1n the colon lumen are the main cause of detecting a false positive It can
be clearly seen 1n Figure B 5 that fold surface 1s extracted s saddle shaped and
thus can be easily classified using 1ts shape characteristics

Table B 2 shows the measured point-to-curve error between the automatic
segmentation results aganst those found from a manual segmentation of ‘the
small number of polyp candidates Indicated on the table are the average error,
standard deviation of the error and the root-mean-square of the error This error
1s measured 1n pixels where each pixel has sub-millimeter dimensions

Table B 3 gives the results from 10 datasets (9 patients) containing 31 polyps
From the high number of polyp surface candidates, a relatively low number are
detected The results show a sensitivity of 100% for all polyps >10mm Normally,
m a chinical situation, polyps below 5mm have less climcal significance One
cause for our method missing smaller polyps, are their low curvature difference

between the polyp and the colon wall, therefore some colon wall 1s taken into
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(b)

(c) (d)

Figure B3 Images above show the segmentation of the convex polyp candidate
The bottom left 1mage shows the segmentation of a fold

Table B1 Control parameters used 1n the level-set segmentation

Control Parameters Values
Fast-Marching Iterations 3
Level-set Iterations 10
Level-set ¢ 05
Level-set 008
Level-set Narrow bandwidth | 10

Table B2 Pomt-to-curve errors between manually segmented data and our
method

Error | Average Std Dev RMS
| 0 298 0 587 0 661
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EXTRACTION IN CTC

Table B3 Performance Analysis for Polyp Classification True positive (TP)

and False Positive (FP)

Size

Detected Missed

>10mm
5-10mm
< 5mm

10 0
9 1
2 20

the candidate surface (see Figure B 6 and Figure B 4) The false positives per
dataset was calculated to be 1 3, which compares favorably with figures reported

to hiterature

Figure B 4 Extracted polyp surface (dotted) for a small polyp, note the inclusion

of healthy colon lumen

(f)

Figure B5 Images above show the polyp candidate renderings of the extracted
surface Figures (a)-(c) show correctly classified polyps, where Figures (d)-(f)

show correctly classified folds
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Figure B 6 One of the <5mm polyps misclassified due to the inclusion of colon
wall in the surface extraction

Publications associated with this chapter

Conference Publication

Michael Lynch, Tarik Chowdhury, Ovidiu Ghita and Paul F Whelan (2005), De-
termining Candidate Polyp Morphology from CT Colonography using
a Level-Set Method, European Medical and Biological Engineering Conference
EMBEC 2005, November 2005, Prague, Czech Republic



Appendix C

Mathematical Background

C1 LMS Circle

Using the Least Squares solufion a circle 1s fitted around a collection of pomnts,

P,, with umages coordinates, (z,,y,) fort = 1,2 N

A arcle 1s defined by three parameters These parameters are the coordinates
of 1ts centre (zg, yo) and 1ts radius 7 The equation of a circle can be written 1so-

lating these three parameters as follows

(2:1:., 2, 1) vo =(w3+y3)

2 2 2
=Ty~ Y%

In order to find these three unknowns a linear least squares solution 1s obtaned

where
221 2n 1 z% -+ y%
222 2y 1 x% + y%
A=1 223 2y 1 b= 2l 42
208 2yn 1 z3 + vy

The best fitting circle for the points P, 1s the least squares solution to [z yo 72~

z3 - y2)T = (AT A)"1ATb where (AT A)=ATb can be written as

151
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-1

1y 2?2 A oy 23z 25 23 +23 7,92
4y my. 4Ty 2T w 2y + 2% oy,
23 =, 2Y. % N Yz, + Yy

The error of this least squares solution can be calculated as the difference between
the area of the fitted circle and the area of concentric circles passing through the

data ponts with the equation ecree =|| Alzg w0 72 —z2 — 93] — b ||

C 2 LMS Elhpsoid

To determine the left ventricle cavity after the application of 3D clustering, the
error between each segmented shape and a fitted ellipsoid 1s found The radu of
the ellipsoid are calculated using the eigenvalues of the covariance matnix from
the lists of points that define the surface of the shape

N-1 (z—z)? N—l (z—Z2)(y—7 N—- l ~-Z)(z—Z2)
) (IN) P I!(y g) E (= 2§

Oz UOzy Oz n=0
_ . N-1 (z—-Z)(y—7) N—l (y— y) N- 11y y!gz z)
C= oy 0y 0y = |Xaso N Dm0 2n-
N-1 (z-a)(2—%) N-1 (y— y!!z--z N l —z!
Ozz Oyz O Zn:ﬂ N Zn: N Z

(C1)

Based on work by Pearson, principle component analysis (PCA) chooses the
first ellipsoid axis as the hine that goes through the centroid, but also minimizes
the square of the distance of each pomnt to that line, see figure C1 The line 1s
a correlation of the points along the data’s principle axis Equivalently, the line

goes through the maximum vaniation in the data

The second PCA axis also must go through the centroid, and also goes through
the maximum variation 1n the data, but with a certain constraint It must be
completely uncorrelated (1 e at right angles, or ‘orthogonal’) to PCA axis1 The
ellipsoid 18 an extension of this PCA to 3D finding the three principal axes

C 3 Splines

A closed natural cubic spline 1s fitted around the points on the epi-cardium [144]

The spline 1s used to close the epi-cardium contour by connecting all the points
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Figure C1 The two principle axes of a two dimensional data set are plotted and
scaled according to the amount of variation that each axis explains

on the curve 1n a smooth way

Splines are piece-wise polynomials of degree n (n = 3 1n the case of cubic
splines) with the pieces smoothly joined together The joining points of the
polynomial pieces are called control points which need not be evenly spaced
These control ponts are defined as a collection of points P, where 1 =1,2,3 N
and N 1s the number of points It works by fitting a cubic curve between each
pair of points 1n the collection Smoothness of the curve 18 maintained by forcing
the first and second derivative of the end pomnt of one curve to equal the start of
the next curve This 1s achieved by solving a system of simultaneous equations

The equation 1s illustrated below
filx) = a +bu+ cu? + dud

0<u<l1
<1<

1<n

Where 1 1s the amount of points on the curve and u 1s the number of steps in

between each point The coefficients of the cubic equation are,

@ = Zn
& = 3(Tny1—Tp) — 2% — dfl’;“
di = 2(xq-To41)+ ‘(1133; n d;,;:l
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The derivatives used in to smooth the curve are computed as follows

-1

D[0] 41 1 3(z1 — r)
D(1] 1 4 1 Nzz — 30
1 4 1
1 4 1 3(zn — zn—2

Din] 1 1 4 3(zo — Zn-1)
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Abstract

Cardiac morphology 1s a key indicator of cardiac health Important metrics that
are currently in chnical use are left-ventricle cardiac ejection fraction, cardiac
muscle (myocardium) mass, myocardium thickness and myocardium thickeming
over the cardiac cycle Advances in imaging technologies have led to an increase
in temporal and spatial resolution Such an increase in data presents a laborious
task for medical practitioners to analyse

In this thesis, measurement of the cardiac left-ventricle function 1s achieved
by developing novel methods for the automatic segmentation of the left-ventricle
blood-pool and the left ventricle myocardium boundaries A preliminary chal-
lenge faced n this task is the removal of noise from Magnetic Resonance Imaging
(MRI) data, which 1s addressed by using advanced data filtering procedures Two
mechanisms for left-ventricle segmentation are employed

Firstly segmentation of the left ventricle blood-pool for the measurement of
ejection fraction 1s undertaken in the signal intensity domain Utilising the high
discrimination between blood and tissue, a novel methodology based on a sta-
tistical partitioning method offers success 1 localising and segmenting the blood
pool of the left ventricle From this initialisation, the estimation of the outer wall
(epi-cardium) of the left ventricle can be achieved using gradient information and
prior knowledge

Secondly, a more 1mvolved method for extracting the myocardium of the left-
ventricle 15 developed, that can better perform segmentation in higher dimen-
sions Spatial information 1s incorporated n the segmentation by employing a
gradient-based boundary evolution A level-set scheme 1s 1nplemented and a
novel formulation for the extraction of the cardiac muscle 1s introduced Two
surfaces, representing the inner and the outer boundaries of the left-ventricle, are
simultaneously evolved using a couphng function and supervised with a proba-
bilistic model of expertly assisted manual segmentations

Finally, to fully utihise all data presented from a single 4D cardiac (3D + t)
MRI scan a novel level-set segmentation process 1s developed that delineates and

XV
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tracks the boundaries of left ventricle By encoding prior knowledge about car-
diac temporal evolution 1n a parametric framework, an expectation-maximisation
algonthm tracks the myocardium deformation and iteratively updates the level-
set segmentation evolution m a non-rigid sense

Both methods for the extraction of cardiac functions have been tested on pa-
tient data and provide positive qualitative and quantitative experimental results
when compared against expertly assisted segmentations



Chapter 1

Introduction

An estimated 17 million people die annually from Cardiovascular Disease (CVD)

In general, CVD claims more lives each year than the next five leading causes of
death combined The World Health Organisation’s 2002 report [119], states that
29 3% of deaths 1n 1ts 191 countries were as a result of CVDs It 1s these alarming
statistics that has imtiated the substantial research into accurate measurements
of the heart for the determination of cardiac health through diagnostic imaging

The diagnosis and momtoring of cardiovascular disease, and the planning for ap-
propriate treatment relies on accurate imaging, analysis and visualisation of the

heart

Advances i diagnostic imaging technology, in particular Computer Tomog-
raphy (CT) and Magnetic Resonance (MR), has enabled greater amounts of in-
formation, 1n both the spatial and temporal dimensions to be generated This
high-resolution volumetric data, as a function of time, can give important phys-
10logical information about the heart The increase in data available has made
the hand annotation performed by the physician a very time-consumng task
This has pushed the advancement toward semi-automated and fully-automated
approaches to quantify the results obtained from these high resolution scanners
A substantial amount of research 1s focusing on the accurate measurement of
shape, volume and shape dynamics of the heart structure This thesis develops
the methodology for the automatic, quantitative and chnically relevant cardiac

analysis m multidimensional data
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1.1 Motivation

Quantitative measurement of the left ventricle of the heart 1s used as a key indi-
cator of cardiac health The left ventricle 1s important as 1t pumps oxygen-rich
blood around the body The increased volume of data generated by the latest
medical scanners presents a vast amount of high resolution volumetric data to
be interpreted by the specialist Interpreting and analyzing this large amount of
data represents a tedious and time-consuming task for the cardiologist Manual
or highly supervised tracing of the cardiac boundaries 1s a widely used method
to segment the left ventricle myocardium in current chnical studies In one such
scenario, a skilled operator, using a tracking ball or a mouse, manually traces
the region of interest on each shce of the volume {100, 46, 164] Manual shce
editing suffers from many drawbacks These include the difficulty n achieving
reproducible results, operator bias, forcing the operator to view each 2-D slice
separately to deduce and measure the shape and volume of 3-D structures, and
operator fatigue Since manual segmentation 1s labour-intensive, fime-consuming
and can suffer from inter- and intra-observer variability, the prospect of an au-
tomatic and accurate segmentation 1s highly desirable Automatic segmentation
will therefore enhance comparability between and within cardiac studies and

increase accurate evaluation of volumes by allowing acquisition of thinner MRI-

slices

1.2 Aims

The main objective of this thesis 1s to outhine the work carried out for the extrac-
tion of volumetric data and shape descriptors from MR 1mages of the heart and
to quantify the analysis against a standard of reference Analysis of the heart
function 1s achieved through segmentation of the left ventricle (LV) From this
accurate segmentation prognostic measurements used 1n the diagnosis of CVDs
are obtained, these include the ejection fraction (EF) of the left ventricle cavity,
left ventricle mass (LVM) of the myocardium and wall thickness and thicken-
ing (WT) of the left ventricle myocardium Therefore the expected outcome of
the work 1s to assist the cardiologist in the prognosis of CVDs by delineating
the true anatomical features present m the image and avoid making assumptions
over reading what 15 present Cardiac Magnetic Resonance (CMR) 1s the imaging
modality chosen for this study It 1s non-invasive, provides high temporal and

spatial resolution and high contrast between blood and the myocardium
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This thesis describes the methodology that 1dentifies the boundaries of the
left ventricle of the heart with minirnum user interaction The delineation allows
for the calculation of key measurements that may show anomalous heart function

and therefore may indicate CVD

1.3 Challenges

There are a number of challenges mvolved 1n the delineation of the left ventricle
from MR 1mage Medical images are acquired using the natural and umque re-
sponse of the bodies tissues to metabolic or nuclear changes These changes are
not 1deal and this mtroduces noise mnto the 1mage acquisition process in the form

of image distortions

Image distortions can be attributed to many factors, for example there 1s
random 1mage noise, blurring effects due to patient movement and coil itensity
fall-off Added to this, 1s the heterogeneous properties of the tissues, partial
voluming effects between the endocardium and the left ventricle blood pool, par-
ticularly at the apex and at end-systole due to the presence of trabeculae carneae
In cine-MRI the variation of intensity within a tissue 1s increased because 1t may
take several cycles of inducing a signal followed by measurement to image the

entire sequence This leads to gray-scale vanations between image slices

In short, there are many challenges that prevent the accurate delineation of
the left ventricle myocardium due to the presence of noise in the image, heart
dynamics and uneven breath-holds The developed procedure must remove the
ambiguous nature of the images while maintaining the strong anatomical features

before an accurate segmentation 1s achieved

As previously mentioned, modern scanners create a large amount of data in
both temporal and spatial domains Therefore the developed algorithms should
utilise all the information available Anatomical structures are represented in 3D
and therefore the segmentation process of such structures are most accurately
extracted using 3D algorithms Temporal coherence can also be mtroduced to
mncrease the robustness of the segmentation Prior knowledge 1s often used 1n med-
1cal 1maging analysis schemes to locahse and extract anatomical features This
thesis incorporates prior knowledge 1n the temporal domain as a generic measure

of temporal coherence which 1s 1iteratively refined, as opposed to prior models
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encoded mm the image domain where there may be large variation 1in anatomical
morphology Hence, one of the largest challenges undertaken in this thesis is to
incorporate both spatial and temporal information in a meaningful way to im-

prove the accuracy and robustness of the segmentation

1.4 Contributions

Based on the challenges outhned 1n the previous section, the major contributions
of this work lie in the segmentation of the left ventricle myocardium in multidi-
mensional MRI data There are a number of stages that are adopted and these

constitute the major contributions to this work

Firstly, in order to reduce the mmherent noise associated with MRI images,
a performance characterisation of advanced smoothing filters 1s performed The

characterisation 1s performed in both 2D and in 3D

A novel method for segmentation and locahisation of the left ventricle blood
pool using an unsupervised clustering technique 1s presented in Chapter 4 This
technique 1s approached 1n both a slice by slice and volume 1mage context After
the segmentation of the left ventricle blood pool cavity, an heuristic approach 1s
developed to extract the outer walls of the myocardium 1n each image slice This
technique 1s based on gradient information 1n the image and where such infor-
mation is lacking, a prior model of previously segmented myocardium 1mages 18
incorporated mnto the segmentation While this approach gives favorable results
in good quality data, introduction of temporal information into this framework
1s cumbersome Therefore a more involved approach 1s proposed that can easily

mcorporate extension to 4D data

Describing a contour as a particular instance of a higher dimensioned func-
tion 1n the Eulenan space has many advantages Firstly, errors associated with
sampling of the contour are eliminated as the approach i1s non-marker based
The deformation 1s numerically stable and has the ability to handle topological
changes during the deformation In Chapter 5 a novel methodology of level-sets
1s mtroduced that evolves a coupled surface, representing the inner and outer wall
of the left ventricle myocardium The deformation 1s guided usmg’ a probabilistic

model of manual segmentations
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Finally, the Euleran formulation of the level-set 1s exploited in a novel fash-
1on to extend the deformation in a supervised way to 4D A temporal model 1s
constructed for each grid point in Eulerian space using prior knowledge about
cardiac motion This parametric model 1s then iteratively refined during the seg-
mentation process to capture the myocardium boundaries This novel approach
has many advantages Firstly, it performs a temporal smoothing of the segmented
contours through the cardiac cycle that follows the temporal model from the user
defined motion model Secondly, the model 1s defined in temporal space and 1s
therefore free from the highly variable anatomical features of the cardiac muscle
in 1mage space The human left ventricle has a harmonic pumping motion which
can be modelled for both healthy and unhealthy hearts and 1s relatively inde-
pendent of the highly variant cardiac anatomy Thirdly, initial estimates for the
parametric mode! found through a fast marching algorithm and the parameters
are then 1teratively updated using an expectation-maximisation algorithm

Hence, segmentation of the left ventricle in cardiac MRI data 1s approached
in a systematic way, at each step increasing the dimensionality of the problem
and mcorporating more knowledge and information 1n more involving method-
ologies Imtial approaches are based on signal intensity values in 2D and 3D
images for the segmentation of the cardiac blood pool followed by a 2D model
assisted segmentation of the outer wall of the left ventricle myocardium In the
second phase, a coupled deformation of surfaces 1s introduced for both the 1nner
and outer boundary which 1s also guided by models of manually annotated mod-
els In the final stages, temporal information 1s introduced in a knowledge based
way to model the left ventricle motion and ensure smooth temporal transition of

segmented surfaces

1.5 Thesis Overview

This thesis details the progression of 1deas for the segmentation of the left ventricle
of the heart from multi-dimensional MRI data Based on the challenges outlined

1n the previous sections, the thesis details each of the steps

Chapter 2 gives a background to the problem This chapter deals mainly with
cardiac anatomy, dynamics and clinically relevant measurements associated
with diagnosing CVDs An introduction to some of the most common med-

1cal imaging modahties, an in-depth discussion on MRI and the difference
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acquisttion procedures And finally a brief overview of image processing

and 1n particular on medical image analysis

Chapter 3 details the methods employed 1n 1mage noise suppression The ad-
vantage of non-linear smoothing over linear smoothing 1s investigated in 2D
before a performance characterisation of three non-linear filters apphed to
MRI data 1s performed 1n 3D

Chapter 4 gives the particulars on how statistical based segmentation algo-
rithms can be used to accurately measure the left ventricle blood pool
volumes and consequently the measurement of ejection fraction Heuristic
methods for the segmentation of the outer boundary of the cardiac mus-
cle in 2D are detailed and deficiencies associated with this approach are

discussed

Chapter 5 introduces boundary based methods as an alternative approach in
order to circumvent some of the limitations of the statistical based ap-
proaches An overview of previous approaches are detailed Gradient based
level-set segmentation approaches are proposed as an accurate method of
segmentation i higher dimensioned data A novel method for the segmen-
tation of 3D+t (4D) 1s mntroduced This method employs a parametric prior
model encoded 1n the temporal domain which 1s iteratively updated using

a expectation-maximisation algorithm

Chapter 6 concludes the thesis, outliming the novel methods developed, dis-
cussing the results obtained and recommending how these approaches may
be advanced or can be apphed to other temporally vanant anatomical struc-

tures

Appendix 1 describes the apphcation of an expectation-maximisation algorithm

for partitioning data in medical images

Appendix 2 details the application of the level-set algorithm to perform accu-
rate segmentation of polyps in CT colonography



Chapter 2

Background

This chapter gives a brief overview of three distinct areas involved 1n this project
Firstly, an introduction to the heart, 1ts function, some terminology and the clin-
1cal measurements that are to be extracted from cardiac specific 1mages acquired
of the thorax Next, an overview of the imaging modalities used 1n cardiac imag-
ing, moving to explain why MRI 1s the chosen modality for this investigation
This 15 followed by a discussion on the basics of MRI also mentioning the main
protocols m common use will ensue Finally, a background 1s given on work that
has being investigated 1n the unage processing area and 1n particular 1n the field
of medical imaging and cardiac analysis In this section a review 1s given of the

most relevant hiterature published on the subject

2.1 The Heart

The heart can be thought of as the “pumping station” of the body Situated
between the third and sixth ribs in the center of the thoracic cavity of the body,
the heart 1s a hollow conically shaped muscle about the size of a clenched fist,
12-13cm along 1ts major axis and 7-8cm at 1ts widest pownt [101, 58] It rests
on the diaphragm between the lower part of the two lungs Its function 1s to
pump oxygen and nutrient rich blood around the cardiovascular system, where
1t supphes the oxygen to the cells The de-oxygenated blood then returns to the
heart before being pumpea to the lungs to collect more oxygen The oxygen-rich
blood then proceeds back to the heart before 1t 1s sent around the cardiovascular

network again
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2.1.1 Morphology

The heart 1s a hollow muscle that 1s divided internally into four separate cham-
bers The heart muscle 1tself 1s divided into three layers, the ep:-cardium 1s the
outer protective layer, the middle muscular layer 1s referred to as the myocardium

while the inner layer 1s known as the endo-cardium

The heart 1s divided down the cen-
ter with a strong muscle wall called

the wnteratral-interventricular sep-

tum mto a cylindrical left side e Y~ Left surcst
and a more crescent shaped right Iner i o
side The right side of the heart 1s Herrances 3a8

again divided 1 two with the upper _ A

atrium or auricle separated from the
lower ventricle with a one-way valve
called the - Tricusprd valve Siumni-
larly, the left side 1s divided nto the

left-artrium and left-ventricle with

Antenar ppiliary poucls

the B d tral val I
¢ bacuspie or mutral valve A Figure 21 Anatomy of the heart From

order of size, the left-atrium 1s the
Gray’s Anatomy [58]

smallest chamber, holding approx-

imately 45ml at rest, and having

a wall thickness of approximately

3mm This is followed by the right-atrium, with a typical capacity of 63ml
and wall thickness of 2mm, the left ventricle with a 100m! capacity and a wall
thickness as high as 12mm and finally the right atrium which can hold up to
130ml with a wall thickness of 4mm The varying wall thickness 1s a result of the
normal operating pressure of each of the chambers and 1s explained 1n the next
section Each of the chambers has an associated major vessel either supplying
blood or transporting blood away The left ventricle has the aorta, joined using a
one-way aortic valve, the left atrium has the pulmonary vewn, the right ventricle
has the pulmonary artery which 1s closed with the pulmonary sem:-lunar valve
while the night atrium 1s supplhed from the superior and wnferior venae cavae and
the coronary sinus Disease associated with the valves 1s mainly caused from con-
genatal abnormalities, degeneration or mfection and can result in leakage through
the valve In the most common type of valvular disease the matral valve or aortic
valves are frequently affected With matral dysfunction, the blood 1s allowed to
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regurgitate back to the left atrium increasing pressure in that atrium

Also present 1n both ventricles are thin columns of muscle along 1ts length,
these are referred to as trabeculae carne The papillary muscles are thin muscles
protruding from the walls of both ventricles and are connected to their respec-
tive atrioventricular valves Both the trabeculae carne and papillary muscles are

more pronounced in the left-ventricle

The heart 1tself needs to be supplied with oxygen-rich blood and the measure
of blood supplied to the heart 1s called myocardium wabiity Coronary circu-
lation 1s achieved through two main arteres, the right coronary artery and left
coronary artery Both of these arteries stem from the ascending aorta Blood 1s
returned via the coronary sinus Over time, the coronary arteries may become
clogged from a build-up with fot, cholesterol, triglycerides and calcium This
build-up prevents the coronary arteries from functiomng properly, and interferes
with the delivery of an adequate supply of blood to the heart muscle Ninety five
percent of all coronary artery disease 1s due to this atheroscleros:s, the build-up
of fatty substances The nsufficient blood supply to the heart is called schemza
Myocarditis 1s inflammation of the myocardium, the muscular part of the heart
It 1s generally due to mfection (viral or bacterial) It may present with rapid

signs of heart failure

For chnical evaluation of cardiac anatomy and motion, a standard left ventri-
cle representation has been developed [24] whereby the cardiac muscle 1s divided
mnto 17 segments, Figure 2 2 These 17 segments creates a distribution of 35%,
35% and 30% for the basal, mud cavity and apical thirds of the heart, which 1s
close to the observed autopsy data

2.1 2 Dynamics

The heart has two distinct phases, diastole and systole The diastole, or filling
cycle, occurs when the muscle relaxes and the left and nght ventricles fill with
blood from the respective atria, this can take 480 ms of the complete 750 ms
cycle During this cycle the tricuspid and mitral valves are open while the aor-
tic and semi-lunar pulmonary valves are closed When the end-diastole volume
(EDV) has being reached the heart sends an electronic pulse for the systole cycle
to start The systole phase 1s much shorter where the muscle contracts and closes

the tricuspid and mitral valves while opening the aortic and pulmonary valves
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Figure 2 2 Diagram of the vertical long-axis, horizontal long-axis and short-axis
planes showing the name, location and anatomical landmarks for the selection of
basal, mid-cavity and apical short axis slices for the 17 segment system

Approximately half of the ventricles capacity 1s emptied during the systolic phase,
the remainder 1s called the cardiac reserve volume The cardiac cycle 1s timed
using the hearts own 1ntrinsic nervous system and can survive n-vitro for several
hours The main switch in the nervous system 1s called the Sinus Node, this
triggers the AV Node which 1 turn connects to the Bundle of His to conduct
the triggering pulse through the septum of the heart

The ventricular working pressures are much higher than atria pressures The
left and right ventricles have an approximate working pressure of 140 mmHg
and 40 mmH g respectively, this gives rise to the left ventricle muscle being three

'times thicker than that of the right ventricle

2.1.3 Measurements

The volumetric data acquired with time can produce a number of 1important mea-
surements that can indicate disease of the heart [48] While these descriptors are
well documented 1n research literature [43] they are not always clinically assessed

1n everyday practice
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In practice, chnical measurements still rely on global volumetric measure such
as left-ventricle end-diastolic volume (EDV), end-systolic volume (ESV) and mass
(LVM) These are then used in conjunction with other measurements to calculate
the stroke volume (SV), cardiac output (CO) and ejection fraction (EF) The in-
clusion of papillary muscles and trabeculations 1s still undecided and 1s usually
dependent on the center performing the scan Recent research [138] has shown
that the difference between subtracting and not subtracting the papillary muscles
and trabeculations has hittle chmcal relevance when calculating the left ventricu-
lar volumes and ejection fractions The extraction of the epi-cardium boundary
aids the accurate measurement of wall thickening (WT) over the cardiac cycle,

this can indicate areas with reduced contractibility

e End-diastolic volume (EDV) and End-systolic volume (ESV) 1s the
amount of blood contained 1n the left ventricle at 1ts maximum and mini-

mum respective capacities, measured 1n mi

o Left ventricle mass (LVM) 1s an iunportant indicator for left ventricle
hypertrophy (LVH) LVH 1s an enlargement of the muscle fibers of the
left ventricle, mainly around the mterventricular septum LVH 1s a late
complication of congestive heart disease and cardiac arrhythmias The LVM
18 measured to be the volume (cm?) enclosed by the epi-cardium boundary
minus the left ventricle cavity and multiplied by the density of muscle tissue
(105g/cm3)

LVM =105 X (Vaps — Vendo) (2 1)

e Stroke Volume {SV) 1s the volume (c¢m®) of blood ejected from the left
ventricle between the end-diastole and the end-systole This value can then
be normalised to body surface area and called the stroke-volume index

(SVI)

Sv= V:zndo(tD) - V;:ndo(tS) (2 2)
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where V.4, 15 the volume of the left ventricle cavity, Vengo(tp) = maze[Vengo(t))
at end-diastole and Vengo(ts) = mang[Vendo(t)] 1s the end-systole

¢ Ejection Fraction (EF) 1s the percentage of blood ejected from the left
ventricle with each heart beat, and can be represented by the equation

1/endo(tD) - Vendo(tS')
V;ando (tD)

EF(%) = x 100 (2 3)

e Cardiac output (CO) 1s the amount of oxygenated blood supplied to
the body (mi/mwn) Ths can be normalised to the body surface area and
called the cardiac index (CI) The calculation 1s shown m Eq 2 4 where HR

1s the heart rate

CO = (‘/;ndo(tD) - V:mdo(tS)) x HR (2 4)

e Wall thickening (WT) is the measurement of the myocardium thickness
over time (mm;) This can give a direct indication to the myocardial viabil-
ity and therefore can forecast tschemic disease The wall thickness can be
computed using the centerline method, along lines that are perpendicular to
a curve that 1s equidistant from both the endo- and epi-cardial boundaries

2.2 Imaging Modalities

In this section the reader 1s given a brief introduction into the 1maging modalities
that are commonly used for cardiac analysis A brief description of each method
1s given along with their advantages and disadvantages This 1s followed by a
brief discussion on the suitability of MRI 1n cardiac analysis, a more in-depth
background describing some of the physics involved and the different protocols

1n chimcal use

2.2.1 X-Ray with Angiocardiology

X-ray anglocardiography (XRA) 1s a projection image of the left ventricle usually
in the obhique view after a contrast agent has being imnjected into the ventricle via
a pigtail catheter In XRA the contrast agent 1s not uniformly spread throughout
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the left ventricle because of the dilution with blood at the mitral valve It may
not reach to the apex of the heart and there 1s also a limitation on the amount of
contrast agent used due to the risk to the patient Surrounding structures such
as r1ibs can be removed from the image using Digital Subtraction Angiography
(DSA) DSA involves a temporal subtraction where the 1mage obtained without
a contrast agent 1s subtracted from the contrast image Complications associated
with cardiac anglography are cardiac arrhythmuas (irregular heartbeat) and em-
bolism (by dislodging plaque from the artery wall while treading the catheter)

XRA can be used for the calculation of the ejection fraction using geometric ap-
proximations [43] but cannot be used for the calculation volumes or delineating

the ep1-cardial boundary

2.2.2 Cardiac Ultrasound

Cardiac ultrasound 1s a tomographic imaging system, 1t 1s relatively cheap, non-
invasive and can mmage on arbitrary planes {24] It gives low contrast when
compared to MR, and X-ray, cannot 1mage through gaseous mediums and has a
low signal-to-noise ratio due to frequency attenuation in the tissue The signal-
to-noise ratio 1s further reduced 1n cases where the patient presents obesity 3D
ultrasound [88, 125] has beng introduced and can quantify ventricular volumes
and myocardrum mass without the need for geometric models Ultrasonographic
heart images suffer from the need for acoustic windows, operator subjectiveness
and are often characterised by weak echoes, echo dropouts and high levels of

speckle noise causing erroneous detection of the LV boundaries

22.3 SPECT/PET

Single-photon Emission Computed Tomography (SPECT) and Positron Enussion
Tomography (PET) scans are part of the non-invasive nuclear imaging techniques
SPECT was mtroduced in the 1970’s and 1s used to detect subtle metabolc
changes 1 the organ under investigation PET was introduced shortly after
SPECT because of 1ts increased temporal resolution Both methods work by the
mjection of radionuchdes (radioactive 1sotopes) mnto the organ under investiga-
tion These radionuchde tracers are absorbed at different rates by the healthy
and dysfunctional muscle While these methods are good for the measurement of
metabolic changes, the resolution does not lend to the delineation of anatomical

structures 1n the 1mage '



14 CHAPTER 2 BACKGROUND

2.2 4 Computer Tomography

A traditional X-Ray Computer Tomography (CT) scan 1s an X-Ray procedure
which combines many X-Ray images with the aid of a computer to generate
cross-sectional views of the body CT 1s increasingly used 1n cardiac analysis It
provides increasmg resolution 1n data with the introduction of the 64 shce CT
and 1s particularly useful for evaluating coronary atherosclerosis With conven-
tional CT, cardiac motion causes blurring and artifacts in the image but advances
such as Electronic Beam Computer Tomography (EBCT), Ultrafast® and Dual-
Source CT have increased the acquisition time sufficiently to capture the beating
heart These approaches can be gated to capture information at a precise phase
n the hearts cycle However CT suffers from low contrast between soft tissues

like blood and myocardium and the patient 1s exposed to 10msing radiation

225 Magnetic Resonance lmaging

Magnetic Resonance Image (MRI) was first introduced in medical imaging n
1971 Since its introduction cardiac magnetic resonance (CMR) has progressively
improved with increased spatial and temporal resolution CMR 1s considered by
some authors [43, 128, 130] to be the standard of reference for evaluating the
cardiac function MR has proved to be more accurate than echo-cardiology and
cardiac anglography in the calculation of the ejection fraction and also has shown
superior results in endo-cardium border segmentation [128] MRI boasts a wide
topographical field of view and high contrast between soft tissues without the
need for a contrast agent It 1s non-invasive with high spatial resolution and
can be gated using an electrocardiogram (ECG) at different phases during the
hearts pulse [158, 102] However, 1t can suffer from noise and grey scale variation
between adjacent slices More details are discussed in the next section

2.3 MRI for Cardiac Imaging

Cardiac Magnetic Resonance (CMR) has very clear advantages over the other
imaging modalities, discussed in the previous section It has proved to be more
accurate [43] for the evaluation of cardiac function measurements due mainly to
1ts independence from any geometric assumptions about the ventricle shape and
can be used without the need for a contrast agent Cine-MR has being introduced
to capture a collection of images over one or several phases of the cardiac cycle
MRI tagging has been introduced to obtain heart twist through the cardiac cycle



23 MRI FOR CARDIAC IMAGING 15

The use of MRI has many benefits over other types of acquisition

e Images of soft-tissue structures such as the heart and major vessels are

clearer and more detailed when compared to other imaging methods

o The detail of MRI makes 1t an invaluable tool in early detection and eval-

uation of coronary disease

o Even without the use of contrast material, MRI often shows sufficient detail

of the heart to be valuable 1n diagnosis and treatment planmng

e When 1t 1s used, MRI contrast material 1s less Likely to produce an aller-
gic reaction than the 10dine-based materials used for conventional X-Rays
and CT scanning and does not contain the radioisotopes used 1n nuclear

medicine exams

e MRI enables the detection of abnormalities that might be obscured by bone
tissue with other imaging methods

o MRI provides a fast, noninvasive and often less expensive alternative to

other techmques of cardiac diagnosis

e MRI can help physicians evaluate the function, as well as the structure, of

the heart muscles and valveg

e MRI does not require exposure to radiation or the introduction of radioiso-

topes 1n the body
e MRI has the advantage that images can be obtamned from arbitrary planes
The use of MRI also has the following associated risks or limitations
o An undetected metal implant may be affected by the strong magnetic field

e MRI 15 generally avoided in the first 12 weeks of pregnancy Doctors usually
use other methods of imaging such as ultrasound on pregnant women,

unless there 1s a strong medical reason to conduct an MRI exam

In this section an overview of the basic physics of MRI 1s given to the reader,
the 1maging planes used 1n a conventwonal heart examination are shown and
finally the different protocols that have bemng mtroduced with thewr advantages

and disadvantages
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2.3.1 MRI Physics

MRI applies a Radio Frequency (RF) excitation pulse to the protons that sit n a
static magnetic field When the protons return to a state of equilibrium they emt
a quantified energy as an RF signal Ths signal 1s then collected and analysed
On the scan this corresponds to ligh mtensity meamng high signal collected by
that group of protons

MR uses the magnetisation effects of hydrogen to create the intensity map,
or image Hydrogen 1s an abundant atom 1n almost all biological systems As
can be seen 1n figure 2 3 these atoms do not naturally align i any particular
direction but instead spin around their own axes in arbitrary orientations and
therefore the magnetic effect 1s negligible If however, a strong static magnetic
field By 1s applied to these atoms they align themselves either in the parallel
or anti-parallel direction to the direction of the field (in most cases they algn
parallel) The atoms do not strictly align parallel to the magnetic field but at a
small angle 8, or fhp-angle, and precess around the magnetic field at a frequency
f, or the Larmor frequency If an external frequency B) 1s pulsed at the Larmor
frequency perpendicular to By the atoms absorb the energy and tend to precess
away from By and toward B; momentarily When the pulse has fimished the atom
returns to the static magnetic field and releases the energy as a small RF signal
This signal 1s collected and used to produce the image TE 1s the echo time, the
time at which the signal echoes are obtained after the excitation pulse TR 1s the
repetition time, the time in which the excitation pulse 1s repeated to obtain the

mmage lines

In order to locate the position of the signal spatially, a third magnetic field
called a gradient magnetic field that varies the magnetic field strength with re-
spect to 1ts position 1s applied The most common type of reconstruction used
to create the 1mage 18 a two-dimensional Fourler transform Measurements are
taken at important relaxation times T'1 and T2 T1, or spin-lattice relaxation
time, 1s the settling time for the atoms to return to equilibrium after being dis-
turbed by the RF pulse while T2, also called the spin-spin relaxation time, 1s
the decay of the RF signal after 1t has being created, both these measures are
tissue dependent which gives the MRI 1ts ability to distinguish between different
tissues in the body For example water has a longer T1 time when compared to
fat because 1t does not give up 1its energy as quickly as fat, similarly water has a
longer T2 time when compared with fat Using these and other properties a host
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of different imaging protocols have being devised to optimize 1image quality
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Figure 23 The basics of MRI Figure (a) shows random hydrogen atoms, (b)
shows the aligned atoms after the introduction of a static magnetic field By,
(c) shows results after applhied RF pulse By and (d) plots the T'1 and T2 decay
graphs

Image derwed from U S Department of Health and Human Serwvices, Food and
Drug Admanastration, Center for Devices and Radiological Health, Magnetic Res-

onance Working Group

2 3.2 Protocols

Echo planar 1maging (EPT) 1s a fast imaging techmque, introduced 1n the late
1970s that reads multiple hines of the 1image with just one excitation pulse This
method greatly mcreased the speed of MRI meaning 1mages could be acquired in

fractions of a second compared to minutes with early MRI

Gradient Echo

Gradient Echo images are also called bright-blood images due to the high signal
intensity of the blood Gradient echo 1mages are acquired using either T'1 and 72
weighting or a combination of both The RF excitation pulse 1s applied once and
the signal 1s obtained after a short TF, usually between 1-10 ms Due to the low
TE time, the blood does not have the opportunity to flow away from the imaging
plane, explaining the high intensity 1n the blood but this can cause heterogeneity
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within the blood-pool especially pronounced along the endo-cardium and the
matral valve TRs are also short, < 50 ms, which allows for rapid acqusition
cine-MR

Spin Echo

Spin-Echo, or dark-blood sequences, apply two RF pulses, usually at both 90° and
180° This second pulse, applied at T E'/2, reorients the atoms It 1s the resulting
echo signal that 1s used to construct the image The TR for spin echo sequences
13 much hgher than that of gradient echo Spin Echo 1s therefore not used for
the generation of cine-MR sequences because of this increased acquisition time
Spin-echo does however provide higher contrast-to-noise ratio (CNR) between the
blood and the myocardium Fast spin-echo sequences, also called turbo spin-echo,
Rapid Acquisition and Relaxation Enhancement (RARE), increase the temporal
resolution but at the cost of soft tissue contrast Typical images taken from both

spm-echo and gradient-echo 1images can be seen 1n figure 2 4

Balanced Sequences

Steady-state free precession (SSFP) method has been recently developed where
the contrast of the tissues depends more on the T1 and 72 contrast and less
on the flow dynamics It involves rapid excitation using the RF pulse, never
allowing the MR signal to completely decay This means that the images can
have the high tissue contrast of 71 and the high blood tissue contrast of T2-
weighted acquisition There are a whole family of SSFPs which include Balanced
Fast Field Echo (bFFE), Balanced Turbo Field Echo (bTFE), Fast Imaging with
Steady Precession (TrueFISP), Completely Balanced Steady State (CBASS) and
Balanced SARGE (BASG)

Recently, methods such as Sensitivity Encoding (SENSE) have being intro-
duced to speed up 1maging and therefore increase the resolution This method
1s based on the use of multiple RF coils and receivers Other advances include
Prospective Acquisition and CorrEction (PACE) which allows free breathing dur-
ing the exam by detecting the diaphragm and correcting for 1ts movement MRI
tagging has been a well documented method of evaluating the twist and torque
of the myocardium during the heart-beat by non-mvasively placing a grid, known

as tagging, on an 1mage with changing radio frequencies
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Figure 24  Shows two short axis mmages of the heart (a) gradient-
echo mmage, TE= 16ms, TR= 32ms, fip angle = 60° and (b) spmn-
echo mmage, T'1-weighted approximate times of TE=10-20ms and T'R=300-
600ms  Image (b) used courtesy of the Auckland MRI Research Group
(http //www scmr org/education/atlas/intro/)

2.3.3 ECG Gating

An electrocardiogram (ECG \ EKG) 1s a recording of the hearts electrical pulses
as 1t stimulates the myocardium In imaging, ECGs are used to establish the
hearts R-wave which 15 a ngh peak wave, mm a normal patient and depending
on acquisition, coming between the Q and S wave and indicates the start of the
myocardium contraction This 18 used to trigger the imaging at the correct time
in the hearts phase ECG gating suffers in MRI from a phenomenon called the
maognetohydrodynamaecs effect where the signal gets distorted when the patient
enters the static magnetic field However, this can be ehminated with Vector-
cardiogram (VCG) which uses multiple ECG-channels to accurately detect the

R-wave

2.3.4 Imaging Planes

MRI has the advantage that images can be obtained 1n arbitrary planes This 1s
useful to obtain the best orientation for the images to be viewed, as the orien-
tation of the heart changes from patient to patient Traditional views in cardiac
mmaging are saggital, which divides the body into left and right, orthogonal where
the 1mages are taken from the head to feet direction and long axis where the 1m-
ages are oriented to show the best view of the four chambers of the heart (see
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figure 2 4) In practice the orientation for the evaluation of the left ventricle is the
short-axis view as 1t gives the best view of the left ventricle chamber for volume
calculations The short-axis 1s the plane perpendicular to center line running

from the mutral valve to the apex of the heart

2.3.5 Image Formats

All images used 1 this work were encoded in the DICOM (Digital Imaging and
Communications in Medicine) format, taken along the short axis plane traversing
the left ventricle cavity from the base to the apex of the heart as shown 1 Figure
22

2.4 Overview of related Image Processing and Analysis

Techniques

Image processing first evolved in the late 50s and early 60s where sumple al-
gorithms were implemented 1n hardware Many of these implementations were
derived from signal processing ideas It wasn’t until the mud to late 1960’s and
early 1970s that digital image processing became an active area for research Ap-
phcations such as the NASA 1964 project aimed to remove imperfections from
lunar 1mages returned on the Ranger 7 expedition It was at the early stages of
image processmg that 1deas into medical image analysis were first investigated
and many of the first projects 1n 1image processing were funded by the National
Institute of Health (NIH) as well as the National Science Foundation (NSF) in the
US One of the earliest publications on medical image analysis by Strauss et al

[153] where nuclear images of the heart were obtained using a scintiphotographic
method and the computer semi-automatically outlined a region of interest for the

quantitative measurement of the ejection fraction

Image processing 1s mnextricable tied to the advancement of the computer and
1t was 1n the past and still 1s the increase in computational power that drives the
level of complexity entailed in 1image processing techniques As the discipline of
1mage processing grew, more sophisticated algorithms were developed to achieve
more complex tasks Today, the major problems where 1mage processing are mn

the areas of

¢ Photography
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¢ Satelite Imaging
e Face Detection
e Medical Imaging

e Natural Scene Analysis

The field of image processing includes acquisition where the main challenges
are the reduction of distortion and develop sensors that aim to improve the signal-
to-noise ratio (SNR) Image storage has always stretched the boundares of com-
puter memory capacities and therefore image compression m both still and video
data has also attracted researchers Post processing of images include geometric
transformations of the object or coordinate system, colour corrections for im-
age enhancements, distortion corrections to rectify camera inaccuracles, noise
suppression and filtering to correct sensor naccuracies, edge detection to define
boundaries between objects 1n the i1mage, segmentation of an 1mage 1nto distinct
regions and pattern recognition for the localisation and classification of objects

from a scene

Many of these operations that are common 1n 1mage processing and 1mage
analysis can also be implemented in medical image analysis, but with subtle dif-
ferences For instance, problems such as illumination difficulties are replaced by
more acquisition specific limitations such as coil intensity fall off in MRI Many
mmage processing and computer vision tasks deal with the extraction of 3D data
from stereo 1mages but in medical 1image analysis, very often with modern scan-
ners, the data can easily be reconstructed into 3D and therefore accurate shape
recovery and tracking 1n 3D 1s the major 1ssue Pattern recognition 1s also imple-

mented 1n medical images using prior knowledge of anatomical shape or structure
The main 1ssues that drive research in medical 1mage analysis are
e Image segmentation
e Image matching / registration

e Motion tracking

The 1 plane resolution of modern scanners are 1 the domain of 0 5-2 5mm
for CT and MRI scanners, therefore, medical image analysis 1s performed at

macroscopic or organ level as opposed to microscopic or atomic level
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Image segmentation deals with the accurate dividing up of an 1mage or a
volume 1nto smaller relevant collection of pixels or voxels In the case of medical
image analysis these smaller subgroups generally represent anatomical features
such as tissue, blood or bone It is the methods by which these divisions can be
made that 15 the subject of segmentation Segmentation 1s a deceptively diffi-
cult problem to solve and many approaches require much user mntervention such
as live-wire techniques [164, 46] Image segmentation has received a signmficant
amount of attention 1n the past number of decades With the exponential growth
of computational power and memory, more complex algorithms can be appled
to larger amounts of data There are a number of proposed techniques which can
be broadly classified in bottom-up approaches and top-down approaches

241 Bottom-up Approaches

Bottom-up approaches perform the separation normally based on no prior knowl-
edge and divisions are made based on the intensity or gray level values The most
basic form of bottom-up or intensity based segmentation 1s thresholding Thresh-
olding 1s a binary classification problem where all elements 1n an 1mage with gray
level values higher than a user defined number are classified as one object and all
elements with gray level value below are classified as a second object, adaptive
methods to find the threshold values have also been evaluated [175, 57] Other
methods for selecting thresholds include histogram analysis and global and lo-
cal thresholding Thresholding methods are susceptible to noise 1n low contrast
images and are therefore normally combined with some morphological operators
such as opening and closing to remove outhiers Other bottom up approaches
search for divisions of objects within the 1mage called edge detectors This di-
vision 18 characterised by a difference 1n local grayscale values This differential
operator can give information regarding the strength of the division returned
by the gradient and also the direction returned by the orientation Common
edge detector operators include Canny and Sobel Similar to thresholding, these
methods are hmited 1n images with low Signal-to-Noise Ratio (SNR) In these
carcumstances, methods such as edge linking [55] and non-maximum suppression

[20] may be employed

More advanced methods involve partitioning the image into a greater number
of final classes, how best to classify the objects into the approprate classes and
how to determine the appropriate number of classes 1n a specific i1mage Statis-
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tical partitioning of images into higher than two classes 1s a very active area of

research

Clustering methods have evolved and try to minimise the variance of pixels
within clusters while maximising the variance between clusters Inclusion nto
a certain cluster may be based on gray level value or a number of other met-
rics Cluster membership may be a hard classification, as 1s the case 1n k-means
clustering, or a soft membership classification, as 1s the case with fuzzy c-means
clustering or Expectation-Maximisation classification [40, 14] In the first case,
each element 15 assigned to a particular class but on the other hand, i a soft
classification, membership to a cluster 1s given as a probabilistic measurement
More advanced clustering methods use multiple scales [136] to alleviate over seg-
mentation whereby the object to be extracted 1s divided mto multiple regions

Delibasis et al [38] implemented a number of standard bottom-up techmques
for evaluating the segmentation of the left ventricle cavity from cine MR se-
quences 1n a small number of normal and abnormal patients These included an
adaptive region growing technique from a seeded position, where the new voxels
are added to the object of interest if 1ts value 1s close to the mean of all the voxels
contamned 1n the object A k-means algorithm, which partitions voxels 1n feature
space 1nto a predefined number of classes [65) using a distance metric of each
voxel feature from the class feature average A fuzzy C-means algorithm [118],
stmilar to the k-means with the introduction of a fuzzy function which defines the
probability of membership to each class A neural network based Self Orgamzing
Maps (SOMs) based on Kohonens [75] work Delbasis et al [38] proved that
k-means gave the most robust results on average over the normal and abnormal

data when compared to manual segmentations

A more m-depth discussion on statistical partitioning of data 1s continued 1n
Chapter 3 but these methods may suffer 1n noisy 1mages where there 1s a sig-
nificant variation 1n gray scale values In medical segmentation, 1ts 1s often the
task to extract a closed structure, however these partitioning algorithms based
on ntensity values do not take spatial relationships into consideration This is
why many researchers have investigated the value of approaching the problem

from a top-down angle
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24.2 Top-down Approaches

Top-down approaches apply some information about the desired results and then
tries to perform some sort of fitting and deformation to achieve the final seg-
mentation and aims to closer resemble a cognitive approach to segmentation
Template matching 1s an example of top-down segmentation in which a prede-
fined shape 1s fitted to the data by means of scaling, rotating and translating
(see Figure 2 5) This method performs a search of the image using a predefined
template and tries to fit the template to gradients 1n the image which mimmises
the error and maximises the overlay Of course, 1n this case, the template 15 a
rigid structure and can only be used for localisation of the object and only in
cases where there the template does not differ greatly from the final object to be

located

(a) (b) (c)

Figure 25 Top-down approach to image segmentation (a) Shows the prior
model to be fitted to the data in (4) giving the resulting 1mage shown 1 (c) [56]

One significant advancement on this :dea Active Shape Models (ASMs) was
proposed by Cootes et al [34], (see also [168, 48]) whereby the template consisted
of numerous shapes which were encoded mto a shape model Also encoded nto
this model where the principal modes of variability and this was used 1n the defor-
mation process to mimmise the template to object error This 1s a very powerful
1dea 1n medical imaging and the extension of this method to include other param-
eters 1 the model, such as Active Appearance Models (AAMs) which ntegrates
texture into the model [151, 150, 152, 78, 77, 17] All model-based approaches
are hmited by the number and vanation of the prior templates used in the model

building process

Active contours or Snakes which were first proposed by Kass et al [68] are an
extension of this top-down approach where a closed contour or surface 1s located 1n
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the image and 1s then deformed until the final segmentation 1s achieved Normally
this deformation 1s constituted from two separate parts, the first 1s the intrinsic
properties of the contour 1n order to maintain 1ts shape through rigidity or elas-
ticity and the second part of the deformation energy This form of segmentation
has been employed in medical 1mage analysis, where the anatomical feature
question can be encapsulated within a closed contour (25, 26, 121, 4, 52, 67, 66]

Segmentation 1s then achieved by evolving this closed contour using intrinsic
properties such as curvature and external properties obtained from the image

Combinations of snakes and statistical shape models have also being developed
[60] whereby snake evolution 1s additionally guided using a predefined model of
what the final shape should approximate Non-parametric snakes were 1ntro-
duced 1n order to address some of the himitations of traditional snakes and have
proved successful in medical image analysis [86, 110, 6, 2, 163] These techmques

are discussed i1 more detail in Chapter 5

While these approaches have been shown to perform robust segmentation,
even 1n noisy images, accuracy of the segmentation is bounded by the initial
shape Ths 1s particularly the case in medical imaging, where anatomical fea-
tures present a signmificant variation between patients none more so than in the

presence of disease

There are many algorithms which try to employ a combination of bottom-up
and top-down approaches to segmentation to capture the advantages from both
approaches [16] Prior knowledge about a particular segmentation task can be
ncorporated as low level information such as expected intensity values, gradient
strength of orientation or incorporated at a higher level such as texture variation

over an object and object shape

With the increasing temporal resolution available 1n modern scanners, the
tracking of clinical structures over time may hold particular clinical sigmificance
This area has being investigated in the myocardium of the heart more than
any other biological structure (a excellent reviews of applying image process-
g techniques to left ventricle segmentation can be found 1n [156, 49, 44, 167])
Deformation tracking of the cardiac muscle over the temporal cycle has being
investigated in many studies in order to measure the regional function of the left
ventricle (LV) 1n an effort to 1solate the location, severity and extent of 1schemic
myocardium [137] Myocardium twist and torque can be measured with using
tagged-MRI
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Single breath hold 1mages means registration of the images 1s not as signifi-
cant a factor as in multiple breath hold images Registration methods [84] deal
with the registration of cardiac images from multiple modalhties Registration
techmques were first performed 1n brain images for the registration of higher res-
olution 1mages acquired using MRI or CT to images of lower resolution such as
Magneto-Encephalo-Graphy (MEG) or Electro-Encephalo-Graphy (EEG) Reg-
1stration 1n cardiac images 1s more complicated due to the non-rigid and mixed
motions of the cardiac muscle and thorax structures Much attention 1s focussed
on registration of the modahties MRI and PET (85, 139], MRI and SPECT [62]
or CT and PET [179, 19]

2.5 Conclusions

This chapter introduces the key areas associated with this thesis Furstly, an
overview of the heart 15 given with particular emphasis on anatomical morphol-
ogy and cardiac dynamics This 1s followed by some of the most common CVDs

and the clinically acquired measurements used 1n their diagnosis

In the second part of this chapter, an overview of image acquisition 1s pro-
vided MRI 1s the chosen modality for this study, based on the outlined advan-
tages over other modalities This 1s followed with a fundamental background mn

MRI physics and common protocols

Finally, 1n order to extract the clinically relevant features from the data pre-
sented from the 1mage acquisition, image processing 1s proposed and introduced
The remainder of the chapter 1s devoted to the exploration of how medical 1mage
analysis has evolved by classifying the approaches mnto two rudimentary method-

ologies (see review [44])



Chapter 3

Advanced Data Filtering

Image smoothing 1s a procedure employed 1n 1mage processing to reduce or sum-
phfy the data present in an 1mage in order to make 1mage understanding more
attainable In a practical sense, this can be achieved by the removal of noise or
redundant signal intensities from the 1mage 1n order to obtain a more approprnate

model of the underlying structures within the image

The motivation behind smoothing images 1s therefore two-fold, firstly 1t re-
moves unwanted noise from the image to facihtate further processing and secondly
to eiminate features irrelevant to the given problem to reduce the complexity for
subsequent processing Specifically in MRI, increased magnet strength may re-
solve somewhat the associated low SNR, but advances to 3T magnets are imited
by the higher RF power disposition 1n the body [8] Nayak et al [105] showed n
2004 how 3T imaging improved SNR and CNR on cine sequences but note signal
fall-off due to decreased RF penetration

There are two main types of smoothing, linear and non-linear Both of these
types have been extensively studied in lterature [116, 140, 159] When filtering
1mages, 1t 15 mostly an advantageous property of the smoothing filter to smooth
areas of homogeneity while preserving areas of interest in the image such as
edges This 1s typically achieved by means of a convolution of a number of pixels
or voxels with a smoothing kernel, this 1s also called Finite Impulse Resit)onse
(FIR) filtering Linear filters convolve an image patch with a smoothing kernel
that 1s independent of the data in the image Standard linear smoothing tech-
niques based on local averaging or Gaussian weighted spatial operators reduce

the level of noise but this 18 achieved at the expense of poor feature preservation

27
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Consequently, the filtered data appears blurry as step intensity discontinuities
such as edges are attenuated Non-lmear filters smooth the image but try to
maintain edges by smoothing less Among these, the median filter 1s the sim-
plest non-linear operator to remove 1mpulse-like noise [142, 116] More complex
non-linear techniques include statistical approaches based on non-parametric es-
timation (140, 160] However, while these methods do alleviate somewhat the
shortcomings associated with linear techniques, they still perform only modestly
when the data 1s affected by long tailed noise distributions To complement
these filtering approaches, a number of adaptive techniques have been proposed
[140, 53, 33, 124, 28] These methods try to achieve the best trade-offs between
smoothing efficiency, feature preservation and the generation of artefacts Koen-
derink {73] expressed the blurring operation of smoothing as heat conductance or
diffusion Diffusion-based filtering was onginally developed by Perona and Malik
[115] in order to implement an optimal feature preserving smoothmng strategy
Many mmplementations follow their original approach where the main aim was to
improve numerical stability {172] This was advanced by Weikert [171] where he
developed a new smoothing algorithm by permitting diffusion along the direction
of edges Genig et al [53] extended this work to 3D and evaluated its usefulness
when apphed to medical 2D and 3D datasets

In this chapter, a performance characterisation 1s evaluated on some advanced
smoothing filters both 1n 2D and 3D The performance of a filter 1s evaluated as
a means of ssmphfying the image before segmentation Therefore, advantageous
charactenistics are defined as their ability to flatten the signal intensity values
within a structure while maintaiming a strong separation of signal intensity values
between structures Firstly, five filters are introduced and assessed, two linear fil-
ters (Gaussian and Savitzky-Golay) and three non-hnear filters (Diffusion-based,
Adaptive and Anisotropic) are evaluated to detail the advantage of non-linear
filters over linear filters Finally, a rigorous performance characterisation 1s per-
formed on the three non-linear filters using homogeneity within regions and edge

strength as the indicators of performance

31 Linear Methods

Traditional hnear filters such as mean, average and Gaussian attempt to remove
noise by replacing pixels by an average or weighted average of 1ts spatial neigh-
bours [116] Whle this reduces the amount of noise present 1n the 1mage, 1t also
has the disadvantage of removing or blurring the edges The Savitzky-Golay [127]
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linear filter smoothes the 1mage but tries to preserve higher moments, like edges,
in the image It achieves this by selecting coefficients that are the least squares

approximation of a higher degree polynomial

Firstly, let us look at the basic hinear causal smoothing filter given in equation
31 Ths s the 2D case where each pixel in the smoothed 1mage g at position
(z,y) 15 calculated to be the average or weighted average of the original image f’s
spatial neighbours The convolution matrix C 1s of size N x N where N = 2n+1

and the sum of its elements 1s normalised to unity

Gzy = Z Z Cufw+t,y+3 (3 1)

j=-ni=-n

This type of filtering introduces a blurring effect to the image which 1s unde-
sirable for most 1mage processing applications The basic filter 1llustrated in
Equation 31 1s linear and 1s independent of the data being processed Some

common causal filters are mean, Gaussian and Savitzky-Golay

311 Gaussian Filter

The Gaussian smoothing technique 1s very straightforward and 1s similar to the
average filter The Gaussian filter differs from the average filter in that 1t involves
the convolution of the original image with a Gaussian mask where the standard
deviation and the size of the smoothing kernel selects the scale and size of the

blurring operation The resulting 1mage S; , 1s defined as,
Szy = Iy 0 Gauss(z,y,0) (32)

where I, 15 the onigmnal 1mage, Gauss(z,y,0) represents the Gaussian kernel

with scale parameter o and o 1mplements the 2D convolution operation

This form of smoothing has the advantage of giving more influence to the
pixels or 1n close neighbourhood to the element being replaced, with exponentially
less influence the further away the pixels are from the center of the kerne! In 2D

the Gaussian mask s constructed using the following equation,

1 _12 2
Gauss(m,y,a)zme 27 (3 3)
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where (z,y)} are the 2D position of the element and & represents the diffusive

properties of the filter

The standard blurring operation involving Gaussian filtering attempts to re-
move the noise from the image From Equation 3 3 1t 1s obvious that the smooth-
ing becomes more pronounced for higher values of the scale parameter but at the
same time we can notice a sigmificant attenuation of the optical signal associated
with 1mage boundaries This result 1s highly undesirable for many applications
including 1mage segmentation and edge tracking where a precise 1dentification of

the object boundary 1s required

312 Sawtzky-Golay Filter

The Savitzky-Golay [127] smoothing filter was mtroduced for smoothing one-
dimensional tabulated data and for computing the numerical derivatives The
smoothed pomts are found by replacing each data pomnt with the value of 1its
fitted polynomial These filters preserve edges far better than a moving average
filter but this 18 achieved at the expense of not removing as much noise The
process of the Savitzky-Golay 1s to find the coefficients of the polynomial which
are linear with respect to the data values Therefore the problem 1s reduced to
finding the coefficients for fictitious data and applying this linear filter over the

complete data

Savitzy-Golay can be used for smoothing image data by extending the filter
to two dimensions with a two dimensional polynomial The size of the smoothing
window 18 given as N X N where N 1s an odd number, and the order of the poly-
nomal to fit 1s k, where N > k+1 The general smoothing causal filter equation

1S given as

Gzy = Z Z Ciy fotry+y (34)

J=-ni=-n

n 15 equal to —’\% gzy 18 the resulting smoothed data, C' 1s the convolution

matrix and fry 15 the onginal 1mage data

£z, 1) = ago + 0102, + G01%, + 02022 + o Ty, + aoeyr +  +ooeyr  (35)
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We then want to fit a polynommal of type 1n equation (3 5) to the data Solving the
least squares we can find the polynomal coefficients We start with the general

equation

Aa=f

where a 1s the vector of polynomial coefficients

a= (a00 ao1

aio Qok )T

We can then compute the coefficient matrix as follows

(AT 4) a=(AT f)

a= (A" A7 (AT f)

Due to the least-squares fitting being hinear to the values of the data, the
coefficients can be computed independent of data To achieve this we can replace
f with a umit vector thus, the coefficient matrix becomes C = (ATA)1AT C
can then be reassembled back into a traditional looking filter of size N x N

The resulting coefficient matrix from a polynomal of order 3 and with a
matrix window size of 5 (1e ny and np 1s 2) In order to smooth the image the
first coefficient 15 used, higher order coefficients are used to calculate derivatives

Here are the values for the first coefficients using a 5 x 5 windowing and orders

of 3 and 4 respectfully

-0 0742
001142
Cr=3 = | 003999
001142
—00742

004163 —0 0808
—00808 —00196
Ck=5 =] 007836 020082
—00808 —00196
004163 —0 0808

001142
009714
012571
009714
001142

(004001 001142
012571 009714
015428 012571
012571 009714
004001 001142

007836 —0 0808
020082 -00196
044163 0 20082
020082 -0 0196
007836 —00808

—0 0742
001142
0 03999
001142
—0 0742

004163
—0 0808
007836
-0 0808
0 04163

(39)

(3 10)
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The advantage Savitzky-Golay filters have over moving average and other
FIR filters 1s 1ts ability to preserve higher moments 1n the data and thus reduce
smoothing on peak heights It can be seen in Equations 3 9 and 3 10 that the
higher the order of the polynomial the higher moments are preserved, this leads
to less smoothing over data peaks and line widths In more homogeneous areas

the smoothing approaches an average filter over the smoothing kernel

3 2 Non-Linear Filters

Nonlinear filters, the most common being the median filter, modifies the value of
the pixel by some nonlinear function of the pixel value and 1ts spatial neighbours

Nonlinear filters aim to maintain the edges but the filtering may result 1n a loss
of resolution by suppressing fine details Three non-hnear filter are investigated

Firstly a non-hnear diffusion based filter based on gradient information, secondly
an adaptive filter which uses both gradient and variance within a neighbourhood
as a measure of mhomogeneity and finally an amsotropic filter which changes
the shape and strength of the smoothing kernel based on gradient strength and

orientation

A more useful way to think of smoothing 1s as a type of diffusion of intensities
withmn an 1mage, first expressed by Koenderink {73] Diffusion occurs according
to Fick’s Law, given 1n equation 3 11[115], where AI 1s the Laplacian of the -
tensity value, ¢(z,y, t) = constant represents the conductance coeflicient and I;

15 the recovered value at iteration ¢

It =cNI (3 11)

When this equation 1s implemented 1t acts as a linear filter, similar to a Gaus-
s1an, but 1t becomes more effective when the non-linear terms are introduced into

the diffusion equation A review of nonlnear diffusion 1s compiled 1n [171]

321 Nonlinear Diffusion Filtering

To alleviate the problems associated with the standard Gaussian smoothing tech-

mique, Perona and Mahk [115] proposed an elegant smoothing scheme based on
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non-linear diffusion* In their formulation the blurring would be performed within
homogeneous 1mage regions with no interaction between adjacent or neighbour~
ing regions that share a common border The non-lmear diffusion procedure can

be written 1n terms of the derivative of the flux function

¢(VI) = VI D(||VI]) (312)

where ¢ 18 the flux function, I 1s the image and D 1s the diffusion function Equa-
tion 3 12 can be implemented 1n an iterative manner and the expression required

to implement the non-linear diffusion 1s 1llustrated in Equation 3 13

4
I =1t + 2 [D(VRI)VeI|! (3 13)
R=1

where I' represents the image at 1teration t, R defines the 4-connected neigh-
bourhood, I 15 the diffusion function, V 1s the gradient operator that has been
implemented as the 4 connected nearest-neighbour differences and A 1s a param-

eter that takes a values 1n the range 0 < A < 025

VIIE,‘y = Ix—lay - I:E,'y
Voloy =Izt1y — Loy
Valoy =Izy-1— Iy

(3 14)

Valey = Ioy+1 — Ioy

The diffusion function D(z) should be bounded between 0 and 1 and should
have the peak value when the mmput z 15 set to zero This would translate with
no smoothing around the region boundary where the gradient has high values In
practice, a large number of functions can be implemented to satisfy this require-
ment and n the implementation detailed in this thesis the exponential function

proposed by Perona and Malik [115] 18 used

D(|vI) = e~F” (3 15)

*Perona and Mahk discuss 1n their paper the topic of scale-space This has not been 1nves-
tigated as 1t 1s beyond the scope of this thesis and a single scale space proved to be sufficient
for the applications detailed 1n this document
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where k 15 the diffusion parameter The parameter k selects the smoothness

level and the smoothing effect 1s more noticeable for high values of k

322 Adaptive Smoothing

The algorithm for adaptive smoothing implemented 1n this evaluation 1s adapted
from Chen [28] The techmque measures two types of discontinuities in the 1mage,
local and spatial Local variable discontinuities can detect local intensity changes
but 1s susceptible to errors where there 1s a lot of noise, so 1n addition to the lo-
cal discontinuities the contextual information 1s also utilised given the attributes
of neighboring pixels From both these measures a less ambiguous smoothing
solution 1s found In short, the local discontinuities indicate the detailed local

structures while the contextual discontinuities show the important features

Local Vanable Discontinusties

In order to measure the local discontinuities, four detectors are set up as shown

En,, = lit1y — La—14l, (3 16)
By,, = Iz y+1 — Iz y-1l, (317)
Ep,, = Het1y+1 — Lz-1y-1], (318)
Ec,, = zs1y-1 — Lr-1441l, (319)

I, 4 15 the intensity of the pixel at the position (x,y) We can then define a
local discontinuity measure E;, as

_ By, +Ey,, +Ep, +Ec,

These pixel positions are 1llustrated below in Figure 3 1

Contextual Discontinutttes

In order to measure the contextual discontinuities, a spatial varnance 1s employed

Firstly, a square kernel 1s set up around the pixel of interest, Ny,(R) The mean
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Figure 31 The four local discontinuity detectors

mtensity value of all the members of this kernel 1s calculated for each pixel as
follows 5 I
(2:2)ENzy(R) 72 J
try(R) = 321
i Moy () 320

From the mean the spatial variance 1s then calculated to be

= L )eNay (i) (fra = pay(R))

|Nay (R)] (822)

o7y(R)

This value of sigma 1s then normalised to 6'£y between the mimmum and max-
imum variance 1n the entire 1mage A transformation 1s then added into 621, to
alleviate the influence of noise and trivial features It is given a threshold value

of 8, = (0 < 0, < 1) to hmt the degree of contextual discontinuities

Overall Adaptive Algorithm

Finally, the actual smoothing algorithm runs through the entire image updating

each pixels intensity value I%,, where ¢ 1s the 1teration value

Ty
- . 3 t It _ It
IV I 4, (12)€Nzy (1)/{(2:9)} T Yoy o z,y) (323)
B2 9)ENay (1) /{(29)} R Vg
where,
Thy = eXP(_aq)(&:%y(R)i 90))1 (3 24)
i, = exp(~E,/S) (3 25)

The variables S and o determine to what extent the local and contextual
discontinuities should be preserved during smoothing If there are many contex-
tual discontinuities in the 1mage then the value of 7,, will have a large mfluence
on the updated intensity value On the other hand, if there are a lot of local
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discontinurties then both +,, and 7,, will have the overriding effect, as 7, 1s used

for gain control of the adaption

323 Anisotropic Gaussian Smoothing

An ansotropic filter based on the familiar Gaussian model 1s implemented 1n
order to provide edge enhancing, directional smoothing The goal 1s to develop a
versatile smoothing filter based on a straightforward and highly adaptable form
The approach reduces to a convolution with a scaled and shaped Gaussian mask,
where the determmation of the mask weights becomes the key step governing
the performance of the filter By calculating the local grayscale gradient vector
and favouring smoothing along the edge over smoothing across 1t can achieve an
effective boundary preserving filtering approach, where regions are homogenised

while edges are retained

The weight wt(pg, Vu) at each location 1n the mask is a function of the local
gradient vector at the centre of the mask and the distance of the current neighbour
from that centre There are a large number of possibilities for the formulation
of the mask weight calculation, based on the desired form for the non-linear and
anisotropic components of the filter The weight for some neighbour g 1s calcu-
lated as a function of the gradient of pont p, at the mask origin, and the distance
from the origin to the neighbour ¢ The relationship used 1n our approach is given
in Equation 3 26, where pg 1s the vector from the mask centre pont p to some
neighbour ¢, Vu 1s the gradient vector at p, A 1s the scale parameter, controlling
smoothing strength, and y 1s the shape parameter, controlling amsotropy When
¢ equals zero the amsotropic term (@)2(2p + ©2) has a neghgible effect and
the filter reduces to the non-linear, 1sotropic form, where smoothing decreases
close to strong edges but 1s applied equally 1n all directions, at any given location

in the 1mage

wt(pg, V) = e~ (T2 (T2 (2u4,2)) (3 26)

The 1mages 1n Figures 3 2 and 3 3 1llustrate the operation of the anisotropic
filter As the smoothing strength and the number of iterations 1s increased more
noise and small features are eliminated, but even in extreme cases the most 1m-

portant edges n the image are well preserved 1n both location and strength
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3 3 Expernments and Results

The aim of each filter evaluated in the first study is to measure the linear and
non-hnear filters ability to smooth areas of homogeneity while preserving areas
of interest such as edges Smoothing of homogeneous areas 1s measured using the
standard deviation while the preservation of edges 1s measured using the strength
and spread of the edge in the filtered images To show the advantage of using
non-linear filters, both the linear are tested on two 2D 1mages, see figures 3 2(a)
and 3 3(a) The first unage of a laboratory having a high SNR (signal-noise-ratio)
and hugh CNR (contrast-to-noise-ratio) with a high density of edges The second
medical image has a much lower SNR and CNR Parameters were chosen to give
the optimal results on visual inspection Visual results are presented in Figures
32and 33

To be statistically relevant [42] the standard deviation should be calculated
over a large region but on the other hand the results will be affected by small
non-uniformities such as intensity gradients or structural image vanations (53]
This requirement 15 quite difficult to be accomplished if we want to develop an
automatic performance characterisation scheme where user intervention is not
required One solution has been advanced by Canny [20] when he decided to
select the threshold parameters for an edge detector based on analysis of the cu-
mulative histogram of the gradients However due to the nature of MR datasets
this criteria to identify the gradients generated by noise proved to be nefficient
Thus, 1n this implementation an alternative strategy based on observation has
been developed In this sense, we computed the standard dewviation for all data
points 1n the original dataset 1n a 7 x 7 neighbourhood These values were sorted
with respect to their magnitude and from these values the 25% of the highest val-
ues were ehminated, as they are likely to belong to edges and 25% of the lowest
values are also elminated as they are calculated from areas that have no sigmifi-
cant texture (such as image regions defined by air) Thus strategy was appled to
select the seed points that belong to image regions defined by a low SNR Then,
the standard deviation for each of the filtered datasets 1s measured at the same
data point locations (also 1 a 7 x 7 neighbourhood) The results are presented in
Table 3 3

For the laboratory 1mage, Adaptive smoothing gives the best results followed
by the two other non-lnear filters Both linear Savitzky-Golay and Gaussian
filters have the highest deviation after smoothing In the medical image there
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Figure 3 2 Smoothing results Original image (2) 1s shown after the apphcation of
the Savitzky-Golay (b), Gaussian (c), Diffusion (d), Adaptive (e) and Amsotropic
(f) filters
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(e)

Figure 33 Smoothing results Original image (a) 1s shown after the application of
the Savitzky-Golay (b), Gaussian (c), Diffusion (d), Adaptive (e) and Amsotropic
(f) filters

are more sigmficant differences with the anisotropic and adaptive giving the best

results while the gaussian suffers in the low SNR 1mage

The strength, shift and spread of the edge 1s evaluated on each of the 1mages
Histogram plots across two edges, see the white lines across edge features 1n fig-
ures 3 2 and 33 In Figure 3 4, the histogram plots show both the image pixels
and the gradient for the lab image and medical image For the lab mmage the
results are similar for all filters with more sigmficant differences between filters in
the medical image Two measurements are taken from these histograms which in-
dicate edge strength and spread where edge spread 1s taken as the Full Width Half
Maximum (FWHM) of the gradient plot These results are compiled 1n Table 3 2
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Laboratory Image MR Image
Onginal 574 277 65
Savitzky-Golay 40 804 61 232
Gaussian 40 966 102 08
Daffusion 27 658 69 633
Adaptive 24 241 42 99
Anisotropic 31 905 3505

Table 3 1 The RMS of the standard dewviation of the homogeneous areas for the
original and each filtered image

Laboratory Imnage MR Image
Edge height Edge width | Edge height Edge width

Original 31 2 26 219 204
Savitzky-Golay 23 25 158 248
Gaussian 15 44 196 216
Diffusion 25 217 214 200
Adaptive 26 213 211 200
Anisotropic 30 217 219 199

Table 3 2 Shows the edge strength and edge spread on the gradient image after
each filtering While Savitzky-Golay and Gaussian filters spread the edge, the
other three mamntain and even enhance the edge characteristics

From all the experiments detailed above, 1t 1s clear that the non-linear fil-
ters outperform the linear filters using the criteria specified at the beginming of
the test The next step 1s to perform a more rigorous characterisation of the
non-linear filter described above 1n medical images The following experiments
have been performed 1n 3D using the extension of the 2D to 3D of the non-linear

algorithms described previously

331 Performance Characterisation of Non-Linear Filters

The first set of experiments 1s conducted on a synthetic dataset that is defined
by a homogeneous cubic object with a known grayscale value surrounded by
background pixels To test smoothing algorithms on this artificial dataset 1s ad-
vantageous as the ground truth data 1s known and the smoothing results are easy
to evaluate The efficiency of the algorithms when the artificial dataset was cor-

rupted with various types of 3D image noise 1s tested, including Gaussian, Poisson



33 EXPERIMENTS AND RESULTS

(a)

(b)

{c)

(d)

(e)

U]

41

[ty

U W

e

0}

()

()

(v)

Figure 34 Pixel mtensities and gradient intensities along white Iines from 1m-
ages figure 3 2 and figure 33 (1) and (1) show the pixel intensities and (1) and
(1v) show the gradient values from the lab image and the medical image respec-
tively (a) 1s the original image, (b) 1mage after Savitzty-Golay, (¢) Gaussian, (d)
Adaptive, (e) Nonhnear Diffusion and (f) Anisotropic and Gaussian
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Nowse [ S Dev S Dev S Dev S Dev Graysale Graysale Graysale Graysale
Type | noise F1 F2 F3 Expected F1 F2 F3
G-15 13 72 191 162 206 127 127 128 128
G-30 | 3193 7 64 303 5 57 127 128 129 133
P-15 13 02 107 076 174 127 139 138 138
P-30 | 2697 96 762 369 127 141 141 142
W-15 | 463 15 021 069 127 126 127 127
W-30 | 856 17 06 114 127 125 126 127

Table 33 Performance characterisation results when the algorithms have been
applied to an artificially created dataset F1, F2, F3 denote the standard diffu-
sion, adaptive smoothing and amsotropic diffusion respectively

and additive umformly distributed white noise [42] Similar to the previous ex-
periments, as quantitative values the local umformity sampled by the 7x 7 x 7
standard deviation 1s evaluated at the location situated at the centre of the cube
and the alteration of the grayscale value at the same position when compared

with the expected known value Some experimental results are depicted in Table
33

In Table 3 3 the symbols G-15 and G-30 indicate that the synthetic dataset
has been corrupted with Gaussian noise (standard deviation 15 and 30 grayscale
values) Sumilarly P-15 and P-30 denote the fact that the test dataset has been
corrupted with Poisson noise (distribution 15 and 30 grayscale values) and W-15
and W-30 indicate that the dataset has been corrupted with uniformly distributed
white noise (mean deviation 15 and 30 grayscale values) In order to evaluate
globally the noise removal efficiency on real datasets we need to define quantita-
tive measures that indicate the overall performance of the smoothing algorithms
that are evaluated In this regard, we propose to evaluate jointly two quantitative
measurements the smoothness factor that assesses the global uniformity and the
edge preservation factor that indicates to what extent the strong edge features
are retained and enhanced To this end, the standard deviation as a measure
to evaluate the 1mage local homogeneity was employed As before, the standard
deviation 1s measured 1n a 7 X 7 x 7 window over the entire original image These
values were sorted with respect to their magmtude and 25% of the highest values
were ehminated as belonging to edges 1n the 1mage and 25% of the lower values
as having no significant texture The standard deviation for each of the filtered
1mages 1s then taken at the same pixel locations To evaluate a quantitative esti-

mation we calculate the RMS value of the standard deviations from the onginal
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and smoothed datasets resulting after the application of the smoothing strategies
described in previous sections (for details refer to Table 3.3).

@ ()

Original
—  3Ddiffusion
3D adaptive
— 3D anisotropic

(©

Figure 3.5: (a) Slice of the heart MRI dataset. Pixel (b) and (c) gradient inten-
sities are plotted for the highlighted edge illustrated in image (a).

The edge strength is evaluated by plotting the intensity and gradient data
at selected locations where edges are located, before and after the application
of the smoothing operations. Some graphical results are depicted in Figures 3.5
to 3.8. The experimental data illustrated in Figures 3.5 to 3.8 indicate that the
3D adaptive smoothing and 3D anisotropic smoothing algorithms perform bet-
ter than the standard diffusion. The 3D adaptive smoothing algorithm returned
better results than the 3D anisotropic when applied to heart, brain and whole
body datasets. The 3D anisotropic algorithm performed better when applied to
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©

Figure 3.6: (a) Slice of the MRCP dataset. Pixel (b) and gradient intensities (c)
are plotted for the highlighted edge illustrated in image (a).

Magnetic Resonance Cholangiopancreatography (MRCP) dataset.

The graphs illustrated in Figures 3.5 and 3.8 demonstrate the edge enhance-
ment around image data defined by step-like edges. It can be noticed that the
edge localisation is significantly improved. The effect of edge strengthening is
even more pronounced for weaker edges in an MRI brain sequence (see Figure
3.7) or in image areas affected by a high level of noise, as is the case of the MRCP
dataset illustrated in Figure 3.6. The performance of the non-linear smoothing
algorithms described in this section is remarkable in discriminating a true edge
from image noise (see Figure 3.6¢). Also notice the improved performance of
the adaptive 3D smoothing algorithm as compared with the performance of the
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Figure 3.7: (a) Slice of the brain MRI dataset. Pixel (b) and gradient intensities
(c) are plotted for the highlighted edge in image (a).

standard diffusion and the 3D anisotropic diffusion algorithms. In order to em-
phasise the effectiveness of the smoothing strategies described in this chapter the
segmentation resulting after the application of a 3D clustering algorithm [42] to
the original and smoothed data is presented. Samples of the segmentation results
are depicted in Figures 3.9 to 3.12.

3.4 Conclusions

In this chapter, the performance in smoothing for a number of linear and non-
linear filters was evaluated. In the first part, experiments were performed in
order to show the advantage of non-linear filters over linear filters. In the second
part, three diffusion-based smoothing schemes were implemented and their appli-
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Figure 3.8: (a) Slice of the whole body MRI dataset. Pixel (b) and gradient
intensities (c) are plotted for the highlighted edge illustrated in image (a).

Heart Brain Whole body MRCP

Original data 4.95 9.21 20.46 18.8
3D diffusion 1.88 6.28 14.47 10.96
3D adaptive 1.73 6.16 14.05 10.83
3D Anisotropic  2.08 6.48 16 9.77

Table 3.4: The RMS of the standard deviations of the homogeneous areas for the
original and filtered MRI datasets used in our experiments.
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Figure 3 9 3D data clustering results - heart dataset (First row) Orniginal dataset
(shce 9), and corresponding 1mage resulted after clustering (Second row) 3D dif-
fusion smoothed data (slice 9) and corresponding 1mage resulted after clustering
(Third row) 3D adaptive smoothed data (shice 9) and corresponding 1mage re-
sulted after clustering (Forth row) 3D amsotropic smoothed data (shice 9) and
corresponding 1mage resulting after clustering
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Figure 3 10 3D data clustering results - brain dataset (First row) Ongmnal
dataset (shce 4), and corresponding image resulted after clustering (Second
row) 3D diffusion smoothed data (shice 4) and corresponding 1mage resulted after
clustering (Third row) 3D adaptive smoothed data (shce 4) and corresponding
image resulted after clustering (Forth row) 3D amisotropic smoothed data (shce
4) and corresponding 1mage resulted after clustering
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Figure 311 3D data clustering results - MRCP dataset (First row) Original
dataset (shice 10), and corresponding image resulted after clustering (Second
row) 3D diffusion smoothed data (shice 10) and corresponding image resulted after
clustening (Third row) 3D adaptive smoothed data (shce 10) and corresponding
image resulted after clustering (Forth row) 3D anisotropic smoothed data (slice
10) and corresponding 1mage resulted after clustering
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Figure 3 12 3D data clustering results whole body dataset (Furst row) Original
dataset (shce 6), and corresponding image resulted after clustering (Second
row) 3D diffusion smoothed data (slice 6) and corresponding 1mage resulted after
clustering (Third row) 3D adaptive smoothed data (slice 6) and corresponding
image resulted after clustering (Forth row) 3D anisotropic smoothed data (shice
6) and corresponding 1mage resulted after clustering
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cation to medical 3D data was described The main interest was focused on MRI
acquisition modalities as MRI datasets are characteristically defined by a low
signal to noise ratio (SNR) Hence, the aim was to demonstrate that far superior
results are achieved if the MRI data 1s imtially filtered 1n order to reduce the
level of image noise and improve the SNR In this regard, a detailed performance
characterisation was performed for each smoothing operators evaluated on both
synthetic and real data (including heart, brain, whole body and MRCP 1mage
sequences) We conclude that 1n our experiments the non-linear diffusion-based
smoothing techmque provided the most efficient approach to noise reduction, and
more mmportantly this advantage 1s not achieved at the expense of feature preser-
vation 1n our experimentation Computational time was higher for the non-lmear
iterative approaches, buf as computational expense 1s not a miting factor 1
our application this parameter was not included n the characterisation The
experimental data presented and discussed 1n this chapter highlights the ability
of the diffusion-based smoothing schemes to distinguish the high gradient 1mage

features from the MRI 1mage acquisition noise

Publications associated with this chapter

Journal Publication

Ovidiu Ghita, Kevin Robimnson, Michael Lynch and Paul F Whelan (2005), MRI
diffusion-based filtering A note on performance characterisation, Com-

puterized Medical Imaging and Graphics

Conference Publication

Michael Lynch, Kevin Robinson, Ovidiu Ghita and Paul F Whelan (2004),
A Performance Characterisation in Advanced Data Smoothing Tech-
niques, IMVIP 2004 Irish Machine Vision and Image Processing Conference,
September 2004, Trimty College, Dublin, Ireland



Chapter 4

Statistical Partitioning of Data
for LV Localisation and
Extraction

The advanced filtering techniques employed 1n the last chapter alleviates much
of the work needed 1n the classification process Preprocessing the data has re-
moved much of the inherent noise associated with MRI therefore the process of
segmenting the data into the relevant anatomical features can be achieved using
data partitioning techmque To this end, 1t 1s the aim of this chapter to use
cluster analysis to successfully segment the left ventricle blood pool The left
ventricle blood pool can then be automatically located using shape characteris-
tics before a more heunstic method 1s employed to segment the outer boundary

of the left ventricle muscle

Data clustering remains a very active topic n 1mage processing The appli-
cation of robust techmques for object 1dent:fication 1n 1mages are extensive, none
more so than 1n the rapidly advancing field of medical 1imaging [30, 117] Region-
based methods [117] are used to segment the 1mage, this 1s generally achieved
without using a priore information The most basic form of region-based seg-
mentation 1s thresholding Thresholding techniques create a binary image of
pixels above and below a user defined threshold value Thresholding does not
take mto account the structure or connectivity of the points that 1t segments and
the threshold value 1s seldom automatically determined Segmentation results

can sometimes be filled with holes or ragged edges, which 1n a crude way can be

93
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eliminated with a combination of morphological operators (63, 141] In medical
imaging, thresholding 1s not widely used without some advanced preprocessing
steps due to 1ts sensitivity to noise More complex statistical methods, like clus-

tering, join pixels of similar intensities to create a segmentation of structures in

the 1mage

All statistical based classification methods [61, 40, 64, 42, 65, 114, 113] ain
to optimise the results based on an mitialisation This imtialisation 1s commonly
chosen randomly, and as a consequence results are not reproducible, do not take
advantage of inherent patterns in the data or may be imtialized on outhers
Methods for automatic mtiahisation of clusters have been proposed 1n hiterature
[3,97,71] Al-Daoud and Roberts [3] proposed two methods, the first picks points
randomly 1n evenly spaced cells across the entire histogram of the data and re-
duces the number until the required seeds are found The second method tries to
optimize the sum of squares of the distances from the cluster centers Mitra et al
[97] describe a rough-set imtialisation provided by graph-search methods Khan
and Ahmad [71] assume a normal distribution over the data attributes and divide
the normal distribution curve mto equal percentile cells The seeds are chosen as
the midpoints of the mnterval of each of these partitions In Appendix A, a novel
method developed by the VSG for the imtialisation of cluster centers 1s given
where the cluster centers are automatically detected using histogram analysis

and applied to medical images

In order to extract chmcal measurements from the smoothed data, a novel
method 1s proposed whereby data 1s first clustered mm order to segment highly
differentiated features, 1e the blood and myocardium A localisation of the left
ventricle 1s detalled Using this prehminary step, a new method for the extrac-
tion of the epr-cardinm boundary 1s developed which is based on a knowledge
driven search of gradient information Where appropriate gradient information
1s lacking prior knowledge 1s used to augment the segmentation solution

41 Data Clustering

Clustering 1s a well documented image segmentation technique which classifies
pixels 1nto groups or clusters using a distance criteria to join data values to each
cluster The most basic form of clustering 1s Hierarchical clustering, off which

there are two types — agglomerative and divisive Agglomerative clustering n-
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volves creating n clusters from the data X, = {x1,z2,x3 zn} where n 1s the
amount of elements and X € R™ The process then iteratively combines this
clusters i a branching formation until there 1s just one cluster containing all n
elements The clusters are joined using a distance criteria, which can be measured
i different ways, single-linking, complete linking, unweighted average pair and
weighted average pair Divisive clustering works 1n the opposite way by creating
one cluster with n elements and then dividing the clusters until  clusters remain
Successful analysis of both these joiming methods comes from knowing at which
iteration mn the process will return the optimal amount of clusters to create a

meaningful segmentation

The k-means, or c-means, clustering method 1s a well established as a parti-
tioning method [61, 136] Delibasis et al [38] proved how the k-means algorithm
performed more robustly 1n a comparative study with an adaptive region growing,
fuzzy C-means clustering and Kohonen self-organising maps for the segmentation
of the left ventricle blood pool from cardiac MRI images This comparison was
performed on both normal and abnormal cases and results were evaluated against

a manual dehneation of the left ventricle cavity

Unlike the Hierarchical methods, the k-means algornithm requires a user de-
fined set of clusters The process then exchanges the elements between clusters
with two aims, to mummise the variation within each cluster and to maximise
the vanation between clusters The algorithm has four mam steps to find the
mmage clusters, this 1s also 1llustrated in figure 4 1 The process terminates when
no more elements are exchanged between clusters and 1t can be shown that the

method 1s always convergent The process 15 the mmmmization of the following
!

E=mmn} (%, — myy,)) (41)
7

equation

where 7 15 the number of data points index and mc, ) 1s the class centroid
closest to the data point

In this thesis, the smoothed MRI images are then clustered using an im-
proved version of the k-means algorithm proposed by Duda and Hart [42, 61]
An adaptive form of clustering 1s developed whereby the initial user defined num-
ber of clusters 1s 1teratively reduced until a more appropriate number of clusters
1s achieved This 1s based on thresholding the inter and intra cluster variability
Firstly, the image 1s clustered using an mtial guess of 15-20 independent cluster

centres which 1s sufficient to capture all the relevant features The pixels are
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Figure 41 Two 1terations in the k-means clustering technique on 2D data The
objects change with each iteration to jomn the cluster whose centre is closest

clustered together using the following strategy This algorithm has four steps to

find the 1mage clusters
(2) Imtialise the position of the means m; — my,
(1) Assign each of the k-1tems to the cluster whose mean 1s nearest

{12) Recalculate the mean for the cluster gaimng the new item and the mean

for the cluster loosing the same item Recalculation 1s made using the ntra

cluster variance
(w) Loop through steps (12) and (1) until there are no movements of 1tems

Imitiahisation of cluster centres can have a significant effect on the results of
the classifier, therefore random 1nitialisation 1s avoided Alternatively, seeds may
be placed at specific regions or equidistantly in the 1mage space or 1 grayscale
space A better solution to maximise the use of input data in mmtialising the
cluster centres 1s choosing them based on histogram analysis of the data This

approach 1s detailed in Appendix A

In the second phase of the algorithm, each of the k clusters are sorted and
compared The number of clusters 1s then optimised by merging clusters with
simlar attributes This 1s repeated until there are no more clusters to be merged
The stopping criterion for this joining process 1s defined using a threshold on the
mntra cluster variability and 1s chosen experimentally Given the high differentia-
tion 1n mtensity signal between the blood pool and the myocardium, experimental

\

)
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results display robust separation of the blood pool from the myocardium As can
be seen in Figure 4 2 the generality of the method as 1t 1s apphied to two separate
protocols, spin-echo and gradient echo with satisfactory results

(¢) ()

Figure 4 2 Shows four unages, a gradient-echo umages before (a) and after clus-
tering (b), and a spin-echo 1mage before (c) and after clustering (d)

411 Automatic Detection of lv cavity

The 1mage has now been segmented into separate clustered regions The next
step 1s to automatically detect which of these clusters represents the lv cavity
on the first shce The lv cavity 1s located using shape deseriptors only and not
using the gray scale values which allows for application of this method 1n various
MRI imaging protocols The 1mages are short axis, therefore we assume that
the lv cavity approximates a circular shape and that the [v feature 1s present

In successive slices Approximation to a circle 1s calculated as the error of the
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fitted areas of a least squares approximation to a circle The approximation 1s
obtained my mimimising the error of the areas of the fitted circle and the areas of
the associated circles at each data pomt (see mathematical background Appendix
C 1) It s also assumed that the lv 1s not located on the periphery of the image

The volume of the left ventricle 1s then extracted using two criteria
(1) Overlapping area of the regions contained 1n successive shices
(1) Gray scale value of the regions under nvestigation

The regions cannot be connected using just gray scale values alone due to the
variation 1n the intensity values through the volume caused, to some extent, by
coil intensity falloff The lv regions are then connected 1n 3D and the volumes are
then rendered for visualisation purposes (see Figure 4 8) The ejection fraction
15 calculated using the systolic and diastolic volumes The ejection fraction 1s
defined as “the proportion, or fraction, of blood pumped out of your heart with

each beat” [104] and can be calculated using the equation
‘/endo(tD) - Vendo(tS) (4 2)
Vendo(tD)

where V40 15 the volume of the inner walls of the heart, Vengo(tp) = mazs[Vendo(t)]
15 the end-diastolic volume and V,,45(ts) = mane[Vendo(t)] 1s the end-systolic vol-

EF =

ume

The corresponding region 1s found by maximising the result of a cost func-
tion where the overlapping and the mean gray-scale value of the areas under
investigation are used as parameters

This works well on basal and mid-cavity slices, the blood pool 1s large and
relatively homogeneous The apical region 1s more challenging due to the increase
n trabeculae carne and papillary muscles, the low volumes of blood present,
partial voluming along the z axis and blurring due to movement of the diaphragm
The extension of this segmentation algorithm to 3D 1s appropriate as the higher
level of knowledge leads to improved segmentation results plus 1t ehminates the
need to match relevant clusters through the volume using overlapping criterion

4 2 Extension to 3D

In order to improve the robustness of the segmentation technique 1t 1s favorable
to extend the clustering to the third dimension The extension means that the

blood pool 1s clustered as a whole and therefore 1t 1s more robust 1n areas where
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Figure 4 3 The top three images from left to right show the original short axis
umage, after smoothing and after clustering The graph plots the intensity values
for the white line running through the original 1mage

artifacts such as the papillary muscles are present This 1s particularly the case

around the apical regions of the left ventricle cavity

The end-systole and end-diastole volumes are smoothed 1n 3D, as in the pre-
vious chapter Once smoothed they are then clustered using the 3D k-means
techmque using the volume data The left-ventricle can be manually picked or
automatically using the volumetric shape properties of the cavity, as developed

in the following section

421 Automatic Detection of lv cavity using 3D information

In order to locate the left-ventricle mn the image a number of shape descriptors
were used The images are short axis so therefore we use the anatomical knowl-
edge that the lv cavity approximates a circular shape and that the lv feature 1s
continuous n successive slices In the 2D scenario, approximation to a circle 1s
calculated as the error between the shape and the least squares approximation to

1t’s circle  Also, a smooth interpolation of the curves 1s achieved using a spline
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fitting

In the 3D case, the left ventricle cavity 1s located using 1ts shape description
In this case 1t 1s known that on the short axis the left ventricle approximates an
ellipsoid 1n shape, although 1t 1s flat at one end, perpendicular to its major axis
The approximation to an ellipsord parameters (radu and centres) is calculated
using the first three principal axes of the PCA of the boundary data points
The error 1s then calculated between the shape and the fitted ellipsoid using
the summation of the normalised point deviations with respect to the calculated

ellipsoid radn (see mathematical background in Appendix C 2)

4 3 Segmentation of epi-cardium border -

Once the left ventricle blood pool has been successfully segmented, the outside of
the myocardium or epi-cardium boundary presents a more challenging problem
Parts of the outer wall of the left ventricle displays low gradient information and

low differentiation between neighbouring tissues, as in Figure 4 4

Figure 44 TIllustrating the low grayscale differentiation between the outer wall
of the myocardium and other organs 1n the body, before (top row) and after
(bottom row) data partitioning

This 1s especially true in areas close to the lungs and hiver Therefore clus-
tering technques are not applicable because the differentiation between tissues
1s so low and edge detection will only have limited success when used without
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supervision or a more mvolved approach Noble et al [107] attempt to change
the coordinate system to polar coordinates followed by a constrained snake seg-
mentation to capture the epi-cardium boundary In order to address these 1ssues,
a novel heuristic approach 1s developed which uses all the available information
1n a supervised way and where information does not exist or is not found, the

segmentation 1s augmented using prior information of the epi-cardium boundary

shape

Calculation of the wall-thickness and wall-thickening 1s dependent on the ac-
curate segmentation of the epi-cardium boundary The main problem associated
with the segmentation 1s the low contrast-to-signal ratio along the epi-cardial
boundary n particular on the inferior and inferolateral side where the muscle
becomes mndistinguishable from the lung To this end two novel approaches are
explamned and have been evaluated, both a robust approximation for the epi-
cardium thickness to determine strong features of the epr-cardium present in the
mage Where strong information 1s lacking, the algorithms aim to approximate
the epi-cardium boundary using 1n the first case an arc, centered at the center of
gravity of the blood pool and connecting two known segments of the epi-cardium
boundary In the second approach, where no information 1s present, the algorithm
uses information obtained from a probabilistic model consisting of manually seg-

mented 1mages to complete the ept-cardium boundary

431 Fwst Approach Robust-Arc epi-cardium segmentation

The robust arc approximation technique works on the 2D slice taken from the
previously segmented blood pool volume Firstly the centre of gravity of the left
ventricle blood pool 1s located The least squares approximation for the radius
of the endo-cardium border 1s calculated on each slice The original image 1s
re-clustered again around a smaller region of interest with a smaller predefined
number of clusters i order to find the right ventricle blood pool The right ven-
tricle blood pool 1s found to be the largest cluster close to the left ventricle cavity
with similar intensity attributes to the left ventricle blood pool The interven-
tricular septum between the two ventricles 1s measured and this measurement

gives an approximate thickness for the myocardium around the left ventricle

A Canny edge-detection [20] 1s performed on the onginal image shice A 1D
radial search 18 carried out from the centre of gravity on the gradient image and
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Figure 4 5 From left to right Onginal unseen image, calculated edges, robust
segments of epi-cardium and the complete segmentation using arcs to complete
the epi-cardial boundary

image edge ponts are connected together into edge segments using an Euchidean
distance criteria Spurious segments are ehminated by length, orientation away
from the endo-cardium border and using the approximation for the myocardium
from the septum

In between these segments are parts of the epi-cardium border that do not
have any gradient Therefore there 1s no other information 1n the image to help
find the correct path between these segments In this case the end points of the
robust segments are jomned with an are, pivoted around the center of gravity of

the endo-cardium Results can be seen 1n figure 4 5

The procedure for segmenting the epi-cardium can be followed in the diagram
illustrated in Figure 4 6, Stage II The position of the lv cavity 1s already known
mn each shce as explained m the previous section In order to determine the epi-
cardium border a region of interest 1s defined around the lv cavity Two copies of
this region of interest are taken The first image I'magel 1s used to find a value
for the approximate radius of the myocardium and the second 1mage I'mage2 1s
used to find real borders around the myocardium The two are combined to find

the true value of the epi-cardium around the [

Imagel 15 agam clustered using a predefined low number of clusters around
the region of interest A low number of clusters 1s chosen because of the scarcity of
mmportant features around the lv cavity Anatomically, the closest blood pocket
to the v cavity 1s the right ventricle cavity, it 1s also assumed that the thickness
of the myocardium will not change drastically over the entire circumference The
thickness of the wall, or septum, between the two blood pockets can give a reli-
able estimate for the thickness of the rest of the myocardium
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Figure 4 6 A schematic representation of the two phases involved 1n the segmen-
tation of the endo- and epi- cardium border Stage I shows the preprocessing and
segmentation processes, the automatic detection of the lv cavity and the connec-
tion of the cavity through the volume Stage IT shows the method for segmenting
the epi-cardium border 1n each image
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I'mage2 1s zoomed using an area averaging technique around the area of inter-
est The image 1s then segmented using a thresholded edge-based algorithm [20]
The zoommg operation 1s applied to increase the edge separation The largest
connected segments within certain bounds of the estimated thickness found from
Imagel are taken as potential border segments There i1s an angular restramt
placed on the transition of these segments around the epr-cardium to eliminate

stepping into the endo-cardium border or stepping out to other organs

A closed natural cubic spline 1s fitted around the points on the epi-cardium
[144, 12], for the formulation see section C3 The sphne 1s used to close the
epr-cardium contour by connecting all the points on the curve in a smooth way
Splines are piece-wise polynomials with the pieces smoothly joined together The
jomng pomts of the polynomial pieces are called control points which do not have
to be evenly spaced Each segment of a spline 1s a polynomial of degree n, for
this implementation n was chosen to be n =3 More details on the mathematical

formulation of the natural cubic spline can be found in Appendix C 3

432 Second Approach Model assisted Epi-cardium segmentation

In order to incorporate more realistic approximations for missing data, a new
method 1s developed which uses a probabilistic model of previously segmented
heart 1mages Omnce each slice 15 taken from the volume the centre of gravity
of the left ventricle blood pool 1s located The least squares approximation for
the radius of the endo-cardium border 1s calculated By re-clustering the orig-
mal image again around a smaller region of interest with a predefined number
of clusters 1n order to find the right ventricle blood pool The right ventricle
blood pool 1s found to be the largest cluster close to the left ventricle cavity with
similar intensity attributes to the left ventricle blood pool The myocardium wall
(septum) between the two ventricles 1s measured and this measurement gives an

approximate thickness for the myocardium around the left ventricle

An edge-detection 1s performed on the original image slice A 1D radial search
1s carried out from the centre of gravity on the gradient image and image edge
pomnts are connected together into edge segments using a Euclhidean distance cn-
terion Spurious segments are eliminated by length, by orientation away from the
endo-cardium border and using the approximation for the myocardium from the

septum
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A database of contour points 1s created based on manual segmentations of the
endo and ep1 cardium boundaries This database contained 180 2D contours with
the associated radn calculated using the least squares approximation based on
mimmising the error of the areas (detailed in AppendixC 1) Where epi-cardial
boundary 1s not defined by the edge information, the boundary 1s then completed
from a generic database of hand-segmented shapes The database 1s searched us-
ing the ratio of epi-cardium and endo-cardium radn The searching uses the two
end-points of the robustly located segment from the gradient image Prior to
searching, each contour 1s scaled with respect to radn parameters extracted from
the model Each scaled contour in the database 1s searched to mimimise the Eu-
clidean distance from these endpoints to their nearest corresponding points on
the contour The contour that mummises this error 1s chosen The appropriate
section 1s extracted from the contour and joined to the edge defined boundary

using a natural closed sphne (see figure 4 7)

Figure 4 7 From left to right Original unseen 1mage, calculated edges, robust
segments of epi-cardium and the complete segmentation using an a prior: knowl-
edge database

In figure 4 7(b} the segment points obtained from gradient image figure 4 7(a)
are 1llustrated In between these segments are parts of the epi-cardium border
that do not have any gradient Therefore there 18 no other information in the
1mage to help find the correct path between these segments In this case a prior
knowledge about the shape of the epi-cardium border, obtained from previously
hand-segmented can be used to jon the segments In this way we introduce a
form of supervision, and by inferring previously drawn contours we hope to main-
tain continuity of the shape Because the contours contain the original segments
while the manually drawn contours are only inferred where there 1s no informa-
tion to be rendered from the image, 1t 1s beheved that this approach generates

more app}opnate results than the previous technique, when the model provides a
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good approxunation to the object being segmented When complete models are

inferred onto the image there 1s a danger that details may be lost

4 4 Results

In order to assess the performance of the automatic segmentation, results were
compared against those obtained by manually segmenting volume image sequences
for the endo- and epi-cardium borders The manual segmentation was assisted by
an experienced cardiologist* Each volume includes 5-12 1mages containing the
lv, transversing the lenght of the cavity and includes the papillary muscles The
automatic segmentation results can be seen 1n figure 4 12 The method shows
good visual results for bright blood images 4 12(a)-(f) and dark blood 1mages
4 12(g)-(1) The errors are calculated on volumes, endo and ep1 contours areas,
myocardium thickness and finally point correspondence

Table 4 1 shows the signed average and root mean square error of the ejec-
tion fraction from eight volumes from the sequence The ejection fractions were
worked out using pairs of volumes, not necessarily the end-systole and end-
diastole and compared with the ejection fraction calculated from the manually
segmented volumes We can see 1n Table 4 1 low errors between the manual and
automatic results

The errors for the manually segmented endo-cardium area and the automat-
1cally traced area are given in Table 41 The signed average and root mean
square errors are shown FErrors around the apex have a significant effect because
the errors are described n proportion to the overall area calculated from the
manual segmentation Linear regression analysis was also performed in Figure
4 9(a) and high correlation value of r = 0 98 1s obtained Reproducibihity 1s as-
sessed using the Bland-Altman plot, Figure 4 9(b) [15] From the Bland-Altman
plot we can see that there 1s a tendency to underestimate the areas of the endo-
cardium boundary, this 1s due to the inclusion of some endo-endocardium fat n
the manual segmentation and perhaps due shightly to partial voluming effects
Also evident from the graphs 1s the accurate performance of this procedure n
both systolic and diastolic phases, represented by the lack of skew 1n the plots
as the areas increase Note that the graphs are relatively zoomed to show the

detailed distribution and the plots are graphed in units of mm?

*The validation was performed by Dr John Murray, Cardiologist, Mater Misericordiae
Hospital, Dubhn, Ireland
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The epi-cardium area was assessed using the hinear regression and Bland-
Altman plots It shows a slightly lower percentage error for both the average
signed and the rms errors This can be attributed to the increased overall area
of the manually traced contours Linear analysis, Figure 4 10(a), gives a value of
r = 0 94 while Figure 4 10(b) gives a sumilar regression value of r = 0 95 which 1s
slightly lower than that produced for the endo-cardium Thus lower correlation 1s
a result of low contrast on the lateral side of the heart making the segmentation
of the epi-cardium border difficult In this case our algorithm connects two end-
pomnts of robust segments, how these segments are connected can incorporate a
prior: nformation {83] Manual segmentation is also problematic i areas of low
gradient and 1s dependent on the users own mterpretation of ‘what looks appro-
priate’ Reproducibility was again assessed with the Bland-Altman plot, figure
4 10(b) Again, both methods produced similar results, both bands of two times
the standard deviation are similar and not as tight as those achieved 1n the blood
pool segmentation There 1s not a significant difference between both methods as
robust gradient information 1s used when available and both approaches are only
applied 1n areas that are lacking gradient information Both plots show no bias
from the zero error or skew 1n the data Although, the second approach which
uses a prior database of contours does produce a larger number of outliers for the
smaller apical regions where the outer wall may be undefined and approximation
18 difficult Using this approach, more appropriate segmentations are achieved
when compared to full manual segmentations However, these methods still have
the limitation that they are only working on slice data and not incorporating

volume or temporal information

Table 4 1 Mean Percentage Errors -+ 18D for manual versus automatic

Average Signed Error RMS Error
Ejection Fraction 1593 £ 082 3176
Endocardium Areas -3623 £514 4765
Epicardium Areas -0 556 + 4 29 375

Table 4 2 gives the Euclidean point to curve error 1n mm’s for all images
through a heart sequence It gives the minimum and maximum distance between
the manual and automatic segmentation contours The average distance, stan-
dard deviation (SD) and root-mean-square (RMS) are also given The results
for the epi-cardium boundary point to curve errors are shown in Table 4 3 and

llustrated n figure 4 11
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Figure 48 The rendered images of (a) the end-diastole iv cavity, (b) the end-
systole lv cavity, (¢) and (d) the diastolic myocardium These volumes are con-
structed from the true segmentation of the images excluding fat and papillary

muscles



44 RESULTS 69
1800
End 20 8land Altman Endocardium
o ndocardium
150
1400 E w me 250
3 °
= =
szm § I
gmo i’ [} 2 8 ¢
o
S y 10078 €432 Ea mean S - ~ Y ee o SA B
]
g 2w M
iw c o
1 50 .
@ g w| .
é me 250
kol ° 0
3 -0
5 30 50 %0 ™ 190 1350 1860

s200 “w0 1800 1800

20 1000
Manual Area mm Average of manual and sutomatic mm

Figure 4 9 Figures (a)-(b) shows scatterline plot of manual segmentation against
the automatic segmentation and shows Bland-Altman plot for the left ventricle

blood pool areas

000

0 Epicardium
0m 2500 &1y
13 t
£ E 2000
L]
£ g
1] E]
E E 1500
5 1500
2 2
1000 1000
™ o e 0 Z0 260 60 20 00 so0 " N
¥ s I
k (R 500 1000 1500 2000 2500 3000
Manua! Area mnd’ Marnual Area mmi
(a) (b)
00
Bland Altman Epicardium 500
500
E %00
fw E
ﬁ maan an____—___ e — —_ [
'é 0 50 L ’ a
g ¢ * g
) 2 200 —
o
100 E S % e g E - *
- o 8 w 100 - :
o] ™ -t 2 < I Y -t
I I TR s P L R
- <€ -
; " “ s 750 1250 4150 %250 2750
2 10
H £ -
a ™ 20 ¢ 8 200
- mos 250
300
s
o ) 1500 1700 10 2100 00 200 o 200 400
Average of manual nd aulomatc mn Averaga of manuel and automatc mal
(c) (d)
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shows the results using the Prior model technique
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Table 42 Point to curve Errors between manual and computer segmentation for
clustering techmque for the endo-cardium boundary segmentation(mm)

FEndo-cardium
Method | Average (mm) Std Dev (mm) RMS (mm)
3D k-means)Clustermg 069 0 88 112

Table 43 Point to curve Errors between manual and automatic segmentation
for the epi1-cardium boundary(mm) segmentation

Epi-cardium

Method | Average (mm) SD (mm) RMS (mm)
Robust Arc 131 186 214
Prior Model 126 127 194
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Figure 4 11 Plot shows the error frequency using a point to curve error metric
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45 Conclusion

A fully automatic detection and segmentation of the left ventricle myocardium
has been detailed in this chapter Edge preserving data filtering 1s performed and
followed by an unsupervised clustering to successfully segment the left ventricle
cavity from short axis MR images of the heart Once the cavity volume 1s ex-

tracted the ejection fraction can be calculated

In the second part of the chapter the epi-cardium border is successfully seg-
mented using an edge-based technique The thickness of the wall 1s approximated
by measuring the thickness of the interventricular septum The interventricular
septum 1s an anatomically sound feature of the heart and because 1t 1s surrounded
by blood on both sides it can be robustly segmented This measurement 1s then
used as an mmtial estimate for the thickness of the complete wall A gradient
mmage of the area around the [v 1s computed and the use of the approximate wall
thickness, gradient points potentially belonging to the epi-cardium border are se-
lected If there are no viable gradients found on the epi-cardium border then the
outer wall 1s estimated using the approximation found using the interventricular

septum

Statistical partitioning of the umages allows the extraction of the {v blood
pool without the use of prior constraints on shape Abnormalities in the image
data can indicate disease Model based approaches approximate to the closest
plausible instance shape from the training set Point Distribution Model (PDM),
but this may not be sufficiently accurate Also model based approaches that in-
corporate texture are hmited 1n their use when the texture m the object images
varies significantly from those contained in the model traming set The method
proposed 1n this chapter presents a robust, fully automated method to 1dentify
the endo-cardium and epi-cardium borders that does not rely on a prior: knowl-

edge nor does 1t use shape constraints to find the left ventricle cavity

Left ventricle segmentation 1s primarily motivated by the need to chinically
diagnose a feature of the heart with potential problems Models that approximate
left ventricular boundaries try to fit variations of boundaries that have already
been segmented The left ventricle 1s anatomically variant, the scanners are in-
consistent and the variations of pathologies found in patients 1s vast To build a
model to accommodate such diversity would be an immense task Our algorithm

makes no approximations based on observed data but instead produces a true
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evaluation of the heart structure by segmenting the true borders in the image
It should be remembered that the aim 1s not to segment hearts that are part of
a model but to assist the cardiologist in the prognosis by delineating the true
anatomical features present 1n the image Therefore, 1t 1s the aim of this thesis
to approach the problem from a bottom-up strategy in as far as possible Image
segmentation can be augmented using prior information in the case where no
unage nformation 1s present and also to supervise the segmentation from spilling

mto other anatomical structures

Evaluating the endo-cardium and epi-cardium borders using this approach
could provide a more appropriate techmque for flagging problems like wall thin-

ning and low ejection fraction

However, while this method provides good results m well imaged data and has
been successful 1n segmenting the left ventricle blood pool 1n 2D and 3D data and,
1t 15 the aim of this thesis to increase the robustness of the segmentation approach
by incorporating the entire data presented from the patient scan and remove the
heurnistic approach by creating a well defined mathematical framework The aim
of this approach 1s to create a more involved techmque which segments both
myocardium boundaries as opposed to two separate steps and also facilitate the
mcorporation of temporal information The investigation of evolving surfaces,
therr parameterisation, termination and incorporating advanced information 1s

performed 1n the next chapter

Publications associated with this chapter

Journal Publication

Michael Lynch, Ovidiu Ghita and Paul F Whelan (2005), Automatic Seg-
mentation of the Left Ventricle Cavity and Myocardium in MRI Data,
Computers i Biology and Medicine 36(4) pp389-407

Conference Publications

Michael Lynch, Ovidiu Ghita and Paul F Whelan (2004), Extraction of Epi-
Cardial Contours from Unseen Images Using a Shape Database, IEEE
NSS-MIC 2004 Medical Imaging Conference, October 16-22, 2004, Rome, Italy
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Figure 4 12 The left ventricle contours obtamned using our automatic segmen-
tation method 1n short axis cardiac MR images Figures (a)-(f) show images
taken at both the end-diastolic phase and end-systolic phase of a gradient-echo
sequence Figures (g)-(1) show images from a spin-echo study

Michael Lynch, Ovidiu Ghita and Paul F Whelan (2004), Comparison of 2D
and 3D clustering on Short Axis Magnetic Resonance Images of the left
ventricle, CARS 2004 Computer Assisted Radiology and Surgery, June 23 - 26,
2004 Chicago, USA
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Michael Lynch, Ovidiu Ghita and Paul F Whelan Calculation of Ejection
Fraction (EF) from MR Cardio-Images Paper in the Insh Machine Vision
and Image Processing Conference 2003, Coleraine, Northern Ireland



Chapter 5

Boundary-Based and Model
Driven Segmentation in
Multidimensional Data

In this chapter, a review of current boundary based and model based segmenta-
tion schemes 1s detailed and their application to medical 1mage analysis Partic-
ular emphasis 1s placed on cardiac left ventricle segmentation in MRI {156, 117,
30, 48] In Section 5 6 the level set framework 1s described and novel approaches
to segmentation with level sets 18 introduced, 1n particular the extension to 4D

data analysis

Many boundary based segmentation (also called Active Contours) methods
for object segmentation have been developed for use in medical 1image object
extraction Generally, the aim of boundary based segmentation methods 1s to
deform a closed curve using both intrinsic properties of the curve and 1mage
based information to capture the target object [158] This form of segmentation
has many advantages over statistical intensity based partitioming algorithms as
boundary shape 1s one of the key factors in the evolution of the contours One of
the most popular forms of boundary based segmentations are snakes, which were
first introduced by Kass et al [68] From their introduction snakes have received
a large amount of interest from the research community and much work has been
done on derivations of the original snake Further work in controlling the snakes
propagation was achieved using parametrically deformable models and also by the
mtroduction of a preori model driven segmentation with Active Shape and Active

75
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Appearance Models A Eulerian formulation of the active contour 1s introduced
by means of a level set algorithm The advantages of this formulation include
a more robust mathematical theory, capability to follow topological changes 1n
shape, and other computational advantages like curvature measurement Work
on the level set formulation for segmentation will constitute the main part of
this chapter A number of key 1ssues n the level set are then addressed which
include the choice of stopping term, the introduction of @ prior: information, the
coupling of two level sets for the extraction of both the ep1- and endo-cardium
boundary and finally the introduction of an Expectation-Maximisation extension

of the level-set framework to fully segment data in 4D (3D + t)

51 Active-Contours

Firstly, a 2D simple contour can be defined as v(s) = [x(s) y(s)]? for s € [0,1]
The main 1dea 1s to deform this contour smoothly to extract certain features in
an mage [92] In a segmentation scheme this usually applies to extracting an
area of homogeneous signal intensity, this may represent an object in a medical
image such as the liver organ or a pool of blood Therefore the deformation of
the curve should flow globally outwards or inwards but should be inhibited from

crossing areas of high frequency 1n the image data

In this sense, the energy used to deform the boundary ts a combination of a
smoothing term, relating to the mtrinsic properties of the boundary curve v(s),

and an image dependent term, obtained directly from the underlying image data

E= Emt + Eezt (5 ]-)

511 Internal Energy

The internal energy aims to smooth the deforming contour, as in most cases in the
segmentation of natural objects the boundary 1s defined as relatively smooth To
this end, the internal energy uses a combination of first derivative to determine
tenston or elasticity of the local contour and second order differential in order
to calculate the bending of the local contour The resulting values present high
energy levels 1n irregular contours with shape corners and low energy mn contours

with a smooth transition between evenly separated points If the contour was to
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deform with the deformation energy obtained solely from the internal energies,

the contour would achieve a perfect circle

B = [ (@G0 + 0153 s 52)

In Equation 5 2, a and 3 are weighting factors In practice 8 may be set to
zero, both to reduce the complexity of the derivation of the curve evolution to a
geometric space and also because curve smoothing can be obtained with the first

regulansation term alone [22]

512 External Energy

The external energy uses the 1mage data to stop the deformation at the desired
position Stopping criterion may involve image data intensity, free end of bound-
ary termination, corners or in this case high frequency or high gradient data The
resulting energy should return low values on ligh gradient points and hgh values

on low gradient points

1
Bzt = —A /0 IVI(v(s))|ds (5 3)

In Equation 53, X 1s a user defined weighting function and I(v(s)) 1s the
image mtensity To suppress the influence of noise on the deformation the data
may be smoothed using a Gaussian filter, thus becomung V[G, * I(v(s)] where o

parameter controls the vanance of the Gaussian

Therefore, the active contour can be described as an energy mumimisation
problem that seeks to deform a closed contour to rest on high image gradients
while mamtaining a smooth transition between points An inflation term may be
appended to the energy terms, this can take the value of £1 along the normal
direction to the curve [31] This inflation term grows or shrinks the contour from

1ts 1tial position to aid with the mitialisation

The main advantages of active contours are their extension to 3D, (where
they are referred to as active surfaces), their ability to capture a closed structure
and the users abihty to select different features as stopping terms In medical
imaging, many of the natural anatomical structures are represented by closed

smooth active surfaces It 1s for this reason that many researchers have investi-
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Figure 51 Curve propagating with a force 'F’, in the normal direction of the
local boundary

gated methods and extensions to employ active contours for the segmentation of
medical images, and this will be investigated further in the following section

There are however disadvantages associated with the snake method One of
the key limitations of the snake algorithm 1s the problem of imtialisation The
active contours aim to deform until the stopping energy overpowers the influence
of the intrinsic energies and 1n some cases the inflation term Also, the selection
of the parameter space and sampling rule also has a large influence on the final

segmentation result

513 Application of Active Contours

Active contours have been used extensively for segmentation 1n the field of medi-
cal 1imaging, a full review of deformable models in medical 1maging can be found
n [92] Mclnerney and Terzopoulos [90] apply a 3D dynamc balloon model using
triangle-based finite elements to segment the left ventricle from cardiac CT data

Much attention has been given to improving the snake computational frame-
work, for instance Amuni et al [4] suggests using dynamic programming 1n order
to munmimise the energy function This approach 1s claimed to produce the opti-
mal local contour by searching all the possible solutions Geiger [52] describes an

non-iterative dynamically programmed method to extract the optimal contour,
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providing the imtial contour 1s a close approximation To speed up this algorithm
and to 1mprove robustness, multi-scale images are used Ronfard [121] introduces
region-based energy by building statistically models of the background and ob-
ject data These model distributions are used mn place of edge information to

determine the contour termination

Chakraborty et al [25, 26] also introduce region based mformation into the
evolution of the active contour Molloy and Whelan [98] introduce active meshes
that initialise a deformable triangular mesh on corner data in the images and used
the forces between nodes to deform the mesh 1n order to track the data through
an 1mage sequence Sermesant et al [131} introduce a novel function which per-
forms an affine transformation of a deformable model in order to optimally fit
to image data Jolly et al [67, 66] employ active contours, semi-automatically
mitialise on each slice in the short axis view and then propagate through the
cardiac cycle Santarelli et al [126] introduce a Gradient-Vector-Flow (GVD)
snake which proceeds a diffusion filter to segment the inner and outer boundaries
of the left ventricle of the heart

Reuckert et al [122] applies active contours for localisation of the aorta
Neubauer[1] presented a myocardium segmentation following a manually placed
‘skeleton’ mmside the myocardium The results are then propagated through all
other shces 1in the volume Spreeuwers[145] attempts to address the 1ssue of ro-
bustness in the presence of erroneous local minima by applying a coupled active
contour for the extraction of both the ep:- and endo-cardium boundaries simul-
taneously Mikic [93] uses optical flow estimates to guide the evolution of the

active contour 1n echocardiographic sequences

5 2 Parametrically Deformable Maodels

Staib and Duncan [146, 39] introduce a deformable model based on parametric
contours These models are commonly used when some prior information about
the geometric shape of the final contour can be determined This geometric shape
can then be encoded using a small number of parameters The model 1s then
deformed, maintaining the overall consistency of the global model, by optimising
the parameters on the image data Most commonly, the global model can be
defined by a set of analytical curves Staib and Duncan [146] use elliptic Fourier

decomposition for objects with shape irregularities, where a Fourier shape model
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1s used that represents a closed boundary as a sum of trigonometric function of
various frequencies They then perform an iterative energy minimisation to fit
the model to the image data This method may provide robust localisation of
features, where the feature matches the template, however, this technique does
not provide an appropriate basis for capturing shape variability and the generic
models built using a prion knowledge need to be good approximations of the final

segmentation result

521 Applcation of Parametrically Deformable Models to Medical

Imaging

Parametrically deformable models have been applied in the segmentation of car-
diac MRI mmages For mstance, Staib and Duncan [147] propose a geometric
surface matching The model uses a Fourier parameterisation which decomposes
the surface into a weighted sum of sinusoidal basis functions In [147], four basis
functions are used, tori, open surfaces, closed surfaces and tubes The surface
finding 1s formulated as an optimisation problem which attracts the surface to
strong 1mage gradients in the vicinity of the model
|

The main disadvantage of parar;netlcally deformable models 1s the effects of
the choice of coefficients as this determines the complexity of the curve Placing
Limits on each coefficient constrains t:he shape to an extent but not 1n a systematic
way While these models work well for localisation of the left ventricle, a derived
model could not completely hold allithe variation of the true left ventricle These
models have problems to define the complex shape of the left ventricle which
varies from patient-to-patient and between healthy and dysfunctional ventricles

53 Active Shape Modell?c,

1

Cootes et al [36] propose a method to fit a shape model to image data Recently,
this has been applied to a wide range of image classification and segmentation
problems This method has had reasonable success m the case where

e the target object has a well defined shape,
o can be represented with a set of examples and

e can be approximately located withm the 1mage
There are limitations associated with this method where

l

'
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e the objects present a high va’rlatlon 1n shape,
|
e grayscale or when the p081t1:on/81ze/or1ent;at10n of the target are not ap-
proximately known and
|
e the models themselves can cfont;aln human bias in annotation or error 1n
point correspondence of landmarks
|
Firstly, manual delineation of the object 1n a sample set of 1mages 1s performed
From the manually drawn contours, positional landmarks are extracted in the
form x = [z1,Z2 Tn,¥1,¥2 Ya)® ftor each of the 2D 1mages 1n the traming set
The principle behind landmarking, may be conceptually simple, but 1n practice
18 a cumbersome and time consurﬂlng job The tracer must manually position,
sometimes hundreds, of markers along the traced contours, with constant refer-
ral to previous annotations to ensure correspondence This becomes increas-
mgly more difficult as more and|more data presents itself from 3D and 4D
medical scans Some work i automatic landmarking has been researched in
[170, 129, 50, 169, 135] Once the landmark ponts have been selected, they are
then aligned commonly with Procrustes shape distance metric with respect to
scale, position and orientation Als stated, pomnt correspondence 1s one of the
himitations for model based approaches and Hamarneh [60] addresses this prob-
lem by represented 1n the shapes by descriptors obtained after the application of
Discrete Cosine Transform (DCT)

To model the shape variation, the classical statistical approach of elimmating
redundancy 1n the database 1s achieved through Principal Component Analysis
(PCA) or Karhunen-Loeve transform PCA performs a variance maximising rota-
tion of the original variable space, this 1s best 1llustrated graphically in Figure 5 2
where the two principal axes of a two dimensional data set 1s plotted and scaled
according to the amount of variation that each axis explains [149, 45] The axes
are also ordered according to their variance, meaning the first axis contains the
highest variation In practice the PCA 1s performed as an eigenanalysis of the

covarlance matrix of the aligned shapes

The overall 1dea behind ASMs 1s to generate a shape mstance using the data
obtained from the training set of shape landmarks This can be seen 1n Equa-
tion 5 4 where x 1s the new shape nstance and X 1s the mean shape (see Equa-
tion 5 5
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Figure 52 Principal axes A 2D example where axis 1 and axis 2 are the first
two eigenvectors

x =X+ &b, (5 4)
1 N
)—CZ*‘A—,Z)Q (55)

The matrix ®; = [®; ;] 1s made up of the eigenvectors corresponding to
the ¢ largest eigenvalues ), where ¢ 1s the number of modes b 1s a vector defining
the set of parameters of the deformable model and is defined in Equation 5 6

bs; = 7 (x — %) (5 6)

There are some disadvantages associated with ASMs, mainly their lack of
robustness 1n the presence of high gradients not associated with the target ob-
Ject, their dependence on 1mitialisation close to the target object, time consuming
database construction and the inherent problem of model generality versus accu-

racy

531 Application of ASMs to Medical Imaging

In 1994, Cootes [34] pubhished his work on localisation of medical features using
ASMs and used the left ventricle in echocardiographic sequences Hamarneh and
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Gustavsson [60] also apply the ASM to echocardiographic sequences to locate
the left ventricle and then 1n a second phase uses the active contours described
in Section 5 1 to accurately determine the true boundaries of the left ventricle
van Ginneken et al [168] uses a non-linear kNN-classifier instead of the mare
commonly used linear Mahalanobis distance metric to steer the active shape seg-
mentation scheme to optimal local features Duta and Sonka [45] improve the
ASM by constraiming the deformation of the shape model to appropriate shapes
defined by the segmentation task, in their case the segmentation of brain images
i MRI Rogers and Graham [120] perform a robust parameter estimation to im-
prove tolerance of outliers i the model and improve the ASM search

54 Active Appearance Models

In order to address some of the ASMs lack of tolerance to grayscale variation of
the unseen data, Cootes et al [35] introduce Active Appearance Models (AAMs)

AAMs build on ASMs by including shape and textural information about the
manually delineated training data Textural information 1s defined as the pixel
intensity values across the object and these values are stored 1n a vector g =
(91,92, ,9m]T where m denotes the number of pixels contained within the object
surface Algnment of the texture shapes is achieved through image warping, one
such method of image warping 1s Piece-wise affine using Delaunay triangulation
(refer to [149] for more details) This 1s followed by normalisation with respect
to illumination of the images before the PCA 1s constructed as described 1n
Section 5 3 or 1 more detail in [149] A single instance from the texture model

can then be extracted as,

g =8+ P4b, (67)

In order to combine the shape and texture models, the shape and model
parameters bs and bg can be combined using a third PCA to make the represen-

tation more compact

There are many advantages to the method For instance,
¢ due to the training phase, the segmentation 1s very task specific,
e once imtialised, convergence 1s fast,

e AAMs are non-parametric and
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e 1n certain situations, are robust against noise
There are also some limitations associated with the AAM

s the model must contain distinct features, unpredictable objects such as

pathologies cannot be handled,
e the annotation of the training set i1s an arduous task,

e the results are inherently dependent on close mitialisation to the target

object

e the size and variation of the traimng set can restrict the AAM from con-

verging on the correct solution and

e the AAM assumes pomnt correspondence of the traimng data

541 Application of AAMs to Medical Imaging

A AMs have received much attention in medical imaging 1n recent years Stegmann
(148, 149] performed a segmentation of the left ventricle of the heart using the
AAM on 2D perfusion 1mages In [151], Stegmann and Larsson use a cluster-
ing method of the texture variation to create a set of texture subspaces, which
could represent the phases of bolus passage in cardiac perfusion MRI Mitchell et
al [96] [94] demonstrate the results when a 3D AAM\ASM combination 1s per-
formed on the left ventricle of the heart in cardiac data in MRI (see Figure 5 3)
and ultrasound 1mages The model 1s created using manually traced contours
on 2D slhices and extended 1n the z direction using linear interpolation between
shces Van der Geest [165, 166] investigates the semi-manual use of AAMs for
the segmentation of the myocardium in MRI data over the entire cardiac cycle
Firstly, the contours are imtialised on one image and the model iterates over the
entire cardiac cycle until convergence Finally, manual readjustment of the final

model fittings can then be performed

Bosch et al [17] examine the use of Active Appearance Motion Models (AAMMs)
in MRI and echocardiographic AAMMs introduces a time factor into Active Ap-
pearance Models which aims to minimise the appearance-to-target differences
Lelheveldt et al [79] and Sonka et al [143] also use AAMMs 1n segmentation
of cardiac 2D+time MRI sequences The major advantage of this method over
AAMs 1s the error feedback parameters are calculated for the full image sequence

ensuring a segmentation consistent with cardiac motion
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Figure 53 Ornginal image (left) following segmentation using AAM (middle) and
method described in Mitchell et al [95] (left)

55 Atlas Based Segmentation

Atlas based approaches are parameter free deformations of a priorm models to
extract the target object in an unseen image (for a full review of model based
approaches see [48]) In this case, prior knowledge about the shape and intensity
values of the object are incorporated Unlike parametrically deformable models,
which use geometric shapes to model the desired shape, atlas based approaches

construct the model from manually segmented data

551 Apphcation of Atlas Based Methods in Medical Iimaging

Kaus et al [69] use coupled triangular surface meshes to segment the epi- and
endo-cardial contours Prior knowledge 1s encapsulated from the manually seg-
mented data using a point distribution model as well as the grey level appearance
within the myocardium Lorenzo-Valdes et al [82] construct a probabilistic at-
las of manually segmented temporally ahgned data Automatic segmentation
1s achieved by registering the atlas on the data, using the atlas as the initial
values for a Expectation-Maximsation (EM) The EM 1s then iterated until con-
vergence before a final classification step using Markov Random Fields (MRF)
and Largest Connected Components (LCC) Lelieveldt et al [80] proposes a
method for thoracic volume segmentation by building a model of the anatomical
structures contained in the thoracic cavity The method uses blended fuzzy 1m-
plcit surfaces and a solid modelhng technique called constructive solhid geometry
(CSG) Imtiahsation of the model with respect to position, orientation and scal-

ing 15 one limitation of Leheveldt’s argument
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56 Level-set Method

Level sets were first introduced by Osher and Sethian [108], following previous
work in Sethian’s Ph D thesis [132] on flame propagation Like snakes, the theory
behind this boundary-based segmentation 1s largely based on work 1n partial
differential equations and the propagation of fronts under intrinsic properties
such as curvature [133] While level-set methods can be applied to a host of
image processing problems, for example 1mage restoration, inpaintmg, tracking,
shape from shading and 3D reconstruction, segmentation 1s the main focus of this
work An extensive review of level-set methods 1s given by Sur [157] and also by
Angelim et al [5] It can also be thought of as transforming the earlier work of
Kass et al [68] on active contours from a Langrarian to a Eulerian formulation
Like active contours, the deformation of the level set 1s seen as a gradient flow
to a state of mimimal energy, providing the object to be segmented has clearly
1dent:fiable boundaries (22, 21, 23, 87, 86]

However, by extending the dimensionality of the problem to N + 1, where
N 1s the mnitial dimension of the problem, some advantageous properties can be
exploited The formulation of the problem 1s conceptually simple The evolving
curve, or front T", evolves as the zero level-set of a higher dimensional continuous

function ¢

d¢ _
5t + F|Vg| =0

¢(s,t =0) = grven

(58)

This function deforms with a force # that 1s dependent on both curvature of
the front and external forces in the image The force acts in the direction of the
normal to the front The imtial position for the contour 1s given, so therefore the

function ¢ can be constructed

The use of level-sets for the segmentation of the cardiac muscle in MRI 1s

appropnate for the following reasons

e one can perform numerical computations mvolving curves and surfaces on a
fixed Cartesian grid without having to parametrize these objects (Eularian,

non-marker based solution),

e 1t becomes easy to implicitly track shapes which change topology, for ex-
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Figure 54 Level-set representation of the evolution of a circle

ample when a shape sphts 1n two, develops holes, or the reverse of these

operatior1is,

e ntrinsic geometric properties of the front, such as the curvature and the

normal, can be easily calculated and
e the method may be extended to higher dimensions

However, there are some 1ssues associated with the basic level set formalisation
In the latter stages of this chapter, the author atternpts to address these issues

e the algorithm 1s computationally expensive,

o the front may leak through boundaries of low gradient information,

e the level set function requires mitialisation close to the target object and
o the evolution does not use prior shape or texture based information

Level-set segmentation has also been successfully applied to other medical

imaging modalities as described in Appendix B

561 Level Set Formuhsation

The fundamental objective behind level-sets 1s to track a closed interface I'(t),
for which T'() [0,00) — RY, as 1t evolves 1n the data space The nterface 1s
represented by a curve mn 2D and a surface in 3D or the set of points that are on
the boundaries of the region of interest {2 The theory behind level-set segmenta-
tion 1s largely based on work 1n partial differential equations and the propagation
of fronts under intrinsic properties such as curvature [108, 133] Level-set theory
aims to exchange the Lagraman formalisation and replace 1t with Eulerian, imtial
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valued partial differential equation evolution By extending the dimensionality
of the problem to N+1,where N 1s the imitial dimension of the problem, some
advantageous properties can be exploited Representing the boundary as the
zero leve! set 1nstance of a higher dimensional function ¢, the effects of curvature
can be easily mcorporated ¢ 1s represented by the contmuous Lipschitz function
¢(s,t = 0) = *d, where d 1s the signed distance from position s to the imtial
mterface I'g (see Equation 5 9) The Lipschitz condition imphes that the function
kas a bounded first derivative The distance 1s given a positive sign outside the
wnitial boundary ( D Q ), a negative sign inside the boundary ( 2\ 9Q ) and zero
on the boundary ( 092 )

—d Vs € 1\ 09
#s,t=0)=10 Vs € 60 (59)
+d Vs € R*\ Q)

From this defimtion of ¢, intrinsic properties of the front can be easily deter-

mined, hke the normal i = :I:i%g[ and the curvature x = V g¢

Also from this defimtion, ¢ can be considered as a function 1n two different
ways Firstly, ¢ can be considered as a static function ¢(s) that 1s evaluated
at particular instances or 1sovalues, this leads to the formulation of the Eikonal
equations and 18 discussed 1n more detail in the Fast Marching section (Sec-
tion 56 5) Alternatively, ¢ can be described as a dynamic function ¢(s,t) that
evolves through time, and the closed contour or front 1s the special case where the
value of ¢(s,t) equals zero Using this defimtion, 1t can also be said that at any
tume #g the set of points that define a curve can be represented as the function
&(s,ts) = 0 Itis also clear that as the curve evolves through time, the function ¢
also evolves Consider a point s(t) on the contour that 1s evolving through time,
we constrain the value of that pomt 1n the level-set function to be ¢(s(t),f) =0
By chain rule,

a¢ !
-5E+V¢ s(t)=0 (5 10)

Define the force, F = s(t) 1 to be the force moving the point s(t) in the
normal direction ii If 1i 1s replaced with fi = i]%%, the equation takes the form
of a Hamilton-Jacobn as expressed in Equation 5 8 If the force term is rewritten

as F' = Fy+¢k to include an advection force Fy to move the curve and a curvature
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based term ex to regulate the evolution, the evolution of ¢ now becomes,
¢ = —Fy| V| + ex| V| (511)

Classic finite difference schemes for the evolution of this equation tend to
overshoot and are unstable Sethian [134] has proposed a method which relies
on a one-sided denvative that looks 1n the up-wind direction of the moving front
to control the outward expansion, and thereby avoids the over-shooting associ-
ated with finite differences (see Equation 5 12) while the second derivative can
be approximated using central differences Level-set theory uses a combination

of derivative approximations to enable smooth curvature evolution

Vg] = \/maz(D;F,0)2 + mn(D;?, 002 + maz(D, 2, 0)2 + mun(D}Y, 0)2,
(5 12)

where, for example D;f]—:z: - ¢(z+1,JA)x—¢(h] and D;:c — d’(z,J)—A(bz!z—l,]}

Caselles et al [22] and Mallad: et al [87] used the above theory to mdepen-
dently formalise the implicit mimimisation of the classic energy function used n
snake evolution, seen 1n Equation 5 1, for the extension to level set theory

.

mm/g(]VII,Ig)|l"'(s)|ds (5 13)

This mmimisation includes a stopping term g{(|VI(I'(s))|) where g 1s a stop-
ping function (reciprocal or exponential) based on gradient of pixel intensities and
curvature term I'(s) based on the intrinsic properties of the curve and calculated
by

L@ ds = [ o0vIT(s)pas (514)

From [22] 1t can be shown that the Euler-Lagrange gives a mimmsing curve

that 1s of the form

d
al“(s) =g(|VI|)xi ~ (Vg n)id (5 15)

The term Vg i adds a naturally occurring attraction force vector normal
to the surface introduced by Yezzi et al [177] and « 1s the curvature term By
representing the boundary as the zero level set instance of a higher dimensional

function ¢ as described 1n Equation 5 9, the effects of curvature can be easily
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incorporated (86, 21]

o = o(IV1(e +en)| V| + Ty T9) (516

In this segmentation scheme, a non-zero mternal advection or ballooning force, c,
1s added to the evolution to evolve the either outward (¢ = 1) or inward (¢ = —1)
depending on whether the 1nitiahisation curve 1s enclosing or enclosed by the
target object for segmentation J and e are user defined parameters that control
the effects of attraction to gradients and curvature respectively and are chosen
expenmentally Reducing the § parameter slows down the convergence time as
the front 1s not attracted to edges, however increasing the parameter may have
the effect of causing the evolution to jump past appropriate gradients leading to
spilling of the curve into other areas The parameter ¢ controls the smoothness of
the contour or surface Reducing the value of this parameter allows the algorithm

to converge on less smooth object boundaries

Curvature Term

From differential geometry any shape (no matter how complex) collapsing as a
function of 1ts curvature x will evolve to a circle before disappearing [59] Using
this relationship, a force ' = —& 1s defined to always shrink a contour to a
point This 1s a favourable quality for advancing fronts for segmentation, as 1t
can be shown that this minimises the contour length As discussed earler, using
the partial differential equations perspective, intrinsic geometric properties such
as the curvature and normal can be easily calculated For example, for a 2D
propagating front, the curvature x can be found using partial differentials of the

function ¢,

Vd) _ ¢xz¢;2, - 2¢y¢z¢xy + ¢yy¢g

= (5 17)
V| (¢2 + ¢2)3/2

k=V

The normal can undergo a jump at corners, and this 1ssue 1s addressed n the
work of Sethian and Stain [134] where the normal 1s normalised

However, 1n 3D there are two measures of curvature, the mean and Gaussian
curvature The mean curvature (xg), 1s connected to the physical evolution of
soap bubbles and the heat equation
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Vo

rV-qﬂ—[ (5 18)

kg=V

Gaussian curvature (kg ), has also being used to model physical problems such
as flame propagation It has been shown that a convex curve evolves to a pont
under curvature evolution, but 1t can also be shown that evolution of non-convex

surfaces can be unstable

V¢TAd) (H(¢))V
= 519
kG Vo (5 19)
where H(¢) 1s the Hessian matrix of ¢, and Ad)(H) 1s the adjont of the matrix

H [173]

Neskovic and Kimia’s [106] propose a measure of curvature which involves
both mean and Gaussian In this approach, the direction of flow 18 obtained from
the Mean curvature while the magnmitude of the flow 1s dictated by the Gaussian
curvature This s appropriate as the Mean curvature alone can cause singularities

when evolving
fines = sgn(ku) v/ kG + |Kcl (5 20)

Stopping Criterion

The evolution force F 1s an energy minimusation problem where the speed ap-
proaches zero at positions of high gradients to exert a halting to the front prop-
agation To this end, two diffusive stopping criteria have been proposed The
first and most common stopping term 1s a reciprocal of the gradient of the image
Intensity signal convolved with a Gaussian smoothing mask G, where ¢ 1s the

variance of the Gaussian mask

1
1+ VG, I()P

The convolution with a Gaussian eliminates the effects of noise on the image

9(IV1)) = p21 (521)

Other methods of noise removal, such as non-linear or amsotropic which were
discussed 1n Chapter 3 can be used in place of the Gaussian to improve the re-

sults
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Alternatively, 1if the circumstances require the stopping term to fall to zero
faster than the reciprocal function, the following defimition can be applied This
may allow the front to overshoot the object boundary in the presence of weak
gradients or can cause errors in the presence of noise Therefore a new stop-
ping term 1s devised that incorporates texture This 1s performed by means of
a Gaussian membership func‘tlon used to determine whether the voxel 1s inside
or outside the target object This membership function 1s constructed using the
texture analysis of the object region after imtiahisation A Gaussian member-
ship function 1s chosen as MRI response i tissue can be modeled as a Gaussian
distribution [76, 70]

9(|VI]) = expIVC 1) (522)

where exp 1s the exponential function

56 2 Non-gradient based curve propagation

Image segmentation and classification has also been approached by incorporating
level sets into the partitioning of images based on intensity values These methods
have also been called Region-competition snakes and are deformable models that
are governed by local probabilities that determine if the snake 1s 1nside or outside
the structure to be segmented Chan and Vese [27] show how the Mumford-Shah
functional can be used in a level set framework The Mumford-Shah functional
aims to partition the image I into a smooth approximation f set of regions

separated using contours, S

E(S, ) =1/(S)+a/9(f—1)2dx+ﬂ/QSIVf1dz (5 23)

The problem 1s approached as a energy function which tries to minimse 1ts vari-
ables (a) the length of the set of contours v(S), (b) the deviation from the original
mmage a [o(f — I)?dz and (c) the smoothness within each region 8 [, |V fldx

Another approach 1s developed 1n a level set framework by assuming a two
class problem of an image I defined on 2 The problem 1s then posed as follows

E(C) = / [T — Col%dQ + / [T — C1]%dQ (5 24)
insideC outsideC

where C 1s the front, and (Cp, Cy) are the average intensity values for inside and
outside the curve C  While this methods addresses boundary leakage and 1ni-
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tiahisation problems 1t assumes a low class of intensity features and grey scale
homogeneity across the object Yezzi et al [177], Tsa1 et al [163], Cohen and
Kimmel [32), Deschamps et al [41] and Angelim et al [6] adopt variations on

this approach to segmentation in medical images

In [111], Paragios and Deriche unifies both region and boundary information
in a level set framework Following on from [109], Paragios mncorporates an
intensity based component taken from the grey scale distributions of cardiac
features and a prior shape model to deform a coupled level set over the endo
and epi-cardium of the heart Taron et al [161} perform a variational techmque
for the segmentation of the Corpus Callosum of the brain They use estimated
uncertainties of the registration when applying model priors to the segmentation

process

563 Introduction of A-Priori Knowledge

Leventon [81] introduced a priort knowledge by building a prior model that was
embedded in a level set formalisation and evaluating 1ts modes of variation using
PCA analysis This has been the basis for much work 1n level set formulation 1n-
corporating shape priors mto the propagation Due to the model being defined 1n
Eulerian space, 1t circumvents the problem of point correspondence encountered

1n the previous sections

Tsai et al [163] provide some work, leading from the imtial work performed
by Leventon and perform segmentation on cardiac images in 3D In [162], Tsal
et al construct a model of a prior1 shapes as the zero level set of a number of
separate segmented images The database of level sets are then classified into
a user defined number of statistical shape classifications using an Expectation
Maxamisation algorithm This method was applied to medical 1mages where con-
gemtal brain malformation of the cerebellums was used to create a two class
(healthy/diseased) classification scheme As mentioned, Paragios et al [110, 112]
use a shape model built from previously segmented data to guide the segmenta-

tion of his level set

564 Coupling of Level Sets

Zeng et al [181] first introduced the 1dea of coupled level sets for segmentation
of the cortex of the brain The coupled level set can use the constant thickness or
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distance between the level-sets as a constraint to avoid spilling or over segmenta-
tion The 1deas introduced by Zeng were extended by Paragios [109] who applied

a similar coupling constraint for the segmentation of the myocardium of the heart

565 Imtialisation using Fast Marching

In order to overcome the ’myopic’ characteristics of level set propagation, Sethain
[133] introduced a Fast Marching methods This 1s the unique case of the level
set theory where the force F 1s always greater than zero, and this propagates
a monotomcally advancing front The formula takes the form of the Eikonal
Equation 5 25, a nonlinear, static Hamilton-Jacob:r equation If the 2D case 1s
considered again, a set 1s created T'(z, y) that defines the time at which the front

I crosses the position (z,y) T satisfies the equation,

|VT)F =0 (5 25)

1} Evaluate T for all

1) Select neighbouring oy
neighbours

pixels

1) Select the 1) Add C to object
neighbour with the lowest T (=C) and select all neghbours

Figure 55 Front propagation using Fast Marching Adapted from Sethian [134]

The evolution 1s 1teratively assessed by solving the roots of the quadratic

equation of the Eikonal equation and sorting the values of T with respect to size
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This can be shown graphically in Figure 5 5 The value of the force at each point
can be calculated using the upwind scheme approximations to derivatives of the

function ¢

The stopping term 1s based on the diffusion of the gradient and can be calcu-
lated as

F,=eh (5 26)

The fast-marching approach gives an approximate segmentation and 1s used for

the evaluation of the imtial contour for the dynamic level-set method

566 Narrow-band Methods

In order to increase the computational efficency of the algorithm, Adalsteinsson
and Sethian [2] extensively review narrow-band methods The main disadvan-
tage of formulating the problem 1n Eulerian space as opposed to the Langraran
space 1s the increase memory and computational expense of propagating the front
across the full matrix of the image To elimmate this 1ssue, a narrow band (2D),
or narrow tube (3D), around the front 1s defined and 1t 1s 1n this narrow band that
the ¢ values are updated at each iteration The narrow-band 1s first 1mtialised
by including all data points within a certain bandwidth of the front, this can be
achieved by using the values of the ¢ As explained, at each 1iteration, only the
values of ¢ within the narrow band are updated With each 1teration the front
pomnts are evaluated to see if they are close to the edge of the narrow band If
yes, the narrow band 1s re-imitialised otherwise the algorithm iterates as normal
It has been shown in [2] that these boundary conditions do not adversely affect
the motion of the level-set Implementation of this narrow band method can
greatly improve speed of execution and some level set approaches prove real-tume

execution [37]

57 Initialisation

To counteract the 'myopic’ characteristics of these deformable models, the 1n1-
tialisation process 1s very influential and 1s performed in MRI data as follows
Firstly, 1t 1s known that the endocardium boundary can be characterised by the
high contrast between the blood and the heart muscle in standard (TruFISP)

cine imaging of the heart This characteristic 18 used when a fast marching algo-
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nthm is applied to find a fast efficient imtialisation for the blood following the
manual insertion of a seed point The fast marching approach 1s driven by a force
Fy, = e~V which has a diffusive effect aimed at halting the fronts progress at
regions of high gradient This fast-marching approach falls short of the gradient
defining the transition from blood to muscle Therefore the contour found by the
fast marching algorithm 1s used as the mtial curve of the level-set algorthm to
find the endocardium boundary The results from the Fast Marching imtialisa-

tion are llustrated in Figure 5 6

Figure 5 6 Results show the mitialisation (marked in white) from a seeded Fast
Marching algorithm The method was applied to perform a robust imtial estimate
of left ventricle cavity of the heart on four separate datasets displaying a high
variability of left ventricle shape

To find the epi-cardial boundary the endocardium imtialisation 1s dilated
shghtly and the inner gradients are masked Both curves are given a positive
advection force to propagate outwards It 18 known that both the endo- and
ep1-cardium boundaries of the left ventricle are approximately circular, therefore
the € 1s given a high significance 1n the evolution, the evolution 1s illustrated in
Figure 57 High curvature constraints, the distance inhibitor and the a prior
constraints all act to limut the epi-cardium front from joining the inner front or

spilling 1n areas of low gradient, like the liver or the lungs

58 Coupling Force between Fronts

To further control the level-set evolution we employ a coupling function between
two level-sets The coupling adds an extra constraint by introducing a second
level-set that 1s dependent on the first and coupling the level-sets with an n-

hibitor function, which allows the curve to change direction of growth This 1s
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Figure 57 The 1mages above show evolution of the front at four different 1t-
erations (a) wteration = 0, (b) ateratron = 5, (c) wteratron = 10 and (d)
wteration = 15

(a) (b) (c)
Figure 58 Segmentation results of the same slice at three separate phases
through the hearts cycle, (a) end-diastolic, (b) mid-diastolic and (¢) end-systolic

achieved without any extra computational expense as the distance between any
point to the level-set boundary 1s the value of ¢ at that point, see Equation 59
The piecewise inhibitor function, which 1s used as the interaction between the
two level-sets, 1s defined below, where d 1s the preferred distance between the
curves and w controls the slope between inward and outward growth The result
72 ($1) changes value from +1 to -1, which changes the direction of the evolution
for ¢o between inwards and outwards In practice the values of d and w are taken

from the scaled a priom model

-1 for ¢1(s) < —d—w
n(é1) =< ¢ |M#| for —d-w< ¢i(s) <d+w (527)
1 for ¢1(s) > d+w

For this segmentation scheme, 1t 1s assumed that the gradient between the
blood pool and the endo-cardium boundary 1s significantly high to halt the evo-
lution of the level-set Also 1t 1s known that 1n some cases there 1s little or no
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Figure 59 Graph of the inmbitor function where the values of d = 6 and w = 4

gradient 1nformation between the epi-cardium boundary and the lungs or liver
Therefore, the level-set segmenting the epi-cardium boundary 1s controlled by the

endo-cardium level-set using the inhibitor function described

59 Improved Stopping term

To 1llustrate the improved performance of the advanced stopping term, the fol-
lowing phantom images were created and tested Two situations are described
as illustrated in Figures 5 10 and 5 11, the first where low gradient information
18 present between two regions and the second where the grayscale difference

between two regions 1s low The stopping term, 1s defined as

1
14+ H

o

(5 28)

g:

uses a combination of the gradient and change in texture The change in tex-
ture (I,) 1s calculated after the imitialisation with the fast marching algorithm
described 1n Section 57 Within the initialised region the mean g and variance
o of the voxels are calculated From these values, a Gaussian 1s constructed and

the I,(s) 1s calculated as,

In(s) = A" (5 29)

1
V2na?
where z 1s the value of the voxel at each position s in the image The value of I,

1s normalised between 0-1
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The user defined parameters ¢ and J represent the influence of the curvature
and attraction to gradient on the evolving boundary In the following tests, we
want to evaluate the influence of the improved stopping term, so the value of €
1s given less sigmificance to reduce the influence of curvature on the evolution
In the segmentation of the left-ventricle boundaries, the value of € 1s given a
higher significance as we know the boundaries approximate circles Similarly, 8
controls the attraction of the level-set boundary to gradients that are normal to
the curve Again, this value 1s given a reduced weighting 1n the proceeding tests
The results shown 1 Figures 5 10 and 5 11 demonstrate the improved robustness

against boundary leaking between regions

Figure 510 The original phantom image with a diffused segment (a) and the
Sobel edge image to 1illustrate the gradient information (b) The second row
shows the evolution with the existing g = TIVI at 1teration 0, 25 and 50 while

the third row shows the evolution with our proposed approach where g = —Yr

]+T:
at iteration 0, 25 and 50

510 Introduction of Priors Models

A prior: information 1s incorporated with a probability density function (PDF),

which 1s defined as N
P(s) = L5 2= f1(9) o £(s) ! (5 30)
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Figure 511 The onigmmal phantom image with a close region (a) and Sobel edge
image to 1lustrate the gradient information (b) The second row shows the
evolution with the existing g = ﬁlv—j at weration 0, 25 and 50 while the third

row shows the evolution with our proposed approach where g = 1—_:vr at iteration
To

0, 25 and 50

where f; 1s the outline of the ep:1 and endo cardium boundaries used for training,
N 15 the number of traiming examples and s defines the 1mage coordinates The
model 18 built from a set of hand segmented boundaries, a probabihty density
function 1s created of both the endo-cardium and epi-cardium boundaries that

are then interpolated in the z direction, scaled and aligned 1n the zy direction

The PDF 1s constructed by aligning the binary manually segmented boundary
mmages and summng the boundary elements This 1s done for both the endo-
cardium boundary and the epi-cardium boundary It 1s incorporated into the
evolution 1n a global context, after each 1teration the value p; is evaluated as,

=7 d(t)s* Py (5 31)

CeS
where ¢(t); 1s the value of ¢ at time ¢ at the position s and P; 1s the probability
density at position s and this value 1s summed over the narrow band C which 1s
a subset of the image space The parameter p; 1s calculated at each 1teration 1s
then normalised between the bounds -1 and 1 as 1t can have negative and positive
values This 1s as a result of ¢ also having positive values outside the contour

and negative values inside the contour This means p; will have a more positive
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value 1f the current contour 1s inside the prior model and more negative if the

contour 1s outside the prior model

In order to obtain the full evolution equation for the level-set we have to incor-

porate both the coupling function and the a prior knowledge into Equation 5 32

2 — (VI)(e+ x)IV4] + A(Vg V) (532)

Firstly, the output from the coupling function 1s either 1 or -1 and we want
it to change the direction of the curve evolution From Equation 5 32 we can
see that the advection force defines the direction of the evolution, therefore we
mcorporate the couphng function by multiplying 1t with the advection force ¢
This has the result of changing the direction of the contour, depending on the
results from the coupling function In this sense, both the ep1 and endo cardium

boundaries are tied together _We_also_assume_that_the boundary between the

left ventricle blood pool and the myocardium has a stronger gradient term than
that of the epi-cardium boundary and the liver or lungs Therefore, this term
1s applied to the evolution of the level-set surface designed to extract the epi-
cardium Hence, based on the parameters of the coupling function which can
be automatically obtained using the distance between the blood pools the outer
surface 1s prohibited from spilling into other organs beyond a certain distance

from the endo-cardium boundary

The a prior: model 15 designed to disregard inappropriate gradients and to
give significance only to gradients that are situated close to previously manually
segmented boundaries For this reason, we incorporate the a preor: information
n the attraction term from Equation 5 32 As explained, this 1s taken on a global
sense whereby we define for both the mner surface and the outer surface whether
or not they are mside or outside the PDF of previously segmented 1mages Thus,
the complete evolution for the coupled level-set 1s defined as,

b= b+ g(V)(en+ )Vl + o (Vo V8)  (533)

where 7 15 the result of the coupling function between the level-sets and 1s defined
1 Equation 5 27 and p; 1s the a prior knowledge and s defined 1n Equation 5 31
The results 1n Figure 5 13 1llustrate the performance using four unseen datasets
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(a) (b) (c)

Figure 512 Images show the probability density functions from a prior1 hand
segmented 1mages Figure (a) shows the combined contours while (b) and (c)
show the endo- and epi-cardium boundaries respectively Darker gray tone defines
a higher probability of the boundaries

Figure 5 13 The 1mages above show the segmentation using our method on the
four previously unseen datasets

511 Extension to 4D

Cardiac data 1s increasingly available in 3D + time, therefore 1t 1s believed that
the best approach for a complete data driven segmentation 1s to apply an ap-
propnate technique to the complete data presented from a patient scan Due
to the mcreasing amount of data that is available in 4D and growing resolution,
some researchers have attempted to address the segmentation problem Many
have evaluated the result of sequential approaches, where from a robust 1mitial
segmentation (maybe manually assisted) forms the imtialisation for subsequent

volumes throughout the cardiac cycle

While the level set formulation lends itself easily to extension in multidi-
mensional data analysis, the author found few researchers have investigated the
application of level set to analysis of 4D data Fntscher et al [51] aim to apply
full 4D information into boundary driven and region-competition geodesic con-
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tours In imtial work, PCA analysis 1s performed on signed distance maps to
create models, the mean of these models serve as the initialisation step 1n a level
set segmentation More generally, in the earlier 4D segmentation work {9, 91}, the
temporal dimension was considered 1n a sequential approach where the segmen-
tation from the previous time frame served as the imitiahsation for the current
time frame Rueckert and Burger [123] also used this sequential approach where
the shape of (t + 1} was a deformation of the shape 1n time frame (¢} The de-
formation 1s achieved using energy munmimisation of the deformable template in a
Bayesian formulation Sun et al [155] create a non-linear dynamic model learned
from training data A manual tracing of the first image 1n the sequence 1s used to
create a posterior density estimate of the lv at each time frame A curve evolution
15 then performed with the maximum posterior estimate McEachen and Dun-
can [89] perform tracking of the left ventricle by performing point correspondence
of points from time ¢ to time ¢ + 1 and assume a small degree of motion between
time frames Based on these assumptions, smooth transition of the parametric
contours 1s achieved using an optimsation algorithm Paragios [109] introduced
an energy into his variational level set approach that enforced a consistency of in-
tensity through the temporal cycle A transformation 1s calculated between time
1; and I;4; based on a bounded error function, where I; represents the intensity
value at time ¢ In Montagnat and Dehnette [99] in 2005, the deformable model
18 1nfluenced by introducing time-dependent constraints These consist of prior

temporal knowledge through either temporal smoothing or trajectory constraints

Segmentation 1w 4D should perform a segmentation of the 3D volumes and
use 1nformation in the time domamn To this end, a number of approaches are

proposed with the advantages and disadvantages of each discussed

e Sequential Approach, consists of navely using the results from time
sequence t as the initialisation for time sequence t + 1 This approach
assumes no prior knowledge about the temporal dynamics of heart The
only assumption 1s that the cardiac muscle boundaries do not exhibit large

movements between time sequences

e Temporal subtraction, can give some indication as to the direction of
movement of the cardiac boundaries Again, this does not utilise prior

knowledge about the global dynamics of the heart and may be overly sen-
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sitive to noise and artifacts Some optical flow approaches may eliminate

these hlmitations and are being mvestigated n [10]

¢ Temporal Smoothing, basically constitutes performing the segmenta-
tion of the 3D volumes 1n parallel while forcing the boundaries to move
mn a physically consistent way using temporal smoothing In 1ts simplest
form, temporal smoothing could be achieved using an averaging function,

Ty -T
I, = = "'where T, represents the boundary curve at time ¢

e Temporal consistency of intensity values across the left ventricle cavity
and the left ventricle myocardium and was employed by Paragios and De-
riche [111] Again, artifacts n the left ventricle cavity due to the dynamics
of the blood through the cardiac cycle may restrict the apphcation of this
method

e Database of Prior Image Models, built from a selection of images at
particular temporal instances, may be registered to the unseen image Like
many database models, this approach relies on building generic models that
are applicable to a wide range of heart morphology Variations in cardiac
morphology caused by individual anatomical features or disease may not

be accounted of 1n such models

¢ Prior Temporal Parameterised Model proposes to model the dynamics
of the cardiac cycle and further refine this model as the parallel segmenta-
tion 1s performed on the 3D volumes Unlike database models constructed
1n 1mage space, broader classification of the cardiac boundaries movement
through the entire cycle can be applied to all variations of heart morphol-
ogy Exploiting the construct of the ¢ function in level set segmentation
(see Equation 5 9) enables fast function fitting that may be incorporated
mnto the update of ¢

512 Applying level set on 3D+t data

From the options above, segmentation of the 4D data should be approached in a
parallel sense using temporal constraints to infer prior knowledge 1n an effort to
control the boundary deformation away from erroneous spilling or over segmenta-
tion To this end, a novel approach to control a level set deformation 1s proposed

The control 1s achieved by means of prior knowledge about the deformation of

the cardiac muscle through a complete cardiac cycle In the majority of cases,
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Figure 514 Volume, n pixels, of left-ventricle cavity over the cardiac cycle

the temporal volume change of the cardiac cavity over the complete cardiac cycle
can be 1llustrated as show in Figure 5 14 where the phase starts at end-diastolic,
decreases n volume during the systolic phase until 1t reaches end-systole before

returning to end-diastole during its diastohc phase

The next question to pose 1s how this information about the overall shape of
the cardiac phase can be implemented 1n a loosely fitting way to the deformation

of the level set

5121 Modelling the temporal movement

From Figure 5 14, the cardiac cycle can be approximated using an inverted Gaus-
sian curve Values for the general Gaussian defined in Equation 5 34,4, B, u and
o are found by fitting a Gaussian curve to the volume data extracted using the
Fast Marching algorithm from each time frame Gaussian fitting 1s achieved using
least squares approximation Non-linear fitting 1s unstable due to the low number
of volumes 1n the temporal resolution (~ 25) For nonlinear least squares fitting
to a number of unknown parameters, linear least squares fitting may be apphed
iteratively to a linearized form of the function until convergence 1s achieved How-
ever, 1t 1s often also possible to linearize a nonlinear function at the outset and
still use hinear methods for determining fit parameters without resorting to 1iter-

ative procedures

ylz)=A+ Bej;«:_fu)3 (5 34)
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This fitted Gaussian represents the model for the dynamics of the cardiac cy-
cle over a single heartbeat It follows that the displacement of the endo-cardium
boundary can also be modelled using this fit In this regard, the deformation of
the boundary surface of the level-set is constrained by this Gaussian model Ex-
ploiting the inherent defimtion of the level-set function ¢ as the distance function
of a single position from the evolving surface, the incorporation of the Gaussian
model 1s straightforward and can be applied 1n a non-rigid sense to every point

within the narrow-band

This 1s further 1illustrated in Figure 5 15, where a 2D image 1s taken and a
single point 1s selected within the narrow-band From the defimtion of ¢, the
value at this point is the distance from that point to 1ts closest point on the zero
level-set boundary In the illustration, the boundary contracts and then expands
again i much the same way as the left ventricle boundary evolves from end-
dastole to end-systole and back again to end-diastole As this evolution takes
place the value at the position grows and shrinks as the distance to the boundary
increases and decreases, this evolution can be modelled using the Equation 5 34
and the parameters B, i and ¢ determined from the fast marching imitialisation
The value of A represents the offset of the Gaussian model Figure 5 16 illustrates

the model apphed to the long axis view

N Y -
Do DU

Figure 515 Change of a single point on ¢ as the boundary evolves over the
cardiac cycle in the short axis view

VY Y VY

Figure 516 Change of a single point on ¢ as the boundary evolves over the
cardiac cycle n the long axis view

In this way, the evolution of the zero level-set boundary can be constramed
to contract and expand under Gaussian motion, where the saddle point 1s the
temporal position given by i and deformation occurs at a rate ¢ Imitialisation
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Figure 5 17 Volume, mn pixels, of left-ventricle cavity over the cardiac cycle with
fitted model using an Adaptive Gaussian Model

of the Gaussian model parameters are determined after a primary segmentation

of the left ventricle cavity using a Fast Marching method

Level Set influenced by an Adaptive variance Gaussian

In order to model the dynamics estimated using the Fast Marching algorithm,
an adaptive Gaussian model 1s developed Simular to the general Gaussian model
given m Equation 5 34, the aim 1s to improve the models fit on the mitiahised
data This results in the deformation of the boundary that maintains clesely the
temporal dynamics of the initial segmentation using the Fast Marching algorithm
and therefore the model resembles the shape of the raw data and does not re-
semble the Gaussian curve In practice, this model 1s created by a least squares
fitting of a Gaussian model where the vanance, o 1s calculated separately at each
temporal position, 1n essence this means that the least squares error 1s close to
zero at each temporal position This 1s illustrated in Figure 5 17 where the model

curve mirrors the real data

Models created from imtialisation may not represent the final segmentation
of the target object It places too much confidence in the imtial model created
using the fast marching approach For an example using the worst case scenario,
if the fast marching algorithm falls 1nto a local mimima 1inside the left ventricle
blood pool at one particular time sequence then the temporal model incorporates
this Using the curvature constraint, the level-set algorithm can overcome this
error, however, the temporal model that 1s created may not allow the level-set to
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deform greatly from the model created from the imitiahsation Therefore, a new
approach 1s proposed, which uses the information obtained from the initiahsation
step but 1teratively updates this model based on the evolving level-set This cre-
ates a smoothing effect on the level-set surfaces over the cardiac cycle but also

redresses poor imtialisation

Level Set influenced using Expectation-Maximisation

In order to address the hmitations associated with the Adaptive variance model
described 1 the previous section, a novel approach is introduced which 1teratively
updates the imtial parameters of the model This acts as a form of Expectation-
Maximusation (EM) algorithm The EM algorithm 1s a two step approach which
aims to fit some model to data, and 1s particularly useful where there 1s unknown
or incomplete data In the case of cardiac boundary segmentation, the observed
data 1s defined as the value of the level-set function ¢ at a particular position over
the entire cardiac cycle The unknown or missing data 1s a final Gaussian model
which 1s inferred on a single pont 1n the grid over the complete cardiac cycle
This application to each point on the grid has the advantage that the model 1s
fitted non-ngdly and can allow for less or no deformation, which 1s the case in

diseased hearts

The EM algorithm takes initial parameters for the model, 1n this case the
information obtained from the Fast Marching segmentation of the left ventricle
cavity, and performs an expectation or fit of the data at a particular spatial po-
sition over the entire temporal data These model parameters are stored in an
array for each grid point Then during the maximsation step when the level-set
1s updated, the information about point position with respect to 1ts expected val-
ues are calculated The results from this expectation stage 1s the difference or 1n
EM terms, the likelihood, between the model and the observed data From this
expectation calculation, a maximisation 1s performed to correct for the differences
found This maximisation step 1s the level-set deformation of the boundary sur-
face The process 1s 1terative and the parameters for the model are re-evaluated

at each 1teration

This addresses many 1ssues associated with the previous method Firstly, be-
cause the parameters for the model using the Fast Marching approach are just
used as the imitial parameters for the EM algorithm, there 1s less dependence
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Figure 5 18 Volume, 1n pixels, of left-ventricle cavity over the cardiac cycle with
fitted Gaussian model

placed on these imitial parameters as they are re-evaluated at each iteration Sec-
ondly, the iteratively fitting a Gaussian to the data results in giving a Gaussian

smoothing of the zero level-set boundary over the temporal cycle

513 Results

In order to assess the validity of this approach, the results of the segmentation
using the iteratively optimised algorithm are compared against those obtained
from expertly validated* segmentations of the left ventricle Figures 5 19 display
a linear plot and Bland-Altman plot for the areas in 2D of the manually traced

boundaries

Comparative results between the adaptive variance approach and those ob-
tamned from the iteratively optimised algorithm can be seen on a pomnt-to-curve
error calculation in Table 5 1, showing less error using the optimisation algorithm
This 15 also confirmed 1n a linear plot of the blood pool areas when compared
agamnst manual segmentation where the Gaussian curve with adaptive variance
produced a regression value of 0 71 while the optimised approach yields a regres-
sion of 0 77

The 1teratively optimised algorithm also 1s guaranteed convergent [174, 40, 13]
and also reduces the error between the observed data and the model at each

*The validation was performed by Dr John Murray, Cardiologist, Mater Misericordiae
Hospital, Dublin, Ireland
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Figure 5 19 Results of the 4D segmentation of the left ventricle cavity boundary
compared against those obtained from manual segmentation

Table 51 Table representing the pownt to curve error for Method ! using the
Gaussian curve with adaptive variance and Method 2 using the Expectation-
Maxamisation of the Gaussian parameters

Endo-cardium
Average Std Dev RMS
Method 1 | 1649013 1584626 2 309887
Method 2 | 0844075 0914422 1 268981

iteration This means that convergence 1s faster than using the static model
Ths 1s characterised 1n Figure 5 20 by measuring the error decay between the

two methods based on known phantom data
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Figure 5 20 Results of the 4D segmentation of the left ventricle cavity boundary
compared against those obtained from manual segmentation

5131 Testing under different motion approximation

In order to show the generality of the method, an implementation of the 4D
segmentation was performed using a different prior temporal model In this ex-
periment, the temporal function 1s given a linear function In Figure 5 21 a cube
1s expanded using a linear function This 1s1llustrated better in Figure 5 22 which
graphs the volume acquired using the Fast Marching algorithm over time In this
graph, the fitting of a linear function to the data 1s also given

Figure 5 21 Selected images from a 4D sequence demonstrating a linear volume
expansion

5132 Coupled Approach

Coupling of two level-sets can also be achieved 1n a coherent and thorough way by
employing two Gaussian models, as 1illustrated mn Figure 5 23 Again, in a non-
rigid sense each point on the grid has associated with 1t the parameters for two
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Figure 523 Estimation using prior knowledge of the Epi-cardium and Endo-
cardium deformation through the cardiac cycle using inverse Gaussian curves

Gaussian models representing the evolution of the epi-cardium and endo-cardium

boundary The evolution of the epi-cardium boundary 1s less pronounced and
therefore the Gaussian model 1s shallower Results from a coupled segmentation

are 1llustrated mn Figure 5 24 for different phases and slices

5 14 Conclusions

In this chapter, deformable contours for feature extraction mn medical imaging

were mtroduced and discussed An overview of current methods employed 1n the

segmentation of the left ventricle of the heart was performed
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Figure 5 24 Results from a coupled 4D segmentation of a cardiac sequence for
diastolic, systolic and mid-phase for a basal (top row), mid-shce (middle row),
and apical shee (bottom row)

A novel formulation for the segmentation of the left ventricle 1s developed
using a coupling of two level-set surfaces representing the endo- and epr-cardium
boundaries This was then extended to incorporate prior knowledge about left
ventricle anatomy from manually segmented images encoded 1in a probabilistic
model This method provides adequate results in mid and basal slices where
spilling 1s avoided by adding the additional constraints imposed by the prior
knowledge However, this method encountered difficulty in data representing
high variation and 1n particular in the 1irregular shapes present near the apical re-
gions In these approaches, strengthening the a priors’s influence on the evolution

may result i loss of segmentation detail, patient abnormalhties, muscle dysfunc-
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tion etc Investigating ways of improving accuracy without removing generality
are addressed in the following methodology A new supervision is proposed that
does not encodes the prior knowledge based on information from the 1mage space

A new general solution to left ventricle segmentation from 4D MRI data 1s
presented Temporal information obtained from the mmtialisation based on a fast-
marching segmentation 1s encoded mn a parametric model The model 15 based
on non-rigid deformation of the left ventricle boundaries over time using prior
knowledge about cardiac dynamics After each evolution of the level-set algo-
rithm, the model 1s optimised to the data using an expectation-maximisation to
reduce to target to object error This approach has the following advantages,
firstly, 1t provides a temporal smoothing over the cardiac cycle that 1s consistent
with the motion of the cardiac muscle, secondly 1t constrains the boundaries from
spilling 1n the event that a particular time instance lacks appropriate gradient
information and finally, the temporal model 1s defined on each grid voxel within
the narrow-band, this has the advantage that 1t can incorporate longitudinal con-
traction and expansion along the short axis into the model This umique property

of the temporal model can be realised due to the formulation of the level-set

Excellent results are obtained when compared to expertly assisted segmenta-
tions of the boundaries This method also gives comparable performance against
other methods described n hterature, for example Kaus et al [69] report a
mean error of 24540 75mm for the end-diastolic phase and 2 84+1 05mm for
end-systolic phase using a deformable model technique

This method did not perform as accurately against the manual segmentation
when comparing 1esults to those illustrated in Chapter 4 In this applcation,
supervision was achieved i the evolufion of the boundaries by incorporating
knowledge both in the temporal and space domain Manual segmentation or the
statistical partitioming techmques described in earhier chapters do use temporal
information when segmenting the left ventricle In this way, we believe that the
3D+t approach provides more accurate results, ensuring the cardiac boundaries
evolve m a smooth fashion more consistent to the physical motion of the muscle
By incorporating the 4D data, we can remove inconsistencies m signal intensity
values by smoothing the values over the high resolution temporal and spatial data

The results are illustrated for a coupled surface segmentation where the left

ventricle inner and outer boundaries are tracked 1n a computationally efficient
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way using two separate models of temporal motion

Finally, this technique represents a framework for incorporating temporal 1n-
formation nto the evolution of an evolving surface Also, demonstrated 1s a
vaniation of this approach where temporal information 1s applied using a linear
temporal model as the prior information This may be associated with tracking
the movement of passing objects The complexity of the temporal model 1s not
a limiting factor 1n this methodology and further applications of this technique

are discussed 1n the following chapter

Publications associated with this chapter

Journal Publications

In Submuission

Michael Lynch, Ovidiu Ghita, Paul F Whelan Segmentation of the left
ventricle in 3D +¢ MRI data using an optimised non-rigid temporal
model] Submitted to IEEE Transactions in Medical Imaging, March 2006

Michael Lynch, Ovidiu Ghita, Paul F Whelan Left-Ventricle myocardium
segmentation using a Coupled Level-Set with A-Prior1 knowledge Sub-
mitted to Computerized Medical Imaging and Graphics, November 2005



Chapter 6

Conclusions and Further
Developments

In this concluding chapter of the thesis, an overview of methods developed for the
segmentation and tracking of the left ventricle myocardium 1s discussed With
particular emphasis on the aims and challenges outhned in Chapter 1, the mo-
tives for choosing particular paths in research are exarmined The relevant results
from each of the processes are also discussed in relation to the objectives In the
final part of the chapter, the prospect of further work 1s investigated 1n relation
to the application of the proposed methods in different scenarios and also the

advancement of the developed methodologies

61 Summary

Diagnosis of cardiac disease can be achieved through the accurate measurement
of cardiac function [103, 128] In order to extract the most relevant chinical mea-
surements from the heart, the thoracic cavity must be imaged and the cardiac
muscle of the left ventricle needs to be segmented MR imaging gives relatively
high spatial and temporal resolution of the beating heart without the need for
omsing radiation The imaging of the heart 1s fast, non-invasive, pamless and

entails minimum discomfort to the patient

In order to increase the accuracy, speed and repeatability of the functional

measurements of the cardiac data, much research has focussed on the image anal-

117
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ysis tasks mvolved 1n the segmentation of the cardiac muscle of the left ventricle
In this thesis, novel methods are employed 1n the segmentation of the left ventr-
cle myocardium By increasing the dimensionality of the solution thus expanding
the amount of data being processed a more mnvolved technique 1s developed that
incorporates the three dimensional 1mage data plus the temporal data obtained

from the MRI scanner

The problem 1s addressed 1n a systematic approach, first dealing with the
inherent nowse associated with the medical imaging procedures A performance
characterisation of the main diffusive based non-linear filters 1s provided both in
2D and 3D The performance 1s evaluated using two measures, firstly the filters
ability to smooth the noise 1n homogeneous areas and secondly the filters facihity
to preserve strong edges in the image using edge strength and edge spread as the
critenia  The evaluation was performed in MRI data of varying protocols From
these measurements an appropriate filter 1s chosen as a tool to accurately remove

unwanted noise from the images

When the unwanted artifacts have been removed from the input data, sta-
tistical partitioning 1s successfully employed to automatically segment the 1mage
into appropriate anatomical structures based on signal intensity in both 2D and
3D data A novel localisation of the left ventricle blood pool 1s achieved using
shape descriptors before segmentation of the outer wall of the left ventricle my-

ocardium 1s accomplished using gradient information and prior knowledge

To fully utihise all the data presented from a single patient scan, methods were
investigated for the introduction of temporal information into the segmentation
process Temporal information 1s useful, as predictions of spacial deformation
can be used to increase robustness segmentation Level-set theory 1s introduced
as a numerically stable method of evolving a surface in 3D based on intrinsic
properties of the surface and external forces obtained from the image In this
thesis, a successful extension of Mallad1 and Sethians {86] formahsation for shape
recovery 1s employed which incorporates a texture component and a probabilistic
model of previously segmented cardiac boundanes to avoid the surface spilhing
mto other anatomical structures in the presence of low gradient Employing the
1dea of a coupled level-set introduced by Zeng et al [181], the inner and outer
wall of the left ventricle are segmented simultaneously using coupled surfaces that

interacts using a coupling function
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Exploiting the Eulerian formalisation of the level set, the extension to com-
plete 4D segmentation mntroduces a parametric model of left ventricle deformation
over a cardiac cycle to axd the segmentation This model is then iteratively refined
using a optimisation algorithm The model 1s re-parameterised for each position
on the grid within a narrow-band of the evolving surface or surfaces, giving 1t a
non-rigid deformation to take account of areas of the cardiac muscle that do not
demonstrate significant spatial deformation, for example 1n the case of diseased

tissue

Each of the methods introduced have been tested on synthetic images and
real patient scans Performance 1s evaluated by comparing results against ex-
pertly* assisted manual delineation of the cardiac contours In the next section,
the strategies employed and advantages of this methods over existing methods
commonly used 1n the cardiac segmentation will be discussed

6 2 Contnbutions

In assessing the research conducted in this project toward the goal of cardiac
1mage analysis, 1t 15 clear that a number of sigmficant contributions have been
made as well as other minor contributions One of the objectives of the project
1s to integrate all the data available from a single patient scan into the segmen-
tation process in an appropriate and functional manner A full characterisation
15 attained at each stage in the development of the hypothesis The major con-

tributions of this thesis are as follows

¢ A novel method for the segmentation of 4D information using prior knowl-
edge about temporal deformation 1s introduced 1n a level-set framework
This prior knowledge 1s then iteratively optimused through the segmenta-

tion process

® Produced a novel formulation for a coupled segmentation scheme, n a level-
set framework, using a probabilistic model which segments the myocardium

of the left ventricle

¢ Developed an improved methodology for cardiac image analysis using sta-
tistical data partitioning

*The validation was performed by Dr John Murray, Cardiologist, Mater Misericordiae
Hospital, Dublin, Ireland
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e Formed a gradient based segmentation of the left ventricle muscle outer

wall using prior knowledge

e Performed a full characterisation of advanced data filtering algorithms in

medical 1mages
There were also some munor contributions resulting from this research

e Developed a novel seed generator for initi1alising seed positions for automatic

data partitioning algorithms based on histogram analysis

¢ Appled the level-set segmentation techmque i CT data for the extraction

of polyp morphology for colon cancer detection

o Designed a basic graphical user interface, see Figure 6 1, for visuahising data
and patient information and a separate back-end repository of algorithms

for medical data processing and analysis

6 3 Discussion

At the start of this thesis, a brief overview of two opposite approaches to seg-
mentation were outlined, bottom-up and top-down approaches Some examples
of how both methodologies have been appled 1n the field of medical imaging were
also given From this mitial discussion, a number of advantages and disadvan-

tages for both were provided

Firstly, bottom-up approaches offer a general solution without making any
assumptions about the data being processed or about the final solution to the
problem Spatial information may be used locally about a small neighbourhood
(edge-detectors, region-growing) or may not be used at all (thresholding, signal
intensity clustering) These methods perform effectively in well defined data such
as 1 CT data or in data after performing advanced filtering but in the case of
poor or noisey data, bottom-up techniques can produce unpredictable and un-

controllable results

On the other hand, top-down approaches such as template matching, ASMs
and AAMs perform the segmentation using purely information that has been
used n a traiming process For example, template matching uses information 1n
a global sense to minimise the error in order to find the most appropriate fit
between the image data and the template Such methods have demonstrated
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robust locahisation 1n the presence of low SNR [150] Incorporating other metrics
mto the model such as texture has been shown to mimimise the model to tar-
get differences Other methods have been developed for mimmising the model
to target differences involving alternative approaches to mode! construction such
as PCA, where the principal components of the models variation are utilised 1n
the deformation process Top-down approaches are limited i their use where
the structure of the target object varies significantly from those contained in the
training data For example in cardiac imaging, the general models employed by
ASMs\AAMs that are obtained from training sets are lirted 1n therr application
for accurate segmentation to the variety of heart shapes Abnormalities in the
image data can indicate disease Model based approaches approximate to the
closest plausible instance shape from the training set Point Distribution Model
(PDM), but this may not be sufficiently accurate Also, AAMs cannot deal well

with the changes in texture

Also included in Chapter 2 was a note on how to combine both top-down and
bottom-up approaches in order to obtain & more appropriate solution In this
thesis, methods of effectively combining prior information and local image prop-
erties are investigated Following the removal of unwanted noise from the image,
the process of partitioming the structural features within the image 1s achieved
using a statistical based clustering algorithm Localisation of the left ventricle
cavity 1s achieved using prior knowledge about the shape of the structure based
on prior knowledge Once the left ventricle cavity has being successfully localised
and extracted, a novel method for the outer wall of the left ventricle cavity 1s
pursued Approximate knowledge about the myocardium thickness 1s obtained
from the distance between the left and right blood pools, assuming that the right
ventricle blood pool is close to the left ventricle blood pool and the separating
muscle (1nterventricular septum) approximates the thickness of the myocardium
around the left ventricle This knowledge 1s used when extracting local gradient
information that may form part of the epi-cardium boundary By linking ap-
propriate edges together, segments are produced These segments can then be
eliminated with respect to orientation Where gradient information 1s lacking, a
top-down approach 1s adopted whereby missing segments are inserted by means

of a probabilistic model of previously segmented images

To further advance the concept of using the top-down approaches to guide
bottom-up approaches, the 1dea of an evolving surface 1s introduced in Chap-
ter 5 In a level-set framework, prior knowledge about the distance between
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the ep1- and endo-cardium boundaries as well as a probabilistic model of previ-
ously segmented 1mages were used to influence a coupled level set deformation
The probabilistic model 1s mntroduced as a cost function, penalising growth away
from model instances Unlike the vanational framework proposed by Paragios
[110, 111] that uses both probabilistic measures for signal intensity obtained from
an expectation-maximisation algorithm and prior shape information encoded n
a level-set framework, our method uses high gradient information as the predomi-
nant stopping term and can therefore be applicable 1n situations where variations

n grayscale are encountered

Extending this methodology to 3D + t space, the aim was to remove the
confidence attributed to the prior knowledge of the anatomical shape of the left
ventricle, as 1t 1s known to contain a high degree of variation especially in abnor-
mal or unhealthy specimens It 1s proposed to model the temporal motion of the
heart, as temporal motion 1n healthy and unhealthy hearts maintain the systole
and diastole phases Using this characteristic, a temporal model 1s constructed
and iteratively updated to guide the local deformation of the level-set algorthm
This method of top-down knowledge about temporal deformation, optimised 1n
order to influence the bottom-up approach gives a significant step towards a ro-
bust, elegant and complete solution to the 3D + ¢ segmentation problem The
idea of encoding the temporal motion in a parametric model can be applied 1n
different scenarios In the next section, some possible situations are discussed

64 Further Work

While this work addresses a specific research question, there 1s further work which
can be undertaken in a broader sense as a result of the :deas put forward In this
section a number of areas are proposed which warrant further investigation

Initialisation of the level-set algorithm could be improved Fast-marching al-
gorithm does not take curvature terms into 1ts evolution Further advancement
of the fast marching method can 1mprove the imtialisation of the temporal model

parameters used 1n the 4D case described mn this thesis

From a theoretical aspect, the level-set formulation 1s robust and numerically
stable Further work may involve a more mnvolved formalisation of the level-set
evolution 1n order to incorporate the 4D information Further advances may in-
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clude the extension of the temporal model using non-linear approximations with
more advanced functions The temporal motion model may also be encoded 1n
PCA or other method to reduce the dimensionality of the model These models
may be derived using data from prior information based on expertly segmented

cardiac 1mages

In this thesis, a novel method for applying top-down information in a bottom-
up approach to segmentation 1s achieved The application chosen to demonstrate
the 1deas proposed in this thesis are in multi-dimensional cardiac data Apph-
cation of these 1deas 1n different areas would warrant further mvestigation The
work may be transfered to perform segmentation in the right ventricle or the
measurement of valve regurgitation may also be achieved Modelling temporal
characteristics using more advanced functions can be utilised outside of the medi-
cal domain Measuring growth in plants may be one application of this techmique
11)

65 Concluding Remarks

In this work, a thorough investigation into multidimensional image analysis of
cardiac data in MRI has been performed which was the mam contribution of this
research The primary steps involved advancing the framework from a purely
bottom-up approach based on statistical analysis to a more mvolved approach
based on surface propagation using increasing dimensional data and incorporat-
ing top-down nformation to aid the segmentation This 1s achieved 1 a novel
and intwitive fashion Optimisation of the algorithms performance from a com-
putational expense point of view was performed but advanced developments in
this area was not one of the main goals for this project Additional research has
been 1nvestigated outside the topic and contribute to minor advances 1n research

These are explamed 1n detail in Appendix A and B
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Appendix A

Application of the
Expectation-Maximisation
Algorithm to Medical Images

This appendix details the Expectation-Maximisation (EM) for partitioming image
using pixel intensity values A novel approach for the mitiahisation of parameters

1s detailed using analysis of the intensity histogram of the image

The application of the EM algonthm for the partitioning of medical images
mto anatomical structures has being documented, particularly in brain segmen-
tation in MRI [47] The EM algorithm shows robust and repeatable performance
in the segmentations of heart, bramn and abdominal images The EM algorithm
15 locally convergent [174, 40, 13] so we have ntroduced an automatic seeding
method that uses local maxima 1n the intensity histogram In this appendix the
novel mitialisation of the EM algorithm 1s investigated and analysis 1s presented
Also results aganst manual 1nitialisation and apply the algorithm to some com-

mon medical 1mage processing tasks are demonstrated

A1l EM Algorithm

The EM algonthm [40, 14} attempts to classify data using a soft membership func-
tion as a weighted sum of a number of Gaussian distributions called a Gaussian
Mixture Model (GMM) The generation of this GMM 1s achieved through an EM
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Figure A 1 Image intensity histogram overlayed with an illustration of the asso-
ciated Gaussian Mixture model

technique, which aims to find the maximum likelihood estimate for an underlying
distribution from a given data set when the data 1s incomplete Its advantage over
the k-means clustering techmque [42] 1s 1ts ability to provide a statistical model of
the data and 1ts capability of handling the associated uncertainties Consider the
general case of a d-dimensional random variable X = [z1,%9,73, ,%g)? and sup-
pose 1t follows a k-component finite mixture distribution Its probability density

function (pdf) could be wnitten as,

k
p(al9) = 3 amp(l6m) (A1)

where k 1s the number of mixtures, o, 1s the mixing parameter for each of the
Gaussian’s in the GMM and and p(z|6,,,) 1s the probability that variable z belongs
to class 6., and 1s defined in Equation A 2

= (A2)

P4

PO (pm, Om)) = o

where 0,, = {im,om} are the Gaussian’s parameters This can be displayed

graphically in Figure A 1 The value of &, is defined as,
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k
om 20, and » a=1 (A 3)

m=1
The algorithm 1s built on an 1terative scheme and consists of two steps The first,
the E-step, calculates the expected log-likelihood function for the complete data,
defined by @ using the estimates for the parameters é(t) X defines the input
data and Y defines the output classified data

Q(8,6(t)) = Ellogp(X, Y|0)IX, 0(t)] (A4)

The second, M-step, uses the maximized values of this result to generate the next

set of parameters

f(t+1) = arg max Q(6, f(t)) (A5)

The algorithm 1iterates between (A 4) and (A 5) until convergence 1s reached It
1s important to note that local convergence of the EM algorithm 1s assured since
§ 1s smaller at each 1teration [174, 40, 13]

The updates for the parameters for the GMM are the muxture values a,,
and the Gaussian’s parameters 0, = {¢m,0m} These can be calculated from
Equations A 6, A7 and A 8

k
1 N
pev = % D pmle, 0() (A6)
m=1
k N
rr:fw — an::=1 Itp(mlml)Ag) (A. 7)
m=1P(m|T:, 6)
k j . new _  neunT
new __ Zm:l p(mlxh 9)(:”1 U (:L‘, Bm ) (A 8)
" an=1 p(mlfl‘i, 0)

Al1l Seed Generation

To address the imtialisation step a novel approach to collect relevant seed points
for cluster centers based on histogram analysis 1s developed A histogram of the
mmage data 1s constructed, n,, where n 1s the number of pixels contained in the
bin wath value 3 This histogram 1s then divided into M evenly distributed bins
This value M 1s manually set, typically to a higher number than the number of
perceived relevant regions in the image For the images shown 1n this appendix,
the value of M was set experimentally to 25 From each bin, the highest peak m
the histogram 1s assigned to a seed center, Cy,
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Cp = argmax(n;) (A9)
7

These M seed centers are then clustered together using their closeness mn the
grayscale space until the desired number of seeds, k, 1s reached The clustering
18 an 1terative process where clusters are jomned together by evaluating the Eu-

clidean distance between the cluster centers

A 2 Results

The described scheme was applied to gated MRI short-axis images of the heart,
MRI coronal brain slices and a section from a whole body MRI showing the lower
abdomen The results are compared agamnst those obtamned when the cluster
means and vanances are manually extracted from the image From Figure A 2
and Table A 1, 1t 1s clear that using the automatic seed i1mitialisation gives a
better distribution of imtial seeds across the data Table A 1 presents the manu-
ally selected means of the Gaussians and automatically selected means using the
method described above Also, the Gaussian means following the EM algorithm

has been applied are presented

To evaluate the performance of the described algorithm, the EM segmenta-
tion algorithm 1s applied to each of the MRI datasets As mentioned previously,
the algorithm 1s locally convergent and therefore imutialisation of the algorithm is
crucial to the final solution A comparison 1s made between the results obtained
using the automatically seeding process and the results obtained when the 1m-
tial seeds for the EM segmentation are chosen manually To achieve this, areas
are selected 1n each of the 1mages that attempt to represent the most significant
regions This 1s objective and related to the purpose of the segmentation but
the overriding motivation 1s to pick regions that are clinically signmificant and also
have a high degree of variation between regions In each of the images given, 6
regions were manually selected In these selected regions the mean pixel inten-
sity values and the variance of the pixel intensity values are calculated These
manually selected values are used as the nitial ,,’s, where 1 < m < 6 1n the EM

algorithm, the mixing parameters «,, were each set to %

Figure A 2 1llustrates the strategy appled to short axis images from a cardiac
MRI study The areas manually selected are shown in Figure A 2 (b) and the
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Figure A 2 Figures show the short axis view of cardiac MRI (a} shows the
original image (b) mdicates the manually selected areas (c) represents the results
after applying the EM using the manually picked imitialisation and (d) 1s the
result after applying the automatic seed picking

resultant segmentation after applying the EM segmentation using these imtial
parameters 1s shown in Figure A 2 (¢) The final Figure A 2 (d) shows appropri-
ate results after the automatic parameter selection, 1n particular the results show
a better distribution within the grayscale distribution of the analysed image Fig-
ure A 3 shows a coronal slice from a T1-weighted head MRI Again the automatic
segmentation method performs well in differentiating the white matter from the
gray matter Figure A 4 shows a coronal slice from an abdominal section of a full
body MRI
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Table A1 Changes in cluster means 1in the Cardiac data

Manual g’s Manual p’s after EM  Automatic p’s  Automatic p's after EM
u(0) 57 31914 55 2806 57 31 33457
(1) 125 366 112 0961 137 125 284
©1(2) 194 0437 151 1044 167 171 6872
@(3) 19 84193 16 74244 12 17 75531
u(4) 225 1899 112 8278 255 254 2933
w(s) 28 87568 28 43651 92 79 93145

It 1s clear from Tables A 1, A 2 and A 3 that the described automatic seed
picking algorithm demonstrates better performance when compared to the man-
ual selection techmque This 1s evident from the lower differences between ini-
tialised seeds and the final values after optimsation through the EM algorithm

Most medical images obtained from MRI are 3D and 1n some cases 4D, but
because the described algorithm works on the data histogram (hence, intensity
values) and 1s not dependent on spatial position, therefore as a result the al-
gorithm can be apphed equally successfully to any dimensioned data This 1s
llustrated in Figure A 5 where the algorithm 1s successfully applied in 3D MRI
images This aspect 1s examined further in Section A 3 where the results are used
in conjunction with a diffusion based filtering [54, 115] to extract some clinically

relevant regions from the images

It 1s worth noting that statistical classification of pixels 1s a more appropriate
way to segment, medical images as the standard region growing techmique will fail
to produce appropriate results 1n 1mages that exhibit a low signal to noise ratio
(SNR) Also, medical images generally show good separation between significant
regions as this 1s one of the aims 1n the acquisition This 1s application dependent

some common medical applications are investigated 1n the following section

A 3 Applications in Medical Imaging

One of the key indicators of cardiac health 1s left ventricle ejection fraction, a
measure of the volume of blood pumped from the left ventricle with each heart-
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Figure A 3 Figures show an coronal slice from a brain MRI (a) shows the original
mmage (b) indicates the manually selected areas (¢) represents the results after
applying the EM using the manually picked imitialisation and (d) s the result
after applying the automatic seed picking

beat[48] Cardiac cine MRI 1s a standard procedure where 3D volume images are
acquired at gated temporal positions through the cardiac pumping cycle Such
images are frequently taken using gradient echo imaging, which exhibits a rela-
tively ligh differentiation between the blood and the myocardium Figure A 6
shows the end-diastole segmented left ventricle blood-pool after the application of
the EM algorithm to identify the left ventricle cavity Figure A 6(e) 1s a rendered
volume of the blood pool inside the cavity of the left ventricle when the muscle

1s at 1ts end-diastole phase
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Table A 2 Changes in cluster means 1n the brain data

Manual p’'s  Manual y’s after EM  Automatic p’s  Automatic p’s after EM
1(0) 1646 123 922 116 117 66
(1) 131 18 120 03 96 97 8356
1(2) 23 203 13 207
1(3) 66 59 3301 A4 27 48
w(4) 90 1 94 49 73 70 836
(%) 164 21 194 81 153 140 6223

Figure A 4 Figures show a coronal slice from a section of a full body MRI (a)
shows the original image () indicates the manually selected areas (c) represents
the results after applymng the EM using the manually picked mitialisation and
(d) 1s the result after applying the automatic seed picking

The classification of brain MRI's white matter, gray matter, cerebrospinal
fluid and 1n some cases lesions, 1s a fundamental first step for surgical planning,
radiotherapy planning and the 1dentification of brain disease [180] Illustrated in
Figure A 7 15 a segmentation of white matter of the brain

The accurate measurement of body fat from whole-body MRI images 1s becoming

an 1ncreasingly mmportant metric as ligh body fat level 1s recognised to play a
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Table A3 Changes in cluster means in the whole body data

Manual 's Manual u’s after EM  Automatic u’s  Automatic u's after EM
©(0) 170 92 169 4365 183 178 41
u(l) 42 29 44 45 52 50 484
u(?2) 384 4177 5 427
w(s) 123 61 118 868 151 153 720
w(4) 95 35 8299 124 121 496
n(s) 572 55 897 92 85 687

sigmficant role 1n a variety of serious health problems [18] MRI 1s the modality of
choice due to 1ts repeatability and high spatial resolution Figure A 8 illustrates
the results from one section of a whole-body MRI dataset where the fat tissue

has being segmented out of the volume

The developed method shows appropriate results with respect to the gray scale
values for all datasets From these results we can conclude that this approach
offers robust, reproducible and accurate estunation of the mmitial parameters for
the EM algonithm and the segmentation scheme described 1s capable of providing
useful climcal measurements when apphed to a large range of medical datasets

Journal Publications

Michael Lynch, Dana Ilea, Kevin Robinson, Ovidiu Ghita, Paul F Whelan Au-
tomatic seed mitialisation for the Expectation-Maximisation algorithm
and 1its apphcation in 3D medical imaging Journal of Medical Engineering
and Technology (Accepted — awaiting publication)

Conference Publication

Michael Lynch, Ovidiu Ghita and Paul F Whelan (2005), Automatic Seed
Picking Algorithm for Region-Based Segmentation of Cardiac MRI Im-
ages, European Society of Cardiac Imaging, ESCR 2005, October 2005, Zurich,

Switzerland
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Figure A5 3D space partitioning using EM Images show a single slice of a
3D dataset from (a) the original volume, (b) after segmentation with the EM

algorithm
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(¢)

Figure A 6 Images show shces 1 ((a) and (b)) and 4 ((c) and (d)) from the
oniginal volume (left) and with left ventricle blood cawity segmented (right) and
(e) shows the rendered volume of the segmentation
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(b)

Figure A7 Images show slices 1 ((a) and (b)) and 14 ((¢) and (d)) from the
ongmal volume (left) and with segmented white matter (right) and (e) shows the
rendered volume of the segmentation
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Figure A 8 Images show slices 2 ( (a) and (b)) and 6 ((c) and (d)) from the
original volume (left) and with body fat segmented (right) and (e) shows the
rendered volume of the segmentation



Appendix B

Level-set Segmentation for
Candidate Polyp extraction in
CTC

The extraction of candidate polyps from Computer Tomography Colonography
(CTC ) 1s a primary and mmportant step in candidate polyp classification, where
polyps are a precursor to colon cancer Such a classification step 1s necessary
due to the high frequency of false positive polyp detections which are apparent 1n
previous computer aided diagnostic techniques Previous work 1n this area uses
curvature constraints on candidate polyps to estabhish morphology [176] This
type of classification encounters difficulty when determining folds, a naturally
occurring instance 1n the colonography exam In this work, we have used surface
normal intersection to determine possible polyp candidates, we then proceed to
segment the polyp using a level set curve evolution algorithm to extract an ac-
curate segmentation of the polyp features Results are presented using point to
surface error and the reduction in false positives after the extracted surfaces were

classified using a statistical classifier

Much of the previous work in polyp extraction uses local curvature and shape
constraints to determune polyp candidates and to estabhish morphology [154, 178,
72] This type of classification encounters difficulty when determining folds, a
naturally occurring mstance in the colonography exam Yao et al [176] proposed
a segmentation of method which useéd a knowledge guided deformable model to
extract the surface of the polyp and compared 1t to manual segmentation of
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experts The knowledge was provided by the curvature of the deformable model
and the signal intensities of the pixels surrounding the polyp The segmentation
was performed 1n 2D and the 2D 1mages were combined together to create the

Jocal 3D volume

B1 Convex Surface Extraction

Inmitially, the colon 1s segmented using a seeded 3D region growing algorithm that
was applied to segment the air voxels, which assures the robust 1dentification of
the colon wall In some situations the colon 1s collapsed due to either insufficient
msuflation or residual water In order to address this 1ssue we have developed
a novel colon segmentation algorithm that 1s able to correctly 1dentify the colon
segments using knowledge about their sizes and location within the body m all
maging conditions After the 1dentification of the colon wall, for each colon wall
voxel the surface normal vector 1s calculated using the Hummel-Zucker operator
[182] The normal vectors sample the local orientation of the colonic surface
and the suspicious candidate structures that may resemble polyps are extracted
using a simple convexity analysis In thus regard, the colonic suspicious surfaces
have convex properties and are determined using the 3D histogram and Gaussian
distribution of the Hough points (full details about this developed algorithm can
be found 1n [29]) This method 1s able to correctly 1dentify all polyps above 3mm
but 1t 1s worth nothing that this 1s achieved at a cost of high level of false positives
In order to reduce the level of false positives, the surface 1s extracted using a
level-set method and the results are classified using a statistical morphological

features

B 2 Level-Set Inttialisation. Fast-Marching Algorithm

As previously outlined in Chapter 5 formulation of the problem is conceptually
simple The evolving curve or front T", evolves as the zero level-set of a higher
dimensional function ¢ This function deforms with a force F' that 1s dependent
on both curvature of the front and external forces in the 1mage The force acts

m the direction of the normal to the front

¢+ F|Ve| =0
o(z,y,t =0) = grven

(B 1)

The implementation employed 1s a standard two step approach which includes
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Convex surface
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centers

FastMarching
and

Figure B1 Flow-chart of proposed algorithm

a fast-marching 1nitial step to speed up the segmentation Fast marching 1s a
special case of the above equation where F(z,y) > 0 Let T(z,y) be the time
that the front ' crosses the pont (z,y) The function T'(z,y) then satisfies the

equation,
|VT|F =1 (B2)

which simply says that the gradient of the arrival time 1s 1nversely proportional
to the speed of the surface The T function 1s evaluated using the diffusion and
attraction to pixels within the front The front grows out from 1ts imitial position
to points with the smallest value of T(z,y) The T'(z,y) function 1s then updated

and continued until the front does not grow

B 3 Level-Set Analysis

The theory behind level-set segmentation 1s largely based on work in partial dif-
ferential equations and the propagation of fronts under intrinsic properties such
as curvature [108, 133, 41, 74] By extending the dimensionality of the problem
to N+1,where N 1s the imitial dimension of the problem, some advantageous prop-
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erties can be exploited Representing the boundary as the zero level set instance
of a mgher dimensional function ¢, the effects of curvature can be easily mcor-
porated ¢ 1s represented by the continuous Lipschitz function ¢(s,t = 0) = +d,
where d 1s the signed distance from position s to the imtial interface 'y (see Equa-
tion B 3) The distance 1s given a positive sign outside the initial boundary ( D Q2
), & negative sign mside the boundary ( 2\ 89 ) and zero on the boundary ( 89 )

—d Vs € 0\ 60
p(s} =140 Vs € a0 (B 3)
+d Vs e R"\Q

From this defimtion of ¢, intrinsic properties of the front can be easily deter-

mined, hike the normal 7# = + g s

Since curvature of the polyp should be a pertinent factor in the segmentation
evolution, particular emphasis 1s given to this measure The mean curvature (H),
18 connected to the physical evolution of soap bubbles and the heat equation
While smooth, 1t may not necessarily be convex and can lead to singularities

V¢
H=V —= (B 4)
Vgl

Gaussian curvature (K), has also being used to model physical problems such
as flame propagation It has being shown that a convex curve evolves to a point
under curvature evolution, but 1t can also be shown that evolution of non-convex

surfaces can be unstable [7]

K = YOTA (H($) V9
Vor

where H(¢) 1s the Hessian matrix of ¢, and Adj(H) 1s the adjomnt of the matrx H

(B5)

Due to the characteristic curvature features of polyps 1t 1s proposed to use
Neskovic and Kima's [106] measure of curvature, which involves both mean and
Gaussian In this approach, the direction of flow 15 obtained from the Mean
curvature while the magmtude of the flow 1s dictated by the Gaussian curva-

ture This 1s appropriate as the Mean curvature alone can cause singularties and
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extracts the strictly convex surface of the polyp candidate

k= sign(H)}\/ K + | K| (B 6)

Using this value for &, the level set 1s iteratively updated within a defined
narrow band around the segmented boundary to increase efficiency The following

equation details the update parameters
ber1 = b + k(1 — ex)|VG[ + BVI V¢ (B7)

where € and beta are user defined parameters (see Table B 1), & 1s the curvature
term defined 1n Equation B 6 and k; 1s the gradient dependent speed term and
1s g1ven by 1 +1v 7 The third term, VI V¢ represents the attractive force vector
normal to the front The level-set segmentation 1s performed in 3D

Possible polyp candidate centres are calculated over the entire data set by
calculating the normal vectors at each voxel on the lumen wall Polyp candidates
are defined as regions of high convexity, therefore the centres for possible polyp
candidates are located at points that contain high concentration of normal inter-

sections [29] N

The level set 1s imitialised at the polyp candidate centres and grows outwards
until a boundary 1s encountered The convex surface is maintained by placing a
high influence on the curvature parameter (see Figure B 2) Once the level-set
has converged or completed 1ts 1terations, the surface of the polyp candidate 1s
taken as all boundary points that have an associated gradient This ensures that

Just the lumen surface 1s extracted

Figure B 2 Extracted polyp surface (dotted) using the levelset approach based
on curvature
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B 4 Classifier

Once the true surface of the polyp candidates has being extracted, they are passed
to a classifier to determine whether they are polyps or folds The classifier 1s a
statistical model of known polyps and folds and uses statistical features of the
candidates morphology such as least squares ellipsoid fitting error, normalised
distribution of the surface curvature and the Gaussian sphere radius [29] These
features are used to classify the candidate polyp surfaces into polyps or folds using
a feature normalised nearest neighbour classification scheme [55] The classifier
was trained with 64 polyps and 354 folds that were selected as true positives by

a radiologist

B5 Results

The segmentation algorithm described above was performed on 10 full CTC data
set, converted to 1sotropic dimensions using cubic interpolation Visual represen-
tations of the segmentation are shown 1 Figure B 3 and the extracted surface
renderings are shown in Figure B5 Table B 1 hsts the user defined parameters
used 1n the level-set algorithm From this table it can be seen that curvature 1s
given a large influence to maintain the convexity of the polyp candidate surface
The narrow bandwidth 1s given a small value of 10 to increase the efliciency of
the update

A classifier, trained on expertly categorised unseen data, 1s then used to
determine whether the extracted surface 1s classified as polyp or non-polyp Small
folds 1n the colon lumen are the main cause of detecting a false positive It can
be clearly seen 1n Figure B 5 that fold surface 1s extracted 1s saddle shaped and
thus can be easily classified using 1ts shape charactenistics

Table B 2 shows the measured point-to-curve error between the automatic
segmentation results against those found from a manual segmentation of the
small number of polyp candidates Indicated on the table are the average error,
standard deviation of the error and the root-mean-square of the error This error
1s measured 1n pixels where each pixel has sub-millimeter dimensions

Table B 3 gives the results from 10 datasets (9 patients) containng 31 polyps
From the high number of polyp surface candidates, a relatively low number are
detected The results show a sensitivity of 100% for all polyps >10mm Normally,
in a clinical situation, polyps below 5mm have less clinical significance One
cause for our method missing smaller polyps, are their low curvature difference
between the polyp and the colon wall, therefore some colon wall 1s taken into
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(d)

Figure B 3 Images above show the segmentation of the convex polyp candidate
The bottom left image shows the segmentation of a fold

Table B1 Control parameters used 1n the level-set segmentation

Control Parameters Values
Fast-Marching Iterations 3
Level-set Iterations 10
Level-set € 05
Level-set 8 008
Level-set Narrow bandwidth | 10

Table B2 Pomnt-to-curve errors between manually segmented data and our
method

Error | Average Std Dev RMS
| 0298 0587 0661
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EXTRACTION IN CTC

Table B3 Performance Analysis for Polyp Classification True positive (TP)

and False Positive (FP)

Size

Detected Missed

210mm
5-10mm
< Smm

10 0
9 1
2 20

the candidate surface (see Figure B 6 and Figure B 4) The false positives per
dataset was calculated to be 1 3, which compares favorably with figures reported

to hiterature

Figure B 4 Extracted polyp surface (dotted) for a small polyp, note the inclusion

of healthy colon lumen

Figure B5 Images above show the polyp candidate renderings of the extracted
surface Figures (a)-(c) show correctly classified polyps, where Figures (d)-(f)

show correctly classified folds
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Figure B 6 One of the <5mm polyps musclassified due to the nclusion of colon
wall i the surface extraction

Publications associated with this chapter

Conference Pubhcation

Michael Lynch, Tarik Chowdhury, Ovidiu Ghuta and Paul F Whelan (2003), De-
termuning Candidate Polyp Morphology from CT Colonography using
a Level-Set Method, European Medical and Biological Engineering Conference
EMBEC 2005, November 2005, Prague, Czech Republic
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Mathematical Background

C1 LMS Cucle

Using the Least Squares solution a circle 1s fitted around a collection of points,

P,, with images coordinates, (z,,¥,) for: =1,2 N

A arcle 1s defined by three parameters These parameters are the coordinates
of 1ts centre (zp, ¥0) and 1ts radius r The equation of a circle can be written 1so-

lating these three parameters as follows

(m.u.l) v =(ﬁ+ﬁ)

2 2 2
T =25 — Y

In order to find these three unknowns a hnear least squares solution 1s obtained

where
2m 2 1 z$ +y}
229 292 1 z% + yg
A= 2z3 2y3 1 b= :rg + y%
2z 2yn 1 a:i, + y?\,

The best fitting circle for the points P, 1s the least squares solution to [xo yo 72~

zf — y3]T = (ATA)~1ATb where (AT A)~*ATb can be written as

151
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-1

4y z? 4 2y 2Tz 2y 2 +2Y 5,92
AT zy 43Xy 2L w 2T vl +2 zln
2y =, 23w N Zml+2y12

The error of this least squares solution can be calculated as the difference between
the area of the fitted circle and the area of concentric circles passing through the

data points with the equation et =|| Alzo ¥ 2 —z3 — 33 - b ||

C2 LMS Elhpsoid

To determine the left ventricle cavnity after the application of 3D clustering, the
error between each segmented shape and a fitted ellipsoid 1s found The radn of
the ellipsoid are calculated using the eigenvalues of the covariance matrix from

the lists of points that define the surface of the shape

ZN 1 (z —5‘:!2 EN 1 (z= :z:)(y g ZN 1 (z— z!z—z!

Oz Ozy Ogzz n=0 n=0 n=0
_ _ N-1 (z— ::!(y 7) N-— 1 {y— ) N-1 (y— y!!z—z
C=loz oy 04| =|2n0 2= Y oneo
N-1 (z —x!!z—z N— 1 ( —~ N-— l (z— )
Ozz Oyz O Zn=0 N Z = y 2=8) Z z

(C1)

Based on work by Pearson, principle component analysis (PCA) chooses the
first ellipsoid axis as the line that goes through the centroid, but also mimmizes
the square of the distance of each point to that line, see figure C1 The line 1s
a correlation of the points along the data’s principle axis Equivalently, the line

goes through the maximum variation in the data

The second PCA axis also must go through the centroid, and also goes through
the maximum variation in the data, but with a certain constraint It must be
completely uncorrelated (1e at right angles, or ‘orthogonal’) to PCA axis 1 The
ellipsoid 1s an extension of this PCA to 3D finding the three principal axes

C3 Splines

A closed natural cubic sphine 1s fitted around the points on the epi-cardium [144]
The spline 1s used to close the epi-cardium contour by connecting all the points
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Figure C1 The two principle axes of a two dimensional data set are plotted and
scaled according to the amount of variation that each axis explains

on the curve 1n a smooth way

Splines are piece-wise polynomuals of degree n (n = 3 in the case of cubic
splines) with the preces smoothly jomned together The joining points of the
polynomal pieces are called control points which need not be evenly spaced
These control pomts are defined as a collection of points P, where : = 1,2,3 N
and N 1s the number of points It works by fitting a cubic curve between each
pair of points 1n the collection Smoothness of the curve 1s maintained by forcing
the first and second derivative of the end point of one curve to equal the start of
the next curve This 1s achieved by solving a system of simultaneous equations

The equation 1s illustrated below
fi(z) = a+bu+ cu? + dyu®

0<u<l
1<2<n

Where 1 1s the amount of points on the curve and u 1s the number of steps in

between each point The coefficients of the cubic equation are,

Q = Za
dz
b o= 2o
dP

_ dmn dzn-#—l

& = 3@an-z) =255 - —p

dz, dzn,
d = 2(xn_zn+1)+ +1

4P " T dP



154 APPENDIX C MATHEMATICAL BACKGROUND

The derivatives used 1n to smooth the curve are computed as follows

-1

D(O] 4 1 1 3(351 ~ Zn)
D) 14 1 3(z2 — 2o
1 4 1
1 4 1 3(171 — Tn-2

Din] 1 1 4 3(zo — Tn—-1)
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