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Abstract

C ardiac m orphology is a  key ind ica to r o f card iac h e a lth  Im p o rtan t m etrics th a t  
are  cu rren tly  m  clinical use are  left-ventricle card iac  ejection fraction, card iac  
m uscle (m yocardium ) m ass, m yocard ium  th ickness an d  m yocardium  th ickening 
over th e  card iac  cycle Advances m  im aging technologies have led to  an  increase 
in tem p o ra l and  sp a tia l resolution  Such an  increase in  d a ta  presents a  laborious 
ta sk  for m edical p rac titio n e rs  to  analyse

In  th is  thesis, m easurem ent of th e  card iac left-ventricle function is achieved 
by developing novel m ethods for the  au to m atic  segm enta tion  of th e  left-ventricle 
blood-pool and  th e  left ventricle m yocardium  boundaries A pre lim inary  chal­
lenge faced in  th is ta sk  is th e  rem oval o f noise from  M agnetic R esonance Im aging  
(M RI) d a ta , which is addressed by using advanced d a ta  filtering procedures Tw o 
m echanism s for left-ventricle segm enta tion  are em ployed

F irs tly  segm en ta tion  of th e  left ventricle b lood-pool for the  m easurem ent of 
ejection fraction  is un d ertak en  in th e  signal in ten sity  dom ain  U tilising th e  high 
d iscrim ination  betw een blood and  tissue, a  novel m ethodology based  on a  s ta ­
tis tica l p a rtitio n in g  m eth o d  offers success in localising and  segm enting th e  b lood 
pool of th e  left ventricle From  th is in itia lisation , th e  estim ation  of th e  o u te r wall 
(epi-cardium ) of th e  left ventricle can be achieved using g rad ien t in form ation  and  
prior knowledge

Secondly, a  m ore involved m ethod  for ex trac tin g  th e  m yocardium  of th e  left- 
ventricle is developed, th a t  can  b e tte r  perform  segm enta tion  m  higher d im en­
sions S patia l in form ation  is in co rpo ra ted  in th e  segm entation  by em ploying a  
g rad ien t-based  b o u n d ary  evolution A level-set schem e is im plem ented and  a  
novel form ulation  for th e  ex trac tio n  of th e  card iac  m uscle is in troduced  Tw o 
surfaces, rep resen ting  th e  inner and th e  o u te r boundaries of th e  left-ventricle, are 
sim ultaneously  evolved using a  coupling function  an d  supervised w ith  a  p ro b a ­
bilistic m odel of ex p e rtly  assisted  m anual segm entations

Finally, to  fully u tilise all d a ta  p resen ted  from  a single 4D card iac (3D +  t) 
M R I scan a  novel level-set segm entation  process is developed th a t  delineates and

xv
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track s th e  boundaries of left ventricle By encoding prior knowledge a b o u t ca r­
diac tem p o ra l evolution in a  param etric  fram ew ork, an  expecta tion-m axim isation  
a lgorithm  tracks th e  m yocardium  deform ation  an d  ite ra tive ly  u p d a tes  th e  level- 
se t segm enta tion  evolution m  a  non-rigid sense

B o th  m ethods for the ex trac tio n  of card iac functions have been te s ted  on p a ­
tie n t d a ta  and  provide positive qualita tiv e  and  q u an tita tiv e  experim ental resu lts  
w hen com pared  against expertly  assisted  segm entations



Chapter 1

Introduction

A n estim a ted  17 m illion people die annually  from  C ard iovascular D isease (CVD) 

In  general, CV D  claim s m ore lives each year th a n  th e  n ex t five leading causes of 

d e a th  com bined T he W orld H ea lth  O rgan isa tion ’s 2002 re p o rt [119], s ta te s  th a t  

29 3% of d ea th s  in its 191 countries were as a resu lt of C V D s I t  is these a larm ing  

s ta tis tic s  th a t  has in itia ted  th e  su b s tan tia l research in to  accu ra te  m easurem ents 

of th e  h e a rt for th e  dete rm in a tio n  of cardiac h ea lth  th ro u g h  diagnostic  im aging 

T h e  diagnosis an d  m onitoring  of cardiovascular disease, and  th e  p lann ing  for ap ­

p ro p ria te  trea tm en t relies on accu ra te  im aging, analysis and v isualisation  of the  

h ea rt

A dvances m  diagnostic  im aging technology, in  p a rticu la r  C o m p u ter Tom og­

rap h y  (C T ) an d  M agnetic R esonance (M R), has enabled  g rea te r am oun ts of in­

form ation , in b o th  th e  sp a tia l and  tem pora l d im ensions to  b e  genera ted  T h is 

h igh-reso lu tion  volum etric d a ta , as a  function  o f tim e, can  give im p o rta n t phys­

iological in form ation  ab o u t th e  h ea rt T he increase m  d a ta  available has  m ade 

th e  h an d  an n o ta tio n  perform ed by th e  physician a  very  tim e-consum m g ta sk  

T h is has pushed  the  advancem ent tow ard  sem i-au tom ated  a n d  fu lly -au tom ated  

approaches to  quantify  th e  resu lts o b ta ined  from  these high reso lu tion  scanners 

A su b stan tia l am ount of research is focusing on  th e  accu ra te  m easurem ent of 

shape, volum e an d  shape dynam ics of th e  h e a r t s tru c tu re  T h is  thesis develops 

th e  m ethodology  for th e  au tom atic , q u an tita tiv e  and clinically  relevant card iac  

analysis m m ultid im ensional d a ta

1
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Q u a n tita tiv e  m easurem ent of th e  left ventricle of th e  h ea rt is used as a  key ind i­

ca to r of ca rd iac  h ea lth  T he left ventricle is im p o rta n t as it pum ps oxygen-rich 

b lood  a ro u n d  th e  body  T he increased volum e of d a ta  generated  by  th e  la te s t 

m edical scanners presents a  vast am ount o f high reso lu tion  volum etric d a ta  to  

be in te rp re ted  by th e  specialist In te rp re tin g  and  analyzing th is  large am ount of 

d a ta  rep resen ts  a ted ious and  tim e-consum ing task  for the  cardiologist M anual 

or highly  superv ised  trac ing  of th e  card iac boundaries is a  w idely used m ethod  

to  segm ent th e  left ventricle m yocardium  m  cu rren t clinical stud ies In  one such  

scenario, a  skilled opera to r, using a  track ing  ball or a  m ouse, m anually  traces 

th e  region of in terest on each slice of the  volum e [100, 46, 164] M anual slice 

ed iting  suffers from m any draw backs T hese include th e  difficulty in achieving 

reproducib le  resu lts, o p era to r bias, forcing th e  o p era to r to  view each 2-D slice 

separa te ly  to  deduce and  m easure th e  shape  and volum e of 3-D stru c tu res , an d  

o p e ra to r  fa tigue  Since m anual segm entation  is labour-in tensive, tim e-consum ing  

and  can  suffer from  in ter- an d  m tra-observer variability, th e  p rospect of an  au ­

to m a tic  and  accu ra te  segm entation  is highly desirable A u tom atic  segm en ta tion  

will th erefo re  enhance com parability  betw een and w ith in  card iac stud ies and  

increase accu ra te  evaluation  of volum es by  allowing acquisition  of th in n e r M R I- 

slices

1 1 Motivation

1 2 Aims

T h e  m am  objective of th is thesis is to  ou tline th e  work carried  ou t for th e  ex trac ­

tio n  of volum etric  d a ta  and shape descrip to rs from  M R  im ages of th e  hea rt and  

to  quan tify  th e  analysis against a s ta n d a rd  o f reference A nalysis o f th e  h e a r t 

function  is achieved th rough  segm entation  of th e  left ventricle (LV) Prom  th is  

accu ra te  segm en ta tion  prognostic  m easurem ents used in th e  diagnosis of C V D s 

are ob ta ined , these include th e  ejection frac tion  (E F ) of th e  left ventricle cavity, 

left ventricle m ass (LVM) of th e  m yocardium  and  wall th ickness an d  th icken­

ing (W T ) o f th e  left ventricle m yocardium  T herefore  the  expected  ou tcom e of 

th e  work is to  assist the  cardiologist in th e  prognosis of CV D s by delineating  

th e  tru e  ana tom ica l features p resen t m  th e  im age an d  avoid m aking  assum ptions 

over read ing  w h a t is p resen t C ard iac  M agnetic R esonance (C M R ) is th e  im aging 

m odality  chosen for th is s tu d y  I t  is non-m vasive, provides high tem p o ra l and  

sp a tia l reso lu tion  and high co n trast betw een b lood and  the  m yocardium
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T his thesis describes th e  m ethodology th a t identifies th e  b o u ndaries of the 

left ventricle of th e  h ea rt w ith  m in im um  user in terac tion  T h e  delineation  allows 

for th e  calcu lation  of key m easurem ents th a t  m ay show anom alous h e a r t function  

a n d  therefore  m ay ind ica te  CVD

1 3 Challenges

T h ere  are a  num ber of challenges involved in th e  delineation  of th e  left ventricle 

from  M R  im age M edical im ages are acquired using the  n a tu ra l an d  unique re­

sponse of th e  bodies tissues to  m etabo lic  or nuclear changes T hese  changes are 

n o t ideal and  th is in troduces noise into th e  im age acquisition  process m  th e  form 

of im age d isto rtions

Im age d isto rtions can be a ttr ib u te d  to  m any factors, for exam ple th e re  is 

ran d o m  im age noise, b lu rring  effects due to  p a tie n t m ovem ent an d  coil in tensity  

fall-off A dded to  th is, is th e  heterogeneous p roperties o f th e  tissues, p a rtia l 

volum ing effects betw een th e  endocard ium  and th e  left ventricle b lood  pool, p ar­

ticu la rly  a t  the  apex  and a t  end-systo le due to  th e  presence of trabeculae cameae 
In  cine-M RI the  varia tion  of in tensity  w ithm  a  tissue  is increased because it may 

tak e  several cycles of inducing a  signal followed by m easurem ent to  im age th e  

en tire  sequence T h is leads to  gray-scale varia tions betw een im age slices

In  short, there  are m any  challenges th a t  p revent th e  accu ra te  de lineation  of 

th e  left ventricle m yocardium  d u e  to  th e  presence of noise in th e  im age, heart 

dynam ics and  uneven b rea th -h o ld s  T h e  developed procedure m ust rem ove the 

am biguous n a tu re  of th e  im ages w hile m ain ta in ing  th e  s tro n g  an a tom ica l features 

before an  accura te  segm entation  is achieved

As previously  m entioned, m odern  scanners c rea te  a  large am o u n t of d a ta  m 

b o th  tem p o ra l and  spa tia l dom ains T herefore th e  developed a lgo rithm s should 

u tilise  all th e  in form ation  available A natom ical s tru c tu res  are rep resen ted  in 3D 

a n d  therefore th e  segm entation  process of such s tru c tu re s  are  m o st accu ra tely  

e x trac ted  using 3D algorithm s T em poral coherence can also be  in tro d u ced  to  

increase th e  robustness of th e  segm enta tion  P rio r know ledge is o ften  used m  m ed­

ical im aging analysis schem es to  localise and  e x tra c t anatom ical fea tu res T his 

thesis  incorpora tes prior know ledge in th e  tem p o ra l dom ain  as a  generic m easure 

of tem p o ra l coherence which is ite ra tive ly  refined, as opposed to  p rio r m odels
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encoded in  th e  im age dom ain  w here th e re  m ay be large varia tion  m  an a to m ica l 

m orphology Hence, one of th e  largest challenges u n dertaken  m th is  thesis  is to  

in co rp o ra te  b o th  sp a tia l and tem p o ra l in form ation  m a  m eaningful way to  im ­

prove th e  accuracy  an d  robustness of th e  segm entation

1 4 Contributions

B ased  on th e  challenges ou tlined  in th e  previous section, th e  m a jo r con trib u tio n s 

of th is  work lie in th e  segm entation  of th e  left ventricle m yocardium  in  m ultid i­

m ensional M R I d a ta  T here  a re  a  num ber of stages th a t  are ad o p ted  an d  these  

co n stitu te  th e  m ajo r con tribu tions to  th is  work

Firstly , in order to  reduce th e  inheren t noise associated  w ith  M R I im ages, 

a  perform ance characterisa tion  of advanced sm ooth ing  filters is perfo rm ed  T he 

charac terisa tio n  is perform ed m  b o th  2D and in  3D

A novel m ethod  for segm entation  an d  localisation of th e  left ven tric le  b lood 

pool using an  unsuperv ised  c lustering  techn ique is p resen ted  m  C h ap te r  4 T h is 

technique is approached  in b o th  a  slice by  slice an d  volum e im age con tex t A fter 

th e  segm enta tion  of th e  left ventricle b lood  pool cavity, an  heuristic  app roach  is 

developed to  ex trac t th e  o u te r walls o f th e  m yocardium  in  each im age slice T h is 

technique is based on g rad ien t in fo rm ation  in th e  im age and w here such infor­

m ation  is lacking, a  p rio r m odel of p reviously  segm ented m yocardium  im ages is 

in co rpo ra ted  in to  th e  segm entation  W hile  th is app roach  gives favorable resu lts 

m  good quality  d a ta , in tro d u c tio n  of tem p o ra l in fo rm ation  in to  th is  fram ew ork 

is cum bersom e T herefore a m ore involved approach is p roposed  th a t  can  easily 

in co rp o ra te  extension to  4D d a ta

D escribing a  contour as a  p a rticu la r instance of a higher d im ensioned func­

tion  in th e  E ulerian  space has m any advan tages F irstly , errors associa ted  w ith  

sam pling  of th e  contour are e lim inated  as th e  approach  is non-m arker based 

T h e  deform ation  is num erically  stab le  an d  has th e  ab ility  to  han d le  topological 

changes d u rin g  th e  deform ation  In  C h ap te r  5 a  novel m ethodology of level-sets 

is in troduced  th a t  evolves a  coupled surface, represen ting  th e  inner and  o u te r wall 

o f th e  left ventricle m yocardium  T he deform ation  is gu ided  using a  p robab ilis tic  

m odel o f m anual segm entations
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Finally , th e  E ulerian  fo rm ulation  of the  level-set is explo ited  m  a  novel fash­

ion to  ex tend  th e  deform ation  m  a  supervised way to  4D A tem pora l m odel is 

co n stru c ted  for each grid p o in t m  E ulerian  space using p rio r knowledge ab o u t 

card iac  m otion  T his p a ram e tric  m odel is th e n  ite ra tive ly  refined during  th e  seg­

m en ta tio n  process to  cap tu re  th e  m yocardium  boundaries T h is novel approach  

has m any  advantages F irstly , it  perform s a  tem poral sm ooth ing  of th e  segm ented 

con tours th ro u g h  the  card iac cycle th a t  follows the  tem pora l m odel from  th e  user 

defined m otion  m odel Secondly, th e  m odel is defined in tem p o ra l space a n d  is 

therefo re  free from th e  highly variable anatom ical features of th e  card iac m uscle 

m  im age space T he hum an  left ventricle has a  harm onic p um ping  m otion  which 

can  b e  m odelled for b o th  hea lth y  an d  unhealthy  h ea rts  an d  is relatively  inde­

p en d en t of th e  highly varian t card iac  anatom y Thirdly, in itia l estim ates for the 

p a ram etric  m odel found th ro u g h  a  fast m arching algorithm  an d  th e  p aram eters  

are th en  ite ra tive ly  u p d a te d  using an  expecta tion-m axim isation  a lgorithm

Hence, segm enta tion  of th e  left ventricle m  cardiac M R I d a ta  is approached  

in a  sy stem atic  way, a t each s tep  increasing the d im ensionality  of th e  problem  

an d  inco rpo ra ting  m ore know ledge and  inform ation  in  m ore involving m eth o d ­

ologies In itia l approaches are  based on signal in tensity  values in 2D an d  3D 

im ages for th e  segm entation  of th e  card iac blood pool followed by a  2D m odel 

assisted  segm entation  of th e  o u te r wall of th e  left ventricle m yocardium  In  the 

second phase, a  coupled defo rm ation  of surfaces is in troduced  for b o th  th e  inner 

and  ou ter b o u n d ary  which is also guided by m odels of m anually  an n o ta ted  m od­

els In  the final stages, tem p o ra l in form ation  is in troduced  m  a  knowledge based 

way to  m odel the  left ventricle m otion  and ensure sm ooth  tem p o ra l tra n s itio n  of 

segm ented surfaces

1 5 Thesis Overview

T his thesis de ta ils  th e  progression of ideas for th e  segm enta tion  o f th e  left ventricle 

of th e  h ea rt from  m u ltid im en sio n a l M R I d a ta  B ased on th e  challenges ou tlined  

in th e  previous sections, th e  thesis deta ils each of th e  steps

C h a p t e r  2 gives a  background to  th e  problem  T his ch ap ter deals m ain ly  w ith  

card iac anatom y, dynam ics and  clinically relevant m easurem ents associated  

w ith  d iagnosing CV D s A n in tro d u c tio n  to  some of th e  m ost com m on m ed­

ical im aging m odalities, an  in -d ep th  discussion on M R I and  th e  difference



6 CHAPTER 1 INTRODUCTION

acquisition p rocedures A nd finally a  brief overview of im age processing 

and in pa rticu la r on  m edical im age analysis

C h a p t e r  3 details th e  m ethods em ployed in im age noise suppression T h e  ad­

vantage of non-linear sm ooth ing  over linear sm ooth ing  is investigated  in 2D 

before a perform ance charac terisa tion  of th ree  non-hnear filters applied  to  

M R I d a ta  is perfo rm ed  m 3D

C h a p t e r  4  gives th e  p a rticu la rs  on  how s ta tis tica l based segm entation  algo­

rithm s can be used to  accura tely  m easure th e  left ventricle b lood pool 

volumes and consequently  th e  m easurem ent of e jection fraction  H euristic 

m ethods for th e  segm en ta tion  of th e  ou ter b o u n d a ry  of th e  card iac  m us­

cle m  2D are d e ta iled  and deficiencies associated  w ith  th is  approach  are 

discussed

C h a p t e r  5 in troduces b o u n d ary  based  m ethods as an  a lte rn a tiv e  approach  in 

order to  circum vent some of th e  lim ita tions of th e  s ta tis tica l based  ap­

proaches A n overview  of previous approaches are d e ta iled  G rad ien t based 

level-set segm enta tion  approaches are proposed as an  accu ra te  m eth o d  of 

segm entation  m  higher dim ensioned d a ta  A novel m ethod  for th e  segm en­

ta tio n  of 3D-M (4D) is in troduced  T h is m ethod  em ploys a  p a ram etric  prior 

m odel encoded in th e  tem p o ra l dom ain  which is ite ra tive ly  u p d a ted  using 

a expectation-m axim isation  algorithm

C h a p t e r  6 concludes th e  thesis, ou tlin ing  th e  novel m ethods developed, dis­

cussing th e  resu lts  o b ta ined  a n d  recom m ending how these approaches m ay 

be advanced or can b e  applied to  o th e r tem porally  v arian t anatom ical s tru c ­

tu res

A p p e n d ix  1 describes th e  app lica tion  of an  expecta tion-m axim isation  a lgorithm  

for p a rtitio n in g  d a ta  in m edical im ages

A p p e n d ix  2 details th e  app lica tion  of th e  level-set algorithm  to  perform  accu­

ra te  segm entation  of polyps m  C T  colonography



Chapter 2

Background

T his ch ap te r gives a b rie f overview of th ree  d is tin c t areas involved in th is  p ro ject 

F irstly , an  in tro d u c tio n  to  th e  h ea rt, its  function , some term inology  and  th e  clin­

ical m easurem ents th a t  axe to  be ex trac ted  from  card iac specific images acquired 

of th e  th o rax  N ext, an  overview o f th e  im aging m odalities used in card iac im ag­

ing, m oving to  explain  why M R I is th e  chosen m odality  for th is  investigation  

T h is is followed by a  discussion on th e  basics of M R I also m ention ing  th e  m am  

protocols in com m on use will ensue Finally, a  background is given on work th a t 

has being investigated  m  th e  im age processing a rea  an d  in p a rticu la r in  th e  field 

of m edical im aging and  card iac analysis In  th is  section  a  review  is given of th e  

m ost relevant lite ra tu re  published  on th e  su b jec t

2 1 The Heart

T h e h ea rt can  be th o u g h t of as the  “pum ping  s ta tio n ” of th e  body  S itua ted  

betw een th e  th ird  and s ix th  ribs m  th e  cen ter of the  th o rac ic  cavity  of th e  body, 

th e  h ea rt is a  hollow conically shaped  m uscle ab o u t th e  size of a  clenched fist, 

12-13cm along its m ajo r axis an d  7-8cm a t its  w idest p o in t [101, 58] I t  rests  

on th e  d iaph ragm  betw een th e  lower p a r t  o f th e  two lungs I ts  function  is to  

pum p oxygen and  n u trien t rich blood around  th e  cardiovascular system , where 

it  supplies th e  oxygen to  th e  cells T he de-oxygenated b lood  th e n  re tu rn s  to  th e  

h eart before being  pu m p ed  to  th e  lungs to  collect m ore oxygen T he oxygen-rich 

blood th en  proceeds back  to  th e  hea rt before i t  is sent a ro u n d  th e  cardiovascular 

netw ork again

7
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T h e h ea rt is a  hollow m uscle th a t  is divided in ternally  in to  four sep a ra te  cham ­

bers T h e  h ea rt muscle itse lf is div ided into th ree  layers, th e  epi-cardium is th e  

ou ter p ro tective layer, th e  m iddle m uscular layer is referred  to  as th e  myocardium 
while th e  inner layer is know n as th e  endo-cardium

T he hea rt is divided dow n th e  cen­

te r  w ith  a strong  m uscle wall called 

th e  interatnal-mterventncular sep­
tum in to  a  cylindrical left side 

and  a  m ore crescent sh ap ed  righ t 

side T he righ t side o f th e  h e a r t is 

again divided in  two w ith  th e  u p p er 

a triu m  or auricle sep a ra ted  from  th e  

lower ventricle w ith  a  one-w ay valve 

called th e  - Tncuspxd valve Sim i­

larly, th e  left side is divided in to  th e  

le ft-a rtriu m  and  left-ventricle w ith  

th e  Bicuspid or mitral valve In  

order of size, th e  le f t-a tn u m  is th e  

sm allest cham ber, holding approx­

im ately  45ml a t  rest, and  having 

a  wall thickness of app rox im ate ly  

3mm T his is followed by  th e  n g h t-a triu m , w ith  a  typ ica l cap ac ity  of 63m / 

and  wall thickness of 2m m , th e  left ventricle w ith  a  100m/ cap ac ity  and a  wall 

th ickness as high as 12m m  an d  finally th e  right a tr iu m  w hich can  hold up  to

130m / w ith  a  wall th ickness of 4m m  T he varying wall th ickness is a  resu lt o f the

norm al o p era ting  p ressure of each of th e  cham bers and is exp la ined  in the  next 

section E ach  of th e  cham bers has an  associated m ajo r vessel e ith e r  supplying 

blood or tran sp o rtin g  b lood away T h e  left ventricle has th e  aorta, jo in ed  using  a 

one-way aortic valve, th e  left a tr iu m  has th e  pulmonary vemy th e  r ig h t ventricle 

has th e  pulmonary artery w hich is closed w ith  th e  pulmonary semi-lunar valve 

while th e  righ t a triu m  is supplied  from  th e  superior and  inferior venae cavae and  

th e  coronary sinus D isease associated  w ith  th e  valves is m ain ly  caused  from  con­
genital abnorm alities, degenera tion  or infection and  can resu lt in leakage th ro u g h  

th e  valve In  th e  m ost com m on type  of valvular disease th e  mitral valve or aortic 
valves are frequently  affected W ith  mitral dysfunction, th e  b lood  is allowed to

2 11  Morphology

Figure 2 1 A natom y of th e  h e a r t From  

G ray ’s A natom y [58]
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reg u rg ita te  back to  the  left atnum increasing p ressure  in th a t  a triu m

Also p resen t m  b o th  ventricles are th in  colum ns of m uscle along its length , 

these  are referred  to  as trabeculae camce T h e  pap illa ry  m uscles a re  th in  m uscles 

p ro tru d in g  from  th e  walls of b o th  ventricles and  are  connected  to  the ir respec­

tive  atrioventricular valves B oth  th e  trabeculae cam<z and  p ap illa ry  m uscles are 

m ore pronounced  in  th e  left-ventricle

T he h e a rt itse lf  needs to  be supplied w ith  oxygen-rich b lood  and th e  m easure 

o f blood supplied  to  th e  hea rt is called myocardium viability C oronary  circu­

la tio n  is achieved th ro u g h  two m am  arteries, th e  right coronary artery and  left 
coronary artery B o th  of these a rteries stem  from  th e  ascending aorta B lood is 

re tu rn ed  v ia  th e  coronary sinus Over tim e, th e  coronary arteries m ay becom e 

clogged from  a bu ild -up  w ith  /a i, cholesterol, triglycerides and calcium This 

bu ild -up  p reven ts th e  coronary  a rteries from  function ing  properly, and  interferes 

w ith  th e  delivery of an  adequate  supply  of blood to  th e  h e a r t m uscle N inety  five 

percen t of all coronary  a rte ry  disease is due to  th is  atherosclerosis, th e  bu ild -up  

o f fa tty  substances T he insufficient blood supp ly  to  th e  h e a r t is called ischemia 
M yocard itis is in flam m ation  of th e  m yocardium , th e  m uscular p a r t  of th e  hea rt 

I t  is generally d u e  to  infection (v iral or b acteria l) I t  m ay presen t w ith  rap id  

signs of h ea rt failure

For clinical evaluation  of card iac anatom y and m otion, a  s ta n d a rd  left ven tri­

cle rep resen ta tio n  has been  developed [24] w hereby th e  card iac muscle is divided 

in to  IT segm ents, F igure 2 2 T hese 17 segm ents crea tes a  d is trib u tio n  of 35%, 

35% and 30% for th e  basal, m id cavity  and apical th ird s  of th e  hea rt, which is 

close to  th e  observed au topsy  d a ta

2 12  Dynamics

T h e  h ea rt has tw o d istin c t phases, diastole and  systole T he  d iastole, or filling 

cycle, occurs w hen  the  muscle relaxes and  th e  left an d  righ t ventricles fill w ith  

b lood  from  the  respective a tria , th is  can tak e  480 ms of th e  com plete 750 ms 
cycle D uring  th is  cycle th e  tricusp id  and m itra l valves are open while th e  aor­

tic  and  sem i-lunar pu lm onary  valves are closed W hen  th e  end-d iasto le  volum e 

(EDV) has being  reached th e  h ea rt sends an  electronic pulse for th e  systole cycle 

to  s ta r t  T h e  systo le phase is m uch shorter w here th e  m uscle con trac ts  and  closes 

th e  tricusp id  an d  m itra l valves while opening th e  ao rtic  and  pu lm onary  valves
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Figure 2 2 D iagram  o f th e  vertical long-axis, ho rizon tal long-axis and  short-ax is 
planes show ing th e  nam e, location  and anatom ical landm arks for th e  selection of 
basal, m id-cavity  and ap ica l sh o rt axis slices for the  17 segm ent system

A pproxim ately  half of th e  ventricles capacity  is em ptied  d u rin g  th e  systolic phase, 

th e  rem ainder is called th e  card iac reserve volum e T h e  card iac  cycle is tim ed 

using th e  h ea rts  own in trinsic  nervous system  and  can survive m-vitro for several 

hours T he m ain  sw itch  in th e  nervous system  is called  th e  Sinus Node, th is 

triggers th e  AV Node w hich m  tu rn  connects to  the  Bundle of His to  conduct 

th e  triggering pulse th ro u g h  th e  sep tu m  of the  h ea rt

T h e  ven tricu lar w orking p ressures a re  much higher th a n  a tr ia  pressures The 

left and  right ventricles have an  approx im ate w orking p ressu re  of 140 mmHg 
an d  40 mmHg respectively, th is  gives rise to  th e  left ventricle m uscle being  th ree  

tim es th icker th a n  th a t  o f th e  righ t ventricle

2 13 Measurements

T h e  volum etric  d a ta  acquired  w ith  tim e can p roduce a  num ber of im p o rta n t m ea­

surem ents th a t  can in d ica te  disease of th e  heart [48] W hile  th ese  descrip tors are 

well docum ented  m  research  lite ra tu re  [43] they  are  no t alw ays clinically assessed 

m  everyday p ractice
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In  prac tice , clinical m easurem ents still rely  on global volum etric  m easure such 

as left-ventricle end-diastolic volum e (ED V ), end-systolic volum e (ESV) and m ass 

(LVM) T hese  are th en  used m  conjunction  w ith  o ther m easurem ents to  ca lcu late  

th e  stroke  volum e (SV), card iac o u tp u t (CO) and  ejection fraction (E F ) T h e  in­

clusion of pap illa ry  muscles and trab ecu la tio n s is still undecided a n d  is usually  

dependen t on  th e  cen ter perform ing th e  scan R ecent research [138] has show n 

th a t  th e  difference betw een su b trac tin g  and  n o t su b trac tin g  th e  pap illa ry  m uscles 

an d  trab ecu la tio n s has little  clinical relevance w hen calcu la ting  th e  left ven tricu ­

la r volum es and  ejection fractions T h e  ex trac tio n  of th e  ep i-card ium  b o u n d ary  

aids th e  accu ra te  m easurem ent of wall th ickening (W T ) over th e  card iac  cycle, 

th is  can ind ica te  areas w ith  reduced co n trac tib ih ty

•  E n d - d ia s to l ic  v o lu m e  (E D V ) and  E n d - s y s to l ic  v o lu m e  (E S V )  is th e

am o u n t of blood contained in th e  left ventricle a t  its  m axim um  and m in i­

m um  respective capacities, m easured  in  ml

•  L e f t  v e n t r ic le  m a s s  (L V M ) is an  im p o rta n t ind ica to r for left ventricle 

hypertrophy  (LVH) LVH is an  en largem ent of th e  muscle fibers of th e  

left ventricle, m ainly around  th e  in te rv en tricu la r sep tu m  LVH is a  la te  

com plication of congestive h ea rt disease and  card iac  arrh y th m ias  T he LVM 

is m easured  to  be th e  volum e (cm3) enclosed by th e  ep i-card ium  b o u n d ary  

m inus th e  left ventricle cavity  and  m ultip lied  by  th e  density  of m uscle tissue 

(1 05 g/cm3)

LVM =  1 05 x (Vept -  Vendo) (2 1)

•  S t r o k e  V o lu m e  (S V ) is th e  volum e (cm 3) of b lood  ejected from  th e  left 

ventricle betw een the  end-d iasto le  and  th e  end-systole T h is value can th e n  

be norm alised to  body  surface a rea  an d  called th e  stroke-volum e index  

(SVI)

S V -  Vendoi^D) ~~ Vendors)
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w here Vend0 is the  volum e of th e  left ventricle cavity, Vend0(tD) =  wia®tP'endoM] 

a t  end-d iasto le  and K nd0(is )  =  rmnt[V€n(i0(t)] is th e  end-systo le

•  C a r d ia c  o u t p u t  ( C O )  is th e  am oun t of oxygenated  b lood  supplied to  

th e  body  (ml/mm) T his can  be norm alised to  th e  b o d y  surface area and  

called the  card iac index  (C l) T he calcu lation  is show n m  E q  2 4 w here H R  

is th e  hea rt ra te

•  W a ll  th ic k e n in g  ( W T )  is th e  m easurem ent of th e  m yocard ium  th ickness 

over tim e (mmt) T h is  can give a d irec t ind ication  to  th e  m yocardial v iabil­

ity  an d  therefore can forecast ischemtc disease T h e  wall th ickness can be 

com puted  using th e  centerline m ethod , along lines th a t  are p e rpend icu la r to  

a curve th a t  is equ id istan t from  b o th  th e  endo- and  ep i-card ial boundaries

2 2 Imaging Modalities

In  th is  section  th e  reader is given a  brief in tro d u c tio n  in to  th e  im aging m odalities 

th a t  axe com m only used for card iac  analysis A brief descrip tion  of each m eth o d  

is given along w ith  the ir advantages and  d isadvantages T h is is followed by a  

b rie f discussion on  th e  su itab ility  o f M R I in card iac analysis, a  m ore in -d ep th  

b ackground  describing som e of th e  physics involved and  th e  different p ro tocols 

m  clinical use

2 2 1 X-Ray with Angiocardiology

•  E je c t io n  F r a c t io n  (E F )  is th e  percentage of b lood  ejected  from  th e  left 

ventricle w ith  each h e a rt b ea t, and can be represen ted  by th e  equation

(2 3)

C O  =  (Vend o (to ) -  Vendo( ts ) )  X  H R (2 4)

X -ray  angiocard iography (X RA ) is a  p ro jec tion  im age o f th e  left ventricle usually  

in th e  oblique view after a  co n trast agent has being in jected  into th e  ventricle v ia  

a  p ig ta il c a th e te r  In  X RA  th e  co n trast agent is n o t uniform ly sp read  th ro u g h o u t
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th e  left ventricle because of th e  d ilu tion  w ith  blood a t  th e  m itra l valve I t  m ay 

n o t reach  to  the  apex of th e  h e a r t and  th e re  is also a lim ita tio n  on  th e  am o u n t of 

co n tra s t agent used due to  th e  risk  to  th e  p a tien t Surround ing  s tru c tu re s  such 

as ribs can  be rem oved from  th e  im age using D igital S u b trac tio n  A ngiography 

(DSA) DSA  involves a  tem p o ra l su b trac tio n  w here th e  im age ob ta in ed  w ith o u t 

a  co n tra s t agent is su b tra c te d  from  th e  co n trast image C om plications associated  

w ith  card iac  angiography a re  cardiac arrhythmias (irregular h e a rtb e a t)  a n d  em­
bolism (by dislodging p laque  from  th e  a rte ry  wall while tread in g  the  ca th e te r) 

X R A  can  be used for th e  calcu la tion  of th e  ejection fraction  using  geom etric ap ­

p rox im ations [43] b u t can n o t be used for th e  calculation  volum es or delineating  

th e  epi-cardial bo u n d ary

2 2 2 Cardiac Ultrasound

C ard iac  u ltrasound  is a  tom ograph ic  im aging system , it  is re la tively  cheap, non- 

m vasive and can im age on a rb itra ry  planes [24] I t  gives low co n tras t w hen 

com pared  to  M R  and X-ray, can n o t im age th rough  gaseous m edium s an d  has a 

low signal-to-noise ra tio  due to  frequency a tten u a tio n  in  th e  tissue  T h e  signal- 

to-noise ra tio  is fu rther reduced  in cases w here th e  p a tie n t p resen ts o besity  3D 

u ltra so u n d  [88, 125] has being  in troduced  and  can quan tify  ven tricu lar volum es 

and  m yocardium  m ass w ith o u t th e  need for geom etric m odels U ltrasonograph ic  

h e a rt im ages suffer from  th e  need for acoustic windows, o p era to r subjectiveness 

an d  are  often  characterised  by  weak echoes, echo d ro p o u ts  an d  high levels of 

speckle noise causing erroneous detec tion  of th e  LV boundaries

2 2 3 SPECT/PET

Single-photon Em ission C o m p u ted  Tom ography (S P E C T ) and P ositron  Em ission 

Tom ography (P E T ) scans are p a r t  of th e  non-m vasive nuclear im aging techniques 

S P E C T  was in troduced  m  th e  1970’s and is used to  detec t su b tle  m etabo lic  

changes in th e  organ u n d er investigation  P E T  was in troduced  sh o rtly  afte r 

S P E C T  because of its increased  tem p o ra l resolution  B o th  m ethods w ork by  the 
in jection  of radionuclides (rad ioactive  iso topes) into th e  organ  under investiga­

tio n  T hese radionuclide tra c e rs  are absorbed  a t different ra te s  by  th e  hea lthy  

an d  dysfunctional m uscle W hile  these m ethods are good for th e  m easurem ent of 

m etabo lic  changes, th e  reso lu tion  does n o t lend to  th e  delineation  of anatom ical 

s tru c tu re s  in th e  im age
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A tra d itio n a l X -R ay C om puter T om ography (C T ) scan is an  X -R ay procedure 

w hich com bines m any X -R ay images w ith  th e  aid of a  com pu ter to  generate  

cross-sectional views o f the  b o d y  C T  is increasingly used in card iac analysis I t  

p rovides increasing reso lu tion  m  d a ta  w ith  th e  in tro d u c tio n  of the  64 slice C T  

and  is p articu la rly  useful for evaluating  coronary  atherosclerosis W ith  conven­

tio n a l C T , card iac  m otion  causes b lu rring  and a rtifac ts  in th e  im age b u t advances 

such as E lectron ic  B eam  C om puter Tom ography (E B C T ), U ltra fa s t®  an d  D ual- 

Source C T  have increased th e  acquisition  tim e sufficiently to  cap tu re  th e  bea tin g  

h ea rt These approaches can be  gated  to  cap tu re  in fo rm ation  a t  a  precise phase 

m  th e  h ea rts  cycle However C T  suffers from  low co n trast betw een soft tissues 

like blood and  m yocardium  an d  the  p a tien t is exposed to  ionising rad ia tio n

2 2 5 Magnetic Resonance Imaging

M agnetic R esonance Im age (M RI) was first in troduced  m  m edical im aging in  

1971 Since its  in tro d u c tio n  card iac m agnetic  resonance (C M R ) has progressively 

im proved w ith  increased sp a tia l and  tem p o ra l reso lu tion  C M R  is considered by 

some au th o rs  [43, 128, 130] to  be th e  s ta n d a rd  of reference for evaluating  th e  

card iac function  M R  has proved to  b e  m ore accu ra te  th a n  echo-cardiology and  

card iac  angiography in  the  ca lcu lation  of th e  ejection  fraction  and  also has show n 

superior resu lts  m  endo-card ium  border segm enta tion  [128] M R I b o asts  a w ide 

topograph ica l field of view and  high co n trast betw een soft tissues w ith o u t th e  

need for a co n trast agent I t  is non-invasive w ith  high sp a tia l reso lu tion  and  

can b e  g a ted  using an  electrocardiogram (EC G ) a t different phases during  th e  

h ea rts  pulse [158, 102] However, it can  suffer from  noise an d  grey  scale varia tion  

betw een ad jacen t slices M ore deta ils are discussed in the  n ex t section

2 3 MRI for Cardiac Imaging

C ard iac  M agnetic R esonance (C M R ) has very  clear advantages over th e  o th e r 

im aging m odalities, discussed m  th e  previous section I t has proved to  be  m ore 

accu ra te  [43] for th e  evaluation  of card iac function  m easurem ents due  m ain ly  to  

its independence from  any geom etric assum ptions a b o u t th e  ventricle sh ap e  and  

can b e  used w ith o u t th e  need for a  co n tras t agent C ine-M R  has being in troduced  

to  cap tu re  a  collection of im ages over one or several phases of th e  card iac  cycle 

M R I tagging  has been  in troduced  to  o b ta in  h ea rt tw ist th ro u g h  th e  card iac  cycle

2 2 4 Computer Tomography
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T he use of M R I has m any  benefits over o ther types of acquisition

•  Im ages of soft-tissue s tru c tu re s  such as th e  h ea rt an d  m ajo r vessels are 

clearer and m ore d eta iled  w hen com pared to o th e r im aging m e thods

•  T h e  deta il of M R I m akes it  an  invaluable too l in early  detec tio n  and  eval­

u a tio n  of coronary  disease

•  Even w ithou t th e  use of co n tra s t m ateria l, M R I often  shows sufficient detail 

of th e  hea rt to  be valuable in  diagnosis and tre a tm e n t p lann ing

•  W hen it  is used, M R I co n tras t m ateria l is less likely to  p roduce  an  aller­

gic reaction  th a n  th e  iod ine-based m aterials used for conventional X -Rays 

and  C T  scanning an d  does n o t contain  the  rad io iso topes used in  nuclear 

m edicine exam s

• M R I enables th e  detec tio n  o f abnorm alities th a t  m ight b e  obscured  by bone 

tissue w ith  o th e r im aging m ethods

•  M R I provides a  fast, nonm vasive and  often less expensive a lte rn a tiv e  to 

o ther techniques of card iac  diagnosis

•  M R I can help physicians evaluate  th e  function, as well as th e  s tru c tu re , of 

the  h ea rt m uscles and  valves

• M R I does no t require exposure  to  rad ia tion  or th e  in tro d u c tio n  of radioiso­

topes in th e  body

• M R I has the  advan tage  th a t  im ages can be o b ta ined  from  a rb itra ry  planes 

T h e  use of M R I also has th e  following associated risks or lim ita tions

• A n unde tec ted  m eta l im p lan t m ay be affected by  th e  s trong  m agnetic  field

• M R I is generally  avoided in th e  first 12 weeks of p regnancy  D octo rs usually  

use o th e r m ethods of im aging such as u ltrasound  on p reg n an t women, 

unless there  is a  s tro n g  m edical reason to  conduct an  M R I exam

In th is  section an  overview of th e  basic physics of M R I is given to  th e  reader, 

th e  im aging planes used in  a  conventional heart exam ina tion  a re  show n and  

finally th e  different p ro tocols th a t  have being in troduced  w ith  th e ir  advantages 

an d  disadvantages
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M R I applies a R ad io  Frequency (R F) excita tion  pulse to  th e  p ro to n s th a t s it in a 

s ta tic  m agnetic  field W hen  the  pro tons re tu rn  to  a  s ta te  of equilibrium  they  em it 

a  quantified energy  as an  R F signal T h is signal is th e n  collected an d  analysed 

O n  th e  scan th is  corresponds to  high in tensity  m eaning  high signal collected by 

th a t  g roup  of p ro tons

M R  uses th e  m agnetisa tion  effects of hydrogen to  c rea te  th e  in tensity  m ap, 

or im age H ydrogen is an  ab u n d an t a tom  in alm ost all biological system s As 

can be seen m  figure 2 3 these a tom s do not n a tu ra lly  align m  any particu la r 

d irection b u t in stead  sp in  around  th e ir  own axes m  a rb itra ry  o rien ta tions and 

therefore the  m agnetic  effect is negligible If however, a  strong  s ta tic  m agnetic 

field Bq is applied  to  these a tom s they  align them selves e ither in  th e  paralle l 

or an ti-parallel d irec tion  to  th e  d irection  of th e  field (in  m ost cases th ey  align 

parallel) T h e  a tom s do not s tric tly  align paralle l to  th e  m agnetic  field b u t  a t  a 

sm all angle 0, o r flip-angle, and  precess around  th e  m agnetic  field a t  a  frequency 

/ ,  or th e  L arm or frequency If  an  ex te rna l frequency B\ is pulsed a t  the  Larm or 

frequency perp en d icu la r to  Bq th e  a tom s absorb  th e  energy and ten d  to  precess 

away from  Bq an d  tow ard  B\ m om entarily  W hen th e  pu lse  has finished th e  atom  

re tu rn s  to  the  s ta tic  m agnetic  field and  releases th e  energy  as a  sm all R F  signal 

T h is signal is collected an d  used to  p roduce th e  im age T E  is th e  echo tim e, the  

tim e  a t w hich th e  signal echoes a re  ob ta in ed  afte r th e  excita tion  pu lse  TR  is th e  

rep e titio n  tim e, th e  tim e  in w hich th e  excita tion  pulse is rep ea ted  to  o b ta in  the 

im age lines

In  o rder to  locate  th e  position  of th e  signal spatially , a  th ird  m agnetic  field 

called a  g rad ien t m agnetic  field th a t  varies the  m agnetic  field s tre n g th  w ith  re­

spect to  its  position  is applied  T he m ost com m on ty p e  of reconstruction  used 

to  crea te  the  im age is a  tw o-dim ensional Fourier transfo rm  M easurem ents are 

taken  a t  im p o rtan t re laxation  tim es T 1 and T2 T 1, o r sp in -la ttice  re laxation  

tim e, is th e  se ttlin g  tim e  for th e  a tom s to  re tu rn  to  equilib rium  afte r being dis­

tu rb e d  by  the  R F  pu lse  while X2, also called th e  spm -spin  re laxa tion  tim e, is 

th e  decay of th e  R F  signal after it has being created , b o th  these m easures are 

tissue dependen t w hich gives th e  M R I its  ab ility  to  d istingu ish  betw een different 

tissues in  the  b o d y  For exam ple w ater has a longer T 1 tim e w hen com pared to  

fa t because it  does n o t give u p  its  energy as quickly as fa t, sim ilarly  w ater has a 

longer T2 tim e w hen com pared w ith  fa t Using these and  o ther p rop erties  a  host

2 3 1 MRI Physics
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of different im aging pro toco ls have being  devised to  op tim ize im age quality

F igure 2 3 T h e  basics of M R I F igure (a) shows ran d o m  hydrogen atom s, (b) 
shows the  aligned a tom s a fte r th e  in tro d u c tio n  of a  s ta tic  m agnetic  field Bo, 
(c) shows resu lts  after app lied  R F  pulse £?i and (d) p lo ts  th e  T1 an d  T 2 decay 
g raphs

Image derived from U S Department of Health and Human Services, Food and 
Drug Administration, Center for Devices and Radiological Health, Magnetic Res­
onance Working Group

2 3 2 Protocols

Echo p lanar im aging (E P I) is a  fast im aging technique, in troduced  m  th e  la te  

1970s th a t reads m ultip le lines of th e  im age w ith  ju s t one exc ita tion  pulse T h is 

m eth o d  greatly  increased th e  speed of M R I m eaning im ages could be acquired in 

fractions of a  second com pared  to  m inutes w ith  early  M R I

Gradient Echo

G rad ien t Echo images a re  also called brigh t-b lood  im ages due  to  th e  h igh signal 

in tensity  of th e  blood G rad ien t echo im ages are acquired  using e ith er T 1 and  T2 
w eighting or a  com bination  of b o th  T h e  R F  exc ita tion  pulse is applied  once and  

th e  signal is ob ta ined  a fte r a  sh o rt T E , usually  betw een 1-10 ms D ue to  the  low 

T E  tim e, th e  blood does n o t have th e  o p p o rtu n ity  to  flow away from  th e  im aging 

plane, explaining th e  h igh in ten sity  m  th e  blood b u t th is  can  cause heterogeneity
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w ithm  th e  blood-pool especially pronounced along th e  endo-card ium  and th e  

mitral valve TRs axe also short, <  50 m s, which allows for rap id  acquisition  

cm e-M R

Spin Echo

Spin-Echo, o r dark-b lood  sequences, apply  tw o R F  pulses, usually  a t b o th  90° and  

180° T his second pulse, applied  a t  TE/2, reorien ts th e  a tom s I t is th e  resu lting  

echo signal th a t  is used to  constru c t th e  im age T he TR  for sp in  echo sequences 

is m uch h igher th a n  th a t  of g rad ien t echo Spin Echo is therefore  n o t used for 

th e  generation  of cm e-M R sequences because of th is  increased  acquisition  tim e 

Spm -echo does however provide higher con trast-to -no ise  ra tio  (C N R ) betw een th e  

b lood  and  th e  m yocardium  F ast spin-echo sequences, also called  tu rb o  spin-echo, 

R ap id  A cquisition an d  R elaxation  E nhancem ent (R A R E ), increase th e  tem pora l 

reso lu tion  b u t  a t  th e  cost of soft tissue co n trast T y p ica l im ages taken  from  b o th  

spm -echo a n d  gradient-echo im ages can be seen m  figure 2 4

Balanced Sequences

S tead y -s ta te  free precession (SSFP) m ethod  has been  recently  developed where 

th e  co n trast of th e  tissues depends m ore on th e  T 1 and  T 2 co n trast and less 

on th e  flow dynam ics I t  involves rap id  excita tion  using th e  R F  pulse, never 

allowing th e  M R  signal to  com pletely  decay T his m eans th a t  the  im ages can 

have the  h igh  tissue co n trast of T l  and  th e  high b lood tissue  co n trast of T2- 
w eighted acquisition  T here  are a  whole fam ily of S S F P s w hich include B alanced 

F ast F ield Echo (b F F E ), B alanced T urbo  F ield  Echo (b T F E ), F ast Im aging w ith  

S tead y  Precession (T rueF IS P ), C om pletely B alanced S teady  S ta te  (CBASS) and  

B alanced SA R G E  (BA SG )

Recently, m ethods such as Sensitiv ity  E ncoding  (SEN SE) have being  in tro ­

duced to  speed up im aging and  therefore increase th e  reso lu tion  T h is  m ethod  

is based on th e  use of m ultip le  R F  coils an d  receivers O th e r advances include 

P rospective  A cquisition and  C orrE ction  (PA C E) w hich allows free b rea th in g  d u r­

ing th e  exam  by de tec ting  th e  d iaph ragm  and  correc ting  for i ts  m ovem ent M R I 

tagg ing  has been  a  well docum ented  m eth o d  of evaluating  th e  tw ist an d  to rque  

of th e  m yocardium  during  th e  h e a rt-b ea t by non-invasively p lacing  a  grid , known 

as tagging, on an  im age w ith  changing rad io  frequencies
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(a) (b)

Figure 2 4 Shows two sh o rt axis im ages o f th e  h e a r t (a) g rad ien t- 
echo im age, TE=  1 6m s, TR=  3 2ms, flip angle =  60° and  (b) spin- 
echo im age, T l-w e ig h ted  approxim ate  tim es of X £ = 1 0 -2 0 m s and  TR=300- 
600ms Im age (b) used courtesy  of th e  A uckland M R I R esearch G roup 
(h ttp  / /w w w  scm r o rg /e d u c a tio n /a tla s /in tro /)

2 3 3 ECG Gating

A n electrocard iogram  (E C G  \  EK G ) is a recording of th e  h ea rts  electrical pulses 

as it s tim u la tes  th e  m yocard ium  In  im aging, E C G s are used to  estab lish  the  

hearts  R-w ave which is a  high peak  wave, m a  norm al p a tien t and  depending 

on acquisition, com ing betw een th e  Q and  S wave and  ind ica tes th e  s ta r t  of th e  

m yocardium  con trac tion  T h is is used to  trigger th e  im aging a t th e  correct tim e 

m  the  h e a rts  phase E C G  g a ting  suffers in M R I from  a  phenom enon called th e  

magnetohydrodynamics effect w here the  signal gets d is to rted  w hen th e  p a tien t 

en ters th e  s ta tic  m agnetic  field However, th is can be e lim inated  w ith  Vector­

card iogram  (V CG ) w hich uses m ultiple E C G -channels to  accu ra tely  d e tec t th e  

R-wave

2 3 4 Imaging Planes

M R I has th e  advan tage th a t  im ages can be ob ta ined  m  a rb itra ry  planes T h is is 

useful to  o b ta in  th e  b es t o rien ta tio n  for th e  im ages to  b e  viewed, as th e  orien­

ta tio n  of th e  h ea rt changes from  p a tien t to  p a tien t T rad itiona l views m  cardiac 

im aging a re  saggital, w hich divides the  body  in to  left and  rig h t, o rthogonal where 

th e  im ages are taken  from  th e  head to  feet d irection  and  long axis w here th e  im­

ages are o rien ted  to  show th e  best view of the  four cham bers of th e  h e a r t (see



20 CHAPTER 2 BACKGROUND

figure 2 4) In  p rac tice  th e  o rien ta tio n  for th e  evaluation  o f th e  left ventricle is th e  

short-ax is  view as it gives th e  b e s t view of th e  left ventricle cham ber for volum e 

calcu lations T h e  short-ax is is th e  plane perpend icu lar to  cen ter line runn ing  

from  th e  m itra l valve to  th e  apex  of th e  heart

2 3 5 Image Formats

All im ages used in th is  work were encoded in the D IC O M  (D igital Im aging and  

C om m unications in M edicine) form at, taken  along th e  sh o rt axis p lane traversing  

th e  left ventricle cavity  from  th e  base to  th e  apex of th e  h ea rt as shown in  F igure 

22

2 4 Overview of related Image Processing and Analysis 

Techniques

Im age processing first evolved in  the  la te  50s and  early  60s w here sim ple al­

gorithm s were im plem ented  in hardw are  M any of th ese  im plem enta tions were 

derived from signal processing ideas I t  w asn’t  un til th e  m id to  la te  1960’s and  

early  1970s th a t  d ig ita l im age processing becam e an  active a rea  for research A p­

plications such as th e  NASA 1964 p ro jec t aim ed to  rem ove im perfections from  

lu n ar im ages re tu rn ed  on th e  R anger 7 expedition  I t  w as a t th e  early  stages of 

im age processing th a t  ideas in to  m edical im age analysis were first investigated  

and  m any of th e  first p ro jec ts  in  im age processing w ere funded  by th e  N ational 

In s ti tu te  of H ealth  (NIH) as well as the  N ational Science F o undation  (N SF) m  th e  

US O ne of th e  earliest pub lica tions on m edical im age analysis by S trauss e t al 

[153] w here nuclear im ages of th e  h ea rt were ob ta ined  using  a scm tipho tograph ic  

m eth o d  and  th e  co m p u ter sem i-au tom atically  ou tlined  a  region of in terest for th e  

q u an tita tiv e  m easurem ent of th e  ejection fraction

Im age processing is inex tricab le  tied  to  th e  advancem ent of th e  com puter and  

it was in  th e  p as t and  still is th e  increase in  co m p u ta tio n a l pow er th a t  drives th e  

level of com plexity  en tailed  in im age processing techniques As th e  discipline of 

im age processing grew, m ore soph istica ted  algorithm s w ere developed to  achieve 

m ore com plex tasks Today, th e  m ajo r problem s w here im age processing are in  

th e  areas of

•  P ho tog raphy
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•  S ate lite  Im aging

•  Face D etection
i

•  M edical Im aging

•  N a tu ra l Scene A nalysis

T he field o f im age processing includes acquisition  w here th e  m am  challenges 

are th e  reduction  of d is to rtio n  and develop sensors th a t  aim  to  im prove th e  signal- 

to-noise ra tio  (SNR) Im age storage has always s tre tch ed  th e  boundaries of com ­

p u te r  m em ory capacities and  therefore im age com pression in b o th  still an d  video 

d a ta  has also a ttra c te d  researchers P ost processing o f im ages include geom etric 

transfo rm atio n s of th e  ob jec t or coord inate  system , colour corrections for im­

age enhancem ents, d is to rtio n  corrections to  rectify  cam era inaccuracies, noise 

suppression a n d  filtering to  correct sensor inaccuracies, edge detec tion  to  define 

boundaries betw een ob jec ts  in the  im age, segm en ta tion  of an  im age in to  d istinc t 

regions and  p a tte rn  recognition  for th e  localisation  an d  classification of ob jec ts 

from  a  scene

M any o f th ese  o p era tio n s th a t a re  com m on in im age processing an d  im age 

analysis can  also be im plem ented m  m edical im age analysis, b u t  w ith  su b tle  dif­

ferences For instance , problem s such as illum ination  difficulties are replaced by 

m ore acquisition  specific lim ita tions such as coil in ten sity  fall off in M R I M any 

im age processing a n d  com puter vision tasks deal w ith  th e  ex trac tio n  of 3D d a ta  

from  stereo im ages b u t  in m edical im age analysis, very  often w ith  m odern  scan­

ners, the d a ta  can easily be reconstructed  in to  3D a n d  therefore  accu ra te  shape 

recovery an d  track ing  in 3D is the  m a jo r issue P a tte rn  recognition  is also im ple­

m ented  in m edical im ages using prior knowledge of an a tom ica l shape or s tru c tu re

T h e  m am  issues th a t  drive research m  m edical im age analysis are

•  Im age segm enta tion

•  Im age m atch ing  /  reg istra tion

•  M otion track ing

T h e  in p lane  reso lu tion  of m odern scanners are  m  th e  dom ain  of 0 5-2 5mm 
for C T  an d  M R I scanners, therefore, m edical im age analysis is perform ed a t 

m acroscopic or o rgan  level as opposed to  m icroscopic or a tom ic level
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Im age segm en ta tion  deals w ith  th e  accu ra te  d iv iding up  of an  im age or a 

volum e in to  sm aller re levant collection of pixels or voxels In  th e  case of m edical 

im age analysis these sm aller subgroups generally  rep resen t anatom ical features 

such  as tissue, b lood  or bone I t  is th e  m ethods by  w hich these  divisions can  be 

m ade  th a t  is th e  su b jec t of segm entation  S egm entation is a  deceptively diffi­

cu lt problem  to  solve and  m any approaches require m uch user in tervention  such 

as live-wire techniques [164, 46] Im age segm enta tion  has received a  significant 

am o u n t of a tte n tio n  m  th e  p a s t num ber of decades W ith  th e  exponential grow th 

of co m p u ta tio n a l power and  m em ory, m ore com plex algorithm s can be applied 

to  larger am ounts of d a ta  T here  a re  a  num ber of p roposed  techniques w hich can 

be b roadly  classified m  b o tto m -u p  approaches and top-dow n approaches

2 4 1 Bottom-up Approaches

B o tto m -u p  approaches perform  th e  separa tion  norm ally  based on no prior know l­

edge and  divisions a re  m ade based  on the  in tensity  o r gray  level values T h e  m ost 

b asic  form  of b o tto m -u p  or in ten sity  based  segm enta tion  is th resho ld ing  T h re sh ­

old ing  is a  b in a ry  classification problem  w here all elem ents in  an  im age w ith  gray 

level values higher th a n  a  user defined num ber are classified as one ob jec t an d  all 

elem ents w ith  gray level value below are classified as a second object, ad ap tive  

m ethods to  find th e  th resho ld  values have also been  evaluated  [175, 57] O th e r 

m ethods for selecting th resho lds include h istogram  analysis and global an d  lo­

cal th resho ld ing  T hresho ld ing  m ethods are  susceptib le to  noise in low co n trast 

im ages and a re  therefore norm ally  com bined w ith som e m orphological opera to rs 

such as opening and  closing to  rem ove ou tliers O th e r b o tto m  up  approaches 

search  for divisions of ob jec ts  w ith in  th e  im age called edge detec to rs T h is  di­

vision is characterised  by a  difference m  local grayscale values T h is differential 

o p e ra to r  can give in fo rm ation  regard ing  th e  s tren g th  of th e  division re tu rn ed  

by  th e  g rad ien t and  also th e  d irection  re tu rn ed  by  th e  o rien ta tio n  C om m on 

edge de tec to r o p era to rs include C anny  and  Sobel Sim ilar to  th resholding, these 

m ethods are lim ited  in  im ages w ith  low Signal-to-N oise R atio  (SNR) In  these 

circum stances, m ethods such as edge linking [55] an d  non-m axim um  suppression 

[20] m ay be em ployed

M ore advanced m ethods involve p a rtitio n in g  th e  im age in to  a g rea ter num ber 

of final classes, how best to  classify the  ob jects in to  th e  ap p ro p ria te  classes and 

how to  determ ine th e  a p p ro p ria te  num ber of classes m  a  specific im age S ta tis-
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tical p a rtitio n in g  of im ages into higher th a n  two classes is a  very active a rea  of 

research

C lustering  m ethods have evolved and  try  to  m inim ise th e  variance of pixels 

w ith in  clusters w hile m axim ising th e  variance betw een clusters Inclusion in to  

a  certa in  c luster m ay b e  based on gray level value or a  num ber of o th e r m et­

rics C luste r m em bersh ip  m ay be a  h a rd  classification, as is th e  case m  /c-means 

clustering, or a  soft m em bersh ip  classification, as is th e  case w ith  fuzzy c-m eans 

clustering  or E xpecta tion -M ax im isa tion  classification [40, 14] In  the  first case, 

each elem ent is assigned to  a  p a rticu la r  class b u t  on th e  o th e r hand , in a soft 

classification, m em bersh ip  to  a  c luster is given as a  p robab ilis tic  m easurem ent 

M ore advanced c lustering  m ethods use m ultip le  scales [136] to  alleviate over seg­

m en ta tio n  w hereby th e  ob jec t to  be ex trac ted  is d iv ided  in to  m ultiple regions

D elibasis e t al [38] im plem ented a  num ber of s ta n d a rd  b o tto m -u p  techniques 

for evaluating  th e  segm enta tion  of th e  left ventricle cav ity  from  cine M R  se­

quences in a sm all n um ber of norm al and  abnorm al p a tie n ts  T hese included an  

adap tive  region grow ing technique from  a  seeded position , w here the  new voxels 

are added  to  th e  o b jec t o f in te rest if its  value is close to  th e  m ean  of all th e  voxels 

contained m  th e  o b jec t A  k-m eans algorithm , w hich p a rtitio n s  voxels in feature 

space into a  predefined num ber of classes [65] using a  d istance  m etric  of each 

voxel featu re  from  th e  class featu re  average A fuzzy C-m eans algorithm  [118], 

sim ilar to  th e  k-m eans w ith  th e  in tro d u c tio n  of a  fuzzy function  which defines th e  

p robab ility  of m em bersh ip  to  each class A neura l netw ork  based  Self O rganizing 

M aps (SOM s) based on  K ohonens [75] work D elibasis e t a l [38] proved th a t  

k-m eans gave th e  m ost ro b u st resu lts on  average over th e  norm al and abnorm al 

d a ta  w hen com pared  to  m anual segm entations

A m ore m -d ep th  discussion on s ta tis tica l p a r titio n in g  of d a ta  is continued in 

C h ap te r 3 b u t these m ethods m ay suffer m  noisy im ages w here th e re  is a  sig­

nificant varia tion  in gray  scale values In  m edical segm entation , its is often  th e  

ta sk  to  e x trac t a  closed s tru c tu re , however these p a rtitio n in g  algorithm s based 

on in tensity  values do n o t take spa tia l re la tionsh ips in to  consideration  T his is 

why m any researchers have investigated  th e  value o f approaching  th e  problem  

from  a top-dow n angle
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Top-dow n approaches apply  som e in form ation  ab o u t th e  desired resu lts and th en  

tries  to  perfo rm  some sort of fitting  and  deform ation  to  achieve the  final seg­

m en ta tion  an d  aim s to  closer resem ble a cognitive app ro ach  to  segm entation  

T em plate m atch ing  is an  exam ple of top-dow n segm enta tion  in which a  p rede­

fined shape  is fitted  to  the  d a ta  by m eans o f scaling, ro ta tin g  and tran s la tin g  

(see F igure  2 5) T h is m ethod  perform s a  search  of th e  im age using a  predefined 

tem pla te  an d  tries to  fit th e  tem p la te  to  g rad ien ts  in th e  im age which m inim ises 

the  error an d  m axim ises th e  overlay O f course, in th is  case, th e  tem p la te  is a 

rigid s tru c tu re  and  ca n  only b e  used for localisation  o f th e  ob jec t an d  only in 

cases w here th e re  the  tem p la te  does n o t differ g rea tly  from  th e  final ob jec t to  be 

located

2 4 2 Top-down Approaches

(a) (b) (c)

Figure 2 5 Top-dow n approach  to  im age seg m en ta tio n  (a) Shows th e  prior 
m odel to  b e  fitted  to  th e  d a ta  m  (b) giving th e  resu lting  im age shown in  (c) [56]

One significant advancem ent on th is  idea A ctive S hape M odels (ASM s) was 

p roposed by C ootes e t al [34], (see also [168, 48]) w hereby th e  tem p la te  consisted 

of num erous shapes w hich were encoded in to  a  shape m odel Also encoded in to  

th is  m odel w here th e  p rincipal m odes of variab ility  and  th is  was used m  th e  defor­

m ation  process to  m inim ise th e  tem p la te  to  o b jec t erro r T h is is a  very powerful 

idea in m edical im aging and  th e  extension of th is  m eth o d  to  include o th e r p a ram ­

eters in th e  m odel, such as A ctive A ppearance  M odels (AAM s) which in teg ra tes 

tex tu re  in to  th e  m odel [151, 150, 152, 78, 77, 17] A ll m odel-based approaches 

are lim ited  by th e  num ber and  varia tion  of th e  p rio r tem p la tes  used in th e  m odel 

build ing process

A ctive contours o r Snakes which were first p roposed  by K ass e t al [68] are  an 

extension of th is  top-dow n approach  w here a closed con tour or surface is located  m
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th e  im age an d  is th en  deform ed un til the  final segm entation  is achieved N orm ally 

th is  deform ation  is co n s titu ted  from  two separa te  p a rts , th e  first is the  intrinsic 

p roperties of th e  contour in order to  m ain ta in  its shape  th ro u g h  rig id ity  or elas­

tic ity  and th e  second p a r t  of th e  deform ation  energy T h is form  of segm entation  

has been  em ployed m  m edical im age analysis, w here th e  an a tom ica l featu re  m  

question  can  be  encapsu la ted  w ith in  a closed con tour [25, 26, 121, 4, 52, 67, 66] 

Segm entation  is th en  achieved by  evolving th is closed contour using in trinsic 

properties such as cu rv a tu re  and  ex ternal p roperties o b ta in ed  from  the  im age 

C om binations of snakes and  s ta tis tic a l shape  m odels have also being  developed 

[60] w hereby snake evolution is add itionally  guided using a  predefined m odel of 

w h a t the  final shape  should  approx im ate  N on-param etric  snakes were in tro ­

duced m order to  address some of th e  lim itations of trad itio n a l snakes and have 

proved successful in m edical im age analysis [86, 110, 6, 2, 163] T hese  techniques 

a re  discussed m  m ore de ta il in C h ap te r 5

W hile these  approaches have been  shown to  perfo rm  ro b u st segm entation , 

even in noisy im ages, accuracy  of th e  segm enta tion  is bounded  by the in itia l 

shape  T his is p a rticu la rly  th e  case in m edical im aging, w here anatom ical fea­

tu re s  p resen t a  significant varia tion  betw een p a tien ts  none m ore so th an  in  the 

presence of disease

T h ere  a re  m any a lgorithm s w hich try  to  em ploy a  com bination  of b o ttom -up  

and  top-dow n approaches to  segm entation  to  cap tu re  th e  advan tages from b o th  

approaches [16] P rio r know ledge ab o u t a  p a rticu la r  segm en ta tion  task  can be 

incorpora ted  as low level in form ation  such as expected  in ten sity  values, grad ien t 

s tren g th  of o rien ta tio n  or inco rpo ra ted  a t a  higher level such as te x tu re  variation  

over an  ob jec t and  o b jec t shape

W ith  th e  increasing tem p o ra l reso lu tion  available in  m odern  scanners, the  

track ing  of clinical s tru c tu re s  over tim e m ay hold p a rtic u la r  clinical significance 

T h is area  has being investigated  in th e  m yocardium  of th e  h e a r t m ore th a n  m 

any  o ther biological s tru c tu re  (a  excellent reviews of apply ing  im age process­

ing techniques to  left ventricle segm entation  can be found in  [156, 49, 44, 167]) 

D eform ation track ing  o f th e  card iac m uscle over th e  tem p o ra l cycle has being 

investigated  m m any stud ies m  o rder to  m easure th e  regional function  of th e  left 

ventricle (LV) m  an  effort to  isolate the  location, severity  an d  ex ten t of ischemic 
m yocardium  [137] M yocard ium  tw ist and  torque can b e  m easured  w ith  using 

tagged-MRl
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Single b re a th  hold im ages m eans reg istra tion  o f th e  im ages is no t as signifi­

can t a fac to r as m  m ultip le  b rea th  hold im ages R eg istra tio n  m ethods [84] deal 

w ith  th e  reg is tra tio n  of card iac im ages from  m ultip le m odalities R eg istra tion  

techniques were first perform ed m  bram  im ages for th e  re g is tra tio n  of h igher res­

o lu tion  im ages acquired  using M R I or C T  to  im ages of lower resolution such as 

M agneto-E ncephalo-G raphy (M EG ) or E lectro -E ncephalo -G raphy  (EEG ) Reg­

is tra tio n  m card iac  im ages is m ore com plicated due  to  th e  non-rigid and  m ixed 

m otions of the  card iac  m uscle and  th o rax  s tru c tu re s  M uch a tten tio n  is focussed 

on  reg istra tion  of th e  m odalities M R I and  P E T  [85, 139], M R I and  S P E C T  [62] 

o r C T  and P E T  [179, 19]

2 5 Conclusions

T his ch ap te r in troduces th e  key areas associated  w ith  th is  thesis F irstly , an 

overview of th e  h e a r t is given w ith  p a rticu la r em phasis on  anatom ical m orphol­

ogy and card iac dynam ics T h is is followed by som e of th e  m ost com m on CVDs 

and  th e  clinically acquired  m easurem ents used m  the ir diagnosis

In  th e  second p a r t  of th is  chap ter, an  overview of im age acquisition is pro­

vided M R I is th e  chosen m odality  for th is  study, based on th e  outlined advan­

tages over o th e r m odalities T h is is followed w ith  a  fu n d am en ta l background m  

M R I physics and  com m on protocols

Finally, in o rder to  e x tra c t th e  clinically relevant features from  th e  d a ta  pre­

sented  from  th e  im age acquisition , im age processing is p roposed  and  in troduced  

T h e  rem ainder of th e  ch ap te r is devoted to  th e  exp lo ra tion  of how m edical image 

analysis has evolved by classifying the  approaches into tw o ru d im en ta ry  m ethod­

ologies (see review  [44])



Chapter 3

Advanced Data Filtering

Im age sm ooth ing  is a  p rocedure  em ployed m  im age processing to  reduce or sim ­

plify th e  d a ta  presen t in an  im age in  order to  m ake im age understan d in g  m ore 

a tta in ab le  In  a  p rac tica l sense, th is can  be achieved by th e  rem oval of noise or 

red u n d an t signal in tensities from  th e  im age in o rder to  o b ta in  a  m ore ap p ro p ria te  

m odel of the  underly ing  s tru c tu res  w ith in  th e  im age

T h e  m otivation  b eh in d  sm ooth ing  images is therefore  two-fold, firstly  it re­

moves unw anted noise from  th e  im age to  fac ilita te  fu rth e r processing and  secondly 

to  elim inate features irre levan t to  th e  given problem  to  reduce th e  com plexity for 

subsequent processing Specifically in  M RI, increased m agnet s tren g th  m ay re­

solve som ew hat the  associa ted  low SN R, b u t advances to  3T  m agnets are lim ited 

by th e  higher R F  pow er d isposition  in  the  body  [8] N ayak e t al [105] showed in 

2004 how 3T  im aging im proved SN R and  C N R  on  cine sequences b u t no te  signal 

fall-off due to  decreased R F  p en e tra tio n

T here  are two m ain  types of sm oothing, linear and  non-linear B o th  of these  

types have been  extensively stud ied  m  lite ra tu re  [116, 140, 159] W hen  filtering 

im ages, it is m ostly  an  advantageous p ro p erty  of the  sm ooth ing  filter to  sm ooth  

areas of hom ogeneity  while p reserv ing  areas of in te rest in  th e  im age such as 

edges T his is typ ically  achieved by m eans of a  convolution of a  num ber of pixels 

or voxels w ith  a  sm ooth ing  kernel, th is  is also called F in ite  Im pulse R esponse 

(F IR ) filtering L inear filters convolve an  im age p a tch  w ith  a  sm ooth ing  kernel 

th a t  is independent o f th e  d a ta  in th e  image S tan d a rd  linear sm ooth ing  tech ­

niques based on local averaging or G aussian  w eighted sp a tia l o p era to rs reduce 

the  level of noise b u t th is  is achieved a t  the expense of poor featu re  p reservation

27
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Consequently, th e  filtered d a ta  appears b lu rry  as s te p  in tensity  d iscontinu ities 

such as edges a re  a tte n u a te d  N on-linear filters sm oo th  th e  im age b u t try  to  

m ain ta in  edges by sm ooth ing  less Am ong these, th e  m ed ian  filter is th e  sim ­

plest non-linear o p e ra to r to  rem ove im pulse-like noise [142, 116] M ore com plex 

non-linear techniques include s ta tis tic a l approaches based on  no n -p aram etn c  es­

tim a tio n  [140, 160] However, while these m ethods do  a llev iate  som ew hat th e  

shortcom ings associa ted  w ith  linear techniques, they  still p erfo rm  only m odestly  

w hen the  d a ta  is affected by long ta iled  noise d is trib u tio n s To com plem ent 

these filtering approaches, a  num ber of adap tive  techniques have been  proposed 

[140, 53, 33, 124, 28] These m ethods try  to  achieve th e  b est trade-offs betw een 

sm oothing efficiency, featu re  preservation  and  the  g enera tion  of a rte fac ts  K oen- 

derink [73] expressed th e  b lu rring  opera tion  of sm ooth ing  as h ea t conductance or 

diffusion D iffusion-based filtering was originally developed by  P ero n a  and M alik 

[115] m  order to  im plem ent an  op tim al fea tu re  p reserv ing  sm ooth ing  s tra teg y  

M any im plem enta tions follow th e ir original approach  w here th e  m am  aim  was to  

im prove num erical s tab ility  [172] T his was advanced by W eikert [171] w here he 

developed a new sm ooth ing  a lgorithm  by p e rm ittin g  diffusion along th e  d irection 

of edges G en g  e t al [53] ex tended  th is  work to  3D and  evaluated  its  usefulness 

w hen applied to  m edical 2D and  3D da tase ts

In  th is  chap ter, a  perform ance charac terisa tion  is evaluated  on som e advanced 

sm oothing filters b o th  in 2D and 3D T he perform ance of a  filter is evaluated  as 

a  m eans of sim plifying th e  im age before segm entation  Therefore, advantageous 

characteristics are  defined as th e ir  ability  to  fla tten  th e  signal in tensity  values 

w ith in  a  s tru c tu re  w hile m ain ta in ing  a  strong  sep ara tio n  of signal in tensity  values 

betw een s tru c tu res  F irstly , five filters are in troduced  and  assessed, two linear fil­

te rs  (G aussian  an d  Savitzky-G olay) and th ree  non-linear filters (D iffusion-based, 

A daptive and  A nisotropic) are evaluated  to  deta il th e  advan tage o f non-linear 

filters over linear filters Finally, a  rigorous perform ance cha rac terisa tio n  is p e r­

form ed on th e  th ree  non-lm ear filters using hom ogeneity  w ith m  regions and edge 

s tren g th  as th e  ind ica to rs of perform ance

3 1 Linear Methods

T rad itional linear filters such as m ean, average and G aussian  a tte m p t to  rem ove 

noise by rep lacing  pixels by  an  average or w eighted average of its  sp a tia l neigh­

bo u rs  [116] W hile th is  reduces th e  am ount o f noise p resen t in th e  im age, it  also 

has th e  d isadvan tage of rem oving o r b lu rring  th e  edges T h e  Savitzky-G olay [127]
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linear filte r sm oothes th e  im age b u t tries to  preserve higher m om ents, like edges, 

in  th e  im age I t  achieves th is by selecting coefficients th a t  are th e  least squares 

app rox im ation  of a  h igher degree polynom ial

F irstly , let us look a t  th e  basic linear causal sm ooth ing  filter given in equation  

3 1 T h is  is th e  2D case w here each pixel in th e  sm oothed  im age g a t  position  

(x, y) is calcu lated  to  be th e  average or weighted average of th e  original im age / ’s 

sp a tia l neighbours T h e  convolution m atrix  C  is of size N xN  w here N  =  2n + 1  

an d  th e  sum  of its elem ents is norm alised to  un ity

n n

9x,y — E E  (3 1)
j= —n i=—n

T his ty p e  of filtering in troduces a  b lu rring  effect to  th e  im age which is unde­

sirab le  for m ost im age processing applications T h e  basic filter illu stra ted  in 

E q u a tio n  3 1 is linear and  is independen t of th e  d a ta  being  processed Some 

com m on causal filters a re  m ean, G aussian  and Savitzky-G olay

3 11 Gaussian Filter

T h e  G aussian  sm ooth ing  technique is very s tra igh tfo rw ard  and is sim ilar to  th e  

average filter T h e  G aussian  filter differs from  the  average filter m  th a t  it involves 

th e  convolution o f th e  original im age w ith  a  G aussian  m ask  w here th e  s ta n d a rd  

dev ia tion  and th e  size of the  sm ooth ing  kernel selects th e  scale and size of th e  

b lu rrin g  o p era tion  T h e  resu lting  im age SXiV is defined as,

Sx,y =  ir.y  ° Gauss(x, y, c7) (3 2)

w here I x,y is th e  original image, Gauss(x, y, a) rep resen ts th e  G aussian  kernel 

w ith  scale p aram eter a an d  o im plem ents th e  2D convolution opera tion

T h is form  o f sm ooth ing  has th e  advantage o f giving m ore influence to  th e  

pixels o r in close neighbourhood to  th e  elem ent being  replaced, w ith  exponentia lly  

less influence th e  fu rth e r away th e  pixels are from  th e  cen ter of th e  kernel In  2D 

th e  G aussian  m ask is co n stru c ted  using th e  following equation ,

1Gauss(x,y,(r) =  - j= = e  ^  (3 3)
v 27tct2
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w here (a;, y) a re  th e  2D position  of th e  elem ent and  a represen ts th e  diffusive 

p roperties of th e  filter

T h e  s ta n d a rd  b lu rring  opera tion  involving G aussian  filtering a tte m p ts  to  re­

move th e  noise from  th e  im age From  E quatio n  3 3 it  is obvious th a t th e  sm ooth­

ing becom es m ore pronounced  for higher values of th e  scale p a ram ete r b u t a t th e  

sam e tim e we can  notice  a  significant a tte n u a tio n  of th e  op tical signal associated  

w ith  im age boundaries T h is resu lt is highly u ndesirab le  for m any app lications 

including im age segm entation  an d  edge track ing  w here a  precise identification of 

th e  ob jec t b o u n d ary  is required

3 12 Savitzky-Golay Filter

T h e  Savitzky-G olay [127] sm oothing filter was in tro d u ced  for sm ooth ing  one- 

dim ensional ta b u la te d  d a ta  a n d  for com puting  th e  num erical derivatives T he 

sm oothed  p o in ts  are found by replacing each d a ta  p o in t w ith  the value of its  

fitted  polynom ial T hese filters preserve edges far b e tte r  th a n  a  m oving average 

filter b u t th is is achieved a t  th e  expense of n o t rem oving as much noise T he 

process of th e  Savitzky-G olay is to  find th e  coefficients o f th e  polynom ial which 

are linear w ith  respect to  the  d a ta  values Therefore th e  problem  is reduced to  

finding th e  coefficients for fictitious d a ta  and app ly ing  th is  linear filter over th e  

com plete d a ta

Savitzy-G olay can be  used for sm oothing im age d a ta  by ex tending  th e  filter 

to  two dim ensions w ith  a  two dim ensional polynom ial T h e  size of th e  sm ooth ing  

window is given as N x N  w here N  is an  odd num ber, an d  th e  order o f th e  poly­

nom ial to  fit is fc, w here N > k +  1 T h e  general sm oo th ing  causal filter equation  

is given as

n is equal to  gx,y 1S th e  resu lting  sm oothed  d a ta , C  is the  convolution

m atrix  and fxy is th e  original im age d a ta

n n

(3 4)

/ ( e „  Vi) -  aoo + aiQXi +  +  a i i ^  +  «022/? +  +  aQkyÎ (3 5)
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We th en  w an t to  fit a  polynom ial of type  in eq u a tio n  (3 5) to  th e  d a ta  Solving th e  

least squares we can find th e  polynom ial coefficients We s ta r t  w ith  th e  general 

equation

A a = f

w here a  is th e  vector of polynom ial coefficients

a = (aoo aoi aio aok)T 

We can th en  com pute th e  coefficient m a trix  as follows

(.AT A) a = {AT f)

a = (AT A) - 1 (At f )

Due to  th e  least-squares fitting  being linear to  th e  values of th e  d a ta , th e  

coefficients can  be com puted  independen t of d a ta  To achieve th is we can replace 

f w ith  a  u n it vector thus, th e  coefficient m a trix  becom es C = (ATA)~1 AT C  
can th en  be reassem bled back into a  trad itio n a l looking filter of size TV x N

T he resu lting  coefficient m a trix  from a  po lynom ial of o rder 3 and  w ith  a 

m a trix  w indow  size o f 5 (l e til and  u r  is  2) In  order to  sm oo th  th e  im age th e  

first coefficient is used, higher order coefficients a re  used to  calculate derivatives 

Here are th e  values for th e  first coefficients using a  5 x 5 w indow ing and  orders 

of 3 and 4 respectfu lly

/ - 0  0742 0 01142 0 04001 0 01142 - 0  0742 \

0 01142 0 09714 012571 0 09714 0 01142

=3 = 0 03999 012571 0 15428 012571 0 03999

0 01142 0 09714 012571 0 09714 0 01142

- 0  0742 0 01142 0 04001 0 01142 - 0  0742 /

/  0 04163 - 0 0808 0 07836 - 0 0808 0 04163 \

^fc=5 =

- 0  0808 - 0  0196 0 20082 - 0  0196 - 0  0808

0 07836 0 20082 0 44163 0 20082 0 07836

- 0  0808 - 0  0196 0 20082 - 0  0196 - 0  0808

V 0 04163 - 0  0808 0 07836 - 0  0808 0 04163 )

(3 9)

(3 10)
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T he advan tage  Savitzky-G olay filters have over m oving average an d  o ther 

F IR  filters is its ab ility  to  preserve higher m om ents in th e  d a ta  and  th u s  reduce 

sm ooth ing  on  peak  heigh ts I t can be seen m  E quations 3 9 and  3 10 th a t th e  

higher th e  o rder of th e  polynom ial th e  higher m om ents are preserved, th is  leads 

to  less sm ooth ing  over d a ta  peaks and  line w id ths In  m ore hom ogeneous areas 

th e  sm ooth ing  approaches an  average filter over th e  sm ooth ing  kernel

3 2 Non-Linear Filters

N onlinear filters, th e  m ost com m on being th e  m edian  filter, modifies th e  value of 

th e  pixel by some non linear function of th e  pixel value an d  its sp a tia l neighbours 

N onlinear filters a im  to  m ain ta in  th e  edges b u t th e  filtering m ay resu lt in a  loss 

of reso lu tion  by suppressing  fine details T hree  non-linear filter are investigated  

F irs tly  a  non -hnear diffusion based filter based on g rad ien t inform ation , secondly 

an  adap tive  filter w hich uses b o th  g rad ien t and  variance w ith in  a neighbourhood 

as a  m easure of m hom ogeneity  an d  finally an an iso trop ic  filter w hich changes 

th e  shape an d  s tre n g th  of th e  sm ooth ing  kernel based on g rad ien t s tren g th  and  

o rien ta tio n

A m ore useful way to  th in k  of sm oothing is as a  type  of diffusion of intensities 

w ith in  an  im age, first expressed by  K oenderm k [73] D iffusion occurs according 

to  F ick’s Law, given in equation  3 11(115], w here A I  is th e  L aplacian  of the in­

ten sity  value, c(x, y, t) = constant represents th e  conductance  coefficient and It 
is th e  recovered value a t  ite ra tio n  t

It =  cAI (3 11)

W hen th is  eq u a tio n  is im plem ented it ac ts as a  linear filter, sim ilar to  a  G aus­

sian , bu t it  becom es m ore effective when th e  non-linear te rm s are in troduced  in to  

th e  diffusion equation  A review  o f nonlinear diffusion is com piled in [171]

3 2 1 Nonlinear Diffusion Filtering

To alleviate th e  problem s associated  w ith  th e  s ta n d a rd  G aussian  sm ooth ing  tech­

nique, P e ro n a  and  M alik [115] proposed an  elegant sm ooth ing  schem e based on
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non-lm ear diffusion* In  their form ulation  th e  b lu rring  w ould be perform ed w ith in  

hom ogeneous im age regions w ith  no in te rac tio n  betw een ad jacen t or neighbour­

ing regions th a t  share  a  com m on border T h e  non-linear diffusion procedure can  

be w ritten  in te rm s of the  derivative of th e  flux function

0 ( V /)  =  V 7 D ( ||V / | |)  (3 12)

w here 0  is th e  flux function, I  is th e  im age and  D is th e  diffusion function  E qua­

tion  3 12 can  b e  im plem ented in an  ite ra tiv e  m anner and  th e  expression required  

to  im plem ent th e  non-linear diffusion is illu stra ted  in E q u a tio n  3 13

=  4 , ,  + A E  I W rIW rI}1 (3 13)
R=1

w here / £ rep resen ts th e  im age a t  ite ra tio n  t, R defines th e  4-connected neigh­

bourhood , D is th e  diffusion function, V  is th e  g rad ien t o p era to r th a t  has been 

im plem ented as th e  4 connected  nearest-neighbour differences and  A is a  p a ram ­

e te r th a t  takes a  values m  th e  range 0 <  A <  0 25

^1  ̂ x ty — 1 y  I x , y

—  I x +1 ,y “  i r , y  ^  ^

V 3 I x ,y =  I x , y - 1 ~  I x , y  

V 4 I x ,y =  I x , y - 1-1 ~  I x , y

T he diffusion function  D(x) should b e  bounded  betw een 0 and  1 and  should 

have th e  peak  value w hen th e  in p u t x is set to  zero T h is w ould tra n s la te  w ith  

no sm ooth ing  a ro u n d  th e  region b o u n d ary  w here th e  g rad ien t has high values In  

p ractice , a  large num ber of functions can be im plem ented to  sa tisfy  th is  require­

m ent an d  in th e  im p lem en ta tion  detailed  in th is thesis th e  exponen tia l function  

proposed by  P ero n a  an d  M alik [115] is used

* Perona and Malik discuss in their paper the  topic of scale-space This has not been inves­
tigated as it is beyond the  scope of this thesis and a single scale space proved to  be sufficient 
for the applications detailed m th is docum ent
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w here k is the  diffusion p a ram ete r T h e  p a ram ete r k selects th e  sm oothness 

level and  th e  sm ooth ing  effect is m ore noticeable  for high values of k

3 2 2 Adaptive Smoothing

T h e  a lgorithm  for adap tive  sm ooth ing  im plem ented  m  th is evaluation  is ad ap ted  

from  C hen [28] T h e  technique m easures tw o types o f d iscontinuities m  th e  im age, 

local and sp a tia l Local variable d iscontinu ities can d e tec t local in tensity  changes 

b u t is susceptib le  to  errors w here there  is a  lot of noise, so in  add ition  to  th e  lo­

cal d iscontinuities th e  con tex tual in fo rm ation  is also u tilised  given th e  a ttr ib u te s  

of neighboring pixels From  b o th  these m easures a  less am biguous sm ooth ing  

solution is found In  short, th e  local d iscon tinu ities ind ica te  the  deta iled  local 

s tru c tu re s  while th e  con tex tual d iscontinu ities show th e  im p o rtan t features

Local Variable Discontinuities

In  o rder to  m easure th e  local d iscontinu ities, four de tec to rs  are set up  as show n

EHxy = IIx+l,y ~ Ix-l,y\, (3 16)

E Vxy =  l^ x ,y + l  — I x  y —1 11 ( 3  1 7 )

E D xy =  l^ x + l,y - l- l  — / z —l , y - l | i  ( 3  1 8 )

E Cxy =  | - W l y - 1  I x —l ty + l  13

Ix y is th e  in tensity  of th e  pixel a t th e  position  (x,y) 

local d iscontinu ity  m easure Exy as

n  _  E h * v +  E v *y  +  E ° * v  +  E c *v  — 4

T hese  p ixel positions are illu stra ted  below m  F igu re  3 1

Contextual Discontinuities

In  o rder to  m easure th e  con tex tual discontinuities, a  sp a tia l variance is em ployed 

Firstly , a  square kernel is set up around  th e  pixel o f in te rest, Nxy(R) T h e  m ean

(3 19)

W e can th en  define a 

(3 20)
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■  ~ ECxy

EHxy ■

s - nilEDxy

EVxy

Figure  3 1 T he four local d iscon tinu ity  de tec to rs

in tensity  value of all th e  m em bers of th is kernel is calcu lated  for each pixel as 

follows

Hxy(R) =  í p m I%3 (3 21)| Nxy(R)\
From  th e  m ean th e  sp a tia l variance is th en  ca lcu la ted  to  be

T h is value of sigm a is th en  norm alised to  â y betw een  th e  m inim um  and  m ax­

im um  variance m  th e  en tire  im age A tran sfo rm atio n  is th e n  added  in to  a\y to  

alleviate th e  influence of noise and  triv ia l fea tu res I t  is given a  th reshold  value 

of 9a = (0 <  0a <  1) to  lim it th e  degree of con tex tu a l d iscontinu ities

Overall Adaptive Algorithm

Finally, th e  ac tu a l sm ooth ing  algorithm  runs th ro u g h  th e  en tire  im age u p d a tin g  

each pixels in tensity  value 1 ^ ,  w here i  is th e  ite ra tio n  value

r t + l  r t  , _  ' ^ ( h j ) £ N x y ( l ) / { ( x , y ) } V i j ' y i j ( I i  j  ^ x . y )  0 „v
2 x y  ~  * x y  +  V x y -----------^ -------------------------------- — 7 ------------  W  Z ó )

E ^ ) e N xy(l)/{(xMVi3%3

where,
■n — a y t V — rv(£> ( P\

x yVi] =  e x p ( - a $ ( d - i , ( i t ) ,  6>a )), (3 24)

7 *, =  exp{-E^/S)  (3 25)

T h e  variables S and  a determ ine  to  w hat ex ten t th e  local and  con tex tual 

d iscontinuities should  be preserved during  sm ooth ing  If  th e re  are m any contex­

tu a l d iscontinuities m  th e  im age th en  th e  value of r)%3 will have a  large influence 

on  th e  u p d a ted  in ten sity  value O n th e  o th e r h an d , if th e re  are  a lo t of local



36 CHAPTER 3 ADVANCED DATA FILTERING

discontinuities then both and will have the overriding effect, as 7]tJ is used 

for gain control of the adaption

3 2 3 Anisotropic Gaussian Smoothing

A n an iso trop ic  filter based on th e  fam iliar G aussian  m odel is im plem ented in 

order to  p rovide edge enhancing, d irectional sm ooth ing  T he goal is to  develop a 

versatile  sm ooth ing  filter based on a stra igh tfo rw ard  an d  highly adap tab le  form  

T h e  app roach  reduces to  a  convolution w ith  a  scaled an d  shaped  G aussian  m ask, 

w here th e  d e te rm in a tio n  of th e  m ask w eights becom es th e  key step  governing 

th e  perfo rm ance of th e  filter B y  calcu la ting  th e  local grayscale g rad ien t vector 

and  favouring sm ooth ing  along th e  edge over sm ooth ing  across it can achieve an  

effective b o u n d ary  preserving filtering approach , w here regions are hom ogenised 

while edges a re  re ta ined

T h e  w eight wt(pq, Vu) a t each location  in th e  m ask is a  function of th e  local 

g rad ien t vecto r a t  the  cen tre  of th e  m ask and  th e  d istance of th e  cu rren t ne ighbour 

from  th a t  cen tre  T h ere  are a  large num ber of possibilities for th e  form ulation  

of th e  m ask  w eight calculation, based on th e  desired form  for th e  non-linear and  

an iso trop ic  com ponents of the  filter T h e  w eight for some neighbour q is calcu­

la ted  as a  function  of th e  g rad ien t of p o in t p, a t  th e  m ask origin, and th e  d istance 

from th e  orig in  to  the  neighbour q T h e  re la tionsh ip  used in our approach  is given 

in E q u a tio n  3 26, w here pq is th e  vector from  th e  m ask centre po in t p to  som e 

neighbour q, Vu is th e  gradient vector a t  p, A is the  scale p aram eter, con tro lling  

sm ooth ing  s tren g th , an d  /x is th e  shape  p a ram ete r, contro lling  an iso tropy  W hen 

/i equals zero th e  anisotropic te rm  ( P ? ^ u )2(2pi +  ¿¿2) has a  negligible effect and  

th e  filter reduces to  th e  non-lm ear, iso trop ic  form, w here sm oothing decreases 

close to  s tro n g  edges b u t  is applied  equally  in all d irections, a t  any given location  

in th e  im age

wt(fq, Vu) = (3 26)

T h e  im ages m F igures 3 2 and  3 3 illu s tra te  th e  o p era tion  of the  an iso trop ic  

filter As th e  sm ooth ing  s tren g th  and th e  num ber of ite ra tio n s is increased m ore 

noise an d  sm all features are elim inated , b u t  even in ex trem e cases th e  m ost im ­

p o r ta n t edges in  the  im age are well preserved  in b o th  location  and s tren g th
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3 3 Experiments and Results

T h e  aim  of each filter evaluated  in th e  first s tu d y  is to  m easure th e  linear and  

non-lm ear filters ab ility  to  sm oo th  areas of hom ogeneity  while preserving areas 

of in te rest such as edges S m ooth ing  of hom ogeneous areas is m easured using th e  

s ta n d a rd  dev ia tion  while th e  p reservation  of edges is m easured  using th e  s tre n g th  

and  spread  of th e  edge m  th e  filtered  im ages To show th e  advantage of using 

non-lm ear filters, b o th  th e  linear a re  te s ted  on two 2D im ages, see figures 3 2(a) 

an d  3 3(a) T h e  first im age of a  lab o ra to ry  having  a  h igh SN R  (signal-noise-ratio) 

and  high C N R  (contrast-to -noise-ratio ) w ith  a high density  of edges T h e  second 

m edical im age has a  m uch lower SN R  and  C N R  P a ram e te rs  were chosen to  give 

th e  op tim al resu lts  on visual inspection  V isual resu lts  are p resen ted  in F igures 

3 2 and  3 3

To be s ta tis tica lly  relevant [42] the s ta n d a rd  dev ia tion  should be ca lcu lated  

over a large region b u t on th e  o th e r han d  the resu lts  will be affected by sm all 

non-uniform ities such as in tensity  grad ien ts or s tru c tu ra l im age varia tions [53] 

T h is  requ irem ent is qu ite  difficult to  be accom plished if we w ant to develop an  

au to m atic  perform ance characterisa tion  schem e w here user in terven tion  is no t 

required  O ne solution has been advanced by C anny  [20] w hen he decided to  

select th e  th resho ld  pa ram ete rs  for an edge de tec to r based on analysis of th e  cu­

m ulative h istogram  of th e  g rad ien ts However due to  th e  n a tu re  of M R  d a ta se ts  

th is  c rite ria  to  identify  th e  g rad ien ts generated  by noise proved to  be inefficient 

T hus, m  th is  im plem enta tion  an  a lte rn a tiv e  s tra teg y  based  on observation  has 

been developed In  th is  sense, we com puted  th e  s ta n d a rd  deviation  for all d a ta  

po in ts in th e  original d a ta se t in a  7 x 7 neighbourhood  These values were so rted  

w ith  resp ec t to  th e ir  m agn itude  and  from  these  values th e  25% of th e  h ighest val­

ues were elim inated , as th ey  are likely to  belong to  edges and  25% of th e  lowest 

values are also e lim inated  as th ey  are calcu lated  from  areas th a t  have no signifi­

can t tex tu re  (such as im age regions defined by air) T h is s tra teg y  was applied  to  

select th e  seed po in ts th a t  belong to  im age regions defined by a  low SN R  T hen , 

th e  s ta n d a rd  devia tion  for each of th e  filtered  d a ta se ts  is m easured a t th e  sam e 

d a ta  po in t locations (also in a 7 x  7 neighbourhood) T h e  resu lts are p resen ted  m 

Table 3 3

For th e  lab o ra to ry  im age, A dap tive  sm oo th ing  gives th e  best resu lts followed 

by th e  two o th e r non-lm ear filters B o th  linear Savitzky-G olay and  G aussian  

filters have th e  h ighest dev ia tion  after sm ooth ing  In  th e  m edical im age th ere
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(e) (0

F igu re  3 2 Sm oothing resu lts O riginal im age (a) is show n after th e  ap p lica tion  of 
th e  Savitzky-G olay (b), G aussian  (c), D iffusion (d), A daptive (e) and  A niso trop ic  
(f) filters



(e) (f)

F igu re  3 3 S m ooth ing  resu lts O riginal im age (a) is show n after th e  app lica tion  of 
th e  Savitzky-G olay (b), G aussian  (c), Diffusion (d), A dap tive  (e) an d  A nisotropic 
(f) filters

are m ore significant differences w ith  th e  an iso trop ic  and  adap tive  giving th e  best 

re su lts  while th e  gaussian  suffers in  th e  low SN R  im age

T h e  stren g th , sh ift and  sp read  of th e  edge is evaluated  on each o f th e  im ages 

H istogram  p lo ts  across two edges, see th e  w hite  lines across edge fea tu res m  fig­

ures 3 2 and 3 3 In  F igure 3 4, th e  h istogram  p lo ts  show b o th  th e  im age pixels 

and  th e  grad ien t for th e  lab  im age and  m edical im age For th e  lab  im age the 

re su lts  are  sim ilar for all filters w ith  m ore significant differences betw een filters m  

th e  m edical im age Two m easurem ents are taken  from  these  h istogram s w hich in­

d ica te  edge s tren g th  and  sp read  w here edge sp read  is tak en  as th e  Full W id th  H alf 

M axim um  (FW H M ) of th e  g rad ien t p lo t T hese resu lts  are com piled m  T able  3 2



40 CHAPTER 3 ADVANCED DATA FILTERING

Laboratory Image MR Image
O riginal 57 4 277 65

Savitzky-G olay 40 804 61 232
G aussian 40 966 102 08
Diffusion 27 658 69 633
A dap tive 24 241 42 99

A niso tropic 31 905 35 05

Table 3 1 T h e  RM S of th e  s ta n d a rd  deviation  of th e  hom ogeneous areas for th e  
original and  each filtered im age

L ab o ra to ry  Im age 

Edge height Edge w id th

M R  Im age 

Edge height Edge w id th
O riginal 31 2 26 219 2 04

Savitzky-G olay 23 2 5 158 2 48
G aussian 15 4 4 196 2 16
Diffusion 25 2 17 214 2 00
A dap tive 26 2 13 211 2 00

A nisotropic 30 2 17 219 1 9 9

Table 3 2 Shows th e  edge s tren g th  and edge sp read  on th e  g rad ien t im age after 
each filtering W hile Savitzky-G olay and  G aussian  filters spread  th e  edge, the  
o th e r th ree  m ain ta in  and even enhance th e  edge charac teristics

Prom  all th e  experim en ts de tailed  above, i t  is clear th a t  th e  non-linear fil­

te rs  ou tperfo rm  th e  linear filters using th e  c rite ria  specified a t  th e  beginning of 

th e  te st T h e  nex t step  is to  perfo rm  a  m ore rigorous charac terisa tio n  of the 

non-linear filter described above in  m edical im ages T h e  following experim ents 

have been perform ed m 3D using th e  extension of th e  2D to  3D of th e  non-linear 

a lgorithm s described previously

3 3 1 Performance Characterisation of Non-Linear Filters

T h e  first se t of experim ents is conducted  on a  sy n th e tic  d a ta se t th a t  is defined 

by  a  hom ogeneous cubic ob jec t w ith  a  know n grayscale value su rrounded  by 

background pixels To te s t sm ooth ing  a lgorithm s on  th is  artificial d a ta se t is ad ­

vantageous as th e  ground  t ru th  d a ta  is know n and  th e  sm ooth ing  resu lts are easy 

to  evaluate T h e  efficiency of th e  a lgorithm s w hen th e  artificial d a ta se t was cor­

ru p te d  w ith  various types of 3D im age noise is te s ted , including G aussian, Poisson
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Figure  3 4 P ixel in tensities an d  g rad ien t in tensities along w hite  lines from  im ­
ages figure 3 2 and  figure 3 3 (l) and  (m) show th e  pixel in tensities an d  (11) and  
( i v )  show th e  g rad ien t values from  th e  lab  im age and  th e  m edical im age respec­
tively  (a) is th e  original im age, (b) im age a fte r Savitzty-G olay, (c) G aussian , (d) 
A daptive, (e) N onlinear D iffusion an d  (f) A niso trop ic and  G aussian
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Noise
T ype

S D ev 
noise

S D ev 
F I

S D ev 
F2

S D ev 
F3

G raysale
E xpected

G raysale
F I

G raysale
F2

G raysale
F3

G-15 13 72 1 91 1 62 2 06 127 127 128 128
G-30 31 93 7 64 3 03 5 57 127 128 129 133
P-15 13 02 1 07 0 76 1 74 127 139 138 138
P-30 26 97 9 6 7 62 3 69 127 141 141 142
W -15 4 63 1 5 0 21 0 69 127 126 127 127
W -30 8 56 1 71 0 6 1 14 127 125 126 127

Table 3 3 P erform ance charac terisa tio n  resu lts w hen th e  a lgorithm s have been 
applied to  an  artificially  c rea ted  d a ta se t F I , F2, F3 deno te  th e  s tan d a rd  diffu­
sion, adaptive sm ooth ing  and  anisotropic diffusion respectively

and  additive uniform ly d is tr ib u te d  w hite noise [42] S im ilar to  th e  previous ex­

perim ents, as q u a n tita tiv e  values th e  local uniform ity  sam pled  by th e  7 x 7 x 7  

s tan d a rd  devia tion  is eva lu a ted  a t  the  location s itu a ted  a t th e  cen tre  of the  cube 

and  th e  a lte ra tio n  of th e  grayscale value a t  th e  sam e position  w hen com pared 

w ith  th e  expected know n value Some experim ental resu lts  a re  depicted  in Table 

3 3

In  Table 3 3 the  sym bols G-15 and G-30 ind ica te  th a t  th e  syn thetic  d a ta se t 

has been  co rrup ted  w ith  G aussian  noise (s tandard  dev ia tion  15 and  30 grayscale 

values) Sim ilarly  P-15 and  P -30  denote  th e  fact th a t  th e  te s t  d a ta se t has been 

corrup ted  w ith  Poisson noise (d istrib u tio n  15 and 30 grayscale values) and W -15 

and W -30 ind icate  th a t  th e  d a ta se t has been co rrup ted  w ith  un iform ly  d is trib u ted  

w hite noise (m ean dev ia tion  15 and  30 grayscale values) In  o rder to  evaluate 

globally the  noise rem oval efficiency on real d a tase ts  we need  to  define q u an tita ­

tive m easures th a t  ind ica te  th e  overall perform ance of th e  sm oo th ing  algorithm s 

th a t  are evaluated  In  th is  regard , we propose to  evaluate  jo in tly  two q u an tita tiv e  

m easurem ents the  sm oo thness factor th a t  assesses th e  global un ifo rm ity  and  th e  

edge preservation  fac to r th a t  ind icates to  w hat ex ten t th e  s tro n g  edge features 

are re ta ined  and  enhanced  To th is  end, th e  s ta n d a rd  dev ia tion  as a  m easure 

to  evaluate th e  im age local hom ogeneity  was em ployed As before, th e  s tan d a rd  

devia tion  is m easured  in  a  7 x 7 x 7 window over th e  en tire  orig inal im age T hese 

values were so rted  w ith  resp ec t to  the ir m agnitude an d  25% of th e  h ighest values 

were elim inated  as belonging  to  edges m  th e  im age and  25% of th e  lower values 

as having no significant te x tu re  T he s tan d a rd  devia tion  for each of th e  filtered 

im ages is th en  taken  a t  th e  sam e pixel locations To evaluate  a  q u a n tita tiv e  esti­

m ation  we calcu la te  th e  R M S value of th e  s ta n d a rd  dev ia tio n s from  th e  original
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and sm oothed  d a ta se ts  resu lting  a fte r th e  app lica tion  o f th e  sm ooth ing  s tra teg ies 

described  in previous sections (for de ta ils  refer to  T able 3.3).

(a) (b)

  Original
—  3D diffusion 
  3D adaptive
—  3D anisotropic

(c)

Figure 3.5: (a) Slice o f th e  h ea rt M R I d a ta se t. P ixel (b) and  (c) g rad ien t in ten ­
sities are  p lo tted  for th e  highlighted  edge illu s tra ted  in im age (a).

T h e  edge s tre n g th  is ev aluated  by p lo ttin g  th e  in tensity  and  g rad ien t d a ta  

a t selected locations w here edges a re  located , before and  a fte r th e  app lica tion  

o f th e  sm ooth ing  opera tions. Som e graph ica l resu lts  are  dep ic ted  in  F igures 3.5 

to  3.8. T h e  experim en ta l d a ta  illu s tra ted  in  F igures 3.5 to  3.8 ind ica te  th a t  th e  

3D ad ap tiv e  sm ooth ing  and  3D an iso trop ic  sm ooth ing  algorithm s perform  b e t­

te r  th a n  th e  s ta n d a rd  diffusion. T h e  3D ad ap tiv e  sm oo th ing  a lgorithm  re tu rn ed  

b e tte r  resu lts  th a n  th e  3D an iso trop ic  w hen applied  to  h ea rt, b ra in  and  whole 

body  d a ta se ts . T h e  3D an iso trop ic  a lgorithm  perform ed b e tte r  w hen applied  to
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(c)

Figure 3.6: (a) Slice o f th e  M R C P  d a ta se t. P ixel (b) and  g rad ien t in tensities (c) 
are p lo tted  for th e  h ighlighted edge illu stra ted  in im age (a).

M agnetic R esonance C holang iopancreatog raphy  (M R C P) d a ta se t.

T h e  g raphs illu stra ted  in F igures 3.5 and  3.8 d em o n stra te  th e  edge enhance­

m ent a round  im age d a ta  defined by step-like edges. I t  can  be no ticed  th a t  th e  

edge localisation  is significantly  im proved. T h e  effect o f edge stren g th en in g  is 

even m ore pronounced for weaker edges in an  M R I b ra in  sequence (see F igure  

3.7) o r in im age areas affected by a  h igh level o f noise, as is th e  case o f th e  M R C P  

d a ta se t illu stra ted  in F igure  3.6. T h e  perform ance of th e  non-linear sm ooth ing  

algorithm s described  in th is  section  is rem arkab le  in  d iscrim inating  a  tru e  edge 

from  im age noise (see F igu re  3.6c). Also no tice  th e  im proved perform ance of 

th e  ad ap tiv e  3D sm ooth ing  a lgorithm  as com pared  w ith  th e  perform ance o f th e
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(a)

  Original
  3D diffusion
  3D adaptive
  3D anisotropic

(c)

F igu re  3.7: (a) Slice o f th e  b ra in  M R I d a ta se t. P ixel (b) and  g rad ien t in tensities 
(c) are  p lo tted  for th e  h ighlighted  edge in im age (a).

s ta n d a rd  diffusion and  th e  3D aniso trop ic  diffusion a lgorithm s. In  o rder to  em ­

phasise th e  effectiveness of th e  sm ooth ing  stra teg ies  described  in th is  ch ap te r th e  

segm enta tion  resu lting  a fte r th e  app lica tion  o f a  3D c lustering  a lgorithm  [42] to  

th e  original and  sm oothed  d a ta  is p resented. Sam ples o f th e  segm en ta tion  resu lts 

are  dep ic ted  in F igures 3.9 to  3.12.

3.4 Conclusions

In  th is  ch ap te r, th e  perform ance in  sm oo th ing  for a  num ber o f linear and  non­

linear filters was evaluated . In  th e  first p a r t, experim en ts were perform ed in 

o rder to  show  th e  advan tage  o f non-linear filters over linear filters. In  th e  second 

p a rt, th re e  diffusion-based sm oo th ing  schem es w ere im plem ented an d  th e ir  appli-
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10 11 12 13 14 15 16 17 18 19

(b)

—  Original
  3D diffusion
  3D adaptive
  3D anisotropic

F igure 3.8: (a) Slice of th e  whole b o d y  M R I d a ta se t. P ixel (b) and  g rad ien t 
in tensities (c) a re  p lo tted  for th e  h ighlighted  edge illu stra ted  in im age (a).

H eart B rain W hole body M R C P
O rig inal d a ta 4.95 9.21 20.46 18.8
3D diffusion 1.88 6.28 14.47 10.96
3D ad ap tive 1.73 6.16 14.05 10.83
3D A nisotropic 2.08 6.48 16 9.77

Table 3.4: T h e  RM S o f th e  s ta n d a rd  dev ia tions of th e  hom ogeneous areas for th e  
original and  filtered M R I d a ta se ts  used in o u r experim ents.
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Figure  3 9 3D d a ta  clustering resu lts  - h e a r t d a ta se t (F irs t row) O riginal d a ta se t 
(slice 9), an d  corresponding im age re su lted  afte r c lustering  (Second row) 3D d if­
fusion sm oothed  d a ta  (slice 9) and  correspond ing  im age resu lted  a fte r c lustering  
(T h ird  row ) 3D adap tive  sm oothed  d a ta  (slice 9) and  corresponding  im age re ­
su lted  a fte r c lustering  (F o rth  row) 3D an iso trop ic  sm oothed  d a ta  (slice 9) and  
correspond ing  im age resu lting  after c lustering
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F igu re  3 10 3D d a ta  c lustering  resu lts  - b ram  d a ta se t (F irs t row) O riginal 
d a ta se t (slice 4), and corresponding  im age resu lted  a fte r c lustering  (Second 
row) 3D diffusion sm oothed  d a ta  (slice 4) and  correspond ing  im age resu lted  after 
c lustering  (T h ird  row) 3D adap tive  sm oothed  d a ta  (slice 4) an d  corresponding 
im age resu lted  afte r c lustering  (F orth  row) 3D an iso trop ic  sm oothed  d a ta  (slice 
4) and  corresponding im age resu lted  a fte r clustering
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Figure 3 11 3D d a ta  clustering results - M RCP dataset (First row) Original 
datase t (slice 10), and corresponding image resulted after clustering (Second 
row) 3D diffusion smoothed d a ta  (slice 10) and corresponding image resulted after 
clustering (Third row) 3D adaptive sm oothed d a ta  (slice 10) and corresponding 
image resulted after clustering (Forth row) 3D anisotropic smoothed d a ta  (slice 
10) and corresponding image resulted after clustering
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Figure 3 12 3D d a ta  clustering results whole body datase t (First row) Original 
dataset (slice 6), and corresponding image resulted after clustering (Second 
row) 3D diffusion sm oothed d a ta  (slice 6) and corresponding image resulted after 
clustering (Third row) 3D adaptive smoothed d a ta  (slice 6) and corresponding 
image resulted after clustering (Forth row) 3D anisotropic smoothed d a ta  (slice 
6) and corresponding image resulted after clustering
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cation to medical 3D d a ta  was described The m ain interest was focused on M RI 

acquisition modalities as M RI datasets are characteristically defined by a low 

signal to noise ratio  (SNR) Hence, the aim was to  dem onstrate th a t  far superior 

results are achieved if the M RI d ata  is initially filtered m order to  reduce the 

level of image noise and improve the SNR In th is regard, a detailed performance 

characterisation was perform ed for each smoothing operators evaluated on both  

synthetic and real d a ta  (including heart, brain, whole body and M RCP image 

sequences) We conclude th a t  in our experim ents the non-linear diffusion-based 

smoothing technique provided the most efficient approach to  noise reduction, and 

more im portantly this advantage is not achieved at the expense of feature preser­
vation m our experim entation C om putational time was higher for the non-linear 

iterative approaches, bu t as com putational expense is not a lim iting factor in 

our application this param eter was not included in the characterisation The 

experim ental d a ta  presented and discussed in this chapter highlights th e  ability 

of the diffusion-based sm oothing schemes to distinguish the high gradient image 

features from the M RI image acquisition noise
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Chapter 4

Statistical Partitioning of Data 
for LV Localisation and 

Extraction

T he advanced filtering techniques employed m the last chapter alleviates much 

of the work needed in the classification process Preprocessing the d a ta  has re­

moved much of the inherent noise associated w ith M RI therefore the process of 

segmenting the d ata  into the relevant anatom ical features can be achieved using 

d a ta  partitioning technique To this end, it is the aim of th is chapter to use 

cluster analysis to  successfully segment the left ventricle blood pool The left 

ventricle blood pool can then  be autom atically located using shape characteris­

tics before a more heuristic m ethod is employed to segment th e  outer boundary 

of the left ventricle muscle

D ata clustering remains a  very active topic m image processing T he appli­
cation of robust techniques for object identification in images are extensive, none 
more so th an  m the rapidly advancing field of medical imaging [30, 1 IT] Region- 
based m ethods [117] are used to segment the image, this is generally achieved 
w ithout using a p n o r t  inform ation The m ost basic form of region-based seg­

m entation is thresholding Thresholding techniques create a  b inary  image of 

pixels above and below a user defined threshold value Thresholding does not 

take into account the structu re  or connectivity of the points th a t  it segments and  

the threshold value is seldom autom atically determ ined Segm entation results 

can sometimes be filled with holes or ragged edges, which in a crude way can be

53
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elim inated with a com bination of morphological operators [63, 141] In  medical 

imaging, thresholding is not widely used w ithout some advanced preprocessing 

steps due to  its sensitivity to  noise More complex statistical m ethods, like clus­

tering, join pixels of similar intensities to create a segm entation of structures m 

the image

All statistical based classification m ethods [61, 40, 64, 42, 65, 114, 113] aim 

to optimise the results based on an initialisation This initialisation is commonly 

chosen randomly, and as a consequence results are not reproducible, do not take 

advantage of inherent patterns in the d a ta  or may be initialized on outliers 

M ethods for autom atic initialisation of clusters have been proposed m literature 

[3, 97, 71] Al-Daoud and R oberts [3] proposed two m ethods, the first picks points 

random ly in evenly spaced cells across the entire histogram  of the d a ta  and re­

duces the number until the required seeds are found The second m ethod tries to  

optimize the sum of squares of the distances from the cluster centers M itra et al 

[97] describe a rough-set initialisation provided by graph-search m ethods K han 

and Ahm ad [71] assume a norm al distribution over the d a ta  a ttribu tes and divide 

th e  norm al distribution curve into equal percentile cells The seeds are chosen as 

the midpoints of the interval of each of these partitions In Appendix A, a novel 

m ethod developed by the VSG for the initialisation of cluster centers is given 

where the cluster centers axe autom atically detected using histogram  analysis 

and applied to  medical images

In order to ex tract clinical measurements from the sm oothed data , a novel 

m ethod is proposed whereby d ata  is first clustered m order to  segment highly 

differentiated features, i e the blood and myocardium A localisation of the left 
ventricle is detailed Using th is prelim inary step, a  new m ethod for the extrac­

tion of the epi-cardium boundary is developed which is based on a knowledge 

driven search of gradient inform ation W here appropriate gradient inform ation 
is lacking prior knowledge is used to  augm ent the segm entation solution

4 1 Data Clustering

C lustering is a well docum ented image segm entation technique which classifies 

pixels into groups or clusters using a distance criteria to  join d a ta  values to each 

cluster The most basic form of clustering is Hierarchical clustering, off which 

there are two types -  agglomerative and divisive Agglomerative clustering in­
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volves creating n  clusters from the d ata  X t =  {xi, £2 , £ 3  £n} where n  is the 

am ount of elements and X  € The process then  iteratively combines this 

clusters m a branching form ation until there is ju s t one cluster containing all n  

elements T he clusters are joined using a distance criteria, which can be measured 

in different ways, single-linking, complete linking, unweighted average pair and 

weighted average pair Divisive clustering works m the opposite way by creating 

one cluster with n  elements and then dividing the clusters until n  clusters remain 

Successful analysis of bo th  these joining m ethods comes from knowing at which 

iteration in the process will re turn  the optimal am ount of clusters to create a 

meaningful segm entation

The ¿-means, or c-means, clustering m ethod is a well established as a parti­

tioning m ethod [61, 136] Dehbasis et al [38] proved how the k-means algorithm 
performed more robustly m a comparative study w ith an adaptive region growing, 

fuzzy C-means clustering and Kohonen self-organising m aps for the segm entation 

of the left ventricle blood pool from cardiac MRI images This comparison was 

performed on both  norm al and abnormal cases and results were evaluated against 

a manual delineation of the left ventricle cavity

Unlike the Hierarchical m ethods, the fc-means algorithm  requires a user de­

fined set of clusters The process then exchanges the elem ents between clusters 

w ith two aims, to  minimise the variation within each cluster and to maximise 

the variation between clusters T he algorithm has four m am  steps to  find the 

image clusters, this is also illustrated in figure 4 1 T he process term inates when 

no more elements are exchanged between clusters and it can be shown th a t the 

m ethod is always convergent The process is the m inim ization of the following 

equation ‘

3

where j  is the num ber of d a ta  points index and m c(Xj) is the class centroid 

closest to  the d a ta  point

In this thesis, the sm oothed M RI images are then clustered using an 1m-

An adaptive form of clustering is developed whereby the initial user defined num­
ber of clusters is iteratively reduced until a more appropriate num ber of clusters 

is achieved This is based on thresholding the inter and m tra  cluster variability 

Firstly, the image is clustered using an initial guess of 15-20 independent cluster 

centres which is sufficient to  capture all the relevant features The pixels are

(41 )

proved version of the fc-means algorithm proposed by D uda and H art [42, 61]
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Figure 4 1 Two iterations in the /c-means clustering technique on 2D d a ta  The 
objects change with each iteration to  join the cluster whose centre is closest

clustered together using the following strategy This algorithm  has four steps to 

find the image clusters

(%) Initialise the position of th e  means m \ —*■ m k

(n )  Assign each of the ¿-items to  the cluster whose m ean is nearest

( lit)  Recalculate the m ean for the  cluster gaming the new item  and the mean 

for the cluster loosing the sam e item  Recalculation is m ade using the m tra 

cluster variance

(iv) Loop through steps (n )  and (m )  until there are no movements of items

Initialisation of cluster centres can have a significant effect on the results of 

th e  classifier, therefore random  initialisation is avoided Alternatively, seeds may 

be placed at specific regions or equidistantly in th e  image space or in grayscale 
space A better solution to maximise the use of input d a ta  in initialising the 
cluster centres is choosing them  based on histogram  analysis of the d a ta  This 
approach is detailed in Appendix A

In the second phase of the algorithm , each of the k  clusters are sorted and 
compared The num ber of clusters is then optimised by m erging clusters with 
similar a ttribu tes This is repeated until there are no more clusters to be merged 

T he stopping criterion for this joining process is defined using a threshold on the 

in tra  cluster variability and is chosen experim entally Given the high differentia­

tion  m intensity signal between th e  blood pool and the m yocardium, experim ental
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results display robust separation of the blood pool from the myocardium As can 

be seen in Figure 4 2 th e  generality of the m ethod as it is applied to two separate 

protocols, spin-echo and gradient echo with satisfactory results

(c) (d)

Figure 4 2 Shows four images, a gradient-echo images before (a) and after clus­
tering (b), and a spin-echo image before (c) and after clustering (d)

4 1 1  Automatic Detection of Iv cavity

The image has now been segmented into separate clustered regions The next 
step is to  autom atically  detect which of these clusters represents the Iv cavity 

on the first slice T he Iv cavity is located using shape descriptors only and not 
using the gray scale values which allows for application of this m ethod in various 

MRI imaging protocols The images are short axis, therefore we assume th a t 

the Iv cavity approxim ates a circular shape and th a t the Iv feature is present 

in successive slices Approxim ation to a circle is calculated as the error of the
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fitted areas of a least squares approxim ation to  a circle T he approxim ation is 

obtained my minimising the error of the areas of the fitted circle and the areas of 

the associated circles a t each d a ta  point (see m athem atical background Appendix 

C l )  It is also assumed th a t the Iv is not located on the periphery of the image

The volume of the left ventricle is then extracted using two criteria

( i )  Overlapping area of the regions contained m successive slices

(n )  Gray scale value of the regions under investigation

The regions cannot be connected using ju st gray scale values alone due to the 

variation in the intensity values through the volume caused, to  some extent, by 

coil intensity falloff The Iv regions are then connected in 3D and the volumes are 

then rendered for visualisation purposes (see Figure 4 8) The ejection fraction 

is calculated using the systolic and diastolic volumes The ejection fraction is 

defined as “the proportion, or fraction, of blood pum ped out of your heart w ith 
each b ea t” [104] and can be calculated using th e  equation

^ e n d o i^ D )  ~  V e n d o rs )  / a

E F = — w £ ) —  ( 4 2 )

where Vend0 is the volume of the inner walls of the heart, Vend0(tD ) =  maxtW endoit)] 

is the end-diastolic volume and Vendo{ts) — ™^t[Vendo(i)] is the end-systolic vol­

ume
The corresponding region is found by maximising the result of a cost func­

tion where the overlapping and the mean gray-scale value of the areas under 

investigation are used as param eters
This works well on basal and mid-cavity slices, the blood pool is large and 

relatively homogeneous The apical region is more challenging due to  the increase
m trabeculae camas and papillary muscles, the low volumes of blood present,
partia l volummg along the 2  axis and blurring due to movement of the diaphragm  
The extension of this segm entation algorithm to 3D is appropriate as the higher 
level of knowledge leads to improved segm entation results plus it eliminates the 
need to  m atch relevant clusters through the volume using overlapping criterion

4 2 Extension to 3D

In order to improve the robustness of the segm entation technique it is favorable 

to  extend the clustering to th e  th ird  dimension The extension means th a t the  

blood pool is clustered as a whole and therefore it is more robust in areas where
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Pixel Index

Figure 4 3 T he top three images from left to  right show the original short axis 
image, after sm oothing and after clustering The graph plots the intensity values 
for the white line running through the original image

artifacts such as the papillary muscles are present This is particularly the case 

around the apical regions of the left ventricle cavity

The end-systole and end-diastole volumes are sm oothed m 3D, as in the pre­
vious chapter Once smoothed they are then clustered using the 3D /¡¡-means 

technique using the volume d a ta  T he left-ventricle can be m anually picked or 

autom atically using the volumetric shape properties of the cavity, as developed 

m the following section

4 2 1 Automatic Detection of Iv cavity using 3D information

In  order to locate the left-ventricle m the image a num ber of shape descriptors 
were used T he images are short axis so therefore we use the anatom ical knowl­
edge th a t the Iv cavity approxim ates a circular shape and th a t the Iv feature is 

continuous in successive slices In the 2D scenario, approxim ation to  a circle is 

calculated as the error between the shape and the least squares approxim ation to 

i t ’s circle Also, a sm ooth interpolation of the curves is achieved using a splme
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fitting

In  the 3D case, the left ventricle cavity is located using its shape description 

In this case it is known th a t on the short axis the left ventricle approxim ates an 

ellipsoid in shape, although it is flat a t one end, perpendicular to  its m ajor axis 

T he approxim ation to  an ellipsoid param eters (radii and centres) is calculated 

using the first three principal axes of the PCA of the boundary d a ta  points 

The error is then calculated between the shape and the fitted ellipsoid using 

the sum m ation of the normalised point deviations w ith respect to the calculated 

ellipsoid radii (see m athem atical background in Appendix C 2)

4 3 Segmentation of epi-cardium border

Once the left ventricle blood pool has been successfully segmented, the outside of 

the myocardium or epi-cardium  boundary presents a  more challenging problem 

P arts  of the outer wall of the left ventricle displays low gradient inform ation and 

low differentiation between neighbouring tissues, as m Figure 4 4

Figure 4 4 Illustrating the low grayscale differentiation between the outer wall 
of the myocardium and o ther organs m the body, before (top row) and after 
(bottom  row) d a ta  partition ing

This is especially true in areas close to the lungs and liver Therefore clus­

tering  techniques are no t applicable because the differentiation between tissues 

is so low and edge detection will only have limited success when used w ithout
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supervision or a more involved approach Noble et al [107] a ttem p t to  change 

the coordinate system to polar coordinates followed by a constrained snake seg­

m entation to  capture the epi-cardium boundary In order to  address these issues, 
a novel heuristic approach is developed which uses all the available information 

m a supervised way and where inform ation does not exist or is not found, the 

segm entation is augmented using prior inform ation of the epi-cardium  boundary 

shape

Calculation of the wall-thickness and wall-thickemng is dependent on the ac­

curate segm entation of th e  epi-cardium boundary The m am  problem associated 

w ith the segm entation is the low contrast-to-signal ratio  along the epi-cardial 

boundary in particular on the inferior and m ferolateral side where the muscle 

becomes indistinguishable from the lung To this end two novel approaches are 

explained and have been evaluated, bo th  a robust approxim ation for the epi- 

cardium  thickness to  determ ine strong features of the epi-cardium  present in the 

image W here strong inform ation is lacking, the algorithm s aim to approxim ate 

the epi-cardium  boundary using in the first case an arc, centered a t the center of 

gravity of the blood pool and connecting two known segments of the epi-cardium  

boundary In the second approach, where no information is present, the algorithm  

uses inform ation obtained from a probabilistic model consisting of m anually seg­

mented images to  complete the epi-cardium  boundary

4 3 1 First Approach Robust-Arc epi-cardium segmentation

The robust arc approxim ation technique works on the 2D slice taken from the 

previously segmented blood pool volume F irstly  the centre of gravity of the left 

ventricle blood pool is located The least squares approxim ation for th e  radius 

of the endo-cardium  border is calculated on each slice The original image is 
re-clustered again around a smaller region of interest w ith a smaller predefined 
num ber of clusters in order to find the right ventricle blood pool T he right ven­
tricle blood pool is found to  be the largest cluster close to  the left ventricle cavity 
w ith similar intensity a ttribu tes to  the left ventricle blood pool The interven­
tricular septum  between the two ventricles is measured and this m easurem ent 

gives an approxim ate thickness for the m yocardium around the left ventricle

A Canny edge-detection [20] is performed on the original image slice A ID 

radial search is carried ou t from the centre of gravity on the gradient image and
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Figure 4 5 From left to right Original unseen image, calculated edges, robust 
segments of epi-cardium and the complete segm entation using arcs to  complete 
the epi-cardial boundary

image edge points are connected together into edge segments using an Euclidean 

distance criteria Spurious segments are elim inated by length, orientation away 

from the endo-cardium border and using the approxim ation for the myocardium 

from the  septum

In between these segments are parts  of the epi-cardium border th a t do not 

have any gradient Therefore there is no other inform ation m the image to  help 

find the correct path  between these segments In  this case the end points of the 

robust segments are joined w ith an arc, pivoted around the center of gravity of 

the endo-cardium Results can be seen in figure 4 5

T he procedure for segmenting the epi-cardium  can be followed in the diagram  

illustrated in Figure 4 6, Stage II The position of the Iv cavity is already known 

m each slice as explained in the previous section In order to determ ine the epi- 

cardium  border a region of interest is defined around the Iv cavity Two copies of 

th is region of interest are taken The first image Im a g e  1 is used to  find a value 
for the approxim ate radius of the myocardium and the second image Im a g e 2 is 
used to  find real borders around the myocardium The two are combined to  find 
the true value of the epi-cardium around the Iv

Im a g e  1 is again clustered using a  predefined low num ber of clusters around 
the region of interest A low num ber of clusters is chosen because of the scarcity of 

im portan t features around the Iv cavity Anatomically, the closest blood pocket 
to  th e  Iv cavity is the right ventricle cavity, it is also assumed th a t the thickness 

of the myocardium will not change drastically over the entire circumference The 

thickness of the wall, or septum , between the two blood pockets can give a reli­

able estim ate for the thickness of the rest of the myocardium
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Figure 4 6 A schematic representation of the two phases involved in the segmen­
ta tion  of the endo- and epi- cardium  border Stage I  shows the preprocessing and 
segm entation processes, the autom atic detection of the Iv cavity and the connec­
tion of the cavity through the volume Stage I I  shows the m ethod for segmenting 
the epi-cardium  border in each image
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Im a g e 2 is zoomed using an area averaging technique around the area of inter­

est T he image is then segmented using a thresholded edge-based algorithm  [20] 

The zooming operation is applied to  increase the edge separation The largest 

connected segments w ithin certain bounds of the estim ated thickness found from 

Im a g e  1 are taken as potential border segments There is an angular restraint 

placed on the transition  of these segments around the epi-cardium  to eliminate 

stepping into the endo-cardium border or stepping out to  other organs

A closed natu ra l cubic spline is fitted around the points on the epi-cardium 

[144, 12], for the formulation see section C 3 The spline is used to  close the 
epi-cardium contour by connecting all the points on the curve m a sm ooth way 

Splines axe piece-wise polynomials with the pieces sm oothly joined together The 

joining points of the polynomial pieces are called control points which do not have 
to  be evenly spaced Each segment of a spline is a polynomial of degree n, for 

this im plem entation n  was chosen to be n  — 3 More details on the m athem atical 

formulation of the natura l cubic spline can be found in Appendix C 3

4 3 2 Second Approach Model assisted Epi-cardium segmentation

In order to  incorporate more realistic approximations for missing data, a new 

m ethod is developed which uses a probabilistic model of previously segmented 

heart images Once each slice is taken from the volume the centre of gravity 

of the left ventricle blood pool is located The least squares approxim ation for 

the radius of the endo-cardium border is calculated By re-clustering the orig­

inal image again around a smaller region of interest w ith a predefined number 
of clusters in order to find the right ventricle blood pool The right ventricle 

blood pool is found to be the largest cluster close to  the left ventricle cavity w ith 

similar intensity a ttribu tes to  the left ventricle blood pool The myocardium wall 
(septum ) between the two ventricles is measured and this m easurement gives an 
approxim ate thickness for the myocardium around the left ventricle

An edge-detection is perform ed on the original image slice A ID  radial search 

is carried out from the centre of gravity on the gradient image and image edge
i

points are connected together into edge segments using a Euclidean distance cri­

terion Spurious segments are elim inated by length, by orientation away from the 

endo-cardium border and using the approxim ation for the myocardium from the 

septum



4 3 SEGMENTATION OF EPI-CARDIUM BORDER 65

A database of contour points is created based on manual segm entations of the 

endo and epi cardium  boundaries This database contained 180 2D contours w ith 

the associated radii calculated using the least squares approxim ation based on 

minimising the error of the areas (detailed m AppendixC 1) W here epi-cardial 

boundary is not defined by th e  edge information, the boundary is then  completed 

from a generic database of hand-segm ented shapes The database is searched us­
ing the ratio  of epi-cardium and endo-cardium radii The searching uses the two 

end-points of the robustly located segment from the gradient image Prior to  

searching, each contour is scaled w ith respect to  radii param eters extracted from 

the model Each scaled contour m the database is searched to  minimise the Eu­

clidean distance from these endpoints to  their nearest corresponding points on 

the contour The contour th a t minimises this error is chosen The appropriate 

section is extracted from th e  contour and joined to  the edge defined boundary 

using a natural closed splme (see figure 4 7)

Figure 4 7 From left to  right Original unseen image, calculated edges, robust 
segments of epi-cardium and the complete segmentation using an a p n o n  knowl­
edge database

In figure 4 7(b) the segment points obtained from gradient image figure 4 7(a) 

are illustrated In between these segments are parts of the epi-cardium  border 
th a t do not have any gradient Therefore there is no other inform ation m the 
image to  help find the correct p a th  between these segments In  th is case a p n o n  

knowledge about the shape of the epi-cardium  border, obtained from previously 
hand-segmented can be used to  join the segments In this way we introduce a 

form of supervision, and by inferring previously draw n contours we hope to  m ain­

tain  continuity of the shape Because the contours contain the original segments 

while the m anually drawn contours are only inferred where there is no informa­

tion to be rendered from the image, it is believed th a t th is approach generates 

more appropriate results th an  the previous technique, when the model provides a
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good approxim ation to  the object being segmented W hen complete models are 

inferred onto the image there is a danger th a t details m ay be lost

4 4 Results

In order to  assess the perform ance of the autom atic segm entation, results were 

compared against those obtained by m anually segmenting volume image sequences 

for the endo- and epi-cardium  borders The manual segm entation was assisted by 

an experienced cardiologist* Each volume includes 5-12 images containing the 

Iv, transversm g the lenght of the cavity and includes the papillary muscles The 

autom atic segmentation results can be seen m figure 4 12 The m ethod shows 

good visual results for bright blood images 4 12(a)-(f) and dark blood images 

4 12(g)-(i) The errors are calculated on volumes, endo and epi contours areas, 

myocardium thickness and finally point correspondence

Table 4 1 shows the signed average and root m ean square error of the ejec­

tion fraction from eight volumes from the sequence T he ejection fractions were 

worked out using pairs of volumes, not necessarily the end-systole and end- 

diastole and compared w ith the ejection fraction calculated from the  manually 

segmented volumes We can see m Table 4 1 low errors between the m anual and 

autom atic results

The errors for the m anually segmented endo-cardium area and th e  au tom at­

ically traced area are given in Table 4 1 The signed average and root mean 

square errors are shown Errors around the apex have a significant effect because 

the errors are described m proportion to the overall area calculated from the 

m anual segmentation Linear regression analysis was also performed m Figure 

4 9(a) and high correlation value of r  — 0 98 is obtained Reproducibility is as­

sessed using the Bland-A ltm an plot, Figure 4 9(b) [15] From  the B land-A ltm an 
plot we can see th a t there is a tendency to  underestim ate the areas of the endo­
cardium  boundary, this is due to  the inclusion of some endo-endocardium  fat in 
the m anual segm entation and perhaps due slightly to  partia l voluming effects 

Also evident from the graphs is the accurate perform ance of this procedure in 
both  systolic and diastolic phases, represented by the lack of skew m the plots 
as the areas increase Note th a t the graphs are relatively zoomed to  show the 

detailed distribution and the plots are graphed in units of ram 2

*The validation was performed by Dr John Murray, Cardiologist, M ater Misericordlae 
Hospital, Dublin, Ireland
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T he epi-cardium area was assessed using the linear regression and Bland- 

A ltm an plots It shows a slightly lower percentage error for bo th  the average 

signed and the rms errors This can be a ttribu ted  to  the increased overall area 

of the m anually traced contours Linear analysis, Figure 4 10(a), gives a value of 

r  =  0 94 while Figure 4 10(b) gives a similar regression value of r — 0 95 which is 

slightly lower than  th a t produced for the endo-cardium This lower correlation is 

a result of low contrast on the lateral side of the heart making the segm entation 

of the epi-cardium border difficult In  this case our algorithm  connects two end­

points of robust segments, how these segments are connected can incorporate a 

p r io n  inform ation [83] M anual segm entation is also problem atic in areas of low 

gradient and is dependent on the users own in terpretation of ‘what looks appro­

p ria te ’ Reproducibility was again assessed w ith the B land-A ltm an plot, figure 

4 10(b) Again, bo th  m ethods produced similar results, bo th  bands of two times 
the standard  deviation are sim ilar and not as tight as those achieved m the blood 

pool segm entation There is not a significant difference between both  m ethods as 

robust gradient information is used when available and both  approaches are only 

applied in areas th a t are lacking gradient inform ation Both plots show no bias 

from the zero error or skew in the d a ta  Although, the second approach which 

uses a prior database of contours does produce a larger num ber of outliers for the 

smaller apical regions where the outer wall may be undefined and approxim ation 

is difficult Using this approach, more appropriate segm entations are achieved 

when compared to  full m anual segm entations However, these m ethods still have 

the lim itation th a t they are only working on slice d a ta  and not incorporating 

volume or tem poral inform ation

Table 4 1 Mean Percentage Errors ±  1SD for manual versus autom atic

Average Signed Error RMS Error

Ejection Fraction 1 593 ±  0 82 3 176

Endocardium  Areas -3 623 ±  5 14 4 765

Epicardium  Areas -0 556 ±  4 29 3 75

Table 4 2 gives the Euclidean point to curve error in m m ’s for all images 
through a heart sequence It  gives the minimum and maximum distance between 

the manual and autom atic segm entation contours T he average distance, s tan ­

dard deviation (SD) and root-m ean-square (RMS) are also given T he results 

for the epi-cardium  boundary point to  curve errors are shown m Table 4 3 and 

illustrated in figure 4 11
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Figure 4 8 The rendered images of (a) the end-diastole Iv cavity, (b) th e  end- 
systole Iv cavity, (c) and (d) the diastolic myocardium These volumes are con­
structed  from the true segm entation of the images excluding fa t and papillary 
muscles

;
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Figure 4 9 Figures (a )-(b )  shows scatterline plot of manual segm entation against 
the autom atic segm entation and shows Bland-A ltm an plot for the left ventricle 
blood pool areas

Figure 4 10 (a) illustrates the results using the Robust arc technique and (b)
shows the results using the P rior model technique
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Table 4 2 Point to curve Errors between manual and com puter segmentation for 
clustering technique for the endo-cardium boundary segm entation(m m )

Endo-cardium

M ethod Average (mm) S td  Dev (mm) R M S  (mm)

3D k-means"Clustering 0 69 0 88 1 12

Table 4 3 Point to  curve Errors between manual and autom atic segm entation 
for th e  epi-cardium  boundary(m m ) segm entation

Æpi-cardium

M ethod Average (mm) S D (mm) R M S  (mm)

Robust Arc 131 186 2 14

Prior Model 1 26 1 27 1 94

50 -

g 30OJ3V
^  20  -

?
ni
f ' 
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1 5  2 2 5 3 3 5
P o in t- to -C u rv e  E r ro r  (mm)

Figure 4 11 P lo t shows the error frequency using a  point to  curve error metric
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4 5 Conclusion

A fully autom atic detection and segm entation of the left ventricle myocardium 

has been detailed in th is chapter Edge preserving d a ta  filtering is performed and 

followed by an unsupervised clustering to successfully segment the left ventricle 

cavity from short axis M R images of the heart Once the cavity volume is ex­

tracted  the ejection fraction can be calculated

In the second p art of the chapter the epi-cardium  border is successfully seg­

mented using an edge-based technique The thickness of the wall is approxim ated 

by measuring the thickness of the interventricular septum  The interventricular 

septum  is an anatom ically sound feature of the heart and because it is surrounded 
by blood on both  sides it can be robustly segmented This measurement is then 

used as an initial estim ate for the thickness of the complete wall A gradient 

image of the area around the Iv is com puted and the use of the approxim ate wall 

thickness, gradient points potentially belonging to  the epi-cardium  border are se­

lected If there are no viable gradients found on the epi-cardium  border then  the 

outer wall is estim ated using the approxim ation found using the interventricular 

septum

Statistical partitioning of the images allows the extraction of the Iv blood 

pool w ithout the use of prior constraints on shape Abnorm alities in the image 

d a ta  can indicate disease Model based approaches approxim ate to  the closest 

plausible instance shape from the training set Point D istribution Model (PDM), 

bu t this may not be sufficiently accurate Also model based approaches th a t  in­

corporate texture are limited in their use when the tex ture in the object images 
varies significantly from those contained in the model training set The m ethod 
proposed in this chapter presents a robust, fully autom ated m ethod to identify 

the endo-cardium  and epi-cardium borders th a t does not rely on a priori knowl­
edge nor does it use shape constraints to find the left ventricle cavity

Left ventricle segm entation is prim arily m otivated by the need to  clinically 

diagnose a feature of the heart with potential problems Models th a t  approxim ate 
left ventricular boundaries try  to fit variations of boundaries th a t  have already 

been segmented T he left ventricle is anatom ically variant, the scanners are in­

consistent and the variations of pathologies found in patients is vast To build a 

model to  accom m odate such diversity would be an immense task  Our algorithm  

makes no approxim ations based on observed d a ta  b u t instead produces a true
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evaluation of th e  heart structure by segmenting the true borders m the image 

I t  should be remembered th a t the aim is not to  segment hearts th a t are p a r t of 

a model b u t to  assist the cardiologist in the prognosis by delineating the true 

anatom ical features present m  th e  image Therefore, it  is th e  aim of this thesis 

to  approach the problem from a bottom -up strategy in as far as possible Image 

segm entation can be augm ented using prior inform ation in the case where no 

image inform ation is present and also to  supervise th e  segm entation from spilling 

into other anatom ical structures

Evaluating th e  endo-cardium  and epi-cardium  borders using this approach 

could provide a more appropriate technique for flagging problems like wall th in­

ning and low ejection fraction

However, while this m ethod provides good results in well imaged d a ta  and has 

been successful in  segmenting the left ventricle blood pool in 2D and 3D d a ta  and, 

it is the aim of th is thesis to  increase the robustness of the segm entation approach 

by incorporating the entire d a ta  presented from the patient scan and remove the 

heuristic approach by creating a  well defined m athem atical framework The aim 

of this approach is to create a more involved technique which segments both 

m yocardium boundaries as opposed to  two separate steps and also facilitate the 

incorporation of tem poral inform ation The investigation of evolving surfaces, 

their param eterisation, term ination and incorporating advanced information is 

performed in the  next chapter
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(d) (e) (f)

(g) (h) (0

Figure 4 12 The left ventricle contours obtained using our automatic segmen­
tation method in short axis cardiac MR images Figures (a)-(f) show images 
taken at both the end-diastolic phase and end-systolic phase of a gradient-echo 
sequence Figures (g)-(i) show images from a spin-echo study

Michael Lynch, Ovidiu Ghita and Paul F Whelan (2004), Com parison o f 2D  
and 3D clustering on Short A xis M agnetic R esonance Im ages o f the left 
ventricle, CARS 2004 Computer Assisted Radiology and Surgery, June 23 - 26, 
2004 Chicago, USA
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and Image Processing Conference 2003, Coleraine, Northern Ireland



Chapter 5

Boundary-Based and Model 
Driven Segmentation in 

Multidimensional Data

In  this chapter, a review of current boundary based and model based segm enta­

tion schemes is detailed and their application to  medical image analysis P artic ­

ular emphasis is placed on cardiac left ventricle segmentation in M RI [156, 117, 

30, 48] In Section 5 6 the level set framework is described and novel approaches 
to  segm entation with level sets is introduced, in particular the extension to 4D 

d a ta  analysis

M any boundary based segm entation (also called Active Contours) m ethods 
for object segmentation have been developed for use in medical image object 

ex traction  Generally, the aim of boundary based segm entation m ethods is to  

deform a closed curve using bo th  intrinsic properties of the curve and image 
based inform ation to capture the target object [158] This form of segm entation 

has m any advantages over statistical intensity based partitioning algorithm s as 
boundary  shape is one of the key factors in the evolution of the contours One of 
the m ost popular forms of boundary based segm entations are snakes, which were 
first introduced by Kass et al [68] From their introduction snakes have received 

a large am ount of interest from the research community and much work has been 

done on derivations of the original snake Further work m controlling the snakes 

propagation was achieved using param etrically deformable models and also by the  

in troduction of a p n o n  model driven segm entation with Active Shape and Active

75
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Appearance Models A Eulerian formulation of the active contour is introduced 

by means of a level set algorithm  The advantages of this formulation include 

a  more robust m athem atical theory, capability to follow topological changes m 

shape, and other com putational advantages like curvature m easurem ent Work 

on the level set formulation for segm entation will constitu te the m am  p art of 

th is chapter A num ber of key issues m the level set are then  addressed which 

include the choice of stopping term , the introduction of a prio ri information, the 

coupling of two level sets for the extraction of both the epi- and endo-cardium  

boundary and finally the introduction of an Expectation-M axim isation extension 

of the level-set framework to  fully segment d a ta  m 4D (3D +  t)

5 1 Active-Contours

Firstly, a  2D simple contour can be defined as v(s) =  (x(.s') y (s)]T for s G [0,1] 

T he main idea is to  deform this contour smoothly to  extract certain features in 

an image [92] In a  segm entation scheme th is usually applies to extracting  an 

area of homogeneous signal intensity, this m ay represent an object in a  medical 

image such as the liver organ or a pool of blood Therefore the deform ation of 

the curve should flow globally outwards or inwards b u t should be inhibited from 

crossing areas of high frequency in the image data

In this sense, the energy used to  deform the boundary is a combination of a 

smoothing term , relating to  the intrinsic properties of the boundary curve v(s), 

and an image dependent term , obtained directly from the underlying image d a ta

E — Emt +  Eext (5  1)

5 1 1  Internal Energy

The internal energy aims to  sm ooth the deforming contour, as m  most cases in the 
segm entation of natural objects the boundary is defined as relatively sm ooth To 

th is end, the internal energy uses a com bination of first derivative to  determ ine 
tension or elasticity of the local contour and second order differential in order 

to  calculate the bending of th e  local contour The resulting values present high 

energy levels m irregular contours w ith shape corners and low energy in contours 

with a sm ooth transition between evenly separated points If the contour was to
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deform with the deformation energy obtained solely from the internal energies, 

th e  contour would achieve a perfect circle

In Equation 5 2, a  and f3 are weighting factors In practice p  may be set to 

zero, bo th  to  reduce the complexity of the derivation of the curve evolution to  a 

geometric space and also because curve sm oothing can be obtained w ith th e  first 

régularisation term  alone [22]

5 1 2  External Energy

T he external energy uses the image d a ta  to  stop the deformation a t the desired 

position Stopping criterion may involve image d a ta  intensity, free end of bound­

ary term ination, corners or in this case high frequency or high gradient d a ta  The 

resulting energy should re tu rn  low values on high gradient points and high values 

on low gradient points

image intensity To suppress the influence of noise on the deform ation the data  

m ay be smoothed using a Gaussian filter, thus becoming V [G a * /(v (s )]  where a  

param eter controls the variance of the Gaussian

Therefore, the active contour can be described as an energy minim isation 

problem  th a t seeks to  deform a closed contour to  rest on high image gradients 

while m aintaining a sm ooth transition  between points An inflation term  may be 
appended to  the energy term s, th is can take the value of ±1  along the normal 
direction to  the curve [31] This inflation term  grows or shrinks the contour from 
its initial position to  aid with the initialisation

T he m ain advantages of active contours are their extension to  3D, (where 

they  are referred to as active surfaces), their ability to capture a closed structure 

and the users ability to  select different features as stopping term s In medical 

imaging, m any of the natural anatom ical structures are represented by closed 

sm ooth active surfaces It is for th is reason th a t many researchers have mvesti-

(5 2)

In Equation 5 3, A is a user defined weighting function and I(v (s ))  is the
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Figure 5 1 Curve propagating with a force ’F ’, in the norm al direction of the 
local boundary-

gated m ethods and extensions to  employ active contours for the segm entation of 

medical images, and this will be investigated further in th e  following section

There are however disadvantages associated w ith the snake m ethod One of 
the key lim itations of the snake algorithm is the problem  of initialisation The 

active contours aim to deform until the stopping energy overpowers the influence 

of the intrinsic energies and in some cases the inflation term  Also, the selection 

of the param eter space and sampling rule also has a large influence on the final 

segmentation result

5 1 3  Application of Active Contours

Active contours have been used extensively for segm entation in the field of medi­
cal imaging, a full review of deformable models in medical imaging can be found 
m [92] M clnerney and Terzopoulos [90] apply a 3D dynam ic balloon model using 
triangle-based finite elements to segment the left ventricle from cardiac CT d ata

Much atten tion  has been given to improving the snake com putational frame­
work, for instance Ammi et al [4] suggests using dynam ic program m ing in order 

to  minimise the energy function This approach is claimed to  produce the opti­

m al local contour by searching all the possible solutions Geiger [52] describes an 

non-iterative dynam ically programmed m ethod to ex tract the optim al contour,
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providing the initial contour is a close approxim ation To speed up th is algorithm 

and to improve robustness, m ulti-scale images are used Ronfard [121] introduces 

region-based energy by building statistically models of the background and ob­

ject d a ta  These model distributions are used m place of edge information to 

determ ine the contour term ination

C hakraborty et al [25, 26] also introduce region based inform ation into the 

evolution of the active contour Molloy and W helan [98] introduce active meshes 

th a t initialise a deformable triangular mesh on corner d a ta  m the images and used 

the forces between nodes to deform the mesh m order to  track the d a ta  through 

an image sequence Sermesant et al [131] introduce a novel function which per­

forms an affine transform ation of a deformable model m  order to  optimally fit 

to  image d a ta  Jolly et al [67, 66] employ active contours, sem i-automatically 

initialise on each slice in the short axis view and then  propagate through the 
cardiac cycle Santarelh et al [126] introduce a Gradient-Vector-Flow (GVD) 

snake which proceeds a diffusion filter to  segment the inner and outer boundaries 

of the left ventricle of the heart

Reuckert et al [122] applies active contours for localisation of the aorta 

Neubauer[l] presented a myocardium segm entation following a  manually placed 

’skeleton5 inside the myocardium The results are then  propagated through all 

other slices m the volume Spreeuwers[145] a ttem pts to  address the issue of ro­

bustness in the presence of erroneous local minim a by applying a coupled active 
contour for the extraction of bo th  the epi- and endo-cardium boundaries simul­

taneously Mikic [93] uses optical flow estim ates to  guide the evolution of the 

active contour in echocardiographic sequences

5 2 Parametrically Deformable Models

Staib and Duncan [146, 39] introduce a  deformable model based on param etric 
contours These models are commonly used when some prior inform ation about 
the geometric shape of the final contour can be determ ined This geometric shape 

can then be encoded using a  small num ber of param eters T he model is then 

deformed, m aintaining the overall consistency of the global model, by optimising 

the param eters on the image d a ta  Most commonly, th e  global model can be 

defined by a set of analytical curves Staib and D uncan [146] use elliptic Fourier 

decomposition for objects w ith shape irregularities, where a Fourier shape model
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is used th a t represents a closed boundary as a sum  of trigonom etric function of 

various frequencies They then perform an iterative energy minimisation to  fit 

the model to  the image d a ta  This m ethod may provide robust localisation of 

features, where the feature matches the tem plate, however, this technique does 

not provide an appropriate basis for capturing shape variability and the generic 

models built using a priori knowledge need to be good approxim ations of the final 

segm entation result

5 2 1 Application of Parametrically Deformable Models to Medical 
Imaging

Param etrically deformable models have been applied m  the segm entation of car­

diac MRI images For instance, Staib and D uncan [147] propose a geometric 

surface m atching The model uses a Fourier param eterisation which decomposes 

the surface into a weighted sum of sinusoidal basis functions In [147], four basis 

functions are used, tori, open surfaces, closed surfaces and tubes The surface 

finding is formulated as an optim isation problem which a ttrac ts  the surface to 

strong image gradients m the vicinity of the model

The mam disadvantage of param etically deformable models is the effects of 

the choice of coefficients as this determines the complexity of the curve Placing 

limits on each coefficient constrains the shape to an extent bu t not in a system atic 

way While these models work well for localisation of the left ventricle, a derived 

model could not completely hold all the variation of the true left ventricle These 

models have problems to define the complex shape of the left ventricle which 

vanes from patient-to-patient and between healthy and dysfunctional ventricles

5 3 Active Shape Models

Cootes e t al [36] propose a m ethod to  fit a shape model to  image d a ta  Recently, 
this has been applied to  a wide range of image classification and segm entation 
problems This m ethod has had reasonable success in the case where

• the target object has a well defined shape,

• can be represented with a set of examples and

• can be approxim ately located within the image

There are lim itations associated with this m ethod where
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•  the objects present a high variation in shape,

• grayscale or when the position /size/onentation  of the target are not ap­

proxim ately known and

• the models themselves can contain hum an bias in annotation  or error in 

point correspondence of landm arks

Firstly, m anual delineation of the object m a sample set of images is performed 

From the m anually drawn contours, positional landm arks are extracted in the 

form x  =  [ x \ , X2 X n ,y i,y 2  Vn}T  for each of the 2D images m  the training set 
The principle behind landm arkm g may be conceptually simple, bu t m practice 

is a cumbersome and tim e consuming job The tracer m ust manually position, 

sometimes hundreds, of markers along the traced contours, w ith constant refer­

ral to  previous annotations to  ensure correspondence T his becomes increas­

ingly more difficult as more and more d ata  presents itself from 3D and 4D 

medical scans Some work m autom atic landm arkm g has been researched in 

[170, 129, 50, 169, 135] Once the landm ark points have been selected, they are 

then aligned commonly with Procrustes shape distance m etric with respect to 

scale, position and orientation As stated, point correspondence is one of the 

lim itations for model based approaches and Ham arneh [60] addresses this prob­

lem by represented in the shapes by descriptors obtained after the application of 

Discrete Cosine Transform (DCT)

To model the shape variation, the classical statistical approach of eliminating 

redundancy in the database is achieved through Principal Com ponent Analysis 
(PCA) or K arhunen-Loeve  transform  PCA performs a variance maximising ro ta­

tion of the original variable space, this is best illustrated graphically in Figure 5 2 

where the two principal axes of a  two dimensional d a ta  set is plotted and scaled 
according to  the am ount of variation th a t each axis explains [149, 45] The axes 
are also ordered according to  their variance, m eaning the first axis contains the 
highest variation In practice the PCA is performed as an eigenanalysis of the 

covariance m atrix  of the aligned shapes

The overall idea behind ASMs is to generate a shape instance using the d a ta  

obtained from the training set of shape landm arks This can be seen in Equa­

tion 5 4 where x  is the new shape instance and x  is the m ean shape (see Equa­

tion 5 5
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Figure 5 2 Principal axes A 2D example where axis 1 and axis 2 are the first 
two eigenvectors

x  =  x  +  $ s b s (5 4)

*  =  (5 5 )
*=i

The m atrix  &s =  [$i is made up of the eigenvectors corresponding to 

the t  largest eigenvalues An where t is the num ber of modes b  is a vector defining

the set of param eters of the deformable model and is defined in Equation 5 6

bs = # ^ (x -x )  (56)

There are some disadvantages associated w ith AS Ms, mainly their lack of 
robustness m  the presence of high gradients not associated with the target ob­
ject, their dependence on initialisation close to  the target object, time consuming 

database construction and the inherent problem of model generality versus accu­

racy

5 3 1 Application of ASMs to Medical Imaging

In  1994, Cootes [34] published his work on localisation of medical features using 

ASMs and used the left ventricle in echocardiographic sequences Ham arneh and
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Gustavsson [60] also apply the ASM to  echocardiographic sequences to  locate 

the left ventricle and then in a second phase uses the active contours described 

in Section 5 1 to  accurately determine the true boundaries of the left ventricle 

van Ginneken et al [168] uses a non-linear kNN-classifier instead of the more 

commonly used linear M ahalanobis distance m etric to  steer the active shape seg­

m entation scheme to  optim al local features D uta and Sonka [45] improve the 

ASM by constraining the deformation of the shape model to  appropriate shapes 
defined by the segm entation task, in their case the segm entation of brain images 

in MRI Rogers and G raham  [120] perform a robust param eter estim ation to  im­

prove tolerance of outliers in the model and improve the ASM search

5 4 Active Appearance Models

In order to address some of the ASMs lack of tolerance to  grayscale variation of 

the unseen data , Cootes et al [35] introduce Active A ppearance Models (AAMs) 

AAMs build on ASMs by including shape and tex tu ra l information about the 

manually delineated training d a ta  Textural inform ation is defined as the pixel 

intensity values across the object and these values are stored in a vector g  =  

[i/i j 92 5 j 9m]T  where m  denotes the num ber of pixels contained withm  the  object
surface Alignment of the tex ture shapes is achieved through image warping, one 

such m ethod of image warping is Piece-wise affine using Delaunay triangulation 

(refer to [149] for more details) This is followed by norm alisation with respect 

to illum ination of the images before the PCA  is constructed as described in 

Section 5 3 or in more detail m [149] A single instance from the texture model 

can then  be extracted as,

g  =  g  +  $ 9b s (5 7)

In order to  combine the shape and tex ture models, the shape and model 
param eters b s and b g can be combined using a th ird  PC A  to make the represen­

tation more compact

There are m any advantages to  the m ethod For instance,

• due to the training phase, the segm entation is very task specific,

•  once initialised, convergence is fast,

•  AAMs are non-param etric and
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•  in certain  situations, are robust against noise 

There are also some lim itations associated w ith the AAM

• the model m ust contain distinct features, unpredictable objects such as 

pathologies cannot be handled,

•  the annotation of the training set is an arduous task,

•  the results are inherently dependent on close initialisation to  the targe t 

object

•  the size and variation of the training set can restric t the AAM from con­

verging on the correct solution and

•  the AAM assumes point correspondence of the training data  

5 4 1 Application of AAMs to Medical Imaging

AAMs have received much attention in medical imaging m recent years Stegm ann 

[148, 149] performed a segmentation of the left ventricle of the heart using the 

AAM on 2D perfusion images In [151], Stegm ann and Larsson use a cluster­

ing m ethod of the texture variation to  create a set of texture subspaces, which 

could represent the phases of bolus passage m cardiac perfusion MRI Mitchell e t 

al [96] [94] dem onstrate the results when a 3D AAM \ASM  combination is per­

formed on the left ventricle of the heart in cardiac d a ta  m M RI (see Figure 5 3) 

and ultrasound images T he model is created using m anually traced contours 

on 2D slices and extended m the z  direction using linear interpolation between 

slices Van der Geest [165, 166] investigates the semi-manual use of AAMs for 

the segm entation of the myocardium m M RI d a ta  over the entire cardiac cycle 

Firstly, the contours are initialised on one image and the model iterates over the 

entire cardiac cycle until convergence Finally, m anual readjustm ent of the final 

model fittings can then be performed

Bosch et al [17] examine the use of Active A ppearance M otion Models (AAMMs) 
in M RI and echocardiographic AAMMs introduces a  tim e factor into Active Ap­
pearance Models which aims to minimise the appearance-to-target differences 

Lelieveldt e t al [79] and Sonka et al [143] also use AAMMs in segm entation 
of cardiac 2D-f time M RI sequences The m ajor advantage of this m ethod over 

AAMs is the error feedback param eters are calculated for the full image sequence 

ensuring a segm entation consistent w ith cardiac m otion
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Figure 5 3 Original image (left) following segm entation using AAM (middle) and 
m ethod described in Mitchell et al [95] (left)

5 5 Atlas Based Segmentation

A tlas based approaches are param eter free deformations of a priori models to 

ex tract the targe t object in an unseen image (for a full review of model based 

approaches see [48]) In this case, prior knowledge about the shape and intensity 

values of the object are incorporated Unlike param etrically deformable models, 

which use geometric shapes to  model the desired shape, atlas based approaches 

construct the model from m anually segmented d a ta

5 5 1 Application of Atlas Based Methods in Medical Imaging

Kaus et al [69] use coupled triangular surface meshes to  segment the epi- and 

endo-cardial contours Prior knowledge is encapsulated from the m anually seg­

m ented d a ta  using a point distribution model as well as the grey level appearance 

w ithin the myocardium Lorenzo-Valdes et al [82] construct a probabilistic at­

las of manually segmented tem porally aligned d a ta  A utom atic segm entation 

is achieved by registering the atlas on the data, using the atlas as the initial 
values for a Expect a t ion-M aximisat ion (EM) The EM is then  iterated until con­

vergence before a final classification step using Markov Random  Fields (MRF) 
and Largest Connected Components (LCC) Lelieveldt et al [80] proposes a 
m ethod for thoracic volume segmentation by building a model of the anatom ical 

structures contained m the thoracic cavity The m ethod uses blended fuzzy im­

plicit surfaces and a solid modelling technique called constructive solid geometry 

(CSG) Initialisation of the model with respect to  position, orientation and scal­

ing is one lim itation of Lelieveldt’s argument
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5 6 Level-set Method

Level sets were first introduced by Osher and Sethian [108], following previous 

work in Sethian’s P h  D thesis [132] on flame propagation Like snakes, the theory 

behind th is boundary-based segm entation is largely based on work m partia l 

differential equations and the propagation of fronts under intrinsic properties 

such as curvature [133] While level-set m ethods can be applied to  a host of 

image processing problems, for example image restoration, mpamtmg, tracking, 

shape from shading and 3D reconstruction, segm entation is the mam focus of this 

work An extensive review of level-set m ethods is given by Suri [157] and also by 

Angelmi et al [5] It can also be thought of as transform ing the earlier work of 

Kass et al [68] on active contours from a Langranan to  a Eulenan formulation 

Like active contours, the deformation of the level set is seen as a gradient flow 
to a s ta te  of minimal energy, providing the object to  be segmented has clearly 

identifiable boundaries [22, 21, 23, 87, 86]

However, by extending the dimensionality of the problem  to N +  1, where 

N is the initial dimension of the problem, some advantageous properties can be 

exploited The formulation of the problem  is conceptually simple The evolving 

curve, or front T, evolves as the zero level-set of a higher dimensional continuous 

function (¡)

^  +  F\V(j>\ =  0
9 t  1 (5  8 )

(/>(s, t = 0) = given

This function deforms with a force F  th a t is dependent on both  curvature of 

the front and external forces in the image The force acts m the direction of the 

normal to  the front The initial position for the contour is given, so therefore the 

function <j> can be constructed

The use of level-sets for the segm entation of the cardiac muscle in M RI is 
appropriate for the following reasons

• one can perform  numerical com putations involving curves and surfaces on a 
fixed C artesian grid w ithout having to  param etrize these objects (Eularian, 

non-m arker based solution),

•  it becomes easy to  implicitly track shapes which change topology, for ex-
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Figure 5 4 Level-set representation of the evolution of a circle

ample when a shape splits in two, develops holes, or the reverse of these 

operations,

• intrinsic geometric properties of the front, such as the curvature and the 

normal, can be easily calculated and

• the m ethod may be extended to higher dimensions

However, there are some issues associated w ith the basic level set formalisation 

In the la tter stages of this chapter, the au thor a ttem pts to  address these issues

•  the algorithm  is computationally expensive,

•  the front may leak through boundaries of low gradient information,

• the level set function requires initialisation close to  the target object and

• the evolution does not use prior shape or tex ture based information

Level-set segmentation has also been successfully applied to other medical 

imaging m odalities as described in Appendix B

5 6 1 Level Set Formulisation

The fundam ental objective behind level-sets is to track  a closed interface r(t), 
for which F (t) [0, oo) —> R N, as it evolves m  the d a ta  space The interface is

represented by a curve m 2D and a surface in 3D or the set of points th a t are on 
the boundaries of the region of interest Q T he theory behind level-set segmenta­

tion is largely based on work in partial differential equations and the propagation 

of fronts under intrinsic properties such as curvature [108, 133] Level-set theory 

aims to exchange the Lagram an formalisation and replace it w ith Eulenan, initial
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valued partia l differential equation evolution By extending the dim ensionality 

of th e  problem to N -fl, where N is the initial dimension of the problem, some 

advantageous properties can be exploited Representing the boundary as the 

zero level set instance of a higher dimensional function 0, the effects of curvature 

can be easily incorporated 0 is represented by the continuous Lipschitz function 

=  0) =  dbd, where d  is the signed distance from position s to  the initial 

interface To (see Equation 5 9) The Lipschitz condition implies th a t  the function 

has a bounded first derivative T he distance is given a positive sign outside the 

initial boundary ( D  Q ), a negative sign inside the boundary ( ) and zero

on the boundary ( d£t )

Vs e H \  dQ .

Vs e dii (5 9)

Vs G R" \  a

From this definition of 0, intrinsic properties of the front can be easily deter­

mined, like the norm al n  =  and the curvature k  =  V - j ^

Also from this definition, <j> can be considered as a function in two different 

ways Firstly, (f> can be considered as a static function 0(s) th a t  is evaluated 

at particu lar instances or isovalues, this leads to th e  formulation of the Eikonal 

equations and is discussed m more detail in the Fast Marching section (Sec­

tion 5 6 5) Alternatively, 4> can be described as a dynam ic function </>(s, t)  th a t 
evolves through time, and the closed contour or front is the special case where the 
value of <j>(s, t) equals zero Using this definition, it can also be said th a t a t any 

tim e ¿o the set of points th a t define a curve can be represented as the function 

0(s, £0) =  0 It is also clear th a t as the curve evolves through time, the function (f> 
also evolves Consider a point s(i) on the contour th a t is evolving through time, 
we constrain the value of th a t point m the level-set function to  be 0(s (i), t)  = 0  
By chain rule,

^  + V4> s'(i) =  0 (5 10)

Define the force, F  =  s (t)  n  to  be the force moving the point s(i) m  the 

norm al direction ri If ri is replaced w ith ri =  the equation takes th e  form

of a Ham ilton-Jacobn e ls expressed m Equation 5 8 If the force term  is rew ritten  

as F  =  Fo +  eft to  include an advection force F q to  move the curve and a curvature
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based term  ck to  regulate the evolution, the evolution of </> now becomes,

*  =  - * o |V 0 |+ e « |V 0 | (5 11)

Classic finite difference schemes for the evolution of this equation tend to  

overshoot and are unstable Sethian [134] has proposed a  m ethod which relies 

on a one-sided derivative th a t looks in th e  up-wmd direction of the moving front 

to control the outward expansion, and thereby avoids the over-shootmg associ­

ated  w ith  finite differences (see E quation 5 12) while th e  second derivative can 

be approxim ated using central differences Level-set theory  uses a combination 

of derivative approxim ations to  enable sm ooth curvature evolution

|V 0 | =  \J m a x (D t *i 0)2 4- m in ( D +*, 0)2 +  m a x (D % j ',  0)2 +  m m (D ^ , 0)2,

(5 12)

where, for example D * x — and D ~ x =  -

Caselles et al [22] and Malladi et al [87] used the above theory to indepen­

dently formalise the implicit m inim isation of the classic energy function used m 
snake evolution, seen m Equation 5 1, for the extension to  level set theory

m m j g W l l W W d s  (513)

This minimisation includes a  stopping term  c/( |V J(r(s)) |)  where g is a stop­

ping function (reciprocal or exponential) based on gradient of pixel intensities and 

curvature term  T(s) based on the intrinsic properties of the curve and calculated 

by

[  \r’(s)\2ds= [  g(\Vir(s)\)ds (5 14)
J s  J s

Prom [22] it can be shown th a t the Euler-Lagrange gives a minimising curve 

th a t is of the form

¿r(a)=fl(|V/|)#ca-(Vff n)n (5 15)

The term  V g  n  adds a naturally  occurring a ttrac tio n  force vector norm al 

to  the surface introduced by Yezzi et al [177] and k  i s  the curvature term  By 

representing the boundary as the zero level set instance of a higher dimensional 

function <j) as described m Equation 5 9, the effects of curvature can be easily
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incorporated [86, 21]

^ =tf(|V J|)(c + «0|V*|+/?(Vj V<j>) (5 16)

In  th is segm entation scheme, a  non-zero internal advection or ballooning force, c, 

is added to  th e  evolution to  evolve th e  either outward (c =  1) or inward (c =  — 1) 

depending on whether the initialisation curve is enclosing or enclosed by the  

target object for segm entation ¡3 and e are user defined param eters th a t control 

the effects of attraction  to gradients and curvature respectively and are chosen 

experim entally Reducing th e  ¡5 param eter slows down the convergence time as 

the front is not a ttracted  to  edges, however increasing the param eter may have 

the effect of causing the evolution to  jum p past appropriate gradients leading to  

spilling of the curve into other areas The param eter e controls the smoothness of 

the contour or surface Reducing the value of this param eter allows the algorithm  

to converge on less sm ooth object boundaries

Curvature Term

Prom differential geometry any shape (no m atte r how complex) collapsing as a 

function of its curvature k will evolve to  a circle before disappearing [59] Using 

this relationship, a force F  =  — k is defined to  always shrink a contour to a 

point This is a favourable quality for advancing fronts for segmentation, as it 

can be shown th a t this minimises the contour length As discussed earlier, using 

the partia l differential equations perspective, intrinsic geometric properties such 
as the curvature and normal can be easily calculated For example, for a 2D 

propagating front, the curvature k can be found using partia l differentials of the 

function 0,

_ ^  ~  2(j)y(f)x4>x y +  ̂ y y ^ x  /c ^
K _ v  W ^ W 2 1 }

The norm al can undergo a  jum p a t corners, and this issue is addressed in the 
work of Sethian and Stain [134] where the norm al is normalised

However, m 3D there are two measures of curvature, the m ean and Gaussian 

curvature T he mean curvature (« # ) , is connected to  the physical evolution of 

soap bubbles and the heat equation
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Gaussian curvature (k g )> has also being used to model physical problems such 

as flame propagation It has been shown th a t a convex curve evolves to a point 

under curvature evolution, b u t it can also be shown th a t  evolution of non-convex 

surfaces can be unstable

(518)

V$TAdj (H(fl)V* . .
  ( 19)

where H (<j>) is the Hessian m atrix of 0, and A dj(H ) is the adjoint of the m atrix 

H  [173]

Neskovic and K im ia’s [106] propose a measure of curvature which involves 

both  mean and Gaussian In this approach, the direction of flow is obtained from 

the Mean curvature while the m agnitude of the flow is dictated by the Gaussian 

curvature This is appropriate as the Mean curvature alone can cause singularities 
when evolving

Knes = sign(KH)\ /K G  +  | « g |  ( 5  2 0 )

Stopping Criterion

T he evolution force F  is an energy minimisation problem  where the speed ap­

proaches zero at positions of high gradients to  exert a halting to  the front prop­

agation To this end, two diffusive stopping criteria have been proposed The 

first and most common stopping term  is a reciprocal of the gradient of the image 

intensity signal convolved w ith a Gaussian sm oothing m ask G a , where <r is the 
variance of the Gaussian mask

MIVJI) =  i + |Vg‘ J(, y  .¡>2 1 « » )

The convolution with a Gaussian eliminates the effects of noise on the image 
O ther m ethods of noise removal, such as non-linear or anisotropic which were 

discussed in C hapter 3 can be used m place of the Gaussian to improve the re­

sults
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Alternatively, if the circumstances require the stopping te rm  to fall to zero 

faster than  th e  reciprocal function , the following definition can be applied This 

may allow the front to  overshoot the object boundary m the presence of weak 

gradients or can cause errors m the presence of noise Therefore a new stop­

ping term  is devised th a t incorporates texture This is performed by means of 

a Gaussian m em bership function used to determ ine w hether the voxel is inside 

or outside the target object This membership function is constructed using the  

texture analysis of the object region after initialisation A Gaussian member­

ship function is chosen as M RI response m tissue can be modeled as a Gaussian 

distribution [76, 70]

ii(|V/|) = exp-l'70» i(s)l (5 22)

where exp is the exponential function

5 6 2 Non-gradient based curve propagation

Image segm entation and classification has also been approached by incorporating 

level sets into the partitioning of images based on intensity values These m ethods 

have also been called Region-competition snakes and are deformable models th a t 

are governed by local probabilities th a t determ ine if the snake is mside or outside 

the structure to  be segmented Chan and Vese [27] show how the Mumford-Shah 

functional can be used m a level set framework The M umford-Shah functional 

aims to  partition  the image I  into a sm ooth approxim ation /  set of regions 

separated using contours, S

E(S,  f )  = i/(S) + < * / ( / -  I f d x  +  /3 f  \ Vf \ dx  (5 23)
J n  J n s

The problem is approached as a energy function which tries to  minimise its vari­
ables (a) the length of the set of contours v (S ) , (b) the deviation from the original 
image a J ^ ( /  — I ) 2d x  and (c) the smoothness w ithin each region /3 Jn5 \V  f \d x

A nother approach is developed in a level set framework by assuming a two 
class problem of an image I  defined on 0, The problem  is then  posed as follows

E ( C ) =  f  \ I - C o \ 2d n +  f  \ I ~ C i \ 2dn  (5 24)
J msxdeC J outsideC

where C  is the front, and (Co, C \)  are the average intensity values for inside and 

outside the curve C  W hile this methods addresses boundary  leakage and mi-
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tialisation problems it assumes a low class of intensity features and grey scale 

homogeneity across the object Yezzi et al [1T7], Tsai et al [163], Cohen and 

Kimmel [32], Deschamps et al [41] and Angelim et al [6] adopt variations on 

this approach to  segm entation in medical images

In [111], Paragios and Denche unifies bo th  region and boundary information 

in a level set framework Following on from [109], Paragios incorporates an 

intensity based com ponent taken from the grey scale distributions of cardiac 

features and a prior shape model to deform a coupled level set over the  endo  

and epi-cardium of the heart Taron et al [161] perform  a variational technique 

for the segm entation of the Corpus C allosum  of the bram  They use estim ated 

uncertainties of the registration when applying model priors to  the segmentation 

process

5 6 3 Introduction of A-Priori Knowledge

Leventon [81] introduced a p r io n  knowledge by building a prior model th a t was 

embedded m a level set formalisation and evaluating its modes of variation using 

PC A  analysis This has been the basis for much work in level set formulation in­

corporating shape priors into the propagation Due to  the model being defined in 

E ulenan space, it circum vents the problem  of point correspondence encountered 

in the previous sections

Tsai et al [163] provide some work, leading from the initial work performed 

by Leventon and perform  segm entation on cardiac images in 3D In [162], Tsai 

et al construct a model of a  prion shapes as the zero level set of a number of 

separate segmented images The database of level sets are then classified into 

a user defined num ber of statistical shape classifications using an Expectation 

M aximisation algorithm  This m ethod was applied to  medical images where con­
genital bram  malform ation of the cerebellums was used to  create a  two class 
(healthy/diseased) classification scheme As mentioned, Paragios et al [110, 112] 
use a shape model built from previously segmented d a ta  to  guide the segmenta­

tion of his level set

5 6 4 Coupling of Level Sets

Zeng et al [181] first introduced the idea of coupled level sets for segm entation 
of the cortex of the bram  T he coupled level set can use the constant thickness or
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distance between the level-sets as a constraint to  avoid spilling or over segmenta­

tion The ideas introduced by Zeng were extended by Paragios [109] who applied 

a similar coupling constrain t for the segmentation of the m yocardium of the heart

5 6 5 Initialisation using Fast Marching

In order to  overcome the ’myopic’ characteristics of level set propagation, Sethain 

[133] introduced a Fast M arching m ethods This is the unique case of the level 

set theory where the force F  is always greater th an  zero, and this propagates 

a monotomcally advancing front The formula takes the form of the Eikonal 
Equation 5 25, a nonlinear, static Ham ilton-Jacobi equation If the 2D case is 

considered again, a set is created T ( x ,y )  th a t defines the tim e at which the front 

T crosses the position (x, y ) T  satisfies the equation,

|V T |F  =  0 (5 25)

Figure 5 5 Front propagation using Fast M arching A dapted from Sethian [134]

The evolution is iteratively assessed by solving the roots of th e  quadratic 

equation of the Eikonal equation and sorting the values of T  w ith respect to  size
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This can be shown graphically m Figure 5 5 The value of the force a t each point 

can be calculated using the upwind scheme approxim ations to  derivatives of the  

function <j>

The stopping term  is based on the diffusion of the gradient and can be calcu­

lated as
Ft} =  e~aVi'-> (5 26)

T he fast-marchmg approach gives an approxim ate segm entation and is used for 

the evaluation of the initial contour for the dynamic level-set m ethod

5 6 6 Narrow-band Methods

In  order to  increase the com putational efficency of the algorithm , Adalstemsson 

and Sethian [2] extensively review narrow-band m ethods T he m am  disadvan­

tage of formulating the problem  m Eulerian space as opposed to  the Langrarian 

space is the increase memory and com putational expense of propagating the front 

across the full m atrix  of the image To elim inate this issue, a narrow band (2D), 

or narrow tube (3D), around the front is defined and it is in this narrow band th a t 

the 0 values are updated  a t each iteration The narrow-band is first initialised 

by including all d a ta  points within a certain bandw idth of the front, this can be 

achieved by using the values of the (/> As explained, a t each iteration, only the 

values of <j> w ithin the narrow band are updated W ith  each itera tion  the front 

points are evaluated to  see if they are close to  the edge of the narrow band If 

yes, the narrow band is re-initialised otherwise the algorithm  iterates as normal 

I t  has been shown m [2] th a t these boundary conditions do not adversely affect 

the motion of the level-set Im plem entation of this narrow band m ethod can 
greatly improve speed of execution and some level set approaches prove real-time 

execution [37]

5 7 Initialisation

To counteract the ’myopic’ characteristics of these deformable models, the ini­
tialisation process is very influential and is performed in M RI d ata  as follows 

Firstly, it is known th a t the endocardium  boundary can be characterised by the  

high contrast between th e  blood and the heart muscle in standard  (TruFISP) 

cme imaging of the heart This characteristic is used when a fast m arching algo­
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rithm  is applied to  find a fast efficient initialisation for the blood following the 

manual insertion of a  seed point The fast marching approach is driven by a force 

F$ =  e " aV/% which has a diffusive effect aimed a t halting  the fronts progress at 

regions of high gradient This fast-marching approach falls short of the gradient 

defining the transition  from blood to muscle Therefore the contour found by the 

fast m arching algorithm  is used as the initial curve of th e  level-set algorithm to 

find the endocardium  boundary The results from the Fast M arching initialisa­

tion are illustrated m  Figure 5 6

Figure 5 6 Results show the initialisation (marked in white) from a seeded Fast 
M arching algorithm  T he m ethod was applied to  perform  a  robust initial estim ate 
of left ventricle cavity of the heart on four separate datasets displaying a high 
variability of left ventricle shape

To find the epi-cardial boundary the endocardium  initialisation is dilated 

slightly and the inner gradients are masked Both curves are given a  positive 

advection force to propagate outwards It is known th a t  bo th  the endo- and 

epi-cardium boundaries of the left ventricle are approxim ately circular, therefore 

the e is given a high significance in the evolution, the evolution is illustrated in 

Figure 5 7 High curvature constraints, the distance inhibitor and the a p r io n  

constraints all act to  lim it the epi-cardium front from joining the inner front or 
spilling in areas of low gradient, like the liver or the lungs

5 8 Coupling Force between Fronts

To further control the level-set evolution we employ a coupling function between 

two level-sets The coupling adds an ex tra  constraint by introducing a  second 

level-set th a t is dependent on the first and coupling th e  level-sets w ith an in­

hibitor function, which allows the curve to change direction of growth This is
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(a) (b) (c) (d)

Figure 5 7 The images above show evolution of the front a t four different it­
erations (a) i te ra tio n  =  0, (b) ite ra tio n  =  5, (c) ite ra tio n  — 10 and (d) 
i te ra tio n  =  15

(a) (b) (c)
Figure 5 8 Segmentation results of the same slice a t three separate phases 
through the hearts cycle, (a) end-diastolic, (b) mid-diastolic and (c) end-systolic

achieved w ithout any extra com putational expense as the distance between any 

point to the level-set boundary is the value of (j> a t th a t point, see E quation 5 9 

The piecewise inhibitor function, which is used as the interaction between the 

two level-sets, is defined below, where d  is the preferred distance between the 

curves and w  controls the slope between inward and outward growth T he result 

r?2 (</>i) changes value from +1 to -1, which changes the direction of the evolution 
for (f>2 between inwards and outwards In practice the values of d and w  are taken 

from the scaled a p n o n  model

i
—1 for </>i(s) <  —d — w

for — d — w  < (j>i(s) < d  +  w  (5 27) 

1 for <pi (s) > d  +  w

For this segm entation scheme, it is assumed th a t the gradient between the 

blood pool and the endo-cardium boundary is significantly high to  halt the evo­

lution of the level-set Also it is known th a t  in some cases there is little or no
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Figure 5 9 G raph of the inhibitor function where the values of d  =  6 and w  =  4

gradient inform ation between the epi-cardium boundary and the lungs or liver 

Therefore, the level-set segmenting the epi-cardium boundary is controlled by the 

endo-cardium  level-set using the inhibitor function described

5 9 Improved Stopping term

To illustrate the improved perform ance of the advanced stopping term , the fol­

lowing phantom  images were created and tested  Two situations are described 

as illustrated in Figures 5 10 and 5 11, the first where low gradient inform ation

is present between two regions and the second where the grayscale difference

between two regions is low The stopping term , is defined as

5 = ^  (528)
Iff

uses a com bination of the gradient and change m texture T he change in tex­

tu re  (Iff) is calculated after the initialisation w ith the fast m arching algorithm  
described in Section 5 7 W ithm  the initialised region the m ean \i and variance 
a  of the voxels are calculated From these values, a Gaussian is constructed and 

the I a {s) is calculated as,

= |5 2 9 )

where x  is the value of the voxel a t each position s in the image The value of I a 

is normalised between 0-1
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The user defined param eters e and /? represent the influence of the curvature 

and a ttrac tion  to gradient on the evolving boundary In the following tests, we 

want to evaluate th e  influence of the improved stopping term , so the value of e 

is given less significance to  reduce the influence of curvature on the evolution 

In the segm entation of the left-ventncle boundaries, the value of e is given a 

higher significance as we know the boundaries approxim ate circles Similarly, j3 

controls the a ttraction  of the level-set boundary to  gradients th a t are normal to  

the curve Again, th is value is given a reduced weighting in the proceeding tests 

The results shown in Figures 5 10 and 5 11 dem onstrate the improved robustness 

against boundary leaking between regions

•  o

(a) (b)

Figure 5 10 The original phantom  image w ith a diffused segment (a) and the 
Sobel edge image to  illustrate the gradient inform ation (b) The second row 
shows the evolution w ith the existing g — 1+1V/ a t iteration  0, 25 and 50 while
the th ird  row shows the evolution with our proposed approach where g =  - g /

1+77
a t iteration 0, 25 and 50

5 10 Introduction of Priors Models

A p r io n  inform ation is incorporated with a probability density function (PD F), 

which is defined as

P(s)  = f*(s ) ( 5  3 0 )
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€ C?
(a) (b)

Figure 5 11 The original phantom  image with a  close region (a) and Sobel edge 
image to illustrate the gradient inform ation (b) The second row shows the 
evolution with the existing g =  1_)_1V/ a t iteration 0, 25 and 50 while the third 
row shows the evolution with our proposed approach where g =  V r a t iteration

I
0, 25 and 50

where f t is the outline of the epi and endo cardium  boundaries used for training, 

N  is the num ber of training examples and s defines the image coordinates The 

model is built from a set of hand segmented boundaries, a probability density 

function is created of bo th  the endo-cardium and epi-cardium boundaries th a t 

are then interpolated in the z direction, scaled and aligned in the x y  direction 

The PD F is constructed by aligning the binary m anually segmented boundary 
images and summing the boundary elements This is done for both the endo­

cardium  boundary and the epi-cardium  boundary It is incorporated into the 

evolution in a global context, after each iteration the value pt is evaluated as,

Pt =  E  W ) .  * p s (5 31)
Ces

where <j>{t)s is the value of <j> a t tim e t a t the position s and P s is the probability 
density a t position s and this value is summed over the narrow band C  which is 

a  subset of the image space T he param eter p t is calculated a t each iteration is 
then  normalised between the bounds -1 and 1 as it can have negative and positive 

values This is as a result of (j) also having positive values outside the contour 

and negative values inside the contour This means pt will have a  more positive
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value if the current contour is inside the prior model and m ore negative if the 

contour is outside the prior model

In order to  obtain the full evolution equation for the level-set we have to  incor­

porate  bo th  the coupling function and the a p n o n  knowledge in to  E quation 5 32

^ = g { V I ) ( c + t K ) \ V 4 > \ + P ( V g  V4>) (5 32)

Firstly, the ou tput from the coupling function is either 1 or -1 and we want 

it to  change the direction of the curve evolution From E quation 5 32 we can 

see th a t the advection force defines the direction of the evolution, therefore we 

incorporate the coupling function by multiplying it with the advection force c 

This has the result of changing the direction of the contour, depending on the 

results from the coupling function In this sense, both  the epi and endo cardium  
boundaries are tied together _We_also_assume„that_the_,boundary between the 

left ventricle blood pool and the myocardium has a stronger gradient term  than 

th a t of the epi-cardium boundary  and the liver or lungs Therefore, th is term  

is applied to  the evolution of the level-set surface designed to  ex tract the epi- 

cardium  Hence, based on the param eters of the coupling function which can 

be autom atically obtained using the distance between the blood pools the outer 

surface is prohibited from spilling into other organs beyond a  certain  distance 
from the endo-cardium boundary

The a p n o n  model is designed to  disregard inappropriate gradients and to 

give significance only to  gradients th a t are situated close to  previously manually 

segmented boundaries For this reason, we incorporate the a p n o n  inform ation 

in the a ttraction  term  from Equation 5 32 As explained, this is taken on a  global 
sense whereby we define for bo th  the m ner surface and the ou ter surface whether 
or not they are inside or outside the PD F of previously segm ented images Thus, 
the complete evolution for the coupled level-set is defined as,

< t̂+i = 4>t +  g ( V I ) { cr} +  £/c)|V<£| +  — (Vg V 0) (5 33)
J- +  Pt

where r} is the result of the coupling function between the level-sets and is defined 

in Equation 5 27 and pt is the a p n o n  knowledge and is defined m Equation 5 31 

The results m Figure 5 13 illustrate the performance using four unseen datasets
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(a) (b) (c)

Figure 5 12 Images show the probability density functions from a  p rion  hand 
segmented images Figure (a) shows the combined contours while (b) and (c) 
show the endo- and epi-cardium boundaries respectively Darker gray tone defines 
a higher probability of the boundaries

(a) (b) (c) (d)

Figure 5 13 The images above show the segm entation using our m ethod on the 
four previously unseen datasets

5 11 Extension to 4D

Cardiac d a ta  is increasingly available in 3D +  time, therefore it is believed th a t 
the best approach for a complete d a ta  driven segmentation is to  apply an  ap­

propriate technique to  the complete d a ta  presented from a patient scan Due 
to  the increasing amount of d a ta  th a t is available in 4D and growing resolution, 
some researchers have attem pted  to  address the segmentation problem M any 
have evaluated the result of sequential approaches, where from a robust initial 
segm entation (maybe m anually assisted) forms the initialisation for subsequent 
volumes throughout the cardiac cycle

While th e  level set formulation lends itself easily to  extension m m ultidi­

mensional d a ta  analysis, the au thor found few researchers have investigated the 

application of level set to analysis of 4D d a ta  Fritscher et al [51] aim to apply 

full 4D inform ation into boundary driven and region-competition geodesic con­



511 EXTENSION TO 4D 103

tours In  initial work, PC  A analysis is performed on signed distance maps to 

create models, the m ean of these models serve as the initialisation step m a level 

set segm entation More generally, in the earlier 4D segm entation work [9, 91], the 

tem poral dimension was considered in a sequential approach where the segmen­

tation  from the previous time frame served as the initialisation for the current 

time frame Rueckert and Burger [123] also used this sequential approach where 

the shape of (t +  1) was a  deformation of the shape in time frame (t) The de­

formation is achieved using energy minimisation of the deformable tem plate in a 

Bayesian formulation Sun et al [155] create a non-linear dynamic model learned 

from training d a ta  A manual tracing of the first image in the sequence is used to  
create a posterior density estim ate of the lv at each tim e frame A curve evolution 

is then performed w ith the maximum posterior estim ate McEachen and Dun­

can [89] perform  tracking of the left ventricle by perform ing point correspondence 

of points from tim e t  to  time t +  1 and assume a small degree of motion between 
time frames Based on these assumptions, sm ooth transition  of the param etric 

contours is achieved using an optim isation algorithm Paragios [109] introduced 

an energy into his variational level set approach th a t enforced a consistency of in­

tensity through the tem poral cycle A transform ation is calculated between time 

I t  and h +1 based on a  bounded error function, where I t  represents the intensity 

value a t time t  In M ontagnat and D ehnette [99] m 2005, the deformable model 

is influenced by introducing tim e-dependent constraints These consist of prior 

tem poral knowledge through either tem poral smoothing or trajectory  constraints

Segmentation in 4D should perform a segm entation of the 3D volumes and 

use information in the tim e domain To this end, a num ber of approaches are 

proposed with the advantages and disadvantages of each discussed

•  S e q u e n tia l  A p p ro a c h , consists of naively using the results from time 
sequence t  as the initialisation for time sequence t  +  1 This approach 
assumes no prior knowledge about the tem poral dynamics of heart The 

only assum ption is th a t the cardiac muscle boundaries do not exhibit large 

movements between time sequences

•  T e m p o ra l s u b t ra c t io n ,  can give some indication as to the direction of 

movement of the cardiac boundaries Again, th is does not utilise prior 

knowledge about the global dynamics of the heart and m ay be overly sen-
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sitive to  noise and artifacts Some optical flow approaches may eliminate 

these lim itations and are being investigated in [10]

• T e m p o ra l S m o o th in g , basically constitutes perform ing the segmenta­

tion of the 3D volumes in parallel while forcing the boundaries to  move 

in a physically consistent way using tem poral sm oothing In its simplest

form, tem poral sm oothing could be achieved using an averaging function, 
r   p

T t =  where Tf represents the boundary curve a t time t

• T e m p o ra l c o n s is te n c y  of intensity values across the left ventricle cavity 

and the left ventricle myocardium and was employed by Paragios and De- 
riche [111] Again, artifacts m the left ventricle cavity due to the dynamics 

of the blood through the  cardiac cycle may restric t the application of this 
method

•  D a ta b a s e  o f  P r io r  Im a g e  M o d els , built from a selection of images at 

particular tem poral instances, may be registered to  the unseen image Like 

many database models, this approach relies on building generic models th a t 

are applicable to  a wide range of heart morphology Variations in cardiac 
morphology caused by individual anatom ical features or disease may not 

be accounted of in such models

• P r io r  T e m p o ra l  P a r a m e te r is e d  M o d e l proposes to  model the dynamics 

of the cardiac cycle and further refine th is model as the parallel segmenta­

tion is perform ed on the 3D volumes Unlike database models constructed 

in image space, broader classification of the cardiac boundaries movement 

through the entire cycle can be applied to  all variations of heart morphol­
ogy Exploiting the construct of the <f> function in level set segm entation 

(see Equation 5 9) enables fast function fitting th a t may be incorporated 
into the update of <j>

5 12 Applying level set on 3 D + i data

From the options above, segm entation of the 4D d a ta  should be approached m a 
parallel sense using tem poral constraints to  infer prior knowledge in an effort to 

control the boundary deform ation away from erroneous spilling or over segm enta­

tion To this end, a novel approach to  control a  level set deform ation is proposed 

The control is achieved by means of prior knowledge about the deform ation of 

the cardiac muscle through a complete cardiac cycle In the m ajority  of cases,
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Figure 5 14 Volume, in pixels, of left-ventricle cavity over the cardiac cycle

the tem poral volume change of the cardiac cavity over the com plete cardiac cycle 

can be illustrated  as show m Figure 5 14 where the phase s ta rts  a t end-diastolic, 

decreases in volume during the systolic phase until it reaches end-systole before 

returning to  end-diastole during its diastolic phase

T he next question to  pose is how this inform ation about the overall shape of 

the cardiac phase can be implemented m a loosely fitting way to  the deformation 
of the level set

5 12 1 Modelling the temporal movement

From Figure 5 14, the cardiac cycle can be approxim ated using an inverted Gaus­

sian curve Values for the general Gaussian defined in Equation 5 34,^4, 5 ,  fi and 

a  are found by fitting a Gaussian curve to the volume d a ta  extracted using the 
Fast M arching algorithm  from each time frame Gaussian fitting is achieved using 

least squares approxim ation Non-linear fitting is unstable due to th e  low number 
of volumes in the tem poral resolution (~  25) For nonlinear least squares fitting 
to  a num ber of unknown param eters, linear least squares fitting m ay be applied 
iteratively to  a  linearized form of the function until convergence is achieved How­
ever, it is often also possible to  linearize a nonlinear function a t the outset and 

still use linear m ethods for determ ining fit param eters w ithout resorting to  iter­
ative procedures

y(x) = A  + Be (5 34)
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This fitted Gaussian represents the model for the dynamics of the cardiac cy­

cle over a  single heartbeat It follows th a t the displacement of the endo-cardium 

boundary can also be modelled using this fit In this regard, the deform ation of 

the boundary surface of the level-set is constrained by th is Gaussian model Ex­

ploiting the inherent definition of the level-set function <j> as the distance function 

of a single position from the evolving surface, the incorporation of the Gaussian 

model is straightforw ard and can be applied m a non-rigid sense to  every point 

w ithin the narrow-band

This is further illustrated m Figure 5 15, where a 2D image is taken and a 

single point is selected within the narrow-band From the definition of <f>: the 

value a t this point is the distance from th a t point to its closest point on the zero 

level-set boundary In the illustration, the boundary contracts and then expands 

agam m much the same way as the left ventricle boundary evolves from end- 

diastole to  end-systole and back agam to end-diastole As this evolution takes 

place the value a t the position grows and shrinks as the distance to  the boundary 
increases and decreases, this evolution can be modelled using the Equation 5 34 

and the param eters B, and a  determ ined from the fast marching initialisation 

The value of A  represents the offset of the Gaussian model Figure 5 16 illustrates 

the model applied to the long axis view

Figure 5 15 Change of a single point on (j> as the boundary evolves over the 
cardiac cycle in the short axis view

Figure 5 16 Change of a  single point on 0  as the boundary evolves over the 
cardiac cycle in the long axis view

In th is way, the evolution of the zero level-set boundary can be constrained 

to  contract and expand under Gaussian motion, where the saddle point is the 

tem poral position given by \i and deform ation occurs a t a ra te  a  Initialisation
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Figure 5 17 Volume, in pixels, of left-ventricle cavity over the cardiac cycle with 
fitted model using an Adaptive Gaussian Model

of the Gaussian model param eters are determ ined after a prim ary segm entation 

of the left ventricle cavity using a Fast Marching m ethod

Level Set influenced by an Adaptive variance Gaussian

In  order to  model the dynamics estim ated using the Fast M arching algorithm, 

an adaptive Gaussian model is developed Similar to the general Gaussian model 

given in Equation 5 34, the aim is to  improve the models fit on the initialised 

d a ta  This results in the deform ation of the boundary th a t m aintains closely the 

tem poral dynamics of the initial segm entation using the Fast M arching algorithm  

and therefore the model resembles the shape of the raw d ata  and does not re­

semble the Gaussian curve In practice, this model is created by a least squares 
fitting of a Gaussian model where the variance, a  is calculated separately a t each 

tem poral position, in essence this means th a t the least squares error is close to 

zero a t each tem poral position This is illustrated in Figure 5 17 where the model 
curve m irrors the real data

Models created from initialisation may not represent the final segm entation 
of the target object It places too much confidence in the initial model created 
using the fast marching approach For an example using the worst case scenario, 
if th e  fast marching algorithm falls into a local minim a mside the left ventricle 

blood pool a t one particular time sequence then  the tem poral model incorporates 

th is Using the curvature constraint, the level-set algorithm  can overcome this 

error, however, the tem poral model th a t  is created may not allow the level-set to
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deform greatly from the model created from the initialisation Therefore, a new 

approach is proposed, which uses the information obtained from the initialisation 

step  but iteratively updates this model based on the evolving level-set This cre­

ates a smoothing effect on the level-set surfaces over the cardiac cycle b u t also 

redresses poor initialisation

Level Set influenced using Expectation-Maximisation

In order to  address the lim itations associated with the A daptive variance model 

described m the previous section, a  novel approach is introduced which iteratively 

updates the initial param eters of the model This acts as a  form of Expectation- 

M axim isation (EM) algorithm  T he EM algorithm  is a two step approach which 

aims to fit some model to  data, and is particularly useful where there is unknown 

or incomplete d a ta  In the case of cardiac boundary segm entation, the observed 
d a ta  is defined as the value of the level-set function <j> a t a particu lar position over 

the entire cardiac cycle The unknown or missing d a ta  is a final Gaussian model 

which is inferred on a single point in the grid over the com plete cardiac cycle 

This application to  each point on the grid has the advantage th a t the model is 

fitted non-rigidly and can allow for less or no deformation, which is the case in 

diseased hearts

The EM  algorithm takes initial param eters for the model, in this case the 

inform ation obtained from the Fast M arching segm entation of the left ventricle 

cavity, and performs an expectation or fit of the d a ta  a t a particular spatial po­

sition over the entire tem poral d a ta  These model param eters are stored in an 
array  for each grid point Then during the m aximisation step  when the level-set 

is updated, the inform ation about point position with respect to  its expected val­

ues are calculated The results from this expectation stage is the difference or m 
EM  term s, the likelihood, between the model and the observed d a ta  From this 
expectation calculation, a  maxim isation is performed to  correct for the differences 

found This m aximisation step is the level-set deform ation of the boundary sur­

face The process is iterative and the param eters for the model are re-evaluated 
a t each iteration

This addresses m any issues associated w ith the previous m ethod Firstly, be­

cause the param eters for the model using the Fast M arching approach are ju st 

used as the initial param eters for the EM  algorithm, there is less dependence
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Figure 5 18 Volume, in pixels, of left-ventricle cavity over the cardiac cycle w ith 
fitted Gaussian model

placed on these initial param eters as they are re-evaluated at each iteration Sec­

ondly, the iteratively fitting a Gaussian to  the d a ta  results in giving a Gaussian 

sm oothing of the zero level-set boundary over the tem poral cycle

5 13 Results

In order to assess the validity of this approach, the results of the segm entation 

using the iteratively optimised algorithm  are compared against those obtained 

from expertly validated* segm entations of the left ventricle Figures 5 19 display 

a linear plot and B land-A ltm an plot for the areas in 2D of the m anually traced 

boundaries

Com parative results between the adaptive variance approach and those ob­

tained from the iteratively optimised algorithm  can be seen on a point-to-curve 

error calculation in Table 5 1, showing less error using the optim isation algorithm  
This is also confirmed in a linear plot of the blood pool areas when com pared 
against manual segm entation where the Gaussian curve with adaptive variance 
produced a regression value of 0 71 while the optimised approach yields a  regres­
sion of 0 77

The iteratively optimised algorithm  also is guaranteed convergent [174, 40, 13] 

and also reduces the error between the observed d a ta  and th e  model a t each

*The validation was performed by Dr John Murray, Cardiologist, M ater M isericordiae 
Hospital, Dublin, Ireland
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Figure 5 19 Results of the 4D segm entation of the left ventricle cavity boundary 
compared against those obtained from manual segm entation

Table 5 1 Table representing the point to  curve error for M ethod 1 using the 
Gaussian curve with adaptive variance and M ethod 2  using the Expectation- 
M aximisation of the Gaussian param eters

Endo-cardium  
Average Std Dev RMS

M ethod 1 
M ethod 2

1 649013 1 584626 2 309887 
0 844075 0 914422 1 268981

iteration This means th a t convergence is faster than  using the static model 

This is characterised in Figure 5 20 by measuring the error decay between the 

two m ethods based on known phantom  d ata
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Iterations

Figure 5 20 Results of the 4D segm entation of the left ventricle cavity boundary 
compared against those obtained from manual segm entation

5 13 1 Testing under different motion approximation

In order to show the generality of the m ethod, an im plementation of th e  4D 

segm entation was performed using a  different prior tem poral model In  this ex­

periment, the tem poral function is given a linear function In Figure 5 2 1 a  cube 

is expanded using a linear function This is illustrated b etter in Figure 5 22 which 

graphs the volume acquired using the Fast M arching algorithm  over time In this 

graph, the fitting of a linear function to  the d a ta  is also given

Figure 5 21 Selected images from a 4D sequence dem onstrating a linear volume 
expansion

5 13 2 Coupled Approach

Coupling of two level-sets can also be achieved in a coherent and thorough way by 

employing two Gaussian models, as illustrated m  Figure 5 23 Again, in a  non- 

rigid sense each point on the grid has associated w ith it the param eters for two
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Figure 5 23 Estimation using prior knowledge of the Epi-cardium and Endo­
cardium deformation through the cardiac cycle using inverse Gaussian curves

Gaussian models representing the evolution of the epi-cardium and endo-cardium 
boundary The evolution of the epi-cardium boundary is less pronounced and 
therefore the Gaussian model is shallower Results from a coupled segmentation 
are illustrated in Figure 5 24 for different phases and slices

5 14 Conclusions

In this chapter, deformable contours for feature extraction in medical imaging 
were introduced and discussed An overview of current methods employed in the 
segmentation of the left ventricle of the heart was performed
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Figure 5 24 Results from a coupled 4D segmentation of a cardiac sequence for 
diastolic, systolic and mid-phase for a basal (top row), mid-slice (middle row), 
and apical slice (bottom row)

A novel formulation for the segmentation of the left ventricle is developed 
using a coupling of two level-set surfaces representing the endo- and epi-cardium 
boundaries This was then extended to incorporate prior knowledge about left 
ventricle anatomy from manually segmented images encoded m a probabilistic 
model This method provides adequate results in mid and basal slices where 
spilling is avoided by adding the additional constraints imposed by the prior 
knowledge However, this method encountered difficulty in data representing 
high variation and m particular in the irregular shapes present near the apical re­
gions In these approaches, strengthening the a p n o n ’s influence on the evolution 
may result in loss of segmentation detail, patient abnormalities, muscle dysfunc­
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tion etc Investigating ways of improving accuracy without removing generality 
are addressed m the following methodology A new supervision is proposed that 
does not encodes the prior knowledge based on information from the image space

A new general solution to left ventricle segmentation from 4D MRI data is 
presented Temporal information obtained from the initialisation based on a fast- 
marching segmentation is encoded m a parametric model The model is based 
on non-rigid deformation of the left ventricle boundaries over time using prior 
knowledge about cardiac dynamics After each evolution of the level-set algo­
rithm, the model is optimised to the data using an expectation-maximisation to 
reduce to target to object error This approach has the following advantages, 
firstly, it provides a temporal smoothing over the cardiac cycle that is consistent 
with the motion of the cardiac muscle, secondly it constrains the boundaries from 
spilling in the event that a particular time instance lacks appropriate gradient 
information and finally, the temporal model is defined on each grid voxel within 
the narrow-band, this has the advantage that it can incorporate longitudinal con­
traction and expansion along the short axis into the model This unique property 
of the temporal model can be realised due to the formulation of the level-set

Excellent results are obtained when compared to expertly assisted segmenta­
tions of the boundaries This method also gives comparable performance against 
other methods described m literature, for example Kaus et al [69] report a 
mean error of 2 45±0 75mm for the end-diastolic phase and 2 84±1 05mm for 
end-systolic phase using a deformable model technique

This method did not perform as accurately against the manual segmentation 
when comparing results to those illustrated in Chapter 4 In this application, 
supervision was achieved in the evolution of the boundaries by incorporating 
knowledge both m the temporal and space domain Manual segmentation or the 
statistical partitioning techniques described in earlier chapters do use temporal 
information when segmenting the left ventricle In this way, we believe that the 
3D+t approach provides more accurate results, ensuring the cardiac boundaries 
evolve in a smooth fashion more consistent to the physical motion of the muscle 
By incorporating the 4D data, we can remove inconsistencies in signal intensity 
values by smoothing the values over the high resolution temporal and spatial data

The results are illustrated for a coupled surface segmentation where the left 
ventricle inner and outer boundaries are tracked in a computationally efficient
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way using two separate models of temporal motion

Finally, this technique represents a framework for incorporating temporal in­
formation into the evolution of an evolving surface Also, demonstrated is a 
variation of this approach where temporal information is applied using a linear 
temporal model as the prior information This may be associated with tracking 
the movement of passing objects The complexity of the temporal model is not 
a limiting factor in this methodology and further applications of this technique 
are discussed m the following chapter

Publications associated with this chapter

Journal Publications 

In Submission

Michael Lynch, Ovidiu Ghita, Paul F Whelan Segmentation of the left 
ventricle in 3D  + 1 MRI data using an optimised non-rigid temporal 
model Submitted to IEEE Transactions in Medical Imaging, March 2006

Michael Lynch, Ovidiu Ghita, Paul F Whelan Left-Ventricle myocardium  
segmentation using a Coupled Level-Set w ith A-Priori knowledge Sub­
mitted to Computerized Medical Imaging and Graphics, November 2005
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Chapter 6

Conclusions and Further 
Developments

In this concluding chapter of the thesis, an overview of methods developed for the 
segmentation and tracking of the left ventricle myocardium is discussed With 
particular emphasis on the aims and challenges outlined in Chapter 1, the mo­
tives for choosing particular paths in research are examined The relevant results 
from each of the processes are also discussed m relation to the objectives In the 
final part of the chapter, the prospect of further work is investigated in relation 
to the application of the proposed methods m different scenarios and also the 
advancement of the developed methodologies

6 1  Sum m ary

Diagnosis of cardiac disease can be achieved through the accurate measurement 
of cardiac function [103, 128] In order to extract the most relevant clinical mea­
surements from the heart, the thoracic cavity must be imaged and the cardiac 
muscle of the left ventricle needs to be segmented MR imaging gives relatively 
high spatial and temporal resolution of the beating heart without the need for 
ionising radiation The imaging of the heart is fast, non-invasive, painless and 
entails minimum discomfort to the patient

In order to increase the accuracy, speed and repeatability of the functional 
measurements of the cardiac data, much research has focussed on the image anal-

117
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ysis tasks involved m the segmentation of the cardiac muscle of the left ventricle 
In this thesis, novel methods are employed in the segmentation of the left ventri­
cle myocardium By increasing the dimensionality of the solution thus expanding 
the amount of data being processed a more involved technique is developed that 
incorporates the three dimensional image data plus the temporal data obtained 
from the MR! scanner

The problem is addressed in a systematic approach, first dealing with the 
inherent noise associated with the medical imaging procedures A performance 
characterisation of the mam diffusive based non-linear filters is provided both m 
2D and 3D The performance is evaluated using two measures, firstly the filters 
ability to smooth the noise in homogeneous areas and secondly the filters facility 
to preserve strong edges in the image using edge strength and edge spread as the 
criteria The evaluation was performed in MRI data of varying protocols From 
these measurements an appropriate filter is chosen as a tool to accurately remove 
unwanted noise from the images

When the unwanted artifacts have been removed from the input data, sta­
tistical partitioning is successfully employed to automatically segment the image 
into appropriate anatomical structures based on signal intensity in both 2D and 
3D data A novel localisation of the left ventricle blood pool is achieved using 
shape descriptors before segmentation of the outer wall of the left ventricle my­
ocardium is accomplished using gradient information and prior knowledge

To fully utilise all the data presented from a single patient scan, methods were 
investigated for the introduction of temporal information into the segmentation 
process Temporal information is useful, as predictions of spacial deformation 
can be used to increase robustness segmentation Level-set theory is introduced 
as a numerically stable method of evolving a surface m 3D based on intrinsic 
properties of the surface and external forces obtained from the image In this 
thesis, a successful extension of Malladi and Sethians [86] formalisation for shape 
recovery is employed which incorporates a texture component and a probabilistic 
model of previously segmented cardiac boundaries to avoid the surface spilling 
into other anatomical structures in the presence of low gradient Employing the 
idea of a coupled level-set introduced by Zeng et al [181], the inner and outer 
wall of the left ventricle are segmented simultaneously using coupled surfaces that 
interacts using a coupling function
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Exploiting the Eulerian formalisation of the level set, the extension to com­
plete 4D segmentation introduces a parametric model of left ventricle deformation 
over a cardiac cycle to aid the segmentation This model is then iteratively refined 
using a optimisation algorithm The model is re-parameterised for each position 
on the grid within a narrow-band of the evolving surface or surfaces, giving it a 
non-rigid deformation to take account of areas of the cardiac muscle that do not 
demonstrate significant spatial deformation, for example in the case of diseased 
tissue

Each of the methods introduced have been tested on synthetic images and 
real patient scans Performance is evaluated by comparing results against ex­
pertly* assisted manual delineation of the cardiac contours In the next section, 
the strategies employed and advantages of this methods over existing methods 
commonly used m the cardiac segmentation will be discussed

6 2 Contributions

In assessing the research conducted in this project toward the goal of cardiac 
image analysis, it is clear that a number of significant contributions have been 
made as well as other minor contributions One of the objectives of the project 
is to integrate all the data available from a single patient scan into the segmen­
tation process m an appropriate and functional manner A full characterisation 
is attained at each stage in the development of the hypothesis The major con­
tributions of this thesis are as follows

• A novel method for the segmentation of 4D information using prior knowl­
edge about temporal deformation is introduced m a level-set framework 
This prior knowledge is then iteratively optimised through the segmenta­
tion process

• Produced a novel formulation for a coupled segmentation scheme, in a level- 
set framework, using a probabilistic model which segments the myocardium 
of the left ventricle

• Developed an improved methodology for cardiac image analysis using sta­
tistical data partitioning

*The validation was performed by Dr John Murray, Cardiologist, Mater Misericordiae 
Hospital, Dublin, Ireland
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• Formed a gradient based segmentation of the left ventricle muscle outer 
wall using prior knowledge

• Performed a full characterisation of advanced data filtering algorithms m 
medical images

There were also some minor contributions resulting from this research

• Developed a novel seed generator for initialising seed positions for automatic 
data partitioning algorithms based on histogram analysis

• Apphed the level-set segmentation technique in CT data for the extraction 
of polyp morphology for colon cancer detection

• Designed a basic graphical user interface, see Figure 6 1, for visualising data 
and patient information and a separate back-end repository of algorithms 
for medical data processing and analysis

6 3 Discussion

At the start of this thesis, a brief overview of two opposite approaches to seg­
mentation were outlined, bottom-up and top-down approaches Some examples 
of how both methodologies have been apphed m the field of medical imaging were 
also given From this initial discussion, a number of advantages and disadvan­
tages for both were provided

Firstly, bottom-up approaches offer a general solution without making any 
assumptions about the data being processed or about the final solution to the 
problem Spatial information may be used locally about a small neighbourhood 
(edge-detectors, region-growing) or may not be used at all (thresholding, signal 
intensity clustering) These methods perform effectively in well defined data such 
as in CT data or in data after performing advanced filtering but in the case of 
poor or noisey data, bottom-up techniques can produce unpredictable and un­
controllable results

On the other hand, top-down approaches such as template matching, ASMs 
and A AMs perform the segmentation using purely information that has been 
used in a training process For example, template matching uses information in 
a global sense to minimise the error in order to find the most appropriate fit 
between the image data and the template Such methods have demonstrated
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robust localisation in the presence of low SNR [150] Incorporating other metrics 
into the model such as texture has been shown to minimise the model to tar­
get differences Other methods have been developed for minimising the model 
to target differences involving alternative approaches to model construction such 
as PCA, where the principal components of the models variation are utilised in 
the deformation process Top-down approaches are limited in their use where 
the structure of the target object varies significantly from those contained in the 
training data For example in cardiac imaging, the general models employed by 
ASMs\AAMs that are obtained from training sets are limited in their application 
for accurate segmentation to the variety of heart shapes Abnormalities in the 
image data can indicate disease Model based approaches approximate to the 
closest plausible instance shape from the training set Point Distribution Model 
(PDM), but this may not be sufficiently accurate Also, A AMs cannot deal well 
with the changes m texture

Also included in Chapter 2 was a note on how to combine both top-down and 
bottom-up approaches in order to obtain a more appropriate solution In this 
thesis, methods of effectively combining prior information and local image prop­
erties are investigated Following the removal of unwanted noise from the image, 
the process of partitioning the structural features within the image is achieved 
using a statistical based clustering algorithm Localisation of the left ventricle 
cavity is achieved using prior knowledge about the shape of the structure based 
on prior knowledge Once the left ventricle cavity has being successfully localised 
and extracted, a novel method for the outer wall of the left ventricle cavity is 
pursued Approximate knowledge about the myocardium thickness is obtained 
from the distance between the left and right blood pools, assuming that the right 
ventricle blood pool is close to the left ventricle blood pool and the separating 
muscle (interventricular septum) approximates the thickness of the myocardium 
around the left ventricle This knowledge is used when extracting local gradient 
information that may form part of the epi-cardium boundary By linking ap­
propriate edges together, segments are produced These segments can then be 
eliminated with respect to orientation Where gradient information is lacking, a 
top-down approach is adopted whereby missing segments are inserted by means 
of a probabilistic model of previously segmented images

To further advance the concept of using the top-down approaches to guide 
bottom-up approaches, the idea of an evolving surface is introduced in Chap­
ter 5 In a level-set framework, prior knowledge about the distance between
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the epi- and endocardium boundaries as well as a probabilistic model of previ­
ously segmented images were used to influence a coupled level set deformation 
The probabilistic model is introduced as a cost function, penalising growth away 
from model instances Unlike the variational framework proposed by Paragios 
[110, 111] that uses both probabilistic measures for signal intensity obtained from 
an expectation-maximisation algorithm and prior shape information encoded m 
a level-set framework, our method uses high gradient information as the predomi­
nant stopping term and can therefore be applicable in situations where variations 
in grayscale are encountered

Extending this methodology to 3D  +  t space, the aim was to remove the 
confidence attributed to the prior knowledge of the anatomical shape of the left 
ventricle, as it is known to contain a high degree of variation especially in abnor­
mal or unhealthy specimens It is proposed to model the temporal motion of the 
heart, as temporal motion in healthy and unhealthy hearts maintain the systole 
and diastole phases Using this characteristic, a temporal model is constructed 
and iteratively updated to guide the local deformation of the level-set algorithm 
This method of top-down knowledge about temporal deformation, optimised in 
order to influence the bottom-up approach gives a significant step towards a ro­
bust, elegant and complete solution to the 3D -I-1 segmentation problem The 
idea of encoding the temporal motion m a parametric model can be applied in 
different scenarios In the next section, some possible situations are discussed

6 4 Further Work

While this work addresses a specific research question, there is further work which 
can be undertaken in a broader sense as a result of the ideas put forward In this 
section a number of areas are proposed which warrant further investigation

Initialisation of the level-set algorithm could be improved Fast-marching al­
gorithm does not take curvature terms into its evolution Further advancement 
of the fast marching method can improve the initialisation of the temporal model 
parameters used m the 4D case described m this thesis

From a theoretical aspect, the level-set formulation is robust and numerically 
stable Further work may involve a more involved formalisation of the level-set 
evolution m order to incorporate the 4D information Further advances may in-
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elude the extension of the temporal model using non-linear approximations with 
more advanced functions The temporal motion model may also be encoded m 
PC A or other method to reduce the dimensionality of the model These models 
may be derived using data from prior information based on expertly segmented 
cardiac images

In this thesis, a novel method for applying top-down information in a bottom- 
up approach to segmentation is achieved The application chosen to demonstrate 
the ideas proposed in this thesis are m multi-dimensional cardiac data Appli­
cation of these ideas m different areas would warrant further investigation The 
work may be transfered to perform segmentation m the right ventricle or the 
measurement of valve regurgitation may also be achieved Modelling temporal 
characteristics using more advanced functions can be utilised outside of the medi­
cal domam Measuring growth in plants may be one application of this technique

[ii]

6 5 Concluding Remarks

In this work, a thorough investigation into multidimensional image analysis of 
cardiac data in MRI has been performed which was the main contribution of this 
research The primary steps involved advancing the framework from a purely 
bottom-up approach based on statistical analysis to a more involved approach 
based on surface propagation using increasing dimensional data and incorporat­
ing top-down information to aid the segmentation This is achieved in a novel 
and intuitive fashion Optimisation of the algorithms performance from a com­
putational expense point of view was performed but advanced developments m 
this area was not one of the mam goals for this project Additional research has 
been investigated outside the topic and contribute to minor advances m research 
These are explained in detail in Appendix A and B
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Appendix A

Application of the 

Expectation-Maximisation 

Algorithm to Medical Images

This appendix details the Expectation-Maximisation (EM) for partitioning image 
using pixel intensity values A novel approach for the initialisation of parameters 
is detailed using analysis of the intensity histogram of the image

The application of the EM algorithm for the partitioning of medical images 
into anatomical structures has being documented, particularly in brain segmen­
tation m MRI [47] The EM algorithm shows robust and repeatable performance 
m the segmentations of heart, bram and abdominal images The EM algorithm 
is locally convergent [174, 40, 13] so we have introduced an automatic seeding 
method that uses local maxima m the intensity histogram In this appendix the 
novel initialisation of the EM algorithm is investigated and analysis is presented 
Also results against manual initialisation and apply the algorithm to some com­
mon medical image processing tasks are demonstrated

A .l EM Algorithm

The EM algorithm [40,14] attempts to classify data using a soft membership func­
tion as a weighted sum of a number of Gaussian distributions called a Gaussian 
Mixture Model (GMM) The generation of this GMM is achieved through an EM

127
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Figure A 1 Image intensity histogram overlayed with an illustration of the asso­
ciated Gaussian Mixture model

technique, which aims to find the maximum likelihood estimate for an underlying 
distribution from a given data set when the data is incomplete Its advantage over 
the ¿-means clustering technique [42] is its ability to provide a statistical model of 
the data and its capability of handling the associated uncertainties Consider the 
general case of a (¿-dimensional random variable X  =  [x\, X2 , £3, , Xd]T and sup­
pose it follows a ¿-component finite mixture distribution Its probability density 
function (pdf) could be written as,

k
P(x \0) = a mP(x\0m) (A 1)

m=l

where k is the number of mixtures, am is the mixing parameter for each of the 
Gaussian’s in the GMM and andp(a;|0m) is the probability that variable x  belongs 
to class 0m and is defined in Equation A 2

1
P(z|0m(A*m.<7m)) =  J==e (A 2)

£ T \ /2 7r

where 8m = {^m,crm} are the Gaussian’s parameters This can be displayed 
graphically in Figure A 1 The value of a m is defined as,
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k
am > 0, and ^  a  = 1 (A3)

m= 1

The algorithm is built on an iterative scheme and consists of two steps The first, 
the E-step, calculates the expected log-hkelihood function for the complete data, 
defined by Q using the estimates for the parameters 0(t) X  defines the input 
data and Y  defines the output classified data

Q(0,8(t)) =  E[\ogp(X1 Y\6)\X , 0(f)] (A 4)

The second, M-step, uses the maximized values of this result to generate the next 
set of parameters

0(t +  1) =  argmax<2(0,0(i)) (A 5)
8

The algorithm iterates between (A 4) and (A 5) until convergence is reached It 
is important to note that local convergence of the EM algorithm is assured since 
9 is smaller at each iteration [174, 40, 13]

The updates for the parameters for the GMM are the mixture values a m 
and the Gaussian’s parameters 9m — These can be calculated from
Equations A 6, A 7 and A 8

1 ^
(A 6)

771=1

_  E m = i  xtp[m\xt ,§) 

EiLi
E L i  P H x t, 8)(xt -  K T ) (* .  -  ^ wf

E m = l
(A 8)

A l l  Seed Generation

To address the initialisation step a novel approach to collect relevant seed points 
for cluster centers based on histogram analysis is developed A histogram of the 
image data is constructed, n3, where n is the number of pixels contained in the 
bin with value j  This histogram is then divided into M  evenly distributed bins 
This value M  is manually set, typically to a higher number than the number of 
perceived relevant regions m the image For the images shown in this appendix, 
the value of M  was set experimentally to 25 From each bm, the highest peak m 
the histogram is assigned to a seed center, Cm
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Cm ~  argmax(nj) (A 9)

These M  seed centers are then clustered together using their closeness in the 
grayscale space until the desired number of seeds, fc, is reached The clustering 
is an iterative process where clusters are joined together by evaluating the Eu­
clidean distance between the cluster centers

A 2 Results

The described scheme was applied to gated MRI short-axis images of the heart, 
MRI coronal brain slices and a section from a whole body MRI showing the lower 
abdomen The results are compared against those obtained when the cluster 
means and variances are manually extracted from the image From Figure A 2 
and Table A 1, it is clear that using the automatic seed initialisation gives a 
better distribution of initial seeds across the data Table A 1 presents the manu­
ally selected means of the Gaussians and automatically selected means using the 
method described above Also, the Gaussian means following the EM algorithm 
has been applied are presented

To evaluate the performance of the described algorithm, the EM segmenta­
tion algorithm is applied to each of the MRI datasets As mentioned previously, 
the algorithm is locally convergent and therefore initialisation of the algorithm is 
crucial to the final solution A comparison is made between the results obtained 
using the automatically seeding process and the results obtained when the ini­
tial seeds for the EM segmentation are chosen manually To achieve this, areas 
are selected m each of the images that attempt to represent the most significant 
regions This is objective and related to the purpose of the segmentation but 
the overriding motivation is to pick regions that are clinically significant and also 
have a high degree of variation between regions In each of the images given, 6 
regions were manually selected In these selected regions the mean pixel inten­
sity values and the variance of the pixel intensity values are calculated These 
manually selected values are used as the initial 0m’s, where 1 < m  < 6 in the EM 
algorithm, the mixing parameters am were each set to —

Figure A 2 illustrates the strategy applied to short axis images from a cardiac 
MRI study The areas manually selected are shown m Figure A 2 (b) and the
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(a) (b)

(c) (d)

Figure A 2 Figures show the short axis view of cardiac MRI (a) shows the 
original image (b) indicates the manually selected areas (c) represents the results 
after applying the EM using the manually picked initialisation and (d) is the 
result after applying the automatic seed picking

resultant segmentation after applying the EM segmentation using these initial 
parameters is shown in Figure A 2 (c) The final Figure A 2 (d) shows appropri­
ate results after the automatic parameter selection, in particular the results show 
a better distribution within the grayscale distribution of the analysed image Fig­
ure A 3 shows a coronal slice from a Tl-weighted head MRI Again the automatic 
segmentation method performs well in differentiating the white matter from the 
gray matter Figure A 4 shows a coronal slice from an abdominal section of a full 
body MRI
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Table A 1 Changes m cluster means in the Cardiac data

Manual /x’s Manual ¿¿’s after EM Automatic ¿x’s Automatic ¿i’s after EM

n(0) 57 31914 55 2806 57 31 33457

n ( t ) 125 366 112 0961 137 125 284
n(8) 194 0437 151 1044 167 171 6872

p(S) 19 84193 16 74244 12 17 75531

v(4) 225 1899 112 8278 255 254 2933

n(5) 28 87568 28 43651 92 79 93145

It is clear from Tables A 1, A 2 and A 3 that the described automatic seed 
picking algorithm demonstrates better performance when compared to the man­
ual selection technique This is evident from the lower differences between ini­
tialised seeds and the final values after optimisation through the EM algorithm

Most medical images obtained from MRI are 3D and m some cases 4D, but 
because the described algorithm works on the data histogram (hence, intensity 
values) and is not dependent on spatial position, therefore as a result the al­
gorithm can be applied equally successfully to any dimensioned data This is 
illustrated in Figure A 5 where the algorithm is successfully applied in 3D MRI 
images This aspect is examined further in Section A 3 where the results are used 
m conjunction with a diffusion based filtering [54, 115] to extract some clinically 
relevant regions from the images

It is worth noting that statistical classification of pixels is a more appropriate 
way to segment medical images as the standard region growing technique will fail 
to produce appropriate results in images that exhibit a low signal to noise ratio 
(SNR) Also, medical images generally show good separation between significant 
regions as this is one of the aims in the acquisition This is application dependent 
some common medical applications are investigated in the following section

A 3 Applications in Medical Imaging

One of the key indicators of cardiac health is left ventricle ejection fraction, a 
measure of the volume of blood pumped from the left ventricle with each heart-
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(c) (d)

Figure A 3 Figures show an coronal slice from a brain MRI (a) shows the original 
image (b) indicates the manually selected areas (c) represents the results after 
applying the EM using the manually picked initialisation and (d) is the result 
after applying the automatic seed picking

beat[48] Cardiac cine MRI is a standard procedure where 3D volume images are 
acquired at gated temporal positions through the cardiac pumpmg cycle Such 
images are frequently taken using gradient echo imaging, which exhibits a rela­
tively high differentiation between the blood and the myocardium Figure A 6 
shows the end-diastole segmented left ventricle blood-pool after the application of 
the EM algorithm to identify the left ventricle cavity Figure A 6(e) is a rendered 
volume of the blood pool inside the cavity of the left ventricle when the muscle 
is at its end-diastole phase
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Table A 2 Changes in cluster means in the brain data

Manual ¿¿’s Manual ¿¿}s after EM Automatic /x’s Automatic /¿’s after EM

v(0) 164 6 123 922 116 117 66

v ( l ) 131 18 120 03 96 97 8356

*(*) 23 2 03 13 2 07

»(3) 66 59 33 01 44 27 48

f*(4) 90 1 94 49 73 70 836

n(5) 164 21 194 81 153 140 6223

Figure A 4 Figures show a coronal slice from a section of a full body MRI (a) 
shows the original image (b) indicates the manually selected areas (c) represents 
the results after applying the EM using the manually picked initialisation and
(d) is the result after applying the automatic seed picking

The classification of brain MRI’s white matter, gray matter, cerebrospinal 
fluid and in some cases lesions, is a fundamental first step for surgical planning, 
radiotherapy planning and the identification of brain disease [180] Illustrated m 
Figure A 7 is a segmentation of white matter of the brain 
The accurate measurement of body fat from whole-body MRI images is becoming 

an increasingly important metric as high body fat level is recognised to play a
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Table A 3 Changes m cluster means m the whole body data

Manual ¿¿’s Manual ¿¿’s after EM Automatic ¿¿’s Automatic ¿¿’s after EM

n(0) 170 92 169 4365 183 178 41

»(1) 42 29 44 45 52 50 484

»(2) 3 84 4 177 5 4 27

,x(3) 123 61 118 868 151 153 720

»(4) 95 35 82 99 124 121 496

H(5) 57 2 55 897 92 85 687

significant role in a variety of serious health problems [18] MRI is the modality of 
choice due to its repeatability and high spatial resolution Figure A 8 illustrates 
the results from one section of a whole-body MRI dataset where the fat tissue 
has being segmented out of the volume

The developed method shows appropriate results with respect to the gray scale 
values for all datasets From these results we can conclude that this approach 
offers robust, reproducible and accurate estimation of the initial parameters for 
the EM algorithm and the segmentation scheme described is capable of providing 
useful clinical measurements when applied to a large range of medical datasets
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tom atic seed initialisation for the Expectation-M aximisation algorithm  
and its application m 3D medical imaging Journal of Medical Engineering 
and Technology (Accepted -  awaiting publication)

Conference Publication

Michael Lynch, Ovidiu Ghita and Paul F Whelan (2005), Autom atic Seed 
Picking Algorithm for Region-Based Segmentation of Cardiac MRI Im­
ages, European Society of Cardiac Imaging, ESCR 2005, October 2005, Zurich, 
Switzerland
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(a) (b)
Figure A 5 3D space partitioning using EM Images show a single slice of a 
3D dataset from (a) the original volume, (b) after segmentation with the EM 
algorithm
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(e )

Figure A 6 Images show slices 1 ((a) and (b)) and 4 ((c) and (d)) from the 
original volume (left) and with left ventricle blood cavity segmented (right) and 
(e) shows the rendered volume of the segmentation
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(e)

Figure A 7 Images show slices 1 ((a) and (b)) and 14 ((c) and (d)) from the 
original volume (left) and with segmented white matter (right) and (e) shows the 
rendered volume of the segmentation
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(c) (d)

(e)

Figure A 8 Images show slices 2 ( (a) and (b)) and 6 ((c) and (d)) from the 
original volume (left) and with body fat segmented (right) and (e) shows the 
rendered volume of the segmentation



Appendix B

Level-set Segmentation for 
Candidate Polyp extraction in 

CTC

The extraction of candidate polyps from Computer Tomography Colonography 
(CTC ) is a primary and important step in candidate polyp classification, where 
polyps are a precursor to colon cancer Such a classification step is necessary 
due to the high frequency of false positive polyp detections which are apparent m 
previous computer aided diagnostic techniques Previous work m this area uses 
curvature constraints on candidate polyps to establish morphology [176] This 
type of classification encounters difficulty when determining folds, a naturally 
occurring instance in the colonography exam In this work, we have used surface 
normal intersection to determine possible polyp candidates, we then proceed to 
segment the polyp using a level set curve evolution algorithm to extract an ac­
curate segmentation of the polyp features Results are presented using point to 
surface error and the reduction m false positives after the extracted surfaces were 
classified using a statistical classifier

Much of the previous work m polyp extraction uses local curvature and shape 
constraints to determine polyp candidates and to establish morphology [154, 178, 
72] This type of classification encounters difficulty when determining folds, a 
naturally occurring instance in the colonography exam Yao et al [176] proposed 
a segmentation of method which used a knowledge guided deformable model to 
extract the surface of the polyp and compared it to manual segmentation of

141
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experts The knowledge was provided by the curvature of the deformable model 
and the signal intensities of the pixels surrounding the polyp The segmentation 
was performed m 2D and the 2D images were combined together to create the 
local 3D volume

B 1 Convex Surface Extraction

Initially, the colon is segmented using a seeded 3D region growing algorithm that 
was applied to segment the air voxels, which assures the robust identification of 
the colon wall In some situations the colon is collapsed due to either insufficient 
msuflation or residual water In order to address this issue we have developed 
a novel colon segmentation algorithm that is able to correctly identify the colon 
segments using knowledge about their sizes and location withm the body in all 
imaging conditions After the identification of the colon wall, for each colon wall 
voxel the surface normal vector is calculated using the Hummel-Zucker operator 
[182] The normal vectors sample the local orientation of the colonic surface 
and the suspicious candidate structures that may resemble polyps are extracted 
using a simple convexity analysis In this regard, the colonic suspicious surfaces 
have convex properties and are determined using the 3D histogram and Gaussian 
distribution of the Hough points (full details about this developed algorithm can 
be found m [29]) This method is able to correctly identify all polyps above 3mm 
but it is worth nothing that this is achieved at a cost of high level of false positives 
In order to reduce the level of false positives, the surface is extracted using a 
level-set method and the results are classified using a statistical morphological 
features

B 2 Level-Set Initialisation Fast-Marching Algorithm

As previously outlined m Chapter 5 formulation of the problem is conceptually 
simple The evolving curve or front T, evolves as the zero level-set of a higher 
dimensional function <fi This function deforms with a force F  that is dependent 
on both curvature of the front and external forces in the image The force acts 
m the direction of the normal to the front

(¡>t +  F\V<j>\ = 0
' ' ( B l )

<j)(x, y, i = 0) = given

The implementation employed is a standard two step approach which includes
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Convex surface 
extraction

Candidate Polyp 
centers

FastMarching 
and
Level-set

Surface
Classifier

f  Polyp j  (Non-Polyp)

Figure B 1 Flow-chart of proposed algorithm

a fast-marching initial step to speed up the segmentation Fast marching is a 
special case of the above equation where F(x ,  y) > 0 Let T ( x , y) be the time 
that the front T crosses the point (x , y) The function T ( x , y) then satisfies the 
equation,

| VT|F = 1  (B 2)

which simply says that the gradient of the arrival time is inversely proportional 
to the speed of the surface The T  function is evaluated using the diffusion and 
attraction to pixels within the front The front grows out from its initial position 
to points with the smallest value of T(x ,  y) The T(x ,  y) function is then updated 
and continued until the front does not grow

B 3 Level-Set Analysis

The theory behind level-set segmentation is largely based on work in partial dif­
ferential equations and the propagation of fronts under intrinsic properties such 
as curvature [108, 133, 41, 74] By extending the dimensionality of the problem 
to N+l,where N is the initial dimension of the problem, some advantageous prop­
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erties can be exploited Representing the boundary as the zero level set instance 
of a higher dimensional function <f), the effects of curvature can be easily incor­
porated <j> is represented by the continuous Lipschitz function 0(s, t = 0) =  ±d, 
where d is the signed distance from position s to the initial interface To (see Equa­
tion B 3) The distance is given a positive sign outside the initial boundary ( D ft 
), a negative sign mside the boundary ( Q \dQ  ) and zero on the boundary ( d f l )

<p(s) =

- d  'is e n \  an
0 Vs e dfl (B 3)

+d  Vs e \  n

From this definition of </>, intrinsic properties of the front can be easily deter­
mined, like the normal ft —

Since curvature of the polyp should be a pertinent factor in the segmentation 
evolution, particular emphasis is given to this measure The mean curvature (H), 
is connected to the physical evolution of soap bubbles and the heat equation 
While smooth, it may not necessarily be convex and can lead to singularities

b - v  i ^ i  m

Gaussian curvature (K), has also being used to model physical problems such 
as flame propagation It has being shown that a convex curve evolves to a point 
under curvature evolution, but it can also be shown that evolution of non-convex 
surfaces can be unstable [7]

K =  —L. (B 5)V ^ A d j (H(0))V4>
|V0|

where H(0) is the Hessian matrix of and Adj(H) is the adjoint of the matrix H

Due to the characteristic curvature features of polyps it is proposed to use 
Neskovic and Kimia’s [106] measure of curvature, which involves both mean and 
Gaussian In this approach, the direction of flow is obtained from the Mean 
curvature while the magnitude of the flow is dictated by the Gaussian curva­
ture This is appropriate as the Mean curvature alone can cause singularities and
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extracts the strictly convex surface of the polyp candidate

k =  sign{H) y jK  +  \K\ (B 6)

Using this value for the level set is iteratively updated within a defined 
narrow band around the segmented boundary to increase efficiency The following 
equation details the update parameters

&+ 1= &  +  M l-* * ) |V 0 |+ /3 V / V0 (B 7)

where e and beta are user defined parameters (see Table B 1), « is  the curvature 
term defined in Equation B 6 and kj is the gradient dependent speed term and 
is given by 1q^j The third term, V / V<jb represents the attractive force vector 
normal to the front The level-set segmentation is performed m 3D

Possible polyp candidate centres are calculated over the entire data set by 
calculating the normal vectors at each voxel on the lumen wall Polyp candidates 
are defined as regions of high convexity, therefore the centres for possible polyp 
candidates are located at points that contain high concentration of normal inter­
sections [29] s

The level set is initialised at the polyp candidate centres and grows outwards 
until a boundary is encountered The convex surface is maintained by placing a 
high influence on the curvature parameter (see Figure B 2) Once the level-set 
has converged or completed its iterations, the surface of the polyp candidate is 
taken as all boundary points that have an associated gradient This ensures that 
just the lumen surface is extracted

Figure B 2 Extracted polyp surface (dotted) using the levelset approach based 
on curvature
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B 4 Classifier

Once the true surface of the polyp candidates has being extracted, they are passed 
to a classifier to determine whether they are polyps or folds The classifier is a 
statistical model of known polyps and folds and uses statistical features of the 
candidates morphology such as least squares ellipsoid fitting error, normalised 
distribution of the surface curvature and the Gaussian sphere radius [29] These 
features are used to classify the candidate polyp surfaces into polyps or folds using 
a feature normalised nearest neighbour classification scheme [55] The classifier 
was trained with 64 polyps and 354 folds that were selected as true positives by 
a radiologist

B.5 Results

The segmentation algorithm described above was performed on 10 full CTC data 
set, converted to isotropic dimensions using cubic interpolation Visual represen­
tations of the segmentation are shown m Figure B 3 and the extracted surface 
renderings are shown m Figure B 5 Table B 1 lists the user defined parameters 
used in the level-set algorithm From this table it can be seen that curvature is 
given a large influence to maintain the convexity of the polyp candidate surface 
The narrow bandwidth is given a small value of 10 to increase the efficiency of 
the update

A classifier, trained on expertly categorised unseen data, is then used to 
determine whether the extracted surface is classified as polyp or non-polyp Small 
folds in the colon lumen are the mam cause of detecting a false positive It can 
be clearly seen in Figure B 5 that fold surface is extracted is saddle shaped and 
thus can be easily classified using its shape characteristics

Table B 2 shows the measured point-to-curve error between the automatic 
segmentation results against those found from a manual segmentation o f lthe 
small number of polyp candidates Indicated on the table are the average error, 
standard deviation of the error and the root-mean-square of the error This error 
is measured m pixels where each pixel has sub-millimeter dimensions

Table B 3 gives the results from 10 datasets (9 patients) containing 31 polyps 
From the high number of polyp surface candidates, a relatively low number are 
detected The results show a sensitivity of 100% for all polyps >10mm Normally, 
m a clinical situation, polyps below 5mm have less clinical significance One 
cause for our method missing smaller polyps, are their low curvature difference 
between the polyp and the colon wall, therefore some colon wall is taken into
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(a) 0>)

(c) (d)

Figure B 3 Images above show the segmentation of the convex polyp candidate 
The bottom left image shows the segmentation of a fold

Table B 1 Control parameters used in the level-set segmentation

Control Parameters Values
Fast-Marching Iterations 3
Level-set Iterations 10
Level-set e 05
Level-set (3 0 08
Level-set Narrow bandwidth 10

Table B 2 Pomt-to-curve errors between manually segmented data and our 
method

Error Average Std Dev RMS
0 298 0 587 0 661
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Table B 3 Performance Analysis for Polyp Classification True positive (TP) 
and False Positive (FP)

Size Detected Missed
>10mm 10 0
5-10mm 9 1
< 5mm 2 20

the candidate surface (see Figure B 6 and Figure B 4) The false positives per 
dataset was calculated to be 1 3, which compares favorably with figures reported 
to literature

Figure B 4 Extracted polyp surface (dotted) for a small polyp, note the inclusion 
of healthy colon lumen

(a) (b) (c)

(d) (e) (f)

Figure B 5 Images above show the polyp candidate renderings of the extracted 
surface Figures (a)-(c) show correctly classified polyps, where Figures (d)-(f) 
show correctly classified folds
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Figure B 6 One of the <5mm polyps misclassified due to the inclusion of colon 
wall in the surface extraction

Publications associated with this chapter 

Conference Publication

Michael Lynch, Tank Chowdhury, Ovidiu Ghita and Paul F Whelan (2005), D e­
termining Candidate Polyp Morphology from CT Colonography using 
a Level-Set M ethod, European Medical and Biological Engineering Conference 
EMBEC 2005, November 2005, Prague, Czech Republic



Appendix C

Mathematical Background

C 1 LMS Circle

Using the Least Squares solution a circle is fitted around a collection of points, 
with images coordinates, (xt , yx) for i = 1,2 N

A circle is defined by three parameters These parameters are the coordinates 
of its centre (xo, yo) and its radius r  The equation of a circle can be written iso­
lating these three parameters as follows

^ 2xt 2yt 1 ^

x0

yo

\

X o - V o  }

= ( )

In order to find these three unknowns a linear least squares solution is obtained 
where

^ 2xi 2yi ^ A  + y\  ^

2^2 2V2 1 A  +y%
A  = 2X3 2y3 1 ,b = x l  +  y§

 ̂ 2x n 2 Vn 1 ) { x Ìj +y% J

The best fitting circle for the points Pt is the least squares solution to [zo yo r2-  
xq — vt\T = (ATA)~1ATb where (ATA)~1ATb can be written as
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4 E  x xy x 2 £ z ,
- 1

'  2 £ * ?  +  2 E * . y ?  '

4 E  XxV* 4 £ y ? 2 E s / . 2 E ^ 3 +  2 £ > ? y t

\  2 £ > I 2 £ y x N  J  ̂ E  +  E  v i j

The error of this least squares solution can be calculated as the difference between 
the area of the fitted circle and the area of concentric circles passing through the 
data points with the equation ecircie =|| A{x0 yo r2 -  x§ -  y%] -  b ||

C 2 LMS Ellipsoid

To determine the left ventricle cavity after the application of 3D clustering, the 
error between each segmented shape and a fitted ellipsoid is found The radii of 
the ellipsoid are calculated using the eigenvalues of the covariance matrix from 
the lists of points that define the surface of the shape

&xy &XZ
spN — 1 (x—x)2 
2-^n= 0 N

V^AT-1 (x-x)(y-y)  
Z-*n=0 N

TV — 1 (x—x)(z—z) 
2 ^ n = 0  N

C = a xy °V a yz = (x-x)(y-y)  
¿-¿n= 0 N

r W - i  ( y - y f
¿ ^ n = 0 AT

TT 'N - 1 (y-y ) ( z - z )
Z_m=0 N

&XZ &yz ° z
sr-iN — l (x—x)(z—z) 

[2 ^ n = 0  N
p A T -1  (y-y)(z~z ) 
l ^ n = 0 N

1 ( i - f ) 2
Z ^ n = 0 N  J

(C 1)
Based on work by Pearson, principle component analysis (PCA) chooses the 

first ellipsoid axis as the line that goes through the centroid, but also minimizes 
the square of the distance of each point to that line, see figure C 1 The line is 
a correlation of the points along the data’s principle axis Equivalently, the line 
goes through the maximum variation m the data

The second PCA axis also must go through the centroid, and also goes through 
the maximum variation in the data, but with a certain constraint It must be 
completely uncorrelated (i e at right angles, or ‘orthogonal’) to PCA axis 1 The 
ellipsoid is an extension of this PCA to 3D finding the three principal axes

C 3 Splines

A closed natural cubic spline is fitted around the points on the epi-cardium [144] 
The spline is used to close the epi-cardium contour by connecting all the points
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Figure C 1 The two principle axes of a two dimensional data set are plotted and 
scaled according to the amount of variation that each axis explains

on the curve m a smooth way

Splines are piece-wise polynomials of degree n (n = 3 in the case of cubic 
splines) with the pieces smoothly joined together The joining points of the 
polynomial pieces are called control points which need not be evenly spaced 
These control points are defined as a collection of points Pt where i = 1,2,3 N  
and N  is the number of points It works by fitting a cubic curve between each 
pair of points in the collection Smoothness of the curve is maintained by forcing 
the first and second derivative of the end point of one curve to equal the start of 
the next curve This is achieved by solving a system of simultaneous equations 
The equation is illustrated below

f t(x) = ax + biU + ctu2 + d*u3

0 < u <  1 

1 < % < n

Where i is the amount of points on the curve and u is the number of steps m 
between each point The coefficients of the cubic equation are,
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The derivatives used m to smooth the curve are computed as follows

( D[0] ^ 4 1
— 1

( 3 (x i  -  x „ )  ^

£>[11 1 4 1 3(X2 “  So

=
1 4 1

1 4 1 3(xn X n  — 2
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Abstract

Cardiac morphology is a key indicator of cardiac health Important metrics that 
are currently m clinical use are left-ventricle cardiac ejection fraction, cardiac 
muscle (myocardium) mass, myocardium thickness and myocardium thickening 
over the cardiac cycle Advances in imaging technologies have led to an increase 
in temporal and spatial resolution Such an increase in data presents a laborious 
task for medical practitioners to analyse

In this thesis, measurement of the cardiac left-ventricle function is achieved 
by developing novel methods for the automatic segmentation of the left-ventricle 
blood-pool and the left ventricle myocardium boundaries A preliminary chal­
lenge faced m this task is the removal of noise from Magnetic Resonance Imaging 
(MRI) data, which is addressed by using advanced data filtering procedures Two 
mechanisms for left-ventricle segmentation are employed

Firstly segmentation of the left ventricle blood-pool for the measurement of 
ejection fraction is undertaken m the signal intensity domain Utilising the high 
discrimination between blood and tissue, a novel methodology based on a sta­
tistical partitioning method offers success m localising and segmenting the blood 
pool of the left ventricle From this initialisation, the estimation of the outer wall 
(epi-cardium) of the left ventricle can be achieved using gradient information and 
prior knowledge

Secondly, a more involved method for extracting the myocardium of the left- 
ventricle is developed, that can better perform segmentation in higher dimen­
sions Spatial information is incorporated m the segmentation by employing a 
gradient-based boundary evolution A level-set scheme is implemented and a 
novel formulation for the extraction of the cardiac muscle is introduced Two 
surfaces, representing the inner and the outer boundaries of the left-ventricle, are 
simultaneously evolved using a coupling function and supervised with a proba­
bilistic model of expertly assisted manual segmentations

Finally, to fully utilise all data presented from a smgle 4D cardiac (3D +  t) 
MRI scan a novel level-set segmentation process is developed that delineates and

x v



XVI A BSTRAC T

tracks the boundaries of left ventricle By encoding prior knowledge about car­
diac temporal evolution m a parametric framework, an expectation-maximisation 
algorithm tracks the myocardium deformation and iteratively updates the level- 
set segmentation evolution m a non-rigid sense

Both methods for the extraction of cardiac functions have been tested on pa­
tient data and provide positive qualitative and quantitative experimental results 
when compared against expertly assisted segmentations



Chapter 1

Introduction

An estimated 17 million people die annually from Cardiovascular Disease (CVD) 
In general, CVD claims more lives each year than the next five leading causes of 
death combined The World Health Organisation’s 2002 report [119], states that 
29 3% of deaths m its 191 countries were as a result of CVDs It is these alarming 
statistics that has initiated the substantial research into accurate measurements 
of the heart for the determination of cardiac health through diagnostic imaging 
The diagnosis and monitoring of cardiovascular disease, and the planning for ap­
propriate treatment relies on accurate imaging, analysis and visualisation of the 
heart

Advances m diagnostic imaging technology, in particular Computer Tomog­
raphy (CT) and Magnetic Resonance (MR), has enabled greater amounts of in­
formation, in both the spatial and temporal dimensions to be generated This 
high-resolution volumetric data, as a function of time, can give important phys­
iological information about the heart The increase m data available has made 
the hand annotation performed by the physician a very time-consuming task 
This has pushed the advancement toward semi-automated and fully-automated 
approaches to quantify the results obtained from these high resolution scanners 
A substantial amount of research is focusing on the accurate measurement of 
shape, volume and shape dynamics of the heart structure This thesis develops 
the methodology for the automatic, quantitative and clinically relevant cardiac 
analysis m multidimensional data

1
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Quantitative measurement of the left ventricle of the heart is used as a key indi­
cator of cardiac health The left ventricle is important as it pumps oxygen-rich 
blood around the body The increased volume of data generated by the latest 
medical scanners presents a vast amount of high resolution volumetric data to 
be interpreted by the specialist Interpreting and analyzing this large amount of 
data represents a tedious and time-consuming task for the cardiologist Manual 
or highly supervised tracing of the cardiac boundaries is a widely used method 
to segment the left ventricle myocardium in current clinical studies In one such 
scenario, a skilled operator, using a tracking ball or a mouse> manually traces 
the region of interest on each shce of the volume [100, 46, 164] Manual slice 
editing suffers from many drawbacks These include the difficulty in achieving 
reproducible results, operator bias, forcing the operator to view each 2-D slice 
separately to deduce and measure the shape and volume of 3-D structures, and 
operator fatigue Since manual segmentation is labour-intensive, time-consuming 
and can suffer from inter- and intra-observer variability, the prospect of an au­
tomatic and accurate segmentation is highly desirable Automatic segmentation 
will therefore enhance comparability between and withm cardiac studies and 
increase accurate evaluation of volumes by allowing acquisition of thinner MRI- 
slices

1.1 Motivation

1.2 Aims

The mam objective of this thesis is to outline the work carried out for the extrac­
tion of volumetric data and shape descriptors from MR images of the heart and 
to quantify the analysis against a standard of reference Analysis of the heart 
function is achieved through segmentation of the left ventricle (LV) Prom this 
accurate segmentation prognostic measurements used in the diagnosis of CVDs 
are obtained, these include the ejection fraction (EF) of the left ventricle cavity, 
left ventricle mass (LVM) of the myocardium and wall thickness and thicken­
ing (WT) of the left ventricle myocardium Therefore the expected outcome of 
the work is to assist the cardiologist in the prognosis of CVDs by delineating 
the true anatomical features present m the image and avoid making assumptions 
over reading what is present Cardiac Magnetic Resonance (CMR) is the imaging 
modality chosen for this study It is non-invasive, provides high temporal and 
spatial resolution and high contrast between blood and the myocardium
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This thesis describes the methodology that identifies the boundaries of the 
left ventricle of the heart with minimum user interaction The delineation allows 
for the calculation of key measurements that may show anomalous heart function 
and therefore may indicate CVD

1.3 Challenges

There are a number of challenges involved m the delineation of the left ventricle 
from MR image Medical images are acquired using the natural and unique re­
sponse of the bodies tissues to metabolic or nuclear changes These changes are 
not ideal and this introduces noise into the image acquisition process in the form 
of image distortions

Image distortions can be attributed to many factors, for example there is 
random image noise, blurring effects due to patient movement and coil intensity 
fall-off Added to this, is the heterogeneous properties of the tissues, partial 
voluming effects between the endocardium and the left ventricle blood pool, par­
ticularly at the apex and at end-systole due to the presence of t r a b e c u la e  c a m e a e  

In cme-MRI the variation of intensity withm a tissue is increased because it may 
take several cycles of inducing a signal followed by measurement to image the 
entire sequence This leads to gray-scale variations between image slices

In short, there are many challenges that prevent the accurate delineation of 
the left ventricle myocardium due to the presence of noise in the image, heart 
dynamics and uneven breath-holds The developed procedure must remove the 
ambiguous nature of the images while maintaining the strong anatomical features 
before an accurate segmentation is achieved

As previously mentioned, modern scanners create a large amount of data in 
both temporal and spatial domains Therefore the developed algorithms should 
utilise all the information available Anatomical structures are represented in 3D 
and therefore the segmentation process of such structures are most accurately 
extracted using 3D algorithms Temporal coherence can also be introduced to 
increase the robustness of the segmentation Prior knowledge is often used in med­
ical imaging analysis schemes to localise and extract anatomical features This 
thesis incorporates prior knowledge in the temporal domain as a generic measure 
of temporal coherence which is iteratively refined, as opposed to prior models
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encoded in the image domain where there may be large variation in anatomical 
morphology Hence, one of the largest challenges undertaken in this thesis is to 
incorporate both spatial and temporal information in a meaningful way to im­
prove the accuracy and robustness of the segmentation

1.4 Contributions

Based on the challenges outlined in the previous section, the major contributions 
of this work lie in the segmentation of the left ventricle myocardium in multidi­
mensional MRI data There are a number of stages that are adopted and these 
constitute the major contributions to this work

Firstly, m order to reduce the inherent noise associated with MRI images, 
a performance characterisation of advanced smoothing filters is performed The 
characterisation is performed in both 2D and in 3D

A novel method for segmentation and localisation of the left ventricle blood 
pool using an unsupervised clustering technique is presented m Chapter 4 This 
technique is approached in both a slice by slice and volume image context After 
the segmentation of the left ventricle blood pool cavity, an heuristic approach is 
developed to extract the outer walls of the myocardium in each image slice This 
technique is based on gradient information in the image and where such infor­
mation is lacking, a prior model of previously segmented myocardium images is 
incorporated into the segmentation While this approach gives favorable results 
in good quality data, introduction of temporal information into this framework 
is cumbersome Therefore a more involved approach is proposed that can easily 
incorporate extension to 4D data

Describing a contour as a particular instance of a higher dimensioned func­
tion in the Eulerian space has many advantages Firstly, errors associated with 
sampling of the contour are eliminated as the approach is non-marker based 
The deformation is numerically stable and has the ability to handle topological 
changes during the deformation In Chapter 5 a novel methodology of level-sets 
is introduced that evolves a coupled surface, representing the inner and outer wall 
of the left ventricle myocardium The deformation is guided using a probabilistic 
model of manual segmentations
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Finally, the Eulerian formulation of the level-set is exploited in a novel fash­
ion to extend the deformation m a supervised way to 4D A temporal model is 
constructed for each grid point m Eulerian space using prior knowledge about 
cardiac motion This parametric model is then iteratively refined during the seg­
mentation process to capture the myocardium boundaries This novel approach 
has many advantages Firstly, it performs a temporal smoothing of the segmented 
contours through the cardiac cycle that follows the temporal model from the user 
defined motion model Secondly, the model is defined in temporal space and is 
therefore free from the highly variable anatomical features of the cardiac muscle 
in image space The human left ventricle has a harmonic pumping motion which 
can be modelled for both healthy and unhealthy hearts and is relatively inde­
pendent of the highly variant cardiac anatomy Thirdly, initial estimates for the 
parametric model found through a fast marching algorithm and the parameters 
are then iteratively updated using an expectation-maximisation algorithm

Hence, segmentation of the left ventricle in cardiac MRI data is approached 
in a systematic way, at each step increasing the dimensionality of the problem 
and incorporating more knowledge and information in more involving method­
ologies Initial approaches are based on signal intensity values in 2D and 3D 
images for the segmentation of the cardiac blood pool followed by a 2D model 
assisted segmentation of the outer wall of the left ventricle myocardium In the 
second phase, a coupled deformation of surfaces is introduced for both the inner 
and outer boundary which is also guided by models of manually annotated mod­
els In the final stages, temporal information is introduced m a knowledge based 
way to model the left ventricle motion and ensure smooth temporal transition of 
segmented surfaces

1.5 Thesis Overview

This thesis details the progression of ideas for the segmentation of the left ventricle 
of the heart from multi-dimensional MRI data Based on the challenges outlined 
in the previous sections, the thesis details each of the steps

C hapter 2 gives a background to the problem This chapter deals mainly withI
cardiac anatomy, dynamics and clinically relevant measurements associated 
with diagnosing CVDs An introduction to some of the most common med­
ical imaging modalities, an in-depth discussion on MRI and the difference
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acquisition procedures And finally a brief overview of image processing 
and in particular on medical image analysis

Chapter 3 details the methods employed m image noise suppression The ad­
vantage of non-linear smoothing over linear smoothing is investigated m 2D 
before a performance characterisation of three non-lmear filters applied to 
MRI data is performed in 3D

Chapter 4 gives the particulars on how statistical based segmentation algo­
rithms can be used to accurately measure the left ventricle blood pool 
volumes and consequently the measurement of ejection fraction Heuristic 
methods for the segmentation of the outer boundary of the cardiac mus­
cle in 2D are detailed and deficiencies associated with this approach are 
discussed

Chapter 5 introduces boundary based methods as an alternative approach m 
order to circumvent some of the limitations of the statistical based ap­
proaches An overview of previous approaches are detailed Gradient based 
level-set segmentation approaches are proposed as an accurate method of 
segmentation m higher dimensioned data A novel method for the segmen­
tation of 3D-K (4D) is introduced This method employs a parametric prior 
model encoded m the temporal domain which is iteratively updated using 
a expectation-maximisation algorithm

Chapter 6 concludes the thesis, outlining the novel methods developed, dis­
cussing the results obtained and recommending how these approaches may 
be advanced or can be applied to other temporally variant anatomical struc­
tures

A ppendix 1 describes the application of an expect at ion-maximisation algorithm 
for partitioning data in medical images

A ppendix 2 details the application of the level-set algorithm to perform accu­
rate segmentation of polyps in CT colonography



Chapter 2

Background

This chapter gives a brief overview of three distinct areas involved in this project 
Firstly, an introduction to the heart, its function, some terminology and the clin­
ical measurements that are to be extracted from cardiac specific images acquired 
of the thorax Next, an overview of the imaging modalities used in cardiac imag­
ing, moving to explain why MRI is the chosen modality for this investigation 
This is followed by a discussion on the basics of MRI also mentioning the mam 
protocols m common use will ensue Finally, a background is given on work that 
has being investigated in the image processing area and in particular in the field 
of medical imaging and cardiac analysis In this section a review is given of the 
most relevant literature published on the subject

2.1 The Heart

The heart can be thought of as the Upumping station” of the body Situated 
between the third and sixth ribs in the center of the thoracic cavity of the body, 
the heart is a hollow conically shaped muscle about the size of a clenched fist, 
12-13cm along its major axis and 7-8cm at its widest point [101, 58] It rests 
on the diaphragm between the lower part of the two lungs Its function is to 
pump oxygen and nutrient rich blood around the cardiovascular system, where 
it supplies the oxygen to the cells The de-oxygenated blood then returns to the 
heart before being pumped to the lungs to collect more oxygen The oxygen-rich 
blood then proceeds back to the heart before it is sent around the cardiovascular 
network again

7
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The heart is a hollow muscle that is divided internally into four separate cham­
bers The heart muscle itself is divided into three layers, the e p i - c a r d i u m  is the 
outer protective layer, the middle muscular layer is referred to as the m y o c a r d i u m  

while the inner layer is known as the e n d o - c a r d iu m

The heart is divided down the cen­
ter with a strong muscle wall called 
the m t e r a t n a l - m t e r v e n t n c u l a r  s e p ­

t u m  into a cylindrical left side 
and a more crescent shaped right 
side The right side of the heart is 
again divided m two with the upper 
atrium or auricle separated from the 
lower ventricle with a one-way valve 
called the - T r i c u s p i d  valve Simi­
larly, the left side is divided into the 
left-artnum and left-ventricle with 
the B i c u s p i d  or m i t r a l  valve In 
order of size, the left-atrium is the 
smallest chamber, holding approx­
imately 45m/ at rest, and having 
a wall thickness of approximately 
3m m  This is followed by the right-atrium, with a typical capacity of 63m/ 
and wall thickness of 2mm, the left ventricle with a 100m l  capacity and a wall 
thickness as high as 12mm and finally the right atrium which can hold up to 
130m/ with a wall thickness of 4mm The varying wall thickness is a result of the 
normal operating pressure of each of the chambers and is explained m the next 
section Each of the chambers has an associated major vessel either supplying 
blood or transporting blood away The left ventricle has the a o r t a , joined using a 
one-way a o r t i c  valve, the left atrium has the p u l m o n a r y  v e i n , the right ventricle 
has the p u l m o n a r y  a r t e r y  which is closed with the p u l m o n a r y  s e m i - l u n a r  valve 
while the right atrium is supplied from the s u p e r i o r  and i n f e r i o r  v e n a e  c a v a e  and 
the c o r o n a r y  s i n u s  Disease associated with the valves is mainly caused from c o n ­

g e n i t a l  abnormalities, degeneration or infection and can result m leakage through 
the valve In the most common type of valvular disease the m i t r a l  valve or a o r t i c  

valves are frequently affected With m i t r a l  d y s f u n c t i o n , the blood is allowed to

2.1.1 Morphology

Figure 2 1 Anatomy of the heart From 
Gray’s Anatomy [58]



2 1 THE HEART 9

regurgitate back to the left a t r i u m  increasing pressure in that atrium

Also present in both ventricles axe thin columns of muscle along its length, 
these are referred to as t r a b e c u la e  c a m c e  The papillary muscles are thm muscles 
protruding from the walls of both ventricles and are connected to their respec­
tive a t r i o v e n t r i c u l a r  valves Both the t r a b e c u la e  c a m c e  and papillary muscles are 
more pronounced m the left-ventricle

The heart itself needs to be supplied with oxygen-rich blood and the measure 
of blood supplied to the heart is called m y o c a r d i u m  v i a b i l i t y  Coronary circu­
lation is achieved through two mam arteries, the r i g h t  c o r o n a r y  a r t e r y  and l e f t  

c o r o n a r y  a r t e r y  Both of these arteries stem from the a s c e n d i n g  a o r t a  Blood is 
returned via the c o r o n a r y  s in u s  Over time, the c o r o n a r y  a r t e r i e s  may become 
clogged from a build-up with f a t ,  c h o l e s te r o l , t r i g l y c e r i d e s  and c a lc iu m  This 
build-up prevents the coronary arteries from functioning properly, and interferes 
with the delivery of an adequate supply of blood to the heart muscle Ninety five 
percent of all coronary artery disease is due to this a t h e r o s c l e r o s i s , the build-up 
of fatty substances The insufficient blood supply to the heart is called i s c h e m i a  

Myocarditis is inflammation of the myocardium, the muscular part of the heart 
It is generally due to infection (viral or bacterial) It may present with rapid 
signs of heart failure

For clinical evaluation of cardiac anatomy and motion, a standard left ventri­
cle representation has been developed [24] whereby the cardiac muscle is divided 
into 17 segments, Figure 2 2 These 17 segments creates a distribution of 35%, 
35% and 30% for the basal, mid cavity and apical thirds of the heart, which is 
close to the observed autopsy data

2.1 2 Dynamics

The heart has two distinct phases, d i a s t o l e  and s y s t o l e  The diastole, or filling 
cycle, occurs when the muscle relaxes and the left and right ventricles fill with 
blood from the respective atria, this can take 480 m s  of the complete 750 m s  

cycle During this cycle the tricuspid and mitral valves are open while the aor­
tic and semi-lunar pulmonary valves are closed When the end-diastole volume 
(EDV) has being reached the heart sends an electronic pulse for the systole cycle 
to start The systole phase is much shorter where the muscle contracts and closes 
the tricuspid and mitral valves while opening the aortic and pulmonary valves
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Figure 2 2 Diagram of the vertical long-axis, horizontal long-axis and short-axis 
planes showing the name, location and anatomical landmarks for the selection of 
basal, mid-cavity and apical short axis slices for the 17 segment system

Approximately half of the ventricles capacity is emptied during the systolic phase, 
the remainder is called the cardiac reserve volume The cardiac cycle is timed 
using the hearts own intrinsic nervous system and can survive m - v i t r o  for several 
hours The mam switch m the nervous system is called the S i n u s  N o d e , this 
triggers the A V  N o d e  which in turn connects to the B u n d l e  o f  H i s  to conduct 
the triggering pulse through the septum of the heart

The ventricular working pressures are much higher than atria pressures The 
left and right ventricles have an approximate working pressure of 140 m m H g  

and 40 m m H g  respectively, this gives rise to the left ventricle muscle being three 
' times thicker than that of the right ventricle

2.1.3 Measurements

The volumetric data acquired with time can produce a number of important mea­
surements that can indicate disease of the heart [48] While these descriptors are 
well documented in research literature [43] they are not always clinically assessed 
m everyday practice
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In practice, clinical measurements still rely on global volumetric measure such 
as left-ventricle end-diastolic volume (EDV), end-systolic volume (ESV) and mass 
(LVM) These are then used m conjunction with other measurements to calculate 
the stroke volume (SV), cardiac output (CO) and ejection fraction (EF) The in­
clusion of papillary muscles and trabeculations is still undecided and is usually 
dependent on the center performing the scan Recent research [138] has shown 
that the difference between subtracting and not subtracting the papillary muscles 
and trabeculations has little clinical relevance when calculating the left ventricu­
lar volumes and ejection fractions The extraction of the epi-cardium boundary 
aids the accurate measurement of wall thickening (WT) over the cardiac cycle, 
this can indicate areas with reduced contractibihty

• End-diastolic volum e (ED V ) and E nd-systolic volum e (ESV ) is the
amount of blood contained m the left ventricle at its maximum and mini­
mum respective capacities, measured in m l

• Left ventricle m ass (LVM) is an important indicator for left ventricle 
hypertrophy (LVH) LVH is an enlargement of the muscle fibers of the 
left ventricle, mamly around the interventricular septum LVH is a late 
complication of congestive heart disease and cardiac arrhythmias The LVM 
is measured to be the volume (cm3) enclosed by the epi-cardium boundary 
minus the left ventricle cavity and multiplied by the density of muscle tissue 
(1 05 g / c m 3 )

L V M  =  1 05 x ( V e p t -  V e n d o )  (2 1)

• Stroke Volum e (SV ) is the volume (cm3) of blood ejected from the left 
ventricle between the end-diastole and the end-systole This value can then 
be normalised to body surface area and called the stroke-volume index 
(SVI)

S V  =  V e n d o i t ü )  -  Vendors)
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where V end0 is the volume of the left ventricle cavity, V end o {p D )  =  ^ ^ t [ V en d0 ( t ) ]  

at end-diastole and V end0 ( t s )  — r n i n t \ y end0 ( t ) \  is the end-systole

• E jection Fraction (EF) is the percentage of blood ejected from the left 
ventricle with each heart beat, and can be represented by the equation

EF(%) =  x 100 (2  3)
Vendo (¿Z ?)

Cardiac output (CO) is the amount of oxygenated blood supplied to 
the body ( m l / m m )  This can be normalised to the body surface area and 
called the cardiac index (Cl) The calculation is shown in Eq 2 4 where HR 
is the heart rate

C O  =  ( V en d 0 ( t D ) -  V en Jo{ t s ) )  x H R  (2 4)

• W all thickening (W T ) is the measurement of the myocardium thickness 
over time ( m m t )  This can give a direct indication to the myocardial viabil­
ity and therefore can forecast i s c h e m i c  disease The wall thickness can be 
computed using the centerline method, along lines that are perpendicular to 
a curve that is equidistant from both the endo- and epi-cardial boundaries

2.2 Imaging Modalities

In this section the reader is given a brief introduction into the imaging modalities 
that are commonly used for cardiac analysis A brief description of each method 
is given along with their advantages and disadvantages This is followed by a 
brief discussion on the suitability of MRI in cardiac analysis, a more in-depth 
background describing some of the physics involved and the different protocols 
in clinical use

2.2.1 X-Ray with Angiocardiology

X-ray angiocardiography (XRA) is a projection image of the left ventricle usually 
in the oblique view after a contrast agent has being injected into the ventricle via 
a pigtail catheter In XRA the contrast agent is not uniformly spread throughout



2 2 IMAGING MODALITIES 13

the left ventricle because of the dilution with blood at the mitral valve It may 
not reach to the apex of the heart and there is also a limitation on the amount of 
contrast agent used due to the risk to the patient Surrounding structures such 
as ribs can be removed from the image using Digital Subtraction Angiography 
(DSA) DSA involves a temporal subtraction where the image obtained without 
a contrast agent is subtracted from the contrast image Complications associated 
with cardiac angiography are c a r d i a c  a r r h y t h m i a s  (irregular heartbeat) and e m ­

b o l i s m  (by dislodging plaque from the artery wall while treading the catheter) 
XRA can be used for the calculation of the ejection fraction using geometric ap­
proximations [43] but cannot be used for the calculation volumes or delineating 
the epi-cardial boundary

2.2.2 Cardiac Ultrasound

Cardiac ultrasound is a tomographic imaging system, it is relatively cheap, non- 
mvasive and can image on arbitrary planes [24] It gives low contrast when 
compared to MR and X-ray, cannot image through gaseous mediums and has a 
low signal-to-noise ratio due to frequency attenuation in the tissue The signal- 
to-noise ratio is further reduced m cases where the patient presents obesity 3D 
ultrasound [88, 125] has being introduced and can quantify ventricular volumes 
and myocardium mass without the need for geometric models Ultrasonographic 
heart images suffer from the need for acoustic windows, operator subjectiveness 
and are often characterised by weak echoes, echo dropouts and high levels of 
speckle noise causing erroneous detection of the LV boundaries

2 2.3 SPEC T/PET

Single-photon Emission Computed Tomography (SPECT) and Positron Emission 
Tomography (PET) scans are part of the non-mvasive nuclear imaging techniques 
SPECT was introduced in the 1970’s and is used to detect subtle metabolic 
changes m the organ under investigation PET was introduced shortly after 
SPECT because of its increased temporal resolution Both methods work by the 
injection of radionuclides (radioactive isotopes) into the organ under investiga­
tion These radionuclide tracers are absorbed at different rates by the healthy 
and dysfunctional muscle While these methods are good for the measurement of 
metabolic changes, the resolution does not lend to the delineation of anatomical 
structures in the image
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2.2 4 Computer Tomography

A traditional X-Ray Computer Tomography (CT) scan is an X-Ray procedure 
which combines many X-Ray images with the aid of a computer to generate 
cross-sectional views of the body CT is increasingly used in cardiac analysis It 
provides increasing resolution m data with the introduction of the 64 slice CT 
and is particularly useful for evaluating coronary atherosclerosis With conven­
tional CT, cardiac motion causes blurring and artifacts in the image but advances 
such as Electronic Beam Computer Tomography (EBCT), Ultrafast® and Dual- 
Source CT have increased the acquisition time sufficiently to capture the beating 
heart These approaches can be gated to capture information at a precise phase 
m the hearts cycle However CT suffers from low contrast between soft tissues 
like blood and myocardium and the patient is exposed to ionising radiation

2 2 5 Magnetic Resonance Imaging

Magnetic Resonance Image (MRI) was first introduced in medical imaging in 
1971 Since its introduction cardiac magnetic resonance (CMR) has progressively 
improved with increased spatial and temporal resolution CMR is considered by 
some authors [43, 128, 130] to be the standard of reference for evaluating the 
cardiac function MR has proved to be more accurate than echo-cardiology and 
cardiac angiography m the calculation of the ejection fraction and also has shown 
superior results m endo-cardium border segmentation [128] MRI boasts a wide 
topographical field of view and high contrast between soft tissues without the 
need for a contrast agent It is non-invasive with high spatial resolution and 
can be gated using an e le c t r o c a r d io g r a m  (ECG) at different phases during the 
hearts pulse [158, 102] However, it can suffer from noise and grey scale variation 
between adjacent slices More details are discussed in the next section

2 .3  M R I for C ardiac Im aging

Cardiac Magnetic Resonance (CMR) has very clear advantages over the other 
imaging modalities, discussed in the previous section It has proved to be more 
accurate [43] for the evaluation of cardiac function measurements due mainly to 
its independence from any geometric assumptions about the ventricle shape and 
can be used without the need for a contrast agent Cine-MR has being introduced 
to capture a collection of images over one or several phases of the caxdiac cycle 
MRI tagging has been introduced to obtain heart twist through the cardiac cycle
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The use of MRI has many benefits over other types of acquisition

• Images of soft-tissue structures such as the heart and major vessels are 
clearer and more detailed when compared to other imaging methods

• The detail of MRI makes it an invaluable tool m early detection and eval­
uation of coronary disease

• Even without the use of contrast material, MRI often shows sufficient detail 
of the heart to be valuable m diagnosis and treatment planning

• When it is used, MRI contrast material is less likely to produce an aller­
gic reaction than the iodine-based materials used for conventional X-Rays 
and CT scanning and does not contain the radioisotopes used in nuclear 
medicine exams

• MRI enables the detection of abnormalities that might be obscured by bone 
tissue with other imaging methods

• MRI provides a fast, nomnvasive and often less expensive alternative to 
other techniques of cardiac diagnosis

• MRI can help physicians evaluate the function, as well as the structure, of 
the heart muscles and valvesI

• MRI does not require exposure to radiation or the introduction of radioiso­
topes in the body

• MRI has the advantage that images can be obtained from arbitrary planes 

The use of MRI also has the following associated risks or limitations

• An undetected metal implant may be affected by the strong magnetic field

• MRI is generally avoided m the first 12 weeks of pregnancy Doctors usually 
use other methods of imaging such as ultrasound on pregnant women, 
unless there is a strong medical reason to conduct an MRI exam

In this section an overview of the basic physics of MRI is given to the reader, 
the imaging planes used in a conventional heart examination are shown and 
finally the different protocols that have being introduced with their advantages 
and disadvantages



16 CHAPTER 2 BACKGROUND

MRI applies a Radio Frequency (RF) excitation pulse to the protons that sit m a 
static magnetic field When the protons return to a state of equilibrium they emit 
a quantified energy as an RF signal This signal is then collected and analysed 
On the scan this corresponds to high intensity meaning high signal collected by 
that group of protons

MR uses the magnetisation effects of hydrogen to create the intensity map, 
or image Hydrogen is an abundant atom m almost all biological systems As 
can be seen in figure 2 3 these atoms do not naturally align in any particular 
direction but instead spin around their own axes m arbitrary orientations and 
therefore the magnetic effect is negligible If however, a strong static magnetic 
field B o  is applied to these atoms they align themselves either m the parallel 
or anti-parallel direction to the direction of the field (in most cases they align 
parallel) The atoms do not strictly align parallel to the magnetic field but at a 
small angle 9 , or flip-angle, and precess around the magnetic field at a frequency 
/ ,  or the Larmor frequency If an external frequency B \  is pulsed at the Larmor 
frequency perpendicular to B o  the atoms absorb the energy and tend to precess 
away from Bo and toward B \  momentarily When the pulse has finished the atom 
returns to the static magnetic field and releases the energy as a small RF signal 
This signal is collected and used to produce the image T E  is the echo time, the 
time at which the signal echoes are obtained after the excitation pulse T R  is the 
repetition time, the time in which the excitation pulse is repeated to obtain the 
image lines

In order to locate the position of the signal spatially, a third magnetic field 
called a gradient magnetic field that varies the magnetic field strength with re­
spect to its position is applied The most common type of reconstruction used 
to create the image is a two-dimensional Fourier transform Measurements are 
taken at important relaxation times T 1 and T2 T 1, or spin-lattice relaxation 
time, is the settling time for the atoms to return to equilibrium after being dis­
turbed by the RF pulse while T2, also called the spin-spin relaxation time, is 
the decay of the RF signal after it has being created, both these measures are 
tissue dependent which gives the MRI its ability to distinguish between different 
tissues in the body For example water has a longer T 1 time when compared to 
fat because it does not give up its energy as quickly as fat, similarly water has a 
longer T2 time when compared with fat Using these and other properties a host

2.3.1 MRI Physics
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of different imaging protocols have being devised to optimize image quality
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Figure 2 3 The basics of MRI Figure (a) shows random hydrogen atoms, (b) 
shows the aligned atoms after the introduction of a static magnetic field B q , 

(c) shows results after applied RF pulse B \  and (d) plots the T1 and T 2  decay 
graphs

I m a g e  d e r i v e d  f r o m  U  S  D e p a r t m e n t  o f  H e a l th  a n d  H u m a n  S e r v i c e s ,  F o o d  a n d  

D r u g  A d m i n i s t r a t i o n ,  C e n t e r  f o r  D e v i c e s  a n d  R a d i o l o g i c a l  H e a l th ,  M a g n e t i c  R e s ­

o n a n c e  W o r k i n g  G r o u p

2 3.2 Protocols

Echo planar imaging (EPI) is a fast imaging technique, introduced m the late 
1970s that reads multiple lines of the image with just one excitation pulse This 
method greatly increased the speed of MRI meaning images could be acquired in 
fractions of a second compared to minutes with early MRI

Gradient Echo

Gradient Echo images are also called bright-blood images due to the high signal 
intensity of the blood Gradient echo images are acquired using either T 1 and T 2 
weighting or a combination of both The RF excitation pulse is applied once and 
the signal is obtained after a short T E , usually between 1-10 m s  Due to the low 
T E  time, the blood does not have the opportunity to flow away from the imaging 
plane, explaining the high intensity m the blood but this can cause heterogeneity
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withm the blood-pool especially pronounced along the endo-caxdium and the 
m i t r a l  v a l v e  T R s  are also short, < 50 ms, which allows for rapid acquisition 
cine-MR

Spin Echo

Spm-Echo, or dark-blood sequences, apply two RF pulses, usually at both 90° and 
180° This second pulse, applied at T E / 2, reorients the atoms It is the resulting 
echo signal that is used to construct the image The T R  for spin echo sequences 
is much higher than that of gradient echo Spin Echo is therefore not used for 
the generation of cme-MR sequences because of this increased acquisition time 
Spm-echo does however provide higher contrast-to-noise ratio (CNR) between the 
blood and the myocardium Fast spm-echo sequences, also called turbo spin-echo, 
Rapid Acquisition and Relaxation Enhancement (RARE), increase the temporal 
resolution but at the cost of soft tissue contrast Typical images taken from both 
spm-echo and gradient-echo images can be seen in figure 2 4

Balanced Sequences

Steady-state free precession (SSFP) method has been recently developed where 
the contrast of the tissues depends more on the T 1 and T2 contrast and less 
on the flow dynamics It involves rapid excitation using the RF pulse, never 
allowing the MR signal to completely decay This means that the images can 
have the high tissue contrast of T1 and the high blood tissue contrast of T2- 
weighted acquisition There are a whole family of SSFPs which include Balanced 
Fast Field Echo (bFFE), Balanced Turbo Field Echo (bTFE), Fast Imaging with 
Steady Precession (TYueFISP), Completely Balanced Steady State (CBASS) and 
Balanced SARGE (BASG)

Recently, methods such as Sensitivity Encoding (SENSE) have being intro­
duced to speed up imaging and therefore increase the resolution This method 
is based on the use of multiple RF coils and receivers Other advances include 
Prospective Acquisition and CorrEction (PACE) which allows free breathing dur­
ing the exam by detecting the diaphragm and correcting for its movement MRI 
tagging has been a well documented method of evaluating the twist and torque 
of the myocardium during the heart-beat by non-mvasively placing a grid, known 
as tagging, on an image with changing radio frequencies



2 3 M RI FOR CARDIAC IMAGING 19

(a )  (b )

Figure 2 4 Shows two short axis images of the heart (a) gradient-
echo image, T E — 1 6ms, T R =  3 2ms, flip angle =  60° and (b) spin- 
echo image, Tl-weighted approximate times of TE=10-20ms and T #=300- 
600ms Image (b) used courtesy of the Auckland MRI Research Group 
(http //w w w  scmr org/education/atlas/mtro/)

2.3.3 ECG Gating

An electrocardiogram (ECG \  EKG) is a recording of the hearts electrical pulses 
as it stimulates the myocardium In imaging, ECGs are used to establish the 
hearts R-wave which is a high peak wave, m a normal patient and depending 
on acquisition, coming between the Q and S wave and indicates the start of the 
myocardium contraction This is used to trigger the imaging at the correct time 
in the hearts phase ECG gating suffers m MRI from a phenomenon called the 
m a g n e t o h y d r o d y n a m i c s  effect where the signal gets distorted when the patient 
enters the static magnetic field However, this can be eliminated with Vector­
cardiogram (VCG) which uses multiple ECG-channels to accurately detect the 
R-wave

2.3.4 Imaging Planes

MRI has the advantage that images can be obtained in arbitrary planes This is 
useful to obtain the best orientation for the images to be viewed, as the orien­
tation of the heart changes from patient to patient Traditional views in cardiac 
imaging are saggital, which divides the body into left and right, orthogonal where 
the images are taken from the head to feet direction and long axis where the im­
ages are oriented to show the best view of the four chambers of the heart (see
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figure 2 4) In practice the orientation for the evaluation of the left ventricle is the 
short-axis view as it gives the best view of the left ventricle chamber for volume 
calculations The short-axis is the plane perpendicular to center line running 
from the mitral valve to the apex of the heart

2.3.5 Image Formats

All images used m this work were encoded in the DICOM (Digital Imaging and 
Communications m Medicine) format, t a k e n  a l o n g  t h e  short axis plane traversing 
the left ventricle cavity from the base to the apex of the heart as shown m Figure 
22

2.4 Overview of related Image Processing and Analysis 

Techniques

Image processing first evolved in the late 50s and early 60s where simple al­
gorithms were implemented in hardware Many of these implementations were 
derived from signal processing ideas It wasn’t until the mid to late 1960’s and 
early 1970s that digital image processing became an active area for research Ap­
plications such as the NASA 1964 project aimed to remove imperfections from 
lunar images returned on the Ranger 7 expedition It was at the early stages of 
image processing that ideas into medical image analysis were first investigated 
and many of the first projects m image processing were funded by the National 
Institute of Health (NIH) as well as the National Science Foundation (NSF) in the 
US One of the earliest publications on medical image analysis by Strauss et al 
[153] where nuclear images of the heart were obtained using a scmtiphotographic 
method and the computer semi-automatically outlined a region of interest for the 
quantitative measurement of the ejection f r a c t i o n

Image processing is inextricable tied to the advancement of the computer and 
it was in the past and still is the increase in computational power that drives the 
level of complexity entailed in image processing techniques As the discipline of 
image processing grew, more sophisticated algorithms were developed to achieve 
more complex tasks Today, the major problems where image processing are m 
the areas of

• Photography
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e Satelite Imaging

• Face Detection
i

• Medical Imaging

• Natural Scene Analysis

The field of image processing includes acquisition where the mam challenges 
are the reduction of distortion and develop sensors that aim to improve the signal- 
to-noise ratio (SNR) Image storage has always stretched the boundaries of com­
puter memory capacities and therefore image compression in both still and video 
data has also attracted researchers Post processing of images include geometric 
transformations of the object or coordinate system, colour corrections for im­
age enhancements, distortion corrections to rectify camera inaccuracies, noise 
suppression and filtering to correct sensor inaccuracies, edge detection to define 
boundaries between objects m the image, segmentation of an image into distinct 
regions and pattern recognition for the localisation and classification of objects 
from a scene

Many of these operations that are common in image processing and image 
analysis can also be implemented in medical image analysis, but with subtle dif­
ferences For instance, problems such as illumination difficulties are replaced by 
more acquisition specific limitations such as coil intensity fall off in MRI Many 
image processing and computer vision tasks deal with the extraction of 3D data 
from stereo images but m medical image analysis, very often with modern scan­
ners, the data can easily be reconstructed into 3D and therefore accurate shape 
recovery and tracking in 3D is the major issue Pattern recognition is also imple­
mented in medical images using prior knowledge of anatomical shape or structure

The mam issues that drive research in medical image analysis are

•  Image segmentation

•  Image matching /  registration

•  Motion tracking

The m plane resolution of modern scanners are in the domain of 0 5-2 5mm 
for CT and MRI scanners, therefore, medical image analysis is performed at 
macroscopic or organ level as opposed to microscopic or atomic level
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Image segmentation deals with the accurate dividing up of an image or a 
volume into smaller relevant collection of pixels or voxels In the case of medical 
image analysis these smaller subgroups generally represent anatomical features 
such as tissue, blood or bone It is the methods by which these divisions can be 
made that is the subject of segmentation Segmentation is a deceptively diffi­
cult problem to solve and many approaches require much user intervention such 
as live-wire techniques [164, 46] Image segmentation has received a significant 
amount of attention m the past number of decades With the exponential growth 
of computational power and memory, more complex algorithms can be applied 
to larger amounts of data There axe a number of proposed techniques which can 
be broadly classified in bottom-up approaches and top-down approaches

2 4 1 Bottom-up Approaches

Bottom-up approaches perform the separation normally based on no prior knowl­
edge and divisions are made based on the intensity or gray level values The most 
basic form of bottom-up or intensity based segmentation is thresholding Thresh­
olding is a binary classification problem where all elements m an image with gray 
level values higher than a user defined number are classified as one object and all 
elements with gray level value below are classified as a second object, adaptive 
methods to find the threshold values have also been evaluated [175, 57] Other 
methods for selecting thresholds include histogram analysis and global and lo­
cal thresholding Thresholding methods are susceptible to noise in low contrast 
images and are therefore normally combined with some morphological operators 
such as opening and closing to remove outliers Other bottom up approaches 
search for divisions of objects within the image called edge detectors This di­
vision is characterised by a difference in local grayscale values This differential 
operator can give information regarding the strength of the division returned 
by the gradient and also the direction returned by the orientation Common 
edge detector operators include Canny and Sobel Similar to thresholding, these 
methods are limited in images with low Signal-to-Noise Ratio (SNR) In these 
circumstances, methods such as edge linking [55] and non-maximum suppression 
[20] may be employed

More advanced methods involve partitioning the image into a gxeater number 
of final classes, how best to classify the objects into the appropriate classes and 
how to determine the appropriate number of classes in a specific image Statis-
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tical partitioning of images into higher than two classes is a very active area of 
research

Clustering methods have evolved and try to minimise the variance of pixels 
within clusters while maximising the variance between clusters Inclusion into 
a certain cluster may be based on gray level value or a number of other met­
rics Cluster membership may be a hard classification, as is the case in k -means 
clustering, or a soft membership classification, as is the case with fuzzy c-means 
clustering or Expectation-Maximisation classification [40, 14] In the first case, 
each element is assigned to a particular class but on the other hand, m a soft 
classification, membership to a cluster is given as a probabilistic measurement 
More advanced clustering methods use multiple scales [136] to alleviate over seg­
mentation whereby the object to be extracted is divided into multiple regions

Dehbasis et al [38] implemented a number of standard bottom-up techniques 
for evaluating the segmentation of the left ventricle cavity from cine MR se­
quences in a small number of normal and abnormal patients These included an 
adaptive region growing technique from a seeded position, where the new voxels 
are added to the object of interest if its value is close to the mean of all the voxels 
contained m the object A k-means algorithm, which partitions voxels in feature 
space into a predefined number of classes [65] using a distance metric of each 
voxel feature from the class feature average A fuzzy C-means algorithm [118], 
similar to the k-means with the introduction of a fuzzy function which defines the 
probability of membership to each class A neural network based Self Organizing 
Maps (SOMs) based on Kohonens [75] work Dehbasis et al [38] proved that 
k-means gave the most robust results on average over the normal and abnormal 
data when compared to manual segmentations

A more m-depth discussion on statistical partitioning of data is continued in 
Chapter 3 but these methods may suffer m noisy images where there is a sig­
nificant variation m gray scale values In medical segmentation, its is often the 
task to extract a closed structure, however these partitioning algorithms based 
on intensity values do not take spatial relationships into consideration This is 
why many researchers have investigated the value of approaching the problem 
from a top-down angle
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Top-down approaches apply some information about the desired results and then 
tries to perform some sort of fitting and deformation to achieve the final seg­
mentation and aims to closer resemble a cognitive approach to segmentation 
Template matching is an example of top-down segmentation in which a prede­
fined shape is fitted to the data by means of scaling, rotating and translating 
(see Figure 2 5) This method performs a search of the image using a predefined 
template and tries to fit the template to gradients m the image which minimises 
the error and maximises the overlay Of course, in this case, the template is a 
rigid structure and can only be used for localisation of the object and only in 
cases where there the template does not differ greatly from the final object to be 
located

2 4.2 Top-down Approaches

(a) (b) (c)

Figure 2 5 Top-down approach to image segmentation ( a )  Shows the prior 
model to be fitted to the data in ( b )  giving the resulting image shown in ( c )  [56]

One significant advancement on this idea Active Shape Models (ASMs) was 
proposed by Cootes et al [34], (see also [168, 48]) whereby the template consisted 
of numerous shapes which were encoded into a shape model Also encoded into 
this model where the principal modes of variability and this was used m the defor­
mation process to minimise the template to object error This is a very powerful 
idea m medical imaging and the extension of this method to include other param­
eters m the model, such as Active Appearance Models (AAMs) which integrates 
texture into the model [151, 150, 152, 78, 77, 17] All model-based approaches 
are limited by the number and variation of the prior templates used in the model 
building process

Active contours or Snakes which were first proposed by Kass et al [68] are an 
extension of this top-down approach where a closed contour or surface is located in
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the image and is then deformed until the final segmentation is achieved Normally 
this deformation is constituted from two separate parts, the first is the intrinsic 
properties of the contour m order to maintain its shape through rigidity or elas­
ticity and the second part of the deformation energy This form of segmentation 
has been employed m medical image analysis, where the anatomical feature m 
question can be encapsulated withm a closed contour [25, 26, 121, 4, 52, 67, 66] 
Segmentation is then achieved by evolving this closed contour using intrinsic 
properties such as curvature and external properties obtained from the image 
Combinations of snakes and statistical shape models have also being developed 
[60] whereby snake evolution is additionally guided using a predefined model of 
what the final shape should approximate Non-parametric snakes were intro­
duced m order to address some of the limitations of traditional snakes and have 
proved successful m medical image analysis [86, 110, 6, 2, 163] These techniques 
are discussed in more detail in Chapter 5

While these approaches have been shown to perform robust segmentation, 
even in noisy images, accuracy of the segmentation is bounded by the initial 
shape This is particularly the case in medical imaging, where anatomical fea­
tures present a significant variation between patients none more so than in the 
presence of disease

There are many algorithms which try to employ a combination of bottom-up 
and top-down approaches to segmentation to capture the advantages from both 
approaches [16] Prior knowledge about a particular segmentation task can be 
incorporated as low level information such as expected intensity values, gradient 
strength of orientation or incorporated at a higher level such as texture variation 
over an object and object shape

With the increasing temporal resolution available in modern scanners, the 
tracking of clinical structures over time may hold particular clinical significance 
This area has being investigated in the myocardium of the heart more than in 
any other biological structure (a excellent reviews of applying image process­
ing techniques to left ventricle segmentation can be found in [156, 49, 44, 167]) 
Deformation tracking of the cardiac muscle over the temporal cycle has being 
investigated in many studies m order to measure the regional function of the left 
ventricle (LV) m an effort to isolate the location, seventy and extent of i s c h e m i c  

myocardium [137] Myocardium twist and torque can be measured with using 
t a g g e d - M R I
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Single breath hold images means registration of the images is not as signifi­
cant a factor as m multiple breath hold images Registration methods [84] deal 
with the registration of cardiac images from multiple modalities Registration 
techniques were first performed in brain images for the registration of higher res­
olution images acquired using MRI or CT to images of lower resolution such as 
Magneto-Encephalo-Graphy (MEG) or Electro-Encephalo-Graphy (EEG) Reg­
istration in cardiac images is more complicated due to the non-rigid and mixed 
motions of the cardiac muscle and thorax structures Much attention is focussed 
on registration of the modalities MRI and PET [85, 139], MRI and SPECT [62] 
or CT and PET [179, 19]

2.5 Conclusions

This chapter introduces the key areas associated with this thesis Firstly, an 
overview of the heart is given with particular emphasis on anatomical morphol­
ogy and cardiac dynamics This is followed by some of the most common CVDs 
and the clinically acquired measurements used in their diagnosis

In the second part of this chapter, an overview of image acquisition is pro­
vided MRI is the chosen modality for this study, based on the outlined advan­
tages over other modalities This is followed with a fundamental background m 
MRI physics and common protocols

Finally, m order to extract the clinically relevant features from the data pre­
sented from the image acquisition, image processing is proposed and introduced 
The remainder of the chapter is devoted to the exploration of how medical image 
analysis has evolved by classifying the approaches into two rudimentary method­
ologies (see review [44])



Chapter 3

Advanced Data Filtering

Image smoothing is a procedure employed in image processing to reduce or sim­
plify the data present in an image in order to make image understanding more 
attainable In a practical sense, this can be achieved by the removal of noise or 
redundant signal intensities from the image in order to obtain a more appropriate 
model of the underlying structures within the image

The motivation behind smoothing images is therefore two-fold, firstly it re­
moves unwanted noise from the image to facilitate further processing and secondly 
to eliminate features irrelevant to the given problem to reduce the complexity for 
subsequent processing Specifically in MRI, increased magnet strength may re­
solve somewhat the associated low SNR, but advances to 3T magnets are limited 
by the higher RF power disposition m the body [8] Nayak et al [105] showed in 
2004 how 3T imaging improved SNR and CNR on cine sequences but note signal 
fall-off due to decreased RF penetration

There are two main types of smoothing, linear and non-linear Both of these 
types have been extensively studied in literature [116, 140, 159] When filtering 
images, it is mostly an advantageous property of the smoothing filter to smooth 
areas of homogeneity while preserving areas of interest in the image such as 
edges This is typically achieved by means of a convolution of a number of pixels 
or voxels with a smoothing kernel, this is also called Finite Impulse Response 
(FIR) filtering Linear filters convolve an image patch with a smoothing kernel 
that is independent of the data in the image Standard linear smoothing tech­
niques based on local averaging or Gaussian weighted spatial operators reduce 
the level of noise but this is achieved at the expense of poor feature preservation

27
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Consequently, the filtered data appears blurry as step intensity discontinuities 
such as edges are attenuated Non-lmear filters smooth the image but try to 
maintain edges by smoothing less Among these, the median filter is the sim­
plest non-linear operator to remove impulse-like noise [142, 116] More complex 
non-lmear techniques include statistical approaches based on non-parametnc es­
timation [140, 160] However, while these methods do alleviate somewhat the 
shortcomings associated with linear techniques, they still perform only modestly 
when the data is affected by long tailed noise distributions To complement 
these filtering approaches, a number of adaptive techniques have been proposed 
[140, 53, 33, 124, 28] These methods try to achieve the best trade-offs between 
smoothing efficiency, feature preservation and the generation of artefacts Koen- 
dermk [73] expressed the blurring operation of smoothing as heat conductance or 
diffusion Diffusion-based filtering was originally developed by Perona and Malik 
[115] in order to implement an optimal feature preserving smoothing strategy 
Many implementations follow their original approach where the mam aim was to 
improve numerical stability [172] This was advanced by Weikert [171] where he 
developed a new smoothing algorithm by permitting diffusion along the direction 
of edges Gerig et al [53] extended this work to 3D and evaluated its usefulness 
when applied to medical 2D and 3D datasets

In this chapter, a performance characterisation is evaluated on some advanced 
smoothing filters both in 2D and 3D The performance of a filter is evaluated as 
a means of simplifying the image before segmentation Therefore, advantageous 
characteristics are defined as their ability to flatten the signal intensity values 
within a structure while maintaining a strong separation of signal intensity values 
between structures Firstly, five filters are introduced and assessed, two linear fil­
ters (Gaussian and Savitzky-Golay) and three non-lmear filters (Diffusion-based, 
Adaptive and Anisotropic) are evaluated to detail the advantage of non-linear 
filters over linear filters Finally, a rigorous performance characterisation is per­
formed on the three non-linear filters using homogeneity within regions and edge 
strength as the indicators of performance

3 1 Linear Methods

Traditional linear filters such as mean, average and Gaussian attempt to remove 
noise by replacing pixels by an average or weighted average of its spatial neigh­
bours [116] While this reduces the amount of noise present m the image, it also 
has the disadvantage of removing or blurring the edges The Savitzky-Golay [127]
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linear filter smoothes the image but tries to preserve higher moments, like edges, 
in the image It achieves this by selecting coefficients that are the least squares 
approximation of a higher degree polynomial

Firstly, let us look at the basic linear causal smoothing filter given in equation 
3 1 This is the 2D case where each pixel m the smoothed image g  at position 
(x , y )  is calculated to be the average or weighted average of the original image / ’s 
spatial neighbours The convolution matrix C  is of size N  x N  where N  =  2 n  + 1  
and the sum of its elements is normalised to unity

n  n

9 x ,y  ~  y  ] Q  J f x + ^ y + j  (3 1)
j = —n %——n

This type of filtering introduces a blurring effect to the image which is unde­
sirable for most image processing applications The basic filter illustrated m 
Equation 3 1 is linear and is independent of the data being processed Some 
common causal filters are mean, Gaussian and Savitzky-Golay

3 1 1  Gaussian Filter

The Gaussian smoothing technique is very straightforward and is similar to the 
average filter The Gaussian filter differs from the average filter in that it involves 
the convolution of the original image with a Gaussian mask where the standard 
deviation and the size of the smoothing kernel selects the scale and size of the 
blurring operation The resulting image S x y  is defined as,

S x ,y =  I x y  o G a u s s ( x , y , a )  (3 2)

where I x y  is the original image, G a u s s ( x , y , a )  represents the Gaussian kernel 
with scale parameter a  and o implements the 2D convolution operation

This form of smoothing has the advantage of giving more influence to the 
pixels or m close neighbourhood to the element being replaced, with exponentially 
less influence the further away the pixels are from the center of the kernel In 2D 
the Gaussian mask is constructed using the following equation,

1 aĉ +t/2
G a u s s ( x ,  y ,  a )  =  /— =~ e  ^  (3 3)

V2na2
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where ( x , y )  are the 2D position of the element and a  represents the diffusive 
properties of the filter

The standard blurring operation involving Gaussian filtering attempts to re­
move the noise from the image From Equation 3 3 it is obvious that the smooth­
ing becomes more pronounced for higher values of the scale parameter but at the 
same time we can notice a significant attenuation of the optical signal associated 
with image boundaries This result is highly undesirable for many applications 
including image segmentation and edge tracking where a precise identification of 
the object boundary is required

3 1 2  Savitzky-Golay Filter

The Savitzky-Golay [127] smoothing filter was introduced for smoothing one- 
dimensional tabulated data and for computing the numerical derivatives The 
smoothed points are found by replacing each data point with the value of its 
fitted polynomial These filters preserve edges far better than a moving average 
filter but this is achieved at the expense of not removing as much noise The 
process of the Savitzky-Golay is to find the coefficients of the polynomial which 
are linear with respect to the data values Therefore the problem is reduced to 
finding the coefficients for fictitious data and applying this linear filter over the 
complete data

Savitzy-Golay can be used for smoothing image data by extending the filter 
to two dimensions with a two dimensional polynomial The size of the smoothing 
window is given as N  x N  where JV is an odd number, and the order of the poly­
nomial to fit is k ,  where N  >  k  + 1  The general smoothing causal filter equation 
is given as

n  is equal to 9 x ,y  18 the resulting smoothed data, C  is the convolution
matrix and f x y  is the original image data

n n

(3 4)
J — — U  i = — n

f ( x i ,  y%) =  a o o  +  a 10x l +  a Qi y % +  a 2q x 2 +  a u x t y t +  ao2&2 +  +  a o k V ?  (3 5)
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We then want to fit a polynomial of type in equation (3 5) to the data Solving the 
least squares we can find the polynomial coefficients We start with the general 
equation

A a = f

where a is the vector of polynomial coefficients

û =  (aoo a 01 aio  Û0 k ) T  '

We can then compute the coefficient matrix as follows

(.AT A) a = (AT f)

a = ( A T A)“1 (At f )

Due to the least-squares fitting being linear to the values of the data, the 
coefficients can be computed independent of data To achieve this we can replace 
f with a unit vector thus, the coefficient matrix becomes C  =  ( A T A ) ' 1A T  C  

can then be reassembled back into a traditional looking filter of size N  x  N

The resulting coefficient matrix from a polynomial of order 3 and with a 
matrix window size of 5 ( i  e n j j  and t ir  is  2) In order to smooth the image the 
first coefficient is used, higher order coefficients are used to calculate derivatives 
Here are the values for the first coefficients using a 5 x 5 windowing and orders 
of 3 and 4 respectfully

- 0  0742 0 01142 0 04001 0 01142 ^0 0742 \

0 01142 0 09714 012571 0 09714 0 01142
0 03999 012571 015428 012571 0 03999
0 01142 0 09714 012571 0 09714 0 01142
- 0  0742 0 01142 0 04001 0 01142 - 0  0742 /

C k =5 =

(  0 04163 
- 0  0808 
0 07836 
- 0  0808 

V 0 04163

- 0  0808 0 07836 - 0  0808 0 04163 
- 0  0196 0 20082 
0 20082 0 44163 
- 0  0196 0 20082

- 0  0196 - 0  0808 
0 20082 0 07836
■0 0196 - 0  0808

■0 0808 0 07836 - 0  0808 0 04163 j

(3 9)

(3 10)
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The advantage Savitzky-Golay filters have over moving average and other 
FIR filters is its ability to preserve higher moments in the data and thus reduce 
smoothing on peak heights It can be seen in Equations 3 9 and 3 10 that the 
higher the order of the polynomial the higher moments are preserved, this leads 
to less smoothing over data peaks and line widths In more homogeneous areas 
the smoothing approaches an average filter over the smoothing kernel

3 2 Non-Linear Filters

Nonlinear filters, the most common being the median filter, modifies the value of 
the pixel by some nonlinear function of the pixel value and its spatial neighbours 
Nonlinear filters aim to maintain the edges but the filtering may result m a loss 
of resolution by suppressing fine details Three non-linear filter are investigated 
Firstly a non-linear diffusion based filter based on gradient information, secondly 
an adaptive filter which uses both gradient and variance within a neighbourhood 
as a measure of mhomogeneity and finally an anisotropic filter which changes 
the shape and strength of the smoothing kernel based on gradient strength and 
orientation

A more useful way to think of smoothing is as a type of diffusion of intensities 
within an image, first expressed by Koenderink [73] Diffusion occurs according 
to Fick’s Law, given in equation 3 11 [115], where A I  is the Laplacian of the in­
tensity value, c ( x ,  y , t )  =  c o n s t a n t  represents the conductance coefficient and I t  

is the recovered value at iteration t

I t  =  cA I  (3 11)

When this equation is implemented it acts as a linear filter, similar to a Gaus­
sian, but it becomes more effective when the non-linear terms are introduced into 
the diffusion equation A review of nonlinear diffusion is compiled in [171]

3 2 1 Nonlinear Diffusion Filtering

To alleviate the problems associated with the standard Gaussian smoothing tech­
nique, Perona and Malik [115] proposed an elegant smoothing scheme based on
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non-linear diffusion* In their formulation the blurring would be performed within 
homogeneous image regions with no interaction between adjacent or neighbour­
ing regions that share a common border The non-lmear diffusion procedure can 
be written in terms of the derivative of the flux function

0 (V /) =  VJ D (||V /||) (3 12)

where <t> is the flux function, I  is the image and D  is the diffusion function Equa­
tion 3 12 can be implemented in an iterative manner and the expression required 
to implement the non-lmear diffusion is illustrated m Equation 3 13

/ ‘+ 1 =  4 ,  +  A M V r V V r I } 1 (3 13)
R= 1

where /* represents the image at iteration R  defines the 4-connected neigh­
bourhood, D  is the diffusion function, V is the gradient operator that has been 
implemented as the 4 connected nearest-neighbour differences and A is a param­
eter that takes a values in the range 0 < A < 0 25

V i / a ^ y  — I x - l , y  I x , y

V 2 / 2 :  y  =  I x + l j t  ~~ I x , y  p  ^

V 3 I x ,y =  I x , y - 1 — I x ,y

V 4  I x ,y =  I x , y + l  — Ix ,y

The diffusion function D ( x )  should be bounded between 0 and 1 and should 
have the peak value when the input x  is set to zero This would translate with 
no smoothing around the region boundary where the gradient has high values In 
practice, a large number of functions can be implemented to satisfy this require­
ment and in the implementation detailed in this thesis the exponential function 
proposed by Perona and Malik [115] is used

D(||VJ||) =  e- ^ ) 2 (3 15)

* Perona and Malik discuss m their paper the  topic of scale-space This has not been inves­
tigated as it is beyond the  scope of this thesis and a single scale space proved to  be sufficient 
for the applications detailed in th is document
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where k  is the diffusion parameter The parameter k  selects the smoothness 
level and the smoothing effect is more noticeable for high values of k

3 2 2 Adaptive Smoothing

The algorithm for adaptive smoothing implemented in this evaluation is adapted 
from Chen [28] The technique measures two types of discontinuities m the image, 
local and spatial Local variable discontinuities can detect local intensity changes 
but is susceptible to errors where there is a lot of noise, so m addition to the lo­
cal discontinuities the contextual information is also utilised given the attributes
of neighboring pixels Prom both these measures a less ambiguous smoothing 
solution is found In short, the local discontinuities indicate the detailed local 
structures while the contextual discontinuities show the important features

Local Variable Discontinuities

In order to measure the local discontinuities, four detectors are set up as shown

£ t f * # =  | 4 + l , y - / z - l , v l ,  (3 16)

E Vxy — \I x 7y + l  ~  I x ,y — 117 (3 17)

E D x y  ~  | ^ r + l , 7 / + l  ”  l | j  ( 3  1 8 )

E CXy ~  l-£c4- l , y —1 l , y + l | )

I Xjy is the intensity of the pixel at the position (x,y) 
local discontinuity measure E xy  as

E Hxy +  E Vxy +  E Dxy +  E Cxy 
-  4

These pixel positions are illustrated below in Figure 3 1

Contextual Discontinuities

In order to measure the contextual discontinuities, a spatial variance is employed 
Firstly, a square kernel is set up around the pixel of interest, N x y ( R )  The mean

(3 19)

We can then define a 

(3 20)
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S' ^  1^-ECxy
n \

EHxy 1

□  7 / DeDxvm y  u] ■
EVxy

Figure 3 1 The four local discontinuity detectors

intensity value of all the members of this kernel is calculated for each pixel as 
follows

From the mean the spatial variance is then calculated to be

_2 -  ^ ( ^ ) ) 2 „  noN 
*{R) -  — — v Q M \   ( }

This value of sigma is then normalised to d 2y  between the minimum and max­
imum variance m the entire image A transformation is then added into a \ y to 
alleviate the influence of noise and trivial features It is given a threshold value 
of 9 a  =  (0 < 9 a  <  1) to limit the degree of contextual discontinuities

Overall Adaptive Algorithm

Finally, the actual smoothing algorithm runs through the entire image updating 
each pixels intensity value where t  is the iteration value

Tt+l _  rt  I _  ^ ‘{h3 )€ N x y { l ) / { ( x ,y ) } rh 3 rY%j(Iij3 ~  I x ,y)  to  o o \
1 x y  ~  i x y  +  V x y -----------^ ~ — 7  \ ?

(̂* 3 ) € N x y ( l ) /

where,
n  — p v n i  — n-d) ( r , xy

7y =  e x p ( - 4 / S )  (3 25)

The variables S  and a  determine to what extent the local and contextual 
discontinuities should be preserved during smoothing If there are many contex­
tual discontinuities m the image then the value of r\%3 will have a large influence 
on the updated intensity value On the other hand, if there are a lot of local
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discontinuities then both j tJ and rftJ will have the overriding effect, as r}l3 is used 
for gain control of the adaption

3 2 3 Anisotropic Gaussian Smoothing

An anisotropic filter based on the familiar Gaussian model is implemented in 
order to provide edge enhancing, directional smoothing The goal is to develop a 
versatile smoothing filter based on a straightforward and highly adaptable form 
The approach reduces to a convolution with a scaled and shaped Gaussian mask, 
where the determination of the mask weights becomes the key step governing 
the performance of the filter By calculating the local grayscale gradient vector 
and favouring smoothing along the edge over smoothing across it can achieve an 
effective boundary preserving filtering approach, where regions are homogenised 
while edges are retained

The weight w t ( p q , Vu) at each location m the mask is a function of the local 
gradient vector at the centre of the mask and the distance of the current neighbour 
from that centre There are a large number of possibilities for the formulation 
of the mask weight calculation, based on the desired form for the non-linear and 
anisotropic components of the filter The weight for some neighbour q  is calcu­
lated as a function of the gradient of point p ,  at the mask origin, and the distance 
from the origin to the neighbour q  The relationship used in our approach is given 
in Equation 3 26, where p q  is the vector from the mask centre point p  to some 
neighbour q , V u  is the gradient vector at p, A is the scale parameter, controlling 
smoothing strength, and ¡j, is the shape parameter, controlling anisotropy When 
/.i equals zero the anisotropic term ¡jl +  f i 2 ) has a negligible effect and
the filter reduces to the non-lmear, isotropic form, where smoothing decreases 
close to strong edges but is applied equally m all directions, at any given location 
in the image

wt(pq, Vu) =  (3 26)

The images in Figures 3 2 and 3 3 illustrate the operation of the anisotropic 
filter As the smoothing strength and the number of iterations is increased more 
noise and small features are eliminated, but even in extreme cases the most im­
portant edges m the image are well preserved in both location and strength
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3 3 Experiments and Results

The aim of each filter evaluated in the first study is to measure the linear and 
non-linear filters ability to smooth areas of homogeneity while preserving areas 
of interest such as edges Smoothing of homogeneous areas is measured using the 
standard deviation while the preservation of edges is measured using the strength 
and spread of the edge in the filtered images To show the advantage of using 
non-linear filters, both the linear are tested on two 2D images, see figures 3 2(a) 
and 3 3(a) The first image of a laboratory having a high SNR (signal-noise-ratio) 
and high CNR (contrast-to-noise-ratio) with a high density of edges The second 
medical image has a much lower SNR and CNR Parameters were chosen to give 
the optimal results on visual inspection Visual results are presented m Figures 
3 2 and 3 3

To be statistically relevant [42] the standard deviation should be calculated 
over a large region but on the other hand the results will be affected by small 
non-uniformities such as intensity gradients or structural image variations [53] 
This requirement is quite difficult to be accomplished if we want to develop an 
automatic performance characterisation scheme where user intervention is not 
required One solution has been advanced by Canny [20] when he decided to 
select the threshold parameters for an edge detector based on analysis of the cu­
mulative histogram of the gradients However due to the nature of MR datasets 
this criteria to identify the gradients generated by noise proved to be inefficient 
Thus, m this implementation an alternative strategy based on observation has 
been developed In this sense, we computed the standard deviation for all data 
points in the original dataset in a 7 x 7 neighbourhood These values were sorted 
with respect to their magnitude and from these values the 25% of the highest val­
ues were eliminated, as they are likely to belong to edges and 25% of the lowest 
values are also eliminated as they are calculated from areas that have no signifi­
cant texture (such as image regions defined by air) This strategy was applied to 
select the seed points that belong to image regions defined by a low SNR Then, 
the standard deviation for each of the filtered datasets is measured at the same 
data point locations (also in a 7 x 7 neighbourhood) The results are presented m 
Table 3 3

For the laboratory image, Adaptive smoothing gives the best results followed 
by the two other non-linear filters Both linear Savitzky-Golay and Gaussian 
filters have the highest deviation after smoothing In the medical image there
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Figure 3 2 Smoothing results Original image (a) is shown after the application of 
the Savitzky-Golay (b), Gaussian (c), Diffusion (d), Adaptive (e) and Anisotropic 
(f) filters
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(e) (f)

Figure 3 3 Smoothing results Original image (a) is shown after the application of 
the Savitzky-Golay (b), Gaussian (c), Diffusion (d), Adaptive (e) and Anisotropic 
(f) filters

are more significant differences with the anisotropic and adaptive giving the best 
results while the gaussian suffers in the low SNR image

The strength, shift and spread of the edge is evaluated on each of the images 
Histogram plots across two edges, see the white lines across edge features in fig­
ures 3 2 and 3 3 In Figure 3 4, the histogram plots show both the image pixels 
and the gradient for the lab image and medical image For the lab image the 
results are similar for all filters with more significant differences between filters in 
the medical image Two measurements are taken from these histograms which in­
dicate edge strength and spread where edge spread is taken as the Full Width Half 
Maximum (FWHM) of the gradient plot These results are compiled m Table 3 2
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L a b o r a t o r y  I m a g e M R  I m a g e

Original 57 4 277 65
Savitzky-Golay 40 804 61 232

Gaussian 40 966 102 08
Diffusion 27 658 69 633
Adaptive 24 241 42 99

Anisotropic 31 905 35 05

Table 3 1 The RMS of the standard deviation of the homogeneous areas for the 
original and each filtered image

L a b o r a t o r y  I m a g e  

Edge height Edge width

M R  Image 

Edge height Edge width
Original 31 2 26 219 2 04

Savitzky-Golay 23 2 5 158 2 48
Gaussian 15 4 4 196 2 16
Diffusion 25 2 17 214 2 00
Adaptive 26 2 13 211 2 00

Anisotropic 30 2 17 219 199

Table 3 2 Shows the edge strength and edge spread on the gradient image after 
each filtering While Savitzky-Golay and Gaussian filters spread the edge, the 
other three maintain and even enhance the edge characteristics

From all the experiments detailed above, it is clear that the non-linear fil­
ters outperform the linear filters using the criteria specified at the beginning of 
the test The next step is to perform a more rigorous characterisation of the 
non-linear filter described above in medical images The following experiments 
have been performed in 3D using the extension of the 2D to 3D of the non-linear 
algorithms described previously

3 3 1 Performance Characterisation of Non-Linear Filters

The first set of experiments is conducted on a synthetic dataset that is defined 
by a homogeneous cubic object with a known grayscale value surrounded by 
background pixels To test smoothing algorithms on this artificial dataset is ad­
vantageous as the ground truth data is known and the smoothing results are easy 
to evaluate The efficiency of the algorithms when the artificial dataset was cor­
rupted with various types of 3D image noise is tested, including Gaussian, Poisson
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Figure 3 4 Pixel intensities and gradient intensities along white lines from im­
ages figure 3 2 and figure 3 3 (i) and (111) show the pixel intensities and (n) and 
( i v )  show the gradient values from the lab image and the medical image respec­
tively (a) is the original image, (b) image after Savitzty-Golay, (c) Gaussian, (d) 
Adaptive, (e) Nonlinear Diffusion and (f) Anisotropic and Gaussian
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Noise S Dev S Dev S Dev S Dev Graysale Graysale Graysale G r a y s a l e

Type noise FI F2 F3 Expected FI F2 F3
G-15 13 72 1 91 1 62 2 06 127 127 128 128
G-30 31 93 7 64 3 03 5 57 127 128 129 133
P-15 13 02 107 0 76 1 74 127 139 138 138
P-30 26 97 9 6 7 62 3 69 127 141 141 142
W-15 4 63 1 5 0 21 0 69 127 126 127 127
W-30 8 56 1 71 0 6 1 14 127 125 126 127

Table 3 3 Performance characterisation results when the algorithms have been 
applied to an artificially created dataset FI, F2, F3 denote the standard diffu­
sion, adaptive smoothing and anisotropic diffusion respectively

and additive uniformly distributed white noise [42] Similar to the previous ex­
periments, as quantitative values the local uniformity sampled by the 7 x 7 x 7  
standard deviation is evaluated at the location situated at the centre of the cube 
and the alteration of the grayscale value at the same position when compared 
with the expected known value Some experimental results are depicted in Table 
33

In Table 3 3 the symbols G-15 and G-30 indicate that the synthetic dataset 
has been corrupted with Gaussian noise (standard deviation 15 and 30 grayscale 
values) Similarly P-15 and P-30 denote the fact that the test dataset has been 
corrupted with Poisson noise (distribution 15 and 30 grayscale values) and W-15 
and W-30 indicate that the dataset has been corrupted with uniformly distributed 
white noise (mean deviation 15 and 30 grayscale values) In order to evaluate 
globally the noise removal efficiency on real datasets we need to define quantita­
tive measures that indicate the overall performance of the smoothing algorithms 
that are evaluated In this regard, we propose to evaluate jointly two quantitative 
measurements the smoothness factor that assesses the global uniformity and the 
edge preservation factor that indicates to what extent the strong edge features 
are retained and enhanced To this end, the standard deviation as a measure 
to evaluate the image local homogeneity was employed As before, the standard 
deviation is measured in a 7 x 7 x 7 window over the entire original image These 
values were sorted with respect to their magnitude and 25% of the highest values 
were eliminated as belonging to edges in the image and 25% of the lower values 
as having no significant texture The standard deviation for each of the filtered 
images is then taken at the same pixel locations To evaluate a quantitative esti­
mation we calculate the RMS value of the standard deviations from the original
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and smoothed datasets resulting after the application of the smoothing strategies 
described in previous sections (for details refer to Table 3.3).

(a) (b)

  Original
—  3D diffusion 
  3D adaptive
—  3D anisotropic

(c)

Figure 3.5: (a) Slice of the heart MRI dataset. Pixel (b) and (c) gradient inten­
sities are plotted for the highlighted edge illustrated in image (a).

The edge strength is evaluated by plotting the intensity and gradient data 
at selected locations where edges are located, before and after the application 
of the smoothing operations. Some graphical results are depicted in Figures 3.5 
to 3.8. The experimental data illustrated in Figures 3.5 to 3.8 indicate that the 
3D adaptive smoothing and 3D anisotropic smoothing algorithms perform bet­
ter than the standard diffusion. The 3D adaptive smoothing algorithm returned 
better results than the 3D anisotropic when applied to heart, brain and whole 
body datasets. The 3D anisotropic algorithm performed better when applied to
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(c)

Figure 3.6: (a) Slice of the MRCP dataset. Pixel (b) and gradient intensities (c) 
are plotted for the highlighted edge illustrated in image (a).

Magnetic Resonance Cholangiopancreatography (MRCP) dataset.

The graphs illustrated in Figures 3.5 and 3.8 demonstrate the edge enhance­
ment around image data defined by step-like edges. It can be noticed that the 
edge localisation is significantly improved. The effect of edge strengthening is 
even more pronounced for weaker edges in an MRI brain sequence (see Figure 
3.7) or in image areas affected by a high level of noise, as is the case of the MRCP 
dataset illustrated in Figure 3.6. The performance of the non-linear smoothing 
algorithms described in this section is remarkable in discriminating a true edge 
from image noise (see Figure 3.6c). Also notice the improved performance of 
the adaptive 3D smoothing algorithm as compared with the performance of the



3.4. CONCLUSIONS 45

(a)

  On gin»]
—  3D diffusion
  3D adaptive
  3D anisotropic

(C)

Figure 3.7: (a) Slice of the brain MRI dataset. Pixel (b) and gradient intensities 
(c) are plotted for the highlighted edge in image (a).

standard diffusion and the 3D anisotropic diffusion algorithms. In order to em­
phasise the effectiveness of the smoothing strategies described in this chapter the 
segmentation resulting after the application of a 3D clustering algorithm [42] to 
the original and smoothed data is presented. Samples of the segmentation results 
are depicted in Figures 3.9 to 3.12.

3.4 Conclusions

In this chapter, the performance in smoothing for a number of linear and non­
linear filters was evaluated. In the first part, experiments were performed in 
order to show the advantage of non-linear filters over linear filters. In the second 
part, three diffusion-based smoothing schemes were implemented and their appli-
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Figure 3.8: (a) Slice of the whole body MRI dataset. Pixel (b) and gradient 
intensities (c) are plotted for the highlighted edge illustrated in image (a).

Heart Brain Whole body MRCP
Original data 4.95 9.21 20.46 18.8
3D diffusion 1.88 6.28 14.47 10.96
3D adaptive 1.73 6.16 14.05 10.83
3D Anisotropic 2.08 6.48 16 9.77

Table 3.4: The RMS of the standard deviations of the homogeneous areas for the 
original and filtered MRI datasets used in our experiments.



Figure 3 9 3D data clustering results - heart dataset (First row) Original dataset 
(slice 9), and corresponding image resulted after clustering (Second row) 3D dif­
fusion smoothed data (slice 9) and corresponding image resulted after clustering 
(Third row) 3D adaptive smoothed data (slice 9) and corresponding image re­
sulted after clustering (Forth row) 3D anisotropic smoothed data (slice 9) and 
corresponding image resulting after clustering
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Figure 3 10 3D data clustering results - brain dataset (First row) Original 
dataset (slice 4), and corresponding image resulted after clustering (Second 
row) 3D diffusion smoothed data (slice 4) and corresponding image resulted after 
clustering (Third row) 3D adaptive smoothed data (slice 4) and corresponding 
image resulted after clustering (Forth row) 3D anisotropic smoothed data (slice 
4) and corresponding image resulted after clustering



3 4 CONCLUSIONS 49

Figure 3 11 3D data clustering results - MRCP dataset (First row) Original 
dataset (slice 10), and corresponding image resulted after clustering (Second 
row) 3D diffusion smoothed data (slice 10) and corresponding image resulted after 
clustering (Third row) 3D adaptive smoothed data (slice 10) and corresponding 
image resulted after clustering (Forth row) 3D anisotropic smoothed data (slice 
10) and corresponding image resulted after clustering



50 CHAPTER 3 ADVANCED DATA FILTERING

Figure 3 12 3D data clustering results whole body dataset (First row) Original 
dataset (slice 6), and corresponding image resulted after clustering (Second 
row) 3D diffusion smoothed data (slice 6) and corresponding image resulted after 
clustering (Third row) 3D adaptive smoothed data (slice 6) and corresponding 
image resulted after clustering (Forth row) 3D anisotropic smoothed data (slice 
6) and corresponding image resulted after clustering
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cation to medical 3D data was described The mam interest was focused on MRI 
acquisition modalities as MRI datasets are characteristically defined by a low 
signal to noise ratio (SNR) Hence, the aim was to demonstrate that far superior 
results are achieved if the MRI data is initially filtered in order to reduce the 
level of image noise and improve the SNR In this regard, a detailed performance 
characterisation was performed for each smoothing operators evaluated on both 
synthetic and real data (including heart, bram, whole body and MRCP image 
sequences) We conclude that m our experiments the non-linear diffusion-based 
smoothing technique provided the most efficient approach to noise reduction, and 
more importantly this advantage is not achieved at the expense of feature preser­
vation in our experimentation Computational time was higher for the non-lmear 
iterative approaches, but as computational expense is not a limiting factor in 
our application this parameter was not included in the characterisation The 
experimental data presented and discussed m this chapter highlights the ability 
of the diffusion-based smoothing schemes to distinguish the high gradient image 
features from the MRI image acquisition noise
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A Perform ance C haracterisation in Advanced D ata  Sm ooth ing Tech­
niques, IMVIP 2004 Irish Machine Vision and Image Processing Conference, 
September 2004, Trinity College, Dublin, Ireland



Chapter 4

Statistical Partitioning of Data 

for LV Localisation and 

Extraction

The advanced filtering techniques employed in the last chapter alleviates much 
of the work needed m the classification process Preprocessing the data has re­
moved much of the inherent noise associated with MRI therefore the process of 
segmenting the data into the relevant anatomical features can be achieved using 
data partitioning technique To this end, it is the aim of this chapter to use 
cluster analysis to successfully segment the left ventricle blood pool The left 
ventricle blood pool can then be automatically located using shape characteris­
tics before a more heuristic method is employed to segment the outer boundary 
of the left ventricle muscle

Data clustering remains a very active topic in image processing The appli­
cation of robust techniques for object identification in images are extensive, none 
more so than m the rapidly advancing field of medical imaging [30, 117] Region- 
based methods [117] are used to segment the image, this is generally achieved 
without using a prion  information The most basic form of region-based seg­
mentation is thresholding Thresholding techniques create a binary image of 
pixels above and below a user defined threshold value Thresholding does not 
take into account the structure or connectivity of the points that it segments and 
the threshold value is seldom automatically determined Segmentation results 
can sometimes be filled with holes or ragged edges, which m a crude way can be

53
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eliminated with a combination of morphological operators [63, 141] In medical 
imaging, thresholding is not widely used without some advanced preprocessing 
steps due to its sensitivity to noise More complex statistical methods, like clus­
tering, join pixels of similar intensities to create a segmentation of structures m 
the image

All statistical based classification methods [61, 40, 64, 42, 65, 114, 113] aim 
to optimise the results based on an initialisation This initialisation is commonly 
chosen randomly, and as a consequence results are not reproducible, do not take 
advantage of inherent patterns in the data or may be initialized on outliers 
Methods for automatic initialisation of clusters have been proposed in literature 
[3, 97, 71] Al-Daoud and Roberts [3] proposed two methods, the first picks points 
randomly in evenly spaced cells across the entire histogram of the data and re­
duces the number until the required seeds are found The second method tries to 
optimize the sum of squares of the distances from the cluster centers Mitra et at 
[97] describe a rough-set initialisation provided by graph-search methods Khan 
and Ahmad [71] assume a normal distribution over the data attributes and divide 
the normal distribution curve into equal percentile cells The seeds are chosen as 
the midpoints of the interval of each of these partitions In Appendix A, a novel 
method developed by the VSG for the initialisation of cluster centers is given 
where the cluster centers are automatically detected using histogram analysis 
and applied to medical images

In order to extract clinical measurements from the smoothed data, a novel 
method is proposed whereby data is first clustered in order to segment highly 
differentiated features, l e the blood and myocardium A localisation of the left 
ventricle is detailed Using this preliminary step, a new method for the extrac­
tion of the epi-cardium boundary is developed which is based on a knowledge 
driven search of gradient information Where appropriate gradient information 
is lacking prior knowledge is used to augment the segmentation solution

4 1 Data Clustering

Clustering is a well documented image segmentation technique which classifies 
pixels into groups or clusters using a distance criteria to join data values to each 
cluster The most basic form of clustering is Hierarchical clustering, off which 
there are two types -  agglomerative and divisive Agglomerative clustering in­
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volves creating n  clusters from the data X % = { x \ ,x 2 ,x$ xn} where n  is the 
amount of elements and X  € The process then iteratively combines this 
clusters m a branching formation until there is just one cluster containing all n 
elements The clusters are joined using a distance criteria, which can be measured 
m different ways, single-linking, complete linking, unweighted average pair and 
weighted average pair Divisive clustering works in the opposite way by creating 
one cluster with n  elements and then dividing the clusters until n  clusters remain 
Successful analysis of both these joining methods comes from knowing at which 
iteration m the process will return the optimal amount of clusters to create a 
meaningful segmentation

The fc-means, or c-means, clustering method is a well established as a parti­
tioning method [61, 136] Dehbasis et al [38] proved how the k-means algorithm 
performed more robustly m a comparative study with an adaptive region growing, 
fuzzy C-means clustering and Kohonen self-organising maps for the segmentation 
of the left ventricle blood pool from cardiac MRI images This comparison was 
performed on both normal and abnormal cases and results were evaluated against 
a manual delineation of the left ventricle cavity

Unlike the Hierarchical methods, the fc-means algorithm requires a user de­
fined set of clusters The process then exchanges the elements between clusters 
with two aims, to minimise the variation within each cluster and to maximise 
the variation between clusters The algorithm has four mam steps to find the 
image clusters, this is also illustrated in figure 4 1 The process terminates when 
no more elements are exchanged between clusters and it can be shown that the 
method is always convergent The process is the minimization of the following 
equation 1

E  = mm -  mc:(Xj))2 (4 1)
3

where j  is the number of data points index and is the class centroid
closest to the data point

In this thesis, the smoothed MRI images are then clustered using an im­
proved version of the k-means algorithm proposed by Duda and Hart [42, 61] 
An adaptive form of clustering is developed whereby the initial user defined num­
ber of clusters is iteratively reduced until a more appropriate number of clusters 
is achieved This is based on thresholding the inter and mtra cluster variability 
Firstly, the image is clustered using an initial guess of 15-20 independent cluster 
centres which is sufficient to capture all the relevant features The pixels are
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Figure 4 1 Two iterations m the fc-means clustering technique on 2D data The 
objects change with each iteration to join the cluster whose centre is closest

clustered together using the following strategy This algorithm has four steps to 
find the image clusters

(%) Initialise the position of the means mi —> mk

(it) Assign each of the /¡-items to the cluster whose mean is nearest

(m ) Recalculate the mean for the cluster gaining the new item and the mean 
for the cluster loosing the same item Recalculation is made using the mtra 
cluster variance

(w) Loop through steps (n) and (m) until there are no movements of items

Initialisation of cluster centres can have a significant effect on the results of 
the classifier, therefore random initialisation is avoided Alternatively, seeds may 
be placed at specific regions or equidistantly m the image space or m grayscale 
space A better solution to maximise the use of input data in initialising the 
cluster centres is choosing them based on histogram analysis of the data This 
approach is detailed m Appendix A

In the second phase of the algorithm, each of the k clusters are sorted and 
compared The number of clusters is then optimised by merging clusters with 
similar attributes This is repeated until there are no more clusters to be merged 
The stopping criterion for this joining process is defined using a threshold on the 
mtra cluster variability and is chosen experimentally Given the high differentia­
tion in intensity signal between the blood pool and the myocardium, experimental
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results display robust separation of the blood pool from the myocardium As can 
be seen m Figure 4 2 the generality of the method as it is applied to two separate 
protocols, spm-echo and gradient echo with satisfactory results

(c) (d)

Figure 4 2 Shows four images, a gradient-echo images before (a) and after clus­
tering (b), and a spin-echo image before (c) and after clustering (d)

4 1 1  Automatic Detection of Iv cavity

The image has now been segmented mto separate clustered regions The next 
step is to automatically detect which of these clusters represents the Iv cavity 
on the first slice The Iv cavity is located using shape descriptors only and not 
using the gray scale values which allows for application of this method in various 
MRI imaging protocols The images are short axis, therefore we assume that 
the Iv cavity approximates a circular shape and that the Iv feature is present 
m successive slices Approximation to a circle is calculated as the error of the
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fitted areas of a least squares approximation to a circle The approximation is 
obtained my minimising the error of the areas of the fitted circle and the areas of 
the associated circles at each data point (see mathematical background Appendix 
C l)  It is also assumed that the Iv is not located on the periphery of the image

The volume of the left ventricle is then extracted using two criteria

(%) Overlapping area of the regions contained in successive slices

(n) Gray scale value of the regions under investigation

The regions cannot be connected using just gray scale values alone due to the 
variation in the intensity values through the volume caused, to some extent, by 
coil intensity falloff The Iv regions are then connected in 3D and the volumes are 
then rendered for visualisation purposes (see Figure 4 8) The ejection fraction 
is calculated using the systolic and diastolic volumes The ejection fraction is 
defined as “the proportion, or fraction, of blood pumped out of your heart with 
each beat” [104] and can be calculated using the equation

jpj? ^e n d o i^o ) ~  V e n d o rs )  ^

E F = -  (42)

where Vendo is the volume of the inner walls of the heart, Vendo(^D) = rnaxt[Vend0{t) ] 
is the end-diastolic volume and Vend0(ts) = m m t\Yendo{t)] is the end-systolic vol­
ume

The corresponding region is found by maximising the result of a cost func­
tion where the overlapping and the mean gray-scale value of the areas under 
investigation are used as parameters

This works well on basal and mid-cavity slices, the blood pool is large and 
relatively homogeneous The apical region is more challenging due to the increase
m trabeculae cam<E and papillary muscles, the low volumes of blood present,
partial volummg along the z axis and blurring due to movement of the diaphragm 
The extension of this segmentation algorithm to 3D is appropriate as the higher 
level of knowledge leads to improved segmentation results plus it eliminates the 
need to match relevant clusters through the volume using overlapping criterion

4 2 Extension to 3D

In order to improve the robustness of the segmentation technique it is favorable 
to extend the clustering to the third dimension The extension means that the 
blood pool is clustered as a whole and therefore it is more robust in areas where
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I
Original 
Smoothed 
Clust rod

Pixel Index

Figure 4 3 The top three images from left to right show the original short axis 
image, after smoothing and after clustering The graph plots the intensity values 
for the white line running through the original image

artifacts such as the papillary muscles are present This is particularly the case 
around the apical regions of the left ventricle cavity

The end-systole and end-diastole volumes are smoothed in 3D, as in the pre­
vious chapter Once smoothed they are then clustered using the 3D &-means 
technique using the volume data The left-ventricle can be manually picked or 
automatically using the volumetric shape properties of the cavity, as developed 
in the following section

4 2 1 Automatic Detection of Iv cavity using 3D information

In order to locate the left-ventricle m the image a number of shape descriptors 
were used The images are short axis so therefore we use the anatomical knowl­
edge that the Iv cavity approximates a circular shape and that the Iv feature is 
continuous m successive slices In the 2D scenario, approximation to a circle is 
calculated as the error between the shape and the least squares approximation to 
it’s circle Also, a smooth interpolation of the curves is achieved using a spline
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fitting

In the 3D case, the left ventricle cavity is located using its shape description 
In this case it is known that on the short axis the left ventricle approximates an 
ellipsoid m shape, although it is flat at one end, perpendicular to its major axis 
The approximation to an ellipsoid parameters (radii and centres) is calculated 
using the first three principal axes of the PCA of the boundary data points 
The error is then calculated between the shape and the fitted ellipsoid using 
the summation of the normalised point deviations with respect to the calculated 
ellipsoid radii (see mathematical background in Appendix C 2)

4 3 Segmentation of epi-cardium border

Once the left ventricle blood pool has been successfully segmented, the outside of 
the myocardium or epi-cardium boundary presents a more challenging problem 
Parts of the outer wall of the left ventricle displays low gradient information and 
low differentiation between neighbouring tissues, as in Figure 4 4

Figure 4 4 Illustrating the low grayscale differentiation between the outer wall 
of the myocardium and other organs m the body, before (top row) and after 
(bottom row) data partitioning

This is especially true m areas close to the lungs and liver Therefore clus­
tering techniques are not applicable because the differentiation between tissues 
is so low and edge detection will only have limited success when used without
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supervision or a more involved approach Noble et al [107] attempt to change 
the coordinate system to polar coordinates followed by a constrained snake seg­
mentation to capture the epi-cardium boundary In order to address these issues, 
a novel heuristic approach is developed which uses all the available information 
in a supervised way and where information does not exist or is not found, the 
segmentation is augmented using prior information of the epi-cardium boundary 
shape

Calculation of the wall-thickness and wall-thickening is dependent on the ac­
curate segmentation of the epi-cardium boundary The main problem associated 
with the segmentation is the low contrast-to-signal ratio along the epi-cardial 
boundary in particular on the inferior and mferolateral side where the muscle 
becomes indistinguishable from the lung To this end two novel approaches are 
explained and have been evaluated, both a robust approximation for the epi- 
cardium thickness to determine strong features of the epi-cardium present m the 
image Where strong information is lacking, the algorithms aim to approximate 
the epi-cardium boundary using in the first case an arc, centered at the center of 
gravity of the blood pool and connecting two known segments of the epi-cardium 
boundary In the second approach, where no information is present, the algorithm 
uses information obtained from a probabilistic model consisting of manually seg­
mented images to complete the epi-cardium boundary

4 3 1 First Approach Robust-Arc epi-cardtum segmentation

The robust arc approximation technique works on the 2D slice taken from the 
previously segmented blood pool volume Firstly the centre of gravity of the left 
ventricle blood pool is located The least squares approximation for the radius 
of the endo-cardium border is calculated on each slice The original image is 
re-clustered again around a smaller region of interest with a smaller predefined 
number of clusters m order to find the right ventricle blood pool The right ven­
tricle blood pool is found to be the largest cluster close to the left ventricle cavity 
with similar intensity attributes to the left ventricle blood pool The interven­
tricular septum between the two ventricles is measured and this measurement 
gives an approximate thickness for the myocardium around the left ventricle

A Canny edge-detection [20] is performed on the original image slice A ID 
radial search is carried out from the centre of gravity on the gradient image and
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Figure 4 5 From left to right Original unseen image, calculated edges, robust 
segments of epi-cardium and the complete segmentation using arcs to complete 
the epi-cardial boundary

image edge points are connected together into edge segments using an Euclidean 
distance criteria Spurious segments are eliminated by length, orientation away 
from the endo-cardium border and using the approximation for the myocardium 
from the septum

i

In between these segments are parts of the epi-cardium border that do not 
have any gradient Therefore there is no other information m  the image to help 
find the correct path between these segments In this case the end points of the 
robust segments are joined with an arc, pivoted around the center of gravity of 
the endo-cardium Results can be seen in figure 4 5

The procedure for segmenting the epi-cardium can be followed in the diagram 
illustrated in Figure 4 6, Stage II The position of the Iv cavity is already known 
m each slice as explained m the previous section In order to determine the epi- 
cardium border a region of interest is defined around the Iv cavity Two copies of 
this region of interest are taken The first image Image 1 is used to find a value 
for the approximate radius of the myocardium and the second image Im age2 is 
used to find real borders around the myocardium The two are combined to find 
the true value of the epi-cardium around the Iv

Im age  1 is again clustered using a predefined low number of clusters around 
the region of interest A low number of clusters is chosen because of the scarcity of 
important features around the Iv cavity Anatomically, the closest blood pocket 
to the Iv cavity is the right ventricle cavity, it is also assumed that the thickness 
of the myocardium will not change drastically over the entire circumference The 
thickness of the wall, or septum, between the two blood pockets can give a reli­
able estimate for the thickness of the rest of the myocardium



4 3 SEGMENTATION OF EPI-CARDIUM BORDER 63

Original Images

Automatic detection 
of the Iv cavity

Calculation of 
the Ejection 
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Select ROI 
around Iv
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(original image)
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Figure 4 6 A schematic representation of the two phases involved in the segmen­
tation of the endo- and epi- cardium border Stage I  shows the preprocessing and 
segmentation processes, the automatic detection of the Iv cavity and the connec­
tion of the cavity through the volume Stage I I  shows the method for segmenting 
the epi-cardium border in each image
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Im age2 is zoomed using an area averaging technique around the area of inter­
est The image is then segmented using a thresholded edge-based algorithm [20] 
The zooming operation is applied to increase the edge separation The largest 
connected segments within certain bounds of the estimated thickness found from 
Im age  1 are taken as potential border segments There is an angular restraint 
placed on the transition of these segments around the epi-cardium to eliminate 
stepping into the endo-cardium border or stepping out to other organs

A closed natural cubic spline is fitted around the points on the epi-cardium 
[144, 12], for the formulation see section C 3 The spline is used to close the 
epi-cardium contour by connecting all the points on the curve m a smooth way 
Splines are piece-wise polynomials with the pieces smoothly joined together The 
joining points of the polynomial pieces are called control points which do not have 
to be evenly spaced Each segment of a spline is a polynomial of degree n, for 
this implementation n  was chosen to be n  =  3 More details on the mathematical 
formulation of the natural cubic spline can be found in Appendix C 3

4 3 2 Second Approach Model assisted Epi-cardium segmentation

In order to incorporate more realistic approximations for missing data, a new 
method is developed which uses a probabilistic model of previously segmented 
heart images Once each slice is taken from the volume the centre of gravity 
of the left ventricle blood pool is located The least squares approximation for 
the radius of the endo-cardium border is calculated By re-clustering the orig­
inal image again around a smaller region of interest with a predefined number 
of clusters m order to find the right ventricle blood pool The right ventricle 
blood pool is found to be the largest cluster close to the left ventricle cavity with 
similar intensity attributes to the left ventricle blood pool The myocardium wall 
(septum) between the two ventricles is measured and this measurement gives an 
approximate thickness for the myocardium around the left ventricle

An edge-detection is performed on the original image slice A ID radial search 
is carried out from the centre of gravity on the gradient image and image edge 
points are connected together into edge segments using a Euclidean distance cri­
terion Spurious segments are eliminated by length, by orientation away from the 
endo-cardium border and using the approximation for the myocardium from the 
septum
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A database of contour points is created based on manual segmentations of the 
endo and epi cardium boundaries This database contained 180 2D contours with 
the associated radii calculated using the least squares approximation based on 
minimising the error of the areas (detailed m AppendixC 1) Where epi-cardial 
boundary is not defined by the edge information, the boundary is then completed 
from a generic database of hand-segmented shapes The database is searched us­
ing the ratio of epi-cardium and endo-cardium radii The searching uses the two 
end-points of the robustly located segment from the gradient image Prior to 
searching, each contour is scaled with respect to radii parameters extracted from 
the model Each scaled contour in the database is searched to minimise the Eu­
clidean distance from these endpoints to their nearest corresponding points on 
the contour The contour that minimises this error is chosen The appropriate 
section is extracted from the contour and joined to the edge defined boundary 
using a natural closed spline (see figure 4 7)

Figure 4 7 From left to right Original unseen image, calculated edges, robust 
segments of epi-cardium and the complete segmentation using an a priori knowl­
edge database

In figure 4 7(b) the segment points obtained from gradient image figure 4 7(a) 
are illustrated In between these segments are parts of the epi-cardium border 
that do not have any gradient Therefore there is no other information in the 
image to help find the correct path between these segments In this case a priori 
knowledge about the shape of the epi-cardium border, obtained from previously 
hand-segmented can be used to join the segments In this way we introduce a 
form of supervision, and by inferring previously drawn contours we hope to main­
tain continuity of the shape Because the contours contain the original segments 
while the manually drawn contours are only inferred where there is no informa­
tion to be rendered from the image, it is believed that this approach generates 
more appropriate results than the previous technique, when the model provides a
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good approximation to the object being segmented When complete models are 
inferred onto the image there is a danger that details may be lost

4 4 Results

In order to assess the performance of the automatic segmentation, results were 
compared against those obtained by manually segmenting volume image sequences 
for the endo- and epi-cardium borders The manual segmentation was assisted by 
an experienced cardiologist* Each volume includes 5-12 images containing the 
Iv, transversing the lenght of the cavity and includes the papillary muscles The 
automatic segmentation results can be seen in figure 4 12 The method shows 
good visual results for bright blood images 4 12(a)-(f) and dark blood images 
4 12(g)-(i) The errors are calculated on volumes, endo and epi contours areas, 
myocardium thickness and finally point correspondence

Table 4 1 shows the signed average and root mean square error of the ejec­
tion fraction from eight volumes from the sequence The ejection fractions were 
worked out using pairs of volumes, not necessarily the end-systole and end- 
diastole and compared with the ejection fraction calculated from the manually 
segmented volumes We can see in Table 4 1 low errors between the manual and 
automatic results

The errors for the manually segmented endo-cardium area and the automat­
ically traced area are given in Table 4 1 The signed average and root mean 
square errors are shown Errors around the apex have a significant effect because 
the errors are described in proportion to the overall area calculated from the 
manual segmentation Linear regression analysis was also performed m Figure 
4 9(a) and high correlation value of r =  0 98 is obtained Reproducibility is as­
sessed using the Bland-Altman plot, Figure 4 9(b) [15] From the Bland-Altman 
plot we can see that there is a tendency to underestimate the areas of the endo­
cardium boundary, this is due to the inclusion of some endo-endocardium fat in 
the manual segmentation and perhaps due slightly to partial voluming effects 
Also evident from the graphs is the accurate performance of this procedure m 
both systolic and diastolic phases, represented by the lack of skew in the plots 
as the areas increase Note that the graphs are relatively zoomed to show the 
detailed distribution and the plots are graphed in units of mm2

*The validation was performed by Dr John Murray, Cardiologist, Mater Misericordiae 
Hospital, Dublin, Ireland
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The epi-cardium area was assessed using the linear regression and Bland- 
Altman plots It shows a slightly lower percentage error for both the average 
signed and the rms errors This can be attributed to the increased overall area 
of the manually traced contours Linear analysis, Figure 4 10(a), gives a value of 
r = 0 94 while Figure 4 10(b) gives a similar regression value of r =  0 95 which is 
slightly lower than that produced for the endo-cardium This lower correlation is 
a result of low contrast on the lateral side of the heart making the segmentation 
of the epi-cardium border difficult In this case our algorithm connects two end­
points of robust segments, how these segments are connected can incorporate a 
p n o n  information [83] Manual segmentation is also problematic m areas of low 
gradient and is dependent on the users own interpretation of ‘what looks appro­
priate’ Reproducibility was again assessed with the Bland-Alt man plot, figure 
4 10(b) Again, both methods produced similar results, both bands of two times 
the standard deviation are similar and not as tight as those achieved m the blood 
pool segmentation There is not a significant difference between both methods as 
robust gradient information is used when available and both approaches are only 
applied m areas that are lacking gradient information Both plots show no bias 
from the zero error or skew m the data Although, the second approach which 
uses a prior database of contours does produce a larger number of outliers for the 
smaller apical regions where the outer wall may be undefined and approximation 
is difficult Using this approach, more appropriate segmentations are achieved 
when compared to full manual segmentations However, these methods still have 
the limitation that they are only working on slice data and not incorporating 
volume or temporal information

Table 4 1 Mean Percentage Errors ±  1SD for manual versus automatic

Average Signed Error RMS Error

Ejection Fraction 1 593 ±  0 82 3 176
Endocardium Areas -3 623 ±  5 14 4 765
Epicardium Areas -0 556 ±  4 29 3 75

Table 4 2 gives the Euclidean point to curve error in mm’s for all images 
through a heart sequence It gives the minimum and maximum distance between 
the manual and automatic segmentation contours The average distance, stan­
dard deviation (SD) and root-mean-square (RMS) are also given The results 
for the epi-cardium boundary point to curve errors are shown in Table 4 3 and 
illustrated in figure 4 11
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(a) (b)

(c) (d)

Figure 4 8 The rendered images of (a) the end-diastole Iv cavity, (b) the end- 
systole Iv cavity, (c) and (d) the diastolic myocardium These volumes are con­
structed from the true segmentation of the images excluding fat and papillary 
muscles
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Bland Altman Endocardium

» 0  750 9 SO 11S0 1360
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Figure 4 9 Figures (a)-(b) shows scatterline plot of manual segmentation against 
the automatic segmentation and shows Bland-Altman plot for the left ventricle 
blood pool areas

Figure 4 10 (a) illustrates the results using the Robust arc technique and (b) 
shows the results using the Prior model technique
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Table 4 2 Point to curve Errors between manual and computer segmentation for 
clustering technique for the endo-cardium boundary segmentation (mm)

Endo-cardium
Method Average (mm) 5td Dev (mm) RMS (mm)

3D k-means  ̂Clustering 0 69 0 88 1 12

Table 4 3 Point to curve Errors between manual and automatic segmentation 
for the epi-cardium boundary (mm) segmentation

Æpi-cardium
Method Average (]mm) S D (mm) RM S  (mm)

Robust Arc 131 186 2 14
Prior Model 1 26 1 27 1 94

60  "I

50 -

„  4 0  "
oV"

0 0 5  1 1 5  2 2 5  3 3 5  4 4 5  5
P o i n t - t o - C u r v e  E r r o r  (mm)

 o Robust Arc

Figure 4 11 Plot shows the error frequency using a point to curve error metric
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4 5 Conclusion

A fully automatic detection and segmentation of the left ventricle myocardium 
has been detailed in this chapter Edge preserving data filtering is performed and 
followed by an unsupervised clustering to successfully segment the left ventricle 
cavity from short axis MR images of the heart Once the cavity volume is ex­
tracted the ejection fraction can be calculated

In the second part of the chapter the epi-cardium border is successfully seg­
mented using an edge-based technique The thickness of the wall is approximated 
by measuring the thickness of the interventricular septum The interventricular 
septum is an anatomically sound feature of the heart and because it is surrounded 
by blood on both sides it can be robustly segmented This measurement is then 
used as an initial estimate for the thickness of the complete wall A gradient 
image of the area around the Iv is computed and the use of the approximate wall 
thickness, gradient points potentially belonging to the epi-cardium border are se­
lected If there are no viable gradients found on the epi-cardium border then the 
outer wall is estimated using the approximation found using the interventricular 
septum

Statistical partitioning of the images allows the extraction of the Iv blood 
pool without the use of prior constraints on shape Abnormalities in the image 
data can indicate disease Model based approaches approximate to the closest 
plausible instance shape from the training set Point Distribution Model (PDM), 
but this may not be sufficiently accurate Also model based approaches that in­
corporate texture are limited m their use when the texture m the object images 
varies significantly from those contained m the model training set The method 
proposed in this chapter presents a robust, fully automated method to identify 
the endo-cardium and epi-cardium borders that does not rely on a prion  knowl­
edge nor does it use shape constraints to find the left ventricle cavity

Left ventricle segmentation is primarily motivated by the need to clinically 
diagnose a feature of the heart with potential problems Models that approximate 
left ventricular boundaries try to fit variations of boundaries that have already 
been segmented The left ventricle is anatomically variant, the scanners are in­
consistent and the variations of pathologies found in patients is vast To build a 
model to accommodate such diversity would be an immense task Our algorithm 
makes no approximations based on observed data but instead produces a true
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evaluation of the heart structure by segmenting the true borders in the image 
It should be remembered that the aim is not to segment hearts that are part of 
a model but to assist the cardiologist m the prognosis by delineating the true 
anatomical features present in the image Therefore, it is the aim of this thesis 
to approach the problem from a bottom-up strategy in as far as possible Image 
segmentation can be augmented using prior information m the case where no 
image information is present and also to supervise the segmentation from spilling 
into other anatomical structures

Evaluating the endo-cardium and epi-cardium borders using this approach 
could provide a more appropriate technique for flagging problems like wall thin­
ning and low ejection fraction

However, while this method provides good results m well imaged data and has 
been successful m segmenting the left ventricle blood pool in 2D and 3D data and, 
it is the aim of this thesis to increase the robustness of the segmentation approach 
by incorporating the entire data presented from the patient scan and remove the 
heuristic approach by creating a well defined mathematical framework The aim 
of this approach is to create a more involved technique which segments both 
myocardium boundaries as opposed to two separate steps and also facilitate the 
incorporation of temporal information The investigation of evolving surfaces, 
their parameterisation, termination and incorporating advanced information is 
performed m the next chapter

Publications associated with this chapter 

Journal Publication

Michael Lynch, Ovidiu Ghita and Paul F Whelan (2005), Automatic Seg­
mentation of the Left Ventricle Cavity and Myocardium in MRI Data, 
Computers m Biology and Medicine 36(4) pp389-407

Conference Publications

Michael Lynch, Ovidiu Ghita and Paul F Whelan (2004), Extraction of Epi- 
Cardial Contours from Unseen Images Using a Shape Database, IEEE 
NSS-MIC 2004 Medical Imaging Conference, October 16-22, 2004, Rome, Italy
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(a) (b)

(d) (e) (f)

(g) (h) M

Figure 4 12 The left ventricle contours obtained using our automatic segmen­
tation method in short axis cardiac MR images Figures (a)-(f) show images 
taken at both the end-diastolic phase and end-systolic phase of a gradient-echo 
sequence Figures (g)-(i) show images from a spin-echo study

Michael Lynch, Ovidiu Ghita and Paul F Whelan (2004), Comparison of 2D 
and 3D clustering on Short Axis M agnetic Resonance Images of the left 
ventricle, CARS 2004 Computer Assisted Radiology and Surgery, June 23 - 26, 
2004 Chicago, USA
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Michael Lynch, Ovidiu Ghita and Paul F Whelan Calculation of Ejection  
Fraction (EF) from M R Cardio-Images Paper m the Irish Machine Vision 
and Image Processing Conference 2003, Coleraine, Northern Ireland



Chapter 5

Boundary-Based and Model 
Driven Segmentation in 
Multidimensional Data

In this chapter, a review of current boundary based and model based segmenta­
tion schemes is detailed and their application to medical image analysis Partic­
ular emphasis is placed on cardiac left ventricle segmentation in MRI [156, 117, 
30, 48] In Section 5 6 the level set framework is described and novel approaches 
to segmentation with level sets is introduced, in particular the extension to 4D 
data analysis

Many boundary based segmentation (also called Active Contours) methods 
for object segmentation have been developed for use in medical image object 
extraction Generally, the aim of boundary based segmentation methods is to 
deform a closed curve using both intrinsic properties of the curve and image 
based information to capture the target object [158] This form of segmentation 
has many advantages over statistical intensity based partitioning algorithms as 
boundary shape is one of the key factors in the evolution of the contours One of 
the most popular forms of boundary based segmentations are snakes, which were 
first introduced by Kass et al [68] Prom their introduction snakes have received 
a large amount of interest from the research community and much work has been 
done on derivations of the original snake Further work m controlling the snakes 
propagation was achieved using parametrically deformable models and also by the 
introduction of a priori model driven segmentation with Active Shape and Active

75
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Appearance Models A Eulerian formulation of the active contour is introduced 
by means of a level set algorithm The advantages of this formulation include 
a more robust mathematical theory, capability to follow topological changes in 
shape, and other computational advantages like curvature measurement Work 
on the level set formulation for segmentation will constitute the mam part of 
this chapter A number of key issues in the level set are then addressed which 
include the choice of stopping term, the introduction of a prion  information, the 
coupling of two level sets for the extraction of both the epi- and endo-cardium 
boundary and finally the introduction of an Expectation-Maximisation extension 
of the level-set framework to fully segment data m 4D (3D +  t)

5 1 Active-Contours

Firstly, a 2D simple contour can be defined as v(s) =  [x(s) y(s)|7 for s S [0,1]
The main idea is to deform this contour smoothly to extract certain features in 
an image [92] In a segmentation scheme this usually applies to extracting an 
area of homogeneous signal intensity, this may represent an object in a medical 
image such as the liver organ or a pool of blood Therefore the deformation of 
the curve should flow globally outwards or inwards but should be inhibited from 
crossing areas of high frequency m the image data

In this sense, the energy used to deform the boundary is a combination of a 
smoothing term, relating to the intrinsic properties of the boundary curve v(s), 
and an image dependent term, obtained directly from the underlying image data

E  = E mt 4- E ext (5 1)

5 1 1  Internal Energy

The internal energy aims to smooth the deforming contour, as in most cases in the 
segmentation of natural objects the boundary is defined as relatively smooth To 
this end, the internal energy uses a combination of first derivative to determine 
tension or elasticity of the local contour and second order differential in order 
to calculate the bending of the local contour The resulting values present high 
energy levels m irregular contours with shape corners and low energy m contours 
with a smooth transition between evenly separated points If the contour was to
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deform with the deformation energy obtained solely from the internal energies, 
the contour would achieve a perfect circle

Emt = j \ a \ ^ \ 2 + P \Ç ^ \2)ds (5 2)

In Equation 5 2, a and ¡3 are weighting factors In practice ft may be set to 
zero, both to reduce the complexity of the derivation of the curve evolution to a 
geometric space and also because curve smoothing can be obtained with the first 
régularisation term alone [22]

5 1 2  External Energy

The external energy uses the image data to stop the deformation at the desired 
position Stopping criterion may involve image data intensity, free end of bound­
ary termination, corners or m this case high frequency or high gradient data The 
resulting energy should return low values on high gradient points and high values 
on low gradient points

Ee*t = -A  f l \V I(v{s))\ds  (5 3)
J o

In Equation 5 3, À is a user defined weighting function and I(v(s)) is the 
image intensity To suppress the influence of noise on the deformation the data 
may be smoothed using a Gaussian filter, thus becoming V[Ga * /(v(s)] where a 
parameter controls the variance of the Gaussian

Therefore, the active contour can be described as an energy minimisation 
problem that seeks to deform a closed contour to rest on high image gradients 
while maintaining a smooth transition between points An inflation term may be 
appended to the energy terms, this can take the value of ±1 along the normal 
direction to the curve [31] This inflation term grows or shrinks the contour from 
its initial position to aid with the initialisation

The mam advantages of active contours are their extension to 3D, (where 
they are referred to as active surfaces), their ability to capture a closed structure 
and the users ability to select different features as stopping terms In medical 
imaging, many of the natural anatomical structures are represented by closed 
smooth active surfaces It is for this reason that many researchers have investi-
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Figure 5 1 Curve propagating with a force ’F’, in the normal direction of the 
local boundary

gated methods and extensions to employ active contours for the segmentation of 
medical images, and this will be investigated further in the following section

There are however disadvantages associated with the snake method One of 
the key limitations of the snake algorithm is the problem of initialisation The 
active contours aim to deform until the stopping energy overpowers the influence 
of the intrinsic energies and in some cases the inflation term Also, the selection 
of the parameter space and sampling rule also has a large influence on the final 
segmentation result

5 1 3  Application of Active Contours

Active contours have been used extensively for segmentation in the field of medi­
cal imaging, a full review of deformable models in medical imaging can be found 
m [92] Mclnerney and Terzopoulos [90] apply a 3D dynamic balloon model using 
triangle-based finite elements to segment the left ventricle from cardiac CT data

Much attention has been given to improving the snake computational frame­
work, for instance Amim et al [4] suggests using dynamic programming in order 
to minimise the energy function This approach is claimed to produce the opti­
mal local contour by searching all the possible solutions Geiger [52] describes an 
non-iterative dynamically programmed method to extract the optimal contour,
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providing the initial contour is a close approximation To speed up this algorithm 
and to improve robustness, multi-scale images are used Ronfard [121] introduces 
region-based energy by building statistically models of the background and ob­
ject data These model distributions are used m place of edge information to 
determine the contour termination

Chakraborty et al [25, 26] also introduce region based information into the 
evolution of the active contour Molloy and Whelan [98] introduce active meshes 
that initialise a deformable triangular mesh on corner data m the images and used 
the forces between nodes to deform the mesh in order to track the data through 
an image sequence Sermesant et al [131] introduce a novel function which per­
forms an affine transformation of a deformable model m order to optimally fit 
to image data Jolly et al [67, 66] employ active contours, semi-automatically 
initialise on each slice in the short axis view and then propagate through the 
cardiac cycle Santarelh et al [126] introduce a Gradient-Vector-Flow (GVD) 
snake which proceeds a diffusion filter to segment the inner and outer boundaries 
of the left ventricle of the heart

Reuckert et al [122] applies active contours for localisation of the aorta 
Neubauer[l] presented a myocardium segmentation following a manually placed 
’skeleton’ inside the myocardium The results are then propagated through all 
other slices in the volume Spreeuwers[145] attempts to address the issue of ro­
bustness m the presence of erroneous local minima by applying a coupled active 
contour for the extraction of both the epi- and endo-cardium boundaries simul­
taneously Mikic [93] uses optical flow estimates to guide the evolution of the 
active contour m echocardiographic sequences

5 2 Parametrically Deformable Models

Staib and Duncan [146, 39] introduce a deformable model based on parametric 
contours These models are commonly used when some prior information about 
the geometric shape of the final contour can be determined This geometric shape 
can then be encoded using a small number of parameters The model is then 
deformed, maintaining the overall consistency of the global model, by optimising 
the parameters on the image data Most commonly, the global model can be 
defined by a set of analytical curves Staib and Duncan [146] use elliptic Fourier 
decomposition for objects with shape irregularities, where a Fourier shape model
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is used that represents a closed boundary as a sum of trigonometric function of 
various frequencies They then perform an iterative energy minimisation to fit 
the model to the image data This method may provide robust localisation of 
features, where the feature matches the template, however, this technique does 
not provide an appropriate basis for capturing shape variability and the generic 
models built using a priori knowledge need to be good approximations of the final 
segmentation result

5 2 1 Application of Parametrically Deformable Models to Medical 
Imaging

Parametrically deformable models have been applied m the segmentation of car­
diac MRI images For instance, Staib and Duncan [147] propose a geometric 
surface matching The model uses a Fourier parameterisation which decomposes 
the surface into a weighted sum of sinusoidal basis functions In [147], four basis 
functions are used, tori, open surfaces, closed surfaces and tubes The surface 
finding is formulated as an optimisation problem which attracts the surface to 
strong image gradients m the vicinity of the model

|
The mam disadvantage of parametically deformable models is the effects of 

the choice of coefficients as this determines the complexity of the curve Placing 
limits on each coefficient constrains the shape to an extent but not m a systematic 
way While these models work well for localisation of the left ventricle, a derived 
model could not completely hold all the variation of the true left ventricle These 
models have problems to define the complex shape of the left ventricle which 
varies from patient-to-patient and between healthy and dysfunctional ventricles

5 3 Active Shape Models
I1

Cootes et al [36] propose a method to fit a shape model to image data Recently, 
this has been applied to a wide range of image classification and segmentation 
problems This method has had reasonable success in the case where

• the target object has a well defined shape,
t

o can be represented with a set of examples andt

• can be approximately located ¡withm the image 

There are limitations associated with this method where
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tI
f

• the objects present a high variation in shape,

• grayscale or when the position/size/orientation of the target are not ap­
proximately known and

• the models themselves can contain human bias in annotation or error ini
point correspondence of landmarks

t
Firstly, manual delineation of the object in a sample set of images is performed 
From the manually drawn contours, positional landmarks are extracted m the 
form x = [x i,x 2 x n,y \ ,y 2 yn]T for each of the 2D images in the training set 
The principle behind landmarkmg. may be conceptually simple, but m practice

I
is a cumbersome and time consuming job The tracer must manually position, 
sometimes hundreds, of markers along the traced contours, with constant refer­
ral to previous annotations to ensure correspondence This becomes increas­
ingly more difficult as more and more data presents itself from 3D and 4D 
medical scans Some work m automatic landmarkmg has been researched in 
[170, 129, 50, 169, 135] Once the landmark points have been selected, they are 
then aligned commonly with Procrustes shape distance metric with respect to 
scale, position and orientation a!s stated, point correspondence is one of the
limitations for model based approaches and Hamarneh [60] addresses this prob­
lem by represented in the shapes by descriptors obtained after the application of 
Discrete Cosine Transform (DCT)

To model the shape variation, the classical statistical approach of eliminating 
redundancy in the database is achieved through Principal Component Analysis 
(PCA) or Karhunen-Loeve transform PCA performs a variance maximising rota­
tion of the original variable space, this is best illustrated graphically in Figure 5 2 
where the two principal axes of a two dimensional data set is plotted and scaled 
according to the amount of variation that each axis explains [149, 45] The axes 
are also ordered according to their variance, meaning the first axis contains the 
highest variation In practice the PCA is performed as an eigenanalysis of the 
covariance matrix of the aligned shapes

The overall idea behind ASMs is to generate a shape instance using the data 
obtained from the training set of shape landmarks This can be seen in Equa­
tion 5 4 where x is the new shape instance and x is the mean shape (see Equa­
tion 5 5
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Figure 5 2 Principal axes A 2D example where axis 1 and axis 2 are the first 
two eigenvectors

The matrix $ s =  [3>i is made up of the eigenvectors corresponding to 
the t largest eigenvalues where t is the number of modes b is a vector defining 
the set of parameters of the deformable model and is defined m Equation 5 6

There are some disadvantages associated with ASMs, mainly their lack of 
robustness m the presence of high gradients not associated with the target ob­
ject, their dependence on initialisation close to the target object, time consuming 
database construction and the inherent problem of model generality versus accu­
racy

5 3 1 Application of ASMs to Medical Imaging

(5 4)

(5 5)

b5 = $J (x  -  x) (5 6)

In 1994, Cootes [34] published his work on localisation of medical features using 
ASMs and used the left ventricle in echocardiographic sequences Hamarneh and
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Gustavsson [60] also apply the ASM to echocardiographic sequences to locate 
the left ventricle and then m a second phase uses the active contours described 
in Section 5 1 to accurately determine the true boundaries of the left ventricle 
van Gmneken et al [168] uses a non-linear kNN-classifier instead of the more 
commonly used linear Mahalanobis distance metric to steer the active shape seg­
mentation scheme to optimal local features Duta and Sonka [45] improve the 
ASM by constraining the deformation of the shape model to appropriate shapes 
defined by the segmentation task, in their case the segmentation of bram images 
m MRI Rogers and Graham [120] perform a robust parameter estimation to im­
prove tolerance of outliers m the model and improve the ASM search

5 4 Active Appearance Models

In order to address some of the ASMs lack of tolerance to grayscale variation of 
the unseen data, Cootes et al [35] introduce Active Appearance Models (AAMs) 
AAMs build on ASMs by including shape and textural information about the 
manually delineated training data Textural information is defined as the pixel 
intensity values across the object and these values are stored m a vector g =  
[51 > <72? , 9m]T  where m  denotes the number of pixels contained within the object 
surface Alignment of the texture shapes is achieved through image warping, one 
such method of image warpmg is Piece-wise affine using Delaunay triangulation 
(refer to [149] for more details) This is followed by normalisation with respect 
to illumination of the images before the PC A is constructed as described in 
Section 5 3 or in more detail in [149] A single instance from the texture model 
can then be extracted as,

g =  g  +  (5 7)

In order to combine the shape and texture models, the shape and model 
parameters bs and bg can be combined using a third PC A to make the represen­
tation more compact

There are many advantages to the method For instance,

• due to the training phase, the segmentation is very task specific,

• once initialised, convergence is fast,

• AAMs are non-parametnc and
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• in certain situations, are robust against noise 

There are also some limitations associated with the AAM

• the model must contain distinct features, unpredictable objects such as 
pathologies cannot be handled,

• the annotation of the training set is an arduous task,

• the results are inherently dependent on close initialisation to the target 
object

• the size and variation of the training set can restrict the AAM from con­
verging on the correct solution and

• the AAM assumes point correspondence of the training data 

5 4 1 Application of AAMs to Medical Imaging

AAMs have received much attention m medical imaging in recent years Stegmann 
[148, 149] performed a segmentation of the left ventricle of the heart using the 
AAM on 2D perfusion images In [151], Stegmann and Larsson use a cluster­
ing method of the texture variation to create a set of texture subspaces, which 
could represent the phases of bolus passage in cardiac perfusion MRI Mitchell et 
al [96] [94] demonstrate the results when a 3D AAM\ASM combination is per­
formed on the left ventricle of the heart m cardiac data in MRI (see Figure 5 3) 
and ultrasound images The model is created using manually traced contours 
on 2D slices and extended m the z direction using linear interpolation between 
slices Van der Geest [165, 166] investigates the semi-manual use of AAMs for 
the segmentation of the myocardium m MRI data over the entire cardiac cycle 
Firstly, the contours are initialised on one image and the model iterates over the 
entire cardiac cycle until convergence Finally, manual readjustment of the final 
model fittings can then be performed

Bosch et al [17] examine the use of Active Appearance Motion Models (AAMMs) 
in MRI and echocardiographic AAMMs introduces a time factor into Active Ap­
pearance Models which aims to minimise the appearance-to-target differences 
Lelieveldt et al [79] and Sonka et al [143] also use AAMMs in segmentation 
of cardiac 2D+time MRI sequences The major advantage of this method over 
AAMs is the error feedback parameters are calculated for the full image sequence 
ensuring a segmentation consistent with cardiac motion
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Figure 5 3 Original image (left) following segmentation using AAM (middle) and 
method described m Mitchell et al [95] (left)

5 5 Atlas Based Segmentation

Atlas based approaches are parameter free deformations of a prion  models to 
extract the target object m an unseen image (for a full review of model based 
approaches see [48]) In this case, prior knowledge about the shape and intensity 
values of the object are incorporated Unlike parametrically deformable models, 
which use geometric shapes to model the desired shape, atlas based approaches 
construct the model from manually segmented data

5 5 1 Application of Atlas Based Methods in Medical Imaging

Kaus et al [69] use coupled triangular surface meshes to segment the epi- and 
endo-cardial contours Prior knowledge is encapsulated from the manually seg­
mented data using a point distribution model as well as the grey level appearance 
within the myocardium Lorenzo-Valdes et al [82] construct a probabilistic at­
las of manually segmented temporally aligned data Automatic segmentation 
is achieved by registering the atlas on the data, using the atlas as the initial 
values for a Expectation-Maximisation (EM) The EM is then iterated until con­
vergence before a final classification step using Markov Random Fields (MRF) 
and Largest Connected Components (LCC) Lelieveldt et al [80] proposes a 
method for thoracic volume segmentation by building a model of the anatomical 
structures contained m the thoracic cavity The method uses blended fuzzy im­
plicit surfaces and a solid modelling technique called constructive solid geometry 
(CSG) Initialisation of the model with respect to position, orientation and scal­
ing is one limitation of Lelieveldt’s argument
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5 6 Level-set Method

Level sets were first introduced by Osher and Sethian [108], following previous 
work m Sethian’s Ph D thesis [132] on flame propagation Like snakes, the theory 
behind this boundary-based segmentation is largely based on work in partial 
differential equations and the propagation of fronts under intrinsic properties 
such as curvature [133] While level-set methods can be applied to a host of 
image processing problems, for example image restoration, mpaintmg, tracking, 
shape from shading and 3D reconstruction, segmentation is the mam focus of this 
work An extensive review of level-set methods is given by Suri [157] and also by 
Angelim et al [5] It can also be thought of as transforming the earlier work of 
Kass et al [68] on active contours from a Langrarian to a Eulerian formulation 
Like active contours, the deformation of the level set is seen as a gradient flow 
to a state of minimal energy, providing the object to be segmented has clearly 
identifiable boundaries (22, 21, 23, 87, 86]

However, by extending the dimensionality of the problem to N + 1, where 
N is the initial dimension of the problem, some advantageous properties can be 
exploited The formulation of the problem is conceptually simple The evolving 
curve, or front T, evolves as the zero level-set of a higher dimensional continuous 
function 4>

^  4- F\V(j>\ = 0
dt 1 Vl (5 8)

<p(s, t = 0) = given

This function deforms with a force F  that is dependent on both curvature of 
the front and external forces in the image The force acts in the direction of the 
normal to the front The initial position for the contour is given, so therefore the 
function <f> can be constructed

The use of level-sets for the segmentation of the cardiac muscle in MRI is 
appropriate for the following reasons

• one can perform numerical computations involving curves and surfaces on a 
fixed Cartesian grid without having to parametrize these objects (Eularian, 
non-marker based solution),

• it becomes easy to implicitly track shapes which change topology, for ex-
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Figure 5 4 Level-set representation of the evolution of a circle

ample when a shape splits m two, develops holes, or the reverse of these 
operations,

• intrinsic geometric properties of the front, such as the curvature and the 
normal, can be easily calculated and

• the method may be extended to higher dimensions

However, there are some issues associated with the basic level set formalisation 
In the latter stages of this chapter, the author attempts to address these issues

• the algorithm is computationally expensive,

• the front may leak through boundaries of low gradient information,

• the level set function requires initialisation close to the target object and

• the evolution does not use prior shape or texture based information

Level-set segmentation has also been successfully applied to other medical 
imaging modalities as described in Appendix B

5 6 1 Level Set Formulisation

The fundamental objective behind level-sets is to track a closed interface F (t), 
for which T(i) [0,oo) as it evolves in the data space The interface is
represented by a curve m 2D and a surface in 3D or the set of points that are on 
the boundaries of the region of interest ft The theory behind level-set segmenta­
tion is largely based on work in partial differential equations and the propagation 
of fronts under intrinsic properties such as curvature [108, 133] Level-set theory 
aims to exchange the Lagraman formalisation and replace it with Eulenan, initial



88 CHAPTER 5 BOUNDARY-BASED SEGMENTATION

valued partial differential equation evolution By extending the dimensionality 
of the problem to N +l, where N is the initial dimension of the problem, some 
advantageous properties can be exploited Representing the boundary as the 
zero level set instance of a higher dimensional function (f>, the effects of curvature 
can be easily incorporated 0 is represented by the continuous Lipschitz function 

t =  0) = ±d, where d is the signed distance from position 5 to the initial 
interface To (see Equation 5 9) The Lipschitz condition implies that the function 
has a bounded first derivative The distance is given a positive sign outside the 
initial boundary ( D  fi ), a negative sign inside the boundary ( Q \d Q  ) and zero 
on the boundary ( dft )

- d 

0

+d

Vs e n \ d t t  

\ / s e d n  

Vs e R n \ n

(5 9)

From this definition of <f>, intrinsic properties of the front can be easily deter­
mined, like the normal n = ±  and the curvature k =  V

Also from this definition, <f> can be considered as a function in two different 
ways Firstly, (j) can be considered as a static function <f>(s) that is evaluated 
at particular instances or isovalues, this leads to the formulation of the Eikonal 
equations and is discussed m more detail in the Fast Marching section (Sec­
tion 5 6 5) Alternatively, 4> can be described as a dynamic function 0(s, t) that 
evolves through time, and the closed contour or front is the special case where the 
value of (j)(s, t ) equals zero Using this definition, it can also be said that at any 
time ¿o the set of points that define a curve can be represented as the function 
0(s7 ¿0) = 0 It is also clear that as the curve evolves through time, the function 0 
also evolves Consider a point s(t) on the contour that is evolving through time, 
we constrain the value of that point in the level-set function to be <f>(s(t), t) = 0 
By chain rule,

^  +  V4> s'(t) =  0 (5 10)

Define the force, F  = s(t) n to be the force moving the point s(i) m the 
normal direction n If n is replaced with n =  the equation takes the form
of a Hamilton-Jacobu as expressed m Equation 5 8 If the force term is rewritten 
as F  = Fq + ek to include an advection force Fq to move the curve and a curvature
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based term en to regulate the evolution, the evolution of 0 now becomes,

& = - F o|V 0|+6*|V 0| (5 11)

Classic finite difference schemes for the evolution of this equation tend to 
overshoot and are unstable Sethian [134] has proposed a method which relies 
on a one-sided derivative that looks in the up-wind direction of the moving front 
to control the outward expansion, and thereby avoids the over-shooting associ­
ated with finite differences (see Equation 5 12) while the second derivative can 
be approximated using central differences Level-set theory uses a combination 
of derivative approximations to enable smooth curvature evolution

| V0| =  yjm ax(D t *, 0)2 + min (£>+*, 0)2 + m ax(D l ^  0)2 + m in ( D ^ ,  0)2,
(5 12)

where, for example D+x =  and D~x =
Caselles et al [22] and Malladi et al [87] used the above theory to indepen­

dently formalise the implicit minimisation of the classic energy function used in 
snake evolution, seen in Equation 5 1, for the extension to level set theory

m i n y , ff( |V 7 | , / „ ) | r ' ( s ) | d s  (5 13)

This minimisation includes a stopping term #(|V /(r(s))|) where g is a stop­
ping function (reciprocal or exponential) based on gradient of pixel intensities and 
curvature term T(s) based on the intrinsic properties of the curve and calculated
by

/  |r'(s)|2d s=  [  g(\V IT(s)\)ds  (5 14)
J s  Js

Prom [22] it can be shown that the Euler-Lagrange gives a minimising curve 
that is of the form

| r ( S) = a(|V /|)/in - ( V 5 n)n (5 15)

The term Vg  n adds a naturally occurring attraction force vector normal 
to the surface introduced by Yezzi et al [177] and k, is the curvature term By 
representing the boundary as the zero level set instance of a higher dimensional 
function <j> as described in Equation 5 9, the effects of curvature can be easily
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incorporated [86, 21]

^  =  s(|V /|)(c  +  ck)|V0| +  /3(Vg V0) (5 16)

In this segmentation scheme, a non-zero internal advection or ballooning force, c, 
is added to the evolution to evolve the either outward (c = 1) or inward (c = —1) 
depending on whether the initialisation curve is enclosing or enclosed by the 
target object for segmentation ¡3 and e are user defined parameters that control 
the effects of attraction to gradients and curvature respectively and are chosen 
experimentally Reducing the ¡3 parameter slows down the convergence time as 
the front is not attracted to edges, however increasing the parameter may have 
the effect of causing the evolution to jump past appropriate gradients leading to 
spilling of the curve into other areas The parameter e controls the smoothness of 
the contour or surface Reducing the value of this parameter allows the algorithm 
to converge on less smooth object boundaries

Curvature Term

From differential geometry any shape (no matter how complex) collapsing as a 
function of its curvature k will evolve to a circle before disappearing [59] Using 
this relationship, a force F  =  — k is defined to always shrink a contour to a 
point This is a favourable quality for advancing fronts for segmentation, as it 
can be shown that this minimises the contour length As discussed earlier, using 
the partial differential equations perspective, intrinsic geometric properties such 
as the curvature and normal can be easily calculated For example, for a 2D 
propagating front, the curvature k can be found using partial differentials of the 
function

_  ^ V0 _  <f>X X < t>y ~  2 < f> y < p X ( j) Z y  + ( j ) y y (f> ^  ^  ^  ̂
“ - v  i v * r  {<%+<%)*'* ( }

The normal can undergo a jump at corners, and this issue is addressed m the 
work of Sethian and Stam [134] where the normal is normalised

However, in 3D there are two measures of curvature, the mean and Gaussian 
curvature The mean curvature («//), is connected to the physical evolution of 
soap bubbles and the heat equation
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Gaussian curvature (kg), has also being used to model physical problems such 
as flame propagation It has been shown that a convex curve evolves to a point 
under curvature evolution, but it can also be shown that evolution of non-convex 
surfaces can be unstable

«  = v  (518)

V0TAdj (H (f l)V *
KG = — w w —  ( }

where H (<j>) is the Hessian matrix of 0, and Adj(H) is the adjoint of the matrix 
H [173]

Neskovic and Kimia’s [106] propose a measure of curvature which involves 
both mean and Gaussian In this approach, the direction of flow is obtained from 
the Mean curvature while the magnitude of the flow is dictated by the Gaussian 
curvature This is appropriate as the Mean curvature alone can cause singularities 
when evolving

f^nes — sign(KH) \ A g  + | « g | (5 20)

Stopping Criterion

The evolution force F  is an energy minimisation problem where the speed ap­
proaches zero at positions of high gradients to exert a halting to the front prop­
agation To this end3 two diffusive stopping criteria have been proposed The 
first and most common stopping term is a reciprocal of the gradient of the image 
intensity signal convolved with a Gaussian smoothing mask Ga, where a is the 
variance of the Gaussian mask

a(|CT|)- n-ivd  m i ’ ■p~ 1 (521)
The convolution with a Gaussian eliminates the effects of noise on the image 

Other methods of noise removal, such as non-linear or anisotropic which were 
discussed m Chapter 3 can be used m place of the Gaussian to improve the re­
sults
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Alternatively, if the circumstances require the stopping term to fall to zero 
faster than the reciprocal function, the following definition can be applied This 
may allow the front to overshoot the object boundary in the presence of weak 
gradients or can cause errors m the presence of noise Therefore a new stop­
ping term is devised that incorporates texture This is performed by means of 
a Gaussian membership function used to determine whether the voxel is inside 
or outside the target object This membership function is constructed using the 
texture analysis of the object region after initialisation A Gaussian member­
ship function is chosen as MRI response in tissue can be modeled as a Gaussian 
distribution [76, 70]

fl(|V/|) =  exp“1̂  (5 22)

where exp is the exponential function

5 6 2 Non-gradient based curve propagation

Image segmentation and classification has also been approached by incorporating 
level sets into the partitioning of images based on intensity values These methods 
have also been called Region-competition snakes and are deformable models that 
are governed by local probabilities that determine if the snake is inside or outside 
the structure to be segmented Chan and Vese [27] show how the Mumford-Shah 
functional can be used in a level set framework The Mumford-Shah functional 
aims to partition the image I  into a smooth approximation /  set of regions 
separated using contours, S

E(S, f )  = u{S) + a  f  ( f -  I ) 2dx + p  f  \V f\d x  (5 23)
Jn Jns

The problem is approached as a energy function which tries to minimise its vari­
ables (a) the length of the set of contours v(S), (b) the deviation from the original 
image a — I ) 2 dx and (c) the smoothness within each region ¡3 f QS \ V f \ dx

Another approach is developed m a level set framework by assuming a two 
class problem of an image I  defined on Q The problem is then posed as follows

E(C ) = f  \I — Co|2dii + f  \ I - C i \ 2dil (5 24)
J  msxdtC J outsideC

where C  is the front, and (Co, C\) are the average intensity values for mside and 
outside the curve C  While this methods addresses boundary leakage and ini-
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tiahsation problems it assumes a low class of intensity features and grey scale 
homogeneity across the object Yezzi et al [177], Tsai et al [163], Cohen and 
Kimmel [32], Deschamps et al [41] and Angelmi et al [6] adopt variations on 
this approach to segmentation m medical images

In [111], Paragios and Deriche unifies both region and boundary information 
in a level set framework Following on from [109], Paragios incorporates an 
intensity based component taken from the grey scale distributions of cardiac 
features and a prior shape model to deform a coupled level set over the endo 
and epi-cardium of the heart Taron et al [161] perform a variational technique 
for the segmentation of the Corpus Callosum of the brain They use estimated 
uncertainties of the registration when applying model priors to the segmentation 
process

5 6 3 Introduction of A-Priori Knowledge

Leventon [81] introduced a priori knowledge by building a prior model that was 
embedded m a level set formalisation and evaluating its modes of variation using 
PCA analysis This has been the basis for much work in level set formulation in­
corporating shape priors into the propagation Due to the model being defined in 
Eulerian space, it circumvents the problem of point correspondence encountered 
in the previous sections

Tsai et al [163] provide some work, leading from the initial work performed 
by Leventon and perform segmentation on cardiac images in 3D In [162], Tsai 
et al construct a model of a priori shapes as the zero level set of a number of 
separate segmented images The database of level sets are then classified into 
a user defined number of statistical shape classifications using an Expectation 
Maximisation algorithm This method was applied to medical images where con­
genital brain malformation of the cerebellums was used to create a two class 
(healthy/diseased) classification scheme As mentioned, Paragios et al [110, 112] 
use a shape model built from previously segmented data to guide the segmenta­
tion of his level set

5 6 4 Coupling of Level Sets

Zeng et al [181] first introduced the idea of coupled level sets for segmentation 
of the cortex of the bram The coupled level set can use the constant thickness or
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distance between the level-sets as a constraint to avoid spilling or over segmenta­
tion The ideas introduced by Zeng were extended by Paragios [109] who applied 
a similar coupling constraint for the segmentation of the myocardium of the heart

5 6 5 Initialisation using Fast Marching

In order to overcome the ’myopic’ characteristics of level set propagation, Sethain 
[133] introduced a Fast Marching methods This is the unique case of the level 
set theory where the force F  is always greater than zero, and this propagates 
a monotomcally advancing front The formula takes the form of the Eikonal 
Equation 5 25, a nonlinear, static Hamilton-Jacobi equation If the 2D case is 
considered again, a set is created T(x,  y) that defines the time at which the front 
T crosses the position (x, y) T  satisfies the equation,

|VT|F = 0 (5 25)

Figure 5 5 Front propagation using Fast Marching Adapted from Sethian [134]

The evolution is iteratively assessed by solving the roots of the quadratic 
equation of the Eikonal equation and sorting the values of T  with respect to size
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This can be shown graphically m Figure 5 5 The value of the force at each point 
can be calculated using the upwind scheme approximations to derivatives of the 
function <fi

The stopping term is based on the diffusion of the gradient and can be calcu­
lated as

FtJ = e~aVI'> (5 26)

The fast-marchmg approach gives an approximate segmentation and is used for 
the evaluation of the initial contour for the dynamic level-set method

5 6 6 Narrow-band Methods

In order to increase the computational efficency of the algorithm, Adalsteinsson 
and Sethian [2] extensively review narrow-band methods The mam disadvan­
tage of formulating the problem in Eulerian space as opposed to the Langrarian 
space is the increase memory and computational expense of propagating the front 
across the full matrix of the image To eliminate this issue, a narrow band (2D), 
or narrow tube (3D), around the front is defined and it is in this narrow band that 
the <j) values are updated at each iteration The narrow-band is first initialised 
by including all data points withm a certain bandwidth of the front, this can be 
achieved by using the values of the <f> As explained, at each iteration, only the 
values of (f> within the narrow band are updated With each iteration the front 
points are evaluated to see if they are close to the edge of the narrow band If 
yes, the narrow band is re-mitiahsed otherwise the algorithm iterates as normal 
It has been shown in [2] that these boundary conditions do not adversely affect 
the motion of the level-set Implementation of this narrow band method can 
greatly improve speed of execution and some level set approaches prove real-time 
execution [37]

5 7 Initialisation

To counteract the ’myopic’ characteristics of these deformable models, the ini­
tialisation process is very influential and is performed in MRI data as follows 
Firstly, it is known that the endocardium boundary can be characterised by the 
high contrast between the blood and the heart muscle in standard (TVuFISP) 
cine imaging of the heart This characteristic is used when a fast marching algo­
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rithm is applied to find a fast efficient initialisation for the blood following the 
manual insertion of a seed point The fast marching approach is driven by a force 
Fs =  e"aVis, which has a diffusive effect aimed at halting the fronts progress at 
regions of high gradient This fast-marchmg approach falls short of the gradient 
defining the transition from blood to muscle Therefore the contour found by the 
fast marching algorithm is used as the initial curve of the level-set algorithm to 
find the endocardium boundary The results from the Fast Marching initialisa­
tion are illustrated m Figure 5 6

Figure 5 6 Results show the initialisation (marked in white) from a seeded Fast 
Marching algorithm The method was applied to perform a robust initial estimate 
of left ventricle cavity of the heart on four separate datasets displaying a high 
variability of left ventricle shape

To find the epi-cardial boundary the endocardium initialisation is dilated 
slightly and the inner gradients are masked Both curves are given a positive 
advection force to propagate outwards It is known that both the endo- and 
epi-cardium boundaries of the left ventricle are approximately circular, therefore 
the 6 is given a high significance m the evolution, the evolution is illustrated in 
Figure 5 7 High curvature constraints, the distance inhibitor and the a priori 
constraints all act to limit the epi-cardium front from joining the inner front or 
spilling m areas of low gradient, like the liver or the lungs

5 8 Coupling Force between Fronts

To further control the level-set evolution we employ a coupling function between 
two level-sets The coupling adds an extra constraint by introducing a second 
level-set that is dependent on the first and coupling the level-sets with an in­
hibitor function, which allows the curve to change direction of growth This is
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(a) (b) (c) (d)

Figure 5 7 The images above show evolution of the front at four different it­
erations (a) iteration  — 0, (b) iteration  = 5, (c) iteration  =  10 and (d) 
iteration  =  15

(a) (b) (c)

Figure 5 8 Segmentation results of the same slice at three separate phases 
through the hearts cycle, (a) end-diastolic, (b) mid-diastolic and (c) end-systolic

achieved without any extra computational expense as the distance between any 
point to the level-set boundary is the value of <j> at that point, see Equation 5 9 
The piecewise inhibitor function, which is used as the interaction between the 
two level-sets, is defined below, where d is the preferred distance between the 
curves and w controls the slope between inward and outward growth The result 
772(^1) changes value from +1 to -1, which changes the direction of the evolution 
for (j>2 between inwards and outwards In practice the values of d and w are taken 
from the scaled a p n o n  model

m{4> 1) =

-1

1

for (fri (s) < —d — w

for — d — w < 4>\(s) < d + w

for <j)\ (s) > d -f w

(5 27)

For this segmentation scheme, it is assumed that the gradient between the 
blood pool and the endo-cardium boundary is significantly high to halt the evo­
lution of the level-set Also it is known that in some cases there is little or no
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Figure 5 9 Graph of the inhibitor function where the values of d =  6 and w = 4

gradient information between the epi-cardium boundary and the lungs or liver 
Therefore, the level-set segmenting the epi-cardium boundary is controlled by the 
endo-cardium level-set using the inhibitor function described

5 9 Improved Stopping term

To illustrate the improved performance of the advanced stopping term, the fol­
lowing phantom images were created and tested Two situations are described 
as illustrated m Figures 5 10 and 5 11, the first where low gradient information 
is present between two regions and the second where the grayscale difference 
between two regions is low The stopping term, is defined as

1 + v/ (5 28)

uses a combination of the gradient and change in texture The change in tex­
ture (Ia) is calculated after the initialisation with the fast marching algorithm 
described in Section 5 7 Within the initialised region the mean fi and variance 
a  of the voxels are calculated From these values, a Gaussian is constructed and 
the Ia {s) i s  calculated as.

U s )  =
i

n/27TCT2
■.e 2*2 (5 29)

where x  is the value of the voxel at each position s in the image The value of Ia 
is normalised between 0-1
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The user defined parameters e and ¡3 represent the influence of the curvature 
and attraction to gradient on the evolving boundary In the following tests, we 
want to evaluate the influence of the improved stopping term, so the value of e 
is given less significance to reduce the influence of curvature on the evolution 
In the segmentation of the left-ventricle boundaries, the value of e is given a 
higher significance as we know the boundaries approximate circles Similarly, ¡3 
controls the attraction of the level-set boundary to gradients that are normal to 
the curve Again, this value is given a reduced weighting in the proceeding tests 
The results shown in Figures 5 10 and 5 11 demonstrate the improved robustness 
against boundary leaking between regions

Figure 5 10 The original phantom image with a diffused segment (a) and the 
Sobel edge image to illustrate the gradient information (b) The second row 
shows the evolution with the existing g =  1+v/ at iteration 0, 25 and 50 while 
the third row shows the evolution with our proposed approach where g =  g/

1+ to
at iteration 0, 25 and 50

5 10 Introduction of Priors Models

A prton  information is incorporated with a probability density function (PDF), 
which is defined as

P(s)  =  £ s £ « = l / « ( a) , (5 30)
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(a) (b)

Figure 5 11 The original phantom image with a close region (a) and Sobel edge 
image to illustrate the gradient information (b) The second row shows the 
evolution with the existing g =  1+1VJ at iteration 0, 25 and 50 while the third 
row shows the evolution with our proposed approach where g =  V/ iteration14~"j—
0, 25 and 50

where f % is the outline of the epi and endo cardium boundaries used for training, 
N  is the number of training examples and s defines the image coordinates The 
model is built from a set of hand segmented boundaries, a probability density 
function is created of both the endo-cardium and epi-cardium boundaries that 
are then interpolated in the z direction, scaled and aligned in the xy  direction 

The PDF is constructed by aligning the binary manually segmented boundary 
images and summing the boundary elements This is done for both the endo­
cardium boundary and the epi-cardium boundary It is incorporated into the 
evolution in a global context, after each iteration the value pt 1S evaluated as,

pt =  Y ,  w ) ‘ * p* (5 31)
Ces

where (j>{t)s is the value of <j> at time t at the position s and Ps is the probability 
density at position s and this value is summed over the narrow band C  which is 
a subset of the image space The parameter pt is calculated at each iteration is 
then normalised between the bounds -1 and 1 as it can have negative and positive 
values This is as a result of <j) also having positive values outside the contour 
and negative values inside the contour This means pt will have a more positive
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value if the current contour is inside the prior model and more negative if the 
contour is outside the prior model

In order to obtain the full evolution equation for the level-set we have to incor­
porate both the coupling function and the a prion  knowledge into Equation 5 32

^  = ?(V7)(c + e«)|Vfli|+/3(V5 V0) (5 32)

Firstly, the output from the coupling function is either 1 or -1 and we want 
it to change the direction of the curve evolution From Equation 5 32 we can 
see that the advection force defines the direction of the evolution, therefore we 
incorporate the coupling function by multiplying it with the advection force c 
This has the result of changing the direction of the contour, depending on the 
results from the coupling function In this sense, both the epi and endo cardium 
boundaries are tied together __We_also.assume that the boundary between the 
left ventricle blood pool and the myocardium has a stronger gradient term than 
that of the epi-cardium boundary and the liver or lungs Therefore, this term 
is applied to the evolution of the level-set surface designed to extract the epi- 
cardium Hence, based on the parameters of the coupling function which can 
be automatically obtained using the distance between the blood pools the outer 
surface is prohibited from spilling into other organs beyond a certain distance 
from the endo-cardium boundary

The a p n o n  model is designed to disregard inappropriate gradients and to 
give significance only to gradients that are situated close to previously manually 
segmented boundaries For this reason, we incorporate the a p n o n  information 
in the attraction term from Equation 5 32 As explained, this is taken on a global 
sense whereby we define for both the inner surface and the outer surface whether 
or not they are mside or outside the PDF of previously segmented images Thus, 
the complete evolution for the coupled level-set is defined as,

<k+i = <i>t+9 (VI)(cn + eK)\V4>\ + --?— (Vg V<f>) (5 33)
1 + Pt

where 7? is the result of the coupling function between the level-sets and is defined 
in Equation 5 27 and pt is the a p n o n  knowledge and is defined in Equation 5 31 
The results in Figure 5 13 illustrate the performance using four unseen datasets
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(a) (b) (c)

Figure 5 12 Images show the probability density functions from a priori hand 
segmented images Figure (a) shows the combined contours while (b) and (c) 
show the endo- and epi-cardium boundaries respectively Darker gray tone defines 
a higher probability of the boundaries

Figure 5 13 The images above show the segmentation using our method on the 
four previously unseen datasets

5 11 Extension to 4D

Cardiac data is increasingly available m 3D + time, therefore it is believed that 
the best approach for a complete data driven segmentation is to apply an ap­
propriate technique to the complete data presented from a patient scan Due 
to the increasing amount of data that is available in 4D and growing resolution, 
some researchers have attempted to address the segmentation problem Many 
have evaluated the result of sequential approaches, where from a robust initial 
segmentation (maybe manually assisted) forms the initialisation for subsequent 
volumes throughout the cardiac cycle

While the level set formulation lends itself easily to extension m multidi­
mensional data analysis, the author found few researchers have investigated the 
application of level set to analysis of 4D data Fritscher et al [51] aim to apply 
full 4D information into boundary driven and region-competition geodesic con­
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tours In initial work, PCA analysis is performed on signed distance maps to 
create models, the mean of these models serve as the initialisation step m a level 
set segmentation More generally, m the earlier 4D segmentation work [9, 91], the 
temporal dimension was considered m a sequential approach where the segmen­
tation from the previous time frame served as the initialisation for the current 
time frame Rueckert and Burger [123] also used this sequential approach where 
the shape of (t +  1) was a deformation of the shape in time frame (t) The de­
formation is achieved using energy minimisation of the deformable template m a 
Bayesian formulation Sun et al [155] create a non-linear dynamic model learned 
from training data A manual tracing of the first image in the sequence is used to 
create a posterior density estimate of the lv at each time frame A curve evolution 
is then performed with the maximum posterior estimate McEachen and Dun­
can [89] perform tracking of the left ventricle by performing point correspondence 
of points from time t to time t +  1 and assume a small degree of motion between 
time frames Based on these assumptions, smooth transition of the parametric 
contours is achieved using an optimisation algorithm Par agios [109] introduced 
an energy into his variational level set approach that enforced a consistency of in­
tensity through the temporal cycle A transformation is calculated between time 
It and h+i based on a bounded error function, where It represents the intensity 
value at time t In Montagnat and Dehnette [99] in 2005, the deformable model 
is influenced by introducing time-dependent constraints These consist of prior 
temporal knowledge through either temporal smoothing or trajectory constraints

Segmentation m 4D should perform a segmentation of the 3D volumes and 
use information in the time domain To this end, a number of approaches are 
proposed with the advantages and disadvantages of each discussed

• Sequential Approach, consists of naively using the results from time 
sequence t as the initialisation for time sequence t -1-1 This approach 
assumes no prior knowledge about the temporal dynamics of heart The 
only assumption is that the cardiac muscle boundaries do not exhibit large 
movements between time sequences

• Temporal subtraction, can give some indication as to the direction of 
movement of the cardiac boundaries Again, this does not utilise prior 
knowledge about the global dynamics of the heart and may be overly sen-
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sitive to noise and artifacts Some optical flow approaches may eliminate 
these limitations and are being investigated m [10]

• Temporal Smoothing, basically constitutes performing the segmenta­
tion of the 3D volumes in parallel while forcing the boundaries to move 
in a physically consistent way using temporal smoothing In its simplest 
form, temporal smoothing could be achieved using an averaging function,

p    p

r t = At ’ where Tt represents the boundary curve at time t

• Temporal consistency of intensity values across the left ventricle cavity 
and the left ventricle myocardium and was employed by Paragios and De- 
nche [111] Again, artifacts in the left ventricle cavity due to the dynamics 
of the blood through the cardiac cycle may restrict the application of this 
method

• Database of Prior Image Models, built from a selection of images at 
particular temporal instances, may be registered to the unseen image Like 
many database models, this approach relies on building generic models that 
are applicable to a wide range of heart morphology Variations in cardiac 
morphology caused by individual anatomical features or disease may not 
be accounted of m such models

• Prior Temporal Parameterised M odel proposes to model the dynamics 
of the cardiac cycle and further refine this model as the parallel segmenta­
tion is performed on the 3D volumes Unlike database models constructed 
m image space, broader classification of the cardiac boundaries movement 
through the entire cycle can be applied to all variations of heart morphol­
ogy Exploiting the construct of the <j) function in level set segmentation 
(see Equation 5 9) enables fast function fitting that may be incorporated 
into the update of <j>

5 12 Applying level set on 3D+£ data

From the options above, segmentation of the 4D data should be approached m a 
parallel sense using temporal constraints to infer prior knowledge m an effort to 
control the boundary deformation away from erroneous spilling or over segmenta­
tion To this end, a novel approach to control a level set deformation is proposed 
The control is achieved by means of prior knowledge about the deformation of 
the cardiac muscle through a complete cardiac cycle In the majority of cases,
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Figure 5 14 Volume, in pixels, of left-ventricle cavity over the cardiac cycle

the temporal volume change of the cardiac cavity over the complete cardiac cycle 
can be illustrated as show in Figure 5 14 where the phase starts at end-diastolic, 
decreases in volume during the systolic phase until it reaches end-systole before 
returning to end-diastole during its diastolic phase

The next question to pose is how this information about the overall shape of 
the cardiac phase can be implemented in a loosely fitting way to the deformation 
of the level set

5 12 1 Modelling the temporal movement

From Figure 5 14, the cardiac cycle can be approximated using an inverted Gaus­
sian curve Values for the general Gaussian defined in Equation 5 34,A } B , fi and 
a are found by fitting a Gaussian curve to the volume data extracted using the 
Fast Marching algorithm from each time frame Gaussian fitting is achieved using 
least squares approximation Non-linear fitting is unstable due to the low number 
of volumes in the temporal resolution (~ 25) For nonlinear least squares fitting 
to a number of unknown parameters, linear least squares fitting may be applied 
iteratively to a linearized form of the function until convergence is achieved How­
ever, it is often also possible to linearize a nonlinear function at the outset and 
still use linear methods for determining fit parameters without resorting to iter­
ative procedures

y(x)  =  A  + B e ^ 2
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This fitted Gaussian represents the model for the dynamics of the cardiac cy­
cle over a single heartbeat It follows that the displacement of the endo-cardium 
boundary can also be modelled using this fit In this regard, the deformation of 
the boundary surface of the level-set is constrained by this Gaussian model Ex­
ploiting the inherent definition of the level-set function (f> as the distance function 
of a single position from the evolving surface, the incorporation of the Gaussian 
model is straightforward and can be applied in a non-rigid sense to every point 
within the narrow-band

This is further illustrated in Figure 5 15, where a 2D image is taken and a 
single point is selected within the narrow-band From the definition of <j>, the 
value at this point is the distance from that point to its closest point on the zero 
level-set boundary In the illustration, the boundary contracts and then expands 
again in much the same way as the left ventricle boundary evolves from end- 
diastole to end-systole and back again to end-diastole As this evolution takes 
place the value at the position grows and shrinks as the distance to the boundary 
increases and decreases, this evolution can be modelled using the Equation 5 34 
and the parameters £ , ¡j, and a  determined from the fast marching initialisation 
The value of A  represents the offset of the Gaussian model Figure 5 16 illustrates 
the model applied to the long axis view

Figure 5 15 Change of a single point on (j> as the boundary evolves over the 
cardiac cycle in the short axis view

v v v v v
Figure 5 16 Change of a single point on 0 as the boundary evolves over the 
cardiac cycle in the long axis view

In this way, the evolution of the zero level-set boundary can be constrained 
to contract and expand under Gaussian motion, where the saddle point is the 
temporal position given by \i and deformation occurs at a rate <r Initialisation
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Figure 5 17 Volume, in pixels, of left-ventricle cavity over the cardiac cycle with 
fitted model using an Adaptive Gaussian Model

of the Gaussian model parameters are determined after a primary segmentation 
of the left ventricle cavity using a Fast Marching method

Level Set influenced by an Adaptive variance Gaussian

In order to model the dynamics estimated using the Fast Marching algorithm, 
an adaptive Gaussian model is developed Similar to the general Gaussian model 
given m Equation 5 34, the aim is to improve the models fit on the initialised 
data This results in the deformation of the boundary that maintains closely the 
temporal dynamics of the initial segmentation using the Fast Marching algorithm 
and therefore the model resembles the shape of the raw data and does not re­
semble the Gaussian curve In practice, this model is created by a least squares 
fitting of a Gaussian model where the variance, a is calculated separately at each 
temporal position, m essence this means that the least squares error is close to 
zero at each temporal position This is illustrated in Figure 5 17 where the model 
curve mirrors the real data

Models created from initialisation may not represent the final segmentation 
of the target object It places too much confidence m the initial model created 
using the fast marching approach For an example using the worst case scenario, 
if the fast marching algorithm falls into a local minima inside the left ventricle 
blood pool at one particular time sequence then the temporal model incorporates 
this Using the curvature constraint, the level-set algorithm can overcome this 
error, however, the temporal model that is created may not allow the level-set to
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deform greatly from the model created from the initialisation Therefore, a new 
approach is proposed, which uses the information obtained from the initialisation 
step but iteratively updates this model based on the evolving level-set This cre­
ates a smoothing effect on the level-set surfaces over the cardiac cycle but also 
redresses poor initialisation

Level Set influenced using Expectation-Maximisation

In order to address the limitations associated with the Adaptive variance model 
described m the previous section, a novel approach is introduced which iteratively 
updates the initial parameters of the model This acts as a form of Expectation- 
Maximisation (EM) algorithm The EM algorithm is a two step approach which 
aims to fit some model to data, and is particularly useful where there is unknown 
or incomplete data In the case of cardiac boundary segmentation, the observed 
data is defined as the value of the level-set function 0 at a particular position over 
the entire cardiac cycle The unknown or missing data is a final Gaussian model 
which is inferred on a single point in the grid over the complete cardiac cycle 
This application to each point on the grid has the advantage that the model is 
fitted non-rigidly and can allow for less or no deformation, which is the case in 
diseased hearts

The EM algorithm takes initial parameters for the model, in this case the 
information obtained from the Fast Marching segmentation of the left ventricle 
cavity, and performs an expectation or fit of the data at a particular spatial po­
sition over the entire temporal data These model parameters are stored m an 
array for each grid point Then during the maximisation step when the level-set 
is updated, the information about point position with respect to its expected val­
ues are calculated The results from this expectation stage is the difference or in 
EM terms, the likelihood, between the model and the observed data From this 
expectation calculation, a maximisation is performed to correct for the differences 
found This maximisation step is the level-set deformation of the boundary sur­
face The process is iterative and the parameters for the model are re-evaluated 
at each iteration

This addresses many issues associated with the previous method Firstly, be­
cause the parameters for the model using the Fast Marching approach are just 
used as the initial parameters for the EM algorithm, there is less dependence
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Figure 5 18 Volume, in pixels, of left-ventricle cavity over the cardiac cycle with 
fitted Gaussian model

placed on these initial parameters as they are re-evaluated at each iteration Sec­
ondly, the iteratively fitting a Gaussian to the data results in giving a Gaussian 
smoothing of the zero level-set boundary over the temporal cycle

5 1 3  Results

In order to assess the validity of this approach, the results of the segmentation 
using the iteratively optimised algorithm are compared against those obtained 
from expertly validated* segmentations of the left ventricle Figures 5 19 display 
a linear plot and Bland-Altman plot for the areas in 2D of the manually traced 
boundaries

Comparative results between the adaptive variance approach and those ob­
tained from the iteratively optimised algorithm can be seen on a point-to-curve 
error calculation in Table 5 1, showing less error using the optimisation algorithm 
This is also confirmed in a linear plot of the blood pool areas when compared 
against manual segmentation where the Gaussian curve with adaptive variance 
produced a regression value of 0 71 while the optimised approach yields a regres­
sion of 0 77

The iteratively optimised algorithm also is guaranteed convergent [174, 40, 13] 
and also reduces the error between the observed data and the model at each

"The validation was performed by Dr John Murray, Cardiologist, Mater Misencordiae 
Hospital, Dublin, Ireland
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Figure 5 19 Results of the 4D segmentation of the left ventricle cavity boundary 
compared against those obtained from manual segmentation

Table 5 1 Table representing the point to curve error for Method 1 using the 
Gaussian curve with adaptive variance and Method 2 using the Expectation- 
Maximisation of the Gaussian parameters

Endo-cardium
Average Std Dev RMS

Method 1 1 649013 1 584626 2 309887
Method 2 0 844075 0 914422 1 268981

iteration This means that convergence is faster than using the static model 
This is characterised in Figure 5 20 by measuring the error decay between the 
two methods based on known phantom data
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I t e r a t i o n s

Figure 5 20 Results of the 4D segmentation of the left ventricle cavity boundary 
compared against those obtained from manual segmentation

5 13 1 Testing under different motion approximation

In order to show the generality of the method, an implementation of the 4D 
segmentation was performed using a different prior temporal model In this ex­
periment, the temporal function is given a linear function In Figure 5 21 a cube 
is expanded using a linear function This is illustrated better m Figure 5 22 which 
graphs the volume acquired using the Fast Marching algorithm over time In this 
graph, the fitting of a linear function to the data is also given

Figure 5 21 Selected images from a 4D sequence demonstrating a linear volume 
expansion

5 13 2 Coupled Approach

Coupling of two level-sets can also be achieved in a coherent and thorough way by 
employing two Gaussian models, as illustrated in Figure 5 23 Again, in a non- 
ngid sense each point on the grid has associated with it the parameters for two
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Figure 5 23 Estimation using prior knowledge of the Epi-cardium and Endo­
cardium deformation through the cardiac cycle using inverse Gaussian curves

Gaussian models representing the evolution of the epi-cardium and endo-cardium 
boundary The evolution of the epi-cardium boundary is less pronounced and 
therefore the Gaussian model is shallower Results from a coupled segmentation 
are illustrated in Figure 5 24 for different phases and slices

5 14 Conclusions

In this chapter, deformable contours for feature extraction in medical imaging 
were introduced and discussed An overview of current methods employed in the 
segmentation of the left ventricle of the heart was performed
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Figure 5 24 Results from a coupled 4D segmentation of a cardiac sequence for 
diastolic, systolic and mid-phase for a basal (top row), mid-slice (middle row), 
and apical slice (bottom row)

A novel formulation for the segmentation of the left ventricle is developed 
using a coupling of two level-set surfaces representing the endo- and epi-cardium 
boundaries This was then extended to incorporate prior knowledge about left 
ventricle anatomy from manually segmented images encoded in a probabilistic 
model This method provides adequate results in mid and basal slices where 
spilling is avoided by adding the additional constraints imposed by the prior 
knowledge However, this method encountered difficulty in data representing 
high variation and in particular in the irregular shapes present near the apical re­
gions In these approaches, strengthening the a p n o n ’s influence on the evolution 
may result m loss of segmentation detail, patient abnormalities, muscle dysfunc­
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tion etc Investigating ways of improving accuracy without removing generality 
are addressed in the following methodology A new supervision is proposed that 
does not encodes the prior knowledge based on information from the image space

A new general solution to left ventricle segmentation from 4D MRI data is 
presented Temporal information obtained from the initialisation based on a fast- 
marching segmentation is encoded in a parametric model The model is based 
on non-rigid deformation of the left ventricle boundaries over time using prior 
knowledge about cardiac dynamics After each evolution of the level-set algo­
rithm, the model is optimised to the data using an expectation-maximisation to 
reduce to target to object error This approach has the following advantages, 
firstly, it provides a temporal smoothing over the cardiac cycle that is consistent 
with the motion of the cardiac muscle, secondly it constrains the boundaries from 
spilling m the event that a particular time instance lacks appropriate gradient 
information and finally, the temporal model is defined on each grid voxel within 
the narrow-band, this has the advantage that it can incorporate longitudinal con­
traction and expansion along the short axis into the model This unique property 
of the temporal model can be realised due to the formulation of the level-set

Excellent results are obtained when compared to expertly assisted segmenta­
tions of the boundaries This method also gives comparable performance against 
other methods described m literature, for example Kaus et al [69] report a 
mean error of 2 45d=0 75mm for the end-diastolic phase and 2 84=1=1 05mm for 
end-systolic phase using a deformable model technique

This method did not perform as accurately against the manual segmentation 
when comparing íesults to those illustrated m Chapter 4 In this application, 
supervision was achieved m the evolution of the boundaries by incorporating 
knowledge both in the temporal and space domain Manual segmentation or the 
statistical partitioning techniques described m earlier chapters do use temporal 
information when segmenting the left ventricle In this way, we believe that the 
3D-t-t approach provides more accurate results, ensuring the cardiac boundaries 
evolve in a smooth fashion more consistent to the physical motion of the muscle 
By incorporating the 4D data, we can remove inconsistencies m signal intensity 
values by smoothing the values over the high resolution temporal and spatial data

The results are illustrated for a coupled surface segmentation where the left 
ventricle inner and outer boundaries are tracked in a computationally efficient
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way using two separate models of temporal motion

Finally, this technique represents a framework for incorporating temporal in­

formation into the evolution of an evolving surface Also, demonstrated is a 

variation of this approach where temporal information is applied using a linear 

temporal model as the prior information This may be associated with tracking 

the movement of passing objects The complexity of the temporal model is not 
a limiting factor in this methodology and further applications of this technique 

are discussed in the following chapter
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Chapter 6

Conclusions and Further 
Developments

In this concluding chapter of the thesis, an overview of methods developed for the 

segmentation and tracking of the left ventricle myocardium is discussed With  

particular emphasis on the aims and challenges outlined m Chapter 1 , the mo­
tives for choosing particular paths in research are examined The relevant results 

from each of the processes are also discussed m relation to the objectives In the 

final part of the chapter, the prospect of further work is investigated in relation 

to the application of the proposed methods in different scenarios and also the 
advancement of the developed methodologies

6 1  Sum m ary

Diagnosis of cardiac disease can be achieved through the accurate measurement 
of cardiac function [103, 128] In order to extract the most relevant clinical mea­
surements from the heart, the thoracic cavity must be imaged and the cardiac 
muscle of the left ventricle needs to be segmented MR imaging gives relatively 
high spatial and temporal resolution of the beating heart without the need for 

ionising radiation The imaging of the heart is fast, non-mvasive, painless and 
entails minimum discomfort to the patient

In order to increase the accuracy, speed and repeatability of the functional 

measurements of the cardiac data, much research has focussed on the image anal-

117
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ysis tasks involved in the segmentation of the cardiac muscle of the left ventricle 

In this thesis, novel methods are employed in the segmentation of the left ventri­

cle myocardium By increasing the dimensionality of the solution thus expanding 

the amount of data being processed a more involved technique is developed that 

incorporates the three dimensional image data plus the temporal data obtained 

from the MRI scanner

The problem is addressed in a systematic approach, first dealing with the 

inherent noise associated with the medical imaging procedures A performance 
characterisation of the mam diffusive based non-linear filters is provided both in 

2D and 3D The performance is evaluated using two measures, firstly the filters 

ability to smooth the noise in homogeneous areas and secondly the filters facility 

to preserve strong edges in the image using edge strength and edge spread as the 

criteria The evaluation was performed m MRI data of varying protocols Prom 

these measurements an appropriate filter is chosen as a tool to accurately remove 

unwanted noise from the images

When the unwanted artifacts have been removed from the input data, sta­
tistical partitioning is successfully employed to automatically segment the image 

into appropriate anatomical structures based on signal intensity in both 2D and 

3D data A novel localisation of the left ventricle blood pool is achieved using 

shape descriptors before segmentation of the outer wall of the left ventricle my­

ocardium is accomplished using gradient information and prior knowledge

To fully utilise all the data presented from a single patient scan, methods were 

investigated for the introduction of temporal information into the segmentation 

process Temporal information is useful, as predictions of spacial deformation 

can be used to increase robustness segmentation Level-set theory is introduced 

as a numerically stable method of evolving a surface in 3D based on intrinsic 
properties of the surface and external forces obtained from the image In this 
thesis, a successful extension of Malladi and Sethians [86] formalisation for shape 
recovery is employed which incorporates a texture component and a probabilistic 
model of previously segmented cardiac boundaries to avoid the surface spilling 
into other anatomical structures in the presence of low gradient Employing the 

idea of a coupled level-set introduced by Zeng et al [181], the inner and outer 
wall of the left ventricle are segmented simultaneously using coupled surfaces that 
interacts using a coupling function
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Exploiting the Eulerian formalisation of the level set, the extension to com­

plete 4D segmentation introduces a parametric model of left ventricle deformation 

over a cardiac cycle to aid the segmentation This model is then iteratively refined 

using a optimisation algorithm The model is re-parametensed for each position 

on the grid within a narrow-band of the evolving surface or surfaces, giving it a 

non-rigid deformation to take account of areas of the cardiac muscle that do not 

demonstrate significant spatial deformation, for example in the case of diseased 

tissue

Each of the methods introduced have been tested on synthetic images and 

real patient scans Performance is evaluated by comparing results against ex­
pertly* assisted manual delineation of the cardiac contours In the next section, 
the strategies employed and advantages of this methods over existing methods 
commonly used in the cardiac segmentation will be discussed

6 2 Contributions

In assessing the research conducted in this project toward the goal of cardiac 

image analysis, it is clear that a number of significant contributions have been 

made as well as other minor contributions One of the objectives of the project 

is to integrate all the data available from a single patient scan into the segmen­

tation process in an appropriate and functional manner A full characterisation 

is attained at each stage in the development of the hypothesis The major con­
tributions of this thesis are as follows

•  A novel method for the segmentation of 4D information using prior knowl­
edge about temporal deformation is introduced m a level-set framework 
This prior knowledge is then iteratively optimised through the segmenta­
tion process

•  Produced a novel formulation for a coupled segmentation scheme, in a level- 
set framework, using a probabilistic model which segments the myocardium 
of the left ventricle

•  Developed an improved methodology for cardiac image analysis using sta­
tistical data partitioning

*The validation was performed by Dr John  Murray, Cardiologist, M ater Misericordiae 
Hospital, Dublin, Ireland
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•  Formed a gradient based segmentation of the left ventricle muscle outer 

wall using prior knowledge

•  Performed a full characterisation of advanced data filtering algorithms m 

medical images

There were also some minor contributions resulting from this research

• Developed a novel seed generator for initialising seed positions for automatic 

data partitioning algorithms based on histogram analysis

• Applied the level-set segmentation technique m CT data for the extraction 

of polyp morphology for colon cancer detection

•  Designed a basic graphical user interface, see Figure 6 1 , for visualising data 

and patient information and a separate back-end repository of algorithms 

for medical data processing and analysis

6 3 Discussion

At the start of this thesis, a brief overview of two opposite approaches to seg­

mentation were outlined, bottom-up and top-down approaches Some examples 

of how both methodologies have been applied in the field of medical imaging were 

also given From this initial discussion, a number of advantages and disadvan­
tages for both were provided

Firstly, bottom-up approaches offer a general solution without making any 

assumptions about the data being processed or about the final solution to the 

problem Spatial information may be used locally about a small neighbourhood 

(edge-detectors, region-growing) or may not be used at all (thresholding, signal 
intensity clustering) These methods perform effectively in well defined data such 
as in CT data or m data after performing advanced filtering but in the case of 
poor or noisey data, bottom-up techniques can produce unpredictable and un­
controllable results

On the other hand, top-down approaches such as template matching, ASMs 

and AAMs perform the segmentation using purely information that has been 

used in a training process For example, template matching uses information in 

a global sense to minimise the error m order to find the most appropriate fit 

between the image data and the template Such methods have demonstrated
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robust localisation m the presence of low SNR [150] Incorporating other metrics 

into the model such as texture has been shown to minimise the model to tar­

get differences Other methods have been developed for minimising the model 
to target differences involving alternative approaches to model construction such 

as PCA, where the principal components of the models variation are utilised m 

the deformation process Top-down approaches are limited m their use where 

the structure of the target object varies significantly from those contained m the 

training data For example in cardiac imaging, the general models employed by 

ASM s\AAM s that are obtained from training sets are limited m their application 

for accurate segmentation to the variety of heart shapes Abnormalities in the 

image data can indicate disease Model based approaches approximate to the 
closest plausible instance shape from the training set Point Distribution Model 
(PDM), but this may not be sufficiently accurate Also, A AMs cannot deal well 
with the changes in texture

Also included in Chapter 2 was a note on how to combine both top-down and 

bottom-up approaches in order to obtain a more appropriate solution In this 

thesis, methods of effectively combining prior information and local image prop­

erties are investigated Following the removal of unwanted noise from the image, 
the process of partitioning the structural features within the image is achieved 

using a statistical based clustering algorithm Localisation of the left ventricle 

cavity is achieved using prior knowledge about the shape of the structure based 

on prior knowledge Once the left ventricle cavity has being successfully localised 

and extracted, a novel method for the outer wall of the left ventricle cavity is 

pursued Approximate knowledge about the myocardium thickness is obtained 
from the distance between the left and right blood pools, assuming that the right 
ventricle blood pool is close to the left ventricle blood pool and the separating 
muscle (interventricular septum) approximates the thickness of the myocardium 
around the left ventricle This knowledge is used when extracting local gradient 
information that may form part of the epi-cardium boundary By linking ap­
propriate edges together, segments are produced These segments can then be 
eliminated with respect to orientation Where gradient information is lacking, a 
top-down approach is adopted whereby missing segments are inserted by means 
of a probabilistic model of previously segmented images

To further advance the concept of using the top-down approaches to guide 

bottom-up approaches, the idea of an evolving surface is introduced m Chap­
ter 5 In a level-set framework, prior knowledge about the distance between
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the epi- and endo-cardium boundaries as well as a probabilistic model of previ­

ously segmented images were used to influence a coupled level set deformation 

The probabilistic model is introduced as a cost function, penalising growth away 

from model instances Unlike the variational framework proposed by Paragios 

[110 , 111 ] that uses both probabilistic measures for signal intensity obtained from 

an expectation-maximisation algorithm and prior shape information encoded in 

a level-set framework, our method uses high gradient information as the predomi­

nant stopping term and can therefore be applicable in situations where variations 

in grayscale are encountered

Extending this methodology to 3D  +  t  space, the aim was to remove the 

confidence attributed to the prior knowledge of the anatomical shape of the left 
ventricle, as it is known to contain a high degree of variation especially in abnor­
mal or unhealthy specimens It is proposed to model the temporal motion of the 

heart, as temporal motion m healthy and unhealthy hearts maintain the systole 

and diastole phases Using this characteristic, a temporal model is constructed 

and iteratively updated to guide the local deformation of the level-set algorithm 

This method of top-down knowledge about temporal deformation, optimised in 

order to influence the bottom-up approach gives a significant step towards a ro­
bust, elegant and complete solution to the 3D  +  t  segmentation problem The 

idea of encoding the temporal motion m a parametric model can be applied m 

different scenarios In the next section, some possible situations are discussed

6 4 Further Work

While this work addresses a specific research question, there is further work which 
can be undertaken in a broader sense as a result of the ideas put forward In this 
section a number of areas are proposed which warrant further investigation

Initialisation of the level-set algorithm could be improved Fast-marching al­
gorithm does not take curvature terms into its evolution Further advancement 
of the fast marching method can improve the initialisation of the temporal model 

parameters used in the 4D case described in this thesis

From a theoretical aspect, the level-set formulation is robust and numerically 
stable Further work may involve a more involved formalisation of the level-set 

evolution in order to incorporate the 4D information Further advances may in-
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elude the extension of the temporal model using non-lmear approximations with 

more advanced functions The temporal motion model may also be encoded m 

PCA or other method to reduce the dimensionality of the model These models 

may be derived using data from prior information based on expertly segmented 

cardiac images

In this thesis, a novel method for applying top-down information in a bottom- 
up approach to segmentation is achieved The application chosen to demonstrate 

the ideas proposed in this thesis are in multi-dimensional cardiac data Appli­
cation of these ideas in different areas would warrant further investigation The 

work may be transfered to perform segmentation in the right ventricle or the 

measurement of valve regurgitation may also be achieved Modelling temporal 

characteristics using more advanced functions can be utilised outside of the medi­
cal domain Measuring growth in plants may be one application of this technique

in]

6 5 Concluding Remarks

In this work, a thorough investigation into multidimensional image analysis of 

cardiac data in MRI has been performed which was the mam contribution of this 

research The primary steps involved advancing the framework from a purely 

bottom-up approach based on statistical analysis to a more involved approach 

based on surface propagation using increasing dimensional data and incorporat­
ing top-down information to aid the segmentation This is achieved m a novel 
and intuitive fashion Optimisation of the algorithms performance from a com­
putational expense point of view was performed but advanced developments in 
this area was not one of the main goals for this project Additional research has 

been investigated outside the topic and contribute to minor advances m research 

These are explained m detail in Appendix A and B
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Appendix A

Application of the 
Expectation-Maximisation 

Algorithm to Medical Images

This appendix details the Expectation-Maximisation (EM) for partitioning image 

using pixel intensity values A novel approach for the initialisation of parameters 

is detailed using analysis of the intensity histogram of the image

The application of the EM algorithm for the partitioning of medical images 

into anatomical structures has being documented, particularly m brain segmen­
tation m MRI [47] The EM algorithm shows robust and repeatable performance 

m the segmentations of heart, bram and abdominal images The EM algorithm 
is locally convergent [174, 40, 13] so we have introduced an automatic seeding 
method that uses local maxima m the intensity histogram In this appendix the 
novel initialisation of the EM algorithm is investigated and analysis is presented 
Also results against manual initialisation and apply the algorithm to some com­
mon medical image processing tasks are demonstrated

A 1 EM Algorithm

The EM algorithm [40,14] attempts to classify data using a soft membership func­
tion as a weighted sum of a number of Gaussian distributions called a Gaussian 

Mixture Model (GMM) The generation of this GMM is achieved through an EM
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Figure A 1 Image intensity histogram overlayed with an illustration of the asso­
ciated Gaussian Mixture model

technique, which aims to find the maximum likelihood estimate for an underlying 

distribution from a given data set when the data is incomplete Its advantage over 

the fc-means clustering techmque [42] is its ability to provide a statistical model of 

the data and its capability of handling the associated uncertainties Consider the 

general case of a ¿-dimensional random variable X  =  [ x i 7 X 2 , £ 3, , x j ^  and sup­
pose it follows a ¿-component finite mixture distribution Its probability density 
function (pdf) could be written as,

where k is the number of mixtures, am is the mixing parameter for each of the 
Gaussian’s in the GMM and and p(x\9m) is the probability that variable x  belongs 
to class 0m and is defined m Equation A 2

k
( A l )

(A 2)

where 6m =  are the Gaussian’s parameters This can be displayed
graphically in Figure A 1 The value of a m is defined as,
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k
am >  0, and ^  a  =  1 (A 3)

m=l

The algorithm is built on an iterative scheme and consists of two steps The first, 

the E-step, calculates the expected log-hkelihood function for the complete data, 

defined by Q using the estimates for the parameters 0(£) X  defines the input 

data and Y  defines the output classified data

Q{0, 9{t)) =  £ [lo gP(X, Y \9)\X , m  (A 4)

The second, M-step, uses the maximized values of this result to generate the next 
set of parameters

9(t -f 1) =  argm axQ (0,0(i)) (A 5)6
The algorithm iterates between (A 4) and (A 5) until convergence is reached It 

is important to note that local convergence of the EM algorithm is assured since 
9 is smaller at each iteration [174, 40, 13]

The updates for the parameters for the GMM are the mixture values a m 

and the Gaussian’s parameters 9m =  {/j,m,(Jm} These can be calculated from 

Equations A 6, A 7 and A 8

- k

a™  = ^ £ p (mM (i)) (A 6)
m = l

„ n e w  _  E m = l  /  a 7 N

Hm=lP(m K 6)
new P (m \x u 6){xx -  ^ ) ( x t -

---------------  lA

A l l  Seed Generation

To address the initialisation step a novel approach to collect relevant seed points 

for cluster centers based on histogram analysis is developed A histogram of the 
image data is constructed, n3, where n  is the number of pixels contained m the 
bin with value j  This histogram is then divided into M  evenly distributed bins 
This value M  is manually set, typically to a higher number than the number of 
perceived relevant regions in the image For the images shown in this appendix, 

the value of M  was set experimentally to 25 From each bin, the highest peak m 

the histogram is assigned to a seed center, Cm
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Cm =  argmax(Tij) (A 9)

These M  seed centers are then clustered together using their closeness m the 

grayscale space until the desired number of seeds, k , is reached The clustering 

is an iterative process where clusters are joined together by evaluating the Eu­

clidean distance between the cluster centers

A 2 Results

The described scheme was applied to gated MRI short-axis images of the heart, 
MRI coronal brain slices and a section from a whole body MRI showing the lower 

abdomen The results are compared against those obtained when the cluster 
means and variances are manually extracted from the image Prom Figure A 2 

and Table A 1 , it is clear that using the automatic seed initialisation gives a 

better distribution of initial seeds across the data Table A 1 presents the manu­

ally selected means of the Gaussians and automatically selected means using the 

method described above Also, the Gaussian means following the EM algorithm 

has been applied are presented

To evaluate the performance of the described algorithm, the EM segmenta­
tion algorithm is applied to each of the MRI datasets As mentioned previously, 
the algorithm is locally convergent and therefore initialisation of the algorithm is 
crucial to the final solution A comparison is made between the results obtained 

using the automatically seeding process and the results obtained when the ini­
tial seeds for the EM segmentation are chosen manually To achieve this, areas 

are selected in each of the images that attempt to represent the most significant 
regions This is objective and related to the purpose of the segmentation but 
the overriding motivation is to pick regions that are clinically significant and also 
have a high degree of variation between regions In each of the images given, 6 

regions were manually selected In these selected regions the mean pixel inten­
sity values and the variance of the pixel intensity values are calculated These 

manually selected values are used as the initial 0m’s, where 1 <  m  <  6 m the EM 
algorithm, the mixing parameters a m were each set to ^

Figure A 2 illustrates the strategy applied to short axis images from a cardiac 

MRI study The areas manually selected are shown in Figure A 2 (b) and the
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Figure A 2 Figures show the short axis view of cardiac MRI (a) shows the 
original image (b) indicates the manually selected areas (c) represents the results 
after applying the EM using the manually picked initialisation and (d) is the 
result after applying the automatic seed picking

resultant segmentation after applying the EM segmentation using these initial 
parameters is shown in Figure A 2 (c) The final Figure A 2 (d) shows appropri­
ate results after the automatic parameter selection, m particular the results show 
a better distribution withm the grayscale distribution of the analysed image Fig­
ure A 3 shows a coronal slice from a Tl-weighted head MRI Again the automatic 
segmentation method performs well in differentiating the white matter from the 

gray matter Figure A 4 shows a coronal slice from an abdominal section of a full 

body MRI
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Table A 1 Changes in cluster means in the Cardiac data

Manual ¿¿’s Manual /¿’s after EM Automatic /¿’s Automatic ¿¿’s after EM

n (0 ) 57 31914 55 2806 57 31 33457

v-W 125 366 112 0961 137 125 284

ti(2 ) 194 0437 151 1044 167 171 6872

i i(3 ) 19 84193 16 74244 12 17 75531

f*(4) 225 1899 112  8278 255 254 2933

H(5) 28 87568 28 43651 92 79 93145

It is clear from Tables A 1 , A 2 and A 3 that the described automatic seed 

picking algorithm demonstrates better performance when compared to the man­
ual selection technique This is evident from the lower differences between ini­

tialised seeds and the final values after optimisation through the EM algorithm

Most medical images obtained from MRI are 3D and m some cases 4D, but 
because the described algorithm works on the data histogram (hence, intensity 

values) and is not dependent on spatial position, therefore as a result the al­

gorithm can be applied equally successfully to any dimensioned data This is 

illustrated in Figure A 5 where the algorithm is successfully applied in 3D MRI 

images This aspect is examined further in Section A 3 where the results are used 

in conjunction with a diffusion based filtering [54, 115] to extract some clinically 

relevant regions from the images

It is worth noting that statistical classification of pixels is a more appropriate 

way to segment medical images as the standard region growing technique will fail 
to produce appropriate results in images that exhibit a low signal to noise ratio 
(SNR) Also, medical images generally show good separation between significant 
regions as this is one of the aims in the acquisition This is application dependent 
some common medical applications are investigated in the following section

A 3 Applications in Medical Imaging

One of the key indicators of cardiac health is left ventricle ejection fraction , a 

measure of the volume of blood pumped from the left ventricle with each heart-



A 3  APPLICATIONS IN  MEDICAL IMAGING 133

(c) (d)"N
Figure A 3 Figures show an coronal slice from a brain MRI (a)  shows the original 
image (b) indicates the manually selected areas (c) represents the results after 
applying the EM using the manually picked initialisation and (d) is the result 
after applying the automatic seed picking

beat[48] Cardiac cine MRI is a standard procedure where 3D volume images are 

acquired at gated temporal positions through the cardiac pumping cycle Such 
images are frequently taken using gradient echo imaging, which exhibits a rela­
tively high differentiation between the blood and the myocardium Figure A 6 

shows the end-diastole segmented left ventricle blood-pool after the application of 
the EM algorithm to  identify the left ventricle cavity Figure A 6(e) is a rendered 

volume of the blood pool inside the cavity of the left ventricle when the muscle 

is at its end-diastole phase
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Table A 2 Changes in cluster means in the brain data

Manual s Manual /x’s after EM Automatic ¿¿’s Automatic ¿¿’s after EM

n(0) 164 6 123 922 116 117 66

»(1) 131 18 120 03 96 97 8356

U p ) 2 3 2 03 13 2 07

ti(3 ) 66 59 33 01 44 27 48

»(4) 90 1 94 49 73 70 836

ft(5 ) 164 21 194 81 153 140 6223

(c) (d)

Figure A 4 Figures show a coronal slice from a section of a full body MRI fa) 
shows the original image (b) indicates the manually selected areas (c) represents 
the results after applying the EM using the manually picked initialisation and
(d) is the result after applying the automatic seed picking

The classification of brain MRI’s white matter, gray matter, cerebrospinal 
fluid and in some cases lesions, is a fundamental first step for surgical planning, 
radiotherapy planning and the identification of brain disease [180] Illustrated in 
Figure A 7 is a segmentation of white matter of the bram 

The accurate measurement of body fat from whole-body MRI images is becoming 

an increasingly important metric as high body fat level is recognised to play a
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Table A 3 Changes m cluster means m the whole body data

Manual /Vs Manual ¿i’s after EM Automatic ¿z’s Automatic /¿’s after EM

n(0) 170 92 169 4365 183 178 41

n(l) 42 29 44 45 52 50 484

H(2) 3 84 4 177 5 4 27

»(3 ) 123 61 118 868 151 153 720

n(4) 95 35 82 99 124 121 496

H(5) 57 2 55 897 92 85 687

significant role in a variety of serious health problems [18] MRI is the modality of 
choice due to its repeatability and high spatial resolution Figure A 8 illustrates 

the results from one section of a whole-body MRI dataset where the fat tissue 

has being segmented out of the volume

The developed method shows appropriate results with respect to the gray scale 

values for all datasets From these results we can conclude that this approach 

offers robust, reproducible and accurate estimation of the initial parameters for 

the EM algorithm and the segmentation scheme described is capable of providing 

useful clinical measurements when applied to a large range of medical datasets
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(a) (b)

Figure A 5 3D space partitioning using EM Images show a single slice of a 
3D dataset from (a) the original volume, (b) after segmentation with the EM 
algorithm
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(e)

Figure A 6 Images show slices 1 ((a) and (b)) and 4 ((c) and (d)) from the 
original volume (left) and with left ventricle blood cavity segmented (right) and 
(e) shows the rendered volume of the segmentation
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(e)

Figure A 7 Images show slices 1 ((a) and (b)) and 14 ((c) and (d)) from the 
original volume (left) and with segmented white matter (right) and (e) shows the 
rendered volume of the segmentation
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(c) (d)

(e)

Figure A 8 Images show slices 2 ( (a) and (b)) and 6 ((c) and (d)) from the 
original volume (left) and with body fat segmented (right) and (e) shows the 
rendered volume of the segmentation



Appendix B

Level-set Segmentation for 
Candidate Polyp extraction in 

CTC

The extraction of candidate polyps from Computer Tomography Colonography 

(CTC ) is a primary and important step in candidate polyp classification, where 

polyps are a precursor to colon cancer Such a classification step is necessary 

due to the high frequency of false positive polyp detections which are apparent in 

previous computer aided diagnostic techniques Previous work m this area uses 

curvature constraints on candidate polyps to establish morphology [176] This 

type of classification encounters difficulty when determining folds, a naturally 
occurring instance in the colonography exam In this work, we have used surface 

normal intersection to determine possible polyp candidates, we then proceed to 

segment the polyp using a level set curve evolution algorithm to extract an ac­
curate segmentation of the polyp features Results are presented using point to 
surface error and the reduction m false positives after the extracted surfaces were 
classified using a statistical classifier

Much of the previous work m polyp extraction uses local curvature and shape 
constraints to determine polyp candidates and to establish morphology [154, 178, 
72] This type of classification encounters difficulty when determining folds, a 

naturally occurring instance m the colonography exam Yao et al [176] proposed 

a segmentation of method which used a knowledge guided deformable model to 

extract the surface of the polyp and compared it to manual segmentation of

141
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experts The knowledge was provided by the curvature of the deformable model 

and the signal intensities of the pixels surrounding the polyp The segmentation 

was performed m 2D and the 2D images were combined together to create the 

local 3D volume

B 1 Convex Surface Extraction

Initially, the colon is segmented using a seeded 3D region growing algorithm that 
was applied to segment the air voxels, which assures the robust identification of 
the colon wall In some situations the colon is collapsed due to either insufficient 
msuflation or residual water In order to address this issue we have developed 

a novel colon segmentation algorithm that is able to correctly identify the colon 

segments using knowledge about their sizes and location within the body in all 
imaging conditions After the identification of the colon wall, for each colon wall 

voxel the surface normal vector is calculated using the Hummel-Zucker operator 

[182] The normal vectors sample the local orientation of the colonic surface 

and the suspicious candidate structures that may resemble polyps are extracted 

using a simple convexity analysis In this regard, the colonic suspicious surfaces 

have convex properties and are determined using the 3D histogram and Gaussian 

distribution of the Hough points (full details about this developed algorithm can 

be found in [29]) This method is able to correctly identify all polyps above 3mm 
but it is worth nothing that this is achieved at a cost of high level of false positives 

In order to reduce the level of false positives, the surface is extracted using a 

level-set method and the results are classified using a statistical morphological 

features

B 2 Level-Set Initialisation. Fast-Marching Algorithm

As previously outlined m Chapter 5 formulation of the problem is conceptually 
simple The evolving curve or front T, evolves as the zero level-set of a higher 
dimensional function <f> This function deforms with a force F  that is dependent 
on both curvature of the front and external forces in the image The force acts 
m the direction of the normal to the front

^  + W I  =  o
\ /

cf)(x>y,t =  0) =  given

The implementation employed is a standard two step approach which includes
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Figure B 1 Flow-chart of proposed algorithm

a fast-marching initial step to speed up the segmentation Fast marching is a 

special case of the above equation where F ( x , y ) >  0 Let T( x , y )  be the time 

that the front T crosses the point (x, y) The function T ( x , y) then satisfies the 

equation,

| V r | F = l  (B 2)

which simply says that the gradient of the arrival time is inversely proportional 
to the speed of the surface The T  function is evaluated using the diffusion and 
attraction to pixels within the front The front grows out from its initial position 
to points with the smallest value of T ( x , y) The T ( x , y ) function is then updated 
and continued until the front does not grow

B 3 Level-Set Analysis

The theory behind level-set segmentation is largely based on work m partial dif­

ferential equations and the propagation of fronts under intrinsic properties such 

as curvature [108, 133, 41, 74] By extending the dimensionality of the problem 

to N +l,w here N is the initial dimension of the problem, some advantageous prop­
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erties can be exploited Representing the boundary as the zero level set instance 

of a higher dimensional function <£, the effects of curvature can be easily incor­

porated (¡> is represented by the continuous Lipschitz function </>(s, i  =  0) =  ± d t 

where d is the signed distance from position s to the initial interface Tq (see Equa­
tion B 3) The distance is given a positive sign outside the initial boundary ( D  Q, 

), a negative sign inside the boundary ( C l \ d f l ) and zero on the boundary ( dQ )

-d . Vs e  n \  an
o Vs e an  (B 3)

+ d  Vs € R n \ n

Prom this definition of <j>, intrinsic properties of the front can be easily deter­

mined, like the normal n =

Since curvature of the polyp should be a pertinent factor in the segmentation 

evolution, particular emphasis is given to this measure The mean curvature (H), 
is connected to the physical evolution of soap bubbles and the heat equation 

W hile smooth, it may not necessarily be convex and can lead to singularities

h = v  i l l  ,b 4 )

Gaussian curvature (K), has also being used to model physical problems such 

as flame propagation It has being shown that a convex curve evolves to a point 
under curvature evolution, but it can also be shown that evolution of non-convex 

surfaces can be unstable [7]

_  V ^ A d j  ( H ( f l ) W  ,p  «
 W W   ( 5)

where H(<?>) is the Hessian matrix of </>, and Adj(H) is the adjoint of the matrix H

Due to the characteristic curvature features of polyps it is proposed to use 
Neskovic and Kimia’s [106] measure of curvature, which involves both mean and 

Gaussian In this approach, the direction of flow is obtained from the Mean 

curvature while the magnitude of the flow is dictated by the Gaussian curva­

ture This is appropriate as the Mean curvature alone can cause singularities and
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extracts the strictly convex surface of the polyp candidate

k =  sign(H ) y jK  +  \K \ (B 6)

Using this value for «, the level set is iteratively updated within a defined 

narrow band around the segmented boundary to increase efficiency The following 

equation details the update parameters

(f>t+1 =  0t +  &/( 1 — e«)|V $| +  /5V7 V 0 (B 7)

where e and beta are user defined parameters (see Table B 1), K is the curvature 

term defined in Equation B 6 and k i is the gradient dependent speed term and 

is given by j-+y /  The third term, V7 V(j> represents the attractive force vector 
normal to the front The level-set segmentation is performed in 3D

Possible polyp candidate centres are calculated over the entire data set by 

calculating the normal vectors at each voxel on the lumen wall Polyp candidates 

are defined as regions of high convexity, therefore the centres for possible polyp 

candidates are located at points that contain high concentration of normal inter­

sections [29] s

The level set is initialised at the polyp candidate centres and grows outwards 

until a boundary is encountered The convex surface is maintained by placing a 

high influence on the curvature parameter (see Figure B 2) Once the level-set 

has converged or completed its iterations, the surface of the polyp candidate is 

taken as all boundary points that have an associated gradient This ensures that 
just the lumen surface is extracted

Figure B 2 Extracted polyp surface (dotted) using the levelset approach based 
on curvature
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B 4 Classifier

Once the true surface of the polyp candidates has being extracted, they are passed 

to a classifier to determine whether they are polyps or folds The classifier is a 

statistical model of known polyps and folds and uses statistical features of the 

candidates morphology such as least squares ellipsoid fitting error, normalised 

distribution of the surface curvature and the Gaussian sphere radius [29] These 

features are used to classify the candidate polyp surfaces into polyps or folds using 

a feature normalised nearest neighbour classification scheme [55] The classifier 

was trained with 64 polyps and 354 folds that were selected as true positives by 

a radiologist

B 5 Results

The segmentation algorithm described above was performed on 10 full CTC data 

set, converted to isotropic dimensions using cubic interpolation Visual represen­
tations of the segmentation are shown in Figure B 3 and the extracted surface 

renderings are shown in Figure B 5 Table B 1 lists the user defined parameters 
used in the level-set algorithm From this table it can be seen that curvature is 

given a large influence to maintain the convexity of the polyp candidate surface 

The narrow bandwidth is given a small value of 10 to increase the efficiency of 

the update

A classifier, trained on expertly categorised unseen data, is then used to 

determine whether the extracted surface is classified as polyp or non-polyp Small 

folds in the colon lumen are the main cause of detecting a false positive It can 

be clearly seen in Figure B 5 that fold surface is extracted is saddle shaped and 

thus can be easily classified using its shape characteristics

Table B 2 shows the measured point-to-curve error between the automatic 
segmentation results against those found from a manual segmentation of the 
small number of polyp candidates Indicated on the table are the average error, 
standard deviation of the error and the root-mean-square of the error This error 
is measured in pixels where each pixel has sub-millimeter dimensions

Table B 3 gives the results from 10 datasets (9 patients) containing 31 polyps 
From the high number of polyp surface candidates, a relatively low number are 
detected The results show a sensitivity of 100% for all polyps >10mm Normally, 

in a clinical situation, polyps below 5mm have less clinical significance One 

cause for our method missing smaller polyps, are their low curvature difference 

between the polyp and the colon wall, therefore some colon wall is taken into
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(a) (b)

(c) (d)

Figure B 3 Images above show the segmentation of the convex polyp candidate 
The bottom left image shows the segmentation of a fold

Table B 1 Control parameters used in the level-set segmentation

Control Parameters Values
Fast-Marching Iterations 3
Level-set Iterations 10
Level-set e 0 5
Level-set ¡3 0 08
Level-set Narrow bandwidth 10

Table B 2 Point-to-curve errors between manually segmented data and our 
method

Error Average Std Dev RMS
0 298 0 587 0 661
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Table B 3 Performance Analysis for Polyp Classification True positive (TP) 
and False Positive (FP)

Size Detected Missed
> 10mm 10 0
5-10mm 9 1
< 5mm 2 20

the candidate surface (see Figure B 6 and Figure B 4) The false positives per 

dataset was calculated to be 1 3, which compares favorably with figures reported 

to literature

Figure B 4 Extracted polyp surface (dotted) for a small polyp, note the inclusion 
of healthy colon lumen

(a) (b) (c)

(d) (e) (f)

Figure B 5 Images above show the polyp candidate renderings of the extracted 
surface Figures (a)-(c) show correctly classified polyps, where Figures (d )-(f)  
show correctly classified folds
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Figure B 6 One of the <5mm polyps misclassified due to the inclusion of colon 
wall in the surface extraction
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Appendix C

Mathematical Background

C 1 LMS Circle

Using the Least Squares solution a circle is fitted around a collection of points, 

Px, with images coordinates, (xX)yt ) for % =  1,2 N

A circle is defined by three parameters These parameters are the coordinates 

of its centre (zq, yo) and its radius r  The equation of a circle can be written iso­

lating these three parameters as follows

(  2x% 2yt 1 )

20
yo

r2 -  -  y l

-  (  x ? + VÌ )

In order to find these three unknowns a linear least squares solution is obtained 
where

 ̂ 2x\ 2yi i  > ( x \ + y \  ^

2X2 2y2 1 x \  +  J/a

A = 2X3 2y3 1 ,b = A + v l

 ̂ 2x n 2 Vn 1 I \  x lr + y% )

The best fitting circle for the points Px is the least squares solution to [xo yo r 2 -  

xo -  v l\T =  {AT A)~xA Tb where (ATA)~1ATb can be written as

151
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4 £  x*y* 2 £ * t

4 £  xtyt 4 £ v ï 2 £ y ,

2 £ x x 2 £ y * N

* (  2E*? + 2E*.w? ^
2Ey? + 2 E ^ y .

E *. + E vt ,
The error of this least squares solution can be calculated as the difference between 

the area of the fitted circle and the area of concentric circles passing through the 

data points with the equation e^cu  =|| A[xq yo r 2 -  Xq -  j/q] -  & II

C 2 LMS Ellipsoid

To determine the left ventricle cavity after the application of 3D clustering, the 

error between each segmented shape and a fitted ellipsoid is found The radii of 

the ellipsoid are calculated using the eigenvalues of the covariance matrix from 

the lists of points that define the surface of the shape

EjV —1 (re—x )2 ^ N  — l ( x—x ) ( y —y'} y~v/V —1 (x—x ) ( z —z)
n=0  N  2 ^ n = 0  N  2^ n = 0 N

( x - x ) ( i / - y )  ( y - y ) 2 (y - y ) ( z - z )
L sn = 0  N  2—in=0 N  L ^ n - 0 N

EN  1 (x - x ) ( z - z ) tt-vTV-1 ( y - y ) ( z ~ z )  1 (z - z )2
n=0  N  ¿-^n= 0 N  l~ m = 0 N

(C 1)

Based on work by Pearson, principle component analysis (PCA) chooses the 

first ellipsoid axis as the line that goes through the centroid, but also minimizes 

the square of the distance of each point to that line, see figure C 1 The line is
a correlation of the points along the data’s principle axis Equivalently, the line
goes through the maximum variation in the data

The second PCA axis also must go through the centroid, and also goes through 
the maximum variation m the data, but with a certain constraint It must be 
completely uncorrelated (1 e at right angles, or ‘orthogonal’) to PCA axis 1 The 
ellipsoid is an extension of this PCA to 3D finding the three principal axes

(Jxy Gxz

crxy <Jy a yz =

G xz V yz 1

b

C 3 Splines

A closed natural cubic spline is fitted around the points on the epi-cardium [144] 
The spline is used to close the epi-cardium contour by connecting all the points
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Figure C 1 The two principle axes of a two dimensional data set are plotted and 
scaled according to the amount of variation that each axis explains

on the curve m a smooth way

Splines are piece-wise polynomials of degree n (n =  3 in the case of cubic 

splines) with the pieces smoothly joined together The joining points of the 

polynomial pieces are called control points which need not be evenly spaced 

These control points are defined as a collection of points Px where i  =  1,2,3 N  

and N  is the number of points It works by fitting a cubic curve between each 

pair of points in the collection Smoothness of the curve is maintained by forcing 

the first and second derivative of the end point of one curve to equal the start of 
the next curve This is achieved by solving a system of simultaneous equations 

The equation is illustrated below

f t (x) =  at + btu +  Ct,u2 +  dtu3

0 < u < l  

1 < i < n

Where i  is the amount of points on the curve and u is the number of steps m 
between each point The coefficients of the cubic equation are,
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The derivatives used m to smooth the curve are computed as follows

D[0]

m

D[n]

4 1

1 4 1

1 4 1

1 4 1

1 4

3 (x i -  x n ) 

3(X2 “ £0

3(xn — Xn—2

^ 3 (xo  — X n - l )  y
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