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A bstract

In order to tailor web-content to the requirements of a device, it is necessary to access 
information about the attributes of both the device and the web content Profiles 
containing such information from heterogeneous sources may use many different terms to 
represent the same concept (eg Resolution/Screen_Res/Res) This can present problems 
for applications which try to interpret the semantics of these terms

In this thesis, we present an architecture which, when given profiles describing a device 
and web service, can identify terms that are present in an ontology of recognised terms in 
the domain of device capabilities and web service requirements The architecture can 
semi-automatically identify unknown terms by combining the results of several schema- 
matching applications The ontology can be expanded based on end-user’s interaction 
with the semi-automatic matchers and thus over time the application’s ontology will grow 
to include previously unknown terms



1. Introduction
The Internet is claimed to be a global medium, information can be accessed anytime, 

anywhere Yet our ability to access information, and the quality o f our expenence, 

depends on the capabilities of the device we use to access the information

There are an increasing range of devices used to connect to the Internet, PCs, mobile 

phones, PDAs, set-top boxes, to name but a few All these devices have varying 

capabilities, yet most web content is designed with the assumption that it will be accessed 

using a standard PC As the range of devices with Internet connectivity grows, the 

assumption that web-content designed solely for PCs is universally accessible becomes 

increasingly naive

The W3C Device Independence activity [1] seeks to avoid the fragmentation of the web 

into spaces that are only accessible from subsets of devices

The list below illustrates the variety o f devices that can access the web, and their differing 

capabilities

Workstations (eg desktops, laptops)

Characteristics Powerful processors, large displays, audio capabilities, large

amounts of memory, persistent storage Input capabilities include keyboard, mouse/touch 

pad Can use a range of different network connections, both wired and wireless

Persona) Digital Assistants (PDA)

Characten sties Physically smaller than workstations Less powerful processors,

less memory and less persistent storage than workstations Input capabilities are also 

more limited (eg stylus and a writing surface on the PDA, or a miniature keyboard)

Highly portable



Mobile Phones

Characteristics Small in size, highly portable Have a need for extended battery

life, therefore use lower power processors and less memory than PDAs Small screens, 

numenc keypad for input Network connection available via phone’s link to its network, 

and is typically slower than those available on Workstations

Voice Systems

Charactensties Provide connection to the web from standard telephone handsets

No display, output is audio only Input via voice recognition, or numenc keypad

Interactive Television Systems

Characten sties Lower resolution than Workstation Input limited by remote

control

It is clear that there are many challenges for authors who wish to create device­

independent web-content For example, screen size and resolution are particularly 

important issues to consider They are crucial m determining the physical layout of web 

content Authors may need to design different physical layouts and different ways of 

organising web content in order to take into account the differences in size and resolution 

of the displays in use The differences m display size range from potentially quite large 

(workstations) to miniscule (mobile phones) and can even be non-existent (voice 

systems) There is a similar range of vanety in the display resolution that devices can 

support

Input capabilities can also vary enormously Workstation devices with full keyboards can 

be easily used to input large quantities o f data, whereas it is not as easy to do so using the 

keypad of a mobile phone The ease of use of a device’s input facilities is an important 

consideration for web designers The interaction between a web application and a user 

may need to be simplified for use on devices with limited input capabilities Certain 

functions may even have to be omitted when using such a device It may not be viable to



attempt a complex registration procedure involving large numbers of forms to be filled 

out using the keypad on a mobile phone

It is important that when authonng web content, designers are able to ascertain the input 

capabilities of devices used to access their content, in order to define how users can 

access web content appropriate for their access device

The speed of the network connection available to a device is also an important 

consideration when considenng what types of web content are suitable for that device 

Large images or video clips may be provided in lower-quality formats suitable for lower 

connection speeds Content providers may even offer text alternatives for use on very 

slow connections

The W3C Device Independence activity [1] recommends that web-content be tailored 

according to the properties of the access device In order to tailor web-content for a 

particular access device, it is necessary for personalisation applications to access 

information detailing the attributes of both the access mechanism and the web content

For example, technologies such as XML [21] and XSLT [32] can be used to further 

device independence Data can be described in a platform neutral way by using XML 

XSLT can be used to transform XML documents into other XML documents A WAP- 

enabled mobile phone can use XSLT to transform an XHTML document into a WML 

document

The Authonng Challenges for Device Independence note [33] defines Media Resource 

Selection as Device Independence Authonng Challenge 3 15

“Authonng techniques that support Device Independence should provide the 

ability to select an appropnate resource from the alternatives available according 

to the capabilities of the device”

For example, consider a device with a slow network connection If this device is used to 

access web content that contains high quality video requinng a high bandwidth



connection to view, lower quality video which is more appropnate for a slow network 

connection should be offered as an alternative by the web content provider

Device Independence Authonng Challenge 3 7 is defined as

4 Authonng techniques that support Device Independence should support the use 

of different versions and types of media, such as images and audio clips, on 

different devices with different delivery contexts 5

For example, rather than a video clip, an audio clip might be appropnate on a device with 

limited display capabilities, such as a mobile phone When a mobile phone is used to 

access a video clip, the provider of the clip may offer the audio clip instead

In each of these scenarios, the web content provider must be able to access information 

about the device used to access the web content (markup languages supported, network 

connection speed, display capabilities)

In particular, the W3C Device Independence activity focuses on methods by which the 

characten sties of the device are made available for use in the processing associated with 

Device lndependence[34]

The Authonng Challenges for Device Independence note[33] defines as Device 

Independence Authonng Challenges 4 2, Capability Abstraction

“Authonng techniques that support DI should provide mechanisms that allow authors to 

express the user expenence they wish to achieve using abstract representations of the 

underlying capabilities of the device ”

Personalisation of web content can be earned out automatically by applications which can 

use the semantics of terms found in these abstract representations (or profiles) to 

determine what transformations (if any) are required to enable web content to be accessed
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on a particular device The set of terms that are used by someone to describe devices can 

be considered to be an ontology

An ontology defines the terms representing the concepts that are assumed to exist in a 

domain of knowledge (eg computer devices, finance, real estate, etc ) Ontologies are 

used by humans and computer applications that need to share domain information [2],

[3] Ontologies include machine-readable definitions of concepts in the domain and the 

relationships that hold between them Ontologies are a key concept in the emerging 

Semantic Web [4], and are a way of representing the semantics of web resources and 

enabling the semantics to be used by web applications and intelligent agents

There are many ontologies representing devices and web content from a variety of 

sources in existence, and their number is growing If these ontologies continue to 

proliferate, interpreting profiles from all these sources will be difficult to automate If 

there is no standardised ontology representing the domains of device capabilities and web 

content, personalisation applications will frequently encounter terms m profiles that are 

not m their own ontologies If a personalisation application can’t understand the meaning 

of a device/web content profile, it can’t determine what changes (if any) need to be made 

to the web content

In this paper we will describe an architecture called the “Client Service Capability 

Matcher” It identifies element and attribute names in an RDF [5] profile which are 

present m its own ontology (the “rules base”) A rules base is a set of rules indicating that 

a term occurring in one data source is semantically equivalent to another term appearing 

in another data source The Client Service Capability Matcher implements the rules base 

as a table m a MySQL database The table contains two columns TERM and 

SYNONYM



Below is a section of this rules base 

Table 11 section of rules base

TERM SYNONYM

MB Megabytes

MB Meg

MB Megs

Soundcard Soundboard

N etworkConnection ConnectionSpeed

Microphone Mic

Microphone Mouthpiece

Speakers Loudspeakers

Headphones Phones

Html Htm

Txt Text

Txt Plaintext

When processing profiles describing a device, the rules base can be used to determine the 

semantics of the terms used in the profile



Below is a sample profile descnbing a device 

Figure 11 sample device profile

<deviceProfiIe>

<mem>128 MB</mem>

<screenRes>1024 x 768</screenRes>

<soundCard>Soundblaster 64</soundCard>

</deviceProfile>

The rules base can be quened using SQL [25] statements, m order to determine if the 

element names in this profile are contained in the Client Service Capability Matcher’s 

ontology, for example

SELECT TERM FROM RULESBASE WHERE SYNONYM=’mem’

This statement will return the value ‘RAM’

SELECT TERM FROM RULES BASE WHERE SYNONYM=,screenRes’

This statement will return the value ‘Resolution’

SELECT TERM FROM RULES BASE WHERE SYNONYM=’soundCard’

This statement will return the value ‘Sound’

The results from these SQL statements indicate that the terms “mem”, “screenRes”, and 

“soundCard” are semantically equivalent to the terms “RAM”, “Resolution”, and 

“Sound” respectively in the Client-Server Capability Matcher’s ontology

-  13 -



The Rules base can determine the semantics of terms used in profiles, even when 

different terms are used to represent the same thing. The Client Service Capability 

Matcher can process profiles from multiple sources which do not use the same ontology.

However, sometimes the rules base will not return a semantically equivalent term when 

presented with a particular query. This happens when the query is composed using a 

query that does not appear in the SYNONYM column of the database table representing 

the rules base.

If carried out manually, finding semantically equivalent terms between two schemas can 

be a time-consuming, tedious effort which becomes increasingly impractical as the size 

and the number of the schemas increases. In this situation, the personalisation application 

needs to use a probabilistic method of determining what term from its own ontology the 

unknown term is most likely to represent.

Schema matchers are applications that use heuristic algorithms to provide suggestions for 

semantically equivalent terms between schemas. The ontology composed of the terms in 

the Client Service Capability Matcher’s rules base and the ontology composed of the 

terms used in a profile describing a device or web content can be considered as schemas.. 

A schema matcher can suggest possible semantic mappings between terms in different 

schemas to a human, who can then accept or reject this semantic mapping. These 

applications are called semi-automatic schema matchers, because they still require human 

intervention to match semantically equivalent terms. These schema matchers use machine 

learning techniques to create semantic mappings. For example, the Naive Bayes 

algorithm is a text classification algorithm whose effectiveness has been proven in a 

variety of applications. Spam filters [18] and Natural Language Processing applications 

[ 19] have all used this algorithm with a degree of success.

If an unknown term is encountered by the Client Service Capability Matcher, the results 

of three semi-automatic schema matching applications are combined in order to 

determine what term in the rules base the unknown term is most likely to be semantically 

equivalent to. The rules base can be expanded to include new semantic mappings between



terms, based on the results returned by the user’s interaction with the semi-automatic 

matchers Thus, as new terms are encountered, their meaning can be ascertained and 

eventually the terms can be added to the application’s rules base

The structure of the remainder of this thesis is as follows In chapter 2, we analyse some 

existing approaches to matching semantically equivalent terms from heterogeneous 

ontologies We highlight the strengths and weaknesses of these approaches We outline 

what we desire from a schema matching application in the context of the particular 

problem area we are working m

Chapter 3 is an overview of the architecture o f our system Each component o f the system 

and the interaction between these components is described here

Chapter 4 is a description of the implementation of this architecture This contains details 

of the algorithms employed by the system’s components, and the APIs and program 

libraries that were used in their implementation

In chapter 5 we evaluate the effectiveness of the system’s architecture and the efficiency 

of its implementation

In chapter 6 we describe the data used to test the system, and analyse the results obtained 

Chapter 7 presents our conclusions
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2 Mediating between heterogeneous data sources

2.1 Creating semantic mappings between terms from different 
ontologies

A schema is a representation of the structure of data in a database. A schema can be 

represented graphically (eg as a graph using nodes and edges) or textually (using XML). 

Schemas are used to define the structure of information used by an application.

Here is an example of an XML schema representing a book:

Figure 2.1: Library A schema describing the book “Compilers: Principles,

Techniques, and Tools”

<BOOK>

<AUTHOR> Ullman, Jonathon </AUTHOR>

<TITLE> Compilers: Principles, Techniques, and Tools </TITLE> 

<PUBLISHER> Addison-Wesley </PUBLISHER>

<YEAR> 1985 </YEAR>

</BOOK>

The schema in figure 2.1 describes a book. This schema might represent the 

structure of a table in a database used by a library (Library A) to keep track of what books 

the library currently has (see figure 2.2).



Figure 2 2 Interaction between library database and user interface

Library A Catalogue 
User Interface

Book Data 
Request

XML
Book

Schema

The schema representing a book in another library’s database (Libraiy B) may be 

different from the Schema in figure 2 1 however It could look like this

Figure 2 3 Library B schema for book “Compilers Principles, Techniques, and

Tools”

<BOOK>

<AUTHORNAME>

<SURNAME> Ullman </SURNAME>

<FIRSTNAME> Jonathon </FIRSTNAME>

</AUTHORNAME>

<TITLE> Compilers Principles, Techniques, and Tools </TITLE> 

<PUBLISHED_BY> Add is on-Wes ley </PUBLISHED_BY> 

<YEAR_OF_PUBLICATION> 1985 </YEAROF_PUBLICATION> 

</BOOK>
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The schema in figure 2 3 is different in two ways from the schema in figure 2 1 its 

structure is different, and it uses a different vocabulary In figure 2 1, the value of the 

“AUTHOR” element contains the surname, followed by a comma, followed by the first 

name of the author

<AUTHOR> Ullman, Jonathon </AUTHOR>

However, this information is structured differently in figure 2 3 The “AUTHOR” 

element contains two subelements, “SURNAME” and “FIRSTNAME”

<AUTHORNAME>

<SURNAME> Ullman </SURNAME>

<FIRSTNAME> Jonathon </FIRSTNAME>

</AUTHORNAME>

An ontology is a list of all the concepts that are assumed to exist in a particular domain of 

discourse It is a formal specification of how to represent the objects and concepts that 

exist in a particular area and the relationships that hold between them The term ontology 

has its origins in philosophy, where it refers to the subject of existence For example, 

Table 2 1 shows the terms present in the ontologies representing a book in Library A’s 

database and the Library B’s database

- 1 8 -



Table 2 1 Terms used to represent a book in the ontologies of libraries A and B

Library A 

Schema

Library B Schema

Book Book

Author Authomame

Title Surname

Publisher Firstname

Year Title

*no

equivalent*

Published_By

*no

equivalent*

Y ear_Of_Publi cation

The two schemas also use different names for elements representing the same concept 

The Library A application will not be able to access and use information from the Library 

B database If the application tries to extract the author’s name from the schema in figure 

2 3 , it will be looking for an element called “AUTHOR”, not two elements called 

“SURNAME” and “FIRSTNAME” If the application tnes to determine what year the 

book represented by figure 2 3 was published in, it will look for an element called 

“YEAR”, instead of “YEAR OF PUBLICATION” The application does not know what 

the information contained m some of the elements of figure 2 3 represents

-  1 9 -



Figure 2 4 The user interface for Library A cannot interact with Library B

library A Catalogue 
User Interface

Book Data 
Request

Book Data 
Request

Error1”

Library B 
XML Database

XML
Book

Schema

In order to enable the Library A application to process schemas m the format of figure 

2 3, we must provide it with “semantic mappings” between semantically equivalent terms 

m its own ontology and the ontology used by Library B Examples o f semantic mappings 

between elements from the schema in figure 2 1 and the schema in figure 2 3 are 

Publisher=Published_Byi and Year=Year_Of_Pubhcation When the application 

attempts to extract the year of publication from the schema in figure 2 3, it can consult its 

lookup table of semantic mappings and determine that the element named 

“Year_Of_Pubhcation” is equivalent to the element “Year” in Libraiy A’s ontology

2.2 Schema Matching

When we tiy to find semantic mappings between terms from two different ontologies, we 

are performing a schema-matching operation The schema-matching problem is 

encountered by many database applications (eg database integration, data mining, data 

translation)

-20-



Manually supplying these semantic mappings to an application can be a very time- 

consuming task Databases can be terabytes m size, finding one mapping alone could take 

hours We may also have to generate mappings between a large number of databases If 

an application has to process schemas from a wide variety of sources, mappings must be 

manually generated between the application’s ontology and the ontology of every other 

database that the application may process schemas from This is a tedious, error prone 

process

There have been many attempts to produce applications which, when given two 

databases, can produce semantic mappings between columns in the database with little or 

no human guidance Applications such as these enable semantic mappings to be made 

much more quickly, and enable applications to access data from a wider range of sources 

These schema matching applications can utilize information such as data contents, meta­

data, user interaction, etc in order to semi-automatically generate matches between 

equivalent elements They may also implement applications such as linguistic matchers

There are several different methods used to perform schema match operations 

automatically The following is a bnef overview of these methods

Schema-level matching vs Instance-level matching

A schema level matcher only uses schema-level information in the matching process For 

example take the following schema in figure 2 5

Figure 2 5 schema representing an employee

<employee>

<name/>

<age/>

<salary/>

<department/>

<employee/>

-21 -



A schema-level matcher would only use information such as name, data-type, relationship 

types, constraints, etc when trying to match the schema against another schema 

However, an instance-level matcher will also use the information that forms an 

instantiation of the schema object

Figure 2 6 employee schema with instance level data added

<employee>

<name>Bob Larkin</name>

<age>28</age>

<salary>34000</salary>

<department>Finance</department>

</employee>

Given the schema in figure 2 6, an instance-level matcher would use the following 

information to find semantic mappings 

"Bob Larkin”,"28Y34000","Finance"

Instance level matching can be useful when schema information is limited or non-existent 

(le an element has a name like “X” or “MRT23”) Elements which cannot be matched at a 

schema-level might be successfully matched when instances of the elements are 

compared to each other

Element level matching/Structural level matching

With element level matching, only individual elements are matched Structural level 

matching attempts to match a combination of elements that appear in a schema in a 

particular form Structural matching can be performed at a variety of levels, from a 

complete matching of two schemas (all elements in each schema have an equivalent
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element in the other schema, and the schemas have the same structure) to partial matches 

(two schemas are identical in parts).

As an example, take the schema trees in figure 2.7 below.

Figure 2.7 : schemas representing laptops which are partially structurally identical

Laptop-----------------------CPU Laptop------------------------Processor

i i

 RAM -----Memory

i i
 Hard drive  Diskspace

I

 Screen size

An element level matcher may be able to provide mappings between the individual 

elements, such as

CPU->Processor, RAM->Memory and Harddrive->Diskspace, but it would not be able to 

determine the structural similarity of the trees. A schema matcher which could perform 

structural level matching as well however would be able to deduce that the second 

schema is a partial structural match for the first (all it lacks is the Screensize element).

Match cardinality

There are two types of match cardinality: Local cardinality and global cardinality.

Local cardinality refers to the number of elements which must be combined in order to 

capture the semantics of the source element. For example, the element <name> in one 

schema may correspond to a combination of <firstname> and <sumame> in another. We 

say that this match has a local cardinality of 1:2, indicating that two elements from the



second schema must be combined in order to represent the same information contained in 

the element <name> Whereas local cardinality is a measure of how many elements must 

be combined in order to produce one particular mapping, global cardinality is a measure 

of how many SEPARATE semantic mappings exist between an element/elements from a 

source schema and another schema

To illustrate this, the element <address> in one schema may be mapped to both 

<send_goods_to> and <send_invoice_to> in another schema The global cardinality 

between address and its equivalent elements in the other schema is therefore 1 2 , le there 

are two separate elements in the other schema which are both semantically equivalent to 

<address>

Element matchings may have a cardinality o f 1 1, 1 N, N 1, or N M 

Linguistic Matchers

Linguistic Matchers use words and text to find semantic equivalences between elements

Linguistic matching matches schema elements with similar or identical names Similarity 

between elements can be gauged in the following ways

Element names can be preprocessed before they are compared Stemming and other 

procedures can be used to reduce terms to their root forms

eg PDescnption = Product Descnption, PNo=Product Number

Elements which are synonyms of the target element can also be matched,

eg Laptop = Computer, Monitor = Display

-24-



Words which are hyponyms of the same generic term can also be matched Word X is a 

hyponym of word Y if it is more specific than word Y, le “Y is a type of X” For 

example, a desktop is a type of computer A laptop is a type of computer Both desktop 

and laptop are hyponyms of computer Therefore, the element “desktop” may, in some 

contexts, be semantically equivalent to the element “laptop” In order to detect synonyms 

and hyponyms, dictionaries or thesauri must be available to the matcher Matchers can 

use domain specific dictionaries

Homonyms may cause problems for schema matchers Two words are homonyms if they 

are spelled identically but have different meanings An example of a pair of homonyms is 

bark in the context of a tree (“the bark of the tree was rotting away”) and bark in the 

context of a dog (“his bark was worse than his bite”) Matchers can maintain lists of 

homonyms When a term which has one or more homonyms is encountered by the 

matcher, an appropriate action can be taken by the matcher For example, if the term 

occurs in schema level data, a matcher may use instance level data to identify the context 

in which this term is being used Another action that may be taken is that the user of the 

schema matching application may be asked to specify the context in which the term is 

being used

Schema matching systems can also learn from matches provided by the user For 

example, if  a match is suggested to the user, but the user rejects it, the system can store 

this mismatch, and that particular match will never be suggested to a user again

Names can also be matched on the basis that they share common substnngs (eg 

representedBy=representative), or that they are pronounced identically (eg 

Deliver2=DeliverT o)

- 2 5 -



Constraint Based Approaches

Schemas often use constraints to define data type and value ranges, cardinalities, 

relationships, etc of elements This information can be exploited to find matches between 

elements in schemas For example, take the schemas in figure 2 8

Figure 2 8 Schemas representing customer details

Client

ChentNumber - int, primary key 

DateOfBirth - date 

Name - string

Customer

Number - int, primary key 

DOB - date

The constraint information from the above tables suggest that ChentNumber and Number 

match (le they are both primary keys and integers), and that DateOfBirth and DOB match 

(they are both dates) The use of constraint information alone would not be enough to 

provide an accurate means of matching elements However, when combined with other 

means of comparing elements it can increase match accuracy

Auxiliary Sources of Information
Many matchers can use sources o f information such as previous matchings, user supplied 

matches, domain-specific dictionaries, etc to enable matches to be made For example, 

some systems require that potential matches are confirmed by the user If a user refuses a 

match, the system will know not to suggest this match in future An example of a matcher 

using a domain specific dictionary is given below in the description of the LSD system
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[8] LSD is used for matching elements from schemas withm the domain of real-estate It 

uses a “county-name matcher” which determines if an element name matches any of the 

county names it has stored This is useful because county names occur many times in 

address and locations in a real-estate database

Combining matchers to aid performance

Each of the approaches to matching mentioned above uses different information, and is 

suited to particular scenarios and usage domains Each of the matchers covers a different 

part of the solution space for the schema matching problem, and can be effective within 

that range, if we combine the matchers we will find that they can complement each other 

very well, allowing us to match elements and/or schema trees with a greater deal of 

accuracy than any individual matcher could

There are two approaches to combining matchers Hybrid matchers and Composite 

matchers

Hybrid Matchers

Hybnd matchers combine the results of several matching applications m order to 

determine matches Better match candidates can be obtained because matches requiring 

the joint consideration of several criteria can be found

The matchers in a hybnd matcher execute simultaneously If the vanous matchers 

compnsing the hybnd matcher were to be run consecutively, each would have to pass 

over the schema once Thus, hybnd matchers execute faster than if  the individual 

matchers were run one by one

The choice of matchers that are combined to form a hybnd matcher is fixed at design 

time, and cannot be altered by end-users
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Composite Matchers
A composite matcher also combines the results of several individual matchers. Unlike 

hybrid matchers, a user can choose which matchers to use when comparing two schemas. 

The user can choose from a selection of matchers in order to adapt their approach to the 

domain they are working in or to the type of data they work with. As new matchers 

become available, they can be implemented by a composite matcher. This flexibility is in 

contrast to hybrid matchers where the combination of matchers used cannot be changed.

Unlike hybrid matchers, the user can also specify how the results from the individual 

matchers are combined. For example, the user can also specify that the matchers are 

executed sequentially. The results from one matcher can be fed into the next, giving an 

iterative improvement over the matchers. Alternatively, the matchers can be executed 

simultaneously, and the result returned by the most matchers is selected as the overall 

result. The exact manner in which the results are combined is decided by the user.

2.3 Schema Matching Applications

The simplest type of schema matching applications are “rules based” matchers, which 

consult look-up tables which define semantic mappings between terms. Examples of rules 

based matchers are the Semantic Knowledge Articulation Tool (SKAT) [6], and TranScm 

[7]. Other schema matching applications use machine learning algorithms such as the 

Naive Bayes algorithm (LSD [8]) and neural nets (Semlnt [9]) to find semantically 

equivalent terms. String similarity metrics such as Edit Distance are also used by schema 

matching applications [10].

We will now describe these schema matching applications in more detail, and highlight 

their strengths and weaknesses.

SKAT

This tool is used for integrating knowledge from multiple independent sources. Queries 

for information often cannot be answered from a single source, but require consulting 

multiple sources. Attributes which are semantically equivalent may not have the same



representation in all databases however SKAT aims to present a consistent view of  

multiple databases, which hides the differences between different databases

SKAT defines an algebra to enable interoperation between ontologies This algebra 

includes operators such as

Unary operators, which work on one ontology, such as filter, extract 

Binary operators, which take as input two ontologies and return as output one 

ontology, such as union, intersection, difference

The most important of these operators is the intersection operator This identifies 

semantically equivalent attributes between ontologies

SKAT uses “Articulation Contexts” to model semantic mappings between attributes in 

different databases These contain rules which resolve semantic differences between 

databases These rules axe specified using a subset of KIF [41], a simple first order logic 

notation The procedure for creating an Articulation Context is as follows

1 A human expert supplies SKAT with some initial rules which indicate 

semantically equivalent terms and terms which are not semantically equivalent 

For example, a rule such as (MATCH US President FRG Chancellor) indicates 

that the term President in the US ontology is semantically equivalent to the term 

Chancellor in the FRG ontology Similarly, a rule like (MISMATCH Human nail 

Factory nail) indicates that the term nail in the Human ontology is not 

semantically equivalent to the term nail in the Factory ontology

2 SKAT suggests matches between attributes in the various databases that SKAT is 

creating an integrated view of, based on the matching rules supplied by the expert

3 The human expert either accepts or rejects the matches suggested by SKAT Rules 

that were used to create particular matches can also be deleted by the human 

expert at this stage
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4 SKAT creates the correct rules based on the interaction with the human expert in 

step 3 Matches rejected by the human expert are stored, so as to avoid suggesting 

the same matches later

When matching ontologies, SKAT weights matches between terms based upon the 

frequency of their occurrence in the source databases and other heunsties The confidence 

score must be above a certain level for the match to be valid A certain amount of 

preprocessing can also be earned out on terms For example, common prefixes such as 

“RE”, “UN”, etc can be removed from terms before SKAT consults its rules base The 

expert may want to match an attnbute with the name “Finnish Parliamentary System ’ to 

attnbutes representing other country’s parliamentary systems Preprocessing rules can 

reduce the attribute names containing the words “Parliamentary System” (eg UK 

Parliamentary System) to “Parliamentary System” The expert can add a rule to the rules 

base stating that attnbutes which have names reduced to “Parliamentary System” are 

considered to be matches

In addition to equivalence rules (TERM 1 =^ £1^ 2), more complex rules can be 

suggested

In the rule in figure2 9, the first two sentences indicate that UK and Finland are countnes 

The following lines are a general rule for matching two countnes This general rule saves 

the human expert from having to explicitly declare a rule matching every combination of 

country

Figure 2 9 General rule matching instances of countries

Instance-Of Country UK

Instance-Of Country Finland

(=> ( and (Instance-Of Country 9Countryl)

(Instance-Of Country 9Country2))

(Match 9Countryl 9Country2))
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SKAT can also create match rules based on the structural similarity o f database schemas 

Parts of an ontology can be represented as a graph, indicating their structure A matching 

rule can use a function which takes in two graphs as input and returns the degree of 

similarity between the graphs This works well for sources that are similar structurally

TransScm

There are many different types o f data available on the web TranScm uses schema 

matching techniques to translate data from one format to another

Data on the web can come in many formats Application programs usually expect data to 

be of a specific format (for example, Internet browsers expect files to be in HTML [42] 

format) To enable applications to access multiple data formats, usually some form of  

transformation must be carried out on the data TranScm is intended to automatically 

perform such translations

The structure of source data is frequently very similar to that of target data For example, 

databases use schemas to model data instances, structured documents often obey some 

grammar (eg RDF, HTML) This implies that translating between different data formats 

can to a large extent be done automatically

Given the schemas for the source and target data, TranScm uses a rules base to find 

similarities between these schemas Each rule in the rules base identifies matching 

schema components, and also specifies how to translate an instance of the first to an 

instance of the second The system has a set of rules that handle most common cases, and 

can be extended or overwritten by the user during the classification process The system 

uses the rules to find for each component in the source schema a “best match” component 

in the target schema, or determines that there is no matching component in the target
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schema Then source schema components which have been matched to target schema 

components are matched as specified in the rules base If a component of the source 

schema cannot be matched, and the system cannot determine whether it should be 

ignored, the user can add new rules to the system and specify the translation that should 

be applied to it If a component from the source schema is matched to several target 

schema components, the user is asked to specify the “best” match

This is used to translate data from one format to another If an application has to use data 

which is in an incompatible format, the data is transformed using schema matching 

techniques to an acceptable format

TranScm assumes that if two different schemas are descnbing the same thing, there is a 

deal of similarity between the two Much of the task of translating data from one format 

to another can therefore be earned out automatically, with an expert intervening if a part 

of the translation cannot be earned out

TranScm defines a common model which can be used to represent different schema and 

data models This middleware schema model represents schemas as graphs Each data 

source that TranScm translates to or from has a predefined mapping to this middleware 

format This middleware format is quite simple, and the representation of each source 

schema in this middleware format is quite close to its ongmal format The middleware 

format represents data as labelled cyclic graphs Figure 2 10 shows an SGML document 

that we wish to translate into another format
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<article>

<title> From structured Documents to Novel Query Facilities </title>

<authors>

<author> V Chnstophides </author>

<author> S Abiteboul </author>

<author> S Cluet </author>

</authors>

<sections>

<section>

<sectionl>

<title> Introduction </title>

<body>

<parag> Structured documents are central </parag> 

</body>

</sectionl>

</section>

<section>

<sectionl>

<title> SGML Preliminanes </title>

<body>

<parag> In this section, we present </parag> 

<parag> In order to define </parag>

</body>

</sectionl>

</section>

<section>

<section2>

<picture> some bitmap </picture>

<caption> A DTD for a document </caption> 

</section2>

</section>

</sections>

</article>

Figure 2 10 SGML document (input for TranScm)
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Figure 2.11 shows the TranScm middleware format of this SGML document:

Figure 2.11 Middleware representation of SGML document

The empty circles in the middleware schema represent virtual elements; they do not 

appear in the data. The label of a vertex includes the name (for non-virtual elements) 

along with some additional information. For example, [0-..., ->] next to the authors vertex 

means that this element can have zero or more children, and that these children must 

follow a particular ordering. The ? beside the caption vertex indicates that this element is 

optional. The ? next to the two children of the section vertex, along with the fact that 

section is declared to have a single child, indicates that one of the two subtrees beneath 

section must be present in an instance of this graph.

By using the rules base, the user can identify for each element in the source schema a 

“best fit77 element in the target schema, an element which most closely matches the



original The user can also decide that there is no matching element in the target schema 

Given two vertices, one from the source schema middleware graph, and the other from 

the target schema middleware graph, the match function examines the labelling of the two 

vertices and determines if they match This match is conditional on the matching of their 

descendents in the schema graph

After the match process is finished, translation takes place A data instance of the source 

schema is converted into the middleware mode, and every element in the schema is 

assigned a datatype Using the translation rules specified m the rules base, the source 

schema instance is translated to an instance of the target schema, and exported to the 

target application The system uses the matching between the source and target schema 

vertices computed in the last step to translate the data forest by recursively applying from 

top to bottom the translation functions o f the rules attached to the types of the vertices 

This results in a data instance that can be exported to the target application

LSD Learning Source Descriptions
The first step in schema matching using LSD is the creation of a mediated schema, which 

captures the important points of whatever domain the matcher is to be used m In other 

words, it is an ontology representative of a particular domain

Then, as shown in figure 2 12, various source schemas are manually mapped to this 

mediated schema
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Figure 2 12 mapping source schemas to mediated schema

re  alesia te  com

<house>
< ho use location/^ 235 Fairview Ave 
<liitedpnjce/> $250,000 
<agent pKone/> (206)729 0831 

</house>

h o u se lo c a tu m lis ied_p rice agentjpkoiue

235 Fauvxew Ave $250,000 (206) 729 0831

Data source descnptions describe the database schema of a particular source, and 

mappings between semantically equivalent elements in the source and the mediated 

schema

From these manual mappings, the system can infer new matches between elements m 

schemas it has not previously encountered and the mediated schema

One application for this system that the LSD paper proposes is a data-integration system 

that integrates database schemas representing houses on the real estate market from 

multiple heterogeneous sources When searching for data from these databases, users can 

issue one query that can be used to search through all databases, instead of querying each 

database individually

A mediated schema for this domain may contain elements such as “house_address", 

“pnce”, and “contact_phone”, listing the address of the house, the pnce of the house, and 

the phone number of the person selling the house respectively

-36-



Consider the database schema used by the website “realestate com”, for which the data 

source descnption is provided This source contains the elements “housejocation”, 

“listed_pnce”, and “contactnumber” The data source description indicates that these 

elements are semantically equivalent to the elements “house_address”, “pnce”, and 

“contact_phone” respectively

A machine learning application can learn several things from these semantic mappings If 

it looks at the instance level data for these columns m the data source, it has many 

examples of addresses, pnces, and phone numbers It can recognise unknown elements 

from other sources as being semantically equivalent to “house_address” if it sees that an 

element value contains words such as “street”, “avenue”, or “dnve” It can recognise 

unknown elements from other sources as being semantically equivalent to “pnce” if their 

values contain the euro symbol It can recognise unknown elements as being semantically 

equivalent to “contact_phone” if their values contain “+353 1” Machine learning 

applications can also use schema-level information (the name of an element) when 

making matches If enough source descnptjons with elements with names containing the 

word “address” representing the address o f a house are created, a machine learning 

application can hypothesize that any element which contains the word “address” in its 

name is semantically equivalent to the element “houseaddress” in the mediated schema 

(“houseAddress”, “propertyAddress”, “ownersAddress”)

Machine learning matchers can learn from the properties of data Given a sufficiently 

large set of data source descnptions, it can recognise that elements with low numenc 

values (2,3,4,5) are most likely to represent the number o f bedrooms/bathrooms in a 

house Machine learning applications can also learn from the proximity of elements For 

example, machine learning applications may be able to infer from a number of data 

source descnptions that long textual elements at the beginning of a row from a database 

represents the descnption of a house
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No single learner can exploit all these different types of information, so LSD takes a 

multi-strategy learning approach LSD is an example of a composite matcher It uses 

several learners which exploit different types of information that can be used to match 

elements (names, formats, word frequencies, word positions, etc)

The current implementation of LSD uses four matchers, a Whirl learner [15] which 

classifies elements according to the labels of their nearest neighbours, a Naive Bayesian 

learner [16] which uses word frequencies in instance data to find matches between 

elements, a Name Matcher which matches schema elements based on the similarity o f  

their names, and a county-name recogniser which searches a database to check if an 

element label or value matches a county (this is used to highlight how LSD can be 

tailored for use within specific domains) In addition to providing superior accuracy, 

composite matchers such as LSD are also extensible as new matchers appear

The first step in using LSD is the learning phase During the learning phase, elements 

from data source descriptions are matched to semantically equivalent elements in the 

mediated schema Figure 2 13 below shows a sample real estate mediated schema (a) and 

a source schema (b)

Figure 2 13 a mediated schema and a data source

As shown in figure 2 14, using these we create data source descriptions by manually 

creating mappings between semantically equivalent elements
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T rain ing  data
M ediated Schem a G Source Schema P M atchings Extracted d ata  for each le a rn e r

HOUSE house a —►A

A AA B  a h  h —+ B

(a) fl>) («)

Figure 2.14 : Creating mappings between mediated schema and source schema

(e)

In figure 2.14, we have a mediated schema G? and a source schema P. We manually 

match element names from source schema P to their semantic equivalents in the mediated 

schema G (a->A, b->B). We then extract a set of house objects from source P (as seen in 

figure 2.14 (d )). Machine learning applications can use this schema level and instance 

level data for training purposes (as seen in figure 2.14 (e)), so that when they are 

presented with an unknown element from a new source, these applications can predict 

whether this element is semantically equivalent to A, B, or neither.

Figure 2.14 (e) above illustrates that different machine learning applications learn from 

different information from the data extracted in figure 2.14 (d). The learner LI uses 

instance level data (a l, b l, a2, b2). L2 uses only schema level information for training 

purposes (a, b).

Once the learning phase has been completed, LSD can be used to classify data from new 

sources. This is called the classification phase. In figure 2.15 below, we have a source 

schema Q, and we wish to classify element m in this source schema.

<house>
<a/>al
< b /> M

</house>
< ho use-

<a/>a2
<h/>h2

</house>

L3



Figure 2.15 : Classification process

Source schem a Q

(*)

C orresponding global 
elem ent (*)

We first extract a set of objects from source schema Q. Figure 2.15 (b) shows such a set 

of objects. We consider each house object in turn. We extract the data from a house 

object that is appropriate for each learner that LSD uses. For example, as shown in figure 

2.14, LI uses instance level data to classify elements, so it is sent m l. L2 uses schema 

level data to classify elements (the name of the element), so we send it m. The 

appropriate data from an extracted schema object is extracted for all k learners in figure 

2.15(c).

Each learner returns a prediction list of the form {(A,sl),(B,s2),..}.This list says that it 

matches m to the element A in the mediated schema with confidence score si, to B with 

confidence score s2, etc. The higher the confidence score, the more certain the learner is.

Each learner produces a prediction for what term in the mediated schema m is equivalent 

to for each object extracted from the database in figure 2.15 (b). In figure 2.15 (d), a meta 

learner combines the predictions produced for each extracted object to form a single 

prediction for each learner. The meta learner uses a procedure called “stacking’* to do 

this[40]. A prediction combiner then uses this list to decide which element in the



mediated schema m is most likely to be semantically equivant to. In figure 2.15 (f) m is 

finally classified as most likely being equivalent to A.

LSD is extensible; any schema matching application that issues confidence scores can be 

used. At present, LSD uses four schema matching applications, a nearest neighbour Whirl 

learner, a Naive Bayesian learner, a name matcher, and a county-name recogniser.

The Whirl [15] learner uses the TDF/IDF measure, which is widely used in information 

retrieval applications. Whirl performs best on textual data such as free-text descriptions, 

and data which strongly indicates the type of the element (for example if the value of an 

element is “red”, that strongly indicates that the element represents colour).

The Naive Bayesian learner uses word frequencies in the data source descriptions to make 

matches. It works best when there are words in the data source descriptions which occur 

frequently in particular contexts. For example, if house descriptions frequently contain 

the words “beautiful” or “fantastic”, when the Naive Bayesian learner encounters these 

words in an unknown element’s value, it may classify this unknown element as being a 

house description. If the word “gas” occurs in an unknown element’s value, the Naive 

Bayesian matcher may identify this unknown element as representing the type of heating 

used in the house.

The Name Matcher uses the TF/IDF measure to match schema elements based on the 

similarity of their names. This learner works well on unambiguous names (such as 

“price” or “housejocation”), but performs poorly on ambiguous names, where the name 

does not clearly indicate what the element represents (for example, an element with the 

name “office” could represent either the address of an office or the phone number of an 

office).

The Meta-Learner combines the results of each learner’s classification of a particular 

element from each object extracted from the data source. The Meta-Learner uses the



training data generated in the learning phase (the learning source descriptions) to learn for 

each combination of learner and element in the mediated schema, the accuracy of that 

learner when it classifies an element as belonging to that type. The confidence scores 

returned by the individual learners (figure 2.15 (e)) are then weighted accordingly, and 

the highest score is chosen by the Meta-Learner .

The county-name recogniser is a matching application that is specifically for use in the 

context of real-estate. It is a lookup table which can be used to verify if the value of an 

element is a county name.

The Prediction Combiner uses a simple heuristic to decide which of the results returned 

by the Meta-Learner is most likely to be correct. Let T be the set of classifications for a 

particular element in the source schema generated by the Meta-Learner. The classification 

with the highest number of occurrences in T is C l, and the classification with the next 

highest number of occurrences is C2. If Cl is at least p% of the classifications in T, and 

Cl-C2>=q, where p and q are prespecified thresholds, then Cl is chosen by the Prediction 

Combiner to be the final result of the classification operation (figure 2.15 (f)). Otherwise, 

LSD reports a failure to classify that particular element from the source schema.

The developers of LSD tested it on five real-estate sources that listed houses for sale. 

These sources had a broad range of schema elements, from short ones representing 

numeric values (numberBathrooms=l) to very long ones representing free text paragraphs

(House Description=Beautifully situated in one of the most sought after ). They

included elements whose successful classification required knowledge beyond what was 

available in the schema and instance level data. There were also elements that did not 

have 1-1 matches with elements in the mediated schema. Figure 2.16 shows the sources 

and their characteristics, and the accuracy of LSD in classifying elements from these 

sources.
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Figure 2.16 : results of tests on LSD

Sources Coverage *

elem

# leaf 

elems

#

class.

elems

Min-

max

Heavy

Textual

Numeric Special Domain

Know.

Avg.

Accuracy

Per

cent

Realestate.yahoo National 31 31 31 1-152 3 6 10 0 24/31 77%

Homeseekers.com National 33 31 31 1-138 2 5 8 0 20/31 64%

Nkymls.com National 82 64 28 1-56 2 6 6 0 21/28 75%

Texasproperties. com Texas 56 52 42 J-UO 2 10 14 4 26/42 62%

W indermer e. com Northwest 39 ,35 35 1-87 3 4 8 1 22/35 63%

300 house objects were extracted from each source. Ten experiments were then 

performed. In each experiment, three sources were picked for training in the learning 

phase, and two sources were picked for testing in the classification phase.

The last two columns in figure 2.16 show the average accuracy of LSD in classifying 

elements from each source. LSD performed with a degree of accuracy ranging from 62% 

to 77% on the five sources.

Semlnt

Semlnt is a database integration tool. It integrates databases so that a unified, single view 

of multiple databases can be presented to a user. Differences in RDBMS, language, and 

schema structure can be hidden from the user. A single interface can be used to access 

multiple databases.

Database integration involves:

Semantic Integration (extracting data from individual databases, using schema 

matching techniques to map local database schemas to a global schema)

Query processing (translating a query made on a global data schema into the 

appropriate local database query



Data processing (merging results from multiple tables, deciding how they should 

be presented to user)

Figure 2.17 : Database integration using Semlnt

DBAs

SCHEMA
INTEGRATION

The aim of Semlnt is to identify attributes in database schemas that represent the same 

information, and that can be mapped to the same attribute in a global schema. As shown 

above, queries to this global schema can be translated into queries to the appropriate local 

schema. The global schema provides a single view of multiple databases. Semlnt does not 

produce attribute mappings in a pre-programmed manner. The designers felt that although 

such an approach may work for a particular data integration problem, it may not work for 

others. Semlnt can also reuse or adapt knowledge gained during the semantic integration 

process for use in future problems.

Attributes in different databases that represent the same real world concept will probably 

have similarities in schema designs, constraints, and data value patterns. Semlnt uses 

these similarities to find mappings between semantically equivalent terms in different 

databases. Neural networks are trained to use this metadata to identify attributes in a 

particular domain. In this way, attributes from different databases can be matched without



any preprogrammed knowledge on Semlnt’s part

In figure 2 18, two databases, “Faculty” and “Student” are being integrated Semlnt first 

uses DBMS specific parsers to extract metadata (schema design, constraints, and data 

content statistics) Constraints can be the size and datatype of a particular attribute Data 

content statistics can be the average value of instances, min-max value of instances, 

standard deviation of instances, etc These metadata are used as “signatures” which 

describe attributes m the databases These attribute “signatures” are used as training data 

for a neural network The trained network can then identify semantically equivalent 

attributes from other databases by their metadata

Figure 2 18 Integrating the “Faculty” and “Student” databases

(Faculty  SS#> S tuden tS tud_ID , f in u la n ty = 0  98)

(Faculty  Facu_Name, S tuden tS tud_N ajoe , sunilanty=Q  9] )

(Faculty  Salary, S tuden t. S t^ e n d , s im ilan ty = 0  85

*
*
♦

The designers o f Semlnt felt that neural networks were more suitable for use in database 

integration than rules based schema matching applications because

• Predefined rules that work for one set o f databases may not work for another, the 

rules base may have to be updated dynamically

• It is difficult for rules based matchers to assign probabilities indicating the 

likelihood that a particular match is correct

Neural networks group input patterns by how they resemble each other Semlnt trams its 

neural network with instances of database schemas Based on these sample instances, the

M etadata

S tuden t

S tu d J D
Stud_Nam e

Stipend
T e l#

Metadata.

SEMONT
SEMantic
IN Tegrator

Parsers

C la s s i f ie r

N eu ra l
Netw ork
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neural network can learn to identify types of attributes without prior knowledge of the 

regular patterns that occur in these attributes. From these individual examples, Semlnt 

infers the generalisations that allow it to identify corresponding attributes in different 

databases. Figure 2.19 below illustrates this process.

Figure 2.19 : Process of merging databases with Semlnt

Data contents Cluster Trained
Equivalent
attributes

DBMS
specific
parsers
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Semlnt makes use of both schema level and instance level data. Figure 2.20 below 

illustrates the types of data it uses.

Figure 2.20 : data used by Semlnt

Both dictionary level and field level data are schema level data (they represent the names 

and datatypes of attributes), while the data content level is instance level data.
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Semlnt extracts the following attribute metadata using the RDBMS parser

Schema information data types, length precision and constraints such as primary keys, 

foreign keys, value and range constraints, and access restrictions 

Data content statistics the data contents o f different attributes can vary They can have 

different data patterns, value distributions, and other characteristics These characteristics 

can be used to classify attributes For example “SocialSecuntyNumber” and 

“AccountBalance” can both be declared as nine-digit numbers, and thus cannot be 

distinguished solely on their schema characteristics However, their data patterns, such as 

their value distributions and average values, will be different Semlnt uses the following 

characteristics of attributes maximum, minimum, average, variance, coefficient of 

variance, existence of null values, existence of decimals, scale, precision, grouping, and 

number of segments The values of numeric attributes are used to calculate these 

statistics For textual attibutes whose values are not numeric, statistics are computed on 

the number of bytes to store data

Other characteristics of attributes such as read/wnte permissions, and the use o f views, 

clusters, sequences, etc are also extracted by the RDBMS parsers
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Table 2.2 below lists the metadata extracted by the RDBMS parsers: 

Table 2.2 : metadata extracted by RDBMS parsers

No. Discriminator Descriptions

1 Data length

2 Character type

3 Number type

4 Date type Valid dates

5 Row ID Data type: Row pointer

6 Raw data Raw binary of variable length

7 Check Constraint exists on column values

8 Primary key

9 Unique value Value is unique but is not part of the key

10 Foreign key constraint Column refers to key in another table

11 Check on View

12 Nullable Null values allowed

13 Data Precision

14 Data Scale

15 Default Has default value

16 Minimum Minimum non-blanks for character attributes

17 Maximum Maximum non-blanks for character attributes

18 Average Average non-blanks for character attributes

19 Coefficient of variance CV of non-blanks for character atttributes

20 Standard deviation SD of non-blanks for character attributes

Users only have to specify the types of DBMS they wish to integrate (eg Oracle, Ingres, 

IBM AS/400), and specify database connection information for these databases. The 

metadata extraction is then carried out automatically by the DBMS specific parsers.

-48 -



The inputs for the neural network need to be in the range 0-1. The metadata of attributes 

can be of any value. The metadata needs to be normalised into values in the range of 0-1. 

This is done in three ways:

Binary values: boolean attributes are mapped to binary values, eg 0 for false, 1 for true. 

Category values: for example if we convert datatypes to a range 0-1, by assigning the 

values 0 to date, 0.5 to numeric, and 1 to character.

Range values: a range of values can be normalised to the range 0-1 by using a Sigmoid 

function.

Before the metadata of attributes is presented to the neural net for training, similar 

attributes are clustered together into categories. The reasons for doing this are as follows:

• If there are multiple attributes in a database that refer to the same real world 

information, it is desirable that they be grouped together in the same category

• Clustering attributes together reduces the number of nodes in the neural network 

output layer (as there are fewer categories that attributes can belong to). This 

reduces the problem size and therefore the training time also.

• After the attributes of database A are clustered together into M categories, 

attributes from database B are compared with these clusters instead of each 

attribute in database A. This is less computationally expensive.

Semlnt uses the Self Organising Map Algorithm [17], an unsupervised learning 

algorithm, to cluster together the attributes in a database. Users of Semlnt can determine 

in advance the number of categories they wish to create.



For example, consider the following table of attributes

Table 2 3 Training data for Semlnt

Attribute name Key field7 Length Data type Representation

Personnel table

SSN Yes 9 Numeric (1 0 47 0)

Name No 11 Character (0 0 6 1)

Address No 25 Character (0 0 7 1)

Tel# No 10 Numeric (0 0 51 0)

Employee table

Em pID Yes 9 Numeric (1 0 47 0)

Empname No 12 Character (0 0 62 1)

Each of these attributes has three characteristics Key field ( a boolean value indicating 

whether or not the attribute is a key for a table m the database), a Length field, and the 

attributes data type These values are normalised so that they have values between 0 and 

1 The representation column shows the normalised numeric representation of these 

attributes Figure 2 21 shows how the six attributes are grouped into four clusters by the 

Self Organising Map Algorithm These clusters are identified by their centers For 

example, the centre of cluster2 is the midpoint between (0, 6,1) and 0, 62,1), which is 

(0,61,1)

-  50  -



Figure 2 21 Clustering of attributes by Self-Organising Map Algorithm

L en g th

These cluster centres are then used as training data for the neural network When we 

present the trained neural network with the metadata o f attributes from other databases, 

the network tells us if there are matches between this new attribute metadata and any of  

the clusters of attribute metadata it has been trained with

The attributes m the database are grouped into four categones using the self organising 

map algorithm, and the cluster centre weights are used to train the neural network Figure 

2 22 shows the output from the neural network This consists of the probability that these 

attributes are semantically equivalent as calculated by the neural net
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Figure 2 22 Output of neural net

(Databasel Faculty SSN, Databasel.Student StudID, Database2 Personnel ID, 

similarity^) 98)

(Databasel Faculty FacuName, Databasel Student.Stud_Name,

Database2 Personnel Name, similanty=0 92)

(Databasel Student Tel#, Database2 Personnel W phone#, similanty=0 94) 

(Databasel Student Tel#, Database2 Personnel H_phone#,similarity^ 95)

The use of Semlnt can be summarised as follows

• Use DBMS specific parsers to extract metadata from database A (eg schema 

information, statistics of attribute values, attribute data types, etc )

• Cluster the attributes from the database A into M categones using the Self 

Organising Map Algorithm These clusters are the input for the neural network

• Train the neural network using the data obtained in the previous step

• The attribute metadata from another database B is the input for the neural 

network For each attibute in database B, the neural network returns the similarity 

between this input data and each category in database A

• Users check and confirm the output of the neural network The output is a list of 

attributes in the category that the neural network has determined is the most likely 

match for the attribute from database B

Semint was tested with three different types of databases 

Similar databases from same organisation 

A very large database split into two 

Similar databases from different organisations
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An accuracy rate of 97% was achieved for similar databases from the same organisation 

An accuracy rate of 90% was achieved for a very large database split into two Accuracy 

was much poorer for matching elements between similar databases from different 

organisations (20%)

2.4 Critique of semi-automatic matchers 

SKAT

SKAT [6] is limited, in that it relies on rules specified by a human when performing a 

schema match operation Unlike more sophisticated schema matchers, it doesn’t take 

advantage of information such as the data-types of elements, data ranges of elements, 

mean values of elements, surrounding elements m the schema, etc

It requires the presence of an expert to provide initial match rules This means that every 

time data from a new source is encountered by the system, new rules mapping elements in 

this schema to equivalent elements in other schemas will have to be created This will not 

be feasible if the matcher will frequently be encountering schemas from unknown data 

sources

TranScm

TranScm [7] also relies on rules, but new rules can be added by the user Adding rules 

manually can be tedious however, and is exactly the activity that schema matching 

applications seek to minimise

LSD

LSD [8] makes use of machine learning algorithms These algorithms can suggest 

semantic matches which haven’t been provided by a human in a rules base The use of 

machine learning algorithms in LSD allow it to match elements in a more autonomous 

fashion than applications like SKAT or Transcm, which rely solely on rules base Rules

-  53 *



based matchers such as these find semantic mappings between elements is by consulting a 

lookup table, and if either element doesn’t exist in this table, the human user must create 

a mapping manually. By looking at data contents, word frequencies, etc., LSD however 

can match elements without a human specifying these matches in advance.

LSD is a composite matcher. This allows it to match a wider range of data than individual 

matchers. It can also be extended as new matchers appear.

None of the matchers used by LSD are capable of generalisation however. They can not 

make classifications based on data which does not appear in the data they were trained 

with.

Semlnt

As Semlnt only compares elements based on attributes of their data (ie average 

value/length of element in a database), and not the data itself (ie word frequency, 

synonyms etc) it is not suited to matching textual elements. Because of this, it is not a 

complete solution to the schema matching problem, but is of some value, and may be 

usefully combined with other matchers in a hybrid/composite matcher.

Preparing training data for a neural network is time consuming. The training data has to 

be carefully selected and ordered before training begins. This can be a lengthy process. 

The neural net takes longer than many other matching algorithms to prepare.

2.5 Functionalities required by our schema-matcher
As our schema matching application will need to perform mapping operations between a 

wide range of heterogeneous ontologies, creating a rules based matcher capable of 

mediating between all these data sources would take far too much time and effort. In 

order to reduce the time necessary to perform schema mapping operations, our schema



matching application must use machine learning algorithms which are capable of 

suggesting matches which are not pre-programmed by a human

Different classification algorithms perform weakly on particular types of data The neural 

network used by Semlnt [9] performs poorly when deployed on textual data Naive Bayes 

matchers (as used by LSD [8]) perform poorly with numeric data of a quantitive nature

In order for our system to work in practice, we must be able to categorise both textual 

data (eg "SoundBlaster Pro") and numeric data (eg "1024,768")

Matchers such as LSD [8] and Cupid [11] have shown that if we combine the results of 

several matchers together to form an aggregate result, this “composite matcher” will 

perform better than any o f the matchers individually Composite matchers can classify a 

broader range of data than single-matcher systems such as Semlnt [9] or SKAT[6]

We also must be able to generalise from the data used to tram our matchers The ability of 

a neural net to generalise allows it to categorise data that was not present m its training 

dataset The presence o f a neural network matcher m a composite matcher extends the 

range of data the composite matcher can classify

The Client Service Capability Matcher was designed with all these points in mind It 

combines a rules based matcher, a Naive Bayes Classifier, a neural net matcher, and a 

subsequence matcher
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3. Client Service Capability Matcher -  Overview
This is a high-level description of the architecture for a system which determines the 

semantic meaning of elements in RDF profiles representing devices and web content, and 

determines if the device is capable of displaying the web content

3.1 Interaction of system components

Figure 3 1 below shows the components of the Client Service Capability Matcher, and the 

interactions between these components When a user wants to determine if their device is 

capable of accessing particular web content using the Client Service Capability Matcher, 

the procedure is as follows

Figure 3 1 Architecture of Client Service Capability Matcher

RDF docum ents

r \
User and web content
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f  \

RDF
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O utput from target 
service, modified if
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1 The user’s device sends RDF profiles describing the device and the web content that 

the user is trying to access to the RDF parser

2 The RDF parser extracts element names and the values associated with these names
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from the RDF profiles, and forms two lists of attnbute/value pairs One list represents the 

properties of the device, the other represents the properties of the web content the device 

is trying to access These lists are sent to the rules based matcher

3 The rules based matcher uses the element names in the lists to form SQL SELECT 

queries These quenes are run against the database used by the rules based matcher to 

obtain the term in the Client Service Capability Matcher’s ontology that they are 

semantically equivalent to The purpose of the rules based and semi-automatic matchers 

is to reduce element names in a device/web content profile to a canonical form The term 

m the Client Service Capability Matcher’s ontology can be considered the canonical form 

of the element name These canonical element names, and their associated values, are 

sent to the Compatibility Gauge If an element name cannot be reduced to its canonical 

form because it does not appear in the rules base, this element name and its associated 

value will be sent to the semi-automatic matchers

4 The semi-automatic matchers use heuristic algorithms (Naive Bayes, Longest Common 

Substring, and Neural Net) to categorise the element name based on its value Each semi­

automatic matcher matches the unknown element to the element in the Client Service 

Capability Matcher’s ontology that it has calculated it is most probable to be equivalent 

to This match, along with a confidence score m the range 0 to 1, is sent to the Composite 

Matcher

5 If the predictions returned by the semi-automatic matchers are not unanimous, the 

Composite Matcher has to decide which of the semi-automatic matchers are most likely 

to be correct It looks at the confidence scores returned by each semi-automatic matcher, 

and chooses the matcher that is statistically most likely to be correct based on this (the 

exact algorithm is outlined in section 4 2 7) The output from the semi-automatic matcher 

that is deemed by the composite matcher as being the most likely to be correct is sent to 

the Compatibility Gauge via the Rules Based Matcher, and is also sent to the Rules 

Generator

6 The Rules Generator maintains a table in the same MySQL database used by the Rules 

Based Matcher indicating all the matches between unknown elements and elements m the 

Client Service Capability Matcher’s ontology that have been suggested by the Composite
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Matcher If a particular match is suggested by the Composite Matcher more than a pre- 

specified number of times, that match is added to the Rules Base For example, if  the 

Composite Matcher suggests that an element named “Sndblster” in a profile is 

semantically equivalent to the element “Sound Card” in the Client Service Capability 

Matcher’s ontology more than five times, the rule Sndblster=Sound Card will be added to 

the Rules Base We use the number o f five here as an example The actual number of 

time a match must be suggested before it is added to the Rules Bases is configurable 

Thus, the Rules Base can expand to include rules which were not defined by a human at 

design time This feature is not present m any of the other schema matching applications 

that we studied

7 The Compatibility Gauge receives the “canonical form” of the elements from the RDF 

profiles describing the device and the web content that the user is trying to access It can 

perform checks such as “Is Resolution of Device >= Resolution required for web 

content” Our prototype determines the devices compatibility based on ten criteria

Soundcard

Videocard

Resolution

Colour

RAM

VideoRAM 

Operating System 

Network Connection 

Harddnve 

CPU

If the device does not meet any of these criteria for accessing the web content, the 

Compatibility Gauge sends the particular criteria that the device fails to meet along with
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the values associated with those criteria to the web content provider. For example, if  the 

device profile contains this element:

<NetworkSpeed> 100kbps</NetworkSpeed>

but the web content profile contains this element

<NetworkBandwidth> 1 Mbps</NetworkBandwidth>.

The Client Service Capability Matcher will reduce “NetworkSpeed” and 

“NetworkBand width” to their canonical form (Network Connection), and will deduce that 

these elements are semantically equivalent. The Compatibility Gauge normalises the 

values of these elements. In this example, the web content profile measures bandwidth in 

Mbps, whereas the device profile measures bandwidth in kbps. The Compatibility Gauge 

extracts the numeric value from both elements, and checks for indicators of the unit of 

measurement this represents. In this example, the elements represent network speed, so 

unit names such as “kbps” and “mbps” are searched for. The value “1 Mbs” is converted 

to “1024 kbps”.

The canonical version of the web content profile contains an element representing 

“Network Connection” which has a normalised value of 1024kbps. The device profile 

also contains an element representing “Network Connection”, but this element only has a 

value of 100 kbps. Based on this, the Compatibility Gauge sends a boolean value “false” 

to the web content provider, indicating that the device is not capable of accessing the web 

content. The following information is also sent:

• The term “NetworkBandwidth”, to indicate that the device does not have a 

fast enough network connection.

• The value of this element in the web content profile (1 Mbps).



The web content provider can alter the web content, or provide alternative content, for the 

user’s device For example, if  the user is trying to access a videostream, and the Network 

Connection of the user’s device is too slow, the personalisation application can stream a 

lower quality videostream that takes up less bandwidth to the user

3.2 System components

3.2.1 RDF Document Parser

Function
Obtain attnbute/value pairs in plain text form from an RDF document descnbing web 

content or a device

Description
The parser scans an RDF file, and extracts the attribute/value pairs which represent 

information about the resource represented by the RDF file The parser verifies that the 

document is a well formed XML/RDF document

RDF was designed by the W3C as a general purpose metadata description language It 

allows a great degree of freedom with regards to the vocabulary and structure used when 

creating a profile

Ideally, when individuals are writing up profiles describing a device/ service, they should 

be free to use whatever vocabulary and document structure they wish It is not desirable 

that users should have to descnbe their resources using a syntax which may be too 

constraining, or too vague, for their needs



We must capture the following aspects of a device/web content in its profile.

1 Its content handling capabilities

2 How to access the resource

3 For devices: the hardware/software capabilities available to it

4 For web content: Hardware/software requirements necessary to access the 

content

5 User preferences for the resource.

RDF can be used to represent all this information, unlike other methods. For example, 

WSDL only describes where to access a resource and the interface it exposes to the 

world, and can only be used to express 1 and 2. As another example, UpnP has no facility 

for describing 5.

Other methods require that profiles be constructed from templates (eg UpnP, SLP, UDD1, 

Salutation) or that a specific syntax be used (WSDL).

RDF is a language which is capable of capturing all the necessary aspects o f a device in 

the context of the Client Service Capability Matching project, and offers a syntax which 

is sufficiently expressive not only to model a wide variety of devices and services existing 

at present but also those which may appear in future.

Input

RDF documents from the user’s access device.

Output
Set of tuples representing attribute/value pairs of the elements in the RDF profiles for 
web content and user’s device. These tuples are sent to the Rules based matcher.



3.2.2 Rules based matcher

Function

Rules indicate that a term occurring in one profile is semantically equivalent to another 

term appearing in another profile. For example, the rule “DellPC.processor=SonyPC.cpu” 

indicates that the term processor in the context of “DellPC” is semantically equivalent to 

the term cpu in the context of “SonyPC”.

Rules are specified in a table in a MySQL database. The table has two columns, “Term” 

and ‘Synonym”. Each row in this table represents a rule matching two semantically 

equivalent terms. The purpose of the rules based matcher is to reduce element names to 

their canonical form. The column “TERM” represents the canonical form of element 

names. The column “SYNONYM” represents semantically equivalent terms for these 

canonical names.

Element names from a device/web content profile will be used in SQL queries for this 

MySQL table, in order to determine if the terms used in the profile are contained in the 

system’s ontology.

Description
Table 3.1 below illustrates a section of the rules base.

Table 3.1 : extract from rules base

TERM SYNONYM

RAM mem

CPU Processor

Resolution ScreenRes

Harddrive Hard disk

Soundcard Soundblaster



The rules base can be queried using SQL [25] statements, for example 

SELECT TERM FROM RULES_BASE WHERE SYNONYM=’mem’

This statement will return the value ‘RAM’

New rules can also be inserted into the rules base by using SQL statements, for example 

INSERT INTO rulesbase (Term, Synonym) VALUES (‘CPU5,’Processor’)

The rules based matcher defines an ontology representing web content and devices It 

details known synonyms for terms in these domains, truncated/abbreviated versions of the 

term, similarly spelled terms which are pronounced identically (eg deliverTo, deliver2), 

and terms which share common substrings (eg representedby, representative)

If the SELECT query formed for any terms from the device/web content profiles returns 

an empty set, these terms will be sent to the semi-automatic matchers which will attempt 

to identify any terms in the ontology it may be semantically equivalent to

Input

From the RDF parser the rules based matcher receives element names and element 

values pairs from web content and device profiles

Output

• To Compatibility Gauge Content handling capabilities and resources of device, 

content types used by web content and hardware requirements for web content 

These are the canonical forms of element names used in the device and web 

content profiles
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• To Semi-automatic Matchers: Element name/value pairs representing web

content and device properties, which could not be transformed to a canonical form 

by the rules based matcher.

3.2.3 Naïve Bayes Classifier 
Function

Classify an element name by using a text-classification algorithm to determine what term 

in the system’s ontology it is statistically most likely to be equivalent to.

Description
This module uses the Naïve Bayes algorithm to match an unknown element with an 

element which it is possibly semantically equivalent to in the system’s ontology.

Input
From the rules based matcher: Element name/value pairs representing web content and 

device properties, which could not be transformed to a canonical form by the rules based 

matcher.

Output
The Naive Bayes Classifier sends suggestions for the canonical form of element names to 

the composite matcher.

3.2.4 Neural Net Matcher 
Function
Classify an element name by using a neural network to determine what terms in the 

ontology share similar characteristics.

Description
Uses machine learning algorithm to classify input data by generalising and making 

inferences from training data.



Input
From the rules based matcher: Element name/value pairs representing web content and 

device properties, which could not be transformed to a canonical form by the rules based 

matcher.

Output
The Neural Net Matcher sends suggestions for the canonical form of element names to 
the composite matcher.

3.2.5 Subsequence Matcher 
Function

Identify possible semantic mappings between unknown element names and terms in the 

system’s ontology by detecting common subsequences in terms.

Description
The subsequence matcher looks for terms which share common subsequences, and 

suggest them to the user as possible semantic matches. For example, it may see that 

“representedBy” and “representative” share the subsequence “represent”, and suggest this 

pair to the user as a semantic match.

Input
From the rules based matcher: Element name/value pairs representing web content and 

device properties, which could not be transformed to a canonical form by the rules based 

matcher.

Output

The Subsequence Matcher sends suggestions for the canonical form of element names to 
the composite matcher.



3.2.6 Rule Generator 
Function
Generate new rules to add to the existing rules base, based on semantic mappings 

suggested by the neural net, Naive Bayes, and subsequence matchers.

Description
The rule generator is responsible for generating new rules. It may generate a semantic 

mapping between attribute X and attribute Y if:

For attribute X, a sufficiently high number of new mappings suggested semi- 

automatically are to attribute Y. (Exactly what number is configurable).

Input

The Rule Generator receives matches which have been accepted by the user from the 

composite matcher.

Output
The Rule Generator sends term/synonym pairs to the Rules Based matcher which will be 
inserted into the rules base to form new rules using SQL INSERT statements.

3.2.7 Composite matcher 
Function
Decide which of the three semi-automatic matchers is most likely to be correct, and send 

the output from this matcher to the rules based matcher and the rule generator.

Description
If the output returned from the semi-automatic matchers is not unanimous, the composite 

matcher uses the following algorithm for selecting the semi-automatic matcher which is 

most likely to be correct. If the Naive Bayes matcher returns a clear result, its output is 

selected. If the Naive Bayes matcher’s output is ambiguous (ie multiple categories given 

probabilities of 1.0, all categories given 0.0), then the composite matcher must choose 

between the neural net and the subsequence matchers. If the probability associated with
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the neural net matchers choice is greater than .9, the neural net matcher is selected by the 

composite matcher, else the subsequence matcher is selected.

Input

From the neural net, subsequence and naive bayes matchers: the element in the rules 

based matcher’s ontology that each of these matchers has calculated an unknown element 

is most likely to be semantically equivalent to

Output

The output from the semi-automatic matcher that the composite matcher has calculated is 

most likely to be correct is sent to the rules based matcher and the rule generator.

3.2.8 Compatibility Gauge 

Function
Determine if the end user can access web content with a particular device.

Description
The Compatibility Gauge examines the content handling capabilities of the device and the 

properties of the web content it is trying to access. It analyses the hardware requirements 

necessary to access the web content (eg screen size, network connection speed) and 

determines if the hardware specifications supplied by the device meet these requirements. 

If the device is not capable of accessing the web content, the information about these 

incompatibilities is sent to the web content provider. The web content provider can use 

this information to provide alternative web content that is suitable for the user’s device.

Input
From the rules based matcher: the canonical form of element names in the device and 

web content profiles provided by the user, and their associated values.



Output
To the web content provider: A boolean value; true if device is capable of accessing web 

content; false otherwise. If the device is not capable of accessing the web content, the 

information about this incompatibility is sent to the web content provider.



4 Implementation of architecture
The application is implemented as a web service. Simply put, a Web service is a web- 

based application that exposes a programmatic interface using standard, Internet-friendly 

protocols. The web-services paradigm is highly modular. Web-services and the programs 

which invoke them are loosely coupled; neither needs to have an in-depth knowledge of 

how the other works. We can look on web-services as being on-line building blocks for 

an application. By using web services we can rapidly build new applications or extend the 

functionalities of existing ones.

4.1 Invoking web services
If someone wanted to create a program which invoked our web service, how would they 

know the functions exposed by the web service, and the parameters accepted by these 

functions? The program has to be supplied with a document describing the web service’s 

interface. If we want to create applications which can communicate data to each other 

autonomously, without human direction, this documentation must be in a standardised, 

machine readable form.

There does exist a protocol which provides information about web-services in a machine 

readable format. It is called Web Services Description Language (WSDL) [20]. By using 

WSDL, it is easy to invoke programs remotely and to allow your programs to be invoked 

remotely.

4.1.1 Web Services Description Language
A WSDL document defines a web-services interface. It specifies the data which it sends 

and receives. As The two communicating applications don't have to run on the same 

platform; WSDL is a platform and application independent definition language; only the 

message is important. This simplifies the interface between applications.



A WSDL document is a set of definitions. It includes the following parts:

• Types: These are the definitions of the basic data types used in the messages 

exchanged between the web service and the application invoking the web service.

• Message: An abstract definition of the data being communicated.

• Operation: An abstract definition of the function performed by the service.

• Port: The address of a single web service, defined as a combination of a binding 

and a network address.

• Port Type: A set of operations performed at a Port.

• Binding: Specification of protocol and data used by a Port Type

• Service: A collection of one or more related ports.

For a sample WSDL document, see Appendix A.

4.1.2 Simple Object Access Protocol (SOAP)
Web services communicate with other applications by using SOAP: Simple Object 

Access Protocol [22]. SOAP is an XML-derived protocol which uses existing internet 

transport protocols (such as HTTP) to transmit XML-encoded data. SOAP describes the 

messages that pass between web services and clients that invoke these services.



SOAP is an easily implemented protocol with widespread industry support. It is a light­

weight protocol; its text-based, and therefore operating system and application 

independent. It uses existing technologies such as HTTP and XML which have gained 

widespread industry acceptance.

An important feature of SOAP is its ability to enable communication through firewalls. 

All firewalls pass traffic using port 80, which is used by HTTP. Because SOAP can use 

HTTP as its transport protocol it is not blocked by firewalls.

Transmissions between applications under the SOAP protocol take the form of messages. A 

SOAP message is an XML document which consists of an envelope, a header (optional), and a 

body. Figure 4.1 shows a simple SOAP message.

Figure 4.1 : sample SOAP message

<SOAP:Envelope>

xmlns:SOAP=’http://schemas.xmlsoap.org/soap/envelope/’

SOAPiencodingSty^’httpr/Zschemas.xmlsoap.org/soap/encoding/’

<SOAP:Header>

<Language>

English

</Language>

</SOAP:Header>

<SOAP:Body>

<DoCreditCheck>

<ssn>123-456-7890</ssn>

</DoCreditCheck>

</SOAP:Body>

</SOAP:Envelope>

http://schemas.xmlsoap.org/soap/envelope/%e2%80%99


We will now analyse the components of the above SOAP message (Envelope, Header and 

Body).

The envelope is the first element in a SOAP message, it encapsulates all the other parts of 

the message. It identifies the XML document as being a SOAP message, and how it is 

encoded (that is, how the data is to be serialised). This information is represented as 

namespace URIs [35].

Below is the envelope element o f the SOAP message from figure 4.1, with the Header 

and the Body of the message removed for the sake of clarity.

<SOAP:Envelope>

xmIns:SOAP=’http://schemas.xinlsoap.org/soap/envelope/?

SOAP:encodingStyle='http://schemas.xmlsoap.org/soap/encoding/’

</SOAP:Envelope>

The first namespace URI (fhttp://schemas.xmlsoap.org/soap/envelope/f) specifies the 

version of the envelope. It identifies the XML document as being a SOAP message. The 

second URI (’hitp://schemas.xinlsoap.org/soap/encoding/f) specifies the encoding used 

to serialise the data in the body of the message.

The envelope element may contain a header element. It is optional, and is used to extend 

the SOAP message syntax. For example it can add features such as authorization or 

transaction information to the SOAP message, or provide information about the message 

such as specifying the language of the message.

http://schemas.xinlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/encoding/%e2%80%99
http://schemas.xmlsoap.org/soap/envelope/f


<SOAP:Header>

<Language>

English

</Language>

</SOAP:Header>

The Body element must be present in a SOAP message, and it must be an immediate 

child of the envelope element. It contains the actual message, which is represented as 

child elements of the body. This could be a method call along with textual representations 

of the arguments required by the method, or it could be any data represented in an XML 

format.

The body of the SOAP message in figure 4.1 is a procedure call to a function 

DoCreditCheck, with one argument (123-456-7890) being passed to the function.

<SOAP:Body> 

<DoCreditCheck> 

<ssn>123-456-7890</ssn> 

</DoCreditCheck>

</SOAP:Body>

4.1.3 JAX-RPC
JAX-RPC [23] is the Java API for XML-Based Remote Procedure Call. Remote 

Procedure Call is a protocol which enables an application running on a computer 

connected to a network to execute processes on other machines connected to the same 

network. The JAX-RPC API in the Java Web Services Development Pack [43] is used to 

enable communication between the Client Service Capability Matcher and the end-user.

JAX-RPC uses SOAP and HTTP to make RPCs over a network. The communication 

between the client and the server is encoded using SOAP. The SOAP specification
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defines message structure, encoding rules, and a convention for representing remote 

procedure calls and responses. HTTP (Hypertext Transfer Protocol) serves as the 

transport mechanism. Although JAX-RPC relies on complex protocols, the API hides this 

complexity from the application developer.

Unlike earlier APIs used to make RPCs (for example, RMI [44]), JAX-RPC allows 

client-server interaction even when the client and the server are implemented using 

different platforms. JAX-RPC enables a non-Java client to invoke a web service 

implemented using Java, and vice versa. The interface to a web service is described using 

WSDL.

Figure 4.2 illustrates the communication exchange between a JAX-RPC client program 

and a web service.

Figure 4.2: An application using JAX-RPC at runtime



Stubs are local objects that represent the remote procedures. Ties are server-side classes 

which enable interaction between the client and the web service. This is what happens 

when a client invokes a function provided by the web service.

•The client calls the method on the stub that represents the remote procedure.

•The stub executes the necessary routines on the JAX-RPC runtime system.

•The runtime system converts this method call into a SOAP message and 

transmits the message to the server as an HTTP request.

•The server, upon receipt of the SOAP message, invokes the methods on the JAX- 

RPC runtime. The JAX-RPC runtime converts the SOAP request into a method 

call.

•The JAX-RPC runtime then calls the appropriate method on the tie object.

•Finally, the tie object calls the method on the implementation of the Web service.

•The response to the RPC call is sent in a SOAP response message as an HTTP 

response to the client.
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4.2 Class diagram of Client Service Capability Matcher
The class diagram below (Figure 4.3) shows the main java classes in our system and the

relationships between them.

Figure 4.3: Client Service Capability Matcher Class Diagram

neuralNetMatcher subsequenceMatcher naiveBayesMatcher

elemertCategory elementCategory elementCategory

suggestMatch(unknownElementValue) suggestMatch(unknowrElementValue) suggestMatch(unknownElementValue)

rulesBasedMatcher

resolutionXValue
requiredResolutionXValue
resolution YValue
requiredResolutionYValue
videoMemory
requiredVideoMemory
memory
requiredMemory
operatinqSystem
requiredOperatingSystem
soundSupport
requiredSoundSupport
colourSupport
requiredColourSupport
networkConnectionSpeed
requiredNetworkConnectionSpeed
processor
requiredProcessor
harddiskSpace
requiredHarddiskSpace

identifyElements(elementNames.elementValues)



All these classes were implemented using the Java Source Development Kit 2 (version 

1.4.0).

4.2.1 Front End
The user interface is a GUI implemented using the Java Foundation Class Swing 

libraries.Through a series of dialog boxes, the user is asked to provide:

• The URL for the RDF file describing the target web content

• The URL of the target web content

• The URL for the RDF file describing the users device

The Front End is the client for the Client Service Capability Matcher web service. All the

other classes are server side web service classes.

4.2.2 RDFParser
The RDF Parser obtains the names of elements and the values of these elements in an 

RDF document. It uses the Simple API for XML Processing (SAX) [24]. SAX is an event 

driven mechanism for accessing XML documents. With a SAX parser, events are related 

to what is currently being read from the XML document, for example:

•Element opening tags 

•Element closing tags 

•Content of elements

•Parsing errors (in cases where XML document is not well formed)

The SAX API acts like a serial I/O stream. You see the data as it streams in, but you can't 

go back to an earlier position or leap ahead to a different position. In general, SAX works



well when you simply want to read data and have the application act on it. This is 

perfectly adequate for the requirements of our parser.

The RDF Parser is implemented in the class RDFParser. It is invoked by creating an 

instance of this class, and calling the parseDocument method of this instantiation. The 

name of the file to be parsed is supplied as an argument to this method. The method 

returns a Vector object, containing Strings representing the names of elements in the RDF 

file supplied as an argument, and the values of these elements.

4.2.3 rulesBasedMatcher
The rules based matcher consults a lookup table, which details pairs of semantically 

equivalent terms. Below is a selection of semantic mappings from this table:

Table 4.1: Selection of semantic mappings from rules base

TERM SYNONYM

MB Megabytes

MB Meg

MB Megs

Soundcard Soundboard

NetworkConnection Connection Speed

Microphone Mic

Microphone Mouthpiece

Speakers Loudspeakers

Headphones Phones

Html Htm

Txt Text

Txt Plaintext



The rules based matcher is implemented as a class which sends SQL[25] queries to a 

MySQL database. Java Database Connectivity[26] drivers are used to send requests to the 

database and retrieve responses to these requests. For example, if we encountered the 

term “HarddiskSpace” in an RDF profile, and wanted to consult the rules based matcher 

to see what this term was equivalent to, we would send the following SQL statement to 

the database:

SELECT TERM FROM TERMS WHERE SYNONYM = ‘HarddiskSpace’

4.2.4 naïveBayesMatcher

The Naïve Bayes matcher uses the Naïve Bayes algorithm[27] to classify elements taken 

from the RDF profile. The Naïve Bayes algorithm is frequently used in text-classification 

applications [12], [13], [14]. It uses Bayes theorem to calculate the probability that an 

element/attribute belongs to a particular category given the words its value contains. For 

example, if the value of an element contains the word “Soundblaster” then the element is 

highly likely to belong to the category “Sound Card”. The Naïve Bayes algorithm 

assumes conditional independence between the attributes of the data it is classifying. 

Conditional independence is the assumption that the effect of one variable on the 

classification process is independent of all other variables. This is not always true in real- 

world situations (hence the name, NAÏVE bayes).

Given a hypothesis (H), and an observed fact (D), we calculate the probability of the 

correctness of the hypothesis given that fact (P(H|D).

For example, in a training set of 40 elements, 23 elements are categorised as representing 

addresses. 20 of the elements in the training set contain the word “street” in their values. 

14 of the elements containing the word “street” in their value are “address” elements.

Given the above, what is the probability that an element is an “address” element if it has 

the word “street” in its value?



P(H|D)=P(D|H)*P(H)/(P(D|H)*P(H)+P(D|H')*(1-P(H)))

Which can be simplified to 

P(H|D)=P(D|H)*P(H)/P(D)

H, Hypothesis element is of type “address”

D, Datum, an observed fact element contains word “street”

P(H)=pnor probability element is of type address=23/40 = 575 

P(D|H)=probability element contains word “street” if it is an address = 14/23 = 6087 

P(D)=probabihty element contains word “street” = 20/40 = 5 

P(H|D)= ( 6087* 575)/ 5 = 7015

4.2.5 subsequenceMatcher

The subsequence matcher detects common subsequences between terms in the 

application’s ontology and unrecognised terms For example, it may suggest t4videores” 

and “videoscreen resolution” to the user as a semantic match

In order to calculate the similarity between two terms, we first calculate the Longest 

Common Subsequence between the two

Definition Longest Common Subsequence

The Longest Common Subsequence (LCS) of two strings is the longest subsequence of 

characters (excluding whitespace) that occurs in both strings

Bayes theorem
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For example:

We compare the term “Disk Store” to “Storage”:

The LCS, with a length of 5, is “Store”:

HARDDRIVE TERM 

Disk Store

UNKNOWN TERM1 

Storage

A problem with using the LCS as a similarity metric between two strings is that the 

longer an input string is, the more likely it is to contain characters forming a common 

subsequence with the string we compare it to. If we compare a long input string 

containing many words to a particular term, it will more than likely be given a higher 

similarity score than a single word compared to the same term, simply because the 

likelihood of finding a common substring increases with the length of the input.

In order to prevent comparisons involving long strings getting misleadingly high 

similarity scores, we calculate a value, the “distribution”, which indicates how “spread 

out” the LCS is in the unknown term.

For example, we also compare “Disk Store” to “TCP/IP connection requires an Internet 

account and 28.8 Kbps (or faster) modem”:

The LCS, with a length of 7, is “iskStre”:



HARDDRIVE TERM 

Disk Store

UNKNOWN TERM2

“TCP/IP connection requires an Internet account and 28 8 Kbps (or faster} 

modem”.

Our second comparison results m a longer LCS, even though the two terms in the first 

comparison are more similar

We divide the length of the LCS by the distribution of the LCS in the unknown term, so 

that an LCS in which the characters do not occur close to each other will result in a lower 

similarity score than an LCS in which the characters are closer

For example, as seen in the first comparison above, the LCS of “Disk Store” 

(HARDDRIVE TERM) and “Storage” (UNKNOWN TERM1) is “Store” The first 

character of the LCS occurs at the first character m UNKNOWN TERM1, and the last 

character of the LCS occurs at the 7 ^  character m UNKNOWN TERM1 So, the 

distribution is (7-1)+1=7 (we add the one to prevent divide by zero errors)

Looking at the second comparison, the first character in the LCS occurs at the 23rd 

character m UNKNOWN TERM2 (“TCP/IP connection requires an Internet account and

28 8 Kbps (or faster) modem”) while the last character in the LCS occurs at the 77^ 

character of UNKNOWN TERM2, therefore the distribution is (77-23)+l=55

We also calculate the length of the LCS divided by the length of HARDDRIVE TERM 

(because just as with the unknown term, the longer HARDDRIVE TERM is, the longer 

the LCS is also likely to be)
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The product of these two values gives the overall similarity score between the unknown 

term and a term in the system’s ontology

 LengthOfLCS______  * LengthOfLCS______
UNKNOWN TERM Distribution LengthOfKnownTerm

In the above examples, the LCS between HARDDRIVE TERM and UNKNOWN 

TERM1 is 5 The distribution of the LCS in UNKNOWN TERM1 is 7 The length of 

HARDDRIVE TERM is 10 So, the similarity score between HARDDRIVE TERM and 

UNKNOWN TERM1 is 5/7 * 5/10 =25/70= 35714

The LCS between HARDDRIVE TERM and UNKNOWN TERM2 is 7 The distribution 

of the LCS m UNKNOWN TERM2 is 55 The similarity score between HARDDRIVE 

TERM and UNKNOWN TERM2 is 5/55 * 5/10 =25/550= 04545, which is much lower 

than the similarity score between HARDDRIVE TERM and UNKNOWN TERM1 These 

results reflect that the two terms in the first comparison are more similar than those in the 

second comparison

Dunng testing, the subsequence matcher proved itself to be the most effective of the 

semi-automatic matchers in classifying elements with lengthy textual values (see 

“Results”, chapter 6)

Table 4 2 shows the accuracy of the semi-automatic matchers when used to categorise the 

48 elements with the longest values in the test data (10-12 words, eg “150 MB free hard 

disk space plus space for saved games”, “256 MB RAM or higher (more memory 

normally results in improved performance)”

i
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Table 4.2

NEURAL NET NAIVE BAYES SUBSEQUENCE

MATCHER

34/48 (71%) 28/48 (58%) 40/48 (83%)

The subsequence matcher is clearly the most effective matcher when categorising 

elements with lengthy textual values.

4.2.6 neuralNetMatcher
Neural networks[27] are statistical models of real-world systems. Neural networks are 

based on biological concepts, modelled on how neurons process information in the 

human brain. They can classify data by recognising patterns in the data.

The basic element in an artificial neural network is a neuron. This corresponds to a 

neuron in a biological brain. It receives input from other neurons, or from an external 

source. There are three different types of neuron:

Input neurons: receive data from external source 

Output neurons: send data to an external source

Hidden neurons: perform intermediate calculations between input and output neurons



Figure 4.4: A neuron

Neurons are linked by connections. Each connection has a weight associated with it. The 

input to a neuron via a particular connection is multiplied by the weight associated with 

that connection. These values are then summed and passed into an "activation function" 

which calculates the value output from this node. An example of an activation function is 

the "step function" which returns 1 if the summed input is above a certain threshold, else 

it returns 0 (see figure 4.5). Another activation function is the sigmoid function, which 

returns continuous output in the interval 0 to 1 (see figure 4.6). There are many other 

activation functions. Each function is suited to particular scenarios, therefore the choice 

of activation function depends on the characteristics of the problem the neural net is 

attempting to solve.

Figure 4.5 : Step Function

Figure 4.6 : Sigmoid function



The most commonly used neural network model is the Multi-Layer Perceptron (MLP). 

Figure 4.7 illustrates an example of an MLP. The MLP is arranged in layers of nodes so 

that values from the input neurons are propagated to the hidden neurons. The hidden 

neurons may be arranged in more than one layer. The output from each layer of hidden 

neurons is propagated to the next until it reaches the layer of output neurons.

Figure 4.7 : An MLP with one hidden layer.

How does the neural net learn to classify input data?

1. Build a network with the chosen number of input, hidden, and output units.

2. Initialise all the weights to low random values.

REPEAT:

3. Choose a single training pair at random

4. Copy the input pattern onto the input layer

5. Calculate the value produced at the output layer

6. Calculate the error between the obtained output and the desired output

7. Back propagate the summed product of the weights and errors in the output layer 

in order to calculate the error on the hidden units

8. Update the weights into each unit according to the error on that unit, the output 

from the unit below and the learning parameters

9. Update the connection weight values to the output layer by using this equation 

UNTIL the error is sufficiently low or the network settles



Our application uses neural networks to perform a classification task The input is a 

description of the device/web content property to be recognised, and the output is the 

class to which this property belongs (eg RAM/CPU/Video Card/etc )

The neural net application identifies input as being most likely to belong to one of the 

following categories

• Soundcard

• Videocard

• Resolution

• Colour

• RAM

• VideoRAM

• Operating System

• Network Connection

• Harddnve

• CPU

For the sake of simplicity we limited the number of categories to 10, this can be expanded 

if required

The neural net in our application has three layers

59 input nodes

100 nodes m a hidden layer

10 output nodes

The neural net in our application, with 59 inputs and 10 outputs, represents a 59- 

dimensional dataspace Any input to the neural net represents a point m this dataspace
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The neural net has been trained to recognise to which category every datapoint is most 

likely to belong to.

A useful property of neural nets is their ability to generalise, ie the outputs of the neural 

net approximate target values for inputs that are not in the training set. The neural net can 

use its generalisation abilities to “fill in” spaces in the training dataset.

In order to implement our neural net application, we used the Java Object Oriented 

Neural Engine[28] (JOONE). This is an open-source API and GUI editor that provides 

the components required to create a neural net application.

How does the neural net classify textual data?
The input to our neural network matcher requires 59 numbers. The raw data is a text 

string however. The input must be transformed into a numerical form suitable for the 

neural net. We will now examine the steps involved in this transformation.

If we want to represent the string “90 MB of available space required on system drive” in 

a format suitable for the neural net matcher, we follow this procedure:

1. Does the term megabyte (or a synonym of megabyte) occur in the string?

Yes it does, and the value associated with it is 90. The first 10 input nodes 

are used to represent this number in binary form. (More nodes can be 

added if we want to represent larger numbers, but in order to minimise the 

number of input nodes, for now we only have 10). Therefore, the value for 

the first 10 nodes is 0,1,0,1,1,0,1,0,0, and 0.

Node 1 is the Least Significant Bit, while node 10 is the Most Significant 

Bit.
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2. Does the term gigabyte (or a synonym of gigabyte) occur in the string?

No it does not, so the value for nodes 11 to 28 is set to 0. If the input string 

contained “20GB”, these nodes would contain the binary representation of 

the number 20,000 (the number is multiplied by 1,000 because quantities 

of disk space expressed in gigabytes are frequently decimals, eg 4.2 gigs).

3 We now compute the similarity score using the modified LCS metric (as used by 

the subsequence matcher) between the input and each of the following 29 terms:

Audio, Sound, Video, Screen Resolution, Res, Screen Res, VideoRes, 

VideoResolution, Resolution, Colours, Color, Colourdepth, 

Colourcapability, Coloursupport, Colour, Megabitspersecond, Mbps, 

Megahertz, Mhz, Ghz, HarddiskDrive, Storage, FixedStorage,

Massstorage, Diskstorage, Diskspace, Harddisk, Hard-disk, Hard-drive, 

Harddrive.

These scores are the values placed into nodes 29 to 58.

4. The final node contains 1 if any of the following terms are present in the input 

data, else it is set to 0:

“Windows”, “Win95”, “Win98”, “Solaris”, “Unix”, “Linux”.

The numerical input to the neural net can be represented as a graph, with units on the x- 

axis representing input nodes and units on the y-axis representing values for these nodes.



The graph representing the input node values derived from the string “90 MB of available 

harddisk space required” is as below (Figure 4.8).
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harddisk space 
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Input node

Figure 4.8 : Input node values derived from the string “90 MB of available harddisk 
space required”

The more similar two text strings are, the more the graphs representing them will 

resemble each other. If we transform data representing similar strings (ie “Min 40MB 

disk space”, “200 mbytes hard-disk”, “80MB hardrive space”, etc), the graphs will 

broadly resemble each other (though this might be true only for certain sections of the 

graph). This is demonstrated in figures 4.9 to 4.11 where the input node values derived 

from the strings “Windows 98/ME/2000SP2/XP”, “High Colour”, and “60 MB of 

available hrd-dsk space” are overlaid onto figure 4.8.
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Figure 4.9 : Input node values derived from the string “Windows 
98/ME/2000SP2/XP”
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Figure 4.10 : Input node values derived from the string “High Colour”
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Figure 4.11: Input node values derived from the string “60 MB of available hrd-dsk 
space”

Clearly, the chart in which the overlaid graph line most closely approximates figure 4.8 is 

figure 4.11. This example shows that similar text strings will result in similar inputs to 

the neural net. The neural net can learn to identify common patterns between similar 

strings.

The neural net matcher generates ten probability scores, indicating the probability that the 

input belongs to a particular category. Table 4.3 gives an example of such scores 

generated by the neural net matcher, alongside the category with which each score is 

associated:



Table 4 3 * Neural net output

Probability Score Category

4 867118490494595E-4 Soundcard

8837659506556217E-5 Videocard

1 7031400662453158E-9 Resolution

0 9056907276388094 Colour

4 000241468415735E-5 RAM

2 95 9698019949181E-7 VideoRAM

32856512031200196E-4 Operating

System

1 55842706380494E-8 Network

Connection

3 8890873660489465E-9 Harddnve

23120086704091745E-6 CPU

The neural network selects the highest score and returns as output the category associated 

with that score, indicating that it is the most likely category that the input belongs to If 

the neural net generated the scores m Table 4 3, it would return “Colour (its value,

0 9056907276388094, is the highest)

If we tram a neural net by presenting it with input representing data such as “200 mbytes 

hard-disk” and “80MB hardnve space5 that produce the output harddnve, it will 

eventually learn to recognise inputs similar to these as representing harddnve space The 

neural net will learn to recognise patterns in the input nodes that appear when particular 

words or phrases (for example, diskspace, Harddnve, MB) are present in the raw text

The neural net can learn to recognise the similanty scores resulting from the presence of 

words that frequently occur in the training data Thus, the neural net can learn to identify



words in the input data that strongly indicate that the data belongs to a particular category. 

The neural net matcher can recognise input based on how similar it is to 29 terms related 

to the domain of device capabilities/requirements. The neural net matcher can be trained 

to identify words which indicate that the input belongs to a particular category, even if 

these words are do not belong to the set of 29 terms which the input data is compared to. 

The values assigned to nodes 29-58 in the input layer of the neural net describes the input 

string in a manner not dissimilar to that employed by puzzles such as the following:

My first is in tea but not in leaf 

My second is in teapot and also in teeth 

My third is in caddy but not in cosy 

My fourth is in cup but not in rosy 

My fifth is in herbal and also in health 

My sixth is in peppermint and always in wealth 

My last is in drink, so what can I be?

I’m there in a classroom, do you listen to me?

(The answer is teacher).

The word teacher” is described in terms of how similar it is to other words (ie what 

words it shares a letter with and what words it doesn’t).

Similarly, in our application, a phrase such as “High Colour” is described in terms of how 

similar it is to the terms “audio”, “screen res”, “colour”, “harddiskdrive”, amongst others.

During the time we spent testing the neural network, it was found that if the neural 

network was presented with inputs representing the string “Pentium Class Processor” it 

would successfully classify this data as being of type CPU, based purely on how similar it 

was to terms like audio, screen res, colour, ctc, Similarity scores are not computed for



how similar the input data is to “Pentium”, “Class”, “Processor ’, or any combination of 

these words

We don’t have to tell the neural network explicitly “If the input data contains the words 

‘Pentium Class Processor’, this input is of type ‘CPU’”, the neural network is able to 

infer this from the training data

4.2 7 compositeMatcher
When the system encounters an element name that is not present m its ontology, it 

attempts to identify the semantic meaning of the element name based on the value of the 

element The composite matcher accepts as input the value of an element that the rules 

based matcher was unable to classify (unknownElementValue) The method 

classifyUnknownElement passes unknownElementValue to each of the three classes 

implementing the semi-automatic matchers (neuralNetMatcher, subsequenceMatcher, 

naiveBayesMatcher)

Each of these matchers returns what they calculate is the most likely term in the rules 

base this unknown term is semantically equivalent to

The individual matchers often return conflicting matches One matcher could indicate an 

element represents CPU speed, another could indicate it represents network connection 

speed, and another could indicate it represents RAM

When the individual matchers produce conflicting results, the composite matcher must 

decide which of them is most likely to be correct We designed an algonthm which 

calculates which of the semi-automatic matchers is most likely to be correct, and selects 

the output of this matcher as the final result of the semi-automatic matching process



The algorithm works as follows

The naive bayes matcher calculates a probability score between 0 and 1 for each of the 

categories of data it recognises This indicates the probability that the input data belongs 

to each of those categones If one of these probability scores is higher than every other 

probability score calculated by the Naive Bayes Matcher, the composite matcher selects 

the Naive Bayes matcher as the most likely of the matchers to be correct

There are three scenarios where the naive bayes matcher will be unable to provide a clear 

answer The first scenario is where the input data contains no terms that appear in the 

matchers corpus In this case, the matcher will return a probability of 0 for every category 

The second is where the input data contains words which strongly indicate that element 

belongs to multiple categones "lGhz processor required for Microsoft Windows1' is such 

an example If the terms "lGhz" and "processor" only occur in the matcher’s corpus 

labelled as belonging to the category "CPU", and "Microsoft" and "Windows" only occur 

m the corpus labelled as belonging to the category "Operating System", for both the 

categones "CPU" and "Operating System" the matcher will return probabilities of 1 The 

final scenano is where two categories receive an equal probability by coincidence In all 

these scenanos the result returned by the Naive Bayes matcher will not allow us to 

categonse the input data, and we must turn to the other two matchers But how do we 

decide which result from these other matchers is most likely to be correct'?

When the neural net matcher categonses unknown data, it returns the category that data is 

most likely to belong to and a probability score indicating the likelihood of the data 

belonging to this category The purple line in graph 5 shows the accuracy of the neural net 

matcher for mappings with probabilities above particular thresholds For example, 72% 

of semantic mappings with associated probabilities higher than 0 1 are correct 86% of 

semantic mappings with associated probabilities higher than 0 95 are correct
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The blue line in figure 4.12 shows the accuracy of the subsequence matcher on the same 

data. For example, it has an 86% accuracy rate on the data that the neural net matcher 

classifies with a probability greater than 0.1. It has an 83% accuracy rate on the data that 

the neural net matcher classifies with a probability greater than 0.95.

100
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Match 
Accuracy (%)

40

20

Subsequence Matcher 

Neural Net Matcher

Neural Net Match Probability

Figure 4.12 : Match accuracy against neural net probability

Figure 4.12 clearly shows that the higher the probability associated with a semantic 

mapping made by the neural net, the more likely it is to be correct. It shows that if the 

neural net matcher classifies data with a probability greater than 0.9, it is more likely to 

be correct than the subsequence matcher.

Thus, if the neural net returns a probability greater than .9 for input data belonging to a 

particular category, the composite matcher selects this as the matcher most likely to be 

correct. A high probability such as this strongly indicates that the neural net matcher has 

correctly classified the input data.



If the neural net does not return a probability greater than 9 for the input data belonging 

to any category, the composite matcher selects the output from the subsequence matcher 

as being the most likely to be correct

4 2.8 ruleGenerator

The Rule Generator creates new mappings in the rules base based on user interaction with 

the semi-automatic matchers The rules base can thus expand to include previously 

unknown terms

If the Composite Matcher consistently suggests a particular semantic mapping to end- 

users (le screenRes=Screen Resolution), after this mapping has been accepted by end- 

users a certain amount of times (eg 3), the rule “screenRes^Screen Resolution’ can be 

added to the rules base When the term “screenRes” is encountered from then on, the 

system will automatically recognise it as representing Screen Resolution, and will not 

invoke the semi-automatic matchers in order to classify it

The MySQL database used to implement the rules base also contains a table “Matches” 

which contains every match made by the composite matcher When a match is suggested 

by the composite matcher, the system checks the “Match” table to see how many times 

this match has previously occurred It uses this SQL statement

SELECT count(*) from matches where term=<suggestedMatch> AND 

MatchedWith=<unknownT erm>

An example of this statement in practice is

SELECT count(*) from matches where term=’Resolution’ AND 

MatchedWith=’ScreenRes’

If the number of occurrences of this match is less than 3 we enter this match into the 

Match table using this SQL statement

insert into matches (Term,Matched With) values ('ResolutionVScreenRes')
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If the number of occurrences of this match is greater than 3 we add a new rule to the table 

representing the rules base, indicating a semantic mapping between the unknown term 

and the suggested term

insert into rulesBase (term,synonym) values ('ResolutionVScreenRes')

The number of times a match has to be suggested before it is added to the rules base was 

set to 3 for convenience during the testing of the system In practice, if this application 

had many users this number would have to be higher

4.3 Operation of Client Service Capability Matcher

The W3C Device Independence activity [1] envisions that web content that can be 

accessed on any device, regardless of the hardware/software capabilities of that device 

The range of devices that currently access the internet vary enormously with

regards to their hardware/software capabilities For example, devices can vary with 

regards to

• display sizes and resolution

• sound capabilities

• persistent storage available

• memory

• input capabilities

• network connection speed

• markup/scnpting languages supported
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These differences in device capability are typical of the issues that must be considered by 

designers of web content who wish their matenal to be device independent

The W3C’s Device Independence activity [1] recommends that web-content be tailored to 

the device used to access it An application which tailors web content to the capabilities 

of a particular device must access information detailing the attributes of both the access 

mechanism and the web content

Devices and web content can be descnbed using Resource Description Framework (RDF)

[5] RDF is intended to describe online resources (for example PCs, applications, data) 

However, RDF does not define a standardised vocabulary (or ontology) for describing 

these resources The ontology used in an RDF profile to describe a PCs hardware and 

software capabilities may differ from the vocabulary that a web site personalisation 

application may use to represent the properties of a device trying to access the web site 

content The terms used m the profile describing the device must be translated into the 

semantically equivalent terms in the personalisation application's ontology

One method of performing this translation is to use a rules based schema matcher A rules 

based schema matcher consists of a lookup table indicating semantically equivalent 

terms, for example

Mouse=MouseDevice

Memory=Mem

Keyboard=keybrd

This is effective when we are mediating between only two sources A rules base can be 

constructed manually Each term in one ontology can have a rule matching it to a 

semantically equivalent term in the other ontology (if one exists) However, this approach 

does not scale If we have to mediate between a large number of ontologies (as in the case 

of mediating between the ontology of a web content personalisation application and the 

ontologies used by every device that accesses the web content) it is not feasible to
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manually construct a rules base mapping semantically equivalent terms between the 

personalisation application's ontology and this large number of device ontologies.

However, we can use heuristic algorithms to semi-automatically create mappings between 

ontologies. Applications using these algorithms can suggest possible semantic mappings 

which a human can accept or reject. This removes much of the tedium of mapping 

between ontologies.

The Client Service Capability Matcher is an application which uses both a rules based 

matcher and 3 matchers which uses heuristic algorithms (a naive bayes matcher, a 

substring matcher, and a neural net matcher) to mediate between ontologies. The Client 

Service Capability Matcher is a web service which can be invoked from a user’s device 

via a GUI.

The application first must be supplied with the URL of the RDF file describing the 

requirements for accessing target web content

(eg www.fifa.com/worldCupFinalVideoStreamHighResolution.rdf). This RDF file will 

describe the hardware necessary to access the web content (eg screen size, sound support, 

etc.).

Figure 4.13 : Dialog box from Client Service Capability Matcher application

C lie n t -S e r v ic e  C a p a b ility  M a t c h e r JnJ*J

Enter location of service's RDF file

Submit
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Below is an example of an RDF profile describing the requirements for accessing a web 

service providing videostreamed output

Figure 4 14 RDF profile describing requirements for videostream 

<rdf RDF

xmlns rdf="http //wwww3 org/1999/02/22-rdf-syntax-ns#" >

<rdf Description about=" AUDIOSTREAM"> 

<Sound>Soundblaster</Sound>

<RAM>128</RAM>

<NetworkSpeed>100bps</NetworkSpeed>

<CPU>486DX66</CPU>

<FileFormat>mpeg</FileFormat>

</rdf Descnption>

</rdf RDF>

Next, the URL of the web content that the device wishes to access must be provided (eg 

www fifa com/worldCupFinalVideoStreamHighResolution ram)
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Figure 4.15 : Dialog box from Client Service Capability Matcher application

C lie n t -S e r v ic e  C a p a b ility  M a t c h e r .jsjx]

Enter URL of service you wish to access

Submit

Then, the location of the RDF file describing the access device must be supplied: Eg, 

c:\metadata\device_profile.rdf

Figure 4.16 : Dialog box from Client Service Capability Matcher application

C lie n t -S e r v ic e  C a p a b ility  M a t e .. .

Select your device's RDF profile

Select file...
okT~



Here is an example of a profile descnbing an access device 

Figure 4 17 RDF profile describing device

<rdf.RDF xmlns rdf="http //www w3 o rg/1999/02/22-rdf-syntax-ns#" > 

<capabilities>

<resolution>800x600</resolution>

<Colour>16 million</Colour>

<VideoRAM>120Meg</V ideoRAM>

<RAM>1</RAM>

<Fileformatxrdf Bag>

<rdf li resource="mpeg"/>

<rdf li resource="wordf7>

</rdf Bag>

</Fileformat>

<Sound>SoundbIaster</Sound>

<OperatingSystem>Windows2000</OperatingSystem>

<NetworkSpeedx>100bps</NetworkSpeedx>

<HardDisk>60</HardDisk>

<CPU>800</CPU>

</capabilities>

</rdf RDF>
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The RDF Parser extracts the names of elements and attributes from these profiles It must 

now determine what term in the Client Service Capability Matcher’s ontology each of 

these names are equivalent to

The application first consults its rule base This is a lookup table indicating which terms 

in the application’s ontology are semantically equivalent The lookup table contains 

mappings such as RAM=Memory, CPU=Processor, CPU=Chip Speed, etc If the 

application encounters an element with the name ChipSpeed, by consulting its lookup 

table it can determine that this element represents CPU

If the application cannot find the term in the rules base, the semi-automatic matchers 

must determine which term it is most likely to be semantically equivalent to There are 

three semi-automatic matchers a neural net matcher, a Naive Bayes matcher, and a 

subsequence matcher The unknown term is input to each semi-automatic matcher, and a 

composite matcher selects the semi-automatic matcher which is most likely to be correct

The Rule Generator creates new mappings in the rules base based on user interaction with 

the semi-automatic matchers The rules base can thus be expanded to include mappings 

which were generated semi-automatically This is a novel feature in our application 

Unlike other schema matching applications, it can add new rules to the rules base based 

on interaction with users

The Client Service Capability Matcher will translate the terms used m the profiles 

describing the device and the web content it is trying to access to their equivalents in its 

ontology The Client Service Capability Matcher will now be able to directly compare the 

devices attributes with the requirements for the web content it is tiying to access The 

web content provider can be informed of any ways in which the device is incompatible 

with the web content

If the device is not capable of accessing web content, a personalisation application can 

return a URL for web content that is suitable for the device's capabilities For example, if 

the device's network connection is not fast enough to access a high quality videostream

-105 -



(www fifa com/worldCupFinalVideoStreamHighResolution ram), the personalisation 

application can return a URL to a lower quality videostream that requires less bandwidth 

(eg www fifa com/worldCupFmalVideoStreamLowResolution ram) The web content 

provider can maintain a number of different versions of the web content, and the output 

from the Client Service Capability Matcher will enable the personaliation application to 

match the device to the appropriate version Customised versions of web content could 

also be generated dynamically by the personalisation application The URL returned by 

the Client Service Capability Matcher to the user’s device would point to these 

dynamically generated pages
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5. Evaluation of architecture and implementation

5 1 Naive Bayes Matcher

The naive bayes classifier used in our architecture has also proved to be quite effective in 

classifying device and software attributes taken from profiles from a wide range of 

sources While testing our naive bayes matcher, it correctly identified the category to 

which an unknown element belonged in 72% of cases There are however some scenarios 

in which the naive bayes algorithm is not effective

Consider the scenario where we wish to classify an element with a value of “20 MB 

required for Windows XP”

The Naive Bayes matcher is not be able to classify this text It considers it equally likely 

to belong to the category “Operating System” as to the category “Harddisk space”, 

because the text contains terms which indicate that it belongs to each of these categories

The matcher fails in this case because of its assumption of conditional independence

The variables m this example are as follows

Van able 1 Does text contain “MB”9 (TRUE/FALSE)

Variable 2 Does text contain “Windows XP”9 (TRUE/FALSE)

The outcomes that the naive bayes matcher can predict are

Outcome 1 Text belongs to “Harddisk space” category 

Outcome 2 Text belongs to “Operating system” category
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In a real world scenario, Variable 1 and Variable 2 are not conditionally independent If 

Variable 1 is TRUE, then the value of Variable 2 will have much less effect on the overall 

probability calculation

The naive bayes matcher indicates that the text is just as likely to belong to the category 

“operating system” as it is to the “harddisk space” category, even though the presence of 

the letters “MB” in the text should lower the probability that the text is of type “operating 

system”

Also, if the data we wish to classify contains no words that appear m the Naive Bayes 

matcher’s corpus of terms, the matcher will return a probability of zero for the data 

belonging to any of the categories it recognises These can raise problems, such as the 

matcher being unable to identify a term because it uses an unrecognised spelling (eg color 

instead of colour) or if an unrecognised abbreviation is used (eg screenRes)

In tests, the accuracy of the Naive Bayes matcher fell from 88% when categorising data 

that contained data that contained clear indicators that it belonged to a particular category 

(eg “64MB”) to 60% when trying to identify data which contains terms which strongly 

indicate that element belongs to multiple categories (“ 19 Megabytes for the Windows 

version”)

The Naive Bayes Matcher also performs poorly with lengthy data (eg “Hardware 

accelerated D3D compatible 4MB video card with DirectDraw(TM) compatible driver”) 

When tested with lengthy data, the accuracy of the Naive Bayes Matcher was 58%

5.2 Subsequence Matcher
The subsequence matcher uses a string similarity metnc based on the longest common 

subsequence (LCS) metric
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A problem with using the LCS as a similarity metnc is that the longer a string is, the more 

likely it is to contain characters forming a common subsequence with another string we 

compare it to

However, we have devised a modifed LCS metnc m our application which takes into 

account the length of the LCS relative to the length of the stnngs being compared, the 

longer these stnngs are compared to the LCS, the lower the similanty score generated by 

the subsequence matcher

As an example of the subsequence matcher in use, dunng tests (as detailed in Appendix 

B), we tned to classify an element with the value “1 GB or more of available storage”

The substring matcher determined that the stnng “1 GB or more of available storage” was 

most similar to the stnng “10 GB or more” in the Client Service Capability Matcher’s 

ontology The stnng “10 GB or more” belongs to the categoiy “Harddnve”, so the 

subsequence matcher suggests that the element with the value “ 1 GB or more of available 

storage” is most likely to represent harddnve capacity

Neither the Neural Net nor the Naive Bayes matcher classified this element correctly The 

Neural Net Matcher classified it as being CPU speed, and the Naive Bayes matcher did 

not return a clear clear match (it calculated that it has a probability of 1 0 of belonging to 

both the RAM and harddnve categones)

The subsequence matcher is the most accurate of the semi-automatic matchers for 

categonsing lengthy data When tested against data which contained words strongly 

indicating that element belongs to a particular category, and 6-10 other words, the 

subsequence matcher had an accuracy of 83%, compared to 71% for the Neural Net 

matcher and 58% for the Naive Bayes matcher Our modified LCS algonthm, which takes 

into account the length of the unknown data, makes it effective m identifying substnngs 

in data which strongly indicate the category to which data belongs
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The subsequence matcher performed particularly poorly however when used to classify 

data which contained words which strongly indicated that the element belonged to 

multiple categories It was the poorest of the three semi-automatic matchers m classifying 

data belonging to this category, with an accuracy of 30% When the matcher has to 

classify data such as “32 MB required for Windows 98 Operating System”, because 

“Windows 98 Operating System” is longer than “32 MB”, the subsequence matcher 

mistakenly categorises this as “Operating System”, instead of “RAM required”

5.3 Neural Net Matcher
Neural networks were designed with the classification of numerical data in mind As 

much of the data in our domain of interest is textual, the neural network matcher is not as 

accurate as the Naive Bayes and subsequence matchers (both of which perform strongly 

on textual data)

However, the neural net matcher can match elements which the Naive Bayes and 

subsequence matchers cannot Its inclusion m the composite matcher thus allows the 

system to categorise a wider range of data

5.3.2 Neural net matcher's generalisation capabilities
Table 5 1 represents a portion of a training dataset It shows how often amounts of

megabytes occur in the context of RAM and harddisk space There are some amounts of 

megabytes for which there are no occurrences in the context of either RAM or Harddisk 

The Naive Bayes matcher will have difficulty classifying these amounts as being either 

RAM or harddnve, there is nothing in this training data which suggests which category 

they belong to
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TABLE 51 Portion of training dataset

Megabytes Harddnve RAM

16MB 4 20

17MB 6 0

18MB 5 1

19MB 8 0

20MB 0 3

21MB 0 0 >

22MB 0 0

23MB 0 0

24MB 4 9

25MB 2 0

26MB 5 0

27MB 0 0

28MB 0 0

29MB 0 0

30MB 7 0

31MB 2 0

32MB 3 24

Figure 5 1 shows the output returned by the naive bayes matcher trained with this dataset, 

indicating the probability that the terms along the X-axis are of type Harddnve or of type 

RAM It can be seen that the naive bayes matcher returns values of 0 for inputs in the 

ranges 21 -23MB and 27-29MB It is unable to determine what category these values of 

megabytes are most likely to belong to
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The neural net doesn’t have this problem, it is able to generalise, and can produce a 

function which “fills in” the holes m the dataset

Figure 5 1 output from naive bayes matcher on dataset from table 5 1

Figure 5 2 shows the output returned by the neural network trained with this dataset It 

doesn’t return values of 0 for both RAM and harddnve when asked to classify 21-23MB 

and 27-29MB The neural net is able to generalise from the training data and can “fill the 

gaps” m the data to create an approximation of the desired function
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Figure 5.2 : output from naive bayes matcher on dataset from table 5.1

—  Harddrive 

 RAM

In addition to their ability to generalise, neural networks can perform matches in 

situations where a naïve bayes or a subsequence matching approach would fail. For 

instance, during testing the Naïve Bayes and subsequence matchers incorrectly classified 

the text “65 MB required for Windows 2000 compatible version”.

The Naïve Bayes matcher considered it equally likely to belong to the category 

“Operating System” as to the category “Harddisk space”, because the text contains terms 

which indicate that it belongs to each of these categories.

The subsequence matcher also classifies the element as belonging to the “Operating 

System” category.

However, the neural net matcher successfully classified this text as “Harddisk space”, 

because it has learned that if text contains “65 MB” it is most likely to belong to this 

category, regardless of what other text appears in the input string.



5.4 Composite Matcher
We use a composite matcher in order to classify as broad a range of element values as 

possible For example, if we want to classify x

<x>Soundblaster</x>

The Naive Bayes matcher would easily identify x as representing "Soundcard" The Naive 

Bayes algorithm works best when the data it is trying to identify contains words that give 

a strong indication of the category the data belongs to

But, if we want to classify

<x>Sndblster</x>

The Naive Bayes matcher may have difficulty classifying this If the term "Sndblster" 

does not appear in the Naive Bayes matcher's corpus of terms, it cannot identify the 

category x belongs to

The subsequence matcher, however, could correctly identify x as belonging to the 

category "Soundcard" Sndblster is a subseqence of Soundblaster, which is a term that 

strongly indicates that the element represents "soundcard"

We have also seen in the previous section (5 3 2) that the neural network matcher’s 

ability to generalise from its training data enables it to identify elements in situations 

where the Naive Bayes matcher or the subsequence matcher cannot

There are many such scenarios where one matcher can identify elements when one or 

both of the other matchers cannot

- 114-



By selecting the output from other matchers when the naive bayes matcher cannot 

categonse the input data, the composite matcher can categonze a wider range of data than 

any of the individual matchers

5.5 Evaluation of system

The Naive Bayes algorithm is highly effective at categorising textual data However, it 

was found during testing that there were some circumstances under which it was 

ineffective

Text contains different terms which are strongly indicative that the text belongs to 

multiple categories

Text contains no terms which appear in the matcher’s corpus

Under these circumstances the matcher would give ambiguous results In the first 

scenario, the matcher would assign a probability of 1 0 to multiple categories For 

example, when the Naive Bayes matcher tries to classify “Server class machine with 

512MB RAM”, it calculates that the probability of this belonging to the categories RAM 

and Harddnve are both 1 0 In the second scenario, the Naive Bayes Matcher assigns a 

probability of 0 to every category

The Neural Net matcher can generalise It can “fill-in” holes in the training dataset This 

means that even if it is trying to categonse data that does not appear m its training data, it 

can make inferences from the dataset and return a prediction based on this It also does 

not return probabilities of 1 0 for multiple categones when the data it is trying to 

categonse contains terms indicating that it belongs to multiple categones The Neural Net 

matcher can successfully categonse data under both of the circumstances that the Naive 

Bayes cannot

The substnng matcher is the most effective of the three matchers at categonsing unknown 

elements with lengthy textual values
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Each of the matchers can correctly categonse data which one or both of the other 

matchers cannot This is illustrated in the results obtained when the application was tested 

(see Appendix B) When the results returned by the individual matchers are not 

unanimous, the composite matcher picks the result that is statistically most likely to be 

correct Results obtained during testing clearly indicate that the accuracy rate of the 

composite matcher is higher than any of the individual matchers Using the composite 

matcher to select the individual matcher application which is most likely to be correct 

enables the application to categonse a wider range of data than a single matching 

algonthm
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6. Results
Using Google, we searched for random web pages which described hardware 

requirements for software applications The schema matcher was tested with data from 

these pages representing the following device attributes

• CPU

• Harddnve space

• RAM

• Operating System

• Colour Depth

• Resolution

• Sound

• Video Card

• Network Connection

The test cases were text strings describing the device attributes above, and were grouped 

according to difficulty The more words in the input, the more difficult it is to classify 

For example, the matcher categorises “128MB” with a greater degree of certainty than “It 

is recommended that you have at least 128 MB for Windows 2000’ , because there is less 

“noise” in the form of extra words

CATEGORY 1 (EASIEST)

Data contains words strongly indicating that data belongs to a particular category, and 

little else Eg “128 MB”, “300 Mhz”, “Soundblaster”

CATEGORY 2

Data contains words strongly indicating that data belongs to a particular category, and 1-5 

other words Eg “300 Mhz or greater”, “1 5 GB Disk space for setup”, “ 100MB of free 

space or greater”
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CATEGORY 3

Data contains words strongly indicating that element belongs to a particular category, and 

6-10 other words Eg “ 150 MB free hard disk space plus space for saved games”, “Your 

system should have at least 32 Mb RAM”

CATEGORY 4 (HARDEST)

Instance level data contains words which strongly indicate that element belongs to 

multiple categones For example, “233 MHz or faster for Windows 2000”, “Sound card 

supported under Windows NT”

For testing, the Client Service Capability Matcher had to classify 181 unknown elements 

based on their values This is a breakdown of how many of these elements belonged to 

each category

CATEGORY 1 33 

CATEGORY 2 85 

CATEGORY 3 48 

CATEGORY 4 15

Appendix B of this thesis contains the data used for testing, and what each of the semi­

automatic matchers and the composite matcher classified these unknown elements as

The test data was selected from a wide range of heterogeneous sources, so that the tests 

would be a reflection of the systems effectiveness m a real-world scenano, where it 

would be mediating between many different data sources It also contains test cases that 

provide a range of different challenges for the matchers, in order to demonstrate the 

application’s effectiveness with different data posmg a vanety of challenges Some 

examples of the kinds of test data used are
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Abbreviations of terms in the rules base 

Misspellings of terms in the rules base 

Terms which are not present in the rules base

Data containing terms indicating that the data belongs to multiple categones 

Vague data, with no terms strongly indicating that the data belongs to a particular 

category

Long data, which has a greater probability of being incorrectly classified (the terms which 

are strong indicators of the category the data belongs to are buned m “noise”)

The procedure for compiling the initial rules base was as follows

Determine the attnbutes that represent the properties of devices and web content 

(eg screen resolution, network speed, sound support) These represent the “canonical 

form” of element names in device/web content profiles

For each “canonical form” of a device/web content attribute, create rules in the rules base 

matching the canonical form of an attribute to a synonym (RAM=Memory, 

HardDisk=HardDnve)

Table 6 1 shows the performance of the matchers on each category of test data

When creating the training data for the individual matchers, we sought to maximise the 

accuracy of the composite matcher, not the accuracy of the individual matchers The 

figures for these matchers do not indicate the optimum performance of these algonthms
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Table 61 Test results for matchers

Test Data Neural Net Naive Bayes Subsequence

Matcher

Composite

Matcher

Category 1 30/33 (91%) 29/33 (88%) 24/33 (73%) 30/33 (91%)

Category 2 59/85 (69%) 69/85 (81%) 72/85 (85%) 80/85 (94%)

Category 3 34/48 (71%) 28/48 (58%) 40/48 (83%) 43/48 (90%)

Category 4 14/15 (93%) 9/15 (60%) 6/15 (30%) 13/15(87%)

We observe that the the composite matcher maintains a consistent level of accuracy for 

all lengths of input data The performance of the individual matchers however, fluctuates 

with the length of the input For categones 1,2 and 3 of test data, the composite matcher 

is at least as accurate (and in most cases more accurate) than any of the individual 

matchers, illustrating the benefits of combining the results of the individual matchers The 

composite matcher performed slightly worse than the neural net matcher in test cases 

belonging to category 4 The composite matcher had an accuracy rate of 87% compared 

to the neural net matcher’s accuracy rate of 93% When we consider that the Naive Bayes 

matcher’s accuracy rate in this category was 60% and the subsequence matcher’s 

accuracy rate was 30% however, the effectiveness of the composite matcher’s algorithm 

for deciding which of the three matcher’s is most likely to be correct is clear 

Category 4 is different from the first three categones, it is a set of test cases that are 

difficult not because of their length, but because they contain terms that strongly indicate 

the data belongs to multiple categones (eg “128MB RAM for Windows 2000”) The 

neural network matcher performs the strongest here, illustrating that its ability to 

generalise allows it to make matches in situations where the naive bayes matcher and the 

substnng matcher fail

New rules were successfully added to the rules base based on the output from the semi­

automatic matchers If an element from a device/web content profile had a name that did 

not appear in the Client Service Capability Matcher’s ontology, and a mapping between
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this element and an element in the Client Service Capability Matcher’s ontology was 

suggested by the Composite Matcher to the user three times, the Rule Generator created a 

new rule indicating that these two elements were semantically equivalent The 

performance of the Client Service Capability Matcher when processing profiles from 

sources using this previously unknown element was improved because the Client Service 

Capability Matcher could now automatically match this element to a term in its own 

ontology without invoking the semi-automatic matchers The rules based matcher is 

quicker than the semi-automatic matchers, and does not require a human user to accept or 

reject its matches

Considering that neither the number of ontologies the Client Service Capability Matcher 

mediates between nor the terms contained in these ontologies is specified, we cannot 

guarantee that the rules based matcher will ever be able to automatically match all 

elements between all ontologies (it is doubtful that even a human could) However, 

through the addition of new rules to the rules based matcher the Client Service Capability 

Matcher was able to match terms in ontologies that it could not beforehand, illustrating 

the ability of the system to improve its performance by updating the rules base based on 

user interaction with the semi-automatic matchers

- 121 -



7. Conclusions and future work
There are many ontologies representing device and web content properties in existence, 

for example the ontologies used by UPnP[29], FIPA Device Ontology Specification[30], 

OWL-S [31 ] There are also a variety of technologies whose purpose is to descnbe 

devices and web content (eg UDDI [36], CC/PP [37], Jim [38], Service Location 

Protocol [39]) We manually examined the ontologies used by these various 

specifications These ontologies are not standardised, they may use different terms to 

represent the same concepts/objects One ontology might represent a device’s memory by 

using the term 'RAM’, where another may use the term ‘Memory’ Some specifications 

do not prescribe the use of a particular vocabulary, and to some extent allow the users to 

use whatever vocabulary they wish (eg CC/PP, Jim)

It is difficult to construct applications which recognise the meaning of terms from all 

these sources without explicit rules declaring semantically equivalent terms

The W3C’s Device Independence activity [1] recommends that web-content be tailored 

according to the audio-visual capabilities and the input/output modalities available to 

each device This personalisation of web content must be carried out by applications 

which access metadata descnbing both the device and the web-content it is accessing to 

determine what changes (if any) to the web-content are required to enable the user of the 

device to access the web-content In the absence of standardised ontologies for descnbing 

devices and web-content, personalisation applications will frequently encounter meta-data 

that they cannot understand, and they will be unable to determine what (if any) 

transformations to the web-content are necessary

In this thesis we have descnbed an architecture which can process device and web service 

RDF profiles using non-standardised ontologies, and identify semantic mappings between 

element names used m these profiles, and its own ontology The system checks to see if 

an element name is present in its ontology If it is not, it consults a combination of semi­

automatic matchers (a naive bayes matcher, a neural net matcher, and a subsequence 

matcher) in order to determine what term in its ontology the unknown element name is
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most likely to be semantically equivalent to New semantic mappings can be added to the 

ontology based on interaction with the end-user

The following components form the Client Service Capability Matcher

js s  An RDF parser, which takes as input an RDF document and extracts the names of 

elements and the values associated with them RDF was chosen as the language for 

describing devices and services because it is sufficiently expressive not only to model 

existing devices and services but also those which may appear in future

js s  A rules based matcher, which is a lookup table indicating semantic mappings between 

terms This is an ontology of terms in the domain of device capabilities and 

requirements

If an element name in an RDF profile is not present in the table used by the rules based 

matcher, three semi-automatic matchers are used to suggest possible mappings between 

the unknown term and terms in the system's ontology, based on the value associated with 

the unknown term These semi-automatic matchers are

jes A Naive Bayes matcher, which uses a probabilistic algorithm based on Bayes 

Theorem, which has been widely used in text classification problems

jgs A Subsequence matcher, based on the Longest Common Subsequence (LCS) 

algorithm The LCS is computed between an unknown term and every term in the 

system's ontology The LCS is used as part of a calculation which takes into account 

the length of the unknown term in order to generate a similarity score between the two 

terms being compared The term m the ontology which has the highest similarity score 

with the unknown term is chosen by the subsequence matcher as being the most likely 

to be semantically equivalent to the unknown term

jb$  A  Neural Net matcher, implementing the neural net algorithm to classify data The 

Neural Net matcher converts textual data into numeric data in order to classify it
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jes The composite matcher decides which of the results returned by the three semi­

automatic matchers is most likely to be correct, and suggests this to the end user as a 

possible match for the unknown term

jss The rule generator creates new mappings m the rules base based on user interaction 

with the semi-automatic matchers The system’s ontology will grow to include 

previously undefined terms This is a feature which is not present in the schema 

matching tools m existence at present

jbs The compatibility gauge evaluates the device's compatibility with the service based on 

the attributes retrieved from the RDF documents describing them by the rules based 

and semi-automatic matchers

Applications such as the Client Service Capability Matcher enable personalisation 

applications to process metadata from a wide range of heterogeneous sources, and can aid 

machines to perform the labour-intensive task of customising web-content for individual 

devices

For average test cases (test categories 1-3), our schema matching application was 

successfully able to categonse 92% of test cases, while it had an accuracy of 87% in cases 

where the input contained terms indicating the data belonged to multiple categories

The composite matcher’s level of performance was consistent when deployed against data 

from heterogeneous sources The test data was obtained from random web-pages 

describing device specifications and requirements for applications The composite 

matcher’s performance also remained consistent when it was tested with simple test cases 

(eg 4128MB’) and when it was tested with more difficult test cases where the input was 

longer and/or contained terms which indicated the input belonged to multiple categories 

(eg ‘64 Megabytes on Windows 95 or 98, 128 Megabytes on Windows NT’) The 

composite matcher was also more accurate than any of the individual matchers m most 

cases, and was quite effective in determining which of the results provided by the three
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semi-automatic matcher’s was most likely to be correct The results obtained during 

testing (outlined in chapter 6) clearly show the effectiveness of our application

7.1 Suggested improvements

Some terms m a device/service profile may map to more than one term m our ontology 

For example, the term 41024x768 resolution with 16-bit colour’ maps to two terms in our 

ontology, resolution (‘ 1024x768 resolution’) and colour (’ 16-bit colour’) At present only 

1-1 matches can be made between elements in profiles and the Client Service Capability 

Matcher’s ontology Implementing n-1 mappings is an area requinng further research m 

this area

The following steps could also be taken to increase the accuracy of the neural net 

matcher

• Create a larger training set At present, the training set consists of 988 examplars 

For a neural net with 59 inputs, a larger training set may improve the accuracy of 

the neural net

• Compare the input data to a different set of terms Perhaps if we generate 

similarity scores for a larger, or more varied, set of terms, the accuracy and 

generalisation ability of the neural net will be improved

• Different net architecture We have not experimented with different net 

architectures Using neural nets with different numbers of hidden layer nodes, or 

more than one hidden layer, may improve the matchers performance
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We also plan to investigate if enlarging the corpus of terms for the Naive Bayes and 

Subsequence matchers will improve their accuracy

The data that the matcher uses to tram the neural net and to perform matches using the 

Naive Bayes and Subsequence matchers must be updated periodically The semi­

automatic matchers suggest matches based only on this data This data must be 

representative of the unknown terms likely to be encountered The data should be 

constantly updated to reflect this Gathering all the necessary data can be a time- 

consuming process For the purposes of testing this system, data was obtained from web 

pages Ensuring that the data is properly prepared for the neural net matcher is also time- 

consuming The input file representing the neural net’s training data must be carefully 

prepared, the order that data appears in this file greatly affects the neural net’s 

performance, so care must be taken when preparing this file Further research is required 

into how this training data can be updated automatically

The composite matcher always suggests a match for unknown elements m a profile, even 

if the unknown element does not belong to any of the categories the matcher identifies A 

further improvement to the application would be to enable it to recognise elements which 

do not belong to any of the categories it recognises, and to not generate semantic 

mappings for these unknown elements

The Semantic Web is an area m which semi-automatic schema matching techniques are 

of value Web-content on the Semantic Web is annotated with metadata that allows 

machines to “understand” the semantic meaning of that data, and to reason about and 

process data from a wide range of heterogeneous sources in ways that machines currently 

cannot The widespread annotation of metadata to web-content will result in a 

proliferation of ontologies There are a number of research efforts aiming to produce 

means of expressing these ontologies (eg OWL, DAML-S, DARPA Agent Markup)

- 126-



It is desirable that the performance of schema-matching applications improves over time 

Our application can add new rules to its ontology based on users interaction with the 

semi-automatic matcher However, this feature can be abused by those who wish to 

manipulate the behaviour of the matcher (for example, by creating false mappings) More 

work is needed to devise mechanisms that allow the performance of the system to be 

improved by the interaction with end users, while not permitting end users to create fake 

mappings

The generation of N 1 mappings semi-automatically is also a direction that further 

research in the field of schema matching will follow

Using schema matching techniques to perform matches between large numbers of data 

sources is also an avenue that deserves further investigation At present, schema matching 

systems are used to mediate between relatively small numbers of data sources Deploying 

schema matching applications on the internet will require them to be scalable m terms of 

both the number of data sources that semantic mappings are being made between and the 

size of those sources
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Here follows a sample WSDL document It descnbes a web service which returns the 

temperature in an area when given that area’s zip-code

<9xml version^l 0f encoding=fUTF-8! 9>

<T— Generated 08/16/01 by Microsoft SOAP Toolkit WSDL File Generator, Version

1.02 813 0 ->

<defimtions name =*VB6WeatherT 

targetNamespace = Thttp //tempuri org/wsdl/? 

xmlns wsdlns=!http //tempuri org/wsdl/' 

xmlns ty pen s=f http //tempuri org/type? 

xmlns soap=fhttp //schemas xmlsoap org/wsdl/soap/' 

xmlns xsd-http //wwww3 org/2001/XMLSchema’ 

xmlns stk-http //schemas microsoft com/soap-toolkit/wsdl-extension' 

xmins=,http //schemas xmlsoap org/wsdl/f>

<types>

<schema targetNamespace^'httpV/tempuri org/type* 

xmlns=fhttp //www w3 org/2001/XMLSchema1 

xmlns.SOAP-ENC^http //schemas xmlsoap org/soap/encoding/' 

xmlns wsdl=,http //schemas xmlsoap org/wsdl/1 

clementFormDefault=’qualified’>

</schema>

</types>

<message name=?VB6Weather GetTemperature^

<part name=’zipcode’ type='xsd strmg7>

<part name='celsius' type='xsd boolean’/>

</message>

Appendix A : Sample WSDL Document
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<message name='VB6Weather GetTemperatureResponse'>

<part name=tResult? type=,xsd floatV>

</message>

<portType name=?VB6WeatherSoapPortf>

<operation name=,GetTemperatureT parameterOrder=!zipcode celsiusf>

<input message=Twsdlns VB6Weather GetTemperature* />

<output message=Vsdlns VB6Weather GetTemperatureResponse' /> 

</operation>

</portType>

<binding name=fVB6WeatherSoapBlndI^g, type=VsdIns'VB6WeatherSoapPortf
>■

<stk binding preferredEncodmg^UTF-S'^

<soap binding 

style^rpc'

transport^ http //schemas xmlsoap.org/soap/httpf />

<operation name^GetTemperature' >

<soap operation

soapAction=*http //tempun org/actlon/VB6Weather.GetTemperature, /> 

<mput>

<soap body use='encoded' namespace='http //tempun org/message/1 

encodingStyle=,http //schemas xmlsoap org/soap/encoding/' />

</input>

<output>

<soap'body use=' encoded' namespace=fhttp //tempu ri.org/message/' 

encodingStyle^'http //schemas xmlsoap org/soap/encoding/f f>
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</output>

</operation>

</bmdmg>

<service name=tVB6WeatherT >

<port

name='VB6WeatherSoapPortf 

binding='wsdlns VB6WeatherSoapBinding? >

<soap address loca tion=f http //loca]host/webtest/vb6weather/VB6Weather.ASP’

/>

</port>

</service>

</defimtions>
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Appendix B: Test Results

Category 1 Test Results

Test data Category 
of test data

Neural Net 
Result

Naive
Bayes
Result

Substnng
Matcher
result

Did the
composite
matcher
pick the
right
result^

Pentium 300 MHz CPU CPU CPU CPU YES
128 MB RAM RAM RAM RAM VideoRAM YES
32-bit O/S - Windows 
XP, ME, 2000, 98, or 
NT 4 0

Operating
System

Operating
System

Operating
System

Colour YES

64MB RAM RAM RAM RAM RAM YES
Pentium 600 MHz CPU CPU CPU CPU YES
128 MB RAM RAM RAM RAM VideoRAM YES
Windows 98 Operating

System
Operating
System

Operating
System

Operating
System

YES

32 MB RAM RAM RAM RAM VideoCard YES
Microsoft Windows
95/98/NT/2000/XP/M
E

Operating
System

Operating
System

Operating
System

Harddnve YES

8MB RAM RAM RAM Video
Card

VideoRAM NO

266 MHz Pentium CPU CPU CPU CPU YES
Windows 98, ME, 
2000, or XP

Operating
System

Operating
System

Operating
System

Operating
System

YES

50MB available Harddnve Harddnve Harddnve Harddnve YES
16-bit (high colour) Colour Colour Colour Video Card YES
800 X 600 resolution Resolution Resolution Resolution Resolution YES
16-bit sound card Sound Sound Sound Sound YES
56 6 kb/s modem or 
LAN connection

Network
Connection

Sound Network
Connection

Network
Connection

YES

Pentium 90 CPU CPU CPU CPU YES
16 MB of RAM RAM RAM RAM Video

RAM
YES

14 4 Kbps Network
Connection

Network
Connection

Network
Connection

Network
Connection

YES

16 MB RAM Video
RAM

RAM Video
RAM

YES

64MB RAM RAM RAM RAM RAM YES
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Windows NT Operating
System

Operating
System

Operating
System

Operating
System

YES

VGA (640x480) Resolution Resolution Video
Card

Resolution NO

486DX/66 MHz CPU CPU CPU CPU YES
MS Windows 98, NT 
or 2000

Operating
System

Operating
System

Operating
System

Operating
System

YES

64 MB of ram RAM RAM CLASH RAM YES
Windows 95/98 or 
Windows NT/2000

Operating
System

Operating
System

Operating
System

Operating
System

YES

800 MHz CPU CPU CPU CPU CPU YES
9 GB Harddnve Resolution Harddnve Harddnve YES
Windows 95/98/NT 
operating system

Operating
System

Operating
System

Operating
System

Operating
System

YES

800 MHz processor CPU CPU CPU CPU YES
45 MB Harddnve Harddnve RAM Harddnve NO

Accuracy of matchers with category 1 test data

Neural Net Naive Bayes Subsequence
Matcher

Composite Matcher

30/33 (91%) 29/33 (88%) 24/33 (73%) 30/33 (91%)

Category 2 Test Results

Test data Category of 
test data

Neural Net 
Result

Naive
Bayes
Result

Substnng
Matcher
result

Did the
composite
matcher
pick the
nght
result^

200 MB available 

disk space

Harddnve Harddnve Harddnve Harddnve YES

Windows(R) 95 

or Windows 98 

(Windows NT is

Operating

System

Operating

System

CLASH Operating

System

YES
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not supported)

Sound card with

DirectSound(TM)

support

Sound Sound CLASH Sound YES

300 MHz or 

faster Pentium 

processor

CPU CPU CPU CPU YES

800 X  600 or 

Higher

Resolution Resolution Video Card Resolution NO

Pentium 200 

MHz or higher

CPU CPU CPU CPU YES

Windows 98, 

Windows 98SE*, 

Windows Me, 

Windows 2000, 

or Windows XP 

(Home and Pro)

Operating

System

Operating

System

Operating

System

Operating

System

YES

70MB free disk 

space

Harddnve Harddnve Harddnve Harddnve YES

Windows 2000 

Professional

Operating

System

Operating

System

Operating

System

Operating

System

YES

56k V  90 modem 

or network 

Internet 

connection

Network

Connection

Sound Network

Connection

Network

Connection

YES

300MHz Pentium 

11® or faster

CPU CPU CPU CPU YES

30MB free disk 

space

Harddnve Harddnve Harddnve Harddnve YES
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64 MB RAM ( 

minimum)

RAM RAM Video Card RAM NO

Microsoft 

Windows® 

NT/2000 

(preferred) or 

Windows 9x

Operating

System

Operating

System

Operating

System

Operating

System

YES

10 MB of hard 

disk space

Harddnve Harddnve Harddnve Harddnve YES

56kbps Modem 

or higher

Network

Connection

RAM Network

Connection

Network

Connection

YES

150 MB Free 

Hard Drive Space

Harddnve Harddnve Harddnve Harddnve YES

32 MB 

Accelerated 

Video Card w/ 

Open GL

Video Card Video RAM Video Card Video Card YES

Pentium based 

processor or 

better (300Mhz)

CPU CPU CLASH CPU YES

150 Free Hard 

Drive Space

Harddnve Video Card Harddnve Harddnve YES

Server class 

machine with 

512MB RAM

RAM RAM CLASH Operating

System

NO

Pentium III, 450 

MHz or higher 

processor

CPU CPU CPU CPU YES

Pentium III 800 CPU CPU CPU CPU YES
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MHz Dual 

Processor

Pentium-class, 

minimum 133 

MHz (megahertz) 

or faster

CPU Harddnve CPU CPU YES

28 8/33 6 

(kilobits per 

second) 

minimum

Network

Connection

CPU Network

Connection

Network

Connection

YES

8 Mb of memory RAM VideoRAM RAM RAM YES

300 mhz or 

greater

CPU CPU CPU CPU YES

500 MB Hard 

Drive

Harddnve Harddnve Harddnve Harddnve YES

Windows 95 or 

higher

Operating

System

CPU Operating

System

Operating

System

YES

20 MB of disk 

space

Harddnve Harddnve Harddnve Harddnve YES

Requires 10 MB 

of disk space

Harddnve Network

Connection

Harddnve Harddnve YES

Pentium 233MHz 

processor or 

higher

CPU CPU CPU CPU YES

64MB RAM or 

more

RAM RAM RAM RAM YES

Pentium 400 

MHz or more

CPU CPU [CPU CPU YES

15 MB free hard Harddnve Harddnve Harddnve Harddnve YES
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disk space

Intel Pentium-II 

350 system or 

faster

CPU CPU CLASH CPU YES

Disk space for 

setup 1 5GB

Harddnve Colour Harddnve Harddnve YES

6 MB of disk 

space

Harddnve Harddnve Harddnve Harddnve YES

SoundBlaster (or 

equivalent) sound 

card

Sound Sound Sound Sound YES

Pentium-II

300Mhz

CPU CPU CPU CPU YES

Windows 95 or 

higher or NT4

Operating

System

CPU Operating

System

Operating

System

YES

128 MB or higher RAM RAM RAM Video RAM YES

28 8 kbps modem 

or faster

Network

Connection

Sound Network

Connection

Network

Connection

YES

300 Pentium II or 

higher

CPU Resolution CPU CPU YES

1 Gig or larger Harddnve Colour Harddnve Harddnve YES

Resolution 

800x600 or 

higher

Resolution Resolution CLASH Resolution YES

15 Megabytes of 

hard dnve space

Harddnve Harddnve Harddnve Harddnve YES

A 266Mhz 

Pentium II 

processor or

CPU CPU CLASH CPU YES
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better

A 16MB 

OpenGL 

compatible 

Graphics card

Video Card Video Card Video Card Video Card YES

800x600 or larger 

color display

Resolution Colour CLASH Resolution NO

16 megs RAM or 

more

RAM RAM CLASH VideoRAM YES

100MB of free 

space minimum

Harddnve Harddnve Harddnve Network

Connection

YES

20 GB Hard 

Dnve

Harddnve Video Card Harddnve Harddnve YES

2 GB or greater Harddnve Resolution Harddnve Harddnve YES

Intel Pentium II 

233mhz or 

equivalent

CPU CPU CLASH CPU YES

Intel Pentium 

II/Celeron 

300mhz or higher

CPU CPU CPU CPU YES

50MB for 

software and 

index

Harddnve Harddnve Harddnve Harddnve YES

56 6k Dial-up 

connection or 

faster

Network

Connection

Resolution Network

Connection

Network

Connection

YES

32 MB or more RAM RAM RAM Video RAM YES

800 X 600 or 

higher

Resolution Resolution Resolution Resolution YES
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Pentium Celeron 

500 MHz

CPU CPU CPU CPU YES

At least a Network Network Network Network YES

connection at 

57 6 kbps

Connection Connection Connection Connection

200 Megahertz 

Pentium-class or 

better

CPU RAM CLASH CPU YES

Minimum for 

text-mode 32MB

RAM RAM Harddnve CPU NO

VGA graphics 

(640 by 480 dots)

Video Card Video Card CLASH Video Card YES

1 GB available 

disk space

Harddnve CPU Harddnve Harddnve YES

display monitor 

capable of 

1024x768 

resolution

Resolution Video Card Resolution Resolution YES

80MB of 

available hard 

disk space

Harddnve Harddnve Harddnve Harddnve YES

Sound Blaster® 

or compatible 

sound card (16 or 

32 bit)

Sound Sound CLASH Sound YES

SVGA Monitor 

(resolution of 

800x600 or 

higher)

Resolution Resolution Resolution Video Card YES
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Windows 95 or 

NT 4 0, Windows 

NT suggested

Operating

System

Operating

System

Operating

System

Operating

System

YES

Minimum 16 

meg RAM

RAM Resolution RAM CPU YES

Minimum 8 meg 

RAM

RAM Harddnve RAM CPU YES

Audio

capabilities (îe 

sound card and 

speakers)

Sound Sound Sound Sound YES

Monitor that 

displays at least 

256 colors

Colour Video Card Colour Colour YES

20 Megabytes of 

free hard disk 

space

Harddnve Harddnve Harddnve Video RAM YES

Microsoft 

Windows 95 or 

greater

Operating

System

Operating

System

Operating

System

Harddnve YES

20 Gigabyte Hard 

drive (Free 

Space)

Harddnve Video Card Harddnve Harddnve YES

Windows 2000 

Professional, 

Service Pack 4 or 

later

Operating

System

Operating

System

Operating

System

Operating

System

YES

1 GB or larger 

hard dnve

Harddnve Video Card Harddnve RAM YES
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133 MHz or 

higher Pentium- 

compatible CPU

CPU CPU CPU Video RAM YES

90 MHz or faster

Pentium-Based

PC

CPU CPU CPU CPU YES

30MB free hard 

disk space

Harddnve Harddnve Harddnve Harddnve YES

50 MB Available 

Hard Disk Space

Harddnve Harddnve Harddnve Harddnve YES

Pentium IV 1 7 

GHz based 

system

CPU CPU CPU CPU YES

Accuracy of matchers with category 2 test data

Test Data Neural Net Naive Bayes Subsequence

Matcher

Composite

Matcher

Category 2 59/85 (69%) 69/85 (81%) 72/85 (85%) 80/85 (94%)

Category 3 Test Results

Test data Category of 
test data

Neural Net 
Result

Naive
Bayes
Result

Substnng
Matcher
result

Did the
composite
matcher
pick the
right
result9

150 MB free 

hard disk space 

plus space for 

saved games

Harddnve Harddnve Harddnve Harddnve YES
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Hardware 

accelerated D3D 

compatible 4MB 

video card with 

DirectDraw(TM) 

compatible 

driver

Video Card Video Card Video Card Harddnve YES

Pentium 4,

1 3ghz (a higher- 

speed CPU 

normally results 

in improved 

performance)

CPU CPU CPU CPU YES

256 MB RAM 

or higher (more 

memory 

normally results 

in improved 

performance)

RAM RAM CLASH RAM

C

YES

Windows 2000 

(Service Pack 3 

or greater) and 

Windows XP 

(Home or 

Professional)

Operating

System

Operating

System

Operating

System

Operating

System

YES

Up to 15 Mb of 

disk space 

available 

(depending on

Harddnve Harddnve Harddnve Harddnve YES
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the use of 

CyberNOT)

Approximately 

10 megabytes of 

disk space is 

required for 

installi

Harddnve Network

Connection

CLASH Harddnve NO

A hard disk with 

at least 20 MB 

available for 

program 

installato

Hard drive Harddnve CLASH Harddnve YES

16 MB TNT2- 

class OpenGL 

1 2 compliant 

video card

Video Card Video Card CLASH Video RAM YES

An OpenGL 

accelerated 

video card 

(minimum 8MB 

VC RAM 16 

MB recom

Video Card Video Card Video Card Video Card YES

128 megabytes ~  

(MB) of RAM 

for the operating 

system and 

services

RAM RAM CLASH RAM YES

Server with 

Pentium II 400

CPU CPU CLASH CPU YES
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megahertz 

(MHz) or higher

815 MB of 

available hard 

disk space for 

typical

installation of a

Harddrive Harddrive Harddrive Harddrive YES

SVGA video 

card with 8MB 

video memoiy 

and video 

overlay capabilit

Video Card Video Card Video Card Video Card YES

50MB free hard 

disk space for a 

minimum 

installation

Harddrive Harddrive Harddrive Harddrive YES

At least 175 MB 

of free disk 

space to store 

the databases

Harddrive Harddrive CLASH Harddrive YES

486DX with a 

processing speed 

of 66 MHz or 

greater

CPU CPU CLASH CPU ^YES

128 MB of 

RAM with 

virtual memory 

on

RAM RAM RAM VideoRAM YES

120 MB or more Harddrive Harddrive CLASH Harddrive YES



of available 

hard-disk space 

for installation.

Minimum screen 

resolution of 800 

x 600 pixels

Resolution Resolution Resolution RAM YES

5 MB of free 

Hard Disk space 

to install the 

program

Harddrive Harddrive Harddrive Harddrive YES

10 gigabytes 

(GB) free space 

on hard disk or 

higher

Harddrive Sound Harddrive Harddrive YES

10 GB

(Gigabytes) of 

hard drive space 

is adequate

Harddrive Video Card CLASH Harddrive NO

Hard drive with 

minimum 2GB 

available for 

application and 

database

Harddrive Video Card Harddrive Harddrive YES

25 MB free (for 

Helper 

Application 

installation, if  

necessary)

Harddrive Harddrive CLASH Harddrive YES

100 MB free for Harddrive Harddrive Harddrive Network YES
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data files and 

temporary files

Connection

Super VGA 

capable of 

providing 800 x 

600 resolution

Video Card Video Card CLASH Video Card YES

486 DX2 66- 

MHz (or 

equivalent) 

processor

CPU CPU CPU CPU YES

Your system 

should have at 

least 32 Mb 

RAM

RAM CPU CLASH RAM NO

400 MHz 

Pentium II or 

better

recommended

CPU CPU CLASH CPU YES

1 GB or more of 

available storage

Harddnve Colour CLASH Harddnve YES

64Mb minimum 

memory (more is 

better)

RAM RAM RAM RAM YES

Hard disk 

subsystem 

(400Mb or 

more),

Harddnve RAM Harddnve Harddnve YES

60 MB free disk 

space on your

Harddnve Harddnve Harddrive Harddnve YES
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hard drive

one 20GB IDE 

or SCSI hard 

drive or greater

Harddnve Video Card Harddnve Harddnve YES

1 GB minimum 

disk space per 

hard dnve

Harddnve Video Card CLASH Harddnve NO

9 Gig SCSI Hard 

Dnve space

Harddnve Video Card Harddnve Harddnve YES

128+ Megs of 

memory (Novell 

NetWare 

4 xx/5 xx)

RAM RAM RAM RAM YES

100MB for 

software index 

and additional 

space for future 

index size

Harddnve Harddrive Harddrive Network

Connection

YES

32 Mbytes of 

RAM memory, 

additional 

memory is 

recommended

RAM Video RAM RAM RAM YES

Any computer 

running

Windows 95 or 

later can run 

Musaios

Operating

System

Operating

System

RAM Harddnve NO

The program as Harddnve Video Card Harddnve Harddnve YES
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installed takes 2 

MB or less on 

your hard drive

500 MB hard 

disk space for 

Multi-Market 

data

Harddnve Harddnve Harddnve Harddnve YES

Single processor 

(Pentium III, 

Pentium 4/Xeon, 

AMD XP/MP) 

400 MHz 

minimum

CPU CPU CLASH CPU YES

Modem with a 

connection 

speed of 28 8k 

or higher

Network

Connection

CPU CLASH Network

Connection

YES

WmCross needs 

approximately 

50MB of disk 

space

Harddnve Harddnve Harddnve Operating

System

YES

Any 56K 

hardware 

modem - Stay 

away from Win 

Modems1

Network

Connection

Sound CLASH Network

Connection

YES

200 MHz or 

faster lntel(R) 

Pentium(R)

CPU CPU CPU CPU YES
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MMX, Cyrix 

M2, or AMD(R) 

processor

Accuracy of matchers with category 3 test data

Test Data Neural Net Naïve Bayes Subsequence
Matcher

Composite
Matcher

Category 3 34/48 (71%) 28/48 (58%) 40/48 (83%) 43/48 (90%)

Category 4 Test Results

Test data Category of 
test data

Neural Net 
Result

Naïve Bayes 
Result

Substring
Matcher
result

Did the
composite
matcher
pick the
right
result?

233 MHz 
recommended 
for XP 
machines

CPU CPU CLASH RAM YES

Intel« Pentium 
200-MHz or 
faster processor 
for audio

CPU CPU CPU CPU YES

233 MHz or 
faster for 
Windows 2000

CPU CPU CPU CPU YES

5 MB for
Microsoft«
Installer

Harddrive Harddrive Harddrive RAM YES

64 MB for NT RAM RAM CLASH RAM YES
128MB (for 
Windows NT)

RAM RAM RAM VideoRAM YES

128 MB RAM 
required for 
Windows 2000 
and XP

RAM RAM CLASH Video RAM YES

486 (DX) CPU 
or higher for 
Windows ME

CPU CPU CLASH VideoRAM NO
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Sound card 
supported 
under Windows 
NT

Sound Operating
System

Sound Sound YES

Graphics card 
with 64 MB 
RAM

Video Card Video Card Video Card Video Card YES

64 Megabytes 
on WindowsO 
95 or 98, 128 
Megabytes on 
Windows NT 
or

RAM RAM RAM Harddrive YES

150 Megabytes 
including 
Windows 
swapfile

Harddrive Harddrive Harddrive RAM YES

32 MB required 
for Windows 
98 Operating 
System

RAM RAM Operating
System

Operating
System

NO

8 Megs of 
Memory 
(DOS/Windows 
3 xx)

RAM RAM RAM RAM YES

19 Megabytes 
on hard disk for 
the Windows 
version

Harddrive Harddrive CLASH Video RAM YES

Accuracy of matchers with category 4 test data

Test Data Neural Net Naive Bayes Subsequence
Matcher

Composite
Matcher

Category 4 14/15 (93%) 9/15 (60%) 6/15 (30%) 13/15(87%)
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