
Client Service Capability Matching

A Thesis submitted for the Degree of Master of Science

by

Oliver Martin Lyttleton, B.Sc Computer Applications

Student no 96300493

School o f Computing,

Dublin City University

July 2004

Supervisor Dr David Sinclair

I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award of M.Sc in Computer Applications

is entirely my own work and has not been taken from the work of others save

and to the extent that such work has been cited and acknowledged within the

text of my work.

Signed: _

(Candidate) ID No.:

Dale - l / l

2

Acknowledgements

I would like to thank my supervisors David Sinclair and David Treacy for their help,
advice, and encouragement during the last two years

I also would like to thank Sun Microsystems and Enterprise Ireland for sponsoring this
work

Finally 1 would like to thank my family for their support during my time in DCU

3

Abstract..6
1. Introduction... 7
2 Mediating between heterogeneous data sources...16

2.1 Creating semantic mappings between terms from different ontologies................. 16
2.2 Schema Matching..20
2.3 Schema Matching Applications...28
2.4 Critique of semi-automatic matchers.. 53
2.5 Functionalities required by our schema-matcher...54

3. Client Service Capability Matcher - Overview.. 56
3.1 Interaction of system components... 56
3.2 System components...60
3.2.1 RDF Document Parser.. 60

3.2.2 Rules based matcher... 62
3.2.3 Naïve Bayes Classifier.. 64
3.2.4 Neural Net Matcher.. 64
3.2.5 Subsequence Matcher... 65
3.2.6 Rule Generator...66
3.2.7 Composite matcher... 66
3.2.8 Compatibility Gauge... 67

4 Implementation of architecture.. 69
4.1 Invoking web services...69

4.1.1 Web Services Description Language...69
4.1.2 Simple Object Access Protocol (SOAP).. 70
4.1.3 JAX-RPC... 73

4.2 Class diagram of Client Service Capability Matcher...76
4.2.1 Front End... 77
4.2.2 RDFParser... 77
4.2.3 rulesBasedMatcher... 78
4.2.4 naiveBayesMatcher... 79
4.2.5 subsequenceMatcher... 80
4.2.6 neuralNetMatcher..84
4.2.7 compositeMatcher.. 95
4.2.8 ruleGenerator...98

4.3 Operation of Client Service Capability Matcher..99
5. Evaluation of architecture and implementation...107

5.1 Naïve Bayes Matcher..107
5.2 Subsequence Matcher..108
5.3 Neural Net Matcher... 110

5.3.2 Neural net matcher’s generalisation capabilities..110
5.4 Composite Matcher... 114

6. Results.. 117
7. Conclusions and future work...122

7.1 Suggested improvements...125

Table o f Contents

4

8 References 128
Appendix A Sample WSDL Document 133
Appendix B Test Results 136

- 5 -

A bstract

In order to tailor web-content to the requirements of a device, it is necessary to access
information about the attributes of both the device and the web content Profiles
containing such information from heterogeneous sources may use many different terms to
represent the same concept (eg Resolution/Screen_Res/Res) This can present problems
for applications which try to interpret the semantics of these terms

In this thesis, we present an architecture which, when given profiles describing a device
and web service, can identify terms that are present in an ontology of recognised terms in
the domain of device capabilities and web service requirements The architecture can
semi-automatically identify unknown terms by combining the results of several schema-
matching applications The ontology can be expanded based on end-user’s interaction
with the semi-automatic matchers and thus over time the application’s ontology will grow
to include previously unknown terms

1. Introduction
The Internet is claimed to be a global medium, information can be accessed anytime,

anywhere Yet our ability to access information, and the quality o f our expenence,

depends on the capabilities of the device we use to access the information

There are an increasing range of devices used to connect to the Internet, PCs, mobile

phones, PDAs, set-top boxes, to name but a few All these devices have varying

capabilities, yet most web content is designed with the assumption that it will be accessed

using a standard PC As the range of devices with Internet connectivity grows, the

assumption that web-content designed solely for PCs is universally accessible becomes

increasingly naive

The W3C Device Independence activity [1] seeks to avoid the fragmentation of the web

into spaces that are only accessible from subsets of devices

The list below illustrates the variety o f devices that can access the web, and their differing

capabilities

Workstations (eg desktops, laptops)

Characteristics Powerful processors, large displays, audio capabilities, large

amounts of memory, persistent storage Input capabilities include keyboard, mouse/touch

pad Can use a range of different network connections, both wired and wireless

Persona) Digital Assistants (PDA)

Characten sties Physically smaller than workstations Less powerful processors,

less memory and less persistent storage than workstations Input capabilities are also

more limited (eg stylus and a writing surface on the PDA, or a miniature keyboard)

Highly portable

Mobile Phones

Characteristics Small in size, highly portable Have a need for extended battery

life, therefore use lower power processors and less memory than PDAs Small screens,

numenc keypad for input Network connection available via phone’s link to its network,

and is typically slower than those available on Workstations

Voice Systems

Charactensties Provide connection to the web from standard telephone handsets

No display, output is audio only Input via voice recognition, or numenc keypad

Interactive Television Systems

Characten sties Lower resolution than Workstation Input limited by remote

control

It is clear that there are many challenges for authors who wish to create device

independent web-content For example, screen size and resolution are particularly

important issues to consider They are crucial m determining the physical layout of web

content Authors may need to design different physical layouts and different ways of

organising web content in order to take into account the differences in size and resolution

of the displays in use The differences m display size range from potentially quite large

(workstations) to miniscule (mobile phones) and can even be non-existent (voice

systems) There is a similar range of vanety in the display resolution that devices can

support

Input capabilities can also vary enormously Workstation devices with full keyboards can

be easily used to input large quantities o f data, whereas it is not as easy to do so using the

keypad of a mobile phone The ease of use of a device’s input facilities is an important

consideration for web designers The interaction between a web application and a user

may need to be simplified for use on devices with limited input capabilities Certain

functions may even have to be omitted when using such a device It may not be viable to

attempt a complex registration procedure involving large numbers of forms to be filled

out using the keypad on a mobile phone

It is important that when authonng web content, designers are able to ascertain the input

capabilities of devices used to access their content, in order to define how users can

access web content appropriate for their access device

The speed of the network connection available to a device is also an important

consideration when considenng what types of web content are suitable for that device

Large images or video clips may be provided in lower-quality formats suitable for lower

connection speeds Content providers may even offer text alternatives for use on very

slow connections

The W3C Device Independence activity [1] recommends that web-content be tailored

according to the properties of the access device In order to tailor web-content for a

particular access device, it is necessary for personalisation applications to access

information detailing the attributes of both the access mechanism and the web content

For example, technologies such as XML [21] and XSLT [32] can be used to further

device independence Data can be described in a platform neutral way by using XML

XSLT can be used to transform XML documents into other XML documents A WAP-

enabled mobile phone can use XSLT to transform an XHTML document into a WML

document

The Authonng Challenges for Device Independence note [33] defines Media Resource

Selection as Device Independence Authonng Challenge 3 15

“Authonng techniques that support Device Independence should provide the

ability to select an appropnate resource from the alternatives available according

to the capabilities of the device”

For example, consider a device with a slow network connection If this device is used to

access web content that contains high quality video requinng a high bandwidth

connection to view, lower quality video which is more appropnate for a slow network

connection should be offered as an alternative by the web content provider

Device Independence Authonng Challenge 3 7 is defined as

4 Authonng techniques that support Device Independence should support the use

of different versions and types of media, such as images and audio clips, on

different devices with different delivery contexts 5

For example, rather than a video clip, an audio clip might be appropnate on a device with

limited display capabilities, such as a mobile phone When a mobile phone is used to

access a video clip, the provider of the clip may offer the audio clip instead

In each of these scenarios, the web content provider must be able to access information

about the device used to access the web content (markup languages supported, network

connection speed, display capabilities)

In particular, the W3C Device Independence activity focuses on methods by which the

characten sties of the device are made available for use in the processing associated with

Device lndependence[34]

The Authonng Challenges for Device Independence note[33] defines as Device

Independence Authonng Challenges 4 2, Capability Abstraction

“Authonng techniques that support DI should provide mechanisms that allow authors to

express the user expenence they wish to achieve using abstract representations of the

underlying capabilities of the device ”

Personalisation of web content can be earned out automatically by applications which can

use the semantics of terms found in these abstract representations (or profiles) to

determine what transformations (if any) are required to enable web content to be accessed

- 10 -

on a particular device The set of terms that are used by someone to describe devices can

be considered to be an ontology

An ontology defines the terms representing the concepts that are assumed to exist in a

domain of knowledge (eg computer devices, finance, real estate, etc) Ontologies are

used by humans and computer applications that need to share domain information [2],

[3] Ontologies include machine-readable definitions of concepts in the domain and the

relationships that hold between them Ontologies are a key concept in the emerging

Semantic Web [4], and are a way of representing the semantics of web resources and

enabling the semantics to be used by web applications and intelligent agents

There are many ontologies representing devices and web content from a variety of

sources in existence, and their number is growing If these ontologies continue to

proliferate, interpreting profiles from all these sources will be difficult to automate If

there is no standardised ontology representing the domains of device capabilities and web

content, personalisation applications will frequently encounter terms m profiles that are

not m their own ontologies If a personalisation application can’t understand the meaning

of a device/web content profile, it can’t determine what changes (if any) need to be made

to the web content

In this paper we will describe an architecture called the “Client Service Capability

Matcher” It identifies element and attribute names in an RDF [5] profile which are

present m its own ontology (the “rules base”) A rules base is a set of rules indicating that

a term occurring in one data source is semantically equivalent to another term appearing

in another data source The Client Service Capability Matcher implements the rules base

as a table m a MySQL database The table contains two columns TERM and

SYNONYM

Below is a section of this rules base

Table 11 section of rules base

TERM SYNONYM

MB Megabytes

MB Meg

MB Megs

Soundcard Soundboard

N etworkConnection ConnectionSpeed

Microphone Mic

Microphone Mouthpiece

Speakers Loudspeakers

Headphones Phones

Html Htm

Txt Text

Txt Plaintext

When processing profiles describing a device, the rules base can be used to determine the

semantics of the terms used in the profile

Below is a sample profile descnbing a device

Figure 11 sample device profile

<deviceProfiIe>

<mem>128 MB</mem>

<screenRes>1024 x 768</screenRes>

<soundCard>Soundblaster 64</soundCard>

</deviceProfile>

The rules base can be quened using SQL [25] statements, m order to determine if the

element names in this profile are contained in the Client Service Capability Matcher’s

ontology, for example

SELECT TERM FROM RULESBASE WHERE SYNONYM=’mem’

This statement will return the value ‘RAM’

SELECT TERM FROM RULES BASE WHERE SYNONYM=,screenRes’

This statement will return the value ‘Resolution’

SELECT TERM FROM RULES BASE WHERE SYNONYM=’soundCard’

This statement will return the value ‘Sound’

The results from these SQL statements indicate that the terms “mem”, “screenRes”, and

“soundCard” are semantically equivalent to the terms “RAM”, “Resolution”, and

“Sound” respectively in the Client-Server Capability Matcher’s ontology

- 13 -

The Rules base can determine the semantics of terms used in profiles, even when

different terms are used to represent the same thing. The Client Service Capability

Matcher can process profiles from multiple sources which do not use the same ontology.

However, sometimes the rules base will not return a semantically equivalent term when

presented with a particular query. This happens when the query is composed using a

query that does not appear in the SYNONYM column of the database table representing

the rules base.

If carried out manually, finding semantically equivalent terms between two schemas can

be a time-consuming, tedious effort which becomes increasingly impractical as the size

and the number of the schemas increases. In this situation, the personalisation application

needs to use a probabilistic method of determining what term from its own ontology the

unknown term is most likely to represent.

Schema matchers are applications that use heuristic algorithms to provide suggestions for

semantically equivalent terms between schemas. The ontology composed of the terms in

the Client Service Capability Matcher’s rules base and the ontology composed of the

terms used in a profile describing a device or web content can be considered as schemas..

A schema matcher can suggest possible semantic mappings between terms in different

schemas to a human, who can then accept or reject this semantic mapping. These

applications are called semi-automatic schema matchers, because they still require human

intervention to match semantically equivalent terms. These schema matchers use machine

learning techniques to create semantic mappings. For example, the Naive Bayes

algorithm is a text classification algorithm whose effectiveness has been proven in a

variety of applications. Spam filters [18] and Natural Language Processing applications

[19] have all used this algorithm with a degree of success.

If an unknown term is encountered by the Client Service Capability Matcher, the results

of three semi-automatic schema matching applications are combined in order to

determine what term in the rules base the unknown term is most likely to be semantically

equivalent to. The rules base can be expanded to include new semantic mappings between

terms, based on the results returned by the user’s interaction with the semi-automatic

matchers Thus, as new terms are encountered, their meaning can be ascertained and

eventually the terms can be added to the application’s rules base

The structure of the remainder of this thesis is as follows In chapter 2, we analyse some

existing approaches to matching semantically equivalent terms from heterogeneous

ontologies We highlight the strengths and weaknesses of these approaches We outline

what we desire from a schema matching application in the context of the particular

problem area we are working m

Chapter 3 is an overview of the architecture o f our system Each component o f the system

and the interaction between these components is described here

Chapter 4 is a description of the implementation of this architecture This contains details

of the algorithms employed by the system’s components, and the APIs and program

libraries that were used in their implementation

In chapter 5 we evaluate the effectiveness of the system’s architecture and the efficiency

of its implementation

In chapter 6 we describe the data used to test the system, and analyse the results obtained

Chapter 7 presents our conclusions

-15 -

2 Mediating between heterogeneous data sources

2.1 Creating semantic mappings between terms from different
ontologies

A schema is a representation of the structure of data in a database. A schema can be

represented graphically (eg as a graph using nodes and edges) or textually (using XML).

Schemas are used to define the structure of information used by an application.

Here is an example of an XML schema representing a book:

Figure 2.1: Library A schema describing the book “Compilers: Principles,

Techniques, and Tools”

<BOOK>

<AUTHOR> Ullman, Jonathon </AUTHOR>

<TITLE> Compilers: Principles, Techniques, and Tools </TITLE>

<PUBLISHER> Addison-Wesley </PUBLISHER>

<YEAR> 1985 </YEAR>

</BOOK>

The schema in figure 2.1 describes a book. This schema might represent the

structure of a table in a database used by a library (Library A) to keep track of what books

the library currently has (see figure 2.2).

Figure 2 2 Interaction between library database and user interface

Library A Catalogue
User Interface

Book Data
Request

XML
Book

Schema

The schema representing a book in another library’s database (Libraiy B) may be

different from the Schema in figure 2 1 however It could look like this

Figure 2 3 Library B schema for book “Compilers Principles, Techniques, and

Tools”

<BOOK>

<AUTHORNAME>

<SURNAME> Ullman </SURNAME>

<FIRSTNAME> Jonathon </FIRSTNAME>

</AUTHORNAME>

<TITLE> Compilers Principles, Techniques, and Tools </TITLE>

<PUBLISHED_BY> Add is on-Wes ley </PUBLISHED_BY>

<YEAR_OF_PUBLICATION> 1985 </YEAROF_PUBLICATION>

</BOOK>

- 1 7 -

The schema in figure 2 3 is different in two ways from the schema in figure 2 1 its

structure is different, and it uses a different vocabulary In figure 2 1, the value of the

“AUTHOR” element contains the surname, followed by a comma, followed by the first

name of the author

<AUTHOR> Ullman, Jonathon </AUTHOR>

However, this information is structured differently in figure 2 3 The “AUTHOR”

element contains two subelements, “SURNAME” and “FIRSTNAME”

<AUTHORNAME>

<SURNAME> Ullman </SURNAME>

<FIRSTNAME> Jonathon </FIRSTNAME>

</AUTHORNAME>

An ontology is a list of all the concepts that are assumed to exist in a particular domain of

discourse It is a formal specification of how to represent the objects and concepts that

exist in a particular area and the relationships that hold between them The term ontology

has its origins in philosophy, where it refers to the subject of existence For example,

Table 2 1 shows the terms present in the ontologies representing a book in Library A’s

database and the Library B’s database

- 1 8 -

Table 2 1 Terms used to represent a book in the ontologies of libraries A and B

Library A

Schema

Library B Schema

Book Book

Author Authomame

Title Surname

Publisher Firstname

Year Title

*no

equivalent*

Published_By

*no

equivalent*

Y ear_Of_Publi cation

The two schemas also use different names for elements representing the same concept

The Library A application will not be able to access and use information from the Library

B database If the application tries to extract the author’s name from the schema in figure

2 3 , it will be looking for an element called “AUTHOR”, not two elements called

“SURNAME” and “FIRSTNAME” If the application tnes to determine what year the

book represented by figure 2 3 was published in, it will look for an element called

“YEAR”, instead of “YEAR OF PUBLICATION” The application does not know what

the information contained m some of the elements of figure 2 3 represents

- 1 9 -

Figure 2 4 The user interface for Library A cannot interact with Library B

library A Catalogue
User Interface

Book Data
Request

Book Data
Request

Error1”

Library B
XML Database

XML
Book

Schema

In order to enable the Library A application to process schemas m the format of figure

2 3, we must provide it with “semantic mappings” between semantically equivalent terms

m its own ontology and the ontology used by Library B Examples o f semantic mappings

between elements from the schema in figure 2 1 and the schema in figure 2 3 are

Publisher=Published_Byi and Year=Year_Of_Pubhcation When the application

attempts to extract the year of publication from the schema in figure 2 3, it can consult its

lookup table of semantic mappings and determine that the element named

“Year_Of_Pubhcation” is equivalent to the element “Year” in Libraiy A’s ontology

2.2 Schema Matching

When we tiy to find semantic mappings between terms from two different ontologies, we

are performing a schema-matching operation The schema-matching problem is

encountered by many database applications (eg database integration, data mining, data

translation)

-20-

Manually supplying these semantic mappings to an application can be a very time-

consuming task Databases can be terabytes m size, finding one mapping alone could take

hours We may also have to generate mappings between a large number of databases If

an application has to process schemas from a wide variety of sources, mappings must be

manually generated between the application’s ontology and the ontology of every other

database that the application may process schemas from This is a tedious, error prone

process

There have been many attempts to produce applications which, when given two

databases, can produce semantic mappings between columns in the database with little or

no human guidance Applications such as these enable semantic mappings to be made

much more quickly, and enable applications to access data from a wider range of sources

These schema matching applications can utilize information such as data contents, meta

data, user interaction, etc in order to semi-automatically generate matches between

equivalent elements They may also implement applications such as linguistic matchers

There are several different methods used to perform schema match operations

automatically The following is a bnef overview of these methods

Schema-level matching vs Instance-level matching

A schema level matcher only uses schema-level information in the matching process For

example take the following schema in figure 2 5

Figure 2 5 schema representing an employee

<employee>

<name/>

<age/>

<salary/>

<department/>

<employee/>

-21 -

A schema-level matcher would only use information such as name, data-type, relationship

types, constraints, etc when trying to match the schema against another schema

However, an instance-level matcher will also use the information that forms an

instantiation of the schema object

Figure 2 6 employee schema with instance level data added

<employee>

<name>Bob Larkin</name>

<age>28</age>

<salary>34000</salary>

<department>Finance</department>

</employee>

Given the schema in figure 2 6, an instance-level matcher would use the following

information to find semantic mappings

"Bob Larkin”,"28Y34000","Finance"

Instance level matching can be useful when schema information is limited or non-existent

(le an element has a name like “X” or “MRT23”) Elements which cannot be matched at a

schema-level might be successfully matched when instances of the elements are

compared to each other

Element level matching/Structural level matching

With element level matching, only individual elements are matched Structural level

matching attempts to match a combination of elements that appear in a schema in a

particular form Structural matching can be performed at a variety of levels, from a

complete matching of two schemas (all elements in each schema have an equivalent

- 2 2 -

element in the other schema, and the schemas have the same structure) to partial matches

(two schemas are identical in parts).

As an example, take the schema trees in figure 2.7 below.

Figure 2.7 : schemas representing laptops which are partially structurally identical

Laptop-----------------------CPU Laptop------------------------Processor

i i

 RAM -----Memory

i i
 Hard drive Diskspace

I

 Screen size

An element level matcher may be able to provide mappings between the individual

elements, such as

CPU->Processor, RAM->Memory and Harddrive->Diskspace, but it would not be able to

determine the structural similarity of the trees. A schema matcher which could perform

structural level matching as well however would be able to deduce that the second

schema is a partial structural match for the first (all it lacks is the Screensize element).

Match cardinality

There are two types of match cardinality: Local cardinality and global cardinality.

Local cardinality refers to the number of elements which must be combined in order to

capture the semantics of the source element. For example, the element <name> in one

schema may correspond to a combination of <firstname> and <sumame> in another. We

say that this match has a local cardinality of 1:2, indicating that two elements from the

second schema must be combined in order to represent the same information contained in

the element <name> Whereas local cardinality is a measure of how many elements must

be combined in order to produce one particular mapping, global cardinality is a measure

of how many SEPARATE semantic mappings exist between an element/elements from a

source schema and another schema

To illustrate this, the element <address> in one schema may be mapped to both

<send_goods_to> and <send_invoice_to> in another schema The global cardinality

between address and its equivalent elements in the other schema is therefore 1 2 , le there

are two separate elements in the other schema which are both semantically equivalent to

<address>

Element matchings may have a cardinality o f 1 1, 1 N, N 1, or N M

Linguistic Matchers

Linguistic Matchers use words and text to find semantic equivalences between elements

Linguistic matching matches schema elements with similar or identical names Similarity

between elements can be gauged in the following ways

Element names can be preprocessed before they are compared Stemming and other

procedures can be used to reduce terms to their root forms

eg PDescnption = Product Descnption, PNo=Product Number

Elements which are synonyms of the target element can also be matched,

eg Laptop = Computer, Monitor = Display

-24-

Words which are hyponyms of the same generic term can also be matched Word X is a

hyponym of word Y if it is more specific than word Y, le “Y is a type of X” For

example, a desktop is a type of computer A laptop is a type of computer Both desktop

and laptop are hyponyms of computer Therefore, the element “desktop” may, in some

contexts, be semantically equivalent to the element “laptop” In order to detect synonyms

and hyponyms, dictionaries or thesauri must be available to the matcher Matchers can

use domain specific dictionaries

Homonyms may cause problems for schema matchers Two words are homonyms if they

are spelled identically but have different meanings An example of a pair of homonyms is

bark in the context of a tree (“the bark of the tree was rotting away”) and bark in the

context of a dog (“his bark was worse than his bite”) Matchers can maintain lists of

homonyms When a term which has one or more homonyms is encountered by the

matcher, an appropriate action can be taken by the matcher For example, if the term

occurs in schema level data, a matcher may use instance level data to identify the context

in which this term is being used Another action that may be taken is that the user of the

schema matching application may be asked to specify the context in which the term is

being used

Schema matching systems can also learn from matches provided by the user For

example, if a match is suggested to the user, but the user rejects it, the system can store

this mismatch, and that particular match will never be suggested to a user again

Names can also be matched on the basis that they share common substnngs (eg

representedBy=representative), or that they are pronounced identically (eg

Deliver2=DeliverT o)

- 2 5 -

Constraint Based Approaches

Schemas often use constraints to define data type and value ranges, cardinalities,

relationships, etc of elements This information can be exploited to find matches between

elements in schemas For example, take the schemas in figure 2 8

Figure 2 8 Schemas representing customer details

Client

ChentNumber - int, primary key

DateOfBirth - date

Name - string

Customer

Number - int, primary key

DOB - date

The constraint information from the above tables suggest that ChentNumber and Number

match (le they are both primary keys and integers), and that DateOfBirth and DOB match

(they are both dates) The use of constraint information alone would not be enough to

provide an accurate means of matching elements However, when combined with other

means of comparing elements it can increase match accuracy

Auxiliary Sources of Information
Many matchers can use sources o f information such as previous matchings, user supplied

matches, domain-specific dictionaries, etc to enable matches to be made For example,

some systems require that potential matches are confirmed by the user If a user refuses a

match, the system will know not to suggest this match in future An example of a matcher

using a domain specific dictionary is given below in the description of the LSD system

- 2 6 -

[8] LSD is used for matching elements from schemas withm the domain of real-estate It

uses a “county-name matcher” which determines if an element name matches any of the

county names it has stored This is useful because county names occur many times in

address and locations in a real-estate database

Combining matchers to aid performance

Each of the approaches to matching mentioned above uses different information, and is

suited to particular scenarios and usage domains Each of the matchers covers a different

part of the solution space for the schema matching problem, and can be effective within

that range, if we combine the matchers we will find that they can complement each other

very well, allowing us to match elements and/or schema trees with a greater deal of

accuracy than any individual matcher could

There are two approaches to combining matchers Hybrid matchers and Composite

matchers

Hybrid Matchers

Hybnd matchers combine the results of several matching applications m order to

determine matches Better match candidates can be obtained because matches requiring

the joint consideration of several criteria can be found

The matchers in a hybnd matcher execute simultaneously If the vanous matchers

compnsing the hybnd matcher were to be run consecutively, each would have to pass

over the schema once Thus, hybnd matchers execute faster than if the individual

matchers were run one by one

The choice of matchers that are combined to form a hybnd matcher is fixed at design

time, and cannot be altered by end-users

-27-

Composite Matchers
A composite matcher also combines the results of several individual matchers. Unlike

hybrid matchers, a user can choose which matchers to use when comparing two schemas.

The user can choose from a selection of matchers in order to adapt their approach to the

domain they are working in or to the type of data they work with. As new matchers

become available, they can be implemented by a composite matcher. This flexibility is in

contrast to hybrid matchers where the combination of matchers used cannot be changed.

Unlike hybrid matchers, the user can also specify how the results from the individual

matchers are combined. For example, the user can also specify that the matchers are

executed sequentially. The results from one matcher can be fed into the next, giving an

iterative improvement over the matchers. Alternatively, the matchers can be executed

simultaneously, and the result returned by the most matchers is selected as the overall

result. The exact manner in which the results are combined is decided by the user.

2.3 Schema Matching Applications

The simplest type of schema matching applications are “rules based” matchers, which

consult look-up tables which define semantic mappings between terms. Examples of rules

based matchers are the Semantic Knowledge Articulation Tool (SKAT) [6], and TranScm

[7]. Other schema matching applications use machine learning algorithms such as the

Naive Bayes algorithm (LSD [8]) and neural nets (Semlnt [9]) to find semantically

equivalent terms. String similarity metrics such as Edit Distance are also used by schema

matching applications [10].

We will now describe these schema matching applications in more detail, and highlight

their strengths and weaknesses.

SKAT

This tool is used for integrating knowledge from multiple independent sources. Queries

for information often cannot be answered from a single source, but require consulting

multiple sources. Attributes which are semantically equivalent may not have the same

representation in all databases however SKAT aims to present a consistent view of

multiple databases, which hides the differences between different databases

SKAT defines an algebra to enable interoperation between ontologies This algebra

includes operators such as

Unary operators, which work on one ontology, such as filter, extract

Binary operators, which take as input two ontologies and return as output one

ontology, such as union, intersection, difference

The most important of these operators is the intersection operator This identifies

semantically equivalent attributes between ontologies

SKAT uses “Articulation Contexts” to model semantic mappings between attributes in

different databases These contain rules which resolve semantic differences between

databases These rules axe specified using a subset of KIF [41], a simple first order logic

notation The procedure for creating an Articulation Context is as follows

1 A human expert supplies SKAT with some initial rules which indicate

semantically equivalent terms and terms which are not semantically equivalent

For example, a rule such as (MATCH US President FRG Chancellor) indicates

that the term President in the US ontology is semantically equivalent to the term

Chancellor in the FRG ontology Similarly, a rule like (MISMATCH Human nail

Factory nail) indicates that the term nail in the Human ontology is not

semantically equivalent to the term nail in the Factory ontology

2 SKAT suggests matches between attributes in the various databases that SKAT is

creating an integrated view of, based on the matching rules supplied by the expert

3 The human expert either accepts or rejects the matches suggested by SKAT Rules

that were used to create particular matches can also be deleted by the human

expert at this stage

-29-

4 SKAT creates the correct rules based on the interaction with the human expert in

step 3 Matches rejected by the human expert are stored, so as to avoid suggesting

the same matches later

When matching ontologies, SKAT weights matches between terms based upon the

frequency of their occurrence in the source databases and other heunsties The confidence

score must be above a certain level for the match to be valid A certain amount of

preprocessing can also be earned out on terms For example, common prefixes such as

“RE”, “UN”, etc can be removed from terms before SKAT consults its rules base The

expert may want to match an attnbute with the name “Finnish Parliamentary System ’ to

attnbutes representing other country’s parliamentary systems Preprocessing rules can

reduce the attribute names containing the words “Parliamentary System” (eg UK

Parliamentary System) to “Parliamentary System” The expert can add a rule to the rules

base stating that attnbutes which have names reduced to “Parliamentary System” are

considered to be matches

In addition to equivalence rules (TERM 1 =^ £1^ 2), more complex rules can be

suggested

In the rule in figure2 9, the first two sentences indicate that UK and Finland are countnes

The following lines are a general rule for matching two countnes This general rule saves

the human expert from having to explicitly declare a rule matching every combination of

country

Figure 2 9 General rule matching instances of countries

Instance-Of Country UK

Instance-Of Country Finland

(=> (and (Instance-Of Country 9Countryl)

(Instance-Of Country 9Country2))

(Match 9Countryl 9Country2))

- 3 0 -

SKAT can also create match rules based on the structural similarity o f database schemas

Parts of an ontology can be represented as a graph, indicating their structure A matching

rule can use a function which takes in two graphs as input and returns the degree of

similarity between the graphs This works well for sources that are similar structurally

TransScm

There are many different types o f data available on the web TranScm uses schema

matching techniques to translate data from one format to another

Data on the web can come in many formats Application programs usually expect data to

be of a specific format (for example, Internet browsers expect files to be in HTML [42]

format) To enable applications to access multiple data formats, usually some form of

transformation must be carried out on the data TranScm is intended to automatically

perform such translations

The structure of source data is frequently very similar to that of target data For example,

databases use schemas to model data instances, structured documents often obey some

grammar (eg RDF, HTML) This implies that translating between different data formats

can to a large extent be done automatically

Given the schemas for the source and target data, TranScm uses a rules base to find

similarities between these schemas Each rule in the rules base identifies matching

schema components, and also specifies how to translate an instance of the first to an

instance of the second The system has a set of rules that handle most common cases, and

can be extended or overwritten by the user during the classification process The system

uses the rules to find for each component in the source schema a “best match” component

in the target schema, or determines that there is no matching component in the target

-31 -

schema Then source schema components which have been matched to target schema

components are matched as specified in the rules base If a component of the source

schema cannot be matched, and the system cannot determine whether it should be

ignored, the user can add new rules to the system and specify the translation that should

be applied to it If a component from the source schema is matched to several target

schema components, the user is asked to specify the “best” match

This is used to translate data from one format to another If an application has to use data

which is in an incompatible format, the data is transformed using schema matching

techniques to an acceptable format

TranScm assumes that if two different schemas are descnbing the same thing, there is a

deal of similarity between the two Much of the task of translating data from one format

to another can therefore be earned out automatically, with an expert intervening if a part

of the translation cannot be earned out

TranScm defines a common model which can be used to represent different schema and

data models This middleware schema model represents schemas as graphs Each data

source that TranScm translates to or from has a predefined mapping to this middleware

format This middleware format is quite simple, and the representation of each source

schema in this middleware format is quite close to its ongmal format The middleware

format represents data as labelled cyclic graphs Figure 2 10 shows an SGML document

that we wish to translate into another format

- 3 2 -

<article>

<title> From structured Documents to Novel Query Facilities </title>

<authors>

<author> V Chnstophides </author>

<author> S Abiteboul </author>

<author> S Cluet </author>

</authors>

<sections>

<section>

<sectionl>

<title> Introduction </title>

<body>

<parag> Structured documents are central </parag>

</body>

</sectionl>

</section>

<section>

<sectionl>

<title> SGML Preliminanes </title>

<body>

<parag> In this section, we present </parag>

<parag> In order to define </parag>

</body>

</sectionl>

</section>

<section>

<section2>

<picture> some bitmap </picture>

<caption> A DTD for a document </caption>

</section2>

</section>

</sections>

</article>

Figure 2 10 SGML document (input for TranScm)

-3 3 -

Figure 2.11 shows the TranScm middleware format of this SGML document:

Figure 2.11 Middleware representation of SGML document

The empty circles in the middleware schema represent virtual elements; they do not

appear in the data. The label of a vertex includes the name (for non-virtual elements)

along with some additional information. For example, [0-..., ->] next to the authors vertex

means that this element can have zero or more children, and that these children must

follow a particular ordering. The ? beside the caption vertex indicates that this element is

optional. The ? next to the two children of the section vertex, along with the fact that

section is declared to have a single child, indicates that one of the two subtrees beneath

section must be present in an instance of this graph.

By using the rules base, the user can identify for each element in the source schema a

“best fit77 element in the target schema, an element which most closely matches the

original The user can also decide that there is no matching element in the target schema

Given two vertices, one from the source schema middleware graph, and the other from

the target schema middleware graph, the match function examines the labelling of the two

vertices and determines if they match This match is conditional on the matching of their

descendents in the schema graph

After the match process is finished, translation takes place A data instance of the source

schema is converted into the middleware mode, and every element in the schema is

assigned a datatype Using the translation rules specified m the rules base, the source

schema instance is translated to an instance of the target schema, and exported to the

target application The system uses the matching between the source and target schema

vertices computed in the last step to translate the data forest by recursively applying from

top to bottom the translation functions o f the rules attached to the types of the vertices

This results in a data instance that can be exported to the target application

LSD Learning Source Descriptions
The first step in schema matching using LSD is the creation of a mediated schema, which

captures the important points of whatever domain the matcher is to be used m In other

words, it is an ontology representative of a particular domain

Then, as shown in figure 2 12, various source schemas are manually mapped to this

mediated schema

- 3 5 -

Figure 2 12 mapping source schemas to mediated schema

re alesia te com

<house>
< ho use location/^ 235 Fairview Ave
<liitedpnjce/> $250,000
<agent pKone/> (206)729 0831

</house>

h o u se lo c a tu m lis ied_p rice agentjpkoiue

235 Fauvxew Ave $250,000 (206) 729 0831

Data source descnptions describe the database schema of a particular source, and

mappings between semantically equivalent elements in the source and the mediated

schema

From these manual mappings, the system can infer new matches between elements m

schemas it has not previously encountered and the mediated schema

One application for this system that the LSD paper proposes is a data-integration system

that integrates database schemas representing houses on the real estate market from

multiple heterogeneous sources When searching for data from these databases, users can

issue one query that can be used to search through all databases, instead of querying each

database individually

A mediated schema for this domain may contain elements such as “house_address",

“pnce”, and “contact_phone”, listing the address of the house, the pnce of the house, and

the phone number of the person selling the house respectively

-36-

Consider the database schema used by the website “realestate com”, for which the data

source descnption is provided This source contains the elements “housejocation”,

“listed_pnce”, and “contactnumber” The data source description indicates that these

elements are semantically equivalent to the elements “house_address”, “pnce”, and

“contact_phone” respectively

A machine learning application can learn several things from these semantic mappings If

it looks at the instance level data for these columns m the data source, it has many

examples of addresses, pnces, and phone numbers It can recognise unknown elements

from other sources as being semantically equivalent to “house_address” if it sees that an

element value contains words such as “street”, “avenue”, or “dnve” It can recognise

unknown elements from other sources as being semantically equivalent to “pnce” if their

values contain the euro symbol It can recognise unknown elements as being semantically

equivalent to “contact_phone” if their values contain “+353 1” Machine learning

applications can also use schema-level information (the name of an element) when

making matches If enough source descnptjons with elements with names containing the

word “address” representing the address o f a house are created, a machine learning

application can hypothesize that any element which contains the word “address” in its

name is semantically equivalent to the element “houseaddress” in the mediated schema

(“houseAddress”, “propertyAddress”, “ownersAddress”)

Machine learning matchers can learn from the properties of data Given a sufficiently

large set of data source descnptions, it can recognise that elements with low numenc

values (2,3,4,5) are most likely to represent the number o f bedrooms/bathrooms in a

house Machine learning applications can also learn from the proximity of elements For

example, machine learning applications may be able to infer from a number of data

source descnptions that long textual elements at the beginning of a row from a database

represents the descnption of a house

-37-

No single learner can exploit all these different types of information, so LSD takes a

multi-strategy learning approach LSD is an example of a composite matcher It uses

several learners which exploit different types of information that can be used to match

elements (names, formats, word frequencies, word positions, etc)

The current implementation of LSD uses four matchers, a Whirl learner [15] which

classifies elements according to the labels of their nearest neighbours, a Naive Bayesian

learner [16] which uses word frequencies in instance data to find matches between

elements, a Name Matcher which matches schema elements based on the similarity o f

their names, and a county-name recogniser which searches a database to check if an

element label or value matches a county (this is used to highlight how LSD can be

tailored for use within specific domains) In addition to providing superior accuracy,

composite matchers such as LSD are also extensible as new matchers appear

The first step in using LSD is the learning phase During the learning phase, elements

from data source descriptions are matched to semantically equivalent elements in the

mediated schema Figure 2 13 below shows a sample real estate mediated schema (a) and

a source schema (b)

Figure 2 13 a mediated schema and a data source

As shown in figure 2 14, using these we create data source descriptions by manually

creating mappings between semantically equivalent elements

-38-

T rain ing data
M ediated Schem a G Source Schema P M atchings Extracted d ata for each le a rn e r

HOUSE house a —►A

A AA B a h h —+ B

(a) fl>) («)

Figure 2.14 : Creating mappings between mediated schema and source schema

(e)

In figure 2.14, we have a mediated schema G? and a source schema P. We manually

match element names from source schema P to their semantic equivalents in the mediated

schema G (a->A, b->B). We then extract a set of house objects from source P (as seen in

figure 2.14 (d)). Machine learning applications can use this schema level and instance

level data for training purposes (as seen in figure 2.14 (e)), so that when they are

presented with an unknown element from a new source, these applications can predict

whether this element is semantically equivalent to A, B, or neither.

Figure 2.14 (e) above illustrates that different machine learning applications learn from

different information from the data extracted in figure 2.14 (d). The learner LI uses

instance level data (a l, b l, a2, b2). L2 uses only schema level information for training

purposes (a, b).

Once the learning phase has been completed, LSD can be used to classify data from new

sources. This is called the classification phase. In figure 2.15 below, we have a source

schema Q, and we wish to classify element m in this source schema.

<house>
<a/>al
< b /> M

</house>
< ho use-

<a/>a2
<h/>h2

</house>

L3

Figure 2.15 : Classification process

Source schem a Q

(*)

C orresponding global
elem ent (*)

We first extract a set of objects from source schema Q. Figure 2.15 (b) shows such a set

of objects. We consider each house object in turn. We extract the data from a house

object that is appropriate for each learner that LSD uses. For example, as shown in figure

2.14, LI uses instance level data to classify elements, so it is sent m l. L2 uses schema

level data to classify elements (the name of the element), so we send it m. The

appropriate data from an extracted schema object is extracted for all k learners in figure

2.15(c).

Each learner returns a prediction list of the form {(A,sl),(B,s2),..}.This list says that it

matches m to the element A in the mediated schema with confidence score si, to B with

confidence score s2, etc. The higher the confidence score, the more certain the learner is.

Each learner produces a prediction for what term in the mediated schema m is equivalent

to for each object extracted from the database in figure 2.15 (b). In figure 2.15 (d), a meta

learner combines the predictions produced for each extracted object to form a single

prediction for each learner. The meta learner uses a procedure called “stacking’* to do

this[40]. A prediction combiner then uses this list to decide which element in the

mediated schema m is most likely to be semantically equivant to. In figure 2.15 (f) m is

finally classified as most likely being equivalent to A.

LSD is extensible; any schema matching application that issues confidence scores can be

used. At present, LSD uses four schema matching applications, a nearest neighbour Whirl

learner, a Naive Bayesian learner, a name matcher, and a county-name recogniser.

The Whirl [15] learner uses the TDF/IDF measure, which is widely used in information

retrieval applications. Whirl performs best on textual data such as free-text descriptions,

and data which strongly indicates the type of the element (for example if the value of an

element is “red”, that strongly indicates that the element represents colour).

The Naive Bayesian learner uses word frequencies in the data source descriptions to make

matches. It works best when there are words in the data source descriptions which occur

frequently in particular contexts. For example, if house descriptions frequently contain

the words “beautiful” or “fantastic”, when the Naive Bayesian learner encounters these

words in an unknown element’s value, it may classify this unknown element as being a

house description. If the word “gas” occurs in an unknown element’s value, the Naive

Bayesian matcher may identify this unknown element as representing the type of heating

used in the house.

The Name Matcher uses the TF/IDF measure to match schema elements based on the

similarity of their names. This learner works well on unambiguous names (such as

“price” or “housejocation”), but performs poorly on ambiguous names, where the name

does not clearly indicate what the element represents (for example, an element with the

name “office” could represent either the address of an office or the phone number of an

office).

The Meta-Learner combines the results of each learner’s classification of a particular

element from each object extracted from the data source. The Meta-Learner uses the

training data generated in the learning phase (the learning source descriptions) to learn for

each combination of learner and element in the mediated schema, the accuracy of that

learner when it classifies an element as belonging to that type. The confidence scores

returned by the individual learners (figure 2.15 (e)) are then weighted accordingly, and

the highest score is chosen by the Meta-Learner .

The county-name recogniser is a matching application that is specifically for use in the

context of real-estate. It is a lookup table which can be used to verify if the value of an

element is a county name.

The Prediction Combiner uses a simple heuristic to decide which of the results returned

by the Meta-Learner is most likely to be correct. Let T be the set of classifications for a

particular element in the source schema generated by the Meta-Learner. The classification

with the highest number of occurrences in T is C l, and the classification with the next

highest number of occurrences is C2. If Cl is at least p% of the classifications in T, and

Cl-C2>=q, where p and q are prespecified thresholds, then Cl is chosen by the Prediction

Combiner to be the final result of the classification operation (figure 2.15 (f)). Otherwise,

LSD reports a failure to classify that particular element from the source schema.

The developers of LSD tested it on five real-estate sources that listed houses for sale.

These sources had a broad range of schema elements, from short ones representing

numeric values (numberBathrooms=l) to very long ones representing free text paragraphs

(House Description=Beautifully situated in one of the most sought after). They

included elements whose successful classification required knowledge beyond what was

available in the schema and instance level data. There were also elements that did not

have 1-1 matches with elements in the mediated schema. Figure 2.16 shows the sources

and their characteristics, and the accuracy of LSD in classifying elements from these

sources.

-42 -

Figure 2.16 : results of tests on LSD

Sources Coverage *

elem

leaf

elems

#

class.

elems

Min-

max

Heavy

Textual

Numeric Special Domain

Know.

Avg.

Accuracy

Per

cent

Realestate.yahoo National 31 31 31 1-152 3 6 10 0 24/31 77%

Homeseekers.com National 33 31 31 1-138 2 5 8 0 20/31 64%

Nkymls.com National 82 64 28 1-56 2 6 6 0 21/28 75%

Texasproperties. com Texas 56 52 42 J-UO 2 10 14 4 26/42 62%

W indermer e. com Northwest 39 ,35 35 1-87 3 4 8 1 22/35 63%

300 house objects were extracted from each source. Ten experiments were then

performed. In each experiment, three sources were picked for training in the learning

phase, and two sources were picked for testing in the classification phase.

The last two columns in figure 2.16 show the average accuracy of LSD in classifying

elements from each source. LSD performed with a degree of accuracy ranging from 62%

to 77% on the five sources.

Semlnt

Semlnt is a database integration tool. It integrates databases so that a unified, single view

of multiple databases can be presented to a user. Differences in RDBMS, language, and

schema structure can be hidden from the user. A single interface can be used to access

multiple databases.

Database integration involves:

Semantic Integration (extracting data from individual databases, using schema

matching techniques to map local database schemas to a global schema)

Query processing (translating a query made on a global data schema into the

appropriate local database query

Data processing (merging results from multiple tables, deciding how they should

be presented to user)

Figure 2.17 : Database integration using Semlnt

DBAs

SCHEMA
INTEGRATION

The aim of Semlnt is to identify attributes in database schemas that represent the same

information, and that can be mapped to the same attribute in a global schema. As shown

above, queries to this global schema can be translated into queries to the appropriate local

schema. The global schema provides a single view of multiple databases. Semlnt does not

produce attribute mappings in a pre-programmed manner. The designers felt that although

such an approach may work for a particular data integration problem, it may not work for

others. Semlnt can also reuse or adapt knowledge gained during the semantic integration

process for use in future problems.

Attributes in different databases that represent the same real world concept will probably

have similarities in schema designs, constraints, and data value patterns. Semlnt uses

these similarities to find mappings between semantically equivalent terms in different

databases. Neural networks are trained to use this metadata to identify attributes in a

particular domain. In this way, attributes from different databases can be matched without

any preprogrammed knowledge on Semlnt’s part

In figure 2 18, two databases, “Faculty” and “Student” are being integrated Semlnt first

uses DBMS specific parsers to extract metadata (schema design, constraints, and data

content statistics) Constraints can be the size and datatype of a particular attribute Data

content statistics can be the average value of instances, min-max value of instances,

standard deviation of instances, etc These metadata are used as “signatures” which

describe attributes m the databases These attribute “signatures” are used as training data

for a neural network The trained network can then identify semantically equivalent

attributes from other databases by their metadata

Figure 2 18 Integrating the “Faculty” and “Student” databases

(Faculty SS#> S tuden tS tud_ID , f in u la n ty = 0 98)

(Faculty Facu_Name, S tuden tS tud_N ajoe , sunilanty=Q 9])

(Faculty Salary, S tuden t. S t^ e n d , s im ilan ty = 0 85

*
*
♦

The designers o f Semlnt felt that neural networks were more suitable for use in database

integration than rules based schema matching applications because

• Predefined rules that work for one set o f databases may not work for another, the

rules base may have to be updated dynamically

• It is difficult for rules based matchers to assign probabilities indicating the

likelihood that a particular match is correct

Neural networks group input patterns by how they resemble each other Semlnt trams its

neural network with instances of database schemas Based on these sample instances, the

M etadata

S tuden t

S tu d J D
Stud_Nam e

Stipend
T e l#

Metadata.

SEMONT
SEMantic
IN Tegrator

Parsers

C la s s i f ie r

N eu ra l
Netw ork

-4 5 -

neural network can learn to identify types of attributes without prior knowledge of the

regular patterns that occur in these attributes. From these individual examples, Semlnt

infers the generalisations that allow it to identify corresponding attributes in different

databases. Figure 2.19 below illustrates this process.

Figure 2.19 : Process of merging databases with Semlnt

Data contents Cluster Trained
Equivalent
attributes

DBMS
specific
parsers

and schema
statistics Classify

attributes
and

centres
Train
networks

networks Trained
networks
determine

and
sim ilarity i Users \

' check t
extract
database
information

-------------- ►
generate
training
data

F
recognise
patterns

sim ilarity
between
patterns

and I
confirm

i results r

Semlnt makes use of both schema level and instance level data. Figure 2.20 below

illustrates the types of data it uses.

Figure 2.20 : data used by Semlnt

Both dictionary level and field level data are schema level data (they represent the names

and datatypes of attributes), while the data content level is instance level data.

- 4 6 -

Semlnt extracts the following attribute metadata using the RDBMS parser

Schema information data types, length precision and constraints such as primary keys,

foreign keys, value and range constraints, and access restrictions

Data content statistics the data contents o f different attributes can vary They can have

different data patterns, value distributions, and other characteristics These characteristics

can be used to classify attributes For example “SocialSecuntyNumber” and

“AccountBalance” can both be declared as nine-digit numbers, and thus cannot be

distinguished solely on their schema characteristics However, their data patterns, such as

their value distributions and average values, will be different Semlnt uses the following

characteristics of attributes maximum, minimum, average, variance, coefficient of

variance, existence of null values, existence of decimals, scale, precision, grouping, and

number of segments The values of numeric attributes are used to calculate these

statistics For textual attibutes whose values are not numeric, statistics are computed on

the number of bytes to store data

Other characteristics of attributes such as read/wnte permissions, and the use o f views,

clusters, sequences, etc are also extracted by the RDBMS parsers

-47-

Table 2.2 below lists the metadata extracted by the RDBMS parsers:

Table 2.2 : metadata extracted by RDBMS parsers

No. Discriminator Descriptions

1 Data length

2 Character type

3 Number type

4 Date type Valid dates

5 Row ID Data type: Row pointer

6 Raw data Raw binary of variable length

7 Check Constraint exists on column values

8 Primary key

9 Unique value Value is unique but is not part of the key

10 Foreign key constraint Column refers to key in another table

11 Check on View

12 Nullable Null values allowed

13 Data Precision

14 Data Scale

15 Default Has default value

16 Minimum Minimum non-blanks for character attributes

17 Maximum Maximum non-blanks for character attributes

18 Average Average non-blanks for character attributes

19 Coefficient of variance CV of non-blanks for character atttributes

20 Standard deviation SD of non-blanks for character attributes

Users only have to specify the types of DBMS they wish to integrate (eg Oracle, Ingres,

IBM AS/400), and specify database connection information for these databases. The

metadata extraction is then carried out automatically by the DBMS specific parsers.

-48 -

The inputs for the neural network need to be in the range 0-1. The metadata of attributes

can be of any value. The metadata needs to be normalised into values in the range of 0-1.

This is done in three ways:

Binary values: boolean attributes are mapped to binary values, eg 0 for false, 1 for true.

Category values: for example if we convert datatypes to a range 0-1, by assigning the

values 0 to date, 0.5 to numeric, and 1 to character.

Range values: a range of values can be normalised to the range 0-1 by using a Sigmoid

function.

Before the metadata of attributes is presented to the neural net for training, similar

attributes are clustered together into categories. The reasons for doing this are as follows:

• If there are multiple attributes in a database that refer to the same real world

information, it is desirable that they be grouped together in the same category

• Clustering attributes together reduces the number of nodes in the neural network

output layer (as there are fewer categories that attributes can belong to). This

reduces the problem size and therefore the training time also.

• After the attributes of database A are clustered together into M categories,

attributes from database B are compared with these clusters instead of each

attribute in database A. This is less computationally expensive.

Semlnt uses the Self Organising Map Algorithm [17], an unsupervised learning

algorithm, to cluster together the attributes in a database. Users of Semlnt can determine

in advance the number of categories they wish to create.

For example, consider the following table of attributes

Table 2 3 Training data for Semlnt

Attribute name Key field7 Length Data type Representation

Personnel table

SSN Yes 9 Numeric (1 0 47 0)

Name No 11 Character (0 0 6 1)

Address No 25 Character (0 0 7 1)

Tel# No 10 Numeric (0 0 51 0)

Employee table

Em pID Yes 9 Numeric (1 0 47 0)

Empname No 12 Character (0 0 62 1)

Each of these attributes has three characteristics Key field (a boolean value indicating

whether or not the attribute is a key for a table m the database), a Length field, and the

attributes data type These values are normalised so that they have values between 0 and

1 The representation column shows the normalised numeric representation of these

attributes Figure 2 21 shows how the six attributes are grouped into four clusters by the

Self Organising Map Algorithm These clusters are identified by their centers For

example, the centre of cluster2 is the midpoint between (0, 6,1) and 0, 62,1), which is

(0,61,1)

- 50 -

Figure 2 21 Clustering of attributes by Self-Organising Map Algorithm

L en g th

These cluster centres are then used as training data for the neural network When we

present the trained neural network with the metadata o f attributes from other databases,

the network tells us if there are matches between this new attribute metadata and any of

the clusters of attribute metadata it has been trained with

The attributes m the database are grouped into four categones using the self organising

map algorithm, and the cluster centre weights are used to train the neural network Figure

2 22 shows the output from the neural network This consists of the probability that these

attributes are semantically equivalent as calculated by the neural net

- 51 -

Figure 2 22 Output of neural net

(Databasel Faculty SSN, Databasel.Student StudID, Database2 Personnel ID,

similarity^) 98)

(Databasel Faculty FacuName, Databasel Student.Stud_Name,

Database2 Personnel Name, similanty=0 92)

(Databasel Student Tel#, Database2 Personnel W phone#, similanty=0 94)

(Databasel Student Tel#, Database2 Personnel H_phone#,similarity^ 95)

The use of Semlnt can be summarised as follows

• Use DBMS specific parsers to extract metadata from database A (eg schema

information, statistics of attribute values, attribute data types, etc)

• Cluster the attributes from the database A into M categones using the Self

Organising Map Algorithm These clusters are the input for the neural network

• Train the neural network using the data obtained in the previous step

• The attribute metadata from another database B is the input for the neural

network For each attibute in database B, the neural network returns the similarity

between this input data and each category in database A

• Users check and confirm the output of the neural network The output is a list of

attributes in the category that the neural network has determined is the most likely

match for the attribute from database B

Semint was tested with three different types of databases

Similar databases from same organisation

A very large database split into two

Similar databases from different organisations

- 52 -

An accuracy rate of 97% was achieved for similar databases from the same organisation

An accuracy rate of 90% was achieved for a very large database split into two Accuracy

was much poorer for matching elements between similar databases from different

organisations (20%)

2.4 Critique of semi-automatic matchers

SKAT

SKAT [6] is limited, in that it relies on rules specified by a human when performing a

schema match operation Unlike more sophisticated schema matchers, it doesn’t take

advantage of information such as the data-types of elements, data ranges of elements,

mean values of elements, surrounding elements m the schema, etc

It requires the presence of an expert to provide initial match rules This means that every

time data from a new source is encountered by the system, new rules mapping elements in

this schema to equivalent elements in other schemas will have to be created This will not

be feasible if the matcher will frequently be encountering schemas from unknown data

sources

TranScm

TranScm [7] also relies on rules, but new rules can be added by the user Adding rules

manually can be tedious however, and is exactly the activity that schema matching

applications seek to minimise

LSD

LSD [8] makes use of machine learning algorithms These algorithms can suggest

semantic matches which haven’t been provided by a human in a rules base The use of

machine learning algorithms in LSD allow it to match elements in a more autonomous

fashion than applications like SKAT or Transcm, which rely solely on rules base Rules

- 53 *

based matchers such as these find semantic mappings between elements is by consulting a

lookup table, and if either element doesn’t exist in this table, the human user must create

a mapping manually. By looking at data contents, word frequencies, etc., LSD however

can match elements without a human specifying these matches in advance.

LSD is a composite matcher. This allows it to match a wider range of data than individual

matchers. It can also be extended as new matchers appear.

None of the matchers used by LSD are capable of generalisation however. They can not

make classifications based on data which does not appear in the data they were trained

with.

Semlnt

As Semlnt only compares elements based on attributes of their data (ie average

value/length of element in a database), and not the data itself (ie word frequency,

synonyms etc) it is not suited to matching textual elements. Because of this, it is not a

complete solution to the schema matching problem, but is of some value, and may be

usefully combined with other matchers in a hybrid/composite matcher.

Preparing training data for a neural network is time consuming. The training data has to

be carefully selected and ordered before training begins. This can be a lengthy process.

The neural net takes longer than many other matching algorithms to prepare.

2.5 Functionalities required by our schema-matcher
As our schema matching application will need to perform mapping operations between a

wide range of heterogeneous ontologies, creating a rules based matcher capable of

mediating between all these data sources would take far too much time and effort. In

order to reduce the time necessary to perform schema mapping operations, our schema

matching application must use machine learning algorithms which are capable of

suggesting matches which are not pre-programmed by a human

Different classification algorithms perform weakly on particular types of data The neural

network used by Semlnt [9] performs poorly when deployed on textual data Naive Bayes

matchers (as used by LSD [8]) perform poorly with numeric data of a quantitive nature

In order for our system to work in practice, we must be able to categorise both textual

data (eg "SoundBlaster Pro") and numeric data (eg "1024,768")

Matchers such as LSD [8] and Cupid [11] have shown that if we combine the results of

several matchers together to form an aggregate result, this “composite matcher” will

perform better than any o f the matchers individually Composite matchers can classify a

broader range of data than single-matcher systems such as Semlnt [9] or SKAT[6]

We also must be able to generalise from the data used to tram our matchers The ability of

a neural net to generalise allows it to categorise data that was not present m its training

dataset The presence o f a neural network matcher m a composite matcher extends the

range of data the composite matcher can classify

The Client Service Capability Matcher was designed with all these points in mind It

combines a rules based matcher, a Naive Bayes Classifier, a neural net matcher, and a

subsequence matcher

- 5 5 -

3. Client Service Capability Matcher - Overview
This is a high-level description of the architecture for a system which determines the

semantic meaning of elements in RDF profiles representing devices and web content, and

determines if the device is capable of displaying the web content

3.1 Interaction of system components

Figure 3 1 below shows the components of the Client Service Capability Matcher, and the

interactions between these components When a user wants to determine if their device is

capable of accessing particular web content using the Client Service Capability Matcher,

the procedure is as follows

Figure 3 1 Architecture of Client Service Capability Matcher

RDF docum ents

r \
User and web content

k.
f \

RDF
device r Parser

v)
O utput from target
service, modified if
n e c e s s a ry

Compatibility
Gauge

C ontent handling
capabilities of
device, and requirem ents I
for accessing web
content

A ttribute /value pairs
represen ting device
and web content
properties

Rules based
matcher

Attribute/value pairs

Semantic mappings

Boolean value
indicating if device
is compatible w ith
web content, and c rite ria
th a t device fails to m eet

^ i f i t is incompatible

New ru le s

Tarçet
service

Rule
generator

Semantic mapping?

Composite
matcher

Naive bayes
matcher

Neural net
matcher

Subsequence
matcher

1 The user’s device sends RDF profiles describing the device and the web content that

the user is trying to access to the RDF parser

2 The RDF parser extracts element names and the values associated with these names

- 56 -

from the RDF profiles, and forms two lists of attnbute/value pairs One list represents the

properties of the device, the other represents the properties of the web content the device

is trying to access These lists are sent to the rules based matcher

3 The rules based matcher uses the element names in the lists to form SQL SELECT

queries These quenes are run against the database used by the rules based matcher to

obtain the term in the Client Service Capability Matcher’s ontology that they are

semantically equivalent to The purpose of the rules based and semi-automatic matchers

is to reduce element names in a device/web content profile to a canonical form The term

m the Client Service Capability Matcher’s ontology can be considered the canonical form

of the element name These canonical element names, and their associated values, are

sent to the Compatibility Gauge If an element name cannot be reduced to its canonical

form because it does not appear in the rules base, this element name and its associated

value will be sent to the semi-automatic matchers

4 The semi-automatic matchers use heuristic algorithms (Naive Bayes, Longest Common

Substring, and Neural Net) to categorise the element name based on its value Each semi

automatic matcher matches the unknown element to the element in the Client Service

Capability Matcher’s ontology that it has calculated it is most probable to be equivalent

to This match, along with a confidence score m the range 0 to 1, is sent to the Composite

Matcher

5 If the predictions returned by the semi-automatic matchers are not unanimous, the

Composite Matcher has to decide which of the semi-automatic matchers are most likely

to be correct It looks at the confidence scores returned by each semi-automatic matcher,

and chooses the matcher that is statistically most likely to be correct based on this (the

exact algorithm is outlined in section 4 2 7) The output from the semi-automatic matcher

that is deemed by the composite matcher as being the most likely to be correct is sent to

the Compatibility Gauge via the Rules Based Matcher, and is also sent to the Rules

Generator

6 The Rules Generator maintains a table in the same MySQL database used by the Rules

Based Matcher indicating all the matches between unknown elements and elements m the

Client Service Capability Matcher’s ontology that have been suggested by the Composite

- 5 7 -

Matcher If a particular match is suggested by the Composite Matcher more than a pre-

specified number of times, that match is added to the Rules Base For example, if the

Composite Matcher suggests that an element named “Sndblster” in a profile is

semantically equivalent to the element “Sound Card” in the Client Service Capability

Matcher’s ontology more than five times, the rule Sndblster=Sound Card will be added to

the Rules Base We use the number o f five here as an example The actual number of

time a match must be suggested before it is added to the Rules Bases is configurable

Thus, the Rules Base can expand to include rules which were not defined by a human at

design time This feature is not present m any of the other schema matching applications

that we studied

7 The Compatibility Gauge receives the “canonical form” of the elements from the RDF

profiles describing the device and the web content that the user is trying to access It can

perform checks such as “Is Resolution of Device >= Resolution required for web

content” Our prototype determines the devices compatibility based on ten criteria

Soundcard

Videocard

Resolution

Colour

RAM

VideoRAM

Operating System

Network Connection

Harddnve

CPU

If the device does not meet any of these criteria for accessing the web content, the

Compatibility Gauge sends the particular criteria that the device fails to meet along with

>58-

the values associated with those criteria to the web content provider. For example, if the

device profile contains this element:

<NetworkSpeed> 100kbps</NetworkSpeed>

but the web content profile contains this element

<NetworkBandwidth> 1 Mbps</NetworkBandwidth>.

The Client Service Capability Matcher will reduce “NetworkSpeed” and

“NetworkBand width” to their canonical form (Network Connection), and will deduce that

these elements are semantically equivalent. The Compatibility Gauge normalises the

values of these elements. In this example, the web content profile measures bandwidth in

Mbps, whereas the device profile measures bandwidth in kbps. The Compatibility Gauge

extracts the numeric value from both elements, and checks for indicators of the unit of

measurement this represents. In this example, the elements represent network speed, so

unit names such as “kbps” and “mbps” are searched for. The value “1 Mbs” is converted

to “1024 kbps”.

The canonical version of the web content profile contains an element representing

“Network Connection” which has a normalised value of 1024kbps. The device profile

also contains an element representing “Network Connection”, but this element only has a

value of 100 kbps. Based on this, the Compatibility Gauge sends a boolean value “false”

to the web content provider, indicating that the device is not capable of accessing the web

content. The following information is also sent:

• The term “NetworkBandwidth”, to indicate that the device does not have a

fast enough network connection.

• The value of this element in the web content profile (1 Mbps).

The web content provider can alter the web content, or provide alternative content, for the

user’s device For example, if the user is trying to access a videostream, and the Network

Connection of the user’s device is too slow, the personalisation application can stream a

lower quality videostream that takes up less bandwidth to the user

3.2 System components

3.2.1 RDF Document Parser

Function
Obtain attnbute/value pairs in plain text form from an RDF document descnbing web

content or a device

Description
The parser scans an RDF file, and extracts the attribute/value pairs which represent

information about the resource represented by the RDF file The parser verifies that the

document is a well formed XML/RDF document

RDF was designed by the W3C as a general purpose metadata description language It

allows a great degree of freedom with regards to the vocabulary and structure used when

creating a profile

Ideally, when individuals are writing up profiles describing a device/ service, they should

be free to use whatever vocabulary and document structure they wish It is not desirable

that users should have to descnbe their resources using a syntax which may be too

constraining, or too vague, for their needs

We must capture the following aspects of a device/web content in its profile.

1 Its content handling capabilities

2 How to access the resource

3 For devices: the hardware/software capabilities available to it

4 For web content: Hardware/software requirements necessary to access the

content

5 User preferences for the resource.

RDF can be used to represent all this information, unlike other methods. For example,

WSDL only describes where to access a resource and the interface it exposes to the

world, and can only be used to express 1 and 2. As another example, UpnP has no facility

for describing 5.

Other methods require that profiles be constructed from templates (eg UpnP, SLP, UDD1,

Salutation) or that a specific syntax be used (WSDL).

RDF is a language which is capable of capturing all the necessary aspects o f a device in

the context of the Client Service Capability Matching project, and offers a syntax which

is sufficiently expressive not only to model a wide variety of devices and services existing

at present but also those which may appear in future.

Input

RDF documents from the user’s access device.

Output
Set of tuples representing attribute/value pairs of the elements in the RDF profiles for
web content and user’s device. These tuples are sent to the Rules based matcher.

3.2.2 Rules based matcher

Function

Rules indicate that a term occurring in one profile is semantically equivalent to another

term appearing in another profile. For example, the rule “DellPC.processor=SonyPC.cpu”

indicates that the term processor in the context of “DellPC” is semantically equivalent to

the term cpu in the context of “SonyPC”.

Rules are specified in a table in a MySQL database. The table has two columns, “Term”

and ‘Synonym”. Each row in this table represents a rule matching two semantically

equivalent terms. The purpose of the rules based matcher is to reduce element names to

their canonical form. The column “TERM” represents the canonical form of element

names. The column “SYNONYM” represents semantically equivalent terms for these

canonical names.

Element names from a device/web content profile will be used in SQL queries for this

MySQL table, in order to determine if the terms used in the profile are contained in the

system’s ontology.

Description
Table 3.1 below illustrates a section of the rules base.

Table 3.1 : extract from rules base

TERM SYNONYM

RAM mem

CPU Processor

Resolution ScreenRes

Harddrive Hard disk

Soundcard Soundblaster

The rules base can be queried using SQL [25] statements, for example

SELECT TERM FROM RULES_BASE WHERE SYNONYM=’mem’

This statement will return the value ‘RAM’

New rules can also be inserted into the rules base by using SQL statements, for example

INSERT INTO rulesbase (Term, Synonym) VALUES (‘CPU5,’Processor’)

The rules based matcher defines an ontology representing web content and devices It

details known synonyms for terms in these domains, truncated/abbreviated versions of the

term, similarly spelled terms which are pronounced identically (eg deliverTo, deliver2),

and terms which share common substrings (eg representedby, representative)

If the SELECT query formed for any terms from the device/web content profiles returns

an empty set, these terms will be sent to the semi-automatic matchers which will attempt

to identify any terms in the ontology it may be semantically equivalent to

Input

From the RDF parser the rules based matcher receives element names and element

values pairs from web content and device profiles

Output

• To Compatibility Gauge Content handling capabilities and resources of device,

content types used by web content and hardware requirements for web content

These are the canonical forms of element names used in the device and web

content profiles

- 6 3 -

• To Semi-automatic Matchers: Element name/value pairs representing web

content and device properties, which could not be transformed to a canonical form

by the rules based matcher.

3.2.3 Naïve Bayes Classifier
Function

Classify an element name by using a text-classification algorithm to determine what term

in the system’s ontology it is statistically most likely to be equivalent to.

Description
This module uses the Naïve Bayes algorithm to match an unknown element with an

element which it is possibly semantically equivalent to in the system’s ontology.

Input
From the rules based matcher: Element name/value pairs representing web content and

device properties, which could not be transformed to a canonical form by the rules based

matcher.

Output
The Naive Bayes Classifier sends suggestions for the canonical form of element names to

the composite matcher.

3.2.4 Neural Net Matcher
Function
Classify an element name by using a neural network to determine what terms in the

ontology share similar characteristics.

Description
Uses machine learning algorithm to classify input data by generalising and making

inferences from training data.

Input
From the rules based matcher: Element name/value pairs representing web content and

device properties, which could not be transformed to a canonical form by the rules based

matcher.

Output
The Neural Net Matcher sends suggestions for the canonical form of element names to
the composite matcher.

3.2.5 Subsequence Matcher
Function

Identify possible semantic mappings between unknown element names and terms in the

system’s ontology by detecting common subsequences in terms.

Description
The subsequence matcher looks for terms which share common subsequences, and

suggest them to the user as possible semantic matches. For example, it may see that

“representedBy” and “representative” share the subsequence “represent”, and suggest this

pair to the user as a semantic match.

Input
From the rules based matcher: Element name/value pairs representing web content and

device properties, which could not be transformed to a canonical form by the rules based

matcher.

Output

The Subsequence Matcher sends suggestions for the canonical form of element names to
the composite matcher.

3.2.6 Rule Generator
Function
Generate new rules to add to the existing rules base, based on semantic mappings

suggested by the neural net, Naive Bayes, and subsequence matchers.

Description
The rule generator is responsible for generating new rules. It may generate a semantic

mapping between attribute X and attribute Y if:

For attribute X, a sufficiently high number of new mappings suggested semi-

automatically are to attribute Y. (Exactly what number is configurable).

Input

The Rule Generator receives matches which have been accepted by the user from the

composite matcher.

Output
The Rule Generator sends term/synonym pairs to the Rules Based matcher which will be
inserted into the rules base to form new rules using SQL INSERT statements.

3.2.7 Composite matcher
Function
Decide which of the three semi-automatic matchers is most likely to be correct, and send

the output from this matcher to the rules based matcher and the rule generator.

Description
If the output returned from the semi-automatic matchers is not unanimous, the composite

matcher uses the following algorithm for selecting the semi-automatic matcher which is

most likely to be correct. If the Naive Bayes matcher returns a clear result, its output is

selected. If the Naive Bayes matcher’s output is ambiguous (ie multiple categories given

probabilities of 1.0, all categories given 0.0), then the composite matcher must choose

between the neural net and the subsequence matchers. If the probability associated with

-66 -

the neural net matchers choice is greater than .9, the neural net matcher is selected by the

composite matcher, else the subsequence matcher is selected.

Input

From the neural net, subsequence and naive bayes matchers: the element in the rules

based matcher’s ontology that each of these matchers has calculated an unknown element

is most likely to be semantically equivalent to

Output

The output from the semi-automatic matcher that the composite matcher has calculated is

most likely to be correct is sent to the rules based matcher and the rule generator.

3.2.8 Compatibility Gauge

Function
Determine if the end user can access web content with a particular device.

Description
The Compatibility Gauge examines the content handling capabilities of the device and the

properties of the web content it is trying to access. It analyses the hardware requirements

necessary to access the web content (eg screen size, network connection speed) and

determines if the hardware specifications supplied by the device meet these requirements.

If the device is not capable of accessing the web content, the information about these

incompatibilities is sent to the web content provider. The web content provider can use

this information to provide alternative web content that is suitable for the user’s device.

Input
From the rules based matcher: the canonical form of element names in the device and

web content profiles provided by the user, and their associated values.

Output
To the web content provider: A boolean value; true if device is capable of accessing web

content; false otherwise. If the device is not capable of accessing the web content, the

information about this incompatibility is sent to the web content provider.

4 Implementation of architecture
The application is implemented as a web service. Simply put, a Web service is a web-

based application that exposes a programmatic interface using standard, Internet-friendly

protocols. The web-services paradigm is highly modular. Web-services and the programs

which invoke them are loosely coupled; neither needs to have an in-depth knowledge of

how the other works. We can look on web-services as being on-line building blocks for

an application. By using web services we can rapidly build new applications or extend the

functionalities of existing ones.

4.1 Invoking web services
If someone wanted to create a program which invoked our web service, how would they

know the functions exposed by the web service, and the parameters accepted by these

functions? The program has to be supplied with a document describing the web service’s

interface. If we want to create applications which can communicate data to each other

autonomously, without human direction, this documentation must be in a standardised,

machine readable form.

There does exist a protocol which provides information about web-services in a machine

readable format. It is called Web Services Description Language (WSDL) [20]. By using

WSDL, it is easy to invoke programs remotely and to allow your programs to be invoked

remotely.

4.1.1 Web Services Description Language
A WSDL document defines a web-services interface. It specifies the data which it sends

and receives. As The two communicating applications don't have to run on the same

platform; WSDL is a platform and application independent definition language; only the

message is important. This simplifies the interface between applications.

A WSDL document is a set of definitions. It includes the following parts:

• Types: These are the definitions of the basic data types used in the messages

exchanged between the web service and the application invoking the web service.

• Message: An abstract definition of the data being communicated.

• Operation: An abstract definition of the function performed by the service.

• Port: The address of a single web service, defined as a combination of a binding

and a network address.

• Port Type: A set of operations performed at a Port.

• Binding: Specification of protocol and data used by a Port Type

• Service: A collection of one or more related ports.

For a sample WSDL document, see Appendix A.

4.1.2 Simple Object Access Protocol (SOAP)
Web services communicate with other applications by using SOAP: Simple Object

Access Protocol [22]. SOAP is an XML-derived protocol which uses existing internet

transport protocols (such as HTTP) to transmit XML-encoded data. SOAP describes the

messages that pass between web services and clients that invoke these services.

SOAP is an easily implemented protocol with widespread industry support. It is a light

weight protocol; its text-based, and therefore operating system and application

independent. It uses existing technologies such as HTTP and XML which have gained

widespread industry acceptance.

An important feature of SOAP is its ability to enable communication through firewalls.

All firewalls pass traffic using port 80, which is used by HTTP. Because SOAP can use

HTTP as its transport protocol it is not blocked by firewalls.

Transmissions between applications under the SOAP protocol take the form of messages. A

SOAP message is an XML document which consists of an envelope, a header (optional), and a

body. Figure 4.1 shows a simple SOAP message.

Figure 4.1 : sample SOAP message

<SOAP:Envelope>

xmlns:SOAP=’http://schemas.xmlsoap.org/soap/envelope/’

SOAPiencodingSty^’httpr/Zschemas.xmlsoap.org/soap/encoding/’

<SOAP:Header>

<Language>

English

</Language>

</SOAP:Header>

<SOAP:Body>

<DoCreditCheck>

<ssn>123-456-7890</ssn>

</DoCreditCheck>

</SOAP:Body>

</SOAP:Envelope>

http://schemas.xmlsoap.org/soap/envelope/%e2%80%99

We will now analyse the components of the above SOAP message (Envelope, Header and

Body).

The envelope is the first element in a SOAP message, it encapsulates all the other parts of

the message. It identifies the XML document as being a SOAP message, and how it is

encoded (that is, how the data is to be serialised). This information is represented as

namespace URIs [35].

Below is the envelope element o f the SOAP message from figure 4.1, with the Header

and the Body of the message removed for the sake of clarity.

<SOAP:Envelope>

xmIns:SOAP=’http://schemas.xinlsoap.org/soap/envelope/?

SOAP:encodingStyle='http://schemas.xmlsoap.org/soap/encoding/’

</SOAP:Envelope>

The first namespace URI (fhttp://schemas.xmlsoap.org/soap/envelope/f) specifies the

version of the envelope. It identifies the XML document as being a SOAP message. The

second URI (’hitp://schemas.xinlsoap.org/soap/encoding/f) specifies the encoding used

to serialise the data in the body of the message.

The envelope element may contain a header element. It is optional, and is used to extend

the SOAP message syntax. For example it can add features such as authorization or

transaction information to the SOAP message, or provide information about the message

such as specifying the language of the message.

http://schemas.xinlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/encoding/%e2%80%99
http://schemas.xmlsoap.org/soap/envelope/f

<SOAP:Header>

<Language>

English

</Language>

</SOAP:Header>

The Body element must be present in a SOAP message, and it must be an immediate

child of the envelope element. It contains the actual message, which is represented as

child elements of the body. This could be a method call along with textual representations

of the arguments required by the method, or it could be any data represented in an XML

format.

The body of the SOAP message in figure 4.1 is a procedure call to a function

DoCreditCheck, with one argument (123-456-7890) being passed to the function.

<SOAP:Body>

<DoCreditCheck>

<ssn>123-456-7890</ssn>

</DoCreditCheck>

</SOAP:Body>

4.1.3 JAX-RPC
JAX-RPC [23] is the Java API for XML-Based Remote Procedure Call. Remote

Procedure Call is a protocol which enables an application running on a computer

connected to a network to execute processes on other machines connected to the same

network. The JAX-RPC API in the Java Web Services Development Pack [43] is used to

enable communication between the Client Service Capability Matcher and the end-user.

JAX-RPC uses SOAP and HTTP to make RPCs over a network. The communication

between the client and the server is encoded using SOAP. The SOAP specification

- 7 3 -

defines message structure, encoding rules, and a convention for representing remote

procedure calls and responses. HTTP (Hypertext Transfer Protocol) serves as the

transport mechanism. Although JAX-RPC relies on complex protocols, the API hides this

complexity from the application developer.

Unlike earlier APIs used to make RPCs (for example, RMI [44]), JAX-RPC allows

client-server interaction even when the client and the server are implemented using

different platforms. JAX-RPC enables a non-Java client to invoke a web service

implemented using Java, and vice versa. The interface to a web service is described using

WSDL.

Figure 4.2 illustrates the communication exchange between a JAX-RPC client program

and a web service.

Figure 4.2: An application using JAX-RPC at runtime

Stubs are local objects that represent the remote procedures. Ties are server-side classes

which enable interaction between the client and the web service. This is what happens

when a client invokes a function provided by the web service.

•The client calls the method on the stub that represents the remote procedure.

•The stub executes the necessary routines on the JAX-RPC runtime system.

•The runtime system converts this method call into a SOAP message and

transmits the message to the server as an HTTP request.

•The server, upon receipt of the SOAP message, invokes the methods on the JAX-

RPC runtime. The JAX-RPC runtime converts the SOAP request into a method

call.

•The JAX-RPC runtime then calls the appropriate method on the tie object.

•Finally, the tie object calls the method on the implementation of the Web service.

•The response to the RPC call is sent in a SOAP response message as an HTTP

response to the client.

- 7 5 -

4.2 Class diagram of Client Service Capability Matcher
The class diagram below (Figure 4.3) shows the main java classes in our system and the

relationships between them.

Figure 4.3: Client Service Capability Matcher Class Diagram

neuralNetMatcher subsequenceMatcher naiveBayesMatcher

elemertCategory elementCategory elementCategory

suggestMatch(unknownElementValue) suggestMatch(unknowrElementValue) suggestMatch(unknownElementValue)

rulesBasedMatcher

resolutionXValue
requiredResolutionXValue
resolution YValue
requiredResolutionYValue
videoMemory
requiredVideoMemory
memory
requiredMemory
operatinqSystem
requiredOperatingSystem
soundSupport
requiredSoundSupport
colourSupport
requiredColourSupport
networkConnectionSpeed
requiredNetworkConnectionSpeed
processor
requiredProcessor
harddiskSpace
requiredHarddiskSpace

identifyElements(elementNames.elementValues)

All these classes were implemented using the Java Source Development Kit 2 (version

1.4.0).

4.2.1 Front End
The user interface is a GUI implemented using the Java Foundation Class Swing

libraries.Through a series of dialog boxes, the user is asked to provide:

• The URL for the RDF file describing the target web content

• The URL of the target web content

• The URL for the RDF file describing the users device

The Front End is the client for the Client Service Capability Matcher web service. All the

other classes are server side web service classes.

4.2.2 RDFParser
The RDF Parser obtains the names of elements and the values of these elements in an

RDF document. It uses the Simple API for XML Processing (SAX) [24]. SAX is an event

driven mechanism for accessing XML documents. With a SAX parser, events are related

to what is currently being read from the XML document, for example:

•Element opening tags

•Element closing tags

•Content of elements

•Parsing errors (in cases where XML document is not well formed)

The SAX API acts like a serial I/O stream. You see the data as it streams in, but you can't

go back to an earlier position or leap ahead to a different position. In general, SAX works

well when you simply want to read data and have the application act on it. This is

perfectly adequate for the requirements of our parser.

The RDF Parser is implemented in the class RDFParser. It is invoked by creating an

instance of this class, and calling the parseDocument method of this instantiation. The

name of the file to be parsed is supplied as an argument to this method. The method

returns a Vector object, containing Strings representing the names of elements in the RDF

file supplied as an argument, and the values of these elements.

4.2.3 rulesBasedMatcher
The rules based matcher consults a lookup table, which details pairs of semantically

equivalent terms. Below is a selection of semantic mappings from this table:

Table 4.1: Selection of semantic mappings from rules base

TERM SYNONYM

MB Megabytes

MB Meg

MB Megs

Soundcard Soundboard

NetworkConnection Connection Speed

Microphone Mic

Microphone Mouthpiece

Speakers Loudspeakers

Headphones Phones

Html Htm

Txt Text

Txt Plaintext

The rules based matcher is implemented as a class which sends SQL[25] queries to a

MySQL database. Java Database Connectivity[26] drivers are used to send requests to the

database and retrieve responses to these requests. For example, if we encountered the

term “HarddiskSpace” in an RDF profile, and wanted to consult the rules based matcher

to see what this term was equivalent to, we would send the following SQL statement to

the database:

SELECT TERM FROM TERMS WHERE SYNONYM = ‘HarddiskSpace’

4.2.4 naïveBayesMatcher

The Naïve Bayes matcher uses the Naïve Bayes algorithm[27] to classify elements taken

from the RDF profile. The Naïve Bayes algorithm is frequently used in text-classification

applications [12], [13], [14]. It uses Bayes theorem to calculate the probability that an

element/attribute belongs to a particular category given the words its value contains. For

example, if the value of an element contains the word “Soundblaster” then the element is

highly likely to belong to the category “Sound Card”. The Naïve Bayes algorithm

assumes conditional independence between the attributes of the data it is classifying.

Conditional independence is the assumption that the effect of one variable on the

classification process is independent of all other variables. This is not always true in real-

world situations (hence the name, NAÏVE bayes).

Given a hypothesis (H), and an observed fact (D), we calculate the probability of the

correctness of the hypothesis given that fact (P(H|D).

For example, in a training set of 40 elements, 23 elements are categorised as representing

addresses. 20 of the elements in the training set contain the word “street” in their values.

14 of the elements containing the word “street” in their value are “address” elements.

Given the above, what is the probability that an element is an “address” element if it has

the word “street” in its value?

P(H|D)=P(D|H)*P(H)/(P(D|H)*P(H)+P(D|H')*(1-P(H)))

Which can be simplified to

P(H|D)=P(D|H)*P(H)/P(D)

H, Hypothesis element is of type “address”

D, Datum, an observed fact element contains word “street”

P(H)=pnor probability element is of type address=23/40 = 575

P(D|H)=probability element contains word “street” if it is an address = 14/23 = 6087

P(D)=probabihty element contains word “street” = 20/40 = 5

P(H|D)= (6087* 575)/ 5 = 7015

4.2.5 subsequenceMatcher

The subsequence matcher detects common subsequences between terms in the

application’s ontology and unrecognised terms For example, it may suggest t4videores”

and “videoscreen resolution” to the user as a semantic match

In order to calculate the similarity between two terms, we first calculate the Longest

Common Subsequence between the two

Definition Longest Common Subsequence

The Longest Common Subsequence (LCS) of two strings is the longest subsequence of

characters (excluding whitespace) that occurs in both strings

Bayes theorem

-80-

For example:

We compare the term “Disk Store” to “Storage”:

The LCS, with a length of 5, is “Store”:

HARDDRIVE TERM

Disk Store

UNKNOWN TERM1

Storage

A problem with using the LCS as a similarity metric between two strings is that the

longer an input string is, the more likely it is to contain characters forming a common

subsequence with the string we compare it to. If we compare a long input string

containing many words to a particular term, it will more than likely be given a higher

similarity score than a single word compared to the same term, simply because the

likelihood of finding a common substring increases with the length of the input.

In order to prevent comparisons involving long strings getting misleadingly high

similarity scores, we calculate a value, the “distribution”, which indicates how “spread

out” the LCS is in the unknown term.

For example, we also compare “Disk Store” to “TCP/IP connection requires an Internet

account and 28.8 Kbps (or faster) modem”:

The LCS, with a length of 7, is “iskStre”:

HARDDRIVE TERM

Disk Store

UNKNOWN TERM2

“TCP/IP connection requires an Internet account and 28 8 Kbps (or faster}

modem”.

Our second comparison results m a longer LCS, even though the two terms in the first

comparison are more similar

We divide the length of the LCS by the distribution of the LCS in the unknown term, so

that an LCS in which the characters do not occur close to each other will result in a lower

similarity score than an LCS in which the characters are closer

For example, as seen in the first comparison above, the LCS of “Disk Store”

(HARDDRIVE TERM) and “Storage” (UNKNOWN TERM1) is “Store” The first

character of the LCS occurs at the first character m UNKNOWN TERM1, and the last

character of the LCS occurs at the 7 ^ character m UNKNOWN TERM1 So, the

distribution is (7-1)+1=7 (we add the one to prevent divide by zero errors)

Looking at the second comparison, the first character in the LCS occurs at the 23rd

character m UNKNOWN TERM2 (“TCP/IP connection requires an Internet account and

28 8 Kbps (or faster) modem”) while the last character in the LCS occurs at the 77^

character of UNKNOWN TERM2, therefore the distribution is (77-23)+l=55

We also calculate the length of the LCS divided by the length of HARDDRIVE TERM

(because just as with the unknown term, the longer HARDDRIVE TERM is, the longer

the LCS is also likely to be)

-82-

The product of these two values gives the overall similarity score between the unknown

term and a term in the system’s ontology

 LengthOfLCS______ * LengthOfLCS______
UNKNOWN TERM Distribution LengthOfKnownTerm

In the above examples, the LCS between HARDDRIVE TERM and UNKNOWN

TERM1 is 5 The distribution of the LCS in UNKNOWN TERM1 is 7 The length of

HARDDRIVE TERM is 10 So, the similarity score between HARDDRIVE TERM and

UNKNOWN TERM1 is 5/7 * 5/10 =25/70= 35714

The LCS between HARDDRIVE TERM and UNKNOWN TERM2 is 7 The distribution

of the LCS m UNKNOWN TERM2 is 55 The similarity score between HARDDRIVE

TERM and UNKNOWN TERM2 is 5/55 * 5/10 =25/550= 04545, which is much lower

than the similarity score between HARDDRIVE TERM and UNKNOWN TERM1 These

results reflect that the two terms in the first comparison are more similar than those in the

second comparison

Dunng testing, the subsequence matcher proved itself to be the most effective of the

semi-automatic matchers in classifying elements with lengthy textual values (see

“Results”, chapter 6)

Table 4 2 shows the accuracy of the semi-automatic matchers when used to categorise the

48 elements with the longest values in the test data (10-12 words, eg “150 MB free hard

disk space plus space for saved games”, “256 MB RAM or higher (more memory

normally results in improved performance)”

i
- 83 -

Table 4.2

NEURAL NET NAIVE BAYES SUBSEQUENCE

MATCHER

34/48 (71%) 28/48 (58%) 40/48 (83%)

The subsequence matcher is clearly the most effective matcher when categorising

elements with lengthy textual values.

4.2.6 neuralNetMatcher
Neural networks[27] are statistical models of real-world systems. Neural networks are

based on biological concepts, modelled on how neurons process information in the

human brain. They can classify data by recognising patterns in the data.

The basic element in an artificial neural network is a neuron. This corresponds to a

neuron in a biological brain. It receives input from other neurons, or from an external

source. There are three different types of neuron:

Input neurons: receive data from external source

Output neurons: send data to an external source

Hidden neurons: perform intermediate calculations between input and output neurons

Figure 4.4: A neuron

Neurons are linked by connections. Each connection has a weight associated with it. The

input to a neuron via a particular connection is multiplied by the weight associated with

that connection. These values are then summed and passed into an "activation function"

which calculates the value output from this node. An example of an activation function is

the "step function" which returns 1 if the summed input is above a certain threshold, else

it returns 0 (see figure 4.5). Another activation function is the sigmoid function, which

returns continuous output in the interval 0 to 1 (see figure 4.6). There are many other

activation functions. Each function is suited to particular scenarios, therefore the choice

of activation function depends on the characteristics of the problem the neural net is

attempting to solve.

Figure 4.5 : Step Function

Figure 4.6 : Sigmoid function

The most commonly used neural network model is the Multi-Layer Perceptron (MLP).

Figure 4.7 illustrates an example of an MLP. The MLP is arranged in layers of nodes so

that values from the input neurons are propagated to the hidden neurons. The hidden

neurons may be arranged in more than one layer. The output from each layer of hidden

neurons is propagated to the next until it reaches the layer of output neurons.

Figure 4.7 : An MLP with one hidden layer.

How does the neural net learn to classify input data?

1. Build a network with the chosen number of input, hidden, and output units.

2. Initialise all the weights to low random values.

REPEAT:

3. Choose a single training pair at random

4. Copy the input pattern onto the input layer

5. Calculate the value produced at the output layer

6. Calculate the error between the obtained output and the desired output

7. Back propagate the summed product of the weights and errors in the output layer

in order to calculate the error on the hidden units

8. Update the weights into each unit according to the error on that unit, the output

from the unit below and the learning parameters

9. Update the connection weight values to the output layer by using this equation

UNTIL the error is sufficiently low or the network settles

Our application uses neural networks to perform a classification task The input is a

description of the device/web content property to be recognised, and the output is the

class to which this property belongs (eg RAM/CPU/Video Card/etc)

The neural net application identifies input as being most likely to belong to one of the

following categories

• Soundcard

• Videocard

• Resolution

• Colour

• RAM

• VideoRAM

• Operating System

• Network Connection

• Harddnve

• CPU

For the sake of simplicity we limited the number of categories to 10, this can be expanded

if required

The neural net in our application has three layers

59 input nodes

100 nodes m a hidden layer

10 output nodes

The neural net in our application, with 59 inputs and 10 outputs, represents a 59-

dimensional dataspace Any input to the neural net represents a point m this dataspace

>87-

The neural net has been trained to recognise to which category every datapoint is most

likely to belong to.

A useful property of neural nets is their ability to generalise, ie the outputs of the neural

net approximate target values for inputs that are not in the training set. The neural net can

use its generalisation abilities to “fill in” spaces in the training dataset.

In order to implement our neural net application, we used the Java Object Oriented

Neural Engine[28] (JOONE). This is an open-source API and GUI editor that provides

the components required to create a neural net application.

How does the neural net classify textual data?
The input to our neural network matcher requires 59 numbers. The raw data is a text

string however. The input must be transformed into a numerical form suitable for the

neural net. We will now examine the steps involved in this transformation.

If we want to represent the string “90 MB of available space required on system drive” in

a format suitable for the neural net matcher, we follow this procedure:

1. Does the term megabyte (or a synonym of megabyte) occur in the string?

Yes it does, and the value associated with it is 90. The first 10 input nodes

are used to represent this number in binary form. (More nodes can be

added if we want to represent larger numbers, but in order to minimise the

number of input nodes, for now we only have 10). Therefore, the value for

the first 10 nodes is 0,1,0,1,1,0,1,0,0, and 0.

Node 1 is the Least Significant Bit, while node 10 is the Most Significant

Bit.

- 8 8 -

2. Does the term gigabyte (or a synonym of gigabyte) occur in the string?

No it does not, so the value for nodes 11 to 28 is set to 0. If the input string

contained “20GB”, these nodes would contain the binary representation of

the number 20,000 (the number is multiplied by 1,000 because quantities

of disk space expressed in gigabytes are frequently decimals, eg 4.2 gigs).

3 We now compute the similarity score using the modified LCS metric (as used by

the subsequence matcher) between the input and each of the following 29 terms:

Audio, Sound, Video, Screen Resolution, Res, Screen Res, VideoRes,

VideoResolution, Resolution, Colours, Color, Colourdepth,

Colourcapability, Coloursupport, Colour, Megabitspersecond, Mbps,

Megahertz, Mhz, Ghz, HarddiskDrive, Storage, FixedStorage,

Massstorage, Diskstorage, Diskspace, Harddisk, Hard-disk, Hard-drive,

Harddrive.

These scores are the values placed into nodes 29 to 58.

4. The final node contains 1 if any of the following terms are present in the input

data, else it is set to 0:

“Windows”, “Win95”, “Win98”, “Solaris”, “Unix”, “Linux”.

The numerical input to the neural net can be represented as a graph, with units on the x-

axis representing input nodes and units on the y-axis representing values for these nodes.

The graph representing the input node values derived from the string “90 MB of available

harddisk space required” is as below (Figure 4.8).

a» 5
■ so
1 4
s.
.£ 3
*«- o
« 2
"5
> 1

I I
CD

—♦—90 MB of available
harddisk space
required_________

C D v - CD- ' — C D * — CD-*— CD

Input node

Figure 4.8 : Input node values derived from the string “90 MB of available harddisk
space required”

The more similar two text strings are, the more the graphs representing them will

resemble each other. If we transform data representing similar strings (ie “Min 40MB

disk space”, “200 mbytes hard-disk”, “80MB hardrive space”, etc), the graphs will

broadly resemble each other (though this might be true only for certain sections of the

graph). This is demonstrated in figures 4.9 to 4.11 where the input node values derived

from the strings “Windows 98/ME/2000SP2/XP”, “High Colour”, and “60 MB of

available hrd-dsk space” are overlaid onto figure 4.8.

0)■ooc
3a

90 MB of available
harddisk space
required

Windows
98/ME/2000SP2/XP

Input node

Figure 4.9 : Input node values derived from the string “Windows
98/ME/2000SP2/XP”

90 MB of available
harddisk space
required

High Colour

Input node

Figure 4.10 : Input node values derived from the string “High Colour”

90 MB of available
harddisk space
required

60 MB of available
hrd-dsk space

T - T - o g c o c o T t r t i n
Input node

Figure 4.11: Input node values derived from the string “60 MB of available hrd-dsk
space”

Clearly, the chart in which the overlaid graph line most closely approximates figure 4.8 is

figure 4.11. This example shows that similar text strings will result in similar inputs to

the neural net. The neural net can learn to identify common patterns between similar

strings.

The neural net matcher generates ten probability scores, indicating the probability that the

input belongs to a particular category. Table 4.3 gives an example of such scores

generated by the neural net matcher, alongside the category with which each score is

associated:

Table 4 3 * Neural net output

Probability Score Category

4 867118490494595E-4 Soundcard

8837659506556217E-5 Videocard

1 7031400662453158E-9 Resolution

0 9056907276388094 Colour

4 000241468415735E-5 RAM

2 95 9698019949181E-7 VideoRAM

32856512031200196E-4 Operating

System

1 55842706380494E-8 Network

Connection

3 8890873660489465E-9 Harddnve

23120086704091745E-6 CPU

The neural network selects the highest score and returns as output the category associated

with that score, indicating that it is the most likely category that the input belongs to If

the neural net generated the scores m Table 4 3, it would return “Colour (its value,

0 9056907276388094, is the highest)

If we tram a neural net by presenting it with input representing data such as “200 mbytes

hard-disk” and “80MB hardnve space5 that produce the output harddnve, it will

eventually learn to recognise inputs similar to these as representing harddnve space The

neural net will learn to recognise patterns in the input nodes that appear when particular

words or phrases (for example, diskspace, Harddnve, MB) are present in the raw text

The neural net can learn to recognise the similanty scores resulting from the presence of

words that frequently occur in the training data Thus, the neural net can learn to identify

words in the input data that strongly indicate that the data belongs to a particular category.

The neural net matcher can recognise input based on how similar it is to 29 terms related

to the domain of device capabilities/requirements. The neural net matcher can be trained

to identify words which indicate that the input belongs to a particular category, even if

these words are do not belong to the set of 29 terms which the input data is compared to.

The values assigned to nodes 29-58 in the input layer of the neural net describes the input

string in a manner not dissimilar to that employed by puzzles such as the following:

My first is in tea but not in leaf

My second is in teapot and also in teeth

My third is in caddy but not in cosy

My fourth is in cup but not in rosy

My fifth is in herbal and also in health

My sixth is in peppermint and always in wealth

My last is in drink, so what can I be?

I’m there in a classroom, do you listen to me?

(The answer is teacher).

The word teacher” is described in terms of how similar it is to other words (ie what

words it shares a letter with and what words it doesn’t).

Similarly, in our application, a phrase such as “High Colour” is described in terms of how

similar it is to the terms “audio”, “screen res”, “colour”, “harddiskdrive”, amongst others.

During the time we spent testing the neural network, it was found that if the neural

network was presented with inputs representing the string “Pentium Class Processor” it

would successfully classify this data as being of type CPU, based purely on how similar it

was to terms like audio, screen res, colour, ctc, Similarity scores are not computed for

how similar the input data is to “Pentium”, “Class”, “Processor ’, or any combination of

these words

We don’t have to tell the neural network explicitly “If the input data contains the words

‘Pentium Class Processor’, this input is of type ‘CPU’”, the neural network is able to

infer this from the training data

4.2 7 compositeMatcher
When the system encounters an element name that is not present m its ontology, it

attempts to identify the semantic meaning of the element name based on the value of the

element The composite matcher accepts as input the value of an element that the rules

based matcher was unable to classify (unknownElementValue) The method

classifyUnknownElement passes unknownElementValue to each of the three classes

implementing the semi-automatic matchers (neuralNetMatcher, subsequenceMatcher,

naiveBayesMatcher)

Each of these matchers returns what they calculate is the most likely term in the rules

base this unknown term is semantically equivalent to

The individual matchers often return conflicting matches One matcher could indicate an

element represents CPU speed, another could indicate it represents network connection

speed, and another could indicate it represents RAM

When the individual matchers produce conflicting results, the composite matcher must

decide which of them is most likely to be correct We designed an algonthm which

calculates which of the semi-automatic matchers is most likely to be correct, and selects

the output of this matcher as the final result of the semi-automatic matching process

The algorithm works as follows

The naive bayes matcher calculates a probability score between 0 and 1 for each of the

categories of data it recognises This indicates the probability that the input data belongs

to each of those categones If one of these probability scores is higher than every other

probability score calculated by the Naive Bayes Matcher, the composite matcher selects

the Naive Bayes matcher as the most likely of the matchers to be correct

There are three scenarios where the naive bayes matcher will be unable to provide a clear

answer The first scenario is where the input data contains no terms that appear in the

matchers corpus In this case, the matcher will return a probability of 0 for every category

The second is where the input data contains words which strongly indicate that element

belongs to multiple categones "lGhz processor required for Microsoft Windows1' is such

an example If the terms "lGhz" and "processor" only occur in the matcher’s corpus

labelled as belonging to the category "CPU", and "Microsoft" and "Windows" only occur

m the corpus labelled as belonging to the category "Operating System", for both the

categones "CPU" and "Operating System" the matcher will return probabilities of 1 The

final scenano is where two categories receive an equal probability by coincidence In all

these scenanos the result returned by the Naive Bayes matcher will not allow us to

categonse the input data, and we must turn to the other two matchers But how do we

decide which result from these other matchers is most likely to be correct'?

When the neural net matcher categonses unknown data, it returns the category that data is

most likely to belong to and a probability score indicating the likelihood of the data

belonging to this category The purple line in graph 5 shows the accuracy of the neural net

matcher for mappings with probabilities above particular thresholds For example, 72%

of semantic mappings with associated probabilities higher than 0 1 are correct 86% of

semantic mappings with associated probabilities higher than 0 95 are correct

-96-

The blue line in figure 4.12 shows the accuracy of the subsequence matcher on the same

data. For example, it has an 86% accuracy rate on the data that the neural net matcher

classifies with a probability greater than 0.1. It has an 83% accuracy rate on the data that

the neural net matcher classifies with a probability greater than 0.95.

100

80

Match
Accuracy (%)

40

20

Subsequence Matcher

Neural Net Matcher

Neural Net Match Probability

Figure 4.12 : Match accuracy against neural net probability

Figure 4.12 clearly shows that the higher the probability associated with a semantic

mapping made by the neural net, the more likely it is to be correct. It shows that if the

neural net matcher classifies data with a probability greater than 0.9, it is more likely to

be correct than the subsequence matcher.

Thus, if the neural net returns a probability greater than .9 for input data belonging to a

particular category, the composite matcher selects this as the matcher most likely to be

correct. A high probability such as this strongly indicates that the neural net matcher has

correctly classified the input data.

If the neural net does not return a probability greater than 9 for the input data belonging

to any category, the composite matcher selects the output from the subsequence matcher

as being the most likely to be correct

4 2.8 ruleGenerator

The Rule Generator creates new mappings in the rules base based on user interaction with

the semi-automatic matchers The rules base can thus expand to include previously

unknown terms

If the Composite Matcher consistently suggests a particular semantic mapping to end-

users (le screenRes=Screen Resolution), after this mapping has been accepted by end-

users a certain amount of times (eg 3), the rule “screenRes^Screen Resolution’ can be

added to the rules base When the term “screenRes” is encountered from then on, the

system will automatically recognise it as representing Screen Resolution, and will not

invoke the semi-automatic matchers in order to classify it

The MySQL database used to implement the rules base also contains a table “Matches”

which contains every match made by the composite matcher When a match is suggested

by the composite matcher, the system checks the “Match” table to see how many times

this match has previously occurred It uses this SQL statement

SELECT count(*) from matches where term=<suggestedMatch> AND

MatchedWith=<unknownT erm>

An example of this statement in practice is

SELECT count(*) from matches where term=’Resolution’ AND

MatchedWith=’ScreenRes’

If the number of occurrences of this match is less than 3 we enter this match into the

Match table using this SQL statement

insert into matches (Term,Matched With) values ('ResolutionVScreenRes')

-98-

If the number of occurrences of this match is greater than 3 we add a new rule to the table

representing the rules base, indicating a semantic mapping between the unknown term

and the suggested term

insert into rulesBase (term,synonym) values ('ResolutionVScreenRes')

The number of times a match has to be suggested before it is added to the rules base was

set to 3 for convenience during the testing of the system In practice, if this application

had many users this number would have to be higher

4.3 Operation of Client Service Capability Matcher

The W3C Device Independence activity [1] envisions that web content that can be

accessed on any device, regardless of the hardware/software capabilities of that device

The range of devices that currently access the internet vary enormously with

regards to their hardware/software capabilities For example, devices can vary with

regards to

• display sizes and resolution

• sound capabilities

• persistent storage available

• memory

• input capabilities

• network connection speed

• markup/scnpting languages supported

-99-

These differences in device capability are typical of the issues that must be considered by

designers of web content who wish their matenal to be device independent

The W3C’s Device Independence activity [1] recommends that web-content be tailored to

the device used to access it An application which tailors web content to the capabilities

of a particular device must access information detailing the attributes of both the access

mechanism and the web content

Devices and web content can be descnbed using Resource Description Framework (RDF)

[5] RDF is intended to describe online resources (for example PCs, applications, data)

However, RDF does not define a standardised vocabulary (or ontology) for describing

these resources The ontology used in an RDF profile to describe a PCs hardware and

software capabilities may differ from the vocabulary that a web site personalisation

application may use to represent the properties of a device trying to access the web site

content The terms used m the profile describing the device must be translated into the

semantically equivalent terms in the personalisation application's ontology

One method of performing this translation is to use a rules based schema matcher A rules

based schema matcher consists of a lookup table indicating semantically equivalent

terms, for example

Mouse=MouseDevice

Memory=Mem

Keyboard=keybrd

This is effective when we are mediating between only two sources A rules base can be

constructed manually Each term in one ontology can have a rule matching it to a

semantically equivalent term in the other ontology (if one exists) However, this approach

does not scale If we have to mediate between a large number of ontologies (as in the case

of mediating between the ontology of a web content personalisation application and the

ontologies used by every device that accesses the web content) it is not feasible to

- 100-

manually construct a rules base mapping semantically equivalent terms between the

personalisation application's ontology and this large number of device ontologies.

However, we can use heuristic algorithms to semi-automatically create mappings between

ontologies. Applications using these algorithms can suggest possible semantic mappings

which a human can accept or reject. This removes much of the tedium of mapping

between ontologies.

The Client Service Capability Matcher is an application which uses both a rules based

matcher and 3 matchers which uses heuristic algorithms (a naive bayes matcher, a

substring matcher, and a neural net matcher) to mediate between ontologies. The Client

Service Capability Matcher is a web service which can be invoked from a user’s device

via a GUI.

The application first must be supplied with the URL of the RDF file describing the

requirements for accessing target web content

(eg www.fifa.com/worldCupFinalVideoStreamHighResolution.rdf). This RDF file will

describe the hardware necessary to access the web content (eg screen size, sound support,

etc.).

Figure 4.13 : Dialog box from Client Service Capability Matcher application

C lie n t -S e r v ic e C a p a b ility M a t c h e r JnJ*J

Enter location of service's RDF file

Submit

- 101 -

http://www.fifa.com/worldCupFinalVideoStreamHighResolution.rdf

Below is an example of an RDF profile describing the requirements for accessing a web

service providing videostreamed output

Figure 4 14 RDF profile describing requirements for videostream

<rdf RDF

xmlns rdf="http //wwww3 org/1999/02/22-rdf-syntax-ns#" >

<rdf Description about=" AUDIOSTREAM">

<Sound>Soundblaster</Sound>

<RAM>128</RAM>

<NetworkSpeed>100bps</NetworkSpeed>

<CPU>486DX66</CPU>

<FileFormat>mpeg</FileFormat>

</rdf Descnption>

</rdf RDF>

Next, the URL of the web content that the device wishes to access must be provided (eg

www fifa com/worldCupFinalVideoStreamHighResolution ram)

- 102-

Figure 4.15 : Dialog box from Client Service Capability Matcher application

C lie n t -S e r v ic e C a p a b ility M a t c h e r .jsjx]

Enter URL of service you wish to access

Submit

Then, the location of the RDF file describing the access device must be supplied: Eg,

c:\metadata\device_profile.rdf

Figure 4.16 : Dialog box from Client Service Capability Matcher application

C lie n t -S e r v ic e C a p a b ility M a t e .. .

Select your device's RDF profile

Select file...
okT~

Here is an example of a profile descnbing an access device

Figure 4 17 RDF profile describing device

<rdf.RDF xmlns rdf="http //www w3 o rg/1999/02/22-rdf-syntax-ns#" >

<capabilities>

<resolution>800x600</resolution>

<Colour>16 million</Colour>

<VideoRAM>120Meg</V ideoRAM>

<RAM>1</RAM>

<Fileformatxrdf Bag>

<rdf li resource="mpeg"/>

<rdf li resource="wordf7>

</rdf Bag>

</Fileformat>

<Sound>SoundbIaster</Sound>

<OperatingSystem>Windows2000</OperatingSystem>

<NetworkSpeedx>100bps</NetworkSpeedx>

<HardDisk>60</HardDisk>

<CPU>800</CPU>

</capabilities>

</rdf RDF>

- 1 0 4 -

The RDF Parser extracts the names of elements and attributes from these profiles It must

now determine what term in the Client Service Capability Matcher’s ontology each of

these names are equivalent to

The application first consults its rule base This is a lookup table indicating which terms

in the application’s ontology are semantically equivalent The lookup table contains

mappings such as RAM=Memory, CPU=Processor, CPU=Chip Speed, etc If the

application encounters an element with the name ChipSpeed, by consulting its lookup

table it can determine that this element represents CPU

If the application cannot find the term in the rules base, the semi-automatic matchers

must determine which term it is most likely to be semantically equivalent to There are

three semi-automatic matchers a neural net matcher, a Naive Bayes matcher, and a

subsequence matcher The unknown term is input to each semi-automatic matcher, and a

composite matcher selects the semi-automatic matcher which is most likely to be correct

The Rule Generator creates new mappings in the rules base based on user interaction with

the semi-automatic matchers The rules base can thus be expanded to include mappings

which were generated semi-automatically This is a novel feature in our application

Unlike other schema matching applications, it can add new rules to the rules base based

on interaction with users

The Client Service Capability Matcher will translate the terms used m the profiles

describing the device and the web content it is trying to access to their equivalents in its

ontology The Client Service Capability Matcher will now be able to directly compare the

devices attributes with the requirements for the web content it is tiying to access The

web content provider can be informed of any ways in which the device is incompatible

with the web content

If the device is not capable of accessing web content, a personalisation application can

return a URL for web content that is suitable for the device's capabilities For example, if

the device's network connection is not fast enough to access a high quality videostream

-105 -

(www fifa com/worldCupFinalVideoStreamHighResolution ram), the personalisation

application can return a URL to a lower quality videostream that requires less bandwidth

(eg www fifa com/worldCupFmalVideoStreamLowResolution ram) The web content

provider can maintain a number of different versions of the web content, and the output

from the Client Service Capability Matcher will enable the personaliation application to

match the device to the appropriate version Customised versions of web content could

also be generated dynamically by the personalisation application The URL returned by

the Client Service Capability Matcher to the user’s device would point to these

dynamically generated pages

- 106-

5. Evaluation of architecture and implementation

5 1 Naive Bayes Matcher

The naive bayes classifier used in our architecture has also proved to be quite effective in

classifying device and software attributes taken from profiles from a wide range of

sources While testing our naive bayes matcher, it correctly identified the category to

which an unknown element belonged in 72% of cases There are however some scenarios

in which the naive bayes algorithm is not effective

Consider the scenario where we wish to classify an element with a value of “20 MB

required for Windows XP”

The Naive Bayes matcher is not be able to classify this text It considers it equally likely

to belong to the category “Operating System” as to the category “Harddisk space”,

because the text contains terms which indicate that it belongs to each of these categories

The matcher fails in this case because of its assumption of conditional independence

The variables m this example are as follows

Van able 1 Does text contain “MB”9 (TRUE/FALSE)

Variable 2 Does text contain “Windows XP”9 (TRUE/FALSE)

The outcomes that the naive bayes matcher can predict are

Outcome 1 Text belongs to “Harddisk space” category

Outcome 2 Text belongs to “Operating system” category

-107 -

In a real world scenario, Variable 1 and Variable 2 are not conditionally independent If

Variable 1 is TRUE, then the value of Variable 2 will have much less effect on the overall

probability calculation

The naive bayes matcher indicates that the text is just as likely to belong to the category

“operating system” as it is to the “harddisk space” category, even though the presence of

the letters “MB” in the text should lower the probability that the text is of type “operating

system”

Also, if the data we wish to classify contains no words that appear m the Naive Bayes

matcher’s corpus of terms, the matcher will return a probability of zero for the data

belonging to any of the categories it recognises These can raise problems, such as the

matcher being unable to identify a term because it uses an unrecognised spelling (eg color

instead of colour) or if an unrecognised abbreviation is used (eg screenRes)

In tests, the accuracy of the Naive Bayes matcher fell from 88% when categorising data

that contained data that contained clear indicators that it belonged to a particular category

(eg “64MB”) to 60% when trying to identify data which contains terms which strongly

indicate that element belongs to multiple categories (“ 19 Megabytes for the Windows

version”)

The Naive Bayes Matcher also performs poorly with lengthy data (eg “Hardware

accelerated D3D compatible 4MB video card with DirectDraw(TM) compatible driver”)

When tested with lengthy data, the accuracy of the Naive Bayes Matcher was 58%

5.2 Subsequence Matcher
The subsequence matcher uses a string similarity metnc based on the longest common

subsequence (LCS) metric

- 108-

A problem with using the LCS as a similarity metnc is that the longer a string is, the more

likely it is to contain characters forming a common subsequence with another string we

compare it to

However, we have devised a modifed LCS metnc m our application which takes into

account the length of the LCS relative to the length of the stnngs being compared, the

longer these stnngs are compared to the LCS, the lower the similanty score generated by

the subsequence matcher

As an example of the subsequence matcher in use, dunng tests (as detailed in Appendix

B), we tned to classify an element with the value “1 GB or more of available storage”

The substring matcher determined that the stnng “1 GB or more of available storage” was

most similar to the stnng “10 GB or more” in the Client Service Capability Matcher’s

ontology The stnng “10 GB or more” belongs to the categoiy “Harddnve”, so the

subsequence matcher suggests that the element with the value “ 1 GB or more of available

storage” is most likely to represent harddnve capacity

Neither the Neural Net nor the Naive Bayes matcher classified this element correctly The

Neural Net Matcher classified it as being CPU speed, and the Naive Bayes matcher did

not return a clear clear match (it calculated that it has a probability of 1 0 of belonging to

both the RAM and harddnve categones)

The subsequence matcher is the most accurate of the semi-automatic matchers for

categonsing lengthy data When tested against data which contained words strongly

indicating that element belongs to a particular category, and 6-10 other words, the

subsequence matcher had an accuracy of 83%, compared to 71% for the Neural Net

matcher and 58% for the Naive Bayes matcher Our modified LCS algonthm, which takes

into account the length of the unknown data, makes it effective m identifying substnngs

in data which strongly indicate the category to which data belongs

- 109-

The subsequence matcher performed particularly poorly however when used to classify

data which contained words which strongly indicated that the element belonged to

multiple categories It was the poorest of the three semi-automatic matchers m classifying

data belonging to this category, with an accuracy of 30% When the matcher has to

classify data such as “32 MB required for Windows 98 Operating System”, because

“Windows 98 Operating System” is longer than “32 MB”, the subsequence matcher

mistakenly categorises this as “Operating System”, instead of “RAM required”

5.3 Neural Net Matcher
Neural networks were designed with the classification of numerical data in mind As

much of the data in our domain of interest is textual, the neural network matcher is not as

accurate as the Naive Bayes and subsequence matchers (both of which perform strongly

on textual data)

However, the neural net matcher can match elements which the Naive Bayes and

subsequence matchers cannot Its inclusion m the composite matcher thus allows the

system to categorise a wider range of data

5.3.2 Neural net matcher's generalisation capabilities
Table 5 1 represents a portion of a training dataset It shows how often amounts of

megabytes occur in the context of RAM and harddisk space There are some amounts of

megabytes for which there are no occurrences in the context of either RAM or Harddisk

The Naive Bayes matcher will have difficulty classifying these amounts as being either

RAM or harddnve, there is nothing in this training data which suggests which category

they belong to

-110-

TABLE 51 Portion of training dataset

Megabytes Harddnve RAM

16MB 4 20

17MB 6 0

18MB 5 1

19MB 8 0

20MB 0 3

21MB 0 0 >

22MB 0 0

23MB 0 0

24MB 4 9

25MB 2 0

26MB 5 0

27MB 0 0

28MB 0 0

29MB 0 0

30MB 7 0

31MB 2 0

32MB 3 24

Figure 5 1 shows the output returned by the naive bayes matcher trained with this dataset,

indicating the probability that the terms along the X-axis are of type Harddnve or of type

RAM It can be seen that the naive bayes matcher returns values of 0 for inputs in the

ranges 21 -23MB and 27-29MB It is unable to determine what category these values of

megabytes are most likely to belong to

- i l l -

The neural net doesn’t have this problem, it is able to generalise, and can produce a

function which “fills in” the holes m the dataset

Figure 5 1 output from naive bayes matcher on dataset from table 5 1

Figure 5 2 shows the output returned by the neural network trained with this dataset It

doesn’t return values of 0 for both RAM and harddnve when asked to classify 21-23MB

and 27-29MB The neural net is able to generalise from the training data and can “fill the

gaps” m the data to create an approximation of the desired function

- 1 1 2 -

Figure 5.2 : output from naive bayes matcher on dataset from table 5.1

— Harddrive

 RAM

In addition to their ability to generalise, neural networks can perform matches in

situations where a naïve bayes or a subsequence matching approach would fail. For

instance, during testing the Naïve Bayes and subsequence matchers incorrectly classified

the text “65 MB required for Windows 2000 compatible version”.

The Naïve Bayes matcher considered it equally likely to belong to the category

“Operating System” as to the category “Harddisk space”, because the text contains terms

which indicate that it belongs to each of these categories.

The subsequence matcher also classifies the element as belonging to the “Operating

System” category.

However, the neural net matcher successfully classified this text as “Harddisk space”,

because it has learned that if text contains “65 MB” it is most likely to belong to this

category, regardless of what other text appears in the input string.

5.4 Composite Matcher
We use a composite matcher in order to classify as broad a range of element values as

possible For example, if we want to classify x

<x>Soundblaster</x>

The Naive Bayes matcher would easily identify x as representing "Soundcard" The Naive

Bayes algorithm works best when the data it is trying to identify contains words that give

a strong indication of the category the data belongs to

But, if we want to classify

<x>Sndblster</x>

The Naive Bayes matcher may have difficulty classifying this If the term "Sndblster"

does not appear in the Naive Bayes matcher's corpus of terms, it cannot identify the

category x belongs to

The subsequence matcher, however, could correctly identify x as belonging to the

category "Soundcard" Sndblster is a subseqence of Soundblaster, which is a term that

strongly indicates that the element represents "soundcard"

We have also seen in the previous section (5 3 2) that the neural network matcher’s

ability to generalise from its training data enables it to identify elements in situations

where the Naive Bayes matcher or the subsequence matcher cannot

There are many such scenarios where one matcher can identify elements when one or

both of the other matchers cannot

- 114-

By selecting the output from other matchers when the naive bayes matcher cannot

categonse the input data, the composite matcher can categonze a wider range of data than

any of the individual matchers

5.5 Evaluation of system

The Naive Bayes algorithm is highly effective at categorising textual data However, it

was found during testing that there were some circumstances under which it was

ineffective

Text contains different terms which are strongly indicative that the text belongs to

multiple categories

Text contains no terms which appear in the matcher’s corpus

Under these circumstances the matcher would give ambiguous results In the first

scenario, the matcher would assign a probability of 1 0 to multiple categories For

example, when the Naive Bayes matcher tries to classify “Server class machine with

512MB RAM”, it calculates that the probability of this belonging to the categories RAM

and Harddnve are both 1 0 In the second scenario, the Naive Bayes Matcher assigns a

probability of 0 to every category

The Neural Net matcher can generalise It can “fill-in” holes in the training dataset This

means that even if it is trying to categonse data that does not appear m its training data, it

can make inferences from the dataset and return a prediction based on this It also does

not return probabilities of 1 0 for multiple categones when the data it is trying to

categonse contains terms indicating that it belongs to multiple categones The Neural Net

matcher can successfully categonse data under both of the circumstances that the Naive

Bayes cannot

The substnng matcher is the most effective of the three matchers at categonsing unknown

elements with lengthy textual values

- 1 1 5 “

Each of the matchers can correctly categonse data which one or both of the other

matchers cannot This is illustrated in the results obtained when the application was tested

(see Appendix B) When the results returned by the individual matchers are not

unanimous, the composite matcher picks the result that is statistically most likely to be

correct Results obtained during testing clearly indicate that the accuracy rate of the

composite matcher is higher than any of the individual matchers Using the composite

matcher to select the individual matcher application which is most likely to be correct

enables the application to categonse a wider range of data than a single matching

algonthm

- 1 1 6 -

6. Results
Using Google, we searched for random web pages which described hardware

requirements for software applications The schema matcher was tested with data from

these pages representing the following device attributes

• CPU

• Harddnve space

• RAM

• Operating System

• Colour Depth

• Resolution

• Sound

• Video Card

• Network Connection

The test cases were text strings describing the device attributes above, and were grouped

according to difficulty The more words in the input, the more difficult it is to classify

For example, the matcher categorises “128MB” with a greater degree of certainty than “It

is recommended that you have at least 128 MB for Windows 2000’ , because there is less

“noise” in the form of extra words

CATEGORY 1 (EASIEST)

Data contains words strongly indicating that data belongs to a particular category, and

little else Eg “128 MB”, “300 Mhz”, “Soundblaster”

CATEGORY 2

Data contains words strongly indicating that data belongs to a particular category, and 1-5

other words Eg “300 Mhz or greater”, “1 5 GB Disk space for setup”, “ 100MB of free

space or greater”

- 1 1 7 -

CATEGORY 3

Data contains words strongly indicating that element belongs to a particular category, and

6-10 other words Eg “ 150 MB free hard disk space plus space for saved games”, “Your

system should have at least 32 Mb RAM”

CATEGORY 4 (HARDEST)

Instance level data contains words which strongly indicate that element belongs to

multiple categones For example, “233 MHz or faster for Windows 2000”, “Sound card

supported under Windows NT”

For testing, the Client Service Capability Matcher had to classify 181 unknown elements

based on their values This is a breakdown of how many of these elements belonged to

each category

CATEGORY 1 33

CATEGORY 2 85

CATEGORY 3 48

CATEGORY 4 15

Appendix B of this thesis contains the data used for testing, and what each of the semi

automatic matchers and the composite matcher classified these unknown elements as

The test data was selected from a wide range of heterogeneous sources, so that the tests

would be a reflection of the systems effectiveness m a real-world scenano, where it

would be mediating between many different data sources It also contains test cases that

provide a range of different challenges for the matchers, in order to demonstrate the

application’s effectiveness with different data posmg a vanety of challenges Some

examples of the kinds of test data used are

-118-

Abbreviations of terms in the rules base

Misspellings of terms in the rules base

Terms which are not present in the rules base

Data containing terms indicating that the data belongs to multiple categones

Vague data, with no terms strongly indicating that the data belongs to a particular

category

Long data, which has a greater probability of being incorrectly classified (the terms which

are strong indicators of the category the data belongs to are buned m “noise”)

The procedure for compiling the initial rules base was as follows

Determine the attnbutes that represent the properties of devices and web content

(eg screen resolution, network speed, sound support) These represent the “canonical

form” of element names in device/web content profiles

For each “canonical form” of a device/web content attribute, create rules in the rules base

matching the canonical form of an attribute to a synonym (RAM=Memory,

HardDisk=HardDnve)

Table 6 1 shows the performance of the matchers on each category of test data

When creating the training data for the individual matchers, we sought to maximise the

accuracy of the composite matcher, not the accuracy of the individual matchers The

figures for these matchers do not indicate the optimum performance of these algonthms

- 1 1 9 -

Table 61 Test results for matchers

Test Data Neural Net Naive Bayes Subsequence

Matcher

Composite

Matcher

Category 1 30/33 (91%) 29/33 (88%) 24/33 (73%) 30/33 (91%)

Category 2 59/85 (69%) 69/85 (81%) 72/85 (85%) 80/85 (94%)

Category 3 34/48 (71%) 28/48 (58%) 40/48 (83%) 43/48 (90%)

Category 4 14/15 (93%) 9/15 (60%) 6/15 (30%) 13/15(87%)

We observe that the the composite matcher maintains a consistent level of accuracy for

all lengths of input data The performance of the individual matchers however, fluctuates

with the length of the input For categones 1,2 and 3 of test data, the composite matcher

is at least as accurate (and in most cases more accurate) than any of the individual

matchers, illustrating the benefits of combining the results of the individual matchers The

composite matcher performed slightly worse than the neural net matcher in test cases

belonging to category 4 The composite matcher had an accuracy rate of 87% compared

to the neural net matcher’s accuracy rate of 93% When we consider that the Naive Bayes

matcher’s accuracy rate in this category was 60% and the subsequence matcher’s

accuracy rate was 30% however, the effectiveness of the composite matcher’s algorithm

for deciding which of the three matcher’s is most likely to be correct is clear

Category 4 is different from the first three categones, it is a set of test cases that are

difficult not because of their length, but because they contain terms that strongly indicate

the data belongs to multiple categones (eg “128MB RAM for Windows 2000”) The

neural network matcher performs the strongest here, illustrating that its ability to

generalise allows it to make matches in situations where the naive bayes matcher and the

substnng matcher fail

New rules were successfully added to the rules base based on the output from the semi

automatic matchers If an element from a device/web content profile had a name that did

not appear in the Client Service Capability Matcher’s ontology, and a mapping between

- 120-

this element and an element in the Client Service Capability Matcher’s ontology was

suggested by the Composite Matcher to the user three times, the Rule Generator created a

new rule indicating that these two elements were semantically equivalent The

performance of the Client Service Capability Matcher when processing profiles from

sources using this previously unknown element was improved because the Client Service

Capability Matcher could now automatically match this element to a term in its own

ontology without invoking the semi-automatic matchers The rules based matcher is

quicker than the semi-automatic matchers, and does not require a human user to accept or

reject its matches

Considering that neither the number of ontologies the Client Service Capability Matcher

mediates between nor the terms contained in these ontologies is specified, we cannot

guarantee that the rules based matcher will ever be able to automatically match all

elements between all ontologies (it is doubtful that even a human could) However,

through the addition of new rules to the rules based matcher the Client Service Capability

Matcher was able to match terms in ontologies that it could not beforehand, illustrating

the ability of the system to improve its performance by updating the rules base based on

user interaction with the semi-automatic matchers

- 121 -

7. Conclusions and future work
There are many ontologies representing device and web content properties in existence,

for example the ontologies used by UPnP[29], FIPA Device Ontology Specification[30],

OWL-S [31] There are also a variety of technologies whose purpose is to descnbe

devices and web content (eg UDDI [36], CC/PP [37], Jim [38], Service Location

Protocol [39]) We manually examined the ontologies used by these various

specifications These ontologies are not standardised, they may use different terms to

represent the same concepts/objects One ontology might represent a device’s memory by

using the term 'RAM’, where another may use the term ‘Memory’ Some specifications

do not prescribe the use of a particular vocabulary, and to some extent allow the users to

use whatever vocabulary they wish (eg CC/PP, Jim)

It is difficult to construct applications which recognise the meaning of terms from all

these sources without explicit rules declaring semantically equivalent terms

The W3C’s Device Independence activity [1] recommends that web-content be tailored

according to the audio-visual capabilities and the input/output modalities available to

each device This personalisation of web content must be carried out by applications

which access metadata descnbing both the device and the web-content it is accessing to

determine what changes (if any) to the web-content are required to enable the user of the

device to access the web-content In the absence of standardised ontologies for descnbing

devices and web-content, personalisation applications will frequently encounter meta-data

that they cannot understand, and they will be unable to determine what (if any)

transformations to the web-content are necessary

In this thesis we have descnbed an architecture which can process device and web service

RDF profiles using non-standardised ontologies, and identify semantic mappings between

element names used m these profiles, and its own ontology The system checks to see if

an element name is present in its ontology If it is not, it consults a combination of semi

automatic matchers (a naive bayes matcher, a neural net matcher, and a subsequence

matcher) in order to determine what term in its ontology the unknown element name is

- 1 22 -

most likely to be semantically equivalent to New semantic mappings can be added to the

ontology based on interaction with the end-user

The following components form the Client Service Capability Matcher

js s An RDF parser, which takes as input an RDF document and extracts the names of

elements and the values associated with them RDF was chosen as the language for

describing devices and services because it is sufficiently expressive not only to model

existing devices and services but also those which may appear in future

js s A rules based matcher, which is a lookup table indicating semantic mappings between

terms This is an ontology of terms in the domain of device capabilities and

requirements

If an element name in an RDF profile is not present in the table used by the rules based

matcher, three semi-automatic matchers are used to suggest possible mappings between

the unknown term and terms in the system's ontology, based on the value associated with

the unknown term These semi-automatic matchers are

jes A Naive Bayes matcher, which uses a probabilistic algorithm based on Bayes

Theorem, which has been widely used in text classification problems

jgs A Subsequence matcher, based on the Longest Common Subsequence (LCS)

algorithm The LCS is computed between an unknown term and every term in the

system's ontology The LCS is used as part of a calculation which takes into account

the length of the unknown term in order to generate a similarity score between the two

terms being compared The term m the ontology which has the highest similarity score

with the unknown term is chosen by the subsequence matcher as being the most likely

to be semantically equivalent to the unknown term

jb$ A Neural Net matcher, implementing the neural net algorithm to classify data The

Neural Net matcher converts textual data into numeric data in order to classify it

- 123 -

jes The composite matcher decides which of the results returned by the three semi

automatic matchers is most likely to be correct, and suggests this to the end user as a

possible match for the unknown term

jss The rule generator creates new mappings m the rules base based on user interaction

with the semi-automatic matchers The system’s ontology will grow to include

previously undefined terms This is a feature which is not present in the schema

matching tools m existence at present

jbs The compatibility gauge evaluates the device's compatibility with the service based on

the attributes retrieved from the RDF documents describing them by the rules based

and semi-automatic matchers

Applications such as the Client Service Capability Matcher enable personalisation

applications to process metadata from a wide range of heterogeneous sources, and can aid

machines to perform the labour-intensive task of customising web-content for individual

devices

For average test cases (test categories 1-3), our schema matching application was

successfully able to categonse 92% of test cases, while it had an accuracy of 87% in cases

where the input contained terms indicating the data belonged to multiple categories

The composite matcher’s level of performance was consistent when deployed against data

from heterogeneous sources The test data was obtained from random web-pages

describing device specifications and requirements for applications The composite

matcher’s performance also remained consistent when it was tested with simple test cases

(eg 4128MB’) and when it was tested with more difficult test cases where the input was

longer and/or contained terms which indicated the input belonged to multiple categories

(eg ‘64 Megabytes on Windows 95 or 98, 128 Megabytes on Windows NT’) The

composite matcher was also more accurate than any of the individual matchers m most

cases, and was quite effective in determining which of the results provided by the three

-124 -

semi-automatic matcher’s was most likely to be correct The results obtained during

testing (outlined in chapter 6) clearly show the effectiveness of our application

7.1 Suggested improvements

Some terms m a device/service profile may map to more than one term m our ontology

For example, the term 41024x768 resolution with 16-bit colour’ maps to two terms in our

ontology, resolution (‘ 1024x768 resolution’) and colour (’ 16-bit colour’) At present only

1-1 matches can be made between elements in profiles and the Client Service Capability

Matcher’s ontology Implementing n-1 mappings is an area requinng further research m

this area

The following steps could also be taken to increase the accuracy of the neural net

matcher

• Create a larger training set At present, the training set consists of 988 examplars

For a neural net with 59 inputs, a larger training set may improve the accuracy of

the neural net

• Compare the input data to a different set of terms Perhaps if we generate

similarity scores for a larger, or more varied, set of terms, the accuracy and

generalisation ability of the neural net will be improved

• Different net architecture We have not experimented with different net

architectures Using neural nets with different numbers of hidden layer nodes, or

more than one hidden layer, may improve the matchers performance

- 125-

We also plan to investigate if enlarging the corpus of terms for the Naive Bayes and

Subsequence matchers will improve their accuracy

The data that the matcher uses to tram the neural net and to perform matches using the

Naive Bayes and Subsequence matchers must be updated periodically The semi

automatic matchers suggest matches based only on this data This data must be

representative of the unknown terms likely to be encountered The data should be

constantly updated to reflect this Gathering all the necessary data can be a time-

consuming process For the purposes of testing this system, data was obtained from web

pages Ensuring that the data is properly prepared for the neural net matcher is also time-

consuming The input file representing the neural net’s training data must be carefully

prepared, the order that data appears in this file greatly affects the neural net’s

performance, so care must be taken when preparing this file Further research is required

into how this training data can be updated automatically

The composite matcher always suggests a match for unknown elements m a profile, even

if the unknown element does not belong to any of the categories the matcher identifies A

further improvement to the application would be to enable it to recognise elements which

do not belong to any of the categories it recognises, and to not generate semantic

mappings for these unknown elements

The Semantic Web is an area m which semi-automatic schema matching techniques are

of value Web-content on the Semantic Web is annotated with metadata that allows

machines to “understand” the semantic meaning of that data, and to reason about and

process data from a wide range of heterogeneous sources in ways that machines currently

cannot The widespread annotation of metadata to web-content will result in a

proliferation of ontologies There are a number of research efforts aiming to produce

means of expressing these ontologies (eg OWL, DAML-S, DARPA Agent Markup)

- 126-

It is desirable that the performance of schema-matching applications improves over time

Our application can add new rules to its ontology based on users interaction with the

semi-automatic matcher However, this feature can be abused by those who wish to

manipulate the behaviour of the matcher (for example, by creating false mappings) More

work is needed to devise mechanisms that allow the performance of the system to be

improved by the interaction with end users, while not permitting end users to create fake

mappings

The generation of N 1 mappings semi-automatically is also a direction that further

research in the field of schema matching will follow

Using schema matching techniques to perform matches between large numbers of data

sources is also an avenue that deserves further investigation At present, schema matching

systems are used to mediate between relatively small numbers of data sources Deploying

schema matching applications on the internet will require them to be scalable m terms of

both the number of data sources that semantic mappings are being made between and the

size of those sources

- 127 -

8. References:

[1] W3C Device Independence Working Group, Device Independence Principles W3C

Working Group Note 1 September 2003 http //www w3 org/TR/2003/NQTE-di-pnnc-

20030901/ (accessed 5 December 2003)

[2] M Frank, P Szekely, and R Neches a Baoshi Yah a Juan Lopez Web- scnpter

World-wide grass-roots ontology translation via implicit enduser alignment In M Frank,

N Noy, and S Staab, editors, Proceedings of the Semantic Web Workshop 2002

[3] M Dean, G Schreiber, S Bechhofer, F v Harmelen, J Hendler, 1 Horrocks, D

McGuinness, P Patel-Schneider, L Stem Web Ontology Language (OWL) Reference

Version W3C Candidate Recommendation 18 August 2003 http //www w3 org/TR/owl-

ref/ (accessed 5 December 2003)

[4] E Miller, Semantic Web Activity Statement 9 November 2003

http //www w3 org/2001/sw/Activitv Accessed 5 December 2003

[5] W3C RDF Model and Syntax Working Group, Resource Description Framework

(RDF) Model and Syntax Specification, W3C Recommendation 22 February 1999

http //www w3 org/TR/REC-rdf-svntax/ (accessed 5 December 2003)

[6] P Mitra, G Wiederhold, and J Jannink Semi-automatic integration o f knowledge

sources In Proc of the 2nd Int Conf On Information FUSION'99, 1999

[7] Tova Milo and Sagit Zohar Using schema matching to simplify heterogeneous data

translation In Proc of the Int Conf on Very Large Data Bases (VLDB), New York City,

USA, 1998

- 128 -

[8] A Doan, P Domingos, and A Levy Reconciling Schemas o f Disparate Data

Sources A Maching-Learmng Approach In SIGMOD, pages 509-520,2001

[9] Li W, Clifton C Semlnt A Tool for Identifying Attribute Correspondences in

Heterogeneous Databases Using Neural Network Data and Knowledge Engineering 33

1,49-84, 2000

[10] D Hirschberg Serial Computations of Levenshtem Distance In Pattern Matching

Algorithms Oxford University Press, 1997

[11] J Madhavan, P Bernstein, and E Rahm Generic Schema Matching with Cupid In

Proceedings of the International Conference on Very Large Databases (VLDB), 2001

[12] D D Lewis Naive Bayes at forty The independence assumption in information

retrieval In ECML-98 Proceedings of the Tenth European Conference on Machine

Learning, pages 4—15, Chemnitz, Germany, Apnl 1998 Springer

[13] Peng, F and Schuurmans, D , (2003) Combining Naive Bayes and n-Gram

Language Models for Text Classfication submitted to The 25th European Conference on

Information Retneval Research (ECIR)

[14] A McCallumandK Nigam 1998 A comparison of event models for naive Bayes

text classification In AAAL98 Workshop on Learning Jor Text Categorization Tech rep

WS-98-05, AAAI Press http //www cs emu edu/Nmccallum

[15] W W Cohen and H Hirsh Joins that generalize Text classification using whirl In

Proc of the Fourthlnt Conf on Knowledge Discovery and Data Mimng (KDD-98), 1998

- 129-

[16] P Domingos and M Pazzani Beyond independence Conditions for the optimality

of the simple Bayesian classifier In Proceedings of the Thirteenth International

Conference on Machine Learning, pages 105-112, Ban, Italy, 1996 Morgan Kaufmann

[17] Teuvo Kohonen Adaptive, associative, and self-organizing functions m neural

computing Applied Optics, 26 4910-4918, 1987

[18] M Sahami, S Dumais, D Heckerman, E Horvitz A Bayesian Approach to Filtering

E-Mail Learning for Text Categonzation - Papers from the AAAI Workshop, pages 55-

62, Madison Wisconsin AAAI Technical Report WS-98-05

[19] G Escudero, L M arquez, and G Rigau Naive Bayes and Exemplar-Based

Approaches to Word Sense Disambiguation Revisited Proceedings of the 14th European

Conference on Artificial Intelligence, ECAI, Berlin, Germany, 2000

[20] R Chinnici, M Gudgin, J Moreau, J Schlimmer, S Weerawarana, Web Services

Descnption Language (WSDL) Version 2 0 Part 1 Core Language, W3C Working Draft

10 November 2003 http //www w3 org/TR/wsdl20/ (accessed 9 February 2004)

[21] T Bray, J Paoli, C M Sperberg-McQueen, E Maler, F Yergeau, Extensible

Markup Language (XML) 1 0 (Third Edition), W3C Recommendation 4 February 2004

http //www w3 org/TR/2004/REC-xml-20040204/ (accessed 9 February 2004)

[22] N Mitra, SOAP Version 1 2 Part 0 Primer, W3C Recommendation 24 June 2003

http //www w3 org/TR/soapl2-partO/ (accessed 9 February 2004)

[23] R Chinnici, Java(TM) API for XML-Based RPC Specification 1 1 Final Draft, 21

April 2003 http //java sun com/xml/downloads/jaxrpc html#jaxrpcspec09 (accessed 9

February 2004)

- 130 -

[24] E Armstrong, Java API for XML Processing

http //java sun com/webservices/docs/1 O/tutonal/doc/JAXPIntro html (accessed 9

February 2004)

[25] ANSI X 3 135-1992, American National Standard for Information Systems -

Database Language SQL, American National Standards Institute, New York, 1992

[26] JDBC API, Sun Microsystems,http //www javasoft com/products/jdbc/ (accessed 13

February 2004)

[27] Jude W Sharvik, Thomas G Diettench Readings in Machine Learning Morgan

Kaufmann, 1990

[28] Java Object Oriented Neural Engine API, http //www looneworld com/ (accessed 13

February 2004)

[29] UPnP Forum, UPnP Basic Device Definition vl 0, 12 December 2002

http //www upnp org/standardizeddcps/documents/BasicDevice-1 0 pdf (accessed 16

June 2004)

[30] Foundation for Intelligent Physical Agents, FIPA Device Ontology Specification, 10

May 2002 http //www fipa org/specs/fipa00091/xc00091c pdf (accessed 16 June 2004)

[31] Web Ontology Working Group, W3C, OWL-S Semantic Markup for Web Services,

November 2003, www daml org/services/owl-s/1 0/owl-s pdf (accessed 16 June 2004)

[32] J Clark, XSL Transformations (XSLT) Version 1 0, 16 November 1999,

http //www w3 org.TR/xslt (accessed 18 September 2004)

- 131 -

[33] R Lewis, Authoring Challenges for Device Independence, W3C Working Group

Note 1 September 2003, http //www w3 org/TR/2003/NQTE-acdi-20030901/ (accessed

18 September 2004)

[34] R Hanrahan, R Memck Authoring Techniques for Device Independence, W3C

Working Group Note 18 February 2004, http //www w3 org/TR/2004/NQTE-di-atdi-

20040218/ (accessed 18 September 2004)

[35] T Bray, D Hollander, A Layman Namespaces in XML, 14 January 1999,

http //www w3 org/TR/REC-xm 1 -names/ (accessed 18 September 2004)

[36] T Bell wood, L Clement, C Von Riegen, UDDI Version 3 0 1, UDDI Spec

Technical Committee Specification, 14 October 2004, http //uddi org/pubs/uddi-v3 0 1 -

20031014 htm (accessed 18 September 2004)

[37] G Klyne, F Reynolds, C Woodrow, H Ohto, J Hjelm, M H Butler, L Tran,

Composite Capability/Preference Profiles (CC/PP) Structure and Vocabularies, W3C

Working Draft 25 March 2003, http //www w3 org/TR/2003/WD-CCPP-struct-vocab-

20030325/ (accessed 18 September 2004)

[38] Jim Technology Core Platform Specification,

http /wwws sun com/software/jini/specs/ (accessed 18 September 2004)

[39] E Guttman, C Perkins, Service Location Protocol Version 2, June 1999,

http //www openslp org/doc/rfc/rfc2608 txt (accessed 18 September 2004)

[40] K M Ting, 1 H Witten Issues in stacked generalization Journal of Artificial

Intelligence Research, 10 271-289, 1999

[41] M R Genesereth, R E Fikes, Knowledge Interchange Format, Reference Manual,

1992

[42] A LeHors, I Jacobs D Raggett, HTML 4 01 Specification, W3C Recommendation

24 December 1999, http //www w3 org/TR/htm!4/. (accessed 18 September 2004)

[43] Java Web Services Development Pack,

http //iava sun com/webservices/iwsdp/index isp. (accessed 18 September 2004)

[44] Java Remote Method Invocation, http //iava sun com/products/idk/rmi/. (accessed 18

September 2004)

- 132 -

Here follows a sample WSDL document It descnbes a web service which returns the

temperature in an area when given that area’s zip-code

<9xml version^l 0f encoding=fUTF-8! 9>

<T— Generated 08/16/01 by Microsoft SOAP Toolkit WSDL File Generator, Version

1.02 813 0 ->

<defimtions name =*VB6WeatherT

targetNamespace = Thttp //tempuri org/wsdl/?

xmlns wsdlns=!http //tempuri org/wsdl/'

xmlns ty pen s=f http //tempuri org/type?

xmlns soap=fhttp //schemas xmlsoap org/wsdl/soap/'

xmlns xsd-http //wwww3 org/2001/XMLSchema’

xmlns stk-http //schemas microsoft com/soap-toolkit/wsdl-extension'

xmins=,http //schemas xmlsoap org/wsdl/f>

<types>

<schema targetNamespace^'httpV/tempuri org/type*

xmlns=fhttp //www w3 org/2001/XMLSchema1

xmlns.SOAP-ENC^http //schemas xmlsoap org/soap/encoding/'

xmlns wsdl=,http //schemas xmlsoap org/wsdl/1

clementFormDefault=’qualified’>

</schema>

</types>

<message name=?VB6Weather GetTemperature^

<part name=’zipcode’ type='xsd strmg7>

<part name='celsius' type='xsd boolean’/>

</message>

Appendix A : Sample WSDL Document

- 1 3 3 -

<message name='VB6Weather GetTemperatureResponse'>

<part name=tResult? type=,xsd floatV>

</message>

<portType name=?VB6WeatherSoapPortf>

<operation name=,GetTemperatureT parameterOrder=!zipcode celsiusf>

<input message=Twsdlns VB6Weather GetTemperature* />

<output message=Vsdlns VB6Weather GetTemperatureResponse' />

</operation>

</portType>

<binding name=fVB6WeatherSoapBlndI^g, type=VsdIns'VB6WeatherSoapPortf
>■

<stk binding preferredEncodmg^UTF-S'^

<soap binding

style^rpc'

transport^ http //schemas xmlsoap.org/soap/httpf />

<operation name^GetTemperature' >

<soap operation

soapAction=*http //tempun org/actlon/VB6Weather.GetTemperature, />

<mput>

<soap body use='encoded' namespace='http //tempun org/message/1

encodingStyle=,http //schemas xmlsoap org/soap/encoding/' />

</input>

<output>

<soap'body use=' encoded' namespace=fhttp //tempu ri.org/message/'

encodingStyle^'http //schemas xmlsoap org/soap/encoding/f f>

- 134-

</output>

</operation>

</bmdmg>

<service name=tVB6WeatherT >

<port

name='VB6WeatherSoapPortf

binding='wsdlns VB6WeatherSoapBinding? >

<soap address loca tion=f http //loca]host/webtest/vb6weather/VB6Weather.ASP’

/>

</port>

</service>

</defimtions>

- 135 -

Appendix B: Test Results

Category 1 Test Results

Test data Category
of test data

Neural Net
Result

Naive
Bayes
Result

Substnng
Matcher
result

Did the
composite
matcher
pick the
right
result^

Pentium 300 MHz CPU CPU CPU CPU YES
128 MB RAM RAM RAM RAM VideoRAM YES
32-bit O/S - Windows
XP, ME, 2000, 98, or
NT 4 0

Operating
System

Operating
System

Operating
System

Colour YES

64MB RAM RAM RAM RAM RAM YES
Pentium 600 MHz CPU CPU CPU CPU YES
128 MB RAM RAM RAM RAM VideoRAM YES
Windows 98 Operating

System
Operating
System

Operating
System

Operating
System

YES

32 MB RAM RAM RAM RAM VideoCard YES
Microsoft Windows
95/98/NT/2000/XP/M
E

Operating
System

Operating
System

Operating
System

Harddnve YES

8MB RAM RAM RAM Video
Card

VideoRAM NO

266 MHz Pentium CPU CPU CPU CPU YES
Windows 98, ME,
2000, or XP

Operating
System

Operating
System

Operating
System

Operating
System

YES

50MB available Harddnve Harddnve Harddnve Harddnve YES
16-bit (high colour) Colour Colour Colour Video Card YES
800 X 600 resolution Resolution Resolution Resolution Resolution YES
16-bit sound card Sound Sound Sound Sound YES
56 6 kb/s modem or
LAN connection

Network
Connection

Sound Network
Connection

Network
Connection

YES

Pentium 90 CPU CPU CPU CPU YES
16 MB of RAM RAM RAM RAM Video

RAM
YES

14 4 Kbps Network
Connection

Network
Connection

Network
Connection

Network
Connection

YES

16 MB RAM Video
RAM

RAM Video
RAM

YES

64MB RAM RAM RAM RAM RAM YES

- 1 3 6 -

Windows NT Operating
System

Operating
System

Operating
System

Operating
System

YES

VGA (640x480) Resolution Resolution Video
Card

Resolution NO

486DX/66 MHz CPU CPU CPU CPU YES
MS Windows 98, NT
or 2000

Operating
System

Operating
System

Operating
System

Operating
System

YES

64 MB of ram RAM RAM CLASH RAM YES
Windows 95/98 or
Windows NT/2000

Operating
System

Operating
System

Operating
System

Operating
System

YES

800 MHz CPU CPU CPU CPU CPU YES
9 GB Harddnve Resolution Harddnve Harddnve YES
Windows 95/98/NT
operating system

Operating
System

Operating
System

Operating
System

Operating
System

YES

800 MHz processor CPU CPU CPU CPU YES
45 MB Harddnve Harddnve RAM Harddnve NO

Accuracy of matchers with category 1 test data

Neural Net Naive Bayes Subsequence
Matcher

Composite Matcher

30/33 (91%) 29/33 (88%) 24/33 (73%) 30/33 (91%)

Category 2 Test Results

Test data Category of
test data

Neural Net
Result

Naive
Bayes
Result

Substnng
Matcher
result

Did the
composite
matcher
pick the
nght
result^

200 MB available

disk space

Harddnve Harddnve Harddnve Harddnve YES

Windows(R) 95

or Windows 98

(Windows NT is

Operating

System

Operating

System

CLASH Operating

System

YES

- 1 3 7 -

not supported)

Sound card with

DirectSound(TM)

support

Sound Sound CLASH Sound YES

300 MHz or

faster Pentium

processor

CPU CPU CPU CPU YES

800 X 600 or

Higher

Resolution Resolution Video Card Resolution NO

Pentium 200

MHz or higher

CPU CPU CPU CPU YES

Windows 98,

Windows 98SE*,

Windows Me,

Windows 2000,

or Windows XP

(Home and Pro)

Operating

System

Operating

System

Operating

System

Operating

System

YES

70MB free disk

space

Harddnve Harddnve Harddnve Harddnve YES

Windows 2000

Professional

Operating

System

Operating

System

Operating

System

Operating

System

YES

56k V 90 modem

or network

Internet

connection

Network

Connection

Sound Network

Connection

Network

Connection

YES

300MHz Pentium

11® or faster

CPU CPU CPU CPU YES

30MB free disk

space

Harddnve Harddnve Harddnve Harddnve YES

- 138 -

64 MB RAM (

minimum)

RAM RAM Video Card RAM NO

Microsoft

Windows®

NT/2000

(preferred) or

Windows 9x

Operating

System

Operating

System

Operating

System

Operating

System

YES

10 MB of hard

disk space

Harddnve Harddnve Harddnve Harddnve YES

56kbps Modem

or higher

Network

Connection

RAM Network

Connection

Network

Connection

YES

150 MB Free

Hard Drive Space

Harddnve Harddnve Harddnve Harddnve YES

32 MB

Accelerated

Video Card w/

Open GL

Video Card Video RAM Video Card Video Card YES

Pentium based

processor or

better (300Mhz)

CPU CPU CLASH CPU YES

150 Free Hard

Drive Space

Harddnve Video Card Harddnve Harddnve YES

Server class

machine with

512MB RAM

RAM RAM CLASH Operating

System

NO

Pentium III, 450

MHz or higher

processor

CPU CPU CPU CPU YES

Pentium III 800 CPU CPU CPU CPU YES

-139 -

MHz Dual

Processor

Pentium-class,

minimum 133

MHz (megahertz)

or faster

CPU Harddnve CPU CPU YES

28 8/33 6

(kilobits per

second)

minimum

Network

Connection

CPU Network

Connection

Network

Connection

YES

8 Mb of memory RAM VideoRAM RAM RAM YES

300 mhz or

greater

CPU CPU CPU CPU YES

500 MB Hard

Drive

Harddnve Harddnve Harddnve Harddnve YES

Windows 95 or

higher

Operating

System

CPU Operating

System

Operating

System

YES

20 MB of disk

space

Harddnve Harddnve Harddnve Harddnve YES

Requires 10 MB

of disk space

Harddnve Network

Connection

Harddnve Harddnve YES

Pentium 233MHz

processor or

higher

CPU CPU CPU CPU YES

64MB RAM or

more

RAM RAM RAM RAM YES

Pentium 400

MHz or more

CPU CPU [CPU CPU YES

15 MB free hard Harddnve Harddnve Harddnve Harddnve YES

- 140-

disk space

Intel Pentium-II

350 system or

faster

CPU CPU CLASH CPU YES

Disk space for

setup 1 5GB

Harddnve Colour Harddnve Harddnve YES

6 MB of disk

space

Harddnve Harddnve Harddnve Harddnve YES

SoundBlaster (or

equivalent) sound

card

Sound Sound Sound Sound YES

Pentium-II

300Mhz

CPU CPU CPU CPU YES

Windows 95 or

higher or NT4

Operating

System

CPU Operating

System

Operating

System

YES

128 MB or higher RAM RAM RAM Video RAM YES

28 8 kbps modem

or faster

Network

Connection

Sound Network

Connection

Network

Connection

YES

300 Pentium II or

higher

CPU Resolution CPU CPU YES

1 Gig or larger Harddnve Colour Harddnve Harddnve YES

Resolution

800x600 or

higher

Resolution Resolution CLASH Resolution YES

15 Megabytes of

hard dnve space

Harddnve Harddnve Harddnve Harddnve YES

A 266Mhz

Pentium II

processor or

CPU CPU CLASH CPU YES

- 141 -

better

A 16MB

OpenGL

compatible

Graphics card

Video Card Video Card Video Card Video Card YES

800x600 or larger

color display

Resolution Colour CLASH Resolution NO

16 megs RAM or

more

RAM RAM CLASH VideoRAM YES

100MB of free

space minimum

Harddnve Harddnve Harddnve Network

Connection

YES

20 GB Hard

Dnve

Harddnve Video Card Harddnve Harddnve YES

2 GB or greater Harddnve Resolution Harddnve Harddnve YES

Intel Pentium II

233mhz or

equivalent

CPU CPU CLASH CPU YES

Intel Pentium

II/Celeron

300mhz or higher

CPU CPU CPU CPU YES

50MB for

software and

index

Harddnve Harddnve Harddnve Harddnve YES

56 6k Dial-up

connection or

faster

Network

Connection

Resolution Network

Connection

Network

Connection

YES

32 MB or more RAM RAM RAM Video RAM YES

800 X 600 or

higher

Resolution Resolution Resolution Resolution YES

- 142-

Pentium Celeron

500 MHz

CPU CPU CPU CPU YES

At least a Network Network Network Network YES

connection at

57 6 kbps

Connection Connection Connection Connection

200 Megahertz

Pentium-class or

better

CPU RAM CLASH CPU YES

Minimum for

text-mode 32MB

RAM RAM Harddnve CPU NO

VGA graphics

(640 by 480 dots)

Video Card Video Card CLASH Video Card YES

1 GB available

disk space

Harddnve CPU Harddnve Harddnve YES

display monitor

capable of

1024x768

resolution

Resolution Video Card Resolution Resolution YES

80MB of

available hard

disk space

Harddnve Harddnve Harddnve Harddnve YES

Sound Blaster®

or compatible

sound card (16 or

32 bit)

Sound Sound CLASH Sound YES

SVGA Monitor

(resolution of

800x600 or

higher)

Resolution Resolution Resolution Video Card YES

- 1 4 3 -

Windows 95 or

NT 4 0, Windows

NT suggested

Operating

System

Operating

System

Operating

System

Operating

System

YES

Minimum 16

meg RAM

RAM Resolution RAM CPU YES

Minimum 8 meg

RAM

RAM Harddnve RAM CPU YES

Audio

capabilities (îe

sound card and

speakers)

Sound Sound Sound Sound YES

Monitor that

displays at least

256 colors

Colour Video Card Colour Colour YES

20 Megabytes of

free hard disk

space

Harddnve Harddnve Harddnve Video RAM YES

Microsoft

Windows 95 or

greater

Operating

System

Operating

System

Operating

System

Harddnve YES

20 Gigabyte Hard

drive (Free

Space)

Harddnve Video Card Harddnve Harddnve YES

Windows 2000

Professional,

Service Pack 4 or

later

Operating

System

Operating

System

Operating

System

Operating

System

YES

1 GB or larger

hard dnve

Harddnve Video Card Harddnve RAM YES

- 144 -

133 MHz or

higher Pentium-

compatible CPU

CPU CPU CPU Video RAM YES

90 MHz or faster

Pentium-Based

PC

CPU CPU CPU CPU YES

30MB free hard

disk space

Harddnve Harddnve Harddnve Harddnve YES

50 MB Available

Hard Disk Space

Harddnve Harddnve Harddnve Harddnve YES

Pentium IV 1 7

GHz based

system

CPU CPU CPU CPU YES

Accuracy of matchers with category 2 test data

Test Data Neural Net Naive Bayes Subsequence

Matcher

Composite

Matcher

Category 2 59/85 (69%) 69/85 (81%) 72/85 (85%) 80/85 (94%)

Category 3 Test Results

Test data Category of
test data

Neural Net
Result

Naive
Bayes
Result

Substnng
Matcher
result

Did the
composite
matcher
pick the
right
result9

150 MB free

hard disk space

plus space for

saved games

Harddnve Harddnve Harddnve Harddnve YES

- 1 4 5 -

?

Hardware

accelerated D3D

compatible 4MB

video card with

DirectDraw(TM)

compatible

driver

Video Card Video Card Video Card Harddnve YES

Pentium 4,

1 3ghz (a higher-

speed CPU

normally results

in improved

performance)

CPU CPU CPU CPU YES

256 MB RAM

or higher (more

memory

normally results

in improved

performance)

RAM RAM CLASH RAM

C

YES

Windows 2000

(Service Pack 3

or greater) and

Windows XP

(Home or

Professional)

Operating

System

Operating

System

Operating

System

Operating

System

YES

Up to 15 Mb of

disk space

available

(depending on

Harddnve Harddnve Harddnve Harddnve YES

- 146-

the use of

CyberNOT)

Approximately

10 megabytes of

disk space is

required for

installi

Harddnve Network

Connection

CLASH Harddnve NO

A hard disk with

at least 20 MB

available for

program

installato

Hard drive Harddnve CLASH Harddnve YES

16 MB TNT2-

class OpenGL

1 2 compliant

video card

Video Card Video Card CLASH Video RAM YES

An OpenGL

accelerated

video card

(minimum 8MB

VC RAM 16

MB recom

Video Card Video Card Video Card Video Card YES

128 megabytes ~

(MB) of RAM

for the operating

system and

services

RAM RAM CLASH RAM YES

Server with

Pentium II 400

CPU CPU CLASH CPU YES

-1 4 7 -

megahertz

(MHz) or higher

815 MB of

available hard

disk space for

typical

installation of a

Harddrive Harddrive Harddrive Harddrive YES

SVGA video

card with 8MB

video memoiy

and video

overlay capabilit

Video Card Video Card Video Card Video Card YES

50MB free hard

disk space for a

minimum

installation

Harddrive Harddrive Harddrive Harddrive YES

At least 175 MB

of free disk

space to store

the databases

Harddrive Harddrive CLASH Harddrive YES

486DX with a

processing speed

of 66 MHz or

greater

CPU CPU CLASH CPU ^YES

128 MB of

RAM with

virtual memory

on

RAM RAM RAM VideoRAM YES

120 MB or more Harddrive Harddrive CLASH Harddrive YES

of available

hard-disk space

for installation.

Minimum screen

resolution of 800

x 600 pixels

Resolution Resolution Resolution RAM YES

5 MB of free

Hard Disk space

to install the

program

Harddrive Harddrive Harddrive Harddrive YES

10 gigabytes

(GB) free space

on hard disk or

higher

Harddrive Sound Harddrive Harddrive YES

10 GB

(Gigabytes) of

hard drive space

is adequate

Harddrive Video Card CLASH Harddrive NO

Hard drive with

minimum 2GB

available for

application and

database

Harddrive Video Card Harddrive Harddrive YES

25 MB free (for

Helper

Application

installation, if

necessary)

Harddrive Harddrive CLASH Harddrive YES

100 MB free for Harddrive Harddrive Harddrive Network YES

- 149-

data files and

temporary files

Connection

Super VGA

capable of

providing 800 x

600 resolution

Video Card Video Card CLASH Video Card YES

486 DX2 66-

MHz (or

equivalent)

processor

CPU CPU CPU CPU YES

Your system

should have at

least 32 Mb

RAM

RAM CPU CLASH RAM NO

400 MHz

Pentium II or

better

recommended

CPU CPU CLASH CPU YES

1 GB or more of

available storage

Harddnve Colour CLASH Harddnve YES

64Mb minimum

memory (more is

better)

RAM RAM RAM RAM YES

Hard disk

subsystem

(400Mb or

more),

Harddnve RAM Harddnve Harddnve YES

60 MB free disk

space on your

Harddnve Harddnve Harddrive Harddnve YES

- 150-

hard drive

one 20GB IDE

or SCSI hard

drive or greater

Harddnve Video Card Harddnve Harddnve YES

1 GB minimum

disk space per

hard dnve

Harddnve Video Card CLASH Harddnve NO

9 Gig SCSI Hard

Dnve space

Harddnve Video Card Harddnve Harddnve YES

128+ Megs of

memory (Novell

NetWare

4 xx/5 xx)

RAM RAM RAM RAM YES

100MB for

software index

and additional

space for future

index size

Harddnve Harddrive Harddrive Network

Connection

YES

32 Mbytes of

RAM memory,

additional

memory is

recommended

RAM Video RAM RAM RAM YES

Any computer

running

Windows 95 or

later can run

Musaios

Operating

System

Operating

System

RAM Harddnve NO

The program as Harddnve Video Card Harddnve Harddnve YES

- 151 -

installed takes 2

MB or less on

your hard drive

500 MB hard

disk space for

Multi-Market

data

Harddnve Harddnve Harddnve Harddnve YES

Single processor

(Pentium III,

Pentium 4/Xeon,

AMD XP/MP)

400 MHz

minimum

CPU CPU CLASH CPU YES

Modem with a

connection

speed of 28 8k

or higher

Network

Connection

CPU CLASH Network

Connection

YES

WmCross needs

approximately

50MB of disk

space

Harddnve Harddnve Harddnve Operating

System

YES

Any 56K

hardware

modem - Stay

away from Win

Modems1

Network

Connection

Sound CLASH Network

Connection

YES

200 MHz or

faster lntel(R)

Pentium(R)

CPU CPU CPU CPU YES

- 152 -

MMX, Cyrix

M2, or AMD(R)

processor

Accuracy of matchers with category 3 test data

Test Data Neural Net Naïve Bayes Subsequence
Matcher

Composite
Matcher

Category 3 34/48 (71%) 28/48 (58%) 40/48 (83%) 43/48 (90%)

Category 4 Test Results

Test data Category of
test data

Neural Net
Result

Naïve Bayes
Result

Substring
Matcher
result

Did the
composite
matcher
pick the
right
result?

233 MHz
recommended
for XP
machines

CPU CPU CLASH RAM YES

Intel« Pentium
200-MHz or
faster processor
for audio

CPU CPU CPU CPU YES

233 MHz or
faster for
Windows 2000

CPU CPU CPU CPU YES

5 MB for
Microsoft«
Installer

Harddrive Harddrive Harddrive RAM YES

64 MB for NT RAM RAM CLASH RAM YES
128MB (for
Windows NT)

RAM RAM RAM VideoRAM YES

128 MB RAM
required for
Windows 2000
and XP

RAM RAM CLASH Video RAM YES

486 (DX) CPU
or higher for
Windows ME

CPU CPU CLASH VideoRAM NO

- 153 -

Sound card
supported
under Windows
NT

Sound Operating
System

Sound Sound YES

Graphics card
with 64 MB
RAM

Video Card Video Card Video Card Video Card YES

64 Megabytes
on WindowsO
95 or 98, 128
Megabytes on
Windows NT
or

RAM RAM RAM Harddrive YES

150 Megabytes
including
Windows
swapfile

Harddrive Harddrive Harddrive RAM YES

32 MB required
for Windows
98 Operating
System

RAM RAM Operating
System

Operating
System

NO

8 Megs of
Memory
(DOS/Windows
3 xx)

RAM RAM RAM RAM YES

19 Megabytes
on hard disk for
the Windows
version

Harddrive Harddrive CLASH Video RAM YES

Accuracy of matchers with category 4 test data

Test Data Neural Net Naive Bayes Subsequence
Matcher

Composite
Matcher

Category 4 14/15 (93%) 9/15 (60%) 6/15 (30%) 13/15(87%)

- 1 5 4 -

