
Dynamic System Simulation on the Web

By

Khaled Mahbub, B. Sc. Eng.

This thesis is submitted as the fulfilment of the

Requirement for the award of degree o f

Master of Engineering (M.Eng.)

to

Dublin City University

September 2002

Research Supervisor: Professor M. S. J. Hashmi
School of Mechanical & Manufacturing Engineering

REFERENC

DECLARATION

I hereby certify that this material, which I now submit for assessment on the programme of

study leading to the award of Master of Engineering is entirely my own work and has not

been taken from the work of others save to the extent that such work has been cited and
acknowledged within the text of my work

signed: (Candidate)

ID No.: 50162551

Date: , 2 0

Acknowledgements

First, I extend my deepest gratitude to my supervisor, Professor M.S.J. Hashmi, for his

constant encouragement and assistance. He is a patient and nurturing mentor, who could

always boost my confidence in times of self-doubt or frustration. His insistence on perfection

was relentless and sometimes painful, but undoubtedly this will serve as a guide for the rest of
my life. Without his guidance and continuous cooperation throughout this research it would

not have been possible to finish this dissertation. I am honoured to have his name on this

work.

I wish to express my sincere thanks to Keith Hicky, school system administrator, for his

tireless services. Without his assistance during computer hardware failure things could be

dreadful to me. He also provided all the necessary software for the project at the high time. I

like to thank my fellow graduate students for their spontaneous supports, comments and

particularly their joyfulness that made my hard times smoother.

Finally, I make special mention of my parents, who always motivated me for higher studies.

They have supported and understood me every time and everywhere. Special thanks to them

for everything they have done and given to me.

by

Khaled Mahbub

(ABSTRACT)

Computer simulation is the discipline of designing a model of an actual or theoretical
physical system, executing the model on digital computer, and analysing the
execution output. O f late, simulation has been influenced by an increasingly popular
phenomenon - the World Wide Web or WWW. Java is a programming language for
the WWW that brings a high level of dynamism to Web applications. Java makes it
particularly suitable to represent applications on the Web. It has created an illusion of
machine independence and interoperability for many applications. Therefore WWW
can be considered as an environment for providing modelling and simulation
applications. Research in the area of Web-based simulation is developing rapidly as
WWW programming tools develop. Bulk of this research is focused only on discrete
event simulation. This dissertation introduces dynamic system simulation on the Web.
It presents and demonstrates a Web-based simulation software (SimDynamic), entirely
developed in Java, for modelling, simulating, and analysing dynamic systems with 3D
animated illustration, wherever applicable. SimDynamic can also be used as a non
Web-based application on a PC. In both cases, it supports complete model creation
and modification capabilities along with graphical and numerical output. Detail
design and functional ability of SimDynamic are provided. Some real world systems
have been modeled using SimDynamic and results are presented. Characteristic
features of the software are discussed from software engineering point of view.
Complete source code and installation instructions are included. Current SimDynamic
limitations and potential customization and expansion issues are explored.

Dynamic System Simulation on the Web

Table of Contents

le Page

Declaration ii

Acknowledgement i i i

Abstract iv

Contents V

List of Figures v i i i

List of Tables X

Chapter Is Introduction 1

1.1 Virtual R eality 1

1.2 Simulation 3

1.3 W orld Wide Web 5

1.4 W eb-based Simulation 6

1.5 A dvantages and D isadvantages o f W eb-based Simulation 7

1.6 O bjective o f the P ro ject 9

Chapter 2: Literature Survey 10

2.1 Virtual R eality and Simulation 10

2.2 D ynam ic System Simulation 16

2 .3 Web B ased Simulation 21

Chapter 3: Overview of the SimDynamic 34

3.1 What is Sim Dynam ic 34

3.2 G raphical U ser Interface 35

3.3 N odes 36

3.4 Lines 42

3.5 Simulation Param eters 45

3.6 Run a M odel and View Output 46

3 .7 3D Animation 47

V

4.1 U lP ack 50

4.2 N odePack 54

4.3 Anim 3D 63

4.4 Solution o f O rdinary D ifferential Equation 65

4 .5 H ow Sim D ynam ic Works 69

Chapter 5: Functional Description of Nodes 72

5.1 Continuous N ode Set 72

5.2 D iscrete N ode Set 77

5.3 Tables N ode Set 81
5.4 M ath and L ogic N ode Set 85

5.5 N on-linear N ode Set 92

5 .6 M iscellaneous N ode Set 97

5.7 Sinks N ode Set 104

5.8 Sources N ode Set 106

Chapter 6: Application of SimDynamic 113

6.1 Solving O rdinary D ifferential Equation 113

6.2 Sim ple D am ped Pendulum 118
6.3 Bouncing B all 124

6.4 Bus Suspension 128

6.5 Q ualitative D ecision M aking 133

6.6 D iscussion on Sim Dynam ic 136

Chapter 7: Conclusions and Suggested Future Works 141

7.1 Conclusions 141
7.2 Suggested Future Work 142

C hapter 4: The Design of SimDynamic 49

References 143

vi

Appendices:

Appendix A: Node Properties

Appendix B: Runge-Kutta Co-efficient
Appendix C: Bus Suspension System

Appendix D: SimDynamic Installation Instruction

Appendix E: SimDynamic Source Code (electronic format)

List of Figures

No. Legend Page

2.1 Animated hand for 5DT Glove.. 15

2.2 VIO I-Glasses pitching.. 15

2.3 VIO I-Glasses yawing... 15

2.4 Remote S&A and data transfer.. 26

2.5 Client-Site simulation with loaded applets... 26

2.6 Remote simulation and local visualization... 27

2.7 Web-enabling software model... 28
2.8 Hardware and software layout... 31

3.1 Node set window.. 35

3.2 Model sheet window... 36

3.3 SimDynamic on-line help... 37

3-4 Logical representation of a node... 37

3-5 Node menu... 38

3-6 Parameter dialog box for Discrete State Space.. 39
Row vector as parameter.. 40

3*8 Column vector as parameter.. 40

3-9 Matrix parameter... 41

310 Line drawing step 1... 43

Line drawing step 2... ^
3 12 Line drawing step 3.. 43

3-13 Line drawing step 4.. 43

314 Line menu... ^
315 Branch line drawing step 1.. 44
3-16 Branch line drawing step 2.. 44
3.17 Simulation parameters dialog box.. 45

3.18 3D model editor window... 47

3.19 Dialog box for 3D box.. 48

4.1 SimDynamic package hierarchy... 49

4.2 Class hierarchy in UlPack package... 50

4 3 Class hierarchy in NodePack package.. 54

viii

5.1 Backlash in gears... 92

5.2 Dead-band.. 92

6.1 Step 1 for ODE model... 114

6.2 Step 2 and 3 for ODE model... 115

6.3 Completed ODE model... 116

6.4 Graphical result for ODE model.. 117

6.5 Numerical result for ODE model.. 117
6.6 A simple pendulum.. 118

6.7 Pendulum model in SimDynamic.. 119

6.8 Graphical result for pendulum model (rod length 1 meter)............................... 120

6.9 Graphical result for pendulum model (rod length 0.5 meter)............................ 121

6.10 Pendulum 3D model... 123

6.11 3D animation for pendulum model.. 123

6.12 A ball is thrown downward with velocity V0.. 124
6.13 Bouncing ball model in SimDynamic.. 125

6.14 Graphical result for bouncing ball model (£ = 0.8).. 126

6.15 Graphical result for bouncing ball model (e = 1.0).. 126

6.16 3D animation for bouncing ball model.. 127

6.17 Bus suspension system (1/4 bus).. 128
6.18 Bus suspension model (open loop) in SimDynamic.. 129

6.19 Bus suspension model (closed loop) in SimDynamic...................................... 130

6.20 Graphical result for bus suspension model (open loop).................................... 131

6.21 Graphical result for bus suspension model (closed loop).................................. 131

6.22 Discrete pulses applied to closed-loop bus suspension model............................ 132

6.23 3D animation for bus suspension model... 133

4.4 Class hierarchy in Anim3D package.. 64

ix

List of Tables

No. Legend Page

6.1 Numerical result for the Pendulum model (rod length 1 meter).......................... 120

6.2 Numerical result for the Pendulum model (rod length 0.5 meter)...................... 121

6.3 Results for QDM model.. 136

x

Chapter One

1 Introduction

1.1 Virtual Reality

Virtual Reality (VR) is the simulation of a real or imagined environment that can be

experienced visually in the three dimensions of width, height, and depth and that may

additionally provide an interactive experience visually in full real-time motion with

sound and possibly with tactile and other forms of feedback. The simplest form of

virtual reality is a 3D image that can be explored interactively at a personal computer,

usually by manipulating keys or the mouse so that the content of the image moves in

some direction or zooms in or out. This type of experience is known as desktop VR or

non-immersive VR.

On the other hand, the strict definition of VR involves the sense of total immersion.

To experience a virtual reality, a user dons special gloves, earphones, and goggles, all

o f which receive their input from the VR system. In this way, at least three of the five

senses are controlled by the VR system. Therefore, the user is in computer-generated

3D, artistic renderings of real or imagined spaces.

From these above definitions Virtual Reality can be divided into:

• The simulation of real environments such as a manufacturing process or a

spaceship often with the purpose of training or education.

• The development of an imagined environment, typically for a game or

educational adventure.

1.1.1 T ypes o f V R System

VR systems can be classified based on the mode with which they interface to the user.

The most common modes used in VR systems are as follows:

a) Window on the W orld Systems (WoW)

In this system a conventional computer monitor is used to display the visual world.

This is sometimes called Desktop VR or a Window on the World (WoW). This

1

concept traces its lineage back through the entire history of computer graphics. One

must look at the screen as a window through which one beholds a virtual world. It is

up to the computer graphics to make the picture in the window look real, sound real

and the object real.

b) Video Mapping

Video Mapping can be considered as an extension of WoW approach. A video input

of the user’s silhouette is merged with a 2D computer graphic in a WoW system. So

the user watches a monitor that shows his body’s interaction with the virtual world.

c) Immersive System

Immersion is a key issue in VR systems as it is central to the paradigm where the user

becomes a part of the simulated world. The ultimate VR systems completely immerse

the user’s personal viewpoint inside the virtual world. It has to meet four conditions:

(1) a head-mounted device (HMD) with a wide field of view; (2) tracking the position

and attitude of the user’s body; (3) transducers that interpret user’s natural behaviours,

and (4) negligible delays in the rate at which the virtual environment is updated in

response to user’s movements and actions.

d) Telepresence

Telepresence is defined as the experience of presence in an environment by means of

a communication medium. In other words, it refers to the mediated perception of an

environment. This environment can be either a temporarily or spatially distant real

environment or an animated but non-existent virtual world synthesized by a computer.

e) Mixed Reality

Merging the telepresence and VR systems gives the Mixed Reality or Seamless

Simulation systems. Here the computer generated inputs are merged with telepresence

inputs and/ or the user’s view of the real world. For example a fighter pilot sees

computer generated maps and data displays inside his helmet visor or on cockpit

displays.

2

A system is defined to be a collection of entities, e.g. people or machines that act and

interact together toward the accomplishment of some logical end. A model is a

simplified representation of a system at some specific point in time and or space

intended to promote understanding of the real system. Simulation is the discipline of

designing a model of an actual or theoretical physical system and manipulating the

model in such a way that it operates on time or space to compress it, thus enabling one

to perceive the interactions that would not otherwise be apparent because of their

separation in time or space. It is a discipline for developing a level of understanding

of the interaction of the parts of a system, and of the system as a whole. And this level

of understanding is seldom achievable via any other discipline. Simulations are

generally iterative in their development. One develops a model, simulates it, learns

from the simulation, revises the model, and continues the iterations until an adequate

level of understanding is developed.

1.2.1 Types o f Simulation M odels

a) Static vs. Dynamic Simulation Models

Static models describe a system mathematically, in terms of equations, where the

potential effect of each alternative is ascertained by a single computation of the

equation. Static models ignore time-based variances. So they represent a system at a

particular point of time or a system in which time simply plays no role. Also, this type

of model does not take into account the synergy of the components of a system, where

the actions of separate elements can have a different effect on the total system than

the sum of their individual effects would indicate.

On the other hand, a dynamic simulation model represents a system as it evolves over

time. It is a representation of the dynamic or time-based behaviour of a system. While

a static model involves a single computation of an equation, dynamic modelling is

iterative. A dynamic model constantly re-computes its equations as time changes.

Dynamic modelling can predict the outcomes of possible courses of action and can

account for the effects of variances or randomness. One cannot control the occurrence

1.2 Simulation

3

of random events, but can use dynamic modelling to predict the likelihood and

consequences of their occurring.

b) Deterministic vs. Stochastic Simulation Models

A deterministic model can be identified as a model that does not contain any

probabilistic (i.e. random) components. In such models output is determined once the

set of input quantities and relationships in the model have been specified.

On the other hand, many systems must be modelled as having at least some random

input components, and these give rise to stochastic simulation models. Most queuing

and inventory systems are modelled stochastically, and these models produce output

that is itself random.

c) Continuous vs. Discrete-Event Simulation Models

Discrete event simulation concerns the modelling of a system as it evolves over time

by a representation in which the state variables change instantaneously at separate

points in time. These points in time are the ones at which an event occurs, where an

event is identified as an instantaneous occurrence that may change the state of the

system.

Continuous simulation models concern the modelling over time of a system by a

representation in which the state variables change continuously with respect to time.

Typically, continuous simulation models involve differential equations that give

relationships for the rates of change of the state variables with time. If the differential

equations are particularly simple, they can be solved analytically to give the values of

the state variables for all values of time as a function of the values of the state

variables at time 0. For most continuous models analytic solutions are not possible,

however, and numerical-analysis techniques, e.g. Runge-Kutta integration, are used to

integrate the differential equations numerically, given specific values for the state

variables at time 0.

4

1.3 World Wide Web

The Internet is a collection of interconnected computer networks operating under a

common communications protocol. The World Wide Web (WWW), currently the

fastest growing segment of the Internet, is a collection of electronic documents called

pages, which reside on computers called WWW servers. These documents contain a

combination of text, images, audio and video. The pages on the Internet are public

and anyone can generate a page and put it on a WWW server. The pages and the

associated files must meet a standard protocol.

The text portions of the document are written in a mark-up language called HTML

(Hypertext Markup Language) [1]. Hypertext is text with links such that the user can

follow a non-linear path through a document or set of documents. The unique

characteristics of WWW hypertext documents is that the links can point to positions

in the same document, positions in the other documents on the same server, or to

WWW pages on any server anywhere on the Internet. They can also link to images,

audio or video. The links are indicated by highlighted text and the link is established

by pointing and clicking on the highlighted text.

A person, group or organization creates a page because they have certain information,

which they wish to make available to other people. Usually this information is related

to and hence references information others have decided to make available. Hence the

pages point to one another and, as they multiply, form a web. Thus the WWW is a

body and organization of information, which has no top down structure but is

organized in a completely bottom up fashion by the individuals creating the individual

pages.

The addresses of the pages are called URL’s (Universal Resource Locators) [1] and

there is a standard communications protocol (HTTP) [1] for requesting and obtaining

any public Web page from any public server. The user of the Web operates on a

client, a workstation or PC running a Windows, UNIX, Macintosh or OS/2 operating

system. The client has software, called a browser, which enables it to request a page

from the server and process the HTML file presenting the processed material to the

user.

5

Therefore, the Internet and the WWW hold tremendous potential for the

communication and the general distribution of information within groups with a

common professional interest.

1.4 Web - based Simulation

In recent years the Internet in general, and World Wide Web (WWW or Web) in

particular, have grown rapidly as dissemination tools for different kinds of

information resources. Frequently, the Web is used for deployment of educational and

commercial material. Educators are using the Web to post course notes, syllabi,

homework assignments, and even exams and quizzes. Companies are using the Web

for advertising, publicity, and to sell products. Through JAVA [2], an object oriented

programming language, people can also customize WWW based computational

programs as they would with traditional non-Internet based programs, and there is a

growing interest in using the Web as a new platform for computer programs. The

disciplines concerned with computer simulation are no exception to this phenomenon;

the concept of web-based simulation has been introduced and is currently the subject

of much interest to both simulation researchers and simulation practitioners. Web-

based simulation is an attempt to exploit Web technology to support the future of

computer simulation. Apart from providing other services, the World Wide Web is

being looked upon as an environment for hosting modelling and simulation

applications. Existing computer simulation support is either language-based or a

library approach. In either case, they suffer from lack o f portability to other

environments. Also markets in educational software are small. There are thus little

commercial interests in the production of simulation software for the educational

market. Any simulation software, which is produced is aimed at the industrial market

and is often too expensive for the educational purchaser. Moreover the demand for

consulting in modelling and simulation has grown faster than the consulting

companies can offer. Use of the Internet and its supporting tools such as the virtual

environment and the interactive distributed simulation has the potential to overcome

these factors limiting the wider use of simulation. The web’s ability to service large

and diverse audiences allows the simulation community to legitimately provide

models and simulations as end products. Recent advances in web technology have

6

made the web a viable mechanism for performing, publishing, and distributing

simulation.

1.5 Advantages and Disadvantages of Web - based Simulation

A Web-based simulation program provides several beneficial features that are lacking

in available non Web-based packages. These features include wide availability,

controlled access, user friendliness and efficient maintenance etc. On the other hand,

simulation over the WWW does have a few potential drawbacks. These advantages

and disadvantages should be considered when deciding which simulation package

best meets a user’s needs. This section discusses some of these features provided by a

Web-based simulation program.

Wide Availability: In case of non Web-based simulation software, a change in

platform (whether change in operating system or computer hardware) forces the

recompilation of the simulation model (programme). Utilizing this type of package

requires access to a computer containing the proper simulation software, as well as an

appropriately compiled copy of the model source. The portability of a Web-based

model onto various platforms enables the user to access and run the model from wide

spread locations. There is no need to transport hardware or software to these sites or

recompile the code. Moreover Internet is usually available twenty-four hours a day,

access to the simulation software is not limited by time constraints. So the users can

work within their own time schedule.

Controlled Access: With non Web-based package, user can access the model and

software directly from the computer on which the model is running. There is every

possibility of inadvertent modification to the model whenever the user has free access

to the complete source code of the model and the software. On the other hand, Web-

based simulation software and models can be protected from unauthorized

modifications by imposing password and time limit restrictions on either the

simulation package or the entire site.

User Friendliness: Most of the non Web-based packages need proper installation of

the software and working knowledge of the operating commands. Web-based

simulation software and models developed with Java require only a Java-compatible

7

Web browser for viewing. Such browsers like Internet Explorer or Netscape are

readily available, easy to install and already installed on many computer systems.

Since many users are familiar with navigating Web browsers, the total software

learning curve using a model is a minimal.

Furthermore, web-based simulation environment provides the same user interface for

all users. Although some non Web-based groupware (computer based systems, that

support groups of people engaged in a common task) simulation packages provide a

common interface to a shared environment, these software solutions have two main

shortcomings. Firstly, most of these packages are system dependent, all participants in

a project are bound to use a system that is supported by the groupware application. All

participants must own the software to use. The second disadvantage of any existing

groupware is the lack of simulation awareness. It will support the communication of

project participants, exchange of files, but it is still detached from the actual

application, simulation.

Efficient Maintenance: Web-based simulation programmes enable reliable version

control and frequent model modifications. In most of the traditional groupware

packages, modifications can be tedious and time consuming. Users must be made

aware of the need for and existence of an updated model. Then update must either be

made on each copy of the model, or the new model should be delivered to each

participant and the old one deleted. In Web-based modelling there is only one model

at a particular time that is residing on the Web-server. The existence of a single

working model enables modifications with smaller degree of error. Additionally, the

model creator has access through the Internet to the model’s source code on the

serving computer. This allows that person to access the server from distant site. Also

the most up-to-date version of the model is instantly available through the server to all

authorized users, regardless of the physical location.

Despite these advantages of WWW based simulation, traditional simulation packages

may be useful over Web-based simulation in many cases. Traditional packages are

specialized to idiosyncrasies of a single platform, making maximum use of its

capabilities. This may increase efficiency of simulation runs. Loading times for

traditional programmes are dependent on the computer and not on the current volume

8

of Internet usage. During heavy Internet traffic, models with complex or extensive

amounts of code may initially take large amount of time to download.

1.6 Objective of the Project

The objective of the project is to develop a virtual reality based simulation software

(SimDynamic). Proposed simulation engine will be powerful enough to handle both

discrete event simulation and dynamic system simulation. In case of dynamic

systems, it will support linear and non-linear systems, modelled in continuous time,

sampled time, or a hybrid of the two. Systems can also be multi-rate, i.e. have

different parts that are sampled or updated at different rates. Java will be used to

develop the package, so it will be accessible over the Internet. Using any java enabled

browser, a simulation problem can be modelled in SimDynamic, and such java-based

models allow the user the same degree of interactive, multimedia capability, as do

non-Internet based programs. SimDynamic can also be used as a non Web-based

application on a PC. For modeling, the package provides a graphical user interface

(GUI) for building models as block diagrams, using click-and-drag mouse operations.

After a model has been defined, it can be simulated, using a choice of integration

methods. Finally the results of the simulation can be viewed as both graphical and

numerical output as well as 3D animation.

This thesis is organized into seven chapters and five appendices. A literature review is

presented in chapter two. It mainly covers previous work carried out by different

researchers in the area of virtual reality & simulation, dynamic system simulation and

Web-based simulation. Chapter three introduces SimDynamic from a user’s point of

view. This chapter provides all the information needed to build a model, execute and

handle the GUI. Chapter four describes the architectural design of the software.

Chapter five can be considered as an extension of chapter four, but they can never be

merged. This chapter describes the functional ability of the core components of

SimDynamic. Chapter six focuses on the application of the software. Some real world

systems have been modelled using SimDynamic and this chapter demonstrates the

results obtained from the simulation. Finally chapter seven outlines the conclusions

and the recommendations for further work.

9

Chapter Two

2 Literature Survey

2.1 Virtual Reality and Simulation

The popular media representation of Virtual Reality has tended to emphasize the

entertainment aspects of the technology. But a virtual environment can be used as an

effective tool for simulation, training and education. Barnes [3] provides an awareness

of Virtual Reality with respect to simulation. The newer workstations and PCs

provide performance that support VR at an affordable price. VR software is now

available to run on these platforms. Some of this software comes with simulation

engines that support simulation modelling and analysis. The paper describes the tools

and methods that are particular to VR and illustrates how these are being applied to

simulation. The applications presented in the paper focus on virtual manufacturing

and the VR world animated with behaviour controlled by a simulation engine, which

uses simulated behaviour rules and model data.

Sikorsky Aircraft Co. USA and British Aerospace, UK, used simulation software like

QUEST [4], IGRIP [5] to recreate the actual manufacturing process. Visualization

allows the user to assemble the components in a Virtual Manufacturing cell. This

could be by utilizing the 3D models of the part designs using popular CAD packages,

such as Unigraphics, Intergraph, CATIA or Pro/ ENGINEER to visualize how the

components relate to each other. In the model, the user can manipulate and view each

of the components to develop a manufacturing approach. Virtual Manufacturing

modelling allows the user to introduce the engineering design to the processes that

will be used to create the actual part, assembly, or installation. The tool design is

imported to the model, combined with the part and dynamic representations of the

machines that will produce the part. Machines are programmed to operate identically

in the virtual environment as they would in the real environment. Design problems

such as collisions, clearances, missing manufacturing features, fit, and manufacturing

sequence issues are quickly identified. Manufacturing and design concepts are easily

developed with minimal cost to the program. The ability to insert people in the

environment and analyze their activities minimizes ergonomic problems. Factory

10

modeling allows engineers to predict the cost and schedule impact of potential design

or process changes. The information provided by the simulation enables “what i f ’

analysis. The model provides support personnel with a tool to optimize the

manufacturing, try new concepts without disrupting manufacturing and predict

changes due to load variations. The three common elements in the evolution of a

product are cost, schedule, and information. Virtual Manufacturing allows engineers,

designers, suppliers, and others to understand the cost and schedule impact of

decisions and to consolidate processes. Overhead costs are addressed by improving

schedule performance. The amount of time it takes to design, plan, tool and

manufacture a product directly impacts overhead costs. A reduction in time it takes to

get a product to market equates to a return on investment (ROI) improvement.

General Dynamics Electrical Boat Division for the US navy developed prototypes of a

nuclear attack submarine, which was designed, evaluated and optimized in a virtual

environment. Electric Boat demonstrated the feasibility of state-of-the-art simulation-

based design (SBD). The objective was to implement an accurate, efficient, and

dynamic environment for design, rapid prototyping, concurrent product and process

development, mission planning, operation maintenance, and training. By simulating

the kinematic, dynamic, mechanical, and other characteristics of the submarine, its

components and subsystems, engineers can create a multi-disciplinary environment in

which to evaluate a wide range of parameters and optimize the design based on the

results. Electric Boat selected simulation software ENVISION [5] to visualize design

concepts and integrate components and subsystems. Virtual engineering allows the

parties involved with design, manufacturing, operations, and maintenance to jointly

contribute to the design process early in the cycle. Electric Boat engineers often

experience communication difficulties when trying to describe innovative ideas to

people not trained in their particular discipline. The physically accurate 3D models

simulated in ENVISION help engineers and technicians from various disciplines to

comprehend new ideas and concepts. In addition, virtual reality technologies such as

immersion enable engineers and their naval customers to “walkthrough” the model

with visual feedback. Immersion provides for evaluation other design criteria, such as

ergonomics, before a design is built.

11

The most recent development in the use of Virtual Manufacturing software is the use

of the Virtual Collaborative Engineering (VCE) environment that links multiple users

at multiple locations to discuss, analyze, and review simulations over a wide area

network. VCE users interactively evaluate design concepts, manufacturing tooling,

processes, and factory layouts — even at geographically remote locations. Any VCE

user can assume control of a simulation, make changes, or view changes made by

others on the VCE network. Engineers, manufacturing personnel, system operators, or

other users interact within the same simulation, creating a “virtual conference room”

for design discussion, evaluation, and approval.

Jones, et al [6] describe a software engineering project, initiated to explore how

virtual reality might impact simulations and to gain insight into bringing the

technology to commercially available simulation software packages.

AutoSimulations, Inc. [7] provided licenses and source code to their AutoMod and

Auto View simulation software for the project. Human Interface Technology

Laboratory (HITL), University of Washington, provided the virtual interface

hardware, software, and necessary software engineering support. The VR software

used in the project was actually two components of a suite of virtual reality software

developed at HITL: VEOS (Virtual Environment Operation System), a distributed

database and data transport package created for research and rapid prototyping of

virtual environments, and Image Library created for research into VR related

rendering issues. The objective of the project was to create virtual factory that would

allow a user to experience a three-dimensional “playback” of a simulation. The user

could move around in the factory but would not be able to make changes to the

simulation other than starting and stopping simulation time. The user has to don a

head-mounted display (HMD), which conveys visual information to each eye via two

separate video screens. A tracking device allows the VR system to monitor the user’s

head position and orientation at all times. A computer with special graphics hardware

continually renders for each eye a perspective image of the virtual environment from

the eye’s instantaneous viewpoint, based on the user’s head location. When the user

sees these images through the HMD, the images fuse to form a single, stereoscopic

view of the virtual environment. The user can turn in any direction and see objects in

the environment in the same way that one can turn one’s head and discover what is

behind him. Additionally, the user can move or ‘fly’ through the environment by

12

means of a hand-held joystick. For testing the project, a simulation of the wheel

assembly area of Derby Cycle, a producer of recreational and sport bicycles in Kent,

Washington, was constructed. Production and manufacturing personnel were used as

subjects for evaluating the interface. Five subjects from Derby Cycle participated and

were shown either the virtual environment or the Auto View animation on a computer

screen. Subjects were asked questions to determine their understanding of the virtual

factory and follow-up written survey and group discussion was also conducted. One

notable conclusion from the survey and group discussion was that the virtual factory

captured the imagination of the Derby employees. Participants who viewed the virtual

factory were much more talkative and involved in the exploration of the simulation

than the subjects who experienced Auto View.

Marcedie, et al [8] cite many recent examples of virtual environments that can be

used as effective tool for training and education. The paper also introduces a novel

technology to support distributed virtual environment. Existing VR systems lack

distributed access; they have no central computer for event scheduling or conflict

resolution. Computers (or autonomous simulation nodes) on which the system is

running are responsible for maintaining the state of one or more simulation entities.

Simulation nodes communicate primarily changes of their state and they are

responsible for determining what is perceived. Such a system suffers from high

communication volume. The proposed new architecture overcomes these problems of

existing systems by taking advantages of the features of the object oriented

programming paradigm.

As an object oriented simulation system, the basic system elements in the proposed

architecture are objects located at different machines. These machines are called

nodes and are connected by the network. At any single node, there are three major

objects.

a) The message handling object controls the messages passed between local

objects and the network. Unlike current approaches, which broadcast all

messages on the network, it uses both broadcast and point-to-point approaches

to send the messages to keep the number of redundant messages as low as

possible.

13

b) With update messages, the situation delay object is used to display the states

of all entity objects distributed at the nodes. The display updates with

simulation time advance.

c) The simulation object at a node contains a series of entity objects, which

represent physical entities in the real world. It is responsible for creating and

deleting its derivative entity objects. It transfers the messages from its

derivative entity objects to its other derivative entity objects or to the other

objects located at other nodes via the computer network. Another important

task of the simulation object is to control the local simulation time advance.

In short, this prototype object oriented architecture is composed of non-autonomous

simulation nodes. With an appropriate user interface, the nodes appear as an

integrated virtual environment to the user. Simulation entities are modelled as

simulation entity objects, which are distributed at different nodes and are migrated

dynamically between the nodes during the simulation run. This mechanism of object

management presents the possibility of reducing message volume. Communication

efficiency can therefore be improved by two measures. One is to dynamically group

closely related simulation entity objects to a specific node. Alternatively, a point-to-

point communication approach can be used instead of broadcast.

Grant and Lai [9] present SMART, a simulation modelling tool that provides a virtual

reality interface for building graphical simulation models. The simulation models,

comprised of nodes and arcs, are constructed in three dimensions. As the user builds a

model, he may immerse himself in it using virtual reality hardware and software tools

and take advantage of the three-dimensional environment provided by SMART. It has

been developed to explore the use of virtual reality in building simulation models, and

it serves as a prototype for testing the feasibility of creating a virtual reality simulation

modeling software system on a relatively low cost personal computer. SMART offers

three-dimensional interface using virtual reality hardware, which includes an

electronic glove and head-mounted display. The specific hardware is the 5DT Glove

[10] and VIO I-Glasses [11] respectively.

14

The 5DT Glove is used by SMART as the primary manual input device. The

electronic glove is plugged into a PC’s serial port. The configuration parameters of

the 5DT Glove such as the bending angle of each finger and, pitch and roll of the

wrist are constantly sampled by the PC’s serial connection and sent to SMART for

processing. The user controls SMART using a set of gestures to cause actions to be

taken when building simulation models. When a recognizable gesture is detected,

SMART responds with the appropriate action and provides audio feedback

confirming the action. The glove’s configuration and its relative position in the virtual

world are continuously animated by a robot-like hand (figure 2.1). Every motion of

the user’s fingers is reflected by the animated hand in the virtual world.

Fig 2.1: Animated hand for 5DT Fig 2.2: VIO I-Glasses pitching Fig 2.3: VIO I-Glasses yawing
Glove

In addition to the 5DT Glove, SMART also uses the VIO I-Glasses as another virtual

reality hardware interface especially for simulation model immersion enhancement.

The device is plugged into a PC’s serial port. The VIO I-Glasses are designed to give

the user the impression that he or she is physically present in the virtual modeling

world. This is accomplished by providing a virtual view using the VIO I-Glasses,

which reacts directly to two primary head motions: pitching (figure 2.2) and yawing

(figure 2.3). Pitching is equivalent to nodding the head up and down and yawing is

swinging the head left and right. To use the I-Glasses to build simulation models, the

user simply needs to put on the VIO I-Glasses and look around the way he usually

does in the real world. As the orientation of the user changes, the virtual world is

rendered accordingly.

15

Kimbrough [12] provides APL algorithms for control system development and

demonstrates their use by solving a typical control problem. The paper outlines useful

numerical techniques for simulating dynamic systems and for solving some of the

central equations of the control theory.

APL functions are presented to check observability, controllability and stabilizability

of a linear dynamic system expressed in the following standard form,

— = Ax + Bu + D(x,u,t)v
dt
y - C x

where the shapes of A, B, C, D, x, y, u and v are (n,n), (n,p), (n,q), (m,n), n, m, p and q

respectively. The vector x is the state vector, the vector y is the measurement vector,

the vector u is the linear control, and the variable v is the non-linear control. The

matrices A, B and C are time invariant but D is allowed to vary with x, u and t, the

time.

Simulation of dynamic systems is typically conducted by using a numerical

integration routine. A fourth-order Runge-Kutta integration routine is also provided in

the paper. This is a fixed step routine based on the following familiar equations,

K = f{y ,t)h
K - f (y + 0.5k0,t + 0.5h)h
K = f (y + 0.5kl9t + 0.5h)h
¿3 = f (y + k2,t + h)h
and
y n+x = y " +(kQ+k 3) / 6 + (kl +k2)/ 3

Besides using simulation it is possible to study the system response using frequency

domain techniques such as Fourier transform and the Laplace transform. Fundamental

to frequency techniques is the notion of the transfer function. For multi-variable time-

invariant linear systems the transfer functions are obtained by taking the Laplace

transform of

2.2 Dynamic System Simulation

16

— = Ax + Bu
dt
y - C x

which yields,

y = C (s I - A) -]Bu = H(s)u.

An APL function is also provided to generate Hfs).

All the algorithms presented in the paper can analyze, with reasonable response,

systems with up to 40 state variables while running on a mainframe and systems with

up to 20 state variables while running on a microcomputer. This capacity is sufficient

for many “real world” control problems and is more than enough for exploring the

features of control engineering.

Schmid [13] presents CADACS-PC Real Time Toolbox, an open software

implementation of the KEDDC [14] real-time suite, which runs on personal computer

and provides special real-time environments for developing microprocessor based

industrial control devices. Such control devices can be connected directly to the plant

to be controlled and support on-line identification of the plant dynamics, as well as

evaluation of prototype control systems. The proposed software frame is independent

of the hardware and operating system, quite simple and also meets the requirements

for a real time control environment, such as monitoring, supervisory control or

scheduling etc. Although such a frame is contained in the real time suite of the

KEDDC system, the contribution focuses to the implementation of the real time suite

on PC-based systems, where the entire power of KEDDC is packed into one low-cost

and portable system, which can be taken to the plant to be analysed and controlled.

CADACS-PC supports a wide variety of control engineering methods. It offers tools

for the systematic design strategies and high-accuracy numerical solutions. In addition

to modem analysis and design concepts, classical methods are also implemented and

may be used in combination with modem control techniques. CADACS application

environment consists of several components and the most important components

consist of a group of interactive programs for the management of dynamic systems,

systems analysis, controller synthesis, simulation and signal processing. A unified

database for system models allows a smooth exchange of data between the different

programs and between different groups of a development or research project. Due to

17

the wide range of methods, the system may be used for the task of industrial planning

of plants, as well as for the subsequent analysis o f measured data; also for the

modeling of dynamic systems and for the design of control systems. The multi­

purpose real-time suite has highly modular structure and provides a high degree of

portability, which results from an interface of CAD ACS to the operating system and

to hardware-dependent functions. Some basic routines build an interface to the world

outside of the programs and modules. The user can both monitor and store the real­

time behavior o f any external or internal signal. At the same time or at a later date

s/he can evaluate and present results.

Fishwick [15] develops SimPack, a collection of C and C++ libraries and executable

programs for computer simulation. The purpose of the SimPack toolkit is to provide

the user with a set of utilities that illustrate the basics of building a working

simulation from model description. Special purpose simulation programming

languages can be easily constructed using language translation software with the

SimPack utilities, which act as the “assembly language”.

Most of the existing simulation packages cover one of two areas: discrete event or

continuous. Some available software can perform both types of simulation; however,

bulk support is usually available in only one form. SimPack has the ability to

overcome this problem. It is designed

• To support the variety of available model types.

• To create template algorithms for many cases.

• To avoid learning a special language syntax.

• To illustrate the relationship between event and process oriented discrete event

simulation.

SimPack supports simulation development for a wide variety o f modeling types

including the following:

• Declarative Models: An emphasis on explicit state-to-state changes as found

in finite state automata and Markov models.

18

• ! v . . • » Si : » * t r . ' '
. j s }

• Functional Models: A focus on “function” or “procedure” as in queuing
• ' . - y -n . ■-• 7 , r , ' * : W . ; j •. -.'V-';:
networks, block models, pulse processes and stochastic Petri nets.

VI ’ ' 1 ‘ ! M '

t r. !
or network to solve combined' simulation problems at multiple abstraction

levels. 1

• Constraint Models: The constraint part of SimPack in c h e s capabilities for

modeling 1) difference equation systems, 2) differential equation systems, and

3) delay differential equation systems. In most cases, the most uniform method

of simulation is to convert the equation(s) into first order form and then to

simulate the system by updating the state vector.

Otter [16] presents DSSIM, a general-purpose simulation for dynamic systems.

DSSIM is a part of ANDECS [17] environment, which is a powerful and flexible

software package for the analysis and design of controlled dynamic systems.

ANDECS consists of a wide collection of methods, such as basic mathematical

methods like matrix computation, interpolation of signals or root finding of nonlinear

functions. Analysis and design methods for linear dynamic systems like linear

simulation, calculation of poles and zeros, pole placement. Standard diagrams like 2D

line, Bode, Nyquist and root locus diagrams. Special diagrams like parallel

coordinates to visualize optimization criteria. DSSIM is the run time environment of

ANDECS to simulate dynamic systems. It uses following well-tested numerical

integration routines,

• DEABM - Multi-step solver of Shampine/Watts for non-stiff and moderately

stiff ODEs.

• LSODE - Multi-step solver of Hindmarsh for stiff and non-stiff ODEs.

• LSODAR - Multi-step solver of Petzold/Hindmarsh, which switches

automatically between a non-stiff and a stiff integration algorithm along the

solution. LSODAR also provides a root finder.

• RK45/78 - Runge-Kutta-Fehlberg solvers of Kraft/Fuhrer of fixed orders 5

and 8 with variable step-size using the Prince-Dormand coefficients.

19

• GRK4T - A stable linearly implicit Rosenbrock type single-step solver of

fixed order 4 for stiff and oscillating ODEs of Arnold.

• DASSL/RT - Multi-step solvers of Petzold for DAEs and for DAEs with root

finder.

• ODASSL/RT - Multi-step solvers of Führer based on DASSL/RT of Petzold

for ODAEs and for ODAEs with root finder.

• MEXX - Extrapolation solvers of Lubich for a restricted class of index-2

ODAEs.

There are a wide variety of options available to define a simulation experiment. The

result of simulation experiment is a set of computed signals, which are automatically

stored on a database and visualized with any available graphics module. All input data

of an experiment, e.g. integration method or length of communication interval, are

stored on database as well. Therefore every simulation run is completely documented

and reproducible.

Elmqvist, et al [18] present a new methodology for object-oriented modeling of

hybrid systems. Hybrid models contain both continuous and discrete parts. In

simulation programs, the continuous parts are described by sets of differential

equations and algebraic equations in either explicit form or implicit form. The discrete

parts are expressed with event descriptions. Object-oriented programming has evolved

to support the reuse of software components. This programming paradigm was first

developed in the context of discrete-event simulation and carried over to continuous

systems modeling. Dymola [19], an object oriented modeling language, for

continuous systems, was designed for this purpose. It represented an important step

forward towards the reuse of continuous systems models in a truly environment-

independent fashion. A continuous system modeling methodology that doesn’t allow

for descriptions of discontinuities is not generally useful since all but the most trivial

engineering models of dynamic systems contain some sort of discontinuities. The

paper discusses an extension of Dymola language definition to allow descriptions of

models of dynamic systems with discontinuous behavior in a truly reusable object-

oriented fashion.

20

There are some packages like VisSim, Simulink, Maple available in the market for

dynamic system simulation. Both VisSim and Simulink support modelling and

simulation of complex continuous non-linear dynamic systems. They combine an

intuitive drag and drop block diagram interface with powerful simulation engine that

provides fast and accurate solutions for linear, non-linear continuous time, discrete

time, time varying and hybrid system designs. The visual block diagram interface

offers a simple method for constructing, modifying and maintaining system models.

2.3 Web Based Simulation

Research on distributed interactive simulation; its feasibility and application began in

the mid 1970’s. In the 1980’s Miller and Thorpe [20] in partnership, with the US

Army created SIMulation NETworking (SIMNET), a networked system of computers

running a single simulation programme. SIMNET was sponsored by ARP A (then

called DARPA), and it was an attempt to make the use of simulators and simulation

techniques more feasible for military defense operations. This programme

demonstrated the feasibility of linking together hundreds or thousands of simulators

(representing tanks, infantry fighting vehicles, helicopters, fixed-wing aircraft etc.) to

create a consistent, virtual world in which all participants experience a coherent,

logical sequence of events. In SIMNET, standard Ethernet networks were used for all

local area network (LAN) connections. Ethernet bridges were used via 56 kbps dial­

up links to connect two or more LANs to form a single, logical Ethernet LAN. The

success of SIMNET resulted in a standardized simulation networking protocol,

Distributed Interactive Simulation (DIS). After several revisions and extensions of the

SIMNET protocols, in March 1993, the first standards were formally approved [21].

DIS is a protocol for communicating position and other information to other entities

in a simulated battlefield. Each entity can see each other and interact in a virtual

environment. Although DIS began in the military environment, it is now being used

increasingly often in non-military applications such as air traffic control, intelligent

vehicle highway systems, and interactive multi-user computer games.

Neilson and Thomas [22] discuss the use of the Interact Simulation Environment

(ISE), created as an aid to teaching engineering students. At the heart of ISE is an

interactive environment in which a simulation can be integrated into a distributed

21

hypermedia system. Such integration permits a simulation to be treated as just another

medium of expression, equivalent to media such as the text, graphics and sound. It

allows a simulation to be treated as a resource along with other resources such as

video clips, graphics etc. It allows a simulation to be used not only with a wide variety

of supporting material but also in a wide variety of contexts thus increasing the

usefulness of the simulation as a learning resource. Some additional contexts are: use

as a stand-alone simulation in a lecture with no supporting hyper textual material; use

within a laboratory class for demonstrations, structured enquiries, open ended

enquiries and projects; use in studies of parametric changes; use in optimisation of

system parameters and in tests of sensitivity; giving students experience of modelling

systems; input and output datasets can be provided from which students have to

deduce the model which gave rise to that output; given a specification students could

be asked to provide a model to achieve that specification. Students could be required

to produce hypertext reports of their work, which include links to the simulation in

various states. Because of differences in student’s background computer knowledge,

the ISE is set up to utilize simulation as a modelling tool without requiring the student

to interact with the actual simulation interface.

Cole and Tooker [23] have developed WWW-based physics tutorials to assist physics

students. Making these simulation models available over the WWW greatly expands

the range of possible access locations. Like ISE, the physics tutorials allow students to

see interesting cases of a given simulation model without requiring prior knowledge

of the parameters defining these cases or of the background programming languages

involved. Additionally, the use of familiar WWW browsers such as Netscape virtually

eliminates the amount of time necessary for distributing and learning viewing

software. The tutorials use Apple’s OpenDoc Frameworks to provide a basic

simulation environment. OpenDoc is based on the idea of container documents and

components that act on documents. Using OpenDoc one can build software

components, in this case physics simulation models. It can be then embedded in

container documents such as a web browser document or word processing document

depending upon the need of the user. The main attribute of the environment is its

extensibility. One can extend the power of the environment by adding parts. This

extensibility means it is functional for a broad spectrum of users.

22

Fishwick [24] focuses on three important aspects of simulation that might be affected

by incorporating it in the Web:

a) Education and training: Using the WWW for education and training allows

and encourages the reuse of knowledge by providing us with effectively

infinite storage, unlike the CD-ROM and diskettes. The storage is on the

Internet and not limited to one’s own machine. Therefore simulation packages,

which include help text and information about the pieces of the model, can

have these pieces on the Web so that they do not require local storage. It is not

necessary for a company to re-build every piece of information about a

manufacturing process, for instance, from scratch. Information on automated

guided vehicles (AVGs), machine specifications, and automated conveyance

mechanisms may already be located somewhere on the Web. These sorts of

devices are common in simulation programs built for manufacturing analysis.

The Web encourages this sort of global view with a reuse of knowledge and

information. The most profound affect the Web may have on the method of

teaching simulation lies with the use of multimedia. The Web encourages

distance learning more so than the typical simulation textbook. On any web

page it is possible to include images and video of the instructors along with

synchronized slides or overheads. This immerse the student in a synthetic

learning environment that is more congenial than one they would get simply

by reading a book or watching a videotape.

b) Publications: Additionally, he discusses the timesaving aspects of using

WWW tools in reading publishing research articles. The WWW is valuable in

all stages of producing an article, from accessing documents via electronic

database or URLs cited in bibliographies, to transmitting electronic copies of

the publication to reviewers and for the final publication. Simulation models

can be embedded in web documents that can contain videos, images, and

audio in addition to the usual text that traditional documents contain.

c) Simulation Programmes: Typically scripting languages such as Perl, Java

Script, or Java are used to build the model. The paper gives an example of a

2 3

simulation model using Perl script to demonstrate current workstation

resource, queuing sizes based on user input gathered through an HTML form.

Besides the value of simulation in aiding understanding, Fish wick discusses

the possibilities of WWW based simulation or simulation interfaces for multi­

user situations such as multi-user dungeons (MUD), where users typically co­

operate to reach a solution, and DIS discussed earlier.

SimKit, created by Buss and Stork [25] is a set of Java classes for creating discrete

event simulation models. They use the event graph design approach to build models.

SimKit models, particularly geared to military applications, can easily be

implemented as applets and executed in a web browser. The main simulation

facilitating package, JavaSim, is designed to allow for expansion in order to

accommodate frameworks for various types of simulations. JavaSim makes extensive

use of Java interfaces, which add defined behaviours to identified classes without

imposing the hierarchical structure of class inheritance. This structure allows a

modeller to add customized tools into SimKit without making changes to JavaSim.

SimKit permits user interaction through a detailed, model entry form. Additionally,

SimKit is combined with a Java based graphic package designed by Leigh

Brookshaw, to allow a useful output of statistics and graphs.

Miller, et al [26] present JSIM, a java-based simulation and animation environment. It

demonstrates WWW-based simulation through a unique combination of java applets

and query driven databases. JSIM provides the user with a simulation and animation

environment in which she/he can build simulation, execute the models, watch the

animation of a static design diagram, embellish the animation with special icons, and

generate statistics. A model is constructed by building a graph with nodes and edges.

Using the built in features of JSIM, the design diagram may be animated when the

simulation is run. For the purpose of storing and retrieving simulation models and

results, JSIM incorporates database connectivity with simulation classes. When a user

queries a simulation system, the system first tries to locate the required information in

the database, since it might have stored as the result of an earlier model execution. If

the required data is present, it is simply retrieved and presented to the user. If it is not

present, the system instantiates the relevant model, executes it and shows the result of

the execution to the user.

24

SimJava, presented by McNab and Howell [27] is a process based discrete event

simulation package for building working models o f complex systems, with animation

facilities. It is actually a collection of three packages, simjava, simanim and simdiag.

simjava is a package for building stand alone text only java simulations, which

produce a trace file as the output by default, simanim is tightly integrated with the text

only simulation package, and provides skeleton applet for easily building a

visualisation of a simulation, simdiag is a collection of JavaBeans based classes for

displaying simulation results. A SimJava simulation model is a collection of entities

(from the Sim_entity class) each running in its own thread within Java Virtual

Machine (JVM). These entities are connected together by ports (from the Sim_port

class) and can communicate with each other by sending and receiving event (from the

Sim_event class) objects. A central system class, Sim_system, controls all the threads,

advances the simulation time and delivers the events. The progress of the simulation

is recorded through trace messages produced by the entities and saved in a file.

Utilizing the Remote Method Invocation (RMI) facilities of Java, Page, Moose and

Griffin [28] extends the SimJava (as described earlier) simulation package to enable

the construction of distributed, web-based simulation. In the Java distributed object

model, a remote object is one whose methods can be invoked from another JVM,

possibly on different hosts. An object of this type is described by one or more remote

interfaces, which are Java interfaces that declare the methods of the remote object. A

client can call a remote object in a server, and that server can also be a client of other

remote objects. To add the RMI capabilities to SimJava, a simple master-slave

architecture has been designed. In this architecture, a master server is one that

encapsulates the central system class (Sim_system) and this class co-ordinates the

activities of objects (Sim_entities) that are distributed across the network. Given this

architecture, remote interfaces must be constructed for the Sim_system, Sim_entity,

Sim_port and Sim_event classes. To illustrate the concept of the architecture the

paper also provides a self-explanatory example.

Lorenz, et al [29] describe three basic approaches, their advantages and

disadvantages, for Simulation and Animation (S&A) on the web.

25

a) Remote S&A: Through an HTML data entry form the user specifies

parameters for a simulation model. A Common Gateway Interface (CGI)

transfers the data to server; an appropriate CGI script starts the simulation and

prints the results in a new HTML page when the simulation is finished.

Fig 2.4: Remote S&A and data transfer

This approach is suitable for existing S&A software, but user has no

interaction with a running simulation.

b) Local S&A Based on Loading Applets: the user loads a Java applet into the

web browser, runs the simulation on the client machine.

1. Call for an applet
2. Download the applet
3. Run the applet and show results

Fig 2.5: Client-Site simulation with loaded applets

It supports user interaction and animation, but not suitable for the existing

S&A tools.

c) Animation and Manipulation using a Java Data Server: the user begins by

loading some applets; a connection is then built to a Java server. The

simulation runs remotely on this server, the results are transferred to the client

26

browser, and visualized locally. The user can interact with the model by using

buttons on the HTML page.

Fig 2.6: Remote simulation and local visualization

Finally the paper introduces Skopeo, a Java-based, platform-independent 2D-

Animation system.

Yiicessan, et al [30] introduces a Parallel Discrete Event Simulation (PDES) support

system to distribute simulation experiments over the Internet. There are several

approaches to exploiting parallelism in discrete event simulation; unfortunately each

of those has its own drawbacks. For example, a) in Dedicated Execution approach,

where dedicated functional units execute specific sequential simulation functions, the

speed tends to be limited as the management of the future events list becomes the

bottleneck, b) in Hierarchical Decomposition, where a model is decomposed in a

hierarchical fashion such that an event consisting of several sub-events to be

processed concurrently, is largely model dependent, c) in Parallel Replication, where

several replications o f a sequential simulation are executed independently on different

processor, each processor must contain enough memory to hold the entire model. The

paper describes a prototype of a software architecture that would support PDES. The

main objective of the proposed system is to plan parallel simulation experiments and

dynamically manages their execution. Via the Internet the system has access to a large

number of sites (a PC or Workstation), from where it can dynamically selects one to

execute part (parallel replication) of an experiment. The system uses OCBA [31] to

implement the experiment planner. The system has also data collection and analysis

capabilities to collect and analyse output data from each individual processor. Finally,

2 7

the system contains a reporting mechanism, which compiles and presents the result in

a multimedia format, consisting of tabular and graphical summaries.

Veith, et al [32] presents Netsim, a discrete event simulation package based on the

event graph approach. Netsim provides a maximum amount of user interaction with

the simulation model. A programming interface provides a blank template with text

fields for the various parameters of a simulation model, such as event name and state

variables. A second interface allows user interaction with running the simulation

model. This interface not only provides start, pause and stop capabilities and data

output, but also an animation of the model. The object-oriented structure offered by

Java and maintained in Netsim allows easy expansion of the package as well as

compatibility with other Java-based tools.

Elmaghraby, et al [33] demonstrate a software model that can be used for

transforming a legacy simulation system into Web-accessible application. The paper

describes the initial results from the conversion effort on an existing distributed

simulation visualization system. There are two potential methodologies to run

application from the World Wide Web.

Fig 2.7: Web-enabling software model

a) to develop the application to be web aware using Web development

techniques such as: HTML, Java, CGI etc.

2 8

b) to transform an already existing application, which was not designed for the

web, into a Web-accessible application.

But there are a number of problems to convert an existing application to be web

accessible, such as limited environment, security risks, concurrency etc. To answer all

this problems a Web-enabling software model has been introduced. The proposed

layered model (figure 2.7) has several layers to link an existing application to a web

browser. The Web browser layer is the interface layer where users can interact with

the application from the Web. Authentication layer authenticates the user and

validates the login name and password. The environment set-up layer will control

concurrency, create run profile and talk to the listening daemons layer, which is the

heart of the model. Listening Daemons layer receives user request and the start-up

settings then launches the Distributed Simulation.

Salisbury, et al [34] discusse a browser-based simulation visualizer that has the ability

to display simulated entities to any number of distributed sites. Legacy visualizers

have a number of drawbacks, such as, the tool must be present at the inception of the

simulation, no matter the observer is only interested to observe a relatively small time

slice. Most existing visualization tools are dependent on the machine for which the

application was written. The paper introduces a tool Jview-lite to solve these

problems. Jview-lite is the successor of a modular programme Jview, which supports

the simulation community’s diverse set of visualization requirements. Jview relies on

Sun’s Java 3D architecture to render an image, and the use of Java Beans enables it to

display objects from any data source. Jview-lite utilizes the same display technology

but relies on the Web for distribution. The client server architecture, proposed for

Jview-lite, has two principal software components: the Simulation Monitor and the

Simulation Viewer. The Jview-lite simulation viewer is an applet executing within the

client’s web browser. On receiving a request from a client’s browser, the web server

will send the required page and the embedded viewer applet. The browser then

initializes the viewer applet, effectively making the browser a 3D-simulation viewer.

The viewer, in turn, makes contact with the simulation monitor that is residing on the

same machine as the web server. The monitor passes object information to the client.

The simulation viewer can then render the simulation based on this information.

29

Schmid [35 - 40] presents a remote laboratory approach using virtual reality on the

Web, where an audio-visual interface together with a collaboration tool gives the

feeling of being in the laboratory. Most existing virtual labs offered across the Web

include several fully interactive experiments completely written as Java applets, but

can’t claim to be an equivalent substitute of the real experiment. To solve the

problems of this “close-to-reality” environment and to take the full advantage of a

remote virtual laboratory, preference is given to an architecture where all

computational work is performed locally using some existing computational machines

like MATLAB/SIMULINK/MAPLE and the output is linked to the objects of VR

scene. One main task to accomplish this is to tie together the computational machines

of MATLAB/SIMULINK/MAPLE with Web components to a hypertext-based

system, which runs on the Web browser. The proposed client/server architecture uses

the following plug-ins for this purpose: MATLAB plug-in integrates MATLAB

operation into the Web browser, the Graphics plug-in extends the MATLAB plug-in

to view MATLAB or Metafile graphics, the DDE server plug-in, together with the

VRML plug-in, is for viewing and acting with VR scenes. The paper concludes with

some examples to demonstrate the architecture.

Guru, et al [41] introduces a web-based interface for storing and executing simulation

models, developed using SIMAN simulation language, over the Internet. This toolkit

consists of a World Wide Web interface to SIMAN and a web-accessible database for

storing the models. To use the system, a user simply needs access to the Internet and

an account on the web server. It allows user to develop, execute and test the

functionality of a model through the use of the SIMAN debugger/run controller. The

proposed system involves three servers.

a) Application server: An Internet user accessing the Web address for the site is

directed to this server. The software residing here performs the functions of

authenticating the user and providing access to user’s models in the database.

It gives the user the capability to edit, add or delete models in his/her account.

When user wants to compile, execute or debug a model, this server creates an

appropriate HTML document (dynamically-generated), which contains the

30

instruction of the desired operation and pass it to the SIMAN server on user’s

request.

X
X

Firewall

Fig 2.8: Hardware and software layout

b) Oracle server: The application server interacts with the Oracle server in order

to provide accessibility to the user’s models. The models and the user data are

stored in a database.

c) SIMAN server: This server holds the SIMAN simulation software. The

SIMAN simulation software performs the requested operation and returns the

results to the user in the form of an HTML document. This done by piping the

output of the appropriate SIMAN process that are invoked with the CGI script

as a dynamically-generated HTML document. The arguments to the SIMAN

process are ASCII text files containing the SIMAN model. These files are

temporarily created by CGI scripts with the data posted to them through the

HTML forms.

Marr, et al [42] discusses a Web-based simulation manager program, called

SimManager, which executes simulation study in a parallel-replications mode,

utilizing a set o f slave processors available to it. Slave (engine) processors need not be

31

co-located. They can belong either to an intranet, to the Internet, or to a combination

thereof. An engine is simply known to SimManager by its IP address. SimManager

also knows the performance characteristics of each engine. SimManager would serve

as the interface between a customer seeking assistance in simulation modelling and

the simulation system. When the customer accesses the web page, he would click on

the Catalog of Simulation models and view a description of any models that appear to

meet his specific needs. SimManager receives this request for work and places it in

the job queue. After determining what engines are available for work it assigns this

workload to the engine processor. It also receives back a file containing the statistical

results derived from the engine’s efforts, and organizes these results into a form that

meets the needs of the customer. Once all the jobs associated with the customer

request are complete, an email message is sent telling him that the results are ready

for pick up.

Rao, et al [43] present WESE: A Web Based Environment for Systems Engineering.

The design and development of modem systems is complicated by their size and

complexity. Furthermore, many of today’s complex systems are built using

subsystems and components available from third party manufacturers. Using WESE, a

developer can analyse different design alternatives involving components from

various researchers and manufacturers. The environment provides a flexible

framework to develop formal specifications and verify the designs using mechanized

theorem proving. WESE also provides the techniques to generate different

specifications documents such as cost of the system.

The primary input to WESE is a System Specification Language (SSL) description of

the system. The input SSL source is parsed into an intermediate form (SSL-IF) using

a parser. SSL-IF forms the input to other modules of WESE SLL-IF is used to

construct simulations, generate specifications, and documentation from the distributed

factories. The factories play a pivotal role in providing a uniform interface to generate

the various components specified in the SSL specifications. The various subsystems

of WESE provide necessary support to achieve the different functionalities of

environment. The user may employ a hypertext markup language (HTML) or a text

based interface to interact with the environment.

32

The rapid advances in Web technology, most notably Java, enable to execute highly

interactive and dynamic simulations/animations on the Web. Java [44] is a portable

language because it is compiled into an architecture neutral, byte code format. Hence,

a Java application can run on any system, providing that system implements the Java

Virtual Machine (JVM). It is this portability, which makes Java so attractive to

Internet developers because it allows compiled Java code to be sited on one computer,

but downloaded, interpreted and executed on another computer; which isn’t

necessarily running on the same platform without the need to recompile the software.

This is of significant difference to more traditional simulation languages such as C++,

where exporting simulation code requires recompilation and installation on each

different machine. Although Java is a small core language it does support extensive

class libraries. As a result the JVM need only be able to handle the core of the

language whilst applications can be developed using the class libraries. These class

libraries can be further refined and extended to develop application specific packages

(e.g. simulation). All versions of Java come with a set of in-built class libraries which

include facilities for developing graphical user interfaces (e.g. the java.awt and

javax.swing.awt packages) [45], network application support (java.net package), a

number of utility functions (java.util package), remote method invocation (java.rmi

package) and 3D animation facility (Java 3D API) [46].

The facilities provided by the Java programming language to support Web technology

is the power behind Web-based simulation. Java benefits from being simple, secure,

object-oriented, multi-threaded and architecture neutral. More and more researchers

develop their simulation packages based on Java. But most of this research is only

devoted to discrete event simulation. SimDynamic is an attempt to introduce dynamic

system simulation on the Web and provides a positive, unique contribution to Web

based simulation.

3 3

Chapter Three

3 Overview of SimDynamic

3.1 W hat is SimDynamic

SimDynamic is a java based simulation package for modelling, simulating and

analysing dynamic systems on the Web. A model o f moderate complexity can be

constructed with minimum o f effort and without writing any code. It supports linear

and non-linear systems, modelled in continuous time, sampled time or a hybrid o f the

two. Finally the package will provide both numerical, graphical results and also 3D

animation.

SimDynamic is actually a collection o f several functional nodes, where each node

carries out a specific function such as integration, generation o f sine wave,

multiplication etc. These nodes serve as the basic building blocks o f a model. These

are classified into following eight node sets

• Continuous • Nonlinear

• Discrete • M iscellaneous

• Tables • Sinks

• Math & Logic • Source

The package has been designed with an aim to achieve as much modelling ease as

possible and to provide maximum user flexibility in model execution. For modelling

the package provides a graphical user interface (GUI) for building models as block

diagrams, using simple mouse operations. A block diagram is a pictorial model o f a

dynamic system. It consists o f a set o f nodes, interconnected by lines. Each node

produces an output either continuously (a continuous node) or at specific points in

time (a discrete node). The lines represent connections o f node inputs to node outputs.

A block diagram can contain any number o f instances o f any type o f node needed to

model a system. This interface will enable the user to draw a block diagram just as to

draw with pencil and paper.

34

Section 3.2 contains a brief description o f the GUI, section 3.3 focuses on the

manipulation o f nodes provided by SimDynamic, section 3.4 deals with lines, section

3.5 introduces the simulation parameters, section 3.6 gives a b rief description o f how

to build a model using the package and section 3.7 presents how to make 3D

animation.

3.2 G raphical User Interface (GUI)

When SimDynamic is started it opens the node set window (figure 3.1). This window

is divided into three sections. First section contains the name o f the currently selected

node set, second section shows all the eight node sets provided by SimDynamic, and

the final section displays the nodes in the currently selected node set.

New Icon

Node Sets

¿11 Dynamic Simulation System on The Web

File Edit View Help

D U

SimDynamic : Math & Logic Node Set

Continuous

Non Linear

IA |
Absolute

Gain

£ l
Discrete

Miscellaneous

Tables

A& B
Bitwise Logic

=D-
Logic Operator

\ /
Sinks

Combinatorial
Logic

a + ib
Magnitude Angle

to Complex

+ ---
- X

Math & Logic

Sources

A . B
Dot Product

powlO

Math Function 1

Java Applet Window

Name of the
currently
selected node
set

Nodes in the
currently
selected set

Fig 3.1: Node set window

3 5

To start a new model click on the new icon in the toolbar, or select new from the file

menu. SimDynamic will open the following model sheet window (figure 3.2). A new

model will be drawn in the draw area o f this blank sheet. Toolbar o f this window

provides short cut buttons for various menu items. User can use these buttons on the

toolbar at his/her convenience. Status-bar at the bottom o f the window displays the

current state o f the simulation model. “Ready “ on the status-bar means that

SimDynamic is idle at the moment and ready for a new simulation run. “Initialising”

on the status-bar indicates that SimDynamic is initialising the model and “Running”

indicates that the model is being executed.

SI| SimDynamic : Untitled*

File Edit View Simulation Help

Toolbar Q B B s «

Draw Area

Statusbar —^ Ready [simulation Time : 0.0

Java Applet Window

Fig 3.2: Model sheet window

The interface incorporates on-line help for user guidance and assistance. The help

provides all the information needed to get along with SimDynamic, such as how to

build a model, simulation parameters, functional description o f nodes etc. Figure 3.3

provides a screenshot o f SimDynamic on-line help.

36

'D SimDynamic Help

«

■ l O K I
23 SimDynamic Help

♦ Introduction
j E B ® æ

• Build a Model
f • Run a Model

• Manipulate Lines
• Manipulate Nodes

♦ Simulation Parameters
g Node References

I Java Applet Window

-|nl x

What is SimDynamic? -

SimDynamic is a java based simulation package for modelling, s
of moderate complexity can be constructed with minimum of effo
systems, modelled in continuous time, sampled time or a hybrid
graphical result.

SimDynamic is actually a collection of several functional nodes,»
integration, generation of sine wave, multiplication etc. These nc
are classified into following eight node sets

* Continuous
* Tables
* Hon Linear
* Sinks

<L J
Fig. 3.3: SimDynamic on-line help

3.3 Nodes

Nodes are the basic building block o f model. Each node performs a specific task at

each simulation time step. A node comprises one or more o f the following: a set o f

inputs, a set o f states, and a set o f outputs.

Input(s) States Output

Fig 3.4: Logical representation of a node

A node’s output is a function o f time and the node’s inputs and states (if any). The

specific function that relates a node’s output to its inputs, states, and time depends on

the type o f node o f which the node is an instance.

To have functional description o f each node see chapter 5. This section describes the

nodes from GUI perspective.

37

3.3.1 A d d in g a N ode

To add a node in the model sheet, click on the node in the node set window. The

mouse cursor will be turned into a hand cursor indicating that the node has been

selected. Now click on the draw area o f model sheet window. SimDynamic will add

the selected node in the model sheet. Each node will have one or more input/output

port.

3.3.2 M an ip u la tin g N odes

To move a node within the model, place the mouse cursor on it and press the left

mouse button. Mouse cursor will turn into a crossed cursor. Now drag the mouse and

the node will be moving with the mouse movement. If any line is connected to the

node it will be adjusted automatically.

A node can be deleted, rotated or renamed by using node menu. To activate the node

menu, position the mouse cursor on the node and click the right mouse button. The

node menu will appear like figure 3.5. Now choose appropriate menu item to

manipulate the node.

JD SimDynamic : Untitled*

File Edit View Simulation Help

- I n l x |

Hi# 5

1 l>
1 a
Derivi D e le te

Rename

Rotate

Help

Ready imulationTime : 0.0

Window

Fig 3.5: Node menu

To delete the node select delete from the menu, the node will be deleted and the

connected lines (if any) to the node will be adjusted.

3 8

To rename the node choose rename from the menu, SimDynamic will open a dilaog

box, enter the new name o f the node and click ok on the dialog box. The new name

will appear at the bottom o f the node.

To rotate the node choose rotate from the menu, the node will be rotated by 180

degree.

3.3.3 S ignals and D ata T ypes

Signals are the streams o f values that appear at the outputs o f a node when a model is

simulated. It is useful to think o f signals as travelling along the lines that connect the

nodes in a block diagram. But it should be kept in mind that the lines in a model

represent logical, not physical, connections among nodes.

The term data type refers to the way in which a computer represents numbers in

memory. Different machines (with different architectures) allocate different amount

o f storage and uses special internal codes to keep track o f the different types o f data it

processes. On the other hand, a data type in a programming language is a set o f data

with values having predefined characteristics. Examples o f data types are: integer,

floating point, character, string, and pointer. It is a collection o f values and operations.

Operations do things to values and produce values as a result.

SimDynamic supports two types o f signal i) Numerical and ii) Boolean. The primitive

data type used by SimDynamic for numerical values is Java double, which is a 32 bit

signed number. So it ranges from 1.7e'308 to 1.7e308. SimDynamic supports both real

and complex numbers, and for logical operations it internally converts the double

value to integer.

Boolean value is used for some logical operations. There are some nodes that support

both types o f data. It is up to the user to decide whether Boolean value or numerical

value is to be used.

3.3.4 N ode P aram eters

Nodes are added to the models with their default parameters. Each node has its own

parameter dialog box to set parameters. To access a node's parameter double click on

39

it, parameter dialog box o f the corresponding node will be opened. Now the user can

change param eter values. After changing the parameter values click the ok button on

the dialog box. A click on the cancel button will ignore any change in the parameters

and will retain the previous parameter values. Parameter Dialog Box for Discrete

State Space node is shown here for example.

Parameters for Discrete State-Space
-Parameters

A matrix

X]

F
B matrix

F
C matrix

F
D matrix

F
Initial Condition

p
Sample Time

F
Ok Cancel

Ja v a Applet Window

Fig 3.6: Parameter dialog box for Discrete State Space

Most nodes accept vector (ID array) or matrix (2D array) parameter/input. There are

some nodes that accept only single number. Vectors may be o f two types i) row

vectors (2D array contains only one row), ii) column vector (2D array contains only a

single column). To enter a row vector as parameter write the numbers separated by

spaces. Following dialog box shows, how to enter the row vector 2 3 4 as Gain

parameter,

* I

Cancel

Parameters for Gain

Parameters

Gain Value
|2 3 4

Ok

Ja va Applet Window

Fig 3.7: Row vector as parameter

40

To enter column vector as parameter write the numbers separated by commas. Figure

3.8 shows how to input a column vector as gain parameter

Parameters for Gain

Parameters

Gain Value

Ok

Java Applet Window

x]

Cancel

Fig 3.8 : Column vector as parameter

To enter a matrix as parameter enter the rows one by one separated by commas.

Following dialog box shows, how to enter the following matrix as Gain parameter

I Parameters for Gain *] |
ra ra m e ie rs

Gain Value

|2 3 4.5 6 7.1 3 5

Ok Cancel

Java Applet Window

Fig 3.9 : Matrix parameter

Most o f the nodes support auto expansion o f inputs/parameters wherever applicable.

For example 2 3 4 has been entered as gain parameter and the node receives 5 as

input. Then Gain node will consider the input as 5 5 5 and output will be 10 15 20.

For matrix parameter the node will try to expand the input to a matrix o f same

dimension as the parameter. For example above matrix has been entered as gain

parameter and the node receives 7 as input. Then gain node will expand the input to

the following matrix,

41

I l l

1 1 1

1 1 1

And the corresponding output from the node will be the following matrix,

14 21 28

35 42 49

7 21 35

When using matrix input or parameter, it should be made sure that all the rows o f the

matrix must have same number o f columns.

3.3 .5 D irect F eedthrough

There are some nodes whose current outputs depend on their current inputs. These

nodes are defined as direct feedthrough nodes. All other nodes are called non-direct

feedthrough nodes. Examples o f direct feedthrough nodes are Sum, Gain etc.

Examples o f non-direct feedthrough nodes are Integrator, M emory etc. W hen using

direct feedthrough nodes it should be made sure that the model does not contain any

algebraic loop. An algebraic loop generally occurs when an input port with direct

feedthrough is driven by the output o f the same node, either directly, or by a feedback

path through other nodes with direct feedthrough.

3.3 .6 Sam ple T im e

The Sample time parameter sets the time interval at which node’s states (output) are

updated. There are some nodes that have continuous (all the nodes in continuous node

set and some other) sample time, some nodes have discrete sample time (all the nodes

in discrete node set and some other). There are some nodes, which derive its sample

time from its driving node (the node from which it receives its input), these nodes are

said to have inherited sample time. When a node has inherited sample time and it

receives its input from more than one node, then it sets its sample time to the sample

time o f the driving node that has the fastest sample time. W hen setting sample time o f

42

a node it should be ensured that the sample time o f each node in a model should be a

multiple o f step size.

3.4 Lines

3.4.1 D raw L ines

Place the mouse cursor near the input/output port o f a node. It is not necessary to

position the cursor precisely on the port. Cursor will be turned into a cross hair cursor

(figure 3.10).

I'D S im D ynam ic : U n t i t le d 4“

File Edit View Simulation Help

- i n l x i

IB1SE1B h h a a 1

j > +
Integrator

Ready jsimulation Time : 0.0

Ja va Applet Window

Fig 3.10: Line drawing step 1

_'D S im D ynam ic : U ntit led* J n j x j
File Edit View Simulation Help

Integrator Memory

Ready imulation Time : 0.0

Ja va Applet Window

2D S im D ynam ic : U ntit led*

File Edit View Simulation Help

O Ö H # H SU S3

J rm * - b
Integrator

Ready |simulation Time : 0.0

Ja va Applet Window

Fig 3.11 : Line drawing step 2

D S im D ynam ic : U ntit led

File Edit View Simulation Help

GlgSH HH

m d t
Integrator Memory

[Rei1 Ready

| Ja v a Applet Window

imulation Time : 0.0

Fig 3.12: Line drawing step 3 Fig 3.13: Line drawing step 4

43

Press the left mouse button and drag the mouse to draw line (figure 3.11). To finish

the line, extend it near the output/input port o f another node and release the mouse

(figure 3.12). SimDynamic will complete the line by connecting it with the targeted

node (figure 3.13).

3.4.2 M an ip u lating L ines

A line can be deleted, its colour can be changed or a branch line can be drawn from an

existing line by using line menu. To activate the line menu, position the mouse tip on

the line and click right mouse button. Line menu will appear (figure 3.14). Now

choose appropriate menu item to manipulate line.

SD SimDynamic : Untitled*

File Edit View Simulation Help

>

Memory
Color

Branch

| Ready Help me: 0.0

jjava Applet Window

Fig 3.14: Line menu

To delete the line, choose delete from the menu. SimDynamic will delete the line and

will reset the input/output port o f the node to which the line was connected.

To change the colour o f the line, select color from the menu. SimDynamic will open a

colour chooser, select a new colour and click ok button. The line will be redrawn in

the new colour.

44

File Edit View Simulation Help

□ i & a m ► • ?

f

Integrator

Ready |simulation Time : 0.0

Ja va Applet Window

Fig 3.15: Branch line drawing step 1 Fig 3.16: Branch line drawing step 2

To draw a branch line, select branch from the line menu. A point will appear on the

line. Position the mouse cursor near the point, mouse cursor will be turned into a cross

hair cursor (figure 3.15). Now press the left mouse button and drag the mouse to draw

branch line (figure 3.16). To finish the branch line, follow the same procedures as

with normal lines.

3.5 Sim ulation Param eters

Before starting a simulation run user has to set simulation parameters. To access the

simulation parameters select param eter menu item from Simulation menu. Following

parameter dialog box will appear.

D Simulation Parameters

on i miauui i i line

Stop TirStart Time|oo nejlO.O

n ueyi diui

Select Integrator

Step Length

|None

¡0.2

i
Cancel

Java Applet Window

Fig 3.17: Simulation parameters dialog box

45

3.5.1 S im u lation tim e

Simulation time specifies how long the simulation will continue. This time is

measured in seconds. And o f course it is in pseudo time. Starting time need not be

always 0. Simulation may start from any starting time. The only requirement is that

stop time must be greater than the start time.

It should be noted that, simulation time and physical time are not the same. For

example, running a simulation for 10 seconds will usually not take 10 seconds. The

amount o f time it takes to run a simulation depends on many factors, including the

m odel’s complexity, the simulation step sizes, and the com puter’s clock speed,

available memory etc.

3.5.2 In tegrator

The dynamic models are generally described by differential equations. The solutions

o f these equations display the operations o f the system and this is the fundamental

property o f dynamic models. This software provides a number o f integrators to solve

ordinary differential equations (ODE). Because o f the diversity o f dynamic system

behavior, some integrators may be more efficient than others at solving a particular

problem. Here is a brief description o f each solver that has been implemented. Greater

details about integrators can be found in chapter 4.

• R K D P : It is based on an explicit Runge-Kutta formula, the Dormand-Prince

pair.

• R K _04: It is based on fourth order explicit Runge-Kutta formula.

• R K B S : It uses an explicit Runge-Kutta pair o f Bogacki and Shampine. It may

be more efficient than RK DP in the presence o f mild stiffnes.

• R K H E : It uses Heun’s method which also known as modified Euler formula.

• R K E U : It uses simple Euler’s method for integration.

3.5 .3 Step L ength

SimDynamic starts at the starting time and advances its clock by adding step length to

the current clock time until it reaches the stop time. At every time step it calculates

the output o f each node in the model. Default time step is 0.2. So for a start time 0 and

46

stop time 10.0, outputs will be calculated at 0, 0.2, 0 .4 10.0. Smaller time steps

may ensure more accurate results but at the same time it may increase simulation run

time depending on the model complexity and the integrator used.

Step length and sample time o f the nodes in a model must be compatible. When

setting step length or sample time o f nodes, it should be made sure that sample time o f

all the nodes in a model must be an integer multiple o f the step length.

3.6 Run a M odel and View Output

Simulating a dynamic system with this package is a two-step process. First, the user

has to create a model o f the system to be simulated. The model graphically depicts the

time-dependent mathematical relationships among the inputs, states and outputs o f the

system. After the model creation user has to choose an integration method and then

can use SimDynamic to simulate the behaviour o f the system for a specified period o f

time.

To start a simulation run choose run from the simulation menu or click on the run

button from the toolbar. First SimDyanmic will initialise the model and then it will

execute the model. If the model does contain error, simulation will be halted with

appropriate error message.

To view result o f a simulation run, use the nodes (except terminator node) from Sink

node set. To view numerical result use Display node, for graphical results Time vs

input or X vs Y Graph nodes can be used. To save simulation results in a text file use

To fi le node. When simulation run is finished simply double click on any o f the sink

nodes to view results. To Dat File node from the sink node set can be used to save

simulation results in a data file for later use by SimDynamic.

3.7 3D Anim ation

To start the 3D model editor, choose 3D animation from the simulation menu.

SimDynamic will open the following 3D model editor.

47

E> S im D ynam ic : 3D Model Editor ^ j D j x j l

Box Edit

Cone Remove

Cylinder Save

Sphere Load

Param
.. Run

Fig 3.18: 3D model editor window

This editor provides some basic 3D shapes (Box, cone etc.) on the left side. It is

assumed that the 3D model will be rendered in a 3D space. At each simulation time

step objects o f a 3D model will move to a new position in the space. User has to add

3D shapes to the space to construct a model. To add any shape, click on the

appropriate button. Each button click will open a dialog box for the selected shape.

Here parameter dialog box for a box is shown for example,

|A dd a b o x to m o d e l ■ J D

Width |o i Height l°i Depth |o.1
Center x jo Center y|o Center z|o
Red fT ” Green h Blue ¡0
File name forx |None

File namefory |lMone
File nameforz |fMone|

Add
J _

Cancel

Fig 3.19: Dialog box for 3D box

On the dialog box user has to define the initial position (center X, Center Y, Center

Z), colour (in term o f RGB value) and dimension o f the shape. All the dimensions in

the 3D model editor are measured in meter. More importantly, to animate any 3D

object at least one data (simulation result from SimDynamic) file should be associated

with it. 3D animator will read current position o f the object from the associated data

file(s) and render the 3D animation. Parameter button enables the user to set some 3D

parameters. User can set the origin o f the 3D space and can also set the time delay

during 3D rendering. Save button can be used to save a 3D model. Using the load an

existing 3D model can be opened. To start 3D animation, click the run button and a

new 3D window will be opened.

48

Chapter Four

4 T h e D esign o f SimDynamic

SimDynamic, is a collection of Java classes (objects) which provides basic utilities for

constructing simulation models for dynamic systems. In the current implementation,

simulation, random number generation, and analysis of simulation result (both

numerical and graphical) are built into the library. In the following sections, the

design of the Simdynamic package will be presented in great detail.

SimDynamic is intended to make model creation an easy task. It is also intended that

the model user would be able to understand the model as well as use the simulation

easily. This is achieved through providing a user-friendly modelling interface and an

easy to view (graphical/numerical) results mechanism. It is believed that SimDynamic

is an easy to use package and that even a fairly complex simulation model can be

constructed without writing any additional code.

The software consists of three packages, each package containing a set o f related

classes that work together to provide functionality in a key area to support a

simulation process. The package hierarchy of this software is shown in figure 4.1.

Fig 4.1 : SimDynamic package hierarchy

A discussion of each of these packages is presented in this chapter in greater detail. In

the class hierarchy diagrams in this chapter foundation classes (Java built-in classes)

are represented by dashed rectangle and software classes are shown by regular

rectangles. The signatures for the public methods of major classes for each package

will be given. For brevity, all the classes of each package, and all the methods of

classes, are not discussed here. Complete source code of SimDynamic is provided in

appendix E.

49

4.1 UlPack

This package contains all the necessary classes to provide the graphical user interface

(GUI) of the software. The class hierarchy of this package is as follows

Fig 4.2 : Class hierarchy in UlPack package

4.1.1 M yLine

The MyLine class is responsible for handling all the line drawings in a model, and its

definition looks as follows

public class MyLine extends Object{
public Vector points;
private int lx, ly;

public MyLine(Container c, Simulator s);
public void drawL(Point p, int d);
public void drawC(int w, Color clr);
public void setArrowPoints(boolean rotated);
public void drawA();
public void adjustA(int tx, int ty, boolean rotated);
public void adjustR(int tx, int ty, boolean rotated);
public boolean checkpoint(Point p, Point pt);

}

50

This implementation of MyLine allows only vertical and horizontal lines. A complete

line may contain indefinite number of vertical and horizontal segments. MyLine

stores end points of every segment in the Vector points, lx and ly stores the last

drawing point of the line. Constructor needs a Container on which the line will be

drawn and a Simulator which will store the line.

Method drawL draws a line segment from (lx, ly) to the current point p. This method

also determines the direction (vertical or horizontal) of the line.

The drawC method draws a circle at the last point of an incomplete line.

The setArrowPoints method calculates the co-ordinates of an arrow for a completed

line.

The drawA method draws an arrow at the last point of a completed line.

Method adjustA and adjustR are used to adjust a line connected to a node, when the

user moves the node.

4.1.2 HelpFrame

HelpFrame provides the framework for displaying SimDynamic online help.

HelpFrame extends DefaultHelpBroker{
public HelpFrame(HelpSet hs);

}

HelpFrame simply extends java’s DefaultHelpBroker, where the HelpBroker is the

default presentation of a HelpSet. And a HelpSet is a collection of help information

consisting of a HelpSet file, table of contents (TOC), index, topic files, and Map file.

The constructor also customizes the default presentation by enabling and disabling

some buttons.

4.1.3 DrawArea

Class DrawArea provides the free area on the model sheet window, where user can

draw a model. Its signature is as follows,

class DrawArea extends JPanel implements ActionListener{
public DrawArea(Simulator smltr);
public void painComponent(Graphics g);
public void actionPerformed(ActionEvent ae);
public Nodeicon createNode();

51

}

Constructor DrawArea initialises the drawing area and it also implements the

ActionListener interface to perform the menu actions for a line. This class also

includes two inner classes to capture all the user mouse operations.

The paintComponent method repaints the draw area when ever it is needed.

The actionPerformed method handles all menu actions for the line menu.

The createNode method creates a new node, when ever user clicks on the draw area

after selecting a node from the node set browser, and returns the node.

4.1.4 BlankSheet

Class BlankSheet holds the DrawArea and provides the framework for simulation

model sheet window. It looks like as follows,

public class BlankSheet extends JFrame implements ActionListener{
public BlankSheet();
public void processComponent(ComponentEvent ce);
public void actionPerformed(ActionEvent ae);

Constructor BlankSheet performs all the necessary steps to set the UI. It instantiates a

new DrawArea and add it to the frame, also instantiates menu and menu items,

toolbar, and status bar.

The processComponent method is used to store the current size and location of the

frame, whenever it is resized or moved by the user.

The actionPerformed method handles all the menu actions and toolbar icon actions.

Other than these methods, this class has two important private methods saveFile() and

openFile(). These methods are used to save a model or to open an existing model.

4.1.5 M ainFram e

MainFrame class is responsible for the node set browser window, which is the

starting window of SimDynamic.

public class MainFrame extends JFrame implements ActionListener{
public MainFrame();

52

Constructor MainFrame, instantiates all the components necessary for the user

interface (UI).

The actionPerformed method is responsible for all menu actions and toolbar icon

actions. This method also creates a new BlankSheet whenever user clicks the new

menu item.

4.1.6 Param Fram e

Class ParamFrame enables the user to set simulation parameters. Its signature is as

follows,

public class ParamFrame extends JFrame implements ActionListener{
public ParamFrame(Simulator smltr);
public void initParams();
public void actionPerformed(ActionEvent ae) ;

Constructor ParamFrame instantiate all the components needed for the input such as

TextField, ComboBox etc.

The initParams method assign the current values o f different simulation parameters to

the respective input fields before displaying the frame.

The actionPerform method is invoked when user clicks any of the buttons (ok/cancel)

in the frame. This method parses the input entered by user and checks legitimacy of

input. Invalid input will be reported by appropriate error message.

4.1.7 Other Classes in the Package

UlPack also contains following classes. All of these classes (except CNST class)

extends JFrame.

CNST - this class holds some constant values that are used in various places of the

software. All members of this class have been declared static. So they are directly

accessible by using the class name only.

public void actionPerformed(ActionEvent ae) ;

5 3

Color Frame - Color Frame provides a colour chooser, using that user can change the

colour of a line.

ErrorFrame - SimDynamic uses ErrorFrame to display the appropriate error

message, whenever it encounters some error during the runtime of a simulation.

InfoFrame - this class displays the information about SimDynamic.

DispFrame - DispFrame provides the framework to display numerical results o f a

simulation. The class SnkDspl from NodePack package supplies the numerical results

to this class after a simulation run is completed.

TvsXFrame - this class is responsible for graphical output of a simulation. It plots the

graph of a simulation result with respect to time. The class SnkTvsinp from NodePack

package provides necessary data to this class.

XvsYFrame - works in the same way as TvsXFrame, but it derives its data from the

class SnkXYGrph of NodePack package.

4.2 NodePack

NodePack is the core of this software and provides all the functional nodes. This

package also contains the main simulation engine (the Simulator class) and some

other important classes.

Fig 4.3 : Class hierarchy in NodePack package

54

4.2.1 Basic

Basic class can be considered as the utility class for SimDynamic. This class contains

various utility methods to ease the task of other classes.

Basic extends Object{
public static boolean equalTo(double dl, double d2);
public static boolean grTeqt(double dl, double d2);
public static boolean IsTeqt(double dl, double d2);
public static boolean lessTn(double dl, double d2);
public static boolean greatTn(double dl, double d2);
public static boolean checkRegion(int x, int y, int cx,

int cy, int r);
public static void VecToArray(double[][] R,double[][] C,

Vector V);
public static void VecToArray(double[][] M,Vector V);
public static void VecToArray(double[] R,Vector V) ;
public static byte setOpDataType(Vector opMat);
public static void dblVect2cmplx(Vector cmplxV, Vector dblV);
public static void assignVect(Vector VI, Vector V2);
public static void assignMat(Vector Matl, Vector Mat2);
public static boolean isNegative(Vector Mat);
public static boolean hasGreater(Vector Matl, Vector Mat2);
public static Vector matMultByVec(Vector Matl, Vector Mat2);
public static void getDim(Vector Mat, MyDim d);
public static boolean between_include_lower(double n,

double h, double 1);
public static boolean between_include_higher(double n,

double h, double 1);
public static boolean between_include_both(double n,

double h, double 1);
public static Double elementAt(Vector Mat, int row, int col);
public static Boolean elementAt(Vector Mat, int row,

int col, byte b);
public static boolean elementAt(Vector Mat, int row,

int col, Complex cmplx);
public static void initMat(Vector Mat, double dbl);
public static void initMat(Vector Mat, double rel, double img);
public static boolean canBeResolved(MyDim diml, MyDim dim2,
boolean[] expand, MyDim fdim);
public static boolean canBeResolved(MyDim diml, MyDim dim2,

5 5

MyDim dim3, boolean[] expand, MyDim fdim);
public static boolean canBeResolved(MyDim diml, MyDim dim2,

MyDim dim3, MyDim dim4, boolean[] expand, MyDim fdim);
public static boolean updateParam(String str,Vector mV,

byte type, String[] err_msg);
public static void tf2ssAB(Vector A, Vector B, Vector num,

Vector den, int n);
public static void tf2ssCD(Vector C, Vector D, Vector num,

Vector den, int n);
public static void factToPoly(Vector Mat, Vector gV,

boolean g);

All the members in this class have been declared as static. So other classes can access

these methods (or variables) without instantiating an object of type Basic. First five

methods of this class (equalTo() greatTn()) performs normal relational

operations (>, <, >=, = = etc.) on floating point numbers. These methods are written in

addition to Java’s normal relational operators to attain desired precision in floating

point calcualtion.

The checkRegion() method returns true if the point (x,y) is within the circle, centred at

(cx,cy) with radius r.

The vecToArray(double[][] R,double[][] C, Vector V) converts a 2D vector (matrix)

of Complex objects to two 2d array containing the real and imaginary parts

respectively.

The vecToArray (double[] [] M, Vector V) method converts a 2D vector (matrix) of

Double objects to a 2d array of double.

The vecToArray (double[] R, Vector V) converts a ID vector of Double objects to a Id

array of double.

The setOpDataType(Vector opMat) checks each element of the vector opMat. If it has

a Complex number then it returns data type complex otherwise it returns data type

real.

The dblVect2cmplx(Vector cmplxV, Vector dblV) converts a vector of Double objects

into a vector of Complex objects, where each complex number’s imaginary part is

zero.

The assign Vect(Vector VI, Vector V2) assigns the elements of vector V2 to vector V 1.

56

The assignMat(Vector Mail, Vector Mat2) assigns elements of vector (2D) Mat2 to

vector M atl.

The isNegative(Vector Mat) returns true if any element of the vector Mat is negative.

The hasGreater (Vector M atl, Vector Mat2) returns true if any element of vector Matl

is greater than the corresponding element in vector Mat2.

The matMultByVec(Vector M atl, Vector Mat2) multiply a matrix (M atl) by a row

matrix (Mat2) and return the resultant row matrix.

The getDim(Vector Mat, My Dim d) finds the dimension of a matrix (Mat) and assign

the dimension to d.

The between_include_lower, between _include_higher, between_include_both these

three methods were used to find whether a number is within a given range.

The element At (Vector Mat, int row, int col) returns a Double object from the matrix

(Mat) at (r,c) position.

The initMat(Vector Mat, double dbl) and initMat(Vector Mat, double rel, double img)

were used to initialise a matrix with real number and complex number respectively.

The updateParam(String str, Vector mV,byte type, String[] errjnsg) parses the string

str for numerical parameters and assign the values to the vector mV. If this method

encounters error during parsing it returns false and assign appropriate error message

to the string err_msg.

The tf2ssAB(Vector A, Vector B, Vector num, Vector den, int n) partially converts a

transfer function to a state-space. This method calculates the matrices A and B of a

state-space from the numerator and denominator of its corresponding transfer

function.

The tf2ssCD(Vector C, Vector D, Vector num, Vector den, int n) calculates the

matrices C and D of a state-space from the numerator and denominator of its

corresponding transfer function.

The factToPoly(Vector Mat, Vector gV, boolean g) finds the polynomial from its

factorial form.

4.2.2 C M ath

This class can be considered as a replica of Java’s Math class for complex variable.

SimDynamic supports both real and complex variables. This class provides all the

57

complex mathematics. All methods of this class have been defined as static as

follows,

public class CMath extends Object{
public static Complex add(Complex Cl, Complex C2) ;
public static Complex sub(Complex Cl, Complex C2) ;
public static Complex mult(Complex Cl, Complex C2);
public static Complex div(Complex Cl, Complex C2);
public static Complex pow(Complex Cl, Complex C2) ;
public static Complex powlO(Complex Cl);
public static Complex exp(Complex Cl);
public static Complex In(Complex Cl);
public static Complex loglO(Complex Cl);
public static Complex log2(Complex Cl);
public static Complex sqr(Complex Cl);
public static Complex sqrt(Complex Cl);
public static Complex conjugate(Complex Cl);
public static Complex inverse(Complex Cl);
public static Complex reciprocal(Complex Cl);
public static double magnitude2(Complex Cl);
public static double abs(Complex Cl);
public static double angle(Complex Cl);
public static Complex sin(Complex Cl);
public static Complex cos(Complex Cl);
public static Complex tan(Complex Cl);
public static Complex asin(Complex Cl);
public static Complex acos(Complex Cl);
public static Complex atan(Complex Cl);
public static Complex sinh(Complex Cl);
public static Complex cosh(Complex Cl);
public static Complex tanh(Complex Cl);
public static Complex asinh(Complex Cl);
public static Complex acosh(Complex Cl);
public static Complex atanh(Complex Cl);
public static Complex ma2cmplx(double dl, double d2

}

All the methods in this class have self-explanatory names. So functional description

of the methods has been skipped here.

5 8

4.2.3 M atrix

Matrix class contains all the methods required for matrix operations. Its definition is

as follows,

public class Matrix extends Object{
public static Vector inverse(Vector mat);
public static Complex DMinor(Vector a,boolean[] crossed,

int row,int col);
public static Vector hermitian(Vector mat);
public static Vector transpose(Vector mat);
public static Vector conjugate(Vector mat);
public static Vector mult(Vector Matl, Vector Mat2);
public static Vector add_sub_div(Vector Matl, Vector Mat2,

int function);
public static Complex trace(Vector mat);

Once again the methods in this class have self-explanatory names. So functional

description has been skipped.

4.2.4 N odeicon

The Nodeicon class has been defined as an abstract base class, that encapsulates the

features common to the classes that appear as nodes in a model. All the functional

nodes (total 83 nodes in this implementation) have been derived from this class. This

class looks like as follows,

public abstract class Nodeicon extends JComponent implements
ActionListener{

public Nodeicon(Simulator smltr);
public void setlpOpXO;
public void adjustName();
public void alert();
public void adjust__ipY () ;
public void actionPerformed(ActionEvent ae);
public void reloadlmage();
public void paintComponent(Graphics g);
public void processMouseEvent(MouseEvent me);
public void processMouseMotionEvent(MouseEvent me);

59

public boolean checkSampleT(double time);
public void initDialog(String title, int w, int h);
public void showDialog();
public boolean resolveDimension();
public boolean isOpOK(double simT);
public void upDateOutput(double simT);
public void initialize();
abstract public void makeDialog();
abstract public void cancel();
abstract public boolean checkConsistency();
abstract public boolean action(double simT);

Constructor Nodeicon initialises all common attributes (sample time, number of ports

etc.) of a node. It loads the default image and default name for the node.

The method setIpOpX() sets the X co-ordinates for the input and output ports of the

node.

The method adjustName() adjusts the name of the node when user changes the node’s

default name.

The method alert() draws a red rectangle around the node when simulation is halted

because of a run time error. It helps the user to identify the node in which error has

been occurred.

The method adjust_ipY() sets the Y co-ordinate for the input ports of the node.

The method actionPerformed(ActionEvent ae) handles all the node popup menu

actions.

The method reloadImage() reloads the image for the node whenever user change the

function of a node.

The method paintComponent(Graphics g) repaints the node whenever it is required,

such as node has been dragged, or node popup menu has been invoked etc.

The method processMouseEvent(MouseEvent me) handles all user mouse actions,

such as user double click on the node for the parameter dialog box, or click the right

mouse button for node popup menu, or press the mouse to drag the node etc.

The method processMouseMotionEvent(MouseEvent me) this method is responsible

for node drag operation.

The method checkSampleT(double time) it returns true if the time is a valid time-point

with respect to the sample time of the node.

60

The method initDialog(String title, int w, int h) initialises the dialog box that will be

used as parameter input dialog for the node.

The method showDialog() this method displays the parameter dialog box for this node

when user double click on the node.

The method resolveDimension() expands the input or parameter of the node. It is

mentioned in section 3.3.4 that most of the nodes support auto expansion of node

input or parameter. This method handles this expansion process. It uses the

canBeResolved method from the Basic class to check which one (parameter or input)

should be expanded, then takes apposite steps for expansion.

The method isOpOK(double simT) checks that output at the simulation time simT is

valid. Sometimes a node may produce invalid (infinity or not a number) output. So at

each time step this method checks the validity of the output produced by the node.

The method upDateOutput(double simT) updates the output of the node at simulation

time simT.

The method initialize() initialises the parameters of the node before a simulation run

starts.

The method makeDialog() prepares the node specific dialog box for parameter input.

The method initDialog method initialises a general dialog box for parameters. Every

method implements this method to customize the dialog box initialised by initDialog

method.

The method cancel() abstract method is used to perform the cancel operation of the

parameter dialog box. If user clicks the cancel button in the parameter dialog box this

method restores the previous parameter values.

Abstract method checkConsistency() is used to handle the ok action of the parameter

dialog box. If user changes the parameter and clicks ok button in the parameter dialog

box, this method will parse the new parameters. It also generates error messages if

user enters invalid parameter.

action(double simT) is the most important method in the class. It is mentioned in

section 3.1 that every node in SimDynamic carries out a specific function, such as

integration, generation of sine wave etc. at each simulation time step. All the nodes

implement this action method to perform its specific function at simulation time simT.

61

4.2.5 In te g ra to r

The dynamic models are generally described by differential equations. The solutions

of these equations display the operations of the system and this is the fundamental

property of dynamic models. This class provides a number of numerical methods to

solve ordinary differential equations (ODE). Because of the diversity of dynamic

system behavior, some methods may be more efficient than others at solving a

particular problem.

public class Integrator extends Object{
public Integrator();
public Vector integrate(Vector A, Vector X, Vector B, Vector Y,

Vector PRV, int s_p_c, int row, double step);
public void initialize(int solver, int row, int col);

}

Constructor Integrator creates a new integrator and allocates memory for co-effiecient

tables.

The method integrate(Vector A, Vector X, Vector B, Vector Y, Vector PR V, int s_p_c,

int row, double step) calculates integral value of a differential equation of the form,

dx
— = A X + BY
dt

where A and B may be matrices or one dimensional arrays, X and Y must be one

dimensional arrays, at the current simulation time step using the integral values from

the previous time step. This method extensively uses various explicit Runge-Kutta

formulas to solve the equation. Runge-Kutta formulas used by this method are briefly

described in section 4.4.

initialize(int solver, int row, int col) method initializes the tables for the selected

Runge-Kutta method.

4.2.6 S im u la to r

This is the main simulation engine and it controls the whole simulation process of a

model. The simulator class makes the nodes to interact as a system and generate

desired output. The way it accomplishes this, is described in section 4.5.

62

public class Simulator extends Object{
public Vector nodeV;
public Vector lineV;
public int nodelD;
public int linelD;

public Simulator(BlankSheet blsh);
public void init();
public boolean simulate();
public void removeLine(int id);
public void removeNode(int id);

}

Constructor Simulator creates a new simulator for the BlankSheet blsh. This class is

responsible for keeping track of all the lines and nodes in a model. Whenever a new

line is drawn in a model, its ID is set equal to linelD , and linelD is incremented by

one. In the same way nodelD is used to keep record of the nodes in a model. Vectors

nodeV and lineV are used to store all the nodes and lines in a model respectively. This

class also maintains the simulation clock.

The method, initQ initialises all the variables (such as set linelD and nodelD to zero,

make sure that nodeV and lineV are empty) at the beginning of a model construction.

The simulateQ method is the main simulation engine. It carries out the whole

simulation run. Its function is described in section 4.5.

The method removeLine(int id) removes a line from the vector lineV. When user

deletes a line int a model this method is invoked with the id of that line. It removes

the line from the vector and adjusts ids of the remaining lines.

The method removeNode(int id) removes a node from the vector nodeV. As user

deletes a node from a model this method is invoked with the id of that node. It

removes the node from the vector and adjusts ids of the remaining nodes.

4.3 Anim3D

This package contains all the classes responsible for 3D animation. Although Anim3D

has been included as a package of SimDynamic, this can be used as a separate

application to generate 3D animation.

63

Fig 4.4: Class hierarchy in Anim3D package

4.3.1 M ainFram e3D

This class provides the 3D model editor user interface.

public class MainFrame3D extends JFrame implements ActionListener{
public MainFrame3D();
public void actionPerformed(ActionEvent ae);

}

Constructor MainFrame3D initialises all the dialog boxes and buttons.

actionPerformed method handles all the button action and invokes appropriate dialog

box for input.

4.3.2 Panel3D

Panel3D class constructs the 3D scene and adds the scene into a Jpanel. Its definition

is as follows,

public class Panel3D extends JPanel{
public BranchGroup createSceneGraph(Vector nodeV,

Uniinfo uniinfo) ;
public Panel3D(Vector nodeV, Uniinfo uniinfo);

64

Method createSceneGraph creates the whole 3D scene. Vector nodeV contains

parameters for every single object of the 3D model. This method goes through the

nodeV vector and creates all the 3D objects and adds them to the java 3D

BranchGroup [46].

Constructor Panel3D creates a SimpleUniverse [46] and adds the BranchGroup,

created by createSceneGraph method, to it. Finally this method adds the

SimpleUniverse to the centre of the Jpanel.

4.3.3 B ehavior C lasses

All the behavior classes in the package like BoxBehavior or CylinderBehavior are

responsible for the movement of the respective object in the 3D animation. Since all

the behavior classes have same structure, here BoxBehavior class is used to describe

the structure

public class BoxBehavior extends Behavior {
public BoxBehavior(TransformGroup tg, Struct3D st3d, Uniinfo

uniinfo);
public void initialize ();
public void processStimulus(Enumeration criteria);

}

Constructor BoxBehavior initialises all parameters for the box object.

initialize method allows a Behavior object to initialise its internal state and specify its

initial wakeup condition.

processStimulus method is the main method in the class. At each simulation time step

this method reads the current position (x, y, z co-ordinate) of the object from the file

and move the object to the new position, thereby animates the 3D model.

4.4 Solution of Ordinary Differential Equations

An ordinary differential equation or ODE [47] for short, may be thought of as a

differential equality specifying the relationship between a dependent variable, say y,

and an independent variable, say x. The order of the ODE is the order of the highest

derivative of y with respect to x appearing in it. Hence, dy/dx + x2 y =0 is a first order

65

ODE whereas £ yldx2 + ky =0 is a second order ODE. The problem consisting of a

differential equation together with an initial value is called an initial value problem

(IVP). Here all the yn are given at some starting value tn, and it is desired to find the

yn+i at some final point tn+i , or at some discrete list of points.

The general form of an IVP is as follows

i = / (* 0 . y(0) = bat

where b is a constant and the function f(x,y) is given.

Integrator class uses Euler’s method and Runge-Kutta methods to solve this sort of

IVPs. A short description of each methods used in SimDynamic is presented in the

following sections

4.4.1 E u le r’s M ethod

In Euler’s [48] method yn+i is calculated from yn using the formula

yn+i = yn + h * f(yn, tn)

where h is the step size.

This method is called a one-step method, since the information from the single

previous step is used to calculate the current approximation. Since the error in Euler’s

method is of 0(h), one has to choose a very small step size to get desired accuracy.

So, this method is not preferred over the Runge-Kutta method, as the errors in Runge-

Kutta methods are much smaller than those of Euler’s method.

4.4.2 H e u n ’s M ethod

In this [48] method, yn+i is calculated using the following steps:

k2 = f (yn +h*kl’tn+h)
, ± k. + k2

y ^ = y „ + h * - LY L

66

where h is the step size.

Here ki is the slope at the point (yn, tn), k2 is the slope at the point (yn + h * kj, tn + h).

The average of the two slopes were used to calculate the next approximation yn+i from

y„. The use of mid-point slope cancels out the first order error term making the system

second order. It provides much better accuracy over Euler’s method.

4.4.3 R u n g e-K u tta M ethod

The idea behind Runge-Kutta methods is to compute the value of f(t, y) at several

strategically chosen points near the solution curve in the interval (tn, tn + h), where h is

the step size, and to combine these values in such a way as to get good accuracy in

yn+i. Each step of a Runge-Kutta method goes through the following calculations:

k0 = h * f (t „ + a 0 *h, y j

k\ = h * f i f n +«i *h> y * + P w * K)
k2 = h * f (t „ + a 2 *h, J . + A , •*, + &,**,)

kr = h * f (t n +ccr *h, y „ + f i rQ *k0 +f i rl *kt + + J3rr_,*kr_l

y„* i = y n + Wo*K + W \ * K + + w r *kr

The numbers aj, pij and Wj are given by the inventors of the method in the form of a

table (see appendix B for numerical coefficients)

«0
a A o

a 2 ^ 2 0 f i l l

a r f l r o f i r l P r r - \

 K

Bogacki and Shampine [49] described a third order Runge-Kutta method with

second order error estimate. In this method y is calculated using the following steps,

67

*2=J'»+^ V (' „ + y *.)

> « , = > . + * * (f v (< „ ^ .) + | v « . + | , * .) + ! * / « . + ^ , * ,))

* „ . = > . + * * (^ V G . , * ,) + } * / « . + f . * ,) + ! * / (/ . + * , * * ,))

where yn+i is a third order and yn+i is a second order estimate of the solution. This

requires three function evaluations per step, the term f(tn + h, yn+i) is carried over to

the next step where it becomes f(tn, yn).

The fourth-order Runge-Kutta [50] method is a commonly used class of Runge-

Kutta methods. The error in this method is 0 (h4). In this method yn+i is calculated

using the following steps,

*1 = /(* „ . y.)

*2 = / f t . + f , y . + / > *y)

* , = / « . + £ . y . + A * y)

* 4 = / (<„ + * . y n + h * k })

y ^ = y „ + (k] + 2 * k 2 + 2 * k i + k A) * ^

Dormand-Prince [51] method requires calculation of seven kj values, ko, ki, ..., k6,

for each integration step h. From these k values two approximations can be found as

follows,

y ,+1 = Z W; * ki
>0

;=o

68

yn+i is the more accurate approximation and has local error of order 5. yn+i is only

order 4, and is usually less accurate.

4.5 How SimDynamic Works

Simulating a dynamic system is nothing but the process of computing the states and

outputs of the system over a particular period of time. In SimDynamic each functional

node calculates its own output and state at a particular time step through the action

method. So the only requirement to simulate a model is to co-ordinate the functional

nodes to make them interact as a system, and the Simulator class does this. When a

user clicks the Start from the Simulation menu, the Simulator class takes over the

control and the simulation starts. It accomplishes its task in the following two phases

4.5.1 Initialisation Phase

In this phase Simulator performs the following tasks in the order they are described

Checks for Integrator: Simulator checks whether the model needs an integrator. If it

does need an integrator and no integrator has been selected Simulator will generate

error message.

Sorts Lines: It should be make sure that all the lines in the model is connected to

nodes. If there is any dangling line in the model, error message will be generated. At

this stage source node for a branch line is also determined.

Sets input/output nodes of each node: It is mentioned in section 3.3.3, that the lines

in a model represent logical, not physical, connections among nodes. And during a

simulation run a node receives its input directly from another node. So every node

needs to know the address (id) of its predecessor and successor nodes. To find the

predecessor/successor nodes of a node, Simulator traces each line connected to the

node and retrieves the id of the node connected to the other end of the line. It reports

error message if fails to resolve any node.

Determines the execution order of nodes: During a simulation, SimDynamic

updates the states and outputs of a model’s nodes once per time step. The order in

69

which the nodes are updated is therefore critical to the validity of the results. In

particular, if a node’s outputs are a function of its inputs at the current time step, the

node must be updated after the nodes from which it receives its inputs. Otherwise, the

node’s outputs will be invalid. The order in which nodes are added in a model is not

necessarily the order in which they need to be updated during a simulation.

Consequently, SimDynamic sorts the nodes into the correct order during the

initialization phase.

To facilitate this sorting process nodes are classified as follows,

• Direct feedthrough nodes: nodes whose current outputs depend on their

current inputs are called direct feedthrough nodes.

• Non-direct feedthrough nodes: nodes whose current outputs do not depend on

their current inputs are called non-direct feedthrough nodes.

• Source nodes: nodes that do not need any input to produce output.

• Sink nodes: nodes that do not produce any output.

With this node classification Simulator uses the following rules to determine node

execution order

• Source nodes should be executed before any nodes in the model. This ensures

that their output will be valid at every time step.

• Sink nodes should be updated after all the nodes in the model have been

updated. This ensures that sink nodes will always receive valid input.

• Every other node must be executed before any of the direct feedthrough nodes

that it drives. This rule ensures that inputs to direct feedthrough nodes will be

valid when they are updated.

• Non-direct feedthrough nodes can be updated in any order as long as they are

updated before any direct feedthrough nodes they drive. This can be

accomplished without much difficulty by putting all the non-direct

feedthrough nodes of a model just after the source nodes in the execution list.

By applying above rules Simulator generates a node execution list, in which source

nodes appear at the head followed by the non-direct feedthrough nodes in no

70

particular order. Then comes the direct feedthrough nodes in the order required to

supply valid input to the nodes they drive, and the list ends with the sink nodes.

Sets sample time for each node: Nodes in the continuous node set and some other

nodes have continuous sample time. Some nodes (nodes in discrete node set) have

sample times that are explicitly specified by the user on the node dialog boxes. All

other nodes have implicitly defined sample times that are based on the sample times

of their inputs. For nodes whose inputs have different sample times, the node is

assigned the sample time of the fastest input. Simulator also checks that sample time

of each node is an integer multiple of the simulation step size.

Resolve dimension for node inputs and parameters: It is mentioned in section

3.3.4, that most of the nodes support auto expansion of inputs and parameters. At this

stage simulator checks each node in the model for the possibility of input/parameter

expansion. If it fails to resolve input/parameter dimension for any node, error message

is generated.

4.5.2 E xecution Phase

In this phase, Simulator successively computes the states and outputs of the system at

intervals from the simulation start time to the finish time, using information provided

by the model. Simulation starts at the starting time specified by the user on the

simulation parameter dialog box and Simulator advances its clock by adding step

length to the current clock time until it reaches the stop time. At each step Simulator

computes a node’s states and outputs by invoking the action method of that node. It

passes the current simulation time and step length to the node’s action method. The

node itself derives the input for this simulation time step from its previous node.

Using this input, simulation time, step and the node’s state (if any) at previous

simulation time step, action method computes the valid output and state for current

simulation step. After the action method Simulator invokes the node’s isOpOk

method to ensure the validity of currently calculated output. At the end of each step

Simulator computes the simulation time for the next step and advances its clock to

that time. At the end of the simulation time each node holds the final values of the

model’s output and state.

71

Chapter Five

5 Functional Description of the Nodes

This chapter provides a brief functional description of each node in SimDynamic.

Each description also mentiones all the parameters for the node that the user can set

on the node parameter dialog box. Nodes are discussed here according to the node set

library. For characteristic properties of nodes see appendix A. These nodes have been

selected carefully so that the package can be used to model a wide range of complex

systems. In some cases ideas have been borrowed from existing non Web-based

packages like VisSim and Simulink.

5.1 Continuous Node Set

5.1.1 Derivative

The derivative node calculates the derivative of its input signal by using the following

formula

U t - U t - 1

At

where, u t is the input at current simulation time, u t-i is the input at the previous time

step, and At is the change in time since the previous simulation time step. Initial (at

the simulation start time) output from the node is always 0.

Param eters:

• None.

5.1.2 Integrator

The integrator node integrates its input signal and outputs the integral. SimDynamic

provides a good number of fixed step integrators as described in section 4.2.5.

Integrator node uses those integrators to find the integral of its input signal. User can

define the initial condition on the node dialog box (internal initial condition) or as

input to the node (external initial condition). By selecting one of the external reset

choices from the node dialog box, user can reset the current state of the node to

7 2

specified initial condition. This implementation provides following three types of

reset

Rising - current state of the node will be set to the initial condition, if the signal to the

reset port changes from negative to positive.

Falling - current state of the node will be set to the initial condition, if the signal to

the reset port changes from positive to negative.

E ither - current state o f the node will be set to the initial condition, if the signal to the

reset port changes from positive to negative or vice versa.

Parameters:

• External Reset: By selecting one of the reset mode (described above) states of

the node can be reset to the initial condition. Default is none.

• Initial Condition: Initial value that will be used to solve the IVP. Default

value is 0. If user selects external initial condition then the node will accept

initial condition as an input.

5.1.3 M em ory

The memory node stores the input at current simulation time step and outputs it to the

next simulation time step. So this node applies a one-simulation time step delay to its

input signal. At the start of the simulation memory node outputs the initial condition

parameter value given on the node dialog box.

Parameters:

• Initial Value: This will be the output at the initial simulation time step. Default

is 0.

5.1.4 S ta te Space

This node implements a linear state-space [52] system defined by the following

equations

where, x is the state vector of the node, u is the system input, and y is the system

output. The matrix coefficients must have the following dimensions:

• A must be an n x n matrix, where n is the number of states.

• B must be an n x m matrix, where m is the number of inputs.

• C must be an r x n matrix, where r is the number of outputs.

• D must be an r x m matrix.

User can define the initial condition on the node parameter dialog box, and initial

condition must maintain the dimension provided in the matrix coefficients.

Param eters:

• Coefficient Matrices: A, B, C, and D matrix of the state-space. Default values

are all one.

• Initial Condition: Initial state value that will be used to solve the differential

equation. Default value is 0.

5.1.5 Transfer Function

The transfer function node finds the value of a transfer function [52] of following

form at the current simulation time,

d(s)

where,

n(s) = nis*'1 + ri2 Sn~2 ++ nn

d(s) — dj sm 1 + d2 sm~2 + + dm

The user has to set the coefficients for the numerator and denominator on the

parameter dialog box. The order of denominator must be greater than or equal to the

order of numerator. Numerator can be a vector or matrix, but denominator must be a

vector. Width of the output from the node depends on the dimension of the numerator.

If the numerator is a vector output will be single number. If the numerator is a matrix

output will be a vector with width equal to the number of rows in the numerator.

74

Parameters:

• Numerator: Numerator coefficients of the transfer function. Default is 1.

• Denominator: Denominator coefficients of the transfer function. Default

values is 1 1.

5.1.6 Transport Delay

The transport delay node can be used to delay its input by a specified amount of time.

The node outputs the initial output parameter until the simulation time exceeds the

time delay parameter. From this point the node starts generating delayed input. The

node stores its input and simulation time internally. When simulation time exceeds

time delay parameter, the node finds the output at the time that corresponds to the

current simulation time minus the delay time. If the time delay parameter is not a

multiple of the step size then the node performs linear interpolation or extrapolation

on the stored time and input value pairs to calculate the output. Following example

will clarify this

Let simulation step size be 0.2, and the node receives following inputs from a clock

node

Simulation time 0.0 0.2 0.4 0.6 0.8

Input value 0.0 0.2 0.4 0.6 0.8

and initial output parameter is set to 5. Following table shows the output from the

node when time delay parameter is set to 0.05 and 0.45

Simulation time 0.0 0.2 0.4 0.6 0.8

Output (with time delay 0.05) 5.0 0.0 0.35 0.55 0.75
Output (with time delay 0.45) 5.0 5.0 5.0 0.15 0.35

Param eters:

• Initial Output: The node will continue to output this value before simulation

time exceeds time delay parameter. Default is 0.

• Time Delay: Input signal will be delayed this amount of time. Default value is

1.

75

5.1.7 Variable Transport Delay

The variable transport delay node can be used to delay its input by a variable amount

of time. It works the same way as the transport delay node. Only difference is that this

node accepts the time delay parameter as an input.

Parameters:

• Initial Output: The node will continue to output this value before delayed

output is generated.

5.1.8 Zero-Pole

The zero - pole node finds the value of transfer function expressed in zero-pole-gain

form (see below) at the current simulation time

H(s) = G ^
P(s)

where, G is the gain value and

Z(S) = (S-Z])(S-Z2)(S-Zrj

P(s) = (s-pi)(s-p2) (S-Pm)

The user should set the poles (pi, p2,...) and zeros (z l , z2....) on the parameter dialog

box. The number of poles must be greater than or equal to the number of zeros. Zeros

may be vector or matrix, but poles must be a vector. Width of the output from the

node is determined by the dimension of the zeros. If zeros is a vector then output will

be a single number. If zeros is a matrix then output will be a vector with width equal

to the number of columns of the matrix. The zero - pole node converts the given zeros

and poles into polynomial form and then carries out the calculation like the transfer

function node.

Parameters:

• Zeros: Values for the zeros. Default is 1.

• Poles: Values for the poles. Default is 0 -1.

• Gain: Zeros will be multiplied by gain values. Default is 1.

76

5.2 Discrete Node Set

5.2.1 Discrete Integrator

This node computes discrete time integration [53] of its input signal. For an initial

value problem of the following form this node provides following three methods of

integration,

~ = y(0) = b
at

Forward Euler Method,

yn +i=yn + h *f(yn , Q

Backward Euler Method,

yn +1 = yn + h *f(yn+;,/„ + 1)

Trapezoidal Method,

y n + i = y n + h/2 *f(yn, t j

This node allows the user to set initial condition on the parameter dialog box (internal

initial condition), or as an input to the node (external initial condition). Like the

continuous integrator, discrete time integrator also provides three types of state reset.

Parameters:

• Integrator: One of the integration methods (described above). Default is

Forward Euler Method.

• External Reset: By selecting one of the reset modes (rising/falling/either)

states of the node can be reset to the initial condition. Default is none.

• Initial Condition: Value that will be used to solve the IVP. Default value is 0.

If user selects external initial condition then the node will accept initial

condition as an input.

• Sample Time: The time interval at which output will be updated. Default is 1.

7 7

The discrete state-space node can be used to describe a system by discrete state-

variable as follows

5.2.2 Discrete State-Space

x(t+l) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

where, u(t) is the system input at time t, x(t) is the state of the system at time t, and

y(t) is the system output at time t. Coefficient matrices A, B, C, D must follow the

same dimension constraint as the continuous state-space node.

Param eters:

• Coefficient Matrices: A, B, C, and D matrix of the state-space. Default values

are all one.

• Initial Condition: Initial state value that will be used to solve the differential

equation. Default value is 0.

• Sample Time: The time interval at which output will be updated. Default is 1.

5.2.3 Discrete Transfer Function

This node implements a z-transform transfer function described by the following

equation,

d(z)

where,

n (z) - n o z 1 + m z n + + n m z nm

d (z) = do z n + d j z n 1 + + dn

Numerator can be a vector or a matrix, but denominator must be a vector. The order

of denominator must be greater than or equal to the order of numerator. Numerator

can be a vector or matrix, but denominator must be a vector. Width of the output from

the node depends on the dimension of the numerator. If the numerator is a vector

7 8

output will be single number. If the numerator is a matrix output will be a vector with

width equal to the number of rows in the numerator.

Parameters:

• Numerator: Numerator coefficients of the transfer function. Default is 1.

• Denominator: Denominator coefficients of the transfer function. Default

values is 1 2.

• Sample Time: The time interval at which output will be updated. Default is 1.

5.2.4 Discrete Zero-Pole

The discrete zero-pole node can be used to express a discrete transfer function in

terms of poles-zeros-gain form as follows,

/>(z)

where G is gain value and,

Z(z) = (z - Z 1) (z - Z 2)(z - Z J

P(z) = (z - P 0 (z - P 2)(z - P 3)

The user should set the poles (pi, p2,...) and zeros (zl, z2....) on the parameter dialog

box. The number of poles must be greater than or equal to the number of zeros. Zeros

may be vector or matrix, but poles must be a vector. Width of the output from the

node is determined by the dimension of the zeros. If zeros is a vector then output will

be a single number. If zeros is a matrix then output will be a vector with width equal

to the number of columns of the matrix. The discrete zero - pole node converts the

given zeros and poles into polynomial form and then carries out the calculation like

the discrete transfer function node.

Parameters:

• Zeros: Values for the zeros. Default is 1.

• Poles: Values for the poles. Default is 1 2.

79

• Gain: Zeros will be multiplied by gain values. Default is 1.

• Sample Time: The time interval at which output will be updated. Default is 1.

5.2.5 Discrete Filter

The discrete filter node can be used to implement digital filters [54] like Infinite

Impulse Response (HR) and Finite Impulse Response (FIR) filters. It actually

evaluates a discrete transfer function expressed in terms unit delay operator z “1. So,

the coefficients of numerator and denominator should be expressed in ascending

powers of z “1.

Parameters:

• Numerator: Numerator coefficients of the transfer function. Default is 1.

• Denominator: Denominator coefficients of the transfer function. Default

values is 1 2.

• Sample Time: The time interval at which output will be updated. Default is 1.

5.2.6 Unit Delay

The unit delay node delays and holds its input signal by one sampling interval.

Memory node in the continuous node set delays its input signal by one simulation

time step, but this node can be used to delay a signal by a multiple of simulation time

step. User has to specify the sample time on the parameter dialog box and an initial

output value. At the start of the simulation the node outputs the initial value after then

it outputs delayed signal.

Parameters:

• Initial Condition: The node outputs this value for the first sample interval.

Default value is 0.

• Sample Time: The time interval at which output will be updated. Default is 1.

80

5.3 Tables Node Set

5.3.1 Direct Look-Up Table (2D)

The direct look-up table enables user to find a single element or a column from a 2D

table. For searching a single element node accepts two inputs, a row index and a

column index. To output a column this node needs only one input, the index of the

column. For example following table is set on the parameter dialog box,

2+3 i 5.94 6.21 -7+2i
0 9.34 21 45.32

34.67 -56 5-9i 12.43

If the node is in element selection mode and it receives input 2, 2 then it will output 5-

9i. If the node is in column selection mode and it receives input 1, then output from

the node will be the second column (5.94, 9.34, -56) of the table.

Param eters:

• Action Type: Selecting an element or column from the table. Default is

element selection.

• Table Data: The table to be searched. Default is the following table

2 3 4
56 7-2i 80
2 -5 90+5i

5.3.2 Look - Up Table

The look-up table node maintains two one-dimensional tables, one for input values

and one for output values. It tries to map its input to the elements of the input table

and outputs the corresponding element from the output table. If the node fails to find a

direct mapping then it performs linear interpolation/extrapolation to calculate the

desired output. Both tables must be of same size.

81

For example, let following values are given as the input and output table on the node

parameter dialog box,

Input values 4.30 7.22 13.0 18.12

Output values 5.66 3.20 9.31 -7.60

If the node receives 7.22 as input then output will be 3.20. If it receives 3.0 as input

then output will be 6.755205, for input value 19, output will be -10.506406, for input

5.0 output will be 5.070274.

Parameters:

• Input Values: Holds the possible node input values. Default input values are

3 5 6 10 12

• Output Values: Holds the possible output values from the node corresponding

to the values in the input values. Default values are

8 25 12 30 40

5.3.3 Look - Up Table (2D)

The look-up table (2D) holds the possible output values as a 2D table. It also

maintains a row table and a column table that corresponds to the rows and columns of

the output table. The node accepts two inputs, a row index and a column index. It then

tries to map the row index value to the elements of the row table and column index

value to the elements of the column table respectively, and outputs the corresponding

element from the output table. If the node fails to find a direct mapping, it performs

linear interpolation/extrapolation to find the output. For example following tables are

given on the parameter dialog box, and the node receives 1.5 and 4.3 as row and

column index respectively then output will be 48.861974. For -3.1 and 2.41 as row

and column index respectively, output will be 62.384233.

8 2

Col —» 9.0 21.43 30.21 32.56
R ow [

4.32 35.14 15.52 34.22 23.0
10.29 22.31 4.05 53.96 21.53
17.0 12.22 27.06 76.13 33.25
19.11 17.32 -11.5 13.0 26.33

Parameters:

• Row Table: The row values for the table. Default values are,

10 17

• Column Table: The column values for the table. Default values are,

21 30

• Table Data: The table of output values. Default table is

35 15 34
22 40 53
12 27 76

5.3.4 Polynomial

This node evaluates the value of a polynomial of the following form at current

simulation time,

p(t) = a„f + a„.itn~ '++ a,t + a0

Polynomial coefficients can be entered on the parameter dialog box in descending

order of power.

Parameters:

83

• Coefficients: Coefficients of the polynomial in decreasing order of power until

the last coefficient, which represents the constant for the polynomial. Default

values are, 2 3 4 5

5.3.5 Pre Look - Up Index Search

The pre look-up index search node maintains a table, sorted in ascending order, and

finds the index of its input in the table. If it fails to find index directly from the table,

it performs linear interpolation/extrapolation to find the index of its input. For each

input number the node outputs a (index, fraction) pair, where, index is the index of the

number in the table that is less then or equal to the input and fraction is the

normalized position of the input between the index and the next index. For example,

let following table has been entered on the parameter dialog box

3 5 6 10 12

If the node input is 9.37, output will be (2, 0.8425).

Parameters:

• Table Data: The numbers to search. Default values, 3 5 6 10 12

5.3.6 Interpolation (2D) Using Pre Look - Up

The interpolation node holds possible output values in a 2D table and it accepts two

input (row and column) pair (index fraction pair) from pre look-up index search. It

then tries to find the output value by using received row and column indices. If it fails

to find a direct mapping of the indices, it performs linear interpolation. For example,

let following table is the given output table on the parameter dialog box,

10 50 20

30 10 -50

13 21 90

If the node receives (0, 0.75) and (0, -0.45) as row and column index respectively

from a pre look-up index search node, then output will be 27.25.

84

Parameters:

• Table Data: The table of possible output values. Default table is

10 50 20

30 10 -50

13 21 90

5.4 Maths and Logic Node Set

5.4.1 Absolute

This node finds the absolute value of its input. If input is real value x, then output will

be |x|. And if input is a complex number x+iy, then output will be | x 2 + y 2 |.

Parameters:

• None

5.4.2 Bit-wise Logical Operator

This node can be used to perform bit-wise logical operation on any signal. The node

applies one (selected by user) of the following logical operations between the input

signal and the second operand provided in the dialog box,

• AND • NOT

• OR • SHIFT RIGHT

• XOR • SHIFT LEFT

User can use hexadecimal or decimal value for the second operand. Since

SimDynamic considers all real value signals as double, user has to specify in the

parameter dialog box how to treat the input signal as an integer.

Parameters:

8 5

• Input Data Type: User can use this option to specify input data type. Input can

be a 8-bit integer, 16-bit integer, 32-bit integer or 64-bit integer. Default is 64-

bit integer.

• Second Operand: This value will be used as the second operand for the bit­

wise operation with the node input. User has the option to set this value as a

decimal number or hexadecimal number. Default value is decimal 10.

• Operator: Specifies one of the 6 operator applied to the input signal. Default is

AND.

5.4.3 Dot Product

The dot product node generates the dot product of its two input vectors using the

following formula,

y = Y j conjugate(«,.) * v,

where u and v are the input vectors. To have element wise multiplication between

two vectors without summing, user has to use product node. For example, let the node

receives u = (2-3i, 5+6i) and v = (l+2i, 3-i) as input then output from the node will

be, 5-16i.

Parameters:

• None

5.4.4 Gain

The gain node multiplies its input signal by a specified gain factor provided in the

parameter dialog box. Let 2+5i has been set as gain parameter and the node input is

(4-3i, 7) then output will be (23+14i, 14+35i).

Parameters:

• Gain: The multiplication factor. Default is 1.

86

The logical operator node performs one (selected by user) of the following logical

operations on the input

5.4.5 Logical Operator

• AND • XOR

• OR • NAND

• NOT • NOR

The node accepts both real and boolean values. For real value input the node

considers any non-zero (positive/negative) value as true and zero value as false.

Parameters:

• Output Type: Selects the output type (boolean/real) from the node. Default is

real.

• Logical Operator: One of the six operators. Default is AND.

5.4.6 M agnitude-Angle to Complex

This node receives a magnitude and a phase angle (in radian) and outputs the

corresponding complex number. If the inputs to the node are r and 0, then output will

be x+iy, where,

x = r * cos 6 and y = r * sin 6.

Parameters:

5.4.7 M ath Function 1

If u is the input to the node, then this node can apply any (selected by user) of the

following functions on u

• None.

• Power 10, 10 u

• Exponential, e11

• Natural log, lnu

• Square, u2

• Square root, Vu

• Conjugate(u)

8 7

• 10 base log, logiou • Reciprocal, 1/u

• 2 base log, log2u • Factorial, u!

• Magnitude square, |u|2

Parameters:

• Function: Selects one of the above functions. Default is Power 10.

5.4.8 M ath Function 2

Let n and r be the inputs to the node, then math function 2 can apply any (selected by

the user) of the following functions on n and r,

• Power, n r •

• Hypotenuse, V «2 + r 2 •

• Modulus, n % r •

Parameters:

• Function: Selects one of the above functions. Default is Power.

5.4.9 M atrix 1

The matrix 1 node accepts a matrix as its input and can apply one (selected by user) of

the following functions on the matrix,

• Conjugate

• Determinant

• Hermitian

Parameters:

• Function: Selects one of the above functions. Default is Conjugate.

5.4.10 M atrix 2

The matrix 2 node accepts two matrices as its input and apply one (selected by user)

of the following functions on the matrices

• Inverse

• Trace

• Transpose

Combination,n cr

Permutation,n pr

Arc-tan, tan _1n/r

88

Subtraction (element wise) • Division (element wise)

Addition (element wise) • Multiplication

Parameters:

• Function: Selects one of the above functions. Default is Add.

5.4.11 Min Max

The min max node outputs the minimum or maximum (specified by user) of its input

values.

Parameters:

• Function: Selects either minimum or maximum. Default is Maximum.

5.4.12 Product

The product node can be used to have element wise multiplication or division of two

signals. The node accepts two inputs (single number/ vector / matrix) and performs

the specified operation on them. To perform matrix multiplication, use matrix 2 node.

Parameters:

• Function: Either multiplication or division. Default is multiplication.

5.4.13 Real-Im aginary to Complex

This node accepts two real values as input signal and outputs a complex number

treating the input values as real and imaginary part of the complex number.

Parameters:

• None

89

This node can be used to compare two signals. It accepts two inputs and performs one

(selected by user) of the following relational operation on them

5.4.14 Relational Operator

The output type from the node may be boolean or real (specified by user). If the result

is true, the output is 1 for real type output, true for boolean type output; if false, it is 0

for real type output, false for boolean type output.

Parameters:

• Output Data Type: Selects the data type (boolean/real) of the output from the

node. Default is real.

• Relational Operator: One of the six operators. Default is Equal to.

5.4.15 Resolve Complex

The resolve complex node can be used to find the magnitude or phase angle or real

part or imaginary part of a complex signal.

Parameters:

• Function: Selects one of the four (magnitude/angle/real/imaginary) outputs.

Default is magnitude.

5.4.16 Rounding Function

It performs one (selected by user) of the following rounding operation on its input,

• Equal to, = =

• Not equal to ,! =

• Less than, <

• Less than equal to, <=

• Greater than, >

• Greater than equal to, >=

• Round(x) - finds the nearest integer of x.

• Floor(x) - finds the largest integer not greater than x.

• Ceil(x) - finds the smallest integer not smaller than x

• Fix(x) - rounds to the nearest integer towards zero.

90

Parameters:

• Function: Selects one of the four functions. Default is Round(x).

5.4.17 Sign

The sign node can be used to indicate the sign of a signal. If the input to the node is

positive, output will be 1; if it is negative, output will be -1 ; if it is 0, output will be 0.

Parameters:

• None.

5.4.18 Sum

The sum node adds its inputs element wise. By changing the sign (+/ -) of inputs

subtraction can also be performed.

Parameters:

• Sign of First Input: Positive or negative.

• Sign of Second Input: Positive or negative.

5.4.19 Trigonom etric Function

This node performs numerous common trigonometric functions. The node accepts

real or complex signal and outputs the result of one of the following functions

operating on the input.

• sin

• cos

• tan

• asin

• acos

Parameters:

• Function: Selects one of the above functions. Default is sin(x).

• atan

• sinh

• cosh

• tanh

91

5.5 Non - Linear Node Set

5.5.1 Backlash

The backlash node can be used to model backlash [55] effect of gears or similar drive

systems. When gears are engaged (figure 5.1) a change in input shaft causes an equal

change in output.

Backlash

Fig 5.1: Backlash in gears

LO -0.5 0 0.5 LO

1— ▼

i 1------------ 1------------ 1------------ h Output

deadband

Fig 5.2: Dead-band

This node assumes this behaviour by introducing a parameter dead-band, which is

equal to the width of the space between the gear teeth (figure 5.2). The dead-band is

centred about the output. The output from the node will be one of the following

• If the input is increasing (has a positive slope), output = input - dead-band/2.

• If the input is decreasing (has a negative slope), output = input + dead-band/2

• If input slope is unchanged, output remains constant.

92

• Dead-Band Width: Width of the dead-band. Default is 1.

• Initial Output: Value of initial output. Default is 0.

5.5.2 Coulomb and Viscous Friction

This node can be used to model static (coulomb) and dynamic (viscous) friction [55].

If u is the input, the node calculates its output using the following formula

y = sign(u) *{magnitude o f viscous friction * \ u \ + magnitude o f coulomb friction}

Parameters:

where sign(u) is defined as follows,

sign(u) =
l,w > 0
0,w = 0

- l,w < 0

User has to provide the values for coulomb and viscous friction on the parameter

dialog box.

Parameters:

• Coulomb Friction Value: Magnitude of coulomb friction. Default is 2 1 4.

• Coefficients of Viscous Friction: Magnitude of viscous friction. Default is 1.

5.5.3 Dead Zone

The dead zone node generates zero output within a specified region. The lower limit

(start o f dead zone) and the upper limit (end of dead zone) of the dead zone should be

specified on the dialog box. Depending on the input, output from the node will be,

• Output = 0, if the input is greater than the lower limit and less than the upper

limit.

93

• Output = input - upper limit, if input is greater than or equal to upper limit.

• Output = input - lower limit, if input is less than or equal to lower limit.

Parameters:

• Start of Dead Zone: Lower limit of dead zone. Default is -1 .

• End of Dead Zone: Upper limit of dead zone. Default is 1.

5.5.4 M anual Switch

The manual switch node enables user to select one of its two inputs on the parameter

dialog box, to pass through to the output.

Parameters:

• Input Selection: Select one of two inputs. Default is first input.

5.5.5 M ulti-port Switch

The multi-port switch node has two inputs and a control input. Depending on the

control input, output from the node will be as follows,

• If control input is 1, output = first input.

• If control input is 2, output = second input.

• If control input less than 1 or greater than 2, ERROR message.

Parameters:

• None.

5.5.6 Quantizer

The quantizer node passes its input signal through a stair-step function. The effect is

to quantize a smooth signal into a stair-step output. If u is the input and q is the

quantization interval specified on the parameter dialog box, then output from the node

will be,

y = q * round(u/q)

94

Parameters:

• Quantization Interval: The interval around which the output is quantized.

Default is 0.5.

5.5.7 Rate Limiter

Rate limiter restricts the rate of change of a signal within a specified range. The node

calculates the rate of change of its input signal using the following formula,

U t - U t - 1rate = ----------
A t

where, u t is the input at current simulation time, u t-i is the input at the previous time

step, and At is the change in time since the previous simulation time step. A rising

slew rate and a falling slew rate should be specified on the parameter dialog box. If r
is the rising rate an d /is the falling rate, then

• If rate is greater than r, then output, y(t) = At * r + y(t-l).

• If rate is less than f then output, y(t) = At * f + y(t-l).

• Iff< rate < r, then output, y(t) = u(t).

Parameters:

• Rising Slew Rate: Upper limit for the rate. Default is 1.

• Falling Slew Rate: Lower limit for the rate. Default is -1.

5.5.8 Relay

Depending on the input signal relay node switches its output between two constant

values. A switch on value, a switch off value, switch on output and switch off output

should be specified on the parameter dialog box. Let son is the switch on value, so f is

the switch off value, opn is the switch on output value and o p f is the switch off output

value. If u is the input to the node,

• If u > son, then output, yt = opn.

95

• If u < soj,\ then output, y t = opf.

• I f so f < u < s o n , then output,y t - y t-i.

Parameters:

• Switch on Point: Threshold for switch on. Default is 1.

• Switch off Point: Threshold for switch off. Default is -1.

• Output when on: Output from the node when the relay is on. Default is 1.

• Output when off: Output from the node when the relay is off. Default is 0.

5.5.9 Saturation

The saturation node can be used to restrict a signal within a specified rang. User has

to define upper limit and lower limit on the parameter dialog box. If the input signal

to the node is within the range specified by the lower limit and upper limit, the input

signal passes through unchanged. If input is greater than the upper limit output from

the node will be the upper limit. If input is less than the lower limit output will be the

lower limit.

Parameters:

• Upper Limit: Upper bound of the range. Default is 1.

• Lower Limit: Lower bound of the range. Default is -1.

5.5.10 Switch

The switch node has two inputs and a control input. User has to specify a threshold

value on the parameter dialog box. If the control input is greater than or equal to the

threshold value then output will be equal to the first input, otherwise output will be

equal to the second input.

Parameters:

• Threshold: Holds the threshold value for control input. Default is 0.

96

5.6 Miscellaneous Node Set

5.6.1 Counter

This node provides a simple counter. An initial value and increment length should be

specified on the parameter dialog box. The node will generate output by adding the

increment length with its output value at previous time step. At the start of the

simulation output from the node will be the initial value provided on the parameter

dialog box. For example, if initial value is 3, increment length is 0.5 and step size is

0.2, then output from this node for first few steps will be as follows

Simulation Time 0.0 0.2 0.4 0.6

Output 3 3.5 4 4.5

Parameters:

• Initial Value: Starting value for the counter. Default is 1.

• Increment Length: Counter value will be increased by this value at every

simulation time step. Default is 1.

5.6.2 Cum ulative Function

This node performs one of the following cumulative functions

• Cumulative Sum: At any simulation step the node will calculate its output

using the following formula
n

output = ^input i
i=0

where n is the total number of simulation steps since simulation started,

including the current step.

• Cumulative Average: At any simulation step node output will be according to

the following formula,
n

Y înputi
output = —--------

n
where n is the total number of simulation steps since simulation started,

including the current step.

97

• Cumulative RMS: At any simulation time step node output will be according

to the following formula,

output ~

n

£ input'
/=0

where n is the total number of simulation steps since simulation started,

including the current step.

Parameters:

• None.

5.6.3 Data Type Conversion

The data type conversion node provides the option to convert boolean type signal to

numerical type signal and vice versa.

For boolean to numerical conversion, the node follows the following rules,

• If input is true, output is 1.

• If input is false, output is 0.

For numerical to boolean conversion following rules are followed,

• If input is non-zero (positive or negative), output will be true.

• If input is zero, output will be false.

Parameters:

• Convert to: Select whether output will be boolean or real. Default is real.

5.6.4 Zero Crossing

The zero crossing node can be used to detect whether a signal crosses a given crossing

offset. User has to specify the offset value and the direction of crossing on the

parameter dialog box. The node provides three crossing directions. Output from the

node may be boolean or real. Let ut is the current input, ut - i is the input at the

98

previous step, and h is the crossing offset, then depending on the crossing direction

output from the node will be as follows,

• Rising - if ut > ut -i and ut - 1 < h < u t , then output will be true for boolean

output, 1 for real output; otherwise output will be false (or 0).

• Falling - if ut < ut - i and ut <h < u t ~ / , then output will be true for boolean

output, 1 for real output; otherwise output will be false (or 0).

• Either - output will be true (or 1) if input crosses the zero offset either way;

otherwise it will be false (or 0);

Parameters:

• Output Data Type: Selects the data type (boolean/real) of the output from the

node. Default is real.

• Crossing Offset: The value that the input will cross. Default is 0.

• Crossing Direction: One of the above crossing directions. Default is Either.

5.6.5 Initial Condition

The initial condition node sets an initial value for a signal. At the simulation start time

the output from the node will be the initial value given on the parameter dialog box,

after then the node outputs its input without any alteration.

Parameters:

• Initial Value: Output from the node at the first simulation time step. Default is

1.

5.6.6 M atrix Concatenation

The matrix concatenation node can be used to concatenate two matrices.

Concatenation can be accomplished in two ways, i) horizontally or ii) vertically. For

example, let following two matrices are inputs to the node,

99

input 1 input 2

2 -4 2-i 9.05 3 12-6i

-1 -3+2i 5 -12 5.66 -3i

7.3 1 2i 21 7.32 6-9i

If the matrices are concatenated horizontally then the output from the node will be,

2 -4 2-i 9.05 3 12-6i
-1 -3+2i 5 -12 5.66 -3i

7.3 1 2i 21 7.32 6-9i

If the matrices are concatenated vertically then output will be,

2 -4 2-i

-1 -3+2i 5

7.3 1 2i

9.05 3 12-6i

-12 5.66 -3i

21 7.32 6-9i

Parameters:

• Concatenation Method: Selects one of the two concatenation methods. Default

is Horizontal concatenation.

5.6.7 M erge

The merge node superimposes two signals on a single signal. An initial output and the

offsets for the input signals on this output should be defined on the parameter dialog

box. Using these parameters and the input signals the node will find the final output.

Following example will clarify the matter,

Let, initial output defined on the parameter dialog box is, -2.2 -5 7+3i 3.2 4.12 1.8

First input is, 2.92 -1.45

Second input is, -3.4 -7i

If offsets are 0 and 4 for first and second input respectively, then output will be

2.92 -1.45 7+3i 3.2 -3.4 -7i

100

If offsets are 3 and 1 for first and second input respectively, then output will be

-2.2 -3.4 -7i 2.92 -1.45 1.8

Parameters:

• Initial Output: Initial value of output upon which the input signals will be

superimposed. Default is 1.

• Input Port Offsets: Offset of each input signal relative to the beginning of the

output signal. Default is 0.

5.6.8 M ux

The mux node combines two signals into one signal. This node accepts two signals

and simply appends the second signal to the first signal.

Parameters:
• None.

5.6.9 Probe

The probe node enables user to find information about a signal. Using this node user

can find one of the following information

• Width - outputs the number of elements in the signal.

• Sample time - outputs the sample time of the signal.

• Complex - outputs 1 if the signal contains complex number, otherwise outputs

0.

• Dimension - outputs the number of rows and columns in the signal.

Parameters:

• Probing: Select one of the information described above. Default is Width.

5.6.10 Reshape

Dimensionality of a signal can be changed using reshape node. Selecting the

appropriate output dimension on the parameter dialog box, user can change the

101

dimension of a matrix. The node provides four possible output dimensions. For

example, let following matrix is the input to the node

2-4i 4.55

6 -3i

-12 6.91

Depending on the selected output dimension, output from the node will be,

• ID array — 2-4i 6 -12 4.55 -3i 6.91

• Column vector

2-4i

6

-12

4.55

-3i

6.91

• Row vector - 2-4i 6 -12 4.55 -3i 6.91

• Custom - say custom dimension is 2 x 3, then output,

2-4i -12 -3i

6 4.55 6.91

Parameters:

• Output Dimension: Specifies required output dimension. Default is ID Array.

5.6.11 Selector

This node enables the user to select elements from a vector or from a matrix. The

node has two inputs, first input can be a vector or a matrix from where elements will

be selected, and second input is the indices of the elements to be selected. For

example,

102

• Vector in p u t - let input to the node is 3.4 5-2i 7.64 12 -9, and index input is

2 3 5, then output will be 5-2i 7.64 -9

• Matrix input - for matrix input, index input must be a matrix with 2 rows.

Elements of the first row of index input will select a row (vector) from the

matrix and elements of the second row of index input will select elements

from the selected vector. For example, let following two matrices are input

and index input respectively,

3.4 5-2i 7.64

12 -9 -4i

-2.56 13 11.32

2 3

2 3

then output from the node will be,

-9 -4i

13 11.32

Parameters:

• Input Type: Specifies whether the input is a Vector or a Matrix. Default is

Vector.

5.6.12 Signal Specification

This node can be used to halt the simulation if a signal does not have desired

attributes. On the parameter dialog box user can choose an expected attribute

(dimension, data type etc.). If the input signal does not have this attribute then the

node will generate an error message and simulation will be halted; otherwise the node

outputs its input signal unchanged.

103

Parameters:

• Dimension: Expected dimension of the input signal. Default is -1 . A -1 value

for dimension indicates that the node will not check for dimension.

• Data Type: Expected data type of the input signal. Default is booelan.

5.7 Sinks Node Set

5.7.1 Display

The display node accepts all types (numerical/boolean) data as input, and shows the

value of its input in a separate window.

Parameters:

• None.

5.7.2 Term inator

The terminator node can be used to manage floating output lines from a node. If any

model contains some floating output line, then SimDynamic halts the simulation. To

avoid such situation terminator node has been provided.

Parameters:

• None.

5.7.3 Tim e Vs Input

This node enables user to view the change in a signal with respect to the simulation

time. The node accepts a signal and plots the signal against the simulation time.

Simulation time is shown along x-axis and input signal is shown along y-axis. If the

sample time of the received signal is continuous, it produces a point - to - point plot.

If the sample time is discrete then it produces a stair-step plot. If the width of the

received signal is more than one (vector or matrix signal), it uses different colours in

this order: green, yellow, red, orange, cyan, and magenta.

104

Parameters:

• None.

5.7.4 To File

The To File node accepts all types (numerical/boolean) data as input, and saves the

value of its input in a text file. User has to provide a file name on the parameter dialog

box. Any text editor like Notepad or MS-Word can be used to view the saved file.

Parameters:

• File Name: Name of the file to be saved. Default is None.

5.7.5 XY Graph

The XY graph node accepts two signals and plots the first signal against the second

signal. First input is shown along the y-axis and second input is shown along the x-

axis.

Parameters:

• None.

5.7.6 To Data File

The To data file node can be used to save simulation result for later use by

SimDynamic. This node accepts all types (numeric/boolean) data as input, and saves

the value of its input in a data file in a format that can only be used or opened by

SimDynamic. The most important use of this node is for 3D rendering. SimDynamic

3D image generator reads data from files, so this node is the only way to transmit

simulation result to the 3D engine.

Parameters:

• File Name: Name of the file to be saved. Default is None.

105

5.8 Source Node Set

5.8.1 Bool

This node generates a boolean value. User has to specify the value (true/false) on the

parameter dialog box and the node generates that value at every simulation time step.

Parameters:

• Boolean Value: The output value from the node. Default is true.

5.8.2 Chirp Signal

The chirp signal node produces a sine wave whose frequency increases at linear rate

with time. Initial frequency, target time, and final frequency of the signal should be

specified on the parameter dialog box.

Parameters:

• Initial Frequency: Initial frequency of the signal. Default is 0.1 Hertz

• Target Time: The time at which the signal frequency will reach the target

frequency. Default value is 20 seconds.

• Target Frequency: Final frequency of the signal. Default is 1 Hertz.

5.8.3 Clock

This node simply outputs the current simulation time at each simulation step. For

example let step size is 0.3 and simulation start time is 5.0, then output from this node

for first few steps will be 5.0, 5.3, 5.6, 5.9 This node is useful for other nodes that

need the simulation time.

Parameters:

• None.

106

5.8.4 Constant

This node generates a constant value. User has to specify the value (real/complex) on

the parameter dialog box and the node generates that value at every simulation time

step.

Parameters:

• Constant Value: The output value from the node. Default is 1.

5.8.5 Digital Clock

It outputs the simulation time at the specified sampling interval. User should set the

desired sampling rate on the parameter dialog box. For example, if the simulation step

size is 0.2, then output from the clock node will be 0, 0.2, 0.4, 0.6 But with the

same step size and 0.4 sample time, output from the digital clock node will be 0, 0.4,

0.8.....

Parameters:

• Sample Time: The time interval at which output will be updated. Default is 1.

5.8.6 Discrete Pulse Generator

It generates a series of pulses at regular intervals. Amplitude, sample time, period,

pulse width and phase delay should be specified on the parameter dialog box. Period,

pulse width and phase delay should be expressed in terms of sample time, i.e. period

is the number of sample periods the pulse is high and low, pulse width is the number

of sample periods the pulse is high, phase delay is the number of sample periods

before the pulse starts.

Parameters:

• Amplitude: Amplitude of the pulse. Default is 1.

• Period: Period of the pulse in terms of sample interval. Default is 2.

• Pulse Width: Width of the pulse in terms of sample interval. Default is 1.

107

• Phase Delay: Delay before each pulse is generated. Expressed in number of

samples. Default is 0.

• Sample Time: The time interval at which output will be updated. Default is 1.

5.8.7 From Data File

The from data file node reads data from a file that has been save by the to data file

node. This node provides the mechanism of using previously generated simulation

result. The node compares step size saved in the file with the current simulation step

size. If they do not match it will generate error message.

Parameters:

• File Name: Name of the file that contains the data. Default is None.

5.8.8 Ground

SimDynamic halts simulation if any node contains a floating input line. Ground node

can be used to connect such floating input line. This node produces a 0 all the time.

Parameters:

• None.

5.8.9 Pulse Generator

It generates a continuous train of pulses. Amplitude, period, duty cycle and start time

of the pulse should be specified on the parameter dialog box. Period and start time

should be expressed in second, and duty cycle should be expressed as a percentage of

period.

Parameters:

• Amplitude: Amplitude of the pulse. Default is 1.

• Period: Period of the pulse, expressed in seconds. Default is 1.

• Duty Cycle: Percentage of the pulse period that the signal is high. Default is

50%.

108

• Start Time: Delay before each pulse is generated. Expressed in seconds.

Default is 0.

5.8.10 Ramp

The ramp node can be used to generate a signal that starts at a specified time and

changes by a given rate [56]. The rate of change (slope), start time and initial output

should be set on the parameter dialog box. The node continues to output the initial

output given on the dialog box as long as simulation time does not exceed start time,

then it starts to produce the ramp signal.

Parameters:

• Slope: The rate of change of the generated signal. Default is 1.

• Start Time: Time at which the node will start generating the signal. Default is

0.

• Initial Output: Output from the node before the ramp signal starts. Default is 0.

5.8.11 Random Number

This node generates normally distributed random variates. Mean, variance of the

distribution and an initial seed should be specified on the parameter dialog box. This

node uses java’s built in random number generator to generate two random numbers

Ri and R2, using the initial seed. From those two random numbers, random variates

are generated through following steps [57]

• Generate two independent standard normal variates

h = (-2lnR,),/2 cos(2nR2)

Z2 = (-2lnR,),/2 sin(2nR2)

• If // is the mean and a is the variance, then normal variate X t can be found

from the formula

Xi = n + oZ[

109

Parameters:

• Mean: Mean of the normal distribution. Default is 0.

• Variance: Variance of the distribution. Default is 1.

• Initial Seed: Starting seed for the random number generator. Default is 0.

• Sample Time: The time interval at which output will be updated. Default is 1.

5.8.12 Repeating Sequence

The repeating sequence node generates a periodic signal defined by the user. The

node has two parameters time points and output values. User can define the shape of

the signal by specifying these parameters on the dialog box. For example, default

values for time points and output values are (0 2) and (0 2) respectively. This means,

the node will repeat a signal every 2 seconds from the start of the simulation time that

has maximum amplitude of 2. The node uses linear interpolation to calculate the value

of the signal between the specified time points. So for these parameter values, and

simulation step size 0.2, output from the node, for first 2.2 seconds, will be

Simulation time 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Output 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0 0.2

Again if the time points and output values are 1 2 3 and 5 8 13 respectively and

simulation step size is 0.2, then output will be

Simulation time 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Output 5 5.6 6.2 6.8 7.4 8 9 10 11 12 5 5.6

Parameters:

• Time Values: Time values that determine the period of the generated signal.

Default is 0 2.

• Output Values: Values that determine the shape (amplitude) of the generated

signal. Default is 0 2.

110

5.8.13 Signal Generator

This can produce one of the three different waveforms: sine wave, square wave, and

sawtooth wave. User has to specified amplitude and frequency on the parameter

dialog box for the signal.

Parameters:

• Wave Form: Selects the wave form (sine/square/sawtooth). Default is sine

wave.

• Amplitude: Signal amplitude. Default is 1.

• Frequency: Frequency of the generated signal. Default is 1 Hertz.

5.8.14 Sine Wave

It generates a sine wave using the following formula

y = amplitude * sinffrequency * simulation time + phase angle)

The user has to specify amplitude, frequency and phase angle on the parameter dialog

box. This node can be used to generate a sine wave either in continuous or discrete

mode. If the sample time on the parameter dialog box is left 0, then a continuous wave

will be generated. For any positive value for sample time will generate a wave at

specified interval.

Parameters:

• Amplitude: Amplitude of the generated signal. Default is 1.

• Frequency: Frequency of the generated signal. Default is 1 rad/sec.

• Phase: Phase shift of the signal. Default is 0 rad.

• Sample Time: The time interval at which output will be updated. Default is 0,

which means it will generate a continuous sine wave.

5.8.15 Step

It provides a step [56] between two defined values at a particular time. Step time,

initial output and final output should be specified on the parameter dialog box. The

111

node continues to produce the initial output until the simulation time reaches the step

time. From this point the node continues to produce the final value provided on the

parameter dialog box.

Parameters:

• Step Time: Time at which output will switch to fmal value. Default is 1 sec.

• Initial Value: Output from the node before it switches to the fmal value.

Default is 0.

• Final Value: Output from the node when simulation time reaches the step

time. Default is 1.

• Sample Time: The time interval at which output will be updated. Default is 0.

5.8.16 Uniform Random Number

This node generates uniformly distributed random variates. Minimum value,

maximum value of the distribution and an initial seed should be specified on the

parameter dialog box. This node uses java’s built in random number generator to

generate a random numbers R , using the initial seed. If a and f> are the minimum and

maximum values respectively, then uniform variate X can be found from following

formula [57]

X = a + (P - a)R

Parameters:

• Minimum: Minimum value of the distribution. Default is -1.

• Maximum: Maximum of the distribution. Default is 1.

• Initial Seed: Starting seed for the random number generator. Default is 0.

• Sample Time: The time interval at which output will be updated. Default is 1.

112

Chapter Six

6 Application of SimDynamic

SimDynamic can be used to simulate the behaviour o f a wide range o f real-world

systems, including electrical, mechanical, and thermodynamic systems. In this chapter

a few examples are presented. Since most dynamic systems are expressed in terms o f

differential equations, the chapter starts with an example o f how to solve a differential

equation o f second order using SimDynamic. More complex and real world systems

are presented in the subsequent sections. First example provides all the steps

necessary to build a SimDynamic model. Similar steps were followed in the

subsequent examples, but for brevity the model building steps are omitted from the

latter examples. It is recommended that reader must go through chapters 3 and 5

before reading this chapter.

6.1 Solving O rdinary Differential Equation

Consider the following second order differential equation where coefficients are

chosen arbitrarily,

d 2y(t) dy
— ^ + 0 .5 ^ - + ll>> = 9 | sin(3.7701 6.1

dt dt

This can be written as two first order differential equations, if two new variables x l(t)

and x2(t) are introduced. Let x l(t) = y(t), then the above equation reduces to the

following two first order equations,

dx\(t)
dt

= *2(/)

dx l j t)
dt

= - (0 .5x2(/) +11x1(0) + 9 | sin(3.770 I

6.2

6.3

So, the solution o f this equation can be found by using two integrator nodes to

integrate the first order derivatives.

113

Step 1: Add two Integrator nodes to the empty model sheet from the Continuous node

set. Rename (using the node menu) the nodes as x l and x2 respectively. Connect the

output port o f x2 to the input port o f x l (figure 6.1). The input to the left most

Integrator is the derivative o f x2 and its output is the variable x2. The input to the

rightmost Integrator is the derivative o f x l (i.e. x2) and its output will be the variable

x l (i.e. y, which is the final output).

6.1.1 Building the Model

Step 2: Add two Gain nodes from the Math and Logic node set and rotate them (using

the rotate option o f the node menu). Rename the Gain nodes as 0.5 and 11. Set Gain

node parameters to 0.5 and 11 respectively on the parameter dialog box. Draw a

branch line from the output line o f x2 Integrator and connect it to the input port o f 0.5

Gain node. Draw a branch line from the output line o f x l Integrator and connect it to

the input port o f 11 Gain node.

Step 3: Add two Sum nodes from the Math and Logic node set and rotate them.

Rename the Sum nodes as sum l and sum2. Connect the outputs o f both Gain nodes to

the inputs o f sum l node. Connect the output o f sum l node to one input o f sum2 node.

Change the sign o f this input to minus. After steps 2 and 3 the model will look like as

114

in figure 6.2. Now it has almost the complete representation o f the differential

equation except the input (i.e. sine term in the equation).

3D SimDynamic : Untitled

File Edit View Simulation Help
j n j x j

91

Sum2

r m
x 2 xl

^ 0-5
-A------------------------------- Gain

Suml
11

Ready imulationTime : 0.0

Fig 6.2: Step 2 and 3 for ODE model

Step 4: Add a Clock node from the source node set, rotate it and rename it as t. Add a

Gain node from the Math and Logic node set, rotate it, rename it as 3.77 and set the

gain parameter to 3.77 on the parameter dialog box. Connect the output o f the clock

node to the input o f the Gain node. Add a Trigonometric Function node from the

Math and Logic node set and rotate it. Connect the output o f the 3.77 Gain node to the

input o f the Trigonometric Function node. Select the sine function from the function

list on the Trigonometric Function node parameter dialog box. So the input to the

Trigonometric Function node is now 3.77t and output from this node will be

sin(3.77t). Add an Absolute node from the Math and Logic node set and rotate it.

Connect the output o f the Trigonometric Function node to the input o f the Absolute

node. Add another Gain node from the Math and Logic node set, rotate it, rename it

as 9 and set the gain param eter to 9 on the parameter dialog box. Connect the output

o f the Absolute node to the input o f the 9 Gain node. And connect the output o f the 9

Gain node to the first input o f the sum2 node. The model is complete now. To view

output add a Time vs Input node from the Sink node set and draw branch line from the

115

output line o f x l Integrator and connect it to the input o f the Time vs Input node. The

completed model will look like as figure 6.3.

SII SimDynamic : Untitled

File Edit View Simulation Help

□mas e
Gain |A | 4 sin 4 Gain ©

Absolute
Function

3.77 t

m *
Sum2 x2

r m
xl

r :
^ 05
- 4 -- Gain

Suml

Time Vs
Input

11

1 ►!
Ready |simulationTime : 0.0

Fig 6.3: Completed ODE model

6.1.2 R un n in g S im ulation and V iew in g R esult

In this example simulation will be carried out for 10 seconds. So click the parameter

button from the toolbar (or select parameter from simulation menu) and set simulation

start time to 0, and stop time to 10 on the simulation parameter dialog box. Choose

RK DP integrator on the parameter dialog box, set simulation step size to 0.2 and

click ok. Now click the run button from the toolbar (or choose run from simulation

menu). W hen simulation is finished (“Ready” appears on the status bar), double click

on the Time vs Input node. A new window like figure 6.4 will show the simulation

result. This window will show graphical result o f the simulation. In this graph

simulation time is shown along x-axis and the output is shown along y-axis. To view

the numerical result, add a Display node from the Sink node set. Draw a branch line

from the output line o f the x l Integrator and connect it to the input o f the Display

node. Run the simulation again. When simulation is completed double click on the

Display node. Another window like figure 6.5 will show the numerical result o f the

simulation.

116

Fig 6.4: Graphical result for ODE model.

- i n i x |

T im e : 1.2
0.098713

A

T im e : 1.4

0.342308

T im e : 1.6
0.618678

Time : 1.8
0.813158

T im e : 2
0.855053

T im e : 2.2
0.802978 ▼

Fig 6.5: Numerical result for ODE model

117

6.2 Simple Damped Pendulum

Consider the simple damped pendulum shown in figure 6.6. It is assumed that the

mass is m kg, length o f the weightless rod is L metre, and there is a frictional torque at

the pivot point that is related to the angular velocity through the coefficient c N-m-

s/rad.

mg

Fig 6.6: A simple pendulum

The equation o f motion o f this damped pendulum is,

d2e g . a c dO
— i- = s in 0 —
dt L mL dt

6.4

6.2.1 B u ild ing the P endu lum M odel

From equation 6.4 following (figure 6.7) model is built using SimDynamic. In this

model, input to the right most Integrator node (renamed as theta) is dO/dt, and output

from this node (green signal line) is 6 , on which Trigonometric Function node is

applied to have sinO . Two Product nodes (labelled as g/L and g/L*sin respectively)

are used to perform the multiplication g/L*sin 6. Similarly the left most Integrator

node (renamed as d(0)/dt) outputs (red signal line) d6/dt, and this is multiplied by

c/mL2 using three Product nodes. Four Constant nodes are used to supply the values

for mass (labelled as Mass), length (labelled as Length), torque (labelled as torque),

and acceleration due to gravity (labelled as g). These four nodes in this model enable

118

the user to change respective parameters and immediately see what happens, for

“what i f ’ exploration.

To view the graphical output from the simulation a Time vs Input node is used, and

input to this node is 0. So the angular displacement o f the pendulum will be plotted

against the simulation time. Rest o f the nodes in the model are used to calculate the

position (x and y co-ordinate) o f the bob at each simulation time step. These values

are used later for 3D rendering. Two To Dat File nodes (labelled as xcor and ycor) are

used to save the x co-ordinate and y co-ordinate values respectively in data files that

will be used for the 3D rendering.

6.2.2 R unn ing S im u lation and V iew in g R esult

Simulation was carried out for 20 seconds using RK DP integrator, with an initial

displacement PI/3 and step size 0.2. Following parameter values were used,

• Mass, m = 1 kg • Torque Coefficient, c = 0.1 N-m-s/rad

• Length, L = 1 meter • Acceleration due to gravity, g = 9.8 m/s2

119

Figure 6.8 shows the graphical result followed by the numerical (for first 10 seconds)

result in table 6.1.

Fig 6.8: Graphical result for pendulum model (rod length 1 meter)
simulation time along x-axis, 0 along y-axis

Table 6.1: Numerical result for the Pendulum model (rod length 1 meter)

Time Output Time Output Time Output Time Output Time Output
0.0
n o

1.04719 2.2 0.96670 4.2 0.73782 6.2 0.49669 8.2 0.28935
0 4

i .yjoz. i j
0 77Q7S 2.4 0.92649 4.4 0.88519 6.4 0.76006 8.4 0.61154

0
U . / iy/J 2.6 0.58400 4.6 0.73560 6.6 0.75761 8.6 0.71130U.O

0.8
\J.LL I U o

-0.40648 2.8 0.04356 4.8 0.33655 6.8 0.49530 8.8 0.56206

1.0 -0.87646 3.0 -0.50209 5.0 -0.17666 7.0 0.06085 9.0 0.21571

1.2 -1.04774 3.2 -0.85855 5.2 -0.61489 7.2 -0.38744 9.2 -0.20322
1.4 -0.88515 3.4 -0.92165 5.4 -0.82847 7.4 -0.68627 9.4 -0.53890

1.6 -0.43412 3.6 -0.68083 5.6 -0.75837 7.6 -0.74013 9.6 -0.67523
1 X 0 1677S 3.8 -0.20929 5.8 -0.43005 7.8 -0.53770 9.8 -0.57249
1 . o

2.0
V/. I UZ. / J
0.68849 4.0 0.32930 6.0 0.046653 8.0 -0.14752 10.0 -0.26804

For a “what i f ’ exploration, pendulum rod length was changed to 0.5 meter and

simulation was carried out for 10 seconds. The graphical and numerical (first 10

120

seconds) results for this simulation run are shown in figure 6.9 and table 6.2

respectively.

Fig 6.9: Graphical result for pendulum model (rod length 0.5 meter)
simulation time along x-axis, 0 along y-axis

Table 6.2: Numerical result for pendulum model (rod length 0.5 meter)

Time Output Time Output Time Output Time Output Time Output

0.0
0.2

1.04719
0.91565 2.2 -0.61732 4.2 0.15672 6.2 0.09345 8.2 -0.16330

0.4 0.23019 2.4 -0.61236 4.4 0.41391 6.4 -0.15891 8.4 -0.00794
0.6 -0.55600 2.6 -0.19949 4.6 0.36628 6.6 -0.28040 8.6 0.14103
0.8 -0.91581 2.8 0.31889 4.8 0.06929 6.8 -0.19679 8.8 0.17935
1.0 -0.67531 3.0 0.57817 5.0 -0.25325 7.0 0.01823 9.0 0.08872
1.2 -0.01451 3.2 0.42820 5.2 -0.37452 7.2 0.20386 9.2 -0.05739
1.4 0 60502 3.4 -0.00256 5.4 -0.22725 7.4 0.23228 9.4 -0.15182
1.6

\ J . \ j \ j

0.77629 3.6 -0.3983 5.6 0.06721 7.6 0.09585 9.6 -0.13218
1.8 0.43198 3.8 -0.48989 5.8 0.29185 7.8 -0.09746 9.8 -0.02104
2.0 -0.17691 4.0 -0.24031 6.0 0.29584 8.0 -0.20733 10.0 0.09637

121

This section describes all the steps needed to build a 3D pendulum model using

SimDynamic. This will provide a general idea o f how to use SimDynamic to construct

a 3D model. These 3D model-building steps have been omitted for other examples

described later.

To start the 3D model editor, select 3D-Animation from simulation menu. In the

pendulum model three objects will be used. A small box will be used as the hook o f

the pendulum, a cylinder will be used as the rod, and a sphere will be used as the bob.

Step 1: Click the box button. On the box parameter dialog box set box width, height

and depth to 0.04 each. Since the box will remain static during 3D rendering, no data

files will be added to box. Leave other fields with default values. Click the Add button

on the dialog box.

Step 2: Click the cylinder button. On the cylinder param eter dialog box, set cylinder

radius to 0.02, height to 1, and cylinder centre to (0.0, -0.5, 0.0). During the 3D

animation one end o f the cylinder will remain fixed and other end will move with the

bob. So enter the name o f the data files for x-coordinate and y-coordinate (that are

saved using the xcor and ycor nodes in the pendulum model above) for the top end o f

the cylinder. Leave other fields with default values. Click the A dd button on the dialog

box.

Step 3: Click the sphere button. On the parameter dialog box set the sphere radius to

0.2. Enter the data file names for x-coordinate and y-coordinate (that are saved using

the xcor and ycor nodes in the pendulum model) for the centre o f the sphere. Leave

the z-coordinate filed with default value. Click the A dd button on the dialog box.

After all three steps, the 3D model editor will look like as in figure 6.10,

6.2.3 3D Animation for Pendulum Model

122

D| Sim Dynam ic : 3D Model Editor ^ j n j x j l

Box ¡Box (0.0,0.0,0.0)(0.04,0.04,0.04) Edit
Cylinder (0.01-0.5,0.0)(0.02,1.0)
Sphere (0.0,0.0,0 0) 0.2Cone Remove

Cylinder Save

Sphere
:.......................: |

Load i|

Param Run I
Fig 6.10: Pendulum 3D model

To start 3D animation click on the run button. Figure 6.11 shows four different snap

shots o f the 3D animation for the pendulum model generated by SimDynamic

Fig 6.11 (a) Fig 6.11 (b)

'D SimDynamic : 3D A n im ation

Fig 6.11 (c) Fig 6.11 (d)

Fig 6.11: 3D animation for pendulum model

123

A rubber ball is thrown from a height o f yo metre with the velocity Vo meter/second

(figure 6.12). Elasticity o f the ball is 8 (0 <e <1).

6.3 Bouncing Ball

Fig 6.12: A ball is thrown downward with velocity v0

Considering the downward direction as the positive direction, velocity v and height

(from the floor) y o f the ball at time t can be found from the equations,

v = vo + & ' 6.5

y = y » - (y t +] ^ g t 1) 6.6

where g is the acceleration due to gravity. At every y position if the ball is above the

floor (i.e. y is greater than or equal to zero) then it will continue to fall. If the

calculated y value is negative (indicating the ball hits the floor), then velocity is

recalculated using the following formula

vr = -e Vf, 6.7

where vr is the rebound velocity, is the velocity with which the ball hits the floor

and minus sign is used since the ball will change direction.

6.3.1 B u ild ing the B ou n cin g Ball M odel

From the above equations and assumptions the following (figure 6.13) model was

constructed using SimDynamic. This model will calculate v and y at every simulation

time step. Inputs to the Sum 1 node are v0 and g t , so the output from this node is the

124

velocity v (v = vo + gt) at time step t. Inputs to the Sum2 nodes are vt and l /2 g t \ so

the output from this node is the distance from the throwing point at time step t. Sum3

node calculates the position (i.e. y) o f the ball

;D SimDynamic : bounce l.sdm

File Edit View Simulation Help

Gain

sqr
ixb

0.5*j*t*t

U p

IC : z

ic

: z
t>£*'

-►
Sum 2

Sam 3 Saturation

vO Gain

z:
Sum 4

a - - b ,

Time V*l i m e >
Input

r t c

Ready Simulation Time: 0.0

Fig 6.13: Bouncing ball model in SimDynamic

from the ground at time step t. Saturation node is used to limit the value o f y within

the range 0 to 15. Time vs Input node is used to draw the position o f the ball against

the simulation time. The position o f the ball is always compared with constant value 0

using a Relational Operator node. If the ball position is 0 then velocity will be

calculated using equation 6.7, otherwise it will be calculated using equation 6.5. For

this switching between equations a Multi-Port Switch node has been used. Control

input to the switch node is the output from Relational Operator (1 has been added to

the output for indexing purpose) node. Two Initial Condition nodes (labelled as vo and

yo) are used to provide initial velocity and initial position o f the ball. A Gain node

(labelled as elasticity) is used for the elasticity o f the ball. To save the ball position at

every simulation time step (for 3D animation) a To Dat File node is used.

6.3.2 R un n in g S im u lation and V iew in g R esult

Simulation was carried out for 20 seconds with step size 0.005. Following param eter

values were used,

125

• Initial Velocity, V0 = 10 m/s

• Initial Position, Y0 = 15 meter

• Elasticity, s = 0.8

Graphical result for this simulation run is shown in figure 6.14,

Fig 6.14: Graphical result for bouncing ball model (e = 0.8)
simulation time along x-axis, ball position along y-axis

The elasticity was changed to 1.0 and simulation was carried out for 20 seconds.

Graphical result for this simulation run is shown in figure 6.15,

Fig 6.15: Graphical result for bouncing ball model (e = 1.0)
simulation time along x-axis, ball position along y-axis

126

A sphere is used for the bouncing ball 3D model, and the data file saved in the

bouncing ball model is attached to the sphere to move it along y-axis. Figure 6.16

shows four different snap shots o f the 3D animation for bouncing ball model

generated by SimDynamic

6.3.3 3D Animation for Bouncing Ball Model

Fig 6.16(a) Fig 6.16(b)

:D SimDynamic : 3D Animatioi

Fig 6 .16(c) Fig 6 .16(d)

Fig 6.16: 3D animation for bouncing ball model

127

A bus suspension model can be simplified (considering just one wheel o f the bus) to a

one-dimensional spring-damper system. A diagram o f this system is shown in figure

6.17,

6.4 Bus Suspension

Fig 6.17: Bus suspension system (1/4 bus)

where,

• m 1 is body mass

• m2 is suspension mass

• k l is spring constant o f suspension system

• k2 is spring constant o f wheel and tire

• b 1 is damping constant o f the suspension system

• b2 is the damping constant o f the wheel and tire

• w is the disturbance from the road

• u is the control force.

When the bus is experiencing any road disturbance, the distance (xl - w) will be very

difficult to measure, and the deformation o f the tire (x2 - w) is negligible. So the

distance (x l - x2) will be output from the model. Newton's law for each o f these

masses can be expressed as:

128

There are three forces acting on m l (one damper, one spring, and control force u) and

five forces are acting on m2 (two dampers, two springs and control force u).

The force from spring 1 is equal to k l *(xl - x2), and force from damper 1 is equal to

b l* (v l - v2), where v l = d x l/d t and v2 = dx2/dt. Force from spring 2 is equal to

k2*(w - x2% and force from damper 2 is equal to b2*(v2 - dw/dt). So,

^ F = u - k l * (x l - x2) - b \ * (vl - v2) 6.10

V F = k\ *(jd - x2) + k l * { w — x2) + b\ *(vl - v2) + b 2 * (— - v2) — u 6 11
, dt

6.4.2 B u ild ing the Bus Suspension M odel

Using equations 6.8 - 6.11 following model (fig 6.18) was built. The road disturbance

(w) and control force (u) are simulated using two step nodes labelled as W and U

respectively.

Fig 6.18: Bus suspension model (open loop) in SimDynamic

129

The output from Sum 3 node is (x l - x2), which is multiplied by k l (Gain node

labelled as spring 1). Output from Sum4 node is (v7 - v2), which is multiplied by b l

{Gain node labelled as damper 1). Sum 1 and Sum2 nodes are used to sum up all three

forces act upon m assl. The resultant force (output from Sum2 node) is multiplied

1/m l (Gain node labelled as M assl) and fed to an Integrator node (labelled as VI).

The output from this Integrator node V I, is fed to a second Integrator node (labelled

as XI). Similar description can be made for the second mass-spring system. A Time vs

Input node is used to view the graphical output from the simulation.

This model will only provide open-loop response from the system. To construct a

closed loop model (figure 6.19) feedback controller was designed feeding back the

following five states (see appendix C for derivation): [xl d x l/d t y l= x l-x 2 d y l/d t

ly i l

Fig 6.19: Bus suspension model (closed loop) in SimDynamic

The controller used the following gain matrix: [2300000 0 500000000 0 8000000].

An Integrator node is used to find \y l and four Mux nodes are used to combine all

signals in a vector form. A Dot Product node (labelled as controller) is used as the

feedback controller.

130

Simulation was carried out for 50 seconds for the open-loop model, using RK DP

integrator and step size 0.01. Following parameter values were use

• Mass 1, ml = 2500 kg • Mass2, m2 = 320 kg

• Spring 1 constant, kl = 80000 N/m • Spring2 constant, k2 = 500000 N/m

• Damper 1 constant, bl = 350 Ns/m • Damper2 constant, b2 = 15020 Ns/m

The open loop response from the bus suspension model is shown in figure 6.20

6.4.3 Running Simulation and Viewing Result

Fig 6.20: Graphical result for bus suspension model (open loop)

For the closed loop model same parameter values were used and simulation was

carried out for 2 seconds. Figure 6.21 shows the result for this simulation run,

K 1 0 - 3
4 4 4

2 2 2

A ; :

0 . 0
/ \ ; ; :
1 V — v .

L 22 2

1 V / ' r :
/ • : :

[I : : :

/ ; i..................... ;

L 44 4

1 / : : :

Vi !..................... L

0 0 0.5 1.0 1. 5 2 0

Fig 6.21: Graphical result for bus suspension model (closed loop)

131

To make the 3D animation more attractive, instead o f a single step input, discrete

pulses o f various amplitude and sample time are applied to the closed loop model o f

figure 6.19 as road disturbance. For four wheels o f the bus four discrete pulse trains

(figure 6.22) are applied to the model and their responses are saved in data files.

6.4.4 3D Animation for Bus Suspension Model

'D SimDynamic : Time Vs X ^ j n j x j ■3D SimDynamic : Time Vs X -Ini x|

1
| D SimDynamic : Time Vs X - J O | x |

Fig 6:22: Discrete pulses applied to closed-loop bus suspension model

132

To construct a 3D model o f a spring-damper-mass system two cylinders are used. One

cylinder will act as the spring-damper and other cylinder will act as a mass on top o f

it. In this way the 3D model for a four spring-damper-mass is created and placed over

a rigid platform. A box is used as the rigid platform. Figure 6.23 presents four

different snap shots o f 3D animation for the bus suspension model.

Fig 6.23 (a)

D SimDynamic : 3D Animatic ^ i n j x j l

f ' 1 '

Fig 6.23 (b)

Fig 6.23 (c) Fig 6.23 (d)

Fig 6.23: 3D animation for bus suspension model

6.5 Qualitative Decision Making (QDM)

This section presents an effort to model a qualitative decision making system using

SimDynamic. Consider the following system,

133

IPI

I P 2

IP3
Decision Making

System
> O P

IP4

Fig 6.24: Qualitative decision making system

It has four inputs (IPi) and one output (OP) and the characteristics o f the system are as

follows,

• All input and output values are measured on a numerical scale ranging from 0

• If output (OP) value is less than 0.5 then it is unsatisfactory.

• IPj and IP2 have major impact on the system and IP3 and IP4 have minor

impact on the system.

• Threshold values for IPi and IP2 are 0.55 and 0.6 respectively.

• Threshold values for IP3 and IP4 are 0.4 and 0.3 respectively.

• If either IPi or IP2 is less than its threshold value then output must be

unsatisfactory (less than 0.5), irrespective o f other input values.

• If either IPi or IP2 is at its threshold value, all other inputs must be above or

equal to their respective threshold values to produce satisfactory output.

• If any two inputs are below their respective threshold values at the same time,

then output must be unsatisfactory.

6.5.1 B u ild ing the Q D M M odel

This system can be modelled easily using logical programming. But here a heuristic

approach has been adopted. Following differential equation is used for each o f the

four inputs,

to 1.0.

6.12

134

Arithmetic average o f the outputs from four equations is used as the final output from

the system. The main challenge was to find the coefficients (a, b, c) for each input to

develop the above system. A close observation showed that ‘c ’ has the greatest affect

on the equation, ‘b ’ has linear affect and ‘a ’ has the least affect on the equation. With

lower c values equation output tends to rise and vice versa. Coefficient values were

chosen in such a way that all the individual equations produce the minimum

satisfactory (0.5) output, so that the final output from the system is satisfactory (0.5)

when all the inputs are at their respective threshold values. From these observations

and assumptions following coefficient values are set for each equation after numerous

trial and error run,

• Input 1 (IPi): a =1, b = 1, c = 1.1

• Input 2 (IP2): a = l , b = l , c=1 .2

• Input 3 (IP3): a = 1, b = 1, c = 0.8

• Input 4 (IP4): a = 1, b = 1, c = 0.6

Following QDM model is built using all above equations,

Sim Dynam it : I astQdm.sdrti

Simulation Help

Switch
F

f ç]

^ Z |~»

Gain

JW

PGam

H-

Gain

\rm |*-L|j/ro* [<-| oam [*-| y
Integra tor Integra tor *3 Som ------ !——

— ■ — SaÉntioa

C ____ y Gain H --------

:: z — | c —
__ C oiu liir t _

Som

3C Switch

— ÎÏ y \~iHg“ h
Som G u a w

~Z: Z -
S un

► l«234!

Gam J U f: z

In tegra tor In ttf ra to r

Gam -4 z:

n .

Ready

Fig 6.19: QDM model in SimDynamic

135

Equation for each input is implemented using similar steps as in section 6.1. For each

input an additional switch node and a saturation node are used in series. Switch node

will force a zero input if the input is below the threshold value, and the saturation

node is used to limit the input value within the valid input range i.e. 0.0 - 1.0. Outputs

from all for equations are summed and then multiplied by 0.25 (to get the arithmetic

average) using a gain node. A Time vs Input node and a display node are used for

graphical and numerical results respectively.

6.5.2 R un n in g S im ulation and V iew in g R esult

Simulation was carried out for 10 seconds with step size 0.1 and RK DP integrator.

Following table (table 6.3) shows results for some combinations o f the inputs,

Table 6.3: Results for QDM model

IPI IP2 IP3 IP4 OP
1 1 1 1 0.658

0.55 0.6 0.4 0.3 0.5
0.54 1 1 1 0.458

1 0.59 1 1 0.477
1 1 0.3 0.2 0.438
0 0 0 0 0

0.54 1 0.3 1 0.334
1 0.6 1 0.2 0.478

From the results shown in the table it is quite obvious that the model has implemented

the system according to the specification in the problem statements.

6.6 Discussion on SimDynamic

6.6.1 A ttributes o f SimDynamic

SimDynamic is entirely written in Java and the package appears as an applet [58] on

an HTML page [59]. Therefore it is available over the World Wide Web, taking full

advantage o f the portability o f Java and offers most o f the advantages o f a W eb-based

simulation software. Although Web version o f SimDynamic lacks some features, such

as file saving (due to security restriction imposed by Java) or 3D animation, it allows

users full interactive capabilities and provides model creation, with both numerical

and graphical outputs. Users may create, modify and interact with a simulation model

136

with as ease as with a non W eb-based software. It was mentioned in chapter 1 that

SimDynamic can also be used as a non W eb-based simulation software (Appendix D

provides full installation instructions), and in that case it can be considered as a

complete professional simulation package. From software engineering point o f view

some o f the aspects o f SimDynamic are worth mentioning here

• Functionality/Scope: The most fundamental property o f a simulation tool

may be its scope, that is, the set o f simulations that it is potentially able to

execute. There are many tools designed for simulating a specific type o f

models. These tools may give very good support for the purpose they are

designed for, but they tend to be too restrictive for simulation o f complex

domains. Because o f a rich collection o f functional nodes (as a whole 83 in

this implementation) SimDynamic offers modelling o f a wide range o f real

world dynamic systems, including mechanical, electrical thermodynamic and

fluid mechanic systems. Not only real world systems, it can be used to solve

mathematical equations or to perform simple matrix operations. A model o f

moderate complexity can be constructed with minimum o f effort and without

writing any code. It supports linear and non-linear systems, modelled in

continuous time, sampled time or a hybrid o f the two. Finally it provides both

numerical, and graphical result, and also 3D animation.

• M aintainability/Expandability: The object-oriented structure offered by Java

and maintained in SimDynamic allows easy expansion o f the package. The

functional nodes have been implemented as individual objects (classes). So

extension o f the package can be achieved easily by creating additional

functional nodes (classes) and incorporating them to the main engine

(simulator) o f SimDynamic.

• Usability/Ease of Use: SimDynamic presents a simple and friendly graphical

user interface (GUI). Users can build models as block diagram, using simple

mouse operation. It also provides appropriate error messages whenever an

error is encountered in a model during a simulation run.

137

• Efficiency: Object-oriented paradigm, utilized to develop SimDynamic,

reduces wasteful use o f system resources such as memory and processor cycle

resulted from reuse o f code. Moreover, to store models SimDynamic uses Java

built in class Vectors that expand themselves as necessary instead o f being

initially defined with unchanging sizes. As a result, the amount o f memory

required by the package at a given time depends on the number o f nodes and

lines within the current model and that ensures the optimal memory

management.

• R eliability: Generally the reliability o f the software comes down to a simple

question: does the software provide correct and complete result? Now,

implementation o f SimDynamic involves the use o f most authenticated and

proved algorithms. Therefore it is desirable that it will produce correct result.

Furthermore, some o f the SimDynamic results were compared to the results

from well-established simulation package SIMULINK [60], and in all cases

results from Simdynamic matched with the results from Simulink.

• P ortab ility : Software portability is the ability to use the same program in

multiple environments. As it is mentioned before SimDynamic is entirely

written in Java, which itself is a highly portable language since it translates to

machine independent byte-codes, which are interpreted by a Java Virtual

Machine (JVM). So to access the Web version o f SimDynamci user will only

need a Java compatible Web browser such as W indows Explorer or Netscape

irrespective o f the machine architecture. The non Web based version o f the

package can also be used on multiple platform.

• Consistency: The Abstract W indow Toolkit in Java aids the creation o f

graphical user interface in SimDynamic and allows the interface to be rendered

according to the platform dependent information, ensuring maximum

graphical compatibility with the platform. The interface is consistent also in

that comparable operations are activated in the same way. For example, the

buttons on various dialog boxes have a consistent look and feel and method o f

operation.

138

• U ser G uidance: The interface incorporates on-line help for user guidance and

assistance. The help provides all the information needed to get along with

SimDynamic, such as how to build a model, simulation parameters, functional

description o f nodes etc.

6 .6.2 E x te n s io n S copes

The most adequate media for remote access is presently the W orld W ide Web. Web

based simulation is a means to exploit Web technology to support the future o f

computer simulation. SimDynamic is an attempt to introduce dynamic system

simulation on the Web. This implementation o f SimDynamic contains a small number

o f limitations and these are programming issues that can be remedied with more

complex programming techniques than undertaken for the creation o f SimDynamic.

The Current version provides 83 functional nodes to facilitate modelling, but it is

extendable because o f the object-oriented paradigm utilized to develop SimDynamic.

Future additions should include nodes for handling more advanced and various type

simulation models, particularly discrete event simulation models.

Although SimDynamic provides a good number o f integrators to solve ordinary

differential equations, they are all fixed step integrators and integration o f stiff

problems has not been considered. In realistic applications the solution is often

changing rapidly at certain critical times and it is difficult to approximate accurately.

At this particular time short integration steps are needed to maintain accuracy. At

other times for the same problem computing time can be saved by using large

integration steps and still get sufficient accuracy. It is usually impossible to predict the

precise time the small steps are needed. So the software should have the mechanism

to handle this step size automatically. And this is not very painstaking to achieve. All

the algorithms used to implement SimDynamic fixed step integrators have their

adaptive (variable step) counterparts. By incorporating variable step integrators it is

possible to enhance computing ability o f SimDynamic.

Another area o f interest for future works should be the 3D animation provided by

SimDynamic, which can be considered in its embryonic stage. This version provides

139

only four basic 3D shapes (box, cylinder, cone and sphere) for all sorts o f 3D

modelling that are simply not sufficient to model realistic complex models. Future

version o f SimDynamic should include more and more 3D shapes to provide 3D

modelling flexibility. Also at present 3D animation is not available in the Web version

o f SimDynamic, because o f the security restrictions imposed by Java on Applets. In

this implementation the simulation results are saved in data files and 3D animator

reads the results from data files. 3D animation can be made available in the Web

version also by avoiding this use o f files to communicate between the main simulation

engine and the 3D animator.

140

Chapter Seven

7 Conclusions and Suggested Future W ork

7.1 C onclusions

SimDynamic, a simulation package, has been developed for modelling, simulating and

analysing dynamic systems on the Web, and it has achieved most of the design goals.

Simulation results from SimDynamic were compared to the results from Simulink, and

in all cases results from both software were identical. Developed entirely in Java, it

offers most of the advantages of Web-based simulation described in chapter one.

Major advantages are

Wide Availability

• allows access to many platforms without recompiling.

• allows access to distant sites without transporting through hardware or

software.

Efficient Maintenance

• enables frequent modifications to be made and instantly distributed

• allows modifications and implementations made through the server

SimDynamic can also be used as a non Web-based simulation software. Some of the

salient features of SimDynamic are summarised here,

• Functionality: The current implementation contains 83 functional nodes, that

will enable user to model a wide range of real world dynamic systems

including mechanical, electrical and thermodynamic systems.

• Expandability: The package can be extended easily by implementing

additional functional nodes and incorporating them to the main simulation

engine.

• Portability: Both the Web-based and no Web-based version of SimDynamic

can be used on various platforms.

141

• User Guidance: SimDynamic user interface provides on-line help for user

guidance and assistance.

• Reliability: Because of the use of authenticated and proved algorithms in

SimDynamic development, it produces desirable results.

7.2 Suggested Future work

• Computing power of SimDynamic can be enhanced by incorporating more

functional nodes to handle advanced and various types of simulation models,

particularly discrete event simulation models.

• Better accuracy, especially for stiff differential equations, can be achieved by

implementing variable steps integrators.

• 3D animation should be introduced in the Web-based version of SimDynamic.

• Model saving option should be enabled in the Web-based version. A database

can be maintained to save models separately for each user. Each user should

be given unique ID to maintain his/her account.

• Unauthorised access or modification to the models developed using

SimDyanmic should be protected by imposing password or time limit

restriction on the package.

Despite few limitations in the Web-based version, SimDynamic encourages users of

all levels of understanding to interactively develop models, by providing a high level

of user interactivity through simple interfaces. Additionally it enables the users to

understand the system under consideration through graphical as well as numerical

results of the simulation. Because of wide range modelling ability and tremendous

flexibility, SimDynamic may be a rendezvous for the simulation practitioners on the

Web.

142

References

[1] Andrew S. Tanenbaum. (1996) “Computer Networks”. Prentice-Hall, Inc. USA.
[2] Sun Microsystems, Inc. © 1995 - 2002, “The Source For Java Technology”.

http://java.sun.com/

[3] Martin Barnes. “Virtual Reality and Simulation”. Proceedings of the 1996 Winter
Simulation Conference, pp 101 - 110, 1996

[4] Quest Software Inc. © 1985 - 2002, http://www.quest.com/

[5] Delmia Corp. http://www.delmia.com

[6] Karen C. Jones, Marc W. Cygnus, Richard L. Storch, Kenneth D. Farnsworth.

“Virtual Reality for Manufacturing Simulation”. Proceedings of the 1993 Winter
Simulation Conference,pp 882 - 887, 1993

[7] AutoSimulations, Inc. http://www.prolog-italia.com/Autosimulations.htm

[8] Robert Macredie, Simon J.E. Taylor, Xiaoning Yu and Richard Keeble. “Virtual

Reality and Simulation: An Overview”. Proceedings of the 1996 Winter Simulation
Conference, pp 669 - 674, 1996

[9] Hank Grant and Chuen-Ki Lai. “Simulation Modelling with Artificial Reality

Technology (SMART): An Integration of Virtual Reality and Simulation Modelling”.

Proceedings of the 1998 Winter Simulation Conference, pp 437 - 441, 1998

[10] Fifth Dimension Technologies. 1996. 5DT Glove - User’s Manual, Pretoria.

[11] Virtual I-O. 1995. VIO I-Glasses - user’s Manual, Seattle.

[12] Scott Kimbrough. “Control System Development Tools”. ACM SIGAPL APL Quote
Quad, Proceedings of the international conference on APL: APL in transition
January 1987, Volume 17 Issue 05-10-1987, 4

[13] Schmid, Chr., “Real-Time Control with CADACS-PC”. In M. Jamshidi and C.J.

Herget (Ed.): Recent Advances in Computer-Aided Control Systems Engineering.
North-Holland, Amsterdam, 1992, S. 337-355.

[14] Schmid, Chr., “KEDDC - A Computer-Aided Analysis and Design Package for
Control Systems”. In M. Jamshidi und C.J. Herget (Ed.): Advances in Computer-
Aided Control Systems Engineering. North-Holland, Amsterdam, 1985, S. 159 180.

[15] Fishwick,P.A., “SIMPACK: Getting Started with Simulation Programming in C and

C++”, In 1992 Winter Simulation Conference, December, Arlington, VA, 154-162.
[16] Martin Otter. “The ANDECS Simulation Environment DSSIM”. DLR FF-DR-ER

Technical report TR R101 - 93, March 1993

[17] DLR - Institute of Robotics and Mechatronics.

http://www.robotic.dlr.de/control/andecs/

143

http://java.sun.com/
http://www.quest.com/
http://www.delmia.com
http://www.prolog-italia.com/Autosimulations.htm
http://www.robotic.dlr.de/control/andecs/

[18] Hilding Elmqvist, Francois E. Celler and Martin Otter. “Object-Oriented Modeling of

Hybrid Systems”. Keynote Address, ESS 93, European Simulation Symposium,
Delft, The Netherlands, Oct 25 -28, 1993, pp 1 -11.

[19] Dynasim AB. © 1997 - 2002, http://www.dynasim.se/

[20] Miller, D.C., Thorpe, J.A. “SIMNET: The Advent of Simulator Networking.”

Proceedings of the IEEE, Vol. 83, No. 8, pp 1114-1123, 1995

[21] IEEE Standard for Inform. Tech. - Protocols for Distributed Simulation Applications:

Entity Information and Interaction. IEEE Standard 1278 - 1993. New York: IEEE

Computer Soc., 1993.

[22] Thomas, R., Neilson, I. “Harnessing Simulations in the Service of Education: The

Interact Simulation Environment.” Computer Educ. Vol 25, pp 21-29, 1995

[23] Cole, R., Tooker, S. “Physics To Go: Web-based Tutorials for CoLoS Physics

Simulations.” Proceeding of the Frontiers on Education FIE ’96 26th Annual
Conference.

[24] Fishwick, P.A. “Web-Based Simulation: Some Personal Observations.” Winter
Simulation Conference, Coronado, CA, pp 772-779, 1996

[25] Buss, A.H., Stork, K.A. “Discrete Event Simulation on the World Wide Web Using

Java.” Winter Simulation Conference, Coronado, CA, pp 780-785, 1996
[26] Miller, J.A., Nair, R.S., Zhang, Z., Zhao, H. “JSIM: A Java-Based Simulation and

Animation Environment.” Proceedings of the 30th Annual Simulation Symposium,
Atlanta, Georgia, pp. 31-42. 1997

[27] Howell, F., McNab, R. “SimJava: A Discrete Event Simulation Package for Java

With Applications in Computer Systems Modelling.” Proceedings of First
International Conference on Web-based Modelling and Simulation, San Diego CA,

Society for Computer Simulation, Jan 1998.

[28] Page, E.H., Moose, R.L., Griffin, S.P. “Web-Based Simulation in SimJava Using

Remote Method Invocation.” Winter Simulation Conference, Atlanta, Georgia, pp

468-474, 1997
[29] Lorenz, P., Dorwarth, H., Ritter, K., Schriber, T.J. “Towards a Web Based Simulation

Environment.” Winter Simulation Conference, Atlanta, Georgia, pp 1338-1344, 1997
[30] Yücessan, E., Chen, C.H., Lee, I. “Web-Based Simulation Experiments.” Winter

Simulation Conference, Washington, pp 1649-1654, 1998
[31] Chen, C.H., Chen, H.C., Dai, L. “A Gradient Approach for Smartly Allocating

Computing Budget For Discrete Event Simulation.” Winter Simulation Conference,
San Diego, CA, pp 398-405, 1996

[32] Veith, T.L., Kobza, J.E., Koelling, C.P. “NetSim: Java ™ - Based Simulation for the

World Wide Web.” Computer & Operation Research 26 (1999), pp 607-621

144

http://www.dynasim.se/

[33] Elmaghraby, A.S., Elfayoumy, S.A., Karachiwala, I.S., Graham, J.H., Emam, A.Z.,

Sleem, A.M. “Web-Based Performance Visualization of Distributed Discrete Event

Simulation.” Winter Simulation Conference, Phoenix, Arizona, pp 1618-1623, 1999

[34] Salisbury, C.F., Farr, D.S., Moore, J.A. “Web-Based Simulation Visualization Using

Java 3D.” Winter Simulation Conference, Phoenix, Arizona, pp 1425-1429, 1999

[35] Schmid, C. “A Remote Laboratory Using Virtual Reality on the Web.” Simulation,
Special Issue: On Web-Based Simulation, 73 (1999), No. 1, S. 13-21.

[36] Schmid, C. “Virtual Control Laboratories and Remote Experimentation in Control

Engineering”. Proceedings of 11th EAEEIE Annual Conference on Innovations in
Education for Electrical and Information Engineering, ULM , Germany, S.213-218,

April 2000

[37] Schmid, C. “Remote Experimentation Techniques for Teaching Control

Engineering”. 4th International Scientific - Technical Conference Process Control
2000, Kouty nad Desnou, Czech Republic, June 2000

[38] Schmid, C. “VCLab - The Virtual Control Engineering Laboratory”. Invited paper.

Proceedings of IF AC Symposium on System Identification, Santa Barbara, California,

USA, June 2000

[39] C. Schmid and A. Ali. “A Web-based System for Control Engineering Education”.

Invited paper. Proceedings of American Control Conference ACC'2000, Chicago,

June 2000.

[40] C.Schmid. “Remote Experimentation in Control Engineering”. 45th International
Scientific Colloquium, llmenau Technical University, October 2000

[41] Guru, A., Savory, P., Williams, R. “A Web-Based Interface for Storing and

Executing Simulation Models.” Winter Simulation Conference, Orlando, Florida, pp

1810-1814, 2000

[42] Marr, C., Storey, C., Biles, W.E., Kleijnen, J.P.C. “A Java-Based Simulation

Manager for Web-Based Simulation.” Winter Simulation Conference, Orlando,
Florida, pp 1825-1822, 2000

[43] Dhananjai Madhava Rao, Victoria Chemyakhovsky and Philip A. Wilsey. “WESE: A
Web-based Environment for Systems Engineering”. Proceedings of the 2000
International Conference on Web-based Modelling and Simulation, WEBSIM-2000.
San Diego, California, October 2000.

[44] Patrick Naughton and Herbert Schildt. (2000) “Java™ 2: The Complete Reference”.

McGraw-Hill Companies, Inc. USA.

[45] John Zukowski. (1997) “Java AWT Reference”. O’Reilly & Associates, Inc. USA.

[46] Henry Sowizral, Kevin Rushforth and Michael Deering. (1998) “The Java™ 3D API

Specification”. Addison-Wesley Publishing Company. USA.

145

[47] Shepley L. Ross. (1989) “Introduction to Ordinary Differential Equations”.

JohnWiley & Sons. USA.

[48] http://www.aero.gIa.ac.uk/UGrad/home_pages/nmae/nmae/rkutta/rkutta.html

[49] “Pair of Runge-Kutta formulas”. Bogacki P, Shampine LF. A 3(2).Appl Math Lett

1989;2:1-9.

[50] William H. Press, Brian P. Flannery, Saul A. Teukolsky and William T. Vetterling.

(1987) “Numerical Recipes: The Art of Scientific Computing”. Cambridge University

Press. USA.

[51] http://www.maths.uq.edu.au/~gac/math3201 /math3201 .html

[52] D.K. Anand and R.B.Zmood. (1995) “Introduction to Control Systems”. Butterworth-

Heinemann Ltd. UK.

[53] Francis Scheid. (1988) “Schaum’s Outline of Theory and Problems of Numerical

Analysis”. McGraw-Hill Companies Inc, USA.

[54] Phillip A. Regalia. (1995) “Adaptive HR Filtering in Signal Processing and Control.

Marcel”. Dekker, Inc. USA.

[55] Bernard Friedland. (1996) “Advanced Control System Design”. Prentice-Hall, Inc.

USA.

[56] Martin Hargeaves. (1996) “Engineering Systems: Modelling and Control”. Addison-

Wesley Longman Ltd. England.

[57] Jerry Banks, John S. Carson, Barry L. Nelson. (1999) “Discrete - Event System

Simulation”. Prentice-Hall, Inc. USA.

[58] James Gosling, Frank Yellin, The Java Team. (1996) “The Java™ Application

Programming Interface, Volume 2, Window Toolkit and Applets”. Addison-Wesley

Publishing Company. USA.

[59] http://student.dcu.ie/~mahbubk2/simdynamic.html

[60] The MathWorks Inc. © 1994 - 2002, http://www.mathworks.com/products/simulink

146

http://www.aero.gIa.ac.uk/UGrad/home_pages/nmae/nmae/rkutta/rkutta.html
http://www.maths.uq.edu.au/~gac/math3201
http://student.dcu.ie/~mahbubk2/simdynamic.html
http://www.mathworks.com/products/simulink

Appendix A

Node Properties

A .l Continuous Node Set

Node name Derivative
Data type supported Numerical (real only)
Direct feedthrough Yes
Sample time Continuous
Expansion of input/parameter Not applicable
Dimension of input/parameter Single number / vector / matrix

Node name Integrator
Data type supported Numerical (real only)

Direct feedthrough If reset and/or external initial
condition are enabled

Sample time Continuous
Expansion of input/parameter Supported
Dimension of input/parameter Single number / vector / matrix

Node name Memory
Data type supported Numerical (real / complex)
Direct feedthrough No
Sample time Continuous
Expansion of input/parameter Supported
Dimension of input/parameter Single number/ vector / matrix

Node name State Space
Data type supported Numerical (real only)
Direct feedthrough If D is non zero matrix
Sample time Continuous
Expansion of input/parameter Expands only the initial condition

Dimension of input/parameter Input: single number, Parameters:
single number / vector / matrix

Node name Transfer Function
Data type supported Numerical (real only)

Direct feedthrough If numerator and denominator have
same number o f columns

Sample time Continuous
Expansion of input/parameter Not supported

Dimension o f input/parameter
Input: single number
Numerator: single / vector/ matrix
Denominator: single / vector

1

Node name Transport Delay
Data type supported Numerical (real only)
Direct feedthrough No
Sample time Continuous
Expansion o f input/parameter Supported
Dimension o f input/parameter Single number / vector / matrix

Node name Zero-Pole
Data type supported Numerical (real only)

Direct feedthrough If poles and zeros have same number
of columns

Sample time Continuous
Expansion o f input/parameter Not supported

Dimension of input/parameter
Input: single number
Zeros: single number / vector / matrix
Poles: single number / vector

A.2 Discrete Node Set

Node name Discrete Filter
Data type supported Numerical (real only)

Direct feedthrough If numerator and denominator have
same number o f columns

Sample time Discrete
Expansion of input/parameter Not supported

Dimension o f input/parameter
Input: single number
Numerator: single / vector / matrix
Denominator: single / matrix

Node name Discrete Integrator
Data type supported Numerical (real only)

Direct feedthrough If reset and/or external initial
condition are enabled

Sample time Discrete
Expansion o f input/parameter Supported
Dimension o f input/parameter Single number / vector / matrix

Node name Discrete State Space
Data type supported Numerical (real only)
Direct feedthrough If D is non zero matrix
Sample time Discrete
Expansion o f input/parameter Expands only the initial condition

Dimension o f input/parameter Input: single number, Parameters:
single number / vector / matrix

2

Node name Discrete Transfer Function
Data type supported Numerical (real only)

Direct feedthrough If numerator and denominator have
same number o f columns

Sample time Discrete
Expansion o f input/parameter Not supported

Dimension o f input/parameter
Input: single number
Numerator: single / vector/ matrix
Denominator: single / vector

Node name Discrete Zero-Pole
Data type supported Numerical (real only)

Direct feedthrough If poles and zeros have same number
of columns

Sample time Discrete
Expansion o f input/parameter Not supported

Dimension o f input/parameter
Input: single number
Zeros: single number / vector / matrix
Poles: single number / vector

Node name Unit Delay
Data type supported Numerical (real / complex)
Direct feedthrough No
Sample time Discrete
Expansion of input/parameter Supported
Dimension o f input/parameter Single number / vector / matrix

Node name Zero Order Hold
Data type supported Numerical (real / complex)
Direct feedthrough Yes
Sample time Discrete
Expansion o f input/parameter Supported
Dimension o f input/parameter Single number / vector / matrix

A.3 Tables Node Set

Node name Direct Look-Up Table (2D)

Data type supported Input: numerical (real only)
Table data: numerical (real / complex)

Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Not supported
Dimension of input/parameter Single number / vector / matrix

3

Node name Interpolation (2D) with PreLook-up
Data type supported Numerical (real only)
Direct feedthrough Yes
Sample time Inherited
Expansion of input/parameter Supported (only for input)
Dimension o f input/parameter Single number / vector / matrix

Node name Look-Up Table
Data type supported Numerical (real only)
Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Not supported

Dimension o f input/parameter Input: single number / vector / matrix
Tables: vector

Node name Look-Up Table (2D)
Data type supported Numerical (real only)
Direct feedthrough Yes
Sample time Inherited
Expansion of input/parameter Supported (only for input)

Dimension o f input/parameter Input: single number / vector / matrix
Tables: vector / matrix

Node name Polynomial
Data type supported Numerical (real only)
Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Not supported

Dimension o f input/parameter Input: single number / vector / matrix
Co-efficient: single number / vector

Node name Pre Look-up Index Search
Data type supported Numerical (real only)
Direct feedthrough Yes
Sample time Inherited
Expansion of input/parameter Not supported

Dimension o f input/parameter Input: single number / vector / matrix
Table: vector

A.4 Maths and Logic Node Set

Node name Absolute
Data type supported Numerical (real /complex)
Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Not applicable
Dimension of input/parameter Single number / vector / matrix

4

Node name Bitwise Logical Operator
Data type supported Numerical (real only)
Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Supported
Dimension of input/parameter Single number / vector / matrix

Node name Combinatorial Logic
Data type supported Numerical (real only)
Direct feedthrough Yes
Sample time Inherited
Expansion of input/parameter Not supported

Dimension of input/parameter Input: single number / vector
Table: matrix

Node name Dot Product
Data type supported Numerical (real / complex)
Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Not supported
Dimension o f input/parameter Single number / vector

Node name Gain
Data type supported Numerical (real / complex)
Direct feedthrough Yes
Sample time Inherited
Expansion of input/parameter Supported
Dimension o f input/parameter Single number / vector / matrix

Node name Logical Operator
Data type supported Numerical (real only) / boolean
Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Supported
Dimension of input/parameter Single number / vector / matrix

Node name Magnitude - Angle to Complex
Data type supported Numerical (real only)
Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Supported
Dimension o f input/parameter Single number / vector / matrix

5

Node name Math Function 1
Data type supported Numerical (real / complex)
Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Not applicable
Dimension of input/parameter Single number / vector / matrix

Node name Math Function 2
Data type supported Numerical (real / complex)
Direct feedthrough Yes
Sample time Inherited
Expansion of input/parameter Supported
Dimension o f input/parameter Single number / vector / matrix

Node name Matrix 1
Data type supported Numerical (real / complex)
Direct feedthrough Yes
Sample time Inherited
Expansion of input/parameter Not applicable
Dimension of input/parameter Matrix

Node name Matrix 2
Data type supported Numerical (real / complex)
Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Not applicable
Dimension of input/parameter Matrix

Node name Min Max
Data type supported Numerical (real only)
Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Supported
Dimension o f input/parameter Single number / vector / matrix

Node name Product
Data type supported Numerical (real / complex)
Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Supported
Dimension o f input/parameter Single number / vector / matrix

Node name Real - Imaginary to Complex
Data type supported Numerical (real only)
Direct feedthrough Yes
Sample time Inherited

6

Expansion o f input/parameter Supported
Dimension o f input/parameter Single number / vector / matrix

Node name Relational Operator
Data type supported Numerical (real only)
Direct feedthrough Yes
Sample time Inherited
Expansion of input/parameter Supported
Dimension of input/parameter Single number / vector / matrix

Node name Resolve Complex
Data type supported Numerical (real / complex)
Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Not applicable
Dimension of input/parameter Single number / vector / matrix

Node name Rounding Function
Data type supported Numerical (real / complex)
Direct feedthrough Yes
Sample time Inherited
Expansion of input/parameter Not applicable
Dimension of input/parameter Single number / vector / matrix

Node name Sign
Data type supported Numerical (real only)
Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Not applicable
Dimension of input/parameter Single number / vector / matrix

Node name Sum
Data type supported Numerical (real / complex)
Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Supported
Dimension o f input/parameter Single number / vector / matrix

Node name Trigonometric Function
Data type supported Numerical (real / complex)
Direct feedthrough Yes
Sample time Inherited
Expansion of input/parameter Not applicable
Dimension o f input/parameter Single number / vector / matrix

7

A.5 Non-Linear Node Set

Node name Backlash
Data type supported Numerical (real only)
Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Supported
Dimension o f input/parameter Single number / vector / matrix

Node name Coulomb and Viscous Friction
Data type supported Numerical (real only)
Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Supported (only for tables)

Dimension o f input/parameter Input: single number
Tables: single number / vector/ matrix

Node name Dead Zone
Data type supported Numerical (real only)
Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Supported
Dimension o f input/parameter Single number / vector / matrix

Node name Manual Switch
Data type supported Numerical (real / complex) / boolean
Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Not applicable
Dimension o f input/parameter Single number / vector / matrix

Node name Multi-port Switch
Data type supported Numerical (real / complex) / boolean
Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Supported
Dimension o f input/parameter Single number / vector / matrix

Node name Quantizer

Data type supported Input: numerical (real / complex)
Table: numerical (real only)

Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Supported
Dimension o f input/parameter Single number / vector / matrix

8

Node name Rate Limiter
Data type supported Numerical (real only)
Direct feedthrough Yes
Sample time Inherited
Expansion of input/parameter Supported
Dimension of input/parameter Single number / vector / matrix

Node name Relay
Data type supported Numerical (real only)
Direct feedthrough Yes
Sample time Inherited
Expansion of input/parameter Supported
Dimension of input/parameter Single number / vector / matrix

Node name Satuaration
Data type supported Numerical (real only)
Direct feedthrough Yes
Sample time Inherited
Expansion of input/parameter Supported
Dimension o f input/parameter Single number / vector / matrix

Node name Switch

Data type supported
Control input: numerical (real only)
Threshold value: numerical(real only)
Input: numerical (real / complex)

Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Supported
Dimension of input/parameter Single number / vector / matrix

A.6 Miscellaneous Node Set

Node name Counter
Data type supported Numerical (real only)
Direct feedthrough No
Sample time Continuous
Expansion of input/parameter Not applicable
Dimension of input/parameter Single number / vector / matrix

Node name Cumulative Function
Data type supported Numerical (real only)
Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Not applicable
Dimension of input/parameter Single number / vector / matrix

9

Node name Data Type Conversion
Data type supported Numerical (real only) / boolean
Direct feedthrough Yes
Sample time Inherited
Expansion of input/parameter Not applicable
Dimension of input/parameter Single number / vector / matrix

Node name Zero Crossing
Data type supported Numerical (real only)
Direct feedthrough Yes
Sample time Inherited
Expansion of input/parameter Supported
Dimension of input/parameter Single number / vector / matrix

Node name Initial Condition
Data type supported Numerical (real only)
Direct feedthrough Yes
Sample time Inherited
Expansion of input/parameter Supported
Dimension of input/parameter Single number / vector / matrix

Node name Matrix Concatenation
Data type supported Numerical (real / complex)
Direct feedthrough Yes
Sample time Inherited
Expansion of input/parameter Not applicable
Dimension o f input/parameter Single number / vector / matrix

Node name Merge
Data type supported Numerical (real / complex)
Direct feedthrough Yes
Sample time Inherited
Expansion of input/parameter Not applicable
Dimension of input/parameter Single number / vector

Node name Mux
Data type supported Numerical (real / complex)
Direct feedthrough Yes
Sample time Inherited
Expansion of input/parameter Not applicable
Dimension o f input/parameter Single number / vector

Node name Probe
Data type supported Numerical (real / complex)
Direct feedthrough Yes
Sample time Inherited
Expansion of input/parameter Not applicable

10

Dimension o f input/parameter Single number / vector / matrix

Node name Reshape
Data type supported Numerical (real / complex)
Direct feedthrough Yes
Sample time Inherited
Expansion of input/parameter Not applicable
Dimension of input/parameter Single number / vector / matrix

Node name Selector
Data type supported Numerical (real / complex)
Direct feedthrough Yes
Sample time Inherited
Expansion o f input/parameter Not applicable
Dimension o f input/parameter Single number / vector / matrix

Node name Signal Specification
Data type supported Numerical (real / complex)
Direct feedthrough Yes
Sample time Continuous
Expansion o f input/parameter Not applicable
Dimension of input/parameter Single number / vector / matrix

A.7 Sink Node Set

Node name Display
Data type supported Numerical (real / complex) / boolean
Direct feedthrough Not applicable
Sample time Inherited
Expansion of input Not applicable
Dimension o f input Single number / vector / matrix

Node name Time vs Input
Data type supported Numerical (real only)
Direct feedthrough Not applicable
Sample time Inherited
Expansion of input Not applicable
Dimension o f input Single number / vector / matrix

Node name Terminator
Data type supported Numerical (real / complex) / boolean
Direct feedthrough Not applicable
Sample time Inherited
Expansion o f input Not applicable
Dimension o f input Single number / vector / matrix

11

Node name To File
Data type supported Numerical (real / complex) / boolean
Direct feedthrough Not applicable
Sample time Inherited
Expansion of input Not applicable
Dimension of input Single number / vector / matrix

Node name XY Graph
Data type supported Numerical (real only)
Direct feedthrough Not applicable
Sample time Inherited
Expansion o f input Not applicable
Dimension o f input Single number / vector / matrix

Node name To Data File
Data type supported Numerical (real / complex) / boolean
Direct feedthrough Not applicable
Sample time Inherited
Expansion o f input Not applicable
Dimension o f input Single number / vector / matrix

A.8 Source Node Set

Node name Bool
Data type supported Boolean
Direct feedthrough Not applicable
Sample time Continuous (step size dependent)
Expansion o f parameter Not applicable
Dimension o f parameter Single number / vector / matrix

Node name Chirp Signal
Data type supported Numerical (real only)
Direct feedthrough Not applicable
Sample time Continuous
Expansion o f parameter Supported
Dimension of parameter Single number / vector / matrix

Node name Clock
Data type supported Not applicable
Direct feedthrough Not applicable
Sample time Continuous (step size dependent)
Expansion of parameter Not applicable
Dimension o f parameter Not applicable

12

Node name Constant
Data type supported Numerical (real / complex)
Direct feedthrough Not applicable
Sample time Continuous (step size dependent)
Expansion o f parameter Not applicable
Dimension o f parameter Single number / vector / matrix

Node name Digital Clock
Data type supported Not applicable
Direct feedthrough Not applicable
Sample time Discrete
Expansion of parameter Not applicable
Dimension of parameter Not applicable

Node name Discrete Pulse Generator
Data type supported Numerical (real only)
Direct feedthrough Not applicable
Sample time Discrete
Expansion o f parameter Supported
Dimension o f parameter Single number / vector / matrix

Node name Ground
Data type supported Not applicable
Direct feedthrough Not applicable
Sample time Continuous (step size dependent)
Expansion o f parameter Not applicable
Dimension o f parameter Not applicable

Node name Pulse Generator
Data type supported Numerical (real only)
Direct feedthrough Not applicable
Sample time Continuous
Expansion of parameter Supported
Dimension of parameter Single number / vector / matrix

Node name Ramp
Data type supported Numerical (real only)
Direct feedthrough Not applicable
Sample time Continuous
Expansion o f parameter Supported
Dimension o f parameter Single number / vector / matrix

Node name Random Number Generator
Data type supported Numerical (real only)
Direct feedthrough Not applicable

1 3

Sample time Discrete
Expansion of parameter Supported
Dimension of parameter Single number / vector / matrix

Node name Repeating Sequence
Data type supported boolean
Direct feedthrough Not applicable
Sample time Continuous
Expansion of parameter Not applicable
Dimension of parameter Vector

Node name Signal Generator
Data type supported Numerical (real only)
Direct feedthrough Not applicable
Sample time Continuous
Expansion of parameter Supported
Dimension of parameter Single number / vector / matrix

Node name Sine Wave
Data type supported Numerical (real only)
Direct feedthrough Not applicable
Sample time Continuous
Expansion of parameter Supported
Dimension of parameter Single number / vector / matrix

Node name Step
Data type supported Numerical (real only)
Direct feedthrough Not applicable
Sample time Discrete
Expansion o f parameter Not applicable
Dimension of parameter Single number / vector / matrix

Node name Uniform Random Number
Data type supported Numerical (real only)
Direct feedthrough Not applicable
Sample time Discrete
Expansion o f parameter Supported
Dimension of parameter Single number / vector / matrix

Node name From Data File
Data type supported Retrieved from file
Direct feedthrough Not applicable
Sample time Retrieved from file
Expansion of parameter Not applicable
Dimension o f parameter Not applicable

14

Appendix B

Runge-Kutta Coefficients

D ormand-Prince Pair

a ß
0

1/5 1/5
3/1 (
4/5
8/9
1
1

3/40
44/45

19372/6561
9017/3168

35/384

9/40
-56/15

-25360/2187
32/9

64448/6561 -212/729
-355/33 46732/5247 49/176 -5103/18656

0 500/1113 125/192 -2187/6784 11/84

w 35/384 0 500/1113 125/192 -2187/6784 11/84 0
5179/57600 0 7571/16695 393/640 -92097/339200 187/2100 1/40

Fourth O rder Runge-Kutta

Bogacki-Shampine

H eun’s Method

a B
0
1 1
w 1/2 1/2

1

Appendix C

Bus Suspension System (State-Space Controller)

A bus suspension model can be simplified (considering just one wheel o f the bus) to a one­

dimensional spring-damper system. A diagram of this system is shown below,

fig 6.19: Bus suspension system (1/4 bus)

where,

• m 1 is body mass

• m2 is suspension mass

• k l is spring constant o f suspension system

• k2 is spring constant o f wheel and tire

• b l is damping constant of the suspension system

• b2 is the damping constant of the wheel and tire

• w is the disturbance from the road

• u is the control force.

When the bus is experiencing any road disturbance, the distance (xl - w) will be very

difficult to measure, and the deformation of the tire (x2 - w) is negligible. So the distance (xl

- x2) will be output from the model.

State Space Equation

From the above figure and Newton’s law, dynamic equations for this model are as follows,

1

d 2x2 _ ,dxx dx2. . , N î , /
m2 — r = hx(— ----“ -) + M * i - ^ 2) + ^2(^ -------- -y-) + k2{ w - x l) - uat at at at at

Dividing the first and second equation by m j and m2 respectively,

d 2xx u bx .dxx dx7. L .
— r =— (- T - - r>~— (* .-■*»)dt mx mi dt dt mx

dt m2 dt dt m2 m2 dt dt m2 m2

T o be a v a l id state-space rep resen ta tio n , the d e r iv a t iv e o f a l l states m u st be in te rm s o f

inp u ts and the states th em se lve s . F o r th is syste m f ir s t th ree states w i l l be x i , d x j/d t,

and y i = x i - x 2. S u b stitu tin g y i in the above eq uatio ns ,

d 2x j _ u bx dyx kx
dt2 mx ml dt mx

^ = ̂ ^ + J ^ y + ^ id w _ ^) + k2_iw_ x2) _ u _
dt m2 dt m2 m2 dt dt m2 m2

S u b tra c tin g the seco nd equatio n fro m the f ir s t equatio n to get an e xp re ss io n fo r

d2y/d t2,

d 2xr, d 2x2 _ d 2y x
~dt2 dt2~~~d?

, . 1 1 . ¿ y , . , 1 1 . b2 dw dx2 k2 . , 1 1
-b (------------) ^ r ~ k ■(— + — M — L (— - - 7 7) — 2- (w - x2) + (— + —)umx m2 dt mx m2 m2 dt dt m2 mx m2

In teg ra te th is equatio n to a vo id the second o rd er d e r iv a t iv e ,

This equation contains no derivative of the input and dyi/dt is expressed in terms of

states and inputs only, except for the integral. Let the integral is the fourth state of the

system and,

y 2 = f1 (-*, (— + —)y> - —(w - *2) + (—+—)u)dt
J mx m2 m2 mx m2

Then state equation for y2 is,

dy2 1 1 k2 1 1
— + — X y ,--------- (w - x , + > ',) + (— + —)u

at mx m2 m2 mx m2

And final state equations for yi and dxi/dt are

dy> _ 1 , 1 , 1 bi= -b { (— + —)yx (w -x i +yx) + y 2
at ml m2 m2

- 77-=—* *> +(— (— + — + —) — -) y t — '-y2 + - + - LJ- wat mim2 mx m] m2 m2 mi mi m] mxm2

The matrix form of the above equations is,

= [o 0 1 0
dxx
~dt
y i

. y 2

[° °

Full-State Feedback Controller

Assuming that all the states can be measured, the schematic of the system should be as

follows,

The characteristic polynomial for this closed-loop system is the determinant o f

(si - (A - B[1,0]’K)). To eliminate the steady-state error, integral control is used here. After

adding an extra state \ (xi - x2) = S yi, the state-space matrices A, B, C and D change to be the

following:

A =

0 1 0
-b ,b2

0
bt . bt b\

I L - L (- L + — +
mxm2 m] mi m2

b2
0 - A + A .

m] m2
L

m2
k j2

0 1
m2

0 0 1

m
A .
m,

tri­

ti

mx

1

0

0

4

5 =

0 0
1 b ^ b 2

m x m \ m 2

0 ~ b 2

1 1
m 2

- k 2

m l m 2 m 2

0 0

C = [0 0 1 0 0] D = [0 0]

Applying trial-and-error method, the matrix for the controller K is found as follows,

a: = [o 2300000 500000000 0 8000000]

5

Appendix D

SimDynamic Installation Instructions

This appendix provides all the instructions to install and run SimDynamic. And also presents a

brief manual to handle the built in models that come along with the package. It should be kept

in mind that examples are only available to non Web-based version.

D l. W eb-based V ersion

Requirements

User will need a java compatible Web browser irrespective of the operating system (Windows

/Unix/Solaries) or hardware. Most browsers (like Internet Explorer or Netscape) now come up

with built-in JVM, so user does not need to install anything.

Running SimDynamic

Type the address http://student.dcu.ie/~mahbubk2/simdynamic.html in the address bar of the

browser. Browser will load the SimDynamic homepage. Click the start button in the middle of

the page. SimDynamic will start, now use the help file if required.

D 2. N on W eb-based V ersion

Although SimDynamic can be installed on several operating systems (like Windows, Unix or

Solaries), this section provides instructions only for Windows.

Requirements

Pentium III 650 MHz (or higher)

128 MB RAM (or higher)

Java™ 2 Runtime Environment Installed. Can be downloaded from

http ://j ava. sun. com/products/j dk/1.2/j a va2. html

Java 3D™ API installed. Can be downloaded from

http://java.sun.com/products/java-media/3D/

Installation

SimDynamic installer comes with a single self-extracting exe file sd_installer.exe. Run this

file (double click in windows explorer). This will install SimDynamic in C:\SimDynamic

folder. You can change the drive (such as D: or E: etc) but do not change the default folder

1

http://student.dcu.ie/~mahbubk2/simdynamic.html
http://java.sun.com/products/java-media/3D/

name, and do not put the default folder inside other folder like programme files. After

installation SimDynamic icon will appear on the desktop.

Running SimDynamic

Double click on the icon on the desktop. It will open command prompt window (a small black

window, do not close it) and then start SimDynamic. Now use the online help file to proceed.

D3. Handling Examples (Only for non Web-based Version)

Pendulum Model

1. Select File -> New from main window (figure Dl). Model Sheet window will appear.

T' Dynamic Simulation System on The Web

Edit View Help

- I n i x|

Open

Exit
SimDynamic : Continuous Node Set

Continuous

Non Linear

Discrete

Miscellaneous

Tables

Sinks

+ ---

+ X
Math & Logic

Sources

df(t)
dt
Derivative

S+2
TransferFunction

\ f m
Integrator

ifXXA
Transport Delay

Memory

|oo.A-

Variable Transport Delay

x= Ax+Bu
y = Cx+Du

State Space

S+ 1
(S+2)(S+3)
Zero Pole

Fig Dl

2. Select File -> Open from model sheet window (figure D2), file open dialog box will

appear.

SD SimDynamic : Untitled

File I Edit View Simulation Help

^ jn jx)

New

Close

Save

Save as

Print

Exit

Ready I imulation Time : 0.0

Fig D2

3. Select pendulum.sdm and click OK (or double click on pendulum.sdm). Pendulum

model will be loaded (figure D3). Maximize window as needed.

. ! □ ! x |.'E* SimDynamic : pendulum.sdm

File Edit View Simulation Help

Ready mulation Time : 0.0

Fig D3

3

4. To change Simulation parameters select Simulation -> Parameter from model sheet

window (figure D4). Current settings are RK DP integrator, step size 0.2 and

simulation time from 0 to 10 seconds. Enter new parameters and then click OK.

Fig D4

5. To change any model parameter (torque/Mass/Length) double click on appropriate

node. Parameter dialog box will appear, set new value and click OK.

6. To run the simulation, select Simulation -> Run. Simulation will continue. When

Ready appears on the status bar simulation is finshed.

7. To view result, double click on Time vs Input node.

8. To start 3D animation, select Simualtion -> 3D animation. 3D Model editor will

open. To load the pendulum 3D model, click on load in the model editor, a dialog box

will appear, enter pendu.s3d and click on load on the dialog box. Pendulum 3D model

will be loaded (figure D5).

4

D SimDynamlie : 3D Model Editor

Box |Box (0.0,0.0,0.0X0.04,0.04.0 .04) |

Cone

Cylinder

Sphere

Cylinder (0.0,-0.5,0.0)(0.02,1.0)

Sphere (0.0,0.0,0 0) 0.2

Param

Edit

Remove

Save

Load

Run

Fig D5

9. Before starting 3D animation save the simulation result in data files. To do so double

click on xcor node, a dialog box will appear, in the file name field type xcor and click

on save. Similarly double click on ycor and enter ycor and click on save.

10. Now click on Run button (at the bottom of 3D editor). 3D animation will start.

11. Whenever you change any parameter (like torque/Mass/Length) in the simulation

model, you have to save the data files xcor and ycor (as in step 9).

12. If you change the length of the pendulum, then the cylinder length of the 3D model

should also be changed before 3D animation. To do so, select the cylinder and click

on Edit button. Cylinder parameter dialog box will appear (figure D6). On the

parameter dialog box set the new length in the height field. Set the Center Y field to

minus half of the length, (i.e. if the length is 1.0 then set Center Y to -0.5). DO not

change any other value on the Cylinder parameter dialog box. Click OK

[Edit cylinder

Radius fo!o2j Height |l .0

Red |01 Green |o~2 Blue |5T
File name fortopx |mxcor.dat

File name fortopy jmycor.dat

File name for top z |None

File name for bottom x |None

File name for bottom y ¡None

File name for bottom z |None

Save Cancel

Fig D6

13. Now Click on Run button on the 3D model Editor. 3D animation will start with new

length.

5

14. To close pendulum model close the model sheet window by clicking the cross at the

top right of the window or by selecting File -> Exit.

Bouncing Ball Model

1. Follow steps 1 - 3 of the previous example to open the file bounce.sdm

2. To change simulation parameter follow step 4. This model doesn’t need an integrator.

Default simulation time 0 to 20 seconds and step length is 0.005. Keep in mind that a

larger step length for this example will produce inaccurate result. If you change step

length then set the same value in the node labelled as t in the model.

3. To change any model parameter, like initial velocity (node labelled as vO), initial

height (node labelled as yO), elasticity (node labelled as elasticity), click on the

appropriate node. Set new parameter value and click OK.

4. Follow steps 6 and 7 from previous example to run and view result.

5. To start 3D animation, select Simualtion -> 3D animation. 3D Model editor will

open. To load the bouncing ball 3D model, click on load in the model editor, a dialog

box will appear, enter bounce.s3d and click on load on the dialog box. Bouncing ball

3D model will be loaded

6. Before starting 3D animation save the simulation result in data files. To do so double

click on the node labelled as To Dat File, a dialog box will appear, in the file name

field type bounce and click on save.

7. Now click on Run button (at the bottom of 3D editor). 3D animation will start.

8. Whenever you change any parameter (like initial velocity/initial height/elasticity) in

the simulation model, you have to save the data file bounce as in step 6.

9. To close bouncing ball model close the model sheet window by clicking the cross at

the top right of the window or by selecting File -> Exit.

6

