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Discrete Language Models for Video Retrieval
Kieran Me Donald 

Abstract

Finding relevant video content is important for producers o f television news, 
documentanes and commercials As digital video collections become more w idely 
available, content-based video retrieval tools w ill like ly  grow in importance for an 
even wider group o f users In this thesis we investigate language modelling 
approaches, that have been the focus o f recent attention w ith in  the text information 
retrieval community, for the video search task Language models are smoothed 
discrete generative probability distributions generally o f text and provide a neat 
information retrieval formalism that we believe is equally applicable to traditional 
visual features as to text We propose to model colour, edge and texture histogram- 
based features directly w ith  discrete language models and this approach is compatible 
w ith further traditional visual feature representations We provide a comprehensive 
and robust empirical study o f smoothing methods, hierarchical semantic and physical 
structures, and fusion methods for this language modelling approach to video 
retrieval The advantage o f our approach is that it provides a consistent, effective and 
relatively efficient model for video retrieval
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C H A PTE R  III

INTRO DUC TIO N

Finding relevant video content is im portant for produc­

ers of television news, documentaries and commercials 

As digital video collections become more widely avail­

able, content-based video retrieval tools will likely grow 

m importance for an even wider group of users In this 

thesis we investigate language modelling approaches, 
that have been the focus of recent attention within 

the text information retrieval community, for the video 

search task Language models are smoothed discrete 

generative probability distributions generally of text 

and provide a neat information retrieval formalism that 

we believe is equally applicable to traditional visual fea­

tures as to text We propose to model colour, edge and 
texture histogram-based features directly with discrete 

language models and this approach is compatible with 
further traditional visual feature representations We 

provide a comprehensive and robust empirical study of 

smoothing methods, hierarchical semantic and physical 

structures, and fusion methods for this language mod­
elling approach to video retrieval The advantage of 

our approach is that it provides a consistent, effective 

and relatively efficient model for video retrieval

1 2 Discrete Language 
Modelling approach to 
Video Retrieval

1 3 Research Objectives

1 4 Thesis Organisation

1 1 Video Retrieval

1.1 Video Retrieval

Video search tools are im portant m professional video archives since it is far more 
cost-efficient to re-use content than to reshoot, indeed when dealing with content of a 

historical nature it may be impossible to reshoot Producers of news, documentaries 

and commercials therefore have a direct need for effective video content search tools 

The wider availability of the internet has lead to a change m how people access and 

find predominantly text-based information and a similar change in peoples’ interactions 

with video may occur when online access to video collections becomes more widespread 
within society
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Current operational video retrieval systems depend heavily on manual indexing in 

order to provide effective content organisation and search indexes to enable their users 

to locate video content The manual indexing process is costly, time-consuming and 

depends heavily on consistently assigning keywords to video content In practice keyword 

ontologies change over time and inconsistencies develop making retrieval by end-users 
even more difficult than initially learning the indexing language Exhaustive manual 

indexing of a video’s topical and visual content is not possible and therefore archivists 

selectively index the most im portant characteristics of the content Problems occur with 

this approach as what is im portant for the end-user may not have seemed significant 

at indexing time Further difficulties arise when the searcher is interested in visual 

characteristics since these are often hard to express and index m terms of keywords 

A key advantage of manual indexing is that descriptions of contextual information and 

visual content is at a higher semantic level than is possible with current automatic 

content-based video retrieval systems

Content-based video retrieval systems provide an alternative to video search systems 

tha t are based on manual indexes Content-based video retrieval systems automatically 
index video material by segmenting it into clips and extracting features such as text, 

colour, texture, motion from each clip to support search These systems provide access 
to the content via full text search, visual query-by-example and in some cases sketching 

tools tha t may support the specification of colour, texture and motion attributes of 

sought after visual content These content-based search tools are often integrated with 

video browsing and playback to support efficient navigation and previewing of content 

withm the video retrieval system Manual and fully automatic video indexing systems 

need not be separated and can be integrated to produce a semi-automatic indexing 

system that combines the best of both techniques to video retrieval users

In the early 90s research on content-based image retrieval began in earnest to fa­

cilitate the search of image collections by their content without the need for costly 

manual annotation (Fhckner et a l , 1995, Bach et a l , 1996, Pentland et a l , 1996, Smith 
and Chang, 1996b, Rui, Huang and Chang, 1997) Soon afterwards research began on 
content-based video retrieval systems with some of the early image retrieval systems 
being adapted and other new video retrieval systems being developed (Ortega et al , 
1997, Chang et al , 1997, Wactlar, 2000) The early video retrieval research lacked the 
rigour of controlled retrieval experiments on common test collections and search tasks 

that is the backbone of much research withm the text information retrieval community 

Early research on the visual retrieval methods was often performed on collections of im­

ages tha t fit into homogenous categories and is therefore unrepresentative of the video 
retrieval problem

In the last couple of years there has been a concerted effort m the video retrieval re­

search community through the TRECVid initiative to perform controlled video retrieval
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experiments on reasonable sized common video collections and search tasks (Smeaton 

et a l , 2002, Smeaton and Over, 2003, Smeaton et a l , 2004b, Kraaij et a l , 2004, Smeaton 

et a l , 2004a) The TRECVid search topics consist of general and specific visually ori­
ented requests for people, things, locations and events and seek to replicate the type of 

requests that are common in professional video archives Each search topic is a multime­

dia description of the video need containing a text description and multiple image and 

video examples TRECVid provides a firmer basis on which to investigate content-based 

video retrieval than was previously possible m controlled and repeatable experimental 

conditions

1.2 D iscrete Language Modelling approach to Video R e­
trieval

Language models are discrete generative probability distributions of text that were orig­
inally developed in the speech recognition community and have been the focus of recent 

attention withm the text information retrieval community The standard language mod­
elling approach to information retrieval models each document using a discrete genera­

tive probability distribution and ranks documents by their language model’s probability 

of generating the query text (Ponte and Croft, 1998) If documents are represented 

by their empirical probability distribution (i e based on relative frequency of terms) a 

problem occurs for all documents missing one or more of the query terms as they will 

have the same probability of zero of generating the query, which is undesirable withm 

an information retrieval system as this produces a poor ranking of documents Many 

different smoothing techniques have been developed for speech recognition and later for 

text information retrieval to handle this so-called zero frequency problem by adjusting 
or smoothing m some way the empirical distribution

We believe th a t the language modelling approach to information retrieval is equally 
applicable to traditional visual features as to text We propose to model visual features, 
namely colour, edge and texture histograms, directly with language models (discrete 
generative probability distributions) This approach is not only compatible with visual 
histogram representations but also with further standard visual feature representations 
such as co-occurrence matrices and correlograms It can also be applied to some of 
the standard MPEG7 Multimedia Content Description Interface features Because low- 
level visual features are semantically so different to text, we believe it is necessary to 
investigate the different smoothing techniques m this new context

Our approach differs from current video retrieval approaches, which typically use geo­

metric distances such as Euclidean distance or M anhattan distance to perform matching 

on these types of visual features (Hauptmann et a l , 2004, Pickering et a l , 2003, Rauti- 
ainen, Penttila, Vorobiev, Noponen, Vayrynen, Hosio, Matinmikko, Makela, Peltola,
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Ojala and Seppanen, 2003, Snoek et a l , 2005) It differs from the current generative 

probabilistic approach to video retrieval (Westerveld, de Vries and van Ballegooij, 2003), 

which models a single visual feature, multi-spectral DCT coefficients, using a continuous 

probability Gaussian Mixtures Model (GMM) that is estimated with the iterative EM 

algorithm (Dempster et a l , 1977) and smoothed by the feature’s marginalised distribu­

tion over the collection Our discrete language modelling approach for video retrieval 

is quicker to index and retrieve than this continuous language model approach but can­

not handle high-dimensional features as efficiently We refer to our model as a discrete 

language model aware of the inherent redundancy m such a phrase but to distinguish it 

from the GMM language modelling approach to video retrieval

The advantage of our approach is that it provides a consistent, effective and relatively 

efficient model for video retrieval This approach is consistent as we transform the visual 

features colour, edge and texture into a language of terms and model them m much the 

same way by using language models as for our text feature This approach is efficient as 
both in text and visual retrieval the time complexity of the language modelling approach 

is not greater than traditional retrieval models m both mediums We also show in this 
thesis that this approach is as effective as others for the video retrieval task

We evaluate our approach on three video retrieval test collections, TRECVid 2002, 

TRECVid 2003 and the recent TRECVid 2004 collections Through these experiments 
we provide a comprehensive and robust empirical study of smoothing methods, hierar­

chical semantic and physical structures, and fusion methods for this discrete language 

modelling approach to video retrieval

1.3 Research Objectives

The main objective of our research is to thoroughly investigate language modelling 
approaches for text and visual-based video retrieval Due to the multimodal nature of 
video retrieval, we also take on a subsidiary research objective of investigating fusion 
models for combining the language modelling retrieval results of different features

We provide a robust empirical evaluation of these retrieval methods by testing on 
multiple video retrieval test collections to increase the number of topics, by using un­
biased, controlled and repeatable experimental setups, by comparing against multiple 
standard retrieval models to provide a credible non-language modelling baseline and by 

using statistical significance tests to discern credible differences m performance from 

differences due to chance It is only recently with the availability of the TRECVid 
video search test collections that such robust empirical studies of video retrieval can be 
attem pted
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For text-based video shot retrieval we are interested m answering the following re­

search questions

• How effective is the language modelling approach compared to traditional retrieval 

models such as TF-IDF and BM25?

• Do semantic structures such as story units dramatically improve the performance 

of video shot retrieval7

• Do alternative smoothing methods improve on the text language models that use 

Jelinek-Mercer interpolation smoothing7

For visual-based video shot retrieval we are interested m the following research ques­
tions

• How effective is the language modelling approach compared to standard visual 

matching models such as M anhattan distance, Euclidean distance and Jensen- 

Shannon distance7

• W hat is the effect of different smoothing techniques on these low-level features7 

Are discounting methods as good as interpolation smoothing methods for these 

low-semantic features7 Is one type of smoothing method more appropriate for 
some visual features or is there overall a single best smoothing model for all low- 

level features7

•  W hat is the effectiveness of different visual features (colour, edge and texture) 

for video shot retrieval7 Are regional features always better than global features7 

W hat discrete feature representation (number of dimensions and number of quan­
tisation levels) is best for the different visual feature languages7

In our investigation of standard fusion methods for the discrete language modelling 
approach to video retrieval, we are interested in learning

• How to effectively combine language models of multiple visual features, multiple 
visual examples and multimodal features for video retrieval7

Our research is significant because it is the first to try  to thoroughly investigate and 

compare different types of discrete language retrieval models on different visual features 

for the video search task In answering our research questions we are forwarding the 

knowledge m the research field on how best to match and fuse visual features for the 

video retrieval task We establish a baseline performance for many types of retrieval 
models using different features that other researchers may find useful when performing
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their own studies We provide a viable discrete language modelling approach to video 

retrieval that achieves state-of-the-art performance as measured with the standard video 

retrieval test sets Our research may be further extended by other researchers such as m 

terms of better fusion strategies, relevance feedback and the transfer of other language 

modelling information retrieval techniques to the video retrieval task

1.4 Thesis Organisation

This thesis is organised into four mam parts introduction, research proposal, evaluation 

and summary

Introduction

Chapter 1 In chapter 1 we provide a brief introduction to our research problem and 

outline the contents of this thesis

Chapter 2 In chapter 2 we introduce the language modelling approach to text infor­

mation retrieval We present the overall structure of the language modelling approach 

and discuss language modelling approaches m terms of their probabilistic models, rank­
ing models and smoothing techniques We also describe competing traditional retrieval 

models such as vector space models and probabilistic models

Chapter 3 In chapter 3 we describe the state-of-the-art m video retrieval, which in­

volves matching based on text, visual and audio features and fusing these results We 

describe colour, texture, shape, motion and other spatio-temporal visual features that 
are popular m current video retrieval systems or otherwise promoted by the MPEG7 
Multimedia Content Description Interface standard We also describe the matching 
models that are typically used to compare visual features We establish that many of 
the effective visual features, though not all, can be interpreted as languages of discrete 
symbols and therefore are amenable to retrieval using the discrete language modelling 
approach to information retrieval We describe existing comparative studies of video re­
trieval models and highlight their limitations in applicability to the video retrieval prob­

lem We finally present the TRECVid video retrieval benchmarking initiative, which 

provides the infrastructure for our empirical study of discrete language modelling ap­

proaches to the video retrieval problem

Research Proposal



Chapter 4 In chapter 4 we propose our video retrieval approach tha t uses discrete 

language models for visual retrieval and which is applicable to many of the effective 

visual features described in the previous chapter We propose three visual languages in 

our study representing the colour, edge and texture characteristics of video shots, which 

we use m much the same way as if they were text documents withm the text-based 

language modelling information retrieval approach Due to the low-level nature of vi­

sual features, we propose the investigation of different statistical estimation smoothing 

techniques for these visual languages We outline extensions to the existing hierarchical 

language modelling approach for text-based video retrieval tha t include alternative se­

mantic structures and alternative hierarchical smoothing techniques We also propose 

to evaluate standard score and rank-based fusion methods for combining these language 

models for video retrieval tasks

Evaluation In chapters 5, 6 and 7 we evaluate m sequence text-based language mod­

elling approaches to video shot retrieval, our visual-based language modelling approach 

to video shot retrieval and the fusion of text and visual approaches

Chapter 5 In chapter 5 we evaluate the family of language modelling approaches 

for video shot retrieval using the TRECVid evaluation framework We compare the 

language modelling approaches with a set of representative text retrieval models We 

also compare different physical and semantic hierarchical structures and our alternative 
hierarchical smoothing techniques

Chapter 6 In chapter 6 we evaluate language models for different compact global 
representations of our colour, edge and texture features for video retrieval After es­
tablishing the relative performance of discrete language models and standard visual 

matching models on these visual features, we experiment with larger visual languages 
for gnd-based regional variations of these features that take into account spatial location 
information We also evaluate the different physical and semantic hierarchical structures 
that we applied to the text feature in the previous chapter

Chapter 7 In chapter 7 we investigate different standard score and rank-based fusion 

methods for combining the text and visual retrieval language models We compare these 

efficient fusion strategies for combining visual features, combining the results of multiple 

visual examples and for combining multimodal features

Conclusions and Summary
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Chapter 8 Finally, in chapter 8 we summarise our results, suggest extensions to 

approach and describe future work



C H A PT ER  II

INFO RM ATIO N RETRIEVAL USING  LANG UAG E  

MODELS

Language models are generative probability distributions 
for text sequences that use intricate smoothing methods to 
improve the quality of their estimates from sparse text 
samples At its most basic, the language modelling 
approach to information retrieval (LMIR) represents each 
document with its own language model and ranks 
documents based on their probability of generating the 
query This query-hkelihood ranking is a simple and 
effective approach to information retrieval but lacks 
support for relevance feedback An alternative ranking 
based on the relative entropy between the query’s language 
model and each document’s language model provides a 
better mechanism for incorporating relevance feedback, but 
does not represent as formal an inclusion of relevance 
feedback as m the classical probabilistic IR models The 
mam contribution of the LMIR approach is the intricate 
statistical estimation techniques and the simple generative 
framework, which can as easily be applied to information 
retrieval m other media such as image, video and audio as 
it is applied to text retrieval

2.1 Introduction

A language model is a generative probability distribution for text that models the prob­
ability of a sequence of words and can also directly generate sample text, though the 
generated text would be quite difficult to read and comprehend Language models were 
originally developed for the speech recognition task where they can improve the recogni­
tion rate and also reduce the search space (Jelmek, 1998) and have similarly been used 

for Optical Character Recognition, Machine Translation and other statistical work on 
text

Ponte and Croft (1998) proposed the language modelling approach to information 
retrieval (LMIR) where each document is represented by a  language model and the 

documents are ranked by the query-hkelihood -  the probability tha t the document’s

2 1 Introduction

2 2 A Simple Language 
Model for IR

2 3 Probability Models

2 4 Statistical Estimation

2 5 Ranking Documents

2 6 Relevance Feedback

2 7 Non-Language Modelling 
Approaches to IR

2 8 Summary
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language model generates the query The language modelling approach to IR represents a 

new approach that is distinct from the classical IR models such as the Boolean model, the 

vector space model (Salton and Buckley, 1988) and the probabilistic models (Robertson 

and Sparck Jones, 1976, Crestani et a l , 1998) LMIR primarily concerns text retrieval 

but can also be applied to multimedia retrieval since language models can represent 

image, video and audio features We will expand on this idea m later chapters

In LMIR the language model’s parameters are first estimated from sample text 

such as a document’s text and afterwards the language model is used for estimating 

probabilities of text samples such as a query’s text The estimation of language model 

parameters requires careful attention especially for low frequency and missing words m 

the training text -  otherwise, the probabilities of text sequences that contain these words 

will be given unreliable probabilities For example, a naive approach would give text 

sequences that contain words tha t were absent from the training text a zero probability 

To address these problems, the language modelling community has researched a wide 

range of methods for improving language model estimation th a t are collectively referred 
to as smoothing methods

In contrast to other applications of language models, information retrieval generally 

uses lower order n-grams such as unigrams where the probability of a word occurrence is 

independent of previous words in the text sequence The language modelling approach to 

information retrieval generally represents each document with its own language model, 

which also differs from traditional uses of language models where the tendency is to 

concentrate on a general model of the use of language The importance of smoothing 

m language models has also not diminished with their adoption to information retrieval 

and is actually essential m order to achieve effective retrieval due to the relatively small 
sample of text each document possesses

The rest of this chapter is organised as follows we first present a simple language 

modelling approach for information retrieval (Section 2 2), followed by a discussion 
of different probability models (Section 2 3), smoothing methods (Section 2 4), rank­
ing methods (Section 2 5) and relevance feedback methods (Section 2 6) for language 
modelling approaches to information retrieval We compare LMIR with traditional ap­
proaches to IR such as the Boolean model, vector space model and probabilistic models 
m Section 2 7 and end the chapter with a brief summary

2.2 A Simple Language Model fo r  IR

In this bection wc will present a simple unigram language model for information retrieval 
A language model is a probability distribution for text sequences, which for a text
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sequence, w\ wn, can be expressed as 

n
¥ ( w i  tun ) =  J J P ( tu t |w i w z- 1)

% (1)

=  P ( ^ i ) P ( w 2 | w i) 1P (w 3 | ^ 1, ^ 2)IP(w 4 |w i ^ 2 , ^ 3 )  P ( w n | ^ l  W n - 1),

by using the chain rule expansion of joint probability Language models differ in their 
approximation of this by making different independence assumptions and by using dif­

ferent estimation strategies for the individual word probabilities

The unigram language model makes the most strict independence assumption and 

assumes that the probability of a word m a sequence does not depend on any of the 

previous words The unigram multinomial language model for the probability of a text 

sequence, which loosely approximates Equation (1), is defined as

n

P ( w i  Wn) =  n * ™ .  ) =  P ( w i ) P ( w 2 ) P ( w 3 ) P ( w 4 )  P (t t> n )  ( 2 )

I

The umgram multinomial language model was first proposed for language modelling- 

based information retrieval m (Hiemstra, 1998) and is popular m other LMIR approaches 

(Song and Croft, 1999, Berger and Lafferty, 1999a, Lafferty and Zhai, 2001) but is 

less useful than bigram and trigram approximations of Equation (1) for the traditional 
applications of language models such as speech recognition

The query-hkelihood for the multinomial umgram model is the probability of drawing 

m  sequence the query terms from the document’s multinomial umgram distribution, 
which is defined as

1*1
P(q|Md) = JJP(ft|Md), (3)

2—0
where q is the sequence of query terms and Md is the document’s language model The 

parameters of the document’s umgram language model are simply all the probabilities 

of the individual terms and are estimated from the document text A direct estimate 
of the probability of a term using the maximum likelihood estimate (relative frequency 
of the term m the document) is ineffective since it gives a probability of zero to all 
absent terms Zero probability is a very severe estimate for any term as it means the 
language model can never generate that term or any sequence of words containing it 
This problem is exacerbated as a document is a very small and sparse text sample 

compared to the complete vocabulary If we use language models estimated m this way 
in a query-hkelihood retrieval system, then all documents that are missing any or all 

query terms will be given the same probability of zero for generating the query

The standard methods for addressing this problem in language modelling are col­
lectively called smoothing methods (see Section 2 4), which redistribute some of the 

probability that is normally given to terms observed in the document to missing and
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low frequency terms The smoothing methods used m LMIR often involve combining the 

term ’s maximum likelihood estimate with a background estimate based on the whole 

collection, as originally proposed m (Ponte and Croft, 1998) A straightforward and 

popular method for combining two probability estimators is a finite mixture model, a 
linear interpolation with weights that sum to one, which was first used for LMIR m 

(Hiemstra, 1998) The linear interpolated probability of a umgram term t m document 
d using the local document term probability and the collection probability, which is 

often referred to as Jelmek-Mercer smoothing, is defined as

WjM{t\Md) =  (1 -  A)Pml(^M) +  A P m lM , (4)

where Pm l (^I^) *s calculated as

P m l (ì M) =  (5)

and the background probability of a term m the collection Pm l OO 1S calculated by 
relative collection frequency, that is

P m l (ì ) =  (6)cs

In these equations t f (d , t )  is the frequency of the term in the document, dl^ is the 

document length, cf(t )  is the number of times term t is present m the collection and cs 

is the number of terms in the collection An alternative is to calculate the background 

probability using document frequency (Hiemstra, 1998) but this reduces the amount of 
information used in the background estimate

The basic umgram language model for information retrieval that combines the local 

document’s estimate with the collection term estimate m a finite mixture model is now 
completely defined The only free variable in this retrieval model is A, which controls 
the amount of smoothing with the background collection probabilities This can be set 
empirically by testing on a sample collection

The query-likelihood retrieval status value (RSV) for each document, which is used 
to rank documents, can be directly calculated by combining equations (4), (5), and (6), 
as

R SV dtg =  P(9 |d) =  n  +  (1 -  , (7)

which is no more expensive to evaluate than the TF-IDF model since the query-likelihood 

RSV can be expressed m term of the unique query terms tha t are present m the docu­
ment
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It is straightforward to extend these formulae for bigram and higher order n-gram 

models and we could smooth these higher order models by interpolating them with 

the lower-order n-gram models However, while it is common to use the bigram and 

tngram  language models m speech recognition, their use in LMIR is problematic Un­

like speech recognition, m LMIR a language model is estimated for each document 

and the document’s size would particularly not support the accurate estimation of the 

trigram-based language models Also, the use of higher order n-grams would negatively 

impact the query-likelihood estimation as queries are phrased differently to documents 

and have a different composition style Bigrams are used m LMIR to achieve some 

level of phrase searching (Miller et a l , 1999a, Song and Croft, 1999) but in general cur­

rent language modelling approaches to information retrieval predominantly use umgram 

language models

2.3 Probability Models

The original language modelling approach to information retrieval represents queries as 

being sampled from a Multiple-Bernoulh distribution tha t is estimated for each docu­

ment (Ponte and Croft, 1998) Queries are modelled as a set of umgram terms and the 

documents are ranked by query-likelihood, which for the Multiple-Bernoulh language 
model is defined as

P (q |M d) =  H  P (i|M d) x H 1 -  P (i|M d), (10)
tE q  q

where q is the set of umgram query terms, is the document’s language model, and 

t is any umgram term from the entire vocabulary The significance of this work is m 
placing information retrieval into a language modelling framework where documents are 

ranked by query-likelihood However, the Multiple-Bernoulh set-based representation 
of documents and queries complicates the estimation of the model’s parameters for a 
specific document and restricts the representation of the query to binary weighted terms

In contrast, m the current language modelling approaches to information retrieval a 
multinomial distribution is used to model documents and queries (Hiemstra, 1998, Song 
and Croft, 1999, Berger and Lafferty, 1999a, Lafferty and Zhai, 2001), which defines 
query-likelihood as

kl
P(q|Md) = JJp(it|M d) (ii)

i=l
where q is a sequence of query terms and Mj is the document model In this model 

queries and documents are modelled as a sequence of terms sampled individually from 

a multinomial distribution The benefit of this probability model is that queries can
have multiple occurrences of the same term and the language model’s parameters can

be more directly estimated from the document’s text than when using the Multiple- 
Bernoulh model
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Figure 1 Language modelling approach to information retrieval using query-hkelihood 
from a simple 2-state hidden Markov model of each document (Miller et a l , 1999a,b)

An equivalent probability model to the multinomial language model was introduced 

as an hidden Markov model (HMM) approach to information retrieval m (Miller et a l , 

1999a,b) Their proposed 2-state umgram HMM model that combines the document 

model with the general English model is essentially a multinomial umgram model with 

interpolated (Jelinek-Mercer) smoothing from an HMM perspective (see Figure 1)

2.4 Statistical Estim ation

The statistical estimation of the language model’s parameters from sample text is well 

studied m the statistical language modelling community The statistical estimation 

techniques used m language modelling are referred to as smoothing and are rooted in 

the firm foundations of the general field of statistical estimation and inference The 
earliest smoothing technique, Laplace’s Law (translated m Laplace (1995)), predates 
the statistical language models by over a century

The unsmoothed estimate is the maximum likelihood estimate The concept of 

maximum likelihood estimation (Fisher, 1922) of model parameters is the selection of 
the parameter values of a probability model so as to give maximum probability to the 
training sample The maximum likelihood estimate for an umgram w is its relative 
frequency m the sample text and is defined as

Pm l M  =  (12)

where N  is the number of umgrams m the sample text and C { ) is the number of 
occurrences of the given umgram

The smoothed estimate tries to better handle unobserved and low frequency n-grams 

and there are two general approaches to smoothing -  the first is to adjust the maximum 

likelihood estimate to better take into account unobserved and low-frequency n-grams

14



treating all unobserved events similarly and the second general approach is to combine 

different probability estimators together

Smoothing is used m traditional language modelling m order to allow higher order 
n-grams to be used m the language model and most of the following smoothing tech­

niques can be found m a standard text on statistical natural language processing such 

as (Manning and Schutze, 1999) In the language modelling approach to IR, the docu­

m ent’s language model requires significant attention to smoothing even when based on 

umgram probabilities Even before using higher order n-grams, the umgram model will 

produce unreliable estimates for missing terms if the maximum likelihood estimate is 

used without smoothing

In the following subsections we will describe the different smoothing methods for 

umgram language models grouped into the following categories discounting, validation, 

interpolation and back-off models We will describe these smoothing methods for the 
umgram document language model using the following notation

• Pd(w) the unsmoothed estimate for the term w m the document

• Pc(w) the unsmoothed estimate for the term w m the collection

• C(w)  count of term w m document sample

• N  size of document sample

•  N r number of terms with r  frequency m document sample (e g Nq is  the number 

of terms that have zero frequency)

• V  number of unique term  in the document sample

• B  size of vocabulary

2 4 1 Discounting-Based Smoothing

Discounting techniques treat all unobserved terms equally by adding a small probability 
to unobserved terms and normalising the probability mass to sum to 1 The discounting 
methods differ m how they redistribute the probability mass and are generally unsuit­
able for smoothing text language models m LMIR for the fact that they treat all missing 

words exactly the same However, they represent the classical statistical approach to 
smoothing, and can be applied, if necessary, to smooth the background collection prob­

ability estimates They may also be useful for smoothing visual languages that have a 

more uniform distribution and that are less semantic than text languages
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Laplace smoothing (Laplace, 1995) Laplace smoothing adds one to each term ’s 

frequency and is defined as

•W M  =  <13>

This essentially is adding one event for every type of event we are modelling in the 

distribution Unfortunately, this gives too much probability to unobserved events and 

the larger the size of the vocabulary the more probability that is taken away from 

observed terms In text IR, documents are very small samples, and this “adding one” 

rule overwhelms the probability distribution with the amount of probability given to 

the unobserved terms Even for traditional applications of LM this method is widely 
criticised (Gale and Church, 1994)

Lidstone smoothing (Hardy, 1889, Lidstone, 1920) Lidstone smoothing is a 

simple modification of Laplace smoothing that adds a small value À to each count and 
is defined as

<14>
where A is a parameter for our prior belief in the uniformity of the events over the 

empirical observations The parameter setting of A =  1/2 is a common choice, which is 

referred to as the Jeffrey’s prior

Both Laplace and Lidstone smoothing are special cases of the more general Dinchlet 

smoothing (Bayesian smoothing) that assume that the prior distribution is uniform We 

can interpret these smoothing methods as adding either 1 or A virtual counts respectively 

to each term of the empirical distribution A nice property of these discounting methods 
is that the larger the sample size the less probability is redistributed This is intuitive 

as a larger document should be more representative of its topic and therefore require 
less smoothing

Absolute Discounting (Ney et al , 1994) Absolute Discounting subtracts a small 
constant 6 from the frequency of observed terms and evenly distributes this freed fre­
quency to unobserved terms Absolute discounting is defined as

IPofwM =
^  *  C(w) > o,

otherwise,

where the parameter 6 controls the amount of smoothing Similar to Lidstone the larger 

the document the less smoothing but also the less zero frequency terms the more smooth­

ing, which could provide quite erratic smoothing m documents with near full coverage of 

their language This is unlikely for text documents but can occur for documents using 
visual languages tha t have a small vocabulary
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Linear Discounting (Ney et al , 1994) In Linear Discounting, the maximum likeli­

hood estimates for non-zero frequency events are scaled with the freed up mass allocated 

to zero frequency events Therefore, a fixed proportion of the probability mass, a , is 
distributed evenly to each of the unobserved events The smaller the number of un­

observed events the more probability each unobserved event individually gets, which is 

counter-intuitive for the information retrieval task Linear discounting is defined as

( l - a ) ^  lf c(w) > 0,
otherwise, 

where parameter a  is 0 < a < 1

Good-Turing Estimation (Good, 1953) In Good-Turing estimation we adjust the 

frequencies based on the assumption that the underlying distribution is binomial The 

adjusted frequency r* is given by

” =<r+1> m p  <17>
where E(Nr) is the expected number of words that occur r times The empirical estimate 

of E(JVr ) is not a good estimate when r is large and to improve this estimate a function 
S ( N r) can be fit using statistical regression (Manning and Schutze, 1999), producing 
the following Good-Turmg estimate

[ j t ,  where r* =  (r +  1) if r >  0
Pcrfai w n ) = {  f_’ V (18

[  No "  l f r  =  0
The Good-Turmg estimate has been successfully used in traditional language modelling 

applications but for LMIR there is not enough frequency information to use it reliably 

m document modelling However, the Good-Turmg estimate has been applied to IR 

language models and evaluated for ad hoc retrieval m (Song and Croft, 1999)

2 4 2 Combination-Based Smoothing

Discounting methods treat unobserved words equally, while a more effective smoothing 
method m text LMIR is to combine the document’s maximum likelihood estimate (MLE) 
with a background model of English such as the collection model, which allows terms to 
be smoothed in proportion to how often they naturally occur The combination-based 
smoothing methods m this section, Jelinek-Mercer smoothing, Dinchlet smoothing, and 

Absolute interpolation were evaluated for ad hoc text retrieval m (Zhai and Lafferty, 

2001b) Their results were not conclusive but suggest that Dinchlet smoothing is best 
for short queries and either Jelmek-Mercer or Dinchlet are best for long queries They 

interpreted this as implying that Dinchlet smoothing could be better at estimating 

document models, whereas Jelmek-Mercer smoothing may be good at modelling non- 
mformative words m the query
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Jelinek-Mercer smoothing (Zhai and Lafferty, 2001b) Jelmek-Mercer smooth­

ing is a simple finite mixture model (linear interpolation) of the document’s MLE with 

a background distribution (collection model) and is defined as

P j m (w) =  (1 -  A)Pd (w) +  APc(w), (19)

where a suitable value for the parameter A must be chosen In contrast to other 

combination-based smoothing methods, this smoothing method keeps the influence of 

the background model constant for each document

Dirichlet smoothing (Zhai and Lafferty, 2001b) In Dinchlet smoothing (empir­

ical Bayes smoothing) the document’s MLE is mixed with a background distribution, 

similar to Jelinek-Mercer smoothing, but also taking into account the size of the docu­

ment by reducing the effect of the background distribution for larger documents The 

smaller the document the more smoothing required Dinchlet smoothing is defined as

¥di r {w)  =  ( à ^ ) Pd(w) +  Jn T ^ ¥ c{w) ' (20)

where the parameter ¡i controls the amount of smoothing and represents the strength of 

our prior belief m the background probability over the document’s empirical distribu­
tion This method is similar to the Lidstone discounting method except tha t the prior 

distribution is no longer assumed to be uniform The [i parameter can be interpreted 
as the number of virtual terms taken from the collection distribution and added to the 

empirical document distribution

W itten-Bell Smoothing (W itten and Bell, 1991, Lavrenko, 2000) Witten- 

Bell smoothing combines the document’s MLE with the collection’s probability model 
and adjusts the mixing parameter depending on how much redundancy there is m the 

document The more redundancy, the less smoothing is required Redundancy is related 

to V  the number of unique terms m the document This method does not require 
parameter tuning and is defined as

Fwb(w)  =  (N +  V )Pd(w) +  (N +  V )Pc(w) (21)

Absolute interpolation smoothing (Zhai and Lafferty, 2001b, Ney et al , 1994)
Absolute interpolation, an extension of standard absolute discounting, subtracts a con­

stant amount from observed terms and this freed probability mass is redistributed using 
the background probability distribution Absolute interpolation is defined as

^ - < ° X ; T rc<w} T >0'i— N ' Pc{w ) otherwise
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where the parameter 6 controls the amount of frequency taken from observed events 

Similar to Absolute discounting, the larger the sample size the less smoothing and the 

more terms that have non-zero frequency the more smoothing However, this smoothing 

applies to all terms m Absolute interpolation and therefore is probably more stable than 
Absolute discounting for documents with a relatively small number of zero frequency 

terms

2 4 3 Back-Off Smoothing

Back-off models are an alternative to interpolation methods for combining estimators 

When estimators are combined in back-off models they are ordered by their specificity 

and the most specific model is used if it is suitable, otherwise, the next most specific 

is used, and so on, until a suitable model is found Interpolation-based smoothing has 

been reported to be consistently superior to back-off estimators for ad hoc searching 
(Zhai and Lafferty, 2001b) and so we will not consider them further

2 4 4 Validation-based Smoothing

In validation smoothing methods, we divide the training sample into smaller samples 

We can then train on one part of the sample and choose the amount of smoothing by 

validating the model on the other part The importance of these methods is that they 

can optimise the selection of the control parameters of another smoothing method

L eave-O ne-O u t In the Leave-One-Out validation method, each word is left out m 

turn to create N  simulated tests and the amount of smoothing is chosen to maximise 

the overall likelihood of the held out token over all N  tests The Leave-One-Out method 

is a validation method that has been used for LMIR to automatically control the value of 

the parameter for the Dinchlet smoothed document language models (Zhai and Lafferty, 
2002)

2.5 Ranking Documents

In the standard language modelling approach documents are ranked based on query- 

likelihood but in more recent language modelling approaches tha t perform relevance 
feedback the documents are ranked using relative entropy
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Figure 2 Language modelling approach to information retrieval using query-hkelihood 
ranking

Figure 3 Language modelling approach to information retrieval using relative entropy 
(KL divergence, cross entropy) ranking
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2 5 1 Query-Likelxhood

Query-likelihood ranks documents based on the probability that they would generate the 

query The advantage of this ranking over document-likelihood is that the documents 

are larger samples of text and therefore provide more reliable probability estimates than 

the generally smaller query text The query-likelihood method compares the probability 

of the same set of events for all documents, which ensures documents are sampled for 

all terms m the query and this leads to a retrieval status value (RSV) that represents 

a more exhaustive match between the query and documents than document-likelihood 

The query-likelihood ranking also provides an explanation for the language modelling 

approach that describes the process of searching as a user choosing query terms based on 
their likelihood of being present in an ideal document that would satisfy their information 

need By applying query-likelihood we are representing this hypothetical process and 

trying to find the ideal document, which we presuppose is related to the relevance of 

the document to the information need The primary problem with query-likelihood is 

that it removes the concept of relevance from the retrieval model and more importantly 

it does not support a natural way of including relevance feedback

Zaragoza et al (2003) propose a Bayesian extension to the query-likelihood language 

modelling approach that uses a full Bayesian predictive distribution when calculating 

the query-likelihood This approach is very similar to the Dirichlet smoothed language 

model m that it combines the document sample’s likelihood with the prior collection 
distribution, but goes one step further by modelling the uncertainty of the resulting pa­

rameters and integrating this uncertainty out when using the model to predict the query 
The Bayesian query-likelihood or posterior predictive distribution for the multinomial 
distribution with Dirichlet prior is defined as

P(q\d, na) = ~ ^ nq + ^  y ndi+Wa) /  TT $qt '+dl '+a'~ \  (23)
n ^ r f e + a , )  nr= i m + a t) J l \ '

where na is a parameter specifying the strength of our belief m the prior distribution 
and a t = n atP(tyl |C) is the prior count for each term when using the collection model as 
the prior distribution The RSV for this query-likelihood ranking can be more efficiently 
calculated (see Zaragoza et al (2003) for details) as

RSV q4 = log{q\di) x  ^  ¿ l o g ( l  +  — f 1'- -  )  -  V  log(ndl + n a + j  -  1) (24) 
.|(*A)*>i=i V 0 1  +  9  J j=i

This Bayesian query-likelihood is slightly less efficient than the standard query- 

likelihood as the number of operations to compute it is related to the number of match­

ing terms as opposed to the number of matching term  indexes This is not a significant 

problem for ad hoc text retrieval but causes speed problems when used on visual lan­

guages tha t have large query samples to predict such as over 50,000 matching terms but

2 1



are from relative small visual languages and therefore are quite efficient for the standard 

query-likelihood function

2 5 2 Document-Likelihood

Document-likelihood is the probability of the query generating the document and is 

defined as

p(£>|<2) =  n  P(i|<2)c(t'D) (25)
te D

where c(í, D) is the term count of term t m document D  The problem with the 
document-likelihood for a multinomial language model is that longer documents are 

less likely than shorter documents and common words will dominate To correct this 

severe bias the documents can be ranked by the likelihood ratio

n o \ Q )  _ n  p f t iQ ) V ft,0)
H D \C )  1 j

where P(£|C) is the probability of a term m the background collection The problem with 
this approach is that the predicted terms are different for each document and therefore 
m some way this probability is not comparable and also the document-likelihood may 

only represent matching between subparts of the query Since the query is generally 

very small, document-likelihood estimates based on it are highly unreliable compared 

to the query-likelihood, which bases its probability estimation on the generally larger 
sample of document text The ideal document according to the document-likelihood 
ratio is the document with the highest ratio repeated for its whole document, which 

could not be considered a desirable outcome These problems were also observed when 
using document-likelihood with relevance models to rank documents (see Section 2 6 2 
for details on relevance models), which used the following ratio

¥{D\R) _  -pr f ¥ ( t \ R ) \ c{t’D)
n m )  U ( i ic ) J

(27)

where R  is the relevance language model Lavrenko and Croft (2003) noted that this 
ratio suited documents that repeated the term with maximum likelihood ratio and found 
that cross entropy was a better method for comparing relevance models with document 
models

2 5 3 Relative Entropy and Cross Entropy

A more recent language modelling approach (Lafferty and Zhai, 2001), represents both 
queries and documents using language models and ranks documents based on the relative 

entropy between the query’s language model and the document’s language model (see
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Figure 3), which allows for relevance feedback to be more easily incorporated into the 

query representation

Relative entropy D (X\\Y),  also called Kullback-Leibler divergence/distance, is an 

information theoretic measure of the difference between two probability distributions 

over the same event space It measures the amount of information that is needed to

encode events from the first probability distribution into the second It evaluates to

a non-negative quantity that is zero only when both probability distributions are the 

same It is not strictly a distance function as it does not satisfy the triangle inequality 

and is not symmetric The relative entropy measure was first used for LMIR ranking m 

(Lafferty and Zhai, 2001) where the query is represented as a probability distribution 

that takes into account translation probabilities defined by a random-walk Markov chain 

technique To use relative entropy for ranking we represent both the query and the 

documents using language model The relative entropy between the query’s language 

models, M q, and the document’s language model, M j, is defined as

R SV q4 = £ ( M q ||M d) =  ^ P ( W|M q) lo g ^ | ^ a l  (28)

The RSV for ranking documents using relative entropy can be simplified, as the 
query is constant for ranking a set of documents, giving

RSV q4 =  - ^ P H M q J l o g P H M d ) ,  (29)
W

which is actually the formula for a common measure m statistical language modelling 

called cross entropy Furthermore, if the query’s language model is calculated by max­
imum likelihood with no smoothing, then the scoring function is simply a re-scaled 

version of the query’s log-likelihood, which of course produces the same ranking as 
query-likelihood

2.6 Relevance Feedback

Language modelling-based relevance feedback is limited when using query-likelihood as 
it constrains the query representation to a frequency distribution of terms The relative 
entropy ranking method provides a more consistent and direct approach to relevance 
feedback as it supports updating the query’s language model and the comparison of 

relevance-based language models with documents In the following subsections we will 

describe some approaches to language modellmg-based relevance feedback We will 

denote the set of positive feedback documents as T , which may simply be pseudo­
relevant documents such as a fixed number of top ranking documents from the initial 
search results
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2 6 1 Query-Likelihood Feedback

Ponte (1998) supports limited relevance feedback in the Multiple-Bernoulli language 

model by adding terms to the query based on the ratio of their probability m feedback 

documents compared to their probability m the background collection The score, s(w ), 

for each word is defined as
, , n P(W|Md)

" " ' S w

This ad hoc feedback method is limited as it only supports binary weighted queries

In the HMM retrieval model (Miller et a l , 1999a) transition probabilities are trained 
m order to perform relevance feedback based on a term ’s frequency m relevant documents 

and the collection As noted by Zhai and Lafferty (2001a), the transition probabilities 
are estimated m an heuristic manner and the HMM model is no longer equivalent to the 

language modelling approach

Hiemstra (2002) equates smoothing with the importance of a query term and pro­

poses a term-specific smoothing method The term-specific smoothing method extends 

the Jelmek-Mercer smoothed umgram language model with query specific smoothing 
parameters and is defined as

\Q\

P (q |M d , A) =  I I ( W M - )  +  (1 “  A,)(P(<fc|C)), (31)
1=1

where the A2 term importance weights (query term smoothing parameters) are estimated 

from the relevant documents using the EM algorithm (Dempster et al , 1977) m order to 
optimise the probability of the query terms given the relevant documents This limited 

method of feedback does not expand the query but provides a re-weighting of the query’s 

terms and it complicates the notion of parameter estimation for the document model 
by equating it with query-specific smoothing of search terms

The umgram language model was extended to take into account term translation 
probabilities, thereby modelling information retrieval as machine translation (Berger 
and Lafferty, 1999a,b) This approach enabled the retrieval of documents tha t do not 
contain the query terms by allowing synonyms and other relationships between words 
to be taken into account in their model This model is essentially a language modelling 
approach that supports query expansion but does not provide any wider relevance feed­

back functionality As recognised m (Lafferty and Zhai, 2001) this approach is inefficient 

as it requires a sum over all terms in the document and is also hindered by the large 

amount of training data required to perform query specific translation
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2 6 2 Query M odel Feedback

Ranking documents with the information theoretic measure relative entropy or equiv­

alently cross entropy defines the language modelling approach m terms of the differ­

ence m information between the query’s language model and each document’s language 

models The representation of the query as a probability distribution provides a more 

powerful mechanism for supporting relevance feedback because it allows more intricate 
probabilistic modelling and updating of the query representation than possible m the 

query-likelihood formulation

Lafferty and Zhai (2001) first use relative entropy for ranking documents by the 
information theoretic comparison of the query’s and documents’ language models and 
introduce a Markov chain approach to estimate the query model that can be used for 

query expansion and pseudo-relevance feedback by re-estimating the initial query model

A more direct relevance feedback language modelling approach that supports query 

model updating is proposed m (Zhai and Lafferty, 2001a), which suggests two approaches 

for generating a feedback model based on a set of relevant (or pseudo-relevant) docu­
ments In their first feedback model approach, referred to as a generative model of 

feedback documents, they assume that a feedback umgram model generated the rele­
vant documents and estimate its parameters using the EM algorithm, which maximises 
the following likelihood of the feedback documents

P ( ^ , A )  =  n n « 1 -  \ )F ( w \6f ) +  A PH C ))0̂  (32)
def w

The mixture parameter A that controls the amount of noise from the collection model is 
set to a constant when the feedback model’s parameters 6? are estimated using the EM 
algorithm This estimation is presented as a purification of the feedback model (topic 

model) by the elimination of the effects of the background noise (common words) Their 
second feedback model approach, referred to as divergence minimisation over feedback 
documents, chooses the query model that has the smallest average relative entropy 
between the feedback model and the smoothed feedback documents The motivation is 
to achieve the best average retrieval score (relative entropy) for the feedback documents 
They add a regularising term to the divergence minimisation feedback approach in order 
reduce the impact of common words from the collection, which leads to the following 
definition of their feedback model

Or =  argm m  ±  £  D(6 || 6d) -  \D {6  || 6C) (33)
1 1 deF

where the parameter A controls the weight given to the collection model This results 

m a closed form expression for the calculation of the query model that unlike the first 

feedback method does not require the iterative EM procedure For both these methods 
of estimating the query model from feedback documents the updated query model is an
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§Qf = (1 — ĉ )0q +  a6jr (34)

interpolation of the original query model and the feedback model and is defined as

where a  controls the strength of the feedback model and is set empirically Both these 

methods improve on the non-feedback results and achieve slightly better results than 

Rocchio feedback (Rocchio, 1971) under similar test conditions It was also found that 

the first method, generative model of feedback documents, is more stable with respect 

to its parameters than the divergence minimisation method

A quite different approach to relevance feedback is the combination of relevance 

models ¥(w\R) with the language modelling approach to information retrieval (Lavrenko 

and Croft, 2001) that similar to classical probabilistic models ranks documents by their 

probability of relevance (Probability Ranking Principle, see Robertson (1977)) They 

equivalently express this criteria as the odds of the document being observed m the 

relevant class and model both relevant (R ) and non-relevant (N)  classes using umgram 
language models

R S y ,  _  ~  TT P M ^ )  T T  P M ft Qh) f35x
RSVd* -  nD\N)  ~ 11 PHAO ~ ¿1  P H Q  (35)

They approximate P(w|jV) using P(,u;|C) and argue that P(u/|gt qk) is a good approx­
imation of ¥(w\R) when no relevance information is available In contrast to standard 

language modelling interpretations they assume that query and documents are samples 

from an unknown relevance model and propose two methods for estimating the rele­

vance model when only the query and no relevance judgements are available The first 
method assumes identical and independent sampling of a query model to generate both 

the original query terms and the words m the pseudo-relevant documents, which leads 
to the following joint probability of a word and the existing query terms

k
P K  9i f t)  =  £  P (d )P H M d) n  P f e l M d) (36)

dEF j=l

The relevance umgram model is simply estimated using the conditional probability, 
which is expressed m terms of this joint probability

P H * )  ~  ph<?i f t ) = qqf  (3 7 )

In the second method for estimating the relevance class they use conditional sampling

which adds words to the query by first choosing the word w based on prior P(tu),

then independently for each existing query word selecting a pseudo-relevant document 

distribution based on P(Md|iu) and then sampling the query word based on P (^ |M cj), 
which leads to the following joint probability

k
P(tu,gi qk) = ¥ ( w )  n z  P fe |M d)P(M d H  (38)

2=1 deT
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Their approach to relevance feedback is not integrated with the initial querying and 
is quite separate to the initial search model First they retrieve documents using the 
Jelmek-Mercer language model, then take the top 50 documents and estimate the rele­
vance model and finally use the odds of relevance to rank documents replacing completely 
their original retrieval model They found that their two estimation methods achieve 
statistically significantly better results than using the Jelmek-Mercer language model 
alone with no relevance feedback

Lavrenko and Croft (2003) compare this relevance ratio approach to ranking doc­
uments with the cross entropy of the relevance language model and each document’s 
language model and found that the cross entropy ranking performs better than using 
the likelihood ratio They showed that the likelihood ratio of the relevance class when 
assuming term independence favours documents containing many occurrences of a few 
words with highest , whereas the cross entropy approach compares all documents
based on the same set of events withm the relevance probability distribution and there­
fore achieves better results

2.7  Non-Language modelling approaches to Inform ation  
Retrieval

In this section we discuss three different types of retrieval models, the Boolean model, 
the vector space model, and the probabilistic models, which fundamentally differ m how 
they model the information retrieval task

2 7 1 Boolean Model

The Boolean model is a set-based retrieval model that supports querying using multi­
ple query terms combined with AND, OR and NOT logic Each term in the indexing 
language is mapped to a set of documents and the AND, OR and NOT Boolean op­
erators are simply implemented as respectively intersection, union and complement of 
these sets of documents The Boolean model provides no ranking of retrieved documents 
and simply separates the documents into relevant and non-relevant sets, which limits its 
usefulness for real-world information retrieval tasks Another problem with the Boolean 
model is that users (even computer science graduates) find it hard to express an infor­
mation need m Boolean logic, and simply AND-mg or OR-mg a set of query terms will 
likely give too few or too many results respectively

Coordinate Level Ranking is a somewhat related retrieval model that supports partial 
matching between documents and queries In Coordinate Level Ranking the documents 
that match more query terms arc guaranteed to be ranked higher m the results list
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than those matching less terms A problem with both the Boolean and Coordinate 
Level Ranking is that all query and document terms are treated equally ignoring their 
frequency of occurrence m the documents or the wider collection

The MLE language model, a language model without smoothing, has similar prob­
lems to a Boolean AND-ed set of query terms, since it does not support partial matching

2 7 2 Vector Space Model

The vector space model (Salton, 1971, Salt on et al , 1975) represents documents and 
queries as high dimensional vectors in which each dimension corresponds to the im­
portance of a language term The relevance of a document to a query is assumed to 
correlate with the similarity between the query and document vector representations 
This model is a general similarity framework for information retrieval that requires the 
choice of a weighting scheme for the query and document terms and the selection of a 
similarity function to compare vector representations The main benefit of this model 
compared to the Boolean model is that it provides a ranking of the retrieved results 
and does not require a full match between all query and document terms It is also a 
relatively simple, efficient, and effective retrieval model that has been extensively tested

The most popular term weighting schemes for the vector space model are TF-IDF 
models (Salton and Buckley, 1988) The TF-IDF weighting scheme models the im­
portance of a language term as a product of a function of its within document/query 
frequency and a function of the term’s frequency within the collection The withm docu­
ment/query weighting function is generally a monotonically increasing function of term 
frequency such as raw term frequency or the log of the term frequency The collection- 
based weight of a term is usually an IDF weight (Inverse Document Frequency), which 
m general is a monotonically decreasing function of the number of documents the term 
is present in The rationale behind these two weighting factors for each term is that the 
more times a term is present m a document, the more the term reflects its about ness, 
while the more documents the term is in, the less useful the term is for discriminating 
between relevant and non-relevant documents
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We will define an example TF-IDF weighting scheme for z-th term m the j-th  doc­
ument, td3}U and also for the k-th  query, tqk,%, as

tdhl = log(tf}ii + 1) x ID F% (39)

iÇfc.t = tfk,i x ID FX (40)
TV 4 -1

ID F t =  \og — (41)
Tir +  U 5

— the total number of occurrences of term i in document j

where

t f 3, t =  the total

t f Kl =  the total

N  =  the total

n% =  the totaln0 = the total number of documents with term i m the collection

As can be seen from this example, the query and document representations do not 
need to use the same weighting function In our TF-IDF weighting example the query 
representation uses raw term frequency, while the document representation use a log 
based function of term frequency The log function dampens the benefit of repeated 
terms under the assumption that for example a document with a term repeated 20
times is not five times more about the term than a document with the term repeated 4
times

In general the similarity function is either the dot product or Cosine similarity (dot 
product between normalised vectors) The Cosine similarity function can be interpreted 
geometrically as a measure of the angle between the query and document vectors and is 
defined as

similarity(d3,qk) = - - ^ t=1 — (42)

where td0tl = the weight of term i m document j

tQk,i = the weight of term i m query k

n = the total number of unique terms m the collection

The mam benefit of the Cosine similarity over the dot product is that it normalises the 
document length removing the bias towards long documents These similarity functions 
are very efficient as only scores for terms that are present m both the query and document 
need to be calculated when searching documents

Since the query is represented simply as a vector over the complete indexing language, 
relevance feedback can be accommodate by updating the query term weights, such as in 
Rocchio (1971) where the weighted centroid of relevant and non-relevant documents are 
added and subtracted respectively from the initial query vector representation Similar 
to the language modelling approach to information retrieval, the vector space model
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does not prescribe what form relevance feedback should take or have any formal notion 
of it built into the theoretical framework

Since the vector space model is a general similarity based retrieval framework it can 
accommodate the language modelling approach We can represent both queries and 
documents as a vector of probabilities of language terms and use the relative entropy 
measure as the similarity function to compare representations (Lafferty and Zhai, 2001) 
We can view the language modelling framework as providing a principal method for de­
riving the document and query vector representations as well as the selection of the 
similarity function Furthermore, the Jelinek-Mercer language model can be expressed 
as a vector space model with TF-IDF-like weighting scheme and dot product similarity 
function (Hiemstra, 1998, Hiemstra and Kraaij, 1999) This indicates that smooth­
ing with the background collection m the language modelling approach to information 
retrieval plays a similar role as IDF in the TF-IDF weighting scheme

2 7 3 Probabilistic Models

Similar to the Boolean model, probabilistic models assume that documents are either 
members of the relevant or non-relevant sets for a given information need, but unlike the 
Boolean model, documents are ranked by their probability of being a member of the rel­
evant set of documents The Probability Ranking Principle (Robertson, 1977), which is 
the basis of the probabilistic retrieval models, suggests ranking documents by decreasing 
probability of relevance, P(r|Q, D), and is optimal for many ad hoc information retrieval 
evaluation measures

In this section, we will describe the classical probabilistic model, the Robertson- 
Sparck Jones model (Robertson and Sparck Jones, 1976), and the more recent BM25 
model, which is a very effective probabilistic retrieval model that represents the cur­
rent state-of-the-art for text retrieval The probability-based approaches to information 
retrieval began over 40 years ago (Maron and Kuhns, 1960) and are described more 
extensively in (van Rijsbergen, 1979, Crest am et a l , 1998) The mam difference be­
tween these approaches and the language modelling approach is that the probabilistic 
models explicitly have the probability of relevance as their ranking criteria whereas the 
language models declare the generative probabilities (e g probability of the document 
representation generating the query sample) as their explicit ranking criteria This loss 
of the explicit notion of relevance m the standard language modelling approach puts 
it at a disadvantage compared to the probabilistic models, which can more formally 
accommodate relevance feedback (Sparck Jones et a l , 2002)

It is further argued by Sparck Jones et al (2002) that a significant disadvantage of the 
language modelling approach compared to probabilistic models is that it assumes that a
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single ideal/relevant document generates the query A counter argument by LafFerty and 
Zhai (2003) is that the query-likelihood language modelling approach is formally justified 

from the Probability Ranking Principle, and therefore both approaches to information 

retrieval are probabilistically equivalent This is contentious as probabilistic equivalency 
comes about through a weaker interpretation of relevance than originally intended by its 

proponents Relevance is reinterpreted as being related to a specific query instance (e g 
query terms) than to the underlying information need for probabilistic equivalence to 
be derived between models We will now present the derivations of both the Robertson- 

Sparck Jones Probabilistic Model and query-likelihood language model, as derived by 

(Lafferty and Zhai, 2003)

\

2 7 31  Robertson-Sparck Jones Probabilistic Model

In this section we present the derivation of the Robertson-Sparck Jones probabilistic 
model (Robertson and Sparck Jones, 1976), which ranks documents by the odds of 

relevance Since the odds of relevance, the ratio of the probability of relevance to 

the probability of non-relevance, is a monotonie transformation of the probability of 
relevance, this criteria is justified from the Probability Ranking Principle For query Qk 
the document D3 is ranked using the following1

nsvt .,.  , ( , | D „ g . )  « t  =  (4 3 ,

where r  denotes the relevance event for the information need as expressed in the k- 
th  query By applying Bayes’ Rule, W(R\D3,Q k) =  F(D3 ì Qk\R) x F(R)/F(D3iQk) i 
this ranking can be transformed into probabilities conditioned on the relevant and non- 
relevant events

= P(-Pj, Qfc|r)P(r)
P ^ .Q fc lr JP i? )  ( }

In this section, Equation (44) is factored to produce the Roberston-Sparck Jones proba­

bilistic model, while m the next section an alternative factoring of this equation produces 
the language modelling approach By factoring F(D3, Qk\R) = F(Qk IQk,R)  this 
becomes

n D 3, \Qk,r )nQk\r)nr)RSV ktl = iri \Uu. riiTi UuWWY'ir \
(45)

P(0„IQfc.r)P(Qt |f)P(r)
_  PÇPj, IQfc.Q P(rlQfc)

X
¥(D3,\Qk, f )  P(F|Qfc)

Removing the query and document independent factors tha t do not effect the ranking 
of documents produces the following

dot; _  Qh>r) / . fiv
“  n w i  (4e)

1W e follow th e  n o ta tio n  and  derivation  of Lafferty and Zhai (2003)
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The Robertson-Sparck Jones probabilistic model ranks documents based on the ratio 

of the probability that the document is a sample (or generated) from the relevant set 

(relevance language model) compared to the probability that it is sampled (or generated) 

from the non-relevant set (non-relevance language model)

2 7 3 2 Relationship to language models

The language modelling approach is related to the probabilistic model as it can be 

derived from the same basis (Lafferty and Zhai, 2003) Note that this equivalency is 

achieved by a weaker interpretation of relevance (r) than in the original probabilistic 
model In particular, it does not support two query representations that have the same 

terms to have different relevance information, while the original derivation does By 

factoring the odds ratio in equation (44) differently, P(D j, Q&I#) =  P(-DJ |i2)P(Qft|iPJi R) 

it is possible to derive the query-likelihood language model 2

P(qt |DJ,r)P(I>J|r)P(r)
P(Qfc\Dj , f)F(D 3 |r )P (f)
n Q k \D „ r )  P(r|fl,)  ̂ ;
n Q k \D „ r )  P(r| Dj)

If we assume that the document and query are independent when conditioned on the 

non-relevant event, F(D3,Qk\r) =  P(Dj|f)P(Qfc|f), then this leads to

n Q k \D 3,r) ¥(r\D3)
RSVkJ ^ W  W  (48)

For document ranking purposes we can simplify by keeping only the terms that relate 
to the document

R SV kj = n Q k \ D , , r ) x ^ &  (49)

This ranking is the query-likelihood language model with priors on the odds of document 

relevance If we have no prior information on which to prefer different documents then 

this ranking is simply the query-likelihood ¥{Qk\D31r) The two retrieval approaches 
are therefore probabilistically equivalent with this weaken form of relevance and query- 
likelihood could be referred to as the likelihood of the query given a relevant document
but in fact the conditioning on relevance is dropped m the language modelling approach
to give the standard query-likelihood function

2 7 3 3 Binary Independence Model

In the Binary Independence model (Robertson and Sparck Jones, 1976), documents and 

queries aie represented by the set of terms they possess and it is assumed that terms are 

independent when conditioned on relevant and non-relevant events, or alternatively the

2T his is th e  derivation  from  Lafferty  an d  Zhai (2003)
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assumption can be weakened slightly to linked dependencies for both events (Cooper, 

1995) Therefore, the Robertson-Sparck Jones probabilistic model can be expressed in 

terms of the individual probability of terms conditioned on the relevant and non-relevant 

events, which leads to the following

n c y  F(DJ\Qk) r) _  t - t  F(TJ)t = t3ti\Qk,r) , .
HbVk'i n D ,\Q k , r )  y P f f i , .  = h lt\QkJ) { }

where Td is the binary random vector for document j  and t3>l is either 1 or 0 depending 

on whether the z-th term is present or absent from the j- th  document We can see 

that this is essentially two Multiple-Bernoulli language models, one for the relevant 

set of documents and the other for the non-relevant set of documents Recall that 

Multiple-Bernoulli language models were used m the first language modelling approach 

to information retrieval (Ponte and Croft, 1998), which represented each document 

using a Multiple-Bernoulli distribution and ranked documents using query-hkehhood 
The RSV for the Binary Independence model can be more efficiently calculated based 

on only the terms present m the document, by pre-multiplying under the assumption 

of no matching terms and then correcting this for each matched term, leading to the 

following relevance weight for matched terms

n  P(TJ|t = 0 \ Q k , r )  y r  P(TJ|t = l|Qt ,r) „ P(T,t, = 0|Qfc,f)
fcj } AP(r,,, = 0|O*,r) 11 P(Tiit = l|Qfclf) P(2},t = 0\Qk,r)' 1 ’

OC

t

T T  — 1-1 Qki r ) — 0 \Qkir ) /-„N
^ P C ^ l ^ r )  ¥{Tht = 0\Qkir) }

Given the set of relevant and non-relevant documents it is possible to estimate the 

required probabilities for the Binary Independence model using the maximum likelihood 

estimate We will use the following notation in this section for the k-th Query, there is 

R k  relevant documents in the relevant set, N  documents are m the total search collection 
and a given term t t is m n % documents, of which are relevant for fc-th query The 
maximum likelihood estimates are therefore

I W ï i  =  l |Q fc,r )  =  ^  (53)

¥ m l {% =  0|Qfc,r) =  1 - ^  =  ^  (54)
ttk Rk

¥ML(Tt =  l\Qk,f) = n̂ ~_TRk (55)

(w ni/n - \  i n% ~  Tlfi N  — R k — nt -\- rl k 
PM£ (T, =  0 |Q *,r) =  1 - 7 T ^  =  N ^ R k  (56)

The problems with the maximum likelihood estimate of language model parameters 
are present in this classical probabilistic model with problems occurring if either of these 

probabilities are zero, which causes the odds ratio to either evaluate to 0 or infinity 

The solution employed for the Binary Independence model is to smooth the maximum
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likelihood estimate using Lidstone smoothing with typically A =  0 5 (Jeffrey’s prior), 

which puts a uniform prior on a term being generated or not from the relevant and 

non-relevant sets

P U r .  = He.,r,A) -  (57)

PLu*(T, =  0 |Q t ,r IA) =  (58)

P r f  =  l |Q fc,.,A ) =  (« »

m> /̂ r. _  n \n  - w  _  N  -  R k -  Tli + rl>k + \
Pud(Tt - 0 \ Q k, r , \ )  -  N  — R k +  2 x  X (60)

By plugging these estimates into the Equation 52, we can rank the documents using

DDK v {D]\Qk,r) T-r n,fc +  A N  -  R k - n t + rhk + A 
RSVk'3 Ÿ (D j\Q k,f)  , _i n t — rik  +  A R k - r hk + A (61)ll t —-L

Obviously m practice relevance information is not available for the full collection of 

documents and therefore the relevance feedback m this model is based on a subset of 

relevance ratings of documents that is either supplied by a user or by the assumption 

tha t a specific number of the initial top ranking results are relevant

In this retrieval model, when we do not know any relevant documents we set P (tx\Qk, r) 
to a constant and P ( t l |Q ^,r) is approximated with the probabilistic IDF, which leads 

to the following heuristic approximations

P(U\Qk>r )=05  (62)

P(t>|<9*,f) = log —— (63)Til i U 0

The benefit of this model over language models is its inherent support for relevance 
feedback, while its weakness is its support for initially ranking documents without rele­

vance information, which is done heuristically m this model and is better supported by 
language models due to their better statistical estimation techniques coupled with the 

query-likelihood function Also, as discussed previously the Multiple-Bernoulli prob­
ability model represents documents and queries as binary vectors and therefore only 
provides limited representation compared to the more common multinomial probability 
distribution that is used m the language modelling approach to information retrieval

2 7 3 4 Okapi BM25 Retrieval Model

The Okapi BM25 retrieval model (Robertson et a l , 1995), which approximates the 

2-Poisson model (Bookstem and Swanson, 1974, Harter, 1975), is a more effective prob­
abilistic model than the Binary Independence model The BM25 model has a richer
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representation of documents as a stream of terms m comparison to the Binary Indepen­

dence model, which simply represents documents as a binary vector of terms

The basis of the BM25 model, the 2-Poisson model, assumes tha t terms occur withm 

documents as a mixture of two Poisson distributions, which represent the probability of 

elite and non-elite occurrences of terms When terms occur due to eliteness, it is assumed 

that the document is about the term, otherwise it is a non-elite term occurrence and the 

document is not assumed to be about the term ’s concept While the BM25 model has its 

theoretical foundations in the 2-Poisson model, its actual realisation is largely guided by 

good IR practice and experimentation and the BM25 model cleverly approximates the 

2-Poisson model and incorporates both the Robertson-Spark Jones weight (Robertson 

and Sparck Jones, 1976) and document length normalisation

The BM25 retrieval model is defined as

BM25 =  V  io c (r, +  0 5 )(Ar — f l - n» + r» +  0 5 ) x (fei +  W  x (*» +  1 )#/«
¿ Q  (n*_ n  +  05 ) ( i ?~ ri  + 05) K  +  t f ' k3X<!tf'

where K  =  &i((l — b) -f b x dl/avdl)), t f % is the term frequency withm the document, 

q tf% is the term frequency within the query, dl is the document length and avdl is the 

average document length The parameters &i, /c3, b depend on the nature of the queries 

and the collection and can be optimised for example to suit small or large queries The 

k\ parameter controls the rate of increase of a document’s term  weight m response to 

increasing frequency and the k% parameter likewise controls the query term weight, while 

the b parameter controls the effect of document length normalisation on ranking

The BM25 model is extensively tested on the TREC test collections and has previ­

ously been utilised for video shot retrieval in the Informedia’s TRECVid experiments 

(Hauptmann et a l , 2004) In general this retrieval model performs very well on the 
TREC test collections For this reason, m this thesis we will compare different language 

modelling approaches with the BM25 model as opposed to the Binary Independence 

model for the text-based video shot retrieval task

2.8 Summary

Language models are simply generative probability distributions for text sequences that 
can be used m information retrieval to represent both documents and queries The 

standard language modelling approach to information retrieval models documents with 

unigram multinomial distributions that are smoothed using the background collection 

model and ranks documents based on query-likelihood, the probability of the document’s 
language model generating the query

Smoothing is a common method for improving the estimation of language models
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especially for missing and low frequency words and can be accomplished by either dis­

counting, combination, back-off or validation methods Discounting methods smooth 

unobserved words uniformly, while the more popular combmation-based methods com­

bine the maximum likelihood estimate of the document’s text with a background model 

and are the most effective smoothing methods for the text retrieval task Back-off strate­

gies work consistently poorer than combmation-based methods and validation methods 

can be used to automatically set the parameters of other smoothing methods The most 

popular smoothing method for text retrieval is Jelinek-Mercer smoothing which com­

bines the document’s maximum likelihood model with the collection model m a simple 

linear interpolation (finite mixture model) The Dirichlet language model is also very 

effective and combines the background collection model as a prior distribution with the 
document model m an empirical Bayes framework

The language modelling approach to information retrieval generally either ranks doc­

uments by query-likelihood or by relative entropy Query-likehhood is the most com­

mon ranking approach m LMIR and ranks documents by their probability of generating 

the query Whereas more recent approaches use relative entropy (or equivalently cross 

entropy), which ranks documents by the difference m information between the query 

language model and the document language model The advantage of relative entropy 

is that it more naturally supports relevance feedback and also has the nice property 

that if the query model is the maximum likelihood estimate then it will produce exactly 

the same ranking as the query-likehhood method The original query-likelihood ranking 

method severely constrained LMIR approaches m their support for relevance feedback 

whereas relative entropy supports a far more powerful query representation that is taken 
advantage of in the current approaches to relevance feedback

The relative entropy ranking approach in LMIR has similarities with the vector space 
model but mimics many of its features m a principled way, for example smoothing can 

be seen to be related to IDF m reducing the effect of common words The language 

modelling approach also has similarities with the probabilistic IR approaches as it can 
be derived from the same principle, the Probability Ranking Principle, that forms the 

basis of the probabilistic models However, the lack of explicit relevance m the gener­
ative language modelling approach makes it theoretically less principled for supporting 
relevance feedback The mam contribution of the LMIR approach is the intricate sta­
tistical estimation techniques and the simple generative framework, which can as easily 
be applied to information retrieval in other media such as image, video and audio as it 
is applied to text retrieval

Language modelling*-based information retrieval'is an active area of research within 

the information retrieval community and since its introduction to the IR field in 1998, 

a series of papers has been published yearly at most major IR conferences, numerous 
LMIR workshops have been organised and even a book on the topic has been published
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(Croft and Lafferty, 2003) Beyond ad hoc text retrieval LMIR is also being applied to 
video retrieval (Westerveld, de Vries and van Ballegooij, 2003), topic tracking (Kraaij 
and Spitters, 2003) and cross-language retrieval (Xu et a l , 2001)
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C H A PTE R  III

STATE-OF-THE-ART IN VIDEO RETRIEVAL

Video retrieval combines methods from text retrieval, 
concept-based retrieval, visual-based retrieval and to a 
lesser extent audio-based retrieval for the task of locating 
video clips that meet a user’s information need from video 
collections The overall performance of current video 
retrieval systems heavily depends on text retrieval but 
low-level visual retrieval based on colour, edge and texture, 
while less semantically rich than text, provides support for 
query-by-example visual searching Research into retrieval 
based on high-level audiovisual concepts seeks to bridge 
the gap between low-level audiovisual features and the 
high-level information needs of real users Due to the 
multimodal nature of video documents and queries, fusion 
of retrieval results from different feature representations 
plays a significant role in determining the effectiveness of 
video retrieval Relevance feedback can also provide a 
mechanism to improve the video query representation and 
the fusion of features Benchmarking of retrieval 
techniques and features is integral in progressing video 
retrieval research and is supported by the recent TRECVid 
initiative

3.1 Introduction

Video retrieval research is concerned with improving users’ access to video collections 
through the development of better retrieval systems and interfaces The objective is to 
improve the video retrieval experience for real users interacting with real video collections 
m terms of system effectiveness and efficiency for the tasks they wish to accomplish and 

of course m terms of user satisfaction In this thesis we focus on general ad hoc retrieval 

by a hypothetical professional user, such as one concerned with finding video footage 

for news or documentary programmes Furthermore, since this thesis concerns retrieval 

models, we will discuss retrieval and fusion models in this chapter m preference to user 

models, user interfaces, user-satisfaction or other human computer interaction factors

3 1 Introduction 

3 2 Video Indexing

3 2 1 Structuring 

3 2 2 Text 

3 2 3 Concepts 

3 2 4 Visual 

3 2 5 Audio

3 3 Video Retrieval

3 3 1 Query
Preprocessing

3 3 2 Text-Based

3 3 3 Concept-Based

3 3 4 Visual-Based

3 3 5 Fusion

3 3 6 Relevance Feedback 

3 4 Evaluation 

3 5 Summary
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Content-based video retrieval is a recent application that has been facilitated by im­

provements m computing power networks, storage and video compression techniques 

The visual techniques m practice in video and image retrieval often originate from re­

search m Computer Vision applications (Rui, Huang and Chang, 1997), while the re­

trieval models and particularly more recently the evaluation methodology is heavily 

influenced by the information retrieval field In the early 90s research on content-based 

image retrieval began m earnest to facilitate the search of image collections by their 

content without the need for costly manual annotation Early image retrieval systems 
include QBIC (Flickner et a l , 1995), Virage (Bach et a l , 1996), Photobook (Pentland 

et a l , 1996), VisualSEEk/WebSEEk (Smith and Chang, 1996b, 1997), Netra (Ma and 

M anjunath, 1997) and PicHunter (Cox et a l , 2000) Content-based video retrieval re­

search followed with extensions to some of these image retrieval systems and also with 

the development of video retrieval systems such as MARS (Ortega et a l , 1997), VideoQ 

(Chang et a l , 1997), Video Mail Retrieval (Brown et a l , 1995) and Informedia (Wactlar, 
2000)

This early phase of video retrieval research has been enriched by the addition of 

common video collections and search tasks organised initially by NIST’s TREC-10 Video 

Track m 2001 This first TREC video track was later followed by annual TRECVid 

workshops that distributed larger and higher quality video collections In this chapter 

we will study the approaches to video retrieval that are for the most part tested on the 

TRECVid collections and which are currently focussed on TV news and documentary 

style material Previous approaches to evaluation of image retrieval systems are limited 

in applicability to this type of retrieval scenario This is in part due to the small size 

of collections involved m those evaluations but more significantly because of differences 

m the type of retrieval task being evaluated which often concerned texture retrieval or 
classification of images into homogeneous groups

The best single feature for effective retrieval of video is text, particularly text from 
automatic speech recognition (ASR) or closed caption text, at least for TRECVid col­
lections consisting of broadcast TV news programmes It is worth noting that the dom­

inance of text would be even greater if the TRECVid topics were less skewed towards 
visual retrieval When video retrieval is viewed as a text retrieval problem it seems 
rather small scale - video retrieval systems (and test sets) are many orders of magnitude 
smaller than the TREC Terabyte collection (Clarke et a l , 2005) m terms of their text 
content The recent TRECVid search test collections consist individually of nearly 3MB 

of ASR text (33,000 shot documents) compared to the TREC Terabyte search collection 
which contains 426GB of HTML text (25 million documents) However, video is more 

than just text and the challenge is to support users performing visually-oriented retrieval 

and to even improve on text-based retrieval by fusing it with results from audiovisual 

retrieval models
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Content-based video retrieval systems require a significant indexing effort m order to 

produce content descriptions that support retrieval This indexing phase involves struc­

turing the video content and extracting audiovisual features such as text, colour, edge, 
texture, motion, audio features and others The recent M PEG7 standard (Multimedia 

Content Description Interface) standardises these content descriptions to improve inter­

operability between video retrieval systems The standard is somewhat of a guideline 

for efficient video retrieval using compact video features The choice of audio and visual 

features m the MPEG7 standard has been guided by the major research groups involved 

m this research area and takes on board many years of experience and experiments m 

the video retrieval field but it should be noted that many of the image and video exper­

iments are based on small collections or tasks that bear little resemblance to general ad 

hoc video retrieval Many but not all of the successful visual features are based on the 

histogram (or a histogram-like feature), which is essentially a discrete probability distri­

bution and this fact will allow us m future chapters to frame content-based retrieval in 

terms of the (discrete) language modelling approach to information retrieval Current 

retrieval systems typically use geometric distances such as LI or L2 for similarity search 

on histogram features W ith such a wide variety of features available withm content- 
based video retrieval systems, fusion plays a significant role in the overall effectiveness 
of any video retrieval system

The rest of the chapter is organised as follows In Section 3 2 we describe video 

indexing which consists of structuring the video and extracting features to represent the 

video content We follow this in Section 3 3 with descriptions of the current state-of- 

the-art in video retrieval which consists of text-based retrieval, concept-based retrieval, 

visual-based retrieval, fusion and relevance feedback In Section 3 4 we describe the 

TRECVid evaluation framework for ad hoc video search Finally, m Section 3 5 we 

summarise our study of the current state-of-the-art m video retrieval

3.2 Video Indexing

Video indexing is the process of preparing video collections for retrieval Operational 
video retrieval systems use different levels of human involvement m the indexing process 
such as for categorisation of the content, adding rights management and structured de­

scriptions of constituent video segments In this thesis we concern ourselves with fully 
automatic indexing techniques Fully automatic indexing tools complement these man­
ual and semi-manual efforts by providing alternative retrieval functionality (e g visual 

query-by-example) as well as lessening the workload on manual indexers if integrated 
into semi-automatic indexing tools

Automatic video indexing involves supplementing any existing descriptions of the
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Figure 4: Overview of video indexing system.

content through content structuring and feature extraction, and creating efficient in­

dexes to support browsing and query-based retrieval. In our discussion of this area we 
will primarily discuss content structuring and feature extraction methods, while index­
ing structures such as efficient multidimensional indexes are outside the scope of our 
research. The purpose of video structuring is to expose the video’s semantic and physi­
cal structure (e.g. shot and story segmentation) so as to make it easier to index, browse 
and search, while feature extraction creates descriptions of the video content that are 
effective for retrieval. Zhang et al. (1995) present early research on video indexing (video 

parsing in their parlance) which they define as involving two key processes -  “the tempo­
ral segmentation of a video programme into its elemental units, and content extraction 

from those units, based on both video and audio semantic primitives.”

A typical video indexing system is outlined in Figure 4. Videos that are indexed 

originate from a source that invariably supplies some initial information. If the video
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collection is from a crawl of the internet then filenames, text from related web pages 

that link to the content, and timestamps provide an initial description of the content 

If the video is captured from broadcast television then the video can be supplemented 

with closed caption (CC) text encoded m the broadcast for the hearing impaired and 

programme information such as title, channel, timing and descriptions from the elec­

tronic programme guide for the captured programme Finally, if the source is a static 

collection, then existing descriptions may be available for the content in a variety of pro­

prietary or open standards such as MPEG7 A television archive may also have manual 

annotations and production information such as edit decision lists which identify the 

shot cuts available for its video content

The video indexing process converts the initial video description of the content into 

a fuller description that better supports retrieval The video is broken up into re­

trieval units such as scenes, shots, speaker segments that structure the content into 

more useful units for retrieval and indexing Image and video segments (keyframes and 

key-segments) can be further extracted to represent these retrieval units Features such 

as the speech text, on screen video text and low-level visual features such as colour, 

edge, texture, motion and shape are extracted from these representations of the video 

in order to create useful content-based indexes to search High-level features such as 

faces, people, animals and other specific types of objects and events can also be ex­

tracted with varying degrees of accuracy High-level audio features can be defined such 
as monologue, dialogues and music Feature extraction and content analysis tools pro­
vide the information that forms the basis of the indexes m video retrieval (see Figure 4) 

The output of the video structuring and extraction indexing process can be expressed 

m MPEG7 (MPEG7 Committee, 2002), which is a recent international ISO standard 
for audiovisual content description

The MPEG7 standard, Multimedia Content Description Interface, defines the syn­
tax and semantics of video descriptions Previous MPEG (Moving Pictures Expert 

Group) standards such as MPEG1 (video on storage media such as VCD), MPEG2 
(video for digital television and DVD) and MPEG4 (even higher compression of digital 

video that supports object-based encoding) concerned the encoding of the audiovisual 
signal, whereas the M PEG7 standard concerns the description of the video The M PEG7 
standard allows descriptions of video to be interoperable between video retrieval sys­
tems It also provides a clean interface to individual video indexing tools which can 
be viewed as a functional black box that takes as input the video, its initial MPEG7 

descriptions and outputs the updated MPEG7 description

The MPEG7 standard is broken up into five normative parts

• P art 1 MPEG7 Systems - binary format for encoding M PEG7 descriptions and 
terminal architecture
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Figure 5 Overview of the MPEG7 Multimedia description schemes, originally published 
in (MPEG7 Committee, 2002)

• Part 2 MPEG7 Description Definition Language (DDL) - extensions to XML- 

Schema for audiovisual descriptions

• Part 3 MPEG7 Visual - descriptions for visual features such as colour, texture, 
shape, motion, localisation and face recognition

• Part 4 M PEG7 Audio - descriptions for audio features

• Part 5 MPEG7 Multimedia Description Schemes (MDS) - general descriptions for 

content, its management, organisation, navigation, access and also user interaction 

(see Figure 5)

Descriptions within the MPEG7 standard are either Descriptors or Description 

Schemes Descriptors represent features withm the M PEG7 standard, while Description 

Schemes combine descriptors and other Description Schemes The MPEG7 Multimedia 
Description Schemes (MDS) defines the overall structure of an M PEG7 description for 

audiovisual content The mam components of the MDS are shown m Figure 5 The 
MDS allows content to be decomposed both temporally and spatially, thereby allow­
ing description of sub-units such as shots, objects or regions In Figure 6 we illustrate 
temporal, spatial and spatio-temporal segmentations supported by the M PEG7 stan­
dard Physical sub-units of the content may be described using the MPEG7 Visual 
and MPEG7 Audio parts of the standard, which define the Descriptors and Descrip­
tion Schemes for low-level visual and audio features The MPEG7 description format 

can be extended using the MPEG7 Description Definition Language (essentially XML- 

Schema) but extensions to the MPEG7 descriptions should be discouraged due to the 

inevitable incompatibility it introduces between consumers of the descriptions The 

M PEG7 System tools provide a mechanism for the M PEG7 standard, which is XML 

based, to be encoded m a compact binary representation and supports multiplexing and 

synchronising the description with the video content
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Figure 6: Segmentation of the audiovisual content.

In the following sections we describe the process of structuring video and extract­

ing features such as text, high-level concepts, visual features and audio features. We 

highlight the support within the MPEG7 standard for each of these indexing processes.

3.2.1 Structuring Video

Content-based retrieval requires that the video content be structured into meaningful 
and useful sub-units so as to better support content-based browsing and querying. There 

are many video segmentations possible for video content as illustrated in Figure 7. The 

video can be decomposed into stories, shots and speaker segments. Story segmentation 

is particularly useful for news videos since each story is usually independent of other 

stories in the same programme. Both shot and speaker segmentations are physical seg­
mentations that can be achieved with higher accuracy than story detection. A shot, a 
continuous sequence from a camera, is a useful retrieval unit since it is visually coher­
ent. A speaker segment, an uninterrupted sequence of utterances from a single speaker, 
provides a consistent audio unit. The shot and speaker segmentations are equally ap­
plicable to non-news content but stories, semantically separated segments, are not as 
strongly defined in other types of content. The semantic unit for non-news content may 

be a group of shots from the same scene or a group of shots from a DVD chapter when 

the source content is from a DVD.

Instead of text-based retrieval models being based on shots some video systems utilise 

speaker segmentation as the structure for text retrieval (Chua et al., 2005) or as part 
of a text retrieval structure (Rautiainen et al., 2005). Shots provide useful support for
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Figure 7: Illustration of the different segmentations of a television news programme.

Hard cut from one shot to the next

Dissolve from one shot to the next

Non-standard transition from one shot to the next

Non-standard transition from graphic shot to next shot

Hard cut from one shot to a split shot and hard cut to another shot.

Figure 8: Examples of different shot transitions.
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queries seeking video tha t shows some item of interest. General information seeking 

in news video would of course be better supported by news story segmentation, which 

identifies each story within a news programme, as it provides a better browsing structure 

and grouping structure for seeking information.

A more detailed segmentation of the video is required to support visual retrieval. 

Shots can be further decomposed into key-segments, keyframes and regions. Features 

are then extracted from these units that act as the index of the retrieval unit when per­

forming similarity or sketch-based querying. A key-segment is a temporal segment, while 

a keyframe is a single image from a shot. Most current video retrieval systems represent 

a shot by simply selecting a single keyframe. Key-Segments can be further decomposed 

into spatio-temporal regions that are visually coherent and likely to represent some ob­

ject or part of one in space and time. Likewise, keyframes can be further segmented 

into regions of the image that are visually coherent. This provides an even finer level of 
retrieval for objects or parts of objects that whole keyframe or key-segment representa­

tions cannot support. Unfortunately, region segmentation of general video content does 

not segment video frames into semantically meaningful regions and therefore is currently 

of limited usefulness in video retrieval.

Only a few video retrieval systems extract spatio-temporal features beyond motion. 

Rautiainen et al. (2005) create their spatio-temporal representation of video shots by 

sampling 20 video frames evenly over the bounded video sequence, and extract two vi­

sual features, a Temporal Colour Correlogram (Rautiainen and Doermann, 2002) and 
a Temporal Gradient Correlogram (Rautiainen, Seppanen, Penttila and Peltola, 2003). 

Westerveld et al. (2004) extract a one second spatio-temporal segment centred on the 
keyframe and model these 29 frames after converting each frame using the DCT trans­

form as a Gaussian Mixture Model. In nearly all other TRECVid video shot retrieval 

systems visual features (except motion) are extracted on keyframes.

3.2.2 Text D escriptions

There are three possible text indexes available within a video retrieval system -  the au­
tomatic speech recognition text (ASR text), the video optical character recognition text 

(video OCR text) and the closed caption text (CC text). The ASR text is a transcript 
of what is spoken. The video OCR text is a transcript of text that is visible within the 

video, which is commonly used in interviews and news reports to identify people, their 
title and location. Video OCR text can also contain text recognised from background 

objects within the frame and from advertisements. The CC text is a representation 

of what is spoken that is transm itted with the television programme as an aid for the 

hearing impaired. It is not normally a word-by-word transcription of what is spoken and 

sometimes includes change of speaker colour codings and identification of some audio
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events for general programmes (e g knock at door, phone rings)

These three source of text can complement each other The ASR is the fullest account 

of what is spoken withm the video The CC text can contain the proper spelling of 

named entities that may be incorrectly recognised m the ASR text due to being out of 
vocabulary terms The video OCR text is also useful as the text is often directly related 

to the people or location that is present in the video shot, whereas items mentioned in 

ASR text may not be present m the related shot

The standard IR text preprocessing is usually applied to the ASR, video OCR and 

CC text such as stopword removal and stemming These texts are easily aligned to shots 

as they are timestamped relative to the video In the case where the CC timestamps 
are missing, then they may be aligned with the video based on the ASR transcript 
(Rautiamen et a l , 2005, Ratcliff and Metzener, 1988) Even though the text resources 

are synchronised with the video, there is of course no guarantee that the items mentioned 

m the texts are visible m the related shots

Implicit m the use of text for video retrieval is tha t the spoken text and visual text 

indicates the visual content However, due to a time-delay problem, where concepts 

mentioned in the audio are not immediately visible m the corresponding shot, naively 

representing shots by only their ASR text can be quite ineffective

Cheng and Chen (2005) try  to correct the alignment problem for ASR nouns during 
content indexing by attem pting to find the relationship between ASR words and the 

shots’ automatically identified high-level concepts so as to associate the right ASR words 

to the right shot The nouns are identified by using a part-of-speech tagger and the 
distance between an ASR word and a high-level concept is the sum of the distance 
from a common ancestor m WordNet to each concept The majority of TRECVid video 
retrieval systems handle the alignment problem by some form of score propagation from 
adjacent shots at retrieval time

Text can easily be associated with different structural units in an M PEG7 video 
description by using the MPEG7 TextAnnotation description It is usual to represent 
ASR, CC, or video OCR text as simply an MPEG7 FreeTextDescnption within the 
TextAnnotation description The type of text and the confidence of its correctness can 
also be specified

3 2 3 High-Level Concepts

Another approach to video retrieval is to build an ontology of high-level concepts (seman­
tic features) that are useful for video search These high-level concepts can be detected 

offline during indexing using training data and other possibly concept-specific analysis
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Table 1 High-level features evaluated in TRECVid 2002, 2003 and 2004 Note some 
features are repeated m successive years

TRECVid 2003

TRECVid 2002 1 Outdoors, 2 Indoors, 3 Face, 4 People,
5 Cityscape, 6 Landscape, 7 Text Overlay, 8 
Speech, 9 Instrumental Sound, and 10 Mono­
logue
11 Outdoors, 12 News subject face, 13 peo­
ple, 14 building, 15 road, 16 vegetation, 17 
animal, 18 female speech, 19 car/truck/bus, 
20 aircraft, 21 news subject monologue, 
22 non-studio setting, 23 sporting event, 24 
weather news, 25 zoom m, 26 physical vio­
lence, and 27 Madeleine Albright 
28 Boat/ship, 29 Madeleine Albright, 30 Bill 
Clinton, 31 Tram, 32 Beach, 33 Basket 
scored, 34 Airplane takeoff, 35 People walk­
ing/running, 36 Physical violence, 37 Road

TRECVid 2004

tools making for very efficient and effective retrieval when the concept coincides with a 

user’s video query Examples of concepts for video search are outdoors, indoors, faces, 

people and cityscape The high-level features that are tested in TRECVid are shown 

m Table 1 and for the most part these TRECVid high-level features are high-level con­
cepts except the features concerning specific named people High-level concepts try  to 

bridge the semantic gap between the users’ video request and the low-level content-based 
representations

We will take a black-box approach to these high-level features and assume each 

feature has a list of shots with associated confidence values that reflect the belief of the 

concept-detector of the presence of the feature within the shot We will not concern 
ourselves with the details of feature detection (see Naphade and Smith (2004) for an 

overview of high-level feature detection approaches) High-level feature detection differs 
from video retrieval due to the relatively large amount of training data available and 
is more naturally a classification problem Since the high-level features are detected 
during indexing it is possible to have specific algorithms and heuristics chosen for each 

high-level feature General approaches to their detection use statistical models such 
as Support Vector Machines, Gaussian Mixture Models and Hidden Markov Models 
(Adams et a l , 2003)

Simple binary high-level features as used m TRECVid can be assigned to video clips 

by using the MPEG7 KeywordAnnotation description within the MPEG7 TextAnnota- 

tion description of a clip Confidence values can be assigned to the TextAnnotation to 

indicate the strength of the classifier’s belief that it is correctly assigned An MPEG7 

Classification scheme should be created to provide a controlled list of concepts and to 
describe their relationships to each other
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Figure 9: Spatial localisation of visual features, (a) No localision, (b) grid-based localisa­
tion, and (c) overlapping regions such as centre and corners.

3.2.4 Visual Descriptions

Low-level visual features such as colour, edge, texture and motion form the basis of 

query-by-example approaches to video retrieval. Colour is the most widely used feature 

and is also the most effective of the low-level features for TRECVid video shot retrieval. 

The texture features characterise the different spatial patterns within the video and edge 

features may indirectly characterise the shape of the objects within the video. High- 
level object-based features and even direct shape features have limited effectiveness for 

current video retrieval approaches since object segmentation is not yet mature enough 

to automatically segment real-world objects in general video collections.

The low-level visual features colour, texture and edge can be globally defined for a 
single keyframe, locally (spatially) defined for regular sub-regions of the keyframe, or 

even spatio-temporally (spatially and temporally) defined for a sequence of video frames. 
Global representations are the simplest and most common use of low-level features and 

represent the visual content of the full keyframe without localising the descriptions to 

specific spatial regions of the image.

Local representations of visual features can spatially localise the feature by breaking 
the image into regular regions (see Figure 9). The most common mechanism is to use a 

grid to break the image into rectangular regions and this is usually performed for either 
3x3, 4x4 or 5x5 regions. It is also possible to achieve some degree of spatial localisation 
through overlapping rectangular regions such as the four corners of the video frame and 
centre of a video frame (Amir et al., 2004). Usually both the query image and video 
keyframes have the same grid applied and matching is performed for the whole image, 
essentially adding the normalised x and y indexes of the grid (or region index in the 
case of overlapping regions) as extra dimensions to the low-level feature representations. 

Alternatively, each regular region of the keyframe can be treated as a sub-image and 

shots can be ranked based on the best sub-image that matches the query image (Wu 

et al., 2004).

Image features can be extended in the temporal dimension. From a strictly low- 
level visual feature point of view, it is the temporal dimension tha t distinguishes video
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retrieval from image retrieval Temporal extensions to colour, texture and edge features 

are calculated based on a sequence of images from a shot instead of a single keyframe 

In (Rautiainen et a l , 2005) their spatio-temporal colour and edge feature is created 

by sampling 20 video frames evenly over the video shot, whereas m (Westerveld et a l , 
2004) their spatio-temporal texture feature is created for a one second sequence of video 

frames centred on the keyframe For the majority of video retrieval approaches the 

temporal domain plays little role m direct video retrieval

Visual features are often defined m terms of a distribution across the image or video 

segment, which is quite naturally represented as histograms More generally features 

including histograms can be physically represented as a vector describing the visual 

content and similarity between query and documents can be defined m terms of the 

distance between vector representations In fact multiple features can be combined into 

a single vector representation for the visual segment, which is often referred to as early 

fusion of visual features, and the vector may be further preprocessed before calculating 
distances, such as normalising its entries by their variance (Hauptmann et a l , 2003) 

An alternative representation for features that have a continuous distribution is the 

Gaussian Mixture Model, which matches queries and video segments using probabilistic 

measures such as query-likelihood and document-likelihood (Westerveld and de Vries,
2004)

The benefit of the histogram representation of a distribution is that it is compact 

and efficient when the dimension of the feature being indexed is low It quickly loses this 

benefit for medium to high numbers of dimensions since its size increases exponentially 

with the number of dimensions In a multidimensional histogram the range of each 
dimension is divided into a fixed number of bins with fixed, though not necessarily 
uniform widths, and each feature point from the features distribution is assigned to the 
bm whose range contains it Histograms can form the basis of a discrete probability 
distribution though they are normally used in similarity based retrieval models with 
distance functions such as M anhattan and Euclidean distance

Gaussian mixture models (GMMs) are continuous probability models and represent 
multidimensional visual features by using a linear interpolation of Gaussian distributions 
that each have their own mean vector and covariance matrix The Gaussian Mixture 
Model is usually estimated during indexing time using the EM algorithm (Dempster 

et a l , 1977) The advantage of GMMs is that they are more compact than histograms 

for medium to high dimensional data and also their parameters are learned from the 

sample data  and therefore use their representation more wisely on patterns that are 

present m the sample distribution The mam problem with GMMs is that they are 

slower to index and retrieve from than histogram approaches
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In the following sections we describe colour, edge, texture, motion, face and spatio- 

temporal visual features that are commonly used m visual retrieval systems We also 

describe the M PEG7 descriptors tha t support each of these feature types We can view 

many of these features as describing visual languages of discrete symbols

3 2 4 1 Colour Descriptions

Colour is the most popular low-level visual feature m video retrieval Colour is our 

perception of light of different wavelengths that are within the visible spectrum (ap­

proximately 380nm - 750nm) Objects reflect and absorb different wavelengths of light 

and thereby we perceive them as coloured differently A light source (sun, incandescent 

bulb, or reflected light from say the moon) also emits light of different wavelengths and 

therefore the perceived colour of the same object m different lighting conditions will 

vary

Colour can be represented using different colourspaces such as RGB, YCbCr, HSV, 

XYZ, LUV, LAB, or Munsell The RGB colourspace is the hardware oriented model 

and is often used for rendering to the computer screen The YCbCr colourspace is 

another physical colourspace but used for encoded videos The HSV colourspace is a 

more perception-based model that separates the colour dimensions into Hue, Saturation 

and Value (Brightness) The XYZ colourspace is an international standard colourspace 

that can define any colour humans see with positive values of its three primaries The 

LUV and LAB colourspace are designed so that the same Euclidean distance between 
colours measures similarly different colours based on human perception Finally, the 

Munsell colourspace is more artistic-onented and is useful for selecting and organising 

colours

In the MPEG7 standard colour can be expressed using either the RGB, YCrCb, 

HSV, HMMD or Monochrome colourspaces In some of the MPEG7 visual descriptions 

a particular colourspace is mandatory The Monochrome colourspace is simply the Y 
component of the YCbCr colourspace The MPEG7 HMMD colourspace is a nonlinear, 
reversible transformation from the RGB colourspace and defines five dimensions - Hue 
(as m HSV), Max (max of R,G,B triplet), Mm (mm of R,G,B triplet), Diff (M ax — M m )  
and Sum ( )  In addition a linear transformation can be specified m the MPEG7 

standard tha t maps a colour descriptor’s colourspace from the RGB colourspace The 

quantisation levels of the different colourspaces can also be specified

Video and image retrieval systems often use the HSV colourspace for histogram rep­

resentations though many of the other colourspaces are equally valid choices Kirminen 

and Gabbouj (2000) compare RGB, HSV, LAB and XYZ colourspaces for image retrieval 

using human judgements on a small image collection (235 JPEG  images) with 8 query
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images For the colour histogram feature they find that HSV and RGB are superior to 

the LAB and XYZ colourspace and for the dominant colour feature they find that HSV 

and RGB are better than LAB Wan and Kuo (1996) find that HSV is superior to RGB 

for image retrieval

Like all visual features, colour features can be extracted globally for the full video 
frame, locally for spatial segments of a single video frame or for a series of temporally 

related video frames Localised features can be created for all colour features by simply 

breaking the image into a grid of sub-images The MPEG7 standard visual descriptions 

support very compact representation of the visual content, whereas regional grid-based 

colour histograms as used later in this thesis are generally many times larger than these 

representations

Common colour features m image and video retrieval are colour moments, dominant 

colours, colour sets, histograms, coherence vectors and correlograms Other global colour 

representations are Illumination Invariant Colour Descriptors ( 0 ’Callaghan and Bull,

2002), which were used m (Pickering et a l , 2003) for video retrieval The five colour 

features defined m the M PEG7 standard are Dominant Colour, Scalable Colour, Colour 

Layout, Colour-Structure and GoF/GoP Colour (Manjunath and Ohm, 2001) Many 

of these colour descriptions (MPEG7 Colour Layout, MPEG7 Colour Structure, colour 
correlograms, coherence vectors) model m some respect the spatial distribution of the 
colour distribution within an image and therefore can also be considered as texture 

descriptions

We will now describe each of these colour features

• C o lo u r M o m en ts  Colour moments provide a simple and compact representation 

of the colour of an image The k-th  moment M* for the 2-th  band of the colourspace 
is defined as

1  N

Mt = j f Y , p » > i tk  =  1> (65)
3=1

M"*= ^  ~ M^ k j  ’ otherwlse’ (66)

where p%3 is one of N  pixels in the image The first moment (average colour) and 
sometimes the second (standard deviation) and the third (skewness) are used m 

image retrieval These descriptions are ineffective for describing the colour of a 

whole image for video retrieval but are more appropriate for describing the colour 

of small or homogenous image regions The first moment (average colour) was 

extracted using the Munsell colourspace to describe whole images and segmented 

objects m the QBIC system (Flickner et a l , 1995) The first colour moment forms 
a bound on the more expensive histogram computation and therefore may be used
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to filter the whole collection into a smaller set before performing the more costly 

histogram comparisons (Hafner et a l , 1995)

• MPEG7 Colour Layout The M PEG7 Colour Layout description can be used to 

describe the spatial layout of colours in an image or region The average colour for 

each cell m a 8x8 spatial grid is calculated and the DCT transform is performed (see 

next section on texture features, p 59, for a description of DCT) Similar to the 

JPEG  standard, the most significant DCT coefficients, i e the DC coefficient and 

some of the low frequency AC coefficients are stored The Y, Cb and Cr channels 

of the YCbCr are transformed separately and normally more AC coefficients are 

kept for the Y luminance channel in comparison to the Cb and Cr colour channels

• Dominant Colours An extension to average colour description is to represent 

the image or region with a set of dominant colours

• MPEG7 Dominant Colour The M PEG7 Dominant Colour descriptor com­

pactly describes an image or an arbitrary region with a set of between 1 and 8 

colours Each dominant colour’s percentage covering of the image and its colour 

variance (a single bit indicating low-variance versus high-variance) is calculated 

The Dominant Colour descriptor can be associated with a colourspace and colour 

quantisation information that defines the discrete colour codes in the calculation 

of the dominant colours It also contains a single spatial coherence value on a 

31-point scale for all the dominant colours Dominant colour is therefore a limited 

but compact representation of the colour in a video segment, image or region It is 

more suitable for representing colours of objects or image regions where a limited 
number of colours may be sufficient than whole images (Ojala et al , 2002)

• Colour Sets Colour sets result from a bmansation of the colour histogram’s 

bins In VisualSEEk colour sets are generated from a 166 bin HSV histogram 

for whole images and their subregions (Smith and Chang, 1996a) Quadratic and 
other cross-bin similarity functions are more efficient when calculated on the binary 
representation of the histogram Similar to dominant colours and colour moments, 
this representation is more appropriate for subregions that have been segmented 
using an appropriate colour homogeneity principle than for representing whole 
images

• Colour Histograms Histograms are the defacto standard for representing colour 
information m an image and can model the joint distribution of the three colour 

channels or the marginal distribution of colour channels separately The attraction 

of colour histograms is that they are somewhat rotational and zooming invariant 

and can characterise the colour of the whole image across the full colourspace 

Quantisation of the colourspacc is used to reduce the space requirements of the 

histogram The colour histogram colour feature is represented in many different 

ways for current video retrieval systems As a global image feature it can be
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represented as an HSV histogram (Smith et a l , 2002, Hauptm ann et a l , 2003), as 

a LAB histogram (Worring et a l , 2004, Snoek et a l , 2005), a RGB histogram (Wu 

et a l , 2004) or an HMMD Colour Histogram (Pickering et a l , 2003) Independence 

is sometimes assumed between the different dimensions of the histogram (marginal 
distributions of colour channels) leading to compact representation for retrieval 

Local colour features such as a grid-based LAB colour histogram (Wu et a l , 2004), 

a grid-based HSV histogram (Smith et a l , 2002) and a grid-based Munsell and 

RGB histogram (Hauptmann et a l , 2002) are also used for video retrieval

• MPEGT Scalable Colour The MPEG7 Scalable Colour descriptor is an Haar 

encoded HSV histogram description of the colour of an image or region The 

colourspace and quantisation is constrained to the HSV colourspace with a uniform 

256 bins (16 hue x 4 saturation x 4 brightness) and is encoded using the Haar 

transform to reduce the space required to store the histogram as well as providing 

a means to encode only the most significant information Scalable colour is a 

compact representation of the global distribution of colour withm an image or 

region

• Colour Coherence Vectors Colour coherence vectors are a refinement of colour 

histograms that stores the number of coherent versus incoherent pixels for each 
quantised colour (Pass et a l , 1996) A colour is defined as coherent if it is part of 

a larger similarly-coloured region

• MPEG7 Colour Structure The MPEG7 Colour structure description is an 

histogram-like feature tha t describes the local structure of colour within the whole 

image It is calculated by sliding an 8x8 square structuring window over the image 
and incrementing the counts for each colour present m the window The HMMD 

colourspace is used with either 255, 128, 64 or 32 quantisation levels The Colour 
Structure Descriptor is used m (Pickering et a l , 2003) for TRECVid video shot 
retrieval

•  Colour Correlograms Another alternative to the histogram that incorporates 
spatial information is the Colour Correlogram, which describes the global distri­
bution of local spatial correlations of colours based on spatial distances between 
colour pixels (Huang et a l , 1997) The Colour Correlogram can be considered as 
partly a texture description as well as a colour description A colour correlogram 

defines for each colour pair < Oi,c3 > the probability of finding a pixel of colour 

c3 at a distance k from a pixel of colour m the image A set of distances are 

used to generate the correlogram Formally, the correlogram entry for the colour 

pair <  q , c3 > at distance k m image X is defined as

Correlogram(ct, c3, k) =  F (l(p 2) = c3\l(p i)  = (h A Z (p i,p2) =  &) (67)

where p\ and P2 are any two pixel indexes, T(p) defines the pixel colour index and

54



Figure 10 Texture examples from the Brodatz dataset (Brodatz, 1966)

l(pi,p-2 ) defines the distance between pixels A geometric based distance func­
tion is usually selected such as Manhattan, Euclidean, or even L00 The space 
requirements for a correlogram with N  colour values and D distances is 0 ( N 2 D) 
Due to the large space requirements, it is common to use a simplification of the 
Colour Correlogram called the autocorrelogram that models only the spatial corre­
lation between identical colours (1 e autocorrelogram(c,k) =  correlogram(c,c,k)) 
Darwish et al (2002) use a HSV Colour Correlogram for the TRECVid search 
task

Ma and Zhang (1998) compared colour histograms, moments, correlograms and co­
herence vectors and found that correlograms performed best for image retrieval Ojala 
et al (2002) compared the Colour Layout, Colour Structure, Dominant Colour and 
Scalable Colour MPEG7 descriptors with the HSV autocorrelogram for the retrieval of 
semantic image categories Eight categories covering 822 images in total were manually 
created from a collection of 2445 images In their experiment they let each of the 822 
images serve as a query They concluded that local spatial organisation of colours is im­
portant for retrieval -  the MPEG7 Colour Structure description performed best while the 
non-spatial MPEG7 Dominant Colour performed worst Overall the non-spatial Scal­
able Colour (global HSV Colour Histogram) was second best, performing better than 
the third best feature, HSV Colour Autocorrelogram, at all recall levels The Colour 
Layout performed second worst at high-precision but was best at high-recall This ex­
periment may have limited applicability to video retrieval due to its small size and the 
nature of the image collection and topics, which were based on image classification as 
opposed to video retrieval

3 2 4 % Texture Descriptions

In contrast to colour, which can be defined independently for single pixels, texture is 
considered a property of a local spatial neighbourhood within the image There is no 
exact definition of texture and it is more easily recognised than defined (see Figure 10 
for texture examples from the Brodatz texture dataset) We will loosely define image 
texture as patterns within a local spatial neighbourhood that can occur at different 
scales within the image

/

55



There are many competing types of texture representation such as statistical, geo­

metrical and signal processing Statistical methods include statistics extracted from a 

co-occurrence matrix of gray levels at different distances (Haralick et a l , 1973) Ge­
ometrical models of texture represent texture as repeated geometrical shapes and we 

do not discuss these further as they are not useful for the general video retrieval task 

Signal processing methods represent texture based on discrete image transforms, such as 

Gabor filters and DCTs, of the image or image tiles Gabor wavelets are currently one of 
the more popular methods of extracting texture for the video retrieval task (Hauptmann 

et a l , 2003) The MPEG7 standard contains three texture descriptions, Homogenous 

Texture, Texture Browsing and Edge Histogram While the edge feature is defined as a 

texture description m the MPEG7 standard, which it partly is, we will describe it m the 

next section on extracting shape descriptions We will now describe some of the texture 

representations used m image and video retrieval

• C o -o ccu rren ce  s ta tis tic s  Co-occurrence statistics of gray levels are one of the 

traditional methods of characterising the texture of an image A gray-level co­

occurrence matrix is first generated for pixels separated at a fixed vector (angle 

and distance) across the image and statistics of this co-occurrence matrix are used 
to represent the texture of the image Haralick et al (1973) proposed many such 
statistics including entropy, energy, contrast, homogeneity, sum mean, variance, 

correlation, maximum probability, inverse difference moment and cluster tendency 
Five of these statistics namely energy, entropy, contrast, homogeneity and corre­

lation are more popular than the others in image retrieval and these axe defined 

as

Energy  =  E E P ( ^ ) 2 (68)
* 3

Entropy = — 2 J 2 J  P(*ij)logP(z, j )  (69)
* 3

Contrast =  E E ( ' - j ) !p ( w )  (7°)
* 3

Homogeneity = Y L Y . l  i (71)
1 3

Correlation = Y Y  (* ~ Mt)0 ~ j )  (72)^  <xt * a ?i j J

where P(i, j )  is the probability of gray levels % and j  being separated spatially by 

the given vector (1 e a given angle and distance) that defines the co-occurrence

matrix, and p,3 are the respective mean gray-levels and au a3 are the respective

standard deviations In some representations, the co-occurrence matrix is calcu­
lated for a fixed pixel distance without a specified angle Howarth and Ruger
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(a) ID Gabor filter (b) 2D Gabor filter 

Figure 11: Example of a (a) ID Gabor filter and (b) 2D Gabor filter

(2004) compared energy, entropy, contrast and homogeneity statistics for differ­

ent parameterisations of the co-occurrence matrix on the Corel image dataset and 

found that the homogeneity statistic performs best for this image retrieval task.

• T am u ra  T e x tu re  Tamura et al. (1978) defined five features, three of which, 

namely coarseness, contrast and directionality, are popular in image and video re­

trieval (Equitz, 1993). Coarseness defines the largest size of the repeating texture. 

Contrast defines the gray-level range of the texture. Directionality quantifies the 

dominance of a specific direction within the texture. In both MARS (Ortega et al., 

1997) and the texture experiments of Howarth and Riiger (2004), they create a 

Tamura image which is the joint distribution of these three features at different 
pixel locations and they represent this feature using both marginal and multidi­

mensional histograms.

• M P E G T  T e x tu re  B row sing  The MPEG7 Texture Browsing description char­

acterises texture in terms of regularity, coarseness and directionality. Regularity 

is defined on a four point scale -  irregular, slightly irregular, regular and highly 

regular. Direction and Scale can be specified either once or twice if there are 

two dominant aspects to the texture. The texture’s scale is on a 4 point scale -  

fine, medium, coarse and very coarse. The texture’s direction can be specified as 

non-directional or on 30 degree increments. This highly compact texture descrip­

tion is more appropriate for browsing textured images (hence its name) than for 

supporting content-based querying.

• G a b o r  The Fourier transform represents an image in terms of spatial frequencies 
but is inappropriate for texture representation because the spatial frequencies de­
pend on every pixel in the image and are therefore not capable of representing 
texture that is localised at different spatial scales. A Gabor filter is a Gaussian 

envelope modulated by a sinusoidal plane wave (see Figure 11) and a bank of such 
filters at different scales and orientations can be applied to an image to extract 

a texture description. The scale of the Gabor filter (standard deviation of the 
Gaussian envelope) limits the spatial extent of the filter thereby localising texture 

extraction to a specific size within the image. The orientations of the Gabor fil­

ter defines the direction of the spatial frequencies to extract. The Gabor filter is
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Angular Centre Frequency (0r) 
0r = 30 x r

Figure 12: Frequency layout for the MPEG7 Homogeneous Texture descriptor, 

defined as
2 2

G(x, y) = r - i — (73)2'KGX(Jy

where and are the standard deviation of the Gaussian envelope and W  is the 

modulation frequency. Different scales and orientations of this filter are achieved 

by appropriate dilation and rotation of this function. Gabor filter banks improve 
on texture representation over the related Fourier transform due to the localisation 

of the spatial extent of the extracted frequencies. A Gabor wavelet is a Gabor 

filter bank containing a quasi-orthogonal subset of Gabor filters. Howarth and 

Riiger (2004) compared different Gabor filter banks on the Corel image dataset 

and found that 7x7 tiling (i.e. breaking the image into 49 image tiles) with a 

Gabor filter bank with 2 scales and 4 orientations performed best. They suggest 

that a higher number of scales may be more effected by noise at the coarser scales. 
For TRECVid video search Hauptmann et al. (2003) broke each shot’s keyframe 

into a 3x3 rectangular grid and used Gabor filters for 6 angles at a single scale 
and their central and second order moments were indexed.

• M P E G 7  H om ogenous T e x tu re  The MPEG7 homogeneous texture description 
represents the texture by the mean and standard deviation of the image intensity 
and the mean and optionally the deviation of the energy in 30 Gabor frequency 
channels. The Gabor frequency channels are laid out in 6 orientations of 30 de­

grees and 5 radial centre frequencies spaced in an octave scale (see Figure 12). The 

mean energy of each Gabor channel is defined as the log-scaled sum of the square 

of the Gabor-filtered Fourier transform coefficients of the image, while the en­

ergy deviation is the log-scaled standard deviation of the square of Gabor-filtered 

Fourier transform coefficients. The interested reader may find the formal defi­

nitions of these within the MPEG7 standard (MPEG7 Committee, 2002). The
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Figure 13 DCT basis functions

average and standard deviation of image intensity and Gabor energies are each 
uniformly quantised into 256 values

• DCT The DCT transform (Discrete Cosme Transform) is an alternative signal 
processing method to Gabor filters for texture representation This feature is 
similar to the MPEG7 Colour Layout feature but is normally extracted for small 
rectangular blocks (8x8 pixels) m the whole image instead of being extracted for 
the whole image as in the MPEG7 Colour Layout descriptor The DCT transform 
is similar to the Fourier transform but is computationally simpler and only models 
the real part (magnitude) of the Fourier transform The DCT transform F(u, u) 
of an 8x8 image block f(x,y)  is defined as

The distribution of the DCT coefficients in the rectangular blocks characterise 
the spatially localised texture within the image (see Figure 13 for visualisation of

feature as a joint colour and texture feature for image texture retrieval and mod­
elled its distribution using a Gaussian Mixture Model (GMM) The GMM model 
is learned using the EM algorithm (Dempster et a l , 1977) from the distribution 
of the image blocks’ DCT coefficients A diagonal covariance matrix may be as­
sumed for the GMM model to increase the speed of the iterative EM algorithm 
when indexing the image collection Baan et al (2002) combined this generative 
model, a Gaussian Mixture Model of multi-spectral DCT coefficients of keyframe 
images, with an hierarchical language model of ASR text and applied it to the 
TRECVid video search task Similar to the MPEG7 Colour Layout description, 
only the most significant DCT coefficients are modelled and normally more AC

where

each coefficient’s basis function) Vasconcelos and Lippman (1998) used the DCT
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coefficients are kept for the Y luminance channel m comparison to the Cb and Cr 

colour channels

Howarth and Ruger (2004) compared three types of texture descriptions, namely co­

occurrence statistics, Tamura features and Gabor filters for retrieval on the TRECVid 

2003 and Corel datasets Overall, the Gabor features performed best and the co­

occurrence statistics performed strongly They reported a relatively high Mean Average 

Precision (MAP) of 0 0431 on the TRECVid 2003 task for visual-only query-by-example 

searching when they combined the results of their Gabor feature with their HSV colour 

feature

3 2 4 3 Shape Descriptions

The shape of an object can be thought of as its silhouette Unfortunately, current au­

tomatic image segmentation techniques for general video content are not robust enough 

to segment real-world objects from images and video segments Instead homogeneous 
regions which are spatially connected and share a common colour or texture are usually 

extracted

An edge is an abrupt change m image intensity and can have both an associated 

orientation (direction) and magnitude The distribution of edges in an image provides 

limited support for shape retrieval Whereas colour is directly extracted from an image 

or video, edges are recognised using edge detectors such as based on the Laplacian, 
Prewitt, Sobel, Robmson, or Kirsch operators (Sonka et a l , 1998) The Canny edge 

detector (Canny, 1986) is one of the more effective standard edge detectors and has 

been used for trademark retrieval (Jam and Vailaya, 1998) The Canny edge detector 
is a three stage process First, the image is smoothed using a Gaussian convolution to 
remove noise and control the level of detail in the image Second, a 2D first derivative 

operator is applied to the image Finally, non-maximal suppression is applied by tracking 
the tops of ridges of the edge gradient and setting adjacent non-edge pixels to zero Edges 
are first identified by being above a high threshold and are tracked until the gradient is 
below a lower threshold - a process known as hysteresis

The edge representations used m visual retrieval include edge histograms, edge co­

occurrence matrices and edge correlograms The MPEG7 standard supports the de­
scription of the edges withm an image using an edge orientation histogram and also 

supports more direct encoding of the shape of regions and objects with the MPEG7 

Region Shape, M PEG7 Contour Shape and M PEG7 Shape 3D descriptors We will now 

describe these shape features

• Edge Histogram
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(a) V ertical (b) H orizontal (c) 45 degree (d) 135 degree (e) Non-
d irectional

Figure 14 MPEG7 Edges

An edge histogram can represent the distribution of edge orientations and edge 

strengths within an image It is usual to model the non-occurrence of edges m the 

histogram and also to ignore the strength of edges in the histogram representation 

(Hauptmann et a l , 2004) recognised edges using the Canny edge detector and 

simply represented the edge by its quantised direction, while Smith et al (2002) 

used the Sobel edge filter with 8 angles and 8 magnitudes for video retrieval Wu 

et al (2004) segment the TRECVid keyframes into a 4x4 grid before extracting 
an edge direction histogram for the TRECVid search task

• MPEG7 Edge Histogram The M PEG7 Edge histogram counts the number of 5 

different edge types m 16 rectangular regions (4x4 grid) of an image The edges are 

vertical, horizontal, 45 degrees, 135 degrees and non-directional (see Figure 14) 

The histogram bins are normalised by the number of pixels m the source image 

and therefore indirectly represents the number of non-edge pixels The histogram 

bins are non-lmearly quantised into 8 values each Won et al (2002) evaluate 

the MPEG7 Edge histogram feature using 51 image queries on an image set of 

11639 images from the MPEG7 Core Experiment They find that using global 

and semi-global histograms extracted from the local edge direction histograms m 

the similarity function improves image matching performance over just using the 

local edge histograms

• Edge Co-Occurrence Matrix Similar to colour, the edge histogram feature can 
be extended to model the co-occurrence of edges types The edge co-occurrence 
matrix models the distribution of edge pairs m their local neighbourhood through­
out the whole image Brandt et al (2002) suggested this feature with 8 edge direc­
tions (8x8 co-occurrence matrix) and evaluated it for recognising different shapes 
(aircraft, buildings, faces)

• Edge Correlogram The correlogram feature, which we previously discussed for 

modelling colour, can also be applied to the global distribution of local edge cor­

relations This model was further applied to a sequence of images m which it 
was referred to as the Temporal Gradient Correlogram (Rautiainen, Seppanen, 

Penttila and Pel tola, 2003) For this type of Gradient Correlograms, the edges 

were detected using the Prewitt edge detector for four edge orientations and an
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autocorrelogram was generated for 4 spatial pixel distances (1, 3, 5, 7) measured 

using the L 00 norm

• M P E G 7 R eg ion  S h ap e  The M PEG7 Region Shape feature describes the shape 
of an arbitrary object, which does not need be fully connected and can contain 
holes The shape of the region is stored as 35 normalised and quantised magnitudes 

of ART (Angular Radial Transform) coefficients The 35 magnitudes consist of the 
shape’s response to 12 angular and three radial functions The interested reader 

may find more information on this and other M PEG7 shape descriptors m (M PEG7 

Committee, 2002)

• M P E G 7 C o n to u r  S h ap e  The M PEG7 Contour Shape descriptions represents 

the shape of a closed contour of a 2D image region The shape is represented m a 

Curvature Scale Space and is smoothed with a filter until it becomes convex The 

MPEG7 Contour Shape description specifies the circularity and eccentricity of the 

original shape and of the shape after termination of the filter The highest peak 

and optionally up to 62 less prominent peaks of the Curvature Scale Space image 

are stored

•  M P E G 7 S h ap e  3D  The MPEG7 Shape description allows 3-dimensional shapes 
to be described with a 3D mesh model

Brandt et al (2002) compared indirect shape features such as the histogram of 8 
edge directions, the co-occurrence matrix of edge directions and the decimated Fourier 

transform of the edge image that characterise the shape of objects within an image but 
do not require image segmentation They evaluated these ‘shape’ features on the task 

of detecting images containing aircraft, buildings and faces and found that their best 

results were given by the decimated magnitude Fourier spectrum of the edge image and 

tha t the edge co-occurrence matrix of edge directions also achieved good results They 

suggest with some support from their experiment’s results that invariance of features 

to all affine transformations (rotation, translation and scaling) has a negative effect on 
retrieval/classification performance for general image collections

To truly model the shape of 3D objects projected onto 2D representations is far more 
difficult than we have discussed here Edge-based features are an indirect representation 
of the shape of objects within a scene and m practice may strongly characterise the 

texture of the object more so than its outline silhouette Indeed the 2D silhouette of an 

object varies considerably depending on the angle that the 3D object is viewed from 

The shape of an object also varies as the object or parts of it moves (e g a static camera 

view of a hand varies considerably as the person opens and closes his fist) We can also 

view the shape of an object as being characterised by the shape of its parts but it is 

extremely difficult m an ad hoc retrieval task to automatically extract the component 
shapes and their inter-relations from a small set of query images The statistical analysis
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Figure  15 Illustration of MPEG7 Camera motion -  reproduced from (MPEG7 Committee, 
2002)

of shapes, such as with Active Shape Models (Stegmann and Gomez, 2002), provides a 

richer representation of the shape of objects but requires larger amounts of annotated 

training data than is usually available in ad hoc retrieval scenarios These more advanced 

shape models may be usefully applied at the video indexing stage m order to identify 

object classes (e g vehicles, people, buildings) that would be useful to users at retrieval 

time

3 2 4 4 Motion Descriptions

The temporal dimension distinguishes videos from still images The motion of the video 

camera and objects withm a video shot are sometimes im portant factors for users search­
ing for video m order to reuse video segments in a new production Video retrieval is an 

interactive process of querying and browsing and in many video retrieval systems motion 

is not supported m the specification of visual queries Users in these systems are reliant 

on browsing and playback of their video retrieval results m order to discern their motion 

Representation in the user interface of the constituent motion, video mosaicmg (Irani 

et a l , 1996) and video skims of the retrieved video segments (Smith and Kanade, 1995) 
provide browsing structures that may support users in quickly distinguishing between 
video retrieval results m terms of their constituent motion

The MPEG7 standard supports the representation of camera motion and three object 
motion descriptors namely MPEG7 Motion trajectory, M PEG7 Parametric motion and 
M PEG7 Motion activity We will now describe these motion features

• M P E G 7  C a m e ra  m o tio n  The MPEG7 Camera motion descriptor characterises 

the 3-dimensional motion of the video camera Supported camera motions include 
fixed, panning, tracking, tilting, booming, zooming, dollying and rolling (see Fig­

ure 15) The described shots can be broken up into sub-shots with different camera 

motion defined for each of these temporal segments The atomic camera motion 

types may be combined to describe the effective motion of the camera m a partic­
ular sub-shot The M PEG7 Camera motion feature also includes the specification
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of the speed of induced image motion and the focus of expansion or contraction 

m cases where the camera is dollying or zooming The focus point is the point in 

the image where the camera is centrally focussed when zooming or dollymg

• MPEGT Motion trajectory The MPEG7 Motion trajectory descriptor allows 

the 2D and 3D trajectory of moving regions within video segments to be specified 
using key-pomts The motion trajectory between these key-pomts is interpolated 

using a velocity model that may optionally include acceleration

• MPEG7 Parametric motion The MPEG7 Parametric motion descriptor sup­

ports the description of global and object motion using 2D parametric geometric 

models such as translation, rotation, affine, perspective and quadratic models The 
parametric motion descriptor may be associated with an MPEG7 Moving Region 

and motion is measured m terms of pixel displacement

• M PEG7 Motion activity The MPEG7 Motion Activity description consists of 

five features, namely intensity, dominant direction, spatial distribution, spatial 

localisation and temporal distribution, that may be calculated from the motion 

vectors within a video sequence Motion intensity is measured on a five point 

scale, while the dominant direction of the motion activity is quantised into 8 
directions The spatial distribution of motion activity is measured in terms of 

the number of short, medium, and long runs of zero motion within the video and 
indicates whether the motion activity is spread across multiple spatial locations or 

is localised to a single region The spatial localisation feature models the spatially 

localised motion intensities over the duration of the video segment The video is 

broken into either 2x2, 4x4, 8x8, or 16x16 pixel sized blocks and this description 

quantises the average intensity over the whole video segment of each individual 

sub-image block into 8 values The temporal distribution feature characterises the 
activity pattern over the duration of the video sequence using a 5-bm histogram 

of the intensity values of motion within the video sequence

It is envisaged m the M PEG7 standard that video cameras could directly record 
and encode their camera motion as m etadata associated with the captured video At 
present however, the computation of optical flow fields forms the basis of many current 
techniques for determining camera and object motion (Akutsu and Tonomura, 1994) 
Optical flow is an approximation of image velocity on the 2-dimensional image plane -  see 

(Beauchemm and Barron, 1995) for a review of optical flow methods The principle for 

using optical flow to detect camera and object motion is the assumption tha t dominant 

motion of the video’s optical flow field can be associated with the camera motion, while 

localised optical flow that differs from this can be associated with objects Determining 
camera and object motion automatically from video is currently a challenging research 
topic
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Camera and object motion has been integrated into several video retrieval systems, 

e g  SWIM (Zhang et a l , 1997), VideoQ (Chang et a l , 1997) and QBIC (Flickner 

et a l , 1995), but there has been no systematic empirical evaluation of different object 
motion techniques for general video retrieval It is probable that motion is a feature 

tha t must be selectively chosen in video retrieval when performing query-by-example 
searching The VideoQ system is one of the earliest video retrieval systems to incor­

porate automatic object motion detection and to support motion-based retrieval It 

automatically recognises object motion from analysis of the optical flow, smoothes the 

recognised trajectories using Mallat wavelets (Mallat, 1991), segments the trajectories 

at their points of maximum acceleration and indexes each sub-trajectory by its order, 
arc length, edge points and its acceleration and velocity in the x and y directions (Chen 

and Chang, 2000) Matching a trajectory at retrieval time is achieved by first matching 

sub-trajectories using Mahalanobis distance (see Section 3 3 4) of all attributes except 

order and then combining results based on the order attribute

3 2 4 5 Face Descriptions

Face detection and recognition functionality potentially provides a useful semantic index 

to aid searching and browsing of video collections Unlike standard face matching from 

frontal passport photographs, face matching from general video content is far more 
challenging since faces can appear in many different lighting conditions, sizes, poses, 

facial expressions and poorer image resolutions Most research into face recognition 

concerns still images with face recognition m video sequences receiving less attention -  

see (Turk and Pentland, 1991, Shio and Sklansky, 1991, McKenna et al , 1997, Torres 
and Vila, 2001) for research on face recognition using video sequences

The MPEG7 Face Recognition descriptor, which is based on the popular Eigenface 

approach (Turk and Pentland, 1991), provides a standard method for describing faces 

Other approaches to face detection and recognition identify parts of the face such as eyes, 
nose, mouth and ears and model their relationship with for example a graph (Wiskott 
et al , 1997) Comprehensive surveys on different techniques for face detection and 
recognition can be found m (Chellappa et a l , 1995, Yang et a l , 2002) We will briefly 
describe the Eigenface and related MPEG7 Face Recognition descriptor

• E igenfaces In the Eigenface approach to face detection, face images are scaled 
to a common size and principal component analysis (PCA) is performed on the 

group of images (Turk and Pentland, 1991) PCA produces a set of orthogonal 

Eigenvectors that are ordered by their discrimination power as measured by their 

respective eigenvalue A fixed number of the top Eigenvectors are retained pro­

viding a face discrimination space of reduced dimensionality that retains much 
of the discrimination power for the original set of face images Face matching is
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performed by projecting a test face image into this Eigenface space and measuring 

the distance between it and existing indexed faces using typically either Euclidean 

or Mahalanobis distance (Lorente and Torres, 1999)

• M P E G 7 Face R eco g n itio n  The MPEG7 Face Recognition descriptor is a spe­

cific instance of the Eigenface approach (1 e with a fixed image size and prespeci­

fied basis vectors) The face is first extracted from the video frame and represented 

as luminance values withm a normalised 46x56 face image This image vector is 
projected onto a different basis and then normalised and clipped to produce a face 

vector of 48 values, which is further quantised to a 5-bit range for each value

Automatically indexing faces m video requires two stages of video processing - face 

detection and face recognition Face detection is the first stage and involves identifying 

regions of video frames that contain faces Candidate face regions can be identified by 

locating skin coloured pixels in the image tha t form a connected region in the shape of 

a face and an Eigenface projection of these regions can be used to verify whether they 

actually contain a face (Czirjek et a l , 2003) Video retrieval systems generally stop at 

detection and simply index by the number and possibly size of the faces found in each 

keyframe due to the previously mentioned difficultly of face recognition techniques m 

general video collections

Chen and Hauptmann (2004) performed face recognition using Eigenfaces for a sub­

set of five TRECVid 2003 person-finding topics They supplemented these TRECVid 

person queries with extra varied face images of the target person and also indexed all 

faces in all I-Frames of the shots m order to reduce the problem of faces appearing 
m different poses I-Frames are video frames that are independently encoded in the 
MPEG1 video stream with relatively high quality compared to other frames and occur 
regularly in the video stream, typically around one every 12 frames The inclusion of 
face recognition increased the mean average precision by 8 5% (MAP 0 420 compared 

to 0 387) for the set of five tested person finding topics While these results are for 
a very small set of topics and are not directly applicable to person queries with few 

visual examples, they indicate that there is merit m integrating current face recognition 
techniques into general video retrieval systems

3 2 4 6 Spatio- Temporal Descriptions

There are not many spatio-temporal feature models beyond object and camera motion 

models currently m use m video retrieval In fact the temporal dimension is generally 

under-utilised for video retrieval with nearly all video retrieval systems converting video 

retrieval into a form of still image retrieval by the process of shot segmentation and 

keyframe extraction
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The potential advantage of using features extracted from video sequences instead 

of a single keyframe is tha t the extracted description may be more likely to represent 

the shot and is less dependent on the keyframe selection method If the feature vanes 

significantly throughout the shot then extracting multiple keyframes or multiple key 

video sequences may be more effective than trying to represent the shot by a single 

feature representation averaged over the shot

The previously described spatial features can be extended to represent spatio-temporal 
image sequences simply by averaging or aggregating the representation over multiple im­

ages There are a few extensions of colour, edge and texture descriptions that have been 

applied to video sequences as opposed to keyframes for the video retrieval task, which 

we now describe

• M P E G 7  G o F /G o P  C o lou r The MPEG7 G oF/GoP (Group of Frames/Group 

of Pictures) Colour description uses the MPEG7 Scalable Colour descriptor to de­

scribe the average, median, or intersection HSV histogram of the colour of a group 

of frames or pictures It does not explicitly model the temporal dimension but al­

lows an M PEG7 Scalable Colour descriptor (Haar encoded HSV colour histogram) 

to be associated with a spatio-temporal video segment

• T em p o ra l C o lou r C o rre lo g ra m  The Temporal Colour Correlogram, an exten­

sion of the HSV Colour Correlogram, models the spatial relationship of colours in 

a video sequence with co-occurrence statistics (Darwish et a l , 2002, Rautiamen 
and Doermann, 2002) The feature is extracted from 20 frames evenly distributed 

within the video shot and the auto-correlogram was generated for a set of colours 

at 4 distances (1, 3, 5, 7 pixels) This model also does not explicitly model the 
temporal dimension of the colour m the video sequence

• T em p o ra l G ra d ie n t C o rre lo g ra m  Rautiamen, Penttila, Pietarila, Noponen, 
Hosio, Koskela, Makela, Peltola, Liu, Ojala and Seppanen (2004) extract a gra­
dient (edge) correlogram from a series of frames from the same shot Similar 
to the Temporal Colour Correlogram, this feature was extracted from 20 evenly 
distributed frames and did not explicitly model the temporal dimension in the rep­
resentation The correlogram was generated for 4 edge orientations at 4 distances 
(1, 3, 5, 7 pixels)

•  D y n am ic  G M M  D C T  Wester veld et al (2004) extend their GMM generative 

model for spatial DCT-based joint colour and texture feature representations to 

include the temporal dimension This was achieved by adding the time dimension 

to the feature vector and sampling 29 frames, 14 frames before and after the 

keyframe This model is further extended m Ianeva et al (2005) by incorporating 

a full co-variance model instead of a diagonal covariance model in the Gaussian 
Mixture Model The full co-variance model frees the components of the GMM
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mixture from having to be aligned with the feature axis, which is the case for a 

diagonal co-variance model

Comparisons of these spatio-temporal representations with their related spatial-only 
representation have not shown significant improvements m retrieval effectiveness Ianeva 

et al (2004) compared the spatial-only GMM DCT representation with the dynamic 

spatio-temporal GMM DCT representation and report the same MAP of 0 022 but a 

higher precision at document cut-off 10 for the dynamic model (0 096 compared to 

0 076) on the TRECVid 2003 collection In TRECVid 2004 the dynamic model with 

full covariance was compared with the spatial-only model (Ianeva et a l , 2005) and the 

dynamic model achieved a slightly higher MAP of 0 010 compared to 0 008 but lower 

precision at document cut-off 10, 15, 20 and 30 Temporal colour correlograms are 
compared with colour correlograms for the TRECVid 2001 search tasks in (Rautiamen 

and Doermann, 2002, Darwish et a l , 2002) and were found to be many times better 

than colour correlograms though this is maybe the result of a poor keyframe selection 

method since their keyframe selection method chose the first frame of the shot, which 
is perhaps a poor choice (middle would be safer) as this could be affected by gradual 

transitions

The spatio-temporal features that we have described have very restricted represen­

tation, if any, of the temporal patterns of the visual features Temporal textures are 

an alternative spatio-temporal feature tha t seek to represent textures that are strongly 
defined m the temporal dimension such as flowing water, flames and foliage (Nelson and 

Polana, 1992) The motion of crowds of people as viewed from a distance may also be 

categorised as a temporal texture (Bouthemy and Fable, 1998) Temporal textures may 

be useful for content-based search but as yet this type of feature has not been explored 

for the TRECVid general video search task

3 2 5 Audio Descriptions

In TV news, documentary and general television video collections the primary informa­
tion m the audio channel is speech, which as previously mentioned has been shown to be 
the most effective single feature for the visually oriented TRECVid search tasks Speech 
can be recognised using an automatic speech recogmser and thereby transformed into a 
textual description Most further use of the audio stream in video retrieval is m speaker 

segmentation and the detection of high-level features such as speech, instrumental sound 

and monologue segments

There is a limited amount of research that has investigated the use of audio features 

directly in content-based video search systems In TRECVid 2002 Adams et al (2003) 

transformed the uncompressed audio stream into 24 Mel-Frequency Cepstral Coefficients
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Figure 16: Overview of video retrieval system.

(MFCC) which describe the acoustic energy in different frequency bands and made 

this feature available to all TRECVid participants in the manual and interactive search 
experiments. In TRECVid 2004 Ianeva et al. (2005) modelled the distribution of MFCCs 

in shots using their generative Gaussian Mixture Model approach but found tha t their 

GMM MFCCs feature did not perform well and in fact decreased performance when 

combined with other features.

3.3 Video Retrieval Models

In the previous section we described the features that can be indexed to support video 
retrieval while in this section we will discuss the video retrieval process itself. We il­
lustrate the components of a state-of-the-art video retrieval system in Figure 16 for 
handling a multimedia query consisting of a text description, high-level concepts and 
multiple audiovisual examples such as images and video clips. There are three main 
stages to handling a multimedia query: query preprocessing, query matching and rele­

vance feedback.

Retrieval systems may first preprocess the query by extracting any required features 

from audiovisual examples that are used in the query but are not part of the indexed col­
lection. The query may also be automatically classified into predefined query categories 
that define the initial set of features and fusion settings for matching the query and
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retrieval documents An example set of query-classes might classify a query as a request 

for named persons, named objects, general objects and scenes (Hauptmann et a l , 2004, 

Yan et a l , 2004) Alternatively, the user may have pre-specified the query-class or some 

matching preferences when composing the query

The next stage is to generate an initial ranking of video retrieval units m response to 

the query This involves first separately matching each query feature and query example 

with the retrieval units and then fusing these separate scores into a single result list In 

most retrieval experiments the video retrieval units are generally camera shots though 
m practice users may prefer retrieval units such as videos, stories, or sequences of shots 

for some types of queries The text query may be matched against multiple text indexes 

such as automatic speech recognition (ASR) text, closed captions (CC) text and video 

optical character recognition (video OCR) text The query’s visual examples may be 

matched using low-level visual features such as colour, edge, texture, motion as well 

as higher-level features such as segmented objects or faces The query may also be 

matched to retrieval units based on semantic concepts, video m etadata and other audio 

features All these feature matching results associate a retrieval score to each retrieval 

unit These scores are fused into a single result for example (the order of fusion tasks is 

not essential) by combining all text scores into a single result, combining visual feature 

scores into a single result for each query example, then combining all query example 

scores into a single visual result and finally by combining all multimodal scores such as 

for text, visual, audio, concepts and m etadata

After creating the initial ranking, it may be beneficial to perform pseudo-relevance 
feedback, which usually assumes that the top ranked documents are relevant and/or 

the low ranking documents are non-relevant Pseudo-relevance feedback facilitates the 
reweighting and expansion of the components of the query For example the query text 

may be expanded or high-level concepts tha t provide corroborative information with 
the initial results may be added to the query using text or high level concepts taken 

automatically from the underlying top-ranked video shots The retrieval results are 
presented to the user whom may also provide more reliable relevance information on 
which the retrieval system may base more effective relevance feedback upon

In the following sections we will describe the key processes in a video retrieval system 
query pre-processing, text matching, concept matching, visual matching, fusion and 

relevance feedback

3 3 1 Query Preprocessing

A recent advancement m query pre-processing is the automatic classification of video 

retrieval requests into predefined search categories (Hauptmann et a l , 2004, Yan et a l ,
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2004, Chua et a l , 2005) The classification of queries can be based on the general type 

of visual items requested, such as requests for named persons, named objects, general 

objects and scenes (Hauptmann et a l , 2004, Yan et a l , 2004), or can be based on genre 

specific categories such as person, sports, finance, weather, disaster and general queries 

for the television news genre (Chua et a l , 2005) In both these approaches the topic 

was identified with the correct query-class through automatic analysis of the query text 

This approach complements pseudo-relevance feedback mechanisms as it attem pts to 

achieve a better initial ranking of results, whereas pseudo-relevance feedback attem pts 

to improve this initial ranking

The advantage of using query-classes is that it allows a retrieval system to autom at­

ically use appropriate retrieval strategies, features and weights for a given topic This 

enables features that are helpful for specific types of topics to be activated appropriately 

and both feature selection and fusion weights can be trained using sets of pre-classified 

topics with associated relevance judgements Alternatively, possibly separate search en­

gines that use different techniques can be used for specific types of queries W ithout 

classifying topics, all topics m the video retrieval system are treated the same leading 

to possible sub-optimal use of the available features

The success of the query classification approach depends on how coherent the video 

retrieval requests are within their specific categories The most coherent category is 
finding a specific person, which would most likely make more use of face detection 

and recognition, speaker identification and specific models for aligning ASR and video 

OCR named entities with the features The limits are that general categories (general 

objects and scenes) are extremely broad and these topics are unlikely to be improved by 

a significant amount from this general classification other than the beneficial effect of 

having specific categories such as people removed from consideration Yan et al (2004) 

achieve very good performance for query-class dependent weights on the TRECVid 2003 
dataset with a reported MAP of 0 20 which is an 11% improvement on using the single 

best oracle weight for combining modalities for all topics (MAP 0 18) and considerably 
better than their text-only (MAP 0 15) and their standard multimodal run (MAP 0 14) 
They used the same set of topics on a related but separate collection to tram  the weights 

of the query-classes and therefore these improvements are likely over-estimated than 
would be the case if a completely independent set of topics were used to tram  the query- 

classes This may explain why the large performance increase was not repeated when 
they applied the same technique on the TRECVid 2004 search task

3 3 2 Text-Based Video Retrieval

Text retrieval is the most successful retrieval modality for TRECVid video retrieval The 

ASR text feature is the single best performing feature in successive TRECVid search
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experiments

The actual retrieval models for most video retrieval systems are the same as for 

standard text retrieval and most systems use BM25 (Smith et a l , 2002, Hauptmann 

et a l , 2002, Cheng and Chen, 2005), though others use TF-IDF (Heesh et a l , 2005) and 

hierarchical language models (Westerveld, de Vries and van Ballegooij, 2003) Hierar­

chical language models extend the Jelinek-Mercer (linear interpolation) language model 

by smoothing the shot model with the adjacent text from a window of shots, the video 

text, and, as usual for a language model, the background collection text model This 

model has performed consistently well compared to other models for the TRECVid ex­
periments (Baan et a l , 2002, Westerveld, de Vries and van Ballegooij, 2003, Westerveld 
et a l , 2004, Ianeva et a l , 2005, Smeaton et a l , 2004a)

Smoothing using adjacent text reduces problems caused by the time-delay problem 

where entities are mentioned before and sometimes after they appear in the related shots 

Other approaches to handling the time-delay problem include adding the text from 

adjacent shots to the shot representation (Heesh et a l , 2005), combining the retrieval 

score of the shot with a window of adjacent shots and the video text (Baan et a l , 2002), 

retrieving shots based on speaker segments and mapping back to shots (Quenot et a l ,

2005), and propagating the shot’s score to adjacent shots using a decay function (Chen 

and Hauptmann, 2004)

3 3 3 High-Level Concept-Based Video Retrieval

Somewhat unlike free text queries, concepts are generally binary m the query when they 
are used, l e they are either present or not In some systems querying based on the com­

plement of the concept is also supported (Snoek et a l , 2005) Query-class approaches to 
query pre-processing can supplement the query representation with additional concepts 

that are relevant to the information need such as adding a person and a face concept 
to a request for a specific person As noted by Snoek et al (2005) concept-based search 
is very useful when the search topic has a high overlap with an indexed concept Also 
cross-modal pseudo-relevance feedback can attem pt to identify high-level concepts that 
are correlated with the initial result list and are therefore possibly useful m improving 
the search results (Hauptmann et a l , 2004)

Rautiamen et al (2005) combine 100 semantic concepts from the IBM VideoDIG 
project 1 m rank-based video retrieval For each concept the top 2000 shots are used 

and the confidence score is normalised based on rank Queries for multiple concepts sum 

the normalised confidence scores of the individual concepts Rautiamen et al (2005) 

found that using 2000 results for each concept under-represents some concepts that occur

1 V ideo D ense In fo rm ation  G rid ing  (V ideoD IG ), h ttp  / /w w w  research lbm  co m /V id eo D IG /
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more frequently and over-represents other features that occur very infrequently This is 

in fact a general problem with supporting concept-based searching It is necessary to 

normalise each concept’s confidence scores so that they can be reliably combined with 

each other and with other modalities but to normalise the scores it is necessary to know 

either the true distribution of the feature within the collection or a reasonable cut-off 

point for the feature Unfortunately, the cut-off confidence values varies from feature to 

feature and the frequency of a feature depends on the collection

Concepts can also be used as supplemental information for query-by-example search­

ing Amir et al (2005) combine 46 dimensional semantic confidence weights corre­

sponding to high-level features with low-level features for both query images and shot 

keyframes Query-by-example is supported by simply calculating the distance between 

these augmented query and shot vectors

3 3 4 Visual-Based Video Retrieval

While visual features are semantically very different m modelling colour, texture, shape 
and motion, they predominantly are represented as either vectors or histograms The 

defacto standard for comparing vector and histogram representations in visual retrieval 

systems are the Minkowski distance measure and M anhattan and Euclidean distance 
Many alternatives measures such as Histogram intersection, the information theoretic 
measures Relative Entropy and Jensen-Shannon distance (Jeffrey divergence), the x 2- 

statistic, and the probabilistic measures of query-likehhood and document-likehhood 
have also been used for computing histogram similarity Measures tha t take into account 

the cross-correlation or cross-similarity between histogram bins such as Mahalanobis 

distance, Quadratic distance and Earth Mover Distance have also been proposed for 
visual retrieval but are less efficient to compute We will now describe each of these 
similarity/matching models

Minkowski form distances In visual retrieval, vectors or histograms representing 
the visual content of the queries and documents are usually compared using Minkowski 
form metrics such as Euclidean distance (Hauptmann et a l , 2004, Pickering et a l , 2003, 
Snoek et a l , 2005) and M anhattan distance (Rautiainen, Penttila, Vorobiev, Nopo- 

nen, Vayrynen, Hosio, Matmmikko, Makela, Peltola, Ojala and Seppanen, 2003) The 
Minkowski distance,

<M q,d) = , (75)

is the M anhattan distance (L\  norm or city block diatance) when p =  1, the Euclidean 

distance (¿2 norm) when p  =  2, and the maximum distance between vector elements 

(Loo norm) when p — oo Minkowski distances are distance metrics when p > 1
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Puzicha et al (1999) investigated these measures and concluded that overall L\ was 

better than L 2 and tha t both measures were better than L o© m their texture and colour 

classification experiments The superiority of L\ over L2 was not universal m all their 

tested feature configurations and m particular their results showed that for a small LAB 

colour histogram L2 marginally out-performed L\

Fractional distances Fractional distances (Aggarwal et a l , 2001) are Minkowski dis­

tances with p  G [0,1] and were recently compared to M anhattan and Euclidean distance 

for the Corel image classification task, the ImageCLEF image retrieval task and the 

TRECVid 2003 video shot search task (Howarth and Ruger, 2005) Unlike Minkowski 

norms, Fractional distances are not a distance metric Howarth and Ruger (2005) find 

that Fractional distances improve on M anhattan and Euclidean distances for most of 

the features they tested (RGB histogram, HSV histogram, MPEG7 Colour Structure 
descriptor and a Convolution feature) Most of the features that perform well for frac­

tional distances are histogram features, while their Gabor and thumbnail features, which 

are not histogram /distribution features, did not respond as well to fractional distances 

Howarth and Ruger (2005) explained this response difference between these groups of 

features as due to the relative density and sparsity of the features -  suggesting that dense 

vectors are less suited for Fractional distances We believe that the difference between 

features could also be due to the predisposition of distributional features towards lower 

order Minkowski distances such as M anhattan (p =  1) or Fractional distances (p < 1) as 

opposed to Euclidean and Max distance measures Higher order Minkowski norms such 

as Euclidean or in the worst case the Max norm elevate the effect of large differences m a 

minority of histograms bins, thereby allowing a minority of histogram bin differences m 

the distribution to dominate the distance calculation, which may be beneficial for exact 
matching but is probably undesirable for general visual retrieval tasks Howarth and 
Ruger (2005) recommend a Fractional distance with p — 0 5 but find that the optimum 

value of p varies between 0 25 and 0 75 depending on the feature and test collection

Histogram Intersection The Histogram Intersection between the query histogram 
Hq and the document histogram H& is defined as

< i/0, Ho) =  (76)
2^t h d W

Swam and Ballard (1991) proposed the Histogram Intersection measure for comparing 

colour histograms for image retrieval and similar to query-hkelihood only the bins (or 

discrete symbols) that are non-zero in the query representation contribute to the rank­

ing When histograms are of equal size (or normalised) then Histogram Intersection is 
equivalent to M anhattan distance (Rubner et a l , 2001)
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Relative Entropy Relative entropy (or Kullback-Leibler divergence) was suggested 

m (Ojala et a l , 1996) for the image texture classification task We previously defined 

relative entropy when discussing language models (see Section 2 5 3) Relative entropy 

measures the average inefficiency of using one distribution to encode another (Cover and 

Thomas, 1991) It is a directional distance and is more effective for image retrieval when 

testing the efficiency of encoding the query distribution with the document distribution 

than the other way around As discussed m the context of language models, relative 

entropy is undefined when an event to be predicted has zero probability

Jensen-Shannon Distance The Jensen-Shannon distance or Jeffrey divergence/distance 

(Rao, 1982, Liu, 1991) is a variation of relative entropy (Kullback-Leibler divergence) 

between two probability distributions and is defined as

djs(P,Q) = \ D { P \ \ M ) + l-D{Q\\M ) (77)

where M  =  ^ (P  +  Q) The Jensen-Shannon distance between two histograms (empirical 

distributions, le  maximum likelihood probability distributions) Hq and Ho can be 
calculated as

djs(HQ, HD) = i  £  ( h q (i) log + HD(t) log , (78)

where m l =

This particular Jensen-Shannon distances tests the efficiency of assuming that a 

common source generated both distributions -  the query and the document It literally 

measures the average inefficiency of encoding events from both distributions m the com­

mon source Unlike relative entropy it is symmetric and fully defined when comparing 

two empirical distributions Similar to the language modelling approach to information 
retrieval, the Jensen-Shannon distance is a measure of the hypothesis that both the 

query and document are generated from the same source but Jensen-Shannon distance 
incorporates a measure of how well both the document and the query fit the common 
source and does not require that the probability distributions be smoothed Recently, 
it has been established m (Endres and Schmdelm, 2003) tha t this particular Jensen- 

Shannon distance is the square of a metric (i e yjdjs  is a metric), which is significant 
because it means tha t it may be possible to use efficient indexing structures to support 
retrieval (Clarkson, 1997) by using the square root of the Jensen-Shannon distance as 

the similarity function The square root is of course a monotonic function and therefore 

ranking m this metric space is the same as ranking with the Jensen-Shannon distance 

itself Puzicha et al (1997) proposed Jensen-Shannon distance as a dissimilarity mea­

sure for unsupervised texture segmentation and texture-based retrieval Puzicha et al 

(1999) found that this measure generally performs better or at worst similar to L\  for 
their colour and texture classification experiments
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X2-sta t is t ic  The x 2-statistic, which was proposed for image retrieval m (Puzicha et a l , 

1997), can be used to test the hypothesis that both empirical distributions for query 

and document are generated from the same source The x 2-statistic is defined for query 

and document histograms as

■ <*»
I

where m l = Similar to the specific Jensen-Shannon distance the hypothet­

ical source is modelled as a mid-point distribution Like Euclidean distance, individual 

differences between histogram bins are squared, which can have the effect of magnifying 
differences in a few bins so as to dominate the statistic In their colour and texture clas­

sification experiments, Puzicha et al (1999) established that this x 2 distance achieves 
nearly identical results to the Jensen-Shannon distance

Mahalanobis distance In contrast to previous distance measures, Mahalanobis dis­

tance takes into account the statistical correlation between vector/histogram bins The 

Mahalanobis distance between the query vector Vq  and the document vector Vd  is 

defined as

dMah{VQ, VD) =  ^ ( V Q - V D) V - \ V q - V d ) (80)

where E is the covariance matrix of the distribution If the covariance matrix is diagonal 

then this measure simplifies to

dMah(VQ, Vo) =  £  (yo W - V b ( 0 ) 2 ) (81)

where ax is the standard deviation of the i-th document vector component across the 
collection In this configuration it is often referred to as normalised Euclidean distance -  

Euclidean distance itself is achieved when the covariance matrix is the identity matrix 
The advantage of Mahalanobis distance is that it takes into account the variation in 
components of the vector when calculating similarity and thereby normalises the effect 
of different vector components having a different range or variation, which can occur in 
a severe form when different features are concatenated into a single document vector 
When all components are independent (diagonal covariance) and have equal variance, 
this measure produces equivalent scoring as Euclidean distance m terms of ranking 
documents Chen and Chang (2000) used Mahalanobis distance to retrieve shots based 
on motion trajectory vectors

Quadratic Distance The Quadratic form distance, which was proposed for compar­

ing colour distributions in (Ioka, 1989) and popularised by the QBIC system (Faloutsos 

et a l , 1994), is defined as

D(Hq , Hd ) = ^ ( H q  -  H d )t A ( H q  -  Hd ) (82)

76



where matrix A  defines cross-bin similarities Similar to Mahalanobis distance, this 

similarity function is very costly to compute This measure is most often applied to 

colour histograms, where the entries in the matrix A try  to capture the perceptual 

similarities between respective colours Typically the entries a%3 m the similarity matrix 

A  have been chosen as either

ay =  1 -  -^2L- (83)
&max

or,

atJ = e <7̂ dmaxJ (84)

where dl3 is the Euclidean distance between the two colour i and j  m some colourspace, 

dmax is the maximum of such distances and a  is some positive constant (Hafner et a l , 

1995) The second equation (Equation 84) increases the fall-off of cross-bin similarity 

entries for larger distances and larger values of a  make the matrix more diagonally 

dominant

E a r th  M over D is tan ce  The Earth Mover distance (Rubner et a l , 2000) is based on 

the minimal cost that must be paid to transform one distribution into the other This 
measure converts the histogram dissimilarity function into a transportation problem, 

which is a dynamic programming problem that is costly to compute The benefit of this 

measure is that it allows local binning of the histograms, which can reduce the storage 

costs for each image’s histogram while retaining relatively the same amount of useful 
information for retrieval

D ocu m en t-L ik e lih o o d  Jm  and Hauptmann (2002) present a probabilistic source 

model (generative discrete document-likelihood) approach to image retrieval m which 

they assume that an image is generated by a stochastic process They modelled the joint 

distribution of colour and location as defined by a normalised document-likelihood

R SV QtD =  =  J -  n  PQ(h ,v ,c ,L )
! 1 1 1  (h,vtc ,L )eD

=  ■¡¿1 n  ®Q{h\L)WQ{v\h,L)VQ{c\v,h,L)¥Q{L) (85)
1 1 (h,v,c,L)eD

** ¿ i  I I  WQ(h\L)rQ(v\L)VQ(c\h)
1 1 (h,v ,c ,L)eD

where h ,v ,c  are the hue, value and chroma of the Munsell colourspace for each pixel, and 

L  is one of 16 grid locations in the image The h, v , c values are uniformly quantised into 

8, 4 and 4 bins respectively based on their distribution throughout the whole collection 

of images so that each quantisation level contains an equal number of pixels They 

used two smoothing methods to handle the zero-frequency problem Laplace smoothing 

(prior of 1 observation for each event) and local smoothing of estimates for each location
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using a linear interpolation with neighbouring locations They ranked images by the 

probability of the query’s smoothed probability model generating the document features 

(document-likelihood), which they normalise by dividing by the document size Though 

not presented as a language modelling approach, this source probabilistic model has 

the required qualities such as the estimation of probabilistic models and the use of 

smoothing techniques The use of independence assumptions between some components 

of the colourspace (see Equation 85) removes some of the elegance of its realisation 

and applying document-likelihood with essentially a multinomial distribution probably 

causes normalisation problems tha t manifest in terms of the ideal document match as 

mentioned m the previous chapter (i e the ideal document contains grid regions where 

all pixels are the colour of maximum probability for the respective query region)

Wester veld et al (2004) present a document-likelihood approach to visual retrieval 

that models the query images using a Jehnek-Mercer smoothed Gaussian Mixture Model 

and normalises the document-likelihood with the marginalised probability of the docu­
ment content within the collection

P(D|Q,r) ^  P(P|Q) _  t t  Pg(x)
¥(D\ f )  ~  P (D)  P(x) [ >

where r and f  are the relevance and non-relevance events necessarily dropped in the ap­

proximation This probabilistic model differs from the probabilistic source model m the 

normalisation factor of the document-likelihood The results for visual-only searching, 

showed no improvement for document-likelihood approach with a decrease in MAP re­

ported from 0 028 to 0 026 for full image retrieval and little change for manually selected 

query image regions with both methods achieving a MAP of 0 026 The incorporation of 

an automatic method of selecting distinctive samples in the learning of the query’s GMM 

model statistically significantly improved on their query-likelihood method achieving a 
MAP of 0 034 on TRECVid 2003 (see Table 3)

Q uery -L ik e lih o o d  Query-likelihood for a Gaussian Mixture Model (GMM) docu­
ment representation and approximations of the query-likelihood, such as the random 

sample likelihood (Vasconcelos and Lippman, 1998) and the asymptotic likelihood ap­
proximation (Vasconcelos, 2000), were evaluated for the TRECVid video shot retrieval 

task (Westerveld, 2004, Baan et al , 2002, Westerveld, de Vries and van Ballegooij,

2003)1 A smoothed GMM query-likelihood (continuous language modelling approach) 
was proposed m (Westerveld, de Vries and van Ballegooij, 2003), which combined the 
documents5 Gaussian mixture models with the background model using Jehnek-Mercer 

smoothing This model can be slow for retrieval due to the number of samples in 

the query distribution (15 minutes per single image query is quoted m Westerveld et al 

(2004)) and the asymptotic likelihood approximation quickens the retrieval procedure by 

approximating the KL divergence between the document and query’s Gaussian Mixture
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Table 2: Visual and multimodal results for the GMM DOT query-likelihood approach using 
static image representation and dynamic video content representations for the TRECVid 
search tasks.

Text Static Dynamic
Collection -Only Visual -{-Text %Dif Visual -hText %Dif

TRECVid 2002 
TRECVid 2003 
TRECVid 2004

0.1212
0.1296
0.0680

0.0287
0.0281
0.008

0.0750
0.1428
0.073

-38.1%
+10.1%
+7.3%

0.031
0.010

0.149
0.073

+14.9%
+7.3%

Table 3: Visual and multimodal results for the continuous GMM DOT query-likelihood, 
the discrete multinomial (MNM) DCT query-likelihood and the continuous DCT document- 
likelihood approach using full image examples, manually selected segments of visual exam­
ples and automatically selected distinctive image regions using background model in the 
GMM training for the TRECVid 2003 search task.

Visual
Retrieval Method

Full Examples Manual Segments BG-Train
Visual -hText Visual -hText Visual -hText

Query-Likelihood (MNM) 0.0044 - 0.0066 - - -

Query-Likelihood (GMM) 0.0281 0.143 0.0264 0.142 0.018 -
Doc.-Likelihood (GMM) 0.026 0.119 0.026 0.167 0.034 0.162

Model under assumptions that are unfortunately not plausible for the TRECVid col­

lection and which actually degrade retrieval performance compared to query-likelihood 
(Westerveld, de Vries, Van Ballegooij, de Jong and Hiemstra, 2003). The random sam­

ple likelihood also uses GMMs for both query and document feature representations and 

ranks documents based on the likelihood that a random sample from the query model is 

generated by the document model. The size of the random sample controls the time re­

quired to evaluate this approximation to query-likelihood. Unfortunately, this method is 

also not as effective as query-likelihood for video shot retrieval (Westerveld, 2004). The 

MAP performance of the query-likelihood DCT GMM approach for the three most re­
cent TRECVids are shown in Table 2, which represents a baseline performance for these 
collections that we will compare against in later chapters. More recently, de Vries and 
Westerveld (2004) compared their continuous GMM approach with a discrete Jelinek- 
Mercer smoothed language modelling approach for the DCT feature on the TRECVid 
2003 collection and found that their discrete smoothed query-likelihood approach was 
many times worse than their continuous GMM approach (see Table 3).

Rubner et al. (2001) compared the visual similarity measures L 2, L 0c, x 2 dis­

tance, Jensen-Shannon distance and Relative entropy for colour and texture-based image 

classification and retrieval. Unfortunately, their image retrieval task is not representa­
tive of the general video retrieval task. They randomly selected 94 images from the 

Corel Stock Photo Library which formed the basis of both their queries and relevant
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documents They took 16 disjoint sets of random samples of sizes 4, 8, 16, 32 and 64 
pixels from these images and created a ground truth dataset of 1504 image samples 
for these 94 different query classes A similar procedure was followed with 94 Brodatz 
texture images to generate their texture queries and relevant document These search 
tasks, especially the colour experiments, are too artificial and bear little resemblance to 
retrieving images based on a visual information need or even based on their similarity 
to complete image examples

Deselaers (2003, Chapter 8) compared the matching models Jensen-Shannon diver­
gence, x 2 distance, L\, and h 2 distance for their invariant feature histogram on the 
WANG (subset of 1000 images from Corel dataset) and IRMA-1617 (subset of 1617 
radiographs from Image Retrieval m Medical Applications dataset) datasets and found 
that L\ distance, x 2 distance and Jensen-Shannon divergence achieve similar results and 
outperformed L2 distances on both collections

The TRECVid workshop supports the benchmarking of retrieval runs for the video 
search task but due to the use of different retrieval models, features and fusion methods 
by participants, it is normally impossible to attribute differences m a submitted retrieval 
run’s performance solely to the choice of the visual similarity/matching model

3 3 5 Fusion

Because video retrieval is situated m a diverse feature environment, it potentially could 
benefit from the combination somehow of many different features These include text 
(automatic speech recognition text, closed caption text, video optical character recogni­
tion text), audio features (eg monologues, music, gun firing), visual features (colour, 
texture, shape), motion features (cameras and objects), high-level concepts (Visual key­
words’ such as outdoors, indoors, landscape, faces) and other specific audiovisual models 
such as for identifying specific people, animals or objects Early fusion methods, which 
combine features before performing matching, are not practical for such a large number 
of features due to the high dimensionality of any combined representation In contrast, 
late fusion methods perform matching on individual features and fuse these matching 
scores Late fusion of diverse features is more prudent and can potentially support 
adaptive fusion methods when relevance information is available

At their most basic, late fusion methods combine the scored and ranked retrieval 
results from different systems/models/features m order to improve upon the best in­
dividual retrieval result Traditional fusion techniques m information retrieval can be 
broadly divided into rank and score-based (Smeaton, 1998) Rank-based methods such 
as Borda count combine separate search results based on summing rank positions where 
the top-ranked of N documents gets a score of N, second gets N-l, etc , and the total score
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for a document is the sum of the scores from the different result lists An extension to 
this combination method is weighted Borda count (linear interpolation of results), which 
gives preferential weight to specific search result lists Traditional score-based combi­
nation methods include CombSUM, which sums the multiple scores, and CombMNZ 
which sums the scores from truncated result lists (such as top 1000) and multiplies the 
average by the number of retrieval models that returned it (Lee, 1997) Weights are 
predominantly included though a linear interpolation of scores When combining het­
erogenous retrieval models/features normalisation of retrieval scores is necessary and 
generally involves truncating result lists to the top N results and linear normalising the 
results from 0 to 1

In the image and video classification task, it is common to use early fusion techniques 
that combine multiple features into a single vector representation and then optionally 
apply dimension reduction techniques, while for video retrieval late fusion techniques 
are the norm and specifically CombSUM, CombWtScore (interpolation of the similar­
ity scores), Borda fuse and round-robm (combine results by choosing the top ranked 
documents from each result list and repeat this process for subsequent ranks removing 
duplicates) are the most common Due to research groups using different features and 
retrieval models it is difficult to know which fusion strategy works best overall simply 
from their submissions to TRECVid Likewise, it is difficult to compare different feature 
sets and retrieval models when the fusion approaches are dissimilar It is useful to think 
of fusion as occurring at many separate levels m video retrieval systems such as for 
combining text features, combining visual features, combining multiple query examples, 
combining multiple document representations (keyframes/keysegments), and combining 
multimodal features Different fusion strategies may be best or more stable for different 
fusion tasks

Combining text features Adams et al (2003) combined multiple text retrieval 
scores by summing normalised text scores Most fusion strategies have originally been 
applied to the task of combining results of multiple text search engines and can directly 
be applied to this task

Combining visual features Visual features can be combined using early fusion or 
late fusion techniques Rautiainen, Penttila, Vorobiev, Noponen, Vayrynen, Hosio, Mat- 
mmikko, Makela, Peltola, Ojala and Seppanen (2003) combine their different feature 
vectors before matching by appending the vector representation of each feature vec­
tor Hauptmann et al (2002) combine regional colour and texture features into a single 
vector representation and then reduce it to 50 dimensions by using singular value de­
composition Early fusion techniques are less popular for the video retrieval task due 
to the potentially high dimensional representations and the need to support dynamic
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reweighting of features due to explicit direction by the user m the user interface or due 
to relevance feedback Hauptmann et al (2003) combine their colour representation 
with their texture representation using a weighted interpolation of probabilities The 
probabilities were derived from ranks so this method resembles a weighted Borda fuse 
Rautiamen, Ojala and Seppanen (2004) combined visual feature by summing the scores, 
while Pickering et al (2003) combine visual dissimilarity scores for different feature 
vectors using a linear interpolation of scores Quenot et al (2005) also use a linear 
interpolation of scores to combine results but allow the users to adjust the weights in 
the user interface

Combining multiple query examples Different fusion approaches have been ap­
plied to the task of fusing multiple query examples within the same topic such as Comb- 
SUM (Hauptmann et a l , 2002), Round-Robin (Westerveld et a l , 2004) and independent 
probability (Westerveld, de Vries and van Ballegooij, 2003) Adams et al (2003) sup­
port the selection of the following fusion methods for combining the scores of multiple 
visual examples average scores (or equivalently sum score), minimum score (Comb- 
MIN), maximum score (CombMAX) and product of scores

Combining multiple keyframes The retrieval results of multiple keyframes for the 
same shot can be fused with the same methods that are used to combine multiple query 
examples The most popular method for combining the scores of multiple keyframes 
from a single shot is to take the maximum of the keyframe scores (Hauptmann et a l , 
2002, Quenot et a l , 2005)

Combining multiple modes Hauptmann et al (2002) combine face detection, speaker 
identification, OCR, ASR and image retrieval similarity scores using a linear interpola­
tion of scores Heesh et al (2005) also combined their text and visual features using a 
weighted linear interpolation of individual scores but m their manual experiments they 
found no benefit to visual retrieval when combined with text search -  m fact it de­
creased their retrieval performance compared to text alone Baan et al (2002) combine 
their text language model results with their DCT GMM visual model using independent 
probability assumption (multiply probabilities or sum log-likelihoods) Weighted Borda 
fuse of the multimodal results is used for multimodal fusion m (Rautiamen, Ojala and 
Seppanen, 2004, Hauptmann et a l , 2004) Another method of combining multimodal 
results is to use one of the features as a filter on the results of the other Rautiamen, 
Penttila, Vorobiev, Noponen, Vayrynen, Hosio, Matmmikko, Makela, Peltola, Ojala and 
Seppanen (2003) use the text and concept results to filter the visual results Yan and 
Hauptmann (2004) use a boosted co-training approach that trains the weights for com­
bining concept and low-level feature results with text-based results on a per-query basis
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Strongly related to the multimedia fusion task is the use of query-classes to automat­
ically select different features and fusion weights depending on the type of query (Yan 

et a l , 2004)

In a theoretical study on fusion strategies in video retrieval, Yan and Hauptmann 
(2003) establish upperbounds for the performance of fusion models They consider upper 
bounds for monotomc combination functions and for the more restrictive linear combi­
nation functions There is a lack of empirical studies of the different fusion methods for 
the different video retrieval fusion tasks that we have identified m this section Yavlin­
sky et al (2004) compared CombMIN, CombMAX, CombSUM and Borda fusion for the 
task of combining text and their visual features’ results on TRECVid 2003 but found 
that no fusion method improved on the results of text alone The Lowlands group at 
TRECVid found that their fusion strategy for combining their hierarchical text language 
model and the GMM DCT visual feature improved on text-only results for TRECVid 
2003 and 2004 but failed on TRECVid 2002 (see Table 2 m previous section) Most of 
the submitted runs in the TRECVid experiments are either from interactive retrieval 
experiments or from manual experiments that permit the modification of the topic rep­
resentation and therefore cannot be compared across retrieval groups to elucidate the 
relative benefits of different fusion strategies

3 3 6 Relevance Feedback

Relevance feedback has gained much attention m recent years in the image retrieval 
community We will briefly describe a select few image and video relevance feedback 
approaches — a more comprehensive review is available in (Zhou and Huang, 2003) 
MARS (Rui, Huang and Mehrotra 1997) and MmdReader (Ishikawa et a l , 1998) are 
two of the baseline implementations of relevance feedback in image retrieval In each 
relevance feedback iteration both of these systems move the query model closer to the 
centre of the cluster of relevant documents and modify the importance of different com­
ponents of the feature representation m the calculation of similarity between documents 
and the updated query model

MARS is one of the first image retrieval system to support relevance feedback and in­
corporates two feedback strategies (Rui, Huang and Mehrotra, 1997) Firstly, similar to 
Rocchio the original query vector is updated so that it is closer to the relevant documents 
and further away from the non-relevant set of documents Secondly, it re-weights differ­
ent elements of the document vector representation depending on its variance within the 
relevant set of documents Specifically it weights a vector component by the reciprocal 
of its standard deviation
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MmdReader learns the pertinent features and their relationships for a set of rele­
vant examples (Ishikawa et a l , 1998) Both MARS and MmdReader essentially use a 
quadratic distance measure between the query model and the document representations 
The difference between the two systems is that MARS only uses the diagonal elements 
of the quadratic distance matrix, whereas MmdReader uses the full quadratic distance 
matrix MmdReader requires a lot of relevance judgements to properly estimate this 
quadratic distance matrix and enough relevance judgements are unlikely to be available 
for large feature representations

More recently, Giacinto and Roll (2004) suggest that the global representation of 
relevant documents in terms of a single ummodal query model suffers due to the small 
number of relevance judgements and the possibly disjoint nature of relevant documents 
withm the feature space They suggest using the ratio of minimum distance from rel­
evant documents to non-relevant documents m updating the ranking for each feedback 
iteration This nearest neighbour approach is different to MARS or MmdReader, which 
try to represent the query as a single query-modal vector m the feature space

The TRECVid topics’ image and video examples provide a means for using relevance 
feedback techniques even before a user has started to indicate which shots from the 
collection are relevant For example, it may be possible to use a topic’s initial visual 
examples to select features and weight their importance Withm the submissions for the 
TRECVid search task, a few systems have integrated relevance feedback

In TRECVid 2002, the IBM search system (Adams et a l , 2003) performs relevance 
feedback by partitioning the feature space with a piecewise linear decision surface that 
separates the relevant and non-relevant shots where each of the piecewise decision sur­
faces are normal to the minimum distance vector from a non-relevant point to the convex 
hull of the relevant points (Ashwm et al , 2002) This feedback mechanism showed some 
promise for the image retrieval task m a relatively low-dimensional feature space (Ashwm 
et a l , 2002) but has not been evaluated on the TRECVid search task

Yan et al (2003) proposed a negative pseudo-relevance feedback approach for content- 
based video retrieval The positive examples were the original query examples and the 
negative examples were the low ranking results from the initial search They used a Sup­
port Vector Machine (SVM) to generate the feedback scores for the documents, which 
were combined with their initial result scores to produce the updated retrieval results 
The feature space for feedback consisted of HSV colour and Gabor texture information 
Their evaluation of this method on the TRECVid 2002 search tasks showed positive im­
provement (MAP 0 1522, 7 6% improvement) compared to their baseline non*feedback 
system In total, 14 of the queries were improved and only 4 disimproved in terms of 
average precision on the 25 TRECVid 2002 topics (Yan et a l , 2003)

Related to pseudo-relevance feedback is Co-Retrieval (Yan and Hauptmann, 2004),
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which automatically selects and weights additional weak features based on an initial 
ranking of results Co-Retrieval is a modification of co-training (Blum and Mitchell, 
1998) to take into account unlabelled documents and is based on the premise that an in­
dependent and redundant feature split improves the performance of co-trainmg (Nigam 
and Ghani, 2000) They split their features into two sets the first set is typically text 
features and the second set are low level features (colour, edge and texture histograms) 
and semantic features such as from face, anchor, commercial and outdoor feature de­
tectors Their Co-Retrieval approach first uses the first set features (1 e more reliable 
text features) to create a set of pseudo-relevant document and then uses these results to 
select and tram the weights of the second set of weaker features They learn the weights 
of the second set by using a boosting type algorithm and a noisy label prediction scheme 
Co-Retrieval was evaluated on the TRECVid 2003 search task where it achieved a MAP 
of 0 208, 10% better than using the global optimum weight across the feature set for all 
topics

3-4 Evaluation of Video Retrieval using TRECVid

The Text REtrieval Conference (TREC) is an annual conference organised by the U S 
National Institute of Standards and Technology (NIST) to bring together both academic 
and commercial researchers in the field of information retrieval and is separated into 
tracks each focussed on a specific IR discipline Originally the TREC conference was 
solely focussed on text retrieval but it has expanded to include amongst others, web, 
spoken document, multilingual and more recently video retrieval

The TREC Video Track (TRECVid) was first held m 2001 as part of the TREC 
conference and has recently completed its fourth annual cycle of operation The popu­
larity and importance of TRECVid has grown over the years - originally in TRECVid 
2001 there were 12 groups participating and more recently m TRECVid 2004 this has 
grown to 33 The evaluated tasks have also increased from shot boundary detection 
and interactive and manual search m TRECVid 2001 to also include feature detection 
(TRECVid 2002 onwards), news story segmentation (TRECVid 2003 and TRECVid 
2004) and a pilot of fully automatic search (facilitated m TRECVid 2004 but first sup­
ported m TRECVid 2001) The shot boundary task concerns the correct identification 
of different types of shot boundaries such as cuts, fades, dissolves, while the feature 
extraction task concerns the identification of general concepts that might be useful for 
information retrieval and finally the news story segmentation task concerns identifying 
the semantic news stories withm broadcast television news Since m this thesis we are 
primarily interested m video retrieval, we will describe the activities of TRECVid in 
terms of its video search experiments More information on each year’s TRECVid re­
sults and the other tasks is available m (Smeaton et a l , 2002, Smeaton and Over, 2003, 
Smeaton et a l , 2004b, Kraaij et a l , 2004, Smeaton et a l , 2004a)

85



The TRECVid evaluation procedures for video search are grounded within the tradi­
tions of controlled experiments m information retrieval that has its roots in the Cranfield 
experiments (Cleverdon, 1967) and the mam TREC initiative Each year research groups 
evaluate their video retrieval approach (retrieval system, retrieval model, feature repre­
sentation, user interface, etc ) using a supplied reference collection and common set of 
topics (queries) and submit their results for evaluation by independent NIST assessors 
These assessors pool the results from multiple groups, make relevance judgements and 
distribute the results m time for the TRECVid workshop

The first TRECVid experiments, TRECVid 2001, was a dry run for applying the 
TREC model to evaluating video retrieval The mam problems with TRECVid 2001 
were that it consisted of only 11 hours of content compared to over 40 hours in sub­
sequent years, the topics were originally suggested by the participants and therefore 
possibly biased towards the proposers’ group and the evaluation measures were not 
standard information retrieval measures but were based overlap of video clips with the 
relevant segments The success of TRECVid 2001 was m focusing a community of re­
searchers into a common empirical evaluation framework for video retrieval and also 
m the improvements m the experimental setup in subsequent years Due to the noted 
problems with TRECVid 2001 we concentrate our discussion on the larger collections 
and better experimental setup employed m TRECVid 2002, 2003 and 2004

In the following subsections, we will present the major components of the TRECVid 
laboratory-based retrieval experiments namely the reference collections, search topics, 
relevance judgements, experimental setup and evaluation measures

3 4 1 Reference Collection

The TRECVid reference collection is the set of documents to be searched and consists 
of the videos themselves, the shot definitions and automatic speech recognition (ASR) 
text Keyframes for each shot were also supplied but it is not mandatory to use them 
Some research groups donated results for high-level feature detection that could be used 
by other groups doing the search task The retrieval unit for the experiments is the
video shot and this necessitates a common shot boundary to be distributed with the
video collection

The TRECVid 2002 collection consists of 176 advertising, educational, industrial 
and amateur videos from 1915 to 1975 sourced from the Internet Archive2 and the 
Open Video Project3 (Smeaton and Over, 2003) The visual quality of many of these 
videos is poor and the overall quality of the videos m this collection is highly variable

2In te rn e t A rchive, U RL h ttp  / /w w w  archive o rg /m o v ies /
3T h e  O pen  V ideo P ro jec t, U RL h ttp  / /w w w  open-video org/
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The dataset was split into 40 hours for the video search test collection, 5 hours for 
feature test collection and 5 hours for shot boundary test collection The retrieval unit 
for the search task is video shots from a common shot boundary definition supplied by 
CLIPS-IMAG

The TRECVid 2003 and TRECVid 2004 collections contains recent television news 
programmes which were broadcast from 1998 to 2001 on the ABC, CNN and C-SPAN 
channels The visual and audio quality of the video is consistent and is of a far higher 
standard than the previous years collection The search test collection for TRECVid 
2003, the subset of the collection for evaluating the video search task, contains 113 
news programmes m which 53 are ABC World News Tonight from 1998, 54 are CNN 
Headline News also from 1998 and 6 are C-SPAN news from 2001 The TRECVid 2004 
search test consists of 70 hours of ABC, CNN and C-SPAN from 1997 (Kraaij et a l , 
2004) ABC and CNN news follow a similar evening news format whereas the C-SPAN 
news is televised debates of the US Congress A common shot boundary supplied by 
CLIPS-IMAG and ASR text provided by LIMSI (Gauvam et a l , 2002b) was used by 
participants m the video search task experiments

The purpose of the reference collection is to recreate a real-world situation in a static 
collection that is large enough so that results based on experiments on the reference 
collection can be expected to apply to the real-world scenario As mentioned previously, 
the first search test collection m TRECVid 2001 failed many of these criteria but served 
as a dry run of the TRECVid evaluation framework TRECVid 2002 provided a better 
sized collection but because of its visually varied nature (i e poor visual encoding) it is 
difficult to work with The more recent TRECVid 2003 and TRECVid 2004 television 
news collections are of a similar size but are more representative of current video search 
applications in terms of quality and purpose While very small compared to operational 
news collections they provide a challenging retrieval scenario and m terms of content is 
similar m nature to real-world news collections

3 4 2 Search Topics

Many early image retrieval experiments used search topics (patches of texture or colour 
images) that had very limited application to general ad hoc retrieval scenarios The 
TRECVid search topics are motivated from requirements of a hypothetical professional 
user searching a video collection They are not composed by real end-users of a video re­
trieval system but are based on the types of queries found m studies of professional visual 
retrieval environments (Armitage and Enser, 1996), which classified visual retrieval re­
quests into amongst others general/specific requests for person, things, events or places 
We therefore cannot claim that a percentage improvement in a TRECVid search exper­
iment is transferable directly to a specific set of real users, but significant improvements
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Topic 75 (2 Image examples, 2 Video examples; 15 Relevant shots):
Find shots with Eddie Rickenbacker in them.

Image Image

Relevant Results:

Video Video

Figure 17: The first TRECVid 2002 search topic with all relevant shots displayed.

in TRECVid should be indicative of a potential improvement in some real-world video 
retrieval application and more extensive field testing in specific domains with real users 
would be required to completely validate claims.

Each TRECVid topic consists of a short text description with optional image, video 
and/or audio examples. In TRECVid 2002 and onwards NIST composed the queries, 
which contain for example requests for the following content:

• 103. Find shots of Yasser Arafat (specific person)

• 110. Find shots of a person diving into some water (generic person, generic 
event/action)

• 106. Find shots of the Tomb of the Unknown Soldier at Arlington National Ceme­
tery. (specific thing, specific place)

• 130. Find shots of a hockey rink with at least one of the nets from some point of 
view (generic thing, generic place)

• 139. Find shots of a handheld weapon firing (generic thing, generic event/action)

The full topic list for TRECVid 2002, 2003 and 2004 are available in Tables 28, 29 and 
30 in the appendix (pp. 232, 233 and 234). The full topic description including text, 
image examples and video examples are shown Figures 17 and 18 for the first topic in 
TRECVid 2002 and TRECVid 2003. It should be recognised from these two examples 
that the visual examples for a particular topic may not be visually coherent. We can 
see this if we look at Figure 18, where the keyframes of relevant shots do not necessarily 
contain the relevant items, though the video shot it represent does.
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Topic 100 (4 Image examples, 4 Video examples; 87 Relevant shots):
Find shots with aerial views containing both one or more buildings and one or more roads

Video Video Video

Sample Relevant Results:

Figure 18: The first TRECVid 2003 search topic with the first 16 of 87 relevant shots 
displayed.

Table 4: Distribution of topics within each topic classification type for the TRECVid 
search tasks.

Search Col. Specific/Named Generic
Person/Thing Event Place Person/Thing Event Place

TRECVid 2002 
TRECVid 2003 
TRECVid 2004

8 (32%) 0 (0%) 
9 (36%) 0 (0%) 
7 (30%) 0 (0%)

4 (16%) 
1 (4%) 
0 (0%)

18 (72%)
16 (64%)
17 (74%)

10 (40%) 
9 (36%) 
12 (52%)

5 (20%) 
4 (16%) 
3 (13%)
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In Table 4 we summarise the categorisation breakdown of topics for the three TRECVid 
collections, which is also indicated in the tables m the appendix for each topic The 
number of topics in each category is consistent for all but the specific place category, 
which is only represented by one topic m TRECVid 2003 and none m TRECVid 2004 
The number of topics involving event/action was increased at the request of participants 
in TRECVid 2004 About a third of topics are for specific people or things, the other 
two thirds concern generic things or people and between 40% and 50% of topics also 
specify a generic action/event Nearly all recent topics from TRECVid 2003 onwards 
do not mention a specific place and only 13% to 20% of topics mention a generic place 
m their topic description The proportion of TRECVid topics in the different categories 
does not match the distribution m real-world video collections such as the BBC Natural 
History Unit or the British Film Institutes’s Natural Film and Television Archive, which 
contain about double the proportion of requests for specific people and things and at 
least half the proportion of requests for generic person and things (Smeaton and Over, 
2003) However, the topics are quite varied and somewhat represent the general types 
of queries found in real world applications

The high level goal m selecting topics is that they fit within the type of requests 
of a professional user and roughly correspond to the types of topics in real-world video 
libraries Other criteria such as ensuring that there are multiple relevant shots m prefer­
ably multiple videos and that the topic should not be too difficult are also used in select­
ing and composing the topics Video search is already very difficult with the currently 
selected TRECVid topics never mind with more elaborate requests The procedure for 
selecting topics for TRECVid 2003 and TRECVid 2004 is as follows (Kraaij et a l , 2004) 
Videos m the reference search test collection are viewed without the audio to identify 
candidate topics The composed topic text therefore is not affected by the dialog in 
the video The visual examples were also chosen without reference to the relevant shots 
and when there were more candidate visual examples than required the final set was 
chosen randomly The procedure for TRECVid 2002 was slightly different in that the 
audio was not turned off when identifying candidate topics from viewing the collection 
and therefore it is believed that the results are biased towards ASR-based retrieval since 
some of the words from the audio dialog were incorporated into the topic description 
(Smeaton et a l , 2002) Also m TRECVid 2002 the visual examples were chosen to be 
somewhat similar to the preliminary relevant shots so as to try to alleviate some of the 
difficulty in visual search but as a side effect this potentially biases the results m the 
visual domain Both these issues were resolved m later TRECVids

Table 5 summarises the statistics of the topics m terms of number of image examples, 
video examples and relevant shots for the three TRECVid search tasks The average 
number of visual examples per topic at 5 2 and 6 1 in TRECVid 2003 and TRECVid 
2004 is nearly double the amount for TRECVid 2002 Each topic m TRECVid 2004 
has a minimum of three visual examples compared to a minimum of one for the other
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Table 5: Summary statistics for TRECVid topics showing the average, variance (in brack­
ets), minimum and maximum (in square brackets) of the number of visual examples, image 
examples, video examples and relevant shots per topic in the TRECVid 2002, 2003 and 
2004 collections.

Search Col. Vis. Examples Images Videos Relevant

TRECVid 2002 
TRECVid 2003 
TRECVid 2004

3.0 (1.3) [1-5] 
5.2 (2.1) [1 - 9]
6.1 (2.1) [3 - 11]

0.6 (1.2) [0 - 5] 
2.8 (1.3) [0 - 5] 
2.4 (1.7) [0 - 5]

2.3 (1.5) [0 - 5]
2.3 (1.8) [0 - 6] 
3.7 (1.3) [1 - 6]

58 (68) [3- 303] 
85 (133) [6 - 665] 
78 (47) [16 - 194]

two collections. The number of video examples has also increased to on average 3.7 
videos per topic in TRECVid 2004 up from 2.3 in the other collections. The number of 
relevant results per topic is more consistent in TRECVid 2004 having a smaller range 
with between 16 and 194 topics relevant per topic. The TRECVid 2002 search task 
contains a topic (77. Find pictures of George Washington) with only 3 relevant results 
and this can cause problems in the evaluation measures as it can achieve very high recall 
(or MAP) relative to the other topics by the occurrence of any of its relevant shots within 
the top ranking results of a tested retrieval run. TRECVid 2003 has a topic (117. Find 
shots of one or more groups of people, in a crowd, walking in an urban environment) 
with 665 relevant shots and this can also cause problems in the evaluation measures 
since this topic can unduly influence mean precision at low document cut-offs for this 
collection.

3 .4 .3  R e le v a n c e  J u d g e m e n ts

The relevance judgements are the set of relevant shots for each topic. Relevance judge­
ments are made for the topics after each group has submitted their retrieval runs to 
NIST. The top X results are pooled from each submitted run and evaluated by rele­
vance assessors. The relevance accessors review the candidate shot based on the topic 
description and try to make an objective decision on whether the shot is relevant or not. 
The relevance judgement is a binary decision and simply depends on the information 
need being present and recognisable within the shot. This decision is not made based 
on the keyframe but on viewing the full shot.

In TRECVid 2002 all runs were evaluated to a depth of X = 50. Pooling in TRECVid 
2004 was slightly different to previous years which evaluated using fixed depth pools. 
In TRECVid 2004 variable depth pools were employed and NIST accessors continued 
evaluating a topic’s pooled results until they ran out of time or stopped finding relevant 
results. Each topic was evaluated to a minimum depth of 50 results per pooled run. The 
effect of pooling and judging depth has not been fully evaluated (Kraaij et al., 2004).

This pooling strategy requires a reasonable level of performance for the topics but
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many of the topics have very poor performance for manual and fully automatic searching 
and therefore interactive user experiments play an important secondary role m identi­
fying relevant shots that otherwise may not be detected

3 4 4 Search Experiments

There are three search experiments supported m the TRECVid evaluation fully inter­
active search, manual search and fully automatic search The experiments differ in the 
role users play in the process

Interactive search The interactive search task simulates the case where a user is 
given a fixed time limit - a maximum of 15 minutes m the case of official TRECVid ex­
periments - to find as many relevant shots to the information need as he or she can, using 
whatever tools and m whatever ways deemed useful This means that the user brings 
m real-world knowledge and experience The purpose of interactive search experiments 
is to support user-centred experiments m a controlled environment for comparing for 
example different interfaces, retrieval strategies or underlying retrieval systems When 
experiments involve multiple users it is useful to employ a block design so as to reduce 
the bias It is good practice to supplement performance information such as precision 
and recall with questionnaires to gather information on the users’ experiences with the 
different test systems and topics

Manual search The manual search task allows a professional user to translate the 
TRECVid topics into a form suitable for a video retrieval system They can embed into 
the search request all the subtleties of the topic that the retrieval system supports The 
purpose of manual search is to allow groups to compare variants of their video retrieval 
system While the addition of the user m the process makes it possible to better take 
advantage of the functionality in each system variant, it also adds a topic translation 
process that is a source of noise and hampers cross-group comparisons

Fully automatic search In the fully automatic search task the retrieval system takes 
the TRECVid topic without modification by a user The system may then modify it, 
such as performing stopword removal and stemming for the text description, but all 
modifications of the topic are performed automatically without user intervention A 
trial run of the fully automatic search was facilitated m the TRECVid 2004 cycle, after 
it was abandoned after TRECVid 2001 due to its perceived level of difficulty being too 
high Fully automatic experiments, which potentially decrease the reported performance 
compared to manual TRECVid experiments, provide a more unbiased view of system 
performance that can be compared more easily and repeated independently within the
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research community. The purpose of fully automatic search is to support system variant 
evaluation in a controlled, repeatable and as bias-free as possible experimental setup. 
This is the most difficult of the three search experiments in terms of performance mea­
sures as there is no human involved in helping the system out. Unlike the other two 
search experiments this allows for retrieval models or features to be compared across 
retrieval groups and allows performance to be measured and compared between groups 
without having to worry about the differences in users. In TRECVid 2004 the fully 
automatic runs were evaluated as supplemental runs and classified as fully automatic 
in order to distinguish them. Previous to this, automatic runs that were submitted to 
TRECVid 2002 and 2003 were classified as manual runs and therefore unfairly compared.

3 .4 .5  E v a lu a tio n  M e a su r e s

In this section we present the evaluation measures that are used to compare TRECVid 
runs, which consist of a ranked list of shots for each topic. The evaluation measures 
quantify the effectiveness of the retrieval system for finding relevant content and are 
usually calculated at two levels: for each individual topic and an average over all topics 
in the submitted run.

Recall and Precision are standard information retrieval measures that form the basis 
of most measures of effectiveness in video retrieval. Recall and Precision are set-based 
evaluation measures (see Figure 19) that do not take into account the ranking of the 
search results and are defined for a specific topic as:

P r e c is io n  Precision is the proportion of retrieved documents that are relevant.

Precision =
|Rei p) Ret\ 

\Ret\
(87)

93



Recall Recall is the proportion of the total relevant documents that are retrieved

\Re l f ]Ret \
R m “  ~ |JM| (

Both these measures can be averaged over a set of topics in order to achieve the 
overall precision and recall for a retrieval run Precision relates to a user’s preference for 
results with relevant documents over non-relevant documents, while recall relates to a 
user’s preference for an exhaustive set of relevant documents For result sets, precision 
and recall have to be reported together in order to get a proper interpretation since a 
result set with a single result that happens to be relevant has a precision of 1 0 and a 
result set containing all documents has a recall of 1 0 The effectiveness of a retrieval 
system is hard to characterise and compare when expressed as a recall and precision 
pair

Precision is easier to assess correctly than recall and the effort involved is related to 
the result set length Recall is more difficult to calculate than precision as it requires 
knowledge of all relevant documents within the test collection and for large collections it 
is prohibitive expensive to evaluate the relevance of each document As mentioned previ­
ously, the strategy employed m TRECVid (and generally m TREC and other TREC-like 
community-based IR evaluation initiatives) is to pool results from multiple groups, eval­
uating them to a certain depth in order to achieve an adequate estimate of all relevant 
documents

It is important to keep in mind that the choice of evaluation measure should be 
correlated with the potential user’s perception of effectiveness The precision measure 
tells us how correct the results are and is desirable from a users perspective as they 
would prefer not to wade through many incorrect results in order to find relevant ones 
High precision is beneficial for most searches but there are occasions when users would 
tradeoff precision in favour of high recall such as when compiling or researching for a 
historical documentary

Precision at documents cut-offs This measure provides the precision for subsets 
of top retrieved documents In TRECVid this precision measure is reported for the top 
5, 10, 15, 20, 30, 100, 200, 500 and 1000 documents It is a useful evaluation measure 
as precision at cut-offs between 10 and 30 correlate with the quality of results that the 
users will see m the first page of their video search results

Average Precision Average Precision is a single measure of the effectiveness of a 
retrieval run for a topic’s ranked results and is the standard method for comparing 
topic results m TRECVid It is a rank-sensitive measure that rewards runs that locate 
relevant results higher m the rankings Average Precision is calculated as the average of
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precision when each relevant documents is found m the ranked list with non-retrieved 
relevant documents giving a precision of zero Average Precision never decreases as more 
documents are added to the bottom of an existing rank

M ean A verage Precision Mean Average Precision (MAP) is used in TRECVid as a 
single measure for the effectiveness of a search system over a set of topics It is calculated 
by simply averaging the Average Precision values for each topic

In te rp o la ted  precision Interpolated precision is generally used to calculate precision 
at 11 recall levels ( 0 , 0 1 , 0 2 ,  , 09 ,  1 0) with the rule that the interpolated precision
at a recall level is the maximum precision at the recall point greater than or equal to 
the level For example a topic with 3 results would have recall points corresponding 
to 0 33, 0 67 and 1 0 recall The interpolation precision at the fixed 11 recall levels 
are interpolated from the topics’ actual recall points with the previously mentioned 
rule As for other measures, interpolated precision can be averaged over the full set of 
topics to achieve a performance measures of the complete retrieval run The standard 
11 interpolated precision points are used to plot precision-recall graphs (interpolated 
precision on Y axis, recall level on X axis) m order to support the graphical comparison 
of retrieval runs The ranges of these graphs between 0 to 0 2 , 0 2  to 08  and 0 8 to 1 0 
characterise the performance of retrieval runs at high precision, middle recall and high 
recall (Common Evaluation Measures, 2003)

The following statistical tests are not used by the standard TRECVid evaluation 
but can be employed to test whether differences between retrieval runs m terms of their 
MAP or other measures are statistically significant These statistical tests can only be 
calculated over a set of topics not a single topic and both retrieval runs being compared 
must have results for the same set of topics If a result is statistically significantly 
better than another then this implies a consistent improvement m the retrieval results 
that is unlikely to be the result of chance Each significance test, based on particular 
assumptions, calculates the probability of chance (p-value) accounting for the difference 
between retrieval runs If this p-value is less than a preset significance level (normally 
0 05) then it is assumed that the differences between retrieval runs are statistically 
significant A range of statistical tests for comparing two or more retrieval models is 
described m (Hull, 1993), the most common m use in information retrieval are the Sign 
test and paired Wilcoxon test Detail of their calculation and indeed other statistical 
tests can be found m (Hull, 1993)

Sign te s t The paired Sign test only takes into account the sign of the difference be­
tween the paired retrieval runs’ topic results In each pair of topic results, the difference
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between retrieval runs is calculated and a count is made of the number positive dif­
ferences The decision to reject the null hypothesis (1 e assume statistical significant 
differences) is based solely on the count of positive differences

P a ired  W ilcoxon te s t (W ilcoxon signed-rank te s t)  The paired Wilcoxon test 
takes into account the magnitude of the difference between retrieval runs as well as 
the sign of the difference It assumes that differences for all paired topic results are 
distributed from a symmetric continuous distribution This assumption is not strictly 
valid m information retrieval and leads some researches to advocate the less powerful 
Sign test (van Rijsbergen, 1979, chap 7) The procedure for calculating the test statistic 
is to replace each paired difference with the rank of their absolute difference and to 
multiply this rank by the sign of the difference The sum of these positive and negative 
differences determine whether the retrieval method is actually statistically significantly 
better

3.5 Summary

Video retrieval is difficult due to the lack of authoritative semantic features that describe 
what is perceivable withm video In video retrieval, visual features are detached from 
the semantics of the visual content and even transcribed spoken words (ASR or closed 
captions) are unreliable due to the time-delay problem and the fact that what is spoken 
about is not necessarily shown in the accompanying video stream

Video retrieval is complicated due to the large number of indexing processes that 
must be performed m order to support retrieval The two key indexing processes are 
video segmentation and feature extraction Video segmentation at a minimum consists 
of shot segmentation and keyframe extraction but can also include story segmentation 
Unfortunately, semantic object segmentation and extraction is beyond the ability of 
current automatic segmentation algorithms for general video content The extracted 
visual features provide support for query-by-example searching and can be classified into 
colour, texture, shape, faces, motion and spatio-temporal features High-level features 
such as people, beaches, city, landscape can be extracted to provide a more semantic 
and directly meaningful description of the content, though their usefulness depends 
on how accurately they can be identified and how well they align with the needs of 
video searchers Extracted speech from the audio stream provides a strong semantic 
description but other high-level audio features such as music, monologues and dialogue 
may be of some use

The low-level visual features such as colour, edge, texture, motion, faces and spatio- 
temporal features can be extracted and represented m may different ways Many of the
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feature representations are basically discrete probability distributions of certain events 
(histograms, correlograms, coherence matrix) and are therefore amenable to interpre­
tation within the language modelling approach to information retrieval as described in 
the previous chapter The MPEG7 standard also describes many visual features and 
represents the accumulated research into best practice for efficient and compact features 
for the video retrieval task Many of the MPEG 7 visual features are also inter pretable 
as discrete probability distributions and therefore our advocated language modelling ap­
proach will also apply to a range of standard features in MPEG7-based video retrieval 
systems

We have studied the different types of retrieval models that are used to compare 
features Specifically we looked at similarity/matching models for histogram and vector 
representations Though we have identified a quite varied set of similarity models, in 
practice the overwhelming majority of current video retrieval systems are based on sim­
ple geometric distances such as Euclidean distance or Manhattan distance for comparing 
visual feature vectors Quadratic distance is also popular m image retrieval, though due 
to the fact that it is relatively expensive to evaluate it is not used as much Statisti­
cal tests such as x 2-distance, Jensen-Shannon distance and probability methods such 
as document-likelihood and query-hkelihood have received much less attention Query- 
likehhood for the continuous GMM DCT feature representation is the exception, which 
has been well studied on the TRECVid collections and whose results will form a baseline 
for comparison in future chapters The GMM approach to modelling video features is 
more popularly used m video classification and high-level feature detection than m video 
retrieval due to the time taken to evaluate the continuous GMM query-hkelihood

Fusion of retrieval results from different feature representations plays a significant 
role m determining the effectiveness of a video retrieval system Existing video retrieval 
systems use a multitude of different fusion approaches There are many fusion tasks 
such as combining features m single visual example searching, combining multiple visual 
examples and combining multimodal features, but it is unclear as to which of the fusion 
techniques is actually best for these tasks Some studies have been performed but have 
produced negative results for the video search task m terms of combining text and visual 
features

Relevance feedback has had significant interest m the image retrieval community and 
though we have not described all current video retrieval relevance feedback research, 
there is surprisingly little This will likely change m the near future especially with the 
availability of reference video collections, topics and relevance judgements

Benchmarking of components of video retrieval systems can progress video retrieval 
research and is supported by the recent TRECVid initiative In the past video test 
collections and topics were extremely limited both in size and the quality of replicating
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a real-world video retrieval task Many studies of visual retrieval before TRECVid 
collections, were based on retrieving similarly textured or coloured image tiles from 
image categories Even recent image retrieval research is often based on image categories 
from the Corel datasets that more mimic a categorisation of content into homogeneous 
classes than an attempt to meet a specific information/visual need The homogeneity of 
such classification-based ‘retrieval5 classes m some particular feature space may result 
in techniques being advanced that cannot handle the heterogeneity in feature spaces for 
the more general video retrieval task

The strengthening of video retrieval research in terms of controlled experiment-based 
investigations is facilitated by the TRECVid initiative, which provides the infrastruc­
ture for empirical analysis of video retrieval approaches and systems TRECVid is not 
perfect and indeed results from it can be misleading m some cases Caution must be 
exercised when extrapolating results from a single TRECVid collection as these typically 
contain only 25 topics Therefore researchers should consider using multiple TRECVid 
collections in their experiments, which is only possible to do recently Tuning of free 
parameters is an issue and arbitrary choices of parameters may hinder or benefit one 
method over another Due to TRECVid participants justifiably using different features, 
retrieval models, fusion approaches and to a lesser extent relevance feedback, interpreta­
tion of differences in official TRECVid submissions between research groups is extremely 
difficult except at a basic level of whether their system configuration performed better 
or worse than another
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CHAPTER IV

PROPOSED DISCRETE LANGUAGE MODELLING 
APPROACH FOR VIDEO RETRIEVAL

In this chapter we propose a discrete language modelling 
approach for visual-based video shot retrieval We extend 
the current text-based language modelling approach to 
video shot retrieval by considering hierarchical versions of 
the Dinchlet, Absolute and Witten-Bell language models 
for the physical and semantic hierarchical structure of 
video We extend the application of the text-based 
language modelling approaches to visual-based retrieval by 
converting the visual features, such as colour, edge and 
texture, into discrete representations suitable for the 
originally text-based language modelling approach We 
propose to combine results for the text and visual features 
using data-fusion methods originally developed for 
combining the results of multiple text search engines 
Additionally in this chapter, we outline our evaluation 
methodology for the proposed retrieval models, visual 
features and fusion methods

4 1 Introduction

In this thesis, we deal with the research problem of ad hoc video shot retrieval using a 
multimedia query consisting of text and multiple image and video examples We evaluate 
our approach using fully automatic experiments on the TRECVid 2002, TRECVid 2003 
and TRECVid 2004 search tasks The TRECVid search topics were chosen by NIST to 
mimic the type of information needs that occur m a real world video retrieval scenario 
and concern people, things, events and locations

We propose to use discrete language models for both the text and visual retrieval 
of video shots We convert features from both mediums into the same representation -  
a bag of discrete symbols For text the discrete symbols are the document’s stemmed 
words after the stopwords have been filtered out, while for visual features the discrete 
symbols are the multidimensional histogram entries of the feature’s discrete represen­
tation We convert a continuous visual feature into a discrete representation by simply 
quantising each of its dimension’s values and by truncating the number of dimensions

4 1 Introduction

4 2 Proposed Text Language 
Model Extensions

4 3 Proposed Visual 
Language Models

4 4 Fusion Methods

4 5 Evaluation Methodology

4 6 Related Research

4 7 Summary
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for high-dimensional features

We extend the current text-based language modelling approach for video shot re­
trieval (Westerveld, de Vries and van Ballegooij, 2003) by proposing hierarchical vari­
ations of the Dirichlet, Absolute interpolation and Witten-Bell smoothing methods for 
the hierarchical physical video structure (shot withm adjacent shots within a video) and 
for the hierarchical semantic video structure (shot withm adjacent shots within a story)

We take a different approach to visual retrieval than the continuous GMM language 
modelling approach (Westerveld, de Vries and van Ballegooij, 2003), where they model 
their single visual feature, multi-spectral DCT-based texture, using a Gaussian Mixture 
Model In our approach we model multiple visual features, such as colour, edge and 
texture, using discrete probability models that can be smoothed with the same standard 
language modelling smoothing methods as used for text We spend significant effort in 
evaluating this language modelling approach for the HSV colour, Canny edge and DCT 
texture features For each feature we evaluate multiple global and regional discrete 
representations for the language modelling and standard visual retrieval approaches to 
the video shot retrieval task

In this thesis, we combine results for the text and visual features, such as colour, edge 
and texture, using variations of data-fusion methods originally developed for combining 
the results of multiple text search engines, which consist of either combining normalised 
scores or normalised ranks of the individual search engine (Lee, 1997)

In our experiments we investigate many of the language modelling approaches to 
information retrieval for both the text and visual-based retrieval of video shots We 
contrast these language modelling approaches with a couple of hand picked non-language 
modelling approaches such as TF-IDF and BM25 for text retrieval, and Manhattan 
distance, Euclidean distance and Jensen-Shannon distance for visual retrieval However, 
for both text and visual results we are primarily interested m the language modelling 
results and therefore pursue and extend them more thoroughly than the standard visual 
or text-based information retrieval approaches

In this thesis we are concerned with the evaluation of a discrete language model 
approach to information retrieval for both text and visual-based search of relatively 
large video collections The advantage of our approach is that it provides a consistent, 
effective and efficient method of video retrieval It provides a consistent basis from which 
other researchers can extend using the wider language modelling framework for example 
to do relevance feedback or even other applications such as topic tracking and alerting 
m the video domain

In the following sections we will describe our proposed approach m more detail m 
section 2 we describe our extensions to the text-based hierarchical language model for
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video retrieval, m section 3 we describe our visual-based discrete language modelling ap­
proach to video retrieval, m section 4 we describe the fusion methods to combine multiple 
features and visual examples, and m section 5 we outline our evaluation methodology 
We end this chapter with a description of related research

4-2 Proposed Extensions to the Text-based Hierarchical 
Language Model fo r  Video Shot Retrieval

The structure of videos is hierarchical since we can view a shot as being m a sequence 
of adjacent shots (local context) and likewise these adjacent shots are withm the larger 
video unit such as a programme We refer to this as the physical hierarchical structure 
because it uses relationships solely based on the physical editing composition of the 
video In television news programmes each news story is very distinct from the other 
stones withm the same programme and therefore another hierarchical structure based 
on the semantic or logical structure of a news programme would be more appropriate 
For television news this semantic hierarchical structure does not involve the video unit 
and instead is based on a shot within a small sequence of shots withm a story In our 
experiments m the next few chapters we evaluate the effectiveness of different indexing 
units such as shots, adjacent shots, enclosing story and enclosing video for representing 
shots and also different physical and semantic hierarchical structures in the language 
modelling approach to video shot retrieval

We can view the language modelling approach to information retrieval as having 
two distinct types of smoothing namely discountmg-based and combination-based The 
combination-based smoothing methods Jehnek-Mercer, Absolute, Dirichlet and Witten- 
Bell smooth the document model by combining it with the background collection model 
The Jehnek-Mercer method, which uses a simple linear interpolation, was extended by 
(Westerveld, de Vries and van Ballegooij, 2003) for video shot retrieval so as to smooth 
the shot’s text model with the adjacent shot’s text and with the whole video’s text as 
well as of course the collection text model In their research Westerveld, de Vries and van 
Ballegooij referred to this structure as shot+scene+video whereas we will refer to it as 
the shot+adj+video to differentiate it from our semantic structures Their hierarchical 
Jehnek-Mercer language model (or linear interpolation language model) is defined as

l̂ inierp(w\SHOT, \$hoti A a d j i  ^vidi ^col) —  A shot x  P ( i ^ | SHOT)
+ Aad3 x F{w\ADJ) (89)

+ Amd x F(w\VID) + Aco* x P H  COL)

where P(tu|SHOT), F(w\ADJ), F(w\VID) and F(w\COL) are respectively the maximum likeli­
hood probability of a word in the shot, in the window of adjacent shot text, in the text from the 
enclosing video and m the collection text model The parameters A8hou Aadj) AVld and Acoi are 
set by tuning on an appropriate collection This linear interpolation of the probability estimators 
can be viewed as an hierarchical combination where first the video probability model is smoothed 
with the collection model, then the adjacent shot model is smoothed with this smoothed video
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model, and finally the shot model is smoothed with this smoothed adjacent shots model This 
interpretation of the combination as occurring at each stage in the hierarchy between the current 
level and the higher level leads us to propose extensions to this text-based hierarchical language 
modelling approach to video shot retrieval that combine the hierarchical video structure in a 
similar hierarchical ordering but with the other combination-based smoothing methods Witten- 
Bell, Absolute and Dirichlet We will now define each of these hierarchical smoothing methods 
for the shot-h ad]-hvideo structure -  simply replacing the video’s text distribution with the story’s 
text distribution leads to the similar definitions of these hierarchical smoothing methods for the 
semantic shot+ad]+story structure The shot+video and shot-hstory hierarchical structures are 
also easily adapted from these by excluding the ad] level

We define the hierarchical Witten-Bell smoothing for the hierarchical shot-hadj-hvideo struc­
ture as

^hter-wb(w\ SH O T) = Fw b (w \ SH O T ,

F W b H  ADJ, (90)

GVb H  V ID , Vm l (w \ C O L ))))

where Pu,&() is as defined for Witten-Bell smoothing in Equation 21 (Chapter 2, page 18) In this 
hierarchical Witten-Bell smoothing we first smooth the video with the collection model using the 
Witten-Bell smoothing function, we then smooth the adjacent shots with this smoothed video 
estimator using the Witten-Bell smoothing function, and finally we smooth the shot model with 
this smoothed adjacent shots model using the Witten-Bell smoothing function

Likewise, we define hierarchical Absolute smoothing as

^hier-absiw\ SH O T y5sh0t,5adji$Vtd) — ^A B si^\ &shot-* SH O T ,

Wa b s M  Sadj, A D J , (91)

P ab s(H  5vtd, V ID , I?m l {w \ COL)) ))

where P ^ s s t ) is as defined for Absolute interpolation smoothing m Equation 22 (Chapter 2, 
page 18)

And similarly, we define hierarchical Dirichlet smoothing as

P>/iier_t£tr (^ | SH O T , lladj ) [¿video»l^col) =  SH O T , ftadji

P d /k (H  A D J , fivtd, (92)

^ d ir (w | V ID , Hcoi, P m l(H  COL)) )) 

where P d /a ( ) is as defined for Dirichlet smoothing in Equation 20 (Chapter 2, page 18)

In the next chapter we evaluate these hierarchical smoothing methods on the TRECVid 2002, 
2003 and 2004 collections We compare these methods with the original hierarchical text-based 
language-modelling approach to video retrieval (Westerveld, de Vries and van Ballegooij, 2003) 
and with standard information retrieval and language modelling approaches to text retrieval 
We compare these proposed hierarchical smoothing methods on the physical shot+video and 
$hot-had]-hvideo hierarchical structures and on the semantic ehot+story and shot-h adj+story 
hierarchical structures In the shot-hadj-hstory hierarchical structure the window of adjacent 
shot text is bounded within the story unit and therefore does not add as much noise as in the 
shot-h ad]-h video hierarchical structure We believe the hierarchical Dirichlet language model is
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well-founded as it reduces the amount of smoothing for large amounts of text samples at each 
level However, m the physical hierarchical structure large amounts of text in the window of 
adjacent shot text may not indicate a more reliable estimate These smoothing methods may 
be more appropriate for the semantic structures due to the clearer topical connections between 
levels of the hierarchy

4-3 Proposed Visual Language Models

In this thesis, we propose a discrete language modelling approach for visual-based retrieval 
of video shots We extend the application of the text-based language modelling approaches 
to visual-based retrieval by converting the visual features, such as colour, edge and texture, 
into suitable discrete representations This is in contrast to the continuous language modelling 
approach (Westerveld, de Vries and van Ballegooij, 2003), which uses the Gaussian Mixture 
Model, a continuous probability model, to model the visual feature for the video retrieval task

We convert a multidimensional continuous feature into a discrete feature by quantising each 
continuous dimension into a fixed number of value ranges In some cases, such as for texture, we 
reduce the number of dimensions to only the most significant We can also apply this process to 
existing discrete multidimensional features that have ordinal dimensions m order to reduce the 
size of their indexing language After converting each dimension to a small set of discrete ranges 
for a fixed number of dimensions, we use the well established multidimensional histogram as our 
feature representation and we treat the values in each bin in the histogram as the count for a 
distinct symbol in the visual language for the particular feature

This interpretation of a visual feature as a discrete distribution of visual symbols is amenable 
to the same smoothing methods that have been used in the past for the text-based language 
modelling approaches to information retrieval It is our intention m this thesis to evaluate 
the originally text-based smoothing methods on our colour, edge and texture visual languages 
to validate our approach and to compare its effectiveness with standard visual retrieval models 
There is nothing particularly linguistic m the standard text-based language modelling approaches 
for information retrieval and therefore it is our belief that the text-based language modelling 
approach is also applicable to visual languages Since the visual features are less semantic than 
text features, different smoothing methods than in text retrieval may be more effective for some 
visual features or maybe even for all In particular, discounting methods may be sufficient for 
smoothing the maximum likelihood estimates If features have close to uniform distributions 
across the collection then there will be little difference between discounting and interpolation 
smoothing methods

We believe that discrete representations of non-semantic features that have symbols of near 
uniform distribution across the collection are more desirable as they can contain more information 
than the same features with a skewed discrete representation of the same language size The 
maximisation of the information carrying potential of a discrete language is especially important 
when the original continuous visual feature is extremely skewed This occurs for our DCT texture 
feature and if we uniformly quantised its range, we would create a visual language where most 
of the probability mass would be located in just a few discrete symbols for all documents
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The benefits of our discrete visual language modelling approach is that it is consistent with 
the text-based language modelling approach and can directly avail of existing research, such 
as with regards to smoothing methods Since our feature representation is a multidimensional 
histogram we do not need to assume that the feature’s statistical distribution follows a particular 
parametric probability density, such as a Gaussian Mixture Model Our discrete approach to 
feature representation is more efficient to index, since unlike the Gaussian Mixture Model there 
is no need to perform iterative EM parameter learning, and it is also more efficient for retrieval 
since the speed of query-hkelihood for most retrieval models is related to the number of unique 
terms m the query, which in general is smaller in our approach due to the quantisation of the 
continuous features into a smaller number of distinct values Our approach is widely applicable 
to many of the effective visual feature representations that are used m current video retrieval 
systems such as histograms, correlograms and co-occurrence matrices of colour, edge and texture 
features This visual language modelling approach can also be applied to standard MPEG7 
descriptors such as MPEG7 Scalable Colour, MPEG7 Colour Structure, MPEG7 Edge Histogram 
and MPEG7 GoF/ GoP Colour descriptors We will also show later in this thesis that the visual 
language modelling approach is generally as effective as traditional visual retrieval models In 
summary, the visual discrete language modelling approach to video retrieval is consistent with 
text retrieval, efficient, effective and widely applicable to many visual features It puts text and 
visual retrieval in the same discrete language modelling framework allowing for easier extension 
of this research across media such as for relevance feedback The major weakness in our approach 
is that it cannot support high-dimensional feature representations as the storage requirements 
grow exponentially with the number of dimensions

On the other hand the benefits of the Gaussian Mixture Model (GMM) language modelling 
approach (Westerveld, de Vries and van Ballegooij, 2003) are that the indexed representation 
of the feature is smaller than for the discrete histogram approach and it can handle higher- 
dimensional features since its storage requirements grow only linearly (diagonal covariance) or 
squared (full covariance) with the number of dimensions The samples also guide the represen­
tation through the EM parameter learning procedure and this can be interpreted as wasting less 
information in the representation on insignificant or non-existent patterns than might be the case 
for the histogram approach The weaknesses of this approach is that it is slower to index due to 
the required EM training and is also slower to retrieve from due to each sample being distinct 
and since the GMM is slower to evaluate than looking up the probability m a multidimensional 
histogram The assumption that features can be represented as a GMM may also limit its ap­
plicability to other types of features that are not as well approximated by this distribution The 
use of a fixed number of components in the GMM may also limit its effectiveness for features 
that have very varied amounts of complexity in each shot

We apply our discrete visual language modelling approach to the colour, edge, and texture 
features, which we chose to be as independent of each other as possible, in the hope that when 
we combine their results they will complement each other, though there is possibly some overlap 
in the information content between texture and colour and also between texture and edge For 
each of these feature classes we have chosen a single feature instance for colour we chose HSV 
colour, which has been successfully used m many image search engines (Faloutsos et a l , 1994, 
Hauptmann et a l , 2004), for edge we chose the Canny edge detector, which has been used in 
(Hauptmann et al , 2004) for visual retrieval and for texture we chose DCT coefficients which 
have been used by (Vasconcelos and Lippman, 2000, Westerveld, de Vries and van Ballegooij,
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global 3x3 regions

4x4 regions 5x5 regions

Figure  20 Global and regional whole image representations

2003) for image and video retrieval Our approach is directly applicable to other visual features 
that can be represented as a distribution of smgle-dimensional or multidimensional numeric or 
non-numeric samples

For each feature we compare multiple global and regional discrete representations for the 
language modelling and standard visual retrieval approaches for the video shot retrieval task 
We construct regional versions of our features by including their relative X and Y position m the 
keyframe, scaled between 0 and 1, as part of the feature’s multidimensional representation We 
compare the retrieval performance for each feature using this regional representation quantised 
into 3x3, 4x4, and 5x5 regions per image as illustrated in Figure 20 These representations pro­
vide a limited but still potentially beneficial amount of regional position information However, 
m contrast to a full visual region retrieval system, we perform only whole image querying and 
do not support querying or matching based on a part or region of an image The global feature 
representations test the visual language modelling approach with small dense visual languages, 
whereas the regional feature representations test the visual language modelling approach with 
large sparse visual languages

We will now describe our colour, edge and texture visual languages 

4 3 1 Visual Colour Language

We choose the HSV colourspace for the visual colour language due to its relative success in other 
video retrieval systems (Faloutsos et a l , 1994, Hauptmann et al , 2004) The approach we take for 
colour retrieval is equally applicable to other colourspaces such as the MPEG-1 encoded YCbCr 
colourspace or the LAB colourspace that is based on human perception of colour differences 
However, in this thesis we will investigate a single feature instance for each visual feature class 
and will leave it to future work to broaden the evaluation of our approach to the many other 
types of colour, edge or texture

For the HSV colour feature we assume that each pixel’s colour information is independent 
of the surrounding pixels This assumption, which is not strictly true, permits us to model an
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image in terms of independent and identically distributed (11 d ) colour pixel samples The 
positional colour feature has five dimensions X, Y, H, S, V in which the X and Y dimensions are 
scaled from zero to one For the global colour representations we ignore the first two dimensions 
and quantise the H, S, V dimension, whereas for the regional colour representations we quantise 
all five dimensions As with all our visual features, we use a multidimensional histogram to 
store frequency counts of the quantised feature, but interpret this structure in terms of counts 
of distinct symbols m our visual language model for the feature

In our global HSV experiments, we quantise the HSV colour feature into different histogram 
representations H 80+1, HSV 5x5x5 and HSV 16x4x4 The first representation H 80-tl quan­
tises a HSV value into 80 uniform levels (histogram bins of equal width) based on hue alone with 
unsaturated colours, which have unreliable hue values, stored in a separate out-of-bounds bin 
This represents a very simple single dimensional representation of HSV colour, which results in 
a language of 81 symbols In contrast, the other representations that we evaluate quantise the 
three colour bands - hue, saturation, and value (brightness) The first of these multidimensional 
representations is HSV 5x5x5 which quantises each dimension uniformly into 5 levels This rep­
resentation is the same as CMU’s TRECVid 2003 colour histogram representation (Hauptmann 
et al , 2004), which they also use m a 5x5 regional representation, and it produces a language of 
125 symbols for its global representation The final representation we evaluate is HSV 16x4x4, 
which is similar to the MPEG7 Scalable Colour descriptor (MPEG7 Committee, 2002), in which 
each band is uniformly quantised but with the hue band given more levels, 16 compared to 4 
each for the other two bands, and this representation produces a language of 256 symbols We 
evaluate these different global HSV colour representations in order to determine the overall best 
HSV representation for the TRECVid search task and to compare visual language models and 
standard retrieval models

After establishing the best global colour representation we investigate its use for regional 
colour representations In our regional HSV colour representation we quantise the X, Y position 
dimensions for each HSV sample uniformly into 3, 4 or 5 levels, thereby essentially breaking 
the image into 9, 16, or 25 independent rectangular regions and of course producing a visual 
language with 9, 16, or 25 times the number of symbols as m the global representation In all 
our experiments on these visual languages we investigate discounting-based and mterpolation- 
based smoothing methods for the discrete visual language modelling approach as well as other 
traditional visual histogram retrieval models such as Manhattan distance, Euclidean distance 
and Jensen-Shannon distance

4 3 2 Visual Edge Language

As described in the previous chapter, an edge is an abrupt change m image intensity and usually 
has both an associated direction and magnitude and is located at a specific pixel within the image 
There are many edge detectors, such as based on the Laplacian, Prewitt, Sobel, Robinson, or 
Kirsch operators (Sonka et a l , 1998), however we will restrict our evaluation to the Canny edge 
detector which was previously used for video shot retrieval in (Hauptmann et a l , 2004)

In our Canny edge feature, we ignore the magnitude of the edge and constrain the edge 
direction to an 180° range with the first quantisation level of our discrete representation of edge
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F igure  21 Canny edge feature for 4 directions with decision boundaries indicated with 
dashed lines

direction centred on the horizonal axis as illustrated in Figure 21 We treat non-edge samples as 
having an out-of-bounds edge direction which requires an additional symbol for each visual edge 
representation Similar to colour, we assume that the edge features, which exist for each pixel 
in an image, are l i d and therefore can be modelled as independent samples m a distribution

We first compare the global visual edge languages Canny 4+1, Canny 16+1, Canny 32+1 
and Canny 64+1 which have from 4 to 64 levels of quantisation for the edge direction and 
with an extra symbol for the out-of-bounds edge direction, producing a language consisting of 
between 5 and 65 symbols After investigating retrieval models for these global visual edge 
languages and establishing a reasonable global representation of edges, we investigate extensions 
to this visual language for 3x3, 4x4 and 5x5 regions The non-edge symbols, which typically 
contain most of the probability mass of this distribution, makes this feature very different from 
the more uniform distribution of the HSV colour feature We would expect that interpolation- 
based language models would be more beneficial than discounting-based language models for this 
feature as they reduce the importance of common symbols in the calculation of query-hkehhood

4 3 3 Visual Texture Language

In this section we present our visual texture languages Texture can be simply defined for images 
as patterns in a local spatial neighbourhood and similar to (Westerveld, de Vries and van Bal- 
legooij, 2003) we use the DCT coefficients as our texture feature Whereas Westerveld, de Vries 
and van Ballegooij (2003) use multi-spectral DCT coefficients, we limit our representation to 
DCT coefficients based on the luminance band, the Y band of YCbCr colourspace, disregarding 
the DCT coefficients based on the colour bands Cb and Cr The luminance DCT coefficients are 
calculated from non-overlapping 8x8 pixel blocks m MPEG-1 and JPEG encoded images and 
they can be efficiently extracted from encoded streams without a full decode To simplify our 
software implementation (programming effort), we fully decode the keyframes using standard 
image libraries and we then perform the DCT transform to produce the DCT coefficients for our 
experiments instead of writing our indexing software to do a more efficient partial decode of the 
JPEG and MPEG-1 streams

The first DCT coefficient is the mean luminance of the 8x8 pixel block while the other 
coefficients each represent the amplitude of Cosine waves of specific frequencies (see Section 
3 2 4 2, page 59) The Cosine amplitudes are unbounded values that can be positive or negative 
and are ordered from low to high frequencies where the first few coefficients, the low frequencies, 
contain most of the important visual information for encoding an image In fact JPEG and
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MPEG-1 encoding standards use this principle when compressing an image by concentrating the 
majority of encoded bits to representing only the low frequency DCT coefficients We apply the 
same focus on the low frequency coefficients in our representation of texture for our experiments

In minor ways, our DCT texture representation overlaps the previous two features, colour 
and edge, since the first DCT coefficient is the average brightness and since edges are also a 
spatial feature However, the colour and edge features are more focused on their specific feature 
type and are also at a finer pixel level than the DCT texture representation, which is calculated 
for non-overlapping 8x8 pixel blocks as opposed to individual pixels We expect that these three 
features should complement each other when combined into a single retrieval model In contrast, 
in the approach of (Westerveld, de Vries and van Ballegooij, 2003, Vasconcelos and Lippman, 
2000) multi-spectral DCT coefficients constitute their full visual-based retrieval model

In our experiments we represent texture by using different numbers of significant DCT 
coefficients into a fixed number of quantisation levels Similar to previously described features, 
our DCT texture representation is essentially a multidimensional histogram In contrast, m the 
approach of (Westerveld, de Vries and van Ballegooij, 2003, Vasconcelos and Lippman, 2000) 
the DCT probability model is a multivariate Gaussian Mixture Model, which is a more compact 
representation that can more easily model larger numbers of DCT coefficients or bands into a 
single representation

Each of our DCT texture representations quantise a fixed number of low frequency DCT 
coefficients into a fixed number of bins per coefficient The quantisation levels, boundaries 
between bins, for each dimension of the histogram are calculated across the whole keyframe 
collection so that the marginal distribution of a specific DCT coefficient uniformly populates 
its quantisation bins For example, for 10 bins representing a DCT coefficient, one tenth of 
the values of the DCT coefficient will populate each bin in its marginal distribution for the 
collection of all shot keyframes In other words, we use variable width bins in contrast to our 
edge and colour representations where the bins in each dimension had the same width Since the 
Cosine amplitudes are essentially unbounded from negative infinity to positive infinity with most 
amplitudes centred around the zero value, a uniform partitioning of the Cosme wave amplitude’s 
range would attribute the same symbol to many texture representations, which would as a result 
reduce the discrimination power of the indexing language

In our experiments on the TRECVid collections we compare the global texture languages 
that use between 2 and 5 DCT coefficients, specifically the DCT 10x10, DCT 8x8x8, DCT  
4x4x4x4, and DCT 3x3x3x3x3 visual texture languages, which consist of 100, 256, 256 and 243 
symbols respectively We will first investigate texture as a global feature before experimenting 
with it for regional texture representations of 3x3, 4x4 and 5x5 regions

4-4 Fusion Methods

In this thesis we investigate the fusion of retrieval models in order to combine (A) the multi­
ple visual features, (B) the multiple visual examples and (C) the multiple modalities text and 
visual as illustrated m Figure 22 The combination (A) supports the retrieval of video shots 
using a single visual example and involves the automatic fusion of colour, edge and texture
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Figure 22: Fusion of individual retrieval models for TRECVid topics.

retrieval models. The combination (B) supports visual-based retrieval of video shots using a 
query with multiple visual examples and involves the automatic fusion of results from possibly 
quite disparate image or video examples. While the combination (C) supports the retrieval of 
video shots using a query with both text and multiple visual examples for which the combination 
would involve very different result sets.

As discussed in the previous chapter, there is a lack of empirical studies of fusion techniques 
in video retrieval and it is not clear what techniques are best for the different fusion tasks required 
by video retrieval systems and in particular what fusion methods are best for our visual language 
modelling approach. We investigate late fusion methods originally developed for combining the 
results of multiple text search engines (Lee, 1997; Fox and Shaw, 1994). We compare fusion 
methods based on normalised score and normalised rank which use either the average, weighted 
average or maximum of individual results as the combination function. The weighted average 
combination is particularly important in video retrieval as we believe that some features are in 
general better than others though this could also be used in text retrieval to prefer the results of 
particular search engines over others. We also compare these results with a single probabilistic 
combination that assumes all features and examples are fully independent.

We use the following notation to refer to each fusion strategy:

• CombJointPr - multiply the probabilities of individual generative models (or add the 
log-likelihoods).

• CombSumScore - add the normalised scores of the results (traditional CombSUM fusion)

• CombSumRank - add the normalised ranks of the results (Borda count).
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• CombMaxScore - order by the maximum of the normalised scores of the top results

• CombMaxRank - order by decreasing normalised rank removing duplicates (equivalent to 
round-robin when result lists are the same size)

• CombSum WtScore - weighted average of the normalised scores of the results (linear inter­
polation)

• CombSumWtRank - weighted average of the normalised ranks of the results (weighted 
Borda count)

As m (Lee, 1997) we define normalised rank as

j ^  TdTlhdoc /nQ\TiT(XTLk(ioc — - — , (93)

and normalised score as
S C O T € d o c  S C O T G j j i m  f r \ A \

nscoredoc = ----------------------------, I»4)5C07’6max scoremin
where scoremin is the score at document rank N + 1 and all documents not m the top N  results 
are given a score of zero for both the normalised rank and normalised score The parameter 
N  controls the truncation of the original result list thereby removing the noise that may be 
generated from low-ranking document scores

We use log-hkehhoods as our score for each document in our text and visual language model’s 
retrieval results since the visual features’ generative probabilities are very small and cannot be 
directly represented using double precision floating point numbers As a result we are limited 
in how we can efficiently combine the probabilities but one simple combined generative model, 
which we also evaluate, is to assume that all the features and visual examples are independent, 
which is straightforward to calculate by adding the log-probabilities

4 4 1 Combining Multiple Features

For the first fusion task (A) to combine the multiple visual features colour, edge and texture 
we compare the following fusion methods Vis-CombJomtPr, Vis-CombSumWtScore and Vis- 
CombSumWtRank methods

The Vis- CombJointPr is a generative ranking model for the three features and is defined as

P(coZ A edge A texture\shot) =  ¥(col\shot) x ¥(edge\shot) x IP(texture\shot), (95)

where each visual feature is assumed to be independent This method assumes each feature 
to be equally important and will probably allow the noise from the poor-matching feature’s 
results or from the low-ranking results to overwhelm this joint probability A better strategy 
could be to normalise all low ranking probabilities to a small constant background probability 
The probability approach may be more competitive with other approaches if it were efficient to 
calculate a finite mixture model (linear interpolation) of the features generative probabilities, 
such as

F(colour A edge A texture\shot) =Acolour x F (colour\shot) +  \ edge x ^(edge\shot)

+  Atexture x ~P(texture\shot)
(96)
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Since the event spaces for the components of this finite mixture model are not equivalent, this 
approach is not as elegant as when the finite mixture models are used for smoothing m the 
language modelling approach to information retrieval

The closest we get to using the generative probabilities in our other fusion strategies is with 
the Vis- CombSum WtScore method which combines the normalised scores (log-hkelihoods) of the 
results of each feature, and is defined as

SCOTC =  Wcolour *  riSC0TCC0i0ur ~(~ Wedge *  7lSCOr€e([ge -(- W texture  *  riSCOT(¡texture, ( 9 7 )

where W CqIqU1t “I- W^dge + ^ tex tu re  ~  1

The fusion method Vis- CombSum WtRank ignores the scores (log-likelihoods) completely and 
combines simply based on the average weighted normalised rank across features, and is defined 
as

SCOT& =  W coiour  *  n r a n k c o i  “I-  Wedge * T ird flkedge  +  W texture  * TIT(LTlktextUTe 5 ( 9 8 )

w h e r e  Wcolour “I" Wedge “1“ W texture  1

We make no assumptions about the weights m these parametric fusion methods Vis- CombSum WtScore 
and Vis-CombSumWtRank but instead tram and test them on independent collections In our 
results, we present both optimised and unbiased results for these fusion models We set the size 
(.N ) of the truncated result lists to 1000 for both fusion methods instead of tuning on a separate 
collection

We would prefer the normalised score method over the normalised rank fusion method for 
the simple reason that it makes more use, if only indirectly, of the query-likelihood Varying the 
amount of results combined from each feature may have been beneficial, however since we are 
primarily interested m comparing fusion methods, we did not do this as it would only further 
complicate the interpretation of the results We intend to look into variable result sizes in future 
work Another strategy that may be beneficial would be to try curve-based rank normalisation 
functions rather than the straight line that we currently use for normalising the rank score An 
more interesting extension to this work would be to combine the results using score distributions 
(Manmatha et al , 2001)

4 4 2 Combining Multiple Visual Examples

For the second fusion task (B) to combine multiple visual examples, we compare the following 
fusion methods VisExs-CombJointPr, VisExs-CombSumScore, VisExs-CombSumRank, VisExs- 
CombMaxScore and VisExs- CombMaxRank

For the VisExs-CombJomtPr we will use the previously described Vis-CombJomtPr for the 
probability of each separate visual example This fusion method creates a generative model 
under the assumption of independence between visual examples This is actually equivalent to 
assuming that all samples from all visual examples are sampled independently from the same 
single source due to our earlier assumption of independence of the features’ samples
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For the other fusion methods we can combine the results of any of the previously de­
scribed visual feature combinations For the VisExs- CombScore, VisExs- CombRank and VisExs- 
CombMaxScore methods we will normalise a multiple (1 e scale * (1000/number o f examples)) 
of the amount of documents required from each visual example in order to get a result size of at 
least 1000 We select the value of scale by the usual method m this thesis of optimising on one 
test collection and validating on another In general the best values of scale are between 1 05 
and 1 20 though sometimes it reaches 2 0 A better approach may be to set this to some fixed 
value for all the test collections

The VisExs-CombJozntPr fusion method will probably suffer from low-ranking shots in each 
result affecting the good results of the visual examples The VisExs-CombSumScore (traditional 
CombSUM) and VisExs-CombSumRank (Borda count) combine the results for each example 
in a way that allows the top ranking results to affect each other in the assumption that this 
will improve the ranking by reinforcing the positive results and reducing the noise These 
fusion methods require that relevant results from the source result lists overlap more so than 
non-relevant documents in order to have successful fusion The VisExs-CombMaxRank take a 
strictly independent view of multiple examples and orders the results m a round-robin fashion 
The assumption is that the separate results for each visual example do not strongly overlap, 
and if combined by averaging score or rank would reinforce the noise more than they reinforce 
the common relevant results The VisExs-CombMaxScore again assumes that the results do not 
overlap in a way that would be useful but assumes that the normalised scores hold some useful 
relevance information that can be used to measure the separate results in a better manner than 
round-robin

We will evaluate these fusion methods using a fully automatic evaluation procedure on the 
TRECVid 2002, 2003 and 2004 search tasks, the results of which represent a purely visual-based 
approach to the TRECVid search task

4 4 3 Combining Text and Visual

For the third fusion task (C) to combine the results from text and visual models we compare 
TextVis-CombJomtPr, Text Vis- CombSum Wt Score and TextVis-CombSumWtRank fusion meth­
ods

TextVis-CombJomtPr is a generative fusion method which combines the probability of the 
shot producing the text of the query with the probability of the shot generating the different 
visual examples under the assumption that both the text and visual models are independent 
The same potential problems apply to this combination as to all CombJointPr combinations 
except that for this combination the reduction m performance due to added noise is likely to be 
more severe since the relatively good text results are combined on equal terms with the relatively 
poor visual results, which will most likely achieve significantly lower results than for text alone 
The visual generative probabilities are for thousands of pixel samples and will likely overwhelm 
the text generative probabilities which are only for a couple of query text terms

The TextVis-CombSumWtScore method combines the normalised scores of the top 1000
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results of the text and visual results and is defined as

score = wtext * nscoretext + wvlsual * nscorevlsuau (99)

where wtext + Wvisuai — 1 The fusion method TextVis-CombSumWtRank (weighted Borda 
count) simply combines the text and visual results based on the weighted average of the nor­
malised rank across features, and is defined as

score = Wtext * nranktext + wvtsuai * nrankvlsuau (100)

where wtext + wvisual = 1

As before, we make no assumptions about the weights m the parametric fusion methods 
TextVis-CombSumWtScore and TextVis-CombSumWtRank but instead tram and test them on 
independent collections

We will evaluate these fusion methods using a fully automatic evaluation procedure on 
the TRECVid search tasks and these results represent a combined text and visual-based ap­
proach to the TRECVid search task We expect that either the TextVzs-CombSumWtScore or 
TextVis-CombSumWtRank will perform best and that the Text Vis-Comb JomtPr will perform 
very poorly We are not assured of getting better results for any of the combined text and visual 
approaches than for the text approach alone because positive improvements in some topics may 
be overshadowed by the negative effects the visual results have on other topics

We will also evaluate the combination of text and visual features for two ideal situations In 
the first situation TextVisBoth-Oracle we assume that an Oracle selects whether the topic will be 
text only, visual only or combined text and visual In the second variation TextVisComb-Oracle 
we allow the Oracle to select the weights for combining text and visual results on a per-topic 
basis In both variations the Oracle selects the best of the available choices The purpose of the
TextVisBoth-Oracle is to achieve an estimate of the performance of our approach if an ideal user
was able to make a simple but always correct choice for each topic between using the text, the 
visual or both for each query The purpose of the TextVisComb-Oracle is to identify the best 
the system (or a user) could achieve if it modified the weights of text and visual features on a 
per topic basis These experiments will give us some indication of the performance potential for 
combining visual retrieval with text retrieval for the video search task A related fusion approach 
is to treat each topic as being a member of a query-class and use class-dependent weights for the 
fusion task (Yan et al , 2004) We do not pursue this approach but believe it would be beneficial 
with the appropriate amount of training data

4-5 Evaluation Methodology

In this thesis, we show through a series of experiments for text-based, visual-based and combined 
text and visual searches that the discrete language modelling approach to text and visual based 
searching of video content produces competitive results compared to other approaches We 
evaluate our proposed extensions to the text-based hierarchical language modelling approach, our 
discrete language modelling approach to visual retrieval, and the effectiveness of the combined 
text and visual retrieval approach using fully automatic experiments on the TRECVid 2002, 
2003 and 2004 search tasks
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The TRECVid 2002 and TRECVid 2003 collections are very different and as a result we 
sometimes get inconsistent results from both collections for certain features or representations 
The TRECVid 2002 test collection contains old video content, public information and commercial 
programmes predominantly from the 1950’s onwards of a mixed but generally poor visual quality, 
while the TRECVid 2003 and TRECVid 2004 collections contain ABC and CNN news from the 
late 1990’s of a higher and consistent visual quality Each TRECVid collection is supplied with 
a common automatic speech recognition (ASR) text, shot definitions, keyframes, search topics 
and relevance judgements which we use in our experiments The TRECVid search topics, which 
are listed in the appendices, were composed by NIST to represent ‘real-world’ visually-oriented 
information needs concerning people, things, events and locations, and each TRECVid topic 
consists of a text description and multiple video and image examples

We perform fully automatic experiments where the retrieval system takes the TRECVid topic 
without modification by a user Our system may then modify it, such as performing stopword 
removal and stemming for the text description, but all modifications of the topic are performed 
automatically without user intervention This is in contrast to the manual search procedure 
more popularly employed m TRECVid, which allows a user to translate the TRECVid topics 
into a form more suitable for each search system We believe that fully automatic experiments, 
which potentially decrease the reported performance compared to manual TRECVid experi­
ments, provide a more unbiased view of system performance that can be compared more easily 
and repeated independently withm the research community In the TRECVid 2004 conference 
the submission of fully automatic runs were provisionally supported to test their usefulness for 
their potential adoption in the TRECVid 2005 evaluation

For all our experiments we will report both the unbiased results and the optimised results 
for each retrieval model that requires parameters to be set We choose the unbiased parameters 
through training the retrieval model on a separate collection m order to maximise the mean 
average precision (MAP) measure The biased results such as the optimised MAP m an ex­
periment will be presented in brackets to distinguish them from the other experimentally valid 
results that one would expect to achieve in a blind unbiased test In our presentation of results 
we will primarily discuss the MAP measure but we will present mean precision at 10, 30, and 
100 document cut-offs when space permits, as this correlates with what a user would perceive 
when looking at a short detailed list of the top 10 results, a more careful detailed look at the 
top 30 results and for example a compact image-only results layout of the top 100 keyframes

We evaluate our proposed approach to video shot retrieval in the next three chapters, which 
deal in turn with text-based retrieval, single visual feature-based retrieval and combined text 
and visual retrieval of video shots for the TRECVid search tasks

In Chapter 5 we investigate video shot retrieval using text evidence alone We compare 
standard language modelling and standard information retrieval approaches such as TF-IDF 
and BM25 for different indexing units such as shots, adjacent shots, videos and stories for the 
TRECVid search tasks m order to create a baseline for non-structural approaches to video re­
trieval We also compare the hierarchical language modelling approach (Westerveld, de Vries and 
van Ballegooij, 2003) with our proposed extensions that use either hierarchical Absolute, hier­
archical Dirichlet or hierarchical Witten-Bell smoothing on the hierarchical physical shot+vzdeo 
and shot-hadj-hvideo structures and the hierarchical semantic shot-}-story and shot+adj+story
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structures

In Chapter 6 we evaluate our discrete language modelling approach for video shot retrieval 
on the separate colour, edge and texture visual features We compare the language modelling 
approaches to other standard visual retrieval ranking models, such as Manhattan distance, Eu­
clidean distance and Jensen-Shannon distance, for individual visual features and we establish the 
relative performance of different visual features on the TRECVid collections For each feature, 
we first present experiments on global representations of the feature in which we do not take any 
positional information into account After establishing results for the global representation we 
experiment with representations that take into account positional information for 3x3, 4x4 and 
5x5 regions

In Chapter 7 we evaluate the fusion of results from multiple features, multiple visual examples 
and multiple modalities The key problem addressed in this chapter is not which text retrieval 
model achieves the best fusion results but how to combine the visual features and visual examples 
successfully with each other and with the text results We experiment with combining features 
from a wide selection of visual retrieval models, discounting-based language models, mterpolated- 
based language models, and standard visual retrieval models, m order to achieve a wider and 
hopefully more balanced view of the benefits and faults of different fusion methods

4-6 Related Research

We have published some partial comparisons of the discrete visual language modelling approach 
that is presented in this thesis In the TRECVid 2004 workshop we submitted retrieval runs for 
the automatic video search task using Lidstone smoothed and Jelinek-Mercer smoothed visual 
discrete language models with the regional HSV colour, Canny edge and DCT features (Cooke 
et al , 2005) Our choice of fusion strategy for our visual features m these submitted results 
was poor and only achieved a MAP of 0 018 for visual-only searching, though this was slightly 
better than the continuous GMM DCT visual language modelling approach, which achieved a 
MAP of 0 008 for their static model and 0 0010 for their dynamic model (Ianeva et al , 2005) 
Our submitted TRECVid 2004 fused text and visual results were actually the best of the sub­
mitted runs for the automatic video search task The Informedia (Hauptmann et a l , 2005) and 
Lowlands (Ianeva et al , 2005) (hierarchical text language model with continuous DCT GMM 
visual language model) submitted automatic runs were only marginally lower -  certainly not 
significantly different and they could easily have been better in terms of MAP considering the 
somewhat unpredictable nature of text and visual fusion We view these comparisons and the 
results in subsequent chapters as indicating that our approach is at least as good as the cur­
rent state-of-the-art for this automatic retrieval experiment More recently, we compared fusion 
methods for the discrete visual Jehnek-Mercer smoothed language model on the different video 
retrieval fusion tasks (Me Donald and Smeaton, 2005)

The research by the Lowlands group at TRECVid (Baan et al , 2002, Westerveld, de Vries 
and van Ballegooij, 2003, Westerveld et al , 2004, Ianeva et a l , 2005) was a major inspiration 
for our research Their approach to visual video shot retrieval is to apply the Jehnek-Mercer 
smoothing method to a continuous GMM query-likelihood for the DCT feature Our research 
differs as it explores the discrete visual language modelling approach for visual features and
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takes a multi-feature approach to visual video retrieval Our approach is quicker to index and 
retrieve due to its discrete nature and as we show m this thesis is as effective if not better For 
text-based video retrieval, we borrow their hierarchical language modelling approach but explore 
alternative hierarchical smoothing methods and alternative hierarchical video structures

The probabilistic source model (Jin and Hauptmann, 2002) is perhaps the first discrete 
visual language modelling approach for video retrieval, though it was not proposed in such 
terms It differs from our approach m that it uses document-likelihood and therefore possesses 
the previously discussed problems concerning ideal document match In their approach they 
apply their probabilistic source model to the Munsell colour of the keyframes with grid-based 
positional information but make questionable independence assumptions between dimensions of 
their feature representation They use a specific Dirichlet smoothing configuration to smooth 
their probability estimates that is equivalent to Laplace smoothing Our discrete visual language 
modelling approach more clearly has its roots m the language modelling approach and uses query- 
hkehhood to rank documents It does not make over-simplifying independence assumptions 
between dimensions of our colour representation We also apply our discrete visual language 
modelling approach to other features such as Canny edge and DCT texture and investigate a 
wide range of discounting and interpolation smoothing methods derived from language modelling 
research

Parallel to our TRECVid 2004 work, de Vries and Westerveld (2004) compared their GMM 
approach with a discrete Jelmek-Mercer language modelling approach for the multi-spectral 
DCT feature Their findings were that the continuous DCT GMM approach is superior to the 
discrete Jelmek-Mercer language modelling approach They reported results indicating that the 
GMM approach is many times better than the discrete approach for the same multi-spectral DCT 
feature -  MAP 0 0044 for discrete language model compared to MAP 0 0281 for continuous GMM 
on the TRECVid 2003 collection In their comparison the discrete visual language did not contain 
positional information but their continuous GMM representation did, which likely accounts for 
a significant amount of their reported performance difference Contributing factors to the poor 
performance of their discrete language model is that they quantised the DCT coefficients using a 
uniform partitioning and the high-dimensionahty of their feature may have led to some estimation 
problems as well as reducing the potential speed benefit of a smaller discrete representation The 
parameters of the discrete language model were not chosen by tuning on a separate collection, 
which also limits the fairness of their test Our findings and discrete visual language for this 
feature differ Firstly, by using the marginal distribution of the DCT dimensions across the 
collection when selecting boundaries for the quantisation levels, we increase the discrimination 
power of our discrete language and secondly, by using smaller discrete languages we produce a 
quicker retrieval model with a more dense feature Our research is wider in scope as it investigates 
multiple visual features, multiple feature representations and different fusion strategies We 
also attempt a more careful quantisation of the DCT coefficients and compare our results to 
alternative similarity models for discrete feature representations such as LI, L2 and Jensen- 
Shannon distance
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4 7 Summary

In this chapter we proposed our discrete visual language modelling approach for video retrieval 
We extended the application of the text-based language modelling approaches to visual-based 
retrieval by converting the visual features, such as HSV colour, Canny edge and DCT texture, 
into suitable discrete representations Our discrete visual language modelling approach can be 
further applied to many of the effective visual feature representations that are used in current 
video retrieval systems such as histograms, correlograms and co-occurrence matrices of colour, 
edge and texture features This visual language modelling approach can also be applied to some 
of the standard MPEG7 descriptors

We extended the current text-based hierarchical language modelling approach to video shot 
retrieval (Westerveld, de Vries and van Ballegooij, 2003) by considering hierarchical versions 
of the Dirichlet, Absolute and Witten-Bell language models for different physical and semantic 
video structures

We proposed to combine results for the text and visual discrete language models using 
variations of data-fusion methods originally developed for combining the results of multiple text 
search engines These fusion methods involve either combining results using normalised scores 
or normalised ranks with the average, weighted average or maximum combination functions 
We also proposed to evaluate a generative fusion method that uses the joint probability of the 
features, visual examples and modalities under a feature independence assumption

Additionally, we outlined our evaluation methodology for our proposed retrieval models, 
visual features and fusion methods, which involves the evaluation of our approach using fully 
automatic retrieval experiments on the TRECVid 2002, 2003 and 2004 search tasks In the next 
three chapters we will evaluate this approach, first for text-only retrieval, then for single visual 
feature retrieval and finally for combined text and visual retrieval

117



CHAPTER Y

EVALUATION I VIDEO RETRIEVAL USING TEXT
FEATURES

In this chapter we evaluate language modelling approaches 
for the text-based video shot retrieval task on the 
TRECVid 2002, 2003 and 2004 collections We compare 
standard retrieval models, discounting-based language 
models and combination-based language models using a 
shot representation of either the shot text, the video text, 
the story text or the adjacent text We also compare our 
proposed hierarchical Absolute, hierarchical Dirichlet and 
hierarchical Witten-Bell language models with the 
hierarchical Jehnek-Mercer language model using physical 
and semantic structures of video content Our purpose in 
this chapter is to establish a baseline for language models 
and standard retrieval models for the video shot retrieval 
task, to establish the best physical and semantic 
hierarchical video structures and to evaluate our proposed 
hierarchical language models

5 1 Introduction

In this chapter we evaluate language modelling approaches for text-based video shot retrieval 
on the TRECVid collections We compare language models and standard information retrieval 
models for the non-hierarchical physical structures shot-only, adj-only and video-only and for 
the semantic story-only structure We evaluate hierarchical document structures for the video 
shot retrieval task which include both the physical structures shot-hvideo and shot-}-ad]-¡-video 
and the semantic structures shot-hstory and shot-had]-j-story We also compare our hierarchi­
cal language models hierarchical Absolute, hierarchical Dirichlet and hierarchical Witten-Bell, 
which we proposed in the previous chapter, with the hierarchical Jehnek-Mercer (linear inter­
polation) language model (Westerveld, de Vries and van Ballegooij, 2003) for the physical and 
semantic hierarchical representations The purpose of this chapter is to identify the best physical 
and semantic shot representations and the best smoothing function for the text-based language 
modelling approach to video shot retrieval

We use a fully-automatic experimental setup, as described in the previous chapter, for 
our empirical evaluation of the retrieval models on the TRECVid 2002, TRECVid 2003 and 
TRECVid 2004 collections The official TRECVid manual search experiments have a similar 
setup except TRECVid manual search permits a professional user to translate the TRECVid

5 1 Introduction

5 2 Experiments with 
non-hierarchical 
structures

5 3 Experiments with 
hierarchical physical 
video structures

5 4 Experiments with 
hierarchical semantic 
video structures

5 5 Summary
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Table 6 Additional query stopwords for the TRECVid search topics

Additional query stopwords

find, additional, shots, scenes, pic­
tures, containing, including, show­
ing, lots, groups, multiple, partly, 
partially, visible

topics into a query representation suitable for the video retrieval system This in effect allows 
the reformulation of the text associated with a topic and hinders the comparison of results across 
research sites that use different query text The results presented here can differ from those of 
other published papers for the same algorithm when the original topic text has been manually 
modified or possibly stopped and stemmed differently

The objective of our experiments is not to find which parameter values for the different 
retrieval models provide the best possible performance but to identify which retrieval models 
provide transferable results across test collections We try to achieve these unbiased results, 
by optimising the retrieval models on one collection, and testing on a separate collection For 
example, the three BM25 parameters are optimised on one collection in terms of
MAP and then these parameter values are used to test the BM25 retrieval model on another 
collection The reported unbiased results for TRECVid 2002 use TRECVid 2003’s optimised 
parameters, the unbiased results for TRECVid 2003 use TRECVid 2002’s optimised parameters, 
while the unbiased results for TRECVid 2004 use TRECVid 2003’s optimised parameters In 
our discussion of our results we are primarily interested m the unbiased MAP though we will 
also present performance measures for the optimised retrieval models

As discussed in the previous chapters the TRECVid 2002 collection is different from the 
TRECVid 2003 and TRECVid 2004 television news collections in terms of content, format and 
visual quality but the topics for all three collections are fairly similar representing information 
needs for locating video of persons, places, events and objects The ASR or audio somewhat 
guided the selection of topics for the TRECVid 2002 collection but more care was taken for the 
TRECVid 2003 and TRECVid 2004 collections not to allow the ASR to guide the formulation 
of the topic text The three TRECVid collection are provided with a common definition of all 
shots, the retrieval documents, which includes their temporal boundaries, their representative 
keyframes and importantly for this chapter a common ASR text transcript provided by LIMSI 
(Gauvain et al , 2002a) The aligned story boundaries for the ABC and CNN news programmes 
m the TRECVid 2003 search test collection were provided post TRECVid and we use these 
to define our semantic story representation The aligned news stories do not exist for the six 
C-SPAN programmes and for two of the ABC news programmes m the TRECVid 2003 search 
test collection and for these videos we use the whole video as our story representation

We preprocess the TRECVid collections m the same manner for all three collections The 
SMART stopwords1 were removed from the ASR and the terms were stemmed using the Porter 
stemmer (Porter, 1980) for all documents and topic text An additional set of query stopwords,

2S M A R T  stopwords, available a t f tp  / / f t p  cs Cornell e d u /p u b /s m a rt/
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shown in Table 6, were removed from the topic text thereby producing topic text that resembles 
a familiar keyword style query

We will present our empirical results m the following sections, which are organised as follows 
Section 5 2 presents results for standard information retrieval models and for language modelling- 
based information retrieval models for the ASR shot-only, adj-only, video-only and story-only 
structures, Section 5 3 presents results using the hierarchical language models with the different 
hierarchical physical structures, while Section 5 4 presents results for the hierarchical language 
models with the different hierarchical semantic structures

5.2 Experiments with non-hierarchical structures

We can represent each shot as simply a text document consisting of either its own ASR text 
(shot-only), the enclosing video’s ASR text (video-only), the enclosing semantic story’s text 
(story-only) or the text from a sequence of shots surrounding it (adj-only) In this section 
we compare discountmg-based language models (Laplace, Natural, Lidstone, Linear, Absolute), 
combination-based language (Witten-Bell, Jelmek-Mercer, Absolute, Dirichlet, Bayesian) and 
standard retrieval models (Coordinate Level Ranking, TF-IDF with log TF, BM25) for these four 
separate representations of the video shots, while in the following sections we will consider multi­
level hierarchical representations of the video shots that combine these different representations

We summarise the average results for shot-only, adj-only, video-only, and story-only struc­
tures across the tested retrieval models m Table 7 for the TRECVid 2002, 2003 and 2004 collec­
tions The adj-only representation, a window of adjacent shot text, is the best physical structure 
and the tested retrieval models are on average 57 3%, 41 1%, and 16 8% better on this struc­
ture than on the shot-only structure for the TRECVid 2002, 2003 and 2004 search tasks The 
video-only structure achieves nearly the same performance as the shot-only structure on the 
TRECVid 2002 collection but it achieves very poor performance on the other collections with 
a MAP that is 58 6% and 88 9% lower on average than the shot-only structure The relatively 
high performance of the video-only structure on the TRECVid 2002 collection reflects the fact 
that the relevant results for some of the topics in this collection are clustered within the same 
videos Unsurprisingly, the semantic story-only structure achieves an extremely good average 
improvement of 85 9% compared to the shot-only structure for the tested retrieval models on 
the TRECVid 2003 collection This improvement is double the improvement achieved by using 
the adj-only structure and indicates the large potential benefit of good story segmentation to 
non-hierarchical text information retrieval models for the video news retrieval task

We present the results for the retrieval models for the three TRECVid collections in Figure 
23 The unbiased results for these models are presented on the left side of the figure, while 
on the right of the figure we show the optimised results These results for individual retrieval 
models indicate the consistent trend of the adj-only structure outperforming the shot-only and 
video-only structures for all TRECVid collections The only exception is the Coordinate Level 
Ranking retrieval model on the TRECVid 2004 collection, which has better results for the 
shot-only structure than for the adj-only structure The Coordinate Level Ranking retrieval 
model as well as the MLE language model are consistently poor retrieval models for all three 
TRECVid collection and therefore we do not consider them as informative for deciding between
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Table 7: Comparison of the average results across retrieval models for the shot-only, adj- 
only, video-only and story-only ASR text representations on the (a) TRECVid 2002, (b) 
TRECVid 2003 and (c) TRECVid 2004 collections. The percentage improvement is relative 
to the MAP of the shot-only representation

(a) T R E C V id  2002 average results across re trieva l models.

TRECVid 2002 MAP P@10 P@30 P@100 Impr.

S h o t- O n ly .0 6 1 4 .177 .089 .043

O ptim ised ( .0 6 9 4 .190 .100 .047)

A d j- O n ly .9 7 9 .174 .134 .081 +57.3%

O ptim ised ( .1 2 5 8 .230 .161 .078) +81.5%

V id e o -O n ly .0 6 0 9 .050 .064 .089 -0.9%

O ptim ised ( .0 7 0 9 .059 .079 .101) +2.4%

(b) T R E C V id  2003 average resultsi across re trieva l models.

TRECVid 2003 MAP P@10 P@30 P@100 Impr.

S h o t- O n ly .0 6 3 3 .151 .085 .051

O ptim ised ( .0 7 0 5 .169 .098 .057)

A d j- O n ly .0 8 7 3 .166 .115 .062 +41.1%

O ptim ised ( .1 0 7 7 .157 .122 .078) +53.2%

V id e o -O n ly .0 2 4 7 .033 .039 .025 -58.6%

O ptim ised (.0 2 6 1 .035 .043 .028) -62.5%

S to r y - O n ly .1 1 2 8 .179 .122 .092 +85.9%

O ptim ised ( .1 2 4 8 .227 .149 .105) +78.1%

(c) T R E C V id  2004 average results across re trieva l models.

TRECVid 2004 MAP P@10 P@30 P@100 Impr.

S h o t- O n ly .0 3 9 7 .149 .108 .046

O ptim ised ( .0 4 3 3 .164 .116 .050)

A d j- O n ly .0 4 6 3 .134 .094 .061 +16.8%

O ptim ised ( .0 5 1 6 .133 .104 .072) +18.9%

V id e o -O n ly .0 0 4 4 .020 .016 .013 -88.9%

O ptim ised ( .0 0 5 1 .024 .020 .014) -88.2.%
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(a) T R E C V id  2002
I Adj-Only t*» Video-Only

unbiased biased

Laplace Natural Lidstone Linear Absolute Witten-Bel1Jelinek- Absolute Dirichlet Bayesian Coord. TF-IDF BM25 Lidstone Linear Absolute
Unbiased Unbiased Discounting Mercer Unbiased Unbiased Unbiased Level Unbiased Bes
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IJellnek- Absolute Dirichlet Bayesian BM25 Average o&Worage of 
Best Discounting Mercer Best Best Best Best unbiased best
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(b ) T R E C V id  2003
I Adj-Only Video-Only

I
MLE Laplace Natural Lidstone Linear Absolute Witten-BellJelinek- Absolute Dirichlet Bayesian Coord.

Unbiased Unbiased Discounting Mercer Unbiased Unbiased Unbiased Level
Unbiaaed Unbiased Ranking

TF-IDF BM25 Lidstone Linear Abaolute Jelinek- Absolute Dirichlet Bayesian BM25 Average ofrverage of
Unbiased Best Best Discounting Mercer best Best Best Best unbiased best

Best Best

(c) T R E C V id  2004

F ig u re  23: Comparison of retrieval models on the ASR shot-only, adj-only, video-only and story-only structures for the (a) TRECVid 2002, (b) TRECVid 
2003 and (c) TRECVid 2004 collections.



document representations The video-only structure is consistently poorer than the shot-only 
structure for all retrieval models on TRECVid 2003 and TRECVid 2004 collections but on the 
TRECVid 2002 collection it sometimes performs slightly better than the shot-only structure The 
TRECVid 2003 results indicate that when manually annotated story boundaries are available, 
the story-only structure is consistently the best representation for all retrieval models We will 
have to perform additional experiments in the future to see whether these results transfer to 
automatically detected stories, which would introduce some level of noise into the story-only 
structure

We will now investigate the retrieval models for the adj-only structure since it is consistently 
the best physical representation, while later in this section we will look more closely at the 
results for the semantic story-only structure The results for the retrieval models for the adj- 
only structure are shown in the appendices in Tables 31, 32 and 33 for TRECVid 2002, 2003 
and 2004

The results for TRECVid 2002 in Table 31 (appendix page 236) show that the adj-only 
structure is statistically significantly better than the shot-only structure for all retrieval models 
except for the poorly performing Coordinate Level Ranking model The optimised results mostly 
use an adjacent window with a radius of 2 shots (5 shot diameter) The statistical tests com­
paring the unbiased retrieval models m Table 35 (appendix page 240) show that the Absolute 
interpolation language model is the best retrieval model with a MAP of 0 1221 and is statistically 
significantly better than all but the BM25 and TF-IDF retrieval models The BM25 retrieval 
model is the fifth best model with a MAP of 0 1088, which is 10 9% worse than the best result, 
while the TF-IDF model is tenth best with a MAP of 0 0988 that is 19 1% worse than the best 
result Both the BM25 and TF-IDF retrieval models are not statistically significantly poorer 
than any other retrieval model The combmation-based language models are all better than the 
discounting based language models except for the Jehnek-Mercer language model which achieves 
the same MAP as the Absolute Discounting language model of 0 1069, that is 12 5% lower than 
the best results

The results for TRECVid 2003 in Table 32 (appendix page 237) show that all the retrieval 
models are statistically significantly better on the adj-only representation than on the video-only 
representation but all the improvements relative to the shot-only representation are not statisti­
cally significant This indicates that while the adj-only representation increases MAP by 41 1% 
on average relative to the shot-only representation on this collection, this increase is inconsistent 
across topics and in fact the adj-only representation negatively impacts a significant proportion 
of these topics This is the opposite pattern as observed for TRECVid 2002 and is due to the fact 
that the television news videos m the TRECVid 2003 collection consist of topically independent 
stories The adj-only structure therefore improves some shot’s representations but when the 
window of adjacent shots crosses the story boundaries it adds noise to other shot’s representa­
tions This table also shows that the optimised retrieval models in general use an adjacent shot 
window with a radius of 4 shots (9 shot diameter) on the TRECVid 2003 collection In Table 36 
(appendix page 241) we compare the unbiased retrieval models on this collection The Bayesian 
language model achieves the best result with a MAP of 0 1010 that is statistically significantly 
better than all other language models except for the Absolute interpolation and Dirichlet lan­
guage models The related Dirichlet language model is second best and achieves a similar MAP 
of 0 1008 and has the same statistical significance relationships Similar to TRECVid 2002, the
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BM25 at third best and TF-IDF at sixth best are not statistically significantly poorer than any 
other retrieval model on this collection and achieve a MAP that is only 4 1% and 8 2% respec­
tively worse than the Bayesian model The Absolute interpolation language model, the best 
model for TRECVid 2002, is fourth best for TRECVid 2003 with a MAP of 0 0929, 8 0% lower 
than the Bayesian model, and is statistically significantly poorer than the BM25 model All 
combination language models are once again better than all discounting based language models

The results for TRECVid 2004 in Table 33 (appendix page 238) show that the improvement 
of the retrieval models on the adj-only structure compared to the shot-only structure are not 
statistically significant, while the improvements relative to the video-only structure are all sta­
tistically significant This is completely consistent with the results for TRECVid 2003 and again 
indicates a large but inconsistent improvement in using the adj-only structure compared to the 
shot-only structure The optimum number of adjacent shots is different for this collection and in 
general the adj-only representation is best with a radius of 3 shots (diameter of 7 shots) for this 
collection We compare the unbiased retrieval models for this collection m Table 37 (appendix 
page 242) The TF-IDF model is the best retrieval model with a MAP of 0 0563, which is sta­
tistically significantly better than the Jelinek-Mercer language model and the discounting-based 
language models The next best retrieval models are Dirichlet (MAP 0 0559, -0 7%), Bayesian 
(MAP 0 0557, -1 1%), and BM25 (MAP 0 0556, -1 3%) The top four models are basically equiv­
alent achieving similar MAP and have no statistically significant difference between them Again 
all combmation-based language models are better than the discounting-based language models 
on this collection

The three collections differ in the optimum number of shots in the adjacent shot text window, 
which m general varies from a radius of 2 to 4 shots The unbiased results that we previously 
presented use the median of the best size of the optimised retrieval models’ adj-only structures 
in the respective training collection We do this to reduce the noise m our comparisons of the 
unbiased retrieval models since otherwise differences in the number of adjacent shots for each 
unbiased retrieval model would account for a significant amount of the performance differences 
between these unbiased retrieval models For TRECVid 2002 and TRECVid 2004 the training 
collection is TRECVid 2003 and therefore our unbiased results for the adj-only structure has a 
radius of 4 shots on these collections, since this was the median size of the adj-only structure for 
the optimised models on training collection (i e TRECVid 2003) Likewise the unbiased models 
on the TRECVid 2003 collection are tuned using the TRECVid 2002 collection and therefore use 
an adj-only structure with a radius 2 shots From looking at the results for the three collections, 
we believe that a radius of three shots would be the best compromise for a single setting of the 
adj-only representation for future test collections

In table 8 we aggregate the topic results from the three TRECVid collections and perform 
statistical significance tests to compare retrieval models These aggregated TRECVid results 
show that the Dirichlet language model achieves the best overall result in terms of MAP In fact 
the Dirichlet, Bayesian, Absolute interpolation, BM25 and TF-IDF models all perform very well 
and are not statistically significantly poorer than any other retrieval model We can view these 
retrieval models as achieving equivalent effectiveness for the TRECVid search task The Jelinek- 
Mercer result is 9 1% lower than the best overall result and is statistically significantly poorer 
than the other better retrieval models (Dirichlet, Bayesian, Absolute interpolation, Witten- 
Bell and BM25) Lidstone is the best discounting-based approach and is followed by all other
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Table 8: Statistical significance tests comparing standard retrieval models and language models using the adj-only structure for the aggregated TRECVid 
2002, 2003 and 2004 search task. Underlined entries are significant according to the one tailed Wilcoxon Sign Rank test with a 95% confidence (p < 0.05).

Retrieval Method AP/% Dif Wilcoxon Test Results

D ir i c h l e t  ( D ir ) _ >Bay >Abs > W B > B M 2 5

(D ir ) 0.0921 .628 .186 .008 .178

B a y e s ia n  ( B a y ) < IDir - > A b s > W B >BM25
(B ay) 0.0915/-0.7% .628 .260 .010 .248

A b s o lu t e  (A b s ) <Dir <Bay - > W B > B M 2 5

(A bs) 0.0902/-2.0% .186 .260 .269 .931

W i t t e n - B e l l < D ir < B a y < A b s - > B M 2 5

(W B ) 0.0889/-3.5% .008 .010 .269 .784

B M 2 5 <Dir < B a y <Abs < W B -

(B M 25 ) 0.0880/-4.5% .178 .248 .931 .784

J e l i n e k - M e r c e r  ( J M ) < D ir < B a y < A b s < W B < B M 2 5

(J M ) 0.0837/-9.1% .001 .002 .042 .008 .024

T F - I D F <Dir < B a v < A b s <  W B < B M 2 5

(T F ) 0.0832/-9.6% .198 .334 .500 .713 .406

L id s t o n e  (L id ) < D ir < B a y < A b s < W B < B M 2 5

(L id ) 0.0795/-13.6% .000 .001 .000 .007 .000

A b s o lu t e  D i s c o u n t in g  (A b s D ) < D ir < B a y < A b s < W B < B M 2 5

(A b sD ) 0.0795/-13.7% .004 .006 .000 .003 .001

L a p la c e < D ir < B a y < A b s < W B < B M 2 5

(La p ) 0.0763/-17.1% .000 .000 .000 .000 .000

L in e a r  (L in ) < D ir < B a y < A b s < W B < B M 2 5

(L in ) 0.0749/-18.7% .000 .000 .000 .000 .000

N a t u r a l < D ir < B a y < A b s < W B < B M 2 5

(N a t) 0.0722/-21.6% .000 .000 .000 .000 .000

C o o r d .  L e v e l  R a n k in g < D ir < B a y < A b s < W B < B M 2 5

(C L R ) 0.0550/-40.3% .000 .000 .000 .000 .000

M L E < D ir < B a y < A b s < W B < B M 2 5

(M L ) 0.0370/-59.8% .000 .000 .000 .000 .000

> J M > T F > L id > A b s D > L a p > L in > N a t > C L R > M L

.001 .198 .000 .004 .000 .000 .000 .000 .000

> J M > T F > L id > A b s D > L a p > L in > N a t > C L R > M L

.002 .334 .001 .006 .000 .000 .000 .000 .000

> J M > T F > L id > A b s D > L a p > L in > N a t > C L R > M L

.042 .500 .000 .000 .000 .000 .000 .000 .000

> J M > T F > L id > A b s D > L a p > L in > N a t > C L R > M L

.008 .713 .007 .003 .000 .000 .000 .000 .000

> J M > T F > L id > A b s D > L a p > L in > N a t > C L R > M L

.024 .406 .000 .001 .000 .000 .000 .000 .000

- > T F > L id > A b s D > L a p > L in > N a t > C L R > M L

.890 .032 .049 .012 .000 .001 .000 .000

< J M - > L id > A b s D > L a p > L in > N a t > C L R > M L

.890 .021 .011 .000 .003 .003 .000 .000

< J M < T F - > A b s D > L a p > L in > N a t > C L R > M L

.032 .021 .277 .001 .011 .009 .000 .000

< J M < T F < L id - > L a p > L in > N a t > C L R > M L

.049 .011 .277 .039 .005 .007 .000 .000

< J M < T F < L id < A b s D - > L in > N a t > C L R > M L

.012 .000 .001 .039 .239 .181 .003 .000

< J M < T F < L id <A bsD < L a p - > N a t > C L R > M L

.000 .003 .011 .005 .239 .326 .009 .000

< J M < T F < L id < A b s D < L a p < L in - > C L R > M L

.001 .003 .009 .007 .181 .326 .009 .000

< J M < T F < L id <A bsD < L a p < L in < N a t - > M L

.000 .000 .000 .000 .003 .009 .009 .000

< J M < T F < L id < A b s D < L a p < L in < N a t < C L R -

.000 .000 .000 .000 .000 .000 .000 .000



discounting models Coordinate level ranking and MLE are unsurprisingly the worst retrieval 
models

In summary the Dirichlet, Bayesian and Absolute language models seem to be superior to the 
Jelmek-Mercer language model at least for the adj-only representation We view these results as 
important in motivating our experimentation with the hierarchical versions of the Dirichlet and 
Absolute smoothing models m the later sections in this chapter Our experiments with the three 
TRECVid collections further show that none of the language models are statistically significantly 
better than the BM25 or the TF-IDF retrieval models and that the combination-based language 
models are superior to the discountmg-based language models for the ASR text feature on the 
adj-only representation

We will now look at the results for the semantic story-only representation, which we present 
in Table 34 (appendix page 239) for TRECVid 2003 collection The retrieval models on the 
story-only structure are on average 30 8% better than for the physical adj-only structure and 
are statistically significantly better than all video-only results and nearly all unbiased adj-only 
results The retrieval models achieve on average a 85 9% improvement m MAP compared to the 
shot-only structure but similar to the adj-only structure on this collection, these improvements 
are mostly not statistically significant This is surprising given the topically cohesive nature of 
the story-umt, but it must be remembered that TRECVid topics are visually oriented results and 
that the shots within television news stories are visually very different (some are anchorperson 
shots, others are reports, interviews, outside broadcasts, etc ) We compare the retrieval models 
in Table 38 (appendix page 243), which show that the Jelinek-Mercer language model achieves 
the highest result with a MAP of 0 1305, though this result is only statistically significantly better 
than the discounting-based language models The Witten-Bell language model (MAP 0 1290, 
-1 2%) is the second best and is followed by our previous three best language models Absolute 
interpolation (MAP 0 1257, -3 7%), Bayesian smoothing (MAP 0 1222, -6 4%) and Dirichlet 
smoothing (MAP 0 1220, -6 5%) The Bayesian language model is statistically significantly 
worse than the Witten-Bell language model, while the Dirichlet language models is statistically 
significantly worse than both Witten-Bell and the Bayesian models, though the magnitude of the 
difference with respect to the Bayesian model is too small to matter The BM25 model (MAP 
0 1166, -10 7%) is worse at rank 8 and is only statistically significantly worse than Witten-Bell 
language model Again the discounting-based language models dominate the bottom half of the 
retrieval models The MLE language model (MAP 0 0945, -27 6%) actually achieves a higher 
MAP than the Laplace and Coordinate Level Ranking models though of course these differences 
are not significant

The unusual strong performance of the Witten-Bell language model in terms of the statis­
tical significance tests, contradicts somewhat the ordering of retrieval models for the ad]-only 
representation The differences between these representations is not due to inappropriate pa­
rameter settings even though the unbiased story-only retrieval models’ parameters were actually 
set using the optimised shot-only representation on the TRECVid 2002 collection, since we did 
not have another collection with proper story-boundanes on which to tune our retrieval models 
The reason for this assertion is that while the optimised Absolute discounting language model 
achieves a higher MAP than the Witten-Bell language model and therefore shows room for 
improvement if it had better unbiased parameters, the Dirichlet and Bayesian language models 
achieve a lower optimised MAP than both the unbiased Witten-Bell and unbiased Jelmek-Mercer
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language models for the story-only representation In other words, even with better unbiased pa­
rameters the Dirichlet and Bayesian retrieval models would still be poorer than the Witten-Bell 
or Jelmek-Mercer language models for the story-only representation

We graph the MAP response of the parametric language models to different parameter 
values for the adj-only and story-only representations in Figure 24, which shows that all the 
parametric language models have very stable performance regions for their parameters The 
stability of the parameters is indicated by the flatness of all the MAP curves at or around 
their peak values, which is particularly the case for the adj-only representations The optimum 
parameter value is sometimes dangerously near a sharp decline and we should possibly choose 
a safer unbiased parameter that would be further from this point and instead located within a 
safer more flat region of the parameter response space In this thesis we have simply chosen the 
optimum parameters in terms of MAP in the training collections as our unbiased parameters but 
it would be interesting m future to investigate possibly better methods for selecting the unbiased 
parameter value

We present the topic results for the Dirichlet language model on the shot-only, adj-only, video- 
only and story-only representations for the three TRECVid search tasks in Figure 25 These 
figures show that the Dirichlet language model performs better using the shot-only representation 
than for any of the other representations for 6 topics in TRECVid 2002, 8 topics in TRECVid 
2003 and 14 topics in the TRECVid 2004 results These figures also show that the adj-only 
representation improves many of the topic results on all three collections compared to the shot- 
only and video-only representations The inconsistency where the adj-only representation helps 
some topics while hindering others was picked up previously in the failed statistical significance 
tests So while the average performance in terms of MAP is increased by a large amount by 
using the adj-only representation, it is still somewhat hit-or-miss for certain topics where the 
shot-only representation may actually perform better We can see from looking at the results for 
TRECVid 2003 that the story-only representation is best for only 10 topics, shot-only is best for 
8, adj-only is best for 6 and video-only is best for a single topic Obviously if almost one third 
of the results are better using the shot-only representation we cannot consider the story-only 
representation a reliable improvement over the shot-only representation We hope to remedy 
this consistency problem by hierarchically combining representations in the following sections

5.3 Experiments with hierarchical physical video struc­
tures

In this section we will evaluate two hierarchical physical structures shot+video and shot-f-adj+video 
for the hierarchical Jelmek-Mercer language model (Westerveld, de Vries and van Ballegooij, 
2003) and our proposed hierarchical Dirichlet, hierarchical Absolute and hierarchical Witten- 
Bell language models, which we described in the previous chapter A linear interpolation of 
the BM25 or TF-IDF scores for the shot, adj and video structures would likely achieve similar 
performance but we have not investigated such an approach -  instead we concentrate solely on 
hierarchical language models m lhi& section

The results for these four language models on the shot+video and shot+adj+video hierar­
chical representations for the three TRECVid collections are displayed in Figure 26 This figure
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F igure  24: Response of MAP to the different parameter values for the parametric language 
models on the adj-only structure for the TRECVid 2002, 2003 and 2004 collections and for 
the story-only structure on TRECVid 2003 collection.
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Figure 25: Comparison of the shot-only, adj-only, video-only and story-only ASR text representations for each topic using the Dirichlet language model 
for the (a) TRECVid 2002, (b) TRECVid 2003 and (c) TRECVid 2004 collections.
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hierarchical physical structures with the adj-only structure for the (a) TRECVid 2002, (b) 
TRECVid 2003 and (c) TRECVid 2004 collections
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shows that the shot+ad]+video representation consistently outperforms the shot+video and the 
ad]-only representations for all retrieval models on the three collections and that the shot+video 
representation actually performs worse than the ad]-only representation on the TRECVid 2003 
and TRECVid 2004 collections, which is due to the multi-topic nature of television news pro­
grammes Interestingly, the results for TRECVid 2003 show that the shot+ad]+video structure 
actually performs better than the semantic story-only representation for all retrieval models 
except the unbiased hierarchical Dirichlet language model We can also see that the hierarchical 
Jehnek-Mercer language model produces slightly better unbiased results than the other three 
hierarchical language models on the three collections Only the optimised results of the hierar­
chical Dirichlet and hierarchical Absolute language models outperform it on the TRECVid 2003 
collection

We look more closely at the successful shot+adj+video hierarchical physical representa­
tion m Table 9 for the three TRECVid collections Remarkably the retrieval models for the 
shot+adj+video hierarchical structure are statistically significantly better than the shot-only, 
adj-only and shot+video structures for all three collections and for all retrieval models except 
the unbiased hierarchical Dirichlet language model on TRECVid 2003 collection This is signifi­
cant as it implies that the shot+ad]+video structure gives consistent improvement over the shot- 
only representation, which both the well performing ad]-only and story-only structures failed to 
achieve On the TRECVid 2003 collection, the hierarchical Jehnek-Mercer language model is 
actually 7 6% better than the semantic story-only representation but this improvement is not 
statistically significant The improvements for the hierarchical Jehnek-Mercer language model on 
the shot+adj+video structure compared to the previously best physical non-hierarchical repre­
sentation adj-only are quite large and statistically significant at 50 2% for TRECVid 2002, 48 6% 
for TRECVid 2003 and 34 4% for TRECVid 2004 Our other proposed hierarchical language 
models are likewise statistically significantly improved using the shot+ad]+video representation 
but by not as much as the Jehnek-Mercer hierarchical language model

We investigate the individual topic results for the hierarchical Jehnek-Mercer language model 
on the three TRECVid collections in Figure 27 The topic results for TRECVid 2002 indicate 
the fairly consistent improvement of the shot-had]-¡-video representation over the other physical 
representations It is the best representation for 13 of the 25 topics and the other 12 topics are 
best 3 times for shot-only, 2 times for ad]-only and 7 times for shot+video Importantly, when 
the shot+ad]+video representation is poorer than the other representations the performance 
difference in terms of average precision is small The topic results for TRECVid 2003 show that 
the shot+ad]+video representation is best for 17 of the 25 topics and that similar to the TRECVid 
2002 collection when it is less than the other representations it is by a small amount in terms 
of average precision The situation is similar for TRECVid 2004 in which the shot+ad]+video 
representation is best for 12 of the 23 The shot-only representation is best for 5 of the 6 worst 
topics, while the shot+video representation is best for 2 poorly performing topics and the ad]- 
only representation is better for 4 medium level topics, but only one of these topics, topic 143, 
shows any notable difference in performance in terms of average precision Overall, we consider 
the shot+ad]+video representation a reliable improvement on the other physical representations 
for the individual topic results

We compare the hierarchical language models for their unbiased results on the shot+ad]+video 
representation in Table 40 (appendix page 245) The hierarchical Jehnek-Mercer language model
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Table 9: Comparison of the shot+adj+vid ASR text representation with the shot-only, adj-only, story-only and shot+video representations for the hierarchical
language models on the (a) TRECVid 2002, (b) TRECVid 2003 and (c) TRECVid 2004 collections.

(a) TRECVid 2002

T R E C V ID  2002  

R etrieva l M ethod

S h o t+ A d j+  Video V. Sho t-O n ly V. A d j-O n ly V. Sho t+ V id eo

P rm M A P PIO P30 P100 Im pr. ~  W ile. Im pr. ~  W ile. Im pr. ~  Wile.

W i t t e n - B e l l  (A dj) 4 .1 5 4 1 .260 .167 .118 +  121.8% ~  ,000 +30.2% ~  ,015 +16.3% ~  ML
J e l i n e k - M e r c e r  (Adj, Ashot, Aadj, Avid, Acoi) 4,0.30,0.10,0.10,0.50 .1 6 0 5 .264 .175 .117 +  131.1% ~  .000 +50.2% ~  ,000 +20.3% ~  ,015

Best (4,0.15,0.15,0.20,0.50 .1 6 7 7 .272 .175 .118) +138.3% ~  .000 +37.4% ~  .005 +22.5% ~  M l
A b s o lu t e  (Adj,<5adj,^vid,^coi) 10,0.30,0.80,0.95 .1 5 0 2 .268 .188 .126 +118.3% ~  .000 +23.0% ~  ,030 +15.9% ~  .007

Best (2,0.80,0.90,0.95 .1 6 4 3 .244 .192 .122) +  133.4% ~  ,000 +27.3% ~  ,018 +17.1% ~  .003
D ir i c h le t  (A d j, /xatjj, /ivid, Mcoi) 5,150,3000,30000 .1 4 3 3 .228 .171 .106 +  107.9% ~  ,000 +22.9% ~  JOOi +28.0% ~  .000

Best (2,2000,150,2000 .1 6 4 5 .252 .185 .112) +136.2% ~  ,000 +29.8% ~  ,026 +23.0% ~  .125

(b) TRECVid 2002

T R E C V ID  2003 Shot+ A dj-f- Video V. Sho t-O nly V. A d j-O n ly V. Sho t+ V id eo V. S to ry-O n ly

R etrieva l M ethod Prm M A P P10 P30 P I 00 Im pr. Wile. Im pr. ~  W ile. Im pr. ~  W ile. Im pr. ~  Wile.

W i t t e n - B e l l  ( A d j) 3 .1 3 8 4 .252 .176 .113 +89.3% ~ .006 +49.3% ~  .001 +51.6% ~  ,001 +7.3% ~  .366
J e l i n e k - M e r c e r A d j,  Ashot) Aadj, Avid) ACol

Unbiased 4,0.15,0.15,0.20,0.50 .1 4 0 5 .252 .176 .113 +92.4% ~ .004 +55.1% -  .000 +48.6% ~  .001 +7.6% -  .314
Best (4,0.30,0.10,0.10,0.50 .1 4 2 9 .240 .179 .115) +94.2% ~ .001 +45.2% ~  ,000 +49.7% ~  JOOO +7.2% ~  .246

A b s o lu t e A d j,  <5adj, <5vid ) ¿col
Unbiased 2,0.80,0.90,0.95 .1 2 7 7 .264 .169 .102 +76.0% ~ .015 +37.4% ~  ,015 +48.1% ~  ,001 +  1.6% ~  .666
Best (10,0.30,0.80,0.95 .1 4 3 5 .256 .196 .105) +95.3% ~ .002 +33.7% ~  ,019 +51.7% ~  ,000 +9.8% ~  .238

D ir i c h l e t A d j,  d j, /¿vid) /¿col
Unbiased 2,2000,150,2000 .1 1 0 0 .208 .167 .097 +42.0% ~ .443 +9.1% ~  .622 +56.0% ~  .002 -9.9% ~  ,049
Best (5,150,3000,30000 .1 5 1 0 .260 .189 .111) +94.5% ~ .001 +32.8% ~  .001 +60.8% ~  J001 +20.6% ~  .071

(c) TRECVid 2002

T R E C V ID  2004 S h o t+ A d j+  Video V. Sho t-O n ly V. A d j-O n ly V. Shot-h Video

R etrieva l M ethod P rm  M A P P10 P30 P I 00 Im pr. ~  W ile. Im pr. ~  W ile. Im pr. ~  W ile.

W i t t e n - B e l l  ( A d j ) 4 .0 6 6 0 .200 .141 .081 +42.8% ~  ,020 +25.7% ~  ,026 +36.1% ~  .000
J e l i n e k - M e r c e r  (A d j ,  Ashot> Aadj, Avid> Acoi) 4,0.30,0.10,0.10,0.50 .0 6 8 6 .209 .143 .091 +47.2% ~  .001 +34.4% ~  .006 +35.7% ~  .000

Best (3,0.15,0.15,0.02,0.68 .0 7 3 0 .222 .141 .093) +55.9% ~  .001 +33.9% ~  .001 +42.4% ~  .001
A b s o lu t e  ( A d j ,  <5adj » ¿vid > ¿col) 10,0.30,0.80,0.95 .0 6 2 9 .209 .136 .083 +44.0% ~  .003 +19.6% ~  ,026 +29.0% ~  .000

Best (3,0.10,0.10,0.80 .0 6 8 0 .204 .143 .087) +46.8% ~  .002 +25.1% ~  .005 +34.4% ~  .004
D ir i c h l e t  (A dj,/zadj,/zvid,Mcoi) 5,150,3000,30000 .0 6 5 1 .191 .148 .090 +47.7% ~  J0Q2 +16.5% ~  ,014 +33.3% -  .001

Best (3,400,1000,30000 .0 7 0 2 .178 .159 .095) + 55 .1%  ~  ,004 +20.5% ~  .006 + 41 .9%  -  ,001
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performs best for the three TRECVid collections and is significantly better than the hierarchi­
cal Absolute and hierarchical Dirichlet language models on two of these collections It is also 
significantly better than the hierarchical Witten-Bell language model on one of the collections 
The hierarchical Witten-Bell language model is the second best model and is on average 3 4% 
worse in terms of MAP than the hierarchical Jelmek-Mercer language model, while the hierar­
chical Absolute language model is the third best model with on average 7 9% lower MAP than 
the hierarchical Jelmek-Mercer result The hierarchical Dirichlet language model performs very 
poorly on the TRECVid 2003 collection achieving a 21 7% poorer MAP than the hierarchical 
Jelmek-Mercer results and is also statistically significantly poorer than all other retrieval mod­
els In contrast on the TRECVid 2004 collection it achieves a far better MAP that is only 
5 0% worse than the hierarchical Jelmek-Mercer results and that is not statistically significantly 
poorer than any other retrieval model This contradiction in the performance of the hierarchical 
Dirichlet language model on these two television news collections is due to the inappropriate un­
biased parameters for this model on the TRECVid 2003 collection Even though it has the best 
optimised results on this collection, the hierarchical Dirichlet language model has the poorest 
unbiased results due to the inappropriate (and possibly over-fitted) optimised parameters from 
the TRECVid 2002 collection (see Table 9)

We compare the results for the hierarchical language models on the shot+video represen­
tation m Table 39 (appendix page 244) These results corroborate the observations for the 
shot+adj+video representation and show that the hierarchical Jelmek-Mercer language model is 
again the best model and is followed by on average the Witten-Bell, Absolute and Dirichlet hier­
archical language models The unbiased results for the Dirichlet language model again perform 
poorly on the TRECVid 2003 collection and also on the TRECVid 2002 collection indicating 
instability in the optimum parameter settings between these two collections

We clearly see from these sets of results that the hierarchical Jelmek-Mercer language model 
is better than our proposed hierarchical language model variations for the physical hierarchi­
cal representations shot+video and shot+adj+video Though the differences are not very large 
for the hierarchical Witten-Bell and hierarchical Absolute models, we find these results quite 
discouraging as they are consistent in indicating that the hierarchical Jelmek-Mercer language 
model produces better unbiased results This is in contrast to the results for the non-hierarchical 
versions of these smoothing methods on the adj-only representation for the same three TRECVid 
collections, which showed superior results for these smoothing models over the Jelmek-Mercer 
language model

5.4 Experiments with hierarchical semantic video struc­
ture

In this section we compare the hierarchical language models for the semantic shot+story and 
shot+adj+story structures These experiments involved only the TRECVid 2003 collection as 
this was the only collection which had associated story boundaries The shots that belonged 
to more than one story were split into multiple sub-shots and the retrieval results were post­
processed to remove duplicate shots by keeping the highest score for each shot The new sub-shots 
each contained only the segment of the ASR text from the original shot that overlapped with 
their respective story This allows us to have a strict hierarchy for shots (or sub-shots when we

134



Shot+Adj+Video Story-Only Shot+Story Shot+Adj+Story

unbiased! biased

0.15-

Witten-Bell Jelinek- Absolute Dirichlet
Mercer Unbiased Unbiased

Unbiased

Jelinek- Absolute Dirichlet Average of Average of 
Mercer Best Best unbiased best
Best

Figure 28: Comparison of hierarchical LMs on the ASR shot+story, shot+adj+story hierar­
chical semantic structures with the story-only and shot-f-adj-hvideo structures for TRECVid 
2003.

split the shot because it spans two stories) and stories in which shots (or sub-shots) only have 
one parent even when the original shot is really a member of multiple stories.

We compare the hierarchical language models for the semantic shot+story and shot-hadj-hstory 
representations in Figure 28, which shows that the two semantic representations achieve simi­
lar results. The mean results for the semantic hierarchical representations show moderate im­
provements over the best physical hierarchical representation shot+adj+video and the semantic 
non-hierarchical representation story-only. The unbiased results indicate that the hierarchical 
Jelinek-Mercer language model is just slightly better than the hierarchical Witten-Bell language 
model and is more significantly better than the other two hierarchical smoothing models, hier­
archical Absolute and hierarchical Dirichlet. The optimised results show that the hierarchical 
Dirichlet language model can achieve a potentially higher MAP than the hierarchical Jelinek- 
Mercer language model for the shot+adj+story representation.

In Table 10 we present the results for the shot+story and shot+adj+story hierarchical 
structures. The hierarchical Jelinek-Mercer language model achieves a MAP of 0.1551 on the 
shot+story structure, which is statistically significantly better than its results on the shot+adj+story 
and shot+adj+video representations by 1.6% and 10.4% respectively. The 10.4% improvement 
on the physical structure shot+adj+video is perhaps disappointing when we consider that the 
shot+story representation uses the correctly identified story boundaries. Interestingly the in­
clusion of the adj estimator in the semantic structure does not improve the results and in fact 
decreases the results for some of the hierarchical retrieval models such as the Witten-Bell and 
Jelinek-Mercer language models. All retrieval models are statistically significantly better on the 
shot+story and shot+adj+story representations than on the shot-only representation. In addi­
tion all unbiased retrieval models except hierarchical Absolute for the shot+story representation 
are statistically significantly better on these representations than on the best hierarchical phys­
ical representation shot+adj+video. So while the improvements in the retrieval models on this 
collection are about a modest 10%, these improvements reflect a consistent performance boost 
across the individual topics in the TRECVid 2003 collection. The results show that there is not 
much difference between the shot+story and shot+adj+story representations for the hierarchical 
Witten-Bell, hierarchical Jelinek-Mercer and hierarchical Absolute language models.
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T able 10: Comparison of the (a) shot+story and (b) shot+ adj+ story ASR text representation with each other and with the shot-only and story-only
representations for the hierarchical language models on the TRECVid 2002 collection.

(a) S h o t+ S to ry

T R E C V ID  2003 S h o t+ S to ry V. Sho t-O n ly V. S h o t+ A d j+ V id eo V. S to ry -O n ly V. Sho t-hA d j-hS tory

R etrieva l M ethod Prm M A P P10 P30 P I 00 Im pr. ~  W ile. Im pr. ~  W ile. Im pr. ~  W ile. Im p r. ~  W ile.

W i t t e n - B e l l .1 5 2 6 .248 .211 .124 +  108.7% ~  .001 +  10.2% ~  ¿015 +  18.3% ~  ¿003 +1.8% ~  .377
J e l i n e k - M e r c e r Ashot » Astory > ACol

Unbiased 0.17,0.23,0.60 .1 5 5 1 .264 .213 .122 +112.4% ~  .000 +  10.4% ~  ¿043 +  18.8% ~  ¿003 +1.6% ~  ¿024
Best (0.08,0.16,0.76 .1 5 6 0 .264 .207 .122) +112.1% ~  .001 +9.2% ~  ¿014 +17.0% ~  ¿001 -1.5% ~  .977

A b s o lu t e ¿story ) ¿col
Unbiased 0.90,0.87 .1 4 5 3 .232 .185 .119 +100.2% ~  .006 +  13.8% ~  .052 +15.6% ~  .011 -1.0% ~  .545
Best (0.30,0.40 .1 5 2 3 .248 .204 .126) +107.3% ~  .001 +6.1% ~  .116 +16.6% ~  ¿049 +0.2% ~  ¿036

D ir i c h l e t /¿story ) /¿■col
Unbiased 350,1750 .1 4 0 3 .208 .195 .118 +81.1% ~  .011 +27.5% -  ¿000 +14.9% -  ¿046 -1.5% ~  .736
Best (50,3250 .1 4 6 3 .232 .199 .115) +88.4% ~  ,000 -3.1% ~  .642 +16.8% ~  .170 -8.9% ~  ¿041

(b ) S h o t+ A d j+ S to ry

T R E C V ID  2003  

R etrieva l M ethod

S h o t+ A d j+ S tory V. Sh o t-O n ly V. S h o t- f A d j+ Video V. S to ry -O n ly V. S h o t+ S to ry

Prm M A P P10 P30 P I 00 Im pr. ~  W ile. Im pr. ~  W ile. Im pr. ~  W ile. Im pr. ~  W ile.

W i t t e n - B e l l  ( A d j) 3 .1 4 9 9 .244 .196 .125 +  105.0% ~  ¿003 +8.3% ~  ¿010 +  16.2% ~  ¿010 -1.8% ~  .377
J e l i n e k - M e r c e r A d j,  Ashot j Aadjj Astory> ACol

Unbiased 4,0.15,0.15,0.20,0.50 .1 5 2 6 .256 .192 .128 +109.0% ~  .002 +8.6% ~  ¿023 +  16.9% -  ¿014 -1.6% ~  ¿024

Best (15,0.10,0.15,0.02,0.72 .1 5 8 4 .272 .205 .116) +115.3% ~  .000 +10.8% ~  ¿024 +18.8% ~  .002 +1.5% ~  .977
A b s o lu t e A d j,  ¿adj» ¿story j ¿col

Unbiased 2,0.80,0.90,0.95 .1 4 6 7 .224 .196 .124 +  102.2% ~  .006 +14.9% ~  .006 +  16.8% ~  ¿021 +  1.0% ~  .545
Best (15,0.10,0.90,0.30 .1 5 2 0 .244 .201 .115) +  106.9% ~  .001 +5.9% ~  .115 +  16.4% ~  .081 -0.2% ~  ¿036

D ir i c h l e t A d j,  /iadj > /¿story j /¿col
Unbiased 2 ,2000,150,2000 .1 4 2 4 .224 .187 .129 +83.9% ~  .032 +29.5% ~  .000 +16.7% ~  ¿017 +1.5% -  .736
Best (5,250,2000,7500 .1 6 0 6 .240 .203 .128) +106.8% ~  ¿001 +6.3% ~  ¿019 +28.3% ~  ¿014 +9.8% -  ¿041



We compare the hierarchical retrieval models for the shot+story representation in Table 
41 (appendix page 246) and for the shot+adj+story representation in Table 42 (appendix page 
246) The results for the retrieval models for both representations are a lot closer than previously 
presented for the hierarchical physical representations The best result for the shot+video rep­
resentation is hierarchical Jelinek-Mercer (MAP 0 1551), the second best is hierarchical Witten- 
Bell (MAP 0 1526, -1 6%), which is followed by hierarchical Absolute (MAP 0 1453, -6 3%) and 
the worst result is hierarchical Dirichlet (MAP 0 1403, -9 6%) The order of retrieval models 
is exactly the same for the shot+adj+video representation For both hierarchical semantic rep­
resentations the only retrieval model to be statistically significantly worse than another is the 
hierarchical Dirichlet language model, which is statistically significantly worse than the Jelinek- 
Mercer and Witten-Bell language models for the shot+video representation and is statistically 
significantly worse than the hierarchical Jehnek-Mercer language for the shot+adj+video repre­
sentation These results show that the hierarchical Jelinek-Mercer, Witten-Bell and Absolute 
language models achieve somewhat equivalent results for the hierarchical semantic structures 
shot+story and shot+adj+story

We compare the topic results of the Jelinek-Mercer language model for the shot+story, 
shot+adj+story, shot+adj+video and the story-only representations in Figure 29 The shot+story 
representation is best for 11 of the 25 topics and on only one topic, topic 119, is another rep­
resentation notably better The topic 119 for shots with Morgan Freeman actually has all its 
18 relevant shots in a single C-SPAN programme that lacked story boundaries and therefore 
this topic is not indicative of the relative performance of the different semantic and physical 
representations These topic results show that the shot+story representation achieves a very 
stable performance increase relative to the other representations

In summary, the shot+story structure is the best performing hierarchical semantic repre­
sentation and the retrieval models using it are mostly statistically significantly better than for 
all other representations The difference between this representation and the best hierarchical 
physical representation shot+adj+video is a statistically significant 10 4% for the Jehnek-Mercer 
language model, which is perhaps disappointing considering we are using the correct story bound­
aries Viewed from another perspective it is a positive endorsement of the shot+adj+video rep­
resentation that it can achieve such relatively high results without any semantic information

The hierarchical Jehnek-Mercer language model is the best performing retrieval model for 
these hierarchical semantic structures The differences between the different retrieval models are 
a lot smaller for this semantic representation than for the hierarchical physical representations 
and in fact the hierarchical Dirichlet model is the only statistically significantly poorer retrieval 
model for the semantic hierarchical representations Our proposed hierarchical Witten-Bell and 
hierarchical Absolute language models achieve only slightly poorer results than the hierarchical 
Jelinek-Mercer language model and these retrieval models could possibly be considered equivalent 
in terms of performance

It may be the case that a semantic hierarchy is more conducive to different hierarchical 
smoothing functions and that the more topically noisy shot+adj+video representation is only 
suitable for the Jclmek-Mercer language model, a linear interpolation of the probability esti­
mators that keeps the effects of any topical noise from the different hierarchy levels, adj and 
video, constant for each retrieval document’s representation The other hierarchical smoothing
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Figure 29: Comparison of Jelinek-Mercer LM topic results for the ASR story-only, shot+story, shot+adj+story and shot+adj+video structures on TRECVid 
2003.



methods may be ineffective for non-semantic hierarchies as they vary the amounts of smoothing 
depending on the distribution of text at each level in the hierarchy and therefore the effects 
of topical noise caused by the adj or video representations crossing multiple story boundaries 
will be further increased with the effects of the changing amounts of smoothing at each level 
We believe that a single set of experiments on the TRECVid 2003 collection is an unstable 
basis on which to build an elaborate explanation and that further studies of the shot-f-story 
and shot+adj+shory representations would be informative With that caveat noted, we believe 
that the different smoothing methods are probably more suitable for the semantic hierarchical 
structures than for the physical hierarchical structures

5.5 Summary

The best non-hierarchical retrieval structure for the video shot retrieval task is to represent each 
shot using a window of adjacent shot text This adj-only structure achieves on average a 57 3%, 
41 1% and 16 8% improvement on using the shot text alone for the three TRECVid collections 
but these improvements are not statistically significant for TRECVid 2003 and 2004 collections 
The Dirichlet language model was overall the best retrieval model for the adj-only representation 
for the TRECVid search tasks, though the Dirichlet, Bayesian, Absolute interpolation, BM25 
and TF-IDF models all perform very well and are not statistically significantly poorer than 
any other retrieval model The Jehnek-Mercer language model was slightly poorer than most 
of these models The discounting-based language models performed worse than these retrieval 
models and Coordinate Level Ranking and MLE were the worst performing retrieval models 
We view these results as vindication of the benefits of applying the language modelling approach 
to video retrieval as well as an indication that language models other than Jehnek-Mercer have 
a potential benefit in the video shot retrieval task

The semantic story unit provides an even better performance increase than for any of the 
physical non-hierarchical representations It improves on the shot representation on average by 
85 9% and improves on the adj-only representation by 30 8% For most retrieval models the im­
provement relative to the adj-only representation are statistically significant whereas importantly 
the improvement relative to the shot-only representation are not in general statistically signifi­
cant This indicates that while the story-only representation improves the average performance 
for the video retrieval tasks, it does not do so reliably across the TRECVid topics We found that 
the Jehnek-Mercer language model produces the best results for the story-only representation 
The other combination-based language models Witten-Bell, Absolute interpolation, Bayesian 
and Dirichlet achieve the next best results and are not statistically significantly poorer than 
Jehnek-Mercer The BM25 algorithm is eight best and was only statistically significantly poorer 
than the Witten-Bell language model, while TF-IDF is the eleventh best retrieval model and 
was statistically significantly poorer than most of the higher performing retrieval models The 
combination-based language models achieve better performance than all the discounting-based 
language models

The best hierarchical physical structure for video shot retrieval is the shot-had]-hvideo The 
hierarchical Jehnek-Mercer language model produces statistically significantly better results for 
this representation than for the shot-only, adj-only and shot+video physical structures on all
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three collections It even achieves an improvement of 7 6% over the semantic story-only repre­
sentation, though this is not statistically significant

The best hierarchical semantic structure for video shot retrieval is the shot+story repre­
sentation, which achieves statistically significantly better results than the shot-only (+112 4), 
shot+adj+video (+10 4%), story-only (+18 8) and shot+adj+story (+1 6%) representations for 
the hierarchical Jelmek-Mercer language model on the TRECVid 2003 collection

We found that our hierarchical language models did not perform as well as the hierarchical 
Jelmek-Mercer (linear interpolation) language model on the physical and semantic hierarchi­
cal structures The results for the semantic hierarchies were a lot closer than the physical 
hierarchies and indicate a potential equivalency in performance terms between the hierarchical 
Jelmek-Mercer, hierarchical Witten-Bell and hierarchical Absolute language models It may be 
the case that Jelmek-Mercer is the best language model for the physical hierarchy due to the fact 
that it keeps the influence of each level in the hierarchy constant between the document struc­
tures While the adj and video structures bring benefits they also introduce topical noise in the 
representation when used for television news programmes and keeping their influence constant 
between different document representations seems to be a beneficial strategy The benefits of the 
Jelmek-Mercer language model over the other smoothing methods is less severe for the semantic 
shot+story representation, which may indicate the potential for other smoothing methods to 
provide benefits m the semantic hierarchies

We have now completed our investigation of language models for the text-based retrieval 
of video shots and will proceed to investigate language models for the visual-based retrieval of 
video shots in the next chapter
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CHAPTER VI

EVALUATION II. VIDEO RETRIEVAL USING VISUAL 
FEATURES

In this chapter we evaluate our discrete visual language 
modelling approach to video retrieval for the HSV colour,
Canny edge, and DCT-based texture features on the 
TRECVid collections For each visual feature, we examine 
the effects of different smoothing techniques for both their 
global and regional histogram representations For HSV 
colour, we also investigate structural smoothing based on 
the video’s physical and semantic composition structure, as 
examined for text based retrieval in the previous chapter 
Our approach in this chapter, is to examine each feature 
separately, while in the following chapter we will 
investigate the combination of these features’ generative 
models into a single multimodal retrieval approach

6.1 Introduction

In the previous chapter we investigated video shot retrieval using text evidence alone in order to 
compare text-based language modelling approaches with non-language modelling text retrieval 
approaches for the video shot retrieval task and to quantify the performance of text-only ap­
proaches for video shot retrieval In a similar vein, in this chapter we compare language modelling 
approaches to standard visual retrieval ranking models, such as Manhattan distance, Euclidean 
distance, and Jensen-Shannon distance, for individual visual features and we establish the per­
formance of the following separate visual features, HSV colour, Canny edges, and DCT-based 
texture, for the video shot retrieval-by-example search task

We experiment with regional versions of these features by including their relative X and Y 
position in the keyframe, scaled between 0 and 1, for each feature sample point We compare 
the retrieval performance for each feature using this regional representation quantised into 3x3, 
4x4, and 5x5 regions per image in a multidimensional histogram representation

In this chapter we present results for each feature’s performance independently of other 
visual and textual features We will deal with the problem of combining different features in the 
following chapter

The rest of this chapter is organised as follows m the next section we will present an overview 
of the experiments, followed by sections comparing our visual language modelling approach with

6 1 Introduction

6 2 Overview of experiments

6 3 Experiments with colour 
features

6 4 Experiments with edge 
features

6 5 Experiments with texture 
features

6 6 Summary
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standard visual retrieval models for colour, edge and texture features

6.2 Overview of Experiments

We perform our experiments primarily on the TRECVid 2002 and TRECVid 2003 video shot 
search tasks but we treat each topic’s image and video examples as a separate visual query-by- 
example topic We have only performed a select number of the visual experiments on the recent 
TRECVid 2004 collection The reported results, unless stated otherwise, are actually calculated 
on 70 visual query-by-example topics for TRECVid 2002 and 130 visual query-by-example topics 
for TRECVid 2003 instead of the standard 25 multimedia TRECVid topics for each collection 
The 70 and 130 visual examples consist of all the example images and videos that are part of 
the 25 TRECVid topic description for TRECVid 2002 and TRECVid 2003 respectively The 
TRECVid 2004 experiments when presented consist of either 23 multi-example topics or 140 
single visual example topics

The visual experiments are divided into three sections the first deals with colour features, the 
second with edge features and the third with texture features For each feature we first present 
experiments on a global representation of the feature for the image in which we do not take any 
positional information into account We experiment with different levels of quantisation and in 
some cases different numbers of dimensions for the feature representation After establishing 
results for the global representation we experiment with representations that take into account 
positional information We perform experiments on these regional representations for 3x3, 4x4 
and 5x5 regions on a single representation which we choose after first investigating the feature’s 
global results

For each experiment we compare the language modelling approaches to the standard visual 
retrieval models, Manhattan distance, Euclidean distance, and Jensen-Shannon distance, which 
are described previously in chapter 3 We evaluate all language models we previously investigated 
in the text retrieval chapter except the Good-Turing, Dirichlet and Bayesian smoothing models 
Since each keyframe in the collection has a similar resolution, the Dirichlet smoothing reduces 
to Jelmek-Mercer smoothing, and therefore does not need to be tested Unfortunately, the 
Bayesian smoothing is too slow to compute as it typically involves 60,000 unique calculations to 
score each keyframe against a query image The Good-Turing smoothing performed poorly for 
text retrieval so we have not considered it for visual retrieval

As before, for the parametric language models we report the best results achieved by op­
timising the parameters and unbiased results m which the parameters have been optimised on 
one collection and tested on the other Since the two TRECVid collections are very different 
the unbiased results may in some cases be unrepresentative of a retrieval models performance 
This is due to differences in the collections which are at a high level, TRECVid 2003 is television 
news content from the late 1990’s whereas TRECVid 2002 contains more general programmes 
predominately from between the 1950’s and 1970’s, and at a low-level, since the visual quality 
and consistency of the content is far superior in the TRECVid 2003 collection The supplemental 
results for TRECVid 2004 are tuned on TRECVid 2003

The video examples for TRECVid 2003 and 2004 are each supplied with a single keyframe,
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which we use for the query image representation For TRECVid 2002 there is no supplied query- 
keyframes for the example videos, so we simply represent the query video using the nearest I- 
Frame to the middle of the query video We chose the middle I-Frame as opposed to the middle 
video frame as the I-Frame should be encoded with a higher visual quality It is interesting to 
review the topic images m relation to the relevant shots, as often it is the case that the query 
images and relevant shots are visually very dissimilar In chapter 3 Figures 17 and 18 (page 
89) show the first topic’s example images and sample relevant shots for the TRECVid 2002 
and TRECVid 2003 search tasks For the experiments reported in this chapter the first topic 
m TRECVid 2002 represents 4 visual query-by-example topics and similarly the first topic m 
TRECVid 2003 represents 8 visual query-by-example topics

The experiments in this chapter use the supplied common keyframes for representing each 
shot in the TRECVid collections To generate this common shot boundary, small shots were 
combined with adjacent shots and in some cases inappropriate keyframes represent some of 
these sub-shot units In general, even without this combination of small shots, some shots may 
be better represented with multiple keyframes, however we have not yet compared the single 
keyframe approach with using multiple keyframes It is also important to note that for nearly 
all topics the relevant shot list contains shots which, by review of the supplied keyframe alone, 
would not be considered relevant by a human assessor For example at least two of the fifteen 
relevant shots for topic 75 (see Figure 17 on page 88) have keyframes that do not contain an 
image of the subject, Eddie Rickenbacker, of the search topic For topic 100 (see Figure 18 on 
page 89) at least 3 of the first 16 relevant shots have keyframes that do not contain the search 
topic ‘aerial views of buildings or roads’ These observations are typical of the shot keyframes 
and in fact other topics are far worse, such as all relevant shots for topic 119 for shots of Morgan 
Freeman have supplied keyframes in which Morgan Freeman is not visible

With these caveats noted about the limits of using single keyframe representations of shots 
for video retrieval, we will now present our query-by-example retrieval results for colour, edge 
and texture

6.3 Experiments with Colour Features

In this section we investigate language models and standard visual retrieval models using the 
HSV colour feature for the TRECVid query-by-example task In the following subsections, we 
consider alternative quantisation of the 5 dimensional colour samples (X, Y, H, S, V), firstly 
into global colour representations and secondly into regional colour representations Finally, we 
consider smoothing using video structure both the physical and semantic structure that we 
investigated in the previous chapter in our text experiments

6 3 1 Global Colour

In this section we compare language models and standard visual retrieval models for the different 
global HSV colour representations H 80+1, HSV 5x5x5 and HSV 16x4%4> which we described 
in Chapter 4 We establish a good representation of HSV colour information for the TRECVid 
query-by-example retrieval task that we will use in our regional colour experiments
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Figure 30: Comparison of global H SV  histogram representations (H 80 +1 desaturated,
HSV 5x5x5, HSV 16x4x4) using language models and standard visual retrieval models for
the TRECVid 2002 and TRECVid 2003 search task.



We display the results for these HSV representations for language models and visual retrieval 
models for the TRECVid 2002 and TRECVid 2003 search task in Figure 30 The HSV 16x4x4 
representation achieves on average 15% better MAP than the next best representation on both 
collections Its performance is followed by H 80-1-1 and then HSV 5x5x5 for the majority of 
retrieval models on the TRECVid 2002 search task For TRECVid 2003 the relative ordering of 
the different HSV representations is slightly different with the HSV 5x5x5 representation second 
best and H 80+1 the worst We believe that this change is caused by the difference in visual 
quality between the two collections The TRECVid 2003 collection possesses stable levels of 
saturation and brightness across encoded videos whereas within the TRECVid 2002 collection 
there are many differences in terms of brightness and saturation between the encoded videos, 
providing significant amount of unwanted noise in these bands relative to the hue dimension

For both TRECVid collections Jensen-Shannon distance is the best of the standard visual 
models across all HSV representations It achieves for the HSV 16x4x4 representation a MAP 
of 0 0167 on TRECVid 2002 and a MAP of 0 0138 on TRECVid 2003 (see Table 43, appendix 
page 248, for HSV 16x4x4 results) Manhattan is the second best standard visual retrieval 
model It is consistently better than Euclidean distance on both collections and on all the tested 
representations Its MAP is 0 0129, 22% lower than Jensen-Shannon distance, for TRECVid 
2002 and 0 0122, 11% lower than Jensen-Shannon distance, for TRECVid 2003 for the HSV 
16x4x4 representation

The MLE language model is, as expected, the worst performing retrieval model However, by 
smoothing the MLE model we achieve results nearly as good as the best standard visual model 
for TRECVid 2002 and better than the standard visual approaches for TRECVid 2003 Unlike 
text, for the HSV feature there is no significant difference between discounting and interpolation 
smoothing models for both collections

All the discounting methods have a similar performance except for Linear smoothing, which 
for most representations except HSV 5x5x5 on TRECVid 2003, achieves the worst discounting 
model’s MAP

The results for interpolation based language models are also indistinguishable For TRECVid
2002 Jelmek-Mercer smoothing performs slightly worse than Witten-Bell and Absolute interpo­
lation smoothing which both have a MAP for HSV 16x4x4 of 0 0158 compared to 0 0153, which 
could hardly be considered significant The results for TRECVid 2003 interpolation models have 
differences that are similarly insignificant

The optimum parameters of the parametric language models for TRECVid 2002 and TRECVid
2003 while different (specifically look at results for HSV 16x4x4 in Table 43, appendix page 248) 
achieve similar results for the unbiased runs This may indicate that the performance of language 
models for the HSV colour feature is somewhat resilient to slightly different amounts of smooth­
ing for the information retrieval task It is also true that global features are dense histograms 
and therefore require only a small amount of smoothing

145



6 3 2 Regional Colour

In this section we investigate language models and standard visual retrieval models using the 
regional HSV colour feature for the TRECVid query-by-example task We use regional varia­
tions of the HSV 16x4x4 representation as this performed consistently well in the global colour 
experiments In our experiments we quantise the X, Y position dimensions for each HSV sample 
uniformly into 3, 4 or 5 levels thereby essentially breaking the image into 9, 16, or 25 independent 
rectangular regions and producing a language with 2304, 4096, and 6400 symbols respectively

We present the results m Figure 31 for the 3x3, 4x4 and 5x5 regional HSV 16x4x4 repre­
sentations for the TRECVid 2002 and TRECVid 2003 search task The results for TRECVid 
2002 are mixed showing small increases and decreases in MAP for different retrieval models for 
3x3 regions compared to the global representation and showing only marginal improvements for 
4x4 and 5x5 regions In contrast, the results for TRECVid 2003 show major improvements in 
all retrieval models (except MLE) for all regional representations compared to the global repre­
sentation The retrieval results for 3x3, 4x4 and 5x5 regions increase the MAP by respectively 
53%, 66% and 86% compared to the MAP of the global HSV representation

The relative ordering of the standard visual models remains unchanged for all tested regional 
colour representation on both collections Jensen-Shannon distance is the best, Manhattan 
distance is the next best and Euclidean distance is the worst For each standard visual model, 
except Euclidean distance on the TRECVid 2002 collection, the use of regions improves upon 
their global results For TRECVid 2003 Euclidean distance improves when using regions but 
it still achieves only 50% of the other visual model’s MAP Jensen-Shannon distance achieves a 
maximum MAP of 0 0187 for 5x5 regions, a 12% improvement on its global results on TRECVid 
2002 For TRECVid 2003 it achieves a maximum MAP at 5x5 regions of 0 0258, which is a 
87% improvement on global results (see Table 44, appendix page 249) For both collections 
the difference m MAP for Jensen-Shannon distance compared to Manhattan distance is reduced 
when using regional colour compared to global colour For example for TRECVid 2003 Jensen- 
Shannon distance is only 1% better than Manhattan model for 5x5 regional representation 
compared to an 11% difference when comparing them on the global colour representation

For language models, the MLE model achieves a MAP of zero for regional colour representa­
tions This is due to a far larger vocabulary of symbols in the regional languages, which increases 
the number of symbols with a zero frequency Smoothing the MLE, of course, solves this zero 
frequency problem, which is more severe in a visual query-by-example task than for a short text 
query

The discounting language models show only tiny improvement with the addition of regions 
for TRECVid 2002 In fact, Natural and Absolute discounting have losses in MAP Lidstone 
discounting remains roughly unchanged for global and regional representations In contrast, for 
TRECVid 2003 all discounting models show improvements m MAP The Laplace and Lidstone 
discounting models are the best overall retrieval models with a MAP of 0 0280 for 5x5 regions 
(81% improvement compared to global representation), which is achieved even for the unbiased 
Lidstone parameters (see Table 44, appendix page 249) It is surprising that the somewhat 
arbitrary just-add-one rule of Laplace smoothing is so effective in this case As well as having a 
Bayesian interpretation, Laplace and Lidstone can be interpreted as interpolation with a uniform
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Figure 31: Comparison of regional histogram representations (HSV 16x4x4 for no regions,
3x3, 4x4, and 5x5 regions) using language models and standard visual retrieval models for
the TRECVid 2002 and TRECVid 2002 search tasks.
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source.

The related Jelinek-Mercer smoothing, interpolation with the background collection model, 
is the next overall best retrieval model on the TRECVid 2003 collection with a maximum MAP 
of 0.0276 but unfortunately for unbiased parameters achieves only a MAP of 0.0238, which is the 
second lowest result for 5x5 regions. On both collections the other interpolated smoothing mod­
els Witten-Bell and Absolute smoothing perform slightly worse than Jelinek-Mercer smoothing 
except for the unbiased result for Jelinek-Mercer for 3x3 and 5x5 regions on the TRECVid 2003 
collection. For TRECVid 2002 the Witten-Bell and Absolution interpolation-based smoothing 
actually decrease in effectiveness with the addition of regions in this experiment. Jelinek-Mercer 
interpolation smoothing shows significant improvement from no regions (MAP 0.0155) to 3x3 
regions (MAP 0.0185) with a 19% improvement. This improvement does not extend to more 
regions and the MAP steadily decreases for 4x4 and 5x5 regions. For regional HSV colour 
there does not seem to be much advantage, if any, for using a background collection model for 
smoothing - discounting methods achieve just as good, if not better, results. With the results 
also indistinguishable for the global colour representation, we believe that the HSV colour visual 
language is just as well smoothed with a uniform distribution as with the background collection 
distribution. This is in contrast to the more semantic and skewed text language models.

Overall the unbiased results for the parametric language models are very close to the max­
imised results for both collections (see Figure 32). The Jelinek-Mercer language model is the 
exception for both collections (see Figures 32(g) and 32(h)) -  for regions in the TRECVid 2002 
search task this method requires a lot of smoothing with the background collection (A = 0.65 
for 3x3 and 5x5 regions) but for TRECVid 2003 this methods requires a small magnitude of 
smoothing (A = 0.05 for any regional representation). These parameter values are at different 
ends of the scales and result in poorer results when exchanged to produce the unbiased results. 
This instability could be due to our tuning procedure or is maybe inherent in the application of 
the Jelinek-Mercer language model to this feature.

We present statistical significance comparisons of the unbiased retrieval models on the HSV 
5x5 16x4x4 feature for the set of topic results across the three TRECVid collections in Table 
11. This table indicates that the Laplace language model achieves the best overall MAP result 
for the regional colour feature, though the Jensen-Shannon distance is only marginally lower 
(0.3% difference). Jensen-Shannon distance is actually the stronger result and is statistically 
significantly better than all other retrieval models below it. The unbiased Lidstone result achieves 
a similar MAP to the related Laplace smoothing with a statistically insignificant 2.1% difference. 
Jelinek-Mercer smoothing achieves the worst overall MAP (we’ve excluded the poorer MLE and 
Euclidean models from this comparison to save space) but is notably not statistically significantly 
poorer than any other smoothed visual language modelling, though it is statistically significantly 
lower than Jensen-Shannon and Manhattan distance. It must be remembered that the magnitude 
of the MAP differences are very small and are maybe not observable by real users. The Jensen- 
Shannon distance, which is marginally better than the language modelling approach, is a similar 
approach to the language modelling approach but combines both the query and document into 
the hypothetical source before measuring the relative entropy from the query and document to 
it. The two best performing retrieval models are non-parametric and therefore it is possible that 
improvements to our parameter tuning procedure could redress some of the slight performance 
differences with the parametric language models.
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Figure 32: Plot of MAP over the parameter space for the parametric language models 
using regional colour representations for the TRECVid 2002 search task and TRECVid 
2003 search task.
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Table 11: Statistical significance comparison of retrieval models on the regional 5x5 HSV 
16x4x4 colour feature for the aggregated TRECVid 2002, 2003 and 2004 search tasks.

Ret. M eth. M A P /% D if W ilcoxon Test R esults

L a p la c e  (L a p ) _ > J S > L id > L in > W B > M an > A b s > A b sD > JM

(L ap) 0.0176 .997 .950 .040 .000 .982 .000 .000 .466
J e n s e n - S h a n n o n  ( J S ) < L ap - > L id > L in > W B > M an > A b s > A bsD > JM

(JS) 0.0176/-0.3% .997 .000 .000 .000 .007 .000 .000 .000

L id s to n e  (L id ) < L a p < J S - > L in > W B > M an > A b s > A bsD > JM

(Lid) 0.0172/-2.1% .950 .000 .000 .000 .994 .000 .000 .166
L in e a r  (L in ) < L a p < J S < L id - > W B > M an > A b s > A bsD > JM

(Lin) 0.0169/-4.2% .040 .000 .000 .000 .98* .000 .000 .649
W it t e n - B e l l  (W B ) < L a p < J S < L id < L in - > M an > A b s >A bsD > JM

(W B ) 0.0166/-5.9% .000 .000 .000 .000 .997 .001 .091 .999
M a n h a t t a n  ( M a n ) < L ap < J S <L id < L in <WB - > A b s > A bsD > JM

(M an) 0.0165/-6.1% .982 .007 .994 .988 .997 .002 .001 .012

A b s o lu t e  (A b s ) < L a p < J S < L id < L in < W B < M an - >A bsD > JM

(A bs) 0.0164/-6.6% .000 .000 .000 .000 .001 .002 .389 1.000

A b s o lu t e  D is c . (A b s D ) < L ap < J S < L id < L in <WB < M an <Abs - > JM

(A bsD ) 0.0164/-6.7% .000 .000 .000 .000 .091 .001 .389 1.000

J e l in e k - M e r c e r  ( J M ) < L a p < J S < L id < L in <W B < M an <A bs <A bsD -

(JM ) 0.0159/-9.7% .466 .000 .166 .649 .999 .012 1.000 1.000

We tabulate the results of our tested retrieval models on the official TRECVid multi-example 
topics in Table 12. Previous to this our results have been for single example searching and 
therefore could not be directly compared with official TRECVid results. The single topic results 
were fused using CombSUM with varying amounts of truncated results (tuned using the normal 
procedure) to produce these multi-example results. The results are very close for all retrieval 
models except Euclidean and MLE (not shown). The results are better than the continuous 
GMM approach using the DCT feature (see Table 2, page 79) for the TRECVid 2003 and 
TRECVid 2004 collection but worse for TRECVid 2002 search task. The difference in visual 
quality between TRECVid 2002 and the other collections may account for difference in results. 
Query keyframes for the example videos were not distributed with the TRECVid 2002 collection, 
so it is possible their selection may be accountable for the negative difference on this collection. 
The relative difference between the Lidstone language model and the best GMM query-likelihood 
approach are respectively -49.5%, 42.3%, and 75.0% for the three search tasks. Our other discrete 
visual language models have similar relative performance. The popular standard retrieval model 
Euclidean distance performs very poorly relative to the GMM and discrete visual language 
modelling approaches. Euclidean distance magnifies the difference between histogram bins, which 
is a fine strategy for exact match searching but not for the more general TRECVid search task.

6.3.3 HSV colour experiments using the physical and semantic video struc­
ture

In this section we investigate the usefulness of the physical and semantic video composition 
structure of edited video content in our discrete visual language modelling approach for the 
colour feature. Smoothing using the video structure of video is useful for text search. In this
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Table 12: Comparison of retrieval models on the HSV 5x5 16x4x4 feature for official TRECVid topics (i.e. fused topic examples).

V isE xsC ol-C om bScore T R E C V id  2002 T R E C V id  2003 T R E C V id  2004 T R E C V id  02-04

R etrieva l M ethod M A P  P 10 P 30 P 100 M A P  P 10  P 30  P 100  M A P  P 10  P 30  P 100  M A P  P 10  P 30  P 100

L a p la c e .0 1 5 0 .052 .035 .022 .0 3 9 4 .080 .091 .058 .0 1 6 9 .065 .049 .036 .0 2 4 0 .066 .058 .039

B est ( .0 1 5 0 .056 .036 .023) .0 3 9 5 .080 .091 .058 ( .0 1 7 9 .052 .051 .037) ( .0 2 4 3 .063 .059 .039)

L id s to n e .0 1 4 5 .048 .036 .024 .0 4 1 1 .080 .097 .060 .0 1 7 5 .057 .051 .036 .0 2 4 6 .062 .062 .040

B est ( .0 1 5 3 .048 .036 .023) ( .0 4 0 1 .080 .092 .058) ( .0 1 8 2 .052 .051 .037) ( .0 2 4 7 .060 .060 .039)

L in e a r .0 1 4 8 .052 .036 .021 .0 3 9 2 .080 .092 .058 .0 1 7 2 .070 .049 .037 .0 2 3 9 .067 .059 .039

B est ( .0 1 4 0 .048 .035 .022) ( .0 3 8 1 .088 .085 .056) ( .0 1 7 3 .057 .052 .036) ( .0 2 3 3 .064 .058 .038)

A b s o lu t e  D is c o u n t in g .0 1 4 1 .052 .035 .019 .0 3 4 0 .080 .073 .050 .0 1 4 9 .057 .046 .033 .0 2 1 1 .063 .052 .034

B est ( .0 1 5 0 .052 .033 .020) ( .0 3 3 6 .084 .073 .051) ( .0 1 5 0 .061 .042 .033) ( .0 2 1 4 .066 .050 .035)

W i t t e n - B e l l .0 1 4 9 .052 .037 .022 .0 3 5 3 .080 .076 .054 .0 1 6 4 .057 .049 .034 .0 2 2 3 .063 .054 .037

B est ( .0 1 4 9 .052 .039 .022) ( .0 3 5 4 .080 .076 .055) ( .0 1 6 6 .057 .051 .034) ( .0 2 2 4 .063 .055 .037)

J e l i n e k - M e r c e r .0 1 5 2 .044 .036 .023 .0 3 9 8 .068 .081 .060 .0 1 7 4 .052 .054 .036 .0 2 4 3 .055 .057 .040

B est ( .0 1 4 2 .036 .027

o<NOf ( .0 3 9 0 .080 .083 .058) ( .0 1 7 5 .057 .054 .036) ( .0 2 3 7 .058 .054 .038)

A b s o lu t e .0 1 4 4 .048 .037 .022 .0 3 4 9 .076 .075 .054 .0 1 5 2 .052 .043 .032 .0 2 1 7 .059 .052 .036

B est ( .0 1 5 6 .052 .040 .022) ( .0 3 4 5 .092 .075 .052) ( .0 1 5 4 .061 .045 .032) ( .0 2 2 0 .068 .053 .036)

M a n h a t t a n .0 1 8 3 .040 .029 .025 .0 3 6 6 .108 .093 .060 .0 1 7 9 .061 .052 .032 .0 2 4 5 .070 .058 .039

B est ( .0 1 8 6 .048 .027 .026) ( .0 3 7 3 .108 .095 .060) ( .0 1 9 5 .065 .054 .033) ( .0 2 5 3 .074 .058 .040)

J e n s e n  S h a n n o n .0 1 9 0 .036 .040 .025 .0 3 6 5 .100 .091 .058 .0 2 2 3 .091 .057 .036 .0 2 6 0 .075 .063 .040

B est ( .0 1 9 2 .036 .039 .024) ( .0 3 6 6 .100 .091 .058) ( .0 2 4 4 .078 .057 .039) ( .0 2 6 8 .071 .062 .040)

E u c l id e a n .0 0 6 4 .024 .028 .018 .0 1 6 1 .044 .049 .036 .0 0 6 9 .022 .028 .020 .0 0 9 9 .030 .035 .025

B est ( .0 0 6 4 .024 .028 .018) ( .0 1 6 1 .044 .049 .036) ( .0 0 6 9 .022 .028 .020) ( .0 0 9 9 .030 .035 .025)

A v e r a g e  o f  u n b ia s e d .0 1 4 6 .045 .035 .022 .0 3 5 3 .080 .082 .055 .0 1 6 3 .058 .048 .033 .0 2 2 2 .061 .055 .037

A v e r a g e  o f  b e s t .0 1 4 8 .045 .034 .022 .0 3 5 0 .084 .081 .054 .0 1 6 9 .056 .048 .034 .0 2 2 4 .062 .055 .037
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Figure 33: Comparison of the indexing units shots, sequence of adjacent shots, and videos 
with the HSV 80x1x1+1 colour representation for language models and visual retrieval 
models on the TRECVid 2002 search task.

section we will evaluate the following structural units:

• adjacent shots: the colour model for a window of shots that spans a fixed number of shots 
before and after the given shot,

• video: the colour model for the physical video that contains the given shot (i.e. colour 
model of the entire video programme),

• story: the colour model for the semantic story that contains the given shot.

We will first investigate the adjacent shots, video and story structures separately as our repre­
sentation or indexing unit for each shot for the TRECVid search tasks and following this we will 
experiment with structural smoothing, combining the structural models with the shot model.

The results for language models and standard visual retrieval models using different struc­
tural units are shown in Figures 33 and 34 for the TRECVid 2002 and TRECVid 2003 search 
tasks.

Without exception for TRECVid 2002, see Figure 33, every language model and standard 
retrieval model achieves a higher MAP when using the adjacent shots or the video representation

152



Shot Only Video Only Adj Only Story Only

L i t . ■ I I l L V i  L i L l  III III III i l  IlI
Laplace Natural Lidstone Linear Absolute
Unbiased Unbiased Unbiased Unbiased Discounting

Unbiased

Laplace Natural Lidstone Linear Absolute
Best Discounting 

Best

Hitten-BelUelinek MercerAbaolute Witten-BelUelinek MerceAbsolute Manhattan Euclidean Jensen- Manhattan Euclidean Jensen- 
Unbiased Unbiased Unbiased Best Best Best Unbiased Unbiased Shannon Best Best Shannon

Unbiased Best

Figure 34: Comparison of the indexing units shots, sequence of adjacent shots, videos, 
and stories with the HSV 80x1x1+1 colour representation for language models and visual 
retrieval models on the TRECVid 2003 search task.

than when using the shot representation alone. For TRECVid 2003, see Figure 34, the video, 
adjacent shots and story structures are all clearly inferior to the shot representation alone for 
all the evaluated retrieval models. We believe that this contradiction between the results for the 
two collections is because most of the videos in TRECVid 2002 are about a single topic, unlike 
the news videos in TRECVid 2003, and as a consequence the relevant shots for many of the 
topics in TRECVid 2002 are more clustered together in the videos whereas for TRECVid 2003 
the relevant shots are more spread across multiple news broadcasts. Some of the videos in the 
TRECVid 2002 collection have very distinctive encodings and some query examples were chosen 
from the test collection, and this possibly accounts for the benefit of the video structure for this 
collection.

The results for the TRECVid 2002 search task, tabulated in Table 45 (appendix page 250), 
show that while the improvement in MAP for the adjacent shots and video structure is large, it 
is not statistically significant according to the Wilcoxon rank test. The high Wilcoxon p-values, 
greater than 0.5 for video representation and greater than 0.25 for adjacent shots representation, 
indicate an inconsistent improvement in MAP. This increase in performance from using the video 
and adjacent shots structure are possibly topic dependent and may also require that the topic 
image has an effective shot-only performance before it can be effective with the shot or video 
structure, in much the same way as the use of relevance feedback would require a reasonable 
initial retrieval performance. Since most topic images have very poor performance to begin with, 
the performance for these unsuccessful images will likely further deteriorate when using the video 
and adjacent shots structure.
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Figure 35: Comparison of the indexing units shots, sequence of adjacent shots, videos and 
stories with the HSV 80x1x1+1 colour representation on the 20 most successful TRECVid 
2003 topic images using the best Lidstone language models
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Figure 36: Comparison of the indexing units shots, sequence of adjacent shots, videos and 
stories with the HSV 80x1x1+1 colour representation on the 20 most successful TRECVid 
2003 topic images using the best Lidstone language models

We will investigate this difference between both collections more closely by looking at the 
results for the 20 best topic images on both collections. These results using the optimised 
Lidstone smoothed language model for the TRECVid 2002 and TRECVid 2003 search tasks are 
shown in Figures 35 and 36.

The results for the top 20 topic images for TRECVid 2002 in Figure 35 indicate that the 
performance boost in the MAP measure for the adjacent shot structure is mainly attributable 
to two topic images, topic76\ and topic76s, both from the TRECVid topic 76. In fact, only 
7 of the top 20 topic images show improvement in the adjacent shots representation over the 
shot-only representation and 13 show a decrease in average precision, which explains how the 
MAP measure can have a large increase but simultaneously be statistically insignificant. The 
average precision for the video representation increases for 8 of the top 20 topic images, while 
12 of the top images show decreases in average precision. Similar to the adjacent representation, 
the increases for the video representation are mainly from the best performing topic images 
within the top 20 topic results. We see that for TRECVid 2002 the majority of topic images 
are better represented or indexed using the shot representation than with the adjacent shots or 
video representation even though a naive look at the MAP score alone might lead to the opposite 
conclusion.
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The results for the top 20 topic images for TRECVid 2003 in Figure 36 show that the top 
5 topic images, mostly from topic 120, achieve their best results using the shot-only representa­
tion In fact the shot-only representation is best for 12 of the 20 best topic images The story 
representation produces the next 3 best topics images, which are all from the TRECVid topic 
111 The adjacent shots representation is best for only one of the topic images and the video 
representation is best for only 4 of the top 20 topic images The consistent message from both 
collections is that the shot representation is better than the other tested representations for 
colour except for a small minority of topic images

As can be seen in Table 45 (appendix page 250) for TRECVid 2002 the video representation 
improves on the shot representation by about 20% for the retrieval models in terms of MAP 
The MLE language model for the video structure achieves the best MAP of 0 0169 The other 
smoothed language models do not improve on the MLE model The MLE model also outperforms 
the results of Jensen-Shannon distance, which produced the best MAP of 0 0138 for the standard 
visual models

For TRECVid 2003, see Figure 34, the physical video structure performs 8 times worse than 
the shot representation for most of the retrieval models The semantic story structure performs 
twice as well as the video structure producing MAP scores for the retrieval models that are a 
quarter of the shot-only representation scores

For the adjacent shots representation, the optimum number of adjacent shots before and 
after the current shot is very different for both collections For TRECVid 2002, 20 shots before 
and after the indexed shot are best - more may actually be better as 20 was the upper limit 
for optimising this parameter For TRECVid 2003 one extra shot before and after the indexed 
shot is best for the adjacent shots structure The results for using adjacent shots for TRECVid 
2003, see Table 46, significantly underperform the shot representation with the MAP measure 
decreasing by 80% for the best discounting models on this representation In fact we could say 
0 adjacent shots (the shot model itself) is the best adjacent shot model for TRECVid 2003 
In contrast, for TRECVid 2002, see Table 45, even the unbiased adjacent shots structure for 
a window of + /- 1 adjacent shots helps, increasing the MAP by 20%, but this is considerably 
smaller than the potential m TRECVid 2002 when the adjacent shots structure uses + /- 20 shots 
for its window width, which increases MAP by 70% to 0 0239 for all language models For the 
TRECVid 2002 search task an adjacent window of any size from 1 to the maximum number of 
shots in a video will produce better results than a shot-only representation The opposite is true 
for TRECVid 2003 However, as mentioned previously, these results concerning the adjacent 
shots structure are due to a small number of topic images and are not representative of the true 
effects these structures have on the majority of topic images

We now consider using these structures for hierarchical smoothing of the visual shot language 
model In the previous chapter we saw how the hierarchical smoothing structures can achieve 
consistent improvements over the shot text model alone We present the results for structural 
smoothing for the TRECVid 2002 and TRECVid 2003 search tasks in Figures 37 and 38

The results for TRECVid 2002 in Figure 37 show that lelmek-Merccr smoothing is the only 
structural smoothing language model that improves the performance over the shot-only represen­
tation when using the structures shot-hvideo and shot+adj+video The other interpolation-based
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Figure 37: Comparison of smoothing with structural units (shots+videos, shots+sequence 
of adjacent shots+videos) and smoothing different indexing units (shot-only, video-only, 
adjacent shots-only) with the HSV 80x1x1+1 colour representation for interpolation-based 
language modelling information retrieval on the TRECVid 2002 search task.

Shot Only Video Only Adj Only Story Only Shot+Video Shot+Adj+Video

Witten-Bell Jelinek Mercer 
Best

Figure 38: Comparison of smoothing with structural units (shots+videos, shots+adjacent 
shots+videos) and smoothing different indexing units (shot-only, video-only, adjacent shots- 
only) with the HSV 80x1x1+1 colour representation for interpolation-based language mod­
elling information retrieval on the TRECVid 2003 search task.

156



AP B i  Shot Only tM  Video Only Adj Only H  Shot+Video W  Shot+Adj-fVideo

0.8-

0 .6 -

0.2 -

o.o- U iJiii lib
76_1 76_3 76_2 91 _2 80_1 90_3 92_1 75_3 97_2 75_4 82_1 94_1 80_2 92_4 96_2 83_1 95_3 94_2 82_2 77_2

Figure 39: Comparison of smoothing with structural units (shots+videos, shots+adjacent 
shots+videos) and smoothing different indexing units (shot-only, video-only, adjacent shots- 
only) with the HSV 80x1x1-1-1 colour representation on the 20 most successful TRECVid 
2002 topic images using the best Jelinek-Mercer structural smoothing model.

smoothing models do not improve on the results compared to the smoothed shot-only models.

The results for TRECVid 2003 in Figure 38 are unsurprisingly very negative for smoothing 
the keyframe colour model with the physical structure combinations shot+video and shot+adj -¡-video 
or with the semantic shot+story composition structure. These structure-based estimators pro­
vide no benefit in the TRECVid 2003 collection - the maximum possible MAP does not even 
improve compared to the smoothed shot-only models. Due to this failure the unbiased results 
for TRECVid 2002, which use the best parameters from TRECVid 2003, lack significance. The 
shots within television news stories are visually dissimilar moving from anchorperson shots to 
other types of video sequences such as interviews or external reports and therefore a simple 
model of colour across the whole story is not much use. For the rest of this section we will look 
further at the TRECVid 2002 results.

Figure 39 shows the average precision results for the 20 best topic images for structural 
smoothing compared with smoothing the shot-only, adjacent shots-only and video-only models 
on the TRECVid 2002 collection using Jelinek-Mercer smoothing. The shot-h adj-h video structure 
improves upon the adjacent shot-only representation for 8 out of the 20 best topic images but 
it has the best average precision for only 2 of the topics, topic7Q\ and topic9 l 2• The shot-hvideo 
structure improves on both the shot-only and video-only representation for 4 topic images but 
for topic images below the top 10 it achieves very poor results.

The results for structural-based smoothing on the TRECVid 2002 collection are shown in 
Table 13 for the shot-hvideo hierarchical structure and in Table 14 for the shot+adj-hvideo struc­
ture. The interpolated Jelinek-Mercer smoothing has the best potential results with 109.7% 
improvement for the MAP measure for the shot+adj-hvideo structure and has a 67.9% improve­
ment for shot-hvideo structure compared to smoothing the shot with only the collection model as 
in the shot-only language models. For the unbiased results this potential performance gain is not 
achieved. The results for optimised structural smoothing are better than using the structural 
units separately as presented previously in Table 45. The improvements for both shot-hvideo 
and shot-hadj+video structures over the shot-only representation are not statistically significant 
with Wilcoxon p-values of 0.628 and 0.839 respectively. Unlike Jelinek-Mercer smoothing of hi­
erarchical structure, if we use the hierarchical version of Witten-Bell and Absolute interpolation
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Table 13: Results for smoothing the HSV 80x1x1+1 shot+video hierarchical colour struc­
ture for the TRECVid 2002 search task.

T R E C V ID  2002 Shot+  Video V. Shot O nly V. Video O nly

R etrieva l M ethod Prm M A P P10 P30 P I 00 Im pr. ~  Wile. Im pr. ~  Wile.

W it te n - B e l l .0 1 4 0 .034 .023 .017 +0.4% ~  .203 -16.7% ~  .598
J e l i n e k  M e r c e r Ashot ) Avid, Acol

Unbiased 0.95,0.00,0.05 .0 1 2 4 .025 .024 .018 -0.0% ~  .495 -24.3% ~  .604

Best (0.05,0.95,0.00 .0 2 0 9 .016 .023 .023) +67.9% ~  .628 +25.2% -  .741
A b s o lu te ¿shot » ¿vid

Unbiased 0.15,0.00 .0 1 4 1 .034 .024 .017 +0.4% ~  .070 -16.3% ~  .601
Best (0.02,0.00 .0 1 4 2 .036 .024 .017) -0.3% ~  .934 -16.1% ~  .596

A v e r a g e  o f  u n b ia s e d .0 1 3 5 .031 .024 .017 +0.3% -19.1%
A v e r a g e  o f  b e s t .0 1 7 5 .026 .024 .020 +33.8% +4.5%

to smooth the same structural units we do not improve on the results in terms of the MAP 
measure compared to simply smoothing the shot model with the collection model.

In summary, interpolation-based smoothing using the video’s hierarchical structure is a suc­
cessful strategy for the TRECVid 2002 search task for a minority of high performing topic images 
but fails for the TRECVid 2003 search task. We found that for news content in TRECVid 2003 
and for the majority of topic images for TRECVid 2002’s general video collection that structural 
units at a higher level than shot such as story, fixed sized adjacent shot windows and videos 
provide poor performance for visual features. It may be that sub-story units would be useful for 
visual structural smoothing. However, segmentation of stories, for example into anchorperson, 
interview, and report segments, was unavailable to us. Another strategy would be to use struc­
tural smoothing within a shot to combine the keyframe visual feature model with a shot model 
(generated from all its frames or I-Prames) and possibly with an adjacent frame model. Due to 
the very poor performance of structural smoothing involving videos, stories and adjacent shots 
for the colour feature on TRECVid 2003, we will not pursue it further in this chapter for the 
other visual features.

6.4 Experim ents with Edge Features

In this section we investigate visual language models for the Canny edge feature (Canny, 1986) 
for the TRECVid visual search task. We first compare the language models on the global edge 
representation with from 4 to 64 levels of quantisation and with an extra symbol for the out- 
of-bounds edge direction, producing a language consisting of between 5 and 65 symbols. After 
establishing a reasonable global representation of edges, we experiment with this for regional 
edge representations of 3x3, 4x4 and 5x5 regions.
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T able 14: Results for smoothing the HSV 80x1x1+1 shot+adj+video hierarchical colour structure for the TR E C V id 2002 search task.

T R E C V ID  2002 S h o t+ A d j+  V ideo V. Sh o t O nly V. Video O nly V. A d j O nly

R etrieva l M ethod Prm M A P P10 P30 P I 00 Im p r. ~  Wile. Im pr. ~  W ile. Im pr. ~  W ile.

W i t t e n - B e l l A d j
Unbiased 1.00 .0 1 4 2 .034 .024 .018 +1.5% ~  .172 -15.8% ~  .604 -16.7% ~  .285
Best (10.00 .0 1 3 8 .034 .023 .017) -1.2% ~  .825 -18.1% ~  .587 -42.1% ~  .944

J e l i n e k  M e r c e r Ashot) Aadj» Avid) ACol) A d j
Unbiased 0.95,0.02,0.00,0.02,1 .0 1 2 9 .026 .024 .018 +3.9% ~  .407 -21.3% -  .598 -18.3% ~  .324
Best (0.00,0.30,0.60,0.10,10 .0 2 6 1 .026 .027 .021) +109.7% -  .839 +56.3% -  .901 +14.8% ~  .458

A b s o lu t e Ö
Unbiased 0.10 .0 1 4 0 .037 .023 .017 -1.2% ~  .961 -16.9% ~  .606 -41.3% ~  .937
Best 0.10 .0 1 4 0 .037 .023 .017 -1.2% ~  .961 -16.9% ~  .606 -41.3% ~  .937

A v e r a g e  o f  u n b ia s e d .0 1 3 7 .032 .024 .017 +1.4% -18.0% -25.4%
A v e r a g e  o f  b e s t .0 1 8 0 .032 .025 .019 +35.7% +7.1% -22.9%



6 4 1 Global Canny Edge

We evaluated the Canny 4+1, Canny 16+1, Canny32+1 and Canny64+1 visual languages The 
results for visual language models and standard visual retrieval models for global Canny edge 
representations are shown in Figure 40 for the TRECVid 2002 and TRECVid 2003 search tasks 
For both collections the performance in general increases with the number of quantisation levels 
with Canny 64+1 producing the best results The results for edges are considerably worse than 
previously presented for colour The retrieval models’ MAP are at best a third of the HSV 
16x4x4 colour results for TRECVid 2002 and for TRECVid 2003 they achieve at best only a 
half of the HSV 16x4x4 colours’ results For both collections, the language models for the global 
Canny edge feature perform as well as, or better than, the standard visual retrieval models

Jensen-Shannon distance is the best performing standard visual retrieval model for all tested 
Canny representations on both collections For the Canny 64+1 representation, see Tables 47 
(appendix page 252) and 48 (appendix page 253), it achieves a MAP of 0 0053 on the TRECVid
2002 collection and a MAP of 0 0083 on the TRECVid 2003 collection The other standard 
visual models produce similar results to each other, but as the number of quantisation levels 
increases, see Figure 40, Euclidean distance becomes relatively worse than Manhattan distance

For most Canny representations on both collections, see Figure 40, the MLE language model 
and the Jensen-Shannon distance produce the same results For the best representation, Canny 
64+1, the MLE language model has the same performance as Jensen-Shannon distance on 
TRECVid 2002 and a 9 6% relatively worse MAP for TRECVid 2003

The results for TRECVid 2002 in Figure 40(a) show that only small improvements relative 
to the MLE model are achieved with smoothing for the global Canny feature on this collection

For the TRECVid 2003 search task Lidstone discounting is the best optimised language model 
for all tested representations with a peak MAP of 0 0086 for Canny 64+1 which is 7% better 
than the Jensen-Shannon distance result Even though the optimised parameters for Lidstone 
discounting on both collections are very different, the unbiased results for Lidstone discounting 
for the tested Canny representations on TRECVid 2003 never underperform the MLE language 
model Jelmek-Mercer smoothing is the best interpolation based language model on TRECVid
2003 and achieves the same result as Jensen-Shannon distance, but its unbiased results are 
unstable, performing worse than the MLE model on all but the Canny 64+1 representation 
As for global HSV colour, we get some indication from our results for global Canny edges that 
the visual language models smoothed with a background collection model do not necessarily 
produce superior results when compared to the discounted language models The performance 
differences are minuscule for the retrieval models on the global Canny feature so it is difficult to 
extrapolate much from these results

In Figures 41 and 42 we compare the global Canny representations for both collections 
on their 20 best performing topic images using the best optimised retrieval model for both 
collections - Absolute discounting for TRECVid 2002 and Lidstone discounting for TRECVid 
2003 For the TRECVid 2002 search task Canny 6 4 +1 is the best representation for 11 out 
of the top 20 topic images and Canny 32+1 is the best representation for 5 of these topic 
images For TRECVid 2003’s top 20 topic images, see Figure 42, Canny 64+1 and Canny
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Figure 40: Comparison of global Canny edge representations with different number of bins
(4, 16, 32, 64) using language models and standard visual retrieval models for the TRECVid
2002 search task.
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Figure 41: Comparison of global Canny edge representations with different number of bins 
(4, 16, 32, 64) on the 20 most successful TRECVid 2002 topic images using the optimised 
Absolute discounting language model.

Ap M  Canny 4 ■ §  Canny 16 Canny 32 H  Canny 64

0 .2 -

0 . 1 -

ll Hll JJ dJi_iU AllLliUkJ .11 III il I II I iLl u J  11 1
120_4 120_1 120_2 101_2 101_1 104_3 102_4 106_1 104_2 102_6 101_4 102_3 107_1 107_2 117_2 102_5 117_7 107_3 120_3 117_1

Figure 42: Comparison of global Canny edge representations with different number of bins
(4, 16, 32, 64) on the 20 most successful TRECVid 2003 topic images using the optimised
Lidstone language model.
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32+1 produce similar results with Canny 64+1 producing the best average precision for 8 topic 
images and Canny 32+1 achieving the best for 7 topic images For the 5 other topic images 
the compact Canny 4+1 representation is best Overall for both collections the performance 
boost for the Canny 64+1 representation is more evenly spread across the high performing topic 
images than for the previously discussed structural smoothing and unlike structural smoothing 
the improvements for Canny 64+1 occur for many of the official TRECVid topics and not just 
a couple of images belonging to the same two topic

We see from looking at the Wilcoxon p-values in Tables 47 (appendix page 252) and 48 
(appendix page 253), which compare Canny 64+1 with the other Canny representations, that 
the improvements when using the Canny 64+1 representation are statistically significant for 
most of the retrieval models However, for TRECVid 2002 there is not much difference between 
Canny 32+1 and Canny 64+1 with some retrieval models, see Table 47, producing poorer 
results for the Canny 64+1 representation and some of the small improvements for the Canny 
64+1 representation are statistically insignificant In contrast, for all the retrieval models for 
the TRECVid 2003 search task, see Table 48, there is improvement in the MAP measure with 
many of the models having more than a 10% statistically significant improvement for the Canny 
64+1 representation compared to the Canny 32+1 representation For this reason we will use 
the Canny 64+1 representation in our regional experiments

6 4 2 Regional Canny Edge

In this section we compare different regional Canny 64+1 edge representations for 3x3, 4x4 and 
5x5 regions These representations produce visual languages consisting of 585, 1040, and 1625 
symbols The results are shown in Figure 43 for the TRECVid 2002 and TRECVid 2003 visual 
search tasks For both collections the regional Canny representations perform better than global 
Canny in terms of the MAP measure For TRECVid 2002 3x3 regions m general performs best 
and a slight decrease in performance is observed for more regions For TRECVid 2003, see 
Figure 43(b), the best performance for most retrieval models is achieved for 5x5 regions

In Figures 44 and 45 we present the results for comparing regional Canny 64+1 represen­
tations on the 20 most successful topic images for the best optimised retrieval models on both 
collections, Absolute interpolation language model (best MAP of 0 0098 for 3x3 regions) for 
TRECVid 2002 and the Linear discounting language model (best MAP of 0 0121 for 5x5 re­
gions) for TRECVid 2003 For the Absolute interpolation language model on TRECVid 2002 
the regional representations achieve 12 of the top 20 best results - 6 for 3x3 regions, 3 for 4x4 
regions, 3 for 3x3 regions and 8 for no regions For the Linear model on TRECVid 2003 the 
regional representation achieves 17 of the best 20 results - 5 for 3x3 regions, 3 for 4x4 regions, 
9 for 5x5 regions and 3 for no regions While we believe that the regional edge model is better 
than the global model it is more difficult to decide between the different regional representations

The Tables 49 (appendix page 254) and 50 (appendix page 255) present the results for the 
Canny 64+1 representation for 3x3 regions for TRECVid 2002 and for 5x5 regions for TRECVid 
2003 Though the use of regions for Canny edges in general does not produce statistically sig­
nificant better results than global representation on both collections, they still overall have a
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Figure 43: Comparison of regional Canny edge representations (Canny 64+1 for no regions,
3x3, 4x4, and 5x5 regions) using language models and standard visual retrieval models for
the TRECVid 2002 and TRECVid 2003 search tasks.
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Figure 44: Comparison of regional Canny edge representations (Canny 64+1 for no regions, 
3x3, 4x4, and 5x5 regions) on the 20 most successful TRECVid 2002 topic images using the 
optimised Absolute interpolation language model.
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Figure 45: Comparison of regional Canny edge representations (Canny 64+1 for no regions, 
3x3, 4x4, and 5x5 regions) on the 20 most successful TRECVid 2003 topic images using the 
optimised Linear discounting language model.
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positive effect on most of the results For TRECVid 2003 the retrieval models Absolute dis­
counting, Jehnek-Mercer and Manhattan distance achieve statistically significantly better MAP 
for 5x5 regions than for the global representation according to the Wilcoxon test results and the 
negative differences between 5x5 regions and the other regional representations are not statisti­
cally significant for any of the retrieval models For this reason we will specifically investigate the 
5x5 regional representation though implementation criteria such as smaller memory footprint or 
quicker retrieval time might m practice lead us to choose the 3x3 regional representation since 
its index size and retrieval speed is a third of that required for 5x5 regions

Jensen-Shannon distance is the best standard visual model for both collections For TRECVid 
2002 it has its best performance for 3x3 regions with a MAP of 0 0072, a 36% improvement on 
its global MAP of 0 0053 For TRECVid 2003 it peaks at 5x5 regions with a MAP of 0 0110, 
a 33% improvement compared to its global MAP of 0 0083 The relative ordering of standard 
visual models remains the same Jensen-Shannon distance is followed by Manhattan distance 
with Euclidean distance the worst

The MLE language model, as expected, is useless when using regions due to the increase in 
vocabulary size Unlike for global edges, smoothing is essential for the regional feature m order 
for the language modelling approach to achieve similar or better results than the standard visual 
models

Jehnek-Mercer smoothing achieves consistently good results for both collections for the re­
gional Canny feature On TRECVid 2002 it peaks at 5x5 regions with an optimised MAP of 
0 0095, an improvement of 69% on its global MAP of 0 0056, and an unbiased MAP of 0 0092 
Interestingly, the amount of smoothing is high with A = 0 85 for the optimised Jehnek-Mercer 
model, which means that 85% of the probability mass of a document’s smoothed probability 
model is due to the background collection model Absolute discounting is the best performing 
discounting language model for TRECVid 2002 and peaks at a MAP of 0 0085 (0 0075 unbiased) 
for 3x3 regions

For TRECVid 2003 Lidstone discounting is the best discounting language model for most 
regions except by an insignificant amount for 5x5 regions where it has a MAP of 0 0120 compared 
to a MAP of 0 0121 for Linear discounting Unfortunately, the optimum parameter for Lidstone 
smoothing is inconsistent for both collections, for 5x5 regions A = 0 06 for TRECVid 2002 
and A = 1 55 for TRECVid 2003, producing disappointing unbiased results (see Figures 46(a) 
and 46(b)) Jehnek-Mercer is the best interpolation based language model for all regions on 
TRECVid 2003 Though its optimum MAP of 0 0112 is lower than Lidstone, the unbiased results 
for Jehnek-Mercer perform a lot better and more consistently than for Lidstone smoothing

We present statistical significance comparisons of the unbiased retrieval models (except the 
poor MLE and Euclidean distance models) on the Canny 5x5 64+1 feature for the set of topic 
results across the three TRECVid collections in Table 15 This table indicates that the Jehnek- 
Mercer language model is the best retrieval model for this regional Canny feature The Jensen- 
Shannon distance is also very strong and is second m the rankings in terms of MAP but is 
not statistically significantly poorer than the Jehnek-Mercer language model Both the Jehnek- 
Mercer language model and Jensen-Shannon distance are statistically significantly better than
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Figure 46: Plot of MAP over the parameter space for the parametric language models 
using regional Canny edges for TRECVid 2002 search task and TRECVid 2003 search 
task.
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Table 15: Statistical significance comparison of retrieval models on the regional 5x5 Canny 
64+1 edge feature for the aggregated TRECVid 2002, 2003 and 2004 search tasks.

R et. M eth. M A P /% D if W ilcoxon Test R esults

J e l i n e k - M e r c e r  ( J M ) - > J S > M an > L a p > A bsD > W B > L in >Abs > L id

(JM ) 0.0092 .149 .015 .036 .166 .102 .003 .023 .009

J e n s e n - S h a n n o n  ( J S ) < JM - > M an > L a p >AbsD > W B > L in >Abs > L id

(JS ) 0.0079/-14.1% .149 .000 .001 .495 .218 .001 .038 .000

M a n h a t t a n  (M a n ) < J M < J S - > L a p > A bsD > W B > L in > A b s >L id

(M an) 0.0077/-16.1% .015 .000 .788 .965 .602 .092 .355 .115

L a p la c e  (L a p ) < J M < J S < M an - >AbsD > W B > L in >Abs > L id

(L ap) 0.0075/-18.5% .036 .001 .788 .883 .572 .005 .238 .000

A b s o lu t e  D is c . (A b s D ) < JM < J S < M an < L a p - > W B > L in >Abs > L id

(AbsD) 0.0072/-21.6% .166 .495 .965 .883 .030 .004 .000 .000

W i t t e n - B e l l  (W B ) < JM < J S < M an < L ap <AbsD - > L in >Abs > L id

(W B ) 0.0067/-26.7% .102 .218 .602 .572 .030 .086 .008 .214

L in e a r  (L in ) < J M < J S < M an < L a p <AbsD < W B - > A b s > L id

(L in) 0.0066/-28.3% .003 .001 .092 .005 .004 .086 .615 .376

A b s o lu t e  (A b s ) < J M < J S < M an < L a p <AbsD < W B < L in - > L id

(Abs) 0.0063/-31.4% .023 .038 .355 .238 .000 .008 .615 .693
L id s to n e  (L id ) < J M < J S < M an < L a p <AbsD < W B < L in <Abs -

(L id) 0 .0063/-31.6% .009 .000 .115 .000 .000 .214 .376 .693

all other retrieval models except Absolute discounting and Witten-Bell smoothed language mod­
els. Lidstone smoothing, which is equivalent to interpolation with an uniform source in our 
experiments, performs worst with 31% less MAP on average across the three TRECVid collec­
tions in comparison to Jelinek-Mercer smoothing. The background collection model seems to 
be important for this regional feature probably because it has a skewed distribution due to the 
regional non-edge histogram bins containing most of the probability mass.

We tabulate the results of our tested retrieval models on the official TRECVid multi-example 
topics in Table 16 that fused the single image results using CombSUM. The results are about 
50% lower for TRECVid 2002 and 2004 and about 100% lower for TRECVid 2003 compared to 
our regional colour results. The results for the Jelinek-Mercer language model are 50.5% and 
57.1% less than for the DCT GMM model for TRECVid 2002 and 2003, and 155.0% better than 
the DCT GMM model for TRECVid 2004. The mean result for the Jelinek-Mercer language 
model on TRECVid 2004 is possibly an outlier since it is largely due to excellent results on two 
topics (topic 135 and 142). Overall the results are encouraging for this limited feature and given 
that it contains no colour information, it should provide additional information when fused with 
the colour results.

6.5 Experiments with Texture Feature

In this section we investigate language models and visual retrieval models using texture features 
for the TRECVid query-by-example task. In our experiments we represent texture by using 
different numbers of significant DCT coefficients into a fixed number of quantisation levels, 
as described in Chapter 4. As before, we will first explore texture as a global feature before
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Table 16: Comparison of retrieval models on the Canny 5x5 64+1 feature for official TRECVid topics (i.e. fused topic examples).

V isE xsE dge-C om bScore T R E C V id  2002 T R E C V id  2003  T R E C V id  2004 T R E C V id  02-04

R etrieva l M ethod M A P  P 10 P 30  P 100  M A P  P 10  P 30  P 100  M A P  P 10  P 30  P 100  M A P  P 10 P 30  P100

L a p la c e .0 1 0 3 .052 .028 .016 .0 1 9 0 .064 .057 .033 .0 0 8 7 .035 .029 .019 .0 1 2 8 .051 .038 .022

B est ( .0 1 0 9 .052 .029 .015) ( .0 1 9 2 .064 .057 .032) ( .0 0 8 8 .035 .030 .019) ( .0 1 3 1 .051 .039 .022)

L id s t o n e .0 0 6 7 .040 .019 .013 .0 1 6 5 .064 .057 .031 .0 0 6 9 .026 .016 .015 .0 1 0 1 .044 .031 .020

B est ( .0 1 1 7 .068 .037 .019) ( .0 1 9 6 .060 .049 .033) ( .0 0 7 3 .022 .017 .013) ( .0 1 3 0 .051 .035 .022)

L in e a r .0 0 6 1 .024 .023 .012 .0 1 4 1 .048 .039 .022 .0 0 6 4 .017 .017 .011 .0 0 8 9 .030 .026 .015

B est ( .0 0 7 8 .036 .020 .012) ( .0 1 8 7 .064 .047 .035) (.0 0 7 1 .017 .017 .011) ( .0 1 1 3 .040 .028 .020)

A b s o lu t e  D is c o u n t in g .0 1 0 9 .056 .028 .022 .0 1 4 8 .076 .061 .033 .0 1 0 6 .048 .036 .021 .0 1 2 1 .060 .042 .026

B est ( .0 1 2 7 .064 .033 .020) ( .0 1 6 8 .076 .065 .038) ( .0 1 0 6 .048 .036 .019) ( .0 1 3 4 .063 .045 .026)

W i t t e n - B e l l .0 1 1 5 .072 .033 .020 .0 1 4 6 .060 .055 .031 .0 0 8 3 .035 .029 .017 .0 1 1 5 .056 .039 .023

B est ( .0 1 1 8 .072 .036 .020) ( .0 1 4 8 .060 .055 .032) ( .0 0 8 3 .035 .029 .018) ( .0 1 1 7 .056 .040 .023)

J  e l  i n e k -  M e r c e r .0 1 4 2 .072 .033 .020 .0 1 3 3 .048 .037 .022 .0 2 5 5 .078 .054 .027 .0 1 7 4 .066 .041 .023

B est ( .0 1 4 6 .076 .036 .021) ( .0 1 8 3 .056 .051 .032) ( .0 2 5 5 .078 .054 .027) ( .0 1 9 3 .070 .047 .027)

A b s o lu t e .0 1 0 5 .056 .029 .019 .0 1 2 9 .060 .048 .027 .0 0 6 0 .030 .029 .015 .0 0 9 9 .049 .036 .021

B est ( .0 1 1 7 .064 .033 .018) ( .0 1 3 3 .064 .052 .028) ( .0 0 7 8 .035 .029 .016) ( .0 1 1 0 .055 .038 .021)

M a n h a t t a n .0 0 9 6 .056 .024 .014 .0 1 8 7 .064 .056 .028 .0 1 8 3 .065 .042 .025 .0 1 5 4 .062 .041 .022

B est ( .0 1 0 7 .060 .029 .015) ( .0 1 9 9 .056 .053 .032) ( .0 1 8 3 .065 .042 .025) ( .0 1 6 2 .060 .042 .024)

J e n s e n  S h a n n o n .0 1 0 1 .052 .027 .017 .0 1 9 4 .064 .059 .032 .0 1 2 0 .039 .041 .020 .0 1 3 9 .052 .042 .023

B est ( .0 1 2 4 .060 .031 .019) ( .0 1 9 9 .068 .052 .037) ( .0 1 2 0 .039 .039 .022) ( .0 1 4 8 .056 .041 .026)

E u c l i d e a n .0 0 9 4 .044 .023 .010 .0 1 3 9 .064 .048 .025 .0 0 9 6 .057 .032 .018 .0 1 1 0 .055 .034 .018

B est ( .0 1 0 5 .056 .023 .014) ( .0 1 4 3 .052 .047 .026) ( .0 0 9 6 .057 .032 .018) ( .0 1 1 5 .055 .034 .019)

A v e r a g e  o f  u n b ia s e d .0 0 9 9 .052 .027 .017 .0 1 5 7 .061 .052 .028 .0 1 1 2 .043 .032 .019 .0 1 2 3 .052 .037 .021

A v e r a g e  o f  b e s t .0 1 1 5 .061 .031 .017 .0 1 7 5 .062 .053 .033 .0 1 1 5 .043 .033 .019 .0 1 3 6 .056 .039 .023



experimenting with it for regional texture representations of 3x3, 4x4 and 5x5 regions

6 5 1 Global Texture

The results for our global DCT texture representations are shown in Figures 47(a) and 50 for 
the TRECVid 2002 and TRECVid 2003 search tasks We compare texture representations that 
use between 2 and 5 DCT coefficients Specifically, we compare DCT 10x10, DCT 8x8x8, DCT 
4x4x4x4 and DCT 3x3x3x3x3 which produce languages consisting of 100, 256, 256 and 243 
symbols respectively

For the TRECVid 2002 collection, see Figure 47(a), DCT 3x3x3x3x3 is the best performing 
texture representation according to the MAP measure The Absolute interpolation language 
model achieves the highest MAP for the DCT 3x3x3x3x3 for both the unbiased and optimised 
results All of the optimised language models except the Linear language model produce their 
best results on the DCT 3x3x3x3x3 representation, whereas, all the unbiased results except 
Absolute interpolation produce their best results on the DCT 4x4x4x4 representation These 
conflicting results from optimised (biased) and unbiased retrieval models can be explained by 
looking at the individual topic results from the optimised models

We can see from Figure 48 for the best performing retrieval model on TRECVid 2002, op­
timised Absolute interpolation, that for its top 20 topic images a single topic image topic77\ 
(George Washington) accounts for most of the performance gain of the DCT 3x3x3x3x3 repre­
sentation The DCT 3x3x3x3x3 representation is the best representation for only 3 of the top 
20 topic images, while the DCT 4x4x4x4 representation is actually the best performing repre­
sentation for the majority and produces the best results for 13 of the top 20 topic images The 
DCT 8x8x8 representation is best for only 3 of the images and the poorly performing DCT 
10x10 representation is best for only one topic of the top 20 topic images The results for topic 
77 can dwarf all other topic results in the calculation of the MAP statistic since it has only 
3 relevant shots and when one or two of these occur in high ranking positions an extremely 
high average precision in comparison to the other topic results is achieved In the case of the 
optimised language models and the unbiased Absolute interpolation language model the results 
for DCT 3x3x3x3x3 have 2 of the 3 relevant documents m the top five ranked documents, which 
produces an average precision so high compared to all the other topics that it dominates the 
MAP statistic at the expense of the relative performance of the other topics

Overall, we believe that the DCT 4x4x4x4 representation is the best tested texture repre­
sentation for the TRECVid 2002 search tasks We can support this claim with the retrieval 
results for the TRECVid 2002 collection, shown in Figure 47(b), which exclude topic 77 This 
figure provides a more consistent view of the relative performance of the four DCT texture rep­
resentations The DCT 4x4x4x4 representation is now clearly the best representation for all the 
retrieval models for both the unbiased and optimised results The DCT 8x8x8 representation is 
the next best followed by the DCT 3x3x3x3x3 representation, which now produces nearly similar 
results to the poorly performing DCT 10x10 representation

In Table 51 (appendix page 256) we tabulate the results for the DCT 4x4x4x4 representation 
compared with the DCT 3x3x3x3x3 and DCT 8x8x8 representations for the complete TRECVid
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Figure 47: Comparison of global DCT representations (DCT 10x10, DCT 8x8x8, DCT
4x4x4x4, and DCT 3x3x3x3x3) using language models and standard visual retrieval models
for the TRECVid 2002 search task over (a) all topics and (b) all but topic 77.
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Figure 48: Comparison of global DCT representations (DCT 10x10, DCT 8x8x8, DCT 
4x4x4x4 and DCT 3x3x3x3x3) on the 20 most successful TRECVid 2002 topic images using 
the optimised Absolute interpolation language model.

2002 search task. The DCT 4x4x4x4 representation is better than the DCT 8x8x8 for all retrieval 
models and importantly most of these improvements are statistically significant. For all the 
unbiased results except the very poor MLE model, DCT 4x4x4x4 is also significantly better 
than the DCT 3x3x3x3x3 representation. The exceptions are Absolute interpolation and all 
the optimised language models, except the Linear discounting language model, which produce 
their best results for the DCT 3x3x3x3x3 representation. However these improvements for the 
DCT 3x3x3x3x3 representation relative to the DCT 4x4x4x4 representation are not statistically 
significantly according to the Wilcoxon sign rank test. As can be seen from Table 51 they 
achieve a p-value of close to 1.0, which is as insignificant as you can get with this statistical 
test. This further supports our claim that the DCT 4x4x4x4 representation is superior to the 
DCT 3x3x3x3x3 representation for the TRECVid 2002 collection even though the MAP measure 
indicates otherwise.

The results for the parametric language models are shown in Figure 49 for the active range 
of their parameter values for the global DCT texture representations. The results for Lidstone, 
Absolute discounting and Jelinek-Mercer show that even though DCT 3x3x3x3x3 achieves a 
higher MAP than the other DCT representations it is only for very specific parameter values. 
For the majority of parameter values and more importantly for the unbiased results, the MAP 
for DCT 3x3x3x3x3 is significantly lower than the DCT 4x4x4x4 representation. If we remove 
topic 77 from the TRECVid 2002 test set, also shown in Figure 49, then the small spikes in the 
MAP for the DCT 3x3x3x3x3 representation are removed leading to a more consistent view of 
the MAP response to the parameter values for these language models. Taking this complication 
into account we will now look more closely at the results for the discounted language models, 
the interpolated language models and the standard visual retrieval models.

The unsmoothed MLE language model performs very poorly for all DCT representations, 
while the Lidstone language model, see Figure 47, is the best discounting-based language model 
for both the unbiased and optimised results even when topic 77 is removed from the test set. 
The Lidstone model performs best on the DCT 4x4x4x4 representation except for its optimised 
result on the full TRECVid 2002 topic list in which it favours the DCT 3x3x3x3x3 representation.

AP H i  DOT 10x10 ■  DCT 8x8x8 DCT4x4x4x4 ■  DCT 3x3x3x3x3

05"

A 1 1
J  76_3 97_2 84_1 95_1 76_1 79_2 96_2 83_1 89_2 82_2 81 _3 82_1 86_4 93_1 99_2 90_1 76_2 86_1 94_1
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Figure 49: Comparison of MAP for the different parameter values of the parametric 
language models (Lidstone, Linear, Absolute discounting, Jelinek-Mercer and Absolute in­
terpolation) using the global DCT texture representations (DCT 10x10, DCT 8x8x8, DCT 
4x4x4x4 and DCT 3x3x3x3x3) for the TRECVid 2002 search task for all topics and for all 
but topic 77.
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As can be seen from Figures 49(a) and 49(b) when we exclude topic 77, the performance of the 
Lidstone discounting language model is stable with respect to changes in its parameter value A In 
this figure the curve between best and unbiased results for all but the DCT 8x8x8 representation 
is quite flat indicating stability in the choice of the parameter value between the two TRECVid 
collections

The Jelinek-Mercer language model is the best collection-based smoothed language model for 
all but the DCT 3x3x3x3x3 representation in which Absolute interpolation slightly outperforms 
it Absolute interpolation is the best retrieval model according to the MAP measure achieving 
the highest result on the DCT 3x3x3x3x3 representation The unbiased Absolute interpolation 
also achieves the highest unbiased result again on the DCT 3x3x3x3x3 representation However, 
Absolute interpolation produces poorer results than Jelinek-Mercer smoothing for both its opti­
mised and unbiased results when we remove topic 77 from the test set We see from Figures 49(g) 
and 49(h) that topic 77 causes the Jelmek-Mercer language model’s MAP to peak for an unusu­
ally low amount of smoothing, which is controlled by its A parameter When we remove topic 
77, the curves for the different DCT representations become more consistent with each other It 
can also be observed for Jelinek-Mercer smoothing m Figure 49(g) that the unbiased parameter 
estimates for A are very close to the best optimised values for all the DCT representations except 
of course the problematic DCT 3x3x3x3x3 representation

In contrast to the previous features, see Figure 47, Manhattan distance is the best standard 
visual retrieval model Jensen-Shannon distance is the next best and is followed by the nearly 
always poorly performing Euclidean distance All the tested standard visual retrieval models 
perform best on the DCT 4x4x4x4 representation and when we remove topic 77 from the test 
set Manhattan and Lidstone smoothing achieve the joint best result for TRECVid 2002

The TRECVid 2003 results displayed in Figure 50 show that the DCT 8x8x8 representation 
is the best tested DCT representation for all retrieval models except for the very poor performing 
MLE language model The DCT 3x3x3x3x3 representation is the next best representation and is 
itself followed by the DCT 10x10 representation Surprisingly the DCT 4x4x4x4 representation, 
which was the best representation for the TRECVid 2002 search task when we excluded topic 
77, is the worst representation for most of the retrieval models for the TRECVid 2003 collection 
The performance of texture is better for the TRECVid 2003 search task than for the TRECVid 
2002 search task and the differences between the texture representations are also not as large as 
on the TRECVid 2003 collection The higher visual quality of the TRECVid 2003 collection may 
better support texture features than the TRECVid 2002 collection Without further research 
on more video collections, we can only offer this change in visual quality as a probable cause for 
the differences m the texture representations’ performances The results for the best performing 
representation DCT 8x8x8 are presented in Table 52 and show that nearly all the unbiased 
language models perform statistically significantly better for the DCT 8x8x8 representation 
than for the next best representation DCT 3x3x3x3x3 The larger differences between DCT 
8x8x8 and DCT 4x4x4x4 are not statistically significant, though if we look at the topic results 
we can see that DCT 8x8x8 is a more beneficial representation

The results for the best retrieval model on TRECVid 2003, the optimised Jelinek-Mercer 
language model, for the DCT texture feature are shown in Figure 51 for the best 20 topic images 
The best representation DCT 8x8x8 produces 9 of the best 20 results, DCT 3x3x3x3x3 produces
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Figure 50: Comparison of global DCT representations (DCT 10x10, DCT 8x8x8, DCT 
4x4x4x4 and DCT 3x3x3x3x3) using language models and standard visual retrieval models 
for the TRECVid 2003 search task.
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Figure 51: Comparison of global DCT representations (DCT 10x10, DCT 8x8x8, DCT 
4x4x4x4 and DCT 3x3x3x3x3) on the 20 most successful TRECVid 2003 topic images using 
the optimised Jelinek-Mercer language model.
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Figure 52: Comparison of MAP for the different parameter values of the parametric 
language models (Lidstone, Linear, Absolute discounting, Jelinek-Mercer and Absolute in­
terpolation) using the global DCT texture representations (DCT 10x10, DCT 8x8x8, DCT 
4x4x4x4 and DCT 3x3x3x3x3) for the TRECVid 2003 search task.

7 of the best 20 results and DCT 4x4x4x4 produces 4 of them. The DCT 10x10 representation 
only performs best for 1 of the top 20 images. Unlike the results for the best retrieval model 
for TRECVid 2002 in Figure 48, these results for the TRECVid 2003 topics are not dominated 
by a single topic image. The MAP statistics for the TRECVid 2003 collection are therefore 
less skewed than for the TRECVid 2002 collection. For the 20 worst performing topic images 
DCT 4x4x4x4 produces better results than the DCT 8x8x8 representation and this result goes 
some way to explaining the lack of statistical significance between their representations for the 
TRECVid 2003 collection.

For the TRECVid 2003 search task the best unbiased discounting model for all but the 
DCT 10x10 representation, see Figure 50, is Laplace smoothing. Laplace smoothing is of course 
equivalent to Lidstone smoothing when its parameter A is set to 1 and Lidstone smoothing is in 
fact the best unbiased discounting model for the DCT 10x10 representation. Similar to TRECVid 
2002 the best optimised discounting method is Lidstone discounting which peaks, see Table 52, 
at an optimised MAP of 0.0118 for the DCT 8x8x8 representation. The optimised Lidstone 
discounting is the best discounting method for all tested representations except insignificantly 
with the DCT 3x3x3x3x3 representation, see Table 53, in which Linear achieves a MAP of 0.0096 
compared to Lidstone’s MAP of 0.0095.

The unbiased results for the Lidstone language model are reasonable except for the DCT 
3x3x3x3x3 representation in which the unbiased parameters are too inappropriate. The graphs 
in Figure 52(a) and previously in Figure 49(a) for the Lidstone language model’s response to 
its A parameter on the TRECVid 2003 and TRECVid 2002 collection show different trends for 
the DCT 3x3x3x3x3 representation. For the TRECVid 2002 collection its MAP peaks with its 
parameter A = 0.02 and then it declines in performance for larger parameter values, which is quite
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different to the other DCT representations on that collection For the TRECVid 2003 collection 
Lidstone peaks for A = 0 90 and has a far more consistent response curve compared to the other 
representations As mentioned previously a single topic image, top icll\, is skewing the results 
for the DCT 3x3x3x3x3 representation on the TRECVid 2002 collection and thereby invalidating 
the unbiased results for this representation on the TRECVid 2003 collection Unfortunately, the 
performance of the DCT 3x3x3x3x3 representation after removing topic 77 is very poor and 
the resulting optimised parameter value, A = 8 0, is even more inappropriate for use on the 
TRECVid 2003 collection Using more similar collections in our experiments, such as TRECVid 
2003 with the TRECVid 2004 collection, should reduce this problem as both of these collections 
are more visually similar

The Jehnek-Mercer language model is again the best optimised interpolation-based language 
model for all tested representations and peaks, see Table 52 (appendix page 257), at a MAP of 
0 0124 for the DCT 8x8x8 texture representation It is also the best unbiased interpolation-based 
language model for all but the DCT 3x3x3x3x3 representation It achieves the best unbiased 
MAP of 0 0124 for any retrieval model due to a close correspondence between its optimised 
smoothing parameter A for the DCT 8x8x8 representation on both collections The somewhat 
erratically performing Witten-Bell interpolation smoothing performs next best after Jehnek- 
Mercer interpolation smoothing for the TRECVid 2003 collection, while Absolute interpolation 
performs worst

The graphs m Figure 52(d) and previously in Figure 49(g) for the Jehnek-Mercer language 
model’s response to its parameter A on the TRECVid 2003 and TRECVid 2002 collection show 
different trends for the DCT 3x3x3x3x3 representation The Jehnek-Mercer language model 
peaks for very low smoothing, A = 0 01, on the DCT 3x3x3x3x3 representation relative to 
other DCT representations for the TRECVid 2002 search task Whereas for the TRECVid 2003 
search task the DCT 3x3x3x3x3 representation behaves more consistently with respect to the 
other texture representations and peaks at A = 0 20 Unfortunately the unbiased parameter 
estimate from TRECVid 2002 significantly underestimates the required amount of smoothing 
when used on the TRECVid 2003 collection In contrast to Lidstone smoothing, removing topic 
77 from TRECVid 2002 produces an optimised A = 0 15 for Jehnek-Mercer smoothing which 
would produce far better unbiased results on the TRECVid 2003 collection

For the standard visual models, the relative performance order returns to Jensen-Shannon 
distance followed by Manhattan distance and with Euclidean in last place Jensen-Shannon 
distance achieves a MAP of 0 0114 for the DCT 8x8x8 representation, see Table 52, which is 
lower than many of the unbiased language models’ results

Overall, the Jehnek-Mercer and Lidstone language models outperform the standard visual 
retrieval models for global DCT texture Though the DCT 8x8x8 representation performs best 
for the TRECVid 2003 search task we believe that ultimately the next best representation, DCT 
3x3x3x3x3, has better synergetic potential when combined with the other features as it captures 
more texture or spatial frequency information and therefore it is likely to better complement 
the colour and edge representations when combined with them The results for DCT 3x3x3x3x3 
are shown m Table 53 (appendix page 258) for the TRECVid 2002 and TRECVid 2003 search 
tasks, which we will now compare with regional variations
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6 5 2 Regional Texture

We will now consider regional texture representations using the DCT 3x3x3x3x3 representation 
for 3x3, 4x4 and 5x5 regions The results for the TRECVid 2002 and TRECVid 2003 search 
tasks are shown in Figures 53 and 55 respectively

The results for the TRECVid 2002 search task displayed m Figure 53(a) indicate that the 
regional texture representations perform worse than the non-regional texture representation for 
the best performing retrieval model, Absolute interpolation, and for the optimised language 
models As discussed previously, the relatively high MAP for these retrieval models for the 
non-regional DCT 3x3x3x3x3 texture representation is mainly due to the topic image topic77\

The best 20 topic results for the optimised retrieval model Absolute interpolation, which has 
the highest MAP for the TRECVid 2002 search task, are shown in Figure 54 The Absolute 
interpolation language model achieves the highest MAP for the non-regional representation but 
significantly only two of its top 20 topic results achieve their highest average precision using 
this non-regional representation The other 18 of the 20 best topic images achieve their highest 
average precision using the regional representations - 5 for 3x3 regions, 7 for 4x4 regions and 
6 for 5x5 regions Unfortunately, as for global texture-based retrieval the average precision 
for the topic image topic77\ swamps the other topics’ average precisions m the calculation of 
the MAP statistic The results in Table 54 (appendix page 259) compare the 5x5 regional 
texture representation with the non-regional representation These results show that the MAP 
for the retrieval models that decrease in performance when using the 5x5 regional representation, 
Absolute interpolation and the optimised language models, are not statistically significant and 
actually have very large Wilcoxon p-values greater than 0 8 This table also shows that the 
improvements in some of the retrieval models for the 5x5 regional texture representation are 
statistically significant

We present adjusted regional texture results in Figure 53(b) for the TRECVid 2002 search 
task which disregard topic 77 These adjusted TRECVid 2002 results show that the MAP 
increases when using regional representations for all retrieval models except for the poorly per­
forming MLE and Euclidean models This outcome for the adjusted results is consistent with 
our TRECVid 2003 texture results and our previous results for the regional colour and edge fea­
tures, which also showed that regional representations are more effective The difference in MAP 
between the regional representations for the adjusted TRECVid 2002 search task is quite small 
but in general 5x5 regions is better than 4x4 regions, which in turn is better than 3x3 regions 
The unbiased retrieval models, see Table 54 (appendix page 259), achieve between 26% and 70% 
better MAP for the 5x5 regional representation than for the non-regional representation But 
this improvement is not enough to close the gap between the DCT 3x3x3x3x3 representation 
and the better DCT 4x4x4x4 representation on the TRECVid 2002 collection The 5x5 regional 
DCT 3x3x3x3x3 texture representation actually underperforms the non-regional DCT 4x4x4x4 
representation for the TRECVid 2002 search task We believe, and all evidences suggests, that 
regional variations of the DCT 4x4x4x4 would improve upon this representation but we have not, 
as yet, evaluated these regional variations We will now further discuss the results for the 5x5 
regional DCT 3x3x3x3x3 representation for the discounted language models, the interpolated 
language models and the standard visual retrieval models
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Figure 53: Comparison of regional DCT representations (DCT 3x3x3x3x3 for no regions, 
3x3, 4x4 and 5x5 regions) using language models and standard visual retrieval models for 
the TRECVid 2002 search task over (a) all topics and (b) all but topic 77.
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Figure 54: Comparison of regional DCT representations (DCT 3x3x3x3x3 for no regions, 
3x3, 4x4 and 5x5 regions) on the 20 most successful TRECVid 2002 topic images using the 
optimised Absolute interpolation language model.

As can be seen from Table 54 (appendix page 259) for TRECVid 2002 all the unbiased 
discounting-based language models achieve the same MAP of 0.0062 for 5x5 regions except for the 
Natural discounting model which achieves a lower MAP of 0.0061. The optimised discounting- 
based language models barely improve on this result and the best of which is the optimised 
Linear model which only achieves a MAP of 0.0064. For the 5x5 regional DCT representation 
the interpolation-based language models achieve better MAP results than the discounting-based 
language models and the standard visual retrieval models. Jelinek-Mercer has the best unbiased 
MAP of 0.0073, while Absolute interpolation has the best optimised MAP of 0.0079. In general, 
interpolation-based language models seem better than the discounting-based models for regional 
representations.

The standard visual retrieval models except Euclidean distance achieve similar results to the 
discounting-based language models with a MAP of 0.0063. The poorly performing Euclidean 
distance achieves a MAP of 0.0040. Overall the results for regional texture, even though in 
some cases statistically significantly better than the global representation, are very poor for the 
TRECVid 2002 search task.

The results for the TRECVid 2003 search task in Figure 55 present a stronger case for the 
regional texture representations. Many of the retrieval models perform over 100% better on the 
5x5 regional representation than on the non-regional representation. All the retrieval models 
except of course the MLE retrieval model perform better on the regional representation than 
on the global representation and the best regional representation is 5x5 regions, followed by 4x4 
regions, which is in turn followed by 3x3 regions. The only exception is the unbiased Lidstone 
results where 5x5 regions performs worse than the other regional representations.

The 20 best topic image results for the best retrieval model, the optimised Jelinek-Mercer 
language model, are shown in Figure 56. It is evident from this chart that no single topic 
overwhelms the other topic results. The non-regional representation is best for none of the top 
20 topic images whereas 5x5 regions is best for 13, 4x4 regions is best for 1 and 3x3 regions is 
best for the remaining 6 of the top 20 topic images. This is a significant endorsement of the 
regional texture representation, at least for the top performing query images.
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Figure 55: Comparison of regional DCT representations (DCT 3x3x3x3x3 for no regions, 
3x3, 4x4 and 5x5 regions) using language models and standard visual retrieval models for 
the TRECVid 2003 search task.
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Figure 56: Comparison of regional DCT representations (DCT 3x3x3x3x3 for no regions, 
3x3, 4x4 and 5x5 regions) on the 20 most successful TRECVid 2003 topic images using the 
optimised Jelinek-Mercer language model.
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We compare the retrieval models for the 5x5 regional representation with the other regional 
and non-regional representations in Table 55 (appendix page 260) The 5x5 regional represen­
tation is statistically significantly better than the non-regional representation for all retrieval 
models except of course the defunct MLE language model These positive results are extremely 
significant with many retrieval models achieving over 100% improvements m MAP and with 
the related Wilcoxon p-values close to 0 000 after rounding The comparison of the retrieval 
models for the 5x5 regional texture representation with the 3x3 and 4x4 regional representa­
tions also indicate many significant improvements except for the unbiased Lidstone language 
model The results for the 5x5 regional representation are m general better than for the 3x3 
regional representation by between 12% and 35% and are also between 2% and 10% better than 
for the 4x4 regional representation Even many of the improvements between the 5x5 regional 
representation and the 4x4 regional representation are statistically significant

The response of the parametric language models’ MAP to different smoothing parameter 
values are shown in Figure 57 The graphs for TRECVid 2003 show that there is a strict 
performance order for the regional texture representations for nearly all the parameter values 
of the different parametric language models - 5x5 regions is best and is followed by 4x4 regions 
which is followed by 3x3 regions and then by the global texture representation This pattern can 
also be observed for the TRECVid 2002 parametric language models, also shown in Figure 57, 
but due to the influence of the topic image topicl7\ the global texture representation achieves 
higher MAP than the regional representations for low smoothing parameter values We will now 
discuss in more detail the results for the language models and the visual retrieval models using 
the 5x5 regional texture representation

The Lidstone and Linear language models are the best performing discounting-based lan­
guage models on the TRECVid 2003 collection with an optimised MAP of 0 0191 and 0 0190 
respectively for the 5x5 regional texture representation The Linear model has a far better 
unbiased result than the Lidstone model but it is hard to take much cognisance of these cross 
validated results due to the poor performance of the retrieval models for the DCT 5x5 3x3x3x3x3 
regional texture representation on the TRECVid 2002 collection

The Jelmek-Mercer language model, which achieves an optimised MAP of 0 0232 and an 
unbiased MAP of 0 0226, is clearly the best retrieval model for the regional texture representation 
on the TRECVid 2003 collection The Absolute interpolation language model achieves much 
poorer results, which are at the same level as the best discounting-based language models 
Witten-Bell interpolation achieves results that are mid-way between Absolute interpolation and 
Jelinek-Mercer interpolation Like most regional feature representations, the regional texture 
representation seems to be better modelled for the search task by using a simple interpolation 
with the background collection model (Jelmek-Mercer smoothing) than by using an interpolation 
with a uniform noise source (Lidstone smoothing)

Jensen-Shannon distance is the best performing standard visual retrieval model but achieves 
only a MAP of 0 0183, which is 20% lower than for Jelmek-Mercer smoothing Manhattan 
distance is the next best and as usual Euclidean distance is the worst standard visual retrieval 
model

We present statistical significance comparisons of the unbiased retrieval models (except the
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Figure 57: Comparison of MAP for the different parameter values of the parametric 
language models (Lidstone, Linear, Absolute discounting, Jelinek-Mercer and Absolute in­
terpolation) using the regional DCT representations (DCT 3x3x3x3x3 for no regions, 3x3, 
4x4 and 5x5 regions) for the TRECVid 2002 and TRECVid 2003 search tasks.
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Table 17: Statistical significance comparison of retrieval models on the regional 5x5 DCT 
3x3x3x3x3 texture feature for the aggregated TRECVid 2002, 2003 and 2004 search tasks.

Ret. M eth. M A P /% D if W ilcoxon Test R esults

W it te n - B e l l  (W B ) _ > JM > A b s > L in > J S > A bsD > M an > L a p > L id

(W B ) 0.0130 .294 .003 .020 .032 .000 .024 .000 .000

J e l in e k - M e r c e r  ( J M ) < W B - > A b s > L in > J S > A bsD > M an > L a p > L id

(JM ) 0.0127/-2.4% .294 .272 .246 .295 .157 .256 .000 .013

A b s o lu t e  (A b s ) < W B < J M - > L in > J S > A bsD > M an > L a p > L id

(A bs) 0.0118/-9.2% .003 .272 .418 .382 .051 .246 .023 .006

L in e a r  (L in ) < W B < J M < A b s - > J S > A bsD > M an > L a p > L id

(Lin) 0 .0118/-9.5% .020 .246 .418 .788 .139 .748 .000 .000

J e n s e n - S h a n n o n  ( J S ) < W B < JM < A b s < L in - > A bsD > M an > L a p > L id

(JS ) 0 .0116/-10.7% .032 .295 .382 .788 .038 .386 .000 .000

A b s o lu t e  D is c . (A b s D ) < W B < JM < A b s < L in < J S - > M an > L ap > L id

(A bsD ) 0.0114/-12.2% .000 .157 .051 .139 .038 .956 .084 .020

M a n h a t t a n  (M a n ) < W B < JM < A b s < L in < J S < A bsD - > L a p > L id

(M an) 0.0114/-12.3% .024 .256 .246 .748 .386 .956 .000 .000

L a p la c e  (L a p ) < W B < J M < A b s < L in < J S < A bsD < M an - > L id

(L ap) 0.0094/-28.0% .000 .000 .023 .000 .000 .084 .000 .253

L id s to n e  (L id ) < W B < J M < A b s < L in < J S < A bsD < M an < L a p -

(Lid) 0 .0093/-28.7% .000 .013 .006 .000 .000 .020 .000 .253

poorly performing MLE and Euclidean distance models) on the DCT 5x5 3x3x3x3x3 feature for 
the set of topic results across the three TRECVid collections in Table 17. This table indicates that 
the Witten-Bell language model is overall the best retrieval model for this feature. The Jelinek- 
Mercer language model again performs very strongly and is statistically insignificantly lower 
than Witten-Bell by only 2.4%. Similar to the regional edge feature, Lidstone smoothing is worst 
(excluding the poor MLE and Euclidean from our comparison). The top three retrieval models 
are interpolation-based language models, which implies that smoothing using the background 
collection is important for this feature. Jensen-Shannon distance is fifth best according to overall 
MAP and is surprisingly statistically significantly lower than the Witten-Bell smoothed language 
model. The p-value is slightly high at 0.032 and therefore we may take this statistical significance 
relationship with a bit of caution. Because the DCT feature is calculated over 8x8 blocks (not 
for individual pixels) this feature is rather sparser than previous features, which were calculated 
for each pixel in the image. It is possible that smoothing using the background distribution 
is more beneficial than combining document and query as is done for Jensen-Shannon distance 
when the number of samples is far smaller than the size of the visual language. We need to 
experiment with far larger visual languages in order to see if there is such a relationship.

We tabulate the results of our tested retrieval models on the official TRECVid multi-example 
topics in Table 18 that fused the single image results for the DCT 5x5 3x3x3x3x3 feature using 
CombSUM. After fusion the Jelinek-Mercer smoothed language model is the overall best retrieval 
model in terms of MAP. This feature is slightly better than the edge feature for TRECVid 2002, 
slightly worse for TRECVid 2004, and double the effectiveness of the regional edge feature for 
TRECVid 2003. In seeking to make this feature cover more DCT bands we have decreased its 
effectiveness in the hope that it will be useful when fused with colour. The choice of feature 
representation may have been a poor choice and looks likely overly biased towards the TRECVid
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Table 18: Comparison of retrieval models on the DCT 5x5 3x3x3x3x3 feature for official TRECVid topics (i.e. fused topic examples).

V isE xs Texture-C om bScore  

R etrieva l M ethod

T R E C V id  2002 T R E C V id  2003 T R E C V id  2004 T R E C V id  02-04

M A P PIO P 30 P I  00 M A P P 10 P 30 P I  00 M A P P 10 P30 P I  00 M A P P 10 P 30 P I  00

L a p la c e .0 0 9 5 .028 .028 .016 .0 3 1 2 .080 .065 .044 .0 0 3 0 .004 .007 .006 .0 1 4 9 .038 .034 .022

B est ( .0 0 9 6 .028 .028 .016) ( .0 3 3 1 .080 .065 .044) ( .0 0 3 0 .004 .007 .006) ( .0 1 5 5 .038 .034 .022)

L id s t o n e .0 0 9 9 .044 .029 .018 .0 1 5 0 .028 .033 .028 .0 0 9 5 .039 .019 .019 .0 1 1 5 .037 .027 .022

B est ( .0 0 9 9 .032 .020 .015) ( .0 3 5 7 .108 .083 .057) ( .0 0 9 5 .039 .019 .019) ( .0 1 8 6 .060 .041 .031)

L in e a r .0 1 0 0 .048 .028 .020 .0 3 4 1 .100 .076 .052 .0 0 9 9 .035 .020 .015 .0 1 8 2 .062 .042 .029

B est ( .0 1 0 1 .036 .029 .019) ( .0 3 5 6 .104 .084 .054) (.0 1 0 1 .039 .019 .019) ( .0 1 8 8 .060 .045 .031)

A b s o lu t e  D is c o u n t in g .0 0 8 6 .048 .032 .020 .0 2 9 5 .088 .072 .051 .0 1 0 6 .030 .028 .017 .0 1 6 4 .056 .044 .030

B est ( .0 1 0 2 .048 .032 .021) ( .0 3 0 4 .104 .079 .052) ( .0 1 0 7 .030 .028 .019) ( .0 1 7 3 .062 .047 .031)

W i t t e n - B e l l .0 1 1 2 .052 .033 .021 .0 3 7 0 .116 .088 .060 .0 1 1 1 .035 .025 .020 .0 2 0 0 .068 .049 .034

B est ( .0 1 2 0 .056 .032 .022) ( .0 3 7 8 .108 .093 .059) ( .0 1 2 1 .030 .025 .017) ( .0 2 0 9 .066 .051 .033)

J e l i n e k - M e r c e r .0 1 4 2 .032 .028 .020 .0 4 1 7 .116 .088 .061 .0 0 5 7 .030 .014 .009 .0 2 0 9 .060 .044 .031

B est ( .0 1 4 2 .036 .027 .020) ( .0 4 2 2 .108 .083 .061) ( .0 0 6 2 .030 .014 .008) ( .0 2 1 3 .059 .042 .031)

A b s o lu t e .0 1 1 5 .056 .033 .022 .0 3 0 9 .100 .092 .055 .0 1 1 4 .026 .026 .023 .0 1 8 1 .062 .051 .034

B est ( .0 1 3 0 .048 .031 .020) ( .0 3 3 9 .088 .085 .056) ( .0 1 1 9 .026 .028 .018) ( .0 1 9 8 .055 .048 .032)

M a n h a t t a n .0 1 1 4 .044 .024 .018 .0 3 1 2 .084 .073 .050 .0 1 1 7 .035 .025 .015 .0 1 8 3 .055 .041 .028

B est ( .0 1 2 1 .044 .027 .017) ( .0 3 2 9 .092 .076 .052) ( .0 1 1 7 .035 .025 .015) ( .0 1 9 1 .058 .043 .028)

J e n s e n  S h a n n o n .0 1 1 2 .036 .025 .018 .0 3 4 0 .104 .077 .054 .0 0 9 2 .026 .019 .012 .0 1 8 4 .056 .041 .028

B est ( .0 1 1 4 .036 .025 .018) ( .0 3 4 4 .096 .079 .053) ( .0 1 0 0 .030 .022 .020) ( .0 1 8 9 .055 .042 .030)

E u c l i d e a n .0 0 4 9 .032 .017 .016 .0 1 9 6 .056 .052 .037 .0 0 8 0 .026 .019 .014 .0 1 0 9 .038 .030 .023

B est ( .0 0 5 3 .032 .019 .018) ( .0 1 9 8 .052 .053 .036) ( .0 0 8 9 .030 .022 .015) ( .0 1 1 4 .038 .032 .023)

A v e r a g e  o f  u n b ia s e d .0 1 0 3 .042 .028 .019 .0 3 0 4 .087 .072 .049 .0 0 9 0 .029 .020 .015 .0 1 6 8 .053 .040 .028

A v e r a g e  o f  b e s t .0 1 0 8 .040 .027 .018 .0 3 3 6 .094 .078 .052 .0 0 9 4 .030 .021 .015 .0 1 8 2 .055 .042 .029



2003 collection In comparison with the DCT GMM model, the Jelinek-Mercer language model 
achieves 50 5% lower MAP on TRECVid 2002, 34 5% better MAP on TRECVid 2003 and 43 0% 
lower MAP on TRECVid 2004 The DCT GMM model contains colour information as well as 
texture information, which may account for most of its performance We have separated colour 
and texture into different features and we have previously shown that the regional colour feature 
alone is better than the DCT GMM model on the TRECVid 2003 and TRECVid 2004 search 
tasks

6.6 Summary

As has been demonstrated in this chapter, the language modelling approach to text information 
retrieval can be successfully applied to the visual retrieval task for a range of different visual 
features Our test cases involved colour, edge and texture based features The choice of discrete 
representation for each feature needs to be chosen with care and by experimentation

The MPEG7 inspired HSV 16x4x4 colour representation was the best of the tested HSV 
colour representations The Canny 64+1 was the best of the tested Canny representations, 
though Canny 32+1 produced quite similar results and a higher number of quantisation levels 
may produce slightly better results but we did not test this There was disagreement on which 
DCT texture representation was best on both test collections For TRECVid 2002 the best 
representation was DCT 4x4x4x4 whereas for TRECVid 2003 the best representation was DCT 
8x8x8 In the end we chose DCT 3x3x3x3x3 as a compromise that took into account the 
experimental results and sought to maximise the amount of frequency information that would 
be captured in the texture representation

The 5x5 regional representations seem to have the best number of regions out of the tested 
regional representations More regions may be more effective for TRECVid 2003 and TRECVid
2004 search tasks but this would require more storage and a slower retrieval time

In terms of traditional visual retrieval models Jensen-Shannon distance seems to be the best 
with Manhattan distance in second place Euclidean distance seems to consistently perform 
worse than these methods The use of Euclidean distance in (TRECVid) video retrieval seems 
ill founded The less used Jensen-Shannon distance seems to be a strong retrieval model for the 
video shot retrieval task, at least for the tested features

As expected the MLE query-likelihood model performs very badly without smoothing The 
structural smoothing that combines the shot representation with adjacent shots, stories or the 
video units was not beneficial to video retrieval for the TRECVid 2003 television news content 
or for the majority of topics on the TRECVid 2002 collection

The results for visual features using global representations did not show much consistent 
difference between the discounting and the interpolation-based language models However, for 
5x5 regions we found that Jelinek-Mercer smoothing in general outperforms the discounting 
methods The regional HSV colour feature is the exception, and perhaps because of its more 
uniform distribution Lidstone smoothing is superior, though the difference is not statistically 
significant
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For the parametric language models the choice of smoothing parameter value can have a divi­
sive effect on retrieval performance Our experiments on just two types of collections (television 
news for TRECVid 2003 and TRECVid 2004 and the old poorly encoded miscellaneous public 
domain videos for TRECVid 2002) limits the research we can do on this topic As TRECVid 
2003 and TRECVid 2004 video collections are so similar it would be interesting to cross-validate 
the parametric language models on both collections, which may result in more consistent and 
clearer results for TRECVid 2003

Another source of concern arising from our results is the problem in using MAP for optimising 
results and we should try to identify a better optimisation criteria There is much confusion 
and extra investigation necessary when evaluating visual-based retrieval results due to their 
overall poor performance and the ability of one or two topic images to dominate the MAP and 
other standard IR measures thereby complicating the interpretation, comparison and training 
of retrieval models

Overall we found that the discrete visual language modelling approach can be applied suc­
cessfully to the visual video shot retrieval task and it is competitive with the best of the standard 
visual retrieval models
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CHAPTER VII

EVALUATION III VIDEO RETRIEVAL USING  
COMBINED FEATURES

In this chapter, we investigate fusion methods for 
combining the discrete language models for the text, 
colour, edge and texture features for the video shot 
retrieval task We evaluate fusion methods separately for 
combining multiple visual features, multiple visual 
examples and the multiple modalities using fully automatic 
experiments on the TRECVid search tasks We compare 
fusion methods based on normalised score and normalised 
rank that use either the average, weighted average or 
maximum of individual results as their combination 
function We also compare these results with a simple 
probabilistic combination that assumes all features and 
examples are fully independent We find that combinations 
based on scores are as good as or better than combinations 
based on rank and independent probability, and that the 
weighted average function is best for combining visual 
features and modalities, while the maximum score function 
is best for combining multiple visual examples

7 1 Introduction

7 2 Experiments with
multiple visual features

7 3 Experiments with
multiple visual examples

7 4 Experiments with 
multiple modalities

7 5 Discussion

7 6 Summary

7.1 Introduction

In this chapter we experiment with the fusion of retrieval results m order to combine (A) multiple 
visual features, (B) multiple visual examples and (C) the multiple modalities text and visual

We perform fully automatic fusion experiments on the TRECVid 2002, 2003 and 2004 col­
lections using the previously established optimised and unbiased retrieval results for the text 
and visual features In contrast to our TRECVid 2002 and 2003 results, the optimised fusion 
experiments in this chapter for the TRECVid 2004 collection represent the optimised combina­
tion of the unbiased visual features5 results since, as yet, we have no optimised results for the 
visual features on this collection

We have chosen to investigate the fusion of only one type of text retrieval model, the hierar­
chical Jelinek-Mercer shot+adj+video language model, with the visual results due to its superior 
performance over the other tested language models and also in order to simplify the presentation 
and discussion of our results We did not choose the better semantic shot+story hierarchical 
structure as this is was only available to us for the TRECVid 2003 collection The key problem
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in this chapter is not which text retrieval model to choose, but how to combine the results for 
visual features and visual examples successfully with each other and with the text results

We experiment with combining features from a wide selection of visual retrieval models, 
such as discounting-based language models, interpolation-based language models, and standard 
visual retrieval models, in order to achieve a wider and hopefully more balanced view of the 
benefits and faults of the different fusion methods For each of the combination tasks we present 
an overview of the fusion method’s average performance across all these visual retrieval models 
These overview averages, while not attributable to any one fusion result, provide an indication 
of the overall performance of the fusion methods on each TRECVid collection

We concentrate our fusion experiments on combining the visual results for the 5x5 regional 
feature representations for all visual retrieval models except the generally poor performing MLE, 
Natural and Euclidean models It would be interesting m future work to repeat all our fusion 
experiments on the global and other regional feature representations in order to get a better 
indication of relative benefits of the 5x5 regional representation

The rest of this chapter is organised as follows Section 2 deals with experiments for com­
bining multiple visual features, Section 3 presents experiments for combining multiple visual 
examples, Section 4 presents experiments for combining the different modalities text and visual 
and Section 5 discusses the fusion results m particular from the point of view of the underlying 
visual retrieval models We will end this chapter with a short summary of the results

7.2 Experiments with multiple visual features

In this section we evaluate the fusion methods Vis-CombJomtPr (sum log-likehhoods), Vis- 
CombWtRank (weighted Borda count) and Vis-Comb WtScore (weighted interpolation of nor­
malised scores), which we described m Chapter 4, for combining the visual results of the colour, 
edge and texture features

We summarise the fusion results across all retrieval models for combining the visual fea­
tures in Table 19 for the TRECVid 2002, 2003 and 2004 search tasks The fusion results for 
TRECVid 2002, see Table 19(a), are very poor with all but the Vis-CombJomtPr fusion method 
producing worse unbiased results than for the colour feature alone The Vis-CombJomtPr fu­
sion produces the best unbiased fusion, which is 3 7% better than the colour-only results The 
results for TRECVid 2003 in Table 19(b) indicate poor performance for the Vis-CombWtRank 
fusion methods but the Vis- CombWtScore fusion method is the best and achieves on average a 
3 2% improvement over the colour-only results for the unbiased results The unbiased results 
are not encouraging for combining multiple visual features for both the TRECVid 2002 and 
2003 collections, which may be due to the fact that they are tuned on each others results but 
both collections are very different In contrast to the other TRECVid collections, the results for 
TRECVid 2004 in Table 19(c) show positive improvement for all fusion methods in comparison to 
the individual feature results This is probably due to the more even performance of the colour- 
only and texture-only retrieval models on the TRECVid 2004 collection than on the other two 
collections The Vis- Comb WtScore fusion method is again on average the best unbiased fusion 
method with an improvement of 28 5% over the colour-only results, while the Vis- CombJointPr
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Table 19: Comparison of the average results across retrieval models for combining the 
colour, edge and texture results using the Vis-Comb JointPr, Vis-CombWtRank and Vis- 
CombWtScore fusion methods on the (a) TRECVid 2002, (b) TRECVid 2003 and (c) 
TRECVid 2004 collections. The colour, edge and texture results are also shown here for 
comparison and the percentage improvement column is relative to the colour results.

(a) TRECVid 2002 average results across retrieval models.

T R E C V id  2002 M A P P@10 P@30 P@100 Im p r .

Colour .0 1 5 8 .041 .027 .018
Optimised ( .0 1 5 9 .043 .027 .017)

E d g e .0 0 6 6 .033 .021 .014
Optimised ( .0 0 7 3 .033 .021 .015)

T e x tu r e s .0 0 6 5 .026 .018 .015
Optimised (.0 0 6 9 .025 .019 .015)

V is - C o m b  J o i n t P r .0 1 5 8 .042 .027 .018 +3.7%
Optimised .0 1 6 2 .043 .027 .017 +2.9%

V is - C o m b W tR a n k .0 1 3 7 .044 .030 .019 -13.5%
Optimised ( .0 1 7 0 .045 .028 .018) +4.6%

V is - C o m b W tS c o r e .0 1 5 5 .054 .033 .020 -2.6%
Optimised ( .0 1 7 2 .047 .030 .019) +6.0%

(b) TRECVid 2003 average results \across retrieval models.

T R E C V id  2003 M A P P@10 P@30 P@100 Im pr.

C o lo u r .0 2 5 9 .089 .069 .040
Optimised ( .0 2 6 9 .092 .071 .041)

E d g e .0 1 0 0 .043 .034 .022
Optimised (.0 1 0 8 .044 .036 .023)

T e x tu r e s .0 1 7 6 .066 .053 .034
Optimised ( .0 1 9 4 .071 .059 .037)

V is - C o m b  J o i n t P r .0 2 6 5 .088 .070 .042 +2.1%
Optimised .0 2 7 2 .091 .071 .042 +1.2%

V is - C o m b W tR a n k .0 2 5 5 .089 .071 .041 -1.4%
Optimised (.0 2 7 2 .090 .072 .043) +2.3%

V is - C o m b W tS c o r e .0 2 6 7 .089 .072 .043 +3.2%
Optimised ( .0 2 9 0 .093 .076 .047) +9.0%

(c) TRECVid 2004 average results across retrieval models.

T R E C V id  2004 M A P P@10 P@30 P@100 Im pr.

C o lo u r .0 0 8 7 .036 .025 .014
E d g e .0 0 5 0 .018 .014 .009
T e x tu r e s .0 0 8 0 .027 .018 .013

V is - C o m b J o in t P r .0 0 9 2 .037 .026 .015 +4.2%
V is - C o m b W tR a n k .0100 .039 .026 .015 +14.7%

Optimised ( .0 1 3 1 .041 .030 .017) +50.2%
V is - C o m b W tS c o r e .0112 .041 .028 .016 +28.5%

Optimised (.0 1 2 7 .042 .029 .017) +45.8%
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and the Vis-Comb WtRank fusion methods achieve an improvement of on average +4 2% and 
+14 7% respectively

Table 19 also summarises the results for the optimised fusion methods The Vis- Comb WtScore 
fusion method on average achieves the best optimised results for TRECVid 2002 and TRECVid 
2003 of +6 0% and 9 0% respective^, while the Vis-Comb WtRank achieves on average the 
best optimised results for TRECVid 2004 with an improvement of +50 2% compared to Vzs- 
CombWtScore's slightly smaller improvement of +48 8% over the colour-only result

We conclude from these results for the three TRECVid collections that the Vis-Comb WtScore 
fusion method is better on average for combining the colour, edge and texture retrieval results 
than the other fusion methods We will now examine the results of these fusion methods for 
the different retrieval models as displayed in Figure 58 This figure also displays the individual 
performance of the colour, edge and texture visual features that are inputs into the fusion 
methods

We will now discuss m more detail the TRECVid 2002 results as shown in Figure 58(a), 
which show disappointing unbiased results for combining the individual visual features using the 
fusion methods Vis-Comb WtRank and Vis-Comb WtScore for all visual retrieval models The 
Vis-CombJomtPr fusion method is slightly better than the colour results alone for all retrieval 
models The Vis- Comb WtScore fusion method is in general the next best fusion method for 
most of the unbiased results The optimised results are less clear cut between Vis-Comb WtScore 
and Vis- Comb WtRank and show that both methods achieve similar potential performance with 
one or the other slightly better on each occasion for the different retrieval results

We compare the results of the Vis- Comb WtScore fusion method with the results for colour- 
only, Vis-CombJomtPr and Vis-Comb WtRank fusion methods on the TRECVid 2002 search 
task in Table 59 (appendix page 265) We can see from this table that the Vis- Comb WtScore 
fusion results are statistically significantly better than many of the Vis-CombWtRank fusion 
results for the different visual retrieval models The Vis-Comb WtScore fusion method is also 
statistically significantly better than the colour-only results for nearly all the optimised results 
The small improvements for the Vis-CombJomtPr over the Vis-Comb WtScore fusion method 
are never statistically significant for any of the unbiased results

The optimised parameters for the V is-C o m b  W tS co re  fusion method on the TRECVid 2002 
collection in Table 59 (appendix page 265) show that the inputs to this fusion method, colour, 
edge and texture, have non-zero weights associated with them for most of the visual retrieval 
models The exceptions are the combined results of Absolute discounting, Witten-Bell and 
Absolute interpolation where the weight for texture is zero, which indicates a failure of the 
Vis-Comb WtScore fusion method to combine the texture results with the more successful colour 
results This problem of texture not combining with the other features on the TRECVid 2002 
collection is more prevalent for the Vis- Comb WtRank fusion method where for most retrieval 
models the optimised weight of texture is zero

We will now discuss in more detail the TRECVid 2003 results as shown m Figure 58(b) 
We can see from this figure that the three fusion methods achieve quite similar results for fus­
ing the different visual retrieval results Vis-Comb WtScore more often than not is better than
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(c) T R E C V id  2004

Figure 58: Comparison of the fusion methods Vis-Comb Joint Pr, Vis-CombWtRank and Vis-Comb WtScore for combining the colour, edge and texture 
results for the different retrieval models on the (a) TRECVid 2002, (b) TRECVid 2003 and (c) TRECVid 2004 collections. The colour-only, edge-only and 
texture-only results are also displayed for comparison.



Vis-CombJomtPr, while Vis-CornbWtRank is consistently the worst for the unbiased fusion re­
sults We compare the Vis- CombWtScore fusion method with the colour-only and other fusion 
methods m Table 60 (appendix page 266) All the Vis-CombWtScore fusion results are statisti­
cally significantly better than the colour-only results except for the unbiased combination of the 
Witten-Bell and Absolute interpolation’s results, which also improve on the colour-only results 
but are not statistically significant The comparison of the Vis- CombWtS core fusion method 
with the Vis-Comb WtRank fusion method is equally positive with all results better using the 
Vis~CombWtScore fusion method and most of these improvements are also statistically signif­
icant Interestingly, when Vis-CombWtScore is better than Vis-CombJomtPr the difference is 
statistically significant, but when Vis-CombWtScore is worse than Vis-CombJointPr the differ­
ence is not statistically significant Unlike TRECVid 2002, the optimised Vis-CombWtScore and 
Vis-Comb WtRank fusion methods on the TRECVid 2003 collection never exclude any feature 
with every feature getting a non-zero weight

We will now consider m more detail the TRECVid 2004 results as shown in Figure 58(c) 
The unbiased results for TRECVid 2004 show that the Vis-CombWtScore is better than the 
other two fusion methods for combining all visual feature’s results from the different retrieval 
models All fusion methods improve on the colour-only results by a larger magnitude than was 
seen on the other two collections The relative strength of the fusion methods on the TRECVid 
2004 collection is related to the more even performance of the visual features on this collection 
-  on the TRECVid 2002 and TRECVid 2003 collections the texture-only retrieval models on 
average achieve respectively 41% and 68% of the MAP of the colour-only retrieval models, while 
on the TRECVid 2004 collection the texture-only results are on average 92% of the colour-only 
result The edge-only results are also improved on the TRECVid 2004 collection (57% of colour) 
compared to the TRECVid 2002 (41% of colour) and TRECVid 2003 (38% of colour) results

The results for the Vis-CombWtScore fusion method in Table 61 (appendix page 267) for 
TRECVid 2004 show that it is on average 28 5% better than the colour-only results, only +21 0% 
better than the Vis-CombJomtPr fusion results and +13 1% better than the Vis-Comb WtRank 
fusion results The Vis-CombWtScore fusion results for all retrieval models achieve improve­
ments in their MAP compared to the colour-only results The improvements range from 7 4% 
for the poorly performing Laplace language model to 43 6% for combining the Manhattan dis­
tance’s results The fusion of Jensen-Shannon distances’s colour, edge and texture results achieve 
the highest MAP of 0 0120 (+31 3%) The Vis- Comb WtScore fusion method is better than the 
Vis-Comb WtRank fusion method for all unbiased combinations of retrieval models except for the 
combination of the Jensen-Shannon distance’s results The improvements of Vzs-CombWtScore 
compared to Vis-CombJomtPr are never statistically significant, which is likely due to the fea­
tures having more even performance on this collection

We will now discuss the performance of the Vis-CombWtScore fusion method m terms of 
the underlying visual retrieval models for the three TRECVid collections We synthesise the 
results for these collections into a single ordering of retrieval models based on their average 
percentage decrease in MAP compared to the best retrieval result on each collection m Table 20 
(see specifically the “Average %Dif” column), which is based on Tables 62, 63 and 64 (appendix 
pp 268, 268 and 269) In this table we also display other ad hoc measures of performance such 
as the average rank of the retrieval models and the average number of statistically significantly 
better retrieval models on the three TRECVid collections (see specifically the “R(S)” column)
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Table 20 Comparison of unbiased retrieval models for the TRECVid 2002, 2003 and 
2004 search tasks using the Vis-CombWtScore fusion method for combining colour, edge 
and texture results using three performance measures %Dif =  difference from best result’s 
MAP (lower better) R = rank of retrieval models based on MAP (lower better) S = 
number of statistically significantly better retrieval models (lower better)

T R E C V id ’02 T R B C V td ’OS T R E C V id ’04 Average

R et M ethod % D if R (S ) % D if R (S ) % D if R (S ) % D if R (S )

J e n s e n - S h a n n o n 0% 1(0) -3 9% 4(0) 0 0% 1(0) -1  3 % 2 0 (0  0)

M a n h a t t a n -3 3% 2(1) -3 2% 3(0) -5 0% 3(1) -3  8% 2 7 (0  7)

L id s to n e -9 4% 3(0) -1 5 % 2(0) -7 5% 6(0) -6  1% 3 7 (0  0)

L in e a r -12 7% 5(1) -5 0% 5(2) -7 5% 7(0) -8  4% 5 7 (1  0)

L a p la c e -11 6% 4(1) 0% 1(0) -20 0% 9(3) -1 0  5% 4  7 (1  3)

W i t t e n - B e l l -23 2% 7(0) -7 0% 6(5) -0 8% 2(0) -1 0  3% 5 0 (2  6)

A b s o lu t e  D is c o u n t in g -24 3% 8(6) -7 8% 8(5) -5 0% 4(1) -1 2  4 % 6 7 (4  0)

J e l in e k - M e r c e r -21 0% 6(0) -10 6% 9(2) -5 8% 5(0) -1 2  5% 6 7 (0  7)

A b s o lu t e -26 0% 9(4) -7 4% 7(6) -8 3% 8(0) -1 3  9 % 8 0 (3  3)

We can see from these synthesised results that the Vis-CombWtS core fusion of the Jensen- 
Shannon distance’s colour, edge and texture results is the best overall fusion result in terms of our 
three ad hoc performance measures -  Jensen-Shannon distance’s results are on average ranked 
second for each collection, is not statistically significantly bettered by any other retrieval model 
and is only -1 3% on average less the best results on the three collections The fusion of the other 
standard visual retrieval model, Manhattan distance, is the second best and according to our 
synthesis of the results Lidstone is the next best, making it the best language modelling-based 
fusion of the colour, edge and texture features It is on average 6 1% less than the best results 
on each collection and the fusion of no other retrieval model produces statistically significantly 
superior results on any of the TRECVid collections The fusion of Jelinek-Mercer results is a 
disappointing 12 5% on average lower than the best fusion result on the three collections but 
only 0 7 retrieval models are on average statistically significantly better than it -  only Jensen- 
Shannon and Manhattan distance’s fused results on TRECVid 2003 are statistically significantly 
better than it We believe that this may indicate a certain strength m this language model that 
is not indicated by the MAP statistic

In summary, the unbiased Vis- Comb WtScore fusion of the colour, edge and texture results 
leads to better retrieval results than for a single feature on the TRECVid 2003 (+3 2% on 
average) and TRECVid 2004 (+28 5% on average) collections, while on the TRECVid 2002 
collection only Vis-CombJomtPr improves on the single best feature (+3 7% on average) The 
Vis-CombWtScore fusion method is the best overall fusion method for combining visual features 
according to this study The weights for the different collections are quite inconsistent and a non- 
weighted CombSUM fusion may be better since the somewhat similar Vis-CombJomtPr (sum 
log-likelihood scores without normalisation) performs reasonably on the three collections We in­
vestigated CombSUM in this context for fusing the Jehnek-Mercer language model’s colour, edge 
and texture results and found that while it is worse for TRECVid 2002, it is overall better than 
the weighted variant Vis-CombWtS core when considering the results across all three TRECVid 
collections (Me Donald and Smeaton, 2005) We have not, as yet, evaluated the CombSUM 
fusion method on other retrieval models for this task, but we believe it likely that CombSUM
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would also perform relatively well on these at least for TRECVid 2003 and 2004 collections 
This indicates that the tuning of feature fusion weights is unresolved and problematic

The best fusion results are overall achieved by combining the Jensen-Shannon distance’s edge, 
colour and texture results and the best fusion of the language modelling results is for the Lidstone 
discounting language model, which is only 5% less on average than the Jensen-Shannon distance’s 
result and for all three TRECVid collections no other retrieval model produces statistically 
significantly better results than it The Jelinek-Mercer language model performs relatively poorly 
with on average 7% lower MAP than the Jensen-Shannon result but shows some strength since 
it is only statistically significantly worse than the Jensen-Shannon distance and Manhattan 
distance’s results on the TRECVid 2003 collection, and on all other collections no other retrieval 
model is statistically significantly better than it We have completed our analysis of video 
retrieval using a single visual example (image or video clip) and will now investigate the use of 
multiple visual examples for retrieving video shots in the next section

7.3 Experiments with multiple visual examples

In this section we investigate fusion methods for combining the results of multiple visual ex­
amples We compare the fusion methods VisExs-CombJomtPr (sum log-likelihoods), VisExs- 
CombRank (Borda count), VisExs-CombScore (traditional CombSUM), VisExs-CombMaxRank 
(round-robm) and VisExs-CombMaxScore, which we previously described in Chapter 4, for com­
bining the visual examples of each TRECVid topic and therefore the reported results represent 
the performance of a purely visual approach to the TRECVid search tasks

The VisExs-CombJomtPr fusion method combines the previously presented Vis-CombJomtPr 
results to create a simple generative model, while the other fusion methods combine the Vts- 
CombWtScore results, which as we have shown in the previous section is m general the best 
fusion method for combining multiple visual features

We present the average results across retrieval models for combining the visual exam­
ples in Table 21 for the TRECVid search tasks The VisExs-CombMaxScore and VisExs- 
CombMaxRank fusion methods produce the best average results for all three TRECVid collec­
tions For TRECVid 2003 and TRECVid 2004 the results for the VisExs-CombMaxScore fusion 
method are minutely better than the VisExs- CombMaxRank fusion method for both the unbiased 
and optimised results On TRECVid 2002 the unbiased results of VisExs-CombMaxRank are 
slightly better on average than those of VisExs- CombMaxScore and vice-versa for the optimised 
results The next best fusion method, VisExs- CombScore, combines the visual examples using 
average normalised score and is better than combining by normalised rank, VisExs-CombRank, 
on average for the TRECVid 2002 and TRECVid 2004 collections On TRECVid 2003 VisExs- 
CombRank is on average slightly better VisExs- CombScore The probability-based fusion method 
VisExs-CombJomtPr performs on average very poorly for TRECVid 2002 and TRECVid 2004 
and is worse than separate visual retrieval of each topic’s visual examples, which is the Vis- 
GombJomtPr result for this fusion method, by -58 7% and -67 9% on these two collections Its 
results are better on TRECVid 2003 where it achieves similar results to VisExs-CombRank and 
VisExs- CombScore

195



Table 21: Comparison of the average results across retrieval models for combining the 
visual examples using the VisExs-CombJointPr, VisExs-CombRank, VisExs-CombScore, 
VisExs-CombMaxRank and VisExs-CombMaxScore fusion methods on the (a) TRECVid 
2002, (b) TRECVid 2003 and (c) TRECVid 2004 collections. The percentage improvement 
is relative to the mean of the individual visual examples’ retrieval results Vis- Comb WtScore, 
which is also shown here for comparison.

(a) TRECVid 2002 average results across retrieval models.

T R E C V id  2002 M A P P@10 P@30 P@100 Im pr.

V is - C o m b W tS c o r e .0 1 5 5 .054 .033 .020
Optimised ( .0 1 7 2 .047 .030 .019)

V is E x s - C o m b J o in t P r .0 0 6 4 .026 .022 .015 -58.7%
Optimised .0 0 7 3 .026 .020 .015 -57.6%

V is E x s - C o m b R a n k .0 1 4 3 .047 .042 .027 -7.1%
Optimised ( .0 1 5 3 .048 .034 .025) -11.0%

V is E x s - C o m b S c o re .0 1 7 1 .062 .040 .026 +9.7%
Optimised ( .0 1 8 7 .059 .037 .024) +8.7%

V  is E x s -  C o m b M a x R a n k .0 2 2 2 .082 .054 .028 +43.2%
Optimised ( .0 2 4 1 .071 .043 .025) +40.1%

V is E x s - C o m b M a x S c o r e .0 2 2 1 .082 .054 .028 +42.6%
Optimised ( .0 2 4 3 .071 .043 .025) +41.3%

(b) TRECVid 2003 average results across retrieval models.

T R E C V id  2003 M A P P@10 P@30 P@100 Im pr.

V is - C o m b W tS c o r e

Optimised
.0 2 6 7

( .0 2 9 0

.089

.093
.072
.076

.043

.047)

V is E x s - C o m b J o in t P r .0 3 8 5 .077 .086 .057 +44.2%
Optimised .0 3 4 7 .073 .084 .054 19.7%

V is E x s - C o m b R a n k .0 3 8 3 .096 .084 .060 +43.4%
Optimised ( .0 4 1 2 .103 .091 .062) +42.1%

V is E x s - C o m b S c o re .0 3 8 7 .087 .090 .060 +44.9%
Optimised ( .0 4 1 2 .092 .097 .061) +42.1%

V is E x s - C o m b M a x R a n k .0 4 1 6 .108 .092 .057 +55.8%
Optimised ( .0 4 8 2 .120 .091 .062) +66.2%

V is E x s - C o m b M a x S c o r e .0 4 2 0 .108 .092 .057 +57.3%
Optimised ( .0 4 8 6 .120 .092 .062) +67.6%

(c) TRECVid 2004 average results across retrieval models.

T R E C V id  2004 M A P P@10 P@30 P@ 100 Im p r .

V is - C o m b W tS c o r e .0 1 1 2 .041 .028 .016
Optimised .0 1 2 7 .042 .029 .017

V is E x s - C o m b J o in t P r .0 0 3 6 .030 .022 .013 -67.9%
V is E x s - C o m b R a n k .0 1 9 9 .057 .048 .034 +77.7%

Optimised ( .0 2 1 8 .056 .051 .036) +71.7%
V is E x s - C o m b S c o re .0 2 2 6 .073 .065 .034 +101.8%

Optimised ( .0 2 3 9 .068 .064 .035) +88.2%
V is E x s - C o m b M a x R a n k .0 2 3 9 .094 .058 .033 +113.4%

Optimised ( .0 3 0 5 .113 .070 .036) +140.2%
V is E x s - C o m b M a x S c o r e .0 2 7 3 .100 .063 .034 +143.8%

Optimised ( .0 3 0 7 .114 .070 .035) +141.7%
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Figure 59: Comparison of the fusion methods VisExs-CombJointPr, VisExs-CombRank, VisExs-CombScore, VisExs-CombMaxRank and VisExs-
CombMaxScore for combining the visual examples’ retrieval results for the different retrieval models on the (a) TRECVid 2002, (b) TRECVid 2003 and (c) 
TRECVid 2004 collections. The mean of the individual visual examples’ retrieval results Vis-CombWtScore are also shown for comparison.



We compare the fusion results for combining the different retrieval model’s visual results 
in Figure 59 for the TRECVid collections These results show that the VzsExs-CombMaxScore 
fusion method and the VisExs-CombMaxRank fusion method are consistently very close for the 
different retrieval models The performance of the VisExs-CombS core and VisExs- CombRank 
fusion methods are also tied together with the combination by average score being favoured in 
most cases The VisExs- CombJomtPr fusion method achieves very poor results for all language 
models on TRECVid 2002 and 2004 collections It is also the worst fusion approach for most 
of the language models on TRECVid 2003 except Lidstone and Jelmek-Mercer smoothed lan­
guage models The surprisingly good performance on the Jelinek-Mercer language model on this 
collection is perhaps an outlier since it is not repeated on any other collection

Overall the results indicate that the combination of visual examples by maximum score or 
maximum rank (round-robin) is superior to the other fusion methods We compare the VisExs- 
CombMaxScore fusion method with the other fusion methods for the different retrieval models 
in Tables 65, 66 and 67 (appendix pp 270, 271 and 272) for TRECVid 2002, TRECVid 2003 
and TRECVid 2004

The results for all language models on the TRECVid 2002 and 2003 collections show a 
large benefit, greater than 199%, for the VisExs-CombMaxScore fusion method compared to 
the VisExs-CombJomtPr fusion method These large improvements are statistically significant 
for all language models on the TRECVid 2002 collection but for only two language models 
on TRECVid 2004, while the more modest improvements on the TRECVid 2003 collection 
are mostly statistically significant The relationship between the VisExs-CombMaxScore fusion 
method and other fusion methods is not as clear cut

The VisExs-CombMaxScore fusion method is better than combining by averages, such as with 
the VisExs-CombRank or VisExs-CombScore fusion methods, for all retrieval models on all tested 
TRECVid collections While very few of the positive improvements of VisExs-CombMaxScore 
on these collections are statistically significant, we believe that the trend shows that combining 
multiple visual examples by maximum score (or maximum rank) is better than by average rank 
or average score

The VisExs-CombMaxScore fusion method is better than the VisExs-CombMaxRank fusion 
method for all retrieval models on the TRECVid 2003 collection and all but the Lidstone and 
Jelmek-Mercer language models on the TRECVid 2004 collection, though none of these tiny 
1% or 2% improvements are statistically significant (see Tables 66 and 67 in appendix pp 271 
and 272) The two unbiased negative results for VisExs-CombMaxScore on the TRECVid 2004 
collection show a statistically significant decease of -0 1 and -0 8 m the MAP for using the 
VisExs-CombMaxScore fusion method compared to VisExs-CombMaxRank fusion method The 
results for TRECVid 2002 in Table 65 (appendix page 270) are more mixed but overall favour the 
VisExs- CombMaxRank fusion method with about half of the unbiased combinations of retrieval 
models achieving statistically significantly better results for the VisExs-CombMaxRank fusion 
method compared to VisExs-CombMaxScore fusion method The other results on TRECVid 
2002 that favour the VisExs-CombMaxScore fusion method over VisExs-CombMaxRank fusion 
method are not statistically significant We believe that while the VisExs- CombMaxScore fusion 
method is on average slightly better than the VisExs-CombMaxRank retrieval model for most 
retrieval models on the three collections, the statistically significant counter examples indicate

198



that the VisExs-CombMaxRank (round-robin) is superior and may have more consistent results 
across topics for combining visual examples

We compare the fusion methods for combining the Jelmek-Mercer language model’s visual 
examples on the official TRECVid topics in Figure 60 This figure indicates that the visual- 
only results are very poor for many of the TRECVid topics, with the performance of all fusion 
methods in terms of average precision being almost non-existent for 6 topics in the TRECVid 
2002 collection, 7 topics m the TRECVid 2003 collection and 9 topics m the TRECVid 2004 
collection It is really only the top ten topics on the TRECVid 2002 and TRECVid 2003 
collections and the top 7 topics on TRECVid 2004 that have a positive response to the visual- 
only query We can see that ranking by maximum score or maximum rank overall performs quite 
well for these top topics and that combining using the joint probability VisExs-CombJointPr 
fusion method performs better on the TRECVid 2003 collection than for the topics of the other 
collection Overall, visual-only searching is a poor strategy for the majority of the TRECVid 
topics

We will now compare our results for combining visual examples with the results for using 
the single best visual example for each topic We have shown previously in this section that 
the combination of visual examples using the VisExs-CombMaxScore fusion method improves 
on the mean performance for performing separate visual searches, as in the Vis-CombWtScore 
results (see Figure 59) In Figure 61 we compare the fusion of visual examples with using the 
single best image for each topic We can see that using the single best image for the colour-only 
or for the combined colour, edge and texture (Vis-CombWtScore) searching is better than using 
the combined visual examples The difference between the single best image searching and fused 
visual examples is greatest for TRECVid 2004 It is worth bearing in mind that there is no 
reason to believe that a user will know beforehand which topic image will perform best unless 
they are very familiar with the search collection We believe that user-based experiments would 
provide more insight into this issue and we also intend to investigate the combination of the 
best two and the best three topic examples m future experiments in order to see if the fusion 
methods can improve on retrieval that uses the best single image

We will now discuss the performance of the VzsExs- Comb WtScore fusion method m terms 
of the underlying visual retrieval models (see Tables 68, 69 and 70 in appendix pp 273, 273 and 
274) Our best visual-only fusion results are generated using the Jensen-Shannon retrieval model 
for TRECVid 2002 (MAP 0 0286), the Linear language model for TRECVid 2003 (MAP 0 0468) 
and the Absolute discounting language model for TRECVid 2004 (MAP 0 0319) For TRECVid 
2002 the best language model-based fusion combines the Jelmek-Mercer language model’s visual 
example’s results (MAP 0 0212), which is 26% lower than the Jensen-Shannon distance’s fusion 
results, while the Jensen-Shannon distance’s fusion results are the best standard visual retrieval 
results for the TRECVid 2003 and TRECVid 2004 collections where it is respectively 5 1% and 
10 3% less than the best language modelling results

We present our synthesis of these results for the three TRECVid collections m Table 22 
The mam difference m this synthesis for the fusion of multiple visual examples and the previous 
synthesis for separate visual examples (fusion of visual features) in Table 20 is that the percentage 
difference between the best results (see the “%Dif” column) is in general doubled indicating 
that the results are more spread out in terms of the MAP measures Another difference is that
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Figure 60: Comparison of the fusion methods VisExs-CombJointPr, VisExs-CombRank, VisExs-CombScore, VisExs-CombMaxRank and VisExs-
CombMaxScore for combining the Jelinek-Mercer language model’s results for the visual examples’ results in each topic on the (a) TRECVid 2002, (b) 
TRECVid 2003 and (c) TRECVid 2004 collections.



MAP
0.06“
0.C5-

0.04“

0.!

I I .  I  I .
IIi ni

Average of Average of 
unbiased best

(a) T R E C V id  2002

MAP
C. Oo"

0.05- 
0.04“ 

0.03“ 

0.02“ 

0 . 01" 

0 . 0“ 1Average of Average of 
unbiased best

(b) T R E C V id  2003

MAP
0.06“
0.05-
0.04“

0,03“

o.o:

Colour-Only 
Edge-Only 
Texture-Only 
Vis-CombWtScore 
VisExs-CombMaxScore

03“
.  iI\ /■>---

Average of Average of 
unbiased best

(c) T R E C V id  2004

Figure 61: Comparison of the fusion of all visual examples using VisExs-CombMaxScore 
with results for the single best image per topic for colour-only, texture-only, edge-only and 
combined-visual (Vis-CombWtScore) results.

Table 22: Comparison of unbiased retrieval models for the TRECVid 2002, 2003 and 
2004 search tasks using the VisExs-CombMaxScore fusion method for combining colour, 
edge and texture results. %Dif =  difference from best result (lower better). R =  rank of 
retrieval models (lower better). S = number of statistically significantly better retrieval 
models (lower better).

T R E C V id ’02 T R E C V id ’03 T R E C V id ’04 Average

R et. M ethod % D if R (S ) % D if R (S ) % D if R (S ) % D if R (S )

J e n s e n - S h a n n o n 0.0% 1(0) -5.1% 3(0) -10.3% 4(0) -5 .1 % 2 .7 (0 .0 )

M a n h a t t a n -3.8% 2(1) -5.1% 4(0) -11.0% 5(0) -6 .6 % 3 .7 (0 .3 )

L in e a r -27.6% 5(3) 0.0% 1(0) -17.2% 6(1) -1 4 .9 % 4 .0 (1 .3 )

W i t t e n - B e l l -26.9% 4(0) -20.3% 7(6) -2.5% 3(0) -1 6 .6 % 4 .7 (2 .0 )

L id s to n e -28.0% 6(3) -5.3% 5(0) -21.6% 9(3) -1 8 .3 % 6 .7 (2 .0 )

A b s o lu t e  D is c o u n t in g -33.6% 9(5) -21.6% 8(6) 0.0% 1(0) -1 8 .4 % 6 .0 (3 .7 )

L a p la c e -29.0% 7(3) -1.1% 2(0) -34.2% 7(1) -2 1 .4 % 5 .3 (1 .3 )

J  e l i n e k - M e r c e r -25.9% 3(0) -10.3% 6(0) -30.4% 8(0) -2 2 .2 % 5 .7 (0 .0 )

A b s o lu t e -29.4% 8(1) -23.5% 9(6) -1.3% 2(0) -2 6 .5 % 6 .3 (2 .3 )
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Lidstone and Laplace language models have been demoted by two places in our synthesised 
rankings of retrieval models We believe that our synthesised results are reasonably consistent 
for the two sets of experiments and that overall performance based on single visual example 
retrieval is a good indicator for the relative performance of the retrieval using multiple visual 
examples

The Jensen-Shannon distance model is the best retrieval model It is only 5 1% on average 
lower than the best results of the retrieval models on each collection, is on average the 2 7-th 
ranked retrieval model on each TRECVid collection, and is again not statistically significantly 
bettered by any other retrieval model Manhattan distance is again the second best retrieval 
model performing slightly worse than Jensen-Shannon distance with on average 6 6% worse 
MAP than the best results on all three collections Since Lidstone was demoted two places in 
our ranking of retrieval models, Linear is now our best language model result with on average 
14 9% worse results than the best retrieval model on each collection and is on average the 4th 
retrieval model in terms of its MAP for each TRECVid collection Jelinek-Mercer is also again 
the second worst retrieval model in terms of MAP, which is 22 2% worse than the best MAP for 
each TRECVid collection but interestingly there is no statistically significantly better retrieval 
models than Jelinek-Mercer on any of the collections

We have therefore found that the Jelmek-Mercer smoothed language model has equivalent 
performance compared to the best standard visual retrieval model m terms of statistical sig­
nificance for TRECVid visual-only multi-feature multi-example searching We have shown this 
previously for the regional edge and regional texture feature in the preceding chapter, where 
Jelinek-Mercer was overall better than Jensen-Shannon but not statistically significantly so We 
could possibly get better MAP for multi-feature multi-example search by fusing the Lidstone 
regional colour results with the Jelmek-Mercer edge and texture results but we have not inves­
tigated this and there is likely to be only a slight difference m the results The results for these 
discrete visual language modelling approaches are better than the best DCT GMM approach for 
TRECVid 2003 and 2004 The best DCT GMM approaches were static model for TRECVid 2002 
and dynamic model for TRECVid 2003 and 2004 (see Table 2 on page 79) The Jelmek-Mercer 
language model achieves 26 1% worse MAP on TRECVid 2002 but 35 5% and 122 0% better 
MAP on the TRECVid 2003 and 2004 collections relative to the best DCT GMM approach (see 
Tables 68, 69 and 70 m appendix pp 273, 273 and 274) The Jensen-Shannon distance does 
better achieving equivalent results on TRECVid 2002 and 43 2% and 186 0% better results on 
TRECVid 2003 and 2004 respectively relative to the best DCT GMM query-likelihood approach

We have completed our fully automatic experiments for the visual-only retrieval of video 
shots withm the TRECVid framework In summary, the VisExs-CombMaxScore and VisExs- 
CombMaxRank fusion methods are the best fusion methods for combining the retrieval results 
of multiple visual examples The Jensen-Shannon distance’s results were the best overall for the 
VisExs-CombMaxScore fusion of multiple visual examples, while the Linear language model was 
the best language modelling result in terms of average MAP with on average 10% lower MAP 
than the Jensen-Shannon distance’s results The Jelinek-Mercer language model, which has an 
average retrieval rank of 5 7 compared to other retrieval models for the three collections and is on 
average 17% worse than the Jensen-Shannon distance’s results m terms of MAP, is interestingly 
not statistically significantly bettered by another retrieval model on any of the tested TRECVid 
collections We will use the VisExs-CombMaxScore fusion method as the basis for our text and
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visual fusion experiments in the next section as this is the best fusion method for the majority 
of the unbiased results and its use will allow us to further explore the normalised score-based 
fusion methods in the context of combining text and visual results However, it should be 
borne in mind that the VisExs-CombMaxRank fusion method is probably superior since some of 
our results have small but statistically significant improvements for the VisExs-CombMaxRank 
fusion method compared to the VisExs-CombMaxScore fusion method

7 4 Experiments with multiple modalities

In this section we present experiments that combine the text-based shot+adj-¡-video hierarchical 
language model’s results with the visual-based results that were achieved by combining multiple 
visual examples using the VisExs-CombMaxScore fusion method Specifically, we will com­
pare the fusion methods TextVis-CombWtScore (weighted sum of normalised scores), TextVis- 
CombWtRank (weighted Borda count) and TextVis-Comb JomtPr (sum log-hkelihoods), which 
we previously described in Chapter 4

We present the average results of the fusion methods across the different retrieval models m 
Table 23 The TextVis-CombJointPr probability-based text and visual fusion method produces 
on average far worse results than for text alone on all three TRECVid collections It achieves 
more that 70% poorer results on the TRECVid collections than for text alone The TextVis- 
CombWtScore fusion method produces overall the best unbiased results on all three collections, 
achieving an increase of 0 4% on TRECVid 2002, 7 7% on TRECVid 2003 and 9 7% on TRECVid 
2004 compared to the text-only results These results are quite encouraging as they indicate 
that a completely automatic combination of text and visual examples produces a positive im­
provement on all three collections For the TRECVid 2003 and TRECVid 2004 collections the 
precision at 10, 30 and 100 document cut-offs is also improved for the TextVis-CombWtScore 
fusion method compared to the text-only results This indicates that a user’s initial ranking from 
the default TRECVid query (text +  visual examples) will produce on average better results for 
their top ranking documents than for text alone The TextVis-CombWtRank fusion method was 
unable to combine the text and visual results on the TRECVid 2002 collection -  the optimised 
weight for the visual results was zero for most retrieval models on this collection However its 
optimised results on TRECVid 2003 are better than for TextVis-CombWtScore, showing an av­
erage increase of 16 2% compared to TextVis-CombWtScore fusion method’s 10 9% increase on 
the text-only results, but for the TRECVid 2004 collection its unbiased and optimised results 
are on average lower than the TextVis-CombWtScore fusion method’s results

In Figure 62 we compare the fusion methods for combining the text and visual results of the 
different visual retrieval models on the three TRECVid collections The results for fusing the 
different visual retrieval models are essentially consistent within each TRECVid collection On 
the TRECVid 2002 collection the TextVis-CombWtScore fusion method is the only fusion method 
to produce better unbiased fusion results for any of the retrieval models and it also produces 
the best improvement of all fusion methods for all the optimised results on this collection (see 
Figure 62(a)) On the TRECVid 2003 collection the TextVis-CombWtScore fusion method 
produces better unbiased fusion results than for the text-only and other fusion methods, while 
the Text Vis- Comb WtRank fusion method produces the best results for the optimised fusion 
results for all visual retrieval models (see Figure 62(b)) On the TRECVid 2004 collection the
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Table 23: Comparison of the average results across retrieval models for combining the 
shot+adj+video interpolated text language model’s results with the combined visual ex­
amples ( VisExs-CombMaxScore) results of the different retrieval models using the TextVis- 
CombJointPr, Text Vis-Comb WtRank and TextVis-CombWtScore fusion methods on the (a) 
TRECVid 2002, (b) TRECVid 2003 and (c) TRECVid 2004 collections. The improvement 
percentage is relative to the text-only results. The text-only and the visual-only, VisExs- 
CombMaxScore, results are displayed for comparison.

(a) TRECVid 2002 average results across retrieval models.

T R E C V id  2002 M A P P@10 P@30 P@100 Im pr.

T e x t- O n ly .1 6 0 5 .264 .175 .117
Optimised (.1 6 7 7 .272 .175 .118)

V is E x s - C o m b M a x S c o r e .0 2 2 1 .082 .054 .028
Optimised ( .0 2 4 3 .071 .043 .025)

T e x tV i s - C o m b J o i n tP r .0 0 6 4 .026 .022 .015 -96.0%
Optimised .0 0 7 3 .026 .020 .015 -95.6%

T e x tV is - C o m b W  t R a n k .1 2 5 0 .234 .184 .119 -22.1%
Optimised (.1 6 7 7 .272 .175 .118) +0.0%

T e x t  V is -  C o m b  W  t  S c o re .1 6 1 2 .263 .186 .122 +0.4%
Optimised ( .1 7 1 3 .270 .177 .121) +2.2%

(b) TRECVid 2003 average results across retrieval models.

T R E C V id  2003 M A P P@10 P@30 P@100 Im pr.

T e x t- O n ly .1 4 0 5 .252 .176 .113
Optimised ( .1 4 2 9 .240 .179 .115)

V is E x s - C o m b M a x S c o r e .0 4 2 0 .108 .092 .057
Optimised ( .0 4 8 6 .120 .092 .062)

T e x tV i s - C o m b J o i n tP r .0 3 8 5 .077 .086 .057 -72.6%
Optimised .0 3 4 7 .073 .084 .054 -75.7%

T e x tV is - C o m b W tR a n k .1 4 0 5 .252 .176 .113 +0.0%
Optimised ( .1 6 6 1 .303 .202 .119) +16.2%

T e x tV is - C o m b W tS c o r e .1 5 1 4 .266 .187 .117 +7.7%
Optimised ( .1 5 8 5 .279 .196 .121) +10.9%

(c) TRECVid 2004 average results across retrieval models.

T R E C V id  2004 M A P P@10 P@30 P@100 Im pr.

T e x t- O n ly .0 6 8 6 .209 .143 .091
V is E x s - C o m b M a x S c o r e .0 2 4 2 .094 .058 .033

Optimised (.0 3 0 7 .114 .070 .035)

T e x tV i s - C o m b J o i n tP r .0 0 3 6 .030 .022 .013 -94.8%
T e x t  V is -  C o m b  W  t R a n k .0 7 3 0 .252 .159 .093 +6.4%

Optimised ( .0 7 5 6 .252 .158 .093) +10.3%
T e x tV is - C o m b W tS c o r e .0 7 5 2 .219 .157 .100 +9.7%

Optimised ( .0 8 3 3 .258 .180 .096) +21.4%
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Figure 62: Comparison of the fusion methods TextVis-Comb Joint Pr, TextVis-CombWtRank and TextVis-CombWtScore for combining the text and visual 
retrieval results of the different retrieval models on the (a) TRECVid 2002, (b) TRECVid 2003 and (c) TRECVid 2004 collections. The text-only and 
visual-only VisExs-CombMaxScore retrieval results are shown for comparison.



TextVis-CombWtScore fusion method produces the best unbiased and optimised results for all 
retrieval models (see Figure 62(c)) The TextVis-CombJomtPr fusion method causes a drastic 
decrease m performance of the fusion of every retrieval model’s results on the three collections by 
reducing their performance to that of the visual-only results VisExs-CombJomtPr The reason 
this occurs is because the visual samples are so large m terms of predicted events (all pixels for 
colour and edge features m the example images and all 8x8 image blocks for DCT feature in 
the example images) that they overwhelm the text probabilities from the very small query text 
when combined using joint probability

We compare the TextVis-CombWtScore fusion method with the other fusion methods for all 
retrieval models in Tables 71, 72 and 73 (appendix pp 275, 276 and 277) for the TRECVid 2002, 
2003 and 2004 collections We will now discuss these results in turn for each of the TRECVid 
collections

The results for the TRECVid 2002 collection m Table 71 (appendix page 275) show that the 
TextVis-CombWtScore fusion method produces statistically significantly better fusion results 
than the Text Vis- CombJovntPr fusion method for all visual retrieval models and it also has sta­
tistically significantly better unbiased results than the TextVis-Comb WtRank fusion method for 
all but one (Absolute interpolation) of the visual retrieval models Most of the unbiased Text Vis- 
Comb WtScore results are better than the text-only results though none of these improvements 
are statistically significant The unbiased fusion of the Jelinek-Mercer visual results with the 
text results achieves the best performance with a MAP of 0 1663, a 3 6% improvement on the 
text-only results The best optimised results are also from the fusion of Jelinek-Mercer’s visual 
results, which achieves a MAP of 0 1720, a 2 6% improvement on the optimised text-only results 
The fusion of the Manhattan distance’s visual results achieves the second best performance with 
an unbiased MAP of 0 1637, a 1 9% improvement on text-only results, and with an optimised 
MAP of 0 1712, a 2 1% improvement on optimised text-only results Jensen-Shannon distance 
achieves the same optimised result as Manhattan distance and achieves only slightly less than 
M anhattan distance, 0 1633 compared to 0 1637, for the unbiased results On this collection the 
optimised weights for the visual results vary from 0 1 to 0 25 for combining the different visual 
retrieval model’s results with text-only results

The results for the TRECVid 2003 collection in Table 72 (appendix page 276) show that 
the TextVis-Comb WtScore fusion method is again statistically significantly better than all the 
TextVis-CombJomtPr results The TextVis-Comb WtScore fusion results are better than the 
text-only results for every retrieval model and the unbiased fusion results for Lidstone, Linear, 
Manhattan and Jensen-Shannon distance are actually statistically significantly better than the 
text-only results The TextVis-CombWtScore fusion method performs better than the TextVis- 
Comb WtRank for all unbiased results, however we cannot take much cognisance of this obser­
vation due to the poor performance of the TextVis-Comb WtRank fusion method on TRECVid 
2002 where the optimised weight for the visual results was zero for many of the retrieval mod­
els The TextVis-Comb WtRank fusion method performs better than the TextVis-Comb WtScore 
method for all optimised results on the TRECVid 2003 collection but none of these improvements 
are statistically significant Similar to the TRECVid 2002 collection, the TextVis-Comb WtScore 
combination of the Jelmek-Mercer’s visual results again achieves the highest unbiased result with 
a MAP of 0 1564, an 11 3% improvement on the text-only results The best optimised TextVis- 
Cornb WtScore fusion result is for combining the Witten-Bell visual results, which achieves a MAP
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ofO 1611, a 12 7% improvement on the optimised text-only results The optimised Jelinek-Mercer 
fusion is not far behind and is the next best with a MAP of 0 1605 The fusion of Manhattan 
distance’s and Jensen-Shannon distance’s results both achieve the worst results, an unbiased 
MAP of 0 1462, which is a statistically significant 4% improvement on the text-only results All 
the optimised TextVis-Comb WtScore fusions of text and visual results give text results a weight 
of 0 7 and visual results a weight of 0 3 on the TRECVid 2003 collection

The results for the TRECVid 2004 collection in Table 73 (appendix page 277) show that 
the TextVis-CombWtScore fusion method is statistically significantly better than the TextVis- 
CombJomtPr fusion method for all retrieval models The TextVis-CombWtScore fusion method 
is also better than the Text Vis- Comb WtRank fusion method for all optimised and unbiased 
combinations though none of these improvements are statistically significant The fusion of the 
Witten-Bell language model’s results achieve the best unbiased results with a MAP of 0 0775, a 
13 1% improvement on the text-only results and the best optimised fusion was for the Absolute 
interpolation results with a MAP of 0 0899, a 31 0% improvement on the text-only results The 
fusion of Jensen-Shannon distance’s results produced the best results for the standard visual 
retrieval models, achieving an unbiased MAP of 0 0758 (+10 5%) and an optimised MAP of 
0 844 (+23 1%) While the fusion of the Jelinek-Mercer language model’s results, which was 
the best result for the TRECVid 2002 and TRECVid 2003 collections, has the second worst 
unbiased results with a MAP of 0 0741, an 8 1% improvement on text-only results, and it also 
has the worst optimised fusion with a MAP of 0 0750, a 9 3% improvement on the text-only 
results Most of the optimised fusion methods give the visual results a weight of 0 45 and the 
text results a weight of 0 55, which indicates the surprisingly high importance of the visual 
results m improving the optimised rankings on the TRECVid 2004 collection

We will now discuss the topic results for the fusion of the text-only results with the visual-only 
Jelinek-Mercer language model’s results as shown in Figure 63 for the three TRECVid collections 
We further present some comparisons between the different fusion methods for the Jelinek- 
Mercer’s visual results in Table 24 Table 24(a) indicates that over 58 9% of the TRECVid 
topics are better suited to non-multimodal search such as either text-only (43 8% of topics) or 
visual-only (15 1% of topics) retrieval, while the other 41 1% of TRECVid topics are best suited 
to multimodal retrieval using either of the three fusion methods These multimodal-onented 
topics perform best with the TextVis-CombWtScore (19 2% of topics) fusion method compared 
to the other fusion methods TextVis-Comb Jom tPr  (6 8% of topics) and TextVis-Comb WtRank 
(13 7% of topics) We compare the fusion methods separately with the text-only results in Tables 
24(b), 24(c) and 24(d) We see from these tables that the TextVis-Comb Jom tPr  fusion method 
is better for only 11% of topics, the TextVis-Comb WtScore fusion method is better for 47% of 
topics and the TextVis-Comb WtRank fusion method is better for 32% of topics compared to the 
text-only results This indicates that the TextVis-Comb WtS core fusion method also produces 
a higher proportion of better topic results in comparison to the text-only results for the full 
set of TRECVid topics than the other fusion methods We directly compare the best fusion 
method TextVis-Comb WtScore separately with the other two fusion methods for the full set of 
TRECVid topics in Table 24(e) and 24(f) We see from both tables that TextVis-Comb W tS core 
is better for about 60% of topics when compared directly with the Text Vis-Comb WtRank fusion 
method and about 90% of topics when compared with TextVis-Comb Jom tPr  fusion method The 
Text Vis- Comb WtScore is therefore best compared to other tested fusion methods for the subset 
of multimodal oriented topics and for the full set of topics at least for fusing the Jelinek-Mercer
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Figure 63: Comparison of the fusion methods TextVis-CombJointPr, TextVis-CombWtRank and Text Vis- Comb WtScore for combining the text results with 
the Jelinek-Mercer language model’s visual results on the (a) TRECVid 2002, (b) TRECVid 2003 and (c) TRECVid 2004 collections. The text-only and 
visual-only results VisExs-CombMaxScore are shown for comparison.



Table 24 Comparison of the text-only, visual-only and fusion methods TextVis- 
CombJomtPr, Text Vis-Comb WtRank and Text Vis- Comb WtScore for combining the text 
results with the Jehnek-Mercer language model’s visual results on the TRECVid 2002, 
TRECVid 2003 and TRECVid 2004 collections

(a) T ex t-O n ly  V  V isual-O nly  V Fusion m ethods

TV ’02 TV ’03 TV ’04 Avg

Text-Only 13 9 10 43 8%
Visual-Only 3 3 5 15 1%
TextVis-CombWtScore 4 9 1 19 2%

TextV is- Comb W t  Rank 4 0 6 13 7%
TextVis-CombJomtPr 1 4 1 6 8%

(b) Text-Only V Text Vis-CombJointPr

TV ’02 TV ’03 TV ’04 Avg

Text-Only 23 21 21 89%

TextVis-CombJomtPr 2 4 2 11%

(c) Text-Only V TextVis-Comb WtScore

TV ’02 TV ’03 TV 504 Avg

Text-Only 16 10 13 53%
TextV is- Comb W tScore 9 15 10 47%

(d) Text-Only V T extV  is- Comb W tR an k

TV ’02 TV ’03 TV ’04 Avg

Text-Only 14 25 11 68%
TextV is- Comb W t Rank 11 0 12 32%

(e) T extV is-C om b W tScore V  T extV  is-Com b W tR an k

TV ’02 TV ’03 TV ’04 Avg

TextVis-CombWtScore 15 15 13 59%
Text Vis- Comb W tRank 10 10 10 41%

(f) T extV is-C om bW tScore V  T ex tV is-C om bJom tP r

TV ’02 TV ’03 TV ’04 Avg

TextV is- Comb WtScore 24 22 21 92%
Text Vis-Comb Joint Pr 1 3 2 8%
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Table 25 Comparison of unbiased retrieval models for the TRECVid 2002, 2003 and 2004 
search tasks using the TextVis-CombMaxScore fusion method for combining text and results 
%Dif = difference from best result (lower better) R =  rank of retrieval models (lower 
better) S = number of statistically significantly better retrieval models (lower better)

T R B C V id ’02 T R E C V id ’OS T R E C V id ’OJ, Average

R et M ethod % D if R (S ) % D if R (S ) % D if R (S ) % D if R (S )

J e l in e k - M e r c e r 0 0% 1(0) 0 0% 1(0) -4 4% 8(1) -1  5% 3 3 (0  3)

W i t t e n - B e l l -4 4% 7(0) -1 9 % 3(1) 0 0% 1(0) -2  1% 3 7 (0  3)

L id s to n e -2 8% 5(2) -1 8 % 2(0) -3 9% 6(1) -2  8% 4  3 (1  0 )

A b s o lu t e -5 6% 8(4) -2 0% 4(2) -1 7% 3(1) -3  1% 5 0 (2  3)

L in e a r -3 2% 6(5) -2 6% 6(1) -4 1% 7(1) -3  3% 6 3 (2  3)

M a n h a t t a n -1 6% 2(0) -6 5% 8(0) -2 5% 5(0) -3  5 % 5 0 (0  0)

J e n s e n - S h a n n o n -1 8 % 3(0) -6 5% 9(0) -2 2% 4(0) -3  5 % 5 3 (0  0)

L a p la c e -2 7% 4(3) -2 2% 5(1) -5 9% 9(3) -3  6% 6 0 (2  3)

A b s o lu t e  D is c o u n t in g -5 7% 9(5) -5 2% 7(1) -1 5 % 2(1) -4  1% 6 0 (2  3)

language model’s visual results

We will now discuss the performance of the fused text and visual results in terms of the 
underlying visual retrieval models, which we present m a synthesised form m Table 25 Statistical 
significance comparisons of the results for the three collections is available m Tables 74, 75 and 76 
(appendix pp 278-279) The fused text and visual fusion results are very close on each collection 
-  the worst fusion results are only respectively 5 7%, 6 5% and 5 9% lower than the best fusion 
results on the TRECVid 2002, 2003 and 2004 collections The fusion of visual Jelinek-Mercer 
language model’s results achieves the best MAP on the TRECVid 2002 and TRECVid 2003 
collections and in our synthesised results it is best retrieval model overall with an average rank 
of 3 3 and with on average only 0 3 statistically significantly better retrieval models above it 
on each of the TRECVid collections Only the visual Witten-Bell results on TRECVid 2004 
collection is statistically significantly better This is in contrast to the fusion results for separate 
visual example retrieval (combined features) and the fusion results for multiple visual examples 
where the fusion of Jelinek-Mercer language model’s results was the second worst overall retrieval 
model But for each of these results it had a very low number of statistically significantly 
better retrieval models above it and this may have indicated some latent consistency within 
its results that makes it better for combining with the better text results The Manhattan 
distance and Jensen-Shannon distance retrieval models are ranked below many of the language 
model’s results at the sixth and seventh position m our synthesised results These results are 
only on average 3 5% lower than the best result on each collection and they are not statistically 
significantly bettered by any other retrieval model They are also on average only 2% lower than 
the Jelinek-Mercer result We believe that these results are just as good as the Jelmek-Mercer 
results even though their MAP is slightly lower The fusion of Witten-Bell language model’s 
results performs quite strongly and achieves very close to the best Jelinek-Mercer result m terms 
of average rank, difference from best results and also has the same incidence rate of 0 3 for 
being statistically significantly bettered The other language models Laplace, Lidstone, Linear, 
Absolute interpolation and Absolute discounting are possibly weaker than the Jelinek-Mercer 
language model but these fusion results are so close that it would be unfair to make any strong 
claim
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We have presented results for fully automatic retrieval experiments for the multimodal 
TRECVid topics We found that the TextVis-CombWtScore fusion method performed better 
than the other fusion methods, achieving on average better results on all three collections than for 
text alone The probability based TextVis-CombJomtPr fusion method performed consistently 
poorly and reduced to the performance of the visual-only approach The TextVis-CombWtRank 
fusion method performed so poorly on the TRECVid 2002 collection that its unbiased results on 
TRECVid 2003 cannot be trusted as a true unbiased test of its performance We believe that the 
TextVis-Comb WtRank fusion method is in general as good as the Text Vis- Comb WtScore fusion 
method This claim can be supported by looking at the optimised results on the TRECVid 2003 
collection where it is superior to the TextVis-CombWtScore fusion method and by looking at its 
unbiased results on the TRECVid 2004 collection where it is only on average 3 1% lower than 
the TextVis- Comb WtScore fusion method We found that the TextVis-Comb WtScore fusion 
method achieved the best overall fusion results by using the Jehnek-Mercer language model’s 
visual results The fusion results were overall very close and therefore it is hard to discriminate 
between visual language models and standard retrieval models

The three TRECVid collections indicate a trend in the optimised parameters of the TextVis- 
Comb WtScore fusion method that the visual medium is more important for each subsequent 
year’s TRECVid experiments For TRECVid 2002 the optimum weight for the visual results 
is between 0 1 and 0 25, for TRECVid 2003 it is 0 3 and for TRECVid 2004 it is 0 45 These 
results indicate that the formulation of TRECVid queries is progressively better each year at 
reducing the dominance of text retrieval in the experiments The more careful identification of 
potential topics without listening to the audio for TRECVid 2004 is probably one measure that 
accounts for some of the difference between TRECVid 2003 and 2004 fusion results Another 
trend that is important to recognise with automatic retrieval is that better visual results do not 
mean better text and visual fusion results The reason for this is that while visual results will 
improve some topics they will also degrade the performance of others The fusion performance 
may actually be greatly affected by how much it degrades high-performmg text-only topics than 
poorly performing topics that do not contribute much to the MAP statistic This problem affects 
not only the unbiased results but also the optimised results due to the fact that we are trying 
to find a single weight that will give best performance across all topics

We will now consider two Oracle-based scenarios for combining the text and visual results, 
which will allow us to compare the text and visual retrieval models under ideal decision making 
situations where the Oracle always chooses the best of available choices for each topic In the 
first scenario, the TextVisBoth-Oracle selects whether the TRECVid topic will be text-only, 
visual-only or combined text and visual, while in the second scenario, the TextVisComb-Oracle 
selects the weights for combining text and visual results on a per-topic basis In both variation, 
of course, the Oracle selects the best of the available choices since it is omnipotent with regards 
to the outcome Both these variations are biased of course but as before we will present two 
sets of results, firstly for combining the unbiased visual retrieval models with the unbiased text 
retrieval models and secondly for combining the optimised visuals models with the optimised 
text models Remember in this thesis we are exploring fully automatic shot retrieval but in 
practice the retrieval system will be used by a user m an interactive search mode so the purpose 
of these scenarios is to investigate the potential performance our multimodal retrieval models 
could achieve m these two different user-interaction scenarios (i e users selecting query modes 
text, or visual or both text and visual for each TRECVid topic or users moving a slider to decide
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In a sense our first Oracle scenario is an optimised version of (Yan et al , 2004), which 
used a limited number of query-classes (finding persons, named objects, general objects, or 
scenes) for combining text and other retrieval modalities with pre-defined query-class weights, 
whereas here we assume that a user chooses correctly between three competing search strategies 
-  text-only, visual-only or combined text and visual search for each TRECVid topic The second 
Oracle scenario can also be viewed as the upper bound performance for an automatic query-class 
dependent procedure that combines our default text and visual results for each TRECVid topic

We display the average improvement across visual retrieval models for the two Oracle scenar­
ios m Table 26 For TRECVid 2002 the TextVisBoth-Oracle improves on the text-only results 
by only 6%, while the Text Vis Comb-Oracle improves on this result by only a further 3% There 
does not seem much justification in allowing the user to choose the weights for the text and 
visual fusion on the TRECVid 2002 collection as 3% is a negligible improvement for a scenario 
where the user must make the correct weight selection for each topic The TextVisBoth-Oracle's 
improvement of 6% higher MAP than for text alone indicates only a small benefit of multimedia 
retrieval on this collection The results for TRECVid 2003 are far better with on average a 
24 4% improvement for the TextVisBoth-Oracle compared to the text-only results, which is a 
15 5% average improvement on the standard text and visual fusion and the TextVisComb-Oracle 
improves on this result by a further 4 6% The results for TRECVid 2004 are further proof of 
the usefulness of visual searching for the TRECVid topics The TextVisBoth-Oracle achieves 
on average +31 6% better results than for text alone, or 19 9% better than the default combi­
nation of text and visual results A further 9 3% on average is achievable through the correct 
manipulation of the fusion weights by the TextVisComb-Oracle

We compare the oracle scenarios TextVisBoth-Oracle and TextVisComb-Oracle with the 
visual-only, text-only and standard text and visual fusion method TextVis-Comb WtScore m 
Figure 64 for the different retrieval model’s results Unsurprisingly, the results for the two 
scenarios are quite consistent across retrieval models on each collection The performance of the 
Oracles’ results are more directly related to the individual performance of the visual results than 
for the standard fusion models because the Text VisBoth- Oracle can ignore the visual results for 
a topic if its fusion would achieve lower results than for text alone and likewise it can ignore 
the text-based results if its fusion with the visual results would produce worse results than for 
visual alone Also, the TextVis Comb-Oracle chooses the exact best fusion weight for combining 
each visual result with the text-based result for each topic and therefore gets the most out of 
the visual and text-based results

Overall the results for TRECVid 2003 and TRECVid 2004 are at least 24 4% improved com­
pared to the text-only results when using the TextVisBoth-Oracle that simply chooses between 
text-only, visual-only and multimodal queries This result justifies including visual querying in 
many video databases that currently use text-only interfaces If we were to argue for allowing a 
user to choose the weight between text and visual components, which we’re not, then it could 
possibly be justified from TRECVid 2004 results but we believe the other collections do not show 
enough of an improvement to warrant such an interface component The Oracle-based results 
have a more direct importance to our research m that these results for TRECVid 2003 and 
TRECVid 2004 indicate the need to further extend our work to allow for dynamic weighting m

how much importance to give to the text or visual modes for each TRECVid topic)
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Table 26: Comparison of the average results across retrieval models for combining the 
Shot+Adj+ Video interpolated text language model’s results with the combined visual exam­
ples ( VisExs-CombMaxScore) results of the different retrieval models using the TextVisBoth- 
Oracle and TextVisComb-Oracle on the (a) TRECVid 2002, (b) TRECVid 2003 and (c) 
TRECVid 2004 collections. The improvement percentage is relative to the default text and 
visual fusion results. The text-only, visual-only, VisExs-CombMaxScore and default text 
and visual fusion (TextVis-CombWtScore) results are displayed for comparison.

(a) TRECVid 2002 average results across retrieval models.

T R E C V id  2002 M A P P@10 P@30 P@100 Im pr. Text Im pr. B oth Im pr. Oracle

T e x t - O n ly .1 6 0 5 .264 .175 .117
Optimised ( .1 6 7 7 .272 .175 .118)

V  is E x s -  C o m b M a x S c o r e .0 2 2 1 .082 .054 .028
Optimised ( .0 2 4 3 .071 .043 .025)

T e x tV is - C o m b W tS c o r e .1 6 1 2 .263 .186 .122 +0.4%
Optimised ( .1 7 1 3 .270 .177 .121) +2.2%

T e x tV is B o th - O r a c le .1 7 0 1 .283 .186 .123 +6.0% +5.6%
Optimised ( .1 8 1 9 .291 .186 .127) +8.5% +6.2%

T e x tV is C o m b - O r a c le .1 7 5 2 .291 .188 .126 +9.1% +8.7% +3.0%
Optimised ( .1 8 2 9 .294 .187 .128) +9.1% +6.7% +0.5%

(b) TRECVid 2003 average results across retrieval models.

T R E C V id  2003 M A P P@10 P@30 P@100 Im pr. Text Im pr. B o th Im pr. Oracle

T e x t - O n ly .1 4 0 5 .252 .176 .113
Optimised ( .1 4 2 9 .240 .179 .115)

V is E x s - C o m b M a x S c o r e .0 4 2 0 .108 .092 .057
Optimised ( .0 4 8 6 .120 .092 .062)

T e x tV is - C o m b W tS c o r e .1 5 1 4 .266 .187 .117 +7.7%
Optimised ( .1 5 8 5 .279 .196 .121) +10.9%

T e x tV is B o th - O r a c le .1 7 4 8 .326 .231 .141 +24.4% +15.5%
Optimised ( .1 7 8 5 .314 .233 .144) +24.9% +12.6%

T e x tV is C o m b - O r a c le .1 8 2 8 .334 .238 .143 +30.1% +20.8% +4.6%
Optimised ( .1 8 6 7 .332 .240 .150) +30.6% +17.8% +4.6%

(c) TRECVid 2004 average results across retrieval models.

T R E C V id  2004 M A P P@10 P@30 P@100 Im pr. Text Im pr. B o th Im pr. Oracle

T e x t- O n ly .0 6 8 6 .209 .143 .091
V is E x s - C o m b M a x S c o r e .0 2 4 2 .094 .058 .033

Optimised ( .0 3 0 7 .114 .070 .035)
T e x tV is - C o m b W tS c o r e .0 7 5 2 .219 .157 .100 +9.7%

Optimised ( .0 8 3 3 .258 .180 .096) +21.4%

T e x tV is B o th - O r a c le .0 9 0 3 .279 .187 .106 +31.6% +19.9%
Optimised ( .0 9 4 2 .303 .197 .107) +37.3% +13.3%

T e x tV is C o m b - O r a c le .0 9 8 7 .302 .196 .108 +43.9% +31.1% +9.3%
Optimised ( .1 0 2 6 .316 .205 .110) +49.6% +23.4% +8.9%
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Figure 64: Results for combining the text and visual retrieval results using an “TextVisBoth Oracle” which chooses between text only, visual only or 
combined text and visual models for each topic and an “TextVisComb Oracle” which chooses the best mixing weights for combining text and visual results 
for each topic for retrieval models on the (a) TRECVid 2002, (b) TRECVid 2003 and (c) TRECVid 2004 collections. These Oracle-based results are compared 
with the visual-only VisExs-CombMaxScore results, the text-only results and the combined text and visual TextVis-CombWtScore results.



Table 27 Comparison of unbiased retrieval models for the TRECVid 2002, 2003 and 2004 
search tasks for the Vis-CombWtScore, VisExs-CombMaxScore and TextVis-CombMaxScore 
fusion methods %Dif =  difference from best result (lower better) R = rank of retrieval 
models (lower better) S = number of statistically significantly better retrieval models (lower 
better)

VisExs Text Vis Average

R et M ethod % D if R (S ) % D if R ( S ) % D tf R ( S ) % D if R ( S )

J e n s e n - S h a n n o n -1 3% 2 0 (0 0) -5 1% 2 7 (0 0) -3 5% 5 3 (0 0) -3  3% 3 3 (0  0)

M a n h a t t a n -3 8% 2 7 (0 7) -6 6% 3 7 (0 3) -3 5% 5 0 (0 0) -4  6% 3 8 (0  3)

L in e a r -8 4% 5 7 (1 0) -14 9% 4 0 (1 3 ) -3 3% 6 3 (2 3) -8  9 % 5 3 (1  5)

L id s to n e -6 1% 3 7 (0 0) -18 3% 6 7 (2 0) -2 8% 4 3 (1 0) -9  1% 4  9 (1  0)

W i t t e n - B e l l -10 3% 5 0 (2 6) -16 6% 4 7 (2 0) -2 1% 3 7 (0 3) -9  7% 4  5 (1  6)

A b s o lu t e  D is c o u n t in g -12 4% 6 7 (4 0) -18 4% 6 0 (3 7) -4 1% 6 0 (2 3) -11  6% 6 2 (3  3)

L a p la c e -10 5% 4 7 ( 1 3 ) -21 4% 5 3 (1 3) -3 6% 6 0 (2 3) -11  8% 5 3 (1  6)

J e lm e k - M e r c e r -12 5% 6 7 (0 7) -22 2% 5 7 (0 0) -1 5% 3 3 (0 3) -1 2  1% 5 2 (0  3)

A b s o lu t e -13 9% 8 0 (3 3) -26 5% 6 3 (2 3) -3 1% 5 0 (2 3) -1 4  5 % 6 4 (2  6 )

the fusion models This could be achieved by using query classes or by some automatic relevance 
feedback mechanism for updating the fusion weights

7 5 Discussion

We present a summary of all our synthesised results in Table 27 We can see clearly from this 
table that the visual results that use a single visual example (Vis columns) and the results that 
combine multiple visual examples (VisExs columns) are quite consistent with each other and that 
the differences between retrieval models are magnified when combining multiple visual examples 
We can also see that the text and visual fusion method (TextVis columns) achieves very similar 
performance for all retrieval models compared to the fusion of multiple visual examples The 
order of the results for the text and visual fusion is inconsistent with the order of results for 
the other two fusion tasks We believe that the Jensen-Shannon distance, Manhattan and 
the Jelmek-Mercer results are the best overall retrieval models though Jelmek-Mercer seems to 
perform relatively poorly in terms of MAP for the retrieval results when combining multiple 
visual examples

We believe our results are competitive with other visual-only approaches for the fully auto­
matic TRECVid retrieval task The TRECVid 2004 workshop included fully automatic runs for 
the first time as a pilot scheme before hopefully their eventual more official inclusion m coming 
years Since only 4 groups DCU, Lowlands, CMU, IBM submitted runs in this pilot category, 
the results might not represent the true state-of-the-art in this research field Unfortunately, 
only two of these groups, DCU and Lowlands, submitted fully automatic visual-only results so it 
is even more difficult to gauge the state-of-the-art for visual-only performance on the TRECVid 
2004 topics Recall that we have already compared our generative visual retrieval models with 
standard visual retrieval models such as Manhattan and Jensen-Shannon distance and that our 
language modelling approach performs slightly worse than Jensen-Shannon distance for visual- 
only retrieval, while for combined text and visual retrieval our language modelling approach

215



For the TRECVid 2004 search task Lowland’s highest fully automatic visual-only run (LL- 
F-dyn-allvidim-RR, Gaussian Mixture Model of dynamic multi-spectral DCT texture) achieved 
a MAP of 0 010 (Ianeva et a l , 2005), 55% lower than the submitted DCU visual language 
modelling run which achieved a MAP of 0 018 (actually 0 0175) by using a rank-based fusion 
of the Jelmek-Mercer colour, edge and texture results (Cooke et a l , 2005) We also submitted 
a run based on Lidstone smoothing that achieved a MAP of 0 017, which was just slightly less 
than our submitted Jelmek-Mercer language model run

The unbiased results m this thesis improve dramatically on these visual results Our Jelmek- 
Mercer visual language model results, which is our second worst visual-only result on the 
TRECVid 2004 collection, achieves a MAP of 0 0222, a 27% improvement on our submitted 
Jelmek-Mercer rank-based fusion result and a 122% improvement on Lowland’s submitted dy­
namic DCT GMM result Our best unbiased language modelling result for fully automatic visual 
retrieval on TRECVid 2004 is Absolute Discounting which achieves a MAP of 0 0319, which is a 
82% improvement on our submitted Jelinek-Mercer results Our result for Lidstone smoothing 
is also improved achieving a MAP of 0 0250, a 47% improvement on the submitted Lidstone 
result Our full results for visual-only retrieval on the TRECVid 2004 collection are presented in 
Table 67 (appendix page 272) but are more easily compared as presented m Table 70 (appendix 
page 274) We believe that our visual-only results are at least competitive and most likely better 
than the continuous generative probability GMM approach

Four groups DCU, Lowlands, CMU and IBM submitted fully automatic combined text and 
visual runs for the TRECVid 2004 fully automatic search task The best result was submit­
ted by DCU based on combining our rank-based Jelmek-Mercer visual result with the interpo­
lated shot+adj+video language modelling text results, which achieved a MAP of 0 078 (actually 
0 0776) The next best result was submitted by CMU and achieved a MAP of 0 075 The Low­
lands multimodal result achieved an equally close MAP of 0 073 for combining their visual GMM 
results with their hierarchical text language model, which is the same type of text model that we 
use in our experiments These three combined text and visual runs were not statistically signifi­
cantly different The IBM run achieved quite a lower MAP of 0 057 for the fusion of multimodal 
features (Amir et al , 2005) Our combined text and visual results are presented in Table 76 
(appendix page 279) The score-based fusion of the Witten-Bell visual results achieves the same 
MAP of 0 0775 as our submitted run, however our score-based fusion of Jelmek-Mercer results 
achieves only a MAP of 0 0741, a 4 4% decrease on our submitted results The combination 
of the Lidstone visual language model with the text results produces a slightly higher MAP of 
0 0745, which is 3 9% lower than our submitted results and is about the same as the submitted 
CMU result This decrease in our multimodal results occurs even though we have improved our 
visual-only results dramatically

Most of the difference between our submitted runs and our results m this thesis for mul­
timodal search are due to the fact that in our submitted run we combined only the top 500 
normalised visual results with the 1000 text results, whereas in this thesis we decided to treat 
all features the same and to always combine 1000 results from each retrieval model when per­
forming text and visual fusion In future experiments we intend to look more closely at the 
combination of text and visual results with regard to the size of the result sets to be combined

achieves better results than for these standards visual retrieval models
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In preliminary experiments we found the optimum number of visual results varied quite a lot 
between topics and collections and therefore we set it to a fixed 1000 results in this thesis in 
order to reduce noise that this parameter could produce We recognise that we have to look 
again at this decision and also investigate some other methods of multimodal result set fusion

7.6 Summary

We have shown that it is possible to successfully combine the visual features colour, edge and 
texture using weighted normalised scores The resulting combination is better than using any 
one of the features alone, such as colour, for the complete TRECVid retrieval task This fusion 
method is therefore a good default setting for visual retrieval for novice users or for initial query 
execution

We have shown that combining multiple visual examples is best achieved through the use of 
the maximum of normalised scores or normalised ranks (round-robin) The resulting combined 
results are better than the mean of the retrieval results for performing the query separately on 
each topic image but are significantly worse that a single image query that uses the best single 
visual example for each topic We need to perform further experiments on combining the top 
2 and top 3 visual examples to verify if it is possible to improve on a single image query with 
the best visual example Also user experiments would be useful in order to understand whether 
users can select the best image reliably after a suitable exposure to the video collection

We have also shown that combining text and visual results, while resulting m an overall 
improvement m terms of MAP for TRECVid 2003 and TRECVid 2004, that this improvement 
is small at about 8% and 10% for the unbiased results for these two collections When we looked 
at the individual topic results we saw that m many cases the text results were superior but m a 
few the visual results were superior than the text alone

The visual retrieval models are useful for a few of the queries We believe that a query to 
a video collection should first be initiated with a text query if possible We have shown that 
for some queries the results can be improved by combination with visual models and for some 
others the visual query alone is best compared to the default TRECVid text queries for the given 
topics

We tested the visual results by using an Oracle that decided between combining them with 
the text results, using a visual-only query, or a text-only query We found that our visual results 
support up to 24 4% improvement for the TRECVid 2003 search task and up to 31 6% improve­
ment for the TRECVid 2004 search task compared to only supporting text-only searching We 
believe these results support the inclusion of visual-based querying for access to video retrieval 
collections in that they show that visual querying can have a very positive effect on the retrieval 
performance
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CHAPTER VIII

CONCLUSIONS

In this thesis we investigated the discrete language 
modelling approach for both text and visual retrieval of 
video shots, which we evaluated on the TRECVid 2002,
2003 and 2004 collections We believe our discrete visual 
language modelling approach represents a consistent, 
relatively effective and efficient approach to video shot 
retrieval In this chapter, we present our general 
conclusions for our discrete language modelling approach 
to video retrieval as well as more specific conclusions 
relating to each of the mam aspects of our work -  
text-based, visual-based and combined multimodal 
retrieval of video shots We also look more closely at our 
evaluation methodology which provided the foundation of 
our experiments Research mto discrete language models 
for video retrieval is, of course, unfinished and we suggest 
future work and extensions to our research

8.1 General Conclusions

In this thesis we presented and evaluated the discrete language modelling approach for text 
and visual based retrieval of video shots This work extended the previous language modelling 
approaches for video retrieval (Jin and Hauptmann, 2002, Westerveld, de Vries and van Balle- 
gooij, 2003) by considering different language modelling smoothing methods, by using discrete 
language models for both text and multiple visual features and by investigating different fusion 
approaches for combining the various text and visual feature language models

The benefit of our approach is that it is as effective as media-specific retrieval models, yet 
our approach uses a consistent retrieval model and representation for both text and visual fea­
tures This work provides a foundation for multimedia retrieval that possibly can be more easily 
extended than other approaches as extensions to the discrete language modelling approach can 
be applied directly to both text and visual features Another benefit of our work is that we eval­
uated our discrete language modelling approach quite extensively m a wide range of experiments 
on three standard video search test collections These quite exhaustive fully-automatic empirical 
experiments provide a stronger basis, than is normally the case for video retrieval research, to 
form conclusions on the effectiveness of different retrieval models, feature representations and 
fusion methods

In this section we will highlight our general conclusions, while in the sections that follow we

8 1 General Conclusions 

8 2 Text Language Models 

8 3 Visual Language Models 

8 4 Fusion Methods 

8 5 Evaluation Methodology 

8 6 Future Work 

8 7 Summary
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will present more specific conclusions on the text language models, the visual language models, 
the fusion methods and our evaluation methodology. We will end this chapter with a description 
of future work and a brief final summary, but first our general conclusions:

Conclusion G .l The discrete text-based language modelling framework can be applied to 
visual retrieval for features such as colour, edges and texture.

We applied the text-based language modelling approach to visual retrieval for the HSV 
colour, Canny edge and DCT texture features. We believe our approach is consistent for both 
mediums as the representation for ASR text and visual features are languages of discrete symbols 
and the retrieval models for both types of features are smoothed query-likelihoods. Our visual 
retrieval models can be further applied to many of the effective MPEG7 visual features (MPEG7 
Scalable Colour, MPEG7 Colour Structure, MPEG7 Edge Histogram and MPEG7 GoF/GoP 
Colour descriptors) and to many popular visual features that are used in current video re­
trieval systems such as alternative colour features (e.g. Colour Coherence Vectors and Colour 
Correlograms), edge features (Edge Co-Occurrence Matrix and Edge Correlogram), texture fea­
tures (Gabor response Histograms) and spatio-temporal features (Temporal Colour Correlogram, 
Temporal Gradient Correlogram).

Conclusion G.2 The discrete language modelling approach is as effective as other retrieval 
models that are specific to the text or visual mediums.

We compared language models and standard information retrieval models for the text-based 
retrieval of video shots and found that the language modelling approaches achieved in many 
cases better MAP than the TF-IDF and BM25 models, though these improvements were not 
statistically significant. We also compared language models and standard visual retrieval models 
for three visual features, HSV colour, Canny edge, and DCT texture, and found that the discrete 
language modelling approach achieves similar and sometimes better results than the standard 
visual retrieval models but the improvements with respect to the best standard visual retrieval 
model, Jensen-Shannon distance (Jeffrey Divergence), were again not statistically significant. 
We believe that our empirical evidence confirms that discrete language models are as good as 
standard retrieval models for either medium.

Conclusion G.3 The discrete visual language modelling approach is as efficient as other 
standard visual retrieval models.

Our discrete language modelling approach is as efficient as current approaches that use 
standard visual retrieval models with multidimensional histograms. The time complexity of the 
discrete query-likelihood retrieval models, except for the Bayesian language model, is related 
to the number of distinct symbols in the query’s visual example (symbols or histogram bins 
with non-zero counts), whereas for standard distance measures such as Jensen-Shannon distance 
(Jeffrey Divergence) the execution speed is related to the size of the query language (number 
of cells in the multidimensional histogram) and the speed of the continuous language models 
such as the DCT GMM approach is related to the number of query samples. The number of 
distinct query symbols is upper-bounded by the size of the visual language and the number
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of query samples and therefore the discrete query-likelihood method compares very favourably 
with these approaches Furthermore, m a static video collection or a dynamic collection where 
it is feasible to completely rebuild a snapshot of the index, the smoothed log-probabilities for 
the visual features can be stored m the index, leading to more efficient calculation of the query 
log-likelihood

C onclusion  G 4 The unsmoothed MLE probability model is ineffective for both text-based 
and visual-based retrieval

This is an expected outcome since the MLE model will score all documents that are missing 
a single query term with zero probability We have verified this m our experiments for text and 
most visual features The only exceptions are visual features with very small visual languages 
such as the tested global Canny features, the largest of which is Canny 64+1 that has only 65 
symbols, which since they have very few zero frequency terms m their document representations 
do not produce better results with smoothed query-likehhoods

C onclusion  G  5 The combination-based (interpolation-based) language models perform bet­
ter than the discounting-based language models for both text and most regional visual features

The difference between discounting and combination-based smoothing is less apparent for 
regional visual features than for text, while for global visual features there is no consistent 
difference The combination-based smoothing methods perform better for the regional Canny 
edge and regional DCT texture features, while the discountmg-based smoothing methods work 
slightly better for the regional HS V colour feature This difference may be due to Canny and DCT 
features having more skewed collection distributions than the HSV colour feature and therefore 
are more likely to benefit from smoothing with the background distribution The difference 
between the Jelinek-Mercer combination-based language model and the best discounting models 
Laplace, Lidstone and Linear is only 2% (0 0087 compared to 0 0089) for the regional colour 
feature on the TRECVid 2004 collection, which could hardly be considered significant and the 
larger differences on the TRECVid 2002 and TRECVid 2003 collections are attributable to 
the very different visual colour quality on these two collections, which leads to inappropriate 
unbiased smoothing parameters Overall, all visual features perform quite poorly compared to 
text and the absolute difference between the different visual retrieval models is very small in 
terms of MAP

C onclusion  G  6 The fusion of text and visual results over all topics achieves negligible 
improvement for the TRECVid 2 0 0 2  collection and on average achieves only 8 % and 10% better 
MAP compared to text-only results for the TRECVid 2003 and TRECVid 2004 collections

These somewhat negative fully-automatic retrieval results under-represent the performance 
of visual search in a video retrieval system because the improvement in some topic’s results is 
counter-balanced by the decrease in the performance of other topics for which text-only searching 
is the best strategy The fully-automatic fusion results are as much a measure of the negative 
effects of the visual results on the good text-oriented topics than the positive effects it has on 
other topics This problem is due to our fusion methods treating all topics identically and an
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automatic adaptive method of combining text and visual feature results, such as Co-Retrieval 
(Yan and Hauptmann, 2004), may improve our fully-automatic text and visual fusion results

C onclusion  G  7 The ideal choice between text-only, visual-only and combined text and visual 
search for each of the default TRECVid topics could support a potential increase m terms of MAP 
of 6  0% on TRECVid 2002, 24 4% on TRECVid 2003 and up to 31 6 % on the TRECVid 2004 
collection compared to text-only search results

These results indicate a large improvement m the TRECVid 2003 and TRECVid 2004 results 
by an Oracle-based selection between text-only, visual-only or combined text and visual search 
strategies We believe these results support the inclusion of visual-based querying for access to 
video collections as our results show that visual querying has a very positive effect on retrieval 
performance when selectively combined with text retrieval methods User-based experiments 
are required m order to more appropriately support this claim

8.2 Text Language Models

In this thesis our contribution to the research into text-based approaches to video retrieval is to 
propose extensions to the hierarchical language modelling approach (Westerveld, de Vries and 
van Ballegooij, 2003) that use different smoothing models and to evaluate different structural 
representations based on the physical and semantic video structures for the video shot retrieval 
task We also establish a baseline for standard non-hierarchical language models and standard 
information retrieval models for the text-based video shot retrieval task

C onclusion  T  1 The adj-only text representation; a window of adjacent shot’s text, is the
best of the tested physical non-hierarchical representations for text-based video shot retrieval

C onclusion  T  2 The semantic story-only text representation is the best of the tested non-
hierarchical representations for text-based video shot retrieval

The story-only representation provides statistically significantly better results than adj-only, 
but similar to adj-only its results are not statistically significantly better than the shot-only rep­
resentation This indicates that while the story-only and adj-only text representations improve 
the average performance compared to the shot-only representation for the video retrieval tasks, 
it does so unreliably across the TRECVid topics

C onclusion  T  3 The shot-1-adj+video representation is the best tested hierarchical physical
representation for text-based video shot retrieval

The shot-hadj+video representation achieves statistically significantly better results than the 
shot-only and adj-only representations and it also improves on the story-only representation, 
though this improvement is not statistically significant
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C onclusion  T  4 The semantic shot+story hierarchical representation is the best tested rep­
resentation for text-based retrieval of video news shots

The shot+story representation is statistically significantly better than the shot-only, adj-only 
and shot+adj+video representations The 10% improvement for the shot+story representation 
relative to the best physical representation shot+adj+video is less likely to be achieved when 
applying a semantic hierarchical structure to other types of video content since news programmes 
are a special case where each semantic story unit is usually quite distinct from others in the same 
programme

C onclusion  T  5 The combmation-based language models are better than the discountmg- 
based language models for text-based retrieval using either the best non-hierarchical physical rep­
resentation adj-only or the even better semantic story-only representation

This outcome is m line with other results for text-based information retrieval systems Unlike 
visual-based features, for text-based features there is a notable difference between discounting- 
based language models and combmation-based language models that smooth using the back­
ground collection model '

C onclusion  T  6 The Dmchlet, Bayesian and Absolute language models achieve similar and 
sometimes slightly better results than the Jelmek-Mercer language model for the non-hierarchical 
text-based representations

The Dinchlet, Bayesian and Absolute language models achieve better results than the 
Jelmek-Mercer language model for the adj-only representation and for some video search collec­
tions these differences are statistically significant We found that the Jelmek-Mercer language 
model produces the best results for the story-only representation, though it was not statistically 
significantly better than the other combination-based language models We also found that the 
Dinchlet and Bayesian language models achieve slightly higher MAP than BM25 for the adj-only 
representation, though again these differences were never statistically significant for any of the 
tested collections We view these results as an indication that language models other than the 
Jelmek-Mercer language model have a potential benefit in the video shot retrieval task

C onclusion  T  7 Our proposed hierarchical language models, hierarchical Absolute, hierar­
chical Witten-Bell, and hierarchical Dinchlet, do not perform as well as the hierarchical Jelmek- 
Mercer (linear interpolation) language model

Our proposed hierarchical language models perform worse than the hierarchical Jelmek- 
Mercer language model (Westerveld, de Vries and van Ballegooij, 2003) for the best hierarchi­
cal physical representation shot+adj+video and the best hierarchical semantic representation 
shot+story The results for the semantic hierarchical representations are a lot closer than the 
physical hierarchical representations and indicate a potential equivalence in performance between 
the hierarchical Jelmek-Mercer, hierarchical Witten-Bell and hierarchical Absolute language 
models, while the hierarchical Dinchlet language model m general performs statistically signifi­
cantly worse than hierarchical Jelmek-Mercer for the tested hierarchical representations Since
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the adj and video representations introduce topical noise into the hierarchical shot+adj+video 
representation for the two news collections, TRECVid 2003 and TRECVid 2004, keeping their 
influence constant between different document representations, as m the hierarchical Jelinek- 
Mercer language model, seems to be a beneficial strategy

8.3 Visual Language Models

In this thesis we applied the discrete language modelling approach to the visual HSV colour, 
Canny edge and DCT texture features We evaluated different discrete language models and 
different global and regional representations for these three visual features on the TRECVid 
2002, 2003 and 2004 collections

C onclusion  V  1 The best visual feature for the video search task is regional colour, then 
regional texture and finally regional edge

This is an average result across retrieval models for the set of topic visual examples on the 
three video collections and for individual visual examples different features are best Indeed for 
the recent TRECVid 2004 search task the differences between the colour and texture feature 
is less acute and is actually reversed though by only a small amount m terms MAP for some 
retrieval models

C onclusion  V  2 The MPEG7 inspired HSV 16x4x4 global colour representation is the best 
of the tested HSV colour representations

C onclusion  V  3 The Canny 64+1 edge features is the best of the tested global Canny repre­
sentations

The Canny 32-bl representation achieves similar results to the Canny 64+1 representa­
tion and a higher number of edge orientations may produce slightly better results but we have 
not tested this This result was unexpected and highlights the lack of discrimination power 
in the small global Canny representation of 4 edge orientations The performance differences 
between Canny representations is likely diminished when considering regional variations and m 
fact lower order Canny features with less that 64 edges orientations may be preferable in those 
configurations

C onclusion  V  4 The TRECVid 2002 and TRECVid 2003 collections are visually very dif­
ferent and this caused inconclusive results between these collections as to which of the tested DCT 
texture representations was best

For TRECVid 2002 the best representation was DCT 4^4X4X4 whereas for TRECVid 2003 
the best representation was DCT 8x8 x8  We chose the DCT 3x3x3x3x3 representation for our 
regional experiments due to its relative performance on the TRECVid 2003 collection and due
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C onclusion  V .5 The 5x5 regional feature representations achieves generally better results 
than the global and other tested regional representations for the three visual features.

This is true for all the features on the three collections except the colour and edge features 
on TRECVid 2002 collection. On this collection global colour is better than regional colour 
representations and the regional 3x3 edge representation is better than the 5x5 regional edge 
representation. For the other search tasks more regions such as 6x6 or even 10x10 may pro­
duce better results, however we have not yet evaluated this and the execution speed would be 
prohibitive, four times slower for the 10x10 regions than for the 5x5 regions, unless we reduce 
the size of the representation of each of the colour, edge and texture features. A non-uniform 
partitioning of the x and y dimension so that there is more partitions in one dimension such as 
the x dimension may also be beneficial.

C onclusion  V .6  For the smoothed language models, the discounting-based language models 
work slightly better for regional HSV colour features, while the combination-based language models 
work slightly better for the regional Canny edge and regional DCT texture features.

The difference between the different language model’s results is a lot smaller for the visual 
features than for the text features and unlike text the results for visual features do not have a 
consistent separation in performance terms between discounting-based language models and the 
interpolation-based language models. Both Canny edge and DCT texture feature have languages 
that are less uniform than the HSV colour feature and this could explain why smoothing with 
the background collection model is more important for these features.

C onclusion  V .7  Jensen-Shannon distance (Jeffrey Divergence) is the best of the tested stan­
dard visual retrieval models for most visual features.

In terms of traditional visual retrieval models Jensen-Shannon distance (Jeffrey Divergence) 
is the best, Manhattan distance is in second place and Euclidean distance is consistently the 
worst. Jensen-Shannon distance has similarities to the language modelling approach but does 
not require external smoothing as it models the hypothetical common source using a midpoint 
distribution of the query and document. Unlike query-likelihood or document-likelihood, it is 
a symmetric distance measure that quantifies how well both the query and document match 
this common source. In essence it combines query and document-likelihood but in terms of 
the relative entropy measure. Though not used in most video retrieval systems, which actually 
predominantly use Euclidean or Manhattan distance, we believe that we have shown that Jensen- 
Shannon distance is highly suited to the task of feature matching for general video search. 
Euclidean distance performs worse than the other matching models primarily due to the fact that 
it magnifies the difference between visual symbols (histogram bins) by squaring the difference 
when comparing two images. This may be appropriate for exact match searching but for general 
video retrieval at least for our tested features it is not desirable. The MLE model is actually 
the only retrieval model to consistently produce worse results than Euclidean distance on the

to the fact that it models more spatial frequency than the other representations that were better
than it on the TRECVid 2002 collection.
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individual features Lower-order Minkowski distances such as Fractional distances (Howarth and 
Ruger, 2005) may close the performance gap with Jensen-Shannon distance, but we have as yet 
not evaluated these measures

C onclusion  V  8 The Jelinek-Mercer language model is the best language model for separate 
visual feature search and achieves results that are overall as good as the best standard visual 
retrieval model

The Jehnek-Mercer language model produces the best results for the Canny 5x5 64+1 re­
gional feature and the Jensen-Shannon distance (Jeffrey Divergence) produces on average 15% 
worse results for this feature on the three TRECVid collections The Jehnek-Mercer language 
model achieves the third best overall result for the DCT 5x5 3x3x3x3x3 feature, but is in fact 
best for both the TRECVid 2002 and TRECVid 2003 collections and is on average 9% better 
than Jensen-Shannon distance The Jehnek-Mercer language model produces slightly poor re­
sults for the colour feature achieving 10 6% poorer MAP than the Jensen-Shannon distance On 
the regional HSV colour feature the discounting-based language models actually perform bet­
ter than the combination-based language models and Laplace and Lidstone achieve on average 
only 2% less MAP than Jensen-Shannon distance Since all our document representations have 
the same number of samples (keyframes have the same dimensions), both Laplace and Lidstone 
can be thought of as interpolation with a uniform source unlike the Jehnek-Mercer language 
model which is an interpolation with a background collection We believe that Jehnek-Mercer 
smoothing is the overall the best choice if picking the same smoothing model for all features

C onclusion  V  9 The structural smoothing methods that combine the shot representation 
with adjacent shots, stones or the video structural units are not beneficial to visual-based video 
retrieval for the TRECVid 2003 news content or for the majonty of topics on the TRECVid 
2002 collection

The results when using video structure are extremely disappointing for visual features since 
the visual features represent nothing distinct when built from the adjacent shot’s keyframes or 
the whole video’s keyframes This is perhaps not surprising when we consider the high degree 
of visual dissimilarity between adjacent shots

8 4 Fusion Methods

In this thesis we investigated different fusion methods for combining our language model results 
for text and visual features The standard fusion methods consist of combining the results 
based on independent probability and their normalised scores or normalised ranks using either 
the average, weighted average, or maximum functions The probability-based fusion method 
simply assumes independence between features and visual examples and therefore multiplies 
their probabilities (or equivalently adds their log-likelihoods)

C onclusion  F  1 The results for multiple features are best combined using a weighted average 
of normalised scores
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This indicates that scores (the normalised top 1000 log-probabihties) can be fused together 
m a positive way where each feature plays a cooperative role in scoring documents in the fusion’s 
result list In follow on experiments, we identified instability m the weighting of different features 
between TRECVid collections and found that combining using CombSUM (summing normalised 
scores without weights) achieves overall better results (Me Donald and Smeaton, 2005)

Conclusion F 2 The results for multiple visual examples are best combined using the maxi­
mum of normalised scores or ranks

This implies that the results from the different visual examples that have previously been 
fused for multiple features cannot be reliably combined in a way where the scores for the dif­
ferent visual examples refine and corroborate each other Combining based on maximum nor­
malised score produced marginally better results than maximum normalised rank (round-robm) 
for combining multiple visual examples The closeness to the round-robin results suggests that 
each visual example represents a separate visual impression of the relevant items which cannot 
be more directly combined with each other

Conclusion F 3 The text and visual results are best combined using the weighted average of 
normalised scores

The weighted normalised score fusion method produces marginally better results than weighted 
normalised rank for combining text and visual results The similarity between normalised rank 
and normalised scores is not surprising since the visual scores are already quite linear and resem­
ble normalised ranks The linear nature of the visual scores is caused by the previous application 
of the normalised score fusion methods to combine visual features and visual examples In com­
parison combining text and visual scores using joint probability results in as poor results as 
the visual model alone, because its generative probabilities are many orders of magnitude more 
dominant m the combination than for the small sample of query text

Conclusion F 4 The visual-only results are improved by between 20% to 40% on the three 
video search test collections if we represent each topic using the single best image per topic instead 
of fusing all the visual example searches

It is not apparent to us whether a user, who does not have an intimate knowledge of the 
collection being searched, would be able to select the single best image for each topic Therefore 
we believe fusing the multiple results from the different visual examples is a good initial strategy 
Relevance feedback could use the knowledge of some examples being better than others to 
improve the ranking Combining visual examples using maximum normalised score or maximum 
normalised rank is a quite negative (almost non-fusion) approach to combining these results sets 
and this indicates why the single best image may produce a better ranking than the fusion of 
results from a set of visual examples
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8.5 Evaluation Methodology

In this thesis we compared retrieval models and feature representations using fully automatic 
experiments for three standard TRECVid test collections Our evaluation procedure involved 
tuning all parametric retrieval models in an unbiased manner by optimising their parameters in 
terms of the MAP measure on a separate collection

C onclusion  E  1 The TRECVid collections and multimedia topics support the fully automatic 
evaluation of different retrieval models and feature representations m controlled and repeatable 
experiments

Unlike the official TRECVid manual experiments, fully automatic experiments as provi­
sionally supported by the TRECVid 2004 initiative provide a means through which different 
researchers can directly compare results The current TRECVid manual and interactive experi­
ments are far more difficult to interpret or compare between retrieval groups The investigation 
of retrieval models and alternative feature representations, as m this thesis, is ideally suited 
to fully automatic and repeatable experiments Of course interfaces, more advanced query for­
mulations or different user scenarios are either best suited to user-based interactive or manual 
experiments

C onclusion  E  2 The tuning of parameters for visual-based search by optimising the MAP 
measure can result m over-fitting the parameters on a minority of topics, which produces unsuit­
able parameters for the unbiased testing on another collection

The performance of visual-only searching on the TRECVid collections is highly variable 
and a small minority of one or two topics can dominate the MAP statistic, thereby skewing 
the parameter selection totally to just these topics This can lead to either underestimating 
the amount of smoothing or choosing a totally inappropriate smoothing parameter value The 
inappropriate parameter settings are often caused by topics with very few relevant results, which 
can achieve a very high average precision from the inclusion of any of its relevant results in the 
top ranked documents This problem with optimising using the MAP measure is present in 
other information retrieval tasks when the set of topics are very difficult or vary significantly m 
difficultly level Machine learning optimisation methods and other solutions to tuning parameters 
such as dampening each topics average precision with a suitable monotonic function before 
calculating MAP may be more effective than using MAP directly It should be kept m mind 
that the optimisation criteria and the evaluation criteria need not be the same

C onclusion  E  3 Performance measures, such as MAP or overall precision at N documents, 
that average over the TRECVid topics can be unreliable measures for comparing the retrieval 
results of visual-only searching

Since the visual-only retrieval results tend to be very poor with a few topics dominating the 
unbiased results, these measures can sometimes represent the performance of the best one or 
two topics more than the performance across the whole set of topics This problem with using 
the mean performance m visual-only results implies that we need to use statistical tests or to
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compare results individually on topics in order to identify reliable improvements Statistical tests 
are a useful mechanism to sort through the differences between average performance measures 
in order to identify the more meaningful or more consistent differences between retrieval results 
from those differences that are likely due to chance In some cases looking at the individual topic 
results can be informative as to the differences between retrieval runs This observation implies 
that researchers will find it difficult to properly compare their results with published results 
unless they have access to individual topic results in order to use statistical tests or to compare 
them individually on each topic The problem of interpreting mean performance of visual-only 
runs over the set of TRECVid topics can be alleviated by using multiple TRECVid collection 
when reporting experiments Furthermore the results of multiple search tasks may be aggregated 
together to achieve more reliable statistics on which both to compare mean performance and 
to perform statistical tests Ideally each years TRECVid experiment would contain more than 
25 topics to make the visual-only results more reliable but aggregating results from subsequent 
years provides a pragmatic solution

C onclusion  E  4 The unbiased fully automatic evaluation strategy suppresses the measurable 
benefits of the fusion of visual-based searching with text-based searching

The combination of text searching with visual searching is a beneficial strategy for some 
topics whereas for other topics it decreases retrieval performance compared to text searching 
alone Some very good text-based topics can be adversely effected decreasing the MAP (or other 
measures) by such an amount that the improvement in the other topics is largely swallowed up 
Text-only searching and combined text and visual searching are strategies to find video shots 
and we believe that combined text and visual searching need not be consistently better than 
text-only searching for every topic m order for users to consider it useful We found that Oracle- 
based runs, where an Oracle makes the best choice between the different search strategies, such 
as between text-only, visual-only and combined text and visual searching, provide a useful fully 
automatic experiment showing the potential benefit of visual search in the video shot retrieval 
task However, these Oracle-based runs have limited use as they are biased and therefore provide 
unreliable results for the direct comparison of retrieval models

8.6 Future Work

The discrete language modelling approach presented in this thesis can be extended to support 
updating and reweighting of the text and visual query representations As described in chapter 
3 we can use relative entropy (or equivalently KL divergence), which supports the updating of 
the query representation withm a relevance feedback framework, to score document language 
models relative to a query language model (Zhai and Lafferty, 2001a) Of course since both 
text and visual features use the same discrete language model representation, any relevance 
feedback approach for the text feature can also be applied to our visual features Related to 
the notion of relevance feedback is the Co-Retrieval approach of (Yan and Hauptmann, 2004), 
which automatically incorporates additional features based on their consistency with the initial 
query results This Co-Retrieval approach was successfully applied to the TRECVid 2003 search 
topics using the Euclidean distance measure and it would be interesting to investigate it for the 
combination of our generative probabilities of each of the visual features A simpler approach
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to an automatic reweighting mechanisms is to classify search requests into some broad ontology 
(eg finding people, objects, natural scenes, etc (Hauptmann et al , 2004)) and to tune our 
retrieval approaches to these specific types of queries This would allow all default weighting of 
the different features to be more appropriate for the type of query and may provide a more solid 
basis for automatic relevance feedback or feature boosting

We believe that our text experiments in chapter 5 should be performed on other text de­
scriptions of video shot such as closed captions, screen captions, and other recognised video 
text This would provide a wider understanding of the benefits of text-based searching in video 
retrieval We are also currently investigating extensions to our proposed hierarchical language 
models to consider hybrid hierarchical smoothing where the individual levels in the hierarchy 
use their own smoothing models and are combined with other levels in the hierarchy using a lin­
ear interpolation This hybrid approach may better support alternative smoothing methods for 
hierarchical video representations than the proposed hierarchical language models m this thesis 
It would also be informative to benchmark the standard retrieval models BM25 and TF-IDF for 
the hierarchical structures so as to support comparison with the hierarchical language models

Our experiments into visual languages for HSV colour, Canny edge and DCT texture his­
togram features m chapter 6 should be further extended to other types of visual feature represen­
tations such as co-occurrence matrices, coherence vectors and correlograms Gabor wavelets are 
a more popular and successful texture representation than DCT coefficients and it would infor­
mative to see whether histogram representation of Gabor wavelet responses can be successfully 
used in the discrete language modelling approach to visual retrieval

We believe that a comprehensive study of the MPEG7 visual features for general video 
search would be a worthwhile contribution to the video retrieval field This standard provides 
compact visual features such as MPEG7 Scalable Colour, MPEG7 Colour Structure, MPEG7 
Edge Histogram and MPEG7 GoF/GoP Colour descriptors that are amenable to the language 
modelling approach Retrieval models for other features m the standard and fusion methods 
should be investigated with the TRECVid video retrieval task, which was unavailable during the 
development of this standard

It would also be interesting to investigate language models for extreme representations such 
as with a large number of regions, or for very large non-regional visual languages to tease out 
the role of smoothing in sparser visual representations Unlike text language models, visual 
features have dimensions with ordinal scales that may provide an extra avenue for smoothing 
visual terms based on the local neighbourhood of similar valued features A limited version of 
this smoothing, called local-smoothmg, was applied m the original discrete generative colour 
model for video retrieval (Jm and Hauptmann, 2002), which smoothed a region’s colour model 
with colour models from spatially close regions

A further consideration m visual search is non-keyframe based video shot representations 
and our approach which simply represents each shot with a keyframe’s visual features can be 
applied to indexing key-segments, moving regions or objects within a shot Our preliminary 
investigations of spatio-temporal descriptions did not show much improvement compared to the 
keyframe based approach We think structural smoothing may be useful at the sub-shot level to 
combine the probability models of the moving regions (or objects) with the probability models
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for the whole shot’s visual contents with a somewhat smaller enclosing temporal neighbourhood 
(1 e with a fixed number of adjacent frames)

Our research into fusion methods for video search in chapter 7 could be further expanded 
to establish whether the fusion of the top 2 or 3 visual examples achieves better results than 
searching using the single best visual example for each topic We could also investigate whether 
combining different result set sizes for visual features improves performance consistently across 
topics and collections Furthermore, it would be interesting to look into score distribution 
modelling (Manmatha et al , 2001) and regression methods for combining the different results

Our optimisation strategy for the retrieval model’s parameters requires further consideration 
We believe we need to identify a better optimisation criteria for our retrieval models since our 
current strategy of optimising MAP leads to over-fitting of some of the language models on a 
minority of visual topics, which we believe may have contributed to poorer unbiased results 
We intend to look at normalising the individual topic’s results m order to reduce the effect of 
one or two topics dominating the selection of the smoothing parameters Since the TRECVid 
2003 and TRECVid 2004 collections are so similar it would be interesting to cross-validate the 
parametric language models on both collections, which may result m more consistent and clearer 
unbiased results for TRECVid 2003 since we currently choose its parameters based on the very 
different TRECVid 2002 collection So far our evaluation strategy is system-oriented and it would 
be prudent to compare search strategies such as automatic fusion of features versus choosing 
the importance of each feature, or the choice between text, visual, or both text and visual 
retrieval compared with manually setting the importance of text and visual features m user- 
based experiments We believe that our system-oriented experiments provide a firm foundation 
on which to build upon in user-based experiments m order to get a clearer understanding of 
what works or doesn’t work for users involved m the video retrieval task

8 .7  Summary

In this thesis we extended the range of discrete language modelling based information retrieval 
from text to full multimedia retrieval and showed through exhaustive empirical experiments 
on three video test collections that this consistent approach emulates the retrieval performance 
achieved by media-specific retrieval models The importance of this research is that extensions 
to the discrete language modelling approach can be applied to both text and visual based video 
retrieval, thereby doubling the scope of the benefits This research also provides a complementary 
viewpoint on the traditional histogram-based retrieval approaches to video retrieval

This thesis only touches at some of the potential for applying this consistent discrete language 
modelling retrieval approach to both text and visual based retrieval of video content The 
discrete language modelling approaches presented m this thesis can be further extended, for 
example through the use of relevance feedback, ordinal-based smoothing of visual features, object 
segmentation and better probabilistic modelling for the combination of the different feature’s 
language modelling results
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Table 28 TRECVid 2002 search topics I =  Number of images in topic description V 
= Number of Videos m topic description Rel = Number of relevant shots for topic in 
collection Classification is reproduced from (Smeaton and Over, 2003) and is based on a 
classifications of visual topics (Armitage and Enser, 1996) into general and specific requests 
for persons or things (PT), events (E) or places (P)

Specific Generic

T T e x t  D e s c r ip t io n I V R e l P T P P T E P

75 F ind  shots w ith  E ddie  R ickenbacker in them 2 2 15 P T

76 F ind  add itio n a l sho ts w ith  Jam es H C hand ler 0 3 47 P T

77 F in d  p ic tu res  of G eorge W ashing ton 1 1 3 P T

78 F ind  sho ts w ith  a  dep ic tion  of A braham  Lincoln 1 1 6 P T

79 F in d  shots of people spending  leisure tim e a t  th e  beach, 
for exam ple walking, sw im m ing, sunning, p lay ing  in th e  
sand  Some p a r t of th e  beach or bu ild ings on it should  
b e  visible

0 4 55 P T E P

80 F in d  sho ts of one or m ore m usicians a  m an  or w om an 
playing a  m usic in s tru m en t w ith  in s tru m en ta l m usic au ­
d ible M usician(s) and  m stru m en t(s) m ust be a t  least 
p a rtly  visible som etim e d u ring  th e  sho t

0 2 63 P T E

81 F ind  shots o f football players 0 4 15 P T

82 F ind  sho ts of one or m ore w om en s tan d in g  m long dresses 
D ress should be one piece and  ex tend  below  knees T he  
en tire  d ress from  to p  to  end  of d ress below  knees should 
be visible a t som e po in t

0 3 170 P T E

83 F ind  sho ts of th e  G olden G a te  B ridge 5 0 33 P T P

84 F ind  shots of P rice Tower, designed by  F rank  Lloyd 
W right and  b u ilt in B artlesville, O klahom a,

1 0 4 P

85 F ind  shots con ta in ing  W ashing ton  Square P a rk ’s arch  in 
New York C ity  T h e  en tire  arch  should  be visible a t  som e 
p o in t

0 1 7 P

86 F ind  overhead views of cities - dow ntow n an d  subu rbs 
T he view point should be h igher th a n  th e  h ighest bu ild ing  
visible

0 4 105 P T P

87 F ind  sho ts of oil fields, rigs, derricks, oil d rillin g /p u m p in g  
equ ipm ent S hots ju s t  of refineries a re  no t desired

0 1 40 P T P

88 F ind  sho ts w ith  a  m ap  (sketch or graphic) of th e  conti­
nen ta l US

0 4 72 P T

89 F ind  shots of a  living bu tte rfly 2 0 10 P T E

90 F in d  m ore sho ts w ith  one or m ore snow -covered m oun ta in  
peaks or ridges Some sky m ust be  visible them  beh ind

0 3 75 P T P

91 F ind  sho ts w ith  one or m ore p a rro ts 1 1 17 P T

92 F ind  sho ts w ith  one or m ore sailboats, sailing ships, clip­
p er ships, or ta ll sh ips - w ith  som e sail(s) unfurled

3 2 47 P T

93 F ind  sho ts ab o u t live beef or da iry  ca ttle , ind iv idual cows 
or bulls, herds of c a ttle

0 5 161 P T

94 F ind  m ore sho ts of one or m ore groups of people, a  
crow d, w alking m  an  u rb an  env ironm ent (for exam ple 
w ith  stree ts , traffic, a n d /o r  buildings)

0 3 303 P T E P

95 F ind  sho ts of a  nuclear explosion w ith  a  m ushroom  cloud 0 3 17 P T E

96 F ind  add itio n a l sho ts w ith  one or m ore US flags flapping 0 2 31 P T P T

97 F ind  m ore sho ts w ith  m icroscopic views of living cells 0 2 82 P T E

98 F ind  sho ts w ith a  locom otive (and  a tta ch ed  ra ilroad  cars 
if any) approach ing  th e  view er

0 5 56 P T E

99 F in d  sho ts of a  rocket or missile tak in g  off S im ulations 
are accep tab le

0 2 11 P T E
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Table 29 TRECVid 2003 search topics I = Number of images in topic description V = 
Number of Videos in topic description Rel = Number of relevant shots for topic in collection 
Classification is reproduced from (Kraaij et a l , 2004) and is based on a classifications of 
visual topics (Armitage and Enser, 1996) into general and specific requests for persons or 
things (PT), events (E) or places (P)

T o p T e x t  D e s c r ip t io n I V R e l

Specific 
P T  P

G eneric 

P T  E  P

100 F ind  sho ts w ith  aerial views con ta in ing  b o th  one 
or m ore bu ild ings an d  one or m ore roads

4 4 87 P T

101 F m d  shots of a  basket being  m ade - th e  basketball 
passes dow n th ro u g h  th e  hoop  an d  net

2 4 104 P T  E

102 F m d sho ts from  beh ind  th e  p itcher in a  baseball 0 5 183 P T  E
gam e as he th row s a  ball th a t  th e  b a tte r  swings
a t

103 F ind  sho ts o f Y asser A rafa t 1 0 33 P T

104 F ind  shots of an  a irp lane  tak in g  off 1 2 44 P T E

105 F ind  shots of a  helicop ter in flight or on th e  
g round

4 2 52 P T E

106 F ind  sho ts of th e  Tom b of th e  U nknow n Soldier 
a t  A rling ton  N ationa l C em etery

4 0 31 P T  P

107 F m d sho ts of a  rocket or missile tak in g  off S im ­
u lations a re  accep tab le

4 4 62 P T P

108 F ind  shots of th e  M ercedes logo (s tar) 3 0 34 P T

109 F m d shots of one or m ore tan k s 2 2 16 P T

110 F ind  sho ts of a  person  d ivm g in to  som e w ater 3 1 13 P T E

111 F ind  sho ts w ith  a  locom otive (and  a tta ch ed  rail­
road  cars if any) approach ing  th e  viewer

3 4 13 P T E

112 F ind  sho ts show ing flam es 3 4 228 P T

113 F ind  m ore sho ts w ith  one or m ore snow -covered 
m ou n ta in  peaks or ridges Some sky m ust be  vis­
ible th em  behind  th em

3 2 62 P T P

114 F ind  sho ts of O sam a B in L aden 3 0 26 P T

115 F m d  sho ts of one or m ore roads w ith  lo ts of vehi­
cles

5 4 106 P T P

116 F in d  shots of th e  Sphinx 3 0 12 P T

117 F in d  sho ts of one or m ore groups of people, a 
crow d, w alking m an u rb an  env ironm ent (for ex­
am ple w ith  stree ts , traffic, a n d /o r  buildings)

4 4 665 P T E P

118 F ind  sho ts of C ongressm an M ark  Souder 2 0 6 P T

119 F in d  shots of M organ F reem an 3 0 18 P T

120 F in d  sho ts of a  g raph ic  of Dow Jones In d u s tria l 
A verage show ing a  rise for one day  T h e  num ber 
of po in ts  risen th a t  day m ust be visible

0 6 47 P T

121 F m d  sho ts of a  m ug or cup  of coffee 3 2 95 P T

122 F in d  sho ts of one or m ore ca ts  A t least p a r t  
o f b o th  ears, b o th  eyes, and  th e  m ou th  m ust be 
visible T he b o d y  can be m any  position

4 3 122 P T

123 F ind  sho ts of P ope Jo h n  P au l II 5 2 45 P T

124 F ind  sho ts of th e  fron t of th e  W h ite  H ouse in th e  
d ay tim e w ith  th e  fountain  runn ing

2 3 10 P T E P
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Table 30 TRECVid 2004 search topics I =  Number of images in topic description 
V = Number of Videos in topic description Rel = Number of relevant shots for topic 
in collection Classification is reproduced from (Kraaij et al , 2004) and is based on a 
classifications of visual topics (Armitage and Enser, 1996) into general (Gen) and specific 
requests for persons or things (PT), events (E) or places (P)

Specific G eneric

T o p ic T e x t  D e s c r ip t io n I V R e l P T P T E P

125 F ind  sh o ts  of a  s tre e t scene w ith  m ultip le  pedes­
tr ia n s  in m otion  and  m ultip le  vehicles m  m otion  
som ew here in th e  sho t

1 2 154 P T E  P

126 F in d  sho ts of one or m ore bu ild ings w ith  flood 
w aters a round  i t / th e m

2 4 118 P T

127 F in d  sho ts of one or m ore people and  one or m ore 
dogs w alking to g e th er

0 6 64 P T E

128 F in d  sho ts of U S C ongressm an H enry  H yde’s 
face, whole or p a r t, from  any  angle

5 1 115 P T

129 F ind  sh o ts  zoom ing  m  on th e  U S C ap ito l dom e 2 3 16 P T

130 F ind  sho ts of a  hockey rink  w ith  a t least one of 
th e  ne ts fully visible from  som e p o in t of view

2 3 162 P T P

131 F ind  sho ts of fingers strik ing  th e  keys on a  key­
board  w hich is a t  least p a rtia lly  visible

0 4 86 P T E

132 F ind  sho ts of people m oving a  s tre tch e r 0 5 41 P T E

133 F ind  sho ts of S addam  H ussein 3 2 46 P T

134 F in d  shots of B oris Y eltsin 3 4 22 P T

135 F ind  shots of Sam  D onaldson’s face - w hole or 
p a rt, from any angle, b u t includ ing  b o th  eyes No 
o th e r people visible w ith  h im

1 4 54 P T

136 F in d  sho ts of a  person h ittin g  a  golf ball th a t  th en  
goes in to  th e  hole

0 3 19 P T E

137 F ind  shots of B enjam in  N etanyahu 4 4 106 P T

138 F ind  sho ts of one or people going up  or dow n som e 
visible step s or s ta irs

4 4 97 P T E

139 F ind  sho ts of a  handheld  w eapon firing 4 4 55 P T E

140 F ind  sho ts of one or m ore bicycles rolling along 3 3 69 P T E

141 F in d  sho ts of one or m ore um brellas 5 5 54 P T

142 F ind  m ore sho ts of a  ten n is  p layer co n tac tin g  th e  
ball w ith  his or her ten n is  racket

3 3 41 P T E

143 F ind  sh o ts  of one or m ore w heelchairs T hey  m ay 
be m otorized or no t

4 4 39 P T E

144 F ind  sho ts of Bill C lin ton  speak ing  w ith  a t  least 
p a r t  of a  U S flag visible beh ind  him

2 2 96 P T P T E

145 F ind  sho ts of one or m ore horses m  m otion 2 5 67 P T E P

147 F ind  sho ts of one or m ore bu ild ings on fire, w ith  
flames an d  sm oke visible

0 4 85 P T E

148 F in d  sho ts of one or m ore signs or ban n ers  carried  
by people a t  a  m arch  or p ro tes t

5 6 194 P T
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Table 31: Comparison of the adj-only ASR text representation with the shot-only and video-only representations for the different retrievals on the TRECVid
2002 collection.

T R E C V ID  2002  

R etrieva l M ethod

A d j-O n ly V. Sho t-O n ly V. V ideo-O nly

Prm M A P P10 P30 P I 00 Im pr. ~  W ile. Im pr. ~  W ile.

M L E  (A d j) 4 .0 2 6 2 .060 .013 .000 + 29 .3%  -  .233 + 31 .3%  ~  .250

L a p la c e  (A d j) 4 .0 9 7 8 .180 .140 .089 + 53 .4%  ~  ,012 + 61 .8%  ~  .079

N a t u r a l  (A d j) 4 .0 8 5 9 .140 .135 .086 + 33 .1%  ~  ¿014 + 23 .9%  -  .274

L id s to n e  (A d j,  A) 4 ,0 .06 .1 0 2 2 .176 .151 .088 + 58 .8%  ~  ¿005 + 66 .6%  ~  .066

Best (2 ,0 .34 .1 2 8 7 .216 .168 .079) +96 .5%  ~  m i + 83.1%  ~  .112

L in e a r  (A d j ,  a ) 4 ,0 .07 .0 9 9 5 .176 .128 .088 + 55 .8%  ~  ¿013 + 43 .3%  ~  .177

Best (1 ,0 .04 .1 1 6 0 .224 .164 .071) + 68 .3%  ~  ,000 + 57 .3%  ~  .307

A b s o lu t e  D is c o u n t in g  (A dj,<5) 4 ,0 .83 .1 0 6 9 .180 .148 .089 + 73 .1%  ~  ¿003 + 54 .9%  ~  .125

Best (2 ,0 .89 .1 2 5 6 .220 .163 .079) + 85 .8%  ~  ,001 + 77 .6%  -  .106

W i t t e n - B e l l  (A d j) 4 .1 1 8 4 .200 .135 .092 + 70 .4%  ~  ,010 + 68 .5%  ~  .100

J e l in e k - M e r c e r  (A d j, A) 4 ,0 .02 .1 0 6 9 .204 .137 .092 + 53 .8%  -  M l + 55 .3%  ~  .084

Best (1 ,0 .67 .1 2 2 0 .224 .159 .075) + 73 .4%  ~  ,000 + 73 .5%  ~  .204

A b s o lu t e  (A dj,<5) 4 ,0 .85 .1 2 2 1 .200 .152 .093 + 77 .5%  ~  ,004 + 74 .8%  ~  .054

Best (2 ,0 .84 .1 2 9 0 .236 .165 .083) + 83 .3%  ~  ,000 + 80 .3%  ~  .094

D ir i c h le t  (A d j,/x ) 4 ,750 .1 1 6 6 .184 .140 .086 + 69 .2%  ~  .007 + 80 .4%  ~  j047

Best (1 ,100 .1 2 6 8 .236 .159 .075) + 82 .0%  ~  ,000 + 82.2%  ~  .177

B a y e s ia n  ( A d j , / i ) 4 ,750 .1 1 4 8 .184 .143 .082 + 72 .2%  ~  ,007 + 83 .6%  -  ,044

Best (2 ,250 .1 2 3 2 .228 .149 .077) + 82 .7%  ~  ,000 + 76 .0%  ~  .118

C o o r d .  L e v e l R a n k in g  ( A d j) 4 .0 6 5 1 .184 .128 .071 + 31 .8%  ~  .319 + 45 .2%  ~  .058

T F - I D F  (A d j) 4 .0 9 8 8 .184 .159 .084 + 63 .4%  ~  ,004 + 72 .7%  ~  ,021

B M 2 5  ( A d j , b , k i , k 3) 4 ,0 .0 5 ,1 .2 5 ,1 .1 0 8 8 .184 .163 .088 + 60 .2%  ~  .004 + 66 .2%  ~  ,038

Best (2 ,0 .3 0 ,1 .2 0 ,2 0 0 .1 3 5 1 .252 .163 .083) + 79 .9%  ~  .000 + 90 .2%  ~  .047

A v e r a g e  o f  u n b ia s e d .0 9 7 9 .174 .134 .081 + 57 .3% + 59 .2%

A v e r a g e  o f  b e s t .1 2 5 8 .230 .161 .078 + 81 .5% + 77 .5%



Table 32: Comparison of the adj-only ASR text representation with the shot-only, video-only and story-only representations for the different retrievals
the TRECVid 2003 collection.

T R E C V ID  2003 A d j-O n ly V. S ho t-O n ly V. V ideo-O nly V. S to ry -O n ly

R etrieva l M ethod Prrn M A P P30 P100 Im p r. ~  W ile. Im pr. ~  W ile. Im pr. ~  W ile.

M L E  (A d j) 2 .0 5 4 9 .039 .001 + 97 .9%  ~  .087 +  126.5% ~  .150 -41.9%  ~  ¿002

L a p la c e  (A d j) 2 .0 8 7 8 .111 .056 + 5 2 .9 %  -  .058 + 251 .9%  ~  .004 -6.9%  ~  .681

N a t u r a l  (A d j) 2 .0 8 6 3 .117 .054 + 45 .3%  ~  .061 + 266 .0%  ~  ¿002 -27.7%  ~  ¿003

L id s to n e  (A d j,  A) 2 ,0 .3 4 .0 9 0 2 .113 .056 + 48 .3%  ~  .196 +243 .6%  ~  ¿004 -16.2%  ~  .198

Best (1 0 ,0 .25 .1 0 8 7 .145 .068) + 76 .5%  ~  .116 +312 .4%  ~  ¿000 -3.2%  ~  .272

L in e a r  (A d j ,  a ) 2 ,0 .01 .0 8 0 6 .108 .054 + 38 .3%  ~  .152 + 241 .7%  ~  ¿000 -31.0%  -  ¿003

Best (4 ,0 .0 7 .0 8 9 2 .095 .074) + 49 .5%  ~  .163 + 239 .6%  ~  ¿000 -26.6%  -  ¿014

A b s o lu t e  D is c o u n t in g  (Adj,<5) 2 ,0 .8 9 .0 8 6 1 .107 .059 + 42 .4%  ~  .214 + 260 .5%  -  ¿000 -21.8%  ~  .058

Best (4 ,0 .8 3 .1 0 0 4 .103 .071) + 61 .3%  ~  .238 + 280 .8%  ~  ¿000 -14.4%  ~  ¿046

W i t t e n - B e l l  (A d j) 2 .0 9 2 7 .136 .076 + 26 .9%  ~  .198 + 298 .5%  ~  ¿000 -28.1%  ~  ¿001

J e l in e k - M e r c e r  (A d j ,  A) 2 ,0 .7 4 .0 9 0 6 .127 .076 + 24 .0%  ~  .230 + 258 .3%  ~  ¿000 -30.6%  ~  ¿002

Best (4 ,0 .0 2 .0 9 8 4 .115 .086) + 33 .7%  ~  .358 + 285 .3%  ~  ¿000 i to pi to as I lb If—̂ lo

A b s o lu t e  (Adj,<5) 2 ,0 .84 .0 9 2 9 .129 .076 + 28 .1%  ~  .177 + 262 .1%  ~  ¿000 -26.1%  ~  ¿023

Best (1 0 ,0 .85 .1 0 7 3 .143 .076) + 46 .1%  ~  .452 + 306 .4%  ~  ¿000 -17.9%  ~  .087

D i r i c h le t  ( A d j , / i ) 2 ,225 .1 0 0 8 .128 .080 + 3 0 .2 %  ~  .170 + 297 .7%  ~  ¿000 -17.4%  ~  ¿046

Best (4 ,7 5 0 .1 1 3 8 .127 .088) + 46 .5%  -  .272 + 344.3%  ~  ¿000 -9.1%  ~  .281

B a y e s ia n  (A d j ,/z) 2 ,2 5 0 .1 0 1 0 .128 .080 + 29 .9%  ~  .156 + 297 .5%  ~  ¿000 -17.3%  ~  ¿044

Best (4 ,7 5 0 .1 1 3 8 .127 .088) +46 .1%  ~  .272 + 344 .5%  ~  ¿000 -9.2%  ~  .246

C o o r d .  L e v e l R a n k in g  (A d j) 2 .0 6 8 6 .101 .057 + 36 .4%  ~  .206 + 212 .6%  ~  ¿001 -25.9%  ~  .611

T F - I D F  ( A d j) 2 .0 9 2 4 .131 .067 + 45 .0%  ~  .079 + 250 .1%  ~  ¿000 -5.4%  ~  .823

B M 2 5  ( A d j , b , k i , k 3 ) 2 ,0 .3 0 ,1 .2 0 , 200 .0 9 6 9 .137 .076 + 2 9 .9 %  ~  .096 + 282 .4%  -  ¿000 -16.9%  ~  .177

Best (1 0 ,0 .0 0 ,1 .0 0 ,3 0 0 .1 2 9 8 .125 .076) + 65 .6%  ~  .484 + 385 .6%  ~  .000 -2.3%  ~  .058

A v e r a g e  o f  u n b ia s e d .0 8 7 3 .115 .062 + 41 .1% + 253 .5% -22.4%

A v e r a g e  o f  b e s t .1 0 7 7 .122 .078 + 53 .2% + 312 .4% -13.6%



Table 33: Comparison of the adj-only ASR text representation with the shot-only and video-only representations for the different retrievals on the TRECVid
2004 collection.

T R E C V ID  2004 A d j-O n ly V. S ho t-O n ly V. V ideo-O nly

R etrieval M ethod P rm M A P P30 P I 00 Im pr. ~  W ile. Im pr. ~  W ile.

M L E  (A d j) 4 .0 2 9 4 .028 .021 +30 .8%  ~  .199 +766 .8%  ~  .055

L a p la c e  (A d j) 4 .0 4 0 4 .090 .057 + 13 .9%  ~  .767 +871 .1%  ~  ¿000

N a t u r a l  (A d j) 4 .0 4 1 8 .077 .057 + 8 .5%  -  .464 + 774.4%  ~  ¿001

L id s to n e  (A d j,  A) 4 ,0 .06 .0 4 3 3 .091 .060 + 21 .3%  -  .665 +878 .7%  ~  ¿000

Best (4 ,0 .02 .0 4 4 2 .090 .060) +23 .7%  ~  .708 + 794.4%  ~  ¿000

L in e a r  (A d j,  a ) 4 ,0 .0 7 .0 4 1 9 .083 .057 + 3 .9%  ~  .631 +751.9%  -  ¿001

Best (3 ,0 .56 .0 4 1 9 .086 .056) + 3 .7 %  ~  .665 +748.1%  -  ¿001

A b s o lu t e  D is c o u n t in g  ( A d j ,  (5) 4 ,0 .8 3 .0 4 2 5 .083 .058 + 27 .7%  ~  .500 +895.9%  -  ¿000

Best (3 ,0 .54 .0 4 3 1 .086 .059) + 6 .7%  ~  .619 +773.6%  ~  ¿001

W i t t e n - B e l l  (A d j) 4 .0 5 2 5 .109 .070 + 13 .6%  ~  .572 +917 .3%  ~  ¿000

J e l in e k - M e r c e r  (A d j ,  A) 4 ,0 .02 .0 5 1 0 .107 .067 + 9 .5%  ~  .608 + 877.9%  ~  ¿000

Best (3 ,0 .78 .0 5 4 5 .113 .071) + 16 .4%  ~  .381 + 937.4%  ~  ¿000

A b s o lu t e  (A d j ,  5) 4 ,0 .8 5 .0 5 2 6 .119 .070 + 20 .4%  -  .596 +1,208 .9%  ~  ¿000

Best (3 ,0 .61 .0 5 4 3 .112 .074) + 17 .3%  -  .346 + 914.8%  ~  ¿001

D ir i c h le t  (A d j,/z ) 4 ,7 5 0 .0 5 5 9 .117 .070 + 26 .8%  ~  .560 +1,135 .7%  ~  ¿000

Best (2 ,750 .0 5 8 3 .116 .087) + 28 .7%  ~  .243 +  1,009.3% ~  ¿000

B a y e s ia n  (A d j,/x ) 4 ,750 .0 5 5 7 .119 .070 + 27 .5%  ~  .548 +1,129 .6%  ~  ¿000

Best (2, 750 .0 5 8 0 .114 .087) + 29 .0%  ~  .243 +1,007 .8%  ~  ¿000

C o o r d .  L e v e l R a n k in g  ( A d j ) 4 .0 2 9 1 .062 .051 -17.8%  ~  .124 +1,741 .3%  ~  ¿000

T F - I D F  (A d j) 4 .0 5 6 3 .117 .071 + 27 .2%  ~  .642 + 946.5%  ~  ¿000

B M 2 5  ( A d j , b , k i , k 3) 4 ,0 .0 5 ,1 .2 5 ,1 .0 5 5 6 .116 .071 + 22 .2%  ~  .488 +1,077 .3%  ~  ¿000

Best (2 ,0 .0 0 ,1 .2 5 ,5 0 .0 5 8 6 .113 .084) + 25 .3%  ~  .331 + 1 ,123 .4%  -  .000

A v e r a g e  o f  u n b ia s e d .0 4 6 3 .094 .061 + 16 .8% +998.1%

A v e r a g e  o f  b e s t .0 5 1 6 .104 .072 + 18 .9% +913.6%



Table 34: Comparison of the story-only ASR text representation with the shot-only, adj-only and video-only representations for the different retrievals
the TRECVid 2003 collection.

T R E C V ID  2003 S to ry-O n ly V. Sho t-O nly V. A d j-O n ly V. V ideo-O nly

R etrieva l M ethod Prm M A P P30 P I 00 Im pr. ~  Wile. Im pr. ~  W ile. Im pr. ~  W ile.

M L E .0 9 4 5 .091 .039 +240 .9%  ~  ¿021 + 72 .2%  ~  ¿002 +290.0%  ~  ¿009

L a p la c e .0 9 4 3 .067 .072 + 64 .3%  ~  .431 + 7 .4%  ~  .681 +277 .9%  ~  ¿000

N a t u r a l .1 1 9 4 .156 .101 +  100.9% ~  ¿044 + 38 .3%  ~  ¿003 +406 .3%  ~  ¿000

L id s to n e  (A) 0.02 .1 0 7 6 .123 .096 + 76 .8%  ~  .132 + 19 .3%  ~  .198 +309.9%  -  ¿000

Best (0.01 .1 1 2 3 .124 .100) + 82 .3%  ~  .091 + 3 .3%  -  .272 +326 .1%  ~  ¿000

L in e a r  ( a ) 0.97 .1 1 6 9 .124 .101 +  100.4% ~  JU 9 +44 .9%  ~  ¿003 +395 .2%  ~  ¿000

Best (0.67 .1 2 1 6 .143 .100) +103.8%  ~  ¿049 + 36 .3%  ~  ¿014 + 362.9%  ~  ¿000

A b s o lu t e  D is c o u n t in g  (<5) 0.94 .1 1 0 2 .125 .092 + 82 .2%  ~  .058 + 28 .0%  ~  .058 + 361.3%  ~  ¿000

Best (0.40 .1 1 7 2 .144 .095) + 88 .3%  ~  .068 + 16 .8%  ~  ¿046 + 344 .7%  ~  .000

W it t e n - B e l l .1 2 9 0 .145 .112 + 76 .4%  ~  .104 + 39 .0%  ~  ¿ m i + 454.1%  -  ¿000

J e l in e k - M e r c e r  (A) 0.76 .1 3 0 5 .152 .110 + 78 .7%  -  .090 + 44 .1%  -  ^002 +416 .2%  ~  ¿000

Best (0.92 .1 3 3 3 .156 .113) + 81 .2%  ~  ¿041 + 35 .5%  -  ¿010 + 422.0%  -  ¿000

A b s o lu t e  (5) 0.80 .1 2 5 7 .155 .111 + 73 .2%  ~  .085 + 35 .2%  ~  ¿023 + 389 .7%  ~  ¿000

Best (0.64 .1 3 0 6 .163 .109) + 77 .8%  ~  .065 +21 .7%  -  .087 + 394 .7%  ~  ¿000

D ir i c h l e t  (/x) 75 .1 2 2 0 .145 .109 + 57 .6%  ~  .180 + 21 .1%  ~  ¿046 + 381 .5%  ~  ¿000

Best (50 .1 2 5 2 .151 .108) + 61 .3%  ~  .180 + 10 .1%  -  .281 +389 .0%  ~  ¿000

B a y e s ia n  (//) 75 .1 2 2 2 .145 .109 + 57 .1%  ~  .188 + 21 .0%  ~  ¿044 + 381.0%  ~  ¿000

Best (25 .1 2 5 3 .152 .106) + 60 .9%  ~  .163 + 10 .1%  ~  .246 +389.4%  ~  ¿000

C o o r d .  L e v e l R a n k in g .0 9 2 5 .071 .054 +84 .0%  ~  .309 + 34 .9%  -  .611 +321.6%  ~  ¿000

T F - I D F .0 9 7 7 .077 .070 + 53 .3%  ~  .473 + 5 .7%  ~  .823 +270.0%  ~  ¿000

B M 2 5  ( b , k i , k 3 ) 0 .4 0 ,1 .5 5 ,1 0 0 .1 1 6 6 .133 .106 +56 .3%  -  .159 + 20 .3%  ~  .177 + 360.0%  ~  ¿000

Best (1 .0 0 ,1 .3 5 ,2 0 .1 3 2 8 .163 .106) + 69 .5%  ~  .073 + 2 .3%  ~  .058 + 396 .9%  ~  .000

A v e r a g e  o f  u n b ia s e d .1 1 2 8 .122 .092 + 85 .9% + 30 .8% +358.2%

A v e r a g e  o f  b e s t .1 2 4 8 .149 .105 + 78 .1% + 17 .0% +378.2%



Table 35: Statistical significance tests comparing standard retrieval models and language models using the adj structure on the TRECVid 2002 collection
Underlined entries are significant according to the one tailed Wilcoxon Sign Rank test with a 95% confidence (p < 0.05).

Retrieval Method M AP/% D if Wilcoxon Test Results

A b s o lu t e - > W B > D ir > B a y >B M 25

(A bs) 0.1221 .043 .029 .029 .275

W i t t e n - B e l l < A b s - > D ir > B ay > B M 25

(W B ) 0.1184/-3.1% .043 .500 .500 .397

D ir i c h l e t < A b s < W B - > B ay > B M 25

(D ir) 0.1166/-4.5% .029 .500 .535 .500

B a y e s ia n < A b s < W B < D ir - >B M 25

(B ay) 0.1148/-6.0% .029 .500 .535 .707

B M 2 5 < A b s < W B < D ir < B ay -

(BM 25) 0.1088/-10.9% .275 .397 .500 .707

A b s o lu t e  D is c o u n t in g < A b s < W B < l) i r < B ay < B M 25

(A bsD ) 0.1069/-12.5% .018 .358 .655 .681 .493

J e l i n e k - M e r c e r < A b s < W B < D ir < B ay <B M 25

(JM ) 0.1069/-12.5% .031 .045 .251 .314 .359

L id s to n e < A b s <  W B < D ir < B ay <B M 25

(L id) 0.1022/-16.3% .017 .179 .250 .452 .232

L in e a r < A b s < W B < D ir < B a y <B M 25

(L in) 0.0995/-18.5% .034 .065 .249 .411 .148

T F - I D F ■< Abs < W B < I) ir < B ay < B M 25

(T F ) 0.0988/-19.1% .129 .391 .260 .465 .188

L a p la c e < A b s < W B < D ir < B ay < B M 25

(L ap) 0.0978/-19.9% .005 .080 .031 .073 .018

N a t u r a l < A b s < W B < D ir < B ay <B M 25

(N a t) 0.0859/-29.6% .000 .008 .009 .038 .006

C o o r d .  L e v e l  R a n k in g < A b s < W B < D ir < B a y < B M 25

(C L R ) 0.0651/-46.7% .001 .001 .001 .001 .000

M L E < A b s < W B < D ir < B ay < B M 25

(M L) 0.0262/-78.6% .000 .000 .000 .000 .000

> A b sD > J M > L id > L in > T F > L a p > N a t > C L R > M L

.018 .031 .017 .034 .129 .005 .000 .001 .000

> A b sD > J M > L id > L in > T F >Lap > N a t > C L R > M L

.358 .045 .179 .065 .391 .080 .008 .001 .000

>AbsD > J M >L id > L in > T P > L a p > N a t > C L R > M L

.655 .251 .250 .249 .260 .031 .009 .001 .000

> A b sD > JM > L id > L in > T F >Lap > N a t > C L R > M L

.681 .314 .452 .411 .465 .073 .038 .001 .000

>AbsD > J M > L id > L in > T F > L a p > N a t > C L R > M L

.493 .359 .232 .148 .188 .018 .006 .000 .000

- >.IM > L id > L in > T F >Lap > N a t > C L R > M L

.307 .397 .040 .468 .096 .008 .002 .000

<AbsD - > L id > L in > T F > L a p > N a t > C L R > M L

.307 .383 .092 .455 .206 .033 .001 .000

< A b sD < J M - > L in > T F > L a p > N a t > C L R > M L

.397 .383 .263 .243 .031 .014 .001 .000

< A b sD < J M < L id - > T F > L a p > N a t > C L R > M L

.040 .092 .263 .669 .515 .153 .006 .000

< A b sD < J M < L id < L in - > Lap > N a t > C L R > M L

.408 .455 .243 .069 .177 .094 .002 .000

<AbsD < J M < L id < L in < T F - > N a t > C L R > M L

.096 .206 .031 .515 .177 .089 .006 .001

< A b sD < J M < L id <Lin < T F <Lap - > C L R > M L

.008 .033 .014 .153 .094 .089 .003 .000

< A b sD < J M < L id < L in < T F < L a p < N a t - > M L

.002 .001 .001 .006 .002 .006 .003 .002

< A b sD < J M < L id < L in < T F < L a p < N a t < C L R -

.000 .000 .000 .000 .000 .001 .000 .002



Table 36: Statistical significance tests comparing standard retrieval models and language models using the adj structure on the TRECVid 2003 collection
Underlined entries are significant according to the one tailed Wilcoxon Sign Rank test with a 95% confidence (p  < 0.05).

R etrieva l M ethod  M A P /% D if W ilcoxon Test R esu lts

B a y e s ia n _ > D ir > B M 25 > A b s > W B > T F > J M > L id > L a p > N a t > A b sD > L in > C L R > M L

(B ay) 0.1010 .321 .199 .055 .022 .264 .007 .009 .003 .020 .012 .000 .007 .000

D ir i c h l e t < B ay - > B M 2 5 > A b s > W B > T F > J M > L id > L a p > N a t > A b sD > L in > C L R > M L

(D ir) 0.1008/-0.2% .321 .356 .061 .025 .281 .006 .014 .003 .020 .012 .000 .007 .000

B M 2 5 < B ay < D ir - > A b s > W B > T F > J M > L id > L a p > N a t > A b sD > L in > C L R > M L

(B M 25) 0.0969/-4.1% .199 .356 .013 .144 .389 .066 .003 .001 .027 .004 .001 .016 .000

A b s o lu t e < B ay < D ir < B M 2 5 - > W B > T F > J M > L id > L a p > N a t > A b sD > L in > C L R > M L

(A bs) 0.0929/-8.0% .055 .061 .013 .762 .700 .348 .079 .031 .064 .026 .003 .005 .000

W i t t e n - B e l l < B ay < D ir < B M 2 5 < A b s - > T F > J M > L id > L a p > N a t > A b sD > L in > C L R > M L

(W B ) 0.0927/-8.2% .022 .025 .144 .762 .726 .144 .191 .064 .091 .091 .001 .009 .000

T F - I D F <B ay < D ir < B M 2 5 < A b s < W B - > J M > L id > L a p > N a t > A b sD > L in > C L R > M L

(T F ) 0.0924/-8.5% .264 .281 .389 .700 .726 .198 .046 .011 .121 .046 .055 .034 .001

J e l i n e k - M e r c e r < B ay < D ir < B M 2 5 < A b s < W B < T F - > L id > L a p > N a t > A b sD > L in > C L R > M L

(JM ) 0.0906/-10.3% .007 .006 .066 .348 .144 .198 .324 .358 .163 .229 .014 .013 .000

L id s t o n e < B ay < D ir < B M 2 5 < A b s < W B < T F < J M - > L a p > N a t > A b sD > L in > C L R > M L

(L id) 0.0902/-10.7% .009 .014 .003 .079 .191 .046 .324 .019 .274 .621 .079 .256 .000

L a p la c e < B ay < D ir < B M 2 5 < A b s < W B < T F < J M < L id - > N a t > A b sD > L in > C L R > M L

(L ap) 0.0878/-13.1% .003 .003 .001 .031 .064 .011 .358 .019 .579 .823 .319 .366 .000

N a t u r a l < B ay < D ir < B M 2 5 < A b s < W B < T F < J M < L id < L a p - > A b sD > L in > C L R > M L

(N a t) 0.0863/-14.6% .020 .020 .027 .064 .091 .121 .163 .274 .579 .855 .314 .238 .000

A b s o lu t e  D is c o u n t in g < B ay < D ir < B M 2 5 < A b s < W B < T F < J M < L id < L a p < N a t - > L in > C L R > M L

(A bsD ) 0.0861/-14.8% .012 .012 .004 .026 .091 .046 .229 .621 .823 .855 .030 .214 .000

L in e a r < B ay < D ir < B M 2 5 < A b s < W B < T F < J M < L id < L a p < N a t < A b sD - X ’LR > M L

(L in) 0.0806/-20.2% .000 .000 .001 .003 .001 .055 .014 .079 .319 .314 .030 .265 .000

C o o r d .  L e v e l  R a n k in g < B ay < D ir < B M 2 5 < A b s < W B < T F < J M < L id < L a p < N a t < A b sD < L in - > M L

(C L R ) 0.0686/-32.1% .007 .007 .016 .005 .009 .034 .013 .256 .366 .238 .214 .265 .021

M L E < B ay < D ir < B M 2 5 < A b s < W B < T F < J M < L id < L a p < N a t < A b sD < L in < C L R -

(M L) 0.0549/-45.7% .000 .000 .000 .000 .000 .001 .000 .000 .000 .000 .000 .000 .021



Table 37: Statistical significance tests comparing standard retrieval models and language models using the adj structure on the TRECVid 2004 collection.
Underlined entries are significant according to the one tailed Wilcoxon Sign Rank test with a 95% confidence (p < 0.05).

Retrieval Method M AP/% D if Wilcoxon Test Results

T F - I D F . > D ir > B a y >B M 25 >Abs
(T F ) 0.0563 .494 .379 .146 .177

D ir i c h l e t < T F - >  Bay > B M 25 >Abs
(D ir) 0 .0559/-0.7% .494 .605 .090 .046

B a y e s ia n < T F < D ir - > B M 25 >Abs
(B ay) 0 .0 5 5 7 /- l.l% .379 .605 .129 .070

B M 2 5 < T F < D ir < B ay - >Abs
(B M 25) 0.0556/-1.3% .146 .090 .129 .153

A b s o lu t e < T F < D ir < B ay < B M 25 -

(Abs) 0.0526/-6.5% .177 .046 .070 .153

W i t t e n - B e l l < T F < D ir < B a y < B M 25 <Abs
(W B ) 0.0525/-6.7% .213 .023 .034 .238 .705

J e l i n e k - M e r c e r < T F < D ir < B a y < B M 25 <Abs
(JM ) 0.0510/-9.4% .038 .008 .016 .037 .358

L id  s to n e < T F < D ir < B a y < B M 25 <Abs
(L id ) 0.0433/-23.1% .002 .001 .002 .003 .002

A b s o lu t e  D is c o u n t in g < T F < D ir < B a y < B M 25 <Abs
(A bsD ) 0.0425/-24.6% .005 .003 .004 .002 .001

L in e a r < T F < D ir < B a y < B M 25 <Abs
(L in ) 0 .0419/-25.6% .002 .002 .004 .002 .002

N a t u r a l < T F < D ir < B a y < B M 25 <Abs
(N a t) 0 .0418/-25.8% .011 .006 .012 .008 .006

L a p la c e < T F < D ir < B a y < B M 2 5 <Abs
(L ap) 0.0404/-28.2% .000 .000 .000 .000 .000

M L E < T F < D ir < B a y < B M 2 5 <Abs
(M L) 0.0294/-47.8% .000 .000 .000 .000 .000

C o o r d .  L e v e l R a n k in g < T F < D ir < B a y < B M 2 5 <Abs
(C L R ) 0.0291/-48.3% .000 .000 .000 .000 .001

> W B > J M > L id > A b sD > L in > N a t > L a p > M L > C L R

.213 .038 .002 .005 .002 .011 .000 .000 .000

> W B > J M > L id > A b sD > L in > N a t > L a p > M L > C L R

.023 .008 .001 .003 .002 .006 .000 .000 .000

> W B > J M > L id > A b sD > L in > N a t > L a p > M L > C L R

.034 .016 .002 .004 .004 .012 .000 .000 .000

> W B > J M > L id > A b sD > L in > N a t > L a p > M L > C L R

.238 .037 .003 .002 .002 .008 .000 .000 .000

> W B > J M > L id > A b sD > L in > N a t > L a p > M L > C L R

.705 .358 .002 .001 .002 .006 .000 .000 .001

- > JM > L id > A b sD > L in > N a t > L a p > M L > C L R

.124 .003 .001 .000 .001 .000 .000 .000

< W B - > L id > A b sD > L in > N a t > L a p > M L > C L R

.124 .003 .002 .001 .003 .001 .000 .000

< W B < J M - > A b sD > L in >N at, > L a p > M L > C L R

.003 .003 .079 .015 .106 .046 .000 .027

< W B < J M < L id - > L in > N a t > L a p > M L > C L R

.001 .002 .079 .272 .253 .161 .000 .047

< W B < J M < L id < A b sD - > N a t > L a p > M L > C L R

.000 .001 .015 .272 .379 .777 .000 .331

< W B < J M < L id < A b sD < L in - > L a p > M L > C L R

.001 .003 .106 .253 .379 .676 .000 .572

< W B < J M < L id < A b sD < L in < N a t - > M L >CLK.

.000 .001 .046 .161 .777 .676 .000 .051
< W B < J M < L id < A b sD < L in < N a t < L a p - > C L R

.000 .000 .000 .000 .000 .000 .000 .998

< W B < J M < L id < A b sD <Liri < N a t < L a p < M L -

.000 .000 .027 .047 .331 .572 .051 .998



Table 38: Statistical significance tests comparing standard retrieval models and language models using the story structure on the TRECVid 2004 collection
Underlined entries are significant according to the one tailed Wilcoxon Sign Rank test with a 95% confidence (p < 0.05).

R etrieva l M ethod M A P /% D if W ilcoxon Test R esu lts

J  e l i n e k - M e r c e r _ > W B > A b s > B a y > D ir > N a t > L in > B M 25 > A b sD > L id > T F > M L > L a p > C L R

(JM ) 0.1305 .324 .065 .109 .102 .034 .034 .058 .004 .002 .001 .000 .000 .000

W i t t e n - B e l l < JM - >  A bs > B a y > D ir > N a t > L in > B M 25 > A b sD > L id > T F > M L > L a p > C L R

(W B ) 0.1290/-1.2% .324 .115 .046 .037 .041 .075 .027 .007 .003 .000 .000 .000 .000

A b s o lu t e < JM < W B - > B a y > D ir > N a t > L in >B M 25 > A b sD > L id > T F > M L > L a p > C L R

(A bs) 0 .1257/-3.7% .065 .115 .629 .507 .404 .144 .063 .016 .013 .002 .004 .001 .001

B a y e s ia n < JM < W B < A b s - > D ir > N a t > L in > B M 25 > A b sD > L id > T F > M L > L a p > C L R

(B ay) 0.1222/-6.4% .109 .046 .629 .008 .274 .319 .131 .009 .003 .001 .002 .000 .000

D i r i c h l e t < JM < W B <  A bs < B a y - > N a t > L in > B M 25 > A b sD > L id > T F > M L > L a p > C L R

(D ir) 0 .1220/-6.5% .102 .037 .507 .008 .274 .331 .131 .009 .003 .001 .002 .000 .000

N a t u r a l < JM < W B < A b s < B ay < D ir - > L in > B M 25 > A b sD > L id > T F > M L > L a p > C L R

(N at) 0.1194/-8.5% .034 .041 .404 .274 .274 .366 .158 .013 .020 .008 .001 .001 .001

L in e a r < JM < W B < A b s < B ay < D ir < N a t - > B M 25 > A b sD > L id > T F > M L > L a p > C L R

(L in) 0.1169/-10.5% .034 .075 .144 .319 .331 .366 .506 .256 .274 .052 .021 .021 .034

B M 2 5 < JM < W B <  A bs < B ay < D ir < N a t < L in - > A b sD > L id > T F > M L > L a p > C L R

(B M 25) 0.1166/-10.7% .058 .027 .063 .131 .131 .158 .506 .033 .031 .003 .023 .003 .006

A b s o lu t e  D is c o u n t in g < JM < W B < A b s < B a y < D ir < N a t < L in < B M 25 - > L id > T F > M L > L a p > C L R

(A bsD ) 0.1102/-15.6% .004 .007 .016 .009 .009 .013 .256 .033 .354 .054 .021 .004 .041

L id s to n e < JM < W B < A b s < B a y < D ir < N a t < L in < B M 25 < A b sD - > T F > M L > L a p > C L R

(L id) 0.1076/-17.6% .002 .003 .013 .003 .003 .020 .274 .031 .354 .053 .010 .004 .006

T F - I D F < JM < W B < A b s < B a y < D ir < N a t < L in <B M 25 < A b sD < L id - > M L >  L ap > C L R

(T F ) 0.0977/-25.2% .001 .000 .002 .001 .001 .008 .052 .003 .054 .053 .070 .153 .034

M L E < JM < W B < A b s < B a y < D ir < N a t < L in <B M 25 < A b sD < L id < T l - >  Lap > C L fi

(M L ) 0.0945/-27.6% .000 .000 .004 .002 .002 .001 .021 .023 .021 .010 .070 .911 .9.15

L a p la c e < JM < W B < A b s < B a y < D ir < N a t < L in < B M 25 < A b sD < L id < T F < M L - > 0 L E

(L ap) 0.0943/-27.8% .000 .000 .001 .000 .000 .001 .021 .003 .004 .004 .153 .911 .548

C o o r d .  L e v e l  R a n k in g < JM < W B < A b s < B a y < D ir < N a t < L in < B M 25 < A b sD < L id < T F < M L < L a p -

(C L R ) 0.0925/-29.1% .000 .000 .001 .000 .000 .001 .034 .006 .041 .006 .034 .915 .548



Table 39: Statistical significance tests comparing hierarchical language models using the 
shot+video structure on the TRECVid 2002, TRECVid 2003 and TRECVid 2004 collections. 
Underlined entries are significant according to the one tailed Wilcoxon Sign Rank test with 
a 95% confidence (p < 0.05).

(a) TRECVid 2002

R etrieval M ethod M A P /% D if W ilcoxon Test R esults

J e l in e k - M e r c e r - > W B >Abs > D ir

(JM ) 0.1335 .428 .224 .003

W i t te n - B e l l <JM - > Abs > D ir

(W B ) 0.1325/-0.7% .428 .188 .025

A b s o lu t e <JM < W B - > D ir

(A bs) 0.1296/-2.9% .224 .188 .010

D ir ic h le t < J M < W B < A b s -
(D ir) 0.1119/-16.2% .003 .025 .010

(b) T R E C V id  2003

R etrieval M ethod M A P /% D if W ilcoxon Test R esults

J e l in e k - M e r c e r - > W B > A b s > D ir

(JM ) 0.0945 .345 .013 .000

W i t te n - B e l l < JM - >Abs > D ir

(W B ) 0.0913/-3.4% .345 .109 .001

A b s o lu t e < J M < W B - > D ir

(A bs) 0 .0862/-8.8% .013 .109 .002

D ir ic h le t < J M < W B < A b s -
(D ir) 0.0705/-25.5% .000 .001 .002

(c) T R E C V id  2004

R etrieval M ethod M A P /% D if W ilcoxon Test R esults

J e l in e k - M e r c e r - > D ir > A b s > W B

(JM ) 0.0506 .827 .047 .044

D ir ic h le t < J M - >Abs >WB
(D ir) 0.0489/-3.3% .827 .181 .053
A b s o lu te < J M < D ir - >W rB

(A bs) 0.0488/-3.5% .047 .181 .507
W it te n - B e l l < J M <Dir <Abs -

(WB) 0.0485/-4.0% .044 .053 .507
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Table 40: Statistical significance tests comparing hierarchical language models using the 
shot+adj+video structure on the TRECVid 2002, TRECVid 2003 and TRECVid 2004 col­
lections. Underlined entries are significant according to the one tailed Wilcoxon Sign Rank 
test with a 95% confidence (p < 0.05).

(a) T R E C V id  2002

R etrieval M ethod M A P /% D if W ilcoxon Test R esults

J  e l in e k - M e r c e r - > W B > A b s > D ir

(JM) 0.1605 .146 .173 .007

W i t t e n - B e l l <JM - > A b s >Dir
(WB) 0.1541/-4.0% .146 .805 .173
A b s o lu te < J M < W B - >Dir
(A bs) 0.1502/-6.5% .173 .805 .342

D ir ic h le t < J M < W B < A b s -

(D ir) 0.1433/-10.7% .007 .173 .342

(b) T R E C V id  2003

R etrieval M ethod M A P /% D if W ilcoxon Test R esults

J e l in e k - M e r c e r - > W B > A b s > D ir

(JM) 0.1405 .388 .001 .000

W i t te n - B e l l <JM - > A b s > D ir

(WB) 0.1384/-1.5% .388 .081 .003

A b s o lu t e < J M < W B - > D ir

(A bs) 0.1277/-9.1% .001 .081 .013

D ir ic h le t < J M <WB < A b s -

(D ir) 0.1100/-21.7% .000 .003 .013

(c) T R E C V id  2004

R etrieval M ethod M A P /% D if W ilcoxon Test R esults

J e l in e k - M e r c e r - > W B >Dir > A b s

(JM) 0.0686 .090 .608 .024

W it te n - B e l l <JM - >Dir > A b s

(WB) 0.0660/-3.7% .090 .814 .252
D ir i c h le t < J M < W B - > A b s

(D ir) 0 .0651/-5.0% .608 .814 .158

A b s o lu te <JM < W B <Dir -

(A bs) 0.0629/-8.2% .024 .252 .158
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Table 41: Statistical significance tests comparing hierarchical language models using the
shot+story structure on the TRECVid 2003 collections. Underlined entries are significant
according to the one tailed Wilcoxon Sign Rank test with a 95% confidence (p < 0.05).

Retrieval Method MAP/%Dif Wilcoxon Test Results

J elinek-Mercer - >WB >Abs >Dir
(JM) 0.1551 .253 .094 .017
W itten-Bell <JM - >Abs >Dir
(WB) 0.1526/-1.6% .253 .065 .029
Absolute <JM <WB - >Dir
(Abs) 0.1453/-6.3% .094 .065 .272
Dirichlet <JM <WB <Abs -
(Dir) 0.1403/-9.6% .017 .029 .272

Table 42: Statistical significance tests comparing hierarchical language models using the 
shot+adj+story structure on the TRECVid 2003 collections. Underlined entries are signifi­
cant according to the one tailed Wilcoxon Sign Rank test with a 95% confidence (p < 0.05).

Retrieval Method MAP/%Dif Wilcoxon Test Results

J e l i n e k - M e r c e r - > W B >Abs >Dir
(JM) 0.1526 .335 .196 .041

W i t te n - B e l l <JM - >Abs >Dir
(WB) 0.1499/-1.8% .335 .229 .166

A b s o lu t e <JM < W B - >Dir
(Abs) 0.1467/-3.9% .196 .229 .238

D ir i c h le t <JM < W B <Abs -

(Dir) 0.1424/-6.7% .041 .166 .238
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Table 43: Comparison of retrieval models on the global HSV 16x4x4 feature for the
TRECVid 2002 and TRECVid 2003 search tasks.

H S V  16x4x4 

R etrieval M ethod

T R E C V id  2002 T R E C V id  2003

Prm M A P P10 P30 P I 00 Prm M A P P10 P30 P100

M L E .0 0 3 1 .023 .016 .008 .0 0 0 7 .007 .004 .002

L a p la c e .0 1 5 6 .034 .022 .015 .0 1 5 2 .061 .049 .026

N a t u r a l .0 1 6 6 .033 .022 .017 .0 1 5 2 .067 .047 .025

L id s to n e 0.20 .0 1 5 8 .034 .021 .016 0.01 .0 1 5 3 .065 .048 .025

Best (0.01 .0 1 6 2 .034 .021 .017) (0.20 .0 1 5 4 .064 .048 .026)

L in e a r 0.01 .0 1 5 0 .034 .023 .014 0.01 .0 1 5 1 .060 .049 .026

Best (0.01 .0 1 5 0 .034 .023 .014) (0.01 .0 1 5 1 .060 .049 .026)

A b s o lu t e  D is c o u n t in g 0.10 .0 1 6 0 .034 .021 .016 0.01 .0 1 5 2 .064 .048 .025

Best (0.01 .0 1 6 3 .034 .022 .017) (0.10 .0 1 5 3 .065 .049 .025)

W i t t e n - B e l l .0 1 5 8 .034 .022 .015 .0 1 5 7 .063 .050 .026

J e l in e k  M e r c e r 0.03 .0 1 5 1 .033 .022 .014 0.20 .0 1 5 1 .066 .047 .027

Best (0.20 .0 1 5 5 .034 .023 .014) (0.03 .0 1 6 0 .066 .049 .026)

A b s o lu t e 0.80 .0 1 5 8 .034 .021 .016 0.01 .0 1 5 4 .067 .048 .025

Best (0.01 .0 1 6 3 .034 .022 .017) (0.80 .0 1 5 7 .063 .049 .025)

M a n h a t t a n .0 1 2 9 .034 .022 .015 .0 1 2 2 .058 .043 .024

E u c l id e a n .0 0 8 4 .025 .017 .012 .0 0 9 4 .049 .040 .022

J e n s e n - S h a n n o n .0 1 6 7 .040 .023 .013 .0 1 3 8 .061 .047 .025

A v e r a g e  o f  u n b ia s e d .0 1 3 9 .033 .021 .014 .0 1 3 2 .057 .043 .023

A v e ra g e  o f  b e s t .0 1 5 9 .034 .022 .016 .0 1 5 5 .064 .049 .026
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Table 44: Comparison of retrieval models on the regional HSV 5x5 16x4^4 feature for the TRECVid 2002 and TRECVid 2003 search task.

H S V  5x5 16x4x4 

R etrieva l M ethod

T R E C V id  2002 V. H S V  16x4x4 T R E C V id  2003 V. H S V  16x4x4

P rm M A P P10 P30 P I 00 Im p r. ~  W ile. Prm M A P P10 P30 P I 00 Im pr. ~  W ile.

M L E .0 0 0 0 .000 .000 .000 -100.0%  ~  ¿000 .0 0 0 0 .000 .000 .000 -100.0%  ~  ¿000

L a p la c e .0 1 5 6 .041 .028 .017 -0.3%  ~  .930 .0 2 8 0 .094 .072 .042 + 83 .9%  ~  ¿000

N a t u r a l .0 1 2 5 .040 .025 .017 -24.4%  -  .559 .0 2 4 7 .083 .066 .039 + 62 .3%  ~  ¿046

L id s t o n e 1.55 .0 1 5 8 .040 .027 .017 -0.1%  ~  .944 10.00 .0 2 7 0 .089 .069 .042 + 76 .1%  ~  ¿000

Best (10.00 .0 1 6 6 .044 .028 .018) + 2 .1 %  ~  .410 (1.55 .0 2 8 0 .094 .072 .042) + 82 .4%  ~  ¿000

L in e a r 0.04 .0 1 5 6 .041 .027 .017 + 4 .3 %  ~  ¿024 0.20 .0 2 6 0 .088 .068 .041 + 72 .0%  ~  ¿000

Best (0.20 .0 1 6 4 .044 .026 .017) + 9 .5 %  ~  J)32 (0.04 .0 2 7 3 .091 .070 .041) + 80 .8%  -  ¿001

A b s o lu t e  D is c o u n t in g 0.45 .0 1 4 7 .038 .026 .018 -7.9%  ~  .707 0.95 .0 2 5 6 .089 .068 .039 + 68 .4%  ~  ¿005

Best (0.95 .0 1 5 1 .042 .026 .017) -7.2%  ~  .635 (0.45 .0 2 5 8 .090 .068 .040) + 68 .2%  ~  ¿020

W i t t e n - B e l l .0 1 4 9 .041 .026 .017 -5.8%  -  .861 .0 2 5 9 .088 .069 .040 + 65 .3%  ~  ¿020

J e l i n e k  M e r c e r 0.02 .0 1 5 3 .041 .026 .018 + 1 .7 %  ~  ¿031 0.65 .0 2 3 8 .080 .066 .037 + 57 .9%  ~  ¿000

Best (0.65 .0 1 6 5 .042 .028 .018) + 6 .0 %  ~  .207 (0.02 .0 2 7 6 .094 .072 .042) + 72 .9%  ~  ¿007

A b s o lu t e 0.30 .0 1 4 5 .037 .026 .018 -8.1%  ~  .878 0.70 .0 2 5 8 .089 .069 .040 + 66 .8%  ~  ¿010

Best (0.70 .0 1 4 8 .041 .026 .017) -9.2%  ~  .791 (0.30 .0 2 5 9 .089 .069 .040) + 65 .2%  ~  ¿025

M a n h a t t a n .0 1 7 4 .042 .027 .020 + 34 .8%  ~  .078 .0 2 5 1 .092 .071 .040 + 105 .9%  ~  ¿000

E u c l i d e a n .0 0 5 7 .027 .018 .012 -32.2%  ~  .174 .0 1 2 7 .065 .051 .027 + 34 .6%  ~  .233

J e n s e n - S h a n n o n .0 1 8 7 .047 .031 .020 + 1 2 .2 %  ~  .083 .0 2 5 8 .092 .071 .040 + 87 .0%  ~  .000

A v e r a g e  o f  u n b ia s e d .0 1 3 4 .036 .024 .016 -10.5% .0 2 2 5 .079 .062 .036 + 56 .7%

A v e r a g e  o f  b e s t .0 1 5 9 .043 .027 .017 + 0 .3 % .0 2 6 9 .092 .071 .041 + 73 .9%



Table 45: Comparison of the indexing units shots, sequence of adjacent shots, and videos with the HSV 80x1x1+1 colour representation for language
models and visual retrieval models on the TREC Vid 2002 search task.

T R E C V ID  2002  

R etrieva l M ethod

Video O nly V. S h o t O nly A d j O nly V. Sho t O nly

Prm M A P P10 P30 P I 00 Im pr. ~  Wile. Prm M A P P10 P30 P100 Im pr. ~  W ile.

M L E  ( A d j) .0 1 6 9 .005 .009 .021 + 394 .7%  ~  .211 1 .0 0 7 6 .027 .024 .016 + 124 .3%  ~  ¿OH

Best (20 .0 2 3 9 .025 .023 .021) + 600 .3%  -  .624

L a p la c e  ( A d j) .0 1 6 9 .005 .009 .021 + 22 .2%  ~  .627 1 .0 1 6 9 .036 .026 .020 +22 .5%  -  .265

Best (20 .0 2 3 9 .025 .023 .021) + 73 .0%  ~  .947

N a t u r a l  ( A d j) .0 1 6 9 .005 .009 .021 + 18 .6%  ~  .584 1 .0 1 7 6 .038 .028 .021 + 23 .5%  ~  .309

Best (20 .0 2 3 9 .025 .023 .021) +67 .9%  ~  .930

L id s t o n e  (A, A d j ) 0.00 .0 1 6 9 .005 .009 .021 + 21 .7%  ~  .650 0 .65 ,1 .0 1 7 0 .036 .027 .020 + 22 .3%  ~  .256

Best (0.00 .0 1 6 9 .005 .009 .021) + 19 .3%  ~  .629 (0 .00 ,20 .0 2 3 9 .025 .023 .021) + 68 .9%  ~  .953

L in e a r  ( a ,  A d j ) 0.00 .0 1 6 9 .005 .009 .021 + 44 .2%  ~  .716 0 .05 ,1 .0 1 5 9 .033 .025 .019 + 35 .5%  ~  .285

Best (0.00 .0 1 6 9 .005 .009 .021) + 44 .2%  ~  .716 (0 .00 ,20 .0 2 3 9 .025 .023 .021) +104 .2%  ~  .985

A b s o lu t e  D i s c o u n t in g  (5, A d j) 0.00 .0 1 6 9 .005 .009 .021 + 20 .2%  ~  .653 0 .60 ,1 .0 1 7 0 .036 .026 .020 + 20 .8%  ~  .380

Best (0.00 .0 1 6 9 .005 .009 .021) + 20 .2%  ~  .653 (1 .00 ,20 .0 2 3 9 .025 .023 .021) + 70 .5%  ~  .944

W i t t e n - B e l l  (A d j) .0 1 6 9 .005 .009 .021 + 20 .6%  ~  .635 1 .0 1 7 0 .037 .026 .020 + 21 .8%  ~  .259

Best (20 .0 2 3 9 .025 .023 .021) + 70 .6%  -  .946

J e l i n e k  M e r c e r  (A, A d j) 0.60 .0 1 6 4 .010 .010 .025 + 32 .1%  ~  .594 0 .05 ,1 .0 1 5 8 .033 .026 .020 +27 .2%  -  .336

Best (0.20 .0 1 6 7 .005 .008 .022) + 34 .1%  ~  .521 (0 .25 ,10 .0 2 2 7 .019 .023 .018) + 82 .7%  -  .943

A b s o lu t e  (6, A d j ) 0.00 .0 1 6 9 .005 .009 .021 + 19 .9%  ~  .633 0.50 ,1 .0 1 7 3 .037 .026 .020 + 22 .7%  ~  .352

Best (0.00 .0 1 6 9 .005 .009 .021) +  18.9% ~  .642 (0 .0 0 ,2 0 .0 2 3 9 .025 .023 .021) + 68 .3%  ~  .953

M a n h a t t a n  ( A d j) .0 1 3 1 .001 .005 .017 + 23 .3%  ~  .976 1 .0 1 3 4 .026 .021 .018 + 25 .7%  -  .952

Best (20 .0 2 1 6 .022 .021 .017) + 103.2%  ~  .998

E u c l i d e a n  ( A d j ) .0 1 2 8 .001 .003 .017 + 63 .0%  ~  .983 1 .0 1 0 6 .021 .018 .015 + 34 .7%  ~  .332

Best (20 .0 1 7 1 .015 .017 .015) +117 .7%  -  .992

J e n s e n - S h a n n o n  (A d j) .0 1 3 8 .001 .006 .018 + 1 .7%  ~  .904 1 .0 1 7 1 .032 .027 .020 + 26 .4%  ~  .655

Best (20 .0 2 3 1 .021 .021 .019) +70 .3%  ~  .994

A v e r a g e  o f  u n b ia s e d .0 1 5 9 .005 .008 .021 + 56 .8% .0 1 5 3 .033 .025 .019 + 33.9%

A v e r a g e  o f  b e s t .0 1 6 8 .005 .008 .021 + 27 .3% .0 2 3 0 .023 .022 .020 +124.8%



Table 46: Results for using the indexing unit sequence of adjacent shots with the HSV
80x1x1+1 colour representation for language models and visual retrieval models on the
TRECVid 2003 search task.

T R E C V ID  2003  

R etrieval M ethod

A d j O nly V. Shot O nly

Prm M AP P10 P30 PI 00 Im pr. ~  Wile.

M L E  (A d j) 20 .0 0 0 8 .006 .006 .003 -84.9% -  ,001

Best (1 .0 0 1 7 .009 .009 .009) -67.9% -  .660

L a p la c e  (A d j) 20 .0 0 0 8 .006 .006 .003 -90.7% -  ,000

Best (1 .0 0 1 8 .010 .009 .009) -79.0% ~  ,023

N a t u r a l  (A d j) 20 .0 0 0 8 .006 .006 .003 -90.6% ~  ,000

Best (1 .0 0 1 8 .009 .009 .009) -79.0% -  ,048

L id s to n e  (A, A d j) 0 .00 ,20 .0 0 0 8 .006 .006 .003 -90.6% ~  ,000

Best (0 .65,1 .0 0 1 8 .010 .009 .009) -79.0% -  ,022

L in e a r  ( a ,  A d j) 0 .00 ,20 .0 0 0 8 .006 .006 .003 -90.1% -  ,000

Best (0 .05,1 .0 0 1 8 .009 .009 .008) -77.7%  ~  M S

A b s o lu t e  D is c o u n t in g  (<S, A d j) 1.00,20 .0 0 0 8 .006 .006 .003 -90.7% -  ,000

Best (0 .60,1 .0 0 1 8 .010 .009 .008) -79.0% -  ,025

W i t t e n - B e l l  (A d j) 20 .0 0 0 8 .006 .006 .003 -90.6% ~  ,000

Best (1 .0 0 1 8 .010 .009 .008) -79.0% ~  ,023

J e l in e k  M e r c e r  (A, A d j) 0 .25 ,10 .0 0 0 0 .000 .000 .000 -100.0% -  ,000

Best (0 .05,1 .0 0 1 8 .008 .008 .009) -77.2% -  ,005

A b s o lu t e  (<5, A d j) 0 .00 ,20 .0 0 0 8 .006 .006 .003 -90.6% ~  .000

Best (0 .50,1 .0 0 1 8 .010 .009 .009) -78.9% ~  ,029

M a n h a t t a n  (A d j) 20 .0 0 0 6 .007 .005 .003 -88.7% -  ,000

Best (1 .0 0 1 6 .008 .007 .007) -68.4% ~  ,000

E u c l id e a n  (A d j) 20 .0 0 0 9 .004 .004 .003 -74.0% -  ,000

Best (1 .0 0 1 4 .009 .007 .006) -56.3% ~  ,001

J e n s e n - S h a n n o n  (A d j) 20 .0 0 0 8 .007 .005 .003 -89.4% ~  ,000

Best (1 .0 0 1 7 .009 .008 .008) -76.8% -  .001

A v e ra g e  o f  u n b ia s e d .0 0 0 7 .005 .005 .003 -89.3%

A v e r a g e  o f  b e s t .0 0 1 7 .009 .009 .008 -74.9%
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Table 47: Comparison of global Canny 64+1 edge representations with Canny 4+U Canny
16+1 and Canny 32+1 representations for language models and standard visual retrieval
models for the TRECVid 2002 search task.

T R E C V ID  2002 C anny 64 V. C anny 4 V. C anny 16 V. C anny 32

R etrieval M ethod Prm M A P P10 P30 P I 00 Im pr. Im pr. Im pr.

M L E .0 0 5 3 .030 .023 .014 +50.9% +24.5% +2.9%

L a p la c e .0 0 5 1 .033 .022 .015 + 49.1% +23.7% + 2.8%

N a tu r a l .0 0 5 3 .034 .021 .014 +54.2% +27.0% +5.2%

L id s to n e 7.00 .0 0 3 6 .015 .017 .015 + 5.2% -13.5% -13.2%

Best (0.01 .0 0 5 5 .034 .024 .014) +58.1% +24.8% +7.5%

L in e a r 0.01 .0 0 5 2 .033 .023 .015 +47.7% +20.8% -3.9%

Best (0.00 .0 0 5 3 .030 .023 .014) +50.9% +22.4% -6.1%

A b s o lu te  D is c o u n t in g 0.60 .0 0 5 3 .029 .025 .015 +51.2% +26.8% +4.8%

Best (2.00 .0 0 5 9 .033 .021 .015) +67.3% +27.4% +6.2%

W it te n - B e l l .0 0 5 5 .034 .024 .014 +58.6% +31.5% +7.6%

J e l in e k - M e r c e r 0.05 .0 0 5 4 .034 .025 .015 +56.2% +23.5% +4.4%

Best (0.04 .0 0 5 6 .034 .025 .015) +52.2% +13.5% + 5.2%

A b s o lu te 0.60 .0 0 5 5 .032 .026 .014 +58.0% +31.2% + 7.1%

Best (2.00 .0 0 5 7 .030 .022 .014) +64.0% +21.6% + 2.1%

M a n h a t t a n .0 0 3 4 .016 .013 .012 +30.6% +11.3% -6.8%

E u c l id e a n .0 0 2 3 .012 .011 .008 -5.7% -16.8% -6.3%

J e n s e n - S h a n n o n .0 0 5 3 .034 .022 .015 +54.4% +26.6% +5.6%

A v e ra g e  o f  u n b ia s e d .0 0 4 8 .028 .021 .014 +42.5% +18.0% +0.9%

A v e ra g e  o f  b e s t .0 0 5 6 .032 .023 .014 +58.5% +21.9% +3.0%
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Table 48: Comparison of global Canny 64+1 edge representations with Canny 4+1> Canny
16+1 and Canny 32+1 representations for language models and standard visual retrieval
models for the TRECVid 2003 search task.

T R E C V ID  2003 C anny 64 V. C anny 4 V. C anny 16 V. C anny 32

R etrieval M ethod Prm M A P P10 P30 P I 00 Im pr. Im pr. Im pr.

M L E .0 0 7 5 .036 .030 .020 +46.3% +18.9% +10.3%

L a p la c e .0 0 8 4 .039 .031 .020 +60.5% +28.5% +16.8%

N a tu r a l .0 0 8 2 .039 .030 .020 +57.0% +28.3% +17.0%

L id s to n e 0.01 .0 0 8 0 .038 .030 .020 +54.4% +21.1% +14.4%

Best (7.00 .0 0 8 6 .049 .033 .022) +62.6% +29.5% +12.3%

L in e a r 0.00 .0 0 7 5 .036 .030 .020 +50.7% +17.7% + 7.4%

Best (0.01 .0 0 8 1 .039 .033 .021) +57.7% +26.2% +13.5%

A b s o lu t e  D is c o u n t in g 2.00 .0 0 7 0 .036 .029 .019 +36.2% +28.2% +12.8%

Best (0.60 .0 0 8 1 .039 .031 .020) +57.3% +24.0% +15.1%

W it te n - B e l l .0 0 8 1 .041 .031 .021 +54.6% +25.5% +15.6%

J e l in e k -  M e r c e r 0.04 .0 0 8 3 .040 .032 .020 +73.5% +100.9% +71.1%

Best (0.05 .0 0 8 3 .040 .030 .019) +61.0% +27.2% +13.6%

A b s o lu te 2.00 .0 0 7 2 .036 .030 .020 +42.8% +26.0% +11.8%

Best (0.60 .0 0 8 0 .039 .031 .020) +54.6% +24.0% +14.7%

M a n h a t t a n .0 0 5 3 .030 .023 .017 +22.2% +5.1% +2.1%

E u c l id e a n .0 0 4 2 .020 .018 .013 -0.9% -3.1% +1.9%

J e n s e n - S h a n n o n .0 0 8 3 .039 .031 .020 +58.0% +25.4% +14.6%

A v e ra g e  o f  u n b ia s e d .0 0 7 3 .036 .029 .019 +46.3% +26.9% +16.3%

A v e ra g e  o f  b e s t .0 0 8 2 .041 .032 .020 +58.7% +26.2% +13.8%
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Table 49: Comparison of regional Canny edge representations (Canny 64+1 for 3x3 regions) using language models and standard visual retrieval models
for the TRECVid 2002 search task.

T R E C V ID  2002 C anny  3x3 64 + 1 V. C anny  64 V. C a nny  4%4 64 + 1 V. C a nny  5x5 64+1

R etrieva l M ethod P rm M A P P10 P30 P I 00 Im pr. Im pr. Im pr.

M L E .0 0 1 3 .007 .008 .008 -74.7% -33.2% + 387.6%

L a p la c e .0 0 7 1 .037 .020 .012 + 37 .2% + 14 .9% + 17 .8%

N a t u r a l .0 0 7 5 .040 .022 .014 + 41 .1% + 2 .7% +  15.4%

L id s to n e 4.00 .0 0 5 2 .027 .015 .010 + 44 .0% + 14 .3% -7.8%

Best (0.10 .0 0 7 9 .041 .020 .014) + 43 .9% + 7 .1 % + 19 .5%

L in e a r 0.01 .0 0 6 9 .033 .018 .013 + 33 .5% + 21 .9% + 4 .0%

Best (0.01 .0 0 6 9 .033 .018 .013) + 30 .6% + 9 .7% -1.1%

A b s o lu t e  D is c o u n t in g 0.35 .0 0 7 5 .037 .019 .014 + 42 .7% + 1 .3% + 17 .5%

Best (0.85 .0 0 8 5 .037 .018 .015) + 45 .8% + 12 .3% + 22 .1%

W i t t e n - B e l l .0 0 8 3 .037 .022 .014 + 50 .1% + 11 .0% + 23 .7%

J e l in e k - M e r c e r 0.40 .0 0 9 0 .040 .021 .014 + 65 .8% + 15 .7% -2.2%

Best (0.45 .0 0 9 1 .038 .021 .015) + 61 .0% + 5 .1 % -4.7%

A b s o lu t e 0.30 .0 0 8 0 .032 .022 .015 + 44 .5% + 9 .1% + 23 .1%

Best (0.80 .0 0 9 8 .037 .021 .016) + 71 .0% + 34 .7% + 51 .3%

M a n h a t t a n .0 0 5 7 .026 .020 .012 + 71 .2% -12.9% + 6 .6%

E u c l id e a n .0 0 4 5 .018 .013 .011 + 94 .0% -5.4% -13.5%

J e n s e n - S h a n n o n .0 0 7 2 .034 .020 .012 + 37 .3% +  12.0% + 8 .4%

A v e r a g e  o f  u n b ia s e d .0 0 6 5 .031 .018 .012 + 40 .6% + 4 .3% + 40 .0%

A v e r a g e  o f  b e s t .0 0 8 4 .037 .020 .014 + 50 .5% +  13.8% + 17 .4%



255

Table 50: Comparison of regional Canny edge histogram representations (Canny 64+1 for 5x5 regions) using language models and standard visual retrieval
models for the TRECVid 2003 search task.

T R E C V ID  2003 C anny  5x5 64 + 1 V. C a n n y  64 V. C anny 3x3 64 + 1 V. C anny 4X4 64 + 1

R etrieva l M ethod Prm M A P P10 P30 P I 00 Im p r. Im pr. Im pr.

M L E .0 0 0 6 .011 .002 .000 -91.8% -80.2% -54.2%

L a p la c e .0 1 1 8 .049 .036 .022 + 40 .4% +17.9% + 21 .7%

N a t u r a l .0 0 8 1 .043 .034 .021 -0.9% -3.4% + 2 .4%

L id s to n e 0.06 .0 0 9 3 .044 .037 .023 + 16 .9% + 3.1% + 10 .6%

Best (1.55 .0 1 2 0 .043 .033 .022) + 39 .6% + 7 .8% +11 .4%

L in e a r 0.06 .0 0 9 7 .039 .028 .018 + 28 .5% -4.8% -2.9%

Best (0.03 .0 1 2 1 .047 .035 .023) +49 .3% +19.3% +17 .3%

A b s o lu t e  D is c o u n t in g 0.95 .0 0 9 4 .045 .035 .022 + 33 .7% + 3.1% + 6 .1%

Best (0.55 .0 1 0 2 .047 .040 .023) + 25 .3% + 7.9% +12 .1%

W it t e n - B e l l .0 0 8 8 .042 .036 .022 + 9 .3 % +1.5% + 6.5%

J e l in e k - M e r c e r 0.85 .0 1 0 5 .036 .028 .024 + 27 .6% -9.1% + 6 .3%

Best (0.55 .0 1 1 2 .044 .036 .026) + 35 .0% -3.8% + 5 .5%

A b s o lu t e 0.65 .0 0 8 3 .040 .035 .022 + 14 .9% + 8.5% + 0.7%

Best (0.40 .0 0 8 3 .040 .035 .021) + 4 .5 % + 3.3% +  1.3%

M a n h a t t a n .0 1 0 7 .045 .033 .021 + 103 .3% + 21.4% + 15 .3%

E u c l id e a n .0 0 7 9 .038 .030 .017 + 87 .1% +14.1% + 2 .7%

J e n s e n - S h a n n o n .0 1 1 0 .048 .039 .024 + 3 2 .8 % + 9.7% + 12 .6%

A v e r a g e  o f  u n b ia s e d .0 0 8 9 .040 .031 .020 + 25 .2% -1.5% + 2 .3%

A v e r a g e  o f  b e s t .0 1 0 8 .044 .036 .023 + 30 .7% + 6.9% + 9 .5%



Table 51: Comparison of global DCT 4X4X4X4 representation with the DCT 8x8x8 and DCT
3x3x3x3x3 representations using language models and standard visual retrieval models for
the TRECVid 2002 search task.

T R E C V ID  2002 D C T  4%4x4x4 V  D C T  8x8x8 V. D C T  3x3x3x3x3

R etrieval M ethod Prm M AP P10 P30 P100 Im pr. Im pr.

M L E .0 0 0 2 .001 .000 .000 nulloo% +3,700.8%

L a p la c e .0 0 7 6 .041 .031 .018 +23.6% +90.2%

N a tu r a l .0 0 6 9 .029 .022 .015 +88.8% +50.7%

L id s to n e 1.30 .0 0 7 8 .044 .032 .019 +25.0% +92.1%

Best (1.55 .0 0 7 9 .042 .033 .019) +4 .2% -15.7%

L in e a r 0.10 .0 0 7 4 .037 .031 .019 +36.5% +63.1%

Best (0.15 .0 0 7 6 .040 .030 .019) +0 .4% +20.5%

A b s o lu t e  D is c o u n t in g 0.60 .0 0 7 0 .034 .030 .018 +62.7% +42.6%

Best (0.20 .0 0 7 3 .040 .024 .016) +67.1% -18.8%

W i t te n - B e l l .0 0 7 2 .038 .026 .017 +46.3% +44.0%

J e l in e k - M e r c e r 0.30 .0 0 7 4 .044 .028 .019 +23.5% +50.6%

Best (0.30 .0 0 7 4 .044 .028 .019) +16.7% -18.8%

A b s o lu t e 0.60 .0 0 7 2 .034 .022 .016 +74.5% -20.5%

Best (0.70 .0 0 7 2 .036 .022 .017) +59.2% -26.6%

M a n h a t t a n .0 0 7 8 .034 .027 .020 +99.4% +89.1%

E u c l id e a n .0 0 6 7 .029 .024 .017 +210.8% +59.3%

J e n s e n - S h a n n o n .0 0 7 0 .044 .028 .017 +74.0% +87.8%

A v e ra g e  o f  u n b ia s e d .0 0 6 7 .034 .025 .016 +69.6% +362.5%

A v e ra g e  o f  b e s t .0 0 7 5 .040 .027 .018 +29.5% -11.9%
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Table 52: Comparison of global DCT 8x8x8 representation with the DCT 3x3x3x3x3
representation using language models and standard visual retrieval models for the TRECVid
2003 search task.

T R E C V ID  2003 

R etrieval M ethod

D C T  8x8x8 V. D C T  4x4x4x4 V. D C T  3x3x3x3x3

Prm M AP P10 P30 P100 Im pr. Im pr.

M L E .0 0 0 0 .000 .000 .000 -100.0% -100.0%

L a p la c e .0 1 1 5 .065 .043 .025 +45.8% +23.3%

N a tu r a l .0 0 9 5 .057 .035 .020 +57.8% +18.1%

L id s to n e 3.00 .0 1 0 0 .052 .043 .026 +26.7% +55.9%

Best (1.20 .0 1 1 8 .065 .044 .025) +47.8% +23.7%

L in e a r 0.30 .0 1 0 2 .055 .038 .024 +44.3% +19.9%

Best (0.15 .0 1 1 1 .063 .042 .024) +55.4% +16.3%

A b s o lu te  D is c o u n t in g 0.70 .0 0 9 7 .061 .039 .022 +61.2% +44.5%

Best (0.55 .0 0 9 9 .061 .040 .022) +61.3% +7.6%

W it te n - B e l l .0 1 1 4 .066 .042 .023 +69.0% +20.4%

J e l in e k - M e r c e r 0.30 .0 1 2 4 .068 .044 .026 +66.2% +77.1%

Best (0.35 .0 1 2 4 .067 .043 .027) +66.7% +25.0%

A b s o lu te 0.65 .0 1 0 5 .063 .038 .020 +83.9% +58.0%

Best (0.95 .0 1 0 7 .064 .040 .021) +85.2% +14.4%

M a n h a t t a n .0 1 0 7 .059 .041 .023 +45.1% +33.1%

E u c l id e a n .0 0 6 8 .045 .030 .018 +44.9% +13.6%

J e n s e n - S h a n n o n .0 1 1 4 .055 .040 .022 +55.8% +22.5%

A v e ra g e  o f  u n b ia s e d .0 0 9 5 .054 .036 .021 +41.7% +23.9%

A v e ra g e  o f  b e s t .0 1 1 2 .064 .042 .024 +63.3% +17.4%
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Table 53: Comparison of language models and standard visual retrieval models using the
global DCT 3x3x3x3x3 representation for the TRECVid 2002 and TRECVid 2003 search
tasks.

D C T  3x3x3x3x3  

R etrieval M ethod

T R E C V ID  2002 T R E C V ID  2003

Prm M A P P10 P30 P100 Prm M AP P10 P30 P100

M L E .0 0 0 0 .000 .000 .000 .0 0 0 1 .001 .001 .000

L a p la c e .0 0 4 0 .016 .011 .012 .0 0 9 4 .048 .031 .021

N a tu r a l .0 0 4 6 .015 .014 .011 .0 0 8 1 .045 .032 .019

L id s to n e 0.90 .0 0 4 1 .016 .012 .012 0.02 .0 0 6 4 .041 .027 .016

Best (0.02 .0 0 9 4 .018 .014 .010) (0.90 .0 0 9 5 .046 .031 .021)

L in e a r 0.03 .0 0 4 6 .018 .015 .011 0.01 .0 0 8 5 .045 .035 .019

Best (0.01 .0 0 6 3 .016 .015 .011) (0.03 .0 0 9 6 .046 .033 .020)

A b s o lu te  D is c o u n t in g 0.25 .0 0 4 9 .018 .014 .012 0.01 .0 0 6 7 .041 .028 .017

Best (0.01 .0 0 9 0 .016 .014 .009) (0.25 .0 0 9 2 .046 .033 .019)

W i t te n - B e l l .0 0 5 0 .015 .016 .013 .0 0 9 5 .052 .035 .021

J  e l i n e k - M e r c e r 0.15 .0 0 4 9 .014 .014 .013 0.01 .0 0 7 0 .041 .029 .017

Best (0.01 .0 0 9 2 .019 .014 .010) (0.15 .0 0 9 9 .055 .034 .021)

A b s o lu te 0.85 .0 0 9 0 .015 .016 .013 0.05 .0 0 6 6 .042 .028 .017

Best (0.05 .0 0 9 8 .018 .013 .010) (0.85 .0 0 9 4 .054 .035 .021)

M a n h a t t a n .0 0 4 1 .021 .014 .013 .0 0 8 1 .041 .027 .019

E u c l id e a n .0 0 4 2 .019 .016 .012 .0 0 6 0 .034 .024 .015

J  e n s e n -  S h a n n o n .0 0 3 7 .018 .013 .012 .0 0 9 3 .047 .033 .019

A v e ra g e  o f  u n b ia s e d .0 0 4 4 .015 .013 .011 .0 0 7 1 .040 .027 .017

A v e ra g e  o f  b e s t .0 0 8 8 .018 .014 .010 .0 0 9 5 .050 .033 .020
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Table 54: Comparison of the 5x5 regional DCT 3x3x3x3x3 representations with the non-
regional texture representation using language models and standard visual retrieval models
for the TRECVid 2002 search task.

T R E C V ID  2002 D C T  5x5 3x3x3x3x3 V. D C T  3x3x3x3x3

R etrieval M ethod Prrn M A P P10 P30 P I 00 Im pr.

M L E .0 0 0 0 .000 .000 .000 -100.0%

L a p la c e .0 0 6 2 .026 .017 .015 +54.3%

N a tu r a l .0 0 6 1 .030 .020 .016 +32.0%

L id s to n e 0.07 .0 0 6 2 .026 .018 .015 +52.4%

Best (3.00 .0 0 6 3 .025 .019 .013) -32.4%

L in e a r 0.25 .0 0 6 2 .025 .018 .015 +37.2%

Best (0.45 .0 0 6 4 .026 .016 .014) +1 .2%

A b s o lu t e  D is c o u n t in g 0.15 .0 0 6 2 .027 .020 .016 +26.0%

Best (0.65 .0 0 6 3 .025 .020 .015) -30.5%

W i t te n - B e l l .0 0 6 8 .030 .020 .015 +35.8%

J e l in e k - M e r c e r 0.85 .0 0 7 3 .023 .018 .015 +47.5%

Best (0.65 .0 0 7 4 .025 .019 .015) -19.5%

A b s o lu te 0.50 .0 0 6 9 .030 .021 .015 -23.2%

Best (0.90 .0 0 7 9 .027 .020 .016) -20.0%

M a n h a t t a n .0 0 6 3 .026 .018 .015 +53.3%

E u c l id e a n .0 0 4 0 .018 .017 .014 -5.9%

J e n s e n - S h a n n o n .0 0 6 3 .025 .016 .015 +69.5%

A v e r a g e  o f  u n b ia s e d .0 0 5 7 .024 .017 .014 +23.2%

A v e r a g e  o f  b e s t .0 0 6 9 .025 .019 .015 -20.2%
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Table 55: Comparison of the 5x5 regional DCT 3x3x3x3x3 texture representations with the non-regional and regional 3x3 and 4x4 representations using
language models and standard visual retrieval models for the TRECVid 2003 search task.

T R E C V ID  2003 D C T  5x5 3x3x3x3x3 V. D C T  3x3x3x3x3 V. D C T  3x3  3x3x3x3x3 V. D C T  4x4 3x3x3x3x3

R etrieva l M ethod Prm M A P P10 P30 P I 00 Im pr. Im pr. Im pr.

M L E .0 0 0 0 .000 .000 .000 -100.0% N /A N /A

L a p la c e .0 1 5 6 .058 .046 .032 + 66.6% + 13 .1% + 1 .7%

N a t u r a l .0 1 6 8 .067 .055 .034 +  109.3% + 14.6% + 2 .5%

L id s t o n e 3.00 .0 1 1 8 .045 .034 .026 + 83.8% -25.6% -33.4%

Best (0.07 .0 1 9 1 .067 .056 .037) + 100.7% +20 .1% + 5 .5%

L in e a r 0.45 .0 1 8 1 .067 .052 .036 + 112.3% +18 .7% + 3 .2%

Best (0.25 .0 1 9 0 .067 .054 .036) + 98 .5% + 18.7% + 5 .8%

A b s o lu t e  D is c o u n t in g 0.65 .0 1 6 9 .062 .053 .032 + 151.9% + 18.2% + 5 .4%

Best (0.15 .0 1 7 1 .065 .057 .034) + 85 .5% + 19.2% + 5 .5%

W i t t e n - B e l l .0 2 0 7 .077 .063 .040 +119 .4% +19.4% + 5 .0%

J e l in e k - M e r c e r 0.65 .0 2 2 6 .082 .064 .040 + 224 .3% + 35.9% + 9 .9%

Best (0.85 .0 2 3 1 .080 .066 .041) + 132 .5% + 28 .6% + 9 .1%

A b s o lu t e 0.90 .0 1 7 5 .073 .057 .035 + 164 .2% + 12.3% + 9 .7%

Best (0.50 .0 1 8 9 .078 .060 .037) +101 .6% + 17.5% + 5 .1%

M a n h a t t a n .0 1 7 2 .064 .054 .035 + 113.7% +16 .5% + 10 .4%

E u c l i d e a n .0 1 0 7 .052 .039 .024 + 77 .9% + 21.1% + 1 .0%

J e n s e n - S h a n n o n .0 1 8 3 .064 .053 .034 + 96.8% + 18.3% + 8 .3%

A v e r a g e  o f  u n b ia s e d .0 1 5 5 .059 .048 .031 + 101.7% + 14 .8% + 2 .2%

A v e r a g e  o f  b e s t .0 1 9 4 .071 .059 .037 + 103 .8% +20 .8% + 6 .2%



Table 56: Comparison of unbiased retrieval models for the TRECVid 2002 search tasks 5x5 regional HSV colour, Canny edge and DCT texture. Underlined
entries are significant according to the Wilcoxon Sign Rank test.

R etrieva l M ethod M A P  W ilcoxon Test R esu lts

J  e l  i n e k - M e r c e r _ > J D > M a n > I n t > L in

(JM ) 0.0108 .222 .021 .021 .006

J e n s e n - S h a n n o n < JM - > M a n > I n t > L in

(JD ) 0.0106 .222 .005 .006 .005

M a n h a t t a n < JM < J D - > ln t > L in

(M an) 0.0097 .021 .005 .839 .282

L in e a r < JM < J D < M a n < In t -

(L in) 0.0095 .006 .005 .282 .353

W i t t e n - B e l l < JM < J D < M a n <  I nt < L in

(W B ) 0.0095 .183 .540 .933 .933 .914

A b s o lu t e < JM < J D < M a n < l n t < L in

(A bs) 0.0093 .079 .261 .738 .739 .688

L a p la c e < JM < J D < M a n < ln l < L in

(L ap) 0.0092 .030 .002 .661 .660 .985

L id s t o n e < JM < J D < M a n <  Iu t < L in

(L id) 0.0092 .015 .001 .217 .254 .941

A b s o lu t e  D is c o u n t in g < JM < J D < M a n <1 n t < L in

(A bsD ) 0.0091 .019 .264 .697 .709 .584

N a t u r a l < JM < J D < M a n < l n t < L in

(N a t) 0.0084 .003 .053 .174 .177 .116

E u c l i d e a n < JM < J D < M a n < I n t < L in

(E uc) 0.0050 .000 .000 .000 .000 .000

M L E < JM < J D < M a n < I n t < L in

(M L) 0.0001 .000 .000 .000 .000 .000

> W B > A b s > L a p > L id > A b sD > N a t > E u c > M L

.183 .079 .030 .015 .019 .003 .000 .000

> W B > A b s > L a p > L id > A b sD > N a t > E u c > M L

.540 .261 .002 .001 .264 .053 .000 .000

> W B > A b s > L a p > L id > A b sD > N a t > E u c > M L

.933 .738 .661 .217 .697 .174 .000 .000

> W B > A b s > L a p > L id > A b sD > N a t > E u c > M L

.914 .688 .985 .941 .584 .116 .000 .000

- > A b s > L a p > L id > A b sD > N a t > E u c > M L

.031 .204 .064 .009 .000 .000 .000

< W B - > L a p > L id >  A bsD > N a t > E u c > M L

.031 .604 .385 .174 .007 .000 .000

<  W B <  Abs - > L id >  A bsD >  N a t > E u c > M L

.204 .604 .075 .346 .069 .000 .000

< W B < A b s < L a p - > A b sD > N a t > E u c > M L

.064 .385 .075 .607 .078 .000 .000

< W B < A b s <  Lap < L id - > N a t > E u c > M L

.009 .174 .346 .607 .028 .000 .000

< W B < A b s < L a p < L id < A b sD - > E u c > M L

.000 .007 .069 .078 .028 .000 .000

< W B < A b s < L a p < L id < A b sD < N a t - > M L

.000 .000 .000 .000 .000 .000 .000

< W B < A b s < L a p < L id < A b sD < N a t < E u c -

.000 .000 .000 .000 .000 .000 .000



Table 57: Comparison of unbiased retrieval models for the TRECVid 2003 search tasks 5x5 regional HSV colour, Canny edge and DCT texture. Underlined
entries are significant according to the Wilcoxon Sign Rank test.

R etrieva l M ethod M A P  W ilcoxon Test R esu lts

J e l i n e k - M e r c e r - > W B > L a p > J D > L in

(JM ) 0.0190 .001 .001 .579 .001

W i t t e n - B e l l < JM - >Lap >.JD > L in

(W B ) 0.0185 .001 .820 .986 .718
L a p la c e < JM < W B - > J D > L in

(L ap) 0.0185 .001 .820 1.000 .694
J  e n s e n -  S h a n n o n <JM < W B <Lap - > L in

(JD ) 0.0183 .579 .986 i .000 .000

L in e a r < JM < W B < L a p < J D -

(L in) 0.0179 .001 .718 .694 .000

M a n h a t t a n < JM < W B < L a p < J D < L in

(M an) 0.0177 .337 .941 .996 .012 .997
A b s o lu t e  D is c o u n t in g < JM < W B < L a p < J D < L in

(A bsD ) 0.0173 .001 .070 .005 .000 .008

A b s o lu t e < JM < W B < L a p < J D < L in

(A bs) 0.0172 .000 .000 .002 .000 .004

N a t u r a l < JM < W B < L a p < J D < L in

(N a t) 0.0166 .000 .000 .000 .000 .000

L id s t o n e < JM <  W B < L a p < J D < L in

(L id) 0.0163 .000 .637 .002 .000 .044

E u c l i d e a n < JM < W B < L a p < J D < L in

(E uc) 0.0104 .000 .000 .000 .000 .000

M L E < JM < W B < L a p < J D < L in

(M L) 0.0002 .000 .000 .000 .000 .000

> I n t > M an > A b sD > A b s > N a t > L id > E u c > M L

.338 .337 .001 .000 .000 .000 .000 .000

>  I n t > M an > A b sD > A b s > N a t > L id > E u c > M L

.941 .941 .070 .000 .000 .637 .000 .000

> I n t > M a n > A b sD > A b s > N a t > L id > E u c > M L

.997 .996 .005 .002 .000 .002 .000 .000

> I n t > M an > A b sD > A b s > N a t > L id > E u c > M L

.013 .012 .000 .000 .000 .000 .000 .000

> I n t > M au > A b sD > A b s > N a t > L id > E u c > M L

.997 .997 .008 .004 .000 .044 .000 .000

< I n t - > A b sD > A b s > N a t > L id > E u c > M L

.476 .000 .001 .000 .000 .000 .000

< I n t < M a n - > A b s > N a t > L id > E u c > M L

.000 .000 .029 .000 .527 .000 .000

< I n t < M a n < A b sD - > N a t > L id > E u c > M L

.001 .001 .029 .074 .971 .000 .000

< I n t < M a n < A b sD < A b s - > L id > E u c > M L

.000 .000 .000 .074 1.000 .000 .000

< I n t < M a n < A b sD < A b s < N a t - > E u c > M L

.000 .000 .527 .971 1.000 .000 .000

< I n t < M a n < A b sD < A b s < N a t < L id - > M L

.000 .000 .000 .000 .000 .000 .000

< I n t < M a n < A b sD < A b s < N a t < L id < E u c -

.000 .000 .000 .000 .000 .000 .000



Table 58: Comparison of unbiased retrieval models for the TRECVid 2004 search tasks 5x5 regional HSV colour, Canny edge and DCT texture. Underlined
entries are significant according to the Wilcoxon Sign Rank test.

Retrieval Method MAP Wilcoxon Test Results

Absolute Discounting - >.JD >JM >Man >WB >Abs >Nat >Lin >Lid >Lap >Euc >ML
(AbsD) 0.0077 .390 .131 .249 .361 .353 .024 .214 .110 .046 .000 .000
Jensen-Shannon <AbsD - >JM >Man >WB >Abs >Nal >Lin > Lid >Lap >Euc >ML
(JD) 0.0076 .390 .018 .033 .576 .600 .428 .180 .115 .001 .000 .000
J el i nek- Mercer <AbsD <JD - >Man >WB >Abs >Nat >Lin >Lid >Lap >Euc >ML
(JM) 0.0076 .131 .018 .911 .913 .837 .519 .981 .981 .366 .002 .000
Manhattan <AbsD <JD <JM - >WB > Abs >Nat >Lin >Lid >Lap >Euc >ML
(Man) 0.0075 .249 .033 .911 .556 .765 .329 .376 .147 .006 .000 .000
W itten-Bell <AbsD <JD <JM <Man - >Abs >Nat >Lin >Lid >Lap >Euc >ML
( W B ) 0.0074 .361 .576 .913 .556 .469 .043 .399 .206 .047 .000 .000
Absolute <AbsD <JD <JM <Man <WB - >Nat. >Lin >Lid > Lap >Euc >ML
(Abs) 0.0073 .353 .600 .837 .765 .469 .117 .420 .272 .061 .000 .000
Natural <AbsD <JD <JM <Man < W B <Abs - >Lin >Lid >Lap >Euc >ML
(Nat) 0.0072 .024 .428 .519 .329 .043 .117 .630 .262 .176 .003 .000
Linear <AbsD <JD <JM <Man <WB <Abs <Nat - >Lid >Lap >Euc >ML
(Lin) 0.0071 .214 .180 .981 .376 .399 .420 .630 .169 .052 .001 .000
Lidstone <AbsD <JD <JM <Mari <WB <Abs <Nat <Lin - >Lap >Euc >ML
(Lid) 0.0070 .110 .115 .981 .147 .206 .272 .262 .169 .062 .002 .000
Laplace <AbsD <JD <JM <Man < W B <Abs <Nat. <Lin <Lid - >Euc >ML
(Lap) 0.0061 .046 .001 .366 .006 .047 .061 .176 .052 .062 .092 .000
Euclidean <AbsD <JD <JM <Man < W B <Abs <Nat <Lin <Lid <Lap - >ML
(Euc) 0.0054 .000 .000 .002 .000 .000 .000 .003 .001 .002 .092 .000
MLE <AbsD <JD <JM <Man < W B <Abs <Nat <Lin <Lid <Lap <Euc -
(ML) 0.0000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
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Table 59: Comparison of the Vis-Comb WtScore fusion of the colour, edge and texture results with the colour-only results and the other fusion methods
Vis-CombJointPr and Vis-Comb WtRank on the TRECVid 2002 collection.

TRECVid 2002 Vis- Comb WtS core V. Colour-Only V. Vis-Comb JointPr V. Vis-Comb WtRank

Retrieval Method Prm MAP P10 P30 PI 00 Impr. ~  Wile. Impr. ~  Wile. Impr. ~  Wile.

Laplace 0.600,0.150,0.250 .0160 .048 .032 .020 +2.8% ~  .050 -3.2% ~  .984 +26.1% ~  ¿000
Best (0.700,0.250,0.050 .0176 .044 .029 .019) +12.8% ~  .004 +6.2% ~  ¿019 -0.1% ~  .919

Lidstone 0.600,0.150,0.250 .0164 .053 .032 .020 +3.8% ~  .008 -0.3% ~  .995 +3.8% ~  ¿008
Best (0.700,0.250,0.050 .0172 .048 .028 .018) +3.6% ~  .089 +2.1% ~  ¿029 -2.2% ~  .956

Linear 0.600,0.200,0.200 .0158 .052 .033 .020 +1.2% ~  .036 -2.9% ~  .984 -5.0% ~  .975
Best (0.700,0.250,0.050 .0174 .047 .028 .019) + 6.2% ~  m o +3.0% ~  .100 -2.4% ~  .945

Absolute Discounting 0.600,0.150,0.250 .0137 .055 .033 .018 -6.6% ~  .993 -9.5% ~  .975 +10.2% -  ¿006
Best (0.800,0.200,0.000 .0164 .041 .030 .018) +8.0% ~  ¿mi +6.3% ~  ¿001 +5.2% -  ¿001

W itten-Bell 0.500,0.200,0.300 .0139 .056 .033 .019 -6.8% ~  .986 -10.3% ~  .963 +  11.2% ~  ¿002
Best (0.900,0.100,0.000 .0157 .042 .027 .018) +5.1% ~  j)00 +1.2% ~  ¿002 +1.6% ~  ¿001

Jelinek-M ercer 0.500,0.150,0.350 .0143 .052 .032 .020 -7.0% ~  .994 -8.6% ~  .984 +29.2% ~  .164
Best (0.800,0.150,0.050 .0170 .047 .028 .018) +3.5% ~  ¿015 +1.9% ~  .056 +2.8% ~  ¿009

Absolute 0.600,0.150,0.250 .0134 .055 .032 .018 -7.8% ~  .993 -10.0% ~  .988 +10.9% ~  ¿009
Best (0.900,0.100,0.000 .0153 .042 .027 .017) +3.1% ~  ¿002 +0.4% ~  ¿004 +3.1% ~  ¿003

M anhattan 0.600,0.150,0.250 .0175 .056 .035 .020 +0.5% ~  ¿039 N/A -0.5% -  .949
Best (0.600,0.200,0.200 .0185 .058 .037 .020) +6.0% ~  ¿032 N/A +4.9% ~  ¿0M

Jensen Shannon 0.600,0.150,0.250 .0181 .056 .036 .021 -3.1% ~  .999 N/A +47.7% ~  .742
Best (0.600,0.250,0.150 .0197 .058 .036 .021) +5.5% ~  .012 N/A -0.7% ~  .964

Average of unbiased .0155 .054 .033 .020 -2.6% -6.4% +14.8%
Average of best .0172 .047 .030 .019 +6.0% +3.0% +1.4%



Table 60: Comparison of the Vis-Comb W tS core fusion of the colour, edge and texture results with the colour-only results and the other fusion methods
Vis-Comb JointP r  and Vis-Comb WtRank on the TRECVid 2003 collection.

TRECVid 2003 Vis- Comb WtS core V. Colour-Only V. Vis-Comb JointPr V. Vis-Comb WtRank

Retrieval Method Prm MAP P10 P30 PI 00 Impr. ~  Wile. Impr. ~  Wile. Impr. ~  Wile.

Laplace 0.700,0.250,0.050 .0282 .093 .075 .044 +0.9% ~  ¿037 -0.4% ~  .891 +2.4% ~  ¿001
Best (0.600,0.150,0.250 .0292 .090 .074 .046) +4.5% ~  ¿001 +3.2% -  ¿000 +3.7% ~  ¿OH

Lidstone 0.700,0.250,0.050 .0275 .090 .072 .045 +2.1% ~  ¿030 -2.6% ~  .234 +3.3% ~  ¿007
Best (0.600,0.150,0.250 .0296 .092 .077 .047) +5.6% ~  ¿001 +4.0% -  .000 +5.6% ~  ¿001

Linear 0.700,0.250,0.050 .0268 .088 .070 .043 +2.9% ~  J)17 +0.9% ~  .101 +3.2% ~  ¿001
Best (0.600,0.200,0.200 .0292 .092 .076 .046) +7.0% ~  ¿000 +5.7% ~  .000 +7.0% ~  ¿000

Absolute Discounting 0.800,0.200,0.000 .0260 .087 .071 .041 +1.8% ~  ¿005 +0.3% ~  ¿005 +2.8% ~  ¿004
Best (0.600,0.150,0.250 .0276 .088 .072 .043) +7.1% ~  ¿000 +6.0% -  ¿000 +5.5% ~  ¿000

W itten-Bell 0.900,0.100,0.000 .0262 .088 .070 .041 +1.1% ~  .053 -0.3% ~  .479 +5.3% ~  ¿016
Best (0.500,0.200,0.300 .0290 .093 .077 .047) +12.1% ~  ¿000 +  10.6% ~  .000 +9.6% ~  ¿000

J e 1 i nek-Mercer 0.800,0.150,0.050 .0252 .083 .068 .039 +5.8% ~  ¿000 +3.2% ~  ¿000 +9.4% ~  ¿000
Best (0.500,0.150,0.350 .0324 .102 .082 .051) +17.5% ~  ¿000 +16.6% ~  ¿000 +4.5% ~  .271

Absolute 0.900,0.100,0.000 .0261 .089 .069 .041 +1.2% ~  .063 -0.2% ~  .537 +  1.2% ~  .063
Best (0.600,0.150,0.250 .0286 .090 .071 .044) +10.4% ~  ¿000 +9.0% ~  ¿000 +7.9% ~  .000

M anhattan 0.600,0.200,0.200 .0273 .095 .078 .046 +8.4% ~  ¿000 N/A +8.1% ~  .000
Best (0.600,0.150,0.250 .0275 .097 .078 .046) +9.2% -  ¿000 N/A +8.9% -  ¿001

Jensen Shannon 0.600,0.250,0.150 .0271 .092 .078 .046 +4.9% ~  ¿002 N/A +6.6% ~  ¿000
Best (0.600,0.150,0.250 .0279 .092 .077 .047) +7.9% ~  .000 N/A +7.1% ~  .891

Average of unbiased .0267 .089 .072 .043 +3.2% +0.1% +4.7%
Average o f best .0290 .093 .076 .047 +9.0% +7.9% +6.6%



Table 61: Comparison of the Vis-CombWtScore fusion of the colour, edge and texture results with the colour-only results and the other fusion methods
Vis-CombJointPr and Vis-Comb WtRank on the TRECVid 2004 collection.

TRECVid 2004 Vis-Comb WtScore V. Colour-Only V. Vis-CombJointPr V. Vis-Comb WtRank
Retrieval Method Prm MAP P10 P30 P100 Impr. ~  Wile. Impr. ~  Wile. Impr. ~  Wile.

Laplace 0.600,0.150,0.250 .0096 .036 .028 .015 +7.4% ~  .915 +0.9% ~  .760 +9.4% ~  .834
Best (0.500,0.400, 0.100 .0109 .037 .029 .016) +22.1% ~  .979 +14.8% ~  .923 +0.6% ~  .771

Lidstone 0.600,0.150,0.250 .0111 .041 .029 .016 +25.9% ~  .192 +17.9% ~  .186 +25.9% ~  .192
Best (0.400,0.250,0.350 .0125 .043 .030 .016) +41.7% ~  .311 +32.7% ~  .111 -2.6% ~  .247

Linear 0.600,0.200,0.200 .0111 .040 .030 .015 +24.7% ~  .162 +17.4% -  .266 +19.6% ~  .145
Best (0.400,0.250,0.350 .0125 .045 .030 .016) +40.2% ~  .213 +32.1% ~  .078 -3.1% ~  .385

Absolute Discounting 0.600,0.150,0.250 .0114 .044 .028 .015 +30.4% -  .080 +26.5% -  .076 +14.4% ~  .019
Best (0.300,0.300,0.400 .0132 .041 .031 .017) +51.4% ~  .145 +47.0% ~  .080 -0.0% ~  .112

W itten-Bell 0.500,0.200,0.300 .0119 .041 .027 .017 +37.4% ~  ¿026 +35.4% ~  .094 +23.6% ~  .107
Best (0.400,0.200,0.400 .0126 .038 .028 .017) +45.9% ~  .085 +43.8% ~  .050 -1.1% ~  .156

Jelinek-M ercer 0.500,0.150,0.350 .0113 .040 .030 .016 +29.5% ~  .514 +21.9% ~  .484 +7.8% ~  .623
Best (0.400,0.400,0.200 .0135 .041 .029 .018) +53.7% ~  .644 +44.6% ~  .458 -0.4% ~  ¿010

Absolute 0.600,0.150,0.250 .0110 .043 .027 .015 +26.4% ~  ¿032 +27.2% ~  .136 +14.7% ~  ¿037
Best (0.400,0.150,0.450 .0126 .036 .028 .016) +45.2% ~  .132 +46.0% ~  .085 -1.5% ~  .218

M anhattan 0.600,0.150,0.250 .0114 .041 .026 .016 +43.6% ~  .063 N/A +15.4% ~  .127
Best (0.400,0.400,0.200 .0133 .048 .029 .016) +67.8% ~  .489 N/A -9.9% ~  ¿023

Jensen Shannon 0.600,0.150,0.250 .0120 .043 .030 .017 +31.3% ~  ¿031 N/A -12.7% ~  .090
Best (0.400,0.300,0.300 .0132 .046 .032 .018) +44.5% ~  .076 N/A -5.8% ~  .316

Average o f unbiased .0112 .041 .028 .016 +28.5% +21.0% +13.1%
Average o f best .0127 .042 .029 .017 +45.8% +37.3% -2.7%



Table 62: Comparison of unbiased retrieval models for the TRECVid 2002 search tasks
using the Vis- Comb WtScore fusion method for combining colour, edge and texture results.

Ret. Method MAP/%Dif Wilcoxon Test Results

Jensen-Shannon - >Man >Lid >Lap >Lin >JM > W B >AbsD >Abs
(JD) .0181 .002 .077 .047 .050 .267 .091 .002 .030
Manhattan <JD - >Lid >Lap >Lin >JM > W B >AbsD >Abs
(Man) .0175/-3.3% .002 .323 .306 .271 .476 .219 .065 .133
Lidstone <JD <Man - >Lap >Lin >JM > \ V B >AbsD >Abs
(Lid) .0164/-9.4% .077 .323 .382 .056 .814 .281 .010 .124
Laplace <JD <Man <Lid - >Lin >JM > W B >AbsD >Abs
(Lap) ■0160/-11.6% .047 .306 .382 .100 .896 .385 .015 .026
Linear <JD <Man <Lid <Lap - >JM > W B >AbsD >Abs
(Lin) .0158/-12.7% .050 .271 .056 .100 .858 .413 .025 .115
Jelinek-Mercer <JD <Man <Lid <Lap <Lin - > W B >AbsD >Abs
(JM) .0143/-21.0% .267 .476 .814 .896 .858 .052 .018 .033
W itten-Bell <JD <Man <Lid <Lap <Lin <JM - >AbsD >Abs
(W B ) .0139/-23.2% .091 .249 .281 .385 .413 .052 .004 .009
Absolute Discounting <JD <Man <Lid <Lap <Lin <JM < W B - >Abs
(AbsD) .0137/-24.3% .002 .065 .010 .015 .025 .018 .004 .772
Absolute <JD <Man <Lid <Lap <Lin <JM < W B <AbsD -
(Abs) .0134/-26.0% .030 .133 .124 .026 .115 .033 .009 .772

Table 63: Comparison of unbiased retrieval models for the TRECVid 2003 search tasks 
using the Vis-Comb WtScore fusion method for combining colour, edge and texture results.

Ret. Method MAP/%Dif Wilcoxon Test Results

Laplace - >Lid >Man >JD >Lin > W B >Abs >AbsD >JM
(Lap) .0282 .796 .996 .999 .621 .000 .000 .000 .736
Lidstone <Lap - >Man >JD >Lin > W B >Abs >AbsD >JM
(Lid) .0275/-1.5% .796 .997 .999 .128 .000 .000 .000 .592
Manhattan <Lap <Lid - >JD >Lin > W B >Abs >AbsD >JM
(Man) .0273/-3.2% .996 .997 .601 .000 .000 .000 .000 .000
Jensen-Shannon <Lap <Lid <Man - >Lin > W B >Abs >AbsD >JM
(JD) .0271/-3.9% .999 .999 .601 .000 .000 .000 .000 .000
Linear <Lap <Lid <Man <JD - > W B >Abs >AbsD >JM
(L in ) .0268/-5.0% .621 .128 .000 .000 .000 .000 .000 .401
W itten-Bell <Lap <Lid <Man <JD <Lin - >Abs >AbsD >JM
(W B ) .0262/-7.0% .000 .000 .000 .000 .000 .023 .995 .997
Absolute <Lap <Lid <Man <JD <Lin < W B - >AbsD >JM
(Abs) .0261/-7.4% .000 .000 .000 .000 .000 .023 .998 .997
Absolute Discounting <Lap <Lid <Man <JD <Lin <WB <Abs - >JM
(AbsD) .0260/-7.8% .000 .000 .000 .000 .000 .995 .998 .986
J  elinek-Mer cer <Lap <Lid <Man <JD <Lin <WB <Abs <AbsD -
(JM) .0252/-10.6% .736 .592 .000 .000 .401 .997 .997 .986
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Table 64: Comparison of unbiased retrieval models for the TRECVid 2004 search tasks
using the Vis- Comb WtScore fusion method for combining colour, edge and texture results.

Ret Method MAP/%Dif Wilcoxon Test Results

Jensen-Shannon _ >WB >Man >AbsD >JM >Lid >Lin >Abs >Lap
(JD) .0120 .360 .038 .124 .198 .147 .148 .123 .034
W itten-Bell <JD - >Man >AbsD >JM >Lid >Lin >Abs >Lap
(WB) .0119/-0.8% .360 .381 .045 .068 .242 .251 .075 .093
Manhattan <JD <WB - >AbsD >JM >Lid >Lin >Abs >Lap
(Man) .0114/-5.0% .038 .381 .275 .358 .580 .500 .279 .280
Absolute Discounting <JD <WB <Man - >JM >Lid >Lin >Abs >Lap
(AbsD) .0114/-5.0% .124 .045 .275 .439 .569 .333 .456 .343
Jelinek-Mercer <JD <WB <Man <AbsD - >Lid >Lin >Abs >Lap
(JM) .0113/-5.8% .198 .068 .358 .439 .909 .825 .441 .440
Lidstone <JD <\VB <Man <AbsD <JM - >Lin >Abs >Lap
(Lid) .0111/-7.5% .147 .242 .580 .569 .909 .230 .429 .010
Linear <JD <WB <Man <AbsD <JM <Lid - >Abs >Lap
(Lin) .0111/-7.5% .148 .251 .500 .333 .825 .230 .303 .033
Absolute <JD <WB <Man <AbsD <JM < Lid <Lin - >Lap
(Abs) .0110/-8.3% .123 .075 .279 .456 .441 .429 .303 .395
Laplace <JD <WB <Man <AbsD <JM <Lid <Lin <Abs -
(Lap) .0096/-20.0% .034 .093 .280 .343 .440 .010 .033 .395

2 6 9



Table 65: Comparison of the VisExs-CombMaxScore fusion method with the other fusion methods VisExs-CombJointPr, VisExs-CombRank, VisExs-
CombScore and VisExs-CombMaxRank for combining the visual examples’ results of the different retrieval models on the TRECVid 2002 collection.

TRECVid 2002 VisExs-CombMaxScore V. VisExs-CombJointPr V. VisExs-CombRank V. VisExs- CombScore V. VisExs-CombMaxRank

Retrieval Method MAP P10 P30 PI 00 Impr. ~  Wile. Impr. ~  Wile. Impr. ~  Wile. Impr. ~  Wile.

Laplace .0203 .080 .052 .025 +211.9% ~  .009 +34.2% ~  .186 +  15.5% ~  ¿035 -0.0% ~  ¿012
Best (.0229 .068 .039 .024) +251.9% ~  ¿027 +31.0% -  .405 +  15.0% -  .092 -0.1% ~  ¿035

Lidstone .0206 .080 .053 .027 +211.4% -  ¿006 +33.4% ~  .210 +29.1% ~  ¿022 -2.0% ~  ¿023
Best (.0248 .072 .044 .024) +250.9% ~  ¿012 +58.6% ~  .263 +37.0% ~  .054 -0.3% ~  ¿001

Linear .0207 .080 .052 .026 +224.8% ~  ¿009 +39.3% ~  .247 +22.5% ~  .068 -4.6% ~  ¿008
Best (.0214 .068 .035 .023) +214.9% ~  ¿011 +38.4% ~  .260 +21.2% ~  .079 +0.1% ~  .956

Absolute Discounting .0190 .080 .052 .026 +234.4% -  ¿008 +52.6% -  .261 +39.7% ~  ¿015 -0.1% ~  .070
Best (.0236 .072 .040 .022) +305.3% ~  ¿037 +71.4% ~  .491 +30.9% ~  .310 +0.5% ~  .968

W itten-Bell .0209 .084 .059 .028 +235.9% ~  ¿001 +63.2% ~  .068 +15.8% ~  .116 +0.5% ~  .603
Best (.0221 .068 .040 .024) +255.1% ~  ¿029 +65.7% ~  .261 +35.7% ~  .074 -1.3% ~  ¿048

Jelinek-M ercer .0212 .080 .052 .032 +199.5% ~  ¿001 +48.4% ~  .137 +18.3% ~  .153 +0.2% ~  .566
Best (.0244 .064 .043 .025) +91.2% ~  ¿005 +51.4% ~  .148 +12.9% ~  ¿006 +1.6% -  .980

Absolute .0202 .080 .055 .026 +239.4% ~  ¿001 +57.5% ~  .092 +31.7% ~  ¿016 -0.2% ~  ¿044

Best (.0217 .064 .043 .023) +258.2% ~  ¿042 +68.2% ~  .261 +36.9% ~  .096 +2.6% ~  .833

M anhattan .0275 .084 .055 .033 N/A +87.8% ~  .109 +42.1% ~  .157 +0.1% ~  .939
Best (.0276 .076 .051 .033) N/A +72.4% ~  .058 +40.3% -  .148 +0.1% ~  .951

Jensen Shannon .0286 .092 .059 .031 N/A +81.2% ~  ¿004 +47.6% ~  ¿026 +3.1% ~  .749
Best (.0306 .084 .055 .032) N/A +76.7% ~  .008 +47.0% ~  .046 +4.1% ~  .915

Average of unbiased .0221 .082 .054 .028 +222.5% +55.3% +29.1% -0.3%
Average of best .0243 .071 .043 .025 +232.5% +59.3% +30.8% +0.8%



Table 66: Comparison of the VisExs-CombMaxScore fusion method with the other fusion methods VisExs-CombJointPr, VisExs-Comb Rank, VisExs-
CombScore and VisExs- CombMaxRank for combining the visual examples’ results of the different retrieval models on the TRECVid 2003 collection.

TRECVid 2003 VisExs-CombMaxScore V. VisExs-CombJointPr V. VisExs-Comb Rank V. VisExs-CombScore V. VisExs-Comb MaxRank

Retrieval Method MAP P10 P30 PI 00 Impr. ~  Wile. Impr. Wile. Impr. ~  Wile. Impr. ~  Wile.

Laplace .0463 .108 .093 .060 +  19.9% ~  ¿018 +  17.6% ~  .213 +  12.7% ~  .106 +0.3% ~  .660
Best (.0483 .116 .092 .062) +25.2% ~  ¿007 +  16.1% ~  .233 +13.2% ~  .061 +  1.1% ~  .223

Lidstone .0443 .120 .099 .058 +4.3% ~  .262 +8.2% ~  .130 +7.5% ~  .094 +0.4% ~  .961
Best (.0499 .116 .091 .062) +25.7% ~  ¿007 +18.7% ~  .112 +17.4% ~  .173 +0.7% -  .206

Linear .0468 .104 .092 .057 +17.1% ~  ¿043 +15.3% ~  .099 +14.8% ~  ¿012 +0.6% ~  .921
Best (.0498 .116 .093 .064) +35.8% ~  ¿000 +23.3% ~  .079 +19.8% ~  .084 +0.5% -  .354

Absolute Discounting .0367 .100 .089 .051 +18.8% -  ¿000 +7.2% ~  .068 +6.8% ~  .167 +1.3% ~  .528
Best (.0446 .112 .084 .056) +48.6% ~  ¿000 +24.0% ~  ¿034 +22.0% ~  ¿031 +1.2% ~  .515

W itten-Bell .0373 .096 .088 .051 +21.4% ~  ¿002 +9.1% ~  ¿045 +6.6% ~  .086 +1.4% ~  .261
Best (.0499 .124 .096 .066) +62.5% ~  ¿000 +21.7% ~  ¿033 +21.4% ~  .084 +1.7% ~  .656

Jelinek-M ercer .0420 .096 .081 .059 -25.5% ~  .173 +12.7% ~  .072 +2.5% — .112 +2.1% ~  .656
Best (.0554 .120 .097 .068) +50.3% ~  ¿000 +14.8% ~  ¿011 +15.4% ~  .177 +0.2% ~  .301

Absolute .0358 .092 .088 .050 +18.0% ~  ¿002 +5.6% ~  ¿043 +4.1% -  .063 +1.2% ~  .372
Best (.0469 .120 .091 .058) +55.4% ~  ¿000 +29.8% ~  ¿015 +27.0% ~  .054 +0.7% ~  .578

M anhattan .0444 .128 .097 .061 N/A +4.1% ~  .227 +8.3% ~  .384 +0.6% ~  .863
Best (.0460 .128 .096 .062) N/A +6.3% ~  .296 +10.4% ~  .416 +0.4% ~  .908

Jensen Shannon .0444 .128 .099 .064 N/A +7.4% ~  .367 +13.4% ~  .233 +0.1% ~  .884
Best (.0467 .124 .091 .062) N/A +9.7% ~  .715 +16.2% ~  .177 +1.4% ~  .830

Average of unbiased .0420 .108 .092 .057 +10.6% +9.7% +8.5% +0.9%
Average of best .0486 .120 .092 .062 +43.4% +18.3% +18.1% +0.9%



Table 67: Comparison of the VisExs-CombMaxScore fusion method with the other fusion methods Vis Exs-Comb JointPr , Vis Exs-Comb Rank, VisExs-
CombScore and VisExs-CombMaxRank for combining the visual examples’ results of the different retrieval models on the TRECVid 2004 collection.

TRECVid 2004 Vis Exs- Comb Max Score V. VisExs- Comb JointPr V. VisExs-CombRank V. VisExs-CombSeore V. VisExs-CombMaxRank

Retrieval Method MAP P10 P30 PI 00 Impr. ~  Wile. Impr. ~  Wile. Impr. ~  Wile. Impr. ~  Wile.

Laplace .0210 .065 .042 .027 +407.6% -  .186 +23.8% ~  .301 + 12.3% ~  .288 +0.6% ~  .962
Best (.0296 .109 .068 .035) +616.9% ~  .106 +24.6% ~  .084 +54.6% ~  .116 +2.3% ~  .934

Lidstone .0250 .091 .057 .033 +513.5% ~  .169 +8.5% ~  .145 +7.7% ~  .179 -0.1% ~  ¿010
Best (.0265 .104 .058 .033) +549.9% -  .161 +13.1% -  ¿047 +9.2% ~  .084 -1.2% ~  ¿013

Linear .0264 .096 .062 .035 +563.2% ~  .125 + 16.8% ~  .096 +21.3% ~  .061 +0.0% ~  .867
Best (.0268 .096 .059 .033) +573.5% ~  .054 +17.4% ~  ¿029 +20.5% ~  ¿041 -0.8% ~  ¿022

Absolute Discounting .0319 .117 .077 .037 +920.9% ~  .066 +89.8% ~  ¿MI +52.9% ~  ¿020 +1.0% ~  .628
Best (.0344 .122 .081 .039) +1,003.4% ~  ¿020 +103.5% ~  ¿002 +63.2% ~  ¿003 +1.6% ~  .988

W itten-Bell .0311 .122 .077 .039 +912.6% ~  ¿021 +67.8% ~  ¿023 +30.8% ~  .125 +0.3% ~  .977
Best (.0319 .130 .074 .036) +935.7% ~  ¿010 +73.0% ~  .051 +25.7% ~  .494 +0.1% -  .977

Jelinek-M ercer .0222 .083 .045 .027 +524.8% ~  .131 +6.6% ~  .084 +4.1% ~  .125 -0.8% ~  ¿000
Best (.0267 .083 .052 .029) +653.2% ~  .616 +25.8% ~  .888 +11.2% ~  .900 -0.3% ~  ¿017

Absolute .0315 .117 .077 .038 +963.5% ~  ¿044 +95.6% ~  ¿008 +47.2% ~  .072 + 1.0% ~  .910
Best (.0324 .135 .075 .039) +996.8% ~  ¿01! +101.7% ~  .001 +49.9% ~  ¿001 + 1.5% ~  .982

Manhattan .0284 .104 .064 .035 N/A +34.2% -  ¿023 + 13.1% ~  .455 +0.6% ~  .986
Best (.0362 .130 .083 .038) N/A +26.0% -  .102 +28.8% ~  .576 +0.8% ~  .934

Jensen Shannon .0286 .109 .067 .039 N/A +21.9% -  ¿021 +5.3% -  .391 +0.3% ~  .946
Best (.0320 .113 .081 .038) N/A +29.3% ~  .027 +8.0% ~  .506 +2.0% ~  .971

Average of unbiased .0273 .100 .063 .034 +686.6% +40.5% +21.6% +0.3%
Average of best .0307 .114 .070 .035 +761.3% +46.1% +30.1% +0.7%



Table 68: Comparison of unbiased retrieval models for the TRECVid 2002 search tasks
using the VisExs-CombMaxScore fusion method for combining visual examples.

Ret. Method MAP/%Dif Wilcoxon Test Results

Jensen-Shannon - >Man >JM >WB >Lin >Lid >Lap >Abs >AbsD
(JD) 0.0286 .049 .121 .104 .002 .004 .005 .173 .006
Manhattan <JD - >JM >WB >Lin >Lid >Lap >Abs >AbsD
(Man) 0.0275/-3.8% .049 .256 .099 .006 .013 .018 .189 .021
Jelinek-Mercer <JD <Man - >WB >Lin >Lid >Lap >Abs >AbsD
(JM) 0.0212/-25.9% .121 .256 .516 .014 .012 .006 .334 .024
W itten-Bell <JD < Man <JM - >Lin >Lid >Lap >Abs >AbsD
( W B ) 0.0209/-26.9% .104 .099 .516 .073 .081 .060 .047 .022
Linear <JD <Man <JM < WB - >Lid >Lap >Abs >AbsD
(Lin) 0.0207/-27.6% .002 .006 .014 .073 .669 .589 .849 .479
Lidstone <JD <Man <JM <WB <Lin - >Lap >Abs >AbsD
(Lid) 0.0206/-28.0% .004 .013 .012 .081 .669 .295 .633 .145
Laplace <JD <Man <JM <WB <Lin <Lid - >Abs >AbsD
(Lap) 0.0203/-29.0% .005 .018 .006 .060 .589 .295 .646 .275
Absolute <JD <Man <JM < W B <Lin < Lid <Lap - >AbsD
(Abs) 0.0202/-29.4% .173 .189 .334 .047 .849 .633 .646 .023
Absolute Discounting <JD <Man <JM < W B <Lin <Lid <Lap <Abs -
(AbsD) 0.0190/-33.6% .006 .021 .024 .022 .479 .145 .275 .023

Table 69: Comparison of unbiased retrieval models for the TRECVid 2003 search tasks 
using the VisExs-CombMaxScore fusion method for combining visual examples.

Ret. Method MAP/%Dif Wilcoxon Test Results

Linear - >Lap >JD >Man >Lid >JM > W B >AbsD >Abs
(Lin) 0.0468 .052 .848 .744 .557 .274 .003 .000 .002
Laplace <Lin - >JD >Man >Lid >JM > W B >AbsD >Abs
(Lap) 0.0463/-l.l% .052 .964 .914 .708 .697 .005 .002 .003
Jensen-Shannon <Lin <Lap - >Man >Lid >JM > W B >AbsD >Abs
(JD) 0.0444/-5.1% .848 .964 .468 .090 .274 .010 .001 .007
Manhattan <Lin <Lap <JD - >Lid >.JM > W B >AbsD >Abs
(Man) 0.0444/-5.1% .744 .914 .468 .101 .252 .010 .002 .006
Lidstone <Lin <Lap <JD <Man - >JM > W B >AbsD >Abs
(Lid) 0.0443/-5.3% .557 .708 .090 .101 .558 .002 .003 .002
Jelinek-Mercer <Lin <Lap <JD <Man <Lid - > W B >AbsD >Abs
(JM) 0.0420/-10.3% .274 .697 .274 .252 .558 .022 .012 .022
W itten-Bell <Lin <Lap <JD <Man <Lid <JM - >AbsD >Abs
( W B ) 0.0373/-20.3% .003 .005 .010 .010 .002 .022 .516 .175
Absolute Discounting <Lin <Lap <JD <Man <Lid <JM <  W B - >Abs
(AbsD) 0.0367/-21.6% .000 .002 .001 .002 .003 .012 .516 .210
Absolute <Lin <Lap <JD <Man <Lid <JM < W B <AbsD -
(Abs) 0.0358/-23.5% .002 .003 .007 .006 .002 .022 .175 .210
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Table TO: Comparison of unbiased retrieval models for the TRECVid 2004 search tasks
using the VisExs-CombMaxScore fusion method for combining visual examples.

Ret. Method MAP/%Dif Wilcoxon Test Results

Absolute Discounting _ >Abs >WB >JD >Man >Lin >Lid >JM >Lap
(AbsD) 0.0319 .558 .704 .916 .847 .404 .367 .442 .223
Absolute <AbsD - >WB >JD >Man >Lin >Lid >JM >Lap
(Abs) 0.0315/-1.3% .558 .646 .926 .869 .384 .371 .452 .217
W itten-Bell <AbsD <Abs - >JD >Man >Lin >Lid >JM >Lap
(WB) 0.0311/-2.5% .704 .646 .681 .621 .058 .066 .177 .027
Jensen-Shannon <AbsD <Abs <WB - >Man >Lin >Lid >JM >Lap
(JD) 0.0286/-10.3% .916 .926 .681 .274 .025 .014 .125 .033
Manhattan <AbsD <Abs <WB <JD - >Lin >Lid >JM >Lap
(Man) 0.0284/-11.0% .847 .869 .621 .274 .213 .455 .253 .319
Linear <AbsD <Abs <\VB <JD <Man - >Lid >JM >Lap
(Lin) 0.0264/-17.2% .404 .384 .058 .025 .213 .762 .319 .249
Lidstone <AbsD <Abs <WB <JD <Man <Lin - >JM >Lap
(Lid) 0.0250/-21.6% .367 .371 .066 .014 .455 .762 .129 .040
Jelinek-Mercer <AbsD <Abs <WB <JD <Man <Lin <Lid - >Lap
(JM) 0.0222/-30.4% .442 .452 .177 .125 .253 .319 .129 .319
Laplace <AbsD <Abs <WB <JD <Man <Lin <Lid <JM -
(Lap) 0.0210/-34.2% .223 .217 .027 .033 .319 .249 .040 .319

2 7 4



Table 71: Comparison of the TextVis-CombWtScore text and visual fusion method with the text-only results and the other fusion methods TextVis-
CombJointPr and TextVis-CombW tRank for combining the Shot+Adj+Video interpolated text language model’s results with the combined visual examples
results of the different retrieval models for the TRECVid 2002 collection.

TRECVid 2002 TextVis-CombWtScore V. Text-Only V. Text Vis-Comb JointPr V. TextVis-CombWtRank
Retrieval Method Prm MAP P10 P30 PI 00 Impr. ~  Wile. Impr. ~  Wile. Impr. ~  Wile.

Laplace 0.70,0.30 .1618 .260 .187 .122 +0.8% ~  .654 +2,390.9% ~  .000 +34.3% ~  ,01!
Best (0.80,0.20 .1716 .272 .177 .122) +2.3% -  .319 +2,542.5% ~  .000 +2.3% ~  .319

Lidstone 0.70,0.30 .1616 .256 .185 .121 +0.7% ~  .665 +2,338.5% ~  ,000 +40.1% -  .007
Best (0.80,0.20 .1715 .272 .177 .121) +2.3% -  .494 +2,323.9% ~  .000 +2.3% ~  .494

Linear 0.70,0.30 .1610 .256 .187 .122 +0.3% -  .729 +2,421.0% ~  .000 +38.5% ~  ,033
Best (0.80,0.20 .1713 .272 .175 .122) +2.1% ~  .494 +2,425.0% ~  .000 +2.1% ~  .494

Absolute Discounting 0.70,0.30 .1568 .264 .185 .123 -2.3% ~  .233 +2,654.1% ~  ,000 +34.2% ~  ,049
Best (0.90,0.10 .1704 .272 .176 .121) +  1.6% ~  .295 +2,831.6% ~  .000 +  1.6% ~  .295

W itten-Bell 0.70,0.30 .1590 .260 .185 .124 -1.0% ~  .623 +2,451.8% ~  .000 +21.7% ~  ,044
Best (0.80,0.20 .1715 .264 .176 .122) +2.2% ~  .519 +2,652.3% ~  .000 +2.2% ~  .519

Jelinek-M ercer 0.70,0.30 .1663 .264 .187 .121 +3.6% ~  .271 +2,247.8% ~  ,000 +8.2% ~  ,019
Best (0.75,0.25 .1720 .264 .177 .121) +2.6% ~  .646 +1,250.1% -  .000 +2.6% ~  .646

Absolute 0.70,0.30 .1570 .260 .187 .124 -2.2% ~  .292 +2,532.6% ~  .000 +22.9% ~  .087
Best (0.80,0.20 .1713 .264 .177 .122) +2.2% ~  .558 +2,722.5% ~  ,000 +2.2% ~  .558

M anhattan 0.70,0.30 .1637 .276 .185 .122 +1.9% ~  .584 N/A +28.7% ~  ,010
Best (0.90,0.10 .1712 .276 .177 .122) +2.1% ~  .213 N/A +2.1% ~  .213

Jensen Shannon 0.70,0.30 .1633 .268 .187 .122 +  1.7% ~  .464 N/A +39.7% ~  ,014
Best (0.90,0.10 .1712 .276 .177 .122) +2.1% -  .138 N/A +2.1% ~  .138

Average of unbiased .1612 .263 .186 .122 +0.4% +2,433.8% +29.8%
Average o f best .1713 .270 .177 .121 +2.2% +2,392.5% +2.2%



Table 72: Comparison of the TextVis-CombWtScore text and visual fusion method with the text-only results and the other fusion methods TextVis-
CombJointPr and TextVis-CombWtRank for combining the Shot+Adj+ Video interpolated text language model’s results with the combined visual examples
results of the different retrieval models for the TRECVid 2003 collection.

TRECVid 2003 Text Vis- Comb WtScore V. Text-Only V. TextVis- Comb JointPr V. TextVis-CombWtRank

Retrieval Method Prm MAP P10 P30 P100 Impr. ~  Wile. Impr. ~  Wile. Impr. ~  Wile.

Laplace 0.80,0.20 .1529 .264 .191 .117 +8.8% ~  .050 +295.9% ~  .001 +8.8% -  .050
Best (0.70,0.30 .1575 .284 .199 .119) +  10.2% ~  .173 +307.8% ~  M L -5.5% ~  .511

Lidstone 0.80,0.20 .1536 .268 .191 .116 +9.3% -  ,036 +261.8% ~  .002 +9.3% ~  ,036
Best (0.70,0.30 .1591 .280 .199 .120) +11.4% ~  .094 +300.5% ~  .001 -4.2% ~  .443

Linear 0.80,0.20 .1524 .268 .189 .118 +8.4% ~  ,039 +281.1% ~  .002 +8.4% ~  ,039
Best (0.70,0.30 .1581 .276 .200 .122) +  10.6% -  .139 +331.5% ~  .000 -4.2% ~  .355

Absolute Discounting 0.90,0.10 .1483 .260 .184 .114 +5.5% ~  .146 +379.9% -  .001 +5.5% ~  .146
Best (0.70,0.30 .1570 .280 .193 .122) +9.8% -  .262 +422.6% -  .000 -4.6% ~  .081

W itten-Bell 0.80,0.20 .1534 .268 .188 .117 +9.2% ~  .158 +399.8% ~  .001 +9.2% ~  .158
Best (0.70,0.30 .1611 .280 .193 .122) +12.7% -  .055 +424.7% ~  .000 -3.7% ~  .284

Jelinek-M ercer 0.75,0.25 .1564 .288 .191 .121 +11.3% -  .081 +177.2% -  .005 +11.3% ~  .081
Best (0.70,0.30 .1605 .276 .199 .122) +12.3% ~  ,046 +335.6% ~  .000 -6.6% ~  .173

Absolute 0.80,0.20 .1533 .268 .188 .117 +9.1% ~  .158 +405.5% ~  .001 +9.1% ~  .158
Best (0.70,0.30 .1592 .280 .189 .122) +11.4% ~  .271 +427.8% ~  ,000 -2.3% ~  .334

M anhattan 0.90,0.10 .1462 .256 .180 .114 +4.1% -  ,031 N/A +4.1% ~  ,031
Best (0.70,0.30 .1569 .276 .193 .119) +9.8% ~  .095 N/A -3.1% ~  .256

Jensen Shannon 0.90,0.10 .1462 .256 .179 .114 +4.0% ~  ,025 N/A +4.0% ~  ,025
Best (0.70,0.30 .1575 .276 .199 .118) +10.2% ~  .095 N/A -6.9% ~  .212

Average of unbiased .1514 .266 .187 .117 +7.7% +314.5% +7.7%
Average of best .1585 .279 .196 .121 +10.9% +364.4% -4.5%
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Table 73: Comparison of the TextVis-CombWtScore text and visual fusion method with the text-only results and the other fusion methods TextVis-
CombJointPr and TextVis-CombW tRank for combining the Shot+Adj+Video  interpolated text language model’s results with the combined visual examples
results of the different retrieval models for the TRECVid 2004 collection.

TRECVid 2004 Text Vis-Comb WtScore V. Text-Only V. TextVis-CombJointPr V. TextVis-CombWtRank

Retrieval Method Prm MAP P10 P30 PI 00 Impr. ~  Wile. Impr. ~  Wile. Impr. ~  Wile.

Laplace 0.70,0.30 .0729 .217 .155 .097 +6.3% ~  .584 +1,662.8% ~  ¿000 +0.4% ~  .303
Best (0.55,0.45 .0790 .248 .171 .094) +15.2% ~  .758 N/A +8.3% ~  .827

Lidstone 0.70,0.30 .0745 .217 .157 .099 +8.7% ~  .524 +1,726.5% ~  ¿000 +0.5% ~  .324
Best (0.55,0.45 .0812 .265 .180 .095) +18.3% ~  .767 N/A +5.6% ~  .794

Linear 0.70,0.30 .0743 .217 .159 .099 +8.3% ~  .572 + 1,765.1% ~  ¿000 +1.5% ~  .536
Best (0.55,0.45 .0810 .257 .175 .093) +18.1% ~  .767 N/A +5.4% ~  .785

Absolute Discounting 0.70,0.30 .0763 .217 .157 .100 +11.2% ~  .631 +2,342.8% ~  ¿000 +4.0% ~  .313
Best (0.55,0.45 .0867 .265 .187 .098) +26.3% ~  .863 N/A +8.2% ~  .738

W itten-Bell 0.70,0.30 .0775 .226 .158 .102 +13.1% ~  .189 +2,421.0% ~  ¿000 +2.1% ~  .335
Best (0.55,0.45 .0888 .283 .190 .099) +29.5% ~  .687 N/A + 14.9% ~  .282

Jelinek-M ercer 0.70,0.30 .0741 .217 .152 .099 +8.1% ~  .381 +1,987.8% ~  ¿000 +3.5% ~  .262
Best (0.60,0.40 .0750 .230 .162 .093) +9.3% ~  .919 N/A +5.0% ~  .914

Absolute 0.70,0.30 .0762 .222 .159 .102 +11.1% ~  .654 +2,476.0% ~  ¿000 +5.7% ~  .369
Best (0.55,0.45 .0899 .278 .193 .098) +31.0% ~  .560 N/A +12.7% ~  .476

M anhattan 0.70,0.30 .0756 .213 .157 .100 +10.2% ~  .654 N/A +4.9% ~  .392
Best (0.55,0.45 .0834 .239 .180 .098) +21.6% ~  .767 N/A +15.0% ~  .697

Jensen Shannon 0.70,0.30 .0758 .222 .155 .100 +10.5% ~  .488 N/A +5.5% ~  .197
Best (0.55,0.45 .0844 .261 .184 .097) +23.1% ~  .665 N/A +15.6% ~  .262

Average of unbiased .0752 .219 .157 .100 +9.7% +2,054.6% +3.1%
Average of best .0833 .258 .180 .096 +21.4% +10.1%



Table 74: Comparison of unbiased retrieval models for the TRECVid 2002 search tasks
using the TextVis-CombWtScore fusion method for combining text and visual results.

R et Method MAP/%Dif Wilcoxon Test Results

Jelinek-Mercer - >Man >JD >Lap >Lid >Lin >WB >Abs >AbsD
(JM) 0.1663 .294 .229 .024 .052 .011 .180 .020 .003
Manhattan <JM - >.JD >Lap >Lid >Lin >WB >Abs >AbsD
(Man) 0.1637/-1.6% .294 .823 .031 .025 .014 .110 .014 .003
Jensen-Shannon <JM <Man - >Lap >Lid >Lin >WB >Abs >AbsD
(JD) 0.1633/-1.8% .229 .823 .021 .009 .004 .204 .008 .004
Laplace <JM <Man <JD - >Lid >Lin >WB >Abs >AbsD
(Lap) 0.1618/-2.7% .024 .031 .021 .693 .021 .706 .072 .036
Lidstone <JM <Man <JD <Lap - >Lin >WB >Abs >AbsD
(Lid) 0.1616/-2.8% .052 .025 .009 .693 .012 .744 .053 .057
Linear <JM <Man <JD <Lap <Lid - >WB >Abs >AbsD
(Lin) 0.1610/-3.2% .011 .014 .004 .021 .012 .890 .303 .130
W itten-Bell <JM <Man <JD <Lap <Lid <Lin - >Abs >AbsD
(WB) 0.1590/-4.4% .180 .110 .204 .706 .744 .890 .004 .001
Absolute <JM <Man <JD <Lap <Lid <Lin <WB - >AbsD
(Abs) 0.1570/-5.6% .020 .014 .008 .072 .053 .303 .004 .243
Absolute Discounting <JM <Man <JD <Lap <Lid <Lin <WB <Abs -
(AbsD) 0.1568/-5.7% .003 .003 .004 .036 .057 .130 .001 .243

Table 75: Comparison of unbiased retrieval models for the TRECVid 2003 search tasks 
using the TextVis-CombWtScore fusion method for combining text and visual results.

Ret Method MAP/%Dif Wilcoxon Test Results

J  elinek-Mercer - >Lid >WB >Abs >Lap >Lin >AbsD >Man >JD
(JM) 0.1564 .708 .432 .421 .557 .443 .410 .399 .366
Lidstone <JM - > W B >Abs >Lap >Lin >AbsD >Man >JD
(Lid) 0.1536/-1.8% .708 .036 .039 .033 .015 .044 .095 .076
W itten-Bell <JM <Lid - >Abs >Lap >Lin >AbsD >Man >JD
(W B ) 0.1534/-1.9% .432 .036 .028 .936 .966 .392 .548 .572
Absolute <JM <Lid < W B - >Lap >Lin >AbsD >Man >JD
(Abs) 0.1533/-2.0% .421 .039 .028 .940 .961 .416 .548 .596
Laplace <JM <Lid <WB <Abs - >Lin >AbsD >Man >JD
(Lap) 0.1529/-2.2% .557 .033 .936 .940 .758 .138 .292 .292
Linear <JM <Lid < W B <Abs <Lap - >AbsD >Man >JD
(Lin) 0.1524/-2.6% .443 .015 .966 .961 .758 .072 .252 .346
Absolute Discounting <JM <Lid <WB <Abs <Lap <Lin - >Man >JD
(AbsD) 0.1483/-5.2% .410 .044 .392 .416 .138 .072 .928 .959
Manhattan <JM <Lid < W B <Abs <Lap <Lin <AbsD - >JD
(Man) 0.1462/-6.5% .399 .095 .548 .548 .292 .252 .928 .384
Jensen-Shannon <JM <Lid <WB <Abs <Lap <Lin <AbsD <Man -

(JD) 0.1462/-6.5% .366 .076 .572 .596 .292 .346 .959 .384
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Table 76: Comparison of unbiased retrieval models for the TRECVid 2004 search tasks 
using the TextVis-CombWtScore fusion method for combining text and visual results.

Ret. Method MAP/%Dif Wilcoxon Test Results

W itten-Bell _ >AbsD >Abs >JD >Man >Lid >Lin >JM >Lap
(WB) 0.0775 .022 .003 .101 .081 .003 .003 .044 .001
Absolute Discounting <WB - >Abs >JD >Man >Lid >Lin >JM >Lap
(AbsD) 0.0763/-1.5% .022 .313 .619 .572 .282 .064 .282 .206
Absolute <WB <AbsD - >JD >Man >Lid >Lin >JM >Lap
(Abs) 0.0762/-1.7% .003 .313 .767 .619 .124 .101 .631 .151
Jensen-Shannon <WB <AbsD <Abs - >Man >Lid >Lin >JM >Lap
(JD) 0.0758/-2.2% .101 .619 .767 .358 .173 .124 .428 .012
Manhattan <WB <AbsD <Abs <JD - >Lid >Lin >JM >Lap
(Man) 0.0756/-2.5% .081 .572 .619 .358 .608 .224 .882 .335
Lidstone <WB <AbsD <Abs <JD <Man - >Lin >JM >Lap
(Lid) 0.0745/-3.9% .003 .282 .124 .173 .608 .081 .631 .101
Linear <WB <AbsD <Abs <JD <Man <Lid - >JM >Lap
(Lin) 0.0743/-4.1% .003 .064 .101 .124 .224 .081 .776 .440
J elinek-Mercer <WB <AbsD <Abs <JD <Man <Lid <Lin - >Lap
(JM) 0.0741/-4.4% .044 .282 .631 .428 .882 .631 .776 .009
Laplace <WB <AbsD <Abs <JD <Man <Lid <Lin <JM -
(Lap) 0.0729/-5.9% .001 .206 .151 .012 .335 .101 .440 .009
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