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Abstract

Bilinear maps have become an important new item in the cryptographer’s toolkit They 
first came to prominence when they were used by Menezes, Okamoto and Vanstone to help 
solve the elliptic curve discrete logarithm problem on elliptic curves of small embedding 
degree

In 1984, Shamir developed the first identity based signature scheme, and posed the con­
struction of an identity based encryption scheme as an open problem [118] Subsequently 
identity based identification and identity based key agreement schemes were proposed How­
ever, identity based encryption remained an open problem In 2000, Sakai, Ohgishi and 
Kasahara used bilinear maps to implement an efficient identity based non-interactive key 
agreement and identity based digital signature [111] In 2001, some 17 years after it was 
suggested, Boneh and Franklin proposed the first efficient identity based encryption scheme, 
constructed using bilinear maps [31]

In this thesis we review some of the numerous cryptographic protocols that have been 
constructed using bilinear maps

We first give a review of public key cryptography We then review the mathematics 
behind the two known bilinear maps, the Weil and Tate pairings, including several im­
provements suggested m [67, 14] We develop a Java library to implement pairing based 
cryptography In Ch 4 we look at some of the cryptographically hard problems that arise 
from bilinear maps In Ch 5 we review identity based signature schemes and present 
the fastest known scheme In Ch 6 we review some encryption schemes, make some ob­
servations that help improve the performance of many identity based cryptosystems, and 
propose the fastest scheme for public key encryption with keyword search In Ch 7 we 
review identity based key agreements and propose the fastest scheme secure in a modified 
Bellare-Rogaway model [19] In Ch 8 we review identity based signcryption schemes and 
present the fastest known scheme
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Chapter 1

Introductory Mathematical 

Background

1 1 M odular A rithm etic

Nearly all modern cryptographic systems require a basic understanding of modular arith­

metic The idea behind modular arithmetic is very simple and most primary school children 

are familiar with it from the concept of a clock face They learn to convert between 12 and 

24 hour clock representation This is an example of congruence modulo 12, where 13 00 in 

the 24 hour representation can be converted to 01 00 in the 12 hour representation

Formally we work m the positive integers, including zero1 We fix a positive integer 

modulus N  and work with the set of integers {0,1, , AT — 1} This is the set of integers

modulo N  Any numbers a and b, that are related as a =  b + x N , for some integer x, are 

said to be congruent modulo N  Congruence is usually denoted =  That is, using our clock 

face example, 13 =  1 mod 12 If it is obvious that we are working modulo N  we may just 

say that a = b (mod N) or a — b

When working modulo N  we can also consider negative numbers, but it is the convention 

to write them positively Again, we use the 12 hour clock face for our example Say that

]In a 24 hour clock, 12 midnight will be shown as zero, 00 00

1



CHAPTER 1 INTRODUCTORY MATHEMATICAL BACKGROUND

we wish to take 2 hours away from 1 o’clock That is, what is 2 hours before 1 o’clock7 If 

we think of the clock face then we realise that this would be expressed as 11 o’clock What 

has happened is that we think of 12, the modulus, as 0 Formally this means N  — a = —a 

mod N  Informally, using our clock-face example, 11 =  —1 mod 12 If a < 0 or a > N  we 

add or subtract some multiple of N  until we have a number m the range {0, , AT — 1}

This is known as reduction modulo N  This set of integers can be written formally as Z/NZ,

or Z/v

1.2 Infinite Groups

A group (Q, *) consists of a non empty set Q with a binary operator2 *, which satisfies the

following properties [125] [91, Ch 2] By way of example, we consider the set of integers, Z

and the binary operation, integer addition, +

• The operation is closed

V a ,6 e £  a * b £ G  (11)
5 +  4 = 9 (12)

• The operation is associative

V a,& ,ce£ (a * b) * c = a* (b * c), (13)

(5 + 4 )+  3 =  5 + (4  + 3) (14)

• The set Q contains an identity element An identity element e is one that has 

the property

Va € G (e * a) =  a, (1 5)

0 + 5 =  5 (16)

2binary operation an operation taking two operands

2
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• The unique existence of an inverse element Each element m the group Q 

has a unique inverse The inverse of an element is an element m Q, such that the 

following property holds, where b is the inverse of a and e is the identity element 

defined previously

Vg<e£ 3b e Q  (a*6) =  e, (17)

5 +  ( - 5 ) = 0  (18)

A group has all of the above four properties Some groups also have the following 

property

• The operation is commutative

Va,fr(E G (a*b) = (6* a), (1 9)

54-4 =  4 + 5 (1 10)

A group that is also commutative is called an abelian group Most of the groups that we 

use in cryptography are abelian, as it is this last property that makes them oryptographically 

useful3 We will assume that all groups that we discuss m the remainder of this thesis are 

abelian

A group is called multiplicative if we tend to write its group operation as , whereas a 

group where we tend to write its group operation as + is called additive This will also 

effect the way that we write the identity element and the inverse element

For a multiplicative group we have

• Identity element The identity element is written as 1

Va € g  ( a 1) =  a

3In most cases in cryptography we are only interested in groups where qxy — gyx

( i n )
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• Inverse element The inverse element is written as a

V a e S  (a a-1) =  1 (112)

• Repeated application of the group operator A shorthand notation for repeated

multiplication is exponentiation

Va € Q (a a) = an (1 13)
v-----V----- '

n times

For an additive group we have

• Identity element The identity element is written as 0

V a e Q  (a +  0) =  a (114)

• Inverse element The inverse element is written as —a

Va<E£ ( a + ( -a ) )  = 0 (115)

• Repeated application of the group operator A shorthand notation for repeated

addition is scalar multiplication

Va 6 Q (a +  + a) = n a (116)

n times
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1 3 Infinite Fields

A ring is a set A  with two operations, usually denoted +  and , for addition and multi­

plication [91, Ch 2] The ring is usually denoted [A, , -f) The addition operation has the 

same properties as it had when it was previously defined for groups If it happens that

multiplication is commutative then we say that the ring is commutative [125] By definition

a ring operation will be closed It should be obvious that (Z, ,+ ) - the set of integers, 

(Q, , +) - the set of rational numbers, and (M, , +) - the set of real numbers, are all infinite 

commutative rings

If the ring has a multiplicative identity then we say it is a ring with identity 

A field is a ring such that

• (£7, +) is an abelian group with identity denoted by 0

• (£\{0}> ) 18 an abelian group, with identity denoted by 1

• (£, , +) satisfies the distributive law

a (b + c) = (a b) + (a c) =  (b 4- c) a (117)

Therefore, a field is a commutative ring for which every non-zero element has a multi­

plicative inverse

1 4 Finite Groups and Fields

A group is finite if it has a finite number of elements m its set [83, Ch 1] The order of a

finite group Q is the number of elements in its set, and is denoted \Q\ or An abelian

group (£, *) is called cyclic if there is some element a, from which every other element in 

the group can be obtained though repeated application of the group operation Such an

5
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element is called a generator of Q Mathematically we denote that g is a generator of the 

group Q as

<<?> = e (us)

For an additive group this means

y -  x g (1 19)

and for a multiplicative group this means

y = gx (120)

where y can be any element of Q y obviously depends on x j  is called the discrete

logarithm of y with respect to (the base) g

The order of an element g, of a finite cyclic group is the smallest nonzero integer t such

that gL = the identity element

A group (Q, *) may contain a number of subgroups A group (/C, *) is a subgroup of 

(£, *) if it itself is a group with respect to the group operation * (to recap that means 

that it is closed, has an identity, every element has an inverse and the group operation is 

associative) and JC is a subset of Q The order of a group K, will always divide the order of 

0 (/C, *) is called a proper subgroup if JC ^  G

An element x E Z# has a multiplicative inverse modulo N  if and only if the greatest 

common divisor gcd(z, AT) = 1 We can define the set of all invertible elements (those that

6
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have multiplicative inverses) of the set Zat as Z*N Formally Z*N is defined as

Z;v = { x e Z N gcd(*,A0 = l} (121)

We would like to know how many elements are in Z*N This is given by Euler’s Phi 

Function4 (j>(N), which for any integer N  returns the number of integers that are smaller 

than and co-prime to N

To determine the Euler <j> function for an integer N  we must be able to factor N  The 

number of integers less than and co-prime to a prime p is (p — 1) Since, if p is a prime then 

all of the numbers less than it will have no factors in common with it 

Therefore, for any prime p, we have

m  =  ( p - i ) ,  (12 2 )

Tp = {x&Zp  gcd(a-,p) =  1} =  {1, p -  1} (1 23)

Another group of integers that are of importance to cryptography are the prime powers 

What is the Euler totient function for any prime power q =  pm? The only numbers that 

are going to have factors m common with q are the multiples of p That is p: , {pm~])p

For any prime power there are going to be (pm_1) of these factors [125, Ch 1]

Therefore, for any prime power q = pmi we have

HQ) = (9) -  (Pm_1) =  (Pm) ~ (Pm“ ’) =  pm~l (p -  1) =  Pm ( l  -  1 )  (1 24)

We also know that for any two co-prime numbers n and m

<f>{m n)  =  <t>{fn) <j>(n) (1 25)

4A1so called Euler’s totient function

7
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Building on the above results, we can determine Euler’s totient function for any arbitrary 

integer for which we have a known factorisation We simply work out Euler’s totient function 

for each of the constituent prime powers and then calculate the product of these terms

< t> {n ) =nII (l- )̂
p\n

Finding the Members of Z*N

If it is possible to quickly factor a and 6, then the gcd(a, b) is given as the product of the 

factors common to a and b However, this is generally not efficient with integers that are 

used in industrial strength cryptographic systems5 To find the gcd of two integers we use 

the Euclidean algorithm As before, for a  to be a member of Z*N, a < N  and gcd (a, N) =  1

1 4  1 Euclidean Algorithm

The Euclidean algorithm depends on the division algorithm for integers [91, Ch 2] The 

division algorithm makes use of the fact that if a and b are positive integers, there exist 

unique, non-negative integers q and r such that

a = qb + r O < r < b  (127)

This is simple to see given a numerical example, consider a = 75, b = 34

75 = 2 34 +  7 (1 28)

In the above, q is known as the quotient, and r as a remainder

The Euclidean algorithm, which is used to obtain the gcd of two numbers, works by

5Industrial strength cryptography is a vague term, but for RSA moduli a 21024 soems like a minimum

8
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repeated application of the division algorithm until the remainder r is 0 To get the gcd 

of two numbers set the first equal to a and the second equal to b in equation 1 27 Now 

repeatedly apply the algorithm, at each stage replacing az = and b2 = rt-1  This works 

since every divisor of both a and b will be a divisor of both b and r 

Continuing on, we now calculate the gcd of 75 and 34

a =  qb + r (129)

75 =  2 x 34 + 7, (1 30)

34 =  4 x 7  + 6, (131)

7 = 1 x 6  + 1, (132)

6 =  6 x 1  + 0 (133)

Since r = 0, we have that the gcd(75,34) = 1 (which is the last value of b above) We 

also know that since the integers are co-prime, 34 has a multiplicative inverse modulo 75 

Therefore, 34 is an element of Zy5

Algorithm 1 1 Euclidean Algorithm 
INPUT Positive integers a and 6, with a < b 
OUTPUT gcd (a, 6)

while (6 0) do
r <— a mod b
CL i —  b
b<- r 

end while 
return a

9
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1 4  2 Extension Fields

The order of a finite field is the number of elements m the field, and is denoted # F  for 

the field F There exists a finite field F of order q if and only if q is a prime power, 1 e 

q = pm [125] p is called the characteristic of the field, and is denoted char F If m = 1 

then we say that F is a prime field If m  > 2 then we say that F is an extension field For 

any prime power q there is only one field of order q up to isomorphism Any two fields of 

the same order are said to be isomorphic, meaning that they are structurally the same It 

is possible to map between two isomorphic fields (which we denote and T 2 ) using a field 

isomorphism $  [125, Ch 1]

$  -> ? 2 (134)

The mapping $  has the following structure-preserving properties

$(<* + /?) -  $(<*) + $(/3), (135)

$ (a  p) = $(a) ^{(3) (136)

Higher degree extension fields contain all of the elements in Fp In fact, Fp* will contain 

all of the elements of Fpd for all d dividing e These lower degree extension fields are called 

subfields of the (higher degree) extension field

An isomorphism that maps from a field T\ to itself, is called an automorphism

$  Tx -* T\ (137)

One particularly interesting automorphism is called the pth power Frobemus map It is 

defined for any finite field as

1 0
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$
Fpi —> Fp*.,

(138)
a

where p is the characteristic of the field The set of elements fixed by the Frobenius map 

acting on extension field Fpk is the set of elements in the prime field Fp

1 5 Calculating the M ultiplicative Inverse

Finding multiplicative inverses is very important m cryptography It is the basis for deter­

mining key pairs m the famous RSA encryption algorithm devised by Rivest Shamir and 

Adleman [107] Now that we have established which integers have multiplicative inverses 

we wish to actually determine the multiplicative inverse To do this we use the extended 

Euclidean algorithm which is given in Sec 15 1

1 5  1 Extended Euclidean Algorithm

The extended Euclidean algorithm is a variation on the Euclidean algorithm with some ad­

ditional bookkeeping information The greatest common divisor of a and b can be expressed 

as an integer linear combination of a and b That is, there are integers s and t such that

Now, assume that a is invertible mod b (gcd(a,6) =  1), and that b is larger than a 

Rewriting the above equation, we have the following

Fp = {$(«) aeFpjfc} (139)

gcd(a, b) =  s a-\-t b (140)

11
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1 — s a - f t  6, (141)

1 — t b = s a, (1 42)

1 =  s a mod b (143)

In other words, s is the multiplicative inverse of a mod b For finding multiplicative 

inverses we do not require t Here we give a variation of the extended Euclidean algorithm 

where t is ignored m the interests of computational efficiency We can calculate the value 

of s as we work through the Extended Euclidean algorithm The values of so and s i are 

initially set to 0 and 1 , subsequent values of s% are given by sz- 2 — sl^\q l - 2  mod a$

a = qb + r (144)

(145) 

(1 46) 

(1 47)

(148)

(149)

And so we have calculated that 64 is the multiplicative inverse of 34 modulo 75 This 

can be checked as

75 = 2 x 34 + 7, so =  0,

34 =  4 x 7 + 6, si =  1 ,

7 =  1 x 6 -f 1, s2 = 0 — (1 x 2) mod 75 = 73,

6 =  6 x 1 +  0, S3 = 1 -  (73 x 4) mod 75 = 9,

s4 = 73 -  (9 x 1) mod 75 = 64

34 x 64 =  2176 = 1 mod 75 (1 50)

The Extended Euclidean Algorithm is given m Algorithm 1 2

12
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Algorithm 1 2 The Extended Euclidean Algorithm for finding the multiplicative inverse
of a mod b______________________________________
INPUT Two integers a and b such that a > b, b > 0 and gcd(a, b) = 1 
OUTPUT a "1 mod b

X\ <r- 0 
%2 1 
2/1 —̂ 1 
V2 <— 0
while (b > 0) do

q <■- [a/b\ 
r «— a — qb 
x <— X2 — 
q, <— b 
b <— r 
x 2 <-

rr
end while 
return £ 2

1 6 Random  N um ber Generation

Most cryptographic algorithms rely on the ability to produce random numbers The RSA 

encryption algorithm has a requirement to generate two large random primes El Gamal 

and discrete logarithm based encryption systems have a requirement that a private key be 

a random integer m a suitably large interval {0, , n} The si^e of this interval is known

as the key space The key space should be large enough that even the most determined 

adversary cannot search for the actual key used

Suppose we have a truly random 128 bit number (for example, to be used as an AES6 

encryption key) Then, an adversary would have to make on average 2127 guesses before 

her stumbled upon the correct value Even if only one bit of a supposedly random sequence 

is known then the key space is halved This means that the remaining key space can be 

searched m half the time

Suppose for example that the attacker knows half of the bits in the key7, then the key

6 AES Advanced Encryption S tandard, a modern sym metric block cipher and NIST approved replacement 
for DES, the D ata  Encryption S tandard

7Using modern fault and power analysis attacks, this may not be unreasonable
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space is only 264, taking on average 263 guesses before the correct combination is stumbled 

upon Such a scheme, that was considered secure using a full length random key would 

no longer be considered secure Therefore a good source of random numbers is critical 

to the security of all cryptographic systems One of the best attacks on implementations 

of cryptographic systems is to cripple the random number generator in the system The 

beauty of this attack is that as long as the output of the random number generator still 

“looks” random (but actually has some exploitable properties) then the unsuspecting user 

may continue to use the random number generator for years into the future

There are a number of ways to produce random numbers We give some examples in 

Sec 16 1

1 6  1 Natural Sources of Randomness

There are many natural sources of randomness [60] One that we would all be familiar 

with is background noise This fluctuates constantly Someone shuffling paper at the desk 

next-door Someone typing on a keyboard across the office Colleagues discussing work in 

an open plan office Someone taking a drmk from a water cooler Buses, cars and lorries 

driving past the window These sounds naturally vary throughout the day We can use this 

naturally occurring randomness to generate random numbers for cryptographic systems

Compact disc audio is encoded at 16 bit resolution, this gives the ability to trace a sound 

wave though 64K different levels of displacement If we take just the least significant bit of 

this representation it will be randomly switching from zero to one and back This, in reality, 

bares little connection to the outside sound and would be extremely hard to manipulate 

Java code which uses background noise to generate random numbers in included m appendix 

A

Another natural source of randomness is background radiation There is a small amount 

of background radiation all the time The time between the emission of particles during 

radioactive decay is random This can be exploited to create a random number genera­

tor Intel’s Hardware Random Number Generator uses electrically generated signals that

14
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Figure 1 1 Generating random numbers from a sound wave

are produced randomly in resistors -  for example Johnson noise (commonly referred to as 

thermal noise), shot noise, and flicker noise, which are as a result of random electron and 

material behaviour The difference m measurement between two resistors placed close to 

each other is taken, to reduce any effects caused by electromagnetic radiation, temperature, 

etc8 [78]

Another natural source of randomness would be a person typing on a keyboard [39] 

This might, at first sound strange, but we do not look at the words that the person types 

Instead, we set a timer running and we time when the person presses the individual keys 

Provided the time increments are small enough then it will be impossible for the person to 

predict what the least significant bit of the timer will be when they press on the key If 

you have even tried to stop a 1/1000 sec stopwatch exactly at 1 000 sec you will know how 

difficult this is Computers can time increments much smaller than this

Of course, the above is only an example of the methods that can be used It is also 

possible to combine the output of several different sources of randomness, for example, by 

using a one-way (hash) function9

1 6  2 Pseudo-Random Number Generators

“Anyone who considers arithmetical methods of producing random digits is, of course, in a 

state of sm ” - John Von Neumann (1951) [78]

The random number generation methods mentioned above generate true random num­

bers Usually the above methods are not used to generate large quantities of random

8It is assumed that radiation will affect both resistors similarly
9Hash functions will be discussed in more detail in Ch 5
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numbers Instead we use one of the above methods to generate a random seed value ft; 128 

bits m length We can then use this seed value as the basis for generating substantially 

more pseudo-random bits via a pseudo-random number generator (PRNG) The output of 

a PRNG is not truly random, but it should appear random Because we are not now work­

ing with random sources we introduce a definition that allows us to judge the quality of the 

randomness produced by our PRNG

Definition [91, Ch 5] A pseudo random bit generator is said to pass the next-bit test if there 

is no polynomial-time algorithm which, on input of the first I bits of an output sequence s, 

can predict the (I + l)st bit of s with probability significantly greater than 1/2 [91]

The above definition seems ideal, but how do we know that no such algorithm exists? 

Strangely enough, we don’t However, the approach taken is to link the difficulty m predict­

ing the next bit of output with what is believed to be a cryptographically hard problem10 

Therefore, a PRNG for which some advantage in predicting its output can be transformed 

into some advantage in solving an intractable problem is called a cryptographically secure 

pseudo-random number generator (CS-PRNG)

Blum-Blum-Shub PRNG

The Blum-Blum-Shub (BBS) PRNG [24] is one of the most famous CS-PRNG’s It links 

the intractability of integer factorisation with the ability to determine the next output bit 

of the pseudo random sequence See Algorithm 1 3

1.7 Prim e N um ber G eneration

Prime number generation is needed for almost all public key encryption systems In the 

RSA encryption scheme the modulus is composed of two large primes

10This is generally how cryptographic protocols are proven secure, for more details, see Ch 4
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Algorithm 1 3 Blum-Blum-Shub CSPRNG
INPUT Two large primes p and q, each congruent to 3 mod 4, I the number of random 
bits required, and a random seed s m the range {1 N  — 1} such that g c d ( s ,N )  =  1, 
where N  =  pq
OUTPUT A pseudo random number in the range {0 2l — 1} 

r 4— 0
x s1 mod N
for (i 0, i < I, i 4— i +  1) do 

z «— x  mod 2 
r <r- 2 r +  z 
x «— x 2 mod N  

end for 
return r

N  = p q (151)

In the generalised El Gamal public key encryption scheme we need to find a large prime 

modulus

There are algorithms that will produce a number that is provably prime There are also 

probabilistic algorithms that will tell us if a candidate number is probably prime However, 

these algorithms have a small probability of producing a ‘false positive” That is, they may 

indicate that a composite number is prime With repeated independent tests we can reduce 

e, the error level, to one that is deemed acceptable

e = (1 52)

Where e is the probability of an error in one invocation of the primality test, and n is the 

number of invocations of the test

The strategy in industrial cryptography is to generate a random large number, and
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then check if it is prime This leads then to the obvious question, if we just generate a 

random large number, what are the chances that it is prime? Will it take days of trial and 

error before we happen upon a prime number? How many primes are there anyway? The 

approximate number of primes, less than any number x is given by

X
number of primes less than x & -—  (1 53)

In a:

Luckily there are infinitely many prime numbers [125, Ch 8] [91, Ch 4] These primes are 

also randomly distributed, If £ is a candidate number chosen at random, the probability 

that it is prime is given by

Pr[x is prime] ~  (1 54)

where Pr[] is used to denoted the probability of the event

To give some kind of perspective, this means that if we have a 512 bit candidate number 

the chance that it is prime approximately 1/177 So, provided we have an efficient means 

of testing pnmality, obtaining a random large prime is not a particularly difficult task

1 7  1 Miller-Rabm Pnm ality Test

First we look at Fermat’s test This m itself is a useful pnmality test Though not used in 

practice, it is ideal for some definitions

Theorem 17 1 Fermat’s Little Theorem Suppose that p is prime, and a  G Z*, then

cP =  a  mod p (1 55)

It follows from Fermat’s little theorem that for any candidate number n,
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a {n l )  _  i  m o d  n  (1  55)

will hold if n is prime, whereas it is unlikely to hold if n is not prime 

If equation 1 56 does not hold then we know that the number is definitely composite 

However, if we have a number for which the above equation holds then there is still a chance 

that the number is a composite We call such a number a Fermat pseudo prime to the base 

a  However, if n is a composite then it can be shown that

p r [a ( n - i )  ^  !  m 0 (i n ] >  1/2 (1 57)

This test can be repeated k times, each time with a different a  A number that passes k 

repetitions of the tests is composite with probability at most l /2 fc If a number is detected 

as composite, a  is called a Fermat witness to the compositeness of n

However there are a certain class of composite numbers for which the Fermat test will 

report that n is prime for any a co-prime to n They are the so-called Carmichael numbers 

[38, 93] They are much rarer than the primes, however they are still too common to 

allow the use of the Fermat pnmality test for industrial cryptography Instead we use the 

Miller-Rabin pnmality test

The Miller-Rabin pnmality test [106] is given m Algorithm 1 4 This test has a 1/4 

chance of wrongly certifying that a composite number is a prime Again, however, this 

error rate can be reduced to any figure by repeated application of the test The error rate 

is given as l /4 fc where k is the number of applications of the test Algorithm 1 4 repeats 

the test k times where k is given as an input
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A lgorithm  1 4 Miller-Rabin Primality Test 
IN PU T  Odd integer n, and error bound k 
O U T PU T  If n is prime, with maximum error l/4 fc

Write n — 1 as 25m, with m  odd 
for (j = 0, ; < fc, j  =  j + 1) do 

flGf l {2, , n - 2 }  
b a™ mod n 
if b ^  1 and b ^  (n — 1) then

l 4— 1
while i < 5 and ft ^ (ri — 1) do 

b 4— b2 mod n 
if ((6 = 1)) then 

return false 
end if 
z =  % +  1 

end while 
if (ft ^ (n — 1)) then 

return false 
end if 

end if 
end for 
return true

1 8 Discrete Logarithm Problem

The discrete logarithm is the inverse of discrete exponentiation m a finite cyclic group This 

was introduced in Sec 1 4 Given a cyclic group Q of order n, the group operation * and a 

generator g, we saw earlier that any element of Q can be calculated as

y =  9x (158)

where rc, the discrete logarithm of y to the base g, is unique in the range {0 72 — 1} We

denote that x is the discrete logarithm of y as follows x =  logff y

D efinition [91, Ch 3] The discrete logarithm problem (DLP) is the following Given a 

prime p, a generator g of ZJ, and an element y m Z*, find the integer x, Q < x < p — 2, such
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that gT =  y (mod p)

Definition [91 Ch 3] The generalised discrete logarithm problem (GDLP) is the following 

given a finite cyclic group Q of order n, a generator g of Q, and an element y G Q, find the 

integer x^O < x < n — 1, such that gx ~ y

The security of many cryptographic systems depends on the assumption that the discrete 

logarithm problem is intractable The most famous of these include the Diffie-Heilman key 

exchange, the Digital Signature Algorithm and the El Gamal encryption scheme

1 9 Encryption Schemes

Encryption schemes are used to keep confidential information that is to be transferred over 

an insecure channel There are two main families of encryption algorithms, symmetric or 

secret key encryption11 and asymmetric or public key encryption12

In a symmetric encryption scheme the same key is used to encrypt and decrypt infor­

mation There are two functions, E which is used to represent the encryption function E  

with the secret key k and Dk, which represents the decryption function D with the secret 

key k E  and D may or may not be the same function, but for a symmetric encryption 

algorithm the following relationship holds

m  =  Dk(Ek(m)) (1 59)

where m  is the data that is to be encrypted, and the same key k is used both for encryption 

and decryption

Obviously if this information is going to be transferred from one user to another (as 

opposed to encrypting information held, for example, on a hard disk), then both of these

n Examples include AES, DES, IDEA and TEA
12Examples include RSA and El Gamal
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users must share the same secret key Symmetric encryption schemes suffer from two mam 

problems

• Key Distribution Problem How to distribute encryption keys between users 

Depending on the importance of the secrets being transferred it may be feasible for 

the communicating parties to meet and agree on encryption keys However, this is 

a huge overhead It may be possible for all users to agree long term keys with one 

trusted party, who then acts as a go between to help clients agree session keys between 

themselves This is the basis of the popular Kerberos network authentication protocol

[132] This method does not scale well

• Key Management Problem A new key is needed for each client with which you 

wish to communicate If the same key is used to communicate with two different 

recipients, they will be both be able to read messages that were meant for the other 

To securely communicate with n users, n different encryption keys will be needed

Asymmetric cryptography helps to resolve these problems In asymmetric cryptography 

encryption and decryption are carried out with two separate, but mathematically related 

keys - often called a public key pair, and consisting of a public and private key The public 

key is made public and the private key remains secret It is computationally infeasible to 

determine the private key knowing only the public key In this setting, encryption is carried 

out using the public key, and decryption is carried out using the private key We have the 

relationship

™ = DkprAE kpub(m )) (160)

where E  and D are encryption and decryption functions and kpub and kpri are related public 

and private keys respectively

A related idea is that of a digital signature13 Using a digital signature you can sign

^Digital signatures will be explained in more detail in Ch 5
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messages using the private key This signature can then be checked using the corresponding 

public key If a is output when the private key kpri is used to sign the message m, then

Vkpub{a,m) (161)

will only output tru e  on input of the same message m, signature a and corresponding public 

key kpufj

1 10 El Gamal Encryption

The El Gamal encryption scheme [61] relies for its security on the assumption that the 

discrete logarithm problem is intractable The generalised El Gamal encryption scheme 

works over any finite cyclic group Q where the following three conditions apply

• Efficient The group operation m Q should be efficient

• Secure The discrete logarithm problem should be computationally infeasible

• P ractical Elements m Q can be reasonably compactly represented

The following are some of the groups over which El Gamal can be implemented

• The multiplicative group Z*, where p is prime

• The additive group of points on an elliptic curve over a finite field

• The multiplicative group F*, where q is a prime power, q = p m for some prime p

The El Gamal encryption scheme requires that each user perform the following setup

algorithm to obtain a key pair

To encrypt a message to a user m the system the sender must first obtain an authentic 

copy of the recipient’s public key To authenticate a public key the users agree on a entity 

that they all trust Such an entity is called a trusted authority This trusted authority then 

uses its private key to sign and thereby authenticate the public keys of all other users m the
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Algorithm 1 5 ElGamal Public Key Pair Generation Algorithm 
INPUT A finite cyclic group Q of order n, and g, a generator of Q 
OUTPUT An ElGamal public key pair (kpub, kpTl)

Generate a random integer x Er {1, , n — 1}
kpn  ̂ X
kpub 4— gx 
return (kpri, kpub)

system The client’s public key, information about the client and the trusted authority’s 

signature, together with optional additional information is called a public key certificate 

In this way the trusted authority binds the public key to the owner and the key distribution 

problem that we had with symmetric cryptosystems earlier is overcome14

Once a certified public key for the recipient has been obtained the sender now performs 

encryption as shown m Algorithm 1 6

Algorithm 1 6 ElGamal Public Key Encryption Algorithm
INPUT £, rc, g and kpub as output from algorithm 1 5, and m, the message to be 
encrypted
OUTPUT An ElGamal ciphertext

Represent m  as an element of the group Q 
Generate a random integer a 6# {1 , n — 1}
R = ga 
C = m k«pub 
return (R,C)

To recover the plaintext message, the recipient, being the only person who knows the 

private key corresponding to the public key that was used by the sender, can carry out 

Algorithm 1 7

It is possible for each user in the system to use the same group Q and generator g Now, 

since these values are common, and do not have to be distributed as part of the public 

key, the user’s public key simply becomes y = gx The public key is distributed in an 

authenticated manner, whereas the private key is a secret known only the user who owns

14For all users except the trusted authority
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A lgorithm  1 7 ElGamal Public Key Decryption Algorithm
IN P U T  C7, and kpTl as output from algorithm 1 5, and (R, C), the output of algorithm 
16
O U T PU T A plaintext message m

j  = R kPn
m  =  7_1 C 
re tu rn  (m)

the key pair15

15 A user is said to own a key pair if they know the corresponding private key
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Chapter 2

Elliptic Curve Arithmetic

2.1 Long Form Weierstrafi Equation

This chapter contains many well known standard number theoretic results. General ref­

erences for this chapter include [21, 22, 137] and [62] for the number theoretic material,

[62, 72, 90] and [108] and also [125, Ch.2] for the implementational details.

Definition An Elliptic Curve E  over a field Fpit (denoted either E / ¥ pk or ¿£(Fpfc)) is defined 

by the equation

E : y2 + a \xy + a$y =  x 3 + a^x2 +  a \x 4- a6, (2.1)

where a i ,a 2,a 3,fl4 and as 6 Fp*. This is known as the long form , or generalised Weier-

strafi equation.

We must also check that the discriminant A /  0, where A, the discriminant, is defined 

as follows:
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Figure 2 1 An elliptic curve

d2 ~  o\ + 4a2, (2 2)

¿4 =  2a4 + , (2 3)

d6 = a\ + 4a6, (2 4)

¿8 = a?¿6 +  4a2ae -  aia^a^ +  ^2̂ 3 -  «4, (2 5)

A = -d fy s  -  $d\ -  27d% + 9d2d±dG (2 6)

If we want to consider the points m some extension field L of Fpfc, L I) Fpfc, then the set 

of L-rational points on E  is given as

E(L)  =  {(z, y) e L x L y2 + aizy + a3?/ = z 3 + a2z 2 +  ¿4̂  + ûô} U O (2 7)

• The condition A ^  0 is required to ensure that the curve is smooth That means that

there is no point on the curve that has two or more distinct tangent lines

• The point O is called the point at infinity, and exists m all extension fields

For clarification, Fig 2 1 shows an elliptic curve defined over R, the reals
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Two elliptic curves E\ and E 2 defined over Fpk are said to be isomorphic over Fpk if 

there exists u, r , s , t £  ¥pk,u ^  0, such that the change of variables

changes E\ into E 2 This transformation is called an admissible change of variables The 

point at infinity O remains unchanged

2 1 1  Short Form Weierstrafi Equations

This change of variables can be used to simplify the above Weierstrafi equation These 

changes of variables differ depending on whether the underlying field Fpk has characteristic 

2, 3 or p > 3 (sometimes called the large prime case)

If char Fpfc =  2, then there are two possible cases to consider If a ^  0 then the 

admissible change of variables is

(æ, y) —> (u2t + ri v?y + v 2sx 4- t) (2 8)

(2 9)

which transforms

E y2 -f a\xy  -f a^y ~  x s + a2x2 -f a^x + a§ (2 10)

into

y2 4- xy = xs + ax2 +  b (2 11)

Such a curve is called non-super singular and has discriminant A = b 

If a = 0 then the admissible change of variables is

(x,y)  -> {x + a2,y) (2 12)

which transforms E  into
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y2 +  cy = x 3 + ax + b (2 13)

Such a curve is called supersmqular and has discriminant A = c4 

If char Fpfc — 3, again there are two possible cases to consider If a2 —a<i then the 

admissible change of variables is

/ v (  a>4 — aid's 0 4  —  a\as \(x,y) -4 x + —— ------ ,y + aix + a i - ^ - -------+  a3 (2 14)
\  a\ 4  a2 af 4  a<i J

which again transforms E  into

y2 = x 3 4  ax2 -\-b (2 15)

where a,b € Fpfc Such a curve is said to be non-supersingular and has discriminant A =  

—a3b

If a2 = — Û2 then the admissible change of variables is

(x, y) -4 (®, j/ 4  a iz  4  a3) (2 16)

which transforms E  into

y2 = x 3 4  ax 4  b (2 17)

Such a curve is called supersingular and has discriminant A = —a3 

If char Fpfc ^  2, 3 then the following admissible change of variables

, N v ( x  -  Sal -  12^2 y ~  3airr af 4  4a}a2 -  12a3 \
( r ’ y ) - H -------- 36-------- ’ 216------------------ 24---------- j (218)

transforms £  into

y2 =  x 3 4  ax +  6 (2 19)
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The discriminant A of this equation is given as

A = —16 (4a3 +  27b2). (2.20)

These shortened forms of the generalised (long form) WeierstraB equation are called 

simplified or short form WeierstraB equations. For the remainder of this dissertation we 

will, except where otherwise stated, use the short form WeierstraB notation. We will also 

assume that the curves are defined over a field Fpfc such that char Fpfc /  2,3.

2.2 Group Law Over Elliptic Curves

We now show how a finite group (see Sec. 1.4) can be instantiated over an elliptic curve. If 

E  is a curve defined over the field Fpfc there is a binary group operation called elliptic curve 

point addition which operates on two points on the curve to give a third point on the curve. 

This is given by the chord-and-tangent rule [72, 125, 90]. Together with this addition rule 

the set of points on the curve (including O) form an abelian group, with O serving as the 

identity element. The following two images show the two step chord-and-tangent process.

point addition point doubling

Table 2.1: Point Addition and Point Doubling.

The chord and tangent rule also defines addition of a point to itself. This operation is 

known as point doubling. This is similar to point addition, but instead of calculating the
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Algorithm 2 1 General Point Addition Algorithm for Elliptic Curves
INPUT An Elliptic Curve E  defined over field Fpfe, two distinct points P, Q € E P  ^  —Q
and P,Q ± O
OUTPUT R = ( P  + Q)

Calculate /, the line that intersects P  and Q
Calculate where I intersects E  again E being a cubic equation, this will always happen 
Call this point —R
Calculate where v t the vertical line that intersects —R  intersects E  again 
Call this point R  
return R

line that intersects two points we calculate the tangent line to E  that intersects E  at the 

point P  This line will intersect E  at one more point, which we call —2P  Reflect the point 

—2P  in the z-axis to obtain the point 2P = (P +  P)

Algorithm 2 2 General Point Doubling Algorithm for Elliptic Curves 
INPUT An Elliptic Curve E  defined over field Fpk, and a point P  G E  P  ^  O 
OUTPUT 2P = { P  + P)

Calculate £, the line that is a tangent to E t at P  Assume t is not vertical 
Calculate where t intersects E  again E being a cubic equation, this will always happen 
Call this point —2P
Calculate where u, the vertical line that intersects —2P  intersects E  again 
Call this point 2P  
return 2P

2 2 1 Point Addition for E / ¥ pk where char Fpk ^2, 3

The addition of two points P, Q where P,Q ^  O and P  /  —Q 

Let P  =  (xu yi), Q =  and R = (353, 2/3) = (P + Q)

A (2 21)
3/3 A 2/^ X 2 f (2 22)

2/3 =  K x i - x s ) - y i (2 23)
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2 2 2 Point Doubling for E j Fp*. where char Fpfc ^  2, 3

The doubling of a point P  where P  /  O 

Let P  =  2P =  (X2 ,V2)

x 2 = X2 - 2 x u (2 25)

j/2 =  A(ti  - z 2) -2/1 (2 26)

Java source code for point addition and point doubling over char Fpk ^  2,3 is included 

m Appendix B, and in the accompanying CD-ROM

The addition operation, along with the set of points on an elliptic curve give us a group 

over which to implement cryptographic systems So far we have not dealt with O, the point 

at infinity The point at infinity serves as the identity element of the group We specify 

special rules for point addition which include O

2 2 3 (9, The Point at Infinity

To define the point at infinity, we must first define what is meant by the negative of a point 

The negative of a point

The negative of a point is simply the reflection of the point m the rr-axis An elliptic curve 

is symmetric about the æ-axis For this reason the negative of a point P  =  (re, y) will be 

the point (a?, —y) and is denoted — P  Point subtraction is carried out as the addition of the 

negative of a point

We now look at what happens if we are to perform the addition rule between a point 

and its negative Since the negative of a point is the reflection of that point in the a;-axis, 

the line I between a point and its negative will be a vertical line A vertical line that passes 

though an elliptic curve (which is not a tangent line) does not intersect the curve three
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times1, as any non-vertical line would It intersects the curve only twice, once at the point 

P  and the again at the negative of that point (~P) We say that this line also cuts the 

curve again at the point at infinity O

If we go back to our group theory we see that this final definition allows us to complete 

the definition of a group This group is instantiated over the elliptic curve E

Special cases for point addition

• Addition of a point to its negative

VP on E  (P) + ( -P)  = 0  (2 27)

• Addition of a point to the point at infinity

VP on E (P) + {<D) = P  (2 28)

The group (G, -f-) instantiated over an elliptic curve E / ¥ pk has the properties of a group

• Commutative VPi, P2 on E P\ + P2 =  P2 + Pi This can be easily seen, since the 

line that intersects P] and P2 is the same line that intersects P2 and Pi

• Existence of an Identity Element As mentioned above, O is defined as the identity 

element, and has the properties expected of an identity element

• Existence of Inverse Elements As above, the negative of a point P  is denoted —P

• Associativity VPi,P2,P 3 on E  (Pi +  P2) +  P3 =  Pi + (P2 +  P3) The proof of 

associativity is quite complex, see [137] for more details

1 As it would in point addition between two distinct points, where one point is not the negative of the 
other
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2.3 Group Order

Let E/Fp be a curve E  defined over a field Fp [72] Then the number of points with 

coordinates m Fp is denoted as # E / F P or #E{FP) This is called the order of the curve 

E(Fp) Since E  is defined over Fp, and is symmetric about the T-axis then an upper bound 

for the number of points is given by 2p 4-1 (2 for each value of r  and remembering O) 

Hasse gives us a tighter upper and lower bounds on the number of points #E(Fp)

Theorem  2 3 1 (Hasse) I f  E  is an elliptic curve defined over Fp, then

p 4- 1 “  2y/p < $E(Fp)  < p 4- 1 4- 2y/p (2 29)

Since y/p is relatively small compared to p we know that # E (Fp) «  p

2 3 1 T h e  T race o f F rob en iu s , t

t, the trace of Frobenius is defined [125] as

t = p + l - # E { F p) (2 30)

This gives us, when combined with equation 2 29 above

| i | < 2 ^  (2 31)

The trace of Frobenius (which we will simply call the trace from now on) can be used 

to tell us whether a particular curve has cryptographic weaknesses or not

• The curve E(Fp) is said to be anomalous if its trace is 1 This means, together with 

equation 2 30, that the order of the curve is equal to p

• The curve ¿?(FP) is said to be supersmgular if the characteristic p divides the trace t 

Since |t| < 2y/pt this means that t =  0 and the order of such curves is p4-l Such curves 

are considered weak in cryptography, and for discrete logarithm based cryptosystems
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are usually avoided However, these curves are popular m pairing based cryptosystems 

as it is only practical to operate on elements of ¥pk when k is small2 If p does not 

divide the trace then the curve is non-supersmgular Much work has been done on 

the use of non-supersmgular curves in pairing based cryptosystems [15, 16, 95]

2 3 2 The Curve Embedding Degree, k

Consider an arbitrary elliptic curve defined over the field Fp This curve contains points P  

of prime order r, meaning that rP  = O, and r is the smallest positive integer for which 

rP  = O The order of a point divides the curve order (r \ # E (Fp))

This same curve can be defined over an extension field Fpfc For a certain value of k 

the group of points on the curve become interesting This is the lowest degree extension 

field which includes the rth roots of unity This value of k is called the embedding degree 

This is also referred to as the security multiplier The embedding degree k is defined by the 

equations

r | pk -  1 (2 32)

and

r \ p s - 1  V 0 <  s < k  (2 33)

The rth roots of unity also form a cyclic group of order r

2 4 Discrete Logarithm Problem  over Elliptic Curves

Elliptic curves can be generated such that E(Fp) contains a unique group of points of large

prime order r This group of points is denoted £ (F p)[r] Formally we have

2Values in this field are used in the calculation of the Weil and Tate pairings, which are the only known
implementations of bilinear maps We will examine this in more detail in Ch 3

35



CHAPTER 2 ELLIPTIC CURVE ARITHMETIC

E(¥p)[r] = {P G Fp rP = O and V 0 < i < r,iP  ^  O] U O (2 34)

This group of points can be used to instantiate a class of public key cryptosystems which 

are based on the difficulty of the discrete logarithm problem (DLP) These are loosely re­

ferred to as El Gamal type cryptosystems3 The difficulty of the discrete logarithm problem 

depends heavily on the group of elements Q over which the problem is set Obviously us­

ing the set Zjy, some group element a, and the addition operation the discrete logarithm 

problem is trivial, given y = x a, x is given as x  =  y /a  The DLP over elliptic curves 

(EC-DLP), which uses as its set Q the points of large prime order r on a elliptic curve 

defined over a finite field E (Fp) is assumed to be intractable Therefore, provided r is a 

large enough prime, this provides a suitable group over which to construct cryptographic 

systems

As mentioned in the previous section, some elliptic curves are weaker than others, for 

example supersmgular curves and non-supersmgular curves with small embedding degree 

(k) Ironically, these curves are of particular interest m pairing based cryptography One 

of the first uses of pairings was to attack this group of curves, the attack was proposed by 

Menezes, Okamoto and Vanstone, the MOV attack We will look at this m more detail in 

section 4 2 5

2.5 Efficient Point Scalar M ultiplication

When we looked at the discrete logarithm based problems (Sec 18), we required that we 

had a finite group Q over which the discrete logarithm problem was intractable, a generator 

g of Q, and a random integer m the range 0 < x < r — 1, where r — This satisfied 

the condition for security Also, for practicality we had the condition that the group 

operation 4- must be efficiently computable The group operation over the points on an 

elliptic curve is addition Obviously for the DLP to be computationally infeasible r must

3See Sec 110, for a more detailed description of the El Gamal encryption system
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be large x being uniformly distributed in the range 0 < x < r — 1, will be on average 

«  r/2  The naive approach to point scalar multiplication would be to repeatedly perform 

addition the required number of times This would require (r — 1) additions which would 

not be practical

The process of computing y =  x g, where y and g are points on an elliptic curve is known 

as elliptic curve point scalar multiplication It is also sometimes called point exponentiation 

as it is seen as the elliptic curve analogue of exponentiation over finite fields

We look at two real world methods used to speed up elliptic curve point scalar multipli­

cation These are the relatively simple to understand double-and-add method and the NAF 

window method Java code examples are included m the accompanying CD-ROM

2 5 1 Double-and-Add Method for Point Scalar Multiplication

The double-and-add method works for any group where the operation is written additively 

We will just give the generic case here Consider the multiplication of a group element by 

5 This can be performed m several equally valid ways For example, we could compute

At this stage there probably looks like there isn’t any difference m the two representa­

tions However, equation 2 36 actually requires one less addition operation than equation 

2 35 This can be seen more clearly if it is written as

5 T  = X  +  X  +  X - \ ~ X  +  T (2 35)

An equally valid way would be

5 x  =  (a +  x) + (x + x) +  x (2 36)

(2 37)

5 x = (y) + (y) + x (2 38)

37



CHAPTER 2 ELLIPTIC CURVE ARITHMETIC

Now, it is obvious only 3 addition operation were needed as opposed to the 4 that were 

required in equation 2 35 If we expand out equation 2 37 again we see that it can be written 

as

5 x = 2(2x)+x  (2 39)

This is known as the double-and-add method for fast scalar multiplication Equation 

2 39 is particularly nice as it has a recursive formula

Take a slightly larger scalar, say 20 Written m its binary representation, 10100, we see 

that if the least significant bit (rightmost bit) is a one then we double and add, if it is a 

zero, we just double Using this small example we have

2 =  0, e = 20

bit${e) =  0 y — x z =  z = 0

bit\ (e) =  0 y = 2 x 2 = 2 =  0

t~H11CM
-Wc-ii-O y = 2 2x z = z + y = 0  + 4x = Ax

bzt^(e) =  0 y =  23x z = z = Ax

bit^e) = 1 y — 2 *x z = z + y = Ax + 16x = 20x

Each successive doubling takes one addition operation Each “add” takes one addition 

operation Therefore we have cut the number of group operations required from 19 to 6 

Obviously an addition operation will be required if L SB e — 1, where e is the multiplier 

therefore we have cut the number of group operations required from (e — 1) to «  1 §x where 

x = [(lg(e + 1))] is the length of the binary representation of e and e is a random number4 

The Double and Add algorithm is given m Algorithm 2 3

4With approximately half of the digits being one and the other half being zero
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Algorithm 2 3 Double and Add Algorithm for Elliptic Curve Point Scalar Multiplication 
INPUT An Elliptic Curve E  defined over field ¥pk, a point P  e £ (F p^)[r] P  ^  O and 
exponent x 0 < x < r 
OUTPUT R = xP

let {xt xo} represent the binary expansion of x 
Q <— O
for {% = £, % < 0, i i — 1) do

Q Q +  Q 
if (â  = 1) then

Q <— Q + P
end if 

end for 
return Q

2 5 2 NAF Window Method for Point Scalar Multiplication 

NAF Non-Adjacent Form

As we can see from the above calculation the number of operations that we carry out is 

dependent on the number of non-zero digits in the binary representation of the exponent 

Every time we encounter a 0 digit we must do one addition operation for the “double” 

Every time we encounter a 1 digit m the binary representation of the exponent we must do 

two addition operations, one for the ‘add” and one for the ‘double” In order to make this 

operation more efficient, we must reduce the number of 1 digits - however, we cannot change 

the exponent If the exponent m discrete logarithm based cryptosystems is chosen m a way 

such that it is not random this would seriously damage the security of the system See the 

discussion on random numbers in Sec 1 6 However, using elliptic curves with char ^ 2 ,3  

we have that if P = (z,?/), then — P = (rr, —y) This conversion is extremely efficient and 

can be used with a signed binary representation of the exponent

Consider for example the number 31 m decimal Written in binary we have

31i0 = 111112 (2 40)

This can also be written m signed binary representation, where the digits 0, ±1 are
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allowed Conventionally, —1 is written as 1 31io can be written as

3110 =  (32 -  l)io = (100000 -  1)2 =  (1 ,0 ,0 ,0 ,0 ,1) (2 41)

Therefore, if we are using 31 as an exponent5 the number of addition operations using 

the double-and-add method and the conventional binary representation would be 10 Using 

this new signed binary representation the number of addition operations would be 8 

Formally, the NAF of a positive integer is defined as

Definition [72, Ch 3] A non-adjacent form (NAF) of a positive integer k is an expression 

k — kz2 l where kz 6 {0, ±1}, ki_x ^  0 and no two consecutive digits k% are nonzero 

The length of the NAF is I

If A; is a positive integer, then a few properties of NAF(fc)[72 Ch 3] are

• For each fc, NAF (A;) is unique

• Importantly, NAF(fc) has the fewest nonzero digits of any signed binary representation 

of fc

• If the binary representation of k has length Z, the length of NAF(fc) will not exceed

(Z + 1 )

• The average density of 1 digits m NAF(fc) is % 1/3 for a random value k

The algorithm for working out the NAF representation of a number is given in Algorithm 

24

This NAF representation can now be used with a modified version of the Double and Add 

algorithm given m Algorithm 2 3 Whereas m the conventional double and add algorithm 

only had “double” and ‘add” operations to work with, we now have a subtraction operation 

that will be triggered by the —1 that we now have in the signed binary representation 

We can use the NAF representation obtained from Algorithm 2 4 m  the following adapted

5This exponent, small, but with high hamming weight, is for clarity of exposition only
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Algorithm 2 4 An Algorithm for Generating the NAF Representation of a Positive Integer
k_________________________________________________________________________
INPUT A positive integer k 
OUTPUT NAF(fc) = ,fco}

i «— 0
while (k > 1) do

if ((& mod 2) =  1) then 
kx 4 -2  — {k mod 4) 
k 4— k — ki 

else 
k% 4— 0 

end if 
k 4— k / 2

l 4— I + 1
end while
return ,fc0}

double and add algorithm The NAF point scalar multiplication algorithm is given m 

Algorithm 2 5

Algorithm 2 5 An Algorithm for Elliptic Curves Point Scalar Multiplication based on 
NAF Representation
INPUT An Elliptic Curve E  defined over field Fpfc, a point P  6 E(Fpk)[r] (P ^  O), and 
exponent x (0  < x < r)
OUTPUT Q = xP

let {xz zo} represent the NAF signed binary expansion of x 
(for details see Algorithm 2 4)
Q ^ O
for j  = % downto 0 do

Q 4— Q + Q 
if {{x3 =  1)) then

Q t - Q  + P 
end if
if ((acj = —1)) then

Q ^ Q - P  
end if 

end for 
return Q

Following on from the NAF representation presented m the previous section we can
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produce a vndth-w NAF  Whereas, previously we only had 0, ±1 we now allow ourselves the 

integers in the range — 2 w~l < u <  2W_1 Using this new representation we can require that 

for any w consecutive digits, there is only one non-zero value

Definition [72, Ch 3] let w > 2 be a positive integer A width-w NAF of a positive 

integer k is an expression k = where each non-zero coefficient kt is odd,

\kt \ < 2 w~1 ,k i- i ^  0, and at most one of any w consecutive digits is non-zero

The w-NAF of a number is computed using Algorithm 2 6, which is closely related to 

Algorithm 2 4

A lgorithm  2 6 An Algorithm for Generating the w-NAF Representation of a Positive 
Integer k
IN P U T  A positive integer k 
O U T PU T  w-NAF(fc) =  ,M

i 4- 0
while (k > 1) do

if ((k mod 2) = 1) then 
kt k mod 2 W 
k 4— k — ki 

else
ki i— 0

end if
k k / 2

i <— % + 1
end while 
return , &o}

2 6 M ultiple Point Scalar M ultiplication

We now look at efficient multiple point scalar multiplication This is used for example if we 

wish to calculate some point R  =  xP  + yQ The idea is to perform two or more point scalar 

multiplications simultaneously A precomputed table is calculated such as the one shown 

m Table 2 2
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Algorithm 2 7 An Algorithm for Elliptic Curves Pomt Scalar Multiplication based on
w-NAF Representation_________________________________________________________
INPUT An Elliptic Curve E  defined over field Fp&, a pomt P  G ¿?(Fpfc)[r] P  ^  O and 
exponent x 0 < x < r 
OUTPUT Q = xP

let {xt~i zo} represent the w-NAF expansion of x
(for details see algorithm 2 6)
Q ^ O
Px <- iP  for i G {1, 3, 5, (2w~l -  1)}
for i from I — 1 downto 0 do 

Q 4— Q +  Q 
if (xj #  0) then

Q <- Q + Pxj
else if (x3 < 0) then

Q <- Q — P-Xj
end if 

end for 
return Q

Precomputation
OP + IQ 
0P  + 2Q 

0P + {2 w - l ) Q  
IP  + IQ

[2W — 1)P + (2W — \)Q 

Table 2 2 Combined multi-point scalar multiplication

Using this set of values, together with the w-NAF representation, it is possible to adjust 

Algorithm 2 7 to compute any point of the form R = xP  + yQ The more points that are 

precomputed the more efficient the algorithm becomes, though the storage requirements 

become correspondingly larger

43



CHAPTER 2 ELLIPTIC CURVE ARITHMETIC

2 7 Point Compression

Because we know the equation of the curve, giving both co-ordinates is giving more than the 

minimum required information Given the x  co-ordinate, the corresponding y co-ordinate 

must be one of two possible values The idea of representing a point as one co-ordinate plus 

additional identifying information about the second co-ordinate is called point compression

[133]

Elliptic curves are mapped by an equation of the form y2 = x 3 + ax +  b Any x co­

ordinate of a point that is on the curve will be associated with two possible y co-ordinate 

values These values will be ±y, since y = ± v /x 3 + ax + b Therefore we must specify 

which of these two possible values is being referred to This requires one additional bit of 

information This is the bit y =  LSB(y) ) and works, for curves defined over Fp, since if y 

is even, then — y will be odd6 These points are the negatives of each other

The original supersmgular curve specified by Boneh and Franklin for use with their 

identity based encryption scheme [31], is y2 = x 3 + 1 mod p where p = 2 mod 3 This 

curve has the interesting property that for each y co-ordinate there is exactly one x co­

ordinate Obviously, for each x co-ordmate there are two possible values for y However, 

this leads to an even more efficient compression based on the y point In this situation an 

additional bit does not have to be stored, because x can uniquely be recovered from the 

equation

X = -  1 (2 42)

2 8 Projective Space

As we have seen all elliptic curve public key cryptosystems rely on the basic group operation 

-  point addition We have looked at faster ways of computing point scalar multiplication, but

6- y  - { p - y ) modp
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these techniques are built upon point addition and point doubling Obviously if we can make 

these operations faster then we ran improve the performance of the overall cryptosystem 

We have also seen that we can have several different representations for the same point 

For example a point defined over the field Fp can be represented as P = (x,y), where 

x and y are both integers in Fp Alternatively if this point is to be transmitted, and we 

want to make a trade-off between computational and bandwidth considerations -  decreasing 

bandwidth requirements at a cost of increasing computational requirements -  then we can 

represent this point as P = (z,y), where y represents the LSB of the y co-ordinate There 

is now no redundancy m this representation

There are two issues raised above -  the complexity of the basic point addition operation 

and the ability to represent points m different formats There are representations for points 

which allow us to perform the group operation using a smaller than standard amount of 

computation -  especially by eliminating the modular inversion operation There are several 

such co-ordinate systems They are two dimensional Affine, and the three dimensional 

Standard Projective, Jacobian Projective and L6pez-Dahab Projective [72,1, 126] 

co-ordinate systems

Now we have the same set of points represented in four different ways The first of these 

representations is defined over two dimensions, whereas the others are defined over three 

dimensions Obviously, however, if all variables can be in the range {0, , (q — 1)} then

the latter three co-ordmate systems allow us to represent q3 elements whereas the affine 

co-ordmate system allow us only to represent q2 elements

We can construct equivalence classes One can define an equivalence relationship over 

the set F3fc\{(0, 0,0)} as

( X u Y , , Z{) = {X2, Y2, Z2) if = \ CX 2, Y\ =  \ dY2, ^  = \ Z 2 for some A e Fpk (2 43)

Using Jacobian projective co-ordmates we have, c =  2, d = 3 and the following
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(X Y  Z) = { ( \X , \Y , \Z )  \ € F ; k} (2 44)

(X Y  Z) is called a projective point, and {(ACX, AdY, AZ)} is called a representative 

of this projective point If Z  ^  0 then ( X / ZC, Y / Z d^l) is a representative of the point 

(X Y  Z) Therefore, this gives us a one-to-one relationship between the set of projective 

points and the set of affine points

P(Fp*)* = {(X Y  Z) X , Y , Z e K , Z ±  0}, (2 45)

A(Fpi) =  {(xt y) x , y £  Fpfc} (2 46)

Using standard projective co-ordinates we have the transformation (X Y  Z) Z j=- 0

corresponds to the affine point (x,y) «— (X / Z 2 )Y / Z 3) Now, given the curve equation

y2 ~  x3 +  ax +  b (2 47)

we can substitute m these new values and get the corresponding curve equation using 

projective co-ordinates

CY / Z 3)2 =  {X/Z2f  + a{X/Z2) + b(Z/Z),  (2 48)

Y 2 / Z 6 =  X 3 / Z 6 + a{X/Z2) + b(Z/Z),  (2 49)

y 2 =  X '  + a X Z A + bZ& (2 50)

Using projective co-ordinates, O is represented as the projective point (0,1,0)

Now that we have q possible representations for each point, we have the ability to define 

point addition operations that do not require an expensive modulo inversion If we need 

to, we can convert first from affine to projective coordinates, then do the computationally
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expensive operations, and then convert back to affine co-ordinates This will require an 

inversion, but will still be much quicker than working solely in affine co-ordinates If we 

need to convert from affine co-ordinates to standard projective co-ordinates we simply set 

Z  =  1, and so the transformation is simply {x,y) (X, Y, 1) To convert bark we simply

do the transformation (x , y ) <- ( X / Z 2 , Y / Z 3) Using Montgomery’s trick, this requires one 

modular inversion

2 9 Point Reduction

A terhmque related to point compression is called point reduction Some elliptic curve 

cryptosystems don’t require that we specify whether we mean the positive or negative of a 

point Both points are treated equally Therefore it is possible to operate just using the x 

co-ordinate of a point This was first pointed out by Miller m [94] In some situations, we 

can discard the y co-ordinate, because there are formulas for calculating the x coordinate 

of some multiple of a point that depend only on the x  co-ordmate of the original point

2 10 Group S tructure

As described m Sec 2 3 2, the embedding degree extension field is the lowest degree ex­

tension field which includes the rth roots of unity The rih roots of unity form a cyclic 

group of order r These elements are used m pairing based cryptography To keep the 

representation of this group reasonably small and to allow fast computation in this group 

we deliberately pick curves that have a small embedding degree If we restrict ourselves to 

supersingular elliptic curves then we always have k < 6 [92] If we use non-supersingular 

curves we can find curves that have much higher embedding degrees For the remainder 

of this thesis we will assume that k is small and even A popular choice of curve 

for identity based cryptography are curves where the embedding degree k is 2 The order 

of this curve, denoted # E (Fp) is (p + 1 — t) where t is the trace of Frobemus The order 

of this curve over Fp2 is (p +  1 — t)(p + 1 + i), (which in the general case can be calculated
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using Weil’s theorem) The group of points defined over Fp2 do not form a cyclic group 

For a k =  2 curve r exactly divides both p +  1 and (p +  1 — i), and hence r|£ And r2\#E  

[117, 14, 15]

Let the complete set of points defined over Fp2 be called G, of order #i?(Fp2) The set 

of all points that are transformed to O by multiplication by r is denoted G[r] These are 

the r-torsion points Since r is prime, these are all the points of order r plus O There are 

r 2 such points, and these r2 points can be organised as r + 1 distinct cyclic subgroups of 

order r -  they all share O Note that one of these subgroups is S[r] and consists of all those 

r-torsion points from the original curve 2?(FP) - points of the form P[(a, 0), (c, 0)], which 

are defined on both the base and extension fields

Let CoF = #E(Fp2)/r2 Then a random point on the curve can be mapped to a point 

in one of these sub-groups of order r by multiplying it by this co-factor CoF The set of 

distinct points generated by multiplying every element of G by r is called rG The number 

of elements in rG is CoF This is called a co-set [117]

Consider the partitioning of the # E  points into distinct co-sets This can be done by 

adding a random point R  to every element of rG There are exactly r2 such distinct co-sets, 

each with CoF elements The original co-set rG is the unique co-set that contains O Every 

co-set contains exactly one r-torsion point Elements of these co-sets are not all of the same 

order They do not form a group

The quotient group G/rG  is the group formed by all of these co-sets [117]
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Bilinear Maps

3.1 Divisor Theory

Let E  be an elliptic curve defined over the field K  For each point P  e E (K ) define a 

formal symbol [P] A divisor [137, Ch 11][87] is a finite linear combination of such formal 

symbols with integer coefficients

D =  ^ 2  a3 € % (3 1)
3

A divisor is therefore an element of the free abelian group generated by the symbols [P] 

The group of divisors is denoted Div(E) The degree of a divisor is given by

deg(D) = J 2 ai e z  (3 2)
3

and as shown above evaluates to an integer

The sum of a divisor is simply the sum of all of the points that are represented

sum(D) =  a3 p] e E (K) (3 3)
3

The sum function uses the standard addition formula on the points that are represented
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by the formal symbols The support of a divisor is the set of all points represented by 

formal symbols for which a3 0 It is customary to only include formal symbols if they 

have non-zero coefficients

supp{D) = {[P3] e D \ a 3 t Q}  (3 4)

3 11  Function on a Curve

We now define what is meant by a function on a curve Suppose that E  is an elliptic curve, 

then /  is a function on E  if it is a rational function1

} ( x , y ) EK{ x , y )  (3 5)

that is defined for at least one point in E ( K ), where K  is the algebraic closure of K  This 

means that the function must intersect E  at some point A function takes values in /fU{oo} 

The evaluation of a function /  at a point P  is denoted f (P)  =  f(^p:l/p)

A function is said to have a zero at P  if it takes on the value 0 at P [87, 137] A 

function is said to have a pole at P  if it takes the value oo /  only has finitely many zeros 

and poles For every point P  for which the function /  is defined there is a function up 

called a umformiser at P where /  can be expressed m terms of up as follows

f  = urp g, where r G Z and g(P) 7̂  0, 00 (3 6)

A umformiser up can be obtained as the equation of a line that passes though the point

P  which is not a tangent to E  at P  Now that we have this definition we can define what

is meant by the order of a function at a point P

ord P(f) = r (3 7)

If /  is a function on E  then ordp(/) counts the multiplicity of /  at P  ordp( f )  is positive

1A rational function is formed when one polynomial divides another polynomial
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when f (P)  =  0 and negative when f (P)  =  oo If ordp > 0, P  is a zero, if ordp < 0, P  is a 

pole, if ordp = 0 ,P  is neither a zero or a pole A pole or zero of multiplicity one is called 

“simple”, of multiplicity 2 is called ‘double’

3 1 2  Principal Divisor

A principal divisor on E  is a divisor of some function /  which is defined over E [90], as 

shown m Equation 3 8 This is denoted as D = div(/)

div(/) =  £  ordpU)[P\ (3 8)
P£B

A principal divisor D will have deg(D) = 0 and sum(D) =  O We have now established 

a relationship between a divisor D and a function f  on E

Suppose that P i,P 2 and P3 are three points on E  that lie on the line defined by the 

function

/ ( t ,  y) =  ax + by + c =  0 (3 9)

Then, since deg(/) = 0, and /  has three zeros at Pi, P2 and P3 (since they are on the 

line) then it has a triple pole at O This can be written as

div(/) =  [Pi] + [P2] +  [Ps] -  3[O] (3 10)

We also know that P3 is the point —(Pi + P2), since the reflection of P3, using the

elliptic curve addition formula given m section 2 2 is the point (Pi -f P2) We know that the

equation of the vertical line running though P3 and — P3 is given by equation {x — £3) = 0 , 

where P3 =  (^3, 2/3) That is

div(ar -  *3) =  m  +  l-Pz] ~ 2[0] (3 11 )

Therefore
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dlv f ax + by + c\  _  ¿lv(a3. _|_ ty 4- c) _ div(rr -  £3) = [Pi] 4- [P2] -  [-P 3] -  [O] (3 12)
\  x - x ^  )

Since Pi + P2 =  —P3 on E, this may be written as

[i’ll +  [ft] =  (i’l + P2} + [O] + div ( flXt j .V,+ f A (3 13)
\  X X$ /

In this way principal divisors may be expressed in terms of a formal sum and the divisor 

of a function We can use this idea to incrementally build from a divisor £>, a function /  

such that div(/) = D, at each point replacing part of the formal sum by a more complex 

function First, we check that the formal sum has sum equal O and deg equal to 0

Consider for example the curve E  defined over Fn given by

y2 = x 3 +  (3 14)

Let

D =  [(0,0)] + [(2,4)] +  [(4,5)] +  [(6,3)] -  4[0] (3 15)

Then, with a bit of work, sum(D) =  0 2, and deg(D) =  0, therefore it follows that D is 

the divisor of a function We wish to find this function We use the approach taken above, 

where we incrementally resolve parts of the formal sum into divisors of functions and then 

combine these smaller divisors into a more complex divisor

The line though (0,0) and (2,4) is y — 2x — 0 It is a tangent to E  at (2,4), so

divfo -  2x) = [(0,0)] 4- 2[(2,4)] -  3[O] (3 16)

The vertical line though (2,4) is x — 2 =  0, therefore we have

2[(2,4)] + [(4,5)] + [(6,3)] are all on the same line ((2,4) = ((4,5) + (6,3))) and (0,0) = -2(2 4), so
(0,0) + (4,5) + (6,3) + (2,4) = -2(2,4) + 2(2,4) - O
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div(x -  2) = [(2,4)] + [(2,7)] -  2[0}3 (3 17)

And

div =  div(y — 2x) — div(rr — 2), (3 18)

dlv ( S t ) = [(0,0)1 + [(2] 4)] ~ [(2,7)]" [° ] (319)

Remember

D  =  [(0,0)] +  [(2,4)] +  [(4,5)] +  [(6,3)] -  4 [O] (3 20)

Therefore

D =  [(2,7)] +  div + [(4,5)] +  [(6,3)] -  3[C] (3 21)

We can also calculate the following function

[(4,5)] +  [(6,3)] =  [(2,4)] +  [O] + div ( V* ! | 2)  (3 22)

Using these two equations we can determine the equation of the function /  for which

D =  div(/)

D  =  [(2,7)] +  [(2,4)] -  2[O] +  div +  div (3 23)

D = div(i — 2) +  div ( ^  ) + div ( y ^ ^  * ) (3 24)/ y  +  x  +  2 \
I  * - 2  )

D  =  diy ( { y ~ 2 x ) [ x  +  y  +  2 ) \
x  — 2 /

l7 =  ( - 4 )  mod 11
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3 2 Weil Pairing

The Weil pairing is a bilinear map which takes two points of order r in the embedding 

degree extension field, and maps to an element of Fp* [137]

e E(Fpk)[r] x £(Fpfc)[r] ^  (3 26)

Here ¡jlt is the set of rLh roots of unity m Fpfc 

1 Let T  G E[r] Then there exists a function f r  such that

di v( fT) = r[T]-r[0]  (3 27)

since sum(div(/r)) =  O and deg(div(/r)) =  0

Let T ' £ E[r2] be such that rT ' = T  Then there also exists a function gr such that

dly{gT)=  ^  ([T' + R]-[R])  (3 28)
R£E[r)

The sum of the points in the divisor is O This follows from the fact that there are r 2 

points R  m E[r] The points R  m JZ[T' + and 2 [^ ]  canf,el and therefore the sum is 

£][T'] =  O The value of gr does not depend on R

Let f r  0 r denote a function that starts with a point, multiplies it by r and then applies 

f r  The points P = T f + R  with R E #[r] are those points P  with rP = T  It follows that

div(/r  o r ) = r  ( ^ [ T 1 + R]j - r  ^ 5 1 ^  =  divQ^) (3 29)

Let S  £ E[r] and let P  E E(K)  Then

gT(P +  s y  = f T (r(P 4- S)) = f T(rP) =  gT(P)r (3 30)

Therefore gr{P + S)/gr(P)  £ Mr and is independent of P 

The Weil Pairing is defined as
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=  ( 3 3 1 )

3 2 1 Bilinearity of the Weil Pairing

We now examine the bilinearity of the pairing [137, 22]

We first look at linearity in the first variable To recap, from the previous section, we 

have

e r ( 5 ’ r )  =  ? z S i r ’  ( 3  3 2 )

expanding we have

- to m\„ to 9t {P + S\) gT {P + S2) roon\er(5l l T K ( 5 2,T) =  ^ - ^ --------(3 33)

But the result of the pairing is independent of the choice of P, so we can replace P  in 

the second pairing, with the (rather convenient) value P  4- Si This gives

„ / a  rr\~ fa 9t {P + S\) 9t {P + Si + S2) , ^
er(Sr,T)eT(S2,T) =  9t {p  +  Sl ) ’ ^  ^

which simplifies to

er(Su T)er(S2,T) = ^ -^ ± ^ ± -S2), (3 35)

ie  er (Si,T)er (S2,T) =  er(S\ 4- S2, T) (3 36)

□
We next examine linearity m the second variable

Suppose we have three points 7 \,T 2 and T3 E E(r), such that T\ 4-T2 =  T3 Let Q\ <73 

be the functions used to define er (S, Tt) Let h be the function, such that
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div(h)  =  [T3] -  [7i] +  [0] 

We also know that if T  E E[n], then

div(f) = n[T] -  n[0] 

for some function /  and so for i = 1 , , 3 we have

div(/,) = n[Tt] -  n[0] 

and so we can express h m terms of the / , ’s

div ~ ndiv(h) = div(hn)

This allows us to write

h  = fi f2hn

Prom equation 3 30 we have

f (nP)  = g(P)n 

Combining the previous two results we get

¡3 = f i f 2hn implies 03 =  gig2(h n),

which implies

. /CO.  , r r . _ 9 3 ( P  + S) 9l(P + S)g2(P + S)h(n(P + S))
e A S ' T l + T 2 )  ~  ~ m p T  ~  ~ 1 J P )  M

But, since n(P + S) = O the last term is equal to If  k this gives

(3 37)

(3 38)

(3 39)

(3 40)

(3 41)

(3 42)

(3 43)

(3 44)
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« +Ii> -  eS r  ‘  ‘345»

as desired

3.3 Tate Pairing

There is another pairing called the Tate pairing, which is generally more efficient to compute 

It is a bilinear map of the form [22, 137]

e £(Fpfc)M x E(Fpk)/rE(Fpk) -> Fpk/(Fpk)T (3 46)

where ri£(FpA.) is defined to be rE(Fpk) = {rP P  6 £ (F pfe)}

Let P £ E[r] Since rP = O, it follows that there is a function Dp such that div(Dp) = 

r(div(P) - r div(O)) Let Dq be any degree 0 divisor such that the support of Dq is disjoint 

from the support of Dp Now, two divisors are said to be equivalent, denoted D ~  D\ if 

the difference between them is a principal divisor4 Therefore if we have two functions /  and 

/ '  such that div(/) =  D and the div(//) =  D* f ,  can be replaced by a function / '  such 

that

di v{fP) = [0]-[P]  (3 47)

Therefore exists a function fp  such that

div(/p) =  rDP (3 48)

Let D q  = dzlQtl be a divisor of degree 0 such that sum ( D q ) = Q and such that D p  

and D q  have no points in common We can define the Tate pairing as

4To recap A principal divisor, which is a divisor of a function, is one such tha t deg(D )= 0 and sum (D )=
O
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(■P,Q) =  I p (Dq ) (3 49)

where, for any function f p ,  whose divisor has no points in common with D q  we define

fp(D Q) =  Y [ f P(Qt)a' (3 50)

Assume that f p  is defined over Fpfc, and let R  be any pomt m E(¥pk) Let D q  =  

[Q + fl] — [R] £ Fpfe, then the Tate pairing can be defined as

3 3 1 Bilinearity of the Tate Pairing

We now look at linearity of the first variable Prom equation 3 51 we have the Tate pairing 

defined as (P>Q)n = /p(-Dq) As with proving the bilinearity of the Weil pairing we 

let P\ , P2 £ -®(Fp)[r],X>p1 and Dp2 be the respective divisors and /pj and fp2 be the 

corresponding functions

Adding two divisors of points gives the divisor on the addition of the two points, therefore 

we have

fp (D Q) = fp(Q + R )/fp(R) (3 51)

-Dpi +  D p 2 =  D p t + p 2 =  [P i +  P2] -  [ O ] (3 52)

For % — 1,2, there exists functions f p t such that

div(/Pl) =  rDpx, (3 53)

and

div(/pi/p2) - r D p 1+ p2 (3 54)

Therefore
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(P l+ P 2 , Q ) r = fp J p 2(DQ) = (Pl,Q >r(ft,Q )r (3 55)

Hence, the function is linear m the first variable

Looking at the second variable we have

Let Qz =  Q\ + Q2 Let DQi -  [Qt] -  [O] for % =  1 3

We know that

A j, + Dq2 = [Q, +  Q2] -  [O] =  Dq3 =  [Qs] -  [0\ (3 56)

Therefore we have

(P,Q,)r = {P,Qi + Q2)t = f ( D Q i + D QJ  = f ( D Ql) + f ( D Qt) = { P , Q M P  <h)r (3 57)

Therefore we have linearity m the second variable 

3 3 2 Reduced Tate Pairing

As we have established m the previous sections, the Weil pairing gives a definitive answer, 

whereas the Tate pairing equates to a set of equivalence classes The Weil pairing can be 

used directly for implementing a bilinear function for use with the cryptographic protocols 

to be described in later chapters However, as it is described above, the Tate pairing is not 

ideal for use in cryptography We would prefer if the pairing resulted m a definitive answer 

To make the Tate pairing useful for cryptography we need a many-to-one mapping that 

will take all the members of an equivalence class and reduce them to the same result This 

can be achieved by a simple exponentiation [22]

tr(P,Q) =  (P,Q)ipk- ' )/T (3 58)
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This is known as the reduced Tate pairing5 and gives a definite result in the rLh roots 

of unity group, which we denote as fir. From now on, when we mention the Tate pairing it 

can be assumed that we are talking about the reduced Tate pairing.

3.4 Modified Pairings

The Weil and Tate pairings take two distinct (non linearly dependent) arguments. However, 

many protocols specify a bilinear map where both arguments come from the same group

over Fp. Therefore, when using a supersingular curve we need a non-rational endomorphism

of the form [22]:

</>:£(Fp) -> £ (F pfc) (3.59)

This mapping is known as a distortion map [134]. For a supersingular curve a distortion 

map always exists, whereas, for non-supersingular curves, no such distortion map exists 

[134]. We do not go into the details of these distortion maps here.

The modified Tate pairing is generally denoted t :

t : E ( ¥ pk)[r]xE (¥pk) [ r } ^ ^  (3.60)

i(P,Q) =  i(P ,« Q )). (3-61)

where </>(•) is used to denote the distortion map.

The distorted Weil pairing is generally denoted e:

(3.62)

e(P,Q)=e(P,<j>m- (3-63)

5In common usage, the term “Tate pairing” is generally assumed to refer to the reduced Tate pairing.

60



CHAPTER 3 BILINEAR MAPS

Using all of the above techniques, on a supersingular curve, we can take both points 

from the same group, use the computationally much more efficient Tate pairing and get 

a concise result (as opposed to an element of an equivalence class) This is now ideal for 

cryptography

3 5 M iller’s Algorithm for Pairing C om putation

The methods that we have given so far are probably of more use to a mathematician than 

a computer programmer There are much more concise, and therefore scalable methods 

of computing bilinear maps Miller’s algorithm which is based on the ‘double and add” 

algorithm for Point Scalar Multiplication (PSM) is at the centre of the construction of the 

function g which is at the heart of the Weil and Tate pairings Miller’s algorithm takes both 

points and evaluates a partial function at each stage of an iterative process

Let Ds and Dt  be two divisors of degree ^  0 with no points in common, such that

1 sum (Ds) = S

2 sum(Z>r) — T

and, using the same notation as before, let f§  and f r  be two functions such that

1 div(/s) =  rDs

2 div(fr) = tDt

Then, the Weil pairing is given as

= <3 64)

and the Tate pairing can be defined as
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Interestingly, the Weil pairing can be expressed m terms of the Tate pairing

{T MS+W
e r ( 5 , r )  =  L ^  =  ^ f r  ( 3  6 6 )

N ' fs(RY

Therefore, both pairings rely on an ability to construct the appropriate function f p  with 

divisor

di v{fP)= r[P  + R ]-r[R ]  (3 67)

with points P E E[r] and R E  E } efficiently

Miller’s idea uses successive doubling to get to r  However, one technicality is that 

j[P + R]—3 [R], for values j  < r are not divisors of functions6, however we get a very similar 

divisor

D 3p  = j[P  + R } - 3 [ R } -  hR) + [O] (3 68)

So

div{f ,P) = D3p (3 69)

Now, assume for a moment that we know f 3{Qi) and fk{Q2 ) and let X(3+k) + d = 0 be 

the vertical line though (j + k)P  Then

d i v  ^ a i _ +  h L + ^  =  b p ]  +  [ k p ]  _  [ ( j  +  k ) p ]  _  [ 0 ]  ( 3  7 Q )

Therefore

àMfu+kìp) = D , P  + DkP + d iv  ( — ^ ¿ + C )  = div (3 71)

*rP =  O j whereas j P  /  O j  < r
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To make the example concrete, consider

M f{,+ k)p)  =  d>v ( /W * P 0T^ + f )  Iq.=(»*) (3 72)

The above equation is often just written as

div(f(j+k)p) =  div ( f j p f k p ^ j  (3 73)

where I is the sloping line between the two points (jP  and kP) and v is the vertical line 

passing though kP  

To conclude

div(/p) =  r[P + R ]~  r[P] -  [rP] +  [O] = r[P + R] -  r[R] (3 74)

Therefore, we have successfully constructed the function fp  at the heart of both the 

Weil and Tate Pairings

We finish this section by giving a concise algorithm for the construction of the Weil and 

Tate pairings in Algorithm 3 1 There is Java code in the accompanying CD-ROM which 

implements Miller’s algorithm

Algorithm 3 1 is Miller’s algorithm for the construction of the reduced Tate pairing

3 6 BKLS Algorithm for Pairing C om putation

The BKLS algorithm [14] is a version of Miller’s algorithm for efficiently computing the 

Tate pairing, it makes several improvements for cases that are of cryptographic interest

1 Denominator Elimination

If we consider the extremely common ‘modified Tate pairing”

i(P, Q) = t(P, <t>{Q)) where P, Q e  £ (F p)[r] (3 75)

63



CHAPTER 3 BILINEAR MAPS

A lgorithm  3 1 Miller’s algorithm for computation of the reduced Tate pairing 
IN PU T  P  e £?(Fpfc)[r], Q e E{¥pk)
O U T PU T  tr (P, Q)

Choose suitable S G E(Fpk)
Q'<r-Q-{-S 
T  < -P
m <r~ [log2(r)\ -  1 
/  1
while (m > 0) do

T <-2T Mi
if (rm = I) then

T « -T  + P

/ - /  M §end if
m m — 1 

end while 
return /  <— /(p*'-1)/7’

we see that denominator elimination can be applied

Denominator elimination can be applied to Miller’s algorithm in certain settings By 

picking parameters as outlined in [14, Sec 5], the denominator (f2 in 3 1), when 

exponentiated to (p — l )fc/2 7 can be made to become the value lp fc, and obviously 

x/1  =  x, therefore f 2 can simply be ignored This halves the amount of computation 

m Miller’s algorithm

2 Choice of Subgroup Order

Solmas [128] had previously noted that there are many primes that have Hamming 

weight as low as three8 Using signed binary representation, these primes can be 

written as 2Q ±  2^ db l 9 It is possible to construct elliptic curves such that r, the 

order of the group is a Solmas prime The reduces the amount of computation

from «  1 5 lg r to «  lg r

7As in the reduced Tate pairing
8There axe only three non zero bits in their binary representation
9Alfred Menezes, at ECC summer school 2004, said that the NSA referred to these as “The primes from 

God”
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3 Speeding Up the Final Exponentiation

A sizeable part of the computational effort m evaluating the reduced Tate pairing is 

the final exponentiation For the p > 3 and even k case the BKLS algorithm replaces

t = m(pl- 1)/r, (3 76)

with

x = rh/m , (3 77)

t =  i(p‘/2+1)/’-, (3 78)

where fh is the complex conjugate of m

Calculating the conjugate is very efficient, and the exponent is now much smaller -  

this will lead to a much more efficient implementation

4 Fixed Base Pairing Computation

We can optimise the pairing based on repeatedly using the same base point P  When 

using a fixed base point, the same values will recur in repeated pairing computations 

These values can be computed just once and stored

When applying precomputation to pairings, the coordinates of these points, along 

with the slopes of the lines that connect the points are stored, as it is these values 

that are used in the computation of the function fp  A series of tuples {A, x,y}  are 

stored, one for each point that arises m the calculation of rP  Then simply recalculate 

fp  using these stored values and new values for xq and yQ, the co-ordinates of the 

second point

5 Using MNT curves
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For a time it was thought that pairing based cryptography may have to be restricted 

to supersmgular curves Menezes Okamoto and Vanstone had pointed out that super- 

singular curves have embedding degree of at most 6 [92] Curves of low embedding 

degree axe ideal for pairing based cryptography As it turns out, it is quite easy to 

construct (non-supersingular) curves with k G {3,4, 6} A method for generating such 

curves was first described by Miyaji, Nakabayashi and Takano in [95] (these are known 

as the MNT curves) Although there is no hard evidence, non-supersmgular ( a k a  

‘ordinary”) curves are believed to be at least as safe, if not safer than supersmgular 

curves, since they have less structure and there are a lot more of them

Finding curves with larger, but still manageable values of k is an area of great academic 

mterest See for example the work of [15, 16] and recently, work by [IT]

We now include the BKLS algorithm from [116], where Q is on the twisted curve10

A lgorithm  3 2 BKLS algorithm for k =  2 computation of the Tate pairing using the 
Twisted Curve [116]
IN PU T  P  G E(¥p)[r], Q G £?(FP)
O U T PU T tT(P,Q)

/ < -  1
A ^ P  
n r — 1
for (i in [IgMJ ~ 1 downto 0) do 

/ W 2 g(A,A,Q) 
if (n, = 1) then 

/ < - /  g(A,P,Q) 
end if 

end for 
m <— m /m  
m <- m(P+1>/r 
return m

10For any curve of the form y2 — x3 + Ax + B with G the twisted curve is given as y2 —
i 3 + d2Ax + where d is any Quadratic Non-Residue mod r
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3 7 GHS Optim isations for Pairing C om putation

The following three optimisations, which are also in the BKLS paper, are due to Galbraith, 

Harrison and Soldera m [67] They are observations on the basic Tate pairing that allow it 

to be implemented more efficiently

1 Choice of Points

Compute the pairing using ¿(P, Q) P  G ¿S(Fp)[r] Although, for the Tate pairing 

P  does not have to be an element of # (F P), making it an element of E(FP) results 

in much smaller representation for A, xp, yp and much more efficient implementation 

This was coined “Miller-Lite” by Solmas at ECC 2003

2 Reduce number of Fp/i inversions

Another implementational issue that Galbraith, Harrison and Soldera noticed is that 

Miller’s algorithm specifies computing a function f nJ f d t each stage and then mul­

tiplying these fractions together Obviously, this improvement cannot be used in 

situations where BKLS [14] denominator elimination already applies

Jd\

This is much more efficiently implemented as

fnr
fdr

(3 79)

(3 80) 

(3 81) 

(3 82)

requiring only one division 

3 Use Faster Point Scalar Multiplication Techniques

67

f n <- f n \ f n r

fd <- fd\ fdT:

f
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The third observation of Galbraith et al is that one can use windowing methods

instead of naive bit by bit double and add The authors claim that this method does

not change the number of doublings, only reducing the number of additions Therefore 

it would probably be of little use if using a value r of low Hamming weight

3 8 P roducts of Pairings 

3 8 1 Solinas’ Observation

As noted by Solinas at ECC 2003, it is possible to more efficiently compute the product of 

two or more reduced Tate pairings [129] by using the simple observation that

ae be = (a b)e (3 83)

As we remarked earlier, the (reduced) Tate pairing requires an application of (some

variant of) Miller’s algorithm followed by a final exponentiation in order to get a concise 

result For a given curve, this final exponentiation will always be the same value, and is not 

in any way dependent on the inputs to the Tate pairing

We use m  to denote a non-reduced Tate pairing and t to denote a full (reduced) Tate 

pairing

i(Qoi Pq) t{Qn> Pn) — (3 84)

=  <Qo,Po)e {Qn,Pn)e, (3 85)

=  ((Qo,Pa) (Qn,Pn))e (3 86)

3 8 2 Scott’s Observation

As noted by Scott m [116], it is possible to implement multi-pairing in a manner similar 

to multi-exponentiation The idea here is that we only have to do one squaring of / ,  the
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‘Miller variable” as Scott calls it The basic algorithm is shown in Algorithm 3 3, where we 

assume that all of the points are distinct (otherwise, the points could just be added before 

performing the pairing)

A lgorithm  3 3 Multi-Miller algorithm for computation of the product of pairings 
IN P U T  PU P2 e E(FpO[r], Q1 .Q 2 e ^ > )
O U T PU T tr{PUQi) tr{P2,Q2)

/< -  1 
A x <-Pi 
A2 4— P2 
n f -  r — 1
for (1 in [log2(r)J — 2 downto 0) do 

/ f ~ / 2 g(Au A u Ql ) g(A2iA2,Q2) 
if (nz =  1) then 

/ < - /  g(Au PuQi) g(A2,P2iQ2) 
end if 

end for 
m <r- fh/m  
m <- m,(p/2+1)/r 
return m

3 9 Basic P roperties of Pairings

Whilst there has been a great deal of research done on the efficient implementation of 

pairings, as outlined in the proceeding sections of this chapter, a great many papers have 

been written which simply make use of an abstract bilinear map11 Many protocols based on 

pairings do not require specific pairings In this section we will look briefly at the properties 

of the different pairings In the rest of this section let the points P  and P* be two linearly 

dependent points which are linearly independent of the points Q and Qf, which are also 

linearly dependent

3 9 1 The Weil Pairing

The Weil pairing satisfies the following properties

11 As at the tim e o f w riting  this thesis, the only two known bilinear maps are the Weil and Tate pairings, 
both of which are mstanciated over e llip tic curves
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• Bilinearity For all P, P', Q, ()' 6 E[n],

e(P + P ’,Q) = e(P,Q) e(P',Q), (3 87)

and

e(P,Q + Q') = e{P,Q) e(P, Q') (3 88)

• Alternating

e(P,P) = 1, (3 89)

and

e(P ,Q )= e(Q ,P )~ l (3 90)

• Non-degeneracy

If e(P, Q) =  1 for all Q € E[n] then P = O

3 9 2 The Tate Pairing

In this section we will concentrate on the reduced Tate pairing since this is the version of 

the Tate pairing that is used in the construction of cryptographic protocols 

The reduced Tate pairing satisfies the following properties

• Bilinearity For all P\^P2 iQ\ and Q2 such that Pt E E(K)[n] and Qt 6 

E{K )/nE(K )  then

t(Px + P2,Qi) = t(P\,Q\) t(P2,Qi), (3 91)

and

t{Pi,Q\ + Q2) = i(Pi, Qi) t{Pu Q2) (3 92)
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• A lterna ting  As we have already established, if we are using the Tate pairing both 

points do not have to be the of the same order and so the alternating property is not 

defined

• Non-degeneracy Suppose K  is a finite field For all P £ #(if)[n], P  ^  O, there is 

some Q £ E (K )/nE (K )  such that ¿(P, Q) ^  1 Similarly, for all Q £ E (K )/nE (K )  

with Q £ nE(K)  there is some P  £ E(K)[n] such that t(P , Q) ^  1

3 9 3 The Modified Tate Pairing

• Bilinearity For all P i,P 2,Qi and Q% such that Pz £ E(K)[n] and Qz £ 

E(K )/nE{K )  then

¿(Pi +  P2, Qi) =  ¿(Pi, Qi) t(P2, Qi), (3 93)

and

t(PuQi + Q2) =  ¿(Pi,Oi) t(Pu Q2) (3 94)

• Alternating Since we are now using the modified Tate pairing we have the require­

ment that both points be of the same order So, unlike the regular Tate pairing we 

can swap the order of the points For the modified Tate pairing we have the following 

relationship

e(P,Q) = e(Q,P) (3 95)

• N on-degeneracy Suppose K  is a finite field For all P  £ E(K)[n]: P  ^  Q, there is 

some Q £ E (K )/nE (K )  such that t(P, Q) ^  1 Similarly, for all Q £ E (K )/nE (K )  

with Q ^ nE(K)  there is some P  £ E(K)[n] such that t(P, Q) ^  1
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3 10 Strategies for Pairing Computation on a Smart card

In this section we look at alternative strategies that are of use for implementing pairings

on smart cards, such as ‘Chip & PIN” credit cards or SIM’s12 We exploit the idea of

Chevalher-Mames et al [52]

A typical smart card has a very strictly defined API for interacting with the rest of the

world The smart card should have some externally inaccessible memory locations These

memory locations should be used to hold sensitive information such as private keys etc It

is not possible to read memory locations directly and access to memory is via the card’s

API, and some logic circuitry on the card

Functions that makes use of the private data (key) should also be on the card For

example, consider RSA signing, In this case, an RSA decryption exponent and modulus

(d, N) must be present on the card, along with a function /  that implements the signing

algorithm Any application that wishes to make use of these private keys must, for example,

supply all of the other arguments to / ,  m this case the message Therefore, any card requires

(just like any computer), a certain amount of storage and a certain amount of logic circuitry

Chevalher-Mames et al suggested a smart card on which no computer program was

implemented on the card -  the card had no ROM The code was held on the (much more

powerful) terminal This is elegant as exactly the same card could be used for multiple

tasks depending on the program (terminal) used Any instructions that are given to the

card must be signed by the program’s author

In joint research with Gemplus13, we developed a solution similar to that of Chevalher-

Mames et al The idea here was not to disembed the program, but to go one level deeper

and disembed the computationally expensive pairing Obviously our card would need to

be more aware of its environment than the card they describe The two objectives of this

research were
12SIM Subscriber Identification Module
13Gemplus was named the worldwide leader of the smart card industry for a seventh consecutive year w ith  

a 27% market share, according to market analysts, Gartner Inc (2005)
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RAM ROM
\ \ \

CPU

Input / Output Input / Output

Signed
code

Figure 3.1: A basic interpretation of Chevallier-Mames et a/’s idea

• Make use of existing cards that are already in production at Gemplus. Would it be 

possible to implement pairing based protocols on Gemplus cards designed for use with 

regular ECC algorithms?

• Faster pairings for smart cards. Would utilising a powerful terminal make pairings on 

a card faster than just implementing the pairing on the card?

We developed a protocol that was to be run between a smartcard and a terminal. The 

card would output a series of values to the terminal. The card would then receive responses 

from the terminal. The desired outcome of a run of the protocol was that the card would 

obtain the result of the pairing and the terminal would not obtain any secret information 

(such as private keys) from the card. The protocol was to be designed in such a way that:

1. The computationally expensive pairing computation was to be off-loaded to the com­

putationally more powerful terminal. The card was to only use algorithms that it 

could already implement14.

14This could potentially save a lot of money in the reconfiguration of a Gemplus production line.
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2 The smart card would be able to detect a cheating terminal, abort and return the _L 

symbol

Formally, a protocol is said to be a secure pairing delegation protocol if the following 

conditions hold [51]

• Completeness After completion of the protocol with an honest terminal, the card 

obtains e(A,i?), except with negligible probability

• Secrecy A (possibly cheating) terminal should not learn any information about the 

secret point or points being paired More formally, for any malicious terminal T, there 

exists a simulator S  such that for any points A , B , the output of 5 is computationally 

indistinguishable from T ’s view S  is not given A or B  as input

• Correctness The card should be able to detect a cheating terminal, except with 

negligible probability More formally, for any cheating terminal T  and for any A, J5, 

the card outputs either _L or e(A, B ), except with negligible probability

We came up with a number of solutions to this problem These solutions work in a 

variety of situations, however, the most practical protocols are shown below

Here we show only two of the protocols that we developed

1 Two public points15, with one constant point This is useful for encryption in Boneh 

and Franklin’s IBE scheme (see Ch 6 for a detailed description of this scheme), where 

one point is public and constant (the KGC’s Ppub), and one point is public and variable 

(the recipient’s public key Q t d) Here we reasonably assume that the ciphertext mask 

m Boneh and Franklin’s IBE is calculated m two parts

Boneh and Franklin’s IBE encryption

9 =  e(Ppub:Q w)  (3 96)

M  = 9X (3 97)

15These values do not have to remain hidden from the terminal
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2 The pairing of two points, one of which is public and the other of which is private 

and constant This is useful for Boneh and Franklin’s IBE decryption or Sakai and 

Kasahara s IBE decryption (see Ch 6 for a detailed description of this scheme), where 

one point is an element of the ciphertext and the other element is a long term private 

key, which will remain constant over many decryptions

Boneh and Franklin’s IBE decryption

M  = e{R,sQID) (3 98)

Sakai and Kasahara’s IBE decryption

M  = e(R,(s + id)~lQ) (3 99)

In the first case, we propose the following protocol 

3 10 1 Constant public A  and public B

The card and the terminal are given as input a description of the groups Q and /Ltr , and a 

description of the bilinear map e Q x Q —> ¡xr Moreover, the card receives and stores the 

tuple (e(A, Q), Q) for some random Q E Q These two elements are trusted to be related as 

described, and so are assumed to have come from a trusted party These two values will act

as reference values in future calculations by the card The point Q and the value e(A, Q)

are kept private by the card The card is given as input the point B  and must eventually 

output e(A, B)

The card generates a random and queries the following pairings to the terminal

= e(A,B), (3 100)

a 2 -  e{A,xB + Q) (3 101)
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The card checks that

of e(A,Q) = a 2, (3 102)

and that a\ = l^r In this case, it outputs ct\ , otherwise it outputs _L 

The protocol requires only one scalar multiplication and two exponentiations in /¿n it 

can also make use of existing hardware that efficiently implements point scalar multipli­

cation Efficient point scalar multiplication is a more mature area than efficient pairing 

implementation

T heorem  3 10 1 The previous protocol with constant public A and public B is a secure 

pairing delegation protocol

Proof We do not have to prove the secrecy property since both points being paired are 

public values

The completeness property is straightforward to establish The protocol’s correctness is 

shown as follows Let b be such B = bP Let q be such that Q — qP Let

u = xb + q mod r, (3 103)

which gives xB  4- Q = uP  We have that the terminal’s view is entirely determined by (6, u) 

and by the randomness used by T  Since x and q are randomly selected from Z*, we obtain 

that the distribution of x  is independent from the terminal’s view 

Let Puih  be such that

a i  =  e(A, B) e ( A ,P f ' ,  (3 104)

a 2 = e(A ,xB  + Q) e(A ,P )*  (3 105)

We have that /?i,02 are a function of the terminal’s view, and that a\ =  e(A,B) if

= 0 Moreover, we obtain from 6 102 that the card outputs a.\ iff
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r f t  =  f t  mod r (3 106)

Now, we know that f t ^  0 Then smce f t and f t  are a function of the terminal’s view, 

and the distribution of r is independent from the terminal’s view, equality (3 106) holds 

with probability at most 1 /r  Therefore, for any cheating terminal, the card outputs either

In the second case we have 

3 10 2 Constant private A  and public B

The card and the terminal are given as input a description of the groups Q and ¿¿r , and 

a description of the bilinear map e Q x Q —» ¡jlt Moreover, the card receives e(A, Q) for 

some random Q e Q The points A, Q and the value e(A,Q) are kept private by the card 

The card is given as input the point B  and must eventually output e(A, B)

The card generates random x ,y ,z  6 Z* and queries the following pairings to the termi­

nal

_L or the correct e(A, I?), except with probability at most 1/r □

a i — e(xA, £ ),

<*2 =  e(yA,z(B + Q))

(3 107)

(3 108)

The card computes

&AB (3 109)

(3 110)

The card checks that

(3 111)
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and that erAB =  1 In this case, it outputs otherwise it outputs _L The protocol 

requires only 3 scalar multiplications and 3 exponentiations m fiT

Theorem  3 10 2 The previous protocol with constant private A and public B  is a secure 

pairing delegation protocol

Proof The protocol’s completeness is easily established The protocol^ secrecy follows 

from the fact that the terminal receives only randomly distributed points The protocol’s 

correctness is established as follows Let b be such B = bP Let q be such that Q =  qP 

Let

u = z(b + q) mod r, (3 112)

which gives z(B+Q) = uP  The terminal’s view is then entirely determined by (b, ?x, xA , yA) 

and by the randomness used by T  Since 2 and q are randomly generated m Z*, we obtain 

that the distribution of z is independent from the terminal’s view Let a i, «2 be such that

ai =  e(x (3 113)

q 2 = e(yA,B + Q)1+̂  (3 114)

We have that a\ and 0:2 are a function of the terminal’s view Moreover, we obtain

eAB =  e(A ,B)1+h ,  (3 115)

as =  e(A,B + Q)1+h  (3 116)

Therefore, pab = e(AiB) iff ¡3\ = 0  Moreover, we obtain from (3 111) that the card

outputs eAB iff

e(A,B + Q)Sl = e (A ,B )h ,  (3 117)

which gives

bpi = (b + q)p2 mod r (3 118)
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Then since b, Pi, 02 are a function of the terminal’s view, and the distribution of x is 

uniform m independent of the terminal’s view, we obtain that if /?i 7̂  0, the equality 

3 118 holds with probability at most l / r  Therefore, for any cheating terminal, the card 

outputs either _L or the correct e(A,I?), except with probability l / r  □

3 11 Conclusion

In this section we have given, in the Weil and Tate pairings, concrete examples of the pairings 

that we will be using to implement the various cryptographic protocols that we go on to 

describe m the following chapters We have given accompanying code m the appendices 

We have shown some of the tricks that can be used, m cases of cryptographic interest, and 

shown this to be a progressive area of research

We have shown some techniques that could be used to convert existing Gemplus smart 

cards into cards suitable for use with pairing based protocols Although we do not have 

precise timings for these results we were told that the time to implement a pairing on a 

card is greater than 2 seconds, whereas with our scheme it took approximately 1/2  second 

[96]16

l6Advances in pairing implementation research suggest that it will be practical to implement pairings 
directly on smart cards over the next 2 -5  years
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Chapter 4

Cryptographically Hard Problems

In this chapter we explain some mathematical, complexity theoretic and number theoretic 

concepts These concepts are reasonably straightforward, but are sometimes clouded m 

mathematical language that only serves to discourage their understanding We explain 

what is meant by a cryptographically hard problem There are certain problems that are 

believed to be intractable Cryptographic systems can be based on these problems

These intractable problems are said to be cryptographically hard or computationally 

infeasible m certain settings The following definitions are all taken from the American 

government run National Institute of Standards in Technology (NIST) [20] Another useful 

reference for this material is [65] These definitions are for the technical meaning of these 

terms and may differ from those found in a non-specialist dictionary, but are appropriate 

for this thesis

Definition [20] Algorithm A computable set of steps to achieve a desired result

In layman’s terms, any computer program could be described as implementing an algo­

rithm The type of algorithms that we are interested m are those that solve cryptographically 

hard problems

D efinition [20] big-0 notation f(n)  =  0(g(n)) means there are positive constants c and 

k , such that 0 < f(n)  < cg(n) for all n > k The values of c and k must be fixed for the
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function /  and must not depend on n.

The complexity of an algorithm is expressed using what is called “big-O” notation. Big- 

O notation is used to used to describe an asymptotic upper bound for the magnitude of a 

function in terms of another, usually simpler, function [65]. For the algorithms that we will 

be examining here, we are interested in limits in running time and storage.

Definition [20] Linear time: The measure of computation, m(n) (usually execution time 

or memory space), is bounded by a linear function of the problem size, n. More formally 

m(n) =  0(n).

Definition [20] Polynomial time: When the execution time of a computation, m(n), is 

no more than a polynomial function of the problem size, n. More formally m(n) =  0 (n k) 

where A; is a constant.

Definition [20] Exponential time algorithm: In complexity theory, the measure of compu­

tation, m(n) is bounded by an exponential function of the problem size, n. More formally 

if there exists a c > 1 such that m(n) = 0(cn).

Definition [20] Moderately (Sub) Exponential time algorithm: The measure of computa­

tion, m(n) is more than any polynomial nk, but less than any exponential cn where c > 1 .

Cryptographic systems should be based on problems which are intractable:

D efinition [20] Intractable: A problem for which no algorithm exists which computes all 

instances of it in polynomial time.

When we develop a cryptographic protocol, such as we do in Ch. 5, 6, 7, and 8, we 

wish to link the difficulty of breaking the system with the ability to solve an intractable 

problem. We will show this in detail when we give security arguments for the schemes that 

we develop.

Fundamentally there are three intractable problems that cryptosystems are based 

around.
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• Integer Factorisation Problem ( a k a  factoring) [91, Ch 3] Given a positive inte­

ger riy find its prime factorization, that is, write n =  pf1,?»!2, where the px are

pairwise distinct primes and each ex > 1

• (Generalised) Discrete Logarithm Problem [91, Ch 3] Given a finite cyclic 

group Q of order n, a generator a of Q, and an element ¡3 £ Q, find the integer t ,  

0 < x < n -  1 , such that ax =  (3

• Shortest Vector Problem Given a lattice L , find the shortest nonzero vector 

contained m L There may be several vectors of the same length This is the basis of 

NtruEncrypt [75] and other lattice based cryptosystems

Usually we do not know if the underlying problem really is intractable But these are 

well studied problems, and no known efficient algorithms to solve them exist That is why 

they are sometimes referred to as ‘assumed to be hard” problems

4 1 Cryptographically H ard Problem s Over Elliptic Curves

In the specific area of pairing based cryptography the following is a list of important prob­

lems Some are intractable, and others, with current knowledge, can only be solved using 

bilinear maps This list is not exhaustive and the number of intractable problems in this 

area is growing Some work in proposing new hard problems has been done by Boneh 

and Boyen and others Other researchers feel uncomfortable trusting new, less well studied 

problems The belief that a problem is intractable grows the more that problem is studied 

The groups Q and that we refer to in the hst, are those groups such that a bilinear map 

operates e Q x Q —> We assume that (P) =  (g) =  /jr , and that g — e(P, P)

A few good references for this section are [91, ch 3], [140] and [12] In this section we 

concentrate on problems that require use of a distortion map (and so must be implemented 

over a supersmgular curve) For each of these problems there is a corresponding “co” problem 

which can be set over non-supersingular curves
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• Bilinear Diffie-Hellman Problem Given P, x P , yP  and zP  £ Q, Compute 

9XyZ G

This problem is intractable

• Decisional Diffie-Hellman m Q Given P, zP , yP  and zP  £ Decide if xy = z 

This problem is easy using the bilinear map Simply check the following equality

e(xP,yP) = e(P,zP) (4 1)

• Decisional Diffie-Hellman in Given <7, gx, gy and Z £ ¡jlT) Decide if Z = gxy<? 

This problem is intractable

• Computational Diffie-Hellman in Q Given P, xP  and yP £ Q, Compute xyP  

This problem is intractable

• Computational Diffie-Hellman in ¡xr Given g, gx and gy £ ¡iT) Compute gxy 

This problem is intractable

• Discrete Logarithm Problem in Q Given P  and xP  £ Q, Compute x 

This problem is intractable

• Discrete Logarithm Problem in /¿r Given q and qx £ ¿¿n Compute x 

This problem is intractable

• Inverse Computational Diffie-Hellman Problem in Q Given P  and xP  £ Q,

Compute x~ lP

This problem is intractable

• Inverse Computational Diffie-Hellman Problem in /ir Given g and gx £ /¿r , 

Compute gx 1

This problem is intractable
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• Inverse Decisional Diffie-Hellman Problem in Q Given P, xP  and Z  E G,

Decide if Z  =  x~lP

This problem can be solved using the bihnear map

e(xP,Z) = e(P,P) (4 2)

• Inverse Decisional Diffie-Hellman Problem in ¡j,r Given g, gx and 7 E /¿r, 

Decide if 7 =  <7®

This problem is intractable

• Divisible Computational Diffie-Hellman Problem in Q Given P, xP  and 

yP  £ G> Compute (x /y )P

This problem is intractable

• Divisible Computational Diffie-Hellman Problem in /jr Given g, gx and gy E

¿ir , Compute gx!y

This problem is intractable

• Divisible Decisional Diffie-Hellman Problem in Q Given P, xP, yP  and Z  E G,

Decide if Z = [x/y)P  

This problem is intractable

• Divisible Decisional Diffie-Hellman Problem in /¿r Given <7, gx, gy and Z 6 /ir , 

Compute Z  = gx/y

This problem is intractable

• Square Computational Diffie-Hellman Problem in G Given P  and xP  6 G,

Compute x 2P

This problem is intractable

• Square Computational Diffie-Hellman Problem in Given g and gx E /xr ,
2

Compute gx
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This problem is intractable

• Square Decisional Diffie-Heilman Problem m Q Given P, xP  and Z  E £/,

Decide if Z = x2P

This problem can be solved using a bilinear pairing

e(P,x2P) = e(xP,xP) (4 3)

• Square Decisional Diffie-Hellman Problem in Given 9, gx and 7 G

Decide if 7 =  gx2

This problem is intractable

• Bilinear Pairing Inversion Problem Given P e G and 7  E /¿r? where 7  = 

e(P, Q) E (¿T, Compute Q E Q

This problem is intractable

• Bilinear Inversion Diffie-Hellman Problem Given P, aP, bP E G, Compute 

e(P,P)a~lbe ur

This problem is intractable

• q-Strong Diffie-Hellman Problem Given the (q + l)-tuple

{P , x P , x 2P , , x qP }  E Qq+1, where q >  1, Calculate a tuple ((rr +  y ) _1P, y)

This problem is intractable

• q-Bihnear Diffie-Hellman Inverse problem Given the (q +  l)-tuple

{P,xP}x2P, ,x qP} E Qq+l, where q > 1, Compute 1 E 

This problem is intractable

• Decisional q-Bilinear Diffie-Hellman Inverse problem Given the (q + l)-tuple 

{P,xP, x2P, ,x qP} E Gq+l, where q > 1 and Z  E /xr5 Decide if Z = gx \  where 

g — e(P, P)

This problem is intractable
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Some assumptions are said to be stronger than others, and conversely some are said to 

be weaker When an assumption A  is said to be weak with respect to another assumption 

it implies that the underlying problem of A  is at least as difficult, if not more difficult 

than the problem underlying assumption B This is demonstrated by showing that an oracle 

that can break A  can be used to break B1, but not being able to show the inverse

We are confident that the indicated problems are indeed intractable If the security 

parameter is chosen to be large enough, that is, if r, the order of the groups Q and /¿r 

is a prime of at least 2160, then solving the above problems is currently computationally 

infeasible It is extremely important that Q and ¿¿r are chosen carefully, and standardisation 

bodies, such as NIST or IEEE usually publish suitable parameters 2 We will assume for the 

remainder of this thesis that r, the order of G and (ir is prime

4 2 M ethods of Solving the Discrete Logarithm Problem

We now look at some of the best methods used to attack the elliptic curve discrete logarithm 

problem The most important method used to attack the discrete logarithm problem over 

finite fields is the Index Calculus Attack However this method cannot be applied directly to 

elliptic curves We will explain the reason for this m detail later m this section, however, the 

important implication of this is that ECC can use smaller key sizes than discrete logarithm 

systems over finite fields, for the same conjectured level of security Since smaller key 

sizes generally mean less computationally expensive algorithms, this has resulted in the 

widespread use of ECC in constrained devices such as wireless microcontrollers and mobile 

phones

For clarity, we state once again the discrete logarithm problem over elliptic curves 

• EC D iscrete Logarithm  P roblem  Given linearly dependent points3 P  and Q G Q

Remember, there may be other ways to break B that may not involve breaking A
2This has not yet happened for pairing based cryptography as it is such a new technology, but the author 

is an active participant m IEEE standardisation meetings m this area The IEEE P1363 hope to propose 
standards in 2008

3Any two points P and Q are said to be linearly dependent if there is some x such that Q = xP
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Calculate x E Z*, such that Q — xP

Obviously one naive method of solving the discrete logarithm problem over elliptic curves 

is to try all possible values x E Z*, where r is the order of the group Q This is known as 

the exhaustive search method But there are much better algorithms for solving the EC 

discrete logarithm problem

4 2 1 Shank’s Baby Step Giant Step Method

The Baby Step Giant Step method was developed by Shanks m [119] It is a time versus 

memory trade-off of the exhaustive search algorithm The idea here is to break the problem 

down into two smaller problems that both have «  y/r steps, where r is the order of the 

group Q One part of the algorithm takes “Giant” steps amongst elements of the group Q, 

whereas the other part of the algorithm takes ‘Baby” steps

The algorithm proceeds as follows

Let m — [>/F|, where r is the order of P  If Q = xP.t then x can be written as 

x = im  + j, where 0 < z, j < m Therefore xP  =  %mP 4- j P  This equation can be 

rewritten, xP  — im P  =  jP  This is the basis of the Baby Step Giant Step algorithm

• Construct a table of size m  and populate this table with tuples for (j^jP), for all 

values 0 < j  < m  Sort this table m ascending order based on the jP  values

?
• Calculate the value m P , for % = 0 (this will be O) Check if xP  — imP  =  jP  If not,

?
increment z, and repeat until the verification equation xP  — im P — jP  is true

• Return the value x =  im  + j mod r This is the discrete logarithm of xP  with respect 

to P

Shank’s Baby Step Giant Step algorithm requires 0(\yjr\)  storage, and 0(\y/r\)  point 

scalar multiplications When r «  2160, this attack would require approximately 281 opera­

tions, and a table with 280 storage entries and on average 1 5 x 280 point scalar multiplica­

tions Whilst being a huge improvement on the exhaustive search algorithm which would 

require on average 2159 — 0(r) point additions, this is still impractical
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4 2 2 Pollard’s p Method

We now look at Pollard’s p method for solving the discrete logarithm problem [105] Again 

we start off with the same basic problem, which is, given P  and Q, such that Q = x P , 

find x The crux of Pollard’s algorithm is to find two different ways of expressing any point 

m terms of the points P  and Q Say for example we know that R = aP 4- 6Q, and that 

R  =  kP  + yQ Then we have aP + bQ = kP  + yQ, but we also know Q = xP, so we have 

aP + bxP = kP + yxP  which gives (a — k)P  =  (y — b)xP which implies x = (a — k)(y — b)~1 

mod r

Formally, Pollard’s algorithm needs a random function /  Q -¥ Q x Z* x Z* /  is a 

pseudo-random function That is, given the same input point, it will always return the 

same random output point However, we also need the function to return useful additional 

information about the point that is returned The function also returns two elements m 

Z*, these are the coefficients k and y in the equation X  = kP  + yQ , where X  is the point 

returned by the function, and P  and Q are the points for which the discrete logarithm of 

Q with respect to P  is to be determined

If the function /  is truly random, the expected running time of this algorithm is approx­

imately 0(y/r) due to the birthday paradox, where r is the order of Q All of the points 

that are generated {Xo,Xi, need to be stored, and this list needs to be searched

though every time to see if we have a match between the current point and any previous

point

However, Floyd [63] has proposed a more elegant solution, Floyd’s cycle finding algo­

rithm, which make use of a slow moving pointer (sometimes called a tortoise) and a fast 

moving pointer (sometimes called a hare) proceeds as follows

• make a pointer to the first element (the hare)

• make a pointer to the first element (the tortoise)

• advance the hare by two iterations for every one iteration by the tortoise
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• since the group is finite and cyclic the hare and tortoise will meet

The total amount of computation for this algorithm is 0(y/r) Again, the value x 

is recovered as x — (a — k)(y — b)~l mod r, where the two representations of the point 

recovered are R  =  kP + yQ and R = aP + bQ Pollard’s p method is probabilistic, meaning 

that it is not guaranteed to finish withm this computational bound, but it is expected to 

do so with very high probability

4 2 3 Pollard’s A Method

Pollard’s A method [105] is very similar to Pollard’s p algorithm It relies on a similar 

method of finding a point that can be represented m two separate ways using the points P  

and Q as a basis It also uses a random function /  The mam idea here is that one can 

use several random starting points {Pq, , Pn} The name A comes from the fact that the

algorithm starts at 2 (or more) separate points and converges Once the two ‘walks” meet 

they will coincide thereafter This is reminiscent of the greek letter A Again this algorithm, 

like Pollard’s p algorithm, is probabilistic

4 2 4 The Index Calculus Attack

The index calculus method is an ingenious way to calculate the discrete logarithm of a 

one element with respect to a generator element in a finite field Fp It is one of the most 

powerful attacks against the discrete logarithm problem over the finite field However, we 

must point out from the start that the index calculus attack cannot be used directly against 

elliptic curves4 This is extremely important, as it is this fact that allows us to use much 

smaller key sizes for elliptic curve cryptosystem See Table 4 1 for details

The reason that the index calculus attack does not work in the elliptic curve setting is 

that it requires elements of the group Q be factored If we take elements in the finite field

4This statement may no longer be true, due to research by Gaudry and Diem, which is not m my area of 
expertise [69, 57], however, their work only applies to curves over extension fields of certain degrees, and so 
these curves can be easily avoided
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ECC key size (bits) El Gamal key size (bits) Ratio ECC/E1 Gamal 
163 1024 0 159
256 3072 0 083
384 7680 0 05
512 15360 0 03

Table 4 1 Key Sizes needed for Comparable Security [40, with reference to NIST]

Fp, they are the integers {0,1, , (p — 1)} These numbers can usually be easily factored

The series of prime factors is called the factor base

Let p be a large prime and g be a generator element of the group F* Then any element 

h G {1 , , (p — 1)} can be written as

h — g mod p (4 4)

for some unique k with 0 < k < p — 2 A; is the discrete logarithm of h with respect to

the base g

Now, let h be an integer, and let h' =  gk> mod p be another integer Then we know 

that

h b! — (gk gk>) mod p (4 5)

or

h ti = (gk+k>) mod p (4 6)

We also know that h? =  h h =  gk+k = g2k mod p

Also, any integer can be expressed as

n = h $  h ?  (4 7)

where {</o <?n} are the factors of n and ex > 1 The goal of the Index Calculus attack is
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to build up a table of 2-tuples (q, k), where q is a factor of n and q — gk mod p Once we 

are able to express n m terms of factors for which we know the appropriate k we can solve 

the discrete logarithm problem

If we view (qli ku ez) as a matching set, and n can be factored as

g* = n = q*° q? (4 8)

which is the same as

gx = n = gkaeo gkie1 (4 9)

then

x = fcoeo + kye\ +  + knen mod (p -  1) (4 10)

We will now give a trivial example of the index calculus method in action Suppose one 

wants to find the discrete logarithm of 15 to the base 3 mod 23, i e find x such that

8 = 3* mod 23 (4 11 )

First, build up a factor base The factor base is a relatively small subset of the elements 

of G, such that a significant fraction of elements of Q can be efficiently expressed as products 

of elements from the factor base For each element m the factor base, the discrete logarithm 

for that element (to the base g) is known For example,
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3 = 31 mod 23 (4 12)

9 =  32 mod 23 (4 13)

4 =  33 mod 23 (4 14)

12 =  34 mod 23 (4 15)

13 =  35 mod 23 (4 16)

16 =  36 mod 23 (4 17)

COIICM mod 23 (4 18)

Prom these equations we can build up a table of [x,gx) pairs This is the factor base 

We then use these values to compute the discrete logarithm for any other element For 

example, we have

8 =  4 2 =  33 37 =  33+t mod 23 (4 19)

and so 

x  =  10

The above is a very basic example, meant only to let the reader understand the basic 

operation of the index calculus attacks A more complex example is given in [137]

4 2 5 The MOV Attack

Menezes, Okamoto, and Vanstone (MOV) [92] proposed the following attack that reduces 

the EC-DLP to a DLP in a finite field The idea is that the rth roots of unity group is 

a subgroup of a finite field Therefore we can use the following observation to allow the 

application of powerful Index Calculus attacks on EC-DLP 

Given P, a point of order r, and Q =  x P , find x

First select a suitable constant point T, the second input to the bilinear pairing e Then
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compute the following pairing values

e(P,T) =  g e f i r  

e(Q,T) = e(P,T)x = gx e fiT

(4 20) 

(4 21)

Now solve for x , using the values g and gx

Although this looks a very similar problem, it is now set in a finite field where it can be 

solved using index calculus methods

Obviously for this attack to succeed, it is important that elements of ¿¿r can be easily 

mampulated and therefore that the problem be set over an elliptic curve with small em­

bedding degree For standard elliptic curve cryptosystems we tend to avoid such curves 

However, we also need this property (and therefore curves of small embedding degree) for 

pairing based cryptography Provided we are careful in our choice of parameters pairing 

based cryptography is secure This means q > 2160 and qk > 21024, where k is the embedding 

degree of the curve

4 2 6 Using Security Definitions

We have looked at a variety of intractable problems m this chapter But why are these 

problems important to cryptography7 The security of cryptographic protocols is often 

linked to one of these problems, using what is sometimes called ‘proof by reduction”

The idea is to model an adversary of a particular cryptosystem, and to give that ad­

versary every conceivable advantage to break the system m a non-trivial fashion If we are 

to prove that a new security protocol is secure then we should be able to show a reduction 

from having a non-negligible advantage m breaking our system to have a non-negligible ad­

vantage m solving one of the hard problems mentioned previously When we link a protocol 

to a specific hard problem, that problem is said to be the ‘underlying hard problem” for the 

system Of course, should that hard problem be flawed, then the protocol, and any other
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protocols based on the same hard problem, can be broken 

Proofs in this model normally proceed as follows

• Define an adversary E  For our protocol we define an adversary by defining the 

scope of its powers and its goal The scope of the adversary’s powers are different 

depending on the security objectives of the protocol For example, it might be to gen­

erate a signature without the correct private key, distinguish between the encryption 

of one message and another without the correct private key, or complete an authenti­

cated key agreement without the correct private key

As an example, for an encryption scheme we might say that we have an adversary E  

who

-  might have access to all public keys of the system, and all private keys of the 

system apart from the one which trivially decrypts the message This defines the 

scope of its powers

-  might wish to distinguish between the encryption of messages mo and m \ , en­

crypted under a public key for which E  does not know the corresponding private 

key This defines it’s goal

We then define an algorithm A  A's job is, by interacting with E , to solve the 

underlying hard problem How A  does this is simply by imitating E 's environment 

exactly, and getting results to particular queries back from E  But A  can store 

extra information, for example, A  would be allowed to know the discrete logarithm of 

points that are, from E 1 s view of the system, mapped via an idealised hash function5, 

provided of course that the point is random and that the discrete logarithm is not 

disclosed to E  It is essential that E 's view of the world is exactly as he would expect 

if he was breaking the protocol

A  uses E's answers, and E 's inability to distinguish between its simulated environment

and the real world, to solve the underlying hard problem Since we assume that A

5This is railed a Random Oracle
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cannot solve the hard problem Then who can break the protocol, cannot exist 

Therefore the protocol is secure

___________________ CHAPTER 4 CRYPTOGRAPHICALLY HARD PROBLEMS
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Chapter 5

Signature Schemes using Bilinear 

Maps

A digital signature on a message is a value, or series of values, which is generated using 

both a message and a private key It is important that a valid digital signature can only be 

created by an entity in possession of the correct private key It may be deterministic - that is 

given any private key and any message there is only one valid signature (the RSA signature 

[107] is an example of a deterministic signature), or it may be randomised - given any private 

key and any message there may be many valid signatures (the El Gamal signature [61] is 

an example of a randomised signature)

The purpose of a digital signature is to provide the following assurances

1 Message Origin Authentication The identity of the signer of the message is 

known

2 Message Integrity The message has not been altered since it was signed

3 Non-Répudiât ion The signer cannot later deny having signed the message

A digital signature is checked using a public key Every digitial signature verification 

reduces to an equation which includes thp public key of the claimed signer, the signature
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element or elements and the message that was purportedly signed. If the verification equa­

tion is passed we can be confident that the message was signed by the holder of the private

' y ^ V kpJ S kpri(m),m') (5.1)

where 7  is the result of the verification algorithm V , S  is the signing algorithm, k^5 

and kpri are a matching key pair, m  is the message that was signed and mt is the message 

as received by the verifier.

7  will be tru e  iff m  =  m' and {kpub, kpri} is a valid key pair1.

What is the message? By message we mean any piece of data - for example a Microsoft 

Word® document or an MP3 music file. Someone would want to sign a digital document 

for the same reasons they would want to physically sign that document once it was printed 

out and in the form of a hard copy. Perhaps it is a contact by which two parties agree to do 

business. Perhaps the person wants to claim ownership of ideas in a document or copyright 

of a song. This can be achieved with the assistance of a notary public.

Usually the message is pre-processed using a cryptographic hash function2, as this pro­

duces a much smaller hash value. This hash value can then be further processed to produce 

the signture3. This is much more efficient. A hash function should have the property that 

it is not possible to find a message that hashes to a predetermined value - this is known 

as “pre-image resistance”. It should also be “collision-resistant”, meaning that it should 

not be possible to find any two messages mo and m\ such that, using a hash function 

W, H^mo) = %(rai). This is to prevent an attack whereby one message is exchanged for 

another with the same hash value.

There are several non-identity based digital signatures, for example those in [107, 64, 

112, 100]. In this chapter we will examine digital signature schemes that arise out of

Except with negligible probability.
2Often the message is hashed together with a random signature element.
3 A signature may consist of several elements.
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bilinear maps. There are many different digital signature schemes that utilise pairings, 

some with interesting and novel properties; for example, conditionally verifiable signatures 

[42], aggregate signatures [32, 25, 50], multi designated verifier [80], blind [25, 144] and ring 

signatures [7, 53, 73, 84, 139].

We concentrate on standard identity based signature schemes in this chapter. Sakai- 

Ogishi-Kasahara [111] presented the first identity based signature. A more efficient scheme 

was proposed soon after by Paterson [102]. Cha-Cheon [41] formally defined a security model 

for identity based signatures, and in [50] Cheon, Kim and Yoon altered this signature to 

allow for batch verification. In [141] Yi proposed a signature scheme similar to that of Cha- 

Cheon with point reduction. Other signatures of note include [74], and two pairing based 

signatures by Sakai and Kasahara in [109]. A large number of identity based signatures 

were proved secure in a framework proposed in [18].

There are a number of important pairing based, but not identity based signatures, such 

as [33, 145]. The BLS and ZSNS signatures are useful because they produce the shortest 

secure (traditional) PKI signatures.

Recently there have been a number of non-identity based signature schemes that have 

been proven secure in the standard model, for example [28] and [143]. The signatures pro­

duced by these schemes are larger than the corresponding signatures produced by schemes 

proven secure in the Random Oracle Model (ROM), but are assumed to be “safer”. At 

present there is a trend away from schemes proven secure in the ROM. This has been fu­

elled by the observation of Goldreich et al. that proofs in the ROM do not necessarily 

convert to secure schemes when the random oracles are instantiated [36]. There has also 

been some success in attacking modern hash functions such as SHA-14 [135] and MD-5 

[136]. However, moving away from the random oracle model causes problems of its own. 

Now cryptographers generally must trust much less well studied hard problems.

For many important dealings, i.e. buying a car or house, most people would feel more 

comfortable with handwritten signatures on hard copies of documents, but Irish law [101]

4Collisions in the full SHA-1 in 269 hash operations, much less than the brute-force attack of 280 operations 
based on the hash length.
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(Electronic Commerce Bill 2000), in line with EU directive 1999/93/EC [59] makes no 

distinction between handwritten and electronic signatures The Electronic Commerce Bill, 

2000, is written in such a way as to be as flexible as possible and does not specify which 

algorithms must be used for the digital signature to be legally binding This leaves another 

caveat as the legal situation with regard to identity based signatures is somewhat unclear 

Identity based signature schemes inherently make use of a KGC which knows all of the 

private keys in the system Therefore it is trivial for the KGC to be able to forge signatures 

m the system A similar issue pertains for traditional PKI signatures generated using 

private keys that are known to more than one party Or indeed the PKI may produce false 

certificates and forge signatures in this manner

In this chapter we will be looking at traditional PKI signatures and identity based 

signatures that can be constructed using bilinear maps We will look briefly at the security 

models for each of these types of signatures

5.1 Definitions of PK I and IB Digital Signature Schemes

A standard PKI digital signature scheme consists of the following three algorithms Key- 

Gen, Sign, and Verify

• KeyG en A random public key pair is produced, and the public component, along 

with any system parameters, is made public in an authenticated manner Often, 

common system parameters are used

• Sign Given as input a message m £ {0,1}* and a private key kpTU a signature o is 

produced

• Verify Given as input a public key kpub, a message m, and a signature a, verify 

should only output tru e  if kpub and kpri is a matching key pair, and a is a valid 

signature for m, under this key pair
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A identity based digital signature scheme consists of the following four algorithms, 

Setup and Extract, which are common to all identity based cryptosystems, and Sign 

and Verify which are common to all digital signature schemes

• Setup The Setup algorithm is carried out by the KGC It produces params, the 

system parameters, which are distributed to the users of the system It also produces 

a secret key s which is known only to the KGC This is sometimes called the master 

secret key

• Extract The Extract algorithm is carried out by the KGC, and is used to produce 

private keys for users in the system It takes as input params, s and the user identity 

ID  and produces a private key for that user djo

• Sign The Sign algorithm is carried out by the end users to produce a signature on 

a message m  It takes as input params, djo and the message m It outputs cr, a 

signature on the message m

• Verify The Verify algorithm takes as input params, a m and ID  It outputs true 

only if ID  and djjy is a matching key pair and a is a signature on m, by ID

5 2 Security Definitions for Signature Schemes 

5 2 1 Security of a PKI Digital Signature Scheme

Existential unforgeabihty under a chosen message attack for a signature scheme (KeyGen, 

Sign, and Verify) is defined using the following game between a challenger and an adversary

A

• Setup The challenger runs algorithm KeyGen to obtain a public key K pub and 

private key K pTl The adversary A  is given

• Queries Proceeding adaptively, A  requests signatures with K pub on at most qs mes­

sages of his choice {mi, , (E {0,1}* The challenger responds to each query
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with a signature ax = Sign(KVTi,m t)

• Output Eventually, A  outputs a pair (m,cr*) and wins the game if

-  m is not any of {mi, 

and

-  Verify(K pub, m, a*) = true

We define AdvsigA  to be the probability that A  wins m the above game, taken over the 

com tosses5 of KeyGen and of A

5 2 2 Security of an Identity Based Digital Signature Scheme

An identity based signature scheme is said to be strongly existentially un-forgeable under 

chosen-message attacks if no probabilistic polynomial time (PPT) adversary has a non- 

negligible advantage m the following game

• The challenger runs the setup algorithm to generate the system’s parameters and 

sends them to the adversary

• The adversary T  performs a series of queries

-  Key extraction queries T  produces an identity ID  and receives the private key 

djo  corresponding to ID

~ Signature queries T  produces a message m and an identity ID  and receives a 

signature on m that was generated by the signature oracle using the private key 

corresponding to the identity ID

• After a polynomial number of queries, T  produces a tuple (ID*, m*, a*) made of an 

identity ID *, whose corresponding private key was never asked during the key extrac­

tion queries, and a message- signature pair (m*,a*) such that a* was not returned

5We refer to an algorithms com tosses to denote random input into these algorithms, for example, here 
A is modeled as a probabilistic polynomial time algorithm
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by the signature oracle on the input (m*,ID*) during the signature queries for the 

identity ID*

The forger T  wins the game if the signature verification algorithm outputs tru e  when 

it is run on the tuple (ID*,m*,a*) The forger’s advantage is defined to be its probability 

of producing a forgery taken over the com tosses of the challenger and T

5 3 The BLS Short Signature Scheme

The BLS signature scheme produces the shortest secure digital signature, and is proven 

secure in the random oracle model It was presented in [33] Short signatures are needed in 

environments where there is a strong requirement that minimum bandwidth be used For 

example environments where digital signatures must be typed by hand, such as provably 

secure product licence numbers

There are also constrained wireless devices such as those developed by the DARPA 

funded “Smart Dust” project6 Generally radio communication uses much more battery 

power than anything else a wireless device will be required to do This means that it may 

be acceptable to live with high computational cost as long as the signatures produced have 

a minimal number of bits

The BLS short signature is aimed at addressing these problems Conventional RSA dig­

ital signatures, as they are most commonly used m industry, are 1024 bits m length For the 

equivalent level of security, DSA signatures are 320 bits m length The BLS signature, again 

for the corresponding level of security, weighs m at only 160 bits Also, signature generation 

is relatively fast, being just a single elliptic curve point scalar multiplication Signature veri­

fication is slightly more computationally complex as it includes a computationally expensive 

pairing operation

The goal of the BLS algorithm is to achieve a short signature (a signature with minimal 

bit length) When significantly reducing the number of bits m any security protocol it is 

5The author was a co-researcher with a similar project at the Irish “National Centre for Sensor Research”
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important to be aware of the attacks against the system See Ch 4 for an overview of some 

attacks against cryptographic systems These attacks tell us that, as a result of Pollard’s 

attacks in generic discrete logarithm groups, the order of the points on the elliptic curve 

should be at least 2160 Since we also require the use of bilinear maps the embedding degree 

should not be too large But as a result of the MOV attack we need r fc «  21024 Therefore, 

if we chose to use elliptic curve groups with group order p > 2160 (which is secure and yet 

small) we should use curves of embedding degree k > 6 [33]

The BLS signature scheme is a traditional PKI style signature scheme composed of three 

algorithms, Key Generation, Sign and Verify Here we describe an implementation of 

the BLS algorithm over non-supersingular curves as these curves allow for the smallest 

representation of the signature Over non-supersingular curves no distortion map exists, 

therefore, the bilinear map takes elements from two linearly independent groups The 

authors make use of a bilinear map of the form e G\ x Q2 —> \xT They use hash functions of 

the form H {0,1}* —> Q\ to hash messages onto elements of the group Q\ In the security 

proof these are modelled as random oracles We assume that P2 is a generator of Q2 , and 

that the order of groups Q\ and Q2 is r

• KeyGen Generate a random x  E Z* Calculate V — xP2 Have this value authenti­

cated by a TA This is the public key of the user, with x , the private key, known only 

to the user

• Sign To sign a message m, calculate M  = 'Him) E Q\ The signature of the message 

is S  = xM,  for the public key V  This signature scheme is deterministic

• Verify Given the message m, the public key V, and the signature 5, the signature 

passes the verification test if

e (M ,V )= e (S ,P 2) (5 2)
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5 3 1 Security of the BLS signature scheme

The security of the BLS short signature relies on the co-BDH assumption

• co-Bilinear Diffie-Hellman Given P\,aP\ e £1, and P2 G Q2 for unknown a, 

calculate Q.P2 6 Q2 This problem is assumed to be hard using groups £1 and Q2

The signature scheme is proven secure in the random oracle model, assuming that the co- 

BDH problem is intractable The authors show how an non-neghgible ability to existentlally 

forge BLS signatures can lead to an efficient algorithm to solve the co-BDH problem

5 3 2 Efficiency of the BLS signature algorithm

The BLS signature scheme has an extremely efficient signing algorithm Note that the 

signing algorithm is the extract algorithm for Boneh and Franklin IBE The sign algorithm 

consists of just one hashing, followed by one point multiplication This seems like the 

minimum possible effort for a secure digital signature Using the fast hashing idea (see 

Sec 6 2 2), when utilising the (asymmetric) Tate pairing instead of the Weil pairing, this 

hashing algorithm can be made very fast by removing the need for multiplication by the 

curve co-factor from the hashing algorithm7

5.4 The Identity Based Signature Scheme of Sakai, Ohgishi 

and K asahara

We now look at the very first identity based signature scheme based on bilinear maps It was 

proposed m 2000 by Sakai, Ohgishi and Kasahara in [111] This idea was developed around 

the same time as the identity based encryption scheme of Boneh and Franklin It appears 

that some identity based cryptosystems from pairings on elliptic curves may have originally 

been proposed by these Japanese researchers Their cryptosystems appeared largely without 

any security proofs, but the following signature scheme was subsequently proven secure by

7The optimisation affects both the signing and verification algorithms

104



CHAPTER 5 SIGNATURE SCHEMES USING BILINEAR MAPS

Libert and Quisquater in [82] We will first look at the original scheme and then briefly at 

the proof by Libert and Quisquater

The original Sakai, Ohgishi and Kasahara signature scheme uses the same identity based 

key pair as Boneh and Franklin8 The signature scheme consists of the four algorithms 

common to any identity based signature scheme They are Setup, E x tract, Sign and 

Verify

• Setup The setup algorithm is carried out by the KGC It outputs two groups Q 

and both of large prime order r, such that the discrete logarithm problem in the 

groups Q and fir is computationally infeasible It produces P, a generator of Q It 

also produces two hash functions, 1-Li d  and of the form 1-Lj d  {0, 1}* —> and 

Hm {0? 1}* —> Q It also produces a bilinear map of the form e Q x Q —> ¡jir The 

KGC generates a random s £ Z* and calculates P ^  =  sP  The setup algorithm 

outputs params, where

params = {G,tir,e,P,Ppub>'HiD,'H-M} (5 3)

These are published by the KGC

• E x trac t The KGC first verifies that a user has a valid claim to an identity ID  The 

KGC then calculates Qjo — H td[ID) This is the user’s public key The associated 

private key is calculated as sQjo

• Sign To sign a message m, a user first generates a random x £ Z* The signer also 

calculates M  =  (to) The signer then calculates the following values

R = xP  (5 4)

S = sQro +  xM  (5 5)

8Note Here I am careful not to rail it the Boneh and Franklin identity based key pair
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The signature on the message m by signer with private key sQid , is the pair (iî, S)

• Verify To verify a signature that was purportedly created by a signer with public 

key Q jo, a verifier checks the following equality

e(S,P) = e(QiD,Ppub) e(M, R) (5 6)

where M  = H m (w)

5 4 1 Security of the SOK Identity Based Signature Scheme

The security of the SOK identity based signature was demonstrated by Libert and 

Quisquater in [82]

Theorem  5 4 1 [82] In the random oracle model, if a PPT forger f  has an advantage e in 

forging a siqnature in an attack modelled by the game of Sec 5 2 for provmq the security of 

identity based signature schemes, when running m time t and asking q q u e r i e s  to random 

oracles 1-ijo and 'Hm , Qe queries to the key extraction oracle and qs queries to the siqnature 

oracle, then the Computational Diffie Heilman problem can be solved with an advantage

j  ^ ,  [Qs{qh2 +  Qs) +  l) /2 fc . .
£ > £  e t e T + l )  (57)

withm a time tf < t+  (qu^ + qu2 +  Qe + 2qs)tm + (qs 4- 1 )tmm where e denotes the base of

natural logarithms, tm is the time to compute a scalar multiplication m Q and tmm is the

time to perform a multi-exponentiation m Q

For the proof of this theorem, the reader is referred to [82], where the authors comment 

on the tightness of the reduction
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5 5 The Identity Based Signature Scheme of B aretto  et al.

Barreto, Libert, McCullagh9 and Quisquater (BLMQ) propose a new identity based signa­

ture scheme based on the identity based key pair of Sakai and Kasahara The scheme they 

propose is the fastest provably secure identity based signature For signing the scheme re­

quires one Fpfc exponentiation and one point scalar multiplication This is m contrast to the 

scheme of Cha and Cheon [41] which requires two point scalar multiplications For the most 

popular commercial setting of a k =  2 curve this will be appreciably faster For signature 

verification the scheme requires one pairing computation and one pairing exponentiation 

We give a comparison of indicative timings m Sec 5 6 The BLMQ scheme is defined as 

follows

• Setup The KGC chooses a bilinear map e Gi x G2 —> ¡ir, all of large prime order r It 

also selects generators Q e G2 , P  = $(Q) £ Gi where tp is a distortion map of the form 

^  G2 Gu and g E ¡xr such that g =  e(P, Q) It then selects a master key s E ZJ, 

a system-wide public key Qpub = sQ £ Q2 and hash functions Hi {0, 1}* -> Z*, 

H2 {0, 1}* x iir ->• Z* The public parameters are

params =  {Gu Q2, fxT)P, Q , Qpub, e, q, tp, Hu ^ 2} (5 8)

• Key G en For an identity ID , the private key is calculated as Sjd =

• Sign In order to sign a message m E {0,1}*, the signer picks a random x E Z* and 

computes the following values

R = gx (5 9)

h = H2{M,R) (5 10)

S  =  (x + h)S\o (5 11)

The author of this thesis
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The signature on M  is a =  (/i, S) G Z* x G\ •

• Verify: A signature a =  (/i, 5) on a message M is accepted if the following equation 

holds:

h l n 2(M ,e(S,Q iD)g-h) (5.12)

where QID =  %i(JZ>)Q +  Qpub.

A Proof of Correctness for the BLMQ Identity Based Signature

It is easy to see that all instances of a valid signature g will be accepted by a verifier:

h =  U2(M,R) (5.13)

h =  H2{M,gx) (5.14)

h = H2( M , g ^ g - h) (5.15)

h = (5.16)

h =  H2(M ,e(S,Q ,D)g-h) (5.17)

5.5.1 Security Proof of the BLMQ identity based signature

The security proof relies on the forking lemma [103, 104]. As the security model of IBS 

schemes enables a forger to adaptively choose her target identity, we cannot directly apply 

the forking technique and we must follow the approach of [41] that first considers a weaker 

attack model where adversaries are challenged on a given identity selected by the challenger. 

In [41], an IBS scheme is said to be secure against existential forgeries on adaptively chosen 

message and given identity attacks if no adversary has a non-negligible advantage in the 

weaker model of attack.

Lemma 5.5.1 ([41]). If there is a forger Tq for an adaptively chosen message and identity
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attack having advantage eo against our scheme when running m a time ¿0 o,nd making q%w 

gueries to random oracle Hw? then there exists an algorithm T\ for an adaptively chosen 

message and given identity attack which has advantage e\ < eo(l — ̂ / qHw wii/wn a running 

time ¿i < to Moreover, T i asks the same number key extraction gueries, signature queries 

and -queries as T§ does

Lemma 5 5 2 Let us assume that there is an adaptively chosen message and given identity 

attacker T  that makes queries to random oracles Hz (« =  1,2) and qs queries to the 

signing oracle Assume that, within a time t, T  produces a forgery with probability e > 

10(gs +  1 )(qs +  Q n^)/2fc Then, there exists an algorithm B that is able to solve the q-SDH 

Problem for q = q^w m an expected time

t' < 120686gW)Ji.(i +  0{qsTp))/(e( 1 -  q /2fc)) +  0(q2Tmult)

where Tmuu denotes the cost of a scalar multiplication m Q2 and rp is the cost of a pairing 

evaluation

Proof We first show how to provide the adversary with a consistent view and we then 

explain how to apply the forking lemma

Algorithm B takes as input (P, Q, aQ, a 2Q, , a qQ) and aims to find a pair (c, -¿^P) 

In a setup phase, it builds a generator G £ Q\ such that it knows q — 1 pairs (tUj, jppjG) 

for ,Wq- 1 Eft Z* To do so,

1 It picks wi,w2, iWg- 1 Z* and expands f(z)  =  YllZi(z + Wi) to obtain

c0, ,cq- i  £ Z* so that f{z) = °izl

2 It sets generators H  = YliZo Cti^Q) =  f{&)Q £ £2 and G =  xfi(H) = f ( a ) P £ Q\ 

The public key Hpub £ Q2 is fixed to Hpub = Y H - \ci- \ (alQ) 30 that Hpub “  

although B does not know a

3 For 1 < 1 < q -  1 , B expands f t (z) = f ( z ) / ( z  4- tu,) =  YliZ0 diz* and
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V  d M a ’Q) =  f,(a)P  =  - I ^ - P  =  — -— G (5 18)I ■ iv \  a +  w, a  + w,
1=0

The pairs (wZi are computed using the left member of (5 18)

B is then ready to answer T  s queries along the course of the game It first initializes a 

counter t  to 1 and launches T  on the input (Hpubi ID*) for a randomly chosen challenge 

identity ID* {0,1}* For simplicity, we assume that queries to 7iw  are distinct, and that 

any query involving an identifier ID is preceded by the random oracle query l-LwiID)

- ^vy-quenes on an identity ID E {0,1}* B returns a random w* Z* if ID = ID* 

Otherwise, B answers w = wg E Z* and increments £ In both cases, B stores (ID,w) 

(where w* = w or wg) in a list L\

- Key extraction queries on ID  ^  ID* B recovers the matching pair (ID^w)  from L\ 

and returns the previously computed ( 1 / (a -b ?/;))£?

- Signature query on a message-identity pair (M, ID)  B picks S  ^  Q\, h Z*, 

computes r = e(S Qw)e{G H)~h where Qid = l iw i lD ) ! !  + Hpub and backpatches 

to define the value (M, r) as h E Z* (B aborts in the unlikely event that K (Lr (M, r) 

is already defined)

We have explained how to simulate ^ ’s environment in a chosen-message and given identity 

attack We are ready to apply the forking lemma that essentially says the following consider 

a scheme producing signatures of the form (M, r, h, S'), where each of r, /i, S  corresponds 

to one of the three moves of a honest-verifier zero-knowledge protocol Let us assume that 

a chosen-message attacker T  forges a signature (M, r, h, S) in a time t with probability 

€ > I0{qs + 1 )(qs + qh.)/2fc (k being a security parameter chosen so that h is uniformly 

taken from a set of 2* elements) when making qs signature queries and random oracle 

calls If the triples (r, /i, S) can be simulated without knowing the private key, then there 

exists a Turing machine T* that uses !F to produce two valid signatures (m, r, %w, Si), 

(m, S2), with %w 7̂  in expected time t f < 120686qht/e
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In our setting, from a forger T , we build an algorithm T* that replays T  a sufficient 

number of times on the input (Hvub, ID*) to obtain two suitable forgeries (M*, r, Hw, 5 1),

The reduction then works as follows The simulator B runs T* to obtain two forgeries 

(M*,r,Hw,  S i), ( M * S 2 ) for the same message M* and commitment r At this 

stage, B recovers the pair (lD*,iy*) from list Li We note that w* ^  tui, ,wq- \  with

e{Si ,Qm )e(G,H)-n«' = e(S2,QID.)e(G,H)-H>‘r, 

with Qid* = 'Uw{W*)H + Hpub = (w* + &)H Then, it comes that

e((Hw ~ U ^ ) - 1 (Si -  S2), QrD>) = e(G, H),

and hence T* — (Hw — H L̂t)~1(S\ — S2) = w \ aG  From T*, B can proceed as in [28] 

to extract a* = it first obtains 7- 1,70 j7?-2 € Z* for which f ( z ) / ( z  + w*) =

7_i / (z  4- w*) 4- YliZ0 7*̂ * anc  ̂eventually computes

before returning the pair (w*, cr* ) as a result

It finally comes that, if T  forges a signature m a time t with probability e > 10(gs + 

1)(<7s 4- Qn^) / 2fc, B solves the ç-SDH Problem m expected time

(M*,riKflriS2) with Hw  ^  t

probability at least 1 — q/2k If both forgeries satisfy the verification equation, we obtain 

the relations

f  < 1 2 0 6 8 6 + 0{qsTp))/{6(1 -  q/2k)) + 0(q2rmull)

where the last term accounts for the cost of the preparation phase □
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5 6 Conclusion

In this chapter we have reviewed some important signature schemes that use bilinear maps 

We have seen that bilinear maps, although famous for their use in identity based cryptog­

raphy, can make significant contributions to traditional public key cryptosystems Bilinear 

maps allow for secure signature schemes where the signature is approximately 160 bits in 

length This is approximately half the size of the previous shortest signature scheme

As we have seen already, bilinear maps have been the enabling tool behind efficient 

identity based encryption We have tracked the progress of identity based signature schemes 

We give a table of the comparative performance of the different signature schemes below 

and note that the author has been involved m the design of the fastest identity based digital 

signature This new, fast, identity-based signature is based on the identity-based key pair 

proposed by Sakai and Kasahara The timing comparisons in Table 5 1 do not take into 

account generation of the signer’s public key from their identity

Sign Verify
signature scheme exp mul pairings time (ms) exp mul pairings time (ms)

SOK 0 2 0 188 0 0 3 516
Paterson 0 4 0 376 2 0 2 354

Cha-Cheon 0 2 0 188 0 1 2 438
Hess 1 2 0 193 1 0 2 349

SK(£/Gama/) 0 3 0 282 0 2 2 532
SK(£c/morr) 1 2 0 192 0 1 2 438

BLM Q (ours) 1 1 0 99 1 0 1 177

Table 5 1 Efficiency comparison of identity based signature schemes

The timings indicated in Table 5 1 were performed on an Athlon 64 3000+ processor, 

with 512MB ram and using the Java 2 Platform Standard Edition 5 0 run time environment 

Some schemes can benefit from pre-computation m the verification stage We note here 

that ours cannot However, even when competing against schemes with pre-computation 

our scheme still matches the most efficient, with the added bonus that our scheme does not 

require any storage The competing schemes require ¡xTbn bits, where n is the number of 

users m the systpm with which we communicate regularly, and ¡j,rb is the number of bits

1 1 2



required to store an element of A comparison of timings with precomputation taken 

into account ran be found in Appendix C
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Encryption Systems using Bilinear 

Maps

There were three papers m the early development of pairing based cryptography, that 

awakened cryptographer’s interest m bilinear maps Firstly, there was the paper by Menezes, 

Okamoto and Vanstone which described an attack using the Weil pairing to efficiently 

convert the elliptic curve discrete logarithm problem to a discrete logarithm problem in a 

finite field [92] This was important, because, although the resulting finite field is larger 

than the original elliptic curve group, this allows the attacker to use index calculus methods 

to attack the EC DLP This is a destructive use of bilinear maps and it revealed that certain 

elliptic curves were not as secure as once thought

The second fundamental paper was by Joux [77] It was the first paper that used pairings 

constructively m cryptography This paper used the bilinearity of the pairing to include 

an extra entity in a Diffie-Heilman Key agreement Each party paired the contributions of 

the other two parties They then exponentiated the resulting pairing by their secret value 

This protocol was not without its problems It is essentially an unauthenticated three party 

Diffie-Hellman key agreement and as such is still subject to the ‘man-m-the-middle” attack 

The third seminal paper, by Boneh and Franklin [31], was the spark that really got 

cryptographers interested m bilinear maps It closed a long standing open problem m

Chapter 6
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cryptography. The problem of constructing an efficient, secure identity based encryption 

(IBE) scheme had been proposed by Shamir in 1984 [118]. In his paper, Shamir proposed the 

first identity based signature scheme, but left the construction of identity based encryption 

schemes as an open problem. Seventeen years later, in 2001, an efficient solution was 

finally proposed by Boneh and Franklin. This solution made use of bilinear maps. The 

idea behind an identity based encryption scheme is that a user’s online identity is used to 

encrypt information to them. An identity based cryptosystem (IBC) makes use of a Key 

Generation Centre (KGC). This substantially reduces the problems associated with key 

binding (certificates) in traditional PKI systems.

Since the Boneh and Franklin IBE scheme there have been many encryption schemes 

devised which make use of bilinear maps. Another example in their seminal paper was an 

escrowed El Gamal encryption scheme, which was somewhat lost in the shadow of IBE. 

Other examples include certificateless public key encryption [4, 49], public key encryption 

with keyword search [30, 9], broadcast encryption [34], hierarchical IBE [70, 76, 37, 55, 29], 

policy based encryption etc [3]. There are also some identity based encryption schemes that 

are proven secure in the standard model 1, see for example [27, 26].

NB: Around the same time as the Boneh and Franklin discovery there was concurrent 

research in this area by Sakai, Ohgishi and Kasahara [111] who described the first identity 

based key agreement protocols and signature schemes based on bilinear maps. However this 

research was not generally known to western researchers until after the publication of the 

Boneh-Franklin paper.

6.1 Identity Based Encryption

An identity-based encryption scheme E is specified by four randomized algorithms: Setup, 

Extract, Encrypt and Decrypt:

• Setup: takes as input a security parameter k. It outputs params (the system pa-

M.e. w ithout using random  oracles in the security proofs.
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rameters) and a master-key The system parameters include a description of a finite 

message space M, and a description of a finite ciphertext space C The system pa­

rameters will be publicly known, while the master-key will be known only to the 

KGC

• Extract takes as input params, the master-key, and an arbitrary ID  6 {0,1}*, 

and outputs a private key d Here ID  is an arbitrary string that will be used as a 

public key, and d is the corresponding private decryption key The Extract algorithm 

extracts a private key from the given public key

• Encrypt takes as input params, ID, and m E M  It outputs a ciphertext c £ C

• Decrypt takes as input params, c E C and a private key d It outputs m E M  or, 

if the decryption fails, JL

6 1 1  Security Definition for Identity Based Encryption

Chosen ciphertext security (IND-CCA) is the standard notion of security for a public key 

encryption scheme Hence, it is natural to require that an identity-based encryption scheme 

also satisfy this strong notion of security However, the definition of chosen ciphertext 

security must be strengthened a bit The reason is that when an adversary attacks a public 

key ID  in an identity-based system, the adversary might already possess the private keys 

of users {IDo, , / Dn} \ ID ^ {/Ah of her choice The system should remain

secure under such an attack Hence, the definition of chosen ciphertext security must allow 

the adversary to obtain the private key associated with any identity IDt of her choice (other 

than the public key ID  being attacked) We refer to such queries as private key extraction 

queries Another difference is that the adversary is challenged on a public key ID of her 

choice (as opposed to a random public key)

We say that an identity-based encryption scheme E is semantically secure against an 

adaptive chosen ciphertext attack (IND-ID-CCA) if no polynomially bounded adversary A  

has a non-negligible advantage against the Challenger in the following IND-ID-CCA game
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• Setup The challenger takes a security parameter k and runs the Setup algorithm It 

gives the adversary the resulting system parameters params It keeps the master-key 

secret

• Phase 1 The adversary issues queries {q\, }qm} where query qt is one of

-  Extraction query (IDl) The challenger responds by running algorithm Extract 

to generate the private key dt corresponding to the public key {ID l) It sends dz 

to the adversary

-  Decryption query (IDt, Cz) The challenger responds by running algorithm Ex­

tract to generate the private key dz corresponding to IDt It then runs algorithm 

Decrypt to decrypt the ciphertext C% using the private key dt It sends the 

resulting plaintext to the adversary

These queries may be asked adaptively, that is, each query qz may depend on the 

replies to {qu ,ft-i}

• Challenge Once the adversary decides that Phase 1 is over it outputs two equal 

length plaintexts {mo,mi} E M  and an identity ID* on which it wishes to be chal­

lenged The only constraint is that ID* did not appear in any private key extraction 

query m Phase 1 The challenger picks a random bit b e  {0,1} and sets C* = En­

crypt (params, ID*, m^ It sends C* as the challenge to the adversary

• Phase 2 The adversary issues more queries {qm+15 , qn] where query qt is one of

-  Extraction query (IDt) where IDt /  ID* Challenger responds as in Phase 1

-  Decryption query (IDl,Cl) ^  (ID*, C*) Challenger responds as in Phase 1

These queries may be asked adaptively as m Phase 1

• Guess Finally, the adversary outputs a guess bf E {0,1} and wins the game if b* = b

117



CHAPTER 6. ENCRYPTION SYSTEMS USING BILINEAR MAPS

We refer to such an adversary A  as an IND-ID-CCA adversary. We define adversary 

A ’s advantage in attacking the scheme E  as the following function of the security 

parameter k (k is given as input to the challenger):

AdvA(k) = | Pr[b' = b \ -  1/2|. (6.1)

The probability is over the random bits used by the challenger and the adversary.

6.2 Boneh and Franklin’s Identity Based Encryption Scheme

Boneh and Franklin’s IBE system consists of the following four algorithms: Setup and Ex­

tract which are performed by the KGC, and Encrypt and Decrypt which are performed 

by the clients.

Boneh and Franklin’s identity based key pair generation algorithms, Setup and Extract, 

have been used by many identity based cryptosystems, such as those in [41, 46, 81, 86, 114, 

127]. It is the first2 of the two identity based key pair derivation algorithms for IBC systems 

based on bilinear maps, the other being from Sakai and Kasahara.

• Setup: The setup algorithm is carried out by the KGC. It takes a security parameter 

fc, and outputs two groups Q and /¿r, both of large prime order r, such that the discrete 

logarithm problem in the groups Q and /ir is computationally infeasible. The KGC 

produces P, a generator of G, four hash functions; H i d  of the form H i d  • {0,1}* —>• G, 

H^r of the form H^r : /¿r —> {0, l}n, Hr of the form Hr ■ {0, l}n x  {0,1}* -» Z *  and 

Hv of the form Hv : {0, l}n -> {0, l}n. It also produces a bilinear map of the form 

e : Q xQ fj,r . The KGC generates a random secret s E Z *  and calculates Ppn5 = sP.

The setup algorithm outputs params, where

2Earlier work by Sakai, Ohgishi and K asahara, used this same IBC key pair, bu t it was unknown by 
western researchers until later, see [111], consequently this IBC key pair has become known as the Boneh 
and Franklin key pair.
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params = {£, /¿r , e, P, Ppuby U id , UT, Uv} (6 2)

The KGC publishes params

• Extract The KGC first verifies that a user has a valid claim to an online identity 

ID  The KGC then calculates Qid = This is the user’s public key The 

associated private key is calculated as sQjo

• Encrypt A user encrypts a message mG {0,1}* to a  recipient with identity ID  and 

private key s Q i d  using the following probabilistic encryption algorithm

Choose a random a E (0, l } 71 and compute the following values

x = m) (6 3)

R  = xP (6 4)

9w  = e{PPub> Qid) (6 5)

M  = H , M d) (6 6)

V = (6 7)

C = Tiviv) © m (6 8)

The resulting ciphertext is (R, (7, V) It should be noted that at this stage gm  will 

not change for repeated encryptions to the same identity ID  It is therefore advisable, 

if storage limitations permit, to compute and cache the value gio

• Decrypt A user with private key sQjd, who receives a ciphertext (P, C, V") intended 

for him, calculates the following values to recover the message m The receiver first

checks that R  E Q3, then the user computes the following values

3 As Scott points out [116] this is “free” when computing the pairing operation, if not using the private key 
as a  BKLS fixed base Using R  as the first argum ent of the pairing implicitly performs a  r P  multiplication 
To check membership of G, simply check th a t r P  = O
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M  = sQro))

a = V 0  M.

(6 9)

(6  10)

m nv{a)ec (6 11)
x %r (cT, m) (6 12)

And performs the following check

R = xfP (6 13)

If the above check holds then the ciphertext is accepted as being valid, otherwise the 

ciphertext is rejected

6 2 1  The Security of Boneh and Franklin’s IBE scheme

The security of the Boneh and Pranklm scheme rests on the difficulty of the BDH problem 

Though we will not go into the detail of the security arguments here, we note that an 

identity based system needs a new type of security model Boneh and Franklin address this 

issue by constructing the security proof in two parts

1 Construct a public key encryption scheme from an identity based encryption scheme

by providing a fixed identity as part of the system parameters4 Prove the security of 

this scheme

2 Show how an advantage m breaking the equivalent identity based scheme can be

transformed into an advantage m breaking the public key encryption scheme

4This is called BasicPub in [31]
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6 2 2  Implementational Improvements to Boneh and Franklin’s IBE

As part of my Ph D work I have implemented several identity based cryptosystems5 I now 

note two improvements that I have observed Both of these ideas are of implementational 

importance, and can significantly reduce the time taken to perform IBE However, they 

are not substantial enough to warrant papers in themselves One of these has been pub­

lished as a small section of an CT-RSA paper by Scott6 [116], with reference to a personal 

communication The other idea remains unpublished

McCuIIagh’s Observation on the Boneh and Franklin Key Pair Derivation Al­

gorithm

It is often reported m literature that, when doing identity based encryption, the most 

computationally expensive process is actually computing the pairing When we implemented 

the Boneh and Franklin IBE system on a mobile phone we inserted many timing logs into 

the program so we could identify the bottlenecks Somewhat to our surprise7 we discovered 

that public key generation from an identity took twice as long as a pairing calculation We 

then looked closely at the structure of the public key

The ‘Map To Point” algorithm of Boneh and Franklin mandates that the public key is 

generated as follows

y 3̂<s>'2£ii (6 14)

Qpub = ( x , y ) e E (6 15)

Qpub = iQ'pu, (6 16)

This algorithm has three steps

1 Hashing, to produce an integer y £ Z*, which is relatively efficient

5 Using the programming languages Java, C and C + +
6The au thor’s Ph  D supervisor
7In the literature, pairing is alway is always mooted at the com putationally expensive operation
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2. Solving the curve equation to obtain a point on the curve of unknown order. Again, 

this is reasonably efficient and, in the case of the curve recommended in [31] is deter­

ministic, so should run in a reasonably quick time.

3. Multiplication of the point by an element I. In the case of the curves used in [31] 

I = (p + 1 )/r. Therefore, in the popular setting of p = 512, k = 2, which seems to be 

gaining favour as the curve specification to implement, this is «  2512/2160. Therefore 

I is a 352 bit number. This is substantially larger than the usual 160 bit integers that 

we associate with point scalar multiplication. This is obviously the bottleneck.

The reason for multiplication by I is to ensure the point is of order r. When working with 

the Weil pairing both points must be of order r. Boneh and Franklin’s paper concentrated 

on the use of the Weil pairing. However, it soon became apparent that the reduced Tate 

pairing provided much better performance than the Weil pairing. The first commercial 

applications are using the Tate pairing in place of the Weil pairing. However, they have 

kept the public key generation algorithm unchanged8.

Since the Tate pairing is preferred, the pairing need no longer be symmetric. Only the 

first argument of the pairing must be a point of order r. Therefore, as noted by Scott, 

the public and private keys, if they are used as the second argument to the pairing, need 

no longer be points of order r [115] -  we can use Q'vub in place of Qpub• Unfortunately, 

with Scott’s fast key pair generation method we have lost compatibility with the Boneh and 

Franklin key server9. This is a problem in the commercial world, if not in the academic 

world. Ideally we wish to use Scott’s optimisation, whilst still being Boneh and Franklin 

IBE “standards compliant”.

If we look at the use of the public key we see that Boneh and Franklin encryption comes 

down to the equality:

e(xsP, Q ^ )  = e{xP, Qpri) (6.17)
8See http://www.voltage.com.
9Such a Key Server is used by h ttp ://w w w .vo ltage .com  and has, as a  result, become the de facto  

commercial standard.
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where the left hand side is the basis of the sender’s computation, and the right hand side is 

the basis of the recipient’s computation 

Expanding this equation a little we have

e(xsP Qpub) = e(xiP,lQ,vub) (6 18)

e(lxsP, Q'pub) = e(xP, Qprl) (6 19)

Therefore, we can simply replace the point sP with the point IsP This is the co-factor 

multiplication that we identified as the bottleneck above, however this only needs to be 

done once, and so can be amortized over the lifetime of the system Indeed, this new value 

can be distributed with the system parameters and so need not be calculated by the client 

at all This very small change results in approximately 10 to 20 times faster public key 

generation on the client10, see Table 6 1, whilst maintaining full compliance with the Key 

Server11

Boneh and Franklin’s hash and map The faster Boneh and Franklin compliant hash and map
328ms 16ms

Table 6 1 Timings for Java Implementation

The code used for this test is available in Appendix B

McCullagh’s Observation on Boneh and Franklin Private Key Distribution for 

Low Powered Constrained Devices

As should already be apparent, a user m an identity based cryptosystem does not have any 

PKI certificate The assurances in a PKI come from the fact that a Certificate Authority 

(CA) has publicly certified that a user is linked to a particular public key We expect the 

CA to perform appropriate checks when certifying that a public key belongs to a user

10Approx 20 times faster m Java code, on AMD 64 3000-f
11 The Key Server continues to issue the same keys as before
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Similarly a user in an identity based system is certified by a KGC We assume that the 

fact that a user has a private key implies that user has been authenticated by the KGC A 

user should not be able to generate a private key themselves

As part of my research, I was a member of a team which implemented identity based 

cryptographic solutions on very restricted devices Whilst it is quite common for high-end 

mobile phone platforms to support SSL, we were interested m developing a system for issuing 

private keys that requires very low bandwidth Ideally this solution should be restricted 

to the set of operations that is inherently needed to perform identity based encryption (on 

elliptic curves), so as to shrink the size and power consumption of the processor We looked 

at the possibility of using an SSL scheme which specified elliptic curve El Gamal, but we 

have come up with a slightly more streamlined solution which uses less computation and 

about half the bits of elliptic curve El Gamal -  even before the excess overhead of SSL is 

removed The mam performance improvements come from the observation that a Boneh- 

Frankhn private key is a BLS signature by the KGC on the client’s identity BLS signatures 

are explained in more detail m Ch 5

When developing for wireless devices, such as sensor networks, it is important that the 

absolute minimum number of bits is transmitted, since radio is the most power hungry 

resource on these devices Battery life can be dramatically increased if the use of radio is 

minimised

We note that previous work has been done in this area by Lee et al but in their scheme 

the end user is not verified by the KGC 12 A more complex multi-KGC variant that they 

propose, was, on another level, broken by Chunxiang et al m [56] There is also previous 

work by Sui et al [130] However, their scheme is computationally more complex and 

requires twice the bandwidth from user to KGC than our proposed solution It also uses 

a password as opposed to a digital signature for authentication We note that unlike these 

preceeding schemes our scheme is not annoymous An eavesdropper can determine the 

origin and authenticity of each message in the protocol

12It is assumed th a t the client uses some seperate means to verify themselves
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A user, at registration time, has a long term public key that is given to the KGC m an 

authenticated manner This is an El Gamal public key, based on the same elliptic curve E 

and generator point P  as specified by the KGC for use with pairings The key pair is of 

the form {¡c, x P } where the integer j  G ZJ is the private component and rP  is the public 

component

Likewise, the KGC has a similar key pair, {5, Ppub = sP}, were Ppub is the master public 

key as distributed m the IBE params At each time period, every user m the system should 

be able to generate every identity in the system, this being the fundamental point of an 

identity based cryptosystem It should be noted that a user is able to generate their own 

public key for the next time period, using whatever rules the KGC has set out 

Our key issuing protocol is shown in Table 6 2

Client KGC
Qid *— Hjd{identity || time period)

V = tQid
verify BLS(ID, xP, V, P)
S = sV (which is sxQjo)

Q'id  =  x
verify BLS(LD, Q'ID, P, sP)

QlDpri = Q'id

Table 6 2 An Efficient Protocol for Private Key Distribution 

Where verify BLS means simply to run the BLS verification algorithm on the inputs

t
Heuristic Security Arguments for the Security of the Key Distribution Protocol

The key issuing protocol exploits the fact that both the client and the KGC can generate 

the public key for the next period solely from knowledge of the ID  and the public key 

construction algorithm13 as defined by the KGC The request for a new key starts with a 

BLS signature on the identity using the client’s long term PKI key pair which has been 

authenticated by the KGC This ensures the authenticity of the claimant each time a new 

key is issued Any non-negligible ability by an adversary to fool the KGC at this stage

13Called “map to  point” in Boneh and Franklin’s IBE
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implies an ability to forge BLS signatures

If the BLS signature passes the verification stage, then the KGC uses its public point 

Ppub as a regular PKI public key - it is, after all, a valid EC El Gamal public key It then 

BLS signs the value that was given to it by the client At this stage, the resulting value 

can be viewed as a blinded BLS signature by the KGC on the identity’s public key This 

blinding is important, since the BLS signature by the KGC on the identity is the private 

key

The client, who knows the value x, can, at the last stage, unblmd the signature By 

doing this it will obtain the client’s private key (or the KGC’s signature on the identity) 

An eavesdropper can obviously check the validity of the messages that are being sent 

back and forth as they are just signatures on known messages by known entities (actually, 

this depends on whether or not the user’s public key is made truly public or just known to 

the KGC)

The BLS check by the client at the end of the protocol ensures that they have received 

the valid private key This check is important to ensure that an adversary does not inject 

a false value for the private key into the protocol

6 3 Sakai and K asahara’s Identity Based Encryption Scheme

The original Sakai and Kasahara scheme was an ‘ID based public key cryptosystem with 

Authentication” described m [110, Sec 3] This is effectively a signcryption scheme Whilst 

both the signature scheme and the encryption scheme appear secure (the authors did not 

present proofs of security), there is a problem with the way that they aggregate the en­

cryption and signature schemes, as pointed out by McCullagh and Barreto [88], which is an 

adaptation of an attack by Libert and Quisquater [81] on Malone-Lee’s Signcryption scheme 

[86] This does not detract from the importance of the Sakai and Kasahara IBE scheme 

We will just look at the encryption scheme here ,

The encryption scheme defined here, which was never formally defined by Sakai and 

Kasahara, is their basic scheme with the Fuusaki-Okamoto transform [66] applied This is
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the same mechanism by which Boneh and Franklin transformed their ‘Basic Ident” scheme 

into their ‘Full Ident” scheme in [31] Chen and Cheng have recently proved the security of 

this scheme m [43]

• Setup The setup algorithm is carried out by the KGC It takes a security parameter 

fc, and outputs two groups Q and ^r , both of large prime order r, such that the discrete 

logarithm problem in the groups Q and is computationally infeasible The KGC 

produces P, a generator of Q, g, a generator of /¿r , such that g = e(P,P), four hash 

functions, H id of the form H id {0,1}* —► Z*, H^r of the form H^r fir {0,l}ni 

Hr of the form Hr {0, l}n x {0,1}* -* Z* and Hv of the form Hv {0, l}n —> {0, l}n 

It also produces a bilinear map of the form e Q x Q —► ¿¿r The KGC generates a 

random secret s (E Z* and calculates Ppub = sP The setup algorithm outputs params, 

where

params = {Q, //r, e, P, Ppub, 'Hid , Hr, Hv} (6 20)

• Extract To generate a private key for a client of the system, the KGC verifies the 

end user is entitled to a particular online identity, ID E {0,1}*, and generates the 

user’s key pair, first by calculating H id(ID) —t a e Z*, and then computing the user’s 

public key as sP + aP — (s + a)P, whilst the user’s private key is (5 4- a)~1P

• Encrypt To encrypt a message m £ {0,1}*, to a user with identity ID , a user 

generates a random a E {0, l}71 and calculates the following values
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x — 'HrifJ, m) (6 21)

R = x{s + n [0{ID))P (6 22)

M  = g x (6 23)

S = o © %ßr{M) (6 24)

C = m ® K v(o-) (6 25)

The ciphertext is the tuple (R , S', C) It should be noted at this stage that encryption 

does not require a pairing calculation and so is more efficient than the identity based 

encryption scheme proposed by Boneh and Franklin

• Decrypt To decrypt a ciphertext (R, S', C), a user with private key (s 4- a)~lP 

computes the following values

M  -  e{Ri (s + a)~1P) (6 26)

= s e n ^ i M )  (6 27)

m = j) (6 28)

x* = 'Hr(cr,m) (6 29)

And check if the following test holds

x'P = R  (6 30)

The ciphertext is accepted if the equality above holds, otherwise the ciphertext is re­

jected

This IBE scheme is attracting a lot of attention from both the academic and industrial
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communities not only because it is more efficient than the Boneh and Franklin scheme, but 

also for commercial reasons14

6 4 Public Key Encryption with Keyword Search

The idea of Public key Encryption with Keyword Search (PEKS), which was introduced by 

Boneh et al in [30] is that a specified user, who might not ordinarily be allowed to read 

encrypted data, is able to test if a specific word is present in the data This encryption 

scheme is based on public key encryption methods and so is not applicable to large volumes 

of data, but may be appropriate for encrypting small amounts of data such as email headers 

The example, given by the authors, was to alert a largely untrusted email gateway to forward 

messages that were marked urgent (for example to a BlackBerry device), whilst not allowing 

the device to read any of the encrypted message Another example may be to allow clerks 

in the military to effectively handle data which is classified above their security clearance 

Private decryption keys can be tailored to allow for the searching of any particular word, 

and only that word Obviously PEKS schemes must resist dictionary attacks

6 4 1  Definition of a Public Key Encryption with Keyword Search Scheme

In a PEKS scheme “public key” refers to the fact that ciphertexts are created by vari­

ous people using Alice’s public key, m the same way as a normal public key encryption 

scheme Suppose Bob wants to send an encrypted message m to Alice with the keywords 

[W\: , Wk] (we assume that k is small) Bob then sends the following message

[EApub[mlPEKS(Apub, Wi), ,PEKS{Apub, Wk)] (6 31)

where Ap is Alice’s pubhc key and m is the email body We assume that this informa­

tion is to pass though a mail gateway that is trusted to redirect messages containing specific 

keywords, but which otherwise is not authorised to see the message

14The Boneh and Franklin scheme is subject to paten t protection, owned by Stanford University and 
Voltage Security Inc, a Stanford University sta rtup  company
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The goal of a PEKS scheme is to enable Alice to send a short secret key (a k a  a 

trapdoor) T w  to the mail gateway that will enable the gateway to locate all messages 

containing the keyword W, but learn nothing else about the messages Alice produces this 

trapdoor T w  using her private key The server simply sends the relevant emails back to 

Alice Such a scheme is called a non-interactive public key encryption with keyword search, 

or as a shorthand, a ‘searchable public-key encryption”

A PEKS scheme consists of the following algorithms

1 KeyGen(s) Takes a security parameter, fc, and generates a public/private key pair 

{Apubi Apri)

2 PEKS(Apub, W) For a public key Apub and a word W , produces a searchable en­

cryption of W

3 Trapdoor(j4pr2, W) Given Alice’s private key and a word W produces a trapdoor 

Tw

4 Test (Apub, S, T w ) Given Alice’s public key, a searchable encryption S = 

PEKS(Ap^b, Wo), and a trapdoor Tw = Trapdoor(Apri, W ), outputs true ifI W  = Wq 

and _L otherwise

Alice runs the KeyGen algorithm In typical PKI fashion she publishes hei public key 

and keeps her private key secret It is assumed that all users m the system have access to 

an authenticated copy of Alice’s public key With knowledge of Aprt and her choice of word 

W , she uses the algorithm Trapdoor to produce Tw , a trapdoor corresponding to to her 

public key and the word W Tw is then given to the third party (in this case the email 

gateway) The gateway can now check for the existence of the word W  m a given message

An important point is that PEKS{Apub, W) must not reveal any information about the 

existence of the keyword W  unless Tw is available
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6 4 2 The security model for PEKS schemes

We define security against an active attacker who is able to obtain trapdoors Tw for any 

W  of his choice Even under such attack the attacker should not be able to distinguish 

an encryption of a keyword Wo from an encryption of a keyword W\ for which he did not 

obtain the trapdoor Formally, we define security against an active attacker A  using the 

following game between a challenger and the attacker

PEKS Security game

1 The challenger runs the Key Gen (A:) algorithm to generate Apub and ApTlv It gives 

Apub to the attacker

2 The attacker can adaptively ask the challenger for the trapdoor Tw for any keyword 

W  G {0,1}* of his choice

3 At some point, the attacker A  sends the challenger two words Wo, W\ on which it 

wishes to be challenged The only restriction is that the attacker did not previously 

ask for the trapdoors Tw0 or Twx The challenger picks a random be  {0,1} and gives 

the attacker C = PEKS(Apu6, Wb) We refer to C as the challenge PEKS

4 The attacker can continue to ask for trapdoors Tw for any keyword W  of his choice 

as long a s P 7 /  Wq, W\

5 Eventually, the attacker A  outputs bf E {0,1} and wins the game if b — bf We define 

.A's advantage m breaking the PEKS as

AdvA{s) = |Pr[b = bf] ~  1/2| (6 32)

Definition A PEKS is semantically secure against an adaptive chosen keyword attack 

if for any polynomial time attacker A  we have that AdvA(s) is negligible
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6 4 3 Boneh e t  a V s Public Key Encryption with Keyword Search Scheme

The original PEKS scheme was proposed by Boneh et al m [30] This scheme exploits the 

fact that m IBE cryptosystems identities are, after all, only words Therefore the authors 

of [30] observed that they could create a PEKS scheme from the Boneh and Franklin IBE 

scheme In fact, as subsequently pointed out in [2], we can adapt any anonymous15 IBE 

scheme, by replacing the identity with a keyword The transformation is more complex, 

but this is the basic idea

In Boneh et aVs scheme the length of the ciphertext of the PEKS increments with each 

key word appended It is assumed that PEKS will be used as part of a hybrid encryption 

scheme with a large symmetrically encrypted component Therefore a small increment in 

the size of the ciphertext is of no concern to the authors

In Boneh et aVs PEKS scheme the four algorithms defined above are implemented as 

follows

• KeyGen This is a standard EC El Gamal public key generation algorithm over a 

group suitable for pairing based cryptography A suitable group Q of large prime 

order r is chosen and P  a generator of the group Q is picked A suitable bilinear map 

e Q x Q —y fj,T is selected Two hash functions are chosen, V. {0,1}* -» Q, and 

W-tir Mr —>► {0, l }71 The user generates a random a £ Z* and computes the public 

key pair (i£pm î pub) = (a ,aP ) As with standard EC El Gamal it is not necessary 

to pick a unique generator each time The user publishes the system parameters as

params = { Q ^ r,e,P,Kpub,'Hw ,'H^T} (6 33)

• PEKS To compute the PEKS of the keyword W, the user, using the recipients public 

key Kpub, first calculates t = e{'Hw{W)) Kpub)x for a random x £ Z* It calculates 

H  = (t) and the point S = xP, and outputs the tuple (5, H)

15 An anonymous PK I scheme is one in which the identity of the recipient is not obvious from the ciphertext

__________________ CHAPTER 6 ENCRYPTION SYSTEMS USING BILINEAR MAPS
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• Trapdoor: To generate TV, the trapdoor information for the keyword W , a user 

with private key KWi computes the value KvriHw{ ^ ) 1̂ •

• Test: This is used to test whether a keyword is included in a ciphertext. Given a 

PEKS ciphertext, W  a keyword to search for, and TV Trapdoor information relating 

to W , Test performs the following check:

/Htir(e(Tw,S)) = H  (6.34)

If the test passes then it is accepted that W  is in the list of encrypted keywords.

Theorem 6.4.1. The non-interactive searchable encryption scheme (PEKS) above is se­

mantically secure against a chosen keyword attack in the random oracle model assuming 

BDH is intractable [30].

6.5 LMQ PEKS: A PEKS based on Sakai and K asahara IBE

In [2] Abdalla et al. show that any annoymous IBE scheme can be transformed into a 

PEKS. In a new result we (Libert, McCullagh and Quisquater17) show the PEKS scheme 

resulting from Sakai and Kasahara’s IBE. This is the most efficient PEKS scheme known, as 

in common with most Sakai and Kasahara identity-based cryptosystems it does not require 

a pairing computation in the ciphertext generation stage. It should be noted that in Boneh 

et aVs scheme a pairing computation is required for every keyword that is included in the 

ciphertext. The scheme described in this section is otherwise very similar to Boneh et a/’s 

scheme.

The scheme consists of the same four algorithms that comprise any PEKS: KeyGen, 

PEKS, Trapdoor and Test. In our scheme they are instanciated as follows:

• KeyGen: This is a standard EC El Gamal public key generation algorithm over a

16This is similar to a BF identity based private key for the identity W .
17This was joint work with Libert and Q uisquater which was never published.
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group suitable for pairing based cryptography Two suitable groups Q and of large 

prime order r are chosen and P  a generator of the group Q, and q = e(P, P) 6 [ir 

a generator of /¿r , are picked A suitable bilinear map e Q x Q —> ¡j>r is selected 

Two hash functions are chosen Hw {0,1  ̂Z*, and (jlt -¥ {0,1}0, The user

generates a random a G Z* and computes the public key pair {Kprii Kpub) = (a, aP) 

The user publishes their public key and system parameters as

• PEKS To compute the PEKS of the keyword W , a user, using the recipients’ public 

key and parameters, first calculates t = gx for a random x € Z* They calculate 

H  — ^/ir (0 anĉ  the point S ~ x(a + HwiW))P^ and output the tuple (5, H )

• Trapdoor To generate TV, the trapdoor information for the keyword W , a user 

with private key Kpri = a computes the value (a -f Hw(W))~lP This is distributed 

to the third party, for example a mail gateway

• Test This is used to test whether a keyword is included in a ciphertext Given a 

PEKS ciphertext (5, ii), W  (a keyword to search for) and T\y (trapdoor information 

relating to W ), the third party checks the following

params = {Q, ßr,e,P,g, Kpub,'Uw,'Hßr} (6 35)

HßM S , T w )) = H (6 36)

If the test passes then it is accepted that W  is m the hst of encrypted keywords

Theorem 6 5 1 Using the same security model as defined by Boneh et a l , the PEKS 

defined m this section is semantically secure against chosen-key word attacks if the p-BDHI 

problem is intractable The security of the scheme is shown using points from linearly 

independent groups
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6 6 Security P roof of the LMQ PEKS

Theorem 6 6 1 The PEKS is semantically secure against chosen-key word attacks if the 

p-BDHI problem is intractable

Proof Algorithm B takes as input (P, Q, aQ, a 2Q, ,a pQ), where P  and Q are from 

linearly independent groups, and attempts to extract e(P, Q)l â from its interaction with

A
In a preparation phase, B  selects at random an index i  ^  {1, elements

I[ ^  ZJ and wu ,wê , w e+l ,wqnw ^  Z* For i = 1, , i  -  1 ,£ +  1, ,qnw, 

it computes It = Ig — wt As in the technique of Boneh-Boyen, it sets up generators 

C?2 G @2, Gi = ip(G2 ) G Ql, where is a distortion map from Q2 to Q\, and another 

Q2 element U = aG2 such that it knows q^w — 1 pairs = (1 /(wt 4- a))(?2) for

% £ {1 * > The public key Qpub is chosen as

Qpub = - U - I £G2 = ( - a - h ) G 2

so that its (unknown) private key is implicitly set to x = —a — Ig G Z * For all 1 G 

{1, liWwAM, we have = (/„ (1/(7, + x))G2)

B then initializes a counter v  to 1 and starts the adversary A  on input of (G\, Qpub) 

Throughout the game, we assume that Hw -queries are distinct, that the target keywords 

Wq , W* are submitted to Hw at some point and that any query involving a keyword comes 

after a Hiy-query on it

- Hw -queries (let us call Wv the input of the vth one such query) B answers Iu and 

increments v

- H^-queries on input G Gr B returns a random B3 <£■ {0, l}n and stores the pair 

(7 , B3) in list L2

- Trapdoor queries on an input of a keyword Wv if v  = then the simulator fails
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Otherwise, it knows that WwiWu) = Iv and returns —Hu = (1 /(Iu 4- re)) G2 £ Q2

At the challenge phase, A  outputs two distinct keywords (Wq, W *) for which she never 

obtained the trapdoors If Wq, W* /  Wg, B aborts Otherwise, we may assume that 

Wq = Wg (the case W* = Wg is treated in the same way) B picks £ Z* and B* ^  {0, l}n 

to return the challenge S* — where A* = —£G\ G Qi If we define p = £/ce and

since x — —a ~ Ig, we can check that

A* = -iGr  = —apG\ = {Ig + x)pGl = plgGi + P^{Qpub) (6 37)

A  cannot recognize that S* is not a proper ciphertext unless she queries H^r on 

e(A*, = e(Gi,(?2)p or e(^*5 q ^!(xJtuw{wx ))) ^long seconci stage,

her view is simulated as before and her eventual output is ignored Standard arguments 

can show that a successful A  is very likely to query on either e(A*1G ^ ^ x+Uw Ŵ° ^) = 

e(G\, G2 )p or e(A*, q ^ ^ x+Hw ŵi the simulation is indistinguishable from a real attack

environment Let AskHg denote this event 

In a real attack, we have

Pr[A wins] < Pr[^4 wins|-.AskH2]Pr[-AskH2] + Pr[AskH2] (6 38)

Clearly, Pr[A wms|-iAskH2] = 1 /2  and Pr[*4. wins] < 1 /2  + (l/2)Pr[AskH2] On the other 

hand, we have

Pr[^4 wins] > Pr[*4 wins|-iAskH2](l — Pr[AskH2]) = ^ — ^Pr[AskH2]z z

It comes that e < |Pr[.4 wins] — 1/2| < ^Pr[AskH2] and thus Pr[AskH2] > 2e This

shows that, provided the simulation is consistent, A  issues a query on either

e(A*, Q^-^x^ w ŵo))) or e(A* ,G ^ ^ X+,HŵWl ^) at some point of the game with probability 

at least e With probability e, a H^-query involving e(A*, Q ^ ^ xJrnw ŵ^ )  — e(Gi,C?2)p 

will be issued To produce a result, B fetches a random record from the lists L2 With proba­
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bility 1 /qn^ i  the chosen record contains the right element r = e(G\,G2 Y  = e(P,

where f{z) = 2i=o Ci*1 is the polynomial for which G2 = /(«)Q. The p-BDHIP solution

can be extracted by noting that, if 7 * = e(P, Q)1̂ ,  then

p - 2  p - 2

e(GI , G 2)1/a = 7 ‘ (® e ( £ c i+ i( a iP),coQ )e(G1, ' £ c j + 1(a*)Q).
1=0  j —0

In an analysis of 5 ’s advantage, we note that it only fails in providing a consistent 

simulation because of one of the following independent events:

Ex: W0*, /  Wt.

E2 : B aborts when answering a trapdoor query.

We clearly have Pr[->i?i] = ( q n w  ~  = anĉ we know that ~ ^ E \ implies -> 2̂ .

We thus find Pr[->iiq A  - 1E 2 ] = 2/quw- It follows that B outputs the correct result with 

probability 2e/ (qnw qu^) • □

6.7 Optimisations

In this section we look at the optimisations of Baek et al. [9] and consider their applicability 

to our scheme.

6.7.1 Refreshing Keywords

Obviously one of the problems with a PEKS system is that, for the system to become 

operational, the keywords must come from a relatively small set which we assume is publicly 

known. For example one might want to forward emails from known email addresses ceoQ 

company.com, or emails that mention a certain term such as new contract Baek et al. 

[9] propose refreshing the keywords by appending date information in much the same way 

that identities are given validity windows in IBE [31]. Using this method the current date 

is appended to the keyword. This method seems reasonable as information on how to 

construct keywords can be distributed with public keys.
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Another obvious method is the use of ephemeral public keys, which are signed using a 

long term private key Since this is an encryption scheme we assume that lookups of public 

keys are not an inconvenience to the sender Also, the sender will only have to check the last 

link in the certificate chain We note that this method is more efficient than the method of 

appending dates to the the keywords, as, if the keywords do not change, then we can store 

keyword hashes and do not have to repeatedly perform ‘hash and map”

Baek et al [9] seem to imply that the trapdoor information should only be released to 

the gateway at the start of its validity period, in much the same way as a private key is 

only distributed to a user of an identity based system at the start of the validity period for 

the corresponding public key We note here that this does not have to be the case for the 

distribution of trapdoor information The recipient could easily publish all of its intended 

public keys ahead of time, and at the same time give the gateway all of the corresponding 

trapdoor information The gateway could then store all of the trapdoor information and 

discard them when they expire

6 7 2 Removal of the Secure Channel

Another idea Baek et al [9] suggested was the removal of the secure channel for the 

distribution of the trapdoor information from the user to the gateway This incurred a 

penalty of one extra exponentiation in the group /¿r for the sender We observe that with 

our scheme we can remove the secure channel without any additional burden on any of the 

users m the system The modified system is only slightly different from the original scheme 

that we propose in section 6 5 and is outlined here

A PEKS scheme with removal of the secure channel between the public key owner and the 

third party requires five algorithms KeyGen User, Key Gen GW, Encrypt, Trapdoor, 

Test KeyGen User is a public key generation algorithm carried out by the recipient 

KeyGen GW is an algorithm carried out by the mail gateway Encrypt is carried out by 

the sender Trapdoor is carried out by the recipient to produce the trapdoor information 

which is given to the gateway Test is carried out by the gateway
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• Key Gen User This is a standard EC El Gamal public key generation algorithm over 

a group suitable for pairing based cryptography Two suitable groups Q and /xr of large 

prime order r are chosen and P a generator of the group Q, and g a generator of /jr 

such that g — e(P, P), are picked A suitable bilinear map e Q x Q -> fj,r is selected 

Two hash functions are chosen %w {0,1}* -» Z*, and -¥ {0, l}fc The user

generates a random a E Z* and computes the public key pair (Kpri} K pub) = (a,aP)  

The user publishes their pubhc key and system parameters as

• KeyGen GW Using params the gateway generates a random value y € Z* and 

computes ggw = gy e Q

• PEKS To compute the PEKS of the keyword W, a sender, using the recipients’ public 

key and parameters, and the value ggw obtained from the gateway, first calculates 

t — ggW for a random x £ Z* They calculate H  = and the point S =

x(a -H 'Uw{W))P, and output the tuple {S,H)

• Trapdoor To generate TV, the trapdoor information for the keyword W , a user 

with private key Kpri = a computes the value (a 4- %w{W))~lP This information 

can be passed to the gateway m the clear

• Test This is used to test whether a keyword is included m a ciphertext Given a 

PEKS ciphertext (5, H)t W  (a keyword to search for) and TV (trapdoor information 

relating to W ), and the gateway’s secret value y the mail gateway checks the following

The trapdoor information can now be distributed to the gateway in the clear, since 

the Test algorithm now requires knowledge of y , which is known only to the gateway

params = {Q, y,r, e, P, g, K pui), Uw, Unr) (6 39)

(6 40)
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If the test passes then it is accepted that W  is in the list of encrypted keywords 

The Security of the “No Secure Channel” Scheme

Theorem 6 7 1  The P E K S with secure channel removed is semantically secure against

The proof is very similar to the proof given for the scheme described above, and is 

included m appendix B  1

6 7 3 Randomness Re-use

Baek et al suggest randomness re-use for use with the Boneh et al scheme However, 

we note here that randomness re-use is not possible with our scheme Randomness re­

use, where the same t = gx is used for two different encryptions introduces the following 

vulnerability

Say an attacker guesses two popular keywords, he can check for their presence by doing 

the following test

Let Wo? represent the guessed keywords respectively Then, if the attacker’s guesses 

are correct and randomness re-use is used, the resulting ciphertext will include S  = x(a + 

H w ( W q ) ) P  and S* =  x ( a  +  Hw(W\))P H =  H flr{gx ) will be the same for both encrypted 

keywords, due to randomness re-use

chosen-keyword attacks if the p-BD H I problem is intractable

x P  = (H w ( W 0) -  H w {W, ) )~l {S -  S')

gx = e (P, xP)

(6 41)

(6 42)

The attacker then carries out the following test

(6 43)
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If the test is passed, the attacker knows that the two keywords were present This is 

a very real attack on a PEKS system, since the keywords are likely to come from a small, 

well defined dictionary

6.8 Efficiency of the Sakai and K asahara PEKS Scheme

We now look at the efficiency of our scheme with comparison to the Boneh et al scheme 

[30] We will then look at the various modifications that can be made to that scheme and see 

how they may be applied to the scheme which we present - some of these where suggested 

by Baek et al in [9] The figures m brackets represent the timings when using Scott’s faster 

hash and map algorithm

#  keywords Boneh et al (naive) Boneh et al (Randomness Re-use) ours
1 599ms (302ms) 599ms (302ms) 188ms
5 2995ms (1510ms) 2619ms (1134ms) 940ms
10 5990ms (3020ms) 5144ms (2174ms) 1880ms

Table 6 3 Comparison of our scheme with that of Boneh et al

As we can see the new scheme is faster, but due to the fact that we cannot make use of 

randomness re-use, it does not manage to significantly outperform the Boneh et al scheme 

at higher numbers of keywords as might be expected

6 9 Conclusion

We have seen m this chapter that IBE is not the only talent of pairings We have given 

a review of a few of the more interesting IBE schemes, such as the seminal Boneh and 

Franklin IBE and the more efficient Sakai and Kasahara IBE scheme We have also looked 

at Public key Encryption with Keyword Search, and presented the fastest known scheme 

This just gives a flavour of the types of encryption schemes that are possible with pairings
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Chapter 7

Two-Party Identity-Based Key 

Agreements Protocols

Key agreement protocols are fundamental to the study of asymmetric cryptography Key 

agreement protocols that are based on the discrete logarithm problem are closely related 

to public key encryption The idea of a key agreement scheme is to allow two entities 

to share a common ephemeral (session) key The process of establishing a session key is 

called key establishment There are two ways to achieve a shared key, one being a key 

transportation protocol, where one entity is trusted with generating a key and transporting 

it securely to the other user For example by encrypting it using the public key of the 

recipient, or by encrypting it using a symmetric encryption algorithm under a master key 

that is shared by both users This is sometimes referred to as a digital envelope [79] Some 

key transportation algorithms make use of a third party, for example the key agreement 

protocol m the Kerberos network authentication system [132] Another way of generating 

a shared session key is that the two parties generate tokens that they swap This is called 

a key agreement protocol These tokens allow the users to create a common shared secret 

For a good general reference see [91, Ch 12]

The most famous key agreement protocol is the Diffie-Hellman protocol It was pre­

sented m 1976, in the ground-breaking paper ‘New Directions in Cryptography” [58] It
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allows two users who have not previously shared information to establish a shared secret 

session key in the presence of passive eavesdroppers The Diffie-Hellman key agreement, 

as shown in Table 7 1 was extremely important, because it proposed something that was 

so counter-intuitive Up until this point it was assumed that if you wanted to engage in 

a cryptographic protocol with another party you must have previously established some 

common shared secret with them (symmetric cryptography) It layed the foundation stone 

for public key cryptography

The Diffie-Hellman key agreement has two system parameters p and g Parameter p is 

a prime number and parameter g is a generator of a large prime order subgroup of order r 

a and 0 are two number drawn at random from the set of integers less than r

Alice Bob
TA =ga

<- Tb = g?
K a = T% K B = T Pa
K a = gnS K b = gaB

Table 7 I The Diffie Heilman Key Agreement

The Diffie-Heilman key agreement is not perfect however It suffers from what is called 

the “man-m-the-middle” attack This derives from the fact that the parties are not authen­

ticated m any way during the protocol This is quite a critical flaw The idea behind the 

attack is that you can create a shared secret with someone, but you do not know for sure 

with whom you are communicating The protocol itself is secure, but you do not know if you 

are talking with your intended recipient, or if you are talking directly to an eavesdropper If 

the eavesdropper manages to dupe Alice and Bob into talking directly with him then he can 

relay (and read) all of the messages between them The eavesdropper becomes the ‘man in 

the middle”* The eavesdropper does this by negotiating two seperate session keys, one with 

Alice and the other with Bob This is shown clearly m Table 7 2 The eavesdropper can 

now decrypt messages from Alice and re-encrypt them and forward them on to Bob
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Alice Eve Bob
K A =9a -»

«- K B b  =  <A
key/iE =  K%b key/ib =  Kß/
key ae = qa&E teyAE =  qaßr

K Ea = 9ar -»•
K b -  nß

keyuc = KgE key0E = K l
key b e  = gar0 keyss = s “B0

T^ble 7 2 A Man in the Middle Attack on the Diffie-Hellman key Agreement

We have seen that the Diffie-Hellman protocol is extremely elegant However, we have 

also seen that it does not have any real practical application as it stands If we assume that 

we only use cryptography to keep secrets then we would also assume that we want to know 

with confidence who we are telling those secrets to This leads to the obvious question 

What properties should we expect of a key agreement protocol7

7.1 Definition of an Identity Based Key Agreement Protocol

A two party identity based key agreement protocol contains the algorithms Setup, Extract 

and the protocol Key Agreement Setup and Extract are carried out by the KGC and 

are common to all identity based cryptosystems Key Agreement, which is common to all 

key agreement protocols, is carried out by the two end users

• Setup takes as input a security parameter k It outputs system wide params, which 

are made public It also produces a master secret key s, which is known only to the 

KGC

• Extract takes as input params, 9, and the identity of a user ID  It outputs a private 

key d for this user

• Key Agreement is carried out between two end users The result of this algorithm 

is that both parties obtain a shared secret value
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7 2 Properties of Key Agreement Protocols

Properties of Key Agreements [44, 8]

• Known Key Security Each run of the protocol should result in a fresh, unique, 

randomly distributed session key Recovery of arbitrarily many previous session keys 

should not help an attacker in determining the currently agreed session key

• Forward Secure A key agreement is said to be forward secure if knowledge of all 

long term private keys does not compromise previously established session keys A 

scheme is said to have partial forward secrecy if knowledge of all of the private 

keys of the communicating entities is rpquired before previous session keys can be 

recovered

• Key Compromise Impersonation Resilience Compromise of Alice s long term 

private key will (obviously) allow an attacker to impersonate Alice to other entities 

However it is desirable that this does not allow the attacker to impersonate other 

entities to Alice

• Unknown Key Share Resilience This is an attack whereby an entity A finishes 

an execution of a key agreement protocol believing that a common key is shared with 

an entity B  (this is m fact the case) but B falsely believes that the key is shared with 

another entity E  ( /  A)

• Key Control Neither party should be able to force the agreed session key to be a 

certain value, or to be m a certain small subset of the key space

A key agreement protocol is said to provide key authentication if entity A is assured 

that no other entity apart from a specifically identified entity B  can possibly learn the value 

of the shared secret key It is an ‘Authenticated Key Agreement” (AK) protocol This does 

not guarantee that entity B  knows a particular shared secret, it only guarantees that no-one 

else knows it
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This gives rise to a further definition, an authenticated key agreement protocol m which 

entity A is assured that entity B  has a particular secret value is called an ‘Authenticated 

Key Agreement with Key Confirmation” (AKC) It is easy to convert an Authenticated Key 

Agreement into an Authenticated Key Agreement with Key Confirmation The basis of 

this transformation is to add another pass to the protocol in which the agreed session key 

is used to MAC1 some data that contains redundancy

Often, if we wish to use the secret value as a key to encrypt a message that contains 

redundancy, for example a message written in the English language or a real-time voice 

call, we do not need to add key confirmation The key will be confirmed by the fact that a 

message with the expected redundancy was recovered If the decryption reveals a random 

binary string or the phone call just contains ‘white noise” then we can assume that the 

secret value was not transmitted correctly

Other desirable attributes of AK and AKC protocols include

• Small Number of Passes A pass m a protocol is a token (message) sent from 

entity A to entity B or visa versa

• Small Number of Rounds A new round is classified by its dependence on infor­

mation exchanged m a previous round For example in a tripartite key agreement an 

entity A might send different messages to entities B  and C However, if these can 

both be sent at the same time, we say that this is one round of the protocol We 

would classify Joux’s key agreement protocol [77] as a one round protocol, since the 

information that any entity sends is independent of the information sent to them from 

other entities Many two party key agreements are one round protocols

• Small Computational Complexity The computational complexity is the amount 

of work done by the communicating entities in order to successfully share a secret 

value
*MAC Message Authentication Code, similar to a  digital signature, bu t does not offer non-repudiation
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• Role Symmetry: Do all of the parties in the protocol carry out identitical compu­

tations? If they do then the key agreement is role symmetric. This may be advan­

tageous if both entities have the same computational resources, or not, if the entities 

have very different computational resources (for example a smart card /  terminal key 

agreement).

There are many key agreement protocols based on bilinear maps, and many have sub­

sequently been broken. One of the first applications of pairing based cryptography was a 

tripartite key agreement protocol by Joux [77]. This protocol does not authenticate the 

users, and thus is susceptible to the man-in-the-middle attack. However, it was a signifi­

cant step in the development of pairing based cryptography. This original scheme was not 

identity-based.

Many key agreement protocols from bilinear maps have been since proposed. 

Smart [127], and Chen and Kudla [44] have proposed two-party key agreement protocols, 

neither of which have been broken. Nalla proposes a tripartite identity-based key agreement 

in [97], and Nalla and Reddy propose a scheme in [99], but both have been broken [47, 121]. 

Shim presents two key agreements [123, 122], but both these schemes have been broken 

by Sun and Hsieh [131]. Another set of authenticated tripartite key agreements proposed 

by Al-Riyami and Paterson [5] were attacked by Shim [120], with one being broken. The 

non-interactive identity based scheme of Sakai, Ohgishi and Kasahara [111], and the scheme 

of Scott [114] both suffer from key compromise impersonation.

Most identity-based key agreement protocols have the property of key escrow: the 

trusted authority that issues private keys can recover the agreed session key. This fea­

ture is either acceptable, unacceptable, or desirable depending on the circumstances. For 

example, escrow is essential in situations where confidentiality as well as an audit trail is 

a legal requirement, as in confidential communication in the health care profession. There 

are other examples, such as personal communications, where it would be advantageous to 

turn escrow off.
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The two-party key agreements proposed by Smart and by Chen and Kudla are escrowed 

schemes by default. A modification suggested by Chen and Kudla [44] to remove escrow 

can also be applied to Smart’s scheme. However, this modification creates additional com­

putational overhead. Scott’s scheme does not allow escrow, and there seems no obvious way 

to introduce this feature, bar one party in the protocol sending a third party a copy of the 

agreed key.

If all parties in an identity based key agreement protocol have had their private keys 

issued by the same KGC then we say that they are all members of the same domain. If a key 

agreement protocol requires that both users have keys issued by the same KGC [111, 114] 

then this, for example, might mean that two workers from the same company would be able 

to generate a shared secret. However employees from two different companies would not be 

able to generate such a shared secret. Chen and Kudla proposed a solution to this problem 

in [44].

7.3 Security Models for Identity Based Key Agreements

We adopt the security model proposed by Bellare and Rogaway [19], modified by Blake- 

Wilson et al. [23], and used in proving the security of the key agreement protocols introduced 

in [44] and [89].

The model includes a set of parties, each modelled by an oracle. We use the notation 

Ilfc, meaning a participant/oracle i believing that it is participating in the n-th run of 

the protocol with j. Oracles keep transcripts of all communications in which they have 

been involved. Each oracle has a secret private key, issued by a KGC, which has run a 

BDH parameter generator B and published groups G and /ir , a bilinear map of the form 

e : Q x Q nr, a group generator P of G, and a master public key sP.

The model contains an adversary E which has access to all message flows in the system. 

E  is not a (legitimate) user or KGC2. All oracles only communicate with each other via E. 

E  can replay, modify, delay, interleave or delete messages. E is benign if it acts like a wire

2Does not hold a private key of the target identity or the m aster secret key.
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and does not modify communication between oracles Prom [19], if two oracles receive, via 

the adversary, property formatted messages that have been generated exclusively by the 

other oracle, and both oracles accept3, we say that these two oracles have had a matching 

conversation

The adversary E  at any time can make the following queries

• Create E  sets up a new oracle m the system that has public key ID, of E :s choosing 

E  has access to the identity /  public key of the oracle The private key is obtained 

from the KGC

• Send E  sends a message of his choice to an oracle %, in which case % assumed 

that the message came from j  E can also instruct the actual oracle j to start a new 

run of the protocol with % by sending a \ 3 signal to j  Using the terminology of [23] 

an oracle is an initiator oracle if the first message that it receives is A, otherwise it is 

a responder oracle

• Reveal E  receives the session key that is currently being held by a particular oracle

• Corrupt E receives the long term private key being held by a particular oracle

• Test E  receives either the session key or a random value from a particular oracle 

Specifically, to answer the query the oracle flips a fair com c £ {0,1}, if the answer 

is 0 it outputs the agreed session key, and if the answer is 1 it outputs a random 

element of {0, l}fc E  then must decide whether c is 0 or 1, call this prediction c; 

E's advantage m distinguishing the actual session key held by an uncorrupted party 

from a key sampled at random from {0, l}k m this game, with respect to the security 

parameter k , is given by

AdvantageE(k) = \Pr[d = c] -  1/2| (71)

3The oracles enter the accepted sta te  as defined in [19]
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The Test query can be performed only once, against an oracle that is m the Accepted 

state (see below), and which has not previously been asked a Reveal or Corrupt query

An oracle may be in one of the following states (it cannot be m more than one state)

Accepted If the oracle decides to accept a session key, after receipt of properly formatted mes­

sages

Rejected If the oracle decides not to accept and aborts the run of the protocol

* If the oracle has yet to decide whether to accept to reject for this run of the protocol 

We assume that there is some time-out on this state

Opened If a Reveal query has been performed against this oracle for its last run of the protocol 

(its current session key is revealed)

Corrupted If a Corrupt query has ever been performed against this oracle 

Definition [23] A protocol is an AK protocol if

• In the presence of the benign adversary on Yl Zj and nj,,. both oracles always accept 

holding the same session key, and this key is distributed uniformly at random on 

{0, l}fc, if for every adversary E

— If uncorrupted oracles an(  ̂ have matching conversations then both 

oracles accept and hold the same session key,

-  AdvantageE (k) is negligible

7 4 The Non-inter active Identity Based Key Agreement P ro­

tocol of Sakai, Ohgishi and K asahara

As mentioned m the introduction to this chapter, the Diffie-Hellman key agreement pro­

tocol and the paper “New Directions in Cryptography” [58] laid the foundation stone for
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asymmetric cryptography However, identity based key agreement protocols using pairings 

are a much more recent discovery The first such identity based key agreement protocol was 

proposed by Sakai, Ohgishi and Kasahara in 2000 [111] As an added bonus this scheme is 

also non-interactive, and is one of the simplest key agreement schemes m existence 

The protocol proceeds as follows

• Setup The KGC chooses an appropriate group Q of order r and selects a generator 

of that group P Therefore we have {P) — Q The KGC generates a random s Er Z* 

The KGC calculates Pvub = sP The KGC publishes descriptions of hash functions 

'Hk Vr {0,1 }k,'HrD {0, l}fc Q, and a bilinear map e Q xQ \xr^Q, Ppub and 

V>r

• Extract The KGC issues private keys to users, first by checking that they have a 

legitimate claim on ID , the identity for which they wish to receive the private key 

The KGC generates their private key as sQm  where Qid = Wid^D )  € Q

• Key Agreement

Suppose the user with identity ID a and public key Qida j wishes to set up a shared 

secret with the user with identity I D s , and corresponding public key Qidb The 

shared secret is calculated as 'Hk{^{sQwA,QjDB))

Suppose the user with identity IDs  and public key QrDBi wishes to setup a shared 

secret with a user with identity I  Da , and corresponding public key Qjda The shared 

secret is calculated 'Hk{e{QiDA, sQidb))

From bilinearity, it can be observed that

z{sQida ,Qidb) = z(Qida, sQidb) ~ e(QwA, QidbY  (7 2)

and therefore both users have agreed the same shared secret, without interaction
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7 5 The Identity Based Key Agreement Protocol of Sm art

Smart’s key agreement [127], like all identity based key agreements, contains the two algo­

rithms Setup, Extract and and the protocol Key Agreement Smart’s key agreement 

makes use of a group Q and a bilinear map of the form e Q x Q -» ¿tr , where solving 

the discrete logarithm problem m the groups Q and \iT is computationally infeasible We 

denote the order of the groups by r It also makes use of a session key derivation function 

Wk Vr {0,l}fc, and a hash function “H/o {0,1}* -» Q (as described by Boneh and 

Franklin) to map identities to elements of the group Q

The key agreement proceeds as follows

• Setup and Extract are identitical to the Setup and Extract algorithms specified by 

Boneh and Franklin

• Key Agreement We describe the key agreement between two users, Alice and Bob, 

who have public keys Q a  and Qs and private keys s Q A and s Q b  respectively Alice 

generates a random a € Z* and likewise, Bob generates a random /3 £ Z* Now the 

protocol proceeds as shown m Table 7 3

Alice Bob

aP  —>
<- 0P

KA= U k{e{sQ/X,PP) e(QB,asP)) KB = Uk{e{QA,t3sP) e(sQB,aP))

Table 7 3 Smart’s Identity Based Key Agreement

Smart also proposes a Authenticated Key Agreement Scheme with Key Confirmation 

(AKC), by applying a simple transformation using the key that was exchanged in the key 

agreement above with a MAC on some redundant data This idea was explored m detail 

m [23] The key derivation function is now Hk /¿r —> {0, l}fc x {0,1}^ This produces two 

k bit keys, one being used to key the MAC, and therefore for providing confirmation, and 

the other being the actual session key
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Smart’s Authenticated Key Agreement with Key Confirmation proceeds as in Table 7 4 

Alice Bob

aP -¥
R = e(QA,ßsP) e{sQB,aP) 

(ki kf) = H k(R)

<- i  ßPX M\ = M A C ^ ^ Q btQa , R)
R = e(sQAißP) e(QBiasP)

(k ,k ' )= H k(R)
MACkf(2ìQBìQAìR ) ^ M l
M 2 ~ M A C k>(Z,QAiQB,R) -» MACV(3, QA, Qb ,R) =

^  = k K b = k

Table 7 4 Smart’s Identity Based Key Agreement Protocol with Key Confirmation

Provided that both of the verification equations are passed then the agreed session key

is k

In his original paper, Smart gives informal security arguments for the security of his 

scheme, but in a new result we prove it secure in the random oracle model, using a modified 

version of the security model of Bellare and Rogaway [19] in which reveal queries are not 

allowed

7 5 1 The Security of Sm art’s Key Agreement Protocol

The proof of security of the above algorithm relies on the conjectured intractability of 

the Bilinear Diffie-Hellman Problem The Bilinear Diffie-Hellman Problem is Given 

P, aP, 6P, c P e Q  compute gabc 6 where g = e(P, P)

Assuming that the BDHP is hard (with respect to the security parameter k), we now 

demonstrate the security of Smart’s key agreement protocol

Theorem 7 5 1 Smart’s key agreement protocol is a secure AK protocol, assuming that E 

does not make any reveal queries and that the hash functions used are modelled as random 

oracles, and that the BDHP is hard
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See appendix D for the proof This original work has been put m the Appendix, as it 

simply an adaptation of the security proof which Chen and Kulda gave for their identity 

based key agreement [44]

7  5 2 Efficiency of Sm art’s Identity Based Key Agreement Protocol

We now look at the efficiency of Smart’s key agreement protocol Firstly, the AK protocol 

presented by Smart is role symmetric This means that both parties to the agreement incur 

the same computational and bandwidth costs We see that, without precomputation, the 

computational cost for each participant is one point scalar multiplication, two pairings and 

an exponentiation m With precomputation, we see that if entity A was to repeatedly 

communicate with entity B , then the pairing 73  = e(Q#,sP) could be precomputed and 

stored This would mean that A could then complete the key agreement as

KA = H k(e(sQA^ P )  7g) (7 3)

This reduces the computational load placed on A to one point scalar multiplication, one 

pairing and one pairing exponentiation Since pairing exponentiation is much faster than 

pairing computation over k = 2 curves, this change will achieve a significant increase in the 

performance of the key agreement

7.6 The Identity Based Key Agreement of McCullagh and 

B arreto

We now describe the identity based AK protocol that has been presented by McCullagh and 

Barreto in [89] This key agreement protocol, unlike the previous AK protocols of Smart 

and Chen and Kudla, does not make use of the identity based public key pair of Boneh and 

Franklin Instead we use the identity based key pair developed by Sakai and Kasahara [109] 

Like the previous schemes, this scheme consists of two algorithms, Setup and Extract, and 

the Key Agreement itself Obviously the modifications that were proposed by Chen and
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Kudla m [44] also apply We will look at this in more detail later

This algorithm makes use of two groups Q and /xr of prime order r P  is a generator of the 

group Q It also makes use of two random oracles, 'Hjd ID —¥ and H k Mr {0; l}fc A 

bilinear map of the form e £ x £ —> /¿r is selected This scheme also uses q = e(P, P) £ /¿r 

g is a generator of ¡j,r

• Setup The KGC generates a random element s £  Z* The KGC publishes Q, 

e Q x Q -> /ir , H/Oj H k ,  P  and sP

• Extract The KGC validates that the user requesting the private key is associated 

with a certain ID The public key for this user is sP 4- iP — (s -f i)P, where % = 

Hjd(ID) £ Z* The corresponding private key, which requires knowledge of s to 

compute, is calculated by the KGC as (5 + i)~lP

• Key Agreement First, users Alice and Bob, who have public key pairs {(s+a)P, (s4- 

a)~!P} and {(s + 6)P, (s + i>)-1P}, generate random a and ¡3 £ Z* respectively They 

then complete the key agreement as shown in Table 7 5

Alice Bob

a($ + b)P
4- /3(i + a)P

key = UK{gOL e(/3(s + a)P,(s + a ^ P ) )  key = Hxig^ e(a(s + 6)P, (s -f 6)_1P))

Table 7 5 McCullagh and Barreto’s Authenticated Key Agreement

For clarification, the agreed session key is The computational cost associated

with this key agreement is one pairing, one pairing exponentiation and one point scalar 

multiplication We also note that apart from storing long term public keys (which would 

increase performance), there are no storage overheads with this key agreement protocol
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7 6 1  The Security of the Identity Based Key Agreement Protocol of 

McCullagh and Barreto

The original security proof supplied with the McCullagh and Barreto key agreement was 

flawed, m that an adversary could tell the difference between the simulated environment 

and the real world This was a flaw m the security proof only In [48] Cheng and Chen 

provided a new security proof which relied on a new hard problem, which they introduced, 

called the fc-EBCAAi assumption

Definition /¡>EBCAAi Assumption For an integer k, and x,y  Z*,P G Q,e Q x 

Q /¿n given hP,xP, ho, (hu [h\ + x)~lP), , (hk, (hk + x)~lP),yP) where hz Z* are

different from each other for 0 < i < fc, to compute e(P, P)tf(fto+a0 1 1S hard

They then proceeded to provide a proof for the McCullagh and Barreto key agreement 

assuming this assumption is sound The proof, included m Appendix E, is taken from [48]

7 6 2 Applying Chen and Kudla’s modifications to McCullagh and Bar­

reto’s Key Agreement Protocol

In [44] Chen and Kudla proposed modifications to their key agreement protocol and Smart’s 

key agreement protocol to add the following properties removal of KGC escrow, key agree­

ment between domains and addition of a key confirmation stage

Since most of these are generic techniques we now look at how they can be applied to 

the authenticated key agreement protocol of McCullagh and Barreto Firstly we will look 

at the removal of escrow We actually see that in the McCullagh and Barreto scheme, we 

can use a technique similar to that of Chen and Kulda Again we modify the key derivation 

function H k This time, however, we do not use exactly the same key derivation function 

that they use Instead, we use a function of the form H k Mr x Mr {0, l}fc We also 

modify the Setup and Extract algorithms These modifications will be explained m more 

detail later
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• Setup The KGC picks two groups Q and /¿r , both of large prime order r, such 

that the discrete logarithm problem in these groups is computationally infeasible 

The KGC makes public hash functions 1-Lid {0,1}* -¥  Z*, 'Hq {0,1}* -»  Q and 

H k /ur x^ir -> { 0,1}* The KGC also publishes details of a bilinear map of the 

form e Q x Q —> \ir Here we let g = e(P, Q) where P and Q are taken from the 

same group, and Q is some unknown multiple of P  The KGC picks two random 

public strings (for example the first ten digits of n and the first ten digits of G, the 

gravitational constant) Interestingly the KGC does not publish generator points in 

this system, but shows how these points can be generated Two generator points P 

and Q are required, derived from the constant strings as follows P = and 

Q = Hq (G) This is to inspire confidence that the KGC does not know the value x, 

such that P — xQ, as this could lead to an attack by the KGC The KGC generates a 

random s £ Z* and publishes the point sP

• Extract The KGC generates users’ public keys using the same Extract algorithm as 

before, except that the private keys are now generated using the point Q To generate 

a private key for user I D , the KGC first generates i — /H i d { I D )  G Z* The public 

key for this user is sP + iP = (5 + i)P , the private key is now (s + i)~xQ

• Key Agreement Two users Alice and Bob, who have public key pairs {(5 +

a)P, (5 + a)_1Q} and {(5 + 6)P, (5 + b)~lQ} respectively, now generate random secret 

a and ¡3 E Z* respectively and perform the key agreement as shown in Table 7 6 2

Table 7 6 McCullagh and Barreto’s Authenticated Key Agreement protocol with No Es­
crow

For clarity the shared secret key is now 'HK{ga^ >0° )̂ Since the secret is processed using

Alice Bob

Of(s + b)P
ß(s + a)P
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a random oracle, this time the adversary E  must have advantage in finding both parts of 

the input to H k We proved earlier that this was not possible if we use the same point m 

the generation of both the public and private keys It is also not possible if we use points 

for which the discrete logarithm is unknown All that is required is for the challenger C to 

answer the random oracle queries with two points for which C knows the discrete logarithm 

between them, whilst not revealing this discrete logarithm to E

We also notice that in this situation the KGC can recover the values ga and and thus 

the first input into the oracle H k However, the KGC cannot recover the value ga& This 

would imply a non-negligible advantage in solving the DHP over the group Mr This was 

first proposed by McCullagh and Barreto at CT-RSA on 15th Feb 2005 However a similar 

scheme has since appeared in a separate paper on the IACR Cryptology eprint Archive See 

[138] for more details

We now look at Chen and Kudla’s second modification to Smart’s protocol which allowed 

key agreement between domains We notice that their scheme is not immediately applicable 

to the McCullagh and Barreto AK protocol, since the shared secret that the McCullagh and 

Barreto protocol generates does not depend on any way on the master secret of the KGC 

(it is annulled by the pairing of the received point and the private key) Therefore, all that 

is needed is that the KGCs agree on the same groups, pairing implementation and point P 

We assume that Alice has obtained her private key from KGC], which has as its master 

secret s\ and which publishes the point s^P Therefore Alice’s public key pair is {(si 4-

a)P, (si + a)~lP} Likewise, Bob has obtained his public key from KGC2, which has the 

master secret 52 and which has published s2P  Bob’s key pair therefore is {(32 + b)P, (s2 +

b)~lP} The key agreement protocol proceeds as shown in Table 7 7

A More Flexible Approach to Key Agreement Between Domains

Another new way to implement key agreement between domains is just to use a key deriva­

tion function H k Mn x Mr2 {0, l}fc, where Mn is the group used by KGCi and Mr2 1S 

the group used by KGC2 Then we can combine any of the above key agreement protocols
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Alice Bob

a{s2 + b)P
0(si 4- a)P

j  Ra =e(/3(si +o)P, (»i + o )_1P) f i iB = p(a(s2 + b)P, (s2 + 6)_1P)
\ K A = H K(ga Ra)) \  K B = ' H K(g13 RB))

Table 7 7 McCullagh and Barreto’s Authenticated Key Agreement Between Domains

with each other Importantly, we can now enable members of a domain who use Boneh and 

Franklin identity based key pairs (as used by Smart), communicate with other users who 

have Sakai and Kasahara identity based key pairs (as used by McCullagh and Barreto)

This is easily accomplished as follows

Let Ahce have a Boneh-Franklin identity based key pair, issued by KGCi That is 

Alice’s public key is Pa , her private key is s\Pa and the KGC’s master public key is siP 

Her KGC specifies an appropriate bilinear map e\ Bob has a Sakai and Kasahara key pair, 

issued by KGC2 That is Bob’s public key is (52 -1- i>)Q, and his private key is (52 4- b)~lQ, 

where b = Hjd{^Db) 6 Z* His KGC specifies an appropriate bilinear map e2 KGC2 

issues the point s2Q The points P and Q may be totally unrelated and belong to different 

elliptic curves Let g\ denote e\(P,P) and g2 denote e2(PA,P)

Alice and Bob can execute the key agreement protocol as shown in T^ble 7 8 

Alice Bob

ol{s2 + b)Q
<- 0P

K a = n K{g%, e\{s\PAipP)) K b = W^(e2(a(s2 + b)Q, (s2 + b)~'Q), ei(PA, sxP f )
KA = n K(g^g['s ) K B = UK(g^,g[^)

Table 7 8 A New Method for Key Agreement Between Domains

We now look at Chen and Kudla’s third modification This modification is a generic 

modification, which they take from [23], and allows the transformation of any AK protocol 

into the corresponding AKC protocol This modification makes use of a new key derivation 

function of the form H k Mr -> {0, l}fc x {0, l}k Because of the generic nature of this

159



CHAPTER 7 TWO-PARTY IDENTITY-BASED KEY AGREEMENTS PROTOCOLS

transformation we will only describe the key agreement stage in Table 7 9 

Alice Bob

R a = ol{s + b)P —»
RSK = e(RA,(s + b)-'P) gV

(k,k') = U{RSK)
R b = ß{s + a)P 

M\ = MACkf{2, b, a, R a , R b )
Rsk =e{RB,(s + a)- 'P) ga

(.k , k ' ) = n ( R SK) 
M2 = MACk'(3,a,b,RA,RB)

KA = k  K B = k

Table 7 9 McCullagh and Barreto Identity Based Key Agreement Protocol with Key Con­
firmation

7 6 3 Efficiency of the McCullagh and Barreto Identity Based Key Agree­

ment Protocol

We have already seen the efficiency gains that Chen and Kudla manage to achieve over the 

scheme of Smart We now look at the efficiency gains that are made in the McCullagh and 

Barreto scheme Firstly, each participant in the scheme incurs one pairing, one point scalar 

multiplication and one pairing exponentiation The amount of computation incurred in the 

Chen and Kudla scheme is two point scalar multiplications and one pairing Therefore, 

in the popular setting of a k = 2 curve, our scheme will be faster than the Chen and 

Kudla scheme We note that their scheme can achieve the same level of performance as the 

McCullagh and Barreto scheme if there is enough storage to allow for precomputation The 

McCullagh and Barreto Key Agreement algorithm (the third of the three algorithms which 

comprise the scheme) does not appear to benefit from precomputation The only benefit 

seems to be the precomputation and storage of public keys We also note that to remove 

escrow we do exponentiation in the group /ir whereas Chen and Kudla’s modification of 

Smart’s scheme does point scalar multiplication, so m common settings McCullagh and 

Barreto’s protocol will again be faster
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Basic Precomputation Properties
Op count Time Op count Time KKS PFS KCIR UKSR KC

SOK IP 172 - - o o 0 • m
Scott lp+2pe 182 2pe 10 • •* o • •
Smart 2p-{-lpsm+lpe 443 lp+lpsm+lpe 271 • •* • • •

C-K lp+2psm 360 lp+lpsm+lpe 271 • . • • •
M - B  (ours) lp+lpsm+lpe 271 lp+lpsm+lpe 271 • . i • • •

Table 7 10 A Comparison of Key Agreement Protocols and their Claimed Properties

• Time is in milliseconds and is based on operation counts In reality times will be slower due to network 
constraints

• KKS Known Key Security

• PPS Partial Forward Secrecy

• KCIR Key Compromise Impersonation Resilience

• UK SR Unknown Key Share Resilience

• KC Key Control

• Computational Cost

— p pairing operation

— psm point scalar multiplication

— pe painng exponentiation operation

• * This scheme has full forward sccrecy

• \ These schemes can be modified to have full forward secrecy

We note that while using precomputation the Smart, Chen and Kudla and McCullagh 

and Barreto algorithms require exactly the same computational cost, the McCullagh and 

Barreto scheme has no storage requirements, whereas Smart and Chen and Kudla both 

require storage of fj,rbn bits, where n is the number of users with which we wish to perform 

key agreements and fj,rb is the number of bits required to store one element in

7 7 Conc lu s ion

The original work m the area of two party identity based key agreements from pairings was 

done by Sakai, Ohgishi and Kasahara in [111], and was improved upon by Smart in [127] 

Smart give heuristic arguments for the security of his scheme In this thesis, in a minor
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result, we prove the security of Smart’s scheme, in the security model proposed in [23]

The work of Smart was improved upon by Chen and Kudla Chen and Kudla proposed 

a new key agreement which was faster than that proposed by Smart They also introduced, 

to identity based cryptography, the rigorous security frameworks of [19] and [23] which were 

originally designed for non-identity based public key cryptosystems This is a important 

contribution of their work

We then went on to describe the identity based key agreement protocol of McCullagh and 

Barreto This key agreement protocol manages to achieve the same performance without 

precomputation as the previous schemes only managed to achieve with precomputation We 

note that with precomputation Smart’s scheme Chen and Kudla’s scheme and McCullagh 

and Barreto’s scheme all have similar performance characteristics This is illustrated in 

Table 7 10, along with the security properties that the various scheme are believed to possess 

In another result we show how to agree a shared secret between users of an identity 

based system which uses Boneh and Franklm key pairs [31] and Sakai and Kasahara [109] 

key pairs
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Identity Based Signcryption

Two fundamental services of public key cryptography are confidentiality and authentication. 

Public key encryption schemes aim at providing confidentiality whereas digital signatures 

must provide authentication and non-repudiation. Nowadays, noticeably, many real-world 

cryptographic applications require these distinct goals to be achieved simultaneously. This 

motivated Zheng [146] to provide the cryptographer’s toolbox with a novel cryptographic 

primitive which he called “signcryption.” The purpose of this cryptographic primitive is 

to both encrypt and sign data in a single operation which has a computational cost less 

than that of doing both operations sequentially. Signcryption schemes should provide con­

fidentiality as well as authentication and non-repudiation. As with conventional encryption 

schemes, recovering the plaintext from a signcrypted message must be computationally in­

feasible without the recipient’s private key; as with conventional digital signature schemes, 

it must be computationally infeasible to create signcrypted texts without the sender’s pri­

vate key. The area of combining signature (or other authentication) with encryption has 

been extensively researched, see for example [147, 113, 6, 10, 11, 85].
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8 1 Definition of an Identity Based Signcryption Scheme

The formal structure that we use for defining the security of our identity-based signcryption 

scheme is the following

Setup is a probabilistic algorithm run by a key generation centre (KGC) that takes as 

input a security parameter k , and outputs public parameters params, which are made 

public, and a master key mk that is kept secret by the KGC

Key Gen is a key generation algorithm run by the KGC on input of params, an identity 

ID and the master key mk , and outputs the private key Std associated with the 

identity ID

Sign/Encrypt is a probabilistic algorithm that takes as input public parameters params, 

a plaintext message m, the recipient’s identity IDs,  the sender’s private key SfoA, 

and outputs a ciphertext g  = Sign/Encrypt(m, Sida, ID q)

Decrypt/Verify is a deterministic decryption algorithm that takes as input a ciphertext 

g  public parameters params, the receiver’s private key S j d r  and (optionally)1 a 

sender’s identity ID a before returning a valid message-signature pair (m, 5) or a 

distinguished symbol J_ if g  does not decrypt into a message bearing signer ID a 's 

signature

8 2 Properties of a Signcryption Scheme

The following, which were taken from [35] are some of the properties that we use to classify 

signcryption schemes

1 Message Confidentiality allows the communicating parties to preserve the secrecy 

of their exchange, if they choose to

1 The senders identity may be sent as part of the ciphertext or may be recovered during the early stages 
of the Decrypt/Verify algorithm
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2. Signature non-repudiation: makes it universally verifiable that a message speaks 

in the name of the signer (regardless of the ciphertext used to convey it, if any). This 

implies message authentication and integrity.

3. Ciphertext unlinkability: allows the sender to disavow creating a ciphertext for 

any given recipient, even though he or she remains bound to the valid signed message 

it contains.

4. Ciphertext authentication: allows the legitimate recipient, alone, to be convinced 

that the ciphertext and the signed message it contains were crafted by the same entity. 

This implies ciphertext integrity. It also reassures the recipient that the communica­

tion was indeed secured end-to-end.

5. Ciphertext anonymity: makes the ciphertext appear anonymous (hiding both the 

sender and the recipient identities) to anyone who does not possess the recipient 

decryption key.

Prior to the work of Barreto et al. [13], several identity-based signcryption algorithms 

had been proposed, e.g. [35, 45, 54, 81, 86, 98, 109, 142]. There is also an interesting hierar­

chical scheme [55]. Within this handful of results, only the authors of [35, 45, 54, 55, 81, 142] 

consider schemes supported by formal models and security proofs in the random oracle 

model [19]. Amongst them Chen and Malone-Lee’s proposal [45] yields the most efficient 

construction.

In this chapter we outline some of the important advances in the development of identity 

based signcryption protocols. We introduce a designated verifier variant of the Malone-Lee’s 

signcryption scheme, which resists the attack by Libert et al. on Malone-Lee’s original 

scheme. We classify a new type of attack against some pairing based cryptosystems2 and 

apply this attack to an identity based signcryption scheme by Sakai and Kasahara. We

finish with the work of Barreto et al., which was co-written by the author of this thesis.

2This was joint work by the author and Baretto.
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We do a comparison of many important identity based signcryption protocols, in terms of 

properties and performance We see that our protocol is substantially faster than any of 

the competing schemes, whilst maintaining many desirable properties

8 3 Security Definitions for Identity Based Signcryption 

Schemes

Definition [35] An identity-based signcryption scheme (IBSC) satisfies the message con­

fidentiality property (or adaptive chosen-ciphertext security IND-IBSC-CCA) if no PPT 

adversary, denoted A, has a non-negligible advantage in the following game

1 The challenger runs the Setup algorithm on input of a security parameter k and sends 

the domain-wide parameters params to the A

2 In a find stage, A  queries the following oracles

• Key Gen returns private keys associated to arbitrary identities

• Sign/Encrypt given a pair of identities ID a , IDs  and a plaintext m, this 

oracle returns an encryption under the receiver’s identity IDs  of the message m 

signed in the name of the sender ID a

• Decrypt/Verify given a pair of identities (IDA, IDs)  and a ciphertext <7, it 

generates the receiver’s private key Sidb — KeyGen(IDs) and returns either a 

valid message-signature pair (m, s) for the sender’s identity IDA or the _L symbol 

if, under the private key Sidb > g does not decrypt into a valid message-signature 

pair

3 A  produces two plaintexts mo, mi 6 M  and identities ID*A and ID*B

She must not have extracted the private key of ID*B and she obtains 

C =Sign/Encrypt(m6, Sw a , ID b ,params) for a random a bit b ^  {0,1}

4 In the guess stage, A  asks new queries as in the find stage This time, she may not issue
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a key extraction request on IDB and she cannot submit C to the Decrypt /Verify 

oracle for the target identity IDB

5 Finally, A  outputs a bit be and wins if bf = b 

A's advantage is defined as Adv(A) = |2 x Pr[6' = b] — 1|

The next definition, given in [35], considers non-repudiation with respect to signatures 

embedded in ciphertexts rather than with respect to ciphertexts themselves

Definition [35] An identity-based signcryption scheme (IBSC) is said to be existentially 

signature-unjorgeable against adaptive chosen messages and ciphertexts attacks (ESUF- 

IBSC-CMA) if no PPT adversary can succeed m the following game with a non-negligible 

advantage

1 The challenger runs the Setup algorithm on input k and gives the params to the 

adversary T

2 T  issues a number of queries as in the previous definition

3 Finally, T  outputs a triple (¿r*, ID*A, ID*B) and wins the game if the sender’s identity 

ID*a was not corrupted and if the result of the Decrypt/Verify oracle on the ciphertext 

cr* under the private key associated to ID B is a valid message-signature pair (m*, S*) 

such that no Sign/Encrypt query involved m*, ID \  and some receiver ID B (possibly 

different from ID*B) and resulted in a ciphertext a* whose decryption under the private 

key S i d >b is the alleged forgery (m*, s*,IDA)

The adversary’s advantage is its probability of success in the above game

In both of these definitions, we consider insider attacks [6] Namely, in the definition of 

message confidentiality, the adversary is able to be challenged on a ciphertext created using 

a corrupted sender’s private key, whereas in the notion of signature non-repudiation, the 

forger may output a ciphertext computed under a corrupted receiving identity
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8.4 The Identity Based Signcryption Scheme of Malone-Lee

In [86] Malone-Lee introduced the first identity based signcryption scheme An important 

contribution of this work was formally redefining the existing notions of signcryption schemes 

for the identity based setting3 His scheme has the same setup and extract algorithms as 

specified by Boneh and Franklin (see Sec 6 2) We only reproduce the Signcrypt and 

Unsigncrypt algorithms here

We assume that all participants to the protocol have access to hash functions 1-L\ 

{0,1}* -* Z* and Hz /¿r -¥ {0, l}n Where n is the length, m bits, of the message m

• Signcryption To perform signcryption to a user with public key Qidb a sender, 

with key pair {Qtda , sQida} generates a random x 6 Z* and computes the following 

values

U = xP (8 1)

h = Ux{U\\m) (8 2)

V = hsQioA + xPpub (8 3)

C = 7Î2 (e(xPpub,QiDB) ) e m  (8 4)

The resulting ciphertext is the tuple (U, V, C)

Unsigncryption To unsigncrypt the ciphertext (£/, V, C) from the user with public 

key Qida a user with key pair {Qidb , ?Qidb} computes the following values

m 712(e{U,sQiDB)) & C (8 5)

h Ti^UWrn) (8 6)

3 Although Malone-Lee’s work was pioneering, the formal model th a t he favours now appears to be th a t 
of Boyen [46]
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and then performs the following test

e(V,P) = e(hQrDA+U,Ppub) (8 7)

Malone-Lee compares his scheme with sequential use of both a Cha and Cheon signa­

ture scheme, followed by the Boneh and Franklin IBE scheme His scheme saves one /¿r 

exponentiation in the sign/encrypt stage, whilst trading two point scalar multiplications for 

a pairing and a /¿r exponentiation in the decrypt/verify stage (which take approximately 

the same time) We note that it is possible to turn this scheme into a designated verifier 

scheme, by computing U =  x Q w  and V =  (h +  x ) s Q j o  rather than h s Q j o  4- xP pub This 

achieves the mdistinguishabihty of ciphertexts property at the cost of universal verification 

We do note however, that Malone-Lee’s scheme does reduce the bandwidth of sending both 

encryption and signature separately, by one element in Q and n bits, where n is the length 

of the message m m bits

If using the designated verifier variant we see that signcryption and unsigncryption now 

become

• Signcryption To perform signcryption to a user with public key Qidb a sender, with 

key pair {QwA, sQ/da} generates a random x € Zrs and computes the following 

values

U «- xQida (8 8)

h <- Hi(U\\m) (8 9)

V (x + h)sQiDA (8 10)

C <- 7i2(e(x8QrDAiQrDB))®m (8 11)

The resulting ciphertext is the tuple (U V, C)
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• Unsigncryption To unsigncrypt the ciphertext (U, V,C) from the user with public 

key Qida a user W1̂ h key pair {QipB, $Qidb] computes the following values

m <- n 2{U,sQTDn) e C  (8 12)

h <- ni{U\\m) (8 13)

and then performs the following test

e(V, Qidb) = e{hQiDA + ^  sQfDB) (8 14)

8 4 1 Security of M alone-Lee’s Signcryption Scheme

Malone-Lee defines the notion of mdistmguishabihty of identity-based signcryptions un­

der chosen ciphertext attack However, as Libert and Quisquater point out, Malone-Lee’s 

scheme, as specified, does not have this property This is because in the original scheme 

the ciphertext contains the signature on the plaintext Given a ciphertext i/, V, C and a 

message m £ {mo, mi}, the message can be determined as follows

h f- Hi(U\\m0) (815)

e(V,P) = e{hQIDA+U,Ppub) (8 16)

If the equation verifies then the message was mo otherwise it was mi 

We note that this is not the case with our designated verifier variant, since the value 

sQidb (the receiver’s private key) is not a publicly available value, whereas the value Ppub 

is However, the ciphertext can only be verified by the intended receiver, and therefore has 

lost its universal verifiability property For the purposes of non-repudiation the receiver 

would have to surrender her private key, which is a poor result Indeed as Shin et al [124]
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point out, universal verifiability hampers resistance to chosen ciphertext attack

8 5 The Identity Based Signcryption Scheme of Sakai and 

Kasahara

We now look at the Sakai and Kasahara identity based signcryption scheme They call 

this scheme an ‘ID-Based Public Key Cryptosystem with Authentication” in [109] The 

paper introduces a number of efficient schemes However, with current knowledge, these 

schemes can only be implemented using the Weil pairing and so, although they require fewer 

pairings, they are not actually more efficient The paper is quite complex to understand, 

but it is an extremely important paper as this is the paper in which Sakai and Kasahara 

introduced their new identity based key pair

Contrary to other methods, the Sakai and Kasahara signcryption scheme depends on 

the availability of a pairing e Q\ x Q2 —> Mr where Q\ and Q2 are two distinct subgroups 

We denote Q\ = (P ) and Q2 = (Q) Importantly, it also requires a pairing e Q\ x Q2 -* Mr? 

such that e(P 4- Q, Q) = e(P, Q) and e(P + Q, P) ~  e(Q, P), which implies it can only be 

instantiated using the Weil pairing Let g = e(P, Q) = {fir) £ Mr

• Setup The KGC generates a random secret polynomial s(ic) = Yli=o six* ^ Zr[x] 

which acts as its private master key The simplest choice is d = 1, si = 1, so the 

secret key reduces to the single Z* value so The KGC publishes the points P, Q, 

g = e(P, Q), and szQ for % — 0, yd It also publishes descriptions of two hash 

functions Hq {0,1}* -¥ Z* and Hi Mr -► (0,1}*

• Key Gen A user identity is a public element u £ Z,* The KGC computes a user’s 

private key as Pu = s(?z)~lP, where the inverse is computed modulo r The cor­

responding public key can be (publicly) computed from u and the points stQ as 

Qu — Yli=oul(siQ) — S(U)Q Let Alice’s identity be a and Bob’s identity be b

• Sign/Encrypt To signcrypt a message m to Bob, Alice generates a random integer
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x E 2% aRd computes

R = 9X (8 17)

h = Ho(m) (8 18)

c = W,(7i(1+,l))® m (8 19)

S = x(hPa + Qb) (8 20)

The signcrypted message is (c, S)

• Decrypt/Verify Upon reception of the above pair, Bob computes

R = e(Pb,S) (8 21)

W  = e(S,Qa) (8 22)

m = H\{RW) © c (8 23)

h = Ho (m) (8 24)

Bob then verifies that W = Rh

8 5 1  An Attack on Sakai and Kasahara’s Signcryption Scheme

The scheme proposed by Sakai and Kasahara makes it possible to distinguish between a 

number of possible plaintexts given only the ciphertext, the public identity of the sender, 

and the KGC’s public key This also happens in Malone-Lee’s scheme, as pointed out by 

Libert and Quisquater [81]

The attack we now describe against Sakai and Kasahara’s scheme is a variant of the 

attack of Libert and Quisquater against Malone-Lee’s scheme and proceeds as follows The 

ciphertext is (c, S) We assume that Caxol knows that the plaintext m that Alice sent to 

Bob is one of the messages in a set {mo, mi} Carol computes W  e(S, Qa) and then
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ha Ho (mo) (8 25)

R0 iy feôlm°dr (8 26)

And then the test

c = %i(RoW) © m0 (8 27)

If the equation validates then the message m is equal to mo, otherwise it is equal to m\ 

Therefore, the signcryption scheme of Sakai and Kasahara does not satisfy the IND-IDSC- 

CCA (mdistmguishabihty of signcryptions) property

8 5 2 Projection Attacks Against the Sakai and Kasahara Signcryption  

Scheme

The original description of the scheme by Sakai and Kasahara does not impose any restric­

tion upon the groups over which it is defined, assuming only the existence of a bilinear, 

non-degenerate, efficiently computable pairing on those groups

As it turns out, the group choice seriously affects the security of the Sakai and Kasahara 

scheme, in the sense that the scheme structure implicitly uses the relationship between 

(P ) and (Q) for the security purpose of conceahng the signer’s private key In particular, 

when implemented on a large class of groups where the T^te or Weil pairing is especially 

efficient, it allows the recipient of a signcrypted message to obtain sufficient information to 

impersonate the sender as we show next

Definition The Frobemus endomorphism is the mapping 3> E(¥pk) —> E(¥pk), (X, Y)

(xp,yp)

Definition The trace map is the mapping tr E(¥pk) -¥ E(Fp) defined as tr(P) = P  + 

$ ( p ) + $ 2(p )+  + (p)
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We see that tr(3>(P)) = $(tr(P)) = tr(P) for any P  E E(¥pk)

The following maps

7T0 E(Fpl ) ^ T ,  n0(Q) = Q - k  ^ (Q ) ,  

7n E(¥pk) - f  B(FP), 7n(P) = k- 1 tr(P),

(8 28)

(8 29)

where A: 1 is computed modulo r, satisfy ttq(Q) = Q for any Q E T  and tti(P) = P  for any

P E J5(Fp)[r] Notice that any point R  E i?(Fpfe)[r] can be written R = ttq(R) + 7Tt(P) 

With these tools, we can mount a forgery attack against the Sakai and Kasahara scheme 

The crucial assumption is that the KGC chooses a point Q E T  (the trace zero subgroup) 

This is the case if the implementation is based on certain supersingular curves as described 

m [14, 67, 68] (such as curves of form y2 = re3 4- ax over Fp with p = 3 (mod 4), or curves 

of the form y2 = x^ — x ± 1 over F3m), or ordinary curves as suggested in [16] These are 

all popular choices, as they favour efficient implementation of the Tate or Weil pairing as 

well as other arithmetic operations4

The basic attack allows the legitimate receiver of a signcrypted message to fake other 

signcryptions from the same sender This attack proceeds as follows Bob unsigncrypts the 

received message (c, S ), obtaining R  and h Let m! be the message he wants to pretend was

4However, since we are using the Weil pairing we do not have to use the trace zero group, we can pick P  
and Q as generators of any two linearly independent subgroups of order r  in Fpt
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sent by Alice He computes

u ± - h~l %\{S) (8 30)

V «- M s ) [=tQ&] (8 31)

t i <- (8 32)

d «- (8 33)

S ' «- h!U + V (8 34)

Now Bob can use the pair (d, S') as evidence that Alice sent him m! rather than m He 

can even further disguise his ruse by using a different x, say x( = ax All he has to do is to 

set R! «- Ra, Uf 4— aU, and V1 <— aV  and use these values instead

This attack is especially annoying because, if the plaintext of any signcrypted message m 

from Alice to Bob is compromised, then a third party, Carol, can impersonate Alice and forge 

new signcrypted messages to Bob Carol simply computes h Hq (m), R = e(h~l S , Qa), 

and proceeds as above We see that, m fact, Carol needs only h, not m itself

8 6 The Identity Based Signcryption Scheme of Barreto et 

al.

We now look at the signcryption scheme of Barreto, Libert, McCullagh and Quisquater 

(BLMQ), to be presented at Asiacrypt ’05 [13] Unlike recent works of [35, 45] that present 

two-layer designs of probabilistic signature followed by a deterministic encryption, our 

construction is a smgle-layer construction jointly achieving signature and encryption on 

one side and decryption and verification on the other Although the description of our 

scheme could be modified to fit a two-layer formalism, we kept the monolithic presentation 

without hampering the non-repudiation property as, similar to [35, 45], our construction 

enables an ordinary signature on the plaintext to be extracted from any properly formed 

ciphertext using the recipient’s private key The extracted message-signature pair can be
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f o r w a r d e d  t o  a n y  t h i r d  p a r t y  m  s u c h  a  w a y  t h a t  a  s e n d e r  r e m a i n s  c o m m i t t e d  t o  t h e  c o n t e n t  

o f  t h e  p l a i n t e x t

U n l i k e  m o d e l s  o f  [ 3 5 ,  4 5 ]  t h a t  c o n s i d e r  a n o n y m o u s  c i p h e r t e x t s ,  t h e  a b o v e  a s s u m e s  t h a t  

s e n d e r s ’ i d e n t i t i e s  a r e  s e n t  i n  t h e  c l e a r  a l o n g  w i t h  c i p h e r t e x t s  A c t u a l l y ,  r e c e i v e r s  d o  n o t  

n e e d  t o  h a v e  a n y  a  p r i o r i  k n o w l e d g e  a s  t o  f r o m  w h o m  t h e  c i p h e r t e x t  e m a n a t e s  m  o u r  s c h e m e  

b u t  t h i s  s i m p l y  a l l o w s  m o r e  e f f i c i e n t  r e d u c t i o n s  m  t h e  s e c u r i t y  p r o o f s  A  s i m p l e  m o d i f i c a t i o n  

o f  o u r  s c h e m e  y i e l d s  a n o n y m o u s  c i p h e r t e x t s  a n d  e n a b l e s  s e n d e r s ’ i d e n t i t i e s  t o  b e  r e c o v e r e d  

b y  t h e  Decrypt/Verify a l g o r i t h m  ( w h i c h  o n l y  t h e n  t a k e s  a  c i p h e r t e x t  a n d  t h e  r e c i p i e n t ’ s  

p r i v a t e  k e y  a s  i n p u t )

8 6 1 The BLMQ Signcryption Scheme

Setup G i v e n  f c ,  t h e  P K G  c h o o s e s  b i l i n e a r  m a p  g r o u p s  (£/i, M r) o f  p r i m e  o r d e r  r > 2k 

a n d  g e n e r a t o r s  Q  E Q2, P  — i>(Q) £  Qi» w h e r e  ip i s  a n  e f f i c i e n t l y  c o m p u t a b l e  d i s t o r t i o n  

m a p  f r o m  Q2 t o  Qi, q =  e ( P ,  Q) € fj,T I t  t h e n  c h o o s e s  a  r a n d o m  m a s t e r  k e y  s  £  Z J ,  

a  s y s t e m - w i d e  p u b l i c  k e y  Qpub = sQ £ Q2 a n d  h a s h  f u n c t i o n s  H \  { 0 , 1 } *  — >  Z * ,  

H 2 { 0 , 1 } *  x  — ► Z* a n d  fiT —> { 0 ,  l } n  T h e  p u b l i c  p a r a m e t e r s  a r e

params =  {£ 1 , £2 , Mr, P, Qpub, # 1 , #2, # 3}

Key Gen f o r  a n  i d e n t i t y  I D ,  t h e  p r i v a t e  k e y  i s  S jd  —  Hi(id)+sQ £  G2

Sign/Encrypt g i v e n  a  m e s s a g e  m  €  { 0 ,  l } n ,  a  r e c e i v e r ’ s  i d e n t i t y  I D s  a n d  a  s e n d e r ’s  

p r i v a t e  k e y  Sid A,

1  P i c k  a  r a n d o m  x G Z J ,  c o m p u t e  R  — gx a n d  c =  m  ©  H^(R)  e  { 0 ,  l } n

2  S e t  h =  i ? 2 ( m ,  R)  e  Z J

3  C o m p u t e  S  = (x  4 -  h)ip(SijyA)
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4  C o m p u t e  T  = x ( H \ ( I D B)P  +  ip(Qpub))

T h e  c i p h e r t e x t  i s  a  =  ( c ,  5 ,  T)  e  { 0 ,  l } n  x  ^  x  Q\

Decrypt/Verify g i v e n  a  =  ( c  S ' ,  T )  a n d  s o m e  s e n d e r ’ s  i d e n t i t y  i X U ,

1  C o m p u t e  i ?  =  e(T, S [ d b ), m  — c ©  # 3 ( i ? ) ,  a n d  h = H 2 (m, R)

2  A c c e p t  t h e  m e s s a g e  i f f  R  = e(S ,  4 - I f  t h i s  c o n d i t i o n  h o l d s ,

r e t u r n  t h e  m e s s a g e  m  t o g e t h e r  w i t h  t h e  s i g n a t u r e  ( h ,  5 )  6  Z J  x

I f  r e q u i r e d ,  t h e  a n o n y m i t y  p r o p e r t y  i s  o b t a i n e d  b y  s c r a m b l i n g  t h e  s e n d e r ’s  i d e n t i t y  ID  a 

t o g e t h e r  w i t h  t h e  m e s s a g e  a t  s t e p  1  o f  S i g n / E n c r y p t  i n  s u c h  a  w a y  t h a t  t h e  r e c i p i e n t  r e t r i e v e s  

i t  a t  t h e  f i r s t  s t e p  o f  t h e  r e v e r s e  o p e r a t i o n  T h i s  c h a n g e  d o e s  n o t  i m p l y  a n y  c o m p u t a t i o n a l  

p e n a l t y  i n  p r a c t i c e  b u t  i n d u c e s  m o r e  e x p e n s i v e  s e c u r i t y  r e d u c t i o n s  I n  o r d e r  f o r  t h e  p r o o f  

t o  h o l d ,  ID  a m u s t  b e  a p p e n d e d  t o  t h e  i n p u t s  o f  H 2

8 6 2 Security results

T h e  f o l l o w i n g  t h e o r e m s  p r o v e  t h e  s e c u r i t y  o f  t h e  s c h e m e  m  t h e  r a n d o m  o r a c l e  m o d e l  u n d e r  

t h e  s a m e  i r r e f l e x i v i t y  a s s u m p t i o n 5  a s  B o y e n ’ s  s c h e m e  [ 3 5 ]  t h e  S i g n / E n c r y p t  a l g o r i t h m

i s  a s s u m e d  t o  a l w a y s  t a k e  d i s t i n c t  i d e n t i t i e s  a s  i n p u t s  ( i n  o t h e r  w o r d s ,  a  p r i n c i p a l  n e v e r

e n c r y p t s  a  m e s s a g e  b e a r i n g  h i s  s i g n a t u r e  u s i n g  h i s  o w n  i d e n t i t y )

Theorem 8 6 1 Assume that an IND-IDSC-CCA adversary A  has an advantage e against 

our scheme when running in time r ,  asking q ^  queries to random oracles H l (1 =  1 , 2 , 3 ) ,  

qse signature/encryption queries and q^v queries to the decryption/verification oracle Then 

there is an algorithm B to solve the q-BDHIP for q =  q/ l l  with probability

5Irreflexivity assumption A term coined by Boyen meaning that the sender and reciever identities cannot 
be the same
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withm a time r' < r + 0(qse + q*,)Tp + 0(g^)Tmu!i + 0(qdvqh2)rexp where Texp and Tm uU  

are respectively the costs of an exponentiation m  Qt and a multiplication tn Q2 whereas t p 

i s  the complexity of a pairing computation

Proof  A l g o r i t h m  B  t a k e s  a s  i n p u t  (P, Q, a Q } a 2Q, ,cegQ)  a n d  a t t e m p t s  t o  e x t r a c t  

e ( P ,  Q ) 1 / “  f r o m  i t s  i n t e r a c t i o n  w i t h  A

I n  a  p r e p a r a t i o n  p h a s e ,  B  s e l e c t s  I  ̂  { 1 ,  , q u w } 1 e l e m e n t s  Z g  ^  Z*p a n d

w \ ,  jWe-hWi+i ,w q <^Z*  F o r 2  =  l ,  , ¿ — 1 , ^ + 1 ,  ,  q, i t  c o m p u t e s  I z =  It — A s

i n  t h e  t e c h n i q u e  o f  [ 2 8 ]  a n d  i n  l e m m a  5  5  2 , i t  s e t s  u p  g e n e r a t o r s  G2 £ G 2,G \  =  ip{G2) G  G\ 

a n d  a n o t h e r  G2 e l e m e n t  U = a G 2 s u c h  t h a t  i t  k n o w s  q —  1  p a i r s  ( i w l5  H l =  ( l / ( w t  +  a ))G 2) 

f o r  1 6  { 1 ,  > ? } \ { ^ }  T h e  s y s t e m - w i d e  p u b l i c  k e y  Qpub i s  c h o s e n  a s

QPub = ~ U  -  h G 2 = { - a  -  I e)G 2

s o  t h a t  i t s  ( u n k n o w n )  p r i v a t e  k e y  i s  i m p l i c i t l y  s e t  t o  x  = —a  —  J *  e  Z *  F o r  a l l  1 e

{ 1 ,  ,  g}\{£}> w e  h a v e  ( I „  - H z) = (Iu  ( 1 / ( J Z 4 -  x))G 2)

B  t h e n  i n i t i a l i z e s  a  c o u n t e r  v  t o  1  a n d  s t a r t s  A  o n  i n p u t  o f  {G\, G2 ,  Qpub) T h r o u g h o u t

t h e  g a m e ,  w e  a s s u m e  t h a t  % i y - q u e r i e s  a r e  d i s t i n c t ,  t h a t  t h e  t a r g e t  i d e n t i t y  ID*B i s  s u b m i t t e d  

t o  H w  a t  s o m e  p o i n t  a n d  t h a t  a n y  q u e r y  i n v o l v i n g  a n  i d e n t i t y  I D  c o m e s  a f t e r  a  H w - q u e r y  

o n  ID

-  H w - q u e r i e s  ( l e t  u s  c a l l  I D U t h e  i n p u t  o f  t h e  uih o n e  o f  s u c h  q u e r i e s )  B  a n s w e r s  I u 

and increments v

- - q u e r i e s  o n  i n p u t  ( M ,  r) B  r e t u r n s  t h e  d e f i n e d  v a l u e  i f  i t  e x i s t s  a n d  a  r a n d o m

Z* o t h e r w i s e  T o  a n t i c i p a t e  p o s s i b l e  s u b s e q u e n t  D e c r y p t / V e r i f y  r e q u e s t s ,  B 

a d d i t i o n a l l y  s i m u l a t e s  r a n d o m  o r a c l e  H 3  o n  i t s  o w n  t o  o b t a i n  / 1 3  =  Hz(r) £  { 0 , 1  } n  

a n d  s t o r e s  t h e  i n f o r m a t i o n  ( M , r , c  =  M  ©  / i 3 , 7  =  r e (G \ ,G 2 ) H { i r )  m  L 2

-  i i / 3 - q u e r i e s  f o r  a n  i n p u t  r  £  Qt  B  r e t u r n s  t h e  p r e v i o u s l y  a s s i g n e d  v a l u e  i f  i t  e x i s t s
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a n d  a  r a n d o m  h 3  ^  { 0 ,  l } n  o t h e r w i s e  I n  t h e  l a t t e r  c a s e ,  t h e  i n p u t  r  a n d  t h e  r e s p o n s e  

/ ¿ 3  a r e  s t o r e d  m  a  l i s t  £ 3

-  KeyGen q u e r i e s  o n  a n  i n p u t  I D U i f  v — P, t h e n  B  f a i l s  O t h e r w i s e ,  i t  k n o w s  t h a t  

U w (ID v)  -  Iv  a n d  r e t u r n s  - H u =  ( 1  ¡ ( Iw +  a ; ) )  G2 G  G2

- Sign/Encrypt q u e r i e s  f o r  a  p l a i n t e x t  M  a n d  i d e n t i t i e s  ( I D 4 , I D s )  — ( I D ^ I D U) f o r

G  { 1 ,  iq'Hw} w e  o b s e r v e  t h a t ,  i f  fj, £  £, B  k n o w s  t h e  s e n d e r s  p r i v a t e  k e y  

S i  Dp ~  —Hfi a n d  c a n  a n s w e r  t h e  q u e r y  a c c o r d i n g  t o  t h e  s p e c i f i c a t i o n  o f  Sign /Encrypt 

W e  t h u s  a s s u m e  ¡J, = £ a n d  h e n c e  v ^  i  b y  t h e  i r r e f l e x i v i t y  a s s u m p t i o n  O b s e r v e  t h a t  

B  k n o w s  t h e  r e c e i v e r ’ s  p r i v a t e  k e y  S ro u = —H u b y  c o n s t r u c t i o n  T h e  d i f f i c u l t y  i s  t o  

f i n d  a  r a n d o m  t r i p l e  ( 5 ,  T ,  h) G  Gi x Gi x  Z *  f o r  w h i c h

e(T S ,Du) =  e(S, Q JD,)e (G i, G2)~h (8 35)

w h e r e  Q w e = h G 2  +  Qpub T o  d o  s o ,  B  r a n d o m l y  c h o o s e s  i ,  h Z *  a n d  c o m p u t e s  

S  =  tip(SiD„) = -~tip(Hy), T  = tifriQiD,) ~  hij>{QiDu) w h e r e  Q IDv =  I UG2 +  Qpub 

i n  o r d e r  t o  o b t a i n  t h e  d e s i r e d  e q u a l i t y  r =  e ( T ,  Sid„) — e ( 5 ,  Q / D j ) e ( C ? i ,  G2)~h =  

e('ip(STDu)̂  QiDt)le{Gii (*2)~h b e f o r e  p a t c h i n g  t h e  h a s h  v a l u e  H ^r (M^v)  t o  h (B  f a i l s  

i f  i s  a l r e a d y  d e f i n e d  b u t  t h i s  o n l y  h a p p e n s  w i t h  p r o b a b i l i t y  (qse +  q ^ r ) /2 k) T h e  

c i p h e r t e x t  a  =  (M  ©  H s (r ) ,S ,T )  i s  r e t u r n e d

-  Decrypt/Verify q u e r i e s  o n  a  c i p h e r t e x t  a =  (c, 5 ,  T)  f o r  i d e n t i t i e s  (IDa, IDs)  =  

(ID^, IDU) w e  a s s u m e  t h a t  v = £ ( a n d  h e n c e  fi 7̂  £ b y  t h e  i r r e f l e x i v i t y  a s s u m p t i o n ) ,  

b e c a u s e  o t h e r w i s e  B  k n o w s  t h e  r e c e i v e r ’ s  p r i v a t e  k e y  S i u v = ~ H U a n d  c a n  n o r m a l l y  

r u n  t h e  Decrypt/Verify a l g o r i t h m  S i n c e  \i>^ £ ,B  h a s  t h e  s e n d e r ’ s  p r i v a t e  k e y  S / d m a n d  

a l s o  k n o w s  t h a t ,  f o r  a l l  v a l i d  c i p h e r t e x t s ,  l o g SlD^(ip~l (S) — h S jo „ )  =  l o g ^ ( q / D i / ) ( T ) ,  

w h e r e  h = l-L^r (M ,r )  i s  t h e  h a s h  v a l u e  o b t a i n e d  m  t h e  Sign/Encrypt a l g o r i t h m  a n d
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Q i d v 4 - Qpub H e n c e ,  w e  h a v e  t h e  r e l a t i o n

e(T,  5 /DJ  =  e M Q i o J r f - ' i S )  ~  hSIDll) (8 36)

which yields e(T, 5 7 d J  =  e(V’(Q/D1/),«/>_1 {S))e(ip(QiD„), SrDli)~h We observe that 

t h e  l a t t e r  e q u a l i t y  c a n  b e  t e s t e d  w i t h o u t  i n v e r t i n g  ip a s  e{'ip{QiDt,)i'4>~l {S)) = 

e ( £ ,  Qid„)  T h e  q u e r y  i s  t h u s  h a n d l e d  b y  c o m p u t i n g  7  —  e ( 5 ,  Q jd ^ ) j  w h e r e  Q id „  =  

^ ^ 2  4 - Qpub-, a n d  s e a r c h i n g  t h r o u g h  l i s t  L 2 f o r  e n t r i e s  o f  t h e  f o r m  (Mt, rl: / i 2 , n  c ,  7 )  

i n d e x e d  b y  z  £  { 1 ,  I f  n o n e  i s  f o u n d ,  a  i s  r e j e c t e d  O t h e r w i s e ,  e a c h  o n e  o f

t h e m  i s  f u r t h e r  e x a m i n e d  f o r  t h e  c o r r e s p o n d i n g  i n d e x e s ,  B  c h e c k s  i f

e {T ,S 1 DJ l e { S  QID„) =  e W > ( Q / o J ,  S IDJ ~ h* * (8 37)

( t h e  p a i r i n g s  a r e  c o m p u t e d  o n l y  o n c e  a n d  a t  m o s t  qu^r e x p o n e n t i a t i o n s  a r e  n e e d e d ) ,  

m e a n i n g  t h a t  (8 36) i s  s a t i s f i e d  I f  t h e  u n i q u e  % £  { 1 ,  , # 7 ^  }  s a t i s f y i n g  (8 37)

i s  d e t e c t e d ,  t h e  m a t c h i n g  p a i r  ( M j ,  (¡12,1, S))  i s  r e t u r n e d  O t h e r w i s e ,  a  i s  r e j e c t e d  

O v e r a l l ,  a n  i n a p p r o p r i a t e  r e j e c t i o n  o c c u r s  w i t h  p r o b a b i l i t y  s m a l l e r  t h a n  q^v/ 2k a c r o s s  

t h e  w h o l e  g a m e

A t  t h e  c h a l l e n g e  p h a s e ,  A  o u t p u t s  m e s s a g e s  ( M o ,  M^)  a n d  i d e n t i t i e s  [ ID a , ID g )  f o r  w h i c h  

s h e  n e v e r  o b t a i n e d  ! £ > # ’ s  p r i v a t e  k e y  I f  ID g  ^  I D B  a b o r t s  O t h e r w i s e ,  i t  p i c k s  £  Z * ,

c ^  { 0 ,  l } n  a n d  S '  t o  r e t u r n  t h e  c h a l l e n g e  cr* =  ( c ,  S ' ,  T)  w h e r e  T  — — £Gi  £  Q\ I f  w e  

d e f i n e  p = £ /a  a n d  s i n c e  x  = —a  —  / ¿ ,  w e  c a n  c h e c k  t h a t

T = —£Gi = — apG\ = (It + x)pG\ = pItG\ 4  p^(Qpub) (8 38)

A  c a n n o t  r e c o g n i z e  t h a t  a* i s  n o t  a  p r o p e r  c i p h e r t e x t  u n l e s s  s h e  q u e r i e s  o r  H 3 o n  

e ( C ? i ,  G2Y  A t  t h e  g u e s s  s t a g e ,  h e r  v i e w  i s  s i m u l a t e d  a s  b e f o r e  a n d  h e r  e v e n t u a l  o u t p u t  i s  

i g n o r e d  S t a n d a r d  a r g u m e n t s  c a n  s h o w  t h a t  a  s u c c e s s f u l  A  i s  v e r y  l i k e l y  t o  q u e r y  o r

o n  t h e  i n p u t  e(G  1 ,  G2)p i f  t h e  s i m u l a t i o n  i s  i n d i s t i n g u i s h a b l e  f r o m  a  r e a l  a t t a c k  e n v i r o n m e n t
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T o  p r o d u c e  a  r e s u l t ,  B  f e t c h e s  a  r a n d o m  e n t r y  ( M ,  r ,  7 ^ , 0 , 7 )  o r  ( r ,  )  f r o m  t h e  l i s t s

L 2 o r  L 3  W i t h  p r o b a b i l i t y  1 / ( 2 qu^T +  Qh3) ( a s  L 3  c o n t a i n s  n o  m o r e  t h a n  q ^ r +  q

r e c o r d s  b y  c o n s t r u c t i o n ) ,  t h e  c h o s e n  e n t r y  w i l l  c o n t a i n  t h e  r i g h t  e l e m e n t  r = e (G \ ,G 2)p =

e ( P ,  Q )f(a)2&a, w h e r e  f ( z )  = YllZ 0  1S  p o l y n o m i a l  f o r  w h i c h  G2 =  f { a )Q  T h e

g - B D H I P  s o l u t i o n  c a n  b e  e x t r a c t e d  b y  n o t i n g  t h a t ,  i f  7 *  —  e ( P ,  Q ) 1 ^ ,  t h e n

q- 2  9 - 2

e(Gu  G i) 1̂  =  7 * ( c “ ) e (  £  c I + 1 ( a ' P ) ,  c0Q )e{G l , £  C j + i W )
1 = 0  3=0

I n  a n  a n a l y s i s  o f  5 ’ s  a d v a n t a g e ,  w e  n o t e  t h a t  i t  o n l y  f a i l s  m  p r o v i d i n g  a  c o n s i s t e n t  

s i m u l a t i o n  b e c a u s e  o n e  o f  t h e  f o l l o w i n g  i n d e p e n d e n t  e v e n t s

E\ A  d o e s  n o t  c h o o s e  t o  b e  c h a l l e n g e d  o n  IDg

E 2 B  a b o r t s  i n  a  S i g n / E n c r y p t  q u e r y  b e c a u s e  o f  a  c o l l i s i o n  o n  1-L̂ r

£ 3  B  r e j e c t s  a  v a l i d  c i p h e r t e x t  a t  s o m e  p o i n t  o f  t h e  g a m e

W e  c l e a r l y  h a v e  P r [ —< £ 7 i ]  =  1  / q u w a n d  w e  a l r e a d y  o b s e r v e d  t h a t  P t[E2] <  qSe{qse + q u ^ )  

a n d  P r ^ ]  <  q ^ j 2 fc W e  t h u s  f i n d  t h a t

p , h a  A A -,E,\ > ± -  (1 -  ( l  -  5 )

W e  o b t a i n  t h e  a n n o u n c e d  b o u n d  b y  n o t i n g  t h a t  B  s e l e c t s  t h e  c o r r e c t  e l e m e n t  f r o m  L 2 o r  

L 3  w i t h  p r o b a b i l i t y  l / ( 2q ^ (ir + 9 / i 3 )  I t s  w o r k l o a d  i s  d o m i n a t e d  b y  0 (q^i w ) m u l t i p l i c a t i o n s  

i n  t h e  p r e p a r a t i o n  p h a s e ,  0 (q$e +  q^v) p a i r i n g  c a l c u l a t i o n s  a n d  0 (qdvq'Hilr) e x p o n e n t i a t i o n s  

m  Qt  i n  i t s  e m u l a t i o n  o f  t h e  S i g n / E n c r y p t  a n d  D e c r y p t / V e r i f y  o r a c l e s  □

Theorem 8 6 2 Assume there exists an ESUF-IBSC-CMA attacker A  that makes qht 

queries to random oracles H z (1 =  1 , 2 , 3 ) ,  qse signature/ encryption queries and q^v queries 

to the decryption/verification oracle Assume also that ,  within a time r ,  A  produces a

forgery with probability e  >  1 0 ( g s e  +  l ) ( g s e  +  qh2) /2 k Then, there is an algorithm B that is
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able to solve the q-SDHP for q = q̂  in expected time

J  ^  ioncoc„  „ T ^((^se  +  Qdv)̂ p) +  qdvQh2Texp , r\t ^
r  < 120686% ,  e(i _ l/2 fc)(l — g/2*)------- mult'

where rmuit, rexp and rp denote the same quantities as in theorem 8.6.1.

Proof. T h e  p r o o f  i s  s i m i l a r  t o  t h e  o n e  o f  t h e o r e m  ? ? .  N a m e l y ,  i t  s h o w s  t h a t  a  f o r g e r  i n  

t h e  E S U F - I B S C - C M A  g a m e  i m p l i e s  a  f o r g e r  i n  a  c h o s e n - m e s s a g e  a n d  given i d e n t i t y  a t t a c k .  

U s i n g  t h e  f o r k i n g  l e m m a  [103, 104], t h e  l a t t e r  i s  i n  t u r n  s h o w n  t o  i m p l y  a n  a l g o r i t h m  t o  

s o l v e  t h e  ^ - S t r o n g  D i f f i e - H e l l m a n  p r o b l e m .  M o r e  p r e c i s e l y ,  q u e r i e s  t o  t h e  S i g n / E n c r y p t  a n d  

D e c r y p t / V e r i f y  o r a c l e s  a r e  a n s w e r e d  a s  i n  t h e  p r o o f  o f  t h e o r e m  8.6.1 a n d ,  a t  t h e  o u t s e t  o f  t h e  

g a m e ,  t h e  s i m u l a t o r  c h o o s e s  p u b l i c  p a r a m e t e r s  i n  s u c h  a  w a y  t h a t  i t  c a n  e x t r a c t  p r i v a t e  k e y s  

a s s o c i a t e d  t o  a n y  i d e n t i t y  b u t  t h e  o n e  w h i c h  i s  g i v e n  a s  a  c h a l l e n g e  t o  t h e  a d v e r s a r y .  B y  

d o i n g  s o ,  t h a n k s  t o  t h e  i r r e f l e x i v i t y  a s s u m p t i o n ,  i t  i s  a b l e  t o  e x t r a c t  c l e a r  m e s s a g e - s i g n a t u r e

p a i r s  f r o m  c i p h e r t e x t s  p r o d u c e d  b y  t h e  f o r g e r  ( a s  i t  k n o w s  t h e  p r i v a t e  k e y  o f  t h e  r e c e i v i n g

i d e n t i t y  ID*B). □

W e  n o w  r e s t a t e  t h e o r e m  8.6.1 f o r  t h e  v a r i a n t  o f  o u r  s c h e m e  w i t h  a n o n y m o u s  c i p h e r ­

t e x t s .  T h e  s i m u l a t o r ’ s  w o r s t - c a s e  r u n n i n g  t i m e  i s  a f f e c t e d  b y  t h e  f a c t  t h a t ,  w h e n  h a n d l i n g  

Decrypt/Verify r e q u e s t s ,  s e n d e r s ’ i d e n t i t i e s  a r e  n o t  k n o w n  i n  a d v a n c e .  T h e  r e d u c t i o n  

i n v o l v e s  a  n u m b e r  o f  p a i r i n g  c a l c u l a t i o n s  w h i c h  i s  q u a d r a t i c  i n  t h e  n u m b e r  o f  a d v e r s a r i a l  

q u e r i e s .

Theorem 8.6.3. Assume that an IND-IDSC-CCA adversary A  has an advantage e against 

our scheme when running in time r, asking qquer i es  to random oracles Hi (i = 1,2,3), 

qse signature/encryption queries and qdv queries to the decryption/verification oracle. Then 

there is an algorithm B to solve the q-BDHIP for q = q/ll with probability

J  ^  ______________e________________  ( 1 _  Qse ~t~ qhj \  (-t Qdv \
Qhi (2 ^2  +  Qhs) \  2* )  \  2k )

within a time t' < r + 0(q06 + qdvqh2)rp + 0(q^)rmuii ^ 0 (q dvqh2)rGxp where rcxp, rmult and
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rp denote the same quantities as m  previous theorems

Proof  T h e  s i m u l a t o r  i s  t h e  s a m e  a s  m  t h e o r e m  8  6  1  w i t h  t h e  f o l l o w i n g  d i f f e r e n c e s  ( r e c a l l  

t h a t  s e n d e r s ’ i d e n t i t i e s  a r e  p r o v i d e d  a s  i n p u t s  t o

-  ? ^ r - q u e n e s  o n  i n p u t  (IDa->M, r) B  r e t u r n s  t h e  p r e v i o u s l y  d e f i n e d  v a l u e  i f  i t  e x i s t s  

a n d  a  r a n d o m  ^  Z *  o t h e r w i s e  T o  a n t i c i p a t e  s u b s e q u e n t  D e c r y p t / V e r i f y  r e q u e s t s ,  

B  s i m u l a t e s  o r a c l e  H$ t o  o b t a i n  h 3  =  Hs(r)  E  { 0 ,  l } n + n °  ( w h e r e  n o  i s  t h e  m a x i m u m  

l e n g t h  o f  i d e n t i t y  s t r i n g s )  a n d  s t o r e s  M , r , c  =  (M\\IDsIDa) ©  ¿1 3 , 7  =  

r e (G i ,G 2)'Utir) i n  l i s t  L 2

- D e c r y p t / V e r i f y  q u e r i e s  g i v e n  a  c i p h e r t e x t  a — ( c ,  5 ,  T)  a n d  a  r e c e i v e r ’ s  i d e n t i t y  I D s  =  

I D V w e  a s s u m e  t h a t  u =  t  b e c a u s e  o t h e r w i s e  B  k n o w s  t h e  r e c e i v e r ’ s  p r i v a t e  k e y  T h e  

s i m u l a t o r  B  d o e s  n o t  k n o w  t h e  s e n d e r ’ s  i d e n t i t y  I D  a  b u t  k n o w s  t h a t  I D A ^  I  D u I t  

a l s o  k n o w s  t h a t ,  f o r  t h e  p r i v a t e  k e y  S I D s ,  logSjDs -  h S rDs) =  l o g ^ ^ T ) ,  

a n d  h e n c e

e ( T ,S IDs) =  e ^ { Q IDu) , r \ S )  -  h S IDs), ( 8  3 9 )

w h e r e  h =  r )  i s  t h e  h a s h  v a l u e  o b t a i n e d  i n  t h e  Sign/ Encrypt a l g o r i t h m

a n d  QiDv  =  IvG^ + Qpub T h e  q u e r y  i s  h a n d l e d  b y  s e a r c h i n g  t h r o u g h  l i s t  L 2 f o r  e n t r i e s  

o f  t h e  f o r m  [ ID s:i-> M u h2%̂ c ,  7 * )  i n d e x e d  b y  1 £  { 1 ,  ,  q% }  I f  n o n e  i s  f o u n d ,  t h e

c i p h e r t e x t  i s  r e j e c t e d  O t h e r w i s e ,  e a c h  o n e  o f  t h e s e  e n t r i e s  f o r  w h i c h  ID$,z  7 ^  I D V i s  

f u r t h e r  e x a m i n e d  b y  c h e c k i n g  w h e t h e r  % — e(S, 'Hw{IDs,t )Q  4 -  Qpub) a n d

e ( T ,, S ' / o S i ) / e ( 5 J Q / d J  =  e ( ^ ( Q / D „ ) i  Sids 1 ( 8  4 0 )

( a t  m o s t  3 q ^ r +  1  p a i r i n g s  a n d  qu^T e x p o n e n t i a t i o n s  m u s t  b e  c o m p u t e d ) ,  m e a n i n g  

t h a t  e q u a t i o n  ( 8  3 9 )  i s  s a t i s f i e d  a n d  t h a t  t h e  c i p h e r t e x t  c o n t a i n s  a  v a l i d  m e s s a g e  

s i g n a t u r e  p a i r  i f  b o t h  r e l a t i o n s  h o l d  I f  B  d e t e c t s  a n  i n d e x  1 £  { 1 ,  , qu ^ r }  s a t i s f y i n g

t h e m ,  t h e  m a t c h i n g  p a i r  ( M t , (h2^  S))  i s  r e t u r n e d  O t h e r w i s e ,  o  i s  r e j e c t e d  a n d  s u c h  

a  w r o n g  r e j e c t i o n  a g a i n  o c c u r s  w i t h  a n  o v e r a l l  p r o b a b i l i t y  s m a l l e r  t h a n  qdv/ 2k
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□

T h e o r e m  8  6  2  c a n  b e  s i m i l a r l y  r e s t a t e d  a s  i t s  r e d u c t i o n  c o s t  i s  a f f e c t e d  m  t h e  s a m e  w a y

8 7 Conclusion

I n  t h i s  s e c t i o n  w e  h a v e  l o o k e d  a t  a  n u m b e r  o f  s i g n c r y p t i o n  s c h e m e s  T h e  p r o p e r t i e s  t h a t  

v a r i o u s  s i g n c r y p t i o n  s c h e m e s  o f f e r  a r e  q u i t e  v a r i e d ,  a n d  t h e  t e r m  “ s i g n c r y p t i o n ”  c a n  o n l y  

b e  l o o s e l y  d e f i n e d  i n  r e a l i t y  T h e r e  i s  s t i l l  d e b a t e  o v e r  w h i c h  p r o p e r t i e s  a r e  a d v a n t a g e o u s ,  

a n d  t h i s  p r o b a b l y  c o m e s  d o w n  t o  t h e  r e q u i r e m e n t s  o f  t h e  i n d i v i d u a l  a p p l i c a t i o n  T h e r e  

a r e  s e v e r a l  i d e n t i t y  a n d  n o n - i d e n t i t y  b a s e d  s i g n c r y p t i o n  s c h e m e s ,  i n c l u d i n g  a  n o n - i d e n t i t y  

b a s e d  s i g n c r y p t i o n  s c h e m e  b r o k e n  b y  t h e  a u t h o r  o f  t h i s  t h e s i s  i n  a  p e r s o n a l  c o m m u n i c a t i o n  

w i t h  i t s  a u t h o r s  [ 7 1 ]

I n  t h i s  r e v i e w  w e  h a v e  c o n c e n t r a t e d  o n  i d e n t i t y  b a s e d  s i g n c r y p t i o n  s c h e m e s  W e  h a v e  

i n t r o d u c e d  a  n e w  s i g n c r y p t i o n  s c h e m e  b a s e d  o n  t h e  i d e n t i t y  b a s e d  k e y  p a i r  o f  S a k a i  a n d  

K a s a h a r a  a n d  w e  n o t e  t h a t  m  p e r f o r m a n c e  t e r m s  i t  r a n k s  w e l l  w i t h  i t s  p e e r s  T h i s  i s  

d e m o n s t r a t e d  i n  T a b l e  8  1

S i g n / E n c r y p t D e c r y p t / V e r i f y
s i g n c r y p t i o n  s c h e m e e x p m u l p a i r i n g s t i m e  ( m s ) e x p m u l p a i r i n g s t i m e  ( m s )

B o y e n 1 3 1 4 5 9 0 2 4 8 7 6
C h o w - Y  m - H u i - C h o w 0 2 2 5 3 2 0 1 4 7 8 2

L i b e r t - Q u i s q u a t e r  ( b a s i c ) 0 2 2 5 3 2 0 1 4 7 8 2
L i b e r t - Q u i s q u a t e r  ( s h o r t ) 0 3 1 4 5 4 0 1 2 4 3 8

M a l o n e - L e e 0 3 1 4 5 4 0 1 3 6 1 0
C  h e n -  M a l o  n e -  L e e 0 3 1 4 5 4 0 1 3 6 1 0
S a k a i - K a s a h a r a f 2 1 + 1 § 0 2 0 4 1 0 2 5 7 0
BLMQ (ours) 1 2 0 193 1 0 2 349

T a b l e  8  1  C o m p a r i s o n  o f  S i g n c r y p t i o n  S c h e m e s
(f) This scheme requires the Weil pairing

(§) One PSM is in Fpjt, though this can be made efficient by choosing the trace zero group
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Appendix A

Java Random Numbers

T h e  f o l l o w i n g  c o d e  u s e s  t h e  s o u n d  c a r d  t o  g e n e r a t e  r a n d o m  n u m b e r s  I t  f i l l s  a  l a r g e  b y t e  

a r r a y  f u l l  o f  C D  q u a l i t y  s o u n d  a n d  t h e n  p i c k s  t h e  l e a s t  s i g n i f i c a n t  b i t  o f  e a c h  1 6  b i t  f r a m e  

G i v e n  a  p a r a m e t e r  k  i t  w i l l  g e n e r a t e  a  r a n d o m  n u m b e r  x  i n  t h e  i n t e r v a l  0  <  x < 2k
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/•
Java function to generate a r a n d o m  n u m b e r  
from the input of a s o u ndcard */

public Biglnteger getRandBit 8 ( int lengthOfRandom) {

T arg e t D a t a L i n e line;
Thread thread; 
duration =  0; 
audioInputStream = Bull;

// line— in, is the mic r o p o h o n e  , we are recording C D  quality , m o n o  signal

AudioFormat format =  new AudioFormat( AudioFormat.Encoding.PCM.SIGNED, 4 4 1 0 0 ,  16,
1 , 2, 4 4 1 0 0  , true );

DataLine . Info info =  nev D a t a L i n e .I n f o (T a r g e t D a t a L i n e .class , 
format ) ;

if ( ! A u d i o S y s t e m .i a L i n e S u p p o r t e d ( info ) ) { 
return new B i g l n t e g e r ("-1") ;

}
// get and open the target data line for capture.

try {
line =  ( T a r g e t D a t a L i n e )  A u d i o S y s t e m .g e t L i n e ( info ) ;
1ine .o p e n (format , line . g e t B u f ferSize ( ) ) ;

} catch ( L i n e U n a v a i l a b l e E x c e p t i o n  ex) { 
return new B i g l n t e g e r ( " - 1 “ ) ;

} catch ( S e c u r i t y E x c e p t i o n  ex) { 
return new B i g l n t e g e r ("-1") ;

} catch (Exce p t i o n  ex) {
return new B i g l n t e g e r ( "-1") ;

}
/ /  p lay  back th e  c a p tu red  audio  data
/ /  ByteArrayOutputStream out =* new ByteArrayOutputStream ( ) ;
int fr a m e S i z e l n B y t e s  =  format .g e t FrameSize ( ) ;
int b u f f e r L e n g t h I n F r a m e s  =  line .ge t B u f f » r S i z »  () / 8;
int b u f f e r L e n g t h I n B y t e s  =  b u f f e r L e n g t h I n F r a m e s  * f r a m e S i z e I n B y t e s ; 
byte[] data =  new b y t e [b u f f e r L e n g t h I n B y t e s  ]; 
int n u m B y t e s R e a d ; 
int exponent =  0;

B iglnteger total =  new B i g l n t e g e r ("0" ) ; 
int bufin =  — 1; 
int cycles =  0;
B iglnteger BTwo =  new B i g I n t e g e r ("2" ) ; 

line . start ( ) ;

/ / S y s t e m  . o u t . p r i n t l n (  buffer  L en gth  In B y te s  ) ;
if ( ( numBy t e sRe ad =  line . read ( data , 0, buf f e r Length InByt e s )) = =  — 1) {

S y s t e m . e x i t (0);>
b y t e [] nba =  new byte[l];
// want to construct r a n d o m  n u m b e r  here
w h i le(cycles <  l e n g t h O f R a n d o m )
{
cycles =  cycles +  1; //k cycles for a 2 * k  n u m b e r  
bufin =  bufin +  2; //16bit frame so ad v a n c e  two blocks 
byte nextbit =  (byte) (1 &  data [buf in ]); //take last bit of byte 
nba [0] =  nextbit; / / c o n v e r t  to byte array
total =  ( t o t a l .m u l t i p l y (BTwo )).a d d (new B i g l n t e g e r (n b a ));//d and a

line . drain ( ) ; 
l i n e . stop ( ) ; 
line . close (); 
line =  null ;

return t o t a l ;}
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Curves

T h e  f o l l o w i n g  c o d e  a d d s  t w o  p o i n t s  m  a n  e l l i p t i c  c u r v e  T h e  c o d e  i s  s l i g h t l y  m o r e  c o m p l i ­

c a t e d  t h a n  t h e  e q u a t i o n s  g i v e n  m  C h  2  a s  t h i s  c o d e  i m p l e m e n t s  p o i n t  a d d i t i o n  a n d  p o i n t  

d o u b l i n g ,  a n d  s o m e  s l i g h t  c o m p l i c a t i o n s  i n v o l v i n g  t h e  p o i n t  a t  i n f i n i t y  O

Appendix B
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public Point add(Point e x P o i n t ) {/*
* Just check if either of the points is the point at infinity
* or if one is the negative of the other 
♦/

if(this . islnfinity ()) { 
return exPoint;

}
i f (e x P o i n t .islnfinity ()) { 

return this;
}
if ((this .negate ()). e q u a l s (exPoint )) {

Point retP =  new Point(EC); // this point is set to infinity by default 
return r e t P ;

}
B iglnteger x2 =  exPoint .getX () ;
B iglnteger y2 =  e x P o i n t .g e t Y ();
Biglnteger delta =  new B i g I n t e g e r ("0" ) ;
Biglnteger deltan =  new B i g l n t e g e r (“0");
Biglnteger deltad =  new B i g l n t e g e r ("0" ) ;

if (!x . e q u a l s (x2 )) {
deltan =  ( y2 . s u b t r a c t ( y )).m o d (E C .g etModulus ()) ; 
deltad =  ( x 2 . s u b t r a c t ( x )).m o d l n v e r s e (E C .getModulus ()) ; 
delta =  ( d e l t a n . m u l t i p l y ( d e l t a d ) ) . m o d ( EC . g e t M o d u l u s  ());

}
else if ( (x . equals ( x2 )) i i& c (! y . equal s ( new B i g Int eger (" 0 "))) ) {

Biglnteger two =  new B i g I n t e g e r ("2" ) ;
Biglnteger three =  new B i g I n t e g e r ("3" ) ;
deltan =  (( three .m u l t i p l y (x .m o d P o w (new B i g I n t e g e r ("2 " ) ,

E C . g e t M o d u l u s  ()))). a d d ( E C . g e t A ( ) ) ) . m o d ( E C . g e t M o d u l u s  ()); 
deltad =  ( t wo . mult i p 1 y ( y ) ) . mod I n ver s e ( EC . ge t Modul us ( ) ) ; 
delta =  ( deltan . mult iply ( deltad )). mod (EC . getModulus ()) ;

}
B iglnteger x3 =  ((d e l t a .m o d P o w (new B i g l n t e g e r ("2" ) ,

EC . g e t M o d u l u s  ())). subtract(x). subtract(x2 )).m o d ( E C . g e t M o d u l u s  ());
Biglnteger y3 =  ( ((x . s u b t r a c t (x 3 )).m u 11 i p 1y (d e 11a ) ) . s u b t r a c t (y )).m o d (E C .getModulus ( ) ) ;
Point retP =  new Point(EC, x3 , y 3 );

return r e t P ;

T h e  f o l l o w i n g  c o d e  i s  t h e  s i m p l e s t  a n d  s l o w e s t  i m p l e m e n t a t i o n  o f  e l l i p t i c  c u r v e  p o i n t  

s c a l a r  m u l t i p l i c a t i o n .  I t  i s  t h e  b a s i c  “ d o u b l e  a n d  a d d ”  a l g o r i t h m  a n d  i s  i n c l u d e d  h e r e  f o r  i t s  

s i m p l i c i t y .  A  m o r e  c o m p l i c a t e d  w i n d o w i n g  m e t h o d  i s  i m p l e m e n t e d  o n  t h e  a c c o m p a n y i n g

public Point m u l t i p l y ( Biglnteger exS ) {
Biglnteger S =  exS ;
Point tp =  new P o i n t (t h i s .getEC () , x, y);
Point tprt =  new P o i n t (t h i s .g e t E C ( ) ) ; / / this is the point at infinity ( r u nning total)

w h i l e ( S .b i t L e n g t h () >  0) { 
i f ( S .t e s t B i t (0)) {

tprt =  tprt . add (tp ) ; //add

tp =  tp . add (tp ) ; //double

S =  S .shiftRight ( 1 ) ; / / d ivide s by 2

return tprt ;
>
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A  J a v a  i m p l e m e n t a t i o n  o f  t h e  “ M a p  T o  P o i n t ”  f u n c t i o n  i n  B o n e h  a n d  F r a n k l i n ’ s  I B E  

s c h e m e .  T h e  f u n c t i o n  s e l e c t i v e l y  i m p l e m e n t s  t h e  f a s t e r  “ M a p  T o  P o i n t ”  f u n c t i o n  o f  M c C u l -  

l a g h  i f  t h e  b o o l e a n  i n p u t  i s  s e t  t o  false.

public Point(Curve exEC , String exID , String hash , boolean OrderQ ) throws Exception { 
int hlen ;

if ( hash.equals("SHA - 256 " ))
{hlen = 32;
}
else if(hash . equals("SHA-1 " ))
{ hlen =  20;
}
else
{

throw new Except ion (haeh +  " : ALGORITM NOT SUPPORTED
IN IDENTITY TO POINT MAPP I N G \ n T R Y  \ " S H A - l \ n OR SHA - 2 5 6 \ "" ) ;

Me ssageDigest md = Me s sageDigest . ge11nstance(hash ) ; 
md . update(exID.getBytes ())i 
byte [] s =  md.digest ( ) ;

Biglnteger p = e x E C .getModulus ( );

Biglnteger h= Biglnteger.ONE; 
int i, j;

j =0; 1=1; 
while(true ) {

h = h .multiply(new Biglnteger(”256" ) ) ; 
if (j=hlen) {

h =  h . add (new Biglnteger ( Integer . toString ( i+ +  )));
j =°;}

else {
h =  h . add ( new B i g In t e ger ( Int eger . t o S t r ing ( s [ j+  +  ])));

if ( p . cozapareTo (h) = =  — 1) 
break ;

}
h= h . mod ( p ) ;

/ / S y s t e m  . o u t . p r i n t l a  ("Hash va lue  is  +  h . t o S t r i n g  ( 1 6 ) ) ;/•
* Now we want to  form a p o in t  and use t h i s  as th e  X co—ord
• P i s  con gr u e n t  to  3 mod 4 , t h i s  makes f in d i n g  sq rt  easy

EC - exEC ;
Biglnteger ty = genY(h, EC); 
x =  getTx (); 
y =  ty ;

/ / t h i s  . c lo n e  (exEC , g e t T x ( ) ,  t y ) ;

i f  (OrderQ = =  true) / / d o e s  th e p o in t  have to  be o f  order q ,  i f  yes  do th i s  , i f  not d o n ’ t 

t h i s .multiply(exEC.getCoF ());
OnCurve =  true;
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A n d  t h e  f u n c t i o n  g e n Y ,  w h i c h  i s  u s e d  b y  “ M a p  T o  P o i n t ”  t o  f i n d  a  p o i n t  o n  t h e  c u r v e  

g i v e n  o n l y  t h e  X  c o - o r d i n a t e .

/*
F u nct ion  to  f in d  the  Y c o - o r d i n a t e  of  a po in t  , 
g iven  th e X c o - o r d i n a t e

*/
private Biglnteger g e n Y ( Biglnteger exh , Curve exEC ) { 

tx =  exh;
Biglnteger pmod =  e x E C .getModulus ( ) ;
Biglnteger delta =  e x h .m o d P o w (new B i g I n t e g e r ("3") , pmod); 
delta =  del t a . add ( exEC . get A ( ) . mult iply ( exh ) ) . mod ( pmod ) ; 
delta =  d e l t a .a d d ( e x E C . getB ()).m o d (pmod ) ;
Biglnteger exp =  (p m o d .a d d ( B i g l n t e g e r .ONE ) ) . d i v i d e ( new B i g l n t e g e r ( " 4 "  )) ; 
Bi g lnteger sqrt =  d e l t a .m o d P o w (exp ,pmod ) ;
Biglnteger norm =  s q r t .m o d P o w (new B i g l n t e g e r ( " 2 " ) , pmod ) ;

if ( d e l t a .c o m p a r e T o ( n o r m  ) i= 0)
{

return genY ( t x .a d d (B i g l n t e g e r .ONE ) , exEC ) ;
}
return sqrt ;

>
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A  J a v a  i m p l e m e n t a t i o n  o f  t(P,  Q ) ,  t h e  r e d u c e d  T a t e  p a i r i n g ,  u s i n g  M i l l e r ’ s  a l g o r i t h m .  

T h i s  c o d e  i s  r e l a t i v e l y  o p t i m i s a t i o n  f r e e  t o  m a k e  i t  m o r e  r e a d a b l e  a n d  e a s y  t o  r e l a t e  t o  

t h e  m a t h e m a t i c s  o f  c h a p t e r  3 .  T h i s  c o d e  s h o w s  c l e a r l y  t h e  r e l a t i o n s h i p  b e t w e e n  M i l l e r ’ s  

a l g o r i t h m  a n d  t h e  “ D o u b l e  a n d  A d d ”  a l g o r i t h m  f o r  e l l i p t i c  c u r v e  p o i n t  s c a l a r  m u l t i p l i c a t i o n .  

T h i s  c o d e  t a k e s  b o t h  p o i n t s  f r o m  t h e  e x t e n s i o n  f i e l d ,  s o  w i l l  b e  s l o w .  I t  m i n i m i s e s  p o l y n o m i a l  

d i v i s i o n  b y  c o m p u t i n g  t h e  m i l l e r  f u n c t i o n  a s  a  n u m e r a t o r  num a n d  d e n o m i n a t o r  denum a s  

s u g g e s t e d  b y  G a l b r a i t h  et al. [ 6 7 ] .  A  m o r e  o p t i m i s e d  v e r s i o n  o f  t h e  T a t e  p a i r i n g  i s  i n c l u d i n g  

o n  t h e  a c c o m p a n y i n g  C D .

public ZZn2 • (BCn2 P, ECn2 Q )
{

ECn2 LP =  P. c o p y ();
ECn2 LQ =  Q . copy ();

ZZn2 Qx =  Lq . getX () ;
ZZn2 Qy =  L Q .getY ( ) ;

num =  new Z Z n 2 ( t h i s .P ) j / / t h e s e  w i l l  both be s e t  to  one
denom =  new Z Z n 2 (t h i s .P ) ;

ECn2 pA =  P . copy ( ) ; / / A  =  P
GA =  pA;

int nb =  q . b i t L e ng t h ( ) ;

f or ( int i =  nb — 2;i>=0;i---)
{

n u m = n u m . m u l t i p l y ( n u m ) ;
denom =  d e n o m .m u l t i p l y ( denom ) ;

g(pA ,pA , Qx , Q y );
pA =  GA ; / / t h i s  w i l l  have changed because  o f  g ( . )

i f ( q . testBit(i ))
{

g(pA ,P , Qx , Qy ) ; 
pA =  OA ;

}}
ZZn2 res =  num . divide ( denom ) ;

if ( ( ! pA . i s Zero ( ) ) || ( res . isZero () ) ){
return new Z Z n 2 (t h i s .P ) ;}

Biglnteger e =  ( thi s . P . add ( B i g Int e ge r . ONE ) . di v ide ( thi s . q ) ) ;

ZZn2 resc =  res . conj () ; 
res =  r e s c . di v i de ( re s ) ; 
res =  r e s .p o w (e ) ;

return res ;
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T h e  f u n c t i o n  g w h i c h  i s  u s e d  i n  t h e  c o m p u t a t i o n  o f  M i l l e r ’ s  a l g o r i t h m .  T h i s  f u n c t i o n  

m u s t  w o r k  o u t  t h e  g r a d i e n t  o f  a  l i n e .

public void g (ECn2 pA , ECn2 B, ZZn2 Qx , ZZn2 Qy ) {
ZZn2 lam =  new ZZn2(P)j 
ZZn2 d ,u ,y ; 
u =  pA . getX () ; 
y =  pA.getY ( ) ;

pA = pA.add(B ) ; 
lam =  pA . get lam ( ); 
if(lam. isZero ())
{

return ;
}
if(pA . isZero ())
{

u =  u . subtract(Qx ) ;
d = new Z Zn2 (P ); / / t h i s  w i l l  be get to  one>

else
{

u =  u .subtract(Qx ) ; 
u =  u .multiply(lam ) ; 
y =  y . subtract(Qy ) ; 
u =  u .subtract(y); 
d =  pA.ge t X (); 
d = d . subtract(Qx ) ;

}
num =  num.multiply(u ) ; 
denom =  denom . mult ip ly ( d ) ;
GA =  pA ;

}

T h e  f o l l o w i n g  c o d e  i s  u s e d  t o  m u l t i p l y  t w o  f i e l d  e l e m e n t s  G  F 9 2 . T h i s  i s  t h e  b a s i s  o f  

p a i r i n g  e x p o n e n t i a t i o n .  I t  c a n  b e  u s e d  w i t h  t h e  s t a n d a r d  “ s q u a r e  a n d  m u l t i p l y ”  a l g o r i t h m  

f o r  e x p o n e n t i a t i o n  o r  m o r e  c o m p l e x  s l i d i n g  w i n d o w  m e t h o d s .

public ZZn2 multiply(ZZn2 exPoint) {
if((exPoint .getA (). equals (a)) & &  ( exPoint . getB (). equal s ( b )) ) { 
/*  same p o in t

a =  ( a + b ) ( a - b )  
b =  2ab

*/
Biglnteger sa , ta , tb , tf , ts ;

tf =  ( a . add ( b ) ) • mod ( p );
ts = ( a . subtract(b )).mod(p ) ;
ta =  ( tf . mult iply ( ts )). mod (p ) ;
sa =  ( a . add ( a ) ) . mod (p ) ;
tb =  ( b . mu It i pi y ( sa ) ) . mod ( p ) ;

return nev ZZn2(p, ta, tb);}
else {

Biglnteger t,t2,t3,tb;

t =  ( a .multiply(exPoint .getA ())).mod(p ) ;
t2 =  ( b . mult iply ( exPoint . getB ())). mod ( p ) ;
t3 =  exPoint .getA().add(exPoint .getB()).mod(p ) ;
tb =  b . add ( a ) . mod ( p ) ;
tb =  tb . multiply(t3).mod(p ) ;
tb =  tb . subtract ( t ). mod ( p ) ;
tb =  tb . subtract ( t2 ). mod ( p ) ;
t =  t . subtract ( t2 ). mod ( p ) ;

return nev ZZn2(p, t ,tb ) ;
}>
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B 1 Proof of Theorem 6 7.1

Proof  A l g o r i t h m  B  t a k e s  a s  i n p u t  (P, Q , a Q , a 2Q, ,OivQ) a n d  a t t e m p t s  t o  e x t r a c t

e(P , Q )l/ Q f r o m  i t s  i n t e r a c t i o n  w i t h  A

I n  a  p r e p a r a t i o n  p h a s e ,  B  s e l e c t s  a n  i n d e x  I  ^  { I ,  ,Qnw }i e l e m e n t s  It Z* a n d

w \ y w i - i , W £ + i  w qnw <£ Z* F o r  i  =  l ,  , i  -  1 I + \  ,QUwi lt  c o m p u t e s

L  =  h  ~  Wz A s  m  t h e  t e c h n i q u e  o f  B o n e h - B o y e n ,  i t  s e t s  u p  g e n e r a t o r s  G2 € Q2 , 

G\  =  ' 0 ( ( ? 2 )  £ Qi a n d  a n o t h e r  Q2 e l e m e n t  U = a G 2 s u c h  t h a t  i t  k n o w s  q%w — 1  p a i r s  

(■wz, H t =  ( 1  / (w l 4 -  a ))G 2 )  f o r  % G  { 1 , ,Q nw}\{^}  T h e  P u b l i c  k e y  Qpub i s  c h o s e n  a s

QPub = - U - I e G 2 = ( - a - I £)G2

s o  t h a t  i t s  ( u n k n o w n )  p r i v a t e  k e y  i s  i m p l i c i t l y  s e t  t o  x  = —a — It  G  Z*q F o r  a l l

*  G  { 1 ,  y } \ M ,  w e  h a v e  ( I , , - # , )  =  ( J „ ( 1 / ( J ,  + x) )G 2)

I n  a d d i t i o n  B  g e n e r a t e s  a  r a n d o m  v a l u e  y  ^  Z J ,  a n d  p u b l i s h e s  e(P, Q)y B  t h e n

i n i t i a l i z e s  a  c o u n t e r  v  t o  1  a n d  s t a r t s  t h e  a d v e r s a r y  A  o n  i n p u t  o f  (G 1 ,  G 2 ,  Qpub) T h r o u g h o u t  

t h e  g a m e ,  w e  a s s u m e  t h a t  q u e r i e s  a r e  d i s t i n c t ,  t h a t  t h e  t a r g e t  k e y w o r d s  W q ,  W*  a r e  

s u b m i t t e d  t o  H w  a t  s o m e  p o i n t  a n d  t h a t  a n y  q u e r y  i n v o l v i n g  a  k e y w o r d  c o m e s  a f t e r  a  

% v y - q u e r y  o n  i t

-  H w - q u e r i e s  ( l e t  u s  c a l l  W u t h e  i n p u t  o f  t h e  v ih o n e  o f  s u c h  q u e r i e s )  B  a n s w e r s  I v
1

a n d  i n c r e m e n t s  v

- T-L̂ - q u e r i e s  o n  i n p u t  7 ^ G  G t  B  r e t u r n s  a  r a n d o m  B 3 { 0 ,  l } 71 a n d  s t o r e s  t h e  p a i r  

( 7 , B 3) i n  l i s t  L 2

-  T r a p d o o r  q u e r i e s  o n  a n  i n p u t  o f  a  k e y w o r d  W u i f  v  =  t,  t h e n  t h e  s i m u l a t o r  f a i l s  

O t h e r w i s e ,  i t  k n o w s  t h a t  H w {W v) = Iu a n d  r e t u r n s  - H v — ( 1 / ( 1 ^  +  z ) )  G2 G  Q2
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A t  t h e  c h a l l e n g e  p h a s e ,  A  o u t p u t s  t w o  d i s t i n c t  k e y w o r d s  (W $,W *)  f o r  w h i c h  s h e  n e v e r  

o b t a i n e d  t h e  t r a p d o o r s  I f  ^  Wg, B  a b o r t s  O t h e r w i s e ,  w e  m a y  a s s u m e  w l o g  t h a t

W q = Wg ( t h e  c a s e  W* = Wg i s  t r e a t e d  m  t h e  s a m e  w a y )  I t  p i c k s  £  ^  Z J  a n d  B*  { 0 ,  l } n  

t o  r e t u r n  t h e  c h a l l e n g e  S* =  [A*:B*] w h e r e  A* =  —( G i  €  Q\ I f  w e  d e f i n e  p ~  ( / a  a n d  

s i n c e  x  =  ~ a  — I¿, w e  c a n  c h e c k  t h a t

A* =  —iG \  =  —apG i  =  (Ig +  x)pG\  =  pIgG\  4 -  p<ip(Qpub)

A  c a n n o t  r e c o g n i z e  t h a t  S* i s  n o t  a  p r o p e r  c i p h e r t e x t  u n l e s s  s h e  q u e r i e s  H ^r o n  

e(A*, Q ^ ^ xJrUw ŵ^ )  —  e (G \ ,G 2)yp n o r  e ( A * ,  q M ( x+'Hw(w i ) ) )  A l o n g  t h e  s e c o n d  s t a g e ,  

h e r  v i e w  i s  s i m u l a t e d  a s  b e f o r e  a n d  h e r  e v e n t u a l  o u t p u t  i s  i g n o r e d  S t a n d a r d  a r g u m e n t s  

c a n  s h o w  t h a t  a  s u c c e s s f u l  A  i s  v e r y  l i k e l y  t o  q u e r y  o n  e i t h e r  e ( A * ,  q ^ ^ x+,Hw ŵ o ) ) j  _  

e (G i ,G 2)yp o r  e(A*, Q ^ J ^ x + n w ^ ) ) )  j f  t h e  s i m u l a t i o n  i s  i n d i s t i n g u i s h a b l e  f r o m  a  r e a l  a t ­

t a c k  e n v i r o n m e n t

L e t  A s k H 2  d e n o t e  t h i s  e v e n t  I n  a  r e a l  a t t a c k ,  w e  h a v e

P r [ , 4  w i n s ]  <  P r [ ^ 4  w m s | - i A s k H 2 ] P r [ - < A s k H 2 ]  - } ~ P r [ A s k H 2 ]

C l e a r l y ,  P r [ * 4  w i n s | - i A s k H 2 ] =  1 / 2  a n d  P r | y 4  w i n s ]  <  1 / 2  +  ( l / 2 ) P r [ A s k H 2 ] O n  t h e  o t h e r  

h a n d ,  w e  h a v e

P r | y l  w i n s ]  >  P r | y 4  w i n s ] - i A s k H 2 ] ( l  —  P r [ A s k H 2 ] )  =  i  —  i p r [ A s k H 2 ]

I t  c o m e s  t h a t  e  <  | P r j y 4  w i n s ]  —  1  / 2 [  <  ^ P r [ A s k H 2 ] a n d  t h u s  P r [ A s k H 2 ] >  2 e  T h i s  

s h o w s  t h a t ,  p r o v i d e d  t h e  s i m u l a t i o n  i s  c o n s i s t e n t ,  A  i s s u e s  a  H ^ r - q u e r y  o n  e i t h e r  

e(A*,  ^ + % W ) ) )  o r  e(A * ,  Q ^y ^ x + U w ^w i  a t  S O m e  p o i n t  o f  t h e  g a m e  w i t h  p r o b a b i l i t y

a t  l e a s t  e  W i t h  p r o b a b i l i t y  e ,  a  ? ^ r - q u e r y  i n v o l v i n g  e(A*,  _ _  e ( G 1 , G 2 ) ? /p

w i l l  b e  i s s u e d  T o  p r o d u c e  a  r e s u l t ,  B  f e t c h e s  a  r a n d o m  r e c o r d  f r o m  t h e  l i s t s  L 2  

W i t h  p r o b a b i l i t y  1  / g ^ M r ,  t h e  c h o s e n  r e c o r d  c o n t a i n s  t h e  r i g h t  e l e m e n t  r  =  e (G i ,G 2)yp —
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e{P)Q)v^ a^ a i w h e r e  f ( z )  =  Y^i= q1 ^ 1  i s  t h e  p o l y n o m i a l  f o r  w h i c h  G2 =  f { a )Q  T h e  

p - B D H I P  s o l u t i o n  c a n  b e  e x t r a c t e d  b y  n o t i n g  t h a t ,  i f  7 *  =  e(P ,  Q ) 1 / “ , t h e n

p-2 p -2

e(G ,, G 2) 1/a =  7 * (cS)e( £  co Q )e (G ,, £  c ,+ i(o»)<?)
1=0 j= 0

I n  a n  a n a l y s i s  o f  B ’ s  a d v a n t a g e ,  w e  n o t e  t h a t  i t  o n l y  f a i l s  i n  p r o v i d i n g  a  c o n s i s t e n t  

s i m u l a t i o n  b e c a u s e  o n e  o f  t h e  f o l l o w i n g  i n d e p e n d e n t  e v e n t s

Ei W ^ W { i W t

E 2 B  a b o r t s  w h e n  a n s w e r i n g  a  t r a p d o o r  q u e r y

W e  c l e a r l y  h a v e  P r [ - > i ? i ]  =  (qnw ~  1 ) /  =  a n ( ^  w e  k n o w  t h a t  i m p l i e s  - > # 2

W e  t h u s  f i n d  P r [ - » £ ? i  A ->#2] =  2l q u w ^  f o l l o w s  t h a t  B  o u t p u t s  t h e  c o r r e c t  r e s u l t  w i t h  

probability 2e/(qnwqH„r ) □
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Appendix C

Timings for Signatures with 

Pre-Computation

T a b L e  C l E f f i c i e n c y  c o m p a r i s o n
V e r i f y

s i g n a t u r e  s c h e m e e x p m u l p a i r i n g s s t o r a g e t i m e  ( m s )
S O K 2 Tijlr 3 4 4 m s

P a t e r s o n i 2 1 n(xr 1 8 2 m s
P a t e r s o n 2 1 1 n^ir 1 7 7 m s

C h a C h e o n 1 2 4 3 8 m s
H e s s 1 2 Ti^r 1 7 7 m s

S K ( SIGamal) 2 2 5 3 2 m s
S ^ ( 5 c / i n o r r ) 1 2 TlUr 2 6 6 m s

BLMQ (Ours) 1 1 177ms
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Appendix D

Security proof for Smart’s Key 

Agreement Protocol

T h e o r e m  D  0  1  S m a rt’s key agreement protocol is a secure A K  protocol, assuming that 

E  is does not make any reveal queries and that the hash functions used are random oracles

Proof  C o n d i t i o n  1  h o l d s  a s  f o l l o w s  B o t h  o r a c l e s  a c c e p t  h o l d i n g  t h e  s a m e  s e s s i o n  k e y  a s  

a  d i r e c t  r e s u l t  o f  t h e  c o m m u t a t i v i t y  o f  e x p o n e n t i a t i o n  o f  m e m b e r s  o f  t h e  g r o u p  Q T h e  

s e s s i o n  k e y  i s  d i s t r i b u t e d  u n i f o r m l y  a t  r a n d o m  b y  t h e  f a c t  t h a t  b o t h  o r a c l e s  g e n e r a t e  t r u l y  

r a n d o m  x  Z  T h e r e f o r e  t h e  p r o d u c t  o f  t h e s e  e l e m e n t s  w i l l  a l s o  b e  r a n d o m  S i n c e  t h e  

e x p o n e n t  i s  r a n d o m ,  a n d  g =  e ( P ,  P)  i s  a  g e n e r a t o r  o f  t h e  g r o u p  Q,  a n d  Hk  i s  a  r a n d o m  

o r a c l e ,  t h e  s e s s i o n  k e y  w i l l  b e  u n i f o r m l y  d i s t r i b u t e d  o v e r  { 0 ,  l } fc

C o n d i t i o n  2  h o l d s  b y  t h e  f a c t  t h a t  i f  t h e y  h a v e  m a t c h i n g  c o n v e r s a t i o n s  t h e n  t h e  c o m ­

m u n i c a t i o n  w a s  g e n e r a t e d  e n t i r e l y  b y  t h e  t w o  o r a c l e s  T h e r e f o r e ,  b y  t h e  b i l i n e a r i t y  o f  t h e  

p a i r i n g  a n d  t h e  c o m m u t a t i v i t y  o f  e x p o n e n t i a t i o n  t h e y  a c c e p t  a n d  h o l d  t h e  s a m e  s e s s i o n  k e y  

C o n d i t i o n  3  h o l d s  a s  f o l l o w s  C o n s i d e r  b y  c o n t r a d i c t i o n  t h a t  AdvantageE ( k ) is  n o n -  

n e g l i g i b l e  T h e n  w e  c a n  c o n s t r u c t  f r o m  E  a n  a l g o r i t h m  T  t h a t  s o l v e s  t h e  B D H P  w i t h  

n o n - n e g l i g i b l e  a d v a n t a g e  T  i s  g i v e n  a s  i n p u t  t h e  o u t p u t  o f  t h e  B D H  g e n e r a t o r  B F 's  t a s k  

i s  t o  s o l v e  t h e  B D H P ,  n a m e l y ,  g i v e n  P ,  a P ,  bP  a n d  c P ,  c o m p u t e  v = g(P, P )abc

A l l  q u e r i e s  b y  t h e  a d v e r s a r y  E  n o w  p a s s  t h r o u g h  T  T h e  f o l l o w i n g  q u e r i e s  a r e  a l l o w e d
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t o  b e  m a d e  b y  E

T  s t a r t s  t h e  s i m u l a t i o n  b y  s e t t i n g  t h e  v a l u e  P  a n d  bP  t o  b e  t h e  K G C ’ s  g e n e r a t o r  

p o i n t  a n d  m a s t e r  p u b l i c  k e y  r e s p e c t i v e l y  T h e s e  v a l u e s ,  a l o n g  w i t h  Q,  a r e  p r o v i d e d  t o  t h e  

a d v e r s a r y  E  T  a l s o  k e e p s  t w o ,  i n i t i a l l y  e m p t y ,  l i s t s  f o r  k e e p i n g  t r a c k  o f  r a n d o m  o r a c l e  

q u e r i e s  b y  E  T h e  f i r s t  l i s t ,  K i d 3 s t o r e s  t u p l e s  o f  t h e  f o r m  ( ID l i rl ) i w h e r e  rx Z* T h i s  

w i l l  b e  e x p l a i n e d  l a t e r  T h e  s e c o n d  l i s t ,  K k} s t o r e s  t u p l e s  o f  t h e  f o r m  ( ¿ ¿ r , { 0 , 1 } * ' )

C r e a t e  F o r  t h e  j - th  o r a c l e  T  a n s w e r s  a P ,  o t h e r w i s e  T  c h e c k s  t o  s e e  i f  I D % a l r e a d y  e x i s t s  

o n  H id  I f  ^  d o e s  T  r e t r i e v e s  t h e  c o r r e s p o n d i n g  v a l u e  tiq  a n d  c r e a t e s  t h e  p u b l i c  

a n d  p r i v a t e  k e y s  a s  r / ^ P  a n d  r ip b P  r e s p e c t i v e l y  I f  H id  d o e s  n o t  c o n t a i n  ID  t h e n  

T  c h o o s e s  r / £ >  Er  Z* a n d  { I D , t i d ) i s  a d d e d  t o  H id  T  c r e a t e s  a  p u b l i c  k e y  a s  

I D  =  7 7 d P ,  a n d  c o m p u t e s  t h e  p r i v a t e  k e y  a s  r w b P  H o w e v e r ,  f o r  t h e  j - t h  o r a c l e  T  

a n s w e r s  a P  S i n c e  T  d o e s  n o t  k n o w  a ,  i t  c a n n o t  c a l c u l a t e  abP: t h e  c o r r e c t  p r i v a t e  

k e y  f o r  t h i s  o r a c l e

Hk E  i s  a l l o w e d ,  a t  a n y  t i m e ,  t o  a c c e s s  t h e  Kk  o r a c l e  o n  a n y  i n p u t  i n  t h e  i n p u t  d o m a i n  

( e l e m e n t s  o f  / / r )  K k i s  m o d e l l e d  a s  a  r a n d o m  o r a c l e  o f  t h e  t y p e  Hk  M r  - >  { 0 , 1 } * ,  

a n d  s o  t h e  q u e r y  w i l l  r e t u r n  a  v a l u e  m  { 0 , 1 } *

C o r r u p t  T  a n s w e r s  C o r r u p t  q u e r i e s  m  t h e  u s u a l  w a y ,  r e v e a l i n g  t h e  p r i v a t e  k e y  o f  t h e  o r a c l e

b e i n g  q u e r i e d  H o w e v e r ,  T  d o e s  n o t  k n o w  t h e  p r i v a t e  k e y  f o r  o r a c l e  j  I f  E  a s k s  a

C o r r u p t  q u e r y  o n  o r a c l e s  T  a b o r t s  a n d  r e t u r n s  t h e  X  s y m b o l

S e n d  T  a n s w e r s  a l l  s e n d  q u e r i e s  m  t h e  u s u a l  w a y ,  e x c e p t  i f  E  a s k s  S e n d  Yl™3 , f o r  a n y  n ,  T  

g e n e r a t e s  a  r a n d o m  sn G  Z *  a n d  a n s w e r s  sncP  R e m e m b e r  t h a t  T  d o e s  n o t  k n o w  t h e  

v a l u e  c T h i s  i s  p a r t  o f  t h e  B D H  p r o b l e m  t h a t  T  h o p e s  t o  s o l v e  w i t h  E ’s h e l p

R e v e a l  E  i s  n o t  a l l o w e d  t o  m a k e  r e v e a l  q u e r i e s

T e s t  A t  s o m e  p o i n t  E  w i l l  a s k  a  s i n g l e  T e s t  q u e r y  o f  s o m e  o r a c l e ,  w h i c h  w e  a s s u m e  i s  s o m e

o r a c l e  ^  l i ;  1 8  n o t > ?  a b o r t s  a n d  r e t u r n s  t h e  _ L  s y m b o l  S i n c e  i t  i s  p i c k e d  i t

1 An oracle a, having had a conversation with j

216



APPENDIX D SECURITY PROOF FOR SMART’S KEY AGREEMENT PROTOCOL

m u s t  h a v e  A c c e p t e d ,  a n d  n o t  b e  C o r r u p t e d  A s s u m i n g  t h a t  i t  r e c e i v e d  s o m e  v a l u e  

5P  p r i o r  t o  a c c e p t i n g ,  i t  m u s t  b e  h o l d i n g  a  s e s s i o n  k e y  o f  t h e  f o r m  ( e(abP ,  snc P ) 

e(rzbP,  5 P ) )  w h i c h  i s  j ’ s  p r i v a t e  k e y  p a i r e d  w i t h  t h e  v a l u e  i t  r e c e i v e d ,  t i m e s  z ’ s  p r i v a t e  

k e y  p a i r e d  w i t h  t h e  v a l u e  i t  r e c e i v e d  H o w e v e r ,  T  c a n n o t  c o m p u t e  t h i s  k e y  a n d  h e n c e  

c a n n o t  s i m u l a t e  t h e  q u e r y ,  s o  i t  s i m p l y  o u t p u t s  a  r a n d o m  e l e m e n t  o f  { 0 ,  l } k

I f  T  d o e s  n o t  a b o r t  a n d  E  d o e s  n o t  d e t e c t  T :s i n c o n s i s t e n c y  i n  a n s w e r i n g  t h e  T e s t  

q u e r y  t h e n  i t s  a d v a n t a g e  m  p r e d i c t i n g  t h e  c o r r e c t  s e s s i o n  k e y  s t i l l  i s  Advantage^ (k)  F o r  

t h i s  t o  b e  n o n - n e g l i g i b l e ,  E  m u s t  h a v e  q u e r i e d  e(abP, sncP)  e ^ f r P ,  5P)  t o  t h e  o r a c l e  

g i v e n  sncP  a s  i n p u t  f r o m  T ,  a n d  6P , a  v a l u e  p u r p o r t e d l y  f r o m  w i t h  s o m e  n o n - n e g l i g i b l e  

a d v a n t a g e  k'

I f ,  a t  t h e  e n d  o f  E 's  a t t a c k ,  E  d o e s  n o t  d e t e c t  a n y  i n c o n s i s t e n c i e s  m  F s  r e s p o n s e s ,  

a n d  T  d o e s  n o t  a b o r t ,  t h e n  T  p i c k s  E ) s  Ith q u e r y  t o  t h e  Tik o r a c l e  T  g u e s s ’ s  t h i s  t o  b e  

k  =  e(abP, sncP) e(rzbP,SP)  f o r  s o m e  sn I t  c a n  c a l c u l a t e  e(abP, sncP)  s i n c e  i t  k n o w s  

7  =  e(rzbP, 8P)  F o r  c l a r i t y  ( k / j ) Sn =  gabc -  t h i s  i s  j Js  p r i v a t e  k e y  p a i r e d  w i t h  t h e  v a l u e  

i t  r e c e i v e d  ( a c t u a l l y  T  m  t h i s  c a s e )  H e n c e ,  T  h a s  n o n - n e g l i g i b l e  a d v a n t a g e  i n  s o l v i n g  t h e  

B D H  p r o b l e m

W e  a s s u m e  t h a t  t h e r e  i s  s o m e  t i m e o u t  rs o n  t h e  l e n g t h  o f  a  r u n  o f  t h e  p r o t o c o l  i n c l u d i n g  

t h e  t i m e  s p e n t  m  t h e  *  s t a t e  W e  a l s o  a s s u m e  t h a t  s o m e  t i m e  r c  i s  a l l o c a t e d  t o  a l l o w  t h e  

c o n s t r u c t i o n  o f  o r a c l e s  i n  t h e  C r e a t e  q u e r y ,  a n d  t i m e  r0 a l l o c a t e d  f o r  e a c h  C o r r u p t  q u e r y  

W e  a s s u m e  t h a t  7  o r a c l e s  a r e  n e e d e d ,  a n d  t h a t  5  s e n d  q u e r i e s  a r e  n e e d e d ,  a n d  o c o r r u p t  

q u e r i e s  a r e  n e e d e d  T  w i l l  a b o r t  i f  E  d o e s  n o t  p i c k ,  f o r  i t s  t e s t  q u e r y ,  o r a c l e  % m  c o n v e r s a t i o n  

w i t h  o r a c l e  3 -  t h e r e  a r e  n  o f  t h e s e ,  w i t h  $ m e s s a g e s  i n  t o t a l  I t  w i l l  a l s o  a b o r t  i f  t h e  C o r r u p t  

q u e r y  i s  a s k e d  f o r  o r a c l e s  1 o r  j  I t  w i l l  a l s o  f a i l  i f  i t  d o e s  p i c k  t h e  c o r r e c t  Hk  r a n d o m  o r a c l e  

q u e r y  T h e  e x p e c t e d  t i m e  n e e d e d  t o  s o l v e  t h e  B D H P  i s

(1frc)(sTs)(oT0)2nKt 
csl

□
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Appendix E

Security Proof for the 

M eCullagh-Barreto Key 

Agreement

Proof  T h e  c o n d i t i o n s  1  a n d  2  d i r e c t l y  f o l l o w  f r o m  t h e  p r o t o c o l  s p e c i f i c a t i o n  T h e  p r o t o c o l  

s a t i s f i e s  t h e  c o n d i t i o n  3  i f  t h e  R e v e a l  q u e r y  i s  d i s a l l o w e d

S u p p o s e  t h a t  t h e r e  i s  a n  a d v e r s a r y  A  a g a i n s t  t h e  p r o t o c o l  w i t h  n o n - n e g l i g i b l e  p r o b a b i l i t y  

L e t  q\ a n d  b e  t h e  n u m b e r  o f  t h e  d i s t i n c t  q u e r i e s  t o  H w  a n d  H [lr r e s p e c t i v e l y  ( n o t e  t h a t  

H w  c o u l d  b e  q u e r i e d  d i r e c t l y  b y  a n  H ^ - q u e r y  o r  i n d i r e c t l y  b y  a  C o r r u p t  q u e r y  o r  a  S e n d  

q u e r y )  W i t h  t h e  h e l p  o f  A ,  w e  c a n  c o n s t r u c t  a n  a l g o r i t h m  B  t o  s o l v e  a  f c - E B C A A l  p r o b l e m  

w i t h  n o n - n e g l i g i b l e  p r o b a b i l i t y

B  s i m u l a t e s  t h e  S e t u p  a l g o r i t h m  t o  g e n e r a t e  t h e  s y s t e m  p a r a m s  

(G,fj,Tei k,P,sP,'Hw,W'fir)  i 1  e  i u s i n g  s  a s  t h e  m a s t e r  k e y  w h i c h  i t  d o e s  n o t  k n o w )  

H w  a n d  H ^r a r e  t w o  r a n d o m  o r a c l e s  c o n t r o l l e d  b y  B  S u p p o s e ,  i n  t h e  g a m e ,  t h e r e  a r e  T\ 

o r a c l e s  c r e a t e d  b y  t h e  e n g a g e d  p a r t i e s  a n d  A  H e r e ,  w e  s l i g h t l y  a b u s e  t h e  n o t a t i o n  a s  

t h e  5 - t h  o r a c l e  a m o n g  a l l  t h e  o r a c l e s  i n i t i a t e d  b y  a l l  t h e  p a r t i e s  o r  t h e  a d v e r s a r y ,  i n s t e a d  

o f  t h e  9 - t h  i n s t a n c e  o f  i T h i s  c h a n g e  d o e s  n o t  a f f e c t  t h e  s o u n d n e s s  o f  t h e  m o d e l  b e c a u s e  

s  o r i g i n a l l y  i s  j u s t  u s e d  t o  u n i q u e l y  i d e n t i f y  a n  i n s t a n c e  o f  p a r t y  i B  r a n d o m l y  c h o o s e s
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u  E f t  { 1 ,  , T }  a n d  I  Er { 1 ,  ,  g }  a n d  i n t e r a c t s  w i t h  A  m  t h e  f o l l o w i n g  w a y

•  H w - q u e r i e s  (ID i) B  m a i n t a i n s  a  l i s t  o f  t u p l e s  (ID j,  h3, d3) a s  e x p l a i n e d  b e l o w  W e

r e f e r  t o  t h i s  l i s t  a s  T lw - l i s t  T h e  l i s t  i s  i n i t i a l l y  e m p t y  W h e n  A  q u e r i e s  t h e  o r a c l e

H w  a t  a  p o i n t  I D l , B  r e s p o n d s  a s  f o l l o w s

1 I f  I D t a l r e a d y  a p p e a r s  o n  t h e  % w ~ l i s t  m  a  t u p l e  ( ID lt hz, g ^ ) ,  t h e n  B  r e s p o n d s  

w i t h  ( / A )  —  K

2  O t h e r w i s e ,  i f  t h e  q u e r y  i s  o n  t h e  I - t h  d i s t i n c t  I D ,  t h e n  B  s t o r e s  ( / D / j  / i o >  - L )

i n t o  t h e  t u p l e  l i s t  a n d  r e s p o n d s  w i t h  % w {ID j)  =  / i o

3  O t h e r w i s e ,  B  s e l e c t s  a  r a n d o m  i n t e g e r  hz(i >  0 )  f r o m  t h e  f c - E B C A A l  i n s t a n c e  

w h i c h  h a s  n o t  b e e n  c h o s e n  b y  B  a n d  s t o r e s  ( ID t 1hu (hz +  s )~ l P)  i n t o  t h e  t u p l e  

l i s t  B  r e s p o n d s  w i t h  'Hw{lD i)  =  ht

• 'tip, . - q u e r i e s  ( X ^  A t  a n y  t i m e  A  r a n  i s s u e  q u e r i e s  t o  t h e  r a n d o m  o r a c l e  T o

r e s p o n d  t o  t h e s e  q u e r i e s  B  m a i n t a i n s  a  l i s t  o f  t u p l e s  c a l l e d  7 ^ - l i s t  E a c h  e n t r y  m  

t h e  l i s t  i s  a  t u p l e  o f  t h e  f o r m  (X u H t) i n d e x e d  b y  X z T o  r e s p o n d  t o  a  q u e r y  o n  X z , 

B  d o e s  t h e  f o l l o w i n g  o p e r a t i o n s

1 I f  o n  t h e  l i s t  t h e r e  i s  a  t u p l e  i n d e x e d  b y  X t , t h e n  B  r e s p o n d s  w i t h  H x

2  O t h e r w i s e ,  B  r a n d o m l y  c h o o s e s  a  s t r i n g  H t G { 0 , 1  }n a n d  i n s e r t s  a  n e w  t u p l e

(X Z,H Z) t o  t h e  l i s t  I t  r e s p o n d s  t o  A  w i t h  H z

•  C o r r u p t ( ID Z) B  l o o k s  t h r o u g h  l i s t  T ^ v ^ - l i s t  I f  I D Z i s  n o t  o n  t h e  l i s t ,  B  q u e r i e s  

'H w (ID z) B  c h e c k s  t h e  v a l u e  o f  dz i f  dz ^ _ L ,  t h e n  B  r e s p o n d s  w i t h  dZ) o t h e r w i s e ,  B  

a b o r t s  t h e  g a m e

•  S e n d ( n ^ z j ^ )  B  f i r s t  l o o k s  t h r o u g h  t h e  l i s t  “H y p - l i s t  I f  I D % i s  n o t  o n  t h e  l i s t ,  B  

q u e r i e s  'H w (ID l) A f t e r  t h a t ,  B  c h e c k s  t h e  v a l u e  o f  t  I f  t  ^  u ,  B  r e s p o n d s  t o  t h e  

q u e r y  b y  c o r r e c t l y  f o l l o w i n g  t h e  p r o t o c o l  I f  t  — u, B  f u r t h e r  c h e c k s  t h e  v a l u e  o f  du 

a n d  t h e n  r e s p o n d s  t h e  q u e r y  d i f f e r e n t l y  a s  b e l o w  d e p e n d i n g  o n  t h i s  v a l u e
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1  I f  dt t ^ - L ,  B  a b o r t s  t h e  g a m e  W e  n o t e  t h a t  o n l y  o n e  p a r t y ’s  p r i v a t e  k e y  i s  

r e p r e s e n t e d  a s  _ L  i n  t h e  w h o l e  s i m u l a t i o n

2  O t h e r w i s e ,  B  r e s p o n d s  w i t h  y P  o b t a i n e d  f r o m  t h e  f c - E B C A A l  i n s t a n c e  

N o t e  t h a t  Yl3 x c a n  b e  t h e  i n i t i a t o r  ( i f  M  =  A )  o r  t h e  r e s p o n d e r  ( i f  M  ^  A )

•  T e s t ( ^  J  I f  t  ^  u, B  a b o r t s  t h e  g a m e  O t h e r w i s e ,  B  r a n d o m l y  c h o o s e s  a  n u m b e r  

7  £  { 0 , 1 }  a n d  g i v e s  i t  t o  A  a s  t h e  r e s p o n s e  W h e n  A  r e s p o n d s ,  B  r a n d o m l y  c h o o s e s  

a  t u p l e  f r o m  H  —  2 - l i s t  w i t h  v a l u e  X /  B  r e s p o n d s  t o  t h e  / c - E B C A A l  c h a l l e n g e r  w i t h  

t h e  v a l u e  o f  Xi = e(d3,M )  w h e r e  M  i s  t h e  i n c o m i n g  m e s s a g e  t o  o r a c l e

N o t e  t h a t  i f  t h e  g a m e  d i d  n o t  a b o r t ,  t h e  a d v e r s a r y  c a n n o t  f i n d  t h e  i n c o n s i s t e n c y  

b e t w e e n  t h e  s i m u l a t i o n  a n d  t h e  r e a l  w o r l d  T h e  a g r e e d  s e c r e t  i n  o r a c l e  s h o u l d  

b e  K  =  e (d j ,M )  e ( P , P )r w h e r e  r(hoP  +  sP)  =  y P  ( r e c a l l  t h a t  p a r t y  i ’ s  p u b l i c  

k e y  i s  h0P  +  sP  a n d  t h e  p r i v a t e  k e y  i s  u n k n o w n  t o  B  a n d  r e p r e s e n t e d  b y  _ L ) ,  i  e  

r  = y(h,Q +  5 )  a n d  K  =  e(d3,M )  e(yP , ( f r o  +  s ) - 1 P )

□

W e  d o  n o t  r e p e a t  t h e  f u l l  e x p e c t e d  r u n n i n g  t i m e  a n a l y s i s  h e r e ,  t h e  i n t e r e s t e d  r e a d e r  i s  

a d v i s e d  t o  r e a d  [ 4 8 ]
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