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Abstract

Bilinear maps have become an important new item n the cryptographer’s toolkit They
first came to prominence when they were used by Menezes, Okamoto and Vanstone to help
solve the elliptic curve discrete logarithm problem on elliptic curves of small embedding
degree

In 1984, Shamir developed the first 1dentity based signature scheme, and posed the con-
struction of an identity based encryption scheme as an open problem [118] Subsequently
identity based identification and identity based key agreement schemes were proposed How-
ever, 1dentity based encryption remained an open problem In 2000, Sakai, Ohgisht and
Kasahara used bihnear maps to implement an efficient 1dentity based non-interactive key
agreement and 1dentity based digital signature [111] In 2001, some 17 years after it was
suggested, Boneh and Franklin proposed the first efficient identity based encryption scheme,
constructed using bilinear maps [31]

In this thesis we review some of the numerous cryptographic protocols that have been
constructed using bilinear maps

We first give a review of public key cryptography We then review the mathematics
behind the two known bilinear maps, the Weil and Tate pairings, ncluding several im-
provements suggested in [67, 14] We develop a Java library to implement pairing based
cryptography In Ch 4 we look at some of the cryptographically hard problems that arise
from bilmear maps In Ch § we review identity based signature schemes and present
the fastest known scheme In Ch 6 we review some encryption schemes, make some ob-
servations that help improve the performance of many 1dentity based cryptosystems, and
propose the fastest scheme for public key encryption with keyword search In Ch 7 we
review 1dentity based key agreements and propose the fastest scheme secure in a modified
Bellare-Rogaway model [19] In Ch 8 we review identity based signcryption schemes and
present the fastest known scheme
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Chapter 1

Introductory Mathematical

Background

11 Modular Arithmetic

Nearly all modern cryptographic systems require a basic understanding of modular arith-
metic The idea behind modular arithmetic 1s very simple and most primary school children
are famihar with 1t from the concept of a clock face They learn to convert between 12 and
24 hour clock representation This 1s an example of congruence modulo 12, where 13 00 in
the 24 hour representation can be converted to 01 00 in the 12 hour representation

Formally we work in the positive integers, including zero! We fix a positive integer
modulus N and work with the set of integers {0,1, ,N — 1} This 1s the set of integers
modulo N Any numbers a and b, that are related as a = b+ zN, for some nteger z, are
said to be congruent modulo N Congruence 1s usually denoted = That 1s, using our clock
face example, 13 =1 mod 12 If 1t 1s obvious that we are working modulo N we may just
say that a = b (mod N)ora =5

When working modulo N we can also consider negative numbers, but 1t 1s the convention

to write them positively Again, we use the 12 hour clock face for our example Say that

'Tn a 24 hour clock, 12 midmght will be shown as zero, 00 60
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we wish to take 2 hours away from 1 o’clock That 15, what 1s 2 hours before 1 o’clock? If
we think of the clock face then we realise that this would be expressed as 11 o’clock What
has happened 1s that we think of 12, the modulus, as 0 Formally this means N —a = —a
mod N Informally, using our clock-face example, 11 = -1 mod 12 Ifa<Qora > N we
add or subtract some multiple of N until we have a number n the range {0, ,N —1}
This 1s known as reduction modulo N This set of integers can be written formally as Z/NZ,

or ZN

1.2 Infinite Groups

A group (G, %) consists of a non empty set G with a binary operator? %, which satisfies the
following properties [125] (91, Ch 2] By way of example, we consider the set of integers, Z

and the binary operation, integer addition, +

¢ The operation 1s closed

Ya,be G a*begG )]

5+4=09 (12)

» The operation 1s associative

Va,bce G (axb)xc=ax*(b*c), (13)

(5+4)+3=5+(4+3) (14)

e The set G contains an i1dentity element An identity element e 1s one that has

the property

YVa€G (exa)=a, (15)

0+5=5 (16)

2bma.ry operation an operation taking two operands
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e The umque existence of an inverse element FEach element in the group G
has a unmque inverse The mnverse of an element 15 an element m G, such that the
following property holds, where b 1s the mverse of a and e 1s the i1dentity element

defined previously

VaeG IbeG (axb) =e, (17)

5+ (—5) =0 (18)

A group has all of the above four properties Some groups also have the following

property

e The operation 18 commutative

Va,be G (axb) = (b*a), (19)

5+4=4+5 (110)

A group that 15 also commutative 1s called an ebelsan group Most of the groups that we
use 1 cryptography are abelian, as 1t 1s this last property that makes them cryptographically
useful> We will assume that all groups that we discuss in the remainder of this thesis are
abehan

A group 1s called multiplicative 1f we tend to write 1ts group operation as , whereas a
group where we tend to write 1ts group operation as + 15 called additive This will also
effect the way that we write the identity element and the inverse element

For a multiplicative group we have

e Identity element The identity element 1s written as 1

Vae§G (a 1)=a (111)

3In most cases in cryptography we are only interested 1n groups where ¢g*¥ = g¥*



CHAPTER 1 INTRODUCTORY MATHEMATICAL BACKGROUND

e Inverse element The inverse element 1s written as ¢~}

VaeG (@ a7 ') =1 (112)

¢ Repeated application of the group operator A shorthand notation for repeated

multiplication 1s exponentiation

Yae G (a a) =a" (113)

For an additwe group we have

e Identity element The identity element 1s written as 0

VaeG (a+0)=a (114)

e Inverse element The inverse element 158 written as —a

Va€ G (a+(—a))=0 (115)

e Repeated application of the group operator A shorthand notation for repeated

addition 1s scalar multiphication

Yae G (a+ +a)=n a (1 16)

n times
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13 Infinite Fields

A ring 18 a set A with two operations, usually denoted + and , for addition and multi-
pheation {91, Ch 2] The ring 1s usually denoted (A, ,+) The addition operation has the
same properties as it had when 1t was previously defined for groups If it happens that
multiplication 1s commutative then we say that the ring is commutative [125] By definition
a ring operation will be closed It should be obvious that (Z, ,+} - the set of integers,
(@, ,+) - the set of rational numbers, and (R, , +) - the set of real numbers, are all infinite
commutative rings
If the ring has a multiplicative 1dentity then we say 1t 1s a ring usth identity

A field 1s a ring such that
e (G, +) 15 an abehan group with identity denoted by 0

e (G\{0}, ) 15 an abehan group, with identity denoted by 1

e (G, ,+) satisfies the distributive law

a b+c)=(a b)+(a ¢)=(b+c) a (117)

Therefore, a field 1s a commutative ring for which every non-zero element has a multi-

plicative mverse

14 Finite Groups and Fields

A group 1s finste 1f 1t has a fimite number of elements in 1ts set [83, Ch 1] The order of a
fimite group G 1s the number of elements 1n 1ts set, and 1s denoted |G| or #G An abehan
group (G, *) 1s called cyclic if there 15 some element ¢, from which every other element 1n

the group can be obtamned though repeated application of the group operation Such an
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element 1s called a generator of G Mathematically we denote that g is a generator of the

group G as

(99 = ¢ (118)

For an additive group this means

y = z g (119)

y = g° (120)

where y can be any element of G vy obviously depends on 7 7 1s called the discrete
logarithm of y with respect to (the base) ¢

The order of an element ¢, of a fimite cyclic group 1s the smallest non-zero integer ¢ such
that g* = e, the 1dentity element

A group (G, *) may contamn a number of subgroups A group (K, *) 18 a subgroup of
(G, %) 1f 1t 1tself 15 a group with respect to the group operation * (to recap that means
that 1t 1s closed, has an identity, every element has an wnverse and the group operation is
associate) and K 18 a subset of G The order of a group K will always divide the order of
G (K, *) 13 called a proper subgroup if X # G

An element r € Zy has a multiplicative inverse modulo N if and only if the greatest

common dunsor ged(z, N) =1 We can define the set of all invertible elements (those that
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have multiphcative inverses) of the set Zy as Z), Formally Z, 1s defined as

¥ = {r€Zn ged(z,N)=1} (121)

We would like to know how many elements are in Z}), This 1s given by Euler’s Phi
Function* ¢(N), which for any integer N returns the number of integers that are smaller
than and co-prime to N

To determine the Euler ¢ function for an integer N we must be able to factor N The
number of integers less than and co-prime to a prime p1s (p—1) Since, if p 1s a prime then
all of the numbers less than i1t will have no factors in common with 1t

Therefore, for any prime p, we have

¢(p) = (p-1), (122)

Z; = {ZEZ’P ng(Tap)“—‘l}:{la p_l} (123)

Another group of integers that are of importance to cryptography are the prime powers
What 1s the Euler totient function for any prime power ¢ = p™? The only numbers that
are going to have factors in common with ¢ are the multiples of p Thatsp, (™ ")p
For any prime power there are going to be (p™~!) of these factors [125, Ch 1]

Therefore, for any prime power ¢ = p™, we have

_ — (I — (Y _ (=Y =Ll 1y — _l
60 =@ - =™ - 6" = e-n = (1-1) a2
We also know that for any two co-prime numbers n and m
¢(m n) =¢(m) ¢(n) (125)

4 Also called Euler's totient function
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Building on the above results, we can determine Euler’s totient function for any arbitrary
integer for which we have a known factorisation We simply work out Euler’s totient function

for each of the constituent prime powers and then calculate the product of these terms

¢(n)=nH<1—%) (1 26)

Finding the Members of Z),

If 1t 15 possible to quickly factor o and b, then the ged(a,b) 1s given as the product of the
factors common to e and b However, this 1s generally not efficient with integers that are
used 1 industrial strength cryptographic systems® To find the ged of two integers we use

the Euclidean algorithm As before, for & to be a member of Z};, o < N and ged(a, N) =1

141 Euchdean Algorithm

The Euchdean algorithm depends on the dussion algorithm for integers [91, Ch 2] The
division algorithm makes use of the fact that if @ and b are positive integers, there exist

unique, non-negative mtegers ¢ and r such that

a=gb+r 0<r<b (127)

This 1s simple to see given a numerical example, consider a = 75,b = 34

75=2 34+7 (128)

In the above, g 15 known as the quotient, and r as a remainder

The Fuchdean algorithm, which 1s used to obtam the ged of two numbers, works by

SIndustrial strength cryptography 1s a vague term, but for RSA modul & 2'°%* geems like a mimmum
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repeated application of the division algorithm until the remainder r 1s 0 To get the ged
of two numbers set the first equal to a and the second equal to b in equation 127 Now
repeatedly apply the algorithm, at each stage replacing @, = b,_1 and b, = r,_; This works
since every divisor of both a and b will be a divisor of both b and r

Continuing on, we now calculate the ged of 75 and 34

a = gb+r (129)
75 = 2x34+7, (1 30)
34 = 4x7+6, (131)
7 = 1x6+1, (132)
6 = 6x1+0 (133)

Since r = 0, we have that the ged(75,34) = 1 (which 1s the last value of b above) We
also know that since the integers are co-prime, 34 has a multiplicative inverse modulo 75

Therefore, 34 15 an element of Z3

Algorithm 1 1 Euchdean Algornthm
INPUT Positive integers a and b, with a < b
OUTPUT gcd{a, b)

while (b # 0) do
r+a modbd
a+b
ber

end while

return a
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142 Extension Fields

The order of a fimte field 15 the number of elements in the field, and 1s denoted #F for
the field F There exists a finite field IF of order ¢ if and only 1if ¢ 1s a prime power, 1¢
g = p™ [125] p 1s called the characteristic of the field, and is denoted char F If m =1
then we say that IF 1s a prime field If m > 2 then we say that F 1s an eztension field For
any prime power ¢ there 1s only one field of order ¢ up to somorphism Any two fields of
the same order are said to be isomorphic, meaning that they are structurally the same It
18 possible to map between two isomorphic fields (which we denote J; and F3) using a field

1somorphism @ [125, Ch 1]

® F - F (134)

The mapping @ has the following structure-preserving properties

Ola+ B)

o(a B)

I
&
2
+
=
=

(1 35)

I
iy
2
iy
=

(1 36)

Higher degree extension fields contain all of the elements in F,, In fact, Fpe will contain
all of the elements of F,q for all d dividing ¢ These lower degree extension fields are called
subfields of the (higher degree) extension field

An 1somorphism that maps from a field F; to itself, 15 called an automorphism

> A - F (1 37)

One particularly interesting automorphism 1s called the pt* power Frobenius map It 15

defined for any fimite field as

10
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Fp — Fo,

(138)

« -  of

where p 1s the characteristic of the field The set of elements fixed by the Frobenius map

acting on extension field F« 15 the set of elements 1n the prime field I

F, = {8(a) acFu} (1 39)

15 Calculating the Multiplicative Inverse

Finding multiplicative inverses 1s very important in cryptography It i1s the basis for deter-
mining key pairs 1n the famous RSA encryption algorithm devised by Rivest Shamir and
Adleman [107] Now that we have established which mntegers have multiplicative inverses
we wish to actually determine the multiplicative inverse To do this we use the extended

Euchdean algorithm which 1s given in Sec 1 5 1

151 Extended Euclidean Algorithm

The extended Euclidean algorithm 1s a variation on the Euclidean algorithm with some ad-

ditional bookkeeping information The greatest common divisor of @ and b can be expressed

as an iteger linear combination of @ and b That 18, there are integers s and ¢ such that
ged(a,b) =s o+t b (1 40)

Now, assume that ¢ 1s mvertible mod b (ged(a,b) = 1), and that b 1s larger than a

Rewriting the above equation, we have the following

11
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1 = s a+t b, (141)
1-tb = 5 a (142)
1 = s a modb (143)

In other words, s 15 the multiplicative inverse of ¢ mod & For finding multiplicative
mnverses we do not require ¢ Here we give a vanation of the extended Euchdean algorithm
where £ 15 1gnored 1n the interests of computational efficiency We can calculate the value
of s as we work through the Extended Euclidean algorithm The values of sp and s; are

mutially set to 0 and 1, subsequent values of s, are given by 5,2 — 5,1¢,_2 mod ag

a=gb+r (144)

75 =2x 34 +7, 5 =0, (1 45)
34=4x7+6,8 =1, (1 46)
T=1x6+1,85 =0—(1x2) mod75 =713, (147)
6=6x1+0,83 =1—(73x4) mod75 =09, (148)
s =73—(9x1) mod75 =64 (149)

And so we have calculated that 64 1s the multiplicative imverse of 34 modulo 75 This

can be checked as

34x64= 2176 =1 mod 75 (1 50)

The Extended Euchdean Algorithm is given m Algorithm 1 2

12
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Algorithm 1 2 The Extended Euchdean Algorithm for finding the multiplicative inverse

ofa_mod b
INPUT Two mtegers a and b such that a > b, b > 0 and ged(e,b) =1
OUTPUT o~ ! mod b

1+ 0
To 1
y1 <1
y2 -0
while (b > 0) do
q < |a/b)
T a—qgb
T + I9 — QI
a+b
ber
To ¢ I
T ¢ T
end while
return zo

16 Random Number Generation

Most cryptographic algorithms rely on the abihity o produce random numbers The RSA
encryption algorithm has a requirement to generate two large random primes El Gamal
and discrete logarnithm based encryption systems have a requirement that a private key be
a random integer 1m a suitably large mterval {0, ,n} The swze of this interval 1s known
as the key space The key space should be large enough that even the most determined
adversary cannot search for the actual key used

Suppose we have a truly random 128 bit number (for example, to be used as an AES®
encryption key) Then, an adversary would have to make on average 2'?7 guesses before
her stumbled upon the correct value Even if only one bit of a supposedly random sequence
1s known then the key space 1s halved This means that the remaining key space can be
searched i half the time

Suppose for example that the attacker knows half of the bits in the key’, then the key

SAES Advanced Encryption Standard, a modern symmetric block cipher and NIST approved replacement
for DES, the Data Encryption Standard

"Using modern fault and power analysis attacks, this may not be unreasonable

13
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space 1s only 204, taking on average 2% guesses before the correct combination 1s stumbled
upon Such a scheme, that was considered secure using a full length random key would
no longer be considered secure Therefore a good source of random numbers 1s critical
to the security of all crypiographic systems One of the best attacks on implementations
of cryptographic systems 1s to cripple the random number generator in the system The
beauty of this attack is that as long as the output of the random number generator still
“looks” random (but actually has some exploitable properties) then the unsuspecting user
may continue to use the random number generator for years into the future

There are a number of ways to produce random numbers We give some examples 1n

Sec 161

161 Natural Sources of Randomness

There are many natural sources of randomness [60] One that we would all be famihar
with 1s background noise This fluctuates constantly Someone shuffiing paper at the desk
next-door Someone typing on a keyboard across the office Colleagues discussing work in
an open plan office Someone taking a drink from a water cooler Buses, cars and lorries
driving past the window These sounds naturally vary throughout the day We can use this
naturally occurring randomness to generate random numbers for cryptographic systems

Compact disc audio 1s encoded at 16 bit resolution, this gives the ability to trace a sound
wave though 64K different levels of displacement If we take just the least significant bit of
this representation 1t will be randomly switching from zero to one and back This, in reality,
bares httle connection to the outside sound and would be extremely hard to mampulate
Java code which uses background noise to generate random numbers 1n included m appendix
A

Another natural source of randomness 1s background radiation There 1s a small amount
of background radiation all the time The time between the emission of particles during
radioactive decay 1s random This can be exploited to create a random number genera-

tor Intel’s Hardware Random Number Generator uses electrically generated signals that

14
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Figure 1 1 Generating random numbers from a sound wave

are produced randomly 1n resistors — for example Johnson noise (commonly referred to as
thermal noise), shot nose, and flicker noise, which are as a result of random electron and
material behaviour The difference in measurement between two resistors placed close to
each other 1s taken, to reduce any effects caused by electromagnetic radiation, temperature,
etc® [78)

Another natural source of randomness would be a person typing on a keyboard [39]
This might, at first sound strange, but we do not look at the words that the person types
Instead, we set a timer running and we time when the person presses the individual keys
Provided the time increments are small enough then 1t will be impossible for the person to
predict what the least sigmificant bit of the timer will be when they press on the key If
you have even tried to stop a 1/1000 sec stopwatch exactly at 1 000 sec you will know how
difficult this 1s Computers can time mncrements much smaller than this

Of course, the above 1s only an example of the methods that can be used It 1s also
possible to combine the output of several different sources of randomness, for example, by

using a one-way (hash) function?

162 Pseudo-Random Number Generators
“Anyone who considers arithmetical methods of producing random digits 1s, of course, 1n a
state of sin ” - John Von Neumann (1951) [78]

The random number generation methods mentioned above generate true random num-

bers Usually the above methods are not used to generate large quantities of random

81t 15 assumed that radiation will affect both resistors sumlarly
®Hash functions will be discussed 1n more detail in Ch 5
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numbers Instead we use one of the above methods to generate a random seed value ~ 128
bits n length  We can then use this seed value as the basis for generating substantially
more pseudo-random bits via a pseudo-random number generator (PRNG) The output of
a PRNG 1s not truly random, but 1t should appear random Because we are not now work-
ing with random sources we introduce a defimition that allows us to judge the quality of the

randomness produced by our PRNG

Definition [91, Ch 5] A pseudo random bit generator 1s said to pass the nezt-bat test if there
18 no polynomial-time algorithm which, on input of the first [ bits of an output sequence s,

can predict the (I + 1)% bit of s with probabihity sigmificantly greater than 1/2 [91]

The above definition seems ideal, but how do we know that no such algorithm exists?
Strangely enough, we don’t However, the approach taken 1s to link the difficulty in predict-
ing the next bit of output with what 1s believed to be a cryptographically hard problem!?
Therefore, a PRNG for which some advantage in predicting its output can be transformed
ito some advantage in solving an intractable problem 1s called a cryptographically secure

pseudo-random number generator (CS-PRNG)

Blum-Blum-Shub PRNG

The Blum-Blum-Shub (BBS) PRNG [24] 1s one of the most famous CS-PRNG’s 1t links
the intractability of integer factorisation with the abihity to determine the next output bt

of the pseudo random sequence See Algorithm 1 3

1.7 Prime Number Generation

Prime number generation 1s needed for almost all public key encryption systems In the

RSA encryption scheme the modulus 1s composed of two large primes

19This 1s generally how cryptographic protocols are proven secure, for more details, see Ch 4
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Algorithm 1 3 Blum-Blum-Shub CSPRNG

INPUT Two large primes p and ¢, each congruent to 3 mod 4, [ the number of random
bits required, and a random seed s mn the range {1 N — 1} such that ged(s,N) = 1,
where N = pg

OUTPUT A pseudo random number in the range {0 2! — 1}

r+0

4+ s> mod N

for (+ 0,2 <[, 1+ 1+ 1) do
z+ z mod 2
re2r+z
7+ 22 mod N

end for

return r

N=pq (151)

In the generalised El Gamal public key encryption scheme we need to find a large prime
modulus

There are algonthms that will produce a number that 1s provably prime There are also
probabilistic algorithms that will tell us if a candidate number 1s probably prime However,
these algorithms have a small probability of producing a ‘false positive” That s, they may
indicate that a composite number 1s prime With repeated independent tests we can reduce

e, the error level, to one that 1s deemed acceptable

e=¢g" (152)

Where ¢ 1s the probability of an error in one invocation of the prunality test, and 7 1s the

number of invocations of the test

The strategy in industrial cryptography 1s to generate a random large number, and
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then check if 1t 1s prime This leads then to the obvious question, if we just generate a
random large number, what are the chances that 1t 1s prime? Will 1t take days of trial and
error before we happen upon a prime number? How many primes are there anyway? The

approximate number of primes, less than any number z 18 given by

number of primes less than z ~ %5 (153)

Luckily there are infimitely many prime numbers [125, Ch 8][91, Ch 4] These primes are
also randomly distributed, If z 1s a candidate number chosen at random, the probability

that 1t 18 prime 1s given by

1
Pr[z 1s prime| ~ e (1 54)

where Pr[] 1s used to denoted the probability of the event
To give some kind of perspective, this means that if we have a 512 bit candidate number
the chance that 1t 1s prime approximately 1/177 So, provided we have an efficient means

of testing primality, obtaining a random large prime 1s not a particularly difficult task

171 Miller-Rabin Primality Test

First we look at Fermat’s test This in itself 1s a useful primality test Though not used in

practice, 1t 18 1deal for some definitions

Theorem 17 1 Fermat’s Little Theorem Suppose that p 1s prime, and a € Zy, then

o =a modp (155)

It follows from Fermat’s hittle theorem that for any candidate number n,
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™V =1 modn (1 56)

will hold 1f n 1s prime, whereas 1t 15 unlikely to hold if n 1s not prime

If equation 1 56 does not hold then we know that the number 1s definitely composite
However, if we have a number for which the above equation holds then there 1s still a chance
that the number 18 a composite We call such a number a Fermat pseudo prime to the base

« However, if n 1s a composite then 1t can be shown that

Prie® ™ £1 mod n) > 1/2 (157)

This test can be repeated k times, each time with a different & A number that passes &
repetitions of the tests 1s composite with probability at most 1/2% If a number 1s detected
as composite, « 15 called a Fermat witness to the compositeness of n

However there are a certain class of composite numbers for which the Fermat test will
report that n 1s prime for any a co-prime to n They are the so-called Carmichael numbers
(38, 93] They are much rarer than the primes, however they are still too common to
allow the use of the Fermat primality test for industrial cryptography Instead we use the
Miller-Rabin primality test

The Miller-Rabin primality test [106] 1s given mn Algorithm 14 This test has a 1/4
chance of wrongly certifying that a composite number 1s a prime Again, however, this
error rate can be reduced to any figure by repeated application of the test The error rate
15 given as 1/4% where k 1s the number of applications of the test Algorithm 14 repeats

the test k times where £ 1s given as an input
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Algorithm 1 4 Miller-Rabin Primality Test
INPUT Odd mteger n, and error bound &
OUTPUT If n 1s prime, with maximum error 1/4*

Write n — 1 as 2°m, with m odd
for () =0,7<k,3=3+1)do
6€Er {2, ,n-2}
b+ a™ modn
if b#1and b# (n—1) then
21
while + < s and b # (n — 1) do
b+ b modn
if (b=1)) then
return false
end if
1=1+1
end while
if (b# (n—1)) then
return false
end 1f
end 1f
end for
return true

18 Discrete Logarithm Problem

The discrete logarithm 1s the inverse of discrete exponentiation mn a fimte cyche group This
was mntroduced in Sec 14 Given a cyclic group G of order n, the group operation x and a

generator g, we saw earlier that any element of G can be calculated as

y=4g" (1 58)

where z, the discrete logarithm of y to the base g, 1s unique 1n the range {0 n—1} We

denote that z 1s the discrete logarithm of y as follows z = log,y

Defimition [91, Ch 3] The discrete logarithm problem (DLP) 1s the following Given a

prime p, a generator g of Zy, and an element y 1n Zy, find the integer z, 0 < z < p—2, such
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that ¢ = y (mod p)

Defimtion [91 Ch 3] The generalised discrete logarithm problem (GDLP) 1s the following
given a finite cyclic group G of order n, a generator g of G, and an element y € G, find the

mteger 2,0 <z <n -1, such that g =y

The security of many cryptographic systems depends on the assumption that the discrete
logarithm problem 1s mtractable The most famous of these include the Diffie-Hellman key

exchange, the Digital Signature Algorithm and the El Gamal encryption scheme

19 Encryption Schemes

Encryption schemes are used to keep confidential information that is to be transferred over
an nsecure channel There are two mamn families of encryption algorithms, symmetric or
secret key encryption'! and asymmetric or public key encryptiont?

In a symmetric encryption scheme the same key 1s used to encrypt and decrypt mnfor-
mation There are two functions, Fj, which 1s used to represent the encryption function £
with the secret key k and Dj, which represents the decryption function D with the secret

key & F and D may or may not be the same function, but for a symmetric encryption

algorithm the following relationship holds

m = Dy(Eg(m)) (159)

where m 1s the data that 1s to be encrypted, and the same key & 1s used both for encryption

and decryption
Obviously if this information 15 going to be transferred from one user to another (as

opposed to encrypting information held, for example, on a hard disk), then both of these

Examples include AES, DES, IDEA and TEA
2Examples include RSA and El Gamal
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users must share the same secret key Symmetric encryption schemes suffer from two main

problems

e Key Distribution Problem How to distribute encryption keys between users
Depending on the importance of the secrets being transferred 1t may be feasible for
the communicating parties to meet and agree on encryption keys However, this 1s
a huge overhead It may be possible for all users to agree long term keys with one
trusted party, who then acts as a go between to help clients agree session keys between
themselves This 1s the basis of the popular Kerberos network authentication protocol

[132] This method does not scale well

e Key Management Problem A new key 1s needed for each chent with which you
wish to communicate If the same key 1s used to commumicate with two different
reciplents, they will be both be able to read messages that were meant for the other

To securely communicate with n users, n different encryption keys will be needed

Asymmetric cryptography helps to resolve these problems In asymmetric cryptography
encryption and decryption are carried out with two separate, but mathematically related
keys - often called a public key pair, and consisting of a public and private key The public
key 1s made public and the private key remains secret It 15 computationally infeasible to
determine the private key knowing only the public key In this setting, encryption 1s carried
out using the public key, and decryption 1s carried out using the private key We have the

relationship

m = Dy, (Ek,,,(m)) (1 60)

where E and D are encryption and decryption functions and &y, and k,,, are related public
and private keys respectively

A related 1dea 1s that of a digital signature!® Using a digital signature you can sign

Digital signatures wilt be explained 1n more detal in Ch §
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messages using the private key This signature can then be checked using the corresponding

public key If o 1s output when the private key kpr, 15 used to sign the message m, then

Vi, (0,m) (161)

will only output true on mput of the same message m, signature ¢ and corresponding public

key kpub

110 El Gamal Encryption

The El Gamal encryption scheme [61] relies for its security on the assumption that the
discrete logarithm problem 1s mtractable The generahsed El Gamal encryption scheme

works over any fimte cychic group G where the following three conditions apply

e Efficient The group operation 1in G should be efficient
e Secure The discrete logarithm problem should be computationally infeasible

e Practical Elements in G can be reasonably compactly represented
The following are some of the groups over which El Gamal can be implemented

e The multiphicative group Z;, where p 1s prime
e The additive group of points on an elliptic curve over a finite field

e The multiplicative group Fy, where ¢ 1s a prime power, ¢ = p™ for some prime p

The El Gamal encryption scheme requires that each user perform the following setup
algonithm to obtain a key pair

To encrypt a message to a user in the system the sender must first obtain an authentic
copy of the recipient’s public key To authenticate a public key the users agree on a entity
that they all trust Such an entity 1s called a trusted authority This trusted authority then

uses 1ts private key to sign and thereby authenticate the public keys of all other users in the
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Algorithm 1 5 ElGamal Public Key Pair Generation Algorithm
INPUT A finite cychc group G of order n, and g, a generator of G
OUTPUT An ElGamal public key pair (kpus, kpr:)

Generate a random mteger z €g {1, ,n—1}
kpry & 1

kpub — qz

return (kpru kpub)

system The client’s public key, information about the clhent and the trusted authority’s
signature, together with optional additional information s called a public key certzficate
In this way the trusted authority binds the public key to the owner and the key distribution
problem that we had with symmetric cryptosystems earler 1s overcome'*

Once a certified public key for the recipient has been obtained the sender now performs

encryption as shown i Algorithm 1 6

Algorithm 1 6 ElGamal Pubhc Key Encryption Algorithm

INPUT G, n, g and kpus as output from algorithm 15, and m, the message to be
encrypted

OUTPUT An ElGamal ciphertext

Represent m as an element of the group G

Generate a random mnteger o € {1 ,n—1}
R=g*
C=m kj,

return (R,0)

To recover the plamntext message, the recipient, bemg the only person who knows the
private key corresponding to the pubhic key that was used by the sender, can carry out
Algorithm 17

It 1s possible for each user 1n the system to use the same group & and generator g Now,
since these values are common, and do not have to be distributed as part of the public
key, the user’s public key simply becomes y = ¢g* The pubhic key 1s distributed 1 an

authenticated manner, whereas the private key 1s a secret known only the user who owns

"4For all users except the trusted authority
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Algorithm 1 7 ElGamal Public Key Decryption Algorithm

INPUT @, and kpr, as output from algorithm 15, and (R, C), the output of algorithm
16

OUTPUT A plantext message m

v = Rkpn
m=~1C
return (m)

the key pair'®

15A user 15 said to own a key paur if they know the corresponding private key
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Chapter 2

Elliptic Curve Arithmetic

2.1 Long Form Weierstrafi Equation

This chapter contains many well known standard number theoretic results. General ref-
erences for thischapter include [21, 22, 137] and [62] for the number theoreticmaterial,

[62, 72, 90] and[108] and also [125, Ch.2] for the implementational details.
Definition An Elliptic Curve E over a field Fpit (denoted either E/¥ pk or ¢£(Fpfc)) is defined
by the equation

E :y2+a\xy + a$y = x3+ a"x2+ a\x 4-a6, (2.0)

where ai,a2,a3,fl4 and as 6 Fp* This is known as the long form, or generalised Weier-
strafi equation.
We must also check that the discriminant A / 0, where A, the discriminant, is defined

as follows:

26



CHAPTER 2 ELLIPTIC CURVE ARITHMETIC

_

Figure 21 An elliptic curve

dy = a‘f + 4aq, (22)
ds = 2a4+ aras, (23)
ds = a3+ dag, (2 4)
dg = a%aﬁ + 40006 — a10304 + agag — ai, (25)
A = —didg —8d3 — 27d2 + 9dodsds (2 6)

If we want to consider the points m some extension field L of Fpey, L 2 Fp, then the set

of L-rational pomnts on E 15 given as

E(L)={(z,y) eLxL y’+may+ay=2"+ar’ +az+a}U0  (27)

s The condrtion A 7# 0 1s required to ensure that the curve 1s smooth That means that

there 1s no point on the curve that has two or more distinct tangent lines

e The pomnt O 1s called the point at infinity, and exists 1n all extension fields

For clarification, Fig 2 1 shows an elliptic curve defined over R, the reals
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Two elliptic curves E; and F> defined over Fpe are said to be 1somorphic over F if

there exists u,7,s,t € Fi, u # 0, such that the change of variables

(z,y) = (W1 +7rudy + ulsz + 1) (2 8)

changes E; mto Fz This transformation 1s called an admussible change of varables The

pomnt at mfimty O remains unchanged

211 Short Form Weilerstrall Equations

This change of variables can be used to sumplify the above Weierstrafl equation These
changes of variables differ depending on whether the underlying field F,. has characteristic
2, 3 or p > 3 (sometimes called the large prime case)

If char F,x = 2, then there are two possible cases to consider If a # 0 then the

admussible change of variables 1s

2 2
(z,y) = (afw + 2 aly + w> (29)
a, ﬂl
which transforms
E y* +aizy+ asy = z° + asz® + asz + ag (210)
mto
Y2 +xy=a®+az? 4+ b (211)
Such a curve 1s called non-supersingular and has discrminant A = b
If a = 0 then the admissible change of variables 1s
(Z, 'l/) - (Z + ag,y) (2 12)

which transforms F nto
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Y +ey=a3+az+b (213)

Such a curve 1s called supersingular and has disciminant A = ¢*
If char Fx = 3, agamn there are two possible cases to consider If a% # —ao then the

admissible change of variables 1s

04 — @103 a4 — Q103
T,y) — + ——ytazt+ta—S——+a 214
( ,y) (3" a%-}—ag 'Y 1 1 a%+a2 3) ( )
which again transforms E mnto
v =23 +az’+b (2 15)

where a,b € Fpr  Such a curve 1s said to be non-supersingular and has discriminant A =
—a®p

If a? = —ay then the admussible change of variables 1s

(z,y) = (z,y + a1 + a3) (216)
which transforms E nto
v =2>+az+b (217)
Such a curve 1s called supersingular and has discrimmant A = —a3

If char Fp« # 2,3 then the following admissible change of variables

T - 30,% —12a9 y — 312 a:f + 4a1a9 — 1243
— — 21
(@) ( 36 ' 216 24 (218)
transforms F into
yv=234+ar+b (219)
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The discriminant A of this equation is given as

A = —16(4a3 + 27h2). (2.20)

These shortened forms of the generalised (long form) WeierstraB equation are called
simplified or short form WeierstraB equations. For the remainder of this dissertation we
will, except where otherwise stated, use the short form WeierstraB notation. We will also

assume that the curves are defined over a field Fpt such that char Fpt/ 2,3.

2.2 Group Law Over Elliptic Curves

We now show how a finite group (see Sec. 1.4) can be instantiated over an elliptic curve. If
E is a curve defined over the field FpEthere is a binary group operation called elliptic curve
point addition which operates on two points on the curve to give a third point on the curve.
This is given by the chord-and-tangent rule [72, 125, 90]. Together with this addition rule
the set of points on the curve (including O) form an abelian group, with O serving as the

identity element. The following two images show the two step chord-and-tangent process.

point addition point doubling

Table 2.1: Point Addition and Point Doubling.

The chord and tangent rule also defines addition of a point to itself. This operation is

known as point doubling. This is similar to point addition, but instead of calculating the
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Algorithm 2 1 General Pomnt Addition Algorithm for Elhptic Curves

INPUT An Elliptic Curve E defined over field F,, two distinct points P,Q € E P # —Q
and P,Q # O

OUTPUT R=(P+Q)

Calculate I, the line that intersects P and @

Calculate where ! intersects E again E bewng a cubic equation, this will always happen
Call this point —R

Calculate where v, the vertical line that intersects —E intersects £ again

Call this pont R

return R

line that intersects two points we calculate the tangent line to F that intersects E at the
pomnt P This line will intersect E at one more pomt, which we call —2P Reflect the point

—2P 1n the z-ax1s to obtain the pomnt 2P = (P + P)

Algorithm 2 2 General Point Doubling Algorithm for Elliptic Curves
INPUT An Elliptic Curve E defined over field Fj ¢, and a pomt P€ £ P # O
OUTPUT 2P = (P + P)

Calculate t, the line that 1s a tangent to E, at P Assume ¢ 1s not vertical

Calculate where t intersects E again FE being a cubic equation, this will always happen
Call this point —2P

Calculate where v, the vertical line that intersects —2P intersects E again

Call this point 2P

return 2P

221 Pomt Addition for E/F, where char F,: # 2,3

The addition of two points P, @ where P,Q # O and P # —Q

Let P = (arlayl)a Q = (212,292) and R = (137y3) = (P+ Q)

Y2— 4
A = AT A
(-'62—-’131), (221)
3 = >\2—(II1—ZI:2, (222)

y3s = Mzi—a3)—y (2 23)
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222 Point Doubling for E/F, where char F,: # 2,3

The doubling of a pont P where P # O
Let P = (z1,31), 2P = (z2,12)

3z + a)
A o= (2110} 224
( 2y, (224)
Ty = A -2, (2 25)
Y2 = Ar—x2) — 0 (2 26)

Java source code for point addition and pont doubling over char F,x # 2,3 is included
n Appendix B, and in the accompanying CD-ROM

The addition operation, along with the set of points on an elliptic curve give us a group
over which to implement cryptographic systems So far we have not dealt with O, the point
at infinity The point at infimty serves as the identity element of the group We specify

special rules for point addition which include O

223 0O, The Point at Infinity

To define the point at infinity, we must first define what 1s meant by the negative of a point

The negative of a point

The negative of a point 1s simply the reflection of the pomnt in the z-axis An elliptic curve
15 symmetric about the z-axis For this reason the negative of a pont P = (z,y) will be
the powt (z, —y) and 1s denoted —P Point subtraction 1s carried out as the addition of the
negative of a point

We now look at what happens if we are to perform the addition rule between a point
and 1ts negative Since the negative of a point 1s the reflection of that pomnt in the z-axis,
the line [ between a pomnt and 1ts negative will be a vertical line A vertical line that passes

though an elliptic curve (which 1s not a tangent line) does not intersect the curve three
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1

times', as any non-vertical line would It intersects the curve only twice, once at the point

P and the again at the negative of that pomnt (—P) We say that this line also cuts the
curve agam at the pomnt at infimty O

If we go back to our group theory we see that this final definition allows us to complete
the definition of a group This group is instantiated over the elliptic curve £

Special cases for point addition

e Addition of a point to 1ts negative

VPonE (P)+(-P)=0 (227)

e Addition of a point to the pomnt at infinity

VPonE (P)+(0)=P (2 28)

The group (G, +) nstantiated over an elliptic curve E/F,: has the properties of a group

o Commutative VP, P, on £ P, + P, = Po+ P; This can be easily seen, since the

Iine that intersects P; and P; 15 the same line that intersects Py and P,

» Existence of an Identity Element As mentioned above, O 1s defined as the identity

element, and has the properties expected of an 1dentity element
o Exastence of Inverse Elements As above, the negative of a point P 1s denoted — P

e Associativity YP,,P,, Py on E (P, + P5) + Ps = P, + (P> + P;) The proof of

associativity 1s quite complex, see [137] for more details

'As 1t would 1n point addition between two distinct points, where one point 1s not the negative of the
other
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2.3 Group Order

Let E/F, be a curve E defined over a field F, {72] Then the number of pomts with
coordmates 1 Fp is denoted as #E/F, or #E(F,) This 1s called the order of the curve
E(Fp) Smce E 1s defined over F,, and 1s symmetric about the z-axis then an upper bound
for the number of points 1s given by 2p + 1 (2 for each value of r and remembering O)

Hasse gives us a tighter upper and lower bounds on the number of ponts #E([Fp)

Theorem 2 3 1 (Hasse) If E 15 an elliptic curve defined over Fy, then

p+1-2/p< #B(F,) <p+1+2/p (229)

Since /p 1s relatwely small compared to p we know that #E(Fp) ~ p

231 The Trace of Frobenius, ¢

t, the trace of Frobenius 1s defined [125] as

t=p+1—#E(F,) (2 30)

This gives us, when combined with equation 2 29 above

lt] <2/p (231)

The trace of Frobemus (which we will simply call the ¢race from now on) can be used

to tell us whether a particular curve has cryptographic weaknesses or not

e The curve E(F,) 1s said to be anomalous if 1ts trace 1s 1 This means, together with

equation 2 30, that the order of the curve 1s equal to p

o The curve E(F,) 1s said to be supersingular if the characteristic p divides the trace ¢
Since |t] < 2,/p, this means that ¢ = 0 and the order of such curves1s p+1 Such curves

are considered weak 1n cryptography, and for discrete logarithm based cryptosystems
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are usually avoided However, these curves are popular i pairing based cryptosystems
as 1t 1s only practical to operate on elements of ]Fp;c when & 1s small? If p does not
divide the trace then the curve 1s non-supersingular Much work has been done on

the use of non-supersmgular curves i pairing based cryptosystems [15, 16, 95]

232 The Curve Embedding Degree, &

Consider an arbitrary elliptic curve defined over the field F, This curve contains points P
of prime order 7, meaning that rP = O, and r 1s the smallest positive integer for which
rP = O The order of a point divides the curve order (r | #E(Fp))

This same curve can be defined over an extension field Fx For & certain value of &
the group of pomnts on the curve become interesting This 1s the lowest degree extension
field which includes the rt* roots of umty This value of k 1s called the embedding degree
This 1s also referred to as the security multiplier The embedding degree k 1s defined by the

equations

riph-1 (2 32)

and

rtp®—1V0<s<k (2 33)

The rt* roots of umty also form a cychc group of order r

2 4 Dascrete Logarithm Problem over Elliptic Curves

Elhptic curves can be generated such that E(IF,) contains a unique group of poimnts of large

prime order r This group of points 1s denoted E(F,)[r] Formally we have

*Values 1n this field are used 1n the calculation of the Weil and Tate pairings, which are the only known
implementations of bilinear maps We will examine this in more detail in Ch 3
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E(Fp)[r)={PeF, rP=0andV0<:<riP#0}UO (2 34)

This group of points can be used to instantiate a class of public key cryptosystems which
are based on the difficulty of the discrete logarithm problem (DLP) These are loosely re-

ferred to as El Gamal type cryptosystems®

The difficulty of the discrete logarithm problem
depends heavily on the group of elements G over which the problem 1s set Obviously us-
ing the set Zy, some group element ¢, and the addition operation the discrete logarithm
problem 1s trivial, given ¥y = = @, z 18 given as £ = y/a The DLP over elliptic curves
(EC-DLP), which uses as 1ts set G the ponts of large prime order r on a elliptic curve
defined over a fimite field E(F,) 1s assumed to be intractable Therefore, provided r 15 a
large enough prime, this provides a suitable group over which to construct cryptographic
systems

As mentioned 1n the previous section, some elliptic curves are weaker than others, for
example supersingular curves and non-supersingular curves with small embedding degree
(k) Ironically, these curves are of particular interest in pairing based cryptography One
of the first uses of pairings was to attack this group of curves, the attack was proposed by
Menezes, Okamoto and Vanstone, the MOV attack We will look at this in more detail in

section 425

2.5 Efficient Point Scalar Multiplication

When we looked at the discrete logarithm based problems (Sec 1 8), we required that we
had a finmite group G over which the discrete logarithm problem was intractable, a generator
g of G, and a random integer m the range 0 < z < r — 1, where 7 = #G This satisfied
the condition for security Also, for practicality we had the condition that the group
operation + must be efficiently computable The group operation over the poimnts on an

elliptic curve 1s addition Obviously for the DLP to be computationally infeasible » must

3See Sec 110, for a more detailed description of the El Gamal encryption system
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be large z bemg uniformly distributed in the range 0 < ¢ < r — 1, will be on average
~ r/2 The naive approach to pomnt scalar multiphication would be to repeatedly perform
addition the requred number of times This would require (7 — 1) additions which would
not be practical

The process of computing y = = g, where y and g are points on an elliptic curve 1s known
as elliptic curve pownt scalar multiplication It 1s also sometimes called point ezponentiation
as 1t 15 seen as the elliptic curve analogue of exponentiation over fimite fields

We look at two real world methods used to speed up elliptic curve point scalar multiph-
cation These are the relatively simple to understand double-and-add method and the NAF

window method Java code examples are included 1n the accompanying CD-ROM

251 Double-and-Add Method for Point Scalar Multiplication

The double-and-add method works for any group where the operation is written additively
We will just give the generic case here Consider the multiphication of a group element by

5 This can be performed in several equally vahd ways For example, we could compute

5 r=z+z+z+z+r (2 35)

An equally valid way would be

5 z=(z+z)+(z+z)+z (2 36)

At this stage there probably looks like there 18n’t any difference in the two representa-
tions However, equation 2 36 actually requires one less addition operation than equation

235 This can be seen more clearly if 1t 18 written as

y=1z-+uz, (2 37)

5 z=+ W +z (2 38)
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Now, 1t 18 obvious only 3 addition operation were needed as opposed to the 4 that were
required 1n equation 2 35 If we expand out equation 2 37 again we see that 1t can be written

as

5 1=2(2)+1 (2 39)

This 1s known as the double-and-add method for fast scalar multiphication Equation
2 39 1s particularly nice as 1t has a recursive formula

Take a shghtly larger scalar, say 20 Written 1n 1ts binary representation, 10100, we see
that 1if the least significant bit (rightmost bit) 1s a one then we double and add, if 1t 15 a

zero, we Just double Using this small example we have

()
(e)
hiz(e) =1 y=2%z z=z+y=0+4r=14r
bitz(e) =0 y=2%z z=2z=4dx

(€)

bity(e) =1 y=2% 2=z+y=4z+ 16z =20z

Each successive doubling takes one addition operation Each “add” takes one addition
operation Therefore we have cut the number of group operations required from 19 to 6
Obviously an addition operation will be required if LSB, = 1, where e 1s the multiplier
therefore we have cut the number of group operations required from (e —1) to = 1 5z where
z = [(lg(e+1))] 1s the length of the binary representation of e and e 1s a random number?

The Double and Add algorithm 1s given in Algorithm 2 3

“With approximately half of the digits being one and the other half being 7ero
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Algorithm 2 3 Double and Add Algorithm for Elliptic Curve Point Scalar Multiplication
INPUT An Elliptic Curve E defined over field Fx, a pomt P € E(F,){r] P # O and

exponent z 0<z<r
OUTPUT R=zP

let {z; zp} represent the bmary expansion of =
Q0
for (1 =1,2<0,2+1—1)do

Q+Q+Q

if (z, =1) then

Q—Q+P

end if
end for
return Q

252 NAF Wimdow Method for Point Scalar Multiplication
NAF Non-Adjacent Form

As we can see from the above calculation the number of operations that we carry out 1s
dependent on the number of non-zero digits in the binary representation of the exponent
Every time we encounter a 0 digit we must do one addition operation for the “double”
Every time we encounter a 1 digit in the binary representation of the exponent we must do
two addition operations, one for the ‘add” and one for the ‘double” In order to make this
operation more efficient, we must reduce the number of 1 digits - however, we cannot change
the exponent If the exponent in discrete loganithm based cryptosystems 1s chosen 1n a way
such that it 1s not random this would seriously damage the security of the system See the
discussion on random numbers 1n Sec 16 However, using elliptic curves with char # 2,3
we have that if P = (z,y), then —P = (z,—y) This conversion 1s extremely efficient and
can be used with a signed binary representation of the exponent

Consider for example the number 31 1n decimal Written 1n binary we have

3150 = 11111, (2 40)

This can also be wnitten 1n signed binary representation, where the digits 0,+1 are
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allowed Conventionally, —1 1s wrnitten as 1 31;p can be written as

311 = (32 — 1)10 = (100000 — 1), = (1,0,0,0,0, 1) (2 41)

Therefore, if we are using 31 as an exponent® the number of addition operations using
the double-and-add method and the conventional binary representation would be 10 Using
this new signed binary representation the number of addition operations would be 8

Formally, the NAF of a positive integer 1s defined as

Definition [72, Ch 3] A non-adjacent form (NAF) of a positive integer k 1s an expression
k= zg;}) k,2* where k, € {0, %1}, k;—; # 0 and no two consecutive digits &, are nonzero

The length of the NAF 15 {
If k 1s a positive integer, then a few properties of NAF(k){72 Ch 3] are
e For each k£, NAF(k) 1s umique

¢ Importantly, NAF (k) has the fewest nonzero digits of any signed binary representation

of k

o If the binary representation of k has length I, the length of NAF{k) will not exceed
(I+1)

e The average density of 1 digits in NAF(k) 1s ~ 1/3 for a random value k

The algorithm for working out the NAF representation of a number 1s given in Algorithm
24

This NAF representation can now be used with a modified version of the Double and Add
algorithm given mm Algorithm 23 Whereas i the conventional double and add algorithm
only had “double” and ‘add” operations to work with, we now have a subtraction operation
that will be triggered by the —1 that we now have n the signed binary representation

We can use the NAF representation obtained from Algorithm 2 4 mn the following adapted

*This exponent, small, but with ligh hamming weight, 1s for clarity of exposition only
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Algorithm 2 4 An Algonthm for Generating the NAF Representation of a Positive Integer
k

INPUT A positive integer k

OUTPUT NAF(k) = {kim1, ,ko}

10
while (k > 1) do
if ((k mod 2) =1) then
k, + 2 —{k mod 4)
k—k-k
else
k,«0
end 1f
ke—k/f2
1—1+1
end while
return {k,—1, ,ko}

double and add algorthm The NAF point scalar multiphcation algorithm 1s given 1n
Algorithm 2 5

Algorithm 2 5 An Algorithm for Elliptic Curves Point Scalar Multiphication based on
NAF Representation

INPUT An Elliptic Curve E defined over field Fpx, a point P € E(F,i)[r] (P # O), and
exponent z (0 <z <r)

OUTPUT Q =zP

let {z, zo} represent the NAF signed binary expansion of z
(for details see Algorithm 2 4)

QR+«O0
for y =3 downto 0 do
Q+~Q+Q
if ((z, = 1)) then
RQ—Q+P
end 1f
if ((z; = —1)) then
Q—Q-P
end if
end for
return

Following on from the NAF representation presented m the previous section we can
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produce a undth-w NAF Whereas, previously we only had 0, £1 we now allow ourselves the
integers 1n the range —2%~! < u < 2¥~! Using this new representation we can require that

for any w consecutive digits, there 1s only one non-zero value

Defimtion [72, Ch 3] let w > 2 be a positive mteger A wndth-w NAF of a positive
integer k 1s an expression k = i;%) k,(2¥)* where each non-zero coefficient %, 1s odd,

|k, < 2¥~!,k;_, # 0, and at most one of any w consecutive digits 1s non-zero

The w-NAF of a number 1s computed using Algorithm 2 6, which 1s closely related to
Algorithm 2 4

Algorithm 2 6 An Algorithm for Generating the w-NAF Representation of a Positive
Integer &

INPUT A positive integer &

OUTPUT w-NAF(k) = {ki-1, ,ko}

10
while (k > 1) do
if ((k mod 2) =1) then
k, < k mod 2%
k+—k—k,
else
k, <0
end if
k—k/2
11+ 1
end while
return {k,—1, ,ko}

2 6 Multiple Point Scalar Multiplication

We now look at efficient multiple point scalar multiplication This 18 used for example 1if we
wish to calculate some point R = xP+yQ The 1dea 1s to perform two or more pomt scalar

multiplications simultaneously A precomputed table 1s calculated such as the one shown

in Table 22
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Algorithm 2 7 An Algorithm for Elliptic Curves Pomnt Scalar Multiplication based on
w-NAF Representation

INPUT An Elliptic Curve E defined over field Fy, a pomnt P € E(Fp)r] P # O and
exponent z 0<z<r

OUTPUT Q==zP

let {zj-1 =z} represent the w-NAF expansion of z
(for details see algorithm 2 6)

Q0

P« 1Pforie{1,3,5 (2v71-1)}

for : from { — 1 downto 0 do

Q+Q+Q
if (z; #0) then
Qe Q+ Py
else if (z, < 0) then
Q - Q - P—z:,
end 1f
end for
return @

Precomputation
0P +1Q
0P +2Q

0P+ (2¥ - 1)Q
1P +1Q

2¥-1)P+(2¥ -1)Q

Table 22 Combined multi-point scalar multiplication

Using this set of values, together with the w-NAF representation, 1t 1s possible to adjust
Algorithm 2 7 to compute any pomnt of the form R = zP + yQ The more points that are

precomputed the more efficient the algorithm becomes, though the storage requirements

become correspondingly larger
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27 Point Compression

Because we know the equation of the curve, giving both co-ordinates 1s giving more than the
mimimum required information Given the z co-ordinate, the corresponding y co-ordinate
must be one of two possible values The idea of representing a point as one co-ordinate plus
additional identifying information about the second co-ordinate 1s called point compression
[133]

Elhptic curves are mapped by an equation of the form y? = z3 +ar + b Any = co-
ordinate of a point that 1s on the curve will be associated with two possible y co-ordinate
values These values will be +y, since y = ++vz2 + az + b Therefore we must specify
which of these two possible values 1s being referred to This requires one additional bit of
information This 1s the bit § = LSB(y), and works, for curves defined over Fy, since if y
1s even, then —y will be odd® These points are the negatives of each other

The original supersingular curve specified by Boneh and Franklin for use with their
dentity based encryption scheme [31], 18 ¥ = 73+ 1 mod p where p = 2 mod 3 This
curve has the mteresting property that for each y co-ordinate there 1s exactly one z co-
ordinate Obviously, for each z co-ordinate there are two possible values for y However,
this leads to an even more efficient compression based on the y pomnt In this situation an
additional bit does not have to be stored, because z can uniquely be recovered from the

equation

=y -1 (242)

28 Projective Space

As we have seen all elliptic curve public key cryptosystems rely on the basic group operation

- point addition We have looked at faster ways of computing point scalar multiplication, but

®—y=(p—y) modp
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these techmiques are built upon point addition and point doubling Obviously 1f we can make
these operations faster then we can tnprove the performance of the overall cryptosystem

We have also seen that we can have several different representations for the same point
For example a pomt defined over the field F, can be represented as P = (z,y), where
x and y are both integers i [, Alternatively 1f this point 1s to be transmitted, and we
want to make a trade-off between computational and bandwidth considerations — decreasing
bandwidth requirements at a cost of increasing computational requirements — then we can
represent this pomnt as P = (z, %), where § represents the LSB of the y co-ordinate There
1s now no redundancy in this representation

There are two 1ssues raised above — the complexity of the basic point addition operation
and the ability to represent points in different formats There are representations for points
which allow us to perform the group operation using a smaller than standard amount of
computation — especially by eliminating the modular inversion operation There are several
such co-ordimate systems They are two dimensional Affine, and the three dimensional
Standard Projective, Jacobian Projective and Lépez-Dahab Projective (72, 1, 126
co-ordinate systems

Now we have the same set of points represented n four different ways The first of these
representations 1s defined over two dimensions, whereas the others are defined over three
dimensions Obwviously, however, 1f all variables can be 1n the range {0, ,(g— 1)} then
the latter three co-ordinate systems allow us to represent ¢° elements whereas the affine
co-ordmate system allow us only to represent ¢2 elements

We can construct equivalence classes One can define an equivalence relationship over

the set ng\{([), 0,0)} as

(Xl,Y'l, Zl) = (Xg,Yz,ZQ) if X, = Ach,Yl = )\de,Zl = A2, for some X € F;k (2 43)

Using Jacobian projective co-ordinates we have, ¢ = 2,d = 3 and the following
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(X Y Z)={(AX,\¥,\Z) A€ F5y} (2 44)

(X Y Z)scalled a projective pomt, and {(A\°X, A%Y,AZ)} 15 called a representative
of this projective pomnt If Z # 0 then (X/Z¢,Y/Z%1) 1s a representative of the pont
(X Y Z) Therefore, this gives us a one-to-one relationship between the set of projective

pomnts and the set of affine pownts

P(Fx)* = {(X Y Z) X,Y,ZeK,Z+0}, (2 45)

A(]Fp“') = {(z,y) m:yerk} (2 46)

Using standard projective co-ordinates we have the transformation (X YV Z) Z #0
corresponds to the affine point (z,y) «+ (X/Z2%,Y/Z%) Now, given the curve equation
2_ .3
Yy =z +ar+b (247)

we can substitute i these new values and get the corresponding curve equation using

projective co-ordinates

(Y/Z2%)? = (X/Z2%)3 +a(X/Z%) +b(Z/Z), (2 48)
Y228 = X3%/7° +a(X/Z%) +06(Z)2), (2 49)
Y2 = X 4+aXZ'+028 (2 50)

Using projective co-ordinates, O 1s represented as the projective pomnt (0, 1,0)
Now that we have g possible representations for each point, we have the ability to define
pomnt addition operations that do not require an expensive modulo mversion If we need

to, we can convert first from affine to projective coordinates, then do the computationally
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expensive operations, and then convert back to affine co-ordinates This will require an
inversion, but will still be much quicker than working solely 1n affine co-ordimates If we
need to convert from affine co-ordinates to standard projective co-ordinates we simply set
Z =1, and so the transformation 1s simply (z,y) — (X,Y,1) To convert back we sumply
do the transformation (z,y) « (X/Z%,Y/Z*) Using Montgomery’s trick, this requires one

modular inversion

29 Point Reduction

A techmque related to point compression 1s called pownt reduction Some elliptic curve
cryptosystems don’t require that we specify whether we mean the positive or negative of a
pomnt Both points are treated equally Therefore 1t 15 possible to operate just using the z
co-ordinate of a pomnt This was first pointed out by Miller in [94] In some situations, we
can discard the y co-ordinate, because there are formulas for calculating the = coordinate

of some multiple of a pont that depend only on the 2 co-ordinate of the original pont

210 Group Structure

As described 1n Sec 23 2, the embedding degree extension field 1s the lowest degree ex-
tension field which mcludes the r** roots of umity The r** roots of umty form a cychc
group of order r These elements are used in pairing based cryptography To keep the
representation of this group reasonably small and to allow fast computation in this group
we deliberately pick curves that have a small embedding degree If we restrict ourselves to
supersingular elliptic curves then we always have k£ < 6 [92] If we use non-supersingular
curves we can find curves that have much higher embedding degrees For the remainder
of this thesis we will assume that &k 18 small and even A popular choice of curve
for 1dentity based cryptography are curves where the embedding degree &k 15 2 The order
of this curve, denoted #E(F,) 1s (p + 1 — t) where ¢ 1s the trace of Frobenius The order

of this curve over Fp2 15 (p+1 — t)(p + 1 + ¢), (which n the general case can be calculated
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using Weil’s theorem) The group of points defined over F,z do not form a cyclic group
For a k = 2 curve r exactly divides both p + 1 and (p + 1 —t), and hence r|t And r2|#E
[117, 14, 15}

Let the complete set of points defined over Fp. be called G, of order #E(F,2) The set
of all points that are transformed to O by multiplication by r 1s denoted G[r] These are
the r-torsion points Since 7 1s prime, these are all the points of order r plus @ There are
2 such points, and these 7? points can be orgamsed as r + 1 distinct cyclic subgroups of
order r — they all share O Note that one of these subgroups 1s S[r] and consists of all those
r-torsion points from the original curve E(Fp) - pomts of the form P[(a,0), (¢, 0)], which
are defined on both the base and extension fields

Let CoF = #E(F,2)/r* Then a random pomt on the curve can be mapped to a pont
in one of these sub-groups of order r by multiplying 1t by this co-factor CoF The set of
distinct points generated by multiplying every element of G by r 1s called 7G The number
of elements 1n rG 1s CoF This 1s called a co-set [117]

Consider the partitioning of the #F pomnts into distinet co-sets This can be done by
adding a random pomnt R to every element of 7G There are exactly 72 such distinct co-sets,
each with CoF elements The original co-set rG s the unique co-set that contains O Every
co-set contains exactly one r-torsion point Elements of these co-sets are not all of the same
order They do not form a group

The quotient group G/rG 1s the group formed by all of these co-sets [117]
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Chapter 3
Bilinear Maps

3.1 Daivisor Theory

Let F be an elliptic curve defined over the field K For each point P € E(K) define a
formal symbol [P] A divisor {137, Ch 11][87] 1s a fimte linear combination of such formal

symbols with integer coefficients

D=> a)Pla, €Z (31)
J

A dwvisor 1s therefore an element of the free abehan group generated by the symbols [P]

The group of divisors 1s denoted Div(E) The degree of a divisor 1s given by

deg(D)=) o, €Z (32)
2

and as shown above evaluates to an integer

The sum of a divisor 1s simply the sum of all of the points that are represented

sum(D) = Z a,P, € E(K) (33)
7

The sum function uses the standard addition formula on the points that are represented
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by the formal symbols The support of a divisor is the set of all points represented by
formal symbols for which a; # 0 It 1s customary to only include formal symbols if they

have non-zero coefficients

supp(D) ={[P)] € D | a, # 0} (34)

311 PFunction on a Curve

We now define what 1s meant by a function on a curve Suppose that E 15 an elliptic curve,

then f 1s a function on E 1f 1t 1s a rational function!

flz,y) € K(z,vy) (35)

that 1s defined for at least one pomt i E(K), where K 15 the algebraic closure of K This
means that the function must intersect F at some point A function takes values in KU{oo}
The evaluation of a function f at a point P 1s denoted f(P) = f(zp,yp)

A function 1s said to have a zero at P if it takes on the value 0 at P [87, 137] A
function 1s said to have a pole at P if 1t takes the value oo [ only has finitely many zeros
and poles For every pomnt P for which the function f 1s defined there 1s a function up

called a uniformiser at P where f can be expressed in terms of up as follows

[ =up g, wherer € Z and g(P) # 0,00 (3 6)

A umiformiser up can be obtained as the equation of a line that passes though the point

P which 1s not a tangent to E at P Now that we have this defimtion we can define what
1s meant by the order of a function at a pomnt P

ordp(fy=r 37

If f 1s a function on E then ordp(f) counts the multiphicity of f at P ordp(f) 1s positive

'A rational function 15 formed when one polynomial divides another polynomial
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when f(P) = 0 and negative when f(P)} =00 If ordp > 0, P 1s a zero, if ordp < 0,P 15 2
pole, if ordp = 0, P 1s neither a zero or a pole A pole or zero of multiphcity one 1s called

“simple”, of multiphicity 2 1s called ‘double’

312 Principal Divisor

A principal dwisor on E 1s a divisor of some function f which 1s defined over E {90], as

shown in Equation 3 8 This 1s denoted as D = div(f)

div(f) = > ordp(f)[P] (38)

PeE
A principal divisor D will have deg(D) = 0 and sum(D) = @ We have now established
a relationship between a divisor D and a function f on F
Suppose that P, P, and P; are three points on F that lie on the line defined by the

function
flz,y)=ar+by+c=0 (39)
Then, since deg(f) = 0, and f has three zeros at P;, P» and P; (since they are on the
line) then it has a triple pole at & This can be written as

av(f) = [P + [Pi] + [P3] - 3(0)] (310)

We also know that P; 1s the point —(P; + P»), since the reflection of Ps, using the
elliptic curve addition formula given n section 2 2 1s the point (P, + P,) We know that the
equation of the vertical line runming though P3 and —P; 1s given by equation (z — z3) = 0,
where P = (z3,y3) That 1s

dw(a: - 2}3) = [P3] + [—P3] - 2[0] (3 ].].)

Therefore
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div (—a$+by+c

T — I3

) =div(ar + by +c¢) —div(r —z3) = [P} + [B] - [-P] - [0] (312)

Since P, + P, = —P3 on E, this may be written as

(P + [P2] = [P + P2} + [O] + dwv (M)

P (3 13)

In this way principal divisors may be expressed in terms of a formal sum and the divisor
of a function We can use this idea to mmcrementally buld from a divisor D, a function f
such that div(f) = D, at each point replacing part of the formal sum by a more complex

function First, we check that the formal sum has sum equal O and deg equal to 0

Consider for example the curve £ defined over Fy, given by

y? =23 +4r (3 14)

Let

D =1(0,0)] + [(2,4)] + [(4,5)] + [(6,3)] — 4{O] (315)

Then, with a bit of work, sum(D) = 02, and deg(D) = 0, therefore 1t follows that D 1s
the divisor of a function We wish to find this function We use the approach taken above,
where we 1ncrementally resolve parts of the formal sum into divisors of functions and then
combine these smaller divisors into a more complex divisor

The line though (0,0) and (2,4) 1s y — 22z =0 It 1s a tangent to E at (2,4), so

div(y — 2z) = [(0,0)] + 2[(2,4)] — 3[0] (3 16)

The vertical hine though (2,4) 1s z — 2 = 0, therefore we have

%((2,4)] + [(4,5)] + [(6,3)] are all on the same hne ((2,4) = ((4,5) + (6,3))) and (0,0) = —2(2 4), so
(0,0) + (4,5) + (6,3) +(2,4) = —-2(2,4) +2(2,4) = O
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dv(r - 2) = [(2,4)] + [(2,7)] - 2[0]® (317)
And
div (yz——22$) = div(y — 2z) — div(r — 2), (3 18)
y— 2
an (L) = (0.0 + (2.9 - (2.7 - 0] (319)
Remember
D ={(0,0)] + [(2,4)] + [(4,5)] + [(6,3)] - 4[O] (3 20)
Therefore
y— 2z
D= [(2,7)+ i (L5 ) + (6,5 + (6,9] - 300 321

We can also calculate the following function

(3 22)

[(4,5)] + [(6,3)] = [(2,4)] + [O] + div (7/+m+2)

-2

Using these two equations we can determine the equation of the function f for which

D = dw(f)

D =[(2,7)] +[(2,4)] - 2[0] + dwv (yz'_2;) +dwv (”:f; 2) (3 23)
D =div(z - 2) +div (%) + dwv (y:i;2> (3 24)

~2 2
D=d1v((y IEa):(i;y-i- )) (3 25)

37=(-4) mod 11
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32 Weil Pairing

The Weil pairing 1s a bilmear map which takes two pomts of order r in the embedding

degree extension field, and maps to an element of Fpx [137]

e E(F,)[r] x E(F)r} = pr (3 26)

Here ur 15 the set of 7* roots of unity m Fp

' Let T € E[r] Then there exists a function fr such that

dwv(fr) = r[T] - r[O] (327)

since sum{div(fr)) = O and deg(dwv(f7)) =0

Let T’ € E[r?] be such that 7" = T Then there also exists a function gr such that

div(gry= > ([T" + R] - [R]) (328)
REE[r]

The sum of the points i the divisor 18 @ This follows from the fact that there are r?

pomts R in E[r] The pomts R m Y (7" + R] and D[R] cancel and therefore the sum 1s
S.[T"] = O The value of gr does not depend on R
Let fror denote a function that starts with a point, multiples it by  and then applies

fr The points P =T' + R with R € E[r] are those points P with rP =T It follows that

div(fror)=r (Z[T’ + R]) -r (Z[Rl) = div(gT) (3 29)
R R

Let S € E[r] and let P € E(K) Then

gr(P +8)" = fr(r(P + 8)) = fr(rP) = gr(P)" (3 30)

Therefore gr(P + S)/g9r(P) € pr and 1s independent of P
The Weil Pairing 18 defined as
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er(S,T) = % (3 31)

321 Bilinearity of the Weil Pairing

We now examine the bilineanty of the pairing [137, 22]
We first look at linearity n the first variable To recap, from the previous section, we

have

gr(P +5)
§T)="——-=, 332
ST =) 332
expanding we have
P+S P+ S
or($1,T)ex (8, T) = LL 2SN grlZ 4. 5) 33)

gr(P) gr(P)

But the result of the pairing 1s independent of the choice of P, so we can replace P in

the second pairing, with the (rather convement) value P + S; This gives

_gr(P+81) gr(P + 81 + S3)

r(S1, T)er (52, T) = ) 334
er(S1 Ter (52, T) gr(P) gr(P+ 51) (334)
which simplfies to
_ gT(P + 851+ 82)
eT(SliT)eT(Sz,T) - gT(P) ’ (3 35)
1e e.($,T)e (52, T) =er(S1+ 82, T) (3 36)
o

We next examine linearity i the second vanable
Suppose we have three points 71, 7> and T3 € E(r),such that TY+ T, = T3 Let g1 g3

be the functions used to define e.(S,7,) Let h be the function, such that
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div(h) = [T3] — [T1] + [O]

We also know that if T € E[n], then

dw{f) = n[T] = n[0]

for some function f and so forz =1, ,3 we have

dw(f,) = n[T:] — n[0]

and so we can express h in terms of the f,’s

3\ _ (i
div (}l—ﬁ) = ndiv(h) = div(h")

This allows us to wnite

f3 = fifoh"

From equation 3 30 we have

f(nP) = g(P)"

Combining the previous two results we get

fa = fifoh™ mmplies g3 = g192(h n),

which implies

B3(P+S) _qi(P+5)g:(P+8)h(n(P+85))

er($,Th + 1) = g3(P) ~—  qi(P) 92(P)

But, since n(P + S) = O the last term 1s equal to l]ppk this gives
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g3(P+58) _ g1(P+5) g2(P + §)
93(P) (P} q(P)

er(S, Ty + Ty) = = e:(8,T})er(S, o) (3 45)

as desired

3.3 Tate Pairing

There 1s another pairing called the Tate pairing, which is generally more efficient to compute

It 1s a bilinear map of the form [22, 137

e E(Fpk)[’!'] X E(Fpk)/TE(Fpk) - Fpk/(Fpk)r (3 46)

where 7E(F,1) 15 defined to be rE(Fy) = {rP P € E(Fp)}

Let P € E[r] Since rP = O, 1t follows that there 1s a function Dp such that div(Dp) =
r(dwv{P) - r div(0)) Let Dg be any degree 0 divisor such that the support of Dg 1s disjoint
from the support of Dp Now, two divisors are said to be equivalent, denoted D ~ D', 1f
the difference between them 1s a principal divisor* Therefore if we have two functions f and

f' such that diwv(f) = D and the div(f') = D’ f, can be replaced by a function f’ such
that
aw(fp) = 0] - [P] (347)

Therefore exists a function fp such that

dw(fp) = rDp (3 48)

Let Do =Y, ,[@Q:] be a divisor of degree 0 such that sum(Dg) = @Q and such that Dp

and Dg have no points in common We can define the Tate pairing as

“To recap A principal divisor, which 1s a divisor of a function, 1s one such that deg(D)= 0 and sum(D)=

o
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(P,Q) = fr(Dgq) (3 49)

where, for any function fp, whose divisor has no points in common with Dg we define

fp(Dq) =[] fr(Qu)™ (3 50)

Assume that fp 1s defined over F,, and let R be any point in E(F,) Let Do =

p
(Q + R] — [R] € Fpx, then the Tate pairing can be defined as

fp(Dq) = fr(Q + R)/fp(R) (351)

331 Bilineanty of the Tate Pairing

We now look at linearity of the first variable From equation 3 51 we have the Tate pairing
defined as (P,Q)n = fp(Dg) As with proving the bilinearity of the Weil pairing we
let P\,P, € E(Fp)[r},Dp, and Dp, be the respective divisors and fp, and fp, be the
corresponding functions

Adding two divisors of points gives the divisor on the addition of the two points, therefore

we have

DP1+DP2=DP1+P25[P1+P2]_[O] (352)

For 2 = 1, 2, there exists functions fp, such that

dwv(fp,) =rDp, (353)

and

dw(fp, fp,) =71Dp 4P, (3 54)

Therefore
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(Pr++ P2, Q) = fr fP,(Dg) = (P1,Q)(P2,Q)r (3 55)

Hence, the function 1s hinear in the first variable
Looking at the second variable we have
Let Q3 =Q1+ Q2 Let Dg =[Q,)—-[O]for: =1 3

We know that

Dq, + Dg, = [@i + Q2] = [0] = Doy = [Qs) - [0] (3 56)

Therefore we have

(Ps Q%)T = (Pan + QZ)T‘ = f(DQl + DQz) = f(DQl) + f(DQz) = <P1 Ql)T(P Q?)r (3 57)
Therefore we have linearity i the second variable

332 Reduced Tate Pairing

As we have established 1n the previous sections, the Weil pairing gives a definitive answer,
whereas the Tate pairing equates to a set of equivalence classes The Weil pairing can be
used directly for implementing a bilinear function for use with the cryptographic protocols
to be described in later chapters However, as 1t 1s described above, the Tate pairing 1s not
1deal for use n cryptography We would prefer if the pairing resulted 1n a definitive answer

To make the Tate pairing useful for cryptography we need a many-to-one mapping that
will take all the members of an equivalence class and reduce them to the same result This

can be achieved by a simple exponentiation [22)]

t,(P,Q) = (P,Q)¥* -/ (3 58)
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This is known as the reduced Tate pairing5 and gives a definite result in the rLh roots
of unity group, which we denote as fir. From now on, when we mention the Tate pairing it

can be assumed that we are talking about the reduced Tate pairing.

3.4 Modified Pairings

The Weil and Tate pairings take two distinct (non linearly dependent) arguments. However,
manyprotocolsspecifya bilinear map where both arguments come  from the same group
over Fp.Therefore,when using a supersingular curve we needa non-rational endomorphism

of the form [22]:

</>:£(Fp) ->£ (F pfo) (3.59)

This mapping is known as a distortion map [134]. For a supersingular curve a distortion
map always exists, whereas, for non-supersingular curves, no such distortion map exists
[134]. We do not go into the details of these distortion maps here.

The modified Tate pairing is generally denoted t:

E(¥pK)[r]xE(¥p) [r}rn (3.60)

i(P,Q) = i(P,«Q)). (3-61)

where <X is used to denote the distortion map.

The distorted Weil pairing is generally denoted e:

(3.62)

e(P,Q)=e(P,<j>m- (3-63)

5In common usage, the term “Tate pairing” is generally assumed to refer to the reduced Tate pairing.
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Using all of the above techmiques, cn a supersingular curve, we can take both points
from the same group, use the computationally much more efficient Tate pairing and get

a concise result (as opposed to an element of an equivalence class) This 1s now 1deal for

cryptography

35 Miller’s Algorithm for Pairing Computation

The methods that we have given so far are probably of more use to a mathematician than
a computer programmer There are much more concise, and therefore scalable methods
of computing bilinear maps Miller’s algorithm which 1s based on the ‘double and add”
algorithm for Point Scalar Multiplication {PSM) 1s at the centre of the construction of the
function g which 1s at the heart of the Weil and Tate pairings Miller’s algorithm takes both
points and evaluates a partial function at each stage of an iterative process

Let Dg and Dt be two divisors of degree # 0 with no points in common, such that
1 sum(Dg) = 8§

2 sum(Dp) =T

and, using the same notation as before, let fs and fr be two functions such that

1 div(fs) = rDg

2 dlv(fT) = 'I‘DT

Then, the Well pairing 1s given as

_ fr{Ds)
P,-(S, T) = fS(DT) (3 64)
and the Tate pairing can be defined as
fs(T + R)
8T =
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Interestingly, the Weil pairing can be expressed m terms of the Tate pairing

w5 T

. ) - T

er(5,T) = (5,T) ~ e (3 66)
S

Therefore, both pairings rely on an ability to construct the appropriate function fp with

divisor

dwv(fp) = r[P+ R] — r(R] (367)

with points P € Ejr] and R € E, efficiently
Miller’s 1dea uses successive doubling to get to r However, one techmcality is that
3[P + R) - 3[R], for values j < r are not divisors of functions®, however we get a very similar

divisor

D,p =3[P+ R} - 3(R] - 3R] + [O] (3 68)

So

dvifyp) = Dyp (369)

Now, assume for a moment that we know f,(Q1) and f¢(Q2) and let z(, .y +d =0 be

the vertical line though (3 + k)P Then

div (am+bv+c

z+d )=UP]+[kP]—[(J+k)P]—[0] (3 70)

Therefore

az +by+c az +by+ec¢
dlv(f(_)-}-k)P) = DJP + DkP + dw (hz—-l-&_—) = le (fjfk__’):?i—) (3 71)

§2P = (), whereas )P #£0 ) <r
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To make the example concrete, consider

ar+by+rc
le(.f(]+k)P) =div (f]PkaT_}_UE_') Ile(gy,,) (372)

The above equation 18 often just written as

alfyyp) = v (et (373)

where [ 1s the sloping line between the two pomnts (3P and &P) and v s the vertical line
passing though &P

To conclude

dw(fp) =r[P+R] —r[R] ~ [rP] + [O) =[P + R] - r[R] (3 74)

Therefore, we have successfully constructed the function fp at the heart of both the
Weil and Tate Pairings

We finish this section by giving a concise algorithm for the construction of the Weil and
Tate pairmgs i Algorithm 31 There 1s Java code 1n the accompanying CD-ROM which
implements Miller’s algorithm

Algonthm 3 1 1s Miller’s algorithm for the construction of the reduced Tate pairing

36 BKLS Algorithm for Pairing Computation

The BKLS algonithm [14] 1s a version of Miller’s algorithm for efficiently computing the

Tate pairing, 1t makes several improvements for cases that are of cryptographic interest

1 Denommator Ehmination

If we consider the extremely common ‘modified Tate pairing”

#(P, Q) = (P, $(Q)) where P,Q € E(F)fr] (375)
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Algorithm 3 1 Miller’s algorithm for computation of the reduced Tate pairing
INPUT P € E(Fu)[r], Q € E(Fy)
OUTPUT ¢t (P, Q)

Choose switable S € E(F)
Q+«Q+S

T+ P

m ¢ |loga(r)| — 1

f«1

while (m > 0) do

if (rp, = 1) then
T«T+P
<! L@
end 1f
mée—m-—1
end while
return f « fP-D/7

we see that denomunator elimination can be applied

Denominator elimination can be applied to Miller’s algorithm in certain settings By
picking parameters as outhined 1n {14, Sec 5], the denommator (f> mn 3 1), when

exponentiated to (p — 1)%/2 7

can be made to become the value l]p‘pk, and obviously
z/1 = z, therefore f> can simply be 1gnored This halves the amount of computation

m Miller’s algorithm

2 Choice of Subgroup Order

Solinas [128] had previously noted that there are many primes that have Hamming

weight as low as three®

Using signed binary representation, these primes can be
written as 2* = 28 £ 19 It 1s possible to construct elliptic curves such that r, the
order of the group G, 1s a Solinas prime The reduces the amount of computation

from = 15l1gr to = lgr

"Asn the reduced Tate paring

8There are only three non zero bits 1n their binary representation

® Alfred Menezes, at ECC summer school 2004, said that the NSA referred to these as “The primes from
God”
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3 Speeding Up the Final Exponentiation

A sw7eable part of the computational effort in evaluating the reduced Tate pairing 1s

the final exponentiation For the p > 3 and even % case the BKLS algorithm replaces

t = m =D/ (3 76)

with
x = m/m, (377)
t = @ (3 78)

where 7 1s the complex conjugate of m

Calculating the conjugate 1s very efficient, and the exponent 18 now much smaller -

this will lead to a much more efficient implementation

4 Fixed Base Pairing Computation

We can optimise the pairing based on repeatedly using the same base point P When
using a fixed base point, the same values will recur in repeated pairing computations

These values can be computed just once and stored

When applying precomputation to pairings, the coordinates of these points, along
with the slopes of the lines that connect the pomnts are stored, as it is these values
that are used in the computation of the function fp A series of tuples {),z,y} are
stored, one for each point that arises m the calculation of P Then simply recalculate
fp using these stored values and new values for zg and yg, the co-ordinates of the

second point

5 Using MNT curves
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For a tume 1t was thought that pairing based cryptography may have to be restricted
to supersingular curves Meneres Okamoto and Vanstone had pointed out that super-
singular curves have embedding degree of at most 6 {92] Curves of low embedding
degree are 1deal for pairing based cryptography As it turns out, it 15 quite easy to
construct (non-supersingular) curves with k£ € {3,4,6} A method for generating such
curves was first described by Miyaj1, Nakabayashi and Takano 1n [95] (these are known
as the MNT curves) Although there 1s no hard evidence, non-supersingular (a k a
‘ordinary”) curves are believed to be at least as safe, 1if not safer than supersingular

curves, since they have less structure and there are a lot more of them

Finding curves with larger, but still manageable values of £ 15 an area of great academic

mterest See for example the work of [15, 16] and recently, work by [17]

We now include the BKLS algorithm from [116], where Q 1s on the twisted curve!®

Algorithm 3 2 BKLS algorithm for & = 2 computation of the Tate pairing using the
Twisted Curve {116}

INPUT P € E(Fp)[r], Q € E(F,)

OUTPUT ¢.(P,Q)

fe1

A+« P

n«—r—1

for (z mn |lg(r)] — 1 downto 0) do
ff* 9(A4,Q)
if (n, =1) then

f«f g(APQ)

end if

end for

m < m/m

m — m(?"‘l)/"

return m

1%For any curve of the form y? = z? + Az + B with {A, B} € Z;, the twisted curve 1s given as y? =
23 + d® Az + d*B, where d 1s any Quadratic Non-Residue mod r
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37 GHS Optimisations for Pairing Computation

The following three optimisations, which are also i the BKLS paper, are due to Galbraith,
Harrison and Soldera in [67] They are observations on the basic Tate pairing that allow 1t

to be implemented more efficiently

1 Choice of Pomts

Compute the pairing using t(P,Q) P € E(Fp)[r] Although, for the Tate pairing
P does not have to be an element of E(F,), making 1t an element of E(F,) results

i much smaller representation for A, zp, yp and much more efficient implementation

This was comned “Miller-Lite” by Solinas at ECC 2003

2 Reduce number of Il?‘j,,;~ mversions

Another implementational issue that Galbraith, Harrison and Soldera noticed 1s that
Miller’s algorithm specifies computing a function f,, /f4, at each stage and then mul-
tiplying these fractions together Obviously, this improvement cannot be used in

situations where BKLS [14] denominator elimination already applies

/e % ;Z (379)
This 1s much more efficiently implemented as

fn & fa frr (3 80)

fa < fa fdrs (3 81)

f % (3 82)

requiring only one division
3 Use Faster Point Scalar Multiphcation Techniques
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The third observation of Galbraith et al 1s that one can use windowing methods
mstead of naive bit by bit double and add The authors claim that this method does
not change the number of doublings, only reducing the number of additions Therefore

1t would probably be of little use if using a value r of low Hamming weight

3 8 Products of Pairings

381 Solnas’ Observation

As noted by Solinas at ECC 2003, it 1s possible to more efficiently compute the product of

two or more reduced Tate pairings [129] by using the simple observation that

a® b =(a b)° (3 83)

As we remarked earlier, the (reduced) Tate pairing requres an application of (some
variant of) Miller’s algorithm followed by a final ezponentiation i order to get a concise
result For a given curve, this final exponentiation will always be the same value, and 1s not
1n any way dependent on the mmputs to the Tate pairing

We use m to denote a non-reduced Tate paring and ¢ to denote a full (reduced) Tate

paring

HQo Py HQn Fa) = (3 84)
= (Qo, P)*® (Qn, Pn)®, (3 85)
= ((QO’ PD) <Qn, Pn))e (3 86)

3 82 Scott’s Observation

As noted by Scott in [116], 1t 1s possible to implement multi-pairing in a manner similar

to mult1-exponentiation The 1dea here 1s that we only have to do one squaring of f, the
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‘Miller vanable” as Scott calls it The basic algorithm s shown in Algorithm 3 3, where we
assume that all of the points are distinct (otherwise, the points could just be added before

performing the pairing)

Algorithm 3 3 Multi-Miller algorithm for computation of the product of pairings
INPUT Py, P, € E(Fpe)[r], Q1, Q2 € E(Fpe)
OUTPUT (P, Q1) t (P2, Q)

f+1

A1 — P1

Az «— P

ner—1

for (z 1n [logy(r)| —~ 2 downto 0) do
fe 77 g(A1, AL Q) g(Ar, Az, Qo)
if (n, =1) then

f+f g(A, P,@Q1) g(A2, P, Qo)

end 1f

end for

m - m/m

m — m®/2)/r

return m

39 Basic Properties of Pairings

Whilst there has been a great deal of research done on the efficient implementation of
pairings, as outhned in the proceeding sections of this chapter, a great many papers have
been written which stmply make use of an abstract bilinear map!! Many protocols based on
pairings do not require specific pawrings In this section we will look briefly at the properties
of the different pairings In the rest of this section let the points P and P’ be two linearly
dependent points which are linearly independent of the pomnts @ and @', which are also

hnearly dependent

391 The Weil Pairing

The Weil paring satisfies the following properties

' As at the time of writing this thesis, the only two known bilinear maps are the Weil and Tate pairings,
both of which are instanciated over elliptic curves
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s Bilinearity Forall P, P',Q,Q' € E[n],

e(P +P,Q)=e(P,Q) e(F,Q), (387)
and
e(P,Q+Q) =e(P,Q) e(P,Q) (3 88)
¢ Alternating
e(P,P)=1, (3 89)
and
e(P,Q) =€e(Q,P)”! (3 90)

¢ Non-degeneracy

If e(P,Q) = 1 for all Q € E[n] then P =0

392 The Tate Pairing

In this section we will concentrate on the reduced Tate pairing since this 1s the version of
the Tate pairing that 1s used in the construction of cryptographic protocols

The reduced Tate pairing satisfies the following properties

e Bilmearity For all P, P, Q; and Q2 such that P, € E(K)n| and Q, €
E(K)/nE(K) then

t(PL+ P, Qh) = (P, Q1) t(P,Q1), (391)

and

t(P, Q1+ Q2) = (P, Q1) t(P1,Q) (392)
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e Alternating As we have already established, if we are using the Tate paring both
ponts do not have to be the of the same order and so the alternating property 1s not

defined

e Non-degeneracy Suppose K 1s a fimte field For all P € E(K)[n], P # O, there 1s
some Q € E(K)/nE(K) such that ¢{{P,Q) # 1 Sumlarly, for all Q € E(K)/nE(K)
with Q ¢ nE(K) there 1s some P € E(K)[n] such that {(P,Q) # 1

393 The Modified Tate Pairing

e Bilinearity For all P;,P,,@Q; and Q, such that P, € E(K)[n] and Q, €

E(K)/nE(K) then

t(PL+ P2, Q1) = t(P, Q1) t(P,Q1), (393)

and

(P, Q1+ Q2) =t(P1,Q1) t(P1,Q2) (394)

e Alternating Since we are now using the modified Tate pairing we have the require-
ment that both pomts be of the same order So, unlike the regular Tate pairing we
can swap the order of the points For the modified Tate pairing we have the following

relationship

e(P,Q) = e(Q, P) (3 93)

o Non-degeneracy Suppose K 13 a finite field For all P € E(K)[n], P # O, there 1s
some Q € E(K)/nE(K) such that t¢(P,Q) # 1 Smmilarly, for all Q € E(K)/nE(K)
with Q ¢ nE{K) there 1s some P € E(K)[n] such that (P, Q) # 1
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310 Strategies for Pairing Computation on a Smart card

In this section we look at alternative strategies that are of use for implementing pairings
on smart cards, such as ‘Chip & PIN” credit cards or SIM’s!?  We exploit the 1dea of
Chevallier-Mames et al [52]

A typical smart card has a very strictly defined API for interacting with the rest of the
world The smart card should have some externally inaccessible memory locations These
memory locations should be used to hold sensitive information such as private keys etc It
18 not possible to read memory locations directly and access to memory 1s via the card’s
API, and some logic circuitry on the card

Functions that makes use of the private data (key) should also be on the card For
example, consider RSA signing, In this case, an RSA decryption exponent and modulus
(d, N) must be present on the card, along with a function f that implements the signing
algonithm Any application that wishes to make use of these private keys must, for example,
supply all of the other arguments to f, in this case the message Therefore, any card requires
(just like any computer), a certain amount of storage and a certain amount of logic circuitry

Chevallier-Mames et al suggested a smart card on which no computer program was
implemented on the card — the card had no ROM The code was held on the (much more
powerful) termimal This 18 elegant as exactly the same card could be used for multiple
tasks depending on the program (terminal) used Any wstructions that are given to the
card must be signed by the program’s author

In joint research with Gemplus!?, we developed a solution similar to that of Chevallier-
Mames et al The 1dea here was not to disembed the program, but to go one level deeper
and disembed the computationally expensive pairing Obviously our card would need to
be more aware of 1ts environment than the card they describe The two objectives of this

research were

126IM Subscriber Identification Module
13Gemplus was named the worldwide leader of the smart card industry for a seventh consecutive year with
a 27% market share, according to market analysts, Gartner Inc (2005)
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Signed
RAM  ROM code
\\ \
CPU
Input / Output Input / Output

Figure 3.1: A basic interpretation of Chevallier-Mames et a/’s idea

« Make use of existing cards that are already in production at Gemplus. Would it be
possible to implement pairing based protocols on Gemplus cards designed for use with

regular ECC algorithms?

* Faster pairings for smart cards. Would utilising a powerful terminal make pairings on

a card faster than just implementing the pairing on the card?

We developed a protocol that was to be run between a smartcard and a terminal. The
card would output a series of values to the terminal. The card would then receive responses
from the terminal. The desired outcome of a run of the protocol was that the card would
obtain the result of the pairing and the terminal would not obtain any secret information

(such as private keys) from the card. The protocol was to be designed in such a way that:

1. The computationally expensive pairing computation was to be off-loaded to the com-
putationally more powerful terminal. The card was to only use algorithms that it

could already implementl4.

14This could potentially save a lot of money in the reconfiguration of a Gemplus production line.
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2 The smart card would be able to detect a cheating terminal, abort and return the L

symbol

Formally, a protocol 1s said to be a secure pairing delegation protocol if the following

conditions hold [51]

¢ Completeness After completion of the protocol with an honest terminal, the card

obtains e( A, B), except with neghgible probability

Secrecy A (possibly cheating) termimal should not learn any information about the
secret point or points beimng paired More formally, for any malicious terminal 7, there
exists a simulator S such that for any points A, B, the output of § 18 computationally

imndistinguishable from 77’s view S 1s not given A or B as input

Correctness The card should be able to detect a cheating terminal, except with
neglgible probability More formally, for any cheating terminal 7 and for any A, B,

the card outputs either L or e(A, B), except with neglgible probability

We came up with a number of solutions to this problem These solutions work n a

variety of situations, however, the most practical protocols are shown below

Here we show only two of the protocols that we developed

1 Two pubhic ponts!®, with one constant pomt This 1s useful for encryption m Boneh
and Franklin’s IBE scheme (see Ch 6 for a detailed description of this scheme), where
one point 18 public and constant (the KGC’s Ppy;), and one pomt 1s public and variable
(the recipient’s public key Qrp) Here we reasonably assume that the ciphertext mask

in Boneh and Franklhin’s IBE 1s calculated in two parts

Boneh and Franklin’s IBE encryption

i

g e(Ppuba QID) (3 96)

M = ¢° (397)

*5These values do not have to remain hidden from the terminal
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2 The pairing of two pomts, one of which 1s public and the other of which 1s private
and constant This 1s useful for Boneh and Franklin’s IBE decryption or Sakai and
Kasahara s IBE decryption (see Ch 6 for a detailed description of this scheme), where
one pomt 1s an element of the ciphertext and the other element 1s a long term private

key, which will remain constant over many decryptions

Boneh and Franklin’s IBE decryption

M = e(R,sQip) (3 98)

Sakai and Kasahara’s IBE decryption

M = e(R,(s+1d)7'Q) (3 99)

In the first case, we propose the following protocol

3101 Constant public A and public B

The card and the terminal are given as input a description of the groups G and ., and a
description of the bihnear map e G x G — i, Moreover, the card receives and stores the
tuple (e(4, @), Q) for some random @ € G These two elements are trusted to be related as
described, and so are assumed to have come from a trusted party These two values will act
as reference values 1n future calculations by the card The point Q and the value e(A, Q)
are kept private by the card The card 1s given as mput the point B and must eventually
output e(A, B)

The card generates a random z € Z; and queries the following pairings to the terminal

i
2
=
&

o (3 100)

as = e(A,zB+ Q) (3 101)

75



CHAPTER 3 BILINEAR MAPS

The card checks that

of e(A Q) = oy, (3 102)

and that of = 1, In this case, it outputs a;, otherwise 1t outputs L

The protocol requires only one scalar multiplication and two exponentiations in yg, 1t
can also make use of existing hardware that efficiently implements point scalar multiph-
cation Effiment pont scalar multiplication 1s a more mature area than efficient pairing

implementation

Theorem 3 10 1 The previous protocol unth constant public A and public B 1s a secure

pairing delegation protocol

Proof We do not have to prove the secrecy property since both points being paired are
public values
The completeness property 1s straightforward to establish The protocol’s correctness 1s

shown as follows Let b be such B = bP Let g be such that Q = ¢P Let

u=zb+¢g modr, (3 103)

which gives zB + @ = uP We have that the terminal’s view 1s entirely determined by (b, u)
and by the randomness used by 7 Since z and ¢ are randomly selected from Z}, we obtain
that the distribution of z 1s independent from the terminal’s view

Let 81, 32 be such that

a1 = e(A,B) e(A,P)P, (3 104)

ay = e(A,zB+Q) e(A,P)” (3 105)

We have that 81,3, are a function of the termmal’s view, and that a; = e(A4, B) 1of

1 =0 Moreover, we obtain from 3 102 that the card outputs a; 1ff
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78, =08; modr (3 106)

Now, we know that 8; # 0 Then since J; and G2 are a function of the terminal’s view,
and the distribution of r 1s mmdependent from the terminal’s view, equality (3 106) holds
with probability at most 1/r Therefore, for any cheating terminal, the card outputs either

1 or the correct e(A4, B), except with probability at most 1/r a

In the second case we have

3102 Constant private A and public B

The card and the terminal are given as mput a description of the groups G and u,, and
a description of the bilinear map e G x G — u, Moreover, the card recewves e(A, Q) for
some random @ € ¢ The ponts A, @ and the value e(A, Q) are kept private by the card
The card 1s given as input the point B and must eventually output e(4, B)

The card generates random z,y, 2 € Z; and queries the following pairings to the termi-

nal

ay = e(zA,B), (3 107)
ar = e(yAz(B+Q)) (3108)
The card computes
eap = o (3 109)
a3 = oy (3 110)
The card checks that
eas €(A4,Q) = az, (3111)
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and that ey = 1 In this case, 1t outputs €45, otherwise 1t outputs L The protocol

requires only 3 scalar multiplications and 3 exponentiations m i,

Theorem 3 10 2 The previous protocol with constant prwvate A and public B 15 a secure

paring delegation protocol

Proof The protocol’s completeness is easily established The protocol’s secrecy follows
from the fact that the terminal receives only randomly distributed points The protocol’s
correctness 1s established as follows Let b be such B = 6P Let ¢ be such that Q@ = ¢qP

Let

u=2(b+¢) modr, (3 112)

which gives 2(B+Q) = uP The terminal’s view 1s then entirely determined by (b, u, 24, yA)
and by the randomness used by 7 Since z and ¢ are randomly generated i Z;, we obtain

that the distribution of z 1s independent from the terminal’s view Let a1, ag be such that

o = e(zd, B, (3113)

o = e(yd, B+ Q)+ (3 114)
We have that ¢ and ap are a function of the terminal’s view Moreover, we obtain

eap = e(A, B)IA (3 115)

]

o3 e(A, B + Q) +5 (3 116)

Therefore, ¢ap = e(A,B) iff 85 = 0 Moreover, we obtain from (3 111) that the card
outputs eqp iff

e(4,B+ Q)" =e(4, B), (3117)

which gives

b = (b+¢q)B> modr (3 118)
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Then since b, 81, 32 are a function of the terminal’s view, and the distribution of  1s
uniform n Z;, mdependent of the termmal’s view, we obtain that if 81 # 0, the equality
3 118 holds with probability at most 1/r Therefore, for any cheating termunal, the card

outputs erther L or the correct e(A, B), except with probability 1/r O

311 Conclusion

In this section we have given, in the Weil and Tate pairings, concrete examples of the pairings
that we will be usmg to implement the various cryptographic protocols that we go on to
describe 1n the following chapters We have given accompanying code n the appendices
We have shown some of the tricks that can be used, in cases of cryptographic interest, and
shown this to be a progressive area of research

We have shown some techmiques that could be used to convert existing Gemplus smart
cards mto cards suitable for use with pairing based protocols Although we do not have
precise timings for these results we were told that the time to implement a pairing on a

card 1s greater than 2 seconds, whereas with our scheme 1t took approximately 1/2 second

[9()] 16

8 Advances 1n pairing implementation research suggest that 1t will be practical to implement pairings
directly on smart cards over the next 2 - 5 years
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Chapter 4

Cryptographically Hard Problems

In this chapter we explain some mathematical, complexity theoretic and number theoretic
concepts These concepts are reasonably straightforward, but are sometimes clouded n
mathematical language that only serves to discourage their understanding We explain
what 15 meant by a cryptographically hard problem There are certain problems that are
believed to be intractable Cryptographic systems can be based on these problems

These wntractable problems are said to be cryptographically hard or computationally
wnfeasible 1 certain settings The following definitions are all taken from the American
government run National Institute of Standards in Technology (NIST) {20] Another useful
reference for this material 1s [65] These definitions are for the technical meaning of these
terms and may differ from those found n a non-specialist dictionary, but are appropriate

for this thesis
Definition [20] Algorithm A computable set of steps to achieve a desired result

In layman’s terms, any computer program could be described as implementing an algo-
rithm The type of algorithms that we are interested in are those that solve cryptographically

hard problems

Defimtion [{20] big-O notation f(n)} = O(g(n)) means there are positive constants ¢ and

k, such that 0 < f(n) < cg(n) for all n > k The values of ¢ and k¥ must be fixed for the
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function / and must not depend on n.

The complexity of an algorithm is expressed using what is called “big-O” notation. Big-
O notation is used to used to describe an asymptotic upper bound for the magnitude of a
function in terms of another, usually simpler, function [65]. For the algorithms that we will

be examining here, we are interested in limits in running time and storage.

Definition [20] Linear time: The measure of computation, m(n) (usually execution time
or memory space), is bounded by a linear function of the problem size, n. More formally

m(n) = 0(n).

Definition [20] Polynomial time: When the execution time of a computation, m(n), is
no more than a polynomial function of the problem size, n. More formally m(n) = 0(nk)

where Ais a constant.

Definition [20] Exponential time algorithm: In complexity theory, the measure of compu-
tation, m(n) is bounded by an exponential function of the problem size, n. More formally

if there exists a ¢ > 1 such that m(n) = 0(cn).

Definition [20] Moderately (Sub) Exponential time algorithm: The measure of computa-

tion, m(n) is more than any polynomial nk, but less than any exponential cn where ¢ > 1.
Cryptographic systems should be based on problems which are intractable:

Definition [20] Intractable: A problem for which no algorithm exists which computes all

instances of it in polynomial time.

When we develop a cryptographic protocol, such as we do in Ch. 5, 6, 7, and 8, we
wish to link the difficulty of breaking the system with the ability to solve an intractable
problem. We will show this in detail when we give security arguments for the schemes that
we develop.

Fundamentally there are three intractable problems that cryptosystems are based

around.
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¢ Integer Factorisation Problem (ak a factoring) [91, Ch 3] Given a positive inte-
ger n, find 1ts prime factorization, that 1s, write n. = p}',p3*, ,pi* where the p, are

pairwise distinct primes and each e, > 1

¢ (Generalised) Discrete Logarithm Problem [91, Ch 3] Given a finite cyche
group G of order n, a generator a of G, and an element § € G, find the integer z,

0<z<n—-1,suchthat & =0

e Shortest Vector Problem Given a lattice L, find the shortest non-zero vector
contained in L There may be several vectors of the same length This 1s the basis of

NiruEncrypt [75] and other lattice based cryptosystems

Usually we do not know 1if the underlying problem really 1s intractable But these are
well studied problems, and no known efficient algorithms to solve them exist That 1s why

they are sometimes referred to as ‘assumed to be hard” problems

41 Cryptographically Hard Problems Over Elliptic Curves

In the specific area of pairing based cryptography the following 1s a list of important prob-
lems Some are intractable, and others, with current knowledge, can only be solved using
bilinear maps This hst 18 not exhaustive and the number of intractable problems in this
area 18 growing Some work 1n proposing new hard problems has been done by Boneh
and Boyen and others Other researchers feel uncomfortable trusting new, less well studied
problems The belief that a problem 1s intractable grows the more that problem 1s studied
The groups G and p,, that we refer to in the List, are those groups such that a bilinear map
operates ¢ G X G — u, We assume that (P) = G, (g) = u,, and that g = é(P, P)

A few good references for this section are [91, ch 3], [140] and [12] In this section we
concentrate on problems that require use of a distortion map (and so must be implemented
over a supersingular curve) For each of these problems there 1s a corresponding “co” problem

which can be set over non-supersingular curves
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Bilinear Dhffie-Hellman Problem Given P, zP, yP and zP € G, Compute

g™ € pr

This problem 1s ntractable

Decisional Diffie-Hellman in G Given P, zP, yP and zP € G, Decide of zy = 2

This problem 1s easy using the bilinear map Simply check the following equality

é(zP,yP) = é(P, zP) (41)

Decisional Diffie-Hellman 1n p, Given g, g%, ¢¥ and Z € u,, Decide of Z = g=¥?

This problem 1s intractable

Computational Diffie-Hellman in ¢ Given P, zP and yP € G, Compute zyP

This problem 1s intractable

Computational Diffie-Hellman in y, Given g, g* and g¥ € u,, Compute g%¥
1 g gv € p

This problem 1s intractable

Discrete Logarithm Problem in § Given P and zP € G, Compute z

This problem 1s mtractable

Discrete Logarithm Problem in p, Given g and ¢% € u,, Compute z

This problem 1s intractable

Inverse Computational Diffie-Hellman Problem in ¢ Given P and zP € G,
Compute z~ 1P

This problem 1s intractable

Inverse Computational Diffie-Hellman Problem m p, Given g and g% € .,
Compute g=

This problem 1s intractable
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Inverse Decisional Diffie-Hellman Problem mm ¢ Given P, zP and Z € G,
Decide f Z =z7'P

This problem can be solved using the bilinear map

&(zP,Z) = &(P, P) (42)

Inverse Decisional Diffie-Hellman Problem mm y, Given g, ¢* and v € pr,
Decide if ¥ = g©~

This problem 1s intractable

Divisible Computational Diffie-Hellman Problem in § Given P, zP and
yP € G, Compute (z/y)P

Thus problem 1s mtractable

Divisible Computational Diffie-Hellman Problem in y, Given g, g* and g¥ €
iy, Compute g=/¥

This problem 1s intractable

Divisible Decisional Diffie-Hellman Problem in § Given P, zP,yPand Z € G,
Decide if Z = (z/y)P

This problem 1s intractable

Divisible Decisional Diffie-Hellman Problem 1n u, Given g, g%, g¥ and Z € p,
Compute Z = g&/v

This problem 1s ntractable

Square Computational Diffie-Hellman Problem in ¢ Given P and zP € G,
Compute z%P

This problem 1s mmtractable

Square Computational Diffie-Hellman Problem in y, Given g and ¢* € p.,

Compute gmz

84



CHAPTER 4 CRYPTOGRAPHICALLY HARD PROBLEMS

This problem is intractable

Square Decisional Diffie-Hellman Problem in ¢ Given P, P and Z € G,
Decide if Z = z°P

This problem can be solved using a bilinear pairing

e(P,z2P) = e(zP, zP) (43)

Square Decisional Diffie-Hellman Problem in y, Given g, ¢ and v € ur,
Decide if v = gmz

This problem is intractable

Bilinear Pairing Inversion Problem Given P € G and v € u,, where v =
é(P, Q) € pr, Compute Q € G

This problem 1s intractable

Bilinear Inversion Diffie-Hellman Problem Given P, oP,bP € G, Compute
e(P, P)a_lb € Ur

This problem 1s intractable

g-Strong  Diffie-Hellman  Problem Gwven the (¢ + 1)-tuple
{P,zP,2°P, ,z9P} € G9!, where ¢ > 1, Calculate a tuple ((z + y) "' P,y)

This problem is ntractable

g-Bilinear Diffie-Hellman Inverse problem Giwven the (¢ + 1)-tuple
{P,zP,z*P, ,z%P} €G!, where g > 1, Compute g° ' € p,

This problem 1s mtractable

Decisional g-Bilinear Diffie-Hellman Inverse problem Given the (¢+ 1)-tuple
{P,zP,z®P, ,z9P} € G9"!, where ¢ > 1 and Z € pr, Decide if Z = ¢° ', where
g= C(P, P)

This problem 18 intractable
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Some assumptions are said to be stronger than others, and conversely some are said to
be weaker When an assumption A 1s said to be weak with respect to another assumption
B, 1t implies that the underlying problem of A s at least as difficult, 1f not more difficult
than the problem underlying assumption B This 18 demonstrated by showing that an oracle
that can break A can be used to break B!, but not bemng able to show the inverse

We are confident that the indicated problems are indeed intractable If the security
parameter 18 chosen to be large enough, that s, if r, the order of the groups § and ur
18 a prime of at least 2'%0, then solving the above problems 1s currently computationally
mfeasible It 1s extremely important that G and ., are chosen carefully, and standardisation
bodies, such as NIST or IEEE usually publish suitable parameters 2 We will assume for the

remainder of this thesis that », the order of G and y, 1s prime

4 2 Methods of Solving the Discrete Logarithm Problem

We now look at some of the best methods used to attack the elliptic curve discrete logarithm
problem The most important method used to attack the discrete logarithm problem over
finste fields 1s the Index Calculus Attack However this method cannot be apphed directly to
elliptic curves We will explain the reason for this m detail later in this section, however, the
important mmplication of this 1s that ECC can use smaller key sizes than discrete logarithm
systems over finate fields, for the same congectured level of security Since smaller key
sizes generally mean less computationally expensive algorithms, this has resulted in the
widespread use of ECC n constrained devices such as wireless microcontrollers and mobile
phones

For clarity, we state once again the discrete logarithm problem over elliptic curves

¢ EC Discrete Logarithm Problem Given linearly dependent pomnts® P and Q € G

'Remember, there may be other ways to break B that may not tnvolve breaking .4

2This has not yet happened for pairing based cryptography as 1t 1s such a new technology, but the author
15 an active participant 1n IEEE standardisation meetings n this area The IEEE P1363 hope to propose
standards 1n 2008

3Any two points P and Q are said to be hinearly dependent 1f there 1s some 7 such that Q = z P
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Calculate z € Z}, such that Q = tP

Obviously one naive method of solving the discrete logarithm problem over elliptic curves
18 to try all possible values = € Zy, where r 1s the order of the group G This 1s known as
the exhaustive search method But there are much better algorithms for solving the EC

discrete logarithm problem

4 21 Shank’s Baby Step Giant Step Method

The Baby Step Giant Step method was developed by Shanks in [119] It 1s a time versus
memory trade-off of the exhaustive search algorithm The 1dea here 1s to break the problem
down into two smaller problems that both have & \/r steps, where r 1s the order of the
group G One part of the algorithm takes “Giant” steps amongst elements of the group G,
whereas the other part of the algorithm takes ‘Baby” steps

The algorithm proceeds as follows

Let m = [/r], where r 1s the order of P If @ = zP, then z can be written as
2 = wm + j, where 0 < 1,7 < m Therefore zP = wmP + 3P This equation can be

rewritten, zP —wmP = 3P This 1s the basis of the Baby Step Giant Step algorithmn

e Construct a table of size m and populate this table with tuples for (3,7P), for all

values 0 < 7 <m Sort this table 1 ascending order based on the 7P values

» Calculate the value P, for : = 0 (this will be O) Check 1f zP —mP Z 9P Tf not,

”
increment z, and repeat until the verification equation zP — smP = 3P 1s true

e Return the value z =1m+7 mod r This s the discrete logarithm of z P with respect

to P

Shank’s Baby Step Giant Step algorithm requires O([+/7]) storage, and O([/7]) pomnt

scalar multiplications When r = 210, this attack would require approximately 28! opera-

tions, and a table with 280 storage entries and on average 1 5 X 280 point scalar multiplica-

tions Whilst being a huge improvement on the exhaustive search algorithm which would

require on average 2'%° = O(r) point additions, this 1s still impractical
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422 Pollard’s p Method

We now look at Pollard’s p method for solving the discrete logarithm problem [105] Again
we start off with the same basic problem, which 1s, given P and @, such that Q@ = 2P,
find z The crux of Pollard’s algorithm 1s to find two different ways of expressing any pont
in terms of the ponts P and @@ Say for example we know that R = aP + b@, and that
R =kP + y@Q Then we have aP + bQ = kP + y(, but we also know Q = zP, so we have
aP +bzP = kP + yxP which gives (a — k)P = (y — b)zP which implies 7 = (a — k)(y ~b) !
mod r

Formally, Pollard’s algorithm needs a random function f G - G X Zf xZ; f1sa
pseudo-random function That 1s, given the same input pomnt, 1t will always return the
same random output point However, we also need the function to return useful additional
information about the point that is returned The function also returns two elements n
Z;, these are the coefficients k£ and y n the equation X = kP + y@Q, where X 1s the pomt
returned by the function, and P and @ are the ponts for which the discrete logarithm of
(Q with respect to P 1s to be determined

If the function f 1s truly random, the expected running time of this algorithm 1s approx-
imately O(/7) due to the birthday paradox, where 7 1s the order of G All of the points
that are generated {Xy, X1, ,Xn} need to be stored, and this List needs to be searched
though every time to see if we have a match between the current point and any previous
point

However, Floyd [63] has proposed a more elegant solution, Floyd’s cycle finding algo-
rithm, which make use of a slow moving pointer (sometimes called a tortoise) and a fast

moving pointer (sometimes called a hare) proceeds as follows

» make a pointer to the first element (the hare)
e make a powmnter to the first element (the tortoise)

o advance the hare by two 1terations for every one iteration by the tortoise
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e since the group 1s finite and cyclic the hare and tortoise will meet

The total amount of computation for this algorithm s O(y/r) Again, the value z
15 recovered as z = (a — k)(y — b)"! mod r, where the two representations of the pomnt
recovered are R = kP +y(Q and R = aP +b6Q Pollard’s p method 1s probabilistic, meaning
that 1t 1s not guaranteed to finish within this computational bound, but 1t 15 expected to

do so with very high probability

423 Pollard’s A Method

Pollard’s A method [105] 1s very similar to Pollard’s p algorithm It relies on a similar
method of finding a point that can be represented in two separate ways using the points P
and @ as a basis It also uses a random function f The mam 1dea here 1s that one can
use several random starting pomnts {Fy, ,P,} The name A comes from the fact that the
algorithm starts at 2 (or more) separate pomts and converges Once the two ‘walks” meet
they will coincide thereafter This 1s reminiscent of the greek letter A Again this algorithm,

like Pollard’s p algorithm, 1s probabilistic

424 The Index Calculus Attack

The 1ndex calculus method 1s an ingemous way to calculate the discrete logarithm of a
one element with respect to a generator element in a fimite field F, It 1s one of the most
powerful attacks against the discrete logarithm problem over the finite field However, we
must point out from the start that the index calculus attack cannot be used directly against

elliptic curves?

This 1s extremely important, as it 1s this fact that allows us to use much
smaller key sizes for elliptic curve cryptosystem See Table 4 1 for details
The reason that the index calculus attack does not work in the elliptic curve setting 18

that 1t requires elements of the group G be factored If we take elements in the fimte field

“This statement may no longer be true, due to research by Gaudry and Diem, which 1s not 1 my area of
expertise [69, 57, however, their work only applies to curves over extension fields of certain degrees, and so
these curves can be easily avoided
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ECC key size (bits) El Gamal key size (bits) Ratio ECC/E] Gamal

163 1024 0159
256 3072 0083
384 7680 005
512 15360 003

Table 41 Key Sizes needed for Comparable Security [40, with reference to NIST]

Fp, they are the integers {0,1, ,(p—1)} These numbers can usually be easily factored
The series of prime factors 1s called the factor base

Let p be a large prime and g be a generator element of the group F; Then any element

he{l, ,(p—1)} can be written as

k

h=g" modp (4 4)

for some unique £ with 0 < k <p—2 ks the discrete logarithm of A with respect to

the base g

Now, let h be an mteger, and let »' = g¥ mod p be another integer Then we know

that

h h'=(¢* ¢") modp (45)

or

h A =(¢""*) modp (4 6)

We also know that h2 = h h = g*T* = g% mod p

Also, any mteger can be expressed as

n=h% R hen (47)

where {¢go  ¢n} are the factors of n and e, > 1 The goal of the Index Calculus attack 1s
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to build up a table of 2-tuples (g, k), where g 1s a factor of » and ¢ = ¢* mod p Once we
are able to express n m terms of factors for which we know the appropriate k& we can solve
the discrete logarithm problem

If we view (q,, k;, €;) as a matching set, and n can be factored as

" =n=q ¢ " (48)
which 15 the same as
g:t — gkoeg gklel gk"e" (4 9)
then
xz = koeg + k1ey1 +  +knen, mod (p—1) (4 10)

We will now give a trivial example of the index calculus method in action Suppose one

wants to find the discrete logarithm of 15 to the base 3 mod 23, 1e find z such that

8 =3 mod 23 (411)

First, build up a factor base The factor base 1s a relatively small subset of the elements
of G, such that a significant fraction of elements of G can be efficiently expressed as products
of elements from the factor base For each element mn the factor base, the discrete logarithm

for that element (to the base g) 1s known For example,
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3 = 3' mod23 (412)
9 = 3% mod23 (413)
4 = 3* mod?23 (4 14)
12 = 3* mod23 (4 15)
13 = 3° mod 23 (4 16)
16 = 3° mod23 (417)
2 = 3" mod23 (4 18)

From these equations we can build up a table of (z,¢") pairs This 1s the factor base
We then use these values to compute the discrete logarithm for any other element For

example, we have

8=4 2=3% 3" =3%" mod 23 (419)

and so
z=10
The above 1s a very basic example, meant only to let the reader understand the basic

operation of the index calculus attacks A more complex example is given n [137]

425 The MOV Attack

Menezes, Okamoto, and Vanstone (MOV) [92] proposed the following attack that reduces
the EC-DLP to a DLP 1n a fimte field The 1dea 1s that the r** roots of umty group 1s
a subgroup of a finite field Therefore we can use the following observation to allow the
apphication of powerful Index Calculus attacks on EC-DLP

Given P, a powmt of order r, and @ = zP, find z

First select a suitable constant point 7', the second input to the bilinear pairmg e Then
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compute the following pairing values

e(P,T) g€ lir (420)

e(@T) = e(PT)"=g¢"€p, (421)

Now solve for z, using the values g and ¢*

Although this looks a very similar problem, 1t 1s now set 1n a finite field where 1t can be
solved using index calculus methods

Obviously for this attack to succeed, 1t 1s important that elements of 4, can be easily
mampulated and therefore that the problem be set over an elliptic curve with small em-
bedding degree For standard elliptic curve cryptosystems we tend to avoid such curves
However, we also need this property (and therefore curves of small embedding degree) for
paring based cryptography Provided we are careful n our choice of parameters pairing
based cryptography 1s secure This means ¢ > 250 and ¢* > 21924 where k 1s the embedding

degree of the curve

426 Using Security Definitions

We have looked at a variety of intractable problems in this chapter But why are these
problems 1mportant to cryptography? The security of cryptographic protocols 1s often
linked to one of these problems, using what 1s sometimes called ‘proof by reduction”

The 1dea 13 to model an adversary of a particular cryptosystem, and to give that ad-
versary every concelvable advantage to break the system in a non-trivial fashion If we are
to prove that a new security protocol 1s secure then we should be able to show a reductton
from having a non-neghgible advantage in breaking our system to have a non-negligible ad-
vantage 1n solving one of the hard problems mentioned previously When we link a protocol
to a specific hard problem, that problem 1s said to be the ‘underlying hard problem” for the

system Of course, should that hard problem be flawed, then the protocol, and any other
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protocols based on the same hard problem, can be broken

Proofs 1n this model normally proceed as follows

s Define an adversary F For our protocol we define an adversary by defining the
scope of 1ts powers and 1its goal The scope of the adversary’s powers are different
dependmg on the security objectives of the protocol For example, 1t might be to gen-
erate a signature without the correct private key, distinguish between the encryption
of one message and another without the correct private key, or complete an authenti-

cated key agreement without the correct private key

As an example, for an encryption scheme we might say that we have an adversary F

who

— mght have access to all public keys of the system, and all private keys of the
system apart from the one which trivially decrypts the message This defines the

scope of 1ts powers

— might wish to distinguish between the encryption of messages mp and m,, en-
crypted under a public key for which E does not know the corresponding private

key This defines it’s goal

We then define an algorithm A A’s job 1s, by interacting with E, to solve the
underlying hard problem How A does this 1s simply by imitating E’s environment
exactly, and getting results to particular queries back from £ But .4 can store
extra information, for example, A would be allowed to know the discrete logarithm of
points that are, from E’s view of the system, mapped via an 1dealised hash function?®,
provided of course that the point is random and that the discrete loganithm 1s not
disclosed to E It 1s essential that E’s view of the world 1s exactly as he would expect

if he was breaking the protocol

A uses E’s answers, and E’s inability to distinguish between 1ts simulated environment

and the real world, to solve the underlying hard problem Since we assume that A

5This 15 called a Random Oracle
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cannot solve the hard problem Then E, who can break the protocol, cannot exist

Therefore the protocol 1s secure
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Chapter 5

Signature Schemes using Bilinear

Maps

A digital signature on a message 1s a value, or series of values, which 1s generated using
both a message and a private key It 1s important that a vald digital signature can only be
created by an entity 1n possession of the correct private key It may be deterministic - that 1s
given any private key and any message there 1s only one valid signature (the RSA signature
[107] 1s an example of a deterministic signature), or it may be randomised - given any private
key and any message there may be many valid signatures (the El Gamal signature [61] 1s
an example of a randomused signature)

The purpose of a digital signature 1s to provide the following assurances

1 Message Origin Authentication The identity of the signer of the message 1s

known
2 Message Integrity The message has not been altered since it was signed

3 Non-Repudiation The signer cannot later deny having signed the message

A digital signature 1s checked using a public key Every digitial signature verification

reduces to an equation which includes the public key of the claimed signer, the signature
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element or elements and the message that was purportedly signed. If the verification equa-

tion is passed we can be confident that the message was signed by the holder of the private

'yAV kpd S kpri(m),m") (5.1

where 7 is the result of the verification algorithm V, S is the signing algorithm, k"5
and kpri are a matching key pair, m is the message that was signed and mt is the message
as received by the verifier.

7 will be true iff m = m' and {kpub, kpri} is a valid key pairl.

What is the message? By message we mean any piece of data - for example a Microsoft
Word® document or an MP3 music file. Someone would want to sign a digital document
for the same reasons they would want to physically sign that document once it was printed
out and in the form of a hard copy. Perhaps it is a contact by which two parties agree to do
business. Perhaps the person wants to claim ownership of ideas in a document or copyright
of a song. This can be achieved with the assistance of a notary public.

Usually the message is pre-processed using a cryptographic hash function2, as this pro-
duces a much smaller hash value. This hash value can then be further processed to produce
the signture3. This is much more efficient. A hash function should have the property that
it is not possible to find a message that hashes to a predetermined value - this is known
as “pre-image resistance”. It should also be “collision-resistant”, meaning that it should
not be possible to find any two messages mo and m\ such that, using a hash function
W, H*mo) = %(rai). This is to prevent an attack whereby one message is exchanged for
another with the same hash value.

There are several non-identity based digital signatures, for example those in [107, 64,

112, 100]. In this chapter we will examine digital signature schemes that arise out of
Except with negligible probability.

20ften the message is hashed together with a random signature element.
3A signature may consist of several elements.
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bilinear maps. There are many different digital signature schemes that utilise pairings,
some with interesting and novel properties; for example, conditionally verifiable signatures
[42], aggregate signatures [32, 25, 50], multi designated verifier [80], blind [25, 144] and ring
signatures [7, 53, 73, 84, 139].

We concentrate on standard identity based signature schemes in this chapter. Sakai-
Ogishi-Kasahara [111] presented the first identity based signature. A more efficient scheme
was proposed soon after by Paterson [102]. Cha-Cheon [41] formally defined a security model
for identity based signatures, and in [50] Cheon, Kim and Yoon altered this signature to
allow for batch verification. In [141] Yi proposed a signature scheme similar to that of Cha-
Cheon with point reduction. Other signatures of note include [74], and two pairing based
signatures by Sakai and Kasahara in [109]. A large number of identity based signatures
were proved secure in a framework proposed in [18].

There are a number of important pairing based, but not identity based signatures, such
as [33, 145]. The BLS and ZSNS signatures are useful because they produce the shortest
secure (traditional) PKI signatures.

Recently there have been a number of non-identity based signature schemes that have
been proven secure in the standard model, for example [28] and [143]. The signatures pro-
duced by these schemes are larger than the corresponding signatures produced by schemes
proven secure in the Random Oracle Model (ROM), but are assumed to be “safer”. At
present there is a trend away from schemes proven secure in the ROM. This has been fu-
elled by the observation of Goldreich et al. that proofs in the ROM do not necessarily
convert to secure schemes when the random oracles are instantiated [36]. There has also
been some success in attacking modern hash functions such as SHA-14 [135] and MD-5
[136]. However, moving away from the random oracle model causes problems of its own.
Now cryptographers generally must trust much less well studied hard problems.

For many important dealings, i.e. buying a car or house, most people would feel more

comfortable with handwritten signatures on hard copies of documents, but Irish law [101]

4Collisions in the full SHA-1 in 269 hash operations, much less than the brute-force attack of 280 operations
based on the hash length.
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(Electronic Commerce Bill 2000), in hine with EU directive 1999/93/EC [59] makes no
distinction between handwritten and electronic signatures The Electronic Commerce Bilj,
2000, 1s wnitten in such a way as to be as flexible as possible and does not specify which
algorithms must be used for the digital signature to be legally binding This leaves another
caveat as the legal situation with regard to 1dentity based signatures 1s somewhat unclear
Identity based signature schemes inherently make use of a KGC which knows all of the
private keys 1n the system Therefore 1t 1s trivial for the KGC to be able to forge signatures
mn the system A similar 1ssue pertans for traditional PKI signatures generated using
private keys that are known to more than one party Or indeed the PKI may produce false
certificates and forge signatures in this manner

In this chapter we will be looking at traditional PKI signatures and identity based
signatures that can be constructed using bilinear maps We will look briefly at the security

models for each of these types of signatures

5.1 Definitions of PKI and IB Digital Signature Schemes

A standard PKI digital signature scheme consists of the following three algorithms Key-

Gen, Sign, and Venify

s KeyGen A random public key pair 1s produced, and the public component, along
with any system parameters, 18 made public in an authenticated manner Often,

common system parameters are used

» Sign Given as mput a message m € {0,1}* and a private key kpr,, a signature ¢ 1s

produced

e Verify Given as mnput a public key k,.s, a message m, and a signature o, verify
should only output true if kp,, and kp,, 1s a matching key pair, and ¢ 1s a vahd

signature for m, under this key pair
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A 1dentity based digital signature scheme consists of the following four algorithms,
Setup and Extract, which are common to all 1dentity based cryptosystems, and Sign

and Verify which are common to all digital signature schemes

e Setup The Setup algorithm 1s carned out by the KGC It produces params, the
system parameters, which are distributed to the users of the system It also produces
a secret key s which 1s known only to the KGC This 1s sometimes called the master

secret key

e Extract The Extract algorithm is carried out by the KGC, and 1s used to produce
private keys for users in the system It takes as input params, s and the user identity

ID and produces a private key for that user drp

e Sign The Sign algorithm 1s carried out by the end users to produce a signature on
a message m It takes as input params, d;p and the message m It outputs o, a

signature on the message m

e Verify The Verify algorithm takes as input params, ¢ m and 7D It outputs true

only if ID and d;p 1s a matching key pair and o 1s a signature on m, by ID

52 Security Definitions for Signature Schemes

521 Security of a PKI Digital Signature Scheme

Existential unforgeabihity under a chosen message attack for a signature scheme (KeyGen,

Sign, and Venify) 1s defined using the following game between a challenger and an adversary

A

e Setup The challenger runs algorithm KeyGen to obtamn a public key K, and

private key Kpr, The adversary A 1s given Ky

e Queries Proceeding adaptively, A requests signatures with Ky, on at most g; mes-

sages of his choice {m1, ,mg} € {0,1}* The challenger responds to each query
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with a signature o, = Sign{Kpr,, m,)

o Output Eventually, A outputs a pair (m,0*) and wins the game if

— m s not any of {m1, ,mg,},

and

— Venfy(Kpyp, m,0*) = true

We define Advg,gA to be the probability that A wins in the above game, taken over the

com tosses® of KeyGen and of A

522 Security of an Identity Based Digital Signature Scheme

An 1dentity based signature scheme 1s said to be strongly ezistentially un-forgeable under
chosen-message attacks if no probabilistic polynomial time (PPT) adversary has a non-

neghgible advantage in the following game

¢ The challenger runs the setup algorithm to generate the system’s parameters and

sends them to the adversary
o The adversary F performs a series of queries

— Key extraction quenes JF produces an identity ID and receives the private key

drp corresponding to ID

~ Signature queries F produces a message m and an identity 7D and receives a
signature on m that was generated by the signature oracle using the private key

corresponding to the identity I.D

o After a polynomial number of queries, F produces a tuple (ID* ,m* ¢*) made of an
identity ID*, whose corresponding private key was never asked during the key extrac-

tion queries, and a message- signature pair (m*,¢*) such that ¢* was not returned

5We refer to an algorithms coin tosses to denote random nput mnto these algorithms, for example, here
A 15 modeled as a probabilistic polynomial time algorithm
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by the signature oracle on the input (m*,ID*) during the signature queries for the

identity ID*

The forger F wins the game 1if the signature verification algorithm outputs true when
1t 1s run on the tuple (ID*,m* 0*) The forger’s advantage 1s defined to be its probabihty

of producing a forgery taken over the coin tosses of the challenger and F

53 The BLS Short Signature Scheme

The BLS signature scheme produces the shortest secure digital signature, and 1s proven
secure 1n the random oracle model It was presented in [33] Short signatures are needed in
environments where there 1s a strong requirement that munimum bandwidth be used For
example environments where digital signatures must be typed by hand, such as provably
secure product hicence numbers

There are also constrained wireless devices such as those developed by the DARPA
funded “Smart Dust” project® Generally radio communication uses much more battery
power than anything else a wireless device will be required to do This means that 1t may
be acceptable to live with lmgh computational cost as long as the signatures produced have
a minimal number of bits

The BLS short signature 1s aimed at addressing these problems Conventional RSA dig-
ital signatures, as they are most commonly used in industry, are 1024 bits in length For the
equivalent level of security, DSA signatures are 320 bits in length The BLS signature, agan
for the corresponding level of security, weighs 1n at only 160 bits  Also, signature generation
1s relatively fast, being just a single elliptic curve point scalar multiplication Signature veri-
fication 1s shightly more computationally complex as 1t includes a computationally expensive
pairing operation

The goal of the BLS algorithm 15 to achieve a short signature (a signature with minimal

bit length) When significantly reducing the number of bits in any security protocol 1t 1s

5The author was a co-researcher with a sumilar project at the Insh “National Centre for Sensor Research”
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important to be aware of the attacks against the system See Ch 4 for an overview of some
attacks agamst cryptographic systems These attacks tell us that, as a result of Pollard’s
attacks in generic discrete logarithm groups, the order of the points on the elliptic curve
should be at least 2'%® Since we also require the use of bilinear maps the embedding degree
should not be too large But as a result of the MOV attack we need ¢ ~ 2!92¢ Therefore,
if we chose to use elliptic curve groups with group order p > 2150 (which 1s secure and yet
small) we should use curves of embedding degree k > 6 [33]

The BLS signature scheme 1s a traditional PKI style signature scheme composed of three
algorithms, Key Generation, Sign and Verify Here we describe an implementation of
the BLS algonthm over non-supersingular curves as these curves allow for the smallest
representation of the signature Over non-supersingular curves no distortion map exists,
therefore, the bilinear map takes elements from two hnearly independent groups The
authors make use of a bilinear map of the form e Gy x Gz — u, They use hash functions of
the form % {0,1}* — G; to hash messages onto elements of the group G; In the security
proof these are modelled as random oracles We assume that P, 1s a generator of G2, and

that the order of groups G; and G5 15

s KeyGen Generate a random z € Z; Calculate V = 2P, Have this value authenti-
cated by a TA This 1s the public key of the user, with z, the private key, known only

to the user

o Sign To sign a message m, calculate M = H(m) € G, The signature of the message

15 § = zM, for the public key V' This signature scheme 1s deterministic

e Verify Given the message m, the public key V, and the signature S, the signature

passes the verification test 1f

e(M,V) = e(S, P) (52)
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531 Security of the BLS signature scheme

The security of the BLS short signature relies on the co-BDH assumption

e co-Bilinear Diffie-Hellman Given P,aP, € Gi, and P, € G» for unknown «,

calculate P, € Go This problem 1s assumed to be hard using groups G; and G»

The signature scheme 1s proven secure 1n the random oracle model, assuming that the co-
BDH problem is intractable The authors show how an non-neglgible ability to existentially

forge BLS signatures can lead to an efficient algorithm to solve the co-BDH problem

53 2 Efficiency of the BLS signature algorithm

The BLS signature scheme has an extremely efficient signing algonthm Note that the
signing algonithm 1s the extract algorithm for Boneh and Frankhn IBE The sign algorithm
consists of just one hashing, followed by one point multiplication This seems like the
mmmum possible effort for a secure digital signature Using the fast hashing 1dea (see
Sec 6 22), when utihsing the (asymmetric) Tate pairing instead of the Weil pairing, this
hashing algorithm can be made very fast by removing the need for multiplication by the

curve co-factor from the hashing algorithm?

5.4 The Identity Based Signature Scheme of Sakai, Ohgishi

and Kasahara

We now look at the very first identity based signature scheme based on bilinear maps It was
proposed in 2000 by Sakai, Ohgish1 and Kasahara in (111] This idea was developed around
the same time as the 1dentity based encryption scheme of Boneh and Franklin It appears
that some 1dentity based cryptosystems from pairings on elliptic curves may have originally
been proposed by these Japanese researchers Their cryptosystems appeared largely without

any security proofs, but the following signature scheme was subsequently proven secure by

"The optimisation affects both the signing and verification algorithms
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Libert and Quisquater mn [82] We will first look at the original scheme and then briefly at
the proof by Libert and Quisquater

The original Sakai, Ohgish1 and Kasahara signature scheme uses the same 1dentity based
key pair as Boneh and Franklin® The signature scheme consists of the four algorithms
common to any identity based signature scheme They are Setup, Extract, Sign and

Venify

e Setup The setup algorithm 1s carried out by the KGC It outputs two groups &
and g, both of large prime order 7, such that the discrete logarithm problem in the
groups G and g, 1s computationally infeasible It produces P, a generator of G It
also produces two hash functions, H;p and Hus of the form H;p {0,1}* = G, and
Hym {0,1}* = G Tt also produces a bilinear map of the forme G x G — u, The
KGC generates a random s € Z; and calculates Py = sP The setup algorithm

outputs params, where

params = {g) [ E,P, Ppub,’HJDa%M} (5 3)

These are published by the KGC

o Extract The KGC first verifies that a user has a vald claim to an 1dentity 7D The
KGC then calculates Qrp = Hrp(ID) This s the user’s public key The associated

private key 1s calculated as sQrp

o Sign To sign a message m, a user first generates a random r € Z* The signer also

calculates M = Has(m) The signer then calculates the following values

R = =zP (54)

S = sQip+zM (55)

8Note Here I am careful not to call it the Boneh and Franklin identity based key pair
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The signature on the message m by signer with private key sQpp, 1s the pair (R, S)

s Verify To verify a signature that was purportedly created by a signer with public

key Qp, a verifier checks the following equahty

e(S,P) = e(Qip,Pous) e(M,R) (5 6)

where M = Hpr(m)

541 Security of the SOK Identity Based Signature Scheme

The security of the SOK identity based signature was demonstrated by Libert and

Quisquater n [82]

Theorem 5 4 1 [82] In the random oracle model, +f « PPT forger F has an advantage € in
forging a signature wn an attack modelled by the game of Sec 5 2 for prowing the security of
udentity based signature schemes, when running in time t and asking qu, queries to random
oracles Hip and Hpr, gE queries to the key extraction oracle and q; queries to the signature

oracle, then the Computational Diffie Hellman problem can be solved with an advantage

(QS(QHQ +qs) + 1)/2k
elge +1)

€ >e—

(57)

within @ time t' <t + (g, + qu, + g + 2¢5)tm + (s + 1)tmm where e denotes the base of
natural logarithms, t;, s the tame to compute a scalar multiplication in G and t,,,, 15 the

time to perform a multi-ezponentiation mn G

For the proof of this theorem, the reader 1s referred to [82], where the authors comment

on the tightness of the reduction
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55 The Identity Based Signature Scheme of Baretto et al.

Barreto, Libert, McCullagh® and Quisquater (BLMQ) propose a new 1dentity based signa-
ture scheme based on the identity based key pair of Sakai and Kasahara The scheme they
propose 1s the fastest provably secure 1dentity based signature For signing the scheme re-
quires one F,x exponentiation and one pont scalar multiphcation This 1s 1n contrast to the
scheme of Cha and Cheon [41] which requires two point scalar multiplications For the most
popular commercial setting of a k = 2 curve this will be appreciably faster For signature
verification the scheme requires one pairing computation and one pairing exponentiation
We give a comparison of indicative timings in Sec 56 The BLMQ scheme 1s defined as

follows

o Setup The KGC chooses a bilinear mape Gj xGp — pr, all of large prime order r It
also selects generators @ € Ga, P = ¢(Q) € G, where 1 1s a distortion map of the form
¥ Gy = G1, and g € 1, such that ¢ = e(P,Q) It then selects a master key s € Z7,
a system-wide public key Qpup = sQ € G» and hash functions H#; {0,1}* — Z,

Ha {0,1}* x ur — Z; The public parameters are

params = {thQaMTiPy Q, qubve, q, ¢$H15H2} (5 8)

o KeyGen For an identity 7D, the private key 1s calculated as S;p = WP

e Sign In order to sign a message m € {0,1}*, the signer picks a random z € Z} and

computes the following values

R = g° (59)
h = Ha(M,R) (510)
S = (z+h)SD (511)

9The author of this thesis
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The signature on M isa = (/i,S) GZ* x G\«

 Verify: Asignature a = (/i, 5) on a message M is accepted if the following equation

holds:

h I'n 2(M,e(S,QiD)g-h) (5.12)

where QID = %i(JZ>)Q + Qpub.

A Proof of Correctness for the BLMQ Identity Based Signature

It is easy to see that all instances of a valid signature g will be accepted by a verifier:

h = U2MR) (5.13)
h = H2{M,gx) (5.14)
h = H2(M ,g~g-h) (5.15)
h = (5.16)
h = H2(M,e(S,Q,D)g-h) (5.17)

5.5.1 Security Proof of the BLMQ identity based signature

The security proof relies on the forking lemma [103, 104]. As the security model of IBS
schemes enables a forger to adaptively choose her target identity, we cannot directly apply
the forking technique and we must follow the approach of [41] that first considers a weaker
attack model where adversaries are challenged on a given identity selected by the challenger.
In [41], an IBS scheme is said to be secure against existential forgeries on adaptively chosen
message and given identity attacks if no adversary has a non-negligible advantage in the

weaker model of attack.

Lemma 5.5.1 ([41]). If there is aforger Tq for an adaptively chosen message and identity
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attack having advantage €y agamnst our scheme when runming in a time ty and making gy,
gueries to random oracle Hy, then there exists an algorithm Fi for an adaptively chosen
message and giwen 1dentity attack which has advantage €, < E(](l—glk')/quw withan a running
time £ < tg Moreover, F, asks the same number key eztraction queries, signature queries

and H,, -queries as Fo does

Lemma 5 5 2 Let us assume that there 1s an adaptively chosen message and given 1dentity
attacker F that makes qn, queries to random oracles H, (v = 1,2) and g5 queries to the
signing oracle Assume that, within a tame t, F produces a forgery with probability ¢ >
10(gs +1)(gs + qn,.)/2* Then, there emsts an algorithm B that 1s able to solve the g-SDH

Problem for q = g3, n an expected time
t' < 120686q3, (t + O(gs7p))/(e(1 — a/25)) + O(@* Tmute)

where T,y denotes the cost of a scalar multiplication in Go and T, 15 the cost of a pairing

evaluation

Proof We first show how to provide the adversary with a consistent view and we then
explain how to apply the forking lemma,

Algorithm B takes as mput (P, Q,a@,o*Q, ,a?Q) and aims to find a pawr (¢, = P)

b e
In a setup phase, 1t builds a generator G € Gy such that 1t knows ¢ — 1 pairs (w,, 5‘—14,—06‘)

for wi, ,wq-1 €pZ; To do so,

1 It picks wi, w2, ,we_1 Z, and expands f(z) = f;ll(z + w,) to obtam

Co, Cq—1 € Z} 50 that f(z) = Y07 c,2*

2 Tt sets generators H = 971 ¢,(0*Q) = f(2)Q € Gz and G = y(H) = f(a)P € G
The public key Hpup € G 15 fixed to Hpup = 3.7, -1 (0*Q) so that Hpyp = aH

although B does not know «

3 For1<1<¢g—1, Bexpands f,(2) = f(2)/(z+w,) =31, % d,z* and
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q-2
'y _ fla) 5 1
Y d9(a'Q) = fe)P = S0P = S (5 18)

The pairs (w,, 54}_w,G) are computed using the left member of (5 18)

B 1s then ready to answer F s queries along the course of the game It first imtializes a
counter £ to 1 and launches F on the mput (Hpy, D) for a randomly chosen challenge
identity ID* < {0,1}* For simplicity, we assume that queries to Hy are distinct, and that

any query involving an 1dentifier ID 1s preceded by the random oracle query Hw (ID)

- Hw-queries on an 1dentity ID € {0,1}* B returns a random w* ¢ Z, f ID = ID*
Otherwise, B answers w = w; € Z;, and increments £ In both cases, B stores (ID, w)

(where w* = w or wg) m a hst Ly

- Key extraction queries on ID # ID* B recovers the matching pair (ID,w) from L;

and returns the previously computed (1/(a + w))G

- Signature query on a message-identity pair (M,ID) B picks § < Gi, h & Z;,
computes r = e(S Qrp)e(G H)™* where Q;p = Hw (ID)H + Hpyy and backpatches
to define the value H,, (M, r) as b € Z; (B aborts in the unlikely event that H,, (M, r)

15 already defined)

We have explamned how to simulate F’s environment 1n a chosen-message and given 1dentity
attack We are ready to apply the forking lemma that essentially says the following consider
a scheme producing signatures of the form (M,r, h,S), where each of 7, h, § corresponds
to one of the three moves of a honest-verifier zero-knowledge protocol Let us assume that
a chosen-message attacker F forges a signature (M,r h,S) 1n a time ¢ with probabihty
€ > 10(gs + 1)(gs + gn)/2* (k bemng a secunity parameter chosen so that h 1s umformly
taken from a set of 2F elements) when making g, signature queries and g, random oracle
calls If the triples (r, h,S) can be simulated without knowing the private key, then there
exists a Turing machine F' that uses F to produce two valid signatures (m,r, Hw, S1),

(myr,H,., S2), with Hy # H,,., n expected time ' < 120686¢;t/¢€
(Z for
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In our setting, from a forger F, we build an algorithm F' that replays F a sufficient
number of times on the input (Hpy, ID*) to obtain two suitable forgeries (M*,r, Hw, S1),
(M*,r,H,,.,S2) with Hw # H,,

The reduction then works as follows The simulator B runs F' to obtain two forgeries
(M*,r,Hw, 81), (M*,7,H,,,S2) for the same message M* and commtment r At this
stage, B recovers the pair (ID*,w*) from list L, We note that w* # w1, ,we—1 with
probability at least 1 — g/2% If both forgeries satisfy the verification equation, we obtain
the relations

e(S1,Qip )e(G, H) ™MW = e(S5, Qrp-)e(G, H) Hur,

with Qrp = Hw(ID*)H 4+ Hpypy = (w* + o) H Then, it comes that

e((Hw — Hy, ) H(S1 — 82), Qrp+) = e(G, H),

and hence T* = (Hw — M) (S1 — S2) = —=G From T*, B can proceed as m [28]

w +o

1
W +o

to extract o* = P 1t first obtans y_1,7%0  ,7Y;—2 € Z; for which f(2)/(z + w*) =
y-i/(z +w*) + Ef;g v,2* and eventually computes
g—2

o' = [1* = Y (@) 1 =

“wra
=0 +a

before returning the pair (w*, o*) as a result
It finally comes that, if F forges a signature in a time ¢t with probabiity ¢ > 10(gq; +

1)(gs + g3, )/2%, B solves the ¢-SDH Problem m expected time

t' < 120686gx,, (t + Oas7))/ (e(t = ¢/2%)) + O(q Trmutr)

where the last term accounts for the cost of the preparation phase O
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56 Conclusion

In this chapter we have reviewed some important signature schemes that use bilinear maps
We have seen that bilinear maps, although famous for their use 1n 1dentity based cryptog-
raphy, can make sigmificant contributions to traditional public key cryptosystems Bilinear
maps allow for secure signature schemes where the signature 1s approximately 160 bits in
length This 1s approximately half the size of the previous shortest signature scheme

As we have seen already, bilinear maps have been the enabling tool behind efficient
identity based encryption We have tracked the progress of identity based signature schemes
We give a table of the comparative performance of the different signature schemes below
and note that the author has been involved in the design of the fastest identity based digital
signature This new, fast, 1dentity-based signature 1s based on the identity-based key pair
proposed by Sakai and Kasahara The timing comparisons 1n Table 5 1 do not take into

account generation of the signer’s public key from their 1dentity

Sign Verify

signature scheme | exp | mul | pairings | time (ms) | exp | mul | pairings | time (ms)
SOK 0 2 0 188 0 0 3 516
Paterson 0 4 0 376 2 0 2 354
Cha-Cheon 0 2 0 188 0 1 2 438
Hess 1 2 0 193 1 0 2 349
SK(E1Gamar) 0 3 0 282 0 2 2 532
SK (Schnorr) 1] 2 0 192 0| 1 2 438
BLMQ (ours) | 1 1 0 99 1 0 1 177

Table 5 1 Efficiency comparison of 1dentity based signature schemes

The tmmngs indicated in Table 5 1 were performed on an Athlon 64 3000+ processor,
with 512MB ram and using the Java 2 Platform Standard Edition 5 0 run time environment

Some schemes can benefit from pre-computation in the verification stage We note here
that ours cannot However, even when competing against schemes with pre-computation
our scheme still matches the most efficient, with the added bonus that our scheme does not
require any storage The competing schemes require p,,n bits, where n is the number of

users m the system with which we communicate regularly, and p,, 13 the number of bits
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required to store an element of 4, A comparison of timings with precomputation taken

mnto account can be found mm Appendix C
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Chapter 6

Encryption Systems using Bilinear

Maps

There were three papers in the early development of pairing based cryptography, that
awakened cryptographer’s interest in bilinear maps Firstly, there was the paper by Menezes,
Okamoto and Vanstone which described an attack using the Weil pairing to efficiently
convert the elliptic curve discrete logarithm problem to a discrete logarithm problem 1n a
finite field [92] This was important, because, although the resulting finite field 1s larger
than the original elliptic curve group, this allows the attacker to use index calculus methods
to attack the EC DLP This 1s a destructive use of bilinear maps and 1t revealed that certain
elliptic curves were not as secure as once thought

The second fundamental paper was by Joux [77] It was the first paper that used pairings
constructively in cryptography This paper used the bilinearity of the pairing to include
an extra entity 1n a Difie-Hellman Key agreement Each party paired the contributions of
the other two parties They then exponentiated the resulting pairing by their secret value
This protocol was not without 1ts problems It 1s essentially an unauthenticated three party
Diffie-Hellman key agreement and as such 1s still subject to the ‘man-m-the-middle” attack

The third senunal paper, by Boneh and Franklhn [31], was the spark that really got

cryptographers interested in bilinear maps It closed a long standing open problem in
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cryptography. The problem of constructing an efficient, secure identity based encryption
(IBE) scheme had been proposed by Shamir in 1984 [118]. In his paper, Shamir proposed the
first identity based signature scheme, but left the construction of identity based encryption
schemes as an open problem. Seventeen years later, in 2001, an efficient solution was
finally proposed by Boneh and Franklin. This solution made use of bilinear maps. The
idea behind an identity based encryption scheme is that a user’s online identity is used to
encrypt information to them. An identity based cryptosystem (IBC) makes use of a Key
Generation Centre (KGC). This substantially reduces the problems associated with key
binding (certificates) in traditional PKI systems.

Since the Boneh and Franklin IBE scheme there have been many encryption schemes
devised which make use of bilinear maps. Another example in their seminal paper was an
escrowed EI Gamal encryption scheme, which was somewhat lost in the shadow of IBE.
Other examples include certificateless public key encryption [4, 49], public key encryption
with keyword search [30, 9], broadcast encryption [34], hierarchical IBE [70, 76, 37, 55, 29],
policy based encryption etc [3]. There are also some identity based encryption schemes that
are proven secure in the standard model 1, see for example [27, 26].

NB: Around the same time as the Boneh and Franklin discovery there was concurrent
research in this area by Sakai, Ohgishi and Kasahara [111] who described the first identity
based key agreement protocols and signature schemes based on bilinear maps. However this
research was not generally known to western researchers until after the publication of the

Boneh-Franklin paper.

6.1 Identity Based Encryption

An identity-based encryption scheme E is specified by four randomized algorithms: Setup,

Extract, Encrypt and Decrypt:

o Setup: takes as input a security parameter k. It outputs params (the system pa-

M.e. without using random oracles in the security proofs.
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rameters) and a master-key The system parameters include a description of a finite
message space M, and a description of a finite ciphertext space C The system pa-
rameters will be publicly known, while the master-key will be known only to the

KGC

e Extract takes as input params, the master-key, and an arbitrary ID € {0,1}%,
and outputs a private key d Here 1D 1s an arbitrary string that will be used as a
public key, and d s the corresponding private decryption key The Extract algorithm

extracts a private key from the given public key
s Encrypt takes as input params, ID, and m € M It outputs a ciphertext ¢ € C

e Decrypt takes as input params, ¢ € C and a private key d [t outputs m € M or,

if the decryption fails, L

611 Security Definition for Identity Based Encryption

Chosen ciphertext security (IND-CCA) 1s the standard notion of security for a public key
encryption scheme Hence, it 1s natural to require that an 1dentity-based encryption scheme
also satisfy this strong notion of security However, the definition of chosen ciphertext
security must be strengthened a bit The reason 1s that when an adversary attacks a public
key ID in an 1dentity-based system, the adversary might already possess the private keys
of users {IDy, ,ID,}|ID ¢ {IDy, ,IDp} of her choice The system should remain
secure under such an attack Hence, the definition of chosen ciphertext security must allow
the adversary to obtain the private key associated with any identity ID, of her choice (other
than the public key I D being attacked) We refer to such queries as private key extraction
queries Another difference 1s that the adversary 1s challenged on a public key ID of her
choice (as opposed to a random public key)

We say that an 1dentity-based encryption scheme E 1s semantically secure against an
adaptive chosen ciphertext attack (IND-ID-CCA) if no polynomially bounded adversary A
has a non-neghgible advantage against the Challenger in the following IND-ID-CCA game
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e Setup The challenger takes a security parameter & and runs the Setup algorithm It
gives the adversary the resulting system parameters params It keeps the master-key

secret

e Phase 1 The adversary 1ssues quertes {q1, ,¢y,} where query ¢, 1s one of

— Extraction query (ID,} The challenger responds by runmng algorithm Extract
to generate the private key d, corresponding to the public key (ID,) It sends d,

to the adversary

— Decryption query (ID,,C,) The challenger responds by runnng algorithm Ex-
tract to generate the private key d, corresponding to D, It then runs algorithm
Decrypt to decrypt the ciphertext C, using the private key d, It sends the

resulting plaintext to the adversary

These queries may be asked adaptively, that is, each query ¢, may depend on the

replies to {g1, ,G-1}

e Challenge Once the adversary decides that Phase 1 1s over it outputs two equal
length plaintexts {mp,m1} € M and an 1dentity 7D* on which 1t wishes to be chal-
lenged The only constraint 1s that 7D* did not appear 1in any private key extraction
query i Phase 1 The challenger picks a random bit b € {0,1} and sets C* = En-

crypt(params, I1D*, m;) It sends C* as the challenge to the adversary
o Phase 2 The adversary 1ssues more queries {¢n+1, ,¢n} where query g, i1s one of

— Extraction query (ID,) where ID, # ID* Challenger responds as in Phase 1

— Decryption query (ID,,C,) # (ID*,C*) Challenger responds as in Phase 1
These queries may be asked adaptively as in Phase 1

¢ Guess Finally, the adversary outputs a guess b’ € {0,1} and wins the game if &’ = b
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We refer to such an adversary A as an IND-ID-CCA adversary. We define adversary
A’s advantage in attacking the scheme E as the following function of the security

parameter k (k is given as input to the challenger):

AdvA(K) = [Pr[b’ = b\~ 1/2|, 6.)

The probability is over the random bits used by the challenger and the adversary.

6.2 Boneh and Franklin’s Identity Based Encryption Scheme

Boneh and Franklin’s IBE system consists of the following four algorithms: Setup and Ex-
tract which are performed by the KGC, and Encrypt and Decrypt which are performed
by the clients.

Boneh and Franklin’s identity based key pair generation algorithms, Setup and Extract,
have been used by many identity based cryptosystems, such as those in [41, 46, 81, 86, 114,
127]. 1t is the first2 of the two identity based key pair derivation algorithms for IBC systems

based on bilinear maps, the other being from Sakai and Kasahara.

e Setup: The setup algorithm is carried out by the KGC. It takes a security parameter
fg, and outputs two groups Qand /r, both of large prime order r, such that the discrete
logarithm problem in the groups Q and /ir is computationally infeasible. The KGC
produces P, a generator of G four hash functions; Hid ofthe formHid «{0,1}* =G
H”r of the form HAr : /ir —{0, I}n, Hr of the form Hr m{0, I}nx {0,1}* -» z* and
Hv of the form Hv : {0, I}n -> {0, I}n. It also produces a bilinear map of the form
e:QxQ  fir.The KGC generates a random secret s Ez* and calculates Ppn5 = sP.
The setup algorithm outputs params, where

2Earlier work by Sakai, Ohgishi and Kasahara, used this same IBC key pair, but it was unknown by
western researchers until later, see [111], consequently this IBC key pair has become known as the Boneh
and Franklin key pair.
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params = {gaﬂr,ea P, Ppub’%ID’Hﬂri Hr:%v} (6 2)

The KGC publishes params

e Extract The KGC first verifies that a user has a valid claim to an online 1dentity
ID The KGC then calculates Qp = Hrp(ID) This 1s the user’s public key The

associated private key 1s calculated as sQrp

o Encrypt A user encrypts a message m € {0,1}* to a recipient with identity ID and

private key sQyp using the following probabilistic encryption algorithm

Choose a random o € {0,1}" and compute the following values

z = He(o,m) (63)
R = zP (6 4)
gio = e(Ppus, Qr) (6 5)
M = Hy(97p) (6 6)
V = Mgo (67)
C = Hyo)em (6 8)

The resulting ciphertext 1s (R, C,V) It should be noted that at this stage grp will
not change for repeated encryptions to the same 1dentity ID It 1s therefore advisable,

if storage limitations permit, to compute and cache the value grp

e Decrypt A user with private key sQ;p, who receives a ciphertext (R, C, V') intended
for him, calculates the following values to recover the message m The receiver first

checks that R € G3, then the user computes the following values

% As Scott points out [116] this 1s “free” when computing the pairing operation, if not using the private key
as a BKLS fixed base Using R as the first argument of the pairing implicitly performs a r P multiphication
To check membership of G, ssmply check that 7P = O
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M = H, (e(R,sQrp)) (6 9)
o= VoM (6 10)
m = Hy(0)®C (6 11)
g = He(o,m) (6 12)

And performs the following check

R=z'P (6 13)

If the above check holds then the ciphertext 1s accepted as being valid, otherwise the

ciphertext 1s rejected

621 The Security of Boneh and Franklin’s IBE scheme

The security of the Boneh and Franklin scheme rests on the difficulty of the BDH problem
Though we will not go mto the detail of the security arguments here, we note that an
identity based system needs a new type of security model Boneh and Frankhn address this

1ssue by constructing the security proof in two parts

1 Construct a public key encryption scheme from an identity based encryption scheme
by providing a fixed identity as part of the system parameters? Prove the security of

this scheme

2 Show how an advantage in breaking the equivalent identity based scheme can be

transformed mto an advantage in breaking the public key encryption scheme

4This 1s called BasicPub 1n {31]
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6 2 2 Implementational Improvements to Boneh and Franklin’s IBE

As part of my Ph D work I have implemented several 1dentity based cryptosystems® T now
note two 1mprovements that I have observed Both of these 1deas are of implementational
mmportance, and can significantly reduce the time taken to perform IBE However, they
are not substantial enough to warrant papers in themselves One of these has been pub-
lished as a small section of an CT-RSA paper by Scott® [116], with reference to a personal

communication The other idea remains unpublished

McCullagh’s Observation on the Boneh and Franklin Key Pair Derivation Al-

gorithm

It 1s often reported in hterature that, when doing identify based encryption, the most
computationally expensive process 1s actually computing the pairing When we implemented
the Boneh and Franklin IBE system on a mobile phone we imserted many timing logs mnto
the program so we could 1dentify the bottlenecks Somewhat to our surprise’ we discovered
that public key generation from an identity took twice as long as a pairing calculation We
then looked closely at the structure of the public key

The ‘Map To Point” algorithm of Boneh and Franklin mandates that the public key 1s

generated as follows

y = Hp(d) (6 14)
Qus = (@Y EE (615)
Qs = 1Qpup (616)

This algorithm has three steps

1 Hashing, to produce an teger y € Z}, which 1s relatively efficient

*Using the programming languages Java, C and C++
®The author’s Ph D supervisor
In the hiterature, pairing 1s alway 15 always mooted at the computationally expensive operation
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2. Solving the curve equation to obtain a point on the curve of unknown order. Again,
this is reasonably efficient and, in the case of the curve recommended in [31] is deter-

ministic, so should run in a reasonably quick time.

3. Multiplication of the point by an element I. In the case of the curves used in [31]
I = (p+ 1)/r. Therefore, in the popular setting of p = 512, k = 2, which seems to be
gaining favour as the curve specification to implement, this is « 2512/2 160. Therefore
I is a 352 bit number. This is substantially larger than the usual 160 bit integers that

we associate with point scalar multiplication. This is obviously the bottleneck.

The reason for multiplication by I is to ensure the point is of order r. When working with
the Weil pairing both points must be of order r. Boneh and Franklin’s paper concentrated
on the use of the Weil pairing. However, it soon became apparent that the reduced Tate
pairing provided much better performance than the Weil pairing. The first commercial
applications are using the Tate pairing in place of the Weil pairing. However, they have
kept the public key generation algorithm unchangeds.

Since the Tate pairing is preferred, the pairing need no longer be symmetric. Only the
first argument of the pairing must be a point of order r. Therefore, as noted by Scott,
the public and private keys, if they are used as the second argument to the pairing, need
no longer be points of order r [115] - we can use Qwb in place of Qpube Unfortunately,
with Scott’s fast key pair generation method we have lost compatibility with the Boneh and
Franklin key server9. This is a problem in the commercial world, if not in the academic
world. ldeally we wish to use Scott’s optimisation, whilst still being Boneh and Franklin
IBE “standards compliant”.

If we look at the use of the public key we see that Boneh and Franklin encryption comes

down to the equality:

e(xsP, Q") = e{xP, Qpri) (6.17)

8See http://ww.voltage.com.

9Such a Key Server is used by http://www.voltage.com and has, as a result, become the de facto
commercial standard.
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where the left hand side 1s the basis of the sender’s computation, and the right hand side 1s

the basis of the recipient’s computation

Expanding this equation a hittle we have

e(zsP Qpuy) = e(zsP,1Q5,;) (6 18)

e(lzsP, Q;mb) = e(zP, Qpn) (6 19)

Therefore, we can simply replace the pomnt sP with the pont {sP This 1s the co-factor

multiphication that we i1dentified as the bottleneck above, however this only needs to be

done once, and so can be amortized over the hifetime of the system Indeed, this new value

can be distributed with the system parameters and so need not be calculated by the chent

at all This very small change results in approximately 10 to 20 times faster public key

generation on the client!®, see Table 6 1, whilst maintaining full comphance with the Key

Server!!

Boneh and Franklin’s hash and map

The faster Boneh and Franklin compliant hash and map

328ms

16ms

Table 6 1 Timings for Java Implementation

The code used for this test 1s available in Appendix B

McCullagh’s Observation on Boneh and Franklin Private Key Distribution for

Low Powered Constrained Devices

As should already be apparent, a user in an 1dentity based cryptosystem does not have any

PKI certificate The assurances in a PKI come from the fact that a Certificate Authority

(CA) has publicly certified that a user s inked to a particular public key We expect the

CA to perform appropriate checks when certifying that a public key belongs to a user

10 Approx 20 times faster in Java code, on AMD 64 3000+
"'"The Key Server continues to issue the same keys as before
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Similarly a user i an 1dentity based system 1s certified by a KGC We assume that the
fact that a user has a private key implies that user has been authenticated by the KGC A
user should not be able to generate a private key themselves

As part of my research, I was a member of a team which implemented 1dentity based
cryptographic solutions on very restricted devices Whilst 1t is quite common for high-end
mobile phone platforms to support SSL, we were interested 1n developing a system for 1ssuing
private keys that requires very low bandwidth Ideally this solution should be restricted
to the set of operations that 1s inherently needed to perform identity based encryption (on
elliptic curves), so as to shrink the size and power consumption of the processor We looked
at the possibility of using an SSL scheme which specified elliptic curve El Gamal, but we
have come up with a shghtly more streamlined solution which uses less computation and
about half the bits of elliptic curve El Gamal - even before the excess overhead of SSL 1s
removed The main performance unprovements come from the observation that a Boneh-
Frankhn private key 1s a BLS signature by the KGC on the chient’s identity BLS signatures
are explamned in more detail in Ch 5

When developing for wireless devices, such as sensor networks, 1t 1s important that the
absolute mimimum number of bits 1s transmitted, since radio 19 the most power hungry
resource on these devices Battery life can be dramatically increased if the use of radio 1s
minimised

We note that previous work has been done 1n this area by Lee et ¢l but mn their scheme
the end user 1s not verified by the KGC 2 A more complex multi-KGC vanant that they
propose, was, on another level, broken by Chunxiang et al 1 [56] There 1s also previous
work by Sw et al [130] However, their scheme 18 computationally more complex and
requires twice the bandwidth from user to KGC than our proposed solution It also uses
a password as opposed to a digital signature for authentication We note that unlike these
preceeding schemes our scheme 18 not annoymous An eavesdropper can determine the

origin and authenticity of each message in the protocol

1?1t 15 assumed that the chent uses some seperate means to venfy themselves
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A user, at registration time, has a long term public key that 1s given to the KGC mn an
authenticated manner This 1s an El Gamal public key, based on the same elliptic curve £
and generator pomnt P as specified by the KGC for use with pairings The key pair 1s of
the form {z,zP} where the integer z € Z; 1s the private component and 7P is the pubhc
component

Likewise, the KGC has a similar key pair, {s, Ppup = $P}, were Py 15 the master public
key as distributed 1in the IBE params At each time period, every user in the system should
be able to generate every identity in the system, this being the fundamental pont of an
identity based cryptosystem It should be noted that a user 1s able to generate their own
public key for the next time period, using whatever rules the KGC has set out

Our key 1ssuing protocol 1s shown 1n Table 6 2

Client KGC
Qrp < Hp(identity || time period)
V=1Qp -
verify BLS(ID,zP,V, P)
— S =35V (which s szQp)
tp=1"'8
verify BLS(ID, Q) p, P, sP)
Qlen = QIID

Table 6 2 An Efficient Protocol for Private Key Distribution

Where verify BLS means simply to run the BLS verification algorithm on the inputs

4

Heuristic Security Arguments for the Security of the Key Distribution Protocol
The key 1ssuing protocol exploits the fact that both the client and the KGC can generate
the public key for the next period solely from knowledge of the ID and the public key
construction algorithm!® as defined by the KGC The request for a new key starts with a
BLS signature on the identity using the chent’s long term PKI key pair which has been
authenticated by the KGC This ensures the authenticity of the claimant each time a new

key 15 1ssued Any non-neghgible ability by an adversary to fool the KGC at this stage

13Called “map to point” in Boneh and Frankln’s IBE
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implies an abihity to forge BLS signatures

If the BLS signature passes the verification stage, then the KGC uses 1ts public point
Ppup as a regular PKI public key - 1t 15, after all, a vahd EC El Gamal public key It then
BLS signs the value that was given to 1t by the client At this stage, the resulting value
can be viewed as a blinded BLS signature by the KGC on the 1dentity’s public key This
blinding 1s important, since the BLS signature by the KGC on the 1dentity 15 the private
key

The chent, who knows the value r, can, at the last stage, unblind the signature By
domng this 1t will obtain the client’s private key (or the KGC’s signature on the 1dentity)

An eavesdropper can obviously check the validity of the messages that are being sent
back and forth as they are just signatures on known messages by known entities (actually,
this depends on whether or not the user’s public key 18 made truly public or just known to
the KGC)

The BLS check by the client at the end of the protocol ensures that they have received
the vahd private key This check 1s important to ensure that an adversary does not inject

a false value for the private key into the protocol

6 3 Sakai and Kasahara’s Identity Based Encryption Scheme

The original Sakai and Kasahara scheme was an ‘ID based public key cryptosystem with
Authentication” described mn [110, Sec 3] Thus 1s effectively a signcryption scheme Whilst
both the signature scheme and the encryption scheme appear secure {the authors did not
present proofs of security), there 1s a problem with the way that they aggregate the en-
cryption and signature schemes, as pointed out by McCullagh and Barreto [88], which 1s an
adaptation of an attack by Libert and Quisquater [81] on Malone-Lee’s Signcryption scheme
[86] This does not detract from the importance of the Sakai and Kasahara IBE scheme
We will just look at the encryption scheme here ,

The encryption scheme defined here, which was never formally defined by Sakai and

Kasahara, 1s their basic scheme with the Fujsaki-Okamoto transform [66] apphed This 18
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the same mechamsm by which Boneh and Franklin transformed their ‘Basic Ident” scheme
mto their ‘Full Ident” scheme n [31] Chen and Cheng have recently proved the security of

this scheme 1n [43)

e Setup The setup algorithm 1s carried out by the KGC It takes a security parameter
k, and outputs two groups G and u,, both of large prime order r, such that the discrete
logarithm problem i the groups G and g, 1s computationally infeasible The KGC
produces P, a generator of G, g, a generator of u,, such that g = e(P, P), four hash
functions, Hyp of the form Hrp {0,1}* — Z;, H,, of the form H,, u, — {0,1}",
H, of the form H, {0,1}" x {0,1}* — Z¥ and H, of the form #, {0,1}" — {0,1}"
It also produces a bilinear map of the form e § x G — u, The KGC generates a
random secret s € Z; and calculates Py, = sP The setup algonthm outputs params,

where

params = {g,pr,e,P, Ppub;'HlD;,Huer;Hv} (6 20)

o Extract To generate a private key for a client of the system, the KGC verifies the
end user 1s entitled to a particular onhne 1dentity, ID € {0,1}*, and generates the
user’s key paur, first by calculating H;p(ID) — a € Z7, and then computing the user’s

public key as sP + aP = (s + a) P, whilst the user’s private key 1s (s 4-a) ! P

» Encrypt To encrypt a message m € {0,1}*, to a user with identity ID, a user

generates a random o € {0,1}" and calculates the following values
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z = He(o,m) (6 21)
R = z{s+H;p(ID))P (6 22)
M = ¢ (6 23)
5 = o®Hu (M) (6 24)
C = m®H, o) (6 25)

The ciphertext 1s the tuple (R, S,C) It should be noted at this stage that encryption
does not require a pairing calculation and so 1s more efficient than the identity based

encryption scheme proposed by Boneh and Frankhn

e Decrypt To decrypt a ciphertext (R,S,C), a user with private key (s + a)"'P

computes the following values

M = eR,(s+a)"'P) (6 26)
o = S&H, (M) (6 27)
m = C&Hylo) (6 28)
g = Hp(o,m) (6 29)

And check if the following test holds

2P =R (6 30)

The ciphertext 1s accepted if the equality above holds, otherwise the ciphertext 1s re-

jected

This IBE scheme s attracting a lot of attention from both the academic and industrnal
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commumnities not only because 1t 18 more efficient than the Boneh and Franklin scheme, but

also for commercial reasons'4

6 4 Public Key Encryption with Keyword Search

The 1dea of Public key Encryption with Keyword Search (PEKS), which was mtroduced by
Boneh et al 1n [30] 15 that a specified user, who might not ordinarily be allowed to read
encrypted data, 1s able to test if a specific word 1s present in the data This encryption
scheme 1s based on public key encryption methods and so 1s not applicable to large volumes
of data, but may be appropriate for encrypting small amounts of data such as email headers
The example, given by the authors, was to alert a largely untrusted email gateway to forward
messages that were marked urgent (for example to a BlackBerry device), whilst not allowing
the device to read any of the encrypted message Another example may be to allow clerks
i1 the military to effectively handle data which 1s classified above their security clearance
Private decryption keys can be tailored to allow for the searching of any particular word,

and only that word Obviously PEKS schemes must resist dictionary attacks

6 41 Definition of a Public Key Encryption with Keyword Search Scheme

In a PEKS scheme “public key” refers to the fact that ciphertexts are created by van-
ous people using Alice’s public key, in the same way as a normal public key encryption
scheme Suppose Bob wants to send an encrypted message m to Alice with the keywords

{W1, ,Wyg} (we assume that & 1s small) Bob then sends the following message

(Ea,,im], PEKS(Apus, W1), ,PEKS(Apuy, Wy)] (6 31)

where Agyp 15 Alice’s public key and m 1s the email body We assume that this mnforma-
tion 1s to pass though a mail gateway that 1s trusted to redirect messages containing specific

keywords, but which otherwise 1s not authonsed to see the message

“The Boneh and Franklin scheme 15 subject to patent protection, owned by Stanford University and
Voltage Security Inc, a Stanford University startup company
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The goal of a PEKS scheme 1s to enable Alice to send a short secret key (aka a
trapdoor) Tw to the mail gateway that will enable the gateway to locate all messages
containing the keyword W, but learn nothing else about the messages Alice produces this
trapdoor Ty using her private key The server simply sends the relevant emails back to
Alice Such a scheme 15 called a non-interactive pubhic key encryption with keyword search,
or as a shorthand, a ‘searchable public-key encryption”

A PEKS scheme consists of the following algorithms

1 KeyGen(s) Takes a security parameter, &, and generates a public/private key pair

(Apuba Aprz)

2 PEKS(Apu, W) For a public key Ay and a word W, produces a searchable en-

cryption of W

3 Trapdoor(A4,.., W) Given Alice’s private key and a word W produces a trapdoor
Tw

4 Test(Apup, S,Tw) Given Alice’s public key, a searchable encryption S =
PEKS(Apus, Wa), and a trapdoor Ty = Trapdoor{ Ay, W), outputs true iff W = W

and 1 otherwise

Alce runs the KeyGen algorithm In typical PKI fashion she publishes het pubhc key
and keeps her private key secret It 1s assumed that all users in the system have access to
an authenticated copy of Alice’s public key With knowledge of Ay, and her choice of word
W, she uses the algorithm Trapdoor to produce Ty, a trapdoor corresponding to to her
public key and the word W Ty 1s then given to the third party (in this case the email
gateway) The gateway can now check for the existence of the word W 1n a given message

An important point 18 that PEK S(Apy,p, W) must not reveal any information about the

existence of the keyword W unless Ty 1s available
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6 42 The security model for PEKS schemes

We define secunity against an active attacker who 1s able to obtain trapdoors Tw for any

W of hus choice Even under such attack the attacker should not be able to distinguish

an encryption of a keyword Wy from an encryption of a keyword W, for which he did not

obtamn the trapdoor Formally, we define security against an active attacker A using the

following game between a challenger and the attacker

PEKS Security game

1

The challenger runs the KeyGen(k) algorithm to generate A,y and Apry It gives

Apup to the attacker

The attacker can adaptively ask the challenger for the trapdoor Ty for any keyword
W € {0,1}* of his choice

At some point, the attacker A sends the challenger two words Wy, W1 on which 1t
wishes to be challenged The only restriction 1s that the attacker did not previously
ask for the trapdoors Ty, or Ty, The challenger picks a random b € {0, 1} and grves
the attacker C = PEKS(Apus, Wp) We refer to C as the challenge PEKS

The attacker can continue to ask for trapdoors Tw for any keyword W of his choice

as long as W # Wy, Wy

Eventually, the attacker A outputs ¥ € {0,1} and wins the game 1f b=} We define

A’s advantage in breaking the PEKS as

Adva(s) = |Prlb=b]—1/2| (6 32)

Definition A PEKS 1s semantically secure against an adaptive chosen keyword attack

if for any polynomial time attacker A we have that Adw4(s) 1s neghgible
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6 43 Boneh et al’s Public Key Encryption with Keyword Search Scheme

The onginal PEKS scheme was proposed by Boneh et al 1n [30] This scheme exploits the
fact that in IBE cryptosystems identities are, after all, only words Therefore the authors
of (30] observed that they could create a PEKS scheme from the Boneh and Franklin IBE
scheme In fact, as subsequently pomted out mn (2], we can adapt any anonymous!'® IBE
scheme, by replacing the 1dentity with a keyword The transformation 1s more complex,
but this is the basic 1dea

In Boneh et al’s scheme the length of the ciphertext of the PEKS increments with each
key word appended It 1s assumed that PEKS will be used as part of a hybrid encryption
scheme with a large symmetrically encrypted component Therefore a small increment 1n
the size of the ciphertext 1s of no concern to the authors

In Boneh et al’s PEKS scheme the four algorithms defined above are implemented as

follows

o KeyGen This 1s a standard EC El Gamal public key generation algorithm over a
group suitable for pairing based cryptography A swtable group G of large prime
order 7 1s chosen and P a generator of the group G 1s picked A suitable bilinear map
e GxG — ur s selected Two hash functions are chosen, X {0,1}* — G, and
Hyu, #r — {0,1}" The user generates a random « € Z; and computes the publc
key pair (Kpry, Kpup) = (,aP) As with standard EC El Gamal 1t 1s not necessary

to pick a umque generator each time The user publishes the system parameters as

params = {g> bry €, P, KpubaHW5’Hur} (6 33)

o PEKS To compute the PEKS of the keyword W, the user, using the recipients public
key Kpyp, first calculates t = e(Hw (W), Kpyp)® for a random z € Z7 It calculates

H =%, (t) and the pomnt S = zP, and outputs the tuple (S, H)

'® An anonymous PKI scheme 1s one in which the identity of the recipient 1s not obvious from the ciphertext
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e Trapdoor: To generate TV, the trapdoor information for the keyword W, a user

with private key KWi computes the value KvriHwW{") I

e Test: This is used to test whether a keyword is included in a ciphertext. Given a
PEKS ciphertext, W a keyword to search for, and TV Trapdoor information relating

to W, Test performs the following check:

Htir(e(Tw,S)) = H (6.34)
If the test passes then it is accepted that W is in the list of encrypted keywords.

Theorem 6.4.1. The non-interactive searchable encryption scheme (PEKS) above is se-
mantically secure against a chosen keyword attack in the random oracle model assuming

BDH is intractable [30].

6.5 LMQ PEKS: A PEKS based on Sakai and Kasahara IBE

In [2] Abdalla et al. show that any annoymous IBE scheme can be transformed into a
PEKS. In a new result we (Libert, McCullagh and Quisquater1?) show the PEKS scheme
resulting from Sakai and Kasahara’s IBE. This is the most efficient PEKS scheme known, as
in common with most Sakai and Kasahara identity-based cryptosystems it does not require
a pairing computation in the ciphertext generation stage. It should be noted that in Boneh
et avs scheme a pairing computation is required for every keyword that is included in the
ciphertext. The scheme described in this section is otherwise very similar to Boneh et a/’s
scheme.

The scheme consists of the same four algorithms that comprise any PEKS: KeyGen,

PEKS, Trapdoor and Test. In our scheme they are instanciated as follows:

« KeyGen: This is a standard EC El Gamal public key generation algorithm over a

16T his is similar to a BF identity based private key for the identity W.
17This was joint work with Libert and Quisquater which was never published.
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group suitable for pairing based cryptography Two switable groups G and u, of large
prime order 7 are chosen and P a generator of the group G, and ¢ = e(P, P) € ur
a generator of p,, are picked A suitable bilinear map e G x G — u, 1s selected
Two hash functions are chosen Hy {0,1}* — ZF, and H,, ur — {0,1}" The user
generates a random « € Z; and computes the public key pair (Kpr., Kpup) = (o, aP)

The user publishes their public key and system parameters as

params = {g)ur,eaPaga KpubaHWa ’Hur} (6 35)

e PEKS To compute the PEKS of the keyword W, a user, using the recipients’ public
key and parameters, first calculates ¢t = ¢® for a random = € Z; They calculate

H =*H,, (t) and the point S = z(a + Hw(W))P, and output the tuple (S, H)

e Trapdoor To generate T, the trapdoor information for the keyword W, a user
with private key Ky, = a computes the value (o + Hy (W))~'P This 1s distributed

to the third party, for example a mail gateway

e Test This 1s used to test whether a keyword 1s included in a ciphertext Given a
PEKS ciphertext (S, H), W (a keyword to search for) and Ty (trapdoor information

relating to W), the third party checks the following

I~

My, (e(S,Tw)) = H (6 36)

If the test passes then 1t 15 accepted that W 1s in the hst of encrypted keywords

Theorem 6 51 Using the same security model as defined by Boneh et al, the PEKS
defined wn this section 1s semantically secure agawnst chosen-keyword attacks of the p-BDHI
problem 1is ntractable The securty of the scheme 1s shown using pownts from hnearly

independent groups
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6 6 Security Proof of the LMQ PEKS

Theorem 6 6 1 The PEKS 1s semantically secure against chosen-keyword attacks if the

p-BDHI problem 1s intractable

Proof Algorithm B takes as mput (P,Q,aQ,o?Q, ,aPQ), where P and Q are from
linearly independent groups, and attempts to extract e(P, Q)"/® from its mteraction with
A

In a preparation phase, B selects at random an mdex £ & {1, qHw }» elements
I, & Z; and wn, ,Wp_1,Weq1  Way,,, & Z; For. =1, ,¢-1¢+4+1, ,quy,
it computes I, = Iy —w, As n the techmique of Boneh-Boyen, 1t sets up generators
Gy € G2, G1 = ¥(G3) € Gi, where 3 1s a distortion map from G, to G;, and another
G element U = aG> such that 1t knows ¢y, — 1 paws (w,, H, = (1/(w, + a))G2) for

t€{1, ,quw}\{€} The public key Qpus 1s chosen as
Qpup = —U — IiGy = (—a — I)G,

so that 1ts (unknown) private key 1s mmplicitly set to z = —a — I, € Z; TForall: €
{1, ,auw }\{€}, we have (L, —H,) = (L, (1/(L + 2))G2)

B then imitiahzes a counter v to 1 and starts the adversary A on input of (G, G2, Qpus)
Throughout the game, we assume that Hy -queries are distinct, that the target keywords
W, W are submitted to Hw at some point and that any query involving a keyword comes

after a FHw-query on 1t
- Hw-queries (let us call W, the mput of the v** one such query) B answers I, and

mcrements v

- M,.-queries on mput v, € Gy B returns a random B, <% {0,1}" and stores the pair

(v,B;) m hst Ly

- Trapdoor queries on an mput of a keyword W, f v = £, then the simulator fails
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Otherwise, 1t knows that Hw (W,) = I, and returns —H, = (1/(I, + z)) G2 € G2

At the challenge phase, A outputs two distinct keywords (Wy, W) for which she never
obtained the trapdoors If Wy, W # W, B aborts Otherwise, we may assume that
W¢§ = Wy (the case W} = Wy 1s treated 1n the same way) B picks £ <% Z; and B* «* {0,1}"
to return the challenge S* = [A*, B*] where A* = —{G; € G1 If we define p = £/« and

since £ = —a — I, we can check that
A" = =Gy = —apGy = (I + 2)pG1 = pLiG1 + pp(Qpus) (6 37)

A cannot recogmze that S* 15 not a proper ciphertext unless she queries #, on
e(A*,G(Ql/(HHW(W‘;))) = e{(G1,G2)? or e(A*,Gél/(HHW(W"))) Along the second stage,
her view 1s simulated as before and her eventual output 1s 1gnored Standard arguments
can show that a successful A 1s very likely to query #,,. on either e(A*, Ggl/ (z+Hw (W5 ))) —
e(G1,G2)” or e(A*, Ggl/(m+HW(Wf))) if the simulation 1s indistingwishable from a real attack

environment Let AskHy denote this event

In a real attack, we have
Pr[A wins} < Pr[A wins|-AskH2]Pr[-AskH2] + Pr{AskHo] (6 38)

Clearly, Pr[A wms|~AskHs] = 1/2 and Pr[4 wins] < 1/2 + (1/2)Pr{AskH;] On the other

hand, we have

Pr[A wins] > Pr[A wins|-AskHz](1 — Pr[AskH;]) = Pr[AskH3]

N3 | =
N =

It comes that ¢ < [Pr[A wms] — 1/2| < 1Pr[AskHy} and thus Pr[AskH] > 2¢ This
shows that, provided the simulation 1s consistent, A 1ssues a #,,-query on either

B(A*, Ggl/($+7'[w (Wo'))) (A*, Ggl/(x-i-?'iw(wl‘)))

ore at some point of the game with probability

at least ¢ Whth probability €, a H,, -query mvolving e(A*,Ggl/(H%W(W‘;))) = e(Gh,G2)*

will be 1ssued To produce a result, B fetches a random record from the lists L, With proba-
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bility 1/gn”i the chosen record contains the right element r = e(G\,Gz2Y = e(P,
where f{z) = 2i=o G*Llis the polynomial for which G2 = /(«)Q. The p-BDHIP solution
can be extracted by noting that, if 7*= e(P, Q)1*, then

p-2 p-2
e(Gl,G2)¥a=7'@® e (£ ci+i(aiP),coQ)e(G1,'£cj+1(a*)Q).
1=0 j—0

In an analysis of 5’ advantage, we note that it only fails in providing a consistent

simulation because of one of the following independent events:
Ex: WO, [ Wt.
E2: B aborts when answering a trapdoor query.

We clearly have Pr[->i?i] = (gnw - = a™we know that -~e\ implies .
We thus find Pr[->iig A - € 2] = 2/quw- It follows that B outputs the correct result with

probability 2e/ (gnwqu”’)e O

6.7 Optimisations

In this section we look at the optimisations of Baek et a. [9] and consider their applicability

to our scheme.

6.7.1 Refreshing Keywords

Obviously one of the problems with a PEKS system is that, for the system to become
operational, the keywords must come from a relatively small set which we assume is publicly
known. For example one might want to forward emails from known email addresses ceoQ
company.com, or emails that mention a certain term such as new contract Baek et al.
[9] propose refreshing the keywords by appending date information in much the same way
that identities are given validity windows in IBE [31]. Using this method the current date
is appended to the keyword. This method seems reasonable as information on how to

construct keywords can be distributed with public keys.
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Another obvious method 1s the use of ephemeral public keys, which are signed using a
long term private key Since this 1s an encryption scheme we assume that lookups of public
keys are not an inconvenience to the sender Also, the sender will only have to check the last
link 1n the certificate chain We note that this method 1s more efficient than the method of
appending dates to the the keywords, as, if the keywords do not change, then we can store
keyword hashes and do not have to repeatedly perform ‘hash and map”

Baek et al [9] seem to imply that the trapdoor information should only be released to
the gateway at the start of its validity period, in much the same way as a private key 1s
only distributed to a user of an 1dentity based system at the start of the validity period for
the corresponding public key We note here that this does not have to be the case for the
distribution of trapdoor information The recipient could easily publish all of its intended
public keys ahead of time, and at the same time give the gateway all of the corresponding
trapdoor information The gateway could then store all of the trapdoor information and

discard them when they expire

6 72 Removal of the Secure Channel

Another 1dea Baek et al [9] suggested was the removal of the secure channel for the
distribution of the trapdoor information from the user to the gateway This incurred a
penalty of one extra exponentiation mn the group g, for the sender We observe that with
our scheme we can remove the secure channel without any additional burden on any of the
users 1n the system The modified system 1s only shghtly different from the original scheme
that we propose in section 6 5 and 15 outhned here

A PEKS scheme with removal of the secure channel between the public key owner and the
third party requires five algorithms KeyGen User, KeyGen GW, Encrypt, Trapdoor,
Test KeyGen User 1s a public key generation algorithm carried out by the recipient
KeyGen GW 1s an algorithm carried out by the mail gateway Encrypt is carried out by
the sender Trapdoor is carried out by the recipient to produce the trapdoor imnformation

which 1s given to the gateway Test 1s carried out by the gateway
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o KeyGen User This s a standard EC El Gamal public key generation algorithm over
a group suitable for pairing based cryptography Two smitable groups G and p, of large
prime order r are chosen and P a generator of the group G, and g a generator of y,
such that g = e(P, P), are picked A swtable bilinear mape G X G — p, 1s selected
Two hash functions are chosen Hy {0,1}* — Z¥, and H,,, pr = {0,1}F The user
generates a random « € Z; and computes the public key pair (Kpy,, Kpys) = (@, aP)

The user publishes their public key and system parameters as

params = {G, ur, e, P, g, Kpyp, Hw, Hy, } (6 39)

e KeyGen GW Using params the gateway generates a random value y € Z;} and

computes ggy = g¥ € G

e PEKS To compute the PEKS of the keyword W, a sender, using the recipients’ public
key and parameters, and the value gg, obtamed from the gateway, first calculates
t = gg, for a random z € Z; They calculate H = #,,(¢) and the pomnt § =
z{a + Hw(W))P, and output the tuple (S, H)

e Trapdoor To generate Ty, the trapdoor information for the keyword W, a user
with private key Kpr, = a computes the value (@ + Hw (W))"!P This information

can be passed to the gateway n the clear

e Test This 1s used to test whether a keyword 1s included in a ciphertext Guiven a
PEKS ciphertext (S, H), W (a keyword to search for) and Ty (trapdoor information
relating to W), and the gateway’s secret value y the mail gateway checks the following

?

Hy, (e(S,yTw)) = H (6 40)

The trapdoor information can now be distributed to the gateway mn the clear, since

the Test algorithm now requires knowledge of y, which 1s known only to the gateway
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If the test passes then 1t 1s accepted that W 1s in the hist of encrypted keywords

The Security of the “No Secure Channel” Scheme

Theorem 6 71 The PEKS unth secure channel removed 1s semantically secure against

chosen-keyword attacks if the p-BDHI problem 1s intractable

The proof 15 very similar to the proof given for the scheme described above, and 1s

mncluded in appendix B 1

6 73 Randomness Re-use

Baek et al suggest randomness re-use for use with the Boneh et al scheme However,
we note here that randomness re-use 1s not possible with our scheme Randomness re-
use, where the same ¢ = ¢ 1s used for two different encryptions introduces the following
vulnerability

Say an attacker guesses two popular keywords, he can check for their presence by doing
the following test

Let Wy, W, represent the guessed keywords respectively Then, if the attacker’s guesses
are correct and randomness re-use 1s used, the resulting ciphertext will include S = z(a +
Hyw (Wy))P and S’ = z(a + Hw(W1))P H = H,, (g%) will be the same for both encrypted

keywords, due to randomness re-use

zP = (Hw(Wo) — Hw(W1)) (S - &) (6 41)

9" = e(P,zP) (6 42)

The attacker then carries out the following test

H = H,,(9°) (6 43)
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If the test 1s passed, the attacker knows that the two keywords were present This 15
a very real attack on a PEKS system, since the keywords are hikely to come from a small,

well defined dictionary

6.8 Efficiency of the Sakar and Kasahara PEKS Scheme

We now look at the efficiency of our scheme with comparison to the Boneh et al scheme
[30] We will then look at the various modifications that can be made to that scheme and see
how they may be applied to the scheme which we present - some of these where suggested
by Baek et al n [9] The figures in brackets represent the timings when using Scott’s faster

hash and map algorithm

# keywords | Boneh et al (naive) | Boneh et al (Randomness Re-use) | ours
1 599ms (302ms) 599ms (302ms) 188ms
5 2995ms (1510ms) 2619ms (1134ms) 940ms
10 5990ms (3020ms) 5144ms (2174ms) 1880ms

Table 6 3 Comparison of our scheme with that of Boneh et al

As we can see the new scheme 1s faster, but due to the fact that we cannot make use of
randomness re-use, 1t does not manage to significantly outperform the Boneh et al scheme

at higher numbers of keywords as might be expected

6 9 Conclusion

We have seen mn this chapter that IBE 1s not the only talent of pairings We have given
a review of a few of the more interesting IBE schemes, such as the semmal Boneh and
Frankhn IBE and the more efficient Sakai and Kasahara IBE scheme We have also looked
at Public key Encryption with Keyword Search, and presented the fastest known scheme

Thus just gives a flavour of the types of encryption schemes that are possible with pairings
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Chapter 7

Two-Party Identity-Based Key

Agreements Protocols

Key agreement protocols are fundamental to the study of asymmetric cryptography Key
agreement protocols that are based on the discrete logarithm problem are closely related
to public key encryption The 1dea of a key agreement scheme i1s to allow two entities
to share a common ephemeral (session) key The process of establishing a session key 1s
called key establishment There are two ways to achieve a shared key, one being a key
transportation protocol, where one entity 15 trusted with generating a key and transporting
1t securely to the other user For example by encrypting 1t usmng the public key of the
recipient, or by encrypting 1t using a symmetric encryption algorithm under a master key
that 15 shared by both users This 1s sometimes referred to as a digital envelope [79] Some
key transportation algorithms make use of a third party, for example the key agreement
protocol i the Kerberos network authentication system [132] Another way of generating
a shared session key 1s that the two parties generate tokens that they swap This 1s called
a key agreement protocol These tokens allow the users to create a common shared secret
For a good general reference see {91, Ch 12]

The most famous key agreement protocol 1s the Diffie-Hellman protocol It was pre-

sented 1 1976, 1n the ground-breaking paper ‘New Directions m Cryptography” [58] It
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allows two users who have not previously shared information to establish a shared secret
session key in the presence of passive eavesdroppers The Diffie-Hellman key agreement,
as shown in Table 7 1 was extremely important, because it proposed something that was
so counter-mtuitive Up until this point 1t was assumed that if you wanted to engage in
a cryptographic protocol with another party you must have previously established some
common shared secret with them (symmetric cryptography) It layed the foundation stone
for public key cryptography

The Diffie-Hellman key agreement has two system parameters p and ¢ Parameter p 1s
a prime number and parameter g 1s a generator of a large prime order subgroup of order

a and 3 are two number drawn at random from the set of integers less than r

Alce Bob
TA = ga —
— TB = gB
Kj=T% Kp=T"
Kp=g"f Kp = g™

Table 71 The Diffie Hellman Key Agreement

The Diffie-Hellman key agreement 1s not perfect however It suffers from what 1s called
the “man-in-the-middle” attack This derives from the fact that the parties are not authen-
ticated 1 any way during the protocol This 1s quite a critical law The idea behind the
attack 1s that you can create a shared secret with someone, but you do not know for sure
with whom you are communicating The protocol itself is secure, but you do not know 1f you
are talking with your intended recipient, or if you are talking directly to an eavesdropper If
the eavesdropper manages to dupe Alice and Bob mto talking directly with him then he can
relay (and read) all of the messages between them The eavesdropper becomes the ‘man 1n
the middle™ The eavesdropper does this by negotiating two seperate session keys, one with
Alce and the other with Bob This 1s shown clearly in Table 72 The eavesdropper can

now decrypt messages from Alice and re-encrypt them and forward them on to Bob
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Alice Eve Bob
KA = ga —
— Kgy = gﬂ”
keyap = K&, keyag = Ko7
key g = g*°F keyap = g*P¢
KEA = gar —
“— Kg=4g°
keypr = KgE keypr = Kg
keypg = g*"f keypg = ¢g*F

Table 72 A Man in the Middle Attack on the Diffie-Heltman key Agreement

We have seen that the Diffie-Hellman protocol is extremely elegant However, we have
also seen that 1t does not have any real practical application as 1t stands If we assume that
we only use cryptography to keep secrets then we would also assume that we want to know
with confidence who we are telling those secrets to This leads to the obvious question

What properties should we expect of a key agreement protocol?

7.1 Definition of an Identity Based Key Agreement Protocol

A two party 1dentity based key agreement protocol contains the algorithms Setup, Extract
and the protocol Key Agreement Setup and Extract are carried out by the KGC and
are common to all identity based cryptosystems Key Agreement, which 1s common to all

key agreement protocols, 1s carried out by the two end users

» Setup takes as input a security parameter k It outputs system wide params, which
are made pubhc It also produces a master secret key s, which 1s known only to the

KGC

o Extract takes as input params, s, and the identity of a user /D It outputs a private

key d for this user

» Key Agreement 1s carried out between two end users The result of this algonthm

1s that both parties obtain a shared secret value
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7 2 Properties of Key Agreement Protocols

Properties of Key Agreements [44, 8]

e Known Key Security Each run of the protocol should result mn a fresh, unique,
randomly distributed session key Recovery of arbitrarily many previous session keys

should not help an attacker in determining the currently agreed session key

e Forward Secure A key agreement is said to be forward secure if knowledge of all
long term private keys does not compromise previously established session keys A
scheme 1s said to have partial forward secrecy if knowledge of all of the private
keys of the communicating entities 1s required before previous session keys can be

recovered

o Key Compromise Impersonation Resilience Compromise of Alice s long term
private key will (obviously) allow an attacker to impersonate Alice to other entities
However 1t 1s desirable that this does not allow the attacker to impersonate other

entities to Alice

o Unknown Key Share Resihence This i1s an attack whereby an entity A finishes
an execution of a key agreement protocol believing that a common key 1s shared with
an entity B (this 15 in fact the case) but B falsely believes that the key 1s shared with
another entity E (# A)

s Key Control Nerther party should be able to force the agreed session key to be a

certain value, or to be 1n a certain small subset of the key space

A key agreement protocol 1s said to provide key authentication if entity A 1s assured
that no other entity apart from a specifically identified entity B can possibly learn the value
of the shared secret key It 1san ‘Authenticated Key Agreement” (AK) protocol This does
not guarantee that entity B knows a particular shared secret, 1t only guarantees that no-one

else knows 1t
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This gives rise to a further definition, an authenticated key agreement protocol in which
entity A 1s assured that entity B has a particular secret value 1s called an ‘Authenticated
Key Agreement with Key Confirmation” (AKC) It 1s easy to convert an Authenticated Key
Agreement mmto an Authenticated Key Agreement with Key Confirmation The basis of
this transformation 1s to add another pass to the protocol in which the agreed session key
1s used to MAC! some data that contains redundancy

Often, if we wish to use the secret value as a key to encrypt a message that contains
redundancy, for example a message written in the English language or a real-time voice
call, we do not reed to add key confirmation The key will be confirmed by the fact that a
message with the expected redundancy was recovered If the decryption reveals a random
binary string or the phone call just contains ‘white noise” then we can assume that the
secret value was not transmutted correctly

Other desirable attributes of AK and AKC protocols include

¢ Small Number of Passes A pass in a protocol i1s a token (message) sent from

entity A to entity B or visa versa

e Small Number of Rounds A new round 1s classified by 1its dependence on infor-
mation exchanged 1n a previous round For example 1n a tripartite key agreement an
entity A might send different messages to entities B and C However, 1if these can
both be sent at the same time, we say that this 1s one round of the protocol We
would classify Joux’s key agreement protocol [77] as a one round protocol, since the
mmformation that any entity sends 1s independent of the information sent to them from

other entities Many two party key agreements are one round protocols

e Small Computational Complexity The computational complexity 1s the amount
of work done by the communicating entities 1n order to successfully share a secret

value

'MAC Message Authentication Code, stmilar to a digital signature, but does not offer non-repudiation
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* Role Symmetry: Do all of the parties in the protocol carry out identitical compu-
tations? If they do then the key agreement is role symmetric. This may be advan-
tageous if both entities have the same computational resources, or not, if the entities
have very different computational resources (for example a smart card / terminal key

agreement).

There are many key agreement protocols based on bilinear maps, and many have sub-
sequently been broken. One of the first applications of pairing based cryptography was a
tripartite key agreement protocol by Joux [77]. This protocol does not authenticate the
users, and thus is susceptible to the man-in-the-middle attack. However, it was a signifi-
cant step in the development of pairing based cryptography. This original scheme was not
identity-based.

Many key agreement protocols from bilinear maps have been since proposed.
Smart [127], and Chen and Kudla [44] have proposed two-party key agreement protocols,
neither of which have been broken. Nalla proposes a tripartite identity-based key agreement
in [97], and Nalla and Reddy propose a scheme in [99], but both have been broken [47, 121].
Shim presents two key agreements [123, 122], but both these schemes have been broken
by Sun and Hsieh [131]. Another set of authenticated tripartite key agreements proposed
by Al-Riyami and Paterson [5] were attacked by Shim [120], with one being broken. The
non-interactive identity based scheme of Sakai, Ohgishi and Kasahara [111], and the scheme
of Scott [114] both suffer from key compromise impersonation.

Most identity-based key agreement protocols have the property of key escrow: the
trusted authority that issues private keys can recover the agreed session key. This fea-
ture is either acceptable, unacceptable, or desirable depending on the circumstances. For
example, escrow is essential in situations where confidentiality as well as an audit trail is
a legal requirement, as in confidential communication in the health care profession. There
are other examples, such as personal communications, where it would be advantageous to

turn escrow off.
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The two-party key agreements proposed by Smart and by Chen and Kudla are escrowed
schemes by default. A modification suggested by Chen and Kudla [44] to remove escrow
can also be applied to Smart’s scheme. However, this modification creates additional com-
putational overhead. Scott’s scheme does not allow escrow, and there seems no obvious way
to introduce this feature, bar one party in the protocol sending a third party a copy of the
agreed key.

If all parties in an identity based key agreement protocol have had their private keys
issued by the same KGC then we say that they are all members of the same domain. If a key
agreement protocol requires that both users have keys issued by the same KGC [111, 114]
then this, for example, might mean that two workers from the same company would be able
to generate a shared secret. However employees from two different companies would not be
able to generate such a shared secret. Chen and Kudla proposed a solution to this problem
in [44].

7.3 Security Models for Identity Based Key Agreements

We adopt the security model proposed by Bellare and Rogaway [19], modified by Blake-
Wilson et al. [23], and used in proving the security of the key agreement protocols introduced
in [44] and [89].

The model includes a set of parties, each modelled by an oracle. We use the notation
IIfc, meaning a participant/oracle i believing that it is participating in the n-th run of
the protocol with j. Oracles keep transcripts of all communications in which they have
been involved. Each oracle has a secret private key, issued by a KGC, which has run a
BDH parameter generator B and published groups G and /ir, a bilinear map of the form
e:Qx Q nr,agroup generator P of G and a master public key sP.

The model contains an adversary E which has access to all message flows in the system.
E is not a (legitimate) user or KGC2. All oracles only communicate with each other via E.

E can replay, modify, delay, interleave or delete messages. E is benign if it acts like a wire

2Does not hold a private key of the target identity or the master secret key.
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and does not modify communication between oracles From [19], if two oracles receive, via
the adversary, property formatted messages that have been generated exclusively by the
other oracle, and both oracles accept®, we say that these two oracles have had a matching
conversation

The adversary F at any tune can make the following queries

e Create F sets up a new oracle in the system that has public key 1D, of E’s choosing
E has access to the identity / public key of the oracle The private key 1s obtained
from the KGC

e Send F sends a message of s choice to an oracle 1, ]_[ZJ, in which case 2 assumed
that the message came from 3 F can also instruct the actual oracle j to start a new
run of the protocol with 2 by sending a A, signal to ;3 Using the terminology of (23]

an oracle 1s an wnstsator oracle if the first message that 1t receives 1s A, otherwise it 1s

a responder oracle
o Reveal F recerves the session key that 1s currently being held by a particular oracle
e Corrupt E receives the long term private key being held by a particular oracle

e Test E receives either the session key or a random value from a particular oracle
Specifically, to answer the query the oracle flips a fair coin ¢ € {0,1}, 1if the answer
1s 0 1t outputs the agreed session key, and if the answer 1s 1 it outputs a random
element of {0,1}* E then must decide whether ¢ 15 0 or 1, call this prediction ¢
E’s advantage in distingwishing the actual session key held by an uncorrupted party
from a key sampled at random from {0, 1}* in this game, with respect to the security

parameter k, 1s given by

Advantage®(k) = |Pric’ =c]—1/2| (71)

3The oracles enter the accepted state as defined n [19]
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The Test query can be performed only once, against an oracle that 1s in the Accepted

state (see below), and which has not previously been asked a Reveal or Corrupt query
An oracle may be 1n one of the following states (1t cannot be 1n more than one state)

Accepted If the oracle decides to accept a session key, after receipt of properly formatted mes-

sages
Reyected If the oracle decides not to accept and aborts the run of the protocol

* If the oracle has yet to decide whether to accept to reject for this run of the protocol

We assume that there 1s some time-out on this state

Opened If a Reveal query has been performed against this oracle for its last run of the protocol

(1ts current session key 1s revealed)

Corrupted If a Corrupt query has ever been performed against this oracle

Definition {23] A protocol 1s an AK protocol if

2

4> Doth oracles always accept

» In the presence of the benign adversary on ]-[:’J and ]
holding the same session key, and this key 1s distributed uniformly at random on

{0,1}*, if for every adversary E

— If uncorrupted oracles HZ] and H;,u have matching conversations then both

oracles accept and hold the same session key,

— Advantage® (k) 1s neghgible

74 The Non-interactive Identity Based Key Agreement Pro-
tocol of Sakai, Ohgish1 and Kasahara

As mentioned 1n the introduction to this chapter, the Diffie-Hellman key agreement pro-

tocol and the paper “New Directions in Cryptography” [58] laid the foundation stone for
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asymmetric cryptography However, identity based key agreement protocols using pairings
are a much more recent discovery The first such 1dentity based key agreement protocol was
proposed by Sakai, Ohgish1 and Kasahara n 2000 [111] As an added bonus this scheme 1s
also non-mteractive, and 18 one of the simplest key agreement schemes 1n existence

The protocol proceeds as follows

e Setup The KGC chooses an appropriate group G of order r and selects a generator
of that group P Therefore we have (P) = G The KGC generates a random s €p Z;
The KGC calculates Fpyp = sP The KGC publishes descriptions of hash functions
He pr = {0,1}*,H;p {0,1}* - G, and a bilinear map e G X G = pr, G, Ppyp and

fr

o Extract The KGC 1ssues private keys to users, first by checking that they have a
legitimate claim on ID, the 1dentity for which they wish to receive the private key
The KGC generates their private key as sQrp where Q;p =H;p(ID) € G

o Key Agreement

Suppose the user with identity ID 4 and public key Qrp,, wishes to set up a shared
secret with the user with identity IDp, and corresponding public key Qrp, The

shared secret 1s calculated as Hy(e(sQin,, Qrpg))

Suppose the user with identity JDp and public key Q;p,, wishes to setup a shared
secret with a user with 1dentity /D 4, and corresponding public key Q@rp, The shared

secret 1s calculated Hy(e(Qip,,sQrpg))

From bilinearity, it can be observed that

e(sQrp,, Qipg) = e(Qiny,, sQrpg) = e(Qip,: Qrpy)’ (72)

and therefore both users have agreed the same shared secret, without interaction
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75 The Identity Based Key Agreement Protocol of Smart

Smart’s key agreement [127], like all 1dentity based key agreements, contains the two algo-
rithms Setup, Extract and and the protocol Key Agreement Smart’s key agreement
makes use of a group G and a bilinear map of the forme G x G — u,, where solving
the discrete logarithm problem 1n the groups G and u, 1s computationally infeasible We
denote the order of the groups by r It also makes use of a session key derivation function
Hi pr — {0,1}%, and a hash function H;p {0,1}* — G (as described by Boneh and
Franklin) to map 1dentities to elements of the group G

The key agreement proceeds as follows

o Setup and Extract are 1dentitical to the Setup and Extract algorithms specified by
Boneh and Franklin

o Key Agreement We describe the key agreement between two users, Alice and Bob,
who have public keys @4 and Qg and private keys sQ 4 and sQp respectively Alice
generates a random o € Z; and likewise, Bob generates a random 8 € Z; Now the

protocol proceeds as shown in Table 7 3

Alice Bob
aP —
— BP
Kp =Hi(e(sQa, BP) e(Qp,asP)) Kp = Hi{e(Qa,B85P) e(sQp,aP))

Table 73 Smart’s Identity Based Key Agreement

Smart also proposes a Authenticated Key Agreement Scheme with Key Confirmation
(AKC), by applying a simple transformation using the key that was exchanged in the key
agreement above with a MAC on some redundant data This idea was explored in detail
m [23] The key dervation function 18 now Hy p, — {0,1}* x {0,1}¥ This produces two
k bit keys, one being used to key the MAC, and therefore for providing confirmation, and

the other being the actual session key
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Smart’s Authenticated Key Agreement with Key Confirmation proceeds as in Table 7 4

Alice Bob

aP —

R= B(QA,,BSP) B(SQB,CXP)
(k, k') = He(R)

- { 8P
Ml = MACL(2)QB=QA1R)
R= e(SQAaBP) B(QB,QSP)
(k, k") = Hy(R)

MACk(2,Q5,Qa, R) = M,

My = MACw(3,Q4,Q5,R)  — MACy(3,Qa,Q5,R) = M,
Ky=k Kg=k

Table 74 Smart’s Identity Based Key Agreement Protocol with Key Confirmation

Provided that both of the verification equations are passed then the agreed session key
18 k

In his original paper, Smart gives informal security arguments for the security of his
scheme, but 1n a new result we prove 1t secure 1 the random oracle model, using a modified
version of the security model of Bellare and Rogaway [19] in which reveal queries are not

allowed

751 The Security of Smart’s Key Agreement Protocol

The proof of security of the above algorithm relies on the conjectured intractabihity of
the Bilimear Diffie-Hellman Problem The Bilinear Diffie-Hellman Problem 1s  Given
P,aP,bP,cP € G compute g°* € u, where g = e(P, P)

Assuming that the BDHP 1s hard (with respect to the security parameter k), we now

demonstrate the security of Smart’s key agreement protocol

Theorem 7 5 1 Smart’s key agreement protocol 1s a secure AK protocol, assumang that E
does not make any reveal queries and that the hash functions used are modelled as random

oracles, and that the BDHP 13 hard
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See appendix D for the proof This original work has been put 1n the Appendix, as it
simply an adaptation of the security proof which Chen and Kulda gave for their 1dentity

based key agreement [44]

752 Efficiency of Smart’s Identity Based Key Agreement Protocol

We now look at the efficiency of Smart’s key agreement protocol Firstly, the AK protocol
presented by Smart 1s role symmetric This means that both parties to the agreement incur
the same computational and bandwidth costs We see that, without precomputation, the
computational cost for each participant 1s one pont scalar multiplication, two pairings and
an exponentiation mn g, With precomputation, we see that 1if entity A was to repeatedly
communicate with entity B, then the pairing vp = e(Qp, sP) could be precomputed and

stored This would mean that A could then complete the key agreement as

Ka =Hi(e(sQa,6P) +3) (73)

This reduces the computational load placed on A to one point scalar multiplication, one
pairing and one pairing exponentiation Since pairing exponentiation 1s much faster than
pairing computation over £ = 2 curves, this change will achieve a significant increase in the

performance of the key agreement

7.6 The Identity Based Key Agreement of McCullagh and

Barreto

We now describe the 1dentity based AK protocol that has been presented by McCullagh and
Barreto in {89] This key agreement protocol, unlike the previous AK protocols of Smart
and Chen and Kudla, does not make use of the identity based public key pair of Boneh and
Franklin Instead we use the identity based key pair developed by Sakai and Kasahara [109]

Lake the previous schemes, this scheme consists of two algorithms, Setup and Extract, and

the Key Agreement 1tself Obviously the modifications that were proposed by Chen and
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Kudla 1n [44] also apply We will look at this in more detail later

This algorithm makes use of two groups G and y, of prime order » P 1s a generator of the
group G It also makes use of two random oracles, H;p ID — Z*and Hx pr — {0,1}% A
bilinear map of the forme G X G — pu, 15 selected This scheme also uses ¢ = e(P, P) € y,

g 1s a generator of u,

o Setup The KGC generates a random element s € Z; The KGC publishes G, u,,
e GXG— ur, Hrp, Hi, P and sP

e Extract The KGC validates that the user requesting the private key 1s associated
with a certamn D The public key for this user 1s sP + 1P = (s +2)P, where 1 =
Hip(ID) € Z; The corresponding private key, which requires knowledge of s to

compute, 1s calculated by the KGC as (s +31)"!P

» Key Agreement First, users Alice and Bob, who have public key pairs {(s+a)P, (s+
a)~'P} and {(s+b)P, (s +b) "1 P}, generate random o and 3 € Z} respectively They

then complete the key agreement as shown in Table 7 5

Alce Bob
a(s+b)P -
- B(s +a)P
key = Hi (g™ e(B(s + a)P, (s +a)"' P)) key = Hi(9” e(a(s +b)P,(s+b)"'P))

Table 75 McCullagh and Barreto’s Authenticated Key Agreement

For clarification, the agreed session key 18 Hx (¢*t#) The computational cost associated
with this key agreement is one pairing, one pairing exponentiation and one point scalar
multiphcation We also note that apart from storing long term public keys (which would

increase performance), there are no storage overheads with this key agreement protocol
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761 The Security of the Identity Based Key Agreement Protocol of
McCullagh and Barreto

The original security proof supplied with the McCullagh and Barreto key agreement was
flawed, m that an adversary could tell the difference between the simulated environment
and the real world This was a flaw in the secunity proof only In [48] Cheng and Chen
provided a new security proof which relied on a new hard problem, which they introduced,

called the k-EBCAA; assumption

Definition i-EBCAA; Assumption For an integer k, and z,y €g Z,P € G,e G X
G — pr, given hP,zP, o, (b1, (b +2)7'P), , (hg, (hg + 2)~' P),yP) where h, € Z; are

different from each other for 0 <1 < k, to compute e(P, P)y(’“”'z)_1 1s hard

They then proceeded to provide a proof for the McCullagh and Barreto key agreement

assuming this assumption 1s sound The proof, included in Appendix E, 1s taken from [48]

762 Applying Chen and Kudla’s modifications to McCullagh and Bar-

reto’s Key Agreement Protocol

In [44] Chen and Kudla proposed modifications to their key agreement protocol and Smart’s
key agreement protocol to add the following properties removal of KGC escrow, key agree-
ment between domains and addition of a key confirmation stage

Since most of these are generic techniques we now look at how they can be applied to
the authenticated key agreement protocol of McCullagh and Barreto Firstly we will look
at the removal of escrow We actually see that in the McCullagh and Barreto scheme, we
can use a technique simlar to that of Chen and Kulda Again we modify the key derivation
function Hxg This time, however, we do not use exactly the same key dervation function
that they use Instead, we use a function of the form Hyg pr x pr — {0,1}¥ We also
modify the Setup and Extract algorithms These modifications will be explammed m more

detail later
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Setup The KGC picks two groups G and u,, both of large prime order r, such
that the discrete logarithm problem in these groups 1s computationally infeasible
The KGC makes public hash functions H;p {0,1}* = Z;, Ho {0,1}* — G and
Hx  wr X pr = {0,1}* The KGC also publishes details of a bilinear map of the
forme G xG — u, Here we let g = e(P,Q) where P and @ are taken from the
same group, and € 1s some unknown multiple of P The KGC picks two random
public strings (for example the first ten digits of = and the first ten digits of G, the
gravitational constant) Interestingly the KGC does not publish generator points in
this system, but shows how these points can be generated Two generator points P
and () are required, derived from the constant strings as follows P = Hg(w) and
Q = Hg(G) Thas 1s to wnspire confidence that the KGC does not know the value z,
such that P = xQ, as this could lead to an attack by the KGC The KGC generates a

random s € Z; and publishes the point sP

Extract The KGC generates users’ public keys using the same Extract algorithm as
before, except that the private keys are now generated using the point ) To generate
a private key for user 7D, the KGC first generates : = H;p(ID) € Z; The public

key for this user 1s sP + 1P = (s +1) P, the private key 1s now (s +12)7'Q

Key Agreement  Two users Alice and Bob, who have public key pairs {(s +
a)P, (s+a)"1Q} and {(s + b) P, (s +b)~'Q} respectively, now generate random secret

o and § € Z; respectively and perform the key agreement as shown in Table 7 6 2

Alice Bob
a(s + )P -
— B(s +a)P
{ Rs=e(B(s+a)P,(s+a)7'Q) { Rp =e(a(s +b)P, (s + b)7'Q)
Ka=Hk(g® Ra,R3) Kp =Hx(9® Rs,R3)

Table 76 McCullagh and Barreto’s Authenticated Key Agreement protocol with No Es-

Crow

For clarity the shared secret key 1s now H g (g*t#, g®#) Since the secret 1s processed using
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a random oracle, this time the adversary E must have advantage in finding both parts of
the mput to Hxg We proved earlier that this was not possible if we use the same pomt in
the generation of both the public and private keys It 1s also not possible if we use points
for which the discrete logarithm 1s unknown All that 1s required 1s for the challenger C to
answer the random oracle queries with two points for which C knows the discrete logarithm
between them, whilst not revealing this discrete logarithm to E

We also notice that in this situation the KGC can recover the values g% and ¢ and thus
the first mput into the oracle Hx However, the KGC cannot recover the value ¢*® This
would 1mply a non-neglgible advantage 1n solving the DHP over the group p, This was
first proposed by McCullagh and Barreto at CT-RSA on 15th Feb 2005 However a similar
scheme has since appeared 1n a separate paper on the JACR Cryptology eprint Archive See
{138] for more details

We now look at Chen and Kudla’s second modification to Smart’s protocol which allowed
key agreement between domains We notice that their scheme 15 not immediately applicable
to the McCullagh and Barreto AK protocol, since the shared secret that the McCullagh and
Barreto protocol generates does not depend on any way on the master secret of the KGC
(1t 1s annulled by the pairing of the received point and the private key) Therefore, all that
15 needed 1s that the KGCs agree on the same groups, pairing implementation and pomnt P

We assume that Alice has obtained her private key from KGC;, which has as its master
secret s; and which publishes the point s;P Therefore Alice’s public key pair 1s {(s1 +
a)P,(s1 + a)"'P} Likewise, Bob has obtained his public key from KGC,, which has the
master secret s and which has published s; P Bob’s key pair therefore 1s {(s2 + b) P, (32 +

b)~!P} The key agreement protocol proceeds as shown in Table 7 7

A More Flexible Approach to Key Agreement Between Domains

Another new way to implement key agreement between domains 1s just to use a key deriva-
tion function Hyx pr, X pr, — {0,1}%, where p,, 15 the group used by KGC; and gy, 1

the group used by KGC» Then we can combine any of the above key agreement protocols
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Alice Bob
a(se +b) P —
— B(s1 +a)P
{ Ra=¢(B(s1 +0a)P, (51 +a)"'P) { Rp = e(a(sy + b)P,(s2 +b)"' P)
Ka=Mk(9® Ra)) Kp=Hk(9® Rg))

Table 77 McCullagh and Barreto’s Authenticated Key Agreement Between Domains

with each other Importantly, we can now enable members of a domain who use Boneh and
Franklin identity based key pairs (as used by Smart), communicate with other users who
have Saka: and Kasahara identity based key pairs (as used by McCullagh and Barreto)
This 15 easily accomplished as follows

Let Alice have a Boneh-Franklin identity based key pair, 1ssued by KGC; That 1s
Alice’s public key 15 P4, her private key 1s s; P4 and the KGC’s master public key 1s ¢, P
Her KGC specifies an appropriate bilinear map e; Bob has a Saka: and Kasahara key pair,
issued by KGC, That 1s Bob’s public key 1s (52 + b)Q, and his private key 1s (s2 + )71 Q,
where b = H;p(IDp) € Z¢ His KGC specifies an appropriate bilinear map ea KGCq
155ues the point so0¢) The points P and @ may be totally unrelated and belong to different
elliptic curves Let g1 denote (P, P) and g2 denote ez( Py, P)

Alice and Bob can execute the key agreement protocol as shown in Table 7 8

Alice Bob
afse + b)Q Y
— BP
K4 = Hk(g5,e1(51Pa, BP)) Kp = Hi(ex(a(s2 + b)Q, (52 + 5)7'Q), e1(Pa, 51 P)P)
Ka=Hr(98, 90" Kp = Hi(93,95P)

Table 78 A New Method for Key Agreement Between Domains

We now look at Chen and Kudla’s third modification This modification 1s a generic
modification, which they take from [23], and allows the transformation of any AK protocol
nto the corresponding AKC protocol This modification makes use of a new key derivation

function of the form Hx ur — {0,1}% x {0,1}* Because of the generic nature of tius
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transformation we will only describe the key agreement stage in Table 79

Alice Bob

Ra = a(s +b)P o
Rsk = e(Ra, (s +0)7'P) ¢°
(k, ¥) = H(Rsk)
- { Rp =p(s+a)P
M, = MACk’(2ab7 aaRAaRB)
Rsk =e(Rp,(s+a)”'P) ¢
(k. K') = H(Rsx)
M, =MACk’(3)aabsRA»RB) -
Ka=k K=k

Table 79 McCullagh and Barreto Identity Based Key Agreement Protocol with Key Con-
firmation

76 3 Efficiency of the McCullagh and Barreto Identity Based Key Agree-

ment Protocol

We have already seen the efficiency gains that Chen and Kudla manage to achieve over the
scheme of Smart We now look at the efficiency gains that are made in the McCullagh and
Barreto scheme Firstly, each participant in the scheme incurs one pairing, one point scalar
multiplication and one pairing exponentiation The amount of computation incurred 1n the
Chen and Kudla scheme 1s two pont scalar multiplications and one pairing Therefore,
in the popular setting of a kK = 2 curve, our scheme will be faster than the Chen and
Kudla scheme We note that their scheme can achieve the same level of performance as the
McCullagh and Barreto scheme 1if there 1s enough storage to allow for precomputation The
McCullagh and Barreto Key Agreement algorithm (the third of the three algorithms which
comprise the scheme) does not appear to benefit from precomputation The only benefit
seems to be the precomputation and storage of public keys We also note that to remove
escrow we do exponentiation in the group p, whereas Chen and Kudla’s modification of
Smart’s scheme does pomnt scalar multiplication, so in common settings McCullagh and

Barreto’s protocol will again be faster
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Basic Precomputation Properties
Op count Time Op count Twme | KKS | PFS | KCIR | UKSR | KC
SOK 1p 172 - - o ) o ° °
Scott 1p+2pe 182 2pe 10 . o~ o . .
Smart 2p+1psm+1pe | 443 | 1p+1lpsm+1lpe | 271 . ol . . .
CK 1p+2psm 360 | 1p+1psm+1pe | 271 . ot . . .
M-B (ours) | 1p+1psm+1pe | 271 | lp+lpsm+lpe | 271 . of . . ®

Table 710 A Comparison of Key Agreement Protocols and their Claimed Properties

e Time 15 1n milhiseconds and 1s based on operation counts In reality times will be slower due to network
constraints

o KKS Known Key Security

o PFS Partial Forward Secrecy

s KCIR Key Compromise Impersonation Resilience
s UKSR Unknown Key Share Resilience

» KC Key Control

s Computational Cost

— p pairing operation
- psm point scalar multiplication

— pe pamng exponentiation operation

s x This scheme has full forward secrecy

s 1 These schemes can be modified to have full forward secrecy

We note that while using precomputation the Smart, Chen and Kudla and McCullagh
and Barreto algorithms require exactly the same computational cost, the McCullagh and
Barreto scheme has no storage requirements, whereas Smart and Chen and Kudla both
require storage of ur,n bits, where n 1s the number of users with which we wish to perform

key agreements and i, 1s the number of bits required to store one element m p,

77 Conclusion

The onginal work 1n the area of two party 1dentity based key agreements from pairings was
done by Sakai, Ohgish1 and Kasahara in {111], and was improved upon by Smart 1n [127]

Smart give heuristic arguments for the security of his scheme In this thesis, in a minor
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result, we prove the security of Smart’s scheme, 1n the security model proposed in [23]

The work of Smart was improved upon by Chen and Kudla Chen and Kudla proposed
a new key agreement which was faster than that proposed by Smart They also introduced,
to 1dentity based cryptography, the rigorous security frameworks of [19] and [23] which were
originally designed for non-identity based public key cryptosystems This 1s a important
contribution of their work

We then went on to describe the 1dentity based key agreement protocol of McCullagh and
Barreto This key agreement protocol manages to achieve the same performance without
precomputation as the previous schemes only managed to achieve with precomputation We
note that with precomputation Smart’s scheme Chen and Kudla’s scheme and McCullagh
and Barreto’s scheme all have similar performance characteristics This 1s illustrated in
Table 7 10, along with the security properties that the various scheme are believed to possess

In another result we show how to agree a shared secret between users of an identity
based system which uses Boneh and Franklin key pairs [31] and Sakai and Kasahara [109]

key pairs
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Chapter 8

Identity Based Signcryption

Two fundamental services of public key cryptography are confidentiality and authentication.
Public key encryption schemes aim at providing confidentiality whereas digital signatures
must provide authentication and non-repudiation. Nowadays, noticeably, many real-world
cryptographic applications require these distinct goals to be achieved simultaneously. This
motivated Zheng [146] to provide the cryptographer’s toolbox with a novel cryptographic
primitive which he called “signcryption.” The purpose of this cryptographic primitive is
to both encrypt and sign data in a single operation which has a computational cost less
than that of doing both operations sequentially. Signcryption schemes should provide con-
fidentiality as well as authentication and non-repudiation. As with conventional encryption
schemes, recovering the plaintext from a signcrypted message must be computationally in-
feasible without the recipient’s private key; as with conventional digital signature schemes,
it must be computationally infeasible to create signcrypted texts without the sender’s pri-
vate key. The area of combining signature (or other authentication) with encryption has

been extensively researched, see for example [147, 113, 6, 10, 11, 85].
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8 1 Definition of an Identity Based Signcryption Scheme

The formal structure that we use for defining the security of our 1dentity-based signeryption

scheme 1s the following

Setup 15 a probabilistic algorithm run by a key generation centre (KGC) that takes as
mput a security parameter k, and outputs public parameters params, which are made

public, and a master key mk that 1s kept secret by the KGC

KeyGen 1s a key generation algorithm run by the KGC on input of params, an :dentity
ID and the master key mk, and outputs the private key S;p associated with the

identity ID

Sign/Encrypt 1s a probabilistic algorithm that takes as input public parameters params,
a plaintext message m, the recipient’s identity IDp, the sender’s private key Sip,,

and outputs a ciphertext ¢ = Sign/Encrypt(m, Srp,,IDg)

Decrypt/Verify 1s a deterministic decryption algorithm that takes as input a ciphertext
o public parameters params, the receiver’s private key S;p, and (optionally)! a
sender’s 1dentity 1D 4 before returming a vahd message-signature pair (m,s) or a
distinguished symbol L if ¢ does not decrypt into a message bearing signer ID4’s

signature

8 2 Properties of a Signcryption Scheme

The following, which were taken from [35] are some of the properties that we use to classify

signeryption schemes

1 Message Confidentiality allows the communicating parties to preserve the secrecy

of their exchange, 1f they choose to

The senders 1dentity may be sent as part of the ciphertext or may be recovered during the early stages
of the Decrypt/Venfy algorithm
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. Signature non-repudiation: makes it universally verifiable that a message speaks
in the name of the signer (regardless of the ciphertext used to conwvey it, ifany). This

implies message authentication and integrity.

. Ciphertext unlinkability: allows the sender to disavow creating a ciphertext for
any given recipient, even though he or she remains bound to the valid signed message

it contains.

. Ciphertext authentication: allows the legitimate recipient, alone, to be convinced
that the ciphertext and the signed message it contains were crafted by the same entity.
This implies ciphertext integrity. It also reassures the recipient that the communica-

tion was indeed secured end-to-end.

. Ciphertext anonymity: makes the ciphertext appear anonymous (hiding both the
sender and the recipient identities) to anyone who does not possess the recipient

decryption key.

Prior to the work of Barreto et al. [13], several identity-based signcryption algorithms

had been proposed, e.g. [35, 45, 54, 81, 86, 98, 109, 142]. There is also an interesting hierar-
chical scheme [55]. Within this handful of results, only the authors of [35, 45, 54, 55, 81, 142]

consider schemes supported by formal models and security proofs in the random oracle

model [19]. Amongst them Chen and Malone-Lee’s proposal [45] yields the most efficient

construction.

In this chapter we outline some of the important advances in the development of identity

based signcryption protocols. We introduce a designated verifier variant of the Malone-Lee’s

signcryption scheme, which resists the attack by Libert et al. on Malone-Lee’s original

scheme. We classify a new type of attack against some pairing based cryptosystems2 and

apply this attack to an identity based signcryption scheme by Sakai and Kasahara. We

finish with the work of Barreto et al., which was co-written by the author of this thesis.

2This was joint work by the author and Baretto.
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We do a comparision of many important 1dentity based signcryption protocols, 1n terms of
properties and performance We see that our protocol 15 substantially faster than any of

the competing schemes, whilst maintaining many desirable properties

8 3 Security Definitions for Identity Based Signcryption

Schemes

Definition [35] An identity-based signcryption scheme (IBSC) satisfies the message con-
fidentiality property (or adaptive chosen-ciphertext security IND-TBSC-CCA) if no PPT

adversary, denoted A, has a non-neghgible advantage n the following game

1 The challenger runs the Setup algorithm on input of a security parameter & and sends

the domain-wide parameters params to the A
2 In a find stage, A queries the following oracles

o KeyGen returns private keys associated to arbitrary identities

» Sign/Encrypt given a pair of 1dentities ID4, IDg and a plantext m, this
oracle returns an encryption under the receiver’s identity 7D g of the message m

signed 1 the name of the sender ID 4

e Decrypt/Verify given a pair of identities (ID4,IDg) and a ciphertext o, 1t
generates the receiver’s private key Syp, = KeyGen(I/Dp) and returns either a
valid message-signature pair (m, ) for the sender’s 1dentity ID 4 or the L symbol
if, under the private key S;p,, o does not decrypt into a vahid message-signature

pair

3 A produces two plantexts mg,m; € M and identities ID} and ID%
She must not have extracted the private key of ID} and she obtans

C =Sign/Encrypt(ms, Sip,, IDj, params) for a random a bit b = {0,1}

4 Inthe guess stage, A asks new queries as in the find stage This time, she may not 1ssue
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a key extraction request on 7D} and she cannot submit C to the Decrypt/Verify

oracle for the target 1dentity IDp
5 Finally, A outputs a bit b" and wins if &' = b

A’s advantage 1s defined as Adv(A) = |2 x Pr[t’ = b] — 1|

The next defimtion, given n {35}, considers non-repudiation with respect to signatures

embedded n ciphertexts rather than with respect to ciphertexts themselves

Defimtion [35] An 1dentity-based signcryption scheme (IBSC) 1s said to be ezstentially
signature-unforgeable against adaptive chosen messages and ciphertexts attacks (ESUF-
IBSC-CMA) if no PPT adversary can succeed in the following game with a non-neghgible

advantage

1 The challenger runs the Setup algorithm on mput & and gives the params to the

adversary JF
2 F 1ssues a number of queries as in the previous definition

3 Fally, F outputs a triple (0*,1D%,ID%) and wins the game 1f the sender’s 1dentity
ID% was not corrupted and if the result of the Decrypt/Verify oracle on the ciphertext
o* under the private key associated to I D} 1s a valid message-signature pair (m*, S*)
such that no Sign/Encrypt query involved m*, ID% and some recewver 1D (possibly
different from I D%) and resulted n a ciphertext ¢’ whose decryption under the private

key Syp., 1s the alleged forgery (m*,s*,1D7})
The adversary’s advantage 1s 1ts probability of success in the above game

In both of these defimtions, we consider 1nsider attacks [6] Namely, in the definition of
message confidentiality, the adversary 1s able to be challenged on a ciphertext created using
a corrupted sender’s private key, whereas in the notion of signature non-repudiation, the

forger may output a ciphertext computed under a corrupted receiving 1dentity
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8.4 The Identity Based Signcryption Scheme of Malone-Lee

In [86] Malone-Lee mtroduced the first 1dentity based signeryption scheme An immportant
contribution of this work was formally redefining the existing notions of signcryption schemes
for the identity based setting® His scheme has the same setup and extract algorithms as
specified by Boneh and Frankhn (see Sec 62) We only reproduce the Signcrypt and
Unsignerypt algorithms here

We assume that all participants to the protocol have access to hash functions #;

{0,1}* = Z} and Hy p, — {0,1}" Where n 1s the length, in bits, of the message m

e Signcryption To perform signcryption to a user with public key Q;p, a sender,

with key pair {Qrp,,5Q@p,} generates a random z € Z; and computes the following

values

U = gP (8 1)
h = Hi(Uljm) (82)

= hsQrp, + Py (8 3)
C = Hale(zFPpup, Qing)) &@m (84)

The resulting ciphertext 1s the tuple (U, V, C)

o Unsigncryption To unsignerypt the ciphertext (U, V,C) from the user with public

key Qrp, a user with key pair {Qrp,, 3Qrp,} computes the following values

m <« Ho(e(U,sQrp,))®C (8 5)

h « H(U|m) (86)

3Although Malone-Lee’s work was pioneering, the formal model that he favours now appears to be that
of Boyen [46]
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and then performs the following test

e(V, P) = e(hQip, + U, Poup) (87)

Malone-Lee compares his scheme with sequential use of both a Cha and Cheon signa-
ture scheme, followed by the Boneh and Franklin IBE scheme His scheme saves one u,
exponentiation n the sign/encrypt stage, whilst trading two point scalar multiphications for
a paring and a y, exponentiation in the decrypt/verify stage (which take approximately
the same time) We note that 1t 1s possible to turn this scheme into a designated verifier
scheme, by computing U = zQ;p and V = (h + z)sQ;p rather than hsQrp + Py This
achieves the indistinguishability of ciphertexts property at the cost of universal verification
We do note however, that Malone-Lee’s scheme does reduce the bandwidth of sending both
encryption and signature separately, by one element in G and n bits, where n 1s the length
of the message m 1n bits

If using the designated verifier variant we see that signeryption and unsigncryption now

become

» Signcryption To perform signeryption to a user with public key Qrp, a sender, with
key pair {Qrp,,$Qrp,} generates a random z € Zrs and computes the following

values

U « zQrp, (8 8)
h « Hi(Ullm) (89)

~ (z+h)sQip, (8 10)
C « Ha(e(zsQin,, Qipg)) ®m (811)

The resulting ciphertext 1s the tuple (U V, C)
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e Unsigneryption To unsignerypt the ciphertext (U, V, C) from the user with public

key Qrp, a user with key pair {Qrpy, sQrp,z} computes the following values

m HQ(U,SQ]DB)GBC (8 12)

h «— H(U|m) (8 13)

and then performs the following test

o

e(V,Qrpy) = e(hQip, + U, sQipp) (8 14)

841 Security of Malone-Lee’s Signcryption Scheme

Malone-Lee defines the notion of indistinguishability of identity-based signeryptions un-
der chosen ciphertext attack However, as Libert and Qusquater point out, Malone-Lee’s
scheme, as specified, does not have this property This 1s because in the onginal scheme
the ciphertext contains the signature on the plaintext Given a ciphertext U, V,C and a

message m € {mg, m;}, the message can be determined as follows

h ¢ H1(Ullmo) (815)

?
e(V,P) = e(hQrp, + U, Ppup) (8 16)

If the equation verifies then the message was mg otherwise it was m,

We note that this 1s not the case with our designated verifier variant, since the value
sQrpp (the receiwver’s private key) 1s not a publicly available value, whereas the value Ppy
18 However, the ciphertext can only be verified by the intended receiver, and therefore has
lost 1ts universal verifiabiity property For the purposes of non-repudiation the receiver

would have to surrender her private key, which 1s a poor result Indeed as Shin et al [124]
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point out, umversal verifiability hampers resistance to chosen ciphertext attack

8 5 The Identity Based Signcryption Scheme of Sakai and

Kasahara

We now look at the Sakai and Kasahara identity based signcryption scheme They call
this scheme an ‘ID-Based Public Key Cryptosystem with Authentication” i [109] The
paper introduces a number of efficient schemes However, with current knowledge, these
schemes can only be implemented using the Weil pairing and so, although they require fewer
pairings, they are not actually more efficient The paper 15 quite complex to understand,
but 1t 15 an extremely important paper as this i1s the paper in which Sakai and Kasahara
introduced their new 1dentity based key pair

Contrary to other methods, the Sakai and Kasahara signcryption scheme depends on
the availability of a pairing e G; X G2 — u, where G; and G, are two distinct subgroups
We denote G, = (P) and G2 = (Q) Importantly, 1t also requires a pairing e G; X Ga = pir,
such that e(P + Q, Q) = ¢(P, Q) and e(P + Q, P) = ¢(Q, P), which implies 1t can only be

nstantiated using the Weil pairing Let g = e(P, Q) = {(ir) € pr

e Setup The KGC generates a random secret polynomial s(z) = Y%, 5,2 € Z.[z]

which acts as 1ts private master key The simplest choice 1s d = 1, 81 = 1, so the
secret key reduces to the single Z} value s3 The KGC publshes the points P, @,
g = e(P,Q), and 3,Q for 2 = 0, ,d It also publishes descriptions of two hash
functions Hy {0,1}* — Zy and H; ur — {0,1}*

e KeyGen A user identity 1s a public element u € Z; The KGC computes a user’s
private key as P, = s(u)"'P, where the mverse 1s computed modulo » The cor-
responding public key can be (publicly) computed from % and the points s,Q as

Qu= Zfﬂ u*(5,Q) = s(u)Q Let Alice’s 1dentity be a and Bob’s 1dentity be b

e Sign/Encrypt To signcrypt a message m to Bob, Alice generates a random nteger
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z € Z; and computes

R =4 (817)
h = Ho(m) (8 18)
¢ = Hi(BR" Y em (8 19)
S = z(hP, + Q) (8 20)

The signerypted message 1s (c, S)

e Decrypt/Verify Upon reception of the above pair, Bob computes

R = e(PR,S) (821)
W = e5,Q.) (8 22)
m = Hi(RW)ec (8 23)
h = Ho(m) (824)

Bob then venfies that W = R

851 An Attack on Sakai and Kasahara’s Signcryption Scheme

The scheme proposed by Sakai and Kasahara makes 1t possible to distinguish between a
number of possible plaintexts given only the ciphertext, the public 1dentity of the sender,
and the KGC’s public key This also happens in Malone-Lee’s scheme, as pointed out by
Libert and Quisquater [81]

The attack we now describe against Sakar and Kasahara’s scheme 15 a vaniant of the
attack of Libert and Quisquater against Malone-Lee’s scheme and proceeds as follows The
ciphertext 1s {¢,S) We assume that Carol knows that the plaintext m that Alice sent to

Bob 1s one of the messages 1n a set {mg,m1} Carol computes W + e(S,Q,) and then
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ho « Ho(mo) (8 25)
Ry « Who modr (8 26)
And then the test
-3
c=Hi(RoW)®myg (8 27)

If the equation vahdates then the message m 1s equal to my, otherwise 1t 1s equal to m,
Therefore, the signcryption scheme of Sakai and Kasahara does not satisfy the IND-IDSC-

CCA (wndistingusshabilsty of signcryptions) property

8 52 Projection Attacks Against the Sakar and Kasahara Signcryption

Scheme

The original description of the scheme by Sakai and Kasahara does not impose any restric-
tion upon the groups over which 1t 1s defined, assuming only the existence of a bilinear,
non-degenerate, efficiently computable pairing on those groups

As it turns out, the group choice seriously affects the security of the Sakai and Kasahara
scheme, 1n the sense that the scheme structure implicitly uses the relationship between
(P) and (Q) for the security purpose of concealing the signer’s private key In particular,
when 1mplemented on a large class of groups where the Tate or Weil pairing 1s especially
efficient, 1t allows the recipient of a signcrypted message to obtain sufficient information to

impersonate the sender as we show next

Defimtion The Frobenius endomorphism 1s the mapping & E(Fp) = E(F ), (X,Y) —
(XP,Y?)

Defimtion The irace map 15 the mapping tr  E(F,x) = E(F,) defined as tr(P) = P +
®(P)+®*(P)+ + & (P)
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We see that tr(®(P)) = &(tr(P)) = tr(P) for any P € E(Fp)

Definition The trace-zero subgroup or trace kernel 1s the subgroup 7 = {Q € E(Fp) |
tr(Q) = O}

The following maps

Mo E(Fpx) =T, m(Q) = Q — k7' tr(Q), (8 28)

m E(Fp) = E(F,), m(P) = k™" tr(P), (8 29)

where k71 1s computed modulo r, satisfy 73(Q) = Q for any @ € 7 and 7, (P) = P for any
P € E(Fp)[r] Notice that any pomnt R € E(F,)[r] can be written R = mo(R) + m(R)
With these tools, we can mount a forgery attack against the Sakai and Kasahara scheme
The crucial assumption 1s that the KGC chooses a pomnt @ € T (the trace zero subgroup)
This 1s the case 1if the implementation 1s based on certain supersingular curves as described
in [14, 67, 68] (such as curves of form y? = z° + az over F, with p = 3 (mod 4), or curves

3

of the form 32 = 2° — z + 1 over F3n), or ordinary curves as suggested in [16] These are

all popular choices, as they favour efficient implementation of the Tate or Weil pairing as
well as other arithmetic operations?
The basic attack allows the legitimate receiver of a signcrypted message to fake other

signcryptions from the same sender This attack proceeds as follows Bob unsignerypts the

received message (¢, S), obtaining R and h Let m' be the message he wants to pretend was

“However, since we are using the Weil pairing we do not have to use the trace zero group, we can pick P
and Q as generators of any two hnearly independeni subgroups of order r 1n F o«
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sent by Alice He computes

U « h'm(S) (=P, (8 30)
Vo mp(S) [=1Qy (831)
W~ Ho(m) (8 32)
¢ « H(R')eom' (8 33)
S« WU+V (8 34)

Now Bob can use the pair {¢/, §’) as evidence that Alice sent him m' rather than m He
can even further disgwse hus ruse by using a different 7, say ' = az All he has to do 1s to
set R' « R* U’ + oU, and V' « aV and use these values instead

This attack 1s especially annoying because, if the plantext of any signerypted message m
from Alice to Bob 1s compromised, then a third party, Carol, can impersonate Alice and forge
new signcrypted messages to Bob Carol simply computes h + Ho(m), R = e(h™'5, Q,),

and proceeds as above We see that, in fact, Carol needs only h, not m itself

8 6 The Identity Based Signcryption Scheme of Barreto et

al.

We now look at the signcryption scheme of Barreto, Libert, McCullagh and Qusquater
(BLMQ), to be presented at Asiacrypt ’05 [13] Unlike recent works of (35, 45] that present
two-layer designs of probabilistic signature followed by a deterministic encryption, our
construction 1s a single-layer construction jomtly achieving signature and encryption on
one side and decryption and verification on the other Although the description of our
scheme could be modified to fit a two-layer formalism, we kept the monolithic presentation
without hampering the non-repudiation property as, similar to [35, 45], our construction
enables an ordmary signature on the plaintext to be extracted from any properly formed

ciphertext using the recipient’s private key The extracted message-signature pair can be
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forwarded to any third party in such a way that a sender remains committed to the content

of the plamntext

Unlike models of [35, 45] that consider anonymous ciphertexts, the above assumes that
senders’ 1dentities are sent in the clear along with ciphertexts Actually, receivers do not
need to have any a prior1 knowledge as to from whom the ciphertext emanates in our scheme
but this simply allows more efficient reductions in the security proofs A simple modification
of our scheme yields anonymous ciphertexts and enables senders’ 1dentities to be recovered
by the Deerypt/Verify algorithm (which only then takes a ciphertext and the recipient’s

private key as mput)

861 The BLMQ Signcryption Scheme

Setup Given k, the PKG chooses bilnear map groups (1, Ga, ) of prime order r > 2¢
and generators Q € Gz, P = ¥(Q) € G1, where ¢ 1s an efficiently computable distortion
map from Gz to Gy, ¢ = e(P, Q) € ur It then chooses a random master key s € Z;,
a system-wide public key Quup = $Q € G and hash functions H; {0,1}* — Z,

Hy {0,1}* x pr — Z; and Hz pr = {0,1}"* The public parameters are

params = {g1,52, PLraP)QaganubaPaw,HlaH% H3}
KeyGen for an identity ID, the private key 1s S;p = WTlﬁmQ € Gy

Sign/Encrypt given a message m € {0,1}", a recewver’s identity IDg and a sender’s

private key Srp,,

1 Pick a random z € Z}, compute R = g% and ¢ = m & H3(R) € {0,1}"
9 Set h = Hy(m, R) € Z*

3 Compute S = (z + h)(Sip,)
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4 Compute T = z(H1(IDg)P + ¥(Qpus))

The ciphertext 1s 0 = (¢, 5,T) € {0,1}" x G1 x Gy

,

Decrypt/Verify given o = (¢ §,T) and some sender’s identity 1D 4,

1 Compute R =¢e(T,Srp,), m = c® H3(R), and h = Ho(m, R)

2 Accept the message ff R = e(S, Hi(ID4)Q + Quus)g™" If this condition holds,

return the message m together with the signature (h, S) € Zy x G;

If required, the anonymity property 1s obtamed by scrambling the sender’s 1dentity 1D 4
together with the message at step 1 of Sign/Enerypt in such a way that the recipient retrieves
1t at the first step of the reverse operation This change does not imply any computational
penalty m practice but induces more expensive security reductions In order for the proof

to hold, ID 4 must be appended to the mputs of H;

8 6 2 Security results

The following theorems prove the security of the scheme mn the random oracle model under
the same irreflexivity assumption® as Boyen’s scheme [35] the Sign/Encrypt algorithm
1s assumed to always take distinct 1dentities as iputs (in other words, a principal never

encrypts a message bearing his signature using s own 1dentity)

Theorem 8 6 1 Assume that an IND-IDSC-CCA adversary A has an advantage € against
our scheme when running wn bime 7, asking qn, queries to random oracles H, (1 = 1,2,3),

gse Signature/encryption queries and qg, queries to the decryption/verification oracle Then

there 1s an algorithm B to solve the q-BDHIP for q = qp, unth probability

+ gn Qdv
E'>__€_(1_q qi__l)( __)
Qh, (2qn, + a,) 2k 2k

*Irreflexivity assumption A term coined by Boyen meaning that the sender and reciever identities cannot
be the same
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within o time 7 < T + O(gse + qav)Tp + O(gh, ) Tmutt + O(Qavhy) Teap Where Tezp and Trmunr
are respectwvely the costs of an exponentiation n Gr and a multiplication wm Go whereas 7,

18 the complexity of o pairing computation

Proof Algorithm B takes as mput (P,Q,aQ,a?Q, ,a?Q) and attempts to extract
e(P, Q)" from 1ts mteraction with A

In a preparation phase, B selects £ ¢ {1, ,qu,}, clements I; < Z: and
wy, L We-1,Werl  ,Wg & Z, Yor1=1, ,€-1,£+1, ,g,1tcomputes/, =I;—w, As
n the techmque of [28} and 1n lemma 5 5 2, 1t sets up generators Gz € Go, Gy = 9¥(G2) € Gi
and another Gy element U = aG» such that 1t knows ¢ — 1 pawrs (w,, H, = (1/{w, + @))G2)

forze {1, ,q}\{#} The system-wide public key @, 1s chosen as
qub =-U—-I;Gy = (_a - IE)G2

so that its (unknown) private key 1s implaitly set to r = —a — I, € Z, Tor all: €
{1, ,q}\{£}, we have (L, —H,) = (L, (1/(L; + z))Ga)

B then imitiahzes a counter v to 1 and starts A on mput of (G1, G2, Qpus) Throughout
the game, we assume that Hy-queries are distinct, that the target identity 7D}, 1s submtted

to Hw at some point and that any query mvolving an identity 1D comes after a Hy-query

on ID
- Hw-queres (let us call 7D, the mput of the v** one of such queries) B answers I,

and imcrements v

- Hu,-queries on mput (M,r) B returns the defined value if 1t exists and a random
Hy, & Zy, otherwise To anticipate possible subsequent Decrypt/Verify requests, B
additionally simulates random oracle Hs on its own to obtan hy = Hi(r) € {0,1}"

and stores the information (M,r,H, ,c=M @ hz,y =71 €(G1,G2)"* ) m Ly

- Hs-queries for an mput » € Gr B returns the previously assigned value 1f 1t exists
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and a random h3 <& {0, 1}" otherwise In the latter case, the input r and the response

hg are stored m a list Ls

KeyGen queries on an mput ID, 1if v = ¢, then B faills Otherwise, it knows that
Hw(ID,) = I, and returns —H, = (1/(I, + z)) G2 € G2

Sign/Encrypt queres for a plaintext M and identities (ID4,IDg) = (ID,,ID,) for
v € {1, ,guy} we observe that, if u # £, B knows the sender s private key
S1p, = —H, and can answer the query according to the specification of Sign/Encrypt
We thus assume g = £ and hence v # £ by the irreflexivity assumption Observe that
B knows the receiver’s private key Srp, = —H, by construction The difficulty 1s to

find a random triple (8,T,h) € G X G1 x Z, for which
e(T Srp,) = e(S,Qrpn,)e(G1,G2) ™" (8 35)

where Q1p, = I;G2 + Qpuy To do so, B randomly chooses #,h <& Zy, and computes
S = tp(Sip,) = ~t(H,), T = t(Q1p,) — hp(Qrp,) where Qrp, = I,G2 + Qpup
n order to obtamn the desired equality r = e(T,Srp,) = (S, Qip,)e(G1,G2)™" =
e(¥(Srp,), Qrp,)'e(G1,G2) ™" before patching the hash value H,, (M, r) to h (B fails
if H,, 15 already defined but this only happens with probability (gse + gs,. )/2%) The
ciphertext o = (M & Hi(r),S,T) 1s returned

Decrypt/Verfy queries on a ciphertext o = (¢, S,T) for 1dentities (ID4,IDpg) =
(ID,,ID,) we assume that v = ¢ (and hence g # £ by the irreflexivity assumption),
because otherwise B knows the recewver’s private key Srp, = ~H, and can normally
run the Decrypt/Verffy algorithm Since ji # £, B has the sender’s private key S;p, and
also knows that, for all valid ciphertexts, logs, 5, (~(8) — hS1p,) = 1084(@1p,)(T);

where h = H, (M,r) 1s the hash value obtained m the Sign/Encrypt algorithm and
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Qrp, = .Gz + Qpupy Hence, we have the relation
e(T,Sip,) = e(¥(Qip,), ¥~ "(S) — hSip,) (8 36)

which yields e(T, Srp,) = e(¥(Qrp,), %~ (5))e(¥(Qrp,), Srp,) ™™ We observe that
the latter equality can be tested without mverting ¥ as e(¥(Qrp,), ¥ (S)) =
e(S8,Qrp,) The query 1s thus handled by computing v = e(S,Qrp,), where Qip, =
I,G2 + Qpup, and searching through hst Ly for entries of the form (M,,r,, ho,,c, )
mdexed by 2 € {1, ,q3, } If none s found, ¢ 1s rejected Otherwise, each one of

them 1s further examined for the corresponding indexes, B checks 1f

e(T,Srp,)/e(S Qrp,) = e(¥(Qip,), Sip,) ™ (837)

(the pairings are computed only once and at most g3, exponentiations are needed),
meaning that (8 36) 1s satisfied If the umique ¢ € {1, g, } satisfymng (8 37)
15 detected, the matching pair (M, (ha,, S}) 18 returned Otherwise, ¢ 15 rejected
Overall, an mappropriate rejection occurs with probability smaller than gg, /2% across

the whole game

At the challenge phase, A cutputs messages (My, M) and identities (D4, IDpg) for which

she never obtamed TDpg’s private key If IDg # 1Dy, B aborts Otherwise, it picks & <& Zy,

¢ £ {0,1}" and S <& G, to return the challenge 0* = (¢, S, T) where T = —£G, € G; If we

define p = £/ and since z = —a — Iy, we can check that

T = —£G1 = —apCy = (I + 2)pG1 = pLeGi + p(Qpup) (8 38)

A cannot recogmze that ¢* 1s not a proper ciphertext unless she queries H,, or Hz on

e(G1,G2)? At the guess stage, her view 1s simulated as before and her eventual output 1s

ignored Standard arguments can show that a successful A 1s very likely to query H,,, or H3

on the mmput (G, G2)” f the simulation 1s indistinguishable from a real attack environment
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To produce a result, B fetches a random entiry (M,r,H,,,¢,7) or {r, ) from the lsts
Ly or Ly With probability 1/(2¢x,, + gn,) (as Lz contains no more than gz, + gn,
records by construction), the chosen entry will contain the right element r = e¢(G1,Go)? =
e( P, Q)f(“)zf/a, where f(z) = f;(} ¢,z* 15 the polynomial for which Go = f(a)Q The
¢-BDHIP solution can be extracted by noting that, if v* = e(P, Q)!/®, then

g—2 g—2
e(Gr, Ga)V/® = (e ( > (@ P),aQ)e(Gr, Y ¢n(e)Q)
=0 7=0

In an analysis of B’s advantage, we note that it only fails in providing a consistent

simulation because one of the following mdependent events
E; A does not choose to be challenged on 1D,
E; B aborts n a Sign/Encrypt query because of a collision on H,,,
E3 B rejects a valid ciphertext at some point of the game

We clearly have Pr[—E;] = 1/g3;,, and we already observed that Pr[Es] < gse(gse +q3,,, )/ 2k
and Pr[E3) < qg,/2F We thus find that

1 Gse + Q¥ - qdv
PI'["El A _|E2 A —lE3] Z E <1 - qSB"_Tu> (1 — F)

We obtain the announced bound by noting that B selects the correct element from Ly or
L3z with probability 1/(2gs, +qn,) Tts workload 1s domiated by O(q?, ) multiplications
n the preparation phase, O(gse + gay) pairing calculations and O(ggyg7,, ) exponentiations

m Gr 1n 1its emulation of the Sign/Encrypt and Decrypt/Verify oracles O

Theorem 8 6 2 Assume there emists an ESUF-IBSC-CMA attacker A that makes g,
queries to random oracles H, (1 = 1,2,3), qse stgnature/ encryption queries and gq queries
to the decryption/verification oracle Assume also that, unthin a time 7, A produces a

forgery wnth probability e > 10(gse + 1)(gse + Gn,)/2*  Then, there s an algorithm B that 1s
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able to solve the g-SDHP for g = g™ in expected time

J ”~ioncoc, , T A~(("se + + ooVl , Nt A
r < 120686% (e((i _ I/gzl'jél){f))—gm*)---E)-q-3 mult'

where rmuit, reqp and rp denote the same quantities as in theorem 8.6.1.

Proof. The proof is similar to the one of theorem 22, Namely, it shows that a forger in
the ESUF-IBSC-CM A game implies a forger in a chosen-message and givenidentity attack.
Using the forking lemma [103, 104], the latter is in turn shown to imply an algorithm to
solve the *-Strong Diffie-Hellman problem. M ore precisely, queries to the Sign/Encryptand
Decrypt/Verify oracles are answered as in the proofoftheorem 8.6.1and, at the outset ofthe
game, the simulator chooses public parameters in such a way thatitcan extract private keys
associated to any identity but the one which is given as a challenge to the adversary. By
doing so,thanks to the irreflexivity assum ption, it isable to extract clearmessage-signature
pairs fromciphertexts produced by the forger (as it knows the privatekey of the receiving

identity ID*B). 0

We now restate theorem 8.6.1 for the variant of our scheme with anonymous cipher-
texts. The simulator’s worst-case running time is affected by the fact that, when handling
Decrypt/Verify requests, senders’ identities are not known in advance. The reduction
involves a number of pairing calculations which is quadratic in the number of adversarial

queries.

Theorem 8.6.3. Assume that an IND-IDSC-CCA adversary A has an advantage e against
our scheme when running in time r, asking qqueries to random oracles Hi (i = 1,2,3),
gse signature/encryption queries and qdv queries to the decryption/verification oracle. Then

there is an algorithm B to solve the g-BDHIP for g = g/l with probability

J o e (1. Qe+anj\ t Q@
Qi2~2 + Qo) \ 2* )\ 2k)

within a time t' <r +0(q06+ gdvgh2)rp+ 0(q”) rmuii ~ 0 (g dvgh2)rGp where roxp, rmult and
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7, denote the same quantiires as wn previous theorems

Proof The simulator 1s the same as in theorem 8 6 1 with the following differences (recall

that senders’ 1dentities are provided as mputs to H,,.)

- H,,-quernes on mput (IDg4, M,r) B returns the previously defined value if 1t exists
and a random H,, < Zy otherwise To anticipate subsequent Decrypt /Verfy requests,
B simulates oracle Hs to obtamn hg = H3(r) € {0,1}*™™0 (where ng 1s the maximum
length of 1dentity strings) and stores (IDg, M,r,H, ,c = (M|IDsID4) & h3,y =
r e(G1,Go)M#r) n list Lo

- Decrypt/Verfy queries given a ciphertext ¢ = (¢, S, T) and a receiver’s identity I Dg =
ID, we assume that v = £ because otherwise B knows the receiver’s private key The
simulator B does not know the sender’s identity 7D4 but knows that ID4 # ID, Tt
also knows that, for the private key Srps, logs,, (¥1(S) — hSrps) = logy(q,p,)(T),

and hence

e(T, Sips) = e(¥(Qrp,), ¥ (S) — hSips), (8 39)

where h = H,,,(ID 4, M, ) 15 the hash value obtaimed 1n the Sign/ Encrypt algorithm
and Qrp, = I,G2+Qpus The query 1s handled by searching through list Lo for entries
of the form (I Dg,, M,, 7, ha, c,,) ndexed by € {1, ,qp, } Ifnone s found, the
ciphertext 1s rejected Otherwise, each one of these entries for which IDg, # ID, 1s

further examined by checking whether v, = e(S, Hw (I Dg,)Q + Qpus) and

e(T, Sips,)/e(S,Qip,) = e(¥(Qrp,), Srps,) ™™ (8 40)

(at most 3gy, + 1 pairings and gy, exponentiations must be computed), meaning
that equation (8 39) 1s satisfied and that the ciphertext contains a valid message
signature pair 1f both relations hold If B detects an mndex z € {1, gy, } satisfying
them, the matching pair (M,, (h2,, S)) 1s returned Otherwise, o 1s rejected and such

a wrong rejection again occurs with an overall probability smaller than gg, /2%
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a

Theorem 8 6 2 can be similarly restated as its reduction cost 1s affected in the same way

8 7 Conclusion

In this section we have looked at a number of signcryption schemes The properties that
various signcryption schemes offer are quite varied, and the term “signcryption” can only
be loosely defined in reality There 1s still debate over which properties are advantageous,
and this probably comes down to the requirements of the individual application There
are several 1dentity and non-identity based signeryption schemes, including a non-identity
based signcryption scheme broken by the author of this thesis in a personal communication
with 1ts authors [71]

In this review we have concentrated on identity based signcryption schemes We have
mtroduced a new signcryption scheme based on the identity based key pair of Sakai and
Kasahara and we note that in performance terms it ranks well with 1ts peers This 1s

demonstrated in Table 8 1

Sign/Encrypt Decrypt/Verify

signcryption scheme exp | mul | pawrings | time (ms) | exp | mul | parings | time (ms)
Boyen 1 3 1 459 0 2 4 876
Chow-Y1u-Hui-Chow 0 2 2 532 0 1 4 782
Libert-Qusquater (basic) | 0 2 2 532 0 1 4 782
Libert-Quisquater (short) | 0 3 1 454 0 1 2 438
Malone-Lee 0 3 1 454 0 1 3 610
Chen-Malone-Lee 0 3 1 454 0 1 3 610
Sakai-Kasaharat 2 | 1418 0 204 1 0 2 570
BLMQ (ours) 1 2 0 193 1 0 2 349

Table 8 1 Comparison of Signeryption Schemes
{(f) This scheme requires the Weil pairing
{§) One PSM 15 1n Fpx, though this can be made efficient by choosing the trace zero group
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Appendix A

Java Random Numbers

The following code uses the sound card to generate random numbers It fills a large byte
array full of CD quality sound and then picks the least sigmficant bit of each 16 bit frame

Given a parameter & 1t will generate a random number z 1n the mterval 0 < z < 2%
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APPENDIX A. JAVA RANDOM NUMBERS

Java function to generate a random number

5{/0"‘ the input

of a soundcard

public Biglnteger getRandBit8(int lengthOfRandom) {
TargetDatalLine line;
Thread thread;
duration = O0;
audiolnputStream = Bull;

// line—in, is the micropohone , we are recording CD quality , mono signal
AudioFormat format = new AudioFormat(AudioFormat.Encoding.PCM_.SIGNED, 44100, 16,

1,2, 44100 , true );
DatalLine .Info info = nev DatalLine.Info(TargetDatalLine.class ,
format );
if ('AudioSystem.iaLineSupported(info)) {

}

return new Biglnteger("-1") ;

// get and open the target data line for capture.

try

{
line = (TargetDatalLine) AudioSystem.getLine(info );
line .open(format , line .getBufferSize ());

} catch (LineUnavailableException ex) {

return new Biglnteger("-1“);

} catch (SecurityException ex) {

return new Biglnteger("-1") ;

} catch (Exception ex) {

}

return new Biglnteger("-1") ;

/1 play back the captured audio data
/1 ByteArrayOutputStream out =* new ByteArrayOutputStream ();
int frameSizelnBytes = format .getFrameSize ();
t bufferLengthlnFrames = line .getBuff»rSiz» (Q / 8;
int bufferLengthlnBytes = bufferLengthlInFrames * frameSizelnBytes;
byte[] data = new byte[bufferLengthlnBytes ];
int numBytesRead;
int exponent = O0;
Biglnteger total = new Biglnteger (0™ );
int bufin = - 1;
int cycles = 0;
Biglnteger BTwo = new Biglnteger("2" );

line .start ();

/ISystem .out.println( buffer Length InBytes );
if ((numBy tesRead = line .read (data , 0, bufferLength InBytes)) == -1) {
S System.exit(0);

byte[] nba = new byte[l];
// want to construct random number here
hile(cycles < lengthOfRandom)

cycles = cycles + 1; //k cycles for a 2*k number

bufin = bufin + 2; //16bit frame so advance two blocks

byte nextbit = (byte) (1 & data [bufin]); //take last bit of byte
nba [0] = nextbit; //convert to byte array

total = (total._.multiply(BTwo )).add(new Biglnteger(nba));//d and a

line .drain );
line.stop ();
line .close Q;
line = null ;

retu}n total;
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Appendix B

Java Library for £ = 2 Elliptic

Curves

The following code adds two points m an elliptic curve The code 1s shghtly more compli-
cated than the equations given in Ch 2 as this code implements point addition and point

doubhng, and some shight complications mvolving the pomt at nfinity O
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public P7j<nt add(Point exPoint) {

* Just check if either of the points is the point at infinity
* or if one 1is the negative of the other

o

if(this .isInfinity Q) {
return exPoint;

}f(exPoint.islnfinity O {
return this;

}f ((this .negate ()). equals(exPoint )) {
Point retP = new Point(EC); // this point is set to infinity by default
} return retP;

Biglnteger x2 = exPoint .getX Q ;
Biglnteger y2 = exPoint.getY(Q:;
Biglnteger delta = new Biglnteger('0" );

Biglnteger deltan = new Biglnteger(“0");
Biglnteger deltad = new Biglnteger (0" );

if (!Ix.equals(x2)) {

deltan = (y2 .subtract(y)).mod(EC.getModulus Q) ;
deltad = (x2.subtract(x)).modlnverse(EC.getModulus Q) ;
delta = (deltan.multiply(deltad)).mod(EC.getModulus );

else if ((x .equals (x2)) ii&c (ly .equal s(new Biglnteger (“0")))) {

Biglnteger two = new Biglnteger("2");
Biglnteger three = new Biglnteger("”3" );
deltan = ((three .multiply(x . .modPow(new Biglnteger(“2"),
EC.getModulus ()))). add(EC.getA())).mod(EC.getModulus ();
deltad = (two .multiply (y)).mod Inver se (EC .getModulus ());
delta = (deltan .multiply (deltad )). mod (EC .getModulus Q) :
liglnteger x3 = ((delta.modPow(new Biglnteger('2”),
EC.getModulus ())). subtract(x). subtract(x2 )).mod(EC.getModulus Q);
Biglnteger y3 = (((x.subtract(x3)).mulliply (della )).subtract(y)).mod(EC.getModulus ()):
Point retP = new Point(EC, x3 , y3);

return retP;

The following code is the simplest and slowest implementation of elliptic curve point
scalar multiplication. It is the basic “double and add” algorithm and is included here for its

simplicity. A more complicated windowing method is implemented on the accompanying

public Point multiply(Biglnteger exS) {

Biglnteger S = exS ;
Point tp = new Point(this.getEC Q , x, Yy);
Point tprt = new Point(this.getEC());//this is the point at infinity (running total)
while(S.bitLengthQ > 0)

if(S.testBit(0)) {

tprt = tprt .add (tp); //add
tp = tp.add (tp); //double

S = S.shiftRight (1); //divide s by 2

return tprt ;
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A Java implementation of the “Map To Point” function in Boneh and Franklin’s IBE
scheme. The function selectively implements the faster “Map To Point” function of McCul-

lagh ifthe boolean input is set to False.

public Point(Curve exEC , String exID , String hash , boolean OrderQ ) throws Exception {
int hlen ;

{f(hash.equals("SHA -256 "))
hlen = 32;
Ise if(hash .equals('"SHA-1"))
hlen = 20;
Ise
throw new Except ion (haeh + " :ALGORITM NOT SUPPORTED

IN IDENTITY TO POINT MAPPING\NTRY N\"SHA-I1\n OR SHA -256\"" );

Me ssageDigest md = MessageDigest .gellnstance(hash);
md .update(exID.getBytes ()i
byte [] s = md.digest ;

Biglnteger p=exEC.getModulus ();

Biglnteger h= Biglnteger.ONE;

int i, j

§=0; 1=1;
while(true ) {
h = h._multiply(new Biglnteger(256"));
if (J=hlen) {
h = h.add (new Biglnteger (Integer .toString (i++)));

3=
llse {
h = h.add (new Biglnteger (Integer .toString (s[j+ + 1));

if (p .cozapareTo (h) == - 1)
break ;
}: h .mod (p);
/ISystem .out.printla ("Hash value is + h.toString (16));

[o
* Now we want to form a point and use this as the X co—erd
e« Pis congruent to 3 mod 4, this makes finding sqrt easy

EC - exEC ;

Biglnteger ty = genY(h, EC);

x = getTx Q;

y= ty;

/Ithis .clone (exEC, getTx(), ty);

if (OrderQ == true) //does the point have to be of order q, if yes do this , if not don’t
this _multiply(exEC.getCoF Q);

OnCurve = true;
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And the function genY , which is used by “Map To Point” to find a point on the curve

given only the X co-ordinate.

*
*

Function to find the Y co-ordinate of a point,
given the X co-ordinate

private Biglnteger genY(Biglnteger exh , Curve exEC) {

tx = exh;

Biglnteger pmod = exEC.getModulus ();

Biglnteger delta = exh.modPow(new Biglnteger(”3") , pmod);

delta = del ta .add (exEC .getA () .multiply (exh )) .mod (pmod );

delta = delta.add(exEC.getB ()).mod(pmod );

Biglnteger exp = (pmod.add(Biglnteger._ONE )).divide(new Biglnteger( 4"));

delta.modPow(exp ,pmod );
sqrt.modPow(new Biglnteger(”2"),pmod );

Biglnteger sqrt
Biglnteger norm

if (delta.compareTo(norm) i= 0)

}

return sqrt ;

return genY (tx.add(Biglnteger.ONE ), exEC);
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A Java implementation of t(P,Q), the reduced Tate pairing, using M iller's algorithm .
This code is relatively optimisation free to make it more readable and easy to relate to
the mathematics of chapter 3. This code shows clearly the relationship between Miller’s
algorithm and the “Double and Add” algorithm forelliptic curve pointscalar multiplication.
Thiscode takes both points from the extension field, so willbe slow. It minimises polynomial
division by comoputing the miller function as a numerator numand denominator denum as
suggested by Galbraith etal. [67]. A more optimised version of the Tate pairing isincluding

on the accompanying CD.

Tublic ZZn2 < (BCn2 P, ECn2 Q)

ECn2 LP = P. copyQ;
ECn2 LQ = Q.copy O3
ZZn2 Qx Lg .getX Q ;

ZZn2 Qy = LQ.getY QO

num = new ZzzZn2(this.P)j //these will both be set to one
denom = new ZZn2(this.P);

ECn2 pA = P .copy ) //A = P

GA = pA;

int nb = g.bitLength ();

{Or(int i = nb-2;i>=0;i---)

num=num.multiply(num);
denom = denom.multiply(denom);

g(pA .pA ,Qx ,Qy):
pA = GA ; //this will have changed because of g(.)
pf(a-testBit(i ))

g(pA P .,Qx ,Qy):
pA = O0A ;

ZZn2 res = num .divide (denom );
i (('pA .isZero ()) Il (res .isZero Q))

} return new ZZn2(this.P);

Biglnteger e = (this .P.add (Biglnteger .ONE ) .divide (this .q));
ZZn2 resc = res .conj Q ;
res = resc .divide (res);
res = res.pow(e);

return res ;
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The function g which is used in the computation of M iller’s algorithm . This function

mustwork out the gradient of a line.

public void g(ECn2 pA, ECn2 B, ZZn2 Qx, ZZn2 Qy) {
ZZn2 lam = new ZZn2(P)j
ZZn2 d,u,y;
u= pA _getx Q;
y = pA.getY ();
pA = pA.add(B);

lam = pA _get lam ();
pf(lam. isZero Q)

1

{f(pA .isZero Q)

return ;

u = u.subtract(Qx);
d = new ZZn2 (P); /lthis will be get to one
ilse

.subtract(Qx);
.multiply(lam);
.subtract(Qy);
.subtract(y);
A.getX Q;
.subtract(Qx);

coc<Kcc
W nan
QUK ccC

num = num.multiply(u);
denom = denom .multiply (d);
GA = pA;

The following code is used to multiply two field elements G Foo. This is the basis of
pairing exponentiation. It can be used with the standard “square and multiply” algorithm

forexponentiation or more complex sliding window methods.

public ZZn2 multiply(ZZn2 exPoint) {
if((exPoint .getA ). equals (a)) && (exPoint .getB . equal s(b))) {
/* same point
a = (a+b)(a-b)
b = 2ab

X

Biglnteger sa ,ta,tb ,tf ,ts;

tf = (a.add (b))e=mod (p);

ts = (a.subtract(b)).mod(p);
ta = (tf .multiply (ts)). mod (p);
sa = (a-.add (a))-mod (p);

th = (b.multipiy(sa)).mod (p);

return nev ZZn2(p, ta, tb);

llse {

Biglnteger t,t2,t3,tb;

(a.-multiply(exPoint .getA ()))-mod(p);
(b .multiply (exPoint .getB ())). mod (p);
exPoint .getA().-add(exPoint .getB())-mod(p);
b .add (a)-mod (p);
th .multiply(t3).mod(p);
th .subtract (t).mod (p);
th .subtract (t2).mod (p);

t.subtract (t2).mod (p);

"ggggaR"

return nev Z2Zn2(p, t.,th);

210



APPENDIX B JAVA LIBRARY FOR K = 2 ELLIPTIC CURVES

B 1 Proof of Theorem 6 7.1

Proof Algorithm B takes as mput (P,Q,aQ,c?Q, ,oPQ) and attempts to extract
e(P,Q)'/® from 1ts mteraction with A

In a preparation phase, B selects an index £ <2 {1, gy, }, elements I, <% Zy and
wy, Wy, Wty Way,,, & Zy Fora»=1, ,f-1£+1 y Q%+ 16 computes
I, = I; — w, As in the technique of Boneh-Boyen, 1t sets up generators G; € G,
G1 = ¥(G2) € G and another G, element U = aG3y such that it knows gy, — 1 pairs
(w,, Hy = (1/(w, + @))G2) for v € {1, ,quy }\{¢€} The pubhic key Q,us 1s chosen as

Q;Dub =-U- IKGZ = (_a - Il)G2

so that its (unknown) private key 1s impleitly set to z = —a — I, € Z; For all

1€ {1, ,quy}\{£}, we have (I,,—H,) = (L, (1/(L, + z))G2)

In addition B generates a random value y <& Zy, and publishes e(P, Q)Y B then
mitializes a counter v to 1 and starts the adversary A onnput of (G1, G2, @pus) Throughout
the game, we assume that Hyr-queries are distinct, that the target keywords Wy, W} are
submitted to Hw at some point and that any query ivolving a keyword comes after a

Hw-query on 1t

- Hw-queries (let us call W, the mnput of the v** one of such queries) B answers I,
t
and increments v

- H,-queries on mput v, € Gy B returns a random B, <& {0,1}" and stores the pair

(v, By) m st Lo

- Trapdoor queries on an mput of a keyword W, if v = £, then the simulator fails

Otherwise, 1t knows that Hw (W,) = I, and returns —H, = (1/(I, + z)) G2 € G,
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At the challenge phase, A outputs two distinct keywords (W, W) for which she never
obtamned the trapdoors If W, W} # W,, B aborts Otherwise, we may assume wlog that
W5 = Wy (the case W' = W, 1s treated in the same way) It picks £ <2 Z; and B* <% {0,1}"
to return the challenge S* = [4*, B*] where A* = —(G; € G; If we define p = £/« and

since £ = —a — Ip, we can check that
A* = —€G1 = —apGh = (I + T)pG1 = pLG1 + pY(Qpus)

A cannot recogmize that S* 1s not a proper ciphertext unless she queries #H,, on
e(A*, Gé”“““”W(WE”) = (G4, G2)¥" nor e(A*, Ggy/(HHW(Wf))) Along the second stage,
her view 1s simulated as before and her eventual output 1s 1gnored Standard arguments
can show that a successful A 1s very likely to query H,,. on either e(A*, Ggy/(HHW(W‘;))) =
e(Gh,G2)¥* or e(A*,Gi(Zy/ (HHW(WI‘))) if the simulation 1s mdistingmshable from a real at-

tack environment

Let AskHy denote this event In a real attack, we have
Pr[A wins| < Pr[.A wins|-AskHz]Pr{-AskH2] 4 Pr[AskH2)

Clearly, Pr[A wins|—AskH,] = 1/2 and Pr[A wins] < 1/2 + (1/2)Pr[AskH;] On the other

hand, we have

Pr[A wins] > Pr[A wins|-AskHs](1 — Pr[AskH]) = =~ — %Pr[Asng]

ol

It comes that ¢ < |Pr[A wins] — 1/2| < 1Pr[AskH;] and thus Pr[AskHp] > 2¢ This
shows that, provided the simulation 1s consistent, A issues a H,.-query on either
e(As, Géy/ (Z+HW(W5))) or e(A*, Ggy/ (x+HW(W1.))) at some point of the game with probabihity
at least ¢ With probability ¢, a #,, -query involving e(A*, G(Zy/ (Z+HW(WO))) = e(Gq, G2)¥?

will be 1ssued To produce a result, B fetches a random record from the lists Lo

With probability 1/g3, , the chosen record contans the right element r = e(Gq, Go)¥? =
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e(P, Q)v/()¢/2 where f(z) = 3277 c,z* 15 the polynomal for which G3 = f(@)Q The
p-BDHIP solution can be extracted by noting that, if v* = e(P, Q)'/%, then

-2 p—2
e(G1,G2)"/* = 1*S)e( Y cry1(a*P),c0Q)e(G1, Y 41 (0)Q)
=0

«

~
1
=}

In an analysis of B’s advantage, we note that 1t only fails in providing a consistent

simulation because one of the following independent events
B W5, Wi # W
E; B aborts when answering a trapdoor query

We clearly have Pr(—E1] = (g3, — 1)/(‘77%2w) = 2/qw,, and we know that —Fy implies ~FEy
We thus find Pr{—E) A ~E] = 2/qy,, It follows that B outputs the correct result with

probability 2¢/(qs,, g7, ) d
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Appendix C

Timings for Signatures with

Pre-Computation

Table C 1 Efficiency comparison

Verify

signature scheme
SOK
Paterson;
Patersony
ChaCheon
Hess

SK(ElGamal)

SK(Schnorr)
BLMQ (Ours)

exp

mul | pairings

2

NN NN

storage

nﬂr
Nk
Ny

Ty

iy

time (ms)
344ms
182ms
177ms
438ms
177ms
532ms
266ms
177ms
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Appendix D

Security proof for Smart’s Key

Agreement Protocol

Theorem D 01 Smart’s key agreement protocol 1s a secure AK protocol, assuming that

E 1s does not make any reveal queries and that the hash functions used are random oracles

Proof Condition 1 holds as follows Both oracles accept holding the same session key as
a direct result of the commutativity of exponentiation of members of the group G The
session key 15 distributed umformly at random by the fact that both oracles generate truly
random z €p Z Therefore the product of these elements will also be random Since the
exponent 1s random, and g = e(P, P) 1s a generator of the group G, and H 1s a random
oracle, the session key will be uniformly distributed over {0,1}%

Condition 2 holds by the fact that if they have matching conversations then the com-
munication was generated entirely by the two oracles Therefore, by the bilinearity of the
pairing and the commutativity of exponentiation they accept and hold the same session key

Condition 3 holds as follows Consider by contradiction that Advantage®(x) 15 non-
neghgible Then we can construct from E an algorithm F that solves the BDHP with
non-neghgible advantage F 1s given as input the output of the BDH generator B F’s task
18 to solve the BDHP, namely, given P, aP, bP and cP, compute v = g(P, P)%¢

All queries by the adversary E now pass through F The following queries are allowed
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to be made by E

F starts the simulation by setting the value P and bP to be the KGC’s generator

point and master public key respectively These values, along with G, are provided to the

adversary E F also keeps two, mmtially empty, Lists for keeping track of random oracle

queries by E The first List, H;p, stores tuples of the form (ID,,r,), where r, €g Z; This

will be explained later The second list, My, stores tuples of the form (4., {0, 1}*)

Create

He

Corrupt

Send

Reveal

Test

For the j-th oracle F answers aP, otherwise F checks to see if 1D, already exists
on Hyp If it does F retrieves the corresponding value 7;p and creates the public
and private keys as r;pP and r;pbP respectively If Hyp does not contain ID then
F chooses r;p €g Zy and (ID,rrp) 1s added to Hyp F creates a public key as
ID = r;pP, and computes the private key as r;pbP However, for the j-th oracle F
answers o P Since F does not know a, 1t cannot calculate abP, the correct private

key for this oracle

E 15 allowed, at any time, to access the Hy oracle on any mput in the nput domain
(elements of u;) Hi 15 modelled as a random oracle of the type Hy ur — {0,1}%,

and so the query will return a value i {0, 1}*

F answers Corrupt queries i the usual way, revealing the private key of the oracle
being quenied However, F does not know the private key for oracle 7 If FE asks a

Corrupt query on oracles 3, F aborts and returns the L symbol

F answers all send queries m the usual way, except if E asks Send [["., for any n, F

n
2,77
generates a random s, € Z; and answers s,cP Remember that F does not know the

value ¢ This 1s part of the BDH problem that F hopes to solve with E’s help
E 1s not allowed to make reveal queries

At some point E will ask a single Test query of some oracle, which we assume 1s some

oracle J[*.1

1y » 1 1615 not, F aborts and returns the 1 symbol Since 1t 1s picked 1t

! An oracle 2, having had a conversation with 3
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must have Accepted, and not be Corrupted Assuming that it received some value
6P prior to accepting, 1t must be holding a session key of the form #,, (e(abP, s,cP)

e(r,bP, 4 P)) which 1s 3’s private key paired with the value 1t received, times i’s private
key paired with the value it received However, F cannot compute this key and hence

cannot simulate the query, so 1t simply outputs a random element of {0, 1}’c

If 7 does not abort and E does not detect F’s inconsistency in answering the Test
query then its advantage i predicting the correct session key still 1s Advantage® (k) For
this to be non-neghgible, £ must have queried e(abP, s,cP) e(r,bP,dP) to the oracle H,,_,
given spcP as mput from F, and § P, a value purportedly from 3, with some non-negligible
advantage '

If, at the end of E’s attack, E does not detect any inconsistencies in F’s responses,
and F does not abort, then F picks E’s I** query to the Hy oracle F guess’s this to be
k = e(abP,s,cP) e(r,bP,dP) for some s, It can calculate e(abP,s,cP) since 1t knows
v = e(r,bP,6P) For clanty (k/v)* = g% - this 1s 5's private key paired with the value
1t recerved (actually F m this case) Hence, F has non-negligible advantage 1n solving the
BDH problem

We assume that there 1s some timeout 7, on the length of a run of the protocol including
the time spent in the x state We also assume that some time 7, 1s allocated to allow the
construction of oracles in the Create query, and time 7, allocated for each Corrupt query
We assume that vy oracles are needed, and that s send queries are needed, and o corrupt
queries are needed F will abort if E does not pick, for its test query, oracle ¢ in conversation
with oracle j - there are n of these, with s messages 1n total It will also abort 1f the Corrupt
query 1s asked for oracles 1 or 3 It will also fail 1f 1t does pick the correct Hy random oracle

query The expected time needed to solve the BDHP 1s

(v7)(875)(07,5) 2k’
esl
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Security Proof for the
McCullagh-Barreto Key

Agreement

Proof The conditions 1 and 2 directly follow from the protocol specification The protocol
satisfies the condition 3 if the Reveal query 1s disallowed

Suppose that there 1s an adversary A against the protocol with non-neghgible probability
Let ¢; and g2 be the number of the distinct queries to Hw and H,,, respectively (note that
Hw could be queried directly by an Hy -query or indirectly by a Corrupt query or a Send
query) With the help of A, we can construct an algorithm B to solve a k-EBCAA1 problem
with non-neghgible probability

B simulates the Setup algorithm to generate the system params
(G, pre, k, PysP,Hw,H,. ) (1e, using s as the master key which it does not know)
Hw and H,,, are two random oracles controlled by B Suppose, 1n the game, there are T}
oracles created by the engaged parties and A Here, we shightly abuse the notation Hfj as
the s-th oracle among all the oracles mitiated by all the parties or the adversary, mnstead
of the s-th instance of + Thus change does not affect the soundness of the model because

s origmally 15 just used to umiquely identify an instance of party ¢ B randomly chooses
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AGREEMENT

u€p{l, ,TtandIeg{l, ,q} and interacts with A in the following way

» Hw-queries (ID1) B mamtains a list of tuples (ID,,h,,d,) as explamed below We
refer to this hist as Hy-list The list 1s initially empty When A queries the oracle

Hw at a pomnt ID,, B responds as follows

1 If ID, already appears on the Hy-hist m a tuple (ID,, h,,d,), then B responds
with Hw (ID,) = h,

2 Otherwise, if the query 1s on the I-th distinct ID, then B stores (IDy, hg, L)

mto the tuple hist and responds with Hw (ID;) = hg

3 Otherwise, B selects a random teger h,(z > 0) from the k-EBCAA1 instance
which has not been chosen by B and stores (ID,, h,, (h, + s)~1P) nto the tuple
list B responds with Hy (ID2) = h,

o H, -queries {X,) At any time A can issue queries to the random oracle H,, To
respond to these queries B maintains a hst of tuples called H, -hst Each entry in
the hist 1s a tuple of the form (X, H,) indexed by X, To respond to a query on X,

B does the following operations

1 If on the list there 1s a tuple indexed by X,, then B responds with H,

2 Otherwise, B randomly chooses a string H, € {0,1}" and inserts a new tuple

(X., H,) to the hst It responds to A with H,

o Corrupt(ID,) B looks through hst My -hst If 7D, 1s not on the list, B queries
Hw(ID,) B checks the value of d, if d, #L, then B responds with d,, otherwise, B

aborts the game

. Send(H;,z,M ) B first looks through the list Hy-list If ID, 1s not on the list, B
queries Hw (ID,) After that, B checks the value of ¢ If ¢ # %, B responds to the
query by correctly following the protocol If ¢ = u, B further checks the value of d,,

and then responds the query differently as below depending on this value
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1 If d, #£L1, B aborts the game We note that only one party’s private key 1s

represented as L in the whole simulation

2 Otherwise, B responds with yP obtained from the k-EBCAA1 mstance
Note that H;,z can be the immtiator (if M = A) or the responder (if M # ))

) Test(H;’l) If t # u, B aborts the game Otherwise, B randomly chooses a number
v € {0,1} and gives 1t to A as the response When A responds, B randomly chooses

a tuple from H — 2-list with value X; B responds to the k-EBCAAL1 challenger with

t
i

the value of X; = e(d;, M) where M 1s the incoming message to oracle []
Note that if the game did not abort, the adversary cannot find the inconsistency
between the simulation and the real world The agreed secret in oracle ]_[;1 should
be K = e(d,, M) e(P,P)" where r(hoP + sP) = yP (recall that party «’s publc
key 18 hoP + sP and the private key 1s unknown to B and represented by 1), 1e

T =y(ho + s) and K = e(d;, M) e(yP,(ho + s)"'P)
0O

We do not repeat the full expected running time analysis here, the interested reader 1s

advised to read [48]
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