Transcriptional Regulation of

Chemically Induced Epithelial Lung Cell Differentiation, in vitro

A thesis submitted for the degree of Ph D
Dublin City University
By

Jason McMorrow B Sc (Biotechnology)

The research work described in this thesis was performed under the supervision of

Prof Martın Clynes

Natıonal Institute for Cellular Biotechnology
Dublin City Unıversity

I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Ph D is entirely of my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my own work

Date Rc Dad. 2-04.

Thus thesus is dedicated to my parents and my brother who have been so supportive throughout my life

Acknowledgements

First and foremost. I would like to thank my supervisor. Prof. Martin Clynes for his patience, guidance and encouragement during this research thesis, especially during the final stages of the project. Without his constant support none of this work would have been possible.

I would also like to thank Dr. Paula Meleady for all her help and training in the carlier stages of the project and for showing me the ropes! Also I wish to sincerely thank Dr. Niall Barron for all his help in the final years of the project. No matter what time. how busy or how stupid my question was. Niall has always been there to offer help. guidance and most of all encouragement. He has done his best to try and teach me some molecular biology ...but I still have so much more to learn! A huge thank you to Eoin Ryan for all his help with the Bioinformatic and Microarray side of the project. Without Eoins help with GeneSpring I would still be stuck in the lab trying to make sense of the Microarray datasets! I do appreciate all the time Eoin has spent trying to teach me some Bioinformatics, it hasn't been easy!

To all the girls in Diabetes. Lorraine, Elaine (yes Elaine l'm finally finished!). Eadaoin. Maider, Bella and to my laminar partner Irene: a huge thank you for letting me take over your lab and become an adopted Diabetes member over the last four years. I don't think that the laminar suites in the lab. not to mention Irene's ears, will ever recover from my singing and continual moaning! To the members of my own lab Finbarr. Brendan and William; thanks for putting up with my ever-changing moods...I know it hasn't been that easy!!! But thanks for all your support and letting me use certain pieces of equipment towards the end when time was scarce.

A special thanks to my proof reader. Dr. Anne-Maire Larkin, for the time she spent giving me advice and encouragement in the last couple of weeks of write-up and all the late evenings she spent in the lab spotting all my typos!! Also to Mairead. Yvonne and Carol for all their help and support as well as for letting me take over the printer for the last few months!

To my coffee ladies...Anne-Maire. Aine. Helena and in the earlier days Catherese. thanks for listening to my daily moaning and complaining about never seeing the end! I don't think there's a single conversation topic that we haven't touched on over the last four years. I think I brightened many a dull day with my little stories and more than likely shocked you in the process. To Elisa and Lisa - thank you for putting up with me at home over the last year! A big thank you to Eadaoin. Bemie and Catherese for always being there and for being such good mates. I owe you all so many dinners and drinks!! I promise to pay you back...as soon as I get a job!! But thanks for all your support, it really means a lot. But 1 truly am grateful for your triendship

Finally, I would like to thank my parents. Kevin and Mary, and my brother Kevin. for always being there no matter what. For always encouraging and supporting me in whatever choices I made. Withoul them I would never have gotten this far and this achievement is as much their moment as it is minc. I truly can never repay you for all the love you have given me. but can only hope to make you proud.

ABBREVATIONS

NSCLC	-	Non-Small Cell Lung Carcınoma
PBSA	-	Phosphate Buffered Salıne A
rpm	-	Revolutıon Per Mınute
RT	-	Room Temperature
SCLC	-	Small Cell Lung Carcınoma
SDS	-	Sodıum Doedecyl Sulphate
sec	-	Seconds
SMGC	-	Small Mucous Granule Cell
TBS	-	Tris Buffered Salıne
TDS cells	-	Tissue Determined Stem Cells
Tris	-	Tris(hydroxymethyl)amınomethane
v/v	-	volume/volume
w/v	-	weight/volume
YY1	-	Yin Yang 1

Section Title Page
ABBREVIATIONS I
TABLE OF CONTENTS III
ABSTRACT IV
1.0 INTRODUCTION 1
11 General Introduction 2
12
13 Lung Development 3
14 Identıfication of a stem-like lung cell line 5
14 Synthetic agents capable of inducing epithelial lung cell Differeintration 5
141 Halogenated Thymidine Analogues - BrdU, IdU and CdU 5
142 Mode of action of Thymidine Analogues 8
143 Mode of action of Fluropyrimidines 9
15 Keratıns as Markers of epithelial Differentiation 11
151 Regulation of Keratin Expression 13
16 Integrins 14
17 Transcriptional Control of Gene Expression 15
171 The c-myc proto-oncogene 15
$1711 \quad$ c-myc Structure and Function 16
172 The Yın Yang Transcription Factor, YYI 20
1721 The Structure and Function of YY1 21
1722 Transcription Factors Interact with YY1 to Regulate its Activity 23
1723 YY1 and TATA-less Transcription 25
$1724 \quad$ YY1 in Differentiation and Development 26
18 eukaryotic Translation Initiation Factor, eIF4E 28
19 Alms of Thesis 31
20 Materials and Methods 33
21 Water 34
22 Glassware 34
23 Sterilisation 34
24 Media Preparation 34
25
26Cell lines36
261 Subculturing of Adherent lines 36
262 Cell countıng 37
263 Cell Freezing 37
264 Cell Thawing 38
265 Sterility Checks 38
27 Mycoplasma Analysis 39
271 Indirect Staining Procedure 39
272 Direct Staining 40
28 Differentiation Studies 41
281 Differentiation Assays 41
29 Immunocytochemistry 42
291 Immunocytochemıcal procedure 42
292 Immunofluorescence 43
210 Western Blot Analysis 44
2101 Sample preparation 44
2102 Gel Electrophoresis 45
2103 Western blotting 46
2104 Enhanced chemuluminescence detection 47
211 RNA Extraction 48
2111 Qiagen Spin Column Procedure 49
212 Reverse Transcriptase Reaction 49
2121 Polymerase Chain Reaction 50
2122 Real-Time PCR 51
213 Electrophoresis of PCR productions 52
214 Over-expression Studies 52
$2141 \quad$ Plasmid Preparation 52
2142 Lipofectin Transfection of Attached Mammalıan Cell 52
2143 Selection of Transfected Cells 53
2144 Transient Transfection of DNA using Fugene 6 53
215 Affymetrıx GeneChıps ${ }^{\circledR}$ 54
2151 Sample and Array Processing 55
2152 Microarray Data Normalisation 56
2153 Probe Logarthmic Intensity ERorr estımation (PLIER) 57
216 Genomatix Software Suite 58
3.0 Results 62
3.1 Investigation of the Effect of Pyrimidine Analogue Exposure In the Human Lung Carcinoma Cell lines, DLKP and A549 63
$311 \quad$ Changes in α_{2}-integrin expression in A549 cells following Treatment with thymidine analogues 64
312
Changes in β_{1}-integrm expression in A549 cells following Treatment with thymidine analogues 66
313 Changes in Ep-CAM expression in A549 cells following Treatment with thymidine analogues 68
314
Changes in Cytokeratin 8 expression in A549 cells following Treatment with thymidine analogues 70
315 Changes m Cytokeratin 18 expression in A549 cells following Treatment with thymidine analogues 73
316
Changes in Cytokeratin 19 expression in A549 cells following Treatment with thymidine analogues 76
317 Changes in α_{2}-integrin expression in DLKP cells following Treatment with thymidine analogues 80
318 Changes in β_{1} integrin expression in DLKP cells following Treatment with thymidine analogues 82
319 Changes in Ep-CAM expression in DLKP cells following Treatment with thymidine analogues 84
3110
Changes in Cytokeratin 8 expression in DLKP cells following Treatment with thymidine analogues 86
3111 Changes in Cytokeratin 18expression in DLKP cells following Treatment with thymidine analogues 88
3112 Changes in Cytokeratin 19expression in DLKP cells following Treatment with thymidine analogues 90
3113
Investigation of Changes in cytokeratin 8 protein expression levelsin treated A549 cells93
3114 The effects of treatment with pyrimidine analogues on eIF4E Protein expression in A549 96
3115 The effects of BrdU on differentiation status of DLKP and A549 cells 98
3116 The effects of IdU on differentration status of DLKP and A549 cells 99
3117 The effects of CdU on differentration status of DLKP and A549 cells 100
3118 The effects of 5-FU on differentiation status of DLKP and A549 cells 101
3119
The effects of 5,2-FdU on differentiation status of DLKP and A549 cells 102
3120 The effects of $5,5-\mathrm{FdU}$ on differentiation status of DLKP and A549 cells 103
3121 The effects of Bromouridine and Bromouracil on differentiation status of DLKP and A549 cells 104
32 DNA Microarrays 105
321 DNA Microarrays 106
322 BrdU Microarrays 107
3221 BrdU Mıcroarrays - Exp 1 and Exp 2 107
3222 Validation of Intial DNA Microarray and Gene expression changes in BrdU-treated DLKP cells 109
$32221 \quad$ FSTL1 110
32222 FLH2 111
32223 TNFSF7 112
32224 GPX3 113
32225 Zyxın 114
32226 Spd/Spn 115
32227 Id2 116
32228 eIF2-associated p67 117
32229 IER3 118
322210 LOXL2 119
322211 p21 120
3223 DLKP BrdU Array - Exp 3 121
32231 Spd/Spn 123
32232 HMOX1 124
32233 Id2 125
32234 Id3 126
32235 FSTL1 127
32236 FHL2 128
32237 TNFSF7 129
3225 Investıgation of potentally co-regulated genes in BrdU-treated DLKP cells as identıfied using DNA mıcroarrays 130
323 DLKP 5,2 -FdU DNA Microarrays 133
$3231 \quad$ Validation of 5,2-FdU DNA Microarrays 134
$32311 \quad$ Id2 135
32312 Id3 136
32313 HMOX1 137
32314 FHL2 138
32315 TNFSF7 139
324 DLKP IdU DNA Mıcroarrays 140
325 Comparison of up-regulated genes between BrdU, 5,2 -FdU And IdU Microarrays 141
33 Transfection 146
331 Over-expression of the transcription factor, c-myc 147
$3311 \quad$ c-myc Stable Transfections 148
33111 RT-RCR analysis of c-myc Stable Transfections 148
3.3.1.1.2 Western Blot analysis of c-myc Stable transfections 149
3.3.1.1.3 Westem blot analysis of YY1 expression 150
3.3.1.2 c-myc Transient Transfections 151
3.3.1.2.1 c-myc over-expression-mRNA and Protein 152
3.3.1.2.2 Change in expression of Madl Protein 153
3.3.1.2.3 Change in expression of YY1 Protein 154
3.3.1.2.4 Change in expression of eIF4E 155
3.3.1.3.5 Change in expression of cytokeratin 8 mRNA 156
3.3.1.3.6 Change in expression of $\boldsymbol{\beta}_{1}$-integrin mRNA 157
3.3.2 Over-expression of Yin Yang 1, YYI 158
3.3.2.1 Stable Over-expressing YY| Clones 160
3.3.2.1.1 Change in expression of YY1 Protein 160
3.3.2.1.2 Change in expression of c-myc-mRNA and Protein 161
3.3.2.1.3 Change in expression of Madl Protein 162
3.3.2.1.4 Change in expression of elF4E 163
3.3.2.1.5 Change in expression of cytokeratin 8 mRNA 164
3.3.2.1.6 Change in expression of cytokeratin 18 mRNA 165
3.3.2.1.7 Change in expression of cytokeratin 19 mRNA 166
3.3.2.1.8 Change in expression of β_{1}-integrin mRNA and Protein 167
3.3.2.1.9 Change in expression of eIF4E-BPI mRNA 168
3.3.2.1.10 Change in expression of elF2 α protein 169
3.3.2.2 Analysis of RNA and Protein changes in DLKP-SQ Cells transiently transfected with YY1 170
3.3.2.2.1 Change in expression of YYI mRNA 172
3.3.2.2.2 Change in expression of c-myc mRNA and Protwin 173
3.3.2.2.3 Change in expression of elF 2α mRNA 174
3.3.2.2.4 Change in expression of elF4E-BPI mRNA 175
3.3.2.2.5 Change in expression of Mnk2 mRNA 176
3.3.2.2.6 Change in expression of cytokeratin 8 mRNA 177
3.3.2.2.7 Change in expression of cytokeratin 8 mRNA 178
3.3.2.2.8 Change in expression of β_{1}-integrin mRNA 179
3.3.2.3 Change in expression of genes found regulated in BrdU Array in DL.KP transiently transfect with YY1 180
3.3.2.3.1 FHLI 181
3.3.2.3.2 FSTL1 181
3.3.2.3.3 HMOX1 182
3.3.2.3.4 Id2 183
3.3.2.3.5 Id3 183
4.0 Discussion 184
4.1 General Introduction 185
4.2 Thymidine analogue-induced differentiation in epithelial cell lines 187
$4.3 \quad$ c-Myc Over-expression Studies 189
4.3.1 Stable Over-expression of c-myc in DL.KP 190
432 Transient Transfection of DLKP-SQ with c-myc 191
$4321 \quad$ YY1 Expression in c-myc transient transfections 191
4322 eIF4E Expression in c-myc transient transfections 192
4323 Madl expression in c-myc transient transfections 192
$4324 \quad \beta_{1}$-integrin expression in c-myc transient transfections 194
$44 \quad$ Yin Yangl Over-expression Studıes 196
$441 \quad$ Role for YY1 in regulation of differentiation in DLKP 198
442 Transient Over-expression of YY1 202
45 DNA Microarray Analysis 205
451 Comparison of the BrdU, 5,2-FdU and IdU DNA Microarrays 207
452 Identification of biological themes with EASE 208
4521 Id Famıly 209
4522 Glypicans 211
4523 KLF4 213
45331 Regulation of KLF4 215
45332 STAT-1 Regulation of gene expression in response to INF γ 216
45333 Potential role for YY1 in regulation INF γ 219
$4534 \quad$ YY1 Transient over-expression versus BrdU-treatment in DLKP cells 220
4535 Other genes identified in the development category Included FGF-2 and LY6H 222
46 Investigation of potentally co-regulated genes in BrdU- Treated cells 224
461 Role for Mazf, Zpf and E-box regulation of other human Promoter sequences 227
47 Summary 229
5.0 Conclusions and Future Work 230
60 Bibliography 237
70 Appendices 1

Abstract

Bromodeoxyuridme (BrdU) is a thymidine analogue capable of inducing epitheloid morphology and altering the expression of neuroendocrine markers in SCLC cell lines The ability of BrdU to alter differentiation in neuronal, muscle and haematoporetic lineages has been well documented in the literature Evidence suggests that this incorporation into the DNA alters the DNA's conformation, which in turn may affect mteractions with specific transcription factors, leading to either inhibition or induction of differentiation Following on from work previously performed in our laboratory, several pyrimidine analogues were studied to investigate if they possessed similar differentiating properties to BrdU

The DLKP cell line was established at the NICB from a tumour histologically diagnosed as a poorly differentiated lung carcinoma DLKP cells have properties which suggest they could be classified as ether SLCL-V or non-small-cell-lung carcinoma with neuroendocrıne differentiation (NSCLC-NE) In this study it demonstrate that the DLKP cell line, and the more differentiated adenocarcinoma line, A549, upon treatment with the BrdU and a panel of other pyrimidine analogues, showed increased expression of cytokeratins 8,18 and 19 proteins Increased protein expression levels of mtegrin subunits α_{2} and β_{i}, as well as the cellular adhesion molecule Ep-CAM, was demonstrated in both cell lines following exposure to drug

DNA microarray experiments were also performed on DLKP cells exposed to BrdU, IdU and 5,2-FdU Following gene expression analysis on these microarray experiments, lists of differentially expressed genes were generated From earher work performed in this thesis, we demonstrate that all three pyrimidine analogues induce a sımılar pattern of differentiation in DLKP cells Therefore, the three microarray experiments were compared to each other in order to identify a common differentiation pathway We reveal that a total of 93 up-regulated genes were common to all three microarray experıments EASE analysis was performed on these 93 genes and identified 20 genes from this list of 93 , which are thought to be involved in cellular development From this list of 20 development genes, we identify in particular, two families of transcription factors that potentially are involved in the regulation of differentiation in our system These transcription factor families are the Id and KLF proteins We propose that the Id family of proteins in play an important part in the regulation of differentiation in pyrimidine-treated DLKP cells We also suggest a role for KLF4 in the regulation of cytokeratin expression, mediated through IFN γ and STAT-1 protens

The transcription factor YY1 is a 65 kDa protern that is ubiquitously expressed and is highly conserved among human, mouse and Xenopus YY1 possesses the unusual property of regulating transcription in three ways, depending on the cellular context YY1 has been shown to activate, repress or initiate transcription
of a number of cellular genes and has previously been shown to associate with c$m y c$, resulting in its activation and up-regulation

We have also shown that BrdU-treated cells show increased levels of c -Myc and eIF-4E protein In order to investigate the role c-Myc and eIF-4E play in the differentiation of the DLKP lung cell line, a clonal variant of DLKP, DLKP-SQ, was transiently and stably transfected with a human YY1 cDNA expression vector It was observed that in stable clones over-expression of YYl upregulated c-Myc proten levels The over-expression of YY1 appears to have further effects on other cellular genes such as increased levels of eIF-4E, eIF- 2α and Ornithine Decarboxylase proteins We also demonstrate that the transient over-expression of YYl is capable of inducing genes identified as differentially expressed, namely Id2, Id3, HMOX1 and FHL1, in the DLKP, IdU and 5,2 -FdU microarray experıments

Section 1.0 Introduction

1.1 Cellular differentiation

Cellular differentiation can be defined as the process leading to the expression of phenotype charactenstic of the functionally mature cell in vivo As the differentiation process progresses there is an associated reduction in cell division and cell proliferation activities are eventually lost (Davila, et al, 1990) The principal cells that differentiate are referred to as stem cells, which are capable of rapid cell growth and division These cells are multipotent and have the potential to differentiate into several different cell types In general, stems cells possess unlımıted proliferative potential but they can remain quiescent under certain microenvironment conditions (Davila, et al, 1990) Differentiated cells are thought to be produced, not directly from stem cells, but rather via a committed progenitor or transit amplifying population (Watt, 1991)

The density of a cell during embryogenesis and development is regulated by gene expression which restricts the number of lineages that stem cells have the potential to form Previous studies (Ham and Veomott, 1980) have proposed that 'determination' is a process whereby a cell becomes committed to differentiate into a specific lineage A determined or committed cell initially may not appear phenotypically different, this only occurs after the genetic blueprint has been implemented (Maclean and Hall, 1987) A cell can differentiate in a manner which results in either the irreversible loss of its proliferative properties, termınally differentiated, or in the retention of some of its proliferative capacity while the cell itself is fully differentiated, non-termmally differentrated A number of differentration states are also well documented dedifferentiation is the process by which a cell loses its differentiated phenotype and transdifferentiation occurs when a cell dedifferentiates and redifferentiates into a new and distinct phenotype (Davila, et al , 1990) It is apparent from this that as a cell undergoes differentiation, its gene expression profile will likewise change

The process of cellular differentiation is often meditated by the tissue type the cell is present in A progenitor stem cell represents the progeny of stem cells which possess more limited proliferation and differentiation potential This cell is usually involved in a single lineage Although stem cells in adult organs are plunpotent, the differentrated daughter cells are not usually expressed beyond the relevant organ in
which the stem cell originates from, 1 e , the cells are tissue determined stem cells (TDS) and are thus considered separate from embryonic stem cells (ES cells) (Sell, 1994)

Tissue determined stem cells are believed to undergo a slow cell cycle in order to reduce the risk of errors during DNA replication As TDS cells are present throughout the life of an organism, such errors could become amplified in the organism (Lajtha,, 1982) and had been proposed that many tumours contain TDS cell populations (Khan, et al , 1991) and that the overlapping expression of differentiation markers (Gazdar, et al , 1988) within cancer cells is indicative of a stem cell ongin for most lung epithehal carcinomas During the differentiation process of TDS cells it is necessary that they maintain a constant cell number One popular model for this is asymmetrical cell division According to this model, when the stem cell divides one daughter cell remains as a stem cell while the other becomes a transit cell and enters the differentation process

Although proliferation and differentiation appear to be interlinked processes during stem cell maturation, they are quite often separate events that occur concomitantly This suggests the whole differentiation process may be understood in terms of spiral model (Potten and Loffler, 1990) Some TDS cells appear to be highly plunpotent giving rise to several different cell lineages, e g the haematoporetic system Given its pluripontency, it can be envisaged that depending on the signal, a stem cell will adopt one direction of maturation over another

1.2 Lung Development

The development of the lung requires cell proliferation, branching morphogenesis, alveolar saccule formation and cell differentiation These processes require well coordinated events, which are achieved by epithelial-mesenchymal interactions, activation and repression of transcriptional factors and sıgnalling

The existence of principle of stem cells and the in vitro cultivation and manipulation has now been well established and demonstrated for tissues such as mammary glands (Rudland and Barraclough, 1998), Liver (Sell, 1994), haematopotetic tissue (Fraser, et
al , 1995) and skın (Jones, et al , 1995) However, the exıstence of a sımılar stem ceil model has no yet been identified in lung tissue, though is strongly suspected given the ability of the lung to regenerate when exposed to local damage by atmospheric components Identification of such lung stem cells is hampered by the complexity of the respiratory system and the vaniety of cell types present (Plopper and Hyde, 1992, Paine and Sımon, 1996)

The most predominant hypothesis for stem cells in vivo is that different set of progenitor cells exist each destined to give rise to a discrete differentiated cell type (Plopper et al 1992) In the case of type II lung cells, these cell proliferate and then differentiate into type I cells (Adamson and Bowden, 1979) and Clara cells can differentrate into clliated cells (Jutten, 1991) However, other thinking on the existence of lung stem cells suggests the existence of a monotypic stem cell, which gives rise to a transit cell described as a small mucous granule cell (SMGC) This cell is defined as being of a secretory yet premature type containing a few small granules which are periodic acid Schiff reaction positive, and also possess a well developed endoplasmic reticulum, prominent Golgi complex and tonofilmament bundles It is believed that SMGCs are able to give rise through dedifferentiation to any differentrated secretory cell type

To date, very little scientific evidence exists relating to stem cells of the lung, the pathways they follow, their distribution and mechanism of action No markers yet exist for lung stem cells and the idea of dedifferentiation is in contrast to the stem cell models developed in other tissues suck as the skin, liver and intestine, where stem cells pre-exist in the epithelium (Emura, 1997) The lung is susceptible to local damage from a number of different sources including ozone, carbon black particles, lipophilic chemicals absorbed into the blood stream from the gut, or damage induced from bacterial or viral infection Therefore, the lung must posses some form of self regeneration, even of lımited to overcome such damage In attempting to identify if a cell is a stem cell, its native state is often altered during the investigation This may result in loss of the stem cell or only a limited spectrum of responses being observed Thus, due to the variety of cell types present and the complexity of the respiratory system, indemnification of a lung stem cell may prove to be a difficult task

13 Identification of a stem-like lung cell line, DLKP

All of this has interesting implications with the isolation of a poorly-differentiated lung cell line, DLKP, at the NICB (Law, et al , 1992) Clones derived from this cell line exhibit the amazing capacity to regenerate the mixed parental population over time The DLKP novel cell line has been categorised as extremely poorly differentiated and consists of at least three subpopulations, termed SQ (Squamous), I (Intermedıate) and M (Mesenchymal) (McBride, et al , 1998) These populations have demonstrated the ability to mterconvert and eventually, when cultured alone, replenish the parental phenotype This, combined with the lack of expression of a number of differentiation-specific markers, has lead to the speculation that DLKP may represent a stem cell-lhke population This has afforded a unique opportunity to study the process of lung cancer differentation in vitro, particularly the early stages of this process Such studies will provide insights in the mechanisms of early lung development

14 Synthetic agents capable of inducing epithelial lung cell differentiation

141 Halogenated thymidine analogues - BrdU, IdU and CdU

Bromodeoxyuridine (BrdU) is a halogenated thymidine analogue that is known to influence the differentiation of cells it is best referred to as a differentiation modulating agent since it has been shown to be a potent inducer of differentiation in some cell lines (Yen et al, 1987, Sugımoto et al, 1988, Valyı-Nagy et al, 1993), while it can inhibit the differentiation of others (Seecoff and Dewhurst, 1976, Tapscott et al, 1989, Lee et al, 1992) BrdU competes with naturally occurring Thymidine for incorporation into DNA during replication and as such $1 t$, and other sımılar compounds, should be ideal candidates for antı-tumour agents, since they require cell dıvision and DNA synthesis to exert their effects (Bıck and Devine, 1977) While few chincal trials are based on the differentiation-modulating properties of this drug (Freeman, 1969, Ameye et al, 1989), BrdU has been used widely as a radiosensitiser in an attempt to improve radiological treatments (Lawrence et al, 1992, McGınn and Kınsella, 1993) Radiosensitisation trials to date include the treatment of malignant glioma (Vander et al, 1990), ulcerative herpetic keratitis (van

Bijsterveld et al., 1989), malignant astrocytomas (Greenberg et al., 1988) and malignant brain tumours (Matsutani et al., 1988). More recently, BrdU has entered clinical trials as a radiosensitiser in the treatment of pancreatic cancer (Robertson et al. 1997), colorectal liver metastases (Robertson et al., 1997) and cervical cancer (Eisbruch et al. 1999), while studies in relation to malignant gliomas continue (Prados et al., 1998). Administration of BrdU is normally by controlled perfusion (Doirion ef al., 1999), and has been used in combination with radiolabelled monoclonal antibodies (Buchsbaum et al., 1994). While radiolabelled antibody approaches offer the potential of targeted chemotherapy, they are limited by low dose-relate deliverable. As such, the trials of Buchsbaum et al (1994) may offer a means of enhancing the efficacy of low dose radiolabelled monoclonal antibody approaches.

BrdU incorporates into DNA in a non-random fashion at sequences termed "fragile sites" (Hecht et al., 1988: Sutherland, 1988; Sutherland, 1991). This explains the reproducibility of the effects observed with BrdU-induced differentiation. O'Neill and Stockdale (1973) developed a model for BrdU-induced modulation of differentiation that assumes that BrdU "sensitivity" resides on a single pair of chromosomes, suggesting the presence of a "master gene" or target through which BrdU exerts its effects. In this model. inhibition of differentiation occurs in a dominant fashion if approximately 30% or more of naturally occurring thymidine is replaced by BrdU in the readout strand of either chromosome. This sort of model agrees with the predicted mechanisms of action of a number of DNA-intercalating agents. BrdU substitution into DNA and intercalation of such agents may have similar effects, thought to be through direct DNA bending at either major or minor grooves, thereby altering promoter structure and availability to transcription factors. Intercalation of the antibiotics. elsamicin A or actinomycin D in the promoter of the c-myc gene induced a decrease in the level of transcription from this promoter (Vaquero and Portugal. 1998). However, relatively low levels of elsamicin incorporation actually induced an increase in c-myc transcription through the P1 promoter. Bromodeoxyuridine (BrdU) has been demonstrated to decrease c-myc expression at the transcriptional level in the leukaemic cell line. HL60 (Yen and Forbes. 1990) and in human melanomo lines (Valyi-Nagyi et al., 1993). These results would appear to suggest that the c-myc promoter regions are particularly susceptible to modulation by agents that disrupt
promoter structure either through Thymidine substitution (BrdU) or intercalation (Elsamicin). Alternatively, BrdU may directly influence the ability of proteins to associate with DNA. In the lac operon, BrdU-substitution has been shown to result in increased binding of the lac repressor protein (Lin and Riggs, 1972), suggesting that BrdU may be capable of altering the binding of regulatory factors.

The mechanism by which BrdU exerts its differentiation-modulating effects remains unclear, but it appears that incorporation into DNA is essential. This involves BrdU being converted to Bromodeoxyuridine monophosphate, which competes with thymidine for incorporation into DNA (O'Neill and Stockdale. 1974). Experimental evidence for this hypothesis comes from a study by Keoffler et al. (1983) which showed that a thymidine kinase-deficient human myeloid cell line. HL60, was unable to incorporate BrdU into its DNA and subsequently failed to respond to the ability of BrdU to modulate its differentiation status.

A number of models exist to explain the ability of BrdU to modulate differentiation:

Model 1:

This model envisages that BrdU induces chromosomal breakages. These breakages and the associated chromosomal aberrations can be associated with stepwise changes in the differentiation status of a cell. These breakages are specific points called 'fragile' sites, 32 of which have been identified in murine chromosomes. It is proposed that BrdU associates with these fragile sites which are known to be recombinogenic (Alexander, el al., 1992).

Model 2:

BrdU alters the affinity of DNA sequences for regulatory proteins. Studies on the lac operon with BrdU incorporation demonstrate that the lac suppressor was bound with greater affinity (Lin and Riggs. 1972).

Model 3:

In this model BrdU has been found to exert its effects on differentiation by alteration of a key regulatory gene(s) that alters transcription of genes involved in differentiation (Arnold, et al., 1988: Rauth and Davidson, 1993). In BrdU inhibition
of myoblast differentiation, such alterations occurs with the down-regulation or complete inhibition of the key regulatory gene, MyoD1 (Topscott, et al, 1989, Nanthakumar and Hennıng, 1993)

Model 4.

This model envisages that BrdU incorporation causes an alteration in the reading frame of the DNA template resulting in the formation of abnormal mRNA, which is incapable of synthesising the correct differentiation products (Hill, et al , 1974)

BrdU is considered by some scientists to be an inducer of pre-commitment to differentiation rather than an actual differentiation inducing agent This was highlighted by the findıngs that BrdU treatment of HL60s for 24 hours, followed by treatment with Retmoic Acid resulted in a faster response to Retinoic Acid (RA) than the single addition of RA alone (Yen et al , 1990) It would appear that BrdU can initiate some of the early changes induced by RA in HL60 differentiation, including early c-myc down-regulation However, the same author reported previously (Yen et al , 1987) that pre-commitment to differentration involves an early increase in c-myc levels in the same Leukaemic line, as induced by RA This suggests that precommitment to differentiation in these cells involves increased expression of c-myc It therefore appears that the true mechanisms of induction and commitment to differentiation remain unclear, even in individual cell types

142 Mode of Action of Thymidine Analogues

The exact mechanism(s), by which BrdU and the vanous thymidine analogues investigated in these this study, exert their differentiation-modulating effects remains poorly understood In the case of BrdU, it is thought that incorporation into DNA is critical in the process (O'Neill and Stockdale, 1974) Low levels of BrdU have been shown to alter the differentiation status of many different cell types in both inhibitory eg myoblast cells (O 'Neill and Stockdale, 1974) and stımulatory eg neuroblastoma cells (Ross A H, et al , 1995) Incorporation into DNA involves the conversion of BrdU to Bromodeoxyuridine monophosphate, which competes with thymidine for incorporation into DNA (O'Neill and Stockdale, 1974) A study by Keoffler et al (1983) showed that a thymidıne kınase-deficient human myelord cell line, HL-60, was
unable to incorporate BrdU into its DNA and subsequently failed to respond to the ability of BrdU to modulate the differentiation status of HL-60 cells.

Incorporation of BrdU into DNA occurs in a non-random fashion, with incorporation occurring into repeated nucleotide sequences; know as 'fragile sites' (Schwartz and Snead. 1982; Hecht et al., 1988). It is as a result of this consistency of incorporation that may explain the reproducibility of BrdU-induced differentiation. It is thought that breakages in DNA may occur at these fragile sites and these breakages and chromosomal aberrations may be associated with changes in the differentiation status of the cell. It was been also reported that BrdU associates with these fragile sites. (Alexander et al., 1992).

It is also thought BrdU substitution into DNA may also induce effects similar to DNA-intercalating agents, by altering DNA bending at either the major or minor groves, and thus alter the structure of promoter regions and the affinity of DNA binding proteins (Lin and Riggs, 1972). Thus, BrdU is likely to exert is effects at least in part, on differentiation by altering of expression of set of regulatory genes that are involved in the control of another set of differentiation-related genes (Arnold et al., Rauth and Davidson, 1993).

The biological action of CdU and IdU is also thought to be similar to that of BrdU. CdU is converted to chlorodeoxyuridine monophosphate by thymidine kinase, and has been shown to compete with thymidine for incorporate into DNA (Cortès et al., 1987).

1.4.3 Mode of Action of Fluro-pyrimidines

In contrast to BrdU. IdU and CdU, the $5,5^{\circ}-\mathrm{Fdu}, 5-\mathrm{FU}$ and $5,2^{\circ}-\mathrm{FdU}$ analogues modes of action are slightly different. 5,5'-FdU is cleaved by nucleoside phophorylase enzyme to yield 5 -flurouracil (5-FU) (Armstrong and Diasio, 1980). The 5-FU generated is subsequently metabolised via several steps to yield flurodeoxyuridine monophosphate (FdUMP) (Pratt et al., 1994). FdUMP binds to thymidylate synthase, forming an irreversible covalent temary complex in which enzyme, folate cofactor. and FdUMP are bound, thus inhibiting thymidine monophosphate production and
hence DNA synthesis (Pratt et al., 1994). The inhibition of DNA synthesis causes celis to delay in the S-phase of cell cycle and this stall has previously been shown to induce differentiation of embryonal carcinoma cells, PC13, to endoderm-like cells, following exposure of the cells to Retinoic Acid (Nishimure et al. 1983; Mummery et al., 1984).

Figure 1.? Pathway of $\mathbf{5 , 5} \mathbf{5}^{\circ}$-FdU Metabolism

A large proportion of the cytoplasm of vertebrate cells, normal and transformed, is occupied by components of the cytoskeleton, including actin, tubulin and the intermediate filaments (Moll et al , 1982) They are formed in different cell types from different proteins of a multigene famıly or from different subunt polypeptides of a class of related protems By far the most striking differentration specificity of composition has been observed in the intermediate-sized filaments This class of filaments includes the desmin filaments typical of myogenic cells, the neurofilaments typical of neuronal cells, vimentins occur in mesenchymally derived cells and vascular smooth muscle cells, and the keratins occur in epithelial cells (Moll et al, 1982, Hatzfeld and Franke, 1985, Daly et al , 1998) Keratin Intermediate Filament (IF) proterns have three domains a central alpha-helical rod domann of constant size that derives from common ancestors, and two end-domains of variable structure thought to be involved in tissue-specific functions (Blumenberg, 1988) The specificity of keratin expression patterns in epithelial cells has been used in prognostic and diagnostic situations as markers of both epithelial origin and state of differentiation in patients with small cell lung cancer (Bepler et al, 1987, Broers et al, 1988), and other tumour pathologies (Virtanen et al, 1984, Trask et al, 1990) to distinguish normal and tumour-derived epithelial cells Keratins are thought to serve a structural function to protect the cell against environmental stresses and strains as for other filaments (Daly et al, 1998), but theır expression in human ovarian adenocarcinoma lines has been associated with altered sensitivity to various chemotherapeutic drugs (Parekh and Simpkins, 1995) Interestıngly, in studies using a number of chemical differentiating agents the levels of mdr-1/Pgp (p-glycoprotein) increased and expression appears to correlate with the degree of differentiation (Mickley et al, 1989) However, induction of these pumps is not always accompanied by expression of the multidrug-resistance phenotype, which may possibly be explained by changes in keratin expression during the differentiation of these cells The human K8 mRNA encodes a nucleic acid-bindıng domann, suggesting that keratm filaments may bind to nucleic acid sequences and play a role in regulating DNA replication and gene transcription (Yamamoto et al, 1990) It is also possible that they play a role in the regulation of translation of particular mRNAs through their localisation to regions within the cell, in a similar manner to the way in which polar
expression of developmental proteins nos and hicoid are regulated (Gavis et al., 1992). Genetic disease states associated with loss of keratin regulation include the blistering phenotype of Epidermolysis Bullosa Simplex (EBS) (Oshima, 1992; Fuchs and Byrne. 1994) and development of dwarf phenotypes and diabetes in transgenic mice expressing the K8 gene (Casanova et al. 1995).

The keratins (K) are divided into two categories; the acidic type I keratins are K9-20, while the more basic type 11 keratins are K1-8. Keratin filament formation is dependent on the pairing of partners from both groups to produce a proteolytically stable hetero-polymer filament (Kulesch et al., 1989). Despite the fact that their function is relatively unknown, the pattern of expression of keratin filaments is specific to both epithelial origin and degree of differentiation (Tseng el al., 1982). As described in "The Catalogue of Human Cytokeratins" (Moll et al., 1982), while K9K11 is predominant in the epidermis. K12 has only been observed in the cornea. Cytokeratin 8 represents simple epithelia, and its normal partner, K18, shows the same tissue distribution (Trask et al., 1990). K8 and K18 are the first keratins to appear during mouse development (Casanova et al., 1995) and are thought to be the evolutionary ancestors of many of the present keratin forms (Blumenberg, 1988). Cytokeratin 19 is found in a broad range of epithelial tissues and is a major component of simple epithelia. K14 and K19 are known to be "promiscuous" in that they can partner Type II Keratins in the absence of their "usual" Type I partner to form stable filaments (Hatzfeld and Franke. 1985; Darmon. 1985: Lersch et al., 1989). K19 lacks a variable terminal domain. This, combined with its promiscuity, means that K19 is thought to play a critical regulatory role by pairing with any one of the basic keratins without contributing a potentially harmful variable terminal domain. the region in which tissue-specific function of keratins resides (Blumenberg. 1988). It therefore acts to redress keratin imbalances. Keratins 7/8/18/19/20 have been associated with simple epithelia. while K4/5/17 are associated with stratified epithelia (Mobus et al., 1994). Both classic and variant small cell lung cancers express K8 and K18/19, detectable by western blotting when immunocytochemical staining is weak (Elias et al., 1988). Stem cell populations of the lung have been speculated to exist as pluripotent populations residing in tumours and cell lines (Trask ct al. 1990; Pfeifer et al. 1991). The almost complete absence of keratin expression in DLKP, a novel
poorly differentiated NSCLC-NE/SCLC-variant cell line solated at the NCTCC, has led to speculation that this cell line may represent a stem cell-like population

151 Regulation of Keratin Expression

The regulation of keratin filament formation is complex and is controlled at multiple levels Regulation of keratın expression has been reported at the transcriptional level (Roop et al , 1988), involving AP-1 actıvation of transcription (Neznanov and Oshıma, 1993) which is mediated by the ras signalling pathway (Pankov et al, 1994) Relatively short sequences in the 5 , upstream region of keratin genes can confer tussue-specific transcription (Blessing et al, 1989, Neznanov and Oshıma, 1993) In addition, histone and chromosomal insulation of keratin genes (Casanova et al, 1995), labile inhibitors of transcription (Cremısı and Duprey, 1987), and post-transcriptional proteolysis (Kulesh et al, 1989) have all been implicated in the cell-specific and developmental regulation of keratın filament formation An important aspect to the proteolytic regulation of keratin filament formation, in which both partners of the pair are required for proteolytic stability and filament expression, is that it would appear that the expression of a type II keratin is sufficient to induce the expression of a type I partner (Giudice and Fuchs, 1987, Knapp and Franke, 1989, Lersch et al, 1989, Rothnagel et al, 1993) Type I keratın expression has been suggested to be dependent on accumulation of unpolymerised Type II keratin (Giudice and Fuchs, 1987) for proteolytic stability for overall filament formation Type I proteolysis may form a universal regulatory element while specificity in Type II expression will therefore result in Type I induction and tissue-specific Intermediate Filament formation (Rothnagel et al , 1993) Synthesis of both keratin types can be uncoupled and control of cytokeratın Intermedıate Filament formation can occur at different levels (Knapp and Franke, 1989), strengthening this suggestion There is substantial evidence for additional post-transcriptional regulatory mechanisms (Blouin et al, 1991, Crowe et al, 1993), including mRNA degradation (Paine et al, 1992) and the suggestion that there is a possible block on the translation of certan keratın mRNAs, such as K8 (Tyner and Fuchs, 1984) This speculatively involves translational repression (Su et $a l$, 1994) and even masking of keratin mRNAs in epithelial squamous cell carcinomas (Winter and Schweizer, 1983)

16 Integrins

The mtegrin receptors consist of two heterodımer chains, α and β, both of which form a non-covalently associated complex (Hynes, 1987) The α subunit family of integrins possesses 15 variants, while the β subunit famıly contain 8 variants In theory these two familes could associate to give rise to over 100 integrins However, the actual diversity is much more restricted and in reality the subunits combine into 22 different integrins (Buck and Horwitz, 1987) The integrm famıly is subdivided on the basis of its β subunit (Newham and Humphires, 1996) For example, the β_{1} integrins are involved principally in the adhesion between the ECM and the cellular cytoskeleton (Buck et al, 1987), while the β_{2} integrins particıpate in cell-cell interactions (Ruoslahtı, 1991) The specificity of binding is not determined solely by integrin pairing, but also by the cell type it is expressed m

Integrins have been implicated in such diverse processes as inflammation, cellular growth and differentration (Albelda and Buck, 1990) For example, the interaction in developing lung between the ECM and the epithelium is mediated by mtegrin receptors, and allows normal lung branching to occur (Gumbiner, 1996) As well as functioning as cell adhesion molecules, the integrins have signalling functions that regulate various aspects of cell behaviour and differentiation This signalling is accomplished through focal adhesion proteins In this study we have chosen the increased expression of both α_{2} and β_{1} integrins as markers of differentiated epithehal lung cell differentiation

Transcriptional control of gene expression during both proliferation and differentiation has been widely studied Transcription factors such as MyoD and Myogemn have been shown to play critical roles in the regulation of muscle-specific differentiation (Weintraub, 1993, Buckingham, 1994) On the other hand, factors such as c-fos, $c-j u n$, and $c-m y c$ have long been established as playing roles in the regulation of cellular proliferation, differentiation and transformation of a wide vancty of cell types Selective transcription of genes such as alcohol dehydrogenase (Adh) during development is known to occur through specific sequences in the promoter regions of genes that bind regulatory factors known as transcriptional enhancers (Novina and Roy, 1996) Despite this, the process of transcription and the mechanisms by which transcription factors regulate differentiation are still not fully understood

171 The c-myc proto-oncogene

First identıfied as the transforming gene of the avian myelocytomatosis virus ($\mathrm{v}-\mathrm{myc}$) (reviewed, Evan, 1990), the myc family of oncogenes must rank among the most widely studied of all proto-oncogenes Despite this, there is a relative paucity of direct c-myc targets that have been identified to explain the capacity of this gene to induce transformation and malıgnancy (Ryan and Birnie, 1996) While no direct role for cmyc was found in some malıgnant conversions (DeBenedett1 et al, 1994), c-myc expression has been shown to be critical to transformation by both v -abl and BCRABL, as evidenced using domınant negatıve c-myc expression (Sawyers et al, 1992) Genetic instability and abnormality is associated with lung cancers (Fong et al, 1995) and c-myc abnormalities are frequently associated with carcinogenesis c-myc activation has been shown to occur via gene amplification, chromosomal translocatıon, proviral insertion and retroviral transduction (Ryan and Birnie, 1997)

$17.11 \mathrm{c}-\mathrm{Myc}$ structure and Function

The c-myc gene is highly conserved, apart from its first exon, throughout vertebrate evolution It first came to notice because of its homology to the viral oncogene, v-myc While deregulated expression of c-myc has been associated with a variety of neoplasms, early studies indicated that introduction of the c-myc gene into normal fibroblasts was not sufficient to transform cells (reviewed Evan et al , 1990) The 5' region of the c-myc gene contains four promoters, termed P0-P3 However, the two major promoters, P1 and P2 contribute $75 \%-90 \%$ and $10-25 \%$ of the cytoplasmic cmyc mRNAs, respectively (Ryan and Birnie, 1996, Nanbru et al, 1997) The functional significance of these promoters remains a mystery They may play roles in processes such as proliferation and differentiation, or may simply represent evolutionary redundance of the P 0 and P 3 promoters The c-Myc protein is a phosphoprotein, phosphorylated by caseın kınase II (Hagıwara et al, 1992) and DNA-PK (DNA-actıvated proteın kınase) (Iıjıma et al, 1992, Chıbazakura et al, 1997), and its expression is induced in response to serum and growth factor stimulation c-Myc possesses a short cluster of basic ammo acids that serve as nuclear localisation sequences (NLS) (Saphure et al, 1998), in addition to DNA-binding leucine zipper motıfs The N-terminal region contains the transcriptional transactivation domain (Ryan and Birme, 1996) There are two isoforms of the proteın, c-Mycl and c-Myc2, which differ by 20 ammo acids in their N -terminal region (DeBenedettt, personal correspondence)
c-Myc exerts its effects through oligomerisation with other proteins (Figure 16), characteristic of other DNA-binding transcription factors (eg Jun and Fos) Onginally thought to homodimerize, it is now known that this is untrue Oncogenic activation of c-Myc requires heterodımerization with actıvatıng Max proteins (Amatı et al, 1993), which then bind DNA through basic-hehx-loop-helix-leucine zipper motifs Negative regulation of c-Myc activity occurs through interaction with another factor, termed Mad (Ryan and Birme, 1996), which has no transactivating function but competes with Max for binding to the same region of the c-Myc protein It is, therefore, a competitive inhibitor of c-Myc activation by Max No initial sequence specificity of c-Myc binding was apparent, but it is now understood that c-Myc binds through a basic amino acid α-helix region (Fisher et al, 1993) to what are termed
myc-binding sequences or "E-box elements" (CACGTG). These sites require association of Max in addition to c-myc for activation (Ryan and Birmie, 1997). Invivo activation of E-box containing genes by Myc/Max heterodimers, including an RNA helicase gene belonging to the DEAD-box family, has been demonstrated (Grandori et al., 1996). c-Myc/Max complexes, active in transcription. appear to be dependent on the levels of c-Myc available within the cell (Amati et al. 1993), that is, Myc synthesis is rate-limiting for Myc-Max dimerisation and activity. Myc overexpression activates, while Max overexpression represses transcription through E-box sites. This is because Max/Max homodimers do not activate, and so compete with Myc/Max complexes when Max is over-expressed (Somer et al., 1998). Max overexpressing lines show reduced expression of transiently transfected Mycresponsive genes (Zhang et al., 1997), implying a role for Max expression in the regulation of processes such as differentiation.

Max appears to be extremely simple and is comprised of only 160 amino acids, 80 of which constitute the DNA-binding/dimerization domain (Cole, 1991), suggesting that
transactivation of basal transcription occurs through the longer N -terminal region of the c-myc portion of the Myc/Max complex. This explains the lack of transactivation by Max homodimers and the findings that myc levels are rate limiting in the transactivation by Myc/Max heterodimeric complexes. Myc/Max. Max/Max and Mad/Myc complexes all bind to the Myc E-box with the same affinity (Somer el al.. 1998). Therefore, since the transactivation domain of these complexes lies in the Myc N -terminal, complexes lacking a Myc partner act as competitive inhibitors of Myc/Max transactivation.

However, c-Myc has also been shown to exhibit a degree of "dual functionality" in that it is capable of transcriptional repression, as well as activation (Antonson et al., 1995), depending upon the position of the E-box relative to the transcription start site. As such, the role of c-myc in the regulation of cellular growth and proliferation should not be confined to a narrow view of transcriptional enhancement and stimulation of proliferation. Roles for c-myc in apoptosis and differentiation are evident, but as yet unclear. "It would be naïve to assume that the only transcriptional targets of c-myc are those involved in transformation" (Ryan and Bimie, 1997). Human bronchial epithelial cells transformed by overexpression of c-raf-1 and c-myc proto-oncogenes were capable of inducing multi-differentiated carcinomas in nude mice (Pfeifer et al., 1991). This suggests that the role of c-myc in regulating differentiation may be cellspecific, and that down-regulation of myc expression during differentiation (Yen and Forbes. 1990: Valy-Nagyi et al.. 1993) may not be a "universal" requirement of all cell types, as observed for AP-1. In addition, c-myc has been shown to play a role in the induction of apoptosis (Harrington el al., 1994; Kohlhuber el al., 1995).
c-Myc has been found to directly interact with a number of additional proteins. many of which are novel transcription factors in themselves (Figure 1.7). These interactions may form another level at which myc exerts its influence over the transcription process. A novel zinc-finger protein, termed Miz-1 (Myc interacting zinc-finger protein-1) has been identified that specifically interacts with Myc, but not with Max (Peukert et al., 1997). Miz-1 is a transcription factor with potent anti-proliferative effects. Binding of Myc to Miz-1 inhibits the promoter activation activity of Miz-1, relicving the anti-proliferative effects of Miz-1 expression. Of note is the interaction between c-myc and the developmental regulator known as Yin-Yang 1 (YY1). YYI
regulates c-Myc levels, while association of c-Myc and YY1 proteins reduces the activity of both proteins. This may form the basis of an auto-regulatory mechanism to control the levels/activity of these two proteins. Such interactions with key transcription factors, regulating their activity, may play a significant role in the activity of c-Myc. This is particularly intriguing in light of the lack of direct transcriptional targets identified for c-Myc to date. A diagram of the known interactions between c-Myc and other enhancer proteins is shown in Figure 1.7

(reproduced from Ryan and Birnie, 1996):

Figure 1.7: Regions of c-Myc interacting with other transcription factors. (Note: p107 is a member of the Retinoblastoma family of negative regulators. Its association with c-Myc inhibits the transactivation activity of $\mathrm{c}-\mathrm{Myc}$).

YY1 (Yın-Yang 1) is a developmentally important transcription factor, so-named because of its ability to act as both a transcriptional actıvator and repressor It belongs to the GLI-Kruppel family of negative transcription factors (Licht et al, 1990, Shi et $a l$, 1991), of which relatıvely few are known in eukaryotes The YY1 gene was localısed to chromosome 14 in humans (Yao et al, 1998), although pseudogenes or additional YY1 genes have been suggested to exist (Zhu et al, 1994) The promoter regıon of YY1 lacks consensus TATA or CCAAT boxes, but contans multiple SP-1 binding sites (Yao et al, 1998), including a critical promoter region (Safrany and Perry, 1993) Four laboratones workıng independently cloned the YYl gene in 1991, perhaps highlighting the universally important role of YYI in transcriptional regulation
1 Park and Atchison (1991) isolated a factor they termed NF-E1, which was capable of binding to both the immunoglobulin $\kappa 3$ ' enhancer and the immunoglobulin heavy-chain $\mu \mathrm{El}$ site, transcriptionally repressing and activating these promoters, respectively The authors also reported that NF-E1 (Common Factor 1, CF1) was capable of binding the c-myc promoter The binding of CF1 was shown to be capable of activating transcription through a c-myc CF1 site (Riggs et al, 1991) Overexpression of YY1 was shown to be a strong activator of murine c-myc expression, with mRNAs increasing from both the P1 and P2 promoters of the endogenous c-myc gene (Riggs et al 1993) These promoters account for the vast majority of c-myc transcript present in the cytoplasm

2 NF- δ was found to bind to and activate critical downstream promoter elements in the mouse ribosomal protem rpL30 and rpL32 genes (Harıharan et al , 1991)

3 Flanagan et al (1991) solated a negatıve transcription factor, UCRBP (UCRBinding Protein) that bound to the upstream conserved region (UCR) of MMLV (Moloney Murine Leukaemıa Virus), down-regulatıng promoter actıvity A negative regulatory region in the HPV-18 (Human Papılloma Virus) was shown to bind YY1 with high affinity (Bauknert et al, 1992) and mutation of the YY1
bindıng site leads to enhanced activity of the HPV-18 promoter Many viruses that cause cancer have been found to have lost YY1 binding sites, which may be a means of escaping this negative regulation (Shrivastava and Calame, 1994)

4 Finally, YY1 was isolated and given its more widely used name by Shi et al (1991) when it was found to associate with the Adenovirus P5 promoter, activated by the viral E1A protein In the absence of E1A this promoter is slenced by YY1, and only becomes activated in the presence of E1A Both E1A and YY1 were found to share overlapping bindıng sites m the P5 promoter, but YY1 binding is not eliminated upon E1A binding, suggesting that competition for binding is not the means by which regulation occurs E1A-mediated actıvation is speculated to involve unmasking regions of the YY1 N-termmal involved in activation but normally masked in the full-length protein (Lee et al, 1994) (Figure 18)

Consensus activation and repression sequences for YY1 are shown below, although these are known to vary giving rise to changes in binding capacity of these sites for YY1 (Hyde-DeRuyscher et al, 1995)

Actıvation CGGCCATCTTGNCTG
 Repression CCATNTTNNNA

1.721 The Structure and Function of YY1

There is evidence that YY1 is a phosphoprotein Eight consensus phosphorylation sites are found in the deduced ammo acid sequence and YY1 activity can be abolished through the use of phosphatases (Becker et al , 1994) The ammo acid sequence of the YY1 protein displays a number of unique properties to date, including acid rich domains sımılar to transcriptional actıvators, as well as Ala+Gly-rıch and His rich sequences common to transcriptional repressors (Park and Atchıson, 1991) The very unusual N -terminal region consists of 11 consecutive negatıvely charged amıno acids and 12 consecutive histidines, thought to form two oppositely charged symmetrical helices separated by a highly flexible glycine-rıch loop (Helıx-Loop-Helıx, HLH) (Hariharan et al, 1991) These regions are speculated to be capable of forming an acidic activation domain that could be neutralised or modulated under certan
conditions to allow interaction with polymerase II before and after transcription has commenced The ammo terminal transactivation domain requires ammo acids 16-29 and 80-100 for maxımal actıvity (Bushmeyer et al , 1995)

The C-terminal contains four zınc fingers, characteristic of DNA-binding transcription factors, while the central region is largely unstructured, consisting of large loop and helix regions The YY1 repression domain hes near the carboxy terminus and is embedded within the YY1 zinc finger region necessary for DNAbinding (Bushmeyer et al, 1995) Partıcular importance has been placed upon zinc fingers 3 and 4 for repression activity

The functional diversity of YY1 was conceivably attributed to its structural plasticity (Hariharan et al , 1991) It is generally thought that repression of gene transcription is the usual function of YY1, with the actıvating N -terminal region being masked Interaction with activating proteins, such as viral E1A, then releases the N-terminal region and converts YY1 to an activator of transcription through the same promoter (Figure 18) However, it has also been suggested that repression is not the intrinsic actıvity of YY1 Rather, YY1 acts to bend DNA (Natesan and Gilman, 1993) in a way that modulates the interaction of proteins bound to the two flanking regions When the onentation of the YY1 binding site is reversed or the phasing of the sites is changed, YY1 becomes an activator of the same promoter (Natesan and Gllman, 1995) Rather than bending two proterns away from one another, YY1 now bends them towards one another to bring them into closer contact and increase association Therefore, YY1 will have distınct local effects on protem-DNA and protein-protein interactions depending upon the position and orientation of its binding site within the promoter, supporting a general role for YY1 in the building of highly organised promoter complexes This is particularly important in the formation of promoter structures at TATA-less promoters, since YY1 has been shown to bend DNA in a manner suitable to provide a site for transcription initiation (Kım and Shapıro, 1996) Both promoter orientation-dependent and co-factor-dependent activity of YY1 was also suggested in the human Interferon- γ promoter (Ye et al , 1994) In this case, DNA-binding is a required function of YYl, while in other cases DNA-binding is not required for YY1 to exert its effects upon promoter formation and activity

Figure 1.8: Diagrammatic Representation of EIA-mediated activation of YY1 Transactivating Potential. YY1 is a repressor of the P5 promoter (A), but in the presence of EIA, the N -terminal Activating Region (Blue) is unmasked and transcription is activated (B).

1.7.2.2 Transcription Factors interact with YY1 to regulate its activity

A YY1 binding site in the c-fos promoter is required for adenovirus E1A activation of c-fos transcription (Gedrich and Engel, 1995). Rather unusually and almost paradoxically, repression by YYI was also found to be independent of the presence of YYI binding sites in c-fos reporter constructs (Zhou et al., 1995). It was shown that YY1 repression was mediated through interaction of YY1 with CREB (cyclic AMP Response Element Binding) Proteins. Thus, within the c-fos promoter alone YY1 is known to interact with E1A and CREBPs to either increase or decrease transcription, respectively, and these functions can be both dependent and independent of the ability of YYI to bind DNA. This has lead to claims that YYI activity is regulated through interactions with other proteins and that it must contain a C-terminal repression domain that is independent of its ability to bend DNA (Hyde-DeRuyscher et at., 1995).

Numerous YY1-associated complexes appear to be targets for E1A activation (Shi et al., 1991; Gedrich and Engel, 1995; Labrie et al., 995). In fact. a major role of viral E1A may be the activation of genes normally repressed by YY1, including viral genes (Shrivastava and Calame, 1994). SPI frequently acts as a regulator of YY1-associated complexes (Bennctt et al., 1999). particularly during TATA-less promoter complex formation. "Bi-functionality" is evident in the ability of YY1 to simultaneously up-
regulate some genes while down-regulating their antagonists. For example. transcription of the LDL (Low-Density Lipoprotein) reccptor gene is inhibited by YY1 during high cholesterol (Bennett et al., 1999), while that of Cholesterol Esterase is enhanced (Gauthier et al., 1999). This was attributed to interactions of YYI with SP1 in the cholesterol esterase promoter and with SRE-BP in the LDL promoter. inhibiting their function. The ability of YY1 to repress numerous SRE-BP (Serum Response Elemement-Binding Proteins) regulated genes has been associated with the displacement of Factor Y. a positive regulator of gene transcription (Ericsson et al. 1999). Similar "bi-functionality" is evident during proliferation, in which YY1 upregulates c-myc gene transcription. correlating with cellular proliferation, and inhibits muscle actin expression, correlating with differentiation (Lee et al., 1994). However, despite being shown to interact both in-vitro and in-vivo (Lee et al., 1993; Seto eta I. 1993), both YY1 and SP-1 appear to function independently at the surf-1 promoter, where the YY1 binding site has been shown to be both necessary and sufficient to confer growth-factor inducibility in transcription of the Surf-1 gene (Cole and Gatson, 1997). Activation of transcription by YY1 independent of DNA-binding has been shown for the $\alpha-1$ acid glycoprotein (AGP) promoter through functional interaction with a negative DNA-binding factor, termed Factor B (Lee and Lee, 1994). In the human GM-CSF (Granulocyte Macrophage-Colony Stimulating Factor) promoter cofactors in addition to YY 1 were required for activator function and promoter complex formation (Ye el al., 1994), but in this case binding of YY1 to DNA is required (Ye et al., 1996),

Additionally, YY1 has been suggested to participate in the stimulation of autonomously replicating human chromosome fragments through interaction with a replication-enhancing element, REE1 (Obuse et al. 1998) and in the regulation of transposable elements of the genome (Becker et al., 1993; Satyamoorthy et al., 1993; Singer et al. 1993). These elements are thought to be a major source of functional diversity allowing evolution to continue. Overall, YY1 appears to perform a multitude of tasks, many of which are influenced by its ability to bind to DNA and affect promoter structure and formation, as well as interact with numerous transcriptional enhancers to modity its own activity. The complexity of the regulatory effects of YY1 is highlighted by Bushmeyer et al (1995); "YY1 can either activate or repress some
promoters depending on ether promoter architecture or intracellular milieu" These unıque properties suggest an unusual and complex role for YY1 in the regulation of gene expression

$17.23 \quad$ YY1 and TATA-less Transcription

YY1 is thought to play a central role in the formation of transcription intiation complexes at TATA-less promoters Promotion of TATA-less transcription by YY1 was initially suggested by the in-vitro transcription experiments of Seto et al (1991) and Hahn et al (1992) YY1 has been shown to bend DNA and is thought to play a role in the formation of promoter structures for RNA pol II binding (Natesan and Gılman, 1995, Kım and Shapıro, 1996) In an in-vitro transcription reaction, superconled DNA templates could be transcribed in the presence of only YY1, TFIIB and RNA Pol II (Usheva and Shenk, 1994) Overall, YY1 is thought to be a key regulator of TATA-less promoter initiation, probably in all TATA-less promoters (Azızkhan et al, 1993) Its ubiquitous expression is in agreement with the findings that many universally expressed housekeeping genes appear to lack any discernble TATA recognition sequence, including the YY1 gene itself (Yao et al, 1998) In light of this, a report challenging the concept that TBP-medrated association of TFIID with the TATA-box is limiting in the rate of transcription initiation is of interest (Antoniou et al, 1995) Altered transcription was only observed when TBP binding was drastically decreased in the promoter of the β-globin gene However, this promoter also contains an active YY1 binding site, the importance of which may have been overlooked by the authors

The ability of YY1 to interact with TFIIB/D is also thought to be a means by which YY1 regulates TATA-less promoter formation, by-passing the requirement for TBP in these systems Recently TAF ${ }_{\|} 55$ (TATA-Binding Proteın-Associated Factor), a subunit of TFIID, has been shown to interact directly with the largest subunit, TAF 1230 through its central region and with multiple activators - including SP1, YY1 and Adenoviral E1A - through a distınct amıno-termınal domann (Chiang et al, 1995) This subuntt may form the "bridge" between transcriptional enhancers and the actual transcriptional components surrounding RNA polymerase II It is possible that

YY1 is part of, or is actually the "bridging unit", particularly in TATA-less promoters (since TAF55 is a basal unit, while YY1 appears to be "in-limbo" between enhancer and basal transcription factor, depending upon the promoter) The effects of SP1 on YY1-mediated transcription initiation, particularly from TATA-less promoters, may reside in its interaction with $\mathrm{TAF}_{11} 55 / 230$ to guide the intiation complex towards the Inr-associated YY1 to begin inituation

Further evidence that YY1 plays a role transcription through TATA-less promoters has been provided by Gatson and Fried (1994), Cole and Gaston (1997), Johansson et al (1998) and Karantzoulis et al (1999) In addition, YY1 is thought to play a role in the downstream regulation of transcription (Last et al , 1999) The majority of known transcriptional enhancers are upstream, since they would interfere with the actual transit of the RNA polymerase II if situated downstream, while YY1 appears to interact with many of the basal factors and may form part of the basal RNA holoenzyme in some circumstances

1724 YY1 in Differentiation and Development

The unusual nature of the YY1 protem has led to speculation that it may play a key role in the regulation of differentiation and development Both Chromatin structure and methylation are thought to be key mechamsms by which cells control specific gene transcription during differentiation The Nuclear Matrix Protein-1 (NMP-1), a transcription factor which has been shown to associate with the nuclear matrix to mediate gene-matrix interactions within the nucleus, has been shown to be none other than YY1 (Guo et al, 1995) Sequences necessary for nuclear localisation and association with the nuclear matrix have been identified in the C-terminal region of the YY1 peptıde (Bushmeyer and Atchison, 1998, McNeıl et al, 1998) Nuclear-matrix-associated transcription factors may affect gene regulation by mediating transient associations between DNA and the nuclear matrix, locally unravelling chromatin structure to allow the transcriptional machinery to access promoters and begin transcription, implying roles for YY1 in actıvating repressed genes during development

Binding of YY1 to DNA during globin promoter formation is known to be methylation-sensitive (Satyamoorthy et al, 1993, Yost et al, 1993), which may imply a role for YY1 in tissue- and developmental-specific transcription of genes A YY1 binding site is thought to function in the stage-specific expression of the fetal (gamma) globin gene (Zhu et al, 1999) The human ε-globin gene is transcribed in erythroid cells only during the embryonic stages of development A binding site for YY1, around nucleotide -269 , was identified as critical in the formation of the ε-globin repressor complex (Rach et al, 1995), forming part of the local regulatory elements suggested to be involved in the regulation of embryonic stage-specific expression of this gene Processes such as these, resulting in the stage-specific switches in gene expression, are thought to be associated with methylation of CpG islands, which silence transcription of developmentally important genes and to which YY1 binding is sensitive

In addition, levels of YY1 have been shown to decrease during differentration of mouse myoblasts (Lee et al , 1992) YY1 contans several peptide regions prone to proteolytic cleavage, raising the possibility that protease-mediated degradation events may contribute to dımınshed YY1 proteın levels during myogenesis (Lee et al, 1994) Two proteolytic pathways through which YY1 can be differentally targeted under different cell growth conditions have been identıfied (Walowitz et al, 1998), identıfying a role, at least partially, for protease calpain II (m-calpain) However, in serum starvation studies YY1 protein expression was lost only after 24 hours, despite the fact that YY1 transcript expression was lost within hours (Flanagan, 1995), suggesting that the YY1 protein is relatively stable This does not exclude the possibility that proteolytic regulation of YY1 levels may play a role in different processes

Treatment of myoblasts with the differentiation modulating agent, BrdU results in inhibition of myogenesis, resulting $1 \mathrm{n} /$ from an increase in expression of YY1 and decreased α-actın levels (Lee et al , 1992) Transfection of SRF (Serum Response Factor), which competes with YY1 for the regulation of α-actın gene transcription, could directly transactivate the actin promoter in BrdU-treated myoblasts Both SRF and YY1 are ubiquitously expressed, suggesting that they may have antagonistic
functions in regulating genes such as c-fos, α-actin and cardiac creatine kinase-M (Vincent et al, 1993, Liu et al, 1995) durıng development High levels of YY1 in non-differentrated muscle cells down-regulate the dystrophin promoter, at least in part, by interfering with the spatial organisation of the promoter (Galvagnı et al , 1998) YY1 and a positive regulator of dystrophin, DPBF (dystrophin promoter bending factor), induce opposite bends in the CArG element of this promoter, suggesting that their bindıng induces alternative promoter structures to regulate muscle development

1.8 eukaryotic Translation Initiation Factor, eIF-4E

eIF4E, otherwise known as eIF4 α or the small cap binding protein, binds directly to the 5' 7-Methyl-Gppp cap in an ATP-dependent manner, and is thought to be the first factor to interact with the mRNA to initiate translation eIF-4E is a 25 kDa phosphoprotein responsible for Cap-binding specificity in eIF-4F complexes during eukaryotic translation initiation events eIF-4E consists of a single $\alpha \beta$ doman which contans 8 antı-parallel β strands formıng a curved β sheet (Sonenberg and Gingras, 1998) This sheet is backed by three long α-helices The mRNA cap-structure binds loosely to an hydrophobic pocket in the concave inner surface of eIF-4E, across which salt-bridges form after phosphorylation to "lock" the cap in place (Marcotrigiano et al, 1998, CSHL abstracts), while the convex dorsal surface interacts in a mutually exclusive manner with either eIF-4G or the 4E-BPs Phosphorylation of eJF-4E occurs as part of the eIF-4F complex (Tauzon et al, 1990) greatly enhancing and stabilising its association with the cap (Minich et al, 1994, Joshi et al, 1995)
eIF-4E is widely accepted as the limiting factor in translation initiation, particularly for mRNAs with complex 5 ' UTRs It is present in molar levels significantly lower than that of other initiation factors (DeBenedettı and Rhoads, 1990, Sonenberg, 1996) It is the most specifically targeted mRNA-binding eiF and is an essential component of the cytoplasmic cap-binding complex The cap-binding activity of the eIF-4E
peptide is thought to reside in a highly evolutionarily conserved placement of tryptophan residues in both yeast and mammals (Altmann et al , 1988) This factor therefore plays a critical role in the regulation of translation, particularly of specific mRNA species, and the levels and activity of eIF-4E are critical to the control of cellular proliferation and differentration (Jaramillo et al, 1991) A rather novel and as-yet to be proven additional function for eIF-4E has been suggested, namely that it may play some part in the transport of mRNAs from the nucleus The 5' Capstructure is known to be involved in the process of nucleocytoplasmic transport (Sonenberg and Gingras, 1998), already thought to be the function of the novel eIF4E homologue protein, eIF-4EHP (Rome et al, 1998) In light of the Cap-binding specificity of eIF-4E and recent findings of localisation of a fraction of eIF-4E to the nucleus (Pollard et al , 1999), this addtional role for eIF-4E is not implausible

Frequently mammahan cells express at least two forms of this factor (Jaramillo et al, 1991, Haghighat et al, 1995) The gene(s) for eIF-4E is thought to he on chromosome 4 in humans (Gao et al , 1998) Gao et al (1998) isolated two genes for eIF-4E from placental genomic libraries, in which case eIF-4E1 contaned six introns but the other (eIF-4E2) was intronless Subtle differences between the two genes were identified and both genes were reported to be differentially expressed in four human cell lines A notable difference between the two genes was that the eIF-4E1 promoter contained c-myc-binding elements while that of eIF-4E2 did not, suggesting constitutive expression of the latter and inducible expression of the former In fact, eIF-4E has been identıfied as one of the few targets for c-Myc induction (Rosenwald et al, 1993, Jones et al, 1996) The complexity of eIF-4E expression patterns in eukaryotic cells was highlighted by the findings that in Drosophila a single eIF-4E gene could code for three alternatıvely spliced mRNA transcripts, two of which resulted in expression of the same form of eIF-4E, while the other encoded an isoform differing at the amıno-terminal sequence of the protem (Lavoie et al 1996) The three eIF-4E transcripts varied greatly in the lengths of their respective 5' UTRs, suggesting that each was subject to varying degrees of translational regulation themselves This may reflect a means of auto-regulatıng levels of eIF-4E expression durng phases of hyper* and hypo-proliferation of cells

Following on from BrdU work that has previously been performed in the laboratory (McBride S , et al , 1999, P Meleady, PhD Thesis, 1997, F O'Sullivan, PhD Thesis, 1999, D Walsh, PhD Thesis 1999, P Doolan, PhD Thesis, 2001) it was decided to investigate the ability of other halogenated thymidine analogues to induce differentiation in DLKP and A549 cells In this study it was decided to utilise the expression of $\alpha_{2}-, \beta_{1}$-integrin, EpCAM, cytokeratms 8, 18 and 19 as markers of differentiation in the two cell lines The thymidine analogues intrally chosen for this work were 5-Iodo-2 -deoxyUndine, 5-Chloro-2 -deoxyUrıdıne, 5-FluroUracıl, 5-Fluro-2 -deoxyUrıdıne, 5-Fluro-5 -deoxyUndıne, 5-BromoUndine and 5BromoUracıl

Exposure of the both cell lines to BrdU and the other halogenated thymidine analogues investigated also resulted in a morphological change in the treated cells These changes included a flattening and stretching of the cells, with the cells doubling or quadrupling in size, following treatment Cells treated with 5,2-FdU exhibited the greatest alteration in morphology and the greatest increase in cell size

19 Alms of Thesis

* Previous research performed in this laboratory has demonstrated that the halogenated thymidine analogue, Bromodeoxyuridine, induces the in vitro differentiation of the lung cell lines DLKP and A549 This differentiation is indicated by the induction of cytokeratins 8, 18 and 19 (McBride, et al , 1999, Meleady and Clynes 2001a, Meleady and Clynes, 2001b, O'Sullıvan, PhD Thesis, 1999) Also shown to be induced by BrdU are the integrins α_{2} and β_{1} (Meleady, PhD Thesıs, 1997) and Ep-CAM (O'Sullıvan, PhD Thesis, 1999)
* The thymidine analogues BrdU has been shown in this laboratory to induce the expression of cytokeratin and integrin proteins The ability of other halogenated pyrımıdine analogues, IdU, CdU, 5,5-FdU, 5,2 -FdU, 5-FU, BromoUracıl and Bromouridıne, to alter expression of these proteins was also to be investigated It was hoped that such investigation would help us gain a better understanding of the mechanisms by which differentiation is regulated in our in vitro model system
* In order to investigate the mechanisms involved in lung cell differentiation in our model system initial work examined the effect of the pyrimidine analogues had on the cytokeratin and integrin proteins in DLKP and A549 cell lines This was prıncipally performed by immunocytochemıstry

To investigate the global transcriptional changes induced in the DLKP cell line following exposure to the pynmidine analogues, DNA microarray experiments were employed to help to elucidate genes which may be common to the pathway(s) regulating differentiation in our cell system The use of such techniques may yield helpful leads to help us understand the overall processes of differentiation involved

* Work performed by Walsh (PhD Thesis, 1999) in our laboratory suggested that the transcription factors c-myc and Yin Yang 1 may be key proteins
involved in the control of differentiation which is induced by BrdU in DLKP cells cDNAs coding for these two proteins were transfected into DLKP and a clonal subpopulation DLKP-SQ, to asses their ability to induce simple differentiation in this poorly differentated cell line It was hoped that compring results from BrdU-treated cells and transfections would allow us to develop a model for the regulation of K8 and K18 synthesis in our lung cell line models, with possible implications for understanding the early stages of lung development as well as aspects of de-differentiation in lung cancer Such models are severely lacking in lung biology

Section 2.0 Materials \& Methods

2.1 WATER

Ultrapure water was used in the preparation of all media and solutions. This water was purified by a reverse osmosis system (Millipore Milli-RO 10 Plus, Elgastat UHP) to a standard of 12-18 M Ω / cm resistance.

2.2 GLASSWARE

Solutions pertaining to cell culture and maintenance were prepared and stored in sterile glass bottles. Bottles (and lids) and all other glassware used for any cell-related work were prepared as follows:- all glassware and lids were soaked in a $2 \%(\mathrm{v} / \mathrm{v})$ solution of RBS-25 (AGB Scientific) for at least 1 hour. Following scrubbing and several rinses in tap water, the bottles were then washed by machine using Neodisher detergent, an organic, phosphate-based acid detergent. The bottles were then rinsed twice with distilled water, once with ultrapure water and sterilised by autoclaving.

2.3 STERILISATION

Water. glassware and all thermostable solutions were sterilised by autoclaving at $121^{\circ} \mathrm{C}$ for 20 minutes (min) under pressure of Ibar. Thermolabile solutions were filtered through a $0.22 \mu \mathrm{~m}$ sterile filter (Millipore, millex-gv, SLGV-025BS). Low protein-binding filters were used for all protein-containing solutions.

2.4 MEDIA PREPARATION

Medium was routinely prepared and sterility checked by Joe Carey. The basal media used during routine cell culture were prepared according to the formulations shown in Table 2.4.1. 10x media were added to sterile ultrapure water. buffered with HEPES and NaHCO_{3} and adjusted to a pH of $7.45-7.55$ using sterile 1.5 M NaOH and 1.5 M HCl . The media were then filtered through sterile $0.22 \mu \mathrm{~m}$ bell filters (Gelman, 121-58) and
stored in 500 ml sterle bottles at $4^{\circ} \mathrm{C}$ Sterility checks were carried out on each 500 ml bottle of medium as described in Section 256

The basal media were stored at $4^{\circ} \mathrm{C}$ up to their expiry dates as specified on each individual 10 x medıum container Prior to use, 100 ml alıquots of basal media were supplemented with 2 mM L-glutamıne (Gibco, 25030-024) and 6% foetal calf serum (Sigma, F-7524 Batch) and this was used as routine culture medıum This was stored for up to 2 weeks at $4^{0} \mathrm{C}$, after which tıme, fresh culture medıum was prepared

Table 241
Preparation of basal media

	DMEM (Gibco, 12501-029)	$\begin{gathered} \text { Hams F12 } \\ (\mathrm{G} \text { ibco, } 21700-109) \end{gathered}$
10X Medıum	500 ml	Powder
Ultrapure $\mathbf{H}_{\mathbf{2}} \mathbf{0}$	4300 ml	4700 ml
1M HEPES* Sıgma , H-9136	100 ml	100 ml
$\begin{gathered} 75 \% \mathrm{NaHCO}_{3} \\ \mathrm{BDH}, 30151 \end{gathered}$	45 ml	45 ml

* HEPES $=\mathrm{N}$-(2-Hydroxyethyl)pıperazıne- N '-(2-ethanesulfonic acid)

For most cell lines, ATCC (Ham's F12/ DMEM (11)) supplemented with 6\% FCS, 1\% Sodium Pyruvate and 2 mM L-glutamıne was routınely used

25 CELL LINES

All cell culture work was carried out in a class II down-flow re-circulating lamınar flow cabinet (Nuaire Biological Cabinet) and any work which involved toxic compounds was carried out in a cytoguard (Gelman) Strict aseptic technıques were adhered to at all times The lamınar flow cabinet was swabbed with 70% industrial methylated spirts (IMS) before and after use, as were all items used in the cabinet Each cell line was assigned specific media and waste bottles Only one cell line was worked with at a time in the cabinet which was allowed to clear for 15 min between different cell lines The cabinet itself was cleaned each week with industrial detergents (Virkon, Antec Internatıonal, TEGO, TH Goldschmidt Ltd), as were the incubators The cell lines used during the course of this study, their sources and their basal media requirements are listed in Table 251 Lines were maintained in $25 \mathrm{~cm}^{2}$ flasks (Costar, 3050), $75 \mathrm{~cm}^{2}$ (Costar, 3075) or $175 \mathrm{~cm}^{2}$ flasks (Corning, 431079) at $37^{\circ} \mathrm{C}$ and fed every two to three days

2.5.1 Subculture of Adherent Lines

During routıne subculturing or harvesting of adherent lines, cells were removed from their flasks by enzymatic detachment

Waste medium was removed from the flasks and runsed with a pre-warmed $\left(37^{\circ} \mathrm{C}\right)$ trypsin/EDTA (TV) solution (025% trypsin (Gıbco, 25090-028), 001% EDTA (Sigma, EDS) solution in PBS A (Oxoid, BR14a)) The purpose of this was to remove any naturally occurring trypsin inhibitor which would be present in residual serum Fresh TV was then placed on the cells ($2 \mathrm{ml} / 25 \mathrm{~cm}^{2}$ flask or $4 \mathrm{ml} / 75 \mathrm{~cm}^{2}$ flask) and the flasks incubated at $37^{\circ} \mathrm{C}$ untıl the cells were seen to have detached ($5-10 \mathrm{~mm}$) The trypsin was deactivated by addition of a equal volume of growth medium (e containing 6% serum) The entire solution was transferred to a 30 ml sterıle universal tube (Sterılın, 128a) and centrifuged at $1,000 \mathrm{rpm}$ for 5 mm The resultıng cell pellet was resuspended in pre-warmed $\left(37^{\circ} \mathrm{C}\right)$ fresh growth medıum, counted (Section 253) and used to re-seed a flask at the required cell density or to set up an assay

Table 25.1 Cell lines used during the course of this study

Cell line	Basal medıum	Cell type	Source
DLKP	ATCC 2	Human	Dr Geraldıne
(and subpopulation		poorly-dıfferentiated lung carcınoma	Grant, NCTCC
A549		ATCC 2	Human lung adenocarcınoina
		ATCC 2	

* These cells grow in suspension
${ }^{1}$ ATCC = Amerıcan Type Culture Collection

253 Cell Counting

Cell counting and viability determınatıons were carried out using a trypan blue (Gıbco, 15250-012) dye exclusion technique

An aliquot of trypan blue was added to a sample from a single cell suspension in a ratio of 15 After 3 min incubation at room temperature, a sample of this mixture was applied to the chamber of a haemocytometer over which a glass coverslip had been placed Cells in the 16 squares of the four outer corner grids of the chamber were counted microscopically, an average per corner grid was calculated with the dilution factor being taken into account, and final cell numbers were multiplied by 10^{4} to determine the number of cells per ml The volume occupied by the chamber is $01 \mathrm{~cm} x$ $01 \mathrm{~cm} \times 001 \mathrm{~cm}$ ie $00001 \mathrm{~cm}^{3}$ Therefore cell number $\times 10^{4}$ is equivalent to cells per ml Non-viable cells were those that stained blue while viable cells excluded the trypan blue dye and remaned unstaned

254 Cell Freezing

To allow long-term storage of cell stocks, cells were frozen and cryo-preserved in liquid nitrogen at temperatures below $-180^{\circ} \mathrm{C}$ Once frozen properly, such stocks should last indefinıtely

Cells to be frozen were harvested in the log phase of growth ($i e$ actively growing and approximately 50-70\% confluent) and counted as described in Sections 253 Pelleted cells were re-suspended in serum An equal volume of a DMSO/serum ($19, \mathrm{v} / \mathrm{v}$) was slowly added dropwise to the cell suspension to give a final concentration of at least 5×10^{6} cells $/ \mathrm{ml}$ This step was very important as DMSO is toxic to cells When added slowly the cells had a period of time to adapt to the presence of the DMSO, otherwise cells may have lysed The suspension was then aliquoted into cryovials (Greiner, 122 278) which were then quickly placed in the vapour phase of liquid nitrogen contaners (approximately $-80^{\circ} \mathrm{C}$) After 25 to 35 hours, the cryovials were lowered down into the hquid nitrogen where they were stored untıl required

25.5 Cell Thawing

Immediately prior to the removal of a cryovial from the liquid nitrogen stores for thawing, a sterile universal tube containing growth medium was prepared for the rapid transfer and dilution of thawed cells to reduce their exposure time to the DMSO freezing solution which is toxic at room temperature The suspension was centrifuged at $1,000 \mathrm{rpm}$ for 5 min , the DMSO-contanning supernatant removed and the pellet re-suspended in fresh growth medium A viability count was carried out (Section 25 3) to determine the efficacy of the freezing/ thawing procedures Thawed cells were placed into tissue culture flasks with the appropriate volume of medium ($5 \mathrm{ml} / 25 \mathrm{~cm}^{2}$ flask and $10 \mathrm{ml} / 75 \mathrm{~cm}^{2}$ flask) and allowed to attach overnıght After 24 hours, the cells were re-fed with fresh medium to remove any residual traces of DMSO

2.5 6 Sterility Checks

Stenlity checks were routınely carried out on all media, supplements and trypsin used for cell culture Samples of basal media were noculated into Columbia (Oxord, CM331) blood agar plates, Sabauraud (Oxoıd, CM217) dextrose and Thioglycollate (Oxoid, CM173) broths which detect most contaminants including bacteria, fungus and yeast Growth media (ie supplemented with serum and L-glutamine) were sterility checked at least 2 days prior to use by incubating samples at $37^{\circ} \mathrm{C}$, which were subsequently examined for turbidity and other indications of contamination

2.6 MYCOPLASMA ANALYSIS

Mycoplasma examinations were carried out routinely (at least every 3 months) on all cell lines used in this study These analyses were performed by Aine Adams and Michael Henry

261 Indırect Staining Procedure

In this procedure, Mycoplasma-negatıve NRK cells (a normal rat kıdney fibroblast line) were used as indicator cells These cells were incubated with supernatant from test cell lines and then examıned for Mycoplasma contamınation NRK cells were used for this procedure because cell integrity is well manntaned during fixation A fluorescent Hoechst stain was utilised which binds specifically to DNA and so will stan the nucleus of the cell in addition to any Mycoplasma DNA present A Mycoplasma infection would thus be seen as small fluorescent bodies in the cytoplasm of the NRK cells and sometımes outside the cells

NRK cells were seeded onto stenle coverslips in sterile Petrı dıshes at a cell density of 2×10^{3} cells per ml and allowed to attach over night at $37^{\circ} \mathrm{C}$ in a $5 \% \mathrm{CO}_{2}$, humidified incubator 1 ml of cell-free (cleared by centrifugation at $1,000 \mathrm{rpm}$ for 5 mm) supernatant from each test cell line was then inoculated onto a NRK Petri dish and incubated as before untıl the cells reached 20-50\% confluency (4-5 days) After this tıme, the waste medium was removed from the Petri dishes, the coverslips washed twice with sterile PBS A, once with a cold PBS/Carnoys (50/50) solution and fixed with 2 ml of Carnoys solution (acetic acid methanol-13) for 10 min The fixative was then removed and after air drying, the coverslips were washed twice in deionised water and stained with 2 ml of Hoechst 33258 stain (BDH)(50ng/ml) for 10 mm

From this point on, work was carned out in the dark to limit quenching of the fluorescent stain

The coverslips were rinsed three times in PBS They were then mounted in $50 \%(\mathrm{v} / \mathrm{v})$ glycerol in 005 M citric acid and 01 M disodium phosphate and examıned using a
fluorescent microscope with a UV filter

2.6.2 Direct Staınıng

The direct stain for Mycoplasma involved a culture method where test samples were noculated onto an enriched Mycoplasma culture broth (Oxord, CM403) supplemented with 16% serum, 0002% DNA (BDH, 42026), $2 \mathrm{mg} / \mathrm{ml}$ fungizone (Gıbco,15290-026), 2×10^{3} units penicillin (Sigma, Pen-3) and 10 ml of a $25 \%(\mathrm{w} / \mathrm{v})$ yeast extract solution - to optımıse growth of any contamınants and incubated at $37^{\circ} \mathrm{C}$ for 48 hours Samples of this broth were then streaked onto plates of Mycoplasma agar base (Oxord, CM401) which had also been supplemented as above and the piates incubated for 3 weeks at $37^{0} \mathrm{C}$ in a CO_{2} environment The plates were viewed microscopically at least every 7 days, the appearance of small, "frred egg" -shaped colonies is indicative of a Mycoplasma infection

27 DIFFERENTIATION STUDIES

Differentiation studies were carried out using 5-bromodeoxyuridıne (BrdU) (Sigma, B5002), 5-Chloro, 2-deoxyuridıne (Sigma, C6891) and 5-Iodo, 2-deoxyuridıne (Simga, 17125), 5,2 -FdU (Sıgma, B5002), 5,5-FdU (Sıgma,F8791), 5-FU (Sıgma, F8423), 5-bromouracıl (Sigma, 852473) and 5-bromouridine (Sıgma, B9752) For each of the analogues, the powder was reconstituted in UHP water to a stock concentration of 10 mM and the resultant solution was filter sterilised through a sterile $022 \mu \mathrm{~m}$ filter, alıquoted into sternle Eppendorfs and stored at $-20^{\circ} \mathrm{C}$ for up to 1 year

2.7.1 Differentiation Assays

For immunocytochemical analysis (Section 28), cells were plated onto 6 -well plates (Costar, 3516) at densities of 1×10^{4} cells per well 1 ml of medium was sufficient for each well The cells were allowed to attach and form colones by incubatıng at $37^{\circ} \mathrm{C}$, $5 \% \mathrm{CO}_{2}$ for 24 hours The plates were covered with parafilm to prevent contamination After this time the medıa was replaced with fresh medium contanıng $10 \mu \mathrm{M}$ the appropriate thymidine Plates were wrapped in parafilm and incubated for up to 7 days Medium was replaced every 3-4 days over the course of the assay All waste medium was retained for disposal by incineration At the end of the assay the cells were fixed with methanol as described in Section 281 Immunocytochemistry/fluorescence was then carried out using a range of antıbodies as described in Section 282

For additional analytical techniques (Western blotting, immunoprecipitation, iso-electric focusing, PCR and DNA Microarrays), cells were inoculated into $75 \mathrm{~cm}^{2}$ flasks at a density of 1×10^{5} cells per flask or into $175 \mathrm{~cm}^{2}$ flasks at a density of 5×10^{5} cells per flask, and were incubated for two days at $37^{\circ} \mathrm{C}$ Analogue contaming medium, at a concentration of $10 \mu \mathrm{M}$, was then added to the cells The medium was replaced with fresh, drug-contanıng media every 3-4 days The cells were then harvested by trypsinisation, washed in sterıle PBS A, counted, pelleted and stored at $-80^{\circ} \mathrm{C}$ untıl required For RNA extraction (section 2 14), pellets were lysed in tri-reagent and stored at $-80^{\circ} \mathrm{C}$

28 IMMUNOCYTOCHEMISTRY

281 Fixation of cells

For fixation, medıum was removed from 6-wells plates, cells were rinsed 3 times with PBS A and then incubated at $-20^{\circ} \mathrm{C}$ for 7 minutes using ice-cold methanol The methanol was then removed from the cells, which were allowed to dry at $37^{\circ} \mathrm{C}$ for a few minutes and then stored at $-20^{\circ} \mathrm{C}$ untıl required

282 Immunocytochemical procedure

The avidın-biotın-peroxıdase complex (ABC) immunoperoxidase technıque combıned with the diamınobenzidıne (DAB) visualisation procedure was employed to indicate primary antibody binding The ABC method involves application of a biotin-labelled secondary antibody, followed by the addition of avidin-biotin-peroxidase complex which results in a high staining intensity due to the formation of an avidin-biotin lattice which contains several peroxidase molecules The peroxidase enzyme reacts with DAB solution to give an insoluble, brown-colour precipitate Therefore, observation of a brown precipitate following this procedure is indicative of primary antibody reactıvity

The procedure used is as follows

Cell preparations (6-well tissue culture plates) which had been previously fixed in methanol and frozen at $-20^{\circ} \mathrm{C}$ were allowed to thaw and equilibrate at room temperature A grease pen (DAKO, S2002) was used to encircle cells in tissue culture plates to retain the various solutions involved The cells were equilibrated in Tris-buffered salıne (TBS) ($005 \mathrm{M} \operatorname{Tris} / \mathrm{HCl}, 015 \mathrm{M} \mathrm{NaCl}, \mathrm{pH} 76$) for 5 mınutes The slides were then incubated for 20 minutes at room temperature (RT) with either normal rabbit (DAKO, X092) or goat (DAKO, X0907) serum diluted 15 in TBS to block non-specific binding, depending upon the host source of the primary antibody in question This was then removed and $25-30 \mu \mathrm{l}$ of optımally diluted prımary antibody (Table 281) was placed on the cells The slides and tissue-culture plates were placed on a tray contannıng moistened tissue paper and incubated at $37^{\circ} \mathrm{C}$ for 2 hours or $4^{\circ} \mathrm{C}$
overnight The primary antıbodies used in the study are listed in Table 281 The slides were then rinsed in TBS/ 0 1\% Tween (Sigma, P-1379) for $5 \mathrm{~min} \times 3$ times, and then incubated for 30 min with a suitable biotinylated secondary antibody (rabbit ant1-mouse immunoglobulıns (DAKO, E354), goat anti-rabbit (DAKO, E0432) diluted 1300 in TBS The slides were rinsed as before and incubated with strepABComplex/Horse Radish Peroxidase (HRP) (DAKO, K377) for 30 mm at RT, after which they were rinsed again in TBS/ 01% Tween for $5 \mathrm{~min} \times 3$ tımes The cells were then incubated with a DAB solution (DAKO, S3000) for 10-15 min The plates were then rinsed off with UHP water and counterstaned with 2% methyl green solution, and samples mounted using a commercial mounting solution (DAKO, S3023)

2 8.3 Immunofluorescence

Immunofluorescence was performed using a similar approach to that described in 28 above Cell preparations (6 -well tissue culture plates) which had been previously fixed in methanol and frozen at $-20^{\circ} \mathrm{C}$ were allowed to thaw and equilibrate at room temperature A grease pen (DAKO, S2002) was used to encircle cells in tissue culture plates to contan the various solutions involved The cells were equiltbrated in Trıs-buffered salıne (TBS) ($005 \mathrm{M} \mathrm{Tris/HCl}, 015 \mathrm{M} \mathrm{NaCl}, \mathrm{pH} 76$) for 5 mınutes The slides were then incubated for 20 minutes at room temperature (RT) with normal rabbit/goat serum (DAKO, X092/Dako, X0907) (depending upon the primary in question) diluted 15 in TBS to block non-specific binding This was then removed and $25-30 \mu \mathrm{l}$ of optımally-diluted prımary antıbody was placed on the cells and incubated on a tray contanıng moistened tissue paper at $4^{\circ} \mathrm{C}$ overnight The following day the slides were then runsed in TBS/ 01% Tween (Sigma, P-1379) for $5 \mathrm{mın}$ x3 tımes All subsequent manipulations were performed in a darkened room, and incubations were performed in trays covered in tinfoil as a precaution to minımise "quenching" of fluorescence by exposure to light for extended periods Cells were incubated for 60 min with FITC-labelled goat antı-rabbit immunoglobulin (Sıgma, F-6005) diluted 1160 m TBS/0 1\%Tween The slides were then rinsed in TBS/ 0 1\% Tween (Sigma, P-1379), x3 in 15 min , air-dried and mounted in fluorescent mountıng medium (DAKO, S3023) Antıbody reactıvity was determıned by examınation under a fluorescent microscope

Antibody	Dilution/ Concentration	Supplıer	Catalogue no
Cytokeratın 8 (M)	$1 / 200$	Sıgma	C-5301
Cytokeratın 18 (M)	$1 / 800$	Sıgma	C-8541
Cytokeratın 19 (M)	$1 / 50$	Sıgma	C5301
eIF-4E (M)	$1 / 250$	Transduction Laboratones	E27620
323/A3 (Antı-EpCAM)*	$1 / 150$	NeoMarkers	MS-181-P1
Ep-CAM Ab1 $(V U-1 D 9)^{*}$	$1 / 150$	NeoMarkers	MS-144-P1
β_{1}-Integnn	$1 / 100$	Serotech	MCA1188
α_{2}-Integnn	$1 / 250$	Serotech	MCA1186

Nomenclature $\quad(\mathrm{M})=$ Mouse-antı-human IgG
$(\mathrm{R})=$ Rabbit-anti- human IgG

* These antibodies were used in combination to improve sensitivity

Table 281 Prımary antıbodies used for immunocytochemıstry/Immunofluorescence

29 WESTERN BLOT ANALYSIS

Protems for western blot analysis were separated by SDS-polyacylamide gel electrophoresis (SDS-PAGE)

2.9 1 Sample preparation

Cell pellets (Section 27 1) were lysed in TG lysis buffer (20 mM Tris-HCl pH 8, 10\% glycerol, 1% TritonX-100, $15 \mathrm{mM} \mathrm{MgCl}_{2}, 2 \mathrm{mM}$ EDTA, $137 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM} \mathrm{Na} \mathrm{VO}_{4}$, 1 mM Pefabloc (Boehringer, 84500920-22), and 1X Protease inhibitor cocktal (Boehringer, 1697498) for 20 min on ice The extracts were etther used immediately for western blot analysis or snap frozen in liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$ Alternatively, cells were lysed by resuspension in boiling loading buffer (25 ml
$125 \mathrm{M}-\mathrm{Tris} / \mathrm{HCl}, 10 \mathrm{~g}$ SDS, 58 ml glycerol and 01% bromophenol blue (Sıgma, B8026) made up to 25 ml with distilled water) and incubated at $100^{\circ} \mathrm{C}$ for $2-3 \mathrm{~min}$, cooled to room temperature and used immediately for western blot analysis

29.2 Gel electrophoresis

Resolving and stacking gels were prepared as outlined in Table 291 and poured into clean $10 \mathrm{~cm} \times 8 \mathrm{~cm}$ gel cassettes which consisted of 1 glass and 1 aluminium plate, separated by 075 cm plastıc spacers The resolving gel was poured first and allowed to set The stacking gel was then poured and a comb was placed into the stacking gel in order to create wells for sample loadıng Once set, the gels could be used immediately or wrapped in alumınuum forl and stored at $4^{\circ} \mathrm{C}$ for 24 hours

Before samples were loaded onto the stacking gels, equal cell numbers (2×10^{4} cells per lane) were lysed in $2 x$ loadıng buffer (Section 291) The samples were then loaded alongside molecular weight colour protein markers (Sigma, C-3437) The gels were run at $250 \mathrm{~V}, 45 \mathrm{~mA}$ for approxımately 15 hours (untıl the protein was run at least half way into the gel as judged by the mıgration of colour markers during the electrophoretic process All gels were made from a stock of Acrylamide (details below) Sample calculations for two different percentage gels are shown in table 291

Components	Resolving gel $\mathbf{(7 5 \%)}$	Resolvıng gel $(\mathbf{1 2 \%})$	Stacking gel
Acrylamıde stock	375 ml	6 ml	08 ml
Ultrapure water	80 ml	575 ml	36 ml
$1875 \mathrm{M}-\mathrm{Tris} / \mathrm{HCl}, \mathrm{pH} 88$	30 ml	30 ml	-
$125 \mathrm{M}-\mathrm{Tris} / \mathrm{HCl}, \mathrm{pH} 68$	-	-	05 ml
10% SDS (Sıgma, L-4509)	$150 \mu \mathrm{l}$	$150 \mu \mathrm{l}$	$50 \mu \mathrm{l}$
10% APS (Sıgma, A-1433)	$60 \mu \mathrm{l}$	$60 \mu \mathrm{l}$	$17 \mu \mathrm{l}$
TEMED (Sıgma, T-8133)	$10 \mu \mathrm{l}$	$10 \mu \mathrm{l}$	$6 \mu \mathrm{l}$

Acrylamide stock - Sıgma Cat No - 148660

Table 29.1 Preparation of electrophoresis gels

2.9.3 Western blotting

Following electrophoresis, the acrylamide gels were equilibrated in transfer buffer (25 mM Tris, 192 mM glycine (Sigma. G-7126) pH 8.3-8.5 without adjusting) for 20 min. Proteins in gels were transferred onto Hybond ECL nitrocellulose (Amersham, RPN 2020D) or PVDF (Polywinyl diflouride) (Boehringer, 1722026) membranes by semi-dry electroblotting. Six sheets of Whatman 3 mm filter paper (Whatman. 1001824) were soaked in transfer buffer and placed on the cathode plate of a semi-dry blotting apparatus. Excess air was removed from between the filters by moving a glass pipette over the filter paper. Nitrocellulose or PVDF (pre-activated in methanol for 1-2 min . and washed in UHP for 5 min), cut to the same size of the gel, was soaked in transfer buffer and placed over the filter paper, making sure there were no air bubbles. The acrylamide gel was placed over the nitrocellulose and six more sheets of presoaked filter paper were placed on top of the gel. Excess air was again removed by rolling the pipette over the filter paper. The proteins were transferred from the gel to the nitrocellulose/PVDF at a current of 0.34 mA at 15 V for $20-30 \mathrm{~min}$. depending upon the size of the protein.

1. Anode buffer 1: (4 sheets of filter paper: squeeze dry)
33.35 g Tris, 200 ml Methanol in 1 L .
2. Anode buffer 2 : (2 sheets of filter paper, squeeze dry)
3.03 g Tris, 200 ml Methanol in 1 L .
3. PVDF membrane (pre-activated in methanol as before).
4. Polyacrylamide gel.
5. Cathode Buffer: (4 sheets of filter paper: squeeze dry)
3.03 g Tris, 5.25 g 6-amino-n-hexanoic acid (Sigma, A-2504), 200ml Methanol in 1 L .

All incubation steps from now on, including the blocking step. were carried out on a revolving apparatus to ensure even exposure of the membrane blot to all reagents.

The nitrocelluluse/PVDF membranes were blocked for 2 hours at room fempcrature with fresh filtered 5\% non-fat dried milk (Cadburys; Marvel skimmed milk) in TBS/ 0.1% Tween. pH 7.4.

After blocking, the membranes were rinsed with TBS/ 01% Tween and incubated with prımary antıbody overnight at $4^{\circ} \mathrm{C}$ Prımary antıbodies used are listed in table 292 The following day the primary antibody was removed and the membranes rinsed 3 tımes with TBS/ 0 1\% Tween The membranes were incubated in 1/1000 dilution of a suitable HRP-labelled secondary antıbody (Mouse, Sigma, A-6782 or Rabbit, Sıgma, A-4914) in TBS/0 1% Tween for 1 hour at room temperature (R T) The secondary was then removed and blots were washed for 15 mm in TBS/0 1\%Tween Bound antıbody was detected using enhanced chemıluminescence (ECL) (Section 294)

Antıbody	Dilution/ Concentratıon	Supplıer	Catalogue no.
Cytokeratın 8 (M)	$1 / 400$	Sıgma	C-5301
Cytokeratın 18 (M)	$1 / 800$	Sıgma	C-8541
Cytokeratın 19 (M)	$1 / 50$	Sıgma	C5301
eIF-4E (M)	$1 / 500$	Transductıon Laboratorıes	E27620
c-myc (M)	$1 / 500$	Santa Cruz	SC-040
YY1 (R)	$1 / 250$	Santa Cruz	SC-281
$\beta_{1-\text {-integrm }}^{\text {Mad1 }}$	$1 / 250$	Chemıcon	AB1937
$1 / 250$	Santa Cruz	SC-222	

Nomenclature (M) = Mouse antı-human IgG
$(\mathrm{R})=$ Rabbit antı-human IgG
Table 292 Antibodies used for western blot analysis

29.4 Enhanced chemiluminescence detection

Protem bands were developed using the Enhanced Chemıluminescence Kit (ECL) (Amersham, RPN2109) according to the manufacturer's instructions

After blots were washed in TBS/0 1\% Tween x3 times for 5 mm , a sheet of parafilm was flattened over a smooth surface, e g a glass plate, making sure all arr bubbles were removed The membrane was then placed on the parafilm, and excess fluid removed 15 ml of ECL detection reagent 1 and 15 ml of reagent 2 were mixed and covered over
the membrane Charges on the parafilm ensured the fluid stayed on the membrane The reagent was removed after one minute and the membrane wrapped in cling film The membrane was exposed to autoradıgraphic film (Kodak, X-OMAT S, 500 9907) in an autoradographic cassette for varıous times, depending upon the strength of the signal obtaned The autoradiographic film was then developed The exposed film was developed for 5 min in developer (Kodak, LX24), diluted 165 in water The film was briefly immersed in water and transferred to a Fixer solution (Kodak, FX-40) diluted 15 in water, for 5 min The film was transferred to water for 5 mmn and then arr-dried

210 RNA EXTRACTION

RNA was extracted from cells as follows

Cells were trypsinsed, washed once with PBS A and the sample was counted Approximately 10^{8} cells were pelleted and lysed using 1 ml of TRI REAGENT ${ }^{\mathrm{TM}}$ (Sıgma, T-9424) The samples were allowed to stand for 5 min at RT to allow complete dissociation of nucleoprotein complexes and then snap-frozen in $\mathrm{l}_{1 \mathrm{q}} \mathrm{N}_{2}$ and stored at $-80^{\circ} \mathrm{C}$

When thawed, samples were allowed to stand for 5 min before 02 ml of chlorofom was added per ml of TRI REAGENT ${ }^{\mathrm{TM}}$ used Samples were then shaken vigorously for 15 sec and allowed to stand for 15 min at RT Samples were then centrıfuged at 13000 rpm in a microfuge for 15 min at $4^{\circ} \mathrm{C}$ This step separated the mixture into 3 phases, the RNA was contaned in the colourless upper aqueous layer This layer was then transferred to a fresh Eppendorf and 05 ml of isopropanol was added The sample was mixed and allowed to stand at RT for 10 min before being centrifuged at 13000 rpm in a microfuge for 10 min at $4^{\circ} \mathrm{C}$ The RNA formed a precipitate at the bottom of the tube The supernatant was removed and the pellet was washed with 1 ml of 75% ethanol and centrifuged at $4^{0} \mathrm{C}$ for $5-10 \mathrm{~mm}$ at 8500 rpm The supernatant was removed and the pellet was briefly allowed to arr-dry $20-30 \mu \mathrm{l}$ of DEPC-treated water was then added to the RNA to resuspend the pellet

Concentrations of RNA in samples were calculated by determining OD at 260 nm and 280 nm and using the following formula -
$\mathrm{OD}_{260 \mathrm{~nm}} \times$ Dilution factor $\times 40=\mu \mathrm{g} / \mu \mathrm{l}$ RNA
The purity of the RNA extraction was calculated by determining its OD at 260 nm and $280 \mathrm{~nm} \quad$ An $\mathrm{A}_{260 \mathrm{~nm}} \quad \mathrm{~A}_{280 \mathrm{~nm}}$ ratio of 2 is indicative of pure RNA Only those samples with ratios between 17 and 21 were used

210.1 Quagen Kit RNA Isolation

Alternatively, high quality RNA was isolated from cells using the Rneasy mın kit (Q1agen, 74104) The Rneasy extraction is based on guanidine thocyanate method of extraction The procedure was performed according to the manufacturer's instructions

2.11 REVERSE TRANSCRIPTASE REACTION

Reverse transcriptase (RT) reactions were carned out in laminar flow cabinets using micropipettes which were specifically allocated to this work
cDNA was formed using the following procedure -

* 1μ l olıgo (dT$)^{12-18}$ prımers ($1 \mu \mathrm{~g} / \mu \mathrm{l}$) (Promega, C1101)
* 1μ l total RNA $(1 \mu \mathrm{~g} / \mu \mathrm{l})$ (section 214)
* $3 \mu \mathrm{l}$ water
were mixed in a 05 ml Eppendorf (Eppendorf, 0030121023), heated to $70^{\circ} \mathrm{C}$ for 10 mm and then chilled on ice To this, the following were added -
* $4 \mu \mathrm{l}$ of a 5 x buffer $\left(250 \mathrm{mM}-\mathrm{Tr} \mathrm{I} / \mathrm{HCl} \mathrm{pH} 83,375 \mathrm{mM}-\mathrm{KCl}\right.$ and $\left.15 \mathrm{mM}-\mathrm{MgCl}_{2}\right)$
* $2 \mu \mathrm{l}$ DTT $(100 \mathrm{mM})($ Gıbco, $510-8025 \mathrm{SA})$
* $1 \mu \mathrm{l}$ RNasin (40U/ $\mu \mathrm{l}$) (Promega, N2511)
* $1 \mu \mathrm{I}$ dNTPs $(10 \mathrm{mM}$ of each dNTP)
* $6 \mu \mathrm{l}$ water
* $1 \mu \mathrm{l}$ Moloney murıne leukaemıa vırus-reverse transcrıptase (MMLV-RT) (40,000U/ $\mu \mathrm{l}$) (Gibco, 510-8025 SA)
The solutions were mixed and the RT reaction was carried out by incubating the Eppendorfs at $37^{\circ} \mathrm{C}$ for 1 hour The MMLV-RT enzyme was then mactivated by heating to $95^{\circ} \mathrm{C}$ for 2 min The cDNA was stored at $-20^{\circ} \mathrm{C}$ until required for use in PCR reactions as outlined m Section 216

2121 POLYMERASE CHAIN REACTION

A standardised polymerase chain reaction (PCR) procedure was followed in this study The Eppendorf tubes used (Eppendorf, 0030121 023) and the sterle water were DEPC-treated All reagents had been aliquoted and were stored at $-20^{\circ} \mathrm{C}$ and all reactions were carried out in a laminar flow cabinet

Each PCR tube contaned the following -

* $245 \mu \mathrm{l}$ water
* $5 \mu \mathrm{l} 10 \mathrm{x}$ buffer* ${ }^{*}(100 \mathrm{mM}-\mathrm{Tris} / \mathrm{HCl}, \mathrm{pH} 90,50 \mathrm{mM}-\mathrm{KCl}, 1 \%$ Triton X-100)
- $3 \mu \mathrm{l} 25 \mathrm{mM}-\mathrm{MgCl}_{2}{ }^{*}$
* $8 \mu \mathrm{l}$ dNTPs (125 mM each of dATP, dCTP, dGTP and dTTP) (Promega, U1240)
* $1 \mu \mathrm{l}$ each of first and second strand target prımers ($250 \mathrm{ng} / \mu \mathrm{l}$)
* $1 \mu \mathrm{l}$ each of first and second strand endogenous control primer ($250 \mathrm{ng} / \mu \mathrm{l}$) (β-actm)
* $05 \mu \mathrm{l}$ of $5 \mathrm{U} / \mu \mathrm{l}$ Taq DNA polymerase enzyme*
- $5 \mu \mathrm{l}$ cDNA
*(Promega, N1862)

DNA was amplıfied by PCR as follows
$95^{\circ} \mathrm{C}$ for 5 mm - to denature double-stranded DNA
30 cycles $\quad 95^{\circ} \mathrm{C}$ for 30 sec -denature
${ }^{*}{ }^{0} \mathrm{C}$ for 30 sec - anneal
$72^{\circ} \mathrm{C}$ for 30 sec - extend
$72^{\circ} \mathrm{C}$ for 7 mm - extend

* the annealing temperature varied with the primer set used See Table 2 appropriate annealing temperatures

The reaction tubes were then stored at $4^{\circ} \mathrm{C}$ untll analysed by gel electrophoresis as described in Section 217

Prımers were K8/18 (McBride et al , 1999), K19 (Meleady, PhD Thesis 1997) c-myc (NıcAomhlimh, R , PhD thesis, 1997) and β-actin (NicAomhlımh, R , PhD thesis, 1997)

Gene	Sense Sequence	Antı-Sense Sequence
Id2	gaccegatgagctctatc	cgcttattcagccacagtgc
Id3	gtggaaatcctacagcgcgtc	gcaccaggttagtctccagg
FSTL1	gaggcacagaccatgtgtctgg	cctgctgacagatgcagtaaa
Spd/Spn	tggagagcacccctttaccac	aaccctcttcactggacagatc
TNFSF7	gtcacttgggtgggacgtagc	ggcgctgggaggcaatggta
FHL2	acaagcagcaacttctctgtgt	cacaaggagtgcttcgtgtgc
HMOX1	cttcttcaccttccccaacatt	cttccagagagaggggcaca
Zyxın	ccactccattcaftccaagtc	gggctccaggactgaacttgg
GPX3	gtggagggctttgtccctaatttt	Atgagacggccttcagttactt
LOXL2	gcaccgtgtgcgatgacga	aatccgaatgtgcctccaccgg
elF2-associated p67	aaacagaccctccctcagttcc	aattccaggccttgcattaatc
p21	cctggcacctcacctgctctgc	gcagaagatgtagaggggcc

Table 2121 Prımer Sequences for PCR amplification

2122 Real Time-PCR

RNA was isolated (Section 2 14) cell and cDNA synthesised as per Section 215 The Taqman® Real time PCR analysis was preformed using the Applied BioSystems Assays on Demand PCR Kits, and experiments were preformed in triplicate, following per manufacturer's instructions

213 ELECTROPHORESIS OF PCR PRODUCTS

A 2% agarose gel (NuSieve, GTG) was prepared in TBE buffer ($54 \mathrm{~g} \mathrm{Trıs}$,275 g boric acid, 2 ml 05 M -EDTA pH 80 in 500 ml water) and melted in a mıcrowave oven After allowing to cool, $0003 \%(\mathrm{v} / \mathrm{v})$ of a $10 \mathrm{mg} / \mathrm{ml}$ ethidıum bromide solution was added to the gel which was then poured into an electrophoresis apparatus (BıRad) Combs were placed in the gel to form wells and the gel was allowed to set
10μ l loadıng buffer (50% glycerol, $1 \mathrm{mg} / \mathrm{ml}$ xylene cyanol, $1 \mathrm{mg} / \mathrm{ml}$ bromophenol blue, 1 mM EDTA) was added to $50 \mu \mathrm{l}$ PCR samples and 20μ l was run on the gel at $80-90 \mathrm{mV}$ for approximately 2 hours When the dye front was seen to have mıgrated the required distance, the gel was removed from the apparatus and examıned on a UV-transillumınator and photographed

214 OVEREXPRESSION STUDIES

2141 Plasmid Preparation

Cultures were streaked on LB agar containing $50 \mu \mathrm{~g} / \mathrm{ml}$ AMP (Sigma, G9516) and $50 \mu \mathrm{~g} / \mathrm{ml}$ Ampicillin and incubated at $37^{\circ} \mathrm{C}$ overnıght From these, a single colony was inoculated into 10 ml of LB AMP ($50 \mu \mathrm{~g} / \mathrm{ml}$ each $)$ and grown overnıght A 2 ml sample of this suspension was then added to 200 ml of TB AMP $50 \mu \mathrm{~g} / \mathrm{ml}$ and left to grow overnight at $37^{\circ} \mathrm{C}$ for large-scale isolation of plasmid from transformed cells The following day the cells were pelleted, 15 munutes at 5000 rpm The plasmid DNA was then isolated from the cells using the Maxı-Minı Qiagen Plasmıd DNA Extraction kit (Qiagen, 12143) The DNA concentration was determined by measurng the $\mathrm{OD}_{260 \mathrm{~nm}}$

2142 Lipofectın Transfection of attached mammalian cells

On the day prior to transfections, cells to be transfected were plated from a single cell suspension and seeded into $25 \mathrm{~cm}^{2}$ flasks at 3×10^{5} cells per flask On the day of the transfection, the plasmids to be transfected were prepared along with the lipid
transfection reagents according to the manufacturers protocols (Lipofectin - GibcoBRL , 18292-011) The cells were transfected for four hours in the absence of serum after which the media was supplemented with 10% serum overnight The following morning flasks were washed with serum-contaimng medium and re-fed Selection began 12-24 hours after re-feeding For all transfections the cells were incubated at $37^{\circ} \mathrm{C}$

2 14.3 Selection of Transfected cells

After transfection, cells that had taken up the plasmid were selected by feeding the cells with medıa contaıning geneticın (Sıgma, G9516) - the plasmids used had a geneticin-resistance marker, therefore, only those cells containing the plasmid will survive treatment with geneticin 2 days after transfection the flask of celis was fed with $200 \mu \mathrm{~g} / \mathrm{ml}$ geneticin in complete media The concentration of geneticin was increased step-wise evey 2 days to a final concentration of $800 \mu \mathrm{~g} / \mathrm{ml}$ Untransfected control flasks were kılled after 4-5 days From surviving cells, frozen stocks were made and cells were prepared for immunocytochemical (Section 2 8) and western blot (Section 2 9) analysis

2144 Transient Transfection of DNA using Fugene 6 Reagent

Cells were seeded into $25 \mathrm{~cm}^{2}$ flasks at a cell density of 15×10^{5} cells $/ \mathrm{ml}$ (in 4 mL medrum) Fugene 6 reagent DNA complex was used at a 32 ratıo which was found to be an optumal ratio The Fugene DNA complex was made up accordmg to manufacturer's recommendations and with $100 \mu \mathrm{~L}$ of the complex mixture was added to the cells in a drop-wise fashion Cells were returned to the $37^{\circ} \mathrm{C}$ incubator Cells were harvested for RNA and protem at 24,48 and 72 hours

2.15 Affymetrix GeneChips®

The microarray gene expression experiments which were performed in this body of work were performed using Affymetrix ${ }^{\circledR}$ Human Genome U133A GeneChips® Affymetrix GeneChip probe microarrays are manufactured using technology that combines photolithography and combinatorial chemistry Tens to hundreds to thousands of different oligonucleotide probes are synthesised and each of these oligonucleotides is located in a specific area on the microarray slide, called a probe cell Each probe cell contains millions of copies of a given oligonucleotide and each feature size on the Affymetrix U133A GeneChip is 18 microns Due to advances in microarray design Affymetrix have since launched a new GeneChip, U133 Plus 2, which has decreased the feature size of the probes from 18 microns to 11 microns The new U133 Plus 2 GeneChips are now comprised of the old Affymetrix U133A and U133B GeneChips on a single slide The reduction in feature size to 11 microns has resulted in an increase in feature definition, with improved sharpness and signal uniformity

The most important aspect in efficient probe design is the quality of the sequence information used Probe selection and array design are two major factors in reliability, sensitivity, specificity and versatility of expression probe arrays Probes selected for gene expression arrays by Affymetrix are generated from sequence and annotation data obtained from multiple databases such as GenBank, RefSeq and dbEST Sequences from these databases are collected and clustered into groups of sımılar sequences Using clusters provided by UnıGene database as a starting point, sequences are further subdivided into subclusters representing distinct transcripts

This categorisation process involves alignment to the human genome, which reveals sphicing and polyadenylation variants The alignment also extends the annotation information supplied by the databases pinpointing low quality sequences These areas are usually trimmed for subsequent generation of high quality consensus sequences or alternatıvely Affymetrıx employ quality ranking to select representatıve sequences, called exemplars, for probe design

In general, Affymetrix use 11 to 16 probes which are 25 bases in length for each transcript The probe selection method used by Affymetrix for their U133 GeneChips
takes into account probe uniqueness and the hybridisation characteristics of the probes which allow probes to be selected based on probe behaviour Affymetrix use a multiple linear regression (MLR) model in the probe design that was derived from thermodynamic model of nucleic acid duplex formation This model predicts probe binding affinity and linearity of signal changes in response to varying target concentrations An advantage of this type of model-based probe selection system is that it provides a physical and mathematical foundation for systematic and large-scale probe selection Also, an essential criterion of probe selection by Affymetrix for quantitative expression analysis is that hybridisation intensities of the selected probes must be linearly related to target concentrations

A core element of Affymetrix microarray design is the Perfect/Mismatch probe strategy For each probe that is designed to be perfectly complımentary to a given target sequence, a partner probe is also generated that is identical except for a single base mismatch in its center These probe pars, called the Perfect Match probe (PM) and the Mismatch probes (MM), allow the quantitation and subtraction of signals caused by non-specific cross-hybridisation The differences in hybridisation signals between the partners, as well as their intensity ratios, serve as indicators of specific target abundance

2151 Sample and Array Processing

After RNA isolation, quantıfication and purification using the Qiagen Rneasy isolation method (Section 214 1), cDNA was synthesised usıng the GeneChip T7-Olıgo (dT) Promoter Primer Kit (Affymetrix, 900375) from $10 \mu \mathrm{~g}$ total RNA First strand cDNA synthesis was then performed using the SuperScript Choice Kit (BioSciences, 11917-010) First strand cDNA synthesis involved 'prımer hybridisation' where the T7-Oligo (dT) primer was incubated with the RNA and DEPC-treated $\mathrm{H}_{2} \mathrm{O}$ at $70^{\circ} \mathrm{C}$ for 10 mins , followed by a short incubation in ice, 'temperature adjustment' where 5 X first strand buffer, DTT and dNTP mix were added to the RNA mix and incubated at $42^{\circ} \mathrm{C}$ for 2 mins, and 'First Strand synthesis' where SuperScript II RT was added to the mix and incubated at $42^{\circ} \mathrm{C}$ for 1 hour Second strand cDNA synthesis was performed and purfied using GeneChip Sample Cleanup module (Affymetrix, 900371) as recommended by the manufacturers instructions
cRNA was then synthesised and biotin-labelled using the Enzo BioArray HighYield RNA Transcript Labelling Kıt (Affymetrix, 900182) Biotm-labelled cRNA was purified using the GeneChip Cleanup Module Kit (Affymetrix, 900371) and quantıfied The value obtaned was adjusted to reflect carryover of unlabelled total RNA A sample of biotın-labelled cRNA was taken for gel electrophoresis analysis The labelled cRNA was then fragmented before hybridisation onto the Affymetrix GeneChip probe microarrays The aliquot of fragmented sample RNA was stored at $-20^{\circ} \mathrm{C}$ until ready to perform the hybridisation step

Hybndisation of cRNA onto the Affymetrix GeneChip probe human microarrays (Affymetrix, HU133A and HU133 Plus 2) was performed in the Conway Institute, University College Dublin, where the Affymetrix Hybridisation Oven and Fluidics Station is set up along with the Affymetrix GeneChip Scanner, which exported the data directly into the Affymetrix analysis software, MicroArray Suite 51 (MAS 5 1)

2.15 2 Microarray Data Normalisation

The purpose of data normalisation is to minımise the effects of experimental and technical variation between microarray experiments so that meanıngful biological comparisons can be drawn from the data sets and that real biological changes can be identıfied among multıple mıcroarray experıments Several approaches have been demonstrated to be effective and beneficial However, most biologists use data scaling as the method of choice despite the presence of other alternatives In order to compare gene expression results from experiments performed using microarrays, it is necessary to normalise the data obtained following scanning the microarray chips There are two main ways in which this type of normalisation is performed, the first of which is 'Per-chıp' normalisation This type of normalisation helps to reduce minor differences in probe preparation and hybridisation conditions which may potentially result in high intensity of certain probe sets These adjustments in probe intensity are made to set the average fluorescence intensity to some standard value, so that all the intensities on a given microarray chip go up or down to a sımılar degree However, this type of normalisation should only be performed on microarrays using simılar cell or tissue types One drawback from this of normalisation is that some aspects of the microarray
data may potentially be obscured, such as whether the RNA samples or the probe preparation steps were equivalent for each sample.

The second way in which most biologist normalise their data sets is by employing 'per gene' normalisation method. The main aim of microarray experiments is to identify genes whose expression changes in different conditions, be that tracking gene changes across a temporal experiment or when comparing gene expression between normal and diseased tissue. Therefore, it is necessary to normalise microarray data sets using "per gene" normalisation. In 'Per gene' normalisation is necessary to find genes that have similar expression pattern across an experiment. Analysis of raw data from microarray experiments is useful for identifying genes that are expressed at the same level. for example, genes that are highly abundant in the samples.

2.15.3 Probe Logarithmic Intensity ERror estimation (PLIER)

The PLIER algorithm (http://www.affymetrix.com) is a new tool introduced by Affymetrix for the use in data analysis of their GeneChips and has replaced the need to normalise microarray data by using the 'per chip' and 'per gene' normalisation methods. This algorithm incorporates model-based expression analysis and non-linear normalisation techniques. PLIER accounts for differences in probes by means of a parameter termed "probe affinity". Probe affinity is a measure of how likely a probe is to bind to a complimentary sequence, as all probes have different thermodynamic properties and binding efficiencies. Probe affinities determine the signal intensities produced at a specific target concentration for a given probe, and are calculated using experimental data across multiple arrays. By accounting for these observed differences, all the probes within a set can be easily compared. An example of how the PIER algorithm works is if one probe is consistently twice as bright as other probes with in a set, PLIER appropriately scales the probe intensities. In the case of a probe set. this enables all set numbers to be compared and combined accurately.

PLIER also employs an error model that assumes error is proportional to the probe intensity rather that of the target concentration. At high concentrations, crror is approximately proportional to target concentration, since most of the intensity is due to target hybridisation signal. However, at the low end, error is approximately
proportional to background hybridisation intensity, which is the largest component of the observed intensity. Due to this effect, it is inaccurate to treat errors as a proportion of target concentration in all circumstances. The PLIER error model smoothly transitions between the low end, where error is dependent upon background, and the high end, where error is dependent on signal.

The PLIER algorithm supports a multi-array approach that enables replicate sample analysis. PLIER ensures consistent probe behaviour across experiments to improve the quality of results in any one given experiment and helps to discount outliers. Benefits of this algorithm include an improved coefficient of variation of signals from probe sets while retaining accuracy. Also higher differential sensitivity for low expressors maybe achieved using PLIER.

2.16 Genomatix Software Suite

One company that is providing software that allows users to explore textual data as well as combine sequence analysis, and genome annotation in order to help researchers to discover new contexts from biological data; is Genomatix (www.genomatix.de). The analysis offered by Genomatix software is aimed to help researchers gain a better understanding of gene regulation at the molecular level. The Genomatix software suite is comprised of six main tools: ElDorado, Gene2Promoter, BiblioSphere, GEMS Launcher, MatInspector and PromtoerInspector. ElDorado is a gene orientated genome search engine which provides the user with information about functional genomic elements within a specific region of the genome. This piece of software compiles and integrates information from several sources and includes functional information, synonyms and information on gene function and regulatory pathway. In addition, information on mRNAs, their exon/intron structure and coding sequences. single nucleotide polymorphisms (SNPs) and potential promoter regions maybe retrieved using ElDorado.

Since co-regulation of gene transcription often originates from common promoter elements the identification and characterization of these elements provides a more in-depth analysis for expression of microarray clusters. Gene2Promoter allows users to automatically extract groups of promoters for genes that may of interest. This piece of

Genomatix software provides access to promoter sequences of all genes annotated in available genomes. Results from Gene2Promoter are presented in a graphical format and common transcription factor binding sites are high lighted along the gene input sequence.

One powerful member of the Genomatix Software Suite, which illustrates the emerging emphasis on the visual presentation of complex data, is BiblioSphere. BiblioSphere is a data-mining tool for extracting and studying gene relationships from literature databases and genome-wide promoter analysis. The data-mining strategy allows to find direct gene-gene co-citations and even yet unknown gene relations via interlinks. BiblioSphere data is displayed as 3D interactive view (Figure 1.?) of gene relationships. Results can be classified by tissue, Gene Ontology and MeSH. Statistical rating by z-scores indicates over- and under-representation of genes in the referring biological categories.

Figure 2.1 Screen shot of BiblioSphere

Although transcription is regulated by a variety of DNA sequences, including enhancer and matrix attachment regions, promoters can be seen as the most important part of the sequence because any activator or repressor has to act on the promoter to influence transcriptional initiation of a particular gene. Promoters are DNA regions of several hundred base pairs that contain the transcription start site of genes. The most important functional elements within promoters are binding sites for specific proteins called transcription factors. The control of gene transcription is a common method used in biological systems to regulate protein expression. Transcription regulation in eukaryotes depends on a series of complex signal transduction networks that control
gene promoter activity. Genomatix have develop a software packages, GEMS Launcher with helps researchers to identify transcription factor binding sites in a given gene promoter. GEMS Launcher is divided up into several parts, the first of which is MatInspector.

Figure 2.2 Graphical example of Transcription Factor Binding Sites located in a Promoter sequence.

MatInspector is a tool that employs a library of matrix descriptions for transcription factor binding sites and locates these binding sites on a given promoter sequence. Graphical display of transcription factor binding sites common to a set of inputted promoters is obtained following MatInspector analysis. FrameWoker software tool that allows users to extract a common framework of elements from a set of DNA sequences. These elements are usually transcription factor binding sites since this tool is designed for the comparative analysis of promoter sequences. FrameWorker generates the most complex models that are common to the input sequences. These are all elements that occur in the same order and in a certain distance range in all (or a subset of the input sequences.

Figure 2.3 Screen shot of FrameWorker Results

Once a model of transcription factor binding sites is generated using FrameWoker software, it is possible using Genomatix Modellnspector program to scan sequence databases for regulatory units that match the model which have been generated using Matinspector. Modellnspector provides a library of experimentally verified promoter models against which transcription factor models maybe scanned.

It is with software packages provided by companies such as Genomatix, that scientists will have to reply on in order to help them make sense of the vast quantities of data that is being generated by DNA microarray experiments, not only carried out in their own laboratories, but also the great wealth of information that is available in public accesses databases. The type information retrieval, visualisation, standardisation and analysis offered by Genomatix, is and will receive a great deal of attention from countless other companies and bioinformatics will undoubtedly remain an extremely important and ever changing area of scientific research in the future.

Section 3.0: Results

Section 31 INVESTIGATION OF THE EFFECT OF PRYMIDINE ANALOGUE EXPOSURE IN THE HUMAN LUNG CARCINMOA CELL LINES, DLKP AND A549

Pervious studies in this laboratory have shown that $10 \mu \mathrm{M} 5,2$-Bromodeoxyuridine (BrdU) induces cytokeratin 8, 18 and 19 protein expression in the DLKP cell line and enhances their expression in A549 (McBride, et al, 1999, O'Sulllıvan, PhD Thesis, 1999, Meleady and Clynes, 2001) Induced α_{2}-, β_{1}-Integrın has been observed in both cell lines (Meleady and Clynes, 2001) as well as the proten expression of Ep-CAM (O'Sullıvan, PhD Thesıs, 1999)

In this study we expand the range of pyrimidine analogues investigated in our pervious studies in order to determine if all analogues investigated induced a sımılar pattern of differentiation in both the DLKP and A549 cell lines Immunocytochemistry was the primary analysis carried on treated cells and was used to qualitatively investigate the changes in cytokeratins 8, 18 and 19, α_{2}-, β_{1}-Integrin and Ep-CAM protein expression in both cell lines following treatment (Section 27) with each analogue investigated Western blot analysis was performed on a subset of treatments

Section 311 Changes in α_{2}-integrin expression in A549 cells following treatment with the thymidine analogues

Immunocytochemical analysis of A549 cells treated with $10 \mu \mathrm{M} \mathrm{BrdU}, \mathrm{IdU}, \mathrm{CdU}, 5-\mathrm{FU}$, $5,2-\mathrm{FdU}$, and $70 \mu \mathrm{M}$ Bromouracil and Bromouridine showed that expression of α_{2} integrin protein to be increased in treated cells The intensity of the observed staining in IdU, CdU and 5,2 -FdU treated A549 cells was comparable to that obtained following $10 \mu \mathrm{M} \operatorname{BrdU}$ treatment In contrast immunocytochemıstry analysıs showed that cells treated with Bromouracil, Bromouridine and 5-FU did not exhibit the same intensity as seen with the other analogues

Figure 3.1.1.1 Control

Figure 3.1.1.3CdU

Figure 3.1.1.5 5-FU

Figure 3.1.1.7 Bromouracil

Figure 3.1.1.2 BrdU

Figure 3.1.1.4 IdU

Figure 3.1.1.6 5,2'-FdU

Figure 3.1.1.8 Bromouridine
Magnification - 40X

Section 312 Changes in β_{1}-integrin expression in A549 cells following treatment with the thymidine analogues

Immunocytochemical analysis of A549 cells treated with $10 \mu \mathrm{M} \mathrm{BrdU}, \mathrm{IdU}, \mathrm{CdU}, 5-\mathrm{FU}$, $5,2-\mathrm{FdU}$, and $70 \mu \mathrm{M}$ Bromouracil and Bromourıdıne showed that expression of β_{1-} integrin protein to be increased in treated cells The intensity of the observed staining in CdU, 5-FU and 5,2-FdU treated A549 cells was comparable to that obtained following $10 \mu \mathrm{M}$ BrdU treatment Immunocytochemical analysis showed that IdU-treated cells to have a greater increase in β_{1}-integrin protein than BrdU-treated cells In contrast immunocytochemistry revealed that treatment with Bromouracil and Bromouridine did not exhibit the same intensity as seen with the other analogues

Figure 3.1.2.1 Control

Figure 3.1.2.3 CdU

Figure 3.1.2.5 5-FU

Figure 3.1.2.7 Bromouracil

Figure 3.1.2.2 BrdU

Figure 3.1.2.4 IdU

Figure 3.1.2.6 5,2-FdU

Figure 3.1.2.8 Bromouridine
Magnification - 40X

Section 313 Changes in EpCAM expression in A549 cells following treatment with the thymidine analogues

Immunocytochemical analysis of A549 cells treated with $10 \mu \mathrm{M} \mathrm{BrdU}$, IdU, CdU, $5-\mathrm{FU}$, $5,2-\mathrm{FdU}$, and $70 \mu \mathrm{M}$ Bromouracil and Bromouridıne showed that expression of EpCAM protein to be increased in treated cells The intensity of the observed staining in IdU, 5FU and 5,2 -FdU treated A549 cells was comparable to that obtained following $10 \mu \mathrm{M}$ BrdU treatment Immunocytochemical analysis showed that CdU-, Bromouracil- and Bromouridine-treated cells to have an only slightly greater level of increase in EpCAM expression than the control A549 cells

Figure 3.1.3.1 Contral

Figure 3.1.3.3 CdU

Figure 3.1.3.5 5-FU

Figure 3.1.3.2 BrdU

Figure 3.1.3.4 IdU

Figure 3.1.3.6 5,2'-FdU

Figure 3.1.3.7 Bromouracil

Section 314 Changes in CK8 expression in A549 cells following treatment with the thymidine analogues

Immunocytochemical and immunofluorescence analysis of A549 cells treated with $10 \mu \mathrm{M}$ BrdU, IdU, CdU, 5-FU, 5,2 -FdU, and $70 \mu \mathrm{M}$ Bromouracil and Bromouridine showed that expression of cytokeratins 8 protein to be increased in treated cells The intensity of the observed staming in all the analogue treatments was increase in comparison to the A549 control cells CdU and 5,2-FdU treated A549 cells exhibited a greater increase cell size in comparison to the other treatments The morphology of 5,2 -FdU treated A549 cells were greatly altered in comparison to control cells and the other analogue treatments

Figure 3.1.4.1 Control

Figure 3.1.4.3 CdU

Figure 3.1.4.5 5-FU

Figure 3.1.4.7 Bromouracil

Figure 3.1.4.2 BrdU

Figure 3.1.4.4 IdU

Figure 3.1.4.6 5,2'-FdU

Figure 3.1.4.8 Bromouridine
Magnification - 40X

Figure 3.1.4.9 Control

Figure 3.1.4.11 CdU

Figure 3.1.4.10 IdU

Figure 3.1.4.12 5,2'-FdU

Figure 3.1.4.13 BromoUracil

Section 315 Changes in CK18 expression in A549 cells following treatment with the thymidine analogues

Immunocytochemical analysis of A549 cells treated with $10 \mu \mathrm{M} \mathrm{BrdU}$, IdU, $\mathrm{CdU}, 5-\mathrm{FU}$, $5,2-\mathrm{FdU}$, and $70 \mu \mathrm{M}$ Bromouracil and Bromouridine showed that expression of cytokeratin 18 protein to be increased in treated cells The intensity of the observed staining in all the analogue treatments was increase in comparison to the A549 control cells All treatments displayed a simılar increase in CK 18 comparable to that observed in $10 \mu \mathrm{M}$ BrdU treated cells CdU and 5,2-FdU treated A549 cells exhbited a greater increase in size of the cells in comparison to the other treatments The morphology of 5,2 -FdU treated A549 cells were greatly altered in comparison to control cells and the other analogue treatments

Figure 3.1.5.1 Control

Figure 3.1.5.3 CdU

Figure 3.1.5.5 5-FU

Figure 3.1.5.7 Bromouracil

Figure 3.1.5.2 BrdU

Figure 3.1.5.4 IdU

Figure 3.1.5.6 5,2'-FdU

Figure 3.1.5.8 Bromouridine
Magnification - 40X

Figure 3.1.5.9 Control

Figure 3.1.5.11 CdU

Figure 3.1.5.10 IdU

Figure 3.1.5.12 Bromouridine

Figure 3.1.5.13 5,2’ ${ }^{\prime}$ 'dU
Magnification - 40X

Section 316 Changes in CK19 expression in A549 cells following treatment with the thymidine analogues

Immunocytochemical analysis of A549 cells treated with $10 \mu \mathrm{M} \mathrm{BrdU}$, IdU, $\mathrm{CdU}, 5-\mathrm{FU}$, 5,2 -FdU, and $70 \mu \mathrm{M}$ Bromouracil and Bromouridine showed that expression of cytokeratin 19 protein to be increased in treated cells The intensity of the observed staining in all the analogue treatments was increase in comparison to the A549 control cells All treatments displayed a similar increase in CK18 comparable to that observed in $10 \mu \mathrm{M}$ BrdU treated cells IdU, $5-\mathrm{FU}$ and $5,2-\mathrm{FdU}$ treated A549 cells exhibited a greater increase in CK19 than the other treatments CdU and 5,2-FdU displayed a great increase in cell size The morphology of 5,2-FdU treated A549 cells were greatly altered in comparison to control cells and the other analogue treatments

Figure 3.1.6.1 Control

Figure 3.1.6.3 CdU

Figure 3.1.6.5 5-FU

Figure 3.1.6.7 Bromouracil

Figure 3.1.6.2 BrdU

Figure 3.1.6.4 IdU

Figure 3.1.6.6 5,2'-FdU

Figure 3.1.6.8 Bromouridine

Figure 3.1.6.9 Control

Figure 3.1.6.11 CdU

Figure 3.1.6.10 IdU

Figure 3.1.6.12 BromoUracil

Figure 3.1.6.13 5,2'-FdU
Magnification - 40X

	Control	BrdU	5,2' IdU	5, ${ }^{\prime}$ ' CdU	BromoUracil	Bromouridine	5- FU	5,2'- FdU
α_{2} Integrın	+	+	+	++	+	+	+	++
β_{1} Integrın	+	+	++	+	+	+	+	+
Ep- CAM	+	++	+	+	+	+	+	+
CK-8	+	+ +	++	++	++	+++	+++	+
CK-18	+	++	++	+ +	++	+ +	++	++
CK-19	+	+ +	++	+ +	+ +	+	++	++

Table 1 Summary of results obtained for different marker protems in A549 treated cells with various thymidine analogues

+ - Expression, ++ - Strong Expression, +++ - Intense Expression

Section 317 Changes in $\boldsymbol{\alpha}_{2}$-integrin expression in DLKP cells following treatment with the thymidine analogues

Immunocytochemical analysis of DLKP cells treated with $10 \mu \mathrm{M}$ BrdU, IdU, CdU, 5,2FdU and 5,5-FdU (results not shown) showed that expression of α_{2}-integrin protein to be increased in treated cells The intensity of the observed staining in these analogue treatments was increase comparable to that seen in BrdU treated cells In contrast, immunocytochemical analysis of DLKP cells treated with $70 \mu \mathrm{M}$ Bromouridine and Bromouracil revealed that the cells did not exhibit the same increase in α_{2}-integrin as seen with the other analogues

Figure 3.1.7.1 Control

Figure 3.1.7.3 CdU

Figure 3.1.7.5 5.2'-FdU

Figure 3.1.7.2 BrdU

Figure 3.1.7.4 IdU

Figure 3.1.7.6 Bromouracil

Figure 3.1.7.7 Bromouridine

Section 318 Changes in $\boldsymbol{\beta}_{1}$-integrin expression in DLKP cells following treatment with the thymidine analogues

Immunocytochemical analysis of DLKP cells treated with $10 \mu \mathrm{M} \mathrm{BrdU}, \mathrm{IdU}, \mathrm{CdU}, 5,2$ FdU and 5,5-FdU (results not shown) showed that expression of $\beta_{1}-$ Integrin protein to be increased in treated cells The intensity of the observed staining in IdU, 5,2-FdU and 5,5 -FdU-treated DLKP cells was comparable to the staning observed in BrdU treated cells Immunocytochemistry analysis revealed that cells treated with $70 \mu \mathrm{M}$ Bromouracil and Bromouridine did not exhibit the same intensity as seen with the other analogues

Figure 3.1.8.1 Control

Figure 3.1.8.3 CdU

Figure 3.1.8.5 5,2'-FdU

Figure 3.1.8.2 BrdU

Figure 3.1.8.4 IdU

Figure 3.1.8.6 Bromouracil

Figure 3.1.8.7 Bromouridine

Section 319 Changes in EpCAM expression in DLKP cells following treatment with the thymidine analogues

Immunocytochemical analysis of DLKP cells treated with $10 \mu \mathrm{M} \mathrm{BrdU}$, IdU, CdU, 5,2FdU, 5,5 -FdU (results not shown), and $70 \mu \mathrm{M}$ Bromouridine and Bromouracil showed that expression of EpCAM protein to be increased in treated cells The intensity of the observed staining in all analogue treatments was only slightly greater than that seen in the DLKP control

Figure 3.1.9.1 Control

Figure 3.1.9.2 CdU

Figure 3.1.9.4 5,2-FdU

Figure 3.1.9.3 IdU

Figure 3.1.9.5 Bromouracil

Figure 3.1.9.6 Bromouridine

Section 3110 Changes in CK8 expression in DLKP cells following treatment with the thymidine analogues

Immunocytochemical analysis of DLKP cells treated with $10 \mu \mathrm{M}$ BrdU, IdU, CdU, 5,2FdU, 5,5-FdU (results not shown), and $70 \mu \mathrm{M}$ Bromouracil and Bromouridine showed that expression of cytokeratin 8 protein to be induced in treated cells The intensity of the observed staınıng 5,2-FdU-treated DLKP cells to be sımılar to that of BrdU treated cells

Figure 3.1.10.1 Control

Figure 3.1.10.3 CdU

Figure 3.1.10.5 5,2'-FdU

Figure 3.1.10.2 BrdU

Figure 3.1.10.4 IdU

Figure 3.1.10.6 Bromouracil

Figure 3.1.10.7 Bromouridine

Section 3111 Changes in CK18 expression in DLKP cells following treatment with the thymidine analogues.

Immunocytochemical analysis of DLKP cells treated with $10 \mu \mathrm{M}$ BrdU, IdU, CdU, 5,2FdU, 5,5-FdU (results not shown), and $70 \mu \mathrm{M}$ Bromouridıne and Bromouracil showed that expression of cytokeratin 18 protein to be induced in treated cells The intensity of the observed staining in IdU-, 5,2-FdU, and 5,5-FdU-treated DLKP cells was comparable to the staining observed in BrdU treated cells Immunocytochemistry analysis revealed that cells treated with Bromouracil and Bromouridine did not exhibit the same intensity as seen with the other analogues

Figure 3.1.11.1 Control

Figure 3.1.11.3 CdU

Figure 3.1.11.5 5,2'-FdU

Figure 3.1.11.2 BrdU

Figure 3.1.11.4 IdU

Figure 3.1.11.6 Bromouracil

Figure 3.1.11.7 Bromouridine Magnification - 40X

Section 3112 Changes in CK19 expression in DLKP cells following treatment with the thymidine analogues

Immunocytochemical analysis of DLKP cells treated with $10 \mu \mathrm{M}$ BrdU, IdU, CdU, 5,2FdU, 5,5-FdU (results not shown), and $70 \mu \mathrm{M}$ Bromouracıl and Bromouridine showed that expression of cytokeratin 19 protein to be induced in treated cells The intensity of the observed staining in IdU, 5,2 -FdU, and 5,5-FdU-treated cells was comparable to the stainıng observed in BrdU treated cells Immunocytochemistry analysis revealed that cells treated with CdU, Bromouracil and Bromouridine did not exhibit the same increase intensity as seen with the other analogues

Figure 3.1.12.1 Control

Figure 3.1.12.3 CdU

Figure 3.1.12.5 5,2'-FdU

Figure 3.1.12.2 BrdU

Figure 3.1.12.4 IdU

Figure 3.1.12.6 Bromouracil

Figure 3.1.12.7 BromoUridine Magnification - 40X

	Control	BrdU	5, ${ }^{1}$ I IdU	5,2, ${ }^{\prime} \mathrm{CdU}$	BromoUracil	Bromouridine	5,2'- FdU	5.5'- FdU
α_{2} Integrin	+	++	+	++	+	+	++	+
	+	++	+++	++	+	+	++	+
$\begin{aligned} & \text { Ep- } \\ & \text { CAM } \end{aligned}$	-	+	+	+	+	+	+	+
CK-8	-	+	+	+	+	+	+	+
CK-18	-	+	+	+	+	+	+	+
CK-19	-	+	+	+	+	+	+	++

Table 2 Summary of results obtained for different marker proteins in DLKP treated cells with various thymidine analogues. - No Expression, + Expression, ++ Strong Expression, +++ Intense Expression.

Section 3.1.13 INVESTIGATION OF CHANGES IN CYTOKERATIN 8 AND EIF4E EXPRESSION LEVELS IN TREATED A549 CELLS

To quantify the changes in expression of cytokeratin 8 protem observed in the immunochemical analysis of treated A549 cells, Western blot analysis was performed on cells which had been treated for up to 14 days with a selection of analogues

An increase in cytokeratin 8 protein levels was demonstrated in A549 cells treated with BrdU, IdU, CdU, 5,2 -FdU, 5,5-FdU and 5-FU An increase in cytokeratın expression was observed at day 7 with a great increased noted in cells exposed to drug for 14 days

The expression level of eIF4E in treated A549 cells was also investigated and we demonstrate an increase of this protein in A549-treated cells Western blot analysis also revealed that only phosphorylated eIF4E was present in treated cells

Figure 3.2.1 Western Blot analysis of Keratin 8 protein in A549 cells following treatment with $10 \mu \mathrm{M}$ IdU for 7 - and 14-days.

Figure 3.2.2 Western Blot analysis of Keratin 8 protein in A549 cells following treatment with $10 \mu \mathrm{M} \mathrm{CdU}$ for 7 - and 14-days.

Figure 3.2.3 Western Blot analysis of Keratin 8 protein in A549 cells following treatment with $10 \mu \mathrm{M} 5$-FU for 7 - and 14-days.

Figure 3.2.4 Westem Blot analysis of Keratin 8 protein in A549 cells following treatment with $10 \mu \mathrm{M} 5,2^{\circ}-\mathrm{FdU}$ for 7 - and 14 -days.

Figure 3.2.5 Western Blot analysis of Keratin 8 protein in A549 cells following treatment with $10 \mu \mathrm{M} 5,5^{\circ}-\mathrm{FdU}$ for 7 - and 14 -days.

Figure 3.2.6 Westem blot analysis for K8 expression in A549 cells treated with $10 \mu \mathrm{M} \mathrm{BrdU}, 5-\mathrm{FU}$ and $5,2^{\circ}$-FdU for 7 -days.

Section 3.1.14
Summary of the effects of treatment with pyrimidine analogues on elF4E protein expression in A549 cells.

A549 cells were treated with IdU, CdU and Bromouracil (Section 2.7) in order to investigate the effect these treatments had on the protein expression levels of elF4E in the A549 cell line. Western blot analysis revealed an increase in the expression of phosphorylated eIF4E in the three drug treatments.

Figure 3.2.7 Westem Blot analysis of elF4E protein in A549 cells following treatment with $10 \mu \mathrm{M}$ IdU for 7 days.

Figure 3.2.8 Western Blot analysis of eIF4E protein in A549 cells following treatment with $10 \mu \mathrm{M} \mathrm{CdU}$ for 7 days.

Figure 3.2.9 Westem Blot analysis of eIF4E protein in A549 cells following treatment with $70 \mu \mathrm{M}$ BromoUracil for 7 days.

Section 3.115 Summary of the effects of 5-Bromo-2`-deoxyUridine (BrdU) on differentiation status of DLKP and A549 cell lines

The change of morphology in both cell lines following 7-days of treatment with $10 \mu \mathrm{M}$ BrdU was investıgated Both cell lines an approxımate 5 - to 10 -fold increase in cell surface area occurred, with most of the cells acquiring a stretched, flattened appearance

Immunocytochemical analysıs for was conducted on treated DLKP and A549 cells to investıgate if the observed changes m morphology were accompanied by changes in marker protein expression CK8, CK18 or CK19 were not detected by immunocytochemistry or western blot analysis m DLKP prior to treatment with BrdU, but following treatment all three cytokeratins were present in approximately 10% of the treated-DLKP cells Increased number of keratın-positive cells and increased intensity of staıning was evident in DLKP cells treated for 7 days

CK8, CK18 and CK19 filaments were present in A549 cells prior to BrdU treatment Increased keratın synthesis was detected immunocytochemically following BrdUtreatment and this was further confirmed for CK8 by western blottıng where an increase in the cytokeratın proteins where observed after 7-day and 14-day exposure

DLKP and A549 BrdU-treated cells were also examined immunocytochemically to determine any alterations in mtegrin expression Analysis revealed that appeared to be marked increases both α_{2} - and β_{1}-mtergrın subunts EpCAM expression levels were also up-regulated in both cell lines following BrdU-treatment

Section 3.116 Summary of the effects of 5-Iodo-2'-deoxyUridine (IdU) on the differentiation status of DLKP and A549

The ability of 5-Iodo-2 -deoxyUridine (IdU) to induce differentiation was also investrgated DLKP and A549 cells treated with $10 \mu \mathrm{M}$ IdU for 7 -days and investigated for morphological changes Both DLKP and A549 treated cells became very flattened and stretched The observed alteration in morphology after IdU treatment was comparable to the observed in BrdU treatments

Analysis of the selected marker proteins by immunocytochemistry revealed that cytokeratins 8, 18 and 19 were all increased in A549-treated cells and that they were induced in the DLKP cell line, when compared to the control untreated DLKP and A549 cells Western blot analysis was performed for CK8 in IdU-treated A549 cells exposed for 7- and 14-days All three cytokeratins were found to be increased after 7days with a greater increase observed after 14-days by immunocytochemistry

Immunocytochemical analysis for $\alpha_{2}-, \beta_{1}$-intergrin and EpCAM revealed that expression levels of these markers were increase following exposure to IdU for 7 days in both DLKP and A549 cell lines β_{I}-mntergrn showed a greater increase than the other two markers

Section 3117 Summary of the effects of 5-Chloro-2`-deoxyUridine (CdU) on the differentiation status of DLKP and A549

DLKP and A549 cells exposed to CdU for 7-days were investigated for morphological changes Treated DLKP and A549 cells became very flattened and stretched and an approximately 5 - to 10 -fold increase in cell surface area occurred The morphological changes seen were comparable to those noted m BrdU treatment of these cell lines

Analysis of the selected differentiation protein markers by immunocytochemistry revealed that cytokeratins 8,18 and 19 were induced in DLKP and increased in A549 following CdU treatment Increases in the cytokeratin filaments were also observed in A549 treated cells Western blot analysis confirmed that A549 cells treated with CdU for 7- and 14-days that cytokeratıns 8 was increased

DLKP and A549 BrdU-treated cells were also examıned immunocytochemically to determine any alterations in integrin expression Analysis revealed that appeared to be marked increases both α_{2} - and β_{1}-intergrin subunts EpCAM expression levels were also up-regulated in both cell lines following CdU treatment

Section 3118 Summary of the effects of 5-Fluro-deoxyUridine (5-FU) on the differentiation status of A549

Note the affect of $5-\mathrm{FU}$ was not investıgated in the differentiation status of DLKP

A549 cells exposed to 5-FU for 7-days were investigated for morphological changes Treated A549 cells became flattened and stretched The increase in cell surface area observed in BrdU treated cells did not occur to the same extent in 5-FU treated cells

Analysis of the selected differentiation protein markers by immunocytochemistry revealed that cytokeratıns 8,18 and 19 were noted A549 cells following treatment with 5-FU Western blot analysis confirmed that A549 cells treated with 5-FU for 7and 14-days that cytokeratins 8 was increased

A549 5-FU-treated cells were also examined immunocytochemically to determine any alterations in integrin expression Analysis revealed that appeared to be marked increases both α_{2} - and β_{1}-intergrin subunits EpCAM expression levels were also upregulated in both cell lines following 5-FU treatment

Section 3119 Summary of the effects of 5-Fluro-2'-deoxyUridine (5,2'FdU) on the differentiation status of DLKP and A549.

DLKP and A549 cells exposed to 5,2-FdU for 7-days were investigated for morphological changes Treated DLKP and A549 cells became very flattened and stretched and an approximately 10 -fold increase in cell surface area occurred A549 cells exhibited a much larger increase in cell surface area than seen in 5,2 -FdU treated cells The increase in cell surface area was much greater than that observed in BrdU treated DLKP and A549 cells

Analysis of the selected differentiation protein markers by immunocytochemistry revealed that cytokeratins 8, 18 and 19 were induced in DLKP following 5,2-FdU treatment Increases in the cytokeratin filaments were also observed m A549 treated cells Western blot analysis confirmed that A549 cells treated with CdU for 7- and 14-days that cytokeratıns 8 was increased

DLKP and A549 BrdU-treated cells were also examıned immunocytochemically to determine any alterations in integrin expression Analysis revealed that appeared to be marked increases both α_{2} - and β_{1}-1ntergrin subunits EpCAM expression levels were also up-regulated in both cell lines following 5,2-FdU treatment

Section 3.120 Summary of the effects of 5-Fluro-5'-deoxyUridine (5,5FdU) on the differentiation status of DLKP.

The ability of $5,5-\mathrm{FdU}$ to induce differentiation was also investıgated DLKP cells treated with $10 \mu \mathrm{M} 5,5-\mathrm{FdU}$ for 7-days and investigated for morphological changes DLKP treated cells became very flattened and stretched The observed alteration in morphology after 5,5-FdU treatment was comparable to the observed m BrdU treatments

Analysis of the selected differentiation protein markers by immunocytochemistry revealed that cytokeratins 8,18 and 19 were induced in DLKP following 5,5-FdU treatment 5,5-FdU DLKP-treated cells were also examined immunocytochemically to determine any alterations in integrin expression Analysis revealed that appeared to be a moderate increase both α_{2} - and $\beta_{1}-$ intergrin subunits EpCAM expression levels were also induced in DLKP following 5,5-FdU treatment

Section 3121 Summary of the effects of 5-BromorUridine and 5BromoUracl on the differentiation status of DLKP and A549.

Toxicity profiles (results not shown) for 5-BromoUridine and BromoUracil in both DLKP and A549 cells revealed that it did not appear to be very toxic A concentration of $70 \mu \mathrm{M}$ was chosen for the differentiation studies Investigation of the morphological changes in DLKP and A549 cells treated with 5-BromoUridine and BromoUracil for 7-days did not reveal any obvious alterations in cell surface area The cells did not acquire a flattened and stretched appearance as was seen in some of the other analogue treatments

Immunocytochemical analysis of DLKP cells treated 5-BromoUndine and BromoUracil for 7-days appeared to show very little induction of the CK8, CK18 and CK19 Assessment of immunocytochemistry of the results revealed no major change in the expression level of $\alpha_{2}-, \beta_{1}$-1ntegrins or EpCAM

Section 3.2 DNA Microarrays

Section 3.2.1 DNA Microarrays

The success of the human genome project has allowed biologists to identify almost all the genes that are responsible for the genetic makeup of humans. The next important task is to assign function to the nearly 40,000 genes sequenced. The use of microarrays to analyse the gene expression on a global level has recently received a great deal of attention. In order to understand the complex mechanisms and networks involved in the control processes of normal and disease states of eukaryotic cells, it is no longer enough to focus on isolated pathways or single genetic events. Global transcriptional profiling using microartay techniques now offer the chance to develop a more complete understanding of gene function, regulation and interactions. The technique of microarray analysis has the huge advantage over other gene profiling methods in that mRNA isolated from a given cell, tissue or tumour can be used to prepare a labelled sample and hybridised simultaneously to a vast number of DNA sequences. Microarrays now offer great flexibility in the number of target sequences that maybe analysed per microarray. As few as a couple of probe sequences to as many as the nearly 40.000 genes of the human genome can now be analysed on one single microarray slide.

A wide variety of different microarrays platforms have been developed by both academic and commercial companies. The two main groups of microarrays currently in mainstream use; these are complementary DNA (cDNA) and oligonucleotides. Probes for cDNA arrays are generally printed onto glass or nylon slides at exact locations. The probes for cDNA (spotted) microarrays are prepared from products of the polymerase chain reaction (PCR) generated from cDNA libraries. Oligonucleotide microarrays on the other hand, are mostly 20 100 mers which are synthesised in situ. either by photolithography onto silicon wafers or by ink-jet technology. One advantage oligonucleotide microarrays have over cDNA microarrays is the fact that the sequence used for the oligos can be designed to the most unique part of a given transcript. making it possible to discriminate between closely related genes or splice variants. The microarray gene expression studies which were performed in this body of work were
performed using Affymetrix ${ }^{\circledR}$ Human Genome U133A GeneChips ${ }^{\circledR}$ (Section 2 15)

Section 322 BrdU Array

Three separate DNA microarray experıments were performed on DLKP cells treated with BrdU over a time course These experıments have been labelled Exp 1, 2 and 3 for smplicity The imtial experıments, Exp 1 and Exp 2, were preformed at the same time, therefore, the results from these two experiments will be discussed together Also, these initial microarray experiments were performed using one biological sample from each time point, whereas, the third experıment, Exp 3, was performed in triplicate using biological replicates And the results of Exp 3 will be discussed in a separate subsection

Section 3221 BrdU Microarrays - Exp 1 and Exp 2

In the prelımınary two BrdU-treated DLKP microarray experiments, Exp 1 and Exp 2, hybridisations were performed using the Affymetrix U133A chips (Section 2 15) Cells were harvested and RNA isolated (as per Section 2 10) at the following time points of $0,1,3,7$ and 14 days in Exp 1 and 0,1 and 7 days for Exp 2 These microarray experıments were performed using single samples from each time point cRNA was prepared (Section 215 1) from total RNA which had been checked for quality, and shipped to the Conway Institute at University College Dublin, where it was hybridised to the Affymetrix ${ }^{\circledR}$) Human Genome U133A GeneChips®, and the chips scanned usıng the Affymetrix Chip scanner This data was then sent back to us

The resulting data sets were scaled and normalised as per analysis carned out by Rushton, J J , et al , (2003) In order to compare gene expression results in the microarray expenments performed, it was necessary to normalise the data obtained following scanning the microarray GeneChips There are two man ways in which this type of normalisation is performed 'Per-chip' and 'Per-gene' normalisations (Reviewed in Section 2151) This was performed using

Affymetrix Microarrays Suite v5 0 software, which scales all of the probe sets so that the average is 100 for each GeneChip The average probe signal was calculated for each GeneChip and this was adjusted to 100 by multıplying by a scalıng factor By doıng this for each GeneChip it makes the data easier to compare across different GeneChips in a given experiment

Additional data analysis was preformed using GeneSpring (Silicon Genetics) The data were normalised to the mean of the day 0 samples and then filtering was used to identify genes that were consistently up- or down-regulated in the day 1, 3, 7 or 14 day samples The filter used was a 15 fold increase or decrease and the genes were also filtered using a 'Present' or 'Marginal' filter A filter of 15 -fold up or down was selected in these microarray experiments since it is generally thought that the expression levels of transcription factors do not alter dramatically in cells It is thought that the control of gene expression is tightly controlled by small alterations in transcription factor expression levels Gene lists were then generated for each of the two rounds of microarrays containing the gene name, accession number, Affymetrix Probe Id number and the fold increase/decrease of each gene found to be differentially expressed

Section 3.222 Validation of Initial DNA Microarrays and Gene expression changes in BrdU-treated DLKP cells

In order to validate the gene lists which were generated from the expression analysıs performed using the GeneSpring analysis software package, and to demonstrate that the fold increase/decrease observed were real expression changes, a set of genes was selected from the gene lists generated RT-PCR analysis was performed on these genes In the majonty of cases the results confirmed the trends observed in the microarray analysis The following section contans the result for each of the selected genes In each subsection a graph illustrating the fold increase/decrease found following microarray analysis, along with the corresponding RT-PCR result, is shown

Section 32221 FSTL1

FSTL1 is protein with sımılarity to follistatin, an activin-binding protein It is known to contain an FS module, a follistatın-like sequence containing 10 conserved cysteme residues FST1 is thought to be an autoantigen associated with rheumatoid arthritis Following gene expression analysis, using GeneSpring analysis software, the FSTL1 gene was demonstrated to increase in BrdU-treated DLKP cells It was noted, that after three days of exposure of the cells to BrdU, the level of expression of the gene started to increase to a maximum at 7-days A decrease in FSTL1 was observed between day 7 and day 14 samples This result was confirmed by RT-PCR analysis (Section 211), which showed a sımılar pattern of expression for the FLST1 gene

Figure 3 2.1 Microarray analysis (top image) showing fold increase of FSTL1 mRNA RT-RCR analysis (lower image) confirming an increase in FSTL1 mRNA expression levels

Section 3.2.2.2 2 FLH2

FHL2 belongs to the family of LIM proteins, which are known involved in protein-protem interaction and transcriptional regulation Recent evidence has suggested that FHL proteins may act as co-regulators involved in the modulation of tissue-specific gene expression by interacting with different transcription factors Such transcription factors include JUN and FOS and these associations have been shown to result in a powerful actıvation of AP-1-mediated transcription Following gene expression analysis, an increase in the expression of FHL2 mRNA was observed in BrdU-treated DLKP cells mRNA levels were to dramatically increase at day 7 to approximately 65 -fold at 7days However, this increase was not maintaned at day 14 where they were reduced to 4 -fold higher than control cells This result was confirmed by RT-PCR analysis, which showed a sımılar pattern of expression for the FHL2 gene

Figure 3.22 Microarray analysis (top image) showing fold increase of FHL2 mRNA RT-RCR analysis (lower image) confirming an increase in FHL2 mRNA expression levels

Section 32.2.2.3 TNFSF7

TNFSF7 belongs to the tumour necrosis factor (TNF) ligand family and this cytokine has been reported to a play a role in the regulation of B-cell actıvation and IgG production Microarray analysis revealed an increase in TNFSF7 transcript levels in drug-treated cells It was found that after one day of exposure of the cells to BrdU that the level of expression of TNFSF7 mRNA increased gradually over the course of the experıment, to approximately 65 -fold at day 14 This result was confirmed by RT-PCR analysis, which showed a sımilar pattern of expression for the TNFSSF7 gene

Figure 323 Gene expression analysis (top image) showing fold increase of TNFSF7 mRNA RT-RCR analysis (lower image) confirming an increase in TNFSF7 mRNA expression levels

Section 3.2.2 24 GPX3

Microarray analysis revealed that an increase in GPX3 mRNA expression levels following exposure to DLKP to BrdU It was demonstrated at day 1 the level of GPX3 mRNA levels increased by 4-fold to a maxımum of approximately 7 -fold after 3-days of exposure to the drug A decrease in GPX3 mRNA was observed at day 7 and day 14 where mRNA levels had reduced to 5 - and 3 -fold, respectively These results was confirmed by RT-PCR analysis, which showed a sımılar pattern of expression for the GPX3 mRNA expression levels

Figure 334 Gene expression analysis (top image) showing fold increase of GPX3 mRNA RT-RCR analysis (lower ımage) confirmıng an increase in GPX3 mRNA expression levels

Section 32225 Zyxin

Zyxin is a low abundance phosphoprotein that is concentrated at adhesion plaques and along the actın filament bundles near where they insert at adhesion plaques Zyxin has features of an intracellular signal transducer and may function as a scaffold for the assembly of multimenc complexes These protenn assemblages could mediate integrin-dependent signalling events that lead to cell differentiation or modulation of cyto-architecture Microarray analysis revealed that an increase in Zyxin transcript levels in BrdU-treated DLKP cells A 3-fold increase in Zyxin mRNA was observed in the day 1 sample and this increase was maintained up to day 7 , where mRNA levels had to a maximum of approximately 3 5-fold At day 14 a decrease in Zyxin mRNA expression levels was observed, but did not return to control levels This result was confirmed by RT-PCR analysis, which showed a similar pattern of expression for the Zyxin transcript levels

Figure 325 Gene expression analysis (top image) showing fold increase of Zyxin mRNA RT-RCR analysis (lower image) confirmıng an increase in Zyxin mRNA expression levels

Section 3.2.2.2.6 Spermidine/spermine N-acetytransferase (Spd/Spn)

Spermidine/spermine N -acetytransferase is a highly regulated enzymatic protein is known induced by a variety of toxic agents, hormones and polyamines. It is also in belongs to a metabolic pathway which involves ornithine decarboxylase and S-adenosylmethionione decarboxylase. The combination of these enzymes fine tune intracellular polyamine concentration, underscoring the important role of these proteins in growth and cell survival. Following microarray analysis, Spd/Spn mRNA levels found to remain at a similar expression level as controls cells up to three days of exposure to BrdU. However, microarray analysis revealed a 4.5 -fold increase in Spd/Spn mRNA levels following 7 days exposure to the drug, but this increase in transcript levels was reduced to approximately 3fold at day 14. RT-PCR analysis confirmed the results generated following microarray expression analysis using GeneSpring software.

Figure 3.2.6 Gene expression analysis (top image) showing fold increase of Spd/Spn mRNA. RT-RCR analysis (lower image) confirming an increase in Spd/Spn mRNA expression levels.

Section 3.22 I 2 Id2

The Id famıly of four hehx-loop-helix (HLH) transcription factors (Id1, Id2, Id3 and Id4) act as dominant negative regulators of basic HLH proteins Since many bHLH proteıns positively regulate sets of genes during cell fate determınation and cell differentiation, Id proteins are thought to inhubit the ability of bHLH proteins from binding DNA and inhibit cell differentiation Although Id proteins traditionally have been viewed as negative regulators of differentiation, recent work has revealed much wider biological roles, and they are now thought to be important in development, cell cycle control and tumour biology Microarray analysis revealed that Id2 transcript levels were increased to approximately 55 fold following exposure of cells to BrdU for 24 hours However, over the remainder of the experiment Id 2 mRNA levels declined to 25 -fold day 7 and day 7 By day 14 transcript levels had returned to those of control cells A simular pattern of expression was demonstrated following RT-PCR analysis for Id2 in BrdU-treated cells

Figure 327 Gene expression analysis (top image) showing fold increase of Id2 mRNA RT-RCR analysis (lower ımage) confirming an increase in Id2 mRNA expression levels

Section 3222.8 eIF2-associated p67

Initiation of protein synthesis plays a central role in gene expression and is largely regulated at the level of formation of the initiation complex with the eukaryotic inttation factor 2 (eIF2), Met-tRNA, and the 40S nbosome The rate of protein synthesis is regulated at the level of phosphorylation of the α-subunit of eIF2, which is controlled by the cellular glycoprotein, p67 p67 protects the α-subumt from phosphorylation by its kinases Following microarray expression analysis, eIF2-associated p67 mRNA expression levels were shown to decrease at day 1 and day 3 in BrdU-treated DLKP cells and to increase to near control levels at the day 7 However, a decrease at day 14 decrease marginally was observed RT-PCR analysis demonstrated a small decrease in eIF2-associated p67 mRNA in the day 3 sample, with the remaining time points exhibiting the same level of expression as control cells

Figure 328 Gene expression analysis (top image) showing fold increase of eIF2-associated p67 mRNA RT-RCR analysis (lower amage) confirming an increase in eIF2-associated p67 mRNA expression levels

Section 3229 Immediate-early Response factor 3 (IER3)

IER3 is a member of intermediate-early gene family of proteins that are thought to be critical for the control of cell proliferation and apoptosis in several cell types Following gene expression analysis, using GeneSpring analysis software, the IER3 gene was shown to increase in BrdU-treated DLKP cells It was found that after 1 day of exposure of the cells to drug that the mRNA levels of IER3 had increased to approximately 2 -fold and increased further to 35 -fold at day 7 At day 14 a reduction in transcript levels was observed, but did not return to that of control levels RT-PCR analysis confirmed the microarray expression results obtained following GeneSpring analysis, however a increase in IER3 mRNA levels was demonstrated across all samples and no reduction m IER3 signal was found at day 14

Figure 329 Gene expression analysis (top image) showing fold increase of IER3 mRNA RT-RCR analysis (lower image) confirming an increase in IER3 mRNA expression levels

Section 3 2.2.2.10 LOXL2

A famıly of four proteıns know as LOXL (LOXL 1-4) were recently identıfied and it has been suggested that these proteins are located in distinct intracellular and intranuclear locations, each with related but different functions that include cell growth control, tumour suppression, senescence and chemotaxis
Microarray analysis revealed an increase in LOXL2 transcript levels in drug treated DLKP cells It was demonstrated that after 3 days of exposure of DLKP cells to BrdU mRNA expression levels of LOXL2 remained at control levels up to day 3 , after which they were observed to increase to approximately 4 -fold However, at day 14 mRNA levels were reduced marginally to 35 -fold This result was confirmed by RT-PCR analysis, which demonstrated that LOXL2 transcript levels increased over the course of the experiment

Figure 3 2.10 Gene expression analysis (top image) showing fold increase of LOXL2 mRNA RT-RCR analysis (lower image) confirming an increase in LOXL2 mRNA expression levels

Section 3 2.2.2 11 p21

Following microarray expression analysis mRNA expression levels of CDKN1A were found to increase in drug-treated DLKP cells Gene expression and RTPCR analysis revealed a marked increase in CDKN1A mRNA expression levels after 24 hours of exposure of cells to BrdU and this increase was maintaned over the experıment

Figure 3211 RT-RCR analysis (bottom image) shows the level of CDKN1A mRNA following exposure of DLKP to BrdU

Section 32 2.3 DLKP BrdU Array - Exp 3

The third DLKP BrdU microarray experıment, Exp 3, was performed using Affymetrix U133A GeneChips ${ }^{\circledR}$ RNA was isolated (Section 2 10) from cells harvested after 0,3 and 7 days exposure to BrdU (Section 27) This set of DNA microarrays were performed in triplicate using biological replicates The isolated RNA was shipped to Affymetrix where the cRNA was prepared and hybridısed to U133A GeneChips ${ }^{\circledR 2}$ and the chips scanned using an Affymetrix GeneChip scanner The data was received back, and expression analysis was performed as described below

The data set was normalised using the Affymetrix PLIER (Probe Logarithmic Error intensity Estimate) method in GREX This normalisation method is recommended by Affymetrix for use on their GeneChips ${ }^{\mathrm{TM}}$ The PLIER method (Reviewed in Section 215 3) produces an improved signal by accounting for experimentally observed patterns in probe behaviour and handling error at the appropnately low and high signal values Some of the advantages of using this method of normalisation included higher reproducibility of signal (lower coefficient of variation) without loss of accuracy and higher differential sensitivity for low expressors

Having subjected the data set to the PLIER normalisation method, the data was then imported into GeneSpring analysis software (Silicon Genetics) and a new experiment was set up As a result of using the PLIER method of normalisation, the data did not need to undergo 'Per Chıp' normalisation in GeneSpring In GeneSpring the samples were then normalised to the mean of the day 0 samples

A filter was then applied to the data to select genes that had a 'Present' or 'Marginal' flag in three out of the nıne samples The filter also contaned a condition that selected for genes that crossed a 15 fold threshold, up or down, in ether the day 3 or day 7 samples

Section 32 2.4 Validation of the DLKP-BrdU Exp 3 Microarrays

In order to validate the gene lists, which were generated from the expression analysis carried out using GeneSpring, and to demonstrate that the fold increase/decrease observed were actual real expression changes, a set of genes were selected from the gene lists generated RT-PCR analysis was performed on these genes The expression patterns which confirmed the results that were obtained from the chip expression analysis

The following section contains the result for each of the genes selected In each subsection a graph illustrating the fold increase/decrease found following expression analysis, along with the confirmation RT-PCR result, is shown

Section 322.41 Spd/Spn

Spermidine/spermıne N -acetytransferase is a hughly regulated enzymatic proten is known to be inducible by a variety of toxic agents, hormones and polyamines It is also in belongs to a metabolic pathway which involves ornithine decarboxylase and S-adenosylmethiomone decarboxylase The combination of these enzymes fine tune intracellular polyamine concentration, underscoring the important role of these proteins in growth and cell survival Microarray analysis revealed an increase in $\mathrm{Spd} / \mathrm{Spn}$ mRNA expression levels following treatment of DLKP cell with BrdU Spd/Spn transcript levels were shown to increase at day three to 18 -fold and to 28 -fold at day 7 RT-PCR analysis demonstrated an increase of several fold in $\mathrm{Spd} / \mathrm{Spn}$ mRNA expression levels following three days exposure of DLKP to BrdU A slight reduction in $\operatorname{Spd} / \mathrm{Spn}$ mRNA was observed in the day 7 sample in companison to the day 3 , however, $\mathrm{Spd} / \mathrm{Spn}$ mRNA levels were still several fold increased when compared to control untreated cells

Figure 3.212 The top graph illustrates the fold change in $\mathrm{Spd} / \mathrm{Spn} \mathrm{mRNA}$ following gene expression analysis RT-RCR analysis (bottom image) shows the level of $\mathrm{Spd} / \mathrm{Spn}$ mRNA following exposure of DLKP to

Section 3.2242 HMOX1

HMOX1 is one of two isoforms of heme oxygenase that is involved in catabolizing heme to biliverdin, carbon monoxide and free rron and is thought to be involved in iron homeostasis Following gene expression analysis, HMOX1 mRNA levels were found to increase by approximately 2 -fold in the day 3 sample and the expression level of this gene was maintained at this level in the day 7 sample This result was confirmed by RT-PCR analysis which demonstrated a significant increase in HMOX1 mRNA expression levels across the experiment in comparison to untreated control cells

Figure 3 2.13 The top graph illustrates the fold change in HMOX1 mRNA following gene expression analysis RT-RCR analysis (bottom image) shows the level of HMOX1 mRNA following exposure of DLKP to BrdU

Section 3.2.2.4 3 Id2

The Id famıly of four helix-loop-helix (HLH) transcription factors (Id1, Id2, Id3 and Id4) act as domınant negative regulators of basic HLH proteins Since many bHLH proteins positively regulate sets of genes during cell fate determination and cell differentiation, Id proteins are thought to inhibit the ability of bHLH proteins from binding DNA and inhibit cell differentiation Although Id protems traditionally have been viewed as negative regulators of differentiation, recent work has revealed much wider biological roles, and are now thought to be important in development, cell cycle control and tumour biology Microarray analysıs revealed a 4 -fold increase in Id2 mRNA transcrıpt levels At day 7 Id2 expression levels were found to decrease, but still remained approximately 2 -fold higher than control cells These results were confirmed by RT-PCR analysis which demonstrated a sıgnıficant increase in Id 2 mRNA levels in the day 3 and day 7 samples, with the day 7 samples slowing a reduction in Id2 signal in comparison to the day 3 sample

Figure 3.2.14 The top graph illustrates the fold change in Id2 mRNA following gene expression analysis RT-RCR analysis (bottom image) shows the level of Id2 mRNA following exposure of DLKP to BrdU

Section 32244 Id3

The Id famıly of four helix-loop-helix (HLH) transcription factors (Id1, Id2, Id3 and Id4) act as domınant negatıve regulators of basıc HLH proteıns Since many bHLH proteins positively regulate sets of genes during cell fate determination and cell differentiation, Id proteins are thought to mhibit the ability of bHLH proteins from binding DNA and inhibit cell differentiation Although Id proteins traditionally have been viewed as negative regulators of differentiation, recent work has revealed much wider biological roles, and are now thought to be important in development, cell cycle control and tumour biology Microarray analysis revealed a dramatic increase in Id3 mRNA transcript levels following exposure of DLKP cells to BrdU A 75 - and 55 -fold increase in Id3 mRNA expression level was observed m the day 3 and day 7 samples, respectively RTPCR analysis demonstrated a sımılar pattern of expression for Id3

Figure 3 2.15 The top graph illustrates the fold change in Id3 mRNA following gene expression analysis RT-RCR analysis (bottom image) shows the level of Id3 mRNA following exposure of DLKP to BrdU

Section 32245 FSTL1

FSTL1 encodes a proten with sımılarity to follistatın, an actıvin-bindmg proteın It contans an FS module, a follistatın-like sequence contanning 10 conserved cysteine residues This gene product is thought to be an autoantigen associated with rheumatoid arthritis Following microarray analysis using GeneSpring analysis software, FSTL1 mRNA expression levels were revealed to increase several fold after exposure to BrdU Following three days treatment of DLKP with drug FSTL1 mRNA were shown to increase by 15 -fold and increased further to approximately 3 -fold by day 7 RT-PCR analysis (Section 2 11) confirmed the trend in FSTL1 mRNA expression observed in the microarray analysis

Figure 3216 The top graph illustrates the fold change in FSTL1 mRNA following gene expression analysis RT-RCR analysis (bottom image) shows the level of FSTL1 mRNA following exposure of DLKP to BrdU

Section 32246 FHL2

FHL2 belongs to the family of LIM protems, which are involved in protemprotein interaction and transcriptional regulation Recent evidence has suggests that FHL protems may act as co-regulators involved in the modulation of tissuespecific gene expression by interacting with different transcription factors Such transcription factors include JUN and FOS and these assoctations have been shown to result in a powerful activation of AP-1-mediated transcription Microarray analysis revealed an increase in FHL2 transcript levels in drugtreated DLKP cells A 3-fold increase in FHL2 mRNA expression levels was observed following three days exposure of cells to BrdU and expression levels of the gene increase further to 55 -fold in the day 7 sample RT-PCR analysis demonstrated a simılar increase in FHL2 transcript levels as was observed in the microarray analysis

Figure 3217 The top graph illustrates the fold change in FHL2 mRNA following gene expression analysis RT-RCR analysis (bottom image) shows the level of FHL2 mRNA following exposure of DLKP to BrdU

Section 322.47 TNFSF7

TNFSF7 belongs to the tumour necrosis factor (TNF) ligand famıly and this cytokine has been reported to a play a role in the regulation of B-cell actıvation and IgG production Following microarray analysis, using GeneSprıng analysis software, it was observed that the mRNA expression levels of TNFSF7 increase by approximately 15 - and 33 -fold in the day 3 and day 7 samples, respectively This results was confirmed by RT-PCR analysis which demonstrated a similar increase in TNFSF7 transcript levels

Figure 3.2 18 The top graph illustrates the fold change in TNFSF7 mRNA following gene expression analysis RT-RCR analysis (bottom image) shows the level of TNFSF7 mRNA following exposure of DLKP to BrdU

Section 3.2.2.5 Investigation of potentially co-regulated genes in BrdUtreated DLKP cells as identified using DNA microarrays

Time course microartay experiments reveal information about the temporal transcription profile of spotted genes. Sets of genes with the same expression pattern can be grouped into clusters but the identification of molecular mechanisms responsible for co-expression requires further investigation. By using comparative promoter analysis it is possible to identify genes for which coexpression may be a result of co-regulation. The aim of this analysis is to find promoter features that may be potentially responsible for co-expression of differentiation related genes.

DLKP cells, exposed to the differentiation-modulating agent BrdU , undergo morphological change and the several epithelial markers of lung cell differentiations are induced. In order to analyse global changes the transcriptional profiles of BrdU-treated DLKP cells were examined using Affymetrix UA133 DNA microarrays. Following DNA microarray analysis the data generated was normalised and filtered (Section 2.15.2) and gene lists for upand down-regulated differentially expressed genes were then generated.

Section 3.2.2.5.1 Gene Clustering

Effective comparative promoter analysis requires tightly clustered gene expression profiles. To generate tight clusters the gene lists were subjected to ANOVA analysis and the data from this microarray experiment was grouped into 13 clusters (Figure 3.2.19). In theory from analysis of clustered data sets it is possible to identify genes that are co-regulated and promoter models that are involved in the regulation of these clustered genes. One software package which is currently available for this type of analysis is the Genomatix Software Suite (www.genomatix.de)

Clustering algorithms may be performed on microarray data sets to help identify genes that have similar patterns of gene expression and the results can be easily visualised. Hierarchical clustering has become one of the most widely used
techniques for the analysis of gene expression data Clustering is an agglomerative approach in which single expression profiles are joined together untıl the process had been carried to completion Sımplified, hierarchical clustering works on the basis where a parr of genes that have the most simular expression pattern are found, these two genes are joined together and then the method identifies the next most sımular par of genes This process continues until all of the genes are joined into one large cluster Clustering of microarray data may only be carried out on data sets that have been normalised and there are several different variations on hierarchical clusterıng

An alternatıve to hierarchical cluster is k-means clustering In k-means clustering objects are partitioned into a fixed number of clusters This process may be computationally intensive K-means clustering is particularly useful when used with other techniques such as principal component analysis Prıncipal component analysis allows visual estımation of the number of clusters represented by the data

The hypothesis behind clustering techniques is that genes in a cluster may share some common function or regulatory elements However, classifications based on clustering algorithms are dependent on the particular methods used, the manner in which the data are normalised, and the manner in which similarity is measured All of these factors can have a huge effect on the outcome of clustering analysis Therefore, no single method of clustering is more or less appropnate to use on a given data set Furthermore, use of one of more methods of clustering may in fact highlight differentiation relationships within a data set which consequently may be found to be important Tools and techniques for analysıs data sets are under contınual development and the ultımate gurde to the use of any data analysis method must be our biological understanding of the experiment under investigation

A worked example for the identification of co-regulated genes in the BrdU Exp 3 microarray expenment is detalled in Section 46

Figure 3.2.19 Heat map of $\mathbf{7 3 2}$ differentially regulated genes in BrdU DNA microarray. Following gene expression analysis of the DNA microarrays. the data set was subjected to statistical analysis and the gene lists then clustered. 13 clusters were then selected for further analysis. Clusters were chosen so that not more than approximately 150 genes were contained in each cluster.

Section 323 DLKP 5,2-FdU Arrays DNA Microarrays

Affymetrix U133A human expression DNA microarrays were probed with RNA isolated from 5,2-FdU-treated DLKP cells from a tıme course experıment Cells were harvested after 0,3 and 7 days exposure to the modulating agent (Section 27) and RNA isolated (Section 2 10) cRNA was then prepared (Section 215 1) and transported to the Conway Institute at University College Dublin, where it was hybridised to the U133A GeneChips ${ }^{\text {TM }}$, and the chips were scanned using the Affymetrix Gene Chip scanner The raw data was retrieved from the Conway Institute and the following analysis was performed on the data set

The data set was normalised and filtered as has been described for in the BrdU Exp 3 microarray experıment (Section 3223) using the Affymetrix PLIER (Probe Logarithmic Error intensity Estımate) method in GREX and using GeneSpring gene expression analysis software

Section 3.231 Validation of the 5,2'-FdU DNA Microarrays

In order to validate the gene lists, which were generated from the expression analysis carried out using GeneSpring, and to demonstrate that the fold increase/decrease observed were actual real expression changes, a set of genes were selected from the gene lists generated RT-PCR analysis was performed on these genes The expression patterns which confirmed the results that were obtained from the chip expression analysis

The following section contains the result for each of the genes selected In each subsection a graph illustrating the fold increase/decrease found following expression analysis, along with the confirmation RT-PCR result, is shown

The Id family of four helix-loop-helix (HLH) transcription factors (Id1, Id2, Id3 and Id4) act as dominant negative regulators of basic HLH proteins Since many bHLH proteins positively regulate sets of genes during cell fate determination and cell differentiation, Id proteins are thought to inhibit the ability of bHLH proteins from binding DNA and inhibit cell differentiation Although Id proteins traditionally have been viewed as negative regulators of differentiation, recent work has revealed much wider biological roles, and are now thought to be important in development, cell cycle control and tumour biology Following microarray analysis in DLKP cells treated with 5,2-FdU a significant increase in Id2 mRNA expression levels was observed Id2 transcript levels increased to a maximum of 75 -fold in the day 3 sample, and declined slightly to 48 -fold at day 7 RT-PCR analysis confirmed the results of the microarray analysis performed and demonstrated a sımılar increase in Id2 mRNA levels

Figure 3220 Top graph illustrates the fold change in Id2 mRNA following gene expression analysis RT-PCR analysis (bottom image) shows the actual level of Id2 at the various tıme points

Section 3.2.3.1.2 Id3

The Id famıly of four helix-loop-helix (HLH) transcription factors (Id1, Id2, Id3 and Id4) act as dominant negative regulators of basic HLH proteins Since many bHLH proteins positively regulate sets of genes during cell fate determination and cell differentiation, Id proteins are thought to inhibit the ability of bHLH protens from bindıng DNA and inhıbit cell differentiation Although Id proteins traditionally have been viewed as negative regulators of differentiation, recent work has revealed much wider biological roles, and are now thought to be important m development, cell cycle control and tumour biology Microarray analysis revealed an increase in Id3 mRNA levels following exposure DLKP to 5,2-FdU A 75-and 64 -fold increase in Id3 mRNA levels was observed in day 3 and day 7 samples, respectively RT-PCR analysis confirmed this results and revealed a sımılar increase in Id3 transcript levels

Figure 3221 Top graph illustrates the fold change in Id3 mRNA following gene expression analysis RT-PCR analysis (bottom image) shows the actual level of Id3 at the various tıme points

Section 3.2313 Heme Oxygenase1 (HMOX1)

HMOX1 is one of two isoforms of heme oxygenase that is involved in catabolising heme to biliverdin, carbon monoxide and free iron and is thought to be involved in iron homeostasis Following microarray analysis a 25 -fold increase in HMOX1 mRNA expression levels was observed following three days of exposure of cells to drug A further increase in FHL2 expression was found in the day 7 sample where the genes mRNA levels had increased to nearly 3 -fold RT-PCR analysis demonstrated a simılar pattern of transcript levels for HMOX1

Figure 3222 Top graph illustrates the fold change in HMOX1 mRNA following gene expression analysis RT-PCR analysis (bottom image) shows the actual level of HMOX1 at the vanious time points

Section 3.2314 FHL2

FHL2 belongs to the family of LIM protems, which are involved in protemprotem interaction and transcriptional regulation Recent evidence has suggests that FHL proteins may act as co-regulators involved in the modulation of tissuespecific gene expression by interacting with different transcription factors Such transcription factors include JUN and FOS and these associations have been shown to result in a powerful activation of AP-1-mediated transcription Following gene expression analysis, using GeneSpring analysis software, the FL1 gene was shown to increase in 5,2 -FdU-treated DLKP cells Microarray analysis revealed an increase in FHL2 transcript levels in drug-treated cells In the day 3 sample FHL2 mRNA levels were found to increased by 22 -fold and levels were further increased to 29 -fold in the day 7 sample Confirmation of this result was demonstrated following RT-PCR analysis with revealed a similar increase in FHL2 mRNA expression levels in the day 3 and day 7 samples

Figure 3223 The top graph illustrates the fold change in FHL2 mRNA following gene expression analysis RT-RCR analysis (bottom mage) shows the level of FHL2 mRNA following exposure of DLKP to 5,2-FdU

Section 32315 TNFSF7

TNFSF7 belongs to the tumour necrosis factor (TNF) ligand family and this cytokine has been reported to a play a role in the regulation of B-cell activation and IgG production Following microarray analysis the expression of TNFSF7 was demonstrated to increase to 15 -fold in the day 7 sample, with a little change in mRNA expression levels at day 3 However, RT-PCR analysis reveal a signification increase in TNFSF7 mRNA transcription levels in both the day 3 and day 7 samples

Figure 3224 The top graph illustrates the fold change in TNFSF7 mRNA following gene expression analysis RT-RCR analysis (bottom image) shows the level of TNFSF7 mRNA following exposure of DLKP to 5,2 -FdU

Section 3.2.4 DLKP IdU DNA Microarray

Affymetrix U133 Plus 2 human expression DNA microarrays were probed with RNA from IdU-treated DLKP cells from a time course experıment Cells were harvested after 0 and 7 days exposure to the thymıdıne analogue (Section 27) and RNA isolated (Section 2 10) This experiment was set up in triplicate using biological replicates The RNA was quantıfied and shipped to Affymetrix where cRNA was prepared, hybridised to the GeneChips® and scanned using the Affymetrix Gene Chup scanner The data was received back from Affymetrix for gene expression analysis

As mentioned above, this experıment used the Affymetrix U133A Plus 2 whole genome GeneChips ${ }^{\text {TM }}$ rather than the Affymetrix U133A GeneChips ${ }^{\text {TM }}$, which had been used in the previous BrdU and 5,2-FdU DNA microarrays It is therefore more difficult to compare the results from the BrdU and 5,2 -FdU microarrays with data generated from the IdU microarrays In order to get over this chip vanation issue the IdU data sent was not put through the PLIER normalisation in GREX and an alternatıve normalisation method was applied

The Gene Chip data was normalised 'Per Chip' by using the $50^{\text {th }}$ percentıle, using genes flagged as anything but 'Absent' in the calculation of the $50^{\text {th }}$ percentile The samples were then normalısed 'Per Gene' to the mean of the day 0 samples The data was then imported into the GeneSpring analysis software where a new experıment was setup

A filter was then applied to the data to select genes that had a 'Present' or 'Marginal' flag in 3 out of the 6 samples The filter also contaned a condition that selected for genes that crossed a 15 fold threshoid, up or down in day 7

Section 325 Comparison of Up Regulated Genes between BrdU, 5,2- FdU and IdU

The BrdU, and 5,2-FdU microarrays experiments were performed on Affymetrix human U133A GeneChips ${ }^{\text {TM }}$, whereas the IdU experıment was performed using the U133 Plus 2GeneChips ${ }^{\text {TM }}$ In order to compare these arrays a different form of normalisation was performed on the IdU data set than was described for the BrdU Exp 3 and 5,2 -FdU microarray experıments

Since the chip types were different, they could not be combined in GREX for PLIER normalisation (as described in Section 2153) and an alternative normalisation was used The GeneChips® were normalised to the $50^{\text {th }}$ percentile, using genes flagged as anything but 'Absent' in the calculation of the of the $50^{\text {th }}$ percentile The samples on the U133A GeneChips ${ }^{\text {TM }}$ (BrdU and 5,2FdU microarrays) were then normalised to the mean of the day 0 samples Because the IdU microarrays were carned out on a different Gene Chip type, the samples on this Gene Chip were normalised to the mean day 0 on the U133 Plus 2 chip, and not to the day 0 of the U133A Gene Chip

Three pair-wise comparison experiments were then created, one for each of the three treatments and the appropriate day 0 sample Gene lists were then generated and called 'Present' or 'Marginal' in three of the nine samples, in each parr-wise experiment, and that went either 15 -fold up or down with drug treatment The resulting gene hists from each drug treatment were then divided into up- and down-regulated differentally expressed genes

In the BrdU experıment a total of 1,093 genes were identified as being differentially expressed 812 of these genes were found to be up-regulated, and of 281 were to be down regulated

In the $5,2-$ FdU DNA microarrays a total of 2,147 genes were identıfied as being differentially expressed Of this number 1,186 gene were found to be upregulated, whereas 961 genes were found to be down-regulated

In the case of the IdU DNA microarray experiment a total of 722 genes were identified as being differentally expressed Of this number 471 genes were identified as being up-regulated, whereas 251 genes where found to be downregulated In the IdU DNA microarrays only two time points were chosen for analysis, 0 and 7 days This may explain why a smaller number, 722 genes, were found to be differentially expressed in comparison to the BrdU and 5,2 -FdU mıcroarrays where 1,093 and 2,147 differentially expressed genes were identıfied, respectıvely

From analysis of the differentiation studies preformed in the early part of this thesis (Section 31 and Section 42) it appeared that all the pyrimidine analogues investigated induced a sımilar pattern of differentiation To explore these earlier studies further, it was decided to investigate common genes that that may be potentally involved in the regulation of differentiation in the BrdU, 5,2-FdU and IdU treatments In order to identify common differentially expressed genes in these three drug treatments, up/down-regulated gene lists from the three microarray experıments (Apendix 71 , Appendix 73 and Appendix 74) were overlapped using Venn diagrams (Figure 3225 and Figure 32 26)

In the case of the up-regulated gene list it was fond that a total of 179 genes were common to both the BrdU and 5,2-FdU microarrays 29 genes were identıfied as common to only the $5,2^{\circ}-\mathrm{FdU}$ and IdU microarrays, and 132 genes common to only the BrdU and IdU microarrays A total of 93 up-regulated genes were found common between the BrdU, 5,2-FdU and IdU microarrays

In the case of the down-regulated gene lists it was found that a total of 105 genes were common to both the 5,2-FdU and BrdU microarrays 15 genes were common only to the 5,2-FdU and IdU microarrays A total 24 genes were identified as being common to both the BrdU and IdU microarrays Only 9 genes were determined to be commonly down-regulated between the BrdU, 5,2 FdU and IdU microarrays

Figure 3.2.25 Venn Diagram of Genes Identified as being Up-regulated in the BrdU, 5, $\mathbf{2}^{-}$-FdU and IdU DNA Microarrays. The above Venn diagram illustrates the overlap of the genes determined to be up-regulated in all three microarrays experiments. The number in each overlapping section represents the number of up-regulated genes common to that section.

Figure 3.2.26 Venn Diagram of Genes Identified as being Down-regulated in the BrdU, 5, $\mathbf{2}^{2}$-FdU and IdU DNA Microarrays. The above Venn diagram illustrates the overlap of the genes determined to be down-regulated in all three microarrays experiments. The number in each overlapping section represents the number of down-regulated genes common to that section.

Further analysis of these results is described in the discussion.

Section 3.3 Transfections

Section 331 Overexpression of the transcription factor, c-myc

Several attempts were made to transfect DLKP and DLKP-SQ cell lines, both transiently (Section 2144) and stably (Section 2142), with an expression plasmid containng human c-myc cDNA insert

The plasmid appeared to readily transfect into both cell lines In the case of the stable transfections, several clones were isolated from the mixed population of transfected cells The clones were then assayed for up-regulation of c-myc mRNA and protein, however, no increase in ether c-myc mRNA or protem levels were observed It was thought that during the selection process the clones lost the overexpression of $\mathrm{c}-m y c$ and that the surviving cells were as a result of resistance to geneticin c-myc is widely known to induce apoptosis when upregulated in many cell types, and this may also be a reason for the lack of overexpression seen in each round of stable clones generated

Several rounds of c-myc transient transfections were also carried out RNA and protem were harvested from the transfected cells at the following tume points - 0 , 24, 48 and 72 hours In these transfections an increase in c-myc mRNA and a marginal increase in c-Myc protein were noted However, the up-regulation of cmyc appeared to have a negative effect on all the other genes assayed for It was suspected that the transient up-regulation of c-myc was inducing apoptosis, hence, shutting off these genes

Gene Investıgated	Transient	Stable
$\mathrm{c}-$ myc	\uparrow mRNA \uparrow Proteın	- mRNA/Proteın
YY1	\uparrow Proteın	\uparrow Proteın
Madl	\uparrow Protem	
eIF4E	\uparrow Proteın	
Cytokeratın 8	\downarrow mRNA	
β_{1} integrın	- mRNA	

Table 3 3.1 Summary of Alterations in mRNA and Protein levels of genes investigated in c-myc Stable and Transient Transfections $\uparrow=$ increase in expression, $\downarrow=$ decrease in expression, $-=$ no change in expression

Section 3.3.1.1 c-myc stable transfections

Section 3.3.1.1.1 RT-PCR analysis of c-myc Stable Transfections

Lane 1: Marker, Lane 2: DLKP. Lane 3: DLKP::c-myc Mixed Population, Lane 4: DLKP-SQ. Lane 5: DLKP-SQ::c-myc Mixed Population, Lane 6: DLKP-SQ::YY I Mixed Population, Lane 7: DLKP-SQ::c-myc Clone I, Lane 8: DLKP-SQ::c-myc Clone 2, Lane 9: DLKP-SQ::c-myc Clone 5, Lane 10: DLKP-SQ::c-myc Clone 6, Lane 11: DLKP-SQ::c-myc Clone 7, Lane 12: DLKP-SQ::c-myc Clone 8.

Lane 1: Marker, Lane 2: Blank, Lane 3: DLKP, Lane 4: DLKP::c-myc Mixed Population, Lane 5: DLKP-SQ. Lane 6: DLKP-SQ::c-myc Mixed Population, Lane 7: DLKP-SQ::YY1 Mixed Population

Lane 1: Marker, Lane 2: DLKP-SQ. Lane 3: DLKP-SQ::c-myc Clone 1, Lane 4: DLKP-SQ::cmyc Clone 2, Lane 5: DLKP-SQ::c-myc Clone 5. Lane 6: DLKP-SQ:: c-myc Clone 6, Lane 7: DLKP-SQ::c-myc Clone 7, Lane 8: DLKP-SQ::c-myc Clone 8

Figure 3.3.1 Expression of c-myc in DLKP and DLKP-SQ Stable Transfections. DLKP and DLKP-SQ cell lines were both stably transfected with a human c-myc expression plasmid and several stable clones were isolated from a mixed population of transfected cells. RT-PCR analysis revealed that there was no change in c-myc mRNA levels in any of the stable clones. $30 \mu \mathrm{~g}$ of total protein was loaded per gel lane.

Section 3.3.1.1.2 Western Blot Analysis of c-myc Stably Transfected Clones
(A)

Lane 1: Positive Control, Lane 2: DLKP. Lane 3: DLKP::c-myc Mixed Population, Lane 4: DLKP::c-myc Clone 1, Lane 5: DLKP::c-myc Clone 2, Lane 6: DLKP::c-myc Clone 3, Lane 7: DLKP::c-myc Clone 4, Lane 8: DLKP::c-myc Clone S. Lane 9: DLKP::c-myc Clone6.
(B)

Lane 1: DLKP-SQ. Lane 2: DLKP-S::c-myc Mixed population, Lane 3: DLKP-SQ::YY1 Mixed Population, Lane 4: DLKP-SQ::c-myc Clone 4, Lane 5: DLKP-SQ::c-myc Clone 5, Lane 6: DLKP-SQ::c-myc Clone 7. Lane 7: DLKP-SQ::c-myc Clone 8.

Figure 3.3.2 Expression c-Myc in DLKP and DLKP-SQ Stable Transfections. c-Myc expression in DLKP and DLKP-SQ clones transfected with a full length human c-myc expression plasmid. Western blot analysis revealed that there was no up-regulation of c-Myc protein levels in any of the stable clones generated. $30 \mu \mathrm{~g}$ of total protein was loaded per gel lane.

Section 3.3.1.1.3 Western Blot analysis of YY1 protein levels in DLKP::cmyc and DLKP-SQ::c-myc stably transfected Clones.

Lane 1: DLKP, Lane 2: DLKP::c-myc Mixed Population, Lane 3: DLKP::c-myc Clone 1, Lane 4 :DLKP: :c-myc Clone 2, Lane 5: DLKP::c-myc Clone 3, Lane 6: DLKP::c-myc Clone 4, Lane 7: DLKP::c-myc Clone 5, Lane 8:DLKP::c-myc Clone 6.

Lane 1: DLKP-SQ, Lane 2: DLKP-SQ::c-myc Mixed population. Lane 3: DLKP-SQ::YY1 Mixed Population, Lane 4: DLKP-SQ::c-myc Clone 4, Lane 5: DLKP-SQ::c-myc Clone 5, Lane 6: DLKP-SQ::c-myc Clone 7, Lane 7: DLKP-SQ::c-myc Clone 8, Lane 8: Blank, Lane 9: DLKP::c-myc Clone 8

Figure 3.3.3 Expression of YY1 in DLKP and DLKP-SQ Stably Transfected with c-myc. YY1 expression in DLKP and DLKP-SQ cells stable transfected with a full length c-myc cDNA expression plasmid. An increase in YY1 protein levels was observed in some of the stable c-myc clones generated. $30 \mu \mathrm{~g}$ of total protein was loaded per gel lane.

Section 3.312 c-myc Transient Transfections

Several attempts at transiently transfecting a full length human c-myc expression plasmid into the DLKP-SQ cell line were carried out Time points of $0,24,48$ and 72 hours were selected for analysis In order to investigate the effect the upregulation of c-myc had in the cell line, several different genes were assayed for and the results are histed in the following sections

Section 3.31 2.1 RT-PCR analysis showing the increase in c-myc expression in DLKP-SQ cell line transiently transfected with the pCMV - c-myc plasmid
(A)

Lane 1 DLKP-SQ, Lane 2 DLKP-SQ c-myc 24h, Lane 3 DLKP-SQ c-myc 48h, Lane 4 DLKP-SQ c-myc 72h
(B)

Lane 1 DLKP-SQ, Lane 2 24h, Lane 3 48h, Lane 4 72h, Lane 5 Control Peptıde

Figure 334 Expression of c-Myc in DLKP-SQ Transiently Transfected with c-myc. (A) PCR analysis for c-myc expression demonstrate an increase in c-myc mRNA after 24 hours of transfection This increase in c-myc was mantamed over the course of the 72 hour transfection (B) Western blot analysis showed that the c-Myc proten level was increased after 24 h of transfection and was demonstrated to increase further at $72 \mathrm{~h} \quad 30 \mu \mathrm{~g}$ of total proteın was loaded per gel lane

Section 33 1.22 Change in expression of Mad protem in DLKP-SQ transiently transfected with the pCMV.. c-myc plasmid.

Lane 1 DLKP-SQ, Lane 2 24h, Lane 3 48h, Lane 4 72h

Figure 3 3.5 Expression of Mad in DLKP-SQ Transiently Transfected with c-myc Western blot analysis for Mad expression in DLKP-SQ cells transiently tranfected with the pCMV c-myc plasmid showed that the up-regulation of cMyc resulted in the reduction of Mad protein in the transfected cells It was observed from the analysed transfected cells that after 24 h the level of Mad protein had been greatly reduced in comparison to the control untransfected DLKP-SQ cells However, after 72h the level of Mad protem was beginnig to return, but its expression was still very much reduced in comparison to control untransfected cells $30 \mu \mathrm{~g}$ of total protein was loaded per gel lane

Section 3 3.123 Change in expression of YY1 protein m DLKP-SQ transiently transfected with the pCMV. c-myc plasmid

Lane 1 DLKP-SQ, Lane 2 24h, Lane 3 48h, Lane 4 72h

Figure 336 Expression of YY1 in DLKP-SQ Transiently Transfected with c-myc Western blot analysis for YY1 expression levels in DLKP-SQ cells transiently transfected with the pCMV c-myc plasmid showed that the YY1 protein slightly increased after 24 h This increase was noted also after 48 and a greater increase in YY1 was seen following 72 hours of transfection $30 \mu \mathrm{~g}$ of total protem was loaded per gel lane

Section 33124 Change in expression of eIF4E RNA in DLKP-SQ cell line transiently transfected with the pCMV c-myc plasmid

Lane 1 DLKP-SQ, Lane 2 24h, Lane 3 48h, Lane 4 72h

Figure 337 Expression of eIF4E in DLKP-SQ Transiently Transfected with c-myc Western blot analysis for eIF4E protein expression showed that there was an initial increase in the level of eIF4E protein in the transfected cells when compared to the untransfected DLKP-SQ control cells However, after 48h this increase in eIF4E expression had return to the levels observed in the control cells

Section 33125 Change in expression of cytokeratin 8 RNA in DLKP-SQ transiently transfected with the pCMV c-myc plasmid

Lane 1 DLKP-SQ, Lane 2 DLKP-SQ c-myc 24h, Lane 3 DLKP-SQ c-myc 48h, Lane 4 DLKP-SQ c-myc 72h

Figure 338 Expression of Cytokeratin 8 in DLKP-SQ Transiently Transfected with c-myc RT-PCR analysis of DLKP-SQ c-myc transiently transfected cells showed that upon the up-regulation of $\mathrm{c}-m y c$, the levels of CK8 where found to be decreased It was noted after 48h the eIF4E signal has more or less been turned off and that following 72 h the CK8 levels started to increase once agan

Section 33126 Change in expression of β_{1}-integrin RNA in DLKP-SQ transiently transfected with the pCMV•c-myc plasmid

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 DLKP-SQ c-myc 24h, Lane 4 DLKP-SQ cmyc 48h, Lane 5 DLKP-SQ c-myc 72h

Figure 3 3.9 Expression of $\boldsymbol{\beta}_{1}$-integrin in DLKP-SQ Transiently Transfected with c-myc RT-PCR analysis of DLKP-SQ c-myc transiently transfected cells showed that upon the up-regulation of $c-m y c$, the levels of β_{1} integrin where found to be decreased It was noted that after 48 h and 72 h the level of β_{1}-mntegron had been reduced to nearly half that of the control untransfected cells

Section 3.3.2 Overexpression of Yin Yang 1, YY-1

A plasmid encoding the human transcription factor, $Y Y 1$ was transfected into the DLKP-SQ cell line and proved reasonably efficient to transfect. This plasmid was transfected both stably and transiently into the DLKP-SQ cell line.

Several stable highly over-expression clones were generated in two separate transfections experiments. From the initial experiment three over-expression clones were isolated from a mixed population of transfected DLKP-SQ cells. And from the second experiment several more stable clones were isolated. Overexpression of YY1 in the three clones was shown to up-regulate c-Myc at the protein level (Figure 3.3.11), however, c-myc mRNA levels appeared unaffected by the overexpression of YY1. An increase in Mad1 (Figure 3.3.12), a member of the c-Myc/Max/Mad network, was observed.

An increase in the translation factors eIF4E (Figure 3.3.13) and elF2 α (Figure 3.3.19) was also noted in the three overexpressing clones. A significant increase in eIF4E protein levels was noted; however, due to problems with RT-PCR analysis of eIF4E. the effect of overexpression of YY1 on elF4E RNA levels are not shown. Overexpression of YY1 also appeared to have an effect on the translation factor eIF2 α. A slight increase in eIF2 α was noted in the three stable clones generated (Figure 3.3.19). PCR analysis for eIF4e-binding protein-1 showed that there was no alteration in the expression of mRNA levels for this gene in any of the clones analysed.

The effect of overexpression of YYi on cytokeratin expression was also investigated and it was found that there was no effect on the mRNA levels of cytokeratin 8 (Figure 3.3.14). However, some changes in the expression levels of both cytokeratins 18 (Figure 3.3.15) and cytokeratin 19 (Figure 3.3.16) were noted.

Unfortunately for some unknown reason, the $Y Y \mid$ cloncs lost all over-expression of YY1 during the freeze thaw back of the stable YY1 clones and due to time
constraints towards the end of this thesis it was not possible to generate more stable over-expression clones Therefore, it was decided to transiently transfect the YY1 plasmid and in order to investigate further the role which YY1 plays in the regulation of differentiation in our cell system

Gene Investıgated	Transient	Stable
YY1	$\uparrow \mathrm{mRNA}$	\uparrow Protern
c-myc	1 mRNA \uparrow Proten	-mRNA \uparrow Proteın
Mad1	\uparrow Protein	\dagger Protern
eIF4E	\uparrow Proten	\uparrow Protern
Cytokeratın 8	\downarrow mRNA	-mRNA
Cytokeratin 18	\downarrow mRNA at 24 h only	-mRNA
Cytokeratin 19	-mRNA	$\uparrow \mathrm{mRNA}$
b_{1} integrin	\downarrow mRNA	-mRNA \downarrow Proteın
elF4E-BP1	- mRNA	-mRNA
eIF2 α	\downarrow mRNA	\dagger Protein
Mnk2	-mRNA	
FHL1	$\dagger \mathrm{mRNA}$	
FSTL1	-mRNA	
HMOX1	$\dagger \mathrm{mRNA}$	
Id2	$\uparrow \mathrm{mRNA}$	
Id3	$\uparrow \mathrm{mRNA}$	

Table 332 Summary of the results obtained for the YY1 transient and stable transfection experiments $\uparrow=$ increase in expression, $\downarrow=$ decrease in expression, - = no change in expression

Section 3.3.2.1 Stable Over-expression YY1 Clones

Section 3.2.2.1.1 Investigation of the increase of YY1 protein levels in DLKP::YY1 stably transfected cells.
(A)

Lane 1: YYI Control Peptide, Lane 2: DLKP-SQ. Lane 3: DLKP-SQ:YYI Clone 2, Lane 3: DLKP-SQ::YY1 Clone 4, Lane 4: DLKP-SQ::YYI Clone I3.
(B)

Lane 1: DLKP-SQ, Lane 2: Clone 6. Lane 3: Clone 4. Lane 4: Clone 13, Lane 5: Clone 14, Lane 6: Clone 7D, Lane 7: Clone8D. Lane 8: Positive Control.

Figure 3.2.10 Expression of YY1 in DLKP-SQ YY1 Stable Transfections. Western blot analysis was carried out on the DLKP-SQ::YY1 stable clones. (A) Level of YY1 protein overexpression in the initial round of YY1 stable transfections. (B) Level of YYI protein overexpression in clones isolated from the second round of YY1 transfections. $30 \mu \mathrm{~g}$ of total protein was loaded per gel lane.

Section 3.2212 Investigation of c-myc RNA and protein levels in DLKP YY1 stably transfected cells
(A)

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 Clone 2, Lane 4 Clone 4, Lane 5 Clone 13
(B)

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 Clone 6, Lane 4 Clone 8, Lane 5 Clone 13, Lane 6 Clone 14, Lane 7 Clone 7D, Lane 8 Clone8D, Lane 9 Neg Control
(C)

Lane 1 DLKP-SQ, Lane 2 Clone 2, Lane 3 Clone 4, Lane 4 Clone 13

Figure 3 3.11 Expression of c-myc in Stable YY1 transfections (A) and (B) RT-PCR analysis for c-myc RNA in the stably transfected DLKP-SQ YY1 clones showed that there was no apparent change in expression in any of the isolated clones in the first and second round of transfections, respectfully Western blot analysis was carried out on the DLKP-SQ YY1 stable clones revealed that all three clones had increased levels of c-Myc when compared to the untransfected DLKP-SQ cells $30 \mu \mathrm{~g}$ of total protern was loaded per gel lane

Section 32213 Investigation of Mad protein levels in DLKP. YY1 stably transfected cells

Lane 1 DLKP-SQ, Lane 2 DLKP-SQ YY1 Clone 2, Lane 3 DLKP-SQ YY1 Clone 4, Lane 4 DLKP-SQ YY1 Clone 13, Lane 5 A549

[^0]Section 3.2.2.1.4 Investigation of elF4E protein levels in DLKP::YY1 stably transfected cells.
(A)

Lane 1: DLKP-SQ. Lane 2: DLKP-SQ::YY1 Clone 2, Lane 3: DLKP-SQ::YYI Clone 4, Lane 4: DLKP-SQ::YYI Clone 13.
(B)

Lane 1: DLKP-SQ. Lane 2: Clone 6, Lane 3: Clone 4, Lane 4: Clone 13, Lane 5: Clone 14, Lane 6: Clone 7D, Lane 7: Clone8D

Figure 3.3.13 elF4E expression in YY1 Overexpressing DLKP-SQ. (A) Westem blot analysis was carried out initial YY1 stable clones isolated showed that there was a significant increase in elF4E. (B) The increase in eIF4E was also repeated in the second round of YY1 transfections and was confirmed by western blot analysis. $30 \mu \mathrm{~g}$ of total protein was loaded per gel lane.

Section 32215 Investigation of cytokeratin 8 expression levels in DLKP..YY1 stably transfected cells.

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 Clone 6, Lane 4 Clone 8, Lane 5 Clone 13, Lane 6 Clone 14, Lane 7 Clone 7D, Lane 8 Clone8D, Lane 9 Neg Control

Figure 3314 Cytokeratın 8 mRNA Expression in YY1 Oversexpression DLKPSQ RT-PCR analysis of the stably transfected DLKP-SQ. YY1 clones for alterations in the expression of CK8 RNA revealed that there was no apparent change in the level of CK8 RNA in any of the stable clones isolated

Section 322116 Investigation of cytokeratin 18 expression levels in DLKP: YY1 stably transfected cells

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 Clone 6, Lane 4 Clone 8, Lane 5 Clone 13, Lane 6 Clone 14, Lane 7 Clone 7D, Lane 8 Clone8D, Lane 9 Neg Control

Figure 3.315 Cytokeratin 18 mRNA Expression in YY1 Overexpressing DLKP-SQ RT-PCR analysis of the stably transfected DLKP-SQ YY1 clones for alterations in the expression of CK18 RNA revealed that there was no apparent change in the level of CK18 RNA in any of the stable clones isolated

Section 32.2117 Investigation of cytokeratin 19 expression levels in DLKP YY1 stably transfected cells

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 Clone 6, Lane 4 Clone 8, Lane 5 Clone 13, Lane 6 Clone 14, Lane 7 Clone 7D, Lane 8 Clone8D, Lane 9 Neg Control

Figure 3.3.16 Cytokeratin 19 mRNA Expression in YY1 Overexpression DLKP-SQ RT-PCR analysis of the stably transfected DLKP-SQ YY1 clones for alterations in the expression of CK19 RNA revealed that Clones 4, 13, 14, 7D and 8D all showed an increase in CK19 RNA when compared to the DLKP-SQ untransfected cells

Section 3.2.2.1.1.8 Investigation of β_{1}-integrin expression levels in DLKP::YY1 stably transfected cells.
(A)

Lane 1: Marker. Lane 2: DLKP-SQ. Lane 3: Clone 6, Lane 4: Clone 8, Lane 5: Clone 13. Lane 6: Clone 14, Lane 7: Clone 7D. Lane 8: Clone8D. Lave 9: Neg. Control.
(B)

Lane 1: DLKP-SQ, Lane 2: Clone 2. Lane 3: Clone 3, Lane 4: Clone 13.

Figure 3.3.17 Expression of β_{1}-integrin in YY1 Overexpressing DLKP-SQ. (A) RT-PCR analysis of the YY1 stably transfections for β_{1}-integrin mRNA expression levels revealed that there was no apparent change. (B) Western blot analysis carried out on the three initial clones showed a reduction β_{1}-integrin protein levels when compared to untransfected cells. $30 \mu \mathrm{~g}$ of total protein was loaded per gel lane.

Section 3221.19 Investigation of eIF4E-binding protem 1 expression levels in DLKP..YY1 stably transfected cells

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 Clone 6, Lane 4 Clone 8, Lane 5 Clone 13, Lane 6 Clone 14, Lane 7 Clone 7D, Lane 8 Clone8D, Lane 9 Neg Control

Figure 3318 Expression of eIF4E-binding protein-1 mRNA in YY1 Overexpressing DLKP-SQ RT-PCR analysis of the stably transfected YY1 clones revealed that there was no apparent change in the level of eIF4E-BP1 mRNA in any of the stable clones isolated

Section 3.2.2.1.10 Investigation of elF-2 α protein levels in DLKP::YY1 stably transfected cells.

Lane 1: DLKP-SQ, Lane 2: Clone 2, Lane 3: Clone 4, Lane 4: Clone 13

Figure 3.3.19 Expression of elF2 α in YY1 Overexpression DLKP-SQ. Westem blot analysis was carried out on YY1 stable clones. A slight increase in eIF-2 α protein levels was observed in clone 4 . The other two clones exhibited similar eIF- 2α as the DLKP-SQ control cells. $30 \mu \mathrm{~g}$ of total protein was loaded per gel lane.

Section 32 2.2 Analysis RNA $^{\mid}$and protein changes in DLKP-SQ cells transiently transfected with the YY1 plasmid

As mentioned earher, the stable YY1 expressing clones generated from the transfection of the DLKP and DLKP-SQ cell lines lost YY1 over-expression for unknown reasons during cell freezing/thaw back process Therefore, it was decided to further characterise the role that YY1 plays in our model system by transiently transfecting both cell lines with the YY1 plasmid

DLKP and DLKP-SQ cells were transiently transfected with two different YY1 plasmids The transfected cells were also analysed for alterations in expression levels of other proteins to elucidate what the effect the up-regulation of YY1 had

$$
1
$$

Due to historical miss-labelling of the YY1 plasmid stocks these transfections were performed using two different YY1 vectors, each containing a full length human YYi cDNA sequence The inital transient transfections were performed using the plasmid described in Section 2 14, transfected into the DLKP-SQ cell line, while second set of experıments were performed using the His-tagged YY1 plasmid, transfected into DLKP , The reasoning behind the use of two different YY1 plasmids was due to historical miss-labelling of plasmids stocks in the laboratory Both YY1 vectors used in this study contained a full length human YY1 cDNA sequence and only differed in the fact that one contained an added His-tag sequence

From analysis of these transfections we demonstrate that transient YY1 overexpression up-regulated c-Myc protein levels, which is in agreement with the stable over-expression of YY1 in our earlier work mRNA levels of c-myc were down-regulated in the transient transfections, whereas in the stable transfections the over-expression of YY1 was shown to have no effect of c-myc mRNA expression levels

We also demonstrate that the transient over-expression of YY1 also has a negative effect on the mRNA of the translation initiation factor eIF4 α, but does
not affect the expression of other translation initiation factors such as eIF4Ebındıng proteın-1 and Mnk2, a known kınase of eIF4E mRNA levels of cytokeratin 8 and 18 were also investigated and it was demonstrated that a slight decrease in cytokeratin 8 mRNA expression in DLKPSQ cells after 24 hours of transfection with YY1 The transient over-expression of YY1 did not appear to have an effect on the mRNA levels of cytokeratin 18 β_{1-1} integrin levels were also investıgated and mRNA levels of this gene were revealed to be significantly down-regulated after 24 and 48 hours of transfection However, expression levels for this gene and returned to near control levels after 72 hours of transfection

Section 3.2.2.2.1 Change in expression of YY1 mRNA in DLKP-SQ transiently transfected with the YY1 plasmid.

Figure 3.3.20 YY1 mRNA Fold change in DLKP cells transiently transfected with YY1

Taqman Real Time-PCR analysis for YY1 expression was preformed on YY1 transiently transfected DLKP cells. It was demonstrated that following transfection YY1 mRNA transcript levels were 15.35 -fold increase after 48 hours and had decreased to 6.75 -fold at 72 hours.

Section 3.2.2.2.2 Change in expression of c-myc RNA in DLKP-SQ transiently transfected with the YY1 plasmid.
(A)

Lane 1: Marker, Lane 2: DLKP-SQ. Lane 3: DLKP-SQ::YY1 24h, Lane 4: DLKP-SQ::YY1 48h, Lane 5: DLKP-SQ::YY1 72h.
(B)

Lane 1: DLKP- SQ, Lane 2: DLKP-SQ::YY| 24h, Lane 3: DLKP-SQ::YY1 48h, Lane 4: DLKP-SQ::YY1 72h.

Figure 3.3.21 Expression of c-myc in YY1 Transient Transfected DLKP-SQ.
(A) RT-PCR analysis for c-myc mRNA revealed that c-myc was down-regulated after 24 h and following $48 \mathrm{~h} \mathrm{c}-\mathrm{myc}$ message had been fully turned off. However, after 72 h the level of c -myc RNA was found to be increasing once again, but not back to control levels. (B) Western blot analysis showed no increase in c-Myc protein after 24 h , however, an increase was seen at 48 h and this was maintained at 72 h of transfection. $30 \mu \mathrm{~g}$ of total protein was loaded per gel lane.

Section 3.2223 Change in' expression of eIF2 α RNA in DLKP-SQ cells transiently ${ }^{\mid}$transfected with the YY1 plasmid

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 DLKP-SQ YY1 24h, Lane 4 DLKP-SQ YY1 48h, Lane 5 DLKP-SQ YY1 72h, Lane 6 Neg Control

Figure 3322 Expression of eIF2 α in YY1 Transiently Transfected DLKPSQ RT-PCR analysis for eIF2 α showed that eIF2 α was markedly downregulated after 24 h and 48 h , when compared to the untransfected cells It was noted that after 72 h the level of eIF2 α had returned to that of the control untreated DLKP-SQ cells Control GAPDH mRNA levels did not amplify in this reaction, and due to time constrants this PCR was no repeated

Section 32 2.2 4 Change in expression of elF4E-binding protein 1 RNA in DLKP-SQ transiently transfected with the YY1 plasmid

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 DLKP-SQ YY1 24h, Lane 4 DLKP-SQ YY1 48h, Lane 5 DLKP-SQ YY1 72h, Lane 6 Neg Control

Figure 3.3.23 Expression of eIF4E-binding protem-1 in YY1 Transiently Transfected DLKP-SQ PCR analysis for 4E-BP1 mRNA showed no changed in expression levels following the overexpression of YY1

Section 32225 Change in expression of Mnk2 RNA in DLKP-SQ transiently transfected with the YY1 plasmid

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 DLKP-SQ YY1 24h, Lane 4 DLKP-SQ YY1 48h, Lane 5 DLKP-SQ YY1 72h, Lane 6 Neg Control

Figure $\mathbf{3} 3.24$ Expression of Mnk2 in YY1 Transiently Transfected DLKPSQ PCR analysis of Mnk2 levels in showed that there was no change in the expression of Mnk2 mRNA levels following the overexpression of YY1

Section 32226 Change in expression of cytokeratin 8 RNA in DLKP-SQ cells transiently transfected with the YY1 plasmid

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 DLKP-SQ YY1 24h, Lane 4 DLKP-SQ YY1 48h, Lane 5 DLKP-SQ YY1 72h, Lane 6 Neg Control

Figure 3.325 Expression of Cytokeratin $8 \mathrm{in} \mathrm{YY1} \mathrm{Transiently} \mathrm{Transfected}$ DLKP-SQ RT-PCR analysis for CK8 RNA in YY1 transiently transfected cells revealed that the level of CK8 RNA was down-regulated after 24h However, after 48h the CK8 message had returned to that of the control untransfected cellstransfected cells

Section 3.2.2.2 7 Change in expression of cytokeratin 18 RNA in DLKP-SQ cells transiently transfected with the YY1 plasmid

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 DLKP-SQ YY1 24h, Lane 4 DLKP-SQ YY1 48h, Lane 5 DLKP-SQ YY1 72h, Lane 6 Neg Control

Figure 3 3.26 Expression of Cytokeratin 18 mRNA in YY1 Transiently Transfected DLKP-SQ. PCR analysis of CK18 mRNA showed that there was no sıgnificant change in expression following transient transfection with YY1

Section 3.2228 Change in expression of β_{1}-integrin RNA in DLKP-SQ transiently transfected with the YY1 plasmid

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 DLKP-SQ YY1 24h, Lane 4 DLKP-SQ YYi 48h, Lane 5 DLKP-SQ YY1 72h, Lane 6 Neg Control

Figure 3327 Expression of $\boldsymbol{\beta}_{1}$-integrn mRNA in YY1 Transiently Transfected DLKP-SQ RT-PCR analysis for β_{1}-mtegrin mRNA revealed that the level of β_{1}-integrin RNA was significantly down-regulated after 24 h In cells transfected for 48 h the β_{1}-integnn message had nearly been fully switched off However, after 72h the β_{1}-integrin message had almost returned to that of the control untransfected cells

Section 3.2.2.3 Change in expression of Genes found regulated in BrdU Array in DLKP transiently transfected with the YY1 plasmid

Following the DNA microarray experiments which were performed towards the end of this thesis, it was decided to investigate if YY1 played a role in the regulation of some of the genes demonstrated to be differentially expressed in the microarray experiments

Following RT-PCR analysis we demonstrate that transient over-expression of YY1 did in fact have a positive effect on some of the genes identified in the DNA microarray experiments We show that the mRNA levels of FHL1, Id2, Id3 and HMOX1, to be increased While YY1 over-expression did not appear to have an effect on FSTL1 mRNA levels

Figure 3328 Expression of FHL1 mRNA in YY1 Transiently Transfected DLKP RT-PCR analysis for domonstreated that transcript levels for FHL1 were significantly up-regulated after 48 hours of transfection with YY1 This merease in FHL1 was mantaned at 72 hours of transfection

Section 32232 FSTL1

Figure 3329 Expression of FSTL1 mRNA in YY1 Transiently Transfected DLKP RT-PCR analysis for revealed that the transient over-expression of YY1 had no effect on the mRNA levels of FSTL1

Section 322.33 HMOX1

Figure 3330 Expression of HMOX1 mRNA in YY1 Transiently Transfected DLKP RT-PCR analysis for domonstreated that transcript levels for HOMX1 were significantly up-regulated in DLKP cells after 48 hours of transfection with YY1 This increase in HMOX1 was maintained at 72 hours of transfection

Section 3223.4 Id2

Figure 3331 Expression of Id2 mRNA in YY1 Transiently Transfected DLKP. RT-PCR analysis for demonstarted a significant increase in Id2 transcript levels after 48 hours of transfection with YY1 This increase in Id2 was maintained at 72 hours of tranfection

Section 3 2.2.3 5 Id3

Figure 3.3.32 Expression of Id3 mRNA in YY1 Transiently Transfected DLKP RT-PCR analysis for revealed a large increase in Id3 mRNA expression leveles in transiently tranfected cells

Discussion

4.1 General Introduction

The lung is a complex organ consisting of over 40 different cell types (Plopper. 1996), whose development has been divided into four chronological stages; I) the pseudoglandular stage, II) the canalicaular stage, III) the terminal sac stage and IV) the alveolar stage. While progress has been made in the developmental genetics in general. aided by huge developments in DNA microarray analysis and proteomic tools, the genetics of lung morphogenesis, the differentiation pathway and the genes involved in development of specific cell types are still largely unknown. The failure to identify a stem cell(s) of the lung (Emura, 1997) and the relative infancy of developmental genetics are part of the main problems in understanding the mechanisms regulating early development of the lung. We have been afforded the opportunity to study an in vitro model for early development using a very poorly differentiated lung cancer cell line, DLKP. which was isolated here at the NICB (Law, et al., 1992).

DLKP is a poorly differentiated squamous carcinoma cell line which does not express keratin proteins or other epithelial markers such as epithelial-specific antigen or desmosomal proteins; despite being of epithelial origins (McBride, et al., 1998). DLKP cells may represent a stem cell-like cell line of lung epithelial lineage which has the potential for both proliferation and differentiation. Also, the cells appear to be at a very early stage of differentiation, shown by the lack of expression of the simple epithelial keratins 8, 18 and 19, and can theoretically progress towards several different phenotypes.

Bromodeoxyuridine (BrdJ) is a halogenated thymidine analogue that competes with thymidine for incorporation into DNA. BrdU has been found to modulate differentiation in a number of different cell types (Harding et al., 1978). Specifically, BrdU has been reported in the literature to modulate differentiation in neuronal, muscle and haematopoietic lineages (Feyles et al., 1991; Tapscott et al., 1989; Yen et al., 1987). It has been shown previously that this differentiation modulating agent is capable of inducing differentiation in our in virro DLKP model system, and the lung adenocarcinoma cell line, A549, (McBride, et al., 1999; Mcleady, PhD Thesis, 1997; O`Sullivan. PhD Thesis, 1999; Walsh. PhD

Thesis 1999, Doolan, PhD Thesis, 2001) Associated with this alteration in differentiation status of these two cell lines was an alteration in the expression levels of varıous protems Protem expression of cytokeratıns 8, 18 and 19, integrins α_{2} and β_{1} (Section 31), the eukaryotic initiation factors eIF4E (Section 18 and Section 3114) and eIF2 α (Doolan, PhD Thesis 2001) and the transcription factors Yın Yang 1 (Section 172) and c-myc (Section 17 1) were all up-regulated in DLKP and A549 cells when induced to differentiate by exposure to BrdU (Walsh, PhD Thesis, 1999) BrdU-induced differentiation of DL.KP and A549 also resulted in the alteration of Ep-CAM protein expression (Section 3 1), along with global changes in the transcription profiles of the cells, which were investıgated by DNA microarray experiments

In addition, immunocytochemical analysis of DLKP treated with BrdU for 7 days and then grown in the absence of BrdU for up to three months showed that these cells retaned the pattern of keratin expression observed in BrdU-treated cells (Walsh, PhD, 1999) This result suggests that BrdU induces a pathway that causes irreversible differentiation of these cells

In this study, BrdU and other halogenated thymidine analogues, namely IdU, CdU, Bromouridme, Bromouracil, as well as $5-\mathrm{FU}, 5,2-\mathrm{FdU}$ and $5,5-\mathrm{FdU}$, were investıgated to determine if they had an effect of the differentration status of both DLKP and A549 cell lines

5-Bromo-2'-deoxyUridine (BrdU) has been reported to modulate differentiation in a number of different cell types. particularly its role in modulating differentiation in neuronal, muscle and haematopoietic lineages has been documented (Yen et al., 1987; Sugimoto et al., 1988; Valyi-Nagy et al.. 1993). We have demonstrated in our laboratory that BrdU treatment of DLKP and A549 cells induce these cells to differentiate. The mechanism(s) by which BrdU exerts its differentiation-modulating effects has not been elucidated. Several different theoretical models have been suggested to date (Section 1.4.1). It appears that the incorporation of BrdU into DNA is critical.

Results presented in this thesis demonstrate that following exposure of both DLKP and A549 cell lines to BrdU and the various other halogenated pyrimidine analogues a similar increase in the differentiation markers investigated was observed. Induction of cytokeratin expression was demonstrated in the DLKP system, with an up-regulation of cytokeratins observed in A549. However, not all the analogues induced/up-regulated the cytokeratins and integrins to the same level and a summary of these results are contain in Table 3.1 and Table 3.2.

In the DLKP and A549 systems, treatment with BrdU, IdU and CdU appeared to have a similar pattern of differentiation, with cytokeratins -8, -18 and -19 showing induction in expression. In DLKP cells increased expression of integrins, α_{2} and β_{1}, were also demonstrated in our differentiation experiments.

Treatment of DLKP and A549 with 5, 2°-FdU resulted in a dramatic alteration in the cell morphology, with the cells increasing in size to 3-4 times that of the control untreated cells. Induction of cytokeratin protein expression was noted in the DLKP system and an up-regulation found in A549 treated cells. Integrin and Ep-CAM protein expression was also noted in the two cell systems.

Bromouridine and Bromouracil did not seem to induce the differentiation markers to the same extent as the other halogenated thymidine analogues, though
some induction of cytokeratins was noted in treated DLKP cells Interestingly, toxicity assays for these two analogues revealed that treatment with high concentrations of these drugs, of up to $70 \mu \mathrm{~g} / \mu \mathrm{l}$, had no effect on the growth of DLKP cells (results not shown) A small increase in expression of the cytokeratın proteins was seen in A549 treated cells with little change in α_{2}-and $\beta_{1-\text { integrm observed (Section }} 3221$)

In order to ensure that the alteration of the differentiation status of both DLKP and A549 was not as a result of simple toxic exposure, both cell lines were treated with Adriamycin for 7 days Treatment with Adriamycin did not produce the same differentrating-modulating effects as was seen with BrdU and its analogues (Data not shown)

In summary, all the thymidine analogues investigated exhibited a similar induction in differentiation as was demonstrated previously with treatment of DLKP and A549 cells with BrdU (O'Sullivan, PhD 1999) The exact mechanısms(s) by which these analogues induced the expression of the set of differentiation markers investigated in this study remain unclear A surpnsing find was that all the analogues investigated demonstrated a simılar overall pattern of cytokeratın and integnn protem expression $5,5-\mathrm{FdU}, 5,2 \mathrm{-FdU}$ and $5-\mathrm{FU}$ are known to have a different biological mode of action than BrdU, and are known to inhibit DNA synthesis However, treatment of DLKP and A549 with Adramycin revealed no induction of cytokeratins or integrin proteins following 7 days exposure of cells to this drug Therefore, it was concluded that the induction of the selected differentiation markers investigated by BrdU and the other pyrimidine analogues in our cell system was not as a result of toxic shock in the cells In order to investigate these differentiation assays further DNA microarray analysis was preformed on a subset of treatments and the results of these studies will be discussed in Section 45

4.3 c-Myc Over-expression Studies

Epithelial cell proliferation and differentiation is a complex process The regulation of genes encoding structural proteins, such as cytokeratıns, during epithehal cell growth and differentiation is relatively well known However, less is known about the roles of specific transcription factors (Lymboussakia, et al, 1996) Since the discovery of c-myc, the $m y c$ gene famuly and the proteins they encode have formed part of the research programme of many cancer research laboratories worldwide However, despite the numerous studies performed or currently under investigation, the role and mechanism of action of the c-myc proteins still remain enıgmatic In fact, although recently large advances in understanding the role played by this oncogene and some of its binding partners have been acheved the data obtained appears extremely complex and in some cases contradictory Many authors believe that oncogenes simply promote cell growth or cell death, and that they block cellular differentiation Studies performed in this laboratory have shown results that contradict this view In our differentiation model system we have shown that up-regulation of the c-myc oncogene may be of importance in the lung cell differentiation process and it is possible that critical genes such as c-myc, may play different roles depending on cell type

Our research group has previously demonstrated that an increase in c-Myc expression is associated with the induction of differentiation, in both the DLKP and A549 cell lines, following treatment with BrdU (Walsh, PhD 1999) Western blot analysis revealed a sıgnificant increase in the levels of c-Myc protein during the differentiation of both epithelial cell lines Along with the increase in c-Myc, an increase in eIF4E was also observed eIF4E has been 1dentıfied as one of the few known transcriptional targets of the c-myc protooncogene (Jones et al , 1996) Studies have shown that eIF-4E expression correlates with c-myc levels following growth induction and that overexpression of c-myc in rat embryo fibroblasts leads to an up-regulation of eIF-4E expression (Makhlouf, et al , 2001)

It may appear contradictory that both c-Myc and eIF4E are up-regulated during epithelial lung differentiation in the DLKP model since there have been extensive reports in the literature of the down-regulation of c-myc expression during differentiation (Yen and Forbes, 1990, Valyı-Nagy et al, 1993, Shımızu et al , 1994) correlated with growth arrest (Bennet et al, 1994) However, the roles of oncogenes such as c-myc and eIF4E in cellular differentiation are poorly understood

431 Stable Over-expression of c-myc in DLKP

In light of our earlier studies, which showed that there was a significant increase in c-Myc protein levels in both DLKP and A549 cells treated with BrdU (Walsh, PhD 1999), it was decided to transfect the DLKP and A549 cell lines with a full length human c-myc expression vector A549 is known to be a difficult cell line to transfect, following several attempts using different transfection techniques (Section 2142 and Section 2144) it was not possible to obtain over-expressing clones

DLKP and a clonal subpopulation of DLKP, DLKP-SQ, were both transfected (Section 2142) with a full length human c-myc expression vector Several attempts were made to generate c -Myc over-expressing clones The plasmid appeared relatıvely easy to transfect into both the DLKP and DLKP-SQ cell lines Several stable clones were isolated from a mixed population, however, none of the clones isolated appeared to overexpress c-myc at the mRNA (Section 33111) or protein level (Section 33112) One possible reason for the lack of overexpression of c-myc may be due to the possible induction of an apoptosis pathway in cells over-expressing c-Myc and the clones isolated from the mixed population were cells that had become resistant to geneticin, but did not greatly over-express c-Myc

432 Transient Transfection of DLKP-SQ with c-myc

As a result of the inability to generate stable over-expressing c-Myc clones in both the DLKP and DLKP-SQ cell lines, we decided to attempt to investigate the role that c-myc plays in differentiation of lung cells by transiently transfecting (Section 2144) the DLKP-SQ cell line The DLKP-SQ cell line was selected for the transient transfections simply because this subpopulation of DLKP is known to be easier to transfect, than DLKP

RT-PCR analysis of transiently transfected DLKP-SQ cells revealed that the mRNA level of c-myc was significantly increased after $24 \mathrm{~h}, 48 \mathrm{~h}$ and 72 h tıme points when compared to the untransfected DLKP-SQ parental cells (Section 33121) An increase in c-Myc protein levels after 48 hours of transfection and a further increase at 72 hours was demonstrated (Section 33121) Investıgation of mRNA and in some cases protem levels of potential c-myc target genes was then performed, the results are described in the following subsections

4321 YY1 Expression in c-myc transient transfections

The YY1 transcription factor possess the unusual ability to both positively and negatively regulate the expression of a number of genes which are thought to be important in cellular differentiation (Riggs et al, 1991) (reviewed in Section 172) and we have previously (Walsh, Phd Thesis, 1999) have identified this transcription factor as an important factor in our differentiation assays The unusual properties exhibited by this transcription factor allow it to regulate the expression of different genes in opposing fashion, making it a pivotal factor in the regulation of developmental gene expression We have previously demonstrated in that YY1 is up-regulated in DLKP and A549 cells treated with BrdU (Walsh, PhD Thesis 1999) suggesting that this transcription factor may indeed be a critical factor in the induction of differentiation on our in vitro cell systems

Investigation of YY1 protein expression in the c-myc transient transfection experiments revealed an increase in this protein following the over-expression of
c-myc At 24 hours following transfection with the c-myc expression vector a increase in YY1 protein expression was demonstrated and this increase was mantained at 72 hours (Section 33123) Due to problems with RT-PCR analysis for the YY1 gene, it was not possible to ascertain of the mRNA levels of YY1 were altered in these experıments These results demonstrate that c-Myc had positive effect on the expression levels of YY1 in cell system

43.22 eIF4E Expression in c-myc transient transfections

eIF4E is a 25 kDa phospho-protein responsible for Cap-binding specificity in eIF4F complexes during eukaryotic translation initiation events eIF4E is widely accepted as the limiting factor in translational initiation, particularly for mRNAs with complex 5' UTR's The core promoter region of the eIF4E gene contans a pair of E-box consensus sequences, CACGTG, which corresponds to the c-myc binding sequence The eIF-4E gene is one of the few known targets of the c -Myc protein Studies have shown that eIF-4E expression correlates with c-myc levels following growth induction and that over-expression of c-myc in rat embryo fibroblasts leads to an up-regulation of eIF-4E expression (Makhlouf, et al, 2001) which is in agreement with studies that we have performed in this laboratory and results presented in this thesis Examination of the transient overexpression of $\mathrm{c}-m y c$ in DLKP-SQ revealed that eIF4E proten levels increased after 24 hours of transfection, but reverted back to levels of control cells following 48 hours (Section 33124)

4.323 Mad expression in c-myc transient transfections

The Myc/Max/Mad family of transcription factors plays a fundamental role in the regulation of cell proliferation, oncogenic transformation, and cell differentiation However, it remains unclear whether different heterodımers, such as Myc/Max and Mad/Max, recognize the same or different target genes in vivo c-Myc and Madl belong to a superfamıly of interactıng proteins that regulate cell growth and differentiation Myc, Max Mad1, Mad2 (Mxıl), Mad3 Mad4 and Mnt are all members of this family In order for Myc to exert is cellular function it requires dimerization with another protein Blackwood and Eiseman (1991)
undertook a study to try and uncover a binding partner required for c-myc functionality and subsequently they identified a small, novel protern which they named Max Sequence analysis showed that Max was simılar to myc in that is also contaned a bHLH and leucine zipper motifs The structure of Max appeared to be extremely simple, comprising of only 160 amino acids, 60 of which constitute the DNA-bindmg/dimerization domain (Cole, 1991) Max has been found to be a very stable protein and appears to be constitutively expressed in resting as well as prohferating cells In proliferating cells, all newly synthesised c-myc is found associated with Max, suggesting that c-myc is ratelimiting in the formation of c -myc-Max dimers

Further work was carred out by Ager and Eiseman (1993) to investıgate Myc's and Max's ability to interact with other protems The fact that the highly stable Max protein is present at times when $m y c$ is not expressed, prompted Eiseman and Ager to examine further the possibility that Max might associate with other proteıns This group isolated a Max-binding protein which in turn the named Mad (Ager and Eisenman, 1993)

The Mad protein is made up of a famıly of four closely related proterns Mad1, Mxı 1 (Mad2), Mad3 and Mad4 When Mad proteins are over-expressed in cells, they inhibit proliferation and apoptosis and suppress cell transformation not only by myc, but also by a variety of oncogene factors (Zhou and Hurlin, 2001) Transcriptional repression function of Mad protems corresponds to its biological activity which is in direct opposition to that of myc proteins

The expression levels of Max were not investigated in the c-myc transfection experıments, nor how the DLKP-treated with BrdU affects the expression levels of Max or Mad proteıns Results presented in this thesis demonstrate that c-Myc proteın over-expression has negatıve effect on the expression of Madl protein (Section 33122) The reason why overexpression of c-Myc decreased the expression levels of Madl proteins is not clear However, in terms of cell function it is not surprising that increased expression of c-Myc would have a negative effect on the expression levels of Mad proteins, given that these two
proteins have been demonstrated to have conflicting roles in cellular differentiation.

4.3.2.4 \quad 1-Integrin Expression in c-myc transient transfections

Integrins form a large family of heterodimeric transmembrane glycoproteins that bind to components of the extracellular matrix. They are versatile adhesion receptors expressed by almost every cell type. In addition to mediating cell adhesion. integrins are known to function as signalling receptors, participating in a diverse array of cellular events including spreading, migration, proliferation, differentiation and apoptosis (Debhar, 1999). Integrins also appear to be important for normal differentiation in most cell types. Their role in differentiation of epidermal stem cells has heen well established (Watt, 1998).

Cell adhesion promotes cellular proliferation through the regulation of gene expression, including the immediate early genes. However, the precise role of cell adhesion in the regulation of the c-Myc proto-oncogene is not clear, and the adhesion-dependent signalling pathway(s) regulating the expression of $\mathrm{c}-\mathrm{Myc}$ has yet to be defined.

Our research group has previously demonstrated that treatment of DLKP and A549 with the differentiation-modulating agent, BrdU, resulted in increase expression of β_{1}-integrin protein (Meleady, and Clynes, 2000). An increase in cMyc was also observed in these cells (Walsh, PhD. 1999). Interestingly, in the transient transfection of the DL.KP-SQ cell line with c-myc, a slight decrease in the mRNA levels of β_{1}-integrin was observed. It has been previously been reported in the literature that constitutive expression of $\mathrm{c}-\mathrm{Myc}$ in keratinocytes causes a reduction in β_{1}-integrin expression levels. Our study of the transient over-expression of the c-myc gene agrees with these studies (Section 3.3.1.2.6). However, this does not explain how the expression levels of β_{1}-integrin are increased in BrdU-treated DLKP and A549 cells in which c-Myc levels are increased. It is possible that the treatment of these cell lines with BrdU induces β_{1}-integrin proteins via some other pathway way which is independent of
regulation of c-Myc Another reason for this disparity between the BrdUtreatments and the c-myc transient over-expression studies potentially could be related to c-Myc phosphorylation In these experıments the phosphorylation status of c-Myc has not been investigated Future work is required to examine if the activity of c-Myc is a result of kinase-related effects in BrdU-treated cells

In summary, we have found that it was not possible to generate stably overexpress c-Myc in the DLKP cell line, but we have demonstrated that the transient over-expression of c-Myc increased levels of YY1 and eIF4E protein expression levels were increased in these transient experiments Our results agree with published data where up-regulated c-Myc expression levels have been reported to increase the expression of eIF4E protein levels (Makhlouf, et al, 2001) Further work is required to investigate the exact role c-myc plays our model differentiation system The over-expression of c-myc may indeed be involved in the regulation of other important differentiation-related genes not investigated in these studies Genes that may warrant further investigation maybe those which we have identified as being differentially expressed and thought important in the regulation of differentration by BrdU, 5,2 -FdU and IdU, following DNA microarray analysis (Section 32 and Section 4 5) In view of the fact that the microarray experiments performed in this thesis were conducted after this set of c-myc over-expression studies, and due to time constraints, it was not possible to investigate if $\mathrm{c}-m y c$ was involved in their regulation of expression

44 Yin Yang 1 Over-expression Studies

The Yin Yang 1 (YY1) transcriptional regulator is thought to be of critical importance in the control of normal development (Riggs et al, 1991) (reviewed in Section 172) YYl possesses the unusual property of regulating transcription in three ways In different cellular contexts, YY1 has been shown to actıvate, repress or initiate transcription of a number of cellular genes These opposing roles in the regulation of gene expression make YY1 a pivotal factor in the regulation of developmental gene expression YY1 is ubiquitously expressed transcription factor that is thought to play an important role in the regulation of many cellular and viral genes through the consensus cis recognition sequence (Yao, et al, 1998) It has been reported previously to up-regulate genes such as c-myc (Riggs el al, 1993, Lee et al , 1994) Previous investigation in our laboratory of the DLKP and A549 cell lines showed elevated expression of YYi protein upon treatment with BrdU in both cell lines (Walsh, PhD 1999) BrdU has also been shown to up-regulate the levels of YY1 in embryonic myoblasts (Lee et al, 1992), further confirming work previously performed in this laboratory It appears that YY1 may play an important role in the control of normal differentiation and development, due to its unusual ability to differentally regulate expression of various genes

Despite the large number of genes found to be potentially regulated by YY1 and the increasingly large number of protems that are claimed to interact with YY1, little is known concerning how YY1 itself is regulated YY1 has also been linked to cellular growth and differentiation One study by Lee et al (1992) demonstrated that the level of YY1 activity changes during myoblast differentiation It has been shown that YY1 levels increase rapidly in quiescent NIH3T3 cells in response to serum and insulin-like growth factor 1 treatment (Shi, et al, 1997) YY1 DNA binding activity has also been shown to be regulated during differentiation For example, YY1 DNA binding decreases during differentiation of human teratocarcinoma cells (Liu, et al , 1994)

In view of its pleiotropic activities, it is not surprising that association of YYl with other proteins appears to be important in determining the activity of YY1

YY1 was first cloned because of it was found to bind to an E1A sensitive site in the Adenoassociated virus (AAV) P5 promoter YY1 has also been shown to associate with another transcnptional activator Spl, YY1 and Spl together actıvate transcription in a synergistic manner (Lee, et al, 1993, Seto, et al, 1993) Also, studies using the P5 promoter in an in vitro system indicated that YY1 TFIIB and Pol II are sufficient to initiate transcription

YY1 has been demonstrated to increase the transcription from the P1 and P2 promoter of the c-myc gene (Riggs et al , 1993) In addition, it has been revealed that YY1 associates with the c-Myc protein itself (Sherivastava, et al , 1993) In co-transfections carried out by Shrivastava, et al (1993), over-expression of cMyc inhibits both the transcriptional activation and repression abilities of YY1 YY1 is thought to compete with Max (Section 1711), excluding it from association with c-Myc (Shrivastava et al , 1994) Since the 201-343 amıno acid region of YY1 is required for association with c-Myc and is also required for association with Spl and E1A, c-Myc may inhibit YY1 activity by mterfering with its ability to associate with other transcription proteins Studies have shown that c-Myc interferes with the ability of YY1 to contact the basal transcription factors TATA-binding protein (TBP) and TFIIB
c-Myc levels vary in response to many mitogens and growth signals and it may be that the varying levels of c-Myc modulate YY1 activity in vivo There has been some speculation that one function of the c -Myc oncogene is to modulate the expression of YY1-dependent developmental genes by virtue of is association with YY1 (Liu, et al , 1996) In co-transfection experıments, c-myc expression was able to reduce YY1 activating function from eight-fold m the absence of coexpressed c-myc to two-fold in its presence (Shrivastave, et al , 1993) In light of YY1s ability to activate c-myc gene transcription, association between these two proteins may form the basis of an auto-regulatory mechanism that controls the expression and activity of both proteıns (Grignanı, et al, 1990), preventing excessive loss of growth control during periods of elevated c-Myc expression

4.4.1 Role for YY1 in regulation of differentiation in DLKP

Previous work performed by our research group showed that the differentiationmodulating agent. BrdU, was capable of inducing differentiation in our in vitro DLKP cell system and the lung adenocarcinoma cell line, A549(McBride S., ef al., 1999; Meleady P., PhD Thesis 1997; O’Sullivan F., PhD Thesis 1999; Walsh D., PhD Thesis 1999: Dolan P., PhD Thesis 2001; Meleady and Clynes, 2001a: Meleady and Clynes. 2001b). It was also proposed by work performed by Walsh (PhD Thesis, 1999) that YYI may play a critical role in the control and induction of differentiation in our model system. To investigate if YY1 is indeed a critical factor in this model differentiation process it was decided to transfect the cell line. DLKP, and a colonal subpopulation, DLKP-SQ, with an YY1 expression vector.

Stable highly over-expression YY1 clones were generated from the transfection of DLKP-SQ cells with a full length YYI expression vector. Preliminary characterisation on the effect of the over-expression of the YY1 transcription factor was performed on these clones. Unfortunately, during the freezing and thaw-back, the cells lost the over-expression of YYI gene.

Western blot analysis of the isolated over-expressing YY1 clones revealed a significant increase in expression of YY1 protein in comparison to the untransfected parental cell line (Section 3.2.2.1.1). As a result of difficulties experienced generating effective RT-PCR primers, it was not possible to investigate the YYI mRNA levels in the isolated over-expression clones.

In order to characterise the DLKP-SQ YYI clones, the expression levels of several genes were investigated at both the mRNA and protein level in an attempt to determine if the over-expression of YY1 plays an important role in our differentiation system. In studies performed by Walsh (PhD Thesis, 1999), it was demonstrated that BrdU-treatment of DLKP increased the expression of YY1 and c-Myc proteins; indicating that these two proteins maybe two important transcription factors in this differentiation model system. Also, YY1 has been reported in the literature to associate with c-Myc: therefore, we investigated the
expression levels of c-Myc in our YY1 to determine if YY1 played a role in the regulation of c-myc RT-PCR analysis for c-myc was performed on the clones (Section 32212) revealing no change in expression of c-myc However, Western blot analysis demonstrated that there was a marked increase in c-Myc protein levels within the YY1 clones (Section 32212) It appears that the upregulation of YY1 had no effect on c-myc expression at the RNA level, but did cause an increase in c-Myc protein expression

In addition to c-Myc, Madl protein levels were investigated in the YYl overexpressing clones Madl protein is reported to be expressed in resting and differentiating cells and is a known antagonist of c-Myc The expression of cMyc and Mad proteins is tightly controlled and their relative concentrations are critical parameters in the regulation of cell growth Western blot analysis for Mad1 protein in the YY1 clones revealed that the level of Madl was increased, with Clone 4 exhibiting the greatest increase in expression (Section 32213)

The effect of over-expression of YY1 on members of the family of eukaryotic translation factors (eIFs) were also investigated in this study It was found that over-expression of YY1 up-regulated the mRNA expression levels of eIF2 α (Section 322110) in all clones when compared to the untransfected parental cell line, DLKP-SQ mRNA levels of Mnk2, a known eIF4E kınase, were examined It was demonstrated that over-expression of YY1 in this cell model system had no effect of the mRNA levels of Mnk2

Western blot analysis for eIF4E in the YY1 clones was performed reveaing that a substantial increase in the level of eIF4E protein (Section 32214) All clones exhibited a marked increased in eIF4E protein, however, Clone 4 showed the greatest change Immunocytochemical analysis of the clones revealed that the over-expression of YY1 also increased the expression of Ornithine Decarboxylase (results not shown) which is known to be translationaly regulated by eIF4E over-expression Due to problems with RT-PCR primers it was not possible to investigate if the mRNA levels of eIF4E were altered in these clones An increase in the expression of eIF4E protein levels was also demonstrated in

BrdU-treated DLKP cells eIF4E has also been reported as a target for c-Myc and over-expression of c-Myc has previously been shown to up-regulate eIF4E protein levels (Makhlouf, et al, 2001), which was confirmed here Also, an increase in eIF4E protein expression was demonstrated in the treatment of A549 cell lines (Section 3114) with BrdU and this further confirms the fact that YY1 maybe playing role in this differentiation system

Other members of the translationaly machinery were investigated, these included Mnk2, eIF4E-BP1 and eIF2 α RT-PCR analysis of eIFF4E-binding proteın-1 revealed that there was no change in mRNA expression in any of YYl overexpressing clones RT-PCR analysis for eIF2 α revealed an increase in mRNA levels in the clones Western blot analysis also demonstrated an increase in eIF2 α protein levels

In our studies we demonstrate that the over-expression of YY1 in our system had an effect on some of the translation machınery of the cell In particular, a major increase in the expression eIF4E protein levels was demonstrated along with an increase in the expression of eIF 2α mRNA and protein levels eIF 2α is a subunt of eIF2 and is involved in the recruitment of the initiator tRNA (Met-tRNA) to the 40S Ribosomal subunit, in the initiation process of translation (Colhurst et al 1987) It has been suggested that eIF 2α, along with eIF4E, may possibly be a limiting factor in intiation of protein synthesis Under conditions of elevated eIF4E expression, translation of complex or repressed mRNAs have been shown to be imitiated more frequently, and can compete more efficiently for eIF2 α, becoming translated at the same rate as 'normal' mRNAs The over-expression of these two important initiation factors may thus be playing important roles in the induction of cytokeratin protein expression in the YY1 over-expressing clones

We also examıned by RT-PCR analysis β_{1}-mtegrin mRNA expression levels in the YY1 over-expressing clones and demonstrated that there was no change in the level of expression of β_{1}-integrin mRNA (Section 322118) However, Western blot analysis revealed that upon up-regulation of YY1 protein, $\beta_{1^{-}}$
integrın proteın levels appeared to be down-regulated (Section 322118) As mentioned earlier up-regulation of c-Myc protern has been shown to have an inhibitory effect on the expression levels of β_{1}-integnin In our in vitro system we have demonstrated that associated with the over-expression of YY1 protein, is an associated up-regulation in the expression levels of c-Myc protein This upregulation in c-Myc protein may explain why a decrease β_{1}-integrin was observed in the YY1 over-expression experıments Also, as for c-Myc, YY1 over expression may have a different affect on the expression of certain genes, and the expression pattern of these genes may vary when compared to BrdUtreatment of cells

Immunocytochemıcal analysis performed by Derek Walsh (PhD Thesis, 1999) demonstrated that the over-expression of YY1 in DLKP induced cytokeratm expression in the cell line In order to investigate if YY1 over-expression altered the mRNA expression of these proteins, RT-PCR analysis was performed for cytokeratins 8, 18 and 19 This analysis revealed that the level of mRNA of cytokeratm 8 remained unaffected by the over-expression of YY1 (Section 32215) However, the mRNA levels of both cytokeratin 18 and 19 (Section 322116 and Section 322117) were both increased, indicating that YY1 maybe involved in the regulation of their expression For some unknown reason the stable YY1 clones generated in this study lost their YY1 over-expression during freeze/thaw back Several clone stock banks were prepared, however when these stocks were re-cultured, Western blot analysis revealed that the clones had lost all over-expression of YY1 protein Due to time constraints in this thesis, it was not possible to ascertain if the proten levels of these three cytokeratins were also altered and some further work needs to be performed to address this

Section 4.4 2 Transient Over-expression of YY1

Due to tume constrants towards the end of thesis and problems with the YY1 plasmid, it was not possible to generate more stable over-expressing YY1 clones Therefore, it was decided to transiently transfect the DLKP and DLKP-SQ cell Innes with a YY1 expression vector for up to 72 hours in order to further investigate the potential role that YY1 plays in our model differentiation system The initial transient transfections where performed with the YY1 expression vector described in Section 3222 while the DLKP YY1 transient transfections were carried out using the vector described in Section 3222 Both YY1 plasmids contain a full length human cDNA gene

From analysis of the transient over-expression of YY1 experiments it was found the YY1 mRNA levels were increased several fold following 72 hours of transfection (Section 32221) Unfortunately, due to contınual problems sourcing anti-YY1 antıbody from Santz Biotec, it was not possible to examine the protein levels of YY1 in these experiments Transient over-expression of YY1 appeared to have a negative effect on the expression levels of c-myc mRNA, and analysis revealed that the c-myc signal was complete shutoff after 48 hours, but were found to increase again after 72 hours, but not back to control levels (Section 3222 2) However, Western blot analysis demonstrated that cMyc protein levels were increased upon the over-expression of the YY1 gene (Section 32222) From analysis of the stable over-expression YY1 experiments in DLKP-SQ cells (Section 44 1), results demonstrated that the mRNA levels of c-myc were unchanged by the over-expression of YY1 protem, however c-Myc protein expression levels were increased in the YY1 clones

The YY1 transient over-expression studzes performed confirmed that YY1 upregulation in our cell system is capable of increasing c-Myc protein expression The disparity in the effect of YY1 over-expression on c-myc mRNA levels maybe explaned by dosage levels of the YY1 gene in the transfected cells The over-expression of YY1 achieved in the transient experiments maybe much higher than the levels obtained in the stable clones, and the differences in the
levels of YY1 expression may have a bearing on the expression of c-myc mRNA in these experiments Further analysis is required to confirm this hypothesis

The effect of transient over-expression of YY1 on members of the translation intiation factors was also investigated These experiments confirmed results of the stable over-expression experıments where YY1 was demonstrated to have no effect on expression levels of eIF4E-binding protein-1 and Mnk2 (Section 32224 and Section 3222 5) In the stable YY1 clones it was found that the protem expression levels of eIF 2α were increased, however, the mRNA levels for this gene were not investigated The results from the transient overexpression of YY1 revealed that the mRNA levels for eIF2 α were greatly reduced after 24 hours of transfection, but after 72 hours returned to control levels Unfortunately, due to tıme constraints it was not possible to investigate the protein levels of elF2 α in these transient experiments
$\beta 1$-integrm mRNA levels in the YY1 transient transfection experiments were also investigated The results of this analysis revealed a marked reduction in the expression of $\beta 1$-integrin mRNA upon up-regulation of YY1, with virtually all $\beta 1$-integrm mRNA signal shutoff following 48 hours of transfection with YY1 However, 72 hours after transfection the mRNA expression levels of $\beta 1$-integrin had almost returned to that of the control, untransfected cells These results in part contradicted the RT-PCR analysis performed on the YY1 stably overexpression clones, which showed no apparent change in $\beta 1-1$ ntegrin mRNA levels (Section 32228) Western blot analysis demonstrated a marked reduction in $\beta 1$-integrin protein levels In both the YY1 stable and transient over-expression studies we have demonstrated that YY1 is cable of up-regulating c-Myc protein levels in your system Therefore, it is plausible to assume that this up-regulation in c-Myc protein levels may potentially be regulating the levels of $\beta 1$-integrm The regulation of $\beta 1$-integrn by c-Myc has previously been reported

The effect of YY1 over-expression on the mRNA expression of cytokeratin 8 and 18 was examıned It appeared that YY1 over-expression had no major impact
the mRNA levels of these two cytokeratıns These experiments were preformed at the end of this thesis and due to time constraints it was no possible to investigate if transient YY1 over-expression induced cytokeratın protein expression, as was demonstrated by our research group in stable YY1 overexpression clones (Walsh, PhD Thesis, 1999)

In summary, we have demonstrated that the stable and transient over-expression of the YY1 transcription factor in our cell system is capable of inducing a similar pattern of genes as were found altered in BrdU-treated DLKP cells We demonstrate that both BrdU-treatment of DLKP and the over-expression of YY1 protein both increased the expression levels of c-Myc and eIF4E proteins These results suggest that these two genes may be playing a critical role in the regulation of the differentiation pathway induced in DLKP by BrdU

4.5 DNA Microarray Analysis

Temporal and spatial control of gene expression by transcription factors is the hallmark of development The program of lung development from the beginning is directed by the activity of key transcriptional factors DNA microarrays which permit assessment of gene expression patterns on a global level have become increasingly available Initial work in this study demonstrated that a range of thymidme analogues, including BrdU, IdU and 5,2-FdU (Section 4 2), were capable of inducing differentiation-related proteins in our DLKP and A549 cell line model systems Analysis of DLKP cells treated with these three thymidine analogues illustrated that they all induced a similar pattern of differentiationrelated genes (Section 42) All three analogues altered the morphology of DLKP upon treatment for 7 days In partıcular, the expression of cytokeratins 8, 18 and 19 proteins were induced following exposure of cells to the thymidine analogues (Section 3 1) To investigate the global changes that occurred in DLKP cells treated with BrdU, 5,2 -FdU and IdU, DNA microarray analysis was performed using Affymetrix U133A GeneChips ${ }^{\circledR}$ (Section 2 15) The aim of this analysis was to identify patterns of gene expression changes in all three thymidine analogue treatments and also to identify common gene alterations between the three DNA microarrays performed, thereby possibly identifying genes which maybe potentially regulatory in the pathway of differentiation induced by these three analogues

The first DNA microarrays to be performed were microarrays on BrdU-treated DLKP cells Three separate mıcroarray experıments, labelled Exp 1, Exp 2 and Exp 3, were performed In the initial experiments, Expt 1, tıme points at $0,1,3$, 7 and 14 days and in the Expt 2 experıment tıme points of 0,1 and 7 days were chosen for analysis (Section 322 1) These initial microarray experiments were carried out using single samples from each time point Gene expression analysis on data sets was carried out as per Rushton et al , (2003) In Exp 1 over 9,100 genes were identified as being differentially expressed in the experiment, whereas in Exp 2 approxımately 3,500 genes were identified A large difference in the numbers of genes identified as being differentially expressed between
these two experıments maybe due to the fact that 5 experıment time points were chosen in Exp 1 In Exp 2 only time points at 3 and 7 days were chosen

Following gene expression analysis on these data sets, a list of differentially expressed up- and down-regulated genes was created From this list, ten genes were selected and RT-PCR analysis was performed in order to venfy the gene expression analysis results The genes were selected on the basis of being the most robust and the most reliably consistent in the two experiments The ten selected genes were then confirmed by RT-PCR analysis in order to validate the microarray data sets

Expt 3 was preformed in triplicate using biological replicates and time points of 0,3 and 7 days were chosen (Section 3223) Since this expenment was performed using biological triplicates, the promoter analysis (Section 3225 and Section 4 6) for this thesis was focused on this experiment In this experıment following gene expression analysis a total of 1,093 genes were identified as being differentally expressed (Appendıx 7 1) 812 of which were demonstrated as being up-regulated, whereas 281 genes were identffied as being downregulated at day 7

In the 5,2 -FdU microarray experiment, total of 2,240 genes were identıfied as being differentally expressed across the experıment (Appendıx 73) At day 7, 1,186 of these genes were shown to be up-regulated and 961 genes downregulated The total number of differentally expressed genes identified in the 5,2 -FdU array found to be almost twice that Epx 3 BrdU array In the case of the IdU mıcroarray 722 genes were identıfied as being differentially expressed, 471 of which were found to be up-regulated at day 7 , with a further 251 downregulated

Exp 3 of the BrdU mictoarrays, the 5,2 -FdU and IdU microarrays were performed towards the end of this thesis and as a result tıme did not allow for

RT-PCR validation of wide set of genes identified as being differentrally expressed However, the ten genes used to validate the initial BrdU arrays, Exp 1 and Exp 2, also emerged following analysis of the third BrdU microarray, Exp 3, and the 5,2-FdU microarray These ten genes were used to validate the BrdU (Exp 3) and 5,2-FdU However, not all of these ten were found up-regulated in the IdU microarrays, therefore only a subset of these were used to validate this microarray

451 Comparison of the BrdU, 5,2 -FdU Microarray and IdU DNA Microarrays

Venn diagrams of differentially expressed genes were created in order to identify genes that that were commonly up-regulated at 7 days between the Exp 3 BrdU, 5,2-FdU and IdU mıcroarrays (Section 32 5) 179 up-regulated genes were shown to be common to BrdU and 5,2 -FdU only 132 up-regulated genes were found common to BrdU and IdU only, and a further 29 genes common only to IdU and 5,2-FdU A total of 93 up-regulated genes (Appendıx 75) were identıfied as beıng common to all three treatments

Similar to the up-regulated genes, the lists of differentrally expressed downregulated genes from the BrdU, 5,2-FdU and IdU mıcroarrays were overlapped using a Venn diagram in order to identify genes that are commonly downregulated between the three treatments From the Venn diagram 105 downregulated genes were found to be common to both the BrdU and 5,2-FdU microarrays It was observed that 24 genes were commonly down-regulated between BrdU and IdU, with a further 15 genes common to 5,2 -FdU and IdU only A total of 9 genes were identufied as being down-regulated between all three mıcroarray experıments

It should also be noted that BrdU treatment of DLKP cells differentrate in response to treatment with BrdU Therefore one would expect some 'noise' from undifferentiated cells Also, the low percentage of cells induced to differentiate
in the BrdU differentiation assays agrees with the finding of relatively few genes found to overlap between the three microarray experiments.

4.5.2 Identification of biological themes with EASE

High density microarray experiments have enabled the discovery of global patterns of biological responses to experimental conditions. Huge amounts of effort have been placed on issues such as data normalisation and statistical testing of genes that are significantly clustered on the basis of expression profiles. The net result of these efforts is the creation of one or more often very long lists of differentially expressed genes. However, one area of microarray analysis that requires attention in trying to make biological sense of these lists is of identification of biological themes from the gene lists. Annotating genes from such lists can be extremely laborious using internet-based databases or manual literature searches. Even after performing such searches, it can be difficult to identify biological themes from the gene list in order to makes sense of the microarray data. Expression Analysis Systematic Explorer (EASE) is a publicly available software application (http://david.niaid.nih.gov/david) that can used for the determination of biological themes from lists of genes.

The main focus of the differentiation studies performed in this body of work was to identify genes that were common to all three thymidine analogues, $\mathrm{BrdU}, 5,2^{-}$FdU and IdU, since all three induce similar patterns of differentiation. A total of 93 genes (Appendix 7.5) were identified as being up-regulated between the three microarray experiments. In order to identify biological themes within this set of 93 genes, they were entered into EASE.

Not surprisingly, due to the effect these thymidine analogues have on the cell, some of the categories that featured strongly in this analysis included cell death and apoptosis categories. However, other groups which featured heavily in the statistical scoring in the EASE analysis were the categories of morphogenesis. organogenesis and development (Table 4.1).

Common Name	Affymetrix ld
ID3	207826 s at
LY6H	206773_at
PHLDA2	209803_s_at
GBX2	210560 at
CYP1B1	202436_s_at
ID1	208937 s_at
F2R	203989 x at
TPM1	206116_s_at
GPC4	204983_s_at
CSRP2	207030_s_at
PAPSS2	203058_s_at
HMOX 1	203665_at
MCAM	209087 x at
EPB41L2	201719_s_at
KLF4	221841_s_at
TAGLN	205547_s_at
DPYSL2	200762_at
DKK3	214247 s at
FGF2	204422 s_at
DTR	203821_at

Table 4.1 This table detanls the 20 genes categorised by EASE has being involved in 'Development'

A total of 20 (Table 4 1) of the 93 (Appendix 75) up-regulated genes common to all three microarrays fell into the development category, a subset of the more interesting genes are described in the following subsections

4521 Id family

The Id famıly of four helix-loop-helix (HLH) transcription factors (Id1, Id2, Id3 and Id4) act as domınant negatıve regulators of basic HLH protens The four Id proteins share a homologous HLH domain, but lack the basic DNA binding domann Id protems act to sequester bHLH proteıns by forming inactıve dımers to prevent binding of bHLH proteins to E-box sites (Chaudhary et al , 2000)

Two genes from the Id famuly of transcription factors, Id1 and Id3, were found following EASE analysis, in the development category and were common to all three DNA microarray experiments The expression of IdI mRNA was found
to be up-regulated in all three microarray experiments: 4.8-fold in BrdU, 3.6-fold in $5,2^{\circ}-\mathrm{FdU}$ and 1.6 -fold in the IdU microarray. The mRNA expression levels of the Id3 family member was increased by 7.5 -fold in the BrdU microarray, 7.9 -fold and 1.6 -fold in the 5,2 -FdU and IdU microarrays, respectively.

Two other Id family members, Id2 and Id4, were also found up-regulated in the DNA microarray experiments. However, EASE did not classify these two family members in to the 'Development' category. The expression of Id2 mRNA was increased to 3.9 -fold in both the BrdU and 5,2-FdU microarray and 1.5 fold in the IdU microarray. The expression levels of Id4 mRNA were increased to 4.4 -fold and down to 2.7 -fold at day 3 and day 7, respectively, in the BrdU microarray. In the $\mathbf{5 , 2} \mathbf{2}$-FdU microarray experiments the mRNA levels of Id 4 were found to be 3.2 -fold and 3.9 -fold at day 3 and day 7 respectively. And in the IdU microarray the expression of Id4 mRNA was found to increase to $\mathbf{2} .1$-fold following 7 days of exposure to the analogue.

The different Id members have been localised to different chromosomes and show marked differences in their pattern of expression and function (Fong et al., 2003). Although the family members are similar in the HLH domain, the regions outside this sequence are distinct from each other. It is thought that this variance between the four family members may determine their tissue specific function, as well as the binding specificity for particular bHLH proteins. Since many bHLH proteins positively regulate sets of genes during cell fate determination and cell differentiation. Id proteins are thought to inhibit the ability of bHLH proteins from binding DNA and inhibit cell differentiation.

Although Id proteins traditionally have been viewed as negative regulators of differentiation, recent work has revealed much wider biological roles, and are now thought to be important in development, cell cycle control and tumour biology. In general, the Id proteins are expected to have overlapping function because of their ability to form non-functional dimers with differentiationinducing bHLH proteins. Recent studies suggest that his may not be true, and some Id proteins may, in fact, be required to induce and maintain the
differentiation state of a particular cell (Lui, et al , 2000, Cooper and Newburger, 1998) It has been demonstrated that Id2 may act as inhibitor of proliferation and is required for the determination and maintenance of the differentiated state of alveolar epithelial cells (Liu et al, 2000) The constitutive expressions of Id2 and Id3 mRNA in Sertoli cells suggests that these protems may have a significant role in maintanıng Sertolı cell function (Chaudhary et al , 2000) Chaudhary et al (2000) have shown that post-mitotic and differentiated Sertolı celis express high levels of Id proteins This pattern of Id2 and Id3 expression agrees with the results presented in this study, where we show a signification increase of both genes in differentiating lung epithelial cells

In several epithehal cell types, the expression of this family of protems has been positively correlated with proliferation (Barone et al , 1994) They are often upregulated in proliferating and undifferentiated cells, and down-regulated upon induction of differentiation (Norton et al , 1998) Ectopic expression of Id proteins has also been shown to block differentiation functions in a number of cell types by sequesterıng cell-specific bHLH transcription factors (Melnikova and Christy 1996, Sholı et al , 1994) Experiments presented in our study show that mRNAs for the Id famıly members are up-regulated in DLKP cells induced to differentiate following treatment with halogenated pyrımidine analogues Therefore, we suggest that the Id famıly of transcription factors may potentially play an important role in the control of differentiation-related genes in our model cell system However, further work is required to elucidate the exact role this famıly of proteins plays in our differentiation system

45.22 Glypicans

Glypicans are a famuly of six glycosylphosphatidylmositol-anchored cell surface heparan sulfate proteoglycans implicated in the control of cellular growth and differentration, which have been localized to rafts and caveolae (Fransson 2003) Glypicans are selective regulators of ligand-receptor binding and have been reported to control cellular growth and development In recent years it has become apparent that proteoglycans serve in several major developmental sıgnaling-pathways It is now thought that several secreted and cell surface
molecules participate indirectly in growth-factor signaling, by influencing the interactions between growth factors and receptors The evidence is particularly strong for the pathways supported by FGFs, Wnts and BMPs, which all involved in a wide variety of developmental pathways (De Cat and David, 2001)

Proteoglycans are proteins, substituted with glycosaminoglycans These glycosaminoglycans bind to growth factors, extracellular matrix molecules, enzymes, protease inhibitors and many other proteins They are predominantly located on the cell surface Two major familes of proteoglycans have been identified the syndecans and the glypicans Syndecans are transmembrane proteoglycans, whereas glypicans are attached to the cell surface Syndecans and glypicans show differential expression and have been found to be highly regulated during development The structures of the individual glypicans are extremely well conserved across the species it is not currently known if the glypıcan famıly members share common functions (De Cat and David, 2001)

Given the ability of glypicans to regulate the activity of cellular growth, this family of proteins has also been associated with some cancers Recent reports have showed that changes in their expression patterns maybe linked with tumour progression One such study established a connection between glypican 1 and pancreatic cancer, where the expression of this protein was significantly upregulated (Kleef et al, 1998) In our study we found that the expression of glypican-4 mRNA was mereased by 16 -fold at day 7 in the BrdU microarray, to 1.7 -fold in both the $5,2^{\prime}$-FdU and IdU microarrays, respectively The exact role that the glypicans play in our differentiation system remains unclear and further work is required to ascertain their exact role in the control of differentation in the DLKP cell line

Following EASE analysis of the BrdU, 5,2 -Fdu and IdU microarray data sets, one interesting gene identıfied in the development category was KLF4 Analysis of the microarray experiments revealed that the expression of KLF4 mRNA was increased 18 -fold in BrdU-treated DLKP cells, 28 -fold in 5,2'-FdU and $\mathbf{2} \mathbf{2}$-fold in IdU-treated DLKP cells following $\mathbf{7}$ days exposure

Kruppel-lıke factors (KLFs) are DNA-bındıng transcriptional regulators that play a diverse role during differentiation and development The KLFs are zinc finger transcription factors, expressed in the epitheha of the skin, lungs and gastrointestunal tract as well as in many other organs Members of this family include erythroid (EKLF), lung (LKLF), basic (bKLF) and gut (GKLF, also known as KLF4)

KLF4 has been the most thoroughly investigated family member with respect to its role in cellular differentiation This gene has been shown to be important in the gastrointestinal tract and colon epithelium, where the gene is thought to regulate cell growth and differentiation Shie et al (2000) demonstrated that the expression of KLF4 mRNA is significantly decreased in neoplastic colonic tissues including adenoma and carcinoma and they have suggested that downregulation of KLF4 may contribute to malignant transformation of the colon In this study, Shie et al (2000) showed that constitutive over-expression of KLF4 in human adenocarcinoma cells resulted in a decrease in $\left[{ }^{3} \mathrm{H}\right]$ thymidine uptake, whereas inhibition of KLF4 led to an increase in DNA synthesis, suggesting that KLF4 may play an essential role in controlling growth arrest in the colon This trend in KLF4 expression was confirmed in another study by Sheilds et al (1996) who demonstrated that KLF4 mRNA levels were sıgnificantly decreased in proliferating NIH 3T3 cells The exact mechanısm by which KLF4 exerts its effect in is not fully understood Sher et al (2000) reported that the expression of KLF4 is closely related to that of CD1 and CD1-associated kinase activity and that KLF4 in fact suppresses the CD1 promoter activity

Earlier work in this study examined the effect of the differentiation modulating agent, BrdU, and the various other halogenated thymidine analogues (Section 31 and Section 42) had on the differentiation status of both DLKP and A549 Markers of differentiation that were investigated in these assays included a group of intermediate filaments known as cytokeratıns These protems are known to be important in cellular differentiation and cytoskeleton organisation and have been subdivided into two main types The acidic type I is comprised of cytokeratins 9-20, whereas the basic type II include 1-8 (Section 15) One cytokeratin in particular, K19, has no known basic type II keratın partner, although its expression is often found in cells that express K8 (Quinlan et al , 1985) We have also demonstrated that the expression of K8 and K19 protein levels are induced our differentiation studies of both DLKP and A549 cells (Section 4 2)

Regulation of cytokeratın expression in the differentiatıng stratified squamous epithelium is governed by a complex interplay of both ubiquitous and tissuespecific transcription factors Little is known about the regulation of K19 expression Brembeck and Rustıg (2000) reported that KLF4 and Spl modulate K19 promoter activity in a tissue-specific manner The role of Sp1 in the regulation of cytokeratins has been described previously The promoter of corneal-specific K3 gene is regulated by an overlapping Sp1/Ap2 site and endogenous levels of Sp 1 and Ap 2 define K 3 gene transcription in differentiating corneal epithelial cells (Chen et al , 1996) The transcription of K5, K16, K17 and K18 has all been shown to be under the control of Sp1 (Ohtsukı et al 1993, Magnaldo et al , 1993, Gunther et al , 1995)

The KLF famıly of transcription factors had been phylogenetically linked to the Spl famıly Brembeck and Rustig (2000) in theır study revealed that both Spl and KLF4 act positively on an overlapping Sp1/KLF4 site in the K19 promoter with preferential binding by KLF4 and postulated that the endogenous levels of Spl and KLF4 are important determinants in binding to this element In their study they showed that KLF4 contributes to the tissue-specific transcriptional regulation of K19 expression KLF4 appears to play an important role in cellspecific differentiation by activatıng K19 expression, which they demonstrated to be influenced by Sp1 in stratıfied squamous epithelial cells but is relatively
independent of Sp 1 in pancreatic ductal epithelial cells Therefore, it is possible that KLF4 and Sp1 modulate K19 expression differently, m that Spl is important developmentally and KLF4 directs cell fate decisions during differentiation

Jenkins et al (1998) also reported that KLF4 increased the transcriptional actıvity of keratın 4 and Epsteın-Barr vırus ED-L2 promoters and suggested that KLF4 may function as a transcriptional activator in the oesophageal squamous epithelium to regulate cell differentiation It is also possible that KLF4 may function as etther an activator or repressor of transcription and that this property is promoter or cell type specific (Yet et al, 1998) Is it possible that KLF4 is involved in the regulation of cytokeratm expression levels in our cell system? In order to answer this question the factors involved in the regulation of KLF4 itself require investigation

45231 Regulation of KLF4

The transcriptional regulation of KLF4 itself is poorly understood and it was recently shown by Chen et al, (2000) that IFN- γ enhanced its expression IFN- γ, a pleıotropic cytokine with antiproliferative and immuno-modulating activities, has been shown to exert its functions by enhancing transcription of IFN- γ responsive genes such as IRF-1, FcrR1 and Ly6-1A/E These genes, in general, share many common features, for example, their expression is mediated by tyrosine phosphorylation of latent pre-existıng STAT1 and their promoters contain an IFN- γ-activation sequence that binds specifically to phosphorylated STAT1 (Chen et al 2002) A study performed by Chen et al (2002), established the molecular mechanism by which IFN- γ induced KLF4 expression in colon cancer cells This was accomplished by demonstrating that IFN- γ increased KLF4 and IFR-1 mRNA levels in a similar fashion Wong et al (2002) demonstrated that the induction of IRF-1 by IFN- γ was STAT1-dependent and that the expression of the STAT1 gene depended on IRF-1 Together, these data suggest that IFN- γ-induced KLF4 expression was mediated through STAT1 and this theory was further supported by findings showing that the effect of IFN- γ on KLF4 or IRF-1 gene expression was completely abolished in STAT1-deficient cells

45232 STAT1 regulation of gene expression in response to IFN- γ

The transcription factor STAT-1 is activated by the tyrosine phosphorylation mediated by JAK famıly kinases during cellular responses to cytokıne or growth factor signalling STAT-1 directly regulates the expression of key proteins in controlling the cellular processes of growth arrest of p21 (also known as CDKN1A) and cell death via expression of caspases (Wong et al , 2002) In our study it was observed that p21 mRNA was up-regulated 49 -fold in the BrdU microarray, 2.5 -fold in $\mathbf{5 , 2}$-FdU microarray and $\mathbf{2 . 2}$-fold in IdU-treated DLKP cells, after 7 days exposure STAT-1 is also thought to be an essential element in a range of different transcription factor complexes The two most commonly identified are GAF and ISGF3, which are involved in the signal transduction pathways of type I and II INFs, respectively (Stark et al, 1998, Decker et al , 1997)

Genetic and biochemical analyses have revealed the importance of the protein tyrosine kınase Jak1 and Jak2 and the transcription factor STAT1 in IFN- $\boldsymbol{\gamma}$ depended signalling Upon ligand bindıng, the receptor oligomerises and Jak1 and Jak2 are activated, leadıng to the phosphorylation of tyrosine 440 of the IFNγ receptor subunit 1 (INFGR1) of the receptor, which provides a docking site for STAT1 STAT1 then is phosphorylated on tyrosine 701, leading to its dimerisation and translocation to the nucleus, where it binds to the gammaactivated sequence (GAS) elements of promoters to regulate expression of downstream genes (Rama et al, 2001) In our study we found the that expression of Jak2 was increased by 1.7 -fold in the DLKP IdU microarray experiment and increased by 18 - and 2 2-fold at day 3 and day 7 in the 5,2FdU microarray experıment, respectively Therefore, Jak2 potentially may be involved in the phosphorylation of STAT1 in our model system

Wong et al (2002) proposed a role of IRF-1 in the regulation of STAT-1 expression They found that STAT-1 regulates the IRF-1 gene promoter and suggested that both gene products form a feedback loop that acts to regulate cellular responses to INFs, such as IFN- $\boldsymbol{\gamma}$ In this study we found that STAT-1 mRNA was increased 1.8 -fold in both the BrdU and IdU microarrays and
1.6-fold in the 5,2-FdU-treated DLKP cells These results indicate that STAT-1 may indeed be playing a role in the regulation of IFN- γ which in turn may potentially be controlling the expression levels of KLF4 in our differentiation model system The expression levels of IFN- γ are in the BrdU, 5,2 -FdU and IdU microarray experıments are unknown One proposed reason that they may not have been identified by microarrays analysis may be as result of less than optımal probe design by Affymetrix Affymetrix do not quality control each probe set and we know from other experıments that genes which we know are up-regulated at the mRNA levels are not detected by Affymetrix GeneChips However, from analysing the microarray data sets it would seem probably that IFN- γ is in fact up-regulated in treated DLKP cells The expression of other genes that are know targets of IFN- γ, such as IRF-1 and Interleukin 18 have been demonstrated as being increased several fold in the mıcroarray experiments

It should be noted here that the Affymetrix GeneChip system has many advantages over other platforms currently avallable on the market However, this system does have some drawbacks Through out this study we have identified some failing in probe design, where the system has not identıfied genes that we know from previous studies to be altered following exposure of DLKP cells to BrdU Some of these genes include YY1, c-myc and α_{2}-integrin We have previously shown these genes in particular have increased mRNA and protem levels following treatment with drug

Figure 4.1 Schematic of the proposed regulation of cytokeratin expression in BrdU-, 5,2 -FdU- and IdU-treated DLKP Cells. STAT-1 is activated by phosphorylation mediated by the Jak kinases. Phosphorylated STAT-1 translocates to the nucleus where it is proposed to be involved in the regulation of KLF4 and IRF-I gene expression. It is suggested that up-regulation of KLF4 increases the transcription of certain genes such as the cytokeratins. IRF-1 and STAT-1 form a feedback loop that acts to regulate the cellular responses to stimuli such as INF- γ.

45233 Potential role for YY1 in regulation of IFN- $\boldsymbol{\gamma}$

The nuclear factor of actıvated T cells (NFAT) originally described as an essential transcription factor for IL-2 gene expression in T cells, is thought to play a major role in the coordinating transcription of a number of cytokines Recent studies have demonstrated that the cytoplasmic NFAT components belong to a large famıly of regulatory transcription factors comprised of at least four members, NFAT 1-4, which are differentally expressed In T cells NFAT1 is expressed in both unstimulated and stımulated cells, whereas NFAT2 is expressed prımarily in actıvated cells (Sweetser et al 1998)

Some studies have shown that NFAT1 (also know as NFATC2) may function in the regulation of the IFN- γ promoter Sweetser et al (1998) demonstrated that two strong NFAT binding sites were required for maximal expression of the IFNγ reporter construct containing 538 bp of the IFN- γ promoter Also in this work, the group showed that YY1 did not mediate inhibition of basal IFN- γ expression Previous studies suggested that YY1 suppresses IFN- $\boldsymbol{\gamma}$ promoter function in Jurkat T cells by interacting at two regions within a silencer element located between the NFAT-binding sites (Ye et al , 1996) In contrast to this Yen et al (1996), Sweetser et al (1998) demonstrated that proteins bindıng to the NFAT and YY1 sites on the IFN- γ promoter may serve to mitiate expression of IFN- γ in primary splenocytes Although YY1 has been shown to interact with many other transcriptional regulators, interaction with NFAT proteins has not yet been demonstrated

The mechanisms by which YY1 induces transcriptional activation of cellular genes such as $\mathrm{c}-\mathrm{myc}$ and how protems modulate the activating and repressive activities of YY1 remain yet unclear And this is the case of the effect of YY1 on the IFN- γ promoter, however, this transcription factor is thought to play a complex and context-dependent role in the regulation of IFN- γ expression

45.2.3 4 YY1 transient over-expression versus BrdU-treatment in DLKP cells

Following DNA microarray analysis performed on DLKP-treated cells with BrdU, 5,2 -FdU and IdU (Sections 32 and Section 45) it was decided to investigate if some of the differentially expressed genes identified in these microarrays experiments were also altered following the transient overexpression of YY1 RT-PCR analysis revealed that the transient over-expression of YY1 did in fact up-regulate the expression of Hmox1, Id2, Id3 and FHL1 mRNAs (Section 3 2) However, further RT-PCR analysis for FSTL1 mRNA expression demonstrated that YY1 over-expression had no effect on expression levels of FSTL1 (Section 3 2)

Promoter analysis on these four genes was also performed (Section 216) Interestingly, this analysis demonstrated that the promoter sequences of the Id2 and FHL1 genes both contained binding motifs for the Spl and KLF4 transcription factors Analysis on the BrdU, 5,2 -FdU and IdU microarrays demonstrated that KLF4 and the Id family of transcription factors may potentially play an important role in the induction of differentiation in our DLKP model system We have earher discussed (Section 4523 3) how YY1 has been shown to regulate the expression levels of IFN- γ in certan cell types and how in turn IFN- γ, as well as STAT-1, are involved in the regulation of KLF4 In previous studies, YY1 has been demonstrated to associate with the transcription factor Spl and the association of these two factors as been shown to activate the transcription of a number of cellular genes (Section 172) Therefore, it is plausible to hypothesise that YY1 is in fact a major controlling factor in the regulation of differentation induced in our DLKP model system by BrdU, as previously suggested (Walsh D , PhD Thesis, 1999)

Figure 4.2 Hypothesised Involvement of YY1 in the Regulation of INFY It is hypothesised that YYI may be involved in the regulation of expression of IFN- γ, and that IFN- γ then stimulates the phosphorylation of STAT-1, mediated by Jak, which results in the activation of transcription of KLF4.

45235 Other genes identified in the development category included FGF-2 and LY6H

Fibroblast Growth Factor-2

Fibroblast growth factors (FGF) make up a large famıly of polypeptide growth factors that are found in a wide variety of organısms In vertebrates, 22 members have been identified and are thought to be highly conserved in both gene structure and amıno acid sequence Most FGF genes are found distributed around the geneome (Ornitz and Itoh, 2001) The members of this family of proteins are differentially expressed in many tissue types, but the patterns and tıming of expression differ Some FGFs are expressed exclusively during embryonic development (FGF 3, 4, 8, 15, 17, and 19), whereas others are expressed in embryonic and aduit tissues (FGFs 1, 2, 5-7 16, 18 and 20-23)

In our differentiation system, DNA microarray analysis revealed that FGF-2 mRNA levels were increased in the BrdU, 5,2 -FdU and IdU microarrays The expression of FGF-2 mRNA was found to be increased to 16 -fold in all three arrays The expression patterns of FGFs suggest that they have important roles in development They are often involved in the direct signalling across epithehal-mesenchymal boundaries (Hogan 1999), the expression of each famıly member is thought to be tightly controlled However, the exact mechanisms regulating FGFs activity in vivo are not yet fully understood The roles which FGFs play in development have also yet to be determined

LY6H

The ly6 family of molecules was first identified in mouse and are a class of glycosylphosphatidylınositol-anchored cell surface glycoproteıns Highly restnctive patterns of expression of Ly6 genes in specific subpopulations of murine myelord and lymphord cells established Ly6 molecules as markers for Tcell differentiation and for hematoporetic stem cells

Murine Ly-6 molecules are a family of cell surface glycoproteins which have interesting patterns of tissue expression during haematopoiesis from multipotential stem cells to lineage committed precursor cells, and on specific leucocyte subpopulations in the peripheral lymphoid tissues These interesting patterns of tissue expression suggest an intimate association between the regulation of Ly-6 expression and the development and homeostasis of the immune system Ly-6 molecules are low molecular weight phosphatidyl inositol anchored glycoproteins with remarkable amino acid homology throughout a distunctive cysteme rich protein domain that is associated predominantly with O linked carbohydrate These molecules are encoded by multiple tightly linked genes located on chromosome 15 which have conserved geneomic organization The in vivo functions of Ly-6 molecules are not known although in vitro studies suggest a role in cellular activation

Ly6H appeared to play a role in the differentiation pathway induced in DLKP suggestion that following the treatment with BrdU, $5,2-\mathrm{FdU}$ and IdU It was observed that the mRNA expression levels of this gene was increased to 20 and 19 -fold in the BrdU and 5,2'-FdU microarrays, and to 17 -fold in the IdU experiment following 7 days exposure of DLKP to each of the analogues

4.6 Investigation of potentially co-regulated genes in BrdU-treated cells

Time course microarray experiments reveal information about the temporal transcription profile of genes. Sets of genes with the same expression pattern can be grouped into clusters but the identification of molecular mechanisms responsible for co-expression requires further investigation. By using comparative promoter analysis it is possible to identify genes for which coexpression maybe a result of re-regulation. The aim of this analysis was to find promoter features that are potentially responsible for co-expression of different genes.

DLKP cells exposed to the differentiating-modulating agent, BrdU, undergo morphological change and several epithelia markers of lung cell differentiation are induced. In order to analyse global changes, the transcriptional profiles of BrdU-treated DLKP cells were examined using Affymetrix U133A DNA microarray GeneChips®. Following DNA microarray data was normalised and passed through various filters, as described in Section 3.2.2.3. Effective comparative promoter analysis requires tightly clustered gene expression profiles. To generate tight clusters the gene lists were subjected to ANOVA analysis (Section 3.2.2.5).

It is beyond the scope of this thesis to analyse all the clusters from the BrdU array for co-regulated set of differentially expressed genes. Therefore, it was decided to select one cluster and to demonstrate how it is possible to identify potentially co-regulated genes using the Genomatix Suite software (www.genomatix.de). In this worked example genes contained in Cluster 5 were chosen. The decision to choose Cluster 5 was made because genes contained in this cluster where found to be up-regulated following three days exposure to BrdU and remained at this level after 7 days.

A total of 115 genes were contained in Cluster 5 and were imported into the Genomatix BiblioSphere software package (Section 2.16) and were filtered using ‘Biological Processes’ Gene Ontology filter. After applying GO filter the genes were categorised as illustrated in figure 4.3 and ranked according o \mathbf{z}-score. 15
genes (Table 4.2) were found to be classified into the 'Development' category and had a z-scoring of 1.68 . These were chosen for further analysis. The hypothesis behind is experiment was that co-expressed genes that are involved in the same biological process may potentially be co-regulated at a promoter level. We could have classified the genes based on involvement in other cellular processes such as disease or molecular function alternatively, but since the overall aim of this thesis in the investigation of genes involved in cellular differentiation it was decided to select the 'Development' category.

Figure 4.3 Biological Filter of genes contain in Cluster 5.

Common Name		LocusId	Affymetrıx Id
EPAS1	endothelıal PAS domain proteın 1	2034	200878 at
SCML1	sex comb on mıdleg-lıke 1 (Drosophıla)	6322	218793 s_at
MYH9	myosın, heavy polypeptıde 9, non- muscle	4627	211926 s_at
PHLDA2	pleckstrin homology-lıke domaın, famıly A, member 2	7262	209803 s_at
TPM2	tropomyosın 2 (beta)	7169	212654 at
TPM1	tropomyosın 1 (alpha)	7168	206117 at
SMTN	smoothelın	6525	209427 at
CXCR4	chemokıne (C-X-C motıf) receptor 4	7852	217028 at
COL1A1	collagen, type I, alpha 1	1277	202310 s_at
PAPSS2	3'-phosphoadenosıne 5'-phosphosulfate synthase 2	9060	203060 _s_at
ETS2	v-ets erythroblastosıs virus E26 oncogene homolog 2 (avıan)	2114	201329 s_at
HMGA1	hıgh mobılity group AT-hook 1	3159	206074 s_at
RPS6KA6	nbosomal protem S6 kınase, 90kDa, polypeptıde 6	27330	220738 s_at
ADORA2A	adenosıne A2a receptor	135	205013 s_at
GPR64	G protern-coupled receptor 64	10149	206002 at

Table 4215 genes contained in 'Development' Category

The promoters for each of these 15 genes were retrieved using Genomatix Gene2Promoter software packages and the promoter regions of the 15 genes were then searched for a common framework of transcription factor binding sites 500 bps upstream of the transcriptional start site, for each of the genes was analysed Following this analysis, several models were identified The model illustrated below (Figure 4 4) was chosen on the basis that it contained an E box transcription factor matrix Previous work in this laboratory has suggested that c-myc may play an important role in the control of the differentiation pathway of BrdU-treated DLKP cells (Walsh, PhD Thesis 1999) c-Myc is known to contain an E box binding motif (Section 1711)

The model chosen (Figure 44) contains three transcription factor elements MAZF, ZBPF and Ebox, were found in 6 (40%) (Figure 44) of the 15 gene promoters from the 'Development' category

Figure 4.4 Binding sites for MAZF, ZBPF and Ebox in the upstream promoter regions of EPAS1, MYH9. TMP1, TMP2 COLA1 RPS6KA6.

4.6.1 Role for MAZF, ZPF and EBOX Regulation of other human promoter sequences

In order to investigate the specificity of the promoter model containing MAZF, ZBPF and E box this model was searched for in all known human promoter regions. This was performed by using Genomatix Modelinspector program. From this analysis it was found that the promoter model occurs in 94 human gene promoter sequences, two of which are involved in regulation of protein biosynthesis (eIFG1 and PRKAA1). Another set of genes whose promoters also contain this model transcription factor framework are these involved in the protein kinase cascade. Included in this list of genes were STK17B. ADRA2C, PRKAA1, F2R and RPS6KA2 (Figure 4.5).

Fratam of reats

Figure 4.5 Evaluation of Modellnspector Matches

Interestingly, one gene, STK17A, whose closely related family member STK17B promoter region was found to contain the proposed transcription factor model motif; was also found in cluster 5. From DNA microarray analysis we found that STK17A mRNA expression levels were increased by 1.7 - and 1.9 -fold at day 3 and day 7, respectively, in the BrdU Exp. 3 microarray experiments. STK17B expression levels were also found increased in the DLKP BrdU Exp. 3 microarray experiment. At day 3 and day 7 the mRNA expression levels of this gene was found to be 1.7 - and 1.8 -fold increased, respectively. This may be further evidence that the transcription factor model system that we have identified in this example may indeed be biologically relevant.

Further experimental work is required to confirm the model transcription factor framework identified in this example. Also, in this example only one cluster from the BrdU Exp. 3 microarray data set was investigated and genes contained in this cluster were found up-regulated at day 3 and remained up-regulated at day
7. Genes whose expression levels increase and decrease across the experiment and genes that are down-regulated at day 3 and day 7 may be investigated for coregulation. The work required to investigate further potentially co-regulated genes in the differentiation experiments, is beyond what is possible in the time allotted for this thesis and further work may identify other interesting models
systems that are responsible for the gene expression patterns observed in our in vitro differentiation model system

In light of this it is clear that the results generated m these microarray experiments could be extensively mined in the manner demonstrated to reveal countless groups of potentally co-regulated genes The breath of this analysis was beyond the scope of this thesis, therefore, it was decided to illustrate the powerful use of this type of analysis in one cluster of the DLKP BrdU microarray experiment The process just described is an iterative one and further work could potentially generate additional interestıng transcription factor frameworks

47 Summary

Experıments performed in this study have demonstrated that the pyrimidine analogues investigated induce a very smular gene expression changes and differentiation pattern, in drug-treated DLKP and A549 cell lines These alterations in gene expression are reflected in a common set of transcriptional gene changes, as well as drug-specific changes We have identified a whole host of additional differentially expressed genes following BrdU exposure, as well as in 5,2 -FdU and IdU-treated DLKP cells by DNA microarray analysis And have valıdated some of these gene expression alternations by RT-PCR

It has also been shown in this thesis that YY1 is directly capable of regulating some, but not all, of the genes altered following BrdU exposure The results of these studies further the hypothesis put forward by Walsh (PhD Thesis, 1999), which suggested that YY1 potentially plays a key role in the regulation of differentiation in our in vitro model system

We have analysed all these results and discussed some possible models for the observed transcriptional alternations induced in our cell systems upon induction of differentiation and suggest some experiments to future work

Section 5.0 Conclusions and Future Work

* Pyrimdine Analogues Induce Differentiation in DLKP and A549 cell lines

This project began, as an investigation into the mechanism(s) by with the differentrating modulating agent, BrdU, is able to alter the differentiation status of epithelial lung cells A range of pyrmidine analogues, as well as BrdU, namely IdU, CdU, BromoUracıl, BromoUrıdıne, 5-FU, 5,2 -FdU and 5,5 -FdU, were also investigated to determine if similar differentiation affects were seen with these analogues as was seen with BrdU-treated DLKP and A549 cells

Our results demonstrate a common differentiation effect of all the pyrmindine analogues in both the DLKP and A549 cell lines The ability of these analogues to induce differentiation in both cell lines was assessed by examining their effect on protein expression levels of cytokeratın 8,18 and $19, \alpha 2$-mtegrin, β_{1}-integrm and Ep-CAM This study has shown that these proteins are induced in DLKP cells and are increased A549 cells following exposure to these analogues

* cDNA Transfection of c-myc and YY1 into DLKP

In light of work performed in our laboratory which demonstrated that BrdU treatment of DLKP and A549 cells significantly increases in the expression of cMyc and YY1 (Walsh, PhD Thesis, 1999) It has been suggest that these two transcription factors may potentially be important key regulators of differentiation in our cell system Therefore, it was decided to transfect full length human c-myc and YY1 cDNAs into the DLKP cell hne in order to determine if their over-expression induced sımılar patters of gene expression as was demonstrated in BrdU-treatment of DLKP

Attempts to stably over-express the c-myc expression vector in our DLKP cell line proved unsuccessful Clones isolated from a mixed population of cells did
not exhibit any significant up-regulation in either c-myc mRNA or protein levels. Therefore, it was decided to transiently transfect the vector in order to determine if c-myc was a key regulator of differentiation. We demonstrated that the transient over-expression of c-myc had a positive effect on YY1 and eIF4E protein expression levels which is in agreement with results obtained from the treatment of DLKP cells with BrdU.

Over-expression of the transcription factor YY1, into DLKP cells also resulted in a significant increase in the expression levels of $\mathrm{c}-\mathrm{Myc}$ and elF4E proteins. Also associated with the transient increase in YY1 levels was a increase in genes which were identified as differentially expressed in the DNA microarrays performed in this study. We show that mRNA levels for FHLI, Id2, Id3 and HMOX1 are all increased in YY1 transiently transfected cells. This provides further evidence that YY1 is indeed an important factor in the regulation of differentiation and that YY1 transfection and BrdU treatment of the DLKP cell line may induce a similar pattern of differentiation in our cell system.

* DNA Microarray Experiments

DNA microarrays were also performed on DLKP cells treated with $5,2^{\prime}-$ FdU. IdU and BrdU in order to examine global transcriptional changes which occur in DLKP cells following exposure to these differentiation-inducing drugs. 93 upregulated differentially expressed genes were identified as common to all three microarray experiments. These genes were further investigated in order to determine their involvement in the process of differentiation in our cell system. These 93 genes were subjected to EASE analysis, which we used, helped to identify biological patterns in the gene list. Following this analysis we narrowed our focus on a subset of the 93 genes which are thought to be involved in cellular development. We propose that the ld family of transcription factors may be important regulators of differentiation in our cell models. This family of helix-loop-helix transcription factors has also been demonstrated as being a central regulator in the differentiation of other types of epithelial eclls, besides the lung. These studies provide evidence that Id proteins may in fact be significant
controllers in our system and we suggest that these transcription factors may indeed have a wider role to play in cellular process than traditionally thought

Another finding from the microarray experiments performed in this thesis was the involvement of the transcription factor, KLF4 KLF4 has been shown to be important in the gastromtestinal tract where the gene is thought to regulate cell growth and differentiation This gene has also been associated with the regulation of cytokeratin expression in other cell systems and from the results of this thesis we hypothesis that this transcription factor could potentrally be involved in the regulation of cytokeratin expression in BrdU-treated DLKP cells

From our microarray experıments we propose a role for KLF4 in the regulation of cytokeratin expression in our differentiation system We hypothesis that KLF4 mRNA levels are increase mediated by the phosphorylated STAT-1 and IFN γ and IRF-1 We also suggest a possible role for YY1 involvement in the regulation of IFN γ within the cell The involvement of YY1 in this model is further strengthen following promoter analysis of a subset of genes identified as differentially expressed in the DNA microarray experiments As mentioned earlier we have shown that YY1 is capable of inducing the expression of FHL1, Id2, Id3 and HMOX1 in DLKP cells following transient over-expression studies We demonstrate that the promoter sequences of Id2 and FHL1 genes both contain bindıng motıfs for Spl and KLF4 transcription factors, which provides further evidence for important roles for both YY1 and KLF4 in our proposed model

Future Work.

The work described in this thesis has identified a number of key factors and the mechanism(s) that maybe critical in the control of differentiation of lung epithelial cells Areas that would be of interest for further study may include

1 YY1 Transfections

$>$ DNA Arrays and Protem Arrays Perform DNA arrays on stable YY1 clones Investigate of YY1 over-expressing ciones by DNA microarray analysis may provide further leads and help to identify gene targets for this unusual transcription factor Comparison of the results of YY1 and the microarray experıments preformed on pyrmidine-treated DLKP cells may identify common regulatory genes in our in vitro lung differentiation model Investigate on the altered protein profiles in YY1 transfected cells may also be of interest The use of new protein arrays, as provided Ciphergen SELI-TOF system, may generate interesting leads for further investigation
> DIGE 2D electrophoresis Analysis experıments on stable YY1 clones using DIGE analysis may also ald in the identification of proteins thought to be under etther the activation or repression control of YY1
> Immunocytochemical and in-situ hybridisation studies using tissue sections from early lung and carcınoma samples may be used to identify the in-vivo relevance of factors, such as YY1, shown to be involved in differentiation in our in-vitro model
> In order to determine the percentage of transfect cells in the YY1 transient transfections co-transfection of the YYl plasmid along with GFP or β-Gal should be preformed

2. c-Myc Transfections

$>$ In order to investigate further the role which c-myc plays in our model differentiation system and to overcome the difficulties experienced in this study with stably transfecting the c-myc vector into the DLKP cell line, transfection with an inducible c-myc plasmid may offer an alternative approach
$>$ Further work is required to confirm the hypothesis that overexpression of c-myc in our model system does in fact induce apoptosis RT-PCR and Western blot analysis for pro-apoptotic factors should be performed

3 Thymidine Analogues and DNA Microarrays

$>$ Quantıtatıve RT-PCR analysis confirm the microarray results using Real Time-PCR
$>$ Transfection of KLF4 into the DLKP cell line From the results presented in this thesis it appears that KLF4 may be an important transcription factor in the regulation of cytokeratin expression in our cell system Therefore, it would be interesting to transfect a full length human cDNA for this gene into DLKP cells to investigate if it is possible to mımic the gene expression pattern with KLF4 overexpression as was demonstrated in pyrımidıne-treated DLKP cells
> DNA microarray analysis generates vast amounts of data, analysis of some of which is only possible in the time provided for the completion of this thesis In this study only up-regulated genes where investıgated Down-regulated genes may also play an important role in the regulation of cellular process and differentiation, therefore, warrant further investigation It is possible that the microarray data sets generated in this body of work could yet reveal more interesting
genes and pathways involved in the regulation early lung differentration, if re-mined

- Further microarray analysis could reveal interesting targets for sıRNA expenments It would be interesting to known-down key genes that are potentally regulating the process of differentiation in our cell system
$>$ Promoter analysis in this study we demonstrated the possible use of promoter analysis software for the identification of potentially coregulated genes in the BrdU microarray experıments As mentioned, this process is iterative, and is beyond the scope of this thesis to fully mine the data to its full potential Similar analysis of clusters is possible for the $5,2^{`}-\mathrm{FdU}$ and IdU microarray experiments In light of the model transcription factor framework identified in this thesis, it is clear that other framework models of more significant importance may yet be identıfied from the microarray data sets

DIGE 2D electrophoresis and protem Arrays Comparison of control versus treated cells, using DIGE 2D electrophoresis and protein arrays may help to identify protems that may be up- or down-regulated in our model system for lung cell differentiation Unknown proteins may then be tentatıvely identified using Mass Spec analysis

Sectıon 60 Bibliography

Adamson I. Y. and Bowden D. H. (1979) Bleomycin-induced injury and metaplasia of alveolar type 2 cells. Relationship of cellular responses to drug presence in the lung. Am. J. Pathol. 96(2) : 531-544.

Affymetrix: GeneChip Expression Analysis: Data Analysis Fundamentals. [http://www.affymetrix.com].

Albelda S.M. and Buck C.A. (1990) Integrins and other cell adhesion molecules. FASEB J. 4: 2868-2880.

Altmann M. and Trachsel H. (1993) Regulation of translation initiation and modulation of cellular physiology. TIBS 18: 429-432.

Altmann M., Edery I. and Trachsel H. and Sonnenberg N. (1998) Site-directed mutagenesis of the tryptophan residues in yeast eukaryotic initiation factor 4E. J. Biol. Chem. 263 (33) : 17229-17332.

Amati B., Brooks M.W., Levy N., Littlewood, T.D., Evan G.I. and Land H (1993) Oncogenic activity of the c-Myc protein requires dimerisation with Max. Cell. 72 : 233-245.

Ameye C, Sundmacher R, de Clercq E. (1989) Topical BVDU plus low-dosage steroids in the treatment of chronic relapsing zoster keratouveitis. A pilot study. Graefes. Arch. Clin. Exp. Opthalmol. 227 (2) : 118-122.

Antoniou M, de Boer E, Spanopoulou E. Imam A, Grosveld F. (1995) TBP binding and the rate of transcription initiation from the human beta-globin gene. Nucleic Acids Res. 23 (17) : 3473-80.

Antonson P. Pray M.G., Jacobsson A. and Xanthopoulos KG. (1995) Myc inhibits CCAAT/enhancer-binding protein alpha-gene expression in HIB-1B hibernoma cells through interactions with the core promoter region. Eur J Biochem. 232 (2) : 397-403.

Azizkhan JC, Jensen DE, Pierce AJ, Wade M (1993) Transcription from TATA-less promoters: dihydrofolate reductase as a model. Cri.t Rev. Eukaryo.t Gene Expr., 3 (4) : 229-54.

Alexander B., Berger R., Day L.M., Hogarth P.M., Feneziani A., and Cook W.D., (1992) Tumour-associated karyotypic lesions coselected with in viro macrophage differentiation. Gene, Chromo., Can. 5 286-298.

Armstrong R. D. and Diasio R. B. (1980) Metabolism and biological activity of 5-deoxy-5-fluorouridine a novel fluorpyrimidine. Cancer Res., 40 (9), 333-3338.

Amstrong R.D. and Diasio R.B. (1980) Metabolism and biological activity of 5-deoxy-5-fluorouridine. Cancer. Chemother. Pharmacol. II(2) p102-105

Armstrong R D, Connolly K M, Kaplan A M, Cadmen E (1983) Mechanısm of cytotoxic activity of 5-deoxy-5-fluorouridine Cancer Chemother Pharmacol II (2) 102-105

Arnold H H, Tannich E and Paterson B M (1988) The promoter of the chicken cardiac myosin light chain 2 gene shows cell-specific expression in transfected prımary cultures of chıcken muscle Nucleıc Acids Res 16 p2411-2429

Baker P N, Bradshaw T K, Morser J, Burke D C (1979) The effet of 5bromodeoxyundine on interferon production in human cells J Gen Virol 45 117184

Barone M V , Pepperkok R , Peveralı F A and Phlipson L (1994) Id proteins control growth induction in mammalıan cells Proc Natl Acad Scı USE 91 p 4985-4988

Becker KG, Swergold GD, Ozato K and Thayer RE (1993) Bindıng of the ubiquitous nuclear transcription factor YYl to a cis regulatory sequence in the human LINE-1 transposable element Hum Mol Genet $\underline{2}$ (10) 1697-702

Becker KG, Jedlıcka P, Templeton NS, Liotta L and Ozato K (1994) Characterization of hUCRBP (YY1, NF-E1, delta) a transcription factor that binds the regulatory regions of many viral and cellular genes Gene 150 (2) 2 59-66

Bennet, M R , Littlewood T D, Evan G I and Newby A C (1994) Down-regulation of the c-myc proto-oncogene in inhibition of vascular smooth-muscle cell differentiation a signal for growth arrest? Biochem J, 302, 701-708

Blackwood E M and Eisenmann R N (1991) Max heterodımeric partner of Max that antagonses Myc transactivation Cell, 72, 211-222

Blessing M , Jorcano J L and Franke W W (1989) Enhancer elements directing cell-type-specific expression of cytokeratin genes and changes of the epithelial cytoskeleton by transfections of hybrid cytokeratin genes EMBO J $\underline{8}$ (1) 117-26

Blouin R, Swierenga S H and Marceau N (1992) Evidence for post-transcriptional regulation of cytokeratin gene expression in a rat liver epithelial cell line Biochem Cell Biol 70 (1) 1-9

Blumenberg M (1988) Concerted gene duplications in the two keratın gene famıles J Mol Evolution 27 203-211

Bodescot M and Brıson O (1996) Characterısation of a new human c-myc mRNA species produced by alternatıve splicing Gene 174 (1) 115-120

Brembeck FH and Rustgı AK (2000) The tissue-dependent Keratin 19 gene transcription is regulated by GLKF/KLF4 and Sp1 Bio Chem J, 275, 28239-28239

Broers J L, Ramaekers F C , Rot M K, Oostendorp T, Huysmans A, van Murjen G N , Wagenaar S S and Vooujs GP (1988) Cytokeratıns in different types of human lung cancer as momtored by chain-specific monoclonal antıbodies
Cancer Res 48 (11) 3221-3229
Buchsbaum D J, Khazaelı M B , Davis M A and Lawrence T S (1994) Sensitization of radıolabeled monoclonal antıbody therapy using bromodeoxyuridme Cancer $\underline{73}$ (3 Suppl) 999-1005

Buckıngham M (1994) Molecular biology of muscle development Cell 78 15-21
Bushmeyer S, Park K and Atchison ML (1995) Characterization of functional domains within the multifunctional transcription factor, YY1 J Biol Chem $\underline{270}$ (50) 30213-20

Bushmeyer SM and Atchison ML (1998) Identıfication of YY1 sequences necessary for association with the nuclear matrix and for transcriptional repression functions J Cell Biochem 68(4) 484-99

Buck C A and Horwitz A F (1987) Cell surface receptors for extracellular matrix molecules Annu Rev Cell Biol 3 179-205

Casanova L, Bravo A, Were F, Ramırez A, Jorcano J J and Vidal M (1995) Tissue-specific and efficient expression of the human sımple epithelial keratin 8 gene in transgemc mice J Cell Scı 108 (Pt 2) 811-20

Chaudhary J , Johnson J , Kım G and Skınner M K (2001) Hormonal Regulation and Differentiation Actions of the Helıx-Loop-Helix Transcriptional Inhibitors of Differentiation (Id1, Id2, Id3, and Id4) in Sertolı Cells Endo 142, 1727-1736

Chen Z Y, Shie J L and Tseng C C (2000) Up-regulation of gut-enriched KLF in colonic cell growth and differentiation Am J Physiol 279 G806-814

Chen TT, Wu RL, Castro-Munozledo F, Sun TT (1997) Regulation of K3 keratın gene transcription by Spl and AP-2 in differentiating rabbit corneal epıthelial cells Mol Cell Biol , 6, 3056-64

Chen Z Y , Shie J-L and Tseng C-C (2002) Stat1 is required for INF- γ mediated gutenriched Kruppel-like factor expression Exp Cell Res, 281, 19-27

Chiang C M and Roeder R G (1995) Clonıng of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators Science $\underline{267}$ (5197) 531-6

Chıbazakura T, Watanabe F, Kıtajıma S, Tsukada K, Yasukochı Y, Teraoka H (1997) Phosphorylation of human general transcription factors TATA-binding protein and transcription factor IIB by DNA-dependent protein kinase--synergistic stımulation of RNA polymerase II basal transcriptıon in vitro Eur J Bıochem 247 (3) 1166-73

Cole E G and Gaston K (1997) A functional YY1 binding site is necessary and sufficient to activate Surf-1 promoter activity in response to serum growth factors

Nucleic Acids Res 25(18) 3705-11
Cole M D (1991) Myc meets its Max Cell 65 715-716
Colhurst D R , Campbell D G and Proud C G (1987) Structure and regulation of eukaryotic initiation factor eIF2 Eur J Biochem, 166, 357-363

Cooper CL and Newburger PE (1998) Differential expression of Id genes in multupotent
myeloid progenitor cells Id-1 is induced by early-and late-acting cytokınes while Id-2 is selectively induced by cytokines that drive terminal granulocytic differentiation J Cell Biochem 71, 277-285

Cortes F , William F, Wolf F and Wolf S (1987) Effects of exogenous thymidine on sister-chromatid exchange frequency in Chinese hamster ovary cells with Bromodeoxyuridine- and chlorodeoxyuridine-substituted chromosomes Mutation Research, 192, 277-282

Cremısı C and Duprey P (1987) A labıle inhibitor blocks endo A gene transcription m murine undifferentrated embryonal carcinoma cells Nucleic Acids Res 15 (15) 6105-16

Crowe D (1993) Retınoic Acid mediates post-transcriptional regulation of keratın 19 mRNA J Cell Scie 106 183-188

Daly N, Meleady P, Walsh D and Clynes M (1998) Regultion of keratın and mtegrin expression in cancer and drug resistance Cytotechnology 27 321-344

Darmon M, (1985) Coexpression of specific acid and basic cytokeratins in tetracarcımona-derived fibroblasts treated with 5-azacytidine Dev Biol 110 47-52

Darnell J E (1997) Stats and gene regulation Science, 277, 1630-1635
De Cat B and David G (2001) Development Roles of Glypicans Semın Cell Dev Biol 12(2) 117-25

Decker T, Kovarik P, Meinke A (1997) GAS elements a few nucleotides with a major impact on cytokıne-ınduced gene expression J Interferon Cytokıne Res 1997 Mar, 17(3) 121-34

Eisbruch A, Robertson JM, Johnston CM, Tworek J, Reynolds KR, Roberts JA, and Lawrence T S (1999) Bromodeoxyuridine alternatıng with radiation for advanced uterine cervix cancer a phase I and drug incorporation study 17(1) 31-40

Elias A D, Cohen B F and Bernal S D (1998) Keratın subtypes of small cell lung cancer Cancer Res 48 2724-2729

Emura M (1997) Stem cells of the respiratory epithehum and their in vitro cultivation In Vitro Cell Dev Biol 33 3-14

Ericsson J, Usheva A and Edwards PA (1999) YY1 is a negative regulator of transcription of three sterol regulatory element-binding protein-responsive genes J Biol Chem 274(20) 14508-13

Evan G I (1990) The myc oncogene Genes and Cancer Wiley and Sons Ltd, Chapter 3, 31-42

Feyles, V, Sikora, L K J , McGarry, R C and Jerry, L M (1991) Effects of retınoic acid and bromodeoxyuridine on human melanoma-associated antigen expression in small cell lung carcinoma cells Oncology, 48, 58-64

Fisher D E, Parent L A and Sharp P A (1993) High affinity DNA-bınding Myc analogs Recognition by α helix Cell 72 467-476

Flanagan J R (1995) Autologous stımulation of YY1 transcription factor expression Role of an insulin-like growth factor Cell Growth and Differentiation 6 185-190

Flanagan JR, Becker KG, Ennıst DL, Gleason SL, Driggers PH, Levı BZ, Appella E, Ozato K (1992) Cloning of a negative transcription factor that binds to the upstream conserved region of Moloney murine leukemıa virus Mol Cell Biol 12(1) 38-44

Fong K M, Zimmerman P V and Smıth P J (1995) Microsatellite instability and other molecular abnormalities in non-small cell lung cancer Cancer Res 55 28-30

Fong S, Itahana Y, Sumida T, Singh J, Coppe J-P, Liu Y, Richards P C, Bennıgton J L, Lee N M, Debs R J and Desprez P-Y (2003) Id1 as a molecular target in therapy for breast cancer cell invasion and metastasis PNAS, 100, 1354313548

Fraser C G, Kaneshıma H, Hansteen G (1995) Human allogenic stem cell maintenance and differentiation in a long-term multilinage SCID-hu graft Blood 86 1680-1693

Fransson L A (2003) Glypicans Int J Biochem Cell Biol 35(2) 125-9
Freeman J M (1969) Treatment of Dawson's encephalitis with 5-bromo-2deoxyuridine Double-blınd study Arch Neurol 21 (4) 431-434

Fuchs E and Byrne C (1994) The Epidermıs risıng to the surface Curr Opın Gen Dev 4 725-736

Galvagnı F, Cartoces E and Oliviero S (1998) The dystrophin promoter is negatively regulated by YY1 in undifferentrated muscle cells J Biol Chem 273(50) 33708-13

Gatson K and Fried M (1994) YY1 is involved in the regulation of the bi-directional promoter of the surf-1 and surf-2 genes FEBS 347 289-294

Gauther B, Robb M, Gaudet F, Ginsburg GS and McPherson R (1999) Characterization of a cholesterol response element (CRE) in the promoter of the
cholesteryl ester transfer protein gene functional role of the transcription factors SREBP-1a, -2, and YY1 J Lipid Res 40(7) 1284-93

Gavis E R and Lehmann R (1992) Localisation of nanos RNA controls in embryonic polarity Cell 71 (2) 301-313

Gazdar AF, Linnoıla RI, Kurita Y, Oıe HK, Mulshine JL Clark JC and Whitsett J A (1990) Periperal arrway cell differentation in human lung cancer cell lines Can Res 50 5481-5487

Gedrich R W and Engel D A (1995) Identıfication of a novel E1A response element in the mouse c-fos promoter J Virology 69 (4) 2333-2340

Giudice G J and Fuchs E (1987) The transfection of epithelial keratin genes into fibroblast and simple epithelial cells evidence for inducing a type I keratın gene by type II gene Cell 48 453-463

Grignanı F, Lombardı L, Inghıramı G, Sternas L, Cechova K, Dalla-Favera R (1990) Negative autoregulation of c-myc gene expression is inactive is inactivated in transformed cells EMBO J , 9, 10526-10530

Gumbmer B M (1996) Cell adhesion the molecular basis of tissue architecture and morphogeness Cell 84 345-357

Gunther M, Frebourg T, Lathier M, Fossar N, Bouziane-Ouartım M, Lavialle C, Brison O (1995) A Spl binding site and the minimal promoter contribute to overexpression of the cytokeratin 18 gene in tumorigenic clones relative to that in nontumorigenic clones of a human carcınoma cell line Mol Cell Biol , 15(5) 2490-9

Greenberg HS, Chandler WF, Dıaz RF, Ensminger WD, Junck L, Page MA, Gebarskı SS, McKeever P, Hood TW and Stetson PL (1988) Intra-arterial bromodeoxyuridine radiosensitization and radiation in treatment of malignant astrocytomas J Neurosurg ,69(4) 500-5

Guo B, Odgren PR, van Wınnen AJ, Last TJ, Nıckerson J, Penman S, Lıan JB, Steın JL, and Stein GS (1995) The nuclear matrix protein NMP-1 is the transcription factor YY1 Proc Natl Acad Sc1 U S A 92 (23) 10526-30

Haghighat A, Mader S, Pause A and Sonenberg N (1995) Repression of capdependent translation by 4 E -binding protein 1 competition with p220 for binding to eukaryotic initiation factor-4E EMBO J 14(22) 5701-9

Hagıwara T, Nakaya K, Nakamura Y, Nakaııma H, Nıshımura S and Taya Y (1992) Specific phosphorylation of the acidic central region of the N -myc proten by caseın kınase II Eur J Bıochem 209 (3) 945-50

Hahn S (1992) The Yın and yang of mammalian transcription Current Bıology $\underline{2}$ (3) 152-155

Hardıng, J D , Przbyla, A E , MacDonald, R J, Pıchet, R L and Rutter, W J (1978) Effects of dexamethasone and 5-bromodeoxyuridne on the synthesis of amylase mRNA during pancreatic development in vitro J Biol Chem 253, 7531-7537

Hariharan N, Kelley DE and Perry RP (1991) Delta, a transcription factor that binds to downstream elements in several polymerase II promoters, is a functionally versatile zınc finger protem Proc Natl Acad Scı U S A 88 (21) 9799-803

Harrıngton EA, Bennett MR, Fanıdı A, and Evan GI (1994) c-Myc-induced apoptosis in fibroblasts is inhıbıted by specıfic cytokınes EMBO J $1994 \underline{13}$ (14) 3286-95

Hecht F, Tajara E H, Lockwood D, Sandberg A A and Hecht B K (1988) New common fragile sites Cancer Genet Cytogenet 33 1-9

Hepıng Chen, Yı-Chınn Weng, Gına C Schatteman, Laura Sanders, Robert J Christy and Barbara A Christy (1999) Expression of the Domınant-Negatıve Regulator Id4 Is Induced durıng Adipocyte Differentiation Biochem Biophsy Res Commun 25613 614-619

Hill B T Tsuboi A and Baserga R (1974) Effect of 5-bromodeoxyuridine on the chromatin transcription in confluent fibroblasts Proc Natl Acad Sci USA 71 455459

Hogan B L (1999) Review article highlighting the roles of multigene famılies, such as FGFs, BMPs, Hedghogs, Wnts and EGFs in morphogenesis Cell 96 225-233

Hosack D A, Dennıs G, Sherman B T, Lane H C and Lempıckı R (2003) Identıfying biological themes within lists of genes with EASE Genone Bio, 4, R70

Hynes R O (1987) Integrıns a famıly of cell surface receptors Cell 48 549-554
Hyde-deRuyscher R P , Jennıngs E and Shenk T, (1995) DNA bindıng sites for the transcriptional actıvator/repressor YY1 Nuc Acids Res 23 4457-4465

Iııma S, Teraoka H, Date T, and Tsukada K (1992) DNA-actıvated proteın kinase in Raıı Burkıtt's lymphoma cells Phosphorylation of c-Myc oncoproteın Eur J Biochem $\underline{206(2)}$ 595-603

Jaramıllo M, Pelletıer J, Edery I, Nielsen PJ, and Sonenberg N (1991) Multıple mRNAs encode the murine translation initiation factor eIF-4E J Biol Chem 266(16) 10446-51

Johansson E, Hjortsberg K, and Thelander L Two YY-1-bindıng proxımal elements regulate the promoter strength of the TATA-less mouse ribonucleotide reductase R1 gene J Biol Chem 273 (45) 29816-21

Jenkıns T D, Optı O G, Okano J and Rustgı A K (1998) Transactıvation of the human keratın 4 and Epsteın-Barr Virus DE-L2 promoters by gut-enrıched Kruppellıke factor Bıol Chem J, 273, 10747-10754

Jones R M , Branda J , Johnston K A , Polymenıs M, Gadd M , Rustgı A , Callan L, and Schmidt E V , (1996) An essential E box promoter of the gene encoding the mRNA cap-binding proten (eukaryotic initiation factor 4E) is a target for activation by c-myc Mol Cell Biol 16 (9) p 4754-4764

Joshı B, Caı AL, Keıper BD, Mınıch WB, Mendez R, Beach CM, Stepınskı J, Stolarskı R, Darzynkıewicz E, and Rhoads RE (1995) Phosphorylatıon of eukaryotic protein synthesis intiation factor 4E at Ser-209 J Biol Chem 270 (24) 14597-603

Karantzoulıs-Fegaras F, Antonıou H, Laı SL, Kulkarnı G, D'Abreo C, Wong GK, Miller TL, Chan Y, Atkins J, Wang Y, and Marsden PA (1999) Characterization of the human endothelial nitric-oxide synthase promoter J Biol Chem 274(5) 3076-93

Khan M Z, Freshney R I, Murray A M, Merry S , Plumb J A and McNicol A M (1991) Identification and characterisation in vitro of cells with a non-SCLC cell-like phenotype derived from a continuous SCLC cell line Anticancer Res 11 (5) 16871695

Kım J and Shapiro DJ (1996) In simple synthetic promoters YY1-induced DNA bending is important in transcription activation and repression Nucleic Acids Res 24(21) 4341-8

Knapp A C and Franke W W (1987) Spontaneous losses of control of cytokeratın gene expression in transformed, non-epithelial human cells occurring at different levels of regulation Cell 59 67-79

Kleeff J, Ishiwata T, Kumbasar A, Friess H, Buchler MW, Lander AD, Korc M The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer J Clin Invest 1998 Nov 1,102(9) 1662-73

Keoffler H P , Yen J and Carlson J (1983) The study of human myelord differentiation using Bromodeoxyurıdine (BrdU) J Cell Physiol 116 111-117

Kohlhuber F, Hermeking H, Graessmann A, and Eick D (1995) Induction of apoptosis by the c-Myc helix-loop-helix/leucine zipper domain in mouse 3T3-L1 fibroblasts J Biol Chem 270(48) 28797-805

Kulechs D A , Cecena G , Darmon Y M, Vasser M and Oshıma R G (1989) Posttranslational regulation of keratins deregulation of mouse and human keratins 18 and 8 Mol Bıol Bıol 9 (4) 1553-1565

Labne C, Lee BH, and Mathews MB (1995) Transcription factors RFX1/EF-C and ATF-1 associate with the adenovirus ElA-responsive element of the human proliferating cell nuclear antigen promoter Nucleic Acids Res 23 (18) 3732-41

Lajtha L G (1982) Tissues and stem cells Biomed Pharmacother 36 (5) 231-233

Last TJ, van Wıjnen AJ, Bırnbaum MJ, Steın GS, and Steın JL (1999) Multıple interactions of the transcription factor YY1 with human histone H 4 gene regulatory elements J Cell Biochem 72 (4) 507-16

Lavore CA, Lachance PE, Sonenberg N, and Lasko P (1996) Alternatıvely sphced transcripts from the Drosophila eIF4E gene produce two different Cap-bindıng proteıns J Biol Chem 271 (27) 16393-8

Law E , Gılvarry U , Lynch V , Gregory B , Grant G, Clynes M , (1992) Ctyogenetıc comparison of two poorly differentrated human lung squamous cell carcinoma lines Cancer Genet Cytogenenet,, 59 p 111-118

Lawrence TS, Davis MA, Maybaum J, Mukhopadhyay SK, Stetson PL, Normolle DP, McKeever PE, and Ensmmger WD (1992) The potential superiority of bromodeoxyuridine to iododeoxyuridine as a radiation sensitizer in the treatment of colorectal cancer Cancer Res 52 (13) 3698-704

Lee JS, Galvın KM, and Shı Y (1993) Evidence for physical interaction between the zmc-finger transcription factors YY1 and Spl Proc Natl Acad Scı U S A 90 (13) 6145-9

Lee TC, Shı Y, and Schwartz RJ (1992) Displacement of BrdUrd-induced YY1 by serum response factor actıvates skeletal alpha-actın transcription in embryonic myoblasts Proc Natl Acad Sci U S A $\underline{89}$ (20) 9814-8

Lee YM and Lee SC (1994) Transcriptional activation of the alpha-1 actd glycoprotein gene by YY1 is mediated by its functional interaction with a negative transcription factor DNA Cell Biol 13(10) 1029-36

Lersch R, Stellmach V, Stocks C, Gudice G, and Fuchs E (1989) Isolation, sequence, and expression of a human keratin K 5 gene transcriptional regulation of keratins and insights into pairwise control Mol Cell Biol 9(9) 3685-97

Licht JD, Grossel MJ, Figge J, and Hansen UM (1990) Drosophila Kruppel protein is a transcriptional repressor Nature $\underline{346}$ (6279) 76-9

Lin S Y and Riggs AD (1972) Lac operon analogues bromodeoxyuridine substitution in the lac operator affects the rate of dissociation of the lac repressor Prox Natl Acad USA 69 2574-2576

Liu J, Shi W, Warburton D (2000) A cystene residue in the helix-loop-helix domain of Id2 is critical for homodimerization and function Biochem Biophys Res Commun 2000 Jul 14,273(3) 1042-7

Liu SH, Peng BH, Ma JT, Liu YC, and Ng SY (1995) Serum response element associated transcription factors in mouse embryos serum response factor, YY1, and PEA3 factor Dev Genet 16(3) 229-40

Liu J, Shı W and Warburton D (2000) A cystene residue in the helix-loop-helix domain of Id2 is critical for homodimerization and fuction Biochem Biophys Res Comm, 273, 1042-1047

Liang Liu, Joel B Berletch, Jessica G Green, Mitchell S Pate, Lucy G Andrews and Trygve O Tollefsbol (Telomerase inhibition by retinoids precedes cytodifferentiation of leukemia cells and may contribute to terminal differentiation McBride s, Meleady P, Bard P, Dinsdale D and Clynes M (1998) Human lung carcinoma cell line DLKP contans 3 distinct subpopulations with different growth and attachment properties Tum Biol $19 \mathrm{p} 88-103$

McBnde S, Walsh, D, Meleady P, Daly N, and Clynes M (1999) Bromodeoxyuridıne induces keratın protein synthesis at a posttranscriptional level in human lung tumour cell lines Differentiation 64 p185-193

McGinn CJ and Kinsella TJ (1993) The clinical ratioale for S-phase Radiosensitisation in human tumours Curr Probl Cancer 17 (5) 273-321

Marcotrigiano J, Gıngras AC, Sonenberg N, and Burley SK (1997) X-ray studies of the messenger RNA 5' cap-bindmg protein (eIF4E) bound to 7-methyl-GDP Nucleic Acids Symp Ser 36 8-11

Matsutanı M, Kohno T, Nagashıma T, Nagayama I, Matsuda T, Hoshıno T, and Sano K (1988) Clinical trial of intravenous infusion of bromodeoxyuridine (BUdR) for radiosensitization of malignant brain tumors Radiat Med 6 (1) 33-9

Meleady P and Clynes M (2001a) Bromodeoxyurıdıne mduces integrın expression at transcriptional (alpha2 subunit) and post-transcriptional (betal subunit) levels, and alters the adhesive properties of two human lung tumour cell lines Cell Commun Adhes 2001,8(1) 45-59

Meleady P and Clynes M (2001b) Bromodeoxyuridıne induces mtegrın expression at transcriptional (alpha2 subunit) and post-transcriptional (betal subunit) levels, and alters the adhesive properties of two human lung tumour cell lines In Vitro Cell Dev Biol Anım 2001 Sep,37(8) 536-42

Melnikova In and Christy B A (1996) Muscle cell differentiation is inhibited by the hehx-loop-helix protein Id3 Cell Growth Dıffer 7 p 1067-1079

Mıckley LA, Bates SE, Rıchert ND, Currier S, Tanaka S, Foss F, Rosen N, and Fojo AT (1989) Modulation of the expression of a multidrug resistance gene (mdr-1/Pglycoprotein) by differentiating agents J Biol Chem 264(30) 18031-40

Minich WB, Balasta ML, Goss DJ, and Rhoads RE (1994) Chromatographic resolution of in vivo phosphorylated and nonphosphorylated eukaryotic translation intiation factor eIF-4E increased cap affinity of the phosphorylated form Proc Natl Acad Scı U S A 91(16) 7668-72

Mobus VJ, Moll R, Gerharz CD, Kıeback DG, Weıkel W, Hoffmann G, and Kreienberg R Establishment of new ovarian and colon carcınoma cell lines differentiation is only possible by cytokeration analysis Br J Cancer $\underline{69(3)}$ 422-8

Moll R, Franke WW, Schiller DL, Geiger B, and Krepler R (1982) The catalog of human cytokeratins patterns of expression in normal epithelia, tumors and cultured cells Cell 31(1) 11-24
Mummery C L, van den Brınk C E, van der Saag P T and deLaat S W (1984) The cell cycle, death, and cell morphology during retinoic acid-induced differentiation of embryonal carcınoma cells Dev Biol 104 p 297-307

Nanbru C, Lafon I, Audıgıer S, Gensac MC, Vagner S, Huez G, and Prats AC (1997) Alternative translation of the proto-oncogene c-myc by an internal ribosome entry site J Biol Chem 51 32061-6

Natesan S and Gilman M (1995) YY1 facilitates the association of serum response factor with the c-fos serum response element Mol Cell Biol 15(11) 5975-82

Natesan S and Gılman MZ (1993) DNA bending and orientation-dependent function of YY1 in the c-fos promoter Genes Dev 7(12B) 2497-509

Neznanov N S and Oshima R G (1993) cis regulation of the keratin 18 gene in transgenic mice Mol Cell Biol 13(3) 1815-23

Newham P and Humphires M J (1996) Integrin adhesion receptors structure, function and implicatıons for biomedicine Molecular Medıcıne Today July 304-313

Nishume Y, Kume A, Ogıos Y and Matsushiro A (1983) Induction of teratocarcinoma cell differentration Effect of the inhubitors of DNA synthesis Exp Cell Res 146 439-444

Norton J D, Deed R W, Craggs G and Sylvester G (1998) Id helix loop helix proteins in cell growth and differentiation Trends in Cell Biol 8 p 58-65

Novina C D and Roy A L (1996) Core promoters and transcriptional control Trends Genet 12(9) 351-5

O'Neill MC and Stockdale FE, (1974) 5-Bromodeoxyuridine inhibition of differentiation Kınetics of inhibition and reversal in Myoblasts Dev Biol, 37 pl17132

O'Neıll MC and Stockdale FE, (1973) 5-Bromodeoxyuridine inhubition of differentiation Kinetics of inhibition and reversal in Myoblasts Dev Biol 37 117132

Ohtsukı M, Flanagan S, Freedberg IM, Blumenberg M A cluster of five nuclear proteıns regulates keratın gene transcription Gene Expr 1993,3(2) 201-13
Magnaldo T, Bernerd F, Freedberg IM, Ohtsukı M, Blumenberg M Transcrıptıonal regulators of expression of $\mathrm{K} \# 16$, the disease-associated keratın DNA Cell Bıo 1993 Dec,12(10) 911-23

Oshıma RG (1992) Intermedıate filament molecular bıology Curr Opm Cell Bıol 4(1) 110-6

Paine ML, Gıbbıns JR, Chew KE, Demetriou A, and Kefford RF (1992) Loss of keratin expression in anaplastic carcinoma cells due to posttranscriptional downregulation actıng in trans Cancer Res 52(23) 6603-11
Paine R , and Simon R H (1996) Expanding the frontiers of lung biology through the creative use of alveolar epıthelial cell in culture Am J Physol 270 (Lung Cell Mol Physol 14) L484-L486

Paıne R, Gaposchkın D, Kelly C and Wilcoxen SE (1995) Regulation of cytokeratin expression in rat lung alveolar epithelial cells in vitro Am J Physiol 269 (Lung Cell Mol Physiol 13) L536-L544

Parekh H K and Sımpkins H (1995) The differential expression of cytokeratin 18 in cisplatin-sensitive and -resistant human ovarian adenocarcinoma cells and its association with drug sensitivity Cancer Res 55(22) 5203-6

Park K and Atchison M L (1991) Isolation of a candidate repressor/activator, NF-E1 (YY1), that binds to the immunoglobulin k 3 enhancer and the immunoglobulin heavy chain $\mu \mathrm{E} 1$ site Proc Natl Acad Scı USA 88 9804-9808

Peukert K, Staller P, Schneider A, Carmichael G, Hanel F, and Eılers M (1997) An alternatıve pathway for gene regulation by Myc EMBO J 16 (18) 5672-86

Pfeıfer AM, Jones RT, Bowden PE, Mann D, Spıllare E, Kleın-Szanto AJ, Trump BF, Harris CC (1991) Human bronchial epithelial cells transformed by the c-raf-1 and cmyc protooncogenes induce multidifferentiated carcinomas in nude mice a model for lung carcınogenesıs Cancer Res 51(14) 3793-801

Pollard H J , McKendrıck L M , Morely S J, and Pain V M (1999) Studies on the subcellular localisation of eIF4E in cultured Xenopous kidney cells Translation UK, Program and Abstracts, Presentation

Plopper C G Histology, ultrastructure, function In Jones T C, Dungworth D L, Mohr U (Eds) Respiratory System $2^{\text {nd }}$ edition (1996) Sprınger, Berlın-Heidelberg New York p 135-150

Plopper C G and Hyde D M (1992) In epithelial cells of the broncholes comprehensive treatıse on pulmonary toxicology (Parent RA Ed) 1 Comparatıve biology of normal lung Boca Raton, EL CRC Press 85-92

Potten C S and Loffler M (1990) Stem cells Attributes, cycles, spırals, pitfalls and uncertanties lessons for and from the crypt Dev $\underline{110}$ 1001-1020

Prados MD, Scott CB, Rotman M, Rubın P, Murray K, Sause W, Asbell S, Comıs R, Curran W, Nelson J, Davis RL, Levin VA, Lamborn K, and Phillips TL (1998) Influence of bromodeoxyuridine radiosensitization on malıgnant glooma patient survival a retrospective comparison of survival data from the Northern Califorma

Oncology Group (NCOG) and Radiation Therapy Oncology Group trials (RTOG) for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys. 40(3):653-9.

Pratt W.B., Ruddon R.W., Ensminger W.D. and Maybaum J. (1994) The Anticancer Drugs. Oxford University Press.

Quinlan RA, Schiller DL, Hatzfeld M, Achtstatter T. Moll R. Jorcano JL, Magin TM and Franke WW. (1985) Patterns of expression and organization of cytokeratin intermediate filaments. Ann N Y Acad Sci. 1985:455:282-306.

Raich N, Clegg CH, Grofti J, Romeo PH, and Stamatoyannopoulos G. (1995)
GATA1 and YY1 are developmental repressors of the human epsilon-globin gene. EMBO J. 14(4):801-9.

Ranana C.V., Grammatikakis N., Chernov M., Nguyen H., Goh K.C., Williams B.R.G. and Stark G.R. (2000) Regulation of c-myc expression by INF-g through Stat 1-dependent and-independent pathways. EMBO J.. 19, 263-272.

Rauth S. and Davidson R.L. (1993) Suppression of tyrosine gene expression by bromodeoxyurdine in Syrian hamster melanoma cells is not due to its incorporation into upstream or coding sequences of the tyrosine gene. Somatic Cell and Mol. Gen. 19 p 285-293.

Riggs KJ. Merrell KT, Wilson G, and Calame K. (1991) Common factor 1 is a transcriptional activator which binds in the c-myc promoter, the skeletal alpha-actin promoter, and the immunoglobulin heavy-chain enhancer. Mol Cell Biol. 11(3):1765-9.

Riggs KJ. Saleque S. Wong KK. Merrell KT, Lee JS, Shi Y, and Calame K. (1993) Yin-yang 1 activates the c-myc promoter. Mol Cell Biol. 13(12):7487-95.

Roberstons J.M., Ensminger W.D., Walker S. and lawrence T.S (1997) A phase I trail of intravenous Bromodeoxyuridine and radiation therapy for pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 37 (2) : 221-335.

Robertson JM, McGinn CJ, Walker S. Marx MV. Kessler ML, Ensminger WD. Lawrence TS. (1997) A phase I trial of hepatic arterial bromodeoxyuridine and conformal radiation therapy for patients with primary hepatobiliary cancers or colorectal liver metastases. Int J Radiat Oncol Biol Phys. 39(5):1087-92.

Roop D.R., Krieg T.M., Mehrel T., Cheng C.K. and Yaspa S.H., (1988) Transcriptional control of high molecular weight keratin gene expression in multistage mouse skin carcinogenesis.Cancer Res. 48(11):3245-52.

Rosenwald IB. Kaspar R. Rousseau D, Gehrke L, Leboulch P. Chen JJ, Schmidt EV, Sonenberg N, and London IM. (1995) Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels.
J Biol Chem. 270(36):21176-80.

Ross A H, Herlyn D, Ihopoulos D and Kopowskı H (1986) Isolation and characterisation of a carcinoma-associated antıgen Biochem Biophys Res Comm 135 (1) 297-303

Ross R A , Spengler, B A , Domenech C , Porcbcin M, Rettig W J and Biedler J L , (1995) Human Neuroblastoma 1-type cells are malignant neural crest stem cells Cell Growth and Diff 6p 449-456

Rothnagel JA, Greenhalgh DA, Gagne TA, Longley MA, and Roop DR (1993) Identification of a calcium-inducible, epidermal-specific regulatory element in the 3'flanking region of the human keratın 1 gene J Invest Dermatol 101(4) 506-13

Rudland E and Burraclough R (1988) Stem cells in mammary gland differentiation and cancer J Cell Scı (Suppl) 10 95-114

Rushton J J , Davis L M , Leı W L , Mo X, Leutz A and Ness S A (2003) Distınct changes in gene expression induced by A-Myb, B-Myb and c-Myb proteins Oncogene, 22, 308-313

Ryan K M and Bernie G D (1997) Analysis of E-box DNA binding during Myeloid differentration reveals complexes that contain Mad but not Max Biochem J $\underline{325}$ 79-85

Ryan K M and Bernie G D (1996) Myc oncogenes the enigmatic famıly Biochem J 314 713-721

Safrany G and Perry RP (1993) Characterization of the mouse gene that encodes the delta/YY1/NF-E1/UCRBP transcription factor Proc Natl Acad Sci U S A 90(12) 5559-63

Saphre AC, Bark SJ, and Gerace L (1998) All four homochıral enantıomers of a nuclear localization sequence derived from c-Myc serve as functional import signals J Biol Chem 273(45) 29764-9

Satyamoorthy K, Park K, Atchıson ML, and Howe CC (1993) The mtracisternal Aparticle upstream element interacts with transcription factor YY1 to activate transcription pleiotropic effects of YY1 on distinct DNA promoter elements Mol Cell Biol 13(11) 6621-8

Sawyers CL, Callahan W, and Witte ON (1992) Domınant negatıve MYC blocks transformation by ABL oncogenes Cell 70(6) 901-10

Seecof RL, and Dewhurst SA (1976) A 5-bromodeoxyuridine-sensitive interval during drosophila myogenesis Differentiation 6(1) 27-32

Schwartz S A and Snead ML (1982) Bromodeoxuridine-DNA interactions associated with arrest of rat odontogensis in vitro Archs Oral Biol 27 9-12

Sell S (1994) Liver Stem Cells Mod Pathol $\underline{7}$ 105-112

Seto E, Lewis B, and Shenk T (1993) Interaction between transcription factors Sp1 and YY1 Nature 365(6445) 462-4

Seto E, Shi Y, and Shenk T (1991)YY1 is an initiator sequence-binding protein that directs and activates transcription in vitro Nature $\underline{354}$ (6350) 241-5

Sheilds J M , Christy R J and Yang V W (1996) Identification and characterisation of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest J Biol Chem 71 20009-20017

Shi Y, Seto E, Chang LS, Shenk T (1991) Transcriptional repression by YY1, a human GLI-Kruppel-related protein, and relief of repression by adenovirus E1A protein Cell 67(2) 377-88

Shi Y , Lee J S and Galvin K M (1997) "Everything you ever wanted to know about YY1 ", Biochımica Et Bıophysica Ata, F49-F66

Shie J-L, Chen Z Y , O'Brien M J, Pestell R G, Lee M-E and Tseng C-C (2000) Role of gut-enriched Kruppel-like factor in colonic cell growth and differentiation Am J Physiol Grastro Liver Physiol, 279, G806-G814

Shields J M and Yang V W (1998) Identification of the DNA sequence that interacts with the gut-enriched Kruppel-like factor 26, 796-802

Shımızu R , Nakamura Y, Kadota T, Kıtajıma K, Oda T , Hıro T, and Utıyama T , (1994) Lost of Amplifed c-myc Gene in Spontaneous Differentıated HL60 cells Cancer Res 54, 3561-3567

Shojı W , Yamamoto T, Obınata M , (1994) The Helıx-loop-helıx proteın Id inhıbits differentiation of murine erytholeukemia cells J Biol Chem 269 5079-5084

Shrivastava A, and Calame K (1994) An analysis of genes regulated by the multifunctional transcriptional regulator Yın Yang-1 Nucleıc Acids Res 22(24) 5151-5

Shrıvastava A, Saleque S, Kalpana GV, Artandı S, Goff SP, and Calame K (1993) Inhibition of transcriptional regulator Yın-Yang-1 by association with c-Myc Science 262(5141) 1889-92

Singer MF, Krek V, McMillan JP, Swergold GD, and Thayer RE (1993) LINE-1 a human transposable element Gene 135(1-2) 183-8

Sugımoto T, Kato T, Sawada T, Horı Y, Kemshead JT, Hıno T, Morıoka H, Hosoı H (1988) Schwanmian cell differentiation of human neuroblastoma cell lines in vitro induced by bromodeoxyuridine Cancer Res 48(9) 2531-7

Sutherland GR (1988) The role of nucleotides in human fragile site expression Mutat Res 200(1-2) 207-13

Sutherland GR (1998) Chromosomal Fragıle Sites GATA $\underline{8}$ (6) 161-166

Stasıak PC, Purkıs PE, Leıgh IM and Lane EB (1989) Keratın 19 predıcted amıno acid sequence and broad tissue distribution suggest it evolved from keratinocyte keratıns J Invest Dermatol 1989 May,92(5) 707-16

Stark GR, Kerr IM, Willams BR, Silverman RH, Schreiber RD (1998) How cells respond to interferons Annu Rev Biochem 1998,67 227-64

Sweetser M T , Hoey T , Sun Y-L, Weaver W M , Price G A and Wilson C B (1998) The roles of nuclear factor of actıvated T cells and Yın Yangl in actıvation-induced expression of the Interferon- γ promoter in T cells Biol Chem J, 273, 34775-34783

Topscott, S J, Lasser, A B , Davis, R L and Weintraub, H (1989) 5-Bromo-2 deoxyundıne blocks myogenesis by extıngusishing expression of MyoDl Science, 254, 532-536

Tauron PT, Morely SJ Dever T E, Merrick W C Rhaods R E and Traugh J A (1990) Association of initiation factor eIF4E in a cap binding protein complex (eIF4F) is critical for and enhances phosphorylation by kinase C J Biol Chem $\underline{265}$ (18) 10616-10621

Trask JL, Bell A, and Usher BW (1990) Doppler color flow imaging in detection and mapping of left coronary artery fistula to right ventricle and atrium J Am Soc Echocardiogr 3(2) 131-4

Tseng SC, Jarvinen MJ, Nelson WG, Huang JW, Woodcock-Mitchell J, Sun TT (1982) Correlation of specific keratıns with different types of epithelial differentiation monoclonal antibody studies Cell 30(2) 361-72

Tyner AL, and Fuchs E (1986) Evidence for posttranscriptional regulation of the keratıns expressed during hyperproliferation and malignant transformation in human epidermıs J Cell Biol $\underline{5}$ 1945-55

Usheva A, and Shenk T (1994) TATA-binding protein-independent initiation YY1, TFIIB, and RNA polymerase II direct basal transcription on supercoiled template DNA Cell 76(6) 1115-21

Valyı-Nagy I , Shih IM, Gyorfi T, Greensteın D, Juhasz I, Elder DE, Herlyn M (1993) Spontaneous and induced differentiation of human melanoma cells Int J Cancer 54(1) 159-65
van Bıjsterveld OP, Meurs PJ, de Clercq E, and Maudgal PC (1989) Bromovinyldeoxyuridine and interferon treatment in ulcerative herpetic keratitis a double masked study Br J Ophthalmol 73(8) 604-7

Vaquero A, and Portugal J (1998) Modulation of DNA-protein interactions in the P1 and P2 c-myc promoters by two intercalating drugs Eur J Biochem 251(1-2) 435-42

Vincent CK, Gualberto A, Patel CV, and Walsh K (1993) Different regulatory sequences control creatıne kinase-M gene expression in directly injected skeletal and cardıac muscle Mol Cell Biol 13(2) 1264-72

Virtanen CK Miettinen M and Lehto V P (1984) Cytoskeletal proteins as tissue markers for cancer The Cancer Bulletın 26 (4) 175-178

Wagner E F , (2002) Functions of AP1 (Fos/Jun) in bone development Ann Rheum 6 1140-1142

Walowitz JL, Bradley ME, Chen S, and Lee T (1998) Proteolytic regulation of the zinc finger transcription factor YY1, a repressor of muscle-restricted gene expression J Biol Chem 273(12) 6656-61

Watt F M (1991) Cell culture models of differentiation FASEB J $\underline{5}$ 287-294
Watt F M (1998) Epidermal stem cells markers, patternıng and the control of stem cell fate Phlos Trans R Soc Lond B Biol Scı, 353, (1370), 831-837

Weintraub H (1993) The MyoD famıly and myogenesis redundancy, networks, and thresholds Cell 75(7) 1241-4

Winter H and Schweizer J (1983) Keratin synthesis in normal mouse epithelia and in squamous cell carcinomas evidence in tumors for masked mRNA species coding for high molecular weight keratın polypeptıdes Proc Natl Acad Scı U S A 80(21) 64804

Wong L H, Sım H, Chatterjee-Kıshor M, Hatzınısırıou I, Devenısh R J, Stark G , and Ralph S J (2002) Isolation and characterization of a human STAT1 gene regulatory element J Bıo Chem 277 19408-19417

Yamamoto R, Kao LC, McKnıght CE, and Strauss JF 3rd (1990) Clonıng and sequence of cDNA for human placental cytokeratin 8 Regulation of the mRNA in trophoblastic cells by cAMP Mol Endocrinol 4(3) 370-4

Yao YL, Dupont BR, Ghosh S, Fang Y, Leach RJ, and Seto E (1998) Cloning, chromosomal localization and promoter analysis of the human transcription factor YY1 Nucleıc Acıds Res 26(16) 3776-83

Ye J, Young HA, Ortaldo JR, Ghosh P (1994) Identification of a DNA binding site for the nuclear factor YY1 in the human GM-CSF core promoter Nucleic Acids Res 22(25) 5672-8

Ye J, Zhang X, and Dong Z (1996) Characterization of the human granulocytemacrophage colony-stımulatıng factor gene promoter an AP1 complex and an Sp1related complex transactivate the promoter activity that is suppressed by a YY1 complex Mol Cell Biol 16 (1) 157-67

Yen A and Forbes ME (1990) c-myc down regulation and precommitment in HL-60 ceils due to bromodeoxyurıdine Cancer Res $\underline{50}$ (5) 1411-20

Yen A, Forbes M, DeGala G, Fishbaugh J (1987) Control of HL-60 cell differentiation lineage specificity, a late event occurring after precommitment Cancer Res 47(1) 129-34

Yet S-F, McA'Nulty M M, Folta S C, Yen H-W, Yoshızumı M, Hsieh C-M, Layne M D , Chin M T , Wang H, Perrella M A , Jain M K and Lee M-L (1998) Human EZF, a Kruppel-like Zınc Finger Proten, Is Expressed in Vascular Endothehal Cells and contains transcriptional activation and repression domains Biol Chem J, 273, 1026-1031

Zhang H, Fan S, Prochownik EV Distınct roles for MAX protein isoforms in proliferation and apoptosis J Biol Chem $\underline{272(28)}$ 17416-24

Zhang LX, Mills KJ, Dawson MI, Collıns SJ, Jetten AM (1995) Evidence for the involvement of retinoic acid receptor RAR alpha-dependent signaling pathway in the induction of tissue transglutamınase and apoptosis by retinords J Biol Chem 270(11) 6022-9

Yost SE, Shewchuk B, and Hardıson R (1993) Nuclear proteın-binding sites in a transcriptional control region of the rabbit alpha-globin gene Mol Cell Biol 13(9) 5439-49

Ye J, Cippitellı M, Dorman L, Ortaldo JR, Young HA The nuclear factor YY1 suppresses the human gamma interferon promoter through two mechanisms inhibition of AP1 bindıng and actıvation of a silencer element Mol Cell Biol 1996 Sep,16(9) 4744-53

Yen A , Forbes M , DeGala G , Fishbaugh J , (1987) Control of HL-60 differentiation lineage specificity, a late event occurring after precommitment Cancer Res 47 129134

Zhang H, Fan, S and Prochownik EV (1997) Distınct roles for MAX protein isoforms in proliferation and apoptosis J Biol Chem , 272, (28) 17416-17424

Zhou F and Thompson E B , (1996) Role of c-jun induction in the glucocorticoidevoked apoptotic pathway in human Leukemic Lymphoblasts Mol Endocrin, 69, 4323-4330

Zhu W, Lossie A C, Camper S A and Gumucio D L (1994) Chromosomal localisation of the transcription factor YY1 in the mouse and human Mammalian Genone, 5, 234-236

Zhu C-P , Clifford J L , Xu X-C , Sacks P G , Chambon P , Hong W K and Lotan R (1994) Modulation by Retinoic Acid (RA) of squamous cell differentiation, cellular RA-binding proteins and Nuclear RA receptors in human head and neck squamous cell carcinoma cell liens Cancer Res, 54, 5479-5487

Section $7.0 \quad$ Appendices

71 Appendix A - Differentially Expressed Genes Identified in BrdU Exp 3 DNA Microarray Experıment

List of differentially expressed genes identıfied from microarray analysis of BrdU Exp 3 DNA microarrays Genes listed are sorted by Affymetrix ID number

$\begin{aligned} & \text { Affymetrix } \\ & \text { Id } \end{aligned}$	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flag	Normalized	Fla ${ }_{\text {¢ }}^{\text {¢ }}$	
1405 i at	6352	1	A	12.878	P, A	67.626	P	CCLS
200600 at	4478	1	P	1.354	P	1.630	P	MSN
200606_at	1832	1	P	1.275	P	1.626	P	DSP
200609_s_at	9948	1	P	1.529	P	1.480	P	WDRI
200611_s_at	99.48	1	P	1.537	P	1.500	P	WDRI
200621 at	1465	1	P	1.570	P	1.708	P	CSRPI
200632_s_31	10397	1	P	1.329	P	1.531	P	NDRGI
200677 al	754	1	P	1.252	P	1.515	P	PTTGIIP
200678 x at	2896	1	P	0.643	P	0.859	P	GRN
200696 s_at	2934	I	P	1.411	P	1.860	P	GSN
200697 at	3098	1	P	1.415	P	1.532	P	HKI
200715 x_al	23521	1	P	0.637	P	0.783	P	RPL13A
200742 s al	1200	1	P	0.572	P	0.826	P	CLN2
200743 s al	1200	1	P	0.559	P	0.784	P	CLN2
200760 s al	10550	1	P	1.309	P	1.761	P	JWA
20076] s at	10550	1	P	1.191	P	1.738	P	JWA
200762 at	1808	1	P	1.699	P	2.095	P	DPYSL2
200770 s al	3915	1	P	1.234	P	1.717	P	LAMCI
200779 at	468	1	P	0.423	P	0.453	P	AlF4
200785 s at	4035	1	P	1.290	P	1.521	P	LRPI
200787 s at	8682	1	P	1.506	P	1.940	P	PEAI5
200788 s al	8682	1	P	1.486	P	1.880	P	PEAI5
200790 al	4953	1	P	1.551	P	1.213	P	ODCI
200802 at	6301	1	P	0.652	P	0.659	P	SARS
200808 s al	7791	I	P	1.880	P	1.962	P	ZYX
200838 at	1508	1	P	1.093	P	2.031	P	CISB
200839 s al	1508	1	P	1.062	P'	1.769	P	CTSI3
200841 s at	2058	1	P	0.633	P	0.742	P	İPRS
200872 at	6281	1	P	1.473	P	2.429	P	SI00A10
200878_8t	29952	1	A	2.247	P,M,A	2.708	P	EPASI
200887 s at	6772	1	P	1.627	P	2.377	P	STAT]
200897 s at	23022	1	P	1.398	P	1.836	P	KIAA0992
200904 al	3133	I	P	1.118	P	1.758	P	H11.A-E
200905 x 31	3133	1	P	1.209	P	1.655	P	1HLA-E
200907 s at	23022	I	P.A	1.217	P	1.710	P	KlAA0992
200923 al	3959	I	A	1.150	M.A	2.423	P	I.SALS313P
200931_s_at	7414	1	P	1.474	P	1.745	P	VCL
200965 s at	3983	1	P	0.544	P	0.800	P	ABLIMI
200983 x_al	966	1	$1]$	1.362	I'	1.767	P	CD59
200984 s at	966	1	P	1.501	P	1.931	P	CD59
200985 s at	966	1	P	1.581	P	2.096	P	CD59;
200986 at	710	1	P.A	1.259	P	1.908	P	SERPINGI
200988 s at	10197	1	P	1.665	P	1.565	P	PSME:3
200989 al	3091	1	P	1.537	P	1.423	P	H11/1A
201010 s al	10628	1	P	0.584	P	1.402	P	TXNIP
201015_s_al	3728	1	\wedge	2.589	P, M	4.411	P	JUP
201037 at	5214	1	P	1.790	P	1.679	P	PFKP
201041 s at	1843	1	P	1.355	P	1.848	P	DUSP1
201042 at	7052	1	P. A	13.556	P	22.821	P	TGM?
201058_s_at	10398	1	P	1.658	p	1.843	P	MYL9

Affymetrix Id	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
$201060 \times$ al	2040	I	P	1.433	P	1.743	P	STOM
201061 s at	20.40	I	P	1.314	P	1.669	P	STOM
201085 s al	6651	1	P.A	1.374	P	1.570	P	SON
201110 s al	7057	1	A	10.648	P	8.768	P.A	THBSI
201116 s al	1363	1	P	1.085	P	1.537	P	CPE
201140 s at	5878	1	P	1.487	P	1.703	P	RAB5C
201141 at	10457	1	P	1.287	P	1.578	P	GPNM 3
$201142 \mathrm{a!}$	1965	1	P	1.386	P	1.509	P	E.1F2S]
201144 s al	1965	I	P	1.530	P	1.376	P	EIF2S]
201147 s at	7078	1	A	2.093	A	3.727	P, M	TIMP3
201149 sal	7078	1	P	1.905	P	2.995	P	I'MP3
201150 s al	7078	1	A	1.292	P.A	2.131	P	I'IMP3
201156 s at	5878	1	P	1.355	P	1.592	P	RABSC
201161 s a 1	8531	1	P	1.241	P	1.555	P	CSDA
201162 at	3490	1	A	1.383	A	3.143	P	[GFBP7
201163 s at	3490	1	P	1.634	P	3.422	P	IGFBP7
201170 s al	8553	1	P	1.254	P	1.671	P	B1ILIH32
201189 s at	3710	1	P. A	1.362	P	1.681	P	ITPR3
201195 s at	8140	I	P	0.680	P	0.553	P	SLC7A5
201206 s_al	6238	I	P	1.327	P	1.537	P	RRHP1
201214_s at	5510	1	P	1.516	P	1.411	P	PPP1R7
201216 at	10961	1	P	0.593	P	0.717	P	1:RP28
201232_s_al	5719	1	P	1.576	P	1.478	P	PSMDI3
201233 al	5719	1	P	1.513	P	1.425	P	PSMDI3
201263 at	6897	1	P	0.587	P	0.632	P	IARS
201266 at	7296	1	P	1.646	P	1.680	P	TXNRI)1
201278 at		1	A	1.467	M.A	1.567	P.A	
201315_x_a!	10581	1	P	0.870	P	1.524	P	[F]TM2
201329 s at	2114	1	A	1.617	P.A	1.713	P	ETS2
201348_ al	2878	1	P	3.924	P	4.117	P	GPX3
201397 al	26227	I	P	0.436	P	0.417	P	PHGDH
201401 s al	156	1	P	0.595	P,M,A	0.705	P.A	ADRBK1
201410 at		1	P	1.538	P	1.312	P	PLEKHB2
201416 at		1	P	1.303	P	1.740	P	SOX4
201417 at		1	P	1.198	P	1.571	P	SOX4
201422 at	10437	1	P	1.367	P	1.522	P	IFI30
201425 ut	217	1	P	0.599	P	0.574	P	Al.DH2
201427 s at	6414	1	A	1.808	P. A	2.178	P.M	SEPPP1
201460 - $\mathrm{al}^{\text {a }}$	9261	1	P	1.472	P	1.528	P	MAPKAPK2
$201464 \times$ at	3725	1	A	2.573	P.M	3.470	P	JUN
201466 s at	3725	I	A	2.201	P	2.898	P	JUN: API
201473_at	3726	1	P	1.369	P	1.899	P	JUNB
201475 x at	4141	1	P	0.521	P	0.556	P	MARS
201482 at	5768	1	P	1.364	P	1.561	P	QSCN6
201489 at	10105	1	P	1.485	P	1.688	P	PPIF
201490 s at	10105	1	P	1.493	P	1.827	P	PPIF
201498_at	7874	I	P	1.530	P	1.293	p	USP7
201502 s at	4792	1	P	1.915	P	2.399	P	NFKBIA
201505 at	3912	1	P.A	1.903	P	2.354	P	[.AMB]
201531_at	7538	1	${ }^{1}$	1.184	P	1.773	P	ZFP36

$\begin{aligned} & \text { Affymetrix } \\ & \text { Id } \end{aligned}$	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
201539_s_at	2273	1	P	1454	P	2417	P	FHL1
201540_at	2273	1	P	1485	P	2255	P	FHL1
201546_at	9320	1	P	1577	P	1540	P	TRIP12
201557_at	6844	1	P	0617	P	0790	P	VAMP2
201564_s_at	6624	1	P	1496	P	1609	P	FSCN1
201565_s_at	3398	1	P	3928	P	1901	P	ID2
201566 x_at	3398	1	P,M	5879	P	2464	P	ID2
201578_at	5420	1	M, A	1188	M, A	1558	P,M	PODXL
201596 x_at	3875	1	A	2751	P,M	4813	P	KRT18
201601_x_at	5805	1	P	0833	P,M	1587	P	IFITM1
201631_s_at	8870	1	P	2594	P	3867	P	IER3
201648_at		1	P	1420	P	1577	P	KIAA1579
201649_at	9246	1	P	1161	P	1818	P	UBE2L6
201655_s_at	3339	1	A	1074	A	1610	P	HSPG2
201666 at	7076	1	P	1201	P	1954	P	TIMP1
201673_s_at	2997	1	P	1690	P	1503	P	GYSI
201693_s_at	1958	1	P	1009	P,A	1554	P	EGR1
201695_s_at	4860	1	P	1642	P	1375	P	NP
201700_at	896	1	P	1810	P	1706	P	CCND3
201710_at	4605	1	P	1687	P	1163	P	MYBL2
201718_s_at	2037	1	P	1446	P	1651	P	EPB41L2
201719_s_at	2037	1	P	1328	P	1509	P	EPB4IL
201739_at	6446	1	P	4350	P	6312	P	SGK
201744_s_at	4060	1	P	1428	P	1879	P	LUM
201762_s_at	5721	1	P	1311	P	1660	P	PSME2
201765_s_at	3073	1	P	0592	P	0840	P	HEXA
201798_s_at	26509	1	P,A	5459	P	13058	P	FER1L3
201810_s_at	9467	1	P	1813	P	2115	P	SH3BP5
201811_x_at	9467	1	P	2037	P	2081	P	SH3BP5
201841_s_at	3315	1	P	1636	P	1720	P	HSPB1
201860_s_at	5327	1	A	1658	M,A	2312	P,A	PLAT
201865_x_at	2908	1	P	1479	P	1561	P	NR3C1
201866_s_at	2908	1	P M	1441	P	1529	P	NR3C1
201877_s_at	5527	1	P	0638	P	0714	P	PPP2R5C
201891_s_at	567	1	P	1282	P	1598	P	B2M
201900_s_at	10327	1	P	0521	P	0748	P	AKR1AI
201915_at	11231	1	P	0640	P	0734	P	SEC63
201925_s_at	1604	1	P	0611	P	0771	P	DAF
201926_s_at	1604	1	P	0627	P	0722	P	DAF
201951_at	214	1	P	1600	P	2764	P	ALCAM
201952_at	214	1	P	1483	P	2448	P	ALCAM
201959_s_at	23077	1	P,A	1408	P	1698	P	MYCBP2
201960_s_at	23077	1	P	1402	P	1742	P	MYCBP2
201971_s_at	523	1	P	1559	P	1595	P	ATP6V1A
201972_at	523	1	P	1458	P	1614	P	ATP6V1A
201998_at	6480	1	P,M	1529	P	1496	P	SIAT1
202007_at	4811	1	P	1340	P	2095	P	NID
202008_s_at	4811	1	P	1243	P	1839	P	NID
202016_at	4232	1	P	1862	P	1731	P	MEST
202017_at	2052	1	P	1519	P	1532	P	EPHX1

$\begin{gathered} \text { Affymetrix } \\ \text { Id } \end{gathered}$	LocusLink	Day 0		Day 3.		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
202023_at	1942	1	A	1509	P,M,A	2268	P	EFNA1
202052_s_at	26064	1	P	1594	P	2242	P	RAI14
202055_at		1	P, M A	1533	P	1546	P	KPNA1
202056_at		1	P	1650	P	1539	P	KPNA1
202058_s_at	3836	1	P	1537	P	1427	P	KPNAI
202059_s_at	3836	1	P	1619	P	1493	P	KPNA1
202069_s_at	3419	1	P	1615	P	1367	P	IDH3A
202071 at	6385	1	P	2310	P	2260	P	SDC4
202074_s_at	10133	1	P	1143	P	1560	P	OPTN
202080_s_at	22906	1	A	1158	M,A	1555	P,A	OIP106
202086_at	4599	1	A	2340	P,M	6578	P	MX1
202105_at	3476	1	P	0645	P	0722	P	IGBP1
202122_s_at	10226	1	P	1468	P	1635	P	M6PRBP1
202132 $=$ at	25937	1	M,A	1536	P,M	1656	P,M	TAZ
202133_at	25937	1	P	1231	P	1613	P	TAZ
202180_s_at	9961	1	P,A	1104	P	1649	P	MVP
202193_at	3985	1	P	1711	P	1601	P	LIMK2
202196_s_at	27122	1	A	3642	P,A	4850	P,M	DKK3
202241_at	10221	1	P	2804	P	3234	P	TRIB1
202258_s_at	10443	1	P	0585	P	0678	P	PFAAP5
202259_s_at	10443	1	P	0629	P	0787	P	PFAAP5
202272_s_at	23219	1	P	1532	P	1412	P	FBXO28
202284_s_at	1026	1	P	4476	P	4940	P	P21
202307_s_at	5696	1	P	1881	P	2580	P	TAPI
202310_s_at	1277	1	A	2670	P,A	2989	P,A	COL1A1
202328_s_at	5310	1	P	0597	P	0657	P	PKD1
202350._s_at	4147	1	P	1668	P	1884	P	MATN2
202361_at	9632	1	P	1333	P	1503	P	SEC24C
202370_s_at	865	1	P	1601	P	1336	P	CBFB
202389 s_at	3064	1	A	1568	P	1638	P	HD
202391_at	10409	1	P	3198	P	4368	P	BASPI
202402_s_at	833	1	P	0560	P	0602	P	CARS
202422_s_at	2182	1	P	1501	P	1625	P	ACSL4
202425_x_at	5530	1	P, M, A	1237	P	1524	P	PPP3CA
202430_s_at	5359	1	P	1447	P	2452	P	PLSCR1
202435_s_at	1545	1	A	1335	P	1670	P,A	CYP1B1
202436_s_at	1545	1	P,A	1418	P	1647	P	CYP1B1
202437_s_at	1545	1	A	1486	P	2040	P	CYP1B1
202446_s_at	5359	1	P	1293	P	2069	P	PLSCR1
202458_at	11098	1	A	3120	P,M,A	6194	P	SPUVE
202462_s_at	9879	1	P	1543	P	1268	P	DDX46
202468_s_at	8727	1	P	1567	P	1731	P	CTNNAL1
202481_at	9249	1	P	1124	P	1520	P	DHRS3
202524_s_at	9806	1	P	0542	P	0594	P	SPOCK2
202531_at	3659	1	P	1909	P	2375	P	IRF1
202575_at	1382	1	A	2672	M,A	2516	P,M,A	CRABP2
202598_at	6284	1	P	1430	P	2083	P	S100A13
202620_s_at	5352	1	P	1826	P	2047	P	PLOD2
202628_s_at	5054	1	A	17716	A	55277	P	SERPINE1
202630_at	10513	1	P	0651	P	0866	P	APPBP2

$\begin{aligned} & \text { Affymeirix } \\ & \text { Id } \end{aligned}$	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flaps	Normalized	Flags	Normalized	Flags	
202637 s at	3383	1	P	1.367	P	2.120	P	ICAMI
202638 s al	3383	1	P	1.482	P	2.282	P	ICAM1
202643 s at	7128	1	A	1.678	P.A	2.349	P	TNFAIP3
202644 s a a	7128	1	P	1.788	P	2.315	P	TNFAIP3
202656 s at	9792	1	P	1.594	P	1.556	P	SERTAD2
202660 at	23526	1	P	1.418	P	1.575	P	HA-I
202662 s at	3709	1	P.M.A	1.343	P	1.679	P	1TPR2
202672 s at	467	1	P	1.366	P	1.620	P	ATF3
202684_s_at	8731	1	1	1.883	P	1.362	P	RNMT
202686 s at	558	1	M, A	1.259	P.M	1.829	P	AXI.
202693_s_at	9263	1	P	1.691	P	1.690	P	STK17A
202695 s at	9263	1	P.A	1.734	P	1.915	P	STKI7A
202716 at	5770	1	P	1.583	P	1.633	P	PTPNI
202728 s_at	4052	1	P	0.577	P.A	0.844	P	LTT3P1
202729_s_at	4052	1	P	0.652	P	0.914	1	LTBPI
202732 at	11142	1	P	1.085	P	1.566	P	PKIG
202743 at	8503	1	P	1.988	P	1.995	P	PIK3R3
202746 at	9452	1	P	2.315	P	3.499	P	ITM2A
202759 s at	11217	1	\wedge	1.472	P.A	1.842	P.A	PALM2
202760 s_at	11217	1	P, A	1.545	P.M.A	1.993	P,A	AKAP2
202761_s_at	23224	1	P	0.987	P	1.563	P	SYNE2
202766 s a al	2200	1	P	1.182	P	1.767	P	FBNI
202769 at		1	P	0.572	P	0.630	P	CCNG2
202794 at	3628	I	P	1.450	P	1.549	P	INPP1
202801_at	5566	1	P	1.590	P	1.454	P	PRKACA
202812 at	2548	1	P	0.515	P	0.759	P	GAA
202819 s sat	6924	1	P	1.762	P	1.460	P	TCEB3
202822 at	4026	1	P	1.414	P	1.735	P	LPP
202830 s at	25.42	1	P	0.497	\wedge	0.630	P.A	SLC37A4
202846_s_at	5279	1	P	0.605	P	0.690	P	PIGC
202847 at	5106	1	P	0.382	P	0.381	P	PCK2
202854 al	3251	1	P	1.497	P	1.527	P	HPRT1
202870_s_a!	991	1	P	1.511	P	1.396	P	CDC20
202883_s_al	5519	1	P	1.565	P	1.515	P	PPP2R1B
202887_s_a	54541	1	P	0.429	A	0.474	\wedge	DDIT4
202934 u	3099	1	A	1.917	P,A	1.845	P.A	HK2
202948 at	3554	1	P.A	1.099	P.A	1.595	P.M.A	II.IR1
202949 s al	2274	1	P	3.214	P	5.650	P	FIIL 2
202\% 2 at	23303	1	M, A	1.689	P.A	1.867	P	KIFI3B
202998_s_at	4017	1	P	1.214	P	2.216	P	LOXL2
203002 at	51421	1	p	1.636	P	1.783	P	AMOTL2
203023 at	51491	1	P	1.611	P	1.585	P	HSPCIII
20305!_at	22893	1	P	1.431	P	1.584	P	BAHDI
203058_s_al	9060	1	P	2.594	P	3.299	P	PAPSS2
203059_s_al	9060	1	P.M	1.694	P	2.184	P	PAPSS2
203060_s_al	9060	1	P	3.572	P	4.996	P	PAPSS2
203062 s at	9656	1	P	1.511	P	1.563	P	MDC1
203065 s at	857	1	I	1.411	p	1.629	P	CAV1
203066_at	51363	1	P	1.656	P	1.645	P	GALNAC4S-6ST
203072 a	4643	1	A	2.026	P	2.157	P	MYOIE

$\begin{gathered} \text { Affymetrix } \\ \text { Id } \end{gathered}$	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
203074_at	244	1	A	1185	P,A	1664	P	ANXA8
203102_s_at	4247	1	P	1591	P	1451	P	MGAT2
203119_at	79080	1	P	1364	P	1501	P	MGC2574
203140_at	604	1	P	1299	P	2011	P	BCL6
203148_s_at	9830	1	P	1551	P	2105	P	TRIM14
203153_at	3434	1	A	2969	P,A	8524	P	IFIT1
203158_s_at	2744	1	A	1579	P	1648	P	GLS
203178_at	2628	1	P	1544	P	1337	P	GATM
203184_at	2201	1	P	1873	P	2503	P	FBN2
203211_s_at	8898	1	P	1550	P	1336	P	MTMR2
203212_s_at	8898	1	A	1565	P	1536	P,A	MTMR2
203216_s_at	4646	1	P	1547	P	1323	P	MYO6
203242_s_at	10611	1	P,M	1471	P	1604	P	LIM
203243_s_at	10611	1	P	1642	P	1942	P	LIM
203252_at	10263	1	P	1512	P	1421	P	DOC-1R
203304_at	25805	1	P,M	2356	P	2293	P	BAMBI
203336_s_at	9270	1	P	1559	P	1518	P	ITGB1BP1
203359_s_at	26292	1	P	1943	P	1520	P	MYCBP
203360_s_at	26292	1	P	1734	P	1317	P	MYCBP
203381_s_at	348	1	P,M	1376	P	2272	P	APOE
203382_s_at	348	1	P,A	1507	P	2557	P	APOE
203386_at	9882	1	P,A	1553	P	1726	P	TBC1D4
203413_at	4753	1	P	1253	P	1852	P	NELL2
203423_at	5947	1	P	1287	P	1812	P	RBP1
203439_s_at	8614	1	P	0674	P	0609	P, A	STC2
203455_s_at	6303	1	P	1713	P	2535	P	SAT
203485_at	6252	1	P	1575	P	1516	P	RTN1
203504_s_at	19	1	P	1913	P	2457	P	ABCAl
203505_at	19	1	P	2218	P	3080	P	ABCAI
203526_s_at	324	1	P	1347	P	1584	P	APC
203558_at	9820	1	P	0612	P M	0914	P	CUL7
203563_at	60312	1	A	1187	P,A	1569	P,M,A	AFAP
203578_s_at	9057	1	P,M	1746	P	1392	P	SLC7A6
203585_at	7739	1	P	1631	P	1707	P	ZNF185
203592 s at	10272	1	PM	1896	P	1801	P	FSTL3
203603_s_at	9839	1	P, A	1574	A	1463	P,A	ZFHXIB
203607_at	22876	1	P	1591	P	1529	P	INPP5F
203650_at	10544	1	P	1335	P	1510	P	PROCR
203657_s_at	8722	1	P	0540	P	0741	P	CTSF
203665_at	3162	1	P	2443	P	2435	P	HMOX1
203671_at	7172	1	P,A	1647	P,M	1565	P	TPMT
203674_at	9931	1	P	1472	P	1593	P	HELZ
203675_at	4925	1	P	1180	P	1626	P	NUCB2
203701_s_at	55621	1	P	1548	P	1424	P	FLJ20244
203710_at	3708	1	P	1811	P	1661	P	ITPR1
203725_at	1647	1	P	1452	P	1861	P	GADD45A
203728_at	578	1	P	1507	P	1486	P	BAK1
203736_s_at	8496	1	M, A	1375	P	1616	P	PPFIBP1
203743_s_at	6996	1	P	1606	P	1410	P	TDG
203767_s_at	412	1	P	2006	P	1691	P	STS

AffymetrixId	L.ocuslink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flaga	Normalized	Flaga	
203787 a!	23635	1	P	1.717	P	2.234	P	SSI3P2
203810_al	11080	1	P	1.593	P	1.458	P	INAJB4
20381! s_at	11080	1	P.M,A	1.666	p	1.648	P	DNAJB4
203821 at	1839	1	A	3.276	P	2.477	P.M	[TR
203836_s_at	4217	1	A	1.462	P.A	1.899	P.A	MAP3K5
203843 at	6197	1	P	1.349	P	1.585	P	RPS6KA3
203851 at	3489	1	P.A	1.972	P	2.426	P	IGFBP6
203876 s_at	4320	1	P.A	0.573	P.M.A	0.695	P.A	MMP1I:
203889 at	6447	1	M.A	1.463	P	2.005	P	SGNEI
203895_nt		1	P	1.334	P	1.558	P	PLCB4
203910 al	9411	1	p	2.144	P	3.560	P	PARGI
203921_at	9435	1	p	0.439	P	0.546	P	CiIST2
203927 at	479.4	1	P.M	1.652	P	2.040	P	Nl:Kı3IE
203936 s at	4318	1	P	1.434	P	1.608	P	MMP9
203946 s at	384	1	P.A	2.360	P	2.222	P	ARG2
203951 at	1264	1	A	12.155	P	12.597	P	CNN1
203964_at	9111	1	P	1.874	P	1.995	P	NMI
203973 s at	1052	1	P	1.188	P	1.604	P	CEBPD
203980_at	2167	1	P	1.538	P	1.611	P	FABP4
203981_s_at	5826	1	P	0.585	P	0.711	P	ABCD4
203986_at	8987	1	P	1.663	P	1.604	P	GENX-3414
$203989 \times$ al	2149	1	A	1.891	P.A	2.739	P	F2R
204005_s_at	5074	1	P	1.501	P	1.615	P	PAWR
204024_al	734	1	P	1.539	P	1.159	P	C8orf
204029 at	1952	1	P	0.616	p	0.643	P	CELSR2
204030 s at	29970	1	P	1.948	P	2.721	P	SCIIIPI
204035 al	7857	1	p	0.803	P	0.416	P	SCG2
204048_s_at	9749	1	P	1.321	P	1.539	P	C6oris6
204049 s at	9749	1	P	1.515	P	1.693	P	C6orf36
204070 u	5920	1	P.A	1.431	P, A	2.723	P	RARRES 3
204081 al	4900	1	P	2.118	P	1.856	P	NRGN
204082 at	5090	1	P	1.467	P	1.858	P	PBX3
204083 s s at	7169	1	P	1.545	P	1.656	P	TPM2
204094 s al	9819	1	P	1.573	P	1.601	P	KIAA0669
204109 s at	4800	1	P	1.530	P	1.251	P	NFYA
204135 at	11259	1	P	1.623	P	2.851	P	DOC1
$204139 \times$ at	7593	1	P	0.602	A	0.762	P, A	ZNF42
204141_at	7280	1	p	2.284	P	2.008	P	TUBB
204159 at	1031	1	P	1.550	P	1.388	P	CDKN2C
204184 s_at	157	1	P	1.536	P	1.358	P	Al)R13K2
204210 s al	5130	1	P.A	1.534	P.A	1.414	P	PCYTIA
204218_at	25906	1	P	1.514	P	1.254	P	DKFZPS64M082
204224 s s_al	2643	1	P	1.961	P	1.709	P	GC11
204238_s_ut	10591	1	P	$0.6+2$	P	0.808	P	C6orfl 08
204260 at	1114	1	P	0.189	P	0.220	P	CHGB
204268 al	6273	1	A	2.756	P	4.154	P	S100A2
204279 at	5698	1	p	2.180	P	3.303	P	PSMB9
204284 a!	5507	1	p	1.259	P.A	1.672	P	PPP1R3C
204313 s at	1385	1	P	1.541	P	1.436	P	CREIB1
$204326 \times$ at	4500	1	P	2.032	P	2.455	P	MTIL

$\begin{aligned} & \text { Affymetrix } \\ & \text { Id } \end{aligned}$	L.ocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flagı	Normalized	Flapa	Normalized	Flag3	
204332 s s al	175	1	P	0.600	P	0.718	P	AGA
204333 s al	175	1	P	0.570	P	0.611	P	AGA
204347 at	205	1	P	1.642	P	1.952	P	AK3
204348_s_at	205	1	P	1.606	P	1.835	P	AK3
204358 s at	23768	1	P	0.625	P.A	0.939	P	FI.RT2
204359 at	23768	1	P	0.620	P	0.909	P	FI.RT2
204360 s at	4669	1	P	0.647	P	0.742	P	NAGLU
204368 at	6578	1	\wedge	1.442	P.M.A	2.032	P	SLCO2AI
204396 s at	2869	1	P	1.589	P	1.584	p	GRK5
204398 s at	24139	1	P	0.643	P	0.825	P.M	EML2
204412 s al	4744	1	P	1.572	P	1.257	P	NEFH
$204416 \times$ al	341	1	A	1.584	P	1.572	P.M	APOCl
204420 at	8061	1	P	1.580	P	1.869	P	DIPA
204421 s at	2247	1	P	1.488	P	1.563	P	FGF2
204422 s at	2247	1	P	1.667	P	1.646	P	FGF2
204423 at	4289	1	P	1.696	P	1.558	P	MKLNI
204425 al	393	1	P	0.583	P.A	0.738	P	ARHGAP4
204455 at	667	1	A	1.901	P. A	3.900	P	BPAGI
204462 s_at	6567	1	P	1.414	P	1.766	P	SLC16A2
204465 s at	9118	1	P	1.915	P	1.894	P	INA
204475 ul	4312	1	P	3.658	P	6.287	P	MMP1
204485 s at	10040	1	P	0.653	P	0.781	P	TOMILI
204490 s_at	960	1	P.A	2.166	P.A	4.040	P, A	CD44
204493 at	637	1	P	1.569	P	1.427	P	B1D
204514_a!	1802	1	P	1.505	P	1.600	P	DPH2L2
204527_al	4644	1	P	1.519	P	1.513	P	MYOSA
204530_s_at	9760	1	P, A	1.481	\wedge	1.702	P	TOX
204540_at	1917	1	P	1.556	P	1.229	P	EEFIA2
204567_s_at	9619	1	P	1.555	P	1.144	P	ABCGI
204616_at	7347	1	P	1.549	P	1.454	P	UCHL3
204627_s_at	3690	1	A	1.485	P.A	2.100	P	ITGB3
204632 at	8986	1	P	1.832	P	1.669	P	RPS6KA4
204646_al	1816	1	P	0.547	P	0.606	p	DPYD
204647 al	9454	1	P	1.685	P	2.199	P	110MF:R3
204653 al		1	P, A	1.274	P	1.608	P	TFAP2A
204655 at	6352	1	\wedge	2.186	P.A	7.657	P	CCLS
204665 al	80143	1	P	0.825	P	0.626	P	Fld21168
204682 at	4053	1	P.A	1.357	P	2.179	P	1.TBP2
204745 x_at	4495	1	P	1.463	P	1.882	P	M $\Pi \mathrm{G}$
204748_al	5743	1	M.A	3.283	P	4.991	P	COX2
204749_at	4675	1	P	1.535	P	1.564	P	NAP1L3
204759 at	1102	1	P	1.684	P	1.274	P	CHC1L
204780 s at	355	1	A	1.375	P.A	1.754	P	TNFRSF6
204788 _s at	5498	1	P	0.546	P	0.617	P	PPOX
204790_at	4092	1	P	1.807	P	1.313	P	SMAD7
204792 s at	9742	1	P, A	0.594	P	0.819	P, A	KIAA0590
20480¢ \times at	3134	1	P	1.034	p	1.558	P	III,A-F
204811 s at	9254	1	P	0.644	P	0.651	P	CACNA2D2
204859_s_al	317	1	P	1.512	P	1.599	P	APAFI
20-4865 at	761	1	A	1.506	P.A	1.757	P	CA3: CAlll

$\begin{aligned} & \text { Affymetrix } \\ & \text { Id } \end{aligned}$	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalızed	Flags	Normalızed	Flags	Normalized	Flags	
204875_s_at	2762	1	P	1377	P	1725	P	GMDS
204880_at	4255	1	P	0655	P	0764	P	MGMT
204897_at	5734	1	P	2197	P	2832	P	PTGER4
204908_s_at	602	1	P	1734	P	2267	P	BCL3
204928_s_at	8273	1	P	1590	P	1331	P	SLC10A3
204935_at	5771	1	P,A	1546	P	1237	P,A	PTPN2
204937 s at	10782	1	P	1525	P	1349	P	ZNF274
204948_s at	10468	I	A	1305	P	1701	P	FST
204955_at	8406	1	P	1854	P	1797	P	SRPX
204983_s_at	2239	1	P	1249	P	1621	P	GPC4
204985_s_at	79090	1	P	0632	P	0772	P	MGC2650
204991_s_at	4771	1	A	1583	P,A	1809	P, M	NF2
204995_at	8851	1	P	0707	P	0625	P,A	CDK5R1
204998_s at	22809	1	P	0532	P	0660	P	ATF5
204999_s_at	22809	1	P	0420	P	0507	P	ATF5
205005_s_at	9397	1	P	1593	P	1426	P	NMT2
205006 s at	9397	1	P	1605	P	1718	P	NMT2
205013_s_at	135	1	P, A	1864	P	2098	P	ADORA2A
205016_at	7039	1	A	2225	P	2039	P	TGFA
205034_at	9134	1	P	1702	P	1461	P	CCNE2
205047_s_at	440	1	P	0279	P	0271	P	ASNS
205081_at	1396	1	P	1803	P	1343	P	CRIP1
205088_at	10046	1	M	1433	P	1612	P	CXorf6
205097_at	1836	1	P	1363	P	1622	P	SLC26A2
205110_s_at	2258	1	P,A	1482	P	1643	P	FGF13
205111_s_at	51196	1	P	1548	P	2134	P	PLCE1
205112 at	51196	1	P,A	1636	P	2470	P	PLCE1
205115_s_at	9904	1	A	1552	P	1353	P,M	RBM19
205126_at	7444	1	P	1504	P	1542	P	VRK2
205172 x_at	1212	1	P	1550	P	1597	P	CLTB
205174 s at	25797	1	P	2687	P	3129	P	QPCT
205192_at	9020	1	P, M	1501	P	1575	P	MAP3K14
205193_at	23764	1	P,M	1594	P	1360	P	MAFF
205196_s_at	1174	1	P,M	1432	P, A	2059	P, A	AP1S1
205205_at	5971	1	P	1867	P	2271	P	RELB
205214_at	9262	1	A	2069	P,M,A	1846	M, A	STK17B
205249_at	1959	1	P	1041	P	1649	P	EGR2
205280_at	2743	1	P	0651	P	0722	P	GLRB
205286_at	7022	1	A	2102	P	3094	P	TFAP2C
205288_at	8556	1	P	1548	P	1322	P,M	CDC14A
205350_at	1381	1	P	1976	P	2301	P	CRABP1
205352_at	5274	1	P, A	1428	P	1956	P	SERPINI 1
205358_at	2891	1	P	0622	P	0774	P	GRIA2
205379_at	874	1	A	1967	P, A	2206	P	CBR3
205401_at	8540	1 -	P	1522	P	1327	P	AGPS
205407_at	8434	1	P	0604	P	0835	P	RECK
205423_at	162	1	P	1614	P	1524	P	AP1B1
205428_s_at	794	1	P,A	1529	P	1484	P	CALB2
205434_s_at	22848	1	P	1576	P	1496	P	AAK1
205443 at	6617	1	P	1845	P	1582	P	SNAPCl

AffymetrixId	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flăgs	Normalızed	Flags	Normalized	Flags	
205479_s at	5328	1	A	2913	P	6454	P	PLAU
205483_s at	9636	1	P	1597	P	2631	P	GIP2
205493_s_at	10570	1	P	1691	P	1379	P	DPYSL4
205497 at	7728	1	P,A	0649	M,A	0781	M,A	ZNF175
205498_at	2690	1	P,M,A	1635	P	1803	P	GHR
205534_at	5099	1	A	1711	P,A	2180	P	PCDH7
205543_at	22824	1	P	1395	P	1560	P	APG-1
205547_s_at	6876	1	P	5771	P	6351	P	TAGLN
205569_at	27074	1	P	1142	P	1881	P	LAMP3
205606_at	4040	1	P	0577	P	0722	P	LRP6
205619_s_at	4222	1	A	1342	P, A	2228	P	MEOX1
205625_s_at	793	1	A	3079	P	4556	P	CALB1
205626_s_at	793	1	P,A	1401	P	1643	P	CALBI
205660_at	8638	1	M,A	1247	P,A	2008	P	OASL
205676_at	1594	1	P,A	1479	P	1575	P	CYP27B1
205715_at	683	1	M,A	1517	P,M,A	1399	M,A	BSTI
205729_at	9180	1	P	1035	P	1544	P	OSMR
205777_at	1852	1	P	1564	P	1326	P	DUSP9
205807_s at	7286	1	P	1437	P	1504	P	TUFT1
205828_at	4314	1	P	1590	P	1338	P	MMP3
205829_at	3292	1	P,A	1885	P	1625	P	HSD17B1
205830_at	1047	1	P	0605	P	0780	P	CLGN
205848_at	2620	1	P	0656	P	0514	P,M	GAS2
205876 at	3977	1	P,M	2037	P	2162	P	LIFR
205896_at	6583	1	P	1458	P	1508	P	SLC22A4
205899_at	8900	1	A	1684	P,A	1730	P,M	CCNA1
205924_at	5865	1	A	2627	P	3222	P	RAB3B
205925_s_at	5865	1	P	1998	P	2138	P	RAB3B
205937 -at	10669	1	P	0572	P	0792	P	CGREF 1
205973_at	9638	1	P,A	1314	P	1514	P	FEZ1
205986_at	9625	1	P, A	0600	A	0689	M, A	AATK
206002 at	10149	1	A	1796	M, A	1849	P A	GPR64
206023_at	10874	1	P	1387	P	1535	P	NMU
206036_s_at	5966	1	P	1555	P	1453	P	RELB
206067_s_at	7490	1	A	2297	P,M,A	1863	P,A	WT1
206068_s_at	33	1	M, A	1636	P	1448	P	ACADL
206074_s_at	3159	1	P	1526	P	1582	P	HMGA1
206100_at	1368	1	P,A	1582	P	1924	P	CPM
206103_at	5881	1	P	0576	P	0674	P	RAC3
206104_at	3670	1	P,A	1864	P	1713	P	ISLI
206116_s_at	7168	1	P	3588	P	5110	P	TPM1
206117_at	7168	1	A	3077	P,A	4184	P	TPMI
206128_at	152	1	P	0621	P,A	0816	P	ADRA2C
206137_at	9699	1	P,M	1908	P	2182	P	RIMS2
206142_at	7694	1	P,M	0613	A	0737	A	ZNF135
206157_at	5806	1	P	2010	P	1241	P	PTX3
206279_at	5616	1	P,A	1471	P	1573	P,M	PRKY
206295_at	3606	1	P,A	1653	P	2355	P	IL18
206343_s_at	3084	1	P	2177	P	1623	P	NRG1
206355_at	2774	1	P	0623	P	0645	P	GNAL

$\begin{gathered} \text { Affymetrix } \\ \text { Id } \\ \hline \end{gathered}$	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
206401_s at	4137	1	P	0652	P, A	0626	P,M,A	MAPT
206404_at	2254	1	P	0695	P	0652	P	FGF9
206424_at	1592	1	P	1763	P	1461	P	CYP26AI
206461_x_at	4496	1	A	1974	P,A	2623	P,A	MT1H
206463_s_at	10202	1	A	2838	P,A	2716	M, A	DHRS2
206504_at	1591	1	A	3766	P,M	5333	P,M,A	CYP24A1
206506_s_at	8464	1	P,A	0640	P,A	0811	M, A	SUPT3H
206508 at	970	1	P,A	1738	P,A	3310	P	TNFSF7
206580_s_at	30008	1	P	1848	P	1712	P	EFEMP2
206632_s_at	9582	1	P	1920	P	2098	P	APOBEC3B
206662_at	2745	1	P	1832	P	2075	P	GLRX
206675_s_at	6498	1	P,A	1890	P	1265	P,A	SKIL
206693_at	3574	1	P,M	1108	P,A	1915	P	IL7
206699_x_at	4861	1	P,A	1553	P	1429	P,M	NPASI
206748_s_at	9043	1	P	1599	P	1443	P	SPAG9
206765_at	3759	1	P	0629	P	0611	P	KCNJ2
206773_at	4062	1	P, A	1954	P	1786	P	LY6H
206788_s_at	865	1	P	1761	P	1411	P	CBFB
206805 at	10371	1	P	1173	P	1859	P	SEMA3A
206825_at	5021	1	A	2427	P	3962	P	OXTR
206850_at	10633	1	P,A	1882	P	1420	P	RRP22
206907_at	8744	1	P	1624	P	1882	P	TNFSF9
207014_at	2555	1	P,M	1312	P	1718	P	GABRA2
207030_s_at	1466	1	P	2743	P	2341	P	CSRP2
207050_at	781	1	A	1491	P,A	1633	P,M,A	CACNA2DI
207147_at	1746	1	P	1790	P	0731	P,M	DLX2
207180_s_at	10553	1	P,M,A	1511	P	1248	P	HTATIP2
207196_s_at	10318	1	P	1511	P	1648	P	TNIP1
207219_at	65243	1	P	0600	P	0655	P	LOC65243
207281_x_at	51480	1	P	2237	P	3607	P	VCX2
207290_at	5362	1	P	0385	P,A	0403	A	PLXNA2
207302_at	6445	1	P	0428	P	0400	P	SGCG
207304_at	7596	1	P	2175	P	1509	P	ZNF45
207324_s_at	1823	1	P,M	0597	A	0528	A	DSC1
207332_s_at	7037	1	P	1500	P	1539	P	TFRC
207357_s_at	55568	1	P	1161	P	1527	P	GALNT10
207390_s_at	6525	1	P	1523	P	1530	P	SMTN
207415_at	22925	1	P,A	1303	P M,A	1716	P	PLA2R1
207535_s_at	4791	1	P	1625	P	1878	P	NFKB2
207563_s_at	8473	1	P	0643	P	0780	P	OGT
207574_s_at	4616	1	P	2255	P	2443	P	GADD45B
207643_s_at	7132	1	A	1083	P,M	1619	P	TNFRSF1A
207700_s_at	8202	1	P	1456	P	1560	P	NCOA3
207714_s_at	871	1	P	2408	P	2214	P	SERPINH1
207768_at	1961	1	A	3446	P	3661	P	EGR4
207813_s_at	2232	1	P	0646	P	0741	P	FDXR
207826_s_at	3399	1	P	7473	P	4465	P	ID3
207876_s_at	2318	1	P	1365	P	1739	P	FLNC
208003_s_at	10725	1	P	0988	P	1502	P	NFAT5
208018_s_at	3055	1	A	1611	P,A	1393	P,A	HCK

Affymetrix Id	Locuslink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flaga	Normalized	Flap	
208055 s at	26091	1	P	1.551	P	1.726	P	IHERC4
$208112 \times$ al	10938	1	P	1.504	P	1.679	P	EHDI
208116 s at	4121	1	A	1.661	P.M,A	1.889	P	MANIAI
208117 s at	81887	1	P	1.630	\boldsymbol{P}	1.524	P	FI」12525
$208178 \times$ at	7204	1	P.M.A	1.454	P	1.645	P	TRIO
208186 s at	3991	1	P.M.A	1.847	P	1.823	$\underline{\square}$	LIPE
208309 s at	10892	1	P	1.875	P	2.052	P	MAI.TI
208359 s at	3761	1	P	0.497	P, A	0.569	P, A	KCNJ4
208370 s at	1827	1	P	1.427	P	1.610	P	DSCR1
208433 s al	7804	1	P	0.616	P	0.698	P	L.RP8
208436 s at	3665	1	P	1.157	P	1.636	P	1RF7
208456 s at	22800	I	P	1.631	P	1.682	P	RRAS2
208576 s at	8.358	1	A	1.196	P \wedge	1.569	P.M.A	HISTIH3B
208581 x at	4501	1	P	1.869	P	2.465	P	MTIX
208621 _s_at	7430	1	P	1.501	P	1.603	P	VIl. 2
208622 s at	7430	1	P	1.530	P	1.643	P	VIL. 2
208633 s at	23499	1	P	1.191	P	1.635	P	MACFI
$208637 \times$ at	87	1	P	1.511	P	1.704	P	ACTN 1
208650 s at	934	1	P, M, A	3.016	P	4.522	P	CD24
208651 x at	934	1	P.A	2.132	P	2.999	P.A	CD24
208693 s at	2617	1	P	0.558	P	0.562	P	GARS
208711_s_at	595	1	M, A	1.445	M, A	1.972	P	CCND1
208712 at	595	1	P.A	1.765	P	2.199	P	CCNDI
208729 x al	3106	I	P	1.113	P	1.955	P	HLA-B
208740 al	10284	I	P	1.352	P	1.635	P	SAP18
208779 x al	780	I	p	1.342	P	1.583	P	DDR!
208782 al	11167	1	P	1.714	P	3.062	P	FSTI.1
208789 at	22939	!	P	2.200	P	2.707	P	PTRF
208790 s at	22939	1	P	1.590	P	2.630	P	PTRF
208791 at	1191	1	P	1.628	P	2.677	P	CLU
208792 s at	1191	1	P	1.559	P	2.485	P	CLU
208813 at	2805	1	P	0.617	P	0.619	P	GOTI
208866_at	1452	1	P	1.301	P	1.633	P	CSNKIAI
208872 s at	7905	I	P	1.521	P	1.377	P	DP1
208891 at	1848	I	P	0.518	P	0.753	P	DUSP6
208892 s at	1848	I	P	0.522	P	0.720	P	DUSP6
208893 s at	1848	I	P	0.391	P	0.656	P	DUSP6
208898 at	51382	1	P	2.051	P	1.758	P	ATP6V1D
208899 x at	51382	1	P	2.028	P	1.817	P	ATP6VID
208933 s at	55127	1	P	1.257	P	1.724	P	FlJ10359
208934 s at	3964	1	P	1.900	P	2.448	P	LGAIS8:
208935 s at	3964	1	P	1.185	P	1.857	P	LGALS8
208936 x_at	3964	1	P	1.626	P	1.911	P	I.CiAI.S8
208937_s_at	3397	1	P	4.800	P	2.532	P	IDI
208944 at	7048	1	P	1.585	P	2.663	P	TGFBR2
208949 s at	3958	I	P	1.459	P	1.628	P	L.GAL.S3
208950 s al	501	I	P	0.631	P	0.722	P	Al.DI17AI
208951_at	501	I	P	0.658	P	0.744	P	AL.Dil7Al
208989 s_at	22992	I	P.M	1.250	P	1.508	P	F3X1.11
208991 at		1	P	1.704	P	2.387	P	STAT3

$\begin{gathered} \text { Affymetrix } \\ \mathbf{l d} \mathbf{d} \end{gathered}$	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
208992_s_at	6774	1	P,A	1536	P	2315	P	STAT3
208997_s_at	7351	1	P	1438	P	1589	P	UCP2
208998_at	7351	1	P	1524	P	1742	P	UCP2
209011_at	7204	1	P	1414	P	1536	P	TRIO
209015_s_at	10049	1	P	1549	P	1491	P	DNAJB6
209017_s_at	9361	1	P	0646	P	0691	P	PRSS15
209025_s_at	10492	1	P	1379	P	1517	P	SYNCRIP
209040_s_at	5696	1	M,A	2224	P	3927	P	PSMB8
209083_at	11151	1	A	2468	P	2216	P	COROIA
209087_x_at	4162	1	P,A	2137	P	1898	P	MCAM
209098_s_at	182	1	P	0588	P	0621	P	JAGI
209099_x_at	182	1	P	0597	P	0626	P	JAGI
209102_s_at	26959	1	P	0614	P	0816	P	HBP1
209124_at	4615	1	P	1413	P	1580	P	MYD88
209131_s_at	8773	1	M,A	1433	P, A	1605	P,A	SNAP23
209140_x_at	3106	1	P	1234	P	1900	P	HLA-B
209155_s_at	22978	1	P	1453	P	1604	P	NT5C2
209166_s_at	4125	1	P	1200	P	1530	P	MAN2B1
209173_at	10551	1	P	0598	A	0549	A	AGR2
209188_x_at	1810	1	P	1536	P	1358	P	DR1
209189_at	2353	1	P	1346	P	2745	P	FOS
209191_at	84617	1	P	1599	P	1610	P	MGC4083
209193_at	5292	1	P	1789	P	1942	P	PIM1
209209_s_at	10979	1	P	1811	P	1712	P	PLEKHC1
209210_s_at	10979	1	P	1619	P	1599	P	PLEKHC1
209211_at	688	1	P	1213	P	1620	P	KLF5
209212_s_at	688	1	P	1017	P	1568	P	KLF5
209220_at	2719	1	P	0550	P,A	0718	P	GPC3
209260_at	2810	1	A	1464	P,A	2035	P, M	SFN
209267_s_at	64116	1	P,M	2978	P	3693	P	SLC39A8
209268_at	11311	1	P	1446	P	1540	P	VPS45A
209276_s_at	2745	1	P, M	1660	P	1565	P	GLRX
209277_at	7980	1	P	2483	P	2593	P	TFPI2
209278_s_at	7980	1	P	2378	P	3167	P	TFPI2
209288_s_at	10602	1	P	1232	P	1644	P	CDC42EP3
209291_at	3400	1	P	4766	P	2901	P	ID4
209292 at	3400	1	P	2515	P	1942	P	ID4
209293_x_at	3400	1	P	4372	P	2725	P	ID4
209304_x_at	4616	1	A	1886	P	1887	P,A	GADD45B
209305 s_at	4616	1	P,A	1756	P	1656	P	GADD45B
209340_at	6675	1	P	2091	P	2136	P	UAPI
209348_s_at	4094	1	P,A	1513	P,A	1958	P,M,A	MAF
209356_x_at	30008	1	P	2008	P	1941	P	EFEMP2
209366_x_at	1528	1	P	1467	P	1640	P	CYB5
209372_x_at	7280	1	P	1619	P	1625	P	TUBB
209383_at	1649	1	P	0573	P,M	0591	P,M,A	DDIT3
209407_s_at	10522	1	P	0491	P,A	0710	P	DEAF1
209420_s_at	6609	1	P,M	1848	P	1874	P	SMPDI
209427 at	6525	1	P,A	1556	P	1661	P	SMTN
209432_s_at	10488	1	P	1598	P	1600	P	CREB3

Affymeirix Id	Locuslink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flaga	Normalized	Flags	
209453 at	6548	1	A	1.660	P	1.727	P	SLC9A1
209457 at	1847	1	P	2.416	P	3.400	P	DUSP5
209459 s al	57416	1	A	4.488	P	5.435	P	ABAT
209478 at	201254	1	P	1.681	P	1.429	P	STRA13
209487 at	11030	1	A	2.105	P	2.085	P	RHPMS
209506 s al	7025	1	P	0.641	P	0.777	P	NR2F1
209536_s_at	10916	1	P	1.810	P	2.176	P	MAGED2
209543 s al	947	1	P	0.631	P	0.681	P	CD34
209560 s at	8788	1	A	1.323	A	1.636	P	DLKI
209561 at	7059	1	P	1.170	P	1.595	P	TliBS3
209574 s at	753	1	P	1.409	P	1.547	P	Cl8orf
209598 at	10687	I	P	1.568	P	1.861	P	PNMA2
209620 s_al	22	1	P	0.620	P	0.797	P	hABC7
209631 s al		1	A	1.990	P. A	1.896	P.M.A	
209635 at	1174	1	P	1.474	P	2.123	P	APISI
209636 at	4791	1	P	1.876	P	2.559	P	NFKB2
209651 at	7041	1	P	1.739	P	1.698	P	TGFB111
209653 as	3840	1	P	1.709	P	1.728	P	KPNA4
209656 s at	83604	1	1	1.613	P	1.497	P	TM4SF10
209666 s_at	1147	1	P	1.541	P	1.478	P	CHUK
209682 at	868	1	P	1.543	P	1.702	P	CBLB
209710_{-}at	84724	1	p	2.005	P	0.954	P	GATA2
209715 at	23468	1	P	1.726	P	1.956	P	CBX5
209716 at	1435	1	P.M.A	1.173	\boldsymbol{P}	1.713	P	CSFI
209758 s al	8076	1	P	0.841	P	1.766	P	MFAPS
209759 s_at	1632	1	P	0.616	P	0.602	P	DCl
$209771 \times$ at	934	1	P	2.774	P	4.169	P	CI)24
209772 s_ at	934	1	A	1.873	P. A	2.306	P	CD24
209773 s_at	6241	1	P	1.619	P	1.253	P	RRM2: R2
209788_s_at	51752	I	P	1.218	P	1.550	P	ARTS-1
209803_s_al	7262	1	P.M	5.997	P	6.779	p	PHLDA2
209818 s at	22927	1	P	1.844	P	1.608	P	HABP4
209835 x al	960	I	A	1.667	P,M	2.588	P	CD44
209846 s_at	11118	1	P, A	0.860	P.A	1.574	P	BTN3A2
209852 x al	10197	1	P	1.647	P	1.621	P	PSME3
209853 s at	10197	1	P	1.606	P	1.606	P	PSME3
209875 s at	66\%	1	A	1.714	P.A	2.386	P.A	SPP1
209894 at	3953	1	P.A	1.227	P	2.008	P, M	LEPR
209897 s at	9353	1	P	1.021	P	1.533	P	SL.IT2
209921 at	23657	1	P	0.513	P	0.703	P	SLC7Al!
209960 at	3082	1	P	0.636	P	0.745	P	HIGF
209967 s at	1390	1	P	0.709	P	0.619	P	CREM
209969 s at	6772	1	P	1.796	P	3.525	P	STATI
210008 s at	6183	1	P	1.762	P	1.545	P	MRPS 12
210017 at	10892	1	P	1.764	P	1.728	P	MAL.TI
$210018 \times$ at	10892	1	P	1.692	P	1.614	p	A1ALTI
210026 s at	29775	1	P.A	1.518	P	1.440	P	CARDIO
210050 at	7167	1	P.M	1.510	P	1.275	P	TPl1
210057 al	23049	1	P	1.206	P	1.702	P	SMGI
210074 at	1515	1	P	1.176	P	1.784	1	CTSL 2

$\begin{gathered} \text { Affymetrıx } \\ \text { Id } \end{gathered}$	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
210095_s_at	3486	1	P	1570	P	1793	P	IGFBP3
210100_s_at	20	1	P,M	0658	A	0871	P,A	ABCA2
210102_at	4013	1	P	1014	P	1527	P	LOH11CR2A,
210117_at	6674	1	P	1783	P	1224	P	SPAG1
210145_at	5321	1	M, A	1545	P,A	1693	P	PLA2G4A
210148_at	10114	1	P,A	1980	P	1492	P	HIPK3
210163_at	6373	1	A	1927	A	2936	P	CXCL11
210171_s_at	1390	1	P	0598	P,M	0577	P,A	CREM
210220_at	2535	1	P	0587	P	0703	P	FZD2
210221_at	1136	1	P,A	1817	P	1234	P,A	CHRNA3
210222_s_at	6252	1	P,A	1365	P	1503	P	RTN1
210233_at	3556	1	P,A	2966	P	1892	A	IL1RAP
210240_s_at	1032	1	P	1578	P	1086	P	CDKN2D
210298_x_at	2273	1	P	1406	P	2671	P	FHL1
210299_s_at	2273	1	P	1698	P	3269	P	FHLI
210336_x_at	7593	1	P	0643	A	0686	P,A	ZNF42
210358 x at	84724	1	A	1895	P,A	1144	P,M,A	GATA2
210385_s_at	51752	1	P	1205	P	1669	P	ARTS-1
210396_s_at		1	P	1666	P	1321	P	
210410_s_at	4439	1	P	0645	P,A	0708	P	MSH5
210415_s_at	4957	1	P,M	1612	P	1356	P	ODF2
210457_x_at	3159	1	P	1506	P	1298	P	HMGA1
210463_x_at	55621	1	P	1560	P	1325	P	FLJ20244
210480 s at		1	P,A	1682	P	1970	P	MYO6
210512_s_at	7422	1	P	0617	P	0543	P	VEGF
210514_x_at	3135	1	P	1020	P	1513	P	HLA-G
210538_s_at	330	1	P,A	10016	P	9540	P	BIRC3
210560_at	2637	1	P,M	3388	P	2070	P	GBX2
210570_x_at	5601	1	P	1524	P	1193	P	MAPK9
210592_s_at		1	P	1817	P	2819	P	SAT, SSAT
210605 s_at	4240	1	P	1403	P	2404	P	MFGE8
210612_s_at	8871	1	P,A	1267	P, A	1900	P	SYNJ2
210715_s_at	10653	1	P	1934	P	3224	P	SPINT2
210732_s_at	3964	1	P	1928	P	2242	P	LGALS8
210756_s_at		1	P	1220	P	1630	P	NOTCH2
210793_s_at	4928	1	P	1813	P	1575	P	NUP98
210797_s_at	8638	1	P	1521	P	3982	P	OASL
210829_s_at		1	P	1629	P	2203	P	SSBP2
210845_s_at	5329	1	P	2671	P	3584	P	PLAUR,
210869_s_at	4162	1	P,A	2460	P	2019	P	MCAM
210876_at	303	1	P,A	1724	P	1739	P	ANXA2P1
210926_at		1	P	1447	P	1531	P,M	FKSG30
210935_s_at		1	P	1602	P	1480	P	WDR1
210976_s_at	5213	1	P	0655	P	0848	P	PFKM
210986_s_at	7168	1	P	3399	P	4636	P	TPM1
210987_x_at	7168	1	P	3168	P	4265	P	TPM1
211003_x_at	7052	1	A	9192	M A	13843	P A	TGM2
211016_x_at	3308	1	P	1516	P	1391	P	HSPA4
211031_s_at	7461	1	P,A	1320	P	1654	P	CYLN2,
211043_s_at	1212	1	P	1584	P	1564	P	CLTB

$\begin{aligned} & \text { Affymetrix } \\ & \text { Id } \end{aligned}$	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
211061_s_at	4247	1	P	1858	P	1770	P	MGAT2
211091_s_at	4771	1	P,A	1508	P	1496	P	NF2
211094_s_at	4763	1	P	0997	P	1583	P	NF1
211126_s_at	1466	1	P	2302	P	2088	P	CSRP2
211160_x_at	87	1	P,A	1403	P,A	1566	P	ACTNI
211162_x_at	6319	1	P	1573	P	1331	P	SCD
211340_s_at	4162	1	P,M,A	2877	P	2346	P	MCAM
211352_s_at	8202	1	A	1204	P,A	1526	P	CAGH16
211403_x_at	51481	1	P	1991	P	2939	P	VCX2
211456_x_at		1	P,A	1744	P	2486	P	
211527_x_at	7422	1	P	0660	P	0657	P,A	VEGFA
211528_x_at	3135	1	P	1086	P	1827	P	HLA-G
211529_x_at	3135	1	P	1142	P	1871	P	HLA-G
211530_x_at	3135	1	P	1112	P	1705	P	HLA-G
211538_s_at	3303	1	P	1912	P	2114	P	HSPAIA
211564 s at	8572	1	P	1343	P	1633	P	PDLIM
211573_x_at	7052	1	A	1795	P	2031	P	TGM2
211600_at		1	P	0938	P	0534	P	PTPRO
211651_s_at	3912	1	A	1608	P,A	2073	P	LAMB1
211668_s_at	5328	1	P,M	2528	P	5235	P	PLAU, UPA
211671_s_at	2908	1	P	1534	P	1466	P	NR3C1
211725_s_at		1	P	1700	P	1575	P	
211792_s_at	1031	1	P	1617	P	1458	P	CDKN2C
211799_x_at	3107	1	P	0962	P	1664	P	HLA-C
211864_s_at	26509	1	A	3119	P,M	6485	P	FER1L3
211911 x at	3106	1	P	1121	P	2071	P	HLA-B
211924_s_at	5329	1	P	2665	P	3589	P	PLAUR
211926_s_at	4627	1	P	1555	P	1717	P	MYH9
211928_at	1778	1	P	1192	P	1504	P	DNCH1
211950_at	23352	1	P	1493	P	1769	P	RBAF600
211962_s_at	677	1	P	1239	P	1834	P	2FP36L1
211982_x_at	23214	1	P	1607	P	1516	P	XPO6
211986_at	195	1	P	1915	P	2401	P	MGC5395
211992_at	65125	1	P	1282	P	1535	P	PRKWNK1
211994_at		1	P	1469	P	1516	P	PRKWNK1
212010_s_at	55573	1	P	1436	P	1524	P	H41
212012_at		1	A	1280	P,A	1541	P,A	D2S448
212014_x_at	960	1	P,M	1549	P,M,A	2119	P	CD44
212022_s_at		1	P	1619	P	1656	P	MKI67
212023_s_at		1	P	1549	P	1521	P	MK167
212032_s_at	53635	1	P	0611	P	0802	P	PTOV1
212061_at	23350	1	P	0477	P	0566	P	SR140
212063_at	960	1	A	1971	P,A	3607	P	CD44
212069_s_at	23121	1	P,M,A	1440	P	1544	P	KIAA0515
212076_at		1	P	1130	P	1559	P	MLL
212092_at	23089	1	P	2584	P	3170	P	PEG10
212094_at	23089	1	P	2664	P	2873	P	PEG10
212097_at	857	1	P	1353	P	1633	P	CAV1
212099_at		1	P	2434	P	1716	P	RHOB
212125_at	5905	1	P	1450	P	1624	P	RANGAPI

$\begin{gathered} \text { Aftymetrix } \\ \text { Id } \end{gathered}$	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flag.	
212126 at		1	P	1.405	P	1.502	P	
212127 at	5905	1	P	1.589	P	1.903	P	RANGAPI
212135_s_at	493	1	P	1.354	P	1.919	P	ATP2B4
212136 at	493	I	P	1.290	P	1.860	P	ATP2B4
212143_s_al	3486	1	P	1.726	P	2.072	P	IGFBP3
212154_at	6383	1	P.M	1.757	P	1.761	P	SDC2
212158_at	6383	1	P.M	1.715	P	1.586	P	SDC2
212162 at	57498	1	P	1.333	P	1.513	P	KIDINS220
$212171 \times$ a	7422	1	P	0.626	P	0.637	P	VEGF
212176 at	25957	1	P	0.623	P	0.685	P	C60rfll
212177_at		1	P	0.492	P	0.598	P	C6orfl11
212179_at	25957	1	P	0.579	P	0.699	P	C6orfl1
212185 \times _at	4502	1	P	1.963	P	2.823	P	MT2A
212186 at	31	1	P	1.565	P	1.734	P	ACACA
212190 at	5270	1	P	1.880	P	1.499	P	SERPINI:2
212192_al	115207	1	A	4.360	P.M	3.016	A	KCTD12
212196_al		1	P	1.385	P	1.513	P	IL6ST
212225 at	10209	1	P	0.558	A	0.821	P.A	SUII
212249 at	5295	1	P.M.A	1.465	P	1.554	P	PIK3R1
212253 x al	667	1	A	1.617	M.A	2.087	P, A	BPAGI
212254 s_at	667	1	P	1.535	P	2.146	P	BPAGI
212259 s at	57326	1	P	0.521	P	0.701	P	PBXIPI
212268_at	1992	1	A	1.968	M, A	1.753	P.M.A	SERPINB1
212276 at	23175	1	P	1.346	P	1.536	P	LPIN1
212290_a		1	P	0.609	P	0.796	P	SLC7AI
212294_at	55970	1	P	1.322	P	1.740	P	GNG12
212295_s_at		1	P	0.634	P	0.686	P	SLC7AI
212307 s at	8473	1	P	0.636	P	0.753	P	OGT
212312 al	598	1	P	1.588	P	1.623	P	BCL2L1
212325 a	22998	1	M, A	1.330	P.A	1.656	P,A	KIAA1102
212333 at	25940	1	P	1.598	P	1.443	P	DKFZP564F0522
212364 as	4430	1	P.A	1.678	P	1.866	P	MYOIB
212384_as	7919	1	P	0.655	P.A	0.774	P	BATI
212387 at		1	P	0.648	P	0.771	P	TCF4
212412 at		1	p	1.489	P	1.652	P	LIM
212463 at		1	P	1.189	P	1.911	P	CD59
212470 at	9043	1	P	1.567	P	1.433	P	SPAG9
212473 s at		1	P	1.365	P	1.964	P	
212501_ at	1051	1	P	0.642	P	0.699	P	CEBPB
212511 at		1	P	1.594	P	1.461	P	PICALM
212527 at	27351	1	P	1.625	P	1.474	P	D15Wsu75e
212538_at	23348	1	P	1.225	P	1.563	P	DOCK9
212548 s at	23045	1	P	1.504	P	1.674	P	K1AA0826
212565_at	23012	1	P. A	1.109	A	1.518	P. \wedge	STK38L
$212574 \times$ at	91304	1	P	0.688	P	0.628	P	R32184_3
212590_at	22800	1	P	1.672	P	1.611	P	RRAS2
212593_s_a	27250	1	P	0.643	P	0.740	P	PDCD4
212599_at	26053	1	P	1.378	P	1.623	P	AUTS2
212601 at	23140	1	P.M	1.362	P	1.655	P	ZZEFI
212624_5_at	1123	1	P	1.516	P	1.329	P	CINI

AffymetrixId	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
212636_at		1	P	1277	P	1581	P	QKI, QK3
212638_s_at	11059	1	P	1627	P	1605	P	WWP1
212641_at	3097	1	P	1265	P	1550	P	HIVEP2
212646_at	23180	1	A	4120	P	4448	P	RAFTLIN
212654_at	7169	1	P,A	1842	P	2106	P	TPM2
212662_at	5817	1	P	1508	P	1483	P	PVR
212665_at	25976	1	P	1805	P	1892	P	TIPARP
212693 at	23195	1	P	1266	P	1530	P	MDN1
212706_at	10156	1	P	1617	P	1485	P	RASA4
212708_at		1	P	0565	P	0686	P	CASC3
212714_at	113251	1	P	1507	P	1426	P	LOC113251
212722_s_at	23210	1	P	1820	P	1535	P	PTDSR
212723_at	23210	1	P	1627	P	1448	P	PTDSR
212748_at	57591	1	P	1377	P	1667	P	MKLI
212775 at	23363	1	P	1634	P	1636	P	KIAA0657
212776_s_at	23363	1	P	1585	P	1510	P	KIAA0657
212780_at	6654	1	P	1525	P	1345	P	SOS 1
212786_at	23274	1	P,A	1343	P	1652	P	KIAA0350
212812_at		1	P	1246	P	1507	P	
212815_at	10973	1	P	1684	P	1789	P	HELICI
212816_s_at	875	1	P	0504	P	0503	P	CBS
212828_at		1	P	1378	P	1755	P	SYNJ2
212829_at		1	P	1501	P	1689	P	
212845_at	23034	1	P	1576	P	1551	P	SAMD4
212848_s_at	84909	1	A	2385	P	2786	P	C9orf3
212859_x_at		1	P	1746	P	2152	P	MT2A
212884_x_at	348	1	P	1242	P	1771	P	APOE
212923_s_at		1	P	1451	P	1617	P	C6orf145
212944_at		1	P	1201	P	2249	P	MRPS6
212971_at	833	1	P	0567	P	0575	P	CARS
212980_at	23021	1	P	0627	P,A	0663	P, A	AHSA2
212990_at	8867	1	P	1627	P	1470	P	SYNJ1
213030_s_at	5362	1	P	0474	P	0501	P	PLXNA2
213069_at		1	M A	1297	P,A	1624	P	HEG
213096_at	9911	1	A	1397	P,A	1556	P,M	HUCEP11
213107_at	23043	1	P	1449	P	1907	P	TNIK
213115_at	115201	1	P	1718	P	1659	P	COL4A6
213118_at	23074	1	P	1559	P	1350	P	KIAA070I
213135_at		1	P	1653	P	2296	P	TIAM1
213164_at		1	P	1183	P	2589	P	MRPS6
213167_s_at		1	P,A	1111	P	1715	P	MRPS6
213191_at	148022	1	P,M,A	1583	P	1704	P	TRIF
213194_at	6091	1	P	1514	P	1827	P	ROBO1
213199_at	26005	1	P,M	1333	P	1579	P	DKFZP586P0123
213220_at	27250	1	P	0657	P	0652	P	LOC92482
213258_at		1	P	0612	P	0846	P,M	TFPI
213274_s_at	1508	1	P	1152	P	2165	P	CTSB
213275_x_at	1508	1	P	1096	P	2138	P	CTSB
213281_at	3725	1	P	2050	P	3041	P	JUN
213283_s_at	6297	1	P	0603	P	0768	P	SALL2

$\begin{aligned} & \text { Affynetriy } \\ & \text { Id } \end{aligned}$	LocusLink	Day 0		Day 3		Day 7		Cummun Namit
		Normalized	Flags	Normalized	Flags	Normalized	Flaps	
213313 at	23637	I	P	0.647	P	0.758	P	GPR2I
213338 al	25907	1	A	1.660	P	1.726	P	RIS 1
213361	23424	I	P	1.263	P	1.558	p	TDRD7
$213368 \times$ at	8541	1	P.A	1.530	P	1.350	P	PPFIA3
213373 s at	841	1	P	0.728	P	0.651	P	CASP8
213411 at		I	P	0.536	M, A	0.617	P_A	ADAM22
213427 at	10799	1	P	1.669	P	1.374	P	RPP440
213438 at		I	P	0.609	P	1.038	P	
213449 at	10940	1	P	1.453	P	1.676	P,M, 1	POP 1
213469 at		I	P	1.283	P	1.604	P	FLJ 12377
213506 at	2150	1	A	13.406	P.M,A	28.093	P	F2RLI
213558 at	27445	1	P	2.389	P	2.403	P	PCLO
213568 at	116039	1	P	1.810	P	1.926	P	OSR2
213572 s at	1992	1	P.A	1.964	P	2.107	P	SERPINB1
213591 at		1	P	0.572	1	0.606	P	Al.DII7AI
213618 at	116984	I	P	1.675	P	1.695	P	CENTDI
213622 at	1298	1	P	1.566	P	1.394	P	COL9A2
$213629 \times$ at		1	P	1.950	P	1.916	P	MTIF
213650 at	23015	1	P	0.604	P	0.660	P	GOLGIN-67
213671_s_at	4141	1	P	0.478	P	0.526	P	MARS
213672 at	4141	1	P.A	0.828	P. A	0.636	P.A	MARS
213675 at		1	P. A	1.230	P	1.675	P	
213698 at		1	P	0.629	P	0.773	P	MGC14276
213712 at		I	M, A	1.294	P. A	1.894	P	C.7NNAI.I
213716 s at	6398	I	M.A	3.568	P	3.135	P	SECTMI
213721 al	6657	1	P	0.528	P	0.543	P	SOX2
213722 at	6657	1	P.M	0.604	A	0.529	A	SOX2
213741 s at	3836	1	P	1.609	P	1.536	P	KPNAI
213764 s at		1	P	0.769	P	1.749	P	MFAPS
213765 at		I	P	0.941	P	1.879	P	MFAPS
213793 s at	9456	I	P	1.893	P	2.020	P	[1OMER]
213804 at		1	P	0.627	M, A	0.641	P,M,A	INPP53
213832 at		1	P	1.592	P	1.948	P	
$213859 \times$ at	8467	I	P	1.576	P	1.514	P	SMARCAS
213899 at	10988	1	P	1.548	P	1.359	P	METAP2
213906 at	4603	1	P	1.962	P	2.273	P	MYBLI
213924_at	65258	I	P	0.649	P	0.847	P	MPPEI
213926_s al		1	P	1.591	P	1.480	P	IIRB
213931 at	3398	1	M, 1	8.131	P	2.690	P. A	ID2
213956 at	9857	1	P	1.274	P	1.537	P	CAP350
213984 at	23244	1	P	1.526	P	1.120	P	KIAA0648
213988 s at	6303	1	P, A	1.661	P.M.A	2.970	P	SAT
213996 at	29799	1	P	0.356	P	0.487	P	YPI:I. 1
213998 s at	10521	1	\mathbf{P}	0.513	P	0.735	P	DDX17
214022 s at	5805	1	\boldsymbol{P}	1.113	P	1.831	P	IF[TM
$214023 \times$ at	7280	1	P	1.816	P	1.784	P	MGC8685
214030 at	131544	1	P	1.311	P	1.529	P	MINA
214053 at		1	\boldsymbol{P}	0.521	P	0.641	P	
214071 at	65258	1	P	0.594	P	0.726	P	GNAI.
$214077 \times$ at	4213	1	P	0.646	P	0.722	P	ME1S4

$\begin{aligned} & \text { Affymetrix } \\ & \text { Id } \end{aligned}$	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalızed	Flags	Normalized	Flags	Normalized	Flags	
214079_at		1	P,M,A	11801	P	8179	P	DHRS2
214091_s_at	2878	1	P	3385	P	3445	P	GPX3
214097_at	6227	1	P	1463	P	1702	P	RPS21
214155_s_at	113251	1	P	1844	P	1271	P	LOC113251
214175_x_at	8572	1	A	1411	P,A	1823	P,M	PDLIM4
214176_s_at	57326	1	P,A	0629	P,A	0934	P,A	PBXIP1
214196_s_at	1200	1	P	0655	P	0818	P	CLN2
214212_x_at	10979	1	P	1405	P	1526	P	PLEKHC1
214247_s_at	10530	1	M,A	2019	P	3501	P	DKK3
214368_at	10235	1	M,A	1491	M,A	2067	P, A	RASGRP2
214414_x_at	3039	1	A	2589	P	2073	P,M,A	HBA2
214437_s_at	6472	1	P	0694	P	0660	P	SHMT2
214505_s_at	2273	1	P	1370	P	2323	P	FHL1
214578_s at	6093	1	P	1552	P	1466	P	ROCKI
214657_s_at		1	P	0510	P,A	0739	P,A	
214690_at	9014	1	P	0649	P	0834	P	TAF1B
214696_at	84981	1	P,A	1945	P	1641	P	MGC14376
214697_s_at	9991	1	P	1733	P	1499	P	ROD1
214722 at		1	P	1168	P	1758	P	LOC376745
214752_x_at	2316	1	P	1315	P	1524	P	FLNA
214764_at		1	P,A	0594	P,A	0784	P,A	KIAA0507
214784_x_at	23214	1	P	1589	P	1715	P	XPO6
214909_s_at	23564	1	P	1500	P	1267	P	DDAH2
214924_s_at	22906	1	P	1243	P	1712	P	OIP106
214930_at	26050	1	P	1506	P	1615	P	SLITRK5
214954_at	26032	1	P	2460	P	2485	P	KIAA0527
215014_at		1	A	3565	P	5117	P	
215016_x_at	667	1	P	1415	P	1993	P	BPAG1
215047_at	25893	1	P	1553	P	1332	P	DKFZp434C091
215136_s_at	11340	1	P	0647	P	0702	P	EXOSC8
215222_x_at	23499	1	P	1272	P	1528	P	MACFI
215313_x_at	3105	1	P	1041	P	1550	P	HLA-A
215446_s_at	114990	1	P,M A	1575	P	1510	P	LOX
215485_s_at	3383	1	P,A	1287	P	1814	P	ICAMI
215489_x_at	9454	1	P	1539	P	2194	P	HOMER3
215495_s_at	23034	1	P,A	2971	P	2475	P	SAMD4
215498_s_at	5606	1	P	1415	P	1566	P	MAP2K3
215499_at	5606	1	P	1406	P	1788	P	MAP2K3
215506_s_at	9077	1	P,A	1211	P,M,A	1670	P	ARHI, NOEY2
215629_s_at	79469	1	P	1822	P	1288	P	BCMSUNL
215643 at		1	P	0491	P	0541	P	SEMA3D
215684_s_at	84164	1	P	1514	P	1603	P	ASC1p100
215695_s_at	8908	1	P	1396	P,M	1571	P,A	GYG2
215706_x_at	7791	1	P	2157	P	2230	P	ZYX
215719_x_at	355	1	P	1784	P,A	2585	P	TNFRSF6
215780_s_at		1	P	0702	P	0633	P	
215783_s_at		1	P	1356	P	1774	P	ALPL
216041_x_at	2896	1	P	0660	P	0911	P	GRN
216060_s_at	23002	1	P A	1451	P	1591	P	DAAMI
216061_x_at	5155	1	P, A	1583	P	1763	P	PDGFB

Affymetrix ld	lacuslint	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
216064_s_at	175	1	P	0.550	P	0.623	P	AGA
$216230 \mathrm{x}_{\text {at }}$	6609	1	$\boldsymbol{P}, \mathbf{A}$	1.850	P	1.693	P	SMPD 1
216231 s_at	567	1	P	1.334	P	1.683	P	B2M
216247 at	6224	1	P	0.578	P	0.724	P	RPS20
$216252 \times$ at	355	1	A	1.664	P.A	1.814	P. A	TNFRSF6
216264_s at	3913	1	P	0.523	P	0.737	P	LAMB2
216268 s_at	182	1	p	0.614	P	0.649	P	JAGI
216338 s_at	25844	1	I	0.648	P	0.790	P	KLIP1
$216379 \times$ at	934	I	P	2.582	P	3.826	P	NaGLTI
216620 s at	9639	1	P	1.237	P	1.552	P	ARHGEFIO
216804 s at		J	P	1.879	P	1.932	P	LIM
$216870 \times$ at	8847	1	P	1.869	P	1.430	P	DLEU2
$216975 \times$ al	4861	1	\wedge	2.074	P.M	1.853	P,M,A	NPASI
216983 s at		1	P.A	0.656	P.A	0.705	P.A	ZNF224
217028 at	7852	1	A	2.416	\boldsymbol{P}	2.644	P, A	CXCR4
217122 s at	9906	1	P	0.593	P	0.750	P	MMP23B
217124 al	23288	1	P	1.566	P	1.029	P	KIAA 1023
$217165 \times$ at		1	A	1.862	P	1.965	P	MTIF
217168_s a!	9709	1	P	0.629	P	0.649	P	HERPUDI
217234 s_al	7430	1	P	1.425	P	1.547	P	VIL2
217270 s at		1	P.A	0.648	P, A	0.701	M.A	
217289 s at	2542	1	P	0.534	P	0.590	P	(i61${ }^{2}$
217383 at		1	P.A	1.379	P. A	1.548	P	P'iKI
217427 s at	7290	1	P	0.651	P	0.858	P	HIRA
$217436 x_{\text {al }}$		1	P	1.076	P	1.678	P	HLA-J
$217456 \times \mathrm{al}$	3133	1	P	1.218	P	1.624	P	HLA-E
217478 s gt	3108	1	P	1.367	P	1.611	P	HLA-DMA
217494 s_81	11191	I	A	1.501	P.A	1.255	P.A	PTENP1
217678 _at		1	P	0.521	P	0.666	P	SLC]AII
217682 at		1	P	1.565	P	1.419	P	PRO0149
217728 at	6277	1	^	2.135	P	5.558	P	SI00A6
217733 s at	9168	1	P	1.387	P	1.675	P	TMSB10
217744 s at	64065	1	P	1.460	P	1.738	P	PERP
217755 at	51155	I	P	1.683	P	1.535	P	INI
217761 at	55256	1	P	1.741	P	1.408	P	SIPL
217792 at	27131	I	P	0.640	P	0.879	P	SNX5
217809_at	28969	1	P	1.530	p	1.731	P	BZW2
$217835 \times$ gt	55969	1	P	1.597	P	1.412	P	C20orf24
217841 s at	51400	1	P	1.671	P	1.978	P	PME-1
217853 at	64759	1	A	1.601	P	3.073	P	TENS 1
217867 x al	25825	1	P	0.625	P	0.684	P	BACE2
217890 s al	55742	1	A	2.583	P	2.377	P	PARVA
217892 s_at	51474	I	P	1.791	P	2.131	P	EPLIN
217897 at	53826	1	P.A	2.284	P	3.047	P	fXYD6
217904 s at	23621	1	P	1.610	P	1.824	P	BACE:
217915 s at	51187	1	P	0.653	P	0.659	P	Clsorf 5
217923 at	23578	1	P	1.517	P	1.418	P	PEF
217924 at	64771	1	P	1.512	P	1.592	P	C6orfl06
217977 at	51734	I	P	1.540	P	1.326	P	SEPXI
217985 s al	11177	1	P	1.943	P	1.717	P	BAZIA

$\begin{aligned} & \text { Affymetris } \\ & \text { Id } \end{aligned}$	LocusLink	Day 0		Dav 3		Day 7		Common Name
		Normalized	Flag	Normalized	Flags	Normalized	Flags	
217986 s_at	11177	1	P	1.718	P	1.513	P	BAZ1A
217989 at	51170	1	P	0.633	P	0.705	P	DHRS8
217995 al	58.472	I	A	1.242	A	1.761	P	SQRDL
217996 at	22822	I	P	2.021	P	2.062	P	PHILDAI
217997 at	22822	1	P	1.856	P	1.792	P	PHLDAI
218012 a	64061	1	P	1.544	P	1.413	P	SE20-4
218022 at	51231	1	P	0.624	P. A	0.760	P	VRK3
218029 at	79567	1	A	1.501	P,M,A	1.543	P, A	FIJ13725
218035_s at	54502	1	\wedge	1.961	P.A	3.047	P	FLJ20273
218060 s at	79650	1	$\mathrm{P}_{\text {, }} \mathrm{A}$	1.581	P	1.536	P	FLJI3154
218076 s al	55114	1	P	1.404	P	1.517	P	ARIIGAP17
218091 at	3267	1	P	1.426	p	1.539	P	HRB
218092 s_ut	3267	1	P	1.642	P	1.496	P	HRB
218113 at	23670	1	A	1.791	P	1.937	P.A	TMEM2
218129 s al	4801	1	P	1.526	P	1.462	P	NFYB
218145 at	57761	1	P	0.310	P	0.290	P	TR183
218181 s at	54912	1	P	1.464	P	1.565	P	MAP4K4
218199 s at	65083	1	P. A	1.833	P	1.962	P	NO! 6
218217_at	59342	1	P	0.591	P	0.698	P	SCPI:P1
218273 s at	54704	1	P	1.236	P	1.661	P	PPM2C
218284 at	25856	1	P	1.203	P	1.640	P	DKF'LP586N0721
218298 s at	80017	1	p	0.551	P.A	0.769	P	C140rfl 59
218380 at	60368	I	P	2.194	P	2.337	\boldsymbol{P}	NAl.P1
218400 al	4940	I	P	1.212	P	1.703	P	OAS3
218417 sat	55652	I	P,M,A	1.661	P	1.811	P	I'1J20489
218526 s at	29098	1	P	0.633	P	0.798	P	RANGNRI:
218532 s at	54463	1	A	1.570	P.M	1.456	P, A	Fld20152
218543 s at	64761	I	P	1.179	P	1.679	P	ZC311DC.1
218574_s_st	29995	I	P	1.330	P	1.778	P	IMCDI
218591_s_al	79954	1	P. A	1.522	P. A	1.324	$P . A$	IFld14075
218611 at	51278	1	P	1.696	P	2.128	P	IER5
218625 at	51299	1	P	2.877	P	2.196	P	NRN1
218642 s_al	79145	1	P.M	2.139	P	2.043	P	CIICHD)
218691_s_at	8572	1	A	1.968	P.A	2.322	P,M,A	PDLIM4
218693 at	23555	1	A	1.344	P. \wedge	2.011	P, \wedge	NET-7
218706 s at	65983	1	P	1.210	P	1.649	P	NS3TP2
218723 s at	28984	1	P	0.558	P	0.677	P	RGC32
218736 s at	54873	I	P	0.645	P	0.629	P. A	PALMD
218764 at	5583	1	\wedge	1.927	\boldsymbol{P}, \wedge	1.891	$\mathrm{M}, ~$,	PRKCH
218773 _s_at	22921	1	P	0.657	P	0.828	P	MSR 1
218793 s at	6322	1	P	1.490	P	1.512	P	SCMI.I
218826_at	54733	1	P	1.614	P	1.679	P	SLC35F2
218848 at	79228	1	P	0.608	P	0.713	P	MGC2655
218849 s_al	10848	1	P	1.692	P	1.601	P	RAI
218880 ul	2355	1	P	1.436	P	1.660	P	FOSI. 2
218885 s at	79695	1	P	0.542	P	0.583	P	GALNT12
218915 at	51219	1	P	1.485	p	1697	P	NF2
218951 s at	55344	1	P	0.654	P	0.666	P	FLJ11323
218961 s at	11284	1	P	0.645	P	0.765	P	PNKP
218974 at	55084	1	P	1.503	P	1.680	P	FLJ10159

$\begin{aligned} & \text { Affymetrix } \\ & \text { Id } \end{aligned}$	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalızed	Flags	Normalized	Flags	Normalized	Flags	
218986_s_at	55601	1	M, A	1277	P,M	2224	P	FLJ20035
218997_at	64425	1	P	1505	P	1467	P	PAF53
219014_at	51316	1	P	1583	P	2032	P	PLAC8
219026_s_at	9462	1	P	1571	P	1747	P	RASAL2
219039 at	54910	1	P,A	0632	M,A	0722	P,M,A	SEMA4C
219073_s_at	114884	1	P,A	1510	P	2049	P	OSBPL10
219083_at	55164	1	A	1597	P	1594	P,A	FLJ10539
219094 at	29067	1	P,A	1618	P	1355	P	HSPC056
219119_at	51691	1	P	0713	P	0636	P	LSM8
219152_at	50512	1	P,M	0454	A	0550	P,M,A	PODLX2
219158_s_at	80155	1	P	1492	P	1576	P	TBDN100 -
219170_at	79187	1	P	0578	P,A	0658	P,A	FSDI
219174_at	80173	1	P	0594	P	0713	P	CCDC2
219188_s_at	28992	1	P	0463	P	0647	P	LRP16
219209_at	64135	1	A	1765	P,A	4172	P	MDA5
219211_at	11274	1	P	1252	P	1676	P	USP18
219250_s_at	23767	1	A	1127	P,M	1629	P,M	FLRT3
219258_at	54962	1	P	1566	P	1491	P	FLJ20516
219263_at	79589	1	P,A	1921	P	2275	P	RNF128
219270_at	79094	1	P	0252	A	0230	A	MGC4504
219306_at	56992	1	P	0660	P	0709	P	KNSL7
219321_at	64398	1	P	1548	P	1351	P	MPP5
219326_s_at	10678	1	P	0591	P	0568	P	B3GNT1
219352_at	55008	1	M,A	1488	P	1786	P	FLJ20637
219353 at	54835	1	P	0639	P	0748	P	NHLRC2
219361_s_at	64782	1	A	1513	P,M	1505	P,M,A	FLJ12484
219366_at	57099	1	P,A	1610	P	1472	P	AVEN
219410_at	55076	1	P	1373	P	1540	P	FLJ10134
219427_at	79633	1	P	1387	P	1585	P	FATJ
219477 _s_at	55901	1	M,A	1240	P,A	1855	P,M	THSD1,
219493_at	79801	1	P	1534	P	1333	P	SHCBP1
219500_at	23529	1	P	1286	P	1525	P	CLC, BSF3
219522_at	24147	1	P,A	1277	P	1524	P	FJX1
219557_s_at	56675	1	P	1600	P	1677	P	NRIP3
219612_s_at	2266	1	A	1585	P, M	2257	P	FGG
219628_at	64393	1	P	1604	P	1524	P	WIG1
219634_at	50515	1	P	1300	P	1508	P	CHST11
219690_at	79713	1	P	1684	P	1539	P	FLJ22573
219692 at	79412	1	P	1643	P	1554	P	KREMEN2
219700_at	57125	1	P	0682	P	0617	P	PLXDC1
219705_at	79832	1	P	1560	P	1181	P	FLJ21924
219763_at	57706	1	P	1340	P	1506	P	KIAA1608
219825_at	56603	1	P,A	2205	P	1888	P	CYP26B1
219869_s_at	64116	1	P,A	1882	P	1861	P	SLC39A8
219895_at	55026	1	A	1631	P, A	2125	P	FLJ20716
219926_at	64208	1	P	0654	P	0733	P	POPDC3
219938_s_at	9050	1	P A	2250	P	2363	P	PSTPIP2
219944_at	79745	1	P,A	1064	A	1730	P	FLJ21069
219992_at	6866	1	P,M,A	1436	P	1770	P	TAC3
220033_at		1	P	0634	P	0700	P	

$\begin{aligned} & \text { Affymetrix } \\ & \text { Id } \end{aligned}$	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
220038_at	23678	1	P	1384	P	1502	P	SGKL
220085_at	3070	1	P	1222	P	1627	P	HELLS
220092_s_at	84168	1	P, A	2559	P	3188	P	ANTXR1
220104_at	56829	1	M, A	1346	P,M,A	1672	P,A.	ZC3HAV1
220134_x_at	55194	1	P	1579	P	1518	P	FLJ10647
220145_at	79884	1	P,M	0694	P,A	0656	P	FLJ21159
220217_x_at	64663	1	A	1453	P, A	2299	P	SPANXC
220321_s at	79635	1	P	0646	P	0772	P	FLJ13646
220327_at	51159	1	P	0646	P	0681	P	FLJ38507
220358_at	55509	1	P,A	1892	P	1994	P	SNFT
220393 at	51557	1	P	0629	P	0901	P	GLULD1
220520_s_at	54830	1	M,A	1540	P	1336	P	FLJ20130
220534_at	79097	1	P,A	1850	P	1799	P	TRIM48
220551_at	57084	1	P	0518	P	0437	P	SLC17A6
220617_s_at	55205	1	P	0628	P	0745	P	ZNF532
220661_s_at	55657	1	P	0623	P	0789	P	FLJ20531
220668_s_at	1789	1	P	1574	P	1389	P	DNMT3B
220684_at	30009	1	P,A	1518	P	1257	P	TBX21
220703_at	55853	1	P,A	1657	P	1308	P,A	C10orfl 10
220738_s_at	27330	1	A	1661	M,A	1844	M,A	RPS6KA6
220794_at	64388	1	P	0598	P,M	0664	P,A	PRDC
220800_s_at	29766	1	P,M	1521	P	1345	P	TMOD3
220892_s_at	29968	1	P	0367	P	0334	P	PSATI
220922_s_at	30014	1	A	1103	A	1739	P	SPANXAI
220954_s_at	29990	1	P	0635	P	0772	P	PILRB
220987_s_at	81788	1	P	1810	P	1953	P	SNARK
221009_s_at	51129	1	P,A	1890	P	2686	P	ANGPTL4
221011_s_at	81606	1	P	4211	P	9513	P	LBH
221039_s_at	50807	1	P	1416	P	1545	P	DDEFI
221059_s_at	4166	1	P	2224	P	2377	P	CHST6
221078_s_at	55704	1	P	1525	P	1393	P	FLJ10392
221123_x_at	55893	1	P	0627	A	0858	P,A	ZNF395
221195_at	51136	1	P	0657	P,A	0784	A	LOC51136
221213_s_at	54816	1	P,A	0642	P,A	0873	P,M,A	FLJ20086
221234_s_at	60468	1	A	1650	P	1366	PA	BACH2
221261_x_at	81557	1	P	0627	P	0613	P	MAGED4
221484_at	9334	1	P	1320	P	1522	P	B4GALT5
221489_s_at	81848	1	P	1595	P	1675	P	SPRY4
221510_s_at	2744	1	P	1602	P	1956	P	GLS
221539_at	1978	1	P	0600	P	0600	P	EIF4EBP1
221561_at	6646	1	P	1525	P	1319	P	SOATI
221645_s_at	55769	1	P	0640	P	0838	P	ZNF83
221657_s_at	140459	1	P,A	1585	P	1455	P	ASB6
221664_s_at	50848	1	P	1069	P	1542	P	F11R
221676_s_at	23603	1	P	1673	P	1541	P	COROIC
221710_x_at	55194	1	P	1569	P	1313	P	FLJ10647
221718_s_at	11214	1	P	1582	P	2189	P	AKAP13
221760_at		1	A	1997	P	2902	P	MAN1A1
221766_s_at	55603	1	P,M,A	1621	P	1962	P	C6orf37
221779_at	85377	1	P	1529	P	1594	P	MIRAB13

$\underset{\text { Id }}{\text { Affymetrix }}$	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
221810_at		1	P,A	1857	P	1769	P	
221831_at		1	A	1504	M A	1482	P A	LUZP1
221841_s_at		1	A	1690	P,M	1837	P	KLF4
221865_at	203197	1	P	0713	P	0637	P	C9orf91
221875_x_at	3134	1	P	1219	P	2057	P	HLA-F
221892_at		1	P	0564	P,A	0705	P	H6PD
221893_s_at	90956	1	P	1511	P	1333	P	ADCK2
221899_at	10443	1	P	0624	P	0792	P,A	PFAAP5
221911_at		1	P	0647	P	1097	P	ETV1
221951_at		1	P	0537	P,A	0652	P	LOC283232
221986_s_at	54800	1	P	0643	P,A	0627	P,M	DREI
221998_s_at	51231	1	P	0521	P	0663	P	LOC51231
222024_s_at	11214	1	P	1368	P	1754	P	AKAP13
222028_at	7596	1	P	1948	P	1303	P	ZNF45
222043 at	1191	1	P	1660	P	2393	P	CLU
222074_at	7389	1	P,A	2213	P	1840	P, A	UROD
222108_at		1	P	1990	P	2402	P	
222125_s_at	54681	1	P	0591	P	0673	P	PH-4
222126_at	3668	1	M, A	1506	P	1446	P	HRBL
222154_s_at	26010	1	P	1496	P	1727	P	DNAPTP6
222204_s_at	54700	1	P	1559	P	1584	P	RRN3
222258_s_at	23677	1	P	1613	P	1953	P	SH3BP4
222305_at		1	P, A	1747	P	1573	P,M	HK2
222351_at	5519	1	A	1765	P, A	1680	P,A	PPP2R1B
266_s_at	934	1	P,A	3273	P	4303	P	CD24
32042 at	10495	1	P	1298	P	1572	P	COVA1
33322_1_at	2810	1	P	1427	P	1969	P	SFN
33323_r_at	2810	1	P	1536	P	2165	P	SFN
33767_at		1	P	1548	P	1327	P	NEFH
34697_at	4040	1	P	0625	P	0688	P	LRP6
36552_at	26005	1	P	1481	P	1630	P	DKFZP586P0123
38037_at	1839	1	P,A	2201	P	1886	P	DTR
39966_at	10675	1	P	0568	P	0564	P	CSPG5
40093_at	4059	1	P	1153	P	2270	P	LU,
41469_at		1	A	1227	P,A	1592	P	PI3
45297_at	115273	1	A	1467	P	1572	P	EHD2
48106_at	55652	1	P	1452	P	1534	P	FLJ20489
49077_at	51400	1	P	1410	P	1606	P	PME-1
54970_at	83637	1	P	1721	P	1814	P	DKFZp76112123
55081_at	85377	1	P	1507	P	1423	P	MIRAB13
57540_at	64080	1	P	1737	P	1825	P	RBKS
59697_at		1	P	1734	P	1701	P	
61732_r_at	80173	1	P	0602	P	0734	P,A	CCDC2
64432_at	51275	1	P	0626	P	0712	P	FLJ39616
65630_at		1	P	0641	P	0760	P	LOC283232

Affymetrix Id	Day 0		Day 3		Day 7		Common Name
	Normalised	Flag	Normalised	Flag	Normalised	Flag	
AFFX-HUMISGF3A/M97935_3 at	1	P	1805	P	2543	P	STATI
AFFX-HUMISGF3A/M97935 5 at	1	P	1610	P	2380	P	STAT1
AFFX-HUMISGF3A/M97935 MA at	1	P,M	1726	P	2600	P	STAT1
AFFX-HUMISGF3A/M97935_MB_at	1	P	1796	P	2751	P	STAT1

72 Appendix B - Cluster 5 BrdU Exp. 3

List of genes contaned in Cluster 5 of the BrdU Exp 3 DNA mıcroarray experiment

Clusier 5 - Brdte Exp. 3			
Common Vane	Affymelrix id	Common Vame	Aftymetris Id
SMARCD	204099 -	FUJ22028	219802 푸
FAMIIR	219253 _	LOC56901	214096_s_4
AUH	205052_쳘	C200r31	218282_t
TSFM	212656_8	DECR2	219664_s_at
FASTK	$210975 \times$	PIGO	209998
II,VBI: AliAS	202993_m	QARS	217846
ZNF580		CGI-143	219345_1
WiARP	218731 _s_at	C6orll 08	204238 s_
FLJ20758	217895	MOSPD 3	219070_s_a
TRIAD3	218426_s_4	C6PC3	221759_(
F1J11822	215090_x_4	STATI	209969 =a1
NAGA	202944_星	dJ222F:131	$217284 \times$ x
E.BP. CPX	202735 뜿	MAPBPIP	218291_』
KIAA0974	213896 _x_al	MYSTI	221820_s_al
DLGAP!	210750_5_ m	SGSil; ILSS:	35626_a
PPGB	200661_	INSIGI: C1-6	201627_s_at
ACP2	202767_	PTPN18	203535 m
LOC55974	219125_s_4	ATP5D	213041_s_a
PGG(): GPII	204144_s_	GCXX	214006_s_at
RAB12A	220500 s_at	ATFS: ATFX	204999_s_4
S1C25Al!	207088_s_at	I.L.GIL2, HKI.	203713_s_a
MRTPS 1	217543_5_at	DHPS	202802_4
FIJ10496	221934 s	LRP8	208433_s_x
F1J35827	212969_x_	FASTK	214114_x_at
RFXANK	202758 s a d	K1AAl164	37802_r_ํ¢
NAGA	202943 s_al	TAGIN	56256_a
INPPSA	203006_at	IEPRE12	204854_4
DKF7.p762C186	91703_필	SLC25A1	210010_s_*
F1.112681	46142 m	PCCA	203860_*
1.OC51337	218500 \%	C190r27	221267_s_at
SUCLG2	214835_s_at	NFIB; NFIB2	211467 s_피
PMMI	203467_8	FAIM: FAIM11	220643_s_at
DHX9	212105 s_at	MAPT	206401_s_al
	AFFX.1.nX-1	AD-017	218146_a
NDUFS7	211752_s_a	UROS	203031 s s at
C3F	202793_	CPSFI	33132 ar
TGFB1	203085_s_a	ISEAFI: SPN	209407
DKFZP586B1621	2186088	COROIB	64486
II2AFX	212525 _s_	PLEKHJI	218290
HTATIP	206689_x_ㄸ	CREM: KER	210171_s_a
1.DIR	202067 _	MSRB, CESI	218773_s_at
PIR	207469_s_a1		
MPG; AAG	203686		
C6orl 08	39817_3_at		
ACYP2	206833 s a		
VPS28	218679 \&		
NASP	201970 _ al		
CPSF4	206688_3_91		
ACL.Y	210337 _s_al		

73 Appendıx C - Differentially Expressed Genes Identified in 5,2-FdU DNA Microarray Experiment

List of differentially expressed genes identıfied from mıcroarray analysis of 5,2 -FdU mıcroarray experıment Genes listed are sorted by Affymetrix ID number

Affymeirix Id	Locuslink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flaga	Normalized	Plag	Normalized	Plag	
1053 at	5982	1	P	1.509	P	1.140	P	RFC2
1598 \&_at	10609	1	P	0.751	P	0.644	P	GAS6: AXSF
177 at	5337	I	P	0.711	P	0.646	P	Pl.DI
200020 at	23435	1	P	1.520	P	1.569	P	TARDB ${ }^{\text {P }}$
200023 s at	8665	1	P	0.873	P	0.609	P	cIf 3 -p47
200036 s al	4736	1	P	0.747	P	0.612	$\boldsymbol{\gamma}$	RPLIOA
200050 at	7705	I	P	1.556	P	1.569	P	ZNF 146; O7F
200054 at	8882	1	P	1.937	P	1.743	P	TNF259: 7PR1
200079 s at	3735	1	P	1.519	P	1.500	P	KARS
200090 al	2339	I	P	1.593	P	1.518	P	FNTA
200597 al		1	P	1.209	P	1.509	P	EIF3S10
200609_s at	9948	1	P	1.689	P	1.526	P	WDR1; N()RI-I
200615 s_at	163	1	P	1.630	P	1.567	P	AP2R1
200635 s_at	5792	1	P	0.660	P	0.822	P	PIPRF
200646 s at	4924	1	P	0.577	P	0.511	P	NUC.B1
200661 at	5476	1	P	0.723	P	0.507	P	PPGB; GSL
200670 al	7494	1	P	0.630	P	0.585	P	XBP1: XBP2
200678 x_at	2896	1	p	0.631	P	0.778	P	GRN; PH:PI
200685 al	9295	1	P	1.205	P	1.552	P	SFRSI1
200697 at	3098	1	P	1.496	P	1.577	P	HK1; IKK1
$200715 \times$ at	23521	1	$\boldsymbol{\mu}$	0.450	P	0.349	P	RPI.I3A
200719 at	6500	1	P	2.144	P	2.713	P	SKP1A
200730 s at	7803	I	P	1.968	P	1.484	P	PTP4AI
200731 s at	7803	1	P	1.632	P	1.389	P	PTP4A1
200732 s at	7803	1	P	1.601	P	1.372	P	PTP4A1
200733 s at	7803	1	p	1.698	I	1.365	P	PTP4A1: H1172
200742 s at	1200	I	P	0.449	P	0.409	P	CLN2
200743 s_at	1200	1	P	0.482	P	0.415	P	CLN2: TPP1
200747 s_at	4926	1	P	0.579	P	0.607	P	NUMAI
200762 at	1808	1	P	1.026	\boldsymbol{P}	1.698	P	DPYSL2
200779 at	468	1	P	0.591	P	0.602	P	ATF4; CREB2;
200786 at	5695	1	P	1.509	P	1.170	P	PSMB7; Z
200787 s at	8682	1	P	1.621	P	1.952	P	PEA15; PED
200788 s at	8682	1	P	1.744	P	1.999	P	PEA15; PED
200789 at	1891	1	P	0.625	P	0.594	P	ECII]; IIPXEL
200790_at	4953	1	P	1.770	P	1.758	P	ODCl
200796 s a	4170	1	P	0.623	P. A	0.581	P	MCLI; TM:
200802 at	6301	1	P	0.697	P	0.633	P	SARS: SERS;
200808 s al	7791	1	P	1.756	P	1.469	P	TYX
200810 s at	1153	1	P	0.563	P	0.439	P	CIRUP; CIRI
200811 at	1153	1	P	0.545	P	0.402	P	CIRBP: CIRP
200813 s at	5048	1	P	1.168	P	1.517	P	PAFA $\ \mid$ B\|
200814 at	5720	1	P	0.644	P	0.582	P	PSME1; PA28A
200821_a!	3920	1	P	1.176	P	1.511	P	LAMP2
200833_s_at	5908	1	P	1.522	P	1.555	P	RAPIB
200811 s at	2058	1	P	0.592	P	0.468	I^{2}	EPRS
200868 _s_at	55905	1	Γ	1.341	1	1.424	[2N1313
200872_at	6281	I	P	1.427	P	1.626	P	S100A10
200873_s_at	10694	1	P	1.571	P'	1.395	P	CCT8; Cetq
200887 s_at	6772	1	P	1.329	\boldsymbol{P}	2.005	1	STAT1

$\begin{aligned} & \text { Affymetrix } \\ & \text { Id } \end{aligned}$	Locuslink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flagn	Normalized	Flags	
200897 s al	23022	1	P	1.562	P	1.976	P	KIAA0992
200898 s at	10724	1	P	1.409	P	1.698	P	MGEAS
200899 s at	10724	1	P	1.242	P	1.740	P	MGEA5: MEAS
200907 s at	23022	1	P.A	1.473	P	1.615	P	KIAA0992
200908 s_at	6181	1	\wedge	1.524	P. A	1.522	P, A	RPLP2: RPP2
200911_s at	6867	1	P	1.594	P	1.585	P	TACCI; Ga55
200916 at	8407	1	P	1.618	P	1.697	P	TAGLN2
200917 s al	6734	1	P	0.744	P	0.573	P	SRPR
200922 al	10945	1	P	0.735	P	0.608	P	KDELR1; ERD2
200962 at		1	P	1.256	P	1.803	P	RPL3I
200976 s al	8887	1	P	1309	P	1.504	P	TAXIBPI;
200977 s at	8887	1	P	1.371	P	1.534	P	TAXIBPI; T6BP
200979_a		1	P	1.492	P	1.592	P	
200988 s at	10197	1	P	2.141	P	2.318	P	PSME3; Ki
200995 al	10527	1	P	1.360	P	1.559	P	IPO7
201006 at	7001	1	P.A	0.865	P.A	0.603	A	PRDX2: PRP
201013_s_at	10616	1	P	1.619	P	1.495	P	PAICS
201014 s at	10606	1	P	1.768	P	1.524	P	PAICS: AIRC
201020_at	7533	1	P	1.508	P	1.392	P	YWHAH
201022 s at	11034	1	P	1.433	P	1.528	P	DSTN: ADF
$201024 \times$ a	9669	1	P	1.516	P	1.215	P	Ell-513; IF2
201027 s at	9669	1	P	1.727	P	1.482	P	Ellish; IF2
201041 s_at	1843	1	P	1.469	P	1.598	P	DUSP1
201042 at	7052	1	P, A	3.942	P	4.238	p	TGM2
201043 s at	8125	1	P	0.718	P	0.603	P	ANP32A
201046 s_81	5886	1	P	1.535	P	1.313	P	RAD23A
201050 at	23646	1	P	0.686	P	0.644	P	PLD3: HU-K4
201058 s at	10398	1	P	1.547	P	1.111	P	MYL9: LC20
201060×8	2040	1	P	1.364	P	1.672	P	STOM
201061_s_at	2040	1	P	1.207	P	1.636	P	STOM: BND7
201065 s_8t	2969	1	P	0.678	P	0.625	p	GTF21; DIWS:
$201093 x_{4}$ at	6389	1	P	0.859	P	0.609	P	SDHA; FP
201097 s_at	378	1	P	1.478	P	1.512	P	ARF4
201099 al		1	P	1.527	P	1.544	P	USP9X
201100 s at	8239	1	p	1.623	P	1.602	P	USP9X: DFFRX
201102 s_at	5211	1	P	1.067	P	0.660	P	PFKL: PFK-B
201123 s at	1984	1	P	0.692	P.A	0.447	A	EIF5A: EIF-5A
201139 s at	6741	1	P	1.502	P	1.497	P	SSI3
201142 _ 8 t	1965	1	P	1.789	P	1.637	P	EIF2SI
201143 s_at	1965	1	P	1.616	P	1.666	P	Elf-2alpha
201144 s at	1965	1	P	1.783	P	1.655	P	EIF2SI; ElF-2
201145 at	10456	1	P	0.724	P	0.638	P	HAXI
201153 s at	4154	1	P	1.226	P	1.559	P	MBNLI: EXP
201167 x at	396	1	P	0.978	P	0.585	P	ARHGDIA
201193 at	3417	1	P	0.659	P	0.516	P	IDH1; IDP: PICD
201195_s_at	8140	1	P	0.641	P	0.520	P	SLC7As
201211_at	16.54	1	P	0.812	p	0.561	P	D0X3X: DDX
201214 y at	5510	1	P	1.570	P	1.358	P	IPPPIR7
201216 at	10961	1	P	0.615	P	0.585	P	Cl2orl8
201219_at	1488	1	P	1.390	P	1.657	P	CTBP2

Affymetrix Id	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalızed	Flags	Normalızed	Flags	Normalized	Flags	
201247_at	6721	1	P	0538	P	0489	P	SREBF2
201248_s_at	6721	1	P	0629	P	0482	P	SREBF2
201275_at	2224	1	P	0680	P	0502	P	FDPS, FPS
201282_at	4967	1	P	1640	P	1195	P	OGDH, Elk
201284_s_at	327	1	P	0667	P	0325	P	APEH
201295_s_at	26118	1	P	0514	P,A	0515	P,M,A	WSB1
201307_at	55752	1	P	1465	P	1598	P	FLJ10849
201323_at	10969	1	P	1550	P	1336	P	EBNA1BP2
201325_s_at	2012	1	P	1668	P	1592	P	EMP 1
201326_at	908	1	P	1566	P	1627	P	CCT6A
201329_s_at	2114	1	A	1529	P,A	1558	P, A	ETS2
201331 s__at	6778	1	P	0623	P	0638	P	STAT6
201337_s_at	9341	1	P	0854	P	0590	P	VAMP3, CEB
201344 at	7322	1	P	1417	P	1916	P	UBE2D2
201367 s_at	678	1	P,M,A	0798	P,A	0568	A	ZFP36L2
201370_s_at	8452	1	P	1380	P	1640	P	CUL3
201397_at	26227	1	P	0479	P	0443	P	PHGDH
201401 _s_at	156	1	P	0689	P, M	0466	P,A	ADRBK1
201416_at		1	P	1421	P	2110	P	SOX4, EVI16
201417 at		1	P	1211	P	1721	P	SOX4, EVI16
201421 s_at	79084	1	P	1508	P	1299	P	MEP50
201425_at	217	1	P	0501	P	0408	P	ALDH2
201432 at	847	1	P	0593	P	0484	P	CAT
201436_at	1977	1	P	1650	P	1585	P	EIF4E,
201446 s at	7072	1	P	0741	P	0648	P	TIAI
201454 s_at	9520	1	P	0738	P	0639	P	NPEPPS
201460_at	9261	1	P	1586	P	1527	P	MAPKAPK2
201464 x_at	3725	1	A	3589	P	4645	P	JUN
201466 s_at	3725	1	A	3794	P	5536	P	JUN, APl
201475 _x_at	4141	1	P	0624	P	0508	P	MARS
201478_s_at	1736	1	P	1628	P	1574	P	DKCl
201479 at	1736	1	P	1519	P	1444	P	DKC1,
201489_at	10105	1	P	1616	P	1101	P	PPIF, CYP3
201498_at	7874	1	P	1772	P	1813	P	USP7
201501_s_at	2926	1	P	1434	P	1682	P	GRSF1
201502_s_at	4792	1	P	1600	P	1591	P	NFKBIA
201516_at	6723	1	P	1677	P	1249	P	SRM
201534_s_at	5412	1	P	1253	P	1500	P	UBL3
201535_at	5412	1	P	1285	P	1729	P	UBL3
201536 at	1845	1	P	1693	P	1561	p	DUSP3
201537_s_at	1845	1	P	2311	P	1843	P	DUSP3, VHR
201539_s_at	2273	1	P	1160	P	1637	P	FHLI, KYO-T
201540 at	2273	1	P	1354	P	1943	P	FHL1, KYO-T
201546_at	9320	1	P	1506	P	1436	P	TRIP12
201554_x_at	2992	1	P	1569	P	1422	P	GYG
201559 s_at	25932	1	P	0656	P	0707	P	CLIC4
201565 _s_at	3398	1	P	4103	P	3504	P	ID2, ID2A
201566_x_at	3398	1	P,M	5836	P	4596	P	ID2, ID2A
20157]_s_at	1635	1	P	1547	P	1451	P	DCTD
201572_x_at	1635	1	P	1588	P	1626	P	DCTD

Affymetrix Id		Day 0		Day 3		Day 7		Common Name
	tocustink	Normalized	Flaga	Normalized	Flaga	Normalized	Flapı	
201576_s_at	2720	1	P	0.664	P	0.515	P	GLBI
201579_at	2195	1	P	1.465	P	1.648	P	FAT; ME5:
201582_at	10483	1	P.M	1.718	P	1.377	P	SEC23B
201587_s_at	3654	1	P	1.505	P	1.527	P	IRAK1: pelle
201594_s at	9989	1	P	1.477	P	1.541	P	PPP4RI
201595 s at	55854	1	P	1.513	P	1.380	P	LEREPO4
201600_at	11331	1	P	0.905	P	0.653	P	REA: BAP
201607_at	11137	1	P	1.851	P	1.853	P	PWPI
201608 s at	11137	1	P	1.581	P	1.388	P	PWPI:
201625_s_al	3638	1	P	0.609	P	0.421	P	INSIGI
201626_at	3638	1	P	0.657	P	0.468	P	INSIGI
201627] 3 at	3638	1	P	0.708	\boldsymbol{H}	0.468	P	INSIGI
201629 s_at	52	1	P	1.560	P	1.593	P	ACPI
201630 s al	52	1	P	1.386	P	1.500	P	ACP1
201632 a	1967	1	P	1.671	P	1.516	P	EIF-2Balpha
201639 s_at	29894	1	P	0.913	P	0.617	P	CPSFI
201642 at	3460	1	P	0.768	P	0.629	P	IFNGR2: AF-1
201668 x_at	4082	1	P.A	0.541	A	0.798	P.A	MARCKS
201677 at	56941	1	P	1.469	P	1.622	P	ELF3
201688_s_at	7163	1	P	1.456	P	1.570	P	TPI)S2
201689 s at	7163	1	P	1.609	P	1.669	P	TPDS2
201690 _s_at	7163	1	P	1.541	P	1.672	P	TPD52
201691 s at	7163	1	P	1.551	P	2.199	P	TPD52: N81.
201704 at	955	1	P	0.917	P	0.601	A	ENTPI)6
201708_s_at	8508	1	P	0.818	P	0.640	P	NIPSNAPI
201709 s at	8508	1	P	0.773	P	0.632	P	NIPSNAPI
201710 at	4605	1	P	1.765	P	1.248	P	MYBL2; BMYB
201712 s at	5903	1	P	1.432	P	1.59	P	RANBP2
201739 at	64.46	1	P	3.163	P	4.549	P	SGK: SGK I
201744 s_at	4060	1	P	1.555	P	1.623	P	L.UM; LDC
201790 s al	1717	1	P	0.699	P	0.522	P	DIICR7
201791 s al	1717	1	P	0.705	P	0.557	P	DHCR7: SLOS
201794_s_al	9887	1	p	1.696	P	1.500	P	ESTIC
20179_s_at	7407	1	P	0.711	P	0.524	P.A	VARS2
201798 s al	26509	1	P.A	3.222	P	5.656	P	FIERIL3
201805 al	5571	1	P	0.702	P	0.545	P	PRKAGI
201814 at	9779	1	P	1.247	P	1.552	P	TBCIDS
201816 s_at	2631	1	P	0.879	P	0.532	P	GBAS
201823 s at	9604	1	P	1.461	P	1.615	P	RNF14
201824 at	9604	1	$1{ }^{1}$	1.714	P	1.907	P	RNF14
201830 s at	10276	1	P	1.378	P	1.517	P	NETI
201865_x_at	2908	1	P	1.507	P	1.598	P	NR3C1
201872 s_at	6059	1	P	1.763	P	1.551	P	ABCIEI
201873 s_at	6059	1	P	1.586	P	1.598	p	ABCE: 1
201890 at	6241	1	P	1.591	P	1.475	P	RRM2: R2
201896 s at		1	P	0.644	P	0.794	P	
201900 s at	10327	1	P	0.608	P	0.522	P	AKRIAI
201913_s_at	80347	1	P	0.894	P	0.642	P	COASY
201920 at	6574	1	P	1.742	P	1.362	P	SLC20AI:
201937_s_at	23549	1	P.M	1.51]	P	1.203	P	DNPEP

Aftymelrix Id	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Fiag	
201939 al	10769	1	P	1.986	P	1.431	P	PLK2; SNK
201948 at	29889	I	P	1.967	P	1.598	P	HUMAUANTIG
201951 al	214	1	P	1.484	P	2.712	P	ALCAM: MEMD
201952 at	214	1	P	1.467	P	2.398	P	ALCAM: MEMI)
201959 s_at	23077	1	P, A	1.600	P	1.665	P.M	MYCBP2
201963 at	2180	1	P	1.532	P	1.505	P	ACSL 1
201966_at	4720	1	P	1.008	P	0.643	P	NDUFS2
201970_s_at	4678	1	P	0.829	P	0.638	P	NASP
201985 at	9897	1	P	0.590	P	0.692	P	K1AA0196
202014 as	23645	I	P	2.393	P	3.054	P	PPPIR15A
$202015 x^{\text {at }}$	10988	I	P, A	1.231	P.M.A	1.535	P, A	METAP2; p67
202016 at	4232	1	P	0.704	P	0.651	P	MEST; PEG1
202017 at	2052	1	P	1.456	P	1.742	P	EPHXI: MEH
202030 at	10295	1	P	0.917	P	0.629	P	BCKDK
202052 s_a!	26064	1	P	1.963	P	3.139	P	RAII4; RAll3
202056 al		1	P	1.421	P	1.540	P	KPNA1: RCH2
202059 s at	3836	1	P	1.511	P	1.429	P	KPNAI; RCH2
202066 al	8500	1	P	1.351	P	1.511	P	PPFIAI; LIPI
202067 s at	3949	1	P	0.764	P	0.527	P, A	LIDLR
202068 s at	3949	I	P	0.777	P	0.523	P	LDLR; HH; FHC
202070 s at	3419	1	P	1.711	P	1.660	${ }^{\prime}$	[DH3A
202071 at	6385	1	P	1.977	P	1.860	P	SDC4: SYND4
202073 at	10133	1	P	1.301	P	2.089	P	OPTN
202074 s at	10133	I	P	1.481	P	2.040	P	OPTN; NRP
202076 at	329	I	P	1.569	P	1.711	$\boldsymbol{\mu}$	[3]RC2; AP1];
202079 s at	22906	1	P	0.740	P, A	0.638	P	OIP106
202083 s at	6397	1	P	1.728	P	1.632	P	SEC 141.1
202085 at	9414	1	P	1.400	P	1.758	P	TJP2; ZO2; X 104
202105 at	3476	1	P	0.713	P	0.620	P	[GBPI; IBP]
202121 s at	23243	I	P	0.713	P	0.580	P	BC-2
202129 s at	8780	1	P,M	1.971	P	2.200	P	RIOK 3
202130 at	8780	1	P	1.948	P	2.448	P	RIOK3
202131 s at	8780	1	P	2.061	P	2.389	P	R1OK3: SUDI)
202135 s at	10120	1	P	0.868	P	0.623	P	ACTR1B
202141 s at	10920	1	P	1.642	P	1.686	P	COPS8
202142 at	10920	1	P	1.513	P	1.541	P	COPS8; COP9
202146 at	3475	I	1	2.868	P	3.711	P	IFRD1
202147 s al	3475	1	P	2.728	P	3.227	P	IFRD!
202148 s 81	5831	1	P	0.738	P	0.619	P	PYCR 1: P5C
202149 at		1	P	1.464	P	1.676	P	dJ76112.1
202172 al		I	P	1.301	P	1.561	P	ZNF161: D131
202174 s at	5108	I	P	1.329	P	1.641	P	PCM1: PTC4
202180 s at	9961	1	P.A	0.642	P.M,A	0.529	A	MVP: LRP
202181 at	9766	1	P	1.374	P	1.556	P	KIAA0247
202188 al	9688	1	P	1.655	P	1.222	P	NUP93
202193 at	3985	1	P	1.565	P	1.496	P	L.IMK2
202205 at	7408	1	P	0.720	P	0.593	P	VASP
202209 at	27258	1	P	2.117	P	2.262	P	1.SM3: SMX4
202212 at	23481	1	P	1.679	P	1.406	P	PES 1
202218 s at	9415	1	P	0.522	1	0.431	P	FADS2: 1)61)

Affymetrix Id	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalızed	Flags	
202240 at	5347	1	P	0653	P	0785	P	PLK1, STPKI3
202241_at	10221	1	P	1614	P	2539	P	TRIB1, C8FW
202245_at	4047	1	P	0672	P	0563	P	LSS
202251_at	9129	1	P	1459	P	1552	P	PRPF3, PRP3
202253_s_at	1785	1	P	0853	P	0654	P,A	DNM2, DYNII
202265_at	648	1	P	1416	P	1846	P	BMI1, RNF5
202272_s_at	23219	1	P	1593	P	1611	P	FBXO28
202279_at	9556	1	P	1535	P	1434	P	C14orf2, MP68
202284_s_at	1026	1	P	2609	P	2528	P	CDKN1A, P21
202290_at	11333	1	P	0657	P	0499	P	PDAP1, PAP
202307_s_at	5696	1	P	1286	P	1510	P	TAP1, APTI
202308_at	6720	1	P	0455	P	0315	P,A	SREBF1
202313 at	5520	1	P	1649	P	1658	P	PPP2R2A
202328_s_at	5310	1	P	0646	P	0612	P	PKD1, PBP
202329_at	1445	1	P	1511	P	1359	P	CSK
202330_s_at	7374	1	P	1611	P	1552	P	UNG, DGU
202331_at	593	1	P	0797	P	0458	P	BCKDHA
202340_x_at	3164	1	P,A	1679	P	1078	P,A	NR4A1, HMR
202341_s_at	23321	1	M,A	1456	P	1906	P	TRIM2
202342_s_at	23321	1	P	1288	P	1602	P	TRIM2, RNF86
202344_at	3297	1	P	1590	P	1186	P	HSF1, HSTF 1
202345 s_at	6181	1	P	1822	P	1544	P	FABP5, EFABP
202352_s_at	5718	1	P	1520	P	1263	P	PSMD12
202366_at	35	1	P	0798	P	0646	M, A	ACADS, SCAD
202375_at	9871	1	P	0966	P	0634	P	SEC24D
202384_s_at	6949	1	P	1721	P	1254	P	TCOF1, MFD1
202389_s_at	3064	1	A	1506	P	1045	M,A	HD, IT15
202391_at	10409	1	P	2916	P	8624	P	BASP1, CAP23
202393_s_at	7071	1	P	1429	P	1746	P	TIEG, EGRA,
202400_s at	6722	1	P, A	1589	P	1747	P	SRF
202402_s_at	833	1	P	0615	P	0570	P	CARS, CYSRS
202407_s_at	26121	1	P	0905	P	0604	P	PRPF3I
202413_s_at	7398	1	P	1510	P	1536	P	USP1
202425_x_at	5530	1	P, M, A	1620	P	2130	P	PPP3CA
202429_s_at	5530	1	P	1404	P	2009	P	PPP3CA
202444_s_at	10613	1	P	0618	P	0450	P	C10orf69,
202451_at	2965	1	P	1526	P	1840	P	GTF2H1
202457_s_at	5530	1	P	1286	P	1842	P	PPP3CA
202462_s_at	9879	1	P	2138	P	1961	P	DDX46
202464_s_at	5209	1	P	1768	P	1761	P	PFKFB3
202468_s at	8727	1	P	1911	P	2094	P	CTNNAL 1
202470 s sat	11052	1	P	1225	P	1633	P	CPSF6, CFIM
202472_at	4351	1	P	0818	P	0616	P,M,A	MPI, PMI, PMII
202476_s_at	10844	1	P	0809	P	0636	P	TUBGCP2
202492_at	79065	1	P	0761	P	0635	P	FLJ22169
202498_s_at	6515	1	P	1600	P	1348	P	SLC2A3
202499_s_at	6515	1	P	1885	P	1634	P	SLC2A3
202500_at	3300	1	P	1900	P	1886	P	DNAJB2
202531_at	3659	1	P	1552	P	1624	P	IRF1
202532_s_at	1719	1	P	1885	P	1962	P	DHFR

$\begin{gathered} \text { Alfyme1rix } \\ \text { Id } \end{gathered}$	IncusLink	Day 0		Dsy 3		Day 7		Common Name
		Normalized	Fiapay	Normalized	Flags	Normalized	Flag:	
202533 s at	1719	1	I	1.511	P	1.345	P	DHFR
202534 x al	1719	1	P	1.601	P	1.717	P	DHFR
202536_al	25978	1	P	1.565	P	1.704	P	DKFZP5640123
202541_ al	9255	1	P	1.812	P	1.832	P	SCYE1
202542 s at	9255	1	P	1.802	P	1.735	P	SCYE1: p43;
202580_x_a!	2305	1	p	1.316	P	1.502	P	FOXMI: MPP2
202581_at	3304	1	P	0.772	P	0.586	P	HSPAIB
202583_s_al	10048	1	P	1.509	P	1.551	P	RANBP9
202594 at	23484	1	P	1.349	P	1.608	P	LEPROTI.I
202599 s_at	8204	1	P	1.347	P	1.687	P	NRIPI; RIP140
202600 _s_at	8204	1	P	1.138	P	1.589	P	NRIP1
202611_s_at	9282	1	P	1.351	P	1.557	P	CRSP2
202613_at	1503	1	P	2.057	P	1.811	P	CTPS
202620 s_al	5352	1	P	1.189	P	1.957	P	PLOD2
202644_s_at	7128	1	P	1.335	P	1.654	P	TNFAIP3; 42
202645_s_at	4221	1	P	0.811	P	0.610	P	MENI
202656_s_al	9792	1	p	1.519	P	1.910	P	SERTAD2
202657_s_at	9792	1	P	1.564	P	1.828	P	TRIP-Br2
202671_5 at	8566	1	P	1.176	P	0.640	P	PDXK: PKH
202672_s_al	467	1	P	1.140	p	1.533	P	ATF3
202676 x_at	10922	1	P.A	0.720	P, A	0.554	M, A	FASTK
202678_al	2958	1	P	1.552	P	1.615	P	GTF2A2
202682_s_at	7375	1	P	0.837	P	0.659	P	USP4: UNP
202693_s_at	9263	1	P	1.509	P	1.481	P	STK17A
202695_s_at	9263	1	P.A	1.673	P	2.224	P	STK17A
202702 at	7726	1	P	1.780	P	1.577	P	TRIM26; AFP
202706 s al	7372	1	P	1.518	P	1.352	P	UMPS; OPRT
202712 s at	1159	1	P	0.702	\boldsymbol{P}	0.589	P	CKMT1;
202725 at	5430	1	P	1.538	P	1.505	P	POLR2A
202727 s as	3459	1	P	1.647	P	1.741	P	1FNGRI; CDI19
202730 s at	27250	1	P	0.606	P	0.544	P	PDCD4; H731
202731_at	27250	1	P	0.526	1	0.546	P	PDCD4; 17731
202735_al	10682	1	P	0.763	P	0.573	P	EBP; CPX
202740_at	95	1	P	0.570	P	0.399	P	ACYI
202743_al	8503	1	P	1.835	P	2.000	P	PIK3R3
2027.46_at	9452	1	P	1.435	P	3.389	P	17M2A: E25A
202758_s_at	8625	1	P	0.551	P	0.285	P	RFXANK: BI.S
202759_s_at	11217	1	A	1.462	P	1.784	P	PALM2
202760 s al	11217	1	P.A	1.402	P.A	2.073	P	AKAP2
202764 at	6786	1	P	1.548	P	1.636	P	SITM1
202767 al	53	1	P	0.673	P	0.437	P	ACP2
202769 at		1	p	0.435	P	0.537	P	CCNG2
202770_s_al	901	1	P	0.513	P	0.611	P	CCNG2
202777 at	8036	1	P	1.378	P	1.516	P	SHOC2
202779_s_al	27338	1	P	0.833	P	0.652	P	UBE2S
202785 at	4701	1	P	0.958	P	0.608	P,M	NDUFA7
202792 s al	9701	1	1	0.69	I'M	0.618	M, A	KUASU689
202793 at	10162	1	P	0.696	P	0.419	P, A	C3F
202794 at	3628	1	P	1.468	P	1.688	P	INPH1
202802 at	1725	1	P	0.719	P	0.447	P	DIIPS

Affymetrix Id	Locuslink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flaga	Normalized	Fla ${ }^{3}$	Normalized	Flags	
202812 as	2548	I	P	0.572	P	0.562	P	(iAA: I.YAG
202819 s at	6924	1	P	1.585	P	1.418	P	TCEB3; SIII
202823 at	6921	1	P	1.554	P	1.425	P	TCEH 1
202830 s at	2542	1	P	0.527	M.A	0.299	A	SLC37A4
202838 at	2517	I	P	0.558	P	0.356	P	FUCAI
202847 at	5106	1	P	0.261	P	0.203	M, A	PCK2;
202852 s at	79719	1	P	1.590	$1]$	1.519	P	FLJ11506
202855 s at	9123	1	P	0.636	P	0.483	P	SLC16A3
202856 s at	9123	1	P	0.830	P	0.649	P	SLCI6A3;
202867 s al	54788	J	P	0.730	P	0.568	P	DNAB12;
202868 s all	10775	1	P	1.521	P	1.252	P	POP4; RPP29
202883 s at	5519	1	P	1.529	P	1.174	P	PPP2R18
202887 s at	54541	1	P	0.401	M, A	0.358	A	DDIT4; Dig2;
202900 s at	4927	1	P	1.743	P	1.625	P	NUP88
202903 at	23658	1	P	1.364	P	1.690	P	LSM5
202904 s at	23658	1	P	1.557	P	1.493	P	LSM5;
202906 s at	4683	1	P	1.615	P	1.409	P	NBS!
202912 al	133	I	P	1.545	P	1.325	P	ADM; AM
202930 s ut	8803	1	P	1.518	P	1.409	P	SUCLA2
202934 at	3099	I	A	2.805	P	2.985	P	HK2
$202937 \times$ at	27341	I	P.M	1.612	p	1.138	P	CGI-96
202939 at	10269	1	I	1.385	P	1.502	P	ZMPSTE24
202943 s at	4668	1	P	0.748	1	0.546	P	NAGA
202944 at	4668	1	P	0.783	P	0.618	P	NAGA
202945 at	2356	1	P	0.927	P	0.596	M, \mathbf{A}	FPGS
202949 s al	2274	1	P	2.215	P	2.887	P	FHL2; DRAL
202951 at	11329	1	P	1.480	P	1.643	P	STK38
202962_at	23303	1	M, A	1.326	P	1.671	P	KIF13B; GAKIN
202978 s at	58487	1	P	1.524	P	1.627	P	7.F
202979_s_al	58487	1	P	1.470	P	1.580	P	7.F
202993 at	10994	1	P	0.774	P	0.597	P	11.V53L
202994 s al	2192	1	P	1.026	P	1.606	P	E46L;
202998 s at	4017	1	P	1.150	P	1.980	P	LOXL2; WS9-14
203002 at	51421	1	P	1.373	P	1.526	P	AMOTL 2
203006 as	3632	1	${ }^{1}$	0.810	P	0.644	P	INPPSA
203018 s al	22892	I	P	1.411	P	1.545	P	SSX2IP
203019 x at	22892	I	P	1.564	p	1.819	P	SSX21P
203023 at	51491	I	P	1.726	P	1.295	P	11SPCII]
203027 s at	4597	1	P	0.634	P.M,A	0.518	A	MVD
203031 s_at	7390	1	P	0.809	P	0.642	P	UROS
203038 at	5796	I	M, A	1.512	P	1.783	P	PTPRK
203041 s at	3920	I	P	1.197	P	1.678	P	L.AMP2:
203042 ab	3920	1	P	1.395	P	1.932	P	L.AMP2
203053 at	10286	I	P	1.513	P	1.419	P	BCAS2; DAM1
203058 s al	9060	I	P	1.635	P	2.323	P	PAPSS2
203060 s al	9060	I	P	1.942	P	3.318	P	PAPSS2: SK2
203062 s at	4656	I	I'	1.290	1	1.504	I'	MSXI
203068 at	9903	1	P	1.570	P	1.514	P	KIAA0469
203075 at	4087	1	P	1.645	1	1.674	P	SMAD2
203077 s at	4087	1	P	1.337	P	1.516	P	SMAD2: JV18

Aflymetrix Id	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
203078 al	8453	1	P	1.703	P	1.648	P	CUL2
203085 s at	7040	1	P	0.839	P	0.644	P	TGFBI:
203095_at	4528	1	P	1.576	P	1.464	P	MTIF2
203113 s at	1936	1	P	1.003	P	0.650	P	EEFID:
203116 s at	2235	1	P	0.792	P	0.649	P	FECH
203119 at	79080	1	P	1.850	P	1.648	P	MGC2574
203122_at	51112	1	P.A	0.860	P.A	0.571	A	TTC15: CGI-87
$203125 \times$ at	4891	1	P.M.A	0.792	M, A	0.649	A	SLCIIA2
203126 al	3613	1	P	0.861	P	0.649	P	IMPA2
203139_at	1612	1	P.A	1.428	P	1.541	P	DAPKI
203140_al	604	1	P	1.268	P	2.302	P	BCL6: BCLS
203150 at	10244	1	P	1.641	P	1.613	P	RAB9P40: p^{40}
203154 s_at	10298	1	P	1.551	P	1.351	P	PAKs
203156 at	11215	1	P	1.646	P	1.670	P	AKAPII
203185 at	9770	1	P	1.276	P	1.605	P	RASSF2
203188 al	11041	1	P	0.634	P	0.511	P	B3GNT6
203192 at	10058	1	P	0.902	P	0.613	M.A	ABCB6
203197 s s_at	54987	1	P	0.945	P	0.626	P	FLJ20580
203198_at	1025	1	P	0.814	P	0.577	P.A	CDK9: TAK
203200 s at	4552	1	P	1.461	P	1.623	P	MTRR: MSR
203202 at	11103	1	P	2.083	P	2.042	P	HRB2
203203 s at	11103	1	P	1.802	p	1.720	P	HRB2: RIP-1
203204 s at	9682	1	P	0.620	P	0.632	P	JMJD2A
203205_at	9682	1	P	0.621	1	0.600	P	JMJD2A:
203211_s_at	8898	1	P	1.784	P	1.634	P	MTMR2:
203212 s sal	8898	1	A	1.899	P	2.085	P	MTMR2
203215 s at	4646	1	P	1.375	P	1.638	P	MYO6
203216 s a al	4646	1	P	1.484	P	1.679	P	MYO6
203228_at	5050	1	P	0.865	P	0.607	P	PAFAllib3
203234 at	7378	1	P	1.639	P	1.910	P	UPPI; UPASE
203239 s at	4849	1	P	0.846	P	0.625	P	CNOT3
203252 at	10263	1	P	0.786	P	0.559	P	DOC-IR
203259 s_at	51020	1	P	1.573	P	1.631	P	C6ar74
203264 s at	23229	1	P	0.675	P	0.597	P	ARHGEF9
203267 s at	1819	1	P	0.914	P	0.644	p	DRG2
203272 s_at	11334	1	P	1.825	P	1.548	P	TUSC2
203292 s at	55823	1	P	1.371	P	1.544	P	VPS11
203294 s_at	3998	1	P.A	0.867	P.A	0.656	P.A	I.MANI: MR60
203299 s at	8905	1	P.A	1.481	P	1.805	P	AP1S2: DC22
203304 at	25805	1	P.M	2.048	p	3.419	P	BAMBI; NMA
$203312 \times$ al	382	1	P	1.507	P	1.410	P	ARF6
203314_at	8225	1	P	1.522	P	1.037	P	PGPL
203315 at	8440	1	P.M.A	1.235	P	1.590	P	NCK2; GRB4
203320_at	10019	1	P	0.799	P	0.569	P	LNK
203336 s at	9270	1	P	1.799	P	1.350	P	ITGBIBP1
203338_at	5529	1	P	1.373	P	1.506	P	PPP2R5E
203.34 ${ }^{\text {at }}$	10153	1	Γ	1.554	P	1.415	P	CLBIP
203344_5_a1	5932	1	P	1.566	P	1.380	P	RBIIP8
203359 s at	26292	1	p	1.657	P	1.294	P	MYCBP
203360 _s al	26292	1	P	1.682	P	1.219	P	MYCBP

$\begin{aligned} & \text { Affy meirix } \\ & \text { Id } \end{aligned}$	Locuslink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flag	Normalized	Flags	Normalized	Flag	
203361 s at	26292	1	A	1.714	P	1.692	P,M	MYCBP
203365 s at	4324	1	P	0.728	P.A	0.607	A	MMP15
203367_at	11072	1	P	1.517	P	1.846	P	DUSP14
203368 al	78987	1	P	0.699	P	0.551	P	CRELDI
203381 s_at	348	1	P, M	0.827	P	1.712	P	APOE
203382 s at	348	1	P.A	1.007	P.A	2.208	P	APOE
203386 at	9882	1	P.A	1.512	P	1.988	P	TBCIDA
203388 at	409	1	P	0.751	P	0.650	P	ARRB2
203392 s at	1487	1	P	0.690	P	0.523	P	CTBP1
203394 s at	3280	1	P	1.091	P	1.598	P	HES]
203395 s at	3280	1	P	1.282	P	1.810	P	HES
203403 s al	60.49	1	P	1.450	P	1.592	P	RNF6
203410 at	10947	1	P	1.715	P	1.592	P	AP3M2
203411_s at	4000	1	P	0.584	P	0.631	P	LMNA
203413 at	4753	1	P	1.221	P	1.667	P	NELL2
203415_at	10016	1	P	0.762	P	0.605	P	PDCI) 6
203417 al	4237	1	P	0.573	P, A	0.607	P	MFAP2:
203422_at	5424	1	P	0.869	P	0.584	P	POLDI
203439 s at	8614	1	P	0.531	M, A	0.541	P, A	STC2
$203442 \times$ at	256364	1	P	0.829	P	0.569	P	FLJ35827
203446 s at	4952	1	P	1.498	P	1.553	P	OCRL
203452 at	26229	1	P	0.695	P	0.526	P	B3GAT3
203456 _ul	11230	1	P	0.810	P	0.584	P	JM4
203466 at	4358	1	P	1.533	P	1.685	P	MPVI7
203467 at	5372	1	P	0.791	P	0.625	P	PMMI
203468 at	8558	1	A	0.995	P.A	0.653	P.A	CDK 10
203485 at	6252	1	P	1.231	P	1.843	P	RTNI; NSP
203490 al	2000	1	A	1.674	P,M	1.520	P.A	ELF4: MEF
203501 at	10404	1	P.A	1.500	P	1.426	P.M	PGCP
203502 at	669	1	P	1.617	P	1.991	P	BPGM
203510_at	4233	1	P	1.154	P	1.745	P	MET
203526 s at	324	1	P	1.402	P	1.570	P	APC; GS;
203555 at	26969	1	P	0.814	A	0.620	A	PTPN18: BDPI
203562 at	9638	1	P	1.110	P	1.581	P	FEZ1
203573 s at	5875	1	P	0.789	P	0.486	P	RABGGTA
203574_at	4783	1	P	1.122	P	1.561	P	NFIL3; E4BP4
203576_at	587	1	P	0.791	P	0.532	P	BCAT2; BC'AM
203578 s at	9057	1	P.M	1.525	P	1.464	P	SLC7A6
203588 s al	7029	1	P	1.604	p	1.961	P	TFDP2
203589 s at	7029	1	P.A	1.544	P	2.083	P	77DP2; Dp-2
203599 s_at	11193	1	P	1.365	P	1.593	P	WBP4: FBP2I
203603_s_at	9839	1	P.A	1.732	P.A	3.432	P	ZFHXIB: SIPI
203607 at	22876	1	P	1.469	P	1.519	P	INPPSF: SAC2:
203622 s a ${ }^{\text {a }}$	56902	1	P	1.662	P	1.434	P	LOC56902
203646 at	2230	1	P	1.424	P	1.591	P	FDX1; ADX
203648 at	9797	1	P	1.565	P	1.615	P	KIAA0218
203657 s at	8722	1	p	0.558	P	0.639	P	CTSF: CATSF
203665 at	3162	1	P	2.534	$\boldsymbol{\mu}$	2.982	P	HMOXI; HO-I
203669 s at	8694	1	P	0.684	P	0.555	P	[GAT]
203671 at	7172	1	P.A	1.564	P	1.833	P	TPMT

AffymetrixId	LocusLiak	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flas	
203674 at	9931	1	P	1.568	P	1.585	P	HELZ
203675 al	4925	1	P	1.450	P	1.884	P	NUCA2; NEFA
203679 at	11018	I	P	0.781	P	0.494	P	ILIRI.ILG
203680 at	5577	I	P	1.352	P	1.671	P	PRKAR213
203682 s at	3712	1	P.M	0.868	P	0.651	A	IVD: A(AD)2
203686 at	4350	1	P	0.849	P	0.634	P	MPG; AAG
203693 s at	1871	1	P	1.539	P	1.455	P	E2F3; E2F-3
203696 s al	5982	1	P	1.613	P	1.251	P	RFC2; A1
203710 at	3708	1	P	1.939	P	1.964	P	ITPR1
203711 s at	26275	1	P	0.922	P	0.520	P	IIBCII
203712 at	9933	1	P	1.748	P	1.821	P	K1AA0020
203713 s_at	3993	1	P	0.758	P	0.524	P. A	LLGL,2; HGL
203714 s_at	6905	I	P	1.475	P	1.510	P	TRCE; IRRI)
203720 s_at	2067	I	P	0.799	P	0.640	P	ERCCI; UV20
203722 at	8659	I	P	0.720	P	0.554	P	ALDII4AI
203737 s at	23082	1	P	1.556	P	1.486	P	PPRC1
203738 as	55322	1	P	1.752	P	1.804	P	F1J11193
203740 as	10200	I	P	1.684	P	1.464	P	MPI1OSPII6
203743 s at	6996	1	P	1.857	P	1.563	P	TDG
203746 s at	3052	1	P	1.575	P	1.235	P	HCCS; CCill.
203767 s_at	412	1	P	1.514	P	1.148	P	STS
203771 s at	644	1	P	1.548	P	1.198	P	BI.VRA: BVRA
203778 at	4126	1	P	1.037	P.M	1.519	P	MANBA
203787 at	23635	1	P	1.678	P	1.752	P	SSBP2
203810 at	11080	1	P	2.306	P	2.987	P	DNAJB4
203811_s at	11080	1	P.M,A	1.751	P	2.377	P	DNAJB4
203814 s at	4835	1	P	0.836	P	0.584	P	NQO2:
203815 at	2952	1	P	0.606	P.M	0.527	P.A	GSTTI
203816 at	1716	1	P	2.034	P	2.302	P	DGUOK
203821 at	1839	1	A	2.686	P	2.629	P	DTR: DTS
203840 at	8548	1	P, A	1.508	P	1.463	P	BLZFI: JEMI
203851_at	3489	1	P.A	1.556	P	1.833	P	IGFBP6; IBP6
203853 s at	9846	1	A	1.394	P. \wedge	1.639	P.A	GAB2:
203856 at	7443	1	P	1.542	P	1.361	P	VRK1
203857 s at	10954	1	P	0.768	P	0.644	P	PDIR
203860 at	5095	1	P	0.781	P	0.585	P, A	PCCA
203870_at	64854	I	p	1.623	P	1.712	P	USP46;
203876 s_at	4320	1	P.A	0.466	P. A	0.396	A	MMP1I
203878 s at	4320	I	I'	0.575	P	0.432	P	MMPII
203880 at	10063	1	P	1.866	P	1.835	P	COX17
203882 at	10379	1	P	0.616	P	0.661	P	1SGF3G
203893 at	6880	1	P	1.654	P	1.778	P	TAF9
203910 as	9411	1	P	1.239	P	1.897	P	PARGI
203916 al	8509	1	P	0.696	P.A	0.548	A	NDST2
203917 at	1525	1	P	1.29	P	1.788	P	CXADR:
203919 at	6919	1	P	0.719	P	0.614	P	TCEA2: TFIIS
203921_4t	9435	1	P	0.652	P	0.523	Γ	CIIST2: C6ST
203926 x_at	513	I	P	0.720	P	0.450	P	ATP5D
203935_at	90	I	P	1.480	P	1.545	P	ACVRI
203944 x at	11120	I	P	1.500	P	1.641	P	BTN2AI

Affymetrix Id	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalızed	Flags	Normalızed	Flags	Normalized	Flags	
203946_s_at	384	1	P, A	1760	P	1353	P, A	ARG2
203960_s_at	51668	1	P	1619	P	1528	P	Clorf41
203967_at	990	1	P	1778	P	1624	P	CDC6,
203968_s_at	990	1	P	1709	P	1453	P	CDC6
203970_s_at	8504	1	P	1409	P	1593	P	PEX3
203976_s_at	10036	1	P	1528	P	1324	P	CHAF1A
203980_at	2167	1	P	1999	P	2462	P	FABP4
203981_s_at	5826	1	P	0657	P	0694	P	ABCD4
203986_at	8987	1	P	2200	P	2284	P	GENX-3414
203989 x_at	2149	1	A	1755	P,A	3086	P	F2R, TR
204019_s_at	26751	1	P	0723	P	0566	P	SH3YL1
204020_at	5813	1	P	1323	P	1515	P	PURA
204022_at	11060	1	P	0822	P	0619	P	WWP2
204023_at	5984	1	P	1617	P	1373	P	RFC4, A1,
204024_at	734	1	P	1634	P	1681	P	C8orfl, hT41
204030 s_at	29970	1	P	1563	P	1944	P	SCHIP1
204033_at	9319	1	P	1658	P	1526	P	TRIP13
204035_at	7857	1	P	1612	P	1267	P	SCG2
204051_s_at	6424	1	P	1347	P	1798	P	SFRP4
204054_at	5728	1	P, \mathbf{A}	1394	P	1659	P, M	PTEN, BZS
204064_at	9984	1	P	1600	P	1545	P	THOC1, P84
204073_s_at	745	1	P	0625	P	0564	P	Cllorf9,
204076_at	9583	1	P	0834	P	0553	P	LYSALI
204077_x_at	9583	1	P	0929	P	0660	P, A	LYSALI
204078_at	10609	1	P	0816	P	0579	P	SC65, NOL55
204081_at	4900	1	P	1528	P	2036	P	NRGN, RC3,
204083_s_at	7169	1	P	1698	P	1599	P	TPM2, DAI
204088_at	5025	1	P	0605	P	0463	P	P2RX4
204091_at	5147	1	P	0675	P	0520	P	PDE6D, PDED
204099_at	6604	1	P	0788	P	0625	P	SMARCD3
204106_at	7016	1	P	1522	P	1093	P	TESK1
204108_at	4800	1	P	1673	P	1428	P	NFYA,
204125_at	51103	1	P	1611	P	1447	P	NDUFAF1
204127_at	5983	1	P	1511	P	1661	P	RFC3
204128_s_at	5983	1	P	1671	P	1481	P	RFC3
204133_at	9136	1	P	1536	P	1169	P	RNU3IP2
204135_at	11259	1	P	1238	P	1740	P	DOC1, GIP90
204139_x_at	7593	1	P	0661	A	0466	P,A	ZNF42, MZF1
204141_at	7280	1	P	1868	P	1973	P	TUBB
204142_at	55556	1	P	0877	P	0647	P	HSRTSBETA
204144_s_at	9091	1	P	0807	P, A	0605	P,A	PIGQ, GPI1
204146_at	10635	1	P	1601	P	1809	P	PIR51
204149_s_at	2948	1	P	0740	P	0375	P	GSTM4
204182_s_at	23099	1	P, A	1500	P	1691	P	ZNF297B
204185_x_at	5481	1	P	1525	P	1543	P	PPID, CYPD
204186_s_at	5481	1	P	1624	P	1613	P	PPID
204208_at	8732	1	P	1480	P	1572	P	RNGTT, HCE
204217 s_at	6253	1	P	0341	P	0403	P	RTN2, NSP2
204218 at	25906	1	P	1512	P	1038	P	DKF2P564M082
204227 s_at	7084	1	P	0861	P	0652	P,M	TK2

Affymetrix Id	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
204235 s at	51454	1	P	1.189	P	1.518	P	GULP ${ }^{\text {I }}$
204238 s at	10591	1	P	0.712	P	0.451	1	C6orf108
204243 st	6018	1	P	1.390	P	1.579	P	RLF
204260 st	1114	1	P	0.419	P	0.311	P	CHGB; SCG1
204264 at	1376	1	P	0.840	P	0.571	P	CPT2; CPT1
204279 at	5698	1	P	1.323	P	1.765	P	PSMB9; LMP2
204285 s at	5366	I	P.A	1.563	P. A	2.275	p	PMAIP1
204286 s at	5366	1	A	2.536	P, A	3.391	P, A	PMAIP1; APR
204290 s at	4329	1	P	0.704	P	0.551	P	Al.DH6AI
204295 at	6834	1	P	0.810	P	0.551	P	SURF1
204313 s at	1385	1	P	1.382	P	1.649	P	CREBI
204314 s at	1385	1	P	1.489	P	1.642	\boldsymbol{P}	CREBI
204317 at		1	P	1.429	P	1.889	P	GTSEI; 399
204320 at	1301	1	P	0.837	P	0.639	P	COLIIAI
204330 s at	6183	I	P	1.730	P	1.629	P	MRPSI2
204331 s at	6183	I	P	1.601	P	1.166	P	MRPSI2
204333 s_at	175	I	P	0.613	P	0.696	P	AGA; AGU
204340 at	8269	1	P	0.631	P	0.611	P	CXorl12; ITBAI
204343 at	21	1	P	0.610	P	0.520	P	ABCA3: ABC3
204346 s at	11186	1	P.M	1.376	P	1.849	P	RASSF 1
204347 at	205	1	P	1.302	P	1.566	P	AK3
204352 at	7188	1	P	1.408	P	1.864	P^{\prime}	TRAF5: RNF84
204358 s at	23768	1	p	0.694	P	0.524	P. A	FIRT2
204359 at	23768	1	P	0.632	P	0.458	P	FIRT2
204360_s_at	4669	1	P	0.508	P	0.399	P	NAGLU
204361 s at	8935	1	P	1.433	P	1.661	P	SCAP2:
204362 al	8935	1	P	1.357	P	1.700	P	SCAP2
204371 s at	8570	I	P	0.740	P	0.611	P	K1HRP
204394 at	8501	I	P	0.603	P	0.644	P.A	SLC43AI
204398 s at	24139	1	P	0.689	P	0.547	P	EML 2
204407 at	8458	1	P	1.791	P	1.785	P	TTF2: HuF2
$204418 \times$ at	2946	1	P	0.923	P	0.556	P	GSTM2;
204420 at	8061	1	P	1.606	P	1.457	P	DIPA
204421 s at	2247	1	P	1.809	P	1.850	P	FGF 2
204422 s at	2247	I	P	1.451	P	1.551	P	FGF2
204423 at	4289	1	P	1.855	P	1.961	P	MKLN!
204425 at	393	1	P	0.602	P.M	0.462	P. A	ARHGAP4
204435 at	9818	1	P	1.611	P	1.567	P	NUPL.1
204441 s at	23649	1	P	1.617	P	1.341	P	I'Ol.A2
204442 x_8l	8425	1	P	0.723	P	0.654	\boldsymbol{P}	LTBP4
204459 at	1478	1	P	1.614	P	1.194	P	CSTF2
204460 s at	5810	1	P	1.566	P	1.402	P	RADI: HRADI
204465 s at	9118	1	P	1.743	P	1.507	P	[NA
204472 at	2669	1	P	1.182	P	1.735	P	GEM; KIR
204473 sat	9640	1	P	1.564	P	1.757	P	KIAA021]
204475 at	4312	1	P	1.787	P	2.786	P	MMP1:
20.4.477 at	5877	1	J	1.767	P	2.088	P	RSBII:
204478 s at	5877	1	P	1.726	p	1.590	p	RABIIF
20.4481 at	7862	1	P, A	1.516	P	1.467	P, A	BRPFI: BR140
20-490 s at	960	1	P,A	1.341	M.A	2.521	P.A	CD-44; 1 N

Affymetrix Id	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
204492_at	9824	1	P	1233	P	1540	P	ARHGAPIIA
204512_at	3096	1	P	1563	P	1528	P	HIVEP1, MBP-1
204514_at	1802	1	P	1717	P	1518	P	DPH2L2
204521_at	29902	1	P	0845	P	0642	P	HSU79274
204523_at	7699	1	P	1479	P	1602	P	ZNF140, pHZ-39
204530_s_at	9760	1	P,A	1538	P,M,A	1204	M,A	TOX
204531_s_at	672	1	P	1640	P	1746	P	BRCA1
204547_at	10966	1	P	0652	P	0557	P	RAB40B
204550_x_at	2944	1	P	0880	P	0520	P	GSTM1
204558 at	8438	1	P	1986	P	1587	P	RAD54L
204569_at	22858	1	P	0765	P	0622	P,A	ICK, MRK
204580 at	4321	1	P	2706	P	3028	P	MMP12, HME,
204589_at	9891	1	P	1203	P	1522	P	ARK5
204593_s_at	29787	1	P	1542	P	1381	P	FLJ20232
204603_at	9156	1	P	2735	P	2211	P	EXO1,
204605_at	10668	1	P	1549	P	1891	P	CGRRF1
204608_at	435	1	P	0863	P	0509	P, A	ASL
204616_at	7347	1	P	1614	P	1409	P	UCHL3
204622_x_at	4929	1	P	1826	P	1407	P	NR4A2,
204632_at	8986	1	P	1720	P	1535	P	RPS6KA4,
204633_s_at	9252	1	P,M	0732	A	0628	A	RPS6KA5
204639 at	100	1	P	0925	P	0654	P	ADA
204642_at	1901	1	P	1690	P	1541	P	EDG1
204646_at	1806	1	P	0825	P	0599	P	$\begin{gathered} \hline \text { DPYD, DHP, } \\ \text { DPD } \\ \hline \end{gathered}$
204667_at	3169	1	P	1348	P	1552	P	FOXAI
204668_at		1	P	1541	P	1696	P	
204690_at	9482	1	P	1463	P	1647	P	STX8, CARB
204692_at	4034	1	P	0832	P	0538	P,A	LRCH4
204695_at	993	1	A	2647	P	1946	P	CDC25A
204696 s at	993	1	A	1623	P, M	1196	M A	CDC25A
204700_x_at	27042	1	P	1423	P	1517	P	MGC29875
204702_s_at	9603	1	P	1485	P	1611	P	NFE2L3, NRF3
204703_at	8100	1	P	0853	P	0650	P	TTC10,
204712_at	11197	1	P	1220	P	2049	P	WIF1, WIF-1
204717_s_at	3177	1	P	0697	P	0533	P	SLC29A2
204727_at	11169	1	P,A	1886	P	2089	P	WDHD1
204728_s_at	11169	1	P	1747	P	1743	P	WDHD1, AND-1
204740_at	10256	1	A	1449	M, A	1605	P,M,A	CNKSR1, CNK1
204748_at	5743	1	M, A	1950	P, A	2226	P	COX2,
204749 at	4675	1	P	1812	P	2359	P	NAP1L3
204759_at	1102	1	P	2688	P	3253	P	CHCIL
204766_s_at	4521	1	P	1821	P	1512	P	NUDT1, MTH1
204772_s_at	7270	1	P	1615	P	1361	P	TTF1
204783_at	4291	1	P	1841	P	1900	P	MLFI
204784_s_at	4291	1	P	1553	P	1579	P	MLFI
204788_s_at	5498	1	P	0597	P	0522	P	PPOX
204790_at	4092	1	P	1773	P	1845	P	SMAD7
204791_at	7181	1	P	0762	P	0656	P	NR2C1
204793_at	9737	1	P	1222	P	1529	P	GASP

Affymelrix Id	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
204805 s at	8971	1	P	0.567	P	0.495	P	HIFX: H1X;
204807 at	10329	1	P	1.408	P	1.554	P	TMEMS
204808 s at	10329	I	P	1.703	P	1.594	P	TMEMS:
204831 al		1	P	1.414	P	1.549	P	
204837 at	66036	I	P	1.407	P	1.533	P	MTMR9
204840 s at	8411	1	P. A	1.536	$P \cdot A$	1.919	P	EEAI
204849 al	10732	1	P	0.676	P	0.512	P	TCFLS;
204854 at	10536	1	13	0.730	P.A	0.517	A	LEPREL2
204857 at	8379	1	P	0.619	P	0.426	P	MADILI:
204858_s_at	1890	1	P	0.625	P	0.537	P	ECGFI: TP
204862 s al	4832	1	P	0.859	I	0.552	P	NME3
204867 at	2644	1	P	0.735	P	0.589	P	GCHFR:
204868 at	3396	1	P	1.501	P	1.090	P	ICT1; DS-1
204880 al	4255	1	P	0.794	P	0.420	P	MGMT
204883 s al	3364	1	P	1.992	P	1.587	P	HUS1
204886 at	10733	1	P	0.685	P	0.631	P	Pl.K4
204897 at	5734	1	P	1.775	P	2.393	P	PTGER4
204905 s at	9521	1	P	1.584	P	1.469	P	EEFIEI; PI8
204928 s at	8273	1	P	1.667	P	1.339	P	SLC10A3
204936 at	5871	I	P. A	1.035	P	0.637	P.A	MAP4K2
204947 al	1869	1	P.M, ${ }_{\text {, }}$	1.612	P	1.430	P	E2F1; RBP3
204948 s at	10468	1	A	1.166	P, A	2.265	P	FST
204955 at	8406	1	P	1.309	P	1.812	P	SRPX: E「XI
204957 at	5001	1	P	1.674	Γ	1.702	P	ORCSL; ORCSP
204967 al	357	1	P.A	1.177	P	1.620	P	APXL; HSAPXI.
204977_at	1662	1	P	1.654	P	1.818	P	DDX10; HRH-J8
204979_s al	6450	1	A	2.152	P	2.223	P	SH3BGR
204981 at	5002	1	P	0.598	P.A	0.503	A	SLC22A18
204983 s at	2239	I	P	1.372	P	1.630	P	GPC4
204984 ai	2239	1	P	1.350	P	1.743	P	GPC4
204985 s at	79090	1	P	0.590	P	0.597	P	MGC2650
204990 s at	3691	1	P	0.827	P.A	0.641	A	1TGB4
204991 s al	4771	I	A	3.015	P	2.297	P	NF2; CAN
204998 s ut	22809	1	P	0.835	P	0.610	P	ATF5; ATFX
204999 s al	22809	1	P	0.686	P	0.422	P	ATF5: ATFX
205003 at	9732	1	P. A	1.307	P	1.522	P	DOCK4
205006 s at	9397	1	P	1.612	P	1.575	P	NMI2
205007 s yl	10518	1	P	0.806	P	0.609	P	CIB2
205034_at	9134	1	P	2.516	P	1.527	P	CCNE2; CYCE2
205047 5_al	440	1	P	0.377	P	0.278	P	ASNS; TSII
205052 81	549	1	?	0.638	P.M	0.428	P.M	AUH
205060 at	8505	1	P	1.275	P	1.549	P	PARG
205061 s at	5393	1	P	1.541	P	1.328	P	EXOSC9; p5
205070 al	54556	1	P	1.400	P	1.667	P	1NG3;
205076 s_al	10903	1	P	1.319	P	1.830	P	CRA
205081 al	1396	1	P	2.199	P	2.220	P	CRIPI
205085 at	4998	1	P	1.912	P	1.805	P	ORClL;
205088 _al	10046	1	M	1.179	P.A	1.702	P	CXorf6: CGI; F18
205090 s at	51172	1	P	0.980	P	0.647	\boldsymbol{P}	NAGPA

$\begin{aligned} & \text { Affymetrix } \\ & \text { Id } \end{aligned}$	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalzed	Flags	Normalized	Flags	
205092_x_at	22890	1	P,A	0686	A	0647	P,A	ZBTB1
205107_s_at	1945	1	P	0680	P	0594	P	EFNA4, EFL4
205115_s_at	9904	1	A	2047	P	2141	P	RBM19, NPO
205122_at	8577	1	P	1599	P	1672	P	TMEFF1
205123_s_at	8577	1	P	1555	P	1555	P	TMEFF1, H 7365
205126_at	7444	1	P	1795	P	1769	P	VRK2
205134_s_at	26747	1	P	1813	P	1938	P	NUFIP1
205135_s_at	26747	1	P	1782	P	1759	P	NUFIP1
205136_s_at	26747	1	P, A	2241	P	3564	P	NUFIP1
205141_at	283	1	P	0606	P,A	0873	P	ANG, RNASE5
205153_s_at	958	1	P,M,A	0926	P,M	0643	P,M,A	TNFRSF5, p50
205158_at	6038	1	P	0569	P	0706	P	RNASE4
205174_s_at	25797	1	P	1291	P	2557	P	QPCT, QC, GCT
205192_at	9020	1	P,M	1366	P	1631	P	MAP3K14
205193 at	23764	1	P,M	1544	P	1242	P	MAFF, U-MAF
205205_at	5971	1	P	1603	P	1581	P	RELB, I-REL
205217_at	1678	1	P	1828	P	1924	P	TIMM8A, DDP
205218_at	10621	1	P	1540	P	1396	P	POLR3F
205219 s at	2585	1	P	0733	P	0603	P	GALK2
205224_at	6835	1	A	1955	P,A	1740	P,M,A	SURF2
205249_at	1959	1	P	1708	P	2299	P	EGR2,
205264_at	10849	1	P	1520	P	1559	P	ASE-1
205268_s_at	119	1	P	1643	P	2027	P	ADD2, ADDB
205271_s_at	23552	1	A	1684	P,A	1732	P, A	CCRK
205279_s_at	2743	1	P	0552	P	0422	P	GLRB
205280_at	2743	1	P	0502	P	0393	P	GLRB
205282_at	7804	1	P	0808	P	0441	P	LRP8
205284_at	9816	1	A	1630	P,M	1845	P,M	KIAA0133
205286 at	7022	1	A	1281	P,A	1867	P,M,A	TFAP2C
205320_at	10297	1	P	0600	P	0669	P	APC2, APCL
205345_at	580	1	P	1658	P	1892	P	BARDI
205350_at	1381	1	P	1279	P	1882	P	CRABP1
205354_at	2593	1	P	0635	P	0454	P	GAMT
205358 at	2891	1	P	1050	P	1505	P	GRIA2, GLUR2
205361_s_at	5203	1	P	1637	P	1646	P	PFDN4
205405 at	9037	1	P	0810	P	0476	P, A	SEMA5A, semF
205406_s_at	53340	1	P	1548	P	2062	P	SPA17, SP17
205407_at	8434	1	P	0458	P	0398	P	RECK
205420 at	5191	1	P	1017	P	0592	P	PEX7, PTS2R
205427_at	6940	1	P	2098	P	2272	P	ZNF354A, EZNF
205429_s_at	51678	1	P	1795	P	1690	P	MPP6, VAMI
205441_at	79629	1	P	0736	P	0624	P	FLJ22709
205443_at	6617	1	P	1486	P	1592	P	SNAPC1, SNAP43
205447_s at	7786	1	P	0685	P,A	0588	P,A	MAP3K12
205461_at	11021	1	P,M,A	0772	M, A	0530	A	RAB35, RAY
205479_s_at	5328	1	A	1261	A	1555	P	PLAU UPA
205493_s_at	10570	1	P	1949	P	1956	P	DPYSL4, CRMP3
205498_at	2690	1	P,M,A	1253	P	1560	P	GHR
205510_s_at	55056	1	P	0547	P,M	0535	P,A	GABPB2

Affymetrix Id	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalızed	Flags	Normalized	Flags	
205519_at	79968	1	P	1503	P	1461	P	FLJ12973
205521_at	9941	1	P,M	1565	P	1276	P	ENDOGLI
205526_s_at	11104	1	P	1378	P	1621	P	KATNAI
205527_s_at	50628	1	P	1657	P	1464	P	GEMIN4
205534_at	5099	1	A	1583	A	2336	P	PCDH7
205547_s_at	6876	1	P	3365	P	2114	P	TAGLN
205561_at	79734	1	P	1724	P	1338	P,M,A	FLJ12242
205575 at	10882	I	P	0578	P	0520	P	CIQL1
205578_at	4920	1	A	1139	M, A	1606	P, A	ROR2
205581_s_at	4846	1	P,A	0784	P, A	0562	A	NOS3
205588_s_at	11116	1	P	1610	P	1653	P	FGFR10P
205621_at	8846	1	P	1543	P	1490	P	ALKBH, ABH
205628_at	5558	1	P	2090	P	2006	P	PRIM2A, p58
205633_s_at	211	1	P	1691	P	1406	P	ALAS1
205634_x_at	79143	1	P	0756	P	0569	P	LENG4, BB1
205652_s_at	25809	1	P	0630	P	0527	P	TTLLI
205677_s_at	10301	1	P	1712	P	2001	P	DLEU1
205691_at	9143	1	P	0546	P	0360	P	SYNGR3
205742_at	7137	1	P	0664	P,A	0649	P,A	TNNI3, TNNCI
205748_s_at	55658	1	P	0894	P	0564	P	RNF126
205760_s_at	4968	1	P	1634	P	1298	P	OGG1
205763_s_at	8886	1	P	1620	P	1427	P	DDX 18, MrDb
205770_at	2936	1	P	0983	P	0600	P	GSR
205771_s_at	9465	1	P	0785	P	0545	P	AKAP7
205774_at	2161	1	P	0653	P	0487	P,A	F12, HAF
205776_at	2330	1	P,M	0595	P,A	0653	A	FMO5
205781 _ at	9605	1	P	0727	P	0610	P,M	ATP-BL
205802_at	7220	1	P	1339	P	1709	P	TRPCI
205803_s at	7220	1	P	1409	P	1790	P	TRPCI
205807_s_at	7286	1	P	1500	P	1541	P	TUFT1
205822_s_at	3157	1	P	0768	P	0611	P	HMGCSI
205828_at	4314	1	P	3382	P	3934	P	MMP3
205841~at	3717	1	M,A	1789	P	2204	P,A	JAK2
205842_s_at	3717	1	P,A	1757	P	1858	P	JAK2
205858_at	4804	1	A	3290	M,A	6523	P	NGFR
205876_at	3977	1	P,M	2022	P	3180	P	LIFR
205880_at	5587	1	P	1364	P	1582	P	PRKCM
205895 s at	9221	1	P	1579	P	1399	P	NOLCI
205924_at	5865	1	A	2226	P	1677	P	RAB3B
205925_s_at	5865	1	P	1583	P	1413	P	RAB3B
205928_at	10224	1	P	1614	P	1876	P	ZNF443, ZK.
205932 s s at	4487	1	P, A	1413	P	1804	P	MSX1
205955_at	55310	1	P	0800	P	0596	P, A	TAF6L
205964_at	79088	1	P	1561	P	1670	P	ZNF426
205967_at	8364	1	P	0567	P	0654	P	HISTIH4C
205973 at	9638	1	P, A	1656	P	1389	P	FEZ1
205995_x_at	9657	1	A	1563	M,A	1728	P M A	IQCB1
206003_at	9662	1	P	1701	P	1860	P	KIAA0635
206016_at	28952	1	P	0912	P	0616	P	JM1
206036_s_at	5966	1	P	1537	P	1775	P	REL, C-Rel

xlvin

Affymetrix Id	Locuslink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flas	
206039 as	9363	1	P	0.557	P.M.A	0.639	P.A	RAB33A
206055 s_at	6627	1	P	1.776	P	1.444	P	SNRPAI
206067 s al	7490	I	A	2.087	P. A	2.391	P	WTI: GUD;
206103 at	5881	1	P	0.423	P	0.217	A	RAC3
206104_at	3670	1	P, A	1.663	P	2.113	P	ISLI; Isl-]
206106 at	6300	1	P	0.856	P	0.586	P	MAPK12
206108 s at	6431	1	$1{ }^{1}$	0.631	P	0.545	P	SFRS6: 852
206110 at	8357	1	P	1.250	P	1.671	P	HISTIH3H
206116 s at	7168	1	P	1.992	P	2.370	P	TPM1: CMH3
206128 at	152	1	P	0.759	P	0.602	P.M.A	ADRA2C
206140 al	9355	1	P	1.859	P	1.873	P	LHX2; LH2
206142 al	7694	1	P.M	0.654	A	0.638	P.A	ZNF135: ZNF6I
206157 at	5806	1	P	2.827	P	2.316	P	PTX3; TSG-14
206172 a!	3598	1	P	1.066	P	2.208	P	ILI3RA2:IL-I3R
206182 at	7693	I	P	1.395	P	1.507	P	2NFI34: pHZ-15
206204 al	2888	I	A	1.524	P.A	1.353	P	GRBI4
206235 al	3981	1	P	1.573	P	1.669	P	LIG4
206261 at	8187	1	P	1.888	P	2.078	P	2NF239; MOK2
206290 s at	6000	1	P	1.427	P	1.586	P	KGS7
206299 at	27112	1	P.A	1.771	P	2.069	P	TMEM28; TED
206336 at	6372	1	P. A	1.060	P. A	1.565	M, A	CXCL6; GCP2
206343 s al	3084	1	P	4.211	P	4.886	P	NRGI: GGF
206352 s at	5192	1	A	1.639	P	1.401	P.M	PEX10; NALD
206377 at	2295	1	P	1.411	P	1.671	P	FOXF2; FKH166
206397 x_at	2657	1	P	0.772	P	0.583	P.A	GDFI
206401 s at	4137	1	P	0.646	P.A	0.408	P.A	MAPT; TAU
206424_al	1592	1	P	1.631	P	1.340	P	CYP26AI
206440_at	8825	1	A	1.832	P	1.330	P.A	LIN7A: VELII
206448_at	22891	1	p	1.376	P	1.980	P	7NF365
206452 x at	5524	I	P	1.526	P	1.334	P	PPP2R4
206489 s_at	9229	1	P	1.073	P	0.644	P	DLGAP1
206507 at	9753	1	P	2.250	P	3.405	P	ZNF305
206508 at	970	1	P.A	1.099	P	1.545	P	TNFSF7:
206550 s_at	9631	1	\boldsymbol{P}	1.515	P	1.516	P	NUP155
206552 s as	6863	1	M, A	1.164	P.A	1.521	P.A	TAC1
206578 at	1482	1	P	1.692	P	1.600	$1{ }^{1}$	NKX2-5
206613 s at	9015	I	P	2.270	P	2.403	P	TAFIA
206615 s at	53616	1	P, A	0.858	P, A	0.625	A	ADAM22
206632 \$ at	9582	I	P	1.306	P	1.749	P	APOBEC3B
206653 at		I	I	1.609	P	1.160	P	POLR3G
206662 at	2745	1	P	1.696	P	2.747	P	GI.RX: GRX
206667 s at	9522	1	P	0.622	P	0.722	P	SCAMPI
206675 s al	6-498	1	P.A	2.301	P	2.118	P.M	SKIL: SNO
206688 s al	10898	1	P	0.811	P	0.609	P	CPSF4
$206689 \times$ at	10524	1	P	0.788	H	0.574	P	ITATIP
206693 at	3574	1	P.M	1.603	P	3.207	P	11.7; IL-7
2066449 $\times 21$	4861	1	$\boldsymbol{P}, \mathbf{A}$	1.581	\boldsymbol{P}	1.253	\boldsymbol{P}, \wedge	NIPAS!;
206721 at	57821	1	P	1.503	P,M	1.703	p	LOC:57821
206770 s al	23443	1	P	1.354	P	1.521	P	SI.C35A3
206772 at	5756	1	P.A	1.246	$\boldsymbol{*}$	1.653	P	PTHR2

Affymetrix Id	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalızed	Flags	Normalized	Flags	Normalized	Flags	
206773_at	4062	1	P,A	1322	P, M	1661	P	LY6H, NMLY6
206782 s_at	3338	1	P	0639	P,M	0537	P, A	DNAJC4
206809_s_at		1	P	1596	P	1860	P	HNRPA3
206826_at	5375	1	P	1330	P	1517	P	PMP2, FABP8
206833_s_at	98	1	P	0839	P	0650	P	ACYP2
206846_s_at	10013	1	P	0677	P	0499	P	HDAC6, HD6,
206848_at	3204	1	P	1379	P	1589	P	HOXA7, ANTP
206891_at	89	1	P	0677	P, A	0565	P, A	ACTN3
206906_at	7087	1	P	0652	P	0652	P	ICAM5
207006_s_at	29903	1	P	0661	P, A	0473	P,A	HSU79303
207030 s_at	1466	1	P	2372	P	2355	P	CSRP2
207039_at	1029	1	P	1272	P	1541	P	CDKN2A
207088 _s_at	8402	1	P	0815	P	0644	P	SLC25A11
207145_at	2660	1	P,A	2027	P	1671	P	GDF8, MSTN
207147_at	1746	1	P	2217	P	2191	P	DLX2, TESI
207153_s_at	11146	1	P	1859	P	1471	P	GLMN, GVM
207164_s_at	10472	1	P	1750	P	1605	P	ZNF238, RP58
207199_at	7015	1	P,A	1539	P	1396	P	TERT, TP2, TRT
207302_at	6445	1	P	0681	P	0572	P	$\begin{gathered} \text { SGCG, A4, } \\ \text { MAM } \\ \hline \end{gathered}$
207332 s_at	7037	1	P	1556	P	1342	P	TFRC, CD71
207391_s_at	8394	1	P	1352	P	1503	P	PIP5K1A
207415_at	22925	1	P,A	1455	P,A	1509	P,A	PLA2R1
207437_at	4857	1	P	1281	P	1760	P	NOVA1,
207469 s_at	8544	1	P	0558	P	0236	P	PIR
207574_s_at	4616	1	P	2624	P	2869	P	GADD45B
207633_s_at	4593	1	P,M,A	1527	P	1126	P,M	MUSK
207688_s_at	3626	1	P	1517	P ,	1390	P	[NHBC, IHBC
207713 s_at	10616	1	P	0769	P	0626	P	C20orf18, XAP4
207714_s_at	871	1	P	1797	P	1770	P	SERPINH1
207722_s_at	55643	1	P	0720	P	0519	P, A	BTBD2
207753_at	57343	1	P	1459	P	1751	P	ZNF304
207768 at	1961	1	A	1995	P	2562	P, A	EGR4
207781 s_at	7552	1	P	1425	P	2020	P	ZNF6, ZNF4
207813 s_at	2232	1	P	0457	P	0220	P	FDXR, ADXR
207826_s_at	3399	1	P	7454	P	6419	P	ID3, HEIR-1
207831 x_at	1725	1	P	0856	P	0595	P	DHPS
207855 s_at	23155	1	P	1613	P	1347	P	MCLC
207876 s_at	2318	1	P	1512	P	1685	P	FLNC, ABPA
207891 s_at	11219	1	P	1559	P	1001	P	TREX2
207978_s_at	8013	1	P	2087	P	1290	P	NR4A3, CHN
208003_s_at	10725	1	P	1505	P	1738	P	NFAT5
208018_s_at	3055	1	A	1611	P,A	1861	P, A	HCK
208021_s_at	5981	1	P	1856	P	2057	P	RFCl
208025 _s_at	8091	1	P	1003	P	0640	P	HMGA2
208055 s at	26091	1	P	1618	P	1558	P	HERC4
208078_s_at	6935	1	P	1776	P	1290	P,M	TCF8, BZP
208114_s_at	81875	1	P	2005	P	1741	P	FLJ12671
208117 s_at	81887	1	P	1605	P	1411	P	FLJ12525
208119_s_at	81931	1	P	1399	P	1520	P	ZNF505

Aflymetrix Id	Locuslink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flag	Normalized	Flag	
208180 s at	8365	I	P	1.717	P	2.090	P	HISTIH4H
208264 s al	8669	I	P	1.670	P	1.558	P	elF3-alpha
208270 s al	6051	I	P	0.887	P	0.653	P	RNPI:P
208273 at	57116	1	P.A	1.401	A	1.958	P.M	LOC57116
208290_s_al	1983	1	P	2.199	P	2.124	P	EIF5: FIF-5A
208309_s_al	10892	I	P	1.807	P	1.742	P	MALT 1
208336 s at	9524	I	P	0.631	P	0.558	P	GPSN2
208361 s at	661	1	P.M	1.682	P	1.656	P	POL.R3D
208368 s at	675	1	$\mathrm{P}^{\prime}, \mathrm{A}$	1.803	P	1.779	P	RRCA2; FAD
208370 s at	1827	1	P	1.388	P	1.633	P	DSCRI: CSP1
208433 s_at	7804	1	P	0.593	P	0.308	P	L.RP8: APOL:R2
208447 s at	5631	1	P	1.536	P	1.299	P	PRPSI
208478 s at	581	1	P	0.536	P	0.361	P	BAX
208611 s at	6709	1	P	1.415	P	1.506	P	SPTANI
208634 s at	23499	1	P	1.468	P	1.590	P	MACFI
208649 s at	7415	1	P	0.932	P	0.610	P	VCP; p97
208650 s at	934	1	P.M.A	2.429	P	5.150	P	CD24
$208651 \times$ at	934	1	P.A	1.757	P	3.434	P	CD24; CD24A
208676 s al		1	\boldsymbol{P}	1.796	P	1.422	P	PA2G4
208677 s at	682	1	P	0.668	P	0.630	P	BSG
208693 s at	2617	1	P	0.692	P	0.650	P	GARS: CMI2D
$208699 \times$ at	7086	I	P	0.900	$1{ }^{2}$	0.642	P	TKT
208705 s_at	1983	1	P	1.678	P	1.593	P	EJF 5; IIIF-SA
208706 s at	1983	I	p	1.899	P	1.949	P	EJF5; EIF-5A
$208708 \times$ at	1983	1	P	2.023	P	1.994	P	EIF5; EIF-5A
208711 s at	595	1	M, A	1.707	P	1.648	P, A	CCNDI
208712 at	595	1	P.A	2.242	P	2.582	P	CCNDI
208735_s_at	10106	1	P	0.717	P	0.567	P	CTDSP2
208740 al	10284	1	P	2.951	P	3.168	P	SAP18
208741 at	10284	1	P	2.042	P	2.295	P	SAP18
208742 s al	10284	I	P	1.994	P	1.968	P	SAP18
208745 at	10632	1	P	1.410	P	1.608	P	ATPSL
208759 at	23385	1	P	0.902	P	0.648	P	NCSTN
208782 at	11167	1	P	1.079	P	1.681	P	FSTLI
208789 at	22939	1	P	1.593	P	1.765	P	PTRF
208791	1191	1	P	1.180	P	1.510	P	CL.U
208792 s at	1191	1	P	1.160	P	1.534	P	CI.U
$208798 \times$ al	23015	1	P	1.550	P	1.814	P	GOLGIN-67
208802 at	6731	1	P	1.536	P	1.432	P	SRP72
208803 s at	6731	I	P	1.649	P	1.513	P	SRP72
208813 at	2805	1	P	0.610	p	0.571	P	GOT1
208828_at	54107	1	P	1.513	P	1.274	P	POLIE3;
208832 at	25814	1	P	1.755	P	1.839	P	18461.
208843 s sat	26003	I	P	1.529	P	1.551	P	GORASP2: p59
208848 at	128	I	P	1.403	P	1.551	${ }^{\prime}$	ADHIS
20×851 s at	7070	1	P	1.525	P	1.936	P	THY1: CD90
208865 at	1452	1	P	1.489	P	1.827	P	CSNKIAI
208866 at	1452	1	P	1.716	P	2.209	P	CSNKIAI
208867 s at	1452	1	P	1.383	P	1.573	P	CSNKIAI
208871 at	1822	1	A	1.722	P	1.654	P.M.A	DRPI.A

Affy metrix Id	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
208874 x at	5524	1	P	1511	P	1357	P	PPP2R4
208879 x a at	24148	1	P	0761	P	0521	P	C20orf14
208883 at	51366	1	P	1089	P	1523	P	DD5
208884 s_at	51366	1	P	1273	P	1520	P	DD5, EDD
208886_at	3005	1	P	0367	P	0371	P	H1F0, H10
208891_at	1848	1	P	0653	P	0596	P	DUSP6
208892_s_at	1848	1	P	0662	P	0624	P	DUSP6
208893 s_at	1848	1	P	0512	P	0437	P	DUSP6
208896_at	8886	1	P	1711	P	1600	P	DDX18, MrDb
208898_at	51382	1	P	2456	P	2748	P	ATP6V1D
208899_x_at	51382	1	P	2242	P	2568	P	ATP6V1D
208911 s a at	5162	1	P	0929	P	0629	P	PDHB, PHE1B
208916 at	6510	1	P	0730	P	0632	P	SLC1A5, R16
208917_x_ at	65220	1	P	0872	P	0546	P	FLJI3052
208918_s_at	65220	1	P	0993	P	0590	P	FLJ13052
208919_s_at	65220	1	P	0805	P	0583	P	FLJ13052
208920_at	6717	1	P	1682	P	1908	P	SRI
208922_s_at	10482	1	P	1407	P	1628	P	NXF1, TAP
208930_s_at	3609	1	P	0638	P	0442	P	ILF3
208931_s_at	3609	1	P	0922	P	0471	P	ILF3, MMP4
208932 at	5531	1	P	0932	P	0657	P	PPP4C, PPX
208937 s s at	3397	1	P	4295	P	3094	P	ID1
208939_at	22929	1	P	1184	P	1526	P	SEPHS 1
208940_at	22929	1	P	1024	P	1526	P	SEPHS 1
208944_at	7048	1	P	1236	P	1516	P	TGFBR2
208955_at	1854	1	P	1625	P	1955	P	DUT, dUTPase
208968_s_at	57019	1	P	1514	P	1178	P	LOC57019
208969 a a	4704	1	P	1618	P	1597	P	NDUFA9
208975_s_at	3837	1	P	1541	P	1443	P	KPNB1
208985 s_at	8669	1	P	1579	P	1499	P	elF3-alpha
209003_at	8402	1	P	0841	P	0632	P	SLC25A11
209010_s_at	7204	1	A	4240	A	12140	P,M	TRIO
209014 at	9500	1	P	0717	P	0569	P	MAGED1
209015_s_at	10049	1	P	1754	P	2181	P	DNAJB6, MRJ
209017 s sat	9361	1	P	0608	P	0403	P	PRSS15, LON
209019 s at	65018	1	P	1306	P	1740	P	PINK1, BRPK,
209025_s_at	10492	1	P	1512	P	1265	P	SYNCRIP
209040_s_at	5696	1	M,A	1168	M,A	1668	P	PSMB8
209052_s_at	7468	1	P	0903	P	0655	P,A	WHSC1
209068_at	9987	1	P	1293	P	1642	P	HNRPDL
209076_s_at	56270	1	P	1556	P	1549	P	LOC56270
209085 x_at	5981	1	P	1637	P	1654	P	RFCI
209087 x _at	4162	1	P,A	1438	P	1657	P	MCAM
209090 s_at		1	P	1447	P	1778	P	
209102_s_at	26959	1	P	0490	P	0683	P	HBP1
209106_at	8648	1	P	1228	P	1561	P	NCOAI
209113_s_at	10362	1	P	0632	P	0533	P	HMG20B
209117_at	23558	1	P	0703	P	0613	P	WBP2
209139 s_at	8575	1	P	1530	P	1284	P	PRKRA
209152 s at	6929	1	P	1745	P	1668	P	TCF3

Affymetrix Id	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalızed	Flags	Normalized	Flags	Normalızed	Flags	
209156_s_at	1292	1	P	0590	P	0557	P	COL6A2
209161_at	9128	1	P	2141	P	1732	P	PRPF4
209162_s_at	9128	1	P	1836	P	1528	P	PRPF4, PRP4
209165_at	26574	1	P	1540	P	1472	P	AATF, DED
209172_s_at	1063	1	P	1195	P	1780	P	CENPF, CENF
209173_at	10551	1	P	2030	P	1954	P	AGR2, AG2
209175_at	11196	1	P	1557	P	1543	P	SEC23IP
209180_at	5876	1	P	1707	P	1786	P	RABGGTB
209181_s_at	5876	1	P	1544	P	1503	P	RABGGTB
209187_at	1810	1	P	1661	P	1910	P	DR1
209188_x_at	1810	1	P	1471	P	1615	P	DR1, NC2
209192_x_at	10524	1	P	0711	P	0543	P	HTATIP
209196_at	9277	1	P	1794	P	1554	P	C6orfl1, BING4
209205_s_at	8543	1	P	1581	P	2534	P	LMO4
209211_at	688	1	P	1455	P	1708	P	KLF5
209213_at	873	1	P	0733	P	0619	P	CBR1
209221_s_at	9885	1	P	1457	P	1682	P	OSBPL2
209233_at	10436	1	P	1666	P	1304	P	C2F
209234_at	23095	1	P	0817	P	0595	P	KIFIB
209238_at	6809	1	P	1706	P	2020	P	STX3A
209242 at	5178	1	P	1510	P	1405	P	PEG3
209243 s_at	23619	1	P	1721	P	1459	P	PEG3
209244 s_at	10749	1	A	2048	P	1504	A	KIF1C
209263_x_at	7106	1	P	0747	P	0580	P	TM4SF7
209264_s_at	7106	1	P	0625	P	0514	P	TM4SF7
209267_s_at	64116	1	P,M	1907	P	2684	P	SLC39A8
209268_at	11311	1	P	1660	P	1336	P	VPS45A
209273_s_at	81689	1	P	1737	P	1349	P	HBLD2
209276_s_at	2745	1	P,M	1321	P	2187	P	GLRX
209277_at	7980	1	P	1915	P	3052	P	TFPI2
209278_s_at	7980	1	P	1532	P	2279	P	TFPI2
209286_at		1	A	1954	P,A	2430	P, M	CDC42EP3
209288_s_at	10602	1	P	1401	P	2037	P	CDC42EP3
209291_at	3400	1	P	4160	P	5427	P	ID4
209292 at	3400	1	P	3185	P	3789	P	ID4
209293_x_at	3400	1	P	2886	P	2748	P	ID4
209294_x_at	8795	1	P	0700	P, A	0604	P,A	TNFRSF10B
209304_x_at	4616	1	A	2200	P	2556	P,M,A	GADD45B
209305_s_at	4616	1	P,A	1778	P	1867	P	GADD45B
209306_s_at	23075	1	P	1453	P	1527	P	SWAP70
209307_at	23075	1	P	1481	P	1687	P	SWAP70
209330_s_at	3184	1	P	0753	P	0639	P	HNRPD, P37
209340_at	6675	1	P	2249	P	2366	P	UAP1, AgX
209344_at	7171	1	P	1515	P	1317	P	TPM4
209348_s_at	4094	1	P, A	1701	P,A	2435	P,A	MAF
209349_at	10111	1	P	1598	P	1667	P	RAD50
209366 x_at	1528	1	P	1580	P	1386	P	CYB5
209367_at	6813	1	P	0702	P	0551	A	STXBP2
209379_s_at	54462	1	P	1427	P	1538	P	KIAAT128
209383_at	1649	1	P	0951	P	1605	P	DDIT3, CHOP

Affymetrix Id	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalızed	Flags	
209384_at	11212	1	P	1531	P	1505	P	PROSC
209407_s_at	10522	1	P	0600	P	0340	A	DEAF1
209417_s_at	3430	1	P	0482	P	0493	P	IFI35, IFP35
209428_s_at	7542	1	P	0695	P	0358	P,A	ZFPLI
209432_s_at	10488	1	P	1518	P	1560	P	CREB3
209440 at	5631	1	P	1575	P	1533	P	PRPS1, PRSI
209457_at	1847	1	P	1427	P	1695	P	DUSP5, HVH3
209459_s_at	57416	1	A	2323	M, A	1992	P, A	ABAT, GABAT
209461_x_at	57418	1	P, A	1101	P	0624	A	WDR18
209468_at	4041	1	P	0686	P	0638	P,A	LRP5, HBM
209478_at	201254	1	P	2051	P	1580	P	STRA13
209490_s_at	9374	1	P	0933	P	0619	P	PPT2
209504_s_at	58473	1	P	0610	P,M,A	0559	A	PLEKHBI
209516_at	10322	1	P,M	1584	P	1381	P	SMYD5
209519 at	4686	1	P,A	1506	P	1654	P	NCBP1
209522_s_at	1384	1	P	0813	P	0566	P	CRAT, CATI
209523_at	6873	1	P	1527	P	1480	P	TAF2, TAF2B
209527_at	23404	1	P	1581	P	1421	P	EXOSC2
209529_at	8612	1	P	0647	P	0597	P	PPAP2C
209531_at	2954	1	P	0632	P	0425	M,A	GSTZI
209532_at	9373	1	P,A	1690	P, M	1539	P	PLAA
209533_s_at	9373	1	P	1772	P	1581	P	PLAA
209544_at	8767	1	P,A	1257	P	1653	P	RIPK2
209549_s_at	1716	1	P	1484	P	1553	P	DGUOK
209556 at	23154	1	P	1543	P	1459	P	NCDN
209561_at	7059	1	P	0977	P	1661	P	THBS3, TSP3
209567_at	23212	1	P	1690	P	1675	P	RRS1
209568_s_at	23179	1	P	1528	P	1803	P	RGL1
209587 at	5307	1	P, A	1877	P	1549	P	PITX1
209592_s_at	10238	1	P	0650	P	0474	P	HAN 11
209593_s_at	27348	1	P	1516	P	1405	P	TOR1B
209598_at	10687	1	P	2262	P	4527	P	PNMA2
209607_x_at	6818	1	P	1454	P	1529	P	SULT1A3
209611 s_at	6509	1	P,A	0725	P, A	0660	A	SLC1A4
209620_s_at	22	1	P	0806	P	0621	P	hABC 7
209631_s_at		1	A	1145	A	2884	P	
209651_at	7041	1	P	1443	P	1746	P	TGFBIII
209653_at	3840	1	P	1989	P	1706	P	KPNA4
209656_s_at	83604	1	P	1573	P	2707	P	TM4SF10
209658 ${ }_{\text {at }}$	8881	1	P	1625	P	1494	P	CDC16, APC6
209666_s_at	1147	1	P	2045	P	1912	P	CHUK, IKK1
209674_at	1407	1	P	1379	P	1626	P	CRY1, PHLL1
209694 at	5805	1	P	1528	P	0971	P	PTS, PTPS
209707 at	10026	1	P	1562	P	1851	P	PIGK, GP[8
209708_at	26002	1	P	1371	P	1766	P	MOXDI
209710_at	84724	1	P	2409	P	2266	P	GATA2
209725 at	27340	1	P	1526	P	1377	P	DRIM
209750_at	9975	1	P,A	1426	P	1506	P	NR1D2
209759_s_at	1632	1	P	0607	P	0464	P	DCI
209771_x_at	934	1	P	2313	P	4957	P	CD24

Affymetrix Id	LocusLins	Day 0		Day 3		Dav 7		Common Name
		Noranalized	Flags	Noranalized	Flaps	Normalized	Flags	
209772 s at	934	1	A	1.698	P.A	2.682	P.M	CD24: CD24A
209773 s as	6241	1	P	1.59\%	P	1.266	P	RRM2; R2
209777 s at	6573	1	A	1.629	P.A	1.407	P.M.A	SLCI9AI
209781 s at	10656	1	P.M.A	1.808	P	2.380	P	KHDRBS3
209782 s at	1628	I	P	0.557	P	0.633	P	DBP: DABP
209803 s at	7262	I	P,M	1.975	P	2.322	P	PHILDA2
209805 at	5395	1	M.A	1.573	P	1.480	P.M	PMS2
209818 s_at	22927	1	P	1.722	P	2.078	\mathbf{P}	HABPA
209822 s at	7436	1	P	0.631	P	0.771	P	VLDLR
209831 x al	1777	1	P	0.643	I'	0.577	P	DNASE2
209834 al	9469	I	P, A	2.077	P	2.175	P	CilST3
$209835 \times$ at	960	I	\wedge	1.292	P	1.919	P	CD44; IN
$209836 \times$ al	79008	1	P	2.284	P	2.104	\mathbf{P}	MGC5178
209838 at		1	P	1.820	P	1.925	P	TRIPI5
209840 s as	54674	I	P	1.563	P	1.584	P	LRRN3
209841_s_at	54674	I	P	1.613	P	1.610	P	LRRN3
209845 al	23608	I	P	1.649	P	1.731	P	MKRN1; RNF61
$209852 \times$ al	10197	1	P	1.772	P	1.512	P	PSME3
209865 at	23443	1	P	1.371	P	1.661	P	SLC35A3
209875 s a	66\%	1	A	1.126	P.M.A	2.060	P	SPPI
209892 at	2526	1	P	1.479	P	1.623	P	FUT4
209917 s_at	11257	1	P	0.782	P	0.565	P.M.A	TP53API
209921 at	23657	1	P	0.594	P	0.555	P	SLC7AII
209927 s at	26097	1	P	1.547	P	1.346	P	IXKYZ.P547E1010
209934 s_at	27032	I	P	1.468	P	1.618	P	ATP2C1
209935 at	27032	I	P	1.320	P	1.668	P	ATP2CI
209943 at	26235	I	P	1.516	P	1.522	P	FBXI, 4; FBLA
209944 at	57862	1	P	1.431	P	1.512	P	7NF410; APAI
209945 s_at	2932	1	P	1.524	P	1.358	P	GSK3B
209959 at	8013	1	P.M	3.086	P	2.098	P	NR4A3
209961_s_ul	3082	1	P	1.011	P	0.630	P	HGF: SF; HPTA
209963 s al	2057	I	P	0.814	P	0.643	P	EP()R
209969 s_al	6772	I	p	0.692	P	0.445	A	STATI;
209998 at	84720	I	P	0.745	P	0.511	P	P1GO)
210006 at	25864	I	P	0.761	P	0.638	P	DKF:PP5640243
210007 s at	2820	I	P	1.624	P	1.722	P	GPD2; GDH2
210008 s al	6183	1	P	2.028	P	1.545	P	MRPS12
210009 s al	9570	1	P	1.679	P	1.354	P	GOSR2
210010 s_at	6576	1	P	0.813	P	0.645	P	SIC25A1
210017 at	10892	1	P	1.486	P	1.529	P	MALTI
$210018 \times$ at	10892	1	P	1.654	P	1.635	P	MAITI
210028 s at	23595	1	P	1.590	P	1.225	P	ORC3L
210033 s at	9576	1	P. A	1.390	P.M	2.134	P	SPAG6
210070 s at	1375	1	P	1.203	P	1.672	P	CPT1B
210073 a!	6489	1	P.A	1.910	P.M	1.135	P. A	SIAT8A
210093_s_al	4116	1	P	1.584	P	1.259	P	MACOH
210095 s ad	3486	1	P	1.781	p	1.937	P	JGFBP3
210105 s al	2534	1	P	1.064	P	1.518	P	FYN: SLK
210112 al	3257	1	p	1.754	P	2.189	P	HPS1; MCF5277
210115 at	116832	I	P	1.592	P	1.522	P	RPL391.

Aftymetrix Id	Iocusliak	Day 0		Day 3		Day 7		Common Name
		Normalized	Flag	Narmalized	Flag	Normalized	Flap	
210117 at	6674	1	P	1.977	P	2.118	P	SPAGI
210130 s at	7108	1	P	0.348	P	0.229	P	I'M7SF2: AN(il
210138 at	8601	I	P	1.544	P	0.982	P	RGS20
210150 s_at	3911	I	P	0.626	P	0.539	P	1.AMA5:
210151 sat	8444	1	A	1.814	P	1.872	P	DYRK3
210171 s at	1390	1	P	0.735	P	0.513	P.A	CREM
210175 at	6936	1	P	1.626	P	1.294	P	C2orf3:
210180 s_at	6434	1	P	0.771	P.M	0.649	P	SFRS 10
210205 at	8705	1	P	0.589	P.A	0.557	P	[33GALT4;
210215 at	7036	1	P	0.919	P	0.637	P	TFR2
$210216 \times$ ail	5810	1	P	1.537	P	1.419	P	RADI: IIRAD1
210220 at	2535	1	P	0.606	P	0.621	P	F2D2
210221 at	1136	1	P, A	1.546	P, M	1.882	P	CHRNA3
210233 at	3556	1	P.A	2.028	P.A	3.241	P	ILIRAP
210236 at	8500	1	P	1.685	${ }^{1}$	1.947	P	PPFIAI: LIPI
210241 s a	11257	1	P	0.700	P.A	0.623	P	TP93AP1
210243 s at	8703	I	P	0.737	P	0.503	P	B4GALT3
210253 at	10553	I	P	0.522	P, M	0.401	P	ITATIP2
210255 at	5890	I	P.A	1.502	P	1.665	P	RADSILI
210284 s w	23118	I	P	1.143	P	1.553	P	MAP3K7IP2
$210285 \times$ af	9589	1	P	0.784	P	0.609	p	WTAP
$210298 \times$ at	2273	1	P	1.139	P	1.714	P	FHLI
210299 s at	2273	I	\mathbf{P}	1.600	P	2.131	P	FHLI: KYO.T
210306 at	26013	1	P.A	0.632	P.A	0.858	P, A	L3MBTL
210312 s al		1	P	0.579	P	0.611	P	1.0C90410
210320 s_at	11056	1	P	1.495	P	1.671	p	DDX52; ROK1
$210336 \times$ al	7593	1	P	0.662	P.A	0.502	P.A	7NF42: MZFI
210337 s at	47	I	P	0.7\%	P	0.578	P	ACL.Y
210346 s at		1	P	1.401	P	1.908	P	CL.K1
210358 x_al	84724	1	A	2.211	P	1.935	P.M	GATA2
$210394 \times$ at	6759	1	P	0.712	P	0.644	P	SSX4
210396 s at		I	P	1.734	P	1.485	P	
$210405 \times$ at	8795	1	P	0.632	P, A	0.536	P.A	TNFRSF1013
210415 s at	4957	I	P.M	2.124	P	1.788	P	ODF2
210416s_at	11200	1	P	1.443	P	1.502	P	CHEK2
$210425 \times$ at	23015	1	P	1.407	P	1.627	P	COL.GIN-67
$210465 s$ at	6619	1	P	1.591	P	1.692	P	SNAPC3
210480 sat		1	P.A	1.650	P	1.856	P	MYO6
210513 s at	7422	I	P	0.732	P	0.613	P	VEGF
210534_s at	27077	I	1	0.883	P	0.653	P	E.PP139
210538_sat	330	I	P, A	5.671	P	6.522	P	BIRC3; AIPI
210560 al	2637	I	P.M	3.801	P	3.943	P	($\mathrm{B} 3 \times 2$
210567_s_at	6502	I	P	1.038	P	0.620	P	SKP2: F131.1
$210580 \times$ al	6818	I	P	1.460	P	1.563	P	SULTIA3
210605_s as	4240	I	P	1.592	P	2.192	P	MFGE8; 13A46
210612 s a	8871	1	P, A	1.301	P	1.788	P,A	SYNJ2: INPP5II
$210622 \times$ at	8558	1	P	0.831	P	0.576	P, A	CDK 10
210643_ at	8600	1	A	1.536	A	2.189	P	TNFSFl1
210653 s_at	594	1	P	0.735	P	0.446	P	BCKDHE; I:IH
210667 s at	8209	1	P	0.704	P	0.521	P	C2lor33: ES1

Affymetrix 1d	L.ocuslink	Day 0		Day 3		Day 9		Common Name
		Normalized	Flag!	Normalized	Flag	Normalized	Flags	
210697 at	113835	1	A	1.536	P	1.733	P	ZNF257
210715 s_al	10653	1	P	0.609	P	0.577	P	SPINT2
210720_s_al	63941	1	P	0.754	P	0.629	P	APBA2BP
210732 s_a!	3964	1	P	0.879	P	0.488	P	LGAI.S8
210750 s_at	9229	1	P	0.773	P.A	0.586	A	DLGAPI
210755 al	3082	1	P	1.676	P	2.079	P	HGF; SF: IHPTA
210776 x_ad		1	P	1.554	P	1.571	P	TCF3
210802 s_at	27292	1	P	0.910	P	0.477	P	HSA9761
210809 s_at	10631	1	P	1.581	P	1.667	P	POSTN:
210815_s_at	10203	1	P	0.766	P	0.659	P	CAl.CRL
210869_s_al	4162	1	P, A	1.420	P.M	1.589	P	MCAM
210871 x at	22892	I	P	1.411	P	1.705	P	SSX21P
210876_at	303	I	P, A	1.519	P, A	1.649	P	ANXA2P1
210892 s_at	2969	1	P	0.504	P	0.383	P	GTF2I
$210912 \times{ }_{\text {c }}$ at	2948	1	P	0.895	P	0.583	P	GSTM4
$210975 \times$ as	10922	1	P	0.769	P.M	0.594	P, A	FASTK
210986 s_at	7168	1	P	2.091	P	2.377	P	TTM1
210987 x at	7168	1	P	1.917	P	2.251	P	TPM1
211009 s_al	10778	1	P	1.374	P	1.639	P	ZNF271
211015 s at	3308	1	P	1.529	P	1.425	P	HSPA4
211017 s ul	4771	1	P.M	1.893	P	1.562	P	NF2
211019 s at	4047	1	P	0.548	P	0.416	P.A	LSS; OSC
211023 at	5162	1	\boldsymbol{P}	0.814	P	0.591	P	PDIIB: PHE1B
211027 s_ut	3551	1	P	0.671	M, A	0.471	A	IKBKB
211049 at	51407	1	1	0.763	P.A	0.532	$P . \wedge$	TLX2
211052 s at	6904	1	P	0.651	P	0.492	P	TBCD
211088 s_at		1	$1]$	0.600	P	0.474	P	PLK4
211091_s_at	4771	1	P, A	2.657	P	2.214	P	NF2
211092 s at	4771	I	A	2.125	P,M,A	1.779	P.M	NF2
211126 sat	1466	1	P	1.874	P	1.829	P	CSRP2
211200 s at	84288	1	A	3.178	P	4.783	P	FGR
211212_s_at	5001	1	P	1.528	P	1.502	P	ORC5L.
211219_s_at	9355	1	A	1.586	P	1.532	P.M	LIIX2
211256 x_at	11120	1	P	1.556	P	1.710	P	BTN2AI
211273 sat	6899	1	P	0.673	P	0.476	P	TRX1
211284 s a	2896	1	P	0.607	P	0.738	P	GRN: PEP1
2112993 al	2319	1	P	0.701	P	0.521	P	FLOT2; ESA
211340 s a	4162	1	P.M.A	1.500	P	2.044	P	MCAM
$211425 \times$ at	6757	1	P	0.699	P	0.623	P	SSXT/SSX4
211458 s_at	23766	1	P	1.227	P	1.530	P	GABARAPL 3
211467 s at	4781	1	P	0.785	P	0.599	P	NFIB
211471s at	96019	1	P	1.552	P	1.370	P	RAB36
211474 s at	5269	1	P	0.723	P	0.651	P	SERPINB6
211475 s at	573	1	P	0.508	P	0.357	P	BACI
$211527 \times$ at	7422	1	p	0.649	P.M	0.501	P.M.A	VEGF: VEGFA
211540 s at	5925	1	A	1.537	P, A	2.079	P	RBI: OSRC
211552 s at	8659	1	P.A	0.691	P.M, A	0.578	M. ${ }^{\text {A }}$	ALDH4AI
211558 s at	1725	1	P	0.820	P	0.558	P	DIPS
211559 sat	911	J	P	0.640	P	0.625	P	CCNG2
211575 at	10109	1	P	I. 542	P	1.490	P	ARPC2

AflymetrixId	Locustink	Day 0		Day 3		Day 7		Comman Name
		Normalized	Flap	Normalized	Flags	Normalized	Flag	
211576 s at	6573	1	p	1.633	P	1.292	P	SLCI9AI
211595_s_at	64963	1	p	1.832	P	1.626	P	MRPS11
211615s al	10128	1	P	1.825	P	2.026	P	L.RPPRC
211622_at	377	1	P	0.763	P	0.573	P	ARF3
211658 at	7001	1	P	0.894	P	0.573	P	PRDX2
211666 x al	6122	1	P	0.705	P	0.607	P	RPL3
211671 s at	2908	1	P	1.535	P	1.628	P	NR3CI
211672 s at	10093	1	P	0.674	P	0.526	\mathbf{P}	ARPC4
211675s at	29969	1	P	1.183	P	1.527	P	HIC
211676 s_a!	3459	1	P	1.724	P	1.740	P	1FNGR1: CD119
211700_s_at	7216	1	P	1.254	P	1.931	P	TRO
211701 s_at	7216	1	P	1.239	P	1.822	P	TRO
211707 s at	9657	1	P	1.795	P	1.888	P	1QCB!
211721_s_at	90233	1	P	1.526	p	1.407	P	ZNF551
$211724 \times$ at	54468	1	P	1.533	P	1.339	P	FLJ20323
211725 s_al		1	P	1.703	p	1.677	P	
211752 s al	4727	1	P	0.697	p	0.485	P	NDUFS 7
211800_s_at	7375	1	P	0.821	P	0.621	P	USP4: UNP
211810 s_at	2581	1	P	0.653	P	0.560	P	GALC
211814_s_al	9134	1	P	2.067	P	1.190	P	CCNE2; CYCE2
211833 s at	581	I	P	0.585	P	0.415	P	BAX
211852 s_at	8455	1	P	0.686	P	0.656	P.A	ATRN
211855_s_at	9016	1	P	1.527	P	1.671	P	SLC25A14
211864 s at	26509	1	A	1.785	P.A	2.653	P.M,A	FERIL3
211928 at	1778	1	P	1.465	P	1.510	P	DNCH1: p22
211929 a		1	P	1.393	p	1.548	P	hnRNPA3
211932 al		1	P	1.676	p	1.807	P	hnRNPA3
211933_s_at		1	P	1.563	P	1.745	P	hnRNPA3
211937 al	1975	1	P	0.624	P	0.547	P	E.IF4B: E.FF-4
211947 s_at	23215	1	P.A	1.536	P	1304	P	XTP2
211948 x al	23215	1	P	1.688	P	1.553	P	XTP2
211951 at	9221	1	P	1.710	P	1.755	P	NOLCI
211952 at	3843	1	P	1.382	P	1.559	P	KPNB3
211953 s a!	3843	1	P	1.484	P	1.561	P	KPNB3
211973 a1		1	P	0.749	P	0.658	P	
211976 at		1	P	0.780	P	0.633	P	
211982_x_al	23214	1	P	1.548	P	1.551	P	XP(\%
211986 at	195	1	12	1.600	P	2.087	P	MGC5395
211988 at	6605	1	P	1.504	P	1.573	P	SMARCEI
211990 at	3113	1	P.M	1.035	P	2.069	P	HLA-DPAI
212010 s al	55573	1	P	1.697	P	1.801	P	1141
212012 a		1	A	0.978	M.A	1.638	P.A	D2S448
212014 x al	960	1	P.M	1.150	P.A	1.635	P	CD44: IN
212016_s_a	5725	1	P	0.958	P	0.629	P	PTBPI
212032_s_al	53635	1	P	0.556	P	0.385	P	PTOV1
212037 at	5411	1	P	1.695	P	1.712	P	PNN
212038 s at	7416	1	P	1.566	Γ	1.387	P	VDACI
$212046 \times$ at	5595	1	P	0.817	P	0.566	P.A	MAPK3: ERK1
212052 s at	23061	1	P	0.786	P	0.659	P	KIAA0676
212058 at	23350	1	P	0.732	P	0.624	P	SR140

Affymetrix Id	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flang	
212061 at	23350	I	P	0.611	P	0.728	P	SR140
212063 at	960	I	A	1.154	A	2.336	P	CD44
$212064 \times$ at	4150	I	P	1.525	P	1.268	P	MAZ
212068 s_at	23121	I	A	1.304	P	1.523	P	KIAA0515
212069 s at	23121	1	P.M, A	1.739	P	1.525	P	K1AA0515
212085_al	293	I	P	0.602	P	0.411	\mathbf{P}	SLC25A6
212086 x at	4000	I	P	0.616	P	0.680	P	L.MNA; FPL
212092 at	23089	1	P	1.623	P	2.188	P	PEG10
212094 as	23089	1	P	1.510	P	2.244	P	PEGIO
212097 a1	857	1	P	1.505	P	1.269	P	CAVI
212099 at		1	P	1.794	P	1.471	P	RIIOH
212105 s at	1660	1	P	0.683	P	0.470	P	DIXX9
212129 at	81614	1	P	1.617	P	1.561	P	NIPA2
212143 s at	3486	1	P	1.870	P	1.935	P	IGFBP3: 1313
212147 at	23381	I	A	2.328	P	2.305	P,M	ESTIB
212154 at	6383	1	P.M	1.446	P	1.731	P	SDC2
212157 al	6383	1	P	1.581	P	1.986	P	SDC2
212158 al	6383	1	P, M	1.448	P	1.961	P	SDC2
212163 al	57498	1	P	1.331	P	1.522	P	K1DINS220
212165 at	92703	1	P	0.981	P	0.640	P	Clorf37
$212171 \times$ at	7422	1	P	0.752	P	0.653	P	VEGF
212184 s at	23118	1	P	1.548	P	1.974	P	MAP3K71P2
212190 at	5270	1	P	1.767	P	1.903	P	SI:RPINE2
212194 s 8t	9777	1	P	0.827	P	0.601	P	K1AA0255
212211 at	26057	1	P	1.542	P	1.582	P	ANKRD17
212214 al	4976	1	A	1.802	P	2.280	P	OPAI
212215 at	9581	I	P	1.337	P	1.890	P	K1AA0436
212217 at		1	P	1.186	P	1.630	P	K1AA0436
212218 s al	2194	1	P	0.816	P	0.607	P	FBXO9; FBX9
212222 at	23198	1	P	1.310	P	1.658	P	PSME4
212225 at	10209	I	P	0.620	P,M,A	0.468	A	SUl1
212234 al	23393	I	P	1.245	P	1.597	P	ASXLI
212249 at	5295	1	P.M.A	1.597	P	1.400	P.A	PIK3RI
212254 3 at	667	1	P	1.433	P	1.606	P	BPAGI
212259 s at	57326	1	P	0.402	P, A	0.518	P	PUXIPI
212274 at	23175	1	A	1.711	P, A	1.836	P.A	LPINI
212276 at	23175	1	P	1.703	P	2.027	P	LPINI
212294 at	55970	1	P	1.441	P	1.880	P	GNG12
212299 al	91754	1	P	1.256	P	1.588	P	NEK9
212307 s at	8473	1	P	0.652	P	0.761	P	OGT
212310 al	23124	1	P	1.373	P	1.831	P	HJ」39207
212312 at	598	1	P'	1.720	P	1.476	P	BCL2L. 1
212336 at	2036	1	P	1.964	P	2.035	P	EPB41LI
212339 a!	2036	1	A	1.471	P, A	1.942	P	EPB4ILI
212350 al	23216	I	P	1.511	P	1.461	P	TBC1D1
212361 s at		I	P	0.803	P	0.554	P	ATP2A2
212364 al	4430	I	P, A	1.546	P	2.223	P	MYOlB; myr!
212365 at	4430	1	P	1.284	P	1.504	P	MYOIB: myrl
212366 al	23036	I	P	1.499	P	1.863	P	7.NJ:292
212395 s at	23065	I	P	1.417	P	1.502	P	KIAA0990

Affymelrix Id	Iocuslink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flag	Normalized	Flas	Normalized	Flags	
212403 at	89910	1	P	0.818	P	0.611	P	UBE3B
212418 at	1997	1	P	1.423	P	1.678	P	ELFI
212421 at	23313	1	P	1.390	P	1.579	P	C22orf9
212422 at	22984	1	P	1.512	P	1.387	P	PDCDIl
212434 al	80273	1	P	1.603	P	1.308	P	GRPELI
212436 as		I	P	1.517	P	1.363	P	TRIM33
$212459 \times$ at	8801	1	P	0.927	P	0.582	P	SUCLG2
212461 al	51582	1	P	1.683	P	1.681	P	OAZIN
212465 at	84193	1	P	1.574	P	1.796	P	FLJ23027
212473 s at		1	P	1.549	P	1.571	P	
212483 at	25836	1	P	1.399	P	1.711	P	1DN3; CDLS
212492 s at	23030	1	P	0.539	P	0.626	P	JMJD2B
212499 3 81		1	P	1.399	P	1.522	P	C140r32
212501 at	1051	1	P	0.545	P	0.492	P	CEBPB
212511 at		1	P	1.386	P	1.544	P	PICALM
212514 x at	1654	I	P	0.757	P	0.568	P	DDX3X
212525 s at	3014	1	P	0.806	P	0.584	P	H2AFX
212542 s at	55023	1	P	1.454	P	1.621	P	PHIP
212559 at	5575	1	P.A	0.655	P.A	0.590	P.A	PRKARIB
212565 al	23012	1	P.A	1.596	P	1.861	P	S'TK38L; NDR2
$212574 \times$ al	91304	1	P	0.419	P	0.303	P	R32184 3
212593 s_at	27250	1	P	0.582	P	0.647	P	PDCD4
212594 at	27250	I	P	0.593	μ	0.742	P	PDCD4
212599 at	26053	I	P	1.728	P	2.244	P	AUTS2
212603 at	10240	1	P	1.610	p	1.245	P	MRPS31
212611 a	23220	1	P	1.154	P	1.530	P	MPEGI
212619 at	23306	1	P	1.520	P	1.799	P	KIAA0286
212621 at	23306	1	P	1.204	P	1.514	P	KIAA0286
212622_at	23027	I	1	1.506	P	1.517	P	K1AA0033
212623_at	23027	I	P	1.586	P	1.485	P	KIAA0033
212624 s al	1123	1	P	2.008	P	2.265	P	CIINI
212632_al		1	P	1.568	P	1.842	P	STX7
212635 al		1	P	1.546	P	1.701	P	TNPO1
212636 at		1	P	1.518	P	1.895	P	QKI; QK3
212638 s at	11059	1	P	1.509	P	1.340	P	WWPI
212641 at	3097	1	P	1.935	P	2.381	P	IIIVEP2
212642_s_at	3097	1	P	1.778	P	1.980	P	HIVEP2
212654 at	7169	1	P.A	1.857	P	1.458	P	TPM2
212656_al	10102	1	P	0.796	P	0.635	P	TSFM
212662 at	5817	1	P	1.632	p	1.196	P	PVR
212665 at	25976	1	P	1.861	P	2.235	P	TIPARP
212687 al		I	P	1.554	P	1.710	P	L.IMSI
212689 s at	55818	I	P	1.557	P	1.603	P	JMJDIA
212708 at		1	P	0.567	P	0.444	P	CASC3
212709 a!	23279	1	P	1.644	P	1.405	${ }^{1}$	NUP160
212710 al	157922	1	P	1.630	P	1.966	P	CAMSAP1
212714 at	113251	1	P	1.577	P	1.678	P	LOC113251
212721 at	140890	1	P	1.472	P	1.575	P	SFRS 12
212724 at	390	1	P	1.665	P	2.057	P	ARHE
212739 s_at	4833	I	P	0.861	P	0.619	P	NMEA

Affymetriz 1d	LocusLink	Day 0		Day 3		Day 7		Common Niame
		Normallzed	Flags	Normalized	Flap	Normalized	Flags	
212751 at	7334	1	P	1.321	P	1.519	P	UBE2N
212765 at	23271	1	P	1.853	P	1.972	P	KIAA1078
212766 s at	81875	1	P	2.169	P	1.782	P	F1.J12671
212767 at	92170	1	P	0.843	P	0.532	P	Spm
212774 at	10472	1	P	1.705	P	1.834	P	2NF238
212780_at	6654	1	P	1.534	P	1.433	P	SOSI
212803 at	4665	1	P	1.545	P	1.349	P	STAT6
212815 al	10973	I	P	1.847	P	1.838	P	IIELICI
212816 s at	875	1	P	0.521	P	0.390	P	CBS
212822 at	57493	1	A	1.501	P.A	1.542	M.A	IIEG
212826 s at	293	1	P	0.630	P	0.450	P	SLC25A6
212828 al		1	P	1.444	P	1.763	P	SYNJ2: INPPSH
212829 at		1	P	1.661	P	1.814	P	
212830 at	1955	1	P	0.744	P	0.599	P	EGFL5
212833 at	91137	1	P	1.508	P	1.587	P	LOC91137
212835_at	23172	1	P	1.524	${ }^{\prime}$	1.400	P	K1AA0157
212837 at	23172	1	P	1.859	p	1.805	P	KIAAOI57
212838 at	23268	1	P	1.626	P	1.937	P	DNMPP
212839 s at		1	P	2.098	${ }^{1}$	1.924	P	SSA2
212845 at	23034	I	P	1.822	P	1.638	P	SAMD4
212847 at		I	P	1.093	P	1.511	P	NEXN
212866 at		1	P.M	0.915	P	0.595	A	LOC203069
212877 at	3831	1	P	2.041	P	2.167	P	KNS2
$212884 \times$ at	348	1	P	0.929	P	1.560	P	APOE
212886 al	26112	1	M.A	1.435	P, Λ	1.536	Y	DKF7P434C171
212893 al	26009	1	P	1.641	P	1.704	P	2TZ3
212928 at	23270	1	P	1.521	P	1.262	P	RPSSPI
212934_at		I	P	1.328	P	1.520	P	LOCI37886
212955_s at	5438	I	μ	0.954	P	0.628	P	POI.R2]
212957 s_at		I	P	1.331	P	1.813	P	I.OC92249
$212961 \times$ at	3423	1	P	1.642	P	1.500	P	LOC91966
212962 at	85360	1	P.A	1.627	P	1.474	P, A	7h3; FiJ13511
$212969 \times$ a 1	256364	1	P	0.756	P	0.561	P	FiJ35827
212971 at	833	1	P	0.590	P	0.562	P	CARS
212977 at	57007	1	M.A	1.989	P	2.528	P	CMKORI
212980 at	23021	1	P	1.344	P	1.781	P	AlISA2
212990 at	8867	1	P	1.808	P	1.700	P	SYNJ; INPPSG
213012 at	4734	1	P	1.837	P	2.103	P	NEDD4
213015 al		1	P	1.046	P,M,A	1.700	P	B13X
213016 at		1	P	1.262	P	2.513	P	1313X
213021 at		1	P	1.637	P	1.636	P	COSR1
213025 at	55623	1	P	1.567	P	1.448	P	FLJ20274
213032 at		1	P	0.774	P	0.623	P	NF13
213033 s at		1	P.M	0.840	P	0.566	P.A	NFIB
213035 al	23243	1	P	1.283	p	1.913	P	ANKRD28
213038 al	127544	1	P	1.607	P	1.411	P	F!J90005
213041 sat	513	1	P	0.642	p	0.338	P	AIPSD
213044 al	6093	1	P	1.666	P	2.125	P	R(CKI
213064 al	79882	I	P	1.448	P	1.601	P	Fl.J11806
213069_at		I	M.A	1.948	P	2.214	P	IIEG

Affymetrix Id	locuslink	Day 0		Dav 3		Day 7		Common Niame
		Normalized	Flaga	Normalized	Flags	Normallized	Flaga	
213072 al	157542	1	P	1.892	P	2.322	P	MGC13010
213081 al	9278	1	P	0.768	P	0.622	P	ZNF297
213088 s_at	23234	1	P	1.547	P	1.408	P	KIAA0974
213092 x_al	23234	1	P	2.274	P	2.153	P	K1AA0974
213093 al		I	P	0.680	P	0.566	P	PRKCA
213096 al	9911	1	A	1.340	P, A	1.506	P.M,A	HUCEP]I
213097 s al	27000	I	P	1.663	P	1.536	P	7RFI
213115 at	115201	1	P	1.607	P	1.563	P	COL.4A6
213118 at	23074	1	P	1.500	P	1.683	P	K1AA0701
213124 at	25888	1	p	1.537	P	1.385	P	7NF473
213126 at	112950	1	P	0.742	P	0.645	P	MED8
213128 s at	7337	1	P	1.507	P	1.451	P	UBE3A
213130 at	25888	1	P	1.367	P	1.553	P	ZNF473
213135 at		1	P	1.511	P	1.399	P	TIAMI
213169 al		1	P	0.725	P	0.426	P.A	SEMASA
213170_at	27234	1	P	0.897	P	0.629	P	GPX7
213176 s ut	8425	1	P	0.449	A	0.372	A	LTBP4
213190 at	91949	1	P	0.937	P	0.633	P	COG7
213191 at	148022	1	P.M,A	1.368	P	1.503	P	IRIF
213199 at	26005	1	P.M	1.527	P	1.554	P	DKF2P586P0123
213206 at	9570	1	P	1.620	P	1.704	P	GOSR2
213207 s at	9570	1	P.A	1.775	P	1.669	P	GOSR2
213211 s at	10629	1	P	0.680	P.A	0.548	P.A	TAF61.
213216 at	23252	1	P	1.905	P	1.733	P	KIAA0459
213223 al	6158	1	P	0.576	P,M	0.519	P.M.A	RPL28
213224_s_at	27250	1	P, A	1.346	P	1.638	P	LOC92482
213225 at	5495	1	P	1.540	P	2.187	P	PPMIB
213238_al	57205	1	P	1.342	P	1.752	P	ATP10D
213246 at	26175	1	P	1.635	P	1.614	P	Cl4orfio9
213248_at		1	M.A	1.227	P.A	1.503	P.A	
213251 at		1	P	1.419	P	1.525	P	
213256 at		1	A	1.636	P.M	1.449	P	MGC48332
213259 s al	23098	1	P.M.A	1.416	P	1.517	P	SARMI
213263 s at	7786	1	P	0.593	P	0.695	P	MAP3K12
213269 al	57209	1	P	1.228	P.A	1.618	P	LOC57209
213279 at		I	P	0.5\%	P	0.533	P	DHRS 1
213281 al	3725	1	P	2.935	P	3.450	P	JUN
213288 at		1	P	1.4\%	P	1.743	P	I.OCl29642
213298 at	4782	1	P	0.765	$P \cdot A$	0.602	P, A	NFIC
213306 at	8777	1	P	0.654	1	0.528	P	MPDZ
213310_at		1	P	1.573	P	1.664	P	EIF2C2
$213315 \times$ at	3423	1	P	1.744	P	1.541	P	LOC91966
213316 as		1	P	1.745	P	2.185	P	
213322 at	221443	1	P	0.686	P	0.577	P	MGC19570
213325 at	25945	I	P. A	1.183	P.A	1.525	P	PVRL3
$213334 \times$ at	11219	1	P	1.500	P	1.024	P	TREX2
213338 at	25907	1	A	1.759	P	1.264	$P_{+} \wedge$	RIS!
213342 at	10413	1	P	1.454	P	1.500	P	YAPI
213350 at	6205	1	p	1.694	P	1.540	P	RPS 11
213365 al	57638	1	P	1.537	P	1.756	P	K1AA1504

Affymetriz Id	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Hiags	Normalized	Flaga	Normalized	Flags	
213389 at		1	P,A	1.506	P	1.703	P	PNKP
213391 al		1	P	1.345	P	1.635	P	I.OC286148
$213397 \times$ at	6038	1	P	0.617	P	0.860	P	RNASE:4
213402 at		I	P	1.689	P	1.276	P	LOC126208
213410 as	26098	1	P	1.645	P	1.523	P	EDRFI
213411 at		I	P	0.536	A	0.602	A	ADAM 22
213413 at	11037	I	P, A	1.362	P	1.581	P	SH1,5
213419 at	323	I	P	0.927	P	0.653	P. A	hFE651.
213427 al	10799	1	P	2.554	P	2.132	P	RPP40
213452 at	7738	1	P	1.6-4	P	2.052	P	7NF184
213469 at		1	P	1.545	P	1.921	P	FIJ12377
213471 at	261734	I	P	1.560	P	1.620	P	NPIIP4
213474 at	154881	1	P	2.093	P	2.131	P	KCTD7
213479 at	4885	1	P	1.568	P	1.722	P	NPTX2: NP2
213496 al	9890	1	P	1.706	P	2.126	P	PR(3)
213504 8t	10980	1	P	1.517	P	1.264	P	COPS6
213505 s al	10147	1	P	1.585	P	1.605	P	StPRSI4
213523 at	898	1	P	2.189	P	1.416	P	CCNEI
213540 at	7923	1	P	0.525	P.M.A	0.380	A	HSI)17138
213549 at		1	P	1.687	P	1.591	P	SIC18A2
213558 al	27445	1	P	1.275	P	1.509	P	PCL.
213581_at	5134	1	P	1.557	P	1.152	P	PDCD)2
213595 s at	9876	1	P.A	1.452	P	1.786	P	CDC4213PA
213599 at	11339	1	P	1.530	P	1.561	P	Olps
213604 a!		1	13	1.401	P	1.554	P	TCEB3
213606 s al	396	1	P	0.988	P	0.529	P	ARHGDIA
$213607 \times$ al	65220	1	P	0.932	P	0.553	P, A	FIJ13052
213618 at	116984	1	P	1.800	P	2.212	P	CENTDI
213634 3 a	55687	1	P	1.620	P	1.176	P	FLJ10140
213644 at	201134	I	P	1.679	P	1.888	P	MGC33887
213647 at	1763	1	P	1.661	P	1.624	P	DNA2L
213653 al		1	P. A	1.365	P	1.574	P	METTL3
213671 s at	4141	1	P	0.581	P	0.505	P	MARS
$213689 \times$ 8i	6125	1	P	0.749	P	0.641	P	RPLS
213696 s al	112950	1	P	0.895	P	0.638	P	MED8
213704_at	5876	1	P	1.760	P	1.893	P	RABGGT]
213716_sat	6398	1	M.A	1.629	P	2.457	P	SECTM 1
213722 at	6657	1	P.M	0.650	A	0.564	P.A	$\mathrm{SO} \times 2$
$213737 \times$ at		1	P	1.423	P	1.689	P	
213742 at	9295	1	P	1.636	P	0.931	P	SFRSII
213757 at	1984	1	\boldsymbol{P}	1.551	P	1.372	P	EIFSA
213761_al	56890	1	P	1.700	P	1.566	P	MIJMI
213780_al		1	A	2.122	P.M.A	2.556	P.A	T]H1
213786_a1	8887	1	P	1.543	P	1.904	P	TAXIBPI
213787 s al	10682	J	P	0.694	P	0.555	P	EBP
213793 s at	9456	1	P	1.898	P	1.983	P	HOMER1
213795 s at	5786	1	P	0.811	P	0.584	p	PTPRA
213804 at		1	P	0.721	P. A	0.601	P.A	INPP5B
$213811 \times$ a!	6929	1	P	1.592	P	1.605	P	TCF3
213812 s at	10645	1	P	0.726	P	0.645	P.M	CAMKK2

Affymetrix Id	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
213822_s_at	89910	1	P	1757	P	1669	P	UBE3B
213838_at	51406	1	P	1559	P	1641	P	NOL7
213846_at	1350	1	P	1508	P	1376	P	COX7C
213861_s_at	25895	1	P	1663	P	1685	P	DKFZP586D0919
213869_x_at	7070	1	P	1348	P	1801	P	THY1
213878_ at	79912	1	P	0730	P	0568	P	RECQL
213882_at	83941	1	P, A	1648	P,A	1744	P, A	BBP
213887 s_at	5434	1	P	0914	P	0643	P	POLR2E
213889_at	9487	1	P,M,A	1259	P	1608	P,M	PIGL
213892_s_at	353	1	P	0961	P	0637	P	APRT
213896_x_at	23234	1	P	0760	P,A	0564	A	KIAA0974
213899_at	10988	1	P	1778	P	1785	P	METAP2
213906 at	4603	1	P	1971	P	2328	P	MYBL1
213931_at	3398	1	M,A	7620	P	4792	P	ID2
213939_s_at		1	P,A	1538	P	1552	P	RIPX
213951_s_at	29893	1	P	1757	P	1241	P	HUMGT198A
213986_s_at	91304	1	P	0415	P	0291	P,A	C190rf6
213989_x_at	54093	1	A	2067	P	2216	P	C21 orf18
213996_at	29799	1	P	0449	P	0369	P	YPELI, FKSG3
214005_at	2677	1	P	0895	P	0568	P	GGCX
214006_s_at	2677	1	P	0756	P	0520	P	GGCX
214012 at	51752	1	P	0600	P	0586	P	ARTS-1
214023_x_at	7280	1	P	1522	P	2003	P	MGC8685
214030_at	131544	1	P	1458	P	1609	P	MINA
214052_x_at	23215	1	P	1745	P	1528	P	XTP2
214055_x_at	23215	1	P	1803	P	1539	P	XTP2
214083_at	5527	1	A	1769	P, A	2598	P	PPP2R5C
214096_s_at	6472	1	P	0755	P	0526	P	LOC56901
214097_at	6227	1	P	2074	P	2319	P	RPS21
214107_x_at	9520	1	P	0738	P	0595	P	NPEPPS
214112_s_at	3423	1	P	1563	P	1394	P	LOC91966
214113_s_at	9939	1	P	1565	P	1529	P	RBM8A
214114 x at	10922	1	P	0821	P	0660	P	FASTK
214126_at		1	A	1409	P	1505	P,A	MCART1
214151_s_at	9488	1	P	1326	P	1641	P	CPR8
214152_at	9488	1	P	1186	P	1601	P	CPR8
214155_s at	113251	1	P	1532	P	1404	P	LOC113251
214157_at	2778	1	P	2270	P	2470	P	GNAS
214177_s_at	57326	1	P	0515	P	0748	P	PBXIP 1
214182_at	382	1	P	1517	P	1510	P	ARF6
214193_s_at	27042	1	P	1562	P	1729	P	MGC29875
214196_s_at	1200	1	P	0613	P	0572	P	CLN2
214205_x at	10539	1	P	1565	P	1661	P	TXNL2, PICOT
214210 at	10478	1	P	1506	P	1382	P	SLC25A17
214240_at	2586	1	P	1747	P	1651	P	GAL
214247_s_at	10530	1	M,A	1262	P,A	2240	P	DKK3
214251_s_at	4926	1	P	0526	A	0379	A	NUMAI
214252 s at	1203	1	P	0745	P	0646	P	CLN5
214258_x_at	10524	1	P	0720	P	0549	P	HTATIP
214260_at	10920	1	P,A	1712	P	1757	P	COPS8

$\begin{aligned} & \text { Affymetrix } \\ & \text { Id } \end{aligned}$	LocusLink	Day 0		Day 3		Day 7		Comman Name
		Normalized	Flags	Normalized	Flags	Niormalized	Flaga	
2142665 al	9260	1	P	0.995	P	0.592	P.A	PDLIM7
214290 s al	8337	1	P	0.651	P	0.739	P	HIST2H2AA
214293_at	55752	1	P	2.149	P	2.454	P	FIJ10849
214306 at	4976	1	P	1.422	P	1.581	P	OPAI
214310 s_at	7542	1	P	0.803	P	0.516	P.M	2FPLI
214313_s_al	9669	1	P.M	1.993	P	1.565	P	IF2
214336 s at	1314	1	P	0.581	P	0.523	P	PEX19
$214383 \times$ al	116138	1	P	0.738	p	0.562	P	KLHDC3
214409 at	10737	1	P.A	1.564	P	1.481	P	RFPL3S
214427 at	4839	1	P	1.670	P	1.497	P	NOLI; pl20
214434 at	9893	1	P	1.454	P	1.763	P	HSPAI2A
214437 s at	6472	1	P	0.654	P	0.441	P	SHMT2: GLYA
2144425 at	9063	1	P	1.504	P	1.634	P	PIAS2: miz
214500 at	9555	1	P	1.610	P	1.673	P	H2AFY; H2A.y
214505 s al	2273	1	P	1.179	P	1.627	P	FHLI
214507 s at	23404	1	P	1.731	P	1.451	P	EXOSC2; p7
214578 s al	6093	1	P	1.962	P	2.297	P	ROCK1
214581 x at	27242	1	A	2.256	P	2.572	P	TNFRSF21
214594 x_at	5205	1	P	1.361	P	1.582	P	ATP8B1
214639 s a 1	3198	1	P	1.975	P	2.030	P	HOXA1
214649 s_u	8898	1	P	1.768	P	1.610	P	MTMR2
214657_s_at		1	P	0.624	P	0.658	P.A	
214662 at	23160	1	P	1.615	P	1.666	P	K1AA0007
214683 _s at	1195	1	P	1.269	P	1.748	P	CLKI
214690 at	9014	1	P	1.501	P	1.549	P	TAFIB
$214691 \times$ al	54629	1	P	0.649	P	0.682	P.A	KIAAII64
214696 at	84981	1	P.A	1.757	P	1.684	P	MGC14376
214716_at	55589	1	P.A	1.361	P.A	1.693	P.A	BMP2K
214722 at		1	P	1.285	P	1.820	P	LOC376745
214727 at		1	P	1.690	p	1.702	P	BRCA2; FAD
214742 at	22994	1	P.M	0.790	P.A	0.567	A	AZII; AZI
214778 at	1954	1	P	0.413	P.A	0.378	P.A	EGFL4; MEGF8
$214784 \times$ at	23214	1	P	1.555	P	1.487	P	XPO6
214794 at		1	P	1.629	P	1.492	P	PA2G4
$214816 \times$ at	914.42	1	P	1.723	P	1.505	P	MGC32020
214828_s_at	91695	1	p	1.778	P	1.323	P	dJ222E13.2
214835_s_at	8801	1	P	0.765	P	0.594	P	SUCLG2
214878_at	7587	1	P.A	1.563	P.A	1.470	P	7.NF37A
214909 s_al	23564	1	P	1.487	P	1.548	P	DDAII2
214924 s at	22906	1	P	1.576	P	1.699	P	OIP106
214934 at	11071	1	P	0.618	P	0.604	P.M	ATP9B
21.4960_at	8539	1	M.A	1.508	P	1.309	P.A	AP15:
214983 at	69595	1	P	1.735	P	1.751	P	TTTYIS
214992 s at	1777	1	P	0.3\%	P	0.393	P	DNASE2
215001_s_at	2752	1	P	1.544	P	1.835	P	GLUL: GLNS
215009 s at		1	P	1.715	P	1.862	P	SEC31L1
215014 al		1	A	2.582	P,A	2.067	P. A	
$215016 \times$ at	667	1	P	1.359	P	1.543	P	[3PAGI: BP240
215047 at	25893	1	P	1.532	P	1.524	P	DKFZp434C091
215073 s at		1	P	1.171	P	1.517	P	NR2F2

AffymetrixId	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
215079_at		1	P	1351	P	1574	P	
215090 x at	9520	1	P	0773	P	0596	P	FLJ11822
215099_s_at	6257	1	P	0509	P,A	0386	M,A	RXRB
215111_S_at	8848	1	P	1344	P	1642	P	TGFB1I4
215116_s_at	1759	1	P	0644	P	0529	P	DNMI
215143_at		1	P	1271	P	1504	P	FLJ36166
215146_s_at	23331	1	P	0672	P	0658	P	KIAA1043
215158_s_at	9191	1	P	1502	P	1265	P	DEDD, DEFT
215159_s_at	65220	1	P	0870	P	0561	P,A	FLJ13052
215165_x_at	7372	1	P	1571	P	1279	P	UMPS, OPRT
215167_at	9282	1	A	1504	P,A	1396	P	CRSP2
215170_s_at	22995	1	P,A	1249	P,M,A	1510	P	KIAA0912
215171_s_at	10440	1	P	1560	P	1339	P	TIMM17A
215204_at		1	A	1324	P,M,A	1575	P,A	
215220_s_at		1	P	0713	P	0588	P	TPR
215242 at		1	A	1579	P	1712	P,A	PIGC
215324_at	223117	1	P	0962	P	0649	P	SEMA3D
215359_x_at	7595	1	P	1424	P	1714	P	ZNF44
215380_s_at	79017	1	P	1549	P	1479	P	MGC3077
215424_s_at	22938	1	P	1645	P	1485	P	SKIIP
215425_at	10950	1	P	1612	P	1852	P	BTG3, ANA
215440_s_at	56271	1	P	0601	P	0747	P	BEXL1
215446_s_at	114990	1	P,M,A	1166	P, A	1554	P	LOX
215493_x_at	11120	1	P	1625	P	1776	P	BTN2A1
215495_s_at	23034	1	P,A	2971	P	2223	P	SAMD4
215532_x_at	57615	1	P	1641	P	1867	P	ZNF492
215548_s_at	23256	1	P	1624	P	1393	P	SCFD1
215629_s_at	79469	1	P	0950	P	0564	P	BCMSUNL
215643_at		1	P	0676	P	0503	P	SEMA3D
215684_s_at	84164	1	P	1802	P	1708	P	ASClp100
215695_s_at	8908	1	P	1692	P	2522	P	GYG2
215706_x_at	7791	1	P	1978	P	1729	P	ZYX
215719 x at	355	1	P	1317	P,A	1961	P,A	TNFRSF6
215722_s_at	6627	1	P	1995	P	1759	P	SNRPAI
215723_s_at	5337	1	P	0723	P	0568	P	PLD1
215728_s_at	11332	1	P	0804	P	0540	P	BACH
215735_s_at	7249	1	P	0881	P	0612	P	TSC2
215743_at	10557	1	P	1402	P	1748	P	RPP38
215747_s_at	1104	1	P	0898	P	0660	P	CHCl, RCCl
215760_s_at	22904	1	P,M	0784	P,A	0544	P,A	KIAA0963
215765_at	10489	1	P	1704	P	1931	P	MUF1
$215772 \times$ at	8801	1	P	0968	P	0567	P	SUCLG2
215780_s_at		1	P	0797	P	0658	P	
215812_s_at		1	P	1576	P	1364	P	SLC6A10
215842_s_at	23250	1	P	0793	P	0520	P	ATP11A
215891_s_at	2760	1	P	0649	PMA	0625	M,A	GM2A, SAP-3
215945_s_at	23321	1	P	1304	P	1634	P	TRIM2 RNT86
216041_x_at	2896	1	P	0633	P	0778	P	GRN, PEPI
216044_x_at	6125	1	P	0692	P	0608	P	RPL5
216064_s_at	175	1	P	0635	P	0568	P	AGA

$\begin{aligned} & \text { Affymetrix } \\ & \text { Id } \end{aligned}$	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
216080 s at	3995	1	P	0.716	P	0.570	M.A	FADS 3
216228 s at	11169	1	P	1.783	P	1.705	P	WDHD1
216246_al	6224	1	P	1.512	P	1.300	P	RPS20
216248 s at	4929	1	P	1.955	P	1.338	P	NR4A2: NOT
216250 s_al	$940-4$	1	P	1.477	P	1.986	P	LPXN
216253 s al	29780	1	P	0.893	P	0.645	P	PARVB
216282 x at	5432	1	P	1.579	P	1.305	P	POI.R2C
216299 s at	7517	1	P.A	2.575	P	2.219	P	XRCC3
216305 s_at	6936	1	P	1.979	P	2.205	P	MRPL 19
216338 s_at	25844	1	P	0.617	P	0.537	P	KI.IPI
216379_x_at	934	1	P	2.247	P	4.929	P	NaGIT T1
216411_s_at	196951	1	P	0.673	P.A	0.539	P.A	FLJ32800
216537_s_at	27036	1	P.A	1.631	P.A	1.743	P	SIGLEC7: ${ }^{75}$
216556_x_at		1	P	0.622	P	0.673	P	
216559_x_at		1	P	0.710	P	0.570	P	
216685_s_at		1	P.A	1.085	P	0.619	P.A	MTAP
216705ss_at		1	P.M.A	0.778	P.M	0.509	A	ada
216733_s_at	2628	1	P	0.602	P	0.727	P	GATM; ACiAT
216746_at		1	A	1.363	M.A	1.515	P.A	
216855_s_at	3192	1	P	0.676	P	0.610	P.A	HNRPU
216860_s_at	10220	1	P	0.661	P.A	0.481	A	GDF11
216899_s_at	8935	1	P	1.360	P	1.617	P	SCAP2
216941_s_at	9014	1	P	1.544	P	1.411	P	TAFIB
216969 s_at	3835	1	P	0.694	P	0.529	P	KNSL. 4
216971_s_at	5339	1	P.A	0.571	A	0.486	M,A	PLEC1
216975 x at	4861	1	A	1.927	P	1.496	M.A	NPASI
$216977 \times$ as	6627	1	P	1.935	P	1.670	P	SNRPAI
217007 s at	8751	1	P	0.599	P	0.595	P	ADAM15
217010 s at	995	1	P	0.590	P	0.619	P, A	CDC25C
217028 al	7852	1	A	1.586	P.A	3.898	P	CXCR4
217127 at	1491	1	P	0.608	P	0.590	P	CTH
217150_s_at	4771	1	P.A	1.900	P	1.784	P	NF2
217168_s_at	9709	1	P	0.562	P	0.467	P	HERPUDI:
217173_s_at	3949	1	P	0.730	P.A	0.595	A	L.DLR: FH: FHC
217185_s_at		1	P	2.112	P	1.671	P	ZNF259P
217188_s_at	11161	1	P	0.704	P	0.507	P	C14orf]
217250 _s_at	26038	1	P.A	1.525	P	1.394	P	Clids
$217284 \times$ at	253190	1	P	0.745	P.M.A	0.515	A	dJ222E13.1
217289 s ut	2542	1	P	0.584	P	0.428	M.A	G6PC
217299 s at	4683	1	P	1.578	1	1.280	P	NBS 1
217309_s_at	10311	1	P.M	0.695	P.A	0.643	P, A	DSCR3
217317 _s_at	60438	1	P	1.539	P	1.877	P	MN7
217364 _x_at		1	P	1.527	P	1.392	P	
$217370 \times$ x_at		1	P	0.724	P	0.548	P	
217416_{\sim}^{x} x ${ }^{\text {a }}$		1	P.A	1.350	P	1.502	P	VAPA
217437_s_at	6867	1	P.A	1.638	P	1.501	P	TACCI
217492 s at	11191	1	P	1.555	P	1.407	P	PTENP1
217494_s_at	11191	1	A	1.647	P	1.291	P.M, A	PTENP1
217543 s_at	8720	1	P	0.801	P	0.637	P	MBTPSI
217554_ai		1	\boldsymbol{r}	1.659	P	1.629	P	

$\begin{aligned} & \text { Aftymelrix } \\ & \text { Id } \end{aligned}$	Locuslink	Day 0		Day 3		Day 7		Common Nime
		Normalized	Flag1	Normalized	Flags	Normalized	Flaga	
217585 at		1	P	1.893	P	2.274	P	NEBL
217591_at		1	P	1.648	P	1.462	P	SKIL
217604_at		1	P.A	1.533	P	1.314	P	
217618 x al		1	P	1.555	P	1.525	P	HUSI
217631 at	23560	1	P.A	1.498	P	1.714	P	GTPBP4
217678 at		1	P	0.599	P	0.602	P	SLC7AII
217682 at		1	P	1.474	P	1.773	P	PROO149
217722 s at	51335	1	P	1.491	P'	1.554	P	NEUGRIN
217738 al	10135	1	P	1.524	P	1.838	P	PBEFI
217752 s al	55748	1	P	1.723	P	1.313	P	CNDP2
217766 s at	23585	1	P	1.244	P	1.579	P	SMP I
217784_at	10652	1	P	1.607	P	1.343	P	YKT6
217786_at	10419	1	P	1.570	P	1.320	P	SKB1
217787_s_at	2590	1	P	0.866	P	0.632	P	GALNT2
217789_at	58533	1	P.A	1.380	P	1.619	P	SNX6
217790 s at	6747	1	P. \wedge	1.345	P.A	1.524	P	SSR3: TRAPG
217806_s al	26073	1	P	1.743	P	1.434	P	POLDIP2
217807 s at	29997	1	P	0.726	P	0.556	P	GLTSCR2
217808_s at	79109	1	P	1.567	P	1.269	P	MAPKAP1
217809_at	28969	1	P	1.843	P	1.913	P	BZW2
217820 s at	55740)	1	P	1.708	P	1.932	P	ENAII: mena
217829 s_al	10713	1	P	1.555	P	1.549	P	USP39
217835 x_at	55969	1	P	1.628	P	1.503	P	C200rf24
217842_at	51631	1	P	1.654	P	1.806	P	LUC7L2
217844_al	58190	1	P	0.733	P	0.574	P	CTDSP 1
217846 a!	5859	1	P	0.771	P	0.552	P	QARS
217858 s at	51566	1	p	1.399	P	1.866	P	ARMCX3
217859 s at	55334	1	P	1.455	P	1.605	P	SLC39A9
217872 a	55011	1	P	0.69)	P	0.514	P	FLJ206-4
217890_s_at	55742	1	A	1.689	P.A	1.605	P.A	PARVA
217892 s at	51474	1	P	1.506	P	1.577	P	EPLIN; SREBP3
217895_at	55037	1	P	0.743	P	0.544	P	FLJ20758
217896_s_at	80011	1	A	1.551	P	1.621	P	NIP30
217897_a!	53826	1	P.A	1.533	P.M	2.4\%	P	FXYD6
217901_at		1	P.A	1.161	P	1.823	P	DSG2
217905_at	79892	1	P	1.460	P	1.565	P	FLJ13081
217907	29074	1	P	1.624	P	1.402	P	MRPLI 8
217919 s al	28977	1	P	1.948	P	1.713	P	MRPL. 42
217923_at	23578	1	P	1.514	P	1.197	P	PEF; PEFIIN
217930 s_al	54472	1	P	0.774	P	0.573	M, A	TOLLIP
217932_at	51081	1	P	1.523	P	1.209	P	MRPS 7
217936 at		1	P	1.319	P	1.794	P	ARHGAPS
217941_s_at	55914	1	P	1.427	P	1.633	P	ERBB2IP
217942 at	60488	1	P	1.634	P	1.605	P	MRPS35
217966_s_at	116496	1	P	0.727	P	0.606	P	Clor 24 : N1BAN
217967 s at	116496	1	P	0.652	P	0.619	P	Clorf24: NIBAN
217980 s al	54948	1	P	0.849	P	0.610	P	MRPLI6
217985 s at	11177	1	P	1.614	P	1.279	P	BAZ.IA
217986 s at	11177	1	P	1.563	P	1.344	P	BAZIA
217987 at	54529	1	P	1.895	P	1.720	P	NS3TP1

Affymetrix Id	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flag3	Normalized	Flags	Normalized	Flags	
217988 at	57820	I	1	1.421	P	1.786	P	CCNBIIP1
217992 sat	79180	1	P	1.505	P	1.453	\boldsymbol{P}	EFIH)2
$217994 \times$ at	54973	1	P	0.710	P	0.527	P	FLJ20542
217996 at	22822	1	P	1.680	P	1.598	P	PIII.DAI
217997 at	22822	1	P	2.140	P	2.698	P	PHI.DAI
218012 at	64061	1	${ }^{1}$	1.892	P	2.115	P	SE20-4
218021 at	10901	I	P	0.866	P	0.592	P.M	DHRS4
218022 at	51231	1	P	0.724	$\mathrm{P}, \mathrm{M}, \mathrm{A}$	0.647	P.M.A	VRK3
218024 al	51660	1	P	1.651	P	1.078	P	HRP441.
218029 at	79567	1	A	1.656	P	1.665	P	FLJ13725
218050 al	51569	1	P	1.366	P	1.552	P	Ufml: BM-002
$218060 \mathrm{~s} \mathrm{8t}$	79650	1	P.A	1.814	P	1.548	P	FLJ13154
218061 at	4201	1	P	1.573	P	1.342	P	MEA: HYS
2180668	10723	1	P	1.391	P	1.645	P	SLCI2A7
218070 s at	29926	1	\mathbf{P}	1.025	P	0.622	p	GMPPA
218071 s al	23609	1	P	1.554	P	1.523	P	MKRN2
218091 at	3267	1	P	1.469	P	1.843	P	IHRB
218092 s at	3267	1	P	1.708	P	1.800	P	HRB
218099 at	55852	1	P	1.416	p	1.579	P	117008
218100 s u	55081	I	P	1.767	P	1.785	P	ESRRBL]
218104 at	54881	I	P	1.255	P	1.559	P	TEX10
218105 s ul	51073	I	P	0.842	P	0.580	P	MRPL4
218106 s al	55173	1	P	1.551	P	1.634	P	MRPS 10
218107 al	80232	I	P	1.569	P	1.714	P	WDR26
218108 at	55148	1	P	1.565	P	1.423	P	C14orf130
218117 at	9978	I	P	1.560	P	1.482	P	RBXI; ROCI
218124 a!	54884	1	P	0.639	P	0.512	P	FLJ20296
218138 at	8195	1	P	1.382	P	1.550	P	MKKS
218139 s at	55745	1	P	1.482	P	1.757	P	Flal0813
218145 at	57761	1	P	0.262	P	0.251	P	TRIB3: NIPK
218146 al	55830	1	P	0.682	P	0.448	P	AD-017
218147 s at	55830	1	P^{\prime}	0.554	P	0.326	P	AD-017
218156 s a	55720	1	P	1.643	P	1.307	p	FiJ 10534
218163 at	28985	1	P	1.731	P	1.638	P	MCTSI: MCT-1
218181 s at	54912	1	P	1.420	P	1.770	P	MAP4K4
218187 s ut	65265	1	P	1.746	P	1.817	p	FlJ20989
$218199 s_{\text {sal }}$	65083	1	P.A	1.915	P	1.766	P	NOL6: NRAP
218205 s at	2872	1	I	0.870	P	0.615	P	MNK2
218214 at	60673	1	P	1.514	P	1.478	P	FLJ11773
218244 al	55035	1	P	1.867	P	1.760	P	NOL8; Nopl 32
218248 at	63901	1	P	1.510	P	1.685	P	F1.J22794
218261_at	10053	1	A	1.737	P	1.907	P	AP1M2
218262 at	64777	1	P	0.800	P	0.551	P	FLJ22318
218269 al	29102	1	P	1.773	P	1.844	P	RNASE3L
218272 at	55020	1	P.A	0.860	P. \wedge	0.590	A	l L J20699
218275 al	1468	1	P	0.852	P	0.514	P.M.A	SLC2SAI0: DIC
218282 a	55741	1	P	0.776	P	0.561	\boldsymbol{P}	C200r31
218290 at	55111	1	P	0.775	P	0.574	P	PLIEKHJI
218291 at	28956	1	P	0.751	P	0.520	P	MAPBPIP
218299 at	53838	I	A	1.803	P	1.628	P	C.llorf24

Affymetrix Id	LocusLink	Day 0		Day 3		Day 7		Common Niame
		Normalized	Flags	Normalized	Flags	Normalized	Flaga	
$218303 \times$ at	51315	1	P	1.326	P	1.548	P	LOC51315
218304 s at	114885	1	P	1.587	P	1.589	P	OSBPl.I!
218307 al	55316	1	P	0.767	P	0.451	P	FLJI1164
218309 al	55450	I	P	1.236	P	1.859	P	CaMKIINalpha
218310 al	27342	I	P	1.327	P	1.566	P	RABGEFI
218332 at	55859	1	P	1.447	P	2.236	P	BEXI
218333 at	51009	1	P	1.519	P	1.240	\mathbf{P}	F-LANa
218335 x_at	79155	I	P.M.A	1.512	P	1.510	p	TNIP2
218336 at	5202	I	P	1.746	P	1.605	P	PFDN2: PFD2
218341 at	79717	1	P	1.535	P	1.466	P	FLJ11838
218348 s al	29066	1	P	1.407	P	1.561	P	ZC3HDC7
218355 at	24137	1	P	1.290	P	1.517	P	KIF4A;
218356 at	29960	1	P	1.912	P	1.603	P	FTSJ2; FJH1
218358 at	79174	1	P	0.788	P	0.463	P	MGCI 1256
218364 al	9209	1	P	1.583	P	1.956	P	LRRFIP2
$218367 \times$ at	27005	1	P	0.798	P	0.535	P	USP21
218374 s at	57102	1	P	1.685	P	1.754	P	Cl2orf4
218380 gt	60368	I	p	1.776	P	2.641	P	NALP 1
218383 al	54930	1	P	0.704	P	0.527	P	Cl4or994
218385 al	55168	I	P	1.556	P	1.319	P	MRPS18A
218388 al	25796	1	P	0.770	P	0.639	P	PGLS; 6PGL
218394 at	79641	1	P	0.635	P	0.464	P	FlJ22386
218408 at	26519	I	P	1.671	P	1.489	P	T1MM10:
218414 s at	54820	1	P	0.598	P	0.698	P.A	NDE1:
218417 s at	55652	1	P.M.A	2.012	P	1.914	P	Fl.J20489
218424 s at	55240	1	P	1.722	P	1.318	P	TSAP6
218426 s at	54476	I	P	0.737	P	0.541	M, A	TRIAD3
218434 s at	65985	1	P	0.605	P	0.577	P	AACS
218438 s at	80306	I	P	0.852	P	0.591	P	EG1
218442 at	7268	1	P	1.800	P	1.705	P	TTC4
218456	65981	I	P	1.487	P	1.682	P	CIQDCI
218465 at	55161	I	P	1.599	P	1.797	P	FL.J10525
218466 al	79735	1	P	0.713	P	0.542	P	TBC1D17
218488 al	8891	1	P	1.510	P	1.331	P	EJF2Bgamma
218490 s at	55900	1	P	1.117	P	1.570	P	ZNF302
218.493 at	79622	1	P	1.545	P	1.137	P	C160r133
218496 at	246243	1	P	1.563	P	1.461	P	RNASEH1]
218497 s at	246243	1	P	1.579	P	1.223	P	RNASEH1
218499 al	51765	1	P	1.290	P	1.564	P	MST4: MASK
218500 at	51337	1	P	0.718	p	0.529	P.M	LOC51337
218507 at	29923	1	P	1.447	P	1.521	P	11IG2
218508 at	55802	1	P.A	1.520	P	1.281	P	IISA275986
218513 at	55319	1	P	1.584	P	1.579	P	F1J11184
218517 at	79960	1	P	1.442	P	1.593	P	PIF17:
218518 a1	51306	1	P	1.117	P	1.579	P	C5orf5: N61
218523 at	64077	1	P	0.606	A	0.417	A	1.11 PP
218535 s at	55781	1	P	1.637	P	1.683	P	RIOK2
218536 al		1	P	0.895	p	0.654	P	MRS2I.
218545 al	55297	1	P	1.480	P	1.781	P	FLJ11088: p56
218547 at	79947	1	P	1.580	P	1.366	P	DHDDS

Affymeiriz 1d	L.ocuslink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	P1ag	Normalized	Flags	
218561 s at	57128	I	P	1.821	P	1.477	P	C6orf149
218564 at	55159	I	P	1.714	P	1.825	P	F1.J10520
218566 s al	26973	1	P	1.794	P	1.825	P	CHORDCI
218574 s al	24995	1	P	1.989	P	1.766	\boldsymbol{P}	LMCI) 1
218575 al	64682	I	P	1.672	P	1.502	P	ANAPCI
218576 s_al	11266	I	P	1.662	P	1.763	P	DUSPI2; YVIII
218579 s_at	60625	1	P.M, A	1.738	P	1.392	P	DIIX35
218585 s_at	51514	1	P	1.974	P	2.025	P	RAMP: L.2DTL.
218588 s at	10827	1	P	1.236	P	1.591	P	C5orf3: 133K02
218590 al	56652	1	P	1.757	P	1.689	P	PEOI: TWINL,
218591 s at	79954	1	P.A	1.556	P.A	1.538	P.A	FIJ14075
218608 at	23400	1	P	0.768	P, A	0.488	P. \wedge	HSA9947
218625 a!	51299	1	P	1.937	P	2.374	P	NRN1
218640 s at	79666	I	P	1.514	P	1.939	P	PLEKHF2
218642 s at	79145	I	P.M	2.367	P	2.145	P	CHCHD7
218647 s_at	79693	I	P	1.771	P	1.577	P	FLJ23476
218664 at	51102	I	P	0.843	P	0.619	P	CGI-63: NRBFI
218670 al	80324	I	P	1.812	P	1.590	P	PUSI: MLASA
218672 at	79005	1	P.A	1.655	P	1.623	P	SCNM1
218675 at	57100	1	P. A	1.305	P	1.712	P	SLC22A17
218679 s al	51160	1	P	0.772	P	0.526	P	VPS28
218681 s at	23753	1	P	0.949	P	0.617	P	SDF2L. 1
218688 al	26007	1	P	0.712	P	0.438	P.A	DKFZP58681621
218689 at	2188	1	A	1.654	P. ${ }^{\text {A }}$	1.803	P	FANCF; FAF
218692 at	55638	1	P	1.338	P	1.573	P	FLJ20366
218701 at	51110	1	P	1.298	P	1.548	P	LACTB2: CGI-83
218708 at	29107	1	μ	1.755	P	1.500	P	NXT1: P15
218710 at	55622	1	P	1.656	P	1.628	P	FLل20272
218712 at	54955	1	P	1.597	P	1.447	P	FLJ20508
218714 at	78994	1	P	0.848	P	0.559	P	MGC3121
218715 at	55813	1	P	1.621	P	1.443	P	HCA66
218719 s al	64785	1	A	1.640	P	1.328	P	FLJ] 13912
218721 s at	54953	J	P	1.661	P	1.865	P	FLJ20505
218731 s at	64856	J	P	0.615	P.A	0.378	A	WARP
218733 as	55167	1	p	1.573	P	1.672	P	FLJ 10546
218736 s at	54873	1	P	1.563	P	1.437	P	PALMD
218740 s al	80279	1	P	0.839	P	0.635	P	CDK5RAP3
218750 at	79101	1	P	1.754	P	1.834	P	MGC5306
218751 s al	55294	1	P	1.541	P	1.416	P	FF13XW7; A(\%)
218754 at	79707	I	P	1.565	P	1.487	P	H!J23323
218757 s at	65109	1	P	1.456	P	1.539	P	UPF38
218760_al	51004	1	P	1.701	P	1.388	P	COQ6
218767 at	57109	1	P.M.A	1.537	P	1.392	P	XPMC211
218768 at	57122	I	P	1.680	P	1.703	P	NUP107
$218772 \times$ as	55151	I	P	1.523	P	1.808	P	C9orf87
218773 s at	22921	1	P	0.746	P	0.514	P	MSRI
218774 at	28960	1	P	1.524	P	1.088	Γ	DCPS
218777 at	80346	1	P	0.681	P	0.636	P	PP432
218783 at	25896	I	P	1.709	${ }^{1}$	2.043	P	[K F $2 P 4348168$
218813 s at	56904	1	P	0.747	P	0.546	P	SII3GLB2

Affymetrix Id	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
218820_at	56967	1	P	1258	P,M	1785	P	C140rf132
218825_at	51162	1	P	0578	A	0448	A	EGFL7, ZNEU1
218834_s_at	54972	1	P	0635	P	0577	P	HSPA5BP1
218836_at	79897	1	P	1633	P	1323	P	RPP21
218838_s_at	64427	1	P	0949	P	0653	P	FLJ12788
218847_at	10644	1	P	1759	P	1615	P	IMP-2
218851_s_at	55339	1	P,A	2367	P	3437	P	WDR33
218853_s_at	56180	1	P	1435	P	1655	P	MOSPD1
218871_x_at	55454	1	P	1504	P	1581	P	GALNACT-2
218880_at	2355	1	P	2146	P	1984	P	FOSL2
218881_s_at	79579	1	A	1561	P	1534	M,A	FOSL2
218882_s_at	10885	1	P	1697	P	1651	P	WDR3
218884_s_at	60558	1	P	1701	P	1852	P	FLJ13220
218885_s_at	79695	1	P	0501	P	0335	P	GALNTI2
218886 at	55003	1	P	2000	P	1604	P	PAK1IP1
218889_at	64318	1	P	1513	P	1356	P	C10orf117
218901_at	57088	1	P,A	1478	P,A	1596	P,M,A	PLSCR4
218904_s_at	55071	1	P	1605	P	1531	P	FLJI0110
218915_at	51219	1	P	2219	P	2288	P	NF2, CAN
218918_at	57134	1	P	0568	P, A	0674	P, A	MANIC1, HMIC
218921_at	59307	1	P	0682	P	0539	P	SIGIRR
218923_at	1486	1	P	1300	P	1766	P	SPATAI
218924 s at	1486	1	P	1225	P	1665	P	CTBS
218929_at	55602	1	P	1411	P	1703	P	CARF
218932_at	54680	1	P	2273	P	2580	P	FLJ20729
218938_at	79176	1	P,M	0742	A	0639	M,A	MGC1 1279
218941_at	26190	1	P	1564	P	1423	P	FBXW2, FBW2
218948_at	55278	1	P,A	1646	P	1628	P,M	QRSL1, GatA
218949 s_at	55278	1	P	1658	P	1474	P	QRSL1
218951_s_at	55344	1	P	0641	P	0707	P	FLJ11323
218953_s_at	78991	1	P	0759	P	0388	P	MGC3265
218959 at	3226	1	P	1272	P	1609	P	HOXC10
218961_s_at	11284	1	P	0613	P	0397	P	PNKP
218972_at	55761	1	P	1527	P	1823	P	TTC17
218977_s_at	54952	1	P	0900	P	0624	P	SECP43
218981_at	57001	1	P	1635	P	1620	P	ACN9, DC11
218983_at	51279	1	P	0303	A	0252	P, A	C1RL, CIRLI
218995_s_at	1906	1	A	2095	P,M	1952	P, M	EDN1, ETI
218997_at	64425	1	P	1915	P	1583	P	PAF53
219000_s_at	79075	1	P	2121	P	2086	P	MGC5528
219004_s_at	54069	1	P	1643	P	1610	P	C21orf45
219007_at	79700	1	P	1549	P	1579	P	NUP43
219008_at	60526	1	P	1701	P	1366	P	FLJ21820
219010_at	55765	1	P	1398	P	1623	P	FLJ10901
219014 at	51316	1	P	1861	P	2168	P	PLAC8, C15
219022_at	64897	1	P	1576	P	1373	P	FLJ12448
219026_s_at	9462	1	P	1696	P	1785	P	RASAL2
219031_s_at	51388	1	P	1711	P	1518	P	CGI-37
219032_x_at	23596	1	P	0952	P	0490	P	OPN3
219037_at	51018	1	P	1598	P	1501	P	CGI-115

$\begin{aligned} & \text { Affymetrix } \\ & \text { Id } \end{aligned}$	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
219038_at	79710	1	P	1248	P	1550	P	ZCWCC2
219049_at	55790	1	P M	1639	P	1430	P	ChGn
219066_at	60490	1	P,M	1553	P	1464	P	MDS018
219069_at	54851	1	P	1548	P	1652	P	FGIF, FLJ20189
219070 s at	64598	1	P	0782	P	0572	P	MOSPD3
219073_s_at	114884	1	P,A	1149	P	1608	P	OSBPL10
219081_at	54882	1	P	1326	P	1508	P	$\begin{aligned} & \hline \text { ANKHD1, } \\ & \text { MASK } \end{aligned}$
219083_at	55164	1	A	1777	P	1791	P,M	FLJ10539
219088_s_at	79177	1	A	1545	P,M	1168	P,M	ZNF576
219094_at	29067	1	P,A	1820	P	1903	P	HSPC056
219102_at	57333	1	P	0634	P	0637	P	RCN3, RLP49
219105_x_at	23594	1	P	1631	P	1546	P	ORC6L
219109_at	79582	1	P	1345	P	1524	P	PF20, WDR29
219125_s_at	55974	1	P	0813	P	0645	P	LOC55974
219126_at	55274	1	P	0604	P	0521	P	PHF10
219130_at	54482	1	P	1297	P	1603	P	FLJ10287
219138_at	9045	1	A	1544	\mathbf{P}, \mathbf{A}	1169	P,A	RPL14
219142_at	65997	1	P	1280	P	1628	P	RASL11B
219147_s_at	54981	1	P	0654	P	0567	P	NRK1
219149_x_at	51163	1	P, M	1658	P	1387	P	DBR1
219152_at	50512	1	P,M	0706	P, A	0413	A	PODLX2
219158_s_at	80155	1	P	1909	P	1727	P	TBDN100
219163_at	54811	1	P	1509	P	1421	P	ZNF562
219175_s_at	54946	1	P	0726	P	0622	P	SLC41A3
219177_at	55299	1	P	1639	P	1464	P	BRIX, FLJI1100
219178_at	79691	1	P	1737	P	1665	P	QTRTD1
219188_s_at	28992	1	P	0425	P	0265	P,A	LRP16
219202_at	79651	1	P	0771	P	0589	P	RHBDL6
219211_at	11274	1	P	1391	P	1748	P	USP18
219214_s_at	30833	1	P, A	0764	P,A	0503	A	RBAK
219240_s_at	80007	1	P	1597	P	1681	P	FLJ13490
219244_s_at	26589	1	P	1635	P	1433	P	MRPL46
219248_at	80745	1	P	1514	P	1607	P	THUMPD2
219250_s_at	23767	1	A	1361	P,A	1502	P,A	FLRT3
219253_at	79134	1	P	0813	P	0657	P	FAM11B
219254_at	79701	1	P	1022	P A	0623	P,A	FLJ22222
219258_at	54962	1	P	2314	P	2346	P	FLJ20516
219263_at	79589	1	P,A	1851	P	2232	P	RNF128
219266_at	59348	1	P,A	1563	P, M	2048	P	ZNF350
219270_at	79094	1	P	0274	M,A	0242	A	MGC4504
219274_at	23554	1	P,A	1391	P,M,A	1809	P	TM4SF12
219275_at	9141	1	P	1799	P	1663	P	PDCD5
219283_at	29071	1	P	0573	P	0510	P	CIGALT2
219288_at	57415	1	P	2172	P	1595	P	HT021
219292_at	55145	1	P	1496	P	1758	P	THAP1
219293_s at	29789	1	P	1509	P	1539	P	PTD004
219299_at	55039	1	P	1553	P	1587	P	FLJ20772
219303_at	79596	1	P	1746	P	1810	P	C13orf7
219312_s_at	65986	1	P	1102	P	1534	P	ZBTB10

Affymetriz Id	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flage	Normalized	Flag	Normslized	Flag	
219313 at	54762	1	M, A	1.180	P, A	1.545	P. A	DKFZp434C0328
219321 at	64398	1	P	1.555	P	1.481	P	MPP5
219324 at	79159	1	P	1.720	P	1.198	P	MGC3731
219343 at	55664	1	P	1.488	P	1.577	P	CDC371.
219345 al	51027	1	P	0.816	P	0.616	P	CGI-143
219346 at	79414	1	P	0.974	P	0.659	P	LRFN3
219347 at	55270	1	P	1.769	P	1.545	P	NUDT15
219361 s_at	64782	1	A	2.215	P	2.006	P	FIJ12484
219362 at	796888	1	P.A	1.521	P	1.328	P	MAK 10
219363 s_a!	51001	1	P	1.750	P	1.585	P	CGI-12
219366 at	57099	1	P.A	1.679	P	1.319	P	AVEN: PJ)(i)12
219371_s at	10365	1	P	1.910	P	1.396	P	KI,F2: LKI.f
219373 al	54.344	1	P	0.739	P	0.617	P	[)PM3
219376 at	79692	1	P	1.568	P	1.654	P	7NF322A
219377 at	64762	1	P	1.532	P	1.656	P	Cl8orfl 1
219384 s at	23536	1	P	1.826	P	1.699	P	HADATI
219387 at	55580	1	P.M	1.673	P	1.611	P	LOC55580
219401 at	64132	1	P	0.610	P	0.610	A	XYLT2; XT2
219410 al	55076	I	P	1.261	P	1.731	P	FLJ10134
219416 at	51435	I	P	1.336	P	1.501	P	SCARA3
219427 at	79633	I	P	1.611	P	1.496	1	FAIJ; FIJ23056
219447 s at	51006	1	P	0.892	P	0.641	P	SIC3SC2
219459 at	55703	1	P.M	1.578	P	1.451	P	POLR3B
219460 s at	55654	I	P.A	1.523	P	1.434	P	FlJ20507
219469_at	79659	1	P	1.509	P	1.579	P	FIJ11756
$219470 \times$ at	5.4619	1	P	1.524	P	1.226	P	CCNJ
219472 at	79172	1	P	1.550	P	1.376	P	MGC11266
219473 at	54834	1	P	1.505	P	1.574	P	GDAP2
219477 s_al	55901	I	M.A	1.852	P	2.185	P	THSD 1
219479 at	79070	I	P	0.925	P	0.582	P	KDELCI
219484_at	29915	1	P	1.599	P	1.739	P	HCFC2
219490 s at	64858	1	P	1.691	P	1.406	P	DCLREIB
219493 al	79801	I	P	1.554	P	1.334	P	SHCBPI
219495 s_at	7733	I	P	1.516	P	1.471	P	ZNF180
219499 at	55176	I	P	1.882	P	2.024	P	SEC61A2
219523 s at	55714	1	P	0.837	1	0.547	P	FLJ10474
219540_8!		1	P	1.416	P	1.688	P	ZNF267
219555 s at	55839	1	P	1.550	P	1.234	P	BM039
219557 s at	56675	1	P	1.475	P	1.662	P	NRIP3
219560 at	79680	I	P	1.529	P	1.124	P	FLJ21125
219562_at	25837	1	P	0.325	A	0.249	A	RAB26; V46133
219567 s_at	64789	1	P	1.427	P	1.785	P	FLJ21144
219575_s_u	64146	1	P	0.836	P	0.617	P	PDF
219577 s_al	10347	I	P	0.666	P	0.652	P, M, A	ABCA7
219582 at	79627	1	P	1.940	P	1.812	P	OGFRLI
219595 at	7574	1	A	1.976	P	2.431	I'	7.NF26
21\%112_al	2266	1	A	2.124	P	2190	P	Fnn
$21 \% 26$ ub	79649	1	P	1.310	P	1.505	P	Fld 12649
219628 al	64393	1	P	1.870	P	1.949	P	W1G1
21963! _at	29967	1	P	1.876	P	2.302	P	ST7

Affymetrix Id	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flaga	Normalized	Flaps	Normalized	Flags	
219646 al	54849	1	P	1.738	P	1.465	P	FLJ20186
219648 all	55686	1	P	1.520	P	1.436	P	FLJ10116
219650 at	54821	1	P	1.483	p	1.642	P	FIJ20105
219664 s at	26063	1	P	0.826	P	0.649	P	DECR2; PIXCR
219690 at	79713	1	P	1.608	P	1.349	P	FLJ22573
219703 at	55329	I	P	1.687	P	1.701	P	MNSI
$219709 \times$ at	65990	1	P	0.827	P	0.643	P	MGC2494
219717	54876	1	P	1.289	P	1.514	P	FLJ20280
219736 \&	55521	1	P.A	1.380	P	1.943	P	TRIM36
219742 al	80758	I	P	0.830	P	0.545	P	MGC10772
219760 at	64130	1	P	1.763	P	1.140	P	L.IN73
219774 at	54520	1	P	1.589	P	1.421	P	FLJ 10996
219800 s at	7989	1	P	1.335	P, A	1.566	P	IHNSL. 1
219802 at	79912	I	P	0.818	$1]$	0.620	P	F1J22028
219805 at	63932	1	P	1.380	P	1.535	P	Fl J22965
219825 al	56603	1	P.A	2.387	P	2.119	P	CYP26131
219834 al	79800	1	P	0.551	A	0.792	P, A	ALS2CR8
219861_at	55192	1	P	0.956	P	0.613	P,A	FIJ10634
219884 ad	26468	1	P	1.658	P	1.510	P	LHX6; LHX6.1
219895 al	55026	I	A	1.092	A	2.294	P.M	FLJ20716
219917 at	80001	1	P.A	1.553	P	1.117	P, A	FLJ23024
219933 at	51022	I	P	1.549	P	1.524	P	GLRX2: GRX2
219938_s_at	9050	I	P.A	1.408	P, A	1.613	P	PSTPIP2
219944 al	79745	1	P.A	1.905	P, A	2.992	P	FLJ21069
219945 al	29118	1	P	0.386	P.A	0423	P	DDX25; GRTH
$219966 \times$ at	54971	1	P	1.494	P	1.606	P	[3ANP
219984 s_al	57110	1	P	1.126	P, A	1.531	P.M,A	HRASLS
219987_at	79584	1	P.A	1.556	P	1.622	P	Fl. 12684
219990_at	79733	1	P	1.652	P	1.538	P	1:1」23311
219997_s_al	64708	1	P	1.557	P	1.404	P	COPS71
219998_al	29094	I	P	1.673	P	1.228	P	HSPC159
220011_at	79000	1	P	1.607	P	1.413	P	MGC2603
220014_al	51334	1	P	1.625	P	1.662	P	I.OC51334
220044_x_a!	51747	1	P	1.653	P	1.469	P	LUC7A; CROP
220051 _at	10942	1	P	0.724	P	0.627	P.M	PRSS21
220092 s at	84168	1	P.A	1.462	P.M.A	1.653	P	ANTXRI
220140 s a!	29916	1	P	1.501	P	1.378	P	SNXII
220143 x_at	55692	1	P	1.939	P	2.100	P	L.UC7L2
220172_al	80067	I	P	1.716	P	1.613	P	FLJ13096
220179_at	6-180	1	P	0.518	P	0.739	P	DPEP3
220183_s 8t	11162	1	P	0.749	P, A	0.655	P.M	NUDT6
220199_s_ut	64853	1	P	1.826	P	1.849	P	Fl」12806
220205 a!	7179	1	P	0.615	P	0.725	P	TPTE: PTEN2
220253 s at	29967	1	P	1.508	P	1.902	P	ST7; F1J12929
220294_st	29967	1	P	1.500	P	1.736	P	ST7: FIJ12929
220262 s al	65989	1	P	0.713	P,M	0.626	P.M	EGF1. 9
220358 at	55509	1	P.A	1.819	P	1.783	P.M	SNJTT: JUNDM1
220368 s_at	55671	1	P	1.559	P	1.479	P	K1AA2010
220397 at	56890	1	A	2.070	P	2.824	P	M1MI
220432 s at	51302	1	P	1.161	P	1.641	P	CYP39AI

$\begin{aligned} & \text { Affymetrix } \\ & \text { Id } \end{aligned}$	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalızed	Flags	Normalized	Flags	
220452_x_at		1	M,A	1479	P	1771	P, M	
220466 at	80071	1	P	1746	P	1796	P	FLJ13215
220484_at	55283	1	P,A	1156	P	1562	P	MCOLN3
220488_s_at	54828	1	P	0619	P,M	0488	A	BCAS3
220500_s_at	11159	1	P	0825	P	0657	P	RABL2A
220520_s_at	54830	1	M,A	1483	P	1974	P	FLJ20130
220545_s_at	60385	1	P	0606	P	0583	P,A	TSKS, TSKS 1
220565_at	2826	1	P,M	0644	P,M,A	0675	P	GPR2, CCR10
220610_s_at	9209	1	P	1745	P	1892	P	LRRFIP2
220633_s_at	50809	1	P	0770	P	0649	P,A	HP1-BP74
220643_s_at	55179	1	P	0823	P	0643	P	FAIM, FAIM1
220647_s_at	51287	1	P	1569	P	1348	P	E2IG2
220651_s_at	55388	1	P	2028	P	1748	P	MCM10
220688_s_at	51154	1	P	1707	P	1373	P	Clorf33
220707_s_at	80020	1	P,A	0832	P,M,A	0598	A	FLJ23322
220748_s_at	51157	1	P	0722	P	0517	P	ZNF580
220771_at	51152	1	P	1227	P	1815	P	LOC51152
220839 a	29081	1	P,A	1960	P, A	1583	P,A	HSPC133
220840_s at	55732	1	P	1832	P	1842	P	FLJ10706
220841_s_at	54806	1	P	1574	P	1304	P	AHII
220892_s_at	29968	1	P	0354	P	0300	P	PSAT1
220934 s_at	79064	1	P	0638	P,M,A	0537	A	MGC3196
220936_s_at	55766	1	P, A	1212	P,A	1529	P	H2AFJ
220937_s_at	27090	1	P	0987	P	0563	P	SIAT7D
220987_s_at	81788	1	P	1556	P	1560	P	SNARK
220992_s_at	81627	1	P	1691	P	2013	P	Clorf25
221011_s_at	81606	1	P	1150	P	2247	P	LBH
221014_s_at	83452	1	P	1566	P	1511	P	RAB33B
221021_s_at	56259	1	P	1528	P	1589	P	CTNNBL1
221031_s_at	81575	1	P,M	1265	P	1677	P	DKFZP434F0318
221045ssat	8863	1	PM	1889	P	1933	P	PER3
221059s s at	4166	1	P	1682	P	1503	P	CHST6, MCDC1
221104_s_at	55335	1	P	1249	P	1551	P	NIPSNAP3B
221156_x_at	9236	1	P	1485	P	1609	P	CPR8
221190_s_at	29919	1	P	1562	P	1437	P	C18arf8,
221193_s_at	54819	1	P	1635	P	1812	P	ZCCHC10
221196_x_at	79184	1	P, A	1524	P	1270	P	C6 1A
221206_at		1	P	1436	P	1596	P	
221213_s_at	54816	1	P,A	0703	P,A	0638	P,A	FLJ20086
221219 s_at	54758	1	P	1711	P	1381	P	DKFZp434G0522
221255_s_at	83460	1	P	1513	P	1303	P	MGC2963
221260_s_at	81566	1	P	1519	P	1652	P	C120rf22
221267_s_at	81926	1	P	0774	P	0574	P	C190rf27
221270_s_at	81890	1	P,A	0894	P,A	0552	A	QTRT1, TGT
221434_s_at	81892	1	P	1867	P	1867	P	C14orf156
221435 x_at	81888	1	P	0819	P	0585	P	HT036
221437_s at	64960	1	P	1857	P	1754	P	MRPS15
221448_s_at	56154	1	P,M	1247	P	1711	P	TEX15
221489 s s at	81848	1	P	1551	P	1553	P	SPRY4
221503_s_at	3839	1	P	1556	P	1493	P	KPNA3

$\begin{aligned} & \text { Aftymetrix } \\ & \text { Id } \end{aligned}$	Locuslink	Day 0		Day 3		Dav 7		Common Name
		Normalized	Flapa	Normalized	Flags	Normalixed	Flag	
221510 s at	2744	I	P	1.833	P	2.008	P	GL.S; GLSI
221511 _x_at	57499	1	\mathbf{P}	1.214	\boldsymbol{r}	1.638	P	$\begin{gathered} \text { CPR8: } \\ \text { KIAA1254 } \end{gathered}$
221515 s at	51451	1	P	1.549	P	1.368	P	LCMT1; CGI-68
221523 s_at	58528	1	P	0.978	P	1.602	P	RAGD
221524 s at	58528	1	P	0.922	P	1.580	P	RRAGI)
221528 s at	63916	1	p	1.669	P	1.380	P	ELMO2
221535 at	55341	1	P	1.848	P	1.862	P	Fldll301
221536 s at	55341	I	P	1.943	P	1.910	P	F1J11301
221537 at	84202	1	P	1.634	P	1.402	P	DKFZp564A176
221550 at	1355	1	P	1.526	P	1.124	P	COXIS
221551_x_at	27090	1	P, A	0.801	P	0.609	P. A	SIAT7D
221559_s_at	79003	1	P	1.507	P	1.509	P	MISI2
221562 s at	23410	1	P	0.706	P	0.488	P.M.A	SIRT3; SIR21.3
$221577 \times$ at	9518	1	P.M	0.441	A	0.273	A	GDF 15
221582 a!	92815	1	P	0.581	P.M	0.469	P. ${ }^{\text {A }}$	HIST3H2A
221589 s at	4329	1	P	0.749	P	0.629	P	Cl4orf45
221598 s at	9442	1	A	1.789	P	1.696	P,M	CRSP8
221628 s a!	84656	1	P	0.582	P,M,A	0.572	P,A	N-PAC
221633 at	29781	1	P, A	1.538	P	1.300	P	384D8-2
221648 s_at		1	P	1.527	P	1.493	P	PNAS-4
221652 s al	55726	1	P	1.843	P	1.922	P	FLJ10637
221664 s at	50848	I	P	0.529	A	0.489	A	FIIR:
221676 s al	23603	I	P	1.642	P	1.619	P	COROIC
221677 s at	29980	I	P	1.563	P	1.598	P	DONSON
221693 s at	55168	I	P	1.529	P	1.274	P	MRPS18A
221695 s_at	10746	1	P	1.487	P	1.798	p	MAP3K2
221704 s at	79720	1	P	1.591	P	1.544	P	FLJ12750
221713 s_at	79929	1	P. A	1.756	P	1.680	P	FLJ12748
221718 s at	11214	1	P	1.591	P	1.552	P	AKAP13
221727 at	10923	1	P	1.517	P	1.795	P	PC4
221741s al	54915	1	P	1.575	P	1.651	P	dJ963E22.1
221754_s_at	57175	1	P	0.790	P	0.553	P	CORO1B
221755 al	254102	1	P	0.647	P,M	0.469	P, A	DKF2p762C'186
221759 at	92579	1	P	0.734	P	0.487	P, A	G6PC3
221760 at		1	A	1.742	P	2.686	P	MANIAI
221768 al		1	P	1.601	P	1.638	P	SFPQ
221780 s_at	55661	I	P	1.501	P	1.237	P	DDX27
221788 a!	5238	1	P	1.134	P	1.547	P	PGM3
221800 s at	80233	1	P	0.863	P	0.605	P	F1」22175
221810 al		1	\mathbf{P}, \mathbf{A}	1.513	P	1.488	P	
221820_s_at	84148	I	P	0.814	P	0.638	1	MYST1
221823 at	90355	1	P	1.703	P	2.045	P	$1.0 C 90355$
221832_5 at		1	P	1.392	P	1.535	P	LU7.P1
221837 at	84861	1	P	0.739	P, A	0.454	M, A	FIJ14360
221841_5_at		1	\wedge	1.647	A	1.684	P	KI.F4
221864 at	93129	1	P	0.567	P	0.605	P	MGCl3024
221873 at	7702	1	P	1.410	P	1.507	1	2NF143
221892 at		I	P	0.599	P	0.532	P	H6PD
221919 at	3178	1	P	1.530	P	1.499	P	IINRPAI

Ixxvii

$\begin{aligned} & \text { Affymetrix } \\ & \text { ld } \end{aligned}$	Locuslink	Day 0		Day 3		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	Normalized	Flags	
221934 s at	55152	1	P	0.738	P	0.533	P	FLJI04\%
221951 at		1	P	0.566	P, A	0.534	P, A	1.OC283232
221953 s at	10893	1	M.A	0.824	P.A	0.529	A	MMP24
221970 s_at	25926	1	P	1.656	P	1.514	P	DKFZP5861.0724
221973 al		I	P	0.816	P. A	1.506	P	LOCI50759
221987 s_at	55720	1	P	1.784	P	1.202	P	FLJ10534
221998 s al	51231	I	P	0.620	P	0.553	P	LOC51231
222006 as		1	P	1.623	P	1.382	P	FGFR3
222010 at	39	1	1	1.890	P	2.057	P	ACAT2
222011 s at	6950	I	P	1.702	P	1.775	P	ACAT2
222040 at	3178	I	P	1.590	P	1.306	P	HNRPAI
222043 at	1191	I	P	1.116	P	1.552	P	CLU
222045 s_at	63935	I	P	0.951	p	0.657	P.M	C200rf67
222074 al	7389	1	P.A	2.217	P	2.461	P	UROI)
222088 s_at	144195	1	P	1.554	P	1.342	P	SI.C2A14
222103 al	466	1	P	1.429	P	1.640	P	ATFI
222108 al		1	P	1.393	P	1.626	P	
222111 al		1	P	0.643	P	0.677	P	K1AA1164
222125 s_at	54681	I	P	0.579	P	0.580	P	PH-4; FLJ20262
222130_s_at	29960	I	P	1.878	P	1.537	P	FTSJ2; FJH11
222149 x al		1	A	1.346	P.A	1.519	P.M	DKFZp434P162
222154_s_al	26010	1	P	1.348	P	1.658	P	DNAPTP6
222156 x_81	57499	1	P	1.251	P	1.601	P	CPR8
222162_s_at	9510	1	A	1.512	P,M	1.463	P	ADAMTS!
222204 s at	54700	I	P	1.857	$\boldsymbol{\beta}$	1.703	P	RRN3
222231 s at	55379	I	P	1.611	P	1.356	P	PROI855
222233 s 8i	64421	1	P	1.526	P	1.558	P	DCLREIC
222234 s al	79007	I	P, A	0.707	P.M	0.631	P.A	MGC3101
222235sat		1	P	1.906	P	1.879	P	dJ19N1.J
222240 s at	51477	1	P	0.664	P	0.518	P	ISYNAI
222249 al		1	P.A	1.632	P,A	1.595	P	KIAA1651
222250 s at	25896	I	P	2.134	P	2.027	P	DKF2P434B168
222258 s_at	23677	I	P	1.589	P	2.227	P	SH313P4
222263 at	79939	I	P,M	0.957	P	0.658	P.A	SLC35EI
222266 al		I	P	1.618	P	1.621	P	C190r2
222269 at		1	A	1.916	P.A	1.682	P.A	UNQ8193
222274_al	150244	I	A	1.544	P.A	1.537	p	F1J31568
222305 a		I	P.A	3.630	P	3.539	P	HK2
222312 s at	5350	1	P.A	1.429	P	1.518	P	PL,
222360_al	51611	1	${ }^{\prime}$	1.587	P	1.785	P	CGI-30
222382 x_at	23165	1	P.A	1.699	P.A	1.537	P	NUP205
266 s at	934	1	P.A	2.416	P	5.457	P	CD24; CD24A
31845 al	2000	1	P	1.572	P	1.333	P	ELF4
32088 at	8548	1	P.M, A	1.340	P	1.632	P	HLSFI
32094 at	9469	1	P	1.807	P	1.822	P	CHST3
33132 at	29894	1	P	0.801	P	0.627	P	CPSFI
33307 at	27341	1	\underline{p}	1.551	P	1.124	${ }^{1}$	CGI-96
33778 at	25771	1	P	0.726	P	0.564	P	C22orf4
34408 at	6253	1	P	0.403	P	0.463	P	RTN2
34868 at	23381	1	P	1.907	P	1.878	P	ESTIB

Affymetrix Id	LocusLink	Day 0		Day 3		Day 7		Common Name
		Normalızed	Flags	Normalızed	Flags	Normalızed	Flags	
35156_at		1	P	0830	P	0578	P	LOC203069
35179_at	26229	1	P	0855	P	0625	P	B3GAT3
35436_at	2801	1	P	0875	P	0648	P	GOLGA2
35626_at	6448	1	P	0707	P	0459	P	SGSH, HSS
36545_s_at	9814	1	P	0838	P	0604	P	KIAA0542
36552_at	26005	1	P	1574	P	1743	P	DKFZP586P0123
36553_at	8623	1	P	0931	P	0580	P	ASMTL
36554_at	8623	1	P	0861	P	0533	P	ASMTL
36564_at	127544	1	P	1692	P	1466	P	IBRDC3
36711_at	23764	1	P	1550	P	1338	P	MAFF
37028_at	23645	1	P	1894	P	2523	P	PPP1R15A
37170_at	55589	1	P	1487	P	1745	P	BMP2K
37408_at	9902	1	P	0680	P	0639	P	MRC2
37796_at	4034	1	P	0793	P	0505	P	LRRN1
37802_r_at	54629	1	P,M,A	0741	P	0532	P, A	KIAA1164
37892_at	1301	1	P	0842	P	0614	P	COL1IAI
37950_at	5550	1	P	0884	P	0650	P	PREP
37966_at	29780	1	P	0881	P	0641	P	PARVB
38037_at	1839	1	P, A	1804	P	2034	P	DTR
39729_at	7001	1	P	0904	P	0582	P	PRDX2
39817 s_at	10591	1	P	0803	P	0582	P	C6orf108
40489_at	1822	1	P	1821	P	1574	P	DRPLA, B37
40665_at	2328	1	P,M,A	0629	A	0858	P,A	FMO3
41660_at	9620	1	P	0605	P	0510	P	CELSR1
44654_at	92579	1	P	0874	P	0586	P	G6PC3
45633_at	64785	1	P	1961	P	1606	P	FLJ13912
46142_at	64788	1	P,A	0654	P,M,A	0443	A	FLJ12681
46167_at	7268	1	P	1768	P	1589	P	TTC4
48106_at	55652	1	P	1755	P	1523	P	FLJ20489
48808_at	1719	1	P	1685	P	1707	P	DHFR
50965_at	25837	1	P	0441	P	0383	P	RAB26
51176_at	9442	1	P	1558	P	1483	P	CRSP8
52164_at	53838	1	P	1659	P	1484	P	Cllorf24
52940_at	59307	1	P	0703	P	0553	P	SIGIRR
56256_at	51092	1	P	0708	P	0482	P	TAGLN
57539_at	84619	1	P	0887	P	0650	P	FLJ20406
58308_at	55223	1	P	1445	P	1655	P	FLJ10759
59625_at	8996	1	P	0824	P	0659	M,A	LOC283849
60794_f_at		1	P	1512	P	1575	P	
60815_at	5439	1	P,A	1427	P	1837	P	POLR2J
61732_r_at	80173	1	P	0692	P,A	0659	P, A	CCDC2
61734_at	57333	1	P	0560	P	0615	P	RCN3
63825_at		1	P	1736	P	1654	P	ABHD2
64371_at	10147	1	P, A	1369	P	1576	P	SFRS14
64486_at	57175	1	P	0771	P	0571	P	COROIB
65517_at	10053	1	P	1728	P	1970	P	APIM2
65588_at		1	P	1609	P	1540	P	
65630_at		1	P	0633	P	0452	P	LOC283232
91703 at	254102	1	P	0737	P	0550	P	DKFZp762C186

Affymetrix ld	Day 0		Day 3		Day 7		Common Name
	Normalised	Flag	Normalised	Flag	Normalised	Flag	
AFFX-DapX-3_at	1	P	0687	P	0566	P	
AFFX-DapX-5_at	1	P	0559	P	0490	P	
AFFX-DapX-M_at	1	P	0662	P	0542	P	
AFFX-HUMISGF3A/M97935_3_at	1	P	1348	P	1949	P	STAT1
AFFXHUMISGF3AM97935 MB at	1	P	1285	P	1760	P	STAT1
AFFX-LysX-3_at	1	P	0737	P	0550	P	
AFFX-LysX-5_at	1	P	0707	P	0576	P	
AFFX-LysX-M_at	1	P	0696	P	0550	P	
AFFX-M27830_5_at	1	P,A	0955	P,A	1841	P,M,A	
AFFX-PheX-3_at	1	P	0756	P	0598	P	
AFFX-PheX-5_at	1	P	0629	P	0510	P	
AFFX-PheX-M_at	1	P	0675	P	0568	P	
AFFX-r2-Bs-dap-3_at	1	P	0746	P	0632	P	
AFFX-r2-Bs-dap-5_at	1	P	0611	P	0488	P	
AFFX-r2-Bs-dap-M_at	1	P	0658	P	0529	P	
AFFX-r2-Bs-lys-3-at	1	P	0696	P	0589	P	
AFFX-r2-Bs-lys-5_at	1	P	0693	P	0493	P	
AFFX-r2-Bs-lys-M_at	1	P	0691	P	0557	P	
AFFX-r2-Bs-phe-3_at	1	P	0674	P	0540	P	
AFFX-r2-Bs-phe-5_at	1	P	0536	P	0457	P	
AFFX-r2-Bs-phe-M_at	1	P	0687	P	0518	P	
AFFX-r2-Bs-thr-3_s_at	1	P	0682	P	0598	P	
AFFX-r2-Bs-thr-5_s_at	1	P	0599	P	0522	P	
AFFX-r2-Bs-thr-M_s_at	1	P	0621	P	0472	P	
AFFX-ThrX-3_at	1	P	0677	P	0543	P	
AFFX-ThrX-5_at	1	P	0549	P	0424	P	
AFFX-ThrX-M_at	1	P	0631	P	0474	P	

74 Appendix E - Differentially Expressed Genes Identified in IdU DNA Microarray Experıment

List of differentially expressed genes identified from microarray analysis of IdU microarray experıment Genes listed are sorted by Affymetrix ID number

$\begin{aligned} & \text { Affymetrix } \\ & \text { Id } \end{aligned}$	LocusLink	Day 0		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	
207331 at	1063	1	P	0.645	P	CENPF
1405 i at	6352	1	P, A	2.996	P	CCl 5
200696 s at	2934	1	P	1.552	P	GSN
200697 at	3098	1	P	1.622	P	HK1
200762 at	1808	1	P	1.536	P	DPYSL2
200768 s at	4144	1	P	0.544	P	MAT2A
200838 at	1508	I	P	1.543	P	CTSB
200872 at	6281	1	P	1.588	P	S100A10
200878 at	29952	1	P,A	1.539	P	EPASI
200887 s at	6772	1	P	1.857	P	STATI
$200983 \times$ at	966	1	P	1.602	P	CD59
200985 s at	966	1	P	1.505	P	CD59
201015 s at	3728	1	P.M,A	1.715	P	JUP
201042 at	7052	1	P, A	1.989	P	TGM2
201058 s at	10398	1	P	1.528	P	MYL9
$201060 \times$ at	2040	1	P	1.541	P	STOM
201110 s al	7057	1	P, A	3.583	P	THBS 1
$201122 \times$ al	1984	1	P	1.584	P	EIF5A
201123 s at	1984	I	P	1.689	P	EIFSA
201141 at	10457	1	P	1.920	P	GPNMB
201149 s at	7078	1	P.A	2.564	P	TIMP3
201150 s at	7078	1	P.A	1.750	P.A	TIMP3
201162 at	3490	1	P, A	2.617	P	IGFBP7
201163 s at	3490	1	P	2.360	P	IGFBP7
201169 s at	8553	1	P,A	1.888	P	BHLHB2
201185 at	5654	1	P, A	2.074	P	PRSSI]
201205 at	6238	1	P, A	1.504	P	RRBP1
201266 at	7296	1	P	1.610	P	TXNRD 1
201295 s at	26118	1	P	0.647	P	WSB1
201330 at	5917	1	P	0.499	P	RARS
201341 at	8507	1	P.A	1.746	P	ENCI
201348 at	2878	1	P	1.669	P	GPX3
201427 s at	6414	1	P.A	1.795	P,A	SEPP1
$201464 \times$ at	3725	1	P.A	1.863	P	JUN
201466 s at	3725	1	P. \boldsymbol{A}	2.065	P	JUN: API
201473 at	3726	1	P	1.871	P	JUNB
201502 s at	4792	1	P	1.555	P	NFKBIA
201505 at	3912	1	P	1.933	P	LAMB1
201506 at	7045	1	A	2.585	P.M	TGFBI
201578 at	5420	1	P.M, A	1.529	P.M, A	PODXL
$201596 \times$ at	3875	1	P,A	2.271	P	KRTI8
201631 s at	8870	1	P	1.775	P	IER3
201666 at	7076	1	P	1.638	P	TIMP]
201693 s at	1958	1	P	1.813	P	EGRI
201719 s at	2037	1	P	1.558	P	EPB41L2
201733 at		1	P	0.657	P	CLCN3
201739 at	6446	1	P	2.196	P	SGK; SGK1
201793 x at	9887	1	M,A	1.732	P, A	Clorf16
201798 s at	26509	1	P.A	2.298	P	FERIL3
201843 s at	2202	1	P.A	1.682	P. A	EFEMPI

Ixxxii

Affymetrix Id	LocusLink	Day 0		Day 7		Common Name
		Normalized	Flags	Normalized	Flaga	
201927 s at	8502	1	P	1.541	P	PKP4
201945 at	5045	1	A	1.679	P.M	FURIN
202008 s at	4811	1	P	1.533	P	NID
202017 at	2052	I	P	1.622	P	EPHXI
202086 at	4599	1	P.A	1.925	P	MXI
202132 at	25937	1	P	1.550	P	TAZ
202159 at	2193	1	P	1.565	P	FARSLA
202284 s at	1026	1	p	2.209	P	P21
202307 s at	5696	1	P	1.669	P	TAPI
202328 s at	5310	1	P	0.619	P.M	PKDI; PBP
202424 at	5605	1	P	1.619	P	MAP2K2
202436 s at	1545	1	P.A	1.542	P	CYP1B1
202446 s at	5359	1	P	1.827	P	PLSCRI
202458 al	11098	1	P.A	2.022	P	SPUVE
202472 al	4351	1	P	0.620	P	MP]
202524 s at	9806	1	P	0.402	P	SPOCK2
202575 at	1382	1	M, A	1.965	P	CRABP2
202598 at	6284	1	P	1.560	P	S100A13
202662 s at	3709	1	A	1.654	P	ITPR2
202665 s at	7456	1	P.A	1.649	P	WASPIP
202672 s at	467	1	P.A	2.023	P	ATF3
202686 s at	558	1	P.A	2.035	P	AXI: UFO
202687 s at	8743	1	P.A	2.233	P	TNFSFIO
202688 at	8743	1	P.A	1.673	P.A	TNFSF10
202700 s at	9725	1	P.A	0.587	P.A	KIAA0792
202719 s at	26136	1	P.A	1.846	P	TES
202720 at	26136	1	P	1.696	P	TES
202747 s at	9452	1	P, A	3.918	P.A	ITM2A
202760 s at	11217	1	P,M,A	1.590	P.A	AKAP2
202765 s at	2200	I	P, A	1.780	P	FBNI
202766 s at	2200	I	P	1.545	P	FBNI
202920 at		I	P	0.525	P,A	ANK2
202949 s at	2274	1	P	1.899	P	FHL2
202996 at	57804	1	P	1.613	P	POLD4
203058 s at	9060	1	P	1.641	P	PAPSS2
203065 s at	857	1	P	1.943	P	CAV1
203066 at	51363	1	P	1.604	P	GALNAC4S-6ST
203072 at	4643	1	P.A	1.876	P.A	MYOIE
203091 at	8880	1	P	1.514	P	FUBP1; FBP
203109 at	9040	1	P	1.524	P	UBE2M
203117 s at	9924	1	P	0.586	P	USPS2
203140 at	604	1	P.A	2.202	P	BCL6
203153 at	3434	I	P,A	2.185	P	IFITI
203172 at	9513	I	P	1.508	P	FXR2
203184 at	2201	1	P	2.158	P	FBN2
203227 s at	6302	1	P	0.622	P	SAS
203229 s at	1196	1	P	0.612	P,M,A	CLK2
203243 s at	10611	1	P	1.514	P	LIM; ENH
203304 at	25805	1	P, A	1.722	P	BAMB1
203368 at	78987	1	P	1.554	P	CRELDI

Affymetrix Id	LocusLink	Day 0		Day 7		Common Name
		Normalızed	Flags	Normalızed	Flags	
203394_s_at	3280	1	P	1619	P	HESI
203423 at	5947	1	P	1703	P	RBP1
203446 s at	4952	1	P	0604	P	OCRL
203452 at	26229	1	P	1524	P	B3GAT3
203455_s_at	6303	1	P	1832	P	SAT
203469 s_at	8558	1	P,A	1610	P,A	CDK10
203501_at	10404	1	P	0520	P	PGCP
203504_s_at	19	1	P	1556	P	ABCA1
203646_at	2230	1	P	1686	P	FDX1
203665_at	3162	1	P	1622	P	HMOX1
203722_ ${ }^{\text {at }}$	8659	1	P	1528	P	ALDH4A1
203725_at	1647	1	P	1921	P	GADD45A
203821_at	1839	1	P,M	1612	P	DTR
203837_at	4217	1	P	1566	P	MAP3K5
203882_at	10379	1	P	1612	P	ISGF3G
203910_at	9411	1	P,A	3529	P	PARGI
203926 x_at	513	1	P	1522	P	ATP5D
203929_s_at	4137	1	P,A	0602	P, A	MAPT
203952_at	22926	1	P,A	0569	P,M,A	ATF6
203980_at	2167	1	P	1515	P	FABP4
203989 x_at	2149	1	P,A	1843	P,A	F2R
203999_at		1	P,A	1923	P	SYT1
204030_s_at	29970	1	P	1636	P	SCHIP1
204035 at	7857	1	P	0338	P	SCG2
204036 at	1902	1	P	0432	P	EDG2
204037_at	1902	1	P	0618	P	EDG2
204038_s_at	1902	1	P	0580	P	EDG2
204135_at	11259	1	P	1624	P	DOC1, GIP90
204260_at	1114	1	P	0537	P	CHGB, SCG1
204268_at	6273	1	P,A	2684	P	S100A2,
204279 at	5698	1	P	1597	P	PSMB9
204326_x_at	4500	1	P	1771	P	MT1L
204346_s_at	11186	1	P, A	1671	P	RASSF1
204359_at	23768	1	P	1593	P	FLRT2
204421_s_at	2247	1	P	1610	P	FGF2
204422_s_at	2247	1	P	1556	P	FGF2
204439_at	10964	1	P	0481	P	Clorf29
204452_s_at	8321	1	P	0654	P,M,A	FZD1
204455_at	667	1	P, A	2264	P	BPAG1
204475_at	4312	1	P	2186	P	MMP1
204490 ss_at	960	1	P, A	1850	P,A	CD44
204529_s_at	9760	1	P,A	1583	P,M	TOX
204564_at	10336	1	P,A	1513	P	RNF3
204577_s_at	23059	1	P	0602	P, A	KIAA0643
204589_at	9891	1	P	1729	P	ARK5
204604_at	5218	1	P,A	1904	P	PFTK1
204612_at	5569	1	P	0542	P,A	PKIA
204627_s_at	3690	1	P,A	2471	P, A	ITGB3
204653_at		1	P,A	1730	P	TFAP2A
204655_at	6352	1	P,A	2353	P	CCL5

Affymetrix Id	LocusLink	Day 0		Day 7		Common Name
		Normalızed	Flags	Normalızed	Flags	
204665 at	80143	1	P,A	1527	P, A	FLJ21168
204682 at	4053	1	P,A	1573	P	LTBP2
204697_s_at	1113	1	P,A	1540	P	CHGA, CGA
204718_at	2051	1	P,A	0613	P,A	EPHB6, HEP
204748_at	5743	1	P,A	2701	P	COX2
204762_s_at	2775	1	P,M,A	0512	M,A	GNAO1
204779_s_at	3217	1	P	1647	P	HOXB7
204840 s_at	8411	1	P,M	1614	P	EEA1
204841_s at	8411	1	P, A	1529	P	EEAl
204859_s_at	317	1	P	1558	P	APAF1
204864_s_at	3572	1	P	1687	P	IL6ST
204865_at	761	1	P,A	2305	P	CA3, CAIII
204897_at	5734	1	P	1895	P	PTGER4
204947_at	1869	1	P	0613	P	E2F1
204955_at	8406	1	P,A	1670	P	SRPX
204967_at	357	1	P,A	1552	P,A	APXL
204983_s_at	2239	1	P	1763	P	GPC4
205013_s_at	135	1	P	1586	P	ADORA2A
205016_at	7039	1	P,A	2817	P	TGFA
205034_at	9134	1	P	1521	P	CCNE2
205047 s s at	440	1	P	0628	P	ASNS
205050_s_at	23542	1	P	0509	P	MAPK8IP2
205068 s s_at	23092	1	P,A	1517	P	ARHGAP26
205082_s_at	316	1	P,M	0604	P,A	AOX1, AOH1
205222_at	1962	1	P	0599	P,A	EHHADH
205224_at	6835	1	P,A	1556	P	SURF2
205286_at	7022	1	P,A	1772	P	TFAP2C
205296_at		1	P	0638	P	
205301_s_at	4968	1	P	0609	P	OGGI
205303_at	3764	1	P	0551	P,M	KCNJ8
205304 s at	3764	1	P	0543	P	KCNJ8
205357_s_at	185	1	P,M	2281	P	AGTR1
205366_s at	3216	1	P,A	2016	P	HOXB6
205374_at	6588	1	P,A	1880	P,A	SLN,
205386_s_at	4193	1	P, A	1985	P	MDM2
205405_at	9037	1	P,A	1619	P	SEMA5A
205479 s_at	5328	1	P,A	2166	P	PLAU
205500_at	727	1	P	0633	P,A	C5
205523_at	1404	1	P	0371	P	HAPLN1
205524_s_at	1404	1	P,M	0164	A	HAPLNI
205534_at	5099	1	P,A	1748	P	PCDH7
205547_s_at	6876	1	P	2453	P	TAGLN
205594_at	22834	1	P	0561	P	KIAA0924
205625 s at	793	1	P,A	2737	P	CALB1
205626 s_at	793	1	P,A	1920	P	CALB1
205657 at	23498	1	P, A	0621	P,M,A	HAAO
205660 at	8638	1	P,A	1771	P	OASL
205698_s_at	5608	1	P	0652	P,M,A	MAP2K6
205780_at	638	1	P,A	2508	P,M,A	BIK
205828_at	4314	1	P	1721	P	MMP3

Affymetrixld	LocusLink	Day 0		Day 7		Common Name
		Normalized	Flag1	Normalized	Flags	
205829 at	3292	1	P	1.742	P	HSDI7B]
205832 at	51200	1	P.A	1.678	P	CPA4
205841 at	3717	1	P	1.711	P	JAK2
205862 at	9687	1	P, M, A	1.692	P,A	GREBI
$205887 \times$ at	4437	1	P	0.552	P, M	MSH3
205896 at	6583	1	P.A	1.656	P	SLC22A4
205924 at	5865	1	P.A	2.074	P	RAB3B
205925 s at	5865	1	P.M	2.018	P	RAB3B
205964 at	79088	1	P	0.623	P	ZNF426
205975 s at	3231	1	P	1.747	P	HOXD1
$206056 \times$ at		1	P.A	0.403	P, A	SPN
206116 s at	7168	1	P	1.924	P	TPMI
206117 at	7168	1	P. A	1.968	P	TPM1
206172 at	3598	1	P	1.525	P	ILI3RA2
206201 s at	4223	1	M,A	2.059	P.A	MEOX2
206209 s at	762	1	P.A	1.771	P	CA4; CAIV
206259 at	5624	1	P. A	2.062	P	PROC
206290 s at	6000	1	P	0.656	P	RGS7
206299 at	27112	1	P,A	0.618	P.A	TMEM28: TED
206300 s at	5744	I	P,A	1.834	P	PTHLH
206314 at	55888	1	P	0.575	P	ZNF 167
206343 s at	3084	1	P.A	1.581	P	NRG1
206377 at	2295	1	P.A	1.573	P, A	FOXF2
206429 at	2150	1	P.A	3.982	P, A	F2RLI
$206452 \times$ at	5524	1	P.A	1.543	P	PPP2R4
$206461 \times$ at	4496	1	P,A	1.762	P	MTIH
206508 at	970	1	P.A	1.845	P	TNFSF7
206529 x at	5172	1	P.A	1.681	P.M	SLC26A4
206543 at	6595	1	P	0.601	P	SMARCA2
206555 s at	55623	1	P	0.568	P	THUMPD 1
206615 s at	53616	1	P	0.491	P.M	ADAM22
$206695 \times$ at	7594	1	P	0.595	P	ZNF43
206757 at	8654	1	P	0.501	P	PDE5A
206769 at	9087	I	P, A	1.616	P	TMSB4Y
206773 at	4062	1	P.A	1.685	P	LY6H;
206825 at	5021	1	P.A	2.873	P	OXTR; OT-R
206868 at	9754	1	P.M	1.500	P	STARD8
207030 s at	1466	1	P	1.505	P	CSRP2
207059 at	5083	1	P.M	0.654	P.A	PAX9
207068 at	7539	1	P	0.625	P	ZFP37
207145 at	2660	1	P	0.450	P.A	GDF8
207160 at	3592	1	P, A	2.213	P	[L12A
207187 at	3718	1	M, A	1.501	P	JAK3
207324 s at	1823	1	P	0.324	P.A	DSCI
207387 s at	2710	1	P.M	1.519	P	GK
207437 at	4857	1	P	0.436	P	NOVAI
207536 s at	3604	1	P,A	1.767	P,A	TNFRSF9
207684 at	6911	1	P	0.660	P,A	7BX6
207765 s at	80256	1	M, A	1.514	P, A	K1AA1539
207826 s at	3399	1	P	1.632	P	ID3

Affymetrixld	LocusLink	Day 0		Day 7		Common Name
		Normalized	Flaps	Normalized	Flagı	
207876 s at	2318	1	P	1.533	P	FLNC
207922 s at	10296	I	P	0.625	P	MAEA; EMP
207960 at		1	P.A	1.653	P,A	
207963 at	26236	1	P	0.649	P	C60rf5
207969 x at	56	1	P.M.A	1.945	P	ACRVI
208016 s at	185	1	P.A	1.587	P	AGTR1
208035 at	2916	1	P.A	2.790	P, A	GRM6
208086 s at	1756	1	P	1.855	P	DMD
208116 s at	4121	1	P,A	1.589	P	MANIAI
$208185 \times$ at		1	P	1.54]	P	
208190 s at	51599	1	P	1.504	P	LISCH7
208241 at	3084	1	P,A	1.659	P	NRGI
208250 s at	1755	1	P, A	1.521	P	DMBTI
208511 at	26255	1	P	0.626	P	PTTG3
208514 at	3753	1	P, A	2.581	P,M, A	KCNEI
$208546 \times$ at	8345	1	P	0.623	P	HIST1H2BH
$208581 \times$ at	4501	1	P	2.075	P	MTIX
208588 at	59347	1	P	0.572	P. A	FKSG2
208610 s at	23524	I	P	0.626	P	SRRM2
$208637 \times$ al	87	I	P	1.518	P	ACTN 1
208650 s at	934	1	P	1.550	P	CD24
208690 s at	9124	1	P	1.531	P	PDLIM1
$208704 \times$ at	334	1	P	1.561	P	APLP2
208719 s at	10521	1	P	0.656	P	DDX17;
$208738 \times$ at	6613	1	P	0.583	P	SUMO2
208747 s at	716	1	P,A	1.850	P	CIS
208782 at	11167	1	P	2.006	P	FSTLI
208789 at	22939	1	P	1.558	P	PTRF
$208798 \times$ at	23015	1	P	0.577	P	GOLGIN-67
208902 s at		1	P.A	0.607	P.A	F1.J46061
208937 s at	3397	1	P	1.588	P	ID1
208944 at	70.48	1	P	1.576	P	TGFBR2
208991 at		1	P	1.579	P	STAT3
208992 s at	6774	1	P.A	1.698	P	STAT3
209040 s at	5696	1	P	1.713	P	PSMB8
209087 x at	4162	1	P	1.603	P	MCAM
209129 at	7205	1	P	0.616	M, A	TRIP6
209184 s al	8660	1	P, A	1.561	P.M,A	IRS2
209189 at	2353	1	P.A	3.182	P	FOS
209193 at	5292	1	P.A	2.245	P	PIMI
209202 s al	2137	1	P.A	1.775	P.A	EXTL3
209212 s at	688	1	P	1.716	P	KLF5
209260 at	2810	1	P, A	1.884	P	SFN
209261 s at	2063	1	P.A	1.565	P,M,A	NR2F6
209267 s at	64116	1	P	1.707	P	SLC39A8
209278 s at	7980	1	P	1.869	P	TFP12
209283 ut	1410	1	M.A	2.427	P.M.A	CRYAB
209287 s at	10602	1	P	1.536	P	CDC42EP3
209291 at	3400	1	P	1.779	P	ID4
$209293 \times$ al	3400	1	P	2.098	P	ID4

Affymetrix Id	LocusLink	Day 0		Day 7		Common Name
		Normalized	Flaga	Normalized	Flag:	
$209304 \times$ at	4616	1	P.A	1.898	P	GADD45B
209340 at	6675	1	P	1.540	P	UAP1
$209356 \times$ at	30008	1	P	1.500	P	EFEMP2
209438 at		1	P	0.651	P,A	
209457 at	1847	1	P	1.589	P	DUSP5
209459 s at	57416	1	P.A	2.042	P	ABAT
209469 at	2823	1	P	0.596	P,M	GPM6A
209470 s at	2823	1	P	0.398	P.A	GPM6A
209487 at	11030	1	P,A	2.015	P	RBPMS
209494 s at	23598	1	P	0.602	P	ZNF278
209504 s at	58473	1	P.M	0.654	P,A	PLEKHB1
209560 s at	8788	1	P.A	2.255	P	DLK1
209574 s at	753	1	P, A	1.750	P,A	C180rfl
$209584 \times$ at	27350	1	P.A	1.576	P.A	APOBEC3C
209598 at	10687	1	P	1.566	P	PNMA2
209604 s at	2625	1	P	1.734	P	GATA3
209631 s at		1	P.A	1.821	P	
209656 s at	83604	I	P	1.526	P	TM4SF10
$209703 \times$ at	25840	1	P.A	1.854	P, A	DKF2P586A0522
209708 al	26002	1	P,A	1.579	P	MOXD 1
209758 s at	8076	1	P	1.909	P	MFAPS
209771_x at	934	1	P	2.001	P	CD24
209803 s at	7262	1	P	2.472	P	PHLDA2
209806 at	85236	1	P	0.652	P	HISTIH2BK
$209835 \times$ at	960	1	A	3.576	P	CD44
209846 s at	11118	1	P	0.620	P	BTN3A2
209875 s at	6696	1	P	1.666	P	SPPI
209885 at	29984	1	P	1.700	P	RHOD
209904 at	7134	1	P. A	2.212	P, A	TNNC1
209908 s at	7042	1	P. A	1.661	P.M.A	TGFB2
209936 at	10181	1	P.A	0.599	P,A	RBM5
209946 al	7424	1	P	0.340	P	VEGFC
209960 at	3082	1	P	0.531	P	HGF;
209969 s at	6772	1	P	1.870	P	STATI
210012s al	2130	1	P	0.528	P.A	EWSR1
210102 at	4013	1	P	1.573	P	LOHIICR2A
210144 at	25771	1	P, A	1.958	P,A	C22orf
210145 at	5321	1	P, A	2.828	P,M	PLA2G4A
210162 s at	4772	1	P.A	0.611	P, A	NFATC1
210172 al		I	P	0.537	P	SFI;
210200 at	11060	1	P, A	0.636	P, A	WWP2
210205 at	8705	1	P	0.619	P	B3GALT4
210230 at	6066	1	P,A	0.544	P, A	RNU2
210233 at	3556	1	A	1.817	P.M	ILIRAP
210234 al	2914	1	P.A	1.547	P, A	GRM4
210241 s at	11257	1	P	0.628	P	TP53API
210315 at	6854	1	P, A	1.596	P,A	SYN2
$210322 \times$ at	7404	1	P, A	1.549	P, M, A	UTY; UTYI
210355 al	5744	1	M.A	1.953	P, A	PTHLH
210385 s at	51752	1	P	1.675	P	ARTS-1

Affymetrix Id	LocusLink	Day 0		Day 7		Common Name
		Normalized	Flags	Normalızed	Flags	
210424_s_at	23015	1	P,A	0627	P,A	GOLGIN-67
210495 x_at	2335	1	P,A	3236	M,A	FNI
210538 s_at	330	1	P	2377	P	BIRC3
210552_s_at	9649	1	P,M	0631	P, A	RALGPS1
210560 at	2637	1	P,M,A	1788	P	GBX2
210564 x at	8837	1	P	1754	P	CFLAR
210592 _s_at		1	P	1885	P	SAT, SSAT
210605 s at	4240	1	P,A	1643	P, A	MFGE8,
210612_s_at	8871	1	P,M	1511	P	SYNJ2
210674 s at	56137	1	P	0635	P,M,A	PCDHA12
210715 s_at	10653	1	P	2191	P	SPINT2
210752 s_at	6945	1	P	1553	P	TCFL4
210809 s_at	10631	1	P	1503	P	POSTN
210867_at	4850	1	P	0532	A	CNOT4
210926 at		1	P	1545	P	FKSG30
210986_s_at	7168	1	P	2028	P	TPM1
$210987{ }^{\text {x a }}$ a	7168	1	P	2069	P	TPM1
211017 s at	4771	1	P	1569	P	NF2
211043 _s_at	1212	1	P	1596	P	CLTB
211097_s_at	5089	1	P	0579	P	PBX2
211098 _x_a	54499	1	P	1502	P	LOC54499
$211160{ }^{\text {x at }}$	87	1	P,A	1619	P	ACTN1
211177 ¢ ${ }^{\text {a }}$ a	10587	1	P	1554	P	TXNRD2
211364_at	4507	1	P	1618	P	MTAP
211374_x_at		1	P,M,A	0573	P,A	
211387_x_at	8732	1	P,M	0636	P,A	RNGTT
211456_x_at		1	P,M	2242	P	
211466_at	4781	1	P	0618	P	NFIB
211538_s_at	3303	1	P	1660	P	HSPA1A
211540_s_at	5925	1	P	1506	P	RB1
211571_s_at	1462	1	P	0460	P, A	CSPG2
211573_x_at	7052	1	P,A	2186	P	TGM2
211593_s_at	23139	1	P	1509	P	MAST2
211600_at		1	P	0613	P	PTPRO
211602_s_at	7220	1	P	1544	P	TRPCl
211668_s_at	5328	1	P,A	1896	P	PLAU
211700 s_at	7216	1	P	0607	P,A	TRO
211756_at	5744	1	P,A	3128	P	PTHLH
211819_s_at	10580	1	P,A	0558	M,A	SORBS 1
211864_s_at	26509	1	P,A	2344	P,A	FER1L3
211911_x_at	3106	1	P	1589	P	HLA-B
211930 at		1	P	0639	P	hnRNPA3
211990_at	3113	1	P	0513	P, A	HLA-DPA1
212014_x_at	960	1	P, A	1519	P,A	CD44
212061_at	23350	1	P	0657	P	SR140
212063_at	960	1	P,A	3062	P	CD44
212067 s_at	715	1	P	0654	P A	C1R
212097 at	857	1	P	1566	P	CAV1
212127_at	5905	1	P	1742	P	RANGAPI
212143_s_at	3486	1	P	1642	P	IGFBP3

Affymetrix Id	LocusLink	Day 0		Day 7		Common Name
		Normalized	Flags	Normalızed	Flags	
212157 at	6383	1	P	0605	P	SDC2
212172_at		1	P,M,A	0617	P, A	AK2, ADK2
212185_x_at	4502	1	P	1876	P	MT2A
212207 at	23389	1	P,A	1674	P	THRAP2
212225_at	10209	1	P,A	1556	P, A	SUI]
212230 at		1	P,A	2188	P,A	PPAP2B
212290 at		1	P	0656	P	SLC7Al
212294_at	55970	1	P	1671	P	GNG12
212311_at	23231	1	P	1602	P	KIAA0746
212314_at	23231	1	P	1655	P	KIAA0746
212325_at	22998	1	P,A	1815	P,M	KIAA1102
212327 at	22998	1	P,A	1548	P,A	KIAA1102
212384_at	7919	1	P	0463	P	BAT1
212418 at	1997	1	P	1628	P	ELF1
212501_at	1051	1	P	0657	P	CEBPB
212543_at	202	1	A	2144	P	AIM1, ST4
212553_at	23248	1	P	0597	P	KIAA0460
212587_s_at	5788	1	P	0632	P	PTPRC
212646 at	23180	1	P,A	2378	P,M	RAFTLIN
212651_at	9886	1	P	0645	P	RHOBTB1
212654_at	7169	1	P	1631	P	TPM2
212717_at	9842	1	P,A	1815	P	PLEKHM1
212727_at	1741	1	P	0450	P,A	DLG3
212814_at	23382	1	P	0613	P	KIAA0828
$212859 \mathrm{x}_{\text {x }}$ at		1	P,A	1945	P	MT2A
212865_s_at	7373	1	P	0618	P	COL14A1
212923_s_at		1	P	1535	P	C6orfl45
213014_at	9479	1	P,A	1548	P	MAPK81P1
213135_at		1	P	1562	P	TIAM1
213143_at		1	P	0493	M,A	LOC257407
213164_at		1	P	1590	P	MRPS6
213204_at	23113	1	P	0580	P,A	PARC
213271_s_at	23033	1	P	1530	P	KIAA1117
213274_s_at	1508	1	P	1679	P	CTSB
213281_at	3725	1	A	1988	P	JUN
213290_at	1292	1	P,A	0646	P,M,A	COL6A2
213362_at		1	P	0651	P,M	
213403_at		1	P,A	1807	P,A	MGC 1332
213430_at	22902	1	P	0520	P,A	RIPX
213449_at	10940	1	P	1635	P	POP1
213456 at	25928	1	P,A	2059	P	SOSTDC1
213496_at	9890	1	P	0466	P	PRG1
213506 at	2150	1	P,A	3084	P	F2RL1
213528_at	92342	1	P	0574	P	MGC9084
213558_at	27445	1	P	1939	P	PCLO
213618_at	116984	1	P	1715	P	CENTD1
213624_at	10924	1	P	0584	P	SMPDL3A
213650_at	23015	1	P	0634	P	GOLGIN-67
213668_s_at	6659	1	P,A	1619	P	SOX4
213764_s_at		1	P	1971	P	MFAP5

$\begin{aligned} & \text { Aflymeiriy } \\ & \text { Id } \end{aligned}$	LocusLink	Day 0		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	
213765 at		1	P	1.834	P	MFAPS
213802 at	8492	1	M, A	1.554	P,M,A	PRSS 12
213803 at	3837	1	P	0.656	P	KPNBI
213810 s at	55122	1	P, M, A	1.539	P, A	C6orfl 66
$213835 \times$ at	84705	1	P	0.654	P	GTPBP3
213849 s at	5521	1	P	0.428	M, A	PPP2R2B
213854 at	9145	1	P	1.581	P	SYNGR1
213882 at	83941	1	P.A	0.561	P.A	BBP
213929 at		1	P.A	1.557	P	
213930 at		1	P	1.601	P	APG12L
213931 at	3398	1	P	1.538	P	ID2
$213932 \times$ at	3105	1	P	1.808	P	HLA-A
$213964 \times$ at		1	P	0.603	P.A	
214043 at		1	P	0.637	P	PTPRD
214071 at	65258	1	P	0.644	P	GNAL
$214077 \times$ at	4213	I	P	0.659	P	MEIS4
214079 at		1	P.A	1.527	P.A	DHRS2
214091 s at	2878	1	P	1.630	P	GPX3
214163 81	51668	1	P	0.590	P,M,A	LOC51668
$214175 \times$ at	8572	1	P, A	1.501	P	PDLIM4
214196 s al	1200	1	P	0.638	P	CLN2
214209 s at	23457	1	P.A	0.601	P, A	ABCB9
214216 s at	23185	1	P	1.709	P	KIAA0217
214247 s at	10530	1	P	1.807	P	DKK3
214251 s at	4926	1	P	0.643	P.A	NUMAI
214321 at	4856	1	P, A	1.663	P	NOV
$214329 \times$ at	8743	1	P.A	1.929	P,M,A	TNFSF10
214543 x at	9444	1	P	1.521	P	QUAKING
$214666 \times$ at	3658	1	P	0.622	P	IREB2
214668 at	57213	1	P	1.528	P	Cl3orfl
$214700 \times$ at	26109	1	P	0.602	P	Rifl
214722 at		1	P	1.725	P	LOC376745
214734 at	23086	1	P.A	1.577	P	SLAC2-B
214761 at	23090	1	P	1.553	P	ZNF423
$214776 \times$ at	9942	1	P	0.394	A	XYLB
214823 al	7754	I	P	0.629	P.A	ZNF204
214850 at		1	P	1.546	P.M	SMA5
214917 at		1	P.A	0.419	P.A	PRKAAI
214934 at	11071	1	P	0.529	P, A	ATP913
214954 at	26032	1	P	1.700	P	K1AA0527
215012 at	26036	1	P	0.633	P	ZNF451
215019 x at	84436	1	P	0.585	P	ZNF528
215034 s at		1	A	3.141	P	TM4SFI
215073 s at		1	P	0.585	P	NR2F2
215079 a1		1	P	0.557	P, A	
215095 at		1	P	0.569	A	ESD
215114 at	26168	1	P.M	0.589	M.A	SENI3
215132 at		1	P	0.494	M, A	
215169 at	9906	1	P	0.494	P,A	SLC35E2
215189 at	3892	1	P	0.390	P.A	KRTHB6

Aflymetrix ld	LocusLink	Day 0		Day 7		Common Name
		Normalized	Flags	Normalized	Flag!	
215252 at		1	P,A	0.615	P. A	
215263 at	7789	1	P	1.523	P	2XDA
215331 at	22989	1	P.A	0.610	P.A	KIAA 1000
$215359 \times$ at	7595	1	P	0.654	P	ZNF44
215410 at	5380	1	P,M,A	0.639	P,A	PMS2L2
215469 at		I	P,A	1.599	P.A	
$215489 \times$ at	9454	1	P	1.720	P	HOMER3
215498 s at	5606	1	P	1.597	P	MAP2K3
215506 s at	9077	1	P,A	2.351	P	ARHI
$215507 \times$ at		1	P	0.465	P.A	RAB22A
215551 at	2099	1	P,A	0.412	P,M,A	ESR1
215591 at	23314	1	P	0.590	P, A	SATB2
$215604 \times$ at		1	P	0.632	P,A	
$215607 \times$ at		1	P.A	1.648	P, A	
215643 at		1	P	0.357	P	SEMA3D
215646 s at	1462	1	P	0.462	P	CSPG2
215660 s at		1	P.M	0.521	P, A	MAST2
215694 at	79029	1	P	0.556	P.A	SPATASLI
$215706 \times$ at	7791	1	P	1.709	P	ZYX
$215719 \times$ at	355	1	P.A	2.013	P	TNFRSF6
215760 s at	22904	1	P	0.500	P.A	KIAA0963
215779 s at	8339	1	P	0.592	P,A	HISTIH2BG
$215834 \times$ at		I	P.A	1.827	P, A	SCARBI
215883 at		1	P, A	1.761	P.A	CTNNAI
215919 s at	64963	1	P,A	0.524	P, A	MRPSII
215930 s at	4253	1	P	0.626	P	MGEA6
215945 s at	23321	1	P, A	1.830	P, A	TRIM2
$215977 \times$ at	2710	1	P,A	1.942	P	GK; GKD
216049 at	22836	1	P, A	1.599	P.A	RHOBTB3
216101 at		1	P.A	0.625	P.A	
$216178 \times$ at	3688	1	P.A	1.524	P.A	[TGB]
216217 at	23228	1	A	1.919	P,M	PLCL2
$216229 \times$ at	80867	1	P	0.600	P, A	HCG2P7
216248 s at	4929	1	P	1.610	P	NR4A2
216279 at	10794	1	P	1.651	P	ZNF272
$216336 \times$ at		1	P	1.812	P	
216379 x at	934	1	P	1.867	P	NaGLTI
$216442 \times$ at	2335	1	P.A	2.498	P	FNI
216598 s at	6347	1	M.A	2.128	P.M	CCL2
216604 s at	23428	1	M, A	1.520	P.A	SLC7A8
216739 at		1	P	0.580	P.A	
216770 at		1	P.A	1.705	P.A	
216804 s at		1	P	1.781	P	LIM
216865 at	7373	1	P	0.446	P	COLI4AI; UND
216885 s at	50717	1	P	0.658	P	H326
217019 at		1	P	0.536	P	
217028 at	7852	I	P, ^	1.541	P, A	CXCR4
$217052 \times$ at		1	P	0.634	P	TIAI
217107 at		1	P,M	0.530	P,M	
217120 s at	9282	1	P, ^	1.596	P	CRSP2

$\begin{aligned} & \text { Aflymetrix } \\ & \text { Id } \end{aligned}$	Lacus Link	Day 0		Day 7		Common Name
		Normalized	Flag	Normalized	Flags	
217193 x at	3535	1	P.A	1.517	P.A	IGL(a)
217212 s at		1	P	0.545	P,A	
217218 at	23063	1	P, A	1.571	P	KIAA026I; FOE
217340 at		1	P.A	0.503	P, M, A	
$217363 \times$ at		1	P, A	0.536	P.A	
217365 at		1	P	0.539	P,M,A	LOC65122
217550 at		I	P	0.651	P	A TF6
217554 at		1	P	0.624	P	
217602 at	5478	I	P	0.656	P, A	PP1A
217608 at	57515	1	P	0.596	P	FLJ36754
$217625 \times$ at		1	P, A	1.751	P, M, A	
217630 at	90806	I	P.M, A	0.424	P, A	LOC90806
$217653 \times$ al		1	P.M	0.610	P, A	
217728 at	6277	1	P.A	3.321	P	SI00A6
217749 at	28831	1	P	1.668	P	COPG
217809 at	28969	1	P	1.516	P	BZW2
217813 s at	10927	1	P	0.631	P	SPIN
217817 at	10093	1	P	1.668	P	ARPC4
217818 s at	10093	1	P	1.763	P	ARPC4
217853 at	64759	1	P.A	2.894	P	TENS1
217866 at	79869	1	P	0.645	P	FLJ12529
217880 at	996	1	P	0.539	P	CDC27
217890 s at	55742	1	P	1.594	P	PARVA
217896 s at	80011	I	P	0.657	P	NIP30
217974 at	51768	1	P	0.574	P	TM7SF3
218087 s at	10580	1	P, A	0.618	P, A	SORBSI
218278 at	54663	I	P,A	1.710	P	FLJI0439
218292 s at	51422	1	P	1.764	P	PRKAG2
218309 at	55450	1	P	1.563	P	CaMKIINalpha
218400 at	4940	1	P	1.658	P	OAS3
218413 s at	51193	1	P,M	0.570	A	ANC 2H01
218486 at		1	P	0.619	P	TIEG2
218532 s at	54463	I	P. A	1.506	P. A	FLJ20152
218625 at	51299	1	P.M,A	2.530	P	NRNI
218674 at	80006	1	P	0.641	P	FI.J1361I
218715 at	55813	1	P	1.512	P	HCA66
218736 s at	54873	1	P	0.405	P	PALMD
218798 at	65095	1	M, A	0.566	P, M, A	FLJ12949
218849 s at	10848	1	P	1.531	P	RAI
218880 at	2355	1	P. A	1.567	P.M	FOSL2
218885 s at	79695	1	P	0.614	P	GALNTI2
218902 at	54781	1	P. A	1.566	P.A	NOTCH1
218915 at	51219	1	P	1.618	P	NF2
218940 at	79609	1	P	0.588	P	C14orfl38
218943 s at	23586	1	P,A	1.648	P, A	DDX58
218980_at	80206	1	P,M	0.549	A	KIAA1695
218014	51316	1	P	2403	P	Pl,AC8: C15
219040 at	79585	1	M.A	1.522	P.M.A	FLJ22021
219049 at	55790	1	P. A	1.503	P	ChGn
219134 at	64123	1	P	0.558	P	ETL

$\begin{gathered} \text { Affymetrix } \\ \text { Id } \end{gathered}$	LocusLink	Day 0		Day 7		Common Name
		Normalized	Flaga	Normalized	Flags	
219197 s at		1	P.M	1.643	P	SCUBE2
219209 at	64135	1	P	1.847	P	MDA5
219222 at	64080	1	P.A	1.601	P.A	RBKS
219250 s at	23767	1	P.M.A	1.582	P	FLRT3
219325 s at	55520	1	P	0.417	P, A	ELACI; D29
219353 at	54835	1	P	0.637	P	NHLRC2
219370 at	56475	1	A	2.475	P.M	REPRIMO
219410 at	55076	1	P	1.621	P	FLJ10134
219427 at	79633	1	P	1.522	P	FATJ
219437 s at	29123	1	P,M	0.547	A	ANKRDII
219550 at	64221	1	P	0.532	P.A	ROBO3;
219561 at	51226	1	P. A	2.218	P,M,A	COPZ2
219603 s at	7769	1	P	0.465	P	ZNF226
219612 s at	2266	1	M.A	1.891	P,A	FGG
219628 at	64393	1	P	1.617	P	WIGI
219638 at	26263	I	P.A	1.590	P,M,A	FBXO22
219641 al	55070	1	P	0.634	P	DETI
219657 s at	51274	1	P, M, A	1.686	P, A	KLF3
219683 al	7976	1	P	1.667	P	FZD3
219692 al	79412	1	P.A	1.829	P, A	KREMEN2
219694 at	54491	1	P	1.923	P	FLJ11127
219697 at	9956	1	P	2.369	P.M	HS3ST2;
219789 at	4883	1	P.A	1.835	P, A	NPR3
219800 s al	79896	1	P	0.424	P.A	THNSL1
219813 at	9113	1	P.A	1.548	P.A	LATSI
219825 at	56603	1	P. A	1.749	P.A	CYP26BI
219869 s at	64116	1	P. A	1.523	P	SLC39A8
219892 at	53346	1	P	1.530	P	TM6SF1
219901 at	55785	1	P	1.510	P	FLJ11183
219992 at	6866	1	P, A	2.027	P.A	TAC3
220029 at	54898	1	M,A	1.580	P.A	ELOVL2
220104 at	56829	1	P	1.752	P	ZC3HAV1
220122 at	79772	1	P	0.551	P	FLJ22344
220148 at	64577	1	P.M,A	1.633	P.M, A	ALDH8AI
220212 s at	63892	1	P	1.512	P	TIIADA
$220217 \times$ at	64663	1	P.A	2.163	P	SPANXC
220230 s at	51700	1	P.M.A	1.643	P	CYB5R2
220321 s at	79635	1	P	0.593	P	FLJ13646
220327 at	51159	1	P	0.589	P	FLJ38507
220358 al	55509	1	P	1.507	P	SNFT
220372 at	54943	1	P	0.611	P. A	C2lorfs
220407 s at	7042	1	P	1.668	P	TGFB2
220520 s at	54830	1	P,A	1.699	P	FLJ20130
220544 at	60385	1	P	0.637	P.A	TSKS; TSKSI
220591 s at	80258	1	P.A	1.992	P	FLJ22843
220643 s at	55179	1	P	0.651	P	FAIM
220675 s at	80339	1	P	0.657	P.A	C22orf20
220696 at	29048	1	P. A	0.586	P.A	PRO0478
220712 at		1	P,M,A	0.576	P.A	
220719 at	80079	1	P.A	1.940	P, A	FLJ13769

Aftymelrix Id	LocusLink	Day 0		Dav 7		Common Name
		Normalized	Flags	Normalized	Flaga	
220769 s at	79819	1	P	0.656	P, A	FLJ23129
220771 at	51152	1	P	0.602	P	LOC51152
220838 at	54932	1	P.M,A	0.635	P.A	FLJ20433
220860 at	29942	1	P	1.531	P	PURG
220922 s at	30014	1	P, A	3.515	P	SPANXAI
220954 s at	29990	1	P	0.642	P	PILRB
220986 s at	81789	1	P	0.296	A	TIGD6
220991 s at	140545	1	P	0.476	P, A	RNF32
221011 s al	81606	1	P,A	2.132	P	LBH
221024 s at	81031	I	P	0.415	P	SLC2A10
221059 s at	4166	1	P	1.723	P	CHST6
221120 at	54889	1	P.A	1.576	P,A	FLJ20306
$221156 \times$ at	9236	1	P	0.573	P	CPR8
221168 at	59336	1	P,A	1.847	P	PRDM13
$221251 \times$ at	83444	1	P,A	1.635	P, A	HMGAILA
221261 x at	81557	I	P	0.494	P	MAGED4
221391 at	50840	1	P, A	1.608	P, A	TAS2R14
221419 s at		1	P	0.282	P	
221489 s at	81848	1	P	1.535	P	SPRY4
221594 at	84060	1	P. A	1.565	P	DKFZP56400523
221616 s at	51616	1	P, M, A	1.723	P, A	TAF9L
221626 at		1	P.A	1.524	P.M.A	ZNF506
221633 at	29781	1	P, A	2.103	P	384D8-2
221664 s at	50848	1	P.A	2.047	P	F11R;
221841 s at		1	A	2.224	P,M	KLF4
221865 at	203197	1	P	0.629	P	C9arf91
$221875 \times$ at	3134	1	P	1.567	P	HLA-F
221898 at	10630	1	P	0.615	P	TIA-2
221958 s at	79971	1	P,A	2.133	P	FLJ23091
221967 at	11247	1	P,A	1.529	P	NXPH4
221997 s at	116539	I	P.A	0.639	P, A	MRPL52
222018 at	4666	1	P	0.596	P, A	NACA
$222067 \times$ at	3017	1	\mathbf{P}	0.481	P	H2BFB
222082 at	51341	1	M.A	1.825	P,M,A	ZBTB7
222116 s at	54493	1	P	1.654	P	TBCID16
222131 x at	89941	1	P	1.527	P	RHOT2
222162 s at	9510	1	P, A	2.423	P	ADAMTS1
222208 s at	5439	1	P	0.621	P.M	POLR2J
222224 at		1	P.A	0.596	P.M.A	MGC71999
222229 x_at		1	P	0.604	P	
222237 s_at	7771	1	P	0.570	P	ZNF228
222313 at		1	P	0.588	P.A	
222326 at		1	P	0.522	P	
222329 x at		1	P	0.616	P	
222361_at		1	P	0.598	P	
222366 at		1	P	0.498	P	
$222370 \times$ at		1	P.A	1.578	P, A	
266_s at	934	1	P	1.670	P	CD24: CD24A
32088 at	8548	1	P	0.646	P	BLZF1
32723 at	1477	1	P	0.639	P	CSTF1

Affymetrix Id	LocusLink	Day 0		Day 7		Common Name
		Normalızed	Flags	Normalized	Flags	
33322_1_at	2810	1	P	1552	P	SFN
33323_r_at	2810	1	P	1504	P	SFN
34697_at	4040	1	P	0625	P	LRP6
37462_1_at	8175	1	P	1508	P	SF3A2
37892_at	1301	1	P	1546	P	COL11A1
38037_at	1839	1	P,A	1504	P	DTR
39548_at	4862	1	P,M,A	0357	P, A	NPAS2
39549_at	4862	1	P,A	0599	P, A	NPAS2
40524_at	11099	1	P, A	1694	P	PTPN21
47105_at	54920	1	P	0655	P	FLJ20399
48031_r_at	10826	1	P	0578	P, A	C5orf4
53202_at	79020	1	P	0591	P	C7orf25
60794_f_at		1	P	0646	P	
61297_at	57513	1	P	0592	P,A	CASKIN2
64418_at		1	P	0658	P	AP1GBP1
Affymetrix Id		Day 0		Day 7		Common Name
		Normalized	Flags	Normalized	Flags	
AFFX-HUMISGF3A/M97935_3_at		1	P	1851	P	STAT1
AFFX-HUMISGF3A/M97935_5_at		1	P	1790	P	STAT1
AFFX-HUMISGF3A/M97935 MA at		1	P	1781	P	STAT1
AFFX-HUMISGF3A/M97935 MB at		1	P	1747	P	STAT1
AFFX-HUMRGE/M10098_3 at		1	P	1922	P	
AFFX-HUMRGE/M10098_5_at		1	P	3107	P	
AFFX-HUMRGE/M10098_M at		1	P	1921	P	

75 Appendix D - List of 93 up-regulated genes common to the BrdU 5,2`FdU and IdU DNA Microarray Experıment

Aflymetrix Id	LacusLink	Common Name
200697 at	3098	HK1
200762 at	1808	DPYSL2
200872 at	6281	S100A10
200887 s at	6772	STATI
201042 at	7052	TGM2
201060 x at	2040	STOM
201149 s at	7078	TIMP3
201464 x at	3725	JUN
201466 s at	3725	JUN; API
201502 s at	4792	NFKBIA
201719 s at	2037	EPB41L2
201739 at	6446	SGK
201798 s at	26509	FERIL3
202017 at	2052	EPHXI
202284 s at	1026	CDKNIA
202436 s at	1545	CYP1B1
202760 s at	11217	AKAP2
202949 s at	2274	FHL2
203058 s at	9060	PAPSS2
203140 at	604	BCL6
203304 at	25805	BAMB1
203665 at	3162	HMOXI
203821 at	1839	DTR
203910 at	9411	PARGI
$203989 \times$ at	2149	F2R
204030 s at	29970	SCHIPI
204135 at	11259	DOCI
204279 at	5698	PSMB9
204346 s at	11186	RASSF1
204422 s at	2247	FGF2
204475 at	4312	MMP1
204490 s at	960	CD44
204748 at	5743	COX2
204897 at	5734	EP4
204955 at	8406	SRPX
204983 s at	2239	GPC4
205479 s at	5328	PLAU
205534 at	5099	PCDH7
205547 s at	6876	TAGLN
205925 s at	5865	RAB3B
206116 s at	7168	TPM1
206508 at	970	TNFSF7
206773 at	4062	LY61
207030 s at	1466	CSRP2
207826 s at	3399	ID3
207876 s at	2318	FLNC
208650 s a	934	CD24
208782 at	11167	FSTL1
208789 at	22939	PTRF
208937 s at	3397	ID1

Affymetrix Id	LocusLink	Common Name
208944 at	7048	TGFBR2
209040 s at	5696	PSMB8
209087 x at	4162	MCAM
209267 s at	64116	SLC39A8
209278 s at	7980	TFPI2
209291_at	3400	ID4
209293 x at	3400	ID4
209340_at	6675	UAP!
209457 at	1847	DUSP5
209771 x at	934	CD24
209803_s_at	7262	PHLDA2
209835 x at	960	CD44
210538 s at	330	BIRC3
210560 at	2637	GBX2
210605_s at	4240	MFGE8
210612 s at	8871	SYNJ2
210986 s at	7168	TPMI
210987 x at	7168	TPM1
212063 at	960	CD44
212143 s at	3486	IGFBP3
212294_at	55970	GNG12
213281 at	3725	JUN
213618 at	116984	CENTD 1
214247 s_at	10530	DKK3
214722 at		LOC376745
215706 x at	7791	ZYX
215719 x at	355	TNFRSF6
216379 x at	934	NaGLT1
217809 at	28969	BZW2
218625 at	51299	NRN1
218880_at	2355	FOSL2
218915 at	51219	NF2
219014_at	51316	PLAC8
219410 at	55076	FLJ10134
219612 s at	2266	FGG
220520_s at	54830	FLJ20130
221011 s at	81606	LBH
221841_s at		KLF4
266 s at	934	CD24
38037 at	1839	DTR
AFFX HUMISGF3A/M97935_3_ at		STAT1
AFFX HUMISGF3A/M97935_MA_at		STAT1
AFFX HUMISGF3A/M97935_MB_at		STAT1

76 Appendix E-EASE Analysis

This appendix contains part of the results generated following subjecting the 93 upregulated genes identified as common to the BrdU, 5,2-FdU and IdU DNA microarray experiments Due to size constraints only part of the EASE report is listed in this Appendix

Systen	Gene Categary	$\begin{aligned} & \text { Liat } \\ & \text { Hits } \end{aligned}$	$\begin{aligned} & \text { List } \\ & \text { Total } \end{aligned}$	Population Hits	Population Total	EASE score	Bonferroai	Bootstrap withia system	Gene identifiers	Affymelrix probesets
$\frac{\text { GO }}{\frac{\text { Biological }}{\text { Process }}}$	call dcalb	11	71	404	10937	$2.31 \mathrm{E}-04$	1.20E-01	4.00E-03	$\begin{gathered} \text { 330; 355: } \\ 970 ; 1026: \\ \text { 2149; 2355; } \\ \text { 4792; 6446; } \\ \text { 6772; 7052; } \\ 7262 \end{gathered}$	200887 S AT; 201042 AT; 201502 S AT: 201739 AT: 202284 S AT: 203989 X AT: 206508 AT: 209803 S AT: 210538_S_AT: 215719_X_AT: 218880 AT: AFFX- HUMISGF3AM97935_3_AT: AFFX- HUMISGF3A/M97935_MA_AT; AFFX- HUMISGF3A/M97935_MB_AT
$\begin{gathered} G O \\ \text { Biological } \\ \text { Process } \end{gathered}$	death	11	71	408	10937	2.50E-04	1.30E-01	5.00E-03	$\begin{gathered} \text { 330: 355: } \\ \text { 970; 1026; } \\ \text { 2149: 2355; } \\ \text { 4792; 6446; } \\ \text { 6772; 7052: } \\ 7262 \end{gathered}$	200887 _S_AT: 201042 AT: 201502 S AT: 201739 AT: 202284 S AT: 203989 X AT: 206508 AT: 209803 S AT; 210538 S AT; 215719 X_AT: 218880 AT; AFFX- IUMISGF3AM97935_3_AT: AFFX- HUMISGF3AM97935_MA_AT: AFFX- HUMISGF3AM97935_MB_AT
GO Biological Process	apoplosis	10	71	379	10937	6.57E-04	3.40E-01	1.30E-02	$\begin{aligned} & 330 ; 355 ; \\ & 970: 1026 ; \\ & \text { 2149; 4792: } \\ & \text { 6446; 6772; } \\ & 7052 ; 7262 \end{aligned}$	200887 S AT; 201042 AT: 201502 S AT; 201739 AT; 202284 S AT; 203989 X AT; 206508 AT; 209803 S AT; 210538_S_AT; 215719_X_AT; AFFX- HUMISGF3AM97935_3_AT: AFFX- HUMISGF3A/M97935_MA_AT: AFFX- HUMISGF3AM97935 MB AT

System	Gene Category	List Hıts	$\begin{aligned} & \text { List } \\ & \text { Total } \end{aligned}$	Population Hits	Population Total	EASE score	Bonferronı	Bootstrap within system	Gene identifiers	Affymetrix probesets
$\frac{\frac{G O}{\text { Bological }}}{\underline{\text { Process }}}$	$\frac{\text { programmed cell }}{\text { death }}$	10	71	380	10937	$670 \mathrm{E}-04$	3 47E-01	$140 \mathrm{E}-02$	$\begin{aligned} & 330,355 \\ & 970,1026, \\ & 2149,4792, \\ & 6446,6772, \\ & 70527262 \end{aligned}$	```200887_S_AT, 201042_AT, 201502_S_AT, 201739_AT, 202284 S AT, 203989 X AT, 206508 AT, 209803 S_AT, 210538_S_AT, 215719_X_AT, AFFX- HUMISGF3AMM97935_3_AT, AFFX- HUMISGF3A/M97935_MA_AT, AFFX- HUMISGF3A/M97935_MB_AT```
$\frac{\underline{\mathrm{GO}}}{\frac{\text { Biological }}{}}$	response to external stımulus	19	71	1263	10937	$767 \mathrm{E}-04$	3 97E-01	$140 \mathrm{E}-02$	355, 604, 934, 970, 1545, 2052, 2149, 2247, 2637, 4062, 4771, 4792, 5328, 5696, 5698, 5734, 5743, 6772, 7078	200887_S_AT, 201149_S_AT, 201502 _S_AT, 202017_AT, 202436_S_AT, 203140_AT, 203989_X_AT, 204279_AT, 204422_S_AT, 204748_AT, 204897_AT, 205479_S_AT, 206508_AT, 206773_AT, 208650_S_AT, 209040_S_AT, 209771_-̄X_AT, 210560_AT, 215719_X_AT, 218915_AT, 266_S_AT, AFFX- HUMISGF3A/M97935_3_AT, AFFX- HUMISGF3A/M97935_MA_AT, AFFX- HUMISGF3A/M97935 MB AT

System	Gene Catcgory	List Hits	$\begin{gathered} \text { List } \\ \text { Total } \end{gathered}$	Population Hits	Population Tolal	EASE score	Bonferroni	Bootsirap within system	Gene idenlifiers	Affymetrix prohesels
GO Biological Process	Ecgulation of cellular process	9	71	323	10937	1.02E.03	5.27E-01	1.90E-02	604: 1026: 1839: 2247; 2266: 3486: 4771: 7048: 9314	202284 S AT: 203140 AT: 203821 AT; 204422_S_AT; 208944 AT; 212143_S_AT; 218915 AT: 219612 S AT: 221841_S_AT; 38037_AT
GO Biological Process	regulation of cell proliferation	8	71	249	10937	$1.03 \mathrm{E}-03$	5.33E-01	1.90E-02	604: 1026; 1839; 2247; 2266; 4771; 7048: 9314	202284_S_AT: 203140 AT; 203821 AT; 204422 SAT: $208944-A T: 218915$ AT: 219612 SAT: 221841 S_AT; 38037 AT
GO Biological Process	regulation of hiological nrocess	9	71	328	10937	1.12E-03	5.82E-01	2.00E-02	604: 1026: 1839; 2247; 2266: 3486: 4771; 7048: 9314	202284 S AT; 203140 AT: 203821 AT: 204422 SAT; 208944 AT: 212143_S_AT: 218915 AT: 219612_S_AT; 221841 S_AT; 38037 AT
GO Biological Process	morphogenesis	16	71	1010	10937	1.54E-03	7.98E-01	2.30E-02	$\begin{aligned} & 1466 ; 1545 ; \\ & 1808 ; 1839 ; \\ & 2037 ; 2149 ; \\ & 2239 ; 2247 ; \\ & 2637 ; 4062 ; \\ & 4162 ; 6876 ; \\ & 7168 ; 9060 ; \\ & 9314 ; 27122 \end{aligned}$	

System	Gene Category	List Hits	$\begin{gathered} \text { List } \\ \text { Total } \end{gathered}$	Population Hits	Population Total	EASE score	Bonferrons	Bootstrap within system	Gene identıfiers	Affymetrix probesets
$\frac{\frac{\mathrm{GO}}{\text { Biological }}}{\underline{\text { Process }}}$	peptidyl-amino acid modification	3	71	17	10937	$516 \mathrm{E}-03$	$100 \mathrm{E}+00$	$840 \mathrm{E}-02$	$\begin{gathered} 2149,6772 \\ 7052 \end{gathered}$	200887_S_AT, 201042_AT, 203989_X_AT, AFFX- HUMISGF3A/M97935_3_AT, AFFX- HUMISGF3A/M97935_MA_AT, AFFX- HUMISGF3A/M97935 MB AT
$\frac{\underline{\mathrm{GO}}}{\frac{\text { Biological }}{\text { Process }}}$	$\begin{gathered} \frac{\text { cell }}{\text { communication }} \end{gathered}$	29	71	2791	10937	$540 \mathrm{E}-03$	$100 \mathrm{E}+00$	$890 \mathrm{E}-02$	$\begin{gathered} 330,355, \\ 960,970, \\ 1808,1839, \\ 2149,2247, \\ 3486,4162, \\ 4240,479, \\ 5099,5328, \\ 5734,5865, \\ 6281,6772, \\ 7048,7052, \\ 7791,8406, \\ 9411,11186, \\ 11217, \\ 25805, \\ 27122, \\ 55970, \\ 116984 \end{gathered}$	200762_AT, 200872_AT, 200887_工 ${ }^{\text {S }}$ AT, 201042_AT, 201502 S_AT, 202760 S_AT, 203304_AT, 203821_AT, 203910_AT, 203989_X AT, 204346_S_AT, 204422_S_AT, 204490_S_AT, 204897_AT, 204955_AT, 205479_S_AT, 205534 AT, 205925_S_AT, 206508_AT, 208944_AT, 209087_X_AT, 209835_X_AT, 210538 SAT, 210605SAT, $21206 \overline{3} \bar{A} \mathrm{~A}, 212143$ _s_AT, 212294_AT, 213618_AT, 214247_S_AT, 215706_X_AT, 215719_ $\overline{\mathrm{X}}$ AT, 38037_AT, AFFXHUMISGF3A/M97935_3_AT, AFFX- HUMISGF3A/M97935_MA_AT, AFFX- HUMISGF3A/M97935_MB AT
$\underset{\text { Bıological }}{\text { Bo }}$ Process	positive regulation of cell proliferation	5	71	111	10937	$551 \mathrm{E}-03$	$100 \mathrm{E}+00$	$910 \mathrm{E}-02$	$\begin{gathered} 604,1839 \\ 2247,2266, \\ 7048 \end{gathered}$	203140_AT, 203821_AT, 204422_S_AT, 208944_AT, 219612_S_AT, 38037_AT

System	Gene Category	List Hits	List Total	Population Hits	Population Total	EASE score	Bonferronı	Bootstrap within system	Gene identıfiers	Affymetrix probesets
$\frac{\text { GO }}{\text { Biological }} \underset{\text { Process }}{ }$	development	20	71	1683	10937	$797 \mathrm{E}-03$	$100 \mathrm{E}+00$	$147 \mathrm{E}-01$	1466, 1545, 1808, 1839, 2037, 2149, 2239, 2247, 2637, 3162, 3397, 3399, 4062, 4162, 6876, 7168, 7262, 9060, 9314, 27122	
$\frac{\frac{\mathrm{GO}}{\text { Biological }}}{\frac{\text { Process }}{}}$	sıgnal transduction	24	71	2196	10937	8 06E-03	$100 \mathrm{E}+00$	$148 \mathrm{E}-01$	$\begin{gathered} 330,355, \\ 970,1808, \\ 1839,2149 \\ 2247,3486, \\ 4792,5328, \\ 5734,5865, \\ 6281,6772, \\ 7048,7052, \\ 7791,9411, \\ 11186, \\ 1217, \\ 25805, \\ 27122, \\ 55970, \\ 116984 \end{gathered}$	

System	Gene Category	$\begin{aligned} & \text { List } \\ & \text { Hıts } \end{aligned}$	$\begin{aligned} & \text { List } \\ & \text { Total } \end{aligned}$	Population Hits	Population Total	EASE score	Bonferrom	Bootstrap within system	Gene IdentIfiers	Affymetrix probesets
$\frac{\frac{\mathrm{GO}}{\text { Biological }}}{\text { Process }}$	cellular process	48	71	5719	10937	$824 \mathrm{E}-03$	$100 \mathrm{E}+00$	$149 \mathrm{E}-01$	$\begin{aligned} & 330,355, \\ & 604,960 \\ & 970,1026, \\ & 1466,1808, \\ & 1839,2037, \\ & 214,2239, \\ & 2247,2266, \\ & 2355,3486, \\ & 3725,4062, \\ & 41624240, \\ & 4771,4792, \\ & 509,5328, \\ & 5734,5743, \\ & 5865,6281, \\ & 6446,6772, \\ & 7048,7052, \\ & 7168,7262, \\ & 779,8406, \\ & 9314,9411, \\ & 11167, \\ & 11186, \\ & 11217, \\ & 25805, \\ & 26509, \\ & 27122, \\ & 54830, \\ & 55970, \\ & 64116, \\ & 116984 \end{aligned}$	

Syster	Gene Category	Lis! Hits	Lis! Talal	Population Hits	Population Total	EASE score	Bonferroni	Bootstrap within system	Gene identifiers	Affymetrix probesets
GO Biological Process	musele development	5	71	133	10937	1.03E-02	1.00E+00	1.84E-01	$\begin{gathered} 1466: 1839 ; \\ 2247 ; 6876 ; \\ 7168 \end{gathered}$	203821 AT: 204422 S AT: 205547 S_AT: 206116 S_AT: 207030 S_AT: 210986 S_AT; 210987_X_AT; 38037_AT
GO Biolorical Process	cell proliferation	14	71	1036	10937	1.33E-02	$1.00 \mathrm{E}+00$	2.45E-01	$\begin{gathered} \text { 604; 970; } \\ \text { 1026; 1466; } \\ \text { 1839; 2149; } \\ \text { 2239; 2247; } \\ \text { 2266; 3725; } \\ \text { 4771; 6772; } \\ 7048: 9314 \end{gathered}$	```200887_S_AT: 201464 X_AT; 201466 S_AT: 202284_S AT: 203140_AT; 203821_AT; 203989 X AT; 204422_S_AT; 204983 S AT: 206508_AT: 207030 S AT: 208944 AT; 213281_AT: 218915_AT: 219612_S_AT: 221841_S_AT: 38037_AT; AFFX- HUMISGF3AM97935_3_AT: AFFX- HUMISGF3A/M97935_MA_AT: AFFX- HUMISGF3AM97935 MB AT```
GO Molccular Eunction	alycosaminoglyca n hinding	4	70	82	11065	1.45E-02	$1.00 \mathrm{E}+00$	2.44E-01	$\begin{gathered} 960: 1839: \\ 2247: 11167 \end{gathered}$	203821_AT: 204422_S_AT; 204490_S AT: 208782 AT; 209835_X_AT; 212063 AT: 38037 AT
GO Biological Process	response to biotic stimulus	12	71	821	10937	1.46E-02	$1.00 \mathrm{E}+00$	$2.72 \mathrm{E}-0.1$	$\begin{gathered} 355 ; 604 ; \\ 934 ; 970 ; \\ 2637 ; 4062 ; \\ 4792 ; 5696 ; \\ 5698 ; 5734: \\ 5743 ; 6772 \end{gathered}$	

System	Gene Category	Last Hits	$\begin{gathered} \text { List } \\ \text { Total } \end{gathered}$	Population Hits	Population Total	EASE score	Bonferronı	Bootstrap within system	Gene identifiers	Affymetrix probesets
$\begin{gathered} \text { GO } \\ \text { Cellular } \\ \text { Component } \end{gathered}$	extracellular space	8	74	391	10787	$163 \mathrm{E}-02$	$100 \mathrm{E}+00$	$141 \mathrm{E}-01$	$\begin{gathered} \hline 1839,2247, \\ 2266,3486, \\ 4312,5328, \\ 11167, \\ 27122 \end{gathered}$	$\begin{gathered} \text { 203821_AT, 204422_S_AT, } \\ 204475 \text { _AT, 205479_S_AT, } \\ 208782 \text { AT, 212143_S_AT, } \\ 214247 \text { _S_AT, 219612_S_AT, } \\ \mathbf{3 8 0 3 7} \text { _AT } \end{gathered}$
GO Bıological Process	$\frac{\text { STAT protein }}{\text { nuclear }} \text { translocation }$	2	71	3	10937	191E-02	$100 \mathrm{E}+00$	3 40E-01	2149,6772	```200887_S_AT, 203989_X_AT, AFFX- HUMISGF3A/M97935_3_AT, AFFX- HUMISGF3A/M97935_MA_AT, AFFX- HUMISGF3A/M97935 MB AT```
$\frac{\underline{\mathrm{GO}}}{\frac{\text { Bıologıcal }}{}} \underset{\underline{\text { Process }}}{ }$	blood coagulation	4	71	92	10937	2 10E-02	$100 \mathrm{E}+00$	$385 \mathrm{E}-01$	$\begin{gathered} 2149,2266, \\ 5328,7980 \end{gathered}$	$\begin{aligned} & 203989 \text { X_AT, } 205479 \text { S_AT, } \\ & 209278 \text { S_AT, } 219612 \text { S_AT } \end{aligned}$
GO Biological Process	hemostasis	4	71	97	10937	2 41E-02	$100 \mathrm{E}+00$	4 37E-01	$\begin{gathered} 2149,2266, \\ 5328,7980 \end{gathered}$	$\begin{aligned} & 203989 \text { X_AT, 205479_S_AT, } \\ & 209278 \text { _S_AT } 219612 \text { _S_AT } \end{aligned}$
GO Biological Process	1mmune response	10	71	682	10937	2 91E-02	$100 \mathrm{E}+00$	$518 \mathrm{E}-01$	$\begin{gathered} 355,604, \\ 934,970, \\ 2637,4062, \\ 5696,5698, \\ 5734,5743 \end{gathered}$	203140_AT, 204279_AT, 204748_AT, 204897_AT, 206508_AT, 206773_AT, 208650_S_AT, 209040_S_AT, 209771_X_AT, 210560_AT, 215719 X AT, 266 S_AT
GO Molecular Function	receptor binding	8	70	494	11065	3 37E-02	$100 \mathrm{E}+00$	$524 \mathrm{E}-01$	$\begin{gathered} 970,1839 \\ 2149,2247, \\ 2266,4062, \\ 6281,27122 \end{gathered}$	200872_AT, 203821_AT, 203989 X_AT, 204422_S_AT, 206508_AT, 206773_AT, 214247 S_AT, 219612 S_AT, 38037 AT

System	Gene Category	$\begin{aligned} & \text { List } \\ & \text { Hits } \end{aligned}$	$\begin{aligned} & \text { List } \\ & \text { TotaI } \end{aligned}$	Population Hits	Population Total	EASE score	Bonferroni	Bootstrap within syatem	Gene identifiers	Afymmetrix prabesets
GO Biological Process	transmembrane receptor protein serinethreonine kinase signaling pathway	3	71	48	10937	3.77E-02	$1.00 E+00$	6.13E-01	$\begin{gathered} \text { 7048: } 11217 \\ 25805 \end{gathered}$	$\underset{\text { 208944_AT }}{202760 \text { S_AT: 203304_AT: }}$
GO Biolosical Process	brosine phosphorylation of STAT protein	2	71	6	10937	3.78E-02	$1.00 \mathrm{E}+00$	6.13E-01	2149; 6772	200887_S_AT; 203989_X_AT; AFFX- HUMISGF3AM97935_3_AT: AFFX- HUMISGF3A/M97935_MA_AT: AFFX- HUMISGF3AM97935 MB AT
$\begin{gathered} \mathrm{GO} \\ \frac{\text { Biological }}{\text { Process }} \end{gathered}$	esptidyl-tyrosine phosphorilation	2	71	8	10937	5.01E-02	1.00E-00	$7.23 \mathrm{E}-01$	2149; 6772	200887_S_AT: 203989_X_AT: AFFX- HUMISGF3AM97935_3_AT: AFFX- HUMISGF3A/M97935_MA_AT: AFFX- HUMISGF3AM97935 MB AT
GO Biolceical Process	defense nspoonss	10	71	756	10937	5.09E-02	$1.00 \mathrm{E}+00$	7.29E-01	$\begin{gathered} \text { 355: 604; } \\ \text { 934: 970; } \\ \text { 2637; 4062: } \\ \text { 5696: 5698: } \\ \text { 5734: } 5743 \end{gathered}$	203140 AT: 204279_AT: 204748_AT: 204897_AT: 206508 AT: 206773_AT; 208650 S AT; 209040 S AT; 209771 X AT: 210560 AT: 215719 X AT: 266_S_AT
$\frac{G Q}{\frac{G 0}{\text { Molecular }}} \begin{aligned} & \text { Function } \end{aligned}$	sell adhesion molecule activity	6	70	330	11065	5.46E-02	1.00E+00	$7.15 \mathrm{E}-01$	$\begin{gathered} 960 ; 4162 ; \\ \text { 4240; 5099; } \\ 7791 ; 8406 \end{gathered}$	204490_S_AT: 204955 AT: 205534_AT: 209087_X AT: 209835_X_AT; 210605 S_AT: 212063_AT; 215706_X_AT

System	Gene Category	List Hits	$\begin{gathered} \text { List } \\ \text { Total } \end{gathered}$	Population Hits	Population Total	EASE score	Bonferron	Bootstrap within system	Gene Identifiers	Affymetrix probesets
$\frac{\begin{array}{c} G O \\ \text { Molecular } \end{array}}{\text { Function }}$	oxidoreductase activity acting on pared donorsh, with incorporation or reduction of molecular oxygen!. miscellaneous	2	70	9	11065	$548 \mathrm{E}-02$	$100 \mathrm{E}+00$	7 15E-01	3162, 5743	203665_AT, 204748_AT
$\begin{gathered} \frac{\mathrm{GO}}{\text { Molecular }} \\ \text { Function } \end{gathered}$	heparin binding	3	70	61	11065	$554 \mathrm{E}-02$	$100 \mathrm{E}+00$	$722 \mathrm{E}-01$	$\begin{gathered} 1839,2247, \\ 11167 \end{gathered}$	$\begin{gathered} 203821 \text { AT, 204422_S_AT, } \\ 208782 \text { _AT, 38037_AT } \end{gathered}$
GO Biological Process	organogenesis	11	71	901	10937	$598 \mathrm{E}-02$	$100 \mathrm{E}+00$	$788 \mathrm{E}-01$	1466 1545, 1808, 1839, 2247, 2637, 4062, 6876, 7168, 9060 , 9314	200762_AT, 202436_S_AT, 203058 S AT, 203821 AT, 204422 S 206116 S AT, 206773 AT, 207030SS_AT, 210560_AT, 210986_S_AT, 210987_X_AT 221841 S_AT 38037 AT
$\frac{\frac{\mathrm{GO}}{\text { Bological }}}{\text { Process }}$	peptidyl-tyrosine modification	2	71	10	10937	$622 \mathrm{E}-02$	$100 \mathrm{E}+00$	$799 \mathrm{E}-01$	21496772	```200887_S_AT, 203989_X_AT, AFFX- HUMISGF3A/M97935_3_AT, AFFX- HUMISGF3AM97935_MA_AT, AFFX- HUMISGF3A/M97935 MB AT```
$\frac{\frac{G O}{\text { Bological }}}{\text { Process }}$	$\frac{\begin{array}{c} \text { response to } \end{array}}{\text { pest/pathogen/para }}$	7	71	444	10937	$642 \mathrm{E}-02$	$100 \mathrm{E}+00$	8 12E-01	$\begin{gathered} 604,934, \\ 2637,4062, \\ 4792,5743, \\ 6772 \end{gathered}$	200887_S_AT 201502_S_AT 203140_AT 204748_AT 206773_AT 208650_S_AT 209771 X_AT 210560 AT 266 S AT AFFX HUMISGF3AM97935_3_AT AFFXHUMISGF3A/M97935_MA_AT, AFFX-HUMISGF3A/M97935_MB_AT

System	Gene Category	List Hits	$\begin{aligned} & \text { Lust } \\ & \text { Total } \end{aligned}$	Population Hits	Population Total	EASE score	Bonferronı	Bootstrap within system	Gene identifiers	Affymetrix probesets
$\frac{\underline{\mathrm{GO}}}{\frac{\text { Biological }}{\text { Process }}}$	$\frac{\text { protem kinase }}{\text { cascade }}$	4	71	155	10937	$769 \mathrm{E}-02$	$100 \mathrm{E}+00$	8 69E-01	$\begin{aligned} & \text { 2149, 2247, } \\ & 4792,6772 \end{aligned}$	```200887_S_AT, 201502_S_AT, 203989_X_AT, 204422_S_AT, AFFX. HUMISGF3A/M97935_3_AT, AFFX- HUMISGF3A/M97935_MA_AT, AFFX- HUMISGF3A/M97935 MB_AT```
GO $\frac{\text { Biological }}{\text { Process }}$	posttranslational $\frac{\text { membrane }}{\text { targeting }}$	2	71	14	10937	$860 \mathrm{E}-02$	$100 \mathrm{E}+00$	8 98E-01	2239, 4062	204983_S_AT, 206773_AT
$\begin{gathered} \frac{\mathrm{GO}}{\text { Cellular }} \\ \text { Component } \end{gathered}$	extracellular	13	74	1175	10787	$952 \mathrm{E}-02$	$100 \mathrm{E}+00$	$687 \mathrm{E}-01$	$\begin{gathered} \hline 1839,2239, \\ 2247,2266 \\ 3486,4312, \\ 4771,5328, \\ 7052,7078, \\ 7980,11167, \\ 27122 \end{gathered}$	
$\frac{\frac{\mathrm{GO}}{\text { Molecular }}}{\text { 「unction }}$	oxidoreductase activity acting on parred donorst. with incorporation or reduction of molecular oxygen	3	70	84	11065	$965 \mathrm{E}-02$	$100 \mathrm{E}+00$	$908 \mathrm{E}-01$	$\begin{gathered} 1545,3162, \\ 5743 \end{gathered}$	$\underset{\text { 204748_AT }}{202436 \text { _S_AT, 203665_AT, }}$
GO Biological Process	cell surface receptor linked slgnal transduction	11	71	991	10937	$986 \mathrm{E}-02$	$100 \mathrm{E}+00$	$934 \mathrm{E}-01$	330,2149, 5734,7048, 7052,11186, 11217, 25805, 27122, 55970 116984	201042_AT, 202760_S_AT, 203304_AT, 203989_X_AT, 204346_S_AT, 204897_AT, 208944_AT, 210538_S_AT, 212294_AT, 213618_AT, 214247_S_AT

System	Gene Category	List Hits	$\underset{\text { Total }}{\text { List }}$	Population Hits	Population Total	EASE score	Bonferronı	Bootstrap withın system	Gene identifiers	Affymetrix probesets
$\frac{\mathrm{GO}}{\text { Biological }_{\text {Process }}}$	$\frac{\text { regulation of cell }}{\text { cycle }}$	6	71	384	10937	$990 \mathrm{E}-02$	$100 \mathrm{E}+00$	$935 \mathrm{E}-01$	$\begin{aligned} & 1026,2149, \\ & 2247,3725, \\ & 4771,6772 \end{aligned}$	200887_S_AT, 201464_X_AT, 201466 S_AT, 202284 S_AT, 203989 XAT, 204422 SAT, 213281 AT, 218915_AT, AFFX- HUMISGF3A/M97935_3_AT, AFFX- HUMISGF3A/M97935_MA_AT, AFFX- HUMISGF3A/M97935 MB AT
$\begin{gathered} \frac{\mathrm{GO}}{\text { Biological }} \\ \text { Process } \end{gathered}$	anti-apoptosis	3	71	88	10937	$109 \mathrm{E}-01$	$100 \mathrm{E}+00$	$949 \mathrm{E}-01$	$\begin{gathered} 330,355, \\ 7052 \end{gathered}$	$\begin{gathered} 201042 \text { _AT, 210538_S_AT, } \\ \text { 215719_X_AT } \end{gathered}$
$\begin{gathered} \frac{\mathrm{GO}}{} \\ \text { Biological } \\ \text { Process } \end{gathered}$	negative regulation of apoptosis	3	71	88	10937	109E-01	$100 \mathrm{E}+00$	9 49E-01	$\begin{gathered} 330,355, \\ 7052 \end{gathered}$	$\underset{\text { 201042_AT, 210538SS_AT, }}{\text { 215719_X_AT }}$
$\begin{gathered} \begin{array}{c} \mathrm{GO} \\ \text { Molecular } \end{array} \\ \text { Function } \end{gathered}$	$\frac{\text { sıgnal transducer }}{\text { actıvity }}$	18	70	2009	11065	$109 \mathrm{E}-01$	$100 \mathrm{E}+00$	$930 \mathrm{E}-01$	$\begin{gathered} 355,960, \\ 970,1839, \\ 2149,2239, \\ 224,2266 \\ 4062,5734, \\ 6281,6772, \\ 7048,7791, \\ 11217, \\ 25805, \\ 27122, \\ 55970 \end{gathered}$	```200872_AT, 200887_S_AT, 202760 S_AT, 203304_AT, 203821 AT, 203989 X AT, 204422 S_AT, 204490 _S_AT 204897 AT, 204983_S_AT, 206508_AT, 206773_AT, 208944_AT, 209835_X_AT, 212063_AT, 212294_AT, 214247_S_AT, 215706_X_AT, 215719_X_AT, 219612_S_AT, 38037_AT, AFFX- HUMISGF3A/M97935_3_AT, AFFX- HUMISGF3A/M97935_MA_AT, AFFX- HUMISGF3A/M97935 MB AT```

System	Gene Category	List Hits	$\begin{gathered} \text { List } \\ \text { Total } \end{gathered}$	Population Hits	Population Total	EASE score	Bonferrom	Bootstrap within system	Gene identifiers	Affymetrix probesets
$\frac{\frac{\mathrm{GO}}{\text { Bıogical }}}{\text { Process }}$	intracellular sıgnaling cascade	9	71	761	10937	112E-01	$100 \mathrm{E}+00$	$950 \mathrm{E}-01$	$\begin{gathered} 2149,2247, \\ 4792,5734, \\ 5865,6772, \\ 7052,9411, \\ 11186 \end{gathered}$	200887_S_AT, 201042_AT, 201502 S_AT, 203910-AT, 203989 XAT, 204346 S_AT, 204422 S_AT, 204997-AT, 20592_S_AT, AFFX- HUMISGF3A/M97935_3_AT, AFFX- HUMISGF3AMM97935_MA_AT, AFFX- HUMISGF3A/M97935 MB AT

[^0]: Figure 3312 Mad Western expression in YY1 overexpressing DLKP-SQ Western blot analysis was carried out on YY1 stable clones revealed that all three clones had increased levels of Mad, with Clone 4 exhibiting the greatest increase

