Transcriptional Regulation of

Chemically Induced Epithelial Lung Cell

Differentiation, in vitro

A thesis submitted for the degree of Ph D

Dublin City University

By

Jason McMorrow B Sc (Biotechnology)

The research work described in this thesis was performed

under the supervision of

Prof Martin Clynes

National Institute for Cellular Biotechnology

Dublin City University

I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Ph D is entirely of my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my own work

Signed Jan Method

ID No **96023082**

This thesis is dedicated to my parents and my brother who have been so supportive throughout my life

Acknowledgements

First and foremost. I would like to thank my supervisor. Prof. Martin Clynes for his patience, guidance and encouragement during this research thesis, especially during the final stages of the project. Without his constant support none of this work would have been possible.

I would also like to thank Dr. Paula Meleady for all her help and training in the earlier stages of the project and for showing me the ropes! Also I wish to sincerely thank Dr. Niall Barron for all his help in the final years of the project. No matter what time, how busy or how stupid my question was. Niall has always been there to offer help, guidance and most of all encouragement. He has done his best to try and teach me some molecular biology...but I still have so much more to learn! A huge thank you to Eoin Ryan for all his help with the Bioinformatic and Microarray side of the project. Without Eoins help with GeneSpring I would still be stuck in the lab trying to make sense of the Microarray datasets! I do appreciate all the time Eoin has spent trying to teach me some Bioinformatics, it hasn't been easy!

To all the girls in Diabetes, Lorraine, Elaine (yes Elaine I'm finally finished!), Eadaoin, Maider, Bella and to my laminar partner Irene; a huge thank you for letting me take over your lab and become an adopted Diabetes member over the last four years. I don't think that the laminar suites in the lab, not to mention Irene's ears, will ever recover from my singing and continual moaning! To the members of my own lab Finbarr, Brendan and William; thanks for putting up with my ever-changing moods...l know it hasn't been that easy!!! But thanks for all your support and letting me use certain pieces of equipment towards the end when time was scarce.

A special thanks to my proof reader. Dr. Anne-Maire Larkin, for the time she spent giving me advice and encouragement in the last couple of weeks of write-up and all the late evenings she spent in the lab spotting all my typos!! Also to Mairead, Yvonne and Carol for all their help and support as well as for letting me take over the printer for the last few months!

To my coffee ladies...Anne-Maire, Aine, Helena and in the earlier days Catherese, thanks for listening to my daily moaning and complaining about never seeing the end! I don't think there's a single conversation topic that we haven't touched on over the last four years. I think I brightened many a dull day with my little stories and more than likely shocked you in the process. To Elisa and Lisa – thank you for putting up with me at home over the last year! A big thank you to Eadaoin. Bernie and Catherese for always being there and for being such good mates. I owe you all so many dinners and drinks!! I promise to pay you back...as soon as I get a job!! But thanks for all your support, it really means a lot. But I truly am grateful for your friendship

Finally, I would like to thank my parents. Kevin and Mary, and my brother Kevin, for always being there no matter what. For always encouraging and supporting me in whatever choices I made. Without them I would never have gotten this far and this achievement is as much their moment as it is mine. I truly can never repay you for all the love you have given me, but can only hope to make you proud.

ABBREVATIONS

1

4E-BP	-	eIF <u>4E</u> -Brinding Protein
5-FU	-	5-Flurouracıl
5, 2 - FdU	-	5-Fluro-2 -deoxyuridine
5,5 -FdU	-	5-Fluro-5 -deoxyuridine
Ab	-	Antibody
ATCC	-	American Tissue Culture Collection
BrdU	-	5-Bromo-2 -deoxyuridine
IdU	-	Iododeoxyuridine
CdU	-	Chlorodeoxyurıdıne
cDNA	-	complementary Deoxyribonucleic Acid
с-тус	-	Refers to c-myc gene or mRNA (italicised myc)
c-Myc	-	Refers to c-myc protein (Capital M)
Da	-	Daltons
DEPC	-	Diethyl Pyrocarbonate
DMEM	-	Dublecco's Mininum Essential Medium
DMSO	-	Dimethyl sulfoxide
DNA	-	Deoxyribonucleic Acid
EDTA	-	Ethylenediaminetetraacetic Acid
ECM	-	ExtraCellular Matrix
eIF	-	eukaryotic Translation Initiation Factor
ES cells	-	Embryonic Stem Cells
FBS	-	Fetal Bovine Serum
HEPES	-	N-[2-Hydroxyethyl]piperazine-N -[2-ethanesulphonic acid]
MAb	-	Monoclonal Antibody
MEM	-	Minimum Essential Medium
Mın	-	Minutes
MMLV-RT	-	Moloney Murine Leukaemia Virus –Reverse Transcriptase
mRNA	-	messenger RNA
NCTCC	-	National Cell and Tissue Culture Centre
NICB	-	National Institute for Cellular Biotechnology

NSCLC	-	Non-Small Cell Lung Carcinoma
PBSA	-	Phosphate Buffered Salıne A
rpm	-	Revolution Per Minute
RT	-	Room Temperature
SCLC	-	Small Cell Lung Carcinoma
SDS	-	Sodium Doedecyl Sulphate
sec	-	Seconds
SMGC	-	Small Mucous Granule Cell
TBS	-	Tris Buffered Saline
TDS cells	-	Tissue Determined Stem Cells
Tris	-	Tris(hydroxymethyl)aminomethane
v / v	-	volume/volume
w/v	-	weight/volume
YY1	-	Yin Yang 1

ŧ

i.

Section	Tıtle	Page
ABBREVIATIONS		
TABLE OF CONTENTS		III
ABSTRACT		
1.0	INTRODUCTION	1
1 1 1 2	General Introduction	2
1 3	Lung Development	3
14	Identification of a stem-like lung cell line	5
1 4 1 4 1 1 4 2 1 4 3	Synthetic agents capable of inducing epithelial lung cell Differeintiation Halogenated Thymidine Analogues – BrdU, IdU and CdU Mode of action of Thymidine Analogues Mode of action of Fluropyrimidines	5 5 8 9
15 151	Keratins as Markers of epithelial Differentiation Regulation of Keratin Expression	11 13
16	Integrins	14
1 7 1 7 1 1 7 1 1 1 7 2 1 7 2 1 1 7 2 2 1 7 2 3 1 7 2 4	Transcriptional Control of Gene Expression The c-myc proto-oncogene c-myc Structure and Function The Yin Yang Transcription Factor, YY1 The Structure and Function of YY1 Transcription Factors Interact with YY1 to Regulate its Activity YY1 and TATA-less Transcription YY1 in Differentiation and Development	15 15 16 20 21 23 25 26
18	eukaryotic Translation Initiation Factor, eIF4E	28
19	Aims of Thesis	31
20	Materials and Methods	33
2 1	Water	34
22	Glassware	34

23	Sterilisation	34
24	Media Preparation	34
25	*	
26	Cell lines	36
261	Subculturing of Adherent lines	36
262	Cell counting	37
263	Cell Freezing	37
264	Cell Thawing	38
265	Sterility Checks	38
27	Mycoplasma Analysis	39
271	Indirect Staining Procedure	39
272	Direct Staining	40
28	Differentiation Studies	41
281	Differentiation Assays	41
29	Immunocytochemistry	42
291	Immunocytochemical procedure	42
292	Immunofluorescence	43
2 10	Western Blot Analysis	44
2 10 1	Sample preparation	44
2 10 2	Gel Electrophoresis	45
2 10 3	Western blotting	46
2 10 4	Enhanced chemiluminescence detection	47
2 11	RNA Extraction	48
2 11 1	Qiagen Spin Column Procedure	49
2 12	Reverse Transcriptase Reaction	49
2 12 1	Polymerase Chain Reaction	50
2 12 2	Real-Time PCR	51
2 13	Electrophoresis of PCR productions	52
2 14	Over-expression Studies	52
2 14 1	Plasmid Preparation	52
2 14 2	Lipofectin Transfection of Attached Mammalian Cell	52
2 14 3	Selection of Transfected Cells	53
2 14 4	Transient Transfection of DNA using Fugene 6	53
2 15	Affymetrix GeneChips®	54
2 15 1	Sample and Array Processing	55
2 15 2	Microarray Data Normalisation	56

ł

2 15 3	Probe Logarithmic Intensity ERorr estimation (PLIER)	57
2 16	Genomatix Software Suite	58
3.0	Results	62
3.1	Investigation of the Effect of Pyrimidine Analogue Exposure In the Human Lung Carcinoma Cell lines, DLKP and A549	63
311	Changes in α_2 -integrin expression in A549 cells following Treatment with thymidine analogues	64
312	Changes in β_1 -integrm expression in A549 cells following Treatment with thymidine analogues	66
313	Changes in Ep-CAM expression in A549 cells following Treatment with thymidine analogues	68
314	Changes in Cytokeratin 8 expression in A549 cells following Treatment with thymidine analogues	70
315	Changes m Cytokeratin 18 expression in A549 cells following Treatment with thymidine analogues	73
316	Changes in Cytokeratin 19 expression in A549 cells following Treatment with thymidine analogues	76
317	Changes in α_2 -integrin expression in DLKP cells following Treatment with thymidine analogues	80
318	Changes in β_1 -integrin expression in DLKP cells following Treatment with thymidine analogues	82
319	Changes in Ep-CAM expression in DLKP cells following Treatment with thymidine analogues	84
3 1 10	Changes in Cytokeratin 8 expression in DLKP cells following Treatment with thymidine analogues	86
3111	Changes in Cytokeratin 18 expression in DLKP cells following Treatment with thymidine analogues	88
3 1 12	Changes in Cytokeratin 19expression in DLKP cells following Treatment with thymidine analogues	90
3 1 13	Investigation of Changes in cytokeratin 8 protein expression lev in treated A549 cells	
3 1 14	The effects of treatment with pyrimidine analogues on eIF4E Protein expression in A549	96
3115	The effects of BrdU on differentiation status of DLKP and A549 cells	98
3116	The effects of IdU on differentiation status of DLKP and A549 cells	99
3 1 17	The effects of CdU on differentiation status of DLKP and A549 cells	100
3 1 18	The effects of 5-FU on differentiation status of DLKP and A549 cells	101
3119	The effects of 5,2 -FdU on differentiation status of DLKP and A549 cells	102
3 1 20	The effects of 5,5 -FdU on differentiation status of DLKP and A549 cells	103

3 1 21	The effects of Bromouridine and Bromouracil on differentiation status of DLKP and A549 cells	104
32	DNA Microarrays	105
321	DNA Microarrays	106
322	BrdU Microarrays	107
3221	BrdU Microarrays – Exp 1 and Exp 2	107
3222	Validation of Initial DNA Microarray and Gene expression	
	changes in BrdU-treated DLKP cells	109
32221	FSTL1	110
32222	FLH2	111
32223	TNFSF7	112
32224	GPX3	113
32225	Zyxın	114
32226	Spd/Spn	115
32227	Id2	116
32228	eIF2-associated p67	117
32229	IER3	118
3 2 2 2 10	LOXL2	119
3 2 2 2 11	p21	120
3223	DLKP BrdU Array – Exp 3	121
32231	Spd/Spn	123
32232	HMOXI	124
32233	Id2	125
32234	Id3	126
32235	FSTL1	127
32236	FHL2	128
32237	TNFSF7	129
3225	Investigation of potentially co-regulated genes in	120
	BrdU-treated DLKP cells as identified using DNA microarrays	130
323	DLKP 5,2 -FdU DNA Microarrays	133
3231	Validation of 5,2 -FdU DNA Microarrays	134
32311	Id2	135
32312	Id3	136
32313	HMOX1	137
32314	FHL2	138
32315	TNFSF7	139
324	DLKP IdU DNA Microarrays	140
325	Comparison of up-regulated genes between BrdU, 5,2 -FdU	
	And IdU Microarrays	141
33	Transfection	146
331	Over-expression of the transcription factor, c-myc	147
3311	c-myc Stable Transfections	148
33111	RT-RCR analysis of c-myc Stable Transfections	148

		4.40
3.3.1.1.2 3.3.1.1.3	Western Blot analysis of c-myc Stable transfections Western blot analysis of YY1 expression	149 150
5.5.1.1.5	western blocatarysis of 1111 expression	150
3.3.1.2	c-myc Transient Transfections	151
3.3.1.2.1	c-myc over-expression- mRNA and Protein	152
3.3.1.2.2	Change in expression of Mad1 Protein	153
3.3.1.2.3	Change in expression of YY1 Protein	154
3.3.1.2.4	Change in expression of eIF4E	155
3.3.1.3.5	Change in expression of cytokeratin 8 mRNA	156
3.3.1.3.6	Change in expression of β_1 -integrin mRNA	157
3.3.2	Over-expression of Yin Yang 1, YY1	158
3.3.2.1	Stable Over-expressing YY1 Clones	160
3.3.2.1.1	Change in expression of YY1 Protein	160
3.3.2.1.2	Change in expression of c-myc- mRNA and Protein	161
3.3.2.1.3	Change in expression of Mad1 Protein	162
3.3.2.1.4	Change in expression of eIF4E	163
3.3.2.1.5	Change in expression of cytokeratin 8 mRNA	164
3.3.2.1.6	Change in expression of cytokeratin 18 mRNA	165
3.3.2.1.7	Change in expression of cytokeratin 19 mRNA	166
3.3.2.1.8	Change in expression of β_1 -integrin mRNA and Protein	167
3.3.2.1.9	Change in expression of eIF4E-BP1 mRNA	168
3.3.2.1.10	Change in expression of elF2 α protein	169
5.5.2.1.10	enange in expression of en 24 protein	107
3.3.2.2	Analysis of RNA and Protein changes in DLKP-SQ	
	Cells transiently transfected with YY1	170
3.3.2.2.1	Change in expression of YY1 mRNA	172
3.3.2.2.2	Change in expression of c-myc mRNA and Protwin	173
3.3.2.2.3	Change in expression of eIF2 mRNA	174
3.3.2.2.4	Change in expression of elF4E-BP1 mRNA	175
3.3.2.2.5	Change in expression of Mnk2 mRNA	176
3.3.2.2.6	Change in expression of cytokeratin 8 mRNA	177
3.3.2.2.7	Change in expression of cytokeratin 8 mRNA	178
3.3.2.2.8	Change in expression of β_1 -integrin mRNA	179
3.3.2.3	Change in expression of genes found regulated in BrdU	
	Array in DLKP transiently transfect with YY1	180
3.3.2.3.1	FHLI	181
3.3.2.3.2	FSTL1	181
3.3.2.3.3	HMOX1	182
3.3.2.3.4	Id2	183
3.3.2.3.5	ld3	183
4.0	Discussion	184
4.1	General Introduction	185
4.2	Thymidine analogue-induced differentiation in	
	epithelial cell lines	187
4.3	c-Myc Over-expression Studies	189
4.3.1	Stable Over-expression of c-myc in DLKP	190

432	Transient Transfection of DLKP-SQ with c-myc	191
4321	YY1 Expression in c-myc transient transfections	191
4322	eIF4E Expression in c-myc transient transfections	192
4323	Mad1 expression in c-myc transient transfections	192
4324	β_1 -integrin expression in c-myc transient transfections	194
4 4	Yin Yangl Over-expression Studies	196
441	Role for YY1 in regulation of differentiation in DLKP	198
442	Transient Over-expression of YY1	202
4 5	DNA Microarray Analysis	205
451	Comparison of the BrdU, 5,2 -FdU and IdU DNA Microarrays	207
452	Identification of biological themes with EASE	207
4521	Id Family	208
4522	Glypicans	20)
4523	KLF4	211
45331	Regulation of KLF4	215
45332	STAT-1 Regulation of gene expression in response to INFy	216
45333	Potential role for YY1 in regulation $INF\gamma$	219
4534	YY1 Transient over-expression versus BrdU-treatment	
-	in DLKP cells	220
4535	Other genes identified in the development category	-
	Included FGF-2 and LY6H	222
46	Investigation of potentially co-regulated genes in BrdU-	
	Treated cells	224
461	Role for Mazf, Zpf and E-box regulation of other human	
	Promoter sequences	227
4 7	Summary	229
5.0	Conclusions and Future Work	230
60	Bibliography	237
70	Appendices	1

Abstract

Bromodeoxyuridme (BrdU) is a thymidine analogue capable of inducing epitheloid morphology and altering the expression of neuroendocrine markers in SCLC cell lines The ability of BrdU to alter differentiation in neuronal, muscle and haematopoietic lineages has been well documented in the literature Evidence suggests that this incorporation into the DNA alters the DNA's conformation, which in turn may affect interactions with specific transcription factors, leading to either inhibition or induction of differentiation. Following on from work previously performed in our laboratory, several pyrimidine analogues were studied to investigate if they possessed similar differentiating properties to BrdU

The DLKP cell line was established at the NICB from a tumour histologically diagnosed as a poorly differentiated lung carcinoma DLKP cells have properties which suggest they could be classified as either SLCL-V or non-small-cell-lung carcinoma with neuroendocrine differentiation (NSCLC-NE) In this study it demonstrate that the DLKP cell line, and the more differentiated adenocarcinoma line, A549, upon treatment with the BrdU and a panel of other pyrimidine analogues, showed increased expression of cytokeratins 8, 18 and 19 proteins Increased protein expression levels of mtegrin subunits α_2 and β_1 , as well as the cellular adhesion molecule Ep-CAM, was demonstrated in both cell lines following exposure to drug

DNA microarray experiments were also performed on DLKP cells exposed to BrdU, IdU and 5,2 -FdU Following gene expression analysis on these microarray experiments, lists of differentially expressed genes were generated From earlier work performed in this thesis, we demonstrate that all three pyrimidine analogues induce a similar pattern of differentiation in DLKP cells Therefore, the three microarray experiments were compared to each other in order to identify a common differentiation pathway We reveal that a total of 93 up-regulated genes were common to all three microarray experiments EASE analysis was performed on these 93 genes and identified 20 genes from this list of 93, which are thought to be involved in cellular development. From this list of 20 development genes, we identify in particular, two families of transcription factors that potentially are involved in the regulation of differentiation in our These transcription factor families are the Id and KLF proteins system We propose that the Id family of proteins in play an important part in the regulation of differentiation in pyrimidine-treated DLKP cells We also suggest a role for KLF4 in the regulation of cytokeratin expression, mediated through IFNy and STAT-1 proteins

The transcription factor YY1 is a 65kDa protein that is ubiquitously expressed and is highly conserved among human, mouse and Xenopus YY1 possesses the unusual property of regulating transcription in three ways, depending on the cellular context YY1 has been shown to activate, repress or initiate transcription of a number of cellular genes and has previously been shown to associate with cmyc, resulting in its activation and up-regulation

We have also shown that BrdU-treated cells show increased levels of c-Myc and eIF-4E protein In order to investigate the role c-Myc and eIF-4E play in the differentiation of the DLKP lung cell line, a clonal variant of DLKP, DLKP-SQ, was transiently and stably transfected with a human YY1 cDNA expression vector It was observed that in stable clones over-expression of YY1 upregulated c-Myc protein levels The over-expression of YY1 appears to have further effects on other cellular genes such as increased levels of eIF-4E, eIF-2 α and Ornithine Decarboxylase proteins We also demonstrate that the transient over-expression of YY1 is capable of inducing genes identified as differentially expressed, namely Id2, Id3, HMOX1 and FHL1, in the DLKP, IdU and 5,2 -FdU microarray experiments

Section 1.0 Introduction

1.1 Cellular differentiation

Cellular differentiation can be defined as the process leading to the expression of phenotype characteristic of the functionally mature cell *in vivo* As the differentiation process progresses there is an associated reduction in cell division and cell proliferation activities are eventually lost (Davila, *et al*, 1990) The principal cells that differentiate are referred to as stem cells, which are capable of rapid cell growth and division. These cells are multipotent and have the potential to differentiate into several different cell types. In general, stems cells possess unlimited proliferative potential but they can remain quiescent under certain microenvironment conditions (Davila, *et al*, 1990) Differentiated cells are thought to be produced, not directly from stem cells, but rather via a committed progenitor or transit amplifying population (Watt, 1991)

The density of a cell during embryogenesis and development is regulated by gene expression which restricts the number of lineages that stem cells have the potential to form Previous studies (Ham and Veomott, 1980) have proposed that 'determination' is a process whereby a cell becomes committed to differentiate into a specific lineage A determined or committed cell initially may not appear phenotypically different, this only occurs after the genetic blueprint has been implemented (Maclean and Hall, 1987) A cell can differentiate in a manner which results in either the irreversible loss of its proliferative properties, terminally differentiated, or in the retention of some of its proliferative capacity while the cell itself is fully differentiated, non-termmally differentiated A number of differentiation states are also well documented dedifferentiation is the process by which a cell loses its differentiates into a new and distinct phenotype (Davila, *et al*, 1990). It is apparent from this that as a cell undergoes differentiation, its gene expression profile will likewise change

The process of cellular differentiation is often meditated by the tissue type the cell is present in A progenitor stem cell represents the progeny of stem cells which possess more limited proliferation and differentiation potential. This cell is usually involved in a single lineage. Although stem cells in adult organs are pluripotent, the differentiated daughter cells are not usually expressed beyond the relevant organ in which the stem cell originates from, 1 e, the cells are tissue determined stem cells (TDS) and are thus considered separate from embryonic stem cells (ES cells) (Sell, 1994)

Tissue determined stem cells are believed to undergo a slow cell cycle in order to reduce the risk of errors during DNA replication As TDS cells are present throughout the life of an organism, such errors could become amplified in the organism (Lajtha, 1982) and had been proposed that many tumours contain TDS cell populations (Khan, *et al*, 1991) and that the overlapping expression of differentiation markers (Gazdar, *et al*, 1988) within cancer cells is indicative of a stem cell origin for most lung epithelial carcinomas During the differentiation process of TDS cells it is necessary that they maintain a constant cell number. One popular model for this is asymmetrical cell division. According to this model, when the stem cell divides one daughter cell remains as a stem cell while the other becomes a transit cell and enters the differentiation process.

Although proliferation and differentiation appear to be interlinked processes during stem cell maturation, they are quite often separate events that occur concomitantly This suggests the whole differentiation process may be understood in terms of spiral model (Potten and Loffler, 1990) Some TDS cells appear to be highly pluripotent giving rise to several different cell lineages, e.g. the haematopoietic system Given its pluripontency, it can be envisaged that depending on the signal, a stem cell will adopt one direction of maturation over another

1.2 Lung Development

The development of the lung requires cell proliferation, branching morphogenesis, alveolar saccule formation and cell differentiation. These processes require well coordinated events, which are achieved by epithelial-mesenchymal interactions, activation and repression of transcriptional factors and signalling

The existence of principle of stem cells and the *in vitro* cultivation and manipulation has now been well established and demonstrated for tissues such as mammary glands (Rudland and Barraclough, 1998), Liver (Sell, 1994), haematopoietic tissue (Fraser, *et*

3

al, 1995) and skin (Jones, *et al*, 1995) However, the existence of a similar stem cell model has no yet been identified in lung tissue, though is strongly suspected given the ability of the lung to regenerate when exposed to local damage by atmospheric components Identification of such lung stem cells is hampered by the complexity of the respiratory system and the variety of cell types present (Plopper and Hyde, 1992, Paine and Simon, 1996)

The most predominant hypothesis for stem cells *in vivo* is that different set of progenitor cells exist each destined to give rise to a discrete differentiated cell type (Plopper *et al* 1992) In the case of type II lung cells, these cell proliferate and then differentiate into type I cells (Adamson and Bowden, 1979) and Clara cells can differentiate into ciliated cells (Jutten, 1991) However, other thinking on the existence of lung stem cells suggests the existence of a monotypic stem cell, which gives rise to a transit cell described as a small mucous granule cell (SMGC) This cell is defined as being of a secretory yet premature type containing a few small granules which are periodic acid Schiff reaction positive, and also possess a well developed endoplasmic reticulum, prominent Golgi complex and tonofilmament bundles. It is believed that SMGCs are able to give rise through dedifferentiation to any differentiated secretory cell type.

To date, very little scientific evidence exists relating to stem cells of the lung, the pathways they follow, their distribution and mechanism of action No markers yet exist for lung stem cells and the idea of dedifferentiation is in contrast to the stem cell models developed in other tissues suck as the skin, liver and intestine, where stem cells pre-exist in the epithelium (Emura, 1997) The lung is susceptible to local damage from a number of different sources including ozone, carbon black particles, lipophilic chemicals absorbed into the blood stream from the gut, or damage induced from bacterial or viral infection. Therefore, the lung must posses some form of self regeneration, even if limited to overcome such damage. In attempting to identify if a cell is a stem cell, its native state is often altered during the investigation. This may result in loss of the stem cell or only a limited spectrum of responses being observed. Thus, due to the variety of cell types present and the complexity of the respiratory system, indemnification of a lung stem cell may prove to be a difficult task.

1 3 Identification of a stem-like lung cell line, DLKP

All of this has interesting implications with the isolation of a poorly-differentiated lung cell line, DLKP, at the NICB (Law, *et al*, 1992) Clones derived from this cell line exhibit the amazing capacity to regenerate the mixed parental population over time. The DLKP novel cell line has been categorised as extremely poorly differentiated and consists of at least three subpopulations, termed SQ (Squamous), I (Intermediate) and M (Mesenchymal) (McBride, *et al*, 1998) These populations have demonstrated the ability to metriconvert and eventually, when cultured alone, replenish the parental phenotype. This, combined with the lack of expression of a number of differentiation-specific markers, has lead to the speculation that DLKP may represent a stem cell-like population. This has afforded a unique opportunity to study the process of lung cancer differentiation *in vitro*, particularly the early stages of this process. Such studies will provide insights in the mechanisms of early lung development.

14 Synthetic agents capable of inducing epithelial lung cell differentiation

141 Halogenated thymidine analogues - BrdU, IdU and CdU

Bromodeoxyuridine (BrdU) is a halogenated thymidine analogue that is known to influence the differentiation of cells. It is best referred to as a differentiation modulating agent since it has been shown to be a potent inducer of differentiation in some cell lines (Yen *et al.*, 1987, Sugimoto *et al.*, 1988, Valyi-Nagy *et al.*, 1993), while it can inhibit the differentiation of others (Seecoff and Dewhurst, 1976, Tapscott *et al.*, 1989, Lee *et al.*, 1992) BrdU competes with naturally occurring Thymidine for incorporation into DNA during replication and as such it, and other similar compounds, should be ideal candidates for anti-tumour agents, since they require cell division and DNA synthesis to exert their effects (Bick and Devine, 1977) While few clinical trials are based on the differentiation-modulating properties of this drug (Freeman, 1969, Ameye *et al.*, 1989), BrdU has been used widely as a radiosensitiser in an attempt to improve radiological treatments (Lawrence *et al.*, 1992, McGinn and Kinsella, 1993) Radiosensitisation trials to date include the treatment of malignant glioma (Vander *et al.*, 1990), ulcerative herpetic keratitis (van

Bijsterveld *et al.*, 1989), malignant astrocytomas (Greenberg *et al.*, 1988) and malignant brain tumours (Matsutani *et al.*, 1988). More recently, BrdU has entered clinical trials as a radiosensitiser in the treatment of pancreatic cancer (Robertson *et al.*, 1997), colorectal liver metastases (Robertson *et al.*, 1997) and cervical cancer (Eisbruch *et al.*, 1999), while studies in relation to malignant gliomas continue (Prados *et al.*, 1998). Administration of BrdU is normally by controlled perfusion (Doirion *et al.*, 1999), and has been used in combination with radiolabelled monoclonal antibodies (Buchsbaum *et al.*, 1994). While radiolabelled antibody approaches offer the potential of targeted chemotherapy, they are limited by low dose-relate deliverable. As such, the trials of Buchsbaum *et al* (1994) may offer a means of enhancing the efficacy of low dose radiolabelled monoclonal antibody approaches.

BrdU incorporates into DNA in a non-random fashion at sequences termed "fragile sites" (Hecht et al., 1988: Sutherland, 1988; Sutherland, 1991). This explains the reproducibility of the effects observed with BrdU-induced differentiation. O'Neill and Stockdale (1973) developed a model for BrdU-induced modulation of differentiation that assumes that BrdU "sensitivity" resides on a single pair of chromosomes, suggesting the presence of a "master gene" or target through which BrdU exerts its effects. In this model, inhibition of differentiation occurs in a dominant fashion if approximately 30% or more of naturally occurring thymidine is replaced by BrdU in the readout strand of either chromosome. This sort of model agrees with the predicted mechanisms of action of a number of DNA-intercalating agents. BrdU substitution into DNA and intercalation of such agents may have similar effects, thought to be through direct DNA bending at either major or minor grooves, thereby altering promoter structure and availability to transcription factors. Intercalation of the antibiotics, elsamicin A or actinomycin D in the promoter of the c-myc gene induced a decrease in the level of transcription from this promoter (Vaguero and Portugal, 1998). However, relatively low levels of elsamicin incorporation actually induced an increase in c-myc transcription through the P1 promoter. Bromodeoxyuridine (BrdU) has been demonstrated to decrease c-myc expression at the transcriptional level in the leukaemic cell line, HL60 (Yen and Forbes, 1990) and in human melanoma lines (Valyi-Nagyi et al., 1993). These results would appear to suggest that the c-myc promoter regions are particularly susceptible to modulation by agents that disrupt

promoter structure either through Thymidine substitution (BrdU) or intercalation (Elsamicin). Alternatively, BrdU may directly influence the ability of proteins to associate with DNA. In the *lac* operon, BrdU-substitution has been shown to result in increased binding of the *lac* repressor protein (Lin and Riggs, 1972), suggesting that BrdU may be capable of altering the binding of regulatory factors.

The mechanism by which BrdU exerts its differentiation-modulating effects remains unclear, but it appears that incorporation into DNA is essential. This involves BrdU being converted to Bromodeoxyuridine monophosphate, which competes with thymidine for incorporation into DNA (O'Neill and Stockdale, 1974). Experimental evidence for this hypothesis comes from a study by Keoffler *et al.* (1983) which showed that a thymidine kinase-deficient human myeloid cell line, HL60, was unable to incorporate BrdU into its DNA and subsequently failed to respond to the ability of BrdU to modulate its differentiation status.

A number of models exist to explain the ability of BrdU to modulate differentiation:

Model 1:

This model envisages that BrdU induces chromosomal breakages. These breakages and the associated chromosomal aberrations can be associated with stepwise changes in the differentiation status of a cell. These breakages are specific points called 'fragile' sites, 32 of which have been identified in murine chromosomes. It is proposed that BrdU associates with these fragile sites which are known to be recombinogenic (Alexander, *et al.*, 1992).

Model 2:

BrdU alters the affinity of DNA sequences for regulatory proteins. Studies on the *lac* operon with BrdU incorporation demonstrate that the *lac* suppressor was bound with greater affinity (Lin and Riggs, 1972).

Model 3:

In this model BrdU has been found to exert its effects on differentiation by alteration of a key regulatory gene(s) that alters transcription of genes involved in differentiation (Arnold, *et al.*, 1988; Rauth and Davidson, 1993). In BrdU inhibition of myoblast differentiation, such alterations occurs with the down-regulation or complete inhibition of the key regulatory gene, MyoD1 (Topscott, *et al*, 1989, Nanthakumar and Henning, 1993)

Model 4.

This model envisages that BrdU incorporation causes an alteration in the reading frame of the DNA template resulting in the formation of abnormal mRNA, which is incapable of synthesising the correct differentiation products (Hill, *et al*, 1974)

BrdU is considered by some scientists to be an inducer of pre-commitment to differentiation rather than an actual differentiation inducing agent. This was highlighted by the findings that BrdU treatment of HL60s for 24 hours, followed by treatment with Retmoic Acid resulted in a faster response to Retinoic Acid (RA) than the single addition of RA alone (Yen *et al.*, 1990). It would appear that BrdU can initiate some of the early changes induced by RA in HL60 differentiation, including early c-myc down-regulation. However, the same author reported previously (Yen *et al.*, 1987) that pre-commitment to differentiation involves an early increase in c-myc levels in the same Leukaemic line, as induced by RA. This suggests that pre-commitment to differentiation in these cells involves increased expression of c-myc. It therefore appears that the true mechanisms of induction and commitment to differentiation remain unclear, even in individual cell types.

142 Mode of Action of Thymidine Analogues

The exact mechanism(s), by which BrdU and the various thymidine analogues investigated in these this study, exert their differentiation-modulating effects remains poorly understood In the case of BrdU, it is thought that incorporation into DNA is critical in the process (O'Neill and Stockdale, 1974) Low levels of BrdU have been shown to alter the differentiation status of many different cell types in both inhibitory e g myoblast cells (O'Neill and Stockdale, 1974) and stimulatory e g neuroblastoma cells (Ross A H, *et al*, 1995) Incorporation into DNA involves the conversion of BrdU to Bromodeoxyuridine monophosphate, which competes with thymidine for incorporation into DNA (O'Neill and Stockdale, 1974) A study by Keoffler *et al* (1983) showed that a thymidine kinase-deficient human myeloid cell line, HL-60, was

unable to incorporate BrdU into its DNA and subsequently failed to respond to the ability of BrdU to modulate the differentiation status of HL-60 cells.

Incorporation of BrdU into DNA occurs in a non-random fashion, with incorporation occurring into repeated nucleotide sequences; know as 'fragile sites' (Schwartz and Snead, 1982; Hecht *et al.*, 1988). It is as a result of this consistency of incorporation that may explain the reproducibility of BrdU-induced differentiation. It is thought that breakages in DNA may occur at these fragile sites and these breakages and chromosomal aberrations may be associated with changes in the differentiation status of the cell. It was been also reported that BrdU associates with these fragile sites. (Alexander *et al.*, 1992).

It is also thought BrdU substitution into DNA may also induce effects similar to DNA-intercalating agents, by altering DNA bending at either the major or minor groves, and thus alter the structure of promoter regions and the affinity of DNA binding proteins (Lin and Riggs, 1972). Thus, BrdU is likely to exert is effects at least in part, on differentiation by altering of expression of set of regulatory genes that are involved in the control of another set of differentiation-related genes (Arnold *et al.*, Rauth and Davidson, 1993).

The biological action of CdU and IdU is also thought to be similar to that of BrdU. CdU is converted to chlorodeoxyuridine monophosphate by thymidine kinase, and has been shown to compete with thymidine for incorporate into DNA (Cortès *et al.*, 1987).

1.4.3 Mode of Action of Fluro-pyrimidines

In contrast to BrdU, IdU and CdU, the 5,5'-Fdu, 5-FU and 5,2'-FdU analogues modes of action are slightly different. 5,5'-FdU is cleaved by nucleoside phophorylase enzyme to yield 5-flurouracil (5-FU) (Armstrong and Diasio, 1980). The 5-FU generated is subsequently metabolised via several steps to yield flurodeoxyuridine monophosphate (FdUMP) (Pratt *et al.*, 1994). FdUMP binds to thymidylate synthase, forming an irreversible covalent ternary complex in which enzyme, folate cofactor, and FdUMP are bound, thus inhibiting thymidine monophosphate production and hence DNA synthesis (Pratt *et al.*, 1994). The inhibition of DNA synthesis causes cells to delay in the S-phase of cell cycle and this stall has previously been shown to induce differentiation of embryonal carcinoma cells, PC13, to endoderm-like cells, following exposure of the cells to Retinoic Acid (Nishimure *et al.* 1983; Mummery *et al.*, 1984).

Figure 1.? Pathway of 5,5'-FdU Metabolism

15 Keratins as markers of epithelial differentiation

A large proportion of the cytoplasm of vertebrate cells, normal and transformed, is occupied by components of the cytoskeleton, including actin, tubulin and the intermediate filaments (Moll et al, 1982) They are formed in different cell types from different proteins of a multigene family or from different subunit polypeptides of a class of related proteins By far the most striking differentiation specificity of composition has been observed in the intermediate-sized filaments. This class of filaments includes the desmin filaments typical of myogenic cells, the neurofilaments typical of neuronal cells, vimentins occur in mesenchymally derived cells and vascular smooth muscle cells, and the keratins occur in epithelial cells (Moll et al. 1982, Hatzfeld and Franke, 1985, Daly et al., 1998) Keratin Intermediate Filament (IF) proteins have three domains a central alpha-helical rod domain of constant size that derives from common ancestors, and two end-domains of variable structure thought to be involved in tissue-specific functions (Blumenberg, 1988) The specificity of keratin expression patterns in epithelial cells has been used in prognostic and diagnostic situations as markers of both epithelial origin and state of differentiation in patients with small cell lung cancer (Bepler et al., 1987, Broers et al, 1988), and other tumour pathologies (Virtanen et al, 1984, Trask et al, 1990) to distinguish normal and tumour-derived epithelial cells Keratins are thought to serve a structural function to protect the cell against environmental stresses and strains as for other filaments (Daly et al, 1998), but their expression in human ovarian adenocarcinoma lines has been associated with altered sensitivity to various chemotherapeutic drugs (Parekh and Simpkins, 1995) Interestingly, in studies using a number of chemical differentiating agents the levels of mdr-1/Pgp (p-glycoprotein) increased and expression appears to correlate with the degree of differentiation (Mickley et al, 1989) However, induction of these pumps is not always accompanied by expression of the multidrug-resistance phenotype, which may possibly be explained by changes in keratin expression during the differentiation of these cells The human K8 mRNA encodes a nucleic acid-binding domain, suggesting that keratm filaments may bind to nucleic acid sequences and play a role in regulating DNA replication and gene transcription (Yamamoto et al, 1990) It is also possible that they play a role in the regulation of translation of particular mRNAs through their localisation to regions within the cell, in a similar manner to the way in which polar

expression of developmental proteins nos and hicoid are regulated (Gavis et al., 1992). Genetic disease states associated with loss of keratin regulation include the blistering phenotype of Epidermolysis Bullosa Simplex (EBS) (Oshima, 1992; Fuchs and Byrne, 1994) and development of dwarf phenotypes and diabetes in transgenic mice expressing the K8 gene (Casanova et al., 1995).

The keratins (K) are divided into two categories; the acidic type I keratins are K9-20, while the more basic type II keratins are K1-8. Keratin filament formation is dependent on the pairing of partners from both groups to produce a proteolytically stable hetero-polymer filament (Kulesch et al., 1989). Despite the fact that their function is relatively unknown, the pattern of expression of keratin filaments is specific to both epithelial origin and degree of differentiation (Tseng et al., 1982). As described in "The Catalogue of Human Cytokeratins" (Moll et al., 1982), while K9-K11 is predominant in the epidermis, K12 has only been observed in the cornea. Cytokeratin 8 represents simple epithelia, and its normal partner, K18, shows the same tissue distribution (Trask et al., 1990). K8 and K18 are the first keratins to appear during mouse development (Casanova et al., 1995) and are thought to be the evolutionary ancestors of many of the present keratin forms (Blumenberg, 1988). Cytokeratin 19 is found in a broad range of epithelial tissues and is a major component of simple epithelia. K14 and K19 are known to be "promiscuous" in that they can partner Type II Keratins in the absence of their "usual" Type I partner to form stable filaments (Hatzfeld and Franke, 1985; Darmon, 1985; Lersch et al., 1989). K19 lacks a variable terminal domain. This, combined with its promiscuity, means that K19 is thought to play a critical regulatory role by pairing with any one of the basic keratins without contributing a potentially harmful variable terminal domain, the region in which tissue-specific function of keratins resides (Blumenberg, 1988). It therefore acts to redress keratin imbalances. Keratins 7/8/18/19/20 have been associated with simple epithelia, while K4/5/17 are associated with stratified epithelia (Mobus et al., 1994). Both classic and variant small cell lung cancers express K8 and K18/19, detectable by western blotting when immunocytochemical staining is weak (Elias et al., 1988). Stem cell populations of the lung have been speculated to exist as pluripotent populations residing in tumours and cell lines (Trask et al., 1990; Pfcifer et al., 1991). The almost complete absence of keratin expression in DLKP, a novel

poorly differentiated NSCLC-NE/SCLC-variant cell line isolated at the NCTCC, has led to speculation that this cell line may represent a stem cell-like population

151 Regulation of Keratin Expression

The regulation of keratin filament formation is complex and is controlled at multiple levels Regulation of keratin expression has been reported at the transcriptional level (Roop et al, 1988), involving AP-1 activation of transcription (Neznanov and Oshima, 1993) which is mediated by the ras signalling pathway (Pankov et al, 1994) Relatively short sequences in the 5' upstream region of keratin genes can confer tissue-specific transcription (Blessing et al, 1989, Neznanov and Oshima, 1993) In addition, histone and chromosomal insulation of keratin genes (Casanova et al., 1995), labile inhibitors of transcription (Cremisi and Duprey, 1987), and post-transcriptional proteolysis (Kulesh et al, 1989) have all been implicated in the cell-specific and developmental regulation of keratin filament formation. An important aspect to the proteolytic regulation of keratin filament formation, in which both partners of the pair are required for proteolytic stability and filament expression, is that it would appear that the expression of a type II keratin is sufficient to induce the expression of a type I partner (Gudice and Fuchs, 1987, Knapp and Franke, 1989, Lersch et al, 1989, Rothnagel et al, 1993) Type I keratin expression has been suggested to be dependent on accumulation of unpolymerised Type II keratin (Giudice and Fuchs, 1987) for proteolytic stability for overall filament formation Type I proteolysis may form a universal regulatory element while specificity in Type II expression will therefore result in Type I induction and tissue-specific Intermediate Filament formation (Rothnagel et al, 1993) Synthesis of both keratin types can be uncoupled and control of cytokeratin Intermediate Filament formation can occur at different levels (Knapp and Franke, 1989), strengthening this suggestion There is substantial evidence for additional post-transcriptional regulatory mechanisms (Blouin et al, 1991, Crowe et al, 1993), including mRNA degradation (Paine et al, 1992) and the suggestion that there is a possible block on the translation of certain keratin mRNAs, such as K8 (Tyner and Fuchs, 1984) This speculatively involves translational repression (Su et al, 1994) and even masking of keratin mRNAs in epithelial squamous cell carcinomas (Winter and Schweizer, 1983)

16 Integrins

The mtegrin receptors consist of two heterodimer chains, α and β , both of which form a non-covalently associated complex (Hynes, 1987) The α subunit family of integrins possesses 15 variants, while the β subunit family contain 8 variants In theory these two families could associate to give rise to over 100 integrins However, the actual diversity is much more restricted and in reality the subunits combine into 22 different integrins (Buck and Horwitz, 1987) The integrin family is subdivided on the basis of its β subunit (Newham and Humphires, 1996) For example, the β_1 integrins are involved principally in the adhesion between the ECM and the cellular cytoskeleton (Buck *et al*, 1987), while the β_2 integrins participate in cell-cell interactions (Ruoslahti, 1991) The specificity of binding is not determined solely by integrin pairing, but also by the cell type it is expressed m

Integrins have been implicated in such diverse processes as inflammation, cellular growth and differentiation (Albelda and Buck, 1990) For example, the interaction in developing lung between the ECM and the epithelium is mediated by integrin receptors, and allows normal lung branching to occur (Gumbiner, 1996) As well as functioning as cell adhesion molecules, the integrins have signalling functions that regulate various aspects of cell behaviour and differentiation. This signalling is accomplished through focal adhesion proteins. In this study we have chosen the increased expression of both α_2 and β_1 integrins as markers of differentiated epithelial lung cell differentiation.

17 Transcriptional Control of Gene Expression

Transcriptional control of gene expression during both proliferation and differentiation has been widely studied Transcription factors such as MyoD and Myogemn have been shown to play critical roles in the regulation of muscle-specific differentiation (Weintraub, 1993, Buckingham, 1994) On the other hand, factors such as *c-fos*, *c-jun*, and *c-myc* have long been established as playing roles in the regulation of cellular proliferation, differentiation and transformation of a wide variety of cell types Selective transcription of genes such as alcohol dehydrogenase (Adh) during development is known to occur through specific sequences *in* the promoter regions of genes that bind regulatory factors known as transcriptional enhancers (Novina and Roy, 1996) Despite this, the process of transcription and the mechanisms by which transcription factors regulate differentiation are still not fully understood

171 The c-myc proto-oncogene

First identified as the transforming gene of the avian <u>myelocytomatosis virus (v-myc)</u> (reviewed, Evan, 1990), the *myc* family of oncogenes must rank among the most widely studied of all proto-oncogenes Despite this, there is a relative paucity of direct c-*myc* targets that have been identified to explain the capacity of this gene to induce transformation and malignancy (Ryan and Birnie, 1996) While no direct role for c-*myc* was found in some malignant conversions (DeBenedetti *et al*, 1994), c-*myc* expression has been shown to be critical to transformation by both v-abl and BCR-ABL, as evidenced using dominant negative c-*myc* expression (Sawyers *et al*, 1992) Genetic instability and abnormality is associated with lung cancers (Fong *et al*, 1995) and c-*myc* abnormalities are frequently associated with carcinogenesis c-*myc* activation has been shown to occur via gene amplification, chromosomal translocation, proviral insertion and retroviral transduction (Ryan and Birnie, 1997)

1 7.1 1 c-Myc structure and Function

The c-myc gene is highly conserved, apart from its first exon, throughout vertebrate evolution It first came to notice because of its homology to the viral oncogene, v-myc While deregulated expression of c-myc has been associated with a variety of neoplasms, early studies indicated that introduction of the c-myc gene into normal fibroblasts was not sufficient to transform cells (reviewed Evan et al, 1990) The 5' region of the c-myc gene contains four promoters, termed P0-P3 However, the two major promoters, P1 and P2 contribute 75%-90% and 10-25% of the cytoplasmic cmyc mRNAs, respectively (Ryan and Birnie, 1996, Nanbru et al, 1997) The functional significance of these promoters remains a mystery They may play roles in processes such as proliferation and differentiation, or may simply represent evolutionary redundance of the P0 and P3 promoters. The c-Myc protein is a phosphoprotein, phosphorylated by casein kinase II (Hagiwara et al., 1992) and DNA-PK (DNA-activated protein kinase) (Iijima et al., 1992, Chibazakura et al., 1997), and its expression is induced in response to serum and growth factor stimulation c-Myc possesses a short cluster of basic ammo acids that serve as nuclear localisation sequences (NLS) (Saphire et al, 1998), in addition to DNA-binding leucine zipper motifs The N-terminal region contains the transcriptional transactivation domain (Ryan and Birnie, 1996) There are two isoforms of the protein, c-Mycl and c-Myc2, which differ by 20 ammo acids in their N-terminal region (DeBenedetti, personal correspondence)

c-Myc exerts its effects through oligomerisation with other proteins (Figure 1.6), characteristic of other DNA-binding transcription factors (e.g. Jun and Fos) Originally thought to homodimerize, it is now known that this is untrue Oncogenic activation of c-Myc requires heterodimerization with activating Max proteins (Amati *et al.*, 1993), which then bind DNA through basic-hehx-loop-helix-leucine zipper motifs Negative regulation of c-Myc activity occurs through interaction with another factor, termed Mad (Ryan and Birnie, 1996), which has no transactivating function but competes with Max for binding to the same region of the c-Myc protein. It is, therefore, a competitive inhibitor of c-Myc activation by Max. No initial sequence specificity of c-Myc binding was apparent, but it is now understood that c-Myc binds through a basic amino acid α -helix region (Fisher *et al.*, 1993) to what are termed

myc-binding sequences or "E-box elements" (CACGTG). These sites require association of Max in addition to c-myc for activation (Ryan and Birnie, 1997). Invivo activation of E-box containing genes by Myc/Max heterodimers, including an RNA helicase gene belonging to the DEAD-box family, has been demonstrated (Grandori et al., 1996). c-Myc/Max complexes, active in transcription, appear to be dependent on the levels of c-Myc available within the cell (Amati et al., 1993), that is, Myc synthesis is rate-limiting for Myc-Max dimerisation and activity. Myc overexpression activates, while Max overexpression represses transcription through E-box sites. This is because Max/Max homodimers do not activate, and so compete with Myc/Max complexes when Max is over-expressed (Somer et al., 1998). Max overexpressing lines show reduced expression of transiently transfected Mycresponsive genes (Zhang et al., 1997), implying a role for Max expression in the regulation of processes such as differentiation.

Max appears to be extremely simple and is comprised of only 160 amino acids, 80 of which constitute the DNA-binding/dimerization domain (Cole, 1991), suggesting that

transactivation of basal transcription occurs through the longer N-terminal region of the c-myc portion of the Myc/Max complex. This explains the lack of transactivation by Max homodimers and the findings that myc levels are rate limiting in the transactivation by Myc/Max heterodimeric complexes. Myc/Max, Max/Max and Mad/Myc complexes all bind to the Myc E-box with the same affinity (Somer *et al.*, 1998). Therefore, since the transactivation domain of these complexes lies in the Myc N-terminal, complexes lacking a Myc partner act as competitive inhibitors of Myc/Max transactivation.

However, c-Myc has also been shown to exhibit a degree of "dual functionality" in that it is capable of transcriptional repression, as well as activation (Antonson *et al.*, 1995), depending upon the position of the E-box relative to the transcription start site. As such, the role of c-myc in the regulation of cellular growth and proliferation should not be confined to a narrow view of transcriptional enhancement and stimulation of proliferation. Roles for c-myc in apoptosis and differentiation are evident, but as yet unclear. "It would be naïve to assume that the only transcriptional targets of c-myc are those involved in transformation" (Ryan and Birnie, 1997). Human bronchial epithelial cells transformed by overexpression of c-raf-1 and c-myc proto-oncogenes were capable of inducing multi-differentiated carcinomas in nude mice (Pfeifer *et al.*, 1991). This suggests that the role of c-myc in regulating differentiation (Yen and Forbes, 1990; Valy-Nagyi *et al.*, 1993) may not be a "universal" requirement of all cell types, as observed for AP-1. In addition, c-myc has been shown to play a role in the induction of apoptosis (Harrington *et al.*, 1994; Kohlhuber *et al.*, 1995).

c-Myc has been found to directly interact with a number of additional proteins, many of which are novel transcription factors in themselves (Figure 1.7). These interactions may form another level at which myc exerts its influence over the transcription process. A novel zinc-finger protein, termed Miz-1 (Myc interacting zinc-finger protein-1) has been identified that specifically interacts with Myc, but not with Max (Peukert *et al.*, 1997). Miz-1 is a transcription factor with potent anti-proliferative effects. Binding of Myc to Miz-1 inhibits the promoter activation activity of Miz-1, relieving the anti-proliferative effects of Miz-1 expression. Of note is the interaction between c-myc and the developmental regulator known as Yin-Yang 1 (YY1). YY1 regulates c-Myc levels, while association of c-Myc and YY1 proteins reduces the activity of both proteins. This may form the basis of an auto-regulatory mechanism to control the levels/activity of these two proteins. Such interactions with key transcription factors, regulating their activity, may play a significant role in the activity of c-Myc. This is particularly intriguing in light of the lack of direct transcriptional targets identified for c-Myc to date. A diagram of the known interactions between c-Myc and other enhancer proteins is shown in Figure 1.7

(reproduced from Ryan and Birnie, 1996):

Figure 1.7: Regions of c-Myc interacting with other transcription factors. (Note: p107 is a member of the Retinoblastoma family of negative regulators. Its association with c-Myc inhibits the transactivation activity of c-Myc).

172 The Yin-Yang Transcription factor, YY1 (NF-E1, NF-δ, UCRBP, CF-1)

YY1 (Yin-Yang 1) is a developmentally important transcription factor, so-named because of its ability to act as both a transcriptional activator and repressor It belongs to the GLI-Kruppel family of negative transcription factors (Licht *et al.*, 1990, Shi *et al.*, 1991), of which relatively few are known in eukaryotes. The YY1 gene was localised to chromosome 14 in humans (Yao *et al.*, 1998), although pseudogenes or additional YY1 genes have been suggested to exist (Zhu *et al.*, 1994). The promoter region of YY1 lacks consensus TATA or CCAAT boxes, but contains multiple SP-1 binding sites (Yao *et al.*, 1998), including a critical promoter region (Safrany and Perry, 1993). Four laboratories working independently cloned the YY1 gene in 1991, perhaps highlighting the universally important role of YY1 in transcriptional regulation.

- 1 Park and Atchison (1991) isolated a factor they termed NF-E1, which was capable of binding to both the immunoglobulin κ 3' enhancer and the immunoglobulin heavy-chain μ E1 site, transcriptionally repressing and activating these promoters, respectively The authors also reported that NF-E1 (Common Factor 1, CF1) was capable of binding the c-myc promoter The binding of CF1 was shown to be capable of activating transcription through a c-myc CF1 site (Riggs et al, 1991) Overexpression of YY1 was shown to be a strong activator of murine c-myc expression, with mRNAs increasing from both the P1 and P2 promoters of the endogenous c-myc gene (Riggs et al, 1993) These promoters account for the vast majority of c-myc transcript present in the cytoplasm
- 2 NF-δ was found to bind to and activate critical downstream promoter elements in the mouse ribosomal protein rpL30 and rpL32 genes (Hariharan *et al*, 1991)
- 3 Flanagan et al (1991) isolated a negative transcription factor, UCRBP (UCR-<u>Binding Protein</u>) that bound to the <u>upstream conserved region</u> (UCR) of MMLV (<u>Moloney Murine Leukaemia Virus</u>), down-regulating promoter activity A negative regulatory region in the HPV-18 (<u>Human Papilloma Virus</u>) was shown to bind YY1 with high affinity (Bauknert et al., 1992) and mutation of the YY1

binding site leads to enhanced activity of the HPV-18 promoter Many viruses that cause cancer have been found to have lost YY1 binding sites, which may be a means of escaping this negative regulation (Shrivastava and Calame, 1994)

Finally, YY1 was isolated and given its more widely used name by Shi et al (1991) when it was found to associate with the Adenovirus P5 promoter, activated by the viral E1A protein. In the absence of E1A this promoter is silenced by YY1, and only becomes activated in the presence of E1A. Both E1A and YY1 were found to share overlapping binding sites in the P5 promoter, but YY1 binding is not eliminated upon E1A binding, suggesting that competition for binding is not the means by which regulation occurs E1A-mediated activation is speculated to involve unmasking regions of the YY1 N-terminal involved in activation but normally masked in the full-length protein (Lee et al., 1994) (Figure 1.8)

Consensus activation and repression sequences for YY1 are shown below, although these are known to vary giving rise to changes in binding capacity of these sites for YY1 (Hyde-DeRuyscher *et al*, 1995)

Activation CGGCCATCTTGNCTG Repression CCATNTTNNNA

1.7 2 1 The Structure and Function of YY1

There is evidence that YY1 is a phosphoprotein Eight consensus phosphorylation sites are found in the deduced ammo acid sequence and YY1 activity can be abolished through the use of phosphatases (Becker *et al*, 1994) The ammo acid sequence of the YY1 protein displays a number of unique properties to date, including acid rich domains similar to transcriptional activators, as well as Ala+Gly-rich and His rich sequences common to transcriptional repressors (Park and Atchison, 1991) The very unusual N-terminal region consists of 11 consecutive negatively charged amino acids and 12 consecutive histidines, thought to form two oppositely charged symmetrical helices separated by a highly flexible glycine-rich loop (Helix-Loop-Helix, HLH) (Hariharan *et al*, 1991) These regions are speculated to be capable of forming an acidic activation domain that could be neutralised or modulated under certain conditions to allow interaction with polymerase II before and after transcription has commenced The ammo terminal transactivation domain requires ammo acids 16-29 and 80-100 for maximal activity (Bushmeyer *et al.*, 1995)

The C-terminal contains four zinc fingers, characteristic of DNA-binding transcription factors, while the central region is largely unstructured, consisting of large loop and helix regions. The YY1 repression domain lies near the carboxy terminus and is embedded within the YY1 zinc finger region necessary for DNA-binding (Bushmeyer *et al.*, 1995). Particular importance has been placed upon zinc fingers 3 and 4 for repression activity.

The functional diversity of YY1 was conceivably attributed to its structural plasticity (Hariharan *et al*, 1991) It is generally thought that repression of gene transcription is the usual function of YY1, with the activating N-terminal region being masked Interaction with activating proteins, such as viral E1A, then releases the N-terminal region and converts YY1 to an activator of transcription through the same promoter (Figure 1 8) However, it has also been suggested that repression is not the intrinsic activity of YY1 Rather, YY1 acts to bend DNA (Natesan and Gilman, 1993) in a way that modulates the interaction of proteins bound to the two flanking regions When the orientation of the YY1 binding site is reversed or the phasing of the sites is changed, YY1 becomes an activator of the same promoter (Natesan and Gilman, 1995) Rather than bending two proteins away from one another, YY1 now bends them towards one another to bring them into closer contact and increase association Therefore, YY1 will have distinct local effects on protein-DNA and protein-protein interactions depending upon the position and orientation of its binding site within the promoter, supporting a general role for YY1 in the building of highly organised promoter complexes This is particularly important in the formation of promoter structures at TATA-less promoters, since YY1 has been shown to bend DNA in a manner suitable to provide a site for transcription initiation (Kim and Shapiro, 1996) Both promoter orientation-dependent and co-factor-dependent activity of YY1 was also suggested in the human Interferon-y promoter (Ye et al, 1994) In this case, DNA-binding is a required function of YY1, while in other cases DNA-binding is not required for YY1 to exert its effects upon promoter formation and activity

Figure 1.8: Diagrammatic Representation of EIA-mediated activation of YY1 Transactivating Potential. YY1 is a repressor of the P5 promoter (A), but in the presence of EIA, the N-terminal Activating Region (Blue) is unmasked and transcription is activated (B).

1.7.2.2 Transcription Factors interact with YY1 to regulate its activity

A YY1 binding site in the *c-fos* promoter is required for adenovirus E1A activation of *c-fos* transcription (Gedrich and Engel, 1995). Rather unusually and almost paradoxically, repression by YY1 was also found to be independent of the presence of YY1 binding sites in *c-fos* reporter constructs (Zhou *et al.*, 1995). It was shown that YY1 repression was mediated through interaction of YY1 with CREB (cyclic AMP Response Element Binding) Proteins. Thus, within the *c-fos* promoter alone YY1 is known to interact with E1A and CREBPs to either increase or decrease transcription, respectively, and these functions can be both dependent and independent of the ability of YY1 to bind DNA. This has lead to claims that YY1 activity is regulated through interactions with other proteins and that it must contain a C-terminal repression domain that is independent of its ability to bend DNA (Hyde-DeRuyscher *et al.*, 1995).

Numerous YY1-associated complexes appear to be targets for E1A activation (Shi *et al.*, 1991; Gedrich and Engel, 1995; Labrie *et al.*, 995). In fact, a major role of viral E1A may be the activation of genes normally repressed by YY1, including viral genes (Shrivastava and Calame, 1994). SP1 frequently acts as a regulator of YY1-associated complexes (Bennett *et al.*, 1999), particularly during TATA-less promoter complex formation. "Bi-functionality" is evident in the ability of YY1 to simultaneously up-

regulate some genes while down-regulating their antagonists. For example, transcription of the LDL (Low-Density Lipoprotein) receptor gene is inhibited by YY1 during high cholesterol (Bennett et al., 1999), while that of Cholesterol Esterase is enhanced (Gauthier et al., 1999). This was attributed to interactions of YY1 with SP1 in the cholesterol esterase promoter and with SRE-BP in the LDL promoter, inhibiting their function. The ability of YY1 to repress numerous SRE-BP (Serum Response Elemement-Binding Proteins) regulated genes has been associated with the displacement of Factor Y, a positive regulator of gene transcription (Ericsson et al., 1999). Similar "bi-functionality" is evident during proliferation, in which YY1 upregulates *c-myc* gene transcription, correlating with cellular proliferation, and inhibits muscle actin expression, correlating with differentiation (Lee et al., 1994). However, despite being shown to interact both in-vitro and in-vivo (Lee et al., 1993; Seto eta l., 1993), both YY1 and SP-1 appear to function independently at the surf-1 promoter, where the YY1 binding site has been shown to be both necessary and sufficient to confer growth-factor inducibility in transcription of the Surf-1 gene (Cole and Gatson, 1997). Activation of transcription by YY1 independent of DNA-binding has been shown for the α -1 acid glycoprotein (AGP) promoter through functional interaction with a negative DNA-binding factor, termed Factor B (Lee and Lee, 1994). In the human GM-CSF (Granulocyte Macrophage-Colony Stimulating Factor) promoter cofactors in addition to YY1 were required for activator function and promoter complex formation (Ye et al., 1994), but in this case binding of YY1 to DNA is required (Ye et al., 1996),

Additionally, YY1 has been suggested to participate in the stimulation of autonomously replicating human chromosome fragments through interaction with a replication-enhancing element, REE1 (Obuse *et al.*, 1998) and in the regulation of transposable elements of the genome (Becker *et al.*, 1993; Satyamoorthy *et al.*, 1993; Singer *et al.*, 1993). These elements are thought to be a major source of functional diversity allowing evolution to continue. Overall, YY1 appears to perform a multitude of tasks, many of which are influenced by its ability to bind to DNA and affect promoter structure and formation, as well as interact with numerous transcriptional enhancers to modify its own activity. The complexity of the regulatory effects of YY1 is highlighted by Bushmeyer *et al* (1995); "YY1 can either activate or repress some

promoters depending on either promoter architecture or intracellular milieu" These unique properties suggest an unusual and complex role for YY1 in the regulation of gene expression

1 7.2 3 YY1 and TATA-less Transcription

YY1 is thought to play a central role in the formation of transcription initiation complexes at TATA-less promoters Promotion of TATA-less transcription by YY1 was initially suggested by the *in-vitro* transcription experiments of Seto et al (1991) and Hahn et al (1992) YY1 has been shown to bend DNA and is thought to play a role in the formation of promoter structures for RNA pol II binding (Natesan and Gilman, 1995, Kim and Shapiro, 1996) In an in-vitro transcription reaction, supercoiled DNA templates could be transcribed in the presence of only YY1, TFIIB and RNA Pol II (Usheva and Shenk, 1994) Overall, YY1 is thought to be a key regulator of TATA-less promoter initiation, probably in all TATA-less promoters (Azizkhan et al, 1993) Its ubiquitous expression is in agreement with the findings that many universally expressed housekeeping genes appear to lack any discernible TATA recognition sequence, including the YY1 gene itself (Yao et al, 1998) In light of this, a report challenging the concept that TBP-mediated association of TFIID with the TATA-box is limiting in the rate of transcription initiation is of interest (Antoniou et al, 1995) Altered transcription was only observed when TBP binding was drastically decreased in the promoter of the β -globin gene However, this promoter also contains an active YY1 binding site, the importance of which may have been overlooked by the authors

The ability of YY1 to interact with TFIIB/D is also thought to be a means by which YY1 regulates TATA-less promoter formation, by-passing the requirement for TBP in these systems Recently TAF_{II}55 (<u>TATA-Binding Protein-Associated Factor</u>), a subunit of TFIID, has been shown to interact directly with the largest subunit, TAF_{II}230 through its central region and with multiple activators – including SP1, YY1 and Adenoviral E1A – through a distinct amino-terminal domain (Chiang *et al*, 1995) This subunit may form the "bridge" between transcriptional enhancers and the actual transcriptional components surrounding RNA polymerase II It is possible that YY1 is part of, or is actually <u>the</u> "bridging unit", particularly in TATA-less promoters (since TAF55 is a basal unit, while YY1 appears to be "in-limbo" between enhancer and basal transcription factor, depending upon the promoter) The effects of SP1 on YY1-mediated transcription initiation, particularly from TATA-less promoters, may reside in its interaction with TAF_{II}55/230 to guide the initiation complex towards the Inr-associated YY1 to begin initiation

Further evidence that YY1 plays a role transcription through TATA-less promoters has been provided by Gatson and Fried (1994), Cole and Gaston (1997), Johansson *et al* (1998) and Karantzoulis *et al* (1999) In addition, YY1 is thought to play a role in the downstream regulation of transcription (Last *et al*, 1999) The majority of known transcriptional enhancers are upstream, since they would interfere with the actual transit of the RNA polymerase II if situated downstream, while YY1 appears to interact with many of the basal factors and may form part of the basal RNA holoenzyme in some circumstances

1724 YY1 in Differentiation and Development

The unusual nature of the YY1 protein has led to speculation that it may play a key role in the regulation of differentiation and development Both Chromatin structure and methylation are thought to be key mechanisms by which cells control specific gene transcription during differentiation. The Nuclear Matrix Protein-1 (NMP-1), a transcription factor which has been shown to associate with the nuclear matrix to mediate gene-matrix interactions within the nucleus, has been shown to be none other than YY1 (Guo *et al.*, 1995). Sequences necessary for nuclear localisation and association with the nuclear matrix have been identified in the C-terminal region of the YY1 peptide (Bushmeyer and Atchison, 1998, McNeil *et al.*, 1998). Nuclear-matrix-associated transcription factors may affect gene regulation by mediating transient associations between DNA and the nuclear matrix, locally unravelling chromatin structure to allow the transcriptional machinery to access promoters and begin transcription, implying roles for YY1 in activating repressed genes during development.

Binding of YY1 to DNA during globin promoter formation is known to be methylation-sensitive (Satyamoorthy *et al*, 1993, Yost *et al*, 1993), which may imply a role for YY1 in tissue- and developmental-specific transcription of genes A YY1 binding site is thought to function in the stage-specific expression of the fetal (gamma) globin gene (Zhu *et al*, 1999) The human ε -globin gene is transcribed in erythroid cells only during the embryonic stages of development A binding site for YY1, around nucleotide –269, was identified as critical in the formation of the ε -globin repressor complex (Raich *et al*, 1995), forming part of the local regulatory elements suggested to be involved in the regulation of embryonic stage-specific expression of this gene Processes such as these, resulting in the stage-specific switches in gene expression, are thought to be associated with methylation of CpG islands, which silence transcription of developmentally important genes and to which YY1 binding is sensitive

In addition, levels of YY1 have been shown to decrease during differentiation of mouse myoblasts (Lee *et al*, 1992) YY1 contains several peptide regions prone to proteolytic cleavage, raising the possibility that protease-mediated degradation events may contribute to diminished YY1 protein levels during myogenesis (Lee *et al*, 1994) Two proteolytic pathways through which YY1 can be differentially targeted under different cell growth conditions have been identified (Walowitz *et al*, 1998), identifying a role, at least partially, for protease calpain II (m-calpain) However, in serum starvation studies YY1 protein expression was lost only after 24 hours, despite the fact that YY1 transcript expression was lost within hours (Flanagan, 1995), suggesting that the YY1 protein is relatively stable. This does not exclude the possibility that proteolytic regulation of YY1 levels may play a role in different processes.

Treatment of myoblasts with the differentiation modulating agent, BrdU results in inhibition of myogenesis, resulting in/from an increase in expression of YY1 and decreased α -actin levels (Lee *et al*, 1992) Transfection of SRF (Serum Response Factor), which competes with YY1 for the regulation of α -actin gene transcription, could directly transactivate the actin promoter in BrdU-treated myoblasts Both SRF and YY1 are ubiquitously expressed, suggesting that they may have antagonistic

functions in regulating genes such as *c-fos*, α -actin and cardiac creatine kinase-M (Vincent *et al*, 1993, Liu *et al*, 1995) during development High levels of YY1 in non-differentiated muscle cells down-regulate the dystrophin promoter, at least in part, by interfering with the spatial organisation of the promoter (Galvagni *et al*, 1998) YY1 and a positive regulator of dystrophin, DPBF (dystrophin promoter bending factor), induce opposite bends in the CArG element of this promoter, suggesting that their binding induces alternative promoter structures to regulate muscle development

1.8 eukaryotic Translation Initiation Factor, eIF-4E

eIF4E, otherwise known as eIF4 α or the small cap binding protein, binds directly to the 5' 7-Methyl-Gppp cap in an ATP-dependent manner, and is thought to be the first factor to interact with the mRNA to initiate translation eIF-4E is a 25 kDa phosphoprotein responsible for Cap-binding specificity in eIF-4F complexes during eukaryotic translation initiation events eIF-4E consists of a single $\alpha\beta$ domain which contains 8 anti-parallel β strands forming a curved β sheet (Sonenberg and Gingras, 1998) This sheet is backed by three long α -helices The mRNA cap-structure binds loosely to an hydrophobic pocket in the concave inner surface of eIF-4E, across which salt-bridges form after phosphorylation to "lock" the cap in place (Marcotrigiano *et al.*, 1998, CSHL abstracts), while the convex dorsal surface interacts in a mutually exclusive manner with either eIF-4G or the 4E-BPs Phosphorylation of eIF-4E occurs as part of the eIF-4F complex (Tauzon *et al.*, 1990) greatly enhancing and stabilising its association with the cap (Minich *et al.*, 1994, Joshi *et al.*, 1995)

eIF-4E is widely accepted as the limiting factor in translation initiation, particularly for mRNAs with complex 5' UTRs It is present in molar levels significantly lower than that of other initiation factors (DeBenedetti and Rhoads, 1990, Sonenberg, 1996) It is the most specifically targeted mRNA-binding eIF and is an essential component of the cytoplasmic cap-binding complex The cap-binding activity of the eIF-4E peptide is thought to reside in a highly evolutionarily conserved placement of tryptophan residues in both yeast and mammals (Altmann *et al.*, 1988) This factor therefore plays a critical role in the regulation of translation, particularly of specific mRNA species, and the levels and activity of eIF-4E are critical to the control of cellular proliferation and differentiation (Jaramillo *et al.*, 1991) A rather novel and as-yet to be proven additional function for eIF-4E has been suggested, namely that it may play some part in the transport of mRNAs from the nucleus The 5' Capstructure is known to be involved in the process of nucleocytoplasmic transport (Sonenberg and Gingras, 1998), already thought to be the function of the novel eIF-4E <u>homologue protein</u>, eIF-4EHP (Rome *et al.*, 1998) In light of the Cap-binding specificity of eIF-4E and recent findings of localisation of a fraction of eIF-4E to the nucleus (Pollard *et al.*, 1999), this additional role for eIF-4E is not implausible

Frequently mammalian cells express at least two forms of this factor (Jaramillo et al, 1991, Haghighat et al, 1995) The gene(s) for eIF-4E is thought to lie on chromosome 4 in humans (Gao et al, 1998) Gao et al (1998) isolated two genes for eIF-4E from placental genomic libraries, in which case eIF-4E1 contained six introns but the other (eIF-4E2) was intronless Subtle differences between the two genes were identified and both genes were reported to be differentially expressed in four human cell lines A notable difference between the two genes was that the eIF-4E1 promoter contained c-myc-binding elements while that of eIF-4E2 did not, suggesting constitutive expression of the latter and inducible expression of the former. In fact, eIF-4E has been identified as one of the few targets for c-Myc induction (Rosenwald et al, 1993, Jones et al, 1996) The complexity of eIF-4E expression patterns in eukaryotic cells was highlighted by the findings that in Drosophila a single eIF-4E gene could code for three alternatively spliced mRNA transcripts, two of which resulted in expression of the same form of eIF-4E, while the other encoded an isoform differing at the amino-terminal sequence of the protein (Lavoie et al, 1996) The three eIF-4E transcripts varied greatly in the lengths of their respective 5' UTRs, suggesting that each was subject to varying degrees of translational regulation themselves This may reflect a means of auto-regulating levels of eIF-4E expression during phases of hyper- and hypo-proliferation of cells

Following on from BrdU work that has previously been performed in the laboratory (McBride S, *et al*, 1999, P Meleady, PhD Thesis, 1997, F O'Sullivan, PhD Thesis, 1999, D Walsh, PhD Thesis 1999, P Doolan, PhD Thesis, 2001) it was decided to investigate the ability of other halogenated thymidine analogues to induce differentiation in DLKP and A549 cells In this study it was decided to utilise the expression of α_2 -, β_1 -integrin, EpCAM, cytokeratms 8, 18 and 19 as markers of differentiation in the two cell lines The thymidine analogues initially chosen for this work were 5-Iodo-2 -deoxyUridine, 5-Chloro-2 -deoxyUridine, 5-FluroUracil, 5-Fluro-2 -deoxyUridine, 5-Fluro-5 -deoxyUridine, 5-BromoUracil

Exposure of the both cell lines to BrdU and the other halogenated thymidine analogues investigated also resulted in a morphological change in the treated cells. These changes included a flattening and stretching of the cells, with the cells doubling or quadrupling in size, following treatment. Cells treated with 5,2 -FdU exhibited the greatest alteration in morphology and the greatest increase in cell size.

- Previous research performed in this laboratory has demonstrated that the halogenated thymidine analogue, Bromodeoxyuridine, induces the *in vitro* differentiation of the lung cell lines DLKP and A549 This differentiation is indicated by the induction of cytokeratins 8, 18 and 19 (McBride, *et al*, 1999, Meleady and Clynes 2001a, Meleady and Clynes, 2001b, O'Sullivan, PhD Thesis, 1999) Also shown to be induced by BrdU are the integrins α₂ and β₁ (Meleady, PhD Thesis, 1997) and Ep-CAM (O'Sullivan, PhD Thesis, 1999)
- The thymidine analogues BrdU has been shown in this laboratory to induce the expression of cytokeratin and integrin proteins The ability of other halogenated pyrimidine analogues, IdU, CdU, 5,5 -FdU, 5,2 -FdU, 5-FU, BromoUracil and Bromouridine, to alter expression of these proteins was also to be investigated. It was hoped that such investigation would help us gain a better understanding of the mechanisms by which differentiation is regulated in our *in vitro* model system.
- In order to investigate the mechanisms involved in lung cell differentiation in our model system initial work examined the effect of the pyrimidine analogues had on the cytokeratin and integrin proteins in DLKP and A549 cell lines This was principally performed by immunocytochemistry
- To investigate the global transcriptional changes induced in the DLKP cell line following exposure to the pyrimidine analogues, DNA microarray experiments were employed to help to elucidate genes which may be common to the pathway(s) regulating differentiation in our cell system The use of such techniques may yield helpful leads to help us understand the overall processes of differentiation involved
- Work performed by Walsh (PhD Thesis, 1999) in our laboratory suggested that the transcription factors c-myc and Yin Yang 1 may be key proteins

involved in the control of differentiation which is induced by BrdU in DLKP cells cDNAs coding for these two proteins were transfected into DLKP and a clonal subpopulation DLKP-SQ, to asses their ability to induce simple differentiation in this poorly differentiated cell line. It was hoped that compiling results from BrdU-treated cells and transfections would allow us to develop a model for the regulation of K8 and K18 synthesis in our lung cell line models, with possible implications for understanding the early stages of lung development as well as aspects of de-differentiation in lung cancer. Such models are severely lacking in lung biology.

Ì

Section 2.0 Materials & Methods

2.1 WATER

Ultrapure water was used in the preparation of all media and solutions. This water was purified by a reverse osmosis system (Millipore Milli-RO 10 Plus, Elgastat UHP) to a standard of 12 - 18 M Ω /cm resistance.

2.2 GLASSWARE

Solutions pertaining to cell culture and maintenance were prepared and stored in sterile glass bottles. Bottles (and lids) and all other glassware used for any cell-related work were prepared as follows:- all glassware and lids were soaked in a 2% (v/v) solution of RBS-25 (AGB Scientific) for at least 1 hour. Following scrubbing and several rinses in tap water, the bottles were then washed by machine using Neodisher detergent, an organic, phosphate-based acid detergent. The bottles were then rinsed twice with distilled water, once with ultrapure water and sterilised by autoclaving.

2.3 STERILISATION

Water, glassware and all thermostable solutions were sterilised by autoclaving at 121°C for 20 minutes (min) under pressure of 1bar. Thermolabile solutions were filtered through a 0.22µm sterile filter (Millipore, millex-gv, SLGV-025BS). Low protein-binding filters were used for all protein-containing solutions.

2.4 MEDIA PREPARATION

Medium was routinely prepared and sterility checked by Joe Carey. The basal media used during routine cell culture were prepared according to the formulations shown in Table 2.4.1. 10x media were added to sterile ultrapure water, buffered with HEPES and NaHCO₃ and adjusted to a pH of 7.45 - 7.55 using sterile 1.5M NaOH and 1.5M HCl. The media were then filtered through sterile 0.22µm bell filters (Gelman, 121-58) and

stored in 500ml sterile bottles at 4° C Sterility checks were carried out on each 500ml bottle of medium as described in Section 2.5.6

The basal media were stored at 4° C up to their expiry dates as specified on each individual 10x medium container Prior to use, 100ml aliquots of basal media were supplemented with 2mM L-glutamine (Gibco, 25030-024) and 6% foetal calf serum (Sigma, F-7524 Batch) and this was used as routine culture medium. This was stored for up to 2 weeks at 4° C, after which time, fresh culture medium was prepared

	DMEM (Gibco, 12501-029)	Hams F12 (Gibco, 21700-109)
10X Medium	500ml	Powder
Ultrapure H ₂ 0	4300ml	4700ml
1 M HEPES[*] Sıgma , H-9136	100ml	100ml
7 5% NaHCO 3 BDH, 30151	45ml	45ml

Table 2 4 1Preparation of basal media

* HEPES = N-(2-Hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid)

For most cell lines, ATCC (Ham's F12/DMEM (1 1)) supplemented with 6% FCS, 1% Sodium Pyruvate and 2mM L-glutamine was routinely used

2 5 CELL LINES

All cell culture work was carried out in a class II down-flow re-circulating laminar flow cabinet (Nuaire Biological Cabinet) and any work which involved toxic compounds was carried out in a cytoguard (Gelman) Strict aseptic techniques were adhered to at all times The laminar flow cabinet was swabbed with 70% industrial methylated spirits (IMS) before and after use, as were all items used in the cabinet Each cell line was assigned specific media and waste bottles. Only one cell line was worked with at a time in the cabinet which was allowed to clear for 15min between different cell lines. The cabinet itself was cleaned each week with industrial detergents (Virkon, Antec International, TEGO, TH Goldschmidt Ltd.), as were the incubators. The cell lines used during the course of this study, their sources and their basal media requirements are listed in Table 2.5.1 Lines were maintained in 25cm² flasks (Costar, 3050), 75cm² (Costar, 3075) or 175cm² flasks (Corning, 431079) at 37⁰C and fed every two to three days

2.5.1 Subculture of Adherent Lines

During routine subculturing or harvesting of adherent lines, cells were removed from their flasks by enzymatic detachment

Waste medium was removed from the flasks and rinsed with a pre-warmed $(37^{0}C)$ trypsin/EDTA (TV) solution (0 25% trypsin (Gibco, 25090-028), 0 01% EDTA (Sigma, EDS) solution in PBS A (Oxoid, BR14a)) The purpose of this was to remove any naturally occurring trypsin inhibitor which would be present in residual serum Fresh TV was then placed on the cells $(2ml/25cm^{2} \text{ flask or } 4ml/75cm^{2} \text{ flask})$ and the flasks incubated at $37^{0}C$ until the cells were seen to have detached (5-10 min) The trypsin was deactivated by addition of a equal volume of growth medium (*i e* containing 6% serum) The entire solution was transferred to a 30ml sterile universal tube (Sterilin, 128a) and centrifuged at 1,000 rpm for 5 mm The resulting cell pellet was resuspended in pre-warmed $(37^{0}C)$ fresh growth medium, counted (Section 2 5 3) and used to re-seed a flask at the required cell density or to set up an assay

Cell line	Basal medium	Cell type	Source
DLKP	ATCC ²	Human	Dr Geraldine
(and subpopulation		poorly-differentiated lung	Grant,
SQ)		carcinoma	NCTCC
A549	ATCC ²	Human lung	ATCC ²
		adenocarcinoina	

Table 2 5.1Cell lines used during the course of this study

* These cells grow in suspension

¹ ATCC = American Type Culture Collection

253 Cell Counting

Cell counting and viability determinations were carried out using a trypan blue (Gibco, 15250-012) dye exclusion technique

An aliquot of trypan blue was added to a sample from a single cell suspension in a ratio of 1.5 After 3 min incubation at room temperature, a sample of this mixture was applied to the chamber of a haemocytometer over which a glass coverslip had been placed Cells in the 16 squares of the four outer corner grids of the chamber were counted microscopically, an average per corner grid was calculated with the dilution factor being taken into account, and final cell numbers were multiplied by 10^4 to determine the number of cells per ml The volume occupied by the chamber is 0 1 cm x 0 1 cm x 0 01 cm *i e* 0 0001 cm³ Therefore cell number x 10^4 is equivalent to cells per ml Non-viable cells were those that stained blue while viable cells excluded the trypan blue dye and remained unstained

254 Cell Freezing

To allow long-term storage of cell stocks, cells were frozen and cryo-preserved in liquid nitrogen at temperatures below -180° C Once frozen properly, such stocks should last indefinitely

Cells to be frozen were harvested in the log phase of growth (*i e* actively growing and approximately 50 - 70% confluent) and counted as described in Sections 2.5.3 Pelleted cells were re-suspended in serum. An equal volume of a DMSO/serum (1.9, v/v) was slowly added dropwise to the cell suspension to give a final concentration of at least 5×10^6 cells/ml. This step was very important as DMSO is toxic to cells. When added slowly the cells had a period of time to adapt to the presence of the DMSO, otherwise cells may have lysed. The suspension was then aliquoted into cryovials (Greiner, 122 278) which were then quickly placed in the vapour phase of liquid nitrogen containers (approximately -80^oC). After 2.5 to 3.5 hours, the cryovials were lowered down into the liquid nitrogen where they were stored until required.

2 5.5 Cell Thawing

Immediately prior to the removal of a cryovial from the liquid nitrogen stores for thawing, a sterile universal tube containing growth medium was prepared for the rapid transfer and dilution of thawed cells to reduce their exposure time to the DMSO freezing solution which is toxic at room temperature. The suspension was centrifuged at 1,000 rpm for 5 min, the DMSO-containing supernatant removed and the pellet re-suspended in fresh growth medium. A viability count was carried out (Section 2 5 3) to determine the efficacy of the freezing/ thawing procedures. Thawed cells were placed into tissue culture flasks with the appropriate volume of medium ($5ml/25cm^2$ flask and $10ml/75cm^2$ flask) and allowed to attach overnight. After 24 hours, the cells were re-fed with fresh medium to remove any residual traces of DMSO.

2.5 6 Sterility Checks

Sterility checks were routinely carried out on all media, supplements and trypsin used for cell culture Samples of basal media were inoculated into Columbia (Oxoid, CM331) blood agar plates, Sabauraud (Oxoid, CM217) dextrose and Thioglycollate (Oxoid, CM173) broths which detect most contaminants including bacteria, fungus and yeast Growth media (*i e* supplemented with serum and L-glutamine) were sterility checked at least 2 days prior to use by incubating samples at 37° C, which were subsequently examined for turbidity and other indications of contamination

2.6 MYCOPLASMA ANALYSIS

Mycoplasma examinations were carried out routinely (at least every 3 months) on all cell lines used in this study These analyses were performed by Aine Adams and Michael Henry

261 Indirect Staining Procedure

In this procedure, *Mycoplasma*-negative NRK cells (a normal rat kidney fibroblast line) were used as indicator cells. These cells were incubated with supernatant from test cell lines and then examined for *Mycoplasma* contamination. NRK cells were used for this procedure because cell integrity is well maintained during fixation. A fluorescent Hoechst stain was utilised which binds specifically to DNA and so will stain the nucleus of the cell in addition to any *Mycoplasma* DNA present. A *Mycoplasma* infection would thus be seen as small fluorescent bodies in the cytoplasm of the NRK cells and sometimes outside the cells.

NRK cells were seeded onto sterile coverslips in sterile Petri dishes at a cell density of $2x10^3$ cells per ml and allowed to attach over night at 37^0 C in a 5% CO₂, humidified incubator 1ml of cell-free (cleared by centrifugation at 1,000 rpm for 5 mm) supernatant from each test cell line was then inoculated onto a NRK Petri dish and incubated as before until the cells reached 20 - 50% confluency (4 - 5 days) After this time, the waste medium was removed from the Petri dishes, the coverslips washed twice with sterile PBS A, once with a cold PBS/Carnoys (50/50) solution and fixed with 2ml of Carnoys solution (acetic acid methanol-1 3) for 10 min The fixative was then removed and after air drying, the coverslips were washed twice in deionised water and stained with 2ml of Hoechst 33258 stain (BDH)(50ng/ml) for 10 min

From this point on, work was carried out in the dark to limit quenching of the fluorescent stain

The coverslips were rinsed three times in PBS They were then mounted in 50% (v/v) glycerol in 0.05M citric acid and 0.1M disodium phosphate and examined using a

fluorescent microscope with a UV filter

2.6.2 Direct Staining

The direct stain for *Mycoplasma* involved a culture method where test samples were inoculated onto an enriched *Mycoplasma* culture broth (Oxoid, CM403) supplemented with 16% serum, 0 002% DNA (BDH, 42026), 2mg/ml fungizone (Gibco,15290-026), $2x10^3$ units penicillin (Sigma, Pen-3) and 10ml of a 25% (w/v) yeast extract solution - to optimise growth of any contaminants and incubated at 37^{0} C for 48 hours Samples of this broth were then streaked onto plates of *Mycoplasma* agar base (Oxoid, CM401) which had also been supplemented as above and the plates incubated for 3 weeks at 37^{0} C in a CO₂ environment. The plates were viewed microscopically at least every 7 days, the appearance of small, "fried egg" -shaped colonies is indicative of a Mycoplasma infection.

27 DIFFERENTIATION STUDIES

Differentiation studies were carried out using 5-bromodeoxyuridine (BrdU) (Sigma, B5002), 5-Chloro, 2-deoxyuridine (Sigma, C6891) and 5-Iodo, 2-deoxyuridine (Simga, I7125), 5,2 -FdU (Sigma, B5002), 5,5 -FdU (Sigma,F8791), 5-FU (Sigma, F8423), 5-bromouracil (Sigma, 852473) and 5-bromouridine (Sigma, B9752) For each of the analogues, the powder was reconstituted in UHP water to a stock concentration of 10mM and the resultant solution was filter sterilised through a sterile 0 22 μ m filter, aliquoted into sterile Eppendorfs and stored at -20^oC for up to 1 year

2.7.1 Differentiation Assays

For immunocytochemical analysis (Section 2 8), cells were plated onto 6-well plates (Costar, 3516) at densities of 1×10^4 cells per well 1 ml of medium was sufficient for each well The cells were allowed to attach and form colonies by incubating at 37^{0} C, 5% CO₂ for 24 hours The plates were covered with parafilm to prevent contamination After this time the media was replaced with fresh medium containing 10μ M the appropriate thymidine Plates were wrapped in parafilm and incubated for up to 7 days Medium was replaced every 3-4 days over the course of the assay All waste medium was retained for disposal by incineration At the end of the assay the cells were fixed with methanol as described in Section 2 8 1 Immunocytochemistry/fluorescence was then carried out using a range of antibodies as described in Section 2 8 2

For additional analytical techniques (Western blotting, immunoprecipitation, iso-electric focusing, PCR and DNA Microarrays), cells were inoculated into 75cm^2 flasks at a density of 1×10^5 cells per flask or into 175 cm^2 flasks at a density of 5×10^5 cells per flask, and were incubated for two days at 37^{0} C Analogue containing medium, at a concentration of 10μ M, was then added to the cells The medium was replaced with fresh, drug-containing media every 3-4 days The cells were then harvested by trypsinisation, washed in sterile PBS A, counted, pelleted and stored at -80^{0} C until required For RNA extraction (section 2 14), pellets were lysed in tri-reagent and stored at -80^{0} C

28 IMMUNOCYTOCHEMISTRY

281 Fixation of cells

For fixation, medium was removed from 6-wells plates, cells were rinsed 3 times with PBS A and then incubated at -20° C for 7 minutes using ice-cold methanol The methanol was then removed from the cells, which were allowed to dry at 37° C for a few minutes and then stored at -20° C until required

282 Immunocytochemical procedure

The avidin-biotin-peroxidase complex (ABC) immunoperoxidase technique combined with the diaminobenzidine (DAB) visualisation procedure was employed to indicate primary antibody binding The ABC method involves application of a biotin-labelled secondary antibody, followed by the addition of avidin-biotin-peroxidase complex which results in a high staining intensity due to the formation of an avidin-biotin lattice which contains several peroxidase molecules The peroxidase enzyme reacts with DAB solution to give an insoluble, brown-colour precipitate Therefore, observation of a brown precipitate following this procedure is indicative of primary antibody reactivity

The procedure used 1s as follows

Cell preparations (6-well tissue culture plates) which had been previously fixed in methanol and frozen at -20° C were allowed to thaw and equilibrate at room temperature A grease pen (DAKO, S2002) was used to encircle cells in tissue culture plates to retain the various solutions involved The cells were equilibrated in Tris-buffered saline (TBS) (0 05M Tris/HCl, 0 15M NaCl, pH 7 6) for 5 minutes The slides were then incubated for 20 minutes at room temperature (RT) with either normal rabbit (DAKO, X092) or goat (DAKO, X0907) serum diluted 1 5 in TBS to block non-specific binding, depending upon the host source of the primary antibody in question This was then removed and 25-30µl of optimally diluted primary antibody (Table 2 8 1) was placed on the cells The slides and tissue-culture plates were placed on a tray containing moistened tissue paper and incubated at 37° C for 2 hours or 4° C

overnight The primary antibodies used in the study are listed in Table 2 8 1 The slides were then rinsed in TBS/ 0 1% Tween (Sigma, P-1379) for 5min x3 times, and then incubated for 30 min with a suitable biotinylated secondary antibody (rabbit anti-mouse immunoglobulins (DAKO, E354), goat anti-rabbit (DAKO, E0432) diluted 1 300 in TBS The slides were rinsed as before and incubated with strepABComplex/Horse Radish Peroxidase (HRP) (DAKO, K377) for 30 mm at RT, after which they were rinsed again in TBS/ 0 1% Tween for 5min x3 times The cells were then incubated with a DAB solution (DAKO, S3000) for 10-15 min The plates were then rinsed off with UHP water and counterstained with 2% methyl green solution, and samples mounted using a commercial mounting solution (DAKO, S3023)

2 8.3 Immunofluorescence

Immunofluorescence was performed using a similar approach to that described in 2.8 above Cell preparations (6-well tissue culture plates) which had been previously fixed in methanol and frozen at -20° C were allowed to thaw and equilibrate at room temperature A grease pen (DAKO, S2002) was used to encircle cells in tissue culture plates to contain the various solutions involved. The cells were equilibrated in Tris-buffered saline (TBS) (0 05M Tris/HCl, 0 15M NaCl, pH 7 6) for 5 minutes The slides were then incubated for 20 minutes at room temperature (RT) with normal rabbit/goat serum (DAKO, X092/Dako, X0907) (depending upon the primary in question) diluted 1 5 in TBS to block non-specific binding. This was then removed and 25-30µl of optimally-diluted primary antibody was placed on the cells and incubated on a tray containing moistened tissue paper at 4^oC overnight. The following day the slides were then rinsed in TBS/ 01% Tween (Sigma, P-1379) for 5min x3 times All subsequent manipulations were performed in a darkened room, and incubations were performed in trays covered in tinfoil as a precaution to minimise "quenching" of fluorescence by exposure to light for extended periods Cells were incubated for 60 min with FITC-labelled goat anti-rabbit immunoglobulin (Sigma, F-6005) diluted 1 160 in TBS/0 1%Tween The slides were then rinsed in TBS/ 0 1% Tween (Sigma, P-1379), x3 in 15 min, air-dried and mounted in fluorescent mounting medium (DAKO, S3023) Antibody reactivity was determined by examination under a fluorescent microscope

Antibody	Dilution/ Concentration	Suppher	Catalogue no
Cytokeratin 8 (M)	1/200	Sıgma	C-5301
Cytokeratin 18 (M)	1/800	Sıgma	C-8541
Cytokeratin 19 (M)	1/50	Sıgma	C5301
eIF-4E (M)	1/250	Transduction Laboratories	E27620
323/A3 (Antı-EpCAM)*	1/150	NeoMarkers	MS-181-P1
Ep-CAM Ab1 (VU-1D9)*	1/150	NeoMarkers	MS-144-P1
β_1 -integrin	1/100	Serotech	MCA1188
α_2 -integrin	1/250	Serotech	MCA1186

Nomenclature (M) = Mouse-anti-human IgG

(R) = Rabbit-anti- human IgG

* These antibodies were used in combination to improve sensitivity **Table 2 8 1** Primary antibodies used for immunocytochemistry/Immunofluorescence

2 9 WESTERN BLOT ANALYSIS

Proteins for western blot analysis were separated by SDS-polyacylamide gel electrophoresis (SDS-PAGE)

2.9 1 Sample preparation

Cell pellets (Section 2 7 1) were lysed in TG lysis buffer (20mM Tris-HCl pH 8, 10% glycerol, 1% TritonX-100, 1 5mM MgCl₂, 2mM EDTA, 137mM NaCl, 1mM Na₃VO₄, 1mM Pefabloc (Boehringer, 84500920-22), and 1X Protease inhibitor cocktail (Boehringer, 1697498) for 20 min on ice The extracts were either used immediately for western blot analysis or snap frozen in liquid nitrogen and stored at -80° C Alternatively, cells were lysed by resuspension in boiling loading buffer (2 5ml

1 25M-Tris/HCl, 1 0g SDS, 5 8ml glycerol and 0 1% bromophenol blue (Sigma, B8026) made up to 25ml with distilled water) and incubated at 100^{0} C for 2-3 min, cooled to room temperature and used immediately for western blot analysis

2 9.2 Gel electrophoresis

Resolving and stacking gels were prepared as outlined in Table 2.9.1 and poured into clean 10cm x 8cm gel cassettes which consisted of 1 glass and 1 aluminium plate, separated by 0.75cm plastic spacers. The resolving gel was poured first and allowed to set. The stacking gel was then poured and a comb was placed into the stacking gel in order to create wells for sample loading. Once set, the gels could be used immediately or wrapped in aluminium foil and stored at 4° C for 24 hours.

Before samples were loaded onto the stacking gels, equal cell numbers $(2x10^4 \text{ cells per lane})$ were lysed in 2x loading buffer (Section 2.9.1) The samples were then loaded alongside molecular weight colour protein markers (Sigma, C-3437) The gels were run at 250V, 45mA for approximately 1.5 hours (until the protein was run at least half way into the gel as judged by the migration of colour markers during the electrophoretic process All gels were made from a stock of Acrylamide (details below) Sample calculations for two different percentage gels are shown in table 2.9.1

Components	Resolving gel (7 5%)	Resolving gel (12%)	Stacking gel
Acrylamide stock	3 75ml	6ml	0 8ml
Ultrapure water	8 0ml	5 75ml	3 6ml
1 875M-Tris/HCl, pH 8 8	3 0ml	3 0ml	-
1 25M-Tris/HCl, pH 6 8	-	-	0 5ml
10% SDS (Sigma, L-4509)	150µl	150µl	50µl
10% APS (Sigma, A-1433)	60µl	60µl	17µl
TEMED (Sigma, T-8133)	10µl	10µl	6μl

* Acrylamide stock – Sigma Cat No - 148660

Table 2 9.1 Preparation of electrophoresis gels

2.9.3 Western blotting

Following electrophoresis, the acrylamide gels were equilibrated in transfer buffer (25mM Tris, 192mM glycine (Sigma, G-7126) pH 8.3-8.5 without adjusting) for 20 min. Proteins in gels were transferred onto Hybond ECL nitrocellulose (Amersham, RPN 2020D) or PVDF (Polyvinyl diflouride) (Boehringer, 1722026) membranes by semi-dry electroblotting. Six sheets of Whatman 3mm filter paper (Whatman, 1001824) were soaked in transfer buffer and placed on the cathode plate of a semi-dry blotting apparatus. Excess air was removed from between the filters by moving a glass pipette over the filter paper. Nitrocellulose or PVDF (pre-activated in methanol for 1-2 min. and washed in UHP for 5 min), cut to the same size of the gel, was soaked in transfer buffer and placed over the nitrocellulose and six more sheets of presoaked filter paper were placed on top of the gel. Excess air was again removed by rolling the pipette over the filter paper. The proteins were transferred from the gel to the nitrocellulose/PVDF at a current of 0.34mA at 15V for 20-30 min. depending upon the size of the protein.

1. Anode buffer 1: (4 sheets of filter paper; squeeze dry)

33.35g Tris, 200ml Methanol in 1 L.

2. Anode buffer 2: (2 sheets of filter paper; squeeze dry)

3.03g Tris, 200ml Methanol in 1 L.

- 3. PVDF membrane (pre-activated in methanol as before).
- 4. Polyacrylamide gel.
- 5. Cathode Buffer: (4 sheets of filter paper; squeeze dry)

3.03g Tris, 5.25g 6-amino-n-hexanoic acid (Sigma, A-2504), 200ml Methanol in 1 L.

All incubation steps from now on, including the blocking step, were carried out on a revolving apparatus to ensure even exposure of the membrane blot to all reagents.

The nitrocellulose/PVDF membranes were blocked for 2 hours at room temperature with fresh filtered 5% non-fat dried milk (Cadburys; Marvel skimmed milk) in TBS/ 0.1% Tween, pH 7.4.

After blocking, the membranes were rinsed with TBS/0 1% Tween and incubated with primary antibody overnight at 4^{0} C Primary antibodies used are listed in table 2.9.2 The following day the primary antibody was removed and the membranes rinsed 3 times with TBS/ 0.1% Tween The membranes were incubated in 1/1000 dilution of a suitable HRP-labelled secondary antibody (Mouse, Sigma, A-6782 or Rabbit, Sigma, A-4914) in TBS/0.1% Tween for 1 hour at room temperature (R T) The secondary was then removed and blots were washed for 15 min in TBS/0.1% Tween Bound antibody was detected using enhanced chemiluminescence (ECL) (Section 2.9.4)

Antibody	Dilution/ Concentration	Supplier	Catalogue no.
Cytokeratin 8 (M)	1/400	Sıgma	C-5301
Cytokeratin 18 (M)	1/800	Sıgma	C-8541
Cytokeratin 19 (M)	1/50	Sıgma	C5301
eIF-4E (M)	1/500	Transduction Laboratories	E27620
c-myc (M)	1/500	Santa Cruz	SC-040
YY1 (R)	1/250	Santa Cruz	SC-281
β_1 -integrm	1/250	Chemicon	AB1937
Mad1	1/250	Santa Cruz	SC-222

Nomenclature (M) = Mouse anti-human IgG

(R) = Rabbit anti-human IgG

 Table 2 9 2
 Antibodies used for western blot analysis

2 9.4 Enhanced chemiluminescence detection

Protein bands were developed using the Enhanced Chemiluminescence Kit (ECL) (Amersham, RPN2109) according to the manufacturer's instructions

After blots were washed in TBS/0 1% Tween x3 times for 5 mm, a sheet of parafilm was flattened over a smooth surface, e g a glass plate, making sure all air bubbles were removed The membrane was then placed on the parafilm, and excess fluid removed 1 5ml of ECL detection reagent 1 and 1 5ml of reagent 2 were mixed and covered over

the membrane Charges on the parafilm ensured the fluid stayed on the membrane The reagent was removed after one minute and the membrane wrapped in cling film The membrane was exposed to autoradiographic film (Kodak, X-OMAT S, 500 9907) in an autoradiographic cassette for various times, depending upon the strength of the signal obtained The autoradiographic film was then developed The exposed film was developed for 5min in developer (Kodak, LX24), diluted 1 6 5 in water The film was briefly immersed in water and transferred to a Fixer solution (Kodak, FX-40) diluted 1 5 in water, for 5min The film was transferred to water for 5 min and then air-dried

2 10 RNA EXTRACTION

RNA was extracted from cells as follows

Cells were trypsinised, washed once with PBS A and the sample was counted Approximately 10^8 cells were pelleted and lysed using 1ml of TRI REAGENTTM (Sigma, T-9424) The samples were allowed to stand for 5 min at RT to allow complete dissociation of nucleoprotein complexes and then snap-frozen in liq N₂ and stored at $-80^{\circ}C$

When thawed, samples were allowed to stand for 5 min before 0 2ml of chlorofom was added per ml of TRI REAGENTTM used Samples were then shaken vigorously for 15 sec and allowed to stand for 15 min at RT Samples were then centrifuged at 13000rpm in a microfuge for 15 min at 4° C This step separated the mixture into 3 phases, the RNA was contained in the colourless upper aqueous layer This layer was then transferred to a fresh Eppendorf and 0 5ml of isopropanol was added The sample was mixed and allowed to stand at RT for 10 min before being centrifuged at 13000rpm in a microfuge for 10 min at 4° C The RNA formed a precipitate at the bottom of the tube The supernatant was removed and the pellet was washed with 1ml of 75% ethanol and centrifuged at 4° C for 5-10 mm at 8500rpm The supernatant was removed and the pellet was briefly allowed to air-dry 20-30µl of DEPC-treated water was then added to the RNA to resuspend the pellet

Concentrations of RNA in samples were calculated by determining OD at 260nm and 280nm and using the following formula -

OD_{260nm} x Dilution factor x 40 = $\mu g/\mu l$ RNA

The purity of the RNA extraction was calculated by determining its OD at 260nm and 280nm An A_{260nm} A_{280nm} ratio of 2 is indicative of pure RNA. Only those samples with ratios between 1.7 and 2.1 were used

2 10.1 Qiagen Kit RNA Isolation

Alternatively, high quality RNA was isolated from cells using the Rneasy mini kit (Qiagen, 74104) The Rneasy extraction is based on guanidine thiocyanate method of extraction The procedure was performed according to the manufacturer's instructions

2.11 REVERSE TRANSCRIPTASE REACTION

Reverse transcriptase (RT) reactions were carried out in laminar flow cabinets using micropipettes which were specifically allocated to this work

cDNA was formed using the following procedure -

- 1µl oligo $(dT)^{12-18}$ primers (1µg/µl) (Promega, C1101)
- 1µl total RNA (1µg/µl) (section 2 14)
- ✤ 3µl water

were mixed in a 0 5ml Eppendorf (Eppendorf, 0030 121 023), heated to 70° C for 10 mm and then chilled on ice To this, the following were added -

- ✤ 4µl of a 5x buffer (250mM-Tris/HCl pH 8 3, 375mM-KCl and 15mM-MgCl₂)
- 2µl DTT (100mM) (Gıbco, 510-8025 SA)
- 1μl RNasın (40U/μl) (Promega, N2511)
- Iµl dNTPs (10mM of each dNTP)
- 6µl water
- 1µl Moloney murine leukaemia virus-reverse transcriptase (MMLV-RT) (40,000U/µl) (Gibco, 510-8025 SA)

The solutions were mixed and the RT reaction was carried out by incubating the Eppendorfs at 37^{0} C for 1 hour The MMLV-RT enzyme was then inactivated by heating to 95^{0} C for 2 min The cDNA was stored at -20^{0} C until required for use in PCR reactions as outlined m Section 2 16

2 12 1 POLYMERASE CHAIN REACTION

A standardised polymerase chain reaction (PCR) procedure was followed in this study The Eppendorf tubes used (Eppendorf, 0030 121 023) and the sterile water were DEPC-treated All reagents had been aliquoted and were stored at -20° C and all reactions were carried out in a laminar flow cabinet

Each PCR tube contained the following -

- ✤ 24 5µl water
- ✤ 5µl 10x buffer^{*} (100mM-Tris/HCl, pH 9 0, 50mM-KCl, 1% Triton X-100)
- ✤ 3µl 25mM-MgCl₂*
- ✤ 1µl each of first and second strand target primers (250ng/µl)
- * 1µl each of first and second strand endogenous control primer (250ng/µl) (β -actm)
- ✤ 0 5µl of 5U/µl Taq DNA polymerase enzyme^{*}
- ✤ 5µl cDNA

*(Promega, N1862)

DNA was amplified by PCR as follows

95°C for 5 mm - to denature double-stranded DNA

30 cycles $95^{\circ}C$ for 30 sec - denature * $^{\circ}C$ for 30 sec - anneal $72^{\circ}C$ for 30 sec - extend $72^{\circ}C$ for 7 min - extend

* the annealing temperature varied with the primer set used See Table 2 appropriate annealing temperatures

The reaction tubes were then stored at 4^{0} C until analysed by gel electrophoresis as described in Section 2 17

Primers were K8/18 (McBride *et al*, 1999), K19 (Meleady, PhD Thesis 1997) c-myc (NicAomhlimh, R, PhD thesis, 1997) and β -actin (NicAomhlimh, R, PhD thesis, 1997)

Gene	Sense Sequence	Anti-Sense Sequence
Id2	gacccgatgagcctctatc	cgcttattcagccacagtgc
Id3	gtggaaatcctacagcgcgtc	gcaccaggtttagtctccagg
FSTL1	gaggcacagaccatgtgtctgg	cctgctgacagatgcagtaaa
Spd/Spn	tggagagcaccccttttaccac	aaccctcttcactggacagatc
TNFSF7	gtcacttgggtgggacgtagc	ggcgctgggaggcaatggta
FHL2	acaagcagcaacttctctgtgt	cacaaggagtgcttcgtgtgc
HMOX1	cttcttcaccttccccaacatt	ctttccagagagaggggcaca
Zyxın	ccactccattcafttccaagtc	gggctccaggactgaacttgg
GPX3	gtggagggctttgtccctaattit	Atgagacggccttcagttactt
LOXL2	gcaccgtgtgcgatgacga	aatccgaatgtgcctccaccgg
eIF2-associated p67	aaacagaccctccctcagttcc	aattccaggccttgcattaatc
p21	cctggcacctcacctgctctgc	gcagaagatgtagaggggcc

 Table 2 12 1
 Primer Sequences for PCR amplification

2 12 2 Real Time-PCR

RNA was isolated (Section 2 14) cell and cDNA synthesised as per Section 2 15 The Taqman® Real time PCR analysis was preformed using the Applied BioSystems Assays on Demand PCR Kits, and experiments were preformed in triplicate, following per manufacturer's instructions

2 13 ELECTROPHORESIS OF PCR PRODUCTS

A 2% agarose gel (NuSieve, GTG) was prepared in TBE buffer (5 4g Tris, 2 75g boric acid, 2ml 0 5M-EDTA pH 8 0 in 500ml water) and melted in a microwave oven After allowing to cool, 0 003% (v/v) of a 10mg/ml ethidium bromide solution was added to the gel which was then poured into an electrophoresis apparatus (BioRad) Combs were placed in the gel to form wells and the gel was allowed to set

10µl loading buffer (50% glycerol, 1mg/ml xylene cyanol, 1mg/ml bromophenol blue, 1mM EDTA) was added to 50µl PCR samples and 20µl was run on the gel at 80-90mV for approximately 2 hours When the dye front was seen to have migrated the required distance, the gel was removed from the apparatus and examined on a UV-transilluminator and photographed

2 14 OVEREXPRESSION STUDIES

2 14 1 Plasmid Preparation

Cultures were streaked on LB agar containing 50μ g/ml AMP (Sigma, G9516) and 50μ g/ml Ampicillin and incubated at 37^{0} C overnight From these, a single colony was inoculated into 10ml of LB AMP (50μ g/ml each) and grown overnight A 2ml sample of this suspension was then added to 200ml of TB AMP 50μ g/ml and left to grow overnight at 37° C for large-scale isolation of plasmid from transformed cells. The following day the cells were pelleted, 15 minutes at 5000 rpm. The plasmid DNA was then isolated from the cells using the Maxi-Mini Qiagen Plasmid DNA Extraction kit (Qiagen, 12143). The DNA concentration was determined by measuring the OD_{260nm}

2 14 2 Lipofectin Transfection of attached mammalian cells

On the day prior to transfections, cells to be transfected were plated from a single cell suspension and seeded into 25cm^2 flasks at 3×10^5 cells per flask. On the day of the transfection, the plasmids to be transfected were prepared along with the lipid

transfection reagents according to the manufacturers protocols (Lipofectin - GibcoBRL , 18292-011) The cells were transfected for four hours in the absence of serum after which the media was supplemented with 10% serum overnight. The following morning flasks were washed with serum-containing medium and re-fed. Selection began 12-24 hours after re-feeding. For all transfections the cells were incubated at 37^{0} C

2 14.3 Selection of Transfected cells

After transfection, cells that had taken up the plasmid were selected by feeding the cells with media containing geneticin (Sigma, G9516) - the plasmids used had a geneticin-resistance marker, therefore, only those cells containing the plasmid will survive treatment with geneticin 2 days after transfection the flask of cells was fed with 200μ g/ml geneticin in complete media. The concentration of geneticin was increased step-wise evey 2 days to a final concentration of 800 μ g/ml. Untransfected control flasks were killed after 4-5 days. From surviving cells, frozen stocks were made and cells were prepared for immunocytochemical (Section 2.8) and western blot (Section 2.9) analysis.

2 14 4 Transient Transfection of DNA using Fugene 6 Reagent

Cells were seeded into 25cm^2 flasks at a cell density of 1.5×10^5 cells/ml (in 4 mL medium) Fugene 6 reagent DNA complex was used at a 3.2 ratio which was found to be an optimal ratio The Fugene DNA complex was made up according to manufacturer's recommendations and with 100μ L of the complex mixture was added to the cells in a drop-wise fashion Cells were returned to the 37^0 C incubator Cells were harvested for RNA and protein at 24, 48 and 72 hours

2.15 Affymetrix GeneChips®

The microarray gene expression experiments which were performed in this body of work were performed using Affymetrix® Human Genome U133A GeneChips® Affymetrix GeneChip probe microarrays are manufactured using technology that combines photolithography and combinatorial chemistry Tens to hundreds to thousands of different oligonucleotide probes are synthesised and each of these oligonucleotides is located in a specific area on the microarray slide, called a probe cell Each probe cell contains millions of copies of a given oligonucleotide and each feature size on the Affymetrix U133A GeneChip is 18 microns Due to advances in microarray design Affymetrix have since launched a new GeneChip, U133 Plus 2, which has decreased the feature size of the probes from 18 microns to 11 microns The new U133 Plus 2 GeneChips are now comprised of the old Affymetrix U133A and U133B GeneChips on a single slide The reduction in feature size to 11 microns has resulted in an increase in feature definition, with improved sharpness and signal uniformity

The most important aspect in efficient probe design is the quality of the sequence information used Probe selection and array design are two major factors in reliability, sensitivity, specificity and versatility of expression probe arrays Probes selected for gene expression arrays by Affymetrix are generated from sequence and annotation data obtained from multiple databases such as GenBank, RefSeq and dbEST Sequences from these databases are collected and clustered into groups of similar sequences Using clusters provided by UniGene database as a starting point, sequences are further subdivided into subclusters representing distinct transcripts

This categorisation process involves alignment to the human genome, which reveals splicing and polyadenylation variants. The alignment also extends the annotation information supplied by the databases pinpointing low quality sequences. These areas are usually trimmed for subsequent generation of high quality consensus sequences or alternatively. Affymetrix employ quality ranking to select representative sequences, called exemplars, for probe design

In general, Affymetrix use 11 to 16 probes which are 25 bases in length for each transcript The probe selection method used by Affymetrix for their U133 GeneChips

54

takes into account probe uniqueness and the hybridisation characteristics of the probes which allow probes to be selected based on probe behaviour Affymetrix use a multiple linear regression (MLR) model in the probe design that was derived from thermodynamic model of nucleic acid duplex formation. This model predicts probe binding affinity and linearity of signal changes in response to varying target concentrations. An advantage of this type of model-based probe selection system is that it provides a physical and mathematical foundation for systematic and large-scale probe selection. Also, an essential criterion of probe selection by Affymetrix for quantitative expression analysis is that hybridisation intensities of the selected probes must be linearly related to target concentrations

A core element of Affymetrix microarray design is the Perfect/Mismatch probe strategy For each probe that is designed to be perfectly complimentary to a given target sequence, a partner probe is also generated that is identical except for a single base mismatch in its center These probe pairs, called the Perfect Match probe (PM) and the Mismatch probes (MM), allow the quantitation and subtraction of signals caused by non-specific cross-hybridisation. The differences in hybridisation signals between the partners, as well as their intensity ratios, serve as indicators of specific target abundance

2 15 1 Sample and Array Processing

After RNA isolation, quantification and purification using the Qiagen Rneasy isolation method (Section 2 14 1), cDNA was synthesised using the GeneChip T7-Oligo (dT) Promoter Primer Kit (Affymetrix, 900375) from 10 μ g total RNA First strand cDNA synthesis was then performed using the SuperScript Choice Kit (BioSciences, 11917-010) First strand cDNA synthesis involved 'primer hybridisation' where the T7-Oligo (dT) primer was incubated with the RNA and DEPC-treated H₂O at 70^oC for 10 mins , followed by a short incubation in ice, 'temperature adjustment' where 5X first strand buffer, DTT and dNTP mix were added to the RNA mix and incubated at 42^oC for 2 mins , and 'First Strand synthesis' where SuperScript II RT was added to the mix and incubated at 42^oC for 1 hour Second strand cDNA synthesis was performed and purified using GeneChip Sample Cleanup module (Affymetrix, 900371) as recommended by the manufacturers instructions

cRNA was then synthesised and biotin-labelled using the Enzo BioArray HighYield RNA Transcript Labelling Kit (Affymetrix, 900182) Biotm-labelled cRNA was purified using the GeneChip Cleanup Module Kit (Affymetrix, 900371) and quantified The value obtained was adjusted to reflect carryover of unlabelled total RNA A sample of biotin-labelled cRNA was taken for gel electrophoresis analysis The labelled cRNA was then fragmented before hybridisation onto the Affymetrix GeneChip probe microarrays The aliquot of fragmented sample RNA was stored at -20° C until ready to perform the hybridisation step

Hybridisation of cRNA onto the Affymetrix GeneChip probe human microarrays (Affymetrix, HU133A and HU133 Plus 2) was performed in the Conway Institute, University College Dublin, where the Affymetrix Hybridisation Oven and Fluidics Station is set up along with the Affymetrix GeneChip Scanner, which exported the data directly into the Affymetrix analysis software, MicroArray Suite 5 1 (MAS 5 1)

2.15 2 Microarray Data Normalisation

The purpose of data normalisation is to minimise the effects of experimental and technical variation between microarray experiments so that meaningful biological comparisons can be drawn from the data sets and that real biological changes can be identified among multiple microarray experiments Several approaches have been demonstrated to be effective and beneficial However, most biologists use data scaling as the method of choice despite the presence of other alternatives In order to compare gene expression results from experiments performed using microarrays, it is necessary to normalise the data obtained following scanning the microarray chips There are two main ways in which this type of normalisation is performed, the first of which is 'Per-chip' normalisation This type of normalisation helps to reduce minor differences in probe preparation and hybridisation conditions which may potentially result in high intensity of certain probe sets These adjustments in probe intensity are made to set the average fluorescence intensity to some standard value, so that all the intensities on a given microarray chip go up or down to a similar degree However, this type of normalisation should only be performed on microarrays using similar cell or tissue types One drawback from this of normalisation is that some aspects of the microarray

data may potentially be obscured, such as whether the RNA samples or the probe preparation steps were equivalent for each sample.

The second way in which most biologist normalise their data sets is by employing 'per gene' normalisation method. The main aim of microarray experiments is to identify genes whose expression changes in different conditions, be that tracking gene changes across a temporal experiment or when comparing gene expression between normal and diseased tissue. Therefore, it is necessary to normalise microarray data sets using 'per gene' normalisation. In 'Per gene' normalisation is necessary to find genes that have similar expression pattern across an experiment. Analysis of raw data from microarray experiments is useful for identifying genes that are expressed at the same level, for example, genes that are highly abundant in the samples.

2.15.3 Probe Logarithmic Intensity ERror estimation (PLIER)

The PLIER algorithm (http://www.affymetrix.com) is a new tool introduced by Affymetrix for the use in data analysis of their GeneChips and has replaced the need to normalise microarray data by using the 'per chip' and 'per gene' normalisation methods. This algorithm incorporates model-based expression analysis and non-linear normalisation techniques. PLIER accounts for differences in probes by means of a parameter termed "probe affinity". Probe affinity is a measure of how likely a probe is to bind to a complimentary sequence, as all probes have different thermodynamic properties and binding efficiencies. Probe affinities determine the signal intensities produced at a specific target concentration for a given probe, and are calculated using experimental data across multiple arrays. By accounting for these observed differences, all the probes within a set can be easily compared. An example of how the PIER algorithm works is if one probe is consistently twice as bright as other probes with in a set, PLIER appropriately scales the probe intensities. In the case of a probe set, this enables all set numbers to be compared and combined accurately.

PLIER also employs an error model that assumes error is proportional to the probe intensity rather that of the target concentration. At high concentrations, error is approximately proportional to target concentration, since most of the intensity is due to target hybridisation signal. However, at the low end, error is approximately proportional to background hybridisation intensity, which is the largest component of the observed intensity. Due to this effect, it is inaccurate to treat errors as a proportion of target concentration in all circumstances. The PLIER error model smoothly transitions between the low end, where error is dependent upon background, and the high end, where error is dependent on signal.

The PLIER algorithm supports a multi-array approach that enables replicate sample analysis. PLIER ensures consistent probe behaviour across experiments to improve the quality of results in any one given experiment and helps to discount outliers. Benefits of this algorithm include an improved coefficient of variation of signals from probe sets while retaining accuracy. Also higher differential sensitivity for low expressors maybe achieved using PLIER.

2.16 Genomatix Software Suite

One company that is providing software that allows users to explore textual data as well as combine sequence analysis, and genome annotation in order to help researchers to discover new contexts from biological data; is Genomatix (www.genomatix.de). The analysis offered by Genomatix software is aimed to help researchers gain a better understanding of gene regulation at the molecular level. The Genomatix software suite is comprised of six main tools: ElDorado, Gene2Promoter, BiblioSphere, GEMS Launcher, MatInspector and PromtoerInspector. ElDorado is a gene orientated genome search engine which provides the user with information about functional genomic elements within a specific region of the genome. This piece of software compiles and integrates information from several sources and includes functional information, synonyms and information on gene function and regulatory pathway. In addition, information on mRNAs, their exon/intron structure and coding sequences, single nucleotide polymorphisms (SNPs) and potential promoter regions maybe retrieved using ElDorado.

Since co-regulation of gene transcription often originates from common promoter elements the identification and characterization of these elements provides a more in-depth analysis for expression of microarray clusters. Gene2Promoter allows users to automatically extract groups of promoters for genes that may of interest. This piece of Genomatix software provides access to promoter sequences of all genes annotated in available genomes. Results from Gene2Promoter are presented in a graphical format and common transcription factor binding sites are high lighted along the gene input sequence.

One powerful member of the Genomatix Software Suite, which illustrates the emerging emphasis on the visual presentation of complex data, is BiblioSphere. BiblioSphere is a data-mining tool for extracting and studying gene relationships from literature databases and genome-wide promoter analysis. The data-mining strategy allows to find direct gene-gene co-citations and even yet unknown gene relations via interlinks. BiblioSphere data is displayed as 3D interactive view (Figure 1.?) of gene relationships. Results can be classified by tissue, Gene Ontology and MeSH. Statistical rating by z-scores indicates over- and under-representation of genes in the referring biological categories.

Figure 2.1 Screen shot of BiblioSphere

Although transcription is regulated by a variety of DNA sequences, including enhancer and matrix attachment regions, promoters can be seen as the most important part of the sequence because any activator or repressor has to act on the promoter to influence transcriptional initiation of a particular gene. Promoters are DNA regions of several hundred base pairs that contain the transcription start site of genes. The most important functional elements within promoters are binding sites for specific proteins called transcription factors. The control of gene transcription is a common method used in biological systems to regulate protein expression. Transcription regulation in eukaryotes depends on a series of complex signal transduction networks that control gene promoter activity. Genomatix have develop a software packages, GEMS Launcher with helps researchers to identify transcription factor binding sites in a given gene promoter. GEMS Launcher is divided up into several parts, the first of which is MatInspector.

	Opt.	Position	Sir.	<u>Corn</u> Sim.	Mathe	Sequence	
Farther Information		from - to			<u>Matrix</u> Sim,		
Activator protein 2	0.89	4 - 16	(+)	0.857	0.931	cgCCTccggccg	
Egr-1/Krox-24/NGF1-A immediate-early gene product	0.79	30 - 44	(+)	0.797	0.809	gtocogtGGGGgaag	
2 Zinc finger transcription factor 2BP-89	0.93	34 - 46	(•)	1.000	0.930	contro CCCcase	
Activating transcription factor 6, member of b-zip family, induced by ER stress	0.85	43 - 63	(+)	1.000	0.885	aggogt: GACGI gottrag	
	Egr-1/Krox-24/NGF1-A immediate-early gene product 2 Zinc finger transcription factor 2BP-89 Activiting transcription factor 6, member of b-zip family,	Egr-1/Krox-24/NGFI-A immediate-early gene product 0.79 Zinc finger transcription factor ZBP-89 0.93 Activating transcription factor 6, member of b-zip family. 0.85	Activator protein 2 0.89 4 - 36 Egr-1/Krox-24/NGF1-A immediate-early gene product 0.79 30 - 44 Zinc finger transcription factor ZBP-89 0.93 34 - 46 Activating transcription factor 6, member of b-zip family, 0.85 43 - 63	Activator protein 2 0.89 4 - 16 (+) Egr-1/Acrox-24/NGF1-A immediate-early gene product 0.79 30 - 44 (+) Zinc finger transcription factor ZBP-89 0.93 34 - 46 (-) Activating transcription 6, member of b-zip family, 0.85 43 - 63 (+)	Activator protein 2 0.89 4 - 16 (+) 0.857 Egr-1/Krox-24/NGF1-A immediate-early gene product 0.79 30 - 44 (+) 0.797 1 Zinc finger transcription factor 2BP-89 0.93 34 - 46 (-) 1.000 Activating transcription factor 6, member of b-zip family. 0.85 43 - 63 (+) 1.000	Activator protein 2 0.89 4 - 16 (+) 0.857 0.931 Egr-1/Krox-24/NGF1-A immediate-early gene product 0.79 30 - 44 (+) 0.797 0.809 1 Zinc finger transcription factor 2BP-89 0.93 34 - 46 (-) 1.000 0.930 Activating transcription factor 6, member of b-zip family. 0.85 43 - 63 (+) 1.000 0.885	

Figure 2.2 Graphical example of Transcription Factor Binding Sites located in a Promoter sequence.

MatInspector is a tool that employs a library of matrix descriptions for transcription factor binding sites and locates these binding sites on a given promoter sequence. Graphical display of transcription factor binding sites common to a set of inputted promoters is obtained following MatInspector analysis. FrameWoker software tool that allows users to extract a common *framework* of elements from a set of DNA sequences. These elements are usually transcription factor binding sites since this tool is designed for the comparative analysis of promoter sequences. FrameWorker generates the most complex models that are common to the input sequences. These are all elements that occur in the same order and in a certain distance range in all (or a subset of) the input sequences.

Figure 2.3 Screen shot of FrameWorker Results

Once a model of transcription factor binding sites is generated using FrameWoker software, it is possible using Genomatix ModelInspector program to scan sequence databases for regulatory units that match the model which have been generated using MatInspector. ModelInspector provides a library of experimentally verified promoter models against which transcription factor models maybe scanned.

It is with software packages provided by companies such as Genomatix, that scientists will have to reply on in order to help them make sense of the vast quantities of data that is being generated by DNA microarray experiments, not only carried out in their own laboratories, but also the great wealth of information that is available in public accesses databases. The type information retrieval, visualisation, standardisation and analysis offered by Genomatix, is and will receive a great deal of attention from countless other companies and bioinformatics will undoubtedly remain an extremely important and ever changing area of scientific research in the future.

Section 3.0:

I

Results

Section 3.1 INVESTIGATION OF THE EFFECT OF PRYMIDINE ANALOGUE EXPOSURE IN THE HUMAN LUNG CARCINMOA CELL LINES, DLKP AND A549

Pervious studies in this laboratory have shown that 10μ M 5,2 -Bromodeoxyuridine (BrdU) induces cytokeratin 8, 18 and 19 protein expression in the DLKP cell line and enhances their expression in A549 (McBride, *et al*, 1999, O'Sulllivan, PhD Thesis, 1999, Meleady and Clynes, 2001) Induced α_2 -, β_1 -integrin has been observed in both cell lines (Meleady and Clynes, 2001) as well as the protein expression of Ep-CAM (O'Sullivan, PhD Thesis, 1999)

In this study we expand the range of pyrimidine analogues investigated in our pervious studies in order to determine if all analogues investigated induced a similar pattern of differentiation in both the DLKP and A549 cell lines Immunocytochemistry was the primary analysis carried on treated cells and was used to qualitatively investigate the changes in cytokeratins 8, 18 and 19, α_2 -, β_1 -integrin and Ep-CAM protein expression in both cell lines following treatment (Section 2.7) with each analogue investigated Western blot analysis was performed on a subset of treatments

Section 311 Changes in α_2 -integrin expression in A549 cells following treatment with the thymidine analogues

Immunocytochemical analysis of A549 cells treated with 10 μ M BrdU, IdU, CdU, 5-FU, 5,2 -FdU, and 70 μ M Bromouracil and Bromouridine showed that expression of α_2 integrin protein to be increased in treated cells. The intensity of the observed staining in
IdU, CdU and 5,2 -FdU treated A549 cells was comparable to that obtained following
10 μ M BrdU treatment. In contrast immunocytochemistry analysis showed that cells
treated with Bromouracil, Bromouridine and 5-FU did not exhibit the same intensity as
seen with the other analogues

Figure 3.1.1.1 Control

Figure 3.1.1.3CdU

Figure 3.1.1.5 5-FU

Figure 3.1.1.7 Bromouracil

Figure 3.1.1.2 BrdU

Figure 3.1.1.4 IdU

Figure 3.1.1.6 5,2'-FdU

Figure 3.1.1.8 Bromouridine

Section 312 Changes in β_1 -integrin expression in A549 cells following treatment with the thymidine analogues

Immunocytochemical analysis of A549 cells treated with 10 μ M BrdU, IdU, CdU, 5-FU, 5,2 -FdU, and 70 μ M Bromouracil and Bromouridine showed that expression of β_1 integrin protein to be increased in treated cells. The intensity of the observed staining in
CdU, 5-FU and 5,2 -FdU treated A549 cells was comparable to that obtained following
10 μ M BrdU treatment. Immunocytochemical analysis showed that IdU-treated cells to
have a greater increase in β_1 -integrin protein than BrdU-treated cells. In contrast
immunocytochemistry revealed that treatment with Bromouracil and Bromouridine did
not exhibit the same intensity as seen with the other analogues

Figure 3.1.2.1 Control

Figure 3.1.2.3 CdU

Figure 3.1.2.5 5-FU

Figure 3.1.2.7 Bromouracil

Figure 3.1.2.2 BrdU

Figure 3.1.2.4 IdU

Figure 3.1.2.6 5,2-FdU

Figure 3.1.2.8 Bromouridine

Section 313 Changes in EpCAM expression in A549 cells following treatment with the thymidine analogues

•••

Immunocytochemical analysis of A549 cells treated with 10μ M BrdU, IdU, CdU, 5-FU, 5,2 -FdU, and 70μ M Bromouracil and Bromouridine showed that expression of EpCAM protein to be increased in treated cells. The intensity of the observed staining in IdU, 5-FU and 5,2 -FdU treated A549 cells was comparable to that obtained following 10μ M BrdU treatment. Immunocytochemical analysis showed that CdU-, Bromouracil- and Bromouridine-treated cells to have an only slightly greater level of increase in EpCAM expression than the control A549 cells

Figure 3.1.3.1 Control

Figure 3.1.3.3 CdU

Figure 3.1.3.5 5-FU

Figure 3.1.3.2 BrdU

Figure 3.1.3.4 IdU

Figure 3.1.3.6 5,2 -FdU

Figure 3.1.3.7 Bromouracil

Section 314 Changes in CK8 expression in A549 cells following treatment with the thymidine analogues

Immunocytochemical and immunofluorescence analysis of A549 cells treated with 10μ M BrdU, IdU, CdU, 5-FU, 5,2 -FdU, and 70μ M Bromouracil and Bromouridine showed that expression of cytokeratins 8 protein to be increased in treated cells. The intensity of the observed staining in all the analogue treatments was increase in comparison to the A549 control cells. CdU and 5,2 -FdU treated A549 cells exhibited a greater increase cell size in comparison to the other treatments. The morphology of 5,2 -FdU treated A549 cells were greatly altered in comparison to control cells and the other analogue treatments.

Figure 3.1.4.1 Control

Figure 3.1.4.2 BrdU

Figure 3.1.4.3 CdU

Figure 3.1.4.4 IdU

Figure 3.1.4.5 5-FU

Figure 3.1.4.7 Bromouracil

Figure 3.1.4.6 5,2*-FdU

Figure 3.1.4.8 Bromouridine

Figure 3.1.4.9 Control

Figure 3.1.4.10 IdU

Figure 3.1.4.11 CdU

Figure 3.1.4.12 5,2'-FdU

Figure 3.1.4.13 BromoUracil

Section 315 Changes in CK18 expression in A549 cells following treatment with the thymidine analogues

Immunocytochemical analysis of A549 cells treated with 10 μ M BrdU, IdU, CdU, 5-FU, 5,2 -FdU, and 70 μ M Bromouracil and Bromouridine showed that expression of cytokeratin 18 protein to be increased in treated cells. The intensity of the observed staining in all the analogue treatments was increase in comparison to the A549 control cells. All treatments displayed a similar increase in CK18 comparable to that observed in 10 μ M BrdU treated cells. CdU and 5,2 -FdU treated A549 cells exhibited a greater increase in size of the cells in comparison to the other treatments. The morphology of 5,2 -FdU treated A549 cells were greatly altered in comparison to control cells and the other analogue treatments.

Figure 3.1.5.1 Control

Figure 3.1.5.3 CdU

Figure 3.1.5.5 5-FU

Figure 3.1.5.7 Bromouracil

Figure 3.1.5.2 BrdU

Figure 3.1.5.4 IdU

Figure 3.1.5.6 5,2'-FdU

Figure 3.1.5.8 Bromouridine

Figure 3.1.5.9 Control

Figure 3.1.5.11 CdU

Figure 3.1.5.10 IdU

Figure 3.1.5.12 Bromouridine

Figure 3.1.5.13 5,2'FdU

Section 316 Changes in CK19 expression in A549 cells following treatment with the thymidine analogues

Immunocytochemical analysis of A549 cells treated with 10µM BrdU, IdU, CdU, 5-FU, 5,2 -FdU, and 70µM Bromouracil and Bromouridine showed that expression of cytokeratin 19 protein to be increased in treated cells. The intensity of the observed staining in all the analogue treatments was increase in comparison to the A549 control cells. All treatments displayed a similar increase in CK18 comparable to that observed in 10µM BrdU treated cells. IdU, 5-FU and 5,2 -FdU treated A549 cells exhibited a greater increase in CK19 than the other treatments. CdU and 5,2 -FdU displayed a great increase in cell size. The morphology of 5,2 -FdU treated A549 cells were greatly altered in comparison to control cells and the other analogue treatments.

Figure 3.1.6.1 Control

Figure 3.1.6.3 CdU

Figure 3.1.6.5 5-FU

Figure 3.1.6.7 Bromouracil

Figure 3.1.6.2 BrdU

Figure 3.1.6.4 IdU

Figure 3.1.6.6 5,2 -FdU

Figure 3.1.6.8 Bromouridine

Figure 3.1.6.9 Control

Figure 3.1.6.11 CdU

Figure 3.1.6.10 IdU

Figure 3.1.6.12 BromoUracil

Figure 3.1.6.13 5,2'-FdU

Magnification-40 X

	<u>Control</u>	<u>BrdU</u>	<u>5,2' IdU</u>	<u>5,2'CdU</u>	<u>BromoUracıl</u>	<u>Bromouridine</u>	<u>5- FU</u>	<u>5,2'- FdU</u>
α ₂ Integrin	+	++	++	++	+	+	+	++
β ₁ Integrin	+	++	+++	++	+	++	++	+++
Ер- САМ	+	++	++	+	+	+	++	44
СК-8	+	+++	+++	+++	+++	+++	+++	+++
CK-18	+	+++	+++	+++	++	+++	+++	+++
СК-19	+	+++	+++	+++	+++	++	+++	+++

Table 1Summary of results obtained for different marker proteins in A549 treated cells with various thymidine
analogues

+ - Expression, ++ - Strong Expression, +++ - Intense Expression

Section 317 Changes in α_2 -integrin expression in DLKP cells following treatment with the thymidine analogues

Immunocytochemical analysis of DLKP cells treated with 10 μ M BrdU, IdU, CdU, 5,2 -FdU and 5,5 -FdU (results not shown) showed that expression of α_2 -integrin protein to be increased in treated cells. The intensity of the observed staining in these analogue treatments was increase comparable to that seen in BrdU treated cells. In contrast, immunocytochemical analysis of DLKP cells treated with 70 μ M Bromouridine and Bromouracil revealed that the cells did not exhibit the same increase in α_2 -integrin as seen with the other analogues

Figure 3.1.7.1 Control

Figure 3.1.7.3 CdU

Figure 3.1.7.5 5,2'-FdU

Figure 3.1.7.2 BrdU

Figure 3.1.7.4 ldU

Figure 3.1.7.6 Bromouracil

Figure 3.1.7.7 Bromouridine

Section 318 Changes in β_1 -integrin expression in DLKP cells following treatment with the thymidine analogues

Immunocytochemical analysis of DLKP cells treated with 10 μ M BrdU, IdU, CdU, 5,2 -FdU and 5,5 -FdU (results not shown) showed that expression of β_1 -integrin protein to be increased in treated cells. The intensity of the observed staining in IdU, 5,2 -FdU and 5,5 -FdU-treated DLKP cells was comparable to the staining observed in BrdU treated cells. Immunocytochemistry analysis revealed that cells treated with 70 μ M Bromouracil and Bromouridine did not exhibit the same intensity as seen with the other analogues

Figure 3.1.8.1 Control

Figure 3.1.8.3 CdU

Figure 3.1.8.5 5,2'-FdU

Figure 3.1.8.2 BrdU

Figure 3.1.8.4 ldU

Figure 3.1.8.6 Bromouracil

Figure 3.1.8.7 Bromouridine

Section 319 Changes in EpCAM expression in DLKP cells following treatment with the thymidine analogues

Immunocytochemical analysis of DLKP cells treated with 10μ M BrdU, IdU, CdU, 5,2 - FdU, 5,5 -FdU (results not shown), and 70μ M Bromouridine and Bromouracil showed that expression of EpCAM protein to be increased in treated cells. The intensity of the observed staining in all analogue treatments was only slightly greater than that seen in the DLKP control

1

Figure 3.1.9.1 Control

Figure 3.1.9.2 CdU

Figure 3.1.9.4 5,2'-FdU

Figure 3.1.9.3 IdU

Figure 3.1.9.5 Bromouracil

Figure 3.1.9.6 Bromouridine

Section 3 1 10 Changes in CK8 expression in DLKP cells following treatment with the thymidine analogues

Immunocytochemical analysis of DLKP cells treated with 10μ M BrdU, IdU, CdU, 5,2 - FdU, 5,5 -FdU (results not shown), and 70μ M Bromouracil and Bromouridine showed that expression of cytokeratin 8 protein to be induced in treated cells The intensity of the observed staining 5,2 -FdU-treated DLKP cells to be similar to that of BrdU treated cells

Figure 3.1.10.1 Control

Figure 3.1.10.3 CdU

Figure 3.1.10.5 5,2 -FdU

Figure 3.1.10.2 BrdU

Figure 3.1.10.4 IdU

Figure 3.1.10.6 Bromouracil

Figure 3.1.10.7 Bromouridine

Section 3111 Changes in CK18 expression in DLKP cells following treatment with the thymidine analogues.

Immunocytochemical analysis of DLKP cells treated with 10μ M BrdU, IdU, CdU, 5,2 - FdU, 5,5 -FdU (results not shown), and 70μ M Bromouridine and Bromouracil showed that expression of cytokeratin 18 protein to be induced in treated cells. The intensity of the observed staining in IdU-, 5,2 -FdU, and 5,5 -FdU-treated DLKP cells was comparable to the staining observed in BrdU treated cells. Immunocytochemistry analysis revealed that cells treated with Bromouracil and Bromouridine did not exhibit the same intensity as seen with the other analogues.

Figure 3.1.11.1 Control

Figure 3.1.11.3 CdU

Figure 3.1.11.2 BrdU

Figure 3.1.11.4 IdU

Figure 3.1.11.5 5,2*-FdU

Figure 3.1.11.6 Bromourscil

Figure 3.1.11.7 Bromouridine

Section 3112 Changes in CK19 expression in DLKP cells following treatment with the thymidine analogues

Immunocytochemical analysis of DLKP cells treated with 10 μ M BrdU, IdU, CdU, 5,2 - FdU, 5,5 -FdU (results not shown), and 70 μ M Bromouracil and Bromouridine showed that expression of cytokeratin 19 protein to be induced in treated cells. The intensity of the observed staining in IdU, 5,2 -FdU, and 5,5 -FdU-treated cells was comparable to the staining observed in BrdU treated cells. Immunocytochemistry analysis revealed that cells treated with CdU, Bromouracil and Bromouridine did not exhibit the same increase intensity as seen with the other analogues.

Figure 3.1.12.1 Control

Figure 3.1.12.2 BrdU

Figure 3.1.12.3 CdU

Figure 3.1.12.5 5,2 -FdU

Figure 3.1.12.4 ldU

Figure 3.1.12.6 Bromouracil

Figure 3.1.12.7 BromoUridine Magnification - 40X

	<u>Control</u>	<u>BrdU</u>	<u>5,2' IdU</u>	<u>5,2'CdU</u>	<u>BromoUracil</u>	Bromouridine	<u>5,2'-</u> <u>FdU</u>	<u>5,5'- FdU</u>
α ₂ lategrin	+	++	++	++	+	+	++	++
β ₁ Integrin	+	++	***	++	+	+	++	++
Ep- CAM	-	+	++	+	+	цþ	+	+
CK-8	-	++	4	+	+	+	++	+
CK-18	-	++	++	+	++	+	++	++
СК-19	-	+	++	+	+	+	++	++

Table 2Summary of results obtained for different marker proteins in DLKP treated cells with various thymidine analogues.- No Expression, + Expression, ++ Strong Expression, +++ Intense Expression.

Section 3.1.13 INVESTIGATION OF CHANGES IN CYTOKERATIN 8 AND EIF4E EXPRESSION LEVELS IN TREATED A549 CELLS

To quantify the changes in expression of cytokeratin 8 protein observed in the immunochemical analysis of treated A549 cells, Western blot analysis was performed on cells which had been treated for up to 14 days with a selection of analogues

An increase in cytokeratin 8 protein levels was demonstrated in A549 cells treated with BrdU, IdU, CdU, 5,2 -FdU, 5,5 -FdU and 5-FU An increase in cytokeratin expression was observed at day 7 with a great increased noted in cells exposed to drug for 14 days

The expression level of eIF4E in treated A549 cells was also investigated and we demonstrate an increase of this protein in A549-treated cells Western blot analysis also revealed that only phosphorylated eIF4E was present in treated cells

Figure 3.2.1 Western Blot analysis of Keratin 8 protein in A549 cells following treatment with 10µM IdU for 7- and 14-days.

Figure 3.2.2 Western Blot analysis of Keratin 8 protein in A549 cells following treatment with 10µM CdU for 7- and 14-days.

Figure 3.2.3 Western Blot analysis of Keratin 8 protein in A549 cells following treatment with 10µM 5-FU for 7- and 14-days.

Figure 3.2.4 Western Blot analysis of Keratin 8 protein in A549 cells following treatment with 10µM 5,2°-FdU for 7- and 14-days.

Figure 3.2.5 Western Blot analysis of Keratin 8 protein in A549 cells following treatment with 10µM 5,5'-FdU for 7- and 14-days.

Figure 3.2.6 Western blot analysis for K8 expression in A549 cells treated with 10µM BrdU, 5-FU and 5,2'-FdU for 7-days.

Section 3.1.14 Summary of the effects of treatment with pyrimidine analogues on elF4E protein expression in A549 cells.

A549 cells were treated with IdU, CdU and Bromouracil (Section 2.7) in order to investigate the effect these treatments had on the protein expression levels of eIF4E in the A549 cell line. Western blot analysis revealed an increase in the expression of phosphorylated eIF4E in the three drug treatments.

Figure 3.2.9 Western Blot analysis of eIF4E protein in A549 cells following treatment with 70µM BromoUracil for 7 days.

Section 3.1 15 Summary of the effects of 5-Bromo-2'-deoxyUridine (BrdU) on differentiation status of DLKP and A549 cell lines

The change of morphology in both cell lines following 7-days of treatment with 10μ M BrdU was investigated Both cell lines an approximate 5- to 10-fold increase in cell surface area occurred, with most of the cells acquiring a stretched, flattened appearance

Immunocytochemical analysis for was conducted on treated DLKP and A549 cells to investigate if the observed changes in morphology were accompanied by changes in marker protein expression CK8, CK18 or CK19 were not detected by immunocytochemistry or western blot analysis in DLKP prior to treatment with BrdU, but following treatment all three cytokeratins were present in approximately 10% of the treated-DLKP cells Increased number of keratin-positive cells and increased intensity of staining was evident in DLKP cells treated for 7 days

CK8, CK18 and CK19 filaments were present in A549 cells prior to BrdU treatment Increased keratin synthesis was detected immunocytochemically following BrdUtreatment and this was further confirmed for CK8 by western blotting where an increase in the cytokeratin proteins where observed after 7-day and 14-day exposure

DLKP and A549 BrdU-treated cells were also examined immunocytochemically to determine any alterations in mtegrin expression Analysis revealed that appeared to be marked increases both α_2 - and β_1 -intergrin subunits EpCAM expression levels were also up-regulated in both cell lines following BrdU-treatment

Section 3.1 16 Summary of the effects of 5-Iodo-2'-deoxyUridine (IdU) on the differentiation status of DLKP and A549

The ability of 5-Iodo-2 -deoxyUridine (IdU) to induce differentiation was also investigated DLKP and A549 cells treated with 10μ M IdU for 7-days and investigated for morphological changes Both DLKP and A549 treated cells became very flattened and stretched The observed alteration in morphology after IdU treatment was comparable to the observed in BrdU treatments

Analysis of the selected marker proteins by immunocytochemistry revealed that cytokeratins 8, 18 and 19 were all increased in A549-treated cells and that they were induced in the DLKP cell line, when compared to the control untreated DLKP and A549 cells Western blot analysis was performed for CK8 in IdU-treated A549 cells exposed for 7- and 14-days All three cytokeratins were found to be increased after 7- days with a greater increase observed after 14-days by immunocytochemistry

Immunocytochemical analysis for α_2 -, β_1 -intergrin and EpCAM revealed that expression levels of these markers were increase following exposure to IdU for 7days in both DLKP and A549 cell lines β_1 -intergrin showed a greater increase than the other two markers

Section 3 1 17 Summary of the effects of 5-Chloro-2`-deoxyUridine (CdU) on the differentiation status of DLKP and A549

DLKP and A549 cells exposed to CdU for 7-days were investigated for morphological changes Treated DLKP and A549 cells became very flattened and stretched and an approximately 5- to 10-fold increase in cell surface area occurred The morphological changes seen were comparable to those noted m BrdU treatment of these cell lines

Analysis of the selected differentiation protein markers by immunocytochemistry revealed that cytokeratins 8, 18 and 19 were induced in DLKP and increased in A549 following CdU treatment Increases in the cytokeratin filaments were also observed in A549 treated cells Western blot analysis confirmed that A549 cells treated with CdU for 7- and 14-days that cytokeratins 8 was increased

DLKP and A549 BrdU-treated cells were also examined immunocytochemically to determine any alterations in integrin expression Analysis revealed that appeared to be marked increases both α_2 - and β_1 -integrin subunits EpCAM expression levels were also up-regulated in both cell lines following CdU treatment

<

Section 3 1 18 Summary of the effects of 5-Fluro-deoxyUridine (5-FU) on the differentiation status of A549

Note the affect of 5-FU was not investigated in the differentiation status of DLKP

A549 cells exposed to 5-FU for 7-days were investigated for morphological changes Treated A549 cells became flattened and stretched The increase in cell surface area observed in BrdU treated cells did not occur to the same extent in 5-FU treated cells

Analysis of the selected differentiation protein markers by immunocytochemistry revealed that cytokeratins 8, 18 and 19 were noted A549 cells following treatment with 5-FU Western blot analysis confirmed that A549 cells treated with 5-FU for 7- and 14-days that cytokeratins 8 was increased

A549 5-FU-treated cells were also examined immunocytochemically to determine any alterations in integrin expression Analysis revealed that appeared to be marked increases both α_2 - and β_1 -intergrin subunits EpCAM expression levels were also upregulated in both cell lines following 5-FU treatment

Section 3 1 19 Summary of the effects of 5-Fluro-2'-deoxyUridine (5,2'-FdU) on the differentiation status of DLKP and A549.

DLKP and A549 cells exposed to 5,2 -FdU for 7-days were investigated for morphological changes Treated DLKP and A549 cells became very flattened and stretched and an approximately 10-fold increase in cell surface area occurred A549 cells exhibited a much larger increase in cell surface area than seen in 5,2 -FdU treated cells The increase in cell surface area was much greater than that observed in BrdU treated DLKP and A549 cells

Analysis of the selected differentiation protein markers by immunocytochemistry revealed that cytokeratins 8, 18 and 19 were induced in DLKP following 5,2 -FdU treatment Increases in the cytokeratin filaments were also observed m A549 treated cells Western blot analysis confirmed that A549 cells treated with CdU for 7- and 14-days that cytokeratins 8 was increased

DLKP and A549 BrdU-treated cells were also examined immunocytochemically to determine any alterations in integrin expression Analysis revealed that appeared to be marked increases both α_2 - and β_1 -intergrin subunits EpCAM expression levels were also up-regulated in both cell lines following 5,2 -FdU treatment

Section 3.1 20 Summary of the effects of 5-Fluro-5'-deoxyUridine (5,5'-FdU) on the differentiation status of DLKP.

The ability of 5,5 -FdU to induce differentiation was also investigated DLKP cells treated with 10μ M 5,5 -FdU for 7-days and investigated for morphological changes DLKP treated cells became very flattened and stretched The observed alteration in morphology after 5,5 -FdU treatment was comparable to the observed m BrdU treatments

Analysis of the selected differentiation protein markers by immunocytochemistry revealed that cytokeratins 8, 18 and 19 were induced in DLKP following 5,5 -FdU treatment 5,5 -FdU DLKP-treated cells were also examined immunocytochemically to determine any alterations in integrin expression Analysis revealed that appeared to be a moderate increase both α_2 - and β_1 -intergrin subunits EpCAM expression levels were also induced in DLKP following 5,5 -FdU treatment

Section 3 1 21 Summary of the effects of 5-BromorUridine and 5-BromoUracil on the differentiation status of DLKP and A549.

Toxicity profiles (results not shown) for 5-BromoUridine and BromoUracil in both DLKP and A549 cells revealed that it did not appear to be very toxic A concentration of 70μ M was chosen for the differentiation studies Investigation of the morphological changes in DLKP and A549 cells treated with 5-BromoUridine and BromoUracil for 7-days did not reveal any obvious alterations in cell surface area The cells did not acquire a flattened and stretched appearance as was seen in some of the other analogue treatments

Immunocytochemical analysis of DLKP cells treated 5-BromoUridine and BromoUracil for 7-days appeared to show very little induction of the CK8, CK18 and CK19 Assessment of immunocytochemistry of the results revealed no major change in the expression level of α_2 -, β_1 -integrins or EpCAM Section 3.2 DNA Microarrays

Section 3.2.1 DNA Microarrays

The success of the human genome project has allowed biologists to identify almost all the genes that are responsible for the genetic makeup of humans. The next important task is to assign function to the nearly 40,000 genes sequenced. The use of microarrays to analyse the gene expression on a global level has recently received a great deal of attention. In order to understand the complex mechanisms and networks involved in the control processes of normal and disease states of eukaryotic cells, it is no longer enough to focus on isolated pathways or single genetic events. Global transcriptional profiling using microarray techniques now offer the chance to develop a more complete understanding of gene function, regulation and interactions. The technique of microarray analysis has the huge advantage over other gene profiling methods in that mRNA isolated from a given cell, tissue or tumour can be used to prepare a labelled sample and hybridised simultaneously to a vast number of DNA sequences. Microarrays now offer great flexibility in the number of target sequences that maybe analysed per microarray. As few as a couple of probe sequences to as many as the nearly 40,000 genes of the human genome can now be analysed on one single microarray slide.

A wide variety of different microarrays platforms have been developed by both academic and commercial companies. The two main groups of microarrays currently in mainstream use; these are complementary DNA (cDNA) and oligonucleotides. Probes for cDNA arrays are generally printed onto glass or nylon slides at exact locations. The probes for cDNA (spotted) microarrays are prepared from products of the polymerase chain reaction (PCR) generated from cDNA libraries. Oligonucleotide microarrays on the other hand, are mostly 20-100mers which are synthesised *in situ*, either by photolithography onto silicon wafers or by ink-jet technology. One advantage oligonucleotide microarrays have over cDNA microarrays is the fact that the sequence used for the oligos can be designed to the most unique part of a given transcript, making it possible to discriminate between closely related genes or splice variants. The microarray gene expression studies which were performed in this body of work were

performed using Affymetrix® Human Genome U133A GeneChips® (Section 215)

Section 3 2 2 BrdU Array

Three separate DNA microarray experiments were performed on DLKP cells treated with BrdU over a time course These experiments have been labelled Exp 1, 2 and 3 for simplicity The initial experiments, Exp 1 and Exp 2, were preformed at the same time, therefore, the results from these two experiments will be discussed together Also, these initial microarray experiments were performed using one biological sample from each time point, whereas, the third experiment, Exp 3, was performed in triplicate using biological replicates And the results of Exp 3 will be discussed in a separate subsection

Section 3 2 2 1 BrdU Microarrays - Exp 1 and Exp 2

In the preliminary two BrdU-treated DLKP microarray experiments, Exp 1 and Exp 2, hybridisations were performed using the Affymetrix U133A chips (Section 215) Cells were harvested and RNA isolated (as per Section 210) at the following time points of 0, 1, 3, 7 and 14 days in Exp 1 and 0, 1 and 7 days for Exp 2 These microarray experiments were performed using single samples from each time point cRNA was prepared (Section 2151) from total RNA which had been checked for quality, and shipped to the Conway Institute at University College Dublin, where it was hybridised to the Affymetrix® Human Genome U133A GeneChips®, and the chips scanned using the Affymetrix Chip scanner This data was then sent back to us

The resulting data sets were scaled and normalised as per analysis carried out by Rushton, J J, *et al*, (2003) In order to compare gene expression results in the microarray experiments performed, it was necessary to normalise the data obtained following scanning the microarray GeneChips There are two main ways in which this type of normalisation is performed 'Per-chip' and 'Per-gene' normalisations (Reviewed in Section 2.15.1) This was performed using

Affymetrix Microarrays Suite v5 0 software, which scales all of the probe sets so that the average is 100 for each GeneChip The average probe signal was calculated for each GeneChip and this was adjusted to 100 by multiplying by a scaling factor By doing this for each GeneChip it makes the data easier to compare across different GeneChips in a given experiment

Additional data analysis was preformed using GeneSpring (Silicon Genetics) The data were normalised to the mean of the day 0 samples and then filtering was used to identify genes that were consistently up- or down-regulated in the day 1, 3, 7 or 14 day samples The filter used was a 1 5 fold increase or decrease and the genes were also filtered using a 'Present' or 'Marginal' filter A filter of 1 5-fold up or down was selected in these microarray experiments since it is generally thought that the expression levels of transcription factors do not alter dramatically in cells It is thought that the control of gene expression is tightly controlled by small alterations in transcription factor expression levels Gene lists were then generated for each of the two rounds of microarrays containing the gene name, accession number, Affymetrix Probe Id number and the fold increase/decrease of each gene found to be differentially expressed

Section 3.2 2 2 Validation of Initial DNA Microarrays and Gene expression changes in BrdU-treated DLKP cells

In order to validate the gene lists which were generated from the expression analysis performed using the GeneSpring analysis software package, and to demonstrate that the fold increase/decrease observed were real expression changes, a set of genes was selected from the gene lists generated RT-PCR analysis was performed on these genes In the majority of cases the results confirmed the trends observed in the microarray analysis The following section contains the result for each of the selected genes In each subsection a graph illustrating the fold increase/decrease found following microarray analysis, along with the corresponding RT-PCR result, is shown FSTL1 is protein with similarity to follistatin, an activin-binding protein It is known to contain an FS module, a follistatin-like sequence containing 10 conserved cysteine residues FST1 is thought to be an autoantigen associated with rheumatoid arthritis Following gene expression analysis, using GeneSpring analysis software, the FSTL1 gene was demonstrated to increase in BrdU-treated DLKP cells It was noted, that after three days of exposure of the cells to BrdU, the level of expression of the gene started to increase to a maximum at 7-days A decrease in FSTL1 was observed between day 7 and day 14 samples This result was confirmed by RT-PCR analysis (Section 2 11), which showed a similar pattern of expression for the FLST1 gene

Figure 3 2.1 Microarray analysis (top image) showing fold increase of FSTL1 mRNA RT-RCR analysis (lower image) confirming an increase in FSTL1 mRNA expression levels

FHL2 belongs to the family of LIM proteins, which are known involved in protein-protein interaction and transcriptional regulation Recent evidence has suggested that FHL proteins may act as co-regulators involved in the modulation of tissue-specific gene expression by interacting with different transcription factors. Such transcription factors include JUN and FOS and these associations have been shown to result in a powerful activation of AP-1-mediated transcription Following gene expression analysis, an increase in the expression of FHL2 mRNA was observed in BrdU-treated DLKP cells mRNA levels were to dramatically increase at day 7 to approximately 6 5-fold at 7days. However, this increase was not maintained at day 14 where they were reduced to 4-fold higher than control cells. This result was confirmed by RT-PCR analysis, which showed a similar pattern of expression for the FHL2 gene.

Figure 3.2.2 Microarray analysis (top image) showing fold increase of FHL2 mRNA RT-RCR analysis (lower image) confirming an increase in FHL2 mRNA expression levels

Section 3 2.2.2.3 TNFSF7

TNFSF7 belongs to the tumour necrosis factor (TNF) ligand family and this cytokine has been reported to a play a role in the regulation of B-cell activation and IgG production Microarray analysis revealed an increase in TNFSF7 transcript levels in drug-treated cells. It was found that after one day of exposure of the cells to BrdU that the level of expression of TNFSF7 mRNA increased gradually over the course of the experiment, to approximately 6 5-fold at day 14 This result was confirmed by RT-PCR analysis, which showed a similar pattern of expression for the TNFSSF7 gene

Figure 3 2 3 Gene expression analysis (top image) showing fold increase of TNFSF7 mRNA RT-RCR analysis (lower image) confirming an increase in TNFSF7 mRNA expression levels

Section 3.2.2 2 4 GPX3

Microarray analysis revealed that an increase in GPX3 mRNA expression levels following exposure to DLKP to BrdU It was demonstrated at day 1 the level of GPX3 mRNA levels increased by 4-fold to a maximum of approximately 7-fold after 3-days of exposure to the drug A decrease in GPX3 mRNA was observed at day 7 and day 14 where mRNA levels had reduced to 5- and 3-fold, respectively These results was confirmed by RT-PCR analysis, which showed a similar pattern of expression for the GPX3 mRNA expression levels

Figure 3 3 4 Gene expression analysis (top image) showing fold increase of GPX3 mRNA RT-RCR analysis (lower image) confirming an increase in GPX3 mRNA expression levels

Zyxin is a low abundance phosphoprotein that is concentrated at adhesion plaques and along the actin filament bundles near where they insert at adhesion plaques Zyxin has features of an intracellular signal transducer and may function as a scaffold for the assembly of multimeric complexes. These protein assemblages could mediate integrin-dependent signalling events that lead to cell differentiation or modulation of cyto-architecture. Microarray analysis revealed that an increase in Zyxin transcript levels in BrdU-treated DLKP cells. A 3-fold increase in Zyxin mRNA was observed in the day 1 sample and this increase was maintained up to day 7, where mRNA levels had to a maximum of approximately 3 5-fold. At day 14 a decrease in Zyxin mRNA expression levels was observed, but did not return to control levels. This result was confirmed by RT-PCR analysis, which showed a similar pattern of expression for the Zyxin transcript levels.

Figure 3 2 5 Gene expression analysis (top image) showing fold increase of Zyxin mRNA RT-RCR analysis (lower image) confirming an increase in Zyxin mRNA expression levels

Section 3.2.2.2.6 Spermidine/spermine N-acetytransferase (Spd/Spn)

Spermidine/spermine N-acetytransferase is a highly regulated enzymatic protein is known induced by a variety of toxic agents, hormones and polyamines. It is also in belongs to a metabolic pathway which involves ornithine decarboxylase and S-adenosylmethionione decarboxylase. The combination of these enzymes fine tune intracellular polyamine concentration, underscoring the important role of these proteins in growth and cell survival. Following microarray analysis, Spd/Spn mRNA levels found to remain at a similar expression level as controls cells up to three days of exposure to BrdU. However, microarray analysis revealed a 4.5-fold increase in Spd/Spn mRNA levels following 7 days exposure to the drug, but this increase in transcript levels was reduced to approximately 3fold at day 14. RT-PCR analysis confirmed the results generated following microarray expression analysis using GeneSpring software.

Figure 3.2.6 Gene expression analysis (top image) showing fold increase of Spd/Spn mRNA. RT-RCR analysis (lower image) confirming an increase in Spd/Spn mRNA expression levels.

Section 3.2 2 2.7 Id2

The Id family of four hehx-loop-helix (HLH) transcription factors (Id1, Id2, Id3 and Id4) act as dominant negative regulators of basic HLH proteins Since many bHLH proteins positively regulate sets of genes during cell fate determination and cell differentiation, Id proteins are thought to inhibit the ability of bHLH proteins from binding DNA and inhibit cell differentiation. Although Id proteins traditionally have been viewed as negative regulators of differentiation, recent work has revealed much wider biological roles, and they are now thought to be important in development, cell cycle control and tumour biology. Microarray analysis revealed that Id2 transcript levels were increased to approximately 5 5fold following exposure of cells to BrdU for 24 hours. However, over the remainder of the experiment Id2 mRNA levels declined to 2 5-fold day 7 and day 7 By day 14 transcript levels had returned to those of control cells. A similar pattern of expression was demonstrated following RT-PCR analysis for Id2 in BrdU-treated cells

Figure 3 2 7 Gene expression analysis (top image) showing fold increase of Id2 mRNA RT-RCR analysis (lower image) confirming an increase in Id2 mRNA expression levels

Section 3 2 2 2.8 eIF2-associated p67

Initiation of protein synthesis plays a central role in gene expression and is largely regulated at the level of formation of the initiation complex with the eukaryotic initiation factor 2 (eIF2), Met-tRNA, and the 40S ribosome The rate of protein synthesis is regulated at the level of phosphorylation of the α -subunit of eIF2, which is controlled by the cellular glycoprotein, p67 p67 protects the α -subunit from phosphorylation by its kinases Following microarray expression analysis, eIF2-associated p67 mRNA expression levels were shown to decrease at day 1 and day 3 in BrdU-treated DLKP cells and to increase to near control levels at the day 7 However, a decrease at day 14 decrease marginally was observed RT-PCR analysis demonstrated a small decrease in eIF2-associated p67 mRNA in the day 3 sample, with the remaining time points exhibiting the same level of expression as control cells

Figure 3 2 8 Gene expression analysis (top image) showing fold increase of eIF2-associated p67 mRNA RT-RCR analysis (lower image) confirming an increase in eIF2-associated p67 mRNA expression levels

Section 3 2 2 2 9 Immediate-early Response factor 3 (IER3)

IER3 is a member of intermediate-early gene family of proteins that are thought to be critical for the control of cell proliferation and apoptosis in several cell types Following gene expression analysis, using GeneSpring analysis software, the IER3 gene was shown to increase in BrdU-treated DLKP cells. It was found that after 1 day of exposure of the cells to drug that the mRNA levels of IER3 had increased to approximately 2-fold and increased further to 3 5-fold at day 7 At day 14 a reduction in transcript levels was observed, but did not return to that of control levels RT-PCR analysis confirmed the microarray expression results obtained following GeneSpring analysis, however a increase in IER3 mRNA levels was demonstrated across all samples and no reduction m IER3 signal was found at day 14

Figure 3 2 9 Gene expression analysis (top image) showing fold increase of IER3 mRNA RT-RCR analysis (lower image) confirming an increase in IER3 mRNA expression levels

Section 3 2.2.2.10 LOXL2

A family of four proteins know as LOXL (LOXL 1-4) were recently identified and it has been suggested that these proteins are located in distinct intracellular and intranuclear locations, each with related but different functions that include cell growth control, tumour suppression, senescence and chemotaxis Microarray analysis revealed an increase in LOXL2 transcript levels in drug

treated DLKP cells It was demonstrated that after 3 days of exposure of DLKP cells to BrdU mRNA expression levels of LOXL2 remained at control levels up to day 3, after which they were observed to increase to approximately 4-fold However, at day 14 mRNA levels were reduced marginally to 3 5-fold This result was confirmed by RT-PCR analysis, which demonstrated that LOXL2 transcript levels increased over the course of the experiment

Figure 3 2.10 Gene expression analysis (top image) showing fold increase of LOXL2 mRNA RT-RCR analysis (lower image) confirming an increase in LOXL2 mRNA expression levels

Section 3 2.2.2 11 p21

Following microarray expression analysis mRNA expression levels of CDKN1A were found to increase in drug-treated DLKP cells Gene expression and RT-PCR analysis revealed a marked increase in CDKN1A mRNA expression levels after 24 hours of exposure of cells to BrdU and this increase was maintained over the experiment

Figure 3 2 11 RT-RCR analysis (bottom image) shows the level of CDKN1A mRNA following exposure of DLKP to BrdU

Section 3 2 2.3 DLKP BrdU Array – Exp 3

The third DLKP BrdU microarray experiment, Exp 3, was performed using Affymetrix U133A GeneChips® RNA was isolated (Section 2 10) from cells harvested after 0, 3 and 7 days exposure to BrdU (Section 2 7) This set of DNA microarrays were performed in triplicate using biological replicates The isolated RNA was shipped to Affymetrix where the cRNA was prepared and hybridised to U133A GeneChips® and the chips scanned using an Affymetrix GeneChip scanner The data was received back, and expression analysis was performed as described below

The data set was normalised using the Affymetrix PLIER (Probe Logarithmic Error intensity Estimate) method in GREX This normalisation method is recommended by Affymetrix for use on their GeneChipsTM The PLIER method (Reviewed in Section 2 15 3) produces an improved signal by accounting for experimentally observed patterns in probe behaviour and handling error at the appropriately low and high signal values. Some of the advantages of using this method of normalisation included higher reproducibility of signal (lower coefficient of variation) without loss of accuracy and higher differential sensitivity for low expressors.

Having subjected the data set to the PLIER normalisation method, the data was then imported into GeneSpring analysis software (Silicon Genetics) and a new experiment was set up As a result of using the PLIER method of normalisation, the data did not need to undergo 'Per Chip' normalisation in GeneSpring In GeneSpring the samples were then normalised to the mean of the day 0 samples

A filter was then applied to the data to select genes that had a 'Present' or 'Marginal' flag in three out of the nine samples The filter also contained a condition that selected for genes that crossed a 1 5 fold threshold, up or down, in either the day 3 or day 7 samples

121

Section 3 2 2.4 Validation of the DLKP-BrdU Exp 3 Microarrays

In order to validate the gene lists, which were generated from the expression analysis carried out using GeneSpring, and to demonstrate that the fold increase/decrease observed were actual real expression changes, a set of genes were selected from the gene lists generated RT-PCR analysis was performed on these genes The expression patterns which confirmed the results that were obtained from the chip expression analysis

The following section contains the result for each of the genes selected In each subsection a graph illustrating the fold increase/decrease found following expression analysis, along with the confirmation RT-PCR result, is shown

Section 3 2 2.4 1 Spd/Spn

Spermidine/spermine N-acetytransferase is a highly regulated enzymatic protein is known to be inducible by a variety of toxic agents, hormones and polyamines It is also in belongs to a metabolic pathway which involves ornithine decarboxylase and S-adenosylmethiomone decarboxylase. The combination of these enzymes fine tune intracellular polyamine concentration, underscoring the important role of these proteins in growth and cell survival. Microarray analysis revealed an increase in Spd/Spn mRNA expression levels following treatment of DLKP cell with BrdU Spd/Spn transcript levels were shown to increase at day three to 1 8-fold and to 2 8-fold at day 7 RT-PCR analysis demonstrated an increase of several fold in Spd/Spn mRNA expression levels following three days exposure of DLKP to BrdU. A slight reduction in Spd/Spn mRNA was observed in the day 7 sample in comparison to the day 3, however, Spd/Spn mRNA levels were still several fold increased when compared to control untreated cells

Figure 3.2 12 The top graph illustrates the fold change in Spd/Spn mRNA following gene expression analysis RT-RCR analysis (bottom image) shows the level of Spd/Spn mRNA following exposure of DLKP to

Section 3.2 2 4 2 HMOX1

HMOX1 is one of two isoforms of heme oxygenase that is involved in catabolizing heme to biliverdin, carbon monoxide and free iron and is thought to be involved in iron homeostasis. Following gene expression analysis, HMOX1 mRNA levels were found to increase by approximately 2-fold in the day 3 sample and the expression level of this gene was maintained at this level in the day 7 sample. This result was confirmed by RT-PCR analysis which demonstrated a significant increase in HMOX1 mRNA expression levels across the experiment in comparison to untreated control cells.

Figure 3 2.13 The top graph illustrates the fold change in HMOX1 mRNA following gene expression analysis RT-RCR analysis (bottom image) shows the level of HMOX1 mRNA following exposure of DLKP to BrdU

Section 3.2.2.4 3 Id2

The Id family of four helix-loop-helix (HLH) transcription factors (Id1, Id2, Id3 and Id4) act as dominant negative regulators of basic HLH proteins Since many bHLH proteins positively regulate sets of genes during cell fate determination and cell differentiation, Id proteins are thought to inhibit the ability of bHLH proteins from binding DNA and inhibit cell differentiation Although Id proteins traditionally have been viewed as negative regulators of differentiation, recent work has revealed much wider biological roles, and are now thought to be important in development, cell cycle control and tumour biology Microarray analysis revealed a 4-fold increase in Id2 mRNA transcript levels At day 7 Id2 expression levels were found to decrease, but still remained approximately 2-fold higher than control cells These results were confirmed by RT-PCR analysis which demonstrated a significant increase in Id2 mRNA levels in the day 3 and day 7 samples, with the day 7 samples slowing a reduction in Id2 signal in comparison to the day 3 sample

Section 3 2 2 4 4 Id3

The Id family of four helix-loop-helix (HLH) transcription factors (Id1, Id2, Id3 and Id4) act as dominant negative regulators of basic HLH proteins Since many bHLH proteins positively regulate sets of genes during cell fate determination and cell differentiation, Id proteins are thought to inhibit the ability of bHLH proteins from binding DNA and inhibit cell differentiation. Although Id proteins traditionally have been viewed as negative regulators of differentiation, recent work has revealed much wider biological roles, and are now thought to be important in development, cell cycle control and tumour biology. Microarray analysis revealed a dramatic increase in Id3 mRNA transcript levels following exposure of DLKP cells to BrdU A 7 5- and 5 5-fold increase in Id3 mRNA expression level was observed in the day 3 and day 7 samples, respectively. RT-PCR analysis demonstrated a similar pattern of expression for Id3

Figure 3 2.15 The top graph illustrates the fold change in Id3 mRNA following gene expression analysis RT-RCR analysis (bottom image) shows the level of Id3 mRNA following exposure of DLKP to BrdU

FSTL1 encodes a protein with similarity to follistatin, an activin-binding protein It contains an FS module, a follistatin-like sequence containing 10 conserved cysteine residues This gene product is thought to be an autoantigen associated with rheumatoid arthritis Following microarray analysis using GeneSpring analysis software, FSTL1 mRNA expression levels were revealed to increase several fold after exposure to BrdU Following three days treatment of DLKP with drug FSTL1 mRNA were shown to increase by 15-fold and increased further to approximately 3-fold by day 7 RT-PCR analysis (Section 211) confirmed the trend in FSTL1 mRNA expression observed in the microarray analysis

Figure 3 2 16 The top graph illustrates the fold change in FSTL1 mRNA following gene expression analysis RT-RCR analysis (bottom image) shows the level of FSTL1 mRNA following exposure of DLKP to BrdU

FHL2 belongs to the family of LIM proteins, which are involved in proteinprotein interaction and transcriptional regulation Recent evidence has suggests that FHL proteins may act as co-regulators involved in the modulation of tissuespecific gene expression by interacting with different transcription factors. Such transcription factors include JUN and FOS and these associations have been shown to result in a powerful activation of AP-1-mediated transcription Microarray analysis revealed an increase in FHL2 transcript levels in drugtreated DLKP cells. A 3-fold increase in FHL2 mRNA expression levels was observed following three days exposure of cells to BrdU and expression levels of the gene increase further to 5 5-fold in the day 7 sample RT-PCR analysis demonstrated a similar increase in FHL2 transcript levels as was observed in the microarray analysis

Figure 3 2 17 The top graph illustrates the fold change in FHL2 mRNA following gene expression analysis RT-RCR analysis (bottom image) shows the level of FHL2 mRNA following exposure of DLKP to BrdU

Section 3 2 2.4 7 TNFSF7

TNFSF7 belongs to the tumour necrosis factor (TNF) ligand family and this cytokine has been reported to a play a role in the regulation of B-cell activation and IgG production Following microarray analysis, using GeneSpring analysis software, it was observed that the mRNA expression levels of TNFSF7 increase by approximately 1 5- and 3 3-fold in the day 3 and day 7 samples, respectively This results was confirmed by RT-PCR analysis which demonstrated a similar increase in TNFSF7 transcript levels

Figure 3.2 18 The top graph illustrates the fold change in TNFSF7 mRNA following gene expression analysis RT-RCR analysis (bottom image) shows the level of TNFSF7 mRNA following exposure of DLKP to BrdU

Section 3.2.2.5 Investigation of potentially co-regulated genes in BrdUtreated DLKP cells as identified using DNA microarrays

Time course microarray experiments reveal information about the temporal transcription profile of spotted genes. Sets of genes with the same expression pattern can be grouped into clusters but the identification of molecular mechanisms responsible for co-expression requires further investigation. By using comparative promoter analysis it is possible to identify genes for which co-expression may be a result of co-regulation. The aim of this analysis is to find promoter features that may be potentially responsible for co-expression of differentiation related genes.

DLKP cells, exposed to the differentiation-modulating agent BrdU, undergo morphological change and the several epithelial markers of lung cell differentiations are induced. In order to analyse global changes the transcriptional profiles of BrdU-treated DLKP cells were examined using Affymetrix UA133 DNA microarrays. Following DNA microarray analysis the data generated was normalised and filtered (Section 2.15.2) and gene lists for up-and down-regulated differentially expressed genes were then generated.

Section 3.2.2.5.1 Gene Clustering

Effective comparative promoter analysis requires tightly clustered gene expression profiles. To generate tight clusters the gene lists were subjected to ANOVA analysis and the data from this microarray experiment was grouped into 13 clusters (Figure 3.2.19). In theory from analysis of clustered data sets it is possible to identify genes that are co-regulated and promoter models that are involved in the regulation of these clustered genes. One software package which is currently available for this type of analysis is the Genomatix Software Suite (www.genomatix.de).

Clustering algorithms may be performed on microarray data sets to help identify genes that have similar patterns of gene expression and the results can be easily visualised. Hierarchical clustering has become one of the most widely used techniques for the analysis of gene expression data Clustering is an agglomerative approach in which single expression profiles are joined together until the process had been carried to completion Simplified, hierarchical clustering works on the basis where a pair of genes that have the most similar expression pattern are found, these two genes are joined together and then the method identifies the next most similar pair of genes. This process continues until all of the genes are joined into one large cluster. Clustering of microarray data may only be carried out on data sets that have been normalised and there are several different variations on hierarchical clustering

An alternative to hierarchical cluster is k-means clustering In k-means clustering objects are partitioned into a fixed number of clusters This process may be computationally intensive K-means clustering is particularly useful when used with other techniques such as principal component analysis Principal component analysis allows visual estimation of the number of clusters represented by the data

The hypothesis behind clustering techniques is that genes in a cluster may share some common function or regulatory elements However, classifications based on clustering algorithms are dependent on the particular methods used, the manner in which the data are normalised, and the manner in which similarity is measured All of these factors can have a huge effect on the outcome of clustering analysis Therefore, no single method of clustering is more or less appropriate to use on a given data set Furthermore, use of one of more methods of clustering may in fact highlight differentiation relationships within a data set which consequently may be found to be important. Tools and techniques for analysis data sets are under continual development and the ultimate guide to the use of any data analysis method must be our biological understanding of the experiment under investigation.

A worked example for the identification of co-regulated genes in the BrdU Exp 3 microarray experiment is detailed in Section 4.6

Figure 3.2.19 Heat map of 732 differentially regulated genes in BrdU DNA microarray. Following gene expression analysis of the DNA microarrays, the data set was subjected to statistical analysis and the gene lists then clustered. 13 clusters were then selected for further analysis. Clusters were chosen so that not more than approximately 150 genes were contained in each cluster.

Section 3 2 3 DLKP 5,2-FdU Arrays DNA Microarrays

Affymetrix U133A human expression DNA microarrays were probed with RNA isolated from 5,2 -FdU-treated DLKP cells from a time course experiment Cells were harvested after 0, 3 and 7 days exposure to the modulating agent (Section 2 7) and RNA isolated (Section 2 10) cRNA was then prepared (Section 2 15 1) and transported to the Conway Institute at University College Dublin, where it was hybridised to the U133A GeneChips[™], and the chips were scanned using the Affymetrix Gene Chip scanner The raw data was retrieved from the Conway Institute and the following analysis was performed on the data set

The data set was normalised and filtered as has been described for in the BrdU Exp 3 microarray experiment (Section 3 2 2 3) using the Affymetrix PLIER (Probe Logarithmic Error intensity Estimate) method in GREX and using GeneSpring gene expression analysis software

Section 3.2 3 1 Validation of the 5,2'-FdU DNA Microarrays

In order to validate the gene lists, which were generated from the expression analysis carried out using GeneSpring, and to demonstrate that the fold increase/decrease observed were actual real expression changes, a set of genes were selected from the gene lists generated RT-PCR analysis was performed on these genes The expression patterns which confirmed the results that were obtained from the chip expression analysis

The following section contains the result for each of the genes selected In each subsection a graph illustrating the fold increase/decrease found following expression analysis, along with the confirmation RT-PCR result, is shown

Section 3.2 3 1 1 Id2

The Id family of four helix-loop-helix (HLH) transcription factors (Id1, Id2, Id3 and Id4) act as dominant negative regulators of basic HLH proteins Since many bHLH proteins positively regulate sets of genes during cell fate determination and cell differentiation, Id proteins are thought to inhibit the ability of bHLH proteins from binding DNA and inhibit cell differentiation. Although Id proteins traditionally have been viewed as negative regulators of differentiation, recent work has revealed much wider biological roles, and are now thought to be important in development, cell cycle control and tumour biology. Following microarray analysis in DLKP cells treated with 5,2 -FdU a significant increase in Id2 mRNA expression levels was observed. Id2 transcript levels increased to a maximum of 7 5-fold in the day 3 sample, and declined slightly to 4 8-fold at day 7 RT-PCR analysis confirmed the results of the microarray analysis performed and demonstrated a similar increase in Id2 mRNA levels

Figure 3 2 20 Top graph illustrates the fold change in Id2 mRNA following gene expression analysis RT-PCR analysis (bottom image) shows the actual level of Id2 at the various time points

Section 3.2.3.1.2 Id3

The Id family of four helix-loop-helix (HLH) transcription factors (Id1, Id2, Id3 and Id4) act as dominant negative regulators of basic HLH proteins Since many bHLH proteins positively regulate sets of genes during cell fate determination and cell differentiation, Id proteins are thought to inhibit the ability of bHLH proteins from binding DNA and inhibit cell differentiation. Although Id proteins traditionally have been viewed as negative regulators of differentiation, recent work has revealed much wider biological roles, and are now thought to be important m development, cell cycle control and tumour biology. Microarray analysis revealed an increase in Id3 mRNA levels following exposure DLKP to 5,2 -FdU A 7 5- and 6 4-fold increase in Id3 mRNA levels was observed in day 3 and day 7 samples, respectively RT-PCR analysis confirmed this results and revealed a similar increase in Id3 transcript levels

Figure 3 2 21 Top graph illustrates the fold change in Id3 mRNA following gene expression analysis RT-PCR analysis (bottom image) shows the actual level of Id3 at the various time points

Section 3.2 3 1 3 Heme Oxygenase1 (HMOX1)

HMOX1 is one of two isoforms of heme oxygenase that is involved in catabolising heme to biliverdin, carbon monoxide and free iron and is thought to be involved in iron homeostasis. Following microarray analysis a 2 5-fold increase in HMOX1 mRNA expression levels was observed following three days of exposure of cells to drug. A further increase in FHL2 expression was found in the day 7 sample where the genes mRNA levels had increased to nearly 3-fold RT-PCR analysis demonstrated a similar pattern of transcript levels for HMOX1

Figure 3 2 22 Top graph illustrates the fold change in HMOX1 mRNA following gene expression analysis RT-PCR analysis (bottom image) shows the actual level of HMOX1 at the various time points

Section 3.2 3 1 4 FHL2

FHL2 belongs to the family of LIM proteins, which are involved in proteinprotein interaction and transcriptional regulation. Recent evidence has suggests that FHL proteins may act as co-regulators involved in the modulation of tissuespecific gene expression by interacting with different transcription factors. Such transcription factors include JUN and FOS and these associations have been shown to result in a powerful activation of AP-1-mediated transcription Following gene expression analysis, using GeneSpring analysis software, the FL1 gene was shown to increase in 5,2 -FdU-treated DLKP cells. Microarray analysis revealed an increase in FHL2 transcript levels in drug-treated cells. In the day 3 sample FHL2 mRNA levels were found to increased by 2 2-fold and levels were further increased to 2 9-fold in the day 7 sample. Confirmation of this result was demonstrated following RT-PCR analysis with revealed a similar increase in FHL2 mRNA expression levels in the day 3 and day 7 samples.

Section 3 2 3 1 5 TNFSF7

TNFSF7 belongs to the tumour necrosis factor (TNF) ligand family and this cytokine has been reported to a play a role in the regulation of B-cell activation and IgG production Following microarray analysis the expression of TNFSF7 was demonstrated to increase to 1 5-fold in the day 7 sample, with a little change in mRNA expression levels at day 3 However, RT-PCR analysis reveal a signification increase in TNFSF7 mRNA transcription levels in both the day 3 and day 7 samples

Figure 3 2 24 The top graph illustrates the fold change in TNFSF7 mRNA following gene expression analysis RT-RCR analysis (bottom image) shows the level of TNFSF7 mRNA following exposure of DLKP to 5,2 -FdU

Section 3.2.4 DLKP IdU DNA Microarray

Affymetrix U133 Plus 2 human expression DNA microarrays were probed with RNA from IdU-treated DLKP cells from a time course experiment Cells were harvested after 0 and 7 days exposure to the thymidine analogue (Section 2 7) and RNA isolated (Section 2 10) This experiment was set up in triplicate using biological replicates The RNA was quantified and shipped to Affymetrix where cRNA was prepared, hybridised to the GeneChips® and scanned using the Affymetrix Gene Chip scanner The data was received back from Affymetrix for gene expression analysis

As mentioned above, this experiment used the Affymetrix U133A Plus 2 whole genome GeneChips[™] rather than the Affymetrix U133A GeneChips[™], which had been used in the previous BrdU and 5,2 -FdU DNA microarrays It is therefore more difficult to compare the results from the BrdU and 5,2 -FdU microarrays with data generated from the IdU microarrays In order to get over this chip variation issue the IdU data sent was not put through the PLIER normalisation in GREX and an alternative normalisation method was applied

The Gene Chip data was normalised 'Per Chip' by using the 50^{th} percentile, using genes flagged as anything but 'Absent' in the calculation of the 50^{th} percentile The samples were then normalised 'Per Gene' to the mean of the day 0 samples The data was then imported into the GeneSpring analysis software where a new experiment was setup

A filter was then applied to the data to select genes that had a 'Present' or 'Marginal' flag in 3 out of the 6 samples The filter also contained a condition that selected for genes that crossed a 1 5 fold threshold, up or down in day 7

140

Section 3 2 5 Comparison of Up Regulated Genes between BrdU, 5,2'-FdU and IdU

The BrdU, and 5,2 -FdU microarrays experiments were performed on Affymetrix human U133A GeneChipsTM, whereas the IdU experiment was performed using the U133 Plus 2GeneChipsTM In order to compare these arrays a different form of normalisation was performed on the IdU data set than was described for the BrdU Exp 3 and 5,2 -FdU microarray experiments

Since the chip types were different, they could not be combined in GREX for PLIER normalisation (as described in Section 2.15.3) and an alternative normalisation was used The GeneChips® were normalised to the 50^{th} percentile, using genes flagged as anything but 'Absent' in the calculation of the of the 50^{th} percentile. The samples on the U133A GeneChipsTM (BrdU and 5,2 - FdU microarrays) were then normalised to the mean of the day 0 samples Because the IdU microarrays were carried out on a different Gene Chip type, the samples on this Gene Chip were normalised to the mean day 0 on the U133 Plus 2 chip, and not to the day 0 of the U133A Gene Chip

Three pair-wise comparison experiments were then created, one for each of the three treatments and the appropriate day 0 sample Gene lists were then generated and called 'Present' or 'Marginal' in three of the nine samples, in each pair-wise experiment, and that went either 1 5-fold up or down with drug treatment The resulting gene lists from each drug treatment were then divided into up- and down-regulated differentially expressed genes

In the BrdU experiment a total of 1,093 genes were identified as being differentially expressed 812 of these genes were found to be up-regulated, and of 281 were to be down regulated

In the 5,2 -FdU DNA microarrays a total of 2,147 genes were identified as being differentially expressed Of this number 1,186 gene were found to be upregulated, whereas 961 genes were found to be down-regulated

141

In the case of the IdU DNA microarray experiment a total of 722 genes were identified as being differentially expressed Of this number 471 genes were identified as being up-regulated, whereas 251 genes where found to be downregulated In the IdU DNA microarrays only two time points were chosen for analysis, 0 and 7 days This may explain why a smaller number, 722 genes, were found to be differentially expressed in comparison to the BrdU and 5,2 -FdU microarrays where 1,093 and 2,147 differentially expressed genes were identified, respectively

From analysis of the differentiation studies preformed in the early part of this thesis (Section 3 1 and Section 4 2) it appeared that all the pyrimidine analogues investigated induced a similar pattern of differentiation. To explore these earlier studies further, it was decided to investigate common genes that that may be potentially involved in the regulation of differentiation in the BrdU, 5,2 -FdU and IdU treatments. In order to identify common differentially expressed genes in these three drug treatments, up/down-regulated gene lists from the three microarray experiments (Apendix 7 1, Appendix 7 3 and Appendix 7 4) were overlapped using Venn diagrams (Figure 3 2 25 and Figure 3 2 26)

In the case of the up-regulated gene list it was fond that a total of 179 genes were common to both the BrdU and 5,2 -FdU microarrays 29 genes were identified as common to only the 5,2'-FdU and IdU microarrays, and 132 genes common to only the BrdU and IdU microarrays A total of 93 up-regulated genes were found common between the BrdU, 5,2 -FdU and IdU microarrays

In the case of the down-regulated gene lists it was found that a total of 105 genes were common to both the 5,2 -FdU and BrdU microarrays 15 genes were common only to the 5,2 -FdU and IdU microarrays A total 24 genes were identified as being common to both the BrdU and IdU microarrays Only 9 genes were determined to be commonly down-regulated between the BrdU, 5,2 - FdU and IdU microarrays

Figure 3.2.25 Venn Diagram of Genes Identified as being Up-regulated in the BrdU, 5,2'-FdU and IdU DNA Microarrays. The above Venn diagram illustrates the overlap of the genes determined to be up-regulated in all three microarrays experiments. The number in each overlapping section represents the number of up-regulated genes common to that section.

Figure 3.2.26 Venn Diagram of Genes Identified as being Down-regulated in the BrdU, 5,2'-FdU and IdU DNA Microarrays. The above Venn diagram illustrates the overlap of the genes determined to be down-regulated in all three microarrays experiments. The number in each overlapping section represents the number of down-regulated genes common to that section.

Further analysis of these results is described in the discussion.

Section 3.3 Transfections

Section 3 3 1 Overexpression of the transcription factor, c-myc

Several attempts were made to transfect DLKP and DLKP-SQ cell lines, both transiently (Section 2 14 4) and stably (Section 2 14 2), with an expression plasmid containing human c-myc cDNA insert

The plasmid appeared to readily transfect into both cell lines In the case of the stable transfections, several clones were isolated from the mixed population of transfected cells The clones were then assayed for up-regulation of c-*myc* mRNA and protein, however, no increase in either c-*myc* mRNA or protein levels were observed. It was thought that during the selection process the clones lost the overexpression of c-*myc* and that the surviving cells were as a result of resistance to geneticin c-*myc* is widely known to induce apoptosis when up-regulated in many cell types, and this may also be a reason for the lack of overexpression seen in each round of stable clones generated

Several rounds of c-*myc* transient transfections were also carried out RNA and protem were harvested from the transfected cells at the following time points - 0, 24, 48 and 72 hours In these transfections an increase in c-*myc* mRNA and a marginal increase in c-Myc protein were noted However, the up-regulation of c-myc appeared to have a negative effect on all the other genes assayed for It was suspected that the transient up-regulation of c-*myc* was inducing apoptosis, hence, shutting off these genes

Gene Investigated	Transient	Stable
с-тус	↑mRNA ↑ Protein	- mRNA/Protein
YY1	↑ Protein	↑Protein
Mad1	↑ Protem	
eIF4E	↑ Protein	
Cytokeratin 8	↓mRNA	
β_1 integrin	- mRNA	

Table 3 3.1Summary of Alterations in mRNA and Protein levels of genesinvestigated in c-mycStable and Transient Transfections \uparrow = increase inexpression, \downarrow = decrease in expression, -= no change in expression

147

Section 3.3.1.1.1 RT-PCR analysis of c-myc Stable Transfections

Lane 1: Marker, Lane 2: DLKP, Lane 3: DLKP::c-myc Mixed Population, Lane 4: DLKP-SQ, Lane 5: DLKP-SQ::c-myc Mixed Population, Lane 6: DLKP-SQ::YY | Mixed Population, Lane 7: DLKP-SQ::c-myc Clone 1, Lane 8: DLKP-SQ::c-myc Clone 2, Lane 9: DLKP-SQ::c-myc Clone 5, Lane 10: DLKP-SQ::c-myc Clone 6, Lane 11: DLKP-SQ::c-myc Clone 7, Lane 12: DLKP-SQ::c-myc Clone 8.

Lane 1: Marker, Lane 2: Blank, Lane 3: DLKP, Lane 4: DLKP::c-myc Mixed Population, Lane 5: DLKP-SQ, Lane 6: DLKP-SQ::c-myc Mixed Population, Lane 7: DLKP-SQ::YY1 Mixed Population

Lane 1: Marker, Lane 2: DLKP-SQ, Lane 3: DLKP-SQ::c-myc Clone 1, Lane 4: DLKP-SQ::c-myc Clone 2, Lane 5: DLKP-SQ::c-myc Clone 5, Lane 6: DLKP-SQ:: c-myc Clone 6, Lane 7: DLKP-SQ::c-myc Clone 7, Lane 8: DLKP-SQ::c-myc Clone 8

Figure 3.3.1 Expression of c-myc in DLKP and DLKP-SQ Stable Transfections. DLKP and DLKP-SQ cell lines were both stably transfected with a human c-myc expression plasmid and several stable clones were isolated from a mixed population of transfected cells. RT-PCR analysis revealed that there was no change in c-myc mRNA levels in any of the stable clones. 30µg of total protein was loaded per gel lane. Section 3.3.1.1.2 Western Blot Analysis of c-myc Stably Transfected Clones

(A)

Lane 1: Positive Control, Lane 2: DLKP, Lane 3: DLKP::c-myc Mixed Population, Lane 4: DLKP::c-myc Clone 1, Lane 5: DLKP::c-myc Clone 2, Lane 6: DLKP::c-myc Clone 3, Lane 7: DLKP::c-myc Clone 4, Lane 8: DLKP::c-myc Clone 5, Lane 9: DLKP::c-myc Clone6.

Lane 1: DLKP-SQ, Lane 2: DLKP-S::c-myc Mixed population, Lane 3: DLKP-SQ::YY1 Mixed Population, Lane 4: DLKP-SQ::c-myc Clone 4, Lane 5: DLKP-SQ::c-myc Clone 5, Lane 6: DLKP-SQ::c-myc Clone 7, Lane 7: DLKP-SQ::c-myc Clone 8.

Figure 3.3.2 Expression c-Myc in DLKP and DLKP-SQ Stable Transfections. c-Myc expression in DLKP and DLKP-SQ clones transfected with a full length human c-myc expression plasmid. Western blot analysis revealed that there was no up-regulation of c-Myc protein levels in any of the stable clones generated. 30µg of total protein was loaded per gel lane. Section 3.3.1.1.3 Western Blot analysis of YY1 protein levels in DLKP::cmyc and DLKP-SQ::c-myc stably transfected Clones.

Lane 1: DLKP, Lane 2: DLKP::c-myc Mixed Population, Lane 3: DLKP::c-myc Clone 1, Lane 4 :DLKP::c-myc Clone 2, Lane 5: DLKP::c-myc Clone 3, Lane 6: DLKP::c-myc Clone 4, Lane 7: DLKP::c-myc Clone 5, Lane 8:DLKP::c-myc Clone 6.

Lane 1: DLKP-SQ, Lane 2: DLKP-SQ::c-myc Mixed population, Lane 3: DLKP-SQ::YY1 Mixed Population, Lane 4: DLKP-SQ::c-myc Clone 4, Lane 5: DLKP-SQ::c-myc Clone 5, Lane 6: DLKP-SQ::c-myc Clone 7, Lane 7: DLKP-SQ::c-myc Clone 8, Lane 8: Blank, Lane 9: DLKP::c-myc Clone 8

Figure 3.3.3 Expression of YY1 in DLKP and DLKP-SQ Stably Transfected with c-myc. YY1 expression in DLKP and DLKP-SQ cells stable transfected with a full length c-myc cDNA expression plasmid. An increase in YY1 protein levels was observed in some of the stable c-myc clones generated. 30µg of total protein was loaded per gel lane.

Section 3.3 1 2 c-myc Transient Transfections

Several attempts at transiently transfecting a full length human c-myc expression plasmid into the DLKP-SQ cell line were carried out Time points of 0, 24, 48 and 72 hours were selected for analysis. In order to investigate the effect the up-regulation of c-myc had in the cell line, several different genes were assayed for and the results are listed in the following sections

Section 3.3 1 2.1 RT-PCR analysis showing the increase in c-myc expression in DLKP-SQ cell line transiently transfected with the pCMV · c-myc plasmid

(A)

Lane 1 DLKP-SQ, Lane 2 DLKP-SQ c-myc 24h, Lane 3 DLKP-SQ c-myc 48h, Lane 4 DLKP-SQ c-myc 72h

(B)

c-myc

Lane 1 DLKP-SQ, Lane 2 24h, Lane 3 48h, Lane 4 72h, Lane 5 Control Peptide

Figure 3.3.4 Expression of c-Myc in DLKP-SQ Transiently Transfected with c-myc. (A) PCR analysis for c-myc expression demonstrate an increase in c-myc mRNA after 24 hours of transfection This increase in c-myc was maintained over the course of the 72 hour transfection (B) Western blot analysis showed that the c-Myc protein level was increased after 24h of transfection and was demonstrated to increase further at 72h $30\mu g$ of total protein was loaded per gel lane

Section 3 3 1.2 2 Change in expression of Mad protein in DLKP-SQ transiently transfected with the pCMV.. c-myc plasmid.

Lane 1 DLKP-SQ, Lane 2 24h, Lane 3 48h, Lane 4 72h

Figure 3 3.5 Expression of Mad in DLKP-SQ Transiently Transfected with c-myc Western blot analysis for Mad expression in DLKP-SQ cells transiently tranfected with the pCMV *c-myc* plasmid showed that the up-regulation of *c*-Myc resulted in the reduction of Mad protein in the transfected cells. It was observed from the analysed transfected cells that after 24h the level of Mad protein had been greatly reduced in comparison to the control untransfected DLKP-SQ cells However, after 72h the level of Mad protein was beginning to return, but its expression was still very much reduced in comparison to control untransfected cells 30µg of total protein was loaded per gel lane

Section 3 3.1 2 3 Change in expression of YY1 protein in DLKP-SQ transiently transfected with the pCMV. c-myc plasmid

Lane 1 DLKP-SQ, Lane 2 24h, Lane 3 48h, Lane 4 72h

Figure 3.3.6 Expression of YY1 in DLKP-SQ Transiently Transfected with c-myc Western blot analysis for YY1 expression levels in DLKP-SQ cells transiently transfected with the pCMV c-myc plasmid showed that the YY1 protein slightly increased after 24h This increase was noted also after 48 and a greater increase in YY1 was seen following 72 hours of transfection $30\mu g$ of total protein was loaded per gel lane

Section 3 3 1 2 4 Change in expression of eIF4E RNA in DLKP-SQ cell line transiently transfected with the pCMV c-myc plasmid

Lane 1 DLKP-SQ, Lane 2 24h, Lane 3 48h, Lane 4 72h

Figure 3 3 7 Expression of eIF4E in DLKP-SQ Transiently Transfected with c-myc Western blot analysis for eIF4E protein expression showed that there was an initial increase in the level of eIF4E protein in the transfected cells when compared to the untransfected DLKP-SQ control cells However, after 48h this increase in eIF4E expression had return to the levels observed in the control cells

Section 3 3 1 2 5 Change in expression of cytokeratin 8 RNA in DLKP-SQ transiently transfected with the pCMV c-myc plasmid

Lane 1 DLKP-SQ, Lane 2 DLKP-SQ c-myc 24h, Lane 3 DLKP-SQ c-myc 48h, Lane 4 DLKP-SQ c-myc 72h

Figure 3 3 8 Expression of Cytokeratin 8 in DLKP-SQ Transiently Transfected with c-myc RT-PCR analysis of DLKP-SQ c-myc transiently transfected cells showed that upon the up-regulation of c-myc, the levels of CK8 where found to be decreased It was noted after 48h the eIF4E signal has more or less been turned off and that following 72h the CK8 levels started to increase once again

Section 3 3 1 2 6 Change in expression of β₁-integrin RNA in DLKP-SQ transiently transfected with the pCMV[•] c-*myc* plasmid

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 DLKP-SQ c-myc 24h, Lane 4 DLKP-SQ c-myc 48h, Lane 5 DLKP-SQ c-myc 72h

Figure 3 3.9 Expression of β_1 -integrin in DLKP-SQ Transiently Transfected with c-myc RT-PCR analysis of DLKP-SQ c-myc transiently transfected cells showed that upon the up-regulation of c-myc, the levels of β_1 integrin where found to be decreased. It was noted that after 48h and 72h the level of β_1 -integrin had been reduced to nearly half that of the control untransfected cells.

Section 3.3.2 Overexpression of Yin Yang 1, YY-1

A plasmid encoding the human transcription factor, YY1 was transfected into the DLKP-SQ cell line and proved reasonably efficient to transfect. This plasmid was transfected both stably and transiently into the DLKP-SQ cell line.

Several stable highly over-expression clones were generated in two separate transfections experiments. From the initial experiment three over-expression clones were isolated from a mixed population of transfected DLKP-SQ cells. And from the second experiment several more stable clones were isolated. Overexpression of YY1 in the three clones was shown to up-regulate c-Myc at the protein level (Figure 3.3.11), however, c-myc mRNA levels appeared unaffected by the overexpression of YY1. An increase in Mad1 (Figure 3.3.12), a member of the c-Myc/Max/Mad network, was observed.

An increase in the translation factors eIF4E (Figure 3.3.13) and eIF2 α (Figure 3.3.19) was also noted in the three overexpressing clones. A significant increase in eIF4E protein levels was noted; however, due to problems with RT-PCR analysis of eIF4E, the effect of overexpression of YY1 on eIF4E RNA levels are not shown. Overexpression of YY1 also appeared to have an effect on the translation factor eIF2 α . A slight increase in eIF2 α was noted in the three stable clones generated (Figure 3.3.19). PCR analysis for eIF4e-binding protein-1 showed that there was no alteration in the expression of mRNA levels for this gene in any of the clones analysed.

The effect of overexpression of YY1 on cytokeratin expression was also investigated and it was found that there was no effect on the mRNA levels of cytokeratin 8 (Figure 3.3.14). However, some changes in the expression levels of both cytokeratins 18 (Figure 3.3.15) and cytokeratin 19 (Figure 3.3.16) were noted.

Unfortunately for some unknown reason, the YYI clones lost all over-expression of YYI during the freeze thaw back of the stable YYI clones and due to time constraints towards the end of this thesis it was not possible to generate more stable over-expression clones Therefore, it was decided to transiently transfect the YY1 plasmid and in order to investigate further the role which YY1 plays in the regulation of differentiation in our cell system

I

Gene Investigated	Transient	Stable
YY1	↑mRNA	†Protein
c-myc	↓mRNA ↑Protein	-mRNA ↑Protein
Mad 1	↑ Protein	↑Protein
eIF4E	† Protein	↑Protein
Cytokeratin 8	↓mRNA	-mRNA
Cytokeratin 18	JmRNA at 24 h only	-mRNA
Cytokeratin 19	-mRNA	↑mRNA
b ₁ integrin	↓mRNA	-mRNA ↓Protein
eIF4E-BP1	- mRNA	-mRNA
eIF2a	ı↓mRNA	↑Protein
Mnk2	-mRNA	
FHL1	↑mRNA	
FSTL1	-mRNA	
HMOX1	↑mRNA	
Id2	↑mRNA	
Id3	↑mRNA	

Table 3.3.2 Summary of the results obtained for the YY1 transient and stable transfection experiments \uparrow = increase in expression, \downarrow = decrease in expression, - = no change in expression

Section 3.3.2.1	Stable Over-expression YY1 Clones	
Section 3.2.2.1.1	Investigation of the increase of YY1 protein levels in	
	DLKP::YY1 stably transfected cells.	

(A)

Lane 1: YY1 Control Peptide, Lane 2: DLKP-SQ, Lane 3: DLKP-SQ::YY1 Clone 2, Lane 3: DLKP-SQ::YY1 Clone 4, Lane 4: DLKP-SQ::YY1 Clone 13.

(B)

Lane 1: DLKP-SQ, Lane 2: Clone 6, Lane 3: Clone 4, Lane 4: Clone 13, Lane 5: Clone 14, Lane 6: Clone 7D, Lane 7: Clone8D, Lane 8: Positive Control.

Figure 3.2.10 Expression of YY1 in DLKP-SQ YY1 Stable Transfections. Western blot analysis was carried out on the DLKP-SQ::YY1 stable clones. (A) Level of YY1 protein overexpression in the initial round of YY1 stable transfections. (B) Level of YY1 protein overexpression in clones isolated from the second round of YY1 transfections. 30µg of total protein was loaded per gel lane.

Section 3.2 2 1 2 Investigation of c-myc RNA and protein levels in DLKP YY1 stably transfected cells

(A)

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 Clone 2, Lane 4 Clone 4, Lane 5 Clone 13 (B)

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 Clone 6, Lane 4 Clone 8, Lane 5 Clone 13, Lane 6 Clone 14, Lane 7 Clone 7D, Lane 8 Clone8D, Lane 9 Neg Control

Lane 1 DLKP-SQ, Lane 2 Clone 2, Lane 3 Clone 4, Lane 4 Clone 13

Figure 3 3.11 Expression of c-myc in Stable YY1 transfections (A) and **(B)** RT-PCR analysis for c-myc RNA in the stably transfected DLKP-SQ YY1 clones showed that there was no apparent change in expression in any of the isolated clones in the first and second round of transfections, respectfully **(C)** Western blot analysis was carried out on the DLKP-SQ YY1 stable clones revealed that all three clones had increased levels of c-Myc when compared to the untransfected DLKP-SQ cells 30µg of total protein was loaded per gel lane

Lane 1 DLKP-SQ, Lane 2 DLKP-SQ YY1 Clone 2, Lane 3 DLKP-SQ YY1 Clone 4, Lane 4 DLKP-SQ YY1 Clone 13, Lane 5 A549

Figure 3 3 12 Mad Western expression in YY1 overexpressing DLKP-SQ Western blot analysis was carried out on YY1 stable clones revealed that all three clones had increased levels of Mad, with Clone 4 exhibiting the greatest increase

Section 3.2.2.1.4 Investigation of elF4E protein levels in DLKP::YY1 stably transfected cells.

Lane 1: DLKP-SQ, Lane 2: DLKP-SQ::YY1 Clone 2, Lane 3: DLKP-SQ::YY1 Clone 4, Lane 4: DLKP-SQ::YY1 Clone 13.

(B) <u>1 2 3 4 5 6 7</u>

Lane 1: DLKP-SQ, Lane 2: Clone 6, Lane 3: Clone 4, Lane 4: Clone 13, Lane 5: Clone 14, Lane 6: Clone 7D, Lane 7: Clone8D

Figure 3.3.13 eIF4E expression in YY1 Overexpressing DLKP-SQ. (A) Western blot analysis was carried out initial YY1 stable clones isolated showed that there was a significant increase in eIF4E. (B) The increase in eIF4E was also repeated in the second round of YY1 transfections and was confirmed by western blot analysis. 30µg of total protein was loaded per gel lane.

Section 3 2 2 1 5 Investigation of cytokeratin 8 expression levels in DLKP..YY1 stably transfected cells.

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 Clone 6, Lane 4 Clone 8, Lane 5 Clone 13, Lane 6 Clone 14, Lane 7 Clone 7D, Lane 8 Clone8D, Lane 9 Neg Control

Figure 3 3 14 Cytokeratin 8 mRNA Expression in YY1 Oversexpression DLKP-SQ RT-PCR analysis of the stably transfected DLKP-SQ. YY1 clones for alterations in the expression of CK8 RNA revealed that there was no apparent change in the level of CK8 RNA in any of the stable clones isolated

Section 3 2 2 1 1 6 Investigation of cytokeratin 18 expression levels in DLKP: YY1 stably transfected cells

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 Clone 6, Lane 4 Clone 8, Lane 5 Clone 13, Lane 6 Clone 14, Lane 7 Clone 7D, Lane 8 Clone8D, Lane 9 Neg Control

Figure 3.3 15 Cytokeratin 18 mRNA Expression in YY1 Overexpressing DLKP-SQ RT-PCR analysis of the stably transfected DLKP-SQ YY1 clones for alterations in the expression of CK18 RNA revealed that there was no apparent change in the level of CK18 RNA in any of the stable clones isolated

Section 3 2.2 1 1 7 Investigation of cytokeratin 19 expression levels in DLKP YY1 stably transfected cells

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 Clone 6, Lane 4 Clone 8, Lane 5 Clone 13, Lane 6 Clone 14, Lane 7 Clone 7D, Lane 8 Clone8D, Lane 9 Neg Control

Figure 3.3.16 Cytokeratin 19 mRNA Expression in YY1 Overexpression DLKP-SQ RT-PCR analysis of the stably transfected DLKP-SQ YY1 clones for alterations in the expression of CK19 RNA revealed that Clones 4, 13, 14, 7D and 8D all showed an increase in CK19 RNA when compared to the DLKP-SQ untransfected cells

Lane 1: Marker, Lane 2: DLKP-SQ, Lane 3: Clone 6, Lane 4: Clone 8, Lane 5: Clone 13, Lane 6: Clone 14, Lane 7: Clone 7D, Lane 8: Clone8D, Lane 9: Neg. Control.

(B)

Lane 1: DEKP-SQ, Lane 2: Cione 2, Lane 3: Cione 3, Lane 4: Cione 13.

Figure 3.3.17 Expression of β_1 -integrin in YY1 Overexpressing DLKP-SQ. (A) RT-PCR analysis of the YY1 stably transfections for β_1 -integrin mRNA expression levels revealed that there was no apparent change. (B) Western blot analysis carried out on the three initial clones showed a reduction β_1 -integrin protein levels when compared to untransfected cells. 30µg of total protein was loaded per gel lane.

Investigation of eIF4E-binding protein 1 expression levels in DLKP...YY1 stably transfected cells

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 Clone 6, Lane 4 Clone 8, Lane 5 Clone 13, Lane 6 Clone 14, Lane 7 Clone 7D, Lane 8 Clone 8D, Lane 9 Neg Control

Figure 3 3 18 Expression of eIF4E-binding protein-1 mRNA in YY1 Overexpressing DLKP-SQ RT-PCR analysis of the stably transfected YY1 clones revealed that there was no apparent change in the level of eIF4E-BP1 mRNA in any of the stable clones isolated

168

Lane 1: DLKP-SQ, Lane 2: Clone 2, Lane 3: Clone 4, Lane 4: Clone 13

Figure 3.3.19 Expression of elF2 α in YY1 Overexpression DLKP-SQ. Western blot analysis was carried out on YY1 stable clones. A slight increase in elF-2 α protein levels was observed in clone 4. The other two clones exhibited similar elF-2 α as the DLKP-SQ control cells. 30µg of total protein was loaded per gel lane.

Section 3 2 2.2 Analysis RNA and protein changes in DLKP-SQ cells transiently transfected with the YY1 plasmid

As mentioned earlier, the stable YY1 expressing clones generated from the transfection of the DLKP and DLKP-SQ cell lines lost YY1 over-expression for unknown reasons during cell freezing/thaw back process Therefore, it was decided to further characterise the role that YY1 plays in our model system by transiently transfecting both cell lines with the YY1 plasmid

DLKP and DLKP-SQ cells were transiently transfected with two different YY1 plasmids The transfected cells were also analysed for alterations in expression levels of other proteins to elucidate what the effect the up-regulation of YY1 had

Due to historical miss-labelling of the YY1 plasmid stocks these transfections were performed using two different YY1 vectors, each containing a full length human YY1 cDNA sequence The initial transient transfections were performed using the plasmid described in Section 2 14, transfected into the DLKP-SQ cell line, while second set of experiments were performed using the His-tagged YY1 plasmid, transfected into DLKP. The reasoning behind the use of two different YY1 plasmids was due to historical miss-labelling of plasmids stocks in the laboratory Both YY1 vectors used in this study contained a full length human YY1 cDNA sequence and only differed in the fact that one contained an added His-tag sequence

From analysis of these transfections we demonstrate that transient YY1 overexpression up-regulated c-Myc protein levels, which is in agreement with the stable over-expression of YY1 in our earlier work mRNA levels of c-*myc* were down-regulated in the transient transfections, whereas in the stable transfections the over-expression of YY1 was shown to have no effect of c-*myc* mRNA expression levels

We also demonstrate that the transient over-expression of YY1 also has a negative effect on the mRNA of the translation initiation factor eIF4 α , but does

not affect the expression of other translation initiation factors such as eIF4Ebinding protein-1 and Mnk2, a known kinase of eIF4E

mRNA levels of cytokeratin 8 and 18 were also investigated and it was demonstrated that a slight decrease in cytokeratin 8 mRNA expression in DLKP-SQ cells after 24 hours of transfection with YY1 The transient over-expression of YY1 did not appear to have an effect on the mRNA levels of cytokeratin 18 β_1 -integrin levels were also investigated and mRNA levels of this gene were revealed to be significantly down-regulated after 24 and 48 hours of transfection However, expression levels for this gene and returned to near control levels after 72 hours of transfection Section 3.2.2.2.1 Change in expression of YY1 mRNA in DLKP-SQ transiently transfected with the YY1 plasmid.

Figure 3.3.20 YY1 mRNA Fold change in DLKP cells transiently transfected with YY1

Taqman Real Time-PCR analysis for YY1 expression was preformed on YY1 transiently transfected DLKP cells. It was demonstrated that following transfection YY1 mRNA transcript levels were 15.35-fold increase after 48 hours and had decreased to 6.75-fold at 72 hours.

Lane 1: Marker, Lane 2: DEKP-SQ, Lane 3: DEKP-SQ::YY1 24h, Lane 4: DEKP-SQ::YY1 48h, Lane 5: DEKP-SQ::YY1 72h.

(B)

310bp

194bp

B-actin

Lane 1: DLKP- SQ, Lane 2: DLKP-SQ::YY1 24h, Lane 3: DLKP-SQ::YY1 48h, Lane 4: DLKP-SQ::YY1 72h.

Figure 3.3.21 Expression of c-myc in YY1 Transient Transfected DLKP-SQ. (A) RT-PCR analysis for c-myc mRNA revealed that c-myc was down-regulated after 24h and following 48h c-myc message had been fully turned off. However, after 72h the level of c-myc RNA was found to be increasing once again, but not back to control levels. (B) Western blot analysis showed no increase in c-Myc protein after 24h, however, an increase was seen at 48 h and this was maintained at 72 h of transfection. 30µg of total protein was loaded per gel lane.

Section 3.2 2 2 3 Change in expression of eIF2 α RNA in DLKP-SQ cells transiently transfected with the YY1 plasmid

ł

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 DLKP-SQ YY1 24h, Lane 4 DLKP-SQ YY1 48h, Lane 5 DLKP-SQ YY1 72h, Lane 6 Neg Control

Figure 3 3 22 Expression of eIF2a in YY1 Transiently Transfected DLKP-

SQ RT-PCR analysis for eIF2 α showed that eIF2 α was markedly downregulated after 24h and 48h, when compared to the untransfected cells It was noted that after 72h the level of eIF2 α had returned to that of the control untreated DLKP-SQ cells Control GAPDH mRNA levels did not amplify in this reaction, and due to time constraints this PCR was no repeated

1

Section 3 2 2.2 4 Change in expression of eIF4E-binding protein 1 RNA in DLKP-SQ transiently transfected with the YY1 plasmid

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 DLKP-SQ YY1 24h, Lane 4 DLKP-SQ YY1 48h, Lane 5 DLKP-SQ YY1 72h, Lane 6 Neg Control

Figure 3.3.23 Expression of eIF4E-binding protein-1 in YY1 Transiently Transfected DLKP-SQ PCR analysis for 4E-BP1 mRNA showed no changed in expression levels following the overexpression of YY1

Section 3 2 2 2 5 Change in expression of Mnk2 RNA in DLKP-SQ transiently transfected with the YY1 plasmid

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 DLKP-SQ YY1 24h, Lane 4 DLKP-SQ YY1 48h, Lane 5 DLKP-SQ YY1 72h, Lane 6 Neg Control

Figure 3 3.24 Expression of Mnk2 in YY1 Transiently Transfected DLKP-SQ PCR analysis of Mnk2 levels in showed that there was no change in the expression of Mnk2 mRNA levels following the overexpression of YY1

Section 3 2 2 2 6 Change in expression of cytokeratin 8 RNA in DLKP-SQ cells transiently transfected with the YY1 plasmid

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 DLKP-SQ YY1 24h, Lane 4 DLKP-SQ YY1 48h, Lane 5 DLKP-SQ YY1 72h, Lane 6 Neg Control

Figure 3.3 25 Expression of Cytokeratin 8 in YY1 Transiently Transfected DLKP-SQ RT-PCR analysis for CK8 RNA in YY1 transiently transfected cells revealed that the level of CK8 RNA was down-regulated after 24h However, after 48h the CK8 message had returned to that of the control untransfected cellstransfected cells

Section 3.2.2.2 7 Change in expression of cytokeratin 18 RNA in DLKP-SQ cells transiently transfected with the YY1 plasmid

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 DLKP-SQ YY1 24h, Lane 4 DLKP-SQ YY1 48h, Lane 5 DLKP-SQ YY1 72h, Lane 6 Neg Control

Figure 3 3.26 Expression of Cytokeratin 18 mRNA in YY1 Transiently Transfected DLKP-SQ. PCR analysis of CK18 mRNA showed that there was no significant change in expression following transient transfection with YY1

Section 3.2 2 2 8 Change in expression of β₁-integrin RNA in DLKP-SQ transiently transfected with the YY1 plasmid

Lane 1 Marker, Lane 2 DLKP-SQ, Lane 3 DLKP-SQ YY1 24h, Lane 4 DLKP-SQ YY1 48h, Lane 5 DLKP-SQ YY1 72h, Lane 6 Neg Control

Figure 3 3 27 Expression of β_1 -integrin mRNA in YY1 Transiently Transfected DLKP-SQ RT-PCR analysis for β_1 -integrin mRNA revealed that the level of β_1 -integrin RNA was significantly down-regulated after 24h In cells transfected for 48h the β_1 -integrin message had nearly been fully switched off However, after 72h the β_1 -integrin message had almost returned to that of the control untransfected cells

Section 3.2.2.3 Change in expression of Genes found regulated in BrdU Array in DLKP transiently transfected with the YY1 plasmid

Following the DNA microarray experiments which were performed towards the end of this thesis, it was decided to investigate if YY1 played a role in the regulation of some of the genes demonstrated to be differentially expressed in the microarray experiments

Following RT-PCR analysis we demonstrate that transient over-expression of YY1 did in fact have a positive effect on some of the genes identified in the DNA microarray experiments We show that the mRNA levels of FHL1, Id2, Id3 and HMOX1, to be increased While YY1 over-expression did not appear to have an effect on FSTL1 mRNA levels

Section 3.2.2.3.1 FHL1

Figure 3 3 28 Expression of FHL1 mRNA in YY1 Transiently Transfected DLKP RT-PCR analysis for domonstreated that transcript levels for FHL1 were significantly up-regulated after 48 hours of transfection with YY1 This increase in FHL1 was maintained at 72 hours of transfection

Figure 3 3 29 Expression of FSTL1 mRNA in YY1 Transiently Transfected DLKP RT-PCR analysis for revealed that the transient over-expression of YY1 had no effect on the mRNA levels of FSTL1

Section 3 2 2.3 3 HMOX1

Figure 3 3 30 Expression of HMOX1 mRNA in YY1 Transiently Transfected DLKP RT-PCR analysis for domonstreated that transcript levels for HOMX1 were significantly up-regulated in DLKP cells after 48 hours of transfection with YY1 This increase in HMOX1 was maintained at 72 hours of transfection

Figure 3 3 31 Expression of Id2 mRNA in YY1 Transiently Transfected DLKP. RT-PCR analysis for demonstarted a significant increase in Id2 transcript levels after 48 hours of transfection with YY1 This increase in Id2 was maintained at 72 hours of transfection

Section 3 2.2.3 5 Id3

Figure 3.3.32 Expression of Id3 mRNA in YY1 Transiently Transfected DLKP RT-PCR analysis for revealed a large increase in Id3 mRNA expression leveles in transiently transfected cells

Section 4.0

Discussion

7

4.1 General Introduction

The lung is a complex organ consisting of over 40 different cell types (Plopper, 1996), whose development has been divided into four chronological stages; I) the pseudoglandular stage, II) the canalicaular stage, III) the terminal sac stage and IV) the alveolar stage. While progress has been made in the developmental genetics in general, aided by huge developments in DNA microarray analysis and proteomic tools, the genetics of lung morphogenesis, the differentiation pathway and the genes involved in development of specific cell types are still largely unknown. The failure to identify a stem cell(s) of the lung (Emura, 1997) and the relative infancy of developmental genetics are part of the main problems in understanding the mechanisms regulating early development of the lung. We have been afforded the opportunity to study an *in vitro* model for early development using a very poorly differentiated lung cancer cell line, DLKP, which was isolated here at the NICB (Law, *et al.*, 1992).

DLKP is a poorly differentiated squamous carcinoma cell line which does not express keratin proteins or other epithelial markers such as epithelial-specific antigen or desmosomal proteins; despite being of epithelial origins (McBride, *et al.*, 1998). DLKP cells may represent a stem cell-like cell line of lung epithelial lineage which has the potential for both proliferation and differentiation. Also, the cells appear to be at a very early stage of differentiation, shown by the lack of expression of the simple epithelial keratins 8, 18 and 19, and can theoretically progress towards several different phenotypes.

Bromodeoxyuridine (BrdU) is a halogenated thymidine analogue that competes with thymidine for incorporation into DNA. BrdU has been found to modulate differentiation in a number of different cell types (Harding *et al.*, 1978). Specifically, BrdU has been reported in the literature to modulate differentiation in neuronal, muscle and haematopoietic lineages (Feyles *et al.*, 1991; Tapscott *et al.*, 1989; Yen *et al.*, 1987). It has been shown previously that this differentiation modulating agent is capable of inducing differentiation in our *in vitro* DLKP model system, and the lung adenocarcinoma cell line, A549, (McBride, *et al.*, 1999; Mcleady, PhD Thesis, 1997; O'Sullivan, PhD Thesis, 1999; Walsh, PhD

Thesis 1999, Doolan, PhD Thesis, 2001) Associated with this alteration in differentiation status of these two cell lines was an alteration in the expression levels of various proteins Protein expression of cytokeratins 8, 18 and 19, integrins α_2 and β_1 (Section 3 1), the eukaryotic initiation factors eIF4E (Section 1 8 and Section 3 1 14) and eIF2 α (Doolan, PhD Thesis 2001) and the transcription factors Yin Yang 1 (Section 1 7 2) and c-myc (Section 1 7 1) were all up-regulated in DLKP and A549 cells when induced to differentiate by exposure to BrdU (Walsh, PhD Thesis, 1999) BrdU-induced differentiation of DLKP and A549 also resulted in the alteration of Ep-CAM protein expression (Section 3 1), along with global changes in the transcription profiles of the cells, which were investigated by DNA microarray experiments

In addition, immunocytochemical analysis of DLKP treated with BrdU for 7 days and then grown in the absence of BrdU for up to three months showed that these cells retained the pattern of keratin expression observed in BrdU-treated cells (Walsh, PhD, 1999) This result suggests that BrdU induces a pathway that causes irreversible differentiation of these cells

In this study, BrdU and other halogenated thymidine analogues, namely IdU, CdU, Bromouridme, Bromouracil, as well as 5-FU, 5,2 -FdU and 5,5-FdU, were investigated to determine if they had an effect of the differentiation status of both DLKP and A549 cell lines

4.2 Thymidine analogue-induced differentiation in epithelial cell lines

5-Bromo-2'-deoxyUridine (BrdU) has been reported to modulate differentiation in a number of different cell types, particularly its role in modulating differentiation in neuronal, muscle and haematopoietic lineages has been documented (Yen *et al.*, 1987; Sugimoto *et al.*, 1988; Valyi-Nagy *et al.*, 1993). We have demonstrated in our laboratory that BrdU treatment of DLKP and A549 cells induce these cells to differentiate. The mechanism(s) by which BrdU exerts its differentiation-modulating effects has not been elucidated. Several different theoretical models have been suggested to date (Section 1.4.1). It appears that the incorporation of BrdU into DNA is critical.

Results presented in this thesis demonstrate that following exposure of both DLKP and A549 cell lines to BrdU and the various other halogenated pyrimidine analogues a similar increase in the differentiation markers investigated was observed. Induction of cytokeratin expression was demonstrated in the DLKP system, with an up-regulation of cytokeratins observed in A549. However, not all the analogues induced/up-regulated the cytokeratins and integrins to the same level and a summary of these results are contain in Table 3.1 and Table 3.2.

In the DLKP and A549 systems, treatment with BrdU, IdU and CdU appeared to have a similar pattern of differentiation, with cytokeratins -8, -18 and -19 showing induction in expression. In DLKP cells increased expression of integrins, α_2 and β_1 , were also demonstrated in our differentiation experiments.

Treatment of DLKP and A549 with 5,2'-FdU resulted in a dramatic alteration in the cell morphology, with the cells increasing in size to 3-4 times that of the control untreated cells. Induction of cytokeratin protein expression was noted in the DLKP system and an up-regulation found in A549 treated cells. Integrin and Ep-CAM protein expression was also noted in the two cell systems.

Bromouridine and Bromouracil did not seem to induce the differentiation markers to the same extent as the other halogenated thymidine analogues, though some induction of cytokeratins was noted in treated DLKP cells Interestingly, toxicity assays for these two analogues revealed that treatment with high concentrations of these drugs, of up to $70\mu g/\mu l$, had no effect on the growth of DLKP cells (results not shown) A small increase in expression of the cytokeratin proteins was seen in A549 treated cells with little change in α_2 -and β_1 - integrm observed (Section 3 2 21)

In order to ensure that the alteration of the differentiation status of both DLKP and A549 was not as a result of simple toxic exposure, both cell lines were treated with Adriamycin for 7 days Treatment with Adriamycin did not produce the same differentiating-modulating effects as was seen with BrdU and its analogues (Data not shown)

In summary, all the thymidine analogues investigated exhibited a similar induction in differentiation as was demonstrated previously with treatment of DLKP and A549 cells with BrdU (O'Sullivan, PhD 1999) The exact mechanisms(s) by which these analogues induced the expression of the set of differentiation markers investigated in this study remain unclear A surprising find was that all the analogues investigated demonstrated a similar overall pattern of cytokeratin and integrin protein expression 5,5 -FdU, 5,2 -FdU and 5-FU are known to have a different biological mode of action than BrdU, and are known to However, treatment of DLKP and A549 with inhibit DNA synthesis Adriamycin revealed no induction of cytokeratins or integrin proteins following 7 days exposure of cells to this drug Therefore, it was concluded that the induction of the selected differentiation markers investigated by BrdU and the other pyrimidine analogues in our cell system was not as a result of toxic shock in the cells In order to investigate these differentiation assays further DNA microarray analysis was preformed on a subset of treatments and the results of these studies will be discussed in Section 4 5

4.3 c-Myc Over-expression Studies

Epithelial cell proliferation and differentiation is a complex process The regulation of genes encoding structural proteins, such as cytokeratins, during epithelial cell growth and differentiation is relatively well known However, less is known about the roles of specific transcription factors (Lymboussakia, et al, 1996) Since the discovery of c-myc, the myc gene family and the proteins they encode have formed part of the research programme of many cancer research laboratories worldwide However, despite the numerous studies performed or currently under investigation, the role and mechanism of action of the c-myc proteins still remain enigmatic In fact, although recently large advances in understanding the role played by this oncogene and some of its binding partners have been achieved the data obtained appears extremely complex and in some cases contradictory Many authors believe that oncogenes simply promote cell growth or cell death, and that they block cellular differentiation Studies performed in this laboratory have shown results that contradict this view In our differentiation model system we have shown that up-regulation of the c-myc oncogene may be of importance in the lung cell differentiation process and it is possible that critical genes such as c-myc, may play different roles depending on cell type

Our research group has previously demonstrated that an increase in c-Myc expression is associated with the induction of differentiation, in both the DLKP and A549 cell lines, following treatment with BrdU (Walsh, PhD 1999) Western blot analysis revealed a significant increase in the levels of c-Myc protein during the differentiation of both epithelial cell lines Along with the increase in c-Myc, an increase in eIF4E was also observed eIF4E has been identified as one of the few known transcriptional targets of the c-myc protooncogene (Jones *et al*, 1996) Studies have shown that eIF-4E expression correlates with c-*myc* levels following growth induction and that overexpression of c-*myc* in rat embryo fibroblasts leads to an up-regulation of eIF-4E expression (Makhlouf, *et al*, 2001)

It may appear contradictory that both c-Myc and eIF4E are up-regulated during epithelial lung differentiation in the DLKP model since there have been extensive reports in the literature of the down-regulation of c-*myc* expression during differentiation (Yen and Forbes, 1990, Valyi-Nagy *et al*, 1993, Shimizu *et al*, 1994) correlated with growth arrest (Bennet *et al*, 1994) However, the roles of oncogenes such as c-*myc* and eIF4E in cellular differentiation are poorly understood

431 Stable Over-expression of c-myc in DLKP

In light of our earlier studies, which showed that there was a significant increase in c-Myc protein levels in both DLKP and A549 cells treated with BrdU (Walsh, PhD 1999), it was decided to transfect the DLKP and A549 cell lines with a full length human c-*myc* expression vector A549 is known to be a difficult cell line to transfect, following several attempts using different transfection techniques (Section 2 14 2 and Section 2 14 4) it was not possible to obtain over-expressing clones

DLKP and a clonal subpopulation of DLKP, DLKP-SQ, were both transfected (Section 2 14 2) with a full length human c-*myc* expression vector Several attempts were made to generate c-Myc over-expressing clones The plasmid appeared relatively easy to transfect into both the DLKP and DLKP-SQ cell lines Several stable clones were isolated from a mixed population, however, none of the clones isolated appeared to overexpress c-*myc* at the mRNA (Section 3 3 1 1 1) or protein level (Section 3 3 1 1 2) One possible reason for the lack of overexpression of c-*myc* may be due to the possible induction of an apoptosis pathway in cells over-expressing c-Myc and the clones isolated from the mixed population were cells that had become resistant to geneticin, but did not greatly over-express c-Myc

432 Transient Transfection of DLKP-SQ with c-myc

As a result of the inability to generate stable over-expressing c-Myc clones in both the DLKP and DLKP-SQ cell lines, we decided to attempt to investigate the role that c-myc plays in differentiation of lung cells by transiently transfecting (Section 2 14 4) the DLKP-SQ cell line The DLKP-SQ cell line was selected for the transient transfections simply because this subpopulation of DLKP is known to be easier to transfect, than DLKP

RT-PCR analysis of transiently transfected DLKP-SQ cells revealed that the mRNA level of c-*myc* was significantly increased after 24h, 48h and 72h time points when compared to the untransfected DLKP-SQ parental cells (Section 3 3 1 2 1) An increase in c-Myc protein levels after 48 hours of transfection and a further increase at 72 hours was demonstrated (Section 3 3 1 2 1) Investigation of mRNA and in some cases protein levels of potential c-*myc* target genes was then performed, the results are described in the following subsections

4 3 2 1 YY1 Expression in c-myc transient transfections

The YY1 transcription factor possess the unusual ability to both positively and negatively regulate the expression of a number of genes which are thought to be important in cellular differentiation (Riggs *et al*, 1991) (reviewed in Section 1 7 2) and we have previously (Walsh, Phd Thesis, 1999) have identified this transcription factor as an important factor in our differentiation assays. The unusual properties exhibited by this transcription factor allow it to regulate the expression of different genes in opposing fashion, making it a pivotal factor in the regulation of developmental gene expression. We have previously demonstrated in that YY1 is up-regulated in DLKP and A549 cells treated with BrdU (Walsh, PhD Thesis 1999) suggesting that this transcription factor may indeed be a critical factor in the induction of differentiation on our *in vitro* cell systems.

Investigation of YY1 protein expression in the c-myc transient transfection experiments revealed an increase in this protein following the over-expression of c-myc At 24 hours following transfection with the c-myc expression vector a increase in YY1 protein expression was demonstrated and this increase was maintained at 72 hours (Section 3 3 1 2 3) Due to problems with RT-PCR analysis for the YY1 gene, it was not possible to ascertain if the mRNA levels of YY1 were altered in these experiments These results demonstrate that c-Myc had positive effect on the expression levels of YY1 in cell system

4 3.2 2 eIF4E Expression in c-myc transient transfections

eIF4E is a 25 kDa phospho-protein responsible for Cap-binding specificity in eIF4F complexes during eukaryotic translation initiation events eIF4E is widely accepted as the limiting factor in translational initiation, particularly for mRNAs with complex 5' UTR's The core promoter region of the eIF4E gene contains a pair of E-box consensus sequences, CACGTG, which corresponds to the c-myc binding sequence The eIF-4E gene is one of the few known targets of the c-Myc protein Studies have shown that eIF-4E expression correlates with c-myc levels following growth induction and that over-expression of c-myc in rat embryo fibroblasts leads to an up-regulation of eIF-4E expression (Makhlouf, *et al*, 2001) which is in agreement with studies that we have performed in this laboratory and results presented in this thesis Examination of the transient overexpression of c-myc in DLKP-SQ revealed that eIF4E protein levels increased after 24 hours of transfection, but reverted back to levels of control cells following 48 hours (Section 3 3 1 2 4)

4.3 2 3 Mad expression in c-myc transient transfections

The Myc/Max/Mad family of transcription factors plays a fundamental role in the regulation of cell proliferation, oncogenic transformation, and cell differentiation However, it remains unclear whether different heterodimers, such as Myc/Max and Mad/Max, recognize the same or different target genes *in vivo* c-Myc and Mad1 belong to a superfamily of interacting proteins that regulate cell growth and differentiation Myc, Max Mad1, Mad2 (Mxi1), Mad3 Mad4 and Mnt are all members of this family In order for Myc to exert is cellular function it requires dimerization with another protein Blackwood and Eiseman (1991) undertook a study to try and uncover a binding partner required for c-myc functionality and subsequently they identified a small, novel protein which they named Max Sequence analysis showed that Max was similar to myc in that is also contained a bHLH and leucine zipper motifs The structure of Max appeared to be extremely simple, comprising of only 160 amino acids, 60 of which constitute the DNA-bindmg/dimerization domain (Cole, 1991) Max has been found to be a very stable protein and appears to be constitutively expressed in resting as well as proliferating cells. In proliferating cells, all newly synthesised c-myc is found associated with Max, suggesting that c-myc is rate-limiting in the formation of c-myc-Max dimers

Further work was carried out by Ager and Eiseman (1993) to investigate Myc's and Max's ability to interact with other proteins The fact that the highly stable Max protein is present at times when *myc* is not expressed, prompted Eiseman and Ager to examine further the possibility that Max might associate with other proteins This group isolated a Max-binding protein which in turn the named Mad (Ager and Eisenman, 1993)

The Mad protein is made up of a family of four closely related proteins Mad1, Mxi 1 (Mad2), Mad3 and Mad4 When Mad proteins are over-expressed in cells, they inhibit proliferation and apoptosis and suppress cell transformation not only by *myc*, but also by a variety of oncogene factors (Zhou and Hurlin, 2001) Transcriptional repression function of Mad proteins corresponds to its biological activity which is in direct opposition to that of *myc* proteins

The expression levels of Max were not investigated in the c-myc transfection experiments, nor how the DLKP-treated with BrdU affects the expression levels of Max or Mad proteins Results presented in this thesis demonstrate that c-Myc protein over-expression has negative effect on the expression of Mad1 protein (Section $3\ 3\ 1\ 2\ 2$) The reason why overexpression of c-Myc decreased the expression levels of Mad1 proteins is not clear. However, in terms of cell function it is not surprising that increased expression of c-Myc would have a negative effect on the expression levels of Mad1 proteins, given that these two

proteins have been demonstrated to have conflicting roles in cellular differentiation.

4.3.2.4 β1-Integrin Expression in c-myc transient transfections

Integrins form a large family of heterodimeric transmembrane glycoproteins that bind to components of the extracellular matrix. They are versatile adhesion receptors expressed by almost every cell type. In addition to mediating cell adhesion, integrins are known to function as signalling receptors, participating in a diverse array of cellular events including spreading, migration, proliferation, differentiation and apoptosis (Debhar, 1999). Integrins also appear to be important for normal differentiation in most cell types. Their role in differentiation of epidermal stem cells has been well established (Watt, 1998).

Cell adhesion promotes cellular proliferation through the regulation of gene expression, including the immediate early genes. However, the precise role of cell adhesion in the regulation of the c-Myc proto-oncogene is not clear, and the adhesion-dependent signalling pathway(s) regulating the expression of c-Myc has yet to be defined.

Our research group has previously demonstrated that treatment of DLKP and A549 with the differentiation-modulating agent, BrdU, resulted in increase expression of β_1 -integrin protein (Meleady, and Clynes, 2000). An increase in c-Myc was also observed in these cells (Walsh, PhD, 1999). Interestingly, in the transient transfection of the DLKP-SQ cell line with c-myc, a slight decrease in the mRNA levels of β_1 -integrin was observed. It has been previously been reported in the literature that constitutive expression of c-Myc in keratinocytes causes a reduction in β_1 -integrin expression levels. Our study of the transient over-expression of the c-myc gene agrees with these studies (Section 3.3.1.2.6). However, this does not explain how the expression levels of β_1 -integrin are increased in BrdU-treated DLKP and A549 cells in which c-Myc levels are increased. It is possible that the treatment of these cell lines with BrdU induces β_1 -integrin proteins via some other pathway way which is independent of

regulation of c-Myc Another reason for this disparity between the BrdUtreatments and the c-*myc* transient over-expression studies potentially could be related to c-Myc phosphorylation In these experiments the phosphorylation status of c-Myc has not been investigated Future work is required to examine if the activity of c-Myc is a result of kinase-related effects in BrdU-treated cells

In summary, we have found that it was not possible to generate stably overexpress c-Myc in the DLKP cell line, but we have demonstrated that the transient over-expression of c-Myc increased levels of YY1 and eIF4E protein expression levels were increased in these transient experiments. Our results agree with published data where up-regulated c-Myc expression levels have been reported to increase the expression of eIF4E protein levels (Makhlouf, et al, 2001) Further work is required to investigate the exact role c-myc plays our model differentiation system The over-expression of c-myc may indeed be involved in the regulation of other important differentiation-related genes not investigated in these studies Genes that may warrant further investigation maybe those which we have identified as being differentially expressed and thought important in the regulation of differentiation by BrdU, 5,2-FdU and IdU, following DNA microarray analysis (Section 3 2 and Section 4 5) In view of the fact that the microarray experiments performed in this thesis were conducted after this set of c-myc over-expression studies, and due to time constraints, it was not possible to investigate if c-myc was involved in their regulation of expression

4.4 Yin Yang 1 Over-expression Studies

The Yin Yang 1 (YY1) transcriptional regulator is thought to be of critical importance in the control of normal development (Riggs et al, 1991) (reviewed in Section 172) YY1 possesses the unusual property of regulating transcription in three ways In different cellular contexts, YY1 has been shown to activate, repress or initiate transcription of a number of cellular genes These opposing roles in the regulation of gene expression make YY1 a pivotal factor in the regulation of developmental gene expression YY1 is ubiquitously expressed transcription factor that is thought to play an important role in the regulation of many cellular and viral genes through the consensus cis recognition sequence (Yao, et al, 1998) It has been reported previously to up-regulate genes such as c-mvc (Riggs el al, 1993, Lee et al, 1994) Previous investigation in our laboratory of the DLKP and A549 cell lines showed elevated expression of YY1 protein upon treatment with BrdU in both cell lines (Walsh, PhD 1999) BrdU has also been shown to up-regulate the levels of YY1 in embryonic myoblasts (Lee et al, 1992), further confirming work previously performed in this laboratory It appears that YY1 may play an important role in the control of normal differentiation and development, due to its unusual ability to differentially regulate expression of various genes

Despite the large number of genes found to be potentially regulated by YY1 and the increasingly large number of proteins that are claimed to interact with YY1, little is known concerning how YY1 itself is regulated YY1 has also been linked to cellular growth and differentiation One study by Lee *et al* (1992) demonstrated that the level of YY1 activity changes during myoblast differentiation. It has been shown that YY1 levels increase rapidly in quiescent NIH3T3 cells in response to serum and insulin-like growth factor 1 treatment (Shi, *et al*, 1997) YY1 DNA binding activity has also been shown to be regulated during differentiation. For example, YY1 DNA binding decreases during differentiation of human teratocarcinoma cells (Liu, *et al*, 1994)

In view of its pleiotropic activities, it is not surprising that association of YY1 with other proteins appears to be important in determining the activity of YY1

YY1 was first cloned because of it was found to bind to an E1A sensitive site in the Adenoassociated virus (AAV) P5 promoter YY1 has also been shown to associate with another transcriptional activator Sp1, YY1 and Sp1 together activate transcription in a synergistic manner (Lee, *et al*, 1993, Seto, *et al*, 1993) Also, studies using the P5 promoter in an *in vitro* system indicated that YY1 TFIIB and Pol II are sufficient to initiate transcription

YY1 has been demonstrated to increase the transcription from the P1 and P2 promoter of the c-myc gene (Riggs et al, 1993) In addition, it has been revealed that YY1 associates with the c-Myc protein itself (Sherivastava, et al, 1993) In co-transfections carried out by Shrivastava, et al (1993), over-expression of c-Myc inhibits both the transcriptional activation and repression abilities of YY1 YY1 is thought to compete with Max (Section 1711), excluding it from association with c-Myc (Shrivastava et al, 1994) Since the 201-343 amino acid region of YY1 is required for association with c-Myc and is also required for association with Sp1 and E1A, c-Myc may inhibit YY1 activity by mterfering with its ability to associate with other transcription proteins. Studies have shown that c-Myc interferes with the ability of YY1 to contact the basal transcription factors <u>TATA-binding protein</u> (TBP) and TFIIB

c-Myc levels vary in response to many mitogens and growth signals and it may be that the varying levels of c-Myc modulate YY1 activity *in vivo* There has been some speculation that one function of the c-Myc oncogene is to modulate the expression of YY1-dependent developmental genes by virtue of is association with YY1 (Liu, *et al*, 1996) In co-transfection experiments, c-*myc* expression was able to reduce YY1 activating function from eight-fold m the absence of coexpressed c-*myc* to two-fold in its presence (Shrivastave, *et al*, 1993) In light of YY1s ability to activate c-*myc* gene transcription, association between these two proteins may form the basis of an auto-regulatory mechanism that controls the expression and activity of both proteins (Grignani, *et al*, 1990), preventing excessive loss of growth control during periods of elevated c-Myc expression

4.4.1 Role for YY1 in regulation of differentiation in DLKP

Previous work performed by our research group showed that the differentiationmodulating agent. BrdU, was capable of inducing differentiation in our *in vitro* DLKP cell system and the lung adenocarcinoma cell line, A549(McBride S., *et al.*, 1999; Meleady P., PhD Thesis 1997; O'Sullivan F., PhD Thesis 1999; Walsh D., PhD Thesis 1999; Dolan P., PhD Thesis 2001; Meleady and Clynes, 2001a; Meleady and Clynes, 2001b). It was also proposed by work performed by Walsh (PhD Thesis, 1999) that YY1 may play a critical role in the control and induction of differentiation in our model system. To investigate if YY1 is indeed a critical factor in this model differentiation process it was decided to transfect the cell line, DLKP, and a colonal subpopulation, DLKP-SQ, with an YY1 expression vector.

Stable highly over-expression YY1 clones were generated from the transfection of DLKP-SQ cells with a full length YY1 expression vector. Preliminary characterisation on the effect of the over-expression of the YY1 transcription factor was performed on these clones. Unfortunately, during the freezing and thaw-back, the cells lost the over-expression of YY1 gene.

Western blot analysis of the isolated over-expressing YY1 clones revealed a significant increase in expression of YY1 protein in comparison to the untransfected parental cell line (Section 3.2.2.1.1). As a result of difficulties experienced generating effective RT-PCR primers, it was not possible to investigate the YY1 mRNA levels in the isolated over-expression clones.

In order to characterise the DLKP-SQ YY1 clones, the expression levels of several genes were investigated at both the mRNA and protein level in an attempt to determine if the over-expression of YY1 plays an important role in our differentiation system. In studies performed by Walsh (PhD Thesis, 1999), it was demonstrated that BrdU-treatment of DLKP increased the expression of YY1 and c-Myc proteins; indicating that these two proteins maybe two important transcription factors in this differentiation model system. Also, YY1 has been reported in the literature to associate with c-Myc; therefore, we investigated the

expression levels of c-Myc in our YY1 to determine if YY1 played a role in the regulation of c-myc RT-PCR analysis for c-myc was performed on the clones (Section $3\ 2\ 2\ 1\ 2$) revealing no change in expression of c-myc However, Western blot analysis demonstrated that there was a marked increase in c-Myc protein levels within the YY1 clones (Section $3\ 2\ 2\ 1\ 2$) It appears that the upregulation of YY1 had no effect on c-myc expression at the RNA level, but did cause an increase in c-Myc protein expression

In addition to c-Myc, Mad1 protein levels were investigated in the YY1 overexpressing clones Mad1 protein is reported to be expressed in resting and differentiating cells and is a known antagonist of c-Myc The expression of c-Myc and Mad proteins is tightly controlled and their relative concentrations are critical parameters in the regulation of cell growth Western blot analysis for Mad1 protein in the YY1 clones revealed that the level of Mad1 was increased, with Clone 4 exhibiting the greatest increase in expression (Section 3 2 2 1 3)

The effect of over-expression of YY1 on members of the family of eukaryotic translation factors (eIFs) were also investigated in this study. It was found that over-expression of YY1 up-regulated the mRNA expression levels of eIF2 α (Section 3 2 2 1 10) in all clones when compared to the untransfected parental cell line, DLKP-SQ mRNA levels of Mnk2, a known eIF4E kinase, were examined. It was demonstrated that over-expression of YY1 in this cell model system had no effect of the mRNA levels of Mnk2.

Western blot analysis for eIF4E in the YY1 clones was performed revealing that a substantial increase in the level of eIF4E protein (Section $3 \ 2 \ 2 \ 1 \ 4$) All clones exhibited a marked increased in eIF4E protein, however, Clone 4 showed the greatest change Immunocytochemical analysis of the clones revealed that the over-expression of YY1 also increased the expression of Ornithine Decarboxylase (results not shown) which is known to be translationally regulated by eIF4E over-expression Due to problems with RT-PCR primers it was not possible to investigate if the mRNA levels of eIF4E were altered in these clones An increase in the expression of eIF4E protein levels was also demonstrated in BrdU-treated DLKP cells eIF4E has also been reported as a target for c-Myc and over-expression of c-Myc has previously been shown to up-regulate eIF4E protein levels (Makhlouf, *et al*, 2001), which was confirmed here Also, an increase in eIF4E protein expression was demonstrated in the treatment of A549 cell lines (Section 3 1 14) with BrdU and this further confirms the fact that YY1 maybe playing role in this differentiation system

Other members of the translationaly machinery were investigated, these included Mnk2, eIF4E-BP1 and eIF2 α RT-PCR analysis of eIFF4E-binding protein-1 revealed that there was no change in mRNA expression in any of YY1 over-expressing clones RT-PCR analysis for eIF2 α revealed an increase in mRNA levels in the clones Western blot analysis also demonstrated an increase in eIF2 α protein levels

In our studies we demonstrate that the over-expression of YY1 in our system had an effect on some of the translation machinery of the cell In particular, a major increase in the expression eIF4E protein levels was demonstrated along with an increase in the expression of eIF2 α mRNA and protein levels eIF2 α is a subunit of eIF2 and is involved in the recruitment of the initiator tRNA (Met-tRNA) to the 40S Ribosomal subunit, in the initiation process of translation (Colhurst *et al* 1987) It has been suggested that eIF2 α , along with eIF4E, may possibly be a limiting factor in initiation of protein synthesis Under conditions of elevated eIF4E expression, translation of complex or repressed mRNAs have been shown to be initiated more frequently, and can compete more efficiently for eIF2 α , becoming translated at the same rate as 'normal' mRNAs. The over-expression of these two important initiation factors may thus be playing important roles in the induction of cytokeratin protein expression in the YY1 over-expressing clones

We also examined by RT-PCR analysis β_1 -mtegrin mRNA expression levels in the YY1 over-expressing clones and demonstrated that there was no change in the level of expression of β_1 -integrin mRNA (Section 3 2 2 1 1 8) However, Western blot analysis revealed that upon up-regulation of YY1 protein, β_1 - Integrin protein levels appeared to be down-regulated (Section $3\ 2\ 2\ 1\ 1\ 8$) As mentioned earlier up-regulation of c-Myc protein has been shown to have an inhibitory effect on the expression levels of β_1 -integrin. In our *in vitro* system we have demonstrated that associated with the over-expression of YY1 protein, is an associated up-regulation in the expression levels of c-Myc protein. This upregulation in c-Myc protein may explain why a decrease β_1 -integrin was observed in the YY1 over-expression experiments. Also, as for c-Myc, YY1 over expression may have a different affect on the expression of certain genes, and the expression pattern of these genes may vary when compared to BrdUtreatment of cells

Immunocytochemical analysis performed by Derek Walsh (PhD Thesis, 1999) demonstrated that the over-expression of YY1 in DLKP induced cytokeratm expression in the cell line In order to investigate if YY1 over-expression altered the mRNA expression of these proteins, RT-PCR analysis was performed for cytokeratins 8, 18 and 19 This analysis revealed that the level of mRNA of cytokeratm 8 remained unaffected by the over-expression of YY1 (Section 3 2 2 1 5) However, the mRNA levels of both cytokeratin 18 and 19 (Section 322116and Section 322117) were both increased, indicating that YY1 maybe involved in the regulation of their expression For some unknown reason the stable YY1 clones generated in this study lost their YY1 over-expression during freeze/thaw back Several clone stock banks were prepared, however when these stocks were re-cultured, Western blot analysis revealed that the clones had lost all over-expression of YY1 protein. Due to time constraints in this thesis, it was not possible to ascertain if the protein levels of these three cytokeratins were also altered and some further work needs to be performed to address this

Section 4.4 2 Transient Over-expression of YY1

Due to time constraints towards the end of thesis and problems with the YY1 plasmid, it was not possible to generate more stable over-expressing YY1 clones Therefore, it was decided to transiently transfect the DLKP and DLKP-SQ cell lines with a YY1 expression vector for up to 72 hours in order to further investigate the potential role that YY1 plays in our model differentiation system The initial transient transfections where performed with the YY1 expression vector described in Section 3 2 2 2 while the DLKP YY1 transient transfections were carried out using the vector described in Section 3 2 2 2. Both YY1 plasmids contain a full length human cDNA gene

From analysis of the transient over-expression of YY1 experiments it was found the YY1 mRNA levels were increased several fold following 72 hours of transfection (Section 32221) Unfortunately, due to continual problems sourcing anti-YY1 antibody from Santz Biotec, it was not possible to examine the protein levels of YY1 in these experiments Transient over-expression of YY1 appeared to have a negative effect on the expression levels of c-myc mRNA, and analysis revealed that the c-myc signal was complete shutoff after 48 hours, but were found to increase again after 72 hours, but not back to control levels (Section 3 2 2 2 2) However, Western blot analysis demonstrated that c-Myc protein levels were increased upon the over-expression of the YY1 gene From analysis of the stable over-expression YY1 (Section 32222) experiments in DLKP-SQ cells (Section 441), results demonstrated that the mRNA levels of c-myc were unchanged by the over-expression of YY1 protein, however c-Myc protein expression levels were increased in the YY1 clones

The YY1 transient over-expression studies performed confirmed that YY1 upregulation in our cell system is capable of increasing c-Myc protein expression The disparity in the effect of YY1 over-expression on c-*myc* mRNA levels maybe explained by dosage levels of the YY1 gene in the transfected cells The over-expression of YY1 achieved in the transient experiments maybe much higher than the levels obtained in the stable clones, and the differences in the levels of YY1 expression may have a bearing on the expression of c-myc mRNA in these experiments Further analysis is required to confirm this hypothesis

The effect of transient over-expression of YY1 on members of the translation initiation factors was also investigated These experiments confirmed results of the stable over-expression experiments where YY1 was demonstrated to have no effect on expression levels of eIF4E-binding protein-1 and Mnk2 (Section 3 2 2 2 4 and Section 3 2 2 2 5) In the stable YY1 clones it was found that the protein expression levels of eIF2 α were increased, however, the mRNA levels for this gene were not investigated The results from the transient overexpression of YY1 revealed that the mRNA levels for eIF2 α were greatly reduced after 24 hours of transfection, but after 72 hours returned to control levels Unfortunately, due to time constraints it was not possible to investigate the protein levels of eIF2 α in these transient experiments

β1-integrm mRNA levels in the YY1 transient transfection experiments were also investigated The results of this analysis revealed a marked reduction in the expression of β 1-integrin mRNA upon up-regulation of YY1, with virtually all β1-integrm mRNA signal shutoff following 48 hours of transfection with YY1 However, 72 hours after transfection the mRNA expression levels of β 1-integrin had almost returned to that of the control, untransfected cells These results in part contradicted the RT-PCR analysis performed on the YY1 stably overexpression clones, which showed no apparent change in ß1-integrin mRNA levels (Section 32228) Western blot analysis demonstrated a marked reduction in \beta1-integrin protein levels In both the YY1 stable and transient over-expression studies we have demonstrated that YY1 is cable of up-regulating c-Myc protein levels in your system Therefore, it is plausible to assume that this up-regulation in c-Myc protein levels may potentially be regulating the levels of The regulation of β 1-integrin by c-Myc has previously been β1-integrm reported

The effect of YY1 over-expression on the mRNA expression of cytokeratin 8 and 18 was examined It appeared that YY1 over-expression had no major impact the mRNA levels of these two cytokeratins These experiments were preformed at the end of this thesis and due to time constraints it was no possible to investigate if transient YY1 over-expression induced cytokeratin protein expression, as was demonstrated by our research group in stable YY1 overexpression clones (Walsh, PhD Thesis, 1999)

In summary, we have demonstrated that the stable and transient over-expression of the YY1 transcription factor in our cell system is capable of inducing a similar pattern of genes as were found altered in BrdU-treated DLKP cells We demonstrate that both BrdU-treatment of DLKP and the over-expression of YY1 protein both increased the expression levels of c-Myc and eIF4E proteins These results suggest that these two genes may be playing a critical role in the regulation of the differentiation pathway induced in DLKP by BrdU

4.5 DNA Microarray Analysis

Temporal and spatial control of gene expression by transcription factors is the hallmark of development The program of lung development from the beginning is directed by the activity of key transcriptional factors DNA microarrays which permit assessment of gene expression patterns on a global level have become increasingly available Initial work in this study demonstrated that a range of thymidme analogues, including BrdU, IdU and 5,2 -FdU (Section 42), were capable of inducing differentiation-related proteins in our DLKP and A549 cell line model systems Analysis of DLKP cells treated with these three thymidine analogues illustrated that they all induced a similar pattern of differentiationrelated genes (Section 42) All three analogues altered the morphology of DLKP upon treatment for 7 days In particular, the expression of cytokeratins 8, 18 and 19 proteins were induced following exposure of cells to the thymidine analogues (Section 31) To investigate the global changes that occurred in DLKP cells treated with BrdU, 5,2 -FdU and IdU, DNA microarray analysis was performed using Affymetrix U133A GeneChips® (Section 215) The aim of this analysis was to identify patterns of gene expression changes in all three thymidine analogue treatments and also to identify common gene alterations between the three DNA microarrays performed, thereby possibly identifying genes which maybe potentially regulatory in the pathway of differentiation induced by these three analogues

The first DNA microarrays to be performed were microarrays on BrdU-treated DLKP cells Three separate microarray experiments, labelled Exp 1, Exp 2 and Exp 3, were performed In the initial experiments, Expt 1, time points at 0, 1, 3, 7 and 14 days and in the Expt 2 experiment time points of 0, 1 and 7 days were chosen for analysis (Section $3 \ 2 \ 2 \ 1$) These initial microarray experiments were carried out using single samples from each time point Gene expression analysis on data sets was carried out as per Rushton *et al*, (2003) In Exp 1 over 9,100 genes were identified as being differentially expressed in the experiment, whereas in Exp 2 approximately 3,500 genes were identified A large difference in the numbers of genes identified as being differentially expressed between

205

these two experiments maybe due to the fact that 5 experiment time points were chosen in Exp 1 In Exp 2 only time points at 3 and 7 days were chosen

Following gene expression analysis on these data sets, a list of differentially expressed up- and down-regulated genes was created From this list, ten genes were selected and RT-PCR analysis was performed in order to verify the gene expression analysis results The genes were selected on the basis of being the most robust and the most reliably consistent in the two experiments The ten selected genes were then confirmed by RT-PCR analysis in order to validate the microarray data sets

Expt 3 was preformed in triplicate using biological replicates and time points of 0, 3 and 7 days were chosen (Section 3 2 2 3) Since this experiment was performed using biological triplicates, the promoter analysis (Section 3 2 2 5 and Section 4 6) for this thesis was focused on this experiment In this experiment following gene expression analysis a total of 1,093 genes were identified as being differentially expressed (Appendix 7 1) 812 of which were demonstrated as being up-regulated, whereas 281 genes were identified as being down-regulated at day 7

In the 5,2 -FdU microarray experiment, total of 2,240 genes were identified as being differentially expressed across the experiment (Appendix 7 3) At day 7, 1,186 of these genes were shown to be up-regulated and 961 genes downregulated The total number of differentially expressed genes identified in the 5,2 -FdU array found to be almost twice that Epx 3 BrdU array In the case of the IdU microarray 722 genes were identified as being differentially expressed, 471 of which were found to be up-regulated at day 7, with a further 251 downregulated

Exp 3 of the BrdU microarrays, the 5,2 -FdU and IdU microarrays were performed towards the end of this thesis and as a result time did not allow for

RT-PCR validation of wide set of genes identified as being differentially expressed However, the ten genes used to validate the initial BrdU arrays, Exp 1 and Exp 2, also emerged following analysis of the third BrdU microarray, Exp 3, and the 5,2 -FdU microarray These ten genes were used to validate the BrdU (Exp 3) and 5,2-FdU However, not all of these ten were found up-regulated in the IdU microarrays, therefore only a subset of these were used to validate this microarray

451 Comparison of the BrdU, 5,2 -FdU Microarray and IdU DNA Microarrays

Venn diagrams of differentially expressed genes were created in order to identify genes that that were commonly up-regulated at 7 days between the Exp 3 BrdU, 5,2 -FdU and IdU microarrays (Section 3 2 5) 179 up-regulated genes were shown to be common to BrdU and 5,2 -FdU only 132 up-regulated genes were found common to BrdU and IdU only, and a further 29 genes common only to IdU and 5,2 -FdU A total of 93 up-regulated genes (Appendix 7 5) were identified as being common to all three treatments

Similar to the up-regulated genes, the lists of differentially expressed downregulated genes from the BrdU, 5,2 -FdU and IdU microarrays were overlapped using a Venn diagram in order to identify genes that are commonly downregulated between the three treatments From the Venn diagram 105 downregulated genes were found to be common to both the BrdU and 5,2 -FdU microarrays It was observed that 24 genes were commonly down-regulated between BrdU and IdU, with a further 15 genes common to 5,2 -FdU and IdU only A total of 9 genes were identified as being down-regulated between all three microarray experiments

It should also be noted that BrdU treatment of DLKP cells differentiate in response to treatment with BrdU Therefore one would expect some 'noise' from undifferentiated cells Also, the low percentage of cells induced to differentiate

in the BrdU differentiation assays agrees with the finding of relatively few genes found to overlap between the three microarray experiments.

4.5.2 Identification of biological themes with EASE

High density microarray experiments have enabled the discovery of global patterns of biological responses to experimental conditions. Huge amounts of effort have been placed on issues such as data normalisation and statistical testing of genes that are significantly clustered on the basis of expression profiles. The net result of these efforts is the creation of one or more often very long lists of differentially expressed genes. However, one area of microarray analysis that requires attention in trying to make biological sense of these lists is of identification of biological themes from the gene lists. Annotating genes from such lists can be extremely laborious using internet-based databases or manual literature searches. Even after performing such searches, it can be difficult to identify biological themes from the gene list in order to makes sense of the microarray data. Expression Analysis Systematic Explorer (EASE) is a publicly available software application (http://david.niaid.nih.gov/david) that can used for the determination of biological themes from lists of genes.

The main focus of the differentiation studies performed in this body of work was to identify genes that were common to all three thymidine analogues, BrdU, 5,2 - FdU and IdU, since all three induce similar patterns of differentiation. A total of 93 genes (Appendix 7.5) were identified as being up-regulated between the three microarray experiments. In order to identify biological themes within this set of 93 genes, they were entered into EASE.

Not surprisingly, due to the effect these thymidine analogues have on the cell, some of the categories that featured strongly in this analysis included cell death and apoptosis categories. However, other groups which featured heavily in the statistical scoring in the EASE analysis were the categories of morphogenesis, organogenesis and development (Table 4.1).

Common Name	Affymetrix Id
ID3	207826_s_at
LY6H	206773_at
PHLDA2	209803_s_at
GBX2	210560_at
CYP1B1	202436_s_at
ID1	208937_s_at
F2R	203989_x_at
TPM1	206116_s_at
GPC4	204983_s_at
CSRP2	207030_s_at
PAPSS2	203058_s_at
HMOX1	203665_at
MCAM	209087_x_at
EP841L2	201719 <u>s</u> at
KLF4	221841_s_at
TAGLN	205547_s_at
DPYSL2	200762_at
DKK3	214247 <u>s</u> at
FGF2	204422_s_at
DTR	203821_at

Table 4.1This table details the 20 genes categorised by EASE has being
involved in 'Development'

A total of 20 (Table 4 1) of the 93 (Appendix 7 5) up-regulated genes common to all three microarrays fell into the development category, a subset of the more interesting genes are described in the following subsections

4521 Id family

The Id family of four helix-loop-helix (HLH) transcription factors (Id1, Id2, Id3 and Id4) act as dominant negative regulators of basic HLH proteins The four Id proteins share a homologous HLH domain, but lack the basic DNA binding domain Id proteins act to sequester bHLH proteins by forming inactive dimers to prevent binding of bHLH proteins to E-box sites (Chaudhary *et al*, 2000)

Two genes from the Id family of transcription factors, Id1 and Id3, were found following EASE analysis, in the development category and were common to all three DNA microarray experiments The expression of Id1 mRNA was found

to be up-regulated in all three microarray experiments: 4.8-fold in BrdU, 3.6-fold in 5,2'-FdU and 1.6-fold in the IdU microarray. The mRNA expression levels of the Id3 family member was increased by 7.5-fold in the BrdU microarray, 7.9-fold and 1.6-fold in the 5,2'-FdU and IdU microarrays, respectively.

Two other Id family members, Id2 and Id4, were also found up-regulated in the DNA microarray experiments. However, EASE did not classify these two family members in to the 'Development' category. The expression of Id2 mRNA was increased to 3.9-fold in both the BrdU and 5,2-'FdU microarray and 1.5 fold in the IdU microarray. The expression levels of Id4 mRNA were increased to 4.4-fold and down to 2.7-fold at day 3 and day 7, respectively, in the BrdU microarray. In the 5,2'-FdU microarray experiments the mRNA levels of Id4 were found to be 3.2-fold and 3.9-fold at day 3 and day 7 respectively. And in the IdU microarray the expression of Id4 mRNA was found to increase to 2.1-fold following 7 days of exposure to the analogue.

The different 1d members have been localised to different chromosomes and show marked differences in their pattern of expression and function (Fong *et al.*, 2003). Although the family members are similar in the HLH domain, the regions outside this sequence are distinct from each other. It is thought that this variance between the four family members may determine their tissue specific function, as well as the binding specificity for particular bHLH proteins. Since many bHLH proteins positively regulate sets of genes during cell fate determination and cell differentiation. Id proteins are thought to inhibit the ability of bHLH proteins from binding DNA and inhibit cell differentiation.

Although Id proteins traditionally have been viewed as negative regulators of differentiation, recent work has revealed much wider biological roles, and are now thought to be important in development, cell cycle control and tumour biology. In general, the Id proteins are expected to have overlapping function because of their ability to form non-functional dimers with differentiation-inducing bHLH proteins. Recent studies suggest that his may not be true, and some Id proteins may, in fact, be required to induce and maintain the

differentiation state of a particular cell (Lui, *et al*, 2000, Cooper and Newburger, 1998) It has been demonstrated that Id2 may act as inhibitor of proliferation and is required for the determination and maintenance of the differentiated state of alveolar epithelial cells (Liu *et al*, 2000) The constitutive expressions of Id2 and Id3 mRNA in Sertoli cells suggests that these proteins may have a significant role in maintaining Sertoli cell function (Chaudhary *et al*, 2000) Chaudhary *et al* (2000) have shown that post-mitotic and differentiated Sertoli cells express high levels of Id proteins This pattern of Id2 and Id3 expression agrees with the results presented in this study, where we show a signification increase of both genes in differentiating lung epithelial cells

In several epithelial cell types, the expression of this family of proteins has been positively correlated with proliferation (Barone *et al*, 1994) They are often upregulated in proliferating and undifferentiated cells, and down-regulated upon induction of differentiation (Norton *et al*, 1998) Ectopic expression of Id proteins has also been shown to block differentiation functions in a number of cell types by sequestering cell-specific bHLH transcription factors (Melnikova and Christy 1996, Shoji *et al*, 1994) Experiments presented in our study show that mRNAs for the Id family members are up-regulated in DLKP cells induced to differentiate following treatment with halogenated pyrimidine analogues Therefore, we suggest that the Id family of transcription factors may potentially play an important role in the control of differentiation-related genes in our model cell system However, further work is required to elucidate the exact role this family of proteins plays in our differentiation system

4 5.2 2 Glypicans

Glypicans are a family of six glycosylphosphatidylinositol-anchored cell surface heparan sulfate proteoglycans implicated in the control of cellular growth and differentiation, which have been localized to rafts and caveolae (Fransson 2003) Glypicans are selective regulators of ligand-receptor binding and have been reported to control cellular growth and development In recent years it has become apparent that proteoglycans serve in several major developmental signaling-pathways It is now thought that several secreted and cell surface molecules participate indirectly in growth-factor signaling, by influencing the interactions between growth factors and receptors The evidence is particularly strong for the pathways supported by FGFs, Whits and BMPs, which all involved in a wide variety of developmental pathways (De Cat and David, 2001)

Proteoglycans are proteins, substituted with glycosaminoglycans These glycosaminoglycans bind to growth factors, extracellular matrix molecules, enzymes, protease inhibitors and many other proteins They are predominantly located on the cell surface Two major families of proteoglycans have been identified the syndecans and the glypicans Syndecans are transmembrane proteoglycans, whereas glypicans are attached to the cell surface Syndecans and glypicans show differential expression and have been found to be highly regulated during development The structures of the individual glypicans are extremely well conserved across the species It is not currently known if the glypican family members share common functions (De Cat and David, 2001)

Given the ability of glypicans to regulate the activity of cellular growth, this family of proteins has also been associated with some cancers Recent reports have showed that changes in their expression patterns maybe linked with tumour progression. One such study established a connection between glypican 1 and pancreatic cancer, where the expression of this protein was significantly up-regulated (Kleef *et al*, 1998) In our study we found that the expression of glypican-4 mRNA was increased by 16-fold at day 7 in the BrdU microarray, to 1.7-fold in both the 5,2'-FdU and IdU microarrays, respectively. The exact role that the glypicans play in our differentiation system remains unclear and further work is required to ascertain their exact role in the control of differentiation in the DLKP cell line.

212

4523 Kruppel-like factor 4

Following EASE analysis of the BrdU, 5,2 -Fdu and IdU microarray data sets, one interesting gene identified in the development category was KLF4 Analysis of the microarray experiments revealed that the expression of KLF4 mRNA was increased 1 8-fold in BrdU-treated DLKP cells, 2 8-fold in 5,2'-FdU and 2 2-fold in IdU-treated DLKP cells following 7 days exposure

Kruppel-like factors (KLFs) are DNA-binding transcriptional regulators that play a diverse role during differentiation and development The KLFs are zinc finger transcription factors, expressed in the epitheha of the skin, lungs and gastrointestinal tract as well as in many other organs Members of this family include erythroid (EKLF), lung (LKLF), basic (bKLF) and gut (GKLF, also known as KLF4)

KLF4 has been the most thoroughly investigated family member with respect to its role in cellular differentiation. This gene has been shown to be important in the gastrointestinal tract and colon epithelium, where the gene is thought to regulate cell growth and differentiation Shie et al (2000) demonstrated that the expression of KLF4 mRNA is significantly decreased in neoplastic colonic tissues including adenoma and carcinoma and they have suggested that downregulation of KLF4 may contribute to malignant transformation of the colon In this study. Shie et al (2000) showed that constitutive over-expression of KLF4 in human adenocarcinoma cells resulted in a decrease in $[^{3}H]$ thymidine uptake. whereas inhibition of KLF4 led to an increase in DNA synthesis, suggesting that KLF4 may play an essential role in controlling growth arrest in the colon This trend in KLF4 expression was confirmed in another study by Sheilds et al (1996) who demonstrated that KLF4 mRNA levels were significantly decreased in proliferating NIH 3T3 cells The exact mechanism by which KLF4 exerts its effect in is not fully understood Shei et al (2000) reported that the expression of KLF4 is closely related to that of CD1 and CD1-associated kinase activity and that KLF4 in fact suppresses the CD1 promoter activity

Earlier work in this study examined the effect of the differentiation modulating agent, BrdU, and the various other halogenated thymidine analogues (Section 3.1 and Section 4.2) had on the differentiation status of both DLKP and A549 Markers of differentiation that were investigated in these assays included a group of intermediate filaments known as cytokeratins. These proteins are known to be important in cellular differentiation and cytoskeleton organisation and have been subdivided into two main types. The acidic type I is comprised of cytokeratins 9-20, whereas the basic type II include 1-8 (Section 1.5). One cytokeratin in particular, K19, has no known basic type II keratin partner, although its expression is often found in cells that express K8 (Quinlan *et al.*, 1985). We have also demonstrated that the expression of K8 and K19 protein levels are induced our differentiation studies of both DLKP and A549 cells (Section 4.2).

Regulation of cytokeratin expression in the differentiating stratified squamous epithelium is governed by a complex interplay of both ubiquitous and tissuespecific transcription factors Little is known about the regulation of K19 expression Brembeck and Rustig (2000) reported that KLF4 and Sp1 modulate K19 promoter activity in a tissue-specific manner The role of Sp1 in the regulation of cytokeratins has been described previously The promoter of corneal-specific K3 gene is regulated by an overlapping Sp1/Ap2 site and endogenous levels of Sp1 and Ap2 define K3 gene transcription in differentiating corneal epithelial cells (Chen *et* al , 1996) The transcription of K5, K16, K17 and K18 has all been shown to be under the control of Sp1 (Ohtsuki *et al* 1993, Magnaldo *et al* , 1993, Gunther *et al* , 1995)

The KLF family of transcription factors had been phylogenetically linked to the Sp1 family Brembeck and Rustig (2000) in their study revealed that both Sp1 and KLF4 act positively on an overlapping Sp1/KLF4 site in the K19 promoter with preferential binding by KLF4 and postulated that the endogenous levels of Sp1 and KLF4 are important determinants in binding to this element. In their study they showed that KLF4 contributes to the tissue-specific transcriptional regulation of K19 expression. KLF4 appears to play an important role in cell-specific differentiation by activating K19 expression, which they demonstrated to be influenced by Sp1 in stratified squamous epithelial cells but is relatively

independent of Sp1 in pancreatic ductal epithelial cells Therefore, it is possible that KLF4 and Sp1 modulate K19 expression differently, m that Sp1 is important developmentally and KLF4 directs cell fate decisions during differentiation

Jenkins *et al* (1998) also reported that KLF4 increased the transcriptional activity of keratin 4 and Epstein-Barr virus ED-L2 promoters and suggested that KLF4 may function as a transcriptional activator in the oesophageal squamous epithelium to regulate cell differentiation. It is also possible that KLF4 may function as either an activator or repressor of transcription and that this property is promoter or cell type specific (Yet *et al*, 1998). Is it possible that KLF4 is involved in the regulation of cytokeratm expression levels in our cell system? In order to answer this question the factors involved in the regulation of KLF4 itself require investigation.

45231 Regulation of KLF4

The transcriptional regulation of KLF4 itself is poorly understood and it was recently shown by Chen et al, (2000) that IFN- γ enhanced its expression IFN- γ , a pleiotropic cytokine with antiproliferative and immuno-modulating activities, has been shown to exert its functions by enhancing transcription of IFN-yresponsive genes such as IRF-1, FcrR1 and Ly6-1A/E These genes, in general, share many common features, for example, their expression is mediated by tyrosine phosphorylation of latent pre-existing STAT1 and their promoters contain an IFN-y-activation sequence that binds specifically to phosphorylated STAT1 (Chen et al 2002) A study performed by Chen et al (2002), established the molecular mechanism by which IFN-y induced KLF4 expression in colon cancer cells This was accomplished by demonstrating that IFN-y increased KLF4 and IFR-1 mRNA levels in a similar fashion Wong *et al* (2002) demonstrated that the induction of IRF-1 by IFN- γ was STAT1-dependent and that the expression of the STAT1 gene depended on IRF-1 Together, these data suggest that IFN-y-induced KLF4 expression was mediated through STAT1 and this theory was further supported by findings showing that the effect of IFN-y on KLF4 or IRF-1 gene expression was completely abolished in STAT1-deficient cells

45232 STAT1 regulation of gene expression in response to IFN-y

The transcription factor STAT-1 is activated by the tyrosine phosphorylation mediated by JAK family kinases during cellular responses to cytokine or growth factor signalling STAT-1 directly regulates the expression of key proteins in controlling the cellular processes of growth arrest of p21 (also known as CDKN1A) and cell death via expression of caspases (Wong *et al*, 2002) In our study it was observed that p21 mRNA was up-regulated 4 9-fold in the BrdU microarray, 2.5-fold in 5,2`-FdU microarray and 2.2-fold in IdU-treated DLKP cells, after 7 days exposure STAT-1 is also thought to be an essential element in a range of different transcription factor complexes The two most commonly identified are GAF and ISGF3, which are involved in the signal transduction pathways of type I and II INFs, respectively (Stark *et al*, 1998, Decker *et al*, 1997)

Genetic and biochemical analyses have revealed the importance of the protein tyrosine kinase Jak1 and Jak2 and the transcription factor STAT1 in IFN- γ depended signalling Upon ligand binding, the receptor oligomerises and Jak1 and Jak2 are activated, leading to the phosphorylation of tyrosine 440 of the IFN- γ receptor subunit 1 (INFGR1) of the receptor, which provides a docking site for STAT1 STAT1 then is phosphorylated on tyrosine 701, leading to its dimerisation and translocation to the nucleus, where it binds to the gammaactivated sequence (GAS) elements of promoters to regulate expression of downstream genes (Rama *et al*, 2001) In our study we found the that **expression of Jak2 was increased by 1.7-fold in the DLKP IdU microarray experiment and increased by 1.8- and 2.2-fold at day 3 and day 7 in the 5,2-FdU microarray experiment, respectively** Therefore, Jak2 potentially may be involved in the phosphorylation of STAT1 in our model system

Wong *et al* (2002) proposed a role of IRF-1 in the regulation of STAT-1 expression They found that STAT-1 regulates the IRF-1 gene promoter and suggested that both gene products form a feedback loop that acts to regulate cellular responses to INFs, such as IFN- γ In this study we found that STAT-1 mRNA was increased 1.8-fold in both the BrdU and IdU microarrays and

1.6-fold in the 5.2'-FdU-treated DLKP cells These results indicate that STAT-1 may indeed be playing a role in the regulation of IFN-y which in turn may potentially be controlling the expression levels of KLF4 in our differentiation model system The expression levels of IFN-y are in the BrdU, 5.2 -FdU and IdU microarray experiments are unknown One proposed reason that they may not have been identified by microarrays analysis may be as result of less than optimal probe design by Affymetrix Affymetrix do not quality control each probe set and we know from other experiments that genes which we know are up-regulated at the mRNA levels are not detected by Affymetrix GeneChips However, from analysing the microarray data sets it would seem probably that IFN-y is in fact up-regulated in treated DLKP cells The expression of other genes that are know targets of IFN-y, such as IRF-1 and Interleukin 18 have been demonstrated as being increased several fold in the microarray experiments

It should be noted here that the Affymetrix GeneChip system has many advantages over other platforms currently available on the market However, this system does have some drawbacks Through out this study we have identified some failing in probe design, where the system has not identified genes that we know from previous studies to be altered following exposure of DLKP cells to BrdU Some of these genes include YY1, c-myc and α_2 -integrin We have previously shown these genes in particular have increased mRNA and protein levels following treatment with drug

Figure 4.1 Schematic of the proposed regulation of cytokeratin expression in BrdU-, 5,2'-FdU- and IdU-treated DLKP Cells. STAT-1 is activated by phosphorylation mediated by the Jak kinases. Phosphorylated STAT-1 translocates to the nucleus where it is proposed to be involved in the regulation of KLF4 and IRF-1 gene expression. It is suggested that up-regulation of KLF4 increases the transcription of certain genes such as the cytokeratins. IRF-1 and STAT-1 form a feedback loop that acts to regulate the cellular responses to stimuli such as INF-γ.

45233 Potential role for YY1 in regulation of IFN-γ

The nuclear factor of activated T cells (NFAT) originally described as an essential transcription factor for IL-2 gene expression in T cells, is thought to play a major role in the coordinating transcription of a number of cytokines Recent studies have demonstrated that the cytoplasmic NFAT components belong to a large family of regulatory transcription factors comprised of at least four members, NFAT 1-4, which are differentially expressed In T cells NFAT1 is expressed in both unstimulated and stimulated cells, whereas NFAT2 is expressed primarily in activated cells (Sweetser *et al* 1998)

Some studies have shown that NFAT1 (also know as NFATC2) may function in the regulation of the IFN- γ promoter Sweetser *et al* (1998) demonstrated that two strong NFAT binding sites were required for maximal expression of the IFN- γ reporter construct containing 538 bp of the IFN- γ promoter Also in this work, the group showed that YY1 did not mediate inhibition of basal IFN- γ expression Previous studies suggested that YY1 suppresses IFN- γ promoter function in Jurkat T cells by interacting at two regions within a silencer element located between the NFAT-binding sites (Ye *et al*, 1996) In contrast to this Yen *et al* (1996), Sweetser *et al* (1998) demonstrated that proteins binding to the NFAT and YY1 sites on the IFN- γ promoter may serve to initiate expression of IFN- γ in primary splenocytes Although YY1 has been shown to interact with many other transcriptional regulators, interaction with NFAT proteins has not yet been demonstrated

The mechanisms by which YY1 induces transcriptional activation of cellular genes such as c-*myc* and how proteins modulate the activating and repressive activities of YY1 remain yet unclear And this is the case of the effect of YY1 on the IFN- γ promoter, however, this transcription factor is thought to play a complex and context-dependent role in the regulation of IFN- γ expression

4 5.2.3 4 YY1 transient over-expression versus BrdU-treatment in DLKP cells

Following DNA microarray analysis performed on DLKP-treated cells with BrdU, 5,2 -FdU and IdU (Sections 3.2 and Section 4.5) it was decided to investigate if some of the differentially expressed genes identified in these microarrays experiments were also altered following the transient overexpression of YY1 RT-PCR analysis revealed that the transient over-expression of YY1 did in fact up-regulate the expression of Hmox1, Id2, Id3 and FHL1 mRNAs (Section 3.2) However, further RT-PCR analysis for FSTL1 mRNA expression demonstrated that YY1 over-expression had no effect on expression levels of FSTL1 (Section 3.2)

Promoter analysis on these four genes was also performed (Section 216) Interestingly, this analysis demonstrated that the promoter sequences of the Id2 and FHL1 genes both contained binding motifs for the Sp1 and KLF4 transcription factors Analysis on the BrdU, 5,2 -FdU and IdU microarrays demonstrated that KLF4 and the Id family of transcription factors may potentially play an important role in the induction of differentiation in our DLKP model system We have earlier discussed (Section 4 5 2 3 3) how YY1 has been shown to regulate the expression levels of IFN-y in certain cell types and how in turn IFN-y, as well as STAT-1, are involved in the regulation of KLF4 In previous studies, YY1 has been demonstrated to associate with the transcription factor Sp1 and the association of these two factors as been shown to activate the transcription of a number of cellular genes (Section 172) Therefore, it is plausible to hypothesise that YY1 is in fact a major controlling factor in the regulation of differentiation induced in our DLKP model system by BrdU, as previously suggested (Walsh D, PhD Thesis, 1999)

45235 Other genes identified in the development category included FGF-2 and LY6H

Fibroblast Growth Factor-2

Fibroblast growth factors (FGF) make up a large family of polypeptide growth factors that are found in a wide variety of organisms. In vertebrates, 22 members have been identified and are thought to be highly conserved in both gene structure and amino acid sequence. Most FGF genes are found distributed around the geneome (Ornitz and Itoh, 2001) The members of this family of proteins are differentially expressed in many tissue types, but the patterns and timing of expression differ. Some FGFs are expressed exclusively during embryonic development (FGF 3, 4, 8, 15, 17, and 19), whereas others are expressed in embryonic and adult tissues (FGFs 1, 2, 5-7 16, 18 and 20-23).

In our differentiation system, DNA microarray analysis revealed that FGF-2 mRNA levels were increased in the BrdU, 5,2 -FdU and IdU microarrays The expression of FGF-2 mRNA was found to be increased to 1 6-fold in all three arrays The expression patterns of FGFs suggest that they have important roles in development They are often involved in the direct signalling across epithelial-mesenchymal boundaries (Hogan 1999), the expression of each family member is thought to be tightly controlled However, the exact mechanisms regulating FGFs activity *in vivo* are not yet fully understood The roles which FGFs play in development have also yet to be determined

LY6H

The ly6 family of molecules was first identified in mouse and are a class of glycosylphosphatidylinositol-anchored cell surface glycoproteins Highly restrictive patterns of expression of Ly6 genes in specific subpopulations of murine myeloid and lymphoid cells established Ly6 molecules as markers for T-cell differentiation and for hematopoietic stem cells

Murine Ly-6 molecules are a family of cell surface glycoproteins which have interesting patterns of tissue expression during haematopoiesis from multipotential stem cells to lineage committed precursor cells, and on specific leucocyte subpopulations in the peripheral lymphoid tissues. These interesting patterns of tissue expression suggest an intimate association between the regulation of Ly-6 expression and the development and homeostasis of the immune system Ly-6 molecules are low molecular weight phosphatidyl inositol anchored glycoproteins with remarkable amino acid homology throughout a distinctive cysteine rich protein domain that is associated predominantly with Olinked carbohydrate. These molecules are encoded by multiple tightly linked genes located on chromosome 15 which have conserved geneomic organization. The *in vivo* functions of Ly-6 molecules are not known although *in vitro* studies suggest a role in cellular activation.

Ly6H appeared to play a role in the differentiation pathway induced in DLKP suggestion that following the treatment with BrdU, 5,2 -FdU and IdU It was observed that the mRNA expression levels of this gene was increased to 2 0and 1 9-fold in the BrdU and 5,2'-FdU microarrays, and to 1 7-fold in the IdU experiment following 7 days exposure of DLKP to each of the analogues

4.6 Investigation of potentially co-regulated genes in BrdU-treated cells

Time course microarray experiments reveal information about the temporal transcription profile of genes. Sets of genes with the same expression pattern can be grouped into clusters but the identification of molecular mechanisms responsible for co-expression requires further investigation. By using comparative promoter analysis it is possible to identify genes for which co-expression maybe a result of re-regulation. The aim of this analysis was to find promoter features that are potentially responsible for co-expression of different genes.

DLKP cells exposed to the differentiating-modulating agent, BrdU, undergo morphological change and several epithelia markers of lung cell differentiation are induced. In order to analyse global changes, the transcriptional profiles of BrdU-treated DLKP cells were examined using Affymetrix U133A DNA microarray GeneChips®. Following DNA microarray data was normalised and passed through various filters, as described in Section 3.2.2.3. Effective comparative promoter analysis requires tightly clustered gene expression profiles. To generate tight clusters the gene lists were subjected to ANOVA analysis (Section 3.2.2.5).

It is beyond the scope of this thesis to analyse all the clusters from the BrdU array for co-regulated set of differentially expressed genes. Therefore, it was decided to select one cluster and to demonstrate how it is possible to identify potentially co-regulated genes using the Genomatix Suite software (<u>www.genomatix.de</u>). In this worked example genes contained in Cluster 5 were chosen. The decision to choose Cluster 5 was made because genes contained in this cluster where found to be up-regulated following three days exposure to BrdU and remained at this level after 7 days.

A total of 115 genes were contained in Cluster 5 and were imported into the Genomatix BiblioSphere software package (Section 2.16) and were filtered using 'Biological Processes' Gene Ontology filter. After applying GO filter the genes were categorised as illustrated in figure 4.3 and ranked according o z-score. 15

224

genes (Table 4.2) were found to be classified into the 'Development' category and had a z-scoring of 1.68. These were chosen for further analysis. The hypothesis behind is experiment was that co-expressed genes that are involved in the same biological process may potentially be co-regulated at a promoter level. We could have classified the genes based on involvement in other cellular processes such as disease or molecular function alternatively, but since the overall aim of this thesis in the investigation of genes involved in cellular differentiation it was decided to select the 'Development' category.

Cockston Browser Genes Documents TP Analysis Gene-gane connections BioloSphare 3D COFfler, backgibil process

	I Taxes	(CEaseryed	J UEXpected	I IScore V	
1	NR-i-kappeD/NF-kappeD cascade	1	0.16	2.07	
- 13	intracellular signaling cascade		4.68	2.05	
1	kinete kimune response	3	1.01	2.0	
·	ATP metabolism	1	0.17	1.98	
5	G-protein signaling, adenylate cyclase activating pathway	1	0.17	1.90	
-	central nervous system development	2	0.55	1.96	
	cyclic nucleotide metabolism	1	0.10	1.96	
1	G2M transition of witotic cell cycle	1	0.18	1.93	
1	muscle contraction	2	0.56	1.92	
5	organogenesis	10 2 1 2	5.62 0.57 0.19 0.6	1.9 1.9 1.85 1.82	
	nucleotide biosynthesis				
2					
2	endocytosis				
4	group transfer coanzyme metabolism	1	0.21	1.76	
	texts	2	0.63	1.74	
	chemotaxia	2	0.63	1.74	
-	purine nucleoside triphosphete biosynthesis	1	0.21	1.74	
1	ribonucleoside triphosphate biosynthesis	1	0.21	1.74	
	purine ribonucleoside triphosphate biosynthesis	1	0.21	1.74	
00	positive regulation of transcription, DNA-dependent		0.21	1.72	
54				-	
02	apoptotic program	1	0.22	1.65	

Figure 4.3 Biological Filter of genes contain in Cluster 5.

	Common Name	LocusId	Affymetrix Id
EPAS1	endothelial PAS domain protein 1	2034	200878_at
SCML1	sex comb on midleg-like 1 (Drosophila)	6322	218793_s_at
МҮН9	myosin, heavy polypeptide 9, non- muscle	4627	211926_s_at
PHLDA2	PHLDA2 pleckstrin homology-like domain, family A, member 2		209803_s_at
TPM2	tropomyosin 2 (beta)	7169	212654_at
TPM1	tropomyosin 1 (alpha)	7168	206117_at
SMTN	smoothelin	6525	209427_at
CXCR4	chemokine (C-X-C motif) receptor 4	7852	217028_at
COL1A1	collagen, type I, alpha 1	1277	202310 s_at
PAPSS2	3'-phosphoadenosine 5'-phosphosulfate synthase 2	9060	203060_s_at
ETS2	ETS2 v-ets erythroblastosis virus E26 oncogene homolog 2 (avian)		201329_s_at
HMGA1	high mobility group AT-hook 1	3159	206074 s_at
RPS6KA6 ribosomal protein S6 kinase, 90kDa, polypeptide 6		27330	220738_s_at
ADORA2A	adenosine A2a receptor	135	205013 <u>s</u> at
GPR64	G protein-coupled receptor 64	10149	206002_at

Table 4 215 genes contained in 'Development' Category

The promoters for each of these 15 genes were retrieved using Genomatix Gene2Promoter software packages and the promoter regions of the 15 genes were then searched for a common framework of transcription factor binding sites 500 bps upstream of the transcriptional start site, for each of the genes was analysed Following this analysis, several models were identified The model illustrated below (Figure 4 4) was chosen on the basis that it contained an E box transcription factor matrix Previous work in this laboratory has suggested that c-*myc* may play an important role in the control of the differentiation pathway of BrdU-treated DLKP cells (Walsh, PhD Thesis 1999) c-Myc is known to contain an E box binding motif (Section 1 7 1 1)

The model chosen (Figure 4 4) contains three transcription factor elements MAZF, ZBPF and Ebox, were found in 6 (40%) (Figure 4 4) of the 15 gene promoters from the 'Development' category

Figure 4.4 Binding sites for MAZF, ZBPF and Ebox in the upstream promoter regions of EPAS1, MYH9, TMP1, TMP2 COLA1 RPS6KA6.

4.6.1 Role for MAZF, ZPF and EBOX Regulation of other human promoter sequences

In order to investigate the specificity of the promoter model containing MAZF, ZBPF and E box this model was searched for in all known human promoter regions. This was performed by using Genomatix ModelInspector program. From this analysis it was found that the promoter model occurs in 94 human gene promoter sequences, two of which are involved in regulation of protein biosynthesis (eIFG1 and PRKAA1). Another set of genes whose promoters also contain this model transcription factor framework are these involved in the protein kinase cascade. Included in this list of genes were STK17B, ADRA2C, PRKAA1, F2R and RPS6KA2 (Figure 4.5).

Evaluation of results

Halek Clusters_Dev_genes_Elem

Yumber of neut genes: 54 Yumber of genes americated in 60. 50 Yumber of significant 60 groups found: 6

GC group	Hant	4 penes	1 genes	H di pasi
fatty and bosynthese	4.92	2	0.14	PRIXALI (5552), (ELOVE2 (54090)
arganic and biosynthesis	4.21	2	0.18	PRIVALI (5567), ELOW.2 (54894)
regulation of protein biorvotrieses	5.02	2	LH	EEFAG1 (1981), PIKAAA (5562)
caliumic and topertheas	121	2	6.18	PREMA (5562), ELONA 2 (54898)
protest where cancel	U.	J	500	I IIII DY FORD SHIT FOR SHIT
adoration of PRAY	623	2	0.09	ADRACE (152), PREAL (5562)

Figure 4.5 Evaluation of ModelInspector Matches

Interestingly, one gene, STK17A, whose closely related family member STK17B promoter region was found to contain the proposed transcription factor model motif; was also found in cluster 5. From DNA microarray analysis we found that STK17A mRNA expression levels were increased by 1.7- and 1.9-fold at day 3 and day 7, respectively, in the BrdU Exp. 3 microarray experiments. STK17B expression levels were also found increased in the DLKP BrdU Exp. 3 microarray experiment. At day 3 and day 7 the mRNA expression levels of this gene was found to be 1.7- and 1.8-fold increased, respectively. This may be further evidence that the transcription factor model system that we have identified in this example may indeed be biologically relevant.

Further experimental work is required to confirm the model transcription factor framework identified in this example. Also, in this example only one cluster from the BrdU Exp. 3 microarray data set was investigated and genes contained in this cluster were found up-regulated at day 3 and remained up-regulated at day 7. Genes whose expression levels increase and decrease across the experiment and genes that are down-regulated at day 3 and day 7 may be investigated for co-regulation. The work required to investigate further potentially co-regulated genes in the differentiation experiments, is beyond what is possible in the time allotted for this thesis and further work may identify other interesting models

systems that are responsible for the gene expression patterns observed in our *in vitro* differentiation model system

In light of this it is clear that the results generated m these microarray experiments could be extensively mined in the manner demonstrated to reveal countless groups of potentially co-regulated genes The breath of this analysis was beyond the scope of this thesis, therefore, it was decided to illustrate the powerful use of this type of analysis in one cluster of the DLKP BrdU microarray experiment The process just described is an iterative one and further work could potentially generate additional interesting transcription factor frameworks

47 Summary

Experiments performed in this study have demonstrated that the pyrimidine analogues investigated induce a very similar gene expression changes and differentiation pattern, in drug-treated DLKP and A549 cell lines These alterations in gene expression are reflected in a common set of transcriptional gene changes, as well as drug-specific changes We have identified a whole host of additional differentially expressed genes following BrdU exposure, as well as in 5,2 -FdU and IdU-treated DLKP cells by DNA microarray analysis And have validated some of these gene expression alternations by RT-PCR

It has also been shown in this thesis that YY1 is directly capable of regulating some, but not all, of the genes altered following BrdU exposure The results of these studies further the hypothesis put forward by Walsh (PhD Thesis, 1999), which suggested that YY1 potentially plays a key role in the regulation of differentiation in our *in vitro* model system

We have analysed all these results and discussed some possible models for the observed transcriptional alternations induced in our cell systems upon induction of differentiation and suggest some experiments to future work

229

Section 5.0 Conclusions and Future Work

51 Conclusions

Pyrimdine Analogues Induce Differentiation in DLKP and A549 cell lines

This project began, as an investigation into the mechanism(s) by with the differentiating modulating agent, BrdU, is able to alter the differentiation status of epithelial lung cells A range of pyrmidine analogues, as well as BrdU, namely IdU, CdU, BromoUracil, BromoUridine, 5-FU, 5,2 -FdU and 5,5 -FdU, were also investigated to determine if similar differentiation affects were seen with these analogues as was seen with BrdU-treated DLKP and A549 cells

Our results demonstrate a common differentiation effect of all the pyrmindine analogues in both the DLKP and A549 cell lines The ability of these analogues to induce differentiation in both cell lines was assessed by examining their effect on protein expression levels of cytokeratin 8, 18 and 19, α 2-mtegrin, β_1 -integrm and Ep-CAM This study has shown that these proteins are induced in DLKP cells and are increased A549 cells following exposure to these analogues

CDNA Transfection of c-myc and YY1 into DLKP

In light of work performed in our laboratory which demonstrated that BrdU treatment of DLKP and A549 cells significantly increases in the expression of c-Myc and YY1 (Walsh, PhD Thesis, 1999) It has been suggest that these two transcription factors may potentially be important key regulators of differentiation in our cell system Therefore, it was decided to transfect full length human c-myc and YY1 cDNAs into the DLKP cell line in order to determine if their over-expression induced similar patters of gene expression as was demonstrated in BrdU-treatment of DLKP

Attempts to stably over-express the *c-myc* expression vector in our DLKP cell line proved unsuccessful Clones isolated from a mixed population of cells did

not exhibit any significant up-regulation in either c-myc mRNA or protein levels. Therefore, it was decided to transiently transfect the vector in order to determine if c-myc was a key regulator of differentiation. We demonstrated that the transient over-expression of c-myc had a positive effect on YY1 and eIF4E protein expression levels which is in agreement with results obtained from the treatment of DLKP cells with BrdU.

Over-expression of the transcription factor YY1, into DLKP cells also resulted in a significant increase in the expression levels of c-Myc and elF4E proteins. Also associated with the transient increase in YY1 levels was a increase in genes which were identified as differentially expressed in the DNA microarrays performed in this study. We show that mRNA levels for FHL1, Id2, Id3 and HMOX1 are all increased in YY1 transiently transfected cells. This provides further evidence that YY1 is indeed an important factor in the regulation of differentiation and that YY1 transfection and BrdU treatment of the DLKP cell line may induce a similar pattern of differentiation in our cell system.

DNA Microarray Experiments

DNA microarrays were also performed on DLKP cells treated with 5,2'-FdU. IdU and BrdU in order to examine global transcriptional changes which occur in DLKP cells following exposure to these differentiation-inducing drugs. 93 upregulated differentially expressed genes were identified as common to all three microarray experiments. These genes were further investigated in order to determine their involvement in the process of differentiation in our cell system. These 93 genes were subjected to EASE analysis, which we used, helped to identify biological patterns in the gene list. Following this analysis we narrowed our focus on a subset of the 93 genes which are thought to be involved in cellular development. We propose that the ld family of transcription factors may be important regulators of differentiation in our cell models. This family of helixloop-helix transcription factors has also been demonstrated as being a central regulator in the differentiation of other types of epithelial cells, besides the lung. These studies provide evidence that Id proteins may in fact be significant controllers in our system and we suggest that these transcription factors may indeed have a wider role to play in cellular process than traditionally thought

Another finding from the microarray experiments performed in this thesis was the involvement of the transcription factor, KLF4 KLF4 has been shown to be important in the gastrointestinal tract where the gene is thought to regulate cell growth and differentiation This gene has also been associated with the regulation of cytokeratin expression in other cell systems and from the results of this thesis we hypothesis that this transcription factor could potentially be involved in the regulation of cytokeratin expression in BrdU-treated DLKP cells

From our microarray experiments we propose a role for KLF4 in the regulation of cytokeratin expression in our differentiation system We hypothesis that KLF4 mRNA levels are increase mediated by the phosphorylated STAT-1 and IFN γ and IRF-1 We also suggest a possible role for YY1 involvement in the regulation of IFN γ within the cell The involvement of YY1 in this model is further strengthen following promoter analysis of a subset of genes identified as differentially expressed in the DNA microarray experiments As mentioned earlier we have shown that YY1 is capable of inducing the expression of FHL1, Id2, Id3 and HMOX1 in DLKP cells following transient over-expression studies We demonstrate that the promoter sequences of Id2 and FHL1 genes both contain binding motifs for Sp1 and KLF4 transcription factors, which provides further evidence for important roles for both YY1 and KLF4 in our proposed model

233

Future Work.

The work described in this thesis has identified a number of key factors and the mechanism(s) that maybe critical in the control of differentiation of lung epithelial cells. Areas that would be of interest for further study may include

1 YY1 Transfections

- DNA Arrays and Protein Arrays Perform DNA arrays on stable YY1 clones Investigate of YY1 over-expressing clones by DNA microarray analysis may provide further leads and help to identify gene targets for this unusual transcription factor Comparison of the results of YY1 and the microarray experiments preformed on pyrmidine-treated DLKP cells may identify common regulatory genes in our *in vitro* lung differentiation model Investigate on the altered protein profiles in YY1 transfected cells may also be of interest. The use of new protein arrays, as provided Ciphergen SELI-TOF system, may generate interesting leads for further investigation
- DIGE 2D electrophoresis Analysis experiments on stable YY1 clones using DIGE analysis may also aid in the identification of proteins thought to be under either the activation or repression control of YY1
- Immunocytochemical and *in-situ* hybridisation studies using tissue sections from early lung and carcinoma samples may be used to identify the *in-vivo* relevance of factors, such as YY1, shown to be involved in differentiation in our *in-vitro* model
- In order to determine the percentage of transfect cells in the YY1 transient transfections co-transfection of the YY1 plasmid along with GFP or β-Gal should be preformed

2. c-Myc Transfections

- In order to investigate further the role which c-myc plays in our model differentiation system and to overcome the difficulties experienced in this study with stably transfecting the c-myc vector into the DLKP cell line, transfection with an inducible c-myc plasmid may offer an alternative approach
- Further work is required to confirm the hypothesis that overexpression of c-myc in our model system does in fact induce apoptosis RT-PCR and Western blot analysis for pro-apoptotic factors should be performed

3 Thymidine Analogues and DNA Microarrays

- Quantitative RT-PCR analysis confirm the microarray results using Real Time-PCR
- Transfection of KLF4 into the DLKP cell line From the results presented in this thesis it appears that KLF4 may be an important transcription factor in the regulation of cytokeratin expression in our cell system Therefore, it would be interesting to transfect a full length human cDNA for this gene into DLKP cells to investigate if it is possible to mimic the gene expression pattern with KLF4 overexpression as was demonstrated in pyrimidine-treated DLKP cells
- DNA microarray analysis generates vast amounts of data, analysis of some of which is only possible in the time provided for the completion of this thesis. In this study only up-regulated genes where investigated. Down-regulated genes may also play an important role in the regulation of cellular process and differentiation, therefore, warrant further investigation. It is possible that the microarray data sets generated in this body of work could yet reveal more interesting.

genes and pathways involved in the regulation early lung differentiation, if re-mined

- Further microarray analysis could reveal interesting targets for siRNA experiments It would be interesting to known-down key genes that are potentially regulating the process of differentiation in our cell system
- Promoter analysis in this study we demonstrated the possible use of promoter analysis software for the identification of potentially coregulated genes in the BrdU microarray experiments. As mentioned, this process is iterative, and is beyond the scope of this thesis to fully mine the data to its full potential. Similar analysis of clusters is possible for the 5,2'-FdU and IdU microarray experiments. In light of the model transcription factor framework identified in this thesis, it is clear that other framework models of more significant importance may yet be identified from the microarray data sets.
- DIGE 2D electrophoresis and protein Arrays Comparison of control versus treated cells, using DIGE 2D electrophoresis and protein arrays may help to identify proteins that may be up- or down-regulated in our model system for lung cell differentiation Unknown proteins may then be tentatively identified using Mass Spec analysis

Section 6 0 Bibliography

Adamson I. Y. and Bowden D. H. (1979) Bleomycin-induced injury and metaplasia of alveolar type 2 cells. Relationship of cellular responses to drug presence in the lung. Am. J. Pathol. <u>96</u>(2): 531-544.

Affymetrix: GeneChip Expression Analysis: Data Analysis Fundamentals. [http://www.affymetrix.com].

Albelda S.M. and Buck C.A. (1990) Integrins and other cell adhesion molecules. FASEB J. 4: 2868-2880.

Altmann M. and Trachsel H. (1993) Regulation of translation initiation and modulation of cellular physiology. TIBS <u>18</u>: 429-432.

Altmann M., Edery I. and Trachsel H. and Sonnenberg N. (1998) Site-directed mutagenesis of the tryptophan residues in yeast eukaryotic initiation factor 4E. J. Biol. Chem. 263 (33): 17229-17332.

Amati B., Brooks M.W., Levy N., Littlewood, T.D., Evan G.I. and Land H (1993) Oncogenic activity of the c-Myc protein requires dimerisation with Max. Cell. <u>72</u>: 233-245.

Ameye C, Sundmacher R, de Clercq E. (1989) Topical BVDU plus low-dosage steroids in the treatment of chronic relapsing zoster keratouveitis. A pilot study. Graefes. Arch. Clin. Exp. Opthalmol. <u>227</u> (2) : 118-122.

Antoniou M, de Boer E, Spanopoulou E, Imam A, Grosveld F. (1995) TBP binding and the rate of transcription initiation from the human beta-globin gene. Nucleic Acids Res. 23(17): 3473-80.

Antonson P. Pray M.G., Jacobsson A. and Xanthopoulos KG. (1995) Myc inhibits CCAAT/enhancer-binding protein alpha-gene expression in HIB-1B hibernoma cells through interactions with the core promoter region. Eur J Biochem. 232 (2): 397-403.

Azizkhan JC, Jensen DE, Pierce AJ, Wade M (1993) Transcription from TATA-less promoters: dihydrofolate reductase as a model. Cri.t Rev. Eukaryo.t Gene Expr., 3 (4): 229-54.

Alexander B., Berger R., Day L.M., Hogarth P.M., Feneziani A., and Cook W.D., (1992) Tumour-associated karyotypic lesions coselected with *in vitro* macrophage differentiation. Gene, Chromo., Can. 5 286-298.

Armstrong R. D. and Diasio R. B. (1980) Metabolism and biological activity of 5deoxy-5-fluorouridine a novel fluorpyrimidine. Cancer Res., 40 (9), 333-3338.

Amstrong R.D. and Diasio R.B. (1980) Metabolism and biological activity of 5deoxy-5-fluorouridine. Cancer. Chemother. Pharmacol. II(2) p102-105 Armstrong R D, Connolly K M, Kaplan A M, Cadmen E (1983) Mechanism of cytotoxic activity of 5-deoxy-5-fluorouridine Cancer Chemother Pharmacol \underline{II} (2) 102-105

Arnold H H, Tannich E and Paterson B M (1988) The promoter of the chicken cardiac myosin light chain 2 gene shows cell-specific expression in transfected primary cultures of chicken muscle Nucleic Acids Res 16 p2411-2429

Baker P N, Bradshaw T K, Morser J, Burke D C (1979) The effet of 5bromodeoxyuridine on interferon production in human cells J Gen Virol $\underline{45}$ 117-184

Barone M V, Pepperkok R, Peveralı F A and Philipson L (1994) Id proteins control growth induction in mammalian cells Proc Natl Acad Sci USE 91 p 4985-4988

Becker KG, Swergold GD, Ozato K and Thayer RE (1993) Binding of the ubiquitous nuclear transcription factor YY1 to a cis regulatory sequence in the human LINE-1 transposable element Hum Mol Genet 2(10) 1697-702

Becker KG, Jedlicka P, Templeton NS, Liotta L and Ozato K (1994) Characterization of hUCRBP (YY1, NF-E1, delta) a transcription factor that binds the regulatory regions of many viral and cellular genes Gene 150 (2) 2 59-66

Bennet, MR, Littlewood TD, Evan GI and Newby AC (1994) Down-regulation of the c-myc proto-oncogene in inhibition of vascular smooth-muscle cell differentiation a signal for growth arrest? Biochem J, **302**, 701-708

Blackwood E M and Eisenmann R N (1991) Max heterodimeric partner of Max that antagonises Myc transactivation Cell, **72**, 211-222

Blessing M, Jorcano J L and Franke W W (1989) Enhancer elements directing celltype-specific expression of cytokeratin genes and changes of the epithelial cytoskeleton by transfections of hybrid cytokeratin genes EMBO J $\underline{8}$ (1) 117-26

Blouin R, Swierenga S H and Marceau N (1992) Evidence for post-transcriptional regulation of cytokeratin gene expression in a rat liver epithelial cell line Biochem Cell Biol $\underline{70}(1)$ 1-9

Blumenberg M (1988) Concerted gene duplications in the two keratin gene families J Mol Evolution <u>27</u> 203-211

Bodescot M and Brison O (1996) Characterisation of a new human c-myc mRNA species produced by alternative splicing Gene 174(1) 115-120

Brembeck F H and Rustgi A K (2000) The tissue-dependent Keratin 19 gene transcription is regulated by GLKF/KLF4 and Sp1 Bio Chem J, <u>275</u>, 28239-28239

Broers JL, Ramaekers FC, Rot MK, Oostendorp T, Huysmans A, van Muijen GN, Wagenaar SS and Vooijs GP (1988) Cytokeratins in different types of human lung cancer as momtored by chain-specific monoclonal antibodies Cancer Res <u>48</u> (11) 3221-3229

Buchsbaum D J, Khazaeli M B, Davis M A and Lawrence T S (1994) Sensitization of radiolabeled monoclonal antibody therapy using bromodeoxyuridme Cancer $\underline{73}$ (3 Suppl) 999-1005

Buckingham M (1994) Molecular biology of muscle development Cell 78 15-21

Bushmeyer S, Park K and Atchison M L (1995) Characterization of functional domains within the multifunctional transcription factor, YY1 J Biol Chem 270 (50) 30213-20

Bushmeyer S M and Atchison M L (1998) Identification of YY1 sequences necessary for association with the nuclear matrix and for transcriptional repression functions J Cell Biochem $\underline{68}(4)$ 484-99

Buck C A and Horwitz A F (1987) Cell surface receptors for extracellular matrix molecules Annu Rev Cell Biol <u>3</u> 179-205

Casanova L, Bravo A, Were F, Ramirez A, Jorcano JJ and Vidal M (1995) Tissue-specific and efficient expression of the human simple epithelial keratin 8 gene in transgenic mice J Cell Sci <u>108</u> (Pt 2) 811-20

Chaudhary J, Johnson J, Kim G and Skinner M K (2001) Hormonal Regulation and Differentiation Actions of the Helix-Loop-Helix Transcriptional Inhibitors of Differentiation (Id1, Id2, Id3, and Id4) in Sertoli Cells Endo <u>142</u>, 1727-1736

Chen Z Y, Shie J L and Tseng C C (2000) Up-regulation of gut-enriched KLF in colonic cell growth and differentiation Am J Physiol 279 G806-814

Chen TT, Wu RL, Castro-Munozledo F, Sun TT (1997) Regulation of K3 keratin gene transcription by Sp1 and AP-2 in differentiating rabbit corneal epithelial cells Mol Cell Biol, $\underline{6}$, 3056-64

Chen Z Y, Shie J-L and Tseng C-C (2002) Stat1 is required for INF- γ mediated gutenriched Kruppel-like factor expression Exp Cell Res, <u>281</u>, 19-27

Chiang C M and Roeder R G (1995) Cloning of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators Science 267(5197) 531-6

Chibazakura T, Watanabe F, Kitajima S, Tsukada K, Yasukochi Y, Teraoka H (1997) Phosphorylation of human general transcription factors TATA-binding protein and transcription factor IIB by DNA-dependent protein kinase--synergistic stimulation of RNA polymerase II basal transcription in vitro Eur J Biochem <u>247</u> (3) 1166-73

Cole E G and Gaston K (1997) A functional YY1 binding site is necessary and sufficient to activate Surf-1 promoter activity in response to serum growth factors

Nucleic Acids Res 25(18) 3705-11

Cole M D (1991) Myc meets its Max Cell <u>65</u> 715-716

Colhurst DR, Campbell DG and Proud CG (1987) Structure and regulation of eukaryotic initiation factor eIF2 Eur J Biochem, <u>166</u>, 357-363

Cooper C L and Newburger P E (1998) Differential expression of Id genes in multipotent myeloid progenitor cells Id-1 is induced by early-and late-acting cytokines while Id-2 is selectively induced by cytokines that drive terminal granulocytic differentiation J Cell Biochem 71, 277–285

Cortes F, William F, Wolf F and Wolf S (1987) Effects of exogenous thymidine on sister-chromatid exchange frequency in Chinese hamster ovary cells with Bromodeoxyuridine- and chlorodeoxyuridine-substituted chromosomes Mutation Research, <u>192</u>, 277-282

Cremisi C and Duprey P (1987) A labile inhibitor blocks endo A gene transcription m murine undifferentiated embryonal carcinoma cells Nucleic Acids Res $\underline{15}$ (15) 6105-16

Crowe D (1993) Retinoic Acid mediates post-transcriptional regulation of keratin 19 mRNA J Cell Scie <u>106</u> 183-188

Daly N, Meleady P, Walsh D and Clynes M (1998) Regultion of keratin and mtegrin expression in cancer and drug resistance Cytotechnology <u>27</u> 321-344

Darmon M, (1985) Coexpression of specific acid and basic cytokeratins in tetracarcimona-derived fibroblasts treated with 5-azacytidine Dev Biol 110 47-52

Darnell J E (1997) Stats and gene regulation Science, 277, 1630-1635

De Cat B and David G (2001) Development Roles of Glypicans Semin Cell Dev Biol 12(2) 117-25

Decker T, Kovarik P, Meinke A (1997) GAS elements a few nucleotides with a major impact on cytokine-induced gene expression J Interferon Cytokine Res 1997 Mar, 17(3) 121-34

Eisbruch A, Robertson JM, Johnston CM, Tworek J, Reynolds KR, Roberts JA, and Lawrence T S (1999) Bromodeoxyuridine alternating with radiation for advanced uterine cervix cancer a phase I and drug incorporation study 17(1) 31-40

Elias AD, Cohen BF and Bernal SD (1998) Keratin subtypes of small cell lung cancer Cancer Res <u>48</u> 2724-2729

Emura M (1997) Stem cells of the respiratory epithelium and their *in vitro* cultivation In Vitro Cell Dev Biol $\underline{33}$ 3-14 Ericsson J, Usheva A and Edwards PA (1999) YY1 is a negative regulator of transcription of three sterol regulatory element-binding protein-responsive genes J Biol Chem $\underline{274}(20)$ 14508-13

Evan G I (1990) The myc oncogene Genes and Cancer Wiley and Sons Ltd, Chapter 3, 31-42

Feyles, V, Sıkora, L K J, McGarry, R C and Jerry, L M (1991) Effects of retinoic acid and bromodeoxyuridine on human melanoma-associated antigen expression in small cell lung carcinoma cells Oncology, **48**, 58-64

Fisher D E, Parent L A and Sharp P A (1993) High affinity DNA-binding Myc analogs Recognition by α helix Cell <u>72</u> 467-476

Flanagan J R (1995) Autologous stimulation of YY1 transcription factor expression Role of an insulin-like growth factor Cell Growth and Differentiation $\underline{6}$ 185-190

Flanagan JR, Becker KG, Ennist DL, Gleason SL, Driggers PH, Levi BZ, Appella E, Ozato K (1992) Cloning of a negative transcription factor that binds to the upstream conserved region of Moloney murine leukemia virus Mol Cell Biol $\underline{12}(1)$ 38-44

Fong K M, Zimmerman P V and Smith P J (1995) Microsatellite instability and other molecular abnormalities in non-small cell lung cancer Cancer Res 55 28-30

Fong S, Itahana Y, Sumida T, Singh J, Coppe J-P, Liu Y, Richards PC, Bennigton JL, Lee NM, Debs RJ and Desprez P-Y (2003) Id1 as a molecular target in therapy for breast cancer cell invasion and metastasis PNAS, <u>100</u>, 13543-13548

Fraser C G, Kaneshima H, Hansteen G (1995) Human allogenic stem cell maintenance and differentiation in a long-term multilinage SCID-hu graft Blood $\underline{86}$ 1680-1693

Fransson L A (2003) Glypicans Int J Biochem Cell Biol 35(2) 125-9

Freeman J M (1969) Treatment of Dawson's encephalitis with 5-bromo-2deoxyuridine Double-blind study Arch Neurol <u>21</u>(4) 431-434

Fuchs E and Byrne C (1994) The Epidermis rising to the surface Curr Opin Gen Dev $\underline{4}$ 725-736

Galvagni F, Cartocci E and Oliviero S (1998) The dystrophin promoter is negatively regulated by YY1 in undifferentiated muscle cells J Biol Chem 273(50) 33708-13

Gatson K and Fried M (1994) YY1 is involved in the regulation of the bi-directional promoter of the surf-1 and surf-2 genes FEBS <u>347</u> 289-294

Gauthier B, Robb M, Gaudet F, Ginsburg GS and McPherson R (1999) Characterization of a cholesterol response element (CRE) in the promoter of the cholesteryl ester transfer protein gene functional role of the transcription factors SREBP-1a, -2, and YY1 J Lipid Res 40(7) 1284-93

Gavis E R and Lehmann R (1992) Localisation of nanos RNA controls in embryonic polarity Cell $\underline{71}$ (2) 301-313

Gazdar AF, Linnoila RI, Kurita Y, Oie HK, Mulshine JL Clark JC and Whitsett JA (1990) Periperal airway cell differentiation in human lung cancer cell lines Can Res 50 5481-5487

Gedrich R W and Engel D A (1995) Identification of a novel E1A response element in the mouse c-fos promoter J Virology $\underline{69}(4)$ 2333-2340

Gudice G J and Fuchs E (1987) The transfection of epithelial keratin genes into fibroblast and simple epithelial cells evidence for inducing a type I keratin gene by type II gene Cell $\underline{48}$ 453-463

Grignani F, Lombardi L, Inghirami G, Sternas L, Cechova K, Dalla-Favera R (1990) Negative autoregulation of c-*myc* gene expression is inactive is inactivated in transformed cells EMBO J, <u>9</u>, 10526-10530

Gumbmer B M (1996) Cell adhesion the molecular basis of tissue architecture and morphogenesis Cell <u>84</u> 345-357

Gunther M, Frebourg T, Laithier M, Fossar N, Bouziane-Ouartim M, Lavialle C, Brison O (1995) A Sp1 binding site and the minimal promoter contribute to overexpression of the cytokeratin 18 gene in tumorigenic clones relative to that in nontumorigenic clones of a human carcinoma cell line Mol Cell Biol, <u>15</u>(5) 2490-9

Greenberg HS, Chandler WF, Diaz RF, Ensminger WD, Junck L, Page MA, Gebarski SS, McKeever P, Hood TW and Stetson PL (1988) Intra-arterial bromodeoxyuridine radiosensitization and radiation in treatment of malignant astrocytomas J Neurosurg ,<u>69</u>(4) 500-5

Guo B, Odgren PR, van Wijnen AJ, Last TJ, Nickerson J, Penman S, Lian JB, Stein JL, and Stein GS (1995) The nuclear matrix protein NMP-1 is the transcription factor YY1 Proc Natl Acad Sci USA <u>92</u> (23) 10526-30

Haghighat A, Mader S, Pause A and Sonenberg N (1995) Repression of capdependent translation by 4E-binding protein 1 competition with p220 for binding to eukaryotic initiation factor-4E EMBO J 14(22) 5701-9

Hagiwara T, Nakaya K, Nakamura Y, Nakajima H, Nishimura S and Taya Y (1992) Specific phosphorylation of the acidic central region of the N-myc protein by casein kinase II Eur J Biochem 209 (3) 945-50

Hahn S (1992) The Yin and yang of mammalian transcription Current Biology 2(3) 152-155

Harding, J.D., Przbyla, A.E., MacDonald, R.J., Pichet, R.L. and Rutter, W.J. (1978) Effects of dexamethasone and 5-bromodeoxyuridine on the synthesis of amylase mRNA during pancreatic development *in vitro* J. Biol. Chem. <u>253</u>, 7531-7537

Hariharan N, Kelley DE and Perry RP (1991) Delta, a transcription factor that binds to downstream elements in several polymerase II promoters, is a functionally versatile zinc finger protein Proc Natl Acad Sci U S A <u>88</u> (21) 9799-803

Harrington EA, Bennett MR, Fanidi A, and Evan GI (1994) c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines EMBO J 1994 <u>13</u> (14) 3286-95

Hecht F, Tajara E H, Lockwood D, Sandberg A A and Hecht B K (1988) New common fragile sites Cancer Genet Cytogenet $\underline{33}$ 1-9

Heping Chen, Yi-Chinn Weng, Gina C Schatteman, Laura Sanders, Robert J Christy and Barbara A Christy (1999) Expression of the Dominant-Negative Regulator Id4 Is Induced during Adipocyte Differentiation Biochem Biophsy Res Commun 256 13 614-619

Hill B T Tsuboi A and Baserga R (1974) Effect of 5-bromodeoxyuridine on the chromatin transcription in confluent fibroblasts Proc Natl Acad Sci USA $\underline{71}$ 455-459

Hogan B L (1999) Review article highlighting the roles of multigene families, such as FGFs, BMPs, Hedghogs, Wnts and EGFs in morphogenesis Cell 96 225-233

Hosack DA, Dennis G, Sherman BT, Lane HC and Lempicki R (2003) Identifying biological themes within lists of genes with EASE Genone Bio, $\underline{4}$, R70

Hynes R O (1987) Integrins a family of cell surface receptors Cell 48 549-554

Hyde-deRuyscher R P, Jennings E and Shenk T, (1995) DNA binding sites for the transcriptional activator/repressor YY1 Nuc Acids Res $\underline{23}$ 4457-4465

Iıjıma S, Teraoka H, Date T, and Tsukada K (1992) DNA-activated protein kinase in Raji Burkitt's lymphoma cells Phosphorylation of c-Myc oncoprotein Eur J Biochem 206 (2) 595-603

Jaramillo M, Pelletier J, Edery I, Nielsen PJ, and Sonenberg N (1991) Multiple mRNAs encode the murine translation initiation factor eIF-4E J Biol Chem 266(16) 10446-51

Johansson E, Hjortsberg K, and Thelander L Two YY-1-binding proximal elements regulate the promoter strength of the TATA-less mouse ribonucleotide reductase R1 gene J Biol Chem 273 (45) 29816-21

Jenkins T D, Optiz O G, Okano J and Rustgi A K (1998) Transactivation of the human keratin 4 and Epstein-Barr Virus DE-L2 promoters by gut-enriched Kruppellike factor Biol Chem J, <u>273</u>, 10747-10754 Jones R M, Branda J, Johnston K A, Polymenis M, Gadd M, Rustgi A, Callan L, and Schmidt E V, (1996) An essential E box promoter of the gene encoding the mRNA cap-binding protein (eukaryotic initiation factor 4E) is a target for activation by c-myc Mol Cell Biol <u>16</u> (9) p 4754-4764

Joshi B, Cai AL, Keiper BD, Minich WB, Mendez R, Beach CM, Stepinski J, Stolarski R, Darzynkiewicz E, and Rhoads RE (1995) Phosphorylation of eukaryotic protein synthesis initiation factor 4E at Ser-209 J Biol Chem <u>270</u> (24) 14597-603

Karantzoulis-Fegaras F, Antoniou H, Lai SL, Kulkarni G, D'Abreo C, Wong GK, Miller TL, Chan Y, Atkins J, Wang Y, and Marsden PA (1999) Characterization of the human endothelial nitric-oxide synthase promoter J Biol Chem <u>274(5)</u> 3076-93

Khan MZ, Freshney RI, Murray AM, Merry S, Plumb JA and McNicol AM (1991) Identification and characterisation *in vitro* of cells with a non-SCLC cell-like phenotype derived from a continuous SCLC cell line Anticancer Res <u>11</u> (5) 1687-1695

Kim J and Shapiro DJ (1996) In simple synthetic promoters YY1-induced DNA bending is important in transcription activation and repression Nucleic Acids Res 24(21) 4341-8

Knapp A C and Franke W W (1987) Spontaneous losses of control of cytokeratin gene expression in transformed, non-epithelial human cells occurring at different levels of regulation Cell $\underline{59}$ 67-79

Kleeff J, Ishiwata T, Kumbasar A, Friess H, Buchler MW, Lander AD, Korc M The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer J Clin Invest 1998 Nov 1,102(9) 1662-73

Keoffler HP, Yen J and Carlson J (1983) The study of human myeloid differentiation using Bromodeoxyuridine (BrdU) J Cell Physiol <u>116</u> 111-117

Kohlhuber F, Hermeking H, Graessmann A, and Eick D (1995) Induction of apoptosis by the c-Myc helix-loop-helix/leucine zipper domain in mouse 3T3-L1 fibroblasts J Biol Chem 270(48) 28797-805

Kulechs DA, Cecena G, Darmon YM, Vasser M and Oshima R G (1989) Posttranslational regulation of keratins deregulation of mouse and human keratins 18 and 8 Mol Biol Biol $\underline{9}(4)$ 1553-1565

Labrie C, Lee BH, and Mathews MB (1995) Transcription factors RFX1/EF-C and ATF-1 associate with the adenovirus E1A-responsive element of the human proliferating cell nuclear antigen promoter Nucleic Acids Res 23 (18) 3732-41

Lajtha L G (1982) Tissues and stem cells Biomed Pharmacother 36 (5) 231-233

Last TJ, van Wijnen AJ, Birnbaum MJ, Stein GS, and Stein JL (1999) Multiple interactions of the transcription factor YY1 with human histone H4 gene regulatory elements J Cell Biochem $\underline{72}$ (4) 507-16

Lavoie CA, Lachance PE, Sonenberg N, and Lasko P (1996) Alternatively spliced transcripts from the Drosophila eIF4E gene produce two different Cap-binding proteins J Biol Chem <u>271</u> (27) 16393-8

Law E , Gilvarry U , Lynch V , Gregory B , Grant G , Clynes M , (1992) Ctyogenetic comparison of two poorly differentiated human lung squamous cell carcinoma lines Cancer Genet Cytogenenet, 59 p111-118

Lawrence TS, Davis MA, Maybaum J, Mukhopadhyay SK, Stetson PL, Normolle DP, McKeever PE, and Ensmiger WD (1992) The potential superiority of bromodeoxyuridine to iododeoxyuridine as a radiation sensitizer in the treatment of colorectal cancer Cancer Res 52(13) 3698-704

Lee JS, Galvin KM, and Shi Y (1993) Evidence for physical interaction between the zmc-finger transcription factors YY1 and Sp1 Proc Natl Acad Sci U S A $\underline{90}$ (13) 6145-9

Lee TC, Shi Y, and Schwartz RJ (1992) Displacement of BrdUrd-induced YY1 by serum response factor activates skeletal alpha-actin transcription in embryonic myoblasts Proc Natl Acad Sci U S A $\underline{89}$ (20) 9814-8

Lee YM and Lee SC (1994) Transcriptional activation of the alpha-1 acid glycoprotein gene by YY1 is mediated by its functional interaction with a negative transcription factor DNA Cell Biol $\underline{13}(10)$ 1029-36

Lersch R, Stellmach V, Stocks C, Giudice G, and Fuchs E (1989) Isolation, sequence, and expression of a human keratin K5 gene transcriptional regulation of keratins and insights into pairwise control Mol Cell Biol $\underline{9}(9)$ 3685-97

Licht JD, Grossel MJ, Figge J, and Hansen UM (1990) Drosophila Kruppel protein is a transcriptional repressor Nature <u>346</u> (6279) 76-9

Lin S Y and Riggs A D (1972) Lac operon analogues bromodeoxyuridine substitution in the lac operator affects the rate of dissociation of the lac repressor Prox Natl Acad USA $\underline{69}$ 2574-2576

Liu J, Shi W, Warburton D (2000) A cysteine residue in the helix-loop-helix domain of Id2 is critical for homodimerization and function Biochem Biophys Res Commun 2000 Jul 14,273(3) 1042-7

Liu SH, Peng BH, Ma JT, Liu YC, and Ng SY (1995) Serum response element associated transcription factors in mouse embryos serum response factor, YY1, and PEA3 factor Dev Genet 16(3) 229-40

Liu J, Shi W and Warburton D (2000) A cysteine residue in the helix-loop-helix domain of Id2 is critical for homodimerization and fuction Biochem Biophys Res Comm, 273, 1042-1047

Liang Liu, Joel B Berletch, Jessica G Green, Mitchell S Pate, Lucy G Andrews and Trygve O Tollefsbol (Telomerase inhibition by retinoids precedes cytodifferentiation of leukemia cells and may contribute to terminal differentiation McBride s, Meleady P, Baird P, Dinsdale D and Clynes M (1998) Human lung carcinoma cell line DLKP contains 3 distinct subpopulations with different growth and attachment properties Tum Biol 19 p88-103

McBride S, Walsh, D, Meleady P, Daly N, and Clynes M (1999) Bromodeoxyuridine induces keratin protein synthesis at a posttranscriptional level in human lung tumour cell lines Differentiation 64 p185-193

McGinn C J and Kinsella T J (1993) The clinical ratioale for S-phase Radiosensitisation in human tumours Curr Probl Cancer <u>17</u>(5) 273-321

Marcotrigiano J, Gingras AC, Sonenberg N, and Burley SK (1997) X-ray studies of the messenger RNA 5' cap-bindmg protein (eIF4E) bound to 7-methyl-GDP Nucleic Acids Symp Ser <u>36</u> 8-11

Matsutani M, Kohno T, Nagashima T, Nagayama I, Matsuda T, Hoshino T, and Sano K (1988) Clinical trial of intravenous infusion of bromodeoxyuridine (BUdR) for radiosensitization of malignant brain tumors Radiat Med $\underline{6}$ (1) 33-9

Meleady P and Clynes M (2001a) Bromodeoxyuridine mduces integrin expression at transcriptional (alpha2 subunit) and post-transcriptional (beta1 subunit) levels, and alters the adhesive properties of two human lung tumour cell lines Cell Commun Adhes 2001,8(1) 45-59

Meleady P and Clynes M (2001b) Bromodeoxyuridine induces mtegrin expression at transcriptional (alpha2 subunit) and post-transcriptional (beta1 subunit) levels, and alters the adhesive properties of two human lung tumour cell lines In Vitro Cell Dev Biol Anim 2001 Sep,37(8) 536-42

Melnikova I n and Christy B A (1996) Muscle cell differentiation is inhibited by the helix-loop-helix protein Id3 Cell Growth Differ 7 p 1067-1079

Mickley LA, Bates SE, Richert ND, Currier S, Tanaka S, Foss F, Rosen N, and Fojo AT (1989) Modulation of the expression of a multidrug resistance gene (mdr-1/P-glycoprotein) by differentiating agents J Biol Chem 264(30) 18031-40

Minich WB, Balasta ML, Goss DJ, and Rhoads RE (1994) Chromatographic resolution of in vivo phosphorylated and nonphosphorylated eukaryotic translation initiation factor eIF-4E increased cap affinity of the phosphorylated form Proc Natl Acad Sci U S A <u>91(16)</u> 7668-72

Mobus VJ, Moll R, Gerharz CD, Kieback DG, Weikel W, Hoffmann G, and Kreienberg R Establishment of new ovarian and colon carcinoma cell lines differentiation is only possible by cytokeratin analysis Br J Cancer <u>69(3)</u> 422-8

Moll R, Franke WW, Schiller DL, Geiger B, and Krepler R (1982) The catalog of human cytokeratins patterns of expression in normal epithelia, tumors and cultured cells Cell 31(1) 11-24

Mummery C L, van den Brink C E, van der Saag P T and deLaat S W (1984) The cell cycle, death, and cell morphology during retinoic acid-induced differentiation of embryonal carcinoma cells Dev Biol 104 p 297-307

Nanbru C, Lafon I, Audigier S, Gensac MC, Vagner S, Huez G, and Prats AC (1997) Alternative translation of the proto-oncogene c-myc by an internal ribosome entry site J Biol Chem <u>51</u> 32061-6

Natesan S and Gilman M (1995) YY1 facilitates the association of serum response factor with the c-fos serum response element Mol Cell Biol 15(11) 5975-82

Natesan S and Gilman MZ (1993) DNA bending and orientation-dependent function of YY1 in the c-fos promoter Genes Dev $\underline{7}(12B)$ 2497-509

Neznanov N S and Oshima R G (1993) cis regulation of the keratin 18 gene in transgenic mice Mol Cell Biol $\underline{13}(3)$ 1815-23

Newham P and Humphires M J (1996) Integrin adhesion receptors structure, function and implications for biomedicine Molecular Medicine Today July 304-313

Nishume Y, Kume A, Ogios Y and Matsushiro A (1983) Induction of teratocarcinoma cell differentiation Effect of the inhibitors of DNA synthesis Exp Cell Res <u>146</u> 439-444

Norton JD, Deed RW, Craggs G and Sylvester G (1998) Id helix loop helix proteins in cell growth and differentiation Trends in Cell Biol 8 p 58-65

Novina C D and Roy A L (1996) Core promoters and transcriptional control Trends Genet <u>12(9)</u> 351-5

O'Neill MC and Stockdale FE, (1974) 5-Bromodeoxyuridine inhibition of differentiation Kinetics of inhibition and reversal in Myoblasts Dev Biol, 37 p117-132

O'Neill MC and Stockdale FE, (1973) 5-Bromodeoxyuridine inhibition of differentiation Kinetics of inhibition and reversal in Myoblasts Dev Biol $\underline{37}$ 117-132

Ohtsuki M, Flanagan S, Freedberg IM, Blumenberg M A cluster of five nuclear proteins regulates keratin gene transcription Gene Expr 1993,3(2) 201-13 Magnaldo T, Bernerd F, Freedberg IM, Ohtsuki M, Blumenberg M Transcriptional regulators of expression of K#16, the disease-associated keratin DNA Cell Biol 1993 Dec,12(10) 911-23 Oshima RG (1992) Intermediate filament molecular biology Curr Opm Cell Biol 4(1) 110-6

Paine ML, Gibbins JR, Chew KE, Demetriou A, and Kefford RF (1992) Loss of keratin expression in anaplastic carcinoma cells due to posttranscriptional down-regulation acting in trans Cancer Res 52(23) 6603-11

Paine R, and Simon R H (1996) Expanding the frontiers of lung biology through the creative use of alveolar epithelial cell in culture Am J Physol <u>270</u> (Lung Cell Mol Physol 14) L484-L486

Paine R, Gaposchkin D, Kelly C and Wilcoxen S E (1995) Regulation of cytokeratin expression in rat lung alveolar epithelial cells *in vitro* Am J Physiol <u>269</u> (Lung Cell Mol Physiol 13) L536-L544

Parekh H K and Simpkins H (1995) The differential expression of cytokeratin 18 in cisplatin-sensitive and -resistant human ovarian adenocarcinoma cells and its association with drug sensitivity Cancer Res 55(22) 5203-6

Park K and Atchison M L (1991) Isolation of a candidate repressor/activator, NF-E1 (YY1), that binds to the immunoglobulin k3 enhancer and the immunoglobulin heavy chain μ E1 site Proc Natl Acad Sci USA <u>88</u> 9804-9808

Peukert K, Staller P, Schneider A, Carmichael G, Hanel F, and Eilers M (1997) An alternative pathway for gene regulation by Myc EMBO J <u>16(18)</u> 5672-86

Pfeifer AM, Jones RT, Bowden PE, Mann D, Spillare E, Klein-Szanto AJ, Trump BF, Harris CC (1991) Human bronchial epithelial cells transformed by the c-raf-1 and c-myc protooncogenes induce multidifferentiated carcinomas in nude mice a model for lung carcinogenesis Cancer Res 51(14) 3793-801

Pollard H J, McKendrick L M, Morely S J, and Pain V M (1999) Studies on the subcellular localisation of eIF4E in cultured *Xenopous* kidney cells Translation UK, Program and Abstracts, Presentation

Plopper C G Histology, ultrastructure, function In Jones T C, Dungworth D L, Mohr U (Eds) Respiratory System 2^{nd} edition (1996) Springer, Berlin-Heidelberg New York p 135-150

Plopper C G and Hyde D M (1992) In epithelial cells of the bronchioles comprehensive treatise on pulmonary toxicology (Parent R A Ed) 1 Comparative biology of normal lung Boca Raton, EL CRC Press 85-92

Potten C S and Loffler M (1990) Stem cells Attributes, cycles, spirals, pitfalls and uncertainties lessons for and from the crypt Dev 110 1001-1020

Prados MD, Scott CB, Rotman M, Rubin P, Murray K, Sause W, Asbell S, Comis R, Curran W, Nelson J, Davis RL, Levin VA, Lamborn K, and Phillips TL (1998) Influence of bromodeoxyuridine radiosensitization on malignant glioma patient survival a retrospective comparison of survival data from the Northern California Oncology Group (NCOG) and Radiation Therapy Oncology Group trials (RTOG) for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys. 40(3):653-9.

Pratt W.B., Ruddon R.W., Ensminger W.D. and Maybaum J. (1994) The Anticancer Drugs. Oxford University Press.

Quinlan RA, Schiller DL, Hatzfeld M, Achtstatter T, Moll R, Jorcano JL, Magin TM and Franke WW. (1985) Patterns of expression and organization of cytokeratin intermediate filaments. Ann N Y Acad Sci. 1985;455:282-306.

Raich N, Clegg CH, Grofti J, Romeo PH, and Stamatoyannopoulos G. (1995) GATA1 and YY1 are developmental repressors of the human epsilon-globin gene. EMBO J. <u>14(4):801-9</u>.

Ranana C.V., Grammatikakis N., Chernov M., Nguyen H., Goh K.C., Williams B.R.G. and Stark G.R. (2000) Regulation of c-myc expression by INF-g through Stat1-dependent and --independent pathways. EMBO J., 19, 263-272.

Rauth S. and Davidson R.L. (1993) Suppression of tyrosine gene expression by bromodeoxyurdine in Syrian hamster melanoma cells is not due to its incorporation into upstream or coding sequences of the tyrosine gene. Somatic Cell and Mol. Gen. 19 p 285-293.

Riggs KJ, Merrell KT, Wilson G, and Calame K. (1991) Common factor 1 is a transcriptional activator which binds in the c-myc promoter, the skeletal alpha-actin promoter, and the immunoglobulin heavy-chain enhancer. Mol Cell Biol. 11(3):1765-9.

Riggs KJ, Saleque S, Wong KK, Merrell KT, Lee JS, Shi Y, and Calame K. (1993) Yin-yang 1 activates the c-myc promoter. Mol Cell Biol. 13(12):7487-95.

Roberstons J.M., Ensminger W.D., Walker S. and Lawrence T.S (1997) A phase I trail of intravenous Bromodeoxyuridine and radiation therapy for pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. $\underline{37}$ (2): 221-335.

Robertson JM, McGinn CJ, Walker S, Marx MV, Kessler ML, Ensminger WD, Lawrence TS. (1997) A phase I trial of hepatic arterial bromodeoxyuridine and conformal radiation therapy for patients with primary hepatobiliary cancers or colorectal liver metastases. Int J Radiat Oncol Biol Phys. <u>39(5):1087-92</u>.

Roop D.R., Krieg T.M., Mehrel T., Cheng C.K. and Yaspa S.H., (1988) Transcriptional control of high molecular weight keratin gene expression in multistage mouse skin carcinogenesis.Cancer Res. <u>48</u>(11):3245-52.

Rosenwald IB, Kaspar R, Rousseau D, Gehrke L, Leboulch P, Chen JJ, Schmidt EV, Sonenberg N, and London IM. (1995) Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J Biol Chem. 270(36):21176-80. Ross A H, Herlyn D, Iliopoulos D and Kopowski H (1986) Isolation and characterisation of a carcinoma-associated antigen Biochem Biophys Res Comm 135(1) 297-303

Ross R A, Spengler, B A, Domenech C, Porcbcin M, Rettig W J and Biedler J L, (1995) Human Neuroblastoma 1-type cells are malignant neural crest stem cells Cell Growth and Diff 6 p 449-456

Rothnagel JA, Greenhalgh DA, Gagne TA, Longley MA, and Roop DR (1993) Identification of a calcium-inducible, epidermal-specific regulatory element in the 3'-flanking region of the human keratin 1 gene J Invest Dermatol 101(4) 506-13

Rudland E and Burraclough R (1988) Stem cells in mammary gland differentiation and cancer J Cell Sci (Suppl) $\underline{10}$ 95-114

Rushton J J, Davis L M, Lei W L, Mo X, Leutz A and Ness S A (2003) Distinct changes in gene expression induced by A-Myb, B-Myb and c-Myb proteins Oncogene, 22, 308-313

Ryan K M and Bernie G D (1997) Analysis of E-box DNA binding during Myeloid differentiation reveals complexes that contain Mad but not Max Biochem J $\underline{325}$ 79-85

Ryan K M and Bernie G D (1996) Myc oncogenes the enigmatic family Biochem J <u>314</u> 713-721

Safrany G and Perry RP (1993) Characterization of the mouse gene that encodes the delta/YY1/NF-E1/UCRBP transcription factor Proc Natl Acad Sci U S A 90(12) 5559-63

Saphire AC, Bark SJ, and Gerace L (1998) All four homochiral enantiomers of a nuclear localization sequence derived from c-Myc serve as functional import signals J Biol Chem <u>273</u>(45) 29764-9

Satyamoorthy K, Park K, Atchison ML, and Howe CC (1993) The mtracisternal Aparticle upstream element interacts with transcription factor YY1 to activate transcription pleiotropic effects of YY1 on distinct DNA promoter elements Mol Cell Biol <u>13(11)</u> 6621-8

Sawyers CL, Callahan W, and Witte ON (1992) Dominant negative MYC blocks transformation by ABL oncogenes Cell <u>70</u>(6) 901-10

Seecof RL, and Dewhurst SA (1976) A 5-bromodeoxyuridine-sensitive interval during drosophila myogenesis Differentiation $\underline{6}(1)$ 27-32

Schwartz S A and Snead M L (1982) Bromodeoxuridine-DNA interactions associated with arrest of rat odontogensis *in vitro* Archs Oral Biol <u>27</u> 9-12

Sell S (1994) Liver Stem Cells Mod Pathol 7 105-112

Seto E, Lewis B, and Shenk T (1993) Interaction between transcription factors Sp1 and YY1 Nature <u>365(6445)</u> 462-4

Seto E, Shi Y, and Shenk T (1991)YY1 is an initiator sequence-binding protein that directs and activates transcription in vitro Nature 354 (6350) 241-5

Sheilds J M, Christy R J and Yang V W (1996) Identification and characterisation of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest J Biol Chem 71 20009-20017

Shi Y, Seto E, Chang LS, Shenk T (1991) Transcriptional repression by YY1, a human GLI-Kruppel-related protein, and relief of repression by adenovirus E1A protein Cell $\underline{67}(2)$ 377-88

Shi Y, Lee J S and Galvin K M (1997) "Everything you ever wanted to know about YY1 ", Biochimica Et Biophysica Ata, F49-F66

Shie J-L, Chen Z Y, O'Brien M J, Pestell R G, Lee M-E and Tseng C-C (2000) Role of gut-enriched Kruppel-like factor in colonic cell growth and differentiation Am J Physiol Grastro Liver Physiol, 279, G806-G814

Shields J M and Yang V W (1998) Identification of the DNA sequence that interacts with the gut-enriched Kruppel-like factor 26, 796-802

Shimizu R, Nakamura Y, Kadota T, Kitajima K, Oda T, Hiro T, and Utiyama T, (1994) Lost of Amplifed c-*myc* Gene in Spontaneous Differentiated HL60 cells Cancer Res 54, 3561-3567

Shoji W, Yamamoto T, Obinata M, (1994) The Helix-loop-helix protein Id inhibits differentiation of murine erytholeukemia cells J Biol Chem 269 5079-5084

Shrivastava A, and Calame K (1994) An analysis of genes regulated by the multifunctional transcriptional regulator Yin Yang-1 Nucleic Acids Res 22(24) 5151-5

Shrivastava A, Saleque S, Kalpana GV, Artandi S, Goff SP, and Calame K (1993) Inhibition of transcriptional regulator Yin-Yang-1 by association with c-Myc Science <u>262</u>(5141) 1889-92

Singer MF, Krek V, McMillan JP, Swergold GD, and Thayer RE (1993) LINE-1 a human transposable element Gene <u>135(1-2)</u> 183-8

Sugimoto T, Kato T, Sawada T, Horii Y, Kemshead JT, Hino T, Morioka H, Hosoi H (1988) Schwannian cell differentiation of human neuroblastoma cell lines in vitro induced by bromodeoxyuridine Cancer Res 48(9) 2531-7

Sutherland GR (1988) The role of nucleotides in human fragile site expression Mutat Res 200(1-2) 207-13

Sutherland GR (1998) Chromosomal Fragile Sites GATA 8 (6) 161-166

Stasiak PC, Purkis PE, Leigh IM and Lane EB (1989) Keratin 19 predicted amino acid sequence and broad tissue distribution suggest it evolved from keratinocyte keratins J Invest Dermatol 1989 May,92(5) 707-16

Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD (1998) How cells respond to interferons Annu Rev Biochem 1998,67 227-64

Sweetser M T, Hoey T, Sun Y-L, Weaver W M, Price G A and Wilson C B (1998) The roles of nuclear factor of activated T cells and Yin Yang1 in activation-induced expression of the Interferon- γ promoter in T cells Biol Chem J, 273, 34775-34783

Topscott, SJ, Lasser, AB, Davis, RL and Weintraub, H (1989) 5-Bromo-2 deoxyuridine blocks myogenesis by extinguishing expression of MyoD1 Science, 254, 532-536

Tauron PT, Morely SJ Dever TE, Merrick WC Rhaods RE and Traugh JA (1990) Association of initiation factor eIF4E in a cap binding protein complex (eIF4F) is critical for and enhances phosphorylation by kinase C J Biol Chem <u>265</u> (18) 10616-10621

Trask JL, Bell A, and Usher BW (1990) Doppler color flow imaging in detection and mapping of left coronary artery fistula to right ventricle and atrium J Am Soc Echocardiogr $\underline{3}(2)$ 131-4

Tseng SC, Jarvinen MJ, Nelson WG, Huang JW, Woodcock-Mitchell J, Sun TT (1982) Correlation of specific keratins with different types of epithelial differentiation monoclonal antibody studies Cell 30(2) 361-72

Tyner AL, and Fuchs E (1986) Evidence for posttranscriptional regulation of the keratins expressed during hyperproliferation and malignant transformation in human epidermis J Cell Biol 5 1945-55

Usheva A, and Shenk T (1994) TATA-binding protein-independent initiation YY1, TFIIB, and RNA polymerase II direct basal transcription on supercoiled template DNA Cell <u>76(6)</u> 1115-21

Valyi-Nagy I, Shih IM, Gyorfi T, Greenstein D, Juhasz I, Elder DE, Herlyn M (1993) Spontaneous and induced differentiation of human melanoma cells Int J Cancer 54(1) 159-65

van Bijsterveld OP, Meurs PJ, de Clercq E, and Maudgal PC (1989) Bromovinyldeoxyuridine and interferon treatment in ulcerative herpetic keratitis a double masked study Br J Ophthalmol $\underline{73}(8)$ 604-7

Vaquero A, and Portugal J (1998) Modulation of DNA-protein interactions in the P1 and P2 c-myc promoters by two intercalating drugs Eur J Biochem 251(1-2) 435-42

Vincent CK, Gualberto A, Patel CV, and Walsh K (1993) Different regulatory sequences control creatine kinase-M gene expression in directly injected skeletal and cardiac muscle Mol Cell Biol $\underline{13}(2)$ 1264-72

Virtanen CK Miettinen M and Lehto V P (1984) Cytoskeletal proteins as tissue markers for cancer The Cancer Bulletin 26 (4) 175-178

Wagner E F, (2002) Functions of AP1 (Fos/Jun) in bone development Ann Rheum 6 1140-1142

Walowitz JL, Bradley ME, Chen S, and Lee T (1998) Proteolytic regulation of the zinc finger transcription factor YY1, a repressor of muscle-restricted gene expression J Biol Chem 273(12) 6656-61

Watt F M (1991) Cell culture models of differentiation FASEB J 5 287-294

Watt F M (1998) Epidermal stem cells markers, patterning and the control of stem cell fate Philos Trans R Soc Lond B Biol Sci , 353, (1370), 831-837

Weintraub H (1993) The MyoD family and myogenesis redundancy, networks, and thresholds Cell $\underline{75}(7)$ 1241-4

Winter H and Schweizer J (1983) Keratin synthesis in normal mouse epithelia and in squamous cell carcinomas evidence in tumors for masked mRNA species coding for high molecular weight keratin polypeptides Proc Natl Acad Sci U S A 80(21) 6480-4

Wong L H, Sim H, Chatterjee-Kishor M, Hatzinisiriou I, Devenish R J, Stark G, and Ralph S J (2002) Isolation and characterization of a human STAT1 gene regulatory element J Bio Chem 277 19408-19417

Yamamoto R, Kao LC, McKnight CE, and Strauss JF 3rd (1990) Cloning and sequence of cDNA for human placental cytokeratin 8 Regulation of the mRNA in trophoblastic cells by cAMP Mol Endocrinol 4(3) 370-4

Yao YL, Dupont BR, Ghosh S, Fang Y, Leach RJ, and Seto E (1998) Cloning, chromosomal localization and promoter analysis of the human transcription factor YY1 Nucleic Acids Res 26(16) 3776-83

Ye J, Young HA, Ortaldo JR, Ghosh P (1994) Identification of a DNA binding site for the nuclear factor YY1 in the human GM-CSF core promoter Nucleic Acids Res 22(25) 5672-8

Ye J, Zhang X, and Dong Z (1996) Characterization of the human granulocytemacrophage colony-stimulating factor gene promoter an AP1 complex and an Sp1related complex transactivate the promoter activity that is suppressed by a YY1 complex Mol Cell Biol <u>16</u>(1) 157-67

Yen A and Forbes ME (1990) c-myc down regulation and precommitment in HL-60 cells due to bromodeoxyuridine Cancer Res 50(5) 1411-20

Yen A, Forbes M, DeGala G, Fishbaugh J (1987) Control of HL-60 cell differentiation lineage specificity, a late event occurring after precommitment Cancer Res 47(1) 129-34

Yet S-F, McA'Nulty M M, Folta S C, Yen H-W, Yoshizumi M, Hsieh C-M, Layne M D, Chin M T, Wang H, Perrella M A, Jain M K and Lee M-L (1998) Human EZF, a Kruppel-like Zinc Finger Protein, Is Expressed in Vascular Endothelial Cells and contains transcriptional activation and repression domains Biol Chem J, **273**, 1026-1031

Zhang H, Fan S, Prochownik EV Distinct roles for MAX protein isoforms in proliferation and apoptosis J Biol Chem 272(28) 17416-24

Zhang LX, Mills KJ, Dawson MI, Collins SJ, Jetten AM (1995) Evidence for the involvement of retinoic acid receptor RAR alpha-dependent signaling pathway in the induction of tissue transglutaminase and apoptosis by retinoids J Biol Chem 270(11) 6022-9

Yost SE, Shewchuk B, and Hardison R (1993) Nuclear protein-binding sites in a transcriptional control region of the rabbit alpha-globin gene Mol Cell Biol 13(9) 5439-49

Ye J, Cippitelli M, Dorman L, Ortaldo JR, Young HA The nuclear factor YY1 suppresses the human gamma interferon promoter through two mechanisms inhibition of AP1 binding and activation of a silencer element Mol Cell Biol 1996 Sep,16(9) 4744-53

Yen A, Forbes M, DeGala G, Fishbaugh J, (1987) Control of HL-60 differentiation lineage specificity, a late event occurring after precommitment Cancer Res $\underline{47}$ 129-134

Zhang H, Fan, S and Prochownik EV (1997) Distinct roles for MAX protein isoforms in proliferation and apoptosis J Biol Chem, 272, (28) 17416-17424

Zhou F and Thompson E B, (1996) Role of c-jun induction in the glucocorticoidevoked apoptotic pathway in human Leukemic Lymphoblasts Mol Endocrin, 69, 4323-4330

Zhu W, Lossie AC, Camper SA and Gumucio DL (1994) Chromosomal localisation of the transcription factor YY1 in the mouse and human Mammalian Genone, 5, 234-236

Zhu C-P, Clifford JL, Xu X-C, Sacks PG, Chambon P, Hong WK and Lotan R (1994) Modulation by Retinoic Acid (RA) of squamous cell differentiation, cellular RA-binding proteins and Nuclear RA receptors in human head and neck squamous cell carcinoma cell liens Cancer Res, **54**, 5479-5487

Section 7.0 Appendices

71 Appendix A – Differentially Expressed Genes Identified in BrdU Exp 3 DNA Microarray Experiment

List of differentially expressed genes identified from microarray analysis of BrdU Exp 3 DNA microarrays Genes listed are sorted by Affymetrix ID number

Affymetrix	LocusLink	Day (Day 3		Day 7		Common Name CCL5 MSN DSP WDR1 WDR1 CSRP1 NDRG1 PTTG1IP GRN GSN HK1 RPL13A CLN2 CLN2 CLN2 CLN2 CLN2 JWA JWA DPYSL2 LAMC1 ATF4 LRP1 PEA15 PEA15 ODC1 SARS ZYX CTSB CTSB CTSB EPRS S100A10 EPAS1
Id	LOCUSLINK	Normalized	Fings	Normalized	Flags	Normalized	Flags	Control (2)
1405 i at	6352	1	Α	12.878	P,A	67.626	Р	CCL5
200600 at	4478	1	Р	1.354	Р	1.630	Р	MSN
200606 at	1832	1	Р	1.275	Р	1.626	Р	DSP
200609 s at	9948	1	Р	1.529	Р	1.480	Р	WDR1
20061 s at	9948	1	Р	1.537	Р	1.500	Р	WDRT
200621 at	1465	1	Р	1.570	Р	1.708	P	CSRP1
200632 s al	10397	I	Р	1.329	P	1.531	Р	NDRGI
200677 at	754	1	Р	1.252	Р	1.515	Р	PTTG1IP
200678 x at	2896	1	р	0.643	P	0.859	Р	GRN
200696 s at	2934	1	Р	1.411	Р	1.860	Р	GSN
200697 at	3098		Р	1.415	Р	1.532	Р	НКІ
200715 x at	23521	1	Р	0.637	Р	0.783	Р	RPL13A
200742 s ai	1200	1	Р	0.572	Р	0.826	Р	CLN2
200743 s at	1200	1	Р	0.559	Р	0.784	Р	CLN2
200760 s at	10550	1	Р	1.309	Р	1.761	Р	JWA
200761 s at	10550		Р	1,191	Р	1.738	р	JWA
200762 at	1808	1	Р	1.699	Р	2.095	Р	DPYSL2
200770 s at	3915		Р	1.234	P	1.717	Р	LAMCI
200779 at	468	1	Р	0.423	P	0.453	Р	ATF4
200785 s at	4035	1	P	1.290	P	1.521	P	LRPI
200787 s at	8682	1	Р	1.506	P	1.940	Р	PEA15
200788 s at	8682	1	<u>ч</u>	1.486	Р	1.880	p	PEAI5
200790 at	4953	1	- P	1.551	Р	1.213	P	ODCI
200802 at	6301		P	0.652	Р	0.659	Р	SARS
200808 s at	7791		P	1.880	p	1.962	Р	ZYX
200838 at	1508	1	P	1.093	P	2.031	Р	CTSB
200839 s al	1508	1	Р	1.062	p	1.769	P	CTSB
20084 s at	2058	1 1	P	0.633	Р	0.742	р	EPRS
200872 at	6281	1	Р	1.473	P	2.429	P	S100A10
200878 at	29952	<u> </u>	A	2.247	P.M.A	2.708	P	EPASI
200887 s at	6772	1	P	1.627	p	2.377	P	STATI
200897 s at	23022	1	P	1.398	P	1.836	Р	KIAA0992
200904 at	3133		P	1.118	P	1.758	Р	HLA-E
200905 x at	3133		P	1,209	P	1.655	P	HLA-E
200907 s at	23022	· · ·	P.A	1.217	Р	1.710	P	К1АА0992
200923 at	3959		A	1.150	M.A	2.423	Р	LGALS3BP
200931 s at	7414		P	1.474	P	1.745	р	VCL
200965 s at	3983	1	Р	0.544		0.800	Р	ABLIMI
200983 x at		1	p	1.362	P	1.767	Р	CD59
200984 s at	966	1	P	1.501	Р	1.931	Р	CD59
200985 s at	966		Р	1.581	Р	2.096	Р	CD59;
200986 at	710	1	P.A	1.259	Р	1.908	Р	SERPINGI
200988 s at			P	1.665	P	1.565	Р	PSME3
200989 at	3091		P	1.537	P	1.423	P	HIFIA
201010 s al	10628		P	0.584	P	1.402	P	TXNIP
201015 s al	3728		Δ	2.589	P.M	4.411	P	JUP
201037 at	5214	1	P	1.790	P	1.679	P	PFKP
201041 s at	1843	1	P	1.355	P	1.848	P	DUSP1
201041 s at	7052	1	P.A	13.556	P P	22.821	P	TGM2
201042 at 201058 s at	10398	1	P	1.658	p	1.843	p	MYL9

Affymetrix		Day 0	l	Day 3		Day 7		C
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
201060 x at	2040		Р	1.433	P	1.743	Р	STOM
201061 s at	2040	1	Р	1.314	р	1.669	Р	STOM
201085 s at	6651		P.A	1.374	р	1.570	р	SON
201110 s at	7057	1	A	10.648	р	8.768	P,A	THBSI
201116 s at	1363	1	P	1.085	р	1.537	р	CPE
201140 s at	5878	1	Р	1.487	Р	1.703	р	RAB5C
201141 at	10457	1	<u>р</u>	1.287	Р	1.578	p	GPNMB
201141 at	1965		p	1.386	Р	1.509	p	EIF2S1
201142 at	1965		p -	1.530	p	1.376	p	EIF2SI
201147 s at	7078		A	2.093	A	3.727	P.M	TIMP3
	7078	1	p	1.905	P P	2.995	р	TIMP3
201149 s at		1	A	1.903		2.131	P	TIMP3
201150 s at	7078				P,A		P P	
201156 s at	5878	1	P	1.355	P	1.592		RAB5C
201161 s at	8531	1	Р	1.241	Р	1.555	P	CSDA
201162 at	3490		A	1.383	<u>A</u>	3.143	Р	IGFBP7
201163 s at	3490	1	Р	1.634	Р	3.422	Р	IGFBP7
201170 s at	8553	1	Р	1.254	Р	1.671	Р	BHLHB2
201189 s at	3710	1	P,A	1.362	Р	1.681	Р	ITPR3
201195 s at	8140	I	Р	0.680	P	0.553	Р	SLC7A5
201206 s at	6238		Р	1.327	Р	1.537	Р	RRBP1
201214 s at	5510	1	Р	1.516	Р	1.411	Р	PPP1R7
201216 at	10961	1	P	0.593	Р	0.717	Р	ERP28
201232_s_at	5719	1	Р	1.576	Р	1.478	Р	PSMD13
201233_at	5719	1	P	1.513	Р	1.425	Р	PSMD13
201263 at	6897	1	Р	0.587	Р	0.632	Р	TARS
201266 at	7296	1	Р	1.646	Р	1.680	р	TXNRD1
201278 at		1	A	1.467	M.A	1.567	P,A	
201315 x at	10581	1	Р	0.870	P	1.524	Р	IFITM2
201329 s at	2114	1	A	1.617	P.A	1.713	P	ETS2
201348 at	2878	1	Р	3.924	Р	4.117	Р	GPX3
201397 al	26227		P	0.436	Р	0.417	Р	PHGDH
201401 s at	156		<u>р</u>	0.595	P.M.A	0.705	P.A	ADRBK1
201410 at	150		P	1.538	р	1.312	Р	PLEKHB2
201416 at			<u>р</u>	1.303	р	1.740	P	SOX4
201417 at		1	p	1.198	p	1.571	p	SOX4
201417 at	10437		P	1.367	P	1.522	P	IFI30
	217	1	P	0.599	P	0.574	P	ALDH2
201425 at 201427 s at	6414	1	A	1.808	P,A	2,178	P.M	SEPP1
201427 S 21	9261	1	P	1.472	P P	1.528	р	MAPKAPK2
201460 at 201464 x at			A	2.573	P,M	3.470	p r	JUN
		<u> </u>			р	2.898	P	JUN; API
201466 s at	3725		A P	2.201	p P	1.899	P	JUN; APT
201473_at	3726		-				P	
201475 x at			P	0.521	P n	0.556	P	MARS
201482 at	5768	1	P	1.364	P	1.561		QSCN6
201489 at	10105	1	P	1.485	P	1.688	P	PPIF
201490 s at		1	P	1.493	P	1.827	P	PPIF
201498_at	7874		Р	1.530	P	1.293	P	USP7
201502 s at	4792	1	Р	1.915	P	2.399	Р	NFKBIA
201505 at	3912	1	P.A	1.903	P	2.354	Р	LAMB1
201531_at	7538	1	P P	1.184	P	1.773	P	ZFP36

Affymetrix		Day 0	4	Day 3	•	Day 7	,	
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
201539 s at	2273	1	Р	1 454	Р	2 417	Р	FHLI
201540 at	2273	1	Р	1 485	Р	2 255	Р	FHL1
201546 at	9320	1	Р	1 577	Р	1 540	Р	TRIP12
 201557_at	6844	1	Р	0 617	Р	0 790	Р	VAMP2
	6624	1	Р	1 496	Р	1 609	Р	FSCN1
 201565_s_at	3398	1	Р	3 928	Р	1 901	Р	ID2
 201566_x_at	3398	1	P,M	5 879	Р	2 464	P	ID2
201578_at	5420	1	M,A	1 188	M,A	1 558	P,M	PODXL
 201596_x_at	3875	1	A	2 751	P,M	4 813	P	KRT18
201601_x_at	5805	1	Р	0 833	P,M	1 587	P	IFITM1
 201631_s_at	8870	1	Р	2 594	P	3 867	Р	IER3
201648_at		1	Р	1 420	Р	1 577	P	KIAA1579
	9246	1	Р	1 161	Р	1 818	P	UBE2L6
201655 s at	3339	1	A	1 074	A	1 610	P	HSPG2
201666_at	7076	1	Р	1 201	P	1 954	P	TIMP1
201673_s_at	2997	1	Р	1 690	Р	1 503	P	GYS1
201693 s at	1958	1	P	1 009	P,A	1 554	Р	EGR1
201695_s_at	4860	1	P	1 642	P	1 375	P	NP
201700_at	896	1	P	1 810	P	1 706	P	CCND3
201710 at	4605	1	P	1 687	P	1 163	P	MYBL2
201718_s_at	2037	1	P	1 446	P	1 651	 P	EPB41L2
201719_s_at	2037	1	P	1 328	P	1 509	P	EPB41L
201739_at	6446	1	P	4 350	P	6 312	P	SGK
201744_s_at	4060	1	P	1 428	P	1 879	P	LUM
201762_s_at	5721	1	P	1 311	P	1 660	P	PSME2
201765_s_at	3073	1	P	0 592	P	0 840	P	HEXA
201798_s_at	26509	1	P,A	5 459	P	13 058	P	FER1L3
201810_s_at	9467	1	P	1 813	P	2 115	P	SH3BP5
201811_x_at	9467	1	P	2 037	P	2 081	P	SH3BP5
201841_s_at	3315	1	P	1 636	 P	1 720	P	HSPBI
201860_s_at	5327	1	A	1 658	M,A	2 312	P,A	PLAT
201865_x_at	2908	1	P	1 479	P	1 561	P	NR3C1
201866 s at	2908	1	P M	1 441	P	1 529	P	NR3C1
201877_s at	5527	1	P	0 638	 P	0 714	P	PPP2R5C
201891_s_at	567	1	P	1 282	P	1 598	P	B2M
201900_s_at	10327	1	P	0 521	P	0 748	P	AKRIAI
201915_at	11231	1	P	0 640	P	0 734	P	SEC63
201925_s_at	1604	1	P	0 611	P	0 771	P	DAF
201926_s_at	1604	1	P	0 627	P	0 722	Р	DAF
201951_at	214	1	Р	1 600	P	2 764	Р	ALCAM
201952 at	214	1	Р	1 483	P	2 448	P	ALCAM
201959 s at	23077	1	P,A	1 408	Р	1 698	P	MYCBP2
201960_s_at	23077	1	P	1 402	P	1 742	P	MYCBP2
201971_s_at	523	1	P	1 559	P	1 595	P	ATP6V1A
201972_at	523	1	P	1 458	P	1 614	P	ATP6V1A
201998 at	6480	1	P,M	1 529	P	1 496	P	SIATI
201990_at	4811	1	P	1 340	P	2 095	P	NID
202008_s_at	4811	1	 P	1 243		1 839		NID
202008_3_at	4232	1	P	1 862	P	1 731	P	MEST
202010_at 202017 at	2052	1	P	1 519	P	1 532	P	EPHX1
20201/_al	2032	I		1 1 517	ſ		L I	

Affymetrix		Day 0)	Day 3	1	Day 7		
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
202023 at	1942	1	A	1 509	P,M,A	2 268	Р	EFNA1
202052 s at	26064	1	Р	1 594	P	2 242	Р	RAI14
202055_at		1	P,M A	1 533	Р	1 546	P	KPNA1
202056 at		1	P	1 650	Р	1 539	Р	KPNA1
202058_s_at	3836	1	Р	1 537	Р	1 427	Р	KPNAI
202059_s_at	3836	1	Р	1 619	Р	1 493	Р	KPNA1
202069_s_at	3419	1	Р	1 615	P	1 367	Р	IDH3A
202071_at	6385	1	P	2 310	P	2 260	P	SDC4
202074_s_at	10133	1	P	1 143	P	1 560	P	OPTN
202080_s_at	22906	1	A	1 158	M,A	1 555	P,A	OIP106
202000_5_ut	4599	1	A	2 340	P,M	6 578	<u>Р</u>	MX1
202105 at	3476	1	<u>Р</u>	0 645	P	0 722	P	IGBP1
202122 s at	10226	1	P	1 468	P	1 635	P	M6PRBP1
202122_5_dt	25937	1	M,A	1 536	P,M	1 656	P,M	TAZ
202132_at	25937	1	P	1 231	P	1 613	P	TAZ
202135_at	9961	1	P,A	1 104	P	1 649	P	MVP
202100 <u>5</u> ut 202193 at	3985	1	P	1 711	P	1 601	P	LIMK2
202195_at	27122	1	A	3 642	P,A	4 850	P,M	DKK3
202170 <u>3</u> _tt 202241_at	10221	1	P	2 804	P	3 234	P	TRIBI
202241_at 202258_s_at	10443	1	P	0 585	P	0 678	P	PFAAP5
202259 s at	10443	1	P	0 629	P	0 787	Р.	PFAAP5
202239_s_at 202272_s_at	23219	1	P	1 532	P	1 412	 Р	
	1026	1	P	4 476	P	4 940	P	P21
202284_s_at	5696	<u> </u>	P	1 881	P	2 580	P	TAPI
202307_s_at		1		<u> </u>		2 989		COLIAI
202310_s_at	1277		A P	2 670	P,A P		P,A P	
202328_s_at	5310	1	P P	0 597	-	0 657	P	PKD1
202350_s_at	4147	1		1 668	P	1 884		MATN2
202361_at	9632	1	P P	1 333	<u>Р</u> Р	1 503	<u>Р</u> Р	SEC24C
202370_s_at	865	1		1 601	P P	1 336	P P	CBFB
202389_s_at	3064	1	A	1 568	t	1 638		HD
202391_at	10409	1	P	3 198	P P	4 368	<u>Р</u>	BASP1
_202402_s_at	833	1	P P	0 560	-	0 602	<u>Р</u>	CARS
202422_s_at	2182	1	{	1 501	P	1 625	<u> </u>	ACSL4
202425_x_at	5530		P,M,A	1 237	P	1 524	P	PPP3CA
_202430_s_at	5359	1	P	1 447	P	2 452	P P	PLSCRI
202435_s_at	1545	1	A	1 335	P	1 670	P,A	CYP1B1
202436_s_at	1545	1	P,A	1 418	P P	1 647	P	CYP1B1
202437_s_at	1545	1	A P	1 486	P P	2 040	Р Р	CYP1B1 PLSCR1
202446_s_at	5359	1	ł	1 293		2 069 6 194	P P	SPUVE
202458_at	11098 9879	<u>I</u> 1	A P	3 120 1 543	P,M,A P	1 268	Р Р	DDX46
202462_s_at 202468 s at	8727	1	P P	1 543	P P	1 268	P P	CTNNAL1
	9249	1	P P	1 1 1 1 2 4	P	1 520	P	DHRS3
202481_at			P P		P		P P	SPOCK2
202524_s_at	9806		1	0 542		0 594	P P	
202531_at	3659	1	P	1 909	P	2 375	<u> </u>	
202575_at	1382	1		2 672	M,A	2 516	P,M,A	CRABP2
202598_at	6284	1	P	1 430	P	2 083	P	S100A13
202620_s_at	5352	1	P A	1 826	P	2 047	P	PLOD2
202628_s_at	5054	1	A	17 716	A	55 277	P	SERPINE1
202630_at	10513	1	P	0 651	Р	0 866	P	APPBP2

Affymetrix	LocusLink	Day 0		Day 3		Day 7		Common Name
1d	LOCUSLINK	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
202637 s at	3383		Р	1.367	Р	2.120	Р	ICAMI
202638 s al	3383	1	Р	1.482	Р	2.282	Р	ICAM1
202643 s at	7128	1 I	Δ	1.678	P,A	2.349	Р	TNFAIP3
202644 s at	7128	1	Р	1.788	Р	2.315	Р	TNFAIP3
202656 s at	9792	1	Р	1.594	Р	1.556	Р	SERTAD2
202660 at	23526	1	Р	1.418	Р	1.575	Р	HA-1
202662 s at	3709	I	P.M.A	1.343	Р	1.679	Р	1TPR2
202672 s at	467	I	Р	1.366	Р	1.620	Р	ATF3
202684 s at	8731	1	Р	1.883	Р	1.362	Р	RNMT
202686 s at	558	1	M,A	1.259	P,M	1.829	Р	AXL
202693 s at	9263	1	Р	1.691	Р	1.690	Р	STK17A
202695 s at	9263	I	P,A	1.734	Р	1.915	Р	STK17A
202716 at	5770	I	Р	1.583	Р	1.633	Р	PTPNI
202728 s at	4052		Р	0.577	P.A	0.844	- p	LTBP1
202729 s at	4052	1	Р	0.652	Р	0.914	р	LTBPI
202732 at	11142	1	P	1.085	Р	1.566	р	PKIG
202743 at	8503	1	Р	1.988	Р	1.995	р	PIK3R3
202746 at	9452	1	Р	2.315	Р	3.499	р	ITM2A
202759 s at	11217	1	Λ	1.472	P,A	1.842	P.A	PALM2
202760 s at	11217	1	P,A	1.545	P.M.A	1.993	P,A	AKAP2
202761 s at	23224	1	P	0.987	Р	1.563	p	SYNE2
202766 s at	2200	1	P	1,182	Р	1.767	Р	FBN1
202769 at		1	P	0.572	P	0.630	Р	CCNG2
202794 at	3628	L	Р	1.450	Р	1.549	P	INPP1
202801 at	5566	1	Р	1.590	Р	1.454	Р	PRKACA
202812 at	2548	1	Р	0.515	P	0.759	P	GAA
202819 s at	6924	1	Р	1.762	Р	1.460	P	TCEB3
202822 at	4026	1	P	1.414	P	1.735	P	LPP
202830 s at	2542		P	0.497	Λ	0.630	P.A	SLC37A4
202846 s at	5279	1	P	0.605	Р	0.690	Р	PIGC
202847 at	5106	1	P	0.382	P	0.381	Р	PCK2
202854 at	3251		P	1.497	P	1.527	Р	HPRTI
202870 s at		1	Р	1.511	P	1.396	p	CDC20
202883 s at	5519	1	P	1.565	Р	1.515	Р	PPP2R1B
202887 s at	54541		P	0.429	A	0.474	Λ	DDIT4
202934 at	3099	1	A	1.917	P,A	1.845	P,A	HK2
202948 at	3554	1	P,A	1.099	P,A	1.595	P.M.A	IL1R1
202949 s at	2274	1	P	3.214	Р	5.650	P	FHL2
202962 at	23303	1	M,A	1.689	P,A	1.867	Р	KIF13B
202998 s at	4017	1	Р	1.214	Р	2.216	Р	LOXL2
203002 at	51421	1	P	1.636	Р	1.783	Р	AMOTL2
203023 at	51491	1	Р	1.611	Р	1.585	Р	HSPC111
203051_at	22893	1	Р	1.431	Р	1.584	Р	BAHDI
203058_s_at	9060		P	2.594	P	3.299	P	PAPSS2
203059 s al	9060	1	P,M	1.694	P	2.184	Р	PAPSS2
203060 s at	9060		P	3.572	Р	4.996	Р	PAPSS2
203062 s at	9656		Р	1.511	Р	1.563	Р	MDC1
203065 s at	857	1	p	1.411	P	1.629	P	CAV1
203066 at	51363	1	P	1.656	P	1.645	P	GALNAC4S-65
203072 at	4643	1	A	2.026	P	2.157	P	MYOIE

Affymetrix		Day 0		Day 3		Day 7	,	Common Nama
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
203074_at	244	1	Α	1 185	P,A	1 664	Р	ANXA8
203102_s_at	4247	1	Р	1 591	Р	1 451	Р	MGAT2
203119_at	79080	1	Р	1 364	Р	1 501	Р	MGC2574
	604	1	Р	1 299	Р	2 011	Р	BCL6
203148 s at	9830	1	Р	1 551	Р	2 105	Р	TRIM14
 203153_at	3434	1	A	2 969	P,A	8 524	Р	IFIT1
	2744	1	Α	1 579	Р	1 648	Р	GLS
 203178_at	2628	1	Р	1 544	Р	1 337	Р	GATM
203184_at	2201	1	Р	1 873	Р	2 503	Р	FBN2
	8898	1	Р	1 5 50	Р	1 336	Р	MTMR2
203212_s_at	8898	1	A	1 565	Р	1 536	P,A	MTMR2
203216_s_at	4646	1	Р	1 547	Р	1 323	Р	MYO6
203242_s_at	10611	1	P,M	1 471	Р	1 604	Р	LIM
203243 s_at	10611	1	Р	1 642	Р	1 942	Р	LIM
203252_at	10263	1	Р	1 512	Р	1 421	Р	DOC-1R
203304 at	25805	1	P,M	2 3 56	Р	2 293	Р	BAMBI
203336_s_at	9270	1	P	1 559	Р	1 518	P	ITGB1BP1
203359_s_at	26292	1	Р	1 943	Р	1 520	Р	МҮСВР
203360_s_at	26292	1	Р	1 734	Р	1 317	Р	MYCBP
203381_s_at	348	1	P,M	1 376	Р	2 272	Р	APOE
203382_s_at	348	1	P,A	1 507	Р	2 557	Р	APOE
203386_at	9882	1	P,A	1 553	Р	1 726	P	TBC1D4
203413_at	4753	1	P	1 253	Р	1 852	P	NELL2
203423_at	5947	1	P	1 287	Р	1 812	Р	RBP1
203439_s_at	8614	1	Р	0 674	Р	0 609	P,A	STC2
203455_s_at	6303	1	Р	1 713	Р	2 535	P	SAT
203485 at	6252	1	P	1 575	Р	1 516	Р	RTN1
203504_s_at	19	1	P	1 913	P	2 457	P	ABCA1
203505_at	19	1	P	2 218	P	3 080	Р	ABCAI
203526_s_at	324	1	Р	1 347	Р	1 584	Р	APC
203558_at	9820	1	P	0 612	РМ	0 914	Р	CUL7
203563 at	60312	1	A	1 187	P,A	1 569	P,M,A	AFAP
 203578 s at	9057	1	P,M	1 746	P	1 392	P	SLC7A6
203585_at	7739	1	P	1 631	Р	1 707	P	ZNF185
203592 s at	10272	1	РМ	1 896	Р	1 801	P	FSTL3
203603 s at	9839	1	P,A	1 574	A	1 463	P,A	ZFHX1B
203607 at	22876	1	P	1 591	Р	1 529	 P	INPP5F
	10544	1	Р	1 335	Р	1 510	P	PROCR
 203657_s_at	8722	1	Р	0 540	Р	0 741	Р	CTSF
 203665_at	3162	1	Р	2 443	Р	2 435	Р	HMOX1
 203671_at	7172	1	P,A	1 647	P,M	1 565	Р	TPMT
	9931	1	P	1 472	P	1 593	Р	HELZ
 203675_at	4925	1	P	1 180	Р	1 626	Р	NUCB2
	55621	1	Р	1 548	Р	1 424	Р	FLJ20244
203710_at	3708	1	Р	1 811	Р	1 661	P	ITPRI
203725 at	1647	1	P	1 452	P	1 861	P	GADD45A
203728 at	578	1	P	1 507	P	1 486	P	BAK1
203736_s_at	8496	1	M,A	1 375	P	1 616	P	PPFIBP1
203743 s at	6996	1	P	1 606	P	1 410	P	TDG
203767_s_at	412	1	P	2 006	P	1 691	P	STS

~

\$

Affymetrix		Day 0	1	Day 3		Day 7		
ld	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
203787 at	23635	1	Р	1.717	Р	2.234	р	SSBP2
203810 at	11080	1	Р	1.593	р	1.458	Р	DNAJB4
203811 s at	11080	1	P.M.A	1.666	Р	1.648	р	DNAJB4
203821 at	1839	1	A	3.276	Р	2.477	P.M	DTR
203836 s at	4217		Λ	1.462	P.A	1.899	P.A	MAP3K5
203843 at	6197		Р	1.349	p	1.585	P	RPS6KA3
203851 at	3489		P.A	1.972	P	2.426	P	IGFBP6
203876 s at	4320	<u> </u>	P.A	0.573	P.M.A	0.695	P.A	MMP11:
203889 at	6447		M.A	1.463	P	2.005	p	SGNEI
203895 at	0447	1	P	1.334	p	1.558	p	PLCB4
203895 at	9411	1	p	2.144	Р	3.560	p	PARGI
	9411	1	p P	0.439	P	0.546	P	CHST2
203921_at					P P		P	NFKBIE
203927 at	4794		P,M	1.652		2.040		
203936 s at	4318	1	P	1.434	P	1.608	P	MMP9
203946 s at	384		P,A	2.360	P	2.222	P	ARG2
203951 at	1264	I I	A	12.155	P	12.597	P	CNNI
203964 at	9111	<u> </u>	Р	1.874	P	1.995	P	NMI
203973 s at	1052	<u> </u>	Р	1.188	Р	1.604	Р	CEBPD
203980 at	2167	<u> </u>	Р	1.538	Р	1.611	Р	FABP4
203981 s at	5826	L	P	0.585	Р	0.711	P	ABCD4
203986_at	8987	1	Р	1.663	Р	1.604	P	GENX-3414
203989 x at	2149	1	A	1.891	P.A	2.739	P	F2R
204005 s at	5074	1	Р	1.501	Р	1.615	Р	PAWR
204024 at	734	1	P	1.539	Р	1.159	Р	C8orf1
204029 at	1952	1	Р	0.616	Р	0.643	Р	CELSR2
204030 s at	29970	I I	Р	1.948	Р	2.721	P	SCHIPT
204035 at	7857	1	Р	0.803	р	0.416	Р	SCG2
204048 s at	9749	1	Р	1.321	Р	1.539	Р	C6orf56
204049 s at	9749	1	Р	1.515	Р	1.693	Р	C6orf56
204070 ш	5920	1	P,A	1.431	P,A	2.723	Р	RARRES3
204081 at	4900	1	P	2.118	Р	1.856	p	NRGN
204082 at	5090	1	Р	1.467	Р	1.858	Р	РВХЗ
204083 s at	7169	1	P	1.545	P	1.656	Р	TTM2
204094 s at	9819	1	P	1.573	P	1.601	P	KIAA0669
204074 s at	4800		P	1.530	P	1.251	P	NEYA
204107 s at	11259	1	P	1.623	p i	2.851	P P	DOCI
204139 x at	7593		P	0.602	A	0.762	P.A	ZNF42
204141 at	7280			2.284	P	2.008	P	TUBB
204159 at	1031	· ·	P	1.550	P	1.388	P	CDKN2C
204184 s at	1051		P	1.536	P	1.358	P	ADRBK2
			P,A	1.534	P,A	1.558	P	PCYTIA
204210 s at 204218 at	5130 25906		P,A P	1.534	P,A P	1.414	<u>р</u>	DKFZP564M08
			P		P	1.2.34	P	GCHI
204224 s at	2643	1	P	1.961	P	0.808	P	C6orf108
204238_s_at	10591	1		0.642		+		
204260 at	1114	1	P	0.189	P	0.220	P	CHGB
204268 at	6273	1	A	2.756	P	4.154	P	S100A2
204279 at	5698		P	2.180	P	3.303	P	PSMB9
204284 at	5507		Р	1.259	P.A	1.672	P	PPP1R3C
204313 s at	1385	1	Р	1.541	Р	1.436	P	CREB1
204326 x at	4500		Р	2.032	Р	2.455	Р	MTIL

Affymetrix	LocusLink	Day 0		Day 3		Day 7		Common Name
ld	LUCUSLINK	Normalized	Flags	Normalized	Flags	Normalized	Flags	CONTRICT (VEILLE
204332 s at	175	1	Р	0.600	Р	0.718	Р	AGA
204333 s at	175	1	Р	0.570	Р	0.611	р	AGA
204347 at	205	I	Р	1.642	Р	1.952	P	AK3
204348 s at	205	I	Р	1.606	Р	1.835	Р	AK3
204358 s at	23768	I	Р	0.625	P.A	0.939	Р	FLRT2
204359 at	23768	1	Р	0.620	Р	0.909	Р	FLRT2
204360 s at	4669	I	Р	0.647	Р	0.742	Р	NAGLU
204368 at	6578	1	Λ	1.442	P.M.A	2.032	Р	SLCO2A1
204396 s at	2869	1	Р	1.589	р	1.584	Р	GRK5
204398 s at	24139	1	р	0.643	Р	0.825	P,M	EML2
204412 s at	4744	1	Р	1.572	Р	1.257	Р	NEFH
204416 x al	341	1	Λ	1.584	Р	1.572	P,M	APOCI
204420 at	8061	1	Р	1.580	Р	1.869	Р	DIPA
204421 s at	2247	1	Р	1.488	Р	1.563	Р	FGF2
204422 s at	2247	1	Р	1.667	Р	1.646	Р	FGF2
204423 at	4289	1	Р	1.696	Р	1.558	Р	MKLNI
204425 at	393	1	р	0.583	P,A	0.738	Р	ARHGAP4
204455 at	667	1	Α	1.901	P,A	3.900	Р	BPAG1
204462 s at	6567	1	р	1.414	Р	1.766	Р	SLC16A2
204465 s at	9118	1	Р	1.915	Р	1.894	Р	INA
204475 at	4312	I	Р	3.658	Р	6.287	Р	MMP1
204485 s at	10040	1	Р	0.653	Р	0.781	P	TOMILI
204490 s at	960	1	P,A	2.166	P,A	4.040	P,A	CD44
204493 at	637	-	Р	1.569	р	1.427	Р	BID
204514 at	1802		Р	1.505	р	1.600	Р	DPH2L2
204527 at	4644		P	1.519	р	1.513	Р	MYO5A
204530 s at	9760	1	P.A	1.481	Λ	1.702	Р	тох
204540 at	1917	1	P	1.556	p	1.229	Р	EEF1A2
204567 s at	9619	1	P	1.555	P	1.144	Р	ABCGI
204616 at	7347	1	Р	1.549	P	1.454	P	UCHL3
204627 s at	3690	1	A	1.485	P.A	2.100	P	ITGB3
204632 at	8986	1	Р	1.832	P	1.669	P	RPS6KA4
204646 at	1806	1	P	0.547	р	0.606	P	DPYD
204647_mt	9454	1	P	1.685	р	2,199	Р	HOMER3
204653 at		1	P,A	1.274	Р	1.608	Р	ΤΕΛΡ2Λ
204655 at	6352	1	Λ	2.186	P,A	7.657	Р	CCL5
204665 at	80143	1	Р	0.825	Р	0.626	P	FLJ21168
204682 at	4053	1	P,A	1.357	P	2.179	Р	LTBP2
204745 x at	4495	1	Р	1.463	Р	1.882	Р	MIIG
204748 al	5743	1	M,A	3.283	P	4.991	Р	COX2
204749_at	4675	1	P	1.535	Р	1.564	Р	NAPIL3
204759_at	1102	L	Р	1.684	Р	1.274	Р	CHC1L
204780 s at	355	L	A	1.375	P,A	1.754	Р	TNFRSF6
204788 s at		1	p	0.546	P	0.617	P	PPOX
204790 at	4092	l l	Р	1.807	Р	1.313	Р	SMAD7
204792 s at	9742		P,A	0.594	9	0.819	P,A	KIAA0590
204806 x at		1	P	1.034	P	1.558	P	HLA-F
204811 s at	9254		p	0.644	P	0.651	P	CACNA2D2
204859 s al	317		P	1.512	p	1.599	p	APAFI
204865 at	761	1	A	1.506	P,A	1.757	P	CA3; CAIII

Affymetrix		Day 0	1	Day 3		Day 7		
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
204875_s_at	2762	1	Р	1 377	Р	1 725	Р	GMDS
204880_at	4255	1	Р	0 655	Р	0 764	Р	MGMT
 204897_at	5734	1	Р	2 197	Р	2 832	Р	PTGER4
 204908_s_at	602	1	Р	1 734	Р	2 267	Р	BCL3
204928_s_at	8273	1	Р	1 590	Р	1 331	Р	SLC10A3
204935_at	5771	1	P,A	1 546	Р	1 237	P,A	PTPN2
	10782	1	Р	1 525	Р	1 349	Р	ZNF274
204948_s_at	10468	1	A	1 305	Р	1 701	Р	FST
204955_at	8406	1	Р	1 854	Р	1 797	Р	SRPX
 204983_s_at	2239	1	P	1 249	Р	1 621	Р	GPC4
 204985_s_at	79090	1	Р	0 632	Р	0 772	Р	MGC2650
204991_s_at	4771	1	A	1 583	P,A	1 809	P,M	NF2
204995_at	8851	1	Р	0 707	P	0 625	P,A	CDK5R1
204998 s at	22809	1	Р	0 532	Р	0 660	P	ATF5
204999_s_at	22809	1	Р	0 420	Р	0 507	Р	ATF5
205005_s_at	9397	1	Р	1 593	Р	1 426	P	NMT2
205006_s_at	9397	1	Р	1 605	Р	1 718	Р	NMT2
205013 s at	135	1	P,A	1 864	P	2 098	P	ADORA2A
205016_at	7039	1	Â	2 225	Р	2 039	Р	TGFA
205034_at	9134	1	P	1 702	P	1 461	P	CCNE2
205047 s at	440	1	P	0 279	P	0 271	P	ASNS
205081_at	1396	1	P	1 803	P	1 343	P	CRIP1
205081_at	10046	1	M	1 433	P	1 612	P	CXorf6
205005_ut	1836	1	P	1 363	P	1 622	Р	SLC26A2
205110_s_at	2258	1	P,A	1 482	P	1 643	P	FGF13
205111_s_at	51196	1	P	1 548	P	2 134	P	PLCE1
205112_at	51196	1	P,A	1 636	P	2 470	Р	PLCE1
205115_s_at	9904	1	A	1 552	P	1 353	P,M	RBM19
205126_at	7444	1	 P	1 504	P	1 542	P	VRK2
205120_ut 205172_x_at	1212	1	P	1 550	P	1 597	P	CLTB
205172_x_at	25797	1	P	2 687	P	3 129	P	QPCT
205192 at	9020	1	P,M	1 501	P	1 575	P	MAP3K14
205192_at 205193 at	23764	1	P,M	1 594	P	1 360	P	MAFF
205196_s_at	1174	1	P,M	1 432	P,A	2 059	P,A	AP1S1
205205_at	5971	1	P	1 867	P	2 271	P	RELB
205213_at	9262	1	A	2 069	P,M,A	1 846	M,A	STK17B
at	1959	1	P	1 041	P	1 649	P	EGR2
205280_at	2743	1	P	0 651	P	0 722	P	GLRB
205286_at	7022	1	A	2 102	P	3 094	P	TFAP2C
at	8556	1	P	1 548	P	1 322	P,M	CDC14A
	1381	1	P	1 976	P	2 301	P	CRABP1
205352_at	5274	1	P,A	1 428	P	1 956	P	SERPINI1
205358_at	2891	1	P	0 622	P	0 774	P	GRIA2
205379_at	874	1	A	1 967	P,A	2 206	Р	CBR3
205401_at	8540	1 -	P	1 522	P	1 327	P	AGPS
205407_at	8434	1	P	0 604	P	0 835	P	RECK
205423_at	162	1	P	1 614	P	1 524	P	APIBI
205428_s_at	794	1	P,A	1 529	P	1 484	P	CALB2
205434_s_at	22848	1	P	1 525	P	1 496	P	AAKI
205443 at	6617	1	P	1 845	P	1 582	P	SNAPC1

Affymetrix		Day 0		Day 3		Day 7	,	Common Name PLAU G1P2 DPYSL4 ZNF175 GHR PCDH7 APG-1 TAGLN LAMP3 LRP6 MEOX1 CALB1 CALB1 CALB1 CALB1 CALB1 OASL CYP27B1 BST1 OSMR DUSP9 TUFT1 MMP3 HSD17B1 CLGN GAS2 LIFR SLC22A4 CCNA1 RAB3B RAB3B RAB3B CGREF1
Id	LocusLink	Normalized	Flågs	Normalized	Flags	Normalized	Flags	Common Name
205479_s_at	5328	1	Α	2 913	Р	6 454	Р	PLAU
205483_s_at	9636	1	Р	1 597	Р	2 631	Р	G1P 2
205493_s_at	10570	1	Р	1 691	Р	1 379	Р	DPYSL4
 205497_at	7728	1	P,A	0 649	M,A	0 781	M,A	ZNF175
205498_at	2690	1	P,M,A	1 635	Р	1 803	Р	GHR
	5099	1	A	1 711	P,A	2 180	Р	PCDH7
 205543_at	22824	1	Р	1 395	Р	1 560	Р	APG-1
	6876	1	Р	5 771	Р	6 351	Р	TAGLN
205569_at	27074	1	Р	1 142	Р	1 881	Р	LAMP3
205606 at	4040	1	Р	0 577	Р	0 722	Р	LRP6
205619_s_at	4222	1	A	1 342	P,A	2 228	Р	MEOX1
205625_s_at	793	1	A	3 079	Р	4 556	Р	CALB1
205626_s_at	793	1	P,A	1 401	Р	1 643	Р	CALBI
 205660_at	8638	1	M,A	1 247	P,A	2 008	Р	OASL
205676_at	1594	1	P,A	1 479	Р	1 575	P	CYP27B1
 205715_at	683	1	M,A	1 517	P,M,A	1 399	M,A	BSTI
205729 at	9180	1	P	1 035	P	1 544	P	OSMR
205777_at	1852	1	Р	1 564	Р	1 326	Р	DUSP9
205807 s at	7286	1	Р	1 437	Р	1 504	Р	TUFT1
205828 at	4314	1	Р	1 590	Р	1 338	Р	
205829 at	3292	1	P,A	1 885	Р	1 625	Р	
205830_at	1047	1	P	0 605	Р	0 780	Р	
205848 at	2620	1	P	0 656	P	0 514	P,M	
205876_at	3977	1	P,M	2 037	P	2 162	P	
205896 at	6583	1	P	1 458	Р	1 508	P	
205899_at	8900	1	A	1 684	P,A	1 730	P,M	
205924 at	5865	1	A	2 627	P	3 222	P	
205925 s at	5865	1	Р	1 998	Р	2 138	Р	
205937_at	10669	1	P	0 572		0 792	Р	
205973 at	9638	1	P,A	1 314	P	1 514	P	FEZ1
205986_at	9625	1	P,A	0 600	A	0 689	M,A	AATK
206002 at	10149	1	A	1 796	M,A	1 849	PA	GPR64
206023 at	10874	1	Р	1 387	P	1 535	Р	NMU
206036_s_at	5966	1	P	1 555	Р	1 453	P	RELB
206067 s at	7490	1	A	2 297	P,M,A	1 863	P,A	WT1
206068_s_at	33	1	M,A	1 636	P	1 448	P	ACADL
 206074_s_at	3159	1	P	1 526	Р	1 582	Р	HMGA1
 206100_at	1368	1	P,A	1 582	Р	1 924	Р	СРМ
 206103_at	5881	1	P	0 576	Р	0 674	Р	RAC3
 206104_at	3670	1	P,A	1 864	Р	1 713	Р	ISLI
 206116_s_at	7168	1	P	3 588	Р	5 110	Р	TPM1
 206117_at	7168	1	A	3 077	P,A	4 184	Р	TPM1
	152	1	Р	0 621	P,A	0 816	Р	ADRA2C
	9699	1	P,M	1 908	P	2 182	Р	RIMS2
206142_at	7694	1	P,M	0 613	A	0 737	A	ZNF135
at	5806	1	P	2 010	P	1 241	P	PTX3
206279_at	5616	1	P,A	1 471	P	1 573	P,M	PRKY
206295_at	3606	1	P,A	1 653	P	2 355	P	iL18
206343_s_at	-	1		2 177	P	1 623	P	NRG1
206355 at	2774	1	P	0 623	P	0 645	P	GNAL

ŧ

t

Id 206401_s_at 206404_at 206424_at 206461_x_at 206463_s_at 206506_s_at 206508_at 206632_s_at 206662_at 206675_s_at 206693_at	4137 2254 1592 4496 10202 1591 8464 970 30008 9582 2745 6498 3574	Day 0 Normalized 1	Flags P P A A A P,A P,A P,A P P	Day 3 Normalized 0 652 0 695 1 763 1 974 2 838 3 766 0 640 1 738	FlagsP,APP,AP,AP,MP,A	Day 7 Normalized 0 626 0 652 1 461 2 623 2 716 5 333	Flags P,M,A P P P,A M,A P,M,A	Common Name MAPT FGF9 CYP26A1 MT1H DHRS2
206404_at 206424_at 206461_x_at 206463_s_at 206504_at 206508_at 206508_s_at 206632_s_at 206662_at 206693_at 206699_x_at	2254 1592 4496 10202 1591 8464 970 30008 9582 2745 6498	l 1 1 1 1 1 1 1 1 1 1 1 1 1	P P A A P,A P,A P,A	0 695 1 763 1 974 2 838 3 766 0 640 1 738	P P,A P,A P,A P,A	0 652 1 461 2 623 2 716 5 333	P P P,A M,A	FGF9 CYP26A1 MT1H DHRS2
206404_at 206424_at 206461_x_at 206463_s_at 206504_at 206508_at 206580_s_at 206632_s_at 206662_at 206693_at 206699_x_at	1592 4496 10202 1591 8464 970 30008 9582 2745 6498	1 1 1 1 1 1 1 1 1 1 1	P A A P,A P,A P	1 763 1 974 2 838 3 766 0 640 1 738	P P,A P,A P,A P,A	1 461 2 623 2 716 5 333	P P,A M,A	CYP26A1 MT1H DHRS2
206461_x_at 206463_s_at 206504_at 206506_s_at 206508_s_at 206580_s_at 206632_s_at 206662_at 206693_at 206699_x_at	4496 10202 1591 8464 970 30008 9582 2745 6498	1 1 1 1 1 1 1 1 1	A A P,A P,A P	1 974 2 838 3 766 0 640 1 738	P,A P,A P,M P,A	2 623 2 716 5 333	P,A M,A	MT1H DHRS2
206461_x_at 206463_s_at 206504_at 206506_s_at 206508_s_at 206580_s_at 206632_s_at 206662_at 206693_at 206699_x_at	4496 10202 1591 8464 970 30008 9582 2745 6498	1 1 1 1 1 1 1	A A P,A P,A P	2 838 3 766 0 640 1 738	P,A P,M P,A	2 716 5 333	M,A	DHRS2
206463_s_at 206504_at 206506_s_at 206508_at 206580_s_at 206632_s_at 206662_at 206693_at 206699_x_at	1591 8464 970 30008 9582 2745 6498	} 1 1 1 1 1	A P,A P,A P	3 766 0 640 1 738	P,M P,A	5 333		
206504_at 206506_s_at 206508_at 206580_s_at 206582_s_at 206632_s_at 206662_at 206675_s_at 206693_at	1591 8464 970 30008 9582 2745 6498	1 1 1 1	P,A P,A P	0 640	P,M P,A	5 333	P,M,A	
206506_s_at 206508_at 206580_s_at 206632_s_at 206662_at 206675_s_at 206693_at 206699_x_at	970 30008 9582 2745 6498	1 1 1	P,A P	1 738	P,A	0.04.		CYP24A1
206508_at 206580_s_at 206632_s_at 206662_at 206675_s_at 206693_at 206699_x_at	970 30008 9582 2745 6498	1 1	P,A P			0 811	M,A	SUPT3H
206580_s_at 206632_s_at 206662_at 206675_s_at 206693_at 206699_x_at	30008 9582 2745 6498	1	Р	1.040	P,A	3 310	P	TNFSF7
206632_s_at 206662_at 206675_s_at 206693_at 206699_x_at	9582 2745 6498			1 848	Р	1 712	P	EFEMP2
206662_at 206675_s_at 206693_at 206699_x_at	2745 6498	1	r	1 920	Р	2 098	P	APOBEC3B
206675_s_at 206693_at 206699_x_at	6498		Р	1 832	Р	2 075	P	GLRX
206693_at 206699_x_at		1	P,A	1 890	P	1 265	P,A	SKIL
206699_x_at	33/4	1	P,M	1 108	P,A	1 915	P	IL7
	4861	1	P,A	1 553	P	1 429	P,M	NPASI
206748_s_at	9043		P	1 599	P	1 443	P	SPAG9
206765_at	3759	1	P	0 629	 P	0 611		KCNJ2
206773_at	4062	1	P,A	1 954	P	1 786	P	LY6H
206788_s_at	865	1	P	1 761	P	1 411	P	CBFB
206805_at	10371	1	P	1 173	P	1 859	P	SEMA3A
206825_at	5021	1	A	2 427	P	3 962	P	OXTR
206850_at	10633	1	P,A	1 882	P	1 420	P	RRP22
206907 at	8744	1	- 1,0.1 P	1 624	 P	1 882	P	TNFSF9
207014_at	2555	1	P,M	1 312	P	1 718	<u> </u>	GABRA2
207030_s_at	1466	1	- 1,101 P	2 743	P	2 341		CSRP2
207050_at	781	1	A	1 491	P,A	1 633	P,M,A	CACNA2D1
207147_at	1746	1	P	1 790	P	0 731	P,M	DLX2
207180_s_at	10553	1	P,M,A	1 511	P	1 248	P	HTATIP2
207196_s_at	10318	1	P	1 511	P	1 648	P	TNIP1
207219_at	65243	1	P	0 600	P	0 655	P	LOC65243
at	51480	1	P	2 237	P	3 607	P	VCX2
207290_at	5362	1	P	0 385	P,A	0 403	A	PLXNA2
207290_at	6445	1	P	0 428	P	0 400	- <u>A</u> P	SGCG
207302_at	7596	1	P	2 175	P	1 509	P	ZNF45
207324_s_at	1823	1	P,M	0 597	A	0 528	A	DSC1
207324_3_at	7037	1	P	1 500	P	1 539	<u> </u>	TFRC
207357 s at	55568	1	P	1 161	P	1 535	- <u>P</u>	GALNT10
207390 s at	6525		P	1 523	P	1 527	P	SMTN
207390_s_at	22925	1	P,A	1 303	P M,A	1 716	<u>г</u> Р	PLA2R1
207535_s_at	4791	1	P	1 625	P	1 878	P	NFKB2
207563_s_at	8473	1	P	0 643	P	0 780	P	OGT
207574 s at	4616	1	P	2 255	P	2 443	P	GADD45B
207643 s at	7132	1	A	1 083	P,M	1 619		TNFRSF1A
207700_s_at	8202	1	P	1 456	P	1 560	P	NCOA3
207714_s_at	871	1	P	2 408	P	2 214	P	SERPINH1
207768_at	1961	1	A	3 446	P	3 661		EGR4
207813 s at	2232	1	P	0 646	P	0 741		FDXR
207815_s_at	3399	1	P	7 473	P	4 465		ID3
207826_s_at	2318	1	P	1 365	P	1 739	P	FLNC
207870_s_at	10725		P	0 988	r P	1 502	P	NFAT5
208005_s_at	3055	1	A A	1 611	P,A	1 302	P,A	HCK

ł

Affymetrix	<u> </u>	Day 0		Day 3		Day 7		Comment Name
ld	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
208055 s at	26091	1	Р	1.551	Р	1.726	Р	HERC4
208112 x at	10938	1	Р	1.504	Р	1.679	Р	EHD1
208116 s at	4121	1	A	1.661	P.M.A	1.889	р	MANIAI
208117 s at	81887	1	p	1.630	Р	1.524	Р	F1J12525
208178 x at	7204	1	P.M.A	1.454	Р	1.645	Р	TRIO
208186 s at	3991	1	P.M.A	1.847	Р	1.823	P	LIPE
208309 s at	10892		Р	1.875	Р	2.052	Р	MALTI
208359 s at	3761		P	0.497	P,A	0.569	P.A	KCNJ4
208370 s at	1827	1	P	1.427	p	1.610	Р	DSCR1
208433 s al	7804	1	p	0.616	Р	0.698	Р	LRP8
208436 s at	3665		P	1.157	P	1.636	p	IRF7
208456 s at	22800	· · ·	p	1.631	P	1.682	p	RRAS2
208576 s at	8358		A	1.196	P.A	1.569	P.M.A	HISTIH3B
208581 x at	4501	1	P P	1.869	P	2.465	P	MTIX
208501 x at	7430		p	1.501	P	1.603	P	VII.2
208622 s at	7430	1	P	1.501	P	1.643	P	VIL2
208633 s at	23499	1	P P	1.191	P	1.635	<u>Р</u>	MACFI
208637 x at	87	1	P	1.511	P	1.035	P	ACTNI
208650 s at	934	1	P,M,A	3.016	P	4.522	P	CD24
and here.	934	1	P,A	2.132	P	2.999	P,A	CD24 CD24
208651 x at	2617		P	0.558	 	0.562	P	GARS
208693 s at 208711 s at	595		M,A	1.445	M.A	1.972	P	CCND1
	595		P.A	1.765	P.	2.199	P	CCNDI
208712 at			P.A	1.103	p r	1.955	P	HLA-B
208729 x at	3106		p P		P P	1.635	P	SAP18
208740 at	10284		P P	1.352	P P	1.583	P	DDRI
208779 x at	780	+			p r	3.062	p r	FSTLI
208782 at	11167	1	P	1.714	r P		P P	PTRF
208789 at	22939	1	P	2.200		2.707		
208790 s at	22939	1	P	1.590	P	2.630	P	PTRF
208791 at	1191	1	P	1.628	P	2.677	P	CLU
208792 s at	1191		P	1.559	P	2.485	P	CLU
208813 at	2805	1	P	0.617	P	0.619	P	GOTI
208866_at	1452	1	P	1.301	P	1.633	P	CSNKIAI
208872 s at	7905		P	1.521	P	1.377	P	DP1
208891_at	1848		P	0.518	P	0.753	P	DUSP6
208892 s at	1848		P	0.522	P	0.720	P	DUSP6
208893 s at	1848		P	0.391	P	0.656	P	DUSP6
208898_at	51382		P	2.051	P	1.758	P	ATP6VID
208899 x at	51382		P	2.028	P	1.817	P	ATP6VID
208933 s at	55127		P	1.257	P D	1.724	P D	FLJ10359
208934 s at	3964	1	P	1.900	P	2.448	P P	LGALS8:
208935 s at	3964	1	P	1.185	P	1.857	P 	LGALS8
208936 x at		1	P	1.626	P	1.911	P	LGALS8
208937_s_at	3397	1	P	4.800	P	2.532	P	IDI
208944 at	7048		P	1.585	P	2.663	P	TGFBR2
208949 s at	3958		P	1.459	P	1.628	P	LGALS3
208950 s at	501		P	0.631	P	0.722	P	ALDH7A1
208951_at	501		P	0.658	P	0.744	<u> </u>	ALDH7A1
208989 s at	22992		P,M	1.250	P	1.508	P	FBXLII
208991_at	1	1	Р	1.704	P	2.387	Р	STAT3

Affymetrix		Day 0	1	Day 3		Day 7		
ld	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
208992_s_at	6774	1	P,A	1 536	Р	2 315	Р	STAT3
208997_s_at	7351	1	Р	1 438	Р	1 589	Р	UCP2
208998_at	7351	1	Р	1 524	Р	1 742	P	UCP2
	7204	1	Р	1 414	Р	1 536	Р	TRIO
209015_s_at	10049	1	Р	1 549	Р	1 491	Р	DNAJB6
209017 s at	9361	1	Р	0 646	Р	0 691	P	PRSS15
209025_s_at	10492	1	Р	1 379	Р	1 517	Р	SYNCRIP
209040_s_at	5696	1	M,A	2 224	Р	3 927	Р	PSMB8
209083_at	11151	1	A	2 468	Р	2 2 1 6	Р	CORO1A
 209087_x_at	4162	1	P,A	2 137	Р	1 898	P	MCAM
209098 s at	182	1	Р	0 588	Р	0 621	Р	JAG1
209099_x_at	182	1	Р	0 597	Р	0 626	P	JAG1
 209102_s_at	26959	1	Р	0 614	Р	0 816	Р	HBPI
209124_at	4615	1	Р	1 413	P	1 580	P	MYD88
209131 s_at	8773	1	M,A	1 433	P,A	1 605	P,A	SNAP23
209140_x_at	3106	1	P	1 234	P	1 900	P	HLA-B
209155_s_at	22978	1	Р	1 453	Р	1 604	P	NT5C2
209166_s_at	4125	1	P	1 200	Р	1 530	P	MAN2B1
209173_at	10551	1	Р	0 598	A	0 549	A	AGR2
209188_x_at	1810	1	P	1 536	Р	1 358	P	DR1
209189_at	2353	1	P	1 346	P	2 745	 P	FOS
209191_at	84617	1	P	1 599	P	1 610	P	MGC4083
209193_at	5292	1	P	1 789	P	1 942	P	PIM1
209209_s_at	10979	1	P	1 811	P	1 712	P	PLEKHC1
209210_s_at	10979	1	P	1 619	P	1 599	P	PLEKHC1
209211_at	688	1	P	1 213	Р	1 620		KLF5
209212_s_at	688	1	P	1 017	P	1 568	P	KLF5
209220_at	2719	1	P	0 550	P,A	0 718	P	GPC3
209260_at	2810	1	A	1 464	P,A	2 035	P,M	SFN
209267_s_at	64116	1	P,M	2 978	P	3 693	P	SLC39A8
209268_at	11311	1	P	1 446	P	1 540	<u> </u>	VPS45A
209276_s_at	2745	1	P,M	1 660	P	1 565		GLRX
209277_at	7980	1	P	2 483	Р	2 593	<u>Р</u>	TFPI2
209278_s_at	7980	1	P	2 378	Р	3 167	P	TFPI2
209288_s_at	10602	1	Р	1 232	P	1 644	P	CDC42EP3
209291_at	3400	1	Р	4 766	Р	2 901	Р	ID4
209292_at	3400	1	Р	2 515	Р	1 942	P	ID4
209293 x at	3400	1	Р	4 372	Р	2 725		ID4
209304_x_at	4616	1	A	1 886	Р	1 887	P,A	GADD45B
209305_s_at	4616	1	P,A	1 756	Р	1 656	P	GADD45B
209340 at	6675	1	P	2 091	Р	2 136		UAPI
209348_s_at	4094	1	P,A	1 513	P,A	1 958	P,M,A	MAF
209356_x at	30008	1	P	2 008	P	1 941	P	EFEMP2
209366 x at	1528	1	Р	1 467	P	1 640	P	CYB5
209372 x at		1	P	1 619	P	1 625	P	TUBB
209383 at	1649	1	P	0 573	P,M	0 591	P,M,A	DDIT3
209407 s at	10522	1	P	0 491	P,A	0 710	P	DEAF1
209420_s_at	6609	1	P,M	1 848	P	1 874	P	SMPD1
209427_at	6525	1	P,A	1 556	P	1 661	P	SMTN
209432 s at	10488	1	P	1 598	P	1 600		CREB3
<u>a</u>	10400	· · · · · · · · · · · · · · · · · · ·			_ '	1		

Affymetrix Id	LocusLink	Day 0		Day 3		Day 7		Common Name	
		Normalized	Flags	Normalized	Flags	Normalized	Flags		
209453 at	6548	1	Α	1.660	Р	1.727	Р	SLC9A1	
209457 at	1847	1	Р	2.416	Р	3.400	Р	DUSP5	
209459 s al	57416	1	Α	4.488	Р	5.435	Р	ΑΒΛΤ	
209478 at	201254	1	Р	1.684	Р	1.429	Р	STRA13	
209487 at	11030	1	A	2.105	Р	2.085	р	RBPMS	
209506 s al	7025	1	Р	0.641	Р	0.777	P	NR2F1	
209536_s_at	10916	1	Р	1.810	P	2.176	Р	MAGED2	
209543 s at	947	1	Р	0.631	Р	0.681	Р	CD34	
209560 s at	8788	1	Λ	1.323	A	1.636	Р	DLKI	
209561 at	7059	1	Р	1.170	Р	1.595	Р	THBS3	
209574 s at	753	1	Р	1.409	Р	1.547	Р	Cl8orfl	
209598 at	10687	1	Р	1.568	Р	1.861	Р	PNMA2	
209620 s at	22	1	Р	0.620	Р	0.797	Р	hABC7	
209631 s at		1	Δ	1.990	P,A	1.896	P.M.A		
209635 at	1174		Р	1.474	Р	2.123	Р	APISI	
209636 at	4791		Р	1.876	Р	2.559	Р	NFKB2	
209651 at	7041	1	Р	1.739	P	1.698	P	TGFB111	
209653 at	3840		P	1.709	P	1.728	Р	KPNA4	
209656 s at	83604		p	1.613	P	1.497	Р	TM4SF10	
209666 s at	1147	1	Р	1.541	P	1.478	р	CHUK	
209682 at	868	1	P	1.543	P	1.702	P	CBLB	
209710 at	84724	1	P	2.005	P	0.954	P	GATA2	
209715 at	23468	1	P	1.726	Р	1.956	Р	CBX5	
209716 at	1435	1	P.M.A	1.173	P	1.713	Р	CSFI	
209758 s al	8076	1	P	0.841	Р	1.766	Р	MFAP5	
209759 s al	1632	1	P	0.616	P	0.602	Р	DCI	
209771 x at	934	1	P	2.774	P	4,169	P	CD24	
209772 s at	934	1	A	1.873	P,A	2.306	P	CD24	
209773 s at	6241	1	Р	1.619	P	1.253	P	RRM2; R2	
209788_s_at	51752	1	р	1.218	P	1.550	P	ARTS-1	
209803 s ai	7262	1	P.M	5.997	P	6.779	P	PHLDA2	
209818 s at	22927		Р	1.844	P	1.608	P	HABP4	
209835 x al	960		A	1.667	P,M	2.588	P	CD44	
209846 s at	11118	1	P,A	0.860	P.A	1.574	P	BTN3A2	
209852 x al	10197	1	P	1.647	P	1.621	P	PSME3	
209853 s at	10197	<u> </u>	Р	1.606	Р	1.606	Р	PSME3	
209875 s at	6696		Δ	1,714	P.A	2.386	P,A	SPP1	
209894 at	3953		P,A	1.227	Р	2.008	P,M	LEPR	
209897 s at	9353	1	P	1.021	P	1.533	Р	SLIT2	
209921 at	23657	1	Р	0.513	p	0.703	Р	SLC7A11	
209960 at	3082	1	Р	0.636	Р	0.745	Р	HGF	
209967 s at	1390	1	P	0.709	P	0.619	P	CREM	
209969 s at	6772	1	Р	1.796	P	3.525	Р	STATI	
210008 s at	6183	1	р	1.762	p	1.545	Р	MRPS12	
210017 at	10892		Р	1.764	P	1.728	Р	MALTI	
210018 x at	10892	1	P	1.692	P	1.614	P	MALTI	
210026 s at	29775	1	P,A	1.518	P	1.440	P	CARDIO	
210050 at	7167		P.M	1.510	P	1.275	P	TPI1	
210057 at	23049	1	P	1.206	P	1.702	P	SMGI	
210074 at	1515	1	P	1.176	P P	1.784	P	CTSL2	

Affymetrix		Day 0		Day 3	, ;	,		
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
210095_s_at	3486	1	Р	1 570	Р	1 793	Р	IGFBP3
210100_s_at	20	1	P,M	0 658	A	0 871	P,A	ABCA2
210102_at	4013	1	Р	1 014	Р	1 527	Р	LOHIICR2A,
210117_at	6674	1	Р	1 783	Р	1 224	Р	SPAG1
210145_at	5321	1	M,A	1 545	P,A	1 693	Р	PLA2G4A
210148_at	10114	1	P,A	1 980	Р	1 492	Р	НІРКЗ
210163_at	6373	1	A	1 927	A	2 936	Р	CXCL11
210171_s_at	1390	1	Р	0 598	P,M	0 577	P,A	CREM
210220_at	2535	1	Р	0 587	Р	0 703	Р	FZD2
210221_at	1136	1	P,A	1 817	Р	1 234	P,A	CHRNA3
210222_s_at	6252	1	P,A	1 365	Р	1 503	Р	RTN1
210233_at	3556	1	P,A	2 966	Р	1 892	Α	ILIRAP
210240 s at	1032	1	Р	1 578	Р	1 086	Р	CDKN2D
 210298_x_at	2273	1	Р	1 406	Р	2 671	P	FHLI
210299_s_at	2273	1	Р	1 698	P	3 269	Р	FHLI
210336 x at	7593	1	Р	0 643	A	0 686	P,A	ZNF42
210358 x at	84724	1	Α	1 895	P,A	1 144	P,M,A	GATA2
210385_s_at	51752	1	Р	1 205	P	1 669	P	ARTS-1
210396_s_at		1	Р	1 666	P	1 321	Р	
210410_s_at	4439	1	Р	0 645	P,A	0 708	P	MSH5
210415 s at	4957	1	P,M	1 612	P	1 356	Р	ODF2
210457_x_at	3159	1	P	1 506	P	1 298	Р	HMGA1
210463 x at	55621	1	Р	1 560	P	1 325	P	FLJ20244
210480_s_at		1	P,A	1 682	P	1 970	P	MYO6
210512_s_at	7422	1	P	0 617	P	0 543	Р	VEGF
210514 x at	3135	1	P	1 020	P	1 513	Р	HLA-G
210538_s_at	330	1	P,A	10 016	P	9 540	Р	BIRC3
210560_at	2637	1	P,M	3 388	P	2 070	Р	GBX2
210570_x_at	5601	1	P	1 524	P	1 193	P	МАРК9
210592_s_at		1	P	1 817	P	2 819	P	SAT, SSAT
210605_s_at	4240	1	P	1 403	P	2 404	P	MFGE8
210612 s at	8871	1	P,A	1 267	P,A	1 900	P	SYNJ2
210715 s at	10653	1	P	1 934	P	3 224	P	SPINT2
210732_s_at	3964	1	P	1 928	P	2 242	P	LGALS8
210756_s_at		1	P	1 220	P	1 630	P	NOTCH2
210793_s_at	4928		P	1 813	P	1 575	P	NUP98
210797_s_at	8638	1	P	1 521	P	3 982	P	OASL
210829 s at		1	P	1 629	P	2 203	P	SSBP2
210845_s_at	5329	1	P	2 671	P	3 584	P	PLAUR,
210869_s_at	4162	1	P,A	2 460	P	2 019	P	MCAM
210876 at	303	1	P,A	1 724	P	1 739	P	ANXA2P1
210926 at		1	P	1 447	P	1 531	P,M	FKSG30
210935 s at	1	1	Р	1 602	P	1 480	P	WDRI
210976_s_at	5213	1	P	0 655	P	0 848	P	PFKM
210986 s at	7168	1	P	3 399	P	4 636	P	TPM1
210987 x at	7168	1	P	3 168	<u>Р</u>	4 265	P	TPMI
211003_x_at	7052	1	A	9 192	MA	13 843	PA	TGM2
211005_x_at		1	P	1 516	P	1 391	P	HSPA4
211010_x_at 211031_s_at	7461	1	P,A	1 320		1 654	P	CYLN2,
211031_3_at 211043_s_at	1212	1	P	1 584	P	1 564	P	CLTB

ł

4,

Affymetrix		Day 0		Day 3		Day 7			
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
211061_s_at	4247	1	Р	1 858	P	1 770	Р	MGAT2	
211091_s_at	4771	1	P,A	1 508	Р	1 496	P	NF2	
211094 s at	4763	1	P	0 997	P	1 583	P	NF1	
211126_s_at	1466	1	Р	2 302	P	2 088	Р	CSRP2	
 211160_x_at	87	1	P,A	1 403	P,A	1 566	Р	ACTNI	
211162_x_at	6319	1	P	1 573	P	1 331	Р	SCD	
211340_s_at	4162	1	P,M,A	2 877	P	2 346	Р	MCAM	
211352 s at	8202	1	A	1 204	P,A	1 526	Р	CAGH16	
211403_x_at	51481	1	Р	1 991	P	2 939	Р	VCX2	
211456_x_at		1	P,A	1 744	P	2 486	Р		
 211527_x_at	7422	1	P	0 660	P	0 657	P,A	VEGFA	
 211528_x_at	3135	1	Р	1 086	Р	1 827	P	HLA-G	
 211529_x_at	3135	1	Р	1 142	P	1 871	Р	HLA-G	
211530_x_at	3135	1	Р	1 112	P	1 705	Р	HLA-G	
211538_s_at	3303	1	Р	1 912	P	2 114	Р	HSPAIA	
211564_s_at	8572	1	Р	1 343	P	1 633	P	PDLIM	
211573_x_at	7052	1	A	1 795	P	2 031	P	TGM2	
211600_at		1	P	0 938	P	0 534	P	PTPRO	
211651_s_at	3912	1	A	1 608	P,A	2 073	P	LAMB1	
211668_s_at	5328	1	P,M	2 528	P	5 235	P	PLAU, UPA	
211600_5_at	2908	1	P	1 534	P	1 466	P	NR3C1	
211725_s_at	2700	1	P	1 700	P	1 575	P		
211723_5_at	1031	1	P	1 617	P	1 458	P	CDKN2C	
211792_3_at	3107	1	P	0 962	P	1 664	P	HLA-C	
211864 s at	26509	1	Ą	3 119	P,M	6 485	P	FER1L3	
211911_x_at	3106	1	P	1 121	P	2 071	P	HLA-B	
211911_ <u>x_at</u> 211924_s_at	5329	1	P	2 665	P	3 589	P	PLAUR	
211926_s_at	4627	1	P	1 555	 P	1 717	P	МҮН9	
211928 at	1778	1	P	1 192	P	1 504	P	DNCH1	
211920_at	23352	1	P	1 493	P	1 769	P	RBAF600	
211962 s at	677	1	P	1 239	P	1 834	P	ZFP36L1	
211982 x_at	23214	1	P	1 607	P	1 516	P	XPO6	
211986_at	195	1	P	1 915	P	2 401	P	MGC5395	
211992 at	65125	1	P	1 282	P	1 535	P	PRKWNK1	
211994_at		1	P	1 469	P	1 516	P	PRKWNK1	
212010_s_at	55573	1	Р	1 436	P	1 524	P	H41	
212012 at		1	A	1 280	P,A	1 541	P,A	D2S448	
212014 x at	960	1	P,M	1 549	P,M,A	2 1 1 9	Р	CD44	
212022 s at	1	1	P	1 619	P	1 656	Р	MKI67	
212023_s_at	1	1	Р	1 549	P	1 521	P	MK167	
212032_s_at	53635	1	Р	0 611	Р	0 802	Р	PTOV1	
212061_at	23350	1	Р	0 477	P	0 566	Р	SR140	
	960	1	A	1 971	P,A	3 607	Р	CD44	
 212069_s_at	23121	1	P,M,A	1 440	P	1 544	Р	KIAA0515	
212076_at		1	P	1 130	P	1 559	P	MLL	
212092_at	23089	1	P	2 584	P	3 170	P	PEG10	
212094_at	23089	1	P	2 664	P	2 873	P	PEG10	
212091_at	857	1	P	1 353		1 633	P	CAV1	
212097_at		1	P	2 434	<u>P</u>	1 716	P	RHOB	
212125_at	5905	1	P	1 450		1 624	P	RANGAPI	

٩

Affymetrix		Day ()	Day 3		Day 7		
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
212126 at		1	Р	1.405	Р	1.502	Р	
212127 at	5905	1	Р	1.589	Р	1.903	Р	RANGAPI
212135 s at	493	1	Р	1.354	Р	1.919	Р	ATP2B4
212136 at	493		P	1.290	Р	1.860	Р	ATP2B4
212143 s al	3486		P	1.726	P	2.072	P	IGFBP3
212154 at	6383		P.M	1.757	P	1.761	P	SDC2
212158 at	6383		P.M	1.715	P	1.586	P	SDC2
212162 at	57498		p	1.333	Р	1.513	p	KIDINS220
212171 x at	7422	1	P	0.626	P	0.637	P	VEGF
212176 at	25957		P	0.623	P	0.685	p	C6orf111
212170 at	23731		P	0.492	p	0.598	P	C6orf111
212177 at	25957	1	P	0.579	p	0.699	р	C6orf111
212177 at	4502	1	P	1.963	P	2.823	p	MT2A
212185 x at	31	1	P	1.565	P	1.734	р	АСАСА
212180 at	5270	1	P	1.880	P	1.499	р	SERPINE2
212190 al	115207	1	A	4.360	P.M	3.016		KCTD12
1987	115207		P	1.385	P P	1.513	<u>р</u>	IL6ST
212196 at 212225 at	10209		P	0.558	A	0.821	P,A	SUII
			P.M.A	1.465	P	1.554	P.A	PIK3R1
212249 at	5295				M.A	2.087	P,A	BPAGI
212253 x at	667		A P	1.617	<u>м.л</u> Р	2.146	P,A	BPAGI
212254 s at	667	1					P	PBXIPI
212259 s at	57326	1	P	0.521	P	0.701	<u> </u>	
212268_at	1992	1	A	1.968	M,A	1.753	P,M,A	SERPINB1
212276 at	23175	1	P	1.346	P	1.536	P	LPINI
212290_at		1	P	0.609	P	0.796	P	SLC7A1
212294 at	55970	1	Р	1.322	P	1.740	Р	GNG12
212295 s at	<u> </u>	1	P	0.634	P	0.686	P	SLC7A1
212307 s at	8473	1	Р	0.636	P	0.753	Р	OGT
212312 at	598	1	Р	1.588	P	1.623	P	BCL2L1
212325 at	22998	1	M,A	1.330	P,A	1.656	P,A	KIAA1102
212333 at	25940	1	Р	1.598	P	1.443	P	DKFZP564F0522
212364 at	4430	1	P.A	1.678	P	1.866	P	MYOIB
212384 at	7919	<u> </u>	Р	0.655	P,A	0.774	Р	BATI
212387 at		1	P	0.648	P	0.771	Р	TCF4
212412 at		1	<u> </u>	1.489	P	1.652	P	LIM
212463 at		1	Р	1.189	P	1.911	Р	CD59
212470 at	9043	1	P	1.567	P	1.433	Р	SPAG9
212473 s at		<u> </u>	P	1.365	P	1.964	P	
212501 at	1051	1	P	0.642	P P	0.699	<u> </u>	CEBPB
212511_at		1	Р	1.594	Р	1.461	P	PICALM
212527 at	27351	1	Р	1.625	P	1.474	Р	D15Wsu75e
212538_at	23348	1	Р	1.225	Р	1.563	Р	DOCK9
212548 s at	23045		Р	1.504	Р	1.674	Р	K1AA0826
212565_at	23012	1	P.A	1.109	A	1.518	P.A	STK38L
212574 x at	91304	1	P	0.688	Р	0.628	P	R32184_3
212590 at	22800	1	Р	1.672	Р	1.611	Р	RRAS2
212593_s_at	27250	1	Р	0.643	Р	0.740	Р	PDCD4
212599 at	26053	1	Р	1.378	Р	1.623	Р	AUTS2
212601 at	23140	I	P,M	1.362	Р	1.655	Р	ZZEFI
212624 s at	1123	1	Р	1.516	P	1.329	Р	CHINI

Affymetrix		Day 0		Day 3		Day 7		[]	
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
212636_at		1	Р	1 277	Р	1 581	Р	QKI, QK3	
212638_s_at	11059	1	P	1 627	Р	1 605	Р	WWP1	
212641 at	3097	1	P	1 265	Р	1 550	Р	HIVEP2	
212646_at	23180	1	A	4 120	Р	4 448	Р	RAFTLIN	
212654_at	7169	1	P,A	1 842	P	2 106	Р	TPM2	
212662 at	5817	1	Р	1 508	Р	1 483	Р	PVR	
212665_at	25976	1	P	1 805	Р	1 892	Р	TIPARP	
212693_at	23195	1	Р	1 266	Р	1 530	Р	MDNI	
	10156	i	P	1 617	Р	1 485	Р	RASA4	
212708 at		1 1	P	0 565	Р	0 686	Р	CASC3	
212714_at	113251	1	Р	1 507	Р	1 426	Р	LOC113251	
212722 s at	23210	1	P	1 820	Р	1 535	Р	PTDSR	
212723_at	23210	1	Р	1 627	P	1 448	Р	PTDSR	
212748 at	57591	1	Р	1 377	P	1 667	Р	MKL1	
212775_at	23363	1	 P	1 634	P	1 636	Р	KIAA0657	
212776_s_at	23363	1	P	1 585	P	1 510	Р	KIAA0657	
212780_at	6654	1	P	1 525	P	1 345	P	SOS1	
212786_at	23274	1	P,A	1 343	P	1 652	P	KIAA0350	
212700_at 212812 at	23271	1	P	1 246	Р	1 507	P		
212812_at	10973	1	P	1 684	P	1 789	P	HELICI	
212816_s_at	875	1	P	0 504	P	0 503	P	CBS	
212828 at	075	1	P	1 378	P	1 755	P	SYNJ2	
212828_at		1	P	1 501	P	1 689	P	01102	
212825_at	23034	1	P	1 576	P	1 551	P	SAMD4	
212848_s_at	84909	1	A	2 385	P	2 786	P	C9orf3	
212859_x_at	01707	1	- <u>7</u> P	1 746	P.	2 152	P	MT2A	
212899 <u>x</u> at	348	1	P	1 242	P	1 771	P	APOE	
212923_s_at	540	1	P	1 451	P	1 617	P	C6orf145	
212923_3_at 212944_at		1	P	1 201	P	2 249	P	MRPS6	
212971_at	833	1	P	0 567	P	0 575	P	CARS	
212971_at 212980_at	23021	1	P	0 627	P,A	0 663	P,A	AHSA2	
212980_at	8867	1	P	1 627	P	1 470	P 1,7	SYNJ1	
212390_at 213030_s_at	5362	1	P	0 474	P	0 501	P	PLXNA2	
213030_s_at 213069 at		1	MA	1 297	P,A	1 624	P	HEG	
213099_at 213096_at	9911	1	A	1 397	P,A	1 556	P,M	HUCEP11	
213090_at 213107_at	23043		P	1 449	P	1 907	P	TNIK	
213107_at 213115_at	115201	1	P	1 718	P	1 659	P	COL4A6	
213115_at 213118_at	23074	1	P	1 559	P	1 350	P	KIAA0701	
213118_at	250/4	1	P P	1 653	P	2 296	P	TIAMI	
213135_at 213164 at	-	1	P I	1 183	P	2 589	P	MRPS6	
213164_at 213167_s_at			P,A	1 111	P	1 715	P	MRC 56	
213107_5_at 213191 at	148022		P,M,A	1 583	P	1 704	P	TRIF	
213191_at 213194_at	6091	1	P	1 514	P	1 827	P	ROBOI	
213194_at 213199_at	26005	1	P,M	1 314	P	1 579	P	DKFZP586P0123	
213139_at 213220_at	27250	1	P	0 657	P	0 652	P	LOC92482	
213220_at 213258_at	27230	1	P	0 612	P	0 846	P,M	TFPI	
213238_at 213274_s_at	1508	<u>i</u>	P P	1 152	P	2 165	P.101	CTSB	
213274_s_at 213275 x at			P P	1 1 0 9 6	P	2 185	P	CTSB	
F	3725		P P	2 050	P P	3 041	P P	JUN	
213281_at 213283_s_at	6297	1	P P	0 603	P P	0 768	P P	SALL2	
S	0297	1		0 603		0 /68	<u> </u>	SALL2	

. .

Affymetrix		Day 0	ocusLink Day 0			Day 7		Common Name	
Īd	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Manie	
213313 at	23637		Р	0.647	р	0.758	Р	GPR21	
213338 al	25907		A	1.660	Р	1.726	Р	RISI	
213361 at	23424		Р	1.263	Р	1.558	Р	TDRD7	
213368 x at	8541	1	P,A	1.530	Р	1.350	Р	PPFIA3	
213373 s at	841	1	P	0.728	Р	0.651	р	CASP8	
213411 at			Р	0.536	M,A	0.617	P.A	ADAM22	
213427 at	10799	I	Р	1.669	р	1.374	Р	RPP40	
213438 at		1	Р	0.609	Р	1.038	р		
213449 at	10940	1	Р	1.453	Р	1.676	P,M,A	POPI	
213469 at		1	Р	1.283	Р	1.604	Р	FLJ12377	
213506 at	2150	1	Α	13.406	P.M.A	28.093	Р	F2RL I	
213558 at	27445	1	Р	2.389	Р	2.403	p	PCLO	
213568 at	116039		Р	1.810	Р	1.926	Р	OSR2	
213572 s at	1992	1	P.A	1.964	Р	2.107	Р	SERPINB1	
213591 at		-	P	0.572	p	0.606	Р	ALDH7A1	
213618 at	116984		P	1.675	Р	1.695	Р	CENTDI	
213622 at	1298		Р	1.566	Р	1.394	Р	COL9A2	
213629 x at		1	Р	1.950	Р	1.916	Р	MTIF	
213650 at	23015	1	P	0.604	Р	0.660	P	GOLGIN-67	
213671 s at	4141	1	P	0.478	P	0.526	Р	MARS	
213672 at	4141	1	P.A	0.828	P.A	0.636	P.A	MARS	
213675 at			P.A	1.230	P	1.675	P		
213698 at			p	0.629	P	0.773	P	MGC14276	
213712 at			M.A	1.294	P.A	1.894	P	CINNALI	
213716 s at	6398		M.A	3.568	P	3.135	P	SECTMI	
213721 ai	6657		P	0.528	P	0.543	P	SOX2	
213722 at	6657		P.M	0.604	A	0.529	A	SOX2	
213741 s at	3836	1	p	1.609	P	1.536	p	KPNAI	
213764 s at		1	P	0.769	P	1.749	P	MFAP5	
213765 at			P	0.941	P	1.879	P	MFAP5	
213793 s at	9456		P	1.893	Р	2.020	Р	HOMER1	
213804 at	7450	1	P	0.627	M.A	0.641	P.M.A	INPP5B	
213832 at		1	P	1.592	P	1.948	P		
213859 x at	8467	1	P	1.576	P	1.514	P	SMARCA5	
213899 at	10988	1	P	1.548	P	1.359	P	METAP2	
213906 at	4603		P	1.962	P	2.273	P	MYBLI	
213924 at	65258		P	0.649	Р	0.847	Р	MPPEI	
213926 s al		1	P	1.591	Р	1.480	P	HRB	
213931 at	3398	1	М,Л	8.131	P	2.690	P,A	ID2	
213956 at	9857	1	P	1.274	P	1.537	P	CAP350	
213984 at	23244	1	P	1.526	P	1.120	Р	KIAA0648	
213988 s at	6303	1	P,A	1.661	P,M.A	2.970	Р	SAT	
213996 at	29799	1	P	0.356	P	0.487	Р	YPEL1	
213998 s at	10521	1	P	0.513	P	0.735	P	DDX17	
214022 s at	+	1	P	1.113	p	1.831	Р	IFITMI	
214023 x at		1	P	1.816	P	1.784	P	MGC8685	
214030 at	131544	1	P	1.311	P	1.529	P	MINA	
214053 at		1	P	0.521	P	0.641	P	1	
214055 at	65258	1	P	0.594	P	0.726	P	GNAL.	
214071 at 214077 x at	+	1	P	0.646	P	0.720	P	MEIS4	

Affymetrix		Day 0)	Day 3		Day 7	,		
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
		1	P,M,A	11 801	P	8 179	Р	DHRS2	
214091 s_at	2878	1	Р	3 385	Р	3 445	Р	GPX3	
214097_at	6227	1	Р	1 463	P	1 702	Р	RPS21	
214155_s_at	113251	1	Р	1 844	Р	1 271	P	LOC113251	
214175_x_at	8572	1	A	1 411	P,A	1 823	P,M	PDLIM4	
214176_s_at	57326	1	P,A	0 629	P,A	0 934	P,A	PBXIP1	
214196 s at	1200	1	Р	0 655	P	0 818	P	CLN2	
214212_x_at	10979	1	P	1 405	P	1 526	Р	PLEKHC1	
214247_s_at	10530	1	M,A	2 019	P	3 501	P	DKK3	
214368_at	10235	1	M,A	1 491	M,A	2 067	P,A	RASGRP2	
 214414_x_at	3039	1	A	2 589	P	2 073	P,M,A	HBA2	
 214437_s_at	6472	1	Р	0 694	Р	0 660	P	SHMT2	
214505_s_at	2273	1	Р	1 370	Р	2 323	Р	FHL1	
214578_s_at	6093	1	Р	1 552	Р	1 466	Р	ROCKI	
214657_s_at		1	Р	0 510	P,A	0 739	P,A		
214690_at	9014	1	Р	0 649	Р	0 834	P	TAFIB	
 214696_at	84981	1	P,A	1 945	Р	1 641	Р	MGC14376	
	9991	1	P	1 733	Р	1 499	P	ROD1	
214722_at		1	P	1 168	P	1 758	P	LOC376745	
	2316	1	P	1 315	Р	1 524	P	FLNA	
214764 at		1	P,A	0 594	P,A	0 784	P,A	KIAA0507	
214784_x_at	23214	1	<u> </u>	1 589	P	1 715	<u> </u>	XPO6	
214909_s_at	23564	1	<u>Р</u>	1 500	P	1 267	<u>Р</u>	DDAH2	
214924_s_at	22906	1	P	1 243	P	1 712	P	OIP106	
214930_at	26050	1	P	1 506	P	1 615	P	SLITRK5	
214954_at	26032	1	P	2 460	P	2 485	P	KIAA0527	
215014 at		1	A	3 565	P	5 1 1 7	<u>Р</u>		
215016_x_at	667	1	P	1 415	P	1 993	P	BPAG1	
215047_at	25893	1	Р	1 553	P	1 332	P	DKFZp434C091	
215136_s_at	11340	1	Р	0 647	P	0 702	P	EXOSC8	
215222_x_at	23499	1	Р	1 272	P	1 528	P	MACFI	
215313 x at	3105	1	P	1 041	Р	1 550	P	HLA-A	
215446_s_at	114990	1	P,M A	1 575	P	1 510	Р	LOX	
 215485_s_at	3383	1	P,A	1 287	P	1 814	Р	ICAMI	
 215489_x_at	9454	1	Р	1 539	Р	2 194	Р	HOMER3	
215495_s_at	23034	1	P,A	2 971	P	2 475	Р	SAMD4	
215498_s_at	5606	1	P	1 415	P	1 566	Р	MAP2K3	
215499_at	5606	1	Р	1 406	Р	1 788	Р	MAP2K3	
 215506_s_at	9077	1	P,A	1 211	P,M,A	1 670	P	ARHI, NOEY2	
215629_s_at	79469	1	P	1 822	Р	1 288	Р	BCMSUNL	
215643_at		1	Р	0 491	Р	0 541	Р	SEMA3D	
215684_s_at	84164	1	Р	1 514	Р	1 603	Р	ASC1p100	
215695_s_at	8908	1	Р	1 396	P,M	1 571	P,A	GYG2	
215706_x_at	7791	1	Р	2 157	P	2 230	Р	ZYX	
 215719_x_at	355	1	Р	1 784	P,A	2 585	Р	TNFRSF6	
215780_s_at		1	P	0 702	P	0 633	P		
215783_s_at		1	P	1 356	Р	1 774	P	ALPL	
 216041_x_at	2896	1	P	0 660	Р	0 9 1 1	P	GRN	
216060_s_at	23002	1	P A	1 451	Р	1 591	P	DAAMI	
216061_x_at		1	P,A	1 583	Р	1 763	Р	PDGFB	

Affymetrix	LocusLink	Day 0		Day 3		Day 7		Common Name	
ld	1'OCA21'IUR	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
216064 s at	175	1	р	0.550	Р	0.623	Р	AGA	
216230 x at	6609	1	P,A	1.850	P	1.693	P	SMPD1	
216231 s at	567	1	Р	1.334	Р	1.683	Р	B2M	
216247 at	6224	1	Р	0.578	Р	0.724	Р	RPS20	
216252 x at	355	1	A	1.664	P,A	1.814	P,A	TNFRSF6	
216264 s at	3913	1	р	0.523	Р	0.737	Р	LAMB2	
216268 s at	182	1	Р	0.614	Р	0.649	Р	JAGI	
216338 s at	25844		р	0.648	Р	0.790	Р	KLIP1	
216379 x at	934	1	Р	2.582	Р	3.826	Р	NaGLTI	
216620 s at	9639	1	Р	1.237	Р	1.552	Р	ARHGEF10	
216804 s at		I	Р	1.879	Р	1.932	Р	LIM	
216870 x at	8847	1	P	1.869	р	1.430	Р	DLEU2	
216975 x at	4861	1	Λ	2.074	P,M	1.853	P,M,A	NPASI	
216983 s at		1	P.A	0.656	P.A	0.705	P,A	ZNF224	
217028 at	7852	1	Λ	2.416	Ч	2.644	P,A	CXCR4	
217122 s at	9906		Р	0.593	р	0.750	Р	MMP23B	
217124 at	23288		Р	1.566	Р	1.029	P	KIAAI023	
217165 x at			Δ	1,862	P	1.965	Р	MTIF	
217168 s at	9709		P	0.629	P	0.649	Р	HERPUDI	
217234 s at	7430	1	P	1.425	Р	1.547	P	VIL2	
217270 s at			P.A	0.648	P.A	0.701	M.A		
217289 s at	2542		P	0.534	P	0.590	P	G6PC	
217383 at		1	P.A	1.379	P.A	1.548	Р	PGK1	
217427 S Bt	7290	1	P	0.651	P	0.858	P	HIRA	
217436 x at		1	P	1.076	P	1.678	P	HLA-J	
217456 x at	3133	1	P	1.218	Р	1.624	P	HLA-E	
217478 s at	3108	1	P	1.367	P	1.611	Р	HLA-DMA	
217494 s at	11191	· · · · ·	A	1.501	P.A	1.255	P.A	PTENP1	
217678 at		1	P	0.521	P	0.666	P	SLC7A11	
217682_at		1	P	1.565	P	1.419	P	PRO0149	
217728 at	6277	1	Λ.	2.135	P	5.558	P	S100A6	
217733 s at	9168		Р	1.387	P	1.675	P	TMSB10	
217733 s at	64065		P	1.460	P	1.738	P	PERP	
217755 at	51155		P	1.683	P	1.535	P	HNI	
217761 at	55256		P	1.741	P	1.408	P	SIPL	
217792 at	27131		P	0.640	P	0.879	P	SNX5	
217809_at	28969		P	1,530	p	1.731	P	BZW2	
217835 x at	55969		p	1.597	P	1.412	P	C20orf24	
217841 s at	51400	1	P	1.671	P	1.978	P	PME-1	
217853 at	64759	1	A	1.601	P	3.073	P	TENSI	
217867 x al			P	0.625	P	0.684	P	BACE2	
217890 s at	55742		A	2.583	P	2.377	P	PARVA	
217892 s at			P	1.791	P	2.131	P	EPLIN	
217897 at	53826	· ·	P.A	2.284	P	3.047	P .	FXYD6	
217904 s at			P	1.610	P	1.824	P	BACE1	
217915 s at	51187		P	0.653	P	0.659	P	C15orf15	
217923 at	23578	1	P	1.517	P	1.418	P P	PEF	
217924 at	64771	1	P	1.512	P	1.592	P	C6orf106	
217924 at	51734		P P	1.540	Р	1.326	P	SEPX1	
217977 at 217985 s at	11177	1	P	1.943	P	1.320	P	BAZIA	

Affymetrix		Day 0		Day 3		Day 7		Common Name
ld	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
217986 s at	11177	1	Р	1.718	Р	1.513	Р	BAZIA
217989 at	51170	1	Р	0.633	Р	0.705	Р	DHRS8
217995 al	58472	1	A	1.242	Α	1.761	Р	SQRDL
217996 at	22822	I I	Р	2.021	Р	2.062	P	PHLDAI
217997 at	22822	1	Р	1.856	Р	1.792	Р	PHLDAI
218012 at	64061		р	1.544	Р	1.413	Р	SE20-4
218022 at	51231	1	Р	0.624	P,A	0,760	Р	VRK3
218022 at	79567		Ā	1.501	P.M.A	1.543	P.A	FIJ13725
218035 s at	54502		Δ	1.961	P,A	3.047	P	FLJ20273
218060 s at	79650		P.A	1.581	р	1.536	P	FLJ13154
218076 s at	55114	1	P	1.404	Р	1.517	P	ARHGAP17
218070 S at	3267	1	P	1.404	p	1.539	P	HRB
	3267	I	r P	1.420	p	1.496	p	HRB
218092 s at			A	1.042	P	1.937	P,A	TMEM2
218113 at	23670				r p		P.	NFYB
218129 s at	4801		P	1.526		1.462	p	
218145 at	57761		Р	0.310	P	0.290		TRIB3
218181 s at	54912	1	Р	1.464	Р	1.565	Р	MAP4K4
218199 s at	65083	1	P,A	1.833	Р	1.962	Р	NOL6
218217 at	59342	1	Р	0.591	Р	0.698	Р	SCPEPI
218273 s at	54704	1	Р	1.236	Р	1.661	Р	PPM2C
218284 at	25856	1	Р	1.203	Р	1.640	Р	DKFZP586N072
218298 s at	80017	1	P	0.551	P,A	0.769	Р	C14orf159
218380 at	60368	1	Р	2.194	Р	2.337	P	NALPI
218400 at	4940	1	Р	1.212	P	1.703	P	OAS3
218417 s at	55652	L	P,M,A	1.661	Р	1.811	P	F1J20489
218526 s at	29098	1	Р	0.633	Р	0.798	Р	RANGNRF
218532 s at	54463	1	Λ	1.570	P.M	1.456	P,A	F1J20152
218543 s at	64761	1	Р	1.179	Р	1.679	Р	ZC3HDC1
218574 s at	29995	1	Р	1.330	Р	1.778	Р	LMCD1
218591 s al	79954	1	P,A	1.522	P,A	1.324	P,A	FLJ14075
218611 at	51278	1	Р	1.696	P	2.128	Р	IER5
218625 at	51299	1	Р	2.877	P	2.196	Р	NRN1
218642 s at	79145	1	P.M	2,139	Р	2.043	P	CHCHD7
218691 s at	8572		Δ	1.968	P,A	2.322	P,M,A	PDLIM4
218693 at	23555		A	1,344	Ρ,Λ	2.011	P,A	NET-7
218706 s at		1	P	1.210	P	1.649	P	NS3TP2
218723 s at		1	P	0.558	P	0.677	p	RGC32
218736 s at			P	0.645	P	0.629	P.A	PALMD
218764 at	5583			1.927	P.A	1.891	M,A	PRKCH
218773 s at		1	P	0.657	P	0.828	P	MSRB
218793 s at		1	P	1.490	P	1.512	P	SCMLI
218773 3 at 218826_at	54733	1	P	1.614	p	1.679	I P	SLC35F2
218848 at	79228		P	0.608	P	0.713	P	MGC2655
218849 s at			P	1.692	P	1.601	p	RAI
100.000		1	P		P	1.660	P	FOSL2
218880 at	2355	-		1.436			P	
218885 s at			P	0.542	P	0.583	· ·	GALNT12
218915 at	51219		P	1.485	P	1 697	P	NF2
218951 s at			<u> </u>	0.654	P	0.666	P	FLJ11323
218961 s at	-	1	P	0.645	P	0.765	P	PNKP
218974 at	55084	1	P	1.503	Р	1.680	Р	FLJ10159

Affymetrix Leave Link		Day 0		Day 3		Day 7	,	Common Name	
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
218986_s_at	55601	1	M,A	1 277	P,M	2 224	Р	FLJ20035	
218997_at	64425	1	P	1 505	Р	1 467	Р	PAF53	
219014_at	51316	1	P	1 583	Р	2 032	Р	PLAC8	
219026_s_at	9462	1	Р	1 571	Р	1 747	Р	RASAL2	
219039_at	54910	1	P,A	0 632	M,A	0 722	P,M,A	SEMA4C	
219073_s_at	114884	1	P,A	1 510	Р	2 049	Р	OSBPL10	
219083_at	55164	1	A	1 597	Р	1 594	P,A	FLJ10539	
219094_at	29067	1	P,A	1 618	Р	1 355	Р	HSPC056	
219119_at	51691	1	P	0 713	Р	0 636	Р	LSM8	
219152_at	50512	1	P,M	0 454	A	0 550	P,M,A	PODLX2	
219158_s_at	80155	1	Р	1 492	Р	1 576	Р	TBDN100 /	
219170_at	79187	1	Р	0 578	P,A	0 658	P,A	FSD1	
219174 at	80173	1	P	0 594	Р	0 713	Р	CCDC2	
 219188_s_at	28992	1	Р	0 463	P	0 647	Р	LRP16	
219209_at	64135	1	A	1 765	P,A	4 172	Р	MDA5	
219211_at	11274	1	P	1 252	P	1 676	Р	USP18	
219250_s_at	23767	1	A	1 127	P,M	1 629	P,M	FLRT3	
219258_at	54962	1		1 566	P	1 491	Р	FLJ20516	
219263 at	79589	1	P,A	1 921	P	2 275	P	RNF128	
219270_at	79094	1	P	0 252	A	0 230	A	MGC4504	
219306 at	56992	1	<u>—</u> ———————————————————————————————————	0 660	P	0 709	Р	KNSL7	
219321_at	64398	1	Р	1 548	Р	1 351	Р	MPP5	
219326_s_at	10678	1		0 591	P	0 568	Р	B3GNT1	
219352_at	55008	1	M,A	1 488	P	1 786	Р	FLJ20637	
219353_at	54835	1	P	0 639	Р	0 748	Р	NHLRC2	
219361_s_at	64782	1	A	1 513	P,M	1 505	P,M,A	FLJ12484	
219366 at	57099	1	P,A	1 610	P	1 472	P	AVEN	
219410 at	55076	1	P	1 373	P	1 540	P	FLJ10134	
219427_at	79633	1	P	1 387	P	1 585	Р	FATJ	
219477_s_at	55901	1	M,A	1 240	P,A	1 855	P,M	THSD1,	
219493_at	79801	1	P	1 534	P	1 333	P	SHCBP1	
219500_at	23529	1	P	1 286	P	1 525	P	CLC, BSF3	
219522 at	24147	1	P,A	1 277	P	1 524	Р	FJX1	
219557_s_at	56675	1	P	1 600	P	1 677	Р	NRIP3	
 219612_s_at	2266	1	A	1 585	P,M	2 257	P	FGG	
219628_at	64393	1	P	1 604	P	1 524	Р	WIGI	
219634 at	50515	1	P	1 300	P	1 508	Р	CHST11	
219690 at	79713	1	Р	1 684	P	1 539	Р	FLJ22573	
219692 at	79412	1	Р	1 643	P	1 554	Р	KREMEN2	
219700_at	57125	1	Р	0 682	P	0 617	Р	PLXDC1	
	79832	1	P	1 560	P	1 181	Р	FLJ21924	
219763_at	57706	1	Р	1 340	Р	1 506	P	KIAA1608	
219825_at	56603	1	P,A	2 205	Р	1 888	Р	CYP26B1	
219869_s_at	64116	1	P,A	1 882	P	1 861	Р	SLC39A8	
219895_at	55026	1	A	1 631	P,A	2 125	Р	FLJ20716	
219926 at	64208	1	P	0 654	P	0 733	P	POPDC3	
219938_s_at	9050	1	PA	2 250	P	2 363	P	PSTPIP2	
219944 at	79745	1	P,A	1 064	A	1 730	P	FLJ21069	
219992_at	6866	1	P,M,A	1 436	P	1 770	P	TAC3	
220033 at			P	0 634	P	0 700	P		

Affymetrix		Day 0		` Day 3	,	Day 7	,	
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
220038 at	23678	1	Р	1 384	P	1 502	Р	SGKL
220085 at	3070	1	Р	1 222	Р	1 627	Р	HELLS
220092 s_at	84168	1	P,A	2 559	Р	3 188	Р	ANTXR1
220104_at	56829	1	M,A	1 346	P,M,A	1 672	P,A	ZC3HAV1
220134_x_at	55194	1	Р	1 579	P	1 518	P	FLJ10647
220145_at	79884	1	P,M	0 694	P,A	0 656	Р	FLJ21159
220217 x_at	64663	1	A	1 453	P,A	2 299	Р	SPANXC
220321 s at	79635	1	Р	0 646	Р	0 772	Р	FLJ13646
220327_at	51159	1	Р	0 646	P	0 681	Р	FLJ38507
220358_at	55509	1	P,A	1 892	Р	1 994	Р	SNFT
220393 at	51557	1	Р	0 629	Р	0 901	Р	GLULDI
220520_s_at	54830	1	M,A	1 540	Р	1 336	Р	FLJ20130
220534_at	79097	1	P,A	1 850	Р	1 799	Р	TRIM48
220551 at	57084	1	P	0 518	Р	0 437	Р	SLC17A6
220617_s_at	55205	1	P	0 628	P	0 745	- P	ZNF532
220661_s_at	55657	1	Р	0 623	Р	0 789	Р	FLJ20531
220668 s at	1789	1		1 574		1 389	Р	DNMT3B
220684 at	30009	1	P,A	1 518	P	1 257	P	TBX21
220001_at	55853	1	P,A	1 657	P	1 308	P,A	C10orf110
220738_s_at	27330	1	A	1 661	M,A	1 844	M,A	RPS6KA6
220794_at	64388	1	P	0 598	P,M	0 664	P,A	PRDC
220800 s at	29766	1	P,M	1 521	P	1 345	P	TMOD3
220892_s_at	29968	1	P	0 367	P	0 334	P	PSATI
220922_s_at	30014	1	A	1 103	A	1 739	P	SPANXAI
220922_5_at	29990	1	P	0 635	P	0 772	P	PILRB
220987_s_at	81788	1	P	1 810	P	1 953	P	SNARK
221009_s_at	51129	1	P,A	1 890	P	2 686	P	ANGPTL4
221009_5_at	81606	1	<u>P</u>	4 211	P	9 513	P	LBH
221011_s_at	50807	1	P	1 416	P	1 545	P	DDEFI
221059_5_at	4166	1	P	2 224	P	2 377	P	CHST6
221078_s_at	55704	1	P	1 525	 P	1 393	P	FLJ10392
221123_x_at	55893	1	P	0 627	A	0 858	P,A	ZNF395
221125_x_ut	51136	1	 P	0 657	P,A	0 784	A	LOC51136
221213_s_at	54816	1	<u> </u>	0 642	P,A	0 873	P,M,A	FLJ20086
221234_s_at	60468	1	A	1 650	P	1 366	PA	BACH2
221261_x_at	81557	1	P	0 627	P	0 613	P	MAGED4
221484 at	9334	1	P	1 320	P	1 522	P	B4GALT5
221489_s_at	81848	1	Р	1 595	Р	1 675	Р	SPRY4
221510_s_at	2744	1	Р	1 602	Р	1 956	Р	GLS
221539_at	1978	1	Р	0 600	Р	0 600	P	EIF4EBP1
221561 at	6646	1	Р	1 525	Р	1 319	P	SOATI
221645 s at	55769	1	Р	0 640	Р	0 838	Р	ZNF83
221657_s_at	140459	1	P,A	1 585	Р	1 455	Р	ASB6
221664_s_at	50848	1	P	1 069	P	1 542	Р	F11R
221676_s_at	23603	1	P	1 673	Р	1 541	Р	COROIC
221710 x at	55194	1	P	1 569	P	1 313	P	FLJ10647
221718 s at	11214	1	P	1 582	P	2 189	P	AKAP13
221760_at		1	A	1 997	P	2 902	P	MANIAI
221766 s at	55603	1	P,M,A	1 621	P	1 962	P	C6orf37
221760_ <u>3_</u> at	85377	1	P	1 529	P	1 594	P	MIRAB13

Affymetrix		Day 0		Day 3	,	Day 7	,	
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
221810_at		1	P,A	1 857	Р	1 769	Р	
221831_at		1	Α	1 504	MA	1 482	РА	LUZP1
221841_s_at		1	A	1 690	P,M	1 837	Р	KLF4
221865_at	203197	1	Р	0 713	Р	0 637	Р	C9orf91
221875_x_at	3134	1	Р	1 219	Р	2 057	Р	HLA-F
221892_at		1	Р	0 564	P,A	0 705	Р	H6PD
221893_s_at	90956	1	Р	1 511	Р	1 333	Р	ADCK2
221899_at	10443	1	Р	0 624	Р	0 792	P,A	PFAAP5
221911_at		1	Р	0 647	Р	1 097	Р	ETVI
221951_at		1	Р	0 537	P,A	0 652	Р	LOC283232
221986_s_at	54800	1	Р	0 643	P,A	0 627	P,M	DREI
221998_s_at	51231	1	Р	0 521	Р	0 663	Р	LOC51231
222024_s_at	11214	1	Р	1 368	Р	1 754	Р	AKAP13
222028_at	7596	1	Р	1 948	Р	1 303	Р	ZNF45
222043 at	1191	1	Р	1 660	Р	2 393	Р	CLU
	7389	1	P,A	2 213	Р	1 840	P,A	UROD
		1	Р	1 990	Р	2 402	Р	·····
	54681	1	Р	0 591	Р	0 673	Р	PH-4
222126_at	3668	1	M,A	1 506	Р	1 446	Р	HRBL
 222154_s_at	26010	1	Р	1 496	P	1 727	Р	DNAPTP6
 222204_s_at	54700	1	Р	1 559	Р	1 584	Р	RRN3
 222258_s_at	23677	1	Р	1 613	Р	1 953	Р	SH3BP4
222305_at		1	P,A	1 747	P	1 573	P,M	HK2
222351 at	5519	1	A	1 765	P,A	1 680	P,A	PPP2R1B
266_s_at	934	1	P,A	3 273	P	4 303	P	CD24
32042_at	10495	1	P	1 298	Р	1 572	Р	COVA1
33322_1_at	2810	1	Р	1 427	P	1 969	P	SFN
	2810	1	P	1 536	P	2 165	Р	SFN
33767_at		1	Р	1 548	Р	1 327	P	NEFH
34697_at	4040	1	Р	0 625	Р	0 688	Р	LRP6
36552_at	26005	1	Р	1 481	Р	1 630	Р	DKFZP586P0123
38037 at	1839	1	P,A	2 201	P	1 886	Р	DTR
39966 at	10675	1	P	0 568	Р	0 564	Р	CSPG5
40093_at	4059	1	Р	1 153	P	2 270	Р	LU,
41469_at		1	A	1 227	P,A	1 592	Р	PI3
45297_at	115273	1	A	1 467	P	1 572	Р	EHD2
48106_at	55652	1	Р	1 452	P	1 534	Р	FLJ20489
49077_at	51400	1	Р	1 410	P	1 606	Р	PME-1
	83637	1	P	1 721	Р	1 814	Р	DKFZp76112123
55081_at	85377	1	Р	1 507	Р	1 423	P	MIRAB13
57540_at	64080	1	Р	1 737	Р	1 825	Р	RBKS
59697_at		1	Р	1 734	P	1 701	Р	
61732_r_at	80173	1	Р	0 602	Р	0 734	P,A	CCDC2
64432_at	51275	1	Р	0 626	P	0 712	Р	FLJ39616
65630_at		1	Р	0 641	P	0 760	Р	LOC283232

A fformation Id	Day 0	Day 0		Day 3			Common	
Affymetrix Id	Normalised	Flag	Normalised	Flag	Normalised	Flag	Name	
AFFX-HUMISGF3A/M97935_3_at	1	Р Р	1 805	Р	2 543	P	STAT1	
AFFX-HUMISGF3A/M97935_5_at	1	P	1 610	P	2 380	Р	STAT1	
AFFX-HUMISGF3A/M97935_MA_at	1	P,M	1 726	Р	2 600	Р	STAT1	
AFFX-HUMISGF3A/M97935_MB_at	1	Р	1 796	Р	2 751	Р	STAT1	

72 Appendix B – Cluster 5 BrdU Exp. 3

List of genes contained in Cluster 5 of the BrdU Exp 3 DNA microarray experiment

Common Name	Affymetrix Id	Common Name	Affymetrix l
SMARCD	204099_ml	FLJ22028	219802 at
FAMIIB	219253_=	LOC\$6901	214096_s_m
AUH	205052_#	C20orB1	218282_at
TSFM	212656_at	DECR2	219664_s_at
FASTK	210975 x m	PIGO	209998_at
ILVBL; AHAS	202993_at	QARS	217846_at
ZNF580	220748_s_at	CGI-143	219345_at
WARP	218731_s_at	C6orf108	204238_s_m
F1J20758	217895 🖬	MOSPD3	219070_s_a
TRIAD3	218426_s_al	G6PC3	221759_at
F1J11822	215090_x_#	STATI	209969 s_at
NAGA	202944_at	dJ222E13_1	217284_x_#
EBP, CPX	202735 at	МАРВРІР	218291_at
KIAA0974	213896_x_at	MYSTI	221820_s_a
DLGAP1	210750_s_m	SGSH; HSS;	35626_ml
PPGB	200661_st	INSIGI; CL-6	201627_s_a
ACP2	202767_#	PTPN18	203555_ai
LOC55974	219125_s_#	ATP5D	213041_s_a
PłGQ; GPI1	204144_s_#	GOCX	214006_s_a
RABL2A	220500_s_at	ATES; ATEX	204999_s_a
SLC25A11	207088_s_at	LLGL2, HGL	203713_s_#
MBTPS1	217543_s_al	DHPS	202802_at
FIJ10496	221934 s al	LRP8	208433_s_a
F1J35827	212969 x #	FASTK	214114_x_a
RFXANK	202758 s #	KIAA1164	37802 r at
NAGA	202943 s ml	TAGLN	56256_ai
INPP5A	203006 at	LEPREL2	204854_ml
DKFZp762C186	91703 🖬	SLC25A1	210010 \$ #
FLJ12681	46142 #	РССА	203860_ml
LOC51337	218500 at	C19orf27	221267_s_a
SUCLG2	214835 s #t	NFIB; NFIB2	211467_5 a
PMMI	203467 at	FAIM; FAIMI	220643 s =
DHX9	212105 s st	MAPT	206401 s s
	AFFX-LysX-1_at	AD-017	218146 at
NDUFS7	211752_s_at	UROS	203031 s a
C3F	202793 🖬	CPSFI	33132 at
TGFB1	203085 s al	DEAF1; SPN	209407 5 8
DKFZP586B1621	218688 #	COROIB	64486 #
H2AFX	212525 s m	PLEKHUI	218290 m
HTATIP	206689 x m	CREM; KER	210171 s a
LDLR	202067 s at	MSRB; CBS1	218773 s a
PIR	207469 s at		
MPG; AAG	203686 at		
C6orf108	39817_s_at		
ACYP2	206833 s at		
VPS28	218679 s at		
NASP	201970_s_at		
CPSF4	206688_s_at		
ACLY	210337_s_at		

73 Appendix C – Differentially Expressed Genes Identified in 5,2°-FdU DNA Microarray Experiment

List of differentially expressed genes identified from microarray analysis of 5,2 -FdU microarray experiment Genes listed are sorted by Affymetrix ID number

Affymetrix	I	Day 0		Day 3		Day 7		Common Name
ĺd	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
1053 at	5982		Р	1.509	Р	1.140	Р	RFC2
1598 g at	10609	1	Р	0.751	Р	0.644	Р	GAS6; AXSF
177 at	5337	1	Р	0.711	Р	0.646	Р	PLD1
200020 at	23435	- 1	Р	1.520	Р	1.569	Р	TARDBP
200023 s at	8665	1	P	0.873	Р	0.609	P	cIF3-p47
200036 s al	4736		P	0.747	Р	0.612	р	RPLIOA
200050 at	7705		P	1.556	Р	1.569	Р	ZNF146: OZF
200054 at	8882	1	P	1.937	P	1.743	Р	ZNF259; ZPR1
200079 s at	3735	· · · · · · · · · · · · · · · · · · ·	Р	1.519	P	1.500	Р	KARS
200090 at	2339	· · · · · · · · · · · · · · · · · · ·	P	1.593	P	1.518	Р	FNTA
200597 at	4357		P	1.209	P	1.509	p	EIF3S10
200597 al	9948	1	Р	1.689	P	1.526	P	WDR1; NORI-I
200615 s at	163		P	1.630	Р	1.567	P	AP2B1
200615 s at	5792		P	0.660	P	0.822	Р	PIPRF
	4924		P	0.577	P	0.511	p	NUCBI
200646 s at	<u>4924</u> 5476	-		0.723	P P	0.507	P	PPGB; GSL
200661 at			P		P P		P	XBP1; XBP2
200670 al	7494	1	P	0.630		0.585	P P	
200678 x at	2896	1	P	0.631	P	0.778		GRN; PEPI
200685 at	9295		Р	1.205	P	1.552	P	SFRS11
200697_at	3098	1	Р	1.496	Р	1.577	P	HK1; HK1
200715 x at	23521	1	Р	0.450	Р	0.349	P	RPL13A
200719 at	6500	1	Р	2.144	P	2.713	Р	SKPIA
200730 s at	7803	<u> </u>	Р	1.968	P	1.484	Р	PTP4A1
200731 s at	7803	L	P	1.632	Р	1.389	P	PTP4A1
200732 s at	7803	1	Р	1.601	P	1.372	Р	PTP4A1
200733 s at	7803	1	P	1.698	P	1.365	Р	PTP4A1; HH72
200742 s at	1200		Р	0.449	P	0.409	Р	CLN2
200743_s_at	1200	1	Р	0.482	Р	0.415	Р	CLN2; TPP1
200747 s at	4926	1	Р	0.579	Р	0.607	P	ΝυΜΛΙ
200762_at	1808	1	Р	1.026	Р	1.698	Р	DPYSL2
200779 at	468	1	Р	0.591	Р	0.602	Р	ATF4; CREB2;
200786 at	5695	1	Р	1.509	Р	1.170	Р	PSMB7; Z
200787 s at	8682	1	Р	1.621	Р	1.952	Р	PEA15; PED
200788 s at	8682	1	P	1.744	P	1.999	Р	PEA15; PED
200789 at	1891	1	Р	0.625	P	0.594	Р	ECHI; HPXEL
200790 at	4953	1	Р	1.770	Р	1.758	Р	ODC1
200796 s at	4170	1	Р	0.623	P.A	0.581	Р	MCLI; TM:
200802 at	6301	1	Р	0.697	Р	0.633	P	SARS; SERS;
200808 s at	7791	1	Р	1.756	Р	1.469	Р	ZYX
200810 s at	1153	1	Р	0.563	Р	0.439	P	CIRBP; CIRP
200811 at	1153	1	Р	0.545	Р	0.402	P	CIRBP; CIRP
200813 s at	5048	1	P	1.168	Р	1.517	P	PAFAHIBI
200814 at	5720	1	P	0.644	P	0.582	Р	PSME1; PA28A
200821 at	3920	1	P	1.176	р Р	1.511	P	LAMP2
200821 at	5908		P	1.522	P	1.555	P	RAPIB
200833 S at	2058		P P	0.592	P	0.468	p	EPRS
			P P		r p	1.429	p	ZNF313
200868_s_at	55905	1	-	1.541				
200872_at	6281		P	1.427	P	1.626	P	SI00A10
200873 s at	10694		P	1.571	P N	1.395	P	CCT8; Cetq
200887_s_at	6772	1	9	1.329	Р	2.005	Р	STAT1

Affymetrix		Day 0		Day 3		Day 7	1	Common Name	
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
200897 s at	23022		р	1.562	р	1.976	р	КІАЛ0992	
200898 s at	10724	i	Р	1.409	Р	1.698	Р	MGEA5	
200899 s at	10724	1	Р	1.242	Р	1.740	р	MGEA5; MEA5	
200907 s at	23022	1	P.A	1.473	Р	1.615	Р	KIAA0992	
200908 s at	6181	1	Δ	1.524	P,A	1.522	P,A	RPLP2; RPP2	
200911 s at	6867		Р	1.594	р	1.585	Р	TACC1; Ga55	
200916 at	8407	1	Р	1.618	Р	1.697	Р	TAGLN2	
200917 s at	6734		P	0.744	Р	0.573	Р	SRPR	
200922 at	10945		Р	0.735	р	0.608	Р	KDELR1; ERD2	
200962 at			p	1.256	Р	1.803	Р	RPL31	
200976 s al	8887	1	P	1.309	Р	1.504	р	TAX1BP1;	
200977 s at	8887		P	1.371	р	1.534	P	TAXIBPI; T6BP	
200979 at	0007	1	Р	1.492	P	1.592	P		
200988 s at	10197	1	P	2.141	P	2.318	Р	PSME3; Ki	
200988 S at	10527	1	P	1.360	P	1.559	P	IPO7	
201006 at	7001	· · · · · · · · · · · · · · · · · · ·	P,A	0.865	P.A	0.603	A	PRDX2; PRP	
201003 at	10606		P	1.619	p	1.495	p	PAICS	
201013 s at	10606		p -	1.768	P	1.524	p	PAICS; AIRC	
201014 5 at	7533	1	P	1.508		1.392	p	YWHAH	
201020 at	11034		p	1.433	р р	1.528	p	DSTN; ADF	
10.00	9669		p 1	1.516	p	1.215	p	EIF5B; IF2	
201024 x at	9669	1	p r	1.727	P P	1.482	p	EIF5B; IF2	
201027 s at			P	1.469	P	1.598	P	DUSP1	
201041 s at	1843	1		3.942	P	4.238	r p	TGM2	
201042 at	7052		P,A P	-	P P	0.603	P P	ANP32A	
201043 s at	8125		p P	0.718	p r	1.313	P P	RAD23A	
201046 s al	5886	1	<u> </u>	1.535	<u> </u>	0.644	P P	PLD3; HU-K4	
201050 at	23646	1	P	0.686	P		P P	MYL9; LC20	
201058 s at	10398		P	1.547	P	1.111			
201060 x al	2040	1	P	1.364	P	1.672	P	STOM	
201061 s at	2040	1	P	1.207	P	1.636	P	STOM; BND7	
201065 s at	2969	1	P	0.678	P	0.625	P	GTF2I; DIWS;	
201093 x at	6389		P .	0.859	P	0.609	P	SDHA; FP	
201097 s at	378	<u> </u>	P	1.478	Р	1.512	P	ARF4	
201099 at	-	<u> </u>	P	1.527	P	1.544	P	USP9X	
201100 s at	8239		Р	1.623	Р	1.602	Р	USP9X; DFFRX	
201102 s at	5211	1	Р	1.067	Р	0.660	Р	PFKL; PFK-B	
201123 s at	1984	1	P	0.692	P,A	0.447	A	EIF5A; EIF-5A	
201139 s at	6741	1	Р	1.502	Р	1.497	P	SSB	
201142 at	1965	1	Р	1.789	Р	1.637	P	E1F2S1	
201143 s at	1965	1	Р	1.616	P	1.666	P	ElF-2alpha	
201144 s at	1965	1	Р	1.783	Р	1.655	Р	EIF2S1; EIF-2	
201145 at	10456	1	<u>P</u>	0.724	Р	0.638	Р	HAX1	
201153 s at	4154	1	Р	1.226	Р	1.559	Р	MBNL1; EXP	
201167 x at	396	ĺ.	Р	0.978	Р	0.585	Р	ARHGDIA	
201193 at	3417	1	Р	0.659	Р	0.516	Р	IDH1; IDP; PICD	
201195 s at	8140	1	Р	0.641	Р	0.520	Р	SLC7A5	
201211 × at	1654	1	Р	0.812	Р	0.561	Р	DDX3X; DBX	
201214 s at	5510	1	P	1.570	Р	1.358	P	PPP1R7	
201216 at	10961	1	Р	0.615	р	0.585	Р	C12orf8	
201219 at	1488	1	Р	1.390	Р	1.657	P	CTBP2	

Affymetrix		Day 0)	Day 3		Day 7		
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
201247_at	6721	1	Р	0 538	Р	0 489	Р	SREBF2
201248_s_at	6721	1	Р	0 629	Р	0 482	Р	SREBF2
201275_at	2224	1	Р	0 680	Р	0 502	Р	FDPS, FPS
201282_at	4967	1	Р	1 640	Р	1 195	Р	OGDH, E1k
201284_s_at	327	1	Р	0 667	Р	0 325	Р	APEH
201295_s_at	26118	1	Р	0 514	P,A	0 515	P,M,A	WSB1
201307 at	55752	1	Р	1 465	Р	1 598	Р	FLJ10849
201323_at	10969	1	Р	1 550	Р	1 336	Р	EBNA1BP2
201325_s_at	2012	1	Р	1 668	Р	1 592	Р	EMP1
201326_at	908	1	Р	1 566	Р	1 627	Р	CCT6A
201329_s_at	2114	1	A	1 529	P,A	1 558	P,A	ETS2
201331_s_at	6778	1	P	0 623	P	0 638	Р	STAT6
201337_s_at	9341	1	Р	0 854	Р	0 590	Р	VAMP3, CEB
201344 at	7322	1	P	1 417	P	1 916	Р	UBE2D2
201367_s_at	678	1	P,M,A	0 798	P,A	0 568	A	ZFP36L2
201370_s_at	8452	1	P	1 380	P	1 640	P	CUL3
201370 <u>_</u> 3_at	26227	1	P	0 479	P	0 443	P	PHGDH
201397_at	156	1	P	0 689	P,M	0 466	P,A	ADRBK1
201401 <u>3</u> at	150	1	P	1 421	P	2 110	P	SOX4, EVI16
201410_at		1	P	1 211	P	1 721	P	SOX4, EVI16
201417_at	79084	1	P	1 508	P	1 299	P	MEP50
	217	1	P	0 501	P	0 408	P	ALDH2
201425_at	847	1	P	0 593		0 403	P	CAT
201432_at	1977		P	1 650	r P	1 585	P	EIF4E,
201436_at	7072	1	P	0 741	P	0 648	P	TIA1
201446_s_at			P P	0 741	Р Р	0 639	P P	NPEPPS
201454_s_at	9520	1	P P	1 586	P P	1 527	P P	MAPKAPK2
201460_at	9261	1	<u> </u>	3 589	P	4 645	P	JUN
201464_x_at	3725		A		r P	5 536	P	
201466_s_at	3725	1	A P	3 794	r P		r P	JUN, AP1 MARS
201475_x_at	4141	<u>l</u>		0 624		0 508		
201478_s_at	1736	1	P P	1 628	P P	1 574	P P	DKC1
201479_at	1736	1		1 519		1 444		DKC1,
201489_at	10105	1	P	1 616	P	1 101	P	PPIF, CYP3
201498_at	7874	1	P	1 772	P	1 813	P	USP7
201501_s_at	2926	1	P	1 434	P	1 682	<u>Р</u>	GRSF1
201502_s_at	4792	1	P	1 600	P	1 591	P	NFKBIA
201516_at	6723	1	P	1 677	P	1 249	P	SRM
201534_s_at	5412	1	P	1 253	P P	1 500	P	UBL3
201535_at	5412	1	P	1 285	P	1 729	P	UBL3
201536_at	1845	1	P D	1 693	P	1 561	P	DUSP3
201537_s_at	1845		P	2 311	P	1 843	P	DUSP3, VHR
201539_s_at	2273	1	P	1 160	P	1 637	P	FHL1, KYO-T
201540_at	2273	1	P	1 354	P	1 943	P	FHL1, KYO-T
201546_at	9320	1	P	1 506	P	1 436	P	TRIP12
201554_x_at	2992	1	P	1 569	P	1 422	P	GYG
201559_s_at	25932	1	P	0 656	Р	0 707	P	CLIC4
201565 <u>s</u> at	3398	1	Р	4 103	Р	3 504	P	ID2, ID2A
201566_x_at	3398	1	P,M	5 836	Р	4 596	Р	ID2, ID2A
_201571_s_at	1635	1	Р	1 547	P	1 451	P	DCTD
201572_x_at	1635	1	Р	1 588	P	1 626	Р	DCTD

Affymetrix		Day 0		Day 3		Day 7		
ld	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
201576 s at	2720	I	Р	0,664	Р	0.515	Р	GLBI
201579 at	2195	1	P	1.465	Р	1.648	Р	FAT; ME5;
201582 at	10483	1	P,M	1.718	Р	1.377	Р	SEC23B
201587 s at	3654	1	р	1.505	Р	1.527	Р	IRAK1; pelle
201594 s at	9989	1	Р	1.477	Р	1.541	Р	PPP4RI
201595 s at	55854	1	P	1.513	Р	1.380	Р	LEREPO4
201600 at	11331	1	P	0.905	Р	0.653	Р	REA; BAP
201607 at	11137	1	Р	1.851	Р	1.853	Р	PWP1
201608 s at	11137		Р	1.581	Р	1.388	Р	PWP1:
201625 s al	3638		P	0.609	P	0.421	Р	INSIGI
201626 at	3638		P	0.657	P	0.468	р	INSIGI
201627 s at	3638	-	P	0.708	p	0.468	P	INSIGI
201629 s at	52	-	P	1.560	p -	1.593	Р	ACPI
201630 s at	52	1	P	1.386	P P	1.500	P	ACP1
201632 at	1967		P	1.671	P	1.516	P	EIF-2Balpha
201639 s at	29894	1	P	0.913	P	0.617	P	CPSFI
201642 at	3460	1	P	0.768	p	0.629	P	IFNGR2; AF-1
201668 x at	4082	1	P.A	0.541	A	0.798	P,A	MARCKS
2016677 at	56941		P	1.469	P	1.622	p	ELF3
	7163		P	1.407	p -	1.570	P	TPD52
201688 s at			P P		<u>Р</u>	1.669	P P	TPD52
201689 s at	7163	1	P P	1.609	P	1.672	p r	TPD52
201690 s at	7163	1		1.541		2.199	р р	TPD52; N8L
201691 s at	7163	1	P P	1.551	P	0.601	A	ENTPD6
201704 at	955	<u> </u>	P	0.917	P	0.640	P	NIPSNAPI
201708 s at	8508			0.818	P P	0.640	p P	NIPSNAPI
201709 s at	8508		P	0.773			P P	MYBL2; BMYB
201710 at	4605	1	P	1.765	P	1.248	P P	
201712 s at	5903	1	P	1.432	P	1.596		RANBP2
201739 at	6446		P	3.163	P	4.549	P	SGK; SGK1
201744 s at	4060		P	1.555	P	1.623	P	LUM; LDC
201790 s at	1717	1	P	0.699	P	0.522	P	DHCR7
201791 s at	1717	1	P	0.705	P	0.557	P	DHCR7: SLOS
201794 s at	9887	1	P	1,696	P	1.500	P	ESTIC
201796 s at	7407		P	0.711	P	0.524	P,A	VARS2
201798 s at	26509		P,A	3.222	P	5.656	P	FERIL3
201805 at	5571	L	P	0.702	P	0.545	P	PRKAGI
201814 at	9779	l	P	1.247	P	1.552	P	TBCID5
201816 s at	2631	1	P	0.879	P	0.532	P	GBAS
201823 s at	9604	1	P	1.461	Р	1.615	P	RNF14
201824 at	9604		P	1.714	Р	1.907	P	RNF14
201830 s at	10276	1	P	1.378	P	1.517	P	NETI
201865 x at	2908	1	P	1.507	Р	1.598	P	NR3C1
201872 s at	6059	1	Р	1.763	P	1.551	P	ABCEI
201873 s at	6059		Р	1.586	Р	1.598	P	ABCE1
201890 at	6241		Р	1.591	Р	1.475	<u>P</u>	RRM2; R2
201896 s at		1	Р	0.644	Р	0.794	Р	
201900 s at	10327	1	P	0.608	P	0.522	Р	AKRIAI
201913 s at	80347	1	Р	0.894	Р	0.642	Р	COASY
201920 at	6574	I	Р	1.742	Р	1.362	Р	SLC20A1;
201937_s_at	23549	1	P,M	1.511	P	1.203	Р	DNPEP

Affymetrix	LocusLink	Day 0		Day 3		Day 7		Common Name
Id	LOCUSLINK	Normalized	Flags	Normalized	Flags	Normalized	Fings	Common Mante
201939 at	10769	1	Р	1.986	Р	1.431	Р	PLK2; SNK
201948 at	29889		Р	1.967	Р	1.598	Р	HUMAUANTIG
201951 at	214	1	Р	1.484	Р	2.712	Р	ALCAM; MEMD
201952 at	214	1	Р	1.467	Р	2.398	Р	ALCAM; MEMD
201959 s at	23077	1	P,A	1.600	Р	1.665	P,M	MYCBP2
201963 at	2180		Р	1.532	Р	1.505	Р	ACSL1
201966 at	4720	1	<u>р</u>	1.008	р	0.643	Р	NDUFS2
201970 s at	4678	1	P	0.829	р	0.638	Р	NASP
201985 at	9897		Р	0.590	р	0.692	Р	KIAA0196
202014 at	23645		P	2.393	р	3.054	Р	PPP1R15A
202015 x at	10988	1	- P.A	1.231	P.M.A	1.535	P,A	METAP2; p67
202016 at	4232	1	P	0.704	Р	0.651	Р	MEST; PEG1
202017 at	2052	1	P	1.456	p	1.742	Р	EPHX1; MEH
202030 at	10295	- 1	P	0.917	Р	0.629	p	BCKDK
202052 s at	26064	1	P	1.963	P	3.139	p	RAII4; RAII3
202052 S at	20004		p	1.421	p	1.540	P	KPNA1; RCH2
202059 s at	3836		P	1.511	p	1.429	p	KPNAI; RCH2
202059 S at	8500	l	Р	1.351	P	1.511	P	PPFIAI: LIPI
202067 s at	3949		P	0.764	р р	0.527	P.A	LDLR
202067 s at	3949		P	0.777	p r	0.523	p	LDLR; FH; FHC
100.000	3949		r P	1.711	P P	1.660	p	IDH3A
202070 s at		1	<u>г</u>	1.977	P	1.860	P	SDC4; SYND4
202071_at	6385	1	r p	1.301	P	2.089	P	OPTN
202073 at	10133		P P	1.301	r P	2.040	r p	OPTN; NRP
202074 s at	10133				P	1.711	l r l p	BIRC2; API1;
202076 at	329		P	1.569	<u> </u>		r p	OIP106
202079 s at	22906		P	0.740	P,A	0.638	p P	
202083 s at	6397	1	P	1.728	<u>P</u>	1.632		SEC14L1
202085 at	9414	1	P	1.400	P	1.758	P	TJP2; ZO2; X104
202105 at	3476	1	P	0.713	Р	0.620	P	IGBP1; IBP1
202121 s at	27243	<u> </u>	P	0.713	P	0.580	P	BC-2
202129 s at	8780	1	P,M	1.971	P	2.200	P	RIOK3
202130 at	8780	1	P	1.948	P	2.448	P	RIOK3
202131 s at	8780	<u> </u>	P	2.061	P	2.389	P	RIOK3; SUDD
202135 s at	10120	L	Р	0.868	P	0.623	P	ACTR1B
202141 s at	10920	1	Р	1.642	P	1.686	P	COPS8
202142 at	10920	1	Р	1.513	Р	1.541	Р	COPS8; COP9
202146 at	3475	<u> </u>	Р	2.868	Р	3.711	P	IFRD1
202147 s al	3475	1	Р	2.728	P	3.227	P	IFRDI
202148 s at	5831	1	Р	0.738	P	0.619	P	PYCR1; P5C
202149 at		1	Р	1.464	Р	1.676	P	ط176112.1
202172_at		1	P	1.301	P	1.561	Р	ZNF161; DB1
202174 s at	5108	l	Р	1.329	Р	1.641	Р	PCM1; PTC4
202180 s at	9961	1	P.A	0.642	P,M,A	0.529	A	MVP; LRP
202181 at	9766	1	Р	1.374	P	1.556	Р	KIAA0247
202188 at	9688	1	Р	1.655	P	1.222	Р	NUP93
202193_at	3985	1	Р	1.565	Р	1.496	Р	LIMK2
202205 at	7408	1	Р	0.720	P	0.593	P	VASP
202209 at	27258	1	Р	2.117	Р	2.262	Р	LSM3; SMX4
202212 at	23481		Р	1.679	Р	1.406	Р	PES1
202218 s at	9415	1	Р	0.522	Р	0.431	Р	FADS2; D6D

Affymetrix		Day 0		Day 3		Day 7			
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
202240 at	5347	1	P	0 653	Р	0 785	Р	PLK1, STPK13	
202241 at	10221	1	P	1 614	Р	2 539	Р	TRIB1, C8FW	
202245_at	4047	1	Р	0 672	Р	0 563	Р	LSS	
202251 at	9129	1	Р	1 459	Р	1 552	Р	PRPF3, PRP3	
	1785	1	Р	0 853	Р	0 654	P,A	DNM2, DYNII	
202265 at	648	1	Р	1 416	Р	1 846	Р	BMI1, RNF51	
	23219	1	Р	1 593	Р	1 611	Р	FBXO28	
202279_at	9556	1	Р	1 535	P	1 434	Р	C14orf2, MP68	
202284 s at	1026	1	Р	2 609	Р	2 528	Р	CDKN1A, P21	
202290_at	11333	1	Р	0 657	Р	0 499	Р	PDAP1, PAP	
202307_s_at	5696	1	Р	1 286	Р	1 510	Р	TAP1, APT1	
202308_at	6720	1	Р	0 455	P	0 315	P,A	SREBFI	
202313 at	5520	1	Р	1 649	Р	1 658	Р	PPP2R2A	
202328 s at	5310	1	Р	0 646	Р	0 612	Р	PKD1, PBP	
202329 at	1445	1	Р	1 511	Р	1 359	Р	CSK	
	7374	1	Р	1 611	Р	1 552	Р	UNG, DGU	
202331 at	593	1	р	0 797	Р	0 458	P	BCKDHA	
202340_x_at	3164	1	P,A	1 679	P	1 078	P,A	NR4A1, HMR	
202341 s at	23321	1	M,A	1 456	P	1 906	P	TRIM2	
202342 s at	23321	1	P	1 288	P	1 602	Р	TRIM2, RNF86	
202312 <u>3</u> ut 202344 at	3297	1	P	1 590	P	1 186	P	HSF1, HSTF1	
202345_s_at	6181	1	P	1 822	P	1 544	Р	FABP5, EFABP	
202352_s_at	5718	1	P	1 520	P	1 263	P	PSMD12	
202366 at	35	1	P	0 798	P	0 646	M,A	ACADS, SCAD	
202375 at	9871	1	P	0 966	P	0 634	P	SEC24D	
202384_s_at	6949	1	P	1 721	P	1 254	P	TCOF1, MFD1	
202389_s_at	3064	1	A	1 506	 P	1 045	M,A	HD, IT15	
202391 at	10409	1	P	2 916	 P	8 624	P	BASP1, CAP23	
202393 s at	7071	1	P	1 429	P	1 746	P	TIEG, EGRA,	
202399_s_at	6722	1	P,A	1 589	P	1 747	P	SRF	
202402 s at	833	1	P	0 615	P	0 570	P	CARS, CYSRS	
202407 s at	26121	1	P	0 905	P	0 604	P	PRPF31	
202413 s at	7398	1	P	1 510	P	1 536	P	USP1	
202425 x at	5530	1	P,M,A	1 620	P	2 130	P	PPP3CA	
202429 s at	5530	1	P	1 404	 P	2 009	P	PPP3CA	
202444 s at	10613	1	P	0 618	P	0 450	P	C10orf69,	
202451_at	2965	1	P	1 526	 P	1 840	P	GTF2H1	
202457 s at	5530	1	P	1 286	P	1 842	P	PPP3CA	
202462 s at	9879	1	P	2 138	P	1 961	P	DDX46	
202464 s at	5209	1	P	1 768	P	1 761	P	PFKFB3	
202468_s_at	8727	1	P	1 911	P	2 094	P	CTNNAL1	
202470_s_at	11052	1	P	1 225	P	1 633	Р	CPSF6, CFIM	
202472_at	4351	1		0 818	P	0 616	P,M,A	MPI, PMI, PMI1	
202476_s_at	10844	1	P	0 809	 P	0 636	P	TUBGCP2	
202492 at	79065	1	P	0 761	P	0 635	P	FLJ22169	
202498 s at	6515	1	<u>Р</u>	1 600	P	1 348	P	SLC2A3	
202499 s at	6515	1	P	1 885	P	1 634	P	SLC2A3	
202477 <u>_s_at</u> 202500 at	3300	1	P	1 900		1 886	P	DNAJB2	
202530_at	3659	1	<u>Р</u>	1 552	P	1 624	P	IRF1	
202531_at	1719	1	P	1 885	P	1 962	P	DHFR	

Affymetrix		Day 0		Day 3		Day 7		Common Name
bt	LocusLink	Normalized	Fings	Normalized	Flags	Normalized	Flags	Common Name
202533 s at	1719	l l	Р	1.511	Р	1.345	P	DHFR
202534 x at	1719	1	Р	1.601	Р	1.717	Р	DHFR
202536 at	25978	1	Р	1.565	Р	1.704	Р	DKFZP5640123
202541 at	9255	1	Р	1.812	Р	1.832	Р	SCYEI
202542 s at	9255	1	Р	1.802	Р	1.735	Р	SCYE1; p43;
202580 x at	2305		p	1.316	Р	1.502	Р	FOXMI; MPP2
202581 at	3304		р	0.772	Р	0,586	Р	HSPAIB
202583 s at	10048		Р	1.509	Р	1.551	Р	RANBP9
202594 at	23484	1	Р	1.349	Р	1.608	Р	LEPROTLI
202599 s at	8204	1	Р	1.347	Р	1.687	Р	NRIP1; RIP140
202600 s at	8204		P	1.138	Р	1.589	Р	NRIPI
202611 s at	9282		P	1.351	P	1.557	P	CRSP2
202613 at	1503		P	2.057	P	1.811	P	CTPS
202620 s at	5352		р	1.189		1.957	P	PLOD2
202620 s al	7128	1	P	1.335	P	1.654	P	TNFAIP3; A2
202645 s at	4221	1	p	0.811	P	0.610	P	MENI
	9792	1	p	1.519	p	1,910	P	SERTAD2
202656 s at	9792		r P	1.564	P	1.828	P	TRIP-Br2
202657 s at			r p	1.364	P	0.640	r P	PDXK; PKH
202671 s at	8566		P P		p P	1.533	Р	ATF3
202672 s al	467			1.140		0.554	M.A	FASTK
202676 x at	10922	1	P,A	0.720	P,A		P.	GTF2A2
202678_at	2958	1	P	1.552	P	1.615		
202682 s at	7375	1	Р	0.837	P	0.659	P	USP4: UNP
202693 s at	9263	1	P	1.509	P	1.481	P	STK17A
202695 s at	9263	<u> </u>	P.A	1.673	P	2.224	P	STK17A
202702 at	7726	1	Р	1.780	Р	1.577	Р	TRIM26; AFP
202706 s al	7372	1	Р	1.518	Р	1.352	P_	UMPS; OPRT
202712 s at	1159	1	Р	0.702	р	0.589	Р	CKMT1;
202725 at	5430	1	P	1.538	P	1.505	Р	POLR2A
202727 s at	3459	1	P	1.647	Р	1.741	Р	IFNGRI; CDI19
202730 s at	27250	<u> </u>	P	0.606	Р	0.544	Р	PDCD4; H731
202731_at	27250	<u> </u>	Р	0.526	P	0.546	Р	PDCD4; H731
202735 at	10682	1	Р	0.763	Р	0.573	Р	EBP; CPX
202740 at	95	1	Р	0.570	Р	0.399	Р	ACYI
202743 at	8503	1	Р	1.835	Р	2.000	Р	PIK3R3
202746 at	9452	1	Р	1.435	Р	3.389	Р	1TM2A; E25A
202758 s at	8625	1	Р	0.551	P	0.285	Р	RFXANK; BLS
202759 s at	11217	1	Λ	1.462	Р	1.784	Р	PALM2
202760 s at	11217		P,A	1.402	P,A	2.073	Р	AKAP2
202764 at	6786	1	Р	1.548	Р	1.636	Р	STIMI
202767_al	53	1	Р	0.673	P	0.437	р	ACP2
202769_at		1	P	0.435	Р	0.537	Р	CCNG2
202770 s al	901	1	P	0.513	Р	0.611	P	CCNG2
202777_at	8036	I.	Р	1.378	Р	1.516	Р	SHOC2
202779 s at	27338	1	Р	0.833	Р	0.652	P	UBE2S
202785 at	4701	1	9	0.958	Р	0.608	P,M	NDUFA7
202792 s at	9701		P P	0.6%	P.M.	0.618	M,A	KIAA0685
202793 at	10162	1	Р	0.696	P	0.419	P,A	C3F
202794 at	3628	1	P	1.468	P	1.688	P	INPPI
202802 at	1725	1	P	0.719	P	0.447	P	DUPS

Affymetrix	LocusLink	Day 0		Day 3		Day 7		Common Name	
Ĭd	Locustinx	Normalized	Flags	Normalized	Fings	Normalized	Flags		
202812 at	2548		Р	0.572	Р	0.562	Р	GAA; LYAG	
202819 s at	6924	1	Р	1.585	Р	1.418	р	TCEB3; SIII	
202823 at	6921		р	1.554	Р	1.425	Р	TCEBI	
202830 s at	2542	1	Р	0.527	M,A	0.299	Α	SLC37A4	
202838 at	2517	1	Р	0.558	Р	0.356	Р	FUCA1	
202847 at	5106	1	Р	0.261	р	0.203	M.A	PCK2;	
202852 s at	79719		P	1.590	p	1.519	p	FLJ11506	
202855 s at	9123	1	P	0.636	p	0.483	P	SLC16A3	
202856 s at	9123	1	P	0.830	p	0.649	P	SLC16A3;	
202867 s at	54788	1	P	0.730	p	0.568	P	DNAJB12:	
202868 s at	10775	1	P	1.521	p	1.252	P	POP4: RPP29	
202808 S at	5519		p	1.529	p	1.174	P	PPP2R1B	
	54541	1	r p	0.401	M.A	0.358		DDIT4; Dig2;	
202887 s at			P P	1.743	p	1.625	P	NUP88	
202900 s at	4927	1	P P	1.745	- P	1.620	r p	LSM5	
202903 at	23658	1					P P		
202904 s at	23658		P	1.557	P	1.493		LSM5;	
202906 s at	4683		P	1.615	P	1.409	P	NBS1	
202912 at	133		P	1.545	P	1.325	P	ADM; AM	
202930 s at	8803	1	Р	1.518	Р	1.409	P	SUCLA2	
202934 at	3099	-	A	2.805	<u>Р</u>	2.985	P	HK2	
202937 x at	27341	<u> </u>	P.M	1.612	P	1.138	P	CGI-96	
202939 at	10269	<u> </u>	P P	1.385	Р	1.502	P	ZMPSTE24	
202943 s at	4668	<u> </u>	Р	0.748	P	0.546	P	NAGA	
202944 at	4668	I I	Р	0.783	Р	0.618	P	NAGA	
202945 at	2356	1	P	0.927	P	0.596	M,A	FPGS	
202949 s at	2274	1	Р	2.215	Р	2.887	P	FHL2; DRAL	
202951 at	11329	T	Р	1.480	Р	1.643	Р	STK38	
202962 at	23303	I	M,A	1.326	Р	1.671	Р	KIF13B; GAKIN	
202978 s at	58487	1	Р	1.524	Р	1.627	Р	ZF	
202979 s al	58487	1	Р	1.470	Р	1.580	Р	ZF	
202993 at	10994	1	P	0.774	Р	0.597	Р	ILVBL	
202994 s at	2192	1	Р	1.026	Р	1.606	Р	E46L;	
202998 s at	4017	1	Р	1.150	Р	1.980	Р	LOXL2; WS9-14	
203002 at	51421	1	P	1.373	P	1.526	Р	AMOTL2	
203006 at	3632	1	P	0,810	P	0.644	Р	INPP5A	
203018 s al	22892	1	P	1.411	Р	1.545	Р	SSX2IP	
203019 x at	22892	1	P	1.564	P	1.819	Р	SSX2IP	
203023 at	51491		P	1.726	Р	1.295	P	IISPC111	
203027 s at	4597		P	0.634	P.M.A	0.518	Λ	MVD	
203031 s at	7390		P	0.809	P	0.642	Р	UROS	
203038 al	5796		M,A	1.512	P	1.783	P	PTPRK	
203041 s at	3920		P	1.197	P	1.678	P	LAMP2;	
203041 a at	3920		P	1.395	P	1.932	p	LAMP2	
203053 at	10286		P	1.573	P	1.419	P	BCAS2: DAMI	
203058 s at	9060		P	1.635	р Р	2.323	P	PAPSS2	
203058 s at	9060		p P	1.033	P P	3.318	P	PAPSS2: SK2	
			p p		P P		P P	MDCI	
203062 s at	9656	1	+	1,290		1.504			
203068 at	9903		P	1.570	P	1.514	P	KIAA0469	
203075 at	4087		<u> </u>	1.645	P	1.674	P	SMAD2	
203077 s at	4087		P	1.337	P	1.516	P	SMAD2: JV18	

Aflymetrix	LocusLink	Day 0		Day 3		Day 7		Common Name
ld	LOCUSLINK	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Avante
203078 al	8453	1	р	1.703	Р	1.648	Р	CUL2
203085 s at	7040	1	Р	0.839	Р	0.644	Р	TGFB1;
203095 at	4528	1	р	1.576	Р	1.464	P	MTIF2
203113 s at	1936	I	Р	1.003	P	0.650	Р	EEFID;
203116 s at	2235		р	0.792	Р	0.649	Р	FECH
203119 at	79080	1	Р	1.850	Р	1.648	Р	MGC2574
203122 at	51112	1	P,A	0.860	P,A	0.571	Α	TTC15; CGI-87
203125 x at	4891	1	P,M,A	0.792	M,A	0.649	A	SLC11A2
203126 at	3613	1	Р	0.861	Р	0.649	Р	IMPA2
203139 at	1612	1	P,A	1.428	Р	1.541	Р	DAPKI
203140 at	604	1	Р	1.268	Р	2.302	Р	BCL6; BCL5
203150 at	10244	1	Р	1.641	р	1.613	Р	RAB9P40; p40
203154 s at	10298		р	1.551	Р	1.351	Р	PAK4
203156 at	11215	1	Р	1.646	Р	1.670	Р	AKAPH
203185 at	9770	1	Р	1.276	Р	1.605	Р	RASSF2
203188 at	11041	1	Р	0.634	Р	0.511	Р	B3GNT6
203192 at	10058	1	Р	0.902	Р	0.613	M,A	ABCB6
203197 s at	54987	1	Р	0.945	Р	0.626	Р	FLJ20580
203198 at	1025	1	Р	0.814	Р	0.577	P,A	CDK9; TAK
203200 s at	4552	1	Р	1.461	Р	1.623	Р	MTRR: MSR
203202 at	11103	1	P	2.083	p	2.042	Р	HRB2
203203 s at	11103		P	1.802	p	1.720	P	HRB2; RIP-I
203204 s at	9682		P	0.620	Р	0.632	P	JMJD2A
203205 at	9682	L	P	0.621	P	0.600	Р	JMJD2A;
203211 s at	8898	1	Р	1.784	Р	1.634	Р	MTMR2;
203212 s at	8898	l l	Α	1.899	P	2.085	P	MTMR2
203215 s at	4646	1	Р	1.375	Р	1.638	Р	MYO6
2032 6 s at	4646	1	Р	1.484	Р	1.679	Р	MYO6
203228 at	5050	1	Р	0.865	Р	0.607	Р	PAFAH1B3
203234 at	7378	1	P	1.639	Р	1.910	Р	UPPI; UPASE
203239 s at	4849		Р	0.846	Р	0.625	Р	CNOT3
203252 at	10263		P	0.786	р	0.559	P	DOC-IR
203259 s at	51020	1	P	i.573	Р	1.631	Р	C6orf74
203264 s at	23229	1	P	0.675	Р	0.597	P	ARHGEF9
203267 s at	1819	i i	Р	0.914	Р	0.644	Р	DRG2
203272 s at	11334	1	P	1.825	Р	1.548	Р	TUSC2
203292 s at	55823		Р	1.371	Р	1.544	Р	VPS11
203294 s at	3998	1	P.A	0.867	P,A	0.656	P,A	LMAN1; MR60
203299 s at	8905	1	P,A	1.481	P	1.805	P	AP1S2; DC22
203304 at	25805	1	P.M	2.048	Р	3.419	P	BAMBI; NMA
203312 x at	382	I	Р	1.507	Р	1.410	Р	ARF6
203314_at	8225	1	Р	1.522	P	1.037	Р	PGPL
203315 at	8440	1	P.M.A	1.235	Р	1.590	Р	NCK2; GRB4
203320 at	10019		Р	0.799	P	0.569	Р	LNK
203336 s at	9270	L	Р	1.799	Р	1.350	Р	ITGBIBPI
203338 at	5529	I	Р	1.373	р	1.506	Р	PPP2R5E
203341_at	10153	1	r	1.554	p	1.415	p	CEBPZ
203344 s at	5932	1	P	1.566	P	1.380	P	RBBP8
203359 s at	26292	1	- P	1.657	P	1.294	P	MYCBP
203360 s at	26292	1	P	1.682	P	1.219	P	MYCBP

Affymetrix	LocusLink	Day 0		Dav 3		Day 7		Common Name	
ĺd	LocusLink	Normalized	Fings	Normalized	Flags	Normalized	Flags	Common (white	
203361 s at	26292	1	A	1.714	P	1.692	P,M	МУСВР	
203365 s at	4324	1	р	0.728	P,A	0.607	A	MMP15	
203367 at	11072	1	Р	1.517	Р	1.846	Р	DUSP14	
203368 at	78987	I	Р	0.699	Р	0.551	Р	CRELD1	
20338 s at	348		P,M	0.827	P	1.712	Р	APOE	
203382 s at	348	1	P.A	1.007	P,A	2.208	P	APOE	
203386 at	9882		P.A	1.512	P	1.988	Р	TBCID4	
203388 at	409	1	p	0.751	P	0.650	P	ARRB2	
203392 s at	1487		P	0.690	Р	0.523	Р	CTBP1	
203394 s at	3280		P	1.091	Р	1.598	Р	HESI	
203395 s at	3280		P	1,282	P	1.810	Р	HEST	
203403 s at	6049	1	P	1.450	P	1.592	Р	RNF6	
203410 at	10947	1	P.	1.715	P	1.592	P	AP3M2	
203411 s at	4000		P	0.584	P	0.631	P	LMNA	
203413 at	4753		P	1.221	P	1.667	P	NELL2	
203415 at	10016		<u>р</u>	0.762	P	0.605	P	PDCD6	
203417 at	4237	1	P	0.573	P.A	0.607	P	MFAP2;	
203422 at	5424	1	- P	0.869	p	0.584	P	POLDI	
203439 s at	8614	1	P P	0.531	M.A	0.541	P.A	STC2	
203457 s at	256364	1	- <u>p</u>	0.829	р	0.569	p	FLJ35827	
203442 x at	4952		P	1.498	P	1.553	P	OCRL	
203440 s at	26229	1	p	0.695	P	0.526	P	B3GAT3	
203456 al	11230	1	P	0.810	<u>р</u>	0.584	P	JM4	
203456 at	4358	1	P	1.533	p	1.685	Р	MPV17	
203460 at	5372		p	0.791	P	0.625	P	PMMI	
203467 at	8558	1	A	0.995	P.A	0.653	P.A	CDK10	
203408 at	6252	1	P	1.231	p	1.843	P	RTNI: NSP	
203485 at	2000		A	1.674	P.M	1.520	P.A	ELF4: MEF	
203490 at	10404	<u> </u>	P.A	1.500	P	1.426	P,M	PGCP	
	669		P P	1.617	P	1.991	P P	BPGM	
203502 at			P	1,154	p	1.745	P	MET	
203510 at	4233	1	P	1.402	P	1.570	P	APC; GS;	
203526 s at	324	1	P	0.814	A	0.620	A	PTPN18; BDP1	
203555 at		1	p	1.110	P	1.581	P	FEZI	
203562 at	9638		P P	0.789	P	0.486	P	RABGGTA	
203573 s at	5875		P	1.122	P	1.561	P P	NFIL3: E4BP4	
203574 at	4783		P	0.791	P	0.532	P	BCAT2; BCAM	
203576 at	587			1.525	P	1.464	P	SLC7A6	
203578 s at	9057		P.M P	1.604	p	1.961	p	TFDP2	
203588 s at	7029	1	P.A	1.544	P	2.083	p i	TFDP2; Dp-2	
203589 s at		1	P	1.365	p	1.593	P	WBP4: FBP21	
203599 s at	9839	1	P.A	1.303	P,A	3.432	p	ZFHX1B; SIPI	
203603 s at		1	P		P	1.519	P	INPP5F; SAC2:	
203607 at	22876 56902		P P	1.469	P	1.434	P	LOC56902	
203622 s at			P		P P	1.434	P	FDX1; ADX	
203646 at	2230			1.424	+		P P		
203648 at	9797		P	1.565	P	1.615		KIAA0218	
203657 s at	8722	1	P	0.558	P	0.639	P	CTSF; CATSF	
203665 at	3162		P	2.534	P	2.982	P	HMOX1; HO-I	
203669 s at	8694	1	P	0.684	P	0.555	P	DGATI	
203671 at	7172	<u> </u>	P,A	1.564	P	1.833	Р	TPMT	

Affymetrix		Day 0		Day 3		Day 7		Common Name
ld	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
203674 at	9931	1	Р	1.568	Р	1.585	Р	HELZ
203675 at	4925		Р	1.450	Р	1.884	Р	NUCB2; NEFA
203679 at	11018	1	Р	0.781	Р	0.494	Р	ILIRLILG
203680 at	5577		Р	1.352	Р	1.671	Р	PRKAR2B
203682 s at	37 2	1	P.M	0.868	Р	0.651	Δ	IVD: ACAD2
203686 at	4350	1	P	0.849	P	0.634	Р	MPG; AAG
203693 s at	1871		P	1.539	P	1.455	Р	E2F3; E2F-3
203696 s at	5982		P	1.613	P	1.251	P	RFC2; A1
203090 s at	3708	1	P	1.939	P	1.964	P	ITPRI
203711 s at	26275	1	P	0.922	P	0.520	P	HIBCH
203711 S at	9933	1	P	1.748	P	1.821	P	K1AA0020
140	3993		P	0.758	P	0.524	P.A	LLGL2; HGL
203713 s at			P P	1.475	P	1.510	P P	TBCE; HRD
203714 s at	6905		P		r P	0.640	r P	ERCC1; UV20
203720 s at	2067	-		0.799			P P	ALDH4A1
203722_at	8659	<u> </u>	Р	0.720	P	0.554		
203737 s at	23082	1	P	1.556	P	1.486	P	PPRC1
203738 at	55322	1	P	1.752	Р	1.804	P	F1_J11193
203740 at	10200	<u> </u>	Р	1.684	Р	1.464	Р	MPHOSPH6
203743 s at	6996	<u> </u>	Р	1.857	Р	1.563	Р	TDG
203746 s at	3052	1	Р	1.575	Р	1.235	Р	HCCS; CCHL
203767 s at	412	1	Р	1.514	Р	1.148	Р	STS
203771 s at	644	1	Р	1.548	Р	1.198	P	BLVRA; BVRA
203778 at	4126	1	Р	1.037	P,M	1.519	Р	MANBA
203787 at	23635	I	Р	1.678	Р	1.752	P	SSBP2
203810_at	11080	I	Р	2.306	Р	2.987	P	DNAJB4
203811 s at	11080	1	P,M,A	1.751	Р	2.377	Р	DNAJB4
203814 s at	4835	1	Р	0.836	Р	0.584	P	NQO2:
203815 at	2952	1	Р	0.606	P,M	0.527	P.A	GSTTI
203816 at	1716	1	Р	2.034	P	2.302	Р	DGUOK
203821 at	1839	1	A	2.686	Р	2.629	Р	DTR; DTS
203840 at	8548	1	P,A	1.508	P	1.463	P	BLZFI; JEMI
203851 at	3489	1	P.A	1.556	Р	1.833	P	IGFBP6; IBP6
203853 s at	9846	1	Α	1.394	P,A	1.639	P.A	GAB2;
203856_at	7443	1	P	1.542	P	1.361	P	VRKI
203857 s at	10954	· ·	P	0.768	P	0.644	P	PDIR
203860 at	5095	1	P	0.781	P	0.585	P,A	PCCA
203870 at	64854		P	1.623	P	1.712	P	USP46;
203876 s at	4320		P,A	0.466	P.A	0.396	A	MMP11
203878 s at	4320	1	p	0.575	P	0.370	P P	MMP11
203880 at	10063	1	P	1.866	P	1.835	P	COX17
203880 at	10379	1	P	0.616	P	0.661	P	1SGF3G
203893 at	6880		P	1.654	P	1.778	P	TAF9
	9411		P	1.034	P	1.778	P P	PARGI
203910 at		-	P				<u> </u>	
203916 at	8509	1	-	0.696	P.A	0.548	Λ 	NDST2
203917 at	1525	1	P	1.296	P	1.788	P	CXADR:
203919 at	6919		P	0.719	P	0.614	P	TCEA2: TFIIS
203921_at	9435	1	P	0.652	P	0.523	P	CHST2; C6ST
203926 x_at	513		Р	0.720	Р	0.450	P	ATP5D
203935_at	90		P	1.480	P	1.545	P	ACVR1
203944 x at	11120	<u> </u>	P	1.500	Р	1.641	Р	BTN2A1

Affymetrix		Day 0	•	Day 3		Day 7		Common Nome
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
203946 s at	384	1	P,A	1 760	Р	1 353	P,A	ARG2
203960 s at	51668	1	Р	1 619	P	1 528	Р	Clorf41
203967 at	990	1	Р	1 778	P	1 624	Р	CDC6,
 203968_s_at	990	1	Р	1 709	P	1 453	Р	CDC6
203970_s_at	8504	1	Р	1 409	P	1 593	Р	PEX3
203976 s at	10036	1	Р	1 528	P	1 324	Р	CHAF1A
203980 at	2167	1	Р	1 999	P	2 462	Р	FABP4
 203981_s_at	5826	1	Р	0 657	P	0 694	Р	ABCD4
203986 at	8987	1	Р	2 200	P	2 284	Р	GENX-3414
 203989_x_at	2149	1	A	1 755	P,A	3 086	Р	F2R, TR
 204019_s_at	26751	1	Р	0 723	P	0 566	Р	SH3YLI
204020_at	5813	1	Р	1 323	P	1 515	Р	PURA
	11060	1	Р	0 822	P	0 619	Р	WWP2
204023 at	5984	1	Р	1 617	P	1 373	Р	RFC4, A1,
204024_at	734	1	Р	1 634	P	1 681	Р	C8orf1, hT41
204030_s_at	29970	1	Р	1 563	P	1 944	Р	SCHIP1
204033 at	9319	1	Р	1 658	P	1 526	Р	TRIP13
204035 at	7857	1	Р	1 612	P	1 267	Р	SCG2
204051_s_at	6424	1	Р	1 347	Р	1 798	Р	SFRP4
204054_at	5728	1	P,A	1 394	Р	1 659	P,M	PTEN, BZS
204064_at	9984	1	P	1 600	P	1 545	P	THOC1, P84
204073_s_at	745	1	Р	0 625	P	0 564	Р	C11orf9,
204076_at	9583	1	Р	0 834	P	0 553		LYSALI
204077 x at	9583	1	P	0 929	P	0 660	P,A	LYSALI
204078_at	10609	1	Р	0 816	P	0 579	P	SC65, NOL55
204081_at	4900	1	Р	1 528	P	2 036	P	NRGN, RC3,
204083_s_at	7169	1	P	1 698	P	1 599	P	TPM2, DA1
204088 at	5025	1	P	0 605	Р	0 463	P	P2RX4
204091 at	5147	1	P	0 675	P	0 520	Р	PDE6D, PDED
204099_at	6604	1	P	0 788	P	0 625	P	SMARCD3
204106_at	7016	1	P	1 522	P	1 093	P	TESK1
204108 at	4800	1	P	1 673	P	1 428	- P	NFYA,
204125_at	51103	1	P	1 611	P	1 447	P	NDUFAF1
204127_at	5983	1	P	1 511	P	1 661	P	RFC3
204128_s_at	5983	1	P	1 671	P	1 481	P	RFC3
204133_at	9136	1	P	1 536	P	1 169	P	RNU3IP2
204135_at	11259	1	P	1 238	P	1 740	P	DOC1, GIP90
204139_x_at	7593	1	P	0 661	A	0 466	P,A	ZNF42, MZF1
204141 at	7280	1	P	1 868	P	1 973	P	TUBB
204142_at	55556	1	P	0 877	P	0 647	P	HSRTSBETA
204144_s_at	9091	1	P	0 807	P,A	0 605	P,A	PIGQ, GPI1
204146 at	10635	1	P	1 601	P	1 809	P	PIR51
204149_s_at	2948	1	P	0 740	P	0 375	P	GSTM4
204182_s_at	23099	1	P,A	1 500	P	1 691	P	ZNF297B
204185 x at	5481	1	P	1 525	P	1 543	P	PPID, CYPD
204186_s_at	5481	1	P	1 624	P	1 613	P	PPID
204100_5_ut	8732	1	P	1 480	P	1 572	P	RNGTT, HCE
204205_ut	6253	1	P	0 341	P	0 403	P	RTN2, NSP2
204217_3_at	25906	1	P	1 512	P	1 038	P	DKFZP564M082
204210_at 204227_s_at	7084	1	P	0 861	<u>Р</u>	0 652	P,M	TK2
207227_3_at		<u>.</u>	1		L	0.052	, _{1¥1}	L

Affymetrix		Day 0		Day 3		Day 7		
ld	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
204235 s at	51454	1	Р	1.189	Р	1.518	Р	GULPI
204238 s at	10591	1	Р	0.712	Р	0.451	Р	C6orf108
204243 at	6018		Р	1.390	Р	1.579	Р	RLF
204260 at	1114	1	Р	0.419	Р	0.311	Р	CHGB; SCG1
204264 at	1376		Р	0.840	р	0.571	Р	CPT2; CPT1
204279 at	5698	1	Р	1.323	Р	1.765	Р	PSMB9; LMP2
204285 s at	5366		P.A	1.563	P,A	2.275	Р	PMAIP1
204286 s at	5366		Α	2.536	P,A	3.391	P.A	PMAIP1; APR
204290 s at	4329		P	0.704	P	0.551	P	ALDH6A1
204295 at	6834		P	0.810	P	0.551	Р	SURF1
204313 s at	1385		P	1.382	P	1.649	p	CREBI
204313 s at	1385	1	P	1.489	P	1.642	p	CREBI
204317 at	1505		P	1.429	P	1.889	p	GTSE1; B99
204317 at	1301		P	0.837	P	0.639	P	COLIIAI
204320 at	6183		P	1.730	P	1.629	P	MRPS12
204330 s at	6183		P	1.601	p	1.166	P	MRPS12
204333 s at	175		р	0.613	p	0.696	<u></u> Р	AGA; AGU
204333 s at	8269	1	P	0.613	p	0.611	P	CXorf12; ITBA1
	21	1	P	0.610	P	0.520	P	ABCA3; ABC3
204343 at		1	P.M	1.376	r P	1.849	p	RASSF1
204346 s at	11186	1	P,M P	1.302	P P	1.566	r p	AK3
204347 at	205						p p	
204352 at	7188	1	P	E.408	P	1.864		TRAF5: RNF84
204358 s at	23768		P	0.694	P	0.524	P,A	FLRT2
204359 at	23768		P	0.632	P	0.458	P	FLRT2
204360 s mt	4669		P	0.508	P	0.399	P	NAGLU
204361 s at	8935	L	P	1.433	P	1.661	P	SCAP2;
204362_nt	8935	<u> </u>	P	1.357	P	1.700	P	SCAP2
204371 s at	8570	1	Р	0.740	Р	0.611	Р	KHSRP
204394 at	8501	<u> </u>	Р	0.603	Р	0.644	P,A	SLC43A1
204398 s at	24139	1	Р	0.689	Р	0.547	Р	EML2
204407_at	8458	1	Р	1.791	Р	1.785	Р	TTF2; HuF2
204418 x at	2946	1	Р	0.923	P	0.556	P	GSTM2;
204420 at	8061	1	P	1.606	Р	1.457	P	DIPA
204421 s at	2247	L L) P	1.809	P	1.850	P	FGF2
204422 s at	2247	<u> </u>	P	1.451	Р	1.551	Р	FGF2
204423_at	4289	1	Р	1.855	P	1.961	Р	MKLNI
204425 at	393		Р	0.602	P,M	0.462	P,A	ARHGAP4
204435_at	9818	1	Р	1.611	Р	1.567	Р	NUPLI
204441 s at	23649	1	Р	1.617	Р	1.341	P	POLA2
204442 x at	8425	1	P	0.723	p	0.654	Р	LTBP4
204459_at	1478	1	Р	1.614	Р	1.194	Р	CSTF2
204460 s at	5810	<u> </u>	P	1.566	Р	1.402	Р	RADI; HRADI
204465 s at	9118	<u> </u>	Р	1.743	P	1.507	Р	INA
204472 at	2669		Р	1.182	Р	1.735	Р	GEM; KIR
204473 s at	9640	1	P	1.564	Р	1.757	Р	KIAA0211
204475 at	4312	1	Р	1.787	Р	2.786	Р	MMP1;
204477 at	5877		Р	1.767	Р	2.088	P	RABIF
204478 s at	5877	1	Р	1.726	P	1.590	Р	RABIF
204481 at	7862	1	P,A	1.516	Р	1.467	P,A	BRPF1; BR140
204490 s at	960	1	P,A	1.341	M,A	2.521	P,A	CD44; IN

Affymetrix		Day 0	······	Day 3		Day 7		
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
204492_at	9824	1	Р	1 233	P	1 540	Р	ARHGAP11A
204512_at	3096	1	Р	1 563	Р	1 528	Р	HIVEP1, MBP-1
204514_at	1802	1	Р	1 717	Р	1 518	Р	DPH2L2
204521_at	29902	1	Р	0 845	P	0 642	Р	HSU79274
204523_at	7699	1	Р	1 479	Р	1 602	Р	ZNF140, pHZ-39
204530_s_at	9760	1	P,A	1 538	P,M,A	1 204	M,A	TOX
204531_s_at	672	1	Р	1 640	Р	1 746	Р	BRCA1
204547_at	10966	1	Р	0 652	P	0 557	Р	RAB40B
204550_x_at	2944	1	P	0 880	Р	0 520	Р	GSTM1
204558_at	8438	1	Р	1 986	P	1 587	Р	RAD54L
204569_at	22858	1	Р	0 765	Р	0 622	P,A	ICK, MRK
204580_at	4321	1	Р	2 706	Р	3 028	P	MMP12, HME,
204589_at	9891	1	Р	1 203	Р	1 522	Р	ARK5
204593_s_at	29787	1	Р	1 542	Р	1 381	Р	FLJ20232
204603 at	9156	1	Р	2 735	Р	2 211	Р	EXO1,
204605 at	10668	1	Р	1 549	Р	1 891	Р	CGRRF1
204608_at	435	1	Р	0 863	P	0 509	P,A	ASL
204616_at	7347	1	Р	1 614	P	1 409	Р	UCHL3
204622_x_at	4929	1	Р	1 826	Р	1 407	Р	NR4A2,
204632 at	8986	1	Р	1 720	Р	1 535	Р	RPS6KA4,
204633 s at	9252	1	P,M	0 732	Ā	0 628	A	RPS6KA5
204639 at	100	1	Р	0 925	P	0 654	Р	ADA
204642 at	1901	1	Р	1 690	P	1 541	P	EDG1
204646_at	1806	1	Р	0 825	Р	0 599	Р	DPYD, DHP, DPD
204667_at	3169	1	Р	1 348	Р	1 552	Р	FOXA1
204668_at		1	Р	1 541	Р	1 696	Р	
204690_at	9482	1	Р	1 463	P	1 647	Р	STX8, CARB
204692_at	4034	1	Р	0 832	P	0 538	P,A	LRCH4
204695_at	993	1	A	2 647	Р	1 946	Р	CDC25A
204696_s_at	993	1	A	1 623	P,M	1 196	MA	CDC25A
204700_x_at	27042	1	Р	1 423	Р	1 517	Р	MGC29875
204702_s_at	9603	1	Р	1 485	Р	1 611	P	NFE2L3, NRF3
204703_at	8100	1	Р	0 853	Р	0 650	Р	TTC10,
204712_at	11197	1	Р	1 220	Р	2 049	P	WIF1, WIF-1
204717_s_at	3177	1	Р	0 697	Р	0 533	Р	SLC29A2
204727_at	11169	1	P,A	1 886	Р	2 089	P	WDHDI
204728_s_at	11169	1	Р	1 747	Р	1 743	Р	WDHD1, AND-1
204740_at	10256	1	A	1 449	M,A	1 605	P,M,A	CNKSR1, CNK1
204748_at	5743	1	M,A	1 950	P,A	2 226	P	COX2,
204749_at	4675	1	Р	1 812	P	2 359	<u>P</u>	NAP1L3
204759_at	1102	1	Р	2 688	Р	3 253	Р	CHCIL
204766_s_at	4521	1	Р	1 821	P	1 512	P	NUDT1, MTH1
204772_s_at	7270	1	Р	1 615	Р	1 361	P	TTF1
204783_at	4291	1	Р	1 841	Р	1 900	P	MLF1
204784_s_at	4291	1	Р	1 553	Р	1 579	P	MLF1
204788_s_at	5498	1	Р	0 597	Р	0 522	P	PPOX
204790_at	4092	1	Р	1 773	Р	1 845	Р	SMAD7
204791_at	7181	1	Р	0 762	P	0 656	Р	NR2C1
204793_at	9737	1	Р	1 222	P	1 529	Р	GASP

Affymetrix		Day 0		Day J		Day 7		Common Name
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	
204805 s at	8971	1	Р	0.567	Р	0.495	Р	HIFX, HIX;
204807 at	10329	I	Р	1.408	Р	1.554	Р	TMEM5
204808 s at	10329		Р	1.703	Р	1.594	Р	TMEM5;
204831 at		l	Р	1.414	Р	1.549	Р	
204837 at	66036	1	Р	1.407	Р	1.533	Р	MTMR9
204840 s at	8411	1	P.A	1.536	P.A	1.919	р	EEAI
204849 at	10732	1	Р	0.676	P	0.512	р	TCFL5;
204854 at	10536	1	p	0.730	P.A	0.517	A	LEPREL2
204857 at	8379	1	Р	0.619	P	0.426	P	MADILI;
204858 s at	1890	1	P	0.625	P	0.537	Р	ECGF1; TP
204862 s at	4832	ī	P	0.859	p	0.552	Р	NME3
204867 at	2644	t	P	0.735	P	0.589	P	GCHFR;
204868 at	3396	1	P	1.501	P	1.090	p	ICTI; DS-1
204880 at	4255	1	P	0.794	<u>р</u>	0.420	P	MGMT
204883 s al	3364	1	P	1.992	P	1.587	p	HUSI
204885 s at	10733		P	0.685	P	0.631	P	PLK4
			r P	1.775	P	2.393	P	PTGER4
204897 at	5734		P P	1.584	P	1.469	P	EEFIE1; PI8
204905 s at	9521	·	P	1.584	P	1.339	P	SLC10A3
204928 s at	8273	1			P P	0.637	P.A	MAP4K2
204936 at	5871		P,A	1.035			P,A P	
204947 al	1869	1	P,M,A	1.612	P	1.430	<u>Р</u>	E2F1; RBP3
204948 s at	10468	1	<u>Λ</u>	1.166	P,A	2.265		FST
204955 at	8406	1	P	1.309	P	1.812	P	SRPX; ETX1
204957 at	5001	1	P	1.674	P	1.702	P	ORC5L; ORC5P
204967 at	357	1	P.A	1.177	P	1.620	<u>P</u>	APXL; HSAPXL
204977_at	1662	1	P	1.654	P	1.818	P	DDX10; HRH-J8
204979 s at	6450	1	A	2.152	P	2.223	P	SH3BGR
204981_at	5002	1	Р	0.598	P,A	0.503	A	SLC22A18
204983 s at	2239	1	Р	1.372	Р	1.630	<u>P</u>	GPC4
204984 at	2239	1	Р	1.350	Р	1.743	<u> </u>	GPC4
204985 s at	79090	1	P	0.590	Р	0.597	P	MGC2650
204990 s at	3691	<u> </u>	Р	0.827	P,A	0.641	A	ITGB4
204991 s at	4771	<u> </u>	A	3.015	Р	2.297	Р	NF2; CAN
204998 s at	22809	1	Р	0.835	Р	0.610	P	ATF5; ATFX
204999 s al	22809	1	Р	0.686	Р	0.422	P	ATF5: ATFX
205003 at	9732	1	P,A	1.307	Р	1.522	P	DOCK4
205006 s at	9397	<u> </u>	Р	1.612	Р	1.575	P	NMT2
205007 s at	10518	<u> </u>	Р	0.806	P	0.609	Р	CIB2_
205034_at	9134	1	Р	2.516	Р	1.527	<u>P</u>	CCNE2; CYCE2
205047 s at	440	1	Р	0.377	Р	0.278	Р	ASNS; TS11
205052 at	549	1	P	0.638	P,M	0.428	P.M	AUH
205060 at	8505	<u> </u>	Р	1.275	Р	1.549	Р	PARG
205061 s at	5393	<u> </u>	<u> </u>	1.541	Р	1.328	Р	EXOSC9; p5
205070 at	54556	<u> </u>	Р	1.400	Р	1.667	P	ING3;
205076 s at	10903	<u> </u>	Р	1.319	Р	1.830	Р	CRA
205081 at	1396	1	Р	2.199	Р	2.220	Р	CRIPI
205085 at	4998	<u> </u>	Р	1.912	Р	1.805	Р	ORC1L;
205088_at	10046	I	м	1.179	P.A	1.702	Р	CXorf6; CG1; F18
205090 s at	51172	1	Р	0.980	Р	0.647	P	NAGPA

Affymetrix		Day 0	,	Day 3		Day 7	,		
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
205092_x_at	22890	1	P,A	0 686	Α	0 647	P,A	ZBTB1	
205107_s_at	1945	1	Р	0 680	Р	0 594	Р	EFNA4, EFL4	
205115_s_at	9904	1	A	2 047	Р	2 141	P	RBM19, NPO	
205122_at	8577	1	Р	1 599	Р	1 672	Р	TMEFF1	
 205123_s_at	8577	1	Р	1 555	P	1 555	Р	TMEFF1, H7365	
205126 at	7444	1	Р	1 795	<u>Р</u>	1 769	Р	VRK2	
205134_s_at	26747	1	Р	1 813	Р	1 938	Р	NUFIP1	
 205135_s_at	26747	1	P	1 782	Р	1 759	Р	NUFIP1	
 205136_s_at	26747	1	P,A	2 241	Р	3 564	Р	NUFIP1	
205141 at	283	1	Р	0 606	P,A	0 873	Р	ANG, RNASE5	
205153_s_at	958	1	P,M,A	0 926	P,M	0 643	P,M,A	TNFRSF5, p50	
205158_at	6038	1	Р	0 569	P	0 706	P	RNASE4	
205174_s_at	25797	1	Р	1 291	Р	2 557	Р	QPCT, QC, GCT	
205192 at	9020	1	P,M	1 366	Р	1 631	Р	MAP3K14	
205193_at	23764	1	P,M	1 544	P	1 242	Р	MAFF, U-MAF	
205205_at	5971	1	P	1 603	P	1 581	Р	RELB, I-REL	
205217 at	1678	1	P	1 828	P	1 924	P	TIMM8A, DDP	
205218 at	10621	1	Р	1 540	Р	1 396	Р	POLR3F	
205219_s_at	2585	1	P	0 733	P	0 603	P	GALK2	
205224 at	6835	1	A	1 955	P,A	1 740	P,M,A	SURF2	
2052249_at	1959	1	P	1 708	P	2 299	P	EGR2,	
205264_at	10849	1	P	1 520	P	1 559	P	ASE-1	
205268_s_at	119	1	P	1 643	P	2 027	P	ADD2, ADDB	
205271_s_at	23552	1	A	1 684	P,A	1 732	P,A	CCRK	
205279_s_at	2743	1	P	0 552		0 422	P	GLRB	
205280_at	2743	1	Р	0 502	P	0 393	Р	GLRB	
205282_at	7804	1	P	0 808	P	0 441	P	LRP8	
205284_at	9816	1	A	1 630	P,M	1 845	P,M	KIAA0133	
205286_at	7022	1	A	1 281	P,A	1 867	P,M,A	TFAP2C	
205320_at	10297	1	Р	0 600	P	0 669	P	APC2, APCL	
205345_at	580	1	P	1 658	P	1 892	P	BARD1	
205350_at	1381	1	P	1 279	 P	1 882	P	CRABP1	
205354_at	2593	1	P	0 635	P	0 454	P	GAMT	
205358_at	2891		Р	1 050	P	1 505	P	GRIA2, GLUR2	
205361_s_at	5203	1	P	1 637	P	1 646	P	PFDN4	
205405_at	9037	1	P	0 810	P	0 476	P,A	SEMA5A, semF	
205406_s_at	53340	1	P	1 548	P	2 062	P	SPA17, SP17	
205407_at	8434	1	P	0 458	P	0 398	P	RECK	
205420_at	5191	1	Р	1 017	P	0 592	Р	PEX7, PTS2R	
205427_at	6940	1	Р	2 098	P	2 272	Р	ZNF354A, EZNF	
205429_s_at	51678	1	Р	1 795	Р	1 690	Р	MPP6, VAM1	
205441_at	79629	1	Р	0 736	Р	0 624	Р	FLJ22709	
205443_at	6617	1	Р	1 486	Р	1 592	P	SNAPC1, SNAP43	
205447_s_at	7786	1	Р	0 685	P,A	0 588	P,A	MAP3K12	
205461_at	11021	1	P,M,A	0 772	M,A	0 530	A	RAB35, RAY	
205479_s_at	5328	1	A	1 261	A	1 555	Р	PLAU UPA	
205493_s_at	10570	1	P	1 949	P	1 956	P	DPYSL4, CRMP3	
205498_at	2690	1	P,M,A	1 253	P	1 560	Р	GHR	
205510_s_at	55056	1	P	0 547	P,M	0 535	P,A	GABPB2	

Affymetrix		Day 0		Day 3	·	Day 7	7		
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
205519_at	79968	1	Р	1 503	Р	1 461	Р	FLJ12973	
205521_at	9941	1	P,M	1 565	Р	1 276	Р	ENDOGL1	
205526_s_at	11104	1	P	1 378	Р	1 621	Р	KATNAI	
205527_s_at	50628	1	P	1 657	Р	1 464	Р	GEMIN4	
205534_at	5099	1	A	1 583	Α	2 336	Р	PCDH7	
205547_s_at	6876	1	Р	3 365	Р	2 114	Р	TAGLN	
205561_at	79734	1	P	1 724	Р	1 338	P,M,A	FLJ12242	
205575 at	10882	1	Р	0 578	Р	0 520	Р	CIQLI	
205578 at	4920	1	Α	1 139	M,A	1 606	P,A	ROR2	
205581_s_at	4846	1	P,A	0 784	P,A	0 562	A	NOS3	
205588 s_at	11116	1	P	1 610	Р	1 653	Р	FGFR1OP	
205621_at	8846	1	Р	1 543	Р	1 490	Р	ALKBH, ABH	
	5558	1	P	2 0 90	Р	2 006	Р	PRIM2A, p58	
205633_s_at	211	1	Р	1 691	Р	1 406	P	ALASI	
205634_x_at	79143	1	Р	0 756	Р	0 569	Р	LENG4, BB1	
205652_s_at	25809	1	Р	0 6 3 0	P	0 527	Р	TTLLI	
205677 s_at	10301	1	Р	1 712	Р	2 001	Р	DLEU1	
205691_at	9143	1	Р	0 546	P	0 360	P	SYNGR3	
205742_at	7137	1		0 664	P,A	0 649	P,A	TNNI3, TNNCI	
205748 s_at	55658	1	P	0 894	P	0 564	P	RNF126	
205760_s_at	4968	1	P	1 634	Р	1 298	P	OGG1	
205763_s_at	8886	1	P	1 620	P	1 427	P	DDX18, MrDb	
205770_at	2936	1	P	0 983	P	0 600	P	GSR	
205771 s at	9465	1	P	0 785	P	0 545	P	AKAP7	
205774 at	2161	1	 P	0 653	 P	0 487	P,A	F12, HAF	
205776_at	2330	1	P,M	0 595	P,A	0 653	A	FMO5	
205781 at	9605	1	P	0 727	P	0 610	P,M	ATP-BL	
205901_at	7220	1	 P	1 339	P	1 709	P	TRPC1	
205803_s_at	7220	1	P	1 409		1 790	 P	TRPC1	
205807_s_at	7286	1	 P	1 500	P	1 541	P	TUFTI	
205822_s_at	3157	1	P	0 768	P	0 611	P	HMGCSI	
205822_ <u>s_</u> ut	4314	1	P	3 382	 P	3 934	P	MMP3	
205820_at	3717	1	M,A	1 789	P	2 204	P,A	JAK2	
205842_s_at	3717	1	P,A	1 757	P	1 858	P	JAK2	
205858_at	4804	1	A	3 290	M,A	6 523	P	NGFR	
205876_at	3977	1	P,M	2 022	P	3 180	P	LIFR	
205880_at	5587	1	P	1 364	P	1 582	P	PRKCM	
205895_s_at	9221	1	P	1 579	P	1 399	P	NOLCI	
205924_at	5865	1	A	2 226	P	1 677	P	RAB3B	
205925_s_at	5865	1	P	1 583	P	1 413	P	RAB3B	
205928_at	10224	1	P	1 614	P	1 876	P	ZNF443, ZK1	
205932_s_at	4487	<u> </u>	P,A	1 413	P	1 804	P	MSX1	
205955 at	55310	1	P	0 800	P	0 596	P,A	TAF6L	
205964_at	79088	1	P	1 561	P	1 670	P	ZNF426	
205967_at	8364	1		0 567	P	0 654	P	HIST1H4C	
205973 at	9638	1	P,A	1 656	P	1 389	P	FEZ1	
	+						+ -		
		 	<u> </u>	+ ···			+		
			<u> </u>	+				<u> </u>	
				1			<u>+</u>		
205995_x_at 206003_at 206016_at 206036_s_at	9657 9662 28952 5966	1 1 1 1	A P P P	1 563 1 701 0 912 1 537	M,A P P P	1 728 1 860 0 616 1 775	PMA P P P	IQCB1 KIAA063 JM1 REL, C-R	

Aflymetrix		Day 0		Day 3		Day 7		Common Name	
ld	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
206039 at	9363	1	P	0.557	P.M.A	0.639	P.A	RAB33A	
206055 s at	6627	1	Р	1.776	Р	1.444	Р	SNRPA1	
206067 s at	7490	1	Α	2.087	P,A	2.391	Р	WTI; GUD;	
206103 at	5881	1	Р	0.423	P	0.217	Α	RAC3	
206104 at	3670	I	P,A	1.663	Р	2,113	Р	ISL1; Isl-1	
206106 at	6300	1	р	0.856	P	0.586	Р	МАРК12	
206108 s at	6431	1	р	0.631	Р	0.545	Р	SFRS6; B52	
206110 at	8357	1	Р	1.250	Р	1.671	Р	HISTIH3H	
206116 s at	7168	1	Р	1.992	Р	2.370	Р	TPM1; CMH3	
206128 at	152	1	Р	0.759	Р	0.602	P,M,A	ADRA2C	
206140 at	9355	1	Р	1.859	P	1.873	Р	LHX2; LH2	
206142 al	7694	1	P.M	0.654	A	0.638	P,A	ZNF135; ZNF61	
206157 at	5806	1	p	2.827	P	2.316	Р	PTX3; TSG-14	
206172 at	3598	1	Р	1.066	Р	2.208	Р	IL13RA2; IL-13F	
206182 at	7693		P	1.395	Р	1.507	Р	ZNF134; pHZ-15	
206204 at	2888		Λ	1.524	P.A	1.353	Р	GRB14	
206235 at	3981		P	1.573	Р	1.669	Р	LIG4	
206261 at	8187	1	P	1.888	Р	2.078	Р	ZNF239; MOK2	
206290 s at	6000	1	P	1.427	Р	1.586	Р	RGS7	
206299 at	27112	1	P,A	1.771	Р	2.069	Р	TMEM28; TED	
206336 at	6372	1	P.A	1.060	P.A	1.565	M,A	CXCL6; GCP2	
206343 s at	3084	1	P	4.211	Р	4.886	Р	NRGI, GGF	
206352 s at	5192	1	A	1.639	P P	1.401	P.M	PEX10; NALD	
206377 at	2295	1	P	1.411	Р	1.671	Р	FOXF2; FKHL6	
206397 x at	2657	1	P	0.772	P	0.583	P.A	GDFI	
206401 s at	4137		Р	0.646	P.A	0.408	P,A	MAPT; TAU	
206424 at	1592	1	Р	1.631	Р	1.340	Р	CYP26A1	
206440 at	8825	1	A	1.832	Р	1.330	P.A	LIN7A; VELH	
206448 at	22891		p	1.376	Р	1.980	Р	ZNF365	
206452 x at	5524		р	1.526	Р	1.334	Р	PPP2R4	
206489 s at	9229	<u> </u>	P	1.073	Р	0.644	Р	DLGAPI	
206507 at	9753	1	Р	2.250	Р	3.405	Р	ZNF305	
206508 at	970	1	P,A	1.099	Р	1.545	Р	TNFSF7;	
206550 s at	9631	1	P	1.515	Р	1.516	Р	NUP155	
206552 s al	6863	1	M,A	1.164	P.A	1.521	P.A	TACI	
206578 at	1482	1	P	1.692	Р	1.600	р	NKX2-5	
206613 s at	9015	1	P	2.270	P	2.403	P	TAFIA	
206615 s at	53616		P,A	0.858	P.A	0.625	A	ADAM22	
206632 s al	9582	1	р	1.306	Р	1.749	Р	APOBEC3B	
206653 at		I	р	1.609	Р	1.160	Р	POLR3G	
206662 at	2745	1	Р	1.696	Р	2.747	Р	GLRX: GRX	
206667 s at	9522	1	Р	0.622	P	0.722	Р	SCAMPI	
206675 s al	6498	1	P,A	2.301	Р	2.118	P,M	SKIL; SNO	
206688 s at	10898	1	Р	0.811	Р	0.609	Р	CPSF4	
206689 x at	10524	1	P	0.788	9	0.574	P	HTATIP	
206693 at	3574	1	P,M	1.603	Р	3.207	Р	11.7; 1L-7	
206699 x at	4861		P,A	1.581	Р	1.253	P,A	NPAST;	
206721 at	57821	1	Р	1.503	P,M	1.703	P	LOC57821	
206770 s at	23443	1	Р	1.354	Р	1.521	P	SLC35A3	
206772 at	5746	1	P.A	1.246	P	1.653	Р	PTHR2	

Affymetrix		Day 0	1	Day 3		Day 7	,		
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
206773 at	4062	1	P,A	1 322	P,M	1 661	Р	LY6H, NMLY6	
206782_s at	3338	1	P	0 639	P,M	0 537	P,A	DNAJC4	
206809_s_at		1	P	1 596	P	1 860	Р	HNRPA3	
206826_at	5375	1	Р	1 330	P	1 517	Р	PMP2, FABP8	
206833_s_at	98	1	Р	0 839	P	0 650	Р	ACYP2	
206846 s at	10013	1	Р	0 677	Р	0 499	Р	HDAC6, HD6,	
206848_at	3204	1	Р	1 379	P	1 589	Р	HOXA7, ANTP	
206891_at	89	1	Р	0 677	P,A	0 565	P,A	ACTN3	
206906_at	7087	1	Р	0 652	Р	0 652	Р	ICAM5	
207006_s_at	29903	1	Р	0 661	P,A	0 473	P,A	HSU79303	
207030_s_at	1466	1	Р	2 372	P	2 355	Р	CSRP2	
207039_at	1029	1	Р	1 272	Р	1 541	Р	CDKN2A	
207088_s_at	8402	1	Р	0 815	Р	0 644	Р	SLC25A11	
207145 at	2660	1	P,A	2 027	Р	1 671	Р	GDF8, MSTN	
207147_at	1746	1	Р	2 217	Р	2 191	Р	DLX2, TESI	
207153_s_at	11146	1	Р	1 859	Р	1 471	Р	GLMN, GVM	
207164_s at	10472	1	Р	1 750	Р	1 605	Р	ZNF238, RP58	
207199_at	7015	1	P,A	1 539	Р	1 396	Р	TERT, TP2, TRT	
207302_at	6445	1	Р	0 681	Р	0 572	Р	SGCG, A4, MAM	
207332_s_at	7037	1	Р	1 556	P	1 342	Р	TFRC, CD71	
207391_s_at	8394	1	Р	1 352	Р	1 503	Р	PIP5K1A	
207415_at	22925	1	P,A	1 455	P,A	1 509	P,A	PLA2R1	
207437_at	4857	1	Р	1 281	Р	1 760	Р	NOVAI,	
207469_s_at	8544	1	Р	0 558	Р	0 236	Р	PIR	
207574_s_at	4616	1	Р	2 624	P	2 869	Р	GADD45B	
207633_s_at	4593	1	P,M,A	1 527	P	1 1 26	P,M	MUSK	
207688_s_at	3626	1	Р	1 517	Ри	1 390	Р	INHBC, IHBC	
207713_s_at	10616	1	Р	0 769	Р	0 626	Р	C20orf18, XAP4	
207714_s_at	871	1	Р	1 797	Р	1 770	Р	SERPINH1	
207722_s_at	55643	1	Р	0 720	P	0 519	P,A	BTBD2	
207753_at	57343	1	Р	1 459	P	1 751	P	ZNF304	
207768_at	1961	1	A	1 995	P	2 562	P,A	EGR4	
207781_s_at	7552	1	Р	1 425	P	2 020	Р	ZNF6, ZNF4	
207813_s_at	2232	1	P	0 457	Р	0 220	Р	FDXR, ADXR	
207826_s_at	3399	1	Р	7 454	P	6 4 1 9	Р	ID3, HEIR-1	
_207831_x_at	1725	1	Р	0 856	P	0 595	Р	DHPS	
207855_s_at	23155	1	P	1 613	P	1 347	P	MCLC	
207876_s_at	2318	1	P	1 512	P	1 685	P	FLNC, ABPA	
207891_s_at	11219	1	Р	1 559	P	1 001	P	TREX2	
_207978_s_at	8013	1	P	2 087	Р	1 290	Р	NR4A3, CHN	
_208003_s_at	10725	1	Р	1 505	Р	1 738	P	NFAT5	
208018_s_at	3055	1	A	1 611	P,A	1 861	P,A	HCK	
208021_s_at	5981	1	P	1 856	P	2 057	P	RFC1	
208025_s_at	8091	1	P	1 003	<u>P</u>	0 640	P	HMGA2	
208055_s_at	26091	1	P	1 618	<u>P</u>	1 558	P	HERC4	
208078_s_at	6935	1	P	1 776	P	1 290	P,M	TCF8, BZP	
208114_s_at	81875	1	P	2 005	P	1 741	P	FLJ12671	
208117_s_at	81887	1	P	1 605	P	1 411	P	FLJ12525	
_208119_s_at	81931	<u> </u>	P	1 399	P	1 520	P	ZNF505	

,

Affymetrix	LocusLink	Day 0		Day 3		Day 7		Common Name	
Íd	LOCUSLINK	Normalized	Flags	Normalized	Flags	Normalized	Flags		
208180 s at	8365		Р	1.717	Р	2.090	Р	HIST1H4H	
208264 s at	8669		Р	1.670	Р	1.558	Р	elF3-alpha	
208270 s al	6051	1	Р	0.887	Р	0.653	Р	RNPEP	
208273 at	57116	1	P.A	1.401	A	1.958	P,M	LOC57116	
208290 s al	1983		Р	2.199	Р	2.124	Р	EIF5; EIF-5A	
208309 s at	10892		Р	1.807	P	1.742	Р	MALTI	
208336 s at	9524	I .	Р	0.631	Р	0.558	Р	GPSN2	
208361 s at	661	1	P.M	1.682	Р	1.656	Р	POLR3D	
208368 s at	675	1	P.A	1.803	P	1.779	Р	BRCA2; FAD	
208370 s at	1827	1	P	1.388	Р	1.633	Р	DSCR1; CSP1	
208433 s at	7804	1	р	0.593	P	0.308	Р	LRP8; APOER2	
208447 s at	5631	1	P	1.536	p	1.299	Р	PRPS1	
208478 s at	581	1	p	0.536	P	0.361	P	BAX	
208611 s at	6709	1	P	1.415	p	1.506	Р	SPTANI	
208634 s at	23499	1	P	1.468	p	1.590	p	MACFI	
208649 s at	7415		P	0.932	p	0.610	P	VCP; p97	
208650 s at	934	1	P.M.A	2.429	p	5.150	Р	CD24	
208651 x at	934		P,A	1.757	P	3.434	P	CD24; CD24A	
208676 s at	734	1	P	1.796	p	1.422	Р	PA2G4	
208677 s at	682	1	p i	0.668	p	0.630	P	BSG	
208693 s at	2617	1	P	0.692	P	0.650	P	GARS; CMT2D	
	7086		P P	0.900	p	0.642	p	ТКТ	
208699 x at	1983		P F	1.678	p	1.593	P	EIF5; EIF-5A	
208705 s at	1983		P P	1.899	P	1.949	P	EIF5; EIF-5A	
208708 x at	1983		P	2.023		1.994	P	EIF5; EIF-5A	
	595	1	M.A	1.707	P	1.648	P.A	CCNDI	
208711 s at	595		P,A	2.242	p	2.582	P	CCNDI	
208712 at		1	р	0.717	r p	0.567	P	CTDSP2	
208735 s at	10106		· · ·	2.951	P	3.168	P	SAP18	
208740 at	10284		P		P P		l r P	SAP18	
208741 at	10284	<u> </u>	P	2.042		2.295			
208742 s at	10284		P	1.994	P	1,968	P P	SAP18	
208745 at	10632		P	1.410	P	1.608		ATPSL	
208759 at	23385		P	0.902	P	0.648	P	NCSTN	
208782 at	11167	1	P	1.079	P	1.681	P	FSTLI	
208789 at	22939	1	P P	1.593	P	1.765	P	PTRF	
208791 at	1191		P	1.180	P	1.510		CLU	
208792 s al	1191		P	1.160	P	1.534	P	CLU COLODI (7	
208798 x al	23015	1	P D	1.550	P	1.814		GOLGIN-67	
208802_st	6731	1	P	1.536	P N	1.432	P	SRP72	
208803 s at	6731	1	P	1.649	P	1.513	P	SRP72	
208813 at	2805		P	0.610	P p	0.571	P	GOT1 POLE2:	
208828 st	54107		P	1.513	P	1.274	P	POLE3;	
208832 at	25814		P	1.755	P	1.839	P	E46L	
208843 s at	26003		P	1.529	P	1.551	P	GORASP2; p59	
208848 at	128		P	1.403	P	1.551	<u> </u>	ADH5	
208851 s at	7070		P	1.525	P	1.936	P	THY1; CD90	
208865 at	1452		P	1.489	P	1.827	P	CSNKIAI	
208866 at	1452	1	P	1.716	Р	2.209	Р	CSNKIAI	
208867 s at	1452	1	P	1.383	P	1.573	P	CSNKIAI	
208871_at	1822	1	Λ	1.722	<u> </u>	1.654	P.M.A	DRP1.A	

Affymetrix		Day 0		Day 3		Day 7			
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
208874_x_at	5524	1	Р	1 511	Р	1 357	Р	PPP2R4	
208879_x_at	24148	1	Р	0 761	P	0 521	Р	C20orf14	
208883_at	51366	1	Р	1 089	P	1 523	Р	DD5	
208884_s_at	51366	1	Р	1 273	Р	1 520	Р	DD5, EDD	
208886_at	3005	1	Р	0 367	Р	0 371	Р	H1F0, H10	
208891_at	1848	1	Р	0 653	Р	0 596	Р	DUSP6	
208892 s at	1848	1	Р	0 662	P	0 624	Р	DUSP6	
208893_s_at	1848	1	Р	0 512	Р	0 437	Р	DUSP6	
208896_at	8886	1	Р	1 711	P	1 600	Р	DDX18, MrDb	
208898 at	51382	1	P	2 456	P	2 748	Р	ATP6V1D	
208899_x_at	51382	1	Р	2 242	P	2 568	Р	ATP6V1D	
208911_s_at	5162	1	P	0 929	 P	0 629	P	PDHB, PHE1B	
208916 at	6510	1	P	0 730	P	0 632	P	SLC1A5, R16	
208917_x at	65220	1	P	0 872	P	0 546	P	FLJ13052	
208918_s_at	65220	1	P	0 993	P	0 590	P	FLJ13052	
208919_s_at	65220	1	P	0 805	P	0 583	P	FLJ13052	
208919_3_at	6717	1	P	1 682	P	1 908	P	SRI	
208922_at	10482	1	P	1 407	P	1 628	P	NXF1, TAP	
208922 <u>s</u> at	3609	1	P	0 638	P	0 442	P	ILF3	
208930_s_at	3609	1	P	0 922	P	0 471	P	ILF3, MMP4	
208931_3_at 208932 at	5531	1	P	0 932	P	0 657	P	PPP4C, PPX	
208932_at	3397	1	P	4 295	 P	3 094	P	ID1	
208937_s_at	22929	1	P	1 184	P	1 526	P	SEPHS1	
208939_at	22929	1	P	1 024	P	1 526	P	SEPHS1	
208940_at 208944 at	7048	1	P	1 236	P	1 526	P	TGFBR2	
208944_at 208955_at	1854	1	P	1 625	P	1 955	P	DUT, dUTPase	
208968_s_at	57019	1	P	1 514	P	1 178	P	LOC57019	
208969_at	4704	1	P	1 618	P	1 597		NDUFA9	
208905_at	3837	1	P	1 541	P	1 443	P	KPNB1	
208975_s_at	8669	1	P	1 579	P	1 499	P	eIF3-alpha	
208903_s_at	8402	1	P	0 841	P	0 632	P	SLC25A11	
209005_at 209010_s_at	7204	1	A	4 240	A	12 140	P,M	TRIO	
209010_s_at 209014 at	9500	1	P	0 717	P A	0 569	P	MAGED1	
209014_at 209015_s_at	10049	1	P	1 754	P	2 181	P	DNAJB6, MRJ	
209013_s_at	9361	1	P	0 608	P	0 403	P	PRSS15, LON	
209017_s_at 209019_s_at	65018	1	P	1 306	P	1 740	P	PINKI, BRPK,	
209019_s_at 209025_s_at	10492	1	P	1 512	$\frac{r}{P}$	1 265	P	SYNCRIP	
	5696	1		1 168	M,A	1 668	P	PSMB8	
209040_s_at 209052_s_at	7468	1	M,A P	0 903	P	0 655	P,A	WHSC1	
209052_s_at	9987	1	P	1 293	P	1 642	P	HNRPDL	
209008_at	56270	1	P	1 255	P	1 549	P	LOC56270	
209076_s_at 209085_x_at	5981	1	P	1 637	P	1 654	P		
209085_x_at	4162		P,A	1 438	P	1 657	P	MCAM	
209097_x_at	+104	1	Р	1 447	P	1 778	P		
209090 <u>s_at</u> 209102_s_at	26959	1	P	0 490	P	0 683	P	HBP1	
209102 <u>s</u> at	8648	1	P	1 228	P	1 561	P	NCOAI	
209106_at 209113_s_at	10362	1	P P	0 632	P P	0 533	P P	HMG20B	
			P P	0 703	<u>Р</u>	0 613	P P	WBP2	
209117_at	23558	<u> </u>	P P		<u> </u>	· · · ·		┾─────	
209139_s_at	8575	1	-	1 530	P N	1 284	P	PRKRA	
209152_s_at	6929	1	Р	1 745	Р	1 668	P	TCF3	

Affymetrix		Day 0		Day 3		Day 7			
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
209156 s_at	1292	1	Р	0 590	Р	0 557	Р	COL6A2	
209161 at	9128	1	Р	2 141	Р	1 732	Р	PRPF4	
209162 s_at	9128	1	P	1 836	P	1 528	P	PRPF4, PRP4	
209165_at	26574	1	P	1 540	Р	1 472	Р	AATF, DED	
 209172_s_at	1063	1	P	1 195	Р	1 780	P	CENPF, CENF	
209173 at	10551	1	Р	2 030	P	1 954	P	AGR2, AG2	
 209175 at	11196	1	P	1 557	Р	1 543	Р	SEC23IP	
209180 at	5876	1	P	1 707	Р	1 786		RABGGTB	
209181 s_at	5876	1	Р	1 544	Р	1 503	Р	RABGGTB	
209187 at	1810	1	Р	1 661	P	1 910	Р	DR1	
209188_x_at	1810	1	Р	1 471	Р	1 615		DR1, NC2	
209192 x_at	10524	1	P	0 711	P	0 543	P	HTATIP	
209196_at	9277	1	P	1 794	P	1 554	 P	C6orf11, BING4	
209205 s_at	8543	1	P	1 581	P	2 534	Р	LMO4	
209211 at	688	1	P	1 455	P	1 708	P	KLF5	
209213 at	873	1	P	0 733	Р	0 619	Р	CBR1	
209221 s_at	9885	1	 P	1 457	P	1 682	 P	OSBPL2	
209233 at	10436	1	 P	1 666	P	1 304	P	C2F	
209234 at	23095	1	 P	0 817	P	0 595		KIF1B	
209238 at	6809	1	 P	1 706	P	2 020	P	STX3A	
209242 at	5178	1	P	1 510	P	1 405	P	PEG3	
209243 s at	23619	1	P	1 721	P	1 459	P	PEG3	
209245_s_at	10749	1	A	2 048	P	1 504		KIFIC	
209263 x_at	7106	1	P	0 747	P	0 580	P	TM4SF7	
209264_s_at	7106	1	 P	0 625	P	0 514	P	TM4SF7	
209267 s_at	64116	1	P,M	1 907	P	2 684	P	SLC39A8	
209268_at	11311	1	P	1 660	P	1 336	P	VPS45A	
209203_s_at	81689	1 1	P	1 737	P	1 349	<u>P</u>	HBLD2	
209275_s_at	2745	1	P,M	1 321	 P	2 187	 P	GLRX	
209277 at	7980	1	P	1 915	P	3 052	P	TFPI2	
209278_s_at	7980	1	P	1 532	 P	2 279	 P	TFPI2	
209278 <u>s</u> _at	//00	1	A	1 954	P,A	2 430	P,M	CDC42EP3	
209288 s_at	10602	1	- <u></u> P	1 401	P	2 037	P	CDC42EP3	
209208 <u>3</u> _ut	3400	1	P	4 160	 P	5 427	P	ID4	
209291_ut 209292_at	3400	1	P	3 185	P	3 789	P	ID4	
209292_ut 209293_x_at	3400	1	P	2 886	P	2 748	P	ID4	
209293 <u>x_at</u> 209294_x_at	8795	1		0 700	P,A	0 604	P,A	TNFRSF10B	
209291_x_at	4616	1	A	2 200	P	2 556	P,M,A	GADD45B	
209305 s at	4616	1	P,A	1 778	P	1 867	P	GADD45B	
209306_s_at	23075	1	P	1 453	P	1 527	 P	SWAP70	
209307_at	23075	1	P	1 481	P	1 687	P	SWAP70	
209330_s_at	3184	1		0 753	P	0 639	P	HNRPD, P37	
209340 at	6675	1	P	2 249	P	2 366	P	UAP1, AgX	
209344_at	7171	1		1 515	P	1 317	P	TPM4	
209348_s_at	4094	1	P,A	1 701	P,A	2 435	P,A	MAF	
209349_at	10111	1	P	1 598	, <u>A</u> P	1 667	P	RAD50	
209366 x at	1528	1	P	1 598	P	1 386	P	CYB5	
209365_at	6813	1	P	0 702	P	0 551	A	STXBP2	
209307_at 209379_s_at	54462	1	P	1 427	P	1 538	P A	KIAA1128	
209379_s_at 209383_at	1649	1	P	0 951	P P	1 605	P P	DDIT3, CHOP	

Affymetrix		Day 0		Day 3		Day 7	,		
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
209384 at	11212	1	Р	1 531	Р	1 505	P	PROSC	
209407_s_at	10522	1	Р	0 600	Р	0 340	A	DEAF1	
209417_s_at	3430	1	Р	0 482	P	0 493	Р	IFI35, IFP35	
209428_s_at	7542	1	Р	0 695	Р	0 358	P,A	ZFPL1	
209432_s_at	10488	1	Р	1 518	Р	1 560	Р	CREB3	
209440_at	5631	1	Р	1 575	Р	1 533	Р	PRPS1, PRSI	
209457 at	1847	1	Р	1 427	P	1 695	Р	DUSP5, HVH3	
	57416	1	Α	2 323	M,A	1 992	P,A	ABAT, GABAT	
209461_x_at	57418	1	P,A	1 101	P	0 624	A	WDR18	
209468_at	4041	1	Р	0 686	Р	0 638	P,A	LRP5, HBM	
209478_at	201254	1	Р	2 051	Р	1 580	P	STRA13	
209490_s_at	9374	1	Р	0 933	P	0 619	Р		
209504_s_at	58473	1	Р	0 610	P,M,A	0 559	A	PLEKHBI	
209516 at	10322	1	P,M	1 584	P	1 381	Р	SMYD5	
209519 at	4686		P,A	1 506	P	1 654	Р	NCBP1	
209522_s_at	1384	1	P	0 813	P	0 566	Р	CRAT, CAT1	
209523_at	6873	1	Р	1 527	Р	1 480	Р	TAF2, TAF2B	
209527_at	23404	1	P	1 581	P	1 421	P	EXOSC2	
209529 at	8612	1	P	0 647	P	0 597	Р	PPAP2C	
209523_at	2954	1	P	0 632	P	0 425	M,A	GSTZ1	
209532_at	9373	1	P,A	1 690	P,M	1 539	P	PLAA	
209533_s_at	9373	1	P	1 772	P	1 581	P	PLAA	
209535 <u>5</u> at	8767	1	P,A	1 257	 P	1 653	P	RIPK2	
209549_s_at	1716	1	P	1 484	P	1 553	P	DGUOK	
209556 at	23154	1	P	1 543	P	1 459	P	NCDN	
209561 at	7059	1	P	0 977	P	1 661	P	THBS3, TSP3	
209567 at	23212	1	P	1 690	P	1 675	P	RRS1	
209567_dt	23179	1	P	1 528	 P	1 803	P	RGL1	
209587_at	5307	1	P,A	1 877	 P	1 549	P	PITX1	
209597_u	10238	1	P	0 650	P	0 474	P	HAN11	
209592_3_at	27348	1	P	1 516	P	1 405	P	TORIB	
209598 at	10687			2 262	P	4 527	P	PNMA2	
209607_x at	6818	1	P	1 454	P	1 529	P	SULTIA3	
209611_s_at	6509	1	P,A	0 725	P,A	0 660	A	SLC1A4	
209620_s_at	22	1	P	0 806	P	0 621	P	hABC7	
209631_s_at		1	A	1 145	A	2 884	P		
209651_at	7041	1	P	1 443	P	1 746	P	TGFB111	
209653_at	3840	1	P	1 989	P	1 706	P	KPNA4	
209656_s_at	83604	1	P	1 573	P	2 707	P	TM4SF10	
209658_at	8881	1	P	1 625	P	1 494	P	CDC16, APC6	
209666_s_at	1147	1	P	2 045	P	1 912	P	CHUK, IKK1	
209674_at	1407	1	P	1 379	P	1 626	P	CRY1, PHLL1	
209694 at	5805	1	P	1 528	P	0 971	P	PTS, PTPS	
209707_at	10026	1	P	1 562	P	1 851	P	PIGK, GPI8	
209708_at	26002	1	P	1 371	P	1 766	P	MOXDI	
209710 at	84724	1	P	2 409	P	2 266	P	GATA2	
209710_at	27340	1	P	1 526	P	1 377	P	DRIM	
209725_at	9975		P,A	1 426	P	1 506	P	NR1D2	
209759_s_at	1632	1	P	0 607	P	0 464	P	DCI	
209739_s_at 209771_x_at	934	1	P	2 313	P	4 957	P	CD24	

ţ

Affymetrix		Day ()	Day 3		Day 7		Common Name	
ld	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
209772 s at	934	1	A	1.698	P,A	2.682	P,M	CD24; CD24A	
209773 s at	6241	1	Р	1.596	р	1.266	Р	RRM2; R2	
209777 s at	6573	1	A	1.629	P.A	1.407	P,M,A	SLC19A1	
209781 s at	10656	1	P.M.A	1.808	Р	2.380	P	KHDRBS3	
209782 s at	1628		P	0.557	P	0.633	Р	DBP: DABP	
209803 s at	7262		P.M	1.975	P	2.322	Р	PHLDA2	
209805 at	5395		M.A	1.573	p	1.480	P.M	PMS2	
209818 s at	22927		р	1.722	P	2.078	р	HABP4	
209813 s at	7436		p ·	0.631	P	0.771	p	VLDLR	
209822 S at	1777			0.643		0.577	P	DNASE2	
209834 at	9469		P.A	2.077	P	2.175	p	CHST3	
209834 m	960			1.292	P	1.919	Р	CD44: IN	
			P	2.284	r P	2.104	P	MGC5178	
209836 x at	79008		r p	1.820	P	1.925	р Р	TRIP15	
209838 at							r p	LRRN3	
209840 s at	54674		P	1.563	P	1.584	P P	LRRN3	
209841 s at	54674		P	1.613	P	1.610			
209845 al	23608		P	1.649	P	1.731	P	MKRN1; RNF61	
209852 x al	10197	1	P	1.772	Р	1.512	P	PSME3	
209865 at	23443	1	P	1.371	P	1.661	Р	SLC35A3	
209875 s at	6696	1	Λ	1.126	P,M,A	2.060	Р	SPP I	
209892 at	2526	1	Р	1.479	Р	1.623	_ P	FUT4	
209917 s at	11257	1	P	0.782	Р	0.565	P,M,A	TP53AP1	
209921 at	23657	1	Р	0.594	Р	0.555	Р	SLC7A11	
209927 s at	26097	1	P	1.547	P	1.346	Р	DK1ZP547E1010	
209934 s at	27032	1	Р	1.468	P	1.618	P	ATP2C1	
209935_at	27032	1	Р	1.320	P	1.668	Р	ATP2CI	
209943_at	26235	I	P	1.516	Р	1.522	Р	FBXL4; FBL4	
209944 at	57862	1	P	1.431	Р	1.512	Р	ZNF410; APA1	
209945 s at	2932	1	Р	1.524	P	1.358	P	GSK3B	
209959 at	8013	1	P.M	3.086	Р	2.098	Р	NR4A3	
209961 s at	3082	1	Р	1.011	Р	0.630	Р	HGF: SF; HPTA	
209963 s al	2057	1	Р	0.814	Р	0.643	P	EPOR	
209969 s al	6772	1	Р	0.692	Р	0.445	A	STATI;	
209998 at	84720	1	P	0.745	Р	0.511	Р	PIGO	
210006 at	25864	1	Р	0.761	Р	0.638	Р	DKFZP5640243	
210007 s at	2820	1	Р	1.624	Р	1.722	Р	GPD2; GDH2	
210008 s at	6183	1	Р	2.028	P	1.545	Р	MRPS12	
210009 s at	9570	1	p	1.679	P	1.354	P	GOSR2	
210010 s at	6576	1	P	0.813	P	0.645	Р	SLC25A1	
210017 at	10892	1	P	1.486	P	1.529	P	MALTI	
210018 x at	10892	1	P	1.654	P	1.635	P	MALTI	
210018 x at	23595	1	P	1.590	P	1.225	P .	ORC3L	
210024 s at	9576	1	P.A	1.390	P,M	2.134	P	SPAG6	
210070 s at	1375	1	P	1.203	P	1.672	p	CPTIB	
210073 at	6489	1	P.A	1.910	P.M	1.135	P.A	SIAT8A	
210073 at 210093 s at	4116	1	P	1.510	P	1.135	P	MAGOH	
210095 s at	3486	1	P	1.384	P P	1.237	P	IGFBP3	
			P		P		P	FYN; SLK	
210105 s at	2534	1		1.064		1.518			
210112 at	3257	1	P	1.754	P	2.189	P D	HPS1; MGC5277	
210115 at	116832		P	1.592	<u> </u>	1.522	<u> </u>	<u></u>	

Affymetrix	LocusLink	Day 0	- 	Day 3		Day 7		Common Name	
Id	LOCUSLICK	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
210117 at	6674	1	Р	1.977	Р	2.118	Р	SPAG1	
210130 s at	7108	1	Р	0.348	Р	0.229	Р	TM7SF2; ANGI	
210138 at	8601	1	Р	1.544	Р	0.982	Р	RGS20	
210150 s at	3911	1	Р	0.626	Р	0.539	Р	LAMA5;	
210151 s at	8444	1	A	1.814	Р	1.872	Р	DYRK3	
210171 s at	1390	1	Р	0.735	Р	0.513	P.A	CREM	
210175 at	6936	1	Р	1.626	Р	1.294	P	C2orf3;	
210180 s at	6434	1	P	0.771	P.M	0.649	Р	SFRS10	
210205 at	8705	1	P	0.589	P.A	0.557	Р	B3GALT4;	
210215 at	7036	1	P	0.919	Р	0.637	P	TFR2	
210216 x al	5810	1	P	1.537	P	1.419	P	RAD1: HRAD1	
210220 at	2535		P	0.606	P	0.621	P	FZD2	
210220 at	1136	1		1.546	P,M	1.882	P	CHRNA3	
210221 at	3556	1	P.A	2.028	P.A	3.241	P	ILIRAP	
	8500	1	P	1.685	<u>г.а</u> р	1.947	P	PPFIA1; LIPI	
210236 at	11257		P	0.700	P.A	0.623	P	TP53AP1	
210241 S BI			r p		P.A	0.503	P	B4GALT3	
210243 s at	8703		P	0.737		0.303	P P	HTATIP2	
210253_at	10553			0.522	P,M P	1.665	P P	RADSIL1	
210255 at	5890		P,A	1.502	· · · ·				
210284 s #	23118		P	1.143	P	1.553	P	MAP3K7IP2	
210285 x at	9589	l	P	0.784	P	0.609	P	WTAP	
210298 x at	2273	<u> </u>	P	1.139	P	1.714	P	FHLI	
210299 s at	2273	1	Р	1.600	Р	2.131	Р	FHL1; KYO-T	
210306 at	26013	1	P,A	0.632	P,A	0.858	P,A	LJMBTL	
210312 s al			Р	0.579	Р	0.611	Р	LOC90410	
210320 s at	11056	1	Р	1.495	Р	1.671	P	DDX52; ROK1	
210336 x al	7593	1	<u>P</u>	0.662	P.A	0.502	P,A	ZNF42; MZF1	
210337 s at	47	1	P	0.796	Р	0.578	Р	ACLY	
210346 s at		1	Р	1.401	Р	1.908	P	CLK1	
210358 x_al	84724	1	A	2.211	Р	1.935	P,M	GATA2	
210394 x at	6759	1	[P	0.712	Р	0.644	Р	SSX4	
210396 s at		I	Р	1.734	Р	1.485	Р		
210405 x at	8795	1	Р	0.632	P,A	0.536	P,A	TNFRSF10B	
210415 s at	4957	I	P,M	2.124	Р	1.788	P	ODF2	
210416 s at	11200	1	Р	1.443	Р	1.502	P	CHEK2	
210425 x at	23015	1	Р	1.407	Р	1.627	Р	GOLGIN-67	
210465 s at	6619	1	Р	1.591	Р	1.692	Р	SNAPC3	
210480 s at		1	P.A	1.650	P	1.856	Р	MYO6	
210513 s at	7422	1	Р	0.732	P	0.613	Р	VEGF	
210534 s at	27077	I	Р	0.883	Р	0.653	Р	EPPB9	
210538 s at	330	I	P,A	5.671	Р	6.522	Р	BIRC3; AIP1	
210560_al	2637	1	P.M	3.801	Р	3.943	Р	GBX2	
210567 s at	6502		Р	1.038	Р	0.620	Р	SKP2; FBL1	
210580 x at	6818	I	P	1.460	Р	1.563	Р	SULTIA3	
210605 s at	4240	1	P	1.592	Р	2.192	Р	MFGE8; BA46	
210612 s al	8871	1	P,A	1.301	Р	1.788	P,A	SYNJ2; INPP511	
210622 x at	8558	1	P	0.831	P	0.576	Ρ.Λ	CDK10	
210643 at	8600	1	A	1.536	· ·	2.189	P	TNESELL	
210653 s at	594	1	P	0.735	Р	0.446	P	BCKDHB; EIB	
210657 s at	8209	1	P	0.704	P	0.521	P	C21orf33; ES1	

Affymetrix		Day 0		Day 3		Day 7		Common Name	
ld	LocusLink	Normalized	Flags	Normalized	Flagt	Normalized	Flags		
210697 at	113835		A	1.536	Р	1.733	Р	ZNF257	
210715 s al	10653		Р	0.609	P	0.577	Р	SPINT2	
210720 s al	63941	1	P	0.754	P	0.629	Р	APBA2BP	
210732 s at	3964	1	P	0.879	P	0.488	Р	LGALS8	
210752 s at	9229		P	0.773	P.A	0.586	A	DLGAPI	
210755 at	3082		P	1.676	P	2.079	Р	HGF; SF; HPTA	
210776 x al	5001	1	P	1.554	p	1.571	P	TCF3	
210770 x at	27292	1	P	0.910	P	0.477	P	HSA9761	
210802 s at	10631		P	1.581	р	1.667	P	POSTN:	
210809 5 at	10203	1	p P	0.766	P	0.659	P	CALCRL	
210813 s at	4162	1	P,A	1.420	P.M	1.589	p	MCAM	
any her			P P	1.411	P	1.705	p	SSX2IP	
210871 x at	22892			1.519	P.A	1.649	P	ANXA2P1	
210876_at	303		P,A P	0.504	P.A	0.383	P	GTF2I	
210892 s at	2969		r P	0.895	p	0.583	P	GSTM4	
210912 x at	2948	1				0.583	P.A	FASTK	
210975 x at	10922	1	P	0.769	<u>P,M</u>			TPM1	
210986 s al	7168	1	P	2.091	P	2.377	P		
210987 x at	7168	1	Р	1.917	<u>P</u>	2.251	P	TPM1	
211009 s at	10778	1	Р	1.374	Р	1.639	Р	ZNF271	
211015 s at	3308	1	Р	1.529	Р	1.425	P	HSPA4	
211017 s at	4771	1	P,M	1.893	Р	1.562	Р	NF2	
211019 s at	4047	1	Р	0.548	р	0.416	P,A	LSS; OSC	
211023 at	5162	1	P	0.814	P	0.591	Р	PDHB: PHE1B	
211027 s at	3551		Р	0.671	M,A	0.471	Λ	IKBKB	
211049 at	51407		Р	0.763	P,A	0.532	P.A	TLX2	
211052 s at	6904	1	Р	0.651	P	0.492	Р	TBCD	
211088 s at		1	р	0.600	Р	0.474	P	PLK4	
211091 s at	4771	1	P,A	2.657	Р	2.214	Р	NF2	
211092 s at	4771	1	A	2.125	P,M,A	1.779	P.M	NF2	
211126 s at	1466	l	Р	1.874	Р	1.829	Р	CSRP2	
211200 s at	84288	1	A	3.178	Р	4.783	Р	FGR	
211212 s at	5001	1	Р	1.528	Р	1.502	Р	ORC5L	
211219 s at	9355	1	A	1.586	р	1.532	P,M	LIIX2	
211256 x at	11120	1	Р	1,556	Р	1.710	Р	BTN2A1	
211273 s at	6899	1	Р	0.673	Р	0.476	Р	TBX1	
211284 s at	2896	1	P	0.607	Р	0.738	Р	GRN; PEPI	
211299 s at	2319	1	P	0.701	P	0.521	Р	FLOT2; ESA	
211340 s at	4162		P.M.A	1.500	P	2.044	P	MCAM	
211425 x at	6757	1	Р	0.699	P	0.623	P	SSXT/SSX4	
211458 s at	23766	1	p	1.227	P	1.530	Р	GABARAPL3	
211467 s at	4781	1	p	0.785	P	0.599	Р	NFIB	
211407 s at	9609		P	1.552	P	1.370	P	RAB36	
211474 s at	5269	1	P	0.723	P	0.651		SERPINB6	
211474 5 at	573	1	P	0.508	P	0.357	Р	BAGI	
211473 s at	7422	1	p	0.508	P,M	0.501	P.M.A	VEGF; VEGFA	
			+	1.537	P,A	2.079	P	RBI: OSRC	
211540 s at	5925		A D A		-		<u> </u>	ALDH4A1	
211552 s at	8659		P.A	0.691	P.M.A	0.578	M,A		
211558 s at	1725	1	P	0.820	P	0.558	P	DHPS	
211559 s at	901	1	P	0.640	P	0.625	P	CCNG2	
211575 s at	10109	1	Р	1.542	P	1.490	<u>P</u>	ARPC2	

Aflymetrix	LocusLink	Day 0		Day 3		Day 7		Common Name
1d	LOCUSLINK	Normalized	Flags	Normalized	Fings	Normalized	Flags	
211576 s at	6573		p	1.633	P	1.292	Р	SLC19A1
211595 s at	64963		р	1.832	P	1.626	Р	MRPS11
211615 s at	10128		Р	1.825	Р	2.026	Р	LRPPRC
211622 s at	377		P	0.763	P	0.573	Р	ARF3
211658 at	7001	1	Р	0.894	P	0.573	Р	PRDX2
211666 x at	6122		Р	0.705	P	0.607	Р	RPL3
211671 s at	2908		Р	1.535	P	1.628	Р	NR3CI
211672 s at	10093	1	P	0.674	P	0.526	Р	ARPC4
211675 s at	29969	1	Р	1,183	Р	1.527	Р	HIC
211676 s at	3459	1	p	1.724	Р	1.740	P	IFNGR1; CD119
211700 s at	7216	1	P	1.254	Р	1.931	P	TRO
211701 s at	7216	1	P	1.239	P	1.822	Р	TRO
211707 s at	9657	1	p	1.795	P	1.888	P	IQCBI
211721 s at	90233	1	P	1.526	p	1.407	Р	ZNF551
211724 x at	54468	1	p	1.533	P	1.339	P	FLJ20323
211725 s at	51100	1	P	1.703	p	1.677	P	
211752 s at	4727	1	Р	0.697	р	0.485	P	NDUFS7
211800 s at	7375	1	P	0.821	P	0.621	P	USP4: UNP
211810 s at	2581	· · ·	l P	0.653	P	0.560	P	GALC
211814 s al	9134	· · ·	P	2.067	P.	1.190	P	CCNE2; CYCE2
211814_5_at 211833 s at	581		P	0.585	P	0.415	P	ВАХ
211855 s at	8455	1	P	0.686	P	0.656	P.A	ATRN
211852 s at	9016		P	1.527	p -	1.671	P	SLC25A14
211855_s_at	26509		A	1.785	P,A	2.653	P.M.A	FERIL3
211804 5 at	1778		P	1.465	p	1.510	P	DNCH1; p22
211929 at	1770		P	1.393	p -	1.518	P	hnRNPA3
211929 at			P	1.676	p	1.548	p	bnRNPA3
211932 at			P	1.563	P	1.307	p	hnRNPA3
211937 at	1975		P	0.624	P	0.547	p	EIF4B; EIF-4B
211937 at 211947 s at	23215		P,A	1.536	P	1.304	p	XTP2
211947 S at	23215	1	P	1.688	P	1.553	P	XTP2
211948 A at	9221		P	1.088	p	1.755	P	NOLCI
211951_at	3843	1	P	1.382	P	1.559	P P	KPNB3
211952_at 211953_s_at	3843	1	P	1,484	4	1.561	- P	KPNB3
211953 s at	1041		P	0.749	P	0.658	p	KINDS
211976 at		1	P	0.780	P	0.633	p	
211970 at	23214	<u> </u>	P	1.548	P	1.551	P	XPO6
211982 x at	195		p -	1.600	P	2.087	P	MGC 5395
211988 at	6605		p i	1.504		1.573	P	SMARCEI
211990 at	3113	1	P.M	1.035	P	2.069	P	HLA-DPA1
212010 s at	55573		P	1.697	P	1.801	P	H41
212010 3 at	00000		A	0.978	M,A	1.638	P,A	D2S448
212014 x at	960		P.M	1.150	P.A	1.635	P	CD44; IN
212014 x at	5725	<u> </u>	P	0.958	p p	0.629	P	PTBPI
212010_5_at	53635		P	0.556	p	0.385	P	PTOVI
212032_s_at	5411		P	1.695	P	1.712	P	PNN
212037 at	7416		P	1.695		1.387	P P	VDACI
212038 5 at	5595	1	P	0.817	P	0.566	P,A	MAPK3; ERKI
	23061		p r	0.817	P P	0.5659	P.A	KIAA0676
212052 s at 212058 at	23001		P	0.780	P	0.639	P	SR140

Affymetrix		Day 0		Day 3		Day 7		Common Name
٥. ال	LocusLink	Normalized	Flags	Normalized	Fings	Normalized	Finge	Common Name
212061 at	23350	1	Р	0.611	Р	0.728	р	SR140
212063 at	960	1	٨	1.154	A	2.336	Р	CD44
212064 x at	4150		р	1.525	Р	1.268	Р	MAZ
212068 s at	23121		Α	1.304	Р	1.523	Р	KIAA0515
212069 s at	23121	1	P.M.A	1.739	Р	1.525	Р	KIAA0515
212085 at	293		Р	0.602	P	0.411	Р	SLC25A6
212085_u	4000		Р	0.616	P	0.680	Р	LMNA: FPL
212092 at	23089		P	1.623	р	2.188	Р	PEG10
212092 at	23089		P	1.510	p	2.244	P	PEGIO
212094 at 212097 at	857		P	1.505	P	1.269	P	CAVI
212097 at	0.1		P	1.794		1.471	P	RHOB
100	1660		р Р	0.683	P	0.470	P	DHX9
212105 s at		1	r P	1.617	P	1.561	P	NIPA2
212129 at	81614		P P	1.870	P	1.935	P	IGFBP3; IBP3
212143 s at	3486	1			P P		P.M	ESTIB
212147 at	23381		A	2.328		2.305	<u>р</u>	SDC2
212154 at	6383		P,M	1.446	P	1.731		SDC2
212157 at	6383		P	1.581	P	1.986	P	
212158_at	6383		P,M	1.448	Р	1.961	P	SDC2
212163 al	57498	1	P	1.331	P	1.522	<u>P</u>	KIDINS220
212165 at	92703	1	Р	0.981	Р	0.640	P	Clorf37
212171 x at	7422	1	Р	0.752	P	0.653	P	VEGF
212184 s at	23118	1	Р	1.548	P	1.974	Р	MAP3K7IP2
212190 at	5270	1	Р	1.767	P	1.903	P	SERPINE2
212194 s at	9777	I	Р	0.827	<u>Р</u>	0.601	Р	K1AA0255
212211 at	26057	1	Р	1.542	P	1.582	P	ANKRD17
212214 at	4976	1	A	1.802	Р	2.280	Р	OPAI
212215 at	9581	I I	Р	1.337	Р	1.890	Р	KIAA0436
212217 at		1	Р	1.186	P	1.630	Р	K1AA0436
212218 s at	2194	1	Р	0.816	Р	0.607	Р	FBXO9; FBX9
212222 at	23198	1	Р	1.310	Р	1.658	P	PSME4
212225 at	10209		Р	0.620	P.M.A	0.468	A	SUIT
212234 at	23393	L	Р	1.245	Р	1.597	Р	ASXL1
212249 at	5295	1	P,M,A	1.597	Р	1.400	P,A	PIKJRI
212254 s at	667	1	P	1.433	Р	1,606	Р	BPAG1
212259 s at	57326	1	P	0.402	P,A	0.518	P	PBXIPI
212274 at	23175	1	A	1.711	P,A	1.836	P,A	LPINI
212276 at	23175	1	P	1.703	Р	2.027	Р	LPINI
212294 at	55970	1	P	1.441	P	1.880	P	GNG12
212299 at	91754		P	1.256	P	1.588	P	NEK9
212307 s at	8473		P	0.652	P	0.761	Р	ÖGT
212310 at	23124	1	P	1.373	P	1.831	Р	F1J39207
212312 at	598	1	P	1.720	p	1.476	Р	BCL2L1
212336 at	2036	1	Р	1.964	P	2.035	Р	EPB41L1
212339 at	2036	1	A	1.471	P,A	1.942	Р	EPB41L1
212350 at	23216		P	1.511	P	1.461	P	TBC1D1
212350 at	23210		P	0.803	P	0.554	P	ATP2A2
212361 S at	4430		P,A	1.546	P	2.223	P	MYOIB; myrl
	4430	1	P	1.348	p	1.504	P	MYOIB; myrl
212365 at			P		P		P P	ZNF292
212366 at	23036		P P	1.499	P	1.863	P P	7.191.292

Affymetrix		Day 0		Day 3		Day 7		Common Name	
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags		
212403 at	89910	1	Р	0.818	P	0.611	Р	UBE3B	
212418 at	1997	1	Р	1.423	Р	1.678	Р	ELFI	
212421 at	23313	1	Р	1.390	Р	1.579	Р	C22orf9	
212422 at	22984	1	P	1.512	Р	1.387	Р	PDCD11	
212434 at	80273		Р	1.603	Р	1.308	Р	GRPELI	
212436 at		I	Р	1.517	Р	1.363	Р	TRIM33	
212459 x at	8801	1	Р	0.927	Р	0.582	Р	SUCLG2	
212461 at	51582	1	Р	1.683	Р	1.681	Р	OAZIN	
212465 at	84193	1	Р	1.574	Р	1.796	Р	FLJ23027	
212473 s at		1	Р	1.549	Р	1.571	Р		
212483 at	25836	1	Р	1.399	Р	1.711	P	IDN3; CDLS	
212492 s at	23030		Р	0.539	Р	0.626	Р	JMJD2B	
212499 3 at		1	Р	1.399	Р	1.522	Р	C14orf32	
212501 at	1051	1	Р	0.545	Р	0.492	Р	CEBPB	
212511 at		1	Р	1.386	Р	1.544	Р	PICALM	
212514 x at	1654		P	0.757	Р	0.568	Р	DDX3X	
212525 s at	3014		Р	0.806	р	0.584	Р	H2AFX	
212542 s at	55023	1	P	1.454	Р	1.621	P	PHIP	
212559 at	5575		P.A	0.655	P,A	0.590	P,A	PRKARIB	
212565 al	23012	<u> </u>	P.A	1.596	P	1.861	P	STK38L; NDR2	
212574 x al	91304		P	0,419	P	0.303	P	R32184_3	
212593 s at	27250	1	P	0.582	P	0.647	Р	PDCD4	
212594 at	27250		P	0.593	p	0.742	P	PDCD4	
212599 at	26053	· · ·	P	1.728	P	2.244	Р	AUTS2	
212603 at	10240	<u> </u>	P	1.610	P	1.245	Р	MRPS31	
212611 at	23220	·	P	1.154	P	1.530	P	MPEGI	
212619 at	23306		P	1.520	P	1.799	P	KIAA0286	
212621 at	23306		p	1.204	P	1.514	P	KIAA0286	
212622 at	23027		12	1.506	P	1.517	P	K1AA0033	
212623 at	23027		P	1.586	P	1.485	P	KIAA0033	
212624 s at	1123	1 1	P	2.008	P	2.265	P	CHNI	
212632 at	1145	1	P	1.568	P	1.842	P	STX7	
212635 at		1	Р	1.546	P	1.701	P	TNPO1	
212636 at	<u> </u>	1	P	1.518	P	1.895	P	QKI; QK3	
212638 s at	11059	1	P	1.509	P	1.340	P	WWPI	
212641 at	3097	1	P	1.935	Р	2.381	P	HIVEP2	
212642 s at	3097	1	P	1.778	P P	1.980	p	HIVEP2	
212654 at	7169		P,A	1.857	P	1.458	P	TPM2	
212656 at	10102		P	0.796	P	0.635	Р	TSFM	
212662 at	5817	1	P	1.632	P	1.196	P	PVR	
212665 at	25976	1	P	1.861	P	2.235	P	TIPARP	
212687 at			P	1.554	P	1,710	P	EIMST	
212689 s at	55818		P	1.557	P	1.603	P	JMJD1A	
212708 at			P	0.567	P	0.444	P	CASC3	
212700 at	23279		P	1.644	P	1.405	P	NUP160	
212707 at	157922		P	1.630	P	1.966	P	CAMSAP1	
212710 at	113251		P	1.577	P	1.678	P P	LOC113251	
212714 at	140890	1	P	1.472	P	1.575	P	SFRS12	
212721 at	390		P	1.665	P	2.057	P	ARHE	
212724 at 212739 s at	4833		P P	0.861	P	0.619	P	NMF4	

Affymetrix	LocusLink	Day 0		Day 3		Day 7		Common Name
ld	LOCUSLINK	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common (value
212751 at	7334	1	р	1.321	Р	1.519	Р	UBE2N
212765 at	23271	I	Р	1.853	Р	1.972	Р	KIAA1078
212766 s at	81875	1	Р	2.169	Р	1.782	Р	FLJ12671
212767 at	92170	1	р	0.843	Р	0.532	Р	Spm
212774 at	10472	1	Р	1.705	Р	1.834	Р	ZNF238
212780 at	6654	1	Р	1.534	Р	1.433	P	SOSI
212803 at	4665	1	Р	1.545	Р	1.349	Р	STAT6
212815 at	10973		р	1.847	Р	1.838	Р	HELICI
212816 s at	875	1	Р	0.521	Р	0.390	Р	CBS
212822 at	57493	1	A	1.501	P,A	1.542	M,A	HEG
212826 s at	293	1	Р	0.630	Р	0.450	Р	SLC25A6
212828 at		1	Р	1.444	P	1.763	Р	SYNJ2; INPP5H
212829 at			P	1.661	Р	1.814	Р	
212830 at	1955	1	P	0.744	Р	0.599	Р	EGFL5
212833 at	91137	1	P	1.508	Р	1.587	Р	LOC91137
212835 at	23172	1	P	1.524	p	1.400	р	KIAA0157
212837 at	23172	1	P	1.859	p	1.805	Р	KIAA0157
212838 at	23268	1	P	1.626	Р	1.937	Р	DNMBP
212839 s at		1	P	2.098	p	1.924	P	SSA2
212835 5 m	23034		P	1.822	Р	1.638	Р	SAMD4
212847 at	25051		P	1.093	P	1.511	P	NEXN
212866 at		1	P.M	0.915	p	0.595	Α	LOC203069
212877 at	3831	1	Р	2.041	Р	2.167	р	KNS2
212884 x at	348	1	P	0.929	P	1.560	Р	APOE
212886 at	26112		M.A	1.435	P.A	1.536	р	DKFZP434C171
212893 al	26009	1	P	1.641	Р	1.704	Р	2223
212928 at	23270	-	Р	1.521	Р	1.262	Р	RPS5P1
212934 at		Ī	Р	1.328	Р	1.520	Р	LOC137886
212955 s at	5438	<u> </u>	Р	0.954	Р	0.628	Р	POLR21
212957 s at			P	1.331	P	1.813	Р	L.OC92249
212961 x at	3423	1	P	1.642	Р	1.500	P	LOC91966
212962 at	85360	<u> </u>	P,A	1.627	Р	1.474	P,A	7h3; FLJ13511
212969 x at	256364	1	P	0.756	P	0.561	P	FIJ35827
212971 at	833	1	P	0.590	Р	0.562	Р	CARS
212977 at	57007	1	M,A	1.989	Р	2.528	Р	CMKOR1
212980 at	23021	1	P	1.344	Р	1.781	Р	AHSA2
212990 at	8867	1	Р	1.808	P	1.700	Р	SYNJI; INPP5G
213012 at	4734	1	Р	1.837	Р	2.103	Р	NEDD4
213015 at		1	Р	1.046	P,M.A	1.700	Р	BBX
213016 at	-	1	Р	1.262	Р	2.513	P	BBX
213021 at	-	i	Р	1.637	Р	1.636	Р	GOSRI
213025 at	55623	1	Р	1.567	Р	1.448	Р	FLJ20274
213032 at		1	Р	0.774	Р	0.623	Р	NFIB
213033 s at		1	P.M	0.840	Р	0.566	P,A	NFIB
213035 at	23243	1	P	1.283	Р	1.913	Р	ANKRD28
213038 at	127544	1	P	1.607	P	1.411	Р	FLJ90005
213041 s at	513	1	P	0.642	P	0.338	P	ATP5D
213041 s at	6093	1	р	1.666	P	2.125	P	ROCKI
213064 at	79882		P	1.448	P	1.601	P	FLJ11806
213069_at			M.A	1.948	P	2.214	P	HEG

Affymetrix	LocusLink	Day 0		Day 3	_	Day 7		Common Name
ld	LUCUSLINK	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Marine
213072 at	157542	1	р	1.892	Р	2.322	Р	MGC13010
213081 at	9278	1	Р	0.768	Р	0.622	Р	ZNF297
213088 s at	23234	1	Р	1.547	Р	1.408	р	KIAA0974
213092 x at	23234	1	р	2.274	Р	2.153	Р	K1AA0974
213093 at		1	р	0.680	Р	0.566	P	PRKCA
213096 al	9911	1	A	1.340	P,A	1.506	P,M,A	HUCEP11
213097 s at	27000	1	р	1.663	Р	1.536	Р	ZRF1
213115 at	115201	1	Р	1.607	Р	1.563	Р	COL4A6
213118 at	23074	1	Р	1.500	Р	1.683	Р	KIAA0701
213124 at	25888	1	р	1.537	Р	1.385	Р	ZNF473
213126 at	112950	1	Р	0.742	Р	0.645	Р	MED8
213128 s at	7337	1	Р	1.507	Р	1.451	Р	UBE3A
213130 at	25888	1	р	1.367	Р	1.553	Р	ZNF473
213135 at		1	р	1.511	р	1.399	P	TIAMI
213169 at		1	Р	0.725	Р	0.426	P,A	SEMA5A
213170 at	27234	1	Р	0.897	р	0.629	P	GPX7
213176 s at	8425	1	р	0.449	A	0.372	A	LTBP4
213190 at	91949	1	Р	0.937	р	0.633	Р	COG7
213191 at	148022	1	P.M.A	1.368	р	1.503	Р	TRIF
213199 at	26005	1	P.M	1.527	Р	1.554	Р	DKFZP586P0123
213206 at	9570	1	Р	1.620	Р	1.704	Р	GOSR2
213207 s at	9570	1	P,A	1.775	P	1.669	Р	GOSR2
213211 s at	10629	1	P	0.680	P.A	0.548	P.A	TAF6L
213216 at	23252	1	Р	1.905	Р	1.733	Р	KIAA0459
213223 al	6158		P	0.576	P,M	0.519	P.M.A	RPL28
213224 s at	27250	1	P,A	1.346	P	1.638	р	LOC92482
213225 at	5495	1	P	1.540	Р	2.187	Р	PPMIB
213238 at	57205	1	Р	1.342	Р	1.752	P	ATPIOD
213246 at	26175	1	Р	1.635	Р	1.614	p	C14orf109
213248 at		1	M.A	1.227	P.A	1.503	P,A	
213251 at		1	P	1,419	P	1.525	P	
213256 at			A	1.636	P,M	1,449	P	MGC48332
213259 s al	23098		P.M.A	1.416	P	1.517	P	SARMI
213263 s at	7786	-	P	0.593	Р	0,695	<u>Р</u>	MAP3K12
213269 at	57209		P	1.228	P.A	1.618	P	LOC 57209
213279 at		1	Р	0.596	P	0.533	Р	DHRS1
213281 at	3725	1	P	2.935	P	3.450	P	JUN
213288 at		1	Р	1.496	Р	1.743	Р	I.OC129642
213298 at	4782	1	P	0.765	P.A	0.602	P,A	NFIC
213306 at	8777	1	Р	0.654	р	0.528	Р	MPDZ
213310 at	1	1	p	1.573	р	1.664	Р	EIF2C2
213315 x at	3423	1	Р	1.744	Р	1.541	Р	LOC91966
213316 at		1	Р	1.745	P	2.185	Р	
213322 at	221443	1	P	0.686	P	0.577	Р	MGC19570
213325 at	25945	i i	P,A	1.183	P,A	1.525	P	PVRL3
213334 x at	11219	1	P	1.500	P	1.024	P	TREX2
213338 at	25907			1.759	P	1,264	P.A	RISI
213342 at	10413		P	1.454	P	1.500	P	YAPI
213350 at	6205	1	P	1.644	P	1.540	P	RPS11
213365 at	57638	1	P	1.537	, p	1.756	P	KIAA1504

Affymetrix	LocusLink	Day 0	I	Day 3		Day 7	1	Common Name
Īd	Locustink	Normalized	Flags	Normalized	Flags	Normalized	Flags	COMMUNIATING
213389 at		1	P,A	1,506	P	1.703	Р	PNKP
213391 at		1	P	1.345	Р	1.635	Р	I.OC286148
213397 x at	6038	1	Р	0.617	Р	0.860	Р	RNASE4
213402 at			Р	1.689	Р	1,276	Р	LOC126208
213410 at	26098		р	1.645	Р	1.523	Р	EDRFI
213411 at			Р	0.536	A	0.602	Α	ADAM22
213413 at	11037		P,A	1.362	Р	1.581	Р	SBLF
213419 at	323		P	0.927	Р	0.653	P,A	hFE65L
213427 at	10799	1	P	2.554	Р	2.132	Р	RPP40
213452 at	7738	· · · · · · · · · · · · · · · · · · ·	P	1.644	P	2.052	P	ZNF184
213469 at			P	1.545	P	1.921	P	FIJ12377
213471 at	261734		P	1.560	P	1.620	P	NPHP4
213474 at	154881		p	2.093	P	2.131	P	KCTD7
213479 at	4885	1	p	1.568	P	1.722	P	NPTX2; NP2
213496 at	9890	1	р	1.706	P	2.126	P	PRGI
213504 at	10980	1	P	1.517	P	1.264	P	COPS6
213505 s at	10147	1	p	1.585	P	1.605	P	SFRS14
213523 at	898	1	P	2.189	P	1.416	P	CCNE1
213540 at	7923		p	0.525	P.M.A	0.380	A	HSD17B8
213549 at			P	1.687	Р	1.591	P	SLC18A2
213558 at	27445	1	p	1.00	P	1.509	P	PCLO
213581 at	5134	1	р	1.557	р	1.152	P	PDCD2
213595 s at	9876	1	P.A	1.452	P	1.786	p	CDC42BPA
213599 at	11339	1	P	1.530	P	1.561	P	OIP5
213604 at		1	<u>р</u>	1.401	P	1.554	P	TCEB3
213606 s at	396	1	p	0.988	P	0.529	P	ARHGDIA
213607 x al	65220	1	P	0.932	P	0.553	P.A	FLJ13052
213618 al	116984		P	1.800	P	2.212	p	CENTDI
213634 s at	55687		P	1.620	P	1.176	p	FLJ10140
213644 at	201134	1	P	1.679	p	1.888	P	MGC33887
213647 at	1763	1	P	1.661	P	1.624	P	DNA2L
213653 at	1705	1	P.A	1.365	p	1.574	P	METTL3
213671 s at	4141	1	p	0.581	P	0.505	P	MARS
213689 x at	6125	1	P	0.749	P	0.641	P	RPL5
213696 s al	112950	1	P	0.895	p	0.638	P	MED8
213704 at	5876	1	P	1.760	P	1.893	P	RABGGTB
213716 s at	6398	<u> </u>	M,A	1.629	P	2.457	P	SECTMI
213722 at	6657	1	P.M	0.650	Α	0.564	P.A	SOX2
213737 x at		1	P	1.423	Р	1.689	P	
213742 at	9295	1	P	1.636	P	0.931	P	SFRSII
213757 at	1984	1	P	1.551	9	1.372	P	EIF5A
213761 at	56890	1	Р	1.700	P	1.566	Р	MDMI
213780 at		1	A	2,122	P.M.A	2.556	P.A	THH
213786 at	8887	1	P	1,543	P	1.904	P	TAXIBPI
213787 s al	10682	1	P	0.694	P	0.555	P	EBP
213793 s at	9456	1	P	1.898	P	1.983	P	HOMERI
213795 s at	5786	1	P	0.811	P	0.584	P	PTPRA
213793 S at	5700	1	P	0.721	P.A	0.601	P,A	INPP5B
213804 at	6929		P	1.592	P	1.605	<u>г,А</u> Р	TCF3
213812 s at	10645	1	P	0.726	P	0.645	P,M	САМКК2

A ffum at may		Day 0	}	Day 3		Day 7	·	Common Name
Affymetrix Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
213822 s at	89910	1	P	1 757	P	1 669		UBE3B
213838 at	51406	1	P	1 559		1 641	P	NOL7
213836_at	1350	1	P	1 508		1 376	P	COX7C
213840_at 213861 s at	25895	1	P	1 663	P	1 685	 P	DKFZP586D0919
	7070	1	P	1 348	P	1 801		THY1
213869_x_at	79912	1	P	0 730	P	0 568	P	RECQL
213878_at	83941	1	P,A	1 648	P,A	1 744	P,A	BBP
213882_at	5434	1	P	0 914	P	0 643	P	POLR2E
213887_s_at	9487	1		1 259	 Р	1 608	P,M	PIGL
213889_at		1	P,M,A P	0 961	P	0 637	<u>г,м</u> Р	APRT
213892_s_at	353	· · ·						
213896_x_at	23234	1	P	0 760	P,A	0 564	A	KIAA0974
213899_at	10988	1	P P	1 778	P	1 785	P	METAP2
213906_at	4603	1	P	1 971	P	2 328	P	MYBL1
213931_at	3398	1	M,A	7 620	P	4 792	P	ID2
213939_s_at		1	P,A	1 538	P	1 552	P	RIPX
213951_s_at	29893	1	P	1 757	Р	1 241	Р	HUMGT198A
213986_s_at	91304	11	P	0 415	Р	0 291	P,A	C19orf6
213989_x_at	54093	1	A	2 067	P	2 216	P	C21orf18
213996_at	29799	1	P	0 449	<u>P</u> _	0 369	Р	YPEL1, FKSG3
214005_at	2677	1	P	0 895	Р	0 568	Р	GGCX
214006_s_at	2677	1	P	0 756	Р	0 520	P	GGCX
214012_at	51752	11	Р	0 600	<u>P</u>	0 586	P	ARTS-1
214023_x_at	7280	1	Р	1 522	Р	2 003	P	MGC8685
214030_at	131544	1	Р	1 458	Р	1 609	P	MINA
214052_x_at	23215	1	Р	1 745	P	1 528	Р	XTP2
214055_x_at	23215	1	Р	1 803	P	1 539	P	XTP2
214083_at	5527	1	A	1 769	P,A	2 598	Р	PPP2R5C
214096_s_at	6472	1	Р	0 755	Р	0 526	Р	LOC56901
214097_at	6227	1	Р	2 074	Р	2 319	P	RPS21
214107_x_at	9520	1	Р	0 738	Р	0 595	Р	NPEPPS
214112_s_at	3423	1	Р	1 563		1 394	P	LOC91966
214113_s_at	9939	1	Р	1 565	P	1 529	Р	RBM8A
214114_x_at	10922	1	Р	0 821	Р	0 660	Р	FASTK
214126_at		1	A	1 409	Р	1 505	P,A	MCART1
214151_s_at	9488	1	Р	1 326	Р	1 641	Р	CPR8
214152_at	9488	1	Р	1 186	Р	1 601	Р	CPR8
214155_s_at	113251	1	P	1 532	Р	1 404	Р	LOC113251
214157_at	2778	1	Р	2 270	P	2 470	Р	GNAS
214177_s_at	57326	1	Р	0 515	Р	0 748	Р	PBX1P1
214182_at	382	1	Р	1 517	P	1 510	P	ARF6
	27042	1	Р	1 562	Р	1 729	Р	MGC29875
214196_s_at	1200	1	Р	0 613	P	0 572	P	CLN2
214205_x_at	10539	1	Р	1 565	Р	1 661	Р	TXNL2, PICOT
214210_at	10478	1	Р	1 506	P	1 382	Р	SLC25A17
214240_at	2586	1	Р	1 747	P	1 651	P	GAL
214247_s_at	10530	1	M,A	1 262	P,A	2 240	P	DKK3
214251_s_at	4926	1	P	0 526	A	0 379	A	NUMAI
214252_s_at	1203	1	Р	0 745	Р	0 646	Р	CLN5
214258_x_at	10524	1	P	0 720	P	0 549	P	HTATIP
214260_at	10920	1	P,A	1 712	<u>Р</u>	1 757	P	COPS8

Affymetrix		Day 0		Day 3		Day 7		Common Name
ĺd	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	
214266 s at	9260	1	Р	0.995	Р	0.592	P,A	PDLIM7
214290 s at	8337	1	Р	0.651	Р	0.739	Р	HIST2H2AA
214293 at	55752		Р	2.149	Р	2.454	Р	FLJ10849
214306 at	4976		р	1.422	Р	1.581	Р	OPA1
214310 s at	7542	1	Р	0.803	Р	0.516	P,M	ZFPLI
214313 s at	9669	1	P.M	1.993	Р	1.565	Р	IF2
214336 s at	1314		Р	0.581	Р	0.523	р	PEX19
214383 x at	116138	1	P	0.738	p	0.562	Р	KLHDC3
214409 at	10737	1	P.A	1.564	P	1.481	p	RFPL3S
214407 at	4839	1	Р	1.670	P	1.497	P	NOLI; p120
214427 at	9893		p	1.454	P	1.763	P	HSPA12A
214437 s at	6472		p	0.654	p	0.441	P	SHMT2; GLYA
214437 S at 214442 S at	9063	<u>_</u>	p	1.504	P	1.634	P	PIAS2; miz
214442 5 8t	9555	1	r p	1.610	P	1.673	P	H2AFY; H2A.y
	2273		p	1.010	p	1.627	P C	FHLI
214505 s at			r p	1.179	r p	1.451	p r	EXOSC2; p7
214507 s at	23404				p P	2.297	p r	ROCK1
214578 s al	6093		P	1.962				
214581 x at	27242	1	A	2.256	p	2.572	P	TNFRSF21
214594 x at	5205	1	P	1.361	P	1.582	P	ATP8B1
214639 s at	3198	1	<u>Р</u>	1.975	P	2.030	P	HOXA1
214649 s at	8898	1	Р	1.768	P	1.610	Р	MTMR2
214657 s at		1	P	0.624	Р	0.658	P.A	
214662 at	23160	1	Р	1.615	Р	1.666	P	K1AA0007
214683 s at	1195	1	Р	1.269	P	1.748	P	CLKI
214690 at	9014	L	Р	1.501	Р	1.549	Р	TAFIB
214691 x at	54629		Р	0.649	Р	0.682	P,A	KIAA1164
214696 at	84981	1	P.A	1.757	Р	1.684	Р	MGC14376
214716_at	55589	1	P,A	1.361	P,A	1.693	P,A	BMP2K
214722 at		I	Р	1.285	Р	1.820	Р	LOC376745
214727 at		1	Р	1.690	P	1.702	Р	BRCA2; FAD
214742 at	22994	1	P,M	0.790	P,A	0.567	A	AZH; AZI
214778 at	1954	1	Р	0.413	P,A	0.378	P,A	EGFL4; MEGF8
214784 x at	23214	1	Р	1.555	р	1.487	Р	XPO6
214794 at		1	Р	1.629	Р	1.492	Р	PA2G4
214816 x at	91442	l	Р	1.723	Р	1.505	Р	MGC32020
214828 s at	91695	1	P	1.778	Р	1.323	Р	dJ222E13.2
214835 s at	8801	1	p	0.765	P	0.594	Р	SUCLG2
214878 at	7587	1	P,A	1.563	P.A	1.470	Р	ZNF37A
214909 s al	23564	1	Р	1.487	Р	1.548	P	DDAH2
214924 s at	22906	1	Р	1.576	Р	1.699	Р	OIP106
214934 at	11071	1	P	0.618	P	0.604	P.M	ATP9B
214960 at	8539	1	M,A	1.508		1.309	P.A	API5;
214983 at	64595	· · ·	P	1.735	P	1.751	P	TITYIS
214992 s at	1777		P	0.396	P P	0.393	P	DNASE2
215001 s at	2752	1	4	1.544	p	1.835	P	GLUL; GLNS
215007 s at	2152	1	P P	1.715	Р	1.862	P	SEC31L1
215009 s at				2.582	P.A	2.067	P.A	
	667	-	P	1.359	<u>р</u>	1.543	P P	BPAGI; BP240
215016 x at					P P		p r	
215047 at	25893	1	P	1.532		1.524	-	DKFZp434C091
215073 s at		1	P	1,171	Р	1.517	P	NR2F2

Affymetrix		Day 0		Day 3		Day 7		
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
215079 at		1	Р	1 351	Р	1 574	Р	
215090_x at	9520	1	Р	0 773	Р	0 596	Р	FLJ11822
215099_s_at	6257	1	P	0 509	P,A	0 386	M,A	RXRB
	8848	1	Р	1 344	Р	1 642	Р	TGFB1I4
215116_s_at	1759	1	Р	0 644	Р	0 529	Р	DNMI
215143_at	· · · — — · · ·	<u> </u>	Р	1 271	Р	1 504	Р	FLJ36166
 215146_s_at	23331	1	Р	0 672	Р	0 658	Р	KIAA1043
215158 s at	9191	1	Р	1 502	Р	1 265	Р	DEDD, DEFT
215159_s_at	65220	1	Р	0 870	Р	0 561	P,A	FLJ13052
215165 x_at	7372	1	Р	1 571	Р	1 279	Р	UMPS, OPRT
215167 at	9282	1	Α	1 504	P,A	1 396	Р	CRSP2
	22995	1	P,A	1 249	P,M,A	1 510	Р	KIAA0912
 215171_s_at	10440	1	Р	1 560	Р	1 339	Р	TIMM17A
 215204_at		1	Α	1 324	P,M,A	1 575	P,A	
215220 s at		i	Р	0 713	Р	0 588	Р	TPR
		1	A	1 579	Р	1 712	P,A	PIGC
215324_at	223117	1	Р	0 962	Р	0 649	Р	SEMA3D
215359_x_at	7595	1	Р	1 424	Р	1 714	Р	ZNF44
 215380_s_at	79017	1	Р	1 549	Р	1 479	Р	MGC3077
 215424_s_at	22938	1	P	1 645	Р	1 485	Р	SKIIP
215425_at	10950	1	Р	1 612	Р	1 852	Р	BTG3, ANA
215440_s_at	56271	1	Р	0 601	P	0 747	Р	BEXLI
215446_s at	114990	1	P,M,A	1 166	P,A	1 554	Р	LOX
215493_x_at	11120	1	P	1 625	Р	1 776	Р	BTN2A1
215495_s_at	23034	1	P,A	2 971	P	2 223	Р	SAMD4
215532_x_at	57615	1	Р	1 641	P	1 867	Р	ZNF492
215548_s_at	23256	1	Р	1 624	Р	1 393	Р	SCFD1
215629_s_at	79469	1	Р	0 950	Р	0 564	Р	BCMSUNL
215643_at		1	Р	0 676	Р	0 503	Р	SEMA3D
 215684_s_at	84164	1	Р	1 802	Р	1 708	Р	ASC1p100
215695_s_at	8908	1	Р	1 692	Р	2 522	Р	GYG2
215706_x_at	7791	1	Р	1 978	Р	1 729	Р	ZYX
215719_x_at	355	1	Р	1 317	P,A	1 961	P,A	TNFRSF6
215722_s_at	6627	1	Р	1 995	Р	1 759	Р	SNRPA1
 215723_s_at	5337	1	Р	0 723	Р	0 568	Р	PLD1
215728_s_at	11332	1	Р	0 804	Р	0 540	Р	BACH
215735_s_at	7249	1	Р	0 881	Р	0 612	Р	TSC2
215743_at	10557	1	Р	1 402	Р	1 748	Р	RPP38
215747_s_at	1104	1	Р	0 898	Р	0 660	Р	CHC1, RCC1
215760_s_at	22904	1	P,M	0 784	P,A	0 544	P,A	KIAA0963
215765_at	10489	1	Р	1 704	Р	1 931	Р	MUF1
215772_x_at	8801	1	Р	0 968	Р	0 567	Р	SUCLG2
215780_s_at		1	Р	0 797	Р	0 658	Р	
215812_s_at		1	Р	1 576	Р	1 364	Р	SLC6A10
215842_s_at	23250	1	Р	0 793	Р	0 520	Р	ATP11A
215891_s_at	2760	1	Р	0 649	PMA	0 625	M,A	GM2A, SAP-3
215945_s_at	23321	1	P	1 304	Р	1 634	Р	TRIM2 RNΓ86
216041_x_at	2896	1	Р	0 633	Р	0 778	Р	GRN, PEPI
216044_x_at	6125	1	Р	0 692	Р	0 608	Р	RPL5
216064_s_at	175	1	Р	0 635	Р	0 568	Р	AGA

1

Affymetrix	LocusLink	Day 0		Day 3		Day 7		
Īd	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	
216080 s at	3995		Р	0.716	Р	0.570	M,A	FADS3
216228 s at	11169	1	Р	1.783	Р	1.705	Р	WDHD1
216246 at	6224	1	Р	1.512	Р	1.300	Р	RPS20
216248 s at	4929	1	P	1.955	Р	1.338	Р	NR4A2; NOT
216250 ร.ณ	9404		Р	1.477	Р	1.986	Р	LPXN
216253 s al	29780	1	P	0.893	P	0.645	Р	PARVB
216282 x at	5432	1	P	1.579	P	1.305	Р	POLR2C
216299 s at	7517	1	P,A	2.575	P	2.219	P	XRCC3
216305 s at	6936	1	P	1.979	P	2.205	P	MRPL19
216338 s at	25844		P	0.617	P	0.537	Р	KLIPI
216379 x at	934		P	2.247	P	4.929	P	NaGLT1
216411 s at	196951		P	0.673	P,A	0.539	Р,А	FLJ32800
216411 s at	27036		P.A	1.631	P.A	1.743	р.	SIGLEC7; p75
	27030	1	P	0.622	P	0.673	P	5 differt pro
216556 x at		1	P	0.710	P	0.570	Р	
216559 x at		1	P.A	1.085	P	0.619	P.A	
216685 s at				0.778	P.M	0.509		ada
216705 s at	0.000	1	P,M,A		P.M	0.309	P	GATM; AGAT
216733 s at	2628	1	· · · · · · · · · · · · · · · · · · ·	0.602			P.A	
216746 at			A	1.363	M.A	1.515		HNRPU
216855 s at	3192		P	0.676	P	0.610	P,A	
216860 s at	10220		P	0.661	P.A.	0.481	A	GDF11
216899 s at	8935	1	P	1.360	P	1.617	P	SCAP2
216941 s at	9014	1	Р	1.544	P	1.411	P	TAFIB
216969 s at	3835	1	Р	0.694	P	0.529	Р	KNSL4
216971 s at	5339	1	P.A	0.571	A	0.486	M,A	PLECI
216975 x at	4861	1	A	1.927	Р	1.496	M,A	NPASI
216977 x at	6627	1	P	1.935	P	1.670	Р	SNRPAI
217007 s at	8751	I I	Р	0.599	P	0.595	Р	ADAM15
217010 s at	995	1	P	0.590	Р	0.619	P,A	CDC25C
217028 at	7852	1	A	1,586	P,A	3.898	P	CXCR4
217127 at	1491	1	Р	0.608	Р	0.590	Р	СТН
217150 s at	4771	1	P.A	1.900	Р	1.784	P	NF2
217168 s at	9709	1	Р	0.562	<u> </u>	0.467	Р	HERPUD1;
217173 s at	3949	1	Р	0.730	P,A	0.595	A	LDLR; FH; FHC
217185 s at		1	Р	2.112	P	1.671	Р	ZNF259P
217188 s at	11161	1	Р	0.704	P	0.507	Р	C14orf1
217250 s at	26038	1	P.A	1.525	Р	1.394	Р	CHD5
217284 x at	253190	L	Р	0.745	P,M,A	0.515	Α	dJ222E13.1
217289 s at	2542	1	Р	0.584	P	0.428	M,A	G6PC
217299 s at	4683	L	Р	1.578	Р	1.280	Р	NBS1
217309 s at	10311	1	P,M	0.695	P.A	0.643	P,A	DSCR3
217317 s at	60438	1	Р	1.539	Р	1.877	Р	MN7
217364 x at		I	P	1.527	Р	1.392	Р	
217370 x at		1	р	0.724	Р	0.548	P	
217416 x at		1	P,A	1.350	Р	1.502	Р	VAPA
217437 s at	6867		P,A	1.638	P	1.501	P	TACC1
217492 s at	11191		P	1.555	P	1.407	P	PTENP1
217492 s at	11191	1	A	1.647	P	1.291	P.M.A	PTENP1
217543 s at	8720		P	0.801	P	0.637	P	MBTPS1
217554_at	0120		P	1.659	P	1.629	P	

Affymetrix	LocusLink	Day 0		Day 3		Day 7		Common Name
ĺd	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	
217585 at		1	Р	1.893	Р	2.274	Р	NEBL
217591 at		1	Р	1.648	Р	1.462	Р	SKIL
217604 at		1	P,A	1.533	Р	1.314	Р	
217618 x at		1	Р	1.555	Р	1.525	Р	HUSI
217631 at	23560	1	P,A	1.498	Р	1.714	P	GTPBP4
217678 at		1	Р	0.599	Р	0.602	р	SLC7A11
217682 at		1	Р	1.474	р	1.773	р	PRO0149
217722 s at	51335	1	P	1.491	р	1.554	Р	NEUGRIN
217738 at	10135		P	1.524	р	1.838	р	PBEF1
217752 s at	55748	-	Р	1.723	Р	1.313	Р	CNDP2
217766 s at	23585	1	P	1.244	Р	1.579	Р	SMPI
217784 at	10652		P	1.607	P	1.343	P	YKT6
217786 at	10419		p	1.570	P	1.320	р	SKB1
217787 s at	2590		p	0.866	P	0.632	p	GALNT2
217787 S at	58533	1	P.A	1.380	P	1.619	р	SNX6
217790 s at	6747		P.A	1.345	P.A	1.524	P	SSR3; TRAPG
217790 s al	26073		<u>р</u>	1.743	p	1.324	p	POLDIP2
217800 s al	20073		P	0.726	P	0.556	р	GLTSCR2
	79109	L L	P	1.567	P	1.269	P	MAPKAPI
217808 s at		1	P	1.843	P	1.207	Р	BZW2
217809 at	28969		P	1.843	r P	1.913	р Р	ENAH; mena
217820 s at	55740		P P	1.555	l r P	1.549	P	USP39
217829 s al	10713	1	P		r P	1.503	p r	C20orf24
217835 x at	55969	1		1.628	-		p P	LUC7L2
217842 at	51631	1	p D	1.654	P	1.806	P P	CTDSP1
217844 al	58190		P	0.733	P	0.574	<u> </u>	
217846 at	5859	1	P	0.771	P	0.552	P	QARS
217858 s at	51566		p	1.399	P	1.866	P	ARMCX3
217859 s at	55334		P	1.455	Р	1.605	P -	SLC39A9
217872 at	55011	1	P	0.690	Р	0.514	P	FLJ20643
217890 s at	55742	<u> </u>	<u>A</u>	1.689	P,A	1.605	P,A	PARVA
217892 s at	51474	I	P	1.506	P	1.577	Р	EPLIN; SREBP3
217895 at	55037	<u> </u>	Р	0.743	Р	0.544	Р	FLJ20758
217896 s at	80011	<u> </u>	A	1.551	Р	1.621	P	NIP30
217897_at	53826	1	P,A	1.533	P,M	2.496	P	FXYD6
217901 at		<u> </u>	P,A	1.161	P	1.823	Р	DSG2
217905_at	79892	1	Р	1.460	P	1.565	Р	FLJI308I
217907 at	29074	1	Р	1.624	P	1.402	Р	MRPL18
217919 s at	28977		Р	1.948	P	1.713	Р	MRPL42
217923_at	23578	1	Р	1.514	Р	1.197	Р	PEF; PEFLIN
217930 s al	54472	1	P	0.774	Р	0.573	M,A	TOLLIP
217932_at	51081	1	Р	1.523	Р	1.209	Р	MRPS7
217936 at		1	р	1.319	Р	1.794	Р	ARHGAP5
217941 s at	55914	1	Р	1.427	Р	1.633	P	ERBB21P
217942 at	60488		Р	1.634	Р	1.605	P	MRPS35
217966 s at	116496	1	Р	0.727	Р	0.606	Р	Clorf24; NIBAN
217967 s at	116496	1	Р	0.652	Р	0.619	Р	Clorf24; NIBAN
217980 s at	54948	1	Р	0.849	Р	0.610	Р	MRPL16
217985 s at	11177	1	р	1.614	р	1.279	Р	BAZIA
217986 s at	11177	1	Р	1.563	Р	1.344	Р	BAZIA
217987 at	54529	1	Р	1.895	Р	1.720	Р	NS3TP1

Affymetrix		Day 0		Day J		Day 7		Common Name	
ld	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
217988 at	57820	l	Р	1.421	Р	1.786	Р	CCNB1IP1	
217992 s at	79180	1	Р	1.505	Р	1.453	Р	EFHD2	
217994 x at	54973	1	Р	0.710	Р	0.527	Р	FLJ20542	
217996 at	22822		Р	1.680	Р	1.598	Р	PHLDA1	
217997 at	22822		р	2.140	Р	2.698	Р	PHLDAI	
218012 at	64061	1	р	1.892	Р	2.115	Р	SE20-4	
218021 at	10901		P	0.866	Р	0.592	P.M	DHRS4	
218022 at	51231		p	0.724	P.M.A	0.647	P.M.A	VRK3	
218022 at	51660	1	P	1.651	P	1.078	P	BRP44I.	
218029 at	79567	1	A	1.656	P	1.665	P	FLJ13725	
218029 at	51569	1	P P	1.366	P	1.552	P	Ufm1; BM-002	
100	79650		P.A	1.500	P	1.548	P	FLJ13154	
218060 s at	4201	1	p p	1.573	P	1.342	P	MEA: HYS	
		-	P	1.391	<u>Р</u>	1.645	p (SLC12A7	
218066 at	10723		P	1.025	Р	0.622	P I	GMPPA	
218070 s at	29926			1.554	<u>г</u>	1.523	r P	MKRN2	
218071 s at	23609		P			1.323	r P	HRB	
218091 at	3267		P	1.469	P		P P	HRB	
218092 s at	3267		P	1.708	P	1.800			
218099 at	55852	1	P	1.416	9	1.579	P	HT008	
218100 s at	55081		Р	1.767	Р	1.785	P	ESRRBLI	
218104 at	54881		P	1.255	Р	1.559	P	TEX10	
218105 ธ.ยเ	51073		Р	0.842	P	0.580	Р	MRPL4	
218106 s at	55173	1	Р	1.551	P	1.634	Р	MRPS10	
218107 at	80232		P	1.569	P	1.714	Р	WDR26	
218108 at	55148	1	P	1.565	Р	1.423	Р	C14orf130	
218117 at	9978	L	Р	1.560	P	1.482	Р	RBX1; ROCI	
218124 at	54884	1	Р	0.639	P	0.512	Р	FLJ20296	
218138 at	8195	I	Р	1.382	Р	1.550	Р	MKKS	
218139 s at	55745	1	Р	1.482	Р	1.757	Р	FLJ10813	
218145_at	57761	1	Р	0.262	Р	0.251	Р	TRIB3; NIPK	
218146 ai	55830	1	Р	0.682	P	0.448	Р	AD-017	
218147 s at	55830	1	P	0.554	Р	0.326	Р	AD-017	
218156 s at	55720	L	Р	1.643	Р	1.307	p	F1J10534	
218163 at	28985	1	Р	1.731	P	1.638	Р	MCTSI; MCT-1	
218181 s at	54912	1	Р	1.420	P	1.770	P	MAP4K4	
218187 s at	65265	1	P	1.746	Р	1.817	P	FLJ20989	
218199 s at	65083	1	P,A	1.915	Р	1.766	Р	NOL6: NRAP	
218205 s at	2872	1	P P	0.870	Р	0.615	Р	MNK2	
218214_at	60673	1	P	1.514	Р	1.478	Р	FLJ11773	
218244 at	55035	1	Р	1.867	Р	1.760	Р	NOL8; Nop132	
218248 at	63901	1	Р	1.510	Р	1.685	Р	FI.J22794	
218261_at	10053		A	1.737	Р	1.907	Р	AP1M2	
218262 at	64777	1	Р	0.800	Р	0.551	Р	FLJ22318	
218269 al	29102	1	Р	1.773	Р	1.844	Р	RNASE3L	
218272 at	55020	1	P.A	0.860	P.A	0.590	Α	FLJ20699	
218275 at	1468		Р	0.852	Р	0.514	P,M,A	SLC25A10; DIC	
218282 at	55741	1	Р	0.776	Р	0.561	Р	C20orf31	
218290 at	55111	1	P	0.775	P	0.574	Р	PLEKHJI	
218291 at	28956		P	0.751	P	0.520	P	MAPBPIP	
218299 at	53838			1.803	P	1.628	p	Cl lorf24	

Affymetrix	Land 11	Dav 0		Day 3		Day 7		Common Name
ld	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
218303 x at	51315	1	р	1.326	Р	1.548	Р	LOC51315
218304 s at	114885	1	Р	1.587	Р	1.589	Р	OSBPL11
218307 at	55316		Р	0.767	Р	0.451	Р	FLJ11164
218309 at	55450	1	Р	1.236	р	1.859	P	CaMKIINalpha
218310 at	27342		Р	1.327	Р	1.566	р	RABGEFI
218332 at	55859		P	1.447	Р	2.236	Р	BEX1
218333 at	51009		Р	1.519	Р	1.240	Р	F-LANa
218335 x at	79155		P.M.A	1.512	Р	1.510	Р	TNIP2
218336 at	5202		Р	1.746	P	1.605	Р	PFDN2; PFD2
218341 at	79717		P	1.535	P	1.466	Р	FLJ11838
218348 s at	29066		p	1.407	P	1.561	P	ZC3HDC7
218355 at	24137		P	1.290	P	1.517	P	KIF4A:
218355 at	29960		P	1.912	p	1.603	p -	FTSJ2; FJH1
218358 at	79174		p p	0.788	P P	0.463	P	MGC11256
218358 at	9209		P	1.583	P	1.956	P	LRRFIP2
218367 x at	27005		P	0.798	P	0.535	p	USP21
218374 s at	57102		P	1.685	p	1.754	P	C12orf4
218380 at	60368		P	1.005	p	2.641	P	NALPI
218383 at	54930		P	0.704	P	0.527	P	Cl4orf94
218385 at	55168		P	1.556	P	1.319	P	MRPS18A
	25796		P	0.770	p	0.639	P	PGLS; 6PGL
218388 at			p	0.635	P	0.464	P	FLJ22386
218394_at	79641		p P	1.671	p P	1.489	P	T1MM10;
218408 at	26519				p r	0.698	P.A	NDE1:
218414 s at	54820		P	0.598	P P	1.914	P.A P	FLJ20489
218417 s at	55652		P.M.A	2.012		1.914	p P	TSAP6
218424 s at	55240	1	P	1.722	P		<u> </u>	
218426 s at	54476		P	0.737	P	0.541	M,A	TRIAD3
218434 s at	65985	<u> </u>	P	0.605	P	0.577	<u>P</u>	AACS
218438 s at	80306		P	0.852	P	0.591	P	EGI
218442 at	7268	1	Р	1.800	Р	1.705	Р	TTC4
218456 at	65981		Р	1.487	P	1.682	P	CIQDCI
218465 at	55161		P	1.599	P	1.797	P	FLJ10525
218466 at	79735	1	Р	0.713	P	0.542	P	TBCID17
218488 al	8891	1	Р	1.510	Р	1.331	P	ElF2Bgamma
218490 s at	55900	1	р	1.117	Р	1.570	P	ZNF302
218493 at	79622	1	Р	1.545	P	1.137	P	C16orf33
218496 at	246243	1	P	1.563	P	1.461	P	RNASEHI
218497 s at	246243	1	р	1.579	Р	1.223	P	RNASEHI
218499 at	51765	1	P	1.290	Р	1.564	P	MST4; MASK
218500 at	51337	1	р	0.718	P	0.529	P.M	LOC51337
218507 at	29923	1	Р	1.447	Р	1.521	P	HIG2
218508 at	55802	1	P,A	1.520	Р	1.281	P	HSA275986
218513_at	55319		Р	1.584	Р	1.579	Р	FLJ11184
218517 at	79960	1	P	1.442	P	1.593	Р	PHF17;
218518 at	51306	1	Р	1.117	P	1.579	Р	C5orf5: N61
218523 at	64077	1	Р	0.606	<u>A</u>	0.417	A	LHPP
218535 s at	55781	1	Р	1.637	Р	1.683	Р	RIOK2
218536 at		1	Р	0.895	р	0.654	P	MRS21.
218545 at	55297	1	Р	1.480	Р	1.781	Р	FLJ11088; p56
218547 at	79947	I	Р	1.580	Р	1.366	Р	DHDDS

Affymetrix	1	Day 0		Day 3		Day 7		Common Name	
1d	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
21856] s at	57128		Р	1.821	Р	1.477	P	C6orf149	
218564 at	55159	1	Р	1.714	Р	1.825	р	F1.J10520	
218566 s al	26973	1	P	1.794	Р	1.825	Р	CHORDC1	
218574 s at	29995	1	Р	1.989	Р	1.766	Р	LMCD1	
218575 al	64682		P	1.672	Р	1.502	Р	ANAPC1	
218576 s al	11266	1	Р	1.662	Р	1.763	Р	DUSP12; YVII1	
218579 s at	60625	1	P.M.A	1.738	P	1.392	Р	DHX35	
218585 s at	51514	1	P	1.974	Р	2.025	Р	RAMP; L2DTL	
218588 s at	10827	1	Р	1.236	Р	1.591	Р	C5orf3; 133K02	
218590 at	56652	1	р	i.757	Р	1.689	Р	PEO1; TWINL	
218591 s at	79954	1	P.A	1.556	P,A	1.538	P,A	FLJ14075	
218608 at	23400	1	Р	0.768	P,A	0.488	P.A	HSA9947	
218625 at	51299	1	Р	1.937	Р	2.374	Р	NRNI	
218640 s at	79666	1	Р	1.514	Р	1.939	P	PLEKHF2	
218642 s at	79145	1	P.M	2.367	P	2.145	Р	CHCHD7	
218647 s at	79693		Р	1.771	Р	1.577	P	FLJ23476	
218664 at	51102		Р	0.843	Р	0.619	Р	CGI-63; NRBF1	
218670 at	80324		Р	1.812	P	1.590	Р	PUSI: MLASA	
218672 at	79005	1	P.A	1.655	Р	1.623	Р	SCNMI	
218675 at	57100	1	P,A	1.305	Р	1.712	Р	SLC22A17	
218679 s at	51160	1	P	0.772	P	0.526	Р	VPS28	
218681 s at	23753	1	P	0.949	P	0.617	Р	SDF2L1	
218688 at	26007	1	P	0.712	Р	0.438	P.A	DKFZP586B1621	
218689 at	2188	1	A	1,654	P.A	1.803	Р	FANCF; FAF	
218692 at	55638	1	Р	1.338	Р	1.573	Р	FLJ20366	
218701 at	51110	1	Р	1.298	Р	1.548	Р	LACTB2: CGI-83	
218708 at	29107	1	р	1.755	Р	1.500	P	NXTI: P15	
218710 at	55622	1	Р	1.656	Р	1.628	Р	FLJ20272	
218712 at	54955	1	P	1.597	Р	1.447	Р	FLJ20508	
218714 at	78994	1	P	0.848	P	0.559	Р	MGC3121	
218715 at	55813	i	P	1.621	P	1.443	Р	HCA66	
218719 s al	64785	1	A	1.640	P	1.328	P	FLJ13912	
218721 s at	54953	1	P	1.661	P	1.865	р	FLJ20505	
218731 s at	64856	1	P	0.615	P.A	0.378	A	WARP	
218733 at	55167	1	P	1.573	P	1.672	P	FLJ10546	
218736 s at	54873	<u> </u>	P	1.563	P	1.437	P	PALMD	
218740 s al	80279	1	P	0.839	P	0.635	Р	CDK5RAP3	
218750 at	79101	1	P	1.754	P	1.834	Р	MGC5306	
218751 s al	55294		P	1.541	Р	1.416	Р	FBXW7; AGO	
218754 at	79707	L	Р	1.565	Р	1.487	Р	FLJ23323	
218757 s at	65109	1	P	1.456	Р	1.539	Р	UPF3B	
218760 at	51004	1	P	1.701	Р	1.388	P	COQ6	
218767_st	57109	1	P.M.A	1.537	P	1.392	Р	XPMC211	
218768 at	57122		Р	1.680	Р	1.703	Р	NUP107	
218772 x at	55151		Р	1.523	Р	1.808	Р	C9orf87	
218773 s at	22921		P	0.746	P	0.514	P	MSRB	
218774 at	28960	1	P	1.524	P	1.088	, p	DCPS	
218777 at	80346	1	P	0.681	P	0.636	P	PP432	
218783 at	25896		P	1.709	p	2.043	P	DKFZP434B168	
218813 s at	56904		P	0.747	P	0.546	p	SH3GLB2	

Affymetrix		Day 0		Day 3		Day 7	,		
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
218820 at	56967	1	Р	1 258	P,M	1 785	Р	C14orf132	
218825_at	51162	1	Р	0 578	A	0 448	Α	EGFL7, ZNEUI	
218834_s at	54972	1	Р	0 635	P	0 577	Р	HSPA5BP1	
218836 at	79897	1	Р	1 633	Р	1 323	Р		
218838 s at	64427	1	Р	0 949	Р	0 653	Р	FLJ12788	
218847 at	10644	1	Р	1 759	P	1 615	Р		
218851 s at	55339	1	P,A	2 367	P	3 437	Р	WDR33	
218853 s at	56180	1	Р	1 435	P	1 655	Р	MOSPD1	
218871 x at	55454	1	Р	1 504	Р	1 581	Р	GALNACT-2	
218880 at	2355	1	Р	2 146	Р	1 984	Р	FOSL2	
218881_s_at	79579	1	A	1 561	P	1 534	M,A	FOSL2	
 218882_s_at	10885	1	Р	1 697	Р	1 651	Р	WDR3	
218884_s_at	60558	1	Р	1 701	Р	1 852	P	FLJ13220	
218885 s at	79695	1	Р	0 501	Р	0 335	Р	GALNT12	
218886_at	55003	1	Р	2 000	Р	1 604	Р	PAK1IP1	
	64318	1	Р	1 513	Р	1 356	Р	C10orf117	
218901 at	57088	1	P,A	1 478	P,A	1 596	P,M,A	PLSCR4	
218904 s at	55071	1	P	1 605	P	1 531	Р		
218915_at	51219	1	Р	2 2 1 9	Р	2 288	Р	NF2, CAN	
218918_at	57134	1	Р	0 568	P,A	0 674	P,A	MANICI, HMIC	
218921 at	59307	1	P	0 682	P	0 539	P	SIGIRR	
218923_at	1486	1	P	1 300	P	1 766	P	SPATAI	
218924_s_at	1486	1	P	1 225		1 665	Р	CTBS	
218929_at	55602	1	P	1 411	P	1 703	Р	CARF	
218932 at	54680	1	Р	2 273	Р	2 580	Р	FLJ20729	
218938 at	79176	1	P,M	0 742	A	0 639	M,A	MGC11279	
218941_at	26190	1	P	1 564	P	1 423	P	FBXW2, FBW2	
218948 at	55278	1	P,A	1 646	Р	1 628	P,M	QRSL1, GatA	
218949 s at	55278	1	P	1 658	P	1 474	P	QRSLI	
218951 s at	55344	1	Р	0 641	P	0 707	Р	FLJ11323	
218953 s at	78991	1	Р	0 759	P	0 388	Р	MGC3265	
218959 at	3226	1	Р	1 272	P	1 609	P	HOXC10	
218961 s at	11284	1	Р	0 613	P	0 397	Р	PNKP	
218972_at	55761	1	Р	1 527	P	1 823	Р	TTC17	
	54952	1	Р	0 900	P	0 624	Р	SECP43	
218981_at	57001	1	Р	1 635	P	1 620	P	ACN9, DC11	
	51279	1	P	0 303	A	0 252	P,A	CIRL, CIRLI	
	1906	1	A	2 095	P,M	1 952	P,M	EDNI, ETI	
218997_at	64425	1	Р	1 915	P	1 583	P	PAF53	
219000_s_at	79075	1	Р	2 121	P	2 086	Р	MGC5528	
219004_s_at	54069	1	Р	1 643	P	1 610	Р	C21orf45	
219007_at	79700	1	Р	1 549	Р	1 579	Р	NUP43	
219008_at	60526	1	Р	1 701	Р	1 366	Р	FLJ21820	
219010_at	55765	1	Р	1 398	Р	1 623	Р	FLJ10901	
219014_at	51316	1	Р	1 861	P	2 168	P	PLAC8, C15	
219022_at	64897	1	Р	1 576	Р	1 373	Р	FLJ12448	
219026_s_at	9462	1	Р	1 696	P	1 785	Р	RASAL2	
219031_s_at	51388	1	Р	1 711	P	1 518	P	CGI-37	
219032_x_at	23596	1	Р	0 952	Р	0 490	Р	OPN3	
219037_at	51018	1	P	1 598	P	1 501	Р	CGI-115	

Affymetrix		Day 0		Day 3		Day 7			
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
219038_at	79710	1	Р	1 248	Р	1 550	Р	ZCWCC2	
219049 at	55790	1	РМ	1 639	Р	1 430	Р	ChGn	
219066_at	60490	1	P,M	1 553	Р	1 464	Р	MDS018	
219069 at	54851	1	Р	1 548	Р	1 652	Р	FGIF, FLJ20189	
219070 s at	64598	1	Р	0 782	Р	0 572	Р	MOSPD3	
219073 s at	114884	1	P,A	1 149	Р	1 608	Р	OSBPL10	
219081_at	54882	1	Р	1 326	Р	1 508	Р	ANKHD1, MASK	
219083 at	55164	1	A	1 777	Р	1 791	P,M	FLJ10539	
219088_s_at	79177	1	A	1 545	P,M	1 168	P,M	ZNF576	
219094 at	29067	1	P,A	1 820	Р	1 903	Р	HSPC056	
219102_at	57333	1	P	0 634	Р	0 637	Р	RCN3, RLP49	
219105 x at	23594	1	P	1 631	P	1 546	Р	ORC6L	
219109_at	79582	1	P	1 345	Р	1 524	Р	PF20, WDR29	
219125_s_at	55974	1	P	0 813	Р	0 645	Р	LOC55974	
219126_at	55274	1	P	0 604	P	0 521	Р	PHF10	
219130 at	54482	1	P	1 297	P	1 603	Р	FLJ10287	
219138 at	9045	1	A	1 544	P,A	1 169	P,A	RPL14	
219142_at	65997	1	P	1 280	P	1 628	P	RASLIIB	
219147_s_at	54981	1	P	0 654	P	0 567	Р	NRKI	
219149 x at	51163	1	P,M	1 658	P	1 387	P	DBR1	
2191752 at	50512	1	P,M	0 706	P,A	0 413	A	PODLX2	
219152_at 219158_s_at	80155	1	P	1 909	P	1 727	P	TBDN100	
219163 at	54811	1	P	1 509	P	1 421	P	ZNF562	
219105_at	54946	1	P	0 726	P	0 622	 P	SLC41A3	
219175_3_dt	55299	1	- <u>-</u>	1 639	P	1 464	P	BRIX, FLJ11100	
219177_at	79691	1	P	1 737	P	1 665	P	QTRTD1	
219178_at	28992	1	P	0 425	P	0 265	P,A	LRP16	
219188_3_at	79651	1	P	0 771	P	0 205	P	RHBDL6	
219202_at	11274	1	P	1 391		1 748	P	USP18	
219211_at 219214_s_at	30833	1	P,A	0 764	P,A	0 503	A	RBAK	
219214 <u>s</u> at 219240 s at	80007	1	P	1 597	P	1 681	P	FLJ13490	
219240 <u>s</u> at 219244 s at	26589	1	P	1 635	 Р	1 433	P	MRPL46	
219244_s_at	80745	1	- <u>-</u> P	1 514	P	1 607	P	THUMPD2	
219248_{at} 219250 s at	23767	1	A A	1 314	P,A	1 502		FLRT3	
219250_s_at 219253 at	79134	1	<u> </u>	0 813	P	0 657	P,A P	FAMIIB	
219253_at 219254_at	79134	1	$\frac{r}{P}$	1 022	P A	0 623	P,A	FLJ22222	
219254_at	54962	1	P	2 314	P	2 346	P	FLJ20516	
219258_at	79589	1 1	P,A	1 851	P	2 2 3 4 0	P	RNF128	
219265_at	59348	1	P,A	1 563	P,M	2 048	P	ZNF350	
219200_at	79094		P	0 274	M,A	0 242	A A	MGC4504	
219270_at	23554	1	P,A	1 391	P,M,A	1 809	<u>P</u>	TM4SF12	
219274_at 219275 at	9141	1	P	1 799	$\frac{1,W,A}{P}$	1 663	P	PDCD5	
219273_at 219283_at	29071	1	P	0 573	P P	0 510	P	CIGALT2	
<u> </u>		1	P P	+	P	<u> </u>	P		
219288_at	57415		<u>Р</u> Р	2 172	<u>Р</u> Р	1 595		HT021	
219292_at	55145			1 496	↓	1 758	P	THAP1	
219293_s_at	29789	1	P	1 509	P	1 539	P	PTD004	
219299_at	55039		P	1 553	P	1 587	P	FLJ20772	
219303_at	79596	1	P	1 746	P P	1 810	P P	C13orf7	
219312_s_at	65986	1	<u> </u>	1 102	P	1 534	P	ZBTB10	

Affymetrix	· · · · · ·	Day 0		Day 3		Day 7		Common Name
ld	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Fings	Contaiou Mature
219313 at	54762	1	M,A	1.180	P,A	1.545	P.A	DKFZp434C0328
219321 at	64398	1	Р	1.555	Р	1.481	Ρ	MPP5
219324 at	79159	1	Р	1.720	Р	1.198	Р	MGC3731
219343 at	55664	1	Р	1.488	Р	1.577	Р	CDC37L1
219345 at	51027	1	p	0.816	P	0.616	Р	CGI-143
219346 at	79414	1	P	0.974	P	0.659	P	LRFN3
219347 at	55270	1	P	1.769	P	1.545	p	NUDT15
219361 s at	64782	1	A	2.215	P	2.006	Р	FLJ12484
219362 at	79688	1	P.A	1.521	P	1.328	P	MAK10
219362 at 219363 s at	\$1001	1	P	1.750	p 1	1.585	P	CGI-12
219365 s at	57099	1	P.A	1.679	p	1.319	p	AVEN; PDCD12
219360 at 219371 s at	10365		P	1.910	P	1.396	p	KLF2; LKLF
	54344		P P	0.739	p	0.617	р	DPM3
219373 al			r P	1.568	P	1.654	P	ZNF322A
219376 at	79692	1	p P		p r	1.656	P	CI8orfil
219377 at	64762	1		1.532	p P		r P	HADATI
219384 s at	23536	1	P	1.826	<u> </u>	1.699	r P	LOC55580
219387 at	55580	1	P,M	1.673	P	1.611	-	
219401 at	64132	1	P	0.610	P	0.610	A	XYLT2; XT2
219410 at	55076	I	P	1.261	P	1.731	Р	FLJ10134
219416 at	51435	I	Р	1.336	P	1.501	Р	SCARA3
219427 at	79633	I	Р	1.611	P	1.496	P	FATJ; FLJ23056
219447 s at	51006	1	P	0.892	P	0.641	Р	SLC35C2
219459 at	55703	1	P,M	1.578	Р	1.451	Р	POLR3B
219460 s at	55654	1	P.A	1.523	P	1.434	P	FLJ20507
219469_at	79659	1	Р	1.509	P	1.579	Р	FLJ11756
219470 x at	54619		P	1.524	Р	1.226	P	CCNJ
219472 al	79172	<u> </u>	P	1.550	P	1.376	Р	MGC11266
219473 at	54834	1	Р	1.505	Р	1.574	Р	GDAP2
219477 s al	55901	I	M,A	1.852	Р	2.185	Р	THSD1
219479 at	79070	1	Р	0.925	Р	0.582	Р	KDELCI
219484 at	29915	1	Р	1.599	Р	1.739	Р	HCFC2
219490 s at	64858	1	Р	1.691	Р	1.406	Р	DCLREIB
219493 at	79801	l	Р	1.554	P	1.334	P	SHCBPI
219495 s at	7733	l	Р	1.516	Р	1.471	P	ZNF180
219499 at	55176	1	Р	1 882	Р	2.024	P	SEC61A2
219523 s at	55714	1	P	0.837	P	0.547	P	FLJ10474
219540 at		1	Р	1.416	P	1.688	P	ZNF267
219555 s at	55839	1	P	1.550	Р	1.234	Р	BM039
219557 s at	56675	I I	P	1.475	P	1.662	Р	NRIP3
219560_at	79680	i	Р	1.529	Р	1.124	P	FLJ21125
219562 at	25837	1	Р	0.325	A	0.249	A	RAB26; V46133
219567 s at	64789	1	Р	1.427	p	1.785	Р	FLJ21144
219575 s at	64146	1	P	0.836	Р	0.617	P	PDF
219577 s al	10347	1	P	0.666	Р	0.652	P.M.A	ABCA7
219582 at	79627	1	P	1.940	P	1.812	P	OGFRLI
219595 at	7574	1	A	1.976	P	2.431	P	ZNF26
219612_3_at	2266		A	2.124	P	2.150	P	F00
219626 at	79649		P	1.310	P	1.505	P	FIJ12649
219628 at	64393	· · ·	<u>р</u>	1.870	p	1.949	P P	WIG1
219631 at	29967		P	1.870	P	2.302	P P	ST7

Affymetrix	LocusLink	Day 0		Day 3		Day 7	Common Name		
fd	LOCUSLINK	Normalized	Fiage	Normalized	Flags	Normalized	Flags	Contractine	
219646 at	54849	1	Р	1.738	Р	1,465	Р	FLJ20186	
219648 al	55686	1	Р	1.520	P	1.436	Р	FLJ10116	
219650 at	54821	1	Р	1.483	p	1.642	Р	FLJ20105	
219664 s at	26063	ι	Р	0.826	Р	0.649	Р	DECR2; PDCR	
219690 at	79713	1	Р	1.608	Р	1.349	Р	FLJ22573	
219703 at	55329	1	P	1.687	Р	1.701	Р	MNSI	
219709 x at	65990	1	Р	0.827	P	0.643	Р	MGC2494	
219717 at	54876	1	P	1.289	P	1.514	Р	FLJ20280	
219736 al	55521	· · ·	P.A	1.380	Р	1.943	P	TRIM36	
219742 at	80758	· · ·	P	0.830	P	0.545	P	MGC10772	
219760 at	64130	1	P	1.763	P	1.140	P	LIN7B	
219774 at	54520	1	P	1.589	P	1.421	Р	FLJ10996	
219800 s at	79896	1	P	1.335	P.A	1.566	P	THNSL	
219802 at	79912	· · · · · · · · · · · · · · · · · · ·	P	0.818	p	0.620	P	F1,J22028	
219805 at	63932		P	1.380	p	1.535	P	FLJ22965	
219825 at	56603		P.A	2.387	P	2.119	P	CYP26BI	
219834 al	79800		P	0.551	A	0.792	P,A	ALS2CR8	
219861 at	55192	1 1	P	0.956	P	0.613	P,A	FLJ10634	
219884 at	26468	1	P	1.658	P	1.510	р	LHX6; LHX6.1	
219895 al	55026		A	1.092		2.294	P.M	FLJ20716	
2199917 at	80001		P.A	1.553	P	1.117	P,A	FLJ23024	
219933 at	51022		P	1.535	P	1.524	P	GLRX2; GRX2	
219938 s at	9050		P.A	1.408	P,A	1.613	<u>р</u>	PSTPIP2	
219944 at	79745		P,A	1.905	P.A	2,992	p	FLJ21069	
219945 at	29118	1	P	0.386	P.A	0.423	p	DDX25; GRTH	
219966 x at	54971	1	P	1.494	P	1.606	p	BANP	
219984 s al	57110		P	1.126	P,A	1.531	P.M.A	HRASLS	
219987 at	79584	1	P.A	1.556	p	1.622	P	FLJ12684	
219990 at	79733		P	1.652	P	1.538	P	FLJ23311	
219997 s al	64708	1	p	1.557	P	1.404	P	COPS7B	
219998_ai	29094		P	1.673	P	1.228	P	HSPC159	
220011_at	79000	1		1.607	P	1.413	P	MGC2603	
220014 at	51334		P	1.625	P	1,662	P	LOC51334	
220014_al	51747		P	1.653	- '	1,469	P	LUC7A; CROP	
220051 at	10942	1	p	0.724	P	0.627	P.M	PRSS21	
220092 s at	84168	1	P.A	1.462	P.M.A	1.653	P	ANTXRI	
220140 s at	29916	1	P	1.501	P	1.378	P	SNXII	
220143 x at	55692	<u> </u>	P	1.939	P	2.100	p	LUC7L2	
220143 x at	80067		P	1.716	P	1.613	P	FLJ13096	
220179 at	64180	1	P	0.518	P	0.739	P	DPEP3	
220179_at	11162	1	P	0.749	P,A	0.655	P.M	NUDT6	
220199 s at	64853	1	P	1.826	P	1.849	P	FLJ12806	
220205 at	7179	1	p	0.615	P	0.725	P	TPTE; PTEN2	
220253 s at	29967	1	P	1.508	P	1.902	P	ST7; F1J12929	
220254 at	29967	1	P	1.500	P	1.736	P	ST7; FLJ12929	
220262 s al	65989		P	0.713	P,M	0.626	P.M	EGFL9	
220358 at	55509		P.A	1.819	P,M P	1.783	P.M	SNFT; JUNDM	
	55671		P.A		P		P.M		
220368_s_at 220397_at	56890	1		1.559		1.479		KIAA2010	
220397 at	51302		A P	2.070	<u>P</u>	2.824	<u>Р</u> Р	MDM1 CYP39A1	

Affymetrix		Day 0		Day 3		Day 7			
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
220452 x_at		1	M,A	1 479	Р	1 771	P,M		
220466 at	80071	1	P	1 746	Р	1 796	P	FLJ13215	
220484 at	55283	1	P,A	1 156	Р	1 562	Р	MCOLN3	
	54828	1	Р	0 619	P,M	0 488	A	BCAS3	
220500 s_at	11159	1	P	0 825	P	0 657	P	RABL2A	
220520 s_at	54830	1	M,A	1 483	Р	1 974	P	FLJ20130	
220545_s_at	60385	1	Р	0 606	Р	0 583	P,A	TSKS, TSKS1	
220565_at	2826	1	P,M	0 644	P,M,A	0 675	P	GPR2, CCR10	
	9209	1	P	1 745	P	1 892	Р	LRRFIP2	
220633 s_at	50809	1	P	0 770	Р	0 649	P,A	HP1-BP74	
220643 s_at	55179	1	- P	0 823	Р	0 643	P	FAIM, FAIM1	
220647 s_at	51287		P	1 569	Р	1 348	Р	E2IG2	
220651_s_at	55388	1		2 028		1 748	P	MCM10	
220688_s_at	51154	1		1 707	Р	1 373	Р	Clorf33	
220707_s_at	80020	1	P,A	0 832	P,M,A	0 598	A	FLJ23322	
220748 s_at	51157	1	P	0 722	P	0 517	Р	ZNF580	
220771_at	51152	1	P	1 227	P	1 815	P	LOC51152	
220839 at	29081	1	P,A	1 960	P,A	1 583	P,A	HSPC133	
220839_dt 220840 s_at	55732	1	P	1 832	P	1 842	<u>P</u>	FLJ10706	
220841_s_at	54806	1	P	1 574	P	1 304	P	AHI1	
220892_s_at	29968	1		0 354	P	0 300	P	PSAT1	
220934_s_at	79064		P	0 638	P,M,A	0 537	A	MGC3196	
220934_ <u>s_at</u>	55766	1	P,A	1 212	P,A	1 529	P	H2AFJ	
220930_s_at	27090	1	P	0 987	P	0 563	P	SIAT7D	
220987_s_at	81788	1	P	1 556	P	1 560	P	SNARK	
220992_s_at	81627	1		1 691	P	2 013	P	Clorf25	
221011_s_at	81606	1	P	1 150	P	2 247	P	LBH	
221014 s at	83452	1	 	1 566	P	1 511	P	RAB33B	
221014 <u>_3_</u> at	56259	<u> </u>	 P	1 500	- 	1 589	P	CTNNBLI	
221021_s_at	81575	1	P,M	1 265	P	1 677	<u>Р</u>	DKFZP434F0318	
221031_3_at	8863	1	PM	1 889		1 933	P	PER3	
221049 <u>-</u> 3_at	4166	1	P	1 682	P	1 503	P	CHST6, MCDC1	
22109 <u></u> 221104 s at	55335	1		1 249	P	1 551	P	NIPSNAP3B	
221104_3_at	9236	1	P	1 485	P	1 609	P	CPR8	
221190_s_at	29919	1	P	1 562		1 437	P	C18orf8,	
221198_s_at	54819	1		1 635	P	1 812	P	ZCCHC10	
221196_x_at	79184	1	P,A	1 524	P	1 270	P	C6 1A	
221206_at	<u> </u>	1	P	1 436	P	1 596	P		
221213 s at	54816	1	P,A	0 703	P,A	0 638	P,A	FLJ20086	
221219_s_at	54758	1	P	1 711	P	1 381	P	DKFZp434G0522	
221255 s_at	83460	1	P	1 513	Р	1 303	P	MGC2963	
221260 s at	81566	1	P	1 519	P	1 652	P	C12orf22	
221267_s_at	81926	1	P	0 774	P	0 574	P	C19orf27	
221270_s_at	81890	1	P,A	0 894	P,A	0 552	A	QTRT1, TGT	
221434 s at	81892	1	P	1 867	P	1 867	P	C14orf156	
221435 x at	81888	1	P	0 819		0 585	P	НТ036	
221437_s_at	64960	1	P	1 857	P	1 754	P	MRPS15	
221437_5_at	56154	1	P,M	1 247	P	1 711	P	TEX15	
221489 s at	81848	1	P	1 551		1 553	P	SPRY4	
221409 <u>s</u> at	3839	1	P	1 551	P	1 493	P	KPNA3	

۲

!

Affymetrix		Day 0		Day 3		Day 7		
ld	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name
221510 s at	2744	1	Р	1.833	Р	2.008	Р	GLS; GLS1
221511 x at	57499		р	1.214	р	1.638	р	CPR8;
			_					KIAA1254
221515 s at	51451	<u> </u>	Р	1.549	P	1.368	P	LCMT1; CGI-68
221523 s at	58528	1	Р	0.978	P	1.602	Р	RAGD
221524 s at	58528		P	0.922	P	1.580	P	RRAGD
221528 s at	63916	1	Р	1.669	Р	1.380	P	ELMO2
221535 at	55341	1	Р	1.848	Р	1.862	Р	FL11301
221536 s at	55341	<u> </u>	Р	1.943	Р	1.910	P	FLJ11301
221537_at	84202	1	р	1.634	Р	1.402	P	DKFZp564A176
221550 at	1355	<u> </u>	Р	1.526	Р	1.124	P	COX15
221551 x at	27090	1	P,A	0.801	Р	0.609	P.A	SIAT7D
221559 s at	79003	1	Р	1.507	Р	1.509	Р	MIS12
221562 s at	23410	1	Р	0.706	Р	0.488	P.M.A	SIRT3; SIR2L3
221577 x at	9518	1	P,M	0.441	A	0.273	Λ	GDF15
221582 at	92815	t	Р	0.581	P,M	0.469	P,A	HIST3H2A
221589 s at	4329	1	P	0.749	Р	0.629	Р	Cl4orf45
221598 s at	9442	1	A	1.789	Р	1.696	P,M	CRSP8
221628 s at	84656	1	Р	0.582	P,M,A	0.572	P,A	N-PAC
221633 at	29781	I	P,A	1.538	Р	1.300	Р	<u>384D8-2</u>
221648 s at		<u> </u>	Р	1.527	Р	1.493	Р	PNAS-4
221652 s at	55726	1	Р	1.843	Р	1.922	Р	FLJ10637
221664 s at	50848		Р	0.529	A	0.489	A	FHR:
221676 s at	23603		Р	1.642	P	1.619	Р	COROIC
221677 s at	29980		Р	1.563	р	1.598	Р	DONSON
221693 s at	55168	I	Р	1.529	P	1.274	Р	MRPS18A
221695 s at	10746	1	Р	1.487	Р	1.798	P	MAP3K2
221704 s at	79720	1	P	1.591	Р	1.544	þ	FLJ12750
221713 s at	79929	1	P.A	1.756	Р	1.680	p	FLJ12748
221718 s at	11214	1	Р	1.591	Р	1.552	Р	AKAP13
221727_at	10923	1	Р	1.517	Р	1.795	P	PC4
221741 s at	54915	1	Р	1.575	P	1.651	Р	dJ963E22.1
221754 s at	57175	I	Р	0.790	Р	0.553	Р	COROIB
221755 al	254102	1	Р	0.647	P,M	0.469	P,A	DKFZp762C186
221759 at	92579	1	Р	0.734	Р	0.487	P,A	G6PC3
221760 at		1	A	1.742	р	2.686	Р	MANIAI
221768 at		1	Р	1.601	Р	1.638	Р	SFPQ
221780 s at	55661	I	Р	1.501	Р	1.237	Р	DDX27
221788_at	5238	1	р	1.134	Р	1.547	P	PGM3
221800 s at	80233	1	р	0.863	Р	0.605	Р	F1J22175
221810 at		1	P,A	1.513	Р	1.488	P	
221820 s at	84148	L	Р	0.814	Р	0.638	р	MYSTI
221823_at	90355	1	Р	1.703	Р	2.045	Р	LOC90355
221832 s at		1	P	1.392	Р	1.535	Р	LUZPI
221837 at	84861	1	Р	0.739	P,A	0.454	M,A	F1.J14360
2218-11 s at		1	Λ	1.647	A	1.684	Р	KLF4
221864 at	93129	1	Р	0.567	P	0.605	р	MGC13024
221873 at	7702	1	Р	1.410	Р	1.507	P	ZNF143
221892 at		1	Р	0.599	Р	0.532	Р	H6PD
221919 at	3178		Р	1.530	Р	1.499	Р	HNRPAI

Affymetrix	LocusLink	Day (Day 3		Day 7		Common Name	
ld	LOCUSLINK	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
221934 s at	55152	1	Р	0.738	р	0.533	Р	FLJ10496	
221951 at		1	Р	0.566	P,A	0.534	P,A	LOC283232	
221953 s at	10893	1	M,A	0.824	P,A	0.529	A	MMP24	
22 970 s at	25926	1	Р	1.656	Р	1.514	Р	DKFZP586L0724	
221973 al			Р	0.816	P,A	1.506	Р	LOC150759	
221987 s at	55720	1	Р	1.784	Р	1.202	Р	FLJ10534	
221998 s at	51231	1	Р	0.620	P	0.553	Р	LOC51231	
222006 at		1	Р	1.623	Р	1.382	Р	FGFR3	
222010 at	39		Р	1.890	Р	2.057	Р	ACAT2	
222011 s at	6950		Р	1.702	Р	1.775	Р	ACAT2	
222040 at	3178		Р	1.590	Р	1.306	Р	HNRPAI	
222043 at	1191		Р	1.116	Р	1.552	Р	CLU	
222045 s at	63935		Р	0.951	Р	0.657	P.M	C20orf67	
222074 at	7389		P.A	2.217	P	2.461	Р	UROD	
222088 s at	144195		P	1.554	P	1.342	Р	SLC2A14	
222103 at	466	1	P	1.429	P	1.640	Р	ATFI	
222108 at		1	P	1.393	Р	1.626	P		
222111 at	+	1	Р	0.643	P	0.677	P	KIAA1164	
222125 s at	54681	· · ·	P	0.579	P	0.580	Р	PH-4; FLJ20262	
222130 s at	29960		P	1.878	P	1.537	P	FTSJ2: FJH1	
222149 x at	LITO		· ·	1.346	P.A	1.519	P.M	DKFZp434P162	
222154 s at	26010		P	1.348	P	1.658	P	DNAPTP6	
222156 x ai	57499		P	1.251	P	1,601	P	CPR8	
222162 s at	9510	· ·		1.512	P.M	1.463	P	ADAMTSI	
222204 s at	54700		P	1.857	p	1.703	P	RRN3	
222231 s at	55379		P	1.611	Р	1.356	P -	PRO1855	
222233 s at	64421		P	1.526	P	1.558	P	DCLREIC	
222234 s at	79007		P,A	0.707	P.M	0.631	P,A	MGC3101	
222235 s at			P	1.906	P	1.879	P	dJ19N1.1	
222240 s at	51477	1	P	0.664	P	0.518	P	ISYNAI	
222249 al		1	P,A	1.632	P.A	1.595	P	KIAA1651	
222250 s al	25896		p	2.134	P	2.027	P	DKFZP434B168	
222258 s at	23677		P	1.589	P	2.227	P	SH3BP4	
222263 at	79939		P,M	0.957	P	0.658	P,A	SLC35E1	
222266 at			P	1.618	P	1.621	P	C19orf2	
222269 at		1		1.916	P.A	1.682	P.A	UNO8193	
222274 at	150244	<u> </u>	A	1.544	P.A.	1.537	P	FLJ31568	
222305 at			P.A	3.630	p	3.539	P	HK2	
222312 s at	5350	1	P.A	1.429	P	1.518	Р	PLN	
222360 al	51611	1	P	1.587	Р	1.785	Р	CGI-30	
222382 x at	23165	1	P.A	1.699	P.A	1.537	Р	NUP205	
266 s at	934	1	P.A	2.416	Р	5.457	Р	CD24; CD24A	
31845 at	2000	1	Р	1.572	Р	1.333	Р	ELF4	
32088 at	8548	1	P.M.A	1.340	P	1.632	Р	BLZFI	
32094 at	9469	1	P	1.807	P	1.822	Р	CHST3	
33132 at	29894		P	0.801	P	0.627	P	CPSF1	
33307 at	27341		P	1.551	P	1.124	P	CG1-96	
33778_at	25771		P	0.726	P	0.564	P	C22orf4	
34408 at	6253	1	P	0.403	P	0.463	P	RTN2	
34868 at	23381	1	P	1.907	P	1.878	P	ESTIB	

Affymetrix LocusLin		Day 0)	Day 3		Day 7			
Id	LocusLink	Normalized	Flags	Normalized	Flags	Normalized	Flags	Common Name	
35156_at		1	Р	0 830	Р	0 578	P	LOC203069	
35179_at	26229	1	Р	0 855	Р	0 625	P	B3GAT3	
35436_at	2801	1	Р	0 875	P	0 648	P	GOLGA2	
35626 at	6448	1	Р	0 707	Р	0 459	Р	SGSH, HSS	
36545_s_at	9814	1	Р	0 838	Р	0 604	Р	KIAA0542	
36552_at	26005	1	Р	1 574	Р	1 743	P	DKFZP586P0123	
36553_at	8623	1	Р	0 931	Р	0 580	Р	ASMTL	
36554 at	8623	1	Р	0 861	Р	0 533	Р	ASMTL	
36564_at	127544	1	Р	1 692	Р	1 466	Р	IBRDC3	
	23764	1	Р	1 550	Р	1 338	Р	MAFF	
37028 at	23645	1	Р	1 894	Р	2 523	Р	PPP1R15A	
37170 at	55589	1	Р	1 487	Р	1 745	Р	BMP2K	
37408_at	9902	1	Р	0 680	Р	0 639	P	MRC2	
37796 at	4034	1	Р	0 793	Р	0 505	Р	LRRNI	
37802_r_at	54629	1	P,M,A	0 741	Р	0 532	P,A	KIAA1164	
37892_at	1301	1	P	0 842	Р	0 614	P	COLIIAI	
37950 at	5550	1	P	0 884	Р	0 650	P	PREP	
37966 at	29780	1	P	0 881	P	0 641	P	PARVB	
38037_at	1839	1	P,A	1 804	P	2 034	P	DTR	
39729 at	7001	1	P	0 904	Р	0 582	P	PRDX2	
39817_s_at	10591	1	P	0 803		0 582	P	C6orf108	
40489_at	1822	1	P	1 821	P	1 574	P	DRPLA, B37	
40665_at	2328	1	P,M,A	0 629	A	0 858	P,A	FMO3	
41660 at	9620	1	P	0 605	P	0 510	P	CELSR1	
44654 at	92579	1	P	0 874	P	0 586	P	G6PC3	
45633_at	64785	1	P	1 961	P	1 606	<u>Р</u>	FLJ13912	
46142_at	64788	1	P,A	0 654	P,M,A	0 443	Ā	FLJ12681	
46167 at	7268	1	P	1 768	P	1 589	P	TTC4	
48106 at	55652	1	P	1 755	P	1 523		FLJ20489	
48808_at	1719	1	P	1 685	P	1 707		DHFR	
50965 at	25837	1	P	0 441	P	0 383	P	RAB26	
51176 at	9442	1	P	1 558	P	1 483		CRSP8	
52164 at	53838	1	P	1 659	P	1 484	P	C11orf24	
52940_at	59307	1	P	0 703	P	0 553	P	SIGIRR	
56256 at	51092	1	P	0 708	P	0 482	P	TAGLN	
57539_at	84619	1	P	0 887	P	0 650	<u>Р</u>	FLJ20406	
58308_at	55223	1	P	1 445	P	1 655	P	FLJ10759	
59625 at	8996	1	P	0 824	P	0 659	M,A	LOC283849	
60794 f at		1		1 512	P	1 575	P		
60815_at	5439	1	P,A	1 427	P	1 837	P	POLR2J	
61732 r at	80173	1	P	0 692	P,A	0 659	P,A	CCDC2	
61734 at	57333	1	P	0 560	P	0 615	P	RCN3	
63825 at		1	P	1 736	P	1 654		ABHD2	
64371_at	10147	1	P,A	1 369	P	1 576		SFRS14	
64486 at	57175	1	P	0 771	P	0 571	P	COROIB	
65517 at	10053	1	P	1 728	P	1 970	P	APIM2	
65588_at	10000	1	P	1 609	P	1 540		, LL 11714	
65630 at		1	P	0 633	P	0 452	P	LOC283232	
91703 at	254102	<u> </u>	P	0 737	P	0 4 5 2	P	DKFZp762C186	
31705_at	234102	<u> </u>	L r	0737	l t	L	<u> </u>	DKrZp7020180	

	Day 0		Day 3		Day 7	/	Common
Affymetrix Id	Normalised	Flag	Normalised	Flag	Normalised	Flag	Name
AFFX-DapX-3_at	1	Р	0 687	Р	0 566	Р	
AFFX-DapX-5_at	1	P	0 559	Р	0 490	Р	
AFFX-DapX-M_at	1	P	0 662	Р	0 542	Р	
AFFX-HUMISGF3A/M97935_3_at	1	P	1 348	Р	1 949	Р	STAT1
AFFX- HUMISGF3A/M97935_MB_at	1	Р	1 285	Р	1 760	Р	STAT1
AFFX-LysX-3_at	1	Р	0 737	Р	0 550	Р	
AFFX-LysX-5_at	1	P	0 707	Р	0 576	Р	
AFFX-LysX-M_at	1	Р	0 696	Р	0 5 50	Р	
AFFX-M27830_5_at	1	P,A	0 955	P,A	1 841	P,M,A	
AFFX-PheX-3_at	1	P	0 756	P	0 598	P	
AFFX-PheX-5_at	1	P	0 629	P	0 510	Р	
AFFX-PheX-M_at	1	P	0 675	Р	0 568	Р	
AFFX-r2-Bs-dap-3_at	1	Р	0 746	Р	0 632	P	
AFFX-r2-Bs-dap-5_at	1	Р	0 611	Р	0 488	Р	_
AFFX-r2-Bs-dap-M_at	1	P	0 658	P	0 529	Р	
AFFX-r2-Bs-lys-3_at	1	Р	0 696	Р	0 589	Р	
AFFX-r2-Bs-lys-5_at	1	Р	0 693	Р	0 493	Р	
AFFX-r2-Bs-lys-M_at	1	P	0 691	P	0 557	Р	
AFFX-r2-Bs-phe-3_at	1	P	0 674	Р	0 540	Р	
AFFX-r2-Bs-phe-5_at	1	Р	0 536	Р	0 457	Р	
AFFX-r2-Bs-phe-M_at	1	P	0 687	P	0 518	Р	
AFFX-r2-Bs-thr-3_s_at	1	P	0 682	Р	0 598	P	
AFFX-r2-Bs-thr-5_s_at	1	Р	0 599	Р	0 522	Р	-
AFFX-r2-Bs-thr-M_s_at	1	Р	0 621	Р	0 472	Р	
AFFX-ThrX-3_at	1	P	0 677	Р	0 543	Р	
AFFX-ThrX-5_at	1	P	0 549	Р	0 424	Р	
AFFX-ThrX-M at	1	Р	0 631	P	0 474	Р	

74 Appendix E – Differentially Expressed Genes Identified in IdU DNA Microarray Experiment

List of differentially expressed genes identified from microarray analysis of IdU microarray experiment Genes listed are sorted by Affymetrix ID number

Affymetrix		Day	0	Day 7		Common Name
ld	LocusLink	Normalized	Flags	Normalized	Flags	Common Name
207331_at	1063		Р	0.645	Р	CENPF
1405 i at	6352	i	P,A	2.996	Р	CCL5
200696 s at	2934	1	P	1.552	Р	GSN
200697 at	3098	1	P	1.622	Р	HK1
200762 at	1808		Р	1.536	Р	DPYSL2
200768 s at	4144	1	P	0.544	Р	MAT2A
200838 at	1 508		P	1.543	Р	CTSB
200872 at	6281	1	P	1.588	Р	S100A10
200878 at	29952		P,A	1.539	Р	EPAS1
200887 s at	6772	1	P	1.857	Р	STATI
200983 x at	966		P	1.602	р	CD59
200985 s at	966		P	1.505	P	CD59
201015 s at	3728		P,M,A	1.715	P	JUP
201013 s at	7052		P,A	1.989	P	TGM2
201042 at	10398		P	1.528	P	MYL9
201058 <u>s</u> at	2040		P	1.541	p	STOM
201000 x at	7057		P,A	3.583	P	THBS1
201110 s at 201122 x at	1984		<u>. г.а</u>	1.584	P	EIF5A
201122 x at	1984		P	1.689	P	EIF5A
201123 <u>s</u> at 201141 at	1984		P	1.920	P P	GPNMB
	7078	1	P,A	2.564	P	TIMP3
201149 s at				1.750	-	TIMP3
201150 s at	7078	1	P,A	2.617	P,A P	IGFBP7
201162 at	3490	1	P,A			IGFBP7
201163 s at	3490	1	P	2.360	Р	
201169 s at	8553		P,A	1.888	P	BHLHB2
201185_at	5654		P,A	2.074	P	PRSSII
201205_at	6238		P,A	1.504	P	RRBP1
201266_at	7296		Р	1.610	P	TXNRDI
201295 s at	26118		Р	0.647	P	WSB1
201330 at	5917	1	Р	0.499	p	RARS
201341_at	8507		P,A	1.746	P	ENC1
201348_at	2878	1	Р	1.669	P	GPX3
201427_s_at	6414	1	P,A	1.795	P,A	SEPP1
201464 x at	3725	1	P,A	1.863	P	JUN
201466 s at	3725	1	P,A	2.065	P	JUN; AP1
201473 at	3726	1	Р	1.871	P	JUNB
201502 s at	4792	1	P	1.555	P	NFKBIA
201505 at	3912	1	P	1.933	Р	LAMBI
201506 at	7045	1	A	2.585	P,M	TGFBI
201578_at	5420	1	P,M,A	1.529	P,M,A	PODXL
201596 x at	3875	1	P,A	2.271	P	KRT18
201631 s at	8870	1	P	1.775	P	IER3
201666 at	7076	1	Р	1.638	P	TIMPI
201693 s at	1958	<u> </u>	Р	1.813	Р	EGRI
201719 s at	2037	1	Р	1.558	Р	EPB41L2
201733_at		1	Р	0.657	Р	CLCN3
201739 at	6446	<u> </u>	Р	2.196	Р	SGK; SGK1
201793 x at	9887	1	M,A	1.732	P,A	Clorf16
201798 s at	26509		P,A	2.298	Р	FERIL3
201843 s at	2202	1	P,A	1.682	P,A	EFEMPI

Affymetrix		Day	0	Day 7		
ld	LocusLink	Normalized	Flags	Normalized	Flags	Common Name
201927 s at	8502	1	Р	1.541	P	РКР4
201945 at	5045		A	1.679	P,M	FURIN
202008 s at	4811		Р	1.533	Р	NID
202017 at	2052	-	Р	1.622	Р	EPHX1
202086 at	4599		P.A	1.925	P	MXI
202132 at	25937		P	1.550	p	TAZ
202159 at	2193		p	1.565	Р	FARSLA
202284 s at	1026		P	2.209	P	P21
202307 s at	5696	1	P	1.669	P	TAPI
202328 s at	5310		P	0.619	P,M	PKD1; PBP
202328_S_41	5605	1	P	1.619	P	MAP2K2
202424 at	1545	1	P,A	1.542	P	CYPIBI
202436 s at	5359	1	<u>р</u>	1.342	P	PLSCRI
	11098	1		2.022	P	SPUVE
202458_at		1	P,A P	0.620	P	MPI
202472_at	4351		P		P	SPOCK2
202524 s at	9806			0.402		
202575 at	1382		M,A	1.965	Р	CRABP2
202598_at	6284		Р	1.560	Р	S100A13
202662 s at	3709		A	1.654	Р	ITPR2
202665 s at	7456	1	P,A	1.649	Р	WASPIP
202672 s at	467	1	P,A	2.023	Р	ATF3
202686 s at	558	1	P,A	2.035	P	AXL; UFO
202687 s at	8743	1	P,A	2.233	Р	TNFSFIO
202688_at	8743	1	P,A	1.673	P,A	TNFSF10
202700 s at	9725	1	P,A	0.587	P,A	KIAA0792
202719 s at	26136	1	P,A	1.846	Р	TES
202720 at	26136	1	Р	1.696	P	TES
202747 s at	9452		P,A	3.918	P,A	ITM2A
202760 s at	11217		P,M,A	1.590	P,A	AKAP2
202765 s at	2200		P,A	1.780	Р	FBNI
202766 s at	2200		Р	1.545	Р	FBNI
202920 at			Р	0.525	P,A	ANK2
202949 s at	2274	1	Р	1.899	Р	FHL2
202996 at	57804	1	Р	1.613	Р	POLD4
203058 s at	9060	1	Р	1.641	Р	PAPSS2
203065 s at	857	1	Р	1.943	Р	CAV1
203066 at	51363		Р	1.604	Р	GALNAC4S-6ST
203072 at	4643	1	P,A	1.876	P,A	MYOIE
203091 at	8880	1	Р	1.514	Р	FUBP1; FBP
203109 at	9040		P	1.524	Р	UBE2M
203117 s at	9924		p	0.586	P	USP52
203140 at	604	1	P,A	2.202	P	BCL6
203153 at	3434		P,A	2.185	P	1FIT1
203172 at	9513		P	1.508	P	FXR2
203184 at	2201		P	2.158	P	FBN2
203227 s at	6302		P	0.622	P	SAS
203227 s at	1196	1	P P	0.612	P,M,A	CLK2
203229 s at	10611	1	P	1.514	P	LIM; ENH
				1.722	P	BAMBI
203304 at	25805	1	P,A			
203368 at	78987	1	Р	1.554	<u> </u>	CRELDI

Affymetrix		Day)	Day 7		
Id	LocusLink	Normalized	Flags	Normalized	Flags	Common Name
203394 s at	3280	1	P	1 619	P	HESI
203423 at	5947	1	<u>Р</u>	1 703	Р	RBP1
203446 s at	4952	1	P	0 604	Р	OCRL
203452 at	26229	1	Р	1 524	Р	B3GAT3
203455 s at	6303	1	P	1 832	Р	SAT
203469 s at	8558	1	P,A	1 610	P,A	CDK10
203501 at	10404	1	P	0 520	Р	PGCP
203504 s at	19	1	P	1 556	Р	ABCA1
203646 at	2230	1	P	1 686	Р	FDX1
203665 at	3162	1	P	1 622	Р	HMOX1
203722 at	8659	1	Р	1 528	Р	ALDH4A1
203725 at	1647	1	P	1 921	Р	GADD45A
203821 at	1839	1	P,M	1 612	Р	DTR
203837 at	4217	- 1	P	1 566	Р	MAP3K5
203882 at	10379	1	P	1 612	P	ISGF3G
203910 at	9411	1	P,A	3 529	Р	PARGI
203926 x at	513	1	- <u> </u>	1 522	Р	ATP5D
203929_s_at	4137	1	 P,A	0 602	P,A	MAPT
203952 at	22926	1	P,A	0 569	P,M,A	ATF6
203980 at	2167		P	1 515	P	FABP4
203989 x at	2149	1	P,A	1 843	P,A	F2R
203999 at		1	P,A	1 923	P	SYT1
204030 s at	29970	1	<u>P</u>	1 636	P	SCHIP1
204035 at	7857	1	P	0 338	P	SCG2
204036 at	1902	1	P	0 432	P	EDG2
204037 at	1902	1	P	0 618	P	EDG2
204038 s at	1902	1	P	0 580	P	EDG2
204135 at	11259		<u>P</u>	1 624	P	DOC1, GIP90
204159_at	1114		<u>P</u>	0 537	P	CHGB, SCG1
204268 at	6273	-	P,A	2 684	P	\$100A2,
204279 at	5698		P	1 597	P	PSMB9
204326 x at	4500		 P	1 771	P	MTIL
204346 s at	11186	-	P,A	1 671	P	RASSF1
204359 at	23768		P	1 593	P	FLRT2
204421 s at	2247	- 1	P	1 610	P	FGF2
204422 s at	2247	1	P	1 556	P	FGF2
204439 at	10964	1	P	0 481	P	Clorf29
204452_s_at	8321	1	P	0 654	P,M,A	FZD1
204455 at	667	1	P,A	2 264	P	BPAG1
204475 at	4312	1	<u>,,,</u>	2 186	P	MMP1
204490 s at	960	1	P,A	1 850	P,A	CD44
204529 s at	9760	1	P,A	1 583	P,M	TOX
204564 at	10336		P,A	1 513	P	RNF3
204577_s_at	23059	1	P	0 602	P,A	KIAA0643
204589 at	9891	1	 P	1 729	P	ARK5
204604 at	5218	1	P,A	1 904	P	PFTK1
204612 at	5569	1	P	0 542	P,A	PKIA
204627 s at	3690		P,A	2 471	P,A	ITGB3
204653 at		1	P,A	1 730	P	TFAP2A
204655_at	6352		P,A	2 353	P	CCL5

Affymetrix		Day 0		Day 7		
Id	LocusLink	Normalized	Flags	Normalized	Flags	Common Name
204665 at	80143	1	P,A	1 527	P,A	FLJ21168
204682 at	4053	1	P,A	1 573	P	LTBP2
204697 s at	1113	1	P,A	1 540	Р	CHGA, CGA
204718 at	2051	1	P,A	0 613	P,A	EPHB6, HEP
	5743	1	P,A	2 701	Р	COX2
204762 s at	2775	1	P,M,A	0 512	M,A	GNA01
204779_s_at	3217	1	Р	1 647	Р	HOXB7
204840 s at	8411	1	P,M	1 614	Р	EEA1
204841 s at	8411	1	P,A	1 529	Р	EEA1
204859 s at	317	1	Р	1 558		APAF1
204864 s at	3572	1	Р	1 687		IL6ST
204865 at	761	$\frac{1}{1}$	P,A	2 305	Р	CA3, CAIII
204897 at	5734	1	<u>P</u>	1 895	Р	PTGER4
204947 at	1869	1	P	0 613	P	E2F1
204955 at	8406	1	P,A	1 670	P	SRPX
204967 at	357	1	P,A	1 552	P,A	APXL
204983 s at	2239	1	P	1 763	<u>P</u>	GPC4
205013 s at	135	1	P	1 586	P	ADORA2A
205015_s_at 205016 at	7039	1	P,A	2 817		TGFA
205034 at	9134	1	P	1 521	P	CCNE2
205047 s at	440	1	P	0 628	P	ASNS
205050 s at	23542		P	0 509	P	MAPK8IP2
205068 s at	23092		P,A	1 517	P	ARHGAP26
205082 s at	316		P,M	0 604		AOX1, AOH1
205222 at	1962		P	0 599	 	EHHADH
205222_at	6835		P,A	1 556	<u>P</u>	SURF2
205286 at	7022		P,A	1 772	P	TFAP2C
205296 at	1022	- 1	<u>P</u>	0 638	P	
205200_dt	4968	1	P	0 609		OGG1
205303 at	3764	1	P	0 551	P,M	KCNJ8
205304 s at	3764		P	0 543		KCNJ8
205357 s at	185		P,M	2 281	P	AGTR1
205366_s_at	3216		P,A	2 016	 Р	НОХВ6
205374_at	6588	1	P,A	1 880	P,A	SLN,
205386 s at	4193	1	<u>Р,А</u>	1 985	P	MDM2
205405 at	9037	1	P,A	1 619		SEMA5A
205479 s at	5328	1	P,A	2 166		PLAU
205500 at	727	1	P	0 633	P,A	C5
205523_at	1404	1	P	0 371	P	HAPLN1
205524 s at	1404	1	P,M	0 164	A	HAPLNI
205534 at	5099		P,A	1 748		PCDH7
205547 s at	6876	- 1	P	2 453	P	TAGLN
205594 at	22834	1	P	0 561	P	KIAA0924
205625 s at	793	1	P,A	2 737		CALB1
205626 s at	793	1	P,A	1 920		CALB1
205657 at	23498	1	P,A	0 621	P,M,A	HAAO
205660 at	8638	1	P,A	1 771	P	OASL
205698 s at	5608	1	<u>г,д</u> Р	0 652	P,M,A	MAP2K6
205780 at	638	1	P,A	2 508	P,M,A	BIK
200100_at	050		1,7	2 300	1,111,71	

Affymetrix		Day	0	Day 7		Common Name
Id	LocusLink	Normalized	Flags	Normalized	Flags	Common Name
205829 at	3292		Р	1.742	Р	HSD17B1
205832 at	51200	i i	P,A	1.678	Р	CPA4
205841 at	3717	1	Р	1.711	Р	JAK2
205862 at	9687	1	P,M,A	1.692	P,A	GREBI
205887 x at	4437	1	р	0.552	P,M	MSH3
205896 at	6583	1	P,A	1.656	P	SLC22A4
205924 at	5865		P,A	2.074	Р	RAB3B
205925 s at	5865		P,M	2.018	P	RAB3B
205964 at	79088	1	P	0.623	P	ZNF426
205975 s at	3231		P	1.747	P	HOXDI
206056 x at	5251	1	P,A	0.403	P,A	SPN
206036 x at	7168	1	P	1.924	P	TPM1
	7168	1	P,A	1.968	P	TPMI
206117_at 206172_at	3598		P	1.525	p	IL13RA2
	4223	1	M,A	2.059	P.A	MEOX2
206201 s at		1		1.771	<u>Р</u>	CA4; CAIV
206209 s at	762		P,A		P	PROC
206259_at	5624	1	P,A	2.062		RGS7
206290 s at	6000	1	P	0.656	P	
206299 at	27112	1	P,A	0.618	P,A	TMEM28; TED
206300 s at	5744		P,A	1.834	Р	PTHLH
206314_at	55888	1	Р	0.575	P	ZNF167
206343 s at	3084	1	P,A	1.581	P	NRG1
206377 at	2295	1	P,A	1.573	P,A	FOXF2
206429 at	2150	1	P,A	3.982	P,A	F2RL1
206452 x at	5524	1	P,A	1.543	Р	PPP2R4
206461 x at	4496	1	P,A	1.762	Р	MTIH
206508 at	970	1	P.A	1.845	Р	TNFSF7
206529 x at	5172	1	P,A	1.681	P,M	SLC26A4
206543 at	6595	1	Р	0.601	Р	SMARCA2
206555 s at	55623	1	P	0.568	P	THUMPDI
206615 s at	53616		Р	0.491	P,M	ADAM22
206695 x at	7594	1	Р	0.595	P	ZNF43
206757 at	8654		Р	0.501	Р	PDE5A
206769 at	9087		P,A	1.616	P	TMSB4Y
206773 at	4062	l	P,A	1.685	Р	L Y6H;
206825 at	5021	1	P,A	2.873	P	OXTR; OT-R
206868 at	9754	1	P,M	1.500	Р	STARD8
207030 s at	1466	1	p	1.505	Р	CSRP2
207059 at	5083	1	P,M	0.654	P,A	PAX9
207068 at	7539	1	Р	0.625	Р	ZFP37
207145 at	2660	1	P	0.450	P,A	GDF8
207160 at	3592	I	P,A	2.213	Р	IL12A
207187 at	3718	1	M,A	1.501	Р	JAK3
207324 s at	1823	I	P	0.324	P,A	DSC1
207387 s at	2710	1	P,M	1.519	P	GK
207437 at	4857		P	0.436	Р	NOVA1
207536 s at	3604	1	P,A	1.767	P,A	TNFRSF9
207684 at	6911	1	P	0.660	P,A	TBX6
207765 s at	80256	1	M,A	1.514	P,A	K1AA1539
207826 s at	3399	1	P	1.632	P	ID3

Affymetrix		Day	0	Day 7		Common Name
Id	LocusLink	Normalized	Flags	Normalized	Flags	Common Name
207876 s at	2318	1	Р	1.533	Р	FLNC
207922 s at	10296		Р	0.625	Р	MAEA; EMP
207960 at			P,A	1.653	P,A	
207963 at	26236	1	Р	0.649	Р	C6orf54
207969 x at	56		P.M.A	1.945	Р	ACRVI
208016 s at	185		P.A	1.587	Р	AGTR1
208035 at	2916		P,A	2,790	P,A	GRM6
208086 s at	1756	1	P	1.855	P	DMD
208116 s at	4121		P,A	1.589	P	MANIAI
208185 x at	7121	1	P	1.541	P	
208190 s at	51599		P	1.504	P	LISCH7
208190 s at	3084		P,A	1.659	p	NRG1
	1755		P,A	1.521	r p	DMBTI
208250 s at			<u>г,л</u> Р	0.626	P P	PTTG3
208511 at	26255		-	2.581	P,M,A	KCNEI
208514 at	3753		P,A		Р,М,А	HISTIH2BH
208546 x at	8345		Р	0.623	-	
208581 x at	4501		Р	2.075	Р	MTIX
208588 at	59347		P	0.572	P,A	FKSG2
208610 s at	23524		Р	0.626	Р	SRRM2
208637 x al	87	<u> </u>	Р	1.518	P	ACTNI
208650 s at	934		Р	1.550	Р	CD24
208690 s at	9124	<u> </u>	Р	1.531	P	PDLIM1
208704 x at	334		Р	1.561	Р	APLP2
208719 s at	10521		Р	0.656	Р	DDX17;
208738 x at	6613		Р	0.583	Р	SUMO2
208747 s at	716		P,A	1.850	P	CIS
208782 at	11167	1	Р	2.006	P	FSTLI
208789 at	22939	1	Р	1.558	Р	PTRF
208798 x at	23015		Р	0.577	P	GOLGIN-67
208902 s at		1	P,A	0.607	P,A	F1,J46061
208937 s at	3397	1	Р	1.588	Р	ID1
208944 at	70-18	1	Р	1.576	Р	TGFBR2
208991 at		1	Р	1.579	P	STAT3
208992 s at	6774		P,A	1.698	P	STAT3
209040 s at	5696	1	Р	1.713	Р	PSMB8
209087 x at	4162	1	Р	1.603	Р	MCAM
209129 at	7205	1	Р	0.616	M.A	TRIP6
209184 s at	8660		P,A	1.561	P,M,A	IRS2
209189 at	2353	1	P,A	3.182	P	FOS
209193 at	5292	1	P,A	2.245	P	PIM1
209202 s at	2137	1	P,A	1.775	P,A	EXTL3
209212 s at	688	1	P	1.716	P	KLF5
209260 at	2810	1	P,A	1.884	P	SFN
209261 s at	2063		P,A	1.565	P,M,A	NR2F6
209267 s at	64116	1	P	1.707	P	SLC39A8
209278 s at	7980	1	P	1.869	P	TFP12
209278 S at	1410	1	M.A	2.427	P.M.A	CRYAB
209287 s at	10602	1	P	1.536	r.m.A	CDC42EP3
			P P		P P	
209291 at	3400	1		1.779		ID4
209293 x at	3400		<u> </u>	2.098	Р	ID4

Affymetrix		Day	0	Day 7		
Id	LocusLink	Normalized	Figgs	Normalized	Flags	Common Name
209304 x at	4616	1	P,A	1.898	Р	GADD45B
209340 at	6675	1	Р	1.540	Р	UAPI
209356 x at	30008		P	1.500	Р	EFEMP2
209438 at			P	0.651	P,A	
209457 at	1847	1	P	1.589	P	DUSP5
209459 s at	57416	I	P,A	2.042	P	ABAT
209469 at	2823		P	0.596	P,M	GPM6A
209470 s at	2823		P	0.398	P,A	GPM6A
209487 at	11030		P,A	2.015	P	RBPMS
209487 at	23598		<u>Р, Л</u>	0.602	P	ZNF278
	58473		P,M	0.654	P,A	PLEKHBI
209504 s at					P,A	DLKI
209560 s at	8788		P,A	2.255		
209574 s at	753		P,A	1.750	P,A	C18orf1
209584 x at	27350	1	P,A	1.576	P,A	APOBEC3C
209598 at	10687	1	Р	1.566	P	PNMA2
209604 s at	2625	1	Р	1.734	Р	GATA3
209631 s at		1	<u>P,A</u>	1.821	Р	
209656 s at	83604		Р	1.526	Р	TM4SF10
209703 x at	25840	1	P,A	1.854	P,A	DKFZP586A0522
209708 al	26002	1	P,A	1.579	<u>P</u>	MOXDI
209758 s at	8076	1	Р	1.909	Р	MFAP5
209771_x_at	934	1	Р	2.001	Р	CD24
209803 s at	7262	1	Р	2.472	Р	PHLDA2
209806 at	85236	1	Р	0.652	Р	HIST1H2BK
209835 x at	960	1	Α	3.576	Р	CD44
209846 s at	11118	1	Р	0.620	P	BTN3A2
209875 s at	6696	1	Р	1.666	P	SPPI
209885 at	29984	1	Р	1.700	Р	RHOD
209904 at	7134	1	P,A	2.212	P,A	TNNC1
209908 s at	7042	1	P,A	1,661	P.M.A	TGFB2
209936 at	10181		P,A	0.599	P,A	RBM5
209946 at	7424	1	P	0.340	P	VEGFC
209960 at	3082	1	p	0.531	P	HGF;
209969 s at	6772	1	P	1.870	P	STATI
210012 s at	2130	1	P	0.528	P.A	EWSRI
210102 at	4013	1	P	1.573	P	LOHIICR2A
210102 at	25771	1	P,A	1.958	P,A	C22orf4
210145 at	5321	1	P,A	2.828	P,M	PLA2G4A
210162 s at	4772	1	P,A	0.611	P,A	NFATC1
210172 at			P	0.537	P	SF1;
210172 at	11060	+	P,A	0.636	P,A	WWP2
210205 at	8705	1	P	0.619	P	B3GALT4
210203 at	6066	1	P,A	0.544	P,A	RNU2
210230 at	3556	1	A P,A	1.817	P,M	ILIRAP
210234 at	2914	1	P,A	1.547	P,A P	GRM4
210241 s at	11257	1	P	0.628		TP53AP1
210315 at	6854	1	P,A	1.596	P,A	SYN2
210322 x at	7404	1	P,A	1.549	P,M,A	UTY; UTY I
210355_at	5744	1	M,A	1.953	P,A	PTHLH
210385 s_at	51752	1	Р	1.675	P	ARTS-1

Affymetrix		Day	0	Day 7	,	
Id	LocusLink	Normalized	Flags	Normalized	Flags	Common Name
210424_s at	23015	1	P,A	0 627	P,A	GOLGIN-67
210495 x at	2335	1	P,A	3 236	M,A	FN1
210538_s_at	330	1	Р	2 377	P	BIRC3
210552 s at	9649	1	P,M	0 631	P,A	RALGPS1
210560 at	2637	1	P,M,A	1 788	<u> </u>	GBX2
210564 x at	8837	1	P	1 754	P	CFLAR
210592 s at		1	P	1 885	P	SAT, SSAT
210605 s at	4240	1	P,A	1 643	P,A	MFGE8,
210612 s at	8871	1	P,M	1 511	<u>P</u>	SYNJ2
210674 s at	56137	1	P	0 635	P,M,A	PCDHA12
210715 s at	10653	1	P	2 191	P	SPINT2
210715_s_at	6945	1	P	1 553	 P	TCFL4
210752_s_at	10631		P	1 503	 	POSTN
210809_5_at	4850	1	 P	0 532	A	CNOT4
210807_at 210926 at	4850	1	P	1 545	<u> </u>	FKSG30
210926_at 210986 s at	7168	1	P	2 028	P	TPM1
			P	2 028	P P	TPM1
210987_x_at	7168			<u>ــــــــــــــــــــــــــــــــــــ</u>	+	· · · · · · · · · · · · · · · · · · ·
211017_s_at	4771	1	P	1 569	P	NF2
211043_s_at	1212	1	P	1 596	P	CLTB
211097_s_at	5089	11	P	0 579	<u> </u>	PBX2
211098_x_at	54499	1	P	1 502	P	LOC54499
211160_x_at	87	1	P,A	1 619	P	ACTN1
211177_s_at	10587		P	1 554	<u>P</u>	TXNRD2
211364_at	4507	1	Р	1 618	Р	MTAP
211374_x_at		1	P,M,A	0 573	P,A	
	8732	1	P,M	0 636	P,A	RNGTT
211456_x_at		<u>l</u>	P,M	2 242	P	
211466_at	4781	1	P	0 618	<u>Р</u>	NFIB
211538_s_at	3303	1	<u>P</u>	1 660	P	HSPA1A
211540 <u>s</u> at	5925	1	Р	1 506	<u>P</u>	RB1
	1462	1	P	0 460	P,A	CSPG2
211573_x_at	7052	1	P,A	2 186	P	TGM2
	23139	1	P	1 509	Р	MAST2
211600_at		1	Р	0 613	P	PTPRO
211602_s_at	7220	1	Р	1 544	P	TRPC1
211668_s_at	5328	1	P,A	1 896	P	PLAU
211700_s_at	7216	11	P	0 607	P,A	TRO
211756_at	5744	1	P,A	3 128	Р	PTHLH
211819_s_at	10580	1	P,A	0 558	M,A	SORBS1
211864_s_at	26509	1	P,A	2 344	P,A	FER1L3
211911_x_at	3106	1	Р	1 589	P	HLA-B
211930_at		1	<u>P</u>	0 639	P	hnRNPA3
211990_at	3113	1	Р	0 513	P,A	HLA-DPA1
212014_x_at	960	1	P,A	1 519	P,A	CD44
212061_at	23350	1	Р	0 657	P	SR140
212063_at	960	1	P,A	3 062	Р	CD44
212067_s_at	715	1	Р	0 654	P A	C1R
212097_at	857	1	Р	1 566	Р	CAV1
212127_at	5905	1	Р	1 742	Р	RANGAPI
212143 s at	3486	1	Р	1 642	Р	IGFBP3

J

Affymetrix		Day	0	Day 7		
Id	LocusLink	Normalized	Flags	Normalized	Flags	Common Name
212157 at	6383	1	P	0 605	Р	SDC2
212172 at	<u> </u>	1	P,M,A	0 617	P,A	AK2, ADK2
212185 x at	4502	1	P	1 876	Р	MT2A
212207 at	23389	1	P,A	1 674	Р	THRAP2
212225 at	10209	1	P,A	1 556	P,A	SUI1
212230 at		1	P,A	2 188	P,A	PPAP2B
212290 at		1	P	0 656	P	SLC7A1
212294 at	55970	1	Р	1 671	P	GNG12
212311 at	23231	1	Р	1 602	Р	KIAA0746
212314 at	23231	1	P	1 655	Р	KIAA0746
212325 at	22998	1	P,A	1 815	P,M	KIAA1102
212327 at	22998	1	P,A	1 548	P,A	KIAA1102
212384 at	7919	1	Р	0 463	Р	BATI
212418 at	1997	1	P	1 628	Р	ELF1
212501 at	1051	1	Р	0 657	Р	CEBPB
212543 at	202	1	A	2 144	Р	AIM1, ST4
212553 at	23248	1	Р	0 597	Р	KIAA0460
212587 s at	5788	1	P	0 632	Р	PTPRC
212646 at	23180	1	P,A	2 378	P,M	RAFTLIN
212651 at	9886	1	Р	0 645	Р	RHOBTB1
212654 at	7169	1	Р	1 631	Р	ТРМ2
212717 at	9842	1	P,A	1 815	Р	PLEKHM1
212727 at	1741	1	P	0 450	P,A	DLG3
212814 at	23382	1	P	0 613	Р	KIAA0828
212859 x at		1	P,A	1 945	P	MT2A
212865 s at	7373	1	P	0 618	P	COL14A1
212923 s at		1	P	1 535	Р	C6orf145
213014 at	9479	1	P,A	1 548	P	MAPK81P1
213135 at		1	Р	1 562	Р	TIAM1
213143 at		1	Р	0 493	M,A	LOC257407
213164 at	······································	1	Р	1 590	Р	MRPS6
213204_at	23113	1	P	0 580	P,A	PARC
213271_s_at	23033	1	P	1 530	Р	KIAA1117
213274_s_at	1508	1	P	1 679	Р	CTSB
213281_at	3725	1	A	1 988	Р	JUN
213290_at	1292	1	P,A	0 646	P,M,A	COL6A2
213362_at		1	Р	0 651	P,M	
213403_at		1	P,A	1 807	P,A	MGC11332
213430_at	22902	1	P	0 520	P,A	RIPX
213449_at	10940	1	Р	1 635	P	POP1
213456_at	25928	1	P,A	2 059	P	SOSTDC1
213496_at	9890	1	Р	0 466	Р	PRG1
213506_at	2150	1	P,A	3 084	P	F2RL1
213528_at	92342	1	P	0 574	P	MGC9084
213558_at	27445	1	P	1 939	P	PCLO
213618_at	116984	1	P	1 715	P	CENTD1
213624_at	10924	1	P	0 584	P	SMPDL3A
213650_at	23015	1	P	0 634	Р	GOLGIN-67
213668_s_at	6659	1	P,A	1 619	Р	SOX4
213764_s_at		1	P	1 971	Р	MFAP5

Aflymetrix		Day	0	Day 7		
ld	LocusLink	Normalized	Flags	Normalized	Flags	
213765 at		1	Р	1.834	Р	MFAP5
213802 at	8492		M,A	1.554	P,M,A	PRSS12
213803 at	3837		Р	0.656	P	KPNBI
213810 s at	55122		P.M.A	1.539	P,A	C6orf166
213835 x at	84705	1	Р	0.654	P	GTPBP3
213849 s at	5521	1	Р	0.428	M,A	PPP2R2B
213854 at	9145	1	р	1.581	P	SYNGRI
213897 dt	83941	1	P.A	0.561	P.A	BBP
213929 at			P,A	1.557	P	
213930 at		1	P	1.601	P	APG12L
213931 at	3398		P	1.538	P	ID2
213932 x at	3105		P	1.808	P	HLA-A
213964 x at	5105		P	0.603	P,A	
214043 at		· · ·	P	0.637	P	PTPRD
214071 at	65258		P	0.644	P	GNAL
214077 x at	4213		P	0.659	P	MEIS4
214079 at	4215		P,A	1.527	P,A	DHRS2
214091 s at	2878	1	P	1.630	P	GPX3
214163 at	51668	1	P	0.590	P,M,A	LOC51668
214175 x at	8572		P,A	1.501	P	PDLIM4
214175 x at	1200		p	0.638	P	CLN2
214190 s at	23457		P,A	0.601	P,A	ABCB9
214209 s at	23185		p	1.709	P	KIAA0217
214247 s at	10530		p	1.807	P	DKK3
214251 s at	4926		P	0.643	P.A	NUMAI
214231 s at	4856		P,A	1.663	P	NOV
214329 x at	8743	1	P,A	1.929	P.M.A	TNFSF10
214543 x at	9444	1	P	1.521	P	QUAKING
214666 x at	3658		P	0.622	P	IREB2
214668 at	57213		P	1.528	P	Cl3orfl
214008 at	26109	1	P	0.602	P	Rifi
214700 x at	20109	1	P	1.725	P	LOC376745
214722 at 214734 at	23086	1	P,A	1.577	P	SLAC2-B
214734 at 214761 at	23080	1	P	1.553	P	ZNF423
214701 at	9942		P	0.394	A	XYLB
214776 x at	7754		P	0.629	P.A	ZNF204
214825 at	1154	1	P	1.546	P,M	SMA5
214850 at		1	P.A	0.419	P,A	PRKAAI
214934 at	11071	1	P	0.529	P,A	АТР9В
214954 at	26032	1	P	1.700	P	K1AA0527
215012 at	26036		P	0.633	P	ZNF451
215019 x at	84436		P	0.585	P	ZNF528
215034 s at	01130		A	3.141	P	TM4SF1
215073 s at		1	P	0.585	P	NR2F2
215079 at		1	P	0.557	P,A	
215079 at		1	P	0.569	A	ESD
215095 at	26168		P,M	0.589	M,A	SENP3
215132 at	20100		P	0.494	M,A	UDITIO
215152 at	9906		P	0.494	P,A	SLC35E2
215189 at	3892		P	0.390	P.A	KRTHB6

Affymetrix		Day	0	Day 7	1	C No.
ld	LocusLink	Normalized	Flags	Normalized	Flags	Common Name
215252 at		1	P,A	0.615	P,A	
215263 at	7789		P	1.523	P	ZXDA
215331 at	22989		P,A	0.610	P,A	KIAA1000
215359 x at	7595		P	0.654	P	ZNF44
215557 x tt	5380		P.M.A	0.639	P,A	PMS2L2
215469 at	2200		P,A	1.599	P,A	
215489 x at	9454		P	1.720	Р	HOMER3
215498 s at	5606		P	1.597	p	MAP2K3
215506 s at	9077	1	P.A	2.351	P	ARHI
215507 x at	9077	1	P	0.465	P,A	RAB22A
215507 x at 215551 at	2099		г Р,А	0.403	P.M.A	ESR1
		1	<u>г,л</u>	0.412		SATB2
215591 at	23314		P		P,A	
215604 x at				0.632	P,A	
215607 x at			P,A	1.648	P,A	00044.000
215643 at		1	P	0.357	P	SEMA3D
215646 s at	1462	1	Р	0.462	Р	CSPG2
215660 s at		1	P,M	0.521	P,A	MAST2
215694 at	79029	1	Р	0.556	P,A	SPATASLI
215706 x at	7791	1	Р	1.709	Р	ZYX
215719 x at	355		P,A	2.013	Р	TNFRSF6
215760 s at	22904		Р	0.500	P,A	KIAA0963
215779 s at	8339		Р	0.592	P,A	HIST1H2BG
215834 x at		I	P,A	1.827	P,A	SCARBI
215883 at			P,A	1.761	P,A	CTNNAI
215919 s at	64963	1	P,A	0.524	P,A	MRPS11
215930 s at	4253	1	Р	0.626	Р	MGEA6
215945 s at	23321	1	P,A	1.830	P,A	TRIM2
215977 x at	2710	1	P,A	1.942	Р	GK; GKD
216049 at	22836		P,A	1.599	P.A	RHOBTB3
216101 at		1	P,A	0.625	P.A	
216178 x at	3688	-	P,A	1.524	P,A	ITGBI
216217 at	23228		A	1.919	P,M	PLCL2
216229 x at	80867	1	Р	0.600	P,A	HCG2P7
216248 s at	4929		P	1.610	P	NR4A2
216279 at	10794	1	P	1.651	P	ZNF272
216336 x at	10774		P	1.812	P	
216379 x at	934		P	1.867	P	NaGLT1
216442 x at	2335		P.A	2.498	P	FNI
216598 s at	6347		M,A	2.128	P.M	CCL2
216604 s at	23428		M,A	1.520	P,A	SLC7A8
210004 s at	23420	1	P	0.580		SLC/A
216739 at 216770 at		1	P,A	1.705	P,A P,A	
and the second s		1	<u>Р.А</u> Р	1.781	P,A P	LIM
216804 s at	7272	1	P P		P	COLI4A1; UND
216865 at	7373	1		0.446	· ·	
216885 s at	50717	1	P	0.658	P	H326
217019 at	=	1	P	0.536	P	01/07.1
217028 at	7852		<u>Р,А</u>	1.541	P,A	CXCR4
217052 x at		1	P	0.634	P	TIAI
217107 at		1	<u>P,M</u>	0.530	P,M	
217120 s_at	9282	1	P,A	1.596	Р	CRSP2

Affymetrix		Day	0	Day 7	,	C N	
ld	LocusLink	Normalized	Flags	Normalized	Flags	Common Name	
217193 x at	3535	1	P,A	1.517	P,A	IGL@	
217212 s at		1	Р	0.545	P,A		
217218 at	23063	1	P,A	1.571	Р	KIAA0261; FOE	
217340 at		1	P,A	0,503	P.M.A		
217363 x at		1	P,A	0.536	P.A		
217365 at		1	P	0.539	P.M.A	LOC65122	
217550 at			Р	0.651	Р	A TF6	
217554 at			P	0.624	Р		
217602 at	5478		P	0.656	P,A	PPIA	
217608 at	57515		P	0.596	P	FLJ36754	
217625 x at			P,A	1.751	P.M.A		
217630 at	90806		P.M.A	0.424	P.A	LOC90806	
217653 x at	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	P,M	0.610	P,A	10070000	
217728 at	6277	1	P,A	3.321	P	S100A6	
217749 at	28831	1	P	1.668	P	COPG	
217749 at	28969	1	P	1.516	P	BZW2	
217813 s at	10927		P	0.631	P	SPIN	
217817 at	10093	1	P	1.668	P	ARPC4	
217818 s at	10093	1	P	1.763	P	ARPC4	
217853 at	64759		P,A	2.894	P	TENSI	
217855 at	79869		P	0.645	P	FLJ12529	
	996	1	 P	0.539	P	CDC27	
217880 at	55742		P	1.594	P P	PARVA	
217890 s at			P	0.657	P	NIP30	
217896 s at	80011				P	TM7SF3	
217974_at	51768		P	0.574			
218087 s at	10580		P,A	0.618	P,A P	SORBSI FLJ10439	
218278_at	54663		P,A	1.710			
218292 s at	51422		Р	1.764	P	PRKAG2	
218309_at	55450		Р	1.563	P	CaMKIINalpha	
218400_at	4940		Р	1.658	Р	OAS3	
218413 s at	51193		P,M	0.570	A	ANC 2H01	
218486 at			Р	0.619	P	TIEG2	
218532 s at	54463		P,A	1.506	P.A	FLJ20152	
218625_at	51299	1	P,M,A	2.530	P	NRNI	
218674 at	80006	1	Р	0.641	P	FLJI3611	
218715 at	55813	1	P	1.512	P	HCA66	
218736 s at	54873	1	Р	0.405	P	PALMD	
218798 at	65095	<u> </u>	M,A	0.566	P,M,A	FLJ12949	
218849 s at	10848	1	P	1.531	P	RAI	
218880 at	2355	1	P,A	1.567	<u>P,M</u>	FOSL2	
218885 s at	79695		P	0.614	P	GALNT12	
218902 at	54781		P,A	1.566	P,A	NOTCHI	
218915 at	51219	1	P	1.618	P	NF2	
218940 at	79609	1	P	0.588	P	C14orf138	
218943 s at	23586	1	P,A	1.648	P,A	DDX58	
218980_at	80206		P,M	0.549	<u>A</u>	KIAA1695	
219014 at	51316		P	2.403	P	PLAC8; C15	
219040 at	79585		M.A	1.522	P,M,A	FLJ22021	
219049 at	55790		P.A	1.503	P	ChGn	
219134_at	64123	1	Р	0.558	P	ETL	

Affymetrix	I I Seeb	Day	0	Day 7		Common Name	
ld	LocusLink	Normalized	Flags	Normalized	Flags	Common Name	
219197 s at			P,M	1.643	Р	SCUBE2	
219209 at	64135	1	P	1.847	Р	MDA5	
219222 at	64080	1	P,A	1.601	P,A	RBKS	
219250 s at	23767	1	P,M,A	1.582	Р	FLRT3	
219325 s at	55520	1	Р	0.417	P,A	ELACI; D29	
219353 at	54835		Р	0.637	Р	NHLRC2	
219370 at	56475		A	2.475	P,M	REPRIMO	
219410 at	55076		Р	1.621	Р	FLJ10134	
219427 at	79633	1	P	1.522	Р	FATJ	
219437 s at	29123	1	P,M	0.547	A	ANKRÐII	
219550 at	64221	1	Р	0.532	P.A	ROBO3;	
219561 at	51226		P,A	2.218	P,M,A	COPZ2	
219501 at	7769		р	0.465	P	ZNF226	
219612 s at	2266		M.A	1.891	P,A	FGG	
219628 at	64393		P	1.617	P	WIGI	
219638 at	26263		P.A	1.590	P,M,A	FBX022	
219638 at	55070		P	0.634	P	DETI	
219641 at	51274	1	P.M.A	1.686	P,A	KLF3	
	7976	1	P P	1.667	P	FZD3	
219683 at	79412	1	P,A	1.829	P,A	KREMEN2	
219692_at			P,A P	1.829	P ₁ A	FLJ11127	
219694 at	54491		P	2.369	P.M	HS3ST2;	
219697 at	9956	1		1.835	P,M P,A	NPR3	
219789 at	4883		P,A		P,A	THNSL1	
219800 s at	79896		P	0.424		LATSI	
219813 at	9113	1	P,A	1.548	P,A	CYP26BI	
219825_at	56603	1	P,A	1.749	P.A		
219869 s at	64116		P,A	1.523	P	SLC39A8	
219892_at	53346	1	P	1.530	P	TM6SF1	
219901_at	55785	1	P	1.510	P	FLJ11183	
219992 at	6866	1	P,A	2.027	P,A	TAC3	
220029_at	54898	1	M,A	1.580	P,A	ELOVL2	
220104_at	56829	1	<u>P</u>	1.752	P	ZC3HAV1	
220122_at	79772	1	P	0.551	Р	FLJ22344	
220148_at	64577	1	P,M,A	1.633	P,M,A	ALDH8AI	
220212 s at	63892	<u> </u>	P	1.512	P	THADA	
220217 x at	64663	1	P,A	2.163	Р	SPANXC	
220230 s at	51700	1	P,M,A	1.643	P	CYB5R2	
220321 s at	79635	1	P	0.593	Р	FLJ13646	
220327_at	51159	1	P	0.589	P	FLJ38507	
220358 at	55509	1	P	1.507	P	SNFT	
220372 at	54943	1	P	0.611	P.A	C21orf55	
220407 s at	7042	1	P	1.668	<u>P</u>	TGFB2	
220520 s at	54830	1	P,A	1.699	Р	FLJ20130	
220544_at	60385	1	Р	0.637	<u>P,A</u>	TSKS; TSKSI	
220591 s at	80258	<u> </u>	P,A	1.992	P	FLJ22843	
220643 s at	55179		Р	0.651	Р	FAIM	
220675 s at	80339		Р	0.657	<u>P,A</u>	C22orf20	
220696 at	29048		P,A	0.586	P,A	PRO0478	
220712_at		1	P,M,A	0.576	P,A		
220719 at	80079	1	P,A	1.940	P,A	FLJ13769	

Affymetrix		Day	0	Day 7		Common Nome	
ld	LocusLink	Normalized	Flags	Normalized	Flags	Common Name	
220769 s at	79819	1	Р	0.656	P,A	FLJ23129	
220771 at	51152	1	P	0.602	Р	LOC51152	
220838 at	54932	1	P.M.A	0.635	P,A	FLJ20433	
220860 at	29942	1	Р	1.531	P	PURG	
220922 s at	30014	1	P,A	3.515	Р	SPANXAI	
220954 s at	29990	1	Р	0.642	р	PILRB	
220986 s at	81789	1	P	0.296	A	TIGD6	
220991 s at	140545		P	0.476	P,A	RNF32	
221011 s at	81606		P,A	2.132	р	LBH	
221011 s at	81031		P	0.415	Р	SLC2A10	
221024 s at	4166		P	1.723	P	CHST6	
221039 s at	54889	1	P,A	1.576	P,A	FLJ20306	
221120 at	9236		P	0.573	P	CPR8	
221130 x at	59336		P,A	1.847	P	PRDM13	
221108 at	83444		P,A	1.635	P,A	HMGAILA	
221231 x at	81557		P	0.494	р	MAGED4	
	50840		P,A	1.608	P,A	TAS2R14	
221391 at	30840	1	P	0.282	P	1054814	
221419 s at	01040		P	1.535	P	SPRY4	
221489 s at	81848	1		1.555	P	DKFZP56400523	
221594 at	84060		P.A			TAF9L	
221616 s at	51616		P,M,A	1.723	P,A	ZNF506	
221626 at		1	P,A	1.524	P,M,A		
221633_at	29781	1	P,A	2.103	P	384D8-2	
221664 s at	50848	1	P,A	2.047	P	F11R;	
221841 s at		1	A	2.224	P,M	KLF4	
221865_at	203197	1	P	0.629	P	C9orf91	
221875 x at	3134		Р	1.567	Р	HLA-F	
221898_at	10630	1	Р	0.615	P	TIA-2	
221958 s at	79971	1	P,A	2.133	P	FLJ23091	
221967_at	11247		P,A	1.529	Р	NXPH4	
221997 s at	116539		P,A	0.639	P,A	MRPL52	
222018_at	4666		Р	0.596	P,A	NACA	
222067 x at	3017	I	Р	0.481	P	H2BFB	
222082 at	51341	I	M,A	1.825	P,M,A	ZBTB7	
222116 s at	54493	1	Р	1.654	Р	TBC1D16	
222131 x at	89941	1	P	1.527	Р	RHOT2	
222162_s_at	9510	1	P,A	2.423	Р	ADAMTS1	
222208 s at	5439	1	P	0.621	P,M	POLR2J	
222224_at		1	P,A	0.596	P,M,A	MGC71999	
222229 x_at		1	P	0.604	Р		
222237_s_at	7771	1	P	0.570	P	ZNF228	
222313_at		1	P	0.588	P,A		
222326_at		1	P	0.522	P		
222329 x at		1	Р	0.616	P		
222361_at		1	Р	0.598	Р		
222366_at	1		Р	0.498	Р		
222370 x at		1	P,A	1.578	P,A		
266 s at	934	1	P	1.670	Р	CD24; CD24A	
32088 at	8548	1	P	0.646	Р	BLZF1	
32723 at	1477	1	Р	0.639	Р	CSTF1	

Affymetrix	T court unly	Day	0		Day 7	····· <u>-</u>	Common Name
Id	LocusLink	Normalized	Flags	No	ormalized	Flags	
33322_i_at	2810	1	P		1 552	Ρ	SFN
33323_r_at	2810	1	Р		1 504	Р	SFN
34697_at	4040	1	Р		0 625	Р	LRP6
37462_1_at	8175	1	Р		1 508	Р	SF3A2
37892_at	1301	1	P		1 546	Р	COL11A1
38037_at	1839	, <u>1</u>	P,A		1 504	Р	DTR
39548_at	4862	1	P,M,A		0 357	P,A	NPAS2
39549_at	4862	1	P,A		0 599	P,A	NPAS2
40524_at	11099	1	P,A		1 694	Р	PTPN21
47105_at	54920	1	Р		0 655	Р	FLJ20399
48031_r_at	10826	1	Р		0 578	P,A	C5orf4
53202_at	79020	1	Р	0 591		Р	C7orf25
60794_f_at		1	Р		0 646	P	
61297_at	57513	1	Р		0 592	P,A	CASKIN2
64418_at		_ 1	P		0 658	P	AP1GBP1
Aff	metrix Id)ay 0		Day	7	Common Name
		Normalize	ed Flag	S	Normalized	l Flags	
AFFX-HUMIS	SGF3A/M97935_3_a	ut 1	Р		1 851	Р	STAT1
AFFX-HUMIS	SGF3A/M97935_5_a	ut 1	Р		1 790	Р	STATI
	AFFX- A/M97935_MA_at	+ 1	Р		1 781	Р	STAT1
	AFFX- A/M97935_MB_at	1	Р		1 747	Р	STATI
AFFX-HUM	RGE/M10098_3_at	1	Р		1 922	Р	
AFFX-HUM	RGE/M10098_5_at	1	Р		3 107	Р	
AFFX-HUM	RGE/M10098_M_at	1	Р		1 921	Р	

į,

.

T

l

I

75 Appendix D – List of 93 up-regulated genes common to the BrdU 5,2'-FdU and IdU DNA Microarray Experiment

;

Affymetrix ld	LacusLink	Common Name
200697 at	3098	HK1
200762 at	1808	DPYSL2
200872 at	6281	S100A10
200887 s at	6772	STATI
201042 at	7052	TGM2
201060 x at	2040	STOM
201149 s at	7078	TIMP3
201464 x at	3725	JUN
201466 s at	3725	JUN; AP1
201502 s at	4792	NFKBIA
201719 s at	2037	EPB41L2
201739 at	6446	SGK
201798 s at	26509	FERIL3
202017 at	2052	EPHXI
202284 s at	1026	CDKNIA
202436 s at	1545	CYPIBI
202436 <u>s</u> at	11217	АКАР2
202949 s at	2274	FHL2
202949 <u>5 at</u>	9060	PAPSS2
203140 at	604	BCL6
203304 at	25805	BAMBI
203665 at	3162	HMOXI
	1839	DTR
203821_at 203910_at	9411	PARGI
	2149	F2R
203989 x at	29970	SCHIP1
204030 s_at	11259	DOCI
204135_at 204279_at	5698	PSMB9
	11186	RASSF1
204346_s_at		FGF2
204422_s_at	2247	MMP1
204475_at	<u>4312</u> 960	CD44
204490 s at	5743	COX2
204748_at	5734	EP4
204897_at		
204955 at	8406	GPC4
204983_s_at 205479_s_at	2239	PLAU
205534 at	5328	PCDH7
	6876	TAGLN
205547_s_at 205925_s_at	5865	RAB3B
205925 s at 206116 s at	7168	TPM1
20610 <u>s at</u>	970	TNFSF7
206773 at	4062	LY6H
207030 s at	1466	CSRP2
207826 s at	3399	ID3
		FLNC
207876 s at	<u>2318</u> 934	
208650 s al		CD24
208782_at	11167	FSTL1
208789_at	22939	PTRF ID1

Affymetrix Id	LocusLink	Common Name
208944 at	7048	TGFBR2
209040 s at	5696	PSMB8
209087 x at	4162	MCAM
209267 s at	64116	SLC39A8
209278 s at	7980	TFPI2
209291 at	3400	ID4
209293 x at	3400	ID4
209340 at	6675	UAPI
209457 at	1847	DUSP5
209771 x at	934	CD24
209803 s at	7262	PHLDA2
209835 x at	960	CD44
210538 s at	330	BIRC3
210560 at	2637	GBX2
210605 s at	4240	MFGE8
210612 s at	8871	SYNJ2
210986 s at	7168	TPM1
210987 x at	7168	TPM1
212063 at	960	CD44
212143 s at	3486	IGFBP3
212294 at	55970	GNG12
213281 at	3725	JUN
213618 at	116984	CENTD1
214247 s at	10530	DKK3
214722 at		LOC376745
215706 x at	7791	ZYX
215719 x at	355	TNFRSF6
216379 x at	934	NaGLT1
217809 at	28969	BZW2
218625 at	51299	NRN1
218880 at	2355	FOSL2
218915 at	51219	NF2
219014 at	51316	PLAC8
219410 at	55076	FLJ10134
219612 s at	2266	FGG
220520 s at	54830	FLJ20130
221011 s at	81606	LBH
221841 s at	· · · · · · · · · · · · · · · · · · ·	KLF4
266_s_at	934	CD24
38037_at	1839	DTR
AFFX HUMISGF3A/M97935_3_at		STAT1
AFFX HUMISGF3A/M97935_MA_at		STAT1
AFFX HUMISGF3A/M97935_MB_at		STAT1

76 Appendix E – EASE Analysis

This appendix contains part of the results generated following subjecting the 93 upregulated genes identified as common to the BrdU, 5,2 -FdU and IdU DNA microarray experiments Due to size constraints only part of the EASE report is listed in this Appendix

System	Gene Category	List Hits	List Total	Population Hits	Population Total	EASE score	Bonferrozi	Bootstrap within system	Gene identifiers	Affymetrix probesets
GO Biological Process	<u>cell death</u>	11	71	404	10937	2.31E-04	1.20E-01	4.00E-03	330; 355; 970; 1026; 2149; 2355; 4792; 6446; 6772; 7052; 7262	200887_S AT; 201042_AT; 201502_S AT; 201739_AT; 202284_S AT; 203989_X AT; 206508_AT; 209803_S AT; 210538_S AT; 215719_X AT; 218880_AT; AFFX- HUMISGF3A/M97935_3 AT; AFFX- HUMISGF3A/M97935_MA_AT; AFFX- HUMISGF3A/M97935_MB_AT
<u>GO</u> Biological Process	<u>death</u>	11	71	408	10937	2.50E-04	1.30E-01	5.00E-03	330; 355; 970; 1026; 2149; 2355; 4792; 6446; 6772; 7052; 7262	200887_S_AT; 201042_AT; 201502_S_AT; 201739_AT; 202284_S_AT; 203989_X_AT; 206508_AT; 209803_S_AT; 210538_S_AT; 215719_X_AT; 218880_AT; AFFX- HUMISGF3A/M97935_3_AT; AFFX- HUMISGF3A/M97935_MA_AT; AFFX- HUMISGF3A/M97935_MB_AT
<u>GO</u> Biological Process	apoplosis	10	71	379	10937	6.57E-04	3.40E-01	1.30E-02	330; 355; 970; 1026; 2149; 4792; 6446; 6772; 7052; 7262	200887 S AT; 201042 AT; 201502 S AT; 201739 AT; 202284 S AT; 203989 X AT; 206508 AT; 209803 S AT; 210538 S AT; 215719 X AT; AFFX- HUMISGF3A/M97935 3 AT: AFFX- HUMISGF3A/M97935 MA AT; AFFX- HUMISGF3A/M97935 MB AT

System	Gene Category	Lıst Hıts	Lıst Total	Population Hits	Population Total	EASE score	Bonferroni	Bootstrap within system	Gene Identifiers	Affymetrix probesets
<u>GO</u> <u>Biological</u> <u>Process</u>	<u>programmed cell</u> <u>death</u>	10	71	380	10937	6 70E-04	3 47E-01	1 40E-02	330, 355 970, 1026, 2149, 4792, 6446, 6772, 7052 7262	200887_S_AT, 201042_AT, 201502_S_AT, 201739_AT, 202284_S_AT, 203989_X_AT, 206508_AT, 209803_S_AT, 210538_S_AT, 215719_X_AT, AFFX- HUMISGF3A/M97935_3_AT, AFFX- HUMISGF3A/M97935_MA_AT, AFFX- HUMISGF3A/M97935_MB_AT
<u>GO</u> <u>Biological</u> <u>Process</u>	<u>response to</u> external stimulus	19	71	1263	10937	7 67E-04	3 97E-01	1 40E-02	355, 604, 934, 970, 1545, 2052, 2149, 2247, 2637, 4062, 4771, 4792, 5328, 5696, 5698, 5734, 5743, 6772, 7078	200887 S AT, 201149 S AT, 201502 S AT, 202017 AT, 202436 S AT, 203140 AT, 203989 X AT, 204279 AT, 204422 S AT, 204279 AT, 204422 S AT, 204748 AT, 204897 AT, 205479 S AT, 206508 AT, 206773 AT, 208650 S AT, 209040 S AT, 209771 X AT, 210560 AT, 215719 X AT, 218915 AT, 266 S AT, AFFX- HUMISGF3A/M97935 3 AT, AFFX- HUMISGF3A/M97935 MA AT, AFFX- HUMISGF3A/M97935 MB AT

System	Gene Category	List Hits	List Total	Population Hits	Population Total	EASE score	Bonferroni	Bootstrap within system	Gene identifiers	Affymetrix probesets
GO Biological Process	regulation of cellular process	9	71	323	10937	1.02E-03	5.27E-01	I.90E-02	604: 1026: 1839: 2247: 2266: 3486: 4771: 7048: 9314	202284 S AT; 203140 AT; 203821 AT; 204422 S AT; 208944 AT; 212143 S AT; 218915 AT: 219612 S AT; 221841 S AT; 38037 AT
<u>GO</u> <u>Biological</u> <u>Process</u>	regulation of cell proliferation	8	71	249	10937	1.03E-03	5.33E-01	1.90E-02	604: 1026; 1839; 2247; 2266; 4771; 7048; 9314	202284_S_AT; 203140_AT; 203821_AT; 204422_S_AT; 208944_AT; 218915_AT; 219612_S_AT; 221841_S_AT; 38037_AT
GO Biological Process	regulation of biological process	9	71	328	10937	1.12E-03	5.82E-01	2.00E-02	604; 1026; 1839; 2247; 2266; 3486: 4771; 7048; 9314	202284 S AT; 203140 AT; 203821 AT; 204422 S AT; 208944 AT; 212143 S AT; 218915 AT; 219612 S AT; 221841 S AT; 38037 AT
GO <u>Biological</u> <u>Process</u>	morphogenesis	16	71	1010	10937	1.54E-03	7.98E-01	2.30E-02	1466; 1545; 1808; 1839; 2037; 2149; 2239; 2247; 2637; 4062; 4162; 6876; 7168; 9060; 9314; 27122	200762 AT; 201719 S_AT; 202436 S_AT; 203058 S_AT; 203821 AT; 203989 X_AT; 204422 S_AT; 204983 S_AT; 205547 S_AT; 204983 S_AT; 206773 AT; 207030 S_AT; 209087 X_AT; 210560 AT; 210986 S_AT; 210987 X_AT; 214247 S_AT; 221841 S_AT; 38037 AT

System	Gene Category	Lıst Hıts	Lıst Total	Population Hits	Population Total	EASE score	Bonferroni	Bootstrap within system	Gene ıdentıfiers	Affymetrıx probesets
<u>GO</u> <u>Biological</u> <u>Process</u>	peptidyl-amino acid modification	3	71	17	10937	5 16E-03	1 00E+0 0	8 40E-02	2149, 6772 7052	200887_S_AT, 201042_AT, 203989_X_AT, AFFX- HUMISGF3A/M97935_3_AT, AFFX- HUMISGF3A/M97935_MA_AT, AFFX- HUMISGF3A/M97935_MB_AT
<u>GO</u> <u>Biological</u> <u>Process</u>	cell communication	29	71	2791	10937	5 40E-03	1 00E+00	8 90E-02	330, 355, 960, 970, 1808, 1839, 2149, 2247, 3486, 4162, 4240, 4792, 5099, 5328, 5734, 5865, 6281, 6772, 7048, 7052, 7791, 8406, 9411, 11186, 11217, 25805, 27122, 55970, 116984	200762_AT, 200872_AT, 200887_S_AT, 201042_AT, 201502_S_AT, 202760_S_AT, 203304_AT, 203821_AT, 203910_AT, 203989_X_AT, 204346_S_AT, 204422_S_AT, 204490_S_AT, 204422_S_AT, 204955_AT, 205479_S_AT, 205534_AT, 205925_S_AT, 205508_AT, 208944_AT, 209087_X_AT, 209835_X_AT, 212063_AT, 212143_S_AT, 212063_AT, 213618_AT, 214247_S_AT, 215706_X_AT, 215719_X_AT, 38037_AT, AFFX- HUMISGF3A/M97935_MA_AT, AFFX- HUMISGF3A/M97935_MB_AT
<u>GO</u> <u>Biological</u> <u>Process</u>	positive regulation of cell proliferation	5	71	111	10937	5 51E-03	1 00E+00	9 10E-02	604, 1839, 2247, 2266, 7048	203140_AT, 203821_AT, 204422_S_AT, 208944_AT, 219612_S_AT, 38037_AT

r

- -----

System	Gene Category	Lıst Hıts	Lıst Total	Population Hits	Population Total	EASE score	Bonferronı	Bootstrap within system	Gene identifiers	Affymetrix probesets
<u>GO</u> <u>Biological</u> <u>Process</u>	<u>development</u>	20	71	1683	10937	7 97E-03	1 00E+00	l 47E-01	1466, 1545, 1808, 1839, 2037, 2149, 2239, 2247, 2637, 3162, 3397, 3399, 4062, 4162, 6876, 7168, 7262, 9060, 9314, 27122	200762_AT, 201719_S_AT 202436_S_AT, 203058_S_AT, 203665_AT, 203821_AT, 203989_X_AT, 204422_S_AT, 204983_S_AT, 205547_S_AT, 206116_S_AT, 20773_AT, 207030_S_AT, 207826_S_AT, 208937_S_AT, 209087_X_AT, 209803_S_AT, 210560_AT, 210986_S_AT, 210987_X_AT, 214247_S_AT, 221841_S_AT, 38037_AT
<u>GO</u> <u>Biological</u> <u>Process</u>	signal transduction	24	71	2196	10937	8 06E-03	1 00E+00	1 48E-01	330, 355, 970 1808, 1839, 2149 2247, 3486, 4792, 5328, 5734, 5865, 6281, 6772, 7048, 7052, 7791, 9411, 11186, 11217, 25805, 27122, 55970, 116984	200762_AT, 200872_AT, 200887_S_AT, 201042_AT, 201502_S_AT, 202760_S_AT, 203304_AT, 203821_AT, 203910_AT, 203989_X_AT, 204346_S_AT, 204422_S_AT, 204897_AT, 205479_S_AT, 205925_S_AT, 206508_AT, 208944_AT, 210538_S_AT, 212143_S_AT, 212294_AT, 213618_AT, 214247_S_AT, 215706_X_AT, 215719_X_AT, 38037_AT, AFFX- HUMISGF3A/M97935_JAAT, AFFX- HUMISGF3A/M97935_MA_AT, AFFX- HUMISGF3A/M97935_MB_AT

System	Gene Category	Lıst Hıts	Lıst Total	Population Hits	Population Total	EASE score	Bonferronı	Bootstrap within system	Gene identifiers	Affymetrix probesets
GO Biological Process	<u>cellular process</u>	48	71	5719	10937	8 24E-03	1 00E+00	1 49E-01	330, 355, 604, 960 970, 1026, 1466, 1808, 1839, 2037, 2149, 2239, 2247, 2266, 2355, 3486, 3725, 4062, 4162, 4240, 4771, 4792, 5099, 5328, 5734, 5743, 5865, 6281, 6446, 6772, 7048, 7052, 7168, 7262, 7791, 8406, 9314, 9411, 11167, 11186, 11217, 25805, 26509, 27122, 54830, 55970, 64116, 116984	200762 AT, 200872 AT, 200887 S AT, 201042 AT, 201464 X AT, 201466 S AT, 201502 S AT, 201719 S AT, 201739 AT, 201798 S AT, 202284 S AT, 202760 S AT, 203140 AT, 203304 AT, 203821 AT 203910 AT, 203899 X AT, 204346 S AT, 204422 S AT, 204346 S AT, 204422 S AT, 204490 S AT, 204748 AT 204897 AT, 204955 AT, 204983 S AT, 205955 S AT, 206116 S AT, 206508 AT, 206773 AT, 206508 AT, 206773 AT, 209267 S AT, 208782 AT, 209844 AT, 209087 X AT, 209835 X AT, 210538 S AT 210605 S AT, 210986 S AT, 212143 S AT, 212063 AT, 213281 AT, 213618 AT, 213281 AT, 213618 AT, 218915 AT, 219612 S AT, 218915 AT, 21841 S AT, 218915 AT, 21841 S AT, 218915 AT, 21841 S AT, 38037 AT, AFFX- HUMISGF3A/M97935 MA AT, AFFX- HUMISGF3A/M97935 MA AT, AFFX-

System	Gene Category	List Hits	List Tatal	Population Hits	Population Total	EASE	Bonferroni	Bootstrap within system	Gene identifiers	Affymetrix probesets
<u>GO</u> Biological Process	musele development	5	71	133	10937	1.03E-02	1.00E+00	1.84E-01	1466; 1839; 2247; 6876; 7168	203821 AT; 204422 S AT; 205547 S AT; 206116 S AT; 207030 S AT; 210986 S AT; 210987_X_AT; 38037_AT
<u>GO</u> <u>Biological</u> <u>Process</u>	cell proliferation	14	71	1036	10937	1.33E-02	1.00E+00	2.45E-01	604: 970; 1026: 1466; 1839; 2149; 2239; 2247; 2266; 3725; 4771; 6772; 7048; 9314	200887 S AT: 201464 X AT: 201466 S AT: 202284 S AT; 203140 AT; 203821 AT; 203989 X AT; 204422 S AT; 204983 S AT: 206508 AT; 207030 S AT: 208944 AT; 213281 AT; 218915 AT; 219612 S AT; 221841 S AT; 38037 AT; AFFX- HUMISGF3A/M97935 3 AT: AFFX- HUMISGF3A/M97935 MA AT: AFFX- HUMISGF3A/M97935 MB AT
GO Molecular Function	glycosaminoglyca n binding	4	70	82	11065	1.45E-02	1.00E+00	2.44E-01	960; 1839; 2247; 11167	203821_AT; 204422_S_AT; 204490_S_AT; 208782_AT; 209835_X_AT; 212063_AT; 38037_AT
GO <u>Biological</u> <u>Process</u>	response to biotic stimulus	12	71	821	10937	I.46E-02	1.00E+00	2.72E-01	355; 604; 934; 970; 2637; 4062: 4792; 5696; 5698; 5734; 5743; 6772	200887 S AT; 201502 S AT; 203140 AT; 204279 AT; 204748 AT; 204897 AT; 206508 AT; 206773 AT; 208650 S AT; 209040 S AT; 209771 X AT; 210560 AT; 215719 X AT; 266 S AT; AFFX- HUMISGF3A/M97935 3 AT; AFFX- HUMISGF3A/M97935 MA AT; AFFX- HUMISGF3A/M97935 MB AT

System	Gene Category	List Hits	Lıst Total	Population Hits	Population Total	EASE score	Bonferroni	Bootstrap within system	Gene Identifiers	Affymetrix probesets
<u>GO</u> <u>Cellular</u> <u>Component</u>	extracellular space	8	74	391	10787	1 63E-02	1 00E+00	1 41E-01	1839, 2247, 2266, 3486, 4312, 5328, 11167, 27122	203821_AT, 204422_S_AT, 204475_AT, 205479_S_AT, 208782_AT, 212143_S_AT, 214247_S_AT, 219612_S_AT, 38037_AT
<u>GO</u> Biological Process	<u>STAT protein</u> <u>nuclear</u> <u>translocation</u>	2	71	3	10937	1 91E-02	1 00E+00	3 40E-01	2149, 6772	200887_S_AT, 203989_X_AT, AFFX- HUMISGF3A/M97935_3_AT, AFFX- HUMISGF3A/M97935_MA_AT, AFFX- HUMISGF3A/M97935_MB_AT
<u>GO</u> <u>Biological</u> <u>Process</u>	blood coagulation	4	71	92	10937	2 10E-02	1 00E+00	3 85E-01	2149, 2266, 5328, 7980	203989_X_AT, 205479_S_AT, 209278_S_AT, 219612_S_AT
<u>GO</u> <u>Biological</u> <u>Process</u>	<u>hemostasıs</u>	4	71	97	10937	2 41E-02	1 00E+00	4 37E-01	2149, 2266, 5328, 7980	203989_X_AT, 205479_S_AT, 209278_S_AT_219612_S_AT
<u>GO</u> <u>Biological</u> Process	immune response	10	71	682	10937	2 91E-02	1 00E+00	5 18E-01	355, 604, 934, 970, 2637, 4062, 5696, 5698, 5734, 5743	203140_AT, 204279_AT, 204748_AT, 204897_AT, 206508_AT, 206773_AT, 208650_S_AT, 209040_S_AT, 209771_X_AT, 210560_AT, 215719_X_AT, 266_S_AT
<u>GO</u> <u>Molecular</u> <u>Function</u>	receptor binding	8	70	494	11065	3 37E-02	1 00E+00	5 24E-01	970, 1839, 2149, 2247, 2266, 4062, 6281, 27122	200872_AT, 203821_AT, 203989_X_AT, 204422_S_AT, 206508_AT, 206773_AT, 214247_S_AT, 219612_S_AT, 38037_AT

System	Gene Category	List Hits	List Total	Population Hits	Population Total	EASE	Bonferroni	Bootstrap within system	Gene identifiers	Aflymetrix probesets
<u>GO</u> Biological Process	transmembrane receptor protein serine/threonine kinase signaling pathway	3	71	48	10937	3.77E-02	I_00E+00	6.13E-01	7048: 11217; 25805	202760_S_AT; 203304_AT; 208944_AT
<u>GO</u> Biological Process	tyrosine phosphorylation of STAT protein	2	71	6	10937	3.78E-02	1.00E+00	6.13E-01	2149; 6772	200887_S_AT; 203989_X_AT; AFFX- HUMISGF3A/M97935_3_AT; AFFX- HUMISGF3A/M97935_MA_AT; AFFX- HUMISGF3A/M97935_MB_AT
GO Biological Process	peptidyl-tyrosine phosphorylation	2	71	8	10937	5.01E-02	1.00E+00	7.23E-01	2149; 6772	200887 S AT; 203989 X AT; AFFX- HUMISGF3A/M97935 3 AT; AFFX- HUMISGF3A/M97935 MA AT; AFFX- HUMISGF3A/M97935 MB_AT
GO Biological Process	defense response	10	71	756	10937	5.09E-02	1.00E+00	7.29E-01	355; 604; 934; 970; 2637; 4062; 5696; 5698; 5734; 5743	203140 AT; 204279_AT; 204748_AT; 204897_AT; 206508_AT; 206773_AT; 208650_S_AT; 209040_S_AT; 209771_X_AT; 210560_AT; 215719_X_AT; 266_S_AT
<u>GO</u> <u>Molecular</u> <u>Function</u>	cell adhesion molecule activity	6	70	330	11065	5.46E-02	1.00E+00	7.15E-01	960; 4162; 4240; 5099; 7791; 8406	204490 S AT; 204955 AT; 205534 AT; 209087 X AT; 209835 X AT; 210605 S AT; 212063 AT; 215706 X AT

System	Gene Category	Lıst Hıts	List Total	Population Hits	Population Total	EASE score	Bonferroni	Bootstrap within system	Gene ıdentıfiers	Affymetrıx probesets
<u>GO</u> <u>Molecular</u> <u>Function</u>	oxidoreductase activity_acting on paired donors_ with incorporation or reduction of molecular oxygen_ miscellaneous	2	70	9	11065	5 48E-02	1 00E+00	7 15E-01	3162, 5743	203665_AT, 204748_AT
<u>GO</u> <u>Molecular</u> Function	heparın bındıng	3	70	61	11065	5 54E-02	1 00E+00	7 22E-01	1839, 2247, 11167	203821_AT, 204422_S_AT, 208782_AT, 38037_AT
<u>GO</u> <u>Biological</u> <u>Process</u>	<u>organogenesis</u>	11	71	901	10937	5 98E-02	1 00E+00	7 88E-01	1466 1545, 1808, 1839, 2247, 2637, 4062, 6876, 7168, 9060, 9314	200762_AT, 202436_S_AT, 203058_S_AT, 203821_AT, 204422_S_AT, 205547_S_AT, 206116_S_AT, 206773_AT, 207030_S_AT, 210560_AT, 210986_S_AT, 210987_X_AT 221841_S_AT_38037_AT
<u>GO</u> <u>Biological</u> <u>Process</u>	peptidyl-tyrosine modification	2	71	10	10937	6 22E-02	1 00E+00	7 99E-01	2149 6772	200887_S_AT, 203989_X_AT, AFFX- HUMISGF3A/M97935_3_AT, AFFX- HUMISGF3A/M97935_MA_AT, AFFX- HUMISGF3A/M97935_MB_AT
<u>GO</u> <u>Biological</u> <u>Process</u>	<u>response to</u> pest/pathogen/para site	7	71	444	10937	6 42E-02	1 00E+00	8 12E-01	604, 934, 2637, 4062, 4792, 5743, 6772	200887_S_AT_201502_S_AT 203140_AT_204748_AT_206773_AT 208650_S_AT_209771_X_AT 210560_AT_266_S_AT_AFFX HUMISGF3A/M97935_3_AT_AFFX- HUMISGF3A/M97935_MA_AT, AFFX-HUMISGF3A/M97935_MB_AT

,

System	Gene Category	Lıst Hıts	Lıst Total	Population Hits	Population Total	EASE score	Bonferroni	Bootstrap within system	Gene ıdentıfiers	Affymetrıx probesets
<u>GO</u> <u>Biological</u> <u>Process</u>	<u>protein kinase</u> cascade	4	71	155	10937	7 69E-02	1 00E+00	8 69E-01	2149, 2247, 4792, 6772	200887_S_AT, 201502_S_AT, 203989_X_AT, 204422_S_AT, AFFX- HUMISGF3A/M97935_3_AT, AFFX- HUMISGF3A/M97935_MA_AT, AFFX- HUMISGF3A/M97935_MB_AT
<u>GO</u> <u>Biological</u> Process	posttranslational membrane targeting	2	71	14	10937	8 60E-02	1 00E+00	8 98E-01	2239, 4062	204983_S_AT, 206773_AT
<u>GO</u> <u>Cellular</u> <u>Component</u>	extracellular	13	74	1175	10787	9 52E-02	1 00E+00	6 87E-01	1839, 2239, 2247, 2266 3486, 4312, 4771, 5328, 7052, 7078, 7980, 11167, 27122	201042_AT, 201149_S_AT, 203821_AT_204422_S_AT, 204475_AT, 204983_S_AT, 205479_S_AT, 208782_AT, 209278_S_AT, 212143_S_AT, 214247_S_AT, 218915_AT, 219612_S_AT, 38037_AT
<u>GO</u> <u>Molecular</u> <u>Function</u>	oxidoreductase activity acting on paired donors with incorporation or reduction of molecular oxygen	3	70	84	11065	9 65E-02	1 00E+00	9 08E-01	1545, 3162, 5743	202436_S_AT, 203665_AT, 204748_AT
<u>GO</u> <u>Biological</u> <u>Process</u>	<u>cell surface</u> receptor linked signal transduction	11	71	991	10937	9 86E-02	1 00E+00	9 34E-01	330, 2149, 5734, 7048, 7052, 11186, 11217, 25805, 27122, 55970 116984	201042_AT, 202760_S_AT, 203304_AT, 203989_X_AT, 204346_S_AT, 204897_AT, 208944_AT, 210538_S_AT, 212294_AT, 213618_AT, 214247_S_AT

System	Gene Category	Lıst Hıts	List To tal	Population Hits	Population Total	EASE score	Bonferroni	Bootstrap within system	Gene ıdentıfiers	Affymetrix probesets
<u>GO</u> <u>Biological</u> <u>Process</u>	regulation of cell cycle	6	71	384	10937	9 90E-02	1 00E+00	9 35E-01	1026, 2149, 2247, 3725, 4771, 6772	200887_S_AT, 201464_X_AT, 201466_S_AT, 202284_S_AT, 203989_X_AT, 204422_S_AT, 213281_AT, 218915_AT, AFFX- HUMISGF3A/M97935_3_AT, AFFX- HUMISGF3A/M97935_MA_AT, AFFX- HUMISGF3A/M97935_MB_AT
<u>GO</u> <u>Biological</u> <u>Process</u>	anti-apoptosis	3	71	88	10937	1 09E-01	1 00E+00	9 49E-01	330, 355, 7052	201042_AT, 210538_S_AT, 215719_X_AT
<u>GO</u> <u>Biological</u> Process	negative regulation of apoptosis	3	71	88	10937	1 09E-01	1 00E+00	9 49E-01	330, 355, 7052	201042_AT, 210538_S_AT, 215719_X_AT
<u>GO</u> <u>Molecular</u> <u>Function</u>	signal transducer activity	18	70	2009	11065	1 09E-01	1 00E+00	9 30E-01	355, 960, 970, 1839, 2149, 2239, 2247, 2266 4062, 5734, 6281, 6772, 7048, 7791, 11217, 25805, 27122, 55970	200872 AT, 200887 S AT, 202760 S AT, 203304 AT, 203821 AT, 203989 X AT, 204422 S AT, 204490 S AT 204897 AT, 204983 S AT, 206508 AT, 206773 AT, 208944 AT, 209835 X AT, 212063 AT, 212294 AT, 214247 S AT, 215706 X AT, 215719 X AT, 219612 S AT, 38037 AT, AFFX- HUMISGF3A/M97935 AT, AFFX- HUMISGF3A/M97935 MA AT, AFFX- HUMISGF3A/M97935 MB AT

System	Gene Category	Lıst Hıts	List Total	Population Hits	Population Total	EASE score	Bonferroni	Bootstrap within system	Gene ıdentıfiers	Affymetrıx probesets
<u>GO</u> <u>Biological</u> <u>Process</u>	<u>intracellular</u> signaling cascade	9	71	761	10937	1 12E-01	1 00E+00	9 50E-01	2149, 2247, 4792, 5734, 5865, 6772, 7052, 9411, 11186	200887_S_AT, 201042_AT, 201502_S_AT, 203910_AT, 203989_X_AT, 204346_S_AT, 204422_S_AT, 204897_AT, 205925_S_AT, AFFX- HUMISGF3A/M97935_3_AT, AFFX- HUMISGF3A/M97935_MA_AT, AFFX- HUMISGF3A/M97935_MB_AT