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Abstract—The framework based on the Bag-of-Visual-Words
(BoVW) feature representation and SVM classification is popu-
larly used for generic content-based concept detection or visual
categorization. However, visual vocabulary (VV) size, one im-
portant factor in this framework, is always chosen differently
and arbitrarily in previous work. In this paper, we focus on
investigating the optimal VV sizes depending on other compo-
nents of this framework which also govern the performance.
This is useful as a default VV size for reducing the computation
cost. By unsupervised clustering, a series of VVs covering wide
size range are evaluated under two popular local features,
three assignment modes, and four kernels on two different-
scale benchmarking datasets respectively. These factors are also
evaluated. Experimental results show that best VV sizes vary as
these factors change. However, the concept detection performance
usually improves as the VV size increases initially, and then
gains less, or even deteriorates if larger VVs are used since
overfitting happens. Overall, VVs with sizes ranging from 1024
to 4096 achieve best performance with higher probability when
compared with other-size VVs. With regard to the other factors,
experimental results show that the OpponentSIFT descriptor
outperforms the SURF feature, and soft assignment mode yields
better performance than binary and hard assignment. In addition,
generalized RBF kernels such as χ2 and Laplace RBF kernels
are more appropriate for semantic concept detection with SVM
classification.

I. INTRODUCTION

Currently, the emphasis on detecting semantic concepts
now is moving to more generalized semantic indexing. In
particulary, a recent trend in semantic concepts detection
has been to search for generic methods that are based on
BoVW feature representation 1 and Support Vector Machine
(SVM) framework, which has produced significant results on
several large scale content-based image and video retrieval
benchmarkings, such as TRECVid [1]. The BoVW model
allows semantic concept detection by representing an image
by a distribution of visual words (VWs) defined beforehand in
a VV. Fig. 1 shows the generation process of BoVW-based
feature representation and SVM classification. The BoVW
model is inspired by the bag-of-words approach to text-
document categorization. However, compared with textual-
document categorization, there is no available vocabulary for
image-based semantic concept detection and it has to be
learned from a training image set.

1In the literature, the bag of feature model, the codebook model and
the BoVW model are nearly the same. The terms “ textons”,“visual words”
and “codewords” have been used with approximately the same meaning, i.e.
clusters of feature space in a high-dimensional space, although “textons” is
usually used in texture recognition. In this paper, we use visual words and
visual vocabulary representing the two cores of this model
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Fig. 1. Framework based BoVW feature representation and SVM classifica-
tion for semantic concept detection

TABLE I. AN OVERVIEW OF DIFFERENT VV SIZES USED IN PREVIOUS
LITERATURE

Size Size

[6] 6000∼10000 [7] 300,1000,4000

[8] 200∼400 [9] 1000

[10] < 1500 [2] 500∼2500

The VVs are generally constructed by using unsupervised
algorithms to quantize the high-dimension low-level feature
descriptors into clusters [2], [3], among which, K-means is
the most popularly used because of its simple and easy imple-
mentation. However, the number of clusters K, in unsupervised
clustering algorithms is typically chosen arbitrarily, which
makes the VV sizes used in previous work always different,
and there is no consensus which size or range of VV sizes can
produce the best performance.

About this framework, there has already been a lot of
existing reviews, which can be found in [3], [4], [5]. Here, we
only give a brief review of the literature about the choice of
VV size in previous work. An overview of different VV sizes
found in literature is in Table I. In [3] Jiang et al. analyzed each
aspect of the BoVW model in depth, and experimented with
VVs of various sizes on TRECVid2006 datasets under different
choice of weighting schemes (assignment modes) and kernel
choices for SVM. They found that appropriate size of the VV
for different datasets are different. Csurka et al. in [2] reported
that performance improves steadily as the VV size grows range
from 500 to 2500 using the keypoint features (SIFT), which



were also found in [7] not only using SIFT but also considering
dense sampling. However, as the VV size is increased, apparent
overfitting was found in [7]. Both Li et al. [10] and Gemert et
al. [5] aimed to construct compact and optimal VVs for object
recognition or visual categorization. They also experimented
with different VV sizes under different factor settings. In [10],
the experimental results show substantial gains in performance
as the VV size increased. Gemert [5] obtained similar results
but with larger range of VV size (with a maximum size of
3223). In [4], Chatfield et al. also evaluated this framework
with different settings. The number of visual words they used
varies between 600 and 8,000 (specifically, 600, 1500, 2000,
4000, and 8000) for the Caltech-101 data and between 4,000
and 25,000 for the PASCAL VOC data. Their experimental
results demonstrate that larger vocabularies lead to higher
accuracy.

However, a large number of VWs also require extra
processing overhead, such as computation storage and time.
Specifically, it takes more time to produce a larger VV, then
consequently it will take more time to map the low-level
feature descriptors to VWs, and to train a classification model.
Therefore, it is important to choose optimal VV size(s) for
efficient concept detection. In this paper, we evaluate the
detection performance of a series of VVs with different sizes
under other factors including the choices of local feature,
assignment mode of VWs, and kernel function for SVM
learning on two datasets. Compared with previous work, our
contributions in this work are that we 1) focus on find the
optimal ranges of VVsize for concept detection across different
factors, i.e. datasets, local feature, assignment mode and kernel
selection. Extensive experiments are performed on both video
datasets and image datasets, and the impact of these factors are
also evaluated; 2) evaluate the performance of a large range of
VV sizes, which nearly covers all the VV sizes having been
used in previous literature.

In the following, section 2 outlines the details about con-
structing the representation of BoVW and SVM classification
for the experiments in section 4. Experimental details and
result analysis are described in Section 3 and 4 respectively.
Finally, Section 5 concludes this paper.

II. FACTORS IN BOVW MODEL AND SVM FRAMEWORK
FOR SEMANTIC CONCEPT DETECTION

In the BoVW and SVM framework for concept detection,
the performance varies as different-size VV is used. Further-
more, choices of local feature, assignment mode and kernel
also govern the performance. Our experiments in this paper try
to investigate the concept detection performance of VVs with
various sizes under different local features, assign modes and
kernels. Hence in this section, we analyze these four factors
and especially describe our choices that will be evaluated in
later experiments.

A. Local Features

The major problem for automatic concept detection is
bridging the semantic gap between low-level feature repre-
sentations extracted from sensor data (images and videos) and
high-level human semantic interpretation of the data. Hence,
visual features need to model the wide diversity in appearance

of semantic concepts. There are also variations in appearance
which are not due to the richness of the semantics. Varying
the viewpoint, lighting changes, clutter and occlusions in
the recording of a scene will deliver different data, whereas
the semantics may not have changed. Recently, there is a
trend of using image scale- or affne-invariant local feature
keypoints, which are proved effective for semantic concept
detection by consecutive-reported progresses [3], [11]. These
invariant visual features are computable visual properties that
are insensitive to changes in the content, for example, caused
by changing the color illumination intensity, rotation, scale,
translation, or viewpoint, while still able to distinguish con-
cepts with different semantics.

Different feature detectors, nevertheless, emphasize dif-
ferent aspects of invariance, resulting in keypoints of vary-
ing properties. Here, we evaluate two popular keypoint de-
scriptors which also produced good performance in previous
work, including OpponentSIFT (OppSIFT) [11] descriptor and
SURF [12] feature.

B. VV Construction and Sizes

VVs are popularly constructed by the simple square-error
based partitioning method: K-means. However, there are some
deficiencies. For example, one is that it easily converges only
to local optima. Another is that it does not determine the
parameter K. Moreover, two practical shortcomings are it is
computationally expensive and the memory required for K-
means would be prohibitive for VV and training sets of large
scale.

In this paper, we construct a large series of VVs which
cover a wide range of sizes. Hierarchal K-means technique
inspired by [13] is used to construct the VV tree. Instead
of K defining the final number of clusters or quantization
cells, K define the branch factor (number of children of each
node) of the tree. Firstly, an initial K-means process is run
on the training data, defining K clusters. The training data
is then partitioned into K groups, where each group consists
of the feature vectors closest to a particular cluster center.
Then the same process is then recursively applied to each
group of feature vector, recursively defining quantization cells
by splitting each quantization cell into K new parts. The
VV tree is determined level by level, up to some certain
number of levels L and each division into K parts is only
defined by the distribution of the feature vectors that belong
to the parent quantization cell. Advantages of this construction
method are mainly as follows: 1) It speeds up the assignment
stage and 2) It is easy to construct large-size VVs with limited
computational resources (such as RAM). When assigning, each
feature vector is simply passed down the tree by at each
level comparing the feature vector the the K candidate cluster
centers (represented by K children in the tree) at the ith
level and choosing the closest one. This is a simple matter
of performing K similarity computations at the level, resulting
in a total of L∗K similarity computations; Furthermore, based
on our internal experiments, the performance differences are
very small when comparing VVs constructed by this method
with simple K-means.

Based on the operability and practicality, we construct VVs
with the sizes illustrated in Table II. Choosing these sizes also



TABLE II. VV OF DIFFERENT SIZES CONSTRUCTED BY K AND L IN
THIS PAPER BY HIERARCHAL K-MEANS

L, K 4 5 6 7 8

3 64 125 216 343 512

4 256 625 1296 2401 4096

5 1024 3125 7776 16807 32768

6 - 15625 - - -

involves the trade-off among description ability, computational
efficiency and coverage of VV sizes used in previous work.
In practice, for each datasets and each low-level feature, we
sample the training sets and cluster 2,000,000 feature vectors
respectively. Furthermore, Hierarchal K-means clustering may
introduce additional discretization error. In order to overcome
this defect, we run it 20 times with different initial centers,
and select the one with the least variance.

C. Assignment Modes

Most of the existing work adopts the nearest neighbor
search in the VV in the sense that each feature descriptor
is assigned to the most similar VW(s). Here, we investigate
the performance of VV with various sizes under three popular
assignment modes: binary, hard and soft assignment. Binary
assignment is indicating the presence and absence of a VW
with values 1 and 0 respectively. Hard assignment is simply
counting the presence of the VWs. Soft assignment was
reported to achieve better performance in [3], [5]. In our exper-
iment, we employ the soft assignment method proposed in [3],
which was reported to perform well for concept detection. For
each keypoint extracted in an image, instead of assigning it
only to its nearest visual word, in soft assignment the top-4
nearest visual words are selected. Suppose we have a VV of
K VWs, we use a K-dimensional vector [ω1, ω2, ...ωK ] with
each component representing the weight ωt of a visual word
t in an image such that

ωt =

4∑

i=1

Mi∑

j=1

1

2i−1
sim (j, t) (1)

where Mi represents the number of keypoints whose ith
nearest neighbor is the VW t. The measure sim(j, t) represents
the Cosine similarity between feature descriptor j and the VW
t. In this equation, the contribution of a feature descriptor is
its similarity to VW k weighted by 1

2i−1 representing that the
VW is its ith nearest neighbour.

D. Kernels for SVM Classification

The learning ability of a SVM classifier depends on the
type of kernel used. In this paper, we investigate the perfor-
mance of VVs with various sizes using different kernels for
SVMs, including Linear kernel, traditional Gaussian Radius
Basis Function (RBF) kernel and two generalized RBF kernels
because of either their efficiency or their good performance in
concept detection using SVMs.

• Linear Kernel:

K (x,y) = xTy (2)

where x and y are two input vectors.

• Generalized forms of RBF kernels:

K (x,y) = e−γd(x,y) (3)

where d (x,y) can be chosen to be any distance measurement
in the feature space. Since BoVW representation is a histogram
of visual words with discrete densities, the χ2 distance may
be more appropriate:

dχ2 (x,y) =
1

2

∑

i

(xi − yi)
2

xi + yi
(4)

which gives a χ2 RBF kernel.

In addition to χ2 kernel, there are other generalized RBF
kernels with the distance function defined as:

db (x,y) =
∑

i

|xi − yi|b (5)

With this distance function, equation becomes the Laplacian
RBF kernel when b = 1, and the traditional Gaussian RBF
kernel while b = 2.

III. EXPERIMENTAL SETUP

The experiments focus on investigating the concept detec-
tion performance of VVs with various sizes under different
visual local features, assignment modes and kernels across
different datasets, which aims to find the best size or range
of VV size. These factors are also evaluated. To obtain a
persuasive conclusion, we identify three experiments according
to considered factors:

1. Local Image feature

2. Assignment mode

3. Kernel choice

These experiments are conducted on two benchmarkings
datasets. Ground-truth is is obtained either by manually an-
notating if a concept is present in the images (or video
shots) or by pooling. This fixed ground-truth allows repeatable
experiments.

To reduce dependency on datasets, we evaluate VVs of
various sizes on two different-scale datasets, MIRFLICKR [14]
and TRECVid 2010 [1]. The MIRFLICKR is an image bench-
marking while TRECVid is a video benchmarking exercise.
For the image benchmarking, We choose the MIRFLICKR-
25000 (MR) set. VVs of various sizes are evaluated on this
dataset using five-fold cross validation on the 25,000 images.
At each fold, SVM classifiers for each concept are trained on
15,000 of the data, and then tested on the remaining 10,000,
selected at random. Furthermore, real ground truth is available
for the entire set from [14].

The TRECVid 2010 datasets (TV) consists of 264,615
keyframe images extracted from about 100 GB video data.
119,685 images and 144,931 images are used for training set
and test set respectively. Since the annotations for the entire
dataset are not provided, here, we only train SVM classifiers
on the provided training set and evaluate the performance on
test set, that is, no cross validation is performed on this dataset.

These concepts detected in MR datasets and TV datasets
are listed in Table III. These concepts are selected since



TABLE III. CONCEPTS DETECTED IN MR DATASETS AND TV
DATASETS RESPECTIVELY

Concepts

MR baby, bird, car, clouds, dog, female, river, sea,
flower, male, night, people, portrait, tree

TV animal, boat/ship, explosion fire, mountain, vehicle,
swimming, bus, airplane flying, car racing, dancing,

sitting down, hand, doorway, running, cheering,
Asian people, cityscape, classroom, old people,
walking, ground vehicle, demonstration/protest,

female human face closeup, nighttime, telephone,
throwing, dark skinned people, flowers, bicycling,

we only have their ground truth or sampled truth data. For
evaluation, we use the average precision (AP) for MR datasets
and common measure inferred average precision (infAP) for
the TV datasets [15]. To aggregate the performance of multiple
semantic concepts, mean AP (MAP) and mean infAP (Min-
fAP) are used for MR and TV datasets respectively.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we report and analyze the results from three
experiments using different size of VVs under different local
features, assignment modes and kernels respectively.

A. Experiment 1: Local Image Feature

The first experiment compares concept detection perfor-
mance of different-size VVs using two local features. Our
experiments show that χ2 kernel with soft assignment always
produces better performance than Linear kernel and Gaussian
kernel, and comparable performance with Laplace kernel.
Here we only report results when using χ2 kernel and soft
assignment on two datasets.

Experimental results are shown in Fig. 2. The figure
illustrates that the performance changes a lot when different-
sized VVs are employed. For example, in TV datasets, when
using OppSIFT descriptors, VV with the size of 1296 increases
the performance by 70.1% comparing with VV of 64 VWs,
whereas VV with 625 outperforms by 40.5% than VV with
64 VWs in MR dataset. It also shows that the performance
improves as VV size increases overall for both the features
and datasets. The best VV sizes vary as features and datasets.
However, on both datasets, results show that if using larger
VVs than a certain size gains little or even deteriorates the
performance since overfitting happens. More specifically, for
MR datasets, on both features, it achieves best MAPs when VV
sizes range from 512 to 4096. The MinfAPs increase steadily
when VV size increases from 64 to 4096 for TV datasets for
both features, and it achieves best when VV sizes are between
512 and 7776.

Over two different-scale datasets, Fig. 2. show that the
OppSIFT achieves better performance for all VV sizes than
SURF, which proves that SIFT-like, OpponentSIFT can pro-
duce better performance than SURF. Furthermore, much better
performance is reported when using MR datasets than TV
datasets for all the VVs which are also illustrated in later
experimental results. We speculate this is because: 1) the
annotation quality of MR training datasets is much better
than TV datasets. The MR images were annotated carefully
by experts, while TV training datasets are much larger and
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Fig. 2. Performance of VVs with different sizes using two local features
on two datasets. Bars and error-bars indicate the mean and standard deviation
over five-fold cross-validation testing respectively.

were collaboratively annotated by a number of different teams.
Previous work [16] have shown that annotation quality signif-
icantly affects the performance; 2) the MR datasets are picked
up from photos uploaded by thousands of individuals, and
represent the image retrieval area much more effectively; 3)
there are several action concepts in the concept set of TV,
however, in this work we only use static features which cannot
capture the space-time aspects that are more effective to detect
the action; 4) another important reason is that concepts for
TV are much more infrequent than those of MR; 5) the most
important but not the last reason is the two evaluation modes
are different. MR evaluates the results according to the ground
truth for the entire test set, while TV use ground truth obtained
though pooling, only images are annotated that appear in the
top N (2000) of most relevant images in the ranking of at
least one approach participating in the benchmarking. Pooling
reduces the cost of annotation considerably, but it may leave
large parts of collections unlabeled, thereby hindering accurate
measurement of precision.

The differences per concept among different-size VVs are
shown in Fig. 3. Here we only show the four top-performance
concepts for OppSIFT features on two datasets respectively.
As shown in Fig. 3, for different concepts, best-size VVs are
different. On the whole, the infAPs/APs improves consistently
with MinfAPs/MAPs as VV size increases. Specifically the
performance increases initially as the VV become larger, then
gains less or even worsens if VV continuously increases. Based
the variations of performance, VVs with sizes from 343 to
7776 achieve optimal with high probability.

B. Experiment 2: Assignment Modes

In this experiment, we focus on the impact of VV size on
detection performance when different assignment modes are
adopted. Here we report the results by using OppSIFT feature
and χ2 kernel for SVM on MR datasets. Results from SURF
feature and the other kernels and TV datasets are similar.
In Fig. 4, we show the results, with a similar observation
as shown in Experiment 1. Increasing the number of VWs
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Fig. 3. Performance of the top concepts across two datasets using OppSIFT
features in Experiment 1
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Fig. 4. Performance of VVs with different sizes using three assignment
modes in MR datasets

firstly promotes the performance for three assignment modes.
Then it gains a little or even degrades the performance and
the performance gain at a price of paying more computational
resources and time.

Next, let us examine the impact of different VV sizes in
detail. When using binary assignment, we observe that the best
VV sizes range from 1024 to 4096. For hard assignment, the
performance fluctuates as different-size VVs are adopted, and
VV sizes in the range of 343 and 7776 are the appropriate
compromise. While using soft assignment, the performance is
higher when VV sizes are from 256 to 7776.

Concerning the performance comparisons between binary,
hard and soft assignment modes and different-size VVs, we
find that initially the performance increases drastically when
larger VVs as well as binary assignment are used. Hard
assignment outperforms binary assignment by a large margin
only when the VV size is small, which due to the fact that,

with a larger VV size, the count of most VWs is either 0
or 1, and thus similar with binary assignment. Across all VV
sizes and datasets, soft assignment outperforms the other two
assignment modes. We speculate that assigning a keypoint only
to its nearest neighbor VW may be not an optimal choice,
given the fact that two similar keypoints may be clustered into
two different clusters when increasing the size of the VV, that
is with slight variation in the images, hard assignment may
choose complete different VWs. This may also explained by
such an example, instead of labeling a blue local patch as sky,
the patch is better represented by saying that its similarity to
sky is 0.9, and its similarity to water is 0.8. Therefore, soft
assignment is robust, which are proved by the experimental
results shown in Fig. 4. When the VV sizes are in the best
range, the MAPs of the soft assignment vary just in a smaller
range than binary and hard assignment.

C. Experiment 3: Kernel for SVM

In this experiment, we move on to investigating the impact
of different kernels in SVM on concept detection performance
accross different VV sizes. Here, we only report the results of
using OppSIFT feature and soft assignment on TV datasets.
Fig. 5 summarizes the performances of various kernels accross
all VV sizes and datasets. The results of SURF feature and
other assignment and TV datasets are similar. For the general-
ized RBF kernels, we vary the parameter γ in a range from 2−7

to 23 and choose the best one via 5-fold cross validation. As
shown in Fig. 5, we can get similar observation as Experiment
1 and 2. We observe that an appropriate range of VV size is
from 256 to 15625 for different kernels and datasets.

Overall, the Gaussian RBF kernel and generalized RBF
kernels perform much better than the Linear kernel. This
indicates that the concept classes are correlated to each other
in BoVW feature space and thus are not simply linearly sepa-
rable. However, when using the Linear kernel, the performance
improves marginally as the VV size increases initially. Then it
nearly keeps the same as VV size continually increases. This
shows that a limited gain can be achieved by Linear kernel
even the BoVW features are not linearly separable.

More interesting observations are from the performance
of Gaussian and the other two generalized RBF kernels. The
results show that the three RBF kernels achieve comparable
performance. On the whole, the generalized RBF kernel χ2

and Laplace kernel consistently outperform the traditional
Gaussian RBF kernel. In the case of χ2 and Laplace kernel,
they used to achieve more or less the same performance.
We deem that this is because these two kernels are both
linear exponential decay and tolerate the background variance
without amplifying the effect, while emphasize the regions
only containing the target concept. In addition, with regard
to efficiency, the computation time for Linear kernel is the
fastest since no exponential computation is needed.

D. Summary of Experimental Results

The first observation we can make is that the best VVs
are different for different local features, assignment modes
and kernels across different datasets for semantic concept
detection. However, the performance improves initially as the
VV size increases, then gains a little or even worsens if VV
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dataset

TABLE IV. SUMMARY OF THREE EXPERIMENTS WITH DIFFERENT
FACTORS TO OBTAIN THE BEST RANGE OF VV SIZE.

Factor selection Best-size Range

MR+SURF/OppSIFT+Soft+χ2 512∼4096

TV+SURF/OppSIFT+Soft+χ2 512∼7776

MR/TV+OppSIFT+Binary+χ2 1024∼4096

MR/TV+OppSIFT+Hard+χ2 343∼7776

MR/TV+OppSIFT+Soft+χ2 256∼7776

MR/TV+OppSIFT+Soft+Gaussian 625∼15625

MR/TV+OppSIFT+Soft+Laplace 343∼4096

continuously increases since overfitting is found. In Table IV,
we summarize the best ranges of VV size in above experiments
roughly based on the observations of experimental results. As
shown in Table IV, for both local features, the VVs with the
sizes range from 512 to 4096 may report better performance. In
term of three assignment modes, we suggest the VV sizes from
1024 to 4096 as a safe application. VV sizes among 1024 to
4096 are better for three different kernels. Overall, we conclude
that VVs with sizes ranging from 1024 to 4096 typically
achieve best performance with higher probability comparing
with other-size VVs.

For these factors local features, assignment modes and
kernels which also dominate the performance, experimental
results show that SIFT-like feature descriptor OppSIFT outper-
forms SURF feature, and soft assignment mode yields better
performance than binary and hard assignment and generalized
RBF kernels such as χ2 and Laplace RBF kernels are more
appropriate for semantic concept detection with SVM classi-
fication.

V. CONCLUSIONS

In this paper, we investigate and evaluate the semantic
detection performance of a series of VVs with different sizes
by jointly considering factors local feature, assignment mode
and kernel. Meanwhile, these factors are also evaluated. We
experimentally show that best VV sizes vary as different
local feature, assignment mode and kernel are used. However,
the performance usually improves as the VV size increases

initially, then gains a little even deteriorates if larger VVs
are used. On the whole, VVs with sizes ranging from 1024
to 4096 achieve best performance with higher probability
comparing with other-size VVs. Our experimental results also
show that factors such as local feature, assignment mode or
kernel are influential to the performance. Specifically, local
feature descriptor OppSIFT outperforms SURF feature, and
soft assignment mode yields better performance than binary
and hard assignment and generalized RBF kernels such as χ2

and Laplace RBF kernels are more appropriate for semantic
concept detection with SVM classification.
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