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Abstract

We show that Australian options are equivalent to fixed or floating
strike Asian options and consequently that by studying Asian op-
tions from the Australian perspective and vice versa, much can be
gained. One specific application of this ”Australian Approach” leads
to a natural dimension reduction for the pricing PDE of Asian op-
tions, with or without stochastic volatility, featuring time independent
coefficients. Another application lies in the improvement of Monte
Carlo schemes, where the ”Australian Approach” results in a path-
independent method. We also show how the Milevsky and Posner
(1998) result on the reciprocal Γ-approximation for Asian options can
be quickly obtained by using the connection to Australian options.
Further, we present an analytical (exact) pricing formula for Aus-
tralian options and adapt a result of Carr, Ewald and Xiao (2008) to
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volatility and by doing this answering a standing question by Moreno
and Navas (2008).
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1 Introduction

Australian options are options, whose payoffs depend on the quotient of

the average stock price over a specified time interval and the stock price

at maturity. The average can be taken in various ways, most prominently

are the arithmetic or geometric average. Referring to Australian options in

the following, we mean arithmetic Australian options with payoff of type

h
(∫ T

0 S(t) dt

S(T )

)

. If we refer to the geometric case, we state this explicitly. A

fundamental question is how to price such options and how these option fit

into the existing spectrum of other better known options.

Australian options occur as special types of variable purchase options

(VPOs) and have been traded on the Australian stock exchange since 1992.

Depending on an average, these options have attached an Asian feature, and

are in fact one of very few examples of Asian type options which are traded on

an institutionalized option market. Almost all Asian type options are traded

OTC, which makes an empirical analysis of their prices almost impossible.

For financial research, the existence of exchange traded Australian options is

extremely valuable, as ”academic” pricing formulas can then be verified and

models calibrated at market prices.

Australian options are related to Quanto options and dollar cost averaging

(DCA). A Quanto option is a derivative, where the underlying is denoted in

one currency, but settlement is in a different currency (see for instance Reiner

(1992)). If the underlying of a Quanto option is of average type, the product

is closely related to an Australian option. This analogy comes to light, if

the underlying
∫ T
0 S(t) dt

S(T )
is interpreted as the value of the average

∫ T

0
S(t) in

units of S(T ), while the payoff is denoted in units of discounted money.1 For

further information on quanto options we refer to Dimitroff et al. (2009),

1A practical example for this particular type of option, where S(t) is interpreted as an
exchange rate, is the following: A company which exports its products and sells overseas
accumulates revenues in a foreign currency. To save on transaction costs, these revenues are
held in a foreign bank account and transferred back annually to a domestic bank account.
Assuming for simplicity that the domestic price and quantity are normalized to one, then

the revenue of this company at the end of the year is
∫

T

0
S(t)dt

S(T ) and to protect revenues

from downside risks, the company may in fact purchase an option of the Australian type
discussed in this article.
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Kwok and Wong (2005) as well as Martzoukos (2001). The inverse of the

underlying of an Australian option on the other side resembles the underlying

of a dollar cost averaging strategy. Under a DCA strategy an investor makes

gradual investments in the stock market. Assuming continuous time and that

the instantaneous investment rate is a constant proportion of total initial

wealth, the payoff of a DCA strategy is proportional to
∫ T

0
S(T )
S(t)

dt, compare

for example Vanduffel et al. (2012) or Constantinides (1979).

Obviously Australian options formally differ from Asian options, where

the underlying is simply the average, and not a quotient, and it is unclear,

whether the prices of exchange traded Australian options can be used for

research on Asian options as well. As we show in this paper, Australian

options are in fact truly Asian, that is, after the interest rate is adjusted ap-

propriately. Virtually all data available for Australian options, can therefore

be applied to study Asian options.

In the literature, Australian options have been considered in Handley

(2000), Handley (2003), and Moreno and Navas (2008). Moreno and Navas

have considered various pricing techniques, including the application of Milevsky

and Posner (1998). However, they fail to give an explanation as to why

this result can be applied, and simply match the first two moments of the

Australian underlying to the reciprocal Γ-distribution. In this paper, the

Milevsky and Posner result for Australian options will be derived from scratch,

using that the inverse of the Australian option underlying, is in fact a geo-

metric mean reversion process, and that the equilibrium distribution of this

process is the Γ-distribution. This is far more direct and shorter than the

derivation given in Milevsky and Posner (1998). Knowing that Australian

options and Asian options are practically the same thing, our result carries

over to the classical Asian case, and in fact includes Milevsky and Posner’s

(1998) Theorem 1. We point out though, that because of a coefficient restric-

tion which appears in Milevsky and Posner (1998) and which inverts in the

Australian case, the application of the reciprocal Γ-distribution as an appro-

priate approximating distribution to evaluate Australian options, is slightly

limited.

For this reason, we also study the pricing of Australian options via PDE
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methods. We derive PDE’s for the price of an Australian option under both

the Black-Scholes assumption and the assumption of stochastic volatility.

The interesting thing here is, that the PDEs derived feature a ”natural”

dimension reduction by one, similar as in Vecer (2001), with the advantage

of having time independent coefficients but also a disadvantage of potential

instabilities in the numerical solution for small volatilities (which is due to

the relationship to the PDE by Rogers and Shi (1995)).

In the Black-Scholes case, Moreno and Navas (1998) questioned, whether

the price of an Australian option is increasing in the volatility parameter

σ. When the average is geometric, this is in fact not the case and Moreno

and Navas give examples for this. However, if the average is arithmetic, we

can use our PDE and draw on similar techniques as used in Carr, Ewald,

and Xiao (2008) in order to conclude, that Australian call options are indeed

increasing in price with increasing volatility.

Finally, we study the implications of our ”Australian” approach on the

pricing of Asian options via Monte Carlo methods. Under the assumption

of stochastic volatility, we show that using the Australian underlying, which

transforms the path-dependent Asian option into a path-independent option,

Monte Carlo performs smoother and better.

While there are only a few research papers on Australian options, the

pricing of Asian options has been studied extensively. For instance, Kemna

and Vorst (1990) developed a Monte Carlo scheme for pricing Asian options,

Turnbull and Wakeman (1991) introduced a quick algorithm for pricing Asian

options, Geman and Yor (1993 and 1996) derived an integral representation,

Rogers and Shi (1995) reduced the dimension of the PDE and derived upper

and lower bounds for the prices of Asian options, and Carr and Schröder

(2004) give an overview of deriving Asian option prices via Laplace trans-

forms. For a more comprehensive literature review we refer to the excellent

survey paper of Boyle and Potapchik (2008).2

2With the exception of Boyle and Potapchik (2008) all of the authors above address
exclusively the pricing aspect, but not the hedging aspect. Hedging strategies of Asian
options are studied by Albrecher et al. (2005) for incomplete markets and Jacques (1995)
for Black-Scholes markets. However, these hedging strategies only present approximations.
Recently, Yang et al. (2011) and Vecer (2011) developed exact hedging strategies under
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The remainder of the paper is organized as follows. In Section 2, we show

that Australian options are equivalent to both fixed strike and floating strike

Asian options, using two different approaches, time inversion and change of

measure. We provide a quick proof of the Milevsky and Posner result in Sec-

tion 3, while in Section 4 we provide an approximate and an analytic pricing

formula for Australian options. We derive a pricing PDE for Australian op-

tions under the assumptions of constant volatility and study the effect of

volatility changes on the price in Section 5. Then, in Section 6, we consider

the case of stochastic volatility, followed by a discussion of numerical aspects

and results in Sections 7 and 8. The main conclusions are summarized in

Section 9.

2 The relationship between Australian and

Asian options

In this section, we show how Australian options with payoff structure

h

(

∫ T

0
S(t) dt

S(T )

)

(1)

as introduced in Section 1, and classical Asian options with payoff structure

h

(
∫ T

0

S(t) dt

)

(2)

are related to each other and what consequences we can infer from this rela-

tionship. We start by considering the Black-Scholes case of constant volatil-

ity, where

dS(t) = S(t) [r dt+ σ dW (t)] . (3)

and r denotes the market interest rate. The case of stochastic volatility is

considered in Section 6.

Black-Scholes assumptions.
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Proposition 2.1. Setting r̃ = σ2 − r, we have the following equivalence in

distribution3

{ ∫ T
0 S(t) dt

S(T )

dS(t) = S(t) [r dt+ σ dW (t)]

}

∼











∫ T

0
S(t) dt

dS(t) = S(t) [r̃ dt+ σ dW (t)]

S(0) = 1











.

(4)

Proof. The key to the proof of Proposition 2.1. is a well known result on

time inversion, which states that if W (t) is a Brownian motion on [0, T ], the

process

B(t) = W (T − t)−W (T ) (5)

is also a Brownian motion on [0, T ]. The expression on the left hand side of

(4) can now be written as

∫ T

0

S(t)

S(T )
dt =

∫ T

0

exp

((

r − 1

2
σ2

)

(t− T ) + σ(W (t)−W (T ))

)

dt

=

∫ T

0

exp

((

r − 1

2
σ2

)

((T − t)− T ) + σ(W (T − t)−W (T ))

)

dt

=

∫ T

0

exp

(

−
(

r − 1

2
σ2

)

t+ σB(t)

)

dt ,

where for the second equality we used the substitution t 7→ T − t and for the

third equality Equation (5). Clearly, the integrand on the right hand side

satisfies the stochastic differential equation

dS(t) = S(t)
[(

σ2 − r
)

dt+ σ dB(t)
]

,

which is the same as on the right hand side of (4).

This relationship means that virtually any result obtained for the case of

Asian options can also be applied to the case of Australian options and vice

versa. In particular, the prices of Asian and Australian options coincide,

3If the objective is to price an Asian option and to use the Australian approach, then
consider r̃ as the market interest rate, and r = σ2 − r̃ is a hypothetical interest rate used
in the Australian approach.
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when taking account of the interest rate transformation r̃ = σ2 − r and

allowing for a different discount factor. Care needs to be taken though, where

the application of analytical results requires conditions on the parameters.

This is often the case, and these conditions need to be checked on a case by

case basis, taking the transformation r̃ = σ2 − r into account.

In the following, we present a more general derivation, which extends

the case above and also includes the case of floating strike Asian options.

We assume that the tradeable asset is paying a dividend q and follows the

dynamic

dX(t) = (r − q)X(t)dt+ σX(t)dW (t).

under the risk neutral measure. We observe that the price of a more general

type of Australian option4, can be computed as

AusPrice =
e−r(T−t)

T
E

[

1

X(T )

(
∫ T

0

X(u)du− k1T − k2TX(T )

)+ ∣
∣

∣

∣

Ft

]

.

We introduce an equivalent probability measure Q defined via the Radon-

Nikodym derivative,

dQ

dP
=

X(0)e(r−q−σ2)T

X(T )

= exp

(

−1

2

∫ T

0

σ2 du−
∫ T

0

σ dWu

)

.

It follows from the Girsanov theorem, that

W (t)Q = W (t) + σt

is a Brownian motion under the measure Q. Given σ is a constant, Novikov’s

condition is thus satisfied, and the Radon-Nikodym derivative is valid. Using

Lemma 8.9.2 in Kuo (2006), the Australian option price at time t can then

4The payoff for this option is
(

x

T
− k1 − k2y

)+
, where x =

∫
T

0
X(u)du

X(T ) and y = X(T ).

The 1
T

factor in the first term is chosen so that this type of Australian option can be
related to the standard Asian option problem.
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be computed as,5

AusPrice(r)

=
e−r(T−t)

X(0)e(r−q−σ2)T
E

[

dQ

dP

(

1

T

∫ T

0

X(u) du− k1 − k2X(T )

)+ ∣
∣

∣

∣

Ft

]

=
e−r(T−t)

X(0)e(r−q−σ2)T
E

[

dQ

dP

∣

∣

∣

∣

Ft

]

EQ

[

(

1

T

∫ T

0

X(u) du− k1 − k2X(T )

)+ ∣
∣

∣

∣

Ft

]

=
e−(2r−q− 1

2
σ2)(T−t)

Xt

E
[

e−σWT−t
]

EQ

[

(

1

T

∫ T

0

X(u) du− k1 − k2X(T )

)+ ∣
∣

∣

∣

Ft

]

=
e−(r−q)(T−t)

X(t)
e−(r−σ2)(T−t)EQ

[

(

1

T

∫ T

0

X(u)du− k1 − k2X(T )

)+ ∣
∣

∣

∣

Ft

]

=
e−(r−q)(T−t)

X(t)
AsianPrice(r − σ2),

where under Q the process X(t) satisfies

dX(t) = (r − σ2 − q)X(t)dt+ σX(t)dW (t)Q.

The last expectation above is equal to a general Asian option, but with the

risk-free rate now being r−σ2.6 The case k2 = 0 corresponds to a fixed strike

Asian option, while the case k1 = 0 corresponds to a floating strike Asian

option.

Using the equivalence for Australian options as Asian options, setting r

to r + σ2 and rearranging the terms, gives the result for Asian options as

Australian options. This can also be worked out from first principles by

similar arguments, but using the change of measure dQ
dP

= X(T )

X(0)e(r−q)T . We

5An argument a in AsianPrice(a) or AusPrice(a) indicates that the option price is
computed using a discount rate of a. All prices are computed at time t. Compare footnote
3.

6Note that the first equality in the sequence above relies on the multiplicative linearity
of the payoff function and that this line of arguments would fail for pay-off functions
featuring non-linearities, e.g. power options.
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then obtain for an Asian option, the formula

AsianPrice(r) = X(t)e−q(T−t)EQ

[

(

AU(T )

T
− k2

)+ ∣
∣

∣

∣

Ft

]

(6)

= X(t)e(r+σ2
−q)(T−t)AusPrice(r + σ2),

with

dAU(t) = (q − r)AU(t)dt+ dt− σAU(t)dW (t)Q.

As demonstrated above, Asian and Australian options are hence equivalent

after the drift rate is adjusted appropriately. This of course is very relevant

for the pricing of Australian options. But beyond this, we will see in the

following sections, that a lot can be learned about Asian options, from looking

at Asian options from what we call the ”Australian Perspective”, thus this

equivalence can be used for the mutual benefit of pricing both Asian and

Australian options.

3 A simplified proof of the Milevsky and Pos-

ner reciprocal Γ-approximation formula

We have shown in the previous section that under the assumption of constant

volatility Asian and Australian options are in principle the same thing.7 A

particular conclusion from this is that the approximative pricing formula ob-

tained by Milevsky and Posner (1998) also holds for Australian options. This

was indicated in Moreno and Navas (2008) but not executed. Milevsky and

Posner’s result was obtained by using results and methodology for the com-

putation of distributions of first hitting times of stochastic processes. Here

we will go the other way round. Using information about the equilibrium dis-

tribution of geometric mean reversion, we will derive an approximate option

pricing formula for Australian options, and from this and Proposition 2.1.

7Using the same line of arguments as presented in Section 6, where the case of stochastic
volatility is considered, this equivalence extends to deterministic time dependent coeffi-
cients.
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conclude the Milevsky and Posner result. In order to do this, we consider

the Australian process

AU(t) =

∫ t

0
S(u) du

S(t)
(7)

and its inverse, the New Zealander

NZ(t) =
S(t)

∫ t

0
S(u) du

. (8)

Note that NZ(t) is only defined for t > 0, but this is not of belong here.

Applying the Itô formula to NZ(t) gives

dNZ(t) = d

(

S(t)
∫ t

0
S(u) du

)

= S(t) d

(

1
∫ t

0
S(u) du

)

+

(

1
∫ t

0
S(u) du

)

dS(t)

= −
(

S(t)
∫ t

0
S(u) du

)2

dt+

(

S(t)
∫ t

0
S(u) du

)

(r dt+ σ dW (t))

= −NZ(t)2 dt+NZ(t)r dt+NZ(t)σ dW (t)

= NZ(t) [(r −NZ(t)) dt+ σ dW (t)] .

This shows that NZ(t) is a geometric mean reversion process, with mean

reversion level r and mean reversion speed 1. As is well known, geometric

mean reversion admits an equilibrium distribution, if certain conditions on

the coefficients apply. These conditions translate in the case of NZ(t) to

2r > σ2. The equilibrium distribution, intuitively the distribution of NZ(∞),

is then given by the Γ-distribution:

NZ(∞) ∼ Γ(k, δ)

with k = 2r
σ2 − 1, δ = σ2

2
and density

π(k, δ)(x) =

{

xk−1 e−x/δ

δkΓ(k)
x > 0

0 x ≤ 0

}

. (9)
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The condition 2r > σ2 imposes some serious constraints on interest rate and

volatility, and care needs to be taken here. Using the same notation gR(·|α, β)
for the reciprocal Γ-distribution, we conclude the analogue to Milevsky and

Posner’s result for Australian options:

Proposition 3.1. Under the condition r− 1
2
σ2 > 0, we have that AU(∞) is

reciprocal Γ-distributed, i.e.

AU(∞) ∼ gR(·|α, β) (10)

with α = 2r
σ2 − 1 > 0 and β = σ2

2
.

We will derive an explicit approximate option pricing formula for Australian

options from this later on, but before this draw the following Corollary from

Proposition 3.1. and Proposition 2.1. using r̃ = σ2 − r:

Corollary 3.1. Under the condition r̃ − 1
2
σ2 < 0, we have that I(∞) =

∫

∞

0
S(u) du is reciprocal Γ-distributed, i.e.

I(∞) ∼ gR(·|α, β) (11)

with α = 1− 2r̃
σ2 > 0 and β = σ2

2
.

Obviously, Corollary 3.1 is identical with Theorem 1 in Milevsky and Posner

(1998), but its proof has essentially be shortened to a couple of lines.

4 Pricing formulas for Australian options

Using that AU(∞)−1 = NZ(∞) is Γ-distributed, we obtain that

E
[

(AU(∞)−K)+
]

= E

[

(

1

NZ(∞)
−K

)+
]

=

∫ 1/K

0

(

1

x
−K

)

dΓ(k, δ)(x)

=

∫ 1/K

0

1

x
dΓ(k, δ)(x)−K · Γ(k, δ)(1/K) ,

10



with k and δ as above. We use that

1

x
π(k, δ)(x) =

1

δ(k − 1)
π(k − 1, δ)(x)

to compute the remaining integral and obtain

E
[

(AU(∞)−K)+
]

=
Γ
(

k − 1, δ, 1
K

)

δ (k − 1)
−K · Γ

(

k, δ,
1

K

)

. (12)

The following proposition is now simply obtained by expressing k and δ in

terms of the original variables and by discounting to the corresponding time.

Proposition 4.1. Under the condition r > σ2, an approximate option pric-

ing formula in the sense of Milevsky and Posner for an Australian call option

(

∫ T

0
S(u) du

S(T )
−K

)+

(13)

is given by

ΠAU ≈ e−rT







Γ
(

2r
σ2 − 2, σ

2

2
, 1
K

)

r − σ2
−K · Γ

(

2r

σ2
− 1,

σ2

2
,
1

K

)







, (14)

where ΠAU = e−rTE [(AU(T )−K)+] denotes the current price of the Aus-

tralian call option.

This formula is a good approximation in the sense that at least in theory, the

distribution of the underlying approaches the distribution used for computing

the option price in (14) for T → ∞. In practice, there are many problems.

The assumption that r > σ2 restricts the application significantly. Even,

when the assumption is satisfied, we experience quite slow convergence. The

way how Milevsky and Posner (1998) promote to apply their result is of

course slightly different from the above. They propose to match the first

two moments of the underlying, which in case of a classical Asian option and

I(t) =
∫ t

0
S(u) du are known, to the first two moments of the reciprocal Γ-

distribution. For the case of an Australian option, Moreno and Navas (2008)
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computed expectation and variance of the underlying:

E [AU(T )] =
1− e−(r−σ2)T

r − σ2
(15)

Var [AU(T )] = e−(2r−3σ2)T

(

2
φ(2r − 3σ2)− φ(r − 2σ2)

r − σ2
− e−σ2Tφ2(r − σ2)

)

with φ(x) = exT−1
x

for x 6= 0 and φ(0) = T . We point out that in order to

have that the equilibrium distribution of AU(t) has finite expectation and

variance, one actually needs to restrict the interest rate further to satisfy

r > σ2 for the expectation, and r > 2σ2 for the variance. Empirical evidence

would generally point out, that in many cases the latter condition is not

satisfied. Nevertheless, matching these two to the expectation ER = 1
δ(k−1)

and variance VR = 1
δ2(k−1)2(k−2)

of the reciprocal Γ-distribution and using the

obtained parameters and formula (12) rather than formula (14), one can in

theory obtain reasonably accurate results. Moreno and Navas (2008) (table

2, page 82) demonstrate this, choosing an interest rate of r = 10%. For

lower interest rates however, we experienced significant errors in applying

the reciprocal Γ-distribution to price Australian options. Analog formulas to

(12) and (14) can be obtained for the case where the underlying is NZ(t), as

well as for the corresponding put option.

We have already indicated, that for low interest rates or high volatility

the formulas derived above run into trouble. To have an alternative at hand,

we provide in the remainder of this section an analytic formula for the price

of an Australian option, and in the next two sections, present PDE based

approaches.

Proposition 4.2. The actual density function of NZ(t) is given by

pt(x) =
σ2

4x2
exp

(

−(σ
2

2
− r)2t

2σ2

)

×

∫

∞

−∞

exp

(

2

(

1−
σ2

2
− r

σ2

)

z

)

fσ2t
4

(

σ2 exp(2z)

4κx
, z

)

dz

12



for y > 0 and pt(y) = 0 for y ≤ 0. Here ft(x, y) = 0 for x ≤ 0, and

ft(x, y) = ρt(x, y)

∫

∞

0

exp

(

−z2

2t
− exp(y)

x
cosh(z)

)

sinh(z) sin
(πz

t

)

dz

(16)

for x > 0, where

ρt(x, y) =
(

x2
√
2π3t

)

−1

exp

(

2xyt+ π2x− t− t exp(2y)

2xt

)

.

Proof. This is a direct consequence of Yang and Ewald (2010).

Using this density function, we obtain the following result:

Proposition 4.3. The price of an Australian call option with strike K and

maturity T is given by

ΠAU =

∫ 1/K

0

(

σ2

4x2
exp

(

−(σ
2

2
− r)2t

2σ2

)

×

∫

∞

−∞

exp

(

2

(

1−
σ2

2
− r

σ2

)

z

)

fσ2t/4

(

σ2 exp(2z)

4κx
, z

)

dz

)

(x−K) dx .

The price of an Australian put option with payoff (K −AU(T ))+ can be

calculated using the following Australian put–call parity:

e−r(T−t)E

[

(K − AU(T ))+
∣

∣

∣

∣

AU(t) = η

]

(17)

= e−r(T−t)E

[

(AU(T )−K)+
∣

∣

∣

∣

AU(t) = η

]

+Ke−r(T−t)+

− e−r(T−t)E

[

AU(T )

∣

∣

∣

∣

AU(t) = η

]

,

where the last term is the price of an Australian forward, which can be easily
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calculated as

E

[

AU (T1)

∣

∣

∣

∣

AU(t) = η

]

=



















ηe(σ
2
−r+q)(T1−t)

+ e(σ
2
−r+q)(T1−t)

−1
(σ2

−r+q)
if σ2 − r + q 6= 0,

(T1 − t) + η if σ2 − r + q = 0,

(18)

for t ≤ T1 ≤ T . We will further discuss the implications of the Australian

put-call parity in the next section.

5 A pricing PDE and volatility effects

Within the Black-Scholes framework Moreno and Navas (2008) show that

the price of a geometric Australian call option can be decreasing in volatility,

but leave the question open if this can happen for an arithmetic Australian

call option. In fact, the analogue question for the case of an arithmetic

Asian option, was long unanswered until Carr, Ewald, and Xiao (2008), who

showed (by using the Pontryagin maximum principle), that the price of an

arithmetic Asian option is indeed increasing with volatility. Motivated by

this result, Baker and Yor (2009) later gave a martingale based proof, and

in fact extended the result. In this section, we derive a pricing PDE for

an Australian option under the assumption of constant volatility and by

using the Pontryagin maximum principle show that the price of an arithmetic

Australian call option is indeed increasing with the volatility parameter.

Deriving the pricing PDE for an Australian option is very interesting

from the perspective that, when using the process AU(t) as an underlying

(compare e.g. Vecer (2011)), the pricing PDE naturally features one state

variable less than it would normally do. This achievement carries over to

Asian options from the general correspondence between Australian and Asian

options discussed in Section 2. The Australian perspective on Asian options

hence naturally leads to a dimension reduction.
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Applying stochastic partial integration and the Itô formula, we obtain

d

(

∫ t

0
S(u) du

S(t)

)

=

(
∫ t

0

S(u) du

)

d

(

1

S(t)

)

+
1

S(t)
d

(
∫ t

0

S(u) du

)

=

(
∫ t

0

S(u) du

)(

− 1

S(t)2
dS(t) +

1

2

2

S(t)3
(dS(t))2

)

+ dt

=

(

∫ t

0
S(u) du

S(t)

)

(

−rdt− σ dW (t) + σ2 dt
)

+ dt

and with AU(t) =
(∫ t

0 S(u) du

S(t)

)

, we conclude that

dAU(t) = −AU(t)σ dW (t) + AU(t)
(

σ2 − r
)

dt+ dt. (19)

This can of course also be concluded from our previous result by using

that NZ(t) is geometric mean reversion and by applying the Itô formula

to AU(t) = NZ(t)−1. However, this is not much shorter, and less instructive.

We can now apply the Feynman-Kac theorem to price the Australian option:

The price function

v(x, t) = E
[

e−r(T−t) (AU(T )−K)+ |AU(t) = x
]

(20)

satisfies the PDE

vt +
((

σ2 − r
)

x+ 1
)

vx +
1

2
σ2x2vxx − rv = 0

v(x, T ) = (x−K)+. (21)

Note that this PDE has time independent coefficients. This is a signifi-

cant advantage as compared to Vecer (2001). However, there are also some

disadvantages. In the case of discrete monitoring times (a case which is not

considered in this paper) the process AU(t) jumps and the set of partial differ-

ential equations replacing (19) needs to be pasted together at the monitoring

times, which results in extra computational effort. Further, it is known that

the related Rogers and Shi (1995) PDE can lead to instabilities in the numer-

ical solutions for small volatilities. While Vecer’s (2001) PDE does not suffer
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from this problem, Dewynne and Shaw (2008) have shown that low volatility

asymptotic techniques are able to provide highly accurate approximations

to Asian options when using a PDE with time independent coefficients.8 A

similar approach is described in Ting and Ewald (2011), showing that the

technique is applicable to the PDE in (19). Dewynne and Shaw (2008) relied

on transforming the PDE of the Asian option with two spatial dimensions,

by using ratios of the option price over the stock price. What is done here,

effectively leads to the same result, but is more direct and provides more in-

sights as to what is actually being priced. Furthermore, the payoff functions

considered in Dewynne and Shaw (2008) are either fixed or floating strike,

and not a combination of both. Rogers and Shi (1995) also considered di-

mension reduction through means of probability arguments, similar to what

is presented here. However, like Dewynne and Shaw (2008), they too lack the

unified nature of Vecer and Xu (2004) in considering general Asian payoffs.

Let us now come to the question whether the price of an Australian call

option is increasing in σ. Making use of the Pontryagin maximum principle

we can then prove the following result (see Appendix A.1 for more details):

Proposition 5.1. Denote by ΠAU (σ) = e−rTE [(AU(T )−K)+] the price of

an Australian call option as a function of the volatility parameter σ > 0.

Then ΠAU(σ) is increasing in σ.

Figure 1 shows fixed strike Australian call option prices for various strikes

K and various volatilities σ. The prices are calculated using Crank-Nicholson

and PDE (21) with parameters r = 0.1, T = 1 and initial stock price S0 =

100.9 This figure confirms the statement of Proposition 5.1 — that is, the

Australian call option price is increasing in the volatility parameter σ.

Let us note at this point that the proof of Proposition 5.1 would also

go through for the Australian forward which can be obtained from the Aus-

tralian call option by setting K = 0. In consequence, the Australian forward

8Dewynne and Shaw (2008) present a PDE for Asian options with one spatial variable
and time independent coefficients. It is not difficult to show that their PDE is equivalent
to the PDE obtained when applying the Feymann Kac theorem to Equation (6).

9Note that since these are fixed strike Australian call options, their prices are actually
independent of S0. We observe spurious oscillation for some grid sizes, a phenomenon
described in Duffy (2004).
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Figure 1: Fixed Strike Australian Call Option Prices as a Function of the
Strike Price K and the Volatility σ.

is also increasing in σ. This fact can also be derived directly from the ex-

pectation in Equation (15) by verifying that the derivative of the right hand

side with respect to σ is always non-negative. A more interesting case, how-

ever, is the case of an Australian put. The price of the Australian put can

be computed by the put-call parity (17). As both, the Australian call and

the Australian forward are increasing in σ and appear with opposite signs

on the right hand side of (17), it is not clear whether the Australian put is

increasing in σ. In fact, as Figure 2 below shows, the price of an Australian

put is not monotonic in σ and can fall, when volatility increases. The same

parameters as for Figure 1 have been used here.

This shows that the relationship between Australian calls and puts is very

different from European calls and puts, where in the latter case, the forward

price is independent of σ and the (European) put-call parity implies the same

monotonic behavior for European put and call.10

10Note that the proof of Proposition 5.1 hinges on the fact that the pay-off function is
monotonic increasing, which is not the case for the Australian put.
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Figure 2: Fixed Strike Australian Put Option Prices as a Function of the
Strike Price K and the Volatility σ.

6 Pricing under stochastic volatility

In this section, we consider Australian and Asian options under the assump-

tion of stochastic volatility. We choose a specific functional form, the Heston

model, but the results presented carry over to other stochastic volatility mod-

els without much effort. We generalize the discussion presented in section 2

on the equivalence of these two type of options.

Let the stock price X(t) and variance process Y (t) under the measure P

be given via the SDEs,

dX(t) = (r − q)X(t)dt+
√

Y (t)X(t)dW (t) (22)

dY (t) = α (m− Y (t)) dt+ β
√

Y (t)dZ(t) , (23)

where r and q are the risk-free interest and dividend yield of the stock, α,

m, and β are the mean reverting rate, mean reverting level, and volatility

of volatility of the variance process, respectively. Further, W (t) and Z(t)

are Brownian motions with correlation ρ. We can write Z(t) = ρW (t) +

18



√

1− ρ2Z̃(t), where Z̃(t) is a Brownian motion independent of W (t).

The solution of the stock price, given Ft, can be written in integral form

as

X(T ) = X(t) exp

(

(r − q) (T − t)− 1

2

∫ T

t

Y (u)du+

∫ T

t

√

Y (u)dWu

)

,

and the price of a general Asian call option with fixed strike k1 and floating

strike k2 is given as,

AsianPrice = e−r(T−t)E

[

(

1
T

∫ T

0
X(u)du− k1 − k2X(T )

)+
∣

∣

∣

∣

Ft

]

. (24)

Similar as in section 2, we define an equivalent measure Q via the Radon-

Nikodym derivative,

dQ

dP
=

X(T )

X(0)e(r−q)T
.

With this, the process defined by

W ∗(t) = W (t)−
∫ t

0

√

Y (u)du,

is according to the Girsanov theorem a Brownian motion under the measure

Q. The Novikov condition is satisfied as

E

[

exp

(

1

2

∫ T

0

Y (u) du

)]

< ∞,

if α > β. The proof of this can be found in Wong and Heyde (2008). Further-

more, the stock price dynamics X(t) and the variance dynamics Y (t) satisfy

the following SDEs under Q

dX(t) = [r − q + Y (t)]X(t) dt+
√

Y (t)X(t) dW ∗(t)

dY (t) = α∗ [m∗ − Y (t)] dt+ β
√

Y (t)
[

ρ dW ∗(t) +
√

1− ρ2 dZt

]

, (25)

where α∗ = α − βρ and m∗ = αm/α∗, and the price of the Asian option
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(Equation (24)) can be obtained as,

AsianPrice =
X(t)e−q(T−t)

T
EQ

[(

∫ T

0
X(u) du− k1T

X(T )
− k2T

)+ ∣
∣

∣

∣

Ft

]

, (26)

where the expectation is taken under the measure Q. We define

AU(t) =

∫ t

0
X(u) du− k1T

X(t)
,

which is only a minor variation of the Australian state variable considered

before. Using Ito’s lemma, we conclude that AU(t) satisfies

dAU(t) = (q − r)AU(t) dt+ dt−
√

Y (t)AU(t) dW ∗(t) . (27)

The above extends the equivalence established in Section 2 between Asian

and Australian options. However note that (25) features the equivalent of

a stochastic interest rate11 as compared with (22) which features a constant

interest rate, so that the two models used are not fully equivalent.

7 Numerical methods under stochastic volatil-

ity

We will now use the ideas presented in the previous section to derive a pric-

ing PDE for Asian options under stochastic volatility which is reduced in

dimension and features time independent coefficients. Moreover, we will in-

dicate how the Australian perspective can be useful for the implementation of

Monte Carlo (MC) methods to price Asian options under stochastic volatility.

Numerical results are presented and discussed in the following section.

11The stochastic interest rate applied here is in fact r̃(t) = r+Y (t), compare this with the
analogue transformation in Section 2. Note that in Section 2, the analogue transformation
is applied to an Australian option, while in Section 6 it is applied to an Asian option,
which explains the different sign by which the variance enters.
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7.1 The PDE approach

From Equations (27), (25), and (26), the price of an Asian option can be

computed using the PDE method. Starting with Equation (26), define the

expectation as

u(t, x, y) = EQ

[(

∫ T

0
X(u)du− k1T

X(T )
− k2T

)+ ∣
∣

∣

∣

Ft

]

= EQ

[

(AU(T )− k2T )
+

∣

∣

∣

∣

AU(t) = x, Y (t) = y

]

.

We conclude from the Feynman Kac theorem, that u(t, x, y) satisfies the PDE

∂u

∂t
+

1

2
x2y

∂2u

∂x2
+ ((q − r) x+ 1)

∂u

∂x
+ (28)

+
1

2
β2y

∂2u

∂y2
+ α∗ (m∗ − y)

∂u

∂y
− ρβxy

∂2u

∂x∂y
= 0 , with

u(T, x, y) = (x− k2T )
+ . (29)

The PDE is a three-dimensional PDE with two spatial variables and one

time variable, and is an extension of the Rogers and Shi (1995) type PDE

for Asian options, but under stochastic volatility. The coefficients of the

PDE are also time independent constants. Alternatively, it is possible to

derive a PDE to price Asian options naively. This PDE has four dimensions,

with three spatial variables. The first two are to accommodate the asset’s

value and variance, while the last one is reserved for the running sum of the

asset’s value. From this, it is already clear that the PDE derived through the

Australian perspective, has an advantage over the naively obtained PDE.

Dimension reduction is not an entirely new concept and has been dis-

cussed within the Asian option context for example by Benhamou and Duguet

(2003). Vecer and Xu (2004) presented a non path-dependent method12, for

pricing Asian options under a more general semi-martingale model. Their

method is based on the dimension reduction results first presented by Vecer

12The Australian approach also leads to a non-path dependent method as discussed
below.
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(2001), and extended to stochastic volatility by Fouque and Han (2004). The

variable of interest in this case is again a quotient of the integral of the asset

value over time to the final asset value price. However, this ratio also con-

tains some time dependent functions and as such, the associated SDE and

the resulting PDE also have time dependent coefficients. The addition of

these time dependent coefficients makes it numerically more difficult to solve

the three-dimensional case.

In order to solve Equation (28) above numerically, we need to add the

following boundary conditions to Equation (29)

u(t,−∞, y) = 0 ,

∂u(t,∞, y)

∂x
= 1 ,

∂u(t, x, 0)

∂t
+ [(q − r)x+ 1]

∂u(t, x, 0)

∂x
+ α∗m∗

∂u(t, x, 0)

∂y
= 0 ,

u(t, x,∞) = x .

The two boundary conditions for x are straightforward, when x ap-

proaches infinity, it is reasonable to assume that the option will finish ex-

tremely in-the-money such that its partial derivative with respect to x ap-

proaches 1. Similarly, when x approaches minus13 infinity, the option will

finish extremely out-of-the-money such that it will be worthless. The two

boundary conditions for y are not as straightforward. For the y = 0 bound-

ary, it makes intuitive sense to consider the PDE at y = 0 as its boundary

condition. For when y approaches infinity the boundary is chosen to be the

value x (for a call option). The latter boundary condition is similar to the

choice made when solving the call option problem under a Heston model

using Finite Difference Methods (FDM), see In’t Hout and Foulon (2010).

The FDM used to solve Equation (28) will be that of the alternating

direction implicit (ADI) method. ADI methods are methods that reduce

multi-dimensional PDEs into a series of one-dimensional steps, which ex-

plains the origins of its name. In’t Hout and Foulon (2010) covers this topic

13It is possible for x to be negative if k1 > 0.
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quite thoroughly for the Heston model, while Lin (2008), provides working

MATLAB codes implementing the ADI scheme for a call option under the

Heston model. Given the similarity between the call option PDE and the

Asian-Australian option PDE, it is easy to modify the code to solve for the

Asian option problem, using the Asian-Australian equivalence.

7.2 The Monte Carlo approach

As is well known, MC methods often provide powerful alternatives to nu-

merical PDE methods. In the following, we comment briefly on the issue

of pricing Asian options under stochastic volatility with MC methods, and

show how the Australian approach can be very helpful here. In transform-

ing the fixed strike Asian call option to an Australian-like call option, we

have essentially reduced the problem from being path-dependent to being

path-independent. The significant advantage for doing so will be outlined

below.

Unlike in the case of constant volatility, the system of stochastic differ-

ential equations (22) – (23) can not be solved explicitly and an appropriate

numerical scheme needs to be used. The most popular such schemes are the

Euler-Maruyama and Milstein schemes.

It is well understood that in one-dimensional problems, for numerical

results, the Euler-Maruyama scheme shows weak and strong convergence of

order 1 and 1/2, respectively, while the Milstein scheme shows convergence of

orders 1 and 1, respectively (see e.g. Kloeden and Platen (1992) for a proof, or

Higham (2001)). For a path dependent option, the strong convergence order

determines how good the MC method performs. Hence, the Milstein scheme

is often advocated when dealing with Asian options. For path independent

options the performance of the Euler-Maruyama scheme and the Milstein

scheme are about equal. A disadvantage of the Milstein scheme, however, is

that in the multi-dimensional case it becomes rather difficult to implement,

with serious consequences on its performance. The difficulties lie in the

computation of the double integral, known as the Levy area, involving the

multiple Brownian motions, see Higham (2001).
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When pricing an Asian or Australian option under stochastic volatility, we

face a multi-dimensional problem. Poklewski-Koziell (2009) comments that

the Milstein scheme does not perform well for the Heston model because

the drift and diffusion coefficients are not ”sufficiently smooth, real-valued

functions satisfying a linear growth bound”. Thus in our case, strong conver-

gence order of one may actually not hold anymore for the Milstein scheme,

even if the technical difficulties for its implementation are ignored. Addition-

ally, available MATLAB implementations of the Milstein scheme are rather

slow. Poklewski-Koziell also noted that the Euler-Maruyama scheme is a ro-

bust enough scheme to handle the pricing under the Heston model, see also

Deelstra and Delbaen (1998). From the Australian perspective, applying the

Euler scheme (27) and (25) in order to compute (26), and hence price the

Asian option in a path independent manner comes naturally. Further to this,

Lord, Koekkoek and Van Dijk (2010), showed that their modifications to the

normal Euler scheme, called the full truncation scheme, reduces bias in MC

simulations for the Heston model. Their modification deals with issues found

at the zero boundary for the variance path, much like the usual absorption

and reflection corrections, but expanding on this work. It is shown below

that this scheme and the path independent approach show improved numer-

ical performance if compared to the standard path dependent approach.

In addition to the Euler-Maruyama scheme with full truncation modi-

fications we also test the second order Taylor 2.0 scheme. This scheme is

derived by extending the Euler-Maruyama scheme to the next term in the

expansion, by considering the double stochastic integrals in the Itô-Taylor

expansion, see Kloeden and Platen (1992). When the usual smoothness and

boundedness conditions hold, this scheme has a weak order of convergence

of 2.0. More details for the Taylor 2.0 scheme can be found in Kloeden and

Platen (1992). Note, that because we have transformed the path dependent

option into a path independent option, the weak convergence order is really

what matters here. Therefore this approach appears to be very promising.
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8 Numerical results

8.1 Within the Black-Scholes framework

While the option price formula for Australian options given in Proposition

4.3 looks very promising, it turns out that it is not feasible to calculate

the triple integral given in the formula (see section 6.1 Estimating U(t, x)

in Yang et al. (2011)). However, Yang at al. (2011) bypass this problem

by using Monte Carlo simulation to calculate specific parts of their pricing

and hedging formulas. Because of the above developed relationship between

Asian and Australian options, it is straightforward to apply the methods

used in Yang et al. (2011) to the case considered here.

8.2 Within the stochastic volatility framework

In this subsection, numerical results for Asian options under stochastic volatil-

ity are presented. We will compare the results obtained via FDM and Monte

Carlo simulations.

We use the following sets of parameters found in Table 1 to implement

the Heston model. Parameter set 1, has been previously used by Poulsen,

Schenk-Hoppe and Ewald (2009) in the Heston model. Parameter sets 2 and

3 feature variations around this benchmark set.

Set α m β ρ r q T k1 k2 x0 y0
1 4.75 0.0483 0.550 -0.569 0.04 0.00 1 100 0 100 0.0483
2 3 0.1 0.2 0.7 0.1 0.00 1 100 0 100 0.1
3 7 0.05 0.3 -0.4 0.07 0.00 1 100 0 100 0.075

Table 1: Parameter Sets

Using the three-dimensional PDE developed in Section 6.1, we choose the

domain for the state and variance variable as [−3, 3] and [0, 3], respectively.

We use an equidistant partition of the x, y and t variable with the grid size

in each variable being 1, 000. Using the above parameters, the alternating

direction implicit (ADI) scheme, based on the modifications of the work by

Lin (2008), returned a price of 5.852839, 9.323261, 7.122597, for parameter
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sets 1, 2 and 3, respectively. The time taken to compute the price using the

ADI method was approximately 17 minutes. When testing the performance

of the various MC settings below, we interpret these solutions as the exact

solution.

We begin the MC analysis by first examining the results for parameter

set 1. The first MC test will be to test the rate at which the option price

converges to the ADI produced price as a function of the number of paths

used. For this test, the number of time-steps is fixed to 1, 000, while the

number of simulated paths used varies. Figures 3 and 4 show the conver-

gence of the price and the RMSE of those prices as a function of number

of simulated paths, respectively. The convergence of the price in using the

Asian Euler and Australian Euler (in short Aus Euler) methods both follow

a similar pattern, with the Aus Euler method reaching closer to the ADI

solution with less simulations. The Aus Taylor 2.0 method reaches the ADI

solution much quicker than the other two methods, and then hovers near the

ADI solution. Lord, Koekkoek and Van Dijk’s (2010) full truncation method

has been used here.

For added reference, the Milstein method applied to the regular Asian op-

tions method produced a price and RMSE of 5.8298 and 7.4649, respectively.

This simulation used 100, 000 paths, with 1, 000 time-steps each and took

approximately 27 minutes to compute, which is significantly more than even

the ADI method. The code for this scheme can be found in Poklewski-Koziell

(2009). The Aus Taylor 2.0 and the Euler solutions, with the same number of

simulated paths and time steps took 30 and 8 seconds, respectively. We also

note that for the Aus Taylor 2.0 method, 25, 000 paths took approximately

8 seconds to compute. All computations were done using MATLAB 2010a

on an Intel Core 2 Quad 3.6Ghz PC with 8Gb of RAM, running Windows 7.

We will shortly come back to the relevance of these computational times.

The second MC test considered the rate of convergence as a function of the

number of time-steps, while fixing the total number of simulated paths. The

test consists of simulating 100, 000 paths at each time-step, with the number

of time-steps chosen to be 100, 200, . . ., 1, 000. Figures 5 and 6 show the

convergence of price and the RMSE of this test, respectively. As evident in
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Figure 3: Convergence of Price as a Function of the Number of Simulation
- The Aus Taylor 2.0 solution approaches the ADI solution more rapidly in
this simulation run.

Figure 5, the Aus Taylor 2.0 method increases in performance as the number

of time-steps per simulation increases. This result is not observed for the

Euler methods, however in these particular simulations, for a small number

of time-steps the Euler methods performed better than the Aus Taylor 2.0

method. Looking in terms of the RMSE in Figure 6, it can be seen that

the Asian-Australian equivalence method once again provides a lower RMSE

across all numbers of time-steps.

So far, the results demonstrate that the Asian-Australian equivalence

method does seem to have advantages over the classical naive method in

dealing with MC methods. However, the results thus far have not shown

whether it is worthwhile to implement the simplified Order 2.0 Weak Tay-

lor method and whether the results are due to particular seeds used in the

simulation. To answer this question, the two previous tests are repeated 100

times, with different seeds at each run. The methodology for testing these

repetition tests can be found in Appendix A.2.

Figures 7 and 6 show the results of the two repetition tests. From both
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Figure 4: RMSE as a Function of Number of Simulation Paths - The standard
Asian Euler method produces a higher RMSE than the Asian-Australian
equivalence methods.

figures, the Euler method applied to both the naive and Asian-Australian

equivalence method shows a very similar result. It is hard to distinguish

with certainty which of the two methods is better. However, when taking the

simplified Order 2.0 Weak Taylor method into consideration, it shows that

the Asian-Australian equivalence method provides a superior result with a

much lower RMSE across both number of simulations and number of time-

steps.

As stated earlier, if we fix the time-step sizes and only vary the number of

simulations, then the Aus Taylor 2.0 method increases computational time

by a factor of 4 approximately. Thus, for a fairer comparison, we need to

distinguish whether it is computationally efficient to use the Aus Taylor 2.0

method over the Euler method, even if both methods are using the Asian-

Australian equivalence. From Figure 7, if we consider using 800, 000 and

200, 000 simulated paths for the Aus Euler and Aus Taylor 2.0 methods,

respectively, for each of the 100 runs, they should take roughly the same
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Figure 5: Option Price as a Function of the Number of Time-steps - Time-
step size does not influence the convergence of the option price.

amount of time to compute. However, the Aus Taylor 2.0 method in this

case returns a lower RMSE than the Aus Euler results. Of course, one could

argue that taking 400, 000 paths for the Aus Euler and 100, 000 paths for the

Aus Taylor 2.0 methods, respectively, gives better results for the Aus Euler.

However, the fact is, if one demands the RMSE to be below a certain point,

for example around 0.018 in this case, then clearly it is possible to achieve this

by using the Aus Taylor 2.0 method, which in this case is computationally

more efficient time-wise. The interesting point here is that the Aus Taylor

2.0 method is capable (on average) of returning a better estimate, even if we

limit ourselves to using the same amount of time in the computation. This

is indeed an advantage of using the Aus Taylor 2.0 method for pricing Asian

options.

The repetition tests for parameter sets 2 and 3 are shown in Figure 9.

The two graphs at the top are repetition test 1 and 2 (number of simulated

path and number of time-steps), for parameter set 2, while the bottom two

are for parameter set 3. The repetition tests shows that the Asian-Australian
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Figure 6: RMSE as a Function of Number of Time-steps - The standard
Asian Euler method produces a higher RMSE than the Asian-Australian
equivalence method.

equivalence method returns a lower RMSE than the naive method across all

number of simulated paths and most of the number of time-steps considered.

For the first repetition tests, the computational efficiency outlined above,

of using the Aus Taylor 2.0 method was not observed for parameter set

2. In parameter set 3, if one considers the RMSE from the 200, 000 and

800, 000 simulated paths, for the Aus Taylor 2.0 and Aus Euler method,

respectively, then the RMSE are quite similar. Nevertheless, if computational

time is not of concern, then the Aus Taylor 2.0 method returns a lower RMSE

than the Euler methods when using the same number of simulated paths. If

computational time is of concern, then there are still advantages in using the

Aus Euler method over the Asian Euler method. The results for repetition

test 2 are similar to the results obtained earlier.

A summary of the ADI solutions along with the MC solutions, and their

RMSE for repetition test 1 is shown in table 2. The MC solutions are

obtained by averaging across the 100 repetitions with 1, 000, 000 simulated
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Figure 7: Repetition Test 1 - When the first test is repeated 100 times, the
Aus Taylor 2.0 method returns a lower RMSE than the other two methods
as the number of simulated paths increases.

paths. Whilst the Aus Euler MC solutions returned a slightly poorer esti-

mate for the Asian option price compared to the Asian Euler method, there

are some improvements to the RMSEs. Across all three parameter sets, the

Aus Taylor 2.0 provided the closest price to the ADI solution with the lowest

RMSE.

ADI Asian Euler Aus Euler Aus Taylor 2.0
Set No. Price Price RMSE Price RMSE Price RMSE

1 5.853 5.870 0.0190 5.871 0.0193 5.851 0.0059
2 9.323 9.333 0.0168 9.334 0.0140 9.321 0.0108
3 7.123 7.135 0.0156 7.136 0.0152 7.123 0.0078

Table 2: Repetition Test 1 Results; Asian Options

For added reference, the same analysis was repeated for Australian op-

tions using parameter sets 1, 2 and 3. Unlike the constant volatility case

where pricing one is equivalent to pricing the other, due to the two models

not being fully equivalent, we cannot obtain Australian option prices directly
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Figure 8: Repetition Test 2 - When the second test is repeated 100 times, the
Aus Taylor 2.0 method returns a lower RMSE than the other two methods.
Also the time-step size does not affect the Aus Taylor 2.0 method as much
as the other two methods.

from Asian option prices (or vice versa). The results of these tests can be

found in table 3. The results show that the Aus Taylor 2.0 method provides

better MC simulation results than the Aus Euler method, which is to be

expected as it is of higher order of convergence.

ADI Aus Euler Aus Taylor 2.0
Set No. Price Price RMSE Price RMSE

1 0.04745 0.04759 1.5024×10−4 0.04740 8.2574×10−5

2 0.06426 0.06430 9.4181×10−5 0.06423 8.9252×10−5

3 0.05485 0.05494 1.1000×10−4 0.05483 6.3888×10−5

Table 3: Repetition Test 1 Results; Australian Options

Overall, the numerical results are promising in using the path-independent

Asian-Australian equivalence to price Asian options under stochastic volatil-

ity. Whilst we have only tested the Weak Taylor 2.0 scheme, it is possible

to look at higher order schemes for path-independent simulations, and com-
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Figure 9: Repetition Tests - The top and bottom graphs are for parameter
set 2 and 3 respectively.

pare this to equivalent higher order path-dependent schemes. Furthermore,

easily implementable numerical algorithms such as the ADI method, can be

applied to the Australian equivalent PDE with the time independent coeffi-

cients to produce solutions for Asian option prices. These advantages makes

it worthwhile to consider Asian options following the proposed Australian

approach.

9 Conclusion

We have shown that Australian options are equivalent to fixed or floating

strike Asian options and consequently showed that by studying Asian op-
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tions via Australian options, much can be gained. One specific application

of this ”Australian Approach” leads to a natural dimension reduction for the

pricing PDE of Asian options, with or without stochastic volatility, featuring

time independent coefficients. Another application lies in the improvement

of Monte Carlo schemes. We also showed how the Milevsky and Posner result

on the reciprocal Γ-approximation for Asian options can be quickly obtained

by using the connection to Australian options, and in fact presented an an-

alytical (exact) pricing formula for Australian options. Finally we discussed

the Australian put-call parity and the qualitative dependence of Australian

option prices on the level of volatility. Overall, we think that it is very useful

in a conceptual way, to think about Asian options in the way presented here,

and expect further progress on the study of Asian options as a result of this

approach.
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A Appendix

A.1 Sketch of the proof of Proposition 5.1

Note that because the discount factor e−r(T−t) does not depend on σ, we only

need to show that

ṽ(x, t) = E
[

(AU(T )−K)+ | AU(t) = x
]

(30)

satisfies

V(x, t) := ṽσ(t, x) =
∂

∂σ
ṽ(x, t) > 0 (31)

for σ > 0. The PDE for ṽ(x, t) is given by

ṽt +
((

σ2 − r
)

x+ 1
)

ṽx +
1

2
σ2x2ṽxx = 0

ṽ(x, T ) = (x−K)+. (32)

Differentiating this with regards to σ gives the following:

Vt +
((

σ2 − r
)

x+ 1
)

Vx +
1

2
σ2x2Vxx = −2σxṽx − σx2ṽxx (33)

and V vanishes on [0,∞)× {T}. Since (33) is a parabolic PDE, it follows in

exactly the same way as in Carr, Ewald and Xiao (2008) from the Pontryagin

maximum principle (see e.g. Theorem 3.1.1 in Stroock and Varadhan (1996)),

that V(x, t) > 0 for all (x, t), if it can be shown that the right hand side of

(33) is always negative. Since we are only considering the case x ≥ 0 the

right hand side of (33) is negative, if it can be shown that ṽx and ṽxx are

positive. This is intuitive, but not a priori clear. For ṽx, we may consider

the first variation process ∂AU(t)
∂AU(0)

of AU(t), which (following Protter (2003),

Chapter 5.7) is given by the solution of

d

(

∂AU(t)

∂AU(0)

)

=

(

∂AU(t)

∂AU(0)

)

σ dW (t) +

(

∂AU(t)

∂AU(0)

)

(

σ2 + r
)

dt. (34)
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This means that the first variation process associated to AU(t) is a geometric

Brownian motion starting at 1, in particular it is always positive

∂AU(t)

∂AU(0)
> 0 (35)

and does not further depend on AU(0). We conclude that for any increasing,

convex, and two-times continuously differentiable function

∂

∂x
(E [h (AU(T )|AU(0) = x)]) = E

[

h′(AU(T ))
∂AU(T )

∂AU(0)

]

> 0

and since ∂AU(T )
∂AU(0)

does not depend on AU(0), that is

∂2

∂x2
(E [h (AU(T )|AU(0) = x)]) = E

[

h′′(AU(T ))

(

∂AU(T )

∂AU(0)

)2
]

> 0.

The payoff function h(x) = (x − K)+ is sufficiently regular as to be

approximated by a sequence of continuously differentiable functions as above,

from which by a limit argument the desired positivity of ṽx and ṽxx can now

be concluded. This is similar as in Carr, Ewald, and Xiao (2008).

A.2 Repetition test

The repetition of the first test is carried out as follows;

1. Simulate 100, 000 paths using 1, 000 time-steps and calculate the cor-

responding price.

2. Repeat step 1 a 100 times, with new seeds for each run.

3. Using the 100 prices obtained from step 2, calculate the RMSE of the

mean prices.

4. Repeat all the above steps with 200, 000, 300, 000, . . ., 1, 000, 000 paths.

The repetition of the second test is carried out as follows;
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1. Simulate 100, 000 paths using 100 time-steps and calculate the corre-

sponding price.

2. Repeat step 1 a 100 times, with new seeds for each run.

3. Using the 100 prices obtained from step 2, calculate the RMSE of the

mean prices.

4. Repeat all the above steps with 200, 300, . . ., 1, 000 time steps.
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