
A Framework for Adaptive Monitoring

and Performance Management of

Component-Based Enterprise

Applications

Adrian Mos, BEng

Ph.D. Thesis

Dublin City University

Dr. John Murphy

School of Electronic Engineering

August 2004

I hereby certify that this material, which I now submit for assessment on

the programme of study leading to the award of Ph.D. is entirely my own

work and has not been taken from the work of others save and to the

extent that such work has been cited and acknowledged within the text of

my work.

Signed:

(Candidate) ID No.: / 6 *

Date: ^ i ° » Ï

II

Abstract

Most large-scale enterprise applications are currently built using

component-based middleware platforms such as J2EE or .NET. Developers

leverage enterprise services provided by such platforms to speed up

development and increase the robustness of their applications. In addition,

using a component-oriented development model brings benefits such as

increased reusability and flexibility in integrating with third-party systems.

In order to provide the required services, the application servers

implementing the corresponding middleware specifications employ a

complex run-time infrastructure that integrates with developer-written

business logic. The resulting complexity of the execution environment in

such systems makes it difficult for architects and developers to understand

completely the implications of alternative design options over the resulting

performance of the running system. They often make incorrect assumptions

about the behaviour of the middleware, which may lead to design decisions

that cause severe performance problems after the system has been

deployed. This situation is aggravated by the fact that although application

servers vary greatly in performance and capabilities, many advertise a

similar set of features, making it difficult to choose the one that is the most

appropriate for their task.

The thesis presents a methodology and tool for approaching performance

management in enterprise component-based systems. By leveraging the

component platform infrastructure, the described solution can non-

intrusively instrument running applications and extract performance

statistics. The use of component meta-data for target analysis, together

with standards-based implementation strategies, ensures the complete

portability of the instrumentation solution across different application

servers. Based on this instrumentation infrastructure, a complete

performance management framework including modelling and performance

prediction is proposed.

Most instrumentation solutions exhibit static behaviour by targeting a

specified set of components. For long running applications, a constant

overhead profile is undesirable and typically, such a solution would only be

used for the duration of a performance audit, sacrificing the benefits of

constantly observing a production system in favour of a reduced

performance impact.

This is addressed in this thesis by proposing an adaptive approach to

monitoring which uses execution models to target profiling operations

dynamically on components that exhibit performance degradation; this

ensures a negligible overhead when the target application performs as

expected and a minimum impact when certain components under-perform.

Experimental results obtained with the prototype tool demonstrate the

feasibility of the approach in terms of induced overhead. The portable and

extensible architecture yields a versatile and adaptive basic instrumentation

facility for a variety of potential applications that need a flexible solution for

monitoring long running enterprise applications.

iv

Acknowledgements

To John Murphy, my supervisor for his openness and flexibility in relation to

my research, for his constant support at both professional and personal

levels, and for creating a relaxed, high-quality working environment.

To Peter Hughes for his many useful comments and suggestions; to Andrew

Lee for his industrial perspective on my work and his magic tricks; To

Michael Stal and Petr Tuma for their evaluation of my work and for their

ideas and helpful feedback.

To Misha Dmitriev and Mario Wolczko for providing valuable suggestions for

my thesis and for giving me the opportunity to experience a high-quality

industrial research environment by supporting my internship in Sun Labs.

To Ada Diaconescu and Mircea Trofin for the constant flow of ideas and

suggestions, for the detailed and sometimes overheated discussions

regarding our research area and for making our common living room the

best place to do after-hours research. To Ada also for her patience and

support, in particular during the final stages of my write-up and for

believing that I would have no problems sustaining my thesis defence.

To Trevor Parsons for his contribution to my understanding of the Dublin

accent and for being a fun colleague; To Doru Todinca for his suggestions

and discussions during the time we were colleagues and flat-mates; To all

my other colleagues in the Performance Engineering Lab for the great

working environment and their suggestions during our meetings.

To my family for fully supporting my decision to enrol in the PhD

programme and for their constant encouragements during all this time.

v

Table of Contents

A B ST R A C T .. I l l

A C K N O W L E D G E M E N T S..V

TABLE O F C O N T E N T S...VI

LIST OF F IG U R E S .. IX

LIST OF T A B L E S ...X II

LIST OF PU B L IC A T IO N S A N D A W ARDS A R ISIN G FR O M TH IS T H E S IS XH I

C H A PTER 1 IN T R O D U C T IO N ..1

1.1 B ackground a n d M otivation ... 2

1.1.1 Complexity in Enterprise Applications 2

1.1.2 Performance Challenges... 3

1.2 Co nt r ib u tio n s *...6

1.3 Thesis Overview .. 8

C H A PTER 2 R E L A T E D W O R K .. 9

2.1 Introduction to J2EE... 10

2.2 P erformance of Software Syst em s ..18

2.3 Generic M onitoring Appro aches...20

2.4 A daptive M onitoring A pproaches..................................... 24

C H A PTER 3 A FR A M E W O R K FO R PE R FO R M A N C E M A N A G E M E N T O F ENTERPRISE
SO FTW A R E A P PL IC A T IO N S..26

3.1 COMPAS Overview27

3.2 M onitoring Ove rview ... 31

3.3 P roposed M odelling and Prediction A ppro ac h 33

3.3.1 M odel Driven Architecture (M D A)..33

3.3.2 Performance Modelling Ontology.. 35

3.3.3 Performance M anagement Functionality ...36

C H A PTER 4 M O N IT O R IN G IN F R A S T R U C T U R E ..41

4.1 Introduction a n d Functional Go a l s .. 42

4.1.1 Portability and Non-Intrusiveness ... *..42

4.1.2 Low Overhead and Adaptive Monitoring 43

4.1.3 JM X Overview ..44

4.1.4 COMPAS and J2EE Management Specification .. 45

4.2 A rchitecture of COMPAS M onitoring ... 48

4.2.1 Overview o f COMPAS M onitoring Architecture 48

4.2.2 COMPAS Deployment..50

4.2.3 COMPAS Instrumentation Layer: Probes.............................. 51

4.2.4 COMPAS JM X Repository ... 55

4.2.5 COMPAS Client-Side ...57

4.3 D esign Co nsider atio n s .. 60

4.3.1 Design o f Monitoring Probes.. 60

4.3.2 Extracting Timestamps Using Monitoring Probes *....................... 62

4.3.3 Receiving Data from Monitoring P robes ... 63

4.4 Extensibility: COMPAS Extension Po in t s 66

4.4.1 Client-Side FEPs...67

4.4.2 Server-Side F E P s ...68

4.4.3 List o f FEPs ..70

4.5 V ertical a nd H orizontal Integratio n ..72

4.6 M onitoring Infrastructure Su m m a r y ..77

C H A PTER 5 IN SE R T IO N O F P R O B E S .. 78

5.1 Inserting the M onitoring Pr o b e s ... 79

5.1.1 COMPAS Probe Insertion Process D escription ...79

5.1.2 The CPI Process in J2E E ...82

5.1.3 COMPAS Probe Insertion Process Code Exam ple 83

5.1.4 The CPI Process Using JSR77 ..85

5.2 Instrum enting J2EE A pplications U sing JVM P ro filing .. 88

5.2.1 Instrumentation Levels .. 89

5.2.2 The Instrumentation Mapping ..91

5.2.3 Usage Example and Results ... 94

5.3 Probe Insertion Su m m a r y ...99

C H A PTER 6 A D A PT IV E M O N IT O R IN G AN D D IA G N O SIS ...100

6.1 Int ro duc tio n ..101

6.2 The N eed for M o d e l l in g ..103

6.3 Obtaining M o dels: Interaction Recorder105

6.3.1 Interaction Recorder Functionality../ 05

6.3.2 Advantages & Disadvantages .. / 09

6.4 Generating Alerts: D etecting Performance A n o m a lies ...111

6.4.1 D etection .. 11!

6.4.2 Design and Customisation ...113

6.5 M o d e l B ased A daptation: Ov e r v ie w .. 116

6.6 Collaborative D iagnosis a n d A d a pt a t io n ..120

6.6.1 Probes as Independent Collaborative A gents .. 120

6.6.2 Emergent Alert M anagement and Generation .. 124

6.6.3 Advantages and Disadvantages .. 124

6.6.4 Applicability .. 125

6.7 Centralised D iagnosis and A da pta t io n .. 126

vii

6.7.1 Probes as Quasi-Independent A g en ts .. 126

6.7.2 Orchestrated A lert Management and Generation ..128

6.7.3 Advantages and Disadvantages ... ^ 129

6.7.4 Applicability ..130

6.7.5 Design o f Centralised Logic .. 130

6.8 D iagnosis an d A daptation Su m m a r y .. 136

C H A PTER 7 T E ST IN G A N D R E S U L T S ...137

7.1 COMPAS A daptation Test-bed Fram ew ork ...138

7.1.1 Executing Test Configurations in CAT ... 140

7.1.2 Test Bean Cell D esign .. , 142

7.2 COMPAS Pro t o t y pe ...144

7.2.1 COMPAS Implementation ... 144

7.2.2 COMPAS in the Real World..145

7.2.3 Using COMPAS with the Adaptation Test-bed ..146

7.2.4 CAT in Adaptation Test Case .. 151

7.2.5 COMPAS in Use.. 155

7.3 Performance M easurem ents 158

7.3.1 Test Environm ent...158

7.3.2 Setting-Up and Running Tests... 160

7.3.3 Multiple EJBs Interaction ... 161

7.3.4 Single E JB ...167

C H A PTER 8 C O N C L U SIO N S...170

8.1 Problems A d d r e sse d ... 171

8.2 Review of Co ntributio ns ...173

8.3 Comparison with A cademic A pproaches... 176

8.4 Comparison with Commercial A ppro ac h es 181

8.5 V a l id a t io n .. 186

8.6 L imitations a n d Further Ex pl o r a t io n ... 188

B IB L IO G R A P H Y ...190

viii

List of Figures

Figure 2-1. EJB Containment Hierarchy... 12

Figure 2-2. EJB Structure and Invocation Path...14

Figure 2-3. Different EJB to EJB Invocation Options................................. 16

Figure 3-1. COMPAS Overview.. 30

Figure 3-2. Mapping a simple PIM to an EJB PSM 35

Figure 3-3. Scenarios with probability and performance parameters.........37

Figure 3-4. Top level PIM showing a performance alert............................38

Figure 3-5. Identifying performance degrading steps............................... 39

Figure 4-1. COMPAS Non-Intrusive Approach... 43

Figure 4-2. The Main Elements in JM X 45

Figure 4-3. Main Monitoring Subsystems...48

Figure 4-4. Major Monitoring Modules... 49

Figure 4-5. COMPAS Deployment..51

Figure 4-6. COMPAS Probe Architectural Overview.................................. 54

Figure 4-7. COMPAS Transparent Management using JM X56

Figure 4-8. COMPAS Client Architectural Overview.................................. 58

Figure 4-9. Handling JMX Notifications.. 59

Figure 4-10. The Monitoring Probe... 60

Figure 4-11. Probe Sending Events.. 61

Figure 4-12. Time Extraction Strategies...62

Figure 4-13. Receiving Events from COMPAS Probes............................... 64

Figure 4-14. Client-Side Framework Extension Points.............................. 68

Figure 4-15. Server-Side Framework Extension Points.............................69

igure 4-16. Vertical and Horizontal Integration...................................... 73

igure 5-1. COMPAS Probe Insertion.. 81

igure 5-2. Modified Component Containing the Proxy Layer................... 82

igure 5-3. Using JSR77 to Extract J2EE Deployment Data...................... 87

igure 5-4. Sample J2EE deployment structure....................................... 95

igure 5-5. In-depth instrumentation of selected EJB methods................ 96

igure 6-1. Model Information Not Available..103

igure 6-2. Model Information Is Available.. 104

igure 6-3. Interaction Recorder Overview.. 106

igure 6-4. Enclosing Methods.. 107

igure 6-5. Sample Use Case.. 109

igure 6-6. Design of Anomaly Detection Logic......................................114

igure 6-7. Adaptive Probe States...117

igure 6-8. Dynamic Activation of Probes.. 117

igure 6-9. Probes communicate with other probes and dispatcher........ 121

igure 6-10. Collaborative Diagnosis and Adaptation............................ 122

igure 6-11. All probes communicate with the dispatcher......................126

igure 6-12. Probe in Centralised Diagnosis and Adaptation..................127

igure 6-13. Dispatcher in Centralised Diagnosis and Adaptation.......... 128

igure 6-14. Centralised Control Entities.. 131

igure 6-15. Centralised Diagnosis and Adaptation Design Overview 132

igure 7-1. Sample Test-bed Configuration... 140

igure 7-2. Sample CAT Configuration S e t.. 141

igure 7-3. CAT Test Bean Cell Structure.. 143

igure 7-4. Output of Probe Insertion Procedure for CAT........................147

igure 7-5. Monitoring Console... 148

igure 7-6. Real-Time Response Time Chart.. 148

igure 7-7. Interaction Recorder GUI.. 149

Figure 7-8. Automatically Generated UML Diagram................................ 150

Figure 7-9. Selecting Interactions for Diagnosis and Adaptation............. 150

Figure 7-10. Configuration Selection using the CAT Front-end.............. 151

Figure 7-11. Structure of Configuration co n fig l....................................152

Figure 7-12. UML Representation of Configuration co n fig l....................152

Figure 7-13. Execution History of configl without Adaptation................152

Figure 7-14. Selecting configl for Adaptation.......................................153

Figure 7-15. Execution History of configl with Adaptation.....................153

Figure 7-16. Structure of Configuration config4....................................154

Figure 7-17. UML Representation of Configuration config4....................154

Figure 7-18. Execution History of config4................. 155

Figure 7-19. Execution History of configl with Adaptation and Hotspot... 155

Figure 7-20. EJB Express Functionality.. 157

Figure 7-21. Environment for Performance Tests159

Figure 7-22. CAT Configuration for Multiple EJBs Interaction.................162

Figure 7-23. Web Response Time Evolution for Multiple EJBs.................163

Figure 7-24. Multiple EJBs: Web Overhead Difference Evolution.............163

Figure 7-25. EJB Response Time Evolution for Multiple EJBs..................164

Figure 7-26. Full Instrumentation: Contribution of EJB Tier to Web Tier

Response T im e.. 165

Figure 7-27. Partial Instrumentation: Contribution of EJB Tier to Web Tier

Response T im e... 166

Figure 7-28. Percentile Instrumentation Overhead................................167

Figure 7-29. CAT Configuration for Single EJB Interaction..................... 167

Figure 7-30. Web Response Time Evolution for Single EJB..................... 168

Figure 7-31. Single EJB: Contribution of EJB Tier to Web Tier Response Time

...169

List of Tables

Table 5-1. Top-level call graph.............................. 93

Table 5-2. In-depth call graph..................... .. 94

Table 5-3. JVM-Level Instrumentation Results.. 97

Table 6-1. Sample Collected Data Buffer... I l l

Table 8-1. COMPAS vs. J2EE Performance Management Products.............185

List of Publications and Awards

Arising from this Thesis

Publications (reverse chronological order):

[1] A. Mos, J. Murphy. "COMPAS: Adaptive Performance Monitoring of
Component-Based Systems". Proceedings of Workshop on Remote Analysis
and Measurement of Software Systems (RAMSS) at 26th International
Conference on Software Engineering (ICSE), May 24 2004, Edinburgh,
Scotland, UK.

[2] A. Diaconescu, A. Mos, J. Murphy. "Automatic Performance Management in
Component Based Software Systems". Proceedings of IEEE International
Conference on Autonomic Computing (ICAC), May 2004, New York.

[3] A. Mos. "A Framework for Performance Management of Component Based
Distributed Applications". In the 2003 ACM Student Research Competition
Grand Finals (second place).
http://www.acm.org/src/subpages/AdrianMos/compas.html

[4] A. Mos, "A Framework for Performance Management of Component Based
Distributed Applications" Proceedings Companion Doctoral Symposium of the
17th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), Seattle, November 2002

[5] A. Mos, "A Framework for Performance Management of Component Based
Distributed Applications" Proceedings Companion ACM Student Research
Competition of the 17th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), Seattle,
November 2002

[6] A. Mos, J. Murphy /'Performance Management in Component-Oriented
Systems using a Model Driven Architecture Approach", Proceedings of the 6th
IEEE International Enterprise Distributed Object Computing Conference
(EDOC), Lausanne, Switzerland, September 2002

[7] A. Mos, J. Murphy, "Understanding Performance Issues in Component-
Oriented Distributed Applications: The COMPAS Framework", Poster in the
16th European Conference on Object-Oriented Programming (ECOOP)
Malaga, Spain, June 2002

[8] A. Mos, J. Murphy, "Understanding Performance Issues in Component-
Oriented Distributed Applications: The COMPAS Framework", Position Paper at
Seventh International Workshop on Component-Oriented Programming
(WCOP) of the 16th European Conference on Object-Oriented Programming
(ECOOP) Malaga, Spain, June 2002

[9] A. Mos, J. Murphy, "A Framework for Performance Monitoring, Modelling and
Prediction of Component Oriented Distributed Systems" Proceedings of the
Third ACM International Workshop on Software and Performance (WOSP),
Rome, Italy, July 2002

xiii

http://www.acm.org/src/subpages/AdrianMos/compas.html

[10] A. Mos, J. Murphy, "A Framework for Performance Monitoring and Modelling of
Enterprise Java Beans Applications", Proceedings Companion Poster of the
16th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), Tampa Bay, Florida, USA,
October 2001

[11] A. Mos, J. Murphy, "Performance Monitoring of Java Component-Oriented
Distributed Applications", Proceedings of the 9th IEEE International
Conference on Software, Telecommunications and Computer Networks
(SoftCOM), Croatia-Italy, October 2001)

[12] A. Mos, J. Murphy, "New Methods for Performance Monitoring of J2EE
Application Servers", Proceedings of the 8th IEEE International Conference on
Telecommunications (ICT), Bucharest, Romania, June 2001

Awards:

Second Place, 2003 ACM Student Research Competition Grand Finals

Third Place, 2002 ACM SIGPLAN Student Research Competition

xiv

Chapter 1 Introduction

Large-scale enterprise applications have complex performance

characteristics

There is a need for dynamic, adaptive monitoring

Performance information must be presented at the same conceptual

level as the development constructs

Thesis contributions:

Complete framework for performance management

Non-intrusive, portable, component-level monitoring platform

that can be extended vertically or horizontally

Model-based, low-overhead adaptive monitoring techniques for

long running production systems

1.1 Background and Motivation

1.1.1 Complexity in Enterprise Applications

As companies continue to expose their business processes over the Internet

for Business-to-Business (B2B) or Business-to-Consumer (B2C)

interactions, the software systems they rely upon become increasingly

complex. The speed at which these software systems must be developed is

also increasing due to the interest of each company to achieve a

competitive advantage in their markets.

It can be argued that increasing the complexity and the time-to-market for

software systems are two conflicting requirements. Other major conflicting

requirements are ensuring that systems meet performance goals and

reducing the costs at which these systems are developed.

Outsourcing parts of system development is a solution often used by

enterprises to deal with development budget cuts. Even mission critical

developments such as financial or military applications [2] increasingly need

to resort to this approach. Another solution to the same problem is using

Commercial-Off-The-Shelf (COTS) software. Both solutions may lead to

situations where the developers responsible for the entire system do not

fully understand the resulting software application. When the application is

not clearly understood, it is often hard if not impossible to ensure that

performance goals are met, especially if the system was not engineered for

performance from the start.

Component oriented development [97][16] is gaining momentum mostly

because it speeds up the development process for large enterprise systems.

In addition, it forces developers to design with future changes in mind,

which increases flexibility and reusability. A number of frameworks such as

Sun's Enterprise Java Beans [82], OMG's Corba Component Model (CCM)

[57] or Microsoft .NET [97] are available. They can help reduce the

development time and even help with performance and reliability issues

such as scalability, fault-tolerance and availability by offering a consistent

set of systemic services ready to be integrated in the enterprise application.

Such services and additional lifecycle support offered by the component

application servers account for orders of magnitude increases in the

complexity of the resulting systems which have rather complex performance

characteristics.

In addition, the dynamic nature of component frameworks (e.g. dynamic

inter-component bindings, component versioning) as well as runtime

changes of the execution context (e.g. incoming workload, available

resources), adds to the complexity of the performance perspective on the

enterprise system.

Most of the time, the complexity of such enterprise systems is not

approached with tools that operate at the appropriate level of granularity.

1.1.2 Performance Challenges

This thesis proposes a framework for performance management of large-

scale distributed enterprise applications. Such applications have

comprehensive performance, reliability and scalability requirements. Since

businesses depend on them, they must typically operate continuously and

flawlessly 99.999% of the time (also known as the 5 9's availability). In

addition, they must handle peak loads effectively, which can be orders of

magnitude higher than the average loads.

Due to the complexity of performance aspects in enterprise systems and the

failure to use appropriate monitoring and testing tools, most enterprises will

use at least 25% more time than needed in troubleshooting applications

before 2005, according to a Gartner study [35]. The same study indicates

that 20% of enterprise mission-critical applications will experience severe

performance problems that could have been avoided by appropriate

modelling and monitoring practices.

A Standish survey [80] indicates that when developing complex enterprise

distributed systems without using advance middleware such as J2EE, only

16% of the projects are finished on time, while 33% are abandoned. The

study also indicates that 53% of such projects exceed their budgets by an

average of 90%.

J2EE has proven to be one of the best solutions to developing and deploying

such systems, holding a growing and decisive market lead [54]. It allows for

faster and more reliable application development by ensuring that the

3

developers do not spend time on system infrastructure development and

can concentrate on application logic where they have the domain

knowledge. From a performance perspective, there are several points of

interest in such applications:

Poor understanding: component-based development facilitates reuse

and outsourcing, as well as designing for change in future application

versions [97]. Enterprise applications can become composites of

different in-house component versions, third-party components and

legacy systems. In addition, the inherent complexity of the business

logic in such systems is typically rather significant. Development

teams change or are reassigned often and it is usually difficult in such

circumstances to keep track and fully understand the functionality of

the resulting system from a performance perspective. However, since

performance is usually dependent on the design of the application

rather than its code (e.g. intercommunication patterns between

components) [17], it is crucial that a consistent design view of the

application is maintained.

Runtime Infrastructure: Component platforms such as J2EE

implementations provide comprehensive functionality, which often

exceeds the complexity of the enterprise application logic that uses

them. They implement enterprise system services such as threading,

pooling, caching, persistence, transactionality, access to resources,

and security. The mapping of development concepts such as

components and high-level communication patterns such as "local

calls" to their actual infrastructure realisation raises multiple

problems. It is therefore difficult to understand the performance

implications of different design decisions and developers typically rely

on experience, anecdotic evidence and server-specific tips in order to

generate the most appropriate designs.

Platform Variation: Component technologies such as J2EE or CCM do

not mandate particular implementation techniques or rules. As long

as the functional specifications are met, vendors are free to choose

any implementations and provide any optimisations they see fit. Most

commercial vendors use their operating system and middleware

expertise to optimise the performance of their J2EE server product.

4

Some vendors have particular expertise in developing fault-tolerant

solutions, others may provide better object to database mapping for

container-managed persistence. The result is that there could be

major differences between different server implementations in terms

of their performance footprint in realising different parts of the J2EE

Specification. Particular application design options that are optimal

for one application server might prove less than optimal when the

application is deployed on another application server. For instance,

using particular combinations of session and entity beans in parts of

an application may affect the overall performance differently when

the application is deployed on different application servers [15].

5

1.2 Contributions

This dissertation proposes a solution for performance management of large-

scale enterprise systems built on component based platforms.

The solution called COMPAS is a framework that uses a component-centric

approach to match the development concepts used by developers of such

systems. The purpose of the framework is to enable rapid problem

diagnosis and isolation by presenting performance data to developers at the

appropriate conceptual level. The three main contributions of the thesis are

related to different aspects of the COMPAS framework.

The first main contribution is a distributed monitoring infrastructure that

leverages metadata in component platforms to inject instrumentation code

into applications built on such platforms. Built for J2EE, the monitoring

infrastructure uses a non-intrusive approach to instrumentation that does

not require changes to application code or runtime infrastructure and is

completely portable across J2EE application servers and operating systems.

The COMPAS Monitoring Platform is architected for extensibility and

provides extension points for vertical and horizontal integration of third-

party plug-ins. A related contribution is an instrumentation procedure for

J2EE systems based on dynamic bytecode manipulation. This can replace or

enhance the default non-intrusive instrumentation approach.

The second main contribution of the thesis is an adaptive approach to

monitoring component platforms that leverages model information

extracted from the target applications to automatically adjust the target

coverage and therefore maintain an optimum overhead. The presented

adaptation algorithms facilitate the diagnosis of the performance hotspots

by automatically narrowing the instrumentation on the appropriate

components.

The third contribution is a proposed performance management methodology

that comprises monitoring, modelling and prediction as interrelated

modules. Using information extracted from the instrumented application,

execution and performance models are created and used to facilitate

performance prediction. The system performance is predicted and

6

performance-related issues are identified in different scenarios by

generating workloads and simulating the performance models.

Other contributions are a non-intrusive approach to extract execution

models from component-based systems and a flexible framework for

behavioural and performance testing of the monitoring infrastructure. In

addition, this framework can be used to test middleware implementations

by providing a means to inject faults in component-applications accurately.

COMPAS can be used as a foundation for elaborate performance

management solutions, as it is completely portable and extendable. It

provides the necessary infrastructure to extract and process complex

performance information non-intrusively from target applications without

affecting the operational performance significantly in production

environments.

A completely functional prototype for the adaptive monitoring infrastructure

has been implemented. It is proposed to release COMPAS as open-source to

facilitate its adoption and extension by the academic and practitioner

communities. It has been tested on the leading J2EE application servers and

operating systems.

7

1.3 Thesis Overview

Chapter 2 presents an introduction to J2EE and related work in the area of

software performance engineering. General approaches to performance

management are presented and analysed. Generic monitoring techniques

and tools as well as adaptive monitoring approaches are presented and their

applicability and disadvantages identified.

Chapter 3 presents an overview of a proposed performance management

methodology comprising monitoring, modelling and performance prediction.

The monitoring module is placed in the context of a complete framework

that targets continuous application performance improvement.

Chapters 4, 5 and 6 describe the main contributions of the thesis. Chapter 4

presents the COMPAS monitoring infrastructure for component-based

applications. The framework's architecture and its capability to be extended

and integrated in third-party systems are illustrated.

Chapter 5 describes the non-intrusive and portable instrumentation process.

In addition, alternative instrumentation methods that can be used by

COMPAS are presented.

Another major contribution is described in Chapter 6 where two approaches

to adaptive monitoring and diagnosis are presented. Both approaches,

aimed at reducing the monitoring overhead, depend on the availability of

execution models of the target applications. A tool that can extract such

models is proposed.

The framework prototype and experimental results are presented in Chapter

7. The functionality of the prototype is illustrated by presenting a functional

use case and the performance impact of the prototype is measured in

different scenarios. The testbed application used to extract the results is

described as well.

Chapter 8 concludes the thesis by reviewing the contributions, the

limitations of the thesis, and presenting possible avenues for further

exploration. Related work introduced in Chapter 2 is reviewed and

compared to COMPAS. In addition, this chapter contains a feature

comparison between commercial J2EE performance management tools and

COMPAS, highlighting the main differences and similarities.

Chapter 2 Related Work

J2EE Overview

COMPAS Monitoring and Related Monitoring Approaches

COMPAS Adaptation and Diagnostics and Related Adaptive

Approaches

General Approaches in Performance Modelling and Prediction

9

2.1 Introduction to J2EE

Java 2 Enterprise Edition [85] is Sun Microsystems' architecture for large-

scale multi-tier applications. It comprises a set of documents containing

coordinated specifications and practices for development, deployment and

management of component-oriented applications.

J2EE specifies four types of components that can be used in enterprise

applications. Each type of component has an associated container, which is

responsible for providing the required runtime context, resource access and

lifecycle management. The containers enable a separation of the business

logic and platform infrastructure by providing a coherent and federated view

of the underlying J2EE APIs [85]. J2EE components never call each other

directly; rather they use the container protocols, allowing the containers to

transparently provide required context services specified by the

components' deployment descriptors.

• Application Clients: Stand-alone Java programs that require access to

server-side components. They reside in an Application Client Container.

• Applets [86]: Java components that typically run in a web browser and

can provide a complex GUI front-end for server-side applications. They

reside in an Applet Container.

• Servlets [95] and JSPs [94]\ Dynamic web component used to

generate complex HTML presentation elements or XML data for inter­

business interactions. They usually connect to legacy systems or EJB

containers in order to fulfil their business logic. Servlets and JSPs

execute in a Web Container, usually included in a web server that

provides the required J2EE services such as security.

• Enterprise Java Beans [82]\ Server-side business components that

execute in a managed environment provided by the EJB Container.

They usually provide the business logic in a J2EE application and make

extensive use of container-provided services such as persistence,

transactionality and security.

J2EE infrastructure vendors must fully implement the J2EE specifications in

order to be certified as J2EE Compatible [83]. The products that implement

the J2EE specification are J2EE Application Servers. A large number of such

servers are available both as fully featured commercial enterprise products

10

and as free and flexible open-source implementations. In addition, the J2EE

Software Development kit (SDK) provides a fully featured and free J2EE

implementation.

The COMPAS Platform, proposed in this thesis, addresses performance

issues related to the EJB layer in J2EE applications. It can however be

extended to include JSPs and Servlets in the monitoring scope by adapting

the probe generation logic (see Section 5.1). The runtime monitoring

infrastructure need not be changed in order to support JSPs or Servlets.

The Enterprise JavaBeans architecture [82] is a component architecture for

the development of scalable, transactional and secure business applications.

Such applications can be developed once and then deployed on any EJB

compliant application server.

The low-level runtime support (distributed transactions management and

distributed object middleware) for EJB components (EJBs) are provided by

an EJB Server. High-level runtime management of EJB components is

provided by an EJB Container, typically running as part of an EJB Server.

The EJB Container is an abstract entity that provides a clear separation

between EJBs and the services implemented by the EJB Server through the

realisation of the standard EJB API [82], representing the EJB component

contract.

Commercial EJB Server implementations are usually part of fully featured

J2EE Application Servers but they can also be provided as stand-alone

products.

Figure 2-1 illustrates the containment relationships related to the EJB

runtime environment. EJB Components run in EJB Containers whose role is

to provide an abstraction of the underlying platform services, in the form of

the EJB APIs. The containers must fulfil the EJB component contracts by

implementing the required services and lifecycle management operations.

In addition, they must expose consistent client-views of the contained EJB

components. The EJB Server contains the basic middleware implementation

for providing the common low-level services such as distributed object

management, transaction management and distributed security policy

enforcement. The J2EE Application Server implements the common J2EE

Services and provides enterprise-level management operations. It typically

11

uses an administrative domain which can span multiple machines and

provides consistent management, load-balancing and fault-tolerance

features.

J2EE Client / J2EE
Component

Figure 2-1. EJB Containment Hierarchy

The EJB Specification does not describe the interfaces between the EJB

Container, the EJB Server and the J2EE Server. Consequently, the mapping

of the functionalities presented above to the runtime entities may differ

among commercial implementations. For instance, a vendor may decide to

implement load balancing at the EJB Server level, while another vendor may

implement this functionality at the J2EE Application Server level.

Low-level middleware services

object distribution, transaction
management, security

EJB Container

EJB APIs Implementation

component
contract

Figure 2-2 describes the main constituents of an EJB component as well as

the steps required to fulfil a client request. The client can be any of the J2EE

component types, or indeed any standalone application.

The bean provider (developer) must package the following constructs into

the ejb-jar application archive [82] (a .jar file):

• EJB bean class'. This Java class contains the business logic of the

component. It must follow the EJB specification constraints [82] but

may use any number of additional classes to fulfil its logic.

• EJB Component Interface-. This Java interface must contain all the

methods that are to be exposed to the bean clients. This is necessary

so that the container can generate the E j B O b j e c t artefact.

• EJB Home: This Java interface contains the declarations of methods

that can be used to create instances of the bean. They are of the form

create<METHOD> (...) and f ind<METHOD> depending on the bean type.

Clients choose one of the home methods to obtain an EJB instance that

corresponds to their needs.

• XML Deployment Descriptor, the contract between the bean provider

and the container, this document describes the structure of the bean as

well as the required services (such as security or persistence). In

addition, this document can contain parameters that can be customised

at deployment time to suit individual application needs. For instance,

the number of rows to be returned from a database can be

parameterised.

13

J2EE Client /

J2EE
Component

1 1 1
EJB Contract Description

(Metadata)

Figure 2-2. EJB Structure and Invocation Path

The container has the responsibility of using the bean provider's artefacts

(interfaces and deployment descriptors) and providing the appropriate

implementations at runtime. The reason for having a separation between

bean provider artefacts and container artefacts is that this allows the bean

provider to lack expertise in system-level services. The bean provider

specifies the required services in the deployment descriptor and provides

the "skeleton" of the component as it should be exposed to the outside

clients. The container generates the artefacts that enforce this view, thus

realising the component contract. The container artefacts essentially wrap

the bean implementation and add layers of service enforcement and

lifecycle management to the business logic provide by the bean's

developers.

The container must provide an implementation of the EJB Home interface in

the form of a bean factory object that uses the specified construction

methods. This implementation, bound to the component name is available

at runtime in the system's naming directory accessed through the Java

14

Naming and Directory Interface (JNDI) [92]. In addition, it must implement

the EJB Component Interface and provide an E J B O b j e c t class that clients

will access when they require services from the bean implementation. This

"proxy" [34][82] approach enables the container to intercept the client calls

and execute the necessary management and service code.

In Figure 2-2, the bean client is requesting a service from the depicted EJB

in the following steps:

1) It first obtains a reference to the E JB H om e implementation that the container

has generated. The reference is looked up in the system-naming directory via

JNDI. On the obtained factory (the E JB H om e implementation) object, the client

will call the required construction method.

2) The E JB H om e implementation instructs the container to create a new instance or

retrieve an existing instance of the component, and returns it to the client. The

actual Java object returned is an instance of the container-generated

E J B O b j e c t class that corresponds to the bean's component interface.

3) The client invokes the business method on the container object, transparently,

through the component interface. The container object performs the required

services and calls the corresponding business method on the bean's

implementation object, instance of the bean provider's bean class.

Session and entity EJBs can expose local or remote views to their clients.

Clients of EJBs can be other EJBs or arbitrary Java objects such as applets

or servlets or standalone applications.

A remote view can be used by any local or remote client to access an EJB.

The exposed object must comply with the Java Remote Method Invocation

(RMI) specification [93]. Remote operations incur the overhead of

serialising and de-serialising arguments.

A local view is non-remotable and can only be used by clients residing the

same JVM as the bean. This view is used when it is known that all clients of

an EJB are always running in the same JVM, typically other beans deployed

in the same container. Since this view is non-remotable, it allows faster

access by avoiding serialisation operations.

Figure 2-3 illustrates different scenarios in which EJBs can call each other.

15

._____

EJB Instance
EJB Instance

EJB Instance

m*A* p l a si ifcl

EJB Instance

Figure 2-3. Different EJB to EJB Invocation Options

An EJB Server Instance is a machine-bound entity and manages the

realisation of low-level services on that machine's platform. An enterprise-

scale system typically uses several federated EJB Server instances

aggregated into one or more administrative domain.

An EJB Container Instance typically corresponds to a JVM instance on the

EJB Server Instance. Some EJB Servers create one JVM per container,

others run several containers in the same JVM and others use a combination

of both. EJBs calling each other in the same JVM may use either a local or a

remote view. EJBs calling each other between JVMs must use remote views.

The EJB specification describes three types of EJB components [82]:

• Session beans: Short-lived business components that execute on

behalf of individual clients. They typically execute business operations

and can access and update the enterprise database but do not

correspond to shared business data. They can take part in transactions.

Session beans do not survive a server crash and their clients must re­

16

establish a new connection under such circumstances. There are two

types of session beans:

o Stateless session bean\ does not preserve conversational state;

can be shared between clients. Subsequent calls from a client to

a bean may be handled by different instances. A typical

example is a stock component that retrieves the current stock

value for a given index,

o Stateful session bean-, has conversational state on behalf of its

client; cannot be shared between clients. All calls from a client

to a stateful session bean are handled by the same instance. A

typical example is a shopping cart containing items to be

purchased from an online store.

• Entity beans'. Long-lived business components that provide an object

view of data in the enterprise database. They can be shared by multiple

users and survive server crashes.

• Message-driven beans'. Short-lived components, invoked

asynchronously, that execute upon reception of a single client

message. They can access and update data in the enterprise database

but are not persisted and do not survive a server crash. They can take

part in transactions.

The COMPAS Platform presented in this thesis, targets Session and Entity

beans only. Such beans use a synchronous invocation style and have non-

ambiguous call-semantics, facilitating the determination of each bean's

position in the appropriate interaction contexts. In contrast, the call

semantics of the message-driven beans is significantly weaker because the

invocation model is based on messages sent to messaging queues and

topics, rather than directly to the beans.

17

2.2 Performance of Software Systems

The field of software performance modelling and prediction is vast. A

comprehensive survey of modelling approaches for performance prediction

is presented in [9]. Important contributions have been presented in

[110][75][76] reporting significant results in the improvement of the

software development process, specifically the use of Software Performance

Engineering methods aided by related tools such as SPE-ED [75] . The

techniques and the supporting tools require developers to create software

and/or system models of the application under development. These models

must have performance parameters such as I/O utilisation, CPU cycles or

network characteristics, specified by the developers in order for the

performance predictions to generate meaningful results. It has been proved

that such techniques and tools like SPE-ED help in achieving performance

goals and reducing performance related risks for general object-oriented

systems and even for distributed systems [75]. However, middleware such

as EJB and other component-oriented platforms, exhibit an inherent

complexity, which developers find hard if not impossible to quantify even in

simple models. Automated services such as caching, pooling, replication,

clustering, persistence or Java Virtual Machine optimisations, provided by

EJB application servers, for example, contribute to an improved and at the

same time highly unpredictable run-time environment. Furthermore,

application server implementation can vary greatly from vendor to vendor in

respect to these services. Similarly, in CORBA (or CCM) based systems the

search for performance improvements of the underlying framework under

variable workloads leads to increased complexity [1]. It is therefore

impossible for developers building such applications to create performance

models where they specify the mapping of methods to processes or

instances to processors, I/O characteristics or CPU utilisation.

An approach to modelling systems in UML is presented in [43]. OAT is a tool

that implements a framework for performance modelling of distributed

systems using UML. It consists of a method for decomposition of models

and performance modelling techniques. UML models, created at different

development stages can be mapped to queuing networks and solved to

predict application performance. System developers must create the models

18

and augment them with performance annotations leading to a similar

disadvantage with that of the SPE-ED [75] approach. In addition, it is not

clear how this approach can be used for large systems, as it does not

address issues such as model management.

Predicting the performance of middleware-based systems has been

approached in the past. Among the most common techniques are Petri-Nets

[24] and Layered Queuing Network [110][51][63][62] models. It is

envisaged that models created automatically by monitoring the system with

COMPAS can be simulated and predictions derived for different workloads

using queuing networks or Markov chains [24] techniques.

A case study for performance prediction of J2EE systems is presented in

[46]. The authors study various prediction techniques and report successful

application of queuing networks to predict the performance of a realistic

J2EE application. They focus however on the aggregate behaviour of the

system and model the deployment configuration including the application

server cluster, the network topology and the database server. The authors

do not focus on modelling application-level components such as EJBs. Using

a non-product-form queuing network of the system, and different workload

intensities, the authors successfully predict response time, throughput and

CPU utilisation for the J2EE system.

19

2.3 Generic Monitoring Approaches

There is a significant amount of research and work in monitoring CORBA

systems; however, there are no existing generic component-based (in the

acceptance of the component term as defined in [97]) monitoring

frameworks that can provide design level performance information (i.e.

component method and component lifecycle performance data).

OrWell [109] is a monitoring environment for CORBA distributed

applications. It uses an event class hierarchy to notify a number of

observers about the interactions in a system. It provides detailed analysis of

the monitored system; however, the authors do not present how the event

distribution units (EDP) are dynamically attached to the existing objects. It

is also not specified whether the monitoring environment is portable across

different operating systems or not. The main similarity with this thesis is in

the instrumentation concepts of using one additional component (in case of

COMPAS, the probe) for each monitored object in order to obtain dynamic

run-time information.

Wabash [78][79] is a tool for testing, monitoring and control of CORBA

distributed systems. It uses CORBA interceptors to capture run-time

information and therefore is similar to the preferred approach in this thesis,

in that it is non-intrusive. However, Wabash uses geographical information

to group monitoring components, which is not applicable in EJB

environments where the application server controls the distribution of

components.

JEWEL [48] is another monitoring environment for distributed applications.

Because it uses a hybrid sensor-based approach to monitoring that requires

dedicated external monitoring entities as well as internal hooks, it is more

likely to be used in LANs where additional monitoring resources are

available. In order to avoid system's sensors affecting the original system's

behaviour, it requires a separate physical LAN. The main advantages of this

system is that a large amount of data is filtered and analysed, however the

analysis and results are presented at the communication protocol level and

provide information such as mean bytes per packet or protocol usage, which

do not give an object-oriented view of the system.

20

In [69] and [68], the authors propose Remote Reflection as a technique for

general-purpose monitoring, debugging and visualisation of distributed Java

applications. Using Remote Reflection, distributed systems could be

inspected and acted upon from a central location, enabling a management

model for enterprise applications. The focus of reflective techniques is to

enable applications to discover facts about their structure at runtime and

potentially make changes that can dynamically alter their behaviour.

In [20] the authors present a generic conformance-testing framework for

distributed systems. The framework uses instrumentation probes that can

be instantiated and activated by remote controllers, and a distributed event

publication and transport system that enables listeners to register interest

in receiving certain types of monitoring events from the probes. In addition,

a testing language is used to create online test cases that drive the activity

of the probes.

Aspect-oriented programming (AOP) techniques [8] can provide an

alternative means of inserting instrumentation functionality in target

application components. Pointcuts [45] can be defined before and after

important method calls such as component business methods or container

lifecycle callbacks. The main disadvantages of AOP are the requirement for

a special compiler and the increased runtime footprint due to the use of

separate aspect-related objects.

JBoss interceptors [41] provide an efficient means of inserting call-related

and lifecycle-related functionality for J2EE applications running in the JBoss

application server. Since custom interceptors can be created and placed

automatically in call-paths, they can be considered a suitable alternative for

the insertion of monitoring functionality. The main advantage of using this

approach is that a clear separation between instrumentation logic and

application logic, and the capability to inject instrumentation code

dynamically in applications at runtime. The major disadvantage of the

interceptor approach is the dependence on the JBoss runtime environment,

making it impossible to build a portable J2EE instrumentation solution,

which is one of the goals of the COMPAS framework.

A number of application servers provide a limited degree of monitoring but

most of them do so at a network/protocol level, giving little help to 00

21

developers who want to understand which component/method is having the

scalability problem.

Commercial J2EE profiling tools such as Veritas' Indepth [104], Wily

Technologies' Introscope [111], Quest Software's PerformaSure [66],

Borland's Optimizeit Enteprise Suite [12], Mercury Interactive's Monitoring

and Diagnosis for J2EE [53] or Cyanea/ONE [19] provide performance

information about the instrumented applications at different abstraction

levels including component-level and object-level. They all offer the

capability to see different levels of performance metrics about the target

system and extract useful statistics. One of the main issues with such tools

is that they typically require the users to start the server in a special

monitoring mode which results in parts of the application server being

monitored at all times without the possibility of easily removing the

monitoring code from the target. This translates into a constant overhead

imposed on the running applications, which can only be completely removed

by restarting the server in standard mode. Another major disadvantage is

that they are targeted at specific application servers, on specific platform,

offering reduced flexibility in choosing the development environment.

Pure JVM profiling tools such as Optimizeit [12], JProbe [65] or JProfiler

[30] can be used for J2EE instrumentation as well. When J2EE applications

are typically instrumented at the JVM level, large amounts of data are

collected and presented to the developer; however, the intended

component-level semantics of the application is lost in the details. The

conceptual hierarchy enabled by using a component platform is flattened

and developers are presented with large sets of method calls, representing

a mix of internal EJB container functionality, business application code and

Java core functionality.

In a different category are EJB testing tools [31],[74] that perform stress

testing on EJB components and provide information on their behaviour.

Such tools automatically create test clients for each EJB and run scripts with

different numbers of simultaneous such clients to see how the EJBs

perform. The main disadvantage of such a solution is the fact that it does

not gather information from a real-life system but from separated

components. Without monitoring the actual deployed system, it is difficult to

obtain an accurate performance model for the entire system.

22

An interesting initiative in obtaining standardised performance data for EJB

systems is the ECPerf [81] process. It defines a standard workload and

standard business applications that are generated during the testing

process in order to determine the performance of application servers.

Metrics like transaction throughput and response time are derived from the

testing process and the results can be used by vendors to showcase their

application server products. Although this approach does not involve

monitoring of an arbitrary application, it is relevant to the research of this

thesis because it defines workload and metrics of interest to performance

management of EJB systems.

23

2.4 Adaptive Monitoring Approaches

COMPAS aligns with the IBM autonomic computing initiative [44], which

represents a major direction of research aimed at managing complex

systems. The initiative outlines the need for independent and adaptive

monitoring solutions that can instrument complex long-running applications.

COMPAS is such a solution due to its adaptive capabilities. Having a minimal

overhead when the system is performing well and a low overhead when

performance problems are detected, positions COMPAS as a good candidate

for monitoring long-running systems.

Another goal of the initiative is to promote self-adaptive systems, which can

optimize their run-time footprint based on the existing environmental

conditions.

A discussion about using agents for monitoring distributed systems is

presented in [36]. The authors argue that the increasing complexity of

distributed applications account for major difficulties in obtaining meaningful

performance information; in addition the monitoring infrastructure must

adapt to the application's environment in order to minimise the runtime

performance footprint. Typical issues occurring in large distributed

applications and mentioned in [36] such as non-determinism and the lack of

a global clock.

In [98], the authors focus on an adaptive monitoring infrastructure (JAMM)

in a grid-computing environment. Using an RMI infrastructure, monitoring

programs such as netstat, iostat and vmstat are executed in order to obtain

vital statistics for the running nodes in the cluster. Monitoring is started

after detection of activity on some ports, by a port monitoring agent. There

is no concept of software components or objects in JAMM, therefore no

monitoring at method level or component level, as it is performed in

COMPAS. JAMM measures CPU, network usage and memory, and can also

be customized for some UNIX specific call-backs or events. Monitoring data

is archived and can be used by third-party performance prediction systems

that are not covered by the paper.

An interesting approach for lightweight monitoring of deployed systems is

software tomography [14] which uses subtask probes optimally assigned to

24

program instances in order to minimise the total overhead of monitoring.

The information obtained from the subtask probes is eventually aggregated

into overall monitoring information. The research presented in the thesis is

partially similar in intent to software tomography in that the reduction of

total overhead is realised by partial monitoring with optimally placed

probes.

An interesting application of agent-based monitoring concepts is presented

in [108]. The authors have implemented a lightweight agent-based financial

monitoring system that monitors and reports on transactions within an

organisation, focusing on banking and trading operations. The main purpose

of the monitoring system is the detection of fraud issues or trading

problems. One of the similarities with COMPAS is the use of knowledge

about the transactions in order to focus the monitoring efforts of the

agents. Another one is the collaboration between the agents in order to

infer monitoring results and generating alerts when needed.

25

Chapter 3 A Framework for

Performance Management of

Enterprise Software Applications

COMPAS proposes three interrelated modules: monitoring, modelling

and performance prediction

Strong connection between modules ensures consistency and data

accuracy

Reduces the need for assumptions in performance prediction: real

data obtained from monitoring is used

Modelling enhances the understanding of the target system

Monitoring uses modelling to reduce overhead

26

3.1 COMPAS Overview

This thesis describes the COMPAS infrastructure that could be used to

detect and understand performance problems in distributed component-

oriented applications based on technologies such as Enterprise Java Beans.

COMPAS provides basic performance management functionality and can be

specialised to produce arbitrary-complexity custom performance

management applications. COMPAS therefore satisfies the conditions of a

framework as presented in defining literature[42][73]. It provides black-

box type extensibility by enforcing communication and architectural

protocols for custom functionality. Although in the framework literature, the

points of extensibility are called "hot-spots" [73], this thesis uses the term

COMPAS Framework Extension Points (FEPs). This is necessary in order to

avoid terminology overload due to the use of the term "performance

hotspot" in the context of performance degradations.

Chapter 3 places the main contributions of the thesis into the wider context

of performance management and proposes a complete framework for

monitoring, modelling and prediction of component based applications.

The COMPAS Framework can potentially be used to correct performance

problems, by providing means for comparison between different possible

design solutions. The following issues are considered:

• Performance can be critical for large-scale component oriented

applications.

• A poor architecture, a bad choice of COTS components or a

combination of both can prevent the application from achieving the

performance goals.

• Performance problems are more often caused by bad design rather

than bad implementation.

• Often, performance is "a function of the frequency and nature of inter­

component communication, in addition to the performance

characteristics of the components themselves" [17].

• Fixing performance problems late in the development process is

expensive.

27

To address these issues, this thesis proposes a possible framework-

architecture, structured into three main functional parts or modules that are

interrelated:

• Monitoring: obtains real-time performance information from a running

application without interfering with the application code or the

application run-time infrastructure (i.e. the application server

implementation). In addition, in order to minimise the overhead

incurred on the target system, the monitoring probes can adaptively be

activated and deactivated.

• Modelling: generates UML models of the target application using

information from the monitoring module. The models are augmented

with performance indicators and can be presented at different

abstraction levels to improve the understanding of the application from

a performance perspective.

• Performance Prediction: the generated models of the application are

simulated with different workloads (e.g. corresponding to different

business scenarios); simulation results can be used to identify design

problems or poor performing COTS components.

The monitoring and modelling modules are covered by the thesis, while the

prediction module is presented as a possible component of the COMPAS

framework. The proposed functionality of the prediction module can be

achieved using the extensibility capabilities of the framework

There is a logical feedback loop connecting the monitoring and modelling

modules. It refines the monitoring process by continuously and

automatically focusing the instrumentation on those parts of the system

where the performance problems originate.

The intent of the presented framework is not to suggest a development

process that prevents the occurrence of performance issues in the design,

but rather to enable early discovery of such issues and suggest corrections.

Because model generation in the presented framework is dependent on

monitoring information extracted from a running application, the approach

presented in this thesis integrates well within development environments

that adhere to iterative development processes such as Rational Unified

Process [47] or Extreme Programming [11]. Such processes demand that a

28

running version of the application exists at the end of every iteration,

making monitoring possible.

Models are represented in UML, with which many enterprise-scale

application developers are familiar. The use of Model Driven Architecture

(MDA) [58] and Enterprise Distributed Object Computing (EDOC) [59]

concepts facilitates navigation between different layers of abstraction. The

top-level models are represented using a technology independent profile,

the Enterprise Collaboration Architecture (ECA) from EDOC, in order to

benefit from a standardized form of representation for business modelling

concepts. Lower level models are represented using UML specialized profiles

such as the UML Profile for EJB [59] which provide means to illustrate

technology specific details. Regardless of the level of abstraction, each

model is augmented with performance information extracted by the

monitoring module and presented using the UML Profile for Schedulability,

Performance, and Time Specification [60].

The Performance Prediction Module uses executable versions of the

generated modules and simulates them with different workloads as inputs,

displaying performance information in the same manner as in the modelling

phase.

It is envisaged that both in the modelling phase as well as in the prediction

phase, developers will navigate through the generated models in a top-

down manner. If a performance alert is attached to a design element

(during modelling or simulation), that element can be "zoomed into" and a

lower-level, more detailed model that includes that element is then

inspected. This approach is highly intuitive, primarily because it is

conceptually integrated with a typical design process in which high-level

abstractions are found first, and then later refined into more-detailed

abstractions, in an iterative manner.

A high-level overview of the entire framework is depicted in Figure 3-1.

29

M O H J T Q 3 1 N.S

T hs i'> the application server ihat

«wTOOdMfiSUK> original components

(EJBiJ together with the proxy

required for mom ton ng

^ Moniton no Subsystem

P E B P O B M A N C E PR E D IC T IO N

« m o d e l»

PIW/PSM

i v i

« m o d e l»
Runnable Scenario

«D atabase»
Simulation Result

"v> % analyses

gets wortdoad i displays results

M

±3 S s â s ô ite v w

ï
i
i
i

w ra c s k ¡
Wwrm&oo
such as class
rtflm*s;slatrc
relationships

{*8
vnhoflunc»)

d tá r& o x ra
ftóntto
application
components
(archives)

M O D E L L IN G

listener

M M data

corrente!» «m o d e l»
PIM/PSM Scenario

I IM.GJ

Figure 3-1. CO M PA S Overview

The monitoring block in the diagram presents the data extraction

functionality and contains the monitoring infrastructure (Chapter 4)

deployed in a target system. Run-time data obtained from the application is

analysed by the modelling module, which employs a model generator

(Section 6.3) in order to extract the execution models from the running

system. The execution models can be presented visually using MDA

concepts (Section 3.3.1) and analysed with the purpose of driving the

adaptation process of the monitoring infrastructure (Section 6.2). The

automation broker is the entity responsible for using model data to adapt

the monitoring process. Presentation of models can benefit from statically

acquired data by enhancing the model elements with component metadata

and application resource usage. The performance prediction block illustrates

proposed functionality in the context of the performance management

framework. A model-migration element is responsible for using the models

generated by the modelling module and transforming them to performance

models required in the performance prediction phase. The performance

models can then be simulated leading to simulation results that can be

presented similarly to the execution models (using UML and MDA).

30

3.2 Monitoring Overview

The proposed monitoring infrastructure (COMPAS Monitoring) leverages the

underlying properties of component-based platforms in order to enable non-

intrusive instrumentation of enterprise applications. Using model-based

adaptive activation of the monitoring probes, the overhead incurred on the

target application is minimal. In addition, the mechanism for the generation

of the monitoring alerts automatically eliminates most of the false alerts,

thus contributing to the overhead reduction. As the infrastructure is

designed to be used as a foundation for performance management tools, its

design is extensible and based on decoupled communication mechanisms.

The most important functional entity of the monitoring infrastructure is the

monitoring probe. The probe is conceptually a proxy element with a 1 to 1

relationship with its target component. In J2EE, target components are the

EJBs deployed in a target application.

It is implemented as a proxy layer surrounding the target component with

the purpose of intercepting all method invocations and lifecycle events. The

process of augmenting a target component with the proxy layer is referred

to as probe insertion.

Non-Intrusive and Portable

COMPAS uses component meta-data to derive the internal structure of the

target entities. For J2EE, the component meta-data is placed in deployment

descriptors that contain structural as well as behavioural information about

the encompassing EJBs. By leveraging this data, it is possible to obtain the

internal class-structure of each component, which is needed for the

generation of the proxy layer.

As all the information needed for probe insertion is obtained from the meta­

data, there is no need for source code or proprietary application server

hooks. Therefore, the effect on the target environment is minimal and user

intervention in the probe insertion process not required.

COMPAS is in this respect non-intrusive, as it does not require changes to

the application code or to the runtime environment.

31

A desirable effect of the probe insertion approach is that the process is

completely portable across all platform implementations. Considering J2EE

as the target platform, any J2EE application running on any J2EE application

server can be instrumented.

Adaptive and Low-Overhead

Two main techniques are used to minimise the overhead of the monitoring

infrastructure, asynchronous communication and adaptive activation. The

former is employed in the entire infrastructure by the use of an event-based

architecture with robust message handling entities that prevent the

occurrence of locks in the target application. The latter technique uses

execution models captured from the target application to drive the

activation and deactivation of the monitoring probes. By appropriately

minimising the number of active probes, the total overhead is reduced while

preserving complete target coverage.

Extensible

COMPAS Monitoring contains an instrumentation core and a set of

extensions for coordinating and handling the instrumentation events. The

extensions are built upon the pluggable architecture of the instrumentation

core by leveraging the COMPAS Framework Extension Points based on

loosely coupled asynchronous communication.

Possible extensions include adding support for low-level instrumentation

sources such as virtual machine profiling data, as well as high-level

functional extensions such as elaborate data processing capabilities for

performing complex analysis of the monitoring data. Decision policies for

improving the alert management and adaptive monitoring process can be

implemented as extensions also.

32

3.3 Proposed Modelling and Prediction

Approach

The main goal of the complete COMPAS framework is to help developers of

large enterprise component-oriented applications find and predict

performance problems in their systems, using concepts and visual

representations that they easily understand.

Based on information extracted by the monitoring module, UML models are

generated which show where performance problems are located. By

simulating such models, predictions are made that help understand the

implications of changes in workload or changes in QoS characteristics for

particular components. Having such prediction data, developers can make

informed design decisions and choose the best COTS components to meet

the application needs. Models are also used to increase the efficiency of the

monitoring process by activating monitoring only for those components that

are responsible for performance problems, and deactivating the monitoring

of the other components. This activation/deactivation process is continuous

and it is envisaged that as models are being refined, the monitoring

overhead decreases.

The next two sub-sections briefly present the Model Driven Architecture and

the performance ontology that the framework uses. The remainder of the

section describes the modelling and prediction functionality of the

framework.

3.3.1 Model Driven Architecture (MDA)

The Model Driven Architecture [58] proposes a new approach to the

development and understanding of complex systems and promotes

portability across the main platforms that are currently in use now or will be

used in the future.

MDA introduces two important concepts, the Platform Independent Model

(PIM) and the Platform Specific Model (PSM). A PIM would generally be used

in the earlier stages of development and it consists of a detailed UML model

of the business logic without any technological details. For example, at the

beginning of a development process, developers would model business

33

entities such as <Account>, <Bank> and their behaviour which are all

completely platform independent there is no need for any platform specific

information, such as EJB Home Objects. Note however that a platform can

be anything from a hardware platform, to operating system to middleware

to another PIM. Therefore, the notion of platform and platform

independence are relative, which makes it possible to have an arbitrary

number of PIMs for the same problem space, each representing a different

level of abstraction. A PSM has platform specific information in the model,

such as EJB or CORBA stubs. Again, taking into consideration the relative

aspect of a platform, a PSM can be just a more detailed description of a

PIM, with more technical details.

A major advantage of using MDA is that models at different levels of

abstraction can be implemented for different platforms, that is, from a set

of PIMs, a large combination of PSMs could be realized, and the entire

application would preserve its integrity. For example, for a business

application, for the same set of PIMs (the suite of models that describe the

system at a platform independent level), different combinations of PSMs

could be derived for each PIM. An internal banking PIM could be realized by

using an EJB mapping [59] to generate EJB PSMs. The B2B PIMs could be

realized by using XML and SOAP PSMs. All these PSMs would interoperate

with each other as specified in the PIMs. If for some reason, there is a need

to generate the B2B PSMs in CORBA, that would not affect any other models

and the generated system would be cohesive.

MDA facilitates "zooming in" and "zooming out" at different

abstraction/realization levels. A PIM can be "zoomed into" to browse the

PSMs that realize it, or a PSM could be "zoomed out of" to inspect the upper

layer of abstraction. This facility is central to the presented performance

management framework because it enables navigation between different

refinement application layers when increased precision is needed for

pinpointing a performance issue presented at the top levels of the

application models hierarchy.

A simple illustration of MDA concepts is provided by Figure 3-2 which

illustrates a basic MDA refinement process. A Platform Independent Model

(PIM) of a component, in this case a s h o p p i n g c a r t component is refined

into a Platform Specific Model (PSM) of the same component, for the EJB

34

technology. The PIM representation contains only the "business logic" of the

component, while the PSM contains EJB-specific artefacts, corresponding to

the same component (the EJB interface, the EJB bean implementation and

the EJB Home interface). Navigation between PIMs and PSMs can prove

beneficial in particular for large models where the complexity of PSMs may

become difficult to manage in the absence of higher-level abstractions.

Figure 3-2. Mapping a simple PIM to an EJB PSM

3.3.2 Performance Modelling Ontology

The UML Profile for Schedulability, Performance, and Time Specification [60]

defines the ontology used for performance models in the presented

framework. Some of the main concepts in the ontology are:

Performance context: "specifies one or more scenarios that are used to

explore various dynamic situations involving a specific set of

resources."[60]

Scenario: "...a sequence of one or more scenario steps. The steps are

ordered and conform to a general precedence/successor relationship. Note

35

that, in the general case, a scenario may involve multiple threads due to

forking within the scenario."[60]

Step: "An increment in the execution of a particular scenario that may use

resources to perform its function. In general, a step takes finite time to

execute. It is related to other steps in predecessor/successor

relationships."[60]

Resource: "An abstraction view of passive or active resource, which

participates in one or more scenarios of the performance context."[60]

To simplify the presentation of performance models and increase visibility of

generated sequence diagrams, anonymous timing marks [60] are used,

which are effectively shorthand notations for time measurements.

3.3.3 Performance Management Functionality

This section describes potential performance management functionality that

can be achieved by using the COMPAS framework.

In the proposed functionality, performance models are generated at run­

time based on measurements taken by the monitoring module. Two major

sets of data are obtained during the monitoring process:

• Model generation data: component instances [97], [70] are monitored

for method invocations and lifecycle events. Time-stamps are used

together with component instance IDs, method names and method

execution times to order events and build statistical dynamic models of

the running application.

• Performance information: metrics such as response times and

throughput are determined for the runtime entities and are used to

augment the generated UML models.

When using model generation data to detect models in the monitored

application, techniques such as Markov chains, Petri Nets and queuing

networks can be used. Statistical results based on a significant number of

measurements are used to determine scenarios in the system, starting at

previously determined points of entry. For example, in an EJB system, such

a point of entry could be a web layer component such as a product selection

list in a retail application. Such a determined scenario could be one

36
I

corresponding to a "buying an item" use-case. Another could correspond to

a "write a product review" use-case.

Figure 3-3. Scenarios with probability and performance parameters

Models representing these scenarios would have performance related

information in addition to probabilities.

Figure 3-3 illustrates this example. The first scenario starts with step "1.

addltem" and the second scenario with step "2. addReview". Please note

that these scenarios do not illustrate a real design, but rather a very

simplistic imaginary example.

To reduce visual cluttering, there are only two annotations regarding

performance and probabilities in the example diagram, however it is

envisaged that a framework implementation will feature an efficient way of

dealing with such visual elements by selectively hiding or showing elements

depending on user preferences. Scenario 2 has a probability of occurrence

of 30% and a mean execution time of 200ms. One of the steps in scenario

2, step "2.1 updateMarketingDB" has an associated mean execution time of

180ms, representing 90% of the total scenario execution time. Even though

the example diagram is a UML collaboration diagrams, models can be

presented using sequence and activity diagrams as well. To improve

understanding of such diagrams, Object Constraint Language [71] (OCL)

notations may be used together with statistic data to explain the conditions,

37

in which a particular scenario occurs, not just the probability of occurrence.

For example it can be statistically determined that a scenario is followed

only when a parameter passed to the top-level scenario component, has a

particular value.

Models such as the one presented in Figure 3-3 are generated during the

monitoring process or by a later analysis of the monitoring logs. They are

augmented with performance attributes such as "mean response time".

Based on user-defined rules, performance alerts are issued by the modelling

environment, when certain conditions such as "too much growth in

execution time" or "scenario throughput > user defined value" are met. If

the user defines values such as expected mean and maximum values for a

particular scenario response time, the models will show alerts in those areas

exceeding these values. If the user does not specify such values, the

framework can still suggest possible performance problems when certain

conditions like "the response time increases dramatically when small

numbers of simultaneous scenario instances are executed" are encountered.

If a particular step in the affected scenario is mainly responsible for the

degradation of scenario performance parameters, that step is identified and

the alert narrowed down to it. Figure 3-4 and Figure 3-5 illustrate how a

performance problem can be narrowed down using the MDA approach. Both

diagrams are PIMs, however, developers could proceed to lower levels such

as EJB PSMs to identify technology specific events such as lifecycle events

that can cause performance degradation.

Figure 3-4. Top level PIM showing a performance alert

38

« P A s t e p » A L E R T
{scenProb=0.7,PAdem and
=(lm srl,lm ean,l(3 0 0 0 1lm s1))}

K « P A s t e p »
{PAdem and=('m sr,1'

m earT.^goo.'m s'))}

TH

1: a d d ite n r

Web Form

1.1.2: processD iscount
« P A s t e p »

{PAdem and=('m sr',
m ea n '.n o o /m s '))}

«PAstep» A L E R T
{PAdemand=('msr','mean',(2400,'ms'))}

1

« P A s t e p »
{PAdem and=('m
sr'/m ean'.^SOO,
'ms'))}

^1 1.1 checkAvailability

« D a ta b a s e » Warehouse
GenericDB 1.1.1.1: updateW arehouseDB-*3 -

Figure 3-5. Identifying performance degrading steps

When browsing the generated models using the MDA approach, the top-

level abstractions are usually represented by the first steps in particular

scenarios. A top-level model representing a scenario can represent just the

first step of the scenario with the performance attributes such as response

time or throughput associated (Figure 3-4). As developers navigate down

the system tree, more scenarios/steps are revealed (Figure 3-5).

A performance prediction module as envisaged in the context of the

COMPAS framework would involve simulating the generated models. The

users could specify workload characteristics [60] such as the number of

simultaneous users and their inter-arrival rate. Expected performance

attributes could also be specified. Workloads could then be used to simulate

the models. Users could easily change workload characteristics and re-run

the simulation. The same mechanisms for generating performance alerts

could be used in the simulation stage, as in the monitoring/modelling stage.

Developers could even modify the generated models and observe the

effects the changes have on the overall performance, by simulating the

altered models.

39

COMPAS does not propose the detailed design of such a solution, instead it

focuses on providing a monitoring infrastructure that can be leveraged by

performance prediction tools that can offer the functionality presented

above, such as EJB Express [49][56] (Section 7.2,5).

In both the monitoring/modelling stage and prediction stage, models could

be used to detect bad design practices. For example, an EJB PSM could

show a performance alert when an entity bean [70] finder method returns a

large result set. In such a situation, a pattern [34] such as Value List

Handler [18] could be suggested by the framework to alleviate the

performance problem.

40

Chapter 4 Monitoring Infrastructure

Non-intrusive monitoring, no changes required in the runtime

environment or the target application's code

Portable monitoring infrastructure: does not depend on the

middleware implementation

Probes act as component platform interceptors without requiring

access to platform implementation

Uses distributed monitoring probes attached to target components

Automatic infrastructure deployment based on component metadata

Extensible probe behaviour

Extensible architecture allowing third-party plug-ins to process

filtered information from probes

41

4.1 Introduction and Functional Goals

The COMPAS Monitoring Platform Is Intended as a foundation for building

enterprise-level performance management solutions for component-based

applications. Although it targets J2EE applications, the conceptual structure

applies to other component-based frameworks such as CCM [97][57] or

.NET [97] as well.

The following general goals of the monitoring infrastructure have been

phrased in J2EE terminology to leverage the presented technological

background.

4.1.1 Portability and Non-Intrusiveness

COMPAS was designed to provide a common monitoring platform across

different application server implementations. The existing tools (Section

8.4) use server-specific and JVM-specific hooks in order to obtain

performance measurements and management data from the target

applications. This constrains the users of such tools to using particular

execution platforms. In contrast, COMPAS aims to use a higher-level

approach to monitoring, by augmenting the deployed components with an

instrumentation layer. This approach does not require hooks or changes in

the application server, nor does it require changing the source code of the

target application. Figure 4-1 illustrates the different instrumentation

techniques. Two possible techniques involve either changing the source

code of the target application, or using container-specific hooks. COMPAS

however, uses a proxy layer that "wraps" the original component while

preserving the J2EE compatibility.

42

Figure 4-1. CO M PAS Non-lntrusive Approach

4.1.2 Low Overhead and Adaptive Monitoring

In order to achieve a low performance overhead when deployed in the

target system, most tools employ selective monitoring based on user

choices and can reduce the overhead by reducing the number of classes

that are instrumented. COMPAS aims to reduce overhead by automatically

adapting its target coverage while preserving complete hotspot detection

capabilities. Based on application interactions, COMPAS actively monitors

only top-level components without completely shutting down the data

43

gathering capabilities of the other components, which can still analyse their

performance and issue alerts when necessary. Monitoring Probes are

automatically switched into active or passive monitoring (Section 6.5) by

performing a diagnosis analysis each time an alert is generated. This

capability ensures that the system maintains an optimum overhead level,

without requiring user intervention. This aligns with the requirements for

autonomic management of long-running systems, as outlined in [44].

4.1.3 JMX Overview

The technology used by the monitoring module for managing the

instrumentation of EJB components is Java Management Extensions (JMX)

[33], which offers a lightweight, standardized way for managing Java

objects. The inclusion of JMX in the J2EE standard assures that any J2EE

compliant application server provides a JMX implementation.

The JMX architecture has three levels:

• Instrumentation level: provides instant manageability to a

manageable resource (any device, application or Java object) by using

a corresponding MBean. A managed bean, or MBean for short, is a Java

object that represents a JMX manageable resource. MBeans follow the

JavaBeans components model, thus providing a direct mapping

between JavaBeans components and manageability. Because MBeans

provide instrumentation of managed resources in a standardized way,

they can be plugged into any JMX agent.

• Agent level: provides management agents. JMX agents are containers

that provide core management services which can be dynamically

extended by adding JMX resources. A JMX Agent is composed of an

MBean server, a set of MBeans representing managed resources, and

at least one protocol adaptor or connector. Protocol adaptors create a

representation of the MBeans into another protocol, such as HTML or

SNMP. Connectors include a remote component that provides end-to-

end communications with the agent over a variety of protocols (for

example HTTP, HTTPS, HOP).

• Manager level: provides management components that can operate

as a manager or agent for distribution and consolidation of

management services. A JMX manager provides an interface for

management applications to interact with the agent, distribute or

consolidate management information, and provide security. JMX

managers can control any number of agents, thereby simplifying highly

distributed and complex management structures.

Figure 4-2 shows that the MBeans are managed by an application through

the MBean Server. In addition, they can be monitored by a special type of

MBeans, called a Monitor that can observe changes in the state of a

monitored MBean and notify the registered listeners. An MBean corresponds

to a managed resource and it can interact with that particular resource.

Figure 4-2. The Main Elements in JM X

4.1.4 COMPAS and J2EE Management Specification

Java Specification Request (JSR) 77 [84] defines a specification of a

common framework for management and monitoring services in the context

of Java 2 Enterprise Edition platforms. The J2EE Management Specification

[84] includes a management model that contains a set of manageable

entities in the J2EE context. In addition, it contains standard mappings of

the model to the Common Information Model (CIM) [25], to an SNMP

Management Information Base (MIB), and to a Java API through an EJB

component, the J2EE Management EJB (MEJB) component.

The JSR77 management model contains the set of attributes, operations

and architecture of managed objects that compliant platforms must provide.

It describes a hierarchy of manageable entities that matches the runtime

hierarchy in J2EE environments. It contains elements such as J2EE Server,

J2EE Application, EJB Module, EJB, Web Module, Servlet etc. In addition, it

contains elements corresponding to JVMs and resources such as JDBC, JNDI

or JMS connections. For each entity, there are attributes and operations

45

that can be used to obtain management and performance information. In

addition, naming guidelines for the manageable objects allow the creation of

JMX queries that can be used for navigating the management hierarchy. For

instance, the set of EJB modules contained in a deployed J2EE Application

s a m p ie J 2 E E A p p is obtained by retrieving the results of query

" * : j 2 e e T y p e = E J B M o d u l e , J 2 E E A p p l i c a t i o n = s a m p l e J 2 E E A p p , * " .

The specification includes a standard mapping to Java APIs by defining the

MEJB entity, which is an EJB component. This component provides an

abstraction layer over the JMX interface to the manageable entities,

allowing any J2EE component access to J2EE management and performance

information. Clients of the MEJB session EJB can invoke operations similar

to those of JMX server implementations [33][90] in order to access the

attributes and operations of the required manageable MBean objects.

The main similarity between COMPAS and JSR77 stems from the fact that

they both aim at providing a basic means for extracting management and

performance information from J2EE environments. COMPAS however is an

extendable platform whereas JSR77 defines a specification. The J2EE

Management Specification must be realised by the compliant J2EE Servers,

so for each product, a different implementation is provided. COMPAS is a

portable platform that can be deployed Into any J2EE environment. Both

COMPAS and JSR77 employ JMX as the underlying infrastructure for

exposing management data. In addition, they both use an abstraction layer

(monitoring dispatcher in COMPAS and the MEJB component in JSR77) that

facilitates access to information from an external client. COMPAS however

provides a more runtime performance-focused view of J2EE applications

than JSR77. The COMPAS monitoring probes instrument existing application

and continuously extract performance data from component instances. Such

a facility does not exist in JSR77, as it does not mandate instance-level

manageable entities; this constitutes a key difference between the two

approaches. In addition, JSR77 is oriented towards obtaining statistics over

long periods and not towards identifying performance hotspots. COMPAS

employs adaptive monitoring and diagnosis techniques in order to improve

detection of hotspots and reduce overhead. JSR77 does not specify any

such features being concerned primarily with providing a static

management layer that is occasionally queried by external clients. There is

46

no concept of dynamic interaction in JSR77, unlike in COMPAS. The

interaction recording capabilities used by COMPAS allow the association of

performance data to different use-case realisation interactions. In addition,

UML diagrams can be generated by COMPAS to illustrate these associations.

These capabilities are not within the JSR77 scope.

COMPAS can leverage some facilities offered by JSR77 implementations. For

instance, the probe insertion process (Section 5.1) can use application

discovery techniques facilitated by the JSR77 hierarchical view (Section

5.1.4).

It is envisaged that enterprise-level tools would use both JSR77 and

COMPAS in order to avail of the complete spectrum of performance and

management data. Detailed statistics about J2EE components and

resources, including database connections and JVM memory parameters,

could be obtained using JSR77 APIs. COMPAS could be used for runtime

monitoring and diagnosis capabilities as well as for extracting dynamic

performance models that accurately represent system interactions.

47

4.2 Architecture of COMPAS Monitoring

4.2.1 Overview of COMPAS Monitoring Architecture

The main subsystems of the COMPAS Monitoring Infrastructure are

presented in Figure 4-3.

«subsystem»
Probes

A \

!

‘s..

j1 V-..

Î
!

— 1

«subsystem»

1■
Installation

\

1

!
;
:r

i !

«subsystem»
Monitoring Clients

Figure 4-3. Main Monitoring Subsystems

The Installation Subsystem is responsible for generating and inserting the

proxy layer into target applications. It sits on the client-side.

The Probes Subsystem represents the server-side, distributed

instrumentation infrastructure of COMPAS Monitoring. It is responsible for

capturing and transmitting performance data from the target applications

and generating performance alerts.

The Monitoring Clients Subsystem represents the client-side, centralised

part of the COMPAS Monitoring infrastructure. It is responsible for collecting

and processing performance data from the probes.

The major modules of these subsystems are illustrated in Figure 4-4.

48

Figure 4-4. Major Monitoring Modules

The Monitoring Probes, Time Extraction and Anomaly Detection modules are

parts of the Probes subsystem in Figure 4-3. The Probe Insertion &

Installation and the Server Adapters modules are part of the Installation

Subsystem In Figure 4-3. The Server Adapters module Is also shared by the

Probes subsystem. The Dispatcher/Collector, Interaction Recorder and

Monitoring Consoles are part of the Monitoring Clients Subsystem in Figure

4-3. The Hotspot Detection module can be part of the Probes subsystem or

the Monitoring Clients subsystem, or, In complex cases that require server-

side and client-side processing, both.

The monitoring probes module is the Implementation of the proxy layer

Inserted Into target application components. It contains logic for extracting

timestamps and generating alerts upon detection of performance anomalies.

Both tlmestamp-extractlon and anomaly-detectlon modules are designed for

49

extensibility to allow third-party plug-ins be added for functionality that is

more complex.

Server adapters contain functionality for mapping JMX-level operations used

in COMPAS to different JMX implementations. One server adapter

corresponds to one applications server type. They are needed for two

reasons: firstly, the JMX standard still has inconsistencies and incomplete

specifications for remote management; and secondly to take advantage of

advanced features In particular application server implementations. For

instance, some commercial application servers provide optimisations for

some JMX operations, which COMPAS can use. Since the server adapters

can be added by third parties using a common mechanism, different optimal

server-specific Implementations can be used. As all JMX implementations

become fully compatible, the use of server adapters will be optional and

focused solely on taking advantage of particular server-optimisations.

The Dispatcher / Collector module is responsible for collecting all the event

notifications from the monitoring probes. After filtering and pre-processing

the notifications, the dispatcher emits events richer in semantics to any

monitoring client that has registered an Interest in monitoring events.

COMPAS provides two such listeners, the Interaction recorder and the

monitoring console. The Interaction recorder can capture and store

component interactions in the live target application, and store them on

physical storage. In addition, it can display UML sequence diagrams

representing the captured interactions. The monitoring console can display

real-time monitoring information received from the probes. Such

information includes component instance data, method invocation and alert

data, and real-time charts showing the evolution of response time for

particular component methods.

4.2.2 COMPAS Deployment

The COMPAS monitoring probes reside in their target component containers.

Several containers, residing In separate application server nodes, may be

remote in relation to each other, as illustrated In Figure 4-5.

50

COMPAS Console

Figure 4-5. CO M P A S Deployment

Typically, the application server nodes are connected via high-speed

networking, such as optical fibre. In some cases, they can also be located at

different physical sites. The deployment of COMPAS probes mirrors exactly

the target application deployment. The COMPAS clients typically reside on

separate machines, used for application monitoring and management. They

do not share the processing and memory resources with the application

server machines. This allows remote monitoring of target systems to which

they usually are connected via LANs. Multiple remote clients can receive

notifications and control monitoring probes.

4.2.3 COMPAS Instrumentation Layer: Probes

The COMPAS Instrumentation Layer consists of the entities responsible for

extracting and reporting performance and lifecycle data from the target

components.

For each Target Component X, the following COMPAS entities exist in the

running system:

51

Proxy Layer: The proxy layer for Component X Is generated automatically

by the Installation procedure (see Section 5.1). It consists of a lightweight

Implementation of the Component X Business Interface. This

implementation is responsible for obtaining time-stamps and sending

invocation and lifecycle events to the associated Probe Dispatcher.

Probe: An instance of the Proxy Layer represents a Probe. In a running

system, there is always one probe for each Component X instance. All

probes for Component X are associated with the same Probe Dispatcher

Instance and forward their collected measurements and lifecycle data to this

probe dispatcher instance.

Probe Dispatcher: The probe dispatcher is an entity responsible for

collecting, analysing and forwarding events received from all the probes

corresponding to Component X. For each Component X, there is always a

single probe dispatcher instance. The probe dispatcher maintains a history

of aggregated performance and lifecycle data, representing the activity of

its associated probes. In addition, the probe dispatcher is responsible for

using any of the available anomaly detection strategies in order to issue

performance alerts at appropriate times (Section 6.4).

In parts of the thesis, the term "probe" is used as a simplification for ''probe

and its associated dispatcher".

Figure 4-6 presents the overall architecture the COMPAS instrumentation

layer corresponding to a Target Component X. Two instances of X are

illustrated, Xj and Xk. Each of the Instances is surrounded by an instance of

the proxy layer, the probe. Both probes communicate with the same

associated probe dispatcher. They capture invocations from the applicatlon-

cllent layer as well as lifecycle (e.g. creation, deletion) event notifications

received from the container. For each event (invocation or lifecycle), each

probe performs measurement operations and sends data containing event

and performance information to the probe dispatcher. The probe dispatcher

stores and analyses each event. It sends JMX notifications containing

processed events to the JMX Layer. These notifications can be received and

interpreted by any JMX consumers that register their interest in receiving

COMPAS notifications from the COMPAS probes. The following basic

notifications can be emitted by the probes in a default COMPAS deployment

(i.e. without custom behaviour added to the probes):

52

• Method invocation (i.e. a method exposed through the component

interface has been called). The notification includes collected

performance data, in addition to method identifiers.

• Component instance creation: This refers to an Instance creation in

the component-based system development terminology. Such an

instance is an entity that a client has access to and can invoke methods

on. This is sometimes in contrast to a language construct (such as a

Java object) as containers may hold object pools that contain "empty"

component instances. Such instances are ready to be "filled in" with

appropriate contextual and business data and be used in client

interactions. Only after this operation has occurred, do these object

Instances become component instances. The notification includes the

name of the component whose Instance is being created as well as the

total number of instances of this component.

• Component instance deletion: this refers to the container removing

a component instance from the list of "ready-to-use" instances. The

notification includes the name of the component whose instance Is

being removed, as well as the remaining number of instances.

• Performance Alert: this is issued whenever an anomaly Is detected in

the performance response of a component Instance (see Section 6.4).

The notification includes the invocation data corresponding to the

method Invocation that triggered the anomaly detection, as well as the

alert message, as composed by the alerting mechanism in use (see

Section 6.4.2).

• Synchronisation Update: this is used when the monitoring dispatcher

registers with the application server, or whenever a monitoring listener

requires an update of the performance parameters corresponding to a

component. The notification includes the total number of instances of

the component as well as the method execution history for each

method exposed by the component. The synchronisation should only be

used rarely as its aggregating nature implies significantly more

communication overhead than other notifications.

53

Figure 4-6. CO M P A S Probe Architectural Overview

Probes can also be controlled from external clients such as the monitoring

dispatcher. The clients can invoke control operations on the probes (via

their associated MBeans) to alter the monitoring process or to set

operational parameters.

The following control operations are available to execute on a probe:

• start monitoring and stop monitoring (if monitoring is on, the probe can

operate; if monitoring is off, the probe does not perform any

operations)

• start logging and stop logging (controls the logging behaviour of the

probes; when logging is active, probes can display some information in

the server console)

54

• enter active mode and enter standby mode (controls the monitoring

mode of the probe) (Section 6.5)

• induce delay (used by the interaction recorder, Section 6.3)

• request synchronisation (listeners may request that an update be sent

from the probe with aggregated historical data, useful when a listener

has lost connection, or when a listener has been initiated after the

probe has been instantiated)

4.2.4 COMPAS JMX Repository

The JMX Layer is the main COMPAS distributed communication medium

used to transfer events from the Instrumentation Layer to the Monitoring

Dispatcher and other COMPAS Listeners and to transfer control commands

from the Monitoring Dispatcher and other COMPAS Listeners to the

Instrumentation Layer.

The following default JMX notification types are emitted by the COMPAS

Probes (see Section 4.2.3 fora description of each of them):

• compas.ejb.invocation

• compas.ejb.creation

• compas.ejb.deletion

• compas.ejb.alert

• compas.ejb.update

Figure 4-7 illustrates the usage of JMX in COMPAS. The location

transparency is illustrated by different probes residing in separate

component containers and communicating with the COMPAS Listeners via

the distributed JMX Server.

55

Figure 4-7. CO M PAS Transparent Management using JM X

The JMX model enables COMPAS entitles to communicate transparently in

distributed environments and to expose management and event-distrlbution

functionality. Probes can send events of particular types and all registered

listeners can receive them. The COMPAS Listeners must register their

interest with events from particular COMPAS Probes and they will

automatically receive the appropriate events. This functionality is similar to

what could be achieved with a messaging-based architecture such as Java

Message Service (JMS) [91]. However, in addition, JMX enables distributed

management via the Probe MBean operations. COMPAS Listeners can

56

control the behaviour of the probes by Invoking management operations on

their management interfaces, the MBeans associated with the probes.

4.2.5 COMPAS Client-Side

The COMPAS Infrastructure uses JMX as the transport and management

platform. On the client-side, which can be remote in relation to the probes,

the most important entity is the Monitoring Dispatcher.

The Monitoring Dispatcher is the client-side entity responsible for mediating

client access to the COMPAS probes by providing an abstraction layer over

JMX-level processing. It contains JMX handlers for efficient processing and

transformation of JMX notifications into COMPAS events. In addition, the

Monitoring Dispatcher provides a control interface that allows transparent

relaying of commands to the monitoring probes.

Figure 4-8 Illustrates the structure of the COMPAS client-side. The

Monitoring Dispatcher or any other custom JMX Listeners directly

communicate with the JMX layer. They receive and process JMX notifications

fired by the probes. In addition, they send raw JMX commands

corresponding to the management operations exposed by the probes

through their associated MBeans. The Monitoring Dispatcher shields any

COMPAS clients from the JMX-level processing of notifications or of

command dispatching. The Illustration in Figure 4-8 presents the Interaction

Recorder and the COMPAS Monitoring Console as two existing clients that

benefit from the abstraction layer introduced by the Monitoring Dispatcher.

The presence of Custom Listeners A and B illustrates the extension

capabilities of the COMPAS client-side through the event-based model of the

Monitoring Dispatcher that allows any number of high-level clients consume

COMPAS-level processed events. In addition, any number of external clients

can invoke operations on COMPAS Probes without knowledge of JMX-level

specifics involved.

57

JM.X
Notifications
troni Probes

Custom COMPAS
JMX Listener

X

COMPAS
Monitoring

Console

COMPAS
Filtered - Events

Listener
A

Raw Control
Com m ands from
CO M PA S

Monitoring
Dispatcher

r
Custom COMPAS

JMX Listener
Y

Notifications and
Control
Commands with
COMPAS
Semantics

COMPAS
Interaction
Recorder

COMPAS
Filtered - Events

Listener
B

Figure 4-8. CO M PA S Client Architectural Overview

Figure 4-9 shows how COMPAS JMX notifications are handled by the client-

side. All notifications are received and the JMX Handler Chooser selects the

appropriate handler for each notification. For each notification type, there

exists one pre-initiallsed handler. Each handler can schedule the processing

of the notifications in a background thread, essentially placing the tasks of

handling each notification in a queue. Consequently, there are as many

background threads as notification types. This enables the efficient pre­

processing of notifications without blocking the external JMX server process.

58

The illustration shows only the basic COMPAS notification types and their

handlers, however, any number of custom notifications and handlers can be

added using the COMPAS Framework Extension Points (see Section 4.4).

JMX Handler Chooser

Figure 4-9. Handling JM X Notifications

After each notification is pre-processed In the appropriate handler, a

COMPAS flltered-event is sent to the Monitoring Dispatcher, which can relay

it to any registered COMPAS Listener, as Illustrated in Figure 4-8.

59

4.3 Design Considerations

4.3.1 Design of Monitoring Probes

COMPAS uses monitoring probes attached to the target components in order

to extract performance data at runtime. Each target component has an

associated monitoring probe, which is created in the COMPAS probe

insertion phase (see Section 5.1). The probe is conceptually placed between

the target component clients and the actual component.

Figure 4-10. The Monitoring Probe

To the component clients, the probe Insertion process is transparent, as

they are accessing the component functionality through the component

interface (business interface in the EJB terminology).

60

The probe extends the component implementation class thus Inheriting all

the interface (business) methods as well as the lifecycle methods (Figure

4-10). The probe acts as and inheriting adaptor, a specialisation of the

adaptor pattern [34]. When receiving a method call from a client, the probe

will perform performance-measuring operations (i.e. timestamps, see

Section 4.3.2). In addition, it will notify the Dispatcher / Collector

subsystem of all of the events (Section 4.2.3), as they occur or as being

requested by the dispatcher.

The sequence diagram in Figure 4-11 describes the steps taking place when

the monitoring probe captures events from Its target component.

/ Probe Factory / Probe Dispatcher / JMX Server

3 : \request d ispatcher
I

4 : \create or find\ t [op|y at aeation Ume]

\ r e g is t e r in r e p o s i t o r y

H
return dispatcher

■
6 : \ s e n d creation e v e n t \

7 : \ s t o r e creation data\

ff
3 : \ e m i t c r e a t io n n o t i f i c a t io n

1?

11 : \send invocation event\
I

12 : \store invocation data\

Ì
12 : \stc

1 3 : \ e m it I n v o c a ito n e v e n t^ |

Figure 4-11. Probe Sending Events

61

4.3.2 Extracting Timestamps Using Monitoring Probes

COMPAS Probes can extract performance and lifecycle data from their

associated components. In order to measure execution times for a

component method, timestamps are obtained before and after the method

has been executed. COMPAS currently uses two time-extraction techniques:

the default timestamp-extraction technique and the precise timestamp-

extraction technique (described below). COMPAS probes can be extended to

use additional timestamp-extraction techniques via the Time Extraction

Server FEP (see Section 4.4.2).

«creates»

Figure 4-12. Time Extraction Strategies

Figure 4-12 illustrates the design of the time extraction subsystem. Each

probe must obtain the required time extraction strategy from the

P r o b e S e r v i c e L o c a t o r factory. Based on system availability and probe

requirements, the appropriate strategy Is returned to the probe.

The default time extraction strategy is used mostly when no other strategies

are available. It employs portable Java timestamp extraction techniques,

using the S y s t e m . c u r r e n t T i m e M i i l i s () system call. The resolution of this

time stamping method is dependant on the operating system and it ranges

from 1ms on Linux to 50ms on some Windows systems [40]. The poor

resolution of this method makes it rather impractical particularly In

situations where the average execution time of business methods is within

the resolution range. However, If remote business method calls dominate,

62

then this strategy may be utilised as usually the cost of remote calls is

significantly higher than the resolution.

In addition to the default time stamping scheme, COMPAS provides a high

precision, nanosecond precision time extraction strategy. This strategy uses

the jtimer native library [26] obtained in collaboration with the Distributed

Systems Group at Charles University, Prague. This strategy requires that a

compiled version of the jtimer library exists in the system path for the

operating system used by the application server running the components.

Binary versions are available for Linux, Windows and Solaris and the library

code can be easily compiled for other operating systems. When using this

library, the timestamps recorded by the COMPAS probes are in

nanoseconds. In order for monitoring clients to properly use the timestamps

scale (nanosecond or millisecond), a Boolean parameter Indicating the

appropriate scale Is sent together with invocation data. If the jtimer library

Is not available on a server machine, the probes will automatically use the

default time stamping scheme, without requiring explicit configuration

operations.

4.3.3 Receiving Data from Monitoring Probes

The COMPAS Probes generate JMX notifications that can be received by any

client registered as a listener for the probe MBeans in the JMX server.

COMPAS provides a central point for receiving all notifications from the

Probe MBeans, the Monitoring Dispatcher. This facilitates the access by third

parties to probe-emitted events without the need to write JMX code. The

Monitoring Dispatcher uses the Observer [34] pattern to allow any number

of external clients to consume events from COMPAS probes. The steps

presented in the sequence diagram in Figure 4-13 are taken by the

Monitoring Dispatcher (referred to as the COMPAS Client in the following

paragraphs, as they apply to any standalone JMX COMPAS Client) when it

initialises.

In order to be able to receive events from new probes, the COMPAS Client

must register as a listener to the JMX server. This allows future creation

events for new probe dispatchers to be received. The COMPAS Client may

connect and disconnect to the application server at arbitrary moments in

time, without being coupled to the probes' lifecycle. As such, when the

63

COMPAS Client initialises, It must search for probe dispatchers that have

already been created. The JMX server will return a list of all previously

registered probe dispatchers.

/ Operator : Actorl /JM X Server / Probe Dispatcher

1 : \initialize\
/ COMPAS Client

i

2 : \connect\

I

r

3 : \search for existing probe
dispatchers\

r t : \lookup each dispatcher

I probe dispatchers returned |
5 : \register as listener to

probe\

I

>r^> : \register client as listener^ 1

7 : \request data ""p
synchronisation\

8
9 : \process synchronisation

data\

z z n

Lr

\sends synchronisation
notification

10 : \regular invocation or
creation notifcation\

Figure 4-13. Receiving Events from CO M PA S Probes

For each existing probe dispatcher, the COMPAS Client will register as a

listener in order to be able to receive all future events from the associated

probe instances. After registration, the COMPAS Client requests a data

synchronisation operation in order to receive information about past events

regarding probes associated with this probe dispatcher. For instance, the

history of method calls and number of instances for the component

represented by the probe dispatcher are returned. This allows the COMPAS

64

Client to display immediately an overview of the operational history of the

targeted component system.

All future invocations from existing probe dispatchers as well as new probe

dispatchers can be received after the above steps complete.

65
I'

4.4 Extensibility: COMPAS Extension Points

COMPAS is a platform for adaptive monitoring of component-based

applications. Its purpose is to provide a rich set of functionalities for

extracting and processing runtime data from enterprise systems. It employs

low overhead monitoring techniques based on adaptive instrumentation in

order to enable long-term monitoring of production systems. To aid the

discovery of performance hotspots origins, COMPAS uses a diagnosis model

that leverages model information from the running system in order to infer

causality relationships.

These facilities are provided as part of the COMPAS framework. It is

important however that more complex and complete solutions for

performance management be built using COMPAS.

COMPAS exposes a set of Framework Extension Points (FEP) that can be

utilised by external tools. There are two types of extension points:

Input FEP: third-party functionality can be added to COMPAS to enhance its

already existing functionalities. COMPAS is a consumer of information

through the input FEPs. Usage examples of input FEPs include better time­

stamp extraction techniques or advanced anomaly detection algorithms

used in the problem diagnosis processes.

Output FEP\ third-party functionality can be added that uses and processes

information extracted by COMPAS. COMPAS is a producer of information

exposed through output FEPs. Such FEPs are usually event sources that

COMPAS provides for any external tools. Usage examples of output FEPs

include specialised GUI consoles or integration into wider-scope

performance tools.

As well as third-party functionality, the functionality that COMPAS provides

relies heavily on the usage of FEPs. For instance, the COMPAS Monitoring

Console uses a FEP, in an identical fashion to which an external GUI would

behave.

All FEPs can be further classified into server-side FEPs and client-side FEPs.

A server-side FEP facilitates the extension of the functionality available to or

provided by a COMPAS Monitoring Probe.

66

A client-side FEP facilitates the extension of the functionality available to or

provided by the COMPAS Monitoring Dispatcher.

4.4.1 Client-Side FEPs

In Figure 4-14, the layered structure of the COMPAS client is presented. The

top layer, JMX Event Dispatcher, is responsible for receiving and ordering

the JMX notifications sent by the COMPAS server-side part composed of the

Monitoring Probes. The following JMX notification types can be emitted by

the Probes as part of their basic functionality (Section 4.2.4):

compas. ejb.in vocation, com pas. ejb. deletion, compas. ejb. creation,

compas.ejb.update and compas.ejb.alert. All such notifications are received

by this layer and forwarded to the middle layer.

The JMX Event Handlers layer matches each Invocation type with its

appropriate JMX event handler. Matching is performed upon inspection of

the invocation type. Consequently, the available handlers are invocation

handler, deletion handler, creation handler, update handler and alert

handler. This layer contains an output FEP that allows horizontal integration

with COMPAS to be realised. In Figure 4-14, a custom handler is presented

to indicate the possibility for a third party to provide additional event

handlers for any number of additional event types. The already existing

event handlers use the output FEP as well, In the same manner as a third

party event handler would.

67

/r

=>
CD

COMPAS JMX
notification

JMX Event Dispatcher

JMX Event Handlers

invocation creation deletion update alert

Processed I Filtered Event Dispatcher
/

Figure 4-14. Client-Side Framework Extension Points

The third layer contains the event dispatcher for processed and filtered

events received from the middle layer. The events this layer operates with

are more semantically rich than the JMX notifications. They have been

processes by the middle layer and wrapped into events that are more

meaningful to the application logic. This layer exposes an output FEP that

can be used by any number of third party plug-ins. This FEP is a source of

semantically reach events presented in a standard manner, as a coherent

interface. The COMPAS Monitoring Console GUI, the Interaction Recorder

and the Alert Manager are all users of this FEP. They all consume COMPAS

application events and process subsets of them for different purposes. For

instance, the Interaction Recorder is in particular concerned with method

Invocation events whereas the Alert Manager processes alerting events

only.

4.4.2 Server-Side FEPs

Figure 4-15 presents the architectural layers for the server-side COMPAS

Instrumentation infrastructure. The bottom layer corresponds to the

monitoring probes. The probe functionality is realised by the proxy layer

Implementation. COMPAS uses automatically injected component-level

hooks that capture invocation and essential lifecycle events from the

68

component instances, and send them to proxy layer instances. There is one

proxy layer instance (probe instance) for each component instance. This

layer exposes an input FEP, the instrumentation FEP, which can be used by

alternative instrumentation techniques. For instance, a JVM level profiler

could extract invocation and lifecycle events by modifying the bytecode of

the component classes. Such a profiler could then use the instrumentation

FEP to benefit from the extensive COMPAS infrastructure.

COMPAS JMX
notification

JMX Event Dispatcher

custom

invocation instantiation

custom

deletion

Proxy Layer Instance

COMPAS Proxy Code
(Generated Hook)

Custom Hook

V i

0
Time Extraction Strategy

precise default custom

Proxy Layer Instance

/ ' ■ —

Figure 4-15. Server-Side Framework Extension Points

The probes extract timestamps for performing measurements by using

extensible strategies (Section 4.3.2). COMPAS provides two time extraction

implementations: a precise, platform-dependent technique and a fully

portable Java default mechanism that offers less precision. In addition, an

input FEP, the time-stamping FEP, allows third-party time extraction

strategies to be used. For instance, a high precision, hardware-software

hybrid could be used to provide accurate measurements to the COMPAS

platform, for demanding, distributed environments.

69

Performance measurements extracted by the instrumentation layer of the

probes are sent to the Probe Dispatcher (Section 4.2.3). There are three

event handlers In the probe dispatchers corresponding to method

invocation, instance creation and instance deletion. Others can be added to

process other lifecycle events, for example such passivation or activation.

Each of the handlers' default behaviour is to generate a COMPAS JMX

notification and dispatch It to the client listeners using the JMX

Infrastructure. Additionally, the invocation handler uses extensible alert

detection strategies (Section 6.4) to detect potential performance hotspots.

In addition to the basic alert-detection strategies (absolute value and

relative, see Section 6.4), an input FEP, the alert FEP, allows third parties to

add more complex implementation of alert-detection strategies. An example

is an alerting algorithm that takes into account the history of the calls and

workload information to reason about potential performance problems. Such

an algorithm has been developed and integrated with COMPAS [21] in a

project related to application adaptation using component redundancy

[23][22].

The behaviour of each dispatcher event handler can be extended to

accommodate custom requirements. This extension point, the probe-

handier output FEP can be used for instance to enable server-side

enterprise logging functionality. Therefore, by leveraging the COMPAS probe

insertion technology, third parties could avoid writing their own logging

component-hooks.

The JMX event dispatcher layer used by the probes emits the appropriate

JMX notifications (see Section 4.2.4 for the list of default COMPAS

notifications). If the probe-handier FEPs are used, custom JMX notifications

can be emitted as well, as required by the additional logic.

4.4.3 List of FEPs

This section presents a complete list of the predefined COMPAS Framework

Extension Points. The list Is divided into client-side and server-side FEPs.

Client-Side FEPs

• Client-Handier: can be used to add additional JMX handlers,

corresponding to custom JMX server notifications: used by the default

COMPAS implementation for Invocation, creation, deletion, update and

70

alert events (Section 4.2.3); can be used to add more handlers for

events such as activation and passivation of beans; this FEP is

illustrated In the middle layer in Figure 4-14

• Event-Consumer: can be used to add additional client-side processing

logic of COMPAS monitoring events: used by the default COMPAS

implementation for the graphical consoles, the Interaction Recorder

(Section 6.3) and the centralised Alert Manager (Section 6.7); potential

added functionality Includes data-mlnlng logic for determining anti­

patterns or IDE integration; this FEP is illustrated in the bottom layer In

Figure 4-14

Server-Side FEPs

• Instrumentation: can be used to add alternative instrumentation

capabilities to replace the current probe Insertion process that is based

on code-generation; JVM-level bytecode instrumentation technology

(Section 5.2) can be used to insert the monitoring probes, as illustrated

in the bottom layer of Figure 4-15

• Time-Stamping: alternative time-stamping strategies can be used in

order to obtain variable precision time-stamps (Section 4.3.2);

COMPAS uses a platform-specific strategy and a platform independent,

less precise strategy; other strategies such as software/hardware

techniques can be added, as illustrated in Figure 4-15

• Alert: can be used to add additional anomaly-detection logic in the

probes (Section 6.4); COMPAS uses the threshold based strategy;

strategies involving complex workload-dependent anomaly detection

logic could be added

• Probe-Handier: if additional target information is provided by the

monitoring probes (for instance by using JVM-level hooks), custom

probe handlers can be added to the probe dispatcher (the middle layer

in Figure 4-15; this FEP is used by default handlers for invocation,

instantiation and deletion; in addition to adding other handlers for

different events, all handlers can be enhanced to provide common

functionality such as a consistent enterprise-logging strategy for

storing all events in a remote database

71

4.5 Vertical and Horizontal Integration

COMPAS is built on an open architecture that facilitates extension of its

functionality through Framework Extension Points (FEPs) (Section 4.4).

The term vertical integration in respect to a COMPAS FEP is used to refer to

the capability to add information sources or consumers at different layers of

the information flow in which the FEP participates.

The term horizontal integration in respect to a COMPAS FEP refers to the

capability of adding more information sources or consumers at the same

layer of the information flow in which the FEP participates.

Information flows and Information flow layers are presented as columns and

rows in Figure 4-16 which illustrates both the horizontal and the vertical

extension capabilities by presenting Integration options in a two-

dimensional space. The vertical axis traverses different Information flow

layers. The horizontal axis corresponds to information flow types. The

central row in the chart is occupied by the COMPAS Core Monitoring

Infrastructure. This contains the most basic functionality of COMPAS, in

particular the distributed event collection and processing infrastructure (the

monitoring probes, the monitoring dispatcher and the communication

infrastructure). There are six information flow layers depicted in Figure

4-16. Three layers (+ 1, +2 and +3) are above the core monitoring

infrastructure level, and three are below (-1, -2 and -3). There are nine

information flow types depicted in Figure 4-16. Four flow types (A, B, C and

D) are above the core monitoring infrastructure level, and five are below (E,

F, G, H and K).

72

F. . L E GEND

Custom .______ _
Producer / Consumer Default Consumer

Default
Producer / Consumer Ü Default Producer

Figure 4-16. Vertical and Horizontal Integration

The client-side of the monitoring infrastructure is represented by the area

above level 0, and is mostly involved in data collection, while the client-

side, represented by the area below level 0 is mostly involved in data

processing.

The elements in Figure 4-16 correspond to information producers or

consumers participating in the COMPAS information flow types. There are

four types of elements:

• the default consumer is a COMPAS provided element that can only

receive and process information, such as a data analyser

73

• the default producer is a COMPAS provided element that can only

produce and send information, such as an event generator

• the default producer / consumer Is a COMPAS provided element that

can produce and consume information

• the custom producer / consumer Is a third-party element that provides

custom functionality. There are no custom consumer or producer

elements in Figure 4-16 as for Illustrating purposes they can both be

represented by the custom producer / consumer.

Horizontal integration is Illustrated In Figure 4-16 by elements situated in

the same Information flow layer. Vertical integration is illustrated by

elements situated at different information flow layers and in the same

information flow type. Note however that information flow types In the

client area and information flow types In the server-side area, are not

directly related. For instance, there is no direct correspondence between

information flow types B and F.

Level 0 contains, in addition to the core monitoring infrastructure, a custom

producer / consumer element. This Illustrates the possibility to extend the

monitoring Infrastructure core In order to add more core functionality. For

Instance, a different processing and relaying mechanism for COMPAS

notifications can be added In cases where the monitoring dispatcher does

not provide adequate functionality.

Levels +1 and -1 contain COMPAS default producers and consumers

respectively, corresponding to the basic monitoring dispatcher and

monitoring probes' functionality. Elements in level +1 dispatch COMPAS-

level events, while elements In level -1 receive server-side information and

dispatch it to the monitoring dispatcher.

The following eight information flow types exist in the COMPAS

infrastructure:

• Client flow type A: composed only of COMPAS default elements, no

vertical extension is possible. A default consumer In level +2 processes

the information from level 1. An example of flow type A is the COMPAS

graphical console. The console could be extended horizontally, by

adding more GUI elements in level +2.

• Client flow type B: the default consumer / producer element in level +2

allows vertical integration with a custom element in level +3. Default

74

processing takes place in level +2 but more functionality can be added

by a third party. Examples: the Interaction Recorder can generate UML

models (level +2) and can be extended by modules that read the UML

modules and perform further processing (level +3); the logging

mechanism of COMPAS stores monitoring events (level +2) but further

processing of the log files can be performed for data mining purposes

(level +3).

• Client flow type C: there is no default processing of level +1

information and the custom consumer / producer in level +2 provides

all the required functionality. For instance, a different, complex

COMPAS GUI can be added, or a different alert handling mechanism

could be provided at the client side.

• Client flow type D: corresponds to the custom extension at the core

infrastructure level. Consumer / producer functionality must be

provided for information generated by the extended Infrastructure.

• Server flow type E: composed only of COMPAS default elements, no

vertical extension is possible. A default producer in level -2 generates

the information captured and processed by level -1. An example Is the

default portable instrumentation facility, which uses generated code to

insert hooks in the target components. This facility can be extended

horizontally by adding more instrumentation capabilities but not

vertically by using lower-level information sources such as the JVM.

Note that if the default Instrumentation is extended horizontally, such

extensions can be then extended vertically, as in information flow type

F.

• Server flow type F: A custom producer / consumer can generate

Information for level -1. An example Is a different instrumentation

mechanism or an extension of the instrumentation mechanism

available in COMPAS. For instance, JVM-level hooks can be used

Instead of portable generated hooks, In order to extract runtime data

from the target system (e.g. method invocation or instance creation

events).

• Server flow type G: default and custom producer / consumers in level -

3 can be used to send information to the default consumer / producer

in level -2. A typical example of this type of information flow is the time

extraction functionality (Section 4.3.2). Custom time extraction

75

strategies and default time extraction strategies can be used to

generate timestamps which are sent to the probe instances that in turn

forward the complete invocation data objects to the probe dispatcher.

• Server flow type H: default and custom producer / consumers in level -

3 can be used to send information to a custom consumer / producer In

level -2. A typical example of such an information flow is the alert

generation functionality (Section 6. 4.2). Default and custom

invocation-event producers send Information to customisable alert-

generatlon strategies. Third-party providers can transparently add

alert-generatlon strategies (in level -2) without affecting the

functionality of elements in level -3.

• Server flow type K: corresponds to the custom extension at the core

infrastructure level. Producer / consumer functionality must be

provided to generate information for the extended infrastructure.

76

4.6 Monitoring Infrastructure Summary

Chapter 4 described the functional goals, architecture and design of the

COMPAS monitoring infrastructure. The structure and functionality of the

monitoring probes and the monitoring dispatcher were presented.

Monitoring probes are server-side entities attached to each target

component and they communicate using a management layer with the

client-side monitoring dispatcher.

The COMPAS Framework Extension Points can be used to enhance and

reuse the monitoring infrastructure. Examples of extensions are the time

stamping FEP, or additional monitoring events listeners.

77

Chapter 5 Insertion of Probes

Portable insertion process

Component metadata used to generate the probes

Alternative probe insertion: dynamic bytecode instrumentation

78

5.1 Inserting the Monitoring Probes

COMPAS instruments component-based applications without making

changes to their source code. In addition, COMPAS does not employ

changes to the runtime environment to support instrumentation. The

instrumentation is performed by a "proxy layer" attached to the target

application through a process called COMPAS Probe Insertion (CPI).

5.1.1 COMPAS Probe Insertion Process Description

The CPI process examines the Target Application's structure and uses

component metadata to generate the proxy layer. For each component in

the target application, a monitoring probe is specifically generated based on

the component's functional and structural properties.

The CPI process leverages deployment properties of contextual composition

component-frameworks [97] to discover and analyse target applications.

Therefore, CPI is conceptually portable across component frameworks such

as EJB, .NET or CCM.

The following metadata is extracted and used to generate a monitoring

probe for a target component:

• Component Name (bean name, for EJB)

• Component Interface (Java interface implementing the services

exposed to clients, for EJB)

• Locality (local or remote, for EJB)

• Component Type (stateless session, stateful session, entity or

message-driven, for EJB)

• Component Interface Methods (Java methods in the business interface,

for EJB)

• Component Creation Methods (ejbCreate(...) methods, for EJB)

Using the Probe Code Template (PCT) and the extracted metadata, the CPI

process generates one probe for each Target Application Component. The

placeholders in the template are replaced with the values extracted from

the metadata. The following is a listing of the PCT written in the Velocity

Template Language [5].

• * TrJ s is 5 f.fe ate f'.-r ofc:: * r.rt r.e .• •• u.r a c- • E • r.t COMPAS
t-roxies

79

i .'hr- tcnp ait* i p a r k e d . ¡ vio . •_ •'•.l-ocr ■ ' ■ %C.ii v ,1 rci ar y
|i h ; i. p : / / . * 1*»?^’ e . o ' - . j / ' - e ' C > yV

package $package;

import javax.ejb.CreateException;
import javax.ejb.EJBException;
import javax.ejb.EntityContext;

import edu.dcu.pel.compas.monitoring.proxy.*;

$modifiers class _COMPAS_$target_class extends $target_class {
S | . . . - i T r* ’ l * y - . * I t t - L C i , . . r , . ,. .* *. 1 C/ » 1 i ■ L *v \i . •. r*-z U lifiN*: / t* '*5 1) J

$G\'±Q# t*-J -.O * L .

private Proxylmplementor proxylmpl = new Proxylmplementor(
"$appserver_name", "_COMPAS_$target_class", "$id_name", "$bean_type"
) ;

#if($bean_type=="entity")

public void setEntityContext(EntityContext ctx)
throws EJBException {

super.setEntityContext(ctx);
proxylmpl.postSetContext();

}

public void unsetEntityContext()
throws EJBException {

super.unsetEntityContext();
proxylmpl.postUnsetContext();

}

#end

#foreach($creator in $allCreateMethods) #set($returnType =
$creator. getReturnType () .getName())

public $returnType $creator.getName() (
$generator.getParameterDeclarationList($creator))
$generator.getThrowsList($creator) {

proxylmpl.preEjbCreate();
#if($returnType != "void") $returnType returnValue

= #end super.$creator.getName()(
$generator.getParameterCallingList($creator));

proxylmpl.postEjbCreate();
#if($returnType != "void") return returnValue;

#end

}

#end

#foreach($method in $allBusinessMethods) #set ($returnType =
$method. getReturnType () . getNameO)

public $returnType $method.getName() (
$generator.getParameterDeclarationList($method))
$generator.getThrowsList($method) {

proxylmpl.preMethodlnvocation();
#if($returnType != "void") $returnType returnValue

= #end super.$method.getName()(
$generator.getParameterCallingList($method));

proxylmpl.postMethodlnvocation("$method.getName()"
) ;

#if($returnType != "void") return returnValue;
#end

}
#end

Figure 5-1 illustrates the entities involved in the CPI process. Each Target

Component (TC) is identified after parsing the Enterprise Target

Application's metadata. After examining the TC, COMPAS generates the

proxy layer that will be attached to the TC. The proxy layer is an

instantiation of the Proxy Code template, using the TC metadata values.

Figure 5-1. CO M PA S Probe Insertion

The proxy layer (probe) is a thin layer of indirection directly attached to the

TC (see Section 4.3.1). To fulfil its instrumentation functionality, the Probe

employs the Instrumentation Layer that has the capability of processing the

data captured by the Probe and performing such operations as event

81

notifications. The Instrumentation Layer uses the COMPAS Probe Libraries

for implementing most if its logic.

A Modified Component (MC) results after the CPI process has been applied

to a TC (see Figure 5-2), and this will enclose the original TC. In addition, it

will contain the Probe and Instrumentation Layer artefacts. In order to

ensure a seamless transition from the TC to the MC, the CPI transfers the

TC metadata to the MC, The MC metadata will only be updated so as to

ensure the proper functionality of the proxy layer (e.g. for EJB, the bean

class property must be updated to indicate the Probe class).

business original

'

proxy layer

Figure 5-2. Modified Component Containing the Proxy Layer

5.1.2 The CPI Process in J2EE

As the COMPAS prototype has been implemented for the J2EE platform, the

COMPAS CPI process implementation follows the J2EE characteristics. The

following steps describe the process of inserting COMPAS probes into a J2EE

Application.

1) The Target Application's EAR file is analysed and all the EJB jar files extracted.

2) For each EJB jar file, the deployment descriptor is parsed and, for each declared

EJB bean,:

a) The corresponding declarative metadata (bean name, bean interface, locality -

remote or local, bean type - session, entity or message driven, bean class) Is

extracted.

b) Java Reflection operations are performed on the bean interface to extract all

the business methods.

c) Java Reflection operations are performed on the bean class to extract all the

ejbCreate methods

82

d) The Velocity [5] engine is used to generate the Probe code by instantiating the

Probe Code Template with all the extracted values.

e) A new bean class is generated, the Probe, which inherits from the original bean

class and performs the instrumentation operations. In addition, the Probe

forwards all invocations to the original bean class.

3) The new bean classes (Probes) are packaged in the modified jar file together

with all the original classes that already existed in the original jar file. The

deployment descriptor is modified as to include the updated entries for the bean

class fields that will now point to the Probe class.

4) All the modified jars are packaged into a new EAR file. The required shared

COMPAS Probe Libraries are also packaged into the EAR.

5) The new Modified Enterprise Application EAR is ready for deployment into any

J2EE application server.

5.1.3 COMPAS Probe Insertion Process Code Example

An example of the resulted probe code (part of the MC) from the CPI

process follows:

package com.sun.j2ee.blueprints.creditcard.ejb;

import javax.ejb.CreateException;
import javax.ejb.EJBException;
import javax.ejb.EntityContext;

import edu.dcu.pel.compas.monitoring.proxy.*;

public abstract class _COMPAS_CreditCardEJB extends CreditCardEJB {

private Proxylmplementor proxylmpl = new Proxylmplementor(
"JBOSS", "_COMPAS_CreditCardEJB", "CreditCardEJB", "entity");

public void setEntityContext(EntityContext ctx)
throws EJBException {

super.setEntityContext(ctx);
proxylmpl.postSetContext();

}

public void unsetEntityContext()
throws EJBException {

83

super.unsetEntityContext();
proxylmpl.postünsetContext();

}

/ / b h o i ' - c r ' f.1r *. ? jt'C tue !•■

public java.lang.Object ejbCreate (java.lang.String
valueO, java.lang.String valuel, java.lang.String value2) throws
javax.ejb.CreateException {

proxylmpl.preEjbCreate();
java.lang.Object returnValue = super.ejbCreate(

valueO, valuel, value2);
proxylmpl.postEjbCreate ();
return returnValue;

}

public java.lang.Object ejbCreate (
com.sun.j2ee.blueprints.creditcard.ejb.CreditCard valueO) throws
javax.ejb.CreateException {

proxylmpl.preEjbCreate();
java.lang.Object returnValue = super.ejbCreate(

valueO);
proxylmpl.postEjbCreate();
return returnValue;

}

public java.lang.Object ejbCreate () throws
javax.ejb.CreateException {

proxylmpl.preEjbCreate();
java.lang.Object returnValue = super.ejbCreate(

) ;
proxylmpl.postEjbCreate();
return returnValue;

}

public com.sun.j2ee.blueprints.creditcard.ejb.CreditCard
getData () {

proxylmpl.preMethodlnvocation();
com.sun.j 2ee.blueprints.creditcard.ejb.CreditCard

returnValue = super.getData() ;
proxylmpl.postMethodlnvocation("getData");
return returnValue;

}

public java.lang.String getExpiryYear () {

proxylmpl.preMethodlnvocation();
java.lang.String returnValue =

super.getExpiryYear();
proxylmpl.postMethodlnvocation("getExpiryYear");
return returnValue;

}

public java.lang.String getExpiryMonth () {

84

proxylmpl.preMethodlnvocation();
java.lang.String returnValue =

super.getExpiryMonth();
proxylmpl.postMethodlnvocation("getExpiryMonth");
return returnValue;

}

} ___

The code example above shows the result of the CPI process when applied

to one of the components (CreditCard EJB) of the Sun Java Blueprints

Petstore Application [88].

5.1.4 The CPI Process Using JSR771

This section discusses an alternative mechanism for extracting the

metadata needed by the CPI process. It does not require access to the EAR

file containing the Target Application. In contrast, it employs server

introspection based on an open standard for application server management

[84]. Although the current COMPAS prototype does not currently use this

mechanism, the implementation is available and can be used as an

alternative strategy. It is highly .probable that similar mechanisms to the

one presented here will be available for other component-based runtime

platforms such as .NET or CCM. As COMPAS monitoring operates internally

with more abstract concepts than EJBs, it is possible that by marginally

adapting the CPI process to a different component platform (e.g. .NET), the

same benefits can be obtained as for EJB.

The process of extracting the deployment structure of the target system by

using JSR77 is illustrated in Figure 5-3. It is based on widely available

technologies that are either recently standardised or are in the final stages

of standardisation. This makes the process compatible with a large variety

of operating environments. The following steps are taken:

1 Based on work performed during the author's internship in Sun Microsystems

Laboratories (July 2003 - November 2003, Mountain View, CA). As part of the

author's internship work on the JFIuid Project

(http://research.sun.com/projects/jfluid), EJBs as well as Web artefacts such as

Servlets and JSPs were processed for instrumentation. Similarly, this chapter takes

into account both EJB and Web modules, as supporting all types of components

consistently is one of the COMPAS goals.

85

http://research.sun.com/projects/jfluid

1) The deployment Information made available by the JSR77 management model is

parsed (a JMX query is sent to the JSR77 compliant server). This results in a set

of J2EE applications that have been deployed in the target application server.

Using JSR77, the deployment structure of the J2EE applications residing in the

target server can be obtained.

2) For each J2EE application, a query for all its associated modules (EJB JARs or

Web Application Archives (WARs)) is sent to the JSR77 compliant JMX server.

3) For each module (Web or EJB), the deployment descriptor is obtained using the

JSR77 attributes available for each J2EE element. The deployment descriptor is

an XML document required by the J2EE specification and contains deployment

information for each J2EE element. For EJBs, it contains such information as the

bean classes, type of bean (e.g. entity, session, message-driven) and required

services such as security and transactions. For Web modules, it contains the

name of the Servlet class or, for JSPs, the file name containing the JSP code.

4) Using the JAXB [87] framework, the deployment descriptor for each J2EE module

is parsed and the list of the corresponding EJBs or Servlets is obtained, together

with their associated information. JAXB [87], the Java Architecture for XML

Binding provides an abstraction layer for working with XML files. Developers need

not work with XML parsers and their low-level events and objects, such as a text

node In an XML document. Instead, they use an object model of the XML

document and the standard Java object collection APIs to deal with containment

hierarchies. For COMPAS, this would ensure a smoother integration with the

internal object model of the J2EE applications, as the mapping of information

from the XML deployment descriptors to the internal J2EE deployment hierarchy

is more direct and the mapping code easier to maintain and understand.

5) For each J2EE component, it is important to know the "business methods" which

implement the logic. The business methods are the Java methods which are

written by the developers and which implement the application logic. The

discovery of these methods is realised through Java Reflection, a standard

mechanism to inspect Java classes. The same operation is performed for the

existing Servlets, as It is important to determine which of the two possible HTTP

handler methods (GET or POST) Is used.

6) By using knowledge about the container-generated artefacts, it is possible to

determine which container classes correspond to the EJB or JSP currently

inspected. The EJB Object class name for a particular EJB can be determined and

86

can be later used In the instrumentation stage. For JSPs, using knowledge about

the web container behaviour, It is possible to determine the name of the class

implementing the JSP code, when it is compiled at run-time, thus allowing it to

be instrumented. Although COMPAS does not currently support dynamic

bytecode instrumentation, a prototype tool that does has been designed and

implemented (see 5.2). Integration with COMPAS is feasible as the

instrumentation layer can be realised at lower levels with bytecode

Instrumentation, instead of source code generation.

7) This step is optional: if knowledge about the container-generated artefacts is not

available, the instrumentation will proceed by targeting the developer-written

artefacts (the bean classes for EJBs, and the Servlets, however the JSPs will not

be monitored). This results in less information being collected as the container

services cannot be measured.

8) Finally, the collected information is stored in the Internal object model, which can

be later used by the COMPAS instrumentation.

Figure 5-3. Using JSR77 to Extract J2EE Deployment Data

87

5.2 Instrumenting J2EE Applications Using

JVM Profiling

This section presents an alternative method for inserting the monitoring

probes2. It uses the JFIuid dynamic bytecode instrumentation technology

[27][28] and can be integrated with COMPAS using a server flow type F

extension point (Section 4.5), the instrumentation FEP (Section 4.4.2).

The proposed method (implemented as a prototype tool) enables dynamic

insertion and removal of profiling code. A graphical console has been

implemented (separately from the COMPAS monitoring console) to allow

direct control of instrumentation and data collection operations.

The profiling tool can attach to a running application server (currently only

Sun ONE Application Server [96] instances), inject instrumentation code in

the target components (EJBs, Servlets), collect, and aggregate the JVM

performance data corresponding to these entities.

When instrumentation is no longer required, the instrumentation code can

be removed dynamically from the application server and the application

continues to run unaffected. This operation does not preclude the use of

adaptive monitoring techniques (Chapter 6) for overhead reduction.

Instead, it is used when there is either no further need for performance

management or else when it is critical that the target application runs

completely unaffected.

The dynamic bytecode instrumentation approach has two main advantages

over the default COMPAS Instrumentation approach, based on portable,

high-level probes. Monitoring probes can be dynamically inserted and

removed from the running application, without the need for application

2 Based on work performed during the author's internship in Sun Microsystems

Laboratories (July - November 2003, Mountain View, CA). As part of the author's

internship work on the JFIuid Project (http://research.sun.com/proiects/ifluidy a

J2EE monitoring tool was developed that used dynamic bytecode instrumentation

techniques to transparently inject monitoring code into J2EE applications running on

the Sun ONE Application Server. Most parts of the tool have been transferred into a

Sun Microsystems enterprise performance-management product.

88

http://research.sun.com/proiects/ifluidy

redeployment. By default, COMPAS Induces varying degrees of overhead

(depending on the monitoring scheme) in target applications. Using

dynamic bytecode instrumentation, COMPAS can be extended to support

dynamic Insertion and removal of instrumentation logic in certain parts of

the target application, leading to the capability of completely removing

overhead In certain parts of the target application. This extension can be

achieved by using the instrumentation FEP (Section 4.4.3).

The second advantage of the dynamic bytecode instrumentation approach is

that information about the performance of container services can be

obtained from the instrumented container generated artefacts, since any

class can be instrumented at runtime. This can help in determining whether

performance hotspots originate in business logic or in configuration

parameters driving the behaviour of container-provided enterprise services.

5.2.1 Instrumentation Levels

Using dynamic bytecode insertion, two instrumentation levels can be used

and dynamically alternated:

Complete top-level instrumentation: a high level, low-overhead,

Instrumentation operation across the entire target J2EE system can help In

quickly identifying the potential performance hotspots. This capability is

implemented in the prototype tool and It Is used when developers choose to

perform a complete top-level profiling operation of the target system. This

instrumentation level is similar to the default portable instrumentation

capability of COMPAS, which can extract data only from methods exposed

by component interfaces.

The top-level profiling mode has a significantly lower overhead than the

recursive instrumentation mode described below and is therefore

appropriate for obtaining an overall performance profile of the entire

system. Section 5.2.2 gives a more detailed description of the top-level

instrumentation mode.

Using the dynamic bytecode injection technique described in [27][28], the

top-level instrumentation code is inserted into the running J2EE system,

without the need for a server restart. This is a completely transparent

operation, making it particularly useful in production environments.

89

Developers can choose to view performance metrics associated with J2EE

elements at any level In the hierarchy. For Instance, they can see how much

time is spent in servicing a particular EJB method, or they can see how

much time is spent servicing all the methods of a particular EJB or indeed

an entire application.

Starting with a top-down approach, developers can see which application

takes the most resources; they can then browse the hierarchy and

understand which modules In the application generate the performance

problem; the browsing process can continue until the leaves (EJB methods

or Servlet / JSP handlers) are identified. These features can be accessed in

the prototype tool based on JFIuld, and are not part of the COMPAS

graphical console. However, similar functionality Is available in COMPAS

with the exception that the COMPAS consoles assume the existence of a

single target J2EE application, and not an arbitrary number of J2EE

applications, as the JFIuid-based prototype does. Another difference Is the

lack of support for web-tler components in COMPAS, which focuses on the

EJB tier.

Partial in-depth instrumentation: When a set of hotspots has been

identified, developers can choose to initiate the recursive instrumentation

process for all the methods contained in the set. For example, if the set

contains an EJB, all Its business methods are selected for recursive

instrumentation. If the set contains an entire J2EE application, all the

methods corresponding to all the EJBs and all the HTTP handlers

corresponding to all the Servlets and JSPs In the application are selected for

recursive instrumentation.

The results obtained from the recursive Instrumentation can help in focusing

the search for the origin of the performance problem Identified using the

top-level Instrumentation. Call-graphs with EJB and Servlet / JSP methods

as roots can reveal the causes for poor performance at the J2EE level.

These causes can vary from internal business logic problems to bad

configuration of container services.

This instrumentation level is essentially a refinement of the top-level

instrumentation level. While top-level Instrumentation offers a system-wide,

shallow performance profile, in in-depth instrumentation a narrow subset of

the system is examined in detail. The functionality of the in-depth

90

instrumentation level can be accessed In the prototype tool based on JFIuid,

and are not part of the COMPAS graphical console. However, using the

COMPAS FEPs, this functionality can be easily migrated or replicated to

COMPAS.

5.2.2 The Instrumentation Mapping

This section describes the process of mapping the high-level component

constructs to the level at which the dynamic bytecode instrumentation

operates. Upon selection of different J2EE elements for Instrumentation, the

tool must generate lower level Instrumentation events that eventually result

in the dynamic bytecode instrumentation code being Injected Into the

appropriate classes.

When instrumentation is required for Java Servlets [95], the Intent is

translated into an instrumentation event for the corresponding doGet or

doPost handler of the Servlet. The correct handler is determined in step 3

of the JSR77-based discovery process (Section 5.1.4).

For JSPs [94], instrumentation Is performed for the container-generated

class which will implement the JSP code. For Sun ONE AS [96], this class is

HttpJspBase and the implementing method is _jspService.

For EJBs, based on their deployment descriptor, the container generates

classes implementing the two interfaces (EJB Object and EJB Home)

(Section 2.1). Clients of an EJB component will work with references of

these container generated objects. After creating or finding an EJB instance

using the EJB Home object, clients will call methods on the EJB Object

implementation, which ensures that the required services are provided for

the calling context, before dispatching the call to the actual bean class

instance (Section 2.1).

When selecting EJBs for instrumentation in the J2EE view, the tool must

map such actions to instrumentation events for the appropriate class of the

EJB. The EJB Object implementation class Is the appropriate location for the

instrumentation bytecode because its methods wrap the bean-class

Implementation methods with the required services. For each method

methodX from the bean class, there Is a corresponding method methodX In

the EJB Object implementation. The latter will contain calls to different

container services in addition to the call to the bean class methodX. This

91

applies in general to most J2EE application servers and in particular to Sun

ONE AS.

If the tool is used in an environment where the container generated classes

are not known (i.e. with an unsupported application server), the only

classes that can be Instrumented are the Servlets and the EJB bean classes.

This results In the JSPs and the EJB container services not being

instrumented, which Is similar to the default portable Instrumentation level

available in COMPAS.

To address this issue, the dynamic bytecode instrumentation tool will

expose an external API that will allow third parties to develop connectors for

other application servers. The connectors would consist of sets of classes

and methods corresponding to container services, in a standard format, as

required by the tool.

In top-level instrumentation, only the EJB, Servlet and JSP methods (or

container-generated artefact methods where appropriate) selected for

Instrumentation (the instrumentation roots) are instrumented. Subsequent

calls from such a method to non-root methods are not considered for

dynamic bytecode instrumentation (as would be the case with recursive

Instrumentation [27][28]). This leads to a low-overhead profiling scheme

suitable for finding potential performance hotspots at a high-level. After

performing top-level instrumentation, performance results can be collected

and displayed. Each J2EE element has an associated performance data

structure, which aggregates the performance results (average execution

time, number of invocations, percentage of execution time) for its contained

elements. For example, the percentage of time spent in the element

represents the sum of all the percentages of its Included elements. An EJB

for instance will show the percentage of time spent in all of Its methods. A

J2EE application will present a percentage that includes all the percentages

of is Web and EJB modules which In turn contain all the percentages of their

JSPs, Servlets and EJBs.

Let us consider the following sample call-graph representing an EJB

business method calling two other EJB business methods.

92

Table 5-1. Top-level call graph

EJBl.methodX

-> EJB2.methodY

EJB3.methodZ

Using top-level Instrumentation, the only instrumented methods will be

methodX, methodY and methodZ.

When searching for the root cause of a performance problem observed at

the top-level, a deeper understanding of the call patterns that comprise the

context of the performance problem Is useful. Therefore, observing the

detailed call trees of each of the root methods can be particularly useful

when the methods that are Instrumented belong to the container-generated

artefacts. These artefacts have complex infrastructure logic that augments

the business logic of the bean class.

In this case, the recursive instrumentation technique presented in

[27][28] is used. Considering the top-level sample call-graph in Table 5-1,

its corresponding recursive instrumentation call-graph would contain the

elements presented in the call graph from Table 5-2 (for a simplified

hypothetical scenario).

In real scenarios, the call graph in Table 5-2 is more complex, as each of

the container services can have a complex calling tree associated. The

display of such call-graphs can reduce the time needed to understand the

origin of a performance issue: an EJB run-time entity can perform poorly

because of bad configuration choices for container services or because of

bad business logic, or a combination of both.

Understanding where the problem originates (container or business logic) is

crucial in adopting a strategy for solving it. If it is a container induced

overhead, tuning the configuration parameters (for example the

transactional attributes for a method) could solve it. If it is a business-logic

implementation problem, understanding the context it occurs in might lead

to a decision to alter the design (for example adopting a suitable J2EE core

pattern [18]).

93

Table 5-2. In-depth call graph

EJBl.methodX

Container, preinvoke

Container.securityCheck

EJB2.methodY

Container, preinvoke

Container.securityCheck

Container, postlnvoke

EJB3.methodZ

Container, preinvoke

Container.securityCheck

Container, postlnvoke

-> Container, postlnvoke

5.2.3 Usage Example and Results

A prototype of the proposed tool has been built and It currently supports the

Sun ONE Application Server. EJBs and Servlets are currently supported. The

following screenshots obtained from the running tool illustrate the process

of finding a performance problem In a J2EE system (here the "samples"

domain of the Sun ONE Application Server).

The first step illustrated In Figure 5-4 completes when the tool has attached

to the J2EE application server and obtained the deployment structure of the

existing applications, together with all the required information for the J2EE

elements.

94

JFIuid: Dynamic Profiling Tool
File Run Profile Instrument J2EE Profiling Help

Souice code and Selected Methods | CPU results | Memory lesults \ J2EE Profiling

3 Bun ONE AS <
<? C 3 J2EE Application: jdbc-simplf

<5> (Z3#ser/er/jtibc-simple

Q SeivletGreeterDBSer

Q Servlet GreelerDBLog

9 C!] jdbc-slnipleEJb.jar

®- [3 EJB jdbc-simpls

9 C 3 J2EE Application: rml-slmpie

//serverirml-llop-simple

9 C3 rml-stmpleE)b.)ar

9 Q EJB RMIConverlerApp

Q public abstractjav

0 public abstractJav

Figure 5-4. Sample J2EE deployment structure

After performing the second step (complete top-level instrumentation) the

user identifies a potential performance bottleneck and decides that in-depth

instrumentation of a particular EJB is needed (in this example, the

Converter EJB).

After selecting the doiiarToYen business method for in-depth

instrumentation, interactions with the system are performed and

performance results are collected.

In Figure 5-5, the results collected when performing full recursive

Instrumentation of the selected method are displayed. Note that although

the user selects the doiiarToYen method of the Converter bean to be

instrumented, the tool selects the corresponding method from the

container-generated artefact, the EJB Object wrapper implementation of the

Converter bean. This results In the container services being captured in the

call graph, giving the user more information about the execution context of

the bean.

[Infuimatian Performance Results

RM IConverterApp e je

Type: remote session bean
EJB Class: samples.rml.simple.ejb.ConverterBean
Home Interface: samples.rmi.slmple.eJb.ConverterHome
Business interface: samples.rmi.siinple.ejti,Converter

{ Number of Business Methods: 2

95

J riijid : Dynamic Profiling Tool t- ilflJH f]

F i le g u n Profile In s t ru m e n t J 2 E E P ro f i l in g H e lp

Source coite and Selected Methods C P U lesults Memoiy lesults J2EE Profiting

0 M e t 110(1 g r o u p C P U i « s u i t s T o r t h r e a d M t p 8 0 9 Q - P r o c a s s o r 4 ■ (to ta l p u r e a b s o lu t e t im e 4 .5 3 m s) ■ (t o t a l p u r e t h r e a d C P U t im e 1 0 .0 m s) C Î

l_ j 100,0% • 3 Inv • samples.rnusimple,ejb.Conver1erBean_EJBObjectlmpl.dollarToYen(Lj3va/ma1WBIgDeclinal;)LJava/nnatWBisDeclmal, ■ [0 54(

C 3 62 4%- 3 Inv - com.sun.ejb.cDntain9rs.BaseContairier.prelnvoke(Uom/sun/ejb,NnvocallDn;)V- [0.158 net ms. - 2.82 total net ms) - (0.000 r

9 O 43 4% - 3 Inv. - com.sun.ejb.contalners.BassContaii-<er.autl-iortee(Uom/surVe)Wlnvocation;)Z- [0 782 net ms. -1.86 total net ms] - (0,06

9 C 3 25.6% - ,3 Inv, - com.sun.snterprlse.security.applicatlan EJBSecui1tyManager.aulhDrize(Uom/sun/enlerpriseiAulhorKationConte>tt;

®" £ 3 12 8%- 3 inv.- com sun.enterprise sccuntif ipplicatton EJBSecutllyManagorselPollcyCoiiloxKUava/langfSUlngjIjaYaflanii/Sl'if

» C 5 4 1 % - 3 Inv. - com.sun enterprise security,provider Polic\Wiapperlmplies(U3va/secuillyiProlecltonDomaln.liava/securltY/Pefm

Q 3,3%- 3 Inv. - corn sun.enterpiise.seCLirlty application EJBSecurityManager getCachedProtecltonDomatn(l.|3va/util/Set;Z)Ll3va/i

» C 3 1 3% - 3 Inv. - com sun enterprise securlty.application.EJBSecurltyManager lesetPollcyContertttjava/langfSliing.Llavanans/Strir

Q 0 8% - 3 inv, - corn sun.enterprise securltf.SecurltyContext getCurrentQLcomfeun/enterprise/securiWSecurltiContext; - W 036 m

Q 0.7% - 3 Inv. - com sun.enterprise.securttfauthortea.PollcyConlexlHandlerlnipl tielHandleiDataouomfsun/entaiprlsefsecunlv/e

Q 0,0%- 3 inv. - com sun.enterprise,securlty.SecurityCoritext.getPrlnclpalSet0Ljava/utll/3el,- [0 001 net ms, - 0.001 total nel ms|

©■C3 0.5%- 3 inv,- com sun enlerprlse.secuntyAulhorlzatlonComextlmpl gsllnstanceOLcorn/sun/enlerprlse/AulliorlzallonContext, - ¡0.00

9 C 3 71% ■ 3 inv. - com.sun.ejb,containers BaseContaIrier.pmlnvokeTx<Lcom/sun/ejb/lnvoca1ion;)V- [0.074 net m s.-0.323 total net ms] - (0

© ■ O 2 8% - 3 Inv, - corn.sun.enterprlse distribuletibi.J2EETransactionManagerlmpUsNullTransactionOZ- [0 041 net ms - 0.126 total pel

©- C 3 2.6% - 3 inv, - comsun.enlerprise.distributedlx J2EETransactionManagerOpt.getStatus0l - 10 072 nel ms. - 0,119 total net ms] - (0.C

O 0.1%- 3 inv. - com sun.ejb containers,BaseContainer gBtT)£A1tr(LcoinisunfejWlnvoca1ion;)l - [0.004 net ms, - 0.004 total net m s]-(0.

C *C 3 4 ,9% - 3 inv. - com.sun.enlerprise.utII-lnYacationManageilmpl.prelriVoke(Lcom/suitfenterprise/Componentlnvocation;)V-10.186 net ms.

®" (Z3 3.5% - 3 inv. - com.sun.ejb.conlainers.BaseContamer.getConterttLcom/suri/ejWlnvocation^Lcom/sunfeib/ComponentConrexI,- [0.042

$ □ 116% • 3 Inv. - com sun.enterprise iecuritySetuntyUiii iunMethoil(Llava)lann;ieflect>Method;L|ava/lano/Obiecl.lLlava/lanyOblei:l;L<om/sm

■ -■

[3 Accumulateti nel lim e per method tur (liread littp8090Pracessor 4 (total o f 49 methods, 315 Jnvocalfons) tzf

17,3% - 3 inv, - com.sun,ejb.container« BaseContainer*uìhorize(Uom/sun/ejb/invocallQn;)Z- [0 732 net ms] • (0.000 netms) E
11 8%- 3 inv. - sampies rmi,sinopie eJb.Converter8ean_EJBObiedlmpi,dollarToYen(Ljava/math/BlgDecìmal;)Ljava/math/8lgOecimal;- [0.540 ne<|il
8.9% - 27 Inv,- com sun.enterprise.securify.proYicfer PolicvWrapper.ìmplies(L]ava/sacuritv/PiotectionDomain;Ljava/security/Permission;)Z-10.40
6.8% -12 inv, - com.eun.enterprise.security.applicalioriEJBSeeurit^anagsr re3e1PolicyCùntexi(Ljava/ìangi3tring:Ljava/larig/8tring;)V- [0.398 nei
5,8% • 3 inv - com-s(jn,enlarprise.secimly.3pplic alioiì.EJBSac(.iiitiManager,floA5Privlleged(Ljava;iecunlyiPrìvllegeclExce(rtiohActionJL|wì/lartgfC
4.1% - 3 inv com.sun enterprise.util,lnvocalionWanaflerlmpl,pr®lnvoke(Uom/sun/enterprise/Comporienllnvoc9lion;)V- [0,186 nel ms] - (0,000 r
3.9% - 3 inv, * ctm.sun.enterpnse,u1il.]nvocatlonManageilmpl,postlnvcke(Uam/suritenteiprise/Componen1lnvocatlon;)V-10.177 net ms] - (0.000
3.5% - 3 inv. - com sun.ejb .eonrtalnsrs.BassComainet, prelnvoke(Lcom.<sun/ejbilnvocation,)V- [0.158 net ms]- (0 000 netms)
3.3%- 3 Inv • com.sun enterpri$e.securlty.applica1ion.EJBSecuriìyManagerge1CachetiProtectìonDomaln{ljava/ulil/Set;Z)L)avaisecuiily/Prole<tioi
2.6% - 6 Inv. • com sur,en1arprise,distributadt>!,J2EETiansactionManagerOpt gelStatusQI -10 119 net ms] - (0.000 net ms)
2.5% - 3 inv. • com.sun.enterprlse.securlty.application.EJBSecuntyManager authorlzefUom/suntenlerprise/AuthoiIzatioriConlexOZ- [0.114 net m
2.4% - 6 inv. • com.sun enterpNse.secutily.SecurìtyConlexl.setCurientQUDm/sun/enteriirìseisecurlty/Seci.irityConlex1; - [0,110 net ms] - (0 000 ne
2.1%- 27 inv - com.sun.enlerprise sscurilyprowderPolicWVrapper getPollCjiConflgForCont6xt(UaYa/lang/Slring;)LconVsun/enterprlse/securlty/pi
1.8%- 3 inv. - com.sun jtspl.Interceptortmpl.isTxCMNullOZ- (0,081 rie tm sl- (0,000 netms)

1.7%- 6 Inv. - com.sdn.enterprise.distribulee)teJ2EETransactlonManafleilrnpl.gelStatusOi-10.075 netms] - (0 ,000 netms)
1.6%- 3 inv,- com.sun.ejb eontainers.BaseCoiita!nerprelnvokeTx(Lconi/si,in/e)b/lnvocalion;!1/- [0.074 rietm sl - (0.000 nel ms)
1.5%- 3 inv - com.sun e)li.containers.u1il.pool.NonBlockingPijol,g8tOb|ect(Liav3flangiObÌ8Cl;)LJava/lang/Obiect;- [0.087 netms] - (0.000 netms)
1,4% - 3 Inv - c o m .s u n .e n te rp n s e ,s e c u i it y .S e c u i it iU ll l . r u n M e th o d (L ja v a / ia n B ir e t le c tM o th o d ;L la v ii/ la n B / O b] 8 c U lJ a v a / la n g ;O b] e c t ,L c o m / s u n ie jW C o

i.3% - 3 inv - c o m sun.ejb containers BaseContainei.postlnvoke(Lcoinrsun/ejWlnvocation;)V- [0.059 netms] - (0 000 netms)
1 2% -1 5 inv, - com sun.enlerprtse security provider PolicyConflgiiraUoriFaclorytmpI gelPollcyCOnfiauratlonlmpl(L)avanaii(|/Sliing;)Uorrt/s«n/anl<
1,2%- 3 inv - com sun.ejb containers Sla1elessS8SsionContaInei.releaseConl8Xt(Lcom/sun/ejbJlnvocatIon3V-10,053 netm s]- (0.000 net ms)
1.1% - 3 inv -_com sun.ejb conUìlneis StatelessSess ionConlamer, aetContext(Lcom/sunfeib/lnvocatlon.)Uom)sunfeiWComponeniConleiil: - IQ.i
" " - ^ .

TargetApp Status: Active, Running___________________________________ Instrumentation: Method group. 375 methods

Figure 5-5. In-depth instrumentation of selected EJB methods

Experiments have been performed to determine the overhead the tool

Incurs when used to Instrument J2EE applications. The Sun Petstore [88]

sample application was chosen for experiments due to its wide-acceptance

and relevance. Two of the most common interactions In the application, a

browsing interaction and an account update interaction were analyzed.

The browsing interaction consists of a sequence of web pages that the user

typically follows when looking for a product. The account update Interaction

consists of account retrieval and update pages followed by an action to save

the new data on the persistent storage.

The test environment was composed of Sun ONE Application Server 7

Standard Edition, running on a Sun E420R server with four 450MHz

96

UltraSPARC II processors, with 4GB of main memory, running the Solaris

Operating Environment, version 2.8.

In order to obtain the measurements, the appropriate classes to be

monitored were determined. Petstore is designed using a Model View

Controller [18][88] application framework that improves reliability and

maintainability. It was determined that the method p r o c e s s E v e n t from the

s h o p p i n g C i i e n t C o n t r o l i e r E j b is the first important point of entry in the

Petstore EJB layer and therefore a good candidate for instrumentation.

Leveraging this architecture as well as Internal knowledge of Sun ONE

Application Server, the method p r o c e s s E v e n t from the container artefact

S h o p p i n g C i i e n t C o n t r o l i e r E J B _ E J B L o c a l O b j e c t l m p l was chosen for

instrumentation, as this allows the capturing of the business method

implementation execution, as well as its associated container services. In

Sun ONE Application Server, the most relevant container services are

provided by the B a s e C o n t a i n e r class through Its methods p r e i n v o k e and

p o s t i n v o k e , and they can be easily observed In the Context Call Tree (CCT)

[3] graphs obtained in the tool.

Table 5-3 summarizes the results obtained when instrumenting Petstore

during load testing sequences generated using the OpenSTA [61] load

generator. Each testing sequence consisted of 10,000 consecutive recorded

interactions, preceded by two warm-up sessions of 100 and 1000

Interactions respectively. The recorded scripts (one for each interaction -

b r o w s e and u p d a t e a c c o u n t) consisted of several HTTP requests needed to

fulfil the Interaction, and all delays induced between HTTP requests during

recording were eliminated from the script.

Table 5-3. JVM-Level Instrumentation Results

Calls (M) Exec. Time (ms) Overhead (%) Instr./Called Methods

Browsing 3.93 4010253 2.0 439 125

account update 170.4 10771041 11.8 2546 891

The calls column displays the total number of calls (In millions) for the

Instrumented methods. The execution time column presents the total

execution time for the instrumented test-run. The overhead represents the

instrumentation overhead Induced by the injected bytecode

97

instrumentation; it was obtained by comparing the response times in the

instrumented system with the response times in the non-instrumented

system. The last two columns show the number of instrumented methods

and the number of methods actually executed (called at least once) as part

of the test run.

The overhead is acceptable considering the fact that all the called methods

were instrumented (excepting the ones In the Java core classes). Having

such call graphs can prove particularly useful as they cover the entire J2EE

stack (from the component level to the container services) and can help

discover the reasons for performance degradations. Note that the overhead

induced when performing only top-level instrumentation used In system

wide performance scanning is negligible. The results presented in Table 5-3

apply only when further investigations are required and in-depth

instrumentation is selected.

98

5.3 Probe Insertion Summary

Chapter 5 presented the procedure used by COMPAS to insert monitoring

probes in target applications, the COMPAS Probe Insertion (CPI) process. It

uses component metadata to extract essential deployment information

needed to generate the probes. This guarantees that the insertion process

is portable across different platforms.

In addition, a JVM-level instrumentation approach that can offer an

alternative to the COMPAS probe insertion process was presented. This

approach can be integrated in COMPAS using the instrumentation FEP.

99

Chapter 6 Adaptive Monitoring and

Diagnosis

Automatic alert detection based on user-definable policies

Models are used to drive the monitoring target coverage

Automatic focusing of monitoring probes on performance hotspots

Collaborative approach to adaptation using inter-probe collaboration

Centralised approach to adaptation using global model knowledge

Automatic Diagnostics based on model knowledge

Rich semantics in diagnosis from user-recordable interactions

100

6.1 Introduction

COMPAS provides a monitoring infrastructure that uses monitoring probes

to instrument components in target applications.

In order to minimise the monitoring overhead imposed on the running

application, the target coverage can dynamically change at runtime. This

adaptation process is based on the ability of probes to be switched into

active and standby monitoring states.

Diagnosing the performance problems in an interaction involves identifying

the particular components that are directly responsible for performance

degradation observed by multiple components participating In the

Interaction.

The monitoring adaptation process is related to the diagnosis process

because the target coverage profile is directly dependent on the distribution

of diagnosed performance hotspots. The activation and deactivation of

monitoring probes are correlated with positive and negative diagnosticatlon

of performance Issues by the probes.

This chapter proposes two adaptation-and-dlagnosls schemes that both aim

at reducing the monitoring overhead and discovering the origins of

performance problems in the target systems.

The first scheme employs collaborative decision-making processes between

the monitoring probes. By communicating with each other, probes can

automatically detect the origins of performance problems and can switch

themselves Into standby and active states as necessary.

The second scheme involves a centralised approach in which the diagnosis

and adaptation processes are coordinated by the centralised monitoring

dispatcher. Probes do not have a high degree of independence and rely on

control commands from the monitoring dispatcher to switch into standby or

active states. In addition, the monitoring dispatcher discovers the source of

performance problems by performing analysis on the alerts received from

the probes.

The main difference between the collaborative and the centralised decision

schemes lies in the degree of probe independence mapping to CPU and

101

bandwidth overhead attributed to the probes and dispatcher; the

advantages and disadvantages of both schemes follow the effects of this

difference. In the former, more communication occurs between the probes

that also use more CPU time and this may not be applicable In highly

distributed, low-cost deployments. On the other hand, less communication

occurs between the probes and the dispatcher and less processing takes

place In the dispatcher; this favours the case of a remote dispatcher

running on a slow machine with a poor network connection, possibly over

the Internet. The latter scheme targets the opposite scenario where EJBs

are heavily distributed across nodes and the dispatcher runs on a powerful

machine connected to the application cluster via high-speed network.

102

6.2 The Need for Modelling

COMPAS adopts a model based adaptation methodology for reducing the

overhead of monitoring. In COMPAS terminology, a dynamic model (or

model) consists of the monitored components (EJBs) and the dynamic

relationships (interactions) between them. Each interaction is a set of

ordered method-calls through the EJB system, corresponding to a business

scenario (or use case) such as "buy an Item" (Figure 3-5) or "login". The

UML representation of an Interaction is a sequence diagram.

Models are essential In reducing the monitoring overhead without the risk of

missing performance hotspots in the system. If no models have been

obtained for an application, all components must be monitored in order to

Identify a potential problem. In contrast, when the interactions are known,

It is sufficient to monitor the top-level components for each interaction.

The following example illustrates the need for models In reducing the

monitoring Impact.

Figure 6-1 shows a system with four EJBs, where no model is known. In

order to be able to capture any potential performance problems, monitoring

would have to be active for each individual EJB.

Figure 6-1. Model Information Not Available

In contrast, the Illustration in Figure 6-2 shows the same system with the

added model knowledge, in this case one interaction involving all four EJBs.

103

Figure 6-2. Model Information Is Available

In the above-represented interaction, EJB 1 is the top-level component.

Considering the calls between components as synchronous (i.e. the caller of

an EJB will be blocked until the EJB finishes executing the call), all the

performance degradations in any of the four EJBs will be observable in EJB

1. In the example, if EJB 3 exhibits an execution time increase, this increase

will be measured in EJB 1 as well. All calls in EJB systems with the

exception of messages sent to Message Driven Beans are synchronous. It

can be observed that in the case where the dynamic model is known, the

only EJB that needs to be instrumented in order to detect a performance

decrease is EJB 1. This represents a 75% reduction of monitoring overhead

for the presented scenario. For complex, long running systems, a significant

overhead reduction is possible using adaptive monitoring.

Theses models can be generated using the interaction recorder, which is

described in section 6.3.

6.3 Obtaining Models: Interaction Recorder

COMPAS uses non-intrusive probes to extract method execution events

from the running application. It then orders the events into complete

interactions by using time stamps collected by the probes. During training

sessions, developers "record" the required scenarios (such as "buy a book")

by going through the required steps in the system while the interaction

recorder obtains and stores the generated data. They can then visualise the

interactions in automatically generated UML sequence diagrams. This

approach has the advantage that the recorded interactions directly mirror

business scenarios in the system and therefore the monitoring adaptation

process can be based on the system design and has good chances of

indicating the meaningful context for potential problems. To overcome clock

synchronisation and precision issues in multi-node heterogeneous

environments or even on locally deployed applications, the interaction

recorder instructs the probes to induce a custom artificial delay into the

target methods, thus guaranteeing the order of the received events.

6.3.1 Interaction Recorder Functionality

The COMPAS Interaction Recorder provides the functionality of extracting

and ordering method invocation events from the COMPAS Monitoring

Framework. It uses the event-consumer client-side FEP (Section 4.4.3) in

order to be able to consume method invocation events processed and

dispatched by the COMPAS Monitoring Dispatcher. Figure 6-3 illustrates the

main functional elements of the Interaction Recorder.

105

The Interaction Recorder uses the Model Sequencer to coordinate the

ordering of received invocation events into interaction models (stored in the

form of interaction trees). The default state of the Model Sequencer is the

off mode. Developers can record execution models by switching the

sequencer in the recording mode.

In recording mode, the sequencer receives and stores processed invocation

events from the monitoring probes via the Monitoring Dispatcher. The data

carried by the invocation events includes the invoked method ID, invocation

start time and invocation end time. An important consideration in the

recording process is that simultaneous interactions are not allowed in order

to facilitate the extraction of the interaction trees. The sequencing process

commences when the user decides to terminate recording mode. The

following steps are executed as part of the sequencing process:

106

1) The data set containing the stored method invocation events is ordered in the

ascending order of the method invocation start timestamps (i.e. methods that

started execution earlier are placed at the beginning of the data set).

2) Parsing the method invocations data set for each method 8 the list of methods

preceding it in the sorted data set is analysed to find a possible enclosing

method. As illustrated in Figure 6-4, method (p encloses method 8 only in

situation c) where the start and end time of method 8 are included in the interval

created by the start and end time of method cp.

start (p end

Figure 6-4. Enclosing Methods

3) If an enclosing method cp is found that satisfies the case presented in Figure 6-4

c), then method 8 is added as a child to method cp in the interaction tree that

represents the recorded interaction model.

The sequencing process uses method invocation timestamps recorded by

the monitoring probes. For methods with considerable execution times (in

the order of hundreds of milliseconds or more), time measuring imprecision

is not an issue as containment relationships can be observed easily. For

methods with small execution times, however, the method duration might

be reported as 0 ms because of the inherently imprecise Java time API [40].

When more methods report a duration of zero and an identical starting

time, it is impossible to determine their sequence precisely. To overcome

this deficiency, the probes can introduce an artificial delay into their target

components. Users can select a delay value (in ms) to be induced in the

executing target components' methods. The probes are instructed to induce

the delay when the state of the Model Sequencer is changed into recording

mode. When the state is reverted to the off mode, the probes are instructed

to reset the induced delay to zero in order to remove the effect on

application functionality in normal operating conditions. This mechanism

ensures that the target application is artificially slowed down only for the

period of interaction recording and does not require the server to restart or

107

the application to be redeployed when resuming its normal operational

status. This mechanism is however not required when high-precision

timestamps can be obtained (Section 4.3.2).

The output of the sequencing process is the interaction tree, which is a data

structure that corresponds to the recorded call sequence. Caller methods

(that call other methods) will be represented as the parent nodes of the

nodes representing the called methods. All the leaves of this tree are

methods that do not call other methods. Determining the methods that call

other methods is realised using the above-mentioned determination of

enclosing methods.

The interaction tree is represented visually by the Interaction Recorder, as

shown in Figure 6-3. In addition, interaction models can be saved to

physical storage using the XML format. This enables future processing of the

saved interaction models by the adaptation process (Section 6.5) as well as

by the UML sequence diagram generator. In addition, the interaction models

can be used by third party processes that require an understanding of the

runtime behaviour of the enterprise system.

The Document Type Definition (DTD) [107] file for an interaction is

presented in the code snippet below:

<?xml version=" 1. 011 encoding="UTF-8"?>
<!ELEMENT interaction (call+)>
<!ATTLIST interaction

name CDATA #IMPLIED >
<!ELEMENT call (call+)>
<!ATTLIST call

ejb CDATA #REQUIRED
method CDATA #REQUIRED
timestamp CDATA #REQUIRED
duration CDATA #IMPLIED>

Based on this DTD, XML files containing the inter-component calls for each

interaction in the system can be produced. Each XML file corresponds to

exactly one interaction.

Figure 6-5 presents a collaboration diagram depicting a sample scenario in a

fictional e-commerce environment that is the addition of an item to a virtual

client-shopping cart. The UML notes attached to the elements of the

diagram contain performance annotations as standardized by the UML

Profile for Performance [60].

108

« P A s te p » A L E R T ^
{scenProb=0 7,PAdemand
={'msr','mean'.(3000 ,'ms'))}

« P A s te p » ^
{PAdemand=('msr7
mearï.(2900,'ms'))}

1: addltenr ShoppingCart

« a c to r»
Web Form

1.1: chéckPrice-^ Inventory

1.1.2: processDiscount^
« P A s te p »
{PAdemand=('msr7
mean',(100 ,'ms'))}

« P A s te p » A L E R T
{PAdemand=(,msr','mean'.(2400,‘ms'))}

« P A s te p » ^
{PAdemand=('m
sr'.'mean'^SOO,
'ms'))}

^1.1.1: checkAvailability

« D a ta b as e»
GenericDB

Warehouse

1.1 1 1: updateWarehouseDB"0 -

Figure 6-5. Sample Use Case

The following code snippet presents the addltem interaction as recorded by

the COMPAS Interaction Recorder.

<?xml version="l.0" encoding="UTF-8"?>
<!DOCTYPE interaction SYSTEM "interaction.dtd" >
■«interaction name= "Adding an Item to the User Shopping Cart">
ccall ejb="ShoppingCart" method="addltem" timestamp="0"
durât ion="3 0 0 0">
ccall ejb="Inventory" method="checkPrice" timestamp="50"
duration="2 900" >
ccall ejb="Warehouse" timestamp="12 0" method="checkAvailability"
duration="2500">c/call>
ccall ejb="CRM" timestamp="2700" method="processDiscount"
duration="100">c/call>
</call>
c/call>
c/interaction>

6.3.2 Advantages & Disadvantages

The main advantage of the Interaction Recorder approach is that the

developers conduct the recording processes themselves, therefore

associating business semantics to the recorded interactions. This increases

the likelihood of understanding perform ance problems in their business

context.

109

If the interactions were automatically recorded at runtime, without

developer intervention, they could contain method calls that are irrelevant

for understanding the origins of performance problems. This issue could be

exacerbated in the case of complex interactions where isolating the

performance hotspots is especially sensitive to identifying the appropriate

execution context.

One of the disadvantages is that for interactions that the developers have

not recorded, no information is extracted for presentation in UML or for the

adaptation processes.

Other disadvantages of this approach are that interactions can only be

recorded during training sessions in "clean" environments where developers

have total control of the system; and the process does not support multiple

concurrent interactions. The reason for this limitation is related to the

inability to associate and order events corresponding to a particular

interaction, when multiple interactions are executing.

With this approach, a trade-off is made between the static, more

semantically rich Interaction Recorder approach and the dynamic interaction

discovery of other, more intrusive approaches such as VisOK [50] and Form

[77]. VisOK [50] uses a modified RMI compiler to insert instrumentation

code in the RMI client stubs in order to extract execution traces. The traces

contain calls between distributed objects but they do not provide

component-level information because the approach is not targeted at

component-based platforms. When dealing with EJB components, VisOK

suffers from the same conceptual mismatch as all other JVM level profiling

tools such as [65] and [30]. Similarly, the Form [77] framework can

generate UML execution models from object interaction traces, by using JVM

instrumentation. It poses the same problems as VisOK and it does not

provide deliberate support for distributed interactions.

The COMPAS Interaction Recorder benefits from component-level semantics

and inherently supports distributed calls since the probes are attached

directly to the remote EJBs. In addition it does not mandate any changes to

the JVMs or application server implementations.

110

6.4 Generating Alerts: Detecting

Performance Anomalies

6.4.1 Detection

This section presents a simple means of detecting anomalies in the

performance data collected by COMPAS proxies. This is not intended to be

an exhaustive discussion of the methods for performance anomalies'

detection, but rather as an example of how it could be done. The detection

of performance anomalies is the basis upon which the alerts are raised;

however, the exact means to detect anomalies accurately is out of the

scope of this section.

Let us consider an internal data buffer present in each COMPAS proxy. It

can be a stack-like structure of collected execution times for each method in

the target EJB of the proxy. An illustration of such a stack is presented in

Table 6-1.

Table 6-1. Sample Collected Data Buffer

Execution

ime(ms)

3

2

46

52

54

Method

m

221

230

233

2209

2350

2345

Each column marked Method x (1 <= x <= m) represents the execution

time history for one of the methods in the target EJB. Each row represents

111

the performance data associated with a recorded method-call event. The

first non-greyed row contains the last recorded execution data for each

method. In the example below, Method 2 has one less recorded call than

Method 1, which has n-recorded executions.

Note that the actual implementation of the call stack might consist of

several one-dimensional arrays of recorded execution times, one for each

method, rather than one single multi-dimensional array, as Table 6-1

suggests.

In the example, the last recorded execution of Method 1 is highlighted to

emphasize the fact that it is considered a performance anomaly. One of the

simplest ways to detect an anomaly such as the one illustrated, is to

consider performance thresholds for each method.

The thresholds for a method can be:

• Absolute: at any time, the execution time t for the method must not

exceed X ms, where X is a custom value.

• Relative: at any time, the execution time t for the method must not

exceed the execution the nominal execution time N of the method by

more than a factor F times N, where F is a custom value. Nominal

execution time is a loose term here; it can denote the execution time of

a method in a warmed-up system with a minimal workload for

example.

• Arbitrary complexity: at any time, the execution time t for the

method must satisfy the relationship:

a) t < f(k); f : {0, 1, 2, ... n-1, n} -> Q, where

i) k is the discrete event counter, increasing with each

method call, 0 < k < n

ii) n is the size of the buffer

iii) Q is the interval of acceptable performance values (e.g.

execution times)

iv) f is the custom "acceptable performance" function

mapping the current call (with index k) to an acceptable

performance value (e.g. execution time) and it can use

the previous history of the method's performance.

112

In the example illustrated by Table 6-1, a relative threshold set to 3 times

the nominal execution time of 50ms yields the nth execution of Method 1 as

a performance anomaly.

The historical call data (the internal data buffer) in the proxies can be used

to make complex associations about detected performance anomalies. For

instance, the monitoring dispatcher (which in case of alerts receives the

buffers from the proxies regardless of the adaptive management model) can

correlate performance anomalies from different proxies and infer causality

relationships. In addition, it can correlate such data with workload

information in the system or database information in order to make

associations that are more complex.

Anomaly detection has been approached by the research community and

there is a significant body of work in particular for intrusion detection

systems. Such systems typically use a combination of access-control and

resource utilisation policies in order to detect potential threats [72]. Other

systems use state transition [39] or call-stack [32] analysis to determine

the occurrence of potential intrusions. COMPAS provides the mechanism to

include anomaly detection policies that work optimally for particular

environments. The alert FEP (Section 4.4.3) in combination with other input

FEPs (Section 4.4) can be used to enforce complex policies that take into

account several data sources. In addition, since anomaly detection

techniques can impose significant overhead [52], such logic can be added at

the client-side by using output FEPs (Section 4.4.1) and executed

asynchronously.

6.4.2 Design and Customisation

The design of the anomaly detection logic, presented in Figure 6-6, supports

the addition of external strategies through the alert FEP (Section 4.4.2).

COMPAS provides the basic infrastructure to be used by such strategies by

enforcing communication and structural rules.

113

forwards events

«uses»

«MBean»
ProbeDispatcher

+ alert ()

«uses»

ProbeService Locator

«creates»

stores and sends

MethodExecutions
History

0..1
«interface»

Anoma ly DetectionStrategy

+ methodlnvoked ()

\

i

«inspects»

«creates»
/

' ' If
«strategy» «strategy» «strategy»

AbsoluteValueStrategy RelativeStrategy CustomStrategy
------- -—_ ---------------- .. - ■ ---- ... -

«creates»

at any time, the execution
time t for the method must
not exceed X ms, where X
is a user-defined value.

at any time, the execution
time t for the method must
not exceed the nominal
execution time N of the
method by more than a
factor F times N, where F is
a user-defined value.

Figure 6-6. Design of Anom aly Detection Logic

The probe dispatcher handles each invocation received from the probe

instances. It stores the invocation data in a M e t h o d E x e c u t i o n s H i s t o r y

114

instance, corresponding to each method of the target component

corresponding to the probe dispatcher instance. The execution history is a

circular buffer of a customisable size. In addition to containing the execution

times for each method invocation (see Section 6.4.1), it stores the total

number of invocations since the instance was created, as well as the overall

average execution time for the entire lifetime of the instance. The method

history object is sent to the appropriate anomaly detection strategy, for

each method invocation. This is a high-performance operation, as the probe

dispatcher and the anomaly-detection strategy instance are co-located in

the same JVM, and the history object is passed by reference. If, for the

method currently being executed, an alert is detected by the strategy in

use, a description of the alert must be returned. In order to determine the

strategy that must be used, the probe dispatcher uses the

ProbeServiceLocator factory, which returns the required strategy.

The use of the strategy pattern [34] facilitates the exposure of the alert FEP

(Section 4.4.3) which can be extended with custom alert-generation logic

from third-party providers. In addition to the history of method executions,

such plug-ins could take into account physical resource usage and workload

information when identifying non-linear performance values.

115

6.5 Model Based Adaptation: Overview

In order to reduce the total overhead of monitoring component-based

applications, the use of adaptive monitoring techniques is proposed. This is

aimed at maintaining the minimum amount of monitoring at any moment in

time while still providing enough data collection to identify performance

bottlenecks.

Adaptive monitoring probes can be in two main states, illustrated in Figure

6-7: active monitoring and passive monitoring (or stand-by monitoring). In

the former, probes collect performance metrics from their target

components and report the measurements to the monitoring dispatcher.

The second state defines the light-weight monitoring capability of probes as

it employs much less communication overhead. When monitoring passively,

probes collect performance metrics and store them locally. In this case,

measurements are not sent to the monitoring dispatcher unless a

performance anomaly has been detected (Section 6.4), or the local storage

capacity (the monitoring buffer) has been depleted. When the buffer

capacity is exceeded, the probes send only a summary of the data in the

buffer, which can be store at the client-side for future reference. The

summary includes the total number of invocations of each of the methods

and an average response time. Therefore, the operation of sending data

occasionally to the dispatcher is inexpensive.

116

Figure 6-8 presents an example with several components in an application,

each enhanced with the proxy layer (the probe).

i
»

I
I
I
I

active stand-by call

Figure 6-8. Dynamic Activation of Probes

117

Some of the probes are active and some are in stand-by. The arrows

indicate the calls between the components. The components are organised

into levels of depth considered from the Entry Level (in a J2EE scenario, the

entry level could correspond to the Web components such as Servlets or

JSPs). LI contains components called only from the Entry Level while each

subsequent level contains components called from the previous level only.

The illustration does not depict real components rather it contains

component views. One real component can exist in several different levels,

depending on the interactions in which it participates. Component (p, for

instance, is in both Level 2 and Level 3 since it participates at different call

depths in two different interactions.

Only the components a and |3 in Level 1 have their probes in active

monitoring mode by default. All the performance anomalies in L2 and L3

can be observed in LI, as only synchronous calls are being considered.

Using the collaborative approach (Section 6.6), performance alerts are

transmitted from higher levels to lower levels and the probes corresponding

to the components diagnosed as the problem originators will be

automatically activated. In the centralised approach (Section 6.7), the

alerts will follow the same logical direction (higher levels to lower levels) but

the decision to diagnose and activate probes is the responsibility of the

monitoring dispatcher. In the example, the activated probe in Level 2

corresponds to the 8 component where the performance problem observed

in Level 1 originates.

The COMPAS Probes can be considered as monitoring agents [112] that

have varying degrees of autonomy (Section 6.6.1 and Section 6.7.1).

Probes are able to perceive their environment (by extracting performance

data from their target EJBs). They can respond to changes occurring in the

environment by taking actions such as switching themselves into stand-by

mode or alerting the monitoring dispatcher. The goal of COMPAS probes is

to minimise the monitoring overhead and they take appropriate action to

achieve it (depending on the management scheme - local or centralised).

Finally the COMPAS probes exhibit a degree of collaboration with external

entities (depending on the management scheme - collaborative or

centralised, the proxies can collaborate with each other or with the

monitoring dispatcher).

118

An important note is that the correct functionality of the adaptation and

diagnosis process is directly dependent on the accuracy of the anomaly

detection strategy that is used (Section 6.4).

119

6.6 Collaborative Diagnosis and Adaptation

In the collaborative approach, probes have a high degree of autonomy.

They collaborate among themselves to determine which component is

causing particular performance degradation. Additionally, they decide which

components need to be actively monitored and which components can be

monitored in stand by. The monitoring dispatcher however does not take

any decision with regard to switching probes into stand-by or active states.

6.6.1 Probes as Independent Collaborative Agents
Each probe has knowledge about the neighbouring (upstream and

downstream) probes. In relation to a Probe X, upstream probes correspond

to the EJBs that call the EJB represented by Probe X. Downstream probes

are the probes corresponding to EJBs being called by the EJB represented

by Probe X. Such relationships are illustrated in Figure 6-8 where probes in

lower levels of depth are considered upstream in relation to probes in higher

levels of depth.

The monitoring dispatcher is responsible for sending vicinity information to

all probes. This operation is performed as new interactions are discovered

or recorded. The vicinity information is sent to already existing probes

(corresponding to existing EJB instances) as well as to new probes as they

are being created. Having knowledge of the vicinity information, probes can

collaboratively infer the source of the performance degradation.

120

Figure 6-9 illustrates with an example the communication pathways

between the monitoring probes and the monitoring dispatcher in the

collaborative approach. C l, C2 and C3 are components that have

monitoring probes attached. In the diagram, the components call each other

in the C1-C2-C3 call-path and C3 is responsible for a performance problem.

Rather than each component probe sending alert information to the

monitoring dispatcher, they send alert information to the component higher

in the call-path. Therefore, the alert path is C3-C2-C1, the opposite of the

call path. In the example depicted in Figure 6-9, C3 detects an anomaly in

its execution history. It signals the anomaly by sending an alert to the next

component up-stream, C2. C2 analyses its own execution history and the

alert received from C3 and infers that the anomaly observed in its execution

history is fully caused by the anomaly in C3 that has been signalled through

the alert from C3. C2 passes on the alert to C l, but does not take any other

action. Similarly, C l receives the alert from C2 and infers that the alert

matches the observed performance anomaly fully so decides not to take any

action.

The outcome of the collaboration between the probes is that the only alert

that will be sent to the dispatcher is the one generated by C3.

121

A probe performs the following steps (illustrated in Figure 6-10) to discover

the EJB where the problem originates (diagnosis):

r obtain
performance data

^ «start»
method is invoked

[actively monitoring] send data to
dispatcher

analyse data add data to
buffer 1

[no alert]

[performance non-linearity]

[buffer not full] . <<end»

[buffer full]

a lert all
probes

upstream

[no alerts from downstreamj

dump buffer to
dispatcher

A

alert dispatcher and
activate monitoring

[downstream alerts]

<

[alert is not caused by
downstream probes]

[downstream alerts match
non-linearity]

Figure 6-10. Collaborative Diagnosis and Adaptation

1) Collects performance data when an EJB method is invoked.

2) If in active monitoring, sends performance data to dispatcher.

122

3) Adds performance data to its internal buffer.

4) Analyses the new buffer containing the new data.

5) If there are no performance anomalies (Section 6.4) and the buffer is full, dumps

buffer to the monitoring dispatcher for storage and / or further analysis. Activity

ends.

6) Performance anomalies having been detected, alerts all the probes upstream.

The reason is that the probes upstream can then consider this notification when

deciding whether or not the performance issue originates in one of them or in

other probes downstream from them.

7) If other alerts from downstream have been received (by this probe), it infers that

its target EJB might not contribute to the performance anomaly and activity

jumps to step 8. Otherwise, the only contributor to the anomaly is its target EJB.

In this case, it alerts the monitoring dispatcher of the performance problem;

dumps the local buffer to the dispatcher for storage and further analysis; activity

ends.

8) Since other probes downstream have exhibited performance problems, it must be

decided whether they are completely responsible for the detected anomaly. The

algorithm for taking this decision can be as simple as computing the numeric sum

of the anomalies observed downstream and comparing it to the anomaly

observed at this probe. If they are equal within an acceptable margin, it can be

decided the probes downstream are the only contributors to the performance

issues. The algorithm could be extended to include historical factors (Section

6.4).

9) If the probes downstream are fully responsible for the performance issue the

activity ends.

10) If this probe has a contribution to the performance anomaly, alerts the

monitoring dispatcher and dumps its local buffer.

The procedure for dumping the buffer to the dispatcher involves creating a

summary of the data in the buffer and sending the summary only. The

summary contains data such as number of method executions and average

execution time. This avoids the possible duplication of data received by the

monitoring dispatcher in the case of active monitoring when data for each

method invocation is already sent to the dispatcher before checking for

performance anomalies.

123

6.6.2 Emergent Alert Management and Generation
In the collaborative approach, probes decide collaboratively which EJBs are

responsible for performance degradations. Information flow between probes

is essential to the decision making process. Although numerous alerts may

be raised by individual probes (in a direct correspondence to the cardinality

of each interaction), only a reduced subset of the alerts are actually

transmitted to the monitoring dispatcher. In this scheme, "false" alarms are

automatically cancelled as soon as the real origin of the performance

degradation is detected. The "real" performance hotspots thus emerge from

the running system due to the collaboration between the probes. This

functionality is illustrated in Figure 6-9 where only the probe corresponding

to component C3 sends an alert to the dispatcher.

6.6.3 Advantages and Disadvantages

The major advantages as well as disadvantages derive from the

collaborative property of this approach.

Potential Advantages:

- The network traffic between the proxies and the monitoring

dispatcher can be significantly reduced, as only relevant alerts and

buffer dumps are sent over the network. In case where the EJB

application and the dispatcher are located on different machines,

the reduced network traffic constitutes an even more significant

advantage.

- Although the network traffic between the proxies can be

significant, typically, most of the EJBs corresponding to a

particular interaction are collocated on the same machine. This

translates into the fact that collaborative messages between

proxies are usually sent locally, thus reducing the total

communication overhead.

Potential Disadvantages:

Since the proxies exhibit significant decision-making capabilities,

their computational overhead can be important. They can

potentially slow down the execution of their target EJBs,

complicating the discovery of authentic performance issues.

124

- In cases where the EJB application is heavily distributed, the

communication between collaborating proxies can become a

source of significant overhead.

- The performance data buffer is sent to the dispatcher only when

full or when an authentic alert is detected. The addition memory

requirements for the performance data buffers can significantly

change the footprint of the EJB application, and can even lead to

important overall performance degradation if total memory

capacity is often reached (and therefore swapping occurs

frequently).

6.6.4 Applicability

Considering the advantages and disadvantages of this approach, the domain

of applicability favours environments having the following properties:

- The client-side of COMPAS (the GUI, storage and centralised

monitoring dispatcher) is remote to the running EJB systems. This

is actually a normal running property of production systems being

monitored.

- Interactions are not heavily distributed (most of the EJB instances

corresponding to the same interaction are collocated on the same

physical machine).

- Memory and CPU resources are not scarce compared to bandwidth

resources.

- The client machine (running the client-side COMPAS) does not

have significant resources available.

125

6.7 Centralised Diagnosis and Adaptation

In the centralised scheme, probes have a smaller degree of autonomy than

in the collaborative scheme. Probes send all the alerts to the monitoring

dispatcher, which is responsible for filtering the alerts, finding performance

hot spots and instructing probes to change their states between active and

stand-by.

6.7.1 Probes as Quasi-Independent Agents
In this scheme, probes are not collaborative, instead they communicate

only with the monitoring dispatcher. As in the previous scheme, each probe

maintains a buffer with collected performance data and has the capability to

detect a performance anomaly by performing data analysis on the local

buffer. Probes however do not have knowledge about their neighbours and

do not receive alert notifications from downstream probes. Therefore, they

do not have the capability of discerning the source of performance issues

and must report all locally observed anomalies to the monitoring dispatcher.

Dispatcher

Figure 6-11. All probes communicate with the dispatcher

Figure 6-11 illustrates the centralised approach showing the communication

pathways between the monitoring probes and the monitoring dispatcher.

C l, C2 and C3 are components that have monitoring probes attached. In

the diagram, the components call each other in the C1-C2-C3 call-path and

126

C3 is responsible for a performance problem. In the collaborative approach,

probes do not communicate with each other, instead they send all the alerts

to the monitoring dispatcher. In the example, C3 detects an anomaly and

forwards an alert to the monitoring dispatcher. Since C2 calls C3, the C3

anomaly is observed in C2 as well, so C2 sends an alert to the dispatcher.

Similarly, C l will send an alert to the dispatcher upon detecting the

performance anomaly caused by C3. The monitoring dispatcher, using

model knowledge, can order the alerts corresponding to the call trees and

can infer the origin of the performance problem. Both C l and C2 alerts can

be matched to the C3 alert and consequently the monitoring dispatcher

infers that C3 is responsible for the performance degradation and activates

the probe.

A probe performs the following steps (illustrated in Figure 6-12) for

detecting a performance anomaly (Section 6.4):

obtain 'w_
performance data

[actively monitoring]

a «start»
method is invoked

send data to
dispatcher

Figure 6-12. Probe in Centralised Diagnosis and Adaptation

127

1) Collects performance data when an EJB method is invoked.

2) If in active monitoring, sends performance data to dispatcher; activity ends.

3) If in stand-by monitoring, adds performance data to the internal buffer.

4) Analyses the buffer containing the new data.

5) If there are no performance anomalies and the buffer is full, dumps buffer to the

monitoring dispatcher for storage and / or further analysis; activity ends.

6) If a performance anomaly has been detected alerts the monitoring dispatcher of

the performance problem; dumps the local buffer to the dispatcher; activity ends.

6.7.2 Orchestrated Alert Management and Generation
Using model knowledge (e.g. obtained by the Interaction Recorder Section

6.3) the monitoring dispatcher analyses each alert putting it into its

interaction context. Upon receiving an alert from a probe, the dispatcher

performs the following steps (illustrated in Figure 6-13):

parse the
corresponding

interactions

ye

V

V

[no alerts from downstream]j

[downstream alerts]

[alert is not caused from
downstream]

[downstream alerts match
non-linearity]

• <
«end»

«start»
alert received

issue client
alert;

activate
monitoring

Figure 6-13. Dispatcher in Centralised Diagnosis and Adaptation

1) Parses the interaction corresponding to the probe that has generated the alert

and identifies the downstream probes

2) Checks for any other alerts received from downstream probes

3) If there are no alerts from downstream, the dispatcher infers that the

performance anomaly originates in the EJB corresponding to the probe that

generated the alert. No other EJBs downstream have exhibited a performance

problem; therefore the only contributor to the anomaly is the target EJB of this

probe; sends an alert to the appropriate listeners (e.g. GUI); activates the probe

that generated the alert; activity ends.

4) Since other probes downstream have exhibited performance problems, it must be

decided whether they are completely responsible for the anomaly detected

(Section 6.4) by this probe. The algorithm for taking this decision can be similar

to the one adopted in the collaborative approach (Section 6.6.1, step 8).

5) If the probes downstream are fully responsible for the performance issue, activity

ends.

6) If the alerting probe has a significant contribution to the performance

degradation, sends an alert to the appropriate listeners (e.g. GUI), activates the

probe.

6.7.3 Advantages and Disadvantages

The main difference between the centralised decision and local autonomy

schemes lies in the degree of independence attributed to the proxies. The

advantages and disadvantages of both schemes reflect follow the effects of

this difference.

Advantages:

- The proxies do not collaborate among themselves in this scheme

and this nullifies the overhead of intercommunication associated

with the local autonomy scheme.

- The simple structure of the proxies yields a low computational

overhead in the targeted system, as decision making processes

are moved in the client side. This has the benefit of leaving CPU

resources free in the EJB system to be used by the running

application.

- The amount of performance data stored in the local buffers is

smaller than in the local autonomy scheme, as alerts are raised

more often (they are only filtered at the client side). This frees

memory resources in the target application.

129

- The reduced complexity of this approach makes it easier to

implement.

Disadvantages:

- The communication between the proxies and the monitoring

dispatcher is significant. This can prove costly particularly in the

case of the client machine being remote to the running system.

- The computational resources required by the monitoring

dispatcher increase proportionally with the size of the monitored

EJB application.

- Since the monitoring dispatcher coordinates the transition

between the standby and active monitoring states, the

communication overhead can become important.

6.7.4 Applicability

This scheme is applicable in environments exhibiting the following

properties:

- The client side of COMPAS is run on the same machine as the

EJBs, or they run on different machines connected on a high­

speed network.

- The EJBs run in multiple JVMs and there is a high degree of

remoteness associated with the EJB interactions.

- The client-side machine has adequate processing, memory and

bandwidth resources available to run the intensive operations

required by the monitoring dispatcher.

6.7.5 Design of Centralised Logic

The centralised approach to diagnosis and monitoring adaptation employs

significant logic in the client side of the COMPAS framework.

The main entities involved in the provisioning of adaptation and diagnosis,

are presented in Figure 6-14. The CentralisedAlertManager is the main class

and it is responsible for receiving the alerts from the monitoring dispatcher

via the MonitoringEventsListener interface. The

AdaptivelnteractionsController is used as the processor for interaction

models. The interaction models, containing trees of component-method

calls, can be obtained using the Interaction Recorder. A subset of all

130

available interactions can be selected for consideration by the adaptation

and diagnosis process. The selection is performed by the COMPAS user and

is forwarded to the CentralisedAlertManager.

The DiagnosisProcessor is the entity responsible for identifying the origin of

a performance hotspot. It schedules diagnosis operations (DiagnosisTask

instances) that analyse the current and previous alerts and infer the source

of the performance degradation.

Figure 6-14. Centralised Control Entities

Several data-structures are used by the centralised approach in order to

reduce the time needed to compute various tasks. Some of them fulfil a

caching role, by essentially storing pre-processed information for later

retrieval. They are called caching data structures. In addition, other data

structures store associations about the current state of the monitoring

infrastructure. Such structures are called operational data structures. One

of the most important structures stores associations between the monitored

beans and their monitoring states (detailed in the following paragraphs). A

background thread, the BeanStateRefresher thread continuously verifies

and marks the state of each bean. This ensures that active beans that need

not be monitored anymore are switched into stand-by mode after a

predefined active-monitoring-expiration time.

Figure 6-15 illustrates the main data structures and processes used by the

centralised adaptation and diagnosis scheme.

131

Bean State
Refresher Thread

// bi l l>
b2 l l>
b3 II

bn ►

V.--'

Change Bean State

Legend:

 ̂ always active ® new alert

[771 stand-by (a) old alert

11 [> active no alert

Figure 6-15. Centralised Diagnosis and Adaptation Design Overview

The following operational data structures are used:

Interactions: stores the interactions selected for the adaptation and

diagnosis process. The interactions are stored in a tree format as presented

in Section 6.3. The search for performance hotspots is performed only in

the space of the elements that are part of the selected interaction trees.

This ensures that the activation and deactivation of individual components is

performed only when there exists knowledge about the calling structures in

which they take part.

132

Transient alerts: maps the interaction nodes (component-method pairs)

to alerts that have been received. Each alert indicates the originating

business method, and this association is preserved. The alerts stored in this

structure have a short lifetime as the diagnosis process deletes them upon

inspection. A node can have one of the following two possible associations

in this data structure:

• an alert data representing either the current, new alert or an old alert

that has not been processed yet

• no alert in case there have been no alerts signalled for this node or in

case its transient alert has been deleted after the scanning process of

the Diagnosis Thread.

Bean modes: maps the beans that are part of the selected interactions

with their current monitoring mode. Beans can be found in three possible

modes:

• always active (for beans that are roots in interaction trees). The

number of beans in this state is directly influenced by the target

application architecture. Some applications use front-controllers [18]

which control most of the interactions in the system. In such

applications, the number of always-active beans is relatively small.

Other applications might have a flat architecture, in which case the

number of always-active beans would be higher.

• stand-by (for beans that collect performance data and emit alerts but

do not emit regular performance notifications)

• active (for beans that emit all events - typically beans that have been

found to be performance hotspots and that need to be under constant

observation)

Each mode has an associated number. For always active and stand-by

modes, the numbers are constants. For the active mode, the associated

number indicates how long the bean has been in active monitoring. It is

automatically increased with each iteration of the Bean State Refresher

background thread.

For each alert received from the monitoring dispatcher, the Centralised Alert

Manager must first determine the interaction nodes corresponding to the

source of the alert. Since a business method of a bean may participate in

multiple interactions, all the corresponding interaction nodes are first

133

extracted. The depth level of each node in its interaction is determined. This

is defined as the maximum distance from the node to a leaf in the

interaction tree. The maximum depth level of all the nodes corresponding to

the incoming alert is determined. This is then used as the scheduling index

for the diagnosis process.

The diagnosis process is performed in a new Diagnosis Thread. This thread

is not started immediately after the alert has been received. It is instead

scheduled for execution after a delay in milliseconds that is a multiple of the

scheduling index. The reason for the delay is rooted in the diagnosis process

scanning of the down-stream alerts. As presented in Section 6.7.2, the

centralised alert manager inspects the nodes that are positioned

downstream in relation to the node generating the alert. If the downstream

alerts match the non-linearity presented in the current alert, then the

current alert is ignored and no further action taken. This process involves a

bottom-up scan of the transient alerts data structure for nodes matching

downstream probes of the current alert node. In most cases, the transient

downstream alerts should already be present in the data structure as they

are issued before alerts upstream (due to the nature of synchronous calls).

However, since the alerts are transmitted via the asynchronous JMX

notification model, situations might occur in which downstream alerts arrive

after upstream alerts. In such cases, a bottom-up scan will miss

downstream alerts and possibly identify false positives in the search for

performance problems' origins. The delay used in the scheduling of the

diagnosis task aims to ensure the appropriate sequence in the transient

alerts data structure. Alerts corresponding to leaf interaction nodes are

processed immediately since their depth is zero and there are no possible

downstream alerts. Alerts corresponding to nodes higher in the interaction

trees will have higher diagnosis delays to ensure that all the possible

downstream alerts are received before the processing starts.

The diagnosis process is highly extendable to accommodate for arbitrarily

complex diagnosis algorithms. The default algorithm scans the downstream

alerts for a given alert and if the sum of the execution time increase

signalled by each alert reaches 90% of the increase signalled by the current

alert, it is considered that the current alert must be disregarded as being

134

solely a manifestation of the downstream alerts. Otherwise, the current

alert is considered valid and the corresponding node a performance hotspot.

When the diagnosis module identifies a performance hotspot, it will signal

the Centralised Alert Manager to switch the corresponding component into

the active monitoring mode and update the bean modes data structure. If

the component's previous state was standby, it will be changed into active,

and its counter will be reset. If the previous state was active monitoring,

the state will remain unchanged but the counter will be reset. This ensures

that a bean that has a high rate of anomalies will remain active for as long

as the activity continues.

The purpose of the Bean State Refresher Thread is to continuously run In

the background and update the bean modes data structure. If a bean is a

root bean in any participating interaction, no changes are ever made to its

mode, it will always be in active monitoring. If a bean is in standby

monitoring, no changes are made either, as only the diagnosis process can

decide whether the bean is a hotspot and should be switched to active

monitoring. For an active monitoring state, the refresher thread increases

the associated number that represents the "age" of the bean's active state.

If a bean's active state age exceeds a user-customisable value, the

refresher thread will switch the bean back into the standby mode. This

ensures that beans found as hotspots stay in active monitoring only for a

controllable period after they have emitted the last alert. In the current

Implementation, the background refresher thread is scheduled to perform

its operation every 5 seconds. In addition, the preset age that triggers the

switch into standby mode is 5 iterations. Therefore, after 25 seconds of

inactivity, an active monitoring bean (the bean has not been determined as

being a hotspot for 25 seconds) is switched back into standby mode by the

background refresher thread.

135

6.8 Diagnosis and Adaptation Summary

Chapter 6 presented how model information can be used to provide

diagnosis capabilities and to reduce the monitoring overhead. A non-

intrusive technique for extracting execution models from a component-

based application was described. A discussion about anomaly-detection

techniques and related work were presented together with the possibility to

extend the alert-generation strategies using the alert FEP.

Based on execution models, two diagnosis and adaptation strategies were

proposed. The collaborative strategy involves highly independent probes

that inter-communicate to discover the origins of performance problems.

Additionally, the probes decide when to activate and deactivate themselves.

The centralised diagnosis and adaptation strategy involves a lesser degree

of independence of the probes, which must communicate with the

monitoring dispatcher in order for the infrastructure to discover the origins

of performance problems. The design of the centralised strategy was

presented.

136

Chapter 7 Testing and Results

COMPAS Adaptation Test-bed

COMPAS Implementation Prototype

• Functionality Walkthrough

• Supported Environments

• Functional Tests

Performance Tests

• Different Test Configurations

• Monitoring Overhead

• Advantages of Using Adaptive Monitoring

• Differences in scaling between web container and EJB container

137

7.1 COMPAS Adaptation Test-bed

Framework

COMPAS uses adaptive proxies to monitor EJB applications. This minimises

the total overhead induced by the instrumentation layer and automatically

focuses the monitoring effort at the application "hotspots". This process is

realised by switching individual monitoring proxies "on" and "off" as new

performance hotspots are discovered.

In order to test the adaptation process, a test-bed has been designed and

implemented. The COMPAS Adaptation Test-bed (CAT) consists of highly

customisable and functionally identical test beans cells. All test bean cells

are structurally identical EJBs; in fact, they contain the same Java classes.

The difference between them is their deployment descriptor, which can

contain different values for key parameters (environment entries in the EJB

deployment descriptor). These values drive the behaviour and runtime

footprint of the test bean cell. Test bean cells simulate "real" EJBs by

emulating computational load (CPU and memory overhead) and calling

other test cells, in different calling patterns. No code is required (and

therefore no compilation) when using CAT to create a test-bed. Instead, a

declarative programming approach is taken in which XML tags are added to

the deployment descriptors of the participating test beans.

The emulation parameters controlling the test bean actions are:

• CPU overhead (the integer value representing the number of

repetitions for generating a pseudorandom Gaussian value with mean

0.0 and deviation 1.0)

• Memory overhead (the size of a byte array that will be allocated by

the EJB when it is called)

• First Target EJB (the JNDI name of the first EJB to call)

• Second Target EJB (the JNDI name of the second EJB to call)

A cell configuration contains zero or one for each of the above parameters.

All parameters are optional when specifying a cell configuration. Each test

bean cell can contain any number of configurations. A configuration is

identified by a configuration name and each of the parameters it contains is

138

labelled with the configuration name in order to separate them from

parameters corresponding to other configurations.

Test beans expose a single business method, simulateBusinessLogic(). This

method has a configuration name as a parameter, which it uses to decide

the behaviour it will emulate. For the received configuration name, it will

use the corresponding emulation parameters to generate the appropriate

overhead (CPU and memory) and call the appropriate target test beans.

When calling the target beans, the configuration name is passed on to them

(again as a parameter to simulateBusinessLogic()). This ensures that

adaptation configurations are preserved across all the participants of an

interaction.

It is important that the same configuration names be used for all the test

beans. This guarantees that if the interaction is started with a configuration,

each bean in the interaction "understands" it and therefore can generate

the appropriate behaviour. The planning of a particular test configuration

(e.g. config l) contains the following steps:

• Devise a test interaction (containing the participating EJBs and their

call patterns). Each test-bed interaction can contain any number of

test EJBs.

• Decide on the amount of resource usage each EJB must emulate.

• Write the information in all the deployment descriptors for the

participating EJBs (i.e. each deployment descriptor must contain the

configuration configl with some or all of the parameters configlcpu,

configlmem, configlfirstCalee, configlsecondCalee). Of course, the

value of the parameters corresponding to the configuration in each

deployment descriptor would normally differ between the test EJBs.

Figure 7-1 illustrates a test-bed configuration consisting of 5 Test Beans

(TB). The notes attached to each EJB element contain a simplified version of

the associated configuration parameters. For TB2, there are two

configurations available (they also exist in the other beans but are not

shown). In the first configuration, TB2 will call only TB3. In the second

configuration, TB2 will call both TB3 and TB4.

139

configl: cpu:0, mem:0,
caleel:EJB2, ca!ee2:null

configl: cpu:1000, mem:500,
caleel:null, calee2:null

Figure 7-1. Sample Test-bed Configuration

7.1.1 Executing Test Configurations in CAT

The point of entry in any test-bed configuration is the first test EJB (by

convention called TB1). A HTML page and a Servlet are used to submit the

configuration information (configuration name) to TB1. The HTML page and

the front-end Servlet represent the CAT Web Front-end (CATWF). The use

of CATWF for the selection of the configuration enables web-based stress-

loading tools such as OpenSTA [61] to emulate a given load by generating

sets of simultaneous users corresponding to different configurations. By

selecting the interaction configuration from outside the test-bed, control can

be exercised over the behaviour of the test beans at runtime and different

behaviour can be chosen corresponding to the desired effect. For instance, a

performance hotspot can be injected by selecting a particular configuration

that has a high overhead parameter value in one of the test EJBs.

This approach is similar to fault injection systems such path-based fault

injection system presented in [103], although the scope of the faults is

different. In [103], the focus is on lower-level fault injection in order to

exercise the fault-tolerance components of the target system. In addition,

the system in [103] uses monitoring information to direct faults in the

system. In CAT, high-level faults are injected with the purpose of testing

the behaviour of the adaptation and diagnosis functionality. The injected

140

faults drive the monitoring adaptation, rather than having the faults being

influenced by the monitoring information, as in [103].

A sample set of three configurations is illustrated in Figure 7-2. The

configuration selection is performed by submitting one of the three possible

configuration names to CATWF.

Legend:

| | within range alert ------► call

Figure 7-2. Sample C A T Configuration Set

The first configuration, configl, is composed by a linear calling pattern,

which consists of four EJB method calls. The third method call is configured

to use resources (CPU time and memory) such as to meet the alert

generation criteria (Section 6.4).

The second configuration, config2 consists of a single EJB method call. Using

such a configuration would enable a test case that either induces a reset of

the active state of the corresponding probe back to standby (if the test case

is run a duration that exceeds the monitoring expiration time - Section

6.7.5). Alternatively, if config2 specifies a low resource utilisation for the

single EJB method call, it could be used for a precise injection of an alert,

141

preceded immediately by the execution of another configuration, before the

monitoring expiration time (Section 6.7.5).

The third configuration in Figure 7-2 illustrates the possibility to generate

complex sequences of calls that could be used to test intricate alert-

generation strategies (Section 6.4.2).

By sending alternative configuration names to the CATWF, different

configurations (declared in the deployment descriptor) can be selected and

executed at runtime, without the need to redeploy the test-beans.

CAT does not support configurations that contain loops. As there is no

mechanism to specify the conditions for terminating a loop, a configuration

containing a loop would never finish executing.

7.1.2 Test Bean Cell Design

The test bean cell is the unit of composition in the CAT framework. By

cloning it and adding configuration data to its XML deployment descriptor,

any number of test EJBs can be created. A test-bed can have several

configurations spanning any number of test beans.

As Figure 7-3 shows, the test bean uses a simulation manager, which has

the responsibilities of generating the computational overhead and

orchestrating the calls to the corresponding target EJBs.

The simulation manager reads the environment properties from the

deployment descriptor and stores all the configurations. As requests arrive

at the EJB (invocations of the simulateBusinessLogic method), the test bean

passes the configuration name received to the manager, which in turn uses

the configuration parameters to generate the appropriate overhead and call

the target beans.

142

Simulation
Configuration

configurationName :
cpuLoad : int
memLoad : int

■ firstCalee : String

+ getCpuLoad ()
+ getFirstCalee ()
+ getMemLoad ()
+ getOptionNam e ()
+ getSecondCalee ()
+ SimulationConfigura...

TestBean

- sessionContext : javax.ejb.SessionContext

+ TestBean ()
+ ejbActivate ()
+ ejbPassivate ()
+ ejbRemove ()
+ setSessionContext ()
+ ejbCreate ()
+ sim ulateBusinessLogic ()

1 sim Manager

SimulationManager

+ simuiateOverhead ()
+ orchestrateCalls ()
+ Sim ulationManager ()
- readEnvEntries ()

O V ER H EA D
S IM U L A T IO N

simFactory

SimulationFactory

+ aetSimulator (Ì

«creates»

«abstraction»

«abstraction»

O
TestBeanHome

+ create ()

— o
TestBeanlF

Testbed EJB
Structure

"~L

- jobSim uiator

1 ~ ^ o < -
JobSimula tion

+ simulate ()

■ concreteSimuiator->
SimpleSimulator

■ tem pRes : double

+ simulate ()
+ processNumber (Ì

+ simu/ateBui 'nessLogic ()
*

- targetEJBs

Figure 7-3. C A T Test Bean Cell Structure

The manager can use several simulation strategies to generate the load. A

simulation factory creates the appropriate simulation strategy and returns it

to the manager. The current implementation of the simulation strategy uses

Gaussian random number generation to induce CPU overhead, and byte

array creation to induce memory overhead.

143

7.2 COMPAS Prototype

This section gives an overview of the COMPAS prototype, illustrating its

functionality with a use case.

7.2.1 COMPAS Implementation

Although many concepts in COMPAS are applicable across component-based

platforms, the COMPAS implementation targets J2EE as this is by far the

most used component technology. COMPAS has been written in Java and

consists of approximately 100 Java classes comprising both the server

functionality (instrumentation) and the client functionality (monitoring

dispatcher and clients). It makes extensive use of Java enterprise APIs and

open-source technologies. This facilitates the adoption of COMPAS since all

dependencies are freely available.

Java Management Extensions (JMX API) [33] is used as the core

communication and management infrastructure. J2EE application servers

must implement the JMX API, ensuring the portability of this approach.

The most important open-source packages used in COMPAS contribute to

the probe insertion process (Section 5.1). They include Apache Ant [4],

Velocity [5], XML parsers [6] and the Log4J [7] logging framework.

Apache Ant is a highly-configurable Java-based build tool which COMPAS

uses for the target application analysis and probe generation. COMPAS

includes custom Ant tasks that are coordinated from XML-based Ant scripts.

The custom COMPAS tasks [4] are used to extract the contents of the

application archives and generate the new deployment descriptors used by

the instrumented applications (Section 5.1). The entire probe insertion

process is coordinated from scripts that can be configured to match the user

environment. Values such as the location and name of the target application

must be specified in the scripts.

Velocity is a Java-based template engine used in particular for the rendering

of dynamic data in web systems. COMPAS uses Velocity for generating the

code of the monitoring probes based on reflective [89] information from

target components.

144

XML Parsers such as Xerces [6] are used to analyse and change deployment

descriptors in the target J2EE application. They provide programming

abstractions that encapsulate low-level XML operations, allowing the use of

an object-oriented view [107],[106] of XML data.

Log4J is used in COMPAS as both the internal logging mechanism for

reporting errors and exceptions and as the data logging mechanism for

storing monitoring events such as method invocations and lifecycle

operations. Other means of storing monitoring events such as storage to

commercial databases can be added using the COMPAS framework client-

side extension points (Section 4.4.1).

In addition to the packages needed by the insertion process, COMPAS uses

the Java Graph Editing Framework (GEF) framework [100], part of the

ArgoUML [99] project for displaying UML diagrams extracted with the

interaction recorder.

7.2.2 COMPAS in the Real World

The COMPAS monitoring framework is completely portable across operating

systems and application servers. It has been tested with the following

application servers:

• IBM Websphere Application Sever 5.0 [37]

• Jboss 3.2.x [41]

• BEA Weblogic 8.x [10]

The application servers have been deployed on the following operating

systems and COMPAS has successfully operated both at the client side and

the server side:

• Microsoft Windows 2000 and XP

• IBM AIX 5.x

• Linux on IBM S390 and IBM zSeries mainframes

• Linux on Intel

In order to test the installation procedure, several representative J2EE

applications have been used. Sun Microsystems' J2EE Pet Store application

[88] is widely known in the academic and practitioner community. It is

intended as a showcase of the design patterns recommended for enterprise

J2EE applications, providing the functionality of a retail shopping

application. It consists of a representative mix of J2EE technologies and

145

application server vendors typically provide out-of the box deployments of

Pet Store with their products. COMPAS has successfully inserted monitoring

probes into Petstore and the runtime monitoring functionality has been

tested for Petstore on multiple application servers.

The Trade3 application from IBM [38] is used as a benchmark to measure

the performance of different server configurations in IBM. It is a simplified

but operational J2EE stock brokerage application, with operations such as

buy, sell and quote. COMPAS successfully installed the monitoring probes

and performed runtime-monitoring operations on Trade3.

7.2.3 Using COMPAS with the Adaptation Test-bed

This section illustrates the functionality of the COMPAS infrastructure by

presenting a case study. The case study describes how COMPAS was used

to instrument and monitoring the COMPAS Adaptation Test-bed (CAT)

application (Section 7.1), in order to obtain the results presented in Section

7.3.

Instrumentation

Before COMPAS can be used to instrument or monitoring a target

application, the configuration files a n t - s t a r t e r . x m l , c o m p a s - a n t . x m l and

c o m p a s - e n v . c o n f must be appropriately modified to correspond to the

user's environment. The COMPAS installation manual [55] provides detailed

information about the configuration process.

After COMPAS has been configured, the probe-insertion script can be

launched. It parses the CAT application metadata and generates probes

corresponding to each CAT component. The output of the process is

displayed in Figure 7-4.

146

¡S& COMPAS pr «jijcinealton

âwa

-Mil
■ uanneratoI

twawol! Huvlny I f i l e s to DvXfcnnpSAutuiitxJnrii;
Icani»ait .flflBBi’iitfi I COM IMS i s ^ e t n s s l n g EJl) daployrw w c n in tc i 'ip to p : O :\co.npvfnitput\jrtpa\l: M \M iniW M F \© jb-jA i’ .x n l.0 i* ig in n l
Cconp.-is^g o n o rato ! ĵ jf-ô iaìg© lina“ sttnsion It'JU: TBL
Eoonp.-in.jjonorata I p a ra ta k t o r f n c o i to o tb a d .o jh .T a s t lk m r il I’
le o n p a a _ ije n o rf tC n] Ihiaiì c L a tn : t e » t l) « i l . o i b J o : i | i o n i i
Ic on p as ..gena r a tn J Ima ino a 9 i n t e r i oce and Jwoii o l« s e lo ad ed a u c ce s f u l l y . . .
tcQ(itpfla_genorAtr J Tbe w arkin tf r tp p llf in t iun s e r v e r i s : JHÓSS

J
tcompAe^jjonoi'Ate J
[c o n p t i i i j jo u e r A ta I IcanpaŝgonerAte 1
Coonpac j - ^ n e r n t c J
fc o n p a o g e n e r a t e J
Ccimpais _ y e n o r a t e l
ioonpaa .^ o n e r a to 1
fconpas_ tfan«rA C A)
lconiu1c._3enof.Ato 1 iennyflSjcnfli'Atu 1
I q o n ^ s j c n o r a C n J
Eoo ripagasene r a t a J
tcrtnpA'S^gonernto I
f CUnjH6„fll) IIH'I'At 0 1
[oo 'upiio^niim i'ato 1
too npQs j ® n e r a to J
[conpac„f(onero.to 1 CeaniMiJlonai'Atfl 1
fconpo»_jSfn i te r a te 1
iuonpas_ifoner a to I
[COIilMSJBHBIMCe T

fotO U D :\ttinp\ouC mi tSsJ * r V \ t t jÌ \ to 6 tbedSo,jb_C0h P tìS _ T e stB ean ,jav a to d is k
p r o c e s s in g sp a o ia n EJB: Tn2

r e n a ta i n t e r f a c e : te* tb e il.e J li« .T e8 tB ean lP
beon c l a s s : toetlaed .o .jb .T es tUc aì>3
b u s in e s s in td i-fa c c And ben« c l a s s lojuled c u c c c a / u l l y . . .
1/fiOIE D :\tB n |» \o u t(j< it\jj |i 'a S tM \ta itl« i(l\o j |i _ C O H I,il8Jiost:B ofliiL j«M a t o d isk

p ro c e s s in g a e c s lo n KoUs TU‘J
r c n a t f In te r fa c « '- tB B tb n d .é J b .T e s tB e in lF
tre ini c k c c : tfitb ()d .c ,jlì.T fls tìJe .v n 3
bua in a ia i n te r f a c e and boan c I a b i loatfod s u a c R a f u l ly . , .
Uft$TÈ Ì)i\to n u \o u tp iL t\ jfti‘sNtMStEatl>odSeJb's._COWI’n8_To3 tDc^n3 . ja u a to d is k

p r o c e s s in g t o t B la n E'JB: 184
reno 10 in tf lp r* c fiì t e s tb e d .o jb . ì e s tB t ìa n lF
t>nah c l a s s : te s tln » d .o jb ,T f ts t4 Ja a n i
b u fin o si: in t e r f a c e and lia in c ìn s e ioailo»! iu cc a cfii 1 l y . . .
MftOTIi B *\ te n p \O U C tm tS ja r s \ tb i\C 0a tb a dYojbvjCOMI.'ftSJio* t'itea.M , ja u « to d is k

p ro c e s s in g se a c lo n Edili IB5
re n o ta In to rff lo o i tn s t li t ìd .n jb .ÌD a tl Ia n n lF
k a l i c lo l n i tn stb o it.n jb .Iec tE te fv n S
bus in e 6 * i n te r f a c e and bonn c ì a e s lo ad o d tn tc c e e fu lìy * * *

 WBOIE D :S to n p so u tp u t',|s ja i ,‘sS tb lS tiiS tb iu i \P <JbS_C(thl,flS_TactÒ aanS.)tflWn to d is k
tconpA S_ganorate] UROTE tlw p r o s i f i e d deploym ent nH S eripC irr: DiStBflpVflutp«CSjai,sS tM \h ì:Ì(l-ÌH lN it1jb - lJ n r . x n l

e o R p i lc :
[j& v acl C o n p ilin g S so u rce f i l e s

T d e le te J D e le tin g 5 f i l u s f ro n D :\ te n p \o u tp u tX ja i- s

j a i ' J t e r a t o r :
[s c r i p t J Loading t b l . . .

repackJARs:
t j a r l B u ild in g j a r ? D :M :f t« p \o u tp u t\ ja r s \ tM . j a r

insei't.jeo«paf?_i>robe8 :
te o p y l C opying 1 f i l e to D t \ te « p \o u tp n t
[co p y] C opying 1 f i l e to D iS ten p S o u tp u fx ja i 's
[co p y] Copying 1 f i l e to D s \te p ip ''.o u tp u ty ja rs
[co p y] Copying 1 F ilo to D i\ten p \o u tp u fc ',»3ars
fco p y l Copying 1 f i l e to D i \ te n p \o u tp u t \3 a r s

i o a r i U pdating e a r : D : \ te n p V o u tp u t \ t e s tb e d -p r o x if i e d , e a r

BUILD SUCCEfiSPUL
T o ta l t in o : 0 seconds .z i

ti

Figure 7-4. Output of Probe Insertion Procedure for CAT

After the application has been instrumented, it can be deployed on the

target application server. The deployment procedure is server-dependent

and un-related to COMPAS. The test results presented in Section 7.3 were

obtained using the open-source JBoss Application Server version 3.2.3 [41].

Monitoring

After the application has been deployed, it can be monitored by starting the

COMPAS monitoring console, which initiates the monitoring dispatcher and

registers the GUI components as listeners for monitoring events. Figure 7-5

and Figure 7-6 show screenshots of monitoring console GUI components.

147

iiÿ COMPAS Monitoring Console
Monitoring Lotiymij Tools Training Help

9 ¿'-jE-|a|TB'¡Tñ
1 j simulate BusinessLoglc <2 times»

<? S|̂ jTB5[1]
r'“* êimulateBusInessLoalt <1 times»

<? iP M îB3[1|
£ “* ̂simulatsBuslnessLofllc <2 times»

<•> - :E“Bj TQj [1]
'] simulateBusinessLogic <3 times!-

Ç [1]
£“■_"] simulateBuslnessLogic <4 times>

0.53(

I
0 1 1 í |

275 ; -

283.!

428.:

Status: r.ONM P ro g re s s C

O verv iew ü et a ils H is to ry

12 Enable History Clear History

UPDATE: 1. T65;:simula(eBuslnessLoglc (1 limes @ 0 118451 m s)
2.TB3::simu(ateBusinessLogic @44.457047 ms)
M E RTfromTB2:threshold exceeded by83.436325ms.!
3.TB4::simulateBuslnsssLogic @1.026946 ms)
A L E R T from TB1; threshold exceeded by 101.58344199999999ms. I
4 . TB2::sirmilateBusinessLofllc @ 183,435325 ms)
5. TB1 "simulateBusinessLogic @201.583442 m s)
6. TB4:.simulateBuslnessLoglc @ 0.53694 m s)
A L E RTfromTB2: threshold exceeded by56 324895999999995ms. I
7. TB2::slmulateBusinessLogic @ 169,8801105 ms)
H L E R Tfrom TB1: threshold exceeded by 61 238091 ms, I
3, TB1 "simulateBusinsssLogic @ 181.4107665 m s)
9 TB1::sirnuiateBuslnessLogic @400.07719833333334 ms)

L E R T from TB1: threshold exceeded by 737.410062ms. I
10. TB3:-SimulateBusinessLogic (S> 275.7008225 m s)_____________

J

Figure 7-5. Monitoring Console

In Figure 7-5, the main monitoring console is presented. It displays the

components and instances in the CAT application and their business

methods, annotated with performance information. In addition, a history of

monitoring events can be displayed, as well as stored in log files.

¿ff Execution Chart for TB1::sffnuÌA(éBuslnessLogfc [- j i^ Ë I

E JB M o n ito r C o n so le > M e th od C hart V iew

T© 1 : iJitnoj ta t* 8ujkfli*ül,0||l>e

| P r̂ioimance-limit Maximum
_ Minimum
H Hw

Figure 7-6. Real-Time Response Time Chart

In Figure 7-6, a real-time execution chart for a business method is

presented. It displays the evolution of the response time of a particular

component method. The number of displayed charts is not restricted.

Recording, Displaying and Selecting Interactions

In order to enable adaptive behaviour in the monitoring infrastructure,

knowledge about the execution models must be obtained (Section 6.2). To

obtain execution models, COMPAS provides the Interaction Recorder, which

148

is part of the main monitoring console and can be started using the Training

-> Record Interactions menu option from the main monitoring console

displayed in Figure 7-5. The Interaction Recorder GUI, presented in Figure

7-7 can operate the recording process using a Recording button to start the

capture of events and the Stop button to display the processed Interaction

tree.

Start Recording Display UML

Stop Recording

Save Interaction

Up Interaction Recorder - COMPAS

m Ree ® slop 100 ms sample configuration

¡ O sample configuration

9 O T81 ::sirnuiate8usine ssLogie (415ms @2788395)

$ C l TB2::simulateBu$ nessLogic (314ms <§>276893

9 l 3 TB3 :slmulatel iusinessLogic (107ms @276

5)
Ì096)

nulbteBusinessLogìc (I rns @2759 ! 96)D TB5;:slr
Q T84::slmuli iteEjusinessLogic (1ms @2769306)

Interaction Tree Artificial Delay
Interaction Name

Figure 7-7. Interaction Recorder GUI

The text field labelled (ms) represents the number of milliseconds of delay

that can be induced in the EJBs in order to ensure that method invocations

are properly ordered (Section 6.3.1). This is needed when the environment

accuracy of the timestamps is poor, such as when using the default time-

extraction strategy on a Windows machine (Section 4.3.2). A useful value

is 100ms but it can be adjusted by the user to fit to the environment.

After an interaction has been captured and sequenced, it can be saved in

XML format or displayed as a UML sequence diagram. Figure 7-8 shows the

149

sequence diagram created automatically from the interaction saved and

displayed in Figure 7-5.

\ 5f r COMPAS VEGA jV T fu a tiiir i'S U t t G ra p h * A p p itc a t io it j w w w ,« jb p * r l< M -iiw *n c ^ w g S H e v iilo o : 1 S_«1« rUrt V'jihw Arianya
y I] ofojojN | A |Q js |a) _P_| D

i-fttfiHtvm iiiuiì
&uj|SwrHii5-

i# rtHMIfcHMrtt-f PM(

P-aulin n»i 1-4
liny, l i l i ftuiln I l i t i ¡¡fe
xî àfrbvMt

IfJ

rwwm Òuut4M*l

»unJifliilMiihMiMpn!. i'C'yiss:«
O.viijiifiwii

L lU | '

Figure 7-8. Automatically Generated UM L Diagram

After interactions have been captured from the running system, they can be

saved and used in the adaptation process. The user can select a subset of

all saved interactions to be considered by the diagnosis and adaptation

module. This is realised with the Adaptive Interactions Editor, presented in

Figure 7-9. The user can choose the required interactions and when the

configuration is saved, the model knowledge is transmitted to the

monitoring framework dynamically and becomes effective immediately.

& Adaptive Interactions Editor

Available Interactions

conno1
Selected Interactions

confluì
eonfiij2
confitj3

>>>
< < <

Save

Figure 7-9. Selecting Interactions for Diagnosis and Adaptation

150

7.2.4 CAT in Adaptation Test Case

This section presents a test case that illustrates how the adaptation

mechanism affects monitoring behaviour in COMPAS. CAT is used as the

target application because it enables the emulation of conditions for the

generation of performance alerts in the system.

Figure 7-10 illustrates how different CAT configurations (Section 7.1.1) can

be selected for execution. By running different configurations, conditions for

generating alerts can be created in different EJBs.

Figure 7-10. Configuration Selection using the C A T Front-end

The focus of this test case is represented by configl, which is a CAT

configuration consisting of 5 EJBs calling each other in the sequence

illustrated in Figure 7-11 and Figure 7-12. Both figures represent

screenshots obtained from COMPAS when recording and displaying the

configl interaction using the Interaction Recorder (Section 6.3).

When configl is executed via the web front-end and no configurations have

been selected for the adaptation process, probes corresponding to each EJB

in configl emit invocation notifications. This is illustrated by the screenshot

in Figure 7-13.

151

y | ii, —wm. i i i ■■ li. j i

& Interaction Recorder - COMPAS

□ Ree ® Stop 100 ms config l

13 config l
P i TB1 "s im u la teB us inessLoa ic (431 m s @ 100790172)

<? C 3 TB2::s im ula teBusinessLogic (326rns @ 100790273)

9 C 3 T 63 ;:s im u la te8us inessLog ic (126m s @ 100790373)

Q TB5::slm iJlat8BusinessLogìc (4m s @ 100790473)

Q T84::sim ulaSe8usinessLogic (3m s @ 100790593)

Figure 7-11. Structure of Configuration config l

sà/ COMPAS VEGA (V isualis ing tJ B Graphs App lica tion) www .eJb p c ffo rm a m » .q tj{ SRvvislmu 1 .26 S Rio fida u>ow Aif.imjii
[t T n |o |n | o | \ | a | q | s | 5 | d T Z f o l

»ixi flvt-.fi ■ nitwit
[

D'.uiwTr* m eijm'ijiiW H TS* W4'Ì>W1 i'ii'ilhrrW Tnnvi(l*0«îcaV4̂]

ISMC©-© !̂
tuuhW.M

- 1 ¿L.

Figure 7-12. UM L Representation of Configuration configl

^ COMPAS Monitoring Console__________

Monitoring Logging Tools Trainino Help

- E JB TB5 [1] ▲

©- = E JB TB3 [1]
£>. ^ E JO TB1 [1]
O ^ E J S TB2 [1]
©. - E JB TB4 11]

•V

I >

Overview | Details History j

[¡3 Enable History Clear History

1. TB5::slmulateBusinessLogic @ 3.5719934444444446 ms)
2.TB3::simulateBusinessLogic @69.5832571 m s)
3. TB4::simulateBusin8SsLogic @ 3.1328841999999995 ms)
4. TB2::simulateBusinessLogIc @ 101.79871763636362 ms)
5. TB1 :;simulateBusmessLogic @ 161.9776497142B572 ms)

J ►
Status: CONNECTED Progress:

Figure 7-13. Execution History of configl without Adaptation

In order to avail of the adaptive monitoring capabilities in COMPAS, at least

one previously obtained interaction must be selected for adaptation. The

152

screenshot in Figure 7-14 shows that configl has been selected for

adaptation. This selection becomes effective after the "Save" button has

been pressed.

Figure 7-14. Selecting config l for Adaptation

After selecting configl for adaptation, only the probe corresponding to its

top-level component is going to be in active monitoring. This aspect is

illustrated by the screenshot Figure 7-15 that shows the execution

notifications when configl has been launched from the web front-end. The

other probes will not emit invocation notifications unless they have been

diagnosed as the source of a performance anomaly.

Figure 7-15. Execution History of config l with Adaptation

In order to emulate a performance anomaly in the third EJB of configl, TB3,

a separate configuration was’ used, config4. The structure of config4 is

presented in Figure 7-16 and Figure 7-17 representing the Interaction

Recorder's consoles after recording the execution of config4.

153

 ̂Interaction Recorder - COMPAS - i.3j©

[O] Rec® Stop 100 jms config4 y O'
u

13 corrfig4
? C3 TB1::sîmulatôBusinessLogic (760ms @102232950)

Ç C 3 TB2::s im ulateBusine$sLogic (656m s @ 102233050)

Q T 83 :;s im u la le8u$ inessLog ic (541 m s @ 102233150)

Figure 7-16. Structure of Configuration config4

¿p COMPAS VEGA (Visualising EJ8 Graphs Application) www.ejbperformnnce.org S Revis ion: 1.26 S

File Edit V iew Aiid ityu

l° □ o A O j s ' ô I1?; - □

Figure 7-17. UM L Representation of Configuration config4

In config4, TB3 emulates significantly more CPU and memory utilisation

than in configl. This triggers the alert-generation mechanism and an alert is

raised for TB3. In addition, since TB3 is the last component in an execution

chain, the alert is propagated upstream to TB2 and TB1. The three alert

notifications together with the invocation notification corresponding to TB1

are illustrated in Figure 7-18. COMPAS uses model knowledge and identifies

the component responsible for the performance alerts as being TB3 (Section

6.7) and prints out the following message in the COMPAS system console

(not shown in Figure 7-18): "Method TB3::simulateBusinessLogic is

hotspot!".

154

http://www.ejbperformnnce.org

^ COMPAS Monitoring Console

Monitoring Logyiny Tools Trainino

Q@ @
Help

o - 6J0 TB5 [1] -
O - EJD TB3 [1]
©- - ;e jb TB1 [11
©- ri EJO TB2 [1]
O c E JB TB4 [1]

W
<[I ►

Overview Details History

[¿'I Enable History Clear History

L E R Tfrom TB3: threshold exceeded by 226.20486700000004ms. I
A L E R Tfrom TB2: threshold exceeded by 241.46881800000006ms. I
1.TB1 ::simulateBusinessLoglc @ 184.97524140000004 m s)
A L E R T from TB1; threshold exceeded by 247.34274900000003ms. I

Status: CONNECTED Proyross:

Figure 7-18. Execution History of config4

Following the identification of the component responsible for a performance

alert (TB3), the probe corresponding to the component is switched into

active monitoring mode. This is illustrated in Figure 7-19 that shows the

invocation notifications when executing configl after the hotspot has been

identified.

COMPAS Monitoring Console

Monitoring Logging Tools Training Help

o z EJB TB5 |1] A
O -, E J B T B 311]

E J B TB l [1]
O- " E J B TB2 [1]
©- - E J B TB4 [1]

< I ■ . I I ►

I Overview j Details | History

yï Enable History Clear History

1. TB3::simulateBusinessLogic @ 105.33276738461537 ms)
2. TB1 ::simuiateBusinessLoglc @ 232.29968068000002 ms)

<
Status: CONNECTED Progress:

Figure 7-19. Execution History of config l with Adaptation and Hotspot

In order to avoid unnecessary notifications, probes corresponding to

hotspots remain in active mode for the duration of a timeout period, which

has a default value of 25 seconds (Section 6.7.5).

7.2.5 COMPAS in Use

COMPAS has been designed as a complete framework, which can be

integrated with applications that require J2EE monitoring capabilities.

Several projects leverage parts of the COMPAS framework in particular the

monitoring capabilities and the event management model.

155

A third-party framework for self-adapting and self-optimising component-

based systems [23][22] uses the COMPAS instrumentation FEP (Section

4.4.3) to replace the default portable COMPAS instrumentation

implementation with a server-specific, more intrusive implementation. The

external implementation allows dynamic discovery of call-graphs. The same

project uses another input FEP, the alert FEP, to provide a more complex

anomaly-detection strategy that takes into account the historical data

related to a method call. An overview of the integration of the third-party

framework with COMPAS is presented in [21].

A project that proposes a methodology for adaptation of EJB Application

Servers based on monitoring information is presented in [101][102]. The

authors consider the use of COMPAS as the runtime infrastructure for

providing the required monitoring data. Since COMPAS is portable across

application servers, its data extraction and event distribution capabilities

can effortlessly be leveraged without the need to develop server-specific

hooks.

There is an incipient commercial project "EJB Express" [49][56] targeting

performance prediction of EJB systems. This EJB Express uses COMPAS as

part of its data collection structure. In addition, the COMPAS Interaction

Recorder is used to generate UML models annotated with performance

information. The models are used to generate prediction models, which can

help in identifying potential performance problems under varying workloads

or hardware configurations. EJB Express is work in progress and is partially

based on the performance management solution presented in Chapter 3. In

addition to COMPAS monitoring information at component-level, it uses

lower level instrumentation hooks that extract CPU and memory usage to

build more accurate prediction models. The models are simulated in various

scenarios and the prediction results can be displayed as views in the Eclipse

Framework [29], The functionality of COMPAS-based EJB Express is

illustrated in Figure 7-20 that displays UML performance models being

simulated to predict performance under different workloads.

156

fi* Eût tomài évej*d fon *V(f>i tico
•* • •* ■

fi t toCUWriChvr ttrtifi

75 »
4 X VlW
>.; 7Ç FotRign A& Sént*

H y » y
*~*ÍT 1**« i

Dísn Aitili*«6i?Wb> Charajf MientoginHan* h»MU
l>P* t IKIliV tVîWWiIréFnfcznMm.,llWlfiíi.- 0.0CPUtir* £M)I5K*W irwo

fi 3**li£Í«* Llrt'óké*

w*nt'U> «

□E3tn*?*
g tanrufi
g jc fc v u j i

(5-
M)rtf **»ü&*í
0 l’ç-«! fcwrt QfVaíMa»
gjCj>*iÿa'Aâ*<u
H íítk íS iM f/ ít
EÎ '3 -V-Î* W irten

I i> v'jfe '(* í<w «o ? i‘< tu fi ‘(wii'Wifi Vi|ymíirí>rJrt

jftw*aj *yj 10 ,ÿj <2> " .. I rjHj Dotati_____ J |C3,-,Ú ÜKP*«*» Pñí'Brtftfc- u s a i soûles*____ | ttjüftm.W

Figure 7-2Û. EJB Express Functionality

J it»

157

7.3 Performance Measurements

This section presents results and analysis of tests that were carried out to

measure the performance of the COMPAS Monitoring infrastructure, The

results demonstrate that the overhead of the COMPAS monitoring probes is

acceptable, particularly for large workloads. In addition, the comparison

between full monitoring and adaptive monitoring modes highlights the

advantage of using model-driven adaptation to optimise monitoring target

coverage.

7.3.1 Test Environment

The performance tests were carried out in an environment that emulated an

enterprise setting. The COMPAS Adaptation Test-bed (CAT) application with

multiple configurations was used as the target J2EE application.

The COMPAS monitoring dispatcher and client consoles were run on a

stand-alone client machine. A load generator was used to emulate multiple

simultaneous users in repetitive sequences of interactions with a remote

J2EE application server running the CAT application. CAT was used as the

test-bed rather than a J2EE application (such as Petstore [88]) because it

was designed to allow fine control of the performance parameters. COMPAS

can be used to instrument any J2EE application and has been tested with

several representative applications (Section 7.2.1), however it would be

extremely difficult to control off-the-shelf applications in a similar manner to

CAT. Using CAT, performance hotspots can be injected deterministically. In

addition, particular calling patterns can be generated and observed. This

allows for the isolation of performance characteristics and enables reasoning

about the effects of using COMPAS Monitoring.

The load generator selected for the tests was the open-source tool OpenSTA

[61]. OpenSTA provides session recording and playback, and script

generation and editing facilities. Test sessions consisting of user interactions

were recorded and subsequently edited to highlight the required properties

of the infrastructure. Delays between user operations in an interaction were

deleted from recorded scripts so that the results could be effortlessly used

to isolate the measured properties of the system.

158

All test sessions consisted of a user interaction with the CAT via the CATWF

(Section 7.1.1).

All tests were performed on three dedicated machines running in a lOOMb/s

switched LAN networked environment. The components of the test

environment are illustrated in Figure 7-21.

O ' " P'
Application Server Node

connect and receive events

COMPAS Console

Figure 7-21. Environment for Performance Tests

The Application Server Node (ASN) was an enterprise-level dedicated server

with 4 x Intel Pentium III Xeon 700MHz processors and 1GB RAM with

Windows 2000 Advanced Server OS. The J2EE Application Server used was

JBoss v3.2.3, running Sun Microsystems Java Virtual Machine v. 1.4.2. The

reason behind the choice of application server was the unrestricted

availability of the open-source JBoss server, allowing for the repeatability of

the tests. COMPAS can be used on any J2EE application server running on

any operating system and has in fact been tested with multiple application

servers on multiple operating systems (Section 7.2.2).

The Load Generator (LG) machine was a dedicated server with two Intel

Pentium III 866 MHz processors and 512 MB RAM, running Windows Server

159

2003 Enterprise Edition. OpenSTA vl.4.2.34 was used to run the load-tests

and it was configured to close each user communication socket after the

test finished, in order to support the large number of test repetitions of

each user.

The COMPAS Console (CC) was run on a dedicated workstation with an Intel

Pentium IV 1.4 GHz processor and 1GB RAM, running Windows XP

Professional. The CC used the Sun Microsystems Java Virtual Machine v.

1.4.2.

7.3.2 Setting-Up and Running Tests

This section presents the results of overhead tests that were aimed at

determining how significantly the COMPAS Monitoring infrastructure affects

the target applications. CAT (Section 7.1) configurations representing

multiple and single EJB interactions were considered in order to determine

the factors that affect the overhead. COMPAS makes use of adaptive

monitoring techniques (Chapter 6) in order to reduce the monitoring target

coverage and reduce the total overhead induced in an application. The

following tests highlight the overhead reduction by comparing the overhead

that occurs when the target coverage is reduced (interaction-models driven

partial instrumentation) with the overhead when all EJBs are monitored (full

instrumentation).

A description of the tests and a discussion of the results follow. Each CAT

configuration used for the tests is described and illustrated. The diagrams

consist of boxes and arrows, where the boxes represent the test-bed cells

(Section 7.1) and the arrows represent the EJB method calls. Each cell box

contains the cell name, TBx, (Test Bean) and two numbers. The first

number is the CPU overhead parameter and the second number is the

memory overhead parameter, as set in the deployment descriptor

containing the CAT configuration (Section 7.1). All tests consisted of sets of

test-runs with increasing numbers of simultaneous users (1, 2, 5, 10, 20

etc.). Each test run involved executing the configuration presented in Figure

7-22 with the corresponding number of simultaneous users. Each user

repeated the execution of the test run 10,000 times. For instance, for the

test run corresponding to 20 simultaneous users, there were 10,000

repetitions of a batch of 20 users simultaneously executing the test

160

configuration. The total number of configuration executions in this case was

200,000. All three test-machines were rebooted after each test-run to

ensure consistency. Results were collected at the web tier level, using

OpenSTA's collectors [61], as well at the EJB level, from the log files

generated by COMPAS instrumentation events. The EJB-level measurements

were performed using the nanosecond precision time-stamping strategy

(Section 4.3.2).

The execution times extracted at the web-level included the web front-end

(CATWF) execution times, as well as the EJB tier execution times, Since the

recorded OpenSTA scripts had all the recorded user "think-time" eliminated,

the response time in the web tier includes the total response time of the EJB

tier and the processing time in the web tier. No user "think-time" was

present in the results, leading to results that most accurately isolate the

aggregated performance of the web tier and the performance of the EJB

tier.

The execution times recorded by COMPAS Monitoring were extracted from

the COMPAS log files. Only the response times recorded for TB1 were

considered, as they contained the aggregated response times of the rest of

the test bean cells in the configuration.

The extraction of both the web response times and the EJB response times

ensured that the performance of the web tier and the performance of the

EJB tier could be compared. Since COMPAS instrumentation is performed

only at the EJB tier, the evolution of the EJB response times indicated the

effect of the different COMPAS instrumentation schemes (full monitoring

versus model-driven partial monitoring).

7.3.3 Multiple EJBs Interaction

In order to determine the overhead that COMPAS induces in a typical

application, a CAT configuration was created that determined a sequence of

five EJBs, as presented in Figure 7-22.

161

f TB1 TB2
1 0 0 0 ; 5 0 0 0 10000; 1 0 0 0

T B 3
f \

T B 5
2 0 0 0 ; 5 0 0 0 5 0 0 0 ; 1 0 0 0

T B 4
3 0 0 0 ; 3 0 0 0

Figure 7-22. CA T Configuration for Multiple EJB s Interaction

The overhead parameters' values were chosen so that the execution times

of the test-bed cells did not exceed the alert threshold. This ensured that no

alerts were raised during the test runs, and the results were consistent.

Test runs with 1, 2, 5, 10, 20 and 50 simultaneous users were created. In

the full instrumentation scheme, all the probes corresponding to the EJBs of

the test-bed configuration (TB1...5) were in active mode (Section 6.5). In

the partial monitoring mode, since no alerts were raised, COMPAS used the

model information to determine that only TB1 needed to be monitored in

active mode. The rest of EJBs (TB2...5) were monitored in stand-by.

Figure 7-23 displays the response time evolution (in seconds) measured at

the web tier for test-runs corresponding to increasing simultaneous user

numbers. The chart highlights the differences between the response time

evolution when the application was not instrumented and the evolution

when the application was instrumented (completely or partially). Derived

using linear interpolation, the shapes of response time evolutions are similar

indicating that the use of either of the instrumentation modes did not

induce any non-linearities in the application. It can be observed that the

partial instrumentation mode determined a smaller total overhead perceived

at the web tier level. In addition, with the increase of the generated load

(increase in the numbers of simultaneous users), the overhead difference

between the two instrumentation modes becomes more significant.

162

Web Response Time

S im u lta n e o u s U se rs

no instrumentation — ■ — full instrumentation — *— partial instrumentation ;

Figure 7-23. Web Response Time Evolution for Multiple EJB s

This aspect is more apparent in Figure 7-24 which displays the evolution of

the difference in overhead between the two monitoring schemes.

Web Response Time Overhead Difference Between Monitoring Schemes

S i m u l t a n e o u s U s e r s

□ o v e r i i e a d d i f f e r e n c e

Figure 7-24. Multiple EJBs: Web Overhead Difference Evolution

The evolution of the response times measured at the EJB level in both

monitoring modes, is presented in Figure 7-25. The plotted response times

163

correspond to the top-level EJB (TB1) in the CAT configuration. As

expected, the total response time of the EJB Interactions, perceived in TB1,

is smaller in the partial monitoring mode, as only one EJB is actively

monitored. As in the web-tier case, the difference between the two

monitoring modes increases with load indicating that the partial

instrumentation mode is particularly useful in heavily loaded systems with

complex interactions. This is because the reduction in monitoring overhead

due to the adaptive monitoring schemes becomes more significant where

interactions contain large numbers of EJBs. This reduction is amplified by

the large numbers of simultaneous users accessing the system.

Front EJB Response Time

<UV)
c
o
awooc 100

5 10

S im u lta n e o u s U s e r s

i—♦ —full instrumentation ^ "p a rtia l instrumentation

Figure 7-25. EJB Response Time Evolution for Multiple E JB s

Figure 7-26 and Figure 7-27 present the contribution of the EJB tier

response time to the total response time perceived at the web tier, in both

monitoring modes. It is clear that the contribution of the EJB tier to the

total response time is significantly reduced in the case of partial

instrumentation. However, an interesting observation is that the difference

in total response time (perceived at the web tier) between the full

instrumentation mode and partial instrumentation mode, is smaller than the

difference in response times perceive at the EJB tier, in particular at higher

loads. For instance, the results corresponding to 20 simultaneous users

164

indicate a difference in web response time between the two monitoring

modes of 17.6ms whereas the corresponding difference in EJB response

times is 58.87ms.

Full Instrumentation: Web and EJB Response Time

S im u lta n e o u s U s e r s

¡9ejb contribution DU web

Figure 7-26. Full Instrumentation: Contribution of EJB Tier to W eb Tier Response Time

This could be explained by differences in behaviour between thread pooling

at the web tier and EJB instance pooling at the EJB container level. This

could generate different scalability profiles for the web and EJB containers.

In addition, when performing full monitoring, the EJB container could not

scale as well as when only partial monitoring is enabled, due to higher

collateral workloads induced by JMX activity.

165

Partial Instrumentation: Web and EJB Response Time

eoo

500

4000)
E

0)
g 300 o
a
& ë

200

100

y
y

||
. ¿ T

m If l 9 0 L P □
5 10 20 50

Simultaneous Users

■ ejb contribution Hweb

Figure 7-27. Partial Instrumentation: Contribution of EJB Tier to Web Tier Response Time

The effect of different scalability profiles is apparent in Figure 7-28 which

presents an XY scattered plot of the instrumentation overhead in

percentages, as perceived at the web tier. Both full instrumentation and

partial instrumentation induce overhead that contributes to the increase in

the response time measured at the web tier. For small workloads, the

contribution of the EJB monitoring overhead to the total overhead

(perceived at web level) is significant, ranging approximately between 4 and

21 percent for partial instrumentation, and between 19 and 43 percent for

full instrumentation. At high workloads, however, the total perceived

overhead becomes significantly reduced, ranging from 1.4 to 2.3 percent for

partial instrumentation and between 10.7 and 13.6 percent for full

instrumentation. This is most likely cause by the web container scaling less

efficiently than the EJB container.

166

Percentile Instrumentation Overhead

Simultaneous Users

-^ —overhead full instrumentation —̂ overhead partial Instrumentation |

Figure 7-28. Percentile Instrumentation Overhead

7.3.4 Single EJB

A CAT configuration was created with the purpose of isolating the overhead

that the monitoring probes induce. The configuration, illustrated in Figure

7-29 determines a single EJB call, facilitating the observation of the probe

overhead, separated from other container activities.

r 3

TB1
' 100000; 100000

s.______ /

Figure 7-29. C A T Configuration for Single E JB Interaction

When more EJBs are involved in an interaction such as in Section 7.3.3, it is

more difficult to determine the overhead of an EJB probe, as inter­

component communication may be responsible for unaccounted delays. The

resource usage parameters for the TB1 test cell are configured so that the

EJB performs a reasonable workload. In contrast to the configuration used

in Section 7.3.3 where the focus was the total overhead for a complex

interaction, this configuration containing a single test cell is designed to

showcase the behaviour of one EJB and the influence instrumentation has

over its response time as well as over the web-tier response time. By

167

performing a significant workload, the EJB contributes significantly to the

web-tier response time, highlighting the contribution of the overhead to

both the EJB tier and the web tier. This ensures that the contribution of the

EJB tier to the web tier in this configuration is similar to the contribution of

the EJB tier to the web tier in the configuration presented in Section 7.3.3.

Test runs with 1, 2, 5, 10, and 20 simultaneous users were created. Figure

7-30 presents the evolution of the response time measured at the web tier

for both the un-instrumented and instrumented versions of the test-bed. It

can be observed that both response time lines follow approximately the

same shape, suggesting that COMPAS instrumentation does not induce non-

linearities. In addition, the monitoring overhead perceived at the web tier

becomes negligible for high user workloads. This can be explained by the

different scalability of the web container in comparison with the EJB

container and the fact that COMPAS monitoring influences only the EJB tier.

For the single EJB scenario, the EJB container scales well compared to the

web container, perhaps due to better thread pool management. One reason

for this could be that the test-bed is composed of stateless session beans,

which are particularly scalable as they can be shared between clients.

Web Response Time

Simultaneous Users

no instrumentation - « —full instrumentation

Figure 7-30. Web Response Time Evolution for Single EJB

168

Figure 7-31 illustrates the contribution of the EJB tier to the total response

time perceived at the web tier. The chart clearly presents different

scalability profiles for the EJB and web containers and shows that while for

small user loads, the EJB container dominates the response time, the

situation reverses with large loads. This confirms the behaviour illustrated

by Figure 7-28.

Full Instrumentation: Web and EJB Response Time

I
a>
ë0 a w
&
1

Simultaneous Users

□ ejb contribution «web

Figure 7-31. Single EJB: Contribution of E J B Tier to Web Tier Response Time

169

Chapter 8 Conclusions

COMPAS addresses real needs

Prototype demonstrates portability and validates probe insertion

approach

Tests prove COMPAS usability and feasibility of adaptive approach

Advantages and Disadvantages over Commercial and Academic

Approaches

Open architecture enables reuse and promotes further exploration

170

8.1 Problems Addressed

Companies increasingly rely on component-based platforms such as J2EE to

build and deploy large-scale systems. Enterprise-level services such as

security and transactions can be leveraged by developers, instead of

spending time building common enterprise infrastructure. Such applications

are assembled using components that represent the atomic units of

composition and deployment. Components are managed at runtime by

component containers that typically reside in distributed application server

domains providing extensive services including distributed transaction

management and object middleware. Containers provide lifecycle services

to the components and control their execution environment by

transparently enforcing the realisation of enterprise services and managing

threading, caching, pooling, and access to resources. In addition to

component platform services, the component development model

encourages reuse and change. Large applications typically integrate

components from several sources and usually there is no one individual that

completely understand the functionality of such a system

The performance of enterprise component systems is influenced by the

complexity of the business logic and the complexity of the runtime

platforms. In addition, since the component services are provided by

containers based on configuration contracts, the contracts and their

realisation by different containers greatly influence the overall performance.

Static performance reasoning is infeasible in such systems and runtime

performance management tools are instead needed so that meaningful

performance metrics can be extracted to match the conceptual level that is

used in developing the systems. Presenting the architectural context in

which problems occur is a fundamental requirement for taking corrective

action. Since enterprise-systems are constantly required to be operational,

monitoring tools that can continuously operate and isolate potential

hotspots, while maintaining a minimal impact on their target systems

without requiring changes to the environment, are necessary.

This thesis proposes the COMPAS performance-monitoring framework for

component based enterprise applications. COMPAS can non-intrusively

171

instrument applications by attaching component-level probes during an

automatic process based on component metadata. At runtime, COMPAS

monitors and analyses component-level events such as method invocations

and lifecycle operations. In order to maintain minimum overhead, COMPAS

uses a model-based adaptive approach that constantly adjusts the target

coverage of the active monitoring probes. Alerts are generated based on

user-definable policies and the monitoring infrastructure automatically

diagnoses and highlights the performance hotspots. The framework has an

open architecture, with predefined extension points that allow vertical and

horizontal integration of third-party modules. In addition to the monitoring

platform, the thesis proposes a process for performance management that

integrates monitoring with modelling and performance prediction.

172

8.2 Review of Contributions

This section reviews and summarises the main contributions of the thesis

and their related secondary contributions (as bulleted items).

Low overhead, component-level monitoring infrastructure

Portable, non-intrusive probe insertion process

A portable approach to instrumenting and monitoring component based

systems is proposed and described in Chapters 4 and 5. It provides non-

intrusive instrumentation capabilities by analysing the target components'

metadata and generating a proxy layer that attaches to each of them. The

proxy layer acts as a probe and intercepts all method invocation and

lifecycle events. The generation of the probes does not require access to the

source code of the target application nor changes to the application server

where the application is deployed. In addition, neither changing Java Virtual

Machine class-loaders nor the use of JVM debugging hooks are required,

which contrasts to all other related approaches. Instead, a portable

installation procedure analyses the target application's structure and

metadata and generates the appropriate monitoring probes, using reflective

techniques.

The probes process the intercepted events locally. They can then generate

notifications that are collected centrally by the monitoring dispatcher.

Extensible monitoring framework

• Dynamic Bytecode Instrumentation of J2EE Applications

Extensions can be fitted to the probes and to the monitoring dispatcher

using predefined framework extension points. The extensions allow the

addition and replacement of COMPAS functionality and customisation of

strategies such as time stamping. Using the extension points,

instrumentation can be enriched to capture more information from the

target application or the probe insertion process can be improved. An

alternative probe insertion technology is presented which leverages J2EE

management extensions to improve the application structure discovery. In

addition, a technique based on dynamic bytecode instrumentation is

presented which allows the insertion of probes into a J2EE target application

173

at runtime, without requiring the redeployment of the instrumented

application.

Adaptive monitoring and diagnosis

• Model extraction

The architecture of adaptive monitoring and diagnosis functionality is

presented in Chapter 6. The adaptation process is based on knowledge of

interaction models extracted from the target application. It leverages the

different monitoring modes available in the probes, which can be in passive

(data is analysed locally but is not sent to the dispatcher) or active

monitoring (data is analysed and sent to the dispatcher).

Models can be obtained either by using the presented Interaction Recorder

that collects traces through the EJB components, or by using lower-level

approaches such as JVM stack-traces. Regardless of how models are

obtained, they are used by the adaptation process to determine the

minimum set of components that have to be instrumented (the target

coverage). When several probes issue performance alerts, the adaptation

module performs diagnosis in order to determine the origin of the

performance problem. Based on the hotspot location, target coverage can

change automatically to include the hotspot probe in the active monitoring

set.

Basic anomaly-detection techniques and a discussion about possible

comprehensive strategies are presented. External strategies can be added

using framework extension points to the alert generation logic in the probes

in order to improve the hotspot detection accuracy.

Two strategies for adaptation and diagnosis are presented in Chapter 6:

collaborative and centralised. The collaborative approach involves probes

with a high degree of autonomy and capable of intercommunicating. Upon

detection of a performance anomaly, they communicate with neighbouring

probes (in relation to participating interactions) and compare measurements

in order to determine the root cause of the anomaly. The monitoring

dispatcher is therefore not involved in the decision process.

The centralised approach employs less independent probes and more

communication with the monitoring dispatcher. Probes do not communicate

with each other and do not attempt to detect the root cause of a detected

174

anomaly. Instead, they notify the monitoring dispatcher of any anomaly. In

turn, the monitoring dispatcher uses model knowledge to filter redundant

alerts and identify the hotspot origin.

Framework for performance management

The main contributions of the thesis are place into the wider context of a

proposed complete performance management solution that uses three inter­

related modules: monitoring, modelling and performance prediction.

Monitoring and modelling are connected in a feedback loop that drives the

monitoring adaptation process and the continuous update of performance

models. The performance models can be used in simulations by the

prediction module, which aims at providing automatic forecasts about

potential performance problems. The complete solution if implemented

facilitates design comprehension by providing complete UML models,

extracted from the running system. The models, augmented with

performance information and presented in UML are organised in realisation

hierarchies. They can be navigated horizontally, at the same realisation

level, and vertically between realisation levels. The navigation process is

intended to help in managing the complexity of the design information when

searching for a performance problem.

Flexible performance test-bed

The COMPAS Adaptation Test-bed (CAT) presented in Chapter 7 can be used

to create and control artificial EJB systems for testing and validation

purposes. Using CAT, several interactions can be created and executed,

with the ability to inject faults in the artificial components. This can prove

useful in testing J2EE middleware infrastructure. CAT was used in the thesis

to validate the benefits of model-based adaptive monitoring.

175

8.3 Comparison with Academic Approaches

This section contrasts COMPAS with related frameworks, approaches and

techniques. Several related projects were analysed in Chapter 2 and a

summary of their advantages and disadvantages in relation with COMPAS is

presented in this section.

General Software Performance Engineering Approaches

The main disadvantage of approaches for performance engineering such as

SPE-ED [75] is that they require developers to create models of their

applications and annotate them with performance data such as CPU and

memory utilisation. For complex systems based on component-based

platforms such as EJB, this task becomes impossible due to the large

number of management services provided by the application servers, such

as caching, pooling, persistence and clustering. It is important to have

means to extract data from a running system at the appropriate level of

granularity in order to reduce the need for developer assumptions. The

framework presented in this thesis extracts simplified performance data

such as method execution time by monitoring live versions of the

application under development, and creates UML [71] performance models

automatically. Such models can discover anti-patterns in the application

implemented in a particular technology, which are not necessarily bad

practices in other component technologies. The anti-pattern detection

engine can have different profiles (e.g. one for EJB, one for .NET)

depending on the technology being used by the developers. A knowledge

base such as [18] can be used to drive the anti-pattern detection so that

only relevant anti-patterns [105] are discovered for a particular technology.

The generated UML models, like the SPE models, become increasingly

detailed as more information is obtained, that is, as development

progresses through iterations.

OAT [43] is an approach for performance modelling of distributed

applications that maps UML models with queuing networks in order to

predict system performance. Developers must create the models, which

contrasts to the automated model-extraction approach in COMPAS. In

addition, OAT offers a layered approach to abstractions that is not as

176

semantically rich as the MDA [58] specification proposed by COMPAS, which

offers a better model for such abstractions.

Results from case studies such as [46] prove that performance prediction in

J2EE systems can be approached successfully with techniques such as

queuing networks. However, while [46] does not focus on EJB-level analysis

COMPAS enables performance prediction techniques to be applied at

component-level.

Generic Monitoring Approaches

Remote Reflection [69][68] is a technique for dynamic introspection and

alteration of distributed Java applications. Using Remote Reflection, a

facility to inject a proxy layer into distributed target components, without

requiring changes to the Java Virtual Machines [68] could be provided. Such

a facility can be integrated in COMPAS as an alternative means to the probe

insertion process (Section 5.1).

At a high-level, parts of the generic conformance-testing framework

presented in [20] contain similarities with COMPAS, in particular the use of

probes and the event-distribution middleware. However, although the

authors claim their framework targets component-based systems, they are

mostly referring to network elements such as firewalls and routers. There is

no component-level [97] semantic layer, as it is the case in COMPAS.

Furthermore, the presented framework employs a grey-box approach,

which requires user intervention in particular for revealing appropriate

probe-insertion points and semantics. By contrast, COMPAS uses a black-

box approach that leverages component semantics to insert monitoring

probes and that matches precisely and unambiguously the composition level

used in application development.

Aspect Oriented Programming [8] uses pointcuts to mark important events

in a program's execution, such as entering and exiting method calls. An

advice [45] for these pointcuts can be defined to perform similar

functionality to that of the COMPAS-generated hooks (Section 5.1).

Although this approach would still require the generation of code (the

explicit pointcuts), the amount of generated code can be smaller than in the

current COMPAS inheritance-based approach. This marginal advantage is

decisively outweighed by the disadvantages of using aspect-based

177

techniques. A special compiler would be needed to weave the generated

aspects into the target application, which might pose problems in enterprise

environments that COMPAS targets. This is because such compilers are still

not production-ready and therefore not fully adopted by the industry.

COMPAS currently uses the compiler available in the target enterprise

setting to build the generated proxy hooks. Lastly, the runtime footprint

when using aspects might be more significant as additional objects are

typically created corresponding to the aspects.

An alternative to the current COMPAS probe insertion process (Section 5.1)

is the use of container plug-ins such as the JBoss interceptors [41]. A

custom COMPAS interceptor could be added to the sequence of already

existing container-interceptors, which are used to handle component calls.

The custom interceptor could perform the functionality of the generated

proxy hooks and capture the relevant component events (business method

calls and lifecycle callbacks). One advantage of the interceptor-based

approach is that there would be no need to perform the CPI process. In

addition, there would be no need to redeploy the instrumented application;

however, the same advantages could be obtained by using dynamic

bytecode instrumentation techniques discussed in Section 5.2. The major

disadvantage of using JBoss interceptors is the loss of portability, as this

would render COMPAS useful only in relation to the JBoss application server.

Since portability is a crucial differentiator of the COMPAS framework, and

the advantages of the interceptor approach are not decisive, COMPAS does

not employ such an approach as the default instrumentation technique.

However, using the Instrumentation FEP (Section 4.4), this approach can be

used with COMPAS in a JBoss-only environment and such an

implementation has been performed as indicated in [22][21].

Adaptive Monitoring Approaches

The autonomic computing initiative [44] outlines the main requirements for

management solutions that can be used in long-running enterprise systems.

One of the main requirements is the availability of a low overhead, self-

adaptive monitoring infrastructure that can provide continuous information

about the application performance.

It is envisaged that COMPAS could be integrated in any J2EE container and

provide a reflective property that could enable applications to reflect upon

178

themselves in performance management terms. Since the middleware

would be providing COMPAS services, there would be no need for an

installation procedure anymore. In such an environment, if an application

were enabled for adaptation, it could use the performance information to

optimise its behaviour; this approach comes to support the autonomic

computing initiative for self-optimising systems. Therefore, in the context of

the autonomic computing initiative, COMPAS can be considered a basic self-

adaptive monitoring facility that can help in driving the adaptation process

for self-adaptive applications. Adaptation systems are already using

[23][22] or considering using [101][102] COMPAS as the monitoring

infrastructure that drives the adaptation process.

COMPAS corresponds in intent, scope and general architecture to the

requirements outlined in [36] for agent-based monitoring systems. The

adaptation models presented in this thesis address the need for overhead

reduction and adaptation to the application's environment, do not depend

on a global clock, and provide a robust, distributed and collaborative

environment which can scale and adapt to the target application's needs.

JAMM [98] is an adaptive monitoring infrastructure for grid environments. It

activates and deactivates monitoring components based on the detection of

activity on certain communication ports. In contrast, the COMPAS

adaptation schemes do not rely on the detection of activity but rather on

the detection of performance alerts. Since JAMM is not concerned with

monitoring software entities such as components, it cannot use model

information to optimize the monitoring overhead. It can be stated that

JAMM is concerned with performance issues in the deployment architecture

of a system (i.e. which nodes are performing badly and why) whereas

COMPAS pinpoint performance issues in the software architecture of the

system (i.e. which software components are performing badly and in which

execution context).

Software tomography [14] is a technique for lightweight monitoring of

software systems that involves the dynamic placement of subtask probes to

different program instances. It is similar to COMPAS in that both approaches

aim at incurring minimum overhead by adapting the monitoring scope.

COMPAS probes however match the conceptual level of their targets, the

EJB components. Component metadata is used to generate the probes and

179

system interaction models drive the adaptation process. In COMPAS, the

adaptation of probes is based on automatic diagnosis of performance

hotspots and on the probe's target location in the enclosing interactions.

The COMPAS adaptation process differs from the adaptive feature in

software tomography based on dynamic reassignment of subtasks to

instances, mostly due to the different nature of the COMPAS probes that are

bound to their targets but also due to different probe semantics.

The agent-based financial monitoring system presented in [108] is similar

to COMPAS in the use of adaptive monitoring techniques that use

knowledge about transactions to change the monitoring scope. One

difference between the two systems is that that the knowledge used by

COMPAS is obtained by recording interactions whereas in [108] prior

knowledge about the trading models is used. In addition, the financial

monitoring system focuses on measurements that can indicate potential

fraud issues or trading problems, whereas COMPAS focuses entirely on

performance issues. Furthermore, COMPAS uses only one simple type of

agent (the proxy) which contrasts to [108] where a hierarchy of agents is

needed in order to efficiently monitor the mostly human-driven operations

in the financial organisation. Lastly, COMPAS is concerned with performance

aspects in enterprise software applications, at the component level,

contrasting with the focus on organisational problems at the process level,

as described in [108].

180

8.4 Comparison with Commercial

Approaches

Several commercial performance management tools for Java and J2EE

systems are available. This section compares them with COMPAS and

presents a feature-matrix highlighting important similarities and differences.

One of the most significant differentiators is that COMPAS is a monitoring

framework that allows third parties to add and change a multitude of

aspects. All the commercial tools have proprietary, stand-alone

architectures that allow only minimal integration with other predefined plug­

ins. COMPAS provides a completely functional, extendable base platform for

instrumenting, monitoring and analysing enterprise applications, whereas

the commercial tools provide detailed and feature-rich, non-extendable

solutions.

In contrast to the commercial tools (and other academic approaches),

COMPAS proposes a completely portable instrumentation infrastructure that

does not depend on changes to the target runtime environment or target

application. Many other approaches use application server or JVM-level

hooks to insert monitoring probes. They support the leading application

servers, such as IBM WebSphere and BEA Weblogic, however for users of

open-source or application servers with smaller market size, it is difficult to

find and use any performance management products.

An additional major difference between COMPAS and related approaches is

the use of self-adaptive techniques for automatically adjusting target

coverage. This ensures that monitoring overhead is constantly maintained

at a minimum value, without compromising accuracy. The alert detection

(Section 6.4) mechanism in COMPAS provides a basic strategy based on

simple thresholds and provides a standard framework for adding complex

strategies that can be based on historical analysis and environmental

properties. This contrasts to the approach taken in the commercial tools

that typically only provide threshold-based alert generation and do not allow

the addition of custom strategies.

The last major difference between COMPAS and the related commercial

tools is the use of models and UML to facilitate the comprehension of the

181

application design and performance hotspots. The proposed COMPAS

framework (Chapter 3) uses models at different realisation levels to help

users manage the complexity of the presented information. The Interaction

Recorder (Section 6.3) can extract and present execution models

augmented with performance information, helping in the design validation

process as well as in the localisation of the performance problems.

Quest Software's products Performasure [66], Foglight [64] and Spotlight

[67] provide a complete performance management solution for J2EE

applications. They can be used in testing or operational environments and

provide in-depth interaction tracing, alert generation and expert advice.

Mercury Interactive's J2EE tools [53] (Diagnostics, Deep Diagnostics and

Monitoring & diagnostics) focus on optimising the quality and performance

of J2EE applications both in development and production stages.

Wily Technologies' Introscope [111] provides a low overhead monitoring

facility that uses agents inserted in the application servers to collect data

from any J2EE component in deployed applications. Introscope has a base

layer that is relatively independent of the application server being used

(although it still requires it to be started in special mode as it uses JVM

hooks) and provides server extensions. The extensions collect and analyse

server-specific metrics and although they appear similar to the COMPAS

framework extension points (Section 4.4), they are much more confined in

scope, being restricted to environment data sources at the server side. In

COMPAS, framework extension points can be used to add both data sources

and data consumers at the client side as well as at the server side.

The Veritas i3 solution [104] (composed of Indepth, Inform and Insight)

aims at detecting, diagnosing and correcting performance problems in J2EE

systems. It can automatically raise alerts based on simple thresholds, helps

in drilling down to the appropriate tier (web, EJB or database) and store

information for detailed trend analysis. The performance information is

presented at different architectural levels (from coarse-grained application

tiers to Java method invocations and SQL statements). However,

component-level architectural information is not available and although the

developers can identify the low-level constructs responsible for performance

degradation, they cannot easily put this information into the appropriate

architectural context of the application.

182

Borland provides solutions that span the full application lifecycle, from

development to deployment. Optimizeit Enterprise Suite [12] can be used

during development and testing while Optimizeit ServerTrace DataCenter

[13] is aimed at runtime operation, during testing and deployment.

Applications can be monitored and information presented both at the J2EE

component-level as well as the Java class level. In addition, comprehensive

resource information is available related to server availability, database and

messaging systems.

Cyanea/ONE [19] is a performance management product that uses specific

appiication-server hooks to instrument and monitor J2EE applications.

Available only for two major application servers, it employs extensive

resource monitoring techniques and provides a broad view of the systemic

performance parameters. Although there are multiple resource-oriented

views (e.g. server availability, database parameters, memory, threads) it

offers only basic stack traces and no component-level interactions. Using

sampling-based monitoring, Cyanea/ONE can be instructed to dynamically

change the scope and breadth of the instrumentation, reducing the overall

overhead when required. This facility however is not similar to the dynamic

adaptation functionality in COMPAS (Chapter 6) which automatically

changes the target coverage without resorting to sampling techniques and

without requiring user intervention.

Table 8-1 summarizes the differences between COMPAS and related

commercial J2EE performance products. It is organised as a feature matrix

with rows representing the most relevant features in the context of this

thesis. The first six columns present the availability of the features in the

products of six different vendors and the last column illustrates the features'

availability in COMPAS. The columns' headings contain vendor names and

not product names since several vendors provide multiple products that

cooperate in achieving performance management functionality.

The first four features, portability, adaptability, custom extensions and UML

Diagrams [71] are provided only by COMPAS and are not available in

commercial implementations. Portability refers to independence from any

server or JVM hooks as well as from any operating system or any

environmental feature. Adaptability refers to the COMPAS capability to

adapt the active monitoring target coverage, based in interaction models,

183

without affecting diagnosis capabilities. Custom extensions refer to

architectural extension points that can be used by third parties to add

functionality to the framework (Framework Extension Points - FEPs in

COMPAS, Section 4.4). UML Diagrams are generated by COMPAS

automatically based on an interaction recording process.

The last six rows in the table represent features that most of the tools

implement and that COMPAS either implements or facilitates with FEPs.

High-level Interactions refers to the presentation of performance

information at the component-level. Low-level Call-Graphs refers to the

class-level stack traces or aggregated call-graphs. Performance alert

generation is available in all the commercial products and is typically based

on simple thresholds. Web and EJB refer to the instrumented tiers and the

type of components that can be monitored. COMPAS does not support web

components but its infrastructure can be leveraged to add support for such

components. Details (JVM / DB) refers to the capability to display resource-

level information such as JVM heap utilisation, database connection pools

and server availability. COMPAS can be extended to provide such

information by using a combination of input and output FEPs (Section 4.4).

184

Table 8-1. COMPAS vs. J2EE Performance Management Products

Q
ue

st
So

ftw
ar

e

M
er

cu
ry

In

te
ra

ct
iv

e

W
ily

Te

ch
no

lo
gi

es

If)

1•a
M¡> B

or
la

nd

Cy
an

ea

C
O

M
PA

S

Portability NO NO NO NO NO NO YES

Adaptability NO NO NO NO NO NO YES

Custom Extensions NO NO NO NO NO NO YES

UML Diagrams NO NO NO NO NO NO YES

High-Level YES YES YES NO YES NO YES

Interactions

Low-Level Call- YES YES NO YES YES YES FEP

Graphs

Alerts YES YES YES YES YES YES YES

Web YES YES YES YES YES YES FEP

EJB YES YES YES YES YES YES YES

Details (JVM/DB) YES YES YES YES YES YES FEP

185

8.5 Validation

Testing the COMPAS framework proved difficult especially in the case of

monitoring adaptation and diagnosis features. Sample J2EE applications

that are available do not easily accommodate the introduction of

performance hotspots in a deterministic manner, which is a desired

requirement in testing the diagnosis and adaptation capabilities. A test-bed

was designed and implemented that allows flexible runtime configurations

consisting of dynamic calling patterns and resource usage. The test-bed,

consisting of configurable test-bed cells, can change the behaviour and

performance of the running components at runtime. This allows precise

injection of performance hotspots, which can validate the correct

functionality of the monitoring infrastructure.

The COMPAS prototype and experimental results are presented In Chapter

7. A complete monitoring implementation prototype has been functionally

tested with several applications such as Sun Microsystems' Petstore [88]

and IBM's Trade3 [38]. In addition, COMPAS has been deployed successfully

on commercial applications. The portability of the framework has been

tested by successfully deploying COMPAS on several combinations of

application servers and operating systems. Client consoles that connect to

the monitoring dispatcher have been implemented. They can display real­

time or recorded events received from the probes and control the

adaptation behaviour by recording and activating models.

Performance measurements have been performed using stress-testing tools

to determine the overhead of the monitoring process. Results show that

COMPAS does not introduce non-linearities in the target system, an

essential condition in operational environments. In addition, the overhead

on the target system is acceptable in particular for high loads and when

adaptive monitoring techniques are used. Measurements demonstrate that

the use of model knowledge in monitoring results in a significant reduction

of overhead, a property that is particularly useful in long-running systems

which exhibit performance problems only occasionally. The ability to adapt

the active monitoring target coverage does not involve selective monitoring

or sampling, rather the use of model knowledge ensures that the borders of

186

the system (points of entry) are constantly monitored and isolated

anomalies are not skipped.

187

8.6 Limitations and Further Exploration

The COMPAS framework provides a base platform for performing

instrumentation and monitoring operations in J2EE systems. The use of

adaptation techniques facilitates deployments on long running systems. The

non-intrusive portable instrumentation approach ensures that COMPAS can

be deployed on any J2EE application running on any J2EE-compliant

application server. The framework extension points enable addition of

COMPAS enhancements as well as integration of COMPAS with a wide range

of potential applications that require monitoring information. Several

projects already use or are evaluating COMPAS as part of their functionality.

Several limitations of the framework are derived from its portable and non-

intrusive architecture, while others originate in its adaptive monitoring

capabilities:

• High-level performance data extraction: COMPAS can only extract

component-level performance parameters as it uses component

metadata to insert the probes. However, using the instrumentation

FEP, low-level performance information could be extracted as well, as

illustrated in Section 5.2. This could also drive the display of lower-

level call-graphs, corresponding to intra-component method calls.

• Static application instrumentation: the COMPAS Probe Insertion

process involves static analysis of the target application and generation

of probes corresponding to the application's components. The process

execution concludes by generating a new, instrumented application

that must be redeployed in the operational environment. This

disadvantage can be eliminated using the instrumentation FEP to

enable runtime probe insertion as illustrated in Section 5.2.

• Recording-based model extraction approach: when extracting the

component interactions, COMPAS requires that no more than one

interaction be executed for the duration of the recording process.

Simultaneous interactions are not supported due to the lack of

interaction identifiers associated with method calls. This situation could

be improved using the instrumentation FEP to enable the addition of

call-specific identifiers.

188

• Simple anomaly-detection approach: to prove the feasibility of using

adapting the monitoring focus based on model-knowledge and

detection of alerts, a simple threshold-based alerting system has been

implemented. This could be further extended using the alert FEP.

Directions for further exploration include:

• Anomaly detection techniques, targeted at J2EE systems, which can

benefit from information extracted by COMPAS. Such techniques can

either be implemented at the probe level, in case of low cost

operational cost, or can be placed at the monitoring dispatcher level for

complex decoupled analysis.

• Diagnosis and adaptation techniques, based on statistical learning

could improve the accuracy and performance of probe activation and

deactivation operations.

• Specialised data analysis and visualisation techniques could use raw

data extracted by COMPAS to present complex results and graphs

corresponding to different application perspectives (e.g. high-level

business metrics or low-level technical details).

189

Bibliography

[1] I. Abdul-Fatah, S. Majumdar, Performance of CORBA-Based Client-Server
Architectures, IEEE Transactions on Parallel and Distributed Systems, Vol. 13,
No. 2, February 2002

[2] C. Albert, L. Browfnsword, Meeting the Challenges of Commercial-Off-The-
Shelf (COTS) Products: The Information Technology Solutions Evolution
Process (ITSEP), International Conference on Component Based Software
Systems (ICCBSS) 2002, LNCS 2255, Springer-Verlag Berlin Heidelberg,
2002, pp. 10-20

[3] G. Ammons, T. Ball, and J. Larus, Exploiting hardware performance counters
with flow and context sensitive profiling, In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI-97).
ACM Press, 1997

[4] Apache Software Foundation, Ant, http://ant.apache.org

[5] Apache Software Foundation, Apache Velocity Template Engine,
http://iakarta.apache.org/velocitv/

[6] Apache Software Foundation, Apache XML Project, http://xml.apache.org

[7] Apache Software Foundation, Log4j, http://iakarta.apache.org/log4i/

[8] Aspect Oriented Software Development Community, http://aosd.net

[9] S. Balsamo, A. Di Marco, P. Inverardi, M. Simeoni, Model-Based Performance
Prediction in Software Development: A Survey, IEEE Transactions on Software
Engineering, Vol. 30, No. 5, MAY 2004, pp. 295-310

[10] BEA Systems, BEA Weblogic Server 8,
http ://www. bea, com/framework. isp?CNT-index.htm&FP=/content/products/s
erver

[11] K. Beck, Extreme Programming Explained, Addison Wesley, 31 October, 1999

[12] Borland Software Corporation, Optimizeit Enterprise Suite,
http://www.borland.com/optimizeit

[13] Borland Software Corporation, Optimizeit ServerTrace 2, DataCenter,
http://www.borland.com/opt servertrace/

[14] J. Bowring, A. Orso, and M.J. Harrold. Monitoring Deployed Software Using
Software Tomography. Proceedings of the ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering (PASTE 2002),
November 18-19, 2002, Charleston, SC

[15] E. Cecchet, J. Marguerite, W. Zwaenepoel. Performance and scalability of EJB
applications. In Proceedings of the 17th ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), November
2002, Seattle, WA

[16] J. Cheesman, J. Daniels, UML Components, Addison Wesley, October 2001

190

http://ant.apache.org
http://iakarta.apache.org/velocitv/
http://xml.apache.org
http://iakarta.apache.org/log4i/
http://aosd.net
http://www.borland.com/optimizeit
http://www.borland.com/opt

[17] P.C. Clements, Coming Attractions in Software Architecture, No.CMU/SEI-96-
TR-003, Software Engineering Institute, Carnegie Mellon University, February
1996

[18] J. Crupi, D. Alur, D. Malks, Core J2EE Patterns, Prentice Hall, 30 September,
2001

[19] Cyanea Systems, Cyanea/ONE, http://www.cvanea.com/solution home.html

[20] P. H. Deussen, G. Din, I. Schieferdecker, An On-line Test Platform for
Component-based Systems, Proceedings of 27th IEEE / NASA Goddard
Software Engineering Workshop (SEW-27'02)

[21] A. Diaconescu, A. Mos, J. Murphy, Automatic Performance Management in
Component Based Software Systems. Proceedings of IEEE International
Conference on Autonomic Computing (ICAC), May 2004, New York

[22] A. Diaconescu, J. Murphy, A Framework for Automatic Performance
Monitoring, Analysis and Optimisation of Component Based Software Systems,
Workshop on Remote Analysis and Measurement of Software Systems at 26th
International Conference on Software Engineering (ICSE), May 24 2004,
Edinburgh, Scotland, UK

[23] A. Diaconescu, J. Murphy, A Framework for Using Component Redundancy for
Self-Optimising and Self-Healing Component Based Systems, WADS
workshop, ICSE'03, Hilton Portland, Oregon USA, May 3-10, 2003

[24] E. Dimitrov, A. Schmietendorf, R. Dumke UML-Based Performance
Engineering Possibilities and Techniques, IEEE Software, Vol. 19, No. 1,
January/February 2002

[25] Distributed Management Task Force, Inc. Common Information Model (CIM)
Specification Version 2.2, June 14, 1999

[26] Distributed Systems Group at Charles University in Prague,
http://nenva.ms.mff.cuni.cz/

[27] M. Dmitriev, Design ofJFIuid: Profiling Technology and Tool Bases on Dynamic
Bytecode Instrumentation, Sun Microsystems Technical Report 2003-0820.

[28] M. Dmitriev, Profiling Java applications using code hotswapping and dynamic
call graph revelation, Proc. 4th Intl. Workshop on Software and Performance,
January 2004

[29] Eclipse Project, http://www.eclipse.ora

[30] ej-technologies, JProfiler, http://www.ej-
technologies.com/products/jprofiler/overview.html

[31] Empirix, Bean Test,
www. empirix. com/empirix/web+test+monitorina/products/

[32] H. H. Feng et al., Anomaly Detection Using Call Stack Information, IEEE
Symposium on Security and Privacy, 2003 IEEE Symposium on Security and
Privacy, May 11 - 14, 2003, Berkeley, CA

[33] M. Fleury, JMX: Managing J2EE with Java Management Extensions, Sams, 8
February 2002

[34] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns - Elements of
Reusable Object Oriented Software, Addison-Wesley, NY, 1995

[35] Gartner, Inc. High-Availability Networking: Toward Zero Downtime,
September 16, 2002

[36] D. Hart, M. Tudoreanu, E. Kraemer, Mobile Agents for Monitoring Distributed
Systems, Proceedings Fifth International Conference on Autonomous Agents,
AGENTS'01, May 28 - Junel, 2001, Montreal, Quebec, Canada

191

http://www.cvanea.com/solution
http://nenva.ms.mff.cuni.cz/
http://www.eclipse.ora
http://www.ej-

[37] IBM, IBM Websphere 5 Application Server, http://www-
306.ibm.com/software/websphere/info/platformv5/index.isp

[38] IBM, Trade3: Benchmark sample for WebSphere 5.0 and J2EE 1.3,
http://www-306.ibm.com/software/webservers/appserv/benchmark3.html

[39] K. Ilgun, R. A. Kemmerer, P. A. Porras, State Transition Analysis: A Rule-
Based Intrusion Detection Approach, IEEE Transactions on Software
Engineering, March 1995, pp. 181-199

[40] Java & Internet Glossary, http://mindprod.com/ialoss/time.html

[41] JBoss, The JBoss Application Server, http://www.iboss.org/products/ibossas

[42] R. Johnson, B. Foote, Designing Reusable Classes, Journal of Object-Oriented
Programming, June/July. 1988, pp. 22-35

[43] P. Kähkipuro: UML Based Performance Modelling Framework for Object-
Oriented Distributed Systems, Proc. 2nd International Conference on the
Unified Modeling Language: beyond the standard, UML '99, 1999, 356-371

[44] J. 0. Kephart, D. M. Chess, The Vision of Autonomic Computing, IEEE
Computer, January 2003

[45] G. Klczales et al. Getting Started with AspectJ, Communications of the ACM,
October 2001, Vol. 44, No. 10, pp. 59-65

[46] S. Kounev and A. Buchmann, Performance Modeling and Evaluation of Large-
Scale J2EE Applications, Proceedings of the 29th International Conference of
the Computer Measurement Group (CMG) on Resource Management and
Performance Evaluation of Enterprise Computing Systems (CMG-2003),
Dallas, Texas, December 7-12, 2003

[47] P. Krutchen, Rational Unified Process, Addison Wesley, April 2000

[48] F. Lange, R. Kroeger, M. Gergeleit, JEWEL: Design and Measurement of a
Distributed Measurement System, IEEE Transactions on Parallel and
Distributed Systems, November 1992

[49] A. Lee, J. Murphy, L. Murphy, The Performance of Component-based Software
Systems, Proc. of the UK Computer Measurement Group (CMG) Annual
Conference, May 2003

[50] D.-W. Lee, R.S. Ramakrishna, VIsOK: A Flexible Visualization System for
Distributed Java Object Application, Proceedings of 14th International Parallel
and Distributed Processing Symposium (IPDPS'OO), May 2000, pp. 393

[51] T.-K. Liu, S. Kumaran, Z. Luo, Layered Queuing Models for Enterprise
JavaBean Applications, Proc. 5th International Enterprise Distributed Object
Computing Conference (EDOC), Seattle, WA, USA, 4-7 September 2001

[52] R. A. Maxion, K. M.C. Tan, Benchmarking Anomaly-Based Detection Systems,
Proceedings International Conference on Dependable Systems and Networks
(DSN 2000), June 25 - 28, 2000, New York, NY

[53] Mercury Interactive Inc, Mercury J2EE Solutions,
http://www.mercury.com/us/solutions/j2ee/

[54] Meta Group, Integration & Development Strategies,
http://www.metagroup.com/products/insiahts/ids trends.html

[55] A. Mos, The COMPAS Project home page-, http://eibperformance.ora

[56] J. Murphy, A. Lee, Performance Modelling of Mobile and Middleware Systems,
Proc. of Performance Engineering Conference, May 2003

[57] Object Management Group, CORBA Component Model,
http://www.omg.org/technologv/documents/formal/components.htm

192

http://www-
http://www-306.ibm.com/software/webservers/appserv/benchmark3.html
http://mindprod.com/ialoss/time.html
http://www.iboss.org/products/ibossas
http://www.mercury.com/us/solutions/j2ee/
http://www.metagroup.com/products/insiahts/ids
http://eibperformance.ora
http://www.omg.org/technologv/documents/formal/components.htm

[58] Object Management Group, Model Driven Architecture, OMG document
number ormsc/2001-07-01, OMG, 2001

[59] Object Management Group, UML Profile for Enterprise Distributed Object
Computing Specification, OMG document number ptc/02-02-05, OMG, 2002

[60] Object Management Group, UML Profile for Schedulability, Performance, and
Time Specification, OMG document number ptc/02-03-02, OMG, 2002

[61] Open System Testing Architecture (OpenSTA), http://www.opensta.org

[62] D.C. Petriu and H. Shen, Applying UML Performance Profile: Graph Grammar-
Based Derivation of LQN Models from UML Specifications, Proc. Seventh Int'l
Conf. Modelling Techniques and Tools for Performance Evaluation, pp. 159-
177, 2002

[63] D.C. Petriu, H. Amer, S. Majumdar, I. Abdul-Fatah, Using Analytic Models for
Predicting Middleware performance, Proc. 2nd ACM Int. Workshop on Software
and Performance (WOSP'OO), Ottawa, Canada, September 2000

[64] Quest Software, Foglight, http://www.quest.com/foglight/

[65] Quest Software, JProbe Java Profiler,
http://iava.quest.com/iprobe/iprobe.shtml.

[66] Quest Software, PerformaSure, http://www.quest.com/performasure/

[67] Quest Software, Spotlight, http://www.quest.com/spotlight-portal/

[68] M. Richmond, Flexible Migration Support for Component Frameworks, Doctoral
Dissertation, Department of Computing, Macquarie University, January, 2003

[69] M. Richmond, J. Noble, Reflections on Remote Reflection, Australasian
Computer Science Conference (ACSC) 2001, Brisbane, Jan 2001

[70] E. Roman, S. W. Ambler, T. Jewell, Mastering Enterprise Java Beans Second
Edition, Wiley Computer Publishing, 2002

[71] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modelling Language
Reference Manual, Addison-Wesley 1999, pp 367

[72] T. Ryutov, C. Neuman, D. Kim, Li Zhou, Integrated Access Control and
Intrusion Detection for Web Servers, IEEE Transactions on Parallel and
Distributed Systems, September 2003, pp. 915-928

[73] H. A. Schmid, Systematic framework design by generalization,
Communications of the ACM, Volume 40, Issue 10, October 1997, pp. 48 - 51

[74] Segue, SilkTest,
www.segue, com/html/s solutions/s silktest/s silktest toc.htm

[75] C.U. Smith, L.G. Williams, Performance and Scalability of Distributed Software
Architectures: An SPE Approach, Parallel and Distributed Computing Practices,
2002

[76] C.U. Smith, L.G. Williams, Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software (1st Edition), Addison-Wesley,
September 17, 2001

[77] T. Souder, S. Mancoridis, M. Salahm, Form: A Framework for Creating Views of
Program Executions, In Proceedings of IEEE International Conference on Software
Maintenance ICSM'01, Florence, Italy, November 2001

[78] B. Sridharan, S. Mundkur, A.P. Mathur, Non-intrusive Testing, Monitoring and
Control of Distributed CORBA Objects, TOOLS Europe 2000, St. Malo, France,
June 2000

[79] B. Sridharan, B. Dasarathy and A. P. Mathur, On Building Non-intrusive
Performance Instrumentation Blocks for CORBA-based Distributed Systems,

193

http://www.opensta.org
http://www.quest.com/foglight/
http://iava.quest.com/iprobe/iprobe.shtml
http://www.quest.com/performasure/
http://www.quest.com/spotlight-portal/
http://www.segue

4th IEEE International Computer Performance and Dependability Symposium,
Chicago March 2000

[80] Standish Group, The CHAOS Report (1994),
http://www.standishqroup.com/sample research/chaos 1994 l.php

[81] Sun Microsystems, ECperf Specification Version 1.1, April 16, 2002

[82] Sun Microsystems, Enterprise JavaBeans™ Specification Version 2.1, Santa
Clara, CA, November 12, 2003

[83] Sun Microsystems, J2EE Compatibility & Java Verification,
http://iava.sun.com/i2ee/verified/index.isp

[84] Sun Microsystems, J2EE Management Specification - Final Release 1.0,
http://icp.org/isr/detail/77.isp

[85] Sun Microsystems, Java™ 2 Platform Enterprise Edition Specification, vl.4,
Santa Clara, CA, November 2003

[86] Sun Microsystems, Java Applets, http://iava.sun.com/applets/

[87] Sun Microsystems, Java Architecture for XML Binding (JAXB) Specification 1.0
- Final Draft, http://iava.sun.com/xml/downloads/iaxb.html

[88] Sun Microsystems, Java BluePrints: Java Pet Store Sample Application v.
1.3.1_02,
htl:p://iava.sun.com/blueprints/code/index.html#iava pet store demo

[89] Sun Microsystems, Java Core Reflection Specification version 1.3, Palo Alto
California, December 1999

[90] Sun Microsystems, Java Management Extensions Instrumentation and Agent
Specification, vl.2, Santa Clara, CA, October 2002

[91] Sun Microsystems, Java Message Service Specification, v l . l , Santa Clara, CA,
April 2002

[92] Sun Microsystems, Java Naming and Directory Interface,
Application Programming Interface and Specification Version 1.2, July 1999,
http://iava.sun.com/products/indi/docs.html

[93] Sun Microsystems, Java Remote Method Invocation (Java RMI) Specification
Version 1.4,
http://iava.sun.eom/i2se/l.4.2/docs/auide/rmi/spec/rmiTOC.html

[94] Sun Microsystems, Java Server Pages™ Specification Version2.0, Santa Clara,
CA, November 24, 2003

[95] Sun Microsystems, Java™ Servlet Specification Version 2.4, Santa Clara, CA,
November 24, 2003

[96] Sun Microsystems, Sun Java System Application Server
http://wwws.sun.com/software/products/appsrvr/home appsrvr.html

[97] C. Szyperski, D. Gruntz, S. Murer, Component Software: Beyond Object-
Oriented Programming, Second Edition, Addison-Wesley, November 2002

[98] B. Tierney et ai., A Monitoring Sensor Management System for Grid
Environments, In Proceedings of Ninth IEEE International Symposium on High
Performance Distributed Computing (HPDC'OO) , August 01 - 04, 2000,
Pittsburgh, Pennsylvania

[99] Tigris.org, ArgoUML, http://arqouml.tigris.org/

[100]Tigris.org, Java Graph Editing Framework, http://gef.tigris.org/

[101]M. Trofin, J. Murphy, A Self-Optimizing Container Design for Enterprise Java
Beans Applications, 8th International Workshop on Component Oriented

194

http://www.standishqroup.com/sample
http://iava.sun.com/i2ee/verified/index.isp
http://icp.org/isr/detail/77.isp
http://iava.sun.com/applets/
http://iava.sun.com/xml/downloads/iaxb.html
http://iava.sun.com/products/indi/docs.html
http://iava.sun.eom/i2se/l.4.2/docs/auide/rmi/spec/rmiTOC.html
http://wwws.sun.com/software/products/appsrvr/home
http://arqouml.tigris.org/
http://gef.tigris.org/

Programming (WCOP), part of the 17th European Conference on Object-
Oriented Programming (ECOOP), July 2003, Darmstadt, Germany

[102]M. Trofin, J. Murphy, Using Runtime Information for Adapting Enterprise Java
Beans Application Servers, Second International Workshop on Dynamic
Analysis (WODA) at 26th International Conference on Software Engineering
(ICSE), May 24 2004, Edinburgh, Scotland, UK

[103]T. K. Tsai et al., Stress-Based and Path-Based Fault Injection, IEEE
Transactions on Computers, November 1999, pp. 1183-1201

[104] Veritas, Veritas i3,
http ://www.veritas.com/Products/www?c=subcateaorv&.refId = 161

[105]A. I. Verkamo, J. Gustafsson, L. Nenonen, J. Paakki, Design Patterns in
Performance Prediction, Proc. 2nd International Workshop on Software and
Performance (WOSP'OO), Ottawa, Canada, September 2000

[106]W3C, Document Object Model Specification, http://www.w3.org/DOM/

[107]W3C, Extensible Markup Language (XML) 1.0 (Second Edition), W3C
Recommendation 6 October 2000, http://www. w3.ora/TR/REC-xml

[108]H. Wang, J. Mylopoulos, S. Liao, Intelligent Agents and Financial Risk
Monitoring Systems, In COMMUNICATIONS OF THE ACM March 2002/Vol. 45,
No. 3

[109]R. Weinreich, W. Kurschl, Dynamic Analysis of Distributed Object-Oriented
Applications, Proc. Hawaii International Conference On System Sciences,
Kona, Hawaii, January 6-9, 1997

[110]L.G. Williams, C.U. Smith, Performance Engineering Evaluation of Software
Architectures, Proc. First International Workshop on Software and
Performance (WOSP'98), Santa Fe, NM, USA, October 1998

[111] Wily Technology, Introscope,
http://www.wilvtech.com/solutions/products/Introscope.html

[112]M. Wooldridge, An Introduction to MultiAgent Systems, John Wiley & Sons
Ltd., England, 2002

195

http://www.veritas.com/Products/www?c=subcateaorv&.refId
http://www.w3.org/DOM/
http://www
http://www.wilvtech.com/solutions/products/Introscope.html

