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Abstract

Most large-scale enterprise applications are currently built using 

component-based middleware platforms such as J2EE or .NET. Developers 

leverage enterprise services provided by such platforms to speed up 

development and increase the robustness of their applications. In addition, 

using a component-oriented development model brings benefits such as 

increased reusability and flexibility in integrating with third-party systems.

In order to provide the required services, the application servers 

implementing the corresponding middleware specifications employ a 

complex run-time infrastructure that integrates with developer-written 

business logic. The resulting complexity of the execution environment in 

such systems makes it difficult for architects and developers to understand 

completely the implications of alternative design options over the resulting 

performance of the running system. They often make incorrect assumptions 

about the behaviour of the middleware, which may lead to design decisions 

that cause severe performance problems after the system has been 

deployed. This situation is aggravated by the fact that although application 

servers vary greatly in performance and capabilities, many advertise a 

similar set of features, making it difficult to choose the one that is the most 

appropriate for their task.

The thesis presents a methodology and tool for approaching performance 

management in enterprise component-based systems. By leveraging the 

component platform infrastructure, the described solution can non- 

intrusively instrument running applications and extract performance 

statistics. The use of component meta-data for target analysis, together 

with standards-based implementation strategies, ensures the complete 

portability of the instrumentation solution across different application 

servers. Based on this instrumentation infrastructure, a complete



performance management framework including modelling and performance 

prediction is proposed.

Most instrumentation solutions exhibit static behaviour by targeting a 

specified set of components. For long running applications, a constant 

overhead profile is undesirable and typically, such a solution would only be 

used for the duration of a performance audit, sacrificing the benefits of 

constantly observing a production system in favour of a reduced 

performance impact.

This is addressed in this thesis by proposing an adaptive approach to 

monitoring which uses execution models to target profiling operations 

dynamically on components that exhibit performance degradation; this 

ensures a negligible overhead when the target application performs as 

expected and a minimum impact when certain components under-perform.

Experimental results obtained with the prototype tool demonstrate the 

feasibility of the approach in terms of induced overhead. The portable and 

extensible architecture yields a versatile and adaptive basic instrumentation 

facility for a variety of potential applications that need a flexible solution for 

monitoring long running enterprise applications.
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Chapter 1 Introduction

Large-scale enterprise applications have complex performance 

characteristics

There is a need for dynamic, adaptive monitoring

Performance information must be presented at the same conceptual 

level as the development constructs

Thesis contributions:

Complete framework for performance management

Non-intrusive, portable, component-level monitoring platform 

that can be extended vertically or horizontally

Model-based, low-overhead adaptive monitoring techniques for 

long running production systems



1.1 Background and Motivation

1.1.1 Complexity in Enterprise Applications

As companies continue to expose their business processes over the Internet 

for Business-to-Business (B2B) or Business-to-Consumer (B2C) 

interactions, the software systems they rely upon become increasingly 

complex. The speed at which these software systems must be developed is 

also increasing due to the interest of each company to achieve a 

competitive advantage in their markets.

It can be argued that increasing the complexity and the time-to-market for 

software systems are two conflicting requirements. Other major conflicting 

requirements are ensuring that systems meet performance goals and 

reducing the costs at which these systems are developed.

Outsourcing parts of system development is a solution often used by 

enterprises to deal with development budget cuts. Even mission critical 

developments such as financial or military applications [2] increasingly need 

to resort to this approach. Another solution to the same problem is using 

Commercial-Off-The-Shelf (COTS) software. Both solutions may lead to 

situations where the developers responsible for the entire system do not 

fully understand the resulting software application. When the application is 

not clearly understood, it is often hard if not impossible to ensure that 

performance goals are met, especially if the system was not engineered for 

performance from the start.

Component oriented development [97][16] is gaining momentum mostly 

because it speeds up the development process for large enterprise systems. 

In addition, it forces developers to design with future changes in mind, 

which increases flexibility and reusability. A number of frameworks such as 

Sun's Enterprise Java Beans [82], OMG's Corba Component Model (CCM) 

[57] or Microsoft .NET [97] are available. They can help reduce the 

development time and even help with performance and reliability issues 

such as scalability, fault-tolerance and availability by offering a consistent 

set of systemic services ready to be integrated in the enterprise application. 

Such services and additional lifecycle support offered by the component 

application servers account for orders of magnitude increases in the



complexity of the resulting systems which have rather complex performance 

characteristics.

In addition, the dynamic nature of component frameworks (e.g. dynamic 

inter-component bindings, component versioning) as well as runtime 

changes of the execution context (e.g. incoming workload, available 

resources), adds to the complexity of the performance perspective on the 

enterprise system.

Most of the time, the complexity of such enterprise systems is not 

approached with tools that operate at the appropriate level of granularity.

1.1.2 Performance Challenges

This thesis proposes a framework for performance management of large- 

scale distributed enterprise applications. Such applications have 

comprehensive performance, reliability and scalability requirements. Since 

businesses depend on them, they must typically operate continuously and 

flawlessly 99.999% of the time (also known as the 5 9's availability). In 

addition, they must handle peak loads effectively, which can be orders of 

magnitude higher than the average loads.

Due to the complexity of performance aspects in enterprise systems and the 

failure to use appropriate monitoring and testing tools, most enterprises will 

use at least 25% more time than needed in troubleshooting applications 

before 2005, according to a Gartner study [35]. The same study indicates 

that 20% of enterprise mission-critical applications will experience severe 

performance problems that could have been avoided by appropriate 

modelling and monitoring practices.

A Standish survey [80] indicates that when developing complex enterprise 

distributed systems without using advance middleware such as J2EE, only 

16% of the projects are finished on time, while 33% are abandoned. The 

study also indicates that 53% of such projects exceed their budgets by an 

average of 90%.

J2EE has proven to be one of the best solutions to developing and deploying 

such systems, holding a growing and decisive market lead [54]. It allows for 

faster and more reliable application development by ensuring that the

3



developers do not spend time on system infrastructure development and 

can concentrate on application logic where they have the domain 

knowledge. From a performance perspective, there are several points of 

interest in such applications:

Poor understanding: component-based development facilitates reuse 

and outsourcing, as well as designing for change in future application 

versions [97]. Enterprise applications can become composites of 

different in-house component versions, third-party components and 

legacy systems. In addition, the inherent complexity of the business 

logic in such systems is typically rather significant. Development 

teams change or are reassigned often and it is usually difficult in such 

circumstances to keep track and fully understand the functionality of 

the resulting system from a performance perspective. However, since 

performance is usually dependent on the design of the application 

rather than its code (e.g. intercommunication patterns between 

components) [17], it is crucial that a consistent design view of the 

application is maintained.

Runtime Infrastructure: Component platforms such as J2EE

implementations provide comprehensive functionality, which often 

exceeds the complexity of the enterprise application logic that uses 

them. They implement enterprise system services such as threading, 

pooling, caching, persistence, transactionality, access to resources, 

and security. The mapping of development concepts such as 

components and high-level communication patterns such as "local 

calls" to their actual infrastructure realisation raises multiple 

problems. It is therefore difficult to understand the performance 

implications of different design decisions and developers typically rely 

on experience, anecdotic evidence and server-specific tips in order to 

generate the most appropriate designs.

Platform Variation: Component technologies such as J2EE or CCM do 

not mandate particular implementation techniques or rules. As long 

as the functional specifications are met, vendors are free to choose 

any implementations and provide any optimisations they see fit. Most 

commercial vendors use their operating system and middleware 

expertise to optimise the performance of their J2EE server product.

4



Some vendors have particular expertise in developing fault-tolerant 

solutions, others may provide better object to database mapping for 

container-managed persistence. The result is that there could be 

major differences between different server implementations in terms 

of their performance footprint in realising different parts of the J2EE 

Specification. Particular application design options that are optimal 

for one application server might prove less than optimal when the 

application is deployed on another application server. For instance, 

using particular combinations of session and entity beans in parts of 

an application may affect the overall performance differently when 

the application is deployed on different application servers [15].

5



1.2 Contributions

This dissertation proposes a solution for performance management of large- 

scale enterprise systems built on component based platforms.

The solution called COMPAS is a framework that uses a component-centric 

approach to match the development concepts used by developers of such 

systems. The purpose of the framework is to enable rapid problem 

diagnosis and isolation by presenting performance data to developers at the 

appropriate conceptual level. The three main contributions of the thesis are 

related to different aspects of the COMPAS framework.

The first main contribution is a distributed monitoring infrastructure that 

leverages metadata in component platforms to inject instrumentation code 

into applications built on such platforms. Built for J2EE, the monitoring 

infrastructure uses a non-intrusive approach to instrumentation that does 

not require changes to application code or runtime infrastructure and is 

completely portable across J2EE application servers and operating systems. 

The COMPAS Monitoring Platform is architected for extensibility and 

provides extension points for vertical and horizontal integration of third- 

party plug-ins. A related contribution is an instrumentation procedure for 

J2EE systems based on dynamic bytecode manipulation. This can replace or 

enhance the default non-intrusive instrumentation approach.

The second main contribution of the thesis is an adaptive approach to 

monitoring component platforms that leverages model information 

extracted from the target applications to automatically adjust the target 

coverage and therefore maintain an optimum overhead. The presented 

adaptation algorithms facilitate the diagnosis of the performance hotspots 

by automatically narrowing the instrumentation on the appropriate 

components.

The third contribution is a proposed performance management methodology 

that comprises monitoring, modelling and prediction as interrelated 

modules. Using information extracted from the instrumented application, 

execution and performance models are created and used to facilitate 

performance prediction. The system performance is predicted and

6



performance-related issues are identified in different scenarios by 

generating workloads and simulating the performance models.

Other contributions are a non-intrusive approach to extract execution 

models from component-based systems and a flexible framework for 

behavioural and performance testing of the monitoring infrastructure. In 

addition, this framework can be used to test middleware implementations 

by providing a means to inject faults in component-applications accurately.

COMPAS can be used as a foundation for elaborate performance 

management solutions, as it is completely portable and extendable. It 

provides the necessary infrastructure to extract and process complex 

performance information non-intrusively from target applications without 

affecting the operational performance significantly in production 

environments.

A completely functional prototype for the adaptive monitoring infrastructure 

has been implemented. It is proposed to release COMPAS as open-source to 

facilitate its adoption and extension by the academic and practitioner 

communities. It has been tested on the leading J2EE application servers and 

operating systems.
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1.3 Thesis Overview

Chapter 2 presents an introduction to J2EE and related work in the area of 

software performance engineering. General approaches to performance 

management are presented and analysed. Generic monitoring techniques 

and tools as well as adaptive monitoring approaches are presented and their 

applicability and disadvantages identified.

Chapter 3 presents an overview of a proposed performance management 

methodology comprising monitoring, modelling and performance prediction. 

The monitoring module is placed in the context of a complete framework 

that targets continuous application performance improvement.

Chapters 4, 5 and 6 describe the main contributions of the thesis. Chapter 4 

presents the COMPAS monitoring infrastructure for component-based 

applications. The framework's architecture and its capability to be extended 

and integrated in third-party systems are illustrated.

Chapter 5 describes the non-intrusive and portable instrumentation process. 

In addition, alternative instrumentation methods that can be used by 

COMPAS are presented.

Another major contribution is described in Chapter 6 where two approaches 

to adaptive monitoring and diagnosis are presented. Both approaches, 

aimed at reducing the monitoring overhead, depend on the availability of 

execution models of the target applications. A tool that can extract such 

models is proposed.

The framework prototype and experimental results are presented in Chapter 

7. The functionality of the prototype is illustrated by presenting a functional 

use case and the performance impact of the prototype is measured in 

different scenarios. The testbed application used to extract the results is 

described as well.

Chapter 8 concludes the thesis by reviewing the contributions, the 

limitations of the thesis, and presenting possible avenues for further 

exploration. Related work introduced in Chapter 2 is reviewed and 

compared to COMPAS. In addition, this chapter contains a feature 

comparison between commercial J2EE performance management tools and 

COMPAS, highlighting the main differences and similarities.



Chapter 2 Related Work

J2EE Overview

COMPAS Monitoring and Related Monitoring Approaches

COMPAS Adaptation and Diagnostics and Related Adaptive 

Approaches

General Approaches in Performance Modelling and Prediction
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2.1 Introduction to J2EE

Java 2 Enterprise Edition [85] is Sun Microsystems' architecture for large- 

scale multi-tier applications. It comprises a set of documents containing 

coordinated specifications and practices for development, deployment and 

management of component-oriented applications.

J2EE specifies four types of components that can be used in enterprise 

applications. Each type of component has an associated container, which is 

responsible for providing the required runtime context, resource access and 

lifecycle management. The containers enable a separation of the business 

logic and platform infrastructure by providing a coherent and federated view 

of the underlying J2EE APIs [85]. J2EE components never call each other 

directly; rather they use the container protocols, allowing the containers to 

transparently provide required context services specified by the 

components' deployment descriptors.

• Application Clients: Stand-alone Java programs that require access to 

server-side components. They reside in an Application Client Container.

• Applets [86]: Java components that typically run in a web browser and 

can provide a complex GUI front-end for server-side applications. They 

reside in an Applet Container.

• Servlets [95] and JSPs [94]\ Dynamic web component used to 

generate complex HTML presentation elements or XML data for inter­

business interactions. They usually connect to legacy systems or EJB 

containers in order to fulfil their business logic. Servlets and JSPs 

execute in a Web Container, usually included in a web server that 

provides the required J2EE services such as security.

• Enterprise Java Beans [82]\ Server-side business components that 

execute in a managed environment provided by the EJB Container. 

They usually provide the business logic in a J2EE application and make 

extensive use of container-provided services such as persistence, 

transactionality and security.

J2EE infrastructure vendors must fully implement the J2EE specifications in 

order to be certified as J2EE Compatible [83]. The products that implement 

the J2EE specification are J2EE Application Servers. A large number of such 

servers are available both as fully featured commercial enterprise products
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and as free and flexible open-source implementations. In addition, the J2EE 

Software Development kit (SDK) provides a fully featured and free J2EE 

implementation.

The COMPAS Platform, proposed in this thesis, addresses performance 

issues related to the EJB layer in J2EE applications. It can however be 

extended to include JSPs and Servlets in the monitoring scope by adapting 

the probe generation logic (see Section 5.1). The runtime monitoring 

infrastructure need not be changed in order to support JSPs or Servlets.

The Enterprise JavaBeans architecture [82] is a component architecture for 

the development of scalable, transactional and secure business applications. 

Such applications can be developed once and then deployed on any EJB 

compliant application server.

The low-level runtime support (distributed transactions management and 

distributed object middleware) for EJB components (EJBs) are provided by 

an EJB Server. High-level runtime management of EJB components is 

provided by an EJB Container, typically running as part of an EJB Server. 

The EJB Container is an abstract entity that provides a clear separation 

between EJBs and the services implemented by the EJB Server through the 

realisation of the standard EJB API [82], representing the EJB component 

contract.

Commercial EJB Server implementations are usually part of fully featured 

J2EE Application Servers but they can also be provided as stand-alone 

products.

Figure 2-1 illustrates the containment relationships related to the EJB 

runtime environment. EJB Components run in EJB Containers whose role is 

to provide an abstraction of the underlying platform services, in the form of 

the EJB APIs. The containers must fulfil the EJB component contracts by 

implementing the required services and lifecycle management operations. 

In addition, they must expose consistent client-views of the contained EJB 

components. The EJB Server contains the basic middleware implementation 

for providing the common low-level services such as distributed object 

management, transaction management and distributed security policy 

enforcement. The J2EE Application Server implements the common J2EE 

Services and provides enterprise-level management operations. It typically
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uses an administrative domain which can span multiple machines and 

provides consistent management, load-balancing and fault-tolerance 

features.

J2EE Client / J2EE 
Component

Figure 2-1. EJB  Containment Hierarchy

The EJB Specification does not describe the interfaces between the EJB 

Container, the EJB Server and the J2EE Server. Consequently, the mapping 

of the functionalities presented above to the runtime entities may differ 

among commercial implementations. For instance, a vendor may decide to 

implement load balancing at the EJB Server level, while another vendor may 

implement this functionality at the J2EE Application Server level.

Low-level middleware services

object distribution, transaction 
management, security

EJB Container

EJB APIs Implementation

component
contract



Figure 2-2 describes the main constituents of an EJB component as well as 

the steps required to fulfil a client request. The client can be any of the J2EE 

component types, or indeed any standalone application.

The bean provider (developer) must package the following constructs into 

the ejb-jar application archive [82] (a .jar file):

• EJB bean class'. This Java class contains the business logic of the 

component. It must follow the EJB specification constraints [82] but 

may use any number of additional classes to fulfil its logic.

• EJB Component Interface-. This Java interface must contain all the 

methods that are to be exposed to the bean clients. This is necessary 

so that the container can generate the E j B O b j e c t  artefact.

• EJB Home: This Java interface contains the declarations of methods 

that can be used to create instances of the bean. They are of the form 

create<METHOD> (...) and f ind<METHOD> depending on the bean type. 

Clients choose one of the home methods to obtain an EJB instance that 

corresponds to their needs.

• XML Deployment Descriptor, the contract between the bean provider 

and the container, this document describes the structure of the bean as 

well as the required services (such as security or persistence). In 

addition, this document can contain parameters that can be customised 

at deployment time to suit individual application needs. For instance, 

the number of rows to be returned from a database can be 

parameterised.
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J2EE Client /

J2EE
Component

1 1 1
EJB Contract Description 

(Metadata)

Figure 2-2. EJB  Structure and Invocation Path

The container has the responsibility of using the bean provider's artefacts 

(interfaces and deployment descriptors) and providing the appropriate 

implementations at runtime. The reason for having a separation between 

bean provider artefacts and container artefacts is that this allows the bean 

provider to lack expertise in system-level services. The bean provider 

specifies the required services in the deployment descriptor and provides 

the "skeleton" of the component as it should be exposed to the outside 

clients. The container generates the artefacts that enforce this view, thus 

realising the component contract. The container artefacts essentially wrap 

the bean implementation and add layers of service enforcement and 

lifecycle management to the business logic provide by the bean's 

developers.

The container must provide an implementation of the EJB Home interface in 

the form of a bean factory object that uses the specified construction 

methods. This implementation, bound to the component name is available 

at runtime in the system's naming directory accessed through the Java
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Naming and Directory Interface (JNDI) [92]. In addition, it must implement 

the EJB Component Interface and provide an E J B O b j e c t  class that clients 

will access when they require services from the bean implementation. This 

"proxy" [34][82] approach enables the container to intercept the client calls 

and execute the necessary management and service code.

In Figure 2-2, the bean client is requesting a service from the depicted EJB 

in the following steps:

1) It first obtains a reference to the E JB H om e implementation that the container 

has generated. The reference is looked up in the system-naming directory via 

JNDI. On the obtained factory (the E JB H om e implementation) object, the client 

will call the required construction method.

2) The E JB H om e implementation instructs the container to create a new instance or 

retrieve an existing instance of the component, and returns it to the client. The 

actual Java object returned is an instance of the container-generated 

E J B O b j e c t  class that corresponds to the bean's component interface.

3) The client invokes the business method on the container object, transparently, 

through the component interface. The container object performs the required 

services and calls the corresponding business method on the bean's 

implementation object, instance of the bean provider's bean class.

Session and entity EJBs can expose local or remote views to their clients. 

Clients of EJBs can be other EJBs or arbitrary Java objects such as applets 

or servlets or standalone applications.

A remote view can be used by any local or remote client to access an EJB. 

The exposed object must comply with the Java Remote Method Invocation 

(RMI) specification [93]. Remote operations incur the overhead of 

serialising and de-serialising arguments.

A local view is non-remotable and can only be used by clients residing the 

same JVM as the bean. This view is used when it is known that all clients of 

an EJB are always running in the same JVM, typically other beans deployed 

in the same container. Since this view is non-remotable, it allows faster 

access by avoiding serialisation operations.

Figure 2-3 illustrates different scenarios in which EJBs can call each other.
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Figure 2-3. Different EJB  to EJB  Invocation Options

An EJB Server Instance is a machine-bound entity and manages the 

realisation of low-level services on that machine's platform. An enterprise- 

scale system typically uses several federated EJB Server instances 

aggregated into one or more administrative domain.

An EJB Container Instance typically corresponds to a JVM instance on the 

EJB Server Instance. Some EJB Servers create one JVM per container, 

others run several containers in the same JVM and others use a combination 

of both. EJBs calling each other in the same JVM may use either a local or a 

remote view. EJBs calling each other between JVMs must use remote views.

The EJB specification describes three types of EJB components [82]:

• Session beans: Short-lived business components that execute on 

behalf of individual clients. They typically execute business operations 

and can access and update the enterprise database but do not 

correspond to shared business data. They can take part in transactions. 

Session beans do not survive a server crash and their clients must re­
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establish a new connection under such circumstances. There are two 

types of session beans:

o  Stateless session bean\ does not preserve conversational state; 

can be shared between clients. Subsequent calls from a client to 

a bean may be handled by different instances. A typical 

example is a stock component that retrieves the current stock 

value for a given index, 

o  Stateful session bean-, has conversational state on behalf of its 

client; cannot be shared between clients. All calls from a client 

to a stateful session bean are handled by the same instance. A 

typical example is a shopping cart containing items to be 

purchased from an online store.

• Entity beans'. Long-lived business components that provide an object 

view of data in the enterprise database. They can be shared by multiple 

users and survive server crashes.

• Message-driven beans'. Short-lived components, invoked 

asynchronously, that execute upon reception of a single client 

message. They can access and update data in the enterprise database 

but are not persisted and do not survive a server crash. They can take 

part in transactions.

The COMPAS Platform presented in this thesis, targets Session and Entity 

beans only. Such beans use a synchronous invocation style and have non- 

ambiguous call-semantics, facilitating the determination of each bean's 

position in the appropriate interaction contexts. In contrast, the call 

semantics of the message-driven beans is significantly weaker because the 

invocation model is based on messages sent to messaging queues and 

topics, rather than directly to the beans.
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2.2 Performance of Software Systems

The field of software performance modelling and prediction is vast. A 

comprehensive survey of modelling approaches for performance prediction 

is presented in [9]. Important contributions have been presented in 

[110][75][76] reporting significant results in the improvement of the 

software development process, specifically the use of Software Performance 

Engineering methods aided by related tools such as SPE-ED [75] . The 

techniques and the supporting tools require developers to create software 

and/or system models of the application under development. These models 

must have performance parameters such as I/O utilisation, CPU cycles or 

network characteristics, specified by the developers in order for the 

performance predictions to generate meaningful results. It has been proved 

that such techniques and tools like SPE-ED help in achieving performance 

goals and reducing performance related risks for general object-oriented 

systems and even for distributed systems [75]. However, middleware such 

as EJB and other component-oriented platforms, exhibit an inherent 

complexity, which developers find hard if not impossible to quantify even in 

simple models. Automated services such as caching, pooling, replication, 

clustering, persistence or Java Virtual Machine optimisations, provided by 

EJB application servers, for example, contribute to an improved and at the 

same time highly unpredictable run-time environment. Furthermore, 

application server implementation can vary greatly from vendor to vendor in 

respect to these services. Similarly, in CORBA (or CCM) based systems the 

search for performance improvements of the underlying framework under 

variable workloads leads to increased complexity [1]. It is therefore 

impossible for developers building such applications to create performance 

models where they specify the mapping of methods to processes or 

instances to processors, I/O characteristics or CPU utilisation.

An approach to modelling systems in UML is presented in [43]. OAT is a tool 

that implements a framework for performance modelling of distributed 

systems using UML. It consists of a method for decomposition of models 

and performance modelling techniques. UML models, created at different 

development stages can be mapped to queuing networks and solved to 

predict application performance. System developers must create the models
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and augment them with performance annotations leading to a similar 

disadvantage with that of the SPE-ED [75] approach. In addition, it is not 

clear how this approach can be used for large systems, as it does not 

address issues such as model management.

Predicting the performance of middleware-based systems has been 

approached in the past. Among the most common techniques are Petri-Nets 

[24] and Layered Queuing Network [110][51][63][62] models. It is 

envisaged that models created automatically by monitoring the system with 

COMPAS can be simulated and predictions derived for different workloads 

using queuing networks or Markov chains [24] techniques.

A case study for performance prediction of J2EE systems is presented in 

[46]. The authors study various prediction techniques and report successful 

application of queuing networks to predict the performance of a realistic 

J2EE application. They focus however on the aggregate behaviour of the 

system and model the deployment configuration including the application 

server cluster, the network topology and the database server. The authors 

do not focus on modelling application-level components such as EJBs. Using 

a non-product-form queuing network of the system, and different workload 

intensities, the authors successfully predict response time, throughput and 

CPU utilisation for the J2EE system.
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2.3 Generic Monitoring Approaches

There is a significant amount of research and work in monitoring CORBA 

systems; however, there are no existing generic component-based (in the 

acceptance of the component term as defined in [97]) monitoring 

frameworks that can provide design level performance information (i.e. 

component method and component lifecycle performance data).

OrWell [109] is a monitoring environment for CORBA distributed 

applications. It uses an event class hierarchy to notify a number of 

observers about the interactions in a system. It provides detailed analysis of 

the monitored system; however, the authors do not present how the event 

distribution units (EDP) are dynamically attached to the existing objects. It 

is also not specified whether the monitoring environment is portable across 

different operating systems or not. The main similarity with this thesis is in 

the instrumentation concepts of using one additional component (in case of 

COMPAS, the probe) for each monitored object in order to obtain dynamic 

run-time information.

Wabash [78][79] is a tool for testing, monitoring and control of CORBA 

distributed systems. It uses CORBA interceptors to capture run-time 

information and therefore is similar to the preferred approach in this thesis, 

in that it is non-intrusive. However, Wabash uses geographical information 

to group monitoring components, which is not applicable in EJB 

environments where the application server controls the distribution of 

components.

JEWEL [48] is another monitoring environment for distributed applications. 

Because it uses a hybrid sensor-based approach to monitoring that requires 

dedicated external monitoring entities as well as internal hooks, it is more 

likely to be used in LANs where additional monitoring resources are 

available. In order to avoid system's sensors affecting the original system's 

behaviour, it requires a separate physical LAN. The main advantages of this 

system is that a large amount of data is filtered and analysed, however the 

analysis and results are presented at the communication protocol level and 

provide information such as mean bytes per packet or protocol usage, which 

do not give an object-oriented view of the system.
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In [69] and [68], the authors propose Remote Reflection as a technique for 

general-purpose monitoring, debugging and visualisation of distributed Java 

applications. Using Remote Reflection, distributed systems could be 

inspected and acted upon from a central location, enabling a management 

model for enterprise applications. The focus of reflective techniques is to 

enable applications to discover facts about their structure at runtime and 

potentially make changes that can dynamically alter their behaviour.

In [20] the authors present a generic conformance-testing framework for 

distributed systems. The framework uses instrumentation probes that can 

be instantiated and activated by remote controllers, and a distributed event 

publication and transport system that enables listeners to register interest 

in receiving certain types of monitoring events from the probes. In addition, 

a testing language is used to create online test cases that drive the activity 

of the probes.

Aspect-oriented programming (AOP) techniques [8] can provide an 

alternative means of inserting instrumentation functionality in target 

application components. Pointcuts [45] can be defined before and after 

important method calls such as component business methods or container 

lifecycle callbacks. The main disadvantages of AOP are the requirement for 

a special compiler and the increased runtime footprint due to the use of 

separate aspect-related objects.

JBoss interceptors [41] provide an efficient means of inserting call-related 

and lifecycle-related functionality for J2EE applications running in the JBoss 

application server. Since custom interceptors can be created and placed 

automatically in call-paths, they can be considered a suitable alternative for 

the insertion of monitoring functionality. The main advantage of using this 

approach is that a clear separation between instrumentation logic and 

application logic, and the capability to inject instrumentation code 

dynamically in applications at runtime. The major disadvantage of the 

interceptor approach is the dependence on the JBoss runtime environment, 

making it impossible to build a portable J2EE instrumentation solution, 

which is one of the goals of the COMPAS framework.

A number of application servers provide a limited degree of monitoring but 

most of them do so at a network/protocol level, giving little help to 00
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developers who want to understand which component/method is having the 

scalability problem.

Commercial J2EE profiling tools such as Veritas' Indepth [104], Wily 

Technologies' Introscope [111], Quest Software's PerformaSure [66], 

Borland's Optimizeit Enteprise Suite [12], Mercury Interactive's Monitoring 

and Diagnosis for J2EE [53] or Cyanea/ONE [19] provide performance 

information about the instrumented applications at different abstraction 

levels including component-level and object-level. They all offer the 

capability to see different levels of performance metrics about the target 

system and extract useful statistics. One of the main issues with such tools 

is that they typically require the users to start the server in a special 

monitoring mode which results in parts of the application server being 

monitored at all times without the possibility of easily removing the 

monitoring code from the target. This translates into a constant overhead 

imposed on the running applications, which can only be completely removed 

by restarting the server in standard mode. Another major disadvantage is 

that they are targeted at specific application servers, on specific platform, 

offering reduced flexibility in choosing the development environment.

Pure JVM profiling tools such as Optimizeit [12], JProbe [65] or JProfiler 

[30] can be used for J2EE instrumentation as well. When J2EE applications 

are typically instrumented at the JVM level, large amounts of data are 

collected and presented to the developer; however, the intended 

component-level semantics of the application is lost in the details. The 

conceptual hierarchy enabled by using a component platform is flattened 

and developers are presented with large sets of method calls, representing 

a mix of internal EJB container functionality, business application code and 

Java core functionality.

In a different category are EJB testing tools [31],[74] that perform stress 

testing on EJB components and provide information on their behaviour. 

Such tools automatically create test clients for each EJB and run scripts with 

different numbers of simultaneous such clients to see how the EJBs 

perform. The main disadvantage of such a solution is the fact that it does 

not gather information from a real-life system but from separated 

components. Without monitoring the actual deployed system, it is difficult to 

obtain an accurate performance model for the entire system.
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An interesting initiative in obtaining standardised performance data for EJB 

systems is the ECPerf [81] process. It defines a standard workload and 

standard business applications that are generated during the testing 

process in order to determine the performance of application servers. 

Metrics like transaction throughput and response time are derived from the 

testing process and the results can be used by vendors to showcase their 

application server products. Although this approach does not involve 

monitoring of an arbitrary application, it is relevant to the research of this 

thesis because it defines workload and metrics of interest to performance 

management of EJB systems.
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2.4 Adaptive Monitoring Approaches

COMPAS aligns with the IBM autonomic computing initiative [44], which 

represents a major direction of research aimed at managing complex 

systems. The initiative outlines the need for independent and adaptive 

monitoring solutions that can instrument complex long-running applications. 

COMPAS is such a solution due to its adaptive capabilities. Having a minimal 

overhead when the system is performing well and a low overhead when 

performance problems are detected, positions COMPAS as a good candidate 

for monitoring long-running systems.

Another goal of the initiative is to promote self-adaptive systems, which can 

optimize their run-time footprint based on the existing environmental 

conditions.

A discussion about using agents for monitoring distributed systems is 

presented in [36]. The authors argue that the increasing complexity of 

distributed applications account for major difficulties in obtaining meaningful 

performance information; in addition the monitoring infrastructure must 

adapt to the application's environment in order to minimise the runtime 

performance footprint. Typical issues occurring in large distributed 

applications and mentioned in [36] such as non-determinism and the lack of 

a global clock.

In [98], the authors focus on an adaptive monitoring infrastructure (JAMM) 

in a grid-computing environment. Using an RMI infrastructure, monitoring 

programs such as netstat, iostat and vmstat are executed in order to obtain 

vital statistics for the running nodes in the cluster. Monitoring is started 

after detection of activity on some ports, by a port monitoring agent. There 

is no concept of software components or objects in JAMM, therefore no 

monitoring at method level or component level, as it is performed in 

COMPAS. JAMM measures CPU, network usage and memory, and can also 

be customized for some UNIX specific call-backs or events. Monitoring data 

is archived and can be used by third-party performance prediction systems 

that are not covered by the paper.

An interesting approach for lightweight monitoring of deployed systems is 

software tomography [14] which uses subtask probes optimally assigned to
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program instances in order to minimise the total overhead of monitoring. 

The information obtained from the subtask probes is eventually aggregated 

into overall monitoring information. The research presented in the thesis is 

partially similar in intent to software tomography in that the reduction of 

total overhead is realised by partial monitoring with optimally placed 

probes.

An interesting application of agent-based monitoring concepts is presented 

in [108]. The authors have implemented a lightweight agent-based financial 

monitoring system that monitors and reports on transactions within an 

organisation, focusing on banking and trading operations. The main purpose 

of the monitoring system is the detection of fraud issues or trading 

problems. One of the similarities with COMPAS is the use of knowledge 

about the transactions in order to focus the monitoring efforts of the 

agents. Another one is the collaboration between the agents in order to 

infer monitoring results and generating alerts when needed.

25



Chapter 3 A Framework for 

Performance Management of 

Enterprise Software Applications

COMPAS proposes three interrelated modules: monitoring, modelling 

and performance prediction

Strong connection between modules ensures consistency and data 

accuracy

Reduces the need for assumptions in performance prediction: real 

data obtained from monitoring is used

Modelling enhances the understanding of the target system

Monitoring uses modelling to reduce overhead
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3.1 COMPAS Overview

This thesis describes the COMPAS infrastructure that could be used to 

detect and understand performance problems in distributed component- 

oriented applications based on technologies such as Enterprise Java Beans. 

COMPAS provides basic performance management functionality and can be 

specialised to produce arbitrary-complexity custom performance 

management applications. COMPAS therefore satisfies the conditions of a 

framework as presented in defining literature[42][73]. It provides black- 

box type extensibility by enforcing communication and architectural 

protocols for custom functionality. Although in the framework literature, the 

points of extensibility are called "hot-spots" [73], this thesis uses the term 

COMPAS Framework Extension Points (FEPs). This is necessary in order to 

avoid terminology overload due to the use of the term "performance 

hotspot" in the context of performance degradations.

Chapter 3 places the main contributions of the thesis into the wider context 

of performance management and proposes a complete framework for 

monitoring, modelling and prediction of component based applications.

The COMPAS Framework can potentially be used to correct performance 

problems, by providing means for comparison between different possible 

design solutions. The following issues are considered:

• Performance can be critical for large-scale component oriented 

applications.

• A poor architecture, a bad choice of COTS components or a 

combination of both can prevent the application from achieving the 

performance goals.

• Performance problems are more often caused by bad design rather 

than bad implementation.

• Often, performance is "a function of the frequency and nature of inter­

component communication, in addition to the performance 

characteristics of the components themselves" [17].

• Fixing performance problems late in the development process is 

expensive.
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To address these issues, this thesis proposes a possible framework- 

architecture, structured into three main functional parts or modules that are 

interrelated:

• Monitoring: obtains real-time performance information from a running 

application without interfering with the application code or the 

application run-time infrastructure (i.e. the application server 

implementation). In addition, in order to minimise the overhead 

incurred on the target system, the monitoring probes can adaptively be 

activated and deactivated.

• Modelling: generates UML models of the target application using 

information from the monitoring module. The models are augmented 

with performance indicators and can be presented at different 

abstraction levels to improve the understanding of the application from 

a performance perspective.

• Performance Prediction: the generated models of the application are 

simulated with different workloads (e.g. corresponding to different 

business scenarios); simulation results can be used to identify design 

problems or poor performing COTS components.

The monitoring and modelling modules are covered by the thesis, while the 

prediction module is presented as a possible component of the COMPAS 

framework. The proposed functionality of the prediction module can be 

achieved using the extensibility capabilities of the framework

There is a logical feedback loop connecting the monitoring and modelling 

modules. It refines the monitoring process by continuously and 

automatically focusing the instrumentation on those parts of the system 

where the performance problems originate.

The intent of the presented framework is not to suggest a development 

process that prevents the occurrence of performance issues in the design, 

but rather to enable early discovery of such issues and suggest corrections.

Because model generation in the presented framework is dependent on 

monitoring information extracted from a running application, the approach 

presented in this thesis integrates well within development environments 

that adhere to iterative development processes such as Rational Unified 

Process [47] or Extreme Programming [11]. Such processes demand that a
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running version of the application exists at the end of every iteration, 

making monitoring possible.

Models are represented in UML, with which many enterprise-scale 

application developers are familiar. The use of Model Driven Architecture 

(MDA) [58] and Enterprise Distributed Object Computing (EDOC) [59] 

concepts facilitates navigation between different layers of abstraction. The 

top-level models are represented using a technology independent profile, 

the Enterprise Collaboration Architecture (ECA) from EDOC, in order to 

benefit from a standardized form of representation for business modelling 

concepts. Lower level models are represented using UML specialized profiles 

such as the UML Profile for EJB [59] which provide means to illustrate 

technology specific details. Regardless of the level of abstraction, each 

model is augmented with performance information extracted by the 

monitoring module and presented using the UML Profile for Schedulability, 

Performance, and Time Specification [60].

The Performance Prediction Module uses executable versions of the 

generated modules and simulates them with different workloads as inputs, 

displaying performance information in the same manner as in the modelling 

phase.

It is envisaged that both in the modelling phase as well as in the prediction 

phase, developers will navigate through the generated models in a top- 

down manner. If a performance alert is attached to a design element 

(during modelling or simulation), that element can be "zoomed into" and a 

lower-level, more detailed model that includes that element is then 

inspected. This approach is highly intuitive, primarily because it is 

conceptually integrated with a typical design process in which high-level 

abstractions are found first, and then later refined into more-detailed 

abstractions, in an iterative manner.

A high-level overview of the entire framework is depicted in Figure 3-1.
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Figure 3-1. CO M PA S  Overview

The monitoring block in the diagram presents the data extraction 

functionality and contains the monitoring infrastructure (Chapter 4) 

deployed in a target system. Run-time data obtained from the application is 

analysed by the modelling module, which employs a model generator 

(Section 6.3) in order to extract the execution models from the running 

system. The execution models can be presented visually using MDA 

concepts (Section 3.3.1) and analysed with the purpose of driving the 

adaptation process of the monitoring infrastructure (Section 6.2). The 

automation broker is the entity responsible for using model data to adapt 

the monitoring process. Presentation of models can benefit from statically 

acquired data by enhancing the model elements with component metadata 

and application resource usage. The performance prediction block illustrates 

proposed functionality in the context of the performance management 

framework. A model-migration element is responsible for using the models 

generated by the modelling module and transforming them to performance 

models required in the performance prediction phase. The performance 

models can then be simulated leading to simulation results that can be 

presented similarly to the execution models (using UML and MDA).
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3.2 Monitoring Overview

The proposed monitoring infrastructure (COMPAS Monitoring) leverages the 

underlying properties of component-based platforms in order to enable non- 

intrusive instrumentation of enterprise applications. Using model-based 

adaptive activation of the monitoring probes, the overhead incurred on the 

target application is minimal. In addition, the mechanism for the generation 

of the monitoring alerts automatically eliminates most of the false alerts, 

thus contributing to the overhead reduction. As the infrastructure is 

designed to be used as a foundation for performance management tools, its 

design is extensible and based on decoupled communication mechanisms.

The most important functional entity of the monitoring infrastructure is the 

monitoring probe. The probe is conceptually a proxy element with a 1 to 1 

relationship with its target component. In J2EE, target components are the 

EJBs deployed in a target application.

It is implemented as a proxy layer surrounding the target component with 

the purpose of intercepting all method invocations and lifecycle events. The 

process of augmenting a target component with the proxy layer is referred 

to as probe insertion.

Non-Intrusive and Portable

COMPAS uses component meta-data to derive the internal structure of the 

target entities. For J2EE, the component meta-data is placed in deployment 

descriptors that contain structural as well as behavioural information about 

the encompassing EJBs. By leveraging this data, it is possible to obtain the 

internal class-structure of each component, which is needed for the 

generation of the proxy layer.

As all the information needed for probe insertion is obtained from the meta­

data, there is no need for source code or proprietary application server 

hooks. Therefore, the effect on the target environment is minimal and user 

intervention in the probe insertion process not required.

COMPAS is in this respect non-intrusive, as it does not require changes to 

the application code or to the runtime environment.
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A desirable effect of the probe insertion approach is that the process is 

completely portable across all platform implementations. Considering J2EE 

as the target platform, any J2EE application running on any J2EE application 

server can be instrumented.

Adaptive and Low-Overhead

Two main techniques are used to minimise the overhead of the monitoring 

infrastructure, asynchronous communication and adaptive activation. The 

former is employed in the entire infrastructure by the use of an event-based 

architecture with robust message handling entities that prevent the 

occurrence of locks in the target application. The latter technique uses 

execution models captured from the target application to drive the 

activation and deactivation of the monitoring probes. By appropriately 

minimising the number of active probes, the total overhead is reduced while 

preserving complete target coverage.

Extensible

COMPAS Monitoring contains an instrumentation core and a set of 

extensions for coordinating and handling the instrumentation events. The 

extensions are built upon the pluggable architecture of the instrumentation 

core by leveraging the COMPAS Framework Extension Points based on 

loosely coupled asynchronous communication.

Possible extensions include adding support for low-level instrumentation 

sources such as virtual machine profiling data, as well as high-level 

functional extensions such as elaborate data processing capabilities for 

performing complex analysis of the monitoring data. Decision policies for 

improving the alert management and adaptive monitoring process can be 

implemented as extensions also.

32



3.3 Proposed Modelling and Prediction 

Approach

The main goal of the complete COMPAS framework is to help developers of 

large enterprise component-oriented applications find and predict 

performance problems in their systems, using concepts and visual 

representations that they easily understand.

Based on information extracted by the monitoring module, UML models are 

generated which show where performance problems are located. By 

simulating such models, predictions are made that help understand the 

implications of changes in workload or changes in QoS characteristics for 

particular components. Having such prediction data, developers can make 

informed design decisions and choose the best COTS components to meet 

the application needs. Models are also used to increase the efficiency of the 

monitoring process by activating monitoring only for those components that 

are responsible for performance problems, and deactivating the monitoring 

of the other components. This activation/deactivation process is continuous 

and it is envisaged that as models are being refined, the monitoring 

overhead decreases.

The next two sub-sections briefly present the Model Driven Architecture and 

the performance ontology that the framework uses. The remainder of the 

section describes the modelling and prediction functionality of the 

framework.

3.3.1 Model Driven Architecture (MDA)

The Model Driven Architecture [58] proposes a new approach to the 

development and understanding of complex systems and promotes 

portability across the main platforms that are currently in use now or will be 

used in the future.

MDA introduces two important concepts, the Platform Independent Model 

(PIM) and the Platform Specific Model (PSM). A PIM would generally be used 

in the earlier stages of development and it consists of a detailed UML model 

of the business logic without any technological details. For example, at the 

beginning of a development process, developers would model business
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entities such as <Account>, <Bank> and their behaviour which are all 

completely platform independent there is no need for any platform specific 

information, such as EJB Home Objects. Note however that a platform can 

be anything from a hardware platform, to operating system to middleware 

to another PIM. Therefore, the notion of platform and platform 

independence are relative, which makes it possible to have an arbitrary 

number of PIMs for the same problem space, each representing a different 

level of abstraction. A PSM has platform specific information in the model, 

such as EJB or CORBA stubs. Again, taking into consideration the relative 

aspect of a platform, a PSM can be just a more detailed description of a 

PIM, with more technical details.

A major advantage of using MDA is that models at different levels of 

abstraction can be implemented for different platforms, that is, from a set 

of PIMs, a large combination of PSMs could be realized, and the entire 

application would preserve its integrity. For example, for a business 

application, for the same set of PIMs (the suite of models that describe the 

system at a platform independent level), different combinations of PSMs 

could be derived for each PIM. An internal banking PIM could be realized by 

using an EJB mapping [59] to generate EJB PSMs. The B2B PIMs could be 

realized by using XML and SOAP PSMs. All these PSMs would interoperate 

with each other as specified in the PIMs. If for some reason, there is a need 

to generate the B2B PSMs in CORBA, that would not affect any other models 

and the generated system would be cohesive.

MDA facilitates "zooming in" and "zooming out" at different 

abstraction/realization levels. A PIM can be "zoomed into" to browse the 

PSMs that realize it, or a PSM could be "zoomed out of" to inspect the upper 

layer of abstraction. This facility is central to the presented performance 

management framework because it enables navigation between different 

refinement application layers when increased precision is needed for 

pinpointing a performance issue presented at the top levels of the 

application models hierarchy.

A simple illustration of MDA concepts is provided by Figure 3-2 which 

illustrates a basic MDA refinement process. A Platform Independent Model 

(PIM) of a component, in this case a s h o p p i n g c a r t  component is refined 

into a Platform Specific Model (PSM) of the same component, for the EJB
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technology. The PIM representation contains only the "business logic" of the 

component, while the PSM contains EJB-specific artefacts, corresponding to 

the same component (the EJB interface, the EJB bean implementation and 

the EJB Home interface). Navigation between PIMs and PSMs can prove 

beneficial in particular for large models where the complexity of PSMs may 

become difficult to manage in the absence of higher-level abstractions.

Figure 3-2. Mapping a simple PIM to an EJB  PSM

3.3.2 Performance Modelling Ontology

The UML Profile for Schedulability, Performance, and Time Specification [60] 

defines the ontology used for performance models in the presented 

framework. Some of the main concepts in the ontology are:

Performance context: "specifies one or more scenarios that are used to 

explore various dynamic situations involving a specific set of 

resources."[60]

Scenario: "...a sequence of one or more scenario steps. The steps are 

ordered and conform to a general precedence/successor relationship. Note
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that, in the general case, a scenario may involve multiple threads due to 

forking within the scenario."[60]

Step: "An increment in the execution of a particular scenario that may use 

resources to perform its function. In general, a step takes finite time to 

execute. It is related to other steps in predecessor/successor 

relationships."[60]

Resource: "An abstraction view of passive or active resource, which 

participates in one or more scenarios of the performance context."[60]

To simplify the presentation of performance models and increase visibility of 

generated sequence diagrams, anonymous timing marks [60] are used, 

which are effectively shorthand notations for time measurements.

3.3.3 Performance Management Functionality

This section describes potential performance management functionality that 

can be achieved by using the COMPAS framework.

In the proposed functionality, performance models are generated at run­

time based on measurements taken by the monitoring module. Two major 

sets of data are obtained during the monitoring process:

• Model generation data: component instances [97], [70] are monitored 

for method invocations and lifecycle events. Time-stamps are used 

together with component instance IDs, method names and method 

execution times to order events and build statistical dynamic models of 

the running application.

• Performance information: metrics such as response times and

throughput are determined for the runtime entities and are used to 

augment the generated UML models.

When using model generation data to detect models in the monitored 

application, techniques such as Markov chains, Petri Nets and queuing 

networks can be used. Statistical results based on a significant number of 

measurements are used to determine scenarios in the system, starting at 

previously determined points of entry. For example, in an EJB system, such 

a point of entry could be a web layer component such as a product selection 

list in a retail application. Such a determined scenario could be one
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corresponding to a "buying an item" use-case. Another could correspond to 

a "write a product review" use-case.

Figure 3-3. Scenarios with probability and performance parameters

Models representing these scenarios would have performance related 

information in addition to probabilities.

Figure 3-3 illustrates this example. The first scenario starts with step "1. 

addltem" and the second scenario with step "2. addReview". Please note 

that these scenarios do not illustrate a real design, but rather a very 

simplistic imaginary example.

To reduce visual cluttering, there are only two annotations regarding 

performance and probabilities in the example diagram, however it is 

envisaged that a framework implementation will feature an efficient way of 

dealing with such visual elements by selectively hiding or showing elements 

depending on user preferences. Scenario 2 has a probability of occurrence 

of 30% and a mean execution time of 200ms. One of the steps in scenario 

2, step "2.1 updateMarketingDB" has an associated mean execution time of 

180ms, representing 90% of the total scenario execution time. Even though 

the example diagram is a UML collaboration diagrams, models can be 

presented using sequence and activity diagrams as well. To improve 

understanding of such diagrams, Object Constraint Language [71] (OCL) 

notations may be used together with statistic data to explain the conditions,
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in which a particular scenario occurs, not just the probability of occurrence. 

For example it can be statistically determined that a scenario is followed 

only when a parameter passed to the top-level scenario component, has a 

particular value.

Models such as the one presented in Figure 3-3 are generated during the 

monitoring process or by a later analysis of the monitoring logs. They are 

augmented with performance attributes such as "mean response time". 

Based on user-defined rules, performance alerts are issued by the modelling 

environment, when certain conditions such as "too much growth in 

execution time" or "scenario throughput > user defined value" are met. If 

the user defines values such as expected mean and maximum values for a 

particular scenario response time, the models will show alerts in those areas 

exceeding these values. If the user does not specify such values, the 

framework can still suggest possible performance problems when certain 

conditions like "the response time increases dramatically when small 

numbers of simultaneous scenario instances are executed" are encountered. 

If a particular step in the affected scenario is mainly responsible for the 

degradation of scenario performance parameters, that step is identified and 

the alert narrowed down to it. Figure 3-4 and Figure 3-5 illustrate how a 

performance problem can be narrowed down using the MDA approach. Both 

diagrams are PIMs, however, developers could proceed to lower levels such 

as EJB PSMs to identify technology specific events such as lifecycle events 

that can cause performance degradation.

Figure 3-4. Top level PIM showing a performance alert
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Figure 3-5. Identifying performance degrading steps

When browsing the generated models using the MDA approach, the top- 

level abstractions are usually represented by the first steps in particular 

scenarios. A top-level model representing a scenario can represent just the 

first step of the scenario with the performance attributes such as response 

time or throughput associated (Figure 3-4). As developers navigate down 

the system tree, more scenarios/steps are revealed (Figure 3-5).

A performance prediction module as envisaged in the context of the 

COMPAS framework would involve simulating the generated models. The 

users could specify workload characteristics [60] such as the number of 

simultaneous users and their inter-arrival rate. Expected performance 

attributes could also be specified. Workloads could then be used to simulate 

the models. Users could easily change workload characteristics and re-run 

the simulation. The same mechanisms for generating performance alerts 

could be used in the simulation stage, as in the monitoring/modelling stage. 

Developers could even modify the generated models and observe the 

effects the changes have on the overall performance, by simulating the 

altered models.
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COMPAS does not propose the detailed design of such a solution, instead it 

focuses on providing a monitoring infrastructure that can be leveraged by 

performance prediction tools that can offer the functionality presented 

above, such as EJB Express [49][56] (Section 7.2,5).

In both the monitoring/modelling stage and prediction stage, models could 

be used to detect bad design practices. For example, an EJB PSM could 

show a performance alert when an entity bean [70] finder method returns a 

large result set. In such a situation, a pattern [34] such as Value List 

Handler [18] could be suggested by the framework to alleviate the 

performance problem.
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Chapter 4 Monitoring Infrastructure

Non-intrusive monitoring, no changes required in the runtime 

environment or the target application's code

Portable monitoring infrastructure: does not depend on the 

middleware implementation

Probes act as component platform interceptors without requiring 

access to platform implementation

Uses distributed monitoring probes attached to target components 

Automatic infrastructure deployment based on component metadata 

Extensible probe behaviour

Extensible architecture allowing third-party plug-ins to process 

filtered information from probes
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4.1 Introduction and Functional Goals

The COMPAS Monitoring Platform Is Intended as a foundation for building 

enterprise-level performance management solutions for component-based 

applications. Although it targets J2EE applications, the conceptual structure 

applies to other component-based frameworks such as CCM [97][57] or 

.NET [97] as well.

The following general goals of the monitoring infrastructure have been 

phrased in J2EE terminology to leverage the presented technological 

background.

4.1.1 Portability and Non-Intrusiveness

COMPAS was designed to provide a common monitoring platform across 

different application server implementations. The existing tools (Section

8.4) use server-specific and JVM-specific hooks in order to obtain 

performance measurements and management data from the target 

applications. This constrains the users of such tools to using particular 

execution platforms. In contrast, COMPAS aims to use a higher-level 

approach to monitoring, by augmenting the deployed components with an 

instrumentation layer. This approach does not require hooks or changes in 

the application server, nor does it require changing the source code of the 

target application. Figure 4-1 illustrates the different instrumentation 

techniques. Two possible techniques involve either changing the source 

code of the target application, or using container-specific hooks. COMPAS 

however, uses a proxy layer that "wraps" the original component while 

preserving the J2EE compatibility.
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Figure 4-1. CO M PAS Non-lntrusive Approach

4.1.2 Low Overhead and Adaptive Monitoring

In order to achieve a low performance overhead when deployed in the 

target system, most tools employ selective monitoring based on user 

choices and can reduce the overhead by reducing the number of classes 

that are instrumented. COMPAS aims to reduce overhead by automatically 

adapting its target coverage while preserving complete hotspot detection 

capabilities. Based on application interactions, COMPAS actively monitors 

only top-level components without completely shutting down the data
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gathering capabilities of the other components, which can still analyse their 

performance and issue alerts when necessary. Monitoring Probes are 

automatically switched into active or passive monitoring (Section 6.5) by 

performing a diagnosis analysis each time an alert is generated. This 

capability ensures that the system maintains an optimum overhead level, 

without requiring user intervention. This aligns with the requirements for 

autonomic management of long-running systems, as outlined in [44].

4.1.3 JMX Overview

The technology used by the monitoring module for managing the 

instrumentation of EJB components is Java Management Extensions (JMX) 

[33], which offers a lightweight, standardized way for managing Java 

objects. The inclusion of JMX in the J2EE standard assures that any J2EE 

compliant application server provides a JMX implementation.

The JMX architecture has three levels:

• Instrumentation level: provides instant manageability to a 

manageable resource (any device, application or Java object) by using 

a corresponding MBean. A managed bean, or MBean for short, is a Java 

object that represents a JMX manageable resource. MBeans follow the 

JavaBeans components model, thus providing a direct mapping 

between JavaBeans components and manageability. Because MBeans 

provide instrumentation of managed resources in a standardized way, 

they can be plugged into any JMX agent.

• Agent level: provides management agents. JMX agents are containers 

that provide core management services which can be dynamically 

extended by adding JMX resources. A JMX Agent is composed of an 

MBean server, a set of MBeans representing managed resources, and 

at least one protocol adaptor or connector. Protocol adaptors create a 

representation of the MBeans into another protocol, such as HTML or 

SNMP. Connectors include a remote component that provides end-to- 

end communications with the agent over a variety of protocols (for 

example HTTP, HTTPS, HOP).

• Manager level: provides management components that can operate 

as a manager or agent for distribution and consolidation of 

management services. A JMX manager provides an interface for 

management applications to interact with the agent, distribute or



consolidate management information, and provide security. JMX 

managers can control any number of agents, thereby simplifying highly 

distributed and complex management structures.

Figure 4-2 shows that the MBeans are managed by an application through 

the MBean Server. In addition, they can be monitored by a special type of 

MBeans, called a Monitor that can observe changes in the state of a 

monitored MBean and notify the registered listeners. An MBean corresponds 

to a managed resource and it can interact with that particular resource.

Figure 4-2. The Main Elements in JM X

4.1.4 COMPAS and J2EE Management Specification

Java Specification Request (JSR) 77 [84] defines a specification of a 

common framework for management and monitoring services in the context 

of Java 2 Enterprise Edition platforms. The J2EE Management Specification 

[84] includes a management model that contains a set of manageable 

entities in the J2EE context. In addition, it contains standard mappings of 

the model to the Common Information Model (CIM) [25], to an SNMP 

Management Information Base (MIB), and to a Java API through an EJB 

component, the J2EE Management EJB (MEJB) component.

The JSR77 management model contains the set of attributes, operations 

and architecture of managed objects that compliant platforms must provide. 

It describes a hierarchy of manageable entities that matches the runtime 

hierarchy in J2EE environments. It contains elements such as J2EE Server, 

J2EE Application, EJB Module, EJB, Web Module, Servlet etc. In addition, it 

contains elements corresponding to JVMs and resources such as JDBC, JNDI 

or JMS connections. For each entity, there are attributes and operations
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that can be used to obtain management and performance information. In 

addition, naming guidelines for the manageable objects allow the creation of 

JMX queries that can be used for navigating the management hierarchy. For 

instance, the set of EJB modules contained in a deployed J2EE Application 

s a m p ie J 2 E E A p p  is obtained by retrieving the results of query

" * : j  2 e e T y p e = E J B M o d u l e ,  J 2 E E A p p l i c a t i o n = s a m p l e J 2 E E A p p , * " .

The specification includes a standard mapping to Java APIs by defining the 

MEJB entity, which is an EJB component. This component provides an 

abstraction layer over the JMX interface to the manageable entities, 

allowing any J2EE component access to J2EE management and performance 

information. Clients of the MEJB session EJB can invoke operations similar 

to those of JMX server implementations [33][90] in order to access the 

attributes and operations of the required manageable MBean objects.

The main similarity between COMPAS and JSR77 stems from the fact that 

they both aim at providing a basic means for extracting management and 

performance information from J2EE environments. COMPAS however is an 

extendable platform whereas JSR77 defines a specification. The J2EE 

Management Specification must be realised by the compliant J2EE Servers, 

so for each product, a different implementation is provided. COMPAS is a 

portable platform that can be deployed Into any J2EE environment. Both 

COMPAS and JSR77 employ JMX as the underlying infrastructure for 

exposing management data. In addition, they both use an abstraction layer 

(monitoring dispatcher in COMPAS and the MEJB component in JSR77) that 

facilitates access to information from an external client. COMPAS however 

provides a more runtime performance-focused view of J2EE applications 

than JSR77. The COMPAS monitoring probes instrument existing application 

and continuously extract performance data from component instances. Such 

a facility does not exist in JSR77, as it does not mandate instance-level 

manageable entities; this constitutes a key difference between the two 

approaches. In addition, JSR77 is oriented towards obtaining statistics over 

long periods and not towards identifying performance hotspots. COMPAS 

employs adaptive monitoring and diagnosis techniques in order to improve 

detection of hotspots and reduce overhead. JSR77 does not specify any 

such features being concerned primarily with providing a static 

management layer that is occasionally queried by external clients. There is
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no concept of dynamic interaction in JSR77, unlike in COMPAS. The 

interaction recording capabilities used by COMPAS allow the association of 

performance data to different use-case realisation interactions. In addition, 

UML diagrams can be generated by COMPAS to illustrate these associations. 

These capabilities are not within the JSR77 scope.

COMPAS can leverage some facilities offered by JSR77 implementations. For 

instance, the probe insertion process (Section 5.1) can use application 

discovery techniques facilitated by the JSR77 hierarchical view (Section

5.1.4).

It is envisaged that enterprise-level tools would use both JSR77 and 

COMPAS in order to avail of the complete spectrum of performance and 

management data. Detailed statistics about J2EE components and 

resources, including database connections and JVM memory parameters, 

could be obtained using JSR77 APIs. COMPAS could be used for runtime 

monitoring and diagnosis capabilities as well as for extracting dynamic 

performance models that accurately represent system interactions.
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4.2 Architecture of COMPAS Monitoring

4.2.1 Overview of COMPAS Monitoring Architecture

The main subsystems of the COMPAS Monitoring Infrastructure are 

presented in Figure 4-3.
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Figure 4-3. Main Monitoring Subsystems

The Installation Subsystem is responsible for generating and inserting the 

proxy layer into target applications. It sits on the client-side.

The Probes Subsystem represents the server-side, distributed 

instrumentation infrastructure of COMPAS Monitoring. It is responsible for 

capturing and transmitting performance data from the target applications 

and generating performance alerts.

The Monitoring Clients Subsystem represents the client-side, centralised 

part of the COMPAS Monitoring infrastructure. It is responsible for collecting 

and processing performance data from the probes.

The major modules of these subsystems are illustrated in Figure 4-4.
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Figure 4-4. Major Monitoring Modules

The Monitoring Probes, Time Extraction and Anomaly Detection modules are 

parts of the Probes subsystem in Figure 4-3. The Probe Insertion & 

Installation and the Server Adapters modules are part of the Installation 

Subsystem In Figure 4-3. The Server Adapters module Is also shared by the 

Probes subsystem. The Dispatcher/Collector, Interaction Recorder and 

Monitoring Consoles are part of the Monitoring Clients Subsystem in Figure 

4-3. The Hotspot Detection module can be part of the Probes subsystem or 

the Monitoring Clients subsystem, or, In complex cases that require server- 

side and client-side processing, both.

The monitoring probes module is the Implementation of the proxy layer 

Inserted Into target application components. It contains logic for extracting 

timestamps and generating alerts upon detection of performance anomalies. 

Both tlmestamp-extractlon and anomaly-detectlon modules are designed for
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extensibility to allow third-party plug-ins be added for functionality that is 

more complex.

Server adapters contain functionality for mapping JMX-level operations used 

in COMPAS to different JMX implementations. One server adapter 

corresponds to one applications server type. They are needed for two 

reasons: firstly, the JMX standard still has inconsistencies and incomplete 

specifications for remote management; and secondly to take advantage of 

advanced features In particular application server implementations. For 

instance, some commercial application servers provide optimisations for 

some JMX operations, which COMPAS can use. Since the server adapters 

can be added by third parties using a common mechanism, different optimal 

server-specific Implementations can be used. As all JMX implementations 

become fully compatible, the use of server adapters will be optional and 

focused solely on taking advantage of particular server-optimisations.

The Dispatcher / Collector module is responsible for collecting all the event 

notifications from the monitoring probes. After filtering and pre-processing 

the notifications, the dispatcher emits events richer in semantics to any 

monitoring client that has registered an Interest in monitoring events. 

COMPAS provides two such listeners, the Interaction recorder and the 

monitoring console. The Interaction recorder can capture and store 

component interactions in the live target application, and store them on 

physical storage. In addition, it can display UML sequence diagrams 

representing the captured interactions. The monitoring console can display 

real-time monitoring information received from the probes. Such 

information includes component instance data, method invocation and alert 

data, and real-time charts showing the evolution of response time for 

particular component methods.

4.2.2 COMPAS Deployment

The COMPAS monitoring probes reside in their target component containers. 

Several containers, residing In separate application server nodes, may be 

remote in relation to each other, as illustrated In Figure 4-5.
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COMPAS Console

Figure 4-5. CO M P A S  Deployment

Typically, the application server nodes are connected via high-speed 

networking, such as optical fibre. In some cases, they can also be located at 

different physical sites. The deployment of COMPAS probes mirrors exactly 

the target application deployment. The COMPAS clients typically reside on 

separate machines, used for application monitoring and management. They 

do not share the processing and memory resources with the application 

server machines. This allows remote monitoring of target systems to which 

they usually are connected via LANs. Multiple remote clients can receive 

notifications and control monitoring probes.

4.2.3 COMPAS Instrumentation Layer: Probes

The COMPAS Instrumentation Layer consists of the entities responsible for 

extracting and reporting performance and lifecycle data from the target 

components.

For each Target Component X, the following COMPAS entities exist in the 

running system:
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Proxy Layer: The proxy layer for Component X Is generated automatically 

by the Installation procedure (see Section 5.1). It consists of a lightweight 

Implementation of the Component X Business Interface. This 

implementation is responsible for obtaining time-stamps and sending 

invocation and lifecycle events to the associated Probe Dispatcher.

Probe: An instance of the Proxy Layer represents a Probe. In a running 

system, there is always one probe for each Component X instance. All 

probes for Component X are associated with the same Probe Dispatcher 

Instance and forward their collected measurements and lifecycle data to this 

probe dispatcher instance.

Probe Dispatcher: The probe dispatcher is an entity responsible for 

collecting, analysing and forwarding events received from all the probes 

corresponding to Component X. For each Component X, there is always a 

single probe dispatcher instance. The probe dispatcher maintains a history 

of aggregated performance and lifecycle data, representing the activity of 

its associated probes. In addition, the probe dispatcher is responsible for 

using any of the available anomaly detection strategies in order to issue 

performance alerts at appropriate times (Section 6.4).

In parts of the thesis, the term "probe" is used as a simplification for ''probe 

and its associated dispatcher".

Figure 4-6 presents the overall architecture the COMPAS instrumentation 

layer corresponding to a Target Component X. Two instances of X are 

illustrated, Xj and Xk. Each of the Instances is surrounded by an instance of 

the proxy layer, the probe. Both probes communicate with the same 

associated probe dispatcher. They capture invocations from the applicatlon- 

cllent layer as well as lifecycle (e.g. creation, deletion) event notifications 

received from the container. For each event (invocation or lifecycle), each 

probe performs measurement operations and sends data containing event 

and performance information to the probe dispatcher. The probe dispatcher 

stores and analyses each event. It sends JMX notifications containing 

processed events to the JMX Layer. These notifications can be received and 

interpreted by any JMX consumers that register their interest in receiving 

COMPAS notifications from the COMPAS probes. The following basic 

notifications can be emitted by the probes in a default COMPAS deployment 

(i.e. without custom behaviour added to the probes):
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• Method invocation (i.e. a method exposed through the component 

interface has been called). The notification includes collected 

performance data, in addition to method identifiers.

• Component instance creation: This refers to an Instance creation in 

the component-based system development terminology. Such an 

instance is an entity that a client has access to and can invoke methods 

on. This is sometimes in contrast to a language construct (such as a 

Java object) as containers may hold object pools that contain "empty" 

component instances. Such instances are ready to be "filled in" with 

appropriate contextual and business data and be used in client 

interactions. Only after this operation has occurred, do these object 

Instances become component instances. The notification includes the 

name of the component whose Instance is being created as well as the 

total number of instances of this component.

• Component instance deletion: this refers to the container removing 

a component instance from the list of "ready-to-use" instances. The 

notification includes the name of the component whose instance Is 

being removed, as well as the remaining number of instances.

• Performance Alert: this is issued whenever an anomaly Is detected in 

the performance response of a component Instance (see Section 6.4). 

The notification includes the invocation data corresponding to the 

method Invocation that triggered the anomaly detection, as well as the 

alert message, as composed by the alerting mechanism in use (see 

Section 6.4.2).

• Synchronisation Update: this is used when the monitoring dispatcher 

registers with the application server, or whenever a monitoring listener 

requires an update of the performance parameters corresponding to a 

component. The notification includes the total number of instances of 

the component as well as the method execution history for each 

method exposed by the component. The synchronisation should only be 

used rarely as its aggregating nature implies significantly more 

communication overhead than other notifications.
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Figure 4-6. CO M P A S  Probe Architectural Overview

Probes can also be controlled from external clients such as the monitoring 

dispatcher. The clients can invoke control operations on the probes (via 

their associated MBeans) to alter the monitoring process or to set 

operational parameters.

The following control operations are available to execute on a probe:

• start monitoring and stop monitoring (if monitoring is on, the probe can 

operate; if monitoring is off, the probe does not perform any 

operations)

• start logging and stop logging (controls the logging behaviour of the 

probes; when logging is active, probes can display some information in 

the server console)
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• enter active mode and enter standby mode (controls the monitoring 

mode of the probe) (Section 6.5)

• induce delay (used by the interaction recorder, Section 6.3)

• request synchronisation (listeners may request that an update be sent 

from the probe with aggregated historical data, useful when a listener 

has lost connection, or when a listener has been initiated after the 

probe has been instantiated)

4.2.4 COMPAS JMX Repository

The JMX Layer is the main COMPAS distributed communication medium 

used to transfer events from the Instrumentation Layer to the Monitoring 

Dispatcher and other COMPAS Listeners and to transfer control commands 

from the Monitoring Dispatcher and other COMPAS Listeners to the 

Instrumentation Layer.

The following default JMX notification types are emitted by the COMPAS 

Probes (see Section 4.2.3 fora description of each of them):

• compas.ejb.invocation

• compas.ejb.creation

• compas.ejb.deletion

• compas.ejb.alert

• compas.ejb.update

Figure 4-7 illustrates the usage of JMX in COMPAS. The location 

transparency is illustrated by different probes residing in separate 

component containers and communicating with the COMPAS Listeners via 

the distributed JMX Server.
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Figure 4-7. CO M PAS Transparent Management using JM X

The JMX model enables COMPAS entitles to communicate transparently in 

distributed environments and to expose management and event-distrlbution 

functionality. Probes can send events of particular types and all registered 

listeners can receive them. The COMPAS Listeners must register their 

interest with events from particular COMPAS Probes and they will 

automatically receive the appropriate events. This functionality is similar to 

what could be achieved with a messaging-based architecture such as Java 

Message Service (JMS) [91]. However, in addition, JMX enables distributed 

management via the Probe MBean operations. COMPAS Listeners can
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control the behaviour of the probes by Invoking management operations on 

their management interfaces, the MBeans associated with the probes.

4.2.5 COMPAS Client-Side

The COMPAS Infrastructure uses JMX as the transport and management 

platform. On the client-side, which can be remote in relation to the probes, 

the most important entity is the Monitoring Dispatcher.

The Monitoring Dispatcher is the client-side entity responsible for mediating 

client access to the COMPAS probes by providing an abstraction layer over 

JMX-level processing. It contains JMX handlers for efficient processing and 

transformation of JMX notifications into COMPAS events. In addition, the 

Monitoring Dispatcher provides a control interface that allows transparent 

relaying of commands to the monitoring probes.

Figure 4-8 Illustrates the structure of the COMPAS client-side. The 

Monitoring Dispatcher or any other custom JMX Listeners directly 

communicate with the JMX layer. They receive and process JMX notifications 

fired by the probes. In addition, they send raw JMX commands 

corresponding to the management operations exposed by the probes 

through their associated MBeans. The Monitoring Dispatcher shields any 

COMPAS clients from the JMX-level processing of notifications or of 

command dispatching. The Illustration in Figure 4-8 presents the Interaction 

Recorder and the COMPAS Monitoring Console as two existing clients that 

benefit from the abstraction layer introduced by the Monitoring Dispatcher. 

The presence of Custom Listeners A and B illustrates the extension 

capabilities of the COMPAS client-side through the event-based model of the 

Monitoring Dispatcher that allows any number of high-level clients consume 

COMPAS-level processed events. In addition, any number of external clients 

can invoke operations on COMPAS Probes without knowledge of JMX-level 

specifics involved.
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Figure 4-8. CO M PA S  Client Architectural Overview

Figure 4-9 shows how COMPAS JMX notifications are handled by the client- 

side. All notifications are received and the JMX Handler Chooser selects the 

appropriate handler for each notification. For each notification type, there 

exists one pre-initiallsed handler. Each handler can schedule the processing 

of the notifications in a background thread, essentially placing the tasks of 

handling each notification in a queue. Consequently, there are as many 

background threads as notification types. This enables the efficient pre­

processing of notifications without blocking the external JMX server process.
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The illustration shows only the basic COMPAS notification types and their 

handlers, however, any number of custom notifications and handlers can be 

added using the COMPAS Framework Extension Points (see Section 4.4).

JMX Handler Chooser

Figure 4-9. Handling JM X  Notifications

After each notification is pre-processed In the appropriate handler, a 

COMPAS flltered-event is sent to the Monitoring Dispatcher, which can relay 

it to any registered COMPAS Listener, as Illustrated in Figure 4-8.
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4.3 Design Considerations

4.3.1 Design of Monitoring Probes

COMPAS uses monitoring probes attached to the target components in order 

to extract performance data at runtime. Each target component has an 

associated monitoring probe, which is created in the COMPAS probe 

insertion phase (see Section 5.1). The probe is conceptually placed between 

the target component clients and the actual component.

Figure 4-10. The Monitoring Probe

To the component clients, the probe Insertion process is transparent, as 

they are accessing the component functionality through the component 

interface (business interface in the EJB terminology).
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The probe extends the component implementation class thus Inheriting all 

the interface (business) methods as well as the lifecycle methods (Figure 

4-10). The probe acts as and inheriting adaptor, a specialisation of the 

adaptor pattern [34]. When receiving a method call from a client, the probe 

will perform performance-measuring operations (i.e. timestamps, see 

Section 4.3.2). In addition, it will notify the Dispatcher / Collector 

subsystem of all of the events (Section 4.2.3), as they occur or as being 

requested by the dispatcher.

The sequence diagram in Figure 4-11 describes the steps taking place when 

the monitoring probe captures events from Its target component.

/ Probe Factory / Probe Dispatcher / JMX Server

3 : \request d ispatcher
I

4 : \create or find\ t  [op|y at aeation Ume]

\ r e g is t e r  in  r e p o s i t o r y

H
return dispatcher

■
6  : \ s e n d  creation e v e n t \

7  : \ s t o r e  creation data\

ff
3 : \ e m i t  c r e a t io n  n o t i f i c a t io n  

1?

11 : \send invocation event\
I

12 : \store invocation data\

Ì
12 : \stc

1 3  : \ e m it  I n v o c a ito n  e v e n t^  |

Figure 4-11. Probe Sending Events
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4.3.2 Extracting Timestamps Using Monitoring Probes

COMPAS Probes can extract performance and lifecycle data from their 

associated components. In order to measure execution times for a 

component method, timestamps are obtained before and after the method 

has been executed. COMPAS currently uses two time-extraction techniques: 

the default timestamp-extraction technique and the precise timestamp- 

extraction technique (described below). COMPAS probes can be extended to 

use additional timestamp-extraction techniques via the Time Extraction 

Server FEP (see Section 4.4.2).

«creates»

Figure 4-12. Time Extraction Strategies

Figure 4-12 illustrates the design of the time extraction subsystem. Each 

probe must obtain the required time extraction strategy from the 

P r o b e S e r v i c e L o c a t o r  factory. Based on system availability and probe 

requirements, the appropriate strategy Is returned to the probe.

The default time extraction strategy is used mostly when no other strategies 

are available. It employs portable Java timestamp extraction techniques, 

using the S y s t e m .  c u r r e n t T i m e M i i l i s  () system call. The resolution of this 

time stamping method is dependant on the operating system and it ranges 

from 1ms on Linux to 50ms on some Windows systems [40]. The poor 

resolution of this method makes it rather impractical particularly In 

situations where the average execution time of business methods is within 

the resolution range. However, If remote business method calls dominate,
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then this strategy may be utilised as usually the cost of remote calls is 

significantly higher than the resolution.

In addition to the default time stamping scheme, COMPAS provides a high 

precision, nanosecond precision time extraction strategy. This strategy uses 

the jtimer native library [26] obtained in collaboration with the Distributed 

Systems Group at Charles University, Prague. This strategy requires that a 

compiled version of the jtimer library exists in the system path for the 

operating system used by the application server running the components. 

Binary versions are available for Linux, Windows and Solaris and the library 

code can be easily compiled for other operating systems. When using this 

library, the timestamps recorded by the COMPAS probes are in 

nanoseconds. In order for monitoring clients to properly use the timestamps 

scale (nanosecond or millisecond), a Boolean parameter Indicating the 

appropriate scale Is sent together with invocation data. If the jtimer library 

Is not available on a server machine, the probes will automatically use the 

default time stamping scheme, without requiring explicit configuration 

operations.

4.3.3 Receiving Data from Monitoring Probes

The COMPAS Probes generate JMX notifications that can be received by any 

client registered as a listener for the probe MBeans in the JMX server. 

COMPAS provides a central point for receiving all notifications from the 

Probe MBeans, the Monitoring Dispatcher. This facilitates the access by third 

parties to probe-emitted events without the need to write JMX code. The 

Monitoring Dispatcher uses the Observer [34] pattern to allow any number 

of external clients to consume events from COMPAS probes. The steps 

presented in the sequence diagram in Figure 4-13 are taken by the 

Monitoring Dispatcher (referred to as the COMPAS Client in the following 

paragraphs, as they apply to any standalone JMX COMPAS Client) when it 

initialises.

In order to be able to receive events from new probes, the COMPAS Client 

must register as a listener to the JMX server. This allows future creation 

events for new probe dispatchers to be received. The COMPAS Client may 

connect and disconnect to the application server at arbitrary moments in 

time, without being coupled to the probes' lifecycle. As such, when the
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COMPAS Client initialises, It must search for probe dispatchers that have 

already been created. The JMX server will return a list of all previously 

registered probe dispatchers.

/  Operator : Actorl /JM X Server / Probe Dispatcher

1 : \initialize\
/  COMPAS Client

i

2 : \connect\

I

r

3 : \search for existing probe 
dispatchers\

r t : \lookup each dispatcher

I probe dispatchers returned | 
5 : \register as listener to 

probe\

I

>r^> : \register client as listener^ 1

7 : \request data ""p 
synchronisation\

8
9 : \process synchronisation 

data\

z z n

Lr

\sends synchronisation 
notification

10 : \regular invocation or 
creation notifcation\

Figure 4-13. Receiving Events from CO M PA S Probes

For each existing probe dispatcher, the COMPAS Client will register as a 

listener in order to be able to receive all future events from the associated 

probe instances. After registration, the COMPAS Client requests a data 

synchronisation operation in order to receive information about past events 

regarding probes associated with this probe dispatcher. For instance, the 

history of method calls and number of instances for the component 

represented by the probe dispatcher are returned. This allows the COMPAS
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Client to display immediately an overview of the operational history of the 

targeted component system.

All future invocations from existing probe dispatchers as well as new probe 

dispatchers can be received after the above steps complete.

65
I'



4.4 Extensibility: COMPAS Extension Points

COMPAS is a platform for adaptive monitoring of component-based 

applications. Its purpose is to provide a rich set of functionalities for 

extracting and processing runtime data from enterprise systems. It employs 

low overhead monitoring techniques based on adaptive instrumentation in 

order to enable long-term monitoring of production systems. To aid the 

discovery of performance hotspots origins, COMPAS uses a diagnosis model 

that leverages model information from the running system in order to infer 

causality relationships.

These facilities are provided as part of the COMPAS framework. It is 

important however that more complex and complete solutions for 

performance management be built using COMPAS.

COMPAS exposes a set of Framework Extension Points (FEP) that can be 

utilised by external tools. There are two types of extension points:

Input FEP: third-party functionality can be added to COMPAS to enhance its 

already existing functionalities. COMPAS is a consumer of information 

through the input FEPs. Usage examples of input FEPs include better time­

stamp extraction techniques or advanced anomaly detection algorithms 

used in the problem diagnosis processes.

Output FEP\ third-party functionality can be added that uses and processes 

information extracted by COMPAS. COMPAS is a producer of information 

exposed through output FEPs. Such FEPs are usually event sources that 

COMPAS provides for any external tools. Usage examples of output FEPs 

include specialised GUI consoles or integration into wider-scope 

performance tools.

As well as third-party functionality, the functionality that COMPAS provides 

relies heavily on the usage of FEPs. For instance, the COMPAS Monitoring 

Console uses a FEP, in an identical fashion to which an external GUI would 

behave.

All FEPs can be further classified into server-side FEPs and client-side FEPs.

A server-side FEP facilitates the extension of the functionality available to or 

provided by a COMPAS Monitoring Probe.
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A client-side FEP facilitates the extension of the functionality available to or 

provided by the COMPAS Monitoring Dispatcher.

4.4.1 Client-Side FEPs

In Figure 4-14, the layered structure of the COMPAS client is presented. The 

top layer, JMX Event Dispatcher, is responsible for receiving and ordering 

the JMX notifications sent by the COMPAS server-side part composed of the 

Monitoring Probes. The following JMX notification types can be emitted by 

the Probes as part of their basic functionality (Section 4.2.4): 

compas. ejb.in vocation, com pas. ejb. deletion, compas. ejb. creation,

compas.ejb.update and compas.ejb.alert. All such notifications are received 

by this layer and forwarded to the middle layer.

The JMX Event Handlers layer matches each Invocation type with its 

appropriate JMX event handler. Matching is performed upon inspection of 

the invocation type. Consequently, the available handlers are invocation 

handler, deletion handler, creation handler, update handler and alert 

handler. This layer contains an output FEP that allows horizontal integration 

with COMPAS to be realised. In Figure 4-14, a custom handler is presented 

to indicate the possibility for a third party to provide additional event 

handlers for any number of additional event types. The already existing 

event handlers use the output FEP as well, In the same manner as a third 

party event handler would.
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Figure 4-14. Client-Side Framework Extension Points

The third layer contains the event dispatcher for processed and filtered 

events received from the middle layer. The events this layer operates with 

are more semantically rich than the JMX notifications. They have been 

processes by the middle layer and wrapped into events that are more 

meaningful to the application logic. This layer exposes an output FEP that 

can be used by any number of third party plug-ins. This FEP is a source of 

semantically reach events presented in a standard manner, as a coherent 

interface. The COMPAS Monitoring Console GUI, the Interaction Recorder 

and the Alert Manager are all users of this FEP. They all consume COMPAS 

application events and process subsets of them for different purposes. For 

instance, the Interaction Recorder is in particular concerned with method 

Invocation events whereas the Alert Manager processes alerting events 

only.

4.4.2 Server-Side FEPs

Figure 4-15 presents the architectural layers for the server-side COMPAS 

Instrumentation infrastructure. The bottom layer corresponds to the 

monitoring probes. The probe functionality is realised by the proxy layer 

Implementation. COMPAS uses automatically injected component-level 

hooks that capture invocation and essential lifecycle events from the
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component instances, and send them to proxy layer instances. There is one 

proxy layer instance (probe instance) for each component instance. This 

layer exposes an input FEP, the instrumentation FEP, which can be used by 

alternative instrumentation techniques. For instance, a JVM level profiler 

could extract invocation and lifecycle events by modifying the bytecode of 

the component classes. Such a profiler could then use the instrumentation 

FEP to benefit from the extensive COMPAS infrastructure.

COMPAS JMX 
notification

JMX Event Dispatcher

custom

invocation instantiation

custom

deletion

Proxy Layer Instance

COMPAS Proxy Code 
(Generated Hook)

Custom Hook

V i

0
Time Extraction Strategy

precise default custom

Proxy Layer Instance

/  ' ■ —

Figure 4-15. Server-Side Framework Extension Points

The probes extract timestamps for performing measurements by using 

extensible strategies (Section 4.3.2). COMPAS provides two time extraction 

implementations: a precise, platform-dependent technique and a fully 

portable Java default mechanism that offers less precision. In addition, an 

input FEP, the time-stamping FEP, allows third-party time extraction 

strategies to be used. For instance, a high precision, hardware-software 

hybrid could be used to provide accurate measurements to the COMPAS 

platform, for demanding, distributed environments.
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Performance measurements extracted by the instrumentation layer of the 

probes are sent to the Probe Dispatcher (Section 4.2.3). There are three 

event handlers In the probe dispatchers corresponding to method 

invocation, instance creation and instance deletion. Others can be added to 

process other lifecycle events, for example such passivation or activation. 

Each of the handlers' default behaviour is to generate a COMPAS JMX 

notification and dispatch It to the client listeners using the JMX 

Infrastructure. Additionally, the invocation handler uses extensible alert 

detection strategies (Section 6.4) to detect potential performance hotspots. 

In addition to the basic alert-detection strategies (absolute value and 

relative, see Section 6.4), an input FEP, the alert FEP, allows third parties to 

add more complex implementation of alert-detection strategies. An example 

is an alerting algorithm that takes into account the history of the calls and 

workload information to reason about potential performance problems. Such 

an algorithm has been developed and integrated with COMPAS [21] in a 

project related to application adaptation using component redundancy 

[23][22].

The behaviour of each dispatcher event handler can be extended to 

accommodate custom requirements. This extension point, the probe- 

handier output FEP can be used for instance to enable server-side 

enterprise logging functionality. Therefore, by leveraging the COMPAS probe 

insertion technology, third parties could avoid writing their own logging 

component-hooks.

The JMX event dispatcher layer used by the probes emits the appropriate 

JMX notifications (see Section 4.2.4 for the list of default COMPAS 

notifications). If the probe-handier FEPs are used, custom JMX notifications 

can be emitted as well, as required by the additional logic.

4.4.3 List of FEPs

This section presents a complete list of the predefined COMPAS Framework 

Extension Points. The list Is divided into client-side and server-side FEPs.

Client-Side FEPs

• Client-Handier: can be used to add additional JMX handlers,

corresponding to custom JMX server notifications: used by the default 

COMPAS implementation for Invocation, creation, deletion, update and
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alert events (Section 4.2.3); can be used to add more handlers for 

events such as activation and passivation of beans; this FEP is

illustrated In the middle layer in Figure 4-14

• Event-Consumer: can be used to add additional client-side processing 

logic of COMPAS monitoring events: used by the default COMPAS 

implementation for the graphical consoles, the Interaction Recorder 

(Section 6.3) and the centralised Alert Manager (Section 6.7); potential 

added functionality Includes data-mlnlng logic for determining anti­

patterns or IDE integration; this FEP is illustrated in the bottom layer In 

Figure 4-14

Server-Side FEPs

• Instrumentation: can be used to add alternative instrumentation

capabilities to replace the current probe Insertion process that is based 

on code-generation; JVM-level bytecode instrumentation technology 

(Section 5.2) can be used to insert the monitoring probes, as illustrated 

in the bottom layer of Figure 4-15

• Time-Stamping: alternative time-stamping strategies can be used in 

order to obtain variable precision time-stamps (Section 4.3.2); 

COMPAS uses a platform-specific strategy and a platform independent, 

less precise strategy; other strategies such as software/hardware 

techniques can be added, as illustrated in Figure 4-15

• Alert: can be used to add additional anomaly-detection logic in the

probes (Section 6.4); COMPAS uses the threshold based strategy;

strategies involving complex workload-dependent anomaly detection 

logic could be added

• Probe-Handier: if additional target information is provided by the 

monitoring probes (for instance by using JVM-level hooks), custom 

probe handlers can be added to the probe dispatcher (the middle layer 

in Figure 4-15; this FEP is used by default handlers for invocation, 

instantiation and deletion; in addition to adding other handlers for 

different events, all handlers can be enhanced to provide common 

functionality such as a consistent enterprise-logging strategy for 

storing all events in a remote database

71



4.5 Vertical and Horizontal Integration

COMPAS is built on an open architecture that facilitates extension of its 

functionality through Framework Extension Points (FEPs) (Section 4.4).

The term vertical integration in respect to a COMPAS FEP is used to refer to 

the capability to add information sources or consumers at different layers of 

the information flow in which the FEP participates.

The term horizontal integration in respect to a COMPAS FEP refers to the 

capability of adding more information sources or consumers at the same 

layer of the information flow in which the FEP participates.

Information flows and Information flow layers are presented as columns and 

rows in Figure 4-16 which illustrates both the horizontal and the vertical 

extension capabilities by presenting Integration options in a two- 

dimensional space. The vertical axis traverses different Information flow 

layers. The horizontal axis corresponds to information flow types. The 

central row in the chart is occupied by the COMPAS Core Monitoring 

Infrastructure. This contains the most basic functionality of COMPAS, in 

particular the distributed event collection and processing infrastructure (the 

monitoring probes, the monitoring dispatcher and the communication 

infrastructure). There are six information flow layers depicted in Figure 

4-16. Three layers ( + 1, +2 and +3) are above the core monitoring 

infrastructure level, and three are below (-1, -2 and -3). There are nine 

information flow types depicted in Figure 4-16. Four flow types (A, B, C and 

D) are above the core monitoring infrastructure level, and five are below (E, 

F, G, H and K).
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Figure 4-16. Vertical and Horizontal Integration

The client-side of the monitoring infrastructure is represented by the area 

above level 0, and is mostly involved in data collection, while the client- 

side, represented by the area below level 0 is mostly involved in data 

processing.

The elements in Figure 4-16 correspond to information producers or 

consumers participating in the COMPAS information flow types. There are 

four types of elements:

• the default consumer is a COMPAS provided element that can only 

receive and process information, such as a data analyser
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• the default producer is a COMPAS provided element that can only 

produce and send information, such as an event generator

• the default producer /  consumer Is a COMPAS provided element that 

can produce and consume information

• the custom producer /  consumer Is a third-party element that provides 

custom functionality. There are no custom consumer or producer 

elements in Figure 4-16 as for Illustrating purposes they can both be 

represented by the custom producer / consumer.

Horizontal integration is Illustrated In Figure 4-16 by elements situated in 

the same Information flow layer. Vertical integration is illustrated by 

elements situated at different information flow layers and in the same 

information flow type. Note however that information flow types In the 

client area and information flow types In the server-side area, are not 

directly related. For instance, there is no direct correspondence between 

information flow types B and F.

Level 0 contains, in addition to the core monitoring infrastructure, a custom 

producer / consumer element. This Illustrates the possibility to extend the 

monitoring Infrastructure core In order to add more core functionality. For 

Instance, a different processing and relaying mechanism for COMPAS 

notifications can be added In cases where the monitoring dispatcher does 

not provide adequate functionality.

Levels +1 and -1 contain COMPAS default producers and consumers 

respectively, corresponding to the basic monitoring dispatcher and 

monitoring probes' functionality. Elements in level +1 dispatch COMPAS- 

level events, while elements In level -1 receive server-side information and 

dispatch it to the monitoring dispatcher.

The following eight information flow types exist in the COMPAS 

infrastructure:

• Client flow type A: composed only of COMPAS default elements, no 

vertical extension is possible. A default consumer In level +2 processes 

the information from level 1. An example of flow type A is the COMPAS 

graphical console. The console could be extended horizontally, by 

adding more GUI elements in level +2.

• Client flow type B: the default consumer / producer element in level +2 

allows vertical integration with a custom element in level +3. Default
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processing takes place in level +2 but more functionality can be added 

by a third party. Examples: the Interaction Recorder can generate UML 

models (level +2) and can be extended by modules that read the UML 

modules and perform further processing (level +3); the logging 

mechanism of COMPAS stores monitoring events (level +2) but further 

processing of the log files can be performed for data mining purposes 

(level +3).

• Client flow type C: there is no default processing of level +1 

information and the custom consumer / producer in level +2 provides 

all the required functionality. For instance, a different, complex 

COMPAS GUI can be added, or a different alert handling mechanism 

could be provided at the client side.

• Client flow type D: corresponds to the custom extension at the core 

infrastructure level. Consumer / producer functionality must be 

provided for information generated by the extended Infrastructure.

• Server flow type E: composed only of COMPAS default elements, no 

vertical extension is possible. A default producer in level -2 generates 

the information captured and processed by level -1. An example Is the 

default portable instrumentation facility, which uses generated code to 

insert hooks in the target components. This facility can be extended 

horizontally by adding more instrumentation capabilities but not 

vertically by using lower-level information sources such as the JVM. 

Note that if the default Instrumentation is extended horizontally, such 

extensions can be then extended vertically, as in information flow type 

F.

• Server flow type F: A custom producer / consumer can generate 

Information for level -1. An example Is a different instrumentation 

mechanism or an extension of the instrumentation mechanism 

available in COMPAS. For instance, JVM-level hooks can be used 

Instead of portable generated hooks, In order to extract runtime data 

from the target system (e.g. method invocation or instance creation 

events).

• Server flow type G: default and custom producer / consumers in level - 

3 can be used to send information to the default consumer / producer 

in level -2. A typical example of this type of information flow is the time 

extraction functionality (Section 4.3.2). Custom time extraction
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strategies and default time extraction strategies can be used to 

generate timestamps which are sent to the probe instances that in turn 

forward the complete invocation data objects to the probe dispatcher.

• Server flow type H: default and custom producer / consumers in level - 

3 can be used to send information to a custom consumer / producer In 

level -2. A typical example of such an information flow is the alert 

generation functionality (Section 6. 4.2). Default and custom 

invocation-event producers send Information to customisable alert- 

generatlon strategies. Third-party providers can transparently add 

alert-generatlon strategies (in level -2) without affecting the 

functionality of elements in level -3.

• Server flow type K: corresponds to the custom extension at the core 

infrastructure level. Producer / consumer functionality must be 

provided to generate information for the extended infrastructure.
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4.6 Monitoring Infrastructure Summary

Chapter 4 described the functional goals, architecture and design of the 

COMPAS monitoring infrastructure. The structure and functionality of the 

monitoring probes and the monitoring dispatcher were presented. 

Monitoring probes are server-side entities attached to each target 

component and they communicate using a management layer with the 

client-side monitoring dispatcher.

The COMPAS Framework Extension Points can be used to enhance and 

reuse the monitoring infrastructure. Examples of extensions are the time 

stamping FEP, or additional monitoring events listeners.
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Chapter 5 Insertion of Probes

Portable insertion process

Component metadata used to generate the probes 

Alternative probe insertion: dynamic bytecode instrumentation
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5.1 Inserting the Monitoring Probes

COMPAS instruments component-based applications without making 

changes to their source code. In addition, COMPAS does not employ 

changes to the runtime environment to support instrumentation. The 

instrumentation is performed by a "proxy layer" attached to the target 

application through a process called COMPAS Probe Insertion (CPI).

5.1.1 COMPAS Probe Insertion Process Description

The CPI process examines the Target Application's structure and uses 

component metadata to generate the proxy layer. For each component in 

the target application, a monitoring probe is specifically generated based on 

the component's functional and structural properties.

The CPI process leverages deployment properties of contextual composition 

component-frameworks [97] to discover and analyse target applications. 

Therefore, CPI is conceptually portable across component frameworks such 

as EJB, .NET or CCM.

The following metadata is extracted and used to generate a monitoring 

probe for a target component:

• Component Name (bean name, for EJB)

• Component Interface (Java interface implementing the services 

exposed to clients, for EJB)

• Locality (local or remote, for EJB)

• Component Type (stateless session, stateful session, entity or 

message-driven, for EJB)

• Component Interface Methods (Java methods in the business interface, 

for EJB)

• Component Creation Methods (ejbCreate(...) methods, for EJB)

Using the Probe Code Template (PCT) and the extracted metadata, the CPI 

process generates one probe for each Target Application Component. The 

placeholders in the template are replaced with the values extracted from 

the metadata. The following is a listing of the PCT written in the Velocity 

Template Language [5].

• * TrJ s is 5 f.fe ate f'.-r ofc:: * r.rt r.e .• •• u.r a  c- • E • r.t COMPAS
t-roxies
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package $package;

import javax.ejb.CreateException; 
import javax.ejb.EJBException; 
import javax.ejb.EntityContext;

import edu.dcu.pel.compas.monitoring.proxy.*;

$modifiers class _COMPAS_$target_class extends $target_class {
S . .  . ... |  . . . - i  T r* ’ l  * y - . *  I t  t -  L C i , . .  r , .  ,. .* *. 1 C/ » 1 i ■ L *v \i . •. r*-z U lifiN*: / t* '*5 1 ) J
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private Proxylmplementor proxylmpl = new Proxylmplementor( 
"$appserver_name", "_COMPAS_$target_class", "$id_name", "$bean_type" 
) ;

#if( $bean_type=="entity" )

public void setEntityContext(EntityContext ctx) 
throws EJBException { 

super.setEntityContext( ctx ); 
proxylmpl.postSetContext();

}

public void unsetEntityContext() 
throws EJBException { 

super.unsetEntityContext(); 
proxylmpl.postUnsetContext();

}

#end

#foreach( $creator in $allCreateMethods ) #set( $returnType = 
$creator. getReturnType () .getName() )

public $returnType $creator.getName() (
$generator.getParameterDeclarationList($creator) )
$generator.getThrowsList($creator) {

proxylmpl.preEjbCreate();
#if( $returnType != "void" ) $returnType returnValue 

= #end super.$creator.getName()(
$generator.getParameterCallingList($creator) );

proxylmpl.postEjbCreate();
#if( $returnType != "void" ) return returnValue;

#end

}

#end



#foreach( $method in $allBusinessMethods ) #set ( $returnType = 
$method. getReturnType ( ) . getNameO )

public $returnType $method.getName() (
$generator.getParameterDeclarationList($method) )
$generator.getThrowsList($method) {

proxylmpl.preMethodlnvocation();
#if( $returnType != "void" ) $returnType returnValue 

= #end super.$method.getName()(
$generator.getParameterCallingList($method) );

proxylmpl.postMethodlnvocation( "$method.getName()"
) ;

#if( $returnType != "void" ) return returnValue;
#end

}
#end

Figure 5-1 illustrates the entities involved in the CPI process. Each Target 

Component (TC) is identified after parsing the Enterprise Target 

Application's metadata. After examining the TC, COMPAS generates the 

proxy layer that will be attached to the TC. The proxy layer is an 

instantiation of the Proxy Code template, using the TC metadata values.

Figure 5-1. CO M PA S  Probe Insertion

The proxy layer (probe) is a thin layer of indirection directly attached to the 

TC (see Section 4.3.1). To fulfil its instrumentation functionality, the Probe 

employs the Instrumentation Layer that has the capability of processing the 

data captured by the Probe and performing such operations as event
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notifications. The Instrumentation Layer uses the COMPAS Probe Libraries 

for implementing most if its logic.

A Modified Component (MC) results after the CPI process has been applied 

to a TC (see Figure 5-2), and this will enclose the original TC. In addition, it 

will contain the Probe and Instrumentation Layer artefacts. In order to 

ensure a seamless transition from the TC to the MC, the CPI transfers the 

TC metadata to the MC, The MC metadata will only be updated so as to 

ensure the proper functionality of the proxy layer (e.g. for EJB, the bean 

class property must be updated to indicate the Probe class).

business original

'

proxy layer

Figure 5-2. Modified Component Containing the Proxy Layer

5.1.2 The CPI Process in J2EE

As the COMPAS prototype has been implemented for the J2EE platform, the 

COMPAS CPI process implementation follows the J2EE characteristics. The 

following steps describe the process of inserting COMPAS probes into a J2EE 

Application.

1) The Target Application's EAR file is analysed and all the EJB jar files extracted.

2) For each EJB jar file, the deployment descriptor is parsed and, for each declared 

EJB bean,:

a) The corresponding declarative metadata (bean name, bean interface, locality -  

remote or local, bean type -  session, entity or message driven, bean class) Is 

extracted.

b) Java Reflection operations are performed on the bean interface to extract all 

the business methods.

c) Java Reflection operations are performed on the bean class to extract all the 

ejbCreate methods
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d) The Velocity [5] engine is used to generate the Probe code by instantiating the 

Probe Code Template with all the extracted values.

e) A new bean class is generated, the Probe, which inherits from the original bean 

class and performs the instrumentation operations. In addition, the Probe 

forwards all invocations to the original bean class.

3) The new bean classes (Probes) are packaged in the modified jar file together 

with all the original classes that already existed in the original jar file. The 

deployment descriptor is modified as to include the updated entries for the bean 

class fields that will now point to the Probe class.

4) All the modified jars are packaged into a new EAR file. The required shared 

COMPAS Probe Libraries are also packaged into the EAR.

5) The new Modified Enterprise Application EAR is ready for deployment into any 

J2EE application server.

5.1.3 COMPAS Probe Insertion Process Code Example

An example of the resulted probe code (part of the MC) from the CPI

process follows:

package com.sun.j2ee.blueprints.creditcard.ejb;

import javax.ejb.CreateException;
import javax.ejb.EJBException;
import javax.ejb.EntityContext;

import edu.dcu.pel.compas.monitoring.proxy.*;

public abstract class _COMPAS_CreditCardEJB extends CreditCardEJB {

private Proxylmplementor proxylmpl = new Proxylmplementor(
"JBOSS", "_COMPAS_CreditCardEJB", "CreditCardEJB", "entity" );

public void setEntityContext(EntityContext ctx) 
throws EJBException { 

super.setEntityContext( ctx ); 
proxylmpl.postSetContext();

}

public void unsetEntityContext() 
throws EJBException {
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super.unsetEntityContext(); 
proxylmpl.postünsetContext();

}

/ / b h o  i  ' - c r '  f.1r *. ? jt'C tue !•■

public java.lang.Object ejbCreate ( java.lang.String 
valueO, java.lang.String valuel, java.lang.String value2 ) throws 
javax.ejb.CreateException {

proxylmpl.preEjbCreate(); 
java.lang.Object returnValue = super.ejbCreate( 

valueO, valuel, value2 );
proxylmpl.postEjbCreate (); 
return returnValue;

}

public java.lang.Object ejbCreate ( 
com.sun.j2ee.blueprints.creditcard.ejb.CreditCard valueO ) throws 
javax.ejb.CreateException {

proxylmpl.preEjbCreate(); 
java.lang.Object returnValue = super.ejbCreate(

valueO );
proxylmpl.postEjbCreate(); 
return returnValue;

}

public java.lang.Object ejbCreate ( ) throws
javax.ejb.CreateException {

proxylmpl.preEjbCreate(); 
java.lang.Object returnValue = super.ejbCreate(

) ;
proxylmpl.postEjbCreate(); 
return returnValue;

}

public com.sun.j2ee.blueprints.creditcard.ejb.CreditCard 
getData ( ) {

proxylmpl.preMethodlnvocation();
com.sun.j 2ee.blueprints.creditcard.ejb.CreditCard 

returnValue = super.getData( ) ;
proxylmpl.postMethodlnvocation( "getData" ); 
return returnValue;

}

public java.lang.String getExpiryYear ( ) {

proxylmpl.preMethodlnvocation(); 
java.lang.String returnValue = 

super.getExpiryYear( );
proxylmpl.postMethodlnvocation( "getExpiryYear" ); 
return returnValue;

}

public java.lang.String getExpiryMonth ( ) {
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proxylmpl.preMethodlnvocation();
java.lang.String returnValue = 

super.getExpiryMonth( );
proxylmpl.postMethodlnvocation( "getExpiryMonth" ); 
return returnValue;

}

} _______________________________________________________

The code example above shows the result of the CPI process when applied 

to one of the components (CreditCard EJB) of the Sun Java Blueprints 

Petstore Application [88].

5.1.4 The CPI Process Using JSR771

This section discusses an alternative mechanism for extracting the 

metadata needed by the CPI process. It does not require access to the EAR 

file containing the Target Application. In contrast, it employs server 

introspection based on an open standard for application server management 

[84]. Although the current COMPAS prototype does not currently use this 

mechanism, the implementation is available and can be used as an 

alternative strategy. It is highly .probable that similar mechanisms to the 

one presented here will be available for other component-based runtime 

platforms such as .NET or CCM. As COMPAS monitoring operates internally 

with more abstract concepts than EJBs, it is possible that by marginally 

adapting the CPI process to a different component platform (e.g. .NET), the 

same benefits can be obtained as for EJB.

The process of extracting the deployment structure of the target system by 

using JSR77 is illustrated in Figure 5-3. It is based on widely available 

technologies that are either recently standardised or are in the final stages 

of standardisation. This makes the process compatible with a large variety 

of operating environments. The following steps are taken:

1 Based on work performed during the author's internship in Sun Microsystems 

Laboratories (July 2003 -  November 2003, Mountain View, CA). As part of the 

author's internship work on the JFIuid Project

(http://research.sun.com/projects/jfluid), EJBs as well as Web artefacts such as 

Servlets and JSPs were processed for instrumentation. Similarly, this chapter takes 

into account both EJB and Web modules, as supporting all types of components 

consistently is one of the COMPAS goals.

85

http://research.sun.com/projects/jfluid


1) The deployment Information made available by the JSR77 management model is 

parsed (a JMX query is sent to the JSR77 compliant server). This results in a set 

of J2EE applications that have been deployed in the target application server. 

Using JSR77, the deployment structure of the J2EE applications residing in the 

target server can be obtained.

2) For each J2EE application, a query for all its associated modules (EJB JARs or 

Web Application Archives (WARs)) is sent to the JSR77 compliant JMX server.

3) For each module (Web or EJB), the deployment descriptor is obtained using the 

JSR77 attributes available for each J2EE element. The deployment descriptor is 

an XML document required by the J2EE specification and contains deployment 

information for each J2EE element. For EJBs, it contains such information as the 

bean classes, type of bean (e.g. entity, session, message-driven) and required 

services such as security and transactions. For Web modules, it contains the 

name of the Servlet class or, for JSPs, the file name containing the JSP code.

4) Using the JAXB [87] framework, the deployment descriptor for each J2EE module 

is parsed and the list of the corresponding EJBs or Servlets is obtained, together 

with their associated information. JAXB [87], the Java Architecture for XML 

Binding provides an abstraction layer for working with XML files. Developers need 

not work with XML parsers and their low-level events and objects, such as a text 

node In an XML document. Instead, they use an object model of the XML 

document and the standard Java object collection APIs to deal with containment 

hierarchies. For COMPAS, this would ensure a smoother integration with the 

internal object model of the J2EE applications, as the mapping of information 

from the XML deployment descriptors to the internal J2EE deployment hierarchy 

is more direct and the mapping code easier to maintain and understand.

5) For each J2EE component, it is important to know the "business methods" which 

implement the logic. The business methods are the Java methods which are 

written by the developers and which implement the application logic. The 

discovery of these methods is realised through Java Reflection, a standard 

mechanism to inspect Java classes. The same operation is performed for the 

existing Servlets, as It is important to determine which of the two possible HTTP 

handler methods (GET or POST) Is used.

6) By using knowledge about the container-generated artefacts, it is possible to 

determine which container classes correspond to the EJB or JSP currently 

inspected. The EJB Object class name for a particular EJB can be determined and
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can be later used In the instrumentation stage. For JSPs, using knowledge about 

the web container behaviour, It is possible to determine the name of the class 

implementing the JSP code, when it is compiled at run-time, thus allowing it to 

be instrumented. Although COMPAS does not currently support dynamic 

bytecode instrumentation, a prototype tool that does has been designed and 

implemented (see 5.2). Integration with COMPAS is feasible as the 

instrumentation layer can be realised at lower levels with bytecode 

Instrumentation, instead of source code generation.

7) This step is optional: if knowledge about the container-generated artefacts is not 

available, the instrumentation will proceed by targeting the developer-written 

artefacts (the bean classes for EJBs, and the Servlets, however the JSPs will not 

be monitored). This results in less information being collected as the container 

services cannot be measured.

8) Finally, the collected information is stored in the Internal object model, which can 

be later used by the COMPAS instrumentation.

Figure 5-3. Using JSR77 to Extract J2EE  Deployment Data
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5.2 Instrumenting J2EE Applications Using 

JVM Profiling

This section presents an alternative method for inserting the monitoring 

probes2. It uses the JFIuid dynamic bytecode instrumentation technology 

[27][28] and can be integrated with COMPAS using a server flow type F 

extension point (Section 4.5), the instrumentation FEP (Section 4.4.2).

The proposed method (implemented as a prototype tool) enables dynamic 

insertion and removal of profiling code. A graphical console has been 

implemented (separately from the COMPAS monitoring console) to allow 

direct control of instrumentation and data collection operations.

The profiling tool can attach to a running application server (currently only 

Sun ONE Application Server [96] instances), inject instrumentation code in 

the target components (EJBs, Servlets), collect, and aggregate the JVM 

performance data corresponding to these entities.

When instrumentation is no longer required, the instrumentation code can 

be removed dynamically from the application server and the application 

continues to run unaffected. This operation does not preclude the use of 

adaptive monitoring techniques (Chapter 6) for overhead reduction. 

Instead, it is used when there is either no further need for performance 

management or else when it is critical that the target application runs 

completely unaffected.

The dynamic bytecode instrumentation approach has two main advantages 

over the default COMPAS Instrumentation approach, based on portable, 

high-level probes. Monitoring probes can be dynamically inserted and 

removed from the running application, without the need for application

2 Based on work performed during the author's internship in Sun Microsystems 

Laboratories (July - November 2003, Mountain View, CA). As part of the author's 

internship work on the JFIuid Project (http://research.sun.com/proiects/ifluidy a 

J2EE monitoring tool was developed that used dynamic bytecode instrumentation 

techniques to transparently inject monitoring code into J2EE applications running on 

the Sun ONE Application Server. Most parts of the tool have been transferred into a 

Sun Microsystems enterprise performance-management product.
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redeployment. By default, COMPAS Induces varying degrees of overhead 

(depending on the monitoring scheme) in target applications. Using 

dynamic bytecode instrumentation, COMPAS can be extended to support 

dynamic Insertion and removal of instrumentation logic in certain parts of 

the target application, leading to the capability of completely removing 

overhead In certain parts of the target application. This extension can be 

achieved by using the instrumentation FEP (Section 4.4.3).

The second advantage of the dynamic bytecode instrumentation approach is 

that information about the performance of container services can be 

obtained from the instrumented container generated artefacts, since any 

class can be instrumented at runtime. This can help in determining whether 

performance hotspots originate in business logic or in configuration 

parameters driving the behaviour of container-provided enterprise services.

5.2.1 Instrumentation Levels

Using dynamic bytecode insertion, two instrumentation levels can be used 

and dynamically alternated:

Complete top-level instrumentation: a high level, low-overhead,

Instrumentation operation across the entire target J2EE system can help In 

quickly identifying the potential performance hotspots. This capability is 

implemented in the prototype tool and It Is used when developers choose to 

perform a complete top-level profiling operation of the target system. This 

instrumentation level is similar to the default portable instrumentation 

capability of COMPAS, which can extract data only from methods exposed 

by component interfaces.

The top-level profiling mode has a significantly lower overhead than the 

recursive instrumentation mode described below and is therefore 

appropriate for obtaining an overall performance profile of the entire 

system. Section 5.2.2 gives a more detailed description of the top-level 

instrumentation mode.

Using the dynamic bytecode injection technique described in [27][28], the 

top-level instrumentation code is inserted into the running J2EE system, 

without the need for a server restart. This is a completely transparent 

operation, making it particularly useful in production environments.
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Developers can choose to view performance metrics associated with J2EE 

elements at any level In the hierarchy. For Instance, they can see how much 

time is spent in servicing a particular EJB method, or they can see how 

much time is spent servicing all the methods of a particular EJB or indeed 

an entire application.

Starting with a top-down approach, developers can see which application 

takes the most resources; they can then browse the hierarchy and 

understand which modules In the application generate the performance 

problem; the browsing process can continue until the leaves (EJB methods 

or Servlet / JSP handlers) are identified. These features can be accessed in 

the prototype tool based on JFIuld, and are not part of the COMPAS 

graphical console. However, similar functionality Is available in COMPAS 

with the exception that the COMPAS consoles assume the existence of a 

single target J2EE application, and not an arbitrary number of J2EE 

applications, as the JFIuid-based prototype does. Another difference Is the 

lack of support for web-tler components in COMPAS, which focuses on the 

EJB tier.

Partial in-depth instrumentation: When a set of hotspots has been 

identified, developers can choose to initiate the recursive instrumentation 

process for all the methods contained in the set. For example, if the set 

contains an EJB, all Its business methods are selected for recursive 

instrumentation. If the set contains an entire J2EE application, all the 

methods corresponding to all the EJBs and all the HTTP handlers 

corresponding to all the Servlets and JSPs In the application are selected for 

recursive instrumentation.

The results obtained from the recursive Instrumentation can help in focusing 

the search for the origin of the performance problem Identified using the 

top-level Instrumentation. Call-graphs with EJB and Servlet / JSP methods 

as roots can reveal the causes for poor performance at the J2EE level. 

These causes can vary from internal business logic problems to bad 

configuration of container services.

This instrumentation level is essentially a refinement of the top-level 

instrumentation level. While top-level Instrumentation offers a system-wide, 

shallow performance profile, in in-depth instrumentation a narrow subset of 

the system is examined in detail. The functionality of the in-depth
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instrumentation level can be accessed In the prototype tool based on JFIuid, 

and are not part of the COMPAS graphical console. However, using the 

COMPAS FEPs, this functionality can be easily migrated or replicated to 

COMPAS.

5.2.2 The Instrumentation Mapping

This section describes the process of mapping the high-level component 

constructs to the level at which the dynamic bytecode instrumentation 

operates. Upon selection of different J2EE elements for Instrumentation, the 

tool must generate lower level Instrumentation events that eventually result 

in the dynamic bytecode instrumentation code being Injected Into the 

appropriate classes.

When instrumentation is required for Java Servlets [95], the Intent is 

translated into an instrumentation event for the corresponding doGet or 

doPost handler of the Servlet. The correct handler is determined in step 3 

of the JSR77-based discovery process (Section 5.1.4).

For JSPs [94], instrumentation Is performed for the container-generated 

class which will implement the JSP code. For Sun ONE AS [96], this class is 

HttpJspBase and the implementing method is _jspService.

For EJBs, based on their deployment descriptor, the container generates 

classes implementing the two interfaces (EJB Object and EJB Home) 

(Section 2.1). Clients of an EJB component will work with references of 

these container generated objects. After creating or finding an EJB instance 

using the EJB Home object, clients will call methods on the EJB Object 

implementation, which ensures that the required services are provided for 

the calling context, before dispatching the call to the actual bean class 

instance (Section 2.1).

When selecting EJBs for instrumentation in the J2EE view, the tool must 

map such actions to instrumentation events for the appropriate class of the 

EJB. The EJB Object implementation class Is the appropriate location for the 

instrumentation bytecode because its methods wrap the bean-class 

Implementation methods with the required services. For each method 

methodX from the bean class, there Is a corresponding method methodX In 

the EJB Object implementation. The latter will contain calls to different 

container services in addition to the call to the bean class methodX. This
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applies in general to most J2EE application servers and in particular to Sun 

ONE AS.

If the tool is used in an environment where the container generated classes 

are not known (i.e. with an unsupported application server), the only 

classes that can be Instrumented are the Servlets and the EJB bean classes. 

This results In the JSPs and the EJB container services not being 

instrumented, which Is similar to the default portable Instrumentation level 

available in COMPAS.

To address this issue, the dynamic bytecode instrumentation tool will 

expose an external API that will allow third parties to develop connectors for 

other application servers. The connectors would consist of sets of classes 

and methods corresponding to container services, in a standard format, as 

required by the tool.

In top-level instrumentation, only the EJB, Servlet and JSP methods (or 

container-generated artefact methods where appropriate) selected for 

Instrumentation (the instrumentation roots) are instrumented. Subsequent 

calls from such a method to non-root methods are not considered for 

dynamic bytecode instrumentation (as would be the case with recursive 

Instrumentation [27][28]). This leads to a low-overhead profiling scheme 

suitable for finding potential performance hotspots at a high-level. After 

performing top-level instrumentation, performance results can be collected 

and displayed. Each J2EE element has an associated performance data 

structure, which aggregates the performance results (average execution 

time, number of invocations, percentage of execution time) for its contained 

elements. For example, the percentage of time spent in the element 

represents the sum of all the percentages of its Included elements. An EJB 

for instance will show the percentage of time spent in all of Its methods. A 

J2EE application will present a percentage that includes all the percentages 

of is Web and EJB modules which In turn contain all the percentages of their 

JSPs, Servlets and EJBs.

Let us consider the following sample call-graph representing an EJB 

business method calling two other EJB business methods.
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Table 5-1. Top-level call graph

EJBl.methodX

-> EJB2.methodY

EJB3.methodZ

Using top-level Instrumentation, the only instrumented methods will be 

methodX, methodY and methodZ.

When searching for the root cause of a performance problem observed at 

the top-level, a deeper understanding of the call patterns that comprise the 

context of the performance problem Is useful. Therefore, observing the 

detailed call trees of each of the root methods can be particularly useful 

when the methods that are Instrumented belong to the container-generated 

artefacts. These artefacts have complex infrastructure logic that augments 

the business logic of the bean class.

In this case, the recursive instrumentation technique presented in 

[27][28] is used. Considering the top-level sample call-graph in Table 5-1, 

its corresponding recursive instrumentation call-graph would contain the 

elements presented in the call graph from Table 5-2 (for a simplified 

hypothetical scenario).

In real scenarios, the call graph in Table 5-2 is more complex, as each of 

the container services can have a complex calling tree associated. The 

display of such call-graphs can reduce the time needed to understand the 

origin of a performance issue: an EJB run-time entity can perform poorly 

because of bad configuration choices for container services or because of 

bad business logic, or a combination of both.

Understanding where the problem originates (container or business logic) is 

crucial in adopting a strategy for solving it. If it is a container induced 

overhead, tuning the configuration parameters (for example the 

transactional attributes for a method) could solve it. If it is a business-logic 

implementation problem, understanding the context it occurs in might lead 

to a decision to alter the design (for example adopting a suitable J2EE core 

pattern [18]).
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Table 5-2. In-depth call graph

EJBl.methodX

Container, preinvoke

Container.securityCheck

EJB2.methodY

Container, preinvoke

Container.securityCheck

Container, postlnvoke

EJB3.methodZ

Container, preinvoke

Container.securityCheck

Container, postlnvoke

-> Container, postlnvoke

5.2.3 Usage Example and Results

A prototype of the proposed tool has been built and It currently supports the 

Sun ONE Application Server. EJBs and Servlets are currently supported. The 

following screenshots obtained from the running tool illustrate the process 

of finding a performance problem In a J2EE system (here the "samples" 

domain of the Sun ONE Application Server).

The first step illustrated In Figure 5-4 completes when the tool has attached 

to the J2EE application server and obtained the deployment structure of the 

existing applications, together with all the required information for the J2EE 

elements.
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JFIuid: Dynamic Profiling Tool
File Run Profile Instrument J2EE Profiling Help

Souice code and Selected Methods | CPU results | Memory lesults \ J2EE Profiling

3  Bun ONE AS <
<? C 3 J2EE  Application: jdbc-simplf 

<5> (Z3#ser/er/jtibc-simple

Q  SeivletGreeterDBSer 

Q  Servlet GreelerDBLog 

9  C!] jdbc-slnipleEJb.jar 

®- [ 3  EJB jdbc-simpls 

9  C 3 J2EE  Application: rml-slmpie 

//serverirml-llop-simple 

9  C3 rml-stmpleE)b.)ar

9  Q  EJB RMIConverlerApp 

Q  public abstractjav 

0  public abstractJav

Figure 5-4. Sample J2EE  deployment structure

After performing the second step (complete top-level instrumentation) the 

user identifies a potential performance bottleneck and decides that in-depth 

instrumentation of a particular EJB is needed (in this example, the 

Converter EJB).

After selecting the doiiarToYen business method for in-depth 

instrumentation, interactions with the system are performed and 

performance results are collected.

In Figure 5-5, the results collected when performing full recursive 

Instrumentation of the selected method are displayed. Note that although 

the user selects the doiiarToYen method of the Converter bean to be 

instrumented, the tool selects the corresponding method from the 

container-generated artefact, the EJB Object wrapper implementation of the 

Converter bean. This results In the container services being captured in the 

call graph, giving the user more information about the execution context of 

the bean.

[ Infuimatian Performance Results

RM IConverterApp e je

Type: remote session bean 
EJB Class: samples.rml.simple.ejb.ConverterBean 
Home Interface: samples.rmi.slmple.eJb.ConverterHome 
Business interface: samples.rmi.siinple.ejti,Converter 

{ Number of Business Methods: 2
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Figure 5-5. In-depth instrumentation of selected EJB  methods

Experiments have been performed to determine the overhead the tool 

Incurs when used to Instrument J2EE applications. The Sun Petstore [88] 

sample application was chosen for experiments due to its wide-acceptance 

and relevance. Two of the most common interactions In the application, a 

browsing interaction and an account update interaction were analyzed. 

The browsing interaction consists of a sequence of web pages that the user 

typically follows when looking for a product. The account update Interaction 

consists of account retrieval and update pages followed by an action to save 

the new data on the persistent storage.

The test environment was composed of Sun ONE Application Server 7 

Standard Edition, running on a Sun E420R server with four 450MHz
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UltraSPARC II processors, with 4GB of main memory, running the Solaris 

Operating Environment, version 2.8.

In order to obtain the measurements, the appropriate classes to be 

monitored were determined. Petstore is designed using a Model View 

Controller [18][88] application framework that improves reliability and 

maintainability. It was determined that the method p r o c e s s E v e n t  from the 

s h o p p i n g C i i e n t C o n t r o l i e r E j b  is the first important point of entry in the 

Petstore EJB layer and therefore a good candidate for instrumentation. 

Leveraging this architecture as well as Internal knowledge of Sun ONE 

Application Server, the method p r o c e s s E v e n t  from the container artefact 

S h o p p i n g C i i e n t C o n t r o l i e r E J B _ E J B L o c a l O b j e c t l m p l  was chosen for 

instrumentation, as this allows the capturing of the business method 

implementation execution, as well as its associated container services. In 

Sun ONE Application Server, the most relevant container services are 

provided by the B a s e C o n t a i n e r  class through Its methods p r e i n v o k e  and 

p o s t i n v o k e ,  and they can be easily observed In the Context Call Tree (CCT) 

[3] graphs obtained in the tool.

Table 5-3 summarizes the results obtained when instrumenting Petstore 

during load testing sequences generated using the OpenSTA [61] load 

generator. Each testing sequence consisted of 10,000 consecutive recorded 

interactions, preceded by two warm-up sessions of 100 and 1000 

Interactions respectively. The recorded scripts (one for each interaction - 

b r o w s e  and u p d a t e  a c c o u n t )  consisted of several HTTP requests needed to 

fulfil the Interaction, and all delays induced between HTTP requests during 

recording were eliminated from the script.

Table 5-3. JVM-Level Instrumentation Results

Calls (M) Exec. Time (ms) Overhead (%) Instr./Called Methods

Browsing 3.93 4010253 2.0 439 125

account update 170.4 10771041 11.8 2546 891

The calls column displays the total number of calls (In millions) for the 

Instrumented methods. The execution time column presents the total 

execution time for the instrumented test-run. The overhead represents the 

instrumentation overhead Induced by the injected bytecode
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instrumentation; it was obtained by comparing the response times in the 

instrumented system with the response times in the non-instrumented 

system. The last two columns show the number of instrumented methods 

and the number of methods actually executed (called at least once) as part 

of the test run.

The overhead is acceptable considering the fact that all the called methods 

were instrumented (excepting the ones In the Java core classes). Having 

such call graphs can prove particularly useful as they cover the entire J2EE 

stack (from the component level to the container services) and can help 

discover the reasons for performance degradations. Note that the overhead 

induced when performing only top-level instrumentation used In system 

wide performance scanning is negligible. The results presented in Table 5-3 

apply only when further investigations are required and in-depth 

instrumentation is selected.
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5.3 Probe Insertion Summary

Chapter 5 presented the procedure used by COMPAS to insert monitoring 

probes in target applications, the COMPAS Probe Insertion (CPI) process. It 

uses component metadata to extract essential deployment information 

needed to generate the probes. This guarantees that the insertion process 

is portable across different platforms.

In addition, a JVM-level instrumentation approach that can offer an 

alternative to the COMPAS probe insertion process was presented. This 

approach can be integrated in COMPAS using the instrumentation FEP.
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Chapter 6 Adaptive Monitoring and 

Diagnosis

Automatic alert detection based on user-definable policies 

Models are used to drive the monitoring target coverage 

Automatic focusing of monitoring probes on performance hotspots 

Collaborative approach to adaptation using inter-probe collaboration 

Centralised approach to adaptation using global model knowledge 

Automatic Diagnostics based on model knowledge 

Rich semantics in diagnosis from user-recordable interactions
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6.1 Introduction

COMPAS provides a monitoring infrastructure that uses monitoring probes 

to instrument components in target applications.

In order to minimise the monitoring overhead imposed on the running 

application, the target coverage can dynamically change at runtime. This 

adaptation process is based on the ability of probes to be switched into 

active and standby monitoring states.

Diagnosing the performance problems in an interaction involves identifying 

the particular components that are directly responsible for performance 

degradation observed by multiple components participating In the 

Interaction.

The monitoring adaptation process is related to the diagnosis process 

because the target coverage profile is directly dependent on the distribution 

of diagnosed performance hotspots. The activation and deactivation of 

monitoring probes are correlated with positive and negative diagnosticatlon 

of performance Issues by the probes.

This chapter proposes two adaptation-and-dlagnosls schemes that both aim 

at reducing the monitoring overhead and discovering the origins of 

performance problems in the target systems.

The first scheme employs collaborative decision-making processes between 

the monitoring probes. By communicating with each other, probes can 

automatically detect the origins of performance problems and can switch 

themselves Into standby and active states as necessary.

The second scheme involves a centralised approach in which the diagnosis 

and adaptation processes are coordinated by the centralised monitoring 

dispatcher. Probes do not have a high degree of independence and rely on 

control commands from the monitoring dispatcher to switch into standby or 

active states. In addition, the monitoring dispatcher discovers the source of 

performance problems by performing analysis on the alerts received from 

the probes.

The main difference between the collaborative and the centralised decision 

schemes lies in the degree of probe independence mapping to CPU and
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bandwidth overhead attributed to the probes and dispatcher; the 

advantages and disadvantages of both schemes follow the effects of this 

difference. In the former, more communication occurs between the probes 

that also use more CPU time and this may not be applicable In highly 

distributed, low-cost deployments. On the other hand, less communication 

occurs between the probes and the dispatcher and less processing takes 

place In the dispatcher; this favours the case of a remote dispatcher 

running on a slow machine with a poor network connection, possibly over 

the Internet. The latter scheme targets the opposite scenario where EJBs 

are heavily distributed across nodes and the dispatcher runs on a powerful 

machine connected to the application cluster via high-speed network.
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6.2 The Need for Modelling

COMPAS adopts a model based adaptation methodology for reducing the 

overhead of monitoring. In COMPAS terminology, a dynamic model (or 

model) consists of the monitored components (EJBs) and the dynamic 

relationships (interactions) between them. Each interaction is a set of 

ordered method-calls through the EJB system, corresponding to a business 

scenario (or use case) such as "buy an Item" (Figure 3-5) or "login". The 

UML representation of an Interaction is a sequence diagram.

Models are essential In reducing the monitoring overhead without the risk of 

missing performance hotspots in the system. If no models have been 

obtained for an application, all components must be monitored in order to 

Identify a potential problem. In contrast, when the interactions are known, 

It is sufficient to monitor the top-level components for each interaction.

The following example illustrates the need for models In reducing the 

monitoring Impact.

Figure 6-1 shows a system with four EJBs, where no model is known. In 

order to be able to capture any potential performance problems, monitoring 

would have to be active for each individual EJB.

Figure 6-1. Model Information Not Available

In contrast, the Illustration in Figure 6-2 shows the same system with the 

added model knowledge, in this case one interaction involving all four EJBs.
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Figure 6-2. Model Information Is Available

In the above-represented interaction, EJB 1 is the top-level component. 

Considering the calls between components as synchronous (i.e. the caller of 

an EJB will be blocked until the EJB finishes executing the call), all the 

performance degradations in any of the four EJBs will be observable in EJB 

1. In the example, if EJB 3 exhibits an execution time increase, this increase 

will be measured in EJB 1 as well. All calls in EJB systems with the 

exception of messages sent to Message Driven Beans are synchronous. It 

can be observed that in the case where the dynamic model is known, the 

only EJB that needs to be instrumented in order to detect a performance 

decrease is EJB 1. This represents a 75% reduction of monitoring overhead 

for the presented scenario. For complex, long running systems, a significant 

overhead reduction is possible using adaptive monitoring.

Theses models can be generated using the interaction recorder, which is 

described in section 6.3.



6.3 Obtaining Models: Interaction Recorder

COMPAS uses non-intrusive probes to extract method execution events 

from the running application. It then orders the events into complete 

interactions by using time stamps collected by the probes. During training 

sessions, developers "record" the required scenarios (such as "buy a book") 

by going through the required steps in the system while the interaction 

recorder obtains and stores the generated data. They can then visualise the 

interactions in automatically generated UML sequence diagrams. This 

approach has the advantage that the recorded interactions directly mirror 

business scenarios in the system and therefore the monitoring adaptation 

process can be based on the system design and has good chances of 

indicating the meaningful context for potential problems. To overcome clock 

synchronisation and precision issues in multi-node heterogeneous 

environments or even on locally deployed applications, the interaction 

recorder instructs the probes to induce a custom artificial delay into the 

target methods, thus guaranteeing the order of the received events.

6.3.1 Interaction Recorder Functionality

The COMPAS Interaction Recorder provides the functionality of extracting 

and ordering method invocation events from the COMPAS Monitoring 

Framework. It uses the event-consumer client-side FEP (Section 4.4.3) in 

order to be able to consume method invocation events processed and 

dispatched by the COMPAS Monitoring Dispatcher. Figure 6-3 illustrates the 

main functional elements of the Interaction Recorder.
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The Interaction Recorder uses the Model Sequencer to coordinate the 

ordering of received invocation events into interaction models (stored in the 

form of interaction trees). The default state of the Model Sequencer is the 

off mode. Developers can record execution models by switching the 

sequencer in the recording mode.

In recording mode, the sequencer receives and stores processed invocation 

events from the monitoring probes via the Monitoring Dispatcher. The data 

carried by the invocation events includes the invoked method ID, invocation 

start time and invocation end time. An important consideration in the 

recording process is that simultaneous interactions are not allowed in order 

to facilitate the extraction of the interaction trees. The sequencing process 

commences when the user decides to terminate recording mode. The 

following steps are executed as part of the sequencing process:
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1) The data set containing the stored method invocation events is ordered in the 

ascending order of the method invocation start timestamps (i.e. methods that 

started execution earlier are placed at the beginning of the data set).

2) Parsing the method invocations data set for each method 8 the list of methods 

preceding it in the sorted data set is analysed to find a possible enclosing 

method. As illustrated in Figure 6-4, method (p encloses method 8 only in 

situation c) where the start and end time of method 8 are included in the interval 

created by the start and end time of method cp.

start (p end

Figure 6-4. Enclosing Methods

3) If an enclosing method cp is found that satisfies the case presented in Figure 6-4

c), then method 8 is added as a child to method cp in the interaction tree that 

represents the recorded interaction model.

The sequencing process uses method invocation timestamps recorded by 

the monitoring probes. For methods with considerable execution times (in 

the order of hundreds of milliseconds or more), time measuring imprecision 

is not an issue as containment relationships can be observed easily. For 

methods with small execution times, however, the method duration might 

be reported as 0 ms because of the inherently imprecise Java time API [40]. 

When more methods report a duration of zero and an identical starting 

time, it is impossible to determine their sequence precisely. To overcome 

this deficiency, the probes can introduce an artificial delay into their target 

components. Users can select a delay value (in ms) to be induced in the 

executing target components' methods. The probes are instructed to induce 

the delay when the state of the Model Sequencer is changed into recording 

mode. When the state is reverted to the off mode, the probes are instructed 

to reset the induced delay to zero in order to remove the effect on 

application functionality in normal operating conditions. This mechanism 

ensures that the target application is artificially slowed down only for the 

period of interaction recording and does not require the server to restart or
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the application to be redeployed when resuming its normal operational 

status. This mechanism is however not required when high-precision 

timestamps can be obtained (Section 4.3.2).

The output of the sequencing process is the interaction tree, which is a data 

structure that corresponds to the recorded call sequence. Caller methods 

(that call other methods) will be represented as the parent nodes of the 

nodes representing the called methods. All the leaves of this tree are 

methods that do not call other methods. Determining the methods that call 

other methods is realised using the above-mentioned determination of 

enclosing methods.

The interaction tree is represented visually by the Interaction Recorder, as 

shown in Figure 6-3. In addition, interaction models can be saved to 

physical storage using the XML format. This enables future processing of the 

saved interaction models by the adaptation process (Section 6.5) as well as 

by the UML sequence diagram generator. In addition, the interaction models 

can be used by third party processes that require an understanding of the 

runtime behaviour of the enterprise system.

The Document Type Definition (DTD) [107] file for an interaction is 

presented in the code snippet below:

<?xml version=" 1. 011 encoding="UTF-8"?>
<!ELEMENT interaction (call+)>
<!ATTLIST interaction

name CDATA #IMPLIED >
<!ELEMENT call (call+)>
<!ATTLIST call

ejb CDATA #REQUIRED 
method CDATA #REQUIRED 
timestamp CDATA #REQUIRED 
duration CDATA #IMPLIED>

Based on this DTD, XML files containing the inter-component calls for each 

interaction in the system can be produced. Each XML file corresponds to 

exactly one interaction.

Figure 6-5 presents a collaboration diagram depicting a sample scenario in a 

fictional e-commerce environment that is the addition of an item to a virtual 

client-shopping cart. The UML notes attached to the elements of the 

diagram contain performance annotations as standardized by the UML 

Profile for Performance [60].
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Figure 6-5. Sample Use Case

The following code snippet presents the addltem interaction as recorded by 

the COMPAS Interaction Recorder.

<?xml version="l.0" encoding="UTF-8"?>
<!DOCTYPE interaction SYSTEM "interaction.dtd" >
■«interaction name= "Adding an Item to the User Shopping Cart"> 
ccall ejb="ShoppingCart" method="addltem" timestamp="0" 
durât ion="3 0 0 0">
ccall ejb="Inventory" method="checkPrice" timestamp="50" 
duration="2 900" >
ccall ejb="Warehouse" timestamp="12 0" method="checkAvailability" 
duration="2500">c/call>
ccall ejb="CRM" timestamp="2700" method="processDiscount" 
duration="100">c/call>
</call>
c/call>
c/interaction>

6.3.2 Advantages & Disadvantages

The main advantage of the Interaction Recorder approach is that the 

developers conduct the recording processes themselves, therefore 

associating business semantics to the recorded interactions. This increases 

the likelihood of understanding perform ance problems in their business 

context.
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If the interactions were automatically recorded at runtime, without 

developer intervention, they could contain method calls that are irrelevant 

for understanding the origins of performance problems. This issue could be 

exacerbated in the case of complex interactions where isolating the 

performance hotspots is especially sensitive to identifying the appropriate 

execution context.

One of the disadvantages is that for interactions that the developers have 

not recorded, no information is extracted for presentation in UML or for the 

adaptation processes.

Other disadvantages of this approach are that interactions can only be 

recorded during training sessions in "clean" environments where developers 

have total control of the system; and the process does not support multiple 

concurrent interactions. The reason for this limitation is related to the 

inability to associate and order events corresponding to a particular 

interaction, when multiple interactions are executing.

With this approach, a trade-off is made between the static, more 

semantically rich Interaction Recorder approach and the dynamic interaction 

discovery of other, more intrusive approaches such as VisOK [50] and Form 

[77]. VisOK [50] uses a modified RMI compiler to insert instrumentation 

code in the RMI client stubs in order to extract execution traces. The traces 

contain calls between distributed objects but they do not provide 

component-level information because the approach is not targeted at 

component-based platforms. When dealing with EJB components, VisOK 

suffers from the same conceptual mismatch as all other JVM level profiling 

tools such as [65] and [30]. Similarly, the Form [77] framework can 

generate UML execution models from object interaction traces, by using JVM 

instrumentation. It poses the same problems as VisOK and it does not 

provide deliberate support for distributed interactions.

The COMPAS Interaction Recorder benefits from component-level semantics 

and inherently supports distributed calls since the probes are attached 

directly to the remote EJBs. In addition it does not mandate any changes to 

the JVMs or application server implementations.
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6.4 Generating Alerts: Detecting 

Performance Anomalies

6.4.1 Detection

This section presents a simple means of detecting anomalies in the 

performance data collected by COMPAS proxies. This is not intended to be 

an exhaustive discussion of the methods for performance anomalies' 

detection, but rather as an example of how it could be done. The detection 

of performance anomalies is the basis upon which the alerts are raised; 

however, the exact means to detect anomalies accurately is out of the 

scope of this section.

Let us consider an internal data buffer present in each COMPAS proxy. It 

can be a stack-like structure of collected execution times for each method in 

the target EJB of the proxy. An illustration of such a stack is presented in 

Table 6-1.

Table 6-1. Sample Collected Data Buffer

Execution

ime(ms)

3

2

46

52

54

Method

m

221

230

233

2209

2350

2345

Each column marked Method x (1 <= x <= m) represents the execution 

time history for one of the methods in the target EJB. Each row represents
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the performance data associated with a recorded method-call event. The 

first non-greyed row contains the last recorded execution data for each 

method. In the example below, Method 2 has one less recorded call than 

Method 1, which has n-recorded executions.

Note that the actual implementation of the call stack might consist of 

several one-dimensional arrays of recorded execution times, one for each 

method, rather than one single multi-dimensional array, as Table 6-1 

suggests.

In the example, the last recorded execution of Method 1 is highlighted to 

emphasize the fact that it is considered a performance anomaly. One of the 

simplest ways to detect an anomaly such as the one illustrated, is to 

consider performance thresholds for each method.

The thresholds for a method can be:

• Absolute: at any time, the execution time t for the method must not 

exceed X ms, where X is a custom value.

• Relative: at any time, the execution time t for the method must not 

exceed the execution the nominal execution time N of the method by 

more than a factor F times N, where F is a custom value. Nominal 

execution time is a loose term here; it can denote the execution time of 

a method in a warmed-up system with a minimal workload for 

example.

• Arbitrary complexity: at any time, the execution time t for the 

method must satisfy the relationship:

a) t < f(k); f : {0, 1, 2, ... n-1, n} -> Q, where

i) k is the discrete event counter, increasing with each 

method call, 0 < k < n

ii) n is the size of the buffer

iii) Q is the interval of acceptable performance values (e.g. 

execution times)

iv) f is the custom "acceptable performance" function 

mapping the current call (with index k) to an acceptable 

performance value (e.g. execution time) and it can use 

the previous history of the method's performance.
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In the example illustrated by Table 6-1, a relative threshold set to 3 times 

the nominal execution time of 50ms yields the nth execution of Method 1 as 

a performance anomaly.

The historical call data (the internal data buffer) in the proxies can be used 

to make complex associations about detected performance anomalies. For 

instance, the monitoring dispatcher (which in case of alerts receives the 

buffers from the proxies regardless of the adaptive management model) can 

correlate performance anomalies from different proxies and infer causality 

relationships. In addition, it can correlate such data with workload 

information in the system or database information in order to make 

associations that are more complex.

Anomaly detection has been approached by the research community and 

there is a significant body of work in particular for intrusion detection 

systems. Such systems typically use a combination of access-control and 

resource utilisation policies in order to detect potential threats [72]. Other 

systems use state transition [39] or call-stack [32] analysis to determine 

the occurrence of potential intrusions. COMPAS provides the mechanism to 

include anomaly detection policies that work optimally for particular 

environments. The alert FEP (Section 4.4.3) in combination with other input 

FEPs (Section 4.4) can be used to enforce complex policies that take into 

account several data sources. In addition, since anomaly detection 

techniques can impose significant overhead [52], such logic can be added at 

the client-side by using output FEPs (Section 4.4.1) and executed 

asynchronously.

6.4.2 Design and Customisation

The design of the anomaly detection logic, presented in Figure 6-6, supports 

the addition of external strategies through the alert FEP (Section 4.4.2). 

COMPAS provides the basic infrastructure to be used by such strategies by 

enforcing communication and structural rules.
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------- -—_ ---------------- .. - ■ ---- ... -

«creates»

at any time, the execution 
time t for the method must 
not exceed X ms, where X 
is a user-defined value.

at any time, the execution 
time t  for the method must 
not exceed the nominal 
execution time N of the 
method by more than a 
factor F times N, where F is 
a user-defined value.

Figure 6-6. Design of Anom aly Detection Logic

The probe dispatcher handles each invocation received from the probe 

instances. It stores the invocation data in a M e t h o d E x e c u t i o n s H i s t o r y
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instance, corresponding to each method of the target component 

corresponding to the probe dispatcher instance. The execution history is a 

circular buffer of a customisable size. In addition to containing the execution 

times for each method invocation (see Section 6.4.1), it stores the total 

number of invocations since the instance was created, as well as the overall 

average execution time for the entire lifetime of the instance. The method 

history object is sent to the appropriate anomaly detection strategy, for 

each method invocation. This is a high-performance operation, as the probe 

dispatcher and the anomaly-detection strategy instance are co-located in 

the same JVM, and the history object is passed by reference. If, for the 

method currently being executed, an alert is detected by the strategy in 

use, a description of the alert must be returned. In order to determine the 

strategy that must be used, the probe dispatcher uses the 

ProbeServiceLocator factory, which returns the required strategy.

The use of the strategy pattern [34] facilitates the exposure of the alert FEP 

(Section 4.4.3) which can be extended with custom alert-generation logic 

from third-party providers. In addition to the history of method executions, 

such plug-ins could take into account physical resource usage and workload 

information when identifying non-linear performance values.
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6.5 Model Based Adaptation: Overview

In order to reduce the total overhead of monitoring component-based 

applications, the use of adaptive monitoring techniques is proposed. This is 

aimed at maintaining the minimum amount of monitoring at any moment in 

time while still providing enough data collection to identify performance 

bottlenecks.

Adaptive monitoring probes can be in two main states, illustrated in Figure

6-7: active monitoring and passive monitoring (or stand-by monitoring). In 

the former, probes collect performance metrics from their target 

components and report the measurements to the monitoring dispatcher. 

The second state defines the light-weight monitoring capability of probes as 

it employs much less communication overhead. When monitoring passively, 

probes collect performance metrics and store them locally. In this case, 

measurements are not sent to the monitoring dispatcher unless a 

performance anomaly has been detected (Section 6.4), or the local storage 

capacity (the monitoring buffer) has been depleted. When the buffer 

capacity is exceeded, the probes send only a summary of the data in the 

buffer, which can be store at the client-side for future reference. The 

summary includes the total number of invocations of each of the methods 

and an average response time. Therefore, the operation of sending data 

occasionally to the dispatcher is inexpensive.
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Figure 6-8 presents an example with several components in an application, 

each enhanced with the proxy layer (the probe).

i
»

I
I
I
I

active stand-by call

Figure 6-8. Dynamic Activation of Probes 
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Some of the probes are active and some are in stand-by. The arrows 

indicate the calls between the components. The components are organised 

into levels of depth considered from the Entry Level (in a J2EE scenario, the 

entry level could correspond to the Web components such as Servlets or 

JSPs). LI contains components called only from the Entry Level while each 

subsequent level contains components called from the previous level only.

The illustration does not depict real components rather it contains 

component views. One real component can exist in several different levels, 

depending on the interactions in which it participates. Component (p, for 

instance, is in both Level 2 and Level 3 since it participates at different call 

depths in two different interactions.

Only the components a and |3 in Level 1 have their probes in active 

monitoring mode by default. All the performance anomalies in L2 and L3 

can be observed in LI, as only synchronous calls are being considered. 

Using the collaborative approach (Section 6.6), performance alerts are 

transmitted from higher levels to lower levels and the probes corresponding 

to the components diagnosed as the problem originators will be 

automatically activated. In the centralised approach (Section 6.7), the 

alerts will follow the same logical direction (higher levels to lower levels) but 

the decision to diagnose and activate probes is the responsibility of the 

monitoring dispatcher. In the example, the activated probe in Level 2 

corresponds to the 8 component where the performance problem observed 

in Level 1 originates.

The COMPAS Probes can be considered as monitoring agents [112] that 

have varying degrees of autonomy (Section 6.6.1 and Section 6.7.1). 

Probes are able to perceive their environment (by extracting performance 

data from their target EJBs). They can respond to changes occurring in the 

environment by taking actions such as switching themselves into stand-by 

mode or alerting the monitoring dispatcher. The goal of COMPAS probes is 

to minimise the monitoring overhead and they take appropriate action to 

achieve it (depending on the management scheme - local or centralised). 

Finally the COMPAS probes exhibit a degree of collaboration with external 

entities (depending on the management scheme - collaborative or 

centralised, the proxies can collaborate with each other or with the 

monitoring dispatcher).
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An important note is that the correct functionality of the adaptation and 

diagnosis process is directly dependent on the accuracy of the anomaly 

detection strategy that is used (Section 6.4).
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6.6 Collaborative Diagnosis and Adaptation

In the collaborative approach, probes have a high degree of autonomy. 

They collaborate among themselves to determine which component is 

causing particular performance degradation. Additionally, they decide which 

components need to be actively monitored and which components can be 

monitored in stand by. The monitoring dispatcher however does not take 

any decision with regard to switching probes into stand-by or active states.

6.6.1 Probes as Independent Collaborative Agents
Each probe has knowledge about the neighbouring (upstream and 

downstream) probes. In relation to a Probe X, upstream probes correspond 

to the EJBs that call the EJB represented by Probe X. Downstream probes 

are the probes corresponding to EJBs being called by the EJB represented 

by Probe X. Such relationships are illustrated in Figure 6-8 where probes in 

lower levels of depth are considered upstream in relation to probes in higher 

levels of depth.

The monitoring dispatcher is responsible for sending vicinity information to 

all probes. This operation is performed as new interactions are discovered 

or recorded. The vicinity information is sent to already existing probes 

(corresponding to existing EJB instances) as well as to new probes as they 

are being created. Having knowledge of the vicinity information, probes can 

collaboratively infer the source of the performance degradation.
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Figure 6-9 illustrates with an example the communication pathways 

between the monitoring probes and the monitoring dispatcher in the 

collaborative approach. C l, C2 and C3 are components that have 

monitoring probes attached. In the diagram, the components call each other 

in the C1-C2-C3 call-path and C3 is responsible for a performance problem. 

Rather than each component probe sending alert information to the 

monitoring dispatcher, they send alert information to the component higher 

in the call-path. Therefore, the alert path is C3-C2-C1, the opposite of the 

call path. In the example depicted in Figure 6-9, C3 detects an anomaly in 

its execution history. It signals the anomaly by sending an alert to the next 

component up-stream, C2. C2 analyses its own execution history and the 

alert received from C3 and infers that the anomaly observed in its execution 

history is fully caused by the anomaly in C3 that has been signalled through 

the alert from C3. C2 passes on the alert to C l, but does not take any other 

action. Similarly, C l receives the alert from C2 and infers that the alert 

matches the observed performance anomaly fully so decides not to take any 

action.

The outcome of the collaboration between the probes is that the only alert 

that will be sent to the dispatcher is the one generated by C3.
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A probe performs the following steps (illustrated in Figure 6-10) to discover 

the EJB where the problem originates (diagnosis):

r obtain 
performance data

^  «start»
method is invoked

[actively monitoring] send data to 
dispatcher

analyse data add data to 
buffer 1

[no alert]

[performance non-linearity]

[buffer not full] . <<end»

[buffer full]

a lert all 
probes  

upstream

[no alerts from downstreamj

dump buffer to 
dispatcher

A

alert dispatcher and 
activate monitoring

[downstream alerts]

<

[alert is not caused by 
downstream probes]

[downstream alerts match 
non-linearity]

Figure 6-10. Collaborative Diagnosis and Adaptation

1) Collects performance data when an EJB method is invoked.

2) If in active monitoring, sends performance data to dispatcher.
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3) Adds performance data to its internal buffer.

4) Analyses the new buffer containing the new data.

5) If there are no performance anomalies (Section 6.4) and the buffer is full, dumps 

buffer to the monitoring dispatcher for storage and / or further analysis. Activity 

ends.

6) Performance anomalies having been detected, alerts all the probes upstream. 

The reason is that the probes upstream can then consider this notification when 

deciding whether or not the performance issue originates in one of them or in 

other probes downstream from them.

7) If other alerts from downstream have been received (by this probe), it infers that 

its target EJB might not contribute to the performance anomaly and activity 

jumps to step 8. Otherwise, the only contributor to the anomaly is its target EJB. 

In this case, it alerts the monitoring dispatcher of the performance problem; 

dumps the local buffer to the dispatcher for storage and further analysis; activity 

ends.

8) Since other probes downstream have exhibited performance problems, it must be 

decided whether they are completely responsible for the detected anomaly. The 

algorithm for taking this decision can be as simple as computing the numeric sum 

of the anomalies observed downstream and comparing it to the anomaly 

observed at this probe. If they are equal within an acceptable margin, it can be 

decided the probes downstream are the only contributors to the performance 

issues. The algorithm could be extended to include historical factors (Section 

6.4).

9) If the probes downstream are fully responsible for the performance issue the 

activity ends.

10) If this probe has a contribution to the performance anomaly, alerts the 

monitoring dispatcher and dumps its local buffer.

The procedure for dumping the buffer to the dispatcher involves creating a 

summary of the data in the buffer and sending the summary only. The 

summary contains data such as number of method executions and average 

execution time. This avoids the possible duplication of data received by the 

monitoring dispatcher in the case of active monitoring when data for each 

method invocation is already sent to the dispatcher before checking for 

performance anomalies.

123



6.6.2 Emergent Alert Management and Generation
In the collaborative approach, probes decide collaboratively which EJBs are 

responsible for performance degradations. Information flow between probes 

is essential to the decision making process. Although numerous alerts may 

be raised by individual probes (in a direct correspondence to the cardinality 

of each interaction), only a reduced subset of the alerts are actually 

transmitted to the monitoring dispatcher. In this scheme, "false" alarms are 

automatically cancelled as soon as the real origin of the performance 

degradation is detected. The "real" performance hotspots thus emerge from 

the running system due to the collaboration between the probes. This 

functionality is illustrated in Figure 6-9 where only the probe corresponding 

to component C3 sends an alert to the dispatcher.

6.6.3 Advantages and Disadvantages

The major advantages as well as disadvantages derive from the 

collaborative property of this approach.

Potential Advantages:

- The network traffic between the proxies and the monitoring 

dispatcher can be significantly reduced, as only relevant alerts and 

buffer dumps are sent over the network. In case where the EJB 

application and the dispatcher are located on different machines, 

the reduced network traffic constitutes an even more significant 

advantage.

- Although the network traffic between the proxies can be 

significant, typically, most of the EJBs corresponding to a 

particular interaction are collocated on the same machine. This 

translates into the fact that collaborative messages between 

proxies are usually sent locally, thus reducing the total 

communication overhead.

Potential Disadvantages:

Since the proxies exhibit significant decision-making capabilities, 

their computational overhead can be important. They can 

potentially slow down the execution of their target EJBs, 

complicating the discovery of authentic performance issues.
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- In cases where the EJB application is heavily distributed, the 

communication between collaborating proxies can become a 

source of significant overhead.

- The performance data buffer is sent to the dispatcher only when 

full or when an authentic alert is detected. The addition memory 

requirements for the performance data buffers can significantly 

change the footprint of the EJB application, and can even lead to 

important overall performance degradation if total memory 

capacity is often reached (and therefore swapping occurs 

frequently).

6.6.4 Applicability

Considering the advantages and disadvantages of this approach, the domain 

of applicability favours environments having the following properties:

- The client-side of COMPAS (the GUI, storage and centralised 

monitoring dispatcher) is remote to the running EJB systems. This 

is actually a normal running property of production systems being 

monitored.

- Interactions are not heavily distributed (most of the EJB instances 

corresponding to the same interaction are collocated on the same 

physical machine).

- Memory and CPU resources are not scarce compared to bandwidth 

resources.

- The client machine (running the client-side COMPAS) does not 

have significant resources available.
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6.7 Centralised Diagnosis and Adaptation

In the centralised scheme, probes have a smaller degree of autonomy than 

in the collaborative scheme. Probes send all the alerts to the monitoring 

dispatcher, which is responsible for filtering the alerts, finding performance 

hot spots and instructing probes to change their states between active and 

stand-by.

6.7.1 Probes as Quasi-Independent Agents
In this scheme, probes are not collaborative, instead they communicate 

only with the monitoring dispatcher. As in the previous scheme, each probe 

maintains a buffer with collected performance data and has the capability to 

detect a performance anomaly by performing data analysis on the local 

buffer. Probes however do not have knowledge about their neighbours and 

do not receive alert notifications from downstream probes. Therefore, they 

do not have the capability of discerning the source of performance issues 

and must report all locally observed anomalies to the monitoring dispatcher.

Dispatcher

Figure 6-11. All probes communicate with the dispatcher

Figure 6-11 illustrates the centralised approach showing the communication 

pathways between the monitoring probes and the monitoring dispatcher. 

C l, C2 and C3 are components that have monitoring probes attached. In 

the diagram, the components call each other in the C1-C2-C3 call-path and
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C3 is responsible for a performance problem. In the collaborative approach, 

probes do not communicate with each other, instead they send all the alerts 

to the monitoring dispatcher. In the example, C3 detects an anomaly and 

forwards an alert to the monitoring dispatcher. Since C2 calls C3, the C3 

anomaly is observed in C2 as well, so C2 sends an alert to the dispatcher. 

Similarly, C l will send an alert to the dispatcher upon detecting the 

performance anomaly caused by C3. The monitoring dispatcher, using 

model knowledge, can order the alerts corresponding to the call trees and 

can infer the origin of the performance problem. Both C l and C2 alerts can 

be matched to the C3 alert and consequently the monitoring dispatcher 

infers that C3 is responsible for the performance degradation and activates 

the probe.

A probe performs the following steps (illustrated in Figure 6-12) for 

detecting a performance anomaly (Section 6.4):

obtain 'w_
performance data

[actively monitoring]

a  «start»
method is invoked

send data to 
dispatcher

Figure 6-12. Probe in Centralised Diagnosis and Adaptation
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1) Collects performance data when an EJB method is invoked.

2) If in active monitoring, sends performance data to dispatcher; activity ends.

3) If in stand-by monitoring, adds performance data to the internal buffer.

4) Analyses the buffer containing the new data.

5) If there are no performance anomalies and the buffer is full, dumps buffer to the 

monitoring dispatcher for storage and / or further analysis; activity ends.

6) If a performance anomaly has been detected alerts the monitoring dispatcher of 

the performance problem; dumps the local buffer to the dispatcher; activity ends.

6.7.2 Orchestrated Alert Management and Generation
Using model knowledge (e.g. obtained by the Interaction Recorder Section

6.3) the monitoring dispatcher analyses each alert putting it into its 

interaction context. Upon receiving an alert from a probe, the dispatcher 

performs the following steps (illustrated in Figure 6-13):

parse the 
corresponding 

interactions

ye

V

V

[no alerts from downstream ]j

[downstream alerts]

[alert is not caused from 
downstream]

[downstream alerts match 
non-linearity]

• <
«end»

«start» 
alert received

issue client 
alert; 

activate 
monitoring

Figure 6-13. Dispatcher in Centralised Diagnosis and Adaptation

1) Parses the interaction corresponding to the probe that has generated the alert 

and identifies the downstream probes

2) Checks for any other alerts received from downstream probes



3) If there are no alerts from downstream, the dispatcher infers that the 

performance anomaly originates in the EJB corresponding to the probe that 

generated the alert. No other EJBs downstream have exhibited a performance 

problem; therefore the only contributor to the anomaly is the target EJB of this 

probe; sends an alert to the appropriate listeners (e.g. GUI); activates the probe 

that generated the alert; activity ends.

4) Since other probes downstream have exhibited performance problems, it must be 

decided whether they are completely responsible for the anomaly detected 

(Section 6.4) by this probe. The algorithm for taking this decision can be similar 

to the one adopted in the collaborative approach (Section 6.6.1, step 8).

5) If the probes downstream are fully responsible for the performance issue, activity 

ends.

6) If the alerting probe has a significant contribution to the performance 

degradation, sends an alert to the appropriate listeners (e.g. GUI), activates the 

probe.

6.7.3 Advantages and Disadvantages

The main difference between the centralised decision and local autonomy 

schemes lies in the degree of independence attributed to the proxies. The 

advantages and disadvantages of both schemes reflect follow the effects of 

this difference.

Advantages:

- The proxies do not collaborate among themselves in this scheme 

and this nullifies the overhead of intercommunication associated 

with the local autonomy scheme.

- The simple structure of the proxies yields a low computational 

overhead in the targeted system, as decision making processes 

are moved in the client side. This has the benefit of leaving CPU 

resources free in the EJB system to be used by the running 

application.

- The amount of performance data stored in the local buffers is 

smaller than in the local autonomy scheme, as alerts are raised 

more often (they are only filtered at the client side). This frees 

memory resources in the target application.

129



- The reduced complexity of this approach makes it easier to 

implement.

Disadvantages:

- The communication between the proxies and the monitoring 

dispatcher is significant. This can prove costly particularly in the 

case of the client machine being remote to the running system.

- The computational resources required by the monitoring 

dispatcher increase proportionally with the size of the monitored 

EJB application.

- Since the monitoring dispatcher coordinates the transition 

between the standby and active monitoring states, the 

communication overhead can become important.

6.7.4 Applicability

This scheme is applicable in environments exhibiting the following 

properties:

- The client side of COMPAS is run on the same machine as the 

EJBs, or they run on different machines connected on a high­

speed network.

- The EJBs run in multiple JVMs and there is a high degree of 

remoteness associated with the EJB interactions.

- The client-side machine has adequate processing, memory and 

bandwidth resources available to run the intensive operations 

required by the monitoring dispatcher.

6.7.5 Design of Centralised Logic

The centralised approach to diagnosis and monitoring adaptation employs 

significant logic in the client side of the COMPAS framework.

The main entities involved in the provisioning of adaptation and diagnosis, 

are presented in Figure 6-14. The CentralisedAlertManager is the main class 

and it is responsible for receiving the alerts from the monitoring dispatcher 

via the MonitoringEventsListener interface. The

AdaptivelnteractionsController is used as the processor for interaction 

models. The interaction models, containing trees of component-method 

calls, can be obtained using the Interaction Recorder. A subset of all
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available interactions can be selected for consideration by the adaptation 

and diagnosis process. The selection is performed by the COMPAS user and 

is forwarded to the CentralisedAlertManager.

The DiagnosisProcessor is the entity responsible for identifying the origin of 

a performance hotspot. It schedules diagnosis operations (DiagnosisTask 

instances) that analyse the current and previous alerts and infer the source 

of the performance degradation.

Figure 6-14. Centralised Control Entities

Several data-structures are used by the centralised approach in order to 

reduce the time needed to compute various tasks. Some of them fulfil a 

caching role, by essentially storing pre-processed information for later 

retrieval. They are called caching data structures. In addition, other data 

structures store associations about the current state of the monitoring 

infrastructure. Such structures are called operational data structures. One 

of the most important structures stores associations between the monitored 

beans and their monitoring states (detailed in the following paragraphs). A 

background thread, the BeanStateRefresher thread continuously verifies 

and marks the state of each bean. This ensures that active beans that need 

not be monitored anymore are switched into stand-by mode after a 

predefined active-monitoring-expiration time.

Figure 6-15 illustrates the main data structures and processes used by the 

centralised adaptation and diagnosis scheme.
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Figure 6-15. Centralised Diagnosis and Adaptation Design Overview

The following operational data structures are used:

Interactions: stores the interactions selected for the adaptation and 

diagnosis process. The interactions are stored in a tree format as presented 

in Section 6.3. The search for performance hotspots is performed only in 

the space of the elements that are part of the selected interaction trees. 

This ensures that the activation and deactivation of individual components is 

performed only when there exists knowledge about the calling structures in 

which they take part.
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Transient alerts: maps the interaction nodes (component-method pairs) 

to alerts that have been received. Each alert indicates the originating 

business method, and this association is preserved. The alerts stored in this 

structure have a short lifetime as the diagnosis process deletes them upon 

inspection. A node can have one of the following two possible associations 

in this data structure:

• an alert data representing either the current, new alert or an old alert 

that has not been processed yet

• no alert in case there have been no alerts signalled for this node or in 

case its transient alert has been deleted after the scanning process of 

the Diagnosis Thread.

Bean modes: maps the beans that are part of the selected interactions 

with their current monitoring mode. Beans can be found in three possible 

modes:

• always active (for beans that are roots in interaction trees). The 

number of beans in this state is directly influenced by the target 

application architecture. Some applications use front-controllers [18] 

which control most of the interactions in the system. In such 

applications, the number of always-active beans is relatively small. 

Other applications might have a flat architecture, in which case the 

number of always-active beans would be higher.

• stand-by (for beans that collect performance data and emit alerts but 

do not emit regular performance notifications)

• active (for beans that emit all events - typically beans that have been 

found to be performance hotspots and that need to be under constant 

observation)

Each mode has an associated number. For always active and stand-by 

modes, the numbers are constants. For the active mode, the associated 

number indicates how long the bean has been in active monitoring. It is 

automatically increased with each iteration of the Bean State Refresher 

background thread.

For each alert received from the monitoring dispatcher, the Centralised Alert 

Manager must first determine the interaction nodes corresponding to the 

source of the alert. Since a business method of a bean may participate in 

multiple interactions, all the corresponding interaction nodes are first
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extracted. The depth level of each node in its interaction is determined. This 

is defined as the maximum distance from the node to a leaf in the 

interaction tree. The maximum depth level of all the nodes corresponding to 

the incoming alert is determined. This is then used as the scheduling index 

for the diagnosis process.

The diagnosis process is performed in a new Diagnosis Thread. This thread 

is not started immediately after the alert has been received. It is instead 

scheduled for execution after a delay in milliseconds that is a multiple of the 

scheduling index. The reason for the delay is rooted in the diagnosis process 

scanning of the down-stream alerts. As presented in Section 6.7.2, the 

centralised alert manager inspects the nodes that are positioned 

downstream in relation to the node generating the alert. If the downstream 

alerts match the non-linearity presented in the current alert, then the 

current alert is ignored and no further action taken. This process involves a 

bottom-up scan of the transient alerts data structure for nodes matching 

downstream probes of the current alert node. In most cases, the transient 

downstream alerts should already be present in the data structure as they 

are issued before alerts upstream (due to the nature of synchronous calls). 

However, since the alerts are transmitted via the asynchronous JMX 

notification model, situations might occur in which downstream alerts arrive 

after upstream alerts. In such cases, a bottom-up scan will miss 

downstream alerts and possibly identify false positives in the search for 

performance problems' origins. The delay used in the scheduling of the 

diagnosis task aims to ensure the appropriate sequence in the transient 

alerts data structure. Alerts corresponding to leaf interaction nodes are 

processed immediately since their depth is zero and there are no possible 

downstream alerts. Alerts corresponding to nodes higher in the interaction 

trees will have higher diagnosis delays to ensure that all the possible 

downstream alerts are received before the processing starts.

The diagnosis process is highly extendable to accommodate for arbitrarily 

complex diagnosis algorithms. The default algorithm scans the downstream 

alerts for a given alert and if the sum of the execution time increase 

signalled by each alert reaches 90% of the increase signalled by the current 

alert, it is considered that the current alert must be disregarded as being
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solely a manifestation of the downstream alerts. Otherwise, the current 

alert is considered valid and the corresponding node a performance hotspot.

When the diagnosis module identifies a performance hotspot, it will signal 

the Centralised Alert Manager to switch the corresponding component into 

the active monitoring mode and update the bean modes data structure. If 

the component's previous state was standby, it will be changed into active, 

and its counter will be reset. If the previous state was active monitoring, 

the state will remain unchanged but the counter will be reset. This ensures 

that a bean that has a high rate of anomalies will remain active for as long 

as the activity continues.

The purpose of the Bean State Refresher Thread is to continuously run In 

the background and update the bean modes data structure. If a bean is a 

root bean in any participating interaction, no changes are ever made to its 

mode, it will always be in active monitoring. If a bean is in standby 

monitoring, no changes are made either, as only the diagnosis process can 

decide whether the bean is a hotspot and should be switched to active 

monitoring. For an active monitoring state, the refresher thread increases 

the associated number that represents the "age" of the bean's active state. 

If a bean's active state age exceeds a user-customisable value, the 

refresher thread will switch the bean back into the standby mode. This 

ensures that beans found as hotspots stay in active monitoring only for a 

controllable period after they have emitted the last alert. In the current 

Implementation, the background refresher thread is scheduled to perform 

its operation every 5 seconds. In addition, the preset age that triggers the 

switch into standby mode is 5 iterations. Therefore, after 25 seconds of 

inactivity, an active monitoring bean (the bean has not been determined as 

being a hotspot for 25 seconds) is switched back into standby mode by the 

background refresher thread.
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6.8 Diagnosis and Adaptation Summary

Chapter 6 presented how model information can be used to provide 

diagnosis capabilities and to reduce the monitoring overhead. A non- 

intrusive technique for extracting execution models from a component- 

based application was described. A discussion about anomaly-detection 

techniques and related work were presented together with the possibility to 

extend the alert-generation strategies using the alert FEP.

Based on execution models, two diagnosis and adaptation strategies were 

proposed. The collaborative strategy involves highly independent probes 

that inter-communicate to discover the origins of performance problems. 

Additionally, the probes decide when to activate and deactivate themselves. 

The centralised diagnosis and adaptation strategy involves a lesser degree 

of independence of the probes, which must communicate with the 

monitoring dispatcher in order for the infrastructure to discover the origins 

of performance problems. The design of the centralised strategy was 

presented.
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Chapter 7 Testing and Results

COMPAS Adaptation Test-bed 

COMPAS Implementation Prototype

• Functionality Walkthrough

• Supported Environments

• Functional Tests 

Performance Tests

• Different Test Configurations

• Monitoring Overhead

• Advantages of Using Adaptive Monitoring

• Differences in scaling between web container and EJB container

137



7.1 COMPAS Adaptation Test-bed 

Framework

COMPAS uses adaptive proxies to monitor EJB applications. This minimises 

the total overhead induced by the instrumentation layer and automatically 

focuses the monitoring effort at the application "hotspots". This process is 

realised by switching individual monitoring proxies "on" and "off" as new 

performance hotspots are discovered.

In order to test the adaptation process, a test-bed has been designed and 

implemented. The COMPAS Adaptation Test-bed (CAT) consists of highly 

customisable and functionally identical test beans cells. All test bean cells 

are structurally identical EJBs; in fact, they contain the same Java classes. 

The difference between them is their deployment descriptor, which can 

contain different values for key parameters (environment entries in the EJB 

deployment descriptor). These values drive the behaviour and runtime 

footprint of the test bean cell. Test bean cells simulate "real" EJBs by 

emulating computational load (CPU and memory overhead) and calling 

other test cells, in different calling patterns. No code is required (and 

therefore no compilation) when using CAT to create a test-bed. Instead, a 

declarative programming approach is taken in which XML tags are added to 

the deployment descriptors of the participating test beans.

The emulation parameters controlling the test bean actions are:

• CPU overhead (the integer value representing the number of 

repetitions for generating a pseudorandom Gaussian value with mean 

0.0 and deviation 1.0)

• Memory overhead (the size of a byte array that will be allocated by 

the EJB when it is called)

• First Target EJB (the JNDI name of the first EJB to call)

• Second Target EJB (the JNDI name of the second EJB to call)

A cell configuration contains zero or one for each of the above parameters. 

All parameters are optional when specifying a cell configuration. Each test 

bean cell can contain any number of configurations. A configuration is 

identified by a configuration name and each of the parameters it contains is
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labelled with the configuration name in order to separate them from 

parameters corresponding to other configurations.

Test beans expose a single business method, simulateBusinessLogic(). This 

method has a configuration name as a parameter, which it uses to decide 

the behaviour it will emulate. For the received configuration name, it will 

use the corresponding emulation parameters to generate the appropriate 

overhead (CPU and memory) and call the appropriate target test beans. 

When calling the target beans, the configuration name is passed on to them 

(again as a parameter to simulateBusinessLogic()). This ensures that 

adaptation configurations are preserved across all the participants of an 

interaction.

It is important that the same configuration names be used for all the test 

beans. This guarantees that if the interaction is started with a configuration, 

each bean in the interaction "understands" it and therefore can generate 

the appropriate behaviour. The planning of a particular test configuration 

(e.g. config l) contains the following steps:

• Devise a test interaction (containing the participating EJBs and their 

call patterns). Each test-bed interaction can contain any number of 

test EJBs.

• Decide on the amount of resource usage each EJB must emulate.

• Write the information in all the deployment descriptors for the 

participating EJBs (i.e. each deployment descriptor must contain the 

configuration configl with some or all of the parameters configlcpu, 

configlmem, configlfirstCalee, configlsecondCalee). Of course, the 

value of the parameters corresponding to the configuration in each 

deployment descriptor would normally differ between the test EJBs.

Figure 7-1 illustrates a test-bed configuration consisting of 5 Test Beans 

(TB). The notes attached to each EJB element contain a simplified version of 

the associated configuration parameters. For TB2, there are two 

configurations available (they also exist in the other beans but are not 

shown). In the first configuration, TB2 will call only TB3. In the second 

configuration, TB2 will call both TB3 and TB4.
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configl: cpu:0, mem:0, 
caleel:EJB2, ca!ee2:null

configl: cpu:1000, mem:500, 
caleel:null, calee2:null

Figure 7-1. Sample Test-bed Configuration

7.1.1 Executing Test Configurations in CAT

The point of entry in any test-bed configuration is the first test EJB (by 

convention called TB1). A HTML page and a Servlet are used to submit the 

configuration information (configuration name) to TB1. The HTML page and 

the front-end Servlet represent the CAT Web Front-end (CATWF). The use 

of CATWF for the selection of the configuration enables web-based stress- 

loading tools such as OpenSTA [61] to emulate a given load by generating 

sets of simultaneous users corresponding to different configurations. By 

selecting the interaction configuration from outside the test-bed, control can 

be exercised over the behaviour of the test beans at runtime and different 

behaviour can be chosen corresponding to the desired effect. For instance, a 

performance hotspot can be injected by selecting a particular configuration 

that has a high overhead parameter value in one of the test EJBs.

This approach is similar to fault injection systems such path-based fault 

injection system presented in [103], although the scope of the faults is 

different. In [103], the focus is on lower-level fault injection in order to 

exercise the fault-tolerance components of the target system. In addition, 

the system in [103] uses monitoring information to direct faults in the 

system. In CAT, high-level faults are injected with the purpose of testing 

the behaviour of the adaptation and diagnosis functionality. The injected
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faults drive the monitoring adaptation, rather than having the faults being 

influenced by the monitoring information, as in [103].

A sample set of three configurations is illustrated in Figure 7-2. The 

configuration selection is performed by submitting one of the three possible 

configuration names to CATWF.

Legend:

| | within range alert ------► call

Figure 7-2. Sample C A T  Configuration Set

The first configuration, configl, is composed by a linear calling pattern, 

which consists of four EJB method calls. The third method call is configured 

to use resources (CPU time and memory) such as to meet the alert 

generation criteria (Section 6.4).

The second configuration, config2 consists of a single EJB method call. Using 

such a configuration would enable a test case that either induces a reset of 

the active state of the corresponding probe back to standby (if the test case 

is run a duration that exceeds the monitoring expiration time - Section 

6.7.5). Alternatively, if config2 specifies a low resource utilisation for the 

single EJB method call, it could be used for a precise injection of an alert,
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preceded immediately by the execution of another configuration, before the 

monitoring expiration time (Section 6.7.5).

The third configuration in Figure 7-2 illustrates the possibility to generate 

complex sequences of calls that could be used to test intricate alert- 

generation strategies (Section 6.4.2).

By sending alternative configuration names to the CATWF, different 

configurations (declared in the deployment descriptor) can be selected and 

executed at runtime, without the need to redeploy the test-beans.

CAT does not support configurations that contain loops. As there is no 

mechanism to specify the conditions for terminating a loop, a configuration 

containing a loop would never finish executing.

7.1.2 Test Bean Cell Design

The test bean cell is the unit of composition in the CAT framework. By 

cloning it and adding configuration data to its XML deployment descriptor, 

any number of test EJBs can be created. A test-bed can have several 

configurations spanning any number of test beans.

As Figure 7-3 shows, the test bean uses a simulation manager, which has 

the responsibilities of generating the computational overhead and 

orchestrating the calls to the corresponding target EJBs.

The simulation manager reads the environment properties from the 

deployment descriptor and stores all the configurations. As requests arrive 

at the EJB (invocations of the simulateBusinessLogic method), the test bean 

passes the configuration name received to the manager, which in turn uses 

the configuration parameters to generate the appropriate overhead and call 

the target beans.
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Figure 7-3. C A T  Test Bean Cell Structure

The manager can use several simulation strategies to generate the load. A 

simulation factory creates the appropriate simulation strategy and returns it 

to the manager. The current implementation of the simulation strategy uses 

Gaussian random number generation to induce CPU overhead, and byte 

array creation to induce memory overhead.
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7.2 COMPAS Prototype

This section gives an overview of the COMPAS prototype, illustrating its 

functionality with a use case.

7.2.1 COMPAS Implementation

Although many concepts in COMPAS are applicable across component-based 

platforms, the COMPAS implementation targets J2EE as this is by far the 

most used component technology. COMPAS has been written in Java and 

consists of approximately 100 Java classes comprising both the server 

functionality (instrumentation) and the client functionality (monitoring 

dispatcher and clients). It makes extensive use of Java enterprise APIs and 

open-source technologies. This facilitates the adoption of COMPAS since all 

dependencies are freely available.

Java Management Extensions (JMX API) [33] is used as the core 

communication and management infrastructure. J2EE application servers 

must implement the JMX API, ensuring the portability of this approach.

The most important open-source packages used in COMPAS contribute to 

the probe insertion process (Section 5.1). They include Apache Ant [4], 

Velocity [5], XML parsers [6] and the Log4J [7] logging framework.

Apache Ant is a highly-configurable Java-based build tool which COMPAS 

uses for the target application analysis and probe generation. COMPAS 

includes custom Ant tasks that are coordinated from XML-based Ant scripts. 

The custom COMPAS tasks [4] are used to extract the contents of the 

application archives and generate the new deployment descriptors used by 

the instrumented applications (Section 5.1). The entire probe insertion 

process is coordinated from scripts that can be configured to match the user 

environment. Values such as the location and name of the target application 

must be specified in the scripts.

Velocity is a Java-based template engine used in particular for the rendering 

of dynamic data in web systems. COMPAS uses Velocity for generating the 

code of the monitoring probes based on reflective [89] information from 

target components.

144



XML Parsers such as Xerces [6] are used to analyse and change deployment 

descriptors in the target J2EE application. They provide programming 

abstractions that encapsulate low-level XML operations, allowing the use of 

an object-oriented view [107],[106] of XML data.

Log4J is used in COMPAS as both the internal logging mechanism for 

reporting errors and exceptions and as the data logging mechanism for 

storing monitoring events such as method invocations and lifecycle 

operations. Other means of storing monitoring events such as storage to 

commercial databases can be added using the COMPAS framework client- 

side extension points (Section 4.4.1).

In addition to the packages needed by the insertion process, COMPAS uses 

the Java Graph Editing Framework (GEF) framework [100], part of the 

ArgoUML [99] project for displaying UML diagrams extracted with the 

interaction recorder.

7.2.2 COMPAS in the Real World

The COMPAS monitoring framework is completely portable across operating 

systems and application servers. It has been tested with the following 

application servers:

• IBM Websphere Application Sever 5.0 [37]

• Jboss 3.2.x [41]

• BEA Weblogic 8.x [10]

The application servers have been deployed on the following operating 

systems and COMPAS has successfully operated both at the client side and 

the server side:

• Microsoft Windows 2000 and XP

• IBM AIX 5.x

• Linux on IBM S390 and IBM zSeries mainframes

• Linux on Intel

In order to test the installation procedure, several representative J2EE 

applications have been used. Sun Microsystems' J2EE Pet Store application 

[88] is widely known in the academic and practitioner community. It is 

intended as a showcase of the design patterns recommended for enterprise 

J2EE applications, providing the functionality of a retail shopping 

application. It consists of a representative mix of J2EE technologies and
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application server vendors typically provide out-of the box deployments of 

Pet Store with their products. COMPAS has successfully inserted monitoring 

probes into Petstore and the runtime monitoring functionality has been 

tested for Petstore on multiple application servers.

The Trade3 application from IBM [38] is used as a benchmark to measure 

the performance of different server configurations in IBM. It is a simplified 

but operational J2EE stock brokerage application, with operations such as 

buy, sell and quote. COMPAS successfully installed the monitoring probes 

and performed runtime-monitoring operations on Trade3.

7.2.3 Using COMPAS with the Adaptation Test-bed

This section illustrates the functionality of the COMPAS infrastructure by 

presenting a case study. The case study describes how COMPAS was used 

to instrument and monitoring the COMPAS Adaptation Test-bed (CAT) 

application (Section 7.1), in order to obtain the results presented in Section 

7.3.

Instrumentation

Before COMPAS can be used to instrument or monitoring a target 

application, the configuration files a n t - s t a r t e r . x m l ,  c o m p a s - a n t . x m l  and 

c o m p a s - e n v . c o n f  must be appropriately modified to correspond to the 

user's environment. The COMPAS installation manual [55] provides detailed 

information about the configuration process.

After COMPAS has been configured, the probe-insertion script can be 

launched. It parses the CAT application metadata and generates probes 

corresponding to each CAT component. The output of the process is 

displayed in Figure 7-4.
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Figure 7-4. Output of Probe Insertion Procedure for CAT

After the application has been instrumented, it can be deployed on the 

target application server. The deployment procedure is server-dependent 

and un-related to COMPAS. The test results presented in Section 7.3 were 

obtained using the open-source JBoss Application Server version 3.2.3 [41].

Monitoring

After the application has been deployed, it can be monitored by starting the 

COMPAS monitoring console, which initiates the monitoring dispatcher and 

registers the GUI components as listeners for monitoring events. Figure 7-5 

and Figure 7-6 show screenshots of monitoring console GUI components.
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Figure 7-5. Monitoring Console

In Figure 7-5, the main monitoring console is presented. It displays the 

components and instances in the CAT application and their business 

methods, annotated with performance information. In addition, a history of 

monitoring events can be displayed, as well as stored in log files.

¿ff Execution Chart for TB1::sffnuÌA(éBuslnessLogfc [- j i^ Ë I
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Figure 7-6. Real-Time Response Time Chart

In Figure 7-6, a real-time execution chart for a business method is 

presented. It displays the evolution of the response time of a particular 

component method. The number of displayed charts is not restricted.

Recording, Displaying and Selecting Interactions

In order to enable adaptive behaviour in the monitoring infrastructure, 

knowledge about the execution models must be obtained (Section 6.2). To 

obtain execution models, COMPAS provides the Interaction Recorder, which
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is part of the main monitoring console and can be started using the Training 

-> Record Interactions menu option from the main monitoring console 

displayed in Figure 7-5. The Interaction Recorder GUI, presented in Figure 

7-7 can operate the recording process using a Recording button to start the 

capture of events and the Stop button to display the processed Interaction 

tree.

Start Recording Display UML

Stop Recording

Save Interaction

Up Interaction Recorder - COMPAS 

m  Ree ®  slop 100 ms sample configuration

¡ O  sample configuration 
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Ì096)
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Interaction Tree Artificial Delay
Interaction Name

Figure 7-7. Interaction Recorder GUI

The text field labelled (ms) represents the number of milliseconds of delay 

that can be induced in the EJBs in order to ensure that method invocations 

are properly ordered (Section 6.3.1). This is needed when the environment 

accuracy of the timestamps is poor, such as when using the default time- 

extraction strategy on a Windows machine (Section 4.3.2). A useful value 

is 100ms but it can be adjusted by the user to fit to the environment.

After an interaction has been captured and sequenced, it can be saved in 

XML format or displayed as a UML sequence diagram. Figure 7-8 shows the
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sequence diagram created automatically from the interaction saved and 

displayed in Figure 7-5.
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Figure 7-8. Automatically Generated UM L Diagram

After interactions have been captured from the running system, they can be 

saved and used in the adaptation process. The user can select a subset of 

all saved interactions to be considered by the diagnosis and adaptation 

module. This is realised with the Adaptive Interactions Editor, presented in 

Figure 7-9. The user can choose the required interactions and when the 

configuration is saved, the model knowledge is transmitted to the 

monitoring framework dynamically and becomes effective immediately.

&  Adaptive Interactions Editor

Available Interactions

conno1
Selected Interactions

confluì
eonfiij2
confitj3

>>>
< < <

Save

Figure 7-9. Selecting Interactions for Diagnosis and Adaptation
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7.2.4 CAT in Adaptation Test Case

This section presents a test case that illustrates how the adaptation 

mechanism affects monitoring behaviour in COMPAS. CAT is used as the 

target application because it enables the emulation of conditions for the 

generation of performance alerts in the system.

Figure 7-10 illustrates how different CAT configurations (Section 7.1.1) can 

be selected for execution. By running different configurations, conditions for 

generating alerts can be created in different EJBs.

Figure 7-10. Configuration Selection using the C A T  Front-end

The focus of this test case is represented by configl, which is a CAT 

configuration consisting of 5 EJBs calling each other in the sequence 

illustrated in Figure 7-11 and Figure 7-12. Both figures represent 

screenshots obtained from COMPAS when recording and displaying the 

configl interaction using the Interaction Recorder (Section 6.3).

When configl is executed via the web front-end and no configurations have 

been selected for the adaptation process, probes corresponding to each EJB 

in configl emit invocation notifications. This is illustrated by the screenshot 

in Figure 7-13.
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Figure 7-13. Execution History of configl without Adaptation

In order to avail of the adaptive monitoring capabilities in COMPAS, at least 

one previously obtained interaction must be selected for adaptation. The
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screenshot in Figure 7-14 shows that configl has been selected for 

adaptation. This selection becomes effective after the "Save" button has 

been pressed.

Figure 7-14. Selecting config l for Adaptation

After selecting configl for adaptation, only the probe corresponding to its 

top-level component is going to be in active monitoring. This aspect is 

illustrated by the screenshot Figure 7-15 that shows the execution 

notifications when configl has been launched from the web front-end. The 

other probes will not emit invocation notifications unless they have been 

diagnosed as the source of a performance anomaly.

Figure 7-15. Execution History of config l with Adaptation

In order to emulate a performance anomaly in the third EJB of configl, TB3, 

a separate configuration was’ used, config4. The structure of config4 is 

presented in Figure 7-16 and Figure 7-17 representing the Interaction 

Recorder's consoles after recording the execution of config4.
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Figure 7-17. UM L Representation of Configuration config4

In config4, TB3 emulates significantly more CPU and memory utilisation 

than in configl. This triggers the alert-generation mechanism and an alert is 

raised for TB3. In addition, since TB3 is the last component in an execution 

chain, the alert is propagated upstream to TB2 and TB1. The three alert 

notifications together with the invocation notification corresponding to TB1 

are illustrated in Figure 7-18. COMPAS uses model knowledge and identifies 

the component responsible for the performance alerts as being TB3 (Section 

6.7) and prints out the following message in the COMPAS system console 

(not shown in Figure 7-18): "Method TB3::simulateBusinessLogic is 

hotspot!".
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Figure 7-18. Execution History of config4

Following the identification of the component responsible for a performance 

alert (TB3), the probe corresponding to the component is switched into 

active monitoring mode. This is illustrated in Figure 7-19 that shows the 

invocation notifications when executing configl after the hotspot has been 

identified.
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Figure 7-19. Execution History of config l with Adaptation and Hotspot

In order to avoid unnecessary notifications, probes corresponding to 

hotspots remain in active mode for the duration of a timeout period, which 

has a default value of 25 seconds (Section 6.7.5).

7.2.5 COMPAS in Use

COMPAS has been designed as a complete framework, which can be 

integrated with applications that require J2EE monitoring capabilities. 

Several projects leverage parts of the COMPAS framework in particular the 

monitoring capabilities and the event management model.
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A third-party framework for self-adapting and self-optimising component- 

based systems [23][22] uses the COMPAS instrumentation FEP (Section

4.4.3) to replace the default portable COMPAS instrumentation 

implementation with a server-specific, more intrusive implementation. The 

external implementation allows dynamic discovery of call-graphs. The same 

project uses another input FEP, the alert FEP, to provide a more complex 

anomaly-detection strategy that takes into account the historical data 

related to a method call. An overview of the integration of the third-party 

framework with COMPAS is presented in [21].

A project that proposes a methodology for adaptation of EJB Application 

Servers based on monitoring information is presented in [101][ 102]. The 

authors consider the use of COMPAS as the runtime infrastructure for 

providing the required monitoring data. Since COMPAS is portable across 

application servers, its data extraction and event distribution capabilities 

can effortlessly be leveraged without the need to develop server-specific 

hooks.

There is an incipient commercial project "EJB Express" [49][56] targeting 

performance prediction of EJB systems. This EJB Express uses COMPAS as 

part of its data collection structure. In addition, the COMPAS Interaction 

Recorder is used to generate UML models annotated with performance 

information. The models are used to generate prediction models, which can 

help in identifying potential performance problems under varying workloads 

or hardware configurations. EJB Express is work in progress and is partially 

based on the performance management solution presented in Chapter 3. In 

addition to COMPAS monitoring information at component-level, it uses 

lower level instrumentation hooks that extract CPU and memory usage to 

build more accurate prediction models. The models are simulated in various 

scenarios and the prediction results can be displayed as views in the Eclipse 

Framework [29], The functionality of COMPAS-based EJB Express is 

illustrated in Figure 7-20 that displays UML performance models being 

simulated to predict performance under different workloads.
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7.3 Performance Measurements

This section presents results and analysis of tests that were carried out to 

measure the performance of the COMPAS Monitoring infrastructure, The 

results demonstrate that the overhead of the COMPAS monitoring probes is 

acceptable, particularly for large workloads. In addition, the comparison 

between full monitoring and adaptive monitoring modes highlights the 

advantage of using model-driven adaptation to optimise monitoring target 

coverage.

7.3.1 Test Environment

The performance tests were carried out in an environment that emulated an 

enterprise setting. The COMPAS Adaptation Test-bed (CAT) application with 

multiple configurations was used as the target J2EE application.

The COMPAS monitoring dispatcher and client consoles were run on a 

stand-alone client machine. A load generator was used to emulate multiple 

simultaneous users in repetitive sequences of interactions with a remote 

J2EE application server running the CAT application. CAT was used as the 

test-bed rather than a J2EE application (such as Petstore [88]) because it 

was designed to allow fine control of the performance parameters. COMPAS 

can be used to instrument any J2EE application and has been tested with 

several representative applications (Section 7.2.1), however it would be 

extremely difficult to control off-the-shelf applications in a similar manner to 

CAT. Using CAT, performance hotspots can be injected deterministically. In 

addition, particular calling patterns can be generated and observed. This 

allows for the isolation of performance characteristics and enables reasoning 

about the effects of using COMPAS Monitoring.

The load generator selected for the tests was the open-source tool OpenSTA 

[61]. OpenSTA provides session recording and playback, and script 

generation and editing facilities. Test sessions consisting of user interactions 

were recorded and subsequently edited to highlight the required properties 

of the infrastructure. Delays between user operations in an interaction were 

deleted from recorded scripts so that the results could be effortlessly used 

to isolate the measured properties of the system.
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All test sessions consisted of a user interaction with the CAT via the CATWF 

(Section 7.1.1).

All tests were performed on three dedicated machines running in a lOOMb/s 

switched LAN networked environment. The components of the test 

environment are illustrated in Figure 7-21.

O ' " P'
Application Server Node

connect and receive events

COMPAS Console

Figure 7-21. Environment for Performance Tests

The Application Server Node (ASN) was an enterprise-level dedicated server 

with 4 x Intel Pentium III Xeon 700MHz processors and 1GB RAM with 

Windows 2000 Advanced Server OS. The J2EE Application Server used was 

JBoss v3.2.3, running Sun Microsystems Java Virtual Machine v. 1.4.2. The 

reason behind the choice of application server was the unrestricted 

availability of the open-source JBoss server, allowing for the repeatability of 

the tests. COMPAS can be used on any J2EE application server running on 

any operating system and has in fact been tested with multiple application 

servers on multiple operating systems (Section 7.2.2).

The Load Generator (LG) machine was a dedicated server with two Intel 

Pentium III 866 MHz processors and 512 MB RAM, running Windows Server
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2003 Enterprise Edition. OpenSTA vl.4.2.34 was used to run the load-tests 

and it was configured to close each user communication socket after the 

test finished, in order to support the large number of test repetitions of 

each user.

The COMPAS Console (CC) was run on a dedicated workstation with an Intel 

Pentium IV 1.4 GHz processor and 1GB RAM, running Windows XP 

Professional. The CC used the Sun Microsystems Java Virtual Machine v. 

1.4.2.

7.3.2 Setting-Up and Running Tests

This section presents the results of overhead tests that were aimed at 

determining how significantly the COMPAS Monitoring infrastructure affects 

the target applications. CAT (Section 7.1) configurations representing 

multiple and single EJB interactions were considered in order to determine 

the factors that affect the overhead. COMPAS makes use of adaptive 

monitoring techniques (Chapter 6) in order to reduce the monitoring target 

coverage and reduce the total overhead induced in an application. The 

following tests highlight the overhead reduction by comparing the overhead 

that occurs when the target coverage is reduced (interaction-models driven 

partial instrumentation) with the overhead when all EJBs are monitored (full 

instrumentation).

A description of the tests and a discussion of the results follow. Each CAT 

configuration used for the tests is described and illustrated. The diagrams 

consist of boxes and arrows, where the boxes represent the test-bed cells 

(Section 7.1) and the arrows represent the EJB method calls. Each cell box 

contains the cell name, TBx, (Test Bean) and two numbers. The first 

number is the CPU overhead parameter and the second number is the 

memory overhead parameter, as set in the deployment descriptor 

containing the CAT configuration (Section 7.1). All tests consisted of sets of 

test-runs with increasing numbers of simultaneous users (1, 2, 5, 10, 20 

etc.). Each test run involved executing the configuration presented in Figure 

7-22 with the corresponding number of simultaneous users. Each user 

repeated the execution of the test run 10,000 times. For instance, for the 

test run corresponding to 20 simultaneous users, there were 10,000 

repetitions of a batch of 20 users simultaneously executing the test
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configuration. The total number of configuration executions in this case was 

200,000. All three test-machines were rebooted after each test-run to 

ensure consistency. Results were collected at the web tier level, using 

OpenSTA's collectors [61], as well at the EJB level, from the log files 

generated by COMPAS instrumentation events. The EJB-level measurements 

were performed using the nanosecond precision time-stamping strategy 

(Section 4.3.2).

The execution times extracted at the web-level included the web front-end 

(CATWF) execution times, as well as the EJB tier execution times, Since the 

recorded OpenSTA scripts had all the recorded user "think-time" eliminated, 

the response time in the web tier includes the total response time of the EJB 

tier and the processing time in the web tier. No user "think-time" was 

present in the results, leading to results that most accurately isolate the 

aggregated performance of the web tier and the performance of the EJB 

tier.

The execution times recorded by COMPAS Monitoring were extracted from 

the COMPAS log files. Only the response times recorded for TB1 were 

considered, as they contained the aggregated response times of the rest of 

the test bean cells in the configuration.

The extraction of both the web response times and the EJB response times 

ensured that the performance of the web tier and the performance of the 

EJB tier could be compared. Since COMPAS instrumentation is performed 

only at the EJB tier, the evolution of the EJB response times indicated the 

effect of the different COMPAS instrumentation schemes (full monitoring 

versus model-driven partial monitoring).

7.3.3 Multiple EJBs Interaction

In order to determine the overhead that COMPAS induces in a typical 

application, a CAT configuration was created that determined a sequence of 

five EJBs, as presented in Figure 7-22.
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Figure 7-22. CA T  Configuration for Multiple EJB s  Interaction

The overhead parameters' values were chosen so that the execution times 

of the test-bed cells did not exceed the alert threshold. This ensured that no 

alerts were raised during the test runs, and the results were consistent.

Test runs with 1, 2, 5, 10, 20 and 50 simultaneous users were created. In 

the full instrumentation scheme, all the probes corresponding to the EJBs of 

the test-bed configuration (TB1...5) were in active mode (Section 6.5). In 

the partial monitoring mode, since no alerts were raised, COMPAS used the 

model information to determine that only TB1 needed to be monitored in 

active mode. The rest of EJBs (TB2...5) were monitored in stand-by.

Figure 7-23 displays the response time evolution (in seconds) measured at 

the web tier for test-runs corresponding to increasing simultaneous user 

numbers. The chart highlights the differences between the response time 

evolution when the application was not instrumented and the evolution 

when the application was instrumented (completely or partially). Derived 

using linear interpolation, the shapes of response time evolutions are similar 

indicating that the use of either of the instrumentation modes did not 

induce any non-linearities in the application. It can be observed that the 

partial instrumentation mode determined a smaller total overhead perceived 

at the web tier level. In addition, with the increase of the generated load 

(increase in the numbers of simultaneous users), the overhead difference 

between the two instrumentation modes becomes more significant.
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Figure 7-23. Web Response Time Evolution for Multiple EJB s

This aspect is more apparent in Figure 7-24 which displays the evolution of 

the difference in overhead between the two monitoring schemes.

Web Response Time Overhead Difference Between Monitoring Schemes

S i m u l t a n e o u s  U s e r s  

□ o v e r  i i e a d  d i f f e r e n c e

Figure 7-24. Multiple EJBs: Web Overhead Difference Evolution

The evolution of the response times measured at the EJB level in both 

monitoring modes, is presented in Figure 7-25. The plotted response times
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correspond to the top-level EJB (TB1) in the CAT configuration. As 

expected, the total response time of the EJB Interactions, perceived in TB1, 

is smaller in the partial monitoring mode, as only one EJB is actively 

monitored. As in the web-tier case, the difference between the two 

monitoring modes increases with load indicating that the partial 

instrumentation mode is particularly useful in heavily loaded systems with 

complex interactions. This is because the reduction in monitoring overhead 

due to the adaptive monitoring schemes becomes more significant where 

interactions contain large numbers of EJBs. This reduction is amplified by 

the large numbers of simultaneous users accessing the system.

Front EJB Response Time
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Figure 7-25. EJB  Response Time Evolution for Multiple E JB s

Figure 7-26 and Figure 7-27 present the contribution of the EJB tier 

response time to the total response time perceived at the web tier, in both 

monitoring modes. It is clear that the contribution of the EJB tier to the 

total response time is significantly reduced in the case of partial 

instrumentation. However, an interesting observation is that the difference 

in total response time (perceived at the web tier) between the full 

instrumentation mode and partial instrumentation mode, is smaller than the 

difference in response times perceive at the EJB tier, in particular at higher 

loads. For instance, the results corresponding to 20 simultaneous users
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indicate a difference in web response time between the two monitoring 

modes of 17.6ms whereas the corresponding difference in EJB response 

times is 58.87ms.

Full Instrumentation: Web and EJB Response Time

S im u lta n e o u s  U s e r s

¡9ejb contribution DU web

Figure 7-26. Full Instrumentation: Contribution of EJB  Tier to W eb Tier Response Time

This could be explained by differences in behaviour between thread pooling 

at the web tier and EJB instance pooling at the EJB container level. This 

could generate different scalability profiles for the web and EJB containers. 

In addition, when performing full monitoring, the EJB container could not 

scale as well as when only partial monitoring is enabled, due to higher 

collateral workloads induced by JMX activity.
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Partial Instrumentation: Web and EJB Response Time
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Figure 7-27. Partial Instrumentation: Contribution of EJB  Tier to Web Tier Response Time

The effect of different scalability profiles is apparent in Figure 7-28 which 

presents an XY scattered plot of the instrumentation overhead in 

percentages, as perceived at the web tier. Both full instrumentation and 

partial instrumentation induce overhead that contributes to the increase in 

the response time measured at the web tier. For small workloads, the 

contribution of the EJB monitoring overhead to the total overhead 

(perceived at web level) is significant, ranging approximately between 4 and 

21 percent for partial instrumentation, and between 19 and 43 percent for 

full instrumentation. At high workloads, however, the total perceived 

overhead becomes significantly reduced, ranging from 1.4 to 2.3 percent for 

partial instrumentation and between 10.7 and 13.6 percent for full 

instrumentation. This is most likely cause by the web container scaling less 

efficiently than the EJB container.
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Figure 7-28. Percentile Instrumentation Overhead

7.3.4 Single EJB

A CAT configuration was created with the purpose of isolating the overhead 

that the monitoring probes induce. The configuration, illustrated in Figure 

7-29 determines a single EJB call, facilitating the observation of the probe 

overhead, separated from other container activities.

r  3

TB1
' 100000; 100000

s.______ /

Figure 7-29. C A T  Configuration for Single E JB  Interaction

When more EJBs are involved in an interaction such as in Section 7.3.3, it is 

more difficult to determine the overhead of an EJB probe, as inter­

component communication may be responsible for unaccounted delays. The 

resource usage parameters for the TB1 test cell are configured so that the 

EJB performs a reasonable workload. In contrast to the configuration used 

in Section 7.3.3 where the focus was the total overhead for a complex 

interaction, this configuration containing a single test cell is designed to 

showcase the behaviour of one EJB and the influence instrumentation has 

over its response time as well as over the web-tier response time. By
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performing a significant workload, the EJB contributes significantly to the 

web-tier response time, highlighting the contribution of the overhead to 

both the EJB tier and the web tier. This ensures that the contribution of the 

EJB tier to the web tier in this configuration is similar to the contribution of 

the EJB tier to the web tier in the configuration presented in Section 7.3.3.

Test runs with 1, 2, 5, 10, and 20 simultaneous users were created. Figure

7-30 presents the evolution of the response time measured at the web tier 

for both the un-instrumented and instrumented versions of the test-bed. It 

can be observed that both response time lines follow approximately the 

same shape, suggesting that COMPAS instrumentation does not induce non- 

linearities. In addition, the monitoring overhead perceived at the web tier 

becomes negligible for high user workloads. This can be explained by the 

different scalability of the web container in comparison with the EJB 

container and the fact that COMPAS monitoring influences only the EJB tier. 

For the single EJB scenario, the EJB container scales well compared to the 

web container, perhaps due to better thread pool management. One reason 

for this could be that the test-bed is composed of stateless session beans, 

which are particularly scalable as they can be shared between clients.

Web Response Time

Simultaneous Users

no instrumentation - « —full instrumentation

Figure 7-30. Web Response Time Evolution for Single EJB
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Figure 7-31 illustrates the contribution of the EJB tier to the total response 

time perceived at the web tier. The chart clearly presents different 

scalability profiles for the EJB and web containers and shows that while for 

small user loads, the EJB container dominates the response time, the 

situation reverses with large loads. This confirms the behaviour illustrated 

by Figure 7-28.

Full Instrumentation: Web and EJB Response Time
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Figure 7-31. Single EJB: Contribution of E J B  Tier to Web Tier Response Time
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Chapter 8 Conclusions

COMPAS addresses real needs

Prototype demonstrates portability and validates probe insertion 

approach

Tests prove COMPAS usability and feasibility of adaptive approach

Advantages and Disadvantages over Commercial and Academic 

Approaches

Open architecture enables reuse and promotes further exploration
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8.1 Problems Addressed

Companies increasingly rely on component-based platforms such as J2EE to 

build and deploy large-scale systems. Enterprise-level services such as 

security and transactions can be leveraged by developers, instead of 

spending time building common enterprise infrastructure. Such applications 

are assembled using components that represent the atomic units of 

composition and deployment. Components are managed at runtime by 

component containers that typically reside in distributed application server 

domains providing extensive services including distributed transaction 

management and object middleware. Containers provide lifecycle services 

to the components and control their execution environment by 

transparently enforcing the realisation of enterprise services and managing 

threading, caching, pooling, and access to resources. In addition to 

component platform services, the component development model 

encourages reuse and change. Large applications typically integrate 

components from several sources and usually there is no one individual that 

completely understand the functionality of such a system

The performance of enterprise component systems is influenced by the 

complexity of the business logic and the complexity of the runtime 

platforms. In addition, since the component services are provided by 

containers based on configuration contracts, the contracts and their 

realisation by different containers greatly influence the overall performance.

Static performance reasoning is infeasible in such systems and runtime 

performance management tools are instead needed so that meaningful 

performance metrics can be extracted to match the conceptual level that is 

used in developing the systems. Presenting the architectural context in 

which problems occur is a fundamental requirement for taking corrective 

action. Since enterprise-systems are constantly required to be operational, 

monitoring tools that can continuously operate and isolate potential 

hotspots, while maintaining a minimal impact on their target systems 

without requiring changes to the environment, are necessary.

This thesis proposes the COMPAS performance-monitoring framework for 

component based enterprise applications. COMPAS can non-intrusively
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instrument applications by attaching component-level probes during an 

automatic process based on component metadata. At runtime, COMPAS 

monitors and analyses component-level events such as method invocations 

and lifecycle operations. In order to maintain minimum overhead, COMPAS 

uses a model-based adaptive approach that constantly adjusts the target 

coverage of the active monitoring probes. Alerts are generated based on 

user-definable policies and the monitoring infrastructure automatically 

diagnoses and highlights the performance hotspots. The framework has an 

open architecture, with predefined extension points that allow vertical and 

horizontal integration of third-party modules. In addition to the monitoring 

platform, the thesis proposes a process for performance management that 

integrates monitoring with modelling and performance prediction.
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8.2 Review of Contributions

This section reviews and summarises the main contributions of the thesis 

and their related secondary contributions (as bulleted items).

Low overhead, component-level monitoring infrastructure

Portable, non-intrusive probe insertion process

A portable approach to instrumenting and monitoring component based 

systems is proposed and described in Chapters 4 and 5. It provides non- 

intrusive instrumentation capabilities by analysing the target components' 

metadata and generating a proxy layer that attaches to each of them. The 

proxy layer acts as a probe and intercepts all method invocation and 

lifecycle events. The generation of the probes does not require access to the 

source code of the target application nor changes to the application server 

where the application is deployed. In addition, neither changing Java Virtual 

Machine class-loaders nor the use of JVM debugging hooks are required, 

which contrasts to all other related approaches. Instead, a portable 

installation procedure analyses the target application's structure and 

metadata and generates the appropriate monitoring probes, using reflective 

techniques.

The probes process the intercepted events locally. They can then generate 

notifications that are collected centrally by the monitoring dispatcher.

Extensible monitoring framework 

• Dynamic Bytecode Instrumentation of J2EE Applications

Extensions can be fitted to the probes and to the monitoring dispatcher 

using predefined framework extension points. The extensions allow the 

addition and replacement of COMPAS functionality and customisation of 

strategies such as time stamping. Using the extension points, 

instrumentation can be enriched to capture more information from the 

target application or the probe insertion process can be improved. An 

alternative probe insertion technology is presented which leverages J2EE 

management extensions to improve the application structure discovery. In 

addition, a technique based on dynamic bytecode instrumentation is 

presented which allows the insertion of probes into a J2EE target application
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at runtime, without requiring the redeployment of the instrumented 

application.

Adaptive monitoring and diagnosis 

• Model extraction

The architecture of adaptive monitoring and diagnosis functionality is 

presented in Chapter 6. The adaptation process is based on knowledge of 

interaction models extracted from the target application. It leverages the 

different monitoring modes available in the probes, which can be in passive 

(data is analysed locally but is not sent to the dispatcher) or active 

monitoring (data is analysed and sent to the dispatcher).

Models can be obtained either by using the presented Interaction Recorder 

that collects traces through the EJB components, or by using lower-level 

approaches such as JVM stack-traces. Regardless of how models are 

obtained, they are used by the adaptation process to determine the 

minimum set of components that have to be instrumented (the target 

coverage). When several probes issue performance alerts, the adaptation 

module performs diagnosis in order to determine the origin of the 

performance problem. Based on the hotspot location, target coverage can 

change automatically to include the hotspot probe in the active monitoring 

set.

Basic anomaly-detection techniques and a discussion about possible 

comprehensive strategies are presented. External strategies can be added 

using framework extension points to the alert generation logic in the probes 

in order to improve the hotspot detection accuracy.

Two strategies for adaptation and diagnosis are presented in Chapter 6: 

collaborative and centralised. The collaborative approach involves probes 

with a high degree of autonomy and capable of intercommunicating. Upon 

detection of a performance anomaly, they communicate with neighbouring 

probes (in relation to participating interactions) and compare measurements 

in order to determine the root cause of the anomaly. The monitoring 

dispatcher is therefore not involved in the decision process.

The centralised approach employs less independent probes and more 

communication with the monitoring dispatcher. Probes do not communicate 

with each other and do not attempt to detect the root cause of a detected
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anomaly. Instead, they notify the monitoring dispatcher of any anomaly. In 

turn, the monitoring dispatcher uses model knowledge to filter redundant 

alerts and identify the hotspot origin.

Framework for performance management

The main contributions of the thesis are place into the wider context of a 

proposed complete performance management solution that uses three inter­

related modules: monitoring, modelling and performance prediction.

Monitoring and modelling are connected in a feedback loop that drives the 

monitoring adaptation process and the continuous update of performance 

models. The performance models can be used in simulations by the 

prediction module, which aims at providing automatic forecasts about 

potential performance problems. The complete solution if implemented 

facilitates design comprehension by providing complete UML models, 

extracted from the running system. The models, augmented with 

performance information and presented in UML are organised in realisation 

hierarchies. They can be navigated horizontally, at the same realisation 

level, and vertically between realisation levels. The navigation process is 

intended to help in managing the complexity of the design information when 

searching for a performance problem.

Flexible performance test-bed

The COMPAS Adaptation Test-bed (CAT) presented in Chapter 7 can be used 

to create and control artificial EJB systems for testing and validation 

purposes. Using CAT, several interactions can be created and executed, 

with the ability to inject faults in the artificial components. This can prove 

useful in testing J2EE middleware infrastructure. CAT was used in the thesis 

to validate the benefits of model-based adaptive monitoring.
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8.3 Comparison with Academic Approaches

This section contrasts COMPAS with related frameworks, approaches and 

techniques. Several related projects were analysed in Chapter 2 and a 

summary of their advantages and disadvantages in relation with COMPAS is 

presented in this section.

General Software Performance Engineering Approaches

The main disadvantage of approaches for performance engineering such as 

SPE-ED [75] is that they require developers to create models of their 

applications and annotate them with performance data such as CPU and 

memory utilisation. For complex systems based on component-based

platforms such as EJB, this task becomes impossible due to the large

number of management services provided by the application servers, such 

as caching, pooling, persistence and clustering. It is important to have 

means to extract data from a running system at the appropriate level of 

granularity in order to reduce the need for developer assumptions. The 

framework presented in this thesis extracts simplified performance data 

such as method execution time by monitoring live versions of the

application under development, and creates UML [71] performance models 

automatically. Such models can discover anti-patterns in the application 

implemented in a particular technology, which are not necessarily bad 

practices in other component technologies. The anti-pattern detection

engine can have different profiles (e.g. one for EJB, one for .NET) 

depending on the technology being used by the developers. A knowledge 

base such as [18] can be used to drive the anti-pattern detection so that 

only relevant anti-patterns [105] are discovered for a particular technology. 

The generated UML models, like the SPE models, become increasingly 

detailed as more information is obtained, that is, as development 

progresses through iterations.

OAT [43] is an approach for performance modelling of distributed 

applications that maps UML models with queuing networks in order to 

predict system performance. Developers must create the models, which 

contrasts to the automated model-extraction approach in COMPAS. In 

addition, OAT offers a layered approach to abstractions that is not as
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semantically rich as the MDA [58] specification proposed by COMPAS, which 

offers a better model for such abstractions.

Results from case studies such as [46] prove that performance prediction in 

J2EE systems can be approached successfully with techniques such as 

queuing networks. However, while [46] does not focus on EJB-level analysis 

COMPAS enables performance prediction techniques to be applied at 

component-level.

Generic Monitoring Approaches

Remote Reflection [69][68] is a technique for dynamic introspection and 

alteration of distributed Java applications. Using Remote Reflection, a 

facility to inject a proxy layer into distributed target components, without 

requiring changes to the Java Virtual Machines [68] could be provided. Such 

a facility can be integrated in COMPAS as an alternative means to the probe 

insertion process (Section 5.1).

At a high-level, parts of the generic conformance-testing framework 

presented in [20] contain similarities with COMPAS, in particular the use of 

probes and the event-distribution middleware. However, although the 

authors claim their framework targets component-based systems, they are 

mostly referring to network elements such as firewalls and routers. There is 

no component-level [97] semantic layer, as it is the case in COMPAS. 

Furthermore, the presented framework employs a grey-box approach, 

which requires user intervention in particular for revealing appropriate 

probe-insertion points and semantics. By contrast, COMPAS uses a black- 

box approach that leverages component semantics to insert monitoring 

probes and that matches precisely and unambiguously the composition level 

used in application development.

Aspect Oriented Programming [8] uses pointcuts to mark important events 

in a program's execution, such as entering and exiting method calls. An 

advice [45] for these pointcuts can be defined to perform similar 

functionality to that of the COMPAS-generated hooks (Section 5.1). 

Although this approach would still require the generation of code (the 

explicit pointcuts), the amount of generated code can be smaller than in the 

current COMPAS inheritance-based approach. This marginal advantage is 

decisively outweighed by the disadvantages of using aspect-based
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techniques. A special compiler would be needed to weave the generated 

aspects into the target application, which might pose problems in enterprise 

environments that COMPAS targets. This is because such compilers are still 

not production-ready and therefore not fully adopted by the industry. 

COMPAS currently uses the compiler available in the target enterprise 

setting to build the generated proxy hooks. Lastly, the runtime footprint 

when using aspects might be more significant as additional objects are 

typically created corresponding to the aspects.

An alternative to the current COMPAS probe insertion process (Section 5.1) 

is the use of container plug-ins such as the JBoss interceptors [41]. A 

custom COMPAS interceptor could be added to the sequence of already 

existing container-interceptors, which are used to handle component calls. 

The custom interceptor could perform the functionality of the generated 

proxy hooks and capture the relevant component events (business method 

calls and lifecycle callbacks). One advantage of the interceptor-based 

approach is that there would be no need to perform the CPI process. In 

addition, there would be no need to redeploy the instrumented application; 

however, the same advantages could be obtained by using dynamic 

bytecode instrumentation techniques discussed in Section 5.2. The major 

disadvantage of using JBoss interceptors is the loss of portability, as this 

would render COMPAS useful only in relation to the JBoss application server. 

Since portability is a crucial differentiator of the COMPAS framework, and 

the advantages of the interceptor approach are not decisive, COMPAS does 

not employ such an approach as the default instrumentation technique. 

However, using the Instrumentation FEP (Section 4.4), this approach can be 

used with COMPAS in a JBoss-only environment and such an 

implementation has been performed as indicated in [22][21].

Adaptive Monitoring Approaches

The autonomic computing initiative [44] outlines the main requirements for 

management solutions that can be used in long-running enterprise systems. 

One of the main requirements is the availability of a low overhead, self- 

adaptive monitoring infrastructure that can provide continuous information 

about the application performance.

It is envisaged that COMPAS could be integrated in any J2EE container and 

provide a reflective property that could enable applications to reflect upon
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themselves in performance management terms. Since the middleware 

would be providing COMPAS services, there would be no need for an 

installation procedure anymore. In such an environment, if an application 

were enabled for adaptation, it could use the performance information to 

optimise its behaviour; this approach comes to support the autonomic 

computing initiative for self-optimising systems. Therefore, in the context of 

the autonomic computing initiative, COMPAS can be considered a basic self- 

adaptive monitoring facility that can help in driving the adaptation process 

for self-adaptive applications. Adaptation systems are already using

[23][22] or considering using [101][102] COMPAS as the monitoring 

infrastructure that drives the adaptation process.

COMPAS corresponds in intent, scope and general architecture to the 

requirements outlined in [36] for agent-based monitoring systems. The 

adaptation models presented in this thesis address the need for overhead 

reduction and adaptation to the application's environment, do not depend 

on a global clock, and provide a robust, distributed and collaborative 

environment which can scale and adapt to the target application's needs.

JAMM [98] is an adaptive monitoring infrastructure for grid environments. It 

activates and deactivates monitoring components based on the detection of 

activity on certain communication ports. In contrast, the COMPAS 

adaptation schemes do not rely on the detection of activity but rather on 

the detection of performance alerts. Since JAMM is not concerned with 

monitoring software entities such as components, it cannot use model 

information to optimize the monitoring overhead. It can be stated that 

JAMM is concerned with performance issues in the deployment architecture 

of a system (i.e. which nodes are performing badly and why) whereas 

COMPAS pinpoint performance issues in the software architecture of the 

system (i.e. which software components are performing badly and in which 

execution context).

Software tomography [14] is a technique for lightweight monitoring of 

software systems that involves the dynamic placement of subtask probes to 

different program instances. It is similar to COMPAS in that both approaches 

aim at incurring minimum overhead by adapting the monitoring scope.

COMPAS probes however match the conceptual level of their targets, the 

EJB components. Component metadata is used to generate the probes and
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system interaction models drive the adaptation process. In COMPAS, the 

adaptation of probes is based on automatic diagnosis of performance 

hotspots and on the probe's target location in the enclosing interactions. 

The COMPAS adaptation process differs from the adaptive feature in 

software tomography based on dynamic reassignment of subtasks to 

instances, mostly due to the different nature of the COMPAS probes that are 

bound to their targets but also due to different probe semantics.

The agent-based financial monitoring system presented in [108] is similar 

to COMPAS in the use of adaptive monitoring techniques that use 

knowledge about transactions to change the monitoring scope. One 

difference between the two systems is that that the knowledge used by 

COMPAS is obtained by recording interactions whereas in [108] prior 

knowledge about the trading models is used. In addition, the financial 

monitoring system focuses on measurements that can indicate potential 

fraud issues or trading problems, whereas COMPAS focuses entirely on 

performance issues. Furthermore, COMPAS uses only one simple type of 

agent (the proxy) which contrasts to [108] where a hierarchy of agents is 

needed in order to efficiently monitor the mostly human-driven operations 

in the financial organisation. Lastly, COMPAS is concerned with performance 

aspects in enterprise software applications, at the component level, 

contrasting with the focus on organisational problems at the process level, 

as described in [108].
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8.4 Comparison with Commercial 

Approaches

Several commercial performance management tools for Java and J2EE 

systems are available. This section compares them with COMPAS and 

presents a feature-matrix highlighting important similarities and differences.

One of the most significant differentiators is that COMPAS is a monitoring 

framework that allows third parties to add and change a multitude of 

aspects. All the commercial tools have proprietary, stand-alone 

architectures that allow only minimal integration with other predefined plug­

ins. COMPAS provides a completely functional, extendable base platform for 

instrumenting, monitoring and analysing enterprise applications, whereas 

the commercial tools provide detailed and feature-rich, non-extendable 

solutions.

In contrast to the commercial tools (and other academic approaches), 

COMPAS proposes a completely portable instrumentation infrastructure that 

does not depend on changes to the target runtime environment or target 

application. Many other approaches use application server or JVM-level 

hooks to insert monitoring probes. They support the leading application 

servers, such as IBM WebSphere and BEA Weblogic, however for users of 

open-source or application servers with smaller market size, it is difficult to 

find and use any performance management products.

An additional major difference between COMPAS and related approaches is 

the use of self-adaptive techniques for automatically adjusting target 

coverage. This ensures that monitoring overhead is constantly maintained 

at a minimum value, without compromising accuracy. The alert detection 

(Section 6.4) mechanism in COMPAS provides a basic strategy based on 

simple thresholds and provides a standard framework for adding complex 

strategies that can be based on historical analysis and environmental 

properties. This contrasts to the approach taken in the commercial tools 

that typically only provide threshold-based alert generation and do not allow 

the addition of custom strategies.

The last major difference between COMPAS and the related commercial 

tools is the use of models and UML to facilitate the comprehension of the
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application design and performance hotspots. The proposed COMPAS 

framework (Chapter 3) uses models at different realisation levels to help 

users manage the complexity of the presented information. The Interaction 

Recorder (Section 6.3) can extract and present execution models 

augmented with performance information, helping in the design validation 

process as well as in the localisation of the performance problems.

Quest Software's products Performasure [66], Foglight [64] and Spotlight

[67] provide a complete performance management solution for J2EE 

applications. They can be used in testing or operational environments and 

provide in-depth interaction tracing, alert generation and expert advice.

Mercury Interactive's J2EE tools [53] (Diagnostics, Deep Diagnostics and 

Monitoring & diagnostics) focus on optimising the quality and performance 

of J2EE applications both in development and production stages.

Wily Technologies' Introscope [111] provides a low overhead monitoring 

facility that uses agents inserted in the application servers to collect data 

from any J2EE component in deployed applications. Introscope has a base 

layer that is relatively independent of the application server being used 

(although it still requires it to be started in special mode as it uses JVM 

hooks) and provides server extensions. The extensions collect and analyse 

server-specific metrics and although they appear similar to the COMPAS 

framework extension points (Section 4.4), they are much more confined in 

scope, being restricted to environment data sources at the server side. In 

COMPAS, framework extension points can be used to add both data sources 

and data consumers at the client side as well as at the server side.

The Veritas i3 solution [104] (composed of Indepth, Inform and Insight) 

aims at detecting, diagnosing and correcting performance problems in J2EE 

systems. It can automatically raise alerts based on simple thresholds, helps 

in drilling down to the appropriate tier (web, EJB or database) and store 

information for detailed trend analysis. The performance information is 

presented at different architectural levels (from coarse-grained application 

tiers to Java method invocations and SQL statements). However, 

component-level architectural information is not available and although the 

developers can identify the low-level constructs responsible for performance 

degradation, they cannot easily put this information into the appropriate 

architectural context of the application.
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Borland provides solutions that span the full application lifecycle, from 

development to deployment. Optimizeit Enterprise Suite [12] can be used 

during development and testing while Optimizeit ServerTrace DataCenter

[13] is aimed at runtime operation, during testing and deployment. 

Applications can be monitored and information presented both at the J2EE 

component-level as well as the Java class level. In addition, comprehensive 

resource information is available related to server availability, database and 

messaging systems.

Cyanea/ONE [19] is a performance management product that uses specific 

appiication-server hooks to instrument and monitor J2EE applications. 

Available only for two major application servers, it employs extensive 

resource monitoring techniques and provides a broad view of the systemic 

performance parameters. Although there are multiple resource-oriented 

views (e.g. server availability, database parameters, memory, threads) it 

offers only basic stack traces and no component-level interactions. Using 

sampling-based monitoring, Cyanea/ONE can be instructed to dynamically 

change the scope and breadth of the instrumentation, reducing the overall 

overhead when required. This facility however is not similar to the dynamic 

adaptation functionality in COMPAS (Chapter 6) which automatically 

changes the target coverage without resorting to sampling techniques and 

without requiring user intervention.

Table 8-1 summarizes the differences between COMPAS and related 

commercial J2EE performance products. It is organised as a feature matrix 

with rows representing the most relevant features in the context of this 

thesis. The first six columns present the availability of the features in the 

products of six different vendors and the last column illustrates the features' 

availability in COMPAS. The columns' headings contain vendor names and 

not product names since several vendors provide multiple products that 

cooperate in achieving performance management functionality.

The first four features, portability, adaptability, custom extensions and UML 

Diagrams [71] are provided only by COMPAS and are not available in 

commercial implementations. Portability refers to independence from any 

server or JVM hooks as well as from any operating system or any 

environmental feature. Adaptability refers to the COMPAS capability to 

adapt the active monitoring target coverage, based in interaction models,
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without affecting diagnosis capabilities. Custom extensions refer to 

architectural extension points that can be used by third parties to add 

functionality to the framework (Framework Extension Points - FEPs in 

COMPAS, Section 4.4). UML Diagrams are generated by COMPAS 

automatically based on an interaction recording process.

The last six rows in the table represent features that most of the tools 

implement and that COMPAS either implements or facilitates with FEPs.

High-level Interactions refers to the presentation of performance 

information at the component-level. Low-level Call-Graphs refers to the 

class-level stack traces or aggregated call-graphs. Performance alert 

generation is available in all the commercial products and is typically based 

on simple thresholds. Web and EJB refer to the instrumented tiers and the 

type of components that can be monitored. COMPAS does not support web 

components but its infrastructure can be leveraged to add support for such 

components. Details (JVM / DB) refers to the capability to display resource- 

level information such as JVM heap utilisation, database connection pools 

and server availability. COMPAS can be extended to provide such 

information by using a combination of input and output FEPs (Section 4.4).
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Table 8-1. COMPAS vs. J2EE Performance Management Products

Q
ue

st 
So

ftw
ar

e

M
er

cu
ry

 
In

te
ra

ct
iv

e

W
ily

 
Te

ch
no

lo
gi

es

If)

1•a
M¡> B

or
la

nd

Cy
an

ea

C
O

M
PA

S

Portability NO NO NO NO NO NO YES

Adaptability NO NO NO NO NO NO YES

Custom Extensions NO NO NO NO NO NO YES

UML Diagrams NO NO NO NO NO NO YES

High-Level YES YES YES NO YES NO YES

Interactions

Low-Level Call- YES YES NO YES YES YES FEP

Graphs

Alerts YES YES YES YES YES YES YES

Web YES YES YES YES YES YES FEP

EJB YES YES YES YES YES YES YES

Details (JVM/DB) YES YES YES YES YES YES FEP
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8.5 Validation

Testing the COMPAS framework proved difficult especially in the case of 

monitoring adaptation and diagnosis features. Sample J2EE applications 

that are available do not easily accommodate the introduction of 

performance hotspots in a deterministic manner, which is a desired 

requirement in testing the diagnosis and adaptation capabilities. A test-bed 

was designed and implemented that allows flexible runtime configurations 

consisting of dynamic calling patterns and resource usage. The test-bed, 

consisting of configurable test-bed cells, can change the behaviour and 

performance of the running components at runtime. This allows precise 

injection of performance hotspots, which can validate the correct 

functionality of the monitoring infrastructure.

The COMPAS prototype and experimental results are presented In Chapter 

7. A complete monitoring implementation prototype has been functionally 

tested with several applications such as Sun Microsystems' Petstore [88] 

and IBM's Trade3 [38]. In addition, COMPAS has been deployed successfully 

on commercial applications. The portability of the framework has been 

tested by successfully deploying COMPAS on several combinations of 

application servers and operating systems. Client consoles that connect to 

the monitoring dispatcher have been implemented. They can display real­

time or recorded events received from the probes and control the 

adaptation behaviour by recording and activating models.

Performance measurements have been performed using stress-testing tools 

to determine the overhead of the monitoring process. Results show that 

COMPAS does not introduce non-linearities in the target system, an 

essential condition in operational environments. In addition, the overhead 

on the target system is acceptable in particular for high loads and when 

adaptive monitoring techniques are used. Measurements demonstrate that 

the use of model knowledge in monitoring results in a significant reduction 

of overhead, a property that is particularly useful in long-running systems 

which exhibit performance problems only occasionally. The ability to adapt 

the active monitoring target coverage does not involve selective monitoring 

or sampling, rather the use of model knowledge ensures that the borders of
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the system (points of entry) are constantly monitored and isolated 

anomalies are not skipped.
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8.6 Limitations and Further Exploration

The COMPAS framework provides a base platform for performing 

instrumentation and monitoring operations in J2EE systems. The use of 

adaptation techniques facilitates deployments on long running systems. The 

non-intrusive portable instrumentation approach ensures that COMPAS can 

be deployed on any J2EE application running on any J2EE-compliant 

application server. The framework extension points enable addition of 

COMPAS enhancements as well as integration of COMPAS with a wide range 

of potential applications that require monitoring information. Several 

projects already use or are evaluating COMPAS as part of their functionality.

Several limitations of the framework are derived from its portable and non- 

intrusive architecture, while others originate in its adaptive monitoring 

capabilities:

• High-level performance data extraction: COMPAS can only extract 

component-level performance parameters as it uses component 

metadata to insert the probes. However, using the instrumentation 

FEP, low-level performance information could be extracted as well, as 

illustrated in Section 5.2. This could also drive the display of lower- 

level call-graphs, corresponding to intra-component method calls.

• Static application instrumentation: the COMPAS Probe Insertion 

process involves static analysis of the target application and generation 

of probes corresponding to the application's components. The process 

execution concludes by generating a new, instrumented application 

that must be redeployed in the operational environment. This 

disadvantage can be eliminated using the instrumentation FEP to 

enable runtime probe insertion as illustrated in Section 5.2.

• Recording-based model extraction approach: when extracting the 

component interactions, COMPAS requires that no more than one 

interaction be executed for the duration of the recording process. 

Simultaneous interactions are not supported due to the lack of 

interaction identifiers associated with method calls. This situation could 

be improved using the instrumentation FEP to enable the addition of 

call-specific identifiers.
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• Simple anomaly-detection approach: to prove the feasibility of using 

adapting the monitoring focus based on model-knowledge and 

detection of alerts, a simple threshold-based alerting system has been 

implemented. This could be further extended using the alert FEP.

Directions for further exploration include:

• Anomaly detection techniques, targeted at J2EE systems, which can 

benefit from information extracted by COMPAS. Such techniques can 

either be implemented at the probe level, in case of low cost 

operational cost, or can be placed at the monitoring dispatcher level for 

complex decoupled analysis.

• Diagnosis and adaptation techniques, based on statistical learning 

could improve the accuracy and performance of probe activation and 

deactivation operations.

• Specialised data analysis and visualisation techniques could use raw 

data extracted by COMPAS to present complex results and graphs 

corresponding to different application perspectives (e.g. high-level 

business metrics or low-level technical details).
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