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Mw: Molecular weight
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N: Native state of protein

NEM N-Ethylmaleimide

PAP Pyroglutamyl Peptidase.

PAPI, R hu  PAPI Pyroglutamyl Peptidase I (E.C.3.4.19.3).

PAPII Pyroglutamyl Peptidase II (E.C.3.4.19.6).

Pep Pyrrolidone Carboxylpeptidase

pGCK pGlu chloromethyl ketone.

pGlu Pyroglutamic Acid.

pGlu-AMC Pyroglutamyl-7-amino-4-methyl coumarin
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Methionine Met M

Phenylalanine Phe F

Proline Pro P

Serine Ser S

Threonine Thr T

Tryptophan Trp W

Tyrosine Tyr Y
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Abstract

This thesis investigates the kinetic and stability characteristics of recombinant 
human brain pyroglutamyl peptidase PAPI, an omega exopeptidase which 
cleaves pyroglutamic acid from the N-terminus of peptides and proteins. Three 
classes of pyroglutamyl peptidase have been found in a variety of bacteria, plant, 
animal, and human tissues; the first class includes the bacterial and animal type 
1, pyroglutamyl peptidase I. The genes encoding bacterial PAPI have been 
cloned and characterized previously, allowing the study of the primary structure 
of this enzyme and its over-expression in heterologous organisms. Researchers 
have also been able to clone and characterize the human form of the peptidase. 
Recombinant human PAPI was over expressed in E. coli grown in LB culture 
medium and purified by nickel affinity chromatography. The enzyme has a 
molecular weight of 23kDa, by SDS-PAGE. The estimated T5o was 60°C and the 
half-life at this temperature was 15 min, £ = 0.046 ± 0.002 min'1. With regard to 
solvent tolerance, PAPI was tested in dimethyl sulphoxide, methanol, acetone, 
tetrahydrofuran, acetonitrile, dimethyl formamide and ethanol over a range of v/v 
concentrations. It was not stable in most solvents and methanol and DMSO were 
the least injurious for PAPI activity: 56% and 50% residual PAPI activity 
remained at 10% v/v methanol and DMSO, respectively. Chemical modification 
with dimethyl suberimidate gave only 2 0 % recovery of initial activity and did not 
stabilize the enzyme. The effect of polyol additives was investigated and it was 
found that the enzyme’s activity and stability increased with xylitol. Trehalose, 
glycerol and ammonium sulphate did not stabilize PAPI. Michaelis-Menten 
kinetics of PAPI were determined at pH 8.0 with pyroglutamyl 7- 
aminomethylcoumarin as substrate, Km= 0.132 ± 0.024 mM and ¿cat= 2.68x1 O'5 
s’1. Both mutant Phel6 —»Tyr (F16Y) and Tyrl47-»Phe (Y147F) were compared 
with wild type PAPI. The T50of F16Y was 51°C and the half-life at 70°C was 27 
min, k=  0.026 ± 0.002 min'1. For Y147F, T5 0 was 78°C and the half-life at 70°C 
was 25 min, k = 0.028 ± 0.001 min'1. Kinetic values for F16Y were Km= 0.162 ± 
0.020 mM and kcat= 5.75xl0' 5 s'1, while Y147F had Km = 0.115 ± 0.019 mM and 
&cat=  2.45xl0~5 s'1.

- X V -



CHAPTER ONE 

INTRODUCTION



1.0 Introduction

This thesis describes experiments on recombinant human PAPI and two mutant 

forms. This Introduction reviews properties of bacterial and mammalian PAPI, 

with special reference to its structure, catalysis and possible roles in the body, 

and compares it with PAPII and thyroliberinase.

1.1 PROTEASES

1.1.1 Definition of proteases

A protease is defined as an enzyme that hydrolyses one or more peptide bonds in 

a protein or peptide. Thus, proteases can, potentially, degrade anything from a 

dipeptide up to a large protein containing thousands of amino acids. However, 

many proteases have a preference for protein substrates, while others will only 

cleave short peptides or even just dipeptides.

Proteases can be divided into endopeptidases, which cleave internal peptide 

bonds in substrates, and exopeptidases, which cleave the terminal peptide bonds. 

Exopeptidases can be further subdivided into aminopeptidases and 

carboxypeptidases.

1.1.2 Endopeptidases and exopeptidases

Exopeptidases are peptidases that hydrolyse the peptide bonds of the terminal 

amino acids of the peptide chain while endopeptidases are peptidases cleave 

peptide bonds in the middle of a peptide chain. (Hooper, 2002)



N-terminus

Peptidases 
Peptide bond hydrolases

Exopeptidases

cut from the ends 
of peptide chains.

C-terminus

Endopeptidases

cut internal sites 
in peptide chains.

Aminopeptidases

one at a time from 
The N-terminus

Carboxypeptidases

one at a time from 
the C-terminus

Dipeptidyl peptidase

one dipeptide at a time 
From the N-terminus

Peptidyl dipeptidases

one dipeptide at a time 
from the C-terminus

Tripeptidyl peptidasese

one tripeptide at a time 
From the N-terminus

Figure 1.1. A schematic diagram to show the difference between exopeptidases 

and endopeptidases (Website: bumham.org/labs/salvesen/classification)



Proteases can also be classified as aspartic proteases, cysteine proteases, 

metalloproteases, and serine proteases, depending on the nature of the active site. 

Different inhibitors can be used experimentally to distinguish between these 

classes of protease. Protease activity can be regulated in vivo by endogenous 

inhibitors, by the activation of zymogens and by altering the rate of their 

synthesis and degradation.

Table 1.1. Classification of proteases

1.1.3 Famities of proteases

Family Examples Essential

residue

Active site 

Composition

Cleavage

mechanism

Serine Trypsin,

subtillsin

Serine Ser-His-Asp 

Catalytic triad

Acyl-enzyme

intermediate

Cysteine Papain, ficin Cysteine Cys-His 

Charge transfer

Acyl-enzyme

Intermediate

Aspartate Pepsin,

chymosin

Aspartate One charged 

One uncharged Asp

General

acid-base

Metallo- Thermolysin *Zn2+ Coordinated Zn2+ Zn2+acts as 

Lewis acid

*Zinc ion is not an amino acid, and hence is not a ‘residue’ but it is essential for 

metalloprotease function, (Creighton, 1993).



1.2 Pyroglutamyl Peptides

Pyroglutamyl peptides, which are often neuropeptides of up to 40 amino acids, 

possess an N-terminal pGlu (pyroglutamic acid) residue (Fig. 1.2). AnN- 

terminal pGlu residue can define the highly specific biological properties of 

neuropeptides. There are many reports of the enzymatic formation of pGlu from 

glutamic acid and glutaminyl peptides, as reviewed by (Orlowski and Meister

1971). This cyclisation of the N-terminal glutamic acid allows them to have a 

longer half-life than other peptides of similar size (De Gandarias et al, 2000). 

Pyroglutamyl substrates are often neuropeptides: typically, they are short 

polypeptide chains released in the autocrine, paracrine and endocrine systems 

allowing cells to communicate and hence regulate the basic functions of life such 

as metabolic activity, cell differentiation and growth. (Hardie, 1992). Many 

biologically active peptides (thyrotropin-releasing hormone, luteinizing 

hormone-releasing hormone, neurotensin, etc.) and proteins have pyroglutamyl 

residues. Only a small number of peptidases can degrade the amino terminal 

pGlu; these are described in the following sections.

1.2.1 Types of Pyroglutamyl Peptidase

Three classes of Pyroglutamyl Peptidase have been found in a variety of plant, 

animal, and human tissues and classified as Pyroglutamyl Peptidase I (E.C 

3.4.19.3), Pyroglutamyl Peptidase II (E.C 3.4.19.6), and Serum Thyroliberinase 

(E C 3.4.19.6). (Cummins and O’Connor, 1998). Two pyroglutamyl peptide 

hydrolases have been found and recognised in the brain: the cysteine peptidase 

pyroglutamyl-peptidase I (EC 3.4.19.3) that hydrolyses pGlu-X bonds, where X 

is any amino acid except proline, and the metallopeptidase pyroglutamyl-



peptidase II (EC 3.4.19.6) that degrades thyrotropin-releasing hormone in a 

highly specific manner (Alba et al, 1995). PAPI is widely distributed in bacteria, 

plants, and animals (Robert-Baudouy and Thierry, 1998).

While PAPI is the principal focus of this review, the main features of PAPII and 

ST are summarised in sections 1.4 and 1.5 below.

1.3 PYROGLUTAMYL PEPTIDASE I (PAPI)

1.3.1 Classification and occurrence of PAPI 

Classification

Pyroglutamyl-peptidase I (PAPI, EC 3.4.19.3) is an omega exopeptidase that is 

able to specifically remove the amino-terminal pyroglutamyl residue from 

oligopeptides and proteins. It can be classified as an omega exopeptidase rather 

than aminopeptidase because the substrate contains no free N-terminal amino 

group, from oligopeptides and proteins, including thyrotropin-releasing hormone, 

luteinizing hormone-releasing hormone, neurotensin, bombesin, gastrin, 

fibrinopeptides, and collagen (Alba et al, 1995). PAPI hydrolyses N-terminal 

pyroglutamyl residues. Pyroglutamyl-peptidases I (EC3.4.19.3) are enzymes of 

class 3, the hydrolases, and subclass 3.4, the peptide hydrolases or peptidases. 

PAPI has been identified as a cysteine peptidase-type protease. PAPI has been 

referred to under several different names including pyrrolidonyl peptidase, 

pyrrolidone carboxyl peptidase, 5-oxoprolyl-peptidase, PYRase and 

pyroglutamyl aminopeptidase.

The sequences of the bacterial and archaeal enzymes (see Section 1.3.5) place 

them in peptidase family Cl 5 of the MEROPS classification (Barrett and 

Rawling, 2001). Estimates of the molecular mass of the subunit of type I



pyroglutamyl peptidases, as determined by SDS- PAGE under denaturing 

conditions, are similar for bacterial and mammalian enzymes, ranging from 22 to 

25 kDa.

PAPI has been used in protein sequencing to unblock proteins and polypeptides 

with the amino-terminal pyroglutamyl residue prior to Edman degradation. 

Occurrence

PAPI has been found in a variety of bacteria (but not all bacteria), archaea, plant, 

animal, and human tissues for over two decades, but as yet no form has been 

found in the Saccharomyces cerevisiae genome or in any fungus.

Pyroglutamyl peptidase I occurs as a soluble, intracellular cytosolic cysteine 

peptidase with broad specificity for pGlu-substrates, and was distributed in many 

sources such as human cerebral cortex, kidney and skeletal muscle, bovine whole 

brain, rat, bovine, guinea pig brain, and various rat organs including liver 

(Cummins and O’Connor, 1998).

In vertebrates the liver and kidney show relatively high PAPI activities compared 

with other tissues. PAPI was later reported in hamster (Mesocricetus auratus) 

hypothalamus (Prasad and Peterkofsky, 1976) and feline (Felis domesticus) brain 

(DeGandarias et al, 1992).

PAPI was localized in the renal proximal tubules; also, imunohistochemical 

localization study of PAPI demonstrated intracellular distribution in the pituitary. 

Other, different tissues were tested including heart, liver, spleen, lung, and 

intestine. PAPI activity has also been noted in non- mammalian sources such as 

avian, fish, amphibian tissues and bacterial sources (Szewczuk and 

Kwiatkowska, 1970). Among plants, it occurs in parsley, carrot, bean, oats,



wheat, cauliflower, and potato. Tissues tested included leaves, seeds, sprouts and 

roots.

PAPI was documented in a wide range of prokaryotes including Bacillus subtilis 

(Szewczuk and Mulczyk 1969), Klebsiella cloacae (Kwiatkowska et al, 1974), 

Streptococcus cremoris (Exterkate 1977), Streptococcus faecium  (Sullivan et al, 

1977), Bacillus amyloliquefaciens (Tsuru et al, 1978), Streptococcus pyogenes 

(Cleuziat et al, 1992), Staphylococcus aureus (Patti et al, 1995), Enterococcus 

faecalis (Mineyama and Saito 1998), Pyrococcus horikoshii (Kawarabayasi et al,

1998), Pyrococcus furiosus (Tsunasawa et al, 1998), Thermococcus litoralis 

(Singleton et al, 1999a) and Mycobacterium bovis (Kim et al, 2001) Doolittle 

and Armentrout (1968) found that Pseudomonas fluorescens could grow on 

media having free pGlu as the sole carbon and nitrogen source.

1.3.2 Substrates and inhibitors of PAPI

PAPI can be said to hydrolytically remove L-pGlu from L-pGlu-L-X, where X is 

any amino acid (except proline), a peptide or an arylamide such as AMC. PAPI 

has a broad Pyroglutamyl substrate specificity, with its activity being regulated 

by the amino acid directly after the pGlu residue. In mammals, it may be 

involved in the inactivation of biologically active peptides that contain an N- 

terminal pyroglutamyl residue such as TRH (thyrotropin-releasing hormone), 

LHRH (luteinizing hormone-releasing hormone), bombesin and anorexigenic 

peptide. More recent studies found that PAPI is involved in the hydrolysis of 

some xenobiotic compounds having an LpGlu or L-pGlu-related structure (Abe 

et al, 2003; Abe et al, 2004a,b) (See physiological role, Section 1.3.4).



Synthetic substrates such as pGlu-Mca, pGlu- Ala, pGlu-pNa, pGl u-(3NA and 

pGlu-Val Cummins and O’Connor (1996); Browne and O’Cuinn, (1983); Bauer 

et al., (1980); Albert and Szewczuk (1972) are the enzyme’s substrates. pGlu-Pro 

bonds are normally not hydrolysed by mammalian PAPI (Cummins and 

O’Connor 1996).

A recent study by (Abe et al, 2004b) has shown that PAPI can tolerate some 

single atom substitutions on the pGlu ring such as pGlu-Ala replaced with 

sulphur (L-OTCA-L-Ala), oxygen (L-OOCA-L-Ala) and nitrogen (L-OICA-L- 

Ala).

The inhibition of PAPI by many cations such as Hg2+, Zn2+, Cu2+, Co2+, Ca2+, 

Mn2+, Mg2+, Ni2+, Ba2+, Sr2+ and Cd2+ has been demonstrated Szewczuk and 

Mulczyk, (1969); Albert and Szewczuk, (1972); Szewczuk and Kwiatkowska, 

(1970); Kwiatkowska et al, (1974); Prasad and Peterkofsky, (1976); Tsuru et al, 

(1978); Mantle et al, (1991); Awade et al, (1992a,b); Bharadwaj et al, (1992); 

Patti et al, (1995); Cummins and O’Connor, (1996); Mineyama and Saito,

(1998); Tsunasawa et al, (1998); Dando et al, (2003).

The catalytic importance of a cysteine thiol group in PAPI activity has been 

demonstrated by its absolute requirement for a thiol-reducing agent such as DTT. 

PAPI loses activity when treated with a standard cysteine protease inhibitor such 

as (NEM), as stated earlier.

Inhibition studies confirmed that PAPI belongs to the thiol enzyme family and is 

completely inhibited by micromolar concentrations of thiol blocking reagents 

(e.g. iodoacetate, iodoacetamide, p-chloromercurybenzoate (p-CMB), p- 

mercuriphenylsulphonate, N-ethylmaleimide and sodium tetrathionate). 

(Doolittle and Armentrout, 1968; Szewczuk and Mulczyk, 1969; Szewczuk and



Kwiatkowska, 1970; Mudge and Fellows, 1973; Kwiatkowska et al, 1974; 

Prasad and Peterkofsky, 1976; Tsuru et al, 1978; Bauer and Kleinkhauf, 1980; 

Tsuru et al, 1978; Browne and O'Cuinn, 1983; A wade et al, 1992a,b; Gonzales 

and Robert-Baudouy, 1994; Patti et al, 1995; Cummins and O’Connor, 1996; 

Tsunasawa et al, 1998; Mineyama and Saito, 1998; Singleton et al, 2000; 

Singleton and Littlechild, 2001; Dando et al, 2003).

Chemical modification studies also indicated the involvement of acidic residues, 

in addition to a His residue, in the enzymatic activity on the basis of experiments 

with 1-ethyl-3-(3- imethylaminopropyl) carbodiimide (EDAC) at acidic pH and 

diethylpyrocarbonate (LeSaux et al, 1996). To elucidate the catalytic mechanism 

and biological significance of the enzyme, several specific inhibitors have been 

synthesized (Fujiwara et al, 1981; Friedman et al, 1985).

Site directed PAPI inhibitors were first synthesized for bacterial cells, B. 

amyloliquifaciens in particular, the most potent being pGlu chloromethyl ketone 

(pGCK), Z-pGlu chloromethyl ketone (Z-pGCK), and Z-pGlu diazomethyl 

ketone (Z-pDMK). (Fujiwara et al, 1981) reported that pGlu diazomethyl ketone, 

did not enhance TRH levels in the brain in vivo or in vitro, but (Faivre-Bauman 

et al, 1986) observed increased levels of TRH when primary cultures of 

hypothalamic cells were treated with Z-Gly-ProCHN2 , also known as a PAPI 

inhibitor. In mammalian cultures inhibition of the enzyme can be due to absence 

of a thiol-reducing agent, DTT, or the presence of sulfhydryl-blocking reagents, 

for example 2-iodoacetamide (Bauer and Kleinkauf, 1980).

(Fujiwara et al, 1981) noted a decrease in enzyme activity upon addition of 

pGCK. However, these tests were carried out in the absence of DTT. Several 

workers have used 2-pyrrolidone to stabilize type I pyroglutamyl peptidases



during purification and storage (Armentrout and Doolittle, 1969; Mudge and 

Fellows 1973).

A synthetic aldehyde analog of pGlu, 5-oxoprolinal, was also found to be a 

potent inhibitor of PAPI (Friedman et al, 1985). Competitive inhibition by these 

compounds is due to their binding to the PAPI active site instead of the substrate. 

Several other inhibitors have been observed for mammalian PAPI. (Yamada et 

al, 1990) noted the inhibitory effects of 1,10-phenanthroline, excess DTT and 

EDTA. (Cummins and O’Connor, 1996) reported that bovine brain PAPI was 

28% inhibited by ImM 1,10-phenanthroline. Two compounds, benarthin and 

pyrizinostatin, isolated from the genus Streptomyces, were found to be inhibitors 

of PAPI (Aoyagi et al, 1992a; Aoyagi et al, 1992b). Also, the inhibitory effect of 

an oligosaccharide gum from Hakea gibbosa on PAPI activity was reported 

(Alur et al, 2001). Benzamidine was also described as an inhibitor of the 

bacterial enzyme (Awad et al, 1994). Other studies carried out by (Mantle et al, 

1991), noted inhibitory effects of amastatin, arphamenine, chymostatin, elastinal 

and leupeptin.

H

L 'p G lu
H H

L-prolinc L-hydroxyprolinc sulphonamido analogue

Figure 1.2: chemical structures of L-pGlu, 2-pyrrolidone, 5-oxoprolinal, L- 

proline, L-proline, L-hydroxyproline, sulphonamide.



1.3.3 PAPI characterisation

PAPI enzymes from a range of prokaryotic and eukaryotic organisms have been 

characterised biochemically. The molecular weight of PAPI was determined 

mainly by SDS-PAGE and gel filtration and it was mostly been reported as 

around 24 kDa. The optimal activity for the enzyme was in the pH range 6.0 to 

9.5. The isoelectric point (pi), where reported, is around 5.0. The physiological 

temperature o f 37°C has been widely used as the standard reaction temperature 

for analysis of eukaryotic PAPI. Optimum temperatures for activity of 

mesophilic prokaryotic PAPI have mostly been reported as ranging from 30 - 

45°C, but two thermophilic enzymes T. litoralis PAPI and P. furiosus PAPI 

exhibit optimum activity at 70°C and 90°C, respectively. (Singleton &

Littlechild, 2001; Ogasahara et al, 2001)

The purification of PAPI from several strains of the species Bacillus and the 

characterisation of its enzymatic properties have been well documented. Bacillus 

amyloliquefaciens PAPI has been particularly well studied, including cloning, 

sequencing and expression of its gene in Escherichia coli. The peptide comprises 

215 amino acid residues, has a homodimer structure with a deduced subunit 

molecular mass of 23.3kDa and a pH optimum of 6.5. (Yoshimoto et al, 1993).

1.3.4 Physiological role(s) of PAPI

The physiological role of PAPI currently remains unclear. (Albert and Szewczuk,

1972) suggested a possible role for PAPI in the absorption of peptide and 

proteins from the alimentary tract by the presence PAPI in the small intestine and 

intestinal mucous membrane and duodenum, in addition to its broad substrate 

specificity (Pierro and Orsatti, 1970). From many studies it was suggested that 

PAPI was a cytosolic enzyme. The cytosolic location of PAPI excludes a



significant role in extracellular peptide degradation (Charli et al., 1987; Abe et 

al., 2004a,b). O’Cuinn et al. (1990) suggested that PAPI may represent a 

mechanism for returning pGlu terminating neuropeptides released from damaged 

or ageing vesicles back to the cellular amino acid pool. PAPI may contribute to 

the intracellular catabolism of peptides to free amino acids which are then re­

incorporated into biosynthetic pathways. Thus, it may be involved in regulating 

the cellular pool of free pGlu.

PAPI might contribute to neuropeptide break down where secretion from 

neuropeptide-synthesising cells is suppressed to degrade neuropeptides that are 

produced in excess. The findings by Faivre-Bauman et al. (1986) showing that 

the addition of specific PAPI inhibitors to TRH-synthesising hypothalamic cells 

in culture results in a significant increase of TRH content and release from cells, 

under both basal and K+ stimulated conditions.

More recently it was found that PAPI is involved in the hydrolysis of some 

xenobiotic compounds with an LpGlu or L-pGlu-related structure, (Abe et al, 

2003; Abe et al, 2004b). PAPI may also be involved in detoxification of pGlu- 

peptides, since high levels of such peptides would abnormally acidify the cell 

cytoplasm.

The study of subcellular localisation of peptidases could form an important 

platform for understanding the regulatory mechanisms that control the activity of 

neuropeptides in the cell. The high level of Pyroglutamyl Peptidase in the human 

brain cortex agrees with the inactivation of TRH is higher in the human brain 

cortex than in other regions (Griffiths et al, 1985). Cortex is the area of the brain 

closely related to memory, cognition and learning, thus this may suggest a



possible role for the PAPI in the higher parts of the human brain. (Coyle et al, 

1983).

Roles in health

A TRH regulation study carried out by Irazusta et al. (2002) showed that both 

soluble and particulate pyroglutamyl peptidase activities were higher in human 

brain. A correlation between PAPI activity and TRH levels in mammalian brain 

has been observed in many studies (De Gandarias et al, 1992; 1994; 1998; 2000). 

A decrease in PAPI activity coincides with increasing levels of TRH as brain 

development progresses, indicating that PAPI plays a part in the normal 

development of mammalian brain. Also, during earlier stages of development, 

high PAPI activity is linked to elevated levels of cyclo(His-Pro), a correlation 

which was previously indicated (Prasad et al, 1983). The wide distribution of 

TRH throughout the central nervous system, and, the findings of various 

biochemical, pharmacological and behavioural studies strongly implies that TRH 

may act as a neuromodulator or neurotransmitter in the extrahypothalamic brain. 

PAPI may also have an important part to play in memory and learning, in 

metabolism and the possible control of neural diseases such as Alzheimer's 

disease (Irazusta et al, 2002).

The effect of light intensity on the activity of PAPI in the functionally connected 

retina and hypothalamus of rats was studied (Ramirez et al, 1991; Sánchez et al, 

1996). PAPI exhibits a highly significant periodic fluctuation, coinciding with 

environmental light and dark conditions. Results suggest a possible function of 

PAPI within the “body clock” of a human Sanchez et al, (1996). Substrates of 

PAPI (such as TRH or GRH, gonadotropin releasing hormone) may play a



functional role in the retina, apart from their well-known role in the 

hypothalamus.

Involvement in disease

The concentration of TRH in the hippocampus of elderly controls and 

Alzheimer's disease (AD) patients was recorded by radioimmunoassay (RIA). He 

and Barrow (1999) reported that PAPI may be involved in the propensity of 

amyloid precursors to form insoluble plaques, resulting in Alzheimer-type 

diseases.

The free pGlu is known to have pharmacological properties and these have been 

demonstrated in certain disease states (Szewczuk and Kwiatkowska, 1970; 

Lauffart etal., 1989; Mantle et al., 1990; 1991).

The physiological implications of this involvement were explored by Falkous et 

al. (1995) who observed significantly increased levels of PAPI in the spinal cord 

of patients suffering from motor neuron disease. The identification of 

characteristic deposits of proteins in degenerating spinal cord neurons in motor 

neuron disease cases suggests that an abnormality of intracellular protein 

catabolism may contribute to the pathogenesis of this disorder.

A recent study by Valdivia et al. (2004) showed that sub-fertile men had higher 

PAPI levels in their soluble sperm fraction than normal men.



1.3.5 Structure, Sequence and Active site of PAP I 

Sequence

The purification of PAPI has been reported from several prokaryotic species and 

its enzymatic properties have been studied; see Table 1.2 below.

Table 1.2 Known PAPI sequences of prokaryotic organisms

Organism

Type

PAPI

Enzyme

GenBank

Accession

Molecular

Weight

Amino

Acids

Reference

Pseudomonas

fluorescens

fy/PAPi X75919 22.438 213 Gonzales and Robert- 

Baudouy, 1994

Pyrococcus

horikoshii

PhoPAPI AP000002 22.640 206 Sokabe et al., 2002

Pyrococcus

furiosus

PfuPAPl AB015291 22.822 208 Tsunasawa et al., 

1998

Streptococcus

pyogenes

SjcyPAPI X65717 23.132 215 Cleuziat et al., 1992

Mycobacterium

bovis

MboPNPl U91845 23.193 222 Kim et al., 2001

Staphylococcus

aureus

SauPAPl U19770 23.227 212 Patti et al., 1995

Bacillu.

amyloliquefaciens

BamPAPl D11035 23.287 215 Yoshimoto et al., 1993

Bacillus subtilis BsuP/KPl X66034 23.774 215 A wade et a l ,  1992a,b

Thermococcus

litoralis

TUPAPl Y13966 24.745 220 Singleton et al., 2000



Figure 1.3. shows PAPI amino acid sequences of prokaryotic organisms. 

Sequence similarities are coloured in gray and black indicates the highest 

homology. The highest degree o f sequence homology exists between BsuPAPI 

and BamPAPl (72% identity, 85% similarity). The prokaryotic sequence that 

human PAPI shows most homology to is BamPAPl (25%  identity, 45% 

similarity); this is a higher score than among some of the eukaryotic sequences. 

The largest divergence exists between ASoPAPl and SawPAPI (27% identity, 

48% similarity).
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Figure 1.3 Amino acid sequence alignment of prokaryotic PAPI

Alignment was created using MultAlin with Blosum62-12-2 parameters and 

edited using GenDoc. Key: Pseudomonas fluorescens = P flPAPI; Pyrococcus 

horikoshii -  PhoPAPl; Pyrococcus furiosus = P/wPAPI; Streptococcus pyogenes 

= SfcyPAPI; Mycobacterium bovis = MboPAPl', Staphylococcus aureus = 

SawPAPI; Bacillus amyloliquefaciens = BamPAPl; Bacillus subtilis = BsuPAPl; 

Thermococcus litoralis = TliPAPl. Figure reproduced from P-R Vaas (PhD

thesis, DCU, 2005) by permission.



BLAST comparison of human PAPI with known PAPI sequences against the 

current GenBank data (2005) reveals similarities to a number of eukaryotic PAPI 

genes. An aminopeptidase from M. musculm (mouse) shows 34% compatibility, 

while an aminopeptidase from C. elegans shows 29% compatibility. 

[http://www.ncbi.nlm.nih.gov/UniGene].
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Table 1.3 Known PAPI sequences of eukaryotic organisms

Organism

Type

Common 

Name of 

organism

GenBank

Accession

PAPI

Enzyme

Molecular

Weight

No. of 

Amino 

Acids

Reference

Apis mellifera Honey

Bee

XM 392560 Am qPAPI 21,941 191 [*]

Tetraodon

nigroviridis

Green

Pufferfish

CAAEO1014609 TniPAPl 22,376 205 [*]

Rattus

norvégiens

Rat AB098134 RnoPPiPl 22,800 208 m

Mus musculus Mouse AJ278829 MmwPAPI 22,934 209 tf]

Homo sapiens Human AJ278828 ÄsPAPI 23,138 209 m

Takifugu

rubripes

Japanese

Pufferfish

AJ301641 TrwPAPI 23,331 211 [*]

Anopheles

gambiae

Mosquito XM 308793 /fgPAPI 23,940 209 [*]

Arabidopsis

thaliana

Cress NM 104547 AthPAPl 24,046 219 [*]

Drosophila

melanogaster

Fruit Fly NM 168616 DmPAVl 24,807 224 [*]

Caenorhabditis

elegans

Nematode NM 060090 CelPAPl 31,007 274 [*]

Dando et al., (2003)[|]; Abe et al., (2003) [J]; Putative sequences; [*] Molecular 

weights were deduced from amino acid sequences
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Figure 1.4. shows PAPI amino acid sequences of eukaryotes. Sequence 

similarities are coloured in gray and the highest homology is shown in black. The 

highest homology was between the sequences MmuPAPl and itooPAPI (98% 

identity/ similarity) and the next closest homology was to HsaPAP1 (94% 

identity, 96% similarity). The insect sequences DmePAPI, AgaPAPl and 

AmePAPI (35% identity, 56% similarity) show a similar degree of homology 

with //.saPAPI as with each other (~30% identity, -50% similarity). The plant 

sequence AthPAPl and nematode sequence Ce/PAPI exhibit the greatest 

divergence from other eukaryotic sequences.
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Figure 1.4 Alignment was created using MultAlin with Dayhoff-8-0 parameters 

and edited using GenDoc homology. Key: Apis mellifera, AmePAPl. Tetraodon 

nigroviridis, TniPAPl. Rattus norvégiens, RnoPAPl. Mus musculus, MmuPAPl.
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Homo sapiens, /faPAPI. Takifugu rubripes, TruPAPl. Anopheles gambiae, 

/fgPAPI. Arabidopsis thaliana, AlhVAVl. Drosophila melanogaster, D/wPAPI. 

Caenorhabditis elegans, Cel?API. Figure reproduced from P-R Vaas (PhD 

thesis, DCU, 2005) by permission.

Structure

The native mammalian enzyme appears to be monomeric, but Mw values of 50- 

91 kDa have been reported for the native bacterial enzyme. PAPI was first 

isolated from Bacillus amyloliquefaciens. The recombinant B. amyloliquefaciens 

enzyme probably functions as a dimer (Yoshimoto et al., 1993), but the protein 

has been crystallised as a tetramer from B. amyloliquefaciens (Odagaki et al., 

1999) and Thermococcus litoralis (Singleton et al., 1999a,b).

The X-ray analysis and three-dimensional structure of PAPI were solved.

The first documented crystallized structure of Bacillus amyloliquefaciens was at

1.6 A (Odagaki et al., 1999), for Pyrococcus furiosus PAPI at 1.73 A (Tanaka et 

al., 2001), for Thermococcus litoralis PAPI at 2.0 A (Singleton et al., 1999a; 

1999b) and Pyrococcus horikoshii PAPI at 2.2 A (Sokabe et al., 2002).

The monoclinic crystal form of BamPAPl, PfuPAPI, 77/P API and PhoPAPl has 

four crystallographically independent copies of PAPI in the asymmetric unit, and 

it was categorised as a tetramer of four identical subunits designated A -  D. Each 

monomer of the tetramer makes contact with two other subunit monomers.

The structure allows the catalytic site of PAPI to be identified and begins to 

define some key features of the catalytic mechanism. It serves as a model system 

to help elucidate the mechanism of similar enzymes in higher organisms, 

including humans and allows comparison of the overall topology and three­



dimensional structure of PAPI to that of other similar proteins as well as a 

comparison of the organization of the active site with that of other proteases 

The polypeptide folds in an a/(3 globular domain with a hydrophobic core 

consisting of a twisted (5 sheet surrounded by five a  helices. This structure allows 

the function of most of the conserved residues in the PAPI family to be 

identified, and it has been concluded that the catalytic triad consists of Cysl44, 

Hisl68 and Glu 81.

The enzyme expressed in E. coli was crystallized and the three-dimensional 

structure clarified by x-ray crystallography (Odagaki et al., 1999). The active site 

(a catalytic triad composed of Cys-144, His-168, and Glu-81) of each monomer 

was located inside the doughnut-shaped tetramer. A thermostable enzyme from 

Thermococcus litoralis was also studied by x-ray crystallography (Singleton et 

al., 1999a,b). The A-D interface of Bacillus amyloliquefaciens PAPI involves 

hydrophobic interactions and several ionic salt bridges between each monomer. 

The A-C interface does not have any ionic salt bridges and a thin layer of water 

mediates hydrogen bonds between the subunits.

The Thermococcus litoralis PAPI tetramer has a central cavity of 6000 A. The A- 

B interface has hydrophobic interactions and salt bridges involving Arg81,

Asp88, AsplOl and Argl 19, the A-C interface is formed by an extended loop 

and a disulphide bridge exists between Cysl90 of each monomer. This 

hydrophobic core may contribute towards the thermostability of Thermococcus 

litoralis PAPI. Other residues along this interface are generally hydrophobic.

The A-B interface of the Pyrococcus horikoshii PAPI tetramer consists 

hydrophobic interactions and has inter-subunit ion bonds and the A-C interface
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has hydrogen bonds that are entirely mediated by a thin layer of water and was a 

dimer in solution.

Further recent studies carried out by (Kabashima et al., 2001) have again focused 

on the thermal stability of PAPI in the Bacillus strain in comparison to the PAPI 

activity in Thermococcus litoralis.

Bam  P A P  1 7 7 /P A P  1

Pfu  P A P I Pho P A P  1

Figure 1.5 Ribbon diagrams of the tetrameric crystal structures of Bacillus 

amyloliquefaciens PAPI (1 AUG), Pyrococcus horikoshii PAPI, Pyrococcus 

furiosus PAPI and Thermococcus litoralis PAPI (1A2Z). The monomeric 

subunits are labelled A - D. Figure reproduced from P-R Vaas (PhD thesis, DCU, 

2005) by permission.



PAPI from the hyperthermophilic archaeon T. litoralis showed an enhanced 

thermal stability when compared to PAPI enzymes from mesophilic bacteria such 

as B. amyloliquefaciens, probably due to the presence of inter subunit disulphide 

bonds. Disulfide bonds appear to make a considerable contribution to thermal 

stability, an effect mainly attributed to the decreased entropy of the denatured 

protein. B. amyloliquefaciens PAPI with an engineered inter-subunit disulphide 

bond showed increased thermal stability, without any decrease in enzymatic 

performance. However, pH stability was not altered (Kabashima et al., 2001).

The active sites of cysteine proteases typically have a catalytic triad, an oxyanion 

hole and a specificity pocket. The catalytic triad of B. amyloquefaciens PAPI 

comprises Cysl44, Hisl68 and Glu81 and this was concluded from site-directed 

mutagenesis of the appropriate amino acids (Odagaki et al., 1999).

The two cysteine residues of BamPAPI, Cys68 and Cysl44, were mutated to Ser. 

Mutant Cysl44_ Ser has no detectable PAPI activity (Yoshimoto et al., 1993), 

while Cys68_Ser has wild type activity, implicating Cysl44 as the active site 

thiol. Also, by titration with 5,5'-dithio-bis-(2-nitrobenzoate), it was shown that 

the Cys68 is located internally. Hisl68 is also completely conserved, and thus 

PAPI was thought to be a cysteine protease with a Cys-His catalytic diad or Cys- 

His-Asp/Glu catalytic triad.

Several residues were investigated by (Le Saux et al., 1996) as possible residues 

contributing to the active site of Pft?API. Substitution of the Cys-144 and His- 

166 residues by Ala and Ser, respectively, resulted in inactive enzymes. Proteins 

with changes of Glu-81 to Gin and Asp-94 to Asn were not detectable in crude 

extract and were probably unstable in bacteria. The results suggest that Cys-144



and His-166 constitute the nucleophilic and imidazole residues of the enzyme 

active site, while residue Glu-81, Asp-89, or Asp-94 might constitute the third 

part of the active site.

Tsunasawa et al. (1998) substituted Cysl42 residue of PfuVP&l with Ser, 

resulting in inactive enzyme, and by sequence analysis, showed that the catalytic 

triad Cysl42, Hisl66, and Glu79 corresponds to Cysl44, Hisl68 and Glu81 of 

BamPAPI. The location of the Cysl44 at the N terminus of an a  helix could have 

an important effect on the enzyme’s reactivity. A location such as this could 

effect catalysis, as the helix dipole can depolarise the amide bond and enhance its 

reactivity. PAPI does not have a well defined oxyanion hole; however, it is 

possible that a tetrahedral oxyanion could be produced by the contribution of 

Cysl44 and Arg91 and their respective side chains. A hydrophobic region close 

to Cysl44 provides an area of high specificity. This area provides a binding site 

for the pGlu of the enzyme's substrate. This pocket appears to have some 

conformational flexibility, hence allowing for maximum interaction with the 

substrate. PAPI appears to only have one pocket of specificity (Odagaki et al.,

1999). The catalytic residues Glu81, Cysl44, and Hisl66 in the enzyme from B. 

amyloliquefaciens are all conserved in the human sequence.

1.3.6 Genetics of PAPI; Cloning strategy and sequence for pRV5

Forms of pyroglutamyl-peptidase I from bacteria and archaea have been cloned 

and sequenced, and the proteins have been crystallised and their three- 

dimensional molecular structures determined (Yoshimoto et al., 1993; Singleton 

et al., 1999a,b). Many data are available of homology and biochemical 

characterisation of PAPI. Genes have been cloned for the enzymes of Bacillus



subtilis (Awade et al., 1992), Pseudomonas fluorescens (Gonzales and Robert- 

Baudouy, 1994), Staphylococcus aureus (Patti et a l., 1995) and Streptococcus 

pyogenes (Cleuziat et al., 1992). PAPI from Bacillus amyloliquefaciens has been 

particularly well studied: its gene has been cloned, sequenced and expressed in 

Escherichia coli, and the protein product has been purified. B. subtilis, S. 

pyogenes and P. fluorescens were Southern blotted and only one signal was 

detected, indicating that the genes are present as single copies (Awade et al., 

1992a,b; Cleuziat et al., 1992; Gonzales and Robert-Baudouy, 1994). B. subtilis 

and S. pyogenes total RNA samples were Northern blotted: the mRNA sequences 

were around 700 bp in length. Table 1.3 shows prokaryotic PAPI sequences.

PAPI enzyme sequence was mapped against the human genome to localise the 

PAPI gene. The gene is located on the nineteenth chromosome at approximately 

nucleotide number 18,945, unlike the PAPII gene, located on chromosome 

twelve. Further analysis of human PAPI shows the base composition to be 164 

A, 194 C, 216 G, and 133 T; the total count is approximately 710 base pairs.

In comparison to PAPII (see below), PAPI is a lot smaller than PAPII. PAPI 

comprises approximately 710 bp, while the PAPII comprises approximately 5670 

bp, and the PAPI structure is almost eight times smaller than that of PAPII. To 

compare the homology of PAPI,II, two genomic structures were aligned together 

as in Figure 1.6. A certain amount of homology with PAPII begins at basepair 32 

and continued until basepair 837; approximately 42% direct homology is 

observed between the two genomic sequences, suggesting that the two structures 

were at one point in time derived from a common gene (Mader, 2001).
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Figure 1.6. Comparison of the genetic structures of mammalian PAPI and PAPII. Base homology is indicated by a red colour. The aligned and 

common genomic bases are coloured in red and the uncommon bases are coloured in blue and black, (http://prodes.toulouse.inra.fr/multalin).
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E.coli strain (XL-10 Gold) containing plasmid pRV5 encoding PAPI, was used 

in this work, the cloning strategy for pRV5 was described in detail by Vaas (PhD 

thesis, DCU, 2005) and is outlined in figure 1.7. An E coR l I H indlil restriction 

enabled the entire rHsa-papl-6xHis fusion to be transferred from pRV3 to 

pPC225, which had been opened with EcdRHHindlil. The EcoRl/H indlll 

restriction produced a band corresponding to the expected 680 bp fragment 

containing the rHsa-papl-6xHis fusion. EcoRY, N co l, EcoR l and Hindlil single 

restrictions produced bands corresponding to the expected 5235 bp linearised 

plasmid.

The exact sequence of pRV5 was subsequently verified by commercial DNA 

sequencing by MWG Biotechnology. The rHsa-pap 1 -6xHis fusion (680 bp) is 

excised from pRV3 (by restriction with EcoRl and Hindlil) and ligated into 

pPC225 (previously opened with EcoRl and HindlU ). The resulting construct, 

pRV5, has rHsa-papl-6xRis fusion under control of Ptoc promoter.

Cloning of human PAPI



Figure 1.7 Cloning strategy for pRV5. Figure reproduced from P-R Vaas (PhD thesis, DCU, 2005) by permission.
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pRV5 T GT G G A G C T C A  - 5 3 3 5  b p

pRV5
= 4 6  A . A .

CTAGGCCT T GGCGACAGCGT GGACCT GCAT GT GT ACGAGA = 166 bp

G  s 7  A  SK SK
IP'R'V'S ; T T c»_ u=-gt t  gjvgt ac caa.ac.agt c C-ZVG-rvcGAC rr ca t c c c cg c c c  t  g t gggacg./va.cgc-M-C./vgt c ca ca g c t g g t  cggt s c a t g t gggg : 249 bp

F t  e  0 = 1  0 2  / \  A .
pRV5 : GT GT CAGGCAT GGCGACCACAGT CACAC T GGACGAAAT CGT GGACACAA.CAAGGGCT Ĵ GA-ĵ G-G-CGĜCr T GGACAACT GCCGC T T T T G : 332 bp

E> G S Q C C ' V ' E D G E ' E  S X D S X X D M D A V G K F I V  ; J JlO s \ A
F-RVS ; CCCCGGCT CCC.A.GT C5-CT GCGT GGAGGACGGGCCT GAAAGCAT T GACT CCAT OAT CGACAT GGAT GCT GT GT GCAAGCGAGT CA : 4!5 bp

T -J- I, G I* D V S V T X S Q D A G R . ’i T L C D E '  T Y Y T S ID. : 157AA 
G CAC G-T T GGGCCT GGAT C5TGT CGGT CGAC CAT GT G GCAGGAT GCCGGCAGATAT CT C T GCT GAC T *3? T A.C CTACT ACAC G T GT T T G = -4̂ K bp

Y Q S H G R S A. E V H V E> E> I, G K 'xT 1ST A D Q L G R. A X, : ] S5 /V/V
pRV5 : TAGGAGAGTGAGGGTGGATCAGCCTTGGTCCACGTGCCGCCACTGGGGAAGCCGTyVCAACGOGGACCAGC TGGGCAGGGC-A.C T : 581 bp

pRV5

it*tr
? C  T

I ill kcr

■‘c .*x,x-- /»**/>.

= 212 A A  
: 664 bp

_________ 5GTTC
stop codon

- T GT T T T GGCGGAT CG AG A GAAGAT T T T GAGG GO? G.AT ACAGAT TAAAT C
= 2 1 7  A /V 
= 747 bp

Figure 1.8 pRV5 sequence detail
The rHsa-papl (blue) and Ptac promoter (red) regions of pRV5 are shown in detail. The translation of rHsa-papl is shown in blue above the 
ORF. The 6xHis tag sequence is shown in green, joined to rHsa-papl by a Gly-Ser linker. Two ribosome binding sites (RBS, black) are shown. 
The first RBS upstream from the rHsa-papl start codon was subcloned from pRV3 while the second RBS was present on pPC225 associated 
with the Ptac promoter. Restriction enzymes and primers PAPHsK & PAPHsL are marked in red. Figure reproduced from P-R Vaas (PhD thesis, 
DCU, 2005) by permission.
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1.4 Pyroglutamyl Peptidase II

Unlike PAPI, PAPII (EC 3.4.19.6) is a membrane-bound, zinc-dependent 

anchored ectoenzyme, mainly located in the CNS and is known as a highly 

specific enzyme for TRH and very closely related compounds. It belongs to clan 

MA, family M l, of the MEROPS database, (http ://Merops. Sanger, ac.uk)

PAPII activities have been founded in rabbit, pig brain, rat brain and pituitary, 

bovine brain and human brain. It is a dimer of two identical 116 kDa subunits 

with a relatively large molecular mass (230kDa). PAPII has a broad pH optimum 

in the neutral range, and has its active site directed toward the extracellular 

space, where TRH would be located when involved in neurotransmission. PAPII 

is inhibited by chelating agents (e.g. 1,10-phenanthroline, 8-hydroxyquinoline 

and EDTA) but not by sulfhydryl blocking agents or the specific PAPI inhibitor, 

pGlu diazomethyl ketone. PAPII is primarily located in the CNS, where it is 

believed to play a predominant role and where it is almost exclusively associated 

with neurons, presumably on postsynaptic membranes (Gallagher et al., 1997). 

Current evidence strongly indicates that PAPII is the principal enzyme 

responsible for terminating the actions of neuronally released TRH by removing 

the L-pGlu residue. (O’Connor and O’Cuinn 1985; Charli et al., 1998) PAPII 

identified as metallopeptidase clan MA, family M l, as MEROPS database. 

Inhibition of PAPII specifically increases recovery of TRH released from brain 

tissue. (Charli et al, 1987)

The genes for rat and human PAPII were cloned (Schauder et al. 1994; 

Schomburg et al., 1999) and the sequences of human and rat PAPII show a high 

degree of conservation (96% identical residues).



Northern blot analysis of the genomic sequence shows the highest transcript 

levels in the brain. The PAPII gene was localised to the long arm of human 

chromosome 12.

Southern analysis suggests that the gene is present as a single copy of DNA in 

many vertebrates and shows that PAPII is a specific neuropeptidase or 

neuromodulator that has been highly conserved among species. A serum form of 

PAPII has been reported, which has the same degree of specificity for TRH and 

identical biochemical characteristics as the membrane-bound form (Cummins 

and O’Connor 1998).

A study (Schmitmeier et al., 2002) supports the hypothesis that both forms of 

PAP II are derived from the same gene, whereby the serum enzyme is generated 

by proteolytic cleavage of the membrane-bound form in the liver.

1.5 Serum Thyroliberinase (ST).

Serum Thyroliberinase (E.C 3.4.19.6) was partially purified from porcine,

(Taylor et al., 1978) and rat serum (Bauer et al., 1979). Presently, the source of 

serum enzyme is unknown but earlier study by (Scharfman et al., 1990;1991) 

points to the liver as the potential source. Serum enzyme was not inhibited by 

sulfhydryl-blocking reagents but inhibited by metal chelators, it shares many 

features with PAPII: it is optimally active at neutral pH, and has a molecular 

mass of 260 kDa. (Bauer et al., 1981) have demonstrated that this enzyme 

cleaves the pyroglutamyl bond of TRH. However, it did not cleave other pGlu 

substrates such as LHRH, unlike PAPII. Hence researchers named this new 

enzyme “thyroliberinase”. (Cummins and O’Connor 1998) It is assumed that 

PAPII and Thyroliberinase are products of the same gene. Serum enzyme may be



involved in regulatory mechanisms. Degradation of TRH by serum 

thyroliberinase, during its transport via the hypophyseal portal vasculature to the 

anterior pituitary, might represent a functional control element regulating TRH 

availability to receptors on target trophic cells. It may also play a role in body 

weight regulation (Cummins mid O’Connor 1998). Schmitmeier et al. (2002) 

claimed fragment analysis of the serum ST revealed that the peptide sequences 

correspond to the cDNA deduced amino-acid sequences of the membrane-bound 

brain PAPH



Table 1. 4 Comparison of Pyroglutamyl Peptidase types

Enzyme type PAPI PAP II Thyroliberinase

Source Mammalian and 

bacterial

Mammalian and 

bacterial

Mammalian

Type Cysteine protease Metalloproteases

Location in body Mainly in CNS Primarily CNS 

and in other 

tissues

In liver

pH Optimum 6.5-8.5 7.0 7.0

Requirements Thiol reducing 

agent

(DTT),EDTA

Metal ion TRH, Metal ion

Molecular mass 22-60 kDa ~230kDa ~260kDa

Specificity Biologically 

active peptides, 

pGlu-X (X= 

amino acid)

TRH and TRH 

analogues

TRH

Inhibitors Sulfhydryl- 

blocking reagents, 

pGCK.

Metal Chelators, 

CHPNA.

Metal Chelators,

Thyroid

Hormones.

Form Monomeric Dimeric Unknown

Chromosome 19 12 Same as PAPII 

gene



1.6 PAPI wild type, and mutants F16Y, Y147F, as candidates for study

Proteases have a variety of important roles in the body. The use of proteases in 

biotechnology is an area of rapid growth and development. However, the uses of 

enzymes have some disadvantages in that they are easily denatured and 

inactivated and, therefore, lose their catalytic activity.

PAPI may have use in protein sequencing and/or in processing of peptides, and 

possibly in enzymatic peptide synthesis for the attachment of N-terminal pGlu 

residues. A thorough understanding of its stability and catalytic properties would 

be needed for any such applications.

The aim of this project is to study the recombinant human enzyme PAPI stability 

together with two of its mutants, F16Y and Y147F, which had previously been 

prepared by other workers.

In this thesis, PAPI was fully investigated with regards to its stability at elevated 

temperatures (Results; section 2.8), and in presence of organic solvents (Results; 

section 2.9). The kinetic parameters were also determined (Results; section 2.7). 

The stability and catalytic characteristics of PAPI mutants F16Y and Y147F 

were also investigated.



Chapter two

Materials and Methods



2.1 EQUIPMENT

Centrifugations were performed using an ALC Multispeed PK 121 bench 

centrifuge (r = 12cm, max speed 4300 rpm), or a Beckman centrifuge with rotor 

JA-14 (r = 10cm, max speed 14,000 rpm), or rotor JA-20 (r = 6 cm, max speed

20,000 rpm) (PAPI isolation). Gel electrophoresis was performed using a Biorad 

Mini Gel Box with ATTO vertical electrophoresis system and Biorad power pack 

1000. Enzyme and protein assays were perfomed using a Perkin Elmer LS-50 

Luminescence Spectrometer, Unicam UV2 uv/ visible spectrophotomer and a 

Labsystems Multiskan MS microplate reader

2.2 MATERIALS

E.coli strain (XL-10 Gold) containing plasmid pRV5 encoding PAPI and the 

mutants F16Y and Y174F were gifts from the Laboratory of Dr B.O’Connor, 

School of Biotechnology and National Centre for Sensor Research, DCU. 

Chemicals (reagent grade unless otherwise noted) used in these studies are listed 

below.

Bachem, (UK) Ltd.

Pyroglutamylaminomethylcoumarin (PGlu-AMC), Pyroglutamyl 

pentachlorophenol (Pyr-O-pcp)

Bio soft (Cambridge, UK) supplied the Enzfitter programme used for analysis of 

results.

Fisher Scientific UK Ltd., Loughborough, England.



Acetic acid glacial, acetone, acetonitrile HPLC grade, dimethylformamide HPLC 

grade (DMF), diaminoethanetetra-acetic acid (EDTA), ethanol 100% (v/v), 

glycerol, hydrochloric acid (HC1, 37% (v/v)), sodium chloride (NaCl), sodium 

hydroxide (NaOH), tetrahydrofuran HPLC Grade (THF), Tris-(hydroxymethyl) 

aminomethane (Tris).

Pierce Chemical Company, Illinois, USA.

BCA (Bicinchoninic acid) Protein Assay Kit, GelCode® Blue Stain Reagent.

Sigma-Aldrich Chemical Company (Tallaght, Dublin 24)

His-Select nickel affinity gel, 7-amino-4-methylcoumarin (AMC), 

Acrylamide/bis-Acrylamide 30% (w/v) solution, albumin bovine serum (BSA), 

ammonium persulphate, Bradford reagent, brilliant blue R, bromophenol blue, 

dialysis tubing (3.3cm x 2.1cm), dimethylsulphoxide HPLC grade (DMSO), DL- 

dithothreitol (DTT), Potassium dihydrogen phosphate (KH2 PO4 ), Dipotassium 

phosphate (K2 HPO4 ), sodium dodecyl sulfate (SDS), Sigma Marker™ low range 

(m.w. 6,500- 66,000), SigmaMarker™ wide range (m.w. 6,500-205,000) 

molecular weight markers, protein reagent (biuret), N, N,N’,N’ -tetramethylene- 

ethylenediamine (TEMED), tetracycline, Copper (II) sulphate, Ampicillin, IPTG, 

Imidazole, Glycine, EDTA, Dimethyl Suberimidate (DMS), N-Ethylmaleimide 

(NEM).

Oxoid (Basingstoke, Hampshire, UK)

Yeast Extract, Tryptone



METHODS

2.3 Purification

2.3.1 Preparation of Solutions:

Preparation of potassium phosphate buffer (50mM), pH 8.0 

Dipotassium phosphate (K2HPO4, 50mM, 5.75g) was dissolved in distilled 

water, transferred to a 500 ml volumetric flask and made up to the mark with 

distilled water.

Potassium dihydrogen phosphate (KH2PO4, 50mM, 3.40g/500ml) was prepared 

similarly.

The acid component was used to adjust the pH of the base component to pH 8.0. 

The pH 8.0 solution was dispensed into a clean bottle, capped, and autoclaved at 

121°C, 15 lb/in2,20 minutes.

Following cooling, it was stored at 4°C until required for use.

2.3.2 Production of LB (Luria-Bertani) Broth:

Three litre quantities of broth were prepared.

Ingredients per Litre:

Tryptone lOg

Yeast Extract 5g

Sodium Chloride lOg

The above weighed ingredients were placed into a 1000ml conical flask. 

Approximately 800ml distilled water was added and the ingredients stirred, using 

a magnetic stirrer. The solution was transferred to a 1000ml volumetric flask and 

brought up to the mark with distilled water.

Aliquots (500ml) of the medium were transferred into six 1000ml conical flasks.



Bungs were inserted, tinfoil and autoclave tape placed around the necks of the 

conical flasks and the flasks autoclaved at 121 °C, 15 lb/in , for 20 minutes. 

Following cooling, the media were stored at 4°C until required for use.

2.3.3 Inoculation of recombinant E. coli overnight culture.

Sterile LB broth (10ml) was dispensed aseptically into sterile universals 

The appropriate volume of antibiotic (ampicillin: 100mg/ml stock, used at 10|il 

/10ml LB broth) was added aseptically into the broth.

One recombinant E. coli isolate was aseptically inoculated into each universal, 

which was labelled and incubated at 37°C overnight.

2.3.4 Production of Recombinant E. coli Suspension.

The appropriate quantity of antibiotic (ampicillin: lOOmg /ml = 100(.il /100ml LB 

medium) was aseptically added to LB growth broth. Broth (100ml) was 

aseptically inoculated with 3ml of overnight culture. The flasks were labelled and 

incubated at 37°C for a minimum of 5 hours. Growth of E. coli cells was 

monitored by aseptically taking samples and measuring the apparent absorbance 

at 600nm. Once the cells had entered exponential phase (Â oo 0.3-0.5), 

production of the recombinant protein was induced by addition of 0.05M IPTG 

(500 jxL of lOmM IPTG per 100ml broth). Cells were allowed to produce 

recombinant protein for 5 hours or overnight. Cells were then centrifuged, 

(6000rpm 10 min, 10cm radius). The supernatant was decanted off, and the cell 

pellet labelled and stored at 4°C until required.



2.3.5 Isolation and purification of recombinant PAPI.

Pellet washing and cell disruption steps.

If  cells were frozen, they were removed from the freezer and thawed adequately. 

The pellet was re-suspended in 10ml of Potassium Phosphate Buffer (50mM, pH 

8.0). If necessary, the solution was mixed by repeatedly drawing and discharging 

10ml aliquots with the aid of a pi-pump and pipette.

Once the pellet had been totally re-suspended, the sample was sonicated (2.5 

pulses.s'1, 220 W, amplitude 40, for 15 min) to allow the periplasmic proteins to 

enter the buffer. The solution was kept on ice to prevent heating and to minimise 

proteolytic damage.

The lysate suspension was then centrifuged to remove the cells. The supernatant 

was retained in a separate universal.

I

2.3.6 Purification of recombinant protein via Ni column chromatography

Ni2+resin (1ml) was added to the universal containing protein lysate suspension 

from the previous stage, which was attached to a suitable shaking apparatus (The 

Belly Dancer, shaking value set at 7).

The Ni2+ resin was allowed to mix and interact with the recombinant protein for 

one hour before being carefully poured into a suitably sized clean column. The 

resin was allowed to sink to the bottom of the column. The remaining mixture 

was run through, taking care to ensure that the resin never ran dry. The run off 

was collected and labelled.

Potassium phosphate buffer (50mM, pH 8.0, 10ml) was run through the column 

three times; each time the run-off was collected and stored in a labelled 

container. Next, wash buffer (50mM potassium phosphate, pH 8.0, containing



20mM imidazole, 20ml) was run through the column three times; each time the 

run-off was collected and stored in a suitably labelled container.

Elution buffer (50mM potassium phosphate, pH 8.0, containing 200mM 

imidazole, 20ml) was then run through the column three times; each time the 

run-off was collected and stored in a labeled container. The required protein 

solution (containing native PAPI, or mutants F16Y and Y147F, activity) is 

generally located in fraction one or two.

2.4 SDS Polyacrylamide gel electrophoresis

The procedure used was based on that of Laemmli et al (1970)

2.4.1 Gel Preparation

Glass covers were cleaned, dried and assembled, ensuring seals were 

accurately placed.

Separating gel was prepared as outlined below:

Separating Gel

Distilled Water 1560^L

1.5M Tris-HCl, pH 8.8. 1625^iL

Acrylamide/bis-acrylamide (30% /0. 8%, w/v) 3250p,L

20% (w/v) SDS 32.5(iL

10% (w/v) Ammonium persulphate. 32.5p,L

TEMED. 3.25|j,L

The liquid gel was added slowly into the assembled gel apparatus, carefully and 

at an angle to prevent air bubble formation.

After pouring, the gel was layered with 70% v/v ethanol and allowed to set.



Once the gel was fully set, the ethanol was poured off and the stacking gel was 

prepared as outlined below and carefully added. It too was allowed to set. 

Stacking Gel

Distilled Water 1538jliL

0.5M Tris-HCl, pH 6.8. 625p.

Acrylamide/bis-acrylamide (30%/0.8%, w/v) 335^iL

20% (w/v) SDS 12.5nL

10% (w/v) Ammonium persulphate. 12.5|j,L

TEMED. 2.5(j,L

Once the gel had set, it was stored at 4°C overnight to allow the acrylamide to

cross-link fully and settle.

Running Buffer (SX1) Preparation.

This buffer was prepared as a 5X concentrate as outlined below.

TrisBase 15g

Glycine 72g

SDS 5g

This mixture was diluted to 1 L with distilled water and its pH adjusted to 8.3.

2.4.2 Sample Buffer (5X) Preparation.

This buffer was prepared as a 5X concentrate as outlined below.

Distilled Water lOOO^L

0.5M Tris-HCl 1250^L

Glycerol 5000|j,L

10% (w/v) SDS 2000jiL

0.5% (w/v) Bromophenol Blue 250|iL

2-Mercapoethanol. 500f.iL



Sample (25jiL) was added to 5jaL sample buffer, previously prepared as above in 

an Eppendorf tube.

The tube contents were then boiled for three minutes and allowed to cool. 

Running of SDS PAGE

The clips and outer plastic seal were removed from the gel assembly and the gel 

was inserted, correctly orientated, into the housing.

The outer trough was half filled with running buffer and any entrapped air 

bubbles were removed. The inner trough was filled to the top with running 

buffer.

The prepared samples and markers were carefully injected into the different 

lanes, and the location of each sample noted. Molecular weight markers in the 

range of 205,000 -  6,500 daltons were used.

The top of the housing was attached and the electrodes connected to the power 

pack. The setting was adjusted to 25 mA constant current. The gel was allowed 

to run until the dye line reached the end of the gel.

Power was then turned off and the electrodes removed. The gel was carefully 

removed from the plates and placed into a large weighing boat. It was then 

flooded with distilled water to remove SDS. The weigh boat containing the gel 

was then placed on a Belly Dancer shaking device (at a rotating setting of 4) for 

ten minutes. This wash process was repeated three times.

After the wash, approximately 20ml of staining solution was added and the gel 

again placed on the Belly Dancer. If staining took place overnight, the weighing 

boat was covered with tinfoil to prevent evaporation.



Following staining, the gel was again washed with distilled water three times and 

after a period of time (24 hours) bands became clearly visible, and were 

examined and photographed.

Table 2.1. Molecular weights of Sigma marker proteins

Protein Mw (Da)

Myosin 205,000

ß-Galactosidase 116,000

Phosphorylase 97,000

Fructose-6-phosphate kinase 84,000

Albumin, Bovine Serum 66,000

Glutamic Dehydrogenase 55,000

Ovalbumin 45,000

Glyceraldehyde-3- phosphate Dehydrogenase 36,000

Carbonic Anhydrase 29,000

Trypsinogen 24,000

Trypsin Inhibitor 20,000

a  -Lactalbumin 14,000



2.5 PROTEIN DETERMINATION

2.5.1 BCA Protein assay.

This procedure is based on a method of Smith et al. (1985).

Working BCA reagent was prepared by mixing one part copper sulphate with 

fifty parts bicinchoninic acid solution (both from BCA kit, Pierce Chemicals)

The working solution (200^L) was dispensed into wells of a 96-well microplate. 

Dialysed samples (25|jL) from the nickel affinity column (Run through, Wash 

and Elution samples) were added in triplicate to wells.

A standard dilution range (0 - 2mg/ml) was constructed using 2mg/ml BSA 

stock solution.

Reaction was allowed to occur at 37°C for 30 minutes.

The resulting colour was then read at 560nm in an automatic plate reader.

From these data, a standard curve was plotted and used to calculate the protein 

concentration of the various unknown samples (Run through, Wash and 

Elution).

The concentration of PAPI were calculated using the equation:

Y = 0.0012x. (See Figure 3.2.1).

2.5.2 Biuret assay

The biuret assay was used to quantify the protein concentration in samples of 2- 

lOmg/ml. Samples with a protein concentration > lOmg/ml were diluted with 

50mM potassium phosphate, pH 8.0, to achieve a protein concentration within 

the above limits. The assay was performed on a 96 well microplate by combining 

enzyme sample (25jal) with biuret reagent (200[il) and incubating the mixture at 

37°C for 30 minutes.



The absorbance of the resulting colour was read at 560nm on a plate reader.

A standard curve prepared in the range 2-10 mg/ml was used to calculate the 

protein concentration of the various samples.

The concentration of PAPI were calculated using the equation:

Y = 0.0321x. (See Figure 3.2.2).
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2.6.1 Fluorescence Quantification of 7-amino-4-methyl-coumarin (AMC): 

AMC Standard Curves

AMC (lOmM; 17.52 mg/lOml) in 100% (v/v) DMSO was diluted to 100[aM 

AMC using 50mM potassium phosphate, pH 8.0. This stock solution was stored 

in a dark glass container at 4°C to minimize any fluorescence. Lower AMC 

concentrations were prepared by dilution using 50mM potassium phosphate, pH

8.0 to form standard curves of 0-10|jM. All curves were prepared as follows: 

25|il 50mM potassium phosphate, pH 8.0 

100|il AMC (concentration 0-10 (ag/ml)

100^11.5M acetic acid 

Fluorimetric analysis of these samples was achieved using a Perkin Elmer LS-50 

fluorescence spectrometer set at excitation and emission wavelengths of 370nm 

and 440nm, respectively. The excitation slit width was maintained at lOnm while 

the emission slit width was adjusted according to the fluorescent intensity 

observed. Each concentration was assayed in triplicate and the mean fluorimetric 

intensity was calculated.

2.6 ENZYME ASSAYS



Substrate Preparation:

Stock solutions for use in the assay mixture were EDTA (200mM in distilled 

water), DTT (200mM in distilled water) and pGlu-AMC (lOmM in potassium 

phosphate buffer, pH 8.0).

The working assay solution was prepared by dilution of the above stock solutions 

as follows.

DTT 50jiL (final concentration lOmM)

EDTA 10 (xL (final concentration 2mM)

pGlu-AMC 100(jL (final concentration 0.5mM)

Potassium phosphate buffer pH 8.0 825p,L (final concentration 50mM)

A range of dilutions (0,10,20, -100 %, v/v) of PAPI was prepared from the 0.45 

mg/ml PAPI stock solution.

Each enzyme dilution was placed into separate wells on the fluorometer 

microplate (25 pL triplicate aliquots) and IOOjuL of the assay solution was then 

added to each well.

The microplate was incubated at 37°C for 30 minutes, after which time IOOjiL of 

1.5M acetic acid was added to each well to arrest enzyme activity.

The plate was then inserted into the fluorometric plate reader and the fluorescent 

intensity was recorded for each enzyme concentration. The average of the 

triplicate was calculated for each dilution. Off scale readings were ignored.

The specific enzyme activity is calculated from Equation Y = 0.0012x.

One unit of activity is defined as the amount of enzyme which releases 1 

nanomole of AMC per minute at 37°C (unit = nmol.min'1)

2.6.2 Quantitative fluorimetric measurement of PAPI activity.



From the standard curve: [AMC] in reaction sample is Flu/225 pi = X  pM

Reaction volume is 125x1 O'6 L = X  pmol.L'1

Therefore, AMC released = XQ25 x 10"6*) pmoles.min1
30min

Reaction uses 25x1 O'6 L enzyme

Therefore, AMC released by 1ml enzyme = X (125 x 10̂ ) umol.min'1
30(25 x 10-6)

= X (125 x 10̂ (1000) nmol.min̂ .ml' 
30(25 xlO^X 1000)

= X  uirits.mT1 
6

= Flu units-ml'1 (m = 37.46) 
6 m

(m = slope of AMC standard curve)

When expressing units as (.imoles.min', this formula changes to 

Flu/1000x6m units.ml’1



2.6.3 Linearity of Pyroglutamyl Peptidase (PAPI) assay with respect to time.

Purified PAPI was diluted with 50mM potassium phosphate buffer, pH 8.0. The 

enzyme was assayed in triplicate for different times with 0.5mM pGlu-AMC as 

described in Section 2.6.2. A plot of fluorescence intensity versus time was 

constructed.

2.6.4 Linearity of Pyroglutamyl Peptidase (PAPI) assay with respect to 

enzyme concentration.

Purified PAPI was diluted with 50mM Potassium Phosphate buffer, pH 8.0, to 

achieve enzyme concentrations ranging from 0-100% v/v of the initial 0.45 

mg/ml stock PAPI solution. The enzyme at these different concentrations was 

assayed in triplicate with 0.5mM pGlu-AMC as described in Section 2.6.2. All 

assays were carried out in triplicate. A plot of fluorescence intensity versus 

enzyme concentration (%) was constructed.

2.7 KINETIC ANALYSIS
2.7.1 Km and Vmax determination for PAPI with pGlu-AMC

pGlu-AMC (lOmM in 5ml 100% DMSO) was diluted to 0.5mM with 50mM 

potassium phosphate buffer, pH 8.0. This solution was further diluted in buffer to 

a range of pGlu-AMC concentrations. Purified PAPI was assayed at each 

substrate concentration, as described in Section 2.6.2. The Michaelis-Menten 

constant (Km) and maximum velocity value (V„iax-) were determined using 

Michaelis-Menten plot analysis (Enzfitter Programme, Biosoft, Cambridge, UK).

2.7.2 Km and Vmax determination for F16Y and Y147F with pGlu-AMC
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A  similar procedure to that in 2.7.1 above was fo llow ed for each o f  the mutants 

F16Yand Y174F'.

2.7.3 Active Site titration

This procedure is based on a method o f  Turk et al. (1993) using  

N-Ethylm aleim ide instead o f  E-64. (NEM , 2m M  stock solution dissolved in  

ultra-pure water, brought to 10ml final volum e) w as diluted to a lm M  working 

solution using ultra-pure water. Lower N E M  concentrations 0-2.5 nM  were 

prepared by dilution o f  the working solution with ultra-pure water. A  titration o f  

activated PAPI with N E M  was prepared. A t each point, 25 (j.1 o f  purified PAPI 

(diluted 1/70 w ith 50m M  potassium phosphate buffer, pH 8.0, was m ixed with an 

equal volum e o f  0-2.5 (iM NEM , brought to a total volum e o f  100 (il with 50m M  

potassium phosphate buffer, pH 8.0, and incubated at 37°C for 15 minutes. 

Residual activity was then determined as described in Section 2.6.2. A ll assays 

were carried out in triplicate. A  plot o f  fluorescent intensity versus N EM  

concentration was plotted and the operational molarity o f  PAPI determined

2.7.4 Active Site titration for F16Y and Y147F

A  similar procedure to that in 2.7.3 above was follow ed for each o f  the mutants 

F16Yand Y147F.



2.8 TEMPERATURE STUDIES

2.8.1 Temperature profile

2.8.1.1 Temperature profile of PAPI (wild type).

Samples o f  purified PAPI (1m l volum es) at a concentration o f  0.445m g/m l in 

50m M  potassium phosphate buffer pH 8.0 were incubated for 10 minutes over a 

range o f  temperatures between 30°C and 80°C. The samples were cooled rapidly 

on ice for 1 minute and remaining enzym e activity was assayed as described in 

Section 2.6.2. Blank controls were prepared, where 50m M  potassium phosphate, 

pH 8.0, was substituted for enzym e PAPI. A ll assays were carried out in 

triplicate. A  plot o f  % residual activity against temperature (°C) was constructed 

and the T50 (half-inactivation temperature) determined by inspection.

2.8.1.2 Temperature profile of F16Y and Y147F.

The temperature profiles o f  mutants F16Y  and Y147F were determined similarly.

2.8.2 THERMOINACTIVATION

2.8.2.1 Thermoinactivation of PAPI (wild type)

PAPI samples at a concentration o f  0.445m g/m l (i.e. standard assay 

concentration) in 50m M  potassium phosphate buffer, pH 8.0, were maintained at 

a constant 60°C in a heated waterbath. At appropriate tim e intervals, aliquots 

were taken from the incubating solution, cooled rapidly on  ice and the remaining 

PAPI activity assayed as described in Section 2.6.2. Blank controls were 

prepared, where 50m M  potassium phosphate, pH 8.0, was substituted for PAPI.

A  plot o f  % residual activity versus tim e (minutes) was calculated from the initial



activity o f  the sample. Data were fitted to a first-order exponential decay using 

the Enzfitter programme (Bio soft, Cambridge, U K ) in order to estimate the rate 

constant (k) and, hence, the half-life (ti/2).

2.8.2.2 Thermoinactivation of F16Y and Y147F

A  similar procedure was used for F16Y  and Y174F mutants o f  PAPI, except that 

the incubation temperature was 70°C for both o f  these mutants.

2.9 ORGANOTOLERANCE STUDIES

2.9.1 PAPI Stability in organic solvent

The PAPI samples at a concentration o f  0.445m g/m l in 50m M  potassium  

phosphate buffer, pH 8.0, were incubated for 1 hour at room  temperature with  

various solvents (ACN, DM F, DM SO , THF, methanol, ethanol) prepared in 

buffer to achieve final solvent concentrations ranging from 0-90% (v/v). The 

enzym e/solvent solution was adjusted to a final volum e o f  1ml w ith 50m M  

potassium phosphate pH 8.0. Blanks containing no enzym e were also set up for 

each solvent, at each solvent concentration. The samples were then assayed  

under normal conditions using the fluorimetric enzym e activity assay (Section  

2.6.2). A ll assays were carried out in triplicate. A  plot o f  activity versus solvent 

concentration (%) was constructed. Sam ples o f  enzym e/solvent were made up as 

follows:



Table 2.2: Preparation of enzyme/solvent solution (v/v)

% Solvent

(v/v)

Vol. o f  Solvent 

(Hi)

Vol. o f  Buffer

W

Vol. o f  Enzym e 

( 111)

0 0 900 1 0 0

10 1 0 0 800 1 0 0

20 2 0 0 700 1 0 0

30 300 600 1 0 0

40 400 500 1 0 0

50 500 400 1 0 0

60 600 300 1 0 0

70 700 2 0 0 1 0 0

80 800 1 0 0 1 0 0

90 900 0 1 0 0



2.10 CHEMICAL MODIFICATION

2.10.1 Enzyme Activity of PAPI modified with dimethyl suberimidate 

(DMS).

The m odification protocol was based on that o f  de Renobales and W elch (1980). 

Purified PAPI was diluted 1/50 with 50 mM  potassium phosphate, pH 8.0 (3ml). 

A  stock solution o f  DM S (2.5m g/m l) was diluted 1/50 in 50m M  potassium  

phosphate buffer, pH 8.0 (3ml). DM S was m ixed with PAPI ( 6  ml total volume); 

control PAPI and PAPI/DM S were incubated at room temperature for 30 minutes 

and a thermal profile was determined for each o f  PAPI and PAPI/DM S, as in 

Section 2 .8 .1.1. A  plot o f  % residual activity versus temperatures was plotted for 

each o f  PAPI and PAPI/DMS.

2.11 EFFECT OF ADDITIVES ON PAPI ACTIVITY

2.11.1 Effect of ammonium sulphate on PAPI activity

Purified PAPI (0.45m g/m l) was diluted 1/50 with 50 m M  potassium phosphate, 

pH 8.0, (0.009m g/m l final concentration). A  stock solution o f  (NILO2SO4 (0.5 M  

final concentration) was prepared and was m ixed (1:1 v/v) w ith PAP 1. A  thermal 

profile was determined as in Section 2 .8 .1.1. A  plot o f  % residual activity versus 

temperatures was plotted for each o f  PAPI and PAPI/(NH 4)2S0 4 .

2.11.2 Effect of trehalose and xylitol on the enzyme PAPI

Purified PAPI (0.45m g/m l) was diluted 1/50 with 50 mM  potassium phosphate, 

pH 8.0. Trehalose (0.5 M  final concentration) was prepared in potassium  

phosphate buffer, pH 8.0. Trehalose was m ixed with PAPI (1:1 v/v) and 

subjected to a thermal profile, as described in Section 2 .8 .1.1, follow ed by



measurement o f  residual activity (Section 2.6.2). The effect o f  0.5M  xylitol on  

PAPI stability was determined similarly.

2.11.3 Effect of 10 % and 50% v/v glycerol on PAPI stability.

Purified PAPI was diluted 1/50 w ith 50 m M  potassium  phosphate pH 8.0. 

Glycerol (10%  v /v  and 50% v /v  final concentrations) was prepared in potassium  

phosphate buffer pH 8.0. Glycerol was m ixed with PAPI (1:1 v/v). Control PAPI 

and PAPI with 10% v /v  and 50% v /v  glycerol were each subjected to thermal 

profile (Section 2 .8 .1.1) procedures.



Chapter Three: RESULTS

Purification of Pyroglutamyl Peptidase PAPI 

and of mutants F16Y and Y147F



3.0 RESULTS -  PYROGLUTAMYL PEPTIDASE I (PAPI)

The assay for PAPI activity is a fluorescent one. The quantity o f  A M C released  

is an index o f  enzyme activity. A ll o f  the graphs illustrate data points that 

represent the average o f  triplicate fluorescence intensity or absorbance readings 

(n =  3), m inus the blank measurement.

3.1 ASSAY DEVELOPMENT

3.1.1 AMC Standard Curves

AM C standard curves were prepared in the absence o f  pGlu-AM C as outlined in  

Section 2.6.1. Plots o f  fluorescence intensity versus AM C concentration 

(m icrom ol) were constructed and the slope o f  the lines calculated. Figure 3.1.1 

represents a typical AM C standard curve (excitation 370nm , slit width lOnm; 

em ission 440nm , slit width 2.5nm ). The effect on fluorescence intensity o f  

including crude and purified PAPI and PAPI with organic solvent in the assay  

mixture was observed. Figures 3.1.3 and 3.1.2 are plots o f  fluorescence intensity 

versus AM C concentration (microm ol) for each curve.



A1VC corcentrdkn (rriCTonml in assay)

Figure 3.1.1. AMC Standard Curve

Plot o f  fluorescence intensity (excitation 370nm , slit width lOnm; em ission  

440nm , slit width 2.5nm ) versus free AM C  concentration (micromol) in  buffer. 

a.u =  arbitrary units as indicated on Perkin Elm er LS-50 instrument (D ivision o f  

a.u. by the slope o f  the line (37.46) converts fluorescence values to  jumol AM C)
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3.1.2 AMC standard curve with 10% (v/v) DMF

r 2 =0.99

«  500-  
I  400 - 
I 300 '  

§  200-

5 10 15 20
AM C concentration (nricromol in assay)

25

Figure 3.1.2: AMC standard curve with 10% (v/v) DMF 

Plot o f  fluorescence intensity (excitation 370nm, slit width lOnm; em ission  

440nm , slit width 2.5nm ) versus AM C concentration in 10% v /v  DM F  

(D ivision o f  a.u. by the slope o f  the line (30.79) converts fluorescence values to 

jLimol AM C)



3.1.3 AMC Standard Curve for crude and purified PAPI

AMC concentration (micromol in assay)

Figure 3.1.3, AMC Standard Curve for crude and purified PAP1

Plot o f  fluorescence intensity (excitation 370nm , slit width lOnm; em ission  

440nm, slit width, 2.5nm ) versus free AM C concentration (micromol), in buffer 

(A ) . The curves for crude (■) and purified PAPI preparation ( i) are also shown. 

D ivision o f  a.u. by the slopes o f  the lines (X  and Y  for crude and pure PAPI, 

respectively) converts fluorescence values to |umol AMC.



3.1.4 AMC Standard Curve showing effects of culture medium and of 

imidazole

Plots o f  fluorescence intensity versus m icromol AM C were also constructed for 

buffer potassium phosphate, pH 8.0, im idazole and bacterial culture medium. The 

slopes o f  the lines were similarly calculated (Figure 3.1.4). These AM C standard 

curves allow  one to relate fluorescence intensity o f  pGlu-AM C assay mixtures to 

concentration o f  AM C product under all the conditions em ployed in this research

AMC concentration (micromol)

Figure 3.1.4. AMC Standard Curve showing effects of culture medium 

and of imidazole

Plot o f  fluorescence intensity (excitation 370nm , slit width lOnm; em ission  

440nm , slit width 2.5nm ) versus free AM C concentration (micromol), for culture 

medium (♦), im idazole ( ), and purified PAPI (A ) . D ivision  o f  a.u. by the slopes 

o f  the lines (X, Y  and Z for medium, imidazole and pure PAPI, respectively) 

converts fluorescence values to |amol AMC.



Table 3.1. Slopes of AMC standard curves

Sample r2 Slope

50m M  potassium phosphate pH 8.0 buffer 0.99 37.46

200m M  Imidazole 0.99 20.75

(LB) Culture medium 0.99 47.58

Crude PAPI 0.99 81.49

Purified PAPI 0.99 102.78

3.1.5 Linearity of PAPI assay with respect to time

The enzym e’s activity w as assayed using the substrate pGlu-AMC. The assay 

was optim ised with respect to tim e as described in Section 2.3.6. A  linear graph 

(r2=  0.99) for change in fluorescence versus tim e was observed Figure (3.1.5 ) 

up to 30 minutes.



Time (minutes)

Figure 3.1.5: A  graph o f  the change in fluorescence intensity (excitation 370nm, 

slit width lOnm; em ission 440nm , slit width 2.5nm ) versus tim e (minutes) for 

PAP1 activity in 50m M  potassium phosphate buffer, pH 8.0, to optim ise the time 

o f  assay.

3.1.6 Linearity of assay with respect to PAPI concentration

The assay was optimized with respect to enzyme concentration and examined as 

outlined in  Section 2.6.4. Figure 3.1.6 illustrates that the assay is linear (r2 = 0 .99 )  

for change in fluorescence versus enzym e concentration.
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PAPI concentration (m g / ml)

Figure 3.1.6: A  graph o f  the change in fluorescence intensity (excitation 370nm, 

slit width lOnm; em ission 440nm , slit width 2.5nm ) versus concentration o f  

PAPI for enzym e’s activity in 50m M  potassium phosphate buffer, pH 8.0. The 

protein concentration representing 100% activity is 0.45 m g/m l.

3.2 Pr o t e in  D e t e r m in a t io n

B ovine serum albumin (BSA ) standard curves were prepared, as outlined in 

Section 2.5. Plots o f  protein absorbance at 560nm  versus B S A  concentration 

(mg/ml) are shown in Figure 3.2.1 and 3.2.2 for standard B C A  and Biuret assays. 

PAPI concentration w as estimated to be 0.45m g/m l in the purified sample.

- 6 8 -



0 0.5 1.0 1.5 2.0 2.5
BSA concentration (mg/ml)

Figure 3.2.1: BCA Protein Standard Curve

Plot o f  absorbance at 560nm versus bovine serum albumin (BSA ) 

concentration (mg/ml).
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Figure 3.2.2. Biuret Protein Standard Curve

Plot o f  absorbance at 560nm  versus protein concentration (m g/m l) using the 

Biuret method



Pyroglutamyl peptide (PAPI) was over expressed in E. coli grown in 3 litres o f  

LB culture medium containing the antibiotic ampicilin (Section 2.3). 

Recombinant protein production was induced by IPTG addition to the broth at 

the exponential phase o f  the E. coli growth cycle (A6oo 0 .3-0 .6) and expression o f  

the protein was allowed to continue for 5 hours. The culture was then centrifuged 

at 6000 rpm for 10 minutes using a Beckm an centrifuge JA-14 rotor (r =  10 cm). 

The sample was resuspended in 10ml 50m M  potassium phosphate buffer, pH 8.0. 

The protein was released from the cell by sonication and subsequently purified 

from the lysate by nickel affinity chromatography as described in Section 3.3.3.

A  PAPI activity peak was observed and the elution profile from this colum n is 

shown in Figure 3.3.1. PAPI containing fractions were combined, m ixed with  

40% v/v final concentration glycerol and stored at 4°C until required. A  similar 

expression and purification technique was used for both mutants, F16Y and 

Y147F.

3.3 PURIFICATION

3.3.1 Purification of pyroglutamyl peptidase (PAP1)



Figure 3.3.1: Nickel affinity purification o f  pyroglutamyl peptidase PAPI (Fraction 11-12). Fluorescence intensity (excitation 370nm, slit width 

lOnm; em ission 440nm, slit width, 2.5nm) indicates PAPI activity. (■ ) Protein absorbance, (♦) AMC Fluorescence.



The follow ing table shows the purification data for Pyroglutamyl Peptidase I. Activity (U ) is  defined as nanomol/min/ml. 

Purification Table 3.2:

Stage of operation Total protein conc 

(mg)

Total Activity (U.mg'1) Recovery (%) Specific Activity 

(U.mg1)

Purification

Factor

Resuspended cells 19800 1215 100 0.06 1

Ni2* column 2250 765 63 0.34 5.67



3.3.2 Purification of mutants F16Y and Y147F.

Similar expression and purification techniques were used for both mutant F16Y 

and YI47F (1.5 litres E.coli culture grown in LB medium, as described in 

Section 3.2). F16Y and Y147F activity peaks were observed and the elution 

profiles from nickel affinity chromatography columns are shown in Figure

3.3.2.A and Figure 3.3.2.B, respectively. Mutant fractions were combined, mixed 

with glycerol 40% (v/v) final concentration and stored at 4°C until required.



A: Purification of F16Y mutant
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Figure 3.3.2.A N ickel affinity purification o f  mutant F16Y  (Fraction 16). Fluorescence intensity (♦) (excitation 370nm, slit width lOnm; 

em ission 440nm , slit width, 2.5nm) indicates F16Y activity. (■ ) Protein concentration. Specific activity o f  purified F16Y  was 0.008 U/mg; U  is 

defined as nanomoles/min/ml.



B: Purification of Y147F mutant

Figure 3.3.2.B: Nickel affinity purification of mutant enzyme Y147F (Fraction 16-17). Fluorescence intensity (♦); (excitation 370nm, slit width 

lOnm; emission 440nm, slit width, 2.5nm) indicates Y147F activity. (■) Protein concentration.

Specific activity of purified Y147F was 0.83 U/mg; U is defined as nanomoles/min/ml.



SDS polyacrylamide gel electrophoresis was performed, as described in section 

2.4. The stained gel showed that pyroglutamyl peptidase I (30jj.1 per well) 

migrated as a single band on SDS-PAGE with a relative molecular weight range 

of 23-24 kDa; see Figure 3.3.3.

3.3.3 SDS (Polyacrylamide Gel Electrophoresis

Figure 3.3.3: SDS-PAGE ofPAPL

The molecular weight low range markers on the right (lane2) were (from top) 

bovine serum albumin ( 6 6  kDa), egg albumin (45 kDa), glyceraldehyde-3- 

phosphate dehydrogenase (36 kDa), carbonic anhydrase (29 kDa), bovine 

trypsinogen (24 kDa), soybean trypsin inhibitor (20.1 kDa) and alpha- 

Iactalbumin,bovine milk (14,200). The wells between the sample and molecular 

weight markers were empty.

F16Y and Y147F each give a single band in a similar location.



Chapter Four : RESULTS 

Studies on Pyroglutamyl Peptidase (PAPI)



4.0 STUDIES ON PYROGLUTAMYL PEPTIDASE (PAPI)

4.1 Introduction

Pyroglutamyl peptidase (PAPI) is an omega exopeptidase, which cleaves 

pyroglutamic acid from the N-terminus of peptides. The amide substrate, pGlu- 

AMC when hydrolyzed by PAPI releases AMC, which is monitored 

fluorometrically, making this a sensitive and suitable substrate.

Recombinant PAPI was investigated with regards to temperature and solvent 

stability prior to chemical modification of the enzyme. A temperature profile was 

determined and the apparent half-inactivation temperature (T5 0) estimated. The 

effect of organic solvents on PAPI was investigated with a range of solvents at 

various concentrations and the half-inactivation concentration (C5 0) determined 

for DMSO and methanol. The steady state kinetics of wild type and mutants 

F16Y and Y147Y were studied.



4.2.1 Active Site Titration of PAPI

Active pyroglutamyl aminopeptidase (0.45mg/ml stock concentration diluted 

1/50 for assay) was determined, as described in section 2.7.3. Figure illustrates 

the titration of PAPI with NEM. The concentration of active enzyme was 

determined from this plot, where the intercept on the x-axis (best line fit) is equal 

to the concentration of active enzyme. The enzyme was determined to have an 

operational molarity of 0.8(iM,

4.2 PAPI KINETICS

Figure 4.2.1 : Titration of PAPI with NEM

Plot of Fluorescent Intensity (excitation 370nm, slit width lOnm; emission 

440nm, slit width 2.5nm) and activity ((¿mol/ml/min) versus NEM concentration 

(|iM) (“micromol” refers to fluorescence intensity converted to micromol AMC).



Michaelis-Menten kinetics were determined for native PAPI as described in 

Section 2.7.1. The enzyme displayed normal Michaelis-Menten kinetics, giving a 

Km value of 0,132 ± 0.024 mM, Vmax = 0.0013 ± 0.0001 ^m ol.mr’.min' 1 

(Enzfitter: Biosoft, Cambridge, UK). Values of kcJ K m and kcal were calculated 

from the equation Vmax/ [E] = kcaU where [E] is the active enzyme concentration 

(Section 4.2.1 above): kcal was 2.68x10' 5 (s'1), while kcJ K m was 0.202 (s^.M '1).

4.2.2 Km , Fmax and kcat determination for pGlu-AMC with PAPI (wild type)

Figure 4.2.2: Michaelis-Menten plot for PAPI.

[Substrate] = mM pGlu-AMC.

Rate = arbitrary fluorescence units (multiply by flu/6000 m, where m = 37.46, to 

convert to (imol AMC/min using a standard curve (Figure 3.1.1).

Inset: In plot of the same data.



4.3 TEMPERATURE STUDIES

4.3.1 Temperature Profile

A temperature profile of PAPI was performed at 30°C, 40°C, 50°C, 60°C, 70°C 

and 80°C, as described in Section 2.8.1.1. The enzyme was incubated at the 

appropriate temperature for 1 0  minutes in a waterbath.

The temperature profile (Figure 4.3.1) showed that the PAPI did not retain full 

activity above 45°C. The half-inactivation temperature (T50= value where 

observed activity was 50% of maximal) was estimated by inspection to be 60°C 

±1°C.

Figure 4.3.1: A temperature profile of PAPI.

Plot o f % residual activity versus temperature (°C). Activity is represented as a 

percentage of the 30°C value.



The kinetics of thermoinactivation of PAPI were studied at 60 °C (T5 0) over a 45 

minute period as described in Section 2.8.2.1. The results of % residual activity 

versus time plots were analysed using the computer programme, Enzfitter 

(Biosoft, Cambridge, UK). Data were fitted to the first order exponential decay 

equation and visual observation shows that the fit is a good one.

The k  value was 0.046 ± 0.002 min ' 1 and half-life (ti/2 ) was calculated to be 15 

minutes.

4.3.2 PAPI thermoinactivation assay

Figure 4.3.2: Thermoinactivaction of PAPI at 60 °C.

Plot of % residual activity versus time (minutes). Residual activity is represented 

as a percentage of the t = 0 value. “Amount” = % residual activity.

Inset: plot of In (Activity) versus time.



4.4 ORGANOTOLERANCE

4.4.1 Solvent stability studies

The organotolerance of native PAPI was determined using the substrates pGlu- 

AMC in potassium phosphate buffer, pH 8.0, as described in Section 2.9.1.1, for 

the following water-miscible organic solvents: DMF, DMSO, THF, ACN, 

acetone, methanol and ethanol. The effects of these solvents on PAPI activity are 

illustrated in Figures 4.4.4.1 to 4.4.4.3, in which % residual activity versus 

concentration of solvent is plotted. The half-inactivation concentration (C5 0) was 

determined where possible. Methanol and DMSO were the least injurious 

solvents for PAPI activity.

Table 4.1.

C5 0 Values for PAPI in organic solvents

Solvent C50

Dimethyl sulphoxide 10 ± 0.5 (%, v/v)

Methanol 12 ± 0.5 (%, v/v)

4.4.1.1 Tetrahydrofuran (THF) and dimethyl formamide (DMF)

This solvent had a notably adverse effect on PAPI activity. It can be see from the 

results that the activity of the enzyme declined to about 1 0 % of aqueous activity 

at 10% (v/v) THF and remained at this low level at higher THF concentrations. 

No recovery or stimulation of activity was observed at any THF concentration. 

The results of DMF with PAPI were similar to those with THF. At 10% (v/v) 

DMF, activity was 26% of that in aqueous buffer, while at 20% (v/v) DMF the



activity was 10%. Above 20% (v/v), only a flat baseline activity (<10%) of PAP1 

was apparent.

Figure 4.4.1.1 : Residual PAP1 activity (%) versus (♦)THF and (b)DMF 

concentration (%, v/v)

4.4.1.2 Acetonitrile and acetone

With ACN, reduced PAPI activity was observed at 10% (v/v) solvent 

concentration, where the residual activity was 2 1 % of that in aqueous buffer. 

Activity ranged from 10-20% at 10-50% v/v ACN and from 60%-90% (v/v) 

concentration, PAPI activity was 10% or less.



The results with PAPI were quite similar to those with other solvents. At 10% 

(v/v) concentration, residual activity was 33% and above 50% (v/v) 

concentration, no significant PAPI activity remained.

Solvent concentration % (v/v)

Figure 4.4.1.2: Residual PAPI activity (%) versus (■) ACN and (♦) Acetone

concentration (% v/v)

4.4.1.3 Methanol, Ethanol and DMSO

PAPI in the presence of methanol retained considerable activity in comparison 

with other solvents. It can seen from the results that the greatest values occur at 

10% (v/v) and 20% (v/v) concentrations, where the residual activity is 56% and 

37%, respectively, of that in aqueous buffer. PAPI in 10-20% (v/v) methanol 

performs better than in the other solvents at equivalent concentration.



Activity ranged from 26% -10%  at MeOH concentration 30% - 60% v/v. From 

70%-90% (v/v) concentration, insignificant PAP 1 activity remained.

For PAPI treated with ethanol, 10% and 20% (v/v) concentrations reduced 

activity to 40 % and 29 % of that in aqueous buffer, respectively. At 40% (v/v) 

concentration and greater, virtually no activity remained.

DMSO at 10% (v/v) and at 20% (v/v) concentration reduced PAPI activity to 

50% of its level in aqueous buffer. Activities at 20% v/v and at 30% v/v DMSO 

were 43% and 40% of the aqueous level. From 40% (v/v) concentration upwards, 

very little activity (< 1 0 %) remained.

Figure 4.4.1.3: Residual PAPI activity (%) versus (♦) Methanol, ( A )  Ethanol 

and (■) DMSO concentration (%, v/v).



Figure 4.4.1.4 ::  Residual Activity of PAPI (%) in presence of DMSO, 0» 
10% v/v.



4.4.I.5. A COMPARISON OF ORGANIC SOLVENTS FOR PAPI AT 10
AND 20 % (v/v) CONCENTRATIONS

Figure 4.4.1.5: Effect of solvents (10 and 20% v/v) on PAPI

Plot of % residual activity versus 10/20 (% v/v) solvents concentration.

(■) Solvents concentration 10 % (v/v), (■) solvents concentration 20 % (v/v)



4.5.1 Crosslinking with dimethyl suberimidate (DMS)

Modification of PAPI with the bifunctional crosslinking reagent DMS was 

performed as described in Section 2.10. Activity o f native and modified PAPI 

was determined. Amidase activity of PAPI was 100% at 30°C, while modified 

PAPI decreased to 20% at 30°C. The DMS modification did not stabilize the 

remaining activity. It was decided not to use this reagent further because of the 

low activity of modified PAPI.

4.5 CHEMICAL MODIFICATION

Figure 4.5.1. Effect of DMS on the enzyme PAPI

Plot of % residual activity versus temperature (°C) of modified PAPI (■), and 

native PAPI (♦). Activity is represented as a percentage of the 30°C level for each 

one (untreated PAPI and PAPI post-modification).



4.6 EFFECTS OF STABILIZING ADDITIVES ON PAPI

4.6.1 Effect of ammonium sulphate on enzyme PAPI 

The effect of ammonium sulphate on the stability of purified PAPI, using pGlu- 

AMC as substrate, was investigated, as outlined in Section 2.11.1. A decrease in 

enzymatic activity was observed at 0.5 M ammonium sulphate concentration 

(35% less activity than in buffer) and activity of PAPI/(NH4 ) 2  SO4  was inhibited 

by 50% at 45°C, while native PAPI was 50% active at 50°C, a higher 

temperature. Ammonium sulphate had no stabilising or protective effect on PAPI 

at any of the temperatures tested, contrary to expectation.

Figure 4.6.1: Effect of ammonium sulphate on the enzyme PAPI 

Plot of % residual activity versus temperature (°C), (♦) is native PAPI in 50mM 

potassium phosphate, pH 8.0; (■) is PAPI with ammonium sulphate. Activity is 

represented as a percentage of the 30°C value of each PAPI fraction.
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The effect of 0.5M trehalose on PAPI activity when incubated at various 

temperatures in potassium phosphate buffer, pH 8.0, resulted in a marginal 

stabilisation of PAPI activity: the activity of PAPI without trehalose was 50% at 

45°C while PAP1/0.5M trehalose was 50% active at 50°C, a higher temperature.

4.6.2 Effect of Trehalose on enzyme PAP1

Temperature (C)

Figure 4.6.2: Effect of Trehalose on enzyme PAPI

Plot of % residual activity versus temperature (°C) of PAPI with 0.5M Trehalose. 

(♦) PAPI with out trehalose and ( ) PAPI with 0.5M trehalose. Activity is 

represented as a percentage of that at 30°C in each case



Similarly to Section 4.6.2 above, xylitol was included at a concentration 0.5M in 

the PAPI-buffer mixture. Xylitol addition resulted in a significant increase in 

PAPI activity at 30°C and 40°C. PAPI with xylitol retained 50% activity at 60°C 

while, without xylitol, PAPI retained 50% of its 30°C activity at 45°C.

4.6.3 Effect of xylitol on enzyme PAPI

Figure 4.6.3. Effect of Xylitol on PAPI

Plot of % residual activity versus temperature (°C), (♦) is PAPI without xylitol 

and ( ) is PAPI with xylitol. Activity is represented as a percentage of the 30°C 

value of each case.

4.6.3.1 Thermoinactvation assay of Xylitol on PAPI



The kinetics of thermoinactivation of Xylitol on PAPI (diluted 1/50 in buffer) 

were studied at 60°C as described in Section 2.8.2.1. The results of these 

experiments were analysed using the computer programme Enzfitter.

Data were fitted to the first order exponential decay equation and visual 

observation shows that the fit is a good one.

The k  value for Xylitol on PAPI at 60°C was 0.05 ± 0.002 min"1 and half- life 

(ti/2 ) was calculated to be 13.9 minutes while the k  value of PAPI in buffer at 

60°C was 0.08 ± 0.003 min'1 and half-life (ti/2 ) was calculated to be 9 minutes.

Figure 4.6.3.1: Thermoinactivaction of PAPI with Xylitol at 60°C 

Plot of % residual activity versus time fitted to the first order exponential decay 

equation using the Enzfitter programme.

Amount: (% residual activity) versus time in minutes.

Inset: In (% residual activity) versus time in 

minutes.



Figure 4.6.3.2: Thermoinactivaction of PAPI without xylitol 60°C

Plot of % residual activity versus time fitted to the first order exponential decay 

equation using the Enzfitter programme.

Amount: (% residual activity) versus time in minutes.

Inset: In (% residual activity) versus time in minutes.

4.6.4 Effect of 10 and 50% (v/v) glycerol on PAPI

The effect of glycerol at 10 and 50 % (v/v) concentration on PAPI thermal 

stability was investigated, as outlined in Section 2.11.3. A decrease in enzymatic 

activity was observed on glycerol addition and activity of PAPI was further 

inhibited with increasing glycerol concentration. PAPI activity was inhibited by 

glycerol: PAPI displayed 50% activity at 10% (v/v) glycerol and only 18% at 

50% (v/v) glycerol. Except for a marginal effect above 60°C at an inhibitory 50% 

(v/v), Glycerol had no protective or stabilising effect on PAPI at elevated 

temperatures.

-95-



Temperature (C)

Figure 4.6.4. Effect of glycerol 10 and 50 % (v/v) on the enzyme PAPI 

Plot of % residual activity versus temperature (°C), (♦) is native PAPI, (ra) is 

PAPI with 10% (v/v) glycerol; (A ) is PAPI with 50 % (v/v) glycerol. Activity is 

represented as a percentage of the 30°C value of each case.



4.7 A COMPARISON OF THE EFFECTS OF AMMONIUM 

SULPHATE, SUGAR DERIVATIVES AND GLYCEROL ON PAPI

Figures 4.7.1 and 4.7.2 illustrate that only the sugar alcohol, xylitol, was suitable 

as a stabiliser of pyroglutamyl peptidase (PAPI) activity.

Figure 4.7.1: Comparison of the effects of sugar derivatives and glycerol on 

PAPI

Plot of % residual activity (%) versus temperature (°C), (♦) is native PAPI, (A ) 

is PAPI with 50 % (v/v) glycerol; ( ) is PAPI with 0.5M xylitol. Activity is 

represented as a percentage of the 30°C value of native PAPI with no additives.
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Figure 4.7.2: A comparison of the effects of ammonium sulphate, trehalose 

and glycerol on PAPI

Plot of residual activity (%) versus temperature (°C), (♦) is native PAPI, (♦) is 

PAPI with 10% (v/v) glycerol, (A ) is PAPI with trehalose and (■) is PAPI with 

(N H ^  S04. Activity is represented as a percentage of the 30°C value of native 

PAPI with no additives.



CHAPTER FIVE : RESULTS  

Studies on mutants F16Y and Y174F



5.0 STUDIES ON MUTANTS F16Y AND Y147F

5.1 Introduction

Mutants F16Y and Y147F of PAPI were investigated and their temperature 

profiles determined. The apparent half-inactivation temperatures (T5 0 ) were 

estimated and compared with wild type PAPI. Thermoinactivations at a constant 

70°C were also undertaken. The steady state kinetics of mutants F16Y and 

Y147F were determined and the Km and Acal values compared with native PAPI.

5.2 STABILITY AND KINETICS OF F16Y

BCA standard curves (Section 2.5.1) indicated that the protein concentration of 

F16Y was 0.325mg/ml.

5.2.1 Temperature Profile

A temperature profile of both PAPI (0.12 mg/ml, diluted 1/80 to final volume 

3ml using potassium phosphate buffer pH 8.0 including 0.12 mg/ml bovine 

serum albumin to ensure a constant protein concentration of 0.12mg/ml) and 

F16Y (0.12mg/ml) was performed as described in Section 2.8.1.1. The enzymes 

were incubated at the appropriate temperature for 10 minutes in a waterbath.

The half-inactivation temperature, T5 0  (where observed activity was 50% of 

maximal), was estimated by inspection to be 51°C ± 1°C for F16Y while for 

PAPI it was 54°C±1°C.

Note that here, PAPI wild type T5 0  was determined at a different concentration 

from that in chapter 4.



Figure 5.2.1: A temperature profile of wild type PAPI and the mutant FI 6Y.

Plot of % residual activity versus temperature (°C). Activity is represented as a 

percentage of the 30°C value for each one. (■) is native PAPI (0.12mg/ml diluted 

1/80); (♦) is mutant F16Y (0.12mg/ml).



The kinetics of thermoinactivation of F16Y (0.325 mg/ml final concentration) 

were studied at 70°C because this is a convenient temperature to study wild type 

with both mutants over a 30 minute period, as described in Section 2.8.2.1. The 

results of these experiments were analysed using the computer programme 

Enzfitter (Biosoft, Cambridge, UK). Data were fitted to the first order 

exponential decay equation and visual observation shows that the fit is a good 

one. The £ value for F16Y at 70°C was 0.026 ± 0.002 min'1 and half- life (ti/2 ) 

was calculated to be 27 minutes.

5.2.2 F16Y thermoinactvation assay

Figure 5.2.2: Thermoinactivaction of the F16Y mutant of PAPI at 70 °C

Plot of % residual activity versus time fitted to the first order exponential decay 

equation using the Enzfitter programme. Amount: (% residual activity) versus 

time in minutes. Inset: In (% residual activity) versus time in minutes.
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5.2.3 Active Site Titration of F16Y

Active site concentration of F16Y was determined similarly to PAPI (Sections

2.7.3, 2.7.4). Figure 5.2.3 illustrates the titration of F16Y with NEM. The 

concentration of active enzyme was determined from this plot, where the 

intercept on the x-axis (best line fit) is equal to the concentration of active 

enzyme. The enzyme was determined to have an operational molarity of 0.8 (iM.

Figure 5.2.3: Titration of FI 6Y with NEM

Plot of Fluorescent Intensity (excitation 370nm, slitwidth I0nm; emission 440nm, 

slitwidth 2.5nm) and activity (nmol/ml/min) versus NEM concentration (|xM) 

(“micromol” refers to fluorescence intensity converted to micromol AMC).
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Michaelis-Menten kinetics were determined for the mutant F16Y as described in 

Section 2.7.2. F16Y displayed normal Michaelis-Menten kinetics, giving Km 

values of 0.162 ± 0.020 mM and Ymax 0.003 ± 0.0002|imol/min/ml (Enzfitter 

programme). Using the result of the active site titration (above, section 5.2.3), kcnl 

(5.75xl0-5 s"1) and kaJ  Km( 0.355 s^.M '1) were calculated.

5.2.4 Km, Km,x and kcat determination for F16Y mutant

Figure 5.2.4: Michaelis-Menten plot for F16Y.

[Substrate] = mM pGlu-AMC. Rate = arbitrary fluorescence units (multiply by 

flu/6000 m, where m = 37.46 to convert to nmol AMC/min using a standard 

curve such as Figure 3.1.1) Inset: Lineweaver-Burk plot of the same data.
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5.3 STABILITY AND KINETICS OF Y147F

Protein concentration of Y147F, estimated using the equation of the protein 

standard curve as described in Section 2.5.1, was 0.354mg/ml.

5.3.1 Temperature Profile

Temperature profiles of both wild type PAPI (0.12 mg/ml stock solution, diluted 

1/60 to final volume 3ml using potassium phosphate buffer, pH 8.0, containing

0 . 1 2 mg/ml bovine serum albumin to ensure a constant protein concentration), 

and Y147F (0.12 mg/ml stock, diluted similarly), were performed, as described 

in Section 2.8.1.1. The temperature profile (Figure 5.3.1) showed that the Y147F 

was more stable than wild type and F16Y. The half-inactivation temperature, T50  

(where observed activity was 50% of maximal), was estimated by inspection to 

be 63°C ± 1°C for PAPI and 78°C ± 1°C for Y147F. Note that here, PAPI wild 

type T5 0 was determined at a different concentration from that in chapter 4.
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Figure 5.3.1: Temperature profiles of PAPI wild type and Y147F mutant.

Plot of % residual activity versus temperature (°C). Activity is represented as a 

percentage of the 30°C value of each one. (♦), Native PAPI; (■) mutant Y147F. 

Concentration of both Y147F and PAPI was 0.12mg/ml, diluted 1/60 in 50mM 

potassium phosphate buffer, pH 8.0, containing 0.12 mg/ml BSA to ensure a 

constant protein concentration.
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The kinetics of thermoinactivation of Y147F (0.12 mg/ml stock solution diluted 

to 1/80 in 50mM potassium phosphate buffer, pH 8.0, to final volume 5ml were 

studied at 70°C over 80 minutes, as described in Section 2.8.2.2. The results were 

plotted for Y147F and for PAPI. The k  value for Y147F was 0.028 ± 0.001 m in 1 

and half-life (ti/2 ) was calculated to be 25 minutes, while the k value for PAPI 

was 0.079 ± 0.003 min'1 and half- life (ti/2 ) was calculated to be 9 minutes.

5.3.2 Y147F thermoinactivation assay

Plot of % residual activity versus time, fitted to the first order exponential decay 

equation using the Enzfitter programme. Amount: % Residual Activity versus 

time (minutes). Inset: In plot of the same data.
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Figure 5.3.2(B): Thermoinactivaction of wild type PAPI at 70°C.

Plot of % residual activity versus time, fitted to the first order exponential decay 

equation using the Enzfitter programme. Amount: % Residual Activity versus 

time (minutes). Inset: In plot of the same data.
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Active site concentration of Y147F (diluted 1/50 in buffer) was determined 

similarly to PAPI (Section 2.7.4). Figure 5.3.3 illustrates the titration of Y147F 

with NEM. The concentration of active enzyme was determined from this plot, 

where the intercept on the x-axis (best line fit) is equal to the concentration of 

active enzyme. Y147F was determined to have an operational molarity o f 1.04 

jiM.

5.3.3 Active Site Titration of Y147F

Figure 5.3.3: Titration of Y147F with NEM

Plot of Fluorescent Intensity (excitation 370nm, slitwidth lOnm; emission 440nm, 

slitwidth 2.5nm) and activity (nmol/ml/min) versus NEM concentration (|iM) 

(“micromol” refers to fluorescence intensity converted to micromol AMC).
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Michaelis-Menten kinetics were determined for Y147F similarly to PAPI and 

F16Y. Mutant Y147F displayed normal Michaelis-Menten kinetics, giving Km 

and Vmax values of 0.115 ± 0.019 mM and 0.0015 ± 0.0002 ^mol/min/ml 

respectively (Enzfitter programme). From Ymax and the result of the active site 

titration (Section 5.3.3 above), values for £cat (2.45xl0'5 s '1) and kcJKm (0.212 s

1.M 1) were calculated.

5.3.4 Km , Vmax and kcat determination for PAPI mutant Y147F

Figure 5.3.4: Michaelis-Menten plot for Y147F with substrate pGlu-AMC.

Rate = arbitrary fluorescence units (multiply by flu/ 6000m, where m = 37.46, to 

convert to jimol AMC/min using a standard curve such as Figure 3.1.1)

Inset: In plot of the same data.
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A thermoinactivation study was performed at 70°C for PAP1, Y174F and F16Y. 

Due to differences in activity levels, PAPI and Y147F (both stock concentrations 

0.12mg/ml) were diluted 1/80 in 50mM potassium phosphate buffer pH 8.0, and 

0.325mg/ml working solution for F16Y. The assays were performed as described 

in Section 2.8.2.1. lvalue of PAPI was 0.079 ± 0.003 (m in1), and of Y147F 

0.028 ± 0.001 (min"1), while that of F16Y 0.026 ± 0.002 (min'1).

The half-lives (ti/2 ) for PAPI, F16Y and Y147F at 70°C were calculated from the 

corresponding ¿-values using the computer programme Enzfitter.

5.3.5 A Comparison of the half-life (ti/2) for PAP1, F16Y and Y147F.

Table 5.1. Comparison of PAPI, F16Y and Y147F.

Wild-type PAPI Mutant Y147F Mutant F16Y

Protein concentration 

(mg/ml)

0.0015 0.0015 0.325

T50 63°C ± 1 °C 78 °C± 1°C 51 °C± 1 °C

k  (m in1) 0.079 ± 0.0032 0.028 ±0.001 0.026 ± 0.002

Half-life (ti/2), 70°C 9 minutes 25 minutes 27 minutes

Km(rcM) 0.132 ±0.024 0.115 ±0.019 0.162 ±0.020

Vmax (nmol/min/ml) 0.0013 ±0.0001 0.0015 ±0.0002 0.003 ± 0.0002

NEM (nM) 0.8 1.04 0.8

¿cat (S ) 2.68x10° 2.45x10° 5.75x10°

W ^ m (s '1.M'1) 0.202 0.212 0.355

The mutant Y147F was more stable than wild type PAPI, while mutant F16Y 

was less stable. Among the kinetic parameters, only kcai for F16Y was notably 

different from wild type PAPI (2-fold greater than wild type).
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This work focused on the study of PAPI and two mutants F16Y and Y147F.

PAPI from human brain and mutants have previously been cloned, characterized 

and over expressed in E. coli grown in LB culture medium. This source of 

material is readily available and cheap to produce.

Assay methods

In this work, fluorimetric assays were used to estimate PAPI catalytic activity. 

Fluorimetric assays generally offer increased safety, sensitivity and specificity 

compared with the older p-naphthylamide compounds estimated by 

spectrophotometry. The substrate used to detect amidase activity of PAPI and 

mutants was pGlu-AMC. This substrate releases a fluorophore product as a direct 

result of enzymatic hydrolysis. In this case PAPI hydrolysis of the substrate 

pGlu-AMC releases AMC, which can be estimated fluorometrically. pGlu AMC 

does not hydrolyse in the absence of the enzyme.

Fluorimetric assay of free AMC shows that the optimum excitation wavelength is 

370nm and, for emission, 440nm.The assay’s sensitivity can be increased by 

widening of the excitation and emission slit width used. At an excitation 

wavelength of 370nm the lOnm width is best for both excitation and emission, 

and it is recommended to maintain the same excitation and emission slit width 

for all assays.

Free AMC standard curves were constructed as outlined in Section 2.6.1. A little 

quenching was observed in the presence of culture medium or solvents. Figures

3.1.5 and 3.1.6 demonstrate the effect of buffer, crude PAPI culture medium and

6.0 Discussion

- 1 1 3 -



purified PAPI. The linear fluorescence with AMC concentration allowed for 

accurate quantification of enzyme activity (see figure 3.1.3).

The fluorimetric assay was used to determine percentage residual activity for 

both temperature profile and thermoinactivation experiments.

Purification

The aim of protein purification is to isolate one particular protein from all other 

proteins in the starting material. Crude PAPI was produced by E. coli grown in 

LB culture medium and, following its release by sonication, was purified by 

nickel affinity chromatography. (This method exploits the His6 tag on the cloned 

protein.) The elution profile (Figure 3.3.1) demonstrates that a single peak of 

PAPI activity was separated (over two fractions) in elution buffer. Purity of PAPI 

was assessed by SDS polyacrylamide gel electrophoresis (SDS PAGE). The 

sample was shown not to contain any other species: only one protein band was 

observed for PAPI (Figure 3.3.3), showing that the enzyme is pure. SDS PAGE 

separates proteins based primarily on their molecular weights (Laemmli, 1970) 

and is routinely used for determination of protein purity (Bollag et al., 1996).

SDS (PAGE) was also employed in the estimation of the molecular mass of 

purified PAPI. Sigma markers (66-14 kDa) were used and molecular mass of 

PAPI determined to be in the range 23-24 kDa (Figure 3.3.3). The molecular 

weight previously obtained for PAPI from human brain was 23.138 kDa (Dando 

et al., 2003). The native molecular weight (no SDS present) for this enzyme was 

not determined.
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The effect of assay temperature on PAPI activity was investigated as outlined in 

Section 2.8.1.1. Samples were incubated for 10 minutes at the appropriate 

temperature, then placed on ice prior to re-warming and assay at 37°C; this 

ensured true measurement of the remaining PAPI activity. PAPI catalytic 

activity declined above 45°C and very little activity remained at 70°C. Its T50 was 

60°C and, at this temperature (at concentration 0.45 mg/ml, diluted 1/80), its k  

value was 0.046 ± 0.002 min'1, giving a half-life of 15 minutes.

For a stability comparison of native PAPI and its mutants F16Y and Y147F, a 

temperature profile was carried out. At the same concentration (0.12 mg/ml, 

diluted 1/80), mutant Y147F was more stable: T50 for native PAPI was 63°C and 

the k  value was 0.079 ± 0.003mm'1, while the respective values for mutant 

Y147F were 78°C and 0.028 ± 0.001 min' 1 at 70°C. For F16Y (less active, used 

at 0.325mg/ml with no further dilution), T50 was 51°C and k  was 0.026 ± 0.002 

min' 1 at 70°C. The mutations changes are small: the only difference between Phe 

and Tyr is that Tyr has a -OH  on the benzene ring. Yet, this small change has a 

very stabilizing effect at position 147 but is destabilizing at position 16. Human 

PAPI expressed in Sf9 insect cells was stable at temperatures up to 40 °C for 4.5 

h, but activity was almost completely lost within 30 min at 60°C. Maximal 

activity of the human recombinant enzyme was seen at 50°C in 10 min assays 

(Dando et al., 2003). A similar pattern of temperature activities was described for 

B. amyloliquefaciens by Tsuru et al. (1978).

The temperature-activity profile of PAPI (from the hyperthermophilic archaeon 

Thermococcus litoralis) demonstrates a maximum at 70°C, slightly lower than 

the optimum growth temperature of T. litoralis. Although considerably more

Heat stability
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thermostable than mesophilic enzymes, T. litoralis PAPI loses its activity rapidly 

at temperatures above 80°C. This is likely to be due to destruction of the critical 

cysteine in the active site. However, the enzyme still has a half-life of 1 hr at 

70°C (Singleton el al., 2000). The thermophilic P/wPAPI exhibits optimum 

activity at 90°C (Ogasahara et a l, 2001).

Enzyme R hu PAPI Bov ser DPP IV T. litoralis PAPI
Reference This work D Ruth, PhD 

thesis, DCU, 2004
Singleton et al. 
2000

T50 60°C 71°C <80°C

k, min' 1 0.046 ±0.002 0.071 ± 0.003 Not reported

ti/2, min 15 (60°C) 10 (71°C) 60 (70°C) 
7 5 (60°C)

It is interesting to compare the stability properties of PAPI with those of another 

neuropeptidase, the proline-specific dipeptidyl peptidase IV (DPP IV, EC 

3.4.14.5). Bovine serum DPP IV demonstrated an increase in catalytic activity up 

to 62°C (maximal activity observed at 50°C, T50 at 71°C), as opposed to the 

expected thermal inactivation, and the enzyme has a half-life of 10 minutes at 

71°C (D Ruth, PhD thesis, DCU, 2004). This is well above normal mammalian 

body temperature (37°C). Durinx et al. (2000) investigated the thermostability of 

human serum DPP IV over the range 25-80°C. They determined optimum 

temperature between 50-60°C. Similar results were obtained for porcine seminal 

plasma DPP IV (Ohkubo et al., 1994), while Yoshimoto et al. (1978) reported an 

optimum temperature of 60°C for lamb kidney DPP IV, with 50% of activity 

retained up to 72°C.
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Note that monomeric recombinant human PAPI is not glycosylated by E. coli but 

multimeric beef DPP IV is probably glycosylated. Sometimes glycosylation can 

influence protein stability.

Protein molecules are stable within a certain temperature range. However, the 

subtle balance between the folded and unfolded state can be disrupted by a 

number of factors such as temperature. The upper temperature for activity in 

enzymes appears to be governed by the limits of protein stability.

The rate of inactivation of an enzyme in solution increases rapidly with the 

temperature. In most cases, inactivation becomes virtually instantaneous at 

temperatures well below 100°C and in some cases below 70°C (Dixon and 

Webb, 1979). However, there are a number of enzymes that can withstand more 

extreme temperatures and remain catalytically active. Enzymes exist with optima 

above 100°C and some thermophilic enzymes have half-lives above 120°C 

(Daniel, 1996; Eichler, 2001).

Resistance to solvents

With regard to solvent tolerance, PAPI was tested in DMF, THF, ANC, DMSO, 

Acetone, Methanol and Ethanol over a range of (0-90 %) concentration and was 

not stable in most solvents (Figures 4.4.1.1, 4.4.1.2 and 4.4.1.3). All solvents 

used in this work are hydrophilic (mix freely with water), not hydrophobic. The 

half-inactivation concentrations (C50) for DMSO and methanol were 10% and 

12%, respectively (Figure 4.4.1.5) and they were the least injurious for PAPI 

activity. THF, on the other hand, is a strong denaturant which reduces catalytic 

activity; when PAPI was placed in it, no appreciable activity was observed.
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In sharp contrast, the enzyme DPP IV was most stable in acetonitrile, where at 

70% (v/v) the enzyme still retained up to 50% initial activity. Enzyme activity in 

DMSO steadily declined above 50% (v/v). DMF did not affect DPP TV catalytic 

activity up to 40% (v/v); however, further addition of solvent resulted in an 

abrupt decrease in enzyme activity (D Ruth, PhD thesis, DCU, 2004).

Michaelis-Menten kinetics

The number of active sites was determined for PAPI and mutants, using the assay 

described in Section 2.7.3 and 2.7.4. Michaelis-Menten constants (Km) and Vmax 

values were determined for wild type PAPI and mutants, as described in Section 

2.7.1. Kinetic data were fitted by computer to the Michaelis-Menten and 

Lineweaver-Burk equations to produce Km, Fmax and kcat values for native PAPI 

and mutants with pGlu-AMC as substrate; Table 5.1 presents the calculated 

constants. The amidase activity showed a kcJ K m value for PAPI of 0.202 (s'1 M" 

]) while the corresponding value for Y147F was 0.212 (s'1 M’1) and was 0.355 (s' 

'M '1) for F16Y. These values are not significantly different. Many other PAPI 

mutants have been prepared (P-R Vaas, PhD thesis, DCU, 2005) but were not 

studied in this project.

In B. amyloliquefaciens PAPI, residues F10, F13, T45, Q 71,192, F142 and V143 

form a hydrophobic substrate binding pocket (Ito et al., 2001). The kCiA value of 

the F10Y mutant decreased 5.8-fold, and its Km was 3.6-fold higher than wild 

type, but the two mutants F13Y and F142Y showed little change in kinetic 

parameters compared with PAPI. Catalytic efficiencies (kcJ K m) of the F13A and 

FI 42 A mutants were 1000-fold less than that of wild-type, while F10A could not 

be purified (Ito et al., 2001).

- 118-



In order to assess the effect on PAPI stability of chemical modification with 

dimethyl suberimidate (DMS), a temperature profile was carried out according to 

section 2.10.1.The temperature profile would suggest that this modification 

makes the enzyme less thermostable as compared to native PAPI at same 

concentration. Modification with DMS gave only 20% recovery of initial 

activity; due to this poor recovery, the reagent was not investigated further. This 

result was unexpected -  DMS is a very mild protein modifying reagent and so 

should not inactivate the enzyme. DMS has effectively stabilized other enzymes: 

horseradish peroxidase (HRP) half-life increased 4-fold after DMS treatment 

(Ryan et al., 1994). Also, DMS-modified alanine aminotransferase is more heat- 

resistant than native enzyme: the T$o of native enzyme was 46 min while that of 

DMS-modified alanine aminotransferase was 56 min (Moreno and O’Fagain, 

1997). DMS usually reacts with protein lysine/ amino groups only and not with 

any other R-groups (Ji, 1983).

Effect o f salt and polyols on PAPI activity

Ammonium sulphate was incubated with purified PAPI and the effect on heat 

stability measured as outlined in Section 2.11.1. The enzyme activity was 

significantly reduced at 0.5 M ammonium sulphate, with 35% less activity than 

in buffer. DPPIV activity was also significantly reduced by ammonium sulphate, 

with an 80% decrease at 1M ammonium sulphate compared with buffer alone (S 

Buckley, PhD thesis, 2001).

The effect of glycerol was investigated, as described in Section 2.11.3. A 

decrease in enzymatic activity was observed on glycerol addition and activity of

Chemical modification
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PAPI was further inhibited with increasing glycerol concentration. PAPI 

displayed 50% activity at 10% (v/v) glycerol and only 18% of its activity in 

buffer at 50% v/v glycerol. Glycerol had no protective or stabilising effect on 

PAPI at elevated temperatures.

It was hoped that PAPI would be stabilized against heat by the inclusion of 

xylitol or trehalose (Schein, 1990). Xylitol (0.5M) was included in the PAPI 

reaction mixture subjected to heat treatment. This additive led to increased 

activity at all temperatures tested, giving an apparent stabilization of PAPI 

activity (Fig. 4.6.3).

Thermoinactivation of PAPI at 60°C in the presence and absence of xylitol 

indicated a protecting effect: half-life was 60% longer with xylitol (14 min 

versus 9 min for PAPI alone).

Trehalose prevents proteins from denaturing at high temperature in vitro. 

Trehalose also suppresses the aggregation of denatured proteins, maintaining 

them in a partially- folded state from which they can be reactivated by molecular 

chaperones. The continued presence of trehalose, however, interferes with 

refolding, suggesting why it is rapidly hydrolysed following heat shock (Singer 

and Lindquist, 1998) Trehalose (0.5M) was mixed with PAPI but it was found 

not to stabilize PAPI.

Attempt to develop esterase assay

It would be interesting and instructive to measure PAPFs activity against 

pyroglutamyl esters, instead of amide substrates such as pGlu-AMC. The 

esterase/amidase ratio can be a good indicator of how well a given peptidase
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might perform in peptide synthesis. pGlu pentachlorophenol is commercially 

available but has no fluorogenic or chromogenic group for convenient detection. 

Awawdeh and Harmon (2005) devised a spectrophotometric method to measure 

pentachlorophenol levels up to ImM by means of its interaction with porphyrins, 

including me.s,o-tetra(4-sulfonatophenyl)porphyrin. This compound was 

purchased and a standard curve for pentachlorophenol was prepared according to 

Awawdeh and Harmon (2005; data not shown). It was hoped that this method 

would provide a workable pyroglutamyl esterase assay for PAPI. Unfortunately, 

pGlu pentachlorophenol proved insoluble in phosphate buffer and, in light of 

PAPI’s very poor tolerance of organic solvents, no attempt was made to use any 

alternative solvent system. No other pGlu ester was commercially available and 

attempts by an organic chemistry laboratory to synthesise a pGlu-AMC ester (at 

our request) were unsuccessful. Accordingly, attempts to measure PAPI esterase 

activity were abandoned.
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Successful high-level expression and subsequent purification of recombinant 

human PAPI (from the gene cloned into E.coli grown in LB medium) was 

achieved with a final yield of 60%, and its stability, biochemical and kinetic 

characteristics were ascertained. Mutants F16Y and Y147F of PAPI were also 

analyzed.

The fluorimetric assay used to monitor enzyme activity allowed rapid 

determination of large number of samples, saved time and minimized use of 

reagents. The kcJ K m of native PAPI was determined to be 0.202 (s'1 M '1) with 

pGlu-AMC as substrate.

The thermostability of brain PAPI proved considerably higher than would be 

expected for this enzyme, since mammalian pyroglutamyl peptidases normally 

exist at the physiological body temperature of 37°C. PAPI was catalytically 

active up to quite elevated temperatures, with a T50 value of 60 ± 1°C. Data fitted 

well to a single exponential decay and the apparent half-life (ti/2) determined at 

60°C was 15 minutes (¿=0.046 ± 0.002 min'1, protein concentration 0.45 mg/ml, 

diluted 1/80).

From a biotechnological aspect, there are numerous potential advantages in 

employing enzymes in organic as opposed to aqueous media. Organotolerance 

studies determined that PAPI was not stable in most solvents. Methanol and 

DMSO were the least injurious for PAPI activity and THF was deemed to be the 

most deleterious solvent to the enzyme. PAPI exhibited reduced tolerance in the 

present of organic solvents and, unless it can be stabilized by some means, does 

not seem to be suitable for use in organic solvents.

6.1 Conclusion
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Modification of PAPI with DMS, a very mild reagent, was undertaken but gave 

only 20% recovery of initial activity and did not stabilize the enzyme.

The possible stabilizing effect of polyol additives was investigated and it was 

found that the enzyme’s activity and stability increased with xylitol while 

trehalose, glycerol and ammonium sulphate did not stabilize PAPI. Xylitol, 

therefore, may be a better preservative for PAPI than glycerol, the additive 

currently used.

The project also involved investigating the stability and kinetic properties of 

PAPI mutants Y147F and F16Y. Mutant Y147F displayed a T50 of 78°C, notably 

higher than the wild type, and an apparent half-life (ti/2) at 70°C of 25 minutes (k 

= 0.028 ± 0.001 min'1). For mutant F16Y, T50 was 51°C (less than wild type), 

and the apparent half-life (ti/2) of an undiluted sample at 70°C was 27 minutes (k 

= 0.026 ± 0.002 min'1). The k0J K m for Y147F was 0.212 s^.M ' 1 and for F16Y 

was 0.355 s^.M'1, both very close to the wild-type value (0.202 s' 1 M '1, above).

A comparison of the half-lives of wild type PAPI and both mutants Y147F and 

F16Y performed at the same concentration and temperature showed that Y147F 

was more stable than wild type PAPI, while F16Y was less stable (Table 5.1). 

Mutants were not tested in organic solvents.

The original research objectives of investigating the stability properties and 

kinetics of native PAPI and two mutants have been achieved. This work now 

provides some interesting, significant and potentially useful results for other 

researchers working in the field of protein stability/ stabilization and enzyme 

catalysis.
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