
M etad a ta Queries for Com plex D atabase Systems

G erald O ’C o nnor

A d issertation subm itted in partia l fulfilment of the

requirem ents for the award of

M a s te r o f Science in C o m p u te r A p p lica tio n s

to the

DCU
D ublin C ity University

School o f C o m p u te r A p p lica tio n s

S uperv iso r: M ark R o an tree

17th September 2004

Declaration

I hereby certify th a t this m aterial, which I now subm it For assessm ent on the program m e

of study leading to the aw ard of M aster of Science in C om puter Applications is entirely

my own work and has not been taken from the work of o thers save and to the extent tha t

such work has been cited and acknowledged w ith in the tex t of my work.

Signed

S tuden t ID 5118612S

D ate 17^L Septem ber 2004

Acknowledgm ent s

I would like to thank my wife and family for their endless support and encouragement.

I would like to thank my supervisor, M ark R oantree, for giving me expert guidance and

advice in the preparation of th is thesis.

I would also like to thank all the members of ISG including Dalen, Dam ir and Ling.

I would like to m ention the practice of Falun Dafa which gave me the patience and en

durance to continue un til the thesis is com plete.

M etada ta Queries for Com plex D atabase Systems G erald O ’Connor

A bstract

Federated D atabase M anagem ent Systems (FDBS) are very complex. Com ponent databases

can be heterogeneous, autonom ous and d istributed , accounting for these different charac

teristics in building a FDBS is a difficult engineering problem . T he Com mon D ata Model

(CDM) is w hat is used to represent the d a ta in the FDBS. I t m ust be sem antically rich to

correctly represent the d a ta from diverse com ponent databases which differ in structure,

datam odel, sem antics and content. In th is research p ro ject we look a t th e complexity

of the FDBS and examine which datam odel is m ost su ited for th e CDM. A good m eta

d a ta interface and query language is essential for th e CDM because m erging component

databases into the FDBS and m aintaining and building the FDBS rely on a complete

m etad a ta interface and query language. In th is research pro ject we analyse th e m etad a ta

interface and query language of the O bject-R elational datam odel w ith a view to use it

as the CDM. D istribu ted Com ponent databases in a FDBS need to be merged in to the

FDBS, current tools can no t com pletely au tom ate th is process, we examine these problems

and present a mobile solution.

Contents

A c k n o w led g m en ts ü

A b stra c t iii

C o n ten ts iv

L ist o f F igu res v ii

L ist o f T ab les v iii

1 In tro d u ctio n 1

1.1 Federated D atabase M anagem ent S y s te m s .. 1

1.1.1 Federated A rch ite c tu re 2

1.1.2 Schema In tegration in a Federated D atabase ... 3

1.2 M etada ta O verv iew .. 4

1.2.1 A pplication Areas for M e ta d a ta ... 5

1.2.2 M etad a ta in O bject-R elational D atabases 7

1.3 In troduction to Mobile C o m p u tin g ... 8

1.4 M otivation ... 9

2 R e la te d R esea rch 11

2.1 T he Clio P r o j e c t .. 11

2.2 C om parison of Schema M atching E v a lu a tio n s .. 13

2.3 S ch em aS Q L .. • • 15

D e c la ra tio n i

iv

2.4 Q uerying and R estructuring the T abular D atabase M o d e l 19

2.5 Noodle: A Language for D a ta and M etad a ta Q uerying in an O bject-O riented

D atabase ... 22

2.6 C ontext Aware M obile C o m p u tin g ..23

2.7 S u m m a r y ...24

3 T h e O b je c t-R e la t io n a l M e ta m o d e l 26

3.1 Object-Relational M eta d a ta ... 27

3.1.1 T y p e s ..27

3.1.2 T a b le s ..29

3.1.3 A ttribu tes of Types .. 30

3.1.4 Colum ns of T a b l e s .. 31

3.1.5 I n h e r i ta n c e ..32

3.1.6 B e h a v io u r ... 33

3.1.7 V i e w s ..35

3.1.8 A s s o c ia tio n ... 35

3.1.9 C o n s tr a in t s ..36

3.1.10 C ardinality of R e la tio n sh ip s 37

3.2 S u m m a r y .. 38

4 M e ta d a ta Q u ery L angu age 39

4.1 Accessing O -R M etada ta w ith S Q L 40

4.1.1 Long Queries and the Need for O -R E x p e r tis e ... 40

4.1.2 A ttrib u te M etad a ta ..41

4.1.3 C ard inality of R e la tio n sh ip s 42

4.1.4 I n h e r i t a n c e ... 43

4.2 M etad a ta Q uery Language and In te r fa c e ..44

4.2.1 T he C ardinality of re la tio n sh ip s ... 44

4.2.2 Inheritance M e t a d a t a ... 47

4.2.3 A ttr ib u te M e t a d a t a 48

Contents v

4.2.4 R elational M e ta d a t a .. 50

4.3 S u m m a r y ... ; 52

5 T h e M o b ile M e ta d a ta S ch em a B ro w ser A r ch itec tu r e 53

5.1 Deploym ent A rchitecture 53

5.1.1 Im plem entation of the Mobile M etad a ta Schem a B r o w s e r 55

5.2 A pplication to G rade Schema C o m p le x ity ... 55

5.2.1 Im p lem en ta tio n 56

5.2.2 T e s t i n g ... 58

5.3 Conclusions 59

6 C on clu sion s 61

6.1 Future Work ... 65

B ib lio g ra p h y 67

B ib lio g ra p h y 67

A M e ta d a ta In ter fa ce to O b jec t-R e la tio n a l M e ta d a ta 70

B O b jec t-R e la tio n a l M e ta d a ta Q uery L an gu age (O R -M Q L) 80

C R o le E x te n s io n s 82

Contents vi

List o f Figures

1.1 Five Layer Schema Architecture 3

2.1 Clio’s Logical Ai-chitecture... 12

2.2 SchemaSQL Example .. 16

2.3 Restructuring with G r o u p in g ...21

2.4 Restructuring with M erg in g .. 22

4.1 Cardinality of Relationships in Example News Agency Schema.............................. 47

4.2 Inheritance Relationships in Example News Agency Schema................................... 49

4.3 News Agency Schema...51

5.1 Deployment Architecture ..54

C .l Root role metadata... 84

C.2 Roleview m etadata.. 86

C.3 Role attributes m etadata.. 88

C.4 Sub-schema metadata.. 90

vii

List of Tables

2.1 R epresentation of a T a b l e .. 20

4.1 High-level cardinality tab le ...45

4 .2 Low-level cardinality m etadata 46

4.3 OR-M QL Inheritance M etad a ta 47

4.4 Retrieving Inheritance M etada ta for News Agency Schem a.......................................49

4.5 Retrieving A ttrib u te M etad a ta from the News Agency Schem a...............................50

5.1 High level tab le re p o rt.. 57

A .l OR-M QL all types view... 70

A .2 OR-M QL all tables view. .. 70

A .3 OR-M QL all object tab les view .. 71

A.4 OR-M QL all type a ttrib u te s view.. 71

A .5 OR-M QL all tab le colum ns view.. 72

A,6 OR-M QL all contra insts view .. 73

A.7 OR-M QL all object views.. 73

A.8 OR-M QL all relational views m etad a ta view.. 74

A.9 OR-M QL all triggers view...74

A. 10 OR-M QL all type m ethods view.. 75

A .11 OR-M QL all m ethod param eters view ... 75

A. 12 OR-M QL all m ethod results view...76

A. 13 OR-M QL high level m etad a ta view... 76

viii

A. 14 OR-M QL low level m etad a ta view. .. 77

A. 15 OR-M QL cardinality of O bjects Lookup Table ... 78

A. 1(5 OR-M QL Inheritance M etad a ta ... 78

A.17 OR-MQL varray collection m etadata 78

A .18 OR-M QL nested table m e tad a ta ... 79

C. 1 T he fields retrieved for th e root role......... 83

C.2 Fields for assum able roles.................... 84

C.3 Root a ttr ib u te fields..86

C.4 Role a ttr ib u te fields...87

C.5 T he root m ethod fields... 88

C.6 T he role m ethod fields.. 88

C.7 T he SUB SCHEMA fields.. 90

List of Tables >x

Chapter 1

Introduction

1.1 Federated D atabase M anagem ent System s

A Federated D atabase M anagem ent System (FDBS) is a collection of databases th a t co
operate together to share inform ation. T he databases can be d istribu ted geographically
or stored on th e sam e machine. Each database m aintains control of its d a ta and decides
to w hat degree its inform ation is shared w ith the federation. T he databases are heteroge

neous; they differ in data-m odel, query language, sem antics and how the physical d a ta is
stored. For a large federated database incorporating m any local databases, it is im portan t

th a t each local database is well defined w ith m etad a ta otherwise building the federation

is a difficult and expensive task.

E ach local database is autonom ous, and m aintains control over its inform ation and decides

to w hat degree it will share inform ation w ith the federation. A local database can join or

leave th e FDBS a t th e local adm inistrators discretion. A classification discussed in [30]

includes th ree types of autonom y: design, communication and execution.

Design autonom y m eans the local adm in istrato r has control over how the local database

is designed and structu red . T he adm in istra to r m aintains control over:

1. the d a ta being m anaged,

2. the represen ta tion and the nam ing of the d a ta elements,

3. the sem antic in terp re ta tio n (meaning) of the data ,

4. constrain ts (rules over the da ta),

5. the functionality of th e system ,

6. th e im plem entation.

1

Chapter 1: Introduction 2

Com m unication autonom y m eans th e local database decides how it com m unicates with

the FDBS and how it m anages local queries. I t is the local database, which has authority

to decide th e priority of communications. Similarly, execution autonom y means the local

database decides w hat order the queries are executed in, as the FDBS can not force

the local database to execute queries in any order. This illustrates th a t in a FDBS the

local database m aintains control of its inform ation but chooses to cooperate w ith the

federation. Usually there is an agreem ent protocol between the FDBS adm inistrator and

the local adm inistrator. In such a com plex system w ith m any heterogeneities th a t need to

be overcome and where control rem ains w ith the local database it is im portan t th a t the

local database com pletely describes w ith m etad a ta w hat it is offering to the FDBS and

how it will tre a t queries from the FDBS.

1 .1 .1 F e d e r a te d A r c h it e c t u r e

In [27], a five-layer reference arch itecture is used to illustra te a broad range of federated

databases (see figure 1.1). T he com ponent database system physically stores the data.

The local schema stores the data-m odel for th e com ponent database, thus local database

structu re can differ.

The local schema is transla ted in to Com m on D a ta Model (CDM) or canonical model,

which is stored in the com ponent schema. T he CDM needs to be rich enough sem antically

to accurately cap ture the m eaning of all the local schemas. T he CDM is the data-m odel

for the FDBS. Each local schema m ust be m apped to the CDM. For this to be possible a

clear definition of the local schem a stru c tu re (m etadata) w ith a s tandard query interface

m ust be available. I t is im portan t th a t th e local model is clearly defined w ith m etadata

so as no t to lose inform ation and to avoid unnecessary m ining for data .

T he export schema is a subset of th e com ponent schema th a t can be integrated into the

federated schema. E xport schemas allow for association autonom y in the FDBS, which

m eans certain federated database users have access to a subset of the com ponent schema

while o ther users have access to a different subset. Each export schema needs to be inte

grated into th e federated schema. T he federated schema gives a global user the impression

th a t he is querying a single inform ation source. A t the federated schema layer inform ation

regarding the heterogeneity and autonom y of local schemas is no t present, instead the

view of a unified inform ation source is presented. D a ta d istribution m etad a ta is included

in th is layer of the architecture. T here can be m ultiple federated schemas incorporating

a different com bination of export schemas, each for a different class of federated schema

user.

Chapter 1: Introduction 3

I I'-xpon Schema] | Export Schema 1 | Export Schema |

Filtering Processor F iìtcfing Processor Filien ng Processor

[Component Schcnm| [Component Schema] [Component Schcma|

Transforming Processor Transforming Processor Transforming Processor

I Local Sclicroa J ¡ Local Schema 1 Local Schema
I

Component DBS ¡Component DBS Component DBS

External
Layer

Federated
Layer

Export
Layer

Component
Layer

Local
Layer

Figure 1.1: Five Layer Schem a A rchitecture

T he ex ternal schem a is a subset of the federated schema. T he federated schem a can be

very large and complex and therefore difficult and expensive to engineer, so the external

layer offers a subset of it specific for a particu lar user. E x trac ting a subset of inform ation

from th e federated layer can be made easier if the CDM is clearly defined with m etadata.

1.1 .2 Schem a In tegration in a F ed erated D atab ase

Schem a in tegration refers to th e in tegration of m ultiple view's in to a single schema. In

[2], th e schem a in tegration process is divided into five steps:

1. pre-integration,

2. com parison,

3. conform ation,

4. merging, and

5. restructuring.

P re-in tegration involves preparing difFerent schemas to be integrated; in the federated

s tru c tu re this m eans transform ing the local d a ta models to the CDM. T he com parison stage

s ta r ts when the local database schem a have been transform ed to the CDM and one can

look for sem antic and stru c tu ra l overlaps and sim ilarities between them . T he conform ation

stage involves verifying the assum ptions m ade for s tru c tu ra l and sem antic overlaps between

schemas detected in th e com parison stage. T he m erging and restructuring stages involve

Chapter 1: Introduction 4

building the in tegrated schema while accounting for the confirmed correlations in the

different schemas. In a federated database, having a well-defined m etad a ta query interface

is im portan t th roughou t the process b u t especially during pre-integration and com parison

stages. To tran sla te a schema from one data-m odel to another it is necessary to be able to

com pletely describe the original structu re because if m eaning is lost in the pre-integration

stage the disparities in th e d a ta a t higher levels of the FDBS structu re will cause greater

problem s and lead to th e m isin terpretation of data. During the com parison stage if a

schema is no t described accurately w ith m etada ta , it is possible differences are not noticed

and overlooked. T he CDM m ust be very expressive to capture the sem antics of local

schemas bu t the expressiveness m ust be well docum ented w ith m etadata , this will ensure

no loss of inform ation.

Each layer of th e F D B S ’s structu re offers m any complex integration issues. In order to

overcome th e differences in sem antics and s tructu re a t each level it is essential th a t each

aspect of th e local schema and the canonical model is defined extensively w ith m etadata.

In this work we define a com plete query interface to the object-relational (O-R) m etam odel

and illustra te curren t problem s and shortcom ings w ith querying O-R m etadata . This is

done w ith the view to ease the difficult task of in tegration in a federated database structure.

1.2 M etad a ta Overview

M etad a ta is com m only understood as any inform ation needed in inform ation technology

in order to analyse, design, build, im plem ent and use com puter systems. In the case of

inform ation system s, m e tad a ta particu larly facilitates m anaging, querying, consistent use

and understanding of data .

The notion of meta is related to modelling, when modelling complex inform ation systems

a t least four layers of m etad a ta are needed for the d a ta to be well defined. Level 0 is the

d a ta (e.g. L ibrary books); level 1 contains m etad a ta (e.g., au thor, title, date published);

level 2 specifies th e schema used to store th e m etad a ta (e.g., the library cataloguing system)

and level 3 contains a m etam odel th a t unifies the different modelling languages specified

on level 2 (e.g., a federated system for querying m ultiple library catalogues).

According to [28] th e generation and m anagem ent of m etad a ta contributes to achieve the

following tasks and objectives:

• Im p ro v in g in tera c tio n w ith th e sy stem . For inform ation systems it is im portant

th a t a clear interface to the m etad a ta is available to be queried and browsed to avoid

Chapter 1: Introduction 5

moving large objects over th e network. This m etad a ta interface should be clear and

well defined to allow the user to query, access, and use m etad a ta a t th e least cost.

• Im p ro v in g d a ta quality . In inform ation system s d a ta m ust be consistent, up to

date, accurate and complete. T he m e tad a ta should describe, who owns the data,

when was it created, when was it last modified, who has access, w hat it m eans and

so on.

• S u p p o rtin g th e s y s te m in teg ra tio n p ro cess . In tegrating federated database

system s is only possible if th e s tru c tu re of local database schemas and the m eaning

of the d a ta they hold can be discerned.

• S u p p o rtin g sy s te m m a in ten a n ce , a n a ly s is and d esig n . M etada ta increases

control and reliability of th e database by providing inform ation abou t the structure,

m eaning and origin of the d a ta and by providing docum entation of the existing

structu res th a t need to be extended.

1.2.1 A p p lica tion A reas for M eta d a ta

M etada ta greatly assists in situations where d a ta m ust be shared and reused. Com puter

system s general application areas include sharing, interpreting, storing and m anipulating

data , therefore m etad a ta is needed across all areas of com puter applications. In the fol

lowing sub-sections th e broad applications of m etad a ta in com puter system s are discussed

in order to fully understand this im portan t area of com puting and how it relates to FDBS.

S oftw are E n g in eer in g

C om puter Aided Software Engineering (CASE) tools are a prim ary application of m etad a ta

in software engineering. Large com puter applications, or systems, need to be thoroughly

modelled in order to be developed and m aintained and this m odelling process is also a

process of defining the m etad a ta for fu ture users to understand and reuse the com puter

system .

As software engineering technology becomes more powerful it is also becoming m ore com

plicated and difficult to reuse. For example the object-oriented (O-O) technology has

increased th e need for m e tad a ta as it is used to keep track of defined classes, m ethods

instances and th e interdependencies between them .

The concept of reflection [29] in software engineering implies th a t a piece of software comes

w ith enough m etad a ta to be self-describing and has access to this m etad a ta in order to

Chapter 1: Introduction 6

use it a t runtim e. If a system not only uses the m etad a ta bu t also m anipulates it and

thus has an open im plem entation, th is is called m eta-program m ing [17]. A rchitectures for

d istribu ted com puting like M icrosoft’s (D) COM or O M G ’s CORBA (Common O bject

Request Broker A rchitecture) [24] use m etadata , sim ilar to above, to describe all available

services and com ponent interfaces in a d istribu ted architecture. Thus independently de

veloped com ponents m ay dynam ically discover each other collaborate a t runtim e. The key

solution is th e “Interface Repository” (m etadata-repository), which allows this interaction.

M u ltim ed ia

T he storage and retrieval of m ultim edia is of great im portance to the database research

community. T he reason is th a t trad itional search and retrieval techniques are no longer

applicable for m ultim edia repositories. E xact-m atch query processing is no t possible and

content-based search is e ither no t possible or too expensive (tim e consuming and resource

consuming). So it is necessary to describe m ultim edia objects w ith m etadata , which will

improve load on the system because m etad a ta is sm aller in size th an m ultim edia d a ta for

querying and retrieval.

M etad a ta for m ultim edia system s can be divided into th ree categories:

• domain-specific m etadata ,

• content-specific m etadata ,

• content-dom ain-independent m etadata .

Domain-specific metadata is inform ation th a t cannot be deduced from the picture, or

sound clip, bu t which adds dep th to w hat can be deduced from the media. For example, a

recorded discussion which is com plem ented w ith inform ation of context, location, speakers

etc, adds m ore value to the audio file as a piece of inform ation. Content-specific metadata

can be deduced from th e audio file; i.e. background noise, m ale or female speakers, tone of

voice etc. F inally content-domain-independent metadata tells the size of a file, its location

etc. M etad a ta plays a im portan t role in th e efficient storage and retrieval of m ultim edia

data.

In fo rm a tio n M a n a g em en t S y stem s

One of th e first explicit uses of m etad a ta was in th e D atabase M anagem ent System

(DBMS). T he system catalogue and d a ta dictionary stored inform ation about the struc

tu re , constraints, physical storage inform ation, access rights etc, for the inform ation stored

Chapter 1: Introduction 7

in the database. There can also be inform ation abou t th e users, security and access priv

ileges to the DBMS.

The problem is of greater m agnitude w ith federated databases because of issues relating to

heterogeneity, autonom y and distribution. Besides th e inform ation already m entioned for

d a ta dictionaries, FDBS need descriptive m etadata , which contains inform ation about the

types and sources in the in tegra ted system , and navigational m etad a ta on how to handle

a source and how a source is form atted [28] .

Descriptive inform ation m eans th a t the in tegrated d a ta sources content need to be de

scribed w ith m e tad a ta so th a t when queries are form ulated at the federated layer the

system will know where to look for relevant d a ta w ith out w asting tim e and resources.

N avigational m e tad a ta describes the m appings between the canonical m odel and the local

model and how the local database can be m anipulated to retrieve the desired inform ation.

This discussion serves to illustra te th e growing com plexity of com puter systems and infor

m ation systems, and the need for these system s to be sufficiently described w ith m etada ta

if they are to be reused and m aintainable. I t also illustrates the im portance for tools to

be developed in th is area to m anipulate m etad a ta effectively.

1.2 .2 M eta d a ta in O b ject-R ela tion a l D atab ases

The O bject R elational (O-R) database m odel is a complex structu re combining features

of relational and object models. T he relational m odel (SQL-92 standard) consists of

tables, triggers, constrain ts, views and procedures, while the object model consists of

types, associations, aggregations, encapsulation, inheritance and other complex structures.

This com bination of features provides a powerful environm ent for representing data , bu t

requires a very complex m etam odel.

This is further com plicated by th e fact th a t s tru c tu ra l inform ation is often combined w ith

physical storage inform ation, e.g. where d a ta is physically stored and m etad a ta about how

d a ta is fo rm atted and structu red . There is also m etad a ta for users and security, which

make the m etam odel com plicated w ith m any tables, and tables w ith m any columns.

In the In teroperable Systems G roup in DCU a research project [31] extended the O-R

m etam odel to include m e tad a ta for roles. Roles [9] address a shortcom ing in conventional

models th a t fail to com pletely model real world environm ents. M odern program m ing

languages and databases can only partia lly m odel a real world entity for which they are

defined as th ey lack th e tem poral aspect of real world entities. These entities characteristics

(variables) can change b u t the underlying s tructu re th a t defines w hat they are remains the

Chapter 1: Introduction 8

same. For instance, a person has an age, height and weight. A student has a school bu t a

professional has a job. In the real world a person can become a student or a professional

over a period of tim e, it is difficult to represent this transition in conventional database

models. A role is viewed as an extension of an object th a t represents tem poral aspects of

real world objects.

The O-R model is a very expressive m odel and thus can be used for the canonical model

in a FDBS [26]. A FDBS consists of m any autonom ous p arts th a t need to cooperate

together seamlessly in order to present the user w ith a unified inform ation source, for this

to be possible each p art m ust be well defined w ith m etad a ta and present a clearly defined

m etad a ta query interface. Yet due to the complexity of the O-R m etad a ta defining a clear

m etad a ta interface is a difficult task.

1.3 Introduction to Mobile Computing

T he Personal D igital A ssistant (PDA) has become m ore powerful, less expensive and a

wider range of applications are available, which makes it m ore a ttractive to a wider m arket

and more useful for a broader range of user.

The m ain advantages of a PDA are: mobility, size and th e fact th a t through networks they

can access d a ta a t any tim e in any place. T he m ain disadvantages are: lim ited memory

size, lim ited processor speed, security risks, sm all screen size, lim ited b a tte ry power, low

bandw idth, lim ited services and applications, and non-conventional input devices [6, 7].

As this technology m atures, PD As are becoming less of a novelty and becoming more of an

essential tool in certain environm ents. For example, m any applications are being developed

for th e m edical profession. T he clinical and adm inistrative suites developed claim to

au tom ate the m ost labour intensive and tim e consum ing aspects of medical trea tm en t w ith

easy to use applications a t the point-of-care. A survey carried out in M ount Sinai Medical

C entre New York [16] discovered, th a t half of the 88 physicians surveyed use PDAs, and

they use them m ostly for professional work. In the com puter industry, IBM has developed

applications for a PD A th a t allows a technician to configure UNIX servers using a simple

plug and play interface on the PDA. This th en saves th e system adm inistrator the trip to

the server farm and he can com plete final system configuration and launch applications

from a rem ote console. These examples illustrate th a t PD A technology is m aturing and

its range of applications are broad.

T he FDBS consists of m any d istribu ted databases th a t need to be in tegrated into the

CDM. C urrently there are no mobile tools to assist the in tegration specialist analysing

Chapter 1: Introduction 9

schemas on local d istribu ted sites.

1.4 Motivation

T he canonical model for a federation of databases needs to be sem antically powerful in

order to represent the local database schemas in the federation. Each local database

can use a different d a ta m odel to stru c tu re their data. T he relational model is the most

common model used for local databases however it is not powerful enough to represent

m ultim edia docum ents well so it is no t suitable for the canonical m odel of the FDBS. The

object-oriented m odel supports complex constructs such as types, m ethods, inheritance,

association etc which makes it su itable for representing any complex object including

m ultim edia objects. Due to th e differences in the relational and object-oriented models

it is a difficult task to m igrate relational d a ta to the object-oriented model. The object-

relational model combines the features of the relational and object-oriented models. It is

sem antically powerful and it provides a m eans to transform a schema represented in the

relational m odel to the object-relational model. The object-relational model is examined

in this research because it is suitable for the canonical m odel in a federation of databases.

The canonical model of a federation of databases needs to be completely represented

w ith m etadata . At every layer of th e federation the m etad a ta needs to be examined in

order to transform a schem a from one m odel to another , ex tract a subset of a schema

(ie specialise a schema) and also for building query processes to accurately and quickly

retrieve inform ation from th e federation for a user. If the canonical model is not well

represented w ith m etad a ta th e d a ta in th e federation can be corrupted because the d a ta ’s

m eaning is in terpre ted incorrectly. T he object-relational m etad a ta is complex because it

is a com bination of the relational and object oriented models. In current im plem entations

of the object-relational m odel the m etad a ta comprises form ating inform ation, security

inform ation, physical storage inform ation and s tructu ra l inform ation. There are m any

views of the m etad a ta m any of which are big, cumbersome to use and require expertise in

SQL. Also some structu res th a t are needed to view and m anipulate th e m etad a ta are not

present. In this research p ro jec t we analyse this problem w ith the intention of providing

a com plete m etad a ta query interface for an engineer to access and view object-relational

m etadata .

In this research project an application to use the m etad a ta query language and interface

is provided on a mobile device. This is necessary because an in tegration specialist is faced

w ith th e task of in tegrating com ponent databases th a t are d istribu ted over a geographic

area. As far as we are aware no current research project has completely autom ated the

process of integrating component databases in to the federation due to difficulties in cor

rectly understanding the semantics of the data. Therefore it is necessary for the engineer

to visit local database sites to consult database adm inistrators about the meaning of the

data in their databases. Providing a m etadata interface and query browser on a mobile

device is needed to assist the engineer while visiting local database sites to deduce the

structure of a database while discussing semantic meaning with the local administrator.

Chapter 1: Introduction 10

Chapter 2

R elated Research

2.1 The Clio Project

T he Clio P ro ject [21] offers analyses of th e problems faced when m anaging and facilitating

the com plex tasks of heterogeneous d a ta transform ation and integration, and suggests

solutions to these problems. In tegration and transform ation are discussed over three broad

categories:

• Schema and D a ta M anagem ent,

• Correspondence M anagem ent,

• M apping M anagem ent.

In [21] it is argued th a t a t th e core of all in tegration tasks lie th e representation, under

standing and m anipulation of schemas and the d a ta th a t they describe and structure. It is

very im portan t th a t th e m etad a ta is complete so as not to lead to inaccurate inform ation

and m isrepresentation of the intended m eaning of data . Since in tegration methodologies

depend on the accuracy and completeness of s tructu ra l and sem antic inform ation, they

are best employed in an environm ent where specified schema inform ation, constraints and

relationships can be learnt, reasoned abou t and verified. This illustrates a strong argum ent

for m obile tool to analyse schemas as it allows th e in tegration specialist to visit the local

sites of th e database, m anipulate the schema while verifying w ith the local adm inistrator

correspondences and hard to ex trac t sem antic inform ation.

C o rresp o n d en ce m an agem en t: This is the process where correspondences between

d a ta and m etada ta , in different schema can be related and m atched; it is referred to as

determ ining “inter-schem a” relationships in [25], and in m odel m anagem ent it is referred

11

Chapter 2: Related Research 12

USER

Figure 2.1: C lio’s Logical A rchitecture

to as “m odel m atching” [5]. In [21], it is explained th a t finding correspondences cannot

be fully au tom ated since th e syntactic represen ta tion of schemas, m etad a ta and d a ta may

not com pletely convey th e sem antics of different d a ta sets. W hether the correspondence

process is au tom ated or m anual it cannot always be accurate for all possible schemas, and

it is im portan t to counter in a process for verifying th e correspondences, either m anually

or using a knowledge discovery technique. This is especially th e case since some schemas

can be very large and it m ay take a num ber of iterations to verify th a t the correspondences

are correct.

M a p p in g m a n a g em en t: Once correspondences have been derived it is necessary to de

duce a set of m appings from th e canonical m odel to the local models. The im plem entation

and m aintenance of th is m apping is still largely a m anual job and extrem ely complex.

In the Clio project a num ber of tools have been designed and im plem ented to m ake the

task of in tegration and transform ation easier taking into account the lim itations m entioned

above.

Fig 2.1 shows Clio’s logical architecture. The schema engine in Fig 2.1 is an application

used to view and m anipulate a given schem a th a t has been loaded in to Clio’s system . The

idea is to provide a m eans to understand a schema via a graphical user interface (GUI)

and m anipulation tools.

Chapter 2: Related Research 13

Clio also provides a Correspondence Engine, which is a tool for generating and m anaging

a set of candidate correspondences betw een two schemas. T he generated correspondences

can be augm ented, changed or rejected by the using a graphical user interface through

which users can draw value correspondences between attribu tes. In [21], it is argued

th a t Clio could be augm ented to m ake use of dictionaries, thesauri, and other m atching

techniques considerably enhancing its usefulness.

Finally, th e M apping Engine in the Clio project supports the creation, evolution and

m aintenance of m appings between pairs of schemas. T he m apping engine uses inform ation

gathered from the Schema Engine and th e Correspondence Engine. As w ith the previous

two engines m appings are verified using a GUI and alternative m appings are suggested

and can be m anipulated. T he usefulness of these tools are illustra ted in the building of a

data-w arehouse.

O ther research projects try to com pletely au tom ate the process of schema transform a

tion and integration. T he benefits from com pletely autom ating th is process are often out

weighed by the overhead in preparing schemas to be in tegrated and post integration exam

ination of the results. Clio has taken another approach and successfully au tom ated parts

of the in tegration process. Yet their work is different our research project as we provide

our tool on a mobile device giving more flexibility and power to th e integration specialist.

2.2 Comparison of Schema Matching Evaluations

Schema m atching is the task of finding sem antic correspondences between elements of

two schemas [19] . There are a num ber of system s th a t have been developed recently to

determ ine schema m atches sem i-autom atically and [12] com pares some of them (Cupid

[19], LSD [13], Sim ilarity Flooding [20], A utom atch [4], Autoplex[3]) to clearly define the

advantages and disadvantages of each. T his task is m ade very difficult by th e fact th a t the

system evaluations for each respective schem a-m atcher was done using diverse m ethod

ologies, m etrics and data , m aking it v irtually impossible to apply them to a common test

problem or benchm ark in order to ob tain a direct quantita tive comparison.

[12] a ttem p ts to standardise the crite ria for fu ture schem a-m atching evaluations by dis

cussing the m ajor criteria influencing the effectiveness of a schema m atching approach. To

com pare the evaluations, four areas are considered m ost im portan t:

1. Input: W hat kind of inpu t d a ta has been used (schema inform ation, d a ta instances,

dictionaries etc.)? T he sim pler the test problem s and the m ore auxiliary inform ation

Chapter 2: Related Research 14

th a t is used, the more likely th e system s can achieve be tte r effectiveness. However,

th e dependence of auxiliary inform ation can lead to increased preparation effort.

2. O utpu t: W hat inform ation is included in th e m atch result (m appings between a t

tribu tes or whole tables, nodes or paths etc.)? The less inform ation the systems

provide as ou tpu t, the lower the probability of making errors bu t the higher the post

processing effort m ay be.

3. Q uality Measures: W h a t m etrics have been chosen to quantify the accuracy and com

pleteness of the m atch result? Because the evaluations usually use different m etrics,

it is necessary to understand their behaviour, i.e. how optim istic or pessimistic their

quality estim ation is.

4. Effort: How m uch savings of m anual effort are obtained and how is it quantified?

W h a t kind of m anual effort has been m easured, for example, pre-m atch effort (train

ing of learners, dictionary preparations etc.), and post m atch effort (correction and

im provem ent of the m atch ou tpu t)?

The m ain m otivation to develop an au tom atic schem a-m atcher is to save in labour of

m anually m atching the schemas. O f all the schem a-m atchers evaluated none completely

au tom ate the process of schema m atching. P re-m atch and post-m atch m anual work still

needs to be com pleted. P re-m atch efforts include;

• train ing of the machine learning based m atchers,

• configuration of the various param eters of th e m atch algorithm s e.g. setting different

threshold and weight values,

• specification of auxiliary inform ation, such as dom ain synonyms and constraints.

P ost-m atch efforts include exam ining and confirming the results. Confirming positive

m atches and negative m atches, exam ining the threshold of m atches (all examined projects

evaluate a m atch as between one and zero) are all post-m atch labour th a t needs to be

com pleted. [12] argue th a t it is possible th a t the pre-m atch and post-m atch m anual labour

efforts can actually outweigh the benefits gained through try ing to au tom ate the process.

T his work confirms th a t the local adm in istra to r of a schema or database needs to be

consulted to confirm the results of the au tom ated schema m atching process. This means

th a t the local adm inister will also have to learn to understand the schema m atching process

in order to confirm th e results. None of the tools described in [12] for schema-matching

Chapter 2: Related Research 15

provide mobile solutions, which would allow the local adm inister and the engineer to work

w ith familiar tools during the schem a-m atching process a t the site of the local database.

This research project suggests th a t the savings m ade in m anual labour in autom ating

the schema m atching process are often lost in the pre-schem a m atching and post-schem a

m atching activities. O ur mobile m e tad a ta schem a browser provides a tool to allow an

engineer to examine the structu re of a local schema aiding them in the schem a m atching

process b u t does no t try to au tom ate th e process.

2.3 SchemaSQL

SchemaSQL is a language for interoperability in relational m ulti-database system s [18]. As

w ith federated database system s one of th e fundam ental requirem ents in a m ulti-database

system is interoperability, which is th e ability to uniform ly share, in terp re t and m anipulate

inform ation in com ponent databases in a m ulti-database system. T he heterogeneity prob

lems in m ulti-database system s are sim ilar to w hat is m entioned in the previous section

and can be sum m arised as sem antic issues (in terpreting and cross re lating inform ation

in different local databases), s tructu re issues (e.g. heterogeneity in database schemas,

datam odels and schema processing) and system issues.

The problem of interoperability am ong a num ber of com ponent relational databases storing

sem antically sim ilar inform ation in structu ra lly dissim ilar ways is considered in [18]. They

argue, th a t the requirem ents for in teroperability fall beyond the capabilities of languages

like SQL.

A num ber of key features for a language th a t supports in teroperability are outlined which

include:

1. T he language m ust have an expressive power th a t is independent of the schema.

For instance in m ost conventional relational languages, some queries (e.g. find all

departm ent nam es) expressible against the database U n iv -A in fig 2.2 are no longer

expressible when the inform ation is reorganised according to U n iv -B w ithout query

ing m e tad a ta repositories.

2. To prom ote interoperability, th e language m ust perm it th e restructu ring of one

database to conform to the schem a of another.

3. T he language m ust be easy to use and yet sufficiently expressive.

Chapter 2: Related Research 16

Univ-A
sallnfo

Category dept salFloor
Prof CS 65,000
Assoc Prof CS 50,000
Prof CS 60,000
Assoc Prof Math 55,000

Univ-B
sallnfo

Univ-C

cs
Category SalFloor
Prof
Assoc Prof

60,000
55,000

Math

Category SalFloor
Prof
Assoc Prof

70.000
60.000

category CS Math
Prof
Assoc Prof

55.000 65,000
50.000 55,000 Univ-D

sallnfo

Dept Prof Assoc Prof
CS 75,000 60,000
Math 60,000 45,000

Figure 2.2: SchemaSQL Exam ple

4. T he language m ust provide the full d a ta m anipulation and view definition capabilities

and m ust be downward com patible w ith SQL syntax and semantics.

5. Finally, the language m ust adm it effective and efficient im plem entation. In particular

it m ust be possible to realise a non-intrusive im plem entation th a t would require

m inim al additions to the com ponent RDMS.

T he m ain contribution of SchemaSQL is th a t it provides a m eans to query d a ta and

m etada ta , which thus allows restructuring and it does this while m aintaining the SQL

syntax and backw ard com patibility w ith SQL. W hile providing restructuring capabilities

SchemaSQL perm its th e declaration of query variables which can range over any of the

following five sets: (i) nam es of databases in th e federation, (ii) names of relations in the

database, (iii) nam es of a ttrib u tes in th e schema relation, (iv) tuples in a given database

in a relation, and (v) values corresponding to a given a ttrib u te in a relation.

T he following definition is presented from SchemaSQL because it describes the term s used

in form ulating a SchemaSQL query th a t is necessary to understand the queries presented

later. T he concepts of range specifications, constan t and variable identifiers are sim ulta

neously defined by m utual recursion as follows:

1. Range specifications are one of th e following five types of expressions, where db,

r e l , a t t r , are any constant or variable identifiers (defined in two below)

(a) The expression - > denotes a range corresponding to the set of database names

in the federation.

(b) T he expression db - > the set of relation nam es in the database db.

(c) T he expression db - > r e l denotes the set of nam es of a ttrib u tes in the scheme

of a relation r e l in database db.

(d) db : : rel denotes the set of tuples in the relation rel in the database db.

(e) db : : r e l . a t t r denotes th e set of values appearing in the colum n nam ed

a t t r in the relation r e l in the database db.

2. A variable declaration is of the form < r a n g e x v a r > where < ra n g e > is one of the

range specifications above and v a r is an identifier. An identifier v a r is said to be a

variable if it is declared as a variable by an expression of the form < ra n g e > < v a r>

in the f ro m clause. Variables declared over the ranges (a)-(e) are called dbnam e,

rel-nam e, a ttr-nam e, tuple and dom ain variables respectively. Any identifier no t so

declared is a constant.

In example 2.2 a federation of schemas of u n iv -A , u n iv -B , u n iv -C and u n iv -D il

lustrated in fig 2.2, it is necessary for the query language to be able to query data and

m etadata seamlessly because what is represented as da ta in one schema is represented as

data in another schema.

E x a m p le 2.1 Sample SchemaSQL Query (Relation name metadata)

s e l e c t R e l C

f r o m u n i v - C - > R e lC , u n i v - C : :R e l C C, u n i v - D : : s a l l n f o D

where R e l C = D . d e p t and C . c a t e g o r y = ' P r o f ' and C . s a l F l o o r > D . P r o f

Example 2.1 lists the departm ents in univ-C th a t pay a higher salary floor to their

professors com pared w ith th e sam e departm ent in univ-D, which illustrates querying of

m etad a ta and d a ta across two schemas. T he sta tem ent univ-C-> RelC queries all the

nam es of relations (m etadata) in univ-C and stores them in variable RelC. T he second

p a rt of the from clause has the statem ent, univ-C: :RelC C, which queries all the

tuples of all th e relations in univ-C and stores them in variable C. T he new constructs

introduced in SchemaSQL make it easier to query m etadata . T he where clause of the

query is interesting because it illustrates the m anipulation of m etad a ta and data . RelC
is a variable th a t stores m etad a ta from univ-C, ie tab le names (departm ents), yet in

univ-D, d epartm ent nam es are data . T he sta tem en t RelC = D.dept, is an instance of

how SchemaSQL allows th e m anipulation of m etad a ta and data.

Chapter 2: Related Research 17

E x a m p le 2 .2 Sample SchemaSchemaSQL Query (Column name metadata)

s e l e c t T . c a t e g o r y , a v g (T .D)

f r o m u n i v - B :: s a l l n f o - > D, u n i v - > D, u n i v - B :: s a l l n f o T

where D <> ' c a t e g o r y '

g r o u p b y T . c a t e g o r y

Example 2.2 com putes the average salary floor of each category of employees over all

departm ents in univ-B. To do this it is necessary to have access to the colum n names,

which is m etad a ta b u t also inform ation regarding the departm ent names. W ithou t access

to th is m etad a ta via th e statem ent univ-B : : salInfo-> D, which retrieves th e column

nam es “Category”, “CS”, and “M ath”, it would be necessary to directly query the system

catalogue. I t is also interesting to note using SchemaSQL more abstract queries can be

m ade where the exact s tructu re of the schema does not need to be known when the query

is w ritten and also it is possible th a t the stru c tu re of the schema can change (add a

departm ent (column) to univ-B) and the query will rem ain valid.

T he query com putes the average salary floor of each category of employees over all employ

ees. This query illustra tes horizontal aggregation and how to query the unknown schema

stru c tu re using SchemaSQL.

T he system architecture consists of a SchemaSQL server th a t com m unicates w ith the local

databases in the federation and rem ote clients. I t is assum ed th a t the m eta-inform ation

comprising of com ponent database names, nam es of relations in each database, names

of the a ttrib u tes in each relation and possibly o ther inform ation (statistical inform ation

for optim isation) are stored in the SchemaSQL server in th e form of a relation called the

federation System Table (FST).

Global SchemaSQL queries are subm itted to th e SchemaSQL server, which determ ines

a series of local SQL queries and subm its them to the local database. T he SchemaSQL

server then collects the answers from the local databases and using its own resident SQL

engine, executes a final series of SQL queries to produce the answer to the global query.

SchemaSQL provides a m eans to m anipulate d a ta and m etad a ta in a relational database,

yet the relational m odel is less expressive th an the object-relational model, it is argued in

[26] th a t a more expressive model is needed for th e canonical model in a federated database.

A federated database is generally a d istribu ted s tructu re and due to the com plexity of this

s tru c tu re in tegrating the local schemas can not be fully autom ated, while SchemaSQL

provides a m eans to query over m ultiple schemas in a seamless way it provides no tools

Chapter 2: Related Research 18

Chapter 2: Related Research 19

to over come the need to visit local database sites and consult local adm inistrators during

the difficult task of m erging schemas together.

2.4 Querying and Restructuring the Tabular Database Model

Tables are one of the m ost na tu ra l ways th a t d a ta can be represented [15]. T he relational

m odel’s structu re however lim its it to a variety of possible tables. Some tables have names

for their columns (like relations) and rows (unlike relations), and these names need not

be distinct (unlike in relations). Tables as opposed to relations offer sym m etry between

rows and columns, and th e la titude th a t row and colum n nam es m ay occur m ultiply or

m ay even be absent. [15] argues th a t exploiting this sym m etry and flexibility allows for a

m uch broader class of n a tu ra l d a ta representations th an captured by the relational model.

M any applications can significantly benefit from the in tegration of database systems

(whose streng th is efficient and robust on-line processing (OLTP) and handling large

volumes of data) w ith analytical tools like spread sheets (which offer on-line analytical

processing (O LAP) capabilities). Spreadsheets m odel d a ta in the form of tables (arguably

m ore liberally th a n in th e relational model) and have several powerful analytical tools

built into them . Exam ples include row and colum n arithm etic, generalised aggregation on

arb itra ry blocks of values draw n from tables, and the ability to invoke external functions.

I t is pointed out in [15] and [14, 10] th a t an in tegration of relational database system s and

spreadsheets will combine their com plem entary strengths in OLTP and OLAP respec

tively, leading to a powerful environm ent for d a ta processing. [15] describes a powerful

model and language th a t supports convenient restructu ring of d a ta between various tab u

lar representations. T hey also argue th a t their work is th e first fundam ental querying and

restructuring language proposed for OLAP systems.

In order to describe th e tab u la r model, two types of symbols are distinguished: N (called

names) and V called (variables). Names can be though t of as a generalisation of relation

and a ttr ib u te names. To allow a broad class of d a ta representations, names are allowed to

appear in positions th a t are norm ally though t of as d a ta en try positions. Also variables are

able to appear in the usual position for nam es. Tables need not have entries for every row

and colum n com bination. T he null value _L (inapplicable) is used to signify the absence

of entries. T he set of all symbols S , is th en N U V U 1 . A tab u lar database is a set

of tables. If T is a tab le w ith row num bers 0 ...M and colum n num bers 0... TV then table

T is called a tab le of w id th M and height N . T he w id th and height of T are denoted

w idth(T) and height(T), respectively. For I a finite sequence over and J , a finite

Chapter 2: Related Research 20

(Table N am e)V0' (Colum n A t t r ib u te s) ^
(Colum n A t t r ib u te s)^ (D ata Entries)T>

Table 2.1: R epresentation of a Table

sequence over 0...N, T j denotes th e sub-table of T formed by rows and columns indicated.

In particular, for 0 < i < height(T) and 0 < j < w id th (T), T denotes the i ^ row, T J

denotes th e colum n and T? th e entry T(i , j) . T he sequence (i + 1)... height(T) will be

abbreviated to > i and the sequence (j + 1)... w idth(T) will be abbreviated to > j (The

index position will disam biguate between th e two possibilities).

Using the no ta tion in a block diagram illustra ted in table 2.1, four regions can be distin

guished in a tab le T. T he en try T® is the tab le nam e, th e entries Tq are called the column

a ttribu tes, th e entries T> are called the row a ttrib u tes , and th e entries T> are called d a ta

entries.

T he tab u lar algebra consists of assignm ent statem ents of th e form T <—< operation > <

param eter lis t > < argum entlis t > w ith T a tab le param eter, augm ented w ith an itera tion

construct. Param eters can be considered as tab le nam es, colum n a ttrib u tes or sets of

column attribu tes. T he argum ent list is a set of tab le nam e param eters. Each tim e

an assignm ent sta tem ent as above is invoked; the operation is invoked on each sequence

of tables in the database, whose names m atch w ith the tab le nam e param eters in the

argum ent list. T he resulting tab le is nam ed T.

Four restructuring operations are im plem ented, which include, grouping, merging, splitting

and collapsing. G rouping and m erging are described below w ith the aim of illustrating

schem a-restructuring operations outlined in [15].

G rou p in g

The syntax of a grouping assignm ent statem ent is T <— G RO U Pf,y Aonb {R) w ith A and B

a ttrib u te set param eters. A n example of grouping is Sales <— G RO U Pby R egion on Sold. {Sales)

applied to Schema (A) in fig 2.3. T he resulting table,

1. I ts a ttr ib u te row is obtained by first ex tracting from th e row of th e original table

th e a ttrib u tes different from b o th Region and Sold (only Part in this example)

and th en adding th is together w ith as m any copies of Sold as there are d a ta rows

in the original table.

2. Next, the colum n headed by Region is added as th e first d a ta row of the new table.

Schema A

Chapter 2: Related Research 21

Sales Part Region Sold
nuts east 50

_L nuts w est 60

_L nuts south 40

_L screw s w est 50

-L screw s n orth 60

_L screw s south 50

_L bolts east 70
bolts north 40

Schema B

Sales Part Sold Sold ■Sold Sold Sold Sold Snld Sold
Region i east w est south w est north south east norti

nuts 50 1 1 1 1 1 1 1
nuts 1 60 1 1 1 1 1 1
nuts 1 1 40 1 1 1 1 1
screw s 1 1 1 50 1 1 1
screw s 1 1 J 1 60 1 J

j screws 1 J 1 1 1 50 1
bolts 1 1 1 1 1 1 70 1

l bolts 1 1 J 1 1 1 1 40

Figure 2.3: R estructuring w ith G rouping

3. F inally th e d a ta rows from tab le (A), after projecting out the region entries, are

added to tab le (B), as follows, consider row i in tab le (A). The Sold entry of this

row is added under th e i ^ 1 occurrence of th e Sold colum n in table (B), on row i.

T he rem aining entries of row i in tab le (B) are filled w ith J_ (non-applicable)

T he grouping example illustrates how OLAP functionality can be used w ith the tabu lar

database model. This is no t possible in the relational model using SQL because the tabu lar

m odel allows colum n a ttrib u tes to have the same nam e where as the relational model does

not and also in the tab u la r m odel due to the fact th a t trad itional m etad a ta positions (like

colum n nam es) can be interchanged w ith d a ta it allows for the grouping operation to take

place.

M erg in g

T he syntax of a m erging assignm ent statem ent is T <— M E R G E ^ y AonB (R), w ith A and B

a ttr ib u te set param eters. Applying th e merging assignm ent Sales <— M e r g e r s old, by Region

(Sales) on table A in fig 2.4■ T he resulting table, table B fig 2.4, is obtained by

reversing th e steps in th e grouping operation. Table A in fig 2-4 illustrates the feature of

the tab u la r m odel which allows rows to have a ttr ib u te nam es, ie (the row a ttrib u te names

Total and Region). T he m erging example is also an example of OLAP operations in

th e tab u la r m odel th a t are not possible in th e relational m odel w ith SQL.

In [15], a tab u la r m odel is illustra ted w ith powerful schem a-restructuring capabilities. It

illustrates th e need and usefulness of querying over d a ta and m etadata , which is currently

Schema A

Chapter 2: Related Research 22

Sales Part Sold Sold Sold Sold Sold
Region J east west north south Total
J nuts 50 60 J 40 150
1 screws J 50 60 50 160

1 bolts 70 J 40 J - 110
Total J 120 110 100 90 420

Schema B

Sales Part Region Sold
_L nuts east 50

nuts west 60
L nuts north J

nuts south 40
_L screws east _L
J_ screws west 50
J_ screws north 60
J_ screws south 50
J_ bolts east 70
J_ bolts west J_
J_ bolts north 40
L bolts south 1

Figure 2.4: R estructuring w ith M erging

not provided in O-R database systems. I t is a simple yet expressive model w ith a wide

num ber of applications. Yet, because of its sim plicity th e difficulties th a t arise from

deducing th e s tructu re of a m ore complex schema do n o t arise here. T he m odel is more

expressive th an the relational m odel b u t because it does no t support complex structures

like behaviour or inheritance it is no t suitable for the canonical m odel in the FDBS which

needs to be more expressive th a n any of the com ponent models (which m ight include

object model).

2.5 Noodle: A Language for D ata and M etada ta Querying

in an O bject-O riented D atabase

In [22], an object-oriented query language for querying over schem a and d a ta is discussed.

There are several novel features of th e Noodle system including:

1. Q uery variables can range over all classes, relations a ttrib u tes and objects.

2. Queries can do im plicit schem a querying. Queries such as “find all classes (or find

all subclasses of vehicle class) whose objects have an attribute of engine capacity”

can be expressed w ithou t explicitly referencing th e system catalogue (see example

2.3) .

Chapter 2: Related Research 23

A feature of the Noodle system is the ease of expressing queries th a t would require schema

querying in o ther system s. Consider the case where MotorVehicles is a subclass

of a class representing vehicles w ith an a ttrib u te EngineCapacity. Class Vehicle
also has subclasses some of which have a ttrib u te EngineCapacity others do not. Let

FordFastVehicle be the (view) collection of the vehicles th a t have an engine capac

ity greater th a t 100 and are m anufactured by ford. Example 2.3, com putes the view

regardless of how m any subclasses of vehicle have a ttrib u te EngineCapacity and il

lustrates Noodles power to query over a schema. T he atom V [EngineCapacity = E,
Manufacturer = M] is false for all vehicles th a t do not have th e a ttrib u te EngineCapacity
and Manufacturer and succeeds for those th a t do, illustra ting how Noodle can be used

to query over m etadata . Also note th a t the view FordFastVehicle does not have to

change in regards to changes to the schema (structu ral changes).

E x a m p le 2 .3 Exam ple of Explicit Schema Querying in Noodle

F o r d F a s t V e h i c l e { V e h i c l e = V} : - V e h i c l e { M e m b e r = V} & V [E n g i n e C a p a c i t y

= E, M a n u f a c t u r e r = M] & E > 100 & M[Name = ' f o r d ']

Example 2.3 is an example of implicitly querying m etadata as it checks whether any

sub-class of V e h ic le has the attribute named E n g in e C a p a c i ty and M a n u fa c tu r e r

before trying to retrieve the values of these attributes and check if the w h ere clause is true.

Noodle also provides a m eans of explicitly querying m etad a ta v ia th e system catalogue, yet

sim ilar to current object-relational databases the system catalogue includes inform ation

on security and versioning which irrelevant to the in tegration specialist and makes the

task of integrating and m erging the schema in to the federation more complicated. D ata

and m etad a ta queries in the Noodle system are non-standard and are not com patible w ith

SQL. Noodle is an object oriented language therefore it is m ore difficult to merge the

common relational database in to a federation th an if we use the O-R model

2.6 C ontext Aware Mobile Com puting

C ontext-aw are com puting is a mobile com puting paradigm in which applications can dis

cover and take advantage of contextual inform ation (such as user location, tim e of day,

nearby devices and user activ ity). The technology th a t has allowed context aware mobile

com puting to emerge is im provem ents in mobile com puters and the improvement in the

bandw id th of wireless networks.

C urrent work in context-aw are mobile com puting is largely focused on the context of

location of a mobile device and offers services based on this variable [8]. For example [1]

describe a system th a t provides inform ation services to a tourist abou t her current location,

she can find directions and retrieve background inform ation abou t her current position. In

[11] they also offer inform ation based on location. In this system the assistant examines

the conference schedule, topics of presentations, users location, and users research interests

to suggest presentations to a tten d . W henever the user enters a presentation room, the

Conference A ssistant au tom atically displays the nam e of th e presenter, the title of the

presentation, and other re la ted inform ation. These services are based on a central client-

server approach.

T he projects th a t are currently developing context-aw are mobile applications are spe

cialised and the servers are dedicated to providing inform ation regarding a particu lar topic

of interest. These client server applications are lim ited in scope because th e broader range

of applications they w ant to cover, the larger and more com plex the central server and

database m ust become. It is m ore suitable for databases on local networks, th a t the mobile

user has access to, to store general inform ation abou t its local environm ent. If databases

th a t are on local networks have a com plete structu ra l m etad a ta interface to their d a ta and

this inform ation is m ade available th en mobile applications can be w ritten to access this

m etad a ta interface and thus th e local data . In our work we provide a m etad a ta interface

and query language for an object-relational database which can be queried on a mobile

device. T he m etad a ta interface and query language can be used as middleware allowing

a roam ing mobile user to access databases and query their contents which could include

inform ation abou t the local environm ent.

2.7 Sum m ary

R ecent work in schem a-m atching techniques illustrates th a t th is p a rt of the integration

process cannot be fully au tom ated and i t has also been argued th a t the m anual work of

setting up a schem a-m atching application and examining the results actually outweigh the

advantages gained in au tom ating the m anual task. In the Clio pro ject a num ber of tools

are presented which assist th e in tegration engineer w ith the in tegration process. Instead

of try ing to au tom ate the whole process, they have researched particu lar paxts of it and

provide a set of generic tools. Yet for the particu lar problem of integrating schemas in a

federated database system , th e issue of the d istribu tion of local schemas is ignored. To

successfully in tegrate a num ber of d istribu ted local schemas the in tegration specialist will

need to visit local sites and consult the local adm inister and CLIOs tools do not encompass

Chapter 2: Related Research 24

Chapter 2: Related Research 25

this problem. We address these shortcom ings by providing a Mobile M etadata Schema

Browser (MMSB), which allows th e in tegration engineer to examine local schema on site

while discussing sem antic details w ith th e local database adm inistrator.

A num ber of schema query languages where analysed which provide m etad a ta m anipula

tion techniques bu t it was discovered th a t the relational and tab u la r models where not

as expressive as the object-relational model, and th a t the integration specialist needed

a clear interface to s tructu ra l m e tad a ta which is no t provided in im plem entations of the

object-oriented model. T he m obile m e tad a ta schema browser specifically browses object-

relational m etad a ta because th is m odel is suitable to be the canonical m odel for the FDBS

as it is very expressive. We provide a m etad a ta interface th a t is useful to the integration

specialist when examining a schema during the integration process.

Finally research work on context aware mobile-com puting was looked a t, and it was illus

tra te d th a t a com plete m e tad a ta interface to a database th a t is m ade available to mobile

device is useful so th e device can discover locally stored context inform ation.

Chapter 3

The O bject-R elational M etam odel

T he O bject-R elational (O-R) m odel provides object extensions to th e relational model.

M ost commercial databases in use today adopt the relational model bu t the object-oriented

m odel is more expressive and more suitable for storing complex data[26]. In [26] they

discuss the suitability of a datam odel for the CDM of a FDBS by comparing their ex

pressiveness and sem antic relativism . T hey judge the relational m odel as not satisfying

the requirem ents for th e CDM b u t th e object oriented m odel as satisfying all essential

characteristics of the CDM. It takes tim e to m igrate to a new d a ta m odel so a hybrid d a ta

m odel can be more suitable for th e canonical model of a FDBS . T he canonical model of

a federation needs to be very expressive and this is true for the O-R model bu t due to its

power in representing complex structu res its m etad a ta is also very complex.

T he relational m odel (SQL-92 S tandard) supports tables, constraints, triggers, nested

tables, views and procedures. A n object-oriented model supports inheritance, classes,

behaviour, aggregation, association and polym orphism. Combining the relational and

object-oriented model provide a m eans for the storage and m anipulation of complex d a ta

structures.

M ost of the la test versions of relational databases, such as Oracle, Sybase and Informix

extend the relational m odel w ith new constructs to support objects. In general, these

databases have appeared in the m arket before the object-relational standard was published.

Hence the current versions of O-R databases do not fully support the SQL:99 standard .

In our research th e Oracle 9i database m odel is trea ted as a s tandard as it supports most

of the SQL:99 specification. In th is chapter the O-R m etam odel , its lim itations and the

difficultly th a t currently faces engineers when deducing the s tructu re of an O-R schema

will be discussed.

26

3.1 O bject-R elational M etada ta

Chapter 3: The Object-Relational Metamodel 27

O bject-relational m etad a ta can be viewed through a collection of v irtual tables. These

v irtual tables are views of the Oracle m etabase. In the view system , m etad a ta is not

necessarily unique to a certain v irtual tab le and m ay be viewed in different ways. V irtual

tables are specialised tow ard a particu lar users needs.The following are the headings under

which m etad a ta for O -R d a ta will be discussed:

1. Types

2. Tables

3. A ttribu tes of Types

4. Columns of Tables

5. In h eritance

6. Behaviour

7. Views

8. A ssociation

9. C onstrain ts

10. C ardinality of R elationships

3.1.1 Types

Existing im plem entations (Oracle 9i, Sybase and Informix) of th e O-R m odel are effectively

relational databases th a t have been extended to give users th e im pression they are m anip

u lating objects instead of relational tables. T he O-R m odel supports all object-oriented

structures, yet the m anner in which these structures are created, stored and m anipulated

is m ade m ore powerful because th ey are bu ilt on and can use relational structures.

O-R types are user defined d a ta types th a t make it possible to m odel complex real world

entities such as a client or an order as un ita ry entities (called objects) in the database. New

object types can be composed of any built in database type and any previously created

object types, object references, and collection types. O-R types include the behaviour in a

s tru c tu re called a m ethod. For example, if you have an object called C u s to m e r , a m ethod

called m a k e _ p u r c h a s e would change the in ternal structu re of the object C u s to m e r , an

a ttr ib u te called c a s h will be reduced and a ttrib u te called p u r c h a s e d _ i t e m s will be

increm ented to include the new item. In relational database structu res it is possible to

include a form of behaviour. S tored procedures and functions can be used to m anipulate

relational d a ta bu t they are separate entities to the d a ta and are no t encapsulated by a

type. O n the other hand it is possible to fetch, retrieve and m anipulate a set of related

objects and m ethods as a unified en tity in an O-R database because they are linked

together as a instance of a type.

Inheritance allows an engineer to create type hierarchies by defining successive levels of

increasingly specialised subtypes th a t derive from a from a common ancestor object type.

Derived sub types contain (“inherit”) the structu re of the super type (ie m ethods and

a ttrib u tes etc) and are perm itted to extend the structure.

T he m e tad a ta view th a t allows access to the inform ation th a t describes types is called the

ALL_TYPES view. This gives the general s tructu re of the types and points the user where

to look for more inform ation. I t contains fourteen columns, which include:

• TYPE_NAME and SUPERTYPE_NAME give the nam e of the type and its supertype (if

a super type is p a rt of the type specification).

• OWNER and SU PER TY PE_O W N ER are m etad a ta which show th e creator of the type

and the super type.

• ATTRIBUTES and METHODS are m etad a ta th a t show the am ount of a ttrib u tes and

m ethods in the type (inherited a ttrib u tes and m ethods are included in this num ber).

• LOCAL_METHODS and LOCAL_ATTRIBUTES are m etadata th a t describe the number

of a ttrib u tes and m ethods in the type excluding inherited a ttrib u tes and m ethods.

• T he INSTANTIABLE m etad a ta indicates w hether or no t it is no t possible to create

an instance of th is type. I t is possible to have m ethods and types are not instantiable

b u t still com plete and valid. T hey m ay be used as the root in an inheritance tree

where subtypes are instantiable.

• F IN A L is a boolean value th a t indicates in an inheritance hierarchy if this types

s tru c tu re can be inherited. If it is tru e no type can inherit th is types structure.

• T he INCOMPLETE m etad a ta indicates th a t a type is incom plete. For example, an

O -R type references a type th a t does not exist.

• TYPE_OID, TYPECODE and TYPEID are im plem entation details for m anipulating

O-R types.

Chapter 3: The Object-Relational Metamodel 28

Chapter 3: The Object-Relational Metamodel 29

The m etad a ta for types is complex and includes m etad a ta th a t a vendor would use to

efficiently m anipulate types. Also some m etad a ta is repeated w ithout any obvious benefits.

For example it is possible to tell if a type is inherited from the SUPERTYPE_NAME column,

the ex tra inform ation ATTRIBUTES and METHODS which includes the num ber of inherited

a ttrib u tes and m ethods is of little tangible use. If the user needs to discern the structure

of th e super type he can retrieve it using SUPERTYPE_NAME.

3.1 .2 T ab les

Tables are used to store d a ta in the relational model and this structu re is extended to be

capable of storing instances of objects in th e O-R model. The structures th a t are related to

tables include constrain ts, triggers and views. In th e O-R model tables are used for storing

instances of objects and the m anner in which they can be m anipulated is extended beyond

the capabilities of the s tan d ard relation model. In an object tab le each row represents an

object. There are two ways to m anipulate objects in an object-table:

• As a single-column tab le where each colum n is an object. This allows a user to

perform object-oriented operations.

• As a m ulti-colum n tab le where each a ttrib u te of the object type is a column. This

allows the user to perform relational operations.

O bject tables support triggers and constrain ts in m uch the same way as relational tables.

There are two exceptions; constrain ts can be im plem ented on leaf level scalar a ttribu tes

of a column object, w ith th e exception of r e f ’s th a t are no t scoped and triggers cannot

be defined on th e storage tab le for a nested table colum n or a ttrib u te .

The O-R m odel supports two collection types: nested tables and varrays. A nested table

is an unordered set of d a ta elements all of the same d a ta type. I t has a single column and

the type of th a t colum n is a built in type or a user defined type. If th e type is user defined,

the tab le can also be viewed as a m ulti-colum n table, w ith a colum n for each a ttrib u te of

the object type. A varray is an ordered set of d a ta elements of one d a ta type. The size of

the varray is fixed and m ust be set when the type is defined.

There are three m e tad a ta views in th e O -R model to view tables: ALL_ALL_TABLES,

ALL_TABLES and ALL_OBJECT_TABLES. T he ALL_TABLES view allows a user to view

m etad a ta for relational tables. I t has 43 columns th a t describe physical database stor

age m etada ta , user access m etada ta , form atting m etad a ta and general statistics. The

ALL_OBJECT_TABLES is a view of all the object tables in the database. It includes

inform ation on the nam e of the table (TABLE_NAME), the type of object th a t will be

stored in the tab le (TABLE_TYPE), the owner of th e table and type stored in th e table

(TABLE_OWNER and TABLE_TYPE_OWNER), w hether of not it is a nested table (NESTED),

and physical database storage inform ation, user access inform ation, form atting informa

tion and general statistics. T he ALL_ALL_TABLE is a view which includes inform ation on

all the relational and object tables in the database. I t views all the previously m entioned

m etadata.

These tables have m any columns of m etada ta . M uch of the m etad a ta stored in these tables

is vendor specific and relates to how the vendor allows an adm in istrato r to m anage the

database.

3.1 .3 A ttr ib u tes o f T ypes

A ttribu tes hold d a ta abou t an objects features of interest. For example, object type Person

has a ttrib u tes called nam e, address and date of b irth . An a ttrib u te has a declared d a ta

type which is another object type, a built in d a ta type (such as NUMBER, VARCHAR2 or

REF etc), or a collection. Taken together, the a ttrib u te s of an objects instance contain

th a t objects d a ta and all an objects a ttrib u tes taken together a t any tim e describe the

s ta te of the object.

A n a ttrib u te can be a collection which is a VARRAY or a NESTED_TABLE. A VARRAY is

an ordered collection of elements, a t the tim e of creation you have to specify the length of

the VARRAY. A NESTED_TABLE is an unordered list of elements. It can have any num ber

of elem ents and no m axim um is specified a t creation time.

A n a ttrib u te can reference another object. A sim ilar idea in a relational database is a

foreign key. T he object th a t is referenced is a s tand alone object and can be m anipulated

outside of referencing object. I t is also possible to m anipulate the a ttr ib u te of type REF

in the same way as any other attribu te .

T he m etad a ta for a ttrib u tes is taken from th e ALL_TYPE_ATTR’s view. T he view has

eleven columns which include:

• T he TYPE_NAME is the nam e of the type th a t owns the attribu te .

• The ATTR_NAME is the nam e of the a ttrib u te .

• T he ATTR_TYPE OWNER is the owner of the type of the attribu te .

• ATTR_TYPE_NAME is the name of the type of the attribute.

Chapter 3: The Object-Relational Metamodel 30

• ATTR_NO is the order number of the attribu te when the type was created.

• INHERITED is a boolean value th a t illustrates whether or not the attribute is inher

ited.

• ATTR_TYPE_MOD illustrates whether or not this attribute is a reference to another

object.

• LENGTH, PRECISION, SCALE and CHARACTER_SET_NAME are formating infor

mation.

T he m etad a ta for a ttrib u te s includes form atting m etad a ta and structu ra l m etadata . Al

though a ttrib u te s can be collections there is no reference to th is type of m etad a ta in this

view.

3 .1 .4 C olum ns o f Tables

A ttribu tes and columns are discussed in different sections because the m etad a ta relating

to each are different. A n a ttrib u te is p a r t of a type, it can be a reference, a user defined

type, a system defined type or a collection. A colum n of a table stores data. Constraints

and triggers can be placed on a colum n b u t they can not be directly associated w ith a

type bu t instead the d a ta stored in the column.

In th e O-R m odel tables are used to store th e d a ta and m any of the constructs associated

w ith relational tables can be applied in m uch th e same way to O-R tables. Tables consist

of one or more colum ns were each column stores a particu lar type of inform ation. In the

O-R model instances of objects are stored in tables in two ways; the object can be stored

in a single colum n and m anipulated like an object as a com plete entity, or the table th a t

holds th e object can be trea ted as a m ulti-colum n table, were each a ttrib u te is stored

in a column. T he m ulti-colum n tab le approach to viewing an object allows a user to

m anipulate the instance d a ta in the same way as columns in a relational table.

Columns are th e initial building block w hen storing anything in an O -R database, for this

reason there are m any views of the m etad a ta for columns. These views include:

• ALL_COL_COMMENTS stores comments relating to a column in a table.

• ALL_COL_PRIVS describes the privileges to a column in a table.

• ALL_CONS_COLUMNS stores m etadata describing the constraints on a column.

Chapter 3: The Object-Relational Metamodel 31

Chapter 3: The Object-Relational Metamodel 32

• ALL_PUBLISHED_COLUMNS stores m e tad a ta on w hether a colum n is published. Not

all columns are published and m ay be used by th e system hidden from th e user.

• ALL_TAB_COL_STATISTICS stores statistics for a column.

• and ALL_TRIGGER_COLS store m etadata relating to the triggers th a t depend on

columns.

The general view for colum ns is ALL_TAB_COLUMNS. I t contains th ir ty columns of m eta

d a ta describing the owner of the column, the d a ta type of the column, the tab le the column

belongs to, w hether the columns can be null or no t and also access inform ation, form atting

inform ation, statistics and physical storage inform ation.

If an engineer is looking for m etad a ta abou t columns to rebuild a schema it can be difficult

to decipher it from th e views presented. In tables th a t span th irty columns very brief

explanations are given for each field in th e available docum entation which makes th e job

of finding relevant m e tad a ta to an engineers current ta sk m ore difficult.

3.1 .5 Inheritance

Inheritance in the object-oriented m odel allows an engineer to create type hierarchies

by defining successive levels of increasingly specialised subtypes th a t derive from a from

a common ancestor object type. There are th ree m e tad a ta views to view inheritance

inform ation in th e O -R model;

• ALL_TYPES,

• ALL_TYPE_ATTRS,

• and ALLjrYPEjyiETHODS.

The ALL_TYPES m eta-view contains m etad a ta abou t whether or not th is type inherits

d a ta from another type in th e SUPERTYPE__NAME and SUPERTYPE_OWNER field. From

the fields LOCALJYIETHODS , LOCAL_ATTRIBUTES , ATTRIBUTES and METHODS it can

be distinguished how m any a ttrib u tes and m ethods are local and how m any have been

inherited. T he ALL_TYPE_ATTRS and ALL_TYPE_METHODS views b o th contain a field

called INHERITED th a t tells a user if th is a ttr ib u te or m ethod was inherited from a super

type.

Chapter 3: The Object-Relational Metamodel

3.1.6 Behaviour

33

Behaviour is represented in an 0 -R database in two ways: triggers and m ethods. Triggers

are defined on object-tables (tables th a t hold instances of objects) in the same way as they

can be defined for relational tables bu t a trigger cannot be defined on a storage table for a

nested tab le colum n or a ttrib u te . Triggers can also be defined on a database or a schema

in the database and also on a view.

M etada ta for triggers can be viewed from the ALL_TRIGGERS view. It has fourteen

columns of m etad a ta th a t describe the varies aspects of a trigger. T he m etad a ta includes;

• M etad a ta on the nam e of the trigger and owner (OWNER, T R IG G E R _N A M E).

• T he type of the trigger (TRIGGER_TYPE).

• T he triggering event (TRIGGERING_EVENT).

• T he object on which the trigger is defined (BASE_OBJECT_TYPE).

• T he tab le owner, tab le nam e and colum n nam e (TA B LE_O W N ER , TA B LE_N A M E,

COLUMN_NAME).

• T he cause for th e trigger to be fired (W H EN _C LA U SE).

• W hether the trigger is enabled or not (STATUS).

• A description of the trigger (DESCRIPTION).

• Its action type (A C T IO N _ T Y P E).

• T he statem ents executed by the trigger when it fires (TRIGGER_BODY).

B ehaviour on types is im plem ented as m ethods. M ethods are functions or procedures th a t

a user can declare in an object type definition to im plem ent behaviour th a t a user wants

objects of th a t type to perform . T hey are how type a ttrib u tes (data) can be accessed and

m anipulated a t runtim e. T he signature for a m ethod consists of m ethod nam e, m ethod

type, param eters and the results. The m ethod type could be m em ber, s ta tic or constructor.

Every object has a constructor th a t is im plicitly created by the system; it can also be

created by the engineer. I t is a function th a t re tu rns a new instance of a type and sets

up the values of its a ttribu tes. A m em ber m ethod is a function th a t m anipulates the

a ttrib u tes of a type and a sta tic m ethod is invoked on a type bu t does not m anipulate

the a ttribu tes. T he param eters th a t are passed to the m ethod and the results th a t are

re tu rned by a m ethod can be user defined types, built in types, a collection or a reference.

There are th ree m etad a ta views for accessing m ethod m etad a ta , ALL_TYPE_METHODS,

ALL_METHOD_PARAMS and ALL_METHOD_RESULTS. ALL_TYPE__METHODS has eleven

columns of m etadata ;

• T he owner of th e ty p e and type nam e (OWNER, TYPE_NAME).

• the m ethod nam e, m ethod num ber (order of m ethods of the type) and m ethod type

(METHOD_NAME, METHOD_NO, METHOD_TYPE).

• the number of param eters and results (PARAMETERS, RESULTS).

• inheritance m etadata (FINAL, OVERRIDING, INHERITED).

• W hether th e m ethod is instan tiab le (INSTANTIABLE).

T he ALL_METHOD_PARAMS m eta-view consists of OWNER, TYPE_NAME, METHOD_NAME,

METHOD_NO and METHOD_TYPE which are the same as th e ALL_METHODS view. I t also

includes;

• param eter nam e, num ber and modifier (if its a REF) (PARAM_NAME, PARAM_NO and

PARAM_TYPE_MOD).

• T he type of the p aram eter (PARAM_TYPE),

• T he owner of th e ty p e (PARAM_TYPE_OWNER).

• F orm atting m e tad a ta (CHARACTER_SET_NAME).

T he ALL_METHOD_RESULTS m eta-view consists of OWNER, TYPE_NAME, TYPE_OWNER,

and METHOD_NAME which are th e sam e as th e previous two views. I t also includes;

• T he type of th e resu lt (RESULT_TYPE).

• T he owner of th e ty p e (RESULT_TYPE_OWNER).

• W hether or no t th e result is a reference (RESULT_TYPE_MOD).

• F orm atting inform ation (CHARACTER_SET_NAME),

T he O-R m odel provides th ree views of the m etad a ta for m ethods. In m ost instances when

engineers are exam ining a m ethod they m ust examine all th ree views. W hen th e m etad a ta

is presented in a system of views th is leads to th e user viewing repeated inform ation or

needing to use SQL to m anipulate it.

Chapter 3: The Object-Relational Metamodel 34

Chapter 3: The Object-Relational Metamodel

3.1.7 Views

35

A view in a relational database allows a user to only see p a r t of schema. For example a view

on an employee m ay hide sensitive salary inform ation including inform ation of address,

nam e and phone num ber which could th en be m ade available safely to th ird parties w ithout

modifying the original storage structure . In an O-R database object instances are stored

in object-tables and it is possible for the user to create relational views of the object-tables

in the sam e m anner as on relational tables.

T he O-R model has extended th e idea of views to include object views. A relational view

is a v irtual table and an object view is a v irtual object. Each row in th e view is an object,

it has a ttrib u tes and m ethods, and it is possible to create a reference th a t points to it.

O bject views can be created from columns in relational tables or object tables. This is a

useful feature for a database engineer m igrating a database to the O-R m odel from the

relational model.

T he m etad a ta for views can be retrieved from the m eta-view A L L _ V IE W S . It consists of;

• T he nam e of th e view and its owner (OWNER, V IEW _N A M E).

• T he tex t length and the tex t for the relational query (T E X T , TEXT__LENGTH).

• T he tex t length and query for the typed view (T Y P E _ T E X T and T Y P E _ T E X T _ L E N G T H).

• T he object identifier length (O ID _TE X T__L E N G T H).

• T he tex t for m aking the object identifier (O ID _ T E X T).

• T he type of th e view and its owner (V IE W _ T Y P E , V IE W _T Y PE _O W N E R).

• Inheritance m e tad a ta (SU PE R V IE W _N A M E).

T he A LL _V TE W S view combines m e tad a ta for object-views and relational views. These are

very different structu res and are suitable to be used in different circum stances. Combining

th e m etad a ta for b o th types of views leads to confusion to users no t familiar w ith th e O-R

model.

3 .1 .8 A sso c ia tio n

Association is achieved in the O -R model using the system defined type R E F . A R E F is a

logical pointer to a row object. An a ttrib u te for a type can be of type R E F which means

th a t the object it references can be accessed or m anipulated by using the R E F . T he object

Chapter 3: The Object-Relational Metamodel 36

th a t is referenced also exists independently and can be accessed or modified in its own

right. Param eters and results for m ethods can also be R E F ’s. If an a ttrib u te , param eter

or result references another object a m etad a ta colum n called modifier will hold the value

R E F .

3 .1 .9 C o n s tra in ts

C onstrain ts are a relational feature th a t can be im plem ented on tables or object-tables.

There are five types of constraints, p rim ary key constraint, referential constraint, check

constrain t on tab le (depending on a search condition), unique key constraint, and the read

only constrain t on a view.

T he view for accessing constrain t m etad a ta is A L L _ C O N S T R A IN T S . I t consists of;

• T he owner o f the constrain t (OWNER).

• T he type of th e constrain t and the nam e of th e constrain t (C O N ST R A IN T _N A M E ,

C O N S T R A IN T _ T Y P E)

• T he tab le or view on which th e constrain t is defined (TA BLE_N A M E).

• T he s e a r c h c o n d i t io n (S E A R C H _ C O N D IT IO N).

• Owner of tab le referred to in a referential constraint, nam e of unique constraint defi

n ition for referenced table, and the delete rule for a referential constraint (R_OW NER,

R _C O N S T R A IN T _N A M E , D E L E T E _ R U L E).

• Enforcem ent s ta tu s of th e constrain t (S T A T U S).

• W hether it is deferrable and w hether it is initially deferred (D E F E R R A B L E , D E FE R R E D).

• W hether all d a ta obeys th e constrain t (V A L ID A T E D).

• W hether th e constrain t is user or system generated (G EN ER A TED).

• If it is a bad constra in t (badly formed logic) (B A D).

• W hether the enabled constrain t is enforced or not (R E L Y).

• T he date it was last modified (LAST__CHANGE).

• Inform ation abou t index’s (IN D E X _N A M E , IN D EX _O W N ER).

Chapter 3: The Object-Relational Metamodel

3.1.10 C ardinality of R elationships

37

The cardinality of a relationship is a definition of num eric relationships between occur

rences of entities on either end of a relationship line. Viewing a schem a’s cardinality

relationships can give an engineer an overview of how the schema relates together and

how complex it is. M etada ta for cardinality relationships are no t supported in the O-R

model. M etada ta for cardinality relationships can not be easily m ined using SQL and a

procedural program m ing language is needed to m anipulate the m etad a ta to create these

relationships. This will be exam ined further in the next chapter.

The cardinality of a relationship can be one : one, one : many, and many : many etc.

T he m any side can (but does not have to be) a collection. T here are two collection types

in the O -R model; nested tables and varrays. A varray is an ordered set of elements; each

element has an index num ber and this is used to access thcolectione elements. A nested

table however, can have any num ber of elem ents and the ordering of the elements is not

preserved. B oth structu res only hold a collection of one d a ta type.

T he m ain m eta-view for viewing collection m etad a ta is A L L _ C O L L _ T Y P E S , which is a

tab le of eleven columns describing nested tables and varrays. I t includes the following

m etadata ;

• B oth nested tables and varrays are defined as types, so they include m etad a ta

type_nam e (collection nam e) and owner (T Y PE _N A M E , OWNER).

• T he type of th e collection (varray or nested table) (C O L L _ T Y P E).

• W hether it is a collection of references (E L EM _TY PE _M O D).

• T he u p p e r b o u n d (if i t is a v a r r a y) (U PPE R _B O U N D).

• T he nam e o f the type in th e collection (E L EM _TY PE _N A M E).

• T he owner of the type in the collection (E L EM _TY PE _O W N E R).

• T he precision and scale if its a num ber in the collection and the length if its a string

(L E N G T H , S C A L E , P R E C IS I O N) .

• Form atting and storage inform ation (C H A R A C T E R _S E T _N A M E , E L E M _ST O R A G E ,

N U L L S _S T O R E D).

Separate views are available in the O-R m etam odel for accessing varrays and nested

tables b u t they do no t give all the necessary m etadata . For example th e meta-view

Chapter 3: The Object-Relational Metamodel 38

ALL_VARRAYS does no t include the num ber for th e m axim um num ber of elements in

the varray which is an im portan t p a r t of its structure. Com bining the m etad a ta for var-

rays and nested tables can lead to confusion to an engineer w ithout in dep th knowledge

of th e O-R structu re as they will no t be able to discern which colum n of m etad a ta relates

to which structure.

3.2 Sum m ary

T he 0 -R m etam odel is a complex structu re . T he way the m etam odel is currently presented

combing structu ra l m etada ta , form ating m etad a ta and storage m etad a ta does not help the

engineer to easily understand th e underlying schema. T he cardinality of relationships are

no t included in the m etam odel and can not be easily m ined using SQL. These relationships

are im portan t because they give an engineer an overview of the complexity of the schema

and how the s tructu re fits together. F inally th e system of views th a t are used to present the

m e tad a ta is no t always intuitive; for example two different types of collection structu re are

com bined in to the one view which can lead to confusion abou t which columns are related

to which collection type. In the next chapter a simple 0 -R m etad a ta query language is

presented to address these issues. Its purpose is to provide an engineer w ith a simple and

in tu itive way of viewing and navigating O-R m etadata .

Chapter 4

M etadata Query Language

Federated databases are very complex. They can be autonom ous, heterogeneous and

distribu ted . Each com ponent database in th e federation can have a different datam odel,

different query language, different s tru c tu re and vocabulary to describe their respective

data . T he common d a ta m odel of th e federation m ust be able to com pletely encompass

all th e com ponent databases so th e ir d a ta can be correctly represented in the FDBS. This

m eans th e common d a ta m odel m ust be sem antically very powerful and expressive.

T he O bject-R elational (O-R) m odel is a powerful d a ta m odel which is suitable for m od

elling complex d a ta structures. W here as the relational database support tables, con

strain ts, triggers, nested tables, views and procedures, the object-oriented m odel supports

inheritance, classes, behaviour, aggregation, association and polym orphism . Combining

the relational and object-oriented m odel provide a means for th e storage and m anipula

tion of complex d a ta structures. T he O-R m odel also provides s tructu res which ease the

task of m igrating d a ta from relational m odel to the object-relational model. As the need

for storing m ore com plex d a ta increases th is aspect accom m odates relational database

adm inistrators in m igrating their d a ta to a more expressive model.

T he O -R m odel is very rich and powerful and because of th is the m etam odel is also very

complex. I t is viewed th rough m any v irtual tables which can in tu rn have tens of columns

of data . Federated database engineers are faced w ith a difficult task when querying the

m etad a ta as they need b o th expertise in SQL and the O-R model. For federated database

engineers it is im p o rtan t to be able to deduce the high level s tructu re of a database schema

so they can quickly deduce where a com ponent schema m ay fit in to the federation. In

this chapter these issues will be addressed as we present our m e tad a ta query language

which was designed in th is research project. T he query language was designed to be used

on a PDA , so as to accom m odate th e federated database engineer who m ay need to visit

39

distribu ted com ponent sites. T he language is simple enough to be used through a PDA

b u t powerful enough to retrieve all desired m etadata .

This chapter is structu red as follows: section one introduces the issues w ith querying the

current O-R m etam odel. Shortcom ings in the m etam odel are analysed and problems w ith

querying the model th rough SQL are discussed. Section two illustrates th rough a series of

examples how our m etad a ta query language addresses these problem s. Section th ree is a

summary.

4.1 A c c e s s in g O -R M e t a d a t a w i th S Q L

Complex SQL statem ents are som etimes needed to mine m etad a ta from th e O-R m etabase.

O ther m etad a ta are represented b u t good knowledge of the m etam odel is necessary in order

to find the necessary m etadata . In th is research, a clear m etad a ta interface and query

language is provided to ease the task of integration engineers. This section highlights the

difficulties th a t exist w ith the current O-R m etad a ta interface and using standard SQL to

query it. In the rem ainder of th is chapter m etad a ta from Oracle 9i will be prin ted w ith a

bold font.

4.1 .1 L o n g Q u erie s a n d th e N e e d fo r O -R E x p e r t is e

In the O -R model m etad a ta re la ted to different O-R structures is grouped together in

v irtual tables because th e inform ation is re la ted b u t this can lead to confusion to the O-R

database user. For example, th e A LL_CO L TY PES virtual tab le contains m etad a ta for

two different types of collection virtual tables and varrays. V irtual tables are of variable

length and th e contents of the tab le are no t in any particu lar order, th e varray however

needs to specify a length a t creation tim e and does m aintain a specific order. A lthough

th e difference is only one colum n of m etad a ta combining the m etad a ta implies th a t the

m e tad a ta is common to b o th structu res b u t this is no t th e case. Example 4-1 (A) shows

the query for retrieving varray m etad a ta and example 4-1 (B) shows th e query for nested

tab le m etada ta .

E x a m p le 4 .1 Varry and N ested Table M etada ta queries

(A) V array M etad a ta Query

select owner, type^name, upperJ>ound,

elerrL.type-.mod, elerrL-type-Owner, elerrL-type-name

Chapter 4: M etadata Query Language 40

Chapter 4: M etadata Query Language 41

from alLcoLtypes

(B) N ested Table M etada ta Query

select owner, type_name, elem_type_mod,

elem-type^owner, elerrL.type-.name

from alLcoLtypes

The FDBS engineer, querying an 0 -R database for m etad a ta needs to w rite long SQL

queries. To retrieve the m etad a ta for constraints the query in example 4-2 is needed.

G enerally when try ing to rebuild a constrain t a typical set of m etad a ta is needed each tim e

and no t a random subset. In the O -R m odel different types of m etad a ta are combined w ith

th e s tru c tu ra l m etad a ta which m eans one cannot select all the contents of a v irtual table

b u t instead a long and awkward query is needed to retrieve the desired inform ation, see

example 4.2. For a FDBS engineer th e ability to query the structu re of a schema through

a PD A is useful so the engineer can visit d istribu ted sites to query com ponent schemas.

Long SQL queries are not suitable for a PD A as th e input device is non-conventional and

unsuitab le for long tex t input.

E x a m p le 4 .2 C onstrain t SQL M etad a ta Q uery

select owner, constraint-name, constraint-type, table-name,

search condition, r^owner, r-ConstrainL.name, delete^rule,

status, deferrable, deferred, validated, generated, bad, rely

from alLconstraints

4 .1 .2 A ttr ib u te M etad ata

T he v irtu a l tab le for a ttr ib u te m etad a ta is the A L L _T Y P E S _A T T R S virtual table.

From th is v irtual tab le SQL can retrieve p a rt of the necessary m etad a ta as shown in

example 4-3. W hen analysing the m e tad a ta for a ttrib u tes it is useful to be able to deduce

w hether or no t an a ttr ib u te is a collection. In th e O-R m odel however collections of a

p a rticu la r type are defined as types; for example a collection of type person object can

be contained in an object th a t is of type people, although it is a collection of another

type it is defined as a type. T he a ttr ib u te m etad a ta for a ttr _ n a m e and a t t r _ t y p e

represent the w rapper type for the collection and only th e nam e (semantic meaning) gives

a h in t to w hether it is a collection (i.e. collectiorLjperson). In example 4-3 the query is

m ade over two tables ALL TYPE A TTR S and ALL T Y P E S. From the ALL T Y PES table

m etad a ta which tells the user w hether a type is a collection is added to th e m etada ta

view on a ttrib u tes th a t is described in th is report. To correctly retrieve the m etad a ta for

a ttrib u tes using SQL and deduce w hat is necessary for a engineer to rebuild a schema

needs expert knowledge on the O-R m odel and SQL.

E x a m p le 4 .3 SQL A ttrib u te M etad a ta Access

SELECT type-name, type-owner, alLtypes. typecode

attr^name, attr-type^name, attr-type-owner

attr-type-modifier, inherited, attr-no

FROM alLtype-attrs, alLtypes

WHERE alLtypes. owner = ’schema-Owner’

AND alLtypes-attrs.owner = ’schema^owner’;

4.1 .3 C ard inality o f R ela tion sh ip s

C urrently in O-R m etad a ta there is no view th a t directly represents th e cardinality of

relationships. In order to illustra te th e cardinality of relationships it is necessary to be

able to deduce w hether an a ttrib u te is a collection. From the available O-R m etad a ta we

can create an A T T R IB U T E S _ C O L L E C T IO N S view which is shown in example 4-4■ In the

A L L _T Y P E _A T T R S view it is not possible to learn w hether an a ttr ib u te is a collection,

as each collection is defined as an independent type therefore in the A L L _T Y P E _A T T R S

view every a ttr ib u te is listed as a type. The details of the type of each a ttrib u te m ust

be checked from th e ALL T Y PE S view in order to discern w hether it is a collection. To

discern w hat type is in the collection, ALL COLL T Y PE S need to be examined. Hence

the s tructu re of the view in example 4-4■ o w n in g _ ty p e is the type in which the a t

trib u te appears. a t t r i b u t e _ n a m e is th e nam e of the a ttrib u te (name of collection)

and t y p e _ o f _ a t t r i b u t e is w rapper type for the collection. t y p e _ i n _ l i s t gives the

type of object in the collection and c o l l _ t y p e gives the type of collection ie VARRAY or

N EST E D JT A B L E .

E x a m p le 4 .4 T he A T T R IB U T E _ C O L L E C T I ONS view.

CREATE or REPLACE view A T T RIB U TE_ COLLECTIONS as

SELECT alLtype-attrs.type-name OW NING-TYPE, attr-name

A T TR IB U TE_ NA ME, alLtype_attrs.attr^type-name TYPE-OF-ATTRIBUTE,

Chapter 4: M etadata Query Language 42

elem -type-nam e T Y P E -IN -L IS T , COLLOTYPE from alLtypes, alLtype^attrs, alLcolLtypes

W H E R E alLtypes.type^name = alLtype^attrs.ATTR^type^nam e

A N D typecode = ’C O L L E C T IO N ’

A N D alLtype_attrs.ATTR-type_nam e = alLcolLtypes.type-.name

A N D alLcolLtypes.owner = ’schem aN am e’ and alLtypes.owner = ’schem aN am e’

A N D alLtype-attrs.ow ner = ’schem aN am e’

The cardinality relationship between types A and B depends on how many of type A

is in type B and how many of type B is in type A which is then described as one:many,

m any:m any or one:one relationship etc. For an O-R type the m any side of the relationship

can be ’deep’ or ’shallow’. The many side is deep when we are dealing with a collection

and it is necessary to look beyond the ALL_ TYPE__ATTRS view. On the other hand the

m any side of the cardinality of a relationship can be shallow, which means directly in type

A there are instances of type B that can be discerned from the ALL TYPE_ATTRS view.

For example type student has a teacher and a headmaster, the headmaster may also be of

type teacher therefore the student has many instances of type teacher (but does not have

a collection). The many side of a cardinality relationship can be shallow or deep, nested

table or v a r r a y .

In the A L L T Y P E ATTRS view there is no metadata on whether an attribute is a collection.

Each attribute needs to be checked in the A TT R IB U T E _C O LLE C T IO N S view to see if it

is a wrapper type for a collection or a normal type. Once this information is discerned

from the available O-R metadata it is possible to build the cardinality relationships. It is

difficult to implement cardinality relationships using SQL therefore in this research project

a procedural programming language was used to manipulate the existing metadata.

4 .1 .4 Inheritance

In the ALL_TYPES metadata view there is inheritance metadata. The columns F IN A L ,

IN S T A N T IA B L E , SUPERTYPE_NAME and TYPE_NAME, LO C A L_A T T R IB U T E S and METHODS

describe the inheritance relationships for a single type. The metadata views ALL_TYPE

ATTRS and A L L T Y PE M E T H O D S each have a single metadata attribute " IN H E R IT E D "

which indicates whether a method or attribute has been inherited or not. This metadata

is adequate to describe the inheritance relationship for a single type, attribute or method.

FDBS engineers on the other hand, need to be able to quickly deduce the over all structure

of a schema so they can quickly integrate it into the FDBS. To get all the inheritance

Chapter 4: Metadata Query Language 43

information relating to a certain type (root type), the entire inheritance tree would need

to be traversed and metadata related to whether the type was instantiable or final would

need to be collected so as to be presented to the user. A relational query, see example 4-5,

can be used to get the necessary metadata however in order to present the metadata in

a meaningful way to the engineer a procedural programming language is needed to create

the inheritance tree either graphically or in terms of ordering the text result.

Example 4.5 The inheritance metadata query.

S E L E C T S U P E R T Y P E .N A M E , T Y P E -N A M E , L O C A L .A T T

L O C A L-M E T H O D S, F IN A L , IN S T A N T IA B L E

F R O M A L L _ T Y P E S

GRO U P B Y S U P E R T Y P E

4.2 M etad ata Q uery Language and Interface

In this section aspects of the O-R Metadata Query Language (OR-MQL) that was designed

in this research project will be presented. The differences between this language and

what is currently available through SQL will be highlighted though a set of examples

and diagrams. The full language listing is in Appendix B. OR-MQL offers a simple but

complete query language for querying all aspects of O-R metadata. While describing the

language a description of the O-R metadata interface will be presented.

The schema used in this section describes a news agency which consists of reporters,

editors, presenters and different types of news programs and reports.

4 .2 .1 T h e C ard inality o f re la tion sh ips

Having the ability to discern the cardinality of relationships in a schema greatly aids

the FDBS engineer in deducing the overall structure of a schema. The cardinality of

relationships tell the engineer the relationships between complex types in the schema.

Metadata for the cardinality of relationships between types is not directly represented

in O-R databases. The available metadata needs to be manipulated to produce them.

The views ALL T Y P E S , ALL TYPE_ATTRS and ALL_COLL_TYPES are manipulated by

a procedural programming language to produce the cardinality of relationships. Low

level metadata and high level metadata are provided to allow the browsing of cardinality

metadata on two different levels, they are described in table 4-1 and table 4-% respectively.

Chapter 4: Metadata Query Language 44

Chapter 4: Metadata Query Language 45

Column Name Data Type Description
TYPEA V A R C H A R 2(5 0) The first type in the relation

ship.
OWNER V A R C H A R 2(5 0) The owner of the types in the

relationship.
TYPEB_OWNER V AR C H A R 2(5 0) The owner of the second type in

the relationship.
C A R D IN A L IT Y V A R C H A R 2(1 5) The cardinality between the

two types.
REFTABLE_NUM NUMBER Number to reference cardinality

definition table.

Table 4.1: High-level cardinality table.

The low level view provides too much information for the general user so we also provide

a high level view which is described in table 4.1. This high level metadata provides the

names of types, their cardinality and a reference to a look up table. The look-up table

describes variations of the cardinality relationships and it is listed in the appendix.

When discerning the structure of an O-R schema and examining the cardinality between

types an engineer needs the metadata listed in table 4-1 or table 4-2. The queries in

example 4-6 illustrates the c a r d in a l i t y schema queries. If the query is cardinality

O W N E R .T Y P E A then all the relationships related to type A will be returned. If the

query is cardinality O W N E R .T Y P E A .T Y P E B the cardinality relationship between type

A and type B will be returned. Finally if the query is cardinality O W N E R .SC H E M A then

the cardinality relationships for the entire schema will be returned, grouped by type. The

third query listed in example 4-6 returns the cardinality look up table.

Example 4.6 Schema query for O-R cardinality.

[select] cardinality O W N E R .[[TY P E A [.TY P E B][\ SC H E M A -N A M E]

[select] lowllevelcardinality O W N ER. [TYP E A [. TYPEB]]\SC H EM A -N AM E]

[select] carRefTable

Querying for Cardinality of R elationships in Example N ew s Agency Schema

The query select cardinality Adm in.N ew s agency will return the cardinality of all relation

ships in schema Newsagency owned by Adm in. In our example News Agency schema this

will return descriptions of the cardinality for all seven complex relationships in the schema.

This is illustrated in figure 4-1- It can be discerned from this diagram how the instantiable

objects in the schema relate to each other. For example, there can be many presenters that

present the news (or only one), a single news item can be in many weekly-news programs

Chapter 4: Metadata Query Language

Column Name Data Type
Description

OWNER VARCHAR2 (5 0)
The owner of the schema
where the types are de
fined.

TYPEA V A R C H A R 2(5 0)
The first type in the car
dinality relationship

TYPEB V A R C H A R 2(5 0)
The second type in the
cardinality relationship

DEPTA V A R C H A R 2(8)
Whether or not the type
of the attribute A was
found deep or shallow.

C O LLE C T IO N _T Y P E A V A R C H A R 2(5 0)
Name of the type in the
collection for attribute A.

C O LL_TY P E A VARCHAR2 (5 0)
Whether the collec
tion of type A is a
N ESTED TABLE or
V A R R A Y .

C A R D IN A L IT Y V A R C H A R 2(1 0)
The cardinality relation
ship of the type.

C O LL_TYP E B V A R C H A R 2(1 2)
Whether the collec
tion of type B is a
N ESTED TABLE or
V A R R A Y .

DEPTB V A R C H A R 2(8)
Whether the type of the
attribute B was found to
be deep or shallow.

C O LLE C T IO N _TY P E B V A R C H A R 2(5 0)
Name of the type in the
collection for attribute B.

Table 4.2: Low-level cardinality metadata.

Chapter 4: Metadata Query Language 47

Figure 4.1: Cardinality of Relationships in Example News Agency Schema.

Name Type Description
PARENT VARCHAR2 (50) Parent type in the inheritance relationship.
C H IL D VARCHAR2 (50) Child type in the inheritance relationship.

IN S T A N T IA BLE VARCHAR2 (5) Whether or not this type is instantiable (true||fa lse).

F IN A L VARCHAR2(5) Whether or not this type is final (true||false).

Table 4.3: OR-MQL Inheritance Metadata.

or many daily programs or none at all and a news program can consist of many news

reports, or only one.

4 .2 .2 In heritan ce M eta d a ta

Objects are defined in terms of classes. Objects of the same class all have the same

structure, characteristics and behaviour. The inheritance relationship allows a user to

specialise a particular class, by adding some extra characteristics and at the same time it

saves the engineer the time of developing a new structure. Currently in the O-R metamodel

it is possible to deduce the inheritance information for an individual, class, attribute or

method.

A FDBS engineer needs to examine the entire inheritance tree in order to deduce how to

integrate this structure in to the federation. More generally for an engineer looking to

extend a complex schema, the ability to see the entire inheritance structure, will allow

him to more clearly see where he might need to extend th inheritance tree. In OR-MQL

we have provided an interface to inheritance metadata that will allow engineers to retrieve

inheritance information for the entire schema, or a subset of it.

Example 4.7 Schema query for O-R inheritance.

[select] inheritance O W N E R .SC H E M A -N A M E

[select] inheritance O W N E R .T Y P E

Chapter 4: Metadata Query Language 48

Example 4.7 illustrates OR-MQL queries for inheritance metadata.The first query queries

inheritance metadata over an entire schema.The results from the query are in the format

described in table 4-3. The results are returned with the root of the largest inheritance

tree in the schema first. Then all child nodes of this tree in alphabetical order are listed.

The metadata instantiable and final relate to the child node and indicate to the engineer

whether or not objects can be created from this type structure and whether or not this

type definition can be extended further. After listing all the children of the root, next the

children’s children will be listed and so on until all the leaf nodes are reached. When one

inheritance tree has been listed the next inheritance tree (in order of size) will be returned

and listed in the same way.

Some models are very complex and their inheritance tree’s are extensive. Retrieving all

the inheritance information in such a case may not be suitable. The second inheritance

query in example ^.7 retrieves inheritance information starting at a certain type in the

inheritance tree. The inheritance information is retrieved in the same format as the first

example, but since only a fraction of the inheritance tree is being returned, the metadata

is easier to read and use.

Querying for Inheritance M etadata in the Example N ews Agency Schema The

query select inheritance admin.News Agency will return the metadata listed in table 4.4.

From this table one is able to clearly discern the inheritance relationships for the News

Agency schema. One can distinguish which types are abstract and which are instantiable

as well as where an engineer might want to extend the structure (leaf nodes). From a

FDBS engineers perspective this metadata query and interface is useful because it gives

the engineer an overview of the entire inheritance relationships for a schema, which can

then be examined to see how they will merge with other component schemas into the

federation. Figure 4 illustrates the inheritance metadata from table 4-4-

4.2.3 A ttr ib u te M etadata

The attributes of a type describe the structure of a type. The values of the attributes of

an object, at any instance in time, describe the state of that object. An attribute can be

a number, string, reference, collection or a user defined type. All of these can be deduced

from the ALL_TYPE_ATTRS except whether the type is a collection. Therefore an

extra column of metadata is added to the metadata interface (C O LLE C TIO N).

The OR-MQL schema query for attribute metadata is listed in example 4-8. The query will

either return all the names of the attributes for a particular type in a particular schema or

Chapter 4: Metadata Query Language

Parent Child Instantiable Final
N U LL PERSON FALSE FALSE

PERSON EMPLOYEE FALSE FALSE

EMPLOYEE REPORTER TRUE FALSE

REPORTER E D ITO R TRUE TRUE

REPORTER PRESENTER TRUE TRUE

N U LL PROGRAM FALSE FALSE

PROGRAM DAILYN EW S TRUE TRUE
PROGRAM NEWS TRUE FALSE

PROGRAM WEEKLYNEWS TRUE TRUE

NEWS IN T E R N A T IO N A LN E WS TRUE TRUE

NEWS REGIONALNEWS TRUE TRUE

NEWS S PE C IA LIN TER E S TN EW S TRUE TRUE

NEWS WEATHERNEWS TRUE TRUE

Table 4.4: Retrieving Inheritance Metadata for News Agency Schema.

Person
(abstract)

I
Employee
(abstract)

Editor (final)
Ï

Reporter Presenter (final)

Program
(abstract)

3
DailyNews (final) News WeeklyNews (final)

WeatherNews (final) SpeciallnterestNews (final) InternationalNews (final) RegionalNews (final)

Figure 4.2: Inheritance Relationships in Example News Agency Schema,

Chapter 4: Metadata Query Language 50

ATTR_NAME Date Produced Length NewsPrograms Editor
ATTRJTYPEJVIODIFIER NULL NULL NULL REF

ATTR_TYPE_NAME DATE INTEGER NEWSJTEMS EDITOR
ATTR_TYPE_OWNER SYS SYS ADMIN ADMIN

INHERITED TRUE TRUE FALSE FALSE
COLLECTION FALSE FALSE FALSE TRUE

ATTR_NAME Title Media Type Format Media Date
ATTRJTYPEJVIODIFIER NULL NULL NULL NULL NULL

ATT R_T YP E_N AME TEXT TEXT TEXT BLOB DATE
ATT_TYPE_OWNER SYS SYS SYS SYS SYS

INHERITED TRUE TRUE TRUE TRUE FALSE
COLLECTION FALSE FALSE FALSE FALSE FALSE

Table 4.5: Retrieving Attribute Metadata from the News Agency Schema.

all the details of the attributes depending on whether the key word N A M E S is included

or not.

Querying A ttribute M etadata in the Example News Agency Schema The query

select attributes Admin.NewsAgency.DailyNews will return detailed metadata describing

the structure of attributes for type DailyNews in schema NewsAgency owned by Admin.

The retrieved metadata is listed in table 4-5.

Using the three OR-MQL queries presented in this section an FDBS engineer who is trying

to integrate the example News Agency schema in to the FDBS will have a clear idea of the

structure of the schema and where it will merge into the federation. Figure 4-3 illustrates

the results of using the queries that we have presented so far. The complete metadata

interface and query language for OR-MQL is presented in the appendix. These examples

suffice in illustrating the power and simplicity of OR-MQL.

Example 4.8 Schema query for attribute metadata.

[select] attributes [NAM ES] O W N E R .S C H E M A .T Y P E

4.2.4 R e la tiona l M etadata

The relational and object part of the O-R database do overlap but are also distinct. The

object part describes the logical structure of the schema, i.e. how objects relate together,

the behaviour of objects, the structure of types and how and where to extend the schema.

The relational part describes how and where the physical objects are stored; how when

objects are accessed or when certain external events occur, events are triggered; how

Chapter 4: Metadata Query Language

Employee
salary : integer
slalfID : Integer
photo : BLOB
photoFormat : Text

Title : Text
dateProduced :
subject: Text
body: Text

WeeklyNews

type : Text = ("gen'peg'U 'inr)

Program
title: Text
mediaType : Text = *audio*||Video"
format : Text
media : BLOB
dateProduced : Date
lenght : Integer

InternationalNews
im portanceRating :

Presenter

Text = fdail/irw eekly*)

SpeciallnterestNews

WeatherNews
region: Text
torcastDistance : Integer

Figure 4.3: News Agency Schema.

access to objects or tables are constrained by certain rules; and how physical objects can

be viewed differently. Generally the object part describes the logical structure of data and

the relational part describes the physical storage and manipulation of the physical data.

The O-R model is built on the relational model. In this research project, views have been

added in order to completely describe the object aspect of O-R metadata. The interface

to object and relational metadata has been standardised and simple queries can be used to

access all metadata. The physical storage metadata, statistical metadata and redundant

metadata has been removed from the metamodel. The full metadata interface for O-R

metadata and descriptions of the metadata is in Appendix A.

4.3 Sum m ary

In this chapter we analysed currently existing problems with accessing O-R metadata.

Through a set of examples OR-MQL was presented which addresses the problems with

the current O-R metadata and the interface to it. OR-MQL was demonstrated to be

simple enough to be used on a PDA but powerful enough to query the O-R metamodel. It

was also illustrated that OR-MQL is suitable for a FDBS engineer who needs to quickly

discern the entire structure of a schema in order to merge it in to the canonical model. The

complete metadata interface and query language of OR-MQL is presented in the appendix.

Chapter 4: Metadata Query Language 52

Chapter 5

The Mobile M etadata Schema

Browser Architecture

Integration Engineers are often faced with a requirement to display and analyse the com

plex schemas of information systems to be merged. As these systems can be dispersed over

a wide geographic area, a Portable Digital Assistant (PDA) provides a flexible means of

viewing and displaying schema information. However the browsing process, which is often

complex and problematic on a workstation screen, becomes more difficult on the smaller

PDA. Using our metadata interface and query language as middleware, a mobile user can

query metadata on an object-relational database and automatically display its structure.

This application exploits our interface to the extended object Object-Relational (O-R)

schema repository to manipulate complex metadata information. The deployment archi

tecture described in this chapter was published in the 54th edition of ERICM (European

Research Consortium for Informatics and Mathematics) news [23].

5.1 D eploym ent A rchitecture

In figure 5.1, the deployment architecture for O-R metadata access is illustrated. In the

Mobile Layer, a PDA uses the metadata interface to O-R metadata and query language as

middleware in a specific application. The Schema Browser queries the schema using the

metadata query language described in chapter 4■ This includes metadata query options

for any object-relational schema and role views. The metadata queries and result set are

wrapped in XML to provide a robust, non-proprietary, persistent and verifiable file format

for the storage and transmission of data. The result of the metadata query is wrapped in

XML. Every modern Internet browser has the capability to present XML in a user friendly

53

Chapter 5: The Mobile Metadata Schema Browser Architecture 54

A p p lic a tio n
L a y e r

X M L L a y e r

S Q L -T ran s la tio n
L a y e r

Database Metadata
Plus Extensions D a ta b a se L a y e r

Figure 5.1: Deployment Architecture

way, so we did not need to develop a means to present the metadata results. XML is a

standard, trusted format that can be sent safely across computer networks.

The XML Translation Layer resides at the database server. Its purpose is to provide a

standard interface to the metadata query language. When receiving a query it is un

wrapped to form a metadata query, which is subsequently passed to the SQL translation

layer. After execution, results received from the SQL Translation Layer are XML-wrapped

using a basic rule set, and then returned to the application.

The SQL Translation Layer is where most of the metadata processing takes place. Current

approaches to interfacing metadata for object-relational databases were examined before

this layer was specified. The SQL Translation Layer accepts a metadata query, which is

parsed to invoke a sequence of actions against the schema repository. The results may be

comprised of conventional object-relational metadata or role metadata. After the results

are restructured according to the interface in chapter 4, they are passed back to the XML

Translation Layer.

The object-relational schema repository was extended by other EGTV researchers to pro

vide new interfaces to role metadata. Role metadata was added because it adds to the

expressiveness of O-R databases. Roles provide temporal aspects to entities, a feature that

is missing in conventional models. Without roles, a new object must be created each time

the structure of an object evolves and many complex issues are involved in maintaining

such an operation. All of the metadata can be accessed using the interface and the meta

data query language described in A ppendix B. Thus, it becomes accessible to integration

engineers using mobile devices.

5 .1 .1 Im p lem en tation o f th e M ob ile M etad ata Schem a B row ser

The mobile device used for implementation and testing was an Compaq IPAQ. The client

application ran on the PDA using Personal Java which is a slightly cut down version of

Java 1.1. A simple GUI was designed using Java AWT which accepted the query from the

user and wrapped it in XML. The query was then sent to the server. The retrieved result

is an XML file that is written to a specified directory on the PDA. The result set can be

viewed through any web browser that supports XML.

XML Schema files are defined for the queries and result sets. They are developed in XML

Spy. On the server unwrapping the queries and wrapping the result set is implemented

with Java. The SQL-Translation Layer is a Java program that accesses the database using

JDBC libraries and manipulates the available metadata to produce the interface described

in chapter 4■ The SQL-Translation Layer also includes a parser that was written using

ANTLR which parses the metadata queries described in chapter 4-

5.2 A pplication to Grade Schem a C om plexity

The Mobile Metadata Schema Browser is an application that runs on a PDA that allows

an engineer to connect to and browse a local database schema, and enables him to discern

its structure. This application is unsuitable to throughly test the metadata extensions

because it is designed to examine one database at a time and a particular aspect of the

database is examined with each query. The program to grade schema complexity was

designed and implemented in order to completely test the interface to O-R metadata that

is outlined in this research project.

The initial stage of this research project involved extensively researching the O-R metadata

for issues and difficulties in order to see what is easy, hard and impossible to do with the

available O-R metadata. Much of the necessary metadata for the O-R metadata interface

is available but extracting metadata needs long and sometimes complex SQL queries. The

cardinality of relationships are not available in the O-R metadata interface and it is not

Chapter 5: The Mobile Metadata Schema Browser Architecture 55

Chapter 5: The Mobile Metadata Schema Browser Architecture 56

possible to mine this information using simple SQL queries because data processing and

manipulation is needed.

The schema grader program takes an O-R schema and checks it’s complexity by measuring

the number of types, attributes, methods, constraints, triggers, the different types of car

dinality relationships and inheritance. The grade is then computed based on a complexity

algorithm. All the types and tables in the schema, the relationships and behaviour on

them are graded and the best five types contribute to the overall grade of the schema.

5.2.1 Im plem entation

The Schema Grader program consisted of four main classes:

• SchemaChecker,

• SchemaGrader,

• HighLevelReport,

• Driver class.

The SchemaChecker class generates high and low level cardinality relationship meta-tables.

As was discussed in chapter 4 creating cardinality relationships for O-R schemas needs a

procedural programming language. The low level table stores metadata about the actual

structure of the cardinality relationship, ie the many side of the relationship can be a

varray, nested table, deep or shallow. The high level meta-table is a view of the low level

table which includes TY P E A , T Y P E B , C A R D IN A L IT Y and an additional column is added

on to reference a lookup table. The lookup table describes the different types of cardinality

relationship and is listed in the appendix.

The SchemaChecker class generates the metadata for the inheritance relationship. The

details for this query can be deduced from the available metadata but without a procedural

programming language it is not possible to order the results or return them graphically

in the form of an inheritance tree. The procedural programming language is used to

traverse the tree in the order of: root type, the children of this type (one layer deep in

the inheritance tree) and then in alphabetical order the same process is used with each

child node until all leaf nodes are reached. The results are stored as a two dimensional

array with the first dimension representing the structure of the inheritance tree and the

second representing the details of the inheritance relationship for that type. With the

Chapter 5: The Mobile Metadata Schema Browser Architecture 57

Name Data Type Description
OWNER VARCHAR2(50) The owner of the type.

TYPE_NAME NUMBER The name of the type.
NUM_ATTRS NUMBER The number of attributes belong

ing to the type.
INHERITANCE VARCHAR2(5) Does this type have inheritance.

ONE_TO_ONE_REL NUMBER The number of one to one cardi
nality relationships for this type.

ONE_TO_MANY_REL NUMBER The number of one to many cardi
nality relationships for this type.

MANY_MANY_REL NUMBER The number of many to many
cardinality relationships for this
type.

METHODS NUMBER The number of methods for this
type.

TRIGGERS NUMBER The number of triggers on the ob
ject table that is implemented to
hold instances of this type.

CONSTRAINTS NUMBER The number of constraints on the
object table that is implemented
to hold instances of this type.

Table 5.1: High level table report.

inheritance information stored in this manner it gave us the option of giving extra marks

for the complexity of the inheritance tree used.

The HighLevelReport class creates a meta-table that is a detailed description of the types

for a particular schema. The details for this table are described in table 5.1. This ta

ble holds statistics for the number of different O-R features that is used by a particular

type and the object table that is used to store instances of the type. For instance object

features are methods, attributes, inheritance and the different variations of cardinality

relationships, where as relational features are the triggers and constraints that are imple

mented on the object tables that store instances of a particular type.

The SchemaGrader class contains algorithms to grade the schemas based on the statistics

presented in H ighL evelR eport meta-table. The types are graded on the following scale:

• .25 per attribute (max mark = 2),

• 2 points if inheritance is included,

• 2 points for each instance of behaviour ie constraints, triggers and methods (max

points = 6),

• 1 point for each one to one cardinality relationship,

Chapter 5: The Mobile Metadata Schema Browser Architecture 58

• 2 points each one to many cardinality relationship,

• 3 points for each many to many cardinality relationship.

The maximum number of points for each 0-R type is twelve. The best five types in a

schema are taken together giving a maximum points of sixty for the schema. The High-

LevelReport class then writes the results for the grade of the schema to a S c h e m a G ra d e s

table that has two columns, SCHEMA_NAME and SCHEMA_GRADE.

An administration tool was designed for the schema checking application but not com

pletely implemented. One feature of the tool would allow the user to place different weights

on the object-relational features that are graded. Graphs could be presented to the user

of the tool illustrating how many of each O-R feature each student used. This would allow

the user to see which areas the student as a whole were not confident in. Finally it was

planned to include in the tool a feature that would allow the user to view a graph of the

distribution of student’s grades. This tool would allow the user to view which areas the

students as a whole were strong in and which areas they needed improvement. It would

allow the user to re-weigh the marks given for each feature based on these statistics.

5 .2 .2 T esting

This program was used to mark undergraduate student schemas over the college year.

While marking 200 schemas atomically the interface and cardinality relationship extensions

were tested rigorously. The distribution of percentage grades for the student schemas

was focused around 50%, with the majority between 40% and 60% which is the same

distribution as previous years when the schemas were manually marked.

Ten percent of the total schemas, taken from the higher range (>60%), lower range(<40%)

and middle range of grades(40%-60%), were selected to be tested manually. Testing graded

schema’s from the lower range would ensure that structures that were supposed to get

marks were not being overlooked. Testing a sample from the higher range would ensure

that there was no scenarios were a student could be awarded marks in error. These sample

schemas were checked manually against H ig h L e v e lR e p o r t table to ensure the statistics

generated automatically are correct. The algorithm for marking the schemas was also

checked against this sample selection of schemas.

5.3 C onclusions

Chapter 5: The Mobile Metadata Schema Browser Architecture 59

The Mobile Metadata Schema Browser is an aid to integration engineers who are faced

with the complex task of integrating schemas that can be widely distributed and semanti

cally different. It is not possible to completely automate the integration process because

understanding the meaning of information must be achieved in collaboration with the local

administer who created the schema. Some tools were researched that try to automate parts

of this process but the overheads in preparing the schema to be integrated and making

reasonable deduction from the results proved greater overhead than manually integrating

the schema. The Mobile Metadata Schema Browser is a light client application that runs

on a PDA that allows an engineer to navigate metadata of an O-R database on site while

discussing semantic details with the administrator. A tool to view the results did not need

to be implemented as a web browser can be used to view the XML results.

Prototypes of the Mobile Metadata Schema browser have been implemented. The applica

tion has the potential to be substantially augmented in many ways. For example, currently

we are using a web browser to navigate the XML result sets. If XML Style Sheets were

used to present the data in a more meaningful way it would be easier for the engineer to

navigate the results. It is not possible to compile the XSL (XML Style Sheets) on the

PDA because it does not have the necessary processing power. Instead the XSL file can

be generated and compiled on the server and HTML can be sent to the client, or posted

to the web where it can be viewed.

Currently the Mobile Metadata Schema Browser is useful for navigating and understanding

Oracle’s O-R schema’s, a substantial improvement in this tool would be to extend it’s

capabilities to navigate other vendors schemas. Since we have defined an interface and

query language to the O-R model it is possible to use our query language to query Object-

Oriented models, or relational models but the mappings to the underlying metadata will

be vendor specific and needs to be specified for each vendor. Such an improvement to the

tool would aid the integration specialist who is working in an environment where the local

databases store the data in different datamodels.

An O-R model schema grader was designed, implemented and tested in this research

project. The purpose of this application was to prove our metadata interface to the O-

R database was complete and that the extensions that were written to address existing

shortcoming were implemented correctly. The application checked which O-R structures

were present and graded them according to a certain criteria. 200 undergraduate students

were given a project over two months to create a schema using many of the complex O-R

Chapter 5: The Mobile Metadata Schema Browser Architecture 60

structures and their schema was marked atomically according to what was present. A

number of schemas were manually checked (using Oracle Enterprise. Manager) to ensure

the metadata interface (the part of it used in this program) successfully picked up the

complex structures in an O-R schema and the relationships between them, and that the

grade awarded to the student, that was generated atomically was correct. This program

demonstrated that the metadata interface designed in this research project were imple

mented correctly and useful as middleware in an application to mark the complexity of

O-R schemas.

Chapter 6

Conclusions

In this research project we examined the difficulties faced by an integration engineer when

integrating component database schemas into a federation of databases. Through our

research we discovered that the most suitable database model for representing data in the

federated database management system is the object-relational (O-R) model. This model

is expressive enough to capture the semantic meaning of all component databases but due

to its expressive power it is also very complex.

Through thorough examination of the O-R model it was discovered that its metadata

interface and the means for navigating it was cumbersome and awkward to use. It is

true that that O-R model is much more expressive than the relational model, which is

widely used but is unsuitable to as the CDM for an FDBS because it is not expressive

enough. It is also true that O-R model leads to easier migration of data from the relational

model to the FDBS than the object-oriented model because it supports relational features

and constructs especially designed to migrate the data. The combination of relational

and object-oriented features means that O-R model is more expressive than either of

these models alone. Without a clear and complete definition of metadata for the object-

relational model its potential as the CDM for the FDBS can not be reached, as a user can

not be sure the metadata description of the data is accurate and the overhead of mining

the required metadata would be too great.

A complete and concise metamodel interface is needed in order to allow interaction with

the database, improves its data quality, support the system integration process and also

database maintenance, analysis and design. In this research project we analysed the object-

relational metamodel from the perspective of a federated database management system

integration engineer and the tasks that he must carry out during the integration process.

We discovered that the process of integrating component schemas into the FDBS can not be

61

completely automated and collaboration with the local database system administrators is

necessary in order to discern the semantic meaning of the metadata in the local databases.

For example, income in database one is take home pay, while in database two income is

gross pay. It will remain impossible to automate the integration of component database

schemas completely until a dictionary of common terms can be agree upon and each

database administrator that is part of the FDBS can agree to adhere to them strictly.

A dictionary of terms would only be useful if it is used when the FDBS is built and each

component database used is forced to only use words from the dictionary. When the

databases are already in place and more importantly in use before the FDBS is built the

cost of implementing a strict set of terms that are clearly defined is too expensive and not

practical. The larger the number of component databases becomes the more expensive this

task becomes. Other tools used for assisting the integration specialist that were designed in

various research projects have been examined. They mainly try to some degree to automate

the integration process but because of the difficulties in discerning semantic correlations

between respective schemas in the FDBS the pre-configuration of the automation tool and

the post-checking of results proves in most cases a larger overhead than integrating the

schemas manually.

The Mobile Metadata schema browser described in this research project took a different

approach by providing the integration specialist with a tool that would assist him in a

certain aspect of the integration process that we think can not be automated and will be a

permanent obstacle to the integration specialist. The function of this tool is to provide the

integration specialist a means to query local schemas in the presence of the local database

administer. The local database administer can then be asked semantic details about the

metadata and illustrate his point on tools that he is familiar with. Similarly for the

integration specialist for each local site that he visits he has a tool that he is familiar with

and confident with, which ensures that his job will be completed with less inconvenience,

in less time, and with less cost.

The FDBS is a complex structure consisting of mainly five different layers. The local

database layer consists of the schemas from local databases. The component layer is

the layer that holds the local schema that has been migrated to the CDM (common

data model). The export layer consists of a portion of the component layer that the

local administer deems suitable to share with the federation. This layer is useful as the

local administrator can produce different export layers that are suitable to be share with

different groups of users. Each of these different export layers are incorporated into a

federated schema (federated layer). The federated layer joins together seamlessly a set of

Chapter 6: Conclusions 62

Chapter 6: Conclusions 63

export schemas. Export schemas will be joined together that are suitable to viewed by the

same type of user. The federated layer is very expensive to engineer, merging the various

export schemas and finding correlations between the semantics of their metadata is a time

consuming and a complicated engineering task. It is possible that certain data are stored

simultaneously in multiple databases. It is also possible that this data is managed and

presented differently. At this layer it is imperative that the metadata describes the data

completely and correctly, and it is also helpful if a common dictionary of terms is used

to build each export schema. The final layer is the external layer which is a view of the

federated layer suitable for a certain subset of users.

Each layer of the FDBS is a layer of metadata. Its goal is to provide a seamless information

source that a user can query with out needing to know the complexities that comprise the

FDBS. The CDM needs to be very expressive to ensure that all the data that is stored in

the component databases is represented correctly. If the CDM is not expressive enough it

is possible that a data item in the local databases can not be represented in the federation

correctly or at all. If it is represented incorrectly it can cause inconsistency in the whole

system, which makes the FDBS of little value and actually a burden to users who are

unaware that the information they receive is inaccurate. Not only is it important that

the CDM is expressive, it is also essential that the CDM is clearly and well defined with

metadata. Due to the fact that the CDM needs to be powerful and expressive, it means

that the metamodel that describes the datamodel also needs to be complete, accurate,

clear and concise.

Many problems arise if this is not the case. Each layer of the FDBS is a layer of metadata

which is augmented with new constructs, logic and algorithms. The basis of the FDBS is

the CDM which is its foundation. At the lowest layer the local schema is translated into

CDM to make the component layer. A number of problems may exist at this layer due to

poor metadata. The first is due to the metamodel of the local database schema not being

clear, accurate or concise. If the metamodel for the local database is not accurate when

migrating the data to be represented in the CDM the data may be misrepresented. If the

metamodel for the local database is unclear or cumbersome to use this makes it difficult to

accurately discern the data’s meaning. Furthermore since most of the integration process

is manual and implemented by the integration specialist; if it is unclear it will lead to

human error and again the misrepresentation of data at higher layers of the FDBS.

If the CDMs metamodel is not complete, accurate, clear and concise it renders the FDBS

useless as an information source because the data will be corrupted. For example when

migrating data from a local database to the CDM (component schema) if the data in the

Chapter 6: Conclusions 64

local schema is misrepresented in the component schema there is no way to compensate at

higher levels of the FDBS and the corruption of the data can only get worse. Each layer

of the FDBS builds on the layer below it, before another layer is built the engineer must

be confident the data and metadata are correct. If at the export layer there are many

discrepancies, that problem will be many factors greater when the data is merged into the

federated layer. In the federated layer there will be inaccurate correlations of data, data

that match might not be supposed to match and data items that were supposed to match

might not be discovered.

In this research project we examined in detail the O-R model with the view that this model

could be used for the local databases in the FDBS and also for the CDM. A number of de

ficiencies where discovered with the models metamodel. These deficiencies were addressed

and in this research we have presented a complete, accurate and concise interface to the

O-R metamodel which can be used by the integration specialist. We also designed and

specified a metadata query language that is powerful enough to query all aspects of the

O-R metamodel but simple and concise enough to be implemented on a PDA. The query

language is also simple enough to not need expertise in SQL or profound knowledge of the

complex O-R metamodel.

In the process of doing this research work different applications of a well defined metadata

interface and query language for the O-R metamodel were examined. Context aware mobile

computing is one aspect of the computer industry which can benefit when databases are

well defined with metadata and an interface to them is simple enough that it can be

used on a PDA. Context aware mobile computing is a mobile computing paradigm in

which applications can discover and take advantage of contextual information (such as

user location, time of day, nearby devices and user activity). At the moment most of

the context aware applications are client server based, the client sends its position to the

server and the server checks its information repositories for information it has regarding

the users current position. Generally each server offers a specific service to the user which

the user must sign up for, examples include, restaurant information, traffic information,

shopping information, weather updates etc.

The growing popularity of wireless networks offers another avenue for the research of

context aware mobile computing which moves away from the client-server approach. If

there is a database on the wireless network that stores context information about its

local environment and this database has a clear metadata interface it is possible that

the metadata interface can be used as middleware between the database and the mobile

users mobile application. The mobile users application could discern the structure of the

Chapter 6: Conclusions 65

database from the metadata middleware and present the user with the contents of the

database. For example a mobile user walks into record store and the record store keeps

all of its information about what it sells (i.e. records, videos, CDs etc.) in a database

on its wireless network. This database is made available to the mobile user through the

wireless network and the metadata middleware which means that the user can browse

for information about their purchase without consulting a member of staff. This is made

possible with the metadata interface described in this research project and the fact that

the query language associated with it is suitable to be accessed from a mobile device. This

change in focus in mobile aware context computing has the potential to open it up to a

larger market. It is no longer the mobile users role to pay to subscribe to context aware

mobile services; instead it is in the sellers interest to make their products available to the

consumer so they can be sold.

6.1 Future W ork

The main focus of the Mobile Metadata Schema Browser is to provide a means to allow an

integration engineer to query local O-R schemas in a federation at the local database site

while he is in the process of integrating the local schemas into the FDBS. A considerable

improvement to the Mobile Metadata Schema Browser is to incorporate the ability to

query different metamodels. Then the integration specialist can query a wider range of

information sources while in the process of integrating them into the federation.

This work could be augmented by incorporating the metadata query language described

in this research project with SQL. The query language described in this research project

was designed specially for a PDA. While using a PDA, a keyboard is available but it

is cumbersome, time consuming, error prone and often irritating to use, therefore we

implemented a simple query language were it is possible to implement a point and click

application using a stylus. Incorporating the metadata interface and query language with

SQL would produce a powerful (but complex) metadata tool that is suitable to not only

query data and metadata, but also to manipulate it.

This research project opened up the area of the area of context aware mobile computing

but because this was not the focus of the research project this avenue was not explored ex

haustively. By providing a complete metadata query language and interface to a database

that can be used on a PDA to discern the structure of a local database that is on a

wireless network, this moves the focus of Context Aware Mobile Computing from the cur

rently popular client server approach. Future research in this area could prove fruitful and

Chapter 6: Conclusions

interesting.

Bibliography

[1] Rapid Prototyping of Mobile Context-Aware Applications: The Cyberguide Case

Study. In The Proceedings o f the Second A nnual International Conference on Mobile

Computing and Networking, pages 3:421-433. ACM Wireless Networks, 1997.

[2] C. Batini, M. Lenzerini, and S. Navathe. A Comparative Analysis of Methodologies

for Database Schema Integration. A C M Computing Survey, Voi 18, 1986.

[3] J. Berlin and A. Motro. Autoplex: Automated Discovery of Content for Virtual

Databases. In Lecture Notes in Computer Science, pages 108-122. Springer, 2001.

[4] J. Berlin and A. Motro. Database Schema Matching Using Machine learning with Fea

ture Selection. In The Fourteenth International Conference on Advanced Inform ation

System s Engineering. Springer, 2002.

[5] P. Bernstein, A. Halevy, and R. Pöttinger. A Vision for Management of Complex

Models. SIG M O D Record, 29(4):55-63, 2000.

[6] O. Buyukkokten, H. Molina, A. Paepcke, and T. Winograd. Power Browser: Efficient

Web Browsing for PDAs. In Proceedings o f the Conference on Hum an Factors in

Computing System s, pages 430-437. ACM Press, 2000.

[7] Y.H. Chang. A Graphical Query Language for Mobile Information Systems. A C M

SIG M O D Record, 32(1), 2003.

[8] G. Chen and D. Kotz. A Survey of Context-Aware Mobile Computing Research.

Technical Report TR2000-381, Dept, of Computer Science, Dartmouth College, 2000.

[9] W. Chu and G. Zhang. Associations and Roles in Object-Oriented Modeling. In

International Conference on Conceptual Modeling / the E n tity Relationship Approach,

pages 257-270. Springer-Verlag, Berlin, 1997.

[10] E. F. Codd, S. B. Codd, and C. T. Salley. Providing OLAP to User-Analysts. White

Paper, www.arborsoft.com /papers/coddTO C.htm l, 1995.

67

http://www.arborsoft.com/papers/coddTOC.html

[11] A. Dey, M. Futakawa, D. Salber, and G. Abowd. The Conference Assistant: Com

bining Context Awareness with Wearable Computing. In The Proceedings of the

3rd International Sym posium on Wearable Com puters, pages 21-28. IEEE Computer

Society Press, 1999.

[12] H. Do, S. Melnik, and E. Rahm. Comparison of Schema Matching Evaluations.

In The Proceedings o f the 2nd International Workshop on Web Databases (German

Inform atics Society). Erfurt, 2002.

[13] A. Doan and J. Madhavan. Reconciling Schemas of Disparate Data Sources: A

Machine Learning Approach. In Proceedings o f A C M SIG M O D Conference on M an

agement o f Data. Santa Barbara, 2001.

[14] R. Finkelstein. Understanding the Need for On-Line Analytical Servers . White Paper,

w w w .arborsoft.com /papers/finkTO C .htm l, 1995.

[15] M. Gyssens, L. Lakshmanan, and I. Subramanian. Tables as a Paradigm for Querying

and Restructuring. In Sym posium on Principles o f Database Systems, pages 93-103.

ACM Press, 1996.

[16] W. Ho, J. Forman, and J. Kannry. Portable Digital Assistant PDA Use in a Medicine

Teaching Program. Center for Medical Informatics, Mount Sinai Medical Center, New

York, 1998.

[17] G. Kiczales, J. Ashley, L. Rodriguez, A. Vahdat, and D. Bobrow. Metaobject Protocols:

Why We W ant Them and What Else They Can Do, pages 101-118. The MIT Press,

Cambridge, MA, 1993.

[18] L. Lakshmanan, F. Sadri, and I. Subramanian. SchemaSQL: A Language for Inter

operability in Relational Multidatabase Systems. In 22nd International Conference

on Very Large Databases (V L D B 1996), pages 239-250. Morgan Kaufmann, 1996.

[19] J. Madhavan and P. Berstein. Generic Schema Matching with Cupid. In VLDB.

Springer, 2001.

[20] S. Melnik and H. Garcia-Molina. Similarity Flooding: A Versatile Graph Matching

Algorithm . In 18th International Conference on Data Engineering. IEEE Computer

Society, 2002.

[21] R. Miller, M. Hernandez, L. Haas, L. Yan, H. Ho, and R. Fagin. The Clio Project:

Managing Heterogeneity. A C M SIG M O D Record, 30:78, March 2001.

Bibliography 68

http://www.arborsoft.com/papers/finkTOC.html

[22] I. Mumick and K. Ross. Noodle: A Language for Declarative Querying in an Object-

Oriented Database. In Deductive and Object-Oriented Databases, pages 360-378.

Springer, 1993.

[23] G. OConnor and M. Roantree. A Mobile Schema Browser for Integration Specialists.

European Consortium fo r In form atics and M athem atics, 54, 2003.

[24] R. Orfali and D. Harkey. Client Server Programming with JAVA and C O RBA. John

Weily and Sons, 1997.

[25] S. Ram and V. Ramesh. Schema Integration: Past Present and Future, chapter

Management of Heterogeneous and Autonomous Database Systems, pages 119-155.

Morgan Kaufmann Publishers, 1999.

[26] F. Saltor, M. Castellanos, and M. GarciaSolaco. Suitability of Data Models as Canon

ical Models for Federated Databases. SIG M O D Record, 20(4):44—48, 1991.

[27] A. Sheth and J. Larson. Federated Database Systems for Managing Distributed,

heterogeneous and Autonomous Databases. A C M Computing Surveys, 22(3):183-

226, 1990.

[28] M. Staudt, A. Vaduva, and T. Vetterli. Metadata Management and Data Warehous

ing. In International Journal o f Cooperative In form ation System s, number ifi-99.04,

pages 273-298. World Scientific Publishing Company, 1999.

[29] C. Szyperski. Component Software; Beyond Object Oriented Programming. Addison-

Wesley, 1998.

[30] J. Veijalainen and R. Popescu-Zeletin. Multidatabase Systems in ISO/OSI Environ

ment. In Standards in In form ation Technology and Industrial Control, pages 83-97.

Standards in Information Technology and Industrial Control, 1988.

[31] L. Wang. The Extension of the Object-Relational Model to Facilate the Storage of

Roles. Technical Report ISG-02-06, Dublin City University, 2002.

Bibliography 69

A ppendix A

M etadata Interface to

Object-Relational M etadata

Name Data Type Description
TYPE_NAME V A R C H A R 2(3 0) Name of the type.

A T T R IB U T E S NUMBER Number of attributes in the type.
METHODS NUMBER Number of methods in the type.

F IN A L V A R C H A R 2(3) Indicates whether the type in fi
nal.

SUPERTYPE_OWNER V A R C H A R 2(3 0) Name of the super type owner.
Null if it is not a sub type.

SUPERTYPE_NAME V A R C H A R 2(3 0) Name of the super type NULL if
it is not a sub type.

Table A.l: OR-MQL all types view.

Name Data Type Description
OWNER V A R C H A R 2(3 0) Owner of the table.

TABLEJSTAME V A R C H A R 2(3 0) Name of the table.
NESTED V A R C H A R 2(3) Is the table nested?

Table A.2: OR-MQL all tables view.

70

Appendix A: Metadata Interface to Object-Relational Metadata 71

Name Data Type Description
OWNER V A R C H A R 2(3 0) Owner of the table.

TABLE_NAM E V A R C H A R 2(3 0) Name of the table.
TYPE NAME V A R C H A R 2(5 0) The name of the type.

TYPE_OWNER V A R C H A R 2(5 0) Owner of the type.

Table A.3: OR-MQL all object tables view.

Name Data Type Description
OWNER V A R C H A R 2(3 0) This tells us the owner of the

type.
TYPE NAME V A R C H A R 2(3 0) Name of the type.
ATTR_NAME V A R C H A R 2(3 0) Name of the attribute
A T T R _ T Y P E _ M O D IF IE R V A R C H A R 2(3 0) Modifier of the type.
A TTR TYPE NAME V A R C H A R 2(3 0) Type of the attribute.
ATTR_TYPE_OW NER V AR C H A R (3 0) Owner of the type of the at

tribute.
LENGTH NUMBER Length of the CHAR or max

imum for VARCHAR or VAR-
CHAR2 attribute.

SCALE NUMBER Scale of the number or decimal at
tribute.

C HARAC TER 'SET_N AM E V A R C H A R 2(4 4) The name of the character set.
IN H E R IT E D V AR C H A R (5) Whether the attribute is inher

ited or not.
C O LLE C T IO N V AR C H AR (5) Whether the attribute is a collec

tion or not.

Table A.4: OR-MQL all type attributes view.

Appendix A: Metadata Interface to Object-Relational Metadata

Name Data Type Description
OWNER VARCHAR2 (3 0) This tells us the owner of the ta

ble, view or cluster.
TAB LE NAME VARCHAR2 (3 0) Table view or cluster name.
COLUMN NAME V AR C H A R 2(3 0) Name of the column.
CHARACTER SET NAME V A R C H A R 2(3 0) Name of the character set.
D ATA TYPE V AR C H A R 2(3 0) Data type of the column.
D ATA TYPE MOD V A R C H A R 2(3) Data type modifier of the column.
DATA_TYPE_OW NER VARCHAR2 (3 0) Owner of the data type of the col

umn.
D A T A _ P R E C IS IO N NUMBER Decimal precision for number

data type, binary precision for
float data type, null for all other
data types

D ATA_S CALE NUMBER Digits to the right of a decimal
point in a number.

N U LLA B LE VARCHAR2 (1) Specifies whether a column allows
allows NULLs. Value is N if there
is NOT NULL constraint on the
column or if it is part of the PRI
MARY KEY

D A TA_D EFAU LT LONG Default value for the column

Table A.5: OR-MQL all table columns view.

Appendix A: Metadata Interface to Object-Relational Metadata 73

Name Data Type Description
OWNER V A R C H A R 2(3 0) Owner of the table.
C O N STR AINT NAME V A R C H A R 2(3 0) Name of the constraint definition.
CO N STR AINT TYPE V A R C H A R 2(1) Type of constraint definition.
TABLE_NAM E V A R C H A R 2(3 0) Name associated with the ta

ble (or view) with constraint defi
nition.

S E AR C H _C O N D IT IO N LONG Text of search condition for a
check constraint.

R_OWNER VARCHAR2 (3 0) Owner of table referred to in ref
erential constraint.

R _CO NSTRAINT_NAM E V A R C H A R 2(3 0) Name of the unique constraint
definition for referenced table.

D ELETE_R U LE V A R C H A R 2(9) Delete rule for a referential con
straint (CASCADE or NO AC
TION).

STATUS V A R C H A R 2(8) Enforcement status of constraint
(ENABLED, DISABLED).

DEFERRABLE V A R C H A R 2(1 4) Whether the constraint is de
ferrable.

DEFERRED V A R C H A R 2(9) Whether the constraint is initially
deferred.

V A L ID A T E D V A R C H A R 2(1 3) Whether all data obeys the con
straint (VALIDATED or NOT
VALIDATED).

RELY VARCHAR2 (4) Whether an enabled constraint is
enforced or unenforced.

Table A.6: OR-MQL all contrainsts view.

Name Data Type Description
OWNER V A R C H A R 2(3 0) Owner of the view.
V IE W NAME V A R C H A R 2(3 0) Name of the view.
TEX T LENGTH NUMBER Length of the view text.
TEX T LONG View text.
TY P E _TEX T_LEN G TH NUMBER Length of the type clause of the

typed view.
TYPE TEXT V A R C H A R 2(4 0 0 0) Type clause of the typed view.
O ID _T E X T _LE N G T H NUMBER Length of the WITH OID clause

of the typed view.
O ID _ T E X T V A R C H A R 2(4 0 0 0) With OID clause of the typed

view.
VIEW _TYPE_OW NER V A R C H A R 2(3 0) Owner of the type of the view if

the view is a typed view.
V IE W _T Y P E V A R C H A R 2(3 0) Type of the view if the view is a

typed view.
SUPER V IE W NAME V A R C H A R 2(3 0) Name of the super view.

Table A.7: OR-MQL all object views.

Appendix A: Metadata Interface to Object-Relational Metadata 74

Name Data Type Description
OWNER V A R C H A R 2(3 0) Owner of the view.
V IE W NAME V A R C H A R 2(3 0) Name of the view.
TEXT_LEN G TH NUMBER Length of the view text.
TEXT LONG View text.

Table A.8: OR-MQL all relational views metadata view.

Name Data Type Description
OWNER V A R C H A R 2(3 0) Owner of the trigger.
TR IG G ER NAME VARCHAR2 (3 0) NOT NULL Name of the trigger.
TR IG G ER _TYP E VARCHAR2 (1 6) When the trigger fires: BEFORE

STATEMENT, BEFORE EACH
ROW, BEFORE EVENT, AF
TER STATEMENT, AFTER
EACH ROW and AFTER
STATEMENT

T R IG G E R IN G _E V E N T VARCHAR2 (2 1 6) The DML, DDL, or database
event that fires the trigger. For a
listing of triggering events, see the
create trigger statement in Oracle
9i SQL Reference.

TABLEJDW NER V A R C H A R 2(3 0) Owner of the table on which the
trigger is defined.

B ASE_O BJE C T_TYPE V AR C H A R 2(1 6) The base object on which the trig
ger is defined: TABLE, VIEW,
SCHEMA or DATABASE.

TABLE_NAM E V A R C H A R 2(3 0) If the base object type of the trig
ger is SCHEMA or DATABASE
then this column is NULL; If the
base object type is TABLE or
VIEW, this column indicates the
table view name on which the
trigger is defined.

COLUMN^NAME V A R C H A R 2(3 0) Name of the nested table column
(if nested table) or else NULL.

REFERENCING_NAMES VARCHAR2 (8 7) Names for referencing OLD and
NEW columns from within the
trigger

WHEN_CLAUSE V A R C H A R 2(4 0 0 0) Must evaluate to TRUE for
TRIGGER_BODY to execute.

STATUS V A R C H A R 2(8) When the trigger enabled (EN
ABLED ¡DISABLED).

D E S C R IP T IO N V A R C H A R 2(4 0 0 0) Trigger description.
A C T IO N _T Y P E V A R C H A R 2(1 1) The action type of the trigger (

CALL or PL/SQL)
TRIG G ER_BO DY LONG Statements executed by the trig

ger when it fires

Table A.9: OR-MQL all triggers view.

Appendix A: Metadata Interface to Object-Relational Metadata

Name Data Type Description
OWNER V A R C H A R 2(3 0) Owner of the type.
TYPE NAME V A R C H A R 2(3 0) Name of the type.
METHOD NAME V A R C H A R 2(3 0) Name of the method.
METHOD TYPE V A R C H A R 2(6) Type of the method.
PARAMETERS NUMBER Number of parameters with the

method.
RESULTS NUMBER Number of results returned by the

method.
F IN A L VARCHAR2 (3) (YES NO) indicates whether the

method is final.
IN S T A N T IA B L E VARCHAR2 (3) (YES |NO) Indicates whether the

method is instantiable.
O V E R R ID IN G VARCHAR2 (3) (YES NO) Indicates whether the

method is over riding a sub type
method.

IN H E R IT E D VARCHAR2 (3) (YES NO) Whether the method
is inherited from a super type.

Table A. 10: OR-MQL all type methods view.

Name Data Type Description
OWNER VA R C H A R 2(3 0) Owner of the type.
TYPE NAME V A R C H A R 2(3 0) Name of the type.
METHOD NAME V A R C H A R 2(3 0) Name of the method.
METHODJSTO NUMBER For an overloaded method,

a number distinguishing this
method from others of the same.
Do not confuse the number with
the object ID.

PARAM NAME V A R C H A R 2(3 0) Name of the parameter
PARAM NO NUMBER Parameter number(position).
PARAM_MODE V A R C H A R 2(6) Mode of the parameter(IN, OUT,

IN/OUT)
PARAM_TYPE_MOD V A R C H A R 2(7) Whether this parameter is REF

to another object
PARAM_TYPE_OWNER V A R C H A R 2(3 0) Owner of the type of the param

eter
PARAM_TYPE_NAME V AR C H A R 2(3 0) Name of the type of the parame

ter
CHARACTER SETNAME VA R C H A R 2(4 4) Name of the Character set

Table A.11: OR-MQL all method parameters view.

Appendix A: Metadata Interface to Object-Relational Metadata

Name Data Type Description
OWNER V A R C H A R 2(3 0) Owner of the method type.
TYPE_NAME V A R C H A R 2(3 0) Name of the method type.
METHOD NAME V A R C H A R 2(3 0) Name of the method.
CHARACTER_SET_NAME V A R C H A R 2(3 0) Character set.
METHOD_NO NUMBER For an overloaded method a

number that distinguishes this
method from the others.

RESULT_TYPE_M O D V A R C H A R 2(7) Whether the parameter is a REF
to another object.

R ESU LT TYPE OWNER V A R C H A R 2(3 0) Owner of the return type.
RES U L T _ T Y P E_NAME VARCHAR2 (3 0) Name of the return type

Table A. 12: OR-MQL all method results view.

Column Name Data Type Description
TYPEA V A R C H A R 2(5 0) The first type in the relation

ship
TYPEB V A R C H A R 2(5 0) The second type in the relation

ship.
C A R D IN A L IT Y VARCHAR2 (1 5) The cardinality between the

two types.
REFTABLEJSTUM NUMBER Number to reference cardinality

definition table.

Table A.13: OR-MQL high level metadata view,

Appendix A: Metadata Interface to Object-Relational Metadata

Column Name Data Type
Description

OWNER V A R C H A R 2(5 0)
The owner of the schema
where the types are de
fined.

TYPEA V A R C H A R 2(5 0)
The first type in the car
dinality relationship

TYPEB V A R C H A R 2(5 0)
The second type in the
cardinality relationship

DEPTA VA R C H A R 2(8)
Whether or not the type
of the attribute A was
found deep or shallow.

COLLE C T I ON JT Y P E A V AR C H A R 2(5 0)
Name of the collection
type for A if the attribute
is a collection

C A R D IN A L IT Y VARCHAR2 (1 0)
The cardinality relation
ship of the type.

C O LL_TYPEB V AR C H A R 2(1 2)
Werther the collec
tion of type B is a
NESTED TABLE or
VARRAY.

DEPTB VA R C H A R 2(8)
Whether or not the type
of the attribute B was
found to be deep or shal
low.

C O LLE C T IO N _TY P EB V A R C H A R 2(5 0)
multimedia

Table A. 14: OR-MQL low level metadata view.

Appendix A: Metadata Interface to Object-Relational Metadata 78

Index TypeA Many-type Cardinality TypeB-Many_type
1 o n e - o n e

2 z e r o - o n e

3 o n e - z e r o

4 SHALLOW m a n y - z e r o

5 NESTED m a n y - z e r o

6 VARRAY m a n y - z e r o

7 z e r o - m a n y SHALLOW

8 z e r o - m a n y NESTED

9 z e r o - m a n y VARRAY

10 o n e -m a n y SHALLOW

11 o n e -m a n y NESTED

12 o n e -m a n y VARRAY

13 SHALLOW m a n y - o n e
14 NESTED m a n y - o n e

15 VARRAY m a n y - o n e

16 SHALLOW m a n y (N) - m a n y (M) SHALLOW

17 SHALLOW m a n y (N) - m a n y (M) NESTED

18 SHALLOW m a n y (N) - m a n y (M) VARRAY

19 NESTED m a n y (N) - m a n y (M) SHALLOW

20 NESTED m a n y (N) - m a n y (M) NESTED

21 NESTED m a n y (N) - m a n y (M) VARRAY

22 VARRAY m a n y (N) - m a n y (M) SHALLOW

23 VARRAY m a n y (N) - m a n y (M) NESTED

24 VARRAY m a n y (N) - m a n y (M) VARRAY

Table A.15: OR-MQL cardinality of Objects Lookup Table

Name Type Description
PARENT VARCHAR2 (50) Parent type in the inheritance relationship.
C H IL D VARCHAR2 (50) Child type in the inheritance relationship.

IN S T A N T IA B L E VARCHAR2 (5) Whether or not this type is instantiable (true||false).
F IN A L VARCHAR2 (5) Whether or not this type is final (true false).

Table A.16: OR-MQL Inheritance Metadata.

Name Type Description
UPPER BOUND V A R C H A R 2(3 0) The maximum size.

ELEM TYPE MOD NUMBER The modifier of the collection.
ELEM_TYPE_OW NER V A R C H A R 2(3 0) Owner of the type upon which the

collection is based.
ELEM _TYPE_NAM E V A R C H A R 2(3 0) Name of the element type in the

string.
LENGHT NUMBER Maximum lenght of character

string elements.
P R E C IS IO N NUMBER Decimal point precision of a num

ber
CHARACTER_SET_NAME V A R C H A R 2(4 4) Name of the character set.

Table A.17: OR-MQL varray collection metadata.

Appendix A: Metadata Interface to Object-Relational Metadata

Name Type Description
ELEM TYPE MOD NUMBER The modifier of the collection.

ELEM JTYPE jD W N ER V AR C H A R 2(3 0) Owner of the type upon which the
collection is based.

ELEM _TYPE_NAME V AR C H A R 2(3 0) Name of the element type in the
string.

LENGHT NUMBER Maximum lenght of character
string elements.

P R E C IS IO N NUMBER Decimal point precision of a num
ber

CHARACTER SET NAME V AR C H A R 2(4 4) Name of the character set.

Table A.18: OR-MQL nested table metadata.

A ppendix B

Object-Relational Metadata

Query Language (OR-MQL)

The keyword “names” can be placed after any of the selection keywords so as to return

the names of the entity. If the keyword “names” is omitted the details of the entities will

be returned. If the owner keyword is not specified the queries will be implemented on the

account of the user who is logged in.

1. [select] schema names / / returns the list of all database schema names in the schema

repository

2. [select] types [names] [’’owner”]

3. [select] cardinality [owner] [[.typea[.typeb]] or. schemajiame]

4. [select] lowlevelcardinality [owner] [[.typea[.typeb]] or .schema_name]

5. [select] carreftable / / reference metadata for cardinality relationships

6. [select] inheritance [’’owner”] [.’’type”] or [’’owner”].[’’schema”] / / asking a for a name

from inheritance information will not return useful information.

7. [select] attributes [names] [’’owner”] [.’’type”]

8. [select] methods [names] [’’owner”] [.’’type”]

9. -omitting names keyword and select keyword-

10. parameters [’’owner”] [.’’type”] [.’’method”]

11. results [’’owner”] [.’’type”] [.’’method”]

80

Appendix B: Object-Relational Metadata Query Language (OR-MQL)

Tables and Views

1. tables [’’owner”]

2. ObjectTables [’’owner”]

3. relationalViews [’’owner”]

4. objectViews [’’owner”]

5. triggers [’’owner”] or [’’owner”] [’’.view”] or [’’owner”] [.’’table”]

6. constraints [’’owner”][’’.view”] or [’’owner”] [.’’table”]

7. collection_varrays [’’owner”]

8. collection_nestedT [’’owner”]

R ole M etadata

1. role_subSchema

2. root [”role_subSchema”]

3. rootAttribut.es [”role_subSchema”][”root”J

4. rootMethods ["roleLSubSchema”] [’’root”]

5. rootRoles [”role_subSchema”] [’’root”]

G. roleAttributes [”role_subSchema”][’’root”][’’role”]

7. roleMethods [”role_subSchema”](”root”][”role”]

A ppendix C

Role Extensions

In this section access to role metadata is presented. Explanations of the fields extracted

from the underlying views is provided together with descriptions of the SQL statements.

The role system modelled is implemented as five types. The structure of the types is

included in the extensions and extra fields are also provided. This section describes the

fields retrieved from the role metadata views, the SQL statements used to retrieve them

and the schema query language definitions.

The role extensions are illustrated with a human resource examples and illustrations. We

illustrate a root role person and two assumable roles student and employee and their

respective characteristics.

R oot R oles

Table C .l describes the fields retrieved from the SYS _R O LE VIEW _O BJTAB. This table

describes the root role in our role system. The root roles basic structure is defined with

methods and attributes. This basic structure can be extended to include new behaviour

and characteristics by assuming new roles. The roles that can be assumed by the root

roles are stored in the variable R O L E V IE W _ L IS T .

The fields from table C .l axe retrieved using four s e l e c t statements, listing C .l, listing

C.2, listing C.3, and listing C.4-

When discerning the structure of an extended O-R schema and examining the structure

of root roles it is necessary to retrieve the metadata in table C .l. The query in listing C.5

illustrates the r o o t_ r o le schema query. When querying multiple role sub-schemas the

role_subSchem a variable is used to distinguish which sub-schema to query. Including

82

Appendix C: Role Extensions 83

Name Data Type Description
ROOT_NAME V A R C H A R 2(3 0) Name of root role.
R O O T_O ID NUMBER ID and primary key of role.

ORACLE_TYPE REF The type of the role.
SUPERTYPE V A R C H A R 2(3 0) The supertype of the role.

R O L E V IE W _ L IS T NESTED TAB LE List of the roles supported by
the root role.

ATTR S L IS T N ES TED _TAB LE List of root roles attributes.
M E T H O D JL IS T NESTED TAB LE List of root roles methods.

NUM_ATTRS NUMBER The number of attributes.
NUM_METHODS NUMBER The number of methods.

NUM_ROLES NUMBER The number of roles which can
be assumed.

Table C.l: The fields retrieved for the root role.

SELECT Œ UNT(*) n u m_ at t r s

ERCM s y s _ r o o t _ o b j t a b c , TABLE(c . r o o t _ a t t r i b u t e) (+) p

GROUP B Y c . r o o t .n a m e , c . r o o t _ o i d ;

Example C.l: The NUM-ATTRS field.

SEIÆCT OOUNT(*) num _m ethods

PHPVI s y s _ r o o t _ o b j t ab c , TAELE(c . r o o t _ m e t h o d) (+) p

GROUP B Y c . root_name , c . r o o t _ o i d ;

Example C.2: The NUM-METHODS field.

SE3LEOT COUNT(*) num ^assum able

EFOVI s y s _ r o o t _ o b j t a b c , TABLE (c . r o l e v i e w l i s t) (+) p

GROUP B Y c . r o o t .n a m e , c . r o o t _ o i d ;

Example C.3: The NUM-ROLES field.

SELECT r o o t.n a m e , r o o t _ o i d , o r a c l e t y p e r e f ,

s u p e r t y p e , r o l e v i e w l i s t , r o o t _ a t t r i b u t e , r o ot _ m e t h o d

ÏHCM s y s _ r o o t _ o b j t a b

Example C.4: Direct select from SYS-ROOT-OBJTAB,

the names keyword means only the names of the r o o t_ r o le s will be returned, omitting

names will return the details in table C .l.

[s e l e c t] r o o t [n am es] OWNER. (RQT.K SUBSCHEMA)

Example C.5: Schema query for root-roles,

Appendix C: Role Extensions 84

Figure C.l: Root role metadata.

Name Data Type Description
ROLE NAME V A R C H A R 2(3 0) Name of the assumable role.

ROLE V IE W ID NUMBER The ID of the assumable role.
NUM ATTRS NUMBER The number of attributes.

NUM METHODS NUMBER The number of methods.
IS M U L T IP L E V A R C H A R 2(3) Is it a multiple role?

ROOT O ID NUMBER The root roles identification
RO LEVIEW METHODS NESTED TABLE List of roles attributes.

R dLË V IË W A T T R IB U T E S NESTED TABLE List of roles methods.

Table C.2: Fields for assumable roles.

A human resource example is used to illustrate role metadata. The example comprises a

root role, its structure and the roles it can assume. After extracting the fields from table

C. 1 the structure is illustrated in figure C. 1. This roles basic structure is described by four

attributes name, age, ad d ress and homePhNum. It can assume for roles em ployee,

s tu d e n t , club_member and proj ect_m an ager.

A ssum able R oles

The SYS _R O LE V IE W _O B JTAB table holds all the assumable roles for the root roles.

The retrieved fields described in table C.2 provide the information for the metadata

interface. The fields in this table are taken from SY S_R O LE VIEW _O BJTAB table and

SYS_R O O T_O BJTAB table. Three select statements are needed to extract the fields in

table C.2; listing C.6, listing C. 7 and listing C.8.

When discerning the structure of an extended O-R schema and examining the structure of

assumable roles it is necessary to retrieve the metadata in table C.2. The query in listing

Appendix C: Role Extensions 85

SELECT OOUNTf *) nu m_ at t rs

ERCIM s y s _ r o l e v i e w _ o b j t a b c , TABLE(c . r o l e v i e w _ a t t r i b u t e) (+) p

GROUP B Y c . r o l ev i ew _n a me , c . r o l e v i e w _ i d ;

Example C.6: The NUM-ATTRS field.

SELECT OOUNT(*) nu m_ me tho ds

f RQM s y s _ r o l e v i e w _ o b j t a b c , TABLE(c . r o l e v i e w _ m e t h o d) (+) p

GROUP B Y c . r o l e v i e w _ n a m e , c . r o l e v i e w _ i d ;

Example C.7: The NUM-METHODS field.

SELECT r o l e v i ew _n a me , r o l e v i e w _ r i d , r o o t

i s m u l i t p l e , r o l e v i e w _ a t t r i b u t e , r o l e v i e w _ m e t h o d

FKOVt s y s . r o l e v i e w ^o b j t ab

Example C.8: Direct select from SYS-ROLEVIEW-OBJTAB.

C.9 illustrates the r o o t_ r o le schema query. The ro o t variable is used to distinguish

a root-role. Including the names keyword means only the names of the assumable roles

will be returned, omitting names will return the details in table C .l.

[s e l e c t] r o o tR o le s [n am es] OWNER.ROLEJ3UBSCHEMA.ROOT

Example C.9: Schema query for roles.

The root role of the human resource example is Person. The structure of a Person can

change as he receives education and eventually gets a job. As these changes occur, the

structure of the Person role also changes as it assumes new roles. Figure C.2 illustrates

the fields extracted from table C.2 for the human resource example. There are four as

sumable roles, em ployee, s tu d e n t , club_member and p r o je c t manager. Two

are shown in detail, em ployee and s tu d en t. The basic structure of a s tu d en t has

c o l l e g e , f a c u l t y and m odules attributes. The basic structure of an em ployee has

a s a la r y , work phone number and job description. The combined structure of the

root role and the assumed roles give the state of the whole entity at any moment in time.

R o le /R o o t A ttribu tes

The SYS_ATTRIBUTE_OBJTAB holds the metadata about the attributes of the root

roles and the assumable roles. Tables C.3 and C.4 describe the fields retrieved for use

Appendix C: Role Extensions 86

Figure C.2: Roleview metadata.

Name Data Type Description
ROOT A TT R NAME V A R C H A R 2(3 0) The name of the attribute.

R O O T _A T TR _ID NUMBER The id of the attribute and the
primary key.

RO O T_O RACLE_TYPE_REF V A R C H A R 2(3 0) Reference to the base type of
the attribute.

RO O T_O ID NUMBER The object identifier of the
owning role.

Table C.3: Root attribute fields.

in the metadata interface. To retrieve the fields for attributes, two select statements are

used, listing C.10 and listing C .l l .

SELECT p . a t t r e n a m e , p . a t t r _ i d

p . o r a c l e t y p e _ a t t r r e f , c . r o o t _ o i d

FRGVI s y s _ r o o t _ o b j t a b c ,

TABLE(c . r o o t . a t t r i b u t e) p ;

Example C.10: The attributes fields select statement (Root table).

When discerning the structure of an extended O-R schema and examining the structure of

roles and root-roles it is necessary to deduce the structure of the attributes. The query in

listing C.12 illustrates the root/role attribute schema query. Including the names keyword

means only the names of the attributes will be returned, omitting names will return the

Appendix C: Role Extensions 87

Name Data Type Description
ROLE A TTR NAME V A R C H A R 2(3 0) The name of the attribute.

R O L E _ A T T R _ ID NUMBER The ID of the attribute and
the primary key.

R O LE_O R AC LE_TYPE_R EF V A R C H A R 2(3 0) Reference to the base type of
the attribute.

R 0 L E V IE W _ R ID NUMBER The object identifier of the
owning role.

Table C.4: Role attribute fields.

SELECT p . a t t r . n a m e , p . a t t r_id

p . o r a c l e t y p e _ a t t r r e f , c . r o l e v i e w _ r i d

FRQVi s y s _ r o l e v i e w _ o b j t a b c ,

TARLE(c . r o l e v i e w _ a t t r i b u t e) p;

Example C.ll: The attributes fields select statement (Assumable Role Table).

details in table C.3 or C-4 depending on the query. Specifying the r o le variable will return

the attributes for the role which belongs to the named root, otherwise the attributes of

the root will be returned.

[s e l e c t] A t t r i b u t e s [n am es] OWNER. ROLELSUBSCHEMA. ROOT [.ROLE]

Example C.12: Schema query for roles or root roles attributes.

Attributes are what describe the current state of a role or a root role. For a root role that

has assumed new roles the combined attributes fully describe the state of the entity at

that moment. Figure C.3 includes the metadata from table C-4 and C.3 which illustrates

attribute metadata for this example.

R o o t/R o le M ethods

The SYS_METHOD_OBJTAB holds the metadata about the methods of the root roles

and the assumable roles. Tables C.5 and C.6 describe the fields retrieved for use in the

metadata interface. To retrieve the fields for methods two select statements are used,

listing C.13 and listing C.14.

When discerning the structure of an extended O-R schema and examining the structure

of roles and root-roles it is necessary to deduce the structure of the methods. The query

in listing C.15 illustrates the root/role method schema query (square brackets ’[]’ indicate

an optional parameter). Including the names parameter means only the names of the

attributes will be returned, omitting names will return the details in table C.5 or table C.6

Appendix C: Role Extensions

Figure C.3: Role attributes metadata.

Name Data Type Description
ROOT_METHOD_NAME VARCHAR2 (3 0) The name of the method.

ROOT_M ETHO D_ID NUMBER The ID of the method and the
primary key.

R O OT_O RACLE_TYPE_REF V A R C H A R 2(3 0) Reference to the base type of
the method.

R O O T_O ID NUMBER The object identifier of the
owning role.

Table C.5: The root method fields.

Name Data Type Description
ROLE METHOD NAME V A R C H A R 2(3 0) The name of the method.

R O LE_M ETH O D _ID NUMBER The ID of the method and the
primary key.

R O LE_O R AC LE_TYPE_R EF V A R C H A R 2(3 0) Reference to the base type of
the method.

ROLEVIEW __RID NUMBER The object identifier of the
owning role.

Table C.6: The role method fields.

Appendix C: Role Extensions 89

SELECT p . m ethod_nam e , p . me thod_i d

p. o r a c l e t y p e _ m e t h o d r e f , c . r o o t _ o i d

PRCM s y s _ r o o t _ o b j t a b c ,

T A B tE (c . r o o t _ m e t h o d) p ;

Example C.13: The root method select statement.

SELECT p . m ethod_nam e , p . me thod_i d

p . o r a c l e t y p e _ m e t ho d r e f , c . r o l e v i e w _ r i d

FRCM s y s _ r o l e v i e w _ o b j t a b c ,

TABtE(c . r o l e v i e w _ m e t h o d) p;

Example C.14: The role method select statement.

depending on the query. Specifying the [.r o le] attribute will return the methods for

the role which belongs to a particular root (. r o o t) , otherwise the methods of the root

will be returned.

M ethods [NAMES] OWNER.ROLEISUBSCHEMA.ROOT[.ROLE]

Example C.15: Schema query for roles or root-roles methods.

R ole Sub-Schem a

Table C .7 describes the fields retrieved from SYS_SUBSCHEMA_OBJTAB table for use

in the metadata interface. Listing C. 16 is the SQL statement that is used to retrieve the

fields for the sub-schema.

SELECT schem a_nam e , r o o t

SHQM s y s _ s u b s c h e m a _ o b j t a b

Example C.16: The SUBS-CHEMA select statement.

When discerning the structure of an extended O-R schema and examining the structure of

a sub-schema the metadata in table C .7 needs to be retrieved. The query in listing C.17

illustrates the role sub-schema query (square brackets ’[]’ indicate an optional parameter).

[s e l e c t] r o l e _ s u b S c h e m a

Example C.17: Schema query for role-subSchema.

Appendix C: Role Extensions 90

Name Data Type Description
SCHEMA NAME V A R C H A R 2(3 0) The name of the schema.

ROOT REF Reference to type SYS_ROOT.

Table C.7: The SUB SCHEMA fields.

Figure C.4: Sub-schema metadata.

Subschema points to one root role. For the human resource example the root role is Person,

as everything in the sub_schema must be of type Person. This is illustrated in figure C.4.

