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Abstract

For over fifty years, mortgages have been secunitised by selling the nights to the
mortgage cash flows to third party investors Over the past ten years or so, a similar
securitisation process has been undertaken with corporate debt The claims on the cash
flowing from the corporate debt portfolio are called collateralised debt obligations
(CDO)

CDO cash flows are dependent on the interaction of a portfolio of debt securities over
many tume periods They are particularly sensitive to the correlation among the
underlying securities and to the terms of the indenture While much progress has been
made 1n modelling debt portfolios over a single period, there has been a lot less

published about the interaction of debt securities m a portfolio over many periods

Thus thesis develops a model for valuing CDOs using a risk-neutral approach in a multi-
period setting A model 1s also developed which reproduces Moody’s CDO rating The
Moody’s rating 1s compared to that which 1s implied from applying the risk-neutral
model, the differences analysed and the implications for regulatory capital for CDOs

explored



Executive Summary

In recent years, as liquidity in the credit default swap market has increased for the
largest borrowing firms in the market, many debt portfolio-based structured products
have been created. For example, single-tranche collateralised debt obligations and IP-
to-default swaps are traded in huge volume. The theoretical framework necessary to
underpin an analysis of these products has been developed and has gained widespread
acceptance. The emphasis has now moved onto the analysis of more complex products
referencing the same underlying names for which there is a liquid credit default swap
(CDS) available.

By comparison, the market for structured credit products referencing names for which
there is no liquid credit default swap market has grown a lot more slowly. This section
of the market includes approximately 34,000 publicly quoted firms worldwide
compared to the 500 or so for which an active CDS market exists. It is estimated that
the debt issuance by these 34,000 firms exceeds that of the top 500 issuers. It comprises,
in the main, privately issued debt, provided primarily by banks. Relatively little of this
debt is traded; hence price information is lacking.

However, since the firms in this latter category have publicly-quoted equity, it is
possible to infer the credit quality of the issuer’s debt from the characteristics of its
equity and the correlation between the firms’ asset returns, as one firm, Moody’s KMV
(KMV), has done. With this information, the probability distribution of debt portfolio
values at a future date can be derived, giving the portfolio owner the information
necessary to manage the credit risks presented.

KMV have never publicly disclosed the methodology that they employ in developing
their credit portfolio model. Thus, the academic community has largely ignored their
approach. But the market has embraced their approach, and their portfolio management
product is the clear market leader. This gap between the academic and market
approaches is a puzzle.

Credit Portfolio Model Development

This first innovation presented in this thesis is the development of a credit portfolio
model in the spirit of KMV. In so doing, it shows for the very first time how the KMV
approach sits within current academic thinking. Using only their data and their very

2



limited public references to their methodology, their portfolio modelling approach 1s re-
created and their results replicated It thus provides confirmation that their approach 1s
founded on traditional portfolio management principles identified within the academic
Iiterature It 1s hoped that this will enable a debate to begin in academic circles
regarding the merits of their approach, a debate that has not occurred to date because of

the lack of understanding of the approach that KMV adopted

Assessing the Marginal Impact of a Loan on a Portfolio

A major disadvantage of current portfolio models 1s their failure to assess the marginal
impact of a proposed new facility on a pre-existing portfoho of credits They are
primarily directed at analysing the performance of a portfolio of credit exposures In
short, they determine the impact of a facility on the portfolio after the fact While this 1s
clearly important information, 1t 1s being delivered too late to give effect to portfolio
management action Within most banks, exposures are being written by a large number
of credit officers dispersed throughout the organisation while the portfolio 1s being
modelled at periodic intervals by the credit portfolio function

This model enables putative new facilities to be added to the current portfolio and the
capital required to support the new facility to be determined immediately Thus, the
second mnovation of this thesis 1s the creation of a model which 1s capable of giving
effect to portfolio decisions m real-time since the portfolio 1mpact of potential new
facilities can be determined ex ante compared to current models which deliver this

mformation ex post

Developing a Coherent Measure of Credit Concentration

A primary concern of banks and bank regulators has been with credit risk concentration
However, the approaches adopted hitherto have been largely intuwitive with very little by
way of theoretical underpinning Most banks use simplistic rules of thumb to place
hmits on acceptable maximum exposures to individual obligors, industries and
countries Even under the Basel II proposals, the Bank for International Settlements
(BIS) has not attempted to quantify the impact of concentrations on the capital required
to support credit portfolios, withdrawing their original proposal for a granulanty

adjustment 1n calculating credit portfolio capital



The third innovation presented 1n this thesis 1s the development of an approach to
measuring the impact of concentrations on credit portfolios In particular, a key 1ssue of
concern to the managers of credit portfolios — namely, the ex ante assessment of the
maximum economic holding of a syndicated loan — 1s answered The framework
provides portfolio managers the basis for measuring the cost of concentrations to
favoured relationship clients 1n a theoretically rnigorous manner It also provides a basis
for setting limuts for clients — a single capital number can become the basis for himuts to
all customers replacing the qualitative limit framework currently employed in the

market Finally, 1t provides regulators a basis on which to set capital requirements

The analysis also questions the use of contribution to the volatility of portfolio value -
the market standard method of allocating portfolio capital among the component
securities - for allocating capital in debt portfolios This approach 1s well suited to
allocating capital 1n portfolios of traded securities whose returns are near-normal over
the holding period However, illiquid credit portfolios do not meet these requirements
An alternative framework, contribution to Expected Tail Loss, 1s proposed which 1s
found to give results that accord more closely with intwition In particular, the proposed
alternative 1s shown to be much more sensitive to credit concentrations than the

contribution to portfolio volatility framework

Extending the Credit Portfolio Model to a Multi-Period Setting

The credit portfolio models most commonly used 1n the marketplace are based on a
single time period They are 11l equipped to assess structured securities such as CDOs
that dertve their value from cash flows from a credit portfolio over many time periods
While the reduced form approach has been applied to value structured securities which
reference names for which hiquud CDS exist, 1t 1s not well suited to modelling portfolios

of names which lack the pricing transparency that CDS provide

The fourth innovation presented in this thesis 1s the development of a multi-period
credit portfolio model This model extends current modelling approaches along two

dimensions

. It takes the structural model from its single-period frame of reference to the multi-
period frame necessary to deal with the complexities of portfolio-based securities

The reduced form paradigm 1s the preferred approach when modelling credit



exposures over more than one time period. The author is unaware of any
published research that uses the structural model in a multi-period setting.

« It incorporates the complexities of the waterfall, which are central to the
structuring of portfolios of cash flow securitisations. By comparison, the market
standard for modelling credit portfolios, a copula approach, is primarily geared to
modelling credit exposures in synthetic form.

Furthermore, since the model tracks the portfolio of underlying securities over time, it
can be adapted to deal with a CDO where the underlying collateral comprises tranches
of other CDOs. These CDO-squared securities, as they are called, have never before
been analysed using a structural approach to the author’s knowledge.

Comparing the Rating Assessments

The rating agencies serve a critical role in assessing the credit risk of firms and
securities. As products have become more structured, and hence more complex, market
participants have come to rely to an ever greater extent on the rating agency assessment
of credit risk. Their credit assessment of collateralised debt obligations will become still
more important in the future given the special position granted to them in the revised
Basel Accord.

The fifth innovation of this thesis is to compare the rating agency assessment of CDO
risk with that of the structural model based on KMV data. This required that the model
developed by Moody’s for evaluating CDOs - their so-called Binomial Expansion
Model - be re-created based on the publications in which they outline their approach.
The model is then tested to confirm that it successfully replicates the Moody’s rating for
a sample of deals in the marketplace. The expected loss under the Binomial Expansion
Model, from which Moody’s infer their rating, is compared with the expected loss
predicted by the multi-period model. This provides a basis for assessing the validity of
the binomial approach.

Assessing the Moody’s Rating Assessment Methodology

Despite making the rating agencies the sole arbiters of the creditworthiness of CDOs
purchased by investors, regulatory doubts about the validity of the rating agency
approach remain. In particular, their decision to apply different risk weightings to CDOs
and corporate debt of the same rating confirms their unease with the meaning of ratings

5



given to structured securities Equally, the market demands higher spreads for structured
products than for corporate debt with the same rating It 1s unclear whether this
additional premium 1s a charge for the reduced hiquidity of CDOs, or compensation for
the extra effort in coming to understand the complexity of the product, or a charge for

risks not adequately captured 1n the agency rating process

The sixth innovation 1s to examine the validity of the agency credit rating approach to
structured debt It highlights the shortcoming of expected loss as a measure of CDO
risk, 1gnoring as 1t does the vanability around the average In particular, by 1gnorng the
systematic nisk that these products bring to a credit portfolio, 1t fails to provide the
regulator with a coherent basis for setting capital to be assigned to CDOs It confirms
that the regulators have good reason for demanding that that more capital 1s held against

subordinated CDO tranches than similarly rated corporate secunties

Conclusion

This thesis extends current knowledge as outlined above The approach 1s new and the
results have important implications for investors and regulators In particular, the new
model demonstrates that the rating agency approach to grading CDOs under-estimates
the embedded nsk It suggests that the more onerous nsk-weighting of mezzanine
CDOs compared with similarly-rated corporate debt under Basel II 1s justified It also
supports the market requirement for wider spreads for these subordinated tranches

compared to similarly-rated corporate debt



Chapter 1. Introduction

1.1 Chapter Overview

This chapter

% examines the background to the development of the collateralised debt obligations
(CDO) market, explores the reasons for its phenomenal growth and discusses the

umque valuation challenges which CDOs present,

s details the objective of this thesis, namely, to create a model which values CDO

tranches 1n a rigorous manner,
% describes the key research 1ssues which are addressed, and

% gives a chapter-by-chapter overview of the research undertaken

1.2 Background

The CDO product will be examined in detaill in Chapter 2 However, a brief

introduction will be provided here 1n order to give context to the discussion

A CDO 1s an asset-backed security (ABS) where the underlying securities are debt
instruments The CDO market has grown at a tremendous pace since first introduced ten
years ago Many factors have contributed to this growth Some banks have embraced
securitisation as a way to manage their regulatory capital requirements Lower quality
financial 1nstitutions — with a rating of single-A or less — which cannot fund themselves
n the inter-bank market at Libor, or which lack a deposit base, have securitised their
debt assets as a means to achieving funding at a lower rate Various financial
organisations — 1ncluding investment companies and banks — have seen debt
securitisation as an asset management opportunity enabling them to earn fee income
managing other people’s capital rather than margin income through investing their own

capital

However, the new securities that are created through debt secunitisation present many
new and challenging valuation 1ssues that remain unresolved

o%

%  The resulting securities — CDO — are the product of the interaction of a portfolio

of debt securities, most of which are unquoted or are highly 1llhiquid



The portfolio theory that exists was developed to cater for equities rather than
debt. There is very little research published in the academic literature in the area
of debt portfolio management. Most of the debate is occurring within the trade
literature or at practitioner conferences.

The rating agencies have assumed a central role in creating the framework within which
these securities are structured and graded. Without a rating agency grade, a CDO
tranche becomes almost unmarketable and, therefore, much of the structuring which
takes place and most of the underlying collateral purchase decisions are driven by rating
agency requirements.

The practice of modelling debt portfolios in still at an embryonic stage and regulators
remain unconvinced by rating agency assessments of the credit risk of structured debt.
(BIS 1999a). This is confirmed by the more onerous treatment of lower-rated CDO
securities compared to equally rated single name corporate debt securities (BIS 2001a).
The CDO rating methodologies employed by the rating agencies were subject to
particular criticism in the 2001-2 period due to the significantly higher level of re-rating
compared to similarly-rated corporate debt securities.

1.3 Objective

There is an obvious gap between academic scientific research and market practice in
relation to CDOs. The rigorous academic approach to the subject fails to address the
many critical structural issues. Likewise, the practitioners, while addressing these
structural issues, settle for extremely heuristic approaches to many other aspects of the
structure.

This thesis attempts to embed academic rigour in a model that incorporates the many
complex structural features typical of the CDO product. It develops a new model that
transforms the current state-of-the-art portfolio modelling approach from a single time
period framework to a multi-period setting and values the CDO tranches created from
the credit portfolio in a risk-neutral framework. The results of this model will then be
compared to those obtained by one of the rating agencies, Moody’s Investors Service
(Moody’s). In order to do this, it will be necessary to replicate the state-of-the-art credit
portfolio model currently employed by KMV (KMV), the leading credit portfolio risk
software vendors, in their product, Portfolio Manager and the CDO tranche rating
methodology employed by Moody’s.



It is hoped that the main contribution of this thesis to the literature will be the
development of a new model for valuing CDO tranches based on the structural
approach, and the comparison of this alternative approach with the rating process
currently employed by the rating agencies.

The research proceeds as follows:

A one-time period structural model is developed using KMV’s assessment of default
probabilities and asset correlations. This enables the value of the individual facilities to
be determined, the capital required to support the loan portfolio estimated, and the risk
contribution of each facility within the portfolio gauged.

This one time period model is extended to a multi-period setting in order to value CDO
tranches. This model comprises two modules: (i) A multi-time step Monte Carlo
simulation module to ascertain the behaviour of the credit portfolio between CDO
coupon payment dates, and (ii) a cash flow model to disburse the cash flows to the
tranches in accordance with the cash flow waterfall.

The Moody’s CDO tranche rating model is re-created and the grade of each of the
tranches is inferred from this model. This grade is compared to that suggested by
application of the Moody’s rating process.

In view of the enormous size of the CDO market - in excess of $250 billion are extant -
and the controversy which surrounds the rating process, it is suggested that this research
is timely and it is hoped it will make a valuable contribution to the literature and help in
furthering current understanding of the issues.

1.4 Key Research Issues Addressed

The thesis addresses many significant research issues:

It examines the nature of the interaction among debt securities in portfolios, a
subject about which little has been written in the academic literature.

It measures the impact of facilities - both new and existing - on a credit portfolio.

It develops a framework for deciding on the maximum amount of a syndicated
loan a bank should purchase.

o |tpresents amethodology for setting credit limits.

It takes the structural approach to credit risk from its standard single period
framework into a multi-period setting

9
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% It draws on the two main types of rating data — the rating agency letter grade and
the probability of default (PD) metric, expected default frequency (EDF),
employed by KMV

X3

A

It examines actual CDO structures under both approaches

1.5 Overview of Thesis Approach

The thesis proceeds as follows

Chapter 2 mtroduces the CDO product, discusses the size of the market and 1ts

development over the years, and the regulatory attitude to the product

Chapter 3 undertakes a review of the academic lhiterature in the areas of portfolio
management, credit default probability assessment and credit portfolio management It
examunes the two principal competing approaches — the contingent claims approach and
the reduced form — and summarises the main strands 1n the literature It then proceeds to
discuss the practical implementation of these approaches It draws on research published

1n practitioner journals and trade literature published by systems vendors

The state-of-the-art single time period credit portfolio model 1n use in the market, that
employed by KMV and delivered 1n their Portfolio Manager software offering, 1s re-
created 1n Chapter 4 A new method for determining the impact of a new facility on an
existing loan portfolio 1s also developed in this chapter as well as a framework for

determining the cost of portfolio concentration and borrower limit setting

Chapter 5 describes the development of a new model for valuing CDO tranches that 1s
the centrepiece of this thesis This new model takes the state-of-the-art single time
period credit portfolio model and converts 1t into a multi-period model that incorporates
the CDO indenture In so doing, 1t 1s, to the author’s knowledge, the first academic
research to take the current market standard credit portfolio paradigm nto the structured

securities arena

The principal measure of CDO tranche quality quoted in the market 1s the rating
agency-assigned rating Chapter 6 replicates the tranche rating methodology employed
by Moody’s so that their rating can be attributed to tranches of any deal

Chapter 7 compares the results of the newly developed model with those from Moody’s

model for a vanety of CDO structures The differences between the model-tmplied
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rating and the Moody’s rating are explored for each of the tranches The reasons for

these differences are examined and the vahidity of the competing approaches 1s assessed

Chapter 8 summarises the contribution of this thesis to the literature It cntically

evaluates the model’s assumptions and makes suggestions for further research

The Appendix develops the CreditMetrics approach to credit portfolio modelling and
confirms their published results
1.6 Conclusion

This chapter provided a bnief overview of the CDO market and a summary of the
research agenda The next chapter examines the CDO product in much greater detail

and the regulatory approach thereto
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Chapter 2. The CDO Market

2.1 Chapter Overview

In this chapter, the market for CDOs is examined and the many product variations are
introduced. The nature of the CDO product gives regulators particular cause for
concern; the regulatory attitude and response are detailed.

22 CDO Market

While the CDO market began in the late 1980s, the market really only became
significant in 1996 as reported by Tavakoli (2003) citing Bank of America and Moody’s
and shown in Figure 2.1 below:

Rated CDO Volume
$250bn h
$200bn
WD
é; $150bn
1 SI00bn
£
$50bn
$0bn
1994 1995 1996 1997 1998 1999 2000 2001 2002
Year
Figure 2.1 CDO Market Size

However, Tavakoli (2003) distinguishes between what she terms ‘the old paradigm’ of
cash flow CDOs which accounted for most of the volume up to 1999 and ‘the new
paradigm’ of synthetic CDOs which accounts for most of the growth since then.
“Synthetics facilitate more efficient portfolio ramp-up, synthetics facilitate getting a
higher average credit rating, and synthetics facilitate more -efficient portfolio
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diversification ” (p8) The synthetic arbitrage 1s facilitated by the feasibility of a smaller
equity tranche, which creates more leverage The synthetic arbitrage gets a further huge
boost from the large, inexpensive super senior tranche that makes up the bulk of the

synthetic deal

The synthetic market accounted for $187 5 billion of the CDOs extant in 2002
compared to $62 5 billion of cash flow CDOs, Tavakoh notes But she emphasises that
the absolute size of synthetic CDO 1ssuance 1s exaggerated by these figures “Assuming
the super senior tranche makes up 90 per cent on average of the synthetic CDO, only
about $18 75 hillion of synthetic CDO product 1s available to traditional investors
(p12) She further notes that the super senior tranche 1s held in the trading book and 1s

‘marked to market’ in theory, but not in practice

The Moody’s review of 2001 was the last one to have been reported on a global basis It
reported 277 transactions covering $101bn of tranche 1ssuance 1n 2001 compared to 189
transactions i 2000 and $121bn of 1ssuance Their report on 2003 U S CDO activity
reflects sitmilar trends but, since it focuses only on U S tranches which they rated,
presents somewhat different numbers Figure 22 below shows the number of new
transactions and associated volume of Moody’s-rated CDO tranches year-by-year since

the CDO market took off 1n the mid-1990s as reported by Gluck (2004)
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Growth of Moody's-rated U.S. CDOs
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Figure 2.2 Growth of Moody’s-Rated U.S. CDOs

The paradigm shift that Tavakoli noted may well have run its course. Commenting on
activity in the fourth quarter of 2003, Gluck notes the notable reversal of the long-term
trend towards synthetics. Only 12 of the 58 fourth quarter CDOs took synthetic form, or
just over 20%. “The pattern shift was entirely due to the lack of arbitrage opportunity in
the investment-grade corporate sector.” Gluck (2004, p2)

The product mix underlying the CDO market has shifted dramatically in the past few
years. The product which was the primary driver of the market in its early years, the
high-yield collateralised bond obligation (CBQ), was “nearly dormant” in 2003 (p6).
High-yield CBOs accounted for 30% of Moody’s-rated U.S. CDOs in 2001; by 2003,
that had fallen to a mere 2% as shown in Figure 2.3 below. All acronyms are explained
in the List of Acronyms below:
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Composition of MoodyXk-rated U.S. CDO Market in 2003

Clkrups Mhycho
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Figure 2.3 Composition of Moody’s-rated U.S. CDO Market in 2003

Likewise, there has been a dramatic shift from bonds to structured debt in the collateral
underlying the CDO product as evidenced in Table 2-1 below based on Gluck (2004,
2003)

2003 2002
Corporate Bonds 36% 54%
Loans 24% 17%

Structured Debt 40% 29%

Table 2-1 Collateral Underlying Moody’s-rated U.S. CDO Deals

23 Overview of the CDO Product

A CDO is an asset-backed security backed by a diversified pool of one or more classes
of debt. In a CDO structure, there is an asset manager responsible for managing the
portfolio of debt obligations. There are restrictive covenants imposed on what the
manager may do and certain tests that must be satisfied for the debt obligations to
maintain the credit rating assigned at the time of issuance.
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Collateralised debt obligations are structured debt products. They are liabilities of a
special purpose vehicle whose only assets are debt securities - either loans or bonds -
issued by corporates. These assets by definition, present credit risk. Therefore, the
starting point for this research is to gain a thorough understanding of the credit risk of
individual firms.

“A traditional securitisation is a structure where the cash flow from an underlying pool
of exposures is used to service at least two different stratified risk positions or tranches
reflecting different degrees of credit risk. Payments to the investors depend upon the
performance of the specified underlying exposures, as opposed to being derived from an
obligation of the entity originating those exposures.” BIS (2003, pi00) They suggest the
primary difference between the stratified/tranched structures that characterise
securitisations and ordinary senior/subordinated debt instruments relates to the cash
flow diversion mechanism: junior securitisation tranches can absorb losses without
interrupting contractual payments to more senior tranches, whereas subordination in a
senior/subordinated debt structure is a matter of priority of rights to the proceeds of a
liquidation.

An understanding of the credit risk of the issuing firms individually will not suffice. The
value of a CDO is determined by the interaction of many debt securities. Any attempt to
value a CDO must seek to gain an in-depth appreciation of the manner in which those
individual credit risks behave as a group because the cash flows from the asset pool are
channelled through the cash flow waterfall to the individual CDO tranches in order of
priority.

2.3.1 CDO Sponsor Motivation

BIS (2001a) notes that banks that securitise assets are able to accomplish several
objectives. By securitising rather than holding the originated assets, they suggest banks
attain a number of objectives: (i) they can secure a reduction in regulatory capital
requirements; (i) they can tap an additional source of funding, generally at a lower cost;
(ii1) they can enhance their financial ratios; and (iv) they can manage their portfolio risk
by reducing large exposures or sectoral concentrations. By investing in tranches of other
banks’ securitisations, they suggest banks are able to diversify their portfolios by
acquiring different asset types from different geographic areas.

Bluhm (2003) suggests four possible motives for CDO creation:
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Spread arbitrage: This occurs where the total spread collected on single credit risky
instruments at the asset side of the transaction exceeds the total ‘diversified” spread to
be paid to investors on the tranched liability side of the structure. Such a mismatch
typically creates a significant arbitrage potential which offers an attractive excess spread
to the equity or subordinated notes investor.

Regulatory capital relief: The Basel I regulatory capital requirements often exceed the
economic capital required given the risks that many loan assets embed. In such
circumstances, it is possible for a bank to obtain credit protection for a relatively modest
cost once it retains a tranche that absorbs most of the loss which is likely to be
experienced. The capital associated with the first-loss piece combined with the 20%
risk-weighting of the super-senior credit default swap will necessitate significantly less
- 50% or less - regulatory capital than would otherwise be required to hold low-risk
assets on balance sheet. As ‘opportunity costs’ for capital relief, the originating bank
has to pay interest to notes investors, a super senior swap premium, upfront costs (rating
agencies, lawyers, structuring and underwriting costs) ongoing administration costs and
possibly some other expenses. “A full calculation of costs compared to the decline of
regulatory capital costs is required to judge about the economics of such transactions.”
<P7)

Funding: For banks with sub-AA ratings, funding can become too expensive to allow
them put high-quality assets on balance sheet. Equally, even highly rated institutions
like to have a range of funding sources available should they ever need it. For non-bank
institutions, accessing relatively inexpensive funding through securitisation is a key
consideration. The advantage of refinancing by means of securitisations is that resulting
funding costs are mainly related to the “credit quality of the transferred assets and not so
much to the rating of the originator.” (p8) He notes, however, that some linkage remains
to the originator’s rating, if the SPV also enters into a servicer agreement with the

originating bank. In such cases, investors and rating agencies will evaluate the servicer
risk inherent in the transaction.

Economic risk transfer: The final motivation Bluhm suggests is economic risk
reduction. This is a key reason for many regional banks undertaking securitisations.
Where they have a strong local franchise but no global presence, concentrations to key
customers develop. These concentrations, if held on balance sheet, require significant
capital; however, they will not present any concentration risk to investors outside the
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region and can be supported by substantially less capital Securitising 1ts excess
exposures to 1ts best customers 1s a way of deriving portfolio benefits However, Bluhm,
commenting on some transactions undertaken primanly for regulatory or funding
reasons, notes that the capitalisation rate for the remaimng portfolio can be higher as a
result of poor sub-portfolio selection “[S]ecuritising a subportfolio can cause some
negative effect on the economic caprtal of the residual source portfolio” (p9) due to the

diversification turn-down caused by taking away a pool of diversifying assets

23 2 CDO Market Practice

The 2002 Survey of Credit Portfolio Management Practices undertaken by the
International Association of Credit Portfolio Managers asked financial institutions about

their use of securitisation The questions and responses are given below

In order to transfer loans from the institution, has your mstitution 1ssued a CLO — either

cash or synthetic?

No 27%
Yes, traditional CLOs 20%
Yes, synthetic CLOs 24%
Yes — both cash and synthetic CLOs 29%

If your 1nstitution has 1ssued a CLO, rank these motivations by order of importance

(Use 1 to denote the most important and 3 to denote the least important )

Regulatory capital 168
Economic capital 221
Exposure management (freeing lines) 207

Has your nstitution used a CLO structure as a way of transferring loan exposures into
the mstitution? That 1s, have you purchased the equity or subordinated tranches of
someone else’s CLO or have you set up a CLO structure using assets from other

originators as a way of importing credit risk?

No 59%
Yes, traditional CLOs 10%
Yes, synthetic CLOs 13%
Yes — both cash and synthetic CLOs 18%
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It 1s clear from these survey results that financial institutions have embraced CLOs
largely as a way of circumventing the Basel 1 rules which militate against holding high-
quality assets on balance sheet The preferred vehicle for achieving this result 1s the

synthetic CLO

2.4 CDO Categories

The two mam categories of CDO transaction can be distinguished based on sponsor

motivation described 1n 2 3 1 above

Arbitrage Transaction This 1s the name given to a transaction where the primary

motivation of the sponsor 1s to earn a spread between the yield offered on the collateral

assets and the payments made to the various tranches

Balance Sheet Transaction When the sponsor’s main concern 1s to remove debt

instruments from 1ts balance sheet, 1t 1s classed as a balance sheet transaction This type
of structure 1s often adopted by a financial institution seeking to reduce 1ts capital
requirements where the regulatory capital necessary to support the debt exceeds the

economic capital

Memtt et al (2001) further sub-divide these categories as shown in Figure 2 4 below

Market for CDOs
Balance
Sheet Arbitrage
CDOs C]|)Os
Traditional Synthetic Traditional Traditional Synthetic
Cash Flow Market

Value
Figure 2 4 Categorisation of CDOs

There 1s a clear gap between the treatment of synthetic structures and those based on

cash flows These differences are neatly summarised by Cifuentes et al (2004, p101)

19



Characteristic Typical Cash CDO Typical Synthetic CDO

Collateral Leveraged loans CDS referencing balance sheet
High-yield bonds assets

Size $200m - $600m $1bn plus

Collateral Quality Sub-nvestment grade

Duversity 60 80

Payment Frequency Semu-annually Quarterly

Maturity 7-12 years 3-5 years

Prepayment Risk Yes No

Equity Leverage 8-12 tumes 30-100 times

Interest Rate Rusk Managed with swaps None

Management Typically managed Typically static

Table 2-2 Comparison of Cash and Synthetic CDOs

This thesis will focus on cash CDOs with the characteristics summarised 1n Table 2-2

241 Arbitrage Transactions

Arbitrage CDO transactions may be further categorised based on the primary source of
funds to repay the tranches

Market value transactions rely heavily on the total return generated from the active
management of the collateral assets Funds used to repay hability principal are derived

primarily from collateral hiquidation

In contrast, cash flow transactions are those in which the interest and principal from

maturing assets are the primary source of cash with which to repay the tranches

2 4 11 Market Value Transactions

Market value CDOs are transactions “in which the credit enhancement 1s reflected in a
cushion between the current market value of the collateral and the face value of the
structure’s obligations ” Falcone and Gluck (1998, p1) Whereas cash flow transactions
normally provide for the diversion of cash flows from junior to senior classes 1f certain
tests that relate to the structure’s soundness are not met, 1n a market value transaction,
“the collateral must normally be liquidated, either in whole or 1n part, if the ratio of the
market value of the collateral to the obligations falls below some threshold ” (p1) The
liqmdated collateral 1s used to pay down obligations, bringing the structure back into

balance
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Market value transactions depend upon the ability of the fund manager to maintain and
improve the market value of the collateral. “Ratings are based on collateral price
volatility, liquidity, and market value.” Goodman and Fabozzi (2001, pi74). The
manager focuses on maximising total return subject to an acceptable volatility level.
The market value of the collateral assets, multiplied by rating agency-specified advance
rates, must exceed the value of debt outstanding. Failure to meet these over-
collateralisation tests requires the manager to undertake collateral sales and liability
redemption to bring the test back into compliance.

Market value transactions give more flexibility to the manager in choosing collateral.
Distressed debt and debt which matures beyond the life of the transaction can be
accommodated within a market value structure whereas they would prove wholly
unsuited to a cash flow structure. The liquidity premium, which has made high-yield
debt attractive to the buy-and-hold investor, will be relinquished if the manager is
obliged to sell the asset.

Cash flow CDOs exhibit minimal trading. On the other hand, market value CDOs may
be expected to trade frequently. “A market value CDO is one for which the CDO
tranches receive payments based essentially on the mark-to-market returns of the
collateral pool, which depends on the trading performance of the CDO asset manager.”
Duffie and Singleton (2003, p250). Analysis of market value CDOs is primarily an
analysis of the trading behaviour of the CDO manager they suggest. Thus, the portfolio
manager has a much bigger influence on the performance of a market value transaction.
Potential investors must carefully examine the manager’s investment style and
philosophy and the investment criteria adopted.

Market value deals face risks that are distinctly different from those faced by cash flow
deals despite the fact that the underlying assets are largely similar. The biggest risk in a
market value transaction is a sudden decline in the value of the collateral pool,
according to Goodman and Fabozzi (2001, pi74). Thus, the rating agency focus is on
the price volatility and liquidity of the assets and this is reflected in a set of advance
rates designed to provide a cushion against market risk.

Market value deals represent a minority of CDOs. Indeed, Moody’s rated only a single
market value deal in the whole of 2003 though they were projecting an increase in
activity for 2004. Current market value proposals tend to focus on more liquid, and thus
more easily marked, asset classes, Gluck (2004, p6) suggests.
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This thesis addresses the risk of credit assets in a primarily static portfolio. It does not
attempt to model the market risk created by short-term price changes and the
requirement to sell assets to return to compliance. While the risk driver in market value
CDOs is credit, the time frame is short and credit risk presents itself as market risk. The
framework that is developed is incapable of addressing this market risk. For this reason,
but also because of the fact that this sector of the market is particularly small, market
value deals will not be examined further.

2.4.1.2 Cash Flow Transactions

According to Duffie and Singleton (2003, p250), a cashflow CDO is one for which the
collateral portfolio is not subject to active trading by the CDO manager, implying that
the uncertainty regarding interest and principal payments to the CDO tranches is
determined mainly by the number and timing of defaults of the collateral securities.

The objective of the asset manager in a cash flow transaction is to generate cash flow
for the senior and mezzanine tranches without active trading of bonds. Because the cash
flows from the structure are designed to accomplish the objective for each tranche,
restrictions are imposed on the asset manager. Goodman and Fabozzi (2001, pi5) note
that the asset manager is very limited in his or her authority to buy and sell bonds. The
conditions for disposing of issues held are specified and are usually driven by credit risk
management. Also, in assembling the portfolio, the asset manager must meet certain
requirements set forth by the rating agencies that rate the deal. They conclude that the
most important of these requirements are embedded in the, so-called, cash flow
waterfall, described in 2.5.2 below.

Two further tests are imposed by the rating agencies to ensure that the asset manager
does not adversely affect the quality of the collateral:

« A maximum weighted-average rating factor (WARF) is set for the collateral pool.
* A minimum diversity score is set for the asset pool.

More complete details of the Moody’s papers describing the calculation of WARF and
diversity score are given in 3.9.1.1 below.

2.4.1.3 Source and Sustainability of the Arbitrage

Tavakoli cautions: “There is no such thing as a CDO arbitrage.” (2003, pi5) Cifuentes
(2004, p4) et al concur, choosing instead to characterise the ‘arbitrage’ as a ‘funding
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gap’. This is, of course, true since profit, if it is made, will not be riskless. However, the
market persists in using the term loosely.

Deal economics are determined by the extent of the arbitrage that exists between the
assets and liabilities and issuance volume rises or falls with the ‘arb’. The most common
CDO asset class is the high-yield bond or leveraged loan, with an average rating
between B1 and B3. Typically, 70% of the liabilities will earn an AAA rating; a further
15% could earn a BBB rating with the 15% balance supported by equity. Clearly, the
mezzanine tranche could be further tranched to achieve higher and lower ratings, or
attempting to achieve higher diversity could reduce the equity.

Cifuentes et al (p3) describe the market conditions which must exist for an arbitrage
CDO to be created. The portfolio weighted average yield less the weighted average cost
of debt less expenses associated with arranging the CDO must leave sufficient residual
cash flows to make the equity position attractive, they conclude.

A number of researchers have addressed the reason for the existence of the arbitrage
that is fundamental to the existence of the market. Common themes running through
this literature are market imperfection and adverse selection.

Part of the reason for the arbitrage Cifuentes et al suggest is the low funding cost locked
in at the outset of the transaction. They suggest that the senior noteholders are the ones
providing the funding subsidy: If the investors were to borrow money from a bank to
fund the purchase of the portfolio, the “costs would clearly be higher, as bank funding
costs, up-front fees and bank profit margins are factored in.” (2004, p4)

The CDO product was created to address problems arising from market imperfections:
Duffie and Singleton (2003, p252) contend that in perfect capital markets, CDOs would
serve no purpose as the costs of constructing and marketing a CDO would inhibit its
creation. They cite two imperfections which could support a CDO market: first, banks
and certain other financial institutions have regulatory capital requirements that make it
valuable for them to securitise and sell some portion of their assets, reducing the amount
of (expensive) regulatory capital they must hold. They also note that as individual bonds
or loans may be illiquid, this may lead to a reduction in their market values.
Securitisation and prioritisation may improve liquidity, they suggest, and thereby raise
the total market value of the CDO structure relative to the sum of the market values of
its collateral components.
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Falcone and Gluck (1998, pi) contend that, in large part, cash flow CDOs have
succeeded because they exploit the illiquidity of the high-yield markets. The spreads on
high-yield debt have historically more than compensated for the default risk associated
with such debt, according to Bencivenga (1997). The gap between the yield on the high-
yielding assets and the cost of the lower-yielding liabilities offers the equity the
opportunity to earn a return. Clearly, the extent to which that potential return is realised
depends on the ability of the asset manager to show good selection skills. In most deals,
the asset manager also holds between 20% and 49.9% of the equity of the deal and also
earns a performance-based bonus. In most cases, 2% of the liabilities issued are used to
meet upfront expenses and a further 70bp p.a. of ongoing expenses is typical. When the
projected internal rate of return (IRR) on the equity tranche rises above 15% p.a.,
activity in the CDO market is known to pick up. Since equity is approximately a six-
times leveraged position in the underlying assets, any improvement in the ‘arb’ makes
the equity decidedly more attractive.

A substantial part of the arbitrage CDO market is based on sub-investment grade debt,
so-called unk’ bonds and loans. There is a suspicion that significant amounts of
private information exist regarding the credit quality of this debt and outside investors
may find themselves ‘picked off when trading this debt. The reduction in price owing
to adverse selection was called a lemon’ premium by Akerlof (1970).

DeMarzo (1998) suggests that the CDO structure helps mitigate this lemon's premium,
drawing investors to the CDO market who would be unwilling to invest in the
underlying debt directly. Duffie and Singleton (2003, p253), surmise that the seller
achieves a higher total valuation (for what is sold and what is retained) by designing the
CDO structure so as to concentrate the majority of the risk about which there may be
fear of adverse selection into small subordinate tranches. They conclude that this allows
a large senior tranche, relatively immune to the effects of adverse selection, to be sold at
a small lemon’s premium.

The extent of the arbitrage varies widely over the credit cycle and issuance volumes are
highly correlated with its size. The narrowing of the arbitrage in recent years has had a
marked impact on the market. Gluck (2004, p3) comments that the single most striking
development in the U.S. CDO market during 2003 was the narrowing of corporate, and,
to a lesser extent, structured instrument credit spreads. Because the impact of this spread
narrowing was far more dramatic on the collateral side than on the CDO liability
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tranche side, the opportunity to earn arbitrage gains from the gap between asset- and
liability-side spreads contracted sharply He concludes that the collapse 1n the arbitrage
opportunity was most notable for transactions backed by mvestment-grade corporates

1 e for conventional synthetics

Some are questioning the future of the arbitrage CDO market Gluck (2004, p6)
projected near-zero growth mn the US market during 2004 and opined that it was
difficult to envision a widening of credit spreads to the point where the corporate CDO
arbitrage opportunity improves dramatically He wonders if the increasing ability to
hedge corporate credit risk through synthetics had resulted in a permanent contraction of
the liquidity component within corporate credit spreads He suggests that hedging costs
have at least theoretically been cut through the increase in the number of liquid names
traded 1n the credit default swap market He surmises that a more likely source of a

restored arbitrage opportunity would be a narrowing of CDO liability costs

2 4 2 Balance Sheet Transactions

The benefit of securitisation to i1ssuers 1s 1n the off balance sheet treatment achieved, as
well as the capital relief gamed to the extent that the underlying assets attract regulatory
capital charges According to Duffie and Singleton (2003, 252), the balance sheet CDO,
typically in the form of a CLO, 1s usually designed to remove loans from the balance
sheet of banks, achieving capital relief and perhaps also increasing the valuation of the
assets through an increase 1n liquidity Another essential benefit 1s the diversification of
funding sources Funding through secuntisation 1s sometimes cheaper than raising

unsecured debt for banks with ratings less than AA, they suggest

When balance sheet transactions were first undertaken in the early 1990s, a bank
typically sold a pool of high-quality loans to a special purpose vehicle (SPV) and took
back the first loss piece The bank benefited to the extent of the difference between the
mandated 8% regulatory capital requirement and the lower economic capital

requirement

However, while a balance sheet CLO solved the capital problem, two problems

remained (1) funding cost and (11) confidentiality

Funding Cost banks have a lower cost of funds than the typical purchaser of 444-rated
debt does Banks give up this funding advantage by 1ssuing 444-rated debt to fund its

loans
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Confidentiality If a loan 1s transferred into an SPV, borrower notification and,

sometimes, borrower consent are required Banks are loath to make their clients aware
that they are selling their loans Duffie and Singleton (2003, p252) claim that the direct
sale of loans to SPVs may sometimes compromise client relationships or secrecy, or can

be costly because of contractual restrictions on transferring the underlying loans

For these reasons, balance sheet securitisations have migrated from being fully funded
CLOs mvolving asset transfer to fully funded synthetic structures where the assets
stayed on the institution’s balance sheet but their credit risk was hedged using credit
dervatives Still later, partially funded synthetic CDOs replaced fully funded where a
guarantee from an OECD bank replaced the collateral as the source of reimbursement 1n
case of default More recently still, the most senior piece — typically the top 85% of the
structure — 1s treated as 20% rnisk-weighted for regulatory purposes regardless as to
whether there 1s a credit default swap referencing 1t This most senior tranche 1s often
referred to as the ‘super senior piece’ because 1t ranks ahead of other debt that 1s rated

AAA

This thesis focuses on cash flow structures rather than synthetic structures that absorb
credit nisk through the use of credit default swaps There have been no new cash flow-
based balance sheet CDOs 1ssued 1n recent years Thus, what follows may be seen to

refer only to arbitrage structures

2.5 CDO Structure

A typical CDO structure 1s shown m 2 5 above

Fund Manager Trustee
Adminstrative Agreement Indenture
Collateral Investment Special Investment Semor Debt
Portfolio Purpose Mezzanine Notes
Principal & Interest P Principal & Interest
Vehicle Equity

Asset Management Interest Rate &

Agreement Currency Hedges
Fund Hedge
Manager Counterparty

Figure 2 5 Typical CDO Structure
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The funds to purchase the collateral assets are obtained from the issuance of debt
obligations, known as tranches. Typically, three tranches of debt are issued: senior,
mezzanine and subordinate/ equity and these tranches may be further sub-divided. There
will be a rating sought for all but the subordinate/ equity tranche. An ~-rating at least
will usually be sought for the senior tranche while a rating of BBB but no less than B
will be sought for the mezzanine tranche. The subordinate/ equity tranche receives the
residual cash flow and is invariably unrated.

The fund manager decides on the composition of the collateral portfolio and earns a fee.
Should there be any mismatch between the liabilities and the assets, either in currency
or interest rate, hedges need to be put in place to avoid penal treatment from the rating
agencies. Amortising interest rate swaps are put in place if there is an interest rate
mismatch. Since prepayments and defaults cannot be anticipated exactly, swaptions are
taken out on aportion of the mismatch.

The order of priority of the payments of interest and principal to the CDO tranches is
specified in the prospectus. Payments are made in such a way as to provide the highest
level of protection to senior tranches in the structure. This is achieved by providing
certain tests that must be satisfied before any distribution of interest and principal may
be made to other tranches in the structure. If these tests are failed, the senior tranches
are paid down until the tests are passed.

The ability of the asset manager to make the interest and principal payments to the debt
holders depends on the performance of the collateral assets. The proceeds to meet the
tranche obligations come from (i) coupon interest payments from the collateral assets,
(if) maturity of collateral assets, and (iii) recovery on defaulted assets.

2.5.1 CDO Life Cycle
There are three relevant periods in the life of a CDO:

Ramp-up period: The first period, known as the ramp-up period, usually lasts less than a
year; during this period, the asset manager begins investing the proceeds from the sale
of the debt obligations. Frequently, when a financial institution is the asset manager,
many of the assets will be pre-purchased by the manager and held on the institution’s
own balance sheet so that the ramp-up period may be shortened and the negative carry
associated with having investors’ funds only earning Libor may be minimised.
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Reinvestment period The next period, known as the reinvestment period 1s that in

which the manager may reinvest principal proceeds from maturing or pre-paying assets,
subject to compliance with the relevant tests This period 1s, typically, five years or

more

Final period The final period sees the cash flow from maturing assets paid to the
investors However, early termination may be tnggered by failure to comply with
certain covenants or failure to meet payments to the senior tranches The equity-holders
may also trigger the collapse of the structure by calling the deal 1f they perceive that

there 1s greater value for them in doing so

252 CDO Cash Flow Waterfall

One of the most important details of a CDO structure 1s the specified priority of
payments to the tranches This payment prionty 1s usually called the cash flow
waterfall, getting 1ts name from the fact that cash flows down the structure based on a

set of tests described below A typical cash flow waterfall 1s shown in Figure 2 7

Interest

v

Hedge and Certain Expenses

v

Surveillance Fee

v

Class A Interest

v

Class A Coverage Tests
Pass Fail
Class B Interest Class A Principal
Class B Coverage Tests
Pass Fail
Class C Interest Class A Principal
Equity Tranche Class B Principal

Figure 2 6 Cash Flow Waterfall
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Interest payments are allocated to the tranches in sequence in accordance with the
priority shown. Key to the channelling of cash through the waterfall is the passing of
coverage tests. Two types of coverage tests exist: overcollateralisation (O/C) tests and
interest coverage (1/C) tests.

The O/C ratio for a tranche is defined as follows:

Tranche O/C rlnciPal Par valye ° 1 the Collateralassets.  Equation 2-1
Panc?paI?or%rancHHAn Tranches senior to it |

The O/C test for a tranche involves a comparison of the tranche’s O/C ratio with the
required minimum ratio, the O/C trigger. The lower the seniority, the lower the trigger,
not surprisingly given that the denominator is larger the more junior the tranche.

The other test is an 1/C test. The 1/C ratio, is defined analogously:

I _ Interest Due to the Collateral Assets
‘ﬂancﬁe ﬁ@ ~ Interest due to Tranche +All tranches senior to it

Equation 2-2

The I/C test is passed if the 1/C ratio exceeds the minimum ratio specified in the
prospectus.

2.5.3 Problems in Structuring CDOs

Other researchers have argued that, while the CDO structure helps mitigate the lemon’
premium, it creates problems of moral hazard in its place. Investors fear the manager
may engage in cherry-picking the worst assets from its own portfolio for inclusion in
the CDO. Also of concern to investors is that the manager may engage in front-running
the CDO.

Thus, the issuer has an incentive to indicate to the market that it will not engage in such
activities. Many managers retain significant portions - typically between 20% and
49.9% - of one or more subordinate tranches. Likewise, Schorin and Weinrich (1998)
point out that in many deals, more than half of the management fees may be
subordinated to the issued tranches.

26 Synthetic Credit Products

Traditional CDOs enable the transfer of credit portfolio risk on a fully funded basis. The
requirement to fund the purchase of the underlying credit assets necessitates the
issuance of CDO tranches. This requirement to pay cash for CDO tranches introduces
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two complications: (i) the purchaser of a CDO tranche needs to be able to fund itselfin
an efficient manner and (ii) the fully funded nature of the assets requires that a trustee
be retained to hold the assets and collect and disburse the associated cash flows.

Traditional CDOs, with all their attendant cash flow complications, remained the only
form of portfolio credit risk transfer throughout most of the 1990s. Their high-cost
nature substantially limited their scope for application. Modelling, structuring and
placing the tranches in the market required that an investment bank be retained. The
need to fund the entire structure demanded that all the tranches apart from the first loss
piece be rated. Furtermore, a trustee was required to keep the assets separate from the
sponsor who typically managed the assets.

Funding the CDO tranches significantly reduces the potential investor universe.
Insurance companies and hedge funds are loath to fund such investment though they
may be quite happy with corporate credit as an asset class. Likewise, the handling of
cash flows adds significantly to the administration costs.

Interest rate risk further complicates the issue. While many investors may feel
comfortable assuming pure credit risk, they inadvertently assume an element of interest
rate risk when investing in CDOs. Swaps alone will fail to hedge interest rate
mismatches between assets and liabilities because of the uncertain principal repayment
profile caused by prepayment, reinvestment and default. The residual interest risk needs
to be hedged using options, an additional expense that erodes the return that would
otherwise be available to those willing to bear credit risk.

Participants sought ways of circumventing these problems thereby creating a corporate
credit portfolio asset class that was less expensive and could appeal to a wider investor
base.

2.6.1 Credit Default Swaps

Credit derivatives provided the answer. Credit derivatives - in particular, credit default
swaps (CDS) - have become the investment medium of choice in recent years for those
wishing to take on pure credit risk. Their unfunded nature makes them the ideal
instrument for those without easy access to funding at a competitive rate. This has
greatly increased market liquidity that in turn has narrowed bid-ask spreads, improving
efficiency. It enables those with a credit risk appetite to take on the credit risk of
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companies with a higher credit rating than their own since they can do so on an
unfunded basis.

Credit Derivative Market Breakdown by Derivative Type

Qedit Default Swaps
% d
Credlt-llg(l;gd Notes Tota e S
1%
Optons al?/? hybric Portfolio Correlation
Products
2%

Source: Risk Magazine 2003 Credit Derivatives Survey

Figure 2.7 Credit Derivative Market: Breakdown by Derivative Type

Figure 2.7 above and Figure 2.8 below show the composition of the credit derivative
market by derivative type and market participant, respectively, based on a poll of twelve
dealers at the end of 2002. The total notional market outstanding across all credit
derivative products was estimated at $2.3 trillion, a 50% increase on the previous year.
0’Kane et al (2003, pi) remark: “While not directly comparable, it is worth noting that
the total notional outstanding of global investment-grade corporate bond issuance
currently stands at $3.1 trillion.”
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Credit Derivative Market Breakdown by End User
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Figure 2.8 Credit Derivative Market: Breakdown by End User

Banks are the biggest users of credit derivatives, using them both to take on and to
hedge credit risk. Credit default swaps are the dominant product type but portfolio
correlation products have increased in significance compared to previous years.

The credit default swap is the basic building block for most exotic credit derivatives,
transferring as it does the credit risk of a reference entity from one party to another.
Following a credit event, the protection buyer typically delivers the cheapest reference
asset in return for par. Approximately 500 names world-wide have liquid CDS. These
firms are large household names, and predominantly investment-grade.

2.6.2 Credit Correlation Products

The portfolio correlation product category is comprised of synthetic CDOs and default
baskets with a total notional value of $449 billion. The market for portfolio correlation
products has grown in line with the credit derivatives market itself. This is to be
expected because there is a symbiotic relationship between the single-name CDS market
and the synthetic CDO market: synthetic tranche products are hedged using CDS.
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2 6 21 Basket Default Products

The simplest correlation product 1s the basket default swap It 1s similar to a CDS except
that the trigger 1s the n-th credit event 1n a specified basket of reference entites The
contingent payment typically involves physical delivery of the defaulted asset 1n return
for a payment of the par amount in cash A first-to-default (FTD) basket 1s a way of
leveraging the credit nisk by increasing the probability of loss without increasing the

size of the potential loss

26 22 Traded CDS Portfolio Products

Traded CDS portfolio products have developed significant liquidity in recent years
They enable the investor go long or short a portfolio of CDS 1s one transaction TRAC-

X 1s one such index

2 6 2 3 Synthetic CDOs

Synthetic CDOs were first used in 1997 as a flexible, low-cost mechanism for
transfernng credit risk off bank balance sheets Their primary motivation was regulatory
capital arbitrage They provided banks with a mechanism for transferring the credit rnisk
of loans without the need to sell these loans, which could otherwise have required
informing the borrower or possibly even seeking borrower consent They also provided
a way of managing the credit risk of revolving credits, something to which fully-funded

CDOs were unsuited

Under Basel I, synthetic CDOs will no longer be created for regulatory capital arbitrage
because the risk-weightmg of high-quality assets will be reduced to reflect their lower
risk Furthermore, as discussed in 2 7 4, Basel II ensures that the regulatory capital
required to be held against a portfolio of loans on a bank’s balance sheet will be less
than the capital to be held against the CDO tranches of synthetic CDO referencing those

same assets

In more recent years, synthetic CDOs have found a whole new role Gluck (2003, p6)
notes that, beginning 1 2000, the synthetic structure began to be adopted for arbitrage
CDOs and became close substitutes for cash flow, mvestment-grade CDOs The so-
called customised CDO has been created which enables investors assume credit risk that

exactly matches their appetite The Risk 2003 survey shows the total market size to be
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approximately $500 billion Investors can specify the amount of tranche subordination —

the attachment point — and the tranche thickness, matching their exact requirements

Full Capital Structure Synthetic CDOs

In a typical full capatal structure synthetic, 10% or less of the credit protection 1s funded
through the 1ssuance of notes These proceeds are typically invested in high-quality
securities The remaining 90%, or more, of the credit protection 1s distributed 1n an
unfunded format via a senior swap This substantially reduces the cost of obtamning
credit protection compared to the fully funded traditional CDO Instead of paying 45bp
over Libor for funding, which in many cases could have been achieved by a bank at
close to Libor, a CDS premium of less than 10bp was required, significantly reducing
the cost AAA-rated reinsurers who were keen to provide the CDS would be incapable

of funding a sentor tranche

Another major advantage that the synthetic CDO enjoys over 1ts traditional cousin 1s
simplicity the reference portfolio, typically, 1s static, all the referenced credits are for a
single matunty, there is no interest rate risk and there are no cash flows to be managed
Little wonder, therefore, that synthetic CDO volumes have far out-weighed traditional
CDO volumes 1n recent years for investment-grade names, which, in total 1ssuance

terms, dominate the market

Single-Tranche CDOs

As the name mplies, single-tranche and full capital structure CDOs differ as regards the
extent of liability tranches which are created While the full capital structure CDO
1ssued equity, mezzanine and senior parts of the capital structure, customised synthetics,

more frequently called ‘single-tranche’, may 1ssue just one tranche

Gluck (2004, pS) comments that smgle-tranche synthetics allow investors to take on
exposures to credit baskets of the investors’ choosing The investors, he surmises, may
be motivated by views on default/recovery rates that differ from those of the market, or
by different views regarding default correlation Dealers can absorb the risks that anse

from these reverse-mquiry deals by delta-hedging in the single-name CDS market

They are customised 1n that the investor can specify the credits in the collateral, the
trade maturnity, the attachment point, and the tranche width The tranches frequently

carry an agency rating, which avoids regulatory risk-weighting 1ssues that frequently
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accompany FTD baskets The resulting tranches often achieve mvestment-grade ratings
despite their subordination within the capital structure and offer ligher spreads than
comparably rated single-name corporate debt It 1s a matter of debate whether the rating

1s comparable though 1t may take many years for the truth to emerge

Other Synthetics

The standard synthetic CDO product 1s a relatively simple product to structure and
price Closed-form solutions exist for pricing and for delta-hedging the various
underlying credits Inevitably, vanations on the basic scheme were developed 1n order

to make some of the tranches appeal to new investor categores

Some introduced structural features such as reserve account funding which divert excess
spread into a reserve account which 1s then available to absorb losses Others re-
introduced the over-collateralisation triggers commonly found 1n traditional structures
Still others introduced principal-protected versions in which only the size of coupon 1s
impacted by losses The recently introduced managed synthetic gives the asset manager

the flexibility to trade names in the portfolio

Finally, the CDO of CDOs, more commonly known as ‘CDO squared’, has grown in
populanity The underlying collateral, typically, comprises mezzanine tranches of other
CDOs Thus, an additional layer of leverage 1s applied to the traditional CDO This
product clearly compounds the complexity of the traditional CDO where than the basic

synthetic CDO simplifies 1t

2.7 Regulatory Approach

The Basel Committee on Banking Supervision, known as the Commuttee, of BIS has
expressed 1ts views regarding credit risk modelling and securitisation on a number of
occasions 1n the past few years In particular, 1t has considered the potential for portfolio
credit risk models 1n setting regulatory capital requirements “The Commuttee
commends the use and continued development of such models ™ BIS (1999, p4l) It
acknowledges that credit risk models may enable better risk management within banks
It also suggests that such models would have the potential to be used by regulators n

their bank supervisory role
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27 1 Regulatory Attitude to Credit Risk Modelling

However, 1t expresses reservations about the use of such models 1n setting regulatory
capital for credit nsk Among the concerns 1t cites, data availability, model validation
and the need for banks to prove that they are actively managing risk based on model
outputs, were paramount The Commuittee has stated that 1t will monitor developments
It 1s clear, however, that 1t views as sigmficant the hurdles that remain to be cleared It s
equally clear that the adoption of a credit nsk model-based approach to the setting of

regulatory capital 1s many years away

Credit portfolio risk modelling 1s not sufficiently well-developed in the Commuttee’s
view to trust model outputs for tranche capital “[T]he Group has ruled out the
possibility of allowing banks to rely on their own assessments of the credit risk of
securitisation exposures for regulatory capital purposes ” (2001, p2) The reason they
suggest 1s that this would require banks to use credit risk models . for assessing
correlation effects within the underlying pool They contend that “credit risk models are
not yet at the stage where they can play an explicit part 1in setting regulatory capital
requirements 7 (1999, p14) Five years later, they concede that the final Basel II
document “stops short of allowing the results of such credit risk models to be used for

regulatory capital purposes ” BIS (2004, p5)

27 2 Regulatory Attitude to Asset Securitisation

BIS has expressed misgivings about the role of asset securitisation for many years For
example, 1n discussing the ments and weaknesses of the 1988 Capital Accord 1n 1ts
1999 consultative paper, 1t speaks of the ability of banks to arbitrage their regulatory
capital requirement and exploit divergences between true economic nisk and nsk
measured under the Accord BIS (1999, p9) They note that secuntisation facilitates
regulatory capital arbitrage and can lead to a shift m banks’ portfolio concentrations to
lower quality assets They note that through such techniques, a bank may be able to
achieve an overall nsk-based capital ratio that 1s nominally high but which may hide
capital weakness n relation to the actual economic risks inherent in the bank’s
portfolio (p36) CDO structures are explicitly targeted when they say that their proposal
1s primanly addressing transactions that result imn a special purpose vehicle (SPV)

1ssuing paper secured on a pool of assets
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They include secuntisation tranches 1n the higher nisk category and propose to establish
a 150% risk weighting category to include secuntisation tranches that are rated between
BB+ and BB- (p32) They also propose that securitisation tranches “rated B+ or below
or unrated would be deducted from capital (p36) In so doing, they were, for the first
time, suggesting that the capital required to support a securitisation tranche should
exceed that required to support similarly rated corporate debt In a later document, BIS
(2003), they revised the risk weighting to be applied to the tranches in the BB+ to BB-
category from 150% to 350% However, this treatment was limited to nvesting banks
only Orngmating banks are obliged to treat as a capital deduction all retained

securitisation exposures rated below mvestment grade (p106)

They elaborate on their view of the nsks involved in securitisations in their first
working paper on asset securitisation (2001) “[A] well-diversified portfolio of ABS
tranches (each backed by a diversified pool of corporate loans) can be expected to
exhibit higher default correlations among underlying tranches than a well-diversified
portfolio of sitmilarly-rated corporate loans  (p7) They suggest that this reflects the fact
that much of the credit nisk inherent in a single corporate loan 1s 1diosyncratic nsk that
can be diversified away within a larger portfolio They state that the IRB risk weight
formula for corporate exposures assumes that bank portfolios are well diversified and,
hence, presumes substantial rnisk reductions through diversification when individual
corporate loans are combined within a bank’s portfolio “In contrast, the automatic
pooling of loans within a securitisation implies that an ABS tranche already 1s purged of

much of the 1diosyncratic nsks of the underlying assets ” (p7)

In their Working Paper on the Treatment of Asset Securitisations, they comment that in
developing an IRB treatment for securitisation, “the Group has ruled out the possibility
of basing the capital requirement on banks’ mternal assessments of the credit risk of

individual securitisation tranches ” BIS (2001, p2)

BIS (2003, p8) makes 1ts reservations even more explicit “One noteworthy point 1s the
difference 1n treatment of lower and unrated securitisations vis-a-vis comparable
corporate exposures In a securitisation, such exposures are designed to absorb all losses
on the underlying pool of exposures up to a certain level ” Therefore, the Commuttee
decided this concentration of risk warranted higher capital requirements In particular,
for banks using the standardised approach, unrated secunitisation positions must be

deducted from capital
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27 3 Regulatory Attitude to Agency CDO Ratings

The Commuttee emphasises the difference between rating agency measures of credit risk
and the dimension of nisk that 1s of concern to the regulator They suggest agency
ratings are linked to default probabilities or expected losses (EL) on the tranche and do
not directly reflect unexpected losses (UL) This expression of standalone risk 1s not
what concerns the regulator, capital charges are intended to capture an asset’s marginal
contribution to portfolio risk (defined as EL + UL) under the assumption that the bank’s
overall credit portfolio 15 well diversified and highly granular (In the final Basel II
document, published in June, 2004, capital was defined as covering UL only, EL was

explicitly excluded 1n the final agreed formula )

They suggest that the link between EL and UL can be expressed in a fairly
straightforward fashion for whole loans with “only a single additional regulatory
parameter (representing the correlation of the borrower’s performance with systematic
risk)” required BIS (2002, p5) However, they suggest that for tranches of a
securitisation, the relationship between EL and UL 1s much more complex and 1s

sensitive to the composition of the underlying pool (p6)

Not only does the economic capital for a securitisation tranche depend on the risk
charactenistics (e g PD and LGD) of the individual underlying exposures securitised,
they suggest It also depends on the average asset correlation among the exposures, the
number of exposures n the pool, the credit enhancement level of the tranche 1n
question, and the tranche's thickness They state that the current Ratings-Based
Approach (RBA) risk-weights attempt to take account of these variables in a way that
ensures prudential capital levels for a wide variety of possible securitisation structures
(p6)

The Commuttee cites tranche thickness, systematic risk and pool granulanty as reasons

for requinng much more capital to support a CDO than a similarly rated corporate bond

Tranche Thickness Apart from the very senior positions, tranches are very thin,

accounting for only a small portion of the pool This will cause the tranches to exhibit

loss-rates 1n the event of default that exceed those for corporate bonds having the same
rating (p6)

Systematic Risk Structured secunties backed by a granular pool likely embody more

systematic risk than a similarly rated corporate loan whose nisk 1s largely 1diosyncratic
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The diversification that occurs within the securntisation structure creates systematic risk
within secuntisation tranches They point out that the stand-alone credit nisk of a
securitisation tranche backed by an infimitely granular pool will be effectively all
systematic Thus, they conclude “the marginal contribution to portfolio risk of such a

tranche will be larger than a corporate bond with a similar rating ” (p6)

Pool Granulanty They suggest that pool granulanty 1s a key parameter in determining

the rnisk weighting of senior tranches 1n non-granular pools As the pool of exposures
underlying a securnitisation becomes less diversified, the volatility of payoffs on the pool
increase The marginal value-at-nisk measures for tranches with different levels of
protection, they suggest, become increasingly similar and hence appropriate capital

charges for more senior tranches increase (2002, p7)

They comment that senior and higher mezzanine tranches backed by less diversified
pools are accompanied by lower external ratings than those backed by diversified pools
They surmise that this seems to reflect the impact of the implied increase 1n volatility on
the expected loss or default probability of these tranches They wonder 1if the
adjustments made are intended to allow for the increase m unexpected loss on tranches
that occurs They conclude that within the ratings-based approach, the higher capital
requirement that a tranche attracts when 1its pool 1s less diversified simply because of the

lower rating may still not be sufficient to reflect the greater unexpected loss (p7)

The industry reaction to the higher nsk weightings was, rather unsurprisingly, one of
dismay In the second Working Paper on Securitisation (WP2), however, the Committee
conclude that many within the risk management community “now seem to accept the
view that securitisation tranches and loans having identical ratings may warrant

different capital charges ” BIS (2002, p6)

274 CDO Treatment under Basel Il

The Basel Il document (BIS, 2004) was finalised in May 2004 Banks opting for the
standardised approach to credit risk under Basel II must apply the risk weightings to
CDO tranches outlined m Table 2-3 below
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AAAto A+to BBB+t B+ and bel
Credit Rating AA- ’ A- ’ BBB- ° BB+w0BB a:nra:egw K

Risk Weight 20% 50% 100% 350% Deduction

Table 2-3 CDO Tranche Risk Weightings by Rating Agency Rating

Furthermore, originators must deduct from capital below mvestment-grade exposures

which they retain

Banks adopting the RBA must apply the following risk weights

Risk weights for Risk weights for
senior positions Base risk tranches backed b
External Rating and gltglble weights non-granular poolz
{illustrative)
senior IAA
exposures
AAA 7% 12% 20%
AA 8% 15% 25%
A+ 10% 18%
A 12% 20% 35%
A- 20% 35%
BBB+ 5% 50%
BBB 60% 75%
BBB- 100%
BB+ 250%
BB 425%
BB- 650%
Below BB- and unrated Deduction

Figure 2 9 RBA risk weights

The effect of applying the Supervisory Formula under the Internal Ratings-Based (IRB)
approach for a CDO portfolio with an IRB-determined capitalisation rate of 5% 1s
shown n Figure 2 10
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Supenisory Formula

Credit Enhancement Level

Figure 2.10 Total Capital for Subordinated Tranches - KiRB=5%

Thus, if the bank chooses to hold on its own balance sheet a first-loss tranche up to 5%
in thickness, the bank would suffer a full capital deduction equal to the amount retained.
However, if their tranche exceeded the Km capital requirement, they would be obliged
to hold still more capital. For example, if they chose to retain the lowest 10% tranche,
they would be obliged to hold 6.66%, exceeding the 5% KIB level. This will
effectively put an end to the arbitraging of regulatory capital requirements by ensuring
that the capital required to support a loan portfolio will increase on securitisation
compared to holding the same portfolio on balance sheet. This can also be see by

plotting the capital required to support a €Im tranche of a€100m portfolio with an IRB
capital requirement of 5% as shown in Figure 2.11:
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Figure 2.11 Regulatory Treatment of CDO Tranches under Basel Il

This demonstrates that €lm tranches within the KIRB layer bear a €lm regulatory

capital burden but, for example, a€Im tranche with 10% subordination will still require
€175,000 of capital; the regulators clearly are uncomfortable with tranched credit
portfolio risk.

However, following discussions with industry, BIS (2002, p4) relented and agreed to
cap the total capital allocated to all securitisation tranches retained by an originator at
Kirb. Thus, while securitisation is not penalised, banks will no longer securitise their
loans for the purpose of regulatory capital arbitrage.

28 Conclusion

This chapter presented a detailed analysis of the CDO product, market and regulatory
treatment. It highlighted the important role of the CDO in the financial markets, it
identified the complexities that an evaluation of the cash flow CDO presents, and it
discussed the regulators’ concerns.

The next chapter summarises the academic research that has been undertaken in the
areas of relevance to structured securities. It examines the development of
methodologies for assessing borrower default probability and it summarises the
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hiterature regarding portfolio theory as applied to equities and the extension of that

theory to credit portfolios
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Chapter 3. Literature Review

3.1 Chapter Overview

This chapter explores the current state of research as 1t relates to CDO valuation

It begins by establishing the areas of the literature which are relevant to structured debt
valuation and proceeds to summarise the seminal contributions to the literature These
contributions lie in the areas of default probability estimation, portfolio theory as
originally developed in an equity context, and the adaptation of portfolio concepts to the

credit context

The performance of the theory when subjected to empirical testing 1s then examined and
the shortcomings 1dentified by the empirical academic research come centre-stage The
test results reflect rather poorly on the theory suggesting that the theory can provide no

more than a framework for thinking about the 1ssues

Next, industry efforts to make the academic research discussed 1n this chapter work 1n

practice are addressed

Financial products that have assumed a central role mn credit portfolio valuation are
explored In particular, the role of credit default swaps and credit correlation products

are explored

The CDO indenture contains many details that the academic literature 1gnores These
details are central to the rating agency modelling approach Furthermore, these are
central to the valuation 1ssue but are rarely addressed in the academic journals The
chapter concludes with an overview of a rating agency approach to CDO tranche
grading

The theoretical framework that the academic researchers developed 1s central to the
solutton However, 1n many cases, 1t has to be supplemented by empirical research
Chapter 4 examnes the market-leading solution to the credit portfolio modelling

challenge 1n greater detail

3.2 Risk Dimensions of Debt Portfolios

Before attempting to build a model for the valuation of CDO tranches, the hterature

relevant to the various aspects of the 1ssues to be encountered will be reviewed
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First, the literature relating to the estimation of the default nsk of individual firms will
be reviewed followed by the literature dealing with the valuation of debt securties

1ssued by corporate entities

Then, the focus switches to the behaviour of secunties in portfolios The hiterature
relating to portfolio theory as applied to equities will be reviewed briefly before the

emerging theory on the behaviour of portfolios of debt securnities 1s examined

3.3 Individual Borrower Credit Risk

A fundamental concern of all involved i the extension of credit 1s the development of
robust methodologies for the evaluation of the credit risk that a borrower presents This
credit nsk measurement challenge 1s sometimes disaggregated into the separate

calculation of PD and loss given default (LGD)

Two principal schools of thought have emerged about how best to address this credit
risk measurement 1ssue the contingent claims and the reduced form approaches The
following sections explore the literature on assessing the credit risk of the individual

borrower using these two approaches

331 The Contingent Claims Approach

The fundamental concept underlying the contingent claims approach 1s that default 1s a
structural 1ssue when a borrowing firm’s assets falls below the level of 1ts outstanding
lhabihities, the firm will avail of the nght which limited liability confers on it, the nght to
renege on debt repayment To the extent that default 1s a logical outcome of the decline
1 a firm’s fortunes as reflected 1n the market value of 1ts assets, default 1s considered to
be ‘structural’ It 1s this structural feature of default that characterises the approach that
distinguishes 1t from the mamn competing approach, the reduced form approach, in
which default 1s charactennsed by a Poisson arrival time, which, by defimtion, 1s

incapable of being anticipated

Jarrow and Turnbull (1995, p55) state that the Merton model 1s called a ‘structural’
model of credit nsk because the assumptions underlying the model are imposed on the
firm’s balance sheet, the firm’s structure The structural approach 1s frequently called
the contingent claims approach because 1t regards all corporate secunties as claims on
company cash flows The paragraphs that follow summarnse the contributions of the

principal proponents of this approach
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Mason and Merton (1985, p25) proclaim the benefits of this approach They bemoan the
fact that the traditional approach to the pricing of corporate liabilities 1s disjointed, as
exemplified by the structure of a typical, vintage corporate finance textbook, with
separate chapters on the pricing of equity, and on the pricing of long-term debt, each
employing a different valuation techmique Rarely, 1if ever, they comment, are any
attempts made to integrate the various components of a firm’s capital structure as even a
check on the internal consistency of these diverse valuation methodologies In contrast,
they claim that the contingent claims approach to the pricing of corporate liabilities
begins with the firm’s total capital structure and uses a single evaluation technique to

simultaneously price each of the individual components of that structure

3311 Black and Scholes

Black and Scholes (1973) put research in the area of credit risk on a sound theoretical
basis for the first time As almost all corporate liabilities can be viewed as combinations
of options, they suggest, the option-pricing formula and the analysis that led to 1t are
also applicable to corporate liabilities such as common stock, corporate bonds, and
warrants In particular, they note, the formula can be used to derive the discount that

should be applied to a corporate bond because of the possibility of default (p637)

They note further that corporate liabilities other than warrants may be viewed as
options The bondholders own the company’s assets, but they have given options to the
stockholders to buy the assets back, they comment “By subtracting the value of the
bonds given by this formula from the value they would have if there were no default
risk, we can figure the discount that should be applied to the bonds due to the existence
of default nsk ” (p 649-650) They further note that if a company has coupon bonds
rather than pure discount bonds outstanding, then the common stock can be viewed as a

‘compound option’

Jones et al (1984) argue that Black and Scholes’ contingent claims insight 1s of more

academic and practical value than their option prnicing model

Option Pricing Formulae

The stock price 1s assumed to follow geometric Brownian motion, namely,

das
? =udt+odz Equation 3-1
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where S 1s the stock price, p the expected stock return, ¢ the standard deviation of

stock returns, ¢ 1s time and dz a drawing from a standard normal distribution Using
fto’s Lemma, Black and Scholes (1973) showed that a function, F, a denvative of S,

would satisfy

2
dF = 6_F!IS+6_F_+18 12:0'2S2 a’t+a—FoSdz Equation 3-2
oS ot 208 oS

where 7 18 the continuously compounded risk-free spot rate over period ¢

By letting F =In(S), we get

o2
ar :[#——2_ dt +0dz Equation 3-3

Black and Scholes demonstrated that 1t 1s possible to create a hedged position,
consisting of a long position in the stock and a short position 1n the option, whose value
will not depend on the price of the stock, but will depend only on time and the values of
known constants (p 641) The long position 1 the stock 1s set equal to the partial
dertvative of the option price with respect to the stock price If the hedge 1s maintained

continuously, they note, the return on the hedged position becomes certain (p 641)

They showed that any derivative of S would satisfy the partial differential equation

oF OF 1 8°F
—at—+rS§+50'282 VT =rF" Equation 3-4

subject to appropriate boundary conditions For a non-dividend-paying stock, the

solution for a European call, ¢, on S with a strike price, X, expiring at 7'1s

2 2
ln[£j+[ r+ g—jT ln(i}{r - a—jT
c=S X 2 _Xe'T X 2 Equation 3-5

oNT o T

where N(s) 1s the standard normal cumulative probability distribution function

3312 Merton

Merton (1974) formalised these nsights 1n the context of a company financed by zero-

coupon debt and non-dividend-paying stock Assuming the value of the firm’s assets
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follows geometric Browman motion, the value of the debt, F, must satisfy a similar

partial differential equation to that developed already by Black and Scholes

2
a—F+rVa—F+lO'2V2 0 Ij
ot ov 2 oV

=rF  Equation 3-6

where V, the value of the firm, now takes the place of S, the value of the shares The

boundary condition at maturity 1s
F =Mln[V, B] Equation 3-7

where B 1s the face value of the debt Equity, f; 1s the exact equivalent of a call on ¥

with a stnike price, B (Equation 9, p 454)

2 2
1n[%)+(r + %]T 1n(%) + Er - %]T
~Be N Equation 3-8

f=VN e oy

The difference between ¥ and f1s F, the value of risky debt (Equation 13)

_O'ZT_h1 Beo T _O'ZT ot BeT
2 |4 2 |14
+V N

oJT oNT

F=Be' TN J Equation 3-9

The credit spread, R(T')~r, 1s the difference 1n yield between the riskless and the nisky

bonds (Equation 14) where the bond matures at 7’

(22T vt o (27 )

N
O’ﬁ Be™” 0'\/:1:

R(T)-r= —%ln N Equation 3-10
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Thus, for a given asset volatility and debt level, the value of the debt and equity can be
uniquely determined, as shown in Figure 3.1:
/

Value of Debt and Equity Contingent on Value of Firm

Figure 3.1 Value of Debt and Equity Contingent on Value of Firm

Figure 3.2 below examines the effect of —-V_—, which Merton calls the leverage ratio,

d, on the term structure of credit spreads. This is one of the more controversial results of
the Merton model. While it indicates a rising term structure of credit spreads for low-
leverage firms, it suggests a declining term structure for highly leveraged firms. Sarig
and Warga (1989), Franks and Torous (1989) and Wei and Guo (1997) discuss the issue
at length. A declining term structure is rarely observed in practice although this may be
because many issues contain a prepayment option, a factor that Merton did not consider.
Furthermore, it shows the credit spread goes to zero for low leverage firms as they
approach maturity. “Empirically we do not observe this to be the case.” Jarrow and
Turnbull, (1998, pi6) These issues will be re-examined in 3.3.3 below.
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Risk Premiumas a function of Debt/Equity and Maturity

Maturity
0 — 025 -£-05 -*-0.75 -*-1 -#-1.25 —115
Figure 3.2 The Term Structure of Credit Spreads

Given the unique relationship that both debt and equity have with the asset value for a
given asset volatility, they also have a unique relationship with one another, as shown in
Figure 3.3:
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Figure 3.3 Value of Senior Debt vs Value of Equity

The value of the default put option, p, or equivalently, the cost of the credit derivative,
may he expressed as:

f \ f \
f v j (V>
In 19U In (i
p=—yN  BET +Be'rIN KBeT) Equation 3-11
gdt cjJr
\ J /
This cost is ahomogeneous function of the leverage ratio, d.
The PD in arisk-neutral world is
RS
1-N ¢ Equation 3-12

and this enables the value of the credit derivative to be written as:
N(-d2) Equation 3-13

where
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d, = Equation 3-14

and

ln[ 4 TJ—rT
Be™
d. =

2 O'ﬁ

Crouhy et al (2001, p 364) point out

Equation 3-15

The absolute value of the first term 1nside the brackets in Equation 3-13 for the credit
dertvative 1s the expected discounted recovery value of the loan, conditional on default
It represents the risk-neutral expected payment to the bank in the case where the firm

defaults The second term inside the brackets 1s the value of a risk-free bond

Thus, the sum of the two terms inside the brackets 1s the expected shortfall in present
value terms, conditional on the firm being in default at 7 Multiplying this present value
of the expected shortfall by the PD gives the premium for insurance against default The
price of a credit denivative (CD) and 1ts component parts — PD, also known as expected
default frequency (EDF), and the present value of the LGD - are shown 1n Figure 3 4 for

aloan of 100 to a firm
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Components of Credit Derivative Cost

\ Firm Value

Figure 3.4 Components of Credit Derivative Cost

However, practitioners do not think of LGD in present value terms, and rating agencies
quote recovery rates as a percentage of par value. Hence, it is common practice to
express LGD in actual monetary terms. Re-arranging the previous equation and
expressing it in future value terms, we get:

ELe-B 1-N(d2)~ N""99  Equation 3-16
Hence, the expected payoff from the debt at maturity is

B—ELt—8 N(d2)+ M -9 Equation 3-17
s0 the expected cost of default, in yield terms, is:

B Nid*+Ni-d,)— .
- 1l n ] Equation 3-18

which is the same as the expression previously derived for the credit spread.
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Merton showed how the cost of eliminating credit risk can be derived from the value of
the firm’s assets, V. However, it is not possible to observe Vin most instances - usually
only the equity is traded and there are no liquid prices quoted for the other liabilities in
the firm’s capital structure. As a practical matter, therefore, it is necessary to be able to
express a relationship between debt and equity rather than debt and assets as heretofore.
If debt is to be hedged and priced, it must be done via the equity.

The value of equity according to Merton (1974) is:
f =VN(dx)-Fe-rTN{d2) Equation 3-19

As Crouhy et al (2001, p367) note, the equity value is a function of the same parameters
as the default put option. They note that a put can be created synthetically by selling

short N (- dx) units of the firm’s assets, and buying Be~TN(- d2) units of government

bonds maturing at T, with face value of B. They conclude that by selling short

units of the stock/, a short position in the firm’s assets of N (-d{) units is created.

Thus, even if V is not directly traded or observed, a put option can be created
dynamically by selling short the appropriate number of shares.

Equity is a leveraged position in the asset and its volatility relationship with the assets
reflects this leverage:

af-Tjfva -Md{)vcr Equation 3-20

where rjf v is the instantaneous elasticity of equity with respect to the firm’s value,

at v »Bensoussan et al (1994, 1995) showed that hedge ratio and the formula linking

firm volatility and equity volatility above can both be used despite the fact that firm
volatility is stochastic, changing with K which is not theoretically correct if the Black
and Scholes model is to be applicable.

3.3.1.3 Vasicek

Vasicek (1997, pi) summarises the contingent claims approach to the measurement of
borrower PD. Traditional credit analysis, he notes, involves detailed examination of the
company’s operations, projection of cash flows, and assessment of the future earning
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power of the firm But, he contends, such analysis 1s not necessary, not because future
prospects of the firm are not of primary importance — clearly they are - but because an
assessment, based on all currently available information on the company’s future, has
already been made by the aggregate of the market participants, and reflected in the
firm’s current market value He proceeds to emphasise that this assessment 1s accurate
not 1n the sense that 1ts implicit forecasts of future prospects will be realised, only that
any one person or mstitution 1s unlikely to arrive at a superior valuation The challenge,

he says, 15 properly to interpret the changing share prices

He proceeds to extend the contingent claims approach to the valuation of subordinate
debt within a capital structure that contains senior debt and equity also He derives the

expected loss 1n a risk-neutral environment, Q, as

(D, +CT)N|:

o T

In(D, +C, )-In(4 - F)—rT—lO'ZT}

In(D; +C,)—In(4 - F)—rT+%azT}

—(4-F)e'N
(4-F)

2
oNT
c N{ln( C,)-In(4- F)—rT+%crzT}

Equation 3-21

oNT

In(C, )-In{4 - F)-rT-gazT}

+(A—F)e’TN[ "

where D 1s the market value of the subordinated debt, D, 1s the face value of the
subordinated debt, C 1s the market value of the senior debt, C, 1s the face value of the

senior debt, 4 1s the market value of the assets, F 1s the present value of dividends and

interest paid over the term of the loan, T, and where r 1s the risk-free interest rate

The value of the subordinated debt 1s
D=(D, —Q)e™" Equation 3-22

The impact of firm value and volatility on the value of the subordinated debt with a

nisk-free present value of 50 1s shown 1n Figure 3 5 for a range of asset values
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Impact of Firm Value and Volatility on Subordinated Debt Value

Firm Volatility

100 120
Firm Value

Figure 3.5 Value of Subordinated Debt as a Function of Firm Value

3.3.1.4 Other Contributions to the Contingent Claims Literature

Black and Cox (1976, p351) focus on the assumptions made by Black and Scholes and
Merton who had assumed that the bond contract renders the firm’s investment, payout,
and further financing policies determinate and that the fortunes of the firm may cause its
value to dwindle to nearly nothing without any sort of reorganisation occurring in the
firm’s financial arrangements. (p352) As they point out, in reality, the firm may be
reorganised if the asset value reaches upper or lower boundaries. These boundaries, they
suggest, may be given exogenously by the contract specifications or determined
endogenously as part of the optimal decision problem. (p352)

Black and Cox allow for coupon-paying debt and for default prior to maturity by
introducing an exogenously determined lower boundary, which, when crossed, triggers
default. In the Merton framework, they note, the time of receipt of each potential
payment was known but not the amount which would actually be received. They
contrast this with their new approach in which the amount to be received at each
boundary is a known function specified by the contract, but the time of receipt is a
random variable. (p353) The closed form solution that they develop confirms the
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benefits to debtholders of covenants that trigger debt repayment in the face of

deteriorating company fortunes

Shimko, Tejima and van Deventer (1993) allowed for stochastic interest rates as per
Vasicek (1977) 1n the Merton (1974) framework They conclude that the correlation
between nterest rate movements and the returns on the underlying asset 1s an important
variable in determining the credit spread on nisky debt having shown that for reasonable

parameter values, as the correlation increases, the credit spread increases (p64)

Longstaff and Schwartz (1995) address the “clearly unrealistic” assumption 1n the
standard contingent claims approach that default will only occur “when the firm
exhausts 1ts assets” (p789) They attempt to extend the Black and Cox (1976) model by
icorporating both default and interest rate risk and by explicitly allowing for deviations
from strict absolute priority which they do by exogenously imposing a recovery rate for
different securities They conclude that “credit spreads are strongly negatively related to
the level of interest rates” (p791) and that for mvestment-grade bonds, “changes in
interest rates account for more of the variation in credit spreads  than changes in the

value of the assets of the firm ” (p815)

3 315 Other Contingent Claims Models

Models based on this contingent-claims approach compare the value of an 1issuer’s
assets with the level of debt 1n the 1ssuer’s capital structure to determine the PD Duffie
and Singleton (1998) define this modelling framework as the “structural” approach to
nisky debt valuation Bohn (2000) says that in the Black and Scholes and Merton
version of this model, default 1s assumed to occur when the market value of assets has
fallen to a sufficiently low level relative to the 1ssuer’s total habilities Bohn notes that
the key charactenistic shared by structural models 1s their reliance on economic

arguments for why firms default (p 54)

Lando (1997) demonstrates that the Merton formula for the value of risky debt, F, can
be re-cast as the value of a default-free loan of the same amount plus a short position n

a put option on the firm’s assets with a strike price equal to the debt’s face value
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F=e¢"7(B-EL)

i N(-[1n<V)+rT-%azzr—m<B)]J_ev N{—[ln(V)+rT+%azT—1n(B)]]

oT oT

Equation 3-23

Thus, the value of risky debt 1s the value of otherwise simuilar, default risk-free debt less
the present value of the expected loss, EL, given that the company defaults Bohn notes
that this expected loss term can be divided into two components The first term, the
expected loss on the debt 1n the case of no recovery, equals the face value of the debt, B,
multiplied by the nisk-neutral PD The second term represents the expected recovery n

the event of default

However, Bohn comments the main difficulty with the formulation 1s empirically
finding all the necessary inputs He proposes a simpler characterisation of default as a
binary option n which the lender incurs a loss of a fixed amount, L, when the borrower
defaults, where L 1s fixed as a percentage of face value, and nothing 1f the borrower
does not default The formulation for EL above can then be seen as the expected loss
with no recovery (z e risk-neutral PD times the face value of the debt) less the expected

recovery 1n the event of default

The expected payoff at maturity 1n a risk-neutral world 1s the sum of the payoff in the
case of no default times the probability of no default plus the payoff in the case of
default times the probability of default He calls the risk-neutral PD, Q, and derives the

following equation
F=Be " [1-0)1)+Q(1-L)]=Be™"[1-QL] = Equation 3-24

Bohn proposes an approach to calculating Q by adjusting the actual PD by the market
price of risk and a function of time The actual PD, p, that the value of the firm’s assets

will be less than the face value of debt at maturity 1s

In(B)-In(V)~ uT +1o°T

oT

p=N

Equation 3-25

The nisk-neutral PD 1s given by the same formula with the expected asset return, p,

replaced by the default nisk-free rate, r
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In(B)-1n(V)—rT +1c’T

oNT

0=N { Equation 3-26
Bohn proposes a factor-pricing framework to formulate a relationship between the
expected return on the firm’s assets and the overall expected return on the market

Using the Capital Asset Pricing Model to describe this relationship

e cov(rv,rm)/1
O-m
Equation 3-27
a=tn =l
o)

m

where 4, 1s the expected return on the market, o, 1s the volatility of market returns

and A 1s the overall market Sharpe ratio Substituting into the previous equation for p, a

formula for Q can be derived
Q=N(N_1 (p)+pl\/f) Equation 3-28

In this formulation, p 1s the correlation of the return on the firm’s assets, #,, with the
return on the market, r, Although suggesting the CAPM framework to describe the

concept, he proposes the use of a more sophisticated factor model to determine the

amount of variation 1n the return explained by the firm’s sensitivity to certain market

factors He suggests that the sensitivity parameter, p , be set equal to v R* , where R’

1s the coefficient of determination resulting from estimation of a suitable multi-factor

model

In this framework, the firm defaults with a probability, O, and 1n which case the firm
pays (1 - L)B or 1t does not default with a probability (1 - Q) and pays back B

F=e"" (B - LBQ) Equation 3-29

Hence, the term structure of credit spreads 1s then given by

R(T)-r=- ln(%@ Equation 3-30
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This valuation framework has been adopted by KMV. They use a 120-factor model in
their credit portfolio modelling product, Portfolio Manager, described in detail in
4.3.2.1 below.

3.3.2 The Reduced Form Approach

Structural models begin with an economic argument about why a firm defaults. In this
framework, default can never occur by surprise. As time to maturity goes to zero, credit
spreads also approach zero. However, in practice, non-zero credit spreads are
observable in the market regardless of maturity.

By comparison, in the reduced form framework, default is always an unpredictable
event governed by an intensity-hased or hazard-rate process according to Duffie and
Singleton (1998). Reduced form models eliminate the need for an economic explanation
of default, comments Bohn (2000, p54). According to Jarrow and van Deventer (1999),
the approach is ‘reduced form’, because the assumptions underlying the model are
imposed on the prices of the firm’s traded liabilities that can be deduced from the
structural models.

lovino (1999) characterised the difference between the structural and reduced form
approaches. She stated that both approaches attempted to model the time a firm defaults.
However, while the structural approach addressed the problem by “modelling the time a
firm defaults”, that is, attaching meaning to each of the underlined words, the reduced
form approach instead models the time afirm defaults, (pi 5)

Bohn (2000) formulates the value of a zero-coupon bond issued by a firm with one class
of equity as follows:

F =Be~rT{\-L Q(t*<T)) Equation 3-31

where, as previously, F is the market value of the zero-coupon debt, B is the face value
ofthe debt, L is the LGD expressed as a fraction of face value, r is the risk-free rate and
Tis the time to maturity.

He states that the difference between the structural characterisation and reduced form
characterisation of the model lies in the specification of Q. In the reduced form model,
Q indicates the risk-neutral probability the unpredictable event of default occurred at
time x*, which happened to precede the maturity of the debt. The time of default is
assumed to follow a stochastic process governed by its own distribution that must be
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parameterised by an intensity or hazard rate process. “The default or ‘stopping’ time is
inaccessible 1.8 itjumps out at you (from nowhere).” p.63

Jarrow and Turnbull (1995) developed one of the first reduced form models in which
they assumed a constant LGD and an exponentially distributed default-time. They
modelled risky bonds as foreign currency bonds denominated in “promised” dollars.
The exchange rate is 1 in the absence of default and (1-LGD) if default has occurred.
Default is a Poisson arrival. This assumption of constant default intensity is unrealistic,
however. For example, in reality, strong firms become weaker over time indicating the
necessity for time varying default intensity.

Jarrow, Lando and Turnbull (1997) addressed this weakness. They modelled default as
the first time a continuous-time Markov chain with K states hits the absorbing K-th
state. States 1to ATare associated with credit ratings where 1 is the strongest rating and
the K-th state is default. However, in order to implement such a model, one needs to
estimate an entire generator matrix to arrive at transition probabilities for each possible
change in state. As a first approximation, they suggest using historical rating agency
transition probability matrices,

Duffie and Singleton use reduced form models to value risky debt as if it were default
risk-free by replacing the usual short-term default risk-free rate with the default-
adjusted short-rate process. They show how to specify a reduced form model in the
context of popular default risk-free term structure models such as Heath, Jarrow and
Morton (1992):

{
F=EY ciheg
R=rt+htLt+ It

Equation 3-32

where rt is the default risk-free rate, htis the arrival intensity at time t (under Q) of a
Poisson process whose first jump occurs at default, Lt is the fractional LGD, and It is a

variable that is intended to capture liquidity effects. Credit spread data can be used to
imply the risk-neutral mean expected loss rate, htLT.

Duffie and Lando (1997) show how to formulate a structural model such that it can be
represented as a reduced form model in the Duffie and Singleton framework. They
begin with a diffusion process for the firm’s asset value and a default barrier that marks
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the asset value at which the firm defaults They then derive a formula for the hazard

rate, #,, 1n terms of the asset value volatility, the default barrier, and the conditional

distribution of asset value given the history of information available to investors The
mechanism creating the inaccessible default stopping time 1s imperfect accounting
information With imperfect accounting data, credit spreads remain bounded away from
zero even as maturity approaches zero Thus, this version of a structural model 1s recast

1n a reduced form framework

333 Assessment of the Different Modelling Approaches

Next, the success, or otherwise, of the structural and reduced form approaches to

evaluating credit risk 1s examined

3 3 3 1 Evaluating Structural Models

Jones, Mason and Rosenfeld (1983, 1984) found that contingent claims models
produced credit spreads which were sigmficantly lower than actual credit spreads They
concluded that they produced results which were no more accurate than those obtained
by discounting at the risk-free rate 1n the case of mvestment-grade debt The Contingent
Claims Analysis (CCA) model, they assert, 1s not an improvement over a naive, riskless
model for investment grade bonds However, the CCA model “does appear to have
incremental explanatory power over the naive model for non-investment-grade bonds ”

(1984, p624)

The naive model prices are obtained by discounting the promised cash flows at the risk-
free rate Based on a sign test, the CCA model outperforms the naive model for 139 of
the 176 mvestment-grade debt and for 117 of the 129 non-investment grade debt All
these results are significant at the 95% level However, for pricing, the results were less

impressive

62



Overall results Number Percentage Error Absolute Percentage Error
of bonds
CCA Model Naive Model |CCA Model Naive Model
Entire sample 305 Mean| 00452 00876 00845 01143
Standardl ;3 01441 00705 01240
Dewiation
Investment grade 176 Mean| 00047 00149 00587 00574
Standard) 77 00703 00432 00432
Deviation
Non-investment grade 129 Mean| 01005 01867 01197 01919
Standard) | 64 01590 00840 01528
Deviation

Table 3-1 Pricing comparisons CCA and Naiwve Models vs Market Prices

Table 3 of their paper, reproduced as Table 3-1 above, shows the difference between the
model price and market price expressed as a percentage of the market price The mean
pricing error for investment grade debt was small (0 47% of market value), but the mean
error of for sub-investment grade debt was large and positive (10 05%) Likewse,
fluctuations around the mean errors were large in both sub-samples — the standard
deviations were 7 27% and 10 63%, respectively, and the mean absolute errors were

5 87% and 11 97%, respectively

They surmise that the key assumptions which give nise to these negative conclusions
include constant asset volatility, the absolute prionity rule (APR), perfect asset liquidity
enabling firms to sell assets as necessary, Itd dynamics, the frequent requirement to
retire bonds via periodic sinking fund provisions, and a non-stochastic term structure
and suggest that “introducing stochastic interest rates, as well as taxes, would improve

the model’s performance ” Franks and Torous (1989) concurred with their findings

Sang and Warga (1989) estimated the term structure of credit spreads using a small
number of zero-coupon corporate bonds and zero-coupon treasury bonds They
demonstrated curve shapes consistent with contingent claiams model predictions,
namely, upward sloping for investment grade debt, humped shaped for lower grade
debt, and downward sloping for very low grade debt

Delianedis and Geske (1998) used the Black Scholes Merton framework to estimate
nisk-neutral probabilities of default They found that rating migrations and defaults are
detected months before in the equity markets, lending support to the modelling of

default as a diffusion process rather than as a Poisson event
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Fons (1987) used a risk-neutral model to examine low-grade bonds and concluded
either that there is systematic mispricing by investors of low-rated corporate bonds or
that the risk-neutral model he derived could not fully capture the market’s assessment of
the PD of those securities. In a 1994 article, Fons again found his risk-neutral model
seriously underestimated the spreads he obtained from fitting linear regressions through
data within different classes, but particularly investment grade bonds.

A fundamental assumption of the structural model is that APR, which requires that
senior claimants be paid in full before more junior claimants get anything, holds. This is
seldom the case in practice. Franks and Torous (1989) found that 21 out of 27
recapitalisations exhibited a violation of APR. In 21 of 30 cases examined by LoPucki
and Whitford (1990) in which the total value to be distributed was less than that due to
creditors, stockholders received value, averaging 5.6% of the total value of all
distributions. Garbade (2001, pl04) concludes that “[violation of the absolute priority
rule does not come as a surprise to market participants” and that “[s]enior debt is not
priced on the assumption that it will be paid in full before subordinated creditors and
stockholders get anything.”

The structural model assumes that bankruptcy is instantaneous and costless. In practice,
it is neither. Warner (1977) found that bankruptcy costs for eleven large railroads
averaged 5.3%, ranging between 1.7% and 9.1%. Altman (1984) found bankruptcy
costs averaged 6.0% of the debtor’s value for a sample of seven industrial firms and
twelve retailers.

While acknowledging the APR violation and bankruptcy cost issues, Garbade (2001)
suggests that the problem is deeper, as the CCA methodology demands that an analyst
recognise not only the existing operating characteristics, capital structure, and
contractual obligations of the firm but also the prospect of change attributable to
managerial discretion and decision making. (p387) He concludes: “The challenge is to
extend the analytical framework to include the role of discretion in the exercise of
implicit management options.” (p387)

Structural models have been used to value callable debt, with mixed results. Some of
the pricing errors can be attributed to a failure to allow for fluctuations in yields on
default-proof fixed income securities, Garbade suggests (2001, pi 14). Vu (1986) found
evidence of ‘unexpectedly late’ redemption of callable bonds that he suggested might be
optimal because of the costs associated with calling and refinancing. Likewise, he found
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evidence of ‘unexpectedly early’ redemption conjecturing that firms chose to do so 1n
order to eliminate restrictive covenants Asquith and Wizman (1990) found that firms
commonly called bonds for early redemption to eliminate restrictive covenants that
would otherwise impede a planned buyout However, this type of ‘event risk’ associated
with apparently suboptimal calling of debt cannot be modelled correctly in the structural

framework

Ingersoll (1977a) and Brennan and Schwartz (1977, 1980) were among the first to
analyse the contingent value of convertible debt However, their models failed to
explain corporate behaviour satisfactonly It was Ingersoll (1977b, 463) himself who
pointed out that, compared to the conversion behaviour suggested by his structural form
model, companies commonly waited “too long” to call their convertible debt Jaffee and
Shleifer (1990) suggested that taking proper account of the notice period between
announcement of a call and actual redemption could rectify the most egregious failings

of the Ingersoll model

Kim, Ramaswamy and Sundaresan (1993) valued coupon-paying debt using the Cox,
Ingersoll and Ross (1985) interest rate model and an exogenously defined recovery rate
They conclude that their approach 1s plausible as 1t generates yield spreads on corporate
bonds consistent with those observed m the marketplace They further conclude that
stochastic 1nterest rates seem to play an important role in determiming the yield
differentials between a callable corporate bond and an equivalent government bond

“due to the 1nteractions between call provisions and default risk” (p127)

Jarrow and van Deventer (1999) cnticise the implicit assumptions embedded 1n the
structural approach regarding corporate capital structure policy The st;uctural
approach, they claim, assumes that the corporate capital structure policy 1s static, with
the liability structure fixed and unchanging This assumes that management puts a debt
structure 1 place and leaves 1t unchanged even 1f the value of corporate assets has
doubled, they note “This 1s too simplistic to realistically capture management

behaviour and the dynamics of bankruptcy ” (p302)

Conventional wisdom has 1t that structural models provide good nsights into the cause
of default but fail the test of providing good models for valuation However, Bohn
(2000} suggests that small sample sizes, doubts about the quality of bond pricing data,

and the lack of focus on the appropriate default rnisk-free rate leave us without
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conclusive evidence regarding the power of structural models “The resolution of these

empirical 1ssues awaits further research ”, Bohn comments (p66)

Gemmull (2002) examined the credit spreads on zero-dividend preference shares (ZDP)
1ssued by split-capital trusts in the U K He confirms that two of the biases consistently
reported are present in his analysis, namely, that model credit spreads are too small for
bonds that are near maturity and also for compames with low leverage and volatility
His study once again casts doubt on the appropniateness of the Merton model that
assumes the assets follow geometric Browman motion and, hence, that the spread
should reduce to zero as time to maturity and/or volatility goes to zero It 1s clear the

market has not excluded the possibility of a jump 1n asset value

However, of greater significance 1s Gemmull’s finding that market and model spreads
are of similar magmtude and, in line with market practice, the Merton model

consistently produces an upward-sloping term-structure (pl)

The standard Merton model suggests a downward-sloping term structure of credit
spreads for nsky bonds as shown in Figure 3 2 above whereas the observed term
structures 1n the market are invariably rising Gemmill comments “The solution to this
conundrum appears to be that the leverage of the compames changes over time, being
higher when bonds are issued than when they mature ” (p3) The Gemmill model allows
for this leverage effect and leads to model term structures of credit nisk which are
upward-sloping, as empirically observed (p3) He notes his results reinforce the
conclusion of Collin-Dufresne and Goldstein (2001) “that 1t 1s important to take account
of the expected trajectory of leverage when computing credit spreads ” (p3) He suggests
that firms have a target leverage ratio which they try to maintain by 1ssuing or retiring
debt (p4)

3 3 3 2 Evaluating Reduced Form Models

Many reduced form models are parameterised on rating agency ratings and transition
data Kealhofer et a/ (1998) take 1ssue with the rating agency approach to grading
securities 1n discrete rating classes In particular they reject the notion that all assets
within the rating grade have a single default rate, and the default rate 1s equal to the

historical average default rate (p40)

They assert that even when all loans within a grade have the same default rate, the

histonical average default rate can dewviate significantly from the actual default rate
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Similarly, they state that the historical transition probabilities can deviate significantly

from the actual transition probabilities

There are substantial differences of default rate within bond rating grade, with some
bonds 1n a higher grade having greater default rates than some bonds 1n a lower grade,
indicating an overlap 1n default probability ranges The overlap, they suggest, appears to

be caused by lack of timeliness in upgrade and downgrade decisions

They claim the range of default rates within a rating grade can cause the mean default
rate to significantly exceed the median default rate within a grade They suggest the
mean may be almost twice as large as the median, and as many as 75% of the borrowers

within a rating grade may have default rates that are less than the mean

They also state that historical default rates are statistics for the mean default rate, and
thus may be biased upwards by as much as double from the typical default rate within

the grade

They claim that the lack of timeliness in rating changes causes a significant bias 1n
transition probabilities In consequence, the “probability of remaining at the same
quality 1s overstated by about double for most grades, whereas the probabilities for

changing to other non-default grades are significantly understated ” (p40)

They also take 1ssue with the assumption that ratings and default rates are synonymous
They find that the highest EDF within a given grade 1s in excess of four times the lowest
whereas the ratio of mean EDFs from one grade to the next is approximately two to one
They conclude that grades overlap significantly They further conclude that the equity
markets are faster than the rating agencies 1n reflecting information on the condition of
firms Thus 1s borne out by their research, which concludes that “about 70% of apparent

spread vanation is actually due to EDF variation within a rating grade over time ” (p50)

Using non-overlapping ranges of default probabilities, they calculate the one-year

transition matrix for 6,000 publicly rated U S firms reproduced in Table 3-2
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Rating at Year-end

Imtial
Rating] AAA  AA A BBB BB B CCC  Default
AAA] 6626% 2222% T737% 245% 086% 067% 014% 002%
AA] 2166% 4304% 2583% 656% 199% 068% 020% 004%
Al 276% 2034% 4419% 2294% 742% 197% 028% 010%
BBB] 030% 280% 2263% 4254% 2352% 695% 100% 026%
BB] 008% 024% 369% 2293% 4441% 2453% 341% 071%
B} 001% 005% 039% 348% 2047% 5300% 2058% 201%
CCCl 000% 001% 009% 026% 179% 1777% 6994% 1013%

The corresponding table, drawn from Standard & Poor’s CreditWeek, April 15, 1996,

Table 3-2 Imphed KMV Transition Matrix

and reproduced 1n Table 3-3, notes the transition of rated firms

Rating at Year-end

Imtial
Rating] AAA  AA A BBB BB B CCC Default
AAA| 9081% 833% 068% 006% 012% 000% 000% 000%
AAl 070% 9065% 779% 064% 006% 014% 002% 000%
Al 009% 227% 9105% 552% 074% 026% 001% 006%
BBB| 002% 033% 595% 8693% 530% 117% 012% 018%
BB| 003% 014% 067% 773% 8053% 884% 100% 106%
Bl 000% 011% 024% 043% 648% 8346% 407% 520%
CCC| 022% 000% 022% 130% 238% 1124% 6486% 1979%

Table 3-3 S&P Transition Matrix

The probability of staying in an S&P grade 1s approximately 90% for most ratings,
which 1s about twice that recorded by KMV Furthermore, the default probability for the
lower S&P grades 1s about twice that in the KMV matnix

In sum, they conclude that ratings-based probabilities will tend to overstate the nsk for
maturities near to the measurement horzon, due to the overstated default rate, but will
tend to understate the nisk for longer matunties, due to the overstated probability of

credit quality remaining the same (p53)

Duffee (1996) used monthly prices from 1985 to 1994 for the corporate bonds 1n the
Lehman Brothers Bond indexes and the Jarrow, Lando and Turnbull model He finds

strong evidence of mus-specification as the model fails to produce the term structures of
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credit spreads most commonly experienced in the market Although the model fits
mvestment-grade corporate bond prices reasonably well, he concludes that single-factor
models of instantaneous default probabilities “face a substantial challenge in matching

the dynamic behaviour of corporate bond term structures” (p 26)

As discussed above, the structural model 1s often cnticised for producing a declhining
term structure for low-grade bonds A simular criticism can be levelled at reduced form
models such as that of Jarrow, Lando and Turnbull (1995) and Markov-chain models
which rely on rating agency transition matrices If a low-grade firm does not default in

the first year, its annual default probability declines m subsequent years

3.4 Portfolio Risk

All research 1n the area of portfolio theory invanably begins with references to the work
of Markowitz (1952, 1959) His work attempts to characterise the interaction of a
portfolio of equities and proceeds to calculate the efficient portfolio, that combination of

available equities which maximises the mean-variance trade-off

Markowitz assumes that equity returns are normally distributed and that investors’
utility functions are quadratic At the end of an investment period, an investor’s

portfolio has a value W =W, (l +?p) Using Taylor’s theorem, the utility derived from

that portfolio 18 given by

Ul )=U{EF +(r, - EG Ju'+4(, -£F, fU'+  Equation 3-33

P p

Taking the expectation of this expression and assuming third- and higher-order terms

are of minor importance, Markowitz get the expression
ElvF )=U(eF )+iv(F Ju"EF,) Equation3-34

where V(?;) 1s the vanance of the rate of return Under these assumptions, the

investor’s utility 1s a function only of the mean and vanance of the rate of return on the

portfolio

The exclusive focus on the mean and the vanance of returns 1s inapproprate 1n a credit
context for two reasons (1) Credit returns are far from normal, with limited upside
potential — the highest price that can be achieved 1s a risk-free price that will never be

much higher than par - whereas the mimimum price 1s zero (1) Credit portfoltos are
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mnvariably leveraged Thus, the focus cannot solely rest on the standard deviation The
downside tail 1s of critical importance as the institution that holds the portfolio becomes
insolvent when losses exceed 1ts capital This 1s not a concern for equity portfolios that

are mostly unlevered

Thus, credit portfolio research has had to adapt traditional equity portfolio concepts
quite sigmficantly to make them applicable to the 1ssues they face

341 Credit Portfolio Risk

When the asset return distributions for two firms, », and r;are normally distributed
with an 1nstantaneous correlation coefficient of p between their returns, then their joint

returns will be described by the bivariate normal distribution

T—)_l 5 (r} -2 Ar3+r§)
S (rAarBap)=; {21_" " } Equation 3-35

2MIY1- p? ‘

The bivariate normal distribution can be used to calculate the joint probability of both

borrowers defaulting over a period

Pr(Def,, Def, )=Pr(V, <V, Vs <V )=Prlr, <df,r, <d?)=N,(~d{,d?, p)
Equation 3-36

where d,' and d, are the distances to default for 4 and B, respectively

The probability of joint default 1s, therefore, the volume under the cumulative standard

bivanate normal distribution

3411 The Normal Inverse Distribution

Vasicek (1997b) explored the situation in which a portfolio of debt secunities 1s financed
by equity and notes He developed a methodology for determining the capital necessary
to support the desired rating of a lender’s notes The credit quality of the lender’s notes
will depend on the probability that the loss on the portfolio exceeds the equity capatal,
he suggests The equity capital allocated to the portfolio “must be equal to the ordinate
of the distribution of the portfolio loss that corresponds to the desired probability ” (p1)

He also examined the probability distnibution of portfolio losses He assumed that the

portfolio consisted of » loans of equal dollar amounts, the PD of any one loan 1s p, the
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asset returns of the borrowing companies are correlated with a coefficient p for any two

companies, and all loans had the same term, T
He defines a default indicator L, to be one 1if the :-th borrower defaults and zero

otherwise Thus, the variable L, 1s the gross loss (before recoveries) on the :-th loan and

PlL,=1]=p

Equation 3-37
P[L, =0]=1-p
and the expected value and variance of the loan loss 1s

EL =p

4

Equation 3-38
var(L,)=p(1- p)

1 n
He defines L:—ZL, to be the portfolio percentage gross loss and he proceeds to
n =1
calculate the probabulity distribution of Z, that s, the probabilities
P, =P[L - % ] k=01, ,n Equation 3-39
Assuming that all borrowers’ assets follow the process
dA, =p, A dt+o Adx, Equation 3-40

where x, are correlated joint Wiener processes with correlation p

E (dx, )2 =dt

Equation 3-41
E(dx, dx, )= pdt,i % ananon

The PD 15

p=PlL, =1]=P4,(r)<F]= Plx, <c,]=N{ln(F’)_ln(A'(O))“/‘:T‘*%O'ZT]

o AT
Equation 3-42

where A4, 1s the value of the i-th borrower’s assets, F, 1s the value of obligations

payable, and X, 1s defined as

 _&)-x0)

=————"—=  Equation 3-43

‘ NT
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The vanables X, are jontly normal with equal pairwise correlations p and he

represents them as

X,=pY +1- pZ Equation 3-44

where Y,Z,,Z,, Z, are mutually independent standard normal variables He
interprets the Y variable as a common factor, such as the state of the economy, over the

interval (0,7), the term \/; Y as the company exposure to the common factor (the

systematic nisk) and the term /1 — p Z, as the company-specific risk

Conditional on Y, the vanables L, are independent equally distributed zero-one

variables with the conditional probability

p(r)=PlL, =17 ]=Plx, <d¥]=P 2, <

\/ll__p(c—\/EY]Y}N{ 11_p(c—\/EY)]

Equation 3-45

He calculates the portfolio loss distribution as

P, :P[Lz-ﬂ=(;j ]‘o(p(Y))k (- p(t)y*aN(¥)  Equation 3-46

—a0

which can be evaluated numerically

He then proceeds to examine the behaviour of this integral as the number of loans 1n the
portfolio increases Because the defaults are not independent, the conditions of the
central limit theorem are not satisfied, he argues, and L 1s not asymptotically normal It
turns out, he notes, that the distribution of the portfolio loss does converge to a limiting

form, which “can be then conveniently used for large portfolios instead of the integral
form ” (p5)

He calls the cumulative distribution function

Olx, », p):N{ﬁ( 1-pN7'(x)-N"" (p))} Equation 3-47

the normal inverse distribution, being the distribution of the variable
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L=N Equation 3-48
VP

where X is a standard normal distribution. He derives the density function for this

distribution as

Q'(x;p,p)=p -~ € X 2% | 2ptir(x)} -2 ~ N - 1)N-I(p)+{N-'(p)f]

Equation 3-49

The mean of the distribution isp and the variance is N2(n ~1(p\ N~I(p\p)-p 2 while
the a -percentile value of L is

La=Q~(a;p,p)=Q(a;1- p,1- p)  Equation 3-50

“The normal inverse distribution is highly skewed and leptokurtic.” (p8) This is
observed in Figure 3.6 below in which the loan loss distribution is plotted for a range of
asset correlation values:

Figure 3.6 Normal Inverse Loan Loss Distribution for Varying Asset Correlation

This family of distributions varies between two extremes: a normal distribution centred
on the loan loss probability when the asset correlation is zero, and a binomial
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distribution exhibiting 0% loss with a probability (7 — p) and 100% loss with a
probability p

This, albeit simplistic, characterisation of the loan loss distribution points to the

challenge of modelling loan loss portfolios and, consequently, the valuation of

derivative products such as CDOs The number of standard deviations from the mean,

L,-p
s

portfolio PD of 1% 1s shown 1n Table 3-4 below

, for combinations of asset correlation and o -percentile for a portfolio with a

Alpha-percentile

10% 1% 01% 001%

01 119 382 701 10 67

Asset 02 097 422 877 1419
Correlation 03] 075 441 10 04 16 61
04f 0535 451 11 04 18 19

Normal| 128 233 309 372

Table 3-4 Standard Deviations Corresponding to Percentiles of the Inverse

Normal PD=1%

However, this situation 1s further exacerbated 1f there 1s low default probability Table
3-5 shows the corresponding table where the borrower default probability 1s 10bp,
typical of an investment-grade portfolio It shows that an institution with a portfolio of
loans with average asset correlation of 40% will have to hold capital equal to 13

standard deviations if 1t wishes to secure a AA4- rating — a PD of 10bp - for itself

Alpha-percentile

10% 1% 01% 001%

01] 0098 409 883 1537

Asset 02 060 410 1116 22 39
Correlation 03] 031 375 12 45 2765
04 012 325 1318 3176

Normal] 128 233 309 372

Table 3-5 Standard Deviations Corresponding to Percentiles of the Inverse

Normal PD=01%
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3412 Conditional Approaches to Credit Portfolio Loss Distributions

Finger (1999) addressed the 1ssue of credit portfolio loss distributions conditioned on
the outcome of a market varniable His interest in the issue stemmed from the slow
convergence exhibited by Monte Carlo simulation of credit portfolios He noted that
rellance on Monte Carlo simulation was unnecessary once account was taken of the
assumed correlation structure “[O]nce we condition on the industry factors that drive

the model, all defaults and rating changes are independent ” (p14)

He adopted the same approach as Vasicek (1997b) outlined 1n 34 1 1 above whereby

each normalised asset value change can be expressed as
Z =wZ+J1-w’s, Equation 3-51
and each obligor has the same default probability, p, and default threshold, o , where

a=0"(p) Equation 3-52

and all obligors have the same pairwise asset correlation, w’

Once the market factor, Z,
1s fixed, he notes, everything else that happens to the obligors 1s independent, the
obhigors are conditionally independent given Z (p15) The conditional independence, he
contends, proves crucial, as 1t transforms the complex problem of aggregating correlated
exposures into the well understood problem of convolution, or the aggregation of

independent exposures

Conditioned on Z, an obligor defaults 1f

o —wZ
£ <

I N1—w?

and since ¢,1s a standard normal deviate, the PD conditioned on Z 1s

Equation 3-53

p(Z )< CD( o sz J Equation 3-54
l-w

He deduces that the portfolio variance is

p—(Dz(a,a,w2)

[CD ) (a,a,w2 )— p’ ]+ Equation 3-55
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where the first term 1s the same as Vasicek’s and the last term 1s due to 1diosyncratic

variance which 1s not perfectly diversified due to the finite number of obligors

He derives the portfolio distribution as

Pr[V < v]= Tqﬁ(z)CD v p(c) 4 Equation 3-56
A /pizil—pizii
N

While this does not have an analytical solution, a numerical solution can be found
substantially more quickly than would the Monte Carlo solution He notes that “the real
dimensionality of the  problem 1s not the number of obligors, but the number of
market factors” (p33) and suggests that employing this approach will enable the same

accuracy as standard Monte Carlo be achieved 1n a fraction of the time

3 4 1 3 Other Credit Portfolio Models

Koyluoglu and Hickman (1998) showed that despite the apparent differences in
approach adopted by the mam models used in the marketplace — CreditMetrics, Credit
Suisse Financial Products’ CreditRisk+, McKinsey’s CreditPortfolioView and KMV’s
Portfolio Manager — the models “in fact represent a remarkable consensus in the
underlying framework, differing primarily in calculation procedures and parameters

rather than financial intuition ” (p29)

All the models, they suggest, fit within a general framework consisting of three

components (p32)

Jomt default behaviour portfolio correlation 1s reflected by borrowers’ conditional

default rates varying together 1n different states

Conditional distribution of portfolio default rate for a given ‘state of the world’, the

conditional distribution can be calculated, they note, as if borrowers are independent
because the joint default behaviour 1s accounted for in generating conditional default

rates

Convolution/Aggregation They comment that the unconditional distnbution of

portfolio defaults 1s obtained by combining conditional default rate distributions in each

State
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They decompose the change in asset value into a set of normally distributed orthogonal

systemic factors, x,, and a normally distributed 1d1osyncratic component, ¢,

AA =b,x,+b,x,+ + }I—Zb,zkel Equation 3-57
k

where b, , are the factor loadings, and x, and ¢, are~11d N[0,1]

For a given set of values for the systemic factors, the portfolio default rate can be

expressed as

C—Zb,kxk

k

b =0 ——— Equation 3-58
J 1 - bezk
V %

where ¢ 1s the threshold value of the standard normal variable at which default occurs

For a homogeneous portfolio, they summarise the systemic factors by a single variable,

m, simplifying the expression for the portfolio default rate to

J1-p

where m ~N[0,1]and p =Y b; 1s the asset correlation
k

7. =<I)Fi—pﬁ} Equation 3-59

They proceed to denive the probability density function for the default rate, f ( r)

\/E(p{c_ 1:/%(1)_1 (v)

Jp o0 (p))

For a homogeneous portfolio of loans with a PD of 1 16%, c=® " [1 16%] =-227, the

f(p)=

Equation 3-60

probability distribution of the default rate 1s plotted in Figure 3 7
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Portfolio Default Probability Density Function

p=1.16%
Asset Correlation=0.073

Portfolio Default Rate

Figure 3.7 Probability Distribution of Portfolio Default Rate

The unconditional probability distribution of portfolio defaults is obtained by
combining the conditional distributions across all ‘states of the world’. While they point
out the similarities in approach to developing the unconditional default probability, they
identify differences in the way joint default behaviour is modelled. Whereas the
Merton-based models of CreditMetrics and KMV use pairwise asset correlation, the
actuarial model employed by CreditRisk+ uses sector weightings and default rate
volatilities. They emphasise, however, that despite the parameter differences, “they
contain equivalent information to characterise default behaviour.” (p35)

They present the generalised framework reproduced as Figure 3.8 below. While their
comments are specifically directed at CreditMetrics, they suggest they apply
‘reasonably well to Portfolio Manager’ also:
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CreditMetrics CreditPortfohoView CreditRusk+

Distribution of systemic factors (normal) Default rate
Joint-default distribution
Behaviour (gamma)
Conditional Default Rate
Merton Model Macroeconomic
Regression
Conditional Porsson
Default Binomuial Distribution
Distribution
Distribution
Convolution/ Numeric
Monte Carlo simulation
Aggregation Algorithm

Figure 3 8 Framework for Comparing Credit Portfolio Models

They conclude “Any significant model differences can  be attributed to parameter
value estimates that have inconsistent implications for the observable default rate

behaviour ” (p35)

3.5 Modelling Correlation

Duffie and Singleton (2003, p230), summanise the most popular approaches to

modelling correlated defaults

CreditMetrics, they characterise as a method by which ratings transitions for multiple
entities can be simulated with the correlation induced by underlying correlated drivers,

such as asset returns

Doubly stochastic correlated default-intensity processes 1s, they state, an approach to
modelling multi-entity default risk 1n which “correlation 1s captured through correlated

changes 1n the default intensities of the entities ”

Copulas, they describe as devices that allow entity-by-entity default models “to be

linked with auxiliary correlating variables

Intensity-based models of default with joint credit events can, they suggest, cause
multiple 1ssuers to default simultaneously “The simplest example 1s the multivariate

exponential model of default times, which has constant default intensities ”
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351 The CreditMetrics Approach

CreditMetrics uses the counterparty’s asset returns, X, as the dniving vanable Each
counterparty’s asset returns are assumed to be normally distributed, and the asset returns
for multiple counterparties, X,,X,, ,X, are assumed to be multivariate normally
distributed, with a covariance matrix, £ The Cholesky decomposition of £ 1s C such
that CC" =X By simulating independent standard normal variables, Z.,zZ, ,Z the
drivers with the appropriate means and covanances can be simulated by letting

X =E(X)+C,Z,+C,Z,+ +C,Z,

CreditMetrics suggest that the necessary covariance information can be obtained from
the volatilities and correlations of equity returns for the » firms 1n the case of publicly
traded firms Duffie and Singleton (2003, p232), suggest that one could also “take the
dnivers to be the KMV measures of distance fo default, firm by firm, which 1s more
1n the spint of the asset-return foundation of the CreditMetrics model ” They add that
time series data on distances to default for pairs of firms could be used to estimate the

covariance matrix

Lando (1998) considered correlation within the framework of finite-state continuous-

time Markov chains for each entity’s rating However, the approach proves to be rather

intractable because the state space 1s #° where there are b borrowers and # rating states

352 Copula-Based Correlation Modelling

It was L1 (2000) who first applied the copula-based approach to simulating correlated
defaults He began by letting T represent a security’s time-until-default, and F (t)

denote the distributiop function of 7,
F()=Pr(T <1), 120 Equation 3-61

He defines the probability density function

fe)=F '(t)=£4ligl Prls < TA< t+4)] Equation 3-62
and he defines
q. =Pr[T -x<1|T> x] Equation 3-63
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as the marginal probability of default in the next year conditional on survival until the

beginning of the year “A credit curve i1s then simply defined as the sequence of

90,.9,» -9, Indiscrete models ” (p43)

Next, he introduces the hazard rate function, h(x), as the instantaneous default

probability for a security that has attained age x

F(x+Ax)—F(x)
1-F(x)

Prlx<T <x+ AT > x]=

Equation 3-64

where

Equation 3-66
so that
f()=S(@)A(t) Equation 3-67

L1 points out that 1f the typical assumption of a constant hazard rate 1s made, the density

function 1s
flt)=he™ Equation 3-68

He states “Modelling a default process 1s equivalent to modelling a hazard function ”
(p47) He also notes “[T]here are a lot of similarities between the hazard rate function
and the short rate Many modelling techmques for the short rate processes can be readily
borrowed to model the hazard rate ” (p48) Indeed this 1s exactly how much credit risk
modelling has progressed over the past ten years, and the hazard rate function 1s called

the credit curve because of its similarity to a yield curve

He proceeds to define the joint distributional function for two entities, 4 and B, as
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F(s,t)=Pr[TA <s,T, St] Equation 3-69
and defines the survival time correlation as

_ Cov(1,,1,) _E(T,T,)-E(T,)E(T,) uation 3-
pAB—\/Var(TA)Var(TB)_ \/Var(TA)Var(TB) Fauaton 379

He suggests three methods could be used to extract the term structure of default rates
(1) using historical default information from rating agencies, (1) applying the Merton
option theoretical approach, and (11) taking an implied approach using market prices of

defaultable bonds or asset swap spreads

The last approach 1s the “one used by most credit derivative desks ” (p53) L1 (1998),
demonstrated how to build the credit curve for individual credits from market
information based on the Duffie and Singleton (1996) default treatment The challenge,
he says, 1s to create “a joint distribution function with given marginal distributions and a
correlation structure ” (p9) While 1t 1s straightforward to derive the marginal
distnibutions and the correlation structure if the joint distribution 1s known, creating a
joint distribution from a given set of margmals and a correlation structure, he
comments, 1s rather more difficult The copula function 1s the mechanism he chooses to

accomplish this

A copula function links univariate marginal distributions with a joint distribution For

given univariate margmnal distribution functions, F(x, ), F,(x,), ,F,(x, ), the function
C (F1 (Jc1 ), F, ()c2 ), ,F, (xm ))=F (x1 1 Xys 5 X, ) Equation 3-71

which 1s defined using a copula function, C, results 1n a multivariate distribution with

univariate marginal distnbutions, £, (x, ), F,(x,), ,F,(x,)

m

Sklar (1959) proved the converse He showed that any multivanate distribution, F,

could be written in the form of a copula function He proved that 1f F (x1 2 X5, ,xm) 1sa
joint multivariate distribution function with umvariate marginal distnibution functions

F (Jc1 ), F, (x2 ), F, (xm ), then there exists a copula function C(u1 JUy, ,um) such that

Flx,x, x,)=C(E{x)F() .F(x)  Equation3-72

m

If each F, 1s continuous then C 1s unique

82



L1 showed that the copula function embedded 1n CreditMetrics 1s the bivariate normal
Clu,v)=0, ((D Tu), @' (v), p) Equation 3-73

where p 1s defined as the correlation between the default times of # and v For

example, 1if the one-year default probabilities for two credits, 4 and B, are g, and gq,,
respectively, the default thresholds are given by
q,=P1[Z2<27,]
Equation 3-74
q,=P1lZ <Z,]
where Z 1s a standard normal random variable If p 1s the asset correlation, the joint

default probability for credit 4 and B 1s

Z4Zg

Prlz<z,2<2,]= | [#lx.y

—oo—a0

p)dx dy=0,(Z,,Z,, p)  Equation 3-75

This 1s graphed in Figure 3 9 for an asset correlation of 0 3 This probability 1s most
easily visualised as the volume under the surface in Figure 3 10 in the bottom left hand

corner below the specified y-value and to the left of the specified x-value

He comments that CreditMetrics uses a bivaniate normal copula function with the asset
correlation as the correlation parameter in the copula function Thus, to generate
survival times of two credit risks, a bivariate normal copula function 1s used with a

correlation parameter equal to the CreditMetrics asset correlation (pl3)
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Bivariate Normal Distribution

Figure 3.9 Bivariate Normal Distribution

Figure 3.10 Bivariate Normal Distribution - Plan View

He further notes: “Conveniently, the marginal distribution of any subset of an n
dimensional normal distribution is still a normal distribution. Using asset correlations,
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we can construct high dimensional normal copula functions to model the credit portfolio

of any size ” (p13) This has become the standard modelling methodology in the market

O’Kane et a/ (2003) comment that although both the structural and the reduced form
approaches can 1n principle be extended to the multivariate case, structural models
calibrated to market-implied default probabilities (often called ‘hybrid’ models) have
gamed favour among practitioners because of their tractability in high dimensions
“Hybrid models  use the dependence among asset returns to generate joint defaults,

therefore avoiding the need for a direct estimation of joint default probabilities ” (p34)

These hybrid models are Monte Carlo models which generate default paths, where each
path 1s a list of default times for each of the credits in the reference portfolio drawn at
random from the jomnt default distribution Once the time and 1dentity of each default

event 1s known, any credit portfolio product may be valued

The choice of copula 1s non-trivial as pointed out by Marshal and Naldi1 (2002) They
demonstrate that the Gaussian copula 1s unable to explain the extreme co-movements
that are observed in the market The assumption of normality of asset retuns, however,
“1s certainly not mnocuous, since a multivariate normal distribution does not allow for
extreme joint events to happen with the frequency that the data suggests ” (p41) The
multivanate normal distribution exhibats a tail dependence of zero for all correlations
less than 1 They propose instead a ¢ copula that they suggest 1s consistent with asset
returns being multivariate ¢ distributed Their analysis suggests nine as the maximum
likelihood degrees of freedom They demonstrate that the impact on a first-to-default
credit derivative 1s to reduce the price by between 5% and 10% compared to the
Gaussian copula However, the impact farther out in the tail 1s quite dramatic they
calculate that second-to-default protection will be under-estimated by as much as 58%

by using a Gaussian copula

While the copula-based approach to credit correlation modelling has become the market
standard for portfolios of debt extended to firms for which there 1s a liquid CDS market,
the approach has limited applicability to the vast majonty of firms 1n order to obtain
risk-neutral probabilities of default for a particular company, a precise yield curve
specific to Company X debt (or a precise yield curve for debt of other companies that
are deemed to be of similar credit nisk) 1s required “Thus 1t will be difficult to apply
reduced form models to middle market companies or 1lliquid markets ” Smithson (2003,

p215) concludes
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3.6 Pricing Credit Risk

Merton’s version of the structural approach automatically prices credit risk but 1t
assumes that LGD 1s endogenous Other varations on this approach assume that default
probability only 1s determined by the asset value process and that recovery is
exogenously specified thereby taking account of the fact that the absolute priority rule 1s

frequently violated 1n practice

Smithson (2003, p209), suggests a ‘family tree’ of models for pricing default-risky

claims as shown m Figure 3 11

No Arbitrage/Contingent Claims Analysis
Black and Scholes (1973), Merton (1973)

1st Generation Structural Models 1st Generation Reduced Form Models
Merton (1974) Jarrow and Tumbuli (1995)
2nd Generation Structural Models 2nd Generation Reduced Form Models
Longstaff and Schwartz (1995) Duffie and Singleton(1994)
Madan and Unal (1996)
Das and Tufano (1996)

Figure 3 11 A Famuly Tree of Pricing Models for Default-Risky Claims (after

Smuthson)

Smithson remarks that at the risk of oversimplifying, credit denivatives and traditional

denivatives can all be valued as the present value of their risk-adjusted expected future
/

cash flows He qualifies this remark, however “The bad news 1s that credit models are

much more difficult to implement ” He lists three separate areas that cause difficulty

Default defimtion “Default 1s an imprecise concept subject to various legal and

economic definitions ” (p209) He adds that a pricing model will necessarily have to
simplify the economics of default or very carefully define the precise conditions being
modelled

LGD Pricing models for credit must address the uncertainty in LGD or assume that loss

given default 1s known, he comments

Data on which to parameterise models Data on credit losses are “notoriously limited”

and credit spread data are available only for the largest and most liquid markets, he

opines (p209)
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361 Pricing Credit Derivatives

This imprecision regarding default defimtion 1s evident 1n the lack of standardisation as
regards credit events 1n credit derivative documentation Despite the improvements 1n
the 2003 ISDA master agreement over 1ts 1999 predecessor, the market remains split
between an US and a non-US standard In the U S, the market has adopted the
Modified Restructuring (Mod-Re) standard while the European market has adopted the
Modified-Modified Restructuring (Mod-Mod-re) convention While Duffie (1999)
comments that credit default swaps mvolve some risk of disagreement about whether
the event has, 1n fact, occurred, in his discussion of valuing the credit swap, he 1gnores

1ssues surrounding documentation and enforceability

Structural models are seldom used to price credit default swaps instead, structural
models are generally used to say at what spread corporate bonds should trade based on
the internal structure of the company, according to O’Kane ef al (2003, p5) They state
that they require information about the balance sheet of the company and can be used to
establish a link between pricing in the equity and debt markets They add that they are
limited 1n a number of ways including the fact that they generally lack the flexibility to
fit exactly a given term structure of spreads, and “they cannot be easily extended to

price complex credit derivatives ” (p5)

The reduced form approach of Jarrow and Turnbull (1995) 1s the basis for what has
become the market standard method of valuing CDS They charactense a credit event as
the first event of a Poisson counting process that occurs at time ¢ with a probability

defined as
Pr[z'<t + dt|r>t]=l(t)dt Equation 3-76

Thus, the probability of defaulting in the time interval [t,t + dt] conditional on
surviving to time ¢ 1s proportional to /I(t), which they call the hazard rate and the length

of the time nterval, d¢ Thus, the survival probability 1s

—].l(s)ds]

0(0,7)=E? e[ ’ Equation 3-77
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where the expectation is taken under the risk-neutral measure, Q. The standard market
assumption is that the hazard rate process is deterministic, and, therefore, independent
of interest rates and recovery rates.

In this framework, the spread is set so that the present values of the premium and
protection legs of the CDS contract are equal. If the hazard rate and risk-free rate term
structures are flat, and R is the recovery rate, the present value of the protection leg is:

Equation 3-78

If the spread, S, on the premium leg is paid continuously, the present value of the
premium leg is:

Equation 3-79

Setting the value of the premium leg equal to that of the protection leg, the value of the
spread is extracted:

S=A(l-R)  Equation 3-80
and the risky PV01, or RPVOL as it is known in the market, is:

Equation 3-81

In reality, the interest rate and hazard rate term structures are not flat and it becomes
necessary to build a full term structure using bootstrapping techniques.

Duffie (1999) remarks that the term ‘swap’ applies to credit swaps because they can be
viewed under certain ideal conditions as a swap of a default-free note for a defaultable
floating-rate note. He proceeds to calculate the at-market annuity premium rate for
which the market value of the credit swap is zero at the outset.

3.0 Measuring Probability of Default

There are numerous approaches to the measurement of PD in use in the marketplace.
These range from the multivariate approach pioneered by Altman thirty years ago to
neural networks. For our purposes, it suffices to examine in greater detail the two
methodologies which are most widely used in the market and which are also
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representative of the two approaches which underpin the models which will be
compared later in this thesis The KMV approach 1s the most widely used default
probability measure commercially available while the Moody’s rating 1s the standard on
which many market participants still rely These two approaches will be examined 1n

turn

371 KMV

According to the Merton approach, the PD 1s a function of (1) the value of the firm’s
assets, (11) the volatility of this value, and (1) the amount of debt in the firm’s capital
structure KMV have adopted this approach but have adapted 1t to empirical data to
convert the outputs into practical results by developing a measure of nisk they call

‘distance-to-default’

Crosbie (2002) discusses KMV’s understanding of ‘default point’ He notes that in
KMV’s studies of defaults, they have found that in general firms do not default when
their asset value reaches the book value of their total hiabilities He acknowledges that
while some firms certainly default at this point, many continue to trade and service their
debts The long-term nature of some of their habilities provides these firms with some
breathing space, he surmises KMV found that the default point, the asset value at which
the firm will default, lies “somewhere between total liabilities and current, or short-
term, habilities ” The relevant net worth of the firm 1s the market value of the firm’s
assets minus the firm’s default pomnt A firm will default “when 1ts market net worth

reaches zero”, he notes (p3)

He explains that asset value, business nsk and leverage can be combined into a single
measure of default risk which compares the market net worth to the size of a one
standard deviation move 1n the asset value KMV refer to this ratio as the distance-to-
default and 1t 1s calculated as

Market Value of Assets - Default Point
[Market Value of Assets][Asset Volatility]

Distance to Default =

“The default probability can be computed directly from the distance-to-default 1f the

default rate for a given level of distance-to-default 1s known ” (p6)

KMYV have compiled a very large database of defaults and have computed the distance-
to-default metric for these firms for the years prior to their defaulting A default

database is used to denve an empirical distribution relating the distance-to-default to a
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default probability. “In this way, the relationship between asset value and liabilities can
be captured without resorting to a substantially more complex model characterising a
firm’s liability process.” (p7) They call the resulting PD, the expected default
frequency, EDF. They have implemented this process in their software product, Credit
Edge, and deliver annualised EDF values over 1to 5 years on a daily basis over the
internet on over 35,000 companies. A schematic representation of EDF measurement is
shown in Figure 3.12 below:

Distribution of Asset Value at Horizon

-4 -30 -20 -10 0.0 10 20 30 40
In(Asset Value at Horizon)

Figure 3.12 Schematic for Estimation of Expected Default Frequency

If the future distribution of the distance-to-default were known, the default probability,
EDF, would be the likelihood that the final asset value was below the default point.
However, in practice, Crosbie says that the distribution of the distance-to-default is
difficult to measure. He states that the usual assumptions of normal or lognormal
distributions cannot be used. For default measurement, the likelihood of large adverse
changes in the relationship of asset value to the firm’s default point is critical to the
accurate determination of the default probability, he suggests. These changes may come
about from changes in asset value or changes in the firm’s leverage. In fact, changes in
asset value and changes in leverage may be highly correlated. Consequently, KMV first
measures the distance-to-default as the number of standard deviations the asset value is
away from default and then uses empirical data to determine the corresponding default
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probability They obtain the relationship between distance-to-default and default
probability from data on historical default and bankruptcy frequencies Their database
includes over 250,000 company-years and over 4,700 incidents of default or
bankruptcy From this data, a lookup or frequency table 1s created which generates the
likelihood of default to various levels of distance-to-default Thus, 1f they are interested
in determining the default probability over the next year for a firm that 1s seven standard
deviations away from default, they query the default history for the proportion of the
firms, seven standard deviations away from default that defaulted over the next year

The answer, he says, 1s about Sbp, 0 05%, or an equivalent rating of AA

The PD by time T, p,, 1s the probability that the market value of the firm’s assets, ¥/,
will be less than the book value of the firm’s liabilities due by time 7, X, , where the

asset volatility 1s o, In the Merton framework, the PD 1s
Dy = Prlln(VA )+ (/1 -1lo) )T+0‘A ﬁgJS In(X,) Equation 3-82

Rearranging,

m[;’g}(ﬂ_%ozy

p; =Pr| - >¢& Equation 3-83

Assuming the asset returns are normally distributed, this probability 1s

ln[;" j+(,u—%0'2)T
pr=N|- i =N (— DD) Equation 3-84

o NT

In order to calculate these EDF values, KMV must calculate the asset value and asset
volatility of the firm from the market value and volatility of equity and the book value
of the liabilities They have extended the Merton model into what they call the Vasicek-
Kealhofer model to incorporate more complex capital structures including long- and
short-term debt, convertible debt and the perpetuity nature of equity Thus, they solve

the following two relationships simultaneously
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Equity Value= f (Asset Value, Asset Volatility, Capital Structure, Interest Rate)
Equity Volatility= f (Asset Value, Asset Volatility, Capital Structure, Interest Rate)

Asset value and volatility are the only unknown quantities in these relationships and
thus the two equations can be solved to determine the values implied by the current

equity value, volatility and capital structure

KMV start with the Merton relationship

Equation 3-85

They then recognise that equity 1s a leveraged interest 1n the underlying assets and that

1ts volatility 1s mgher than that of the underlying assets as follows

o, =Z—AA N(d, ) where

E

74 Equation 3-86
h{r 4 J+l0'2T 1

e—rT 274
o\T

where A 1s the delta of the equity option on the assets

d, =

Once again, they need to modify the Merton model to derive meaningful results They
adjust the distance-to-default to include not only the increases in asset value given by
the rate but also adjust for any cash outflows to service debt, dividends, and so on In
addition, they state that the Normal distribution 1s a very poor choice to define the PD

The most important reason they give 1s the fact that the default point 1s in reality also a
random variable Thus, while they have assumed that the firm’s default point 1s
described by the firm’s lhabilities and amortisation schedule, they acknowledge that this
1 not true and recognise that firms will often adjust their liabilities as they near default

They note that 1t 1s common to observe the liabilities of commercial and industrial firms
increase as they near default while the liabilities of financial institutions often decrease
as they approach default The difference, they suggest, 1s usually just a reflection of the
liquidity 1n the firm’s assets and thus their ability to adjust their leverage as they

encounter difficulties However, KMV have found themselves unable to specify ex ante
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the behaviour of the liabilities and thus they must capture the uncertainty in the
adjustments in the liabilities elsewhere. They choose to include this uncertainty in the
mapping of distance-to-default to the EDF credit measure. They observe that the
resulting empirical distribution of default rates has much wider tails than the Normal
distribution. “For example, a distance to default of four, four standard deviations, maps
to a default rate of 100bp. The equivalent probability from the Normal distribution is
essentially zero.” Croshie (2000, pi7)

KMV determine the PD of a firm by reference to its distance-to-default. All the firms in
Its database over many years are categorised based on their distance-to-default and the
subsequently realised default rates over one-, two-, three-, four- and five-year periods
thereafter. Thus, KMV can extract not just a one-year PD for a firm but the term
structure of a firm’s PD out to five years.

3.7.2 Rating Agencies

The rating agencies, and indeed, most financial institutions, assign ratings to borrowers
based on a variety of financial and non-financial measures. These ratings are merely
ordinal rankings and the descriptions of what the ratings mean are extremely general,

In recent years, the rating agencies have responded to market demand for more
quantitative risk measures by publishing historical default statistics. Two types of
statistics in particular are quoted: (i) historical default rates over various time periods,
and (ii) transition matrices which report not just on the frequency of transition from a
given grade to default but also on the frequency of transition from a given grade to other
non-default grades.

However, two criticisms are frequently levelled at these statistics. The first criticism is
that default rates are simply historical and these rates vary significantly from one period
to the next. The second is that transition matrices are unconditional averages whereas
what the market really needs is a transition matrix that is conditioned to the current state
of the credit market.

Despite the criticisms and the many rating errors that the agencies have made -
especially notable is their slow reaction to credit deterioration - their rating is still the
market benchmark for many companies and debt issues.
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3.8 Modelling Credit Portfolios

Crouhy et al (2000), cite two additional difficulties 1n calculating credit VaR compared
to market VaR The first difficulty cited 1s that the portfolio distribution 1s far from
being normal, and the second 1s that measuring the portfolio effect due to credit
diversification 1s much more complex than for market nsk While 1t was legitimate to
assume normality of the portfolio changes due to market nisk, they suggest, 1t 1s not
feasible for credit returns which are by nature highly skewed and fat-tailled There 1s
limited upside to be expected from any improvement 1n credit quality, they state, while
there 1s substantial downside consecutive to downgrading and default “The percentile
levels of the distribution cannot be any longer estimated from the mean and variance
only The calculation of VaR for credit risk requires simulating the full distribution of

the changes 1n portfolio value ” (p320)

Gupton et al (1997) concur with this view Modelling portfolio risk 1n credit portfolios
1s neither analytically nor practically easy, they note Fundamental differences between
credit risks and equity price risks “make equity portfolio theory problematic when
applhied to credit portfolios” (p7) They expand on this pomnt by identifying two
fundamental problems which credit portfolio modelling presents which are absent when
modelling equities The first problem to which they refer 1s that oft-cited problem that
equity returns are relatively symmetric and are well approximated by normal or
Gaussian distributions whereas credit returns are highly skewed and fat-talled Thus,
more than just the mean and standard deviation 1s required fully to understand a credit
portfolio’s distribution The second problem they cite 1s the difficulty of modelling
correlations For equities, they note, the correlations can be directly estimated by
observing high-frequency liquid market prices “For credit quality, the lack of data
makes 1t difficult to estimate any type of credit correlation from history ™ (p8)

Another important difference between equity portfolio management and credit portfolio
management to which they refer 1s i relation to firm-specific nsk Whereas market
nisks can be diversified with a relatively small portfolio or hedged using liqud
mstruments, credit risks, they suggest, are more problematic For credit portfolios,
simply having many obligors’ names represented within a portfolio does not assure
good diversification (e g they may all be large banks 1n one country) they state They
conclude that when diversification is possible, 1t 1s typically achieved by “much larger

numbers of exposures than for market portfolios ” (p81)
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381 Credit Portfolio Models used in the Market

According to the 2002 Survey of Credit Portfolio Management Practices undertaken by
the International Association of Credit Portfolio Managers (IACPM), the International
Swaps and Denvatives Association (ISDA) and the Risk Management Association
(RMA) as reported by Rutter (2003, p161), 85% of the 41 large financial institutions
which responded stated they used a portfolio management model Of these, 69% stated
they used KMV’s Portfolio Manager while the CreditMetrics product, CreditManager,
was employed by 20% In addition, 17% used an internally developed model (Rutter
notes that the responses sum to more than 100% as some respondents used more than
one model ) Neither McKmsey’s CreditPortfolioView nor CSFB’s CreditRisk+ was
used by any of the respondents However, the author 1s aware that many German
mortgage banks use CreditRisk+ so the results may reflect the survey emphasis on

commercial and investment banks rather than mortgage/retail banks

Therefore, 1t 1s considered appropriate to examine the two credit portfolio models that
are most frequently used 1 industry, namely, CreditMetrics’ CreditManager and

KMV’s Portfolio Manager

3811 CreditMetrics

In April 1997, JP Morgan, in conjunction with six bank sponsors and KMV, launched
CreditMetrics It followed the successful launch four years earlier of RiskMetrcs, a

product for modelling market nsk

While the products were simular, the challenge they faced in creating CreditMetrics was
substantially greater As they acknowledged in their technical document, (Gupton et al,
1994), one major difference in the models was driven by the difference in available
data In RiskMetrics, there was an abundance of available daily liquid pricing data on
which to construct a model of conditional volatility “In CreditMetrics, we have
relatively sparse and infrequently priced data on which to construct a model of

unconditional volatility ” (p 1)

Nor was there any market agreement on the correct modelling approach Unlike market
risks where daily liquid price observations allow a direct calculation of VaR, they state
that CreditMetrics seeks to construct what 1t cannot directly observe, the volatihty of

value due to credit quality changes This constructive approach, they claim, makes
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CreditMetrics less an exercise 1n fitting distributions to observed price data, and more

an exercise 1n proposing models which explain the changes 1n credit related instruments

Furthermore, the nature of credit returns presented special challenges the models that
best describe credit risk “do not rely on the assumption that returns are normally

distributed, marking a significant departure from the RiskMetrics framework ”(p 1v)

CreditMetrics’ goal, they state, was to estimate the volatility of value due to changes in
credit quality, not just the expected loss In their view, as important as default likelihood
estimation 1s, 1t 1s only one link 1n the long chain of modelling and estimation that 1s
necessary fully to assess credit risk within a portfolio “CreditMetrics 1s a tool for
assessing portfolio risk due to changes 1n debt value caused by changes 1n obligor credit
quality ” (p5) They assess risk within the full context of a portfolio, addressing the

correlation of credit quality moves across obligors

Their outline of their valuation framework 1s shown 1n Figure 3 13

Exposures Value at Risk due to Credit Correlations
User Ratings sernes,
Portfolio Credit Rating Seniority Credit Spreads Equity senies

‘ I I I I

Present Value

Market Rating migration] | Recovery rate Bond Models (e g,
volatilities likelihoods m Default Revaluation correlations)
Exposure Standard Deviation of value due to credit quality Joint credit
distnibutions changes for a single exposure rating changes

[ Portfolio Value at Risk due to Credit !

Figure 3 13 CreditMetrics Schematic

Figure 3 13 shows the two main building blocks, namely ‘value at risk due to credit’ for
a single financial instrument and ‘portfolio value at risk due to credit’ which accounts
for portfolio diversification effects ‘Correlations’ derive the asset return correlations
that are used to generate the joint migration probabilities and ‘Exposures’ produce

future exposures of derivatives

CreditMetrics, they state, looks to a horizon and constructs a distribution of historically

estimated credit outcomes including rating migrations and, potentially, default Each
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credit quality migration 1s weighted by 1its hkelihood using transition matrix analysis
Each outcome has an estimate of change in value, given by either credit spreads or
studies of recovery rates in default They then aggregate volatilities across the portfolio,
applying estimates of correlation CreditMetrics accepts any discrete classification of

credit quality and an associated credit migration probability matrix

Gupton et al (p6) suggest that the pnmary reason to have a quantitative portfolio
approach to credit risk management 1s so that “we can more systematically address
concentration risk ” In particular, they suggest that intuitive — but arbitrary — exposure-
based credit limits fail to recognise the relationship between nisk and return They
suggest that their approach allows a portfolio manager to state credit lines and limits 1n

units of marginal portfolio volatility

The decision to take on ever higher exposure to an obligor will meet ever higher
marginal risk as risk that grows geometrically with the concentration on that name, they
claam They also note how their approach differs markedly from that mandated by the
BIS “The BIS risk-based capital guidelines do not distinguish high quality and well-
diversified portfolios from low quality and concentrated portfolios ” (p6) However, they

acknowledge the difficulty 1n estimating credit correlation because of a lack of data

They state their goal 1s to estimate portfolio risk due to credit events, the uncertainty in
the forward value of the portfolio at the risk horizon caused by the possibility of obligor
credit quality changes (p8)

The CreditMetrics Credit Modelling Approach

The starting point for the CreditMetrics model 1s the transiion matrix The
CreditMetrics approach 1s “based on credit migration analysis 1e estimating the
probability of moving from one credit quality to another, including default, within a
given time horizon, which 1s often taken arbitrarily as one year ” Crouhy et al (2000,
p316) CreditMetrics models the full distribution of the values of any bond or loan
portfolio, say one year forward, with the changes in values being related to credit
migration only, while interest rates are assumed to evolve in a deterministic fashion
Credit-VaR of a portfolio 1s then denived 1n a similar fashion as for market nsk It 1s

sumply the percentile of the distnbution corresponding to the desired confidence level

CreditMetrics assumes that future migration probabilities are equal to historical rating

transition experience They further assume that the value of the facility at the modelling
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horizon may be obtained by discounting the cash flows using the borrower’s forward
Zero curve, a “curve that is different for each rating category.” (plO) Additionally, their
framework accommodates variable loss rates assuming a beta distribution based on a
mean loss rate and a standard deviation specified by the user based on the seniority of
the debt issue.

To measure the effect of portfolio diversification, CreditMetrics need to estimate the
correlations in credit quality changes for all pairs of obligors. But these correlations are
not directly observable. They base their evaluation on the joint probability of asset
returns, “which itself results from strong simplifying assumptions on the capital
structure of the obligor, and on the generating process for equity returns.” Crouhy et al
(2000, p321)

CreditMetrics suggest a model of firm value that has the log of each firm’s value at
horizon described by a normal distribution. The distribution is divided into discrete
areas such that the probability of being in a given area corresponds with the
probabilities in the transition matrix. Furthermore, all firms may be modelled jointly as
multivariate normal based.

Further discussion of the CreditMetrics approach is presented in the Appendix.

Critique of the CreditMetrics Credit Modelling Approach

CreditMetrics make many assumptions that may invalidate their results. They assume
(i) that each obligor will migrate to a credit rating at the horizon date based on its senior,
unsecured credit rating and the transition matrix of historical migrations, (ii) that all
obligors in a given rating category will face the same forward zero curve at the horizon
date - in other words, that interest rates will evolve to the forward rates in a
deterministic fashion and that the forward credit spreads will be realised at the horizon,
(iii) that credit rating distributions are multivariate normal and (iv) that asset correlation
may be approximated by equity correlation.

Crouhy et al (2000) state that the CreditMetrics approach to measuring credit risk is
rather appealing as a methodology, but that “unfortunately it has a major weakness:
reliance on ratings transition probabilities that are based on average historical
frequencies of default and credit migration.” (p357) As a result, they suggest, the
accuracy of CreditMetrics calculation depends upon two critical assumptions, namely,
that all firms within the same rating class have the same default rate and the same
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spread curve even when recovery rates differ among obligors, and that the actual default
rate 1s equal to the historical average default rate But this cannot be true because default

rates evolve continuously whereas ratings are adjusted 1n a discrete fashion

3812 KMV Portfolio Manager

KMV’s approach to modelling debt portfolios 1s embedded in their software offering,
Portfolio Manager This product 1s based on the same structural model underlying their
default probability software, Credit Edge, and the default probability, their so-called
expected default frequency (EDF), 1s a key mnput to the portfolio model Furthermore,
the asset value time series imputed for each company forms the basis for creating asset
value indices by country and industry, from which they extract their factors for the

model underlying their correlation estimates

KMV are less transparent about their methodology and their data than CreditMetrics
They make their EDF data and their factor sensitivity data available to clients They also
explain 1n high-level terms the approach they adopt However, they avoid explaining
therr methodology n detail and most of the key steps in the simulation and revaluation

elements of the program are not transparent

The CDO model that 1s developed mn this thests relies on KMV data for its default
probabilities and 1ts correlation data In butlding the model, therefore, the first task was
to check that the KMV results could be reproduced to confirm that the data was being
interpreted in the appropriate manner A complete description of the tasks undertaken in

achieving this goal 1s given 1n Chapter 4 and will not, therefore, be repeated here

3 813 Comparison of the CreditMetrics and KMV Approaches

The most fundamental difference between the CreditMetrics and KMV approaches
relates to their default probability estimation methodology Whereas KMV develop an
estimate of expected default frequency for each borrower, CreditMetrics rely upon the
average historical transition frequencies produced by the rating agencies for each credit

class

Another key difference relates to the manner in which they measure correlation
CreditMetrics relies on equity values and equity indices for various industry-country

combinattons mn order to imply asset correlation KMV, on the other hand, create asset
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return series based on all the firms in their database and use principal component

analysis to extract orthogonal factors which are then used to drive future asset values

Both approaches rely on the asset value model originally proposed by Merton (1974),
but they differ quite substantially in the simplifying assumptions they require in order to
facilitate 1ts implementation “How damaging are, 1n practice, these compromises to a
satisfactory capture of the complexity of credit measurement stays an open issue ”

Crouhy et al, (2000, p357)

3 8 1 4 Other Portfolio Models

Credit Suisse Financial Products released CreditRisk+ in 1997 It 1s a ‘default only’

model that assumes default for individual loans or bonds follows a Poisson process

McKinsey also has a portfolio model offering which 1s focused on default nisk only It 1s
a discrete time multi-period model, where default probabilities are a function of macro-
vanables like unemployment, the level of interest rates, and the growth rate in the

economy, government expenses and foreign exchange rates, which drive credit cycles

3.9 Moody’s Binomial Expansion Technique

Cifuentes and O’Connor (1996) outline Moody’s Binomial Expansion Technique (BET)
as applied to CDO analysis “Moody’s ratings of CBOs and CLOs are ultimately based
on the expected loss concept ” (p1) They suggest that a number of methods can be used
to estimate the expected loss, ranging from Monte Carlo simulation techmques to rather
simple single-event models However, they propose an alternative to simulation or
single-event models, the so-called BET They suggest 1t captures the effects of ‘tail

events’, by accounting for all possible default scenarios (pl)

391 Overview of the BET

The BET 1s based on the diversity score concept “The 1dea 1s to use the diversity score
to build a hypothetical pool of uncorrelated and homogeneous assets that will mmmic the
default behaviour of the original pool ” (p2) If D 1s the diversity score of the collateral
portfolio, they suggest the behaviour of the onginal pool can be modelled using a
fictitious portfolio consisting of D bonds, each of which has the same par value (total
collateral par value divided by D) They assume that these bonds have the same

probability of default (determined by the weighted average probability of default of the
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original pool) They further assume that the behaviour of this homogeneous pool of D
assets can be fully described 1n terms of D possible scenarios one default, two defaults

and so on up to D defaults The probability P, that scenano j (; defaults) could happen

can be computed using the binomial formula where P, represents the weighted average

probabulity of default of the pool £ , 1s the term they assign to the loss for the note to

be rated under scenario; They calculate the total expected loss, considering all possible

loss scenarios, as

D
Expected Loss = Z PE, Equation 3-87
1

3911 Weighted Average Rating Factor

Each rating 1s mapped to a rating factor and the credit quality of the asset pool 1s
determined by the weighted-average rating factor, WARF Thus 1s calculated as the par
value-weighted average The WARF score measures, 1n basis points, the Moody’s
1dealised cumulative default rate over ten years The rating factor equivalents from that

paper are reproduced in Figure 3 14

APPENDIX D
Table 8
Rating Factor Equivalerts
Rating of Dehbt Security  Ratng Factor
Aaa 1
Aal 10
Aa? 20
Aa3 40
Al 70
A2 120
A3 180
Baal 260
Baa? 360
Baal 610
Bal 940
Ba2 1,350
Ba3 1,780
B1 2,220
B2 2,120
B3 3,490
Caa 6,500
Ca 10,000
C 10,000

Figure 3 14 Moody’s Rating Factor Equivalents

101



391 2 Diversity Score

The other key attribute of the asset pool 1s the level of diversification that exists within
1t To measure this, Moody’s have developed the concept of diversity score They look
at both the number of firms 1n the collateral pool and their distnibution among industry
groups

Diversity Score penalises the structure for having issuers in the same industry For
example, Table 4 of their paper, reproduced below as Figure 3 15, shows that the first
firm 1n a particular industry earns the transaction a Diversity Score of 1 The second
name 1n the same industry increases the Diversity Score in that particular industry to
1 5 Subsequent additions from the same industry earn a still lesser addition to diversity
score The transaction’s total Diversity Score 1s computed by summing the Diversity

Scores of all industries represented 1n the portfolio

Table 4

Number of Farms in~ Daversaty

Same Industry Score
100

150
200
233
2617
300
325
350
375
400

>10 Evaluated on a
case- by-case
basis

6@03‘-40’)0“#00!\’*‘

Figure 3 15 Moody’s Diversity Score Measurement Methodology

Moody’s 32-industry classification system used to measure intra-industry correlation 1s
descnbed by Backman and O’Connor (1995, pll) Appendix B of that paper 1s
reproduced as Figure 3 16 Since the paper was published, an additional industry,

“Broadcasting and Entertainment”, has been added to the list
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APPENDIX B

P D N

8

9
10
n

13

14
15
16
17

18
19
20
2

22
23

24
25
26

21

28
29
30
K]
32

Tabie 6
Moody’s Industry Classifications

Rerospace and Defense: Major Contractor Subsystems Research Awcraft Manufacturing, Arms Ammunition

Automobile Automotwe Equipment, Auto-Manufacturing Auto Parts Manufactunng, Personal-Use Trailers Motor Homes Deslers
Banking Bank Holding, Savings and Loams Consumer Credit, Small Lean Agency Factonng Recervables

Boverage, Food and Tobacca: Beer and Ale, Distillers, Wines and Liquors Diswibutars Soft Drink Syrup Bottlers Bakery Mill Sugar
Canned Foods Corn Refiners Dairy Praducts Meat Products Poultry Products Snacks, Packaged Feods Candy Gum Seafood
Frozen Food Cigarettes Cigars Leaf/Snuff Vegetable Ol

Buildings and Roal Estate Brick Cement, Climate Contrals Contracting, £ngmeenng Construction Hardware, Farest Products
{butlding-related only), Plumbing Roofing, W/allboard Real Estate, Real Estate Development REITs, Land Davelopmert

Chemicals, Plastics, and Rubbar Chemicals (nonagnculture), Industnal Gases Sulphur, Plastics Plastic Products, Abrasives
Coatings Paints Varnish, Fabncatmg

Comtamwrs, Packaging and Glass. Glass, Fiberglass Containers made of Glass Metal Paper Plastic, Wood or Fiberglass
Personal and Nondurable Consumer Products (Manufacturing Only) Soaps, Perfumes, Cesmetcs, Tolletries Cleaning Supplies
School Supplies

Dwversifiad/Conglomsrate Manufactunng

Diversifiad/Conglomorato Setvice

Dwversified Naurra! Resources, Procious Mstals, and Mmerals. Fabncating, Distribution Mining and Sales

12 Ecologreak Pollution Control Waste Removal Waste Treament Waste Dispasat

Eloctromes Computer Hardware, Electne Equipment Componertts Controllers, Motars Household Appliances Information Service
Communication Systems. Radias TVs TapeMachines Speakers Primters Dnvers, Technology

Finenes Investment Brokerage, Leasing, Syndication Secuntes

Farmng and Agriculture Lvestock Graims Produce Agriculturél Chemicals Agnicultural Equipment Fertlzers

Grocory Grocery Storas Convemience Food Stores

Hoalthtare, Education, and Chideare: Ethical Drugs Propnetary Drugs Resaarch, Health Care Cemers Nursing Homes HMOS
Hospitals Hospitat Supplies hledical Equipment

Home and Office Furmishings, Housowares, and Durable Consumer Products. Carpets Floor Covenngs Fumiure, Cooking, Rangas
Hotels, Motels, Inns, and Gammg

Insurance Life, Property and Casualty Broker Agent Surety

Leisure, Amusement, Motion Prctures, Entertanment. Boating, Bawling, Billiards Musical instruments, Fishing Photo Equipment,
Records Tapes Sports Outdoor Equipment (Camping), Tounsm Resorts, Games, Tay Manufactunng Motion Picture Production
Theaters Motion Picture Distnbution

Machmery (Nonagriculture, Nonconstruction, Nonsbectronic) Industnal Machine Tools, Steam Generators

Mimng, Steel Iron and Nonprecious Metals Coal Copper, Lead Uramum Zine Atuminum. Stainless Steel Integrated Steel, Ore
Production Refractories, Stesl Mill Machinery Mini Mills Fabricating. Distnbution 2nd Sales

01l and Gas Crude Producer Retailer Well Supply Service and Dnlling

Personal, Food, and Liiscellansous Servicas

Pnntng, Publishma, and Broadcastmg Graphic Arts, Paper Papyr Praducts Business Forms Magaznes Books, Periodicals
Newispapers Textbooks Radio. TV Cabla Brozdcasting Equipment

Cargo Transport Rail. Sipping Raivoads Railcar Builders, Ship Builders Cortainers Comainer Builders, Pars Overnight Mail
Trucking Truck Manufactunng Trailer Manufactunng Air Cargo, Tramsport

Retad Stores Appardl Tay, Vanety Drug, Department Mail Order Catalog Shoaroom

Telocommumeations. Local, Long Distance Independent, Telephone Telegraph Satellite Equipment Research Cellular
Textiles and Leather+ Producer, Synthetic Fiber Appared Marufactures Leather Shoes

Personal Transportation: Air Bus Rait Car Rental

Unlittes Electric, Water Hydro Power Gas Drversified

Figure 3 16 Moody’s Industry Classifications

392 Applying the BET

The

BET attempts to replicate the behaviour of an actual portfolio by modelling an

idealised portfolio of assets These 1dealised assets are all assumed to have the same

default probability based on their weighted-average rating factor The diversity score of

the asset pool determines the number of 1dealised assets
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3921 The BET Approach to Rating Senior Notes

As discussed previously, the BET rating approach was first outlined in Cifuentes and

O’Connor (1996) The portfolio they use to demonstrate the approach 1s shown in

Figure 3 17
Chart 1

Hypothetical CBO Structure
$100 $80
c=11% Senior Piece
p=25% c=6%
D=20 — ™
Rec rate=30%
Mat=6 years $20

c=12%

Equity

Figure 3 17 Moody’s Hypothetical CBO Structure

They consider the simple two-tier structure depicted in Figure 3 17 They assume that
the collateral pool has a diversity score of 20, an average probability of default of 25%
(after factoring 1n the stressing factor), a recovery rate of 30%, a six-year time to
maturity, and pays an average coupon of 11% They also assume that all bonds have
bullet repayments, that there are no overcollateralisation or interest rate triggers, and

that the excess cash 1s reinvested at 11% per year

The author built a model to confirm Moody’s results An example of the output 1s
shown in Table 3-6 below when the number of defaults 1s set at 10 In these
circumstances, the senior note receives {24,24,24,24,24,24,24,24,24,24,24,
78 86} The final payment 1s 78 86 instead of 82 4 yielding a loss of 3 1%
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Collateral 100

Coupon 11%

p 25%

D 20

Number of Defaults 10

Recovery 30%

Maturity 6 yrs

Sentor 80

Senior coupon &%

Equity 20

Equity coupon 12%

Year 0] 05 1 15 2 25 3 35 4 45 5 55§ 6
Percentage of Defaults 50% 10% 10% 10% 10% 10%] 100%
Default Distnibution 0 5 0 | 0 1 0 1 0 1 0 1 10
Cumulative Defaults 0 N 5 6 6 7 7 8 8 9 9 10
Defaulted Collateral 0 25 0 5 0 5 0 5 0 5 0 5 50
Cum Def Collateral 0 25 25 30 30 35 35 40 40 45 45 50
Recoveries 00 75 00 15 00 15 00 15 00 15 00 15 15
Collateral Outstandmg 100 1000 825 825 790 790 755 755 720 720 685 685 650
Collateral Coupon 55 45 45 43 43 42 42 40 40 38 38 36

Surplus Account 00 20 31 43 53 64 173 83 91 100 107 11§

Cash Available 55 65 76 86 96 105 114 122 131 138 145 151 Loss
Payment to Senior 24 24 24 24 24 24 24 24 24 24 24 7886]_310%
Interest to Equity 12 12 12 12 12 12 12 12 12 12 12 12
Principal to Equity 60 00 00 00 00 00 00 00 OO0 00 00 00

Surplus n year 19 29 40 50 60 69 78 86 95 102 109| 09

Table 3-6 Moody’s Cash Flow Model

Repeating the analysis for varying numbers of defaults and collating confirms the
output 1n Table 1 of their paper Moody’s assume that the portfolio comprises a number
of assets equal to the diversity score that default independently Hence the distribution
of losses 1s given by the binomial probability distribution The results are reproduced as

Table 3-7 below
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Probability ~ #Defaults ~ Loss %

03171% 0 0.0000%
211419% 1 0.0000%
0.6%48% 2 0.0000%
1338%% 3 0.0000%
189685% 4 0.0000%
0281% 5 0.0000%
16860% 6 0.0000%
112406% 7 0.0000%
6.0887% 8 0.0000%
2.1061% 9 0.0000%
09922% 10 3.1026%
0300% U 1.8958%
0075% 12 12.6890%
0014% 13 17.4822%
00026% 14 22.215%4%
0000% 15 27,0686%
00000% 16 31.5621%
00000% 17 34.7819%
00000% 18 38.0531%
0.0000% 19 41.6080%
0.0000% 20 45.1629%

Table 3-7 Scenario Default Probability and Senior Tranche Loss Percentage

Repeating the analysis for varying diversity scores confirms the results Cifuentes and
0’Connor have graphed in Chart 2 of their paper. Chart 2 is re-created here as Figure
3.18:

Figure 3.18 Expected Loss for Senior Tranche as a Function of Diversity
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Rating
Raa
Ra1
Aaz
Aa3
Al
A2
A3
Baa1
Baa2
Baa3
Ba1
Ba2
Ba3
B1
B2
B3
Caa

1
0000028
0000314
0000748
0001661
0003196
0005979
0021368
0049500
0093500
0231000
0 478500
0858000
1545500
2574000
3938000
6 391000

14 300000

2
000011
000165
000440
001045
002035
003850
008250
015400
025850
057750
111100
190850
303050
4 60900
641850
913550

17 87500

Moody's “idealized” Cumulative Expected Loss Rates (%)

3
000039
000550
001430
003245
006435
012210
0 19800
0 30800
0 45650
094050
172150
2 84900
4 32850
6 36900
8 55250

11 56650
21 45000

4
000099
001155
002585
0 05555
010395
018975
029700
045650
0 66000
1 30900
231000
374000
538450
761750
997150

13 22200

24 13400

Table 2

Year
5
000160
001705
003740
007810
014355
0 25685
0 40150
0 60500
0 86900
167750
290400
462550
6 52300
8 86600
11 39050
14 87750
26 81250

6
000220
002310
004895
0 10065
018150
0 32065
0 50050
075350
108350
203500
343750
537350
7 41950
983950

1245750
16 06000
28 60000

1
000286
002970
006105
012485
022330
039050
061050
091850
132550
238150
388300
588500
804100

1052150
13 20550
17 05000
30 38750

8
000363
003685
007425
0 14960
0 26400
045595
071500
108350
156750
273350
4 33950
641300
8 64050

11 12650
13 83250
17 91900
3217500

9
000451
004510
009020
017985
031515
054010
083600
124850
178200
306350
477950
695750
9 19050

11 68200
14 42100
18 57900
3396250

10
0 00550
0 05500
0 11000
0 22000
0 38500
0 66000
0 99000
1 43000
1 98000
3 35500
517000
7 42500
9 71300
12 21000
14 96000
19 19500
35 75000




The expected loss suffered by the senior note is 0.067%. Referring to Moody’s Idealised
Cumulative Expected Loss Rates in Table 2 of that paper, reproduced aboveas Table
3-8, the senior note would be rated Aa3 (the cut-offvalue is 0.10065% for the Aa3).

3.9.2.2 The BET Approach to Rating Senior/Subordinate Structures

Anderson (1997) describes how diversification of a securitised pool affects Moody’s
ratings of senior/subordinated structures. The author built a model to replicate the
structure he described. The model results are shown in Table 3-9. These concur exactly
with the results he reports in this paper.

Diversity 30 Pool 100 Pool  Semor ~ Mezz. ~ Junior
PD 10% Senior 60 Probability of Loss ~ 95.8%  0.0%  175%  95.8%
LGD 70% Mezzanine 30 Expected Loss ~ 7.00%  0.00%  183%  64.52%
Junior 10 Loss Given Default ~ 7.31%  3.62%  1040%  67.38%

#of Cash Flow Cash Flowto Cash Flowto ~ Cash Flow Pool Loss ~ Senior ~ Mezz.  Junior
Defaults  Probability ~ from Pool Senior Mezz.  to Junior % Losso Loss%  Loss%
0 42% 10000 60.00 30.00 1000  00%  00%  00%  0.0%

1 141% 97.67 60.00 30.00 167 23%  00%  00% 23.3%

2 28% 95.33 60.00 30.00 533 4T%  00%  00%  46.7%

3 6% 93.00 60.00 30.00 300  70%  00%  00%  70.0%

4 17.7% 90.67 60.00 30.00 067  93%  00%  00%  93.3%

5 10.2% 88.33 60.00 28.33 000 1L7%  00%  56% 100.0%

b 4.7% 86.00 60.00 26.00 000  140%  00%  133% 100.0%

7 1.8% 83.67 60.00 23.61 000 163%  00% 2L1%  100.0%

8 0.6% 81.33 60.00 21.33 000 187%  00% 28.9%  100.0%

9 0.2% 79.00 60.00 19.00 000 210%  00%  367%  100.0%

10 0.0% 16.67 60.00 16.67 000 233%  00%  444% 100.0%
i 0.0% 1433 60.00 1433 000 257%  00% 522% 100.0%
2 0.0% 72.00 60.00 12.00 000 280%  00%  60.0% 100.0%
13 0.0% 69.67 60.00 9.67 000 303%  00% 67.8% 100.0%
4 0.0% 67.33 60.00 1.33 000 327%  00%  756% 100.0%
15 0.0% 65.00 60.00 5.00 000 350%  00% 833% 100.0%

16 0.0% 62.67 60.00 2.61 000 37.3%  00% 9L1%  100.0%
i 0.0% 60.33 60.00 0.33 000 39.7%  00% 989% 100.0%
18 0.0% 58.00 58.00 0.00 000 420%  33% 1000% 100.0%
19 0.0% 95.67 95.67 0.00 000 443%  72% 1000% 100.0%
2 0.0% 53.33 5333 0.00 000 46.7%  11.1% 100.0%  100.0%
Al 0.0% 5100 51.00 0.00 000 490%  150% 100.0%  100.0%
2 0.0% 48.67 48 67 0.00 000 5L3%  189% 1000%  100.0%
23 0.0% 46.33 46.33 0.00 000 537%  228% 1000%  100.0%
24 0.0% 44.00 44.00 0.00 000 560% 267%  100.0%  100.0%
25 0.0% 4167 4167 0.00 000 583%  306% 100.0%  100.0%
26 0.0% 39.33 39.33 0.00 000 60.7%  344% 100.0%  100.0%
21 0.0% 37.00 37.00 0.00 000 630%  383% 100.0% 100.0%
28 0.0% 3467 3467 0.00 000 653% 422% 1000%  100.0%
29 0.0% 32.33 32.33 0.00 000 67.7%  461% 1000%  100.0%
30 0.0% 30.00 30.00 0.00 000 700%  50.0% 100.0% 100.0%

Table 3-9 Probability of Loss, LGD and EL for Pool and CDO Tranches

The effectiveness of diversification and subordination in protecting the senior notes at
the expense of the junior notes is observed by varying the diversity score. Anderson’s
results, as summarised in Table 1 of his paper, agree exactly with Table 3-10 below.
The impact of diversity is best appreciated by graphing these results. Figure 3.19 below
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plots the model results. Again, these agree exactly with the results depicted in Chart 1 of
Anderson’s paper: it shows how the expected loss of the pool is increasingly
concentrated in the subordinated tranches as diversity increases. Similarly, Figure 3.20
shows how the probability of the senior tranche suffering a loss declines to zero as
diversity increases while the probability of the junior notes incurring a loss goes to
100%. Finally, Figure 3.21 plots the model results which agree exactly with Anderson’s
results shown in Chart 3 of the paper: it shows, as might be expected, that the
probability distribution of losses narrows as diversity increases.

o Expected Loss _ Probability of Loss ,
Diversity Pool  Senior Mezz.  Junior Pool  Senior Mezz.  Junior
1 7.000%  5.000% 10.000% 10.000% 10.000% 10.000% 10.000% 10.000%
2 7000%  0500% 16.000% 19.000% 19.000%  1.000% 19.000%  19.000%
3 7000%  0350% 13.600% 27.100% 27.100%  2.800% 27.100% 27.100%
5 7.000% 0039%  9.604% 40.951% 40.951%  0.856% 40.951% 40.951%
10 7000% 0.001%  5496% 53510% 65.132%  0.015% 26.390% 65.132%
20 7000% 0000% 2.758% 61.726% 87.842%  0.000% 32.307% 87.842%
30 7.000% 0.000%  1826% 64523% 95.761%  0.000% 17.549% 95.761%
50 7.000%  0.000% 0.938% 67.185% 99.485%  0.000% 12.215% 99.485%

100 7000%  0.000%  0.304% 69.089% 99.997%  0.000%  7.257% 99.997%

Table 3-10 Expected Loss and Probability of Loss as a Function of Diversity

Expected Loss vs Diversity

Diversity

Figure 3.19 Expected Loss vs Diversity for Pool and CDO Tranches
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Probability of Loss vs Diversity

100%
90%
80%

5 10 20
Diversity

Figure 3.20 Probability of Loss vs Diversity for Pool and CDO Tranches

Figure 3.21 Probability Distribution of Pool Losses as a Function of Diversity

3.9.3 Critique of the Moody’s Approach

The Moody’s approach is extremely heuristic and some would suggest it doesn’t merit
citing as a portfolio model. The simplistic manner in which the diversity score is
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calculated is scorned. Likewise, the distillation of a range of credit ratings into a
weighted average has been criticised. This latter criticism has prompted them to develop
a Double Binomial Method to accommodate portfolios where two groups of assets have
distinctly different default probabilities.

Among other criticisms, the role played by the diversity score is often questioned.
Greater diversification will always lead to a higher quality senior tranche or will enable
the sponsor to achieve a higher percentage of AAA-rated debt. However, in practice,
greater diversity has been blamed for some of the problems that have been encountered
in the CDO market.

Typical of these comments is that of Goodman and Fabozzi (2001, p34). They claim
that a very high diversity score can limit flexibility by requiring an asset manager with
broad expertise to invest in an industry he does not like. They suggest that too much
diversification is even more of a problem for a smaller asset manager, where the
portfolio may have selective strengths in fewer industries. They conclude: “Investors
should certainly be wary of deals in which very high diversity scores are achieved by
managers straying from their fields of expertise.” (p34)

3.10 Modelling Credit Portfolios over Multiple Time Periods

The KMV portfolio model developed in Chapter 4, in common with other major models
in the market - CreditMetrics, CreditRisk+ and CreditPortfolioView - are single time
period models. The models describe for a specific risk horizon, whether each asset of
interest defaults within the horizon. The timing of defaults within the risk horizon is not
considered, nor is the possibility of defaults beyond the horizon. “This is not a flaw of
the current models, but rather an indication of their genesis as approaches to risk
management and capital allocation for a fixed portfolio.” Finger (2000, p49)

However, this framework is incapable of dealing with the modelling of CDOs. Finger
comments that the performance of a CDO structure depends on the default behaviour of
a pool of assets. He notes that the dependence of is not just on whether the assets default
over the life of the structure, but also on when the defaults occur. Thus, he concludes
that while an “application of the existing models can give a cursory view of the
structure, a more rigorous analysis requires @ model of the timing of defaults.” (p49)

In the paper, he compares the performance of four models - a discrete CreditMetrics
extension, a diffusion-driven CreditMetrics extension, a copula approach and the
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stochastic default intensity approach of Duffie and Gérleanu (2001) Each model 1s
calibrated to the same one-year default rate and single peniod correlation parameter He
modelled a portfolio of 100 obligors under low and high correlation assumptions on the
assumption of 40% recovery He then tranched the habilities into a 10% first loss, a

20% second loss and a senior piece

The discrepancies between the models were not too large for the first loss tranche — the
cost of first loss protection was approximately 20% higher for the most expensive
compared to the least expensive Likewise, under the high correlation assumption, the
variation in the cost of second loss protection was of a similar magnitude However,
under the low correlation assumption, the most expensive second loss protection was
almost twice that of the least expensive and, for the semior tranche, the subordination
necessary to achieve a target rating varied by a factor greater than two At the 30%
subordination level, the senior notes were rated Aaa in the most benign model compared

to A3 1n the most severe

He notes that in the single period case, a number of studies have concluded that the
various models do not produce vastly different conclusions when calibrated to the same
first and second order information However, in the case of CDOs, “the issue of model
choice 1s much more 1mportant, and any analysis of structures over multiple horizons

should heed this potential model error ” (p64)

However, the actual problem 1s even greater than Finger suggests, the disparities he has
1dentified remain even after the models have been calibrated to the same input data In
fact, the input data is, in most cases, unavailable “Currently the weakest link in the
chain of CDO analysis 1s the limited availability of empirical data bearing on the

correlation of default nsk ” Duffie and Singleton (2003, p252)

3.11 Choosing a Modelling Paradigm

The two market-leading portfolio models — those of CreditMetrics and KMV - have
been examined 1n this chapter Despite the fact that they are both structural models, they
adopt very different approaches to the solution of the credit portfolio modelling

problem

CreditMetrics relies on credit ratings and rating transition matrices Its most obvious
application 1s to portfolios of publicly rated names for which there 1s a substantial

volume of data on which to build transition matrices While 1t 1s possible for any
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financial 1nstitution to build 1ts own transition matrices based on 1ts own internal rating
system, few would have a sufficient number of names in the various ratings to enable

the extraction of reliable transition probabilities

In contrast, the approach adopted by KMV enables them generate probabilities of
default for all publicly quoted firms — some 35,000 at the time of writing - and update
these estimates on a daily basis The agency-rated universe, by comparison, 1s
substantially less, numbering less than 5,000 This 1s a particular problem in Europe
where most debt 1s privately 1ssued and only the largest companies aiming to sell their
debt worldwide seek a rating from (predominantly U S) rating agencies Adopting a
framework which naturally provides the key input, namely, default probability, greatly
expands the universe of firms which are amenable to analysis Many of the so-called
‘arbitrage’ CDOs purchase the debt of firms which would not normally seek an agency
rating because of their smaller size and theiwr lesser creditworthiness, having a ready

measure of default probability 1s critical in these circumstances

The rating agencies’ own research has identified the issue of autocorrelation 1n
downgrades CreditMetrics, 1f 1t were expanded to a multi-period framework, would
1gnore this autocorrelation 1n 1ts Markov modelling framework that assumes grading
transition 1s a Markov process This would systematically under-estimate the tendency
for senial downgrades, an 1ssue that 15 critical to the performance of CDO tranches In
contrast, KMV offer a term structure of default probability for each borrower that can

inform the evolution of borrower creditworthiness over successive time periods

The transition matrix most frequently used 1s an average of transitions over a long time
period However, the realised transition and default probabilities vary quite substantially
over the years depending on whether the economy 1s 1n recession or expending “When
implementing a model that relies on transition probabilities, one may have to adjust the
average historical values to be consistent with one’s assessment of the current economic
environment * Crouhy et al (2001, p325) There 1s little published 1n the literature to
help inform the user how to condition the transition matrix on the state of the economy
Not having a mechanism for conditioming the transition matrix on the stage in the
economic cycle 1s a critical 1ssue militating against using CreditMetrics m a multi-

pertod setting

The grading systems developed by rating agencies and by most financial institutions are

long-term ratings That 1s, they take a ‘through-the-cycle’ view of credit compared to
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the KMV view that is characterised as 4oint-in-time’. “A strong assumption made by
CreditMetrics is that all issuers are credit-homogeneous within the same rating class,
with the same transition probabilities and the same default probabilities.” Crouhy et al
(2000, p27) In KMV’s approach, in contrast, each issuer is specific and is characterised
by its own returns distribution, its own capital structure, and, consequently, its own
default probability term structure.

While some agency ratings apply to the issuer, most agency ratings attach to the debt
issue. “Bond-rating systems are supposed to rate an individual loan (including its
covenants and collateral backing), whereas loan-rating systems are more oriented to
rating the overall borrower.” Saunders et al (2002, pi8) In Moody’s words, a rating is,
“an opinion on the future ability and legal obligation of an issuer to make timely
payments of principal and interest on a specific fixed-income security.” Moody’s (1998,
p4). The following year, they elaborate as follows: “Moody’s ratings of industrial and
financial companies have primarily reflected default probability, while expected
severity of loss in the event of default has played an important secondary role. In the
speculative-grade portion of the market, which has been developing into a distinct
sector, Moody’s ratings place more emphasis on expected loss than on relative default
risk.”

For these reasons, it was decided to choose the KMV modelling paradigm instead of
that adopted by CreditMetrics. Throughout what follows, the default probability
estimates used will be KMV’s expected default frequencies. Likewise, KMV’s asset
correlation estimates will be embedded in the portfolio model through the use of the
factor sensitivities in their factor model framework. Furthermore, it was decided to
adopt Moody’s BET approach to CDO tranche rating in preference to those of other
rating agencies because of its more widespread usage and acceptance.

3.12 Conclusion

This chapter presented an overview of the principal research strands that are relevant to
an analysis of a portfolio of debt securities.

The most fundamental issue in debt valuation is an assessment of the PD of the
individual obligors so the chapter began by assessing various approaches to the
measurement of default probability proposed in the literature.
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The next section undertakes an examination of the Iiterature concerning the interaction
of equity secunties in a portfolio While portfolios of equities behave mn a
fundamentally different way from portfolios of debt securities, 1t 1s 1n the area of equity
portfolio modelling that the research 1s most advanced and 1t 1s to these approaches

those who are faced with modelling debt securities have turned 1n the first instance

The unique challenges that confront researchers 1n the area of debt portfolio modelling
are explored in the next section Few closed form solutions are available because of the
particularly complex nature of the interaction among the securities One formulaic
solution to the portfolio value distribution problem for a portfolio of infinite granulanty
allows us to examine the main attributes of debt portfolios and gives guidance on the

challenges facing those who need to model actual portfolios 1n a more realistic manner

The approach to valuing credit default swaps was then introduced The valuation
method of choice for structured products, the copula approach, was also summarnised
Structured products referencing credits for which a liquid CDS exist are successfully

accommodated within this framework

The credit portfolio models which are most used 1n the market — those of CreditMetrics
and KMV - are examined next These models were contrasted and critically assessed
The KMV model proved to be particularly suited to the modelling of exposures to sub-
investment grade names which are not traded 1n the market Also, the approach adopted

by Moody’s to rate CDO tranches, BET, was summarised and critiqued

There 1s an obvious disconnect between (1) the rating agency approach to CDO tranche
grading which takes explicit account of the CDO indenture and the multi-period
dimension to the tranche-rating issue but largely ignores the work of academic
researchers, and (11) the more theoretically rigorous academic approaches which have
been adopted by the software vendors but which are fundamentally single period

models and 1gnore the CDO indenture which 1s central to tranche rating and valuation

The challenge that 1s being taken up 1n this thesis 1s to apply the intellectual nigour of
the academic approach embedded in one vendor offering to a multi-period framework
which takes explicit account of the CDO indenture In undertaking that challenge, the
decision was made to adopt the KMV approach 1n preference to the competing market
offerings because of its more robust theoretical foundations and 1ts greater data

coverage
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As a first step to achieving this goal, the current state-of-the-art — as represented by
KMV’s credit portfolio modelling approach — will be re-created next in Chapter 4 On
completion of the single period model, we will then be ready to take on the challenge of
developing a multi-period version This model will incorporate the best features of the
single period credit portfolio model and the rating agency model It will model the asset
migration over time in an academically rigorous risk-neutral pricing framework and
incorporate all the features specified in the CDO 1ndenture 1n channelling the cash flows

to the liabilities The development of this model 1s the subject of Chapter 5
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Chapter 4. Developing a Single Period Credit Portfolio
Model

4.1 Chapter Overview

In Chapter 3, the market-leading models were overviewed and the fundamentally
different approaches taken by the rating agencies and the portfolio model vendors were
noted The differences between the two approaches are such that 1t 1s not possible to

make meaningful companson between them

The portfolio models are framed on a single period and are incapable of analysing CDO
tranches whose values are fundamentally dependent on the performance of the portfolio
over multiple time periods It 1s only by modelling the underlying debt portfolio over
the life of the transaction that the cash flows available to the tranches can be calculated
and hence valued Single period models can give the value of the debt portfolio at the
period end but are incapable of saying how that value 1s divided among the different

tranches

The rating agency model takes full account of the CDO indenture and explicitly models
the cash flow waterfall However, 1t adopts a heuristic approach to the modelling of
correlation and default probability Ignoring all the modelling advances of the past

decade 1s clearly undesirable

The goal of this thesis 1s to develop a new model that incorporates the best features of
the rating agency approach into a multi-period version of the market-leading credit

portfolio model A further goal 1s to compare the rating imphed by this new model -
which 1s potentially more rigorous than the current rating agency model — with that

assigned by the rating agency model to the vanous different CDO tranches
In order to achieve these goals, three tasks must be undertaken

1 The KMV approach to modelling credit portfolios 1n a single period time frame 1s

re-created from public data sources

2 This single period model 1s expanded into a multi-period setting in order to be

capable of valuing CDOs.
3 Moody’s BET 1s replicated, once again by reference to published articles

The completion of the first of these tasks 1s the subject of this chapter
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4.2 The KMV Modelling Paradigm

Traditionally, credit risk in a portfolio context was managed qualitatively with stringent
underwnting standards, limit enforcement and counterparty monmitoring However, such
an approach fails because of its mnability to measure the correlated nature of credit
defaults Furthermore, 1t fails to inform a bank’s efforts to build portfolios with superior

return-to-risk characteristics

KMV attempts to replace this qualitative approach with a quantitative one Rather than
measure portfolio nsk as an exposure-based amount, they focus nstead on the amount
of economic capital needed to maintain a particular level of risk in the debt 1ssued by
the institution holding the portfolio Portfolio performance 1s based on a comparison
between the portfolio’s promised return and the capital required to support the portfolio

Individual facilities are allocated capital on the basis of their contribution to portfolio
vanance and mndividual facility performance can then be measured based on the ratio of

the facility’s return to this capital
KMYV’s portfolio management software product, Portfolio Manager, 1s designed to
. Produce a mark-to-model price for credit-risky exposures,

o Charactenise the return and risk of exposures 1n the context of a credit portfolio,

and the return and risk of the portfolio as a whole,

) Compute the distribution of portfolio values at a specified horizon date and use

this distribution to calculate required economic capital today,

. Determine optimal transactions — buy or sell — for a given set of trading or

ornigination opportunities, and
. Calculate optimal portfolios by rearranging the weights of existing holdings

Whereas performance was traditionally measured in terms of earnings per share or
return on equity, the focus within the KMV modelling paradigm 1s on return on risk-
adjusted capital (RORAC) whereby the portfolio return 1s measured against the capital
required to support the portfolio and return per unit of portfolio unexpected loss, the

portfolio Sharpe ratio

The key building blocks of the KMV approach are a methodology for measuring default

probability and default correlation
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4 211 Measuring Default Probability

The methodology employed by KMV to calculate the term structure of default
probabilities has been described 1n detail in 3 7 1 above The value of the firm’s assets
1s imputed from the value of the firm’s equuty, the volatihty of equity and the amount of

the firm’s debt

4 21 2 Measuring Correlation

KMV apply the Markowitz varance-covanance approach to determine portfolio value
varlance They have constructed a factor model to explain the correlation in the
underlying asset values of the obligors The asset returns are assumed to be multivanate
normally distributed By 1solating the systematic varation 1n asset returns, they create a
framework within which future asset values, and, hence, future credit exposure values

can be modelled

4.3 Re-creating KMV'’s Portfolio Modelling Approach

Before building a multi-period model to value a CDO using KMV EDF and correlation
data, 1t 1s necessary to build a single time period model using these data Developing a
model which re-creates the results which KMV produce in their current portfolio
modelling product, Portfolio Manager, will serve the further purpose of confirming the
theoretical validity of the KMV modelling paradigm Such independent validation has
not previously been available and KMV, presumably for commercial reasons, have been

unwilling to disclose their methodology

While KMV have not published their methodology 1n detail, they have outlined their
modelling approach 1n various articles in academic and practitioner journals See for
example, Kealhofer (2003, 2003a), Bohn (2000) and Crosbie (2002) Furthermore, their
approach has been analysed by various commentators Using these outlines and
commentaries and an understanding of the simulation process, the Portfolio Marager
modelling approach 1s successfully re-created — for the first time, to the author’s
knowledge - as confirmed by the model outputs that replicate almost exactly those from

Portfolio Manager

The task of replicating comprised the following stages

e  Each asset 1n the portfolio 1s valued at the outset using a nsk-neutral valuation

approach
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. The asset correlation structure 1s derived using the KMV factor model
o The asset migration process 1s modelled
. The portfolio value at the horizon date 1s simulated repeatedly

. The portfolio distribution 1s derived, and the portfolio parameters — standard

deviation, called unexpected loss by KMV, and capital — are calculated

) The capital and unexpected loss are allocated to the component assets and

individual asset performance — both Sharpe Ratio and RORAC — are calculated

Each of these stages will now be described in detail A schematic outlining the vanous

tasks undertaken 1s shown in Figure 4 1 below

4 31 Asset Valuation at the Outset

The method that KMV employ for asset valuation was outlined in Bohn (2000)
Technical details regarding the manner in which they undertake interpolation of interest
rates and cumulative default probabilities are further described in KMV’s Portfolio
Manager product manual, Modelling Portfolio Risk (2003) These latter details are of no
theoretical importance but 1t was necessary to account for them correctly 1f results

matching KMV’s were to be obtained

As Bohn descnbes, the KMV so-called nisk-comparable valuation method begins by
calculating the nsk-adjusted PD by adjusting the actual PD to account for the market
price of nisk 1n the standard nisk-neutral approach outlined m Hull (2003, p203)

4 311 Calculating Cash Flows

The expected cash flows for an exposure are denved from the reference rate term
structure It 1s assumed that the future spot rate will equal the forward rate Hence, all
the expected cash flows are assumed known at the outset There 1s no modelling of

interest rate volatility
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4 3 1 2 Cumulative Quasi-Default Probability
The actual cumulative probability of default from 0 to time ¢, CEDF,, 1s given by the

Merton formula

n(A0)+(/1 —%az)t—ln(DPT)

avt

CEDF, =N< - 1 Equation 4-1

where
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A, = market value of the firm’s assets at time 0
DPT = default point

o = volatility of return on the firm’s assets, and

p = dnft rate, or expected return, on the firm’s assets

However, for valuation purposes, 1t 1s the rnisk-adjusted PD - quasi-probability of default
i KMV termunology - that 1s required The actual dnft rate 1s replaced by r, the
continuously compounded risk-free rate to obtain the cumulative quasi-probability of

default, CODF,

In(4,)+(r - 10 )~ In(DPT)
ot

CODF, =N {— } Equation 4-2

Re-arranging this equation, we get

CODF, =N{N“ (CEDT,)+(’U _r)\ﬁ} Equation 4-3
g

which specifies the cumulative quasi-default probability, CODF,, as a function of the
actual cumulative probability of default, CEDF, and the Sharpe ratio of the asset KMV
(2003, p51) suggest that the expected excess return on the asset 1s a function of its
sensitivity to systematic market risk factors

Br=p—r Equation 4-4

where [ 1s the asset’s beta to the market and © 1s the market nisk premium, (,um —r)

The asset’s beta to the market, 3 , may be re-stated as

5 = cov(assetz, market) -RZ-  Equation 4-5
o o

n m

where
R = the correlation between the asset return and the market return, and

o, = the volatility of the market return

This enables the individual asset’s Sharpe ratio to be expressed as a function of the

market’s Sharpe ratio, A The market’s Sharpe ratio 1s the market price of sk,
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o —7)

c

m

Equation 4-6

linking the amount of one year’s excess return to annual return volatility

KMV (2003, p51) suggest that the market price of risk will vary with the square root of
time since the excess return will be a linear function of time while volatility will

increase with the square root of time Furthermore,

Equation 4-7

Hence,
CODF,=N{N"(CEDF,)+RA+t}  Equation4-8

KMV suggest an appropriate proxy for the market 1s the custom index based on the
country and industry (or industries) within which the firm operates (Using a multi-
factor model, described 1n detail later, they create asset value indices for mdustries and
countries ) They regress the firm’s asset return series on the custom index to determine
the percentage of the asset return vanability that 1s explained by the custom index, R
The square root of R’ 15 a measure of the asset correlation with the market, they suggest

based on the assumption that the custom index proxies for the market

The market nisk premium, called the market Sharpe ratio, measures the required return
over and above the nisk-free rate for holding a unit of nisk at the aggregate level

Research performed at KMV on the risk premium implicit in credit spreads for U S

corporate bonds “reveals that the market Sharpe Ratio parameter 1s relatively stable over
time and typically around 04 ” KMV (2003, p19) They continue “Note that this 1s the
risk premium associated with the market value of firm assets and not the value of the
firm’s equity The rnisk premium for equities fluctuates more than that for assets because
of the dynamic nature of firm leverage ” (p19) The value of 0 4 will be used throughout
the rest of this study

4 31 3 Valuation

A nisky exposure will pay (1-LGD) 1f 1t defaults and 1 otherwise KMV decompose this
exposure 1nto two separate cash flows The first will pay the recovery amount (1-LGD)

whether 1t defaults or not The second pays 0 in the event of default and LGD otherwise
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A

The first cash flow has no default risk and can be discounted at the risk-free rate The
second cash flow contains credit nisk, valuation of this component must include a

discount for risk

KMV’s risk-comparable valuation (RCV) methodology embeds their risk-neutral
pricing technique The RCV value at the modelling date, time 0, 1s

VS =(1- LGD)RFV, + LGD RYY, Equation 4-9
where
V¢ = Risk-comparable value at time 0
RFV, = Ruisk-free value at time 0 and
RYV, =Risk comparable nsky value at time 0

The nisk-free value at ¢, discounts each cash flow at the risk-free rate

M
RFV,=Y'C,DF”  Equation 4-10

>0

where

M = time to maturity

¢t = time to payment of a given cash flow

C, = amount of cash flow at time ¢

DF"™ = nsk-free discount factor to time ¢

The nsky value calculation adjusts each cash flow by the quasi-probability and then

uses the risk-free discount factor for discounting

M
RYVS :Z(l ~CQDF,)C, DF Equation 4-11

>0

KMV give the term structure of EDF values annually from one to five years Using

these values, the cumulative probabilities of default are calculated as follows
CEDF, =1-(1—- EDF. ) Equation 4-12

Interpolation and extrapolation are based on the following formulae
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CEDE=1-:(1—CEDFI)’]fortSI

-1,

1-CEDF, [W)
CEDF,=1-|(1- CEDF, | ——= forl<T, <t<T, <5
'\ 1-CEDF,

CEDF, =1- (1—CEDFI)§} fort >5

Equation 4-13

As shown earlier, the COQDF value may be written 1n terms of the actual probability of
default to time ¢, the market’s Sharpe ratio, A, and the asset’s correlation with the

market, R
CODF,=N{N"'(CEDF)+ Rt}  Equation4-14

This enables the asset to be valued at time 0

4 32 Asset Correlation

The key reason for adopting the KMV-based approach to modelling 1s the opportunity
this affords to use their correlation framework KMV have a substantial database of
public companies — approximately 35,000 at the time of writing — for which they have
equity price time series over many years and from which they have calculated asset

price time series

They aggregate these individual time series to create 61 industry time series and 45
country time series They then use principal components analysis to extract orthogonal
factors — two global, five regional and seven sectoral — which may be used to calculate
asset correlation between all pairs of obligors The resulting factor sensitivities may be
used to model asset migration and hence value a debt portfolio at the modelling horizon
KMV update these factor sensitivities on an annual basis and include the file with their

monthly updates to obligor EDF values

4 321 The KMV Factor Structure

The correlation between the market value of a firm’s assets and the market embodies the
extent to which systematic risk factors in the economy drive the value of the firm’s
assets While the market, in theory, comprises all available assets, KMV make the

assumption that the market becomes “what we can observe that reasonably proxies for
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the theoretical market ” KMV (2003, p61) They define the market as the custom index

comprised of the country and industry indexes within which the firm operates

KMV’s factor model imposes a structure on the correlation of asset returns, which
mmplies that the correlation between the asset returns of any pair of firms can be
explained by the firms’ relationships to a set of common factors There are three levels
used m KMV’s factor structure, KMV (2003, p117) (1) A composite company-specific
factor, (11) country and industry factors, and (1n1) global, regional and industrial sector

factors

The first level of the structure differentiates between firm-specific and systematic risk
Systematic risk 1s captured by a single common factor This factor 1s unique to each
firm and 1s a weighted sum of country and industry factors to which the firm has

exposure

The country and 1industry factors at the second level of the factor structure are correlated
with each other Therefore, their nsk can also be decomposed into systematic and
1diosyncratic components The systematic component of the risk 1s captured by the basic
economic factors 1n the third level of the structure The 1diosyncratic risk components of

countries and industries are retained as country- and industry-specific factors

KMV emphasise (2003, p118) that the third level of factors i1s only needed for
mterpreting the drivers of correlation The actual correlation estimate depends only on
the division between the systematic and 1diosyncratic parts of the country and industry

risks This 1s shown m schematic format below, adapted from KMV (2003, p118)

Firm Risk
Systematic Risk Firm-specific Risk
Industry Risk Country Risk
Industry-specific T | i trT Country-specific
Risk Rusk
Global Economic Rusk Industnal Sector Risk

Regional Risk
Figure 4 2 KMV’s Factor Model Structure

The global, regional and sector factors capture all the common risk between countries

and industries That 1s, they capture all of the correlation between the country and
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industry factors Likewise, these basic factors also explamn all of the common nsk
between firms 1n different countries and industries Firms with exposure to the same

country or industry also share country- or industry-specific risks

4 3 2 2 Estimating the KMV Factor Model

KMV (2003, p119-122) describe the process whereby they estimate the relevant

parameters for their factor model

They construct 14 orthogonal factors from the 106 — 45 countries and 61 industries —
indices They regress the 106 country and industry return indices on the 14 orthogonal
factors to obtain the country and industry betas on these 14 factors They also obtain the
country- and industry-specific risks They regress each firm’s return senes on 1ts

composite ndex returns to obtain the firm-specific beta and the R’

Each index 1s regressed 1n sequence on the residual of the previous regression so that,
by construction, each of the factors 1s orthogonal This means that the Interest
Sensitivity factor, for example, 1s not the total effect of interest rates but only the

portion of that effect that cannot be explained by the global and regional factors

Country-
Countries Specific
(43) Factors
Global Regional Sector 453)
=| Economuc | +| Economuc | +| Factors |+
Factors Factors @) Industry-
Industnes 2) (5) Specific
(61) Factors
(61)

Figure 4 3 KMV’s Correlation Schematic

regional or sector effects and specific, or 1diosyncratic, risk

Country or industry risk 1s decomposed nto systematic risk arising from either global,

Coun Global Regional Sector Country-
RO mf”rny = Economic + Factor + Factor + Specific
¢ Effect Effect Effect Effect
Global Regional Sector Industry-

I;dﬁ;y = Economuc + Factor + Factor + Specific
© Effect Effect Effect Effect

The regression model can be written as
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2 5 7

rczzﬁcGrG +ZﬂcRrR +ZﬂcSrS +8c
G=1 R=] S=l1

Equation 4-15

2 s 7
r =Zﬂ1(;r6 +Zﬂm"k +Z:strs t+e,
G=l R=1 s=1

where

r. = return for country ¢

r, = return for industry :

r¢ = return for global market G
rg = return for region R

rs = return for sector §

B.; = effect of global market G on country ¢
B = effect of global market G on industry :
B = effect of region R on country ¢

B = effect of region R on industry :

B.s = effect of sector S on country ¢

B = effect of sector S on industry /

g, = country-specific effect for country ¢

g, = industry-specific effect for industry :

The variance of the industry and sector returns 1s, therefore

2 5 7
2 2 2 2 2 2 2 2
O-c =ZﬁcGJG + ZﬂcRO-R + ZﬂcSo-S + O-f:c
G;l K :‘ S;‘ Equation 4-16
2 ) 2 2 2 2 2
o, :ZﬂxGGG + Z:BxRUR + ZﬂtSO.S to,
G=1 R=1 So1

where

o = vanance of global market factor G’s return
o; = variance of region factor R’s return

o; = vanance of sector factor $’s return
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The firm nsk 1s decomposed into systematic and 1diosyncratic components The
composite factor 1s constructed individually for each firm based on the countries and
industries to which 1t 1s exposed These country and industry classifications are
determined from the firm’s reported sales and asset levels in a particular country or

mndustry

The composite factor can be written as
45 61
P, =Z W, F, + Z W7, Equation 4-17
c=l =1

where

¢, = composite factor for firm &
w,. = weight of firm & 1n country ¢
w, = weight of firm & 1n industry 7
r,= return for country ¢

r, = return for industry /

and
as 61
Z w, = Z w, =1  Equation 4-18
c=1 i=1
KMV run a regression of each firm’s weekly returns against the returns of 1ts composite
factor
r,=p.¢.+e, Equation 4-19

where
r, =return for firm £
B, =beta for firm £

&, = firm-specific effect for firm &

KMV (2003, p126) call the composite factor coefficient f,, “the firm’s beta”, noting

that 1t differs from the firm’s stock beta which 1s against the market index whereas 1n

their model, each firm has 1ts own umque index KMV publish the R for the regression
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for each firm 1n their database These values range from 01 to 0 65 with the lower

values typical of smaller firms and higher values for larger firms

For private firms, the appropnate industry and country weights are used as for public
companies and an estimate 1s made of the firm’s beta This latter value 1s calculated
using an estimate of R for the firm that 1s based on the value of R for public firms of
similar size in the same country and industries With this estimate, the firm’s beta 1s

calculated using

B. =VR* Z&  Equation 4-20
o
#x

We can re-state the firm’s returns as follows
5= Pb + &,
45 61
=13k(zwkcrc +Zwk1r1]+€k
c=1 =1
ZWkC(ZﬁCGrG +ZﬁcRrR "'Zﬁcsrsj

:ﬂ c=l 2
Zwkz(ZﬂxGrG +Z_ﬂerR "‘Z/B.srsj

G=l1

2 45
Z ﬂckach +ZZﬂchkch +ZZﬂCSchrS +Zwkc c]
G=

1 ¢=1 R=l =l S=1 ¢=1

2 5
ZZ BeWuts +ZZﬁ.RszrR +ZZﬂ;ku,”s +Zwkz 1]
Gl =l R=1 1=1 S0 =1

2 /45

Z ZﬂcGwlcc +Zﬁrka1JrG
5 (45

Z Zﬂchkc_*—ZﬁzRijrR

Z ZﬂcSch +Zﬂ,swlajrs

+&,

~

b+ E,

Equation 4-21
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(Zﬂ 6 Wre +Z;BGka]rG +Z:Bk (Zﬁchkc +Zﬂ1kwk1jrk

[Zﬂcswkc +Zﬂ,swk,]rs +Z:Bkwkc5c +Zﬁkwkzg +&

c=l

> ﬁ’M~ ‘EMQ EM~

Bi?s +ZﬂerR +Zﬂksrs +Zﬁkwkc5 +Zﬁkwkxg +Ey

=Z Bists +ZﬂerR +ZlBkS'rS +Zﬂkcgc +Zﬂk15; &,

G=1
Equation 4-22

where

Bkc =Bkwkc

Equation 4-23
B = Bwy,

The total nisk of the firm can thus be expressed as follows

—ZﬁkGGG +Z Pixox +Z,5’UO'S +Zﬂkc0' +Zﬂk,0'i +¢! Equation 4-24

c=1

The covanance in the asset returns of two firms can be calculated by summing their

joint sensitivity to the common factors

Z/B,G,Bkco'c +ZﬂjRﬂkRO-R +Zﬁjsﬂksas +Zﬂjcﬂkco-€ +Zﬂﬂﬂla g,

1=l

Equation 4-25

and the return correlation 1s obtained using the standard formula

S .
c,0;

Pu= Equation 4-26
4 33 Simulating Asset Migration

The asset migration process 1s modelled using a Monte Carlo simulation approach The

approach proceeds as follows

1 Draw a set of factor realisations, one for each factor The factors are independent

and 1dentically distributed (11 d ) standard normal variables
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Draw a specific risk random variable for each firm These draws are also 11d

standard normal random variables

Compute the random component of each firm’s asset return as the weighted sum

of the specific and systematic risks

If the random value drawn 1s below the default threshold set by the firm’s default
probability to the modelling horizon, CEDF,,, the firm has defaulted The loss
incurred on defaulted secunties 1s obtained by making a random drawing from a
beta distribution, characterised by the average loss rate expected for the facility as

well as 1ts standard deviation

Compute the value of each exposure at the hornizon from 1ts asset value realisation
This 15 calculated using the RCV methodology previously described The value

will be a function of each exposure’s LGD, EDF value, R* and the random

realisation of asset value at the horizon

The value of the portfolio at the horizon 1s obtained by summing the values of the

individual exposures in the portfolio

Repeat steps 1 to 6 sufficiently often to achieve the requisite resolution 1n the
extreme tail of the distribution The number of iterations typically required for this
of the order of 100,000

In the KMV framework, sampling in the Monte Carlo simulation takes place over the

asset values of the individual obligors The asset value at the horizon for an obligor, Ay,

1s calculated as

o ~
ln(AH )=1n(AO)+(;1 ——2—] ty +o-\/Z.9H Equation 4-27

where

A, = the borrower’s underlying asset value at ¢,

u = expected return on the underlying assets

o = volatility of the return on the underlying assets

£, = the random component of the asset return

This allows the process of simulating asset migration to be completed
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The &, are assumed to be drawn from a multi-variate normal distnibution Thus, the
simulation must draw a value of £, for each obligor to embed this correlation structure

The factor model, described already, provides the structure necessary to embed the
matnx of correlations among asset returns The independent draws for the 120 factors -
two global macroeconomic, five regional, seven sectoral, 45 country-specific and 61

industry-specific effects — are combined as follows

120

EH = = 1 {Z ﬂj O.] Ej + 0'1‘171 Equatlon 4-28
DA
J=1

The 4, are the 120 systematic nisk factors, while # 1s the firm-specific factor, and, as

mentioned already, all are independent draws of standard normally distributed random

variables The random component of asset return, &, 1s obtained by first calculating
the weighted sum of the firm-specific return, # , and the 120 systematic nsk factors, 4,
the weights being the coefficients 1n the last equation, and then scaling the sum by
dividing by the standard deviation of the firm’s asset return Thus, by construction, the
random component of the firm’s asset return, &, 1s standard normally distributed and

has a correlation structure consistent with the factor model of correlation

434 LGD

KMV, in common with many others 1n the industry — most notably, CreditMetrics - use
the beta distribution to model the recovery rate The beta distribution has desirable
charactenistics for a recovery function First, it can be bounded at whatever level 1s
chosen clearly, the desired upper and lower bounds for the recovery rate are 0 and 1
Furthermore, 1t can accommodate many different distributional shapes, which offers the

flexibility to represent the lender’s view on recovery uncertainty

The Beta function 1s characterised by two parameters

B(a,b)= %@)} Equation 4-29

where I' 15 the gamma function, defined as
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F(a)=je‘y y*dy Equation 4-30
0
A Beta distribution density function 1s given by
2 (1= )

f(x, a, b):w Equatlon 4-31

The mean of the beta distribution 1s given by

,u(a,b)= a Equation 4-32
a+b
and 1ts variance 1s given by
) ab
o (a,b)z Equation 4-33
a+b+1

Clearly, the mean of the distnbution must be LGD, so, by definition

a
a+

LGD= Equation 4-34

The relationship between a and b, which determines the shape of the Beta distribution

for a given LGD 1s determined by their relationship m the vanance of the distribution

o2 o LGD(1- LGD)
a+b+1

Equation 4-35
KMV (2003, p103) suggest that this shape be controlled through the use of a single
parameter, k£, which they define as
k=a+b+1 Equation 4-36
Hence, the shape parameters, a and b, can be determined from LGD and &k

=(k-1)LGD

a
-37
b (k _1)(i- LGD) Equation 4

and the variance can be expressed as

o = LGD(1 - LGD)

k Equation 4-38
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The reason the beta distribution has become the distribution of choice for LGD in the
market is the flexibility it offers. If nothing is known about the distributional
characteristics of LGD, a &-value of 3 might be chosen; this will result in a uniform
distribution. Higher k values will result in a distribution resembling the normal. If,
however, as is sometimes observed, LGD is either 0% or 100% with very low
probabilities of intermediate outcomes, a k-parameter of 2 or less will give a U-shaped
distribution which captures these features. These distributions are shown in Figure 4.4

Beta Distribution ; LGD

LGD

Figure 4.4 Beta Distribution with Average LGD = 50%

Thus, as k becomes large, the variance of the distribution goes to 0, implying little
uncertainty about the estimate of mean LGD, while lesser values of K are appropriate
where the lender has less confidence in the LGD estimate. KMV suggest a value of 4 as
being appropriate for many lenders.

The beta distribution is plotted in Figure 4.5 below for various values of k when the
average LGD is 45%:
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Figure 4.5 Beta Distribution with Average LGD = 40%

The fractional loss of the exposure, LGD, is a random variable drawn from a Beta

distribution with mean LGD and variance k—LGD) wju be modelled using

ak value of 4 throughout this thesis. This sees LGD values close to the average much of
the time but allows full recovery and complete loss occur also.

4.3.5 Asset Revaluation at the Horizon

Once the borrower’s asset value realisation at horizon is determined, exposures to the
borrower at the horizon can be evaluated. The value of a given exposure is determined
as the sum of two exposures, a riskless portion, which pays (I- LGD\RFVh) whether

the exposure defaults or not, and a risky portion, which pays LGDRFYh when the
exposure is in default and zero otherwise:

VH= (I-LGD)RFVh +LGDRFYh Equation 4-39

where RFVH is the risk-free value of the exposure from horizon to maturity which

includes the risk-free value at H of any cash flows received from 0 to H. RYVH is the
value of the risky portion of the exposure from horizon to maturity, and LGD is the
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expected LGD. RYVH also includes coupons from time 0 to H. According to KMV

(2003, pi61), the coupons or cash flows received before horizon are assumed to be risk-
free and enter into the LGD calculation.

I the exposure defaults before the horizon, then the value of the risky portion of the
exposure, RYVH, is equal to zero and the obligor is assumed to lose an amount based

on the parameterised LGD distribution. Since LGD is assumed to be random, a random
draw is made to determine the fractional loss for each defaulted exposure, as discussed
next.

4.3.5.1 Exposure Value in the Default State

If the asset value at the modelling horizon, In(”), falls below the default point,
In(DPTh), then the obligor will default. In other words, the obligor will default if the
realisation of the random component of the obligor’s asset return, €H, is larger (in

absolute terms) than the //-period distance to default (DD) at time 0, which is the
normal inverse of the //-period EDF:

=N 1(CEDFn) Equation 4-40

where
DPTh - standardised default point at the horizon

CEDFh = cumulative probability of default to the horizon

In the event of default, the risky value of the exposure, RYVH, is set to zero. A random
draw from the beta distribution determines the loss incurred as explained previously.

4.3.5.2 Exposure Value in the Non-Default State

In order to determine the risk which a portfolio of loans presents, the portfolio value
distribution at horizon must be calculated. As described above, the portfolio must be
simulated under the true risk measure to determine whether default has occurred for

each individual loan. This will depend on whether the realised eH for an obligor causes
the borrower to fall below its default threshold.
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If the obligor does not default, the facility must be revalued at the modelling horizon
The facility value will be a function of the realised EDF term structure The modelling
requires that the realised value distribution for each facility should be consistent with
the EDF term structure as observed at the outset This, mn turn, requires that the
distributton of distance to default for an obligor at the modelling horizon be explicitly
linked to the term structure of DD observed at the outset

In order to undertake valuation 1n the non-default state at the modelling horizon, the
risk-comparable approach 1s adopted once again The cumulative quasi-EDF values
from the modelling horizon to the cash flow date must be calculated as a function of the

asset return at horizon, £, Thus, the challenge 1s to calculate the value for CODF, ,,,
the cumulative quasi-EDF from the modelling horizon to maturity, in a manner that
incorporates the information about the borrower’s DD at the outset

CODF, ,,=N(-DD,, ,|[ND)  Equation 4-41

where DD, ,, 1s the nisk-neutral DD from horizon, A, to matunty, M, in the non-default
(ND) state at the modelling honzon, H

This DD can be expressed as a function of the realised asset value at horizon, 4,,, and

the default point at maturity, DP,,

DD, ,, =
i o NM-H
Equation 4-42
A 2 N 2
| -2 | u-24 o JHE, +| r -4 (M - H)
DP, 2 2
c,NM-H

By adding and subtracting (,u - r)(M -H ) in the numerator, this simplifies as follows
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m[ 4y J+[u—o-—2’z‘JH+0'A«/ﬁ§H+(r—%:iJ(M—H)+(y—r)(M—H)—(u—r)(M—H)

DP,

ocNM-H

m[Dj‘;M Hy_%i}ma,,ma, (Yot - 1)

o, NM-H

A o
In| = |+|u——2 M
[DPM] 2} . JHE, (u-rWM-H

ocNM-H M-H o,

Equation 4-43

The Brownian processes at the modelling honzon, B, , and at matunty, B, , are

correlated B,, may be re-written as
B, =B, +B,_, Equation 4-44
The correlation between B, and B,, may be expressed as follows

_Cov(BH,BM)

BHM

O'BHO'BM

_ Cov(By, By )+ Cov(B, By _y)

c
By O-BM

Equation 4-45

H -H
Since p=,fﬁ , we get 1/MM =1-p°

Furthermore,

Equation 4-46

and
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(M — r) =RA Equation 4-47

Hence, we can re-wnte DD, ,, as follows

DDOM‘/— JH z ( -rWM-H
VM -H \F o,
DDOM

e

This gives us an expression that connects the DD at maturity to the realised return to the

DD, , =

Equation 4-48

eH -RANM -H

modelling horizon

Default can occur at any time However, we can approximate this by replacing the
continuous barrter with a situation in which default can occur only at the horizon
modelling date or at facility maturity The DD from the outset to the modelling horizon
1s g1ven by the obligor’s default probability

DD,, =-N"'(CEDF,)  Equation 4-49

In these circumstances, the modelled DD from the outset to matunty, DD, ,, , must be

consistent with the known probability of default from the outset to facility maturity,
CEDF,, Given our assumption that default can occur only at the modelling horizon or

at matunty, the probability of default may be calculated as the combined probability of

default occurning before maturity or honizon

The two Browman motion processes - to the modelling horizon and matunty,
respectively — are bivariate normally distributed with a correlation coefficient of p as
described above Thus, we know that the probability of defaulting between the start of
the modelling period and facility maturity 1s comprised of the volume under the

bivaniate surface to the left of — DD, ,, and below —DD,,, As shown in Figure 46,

the probability of surviving 1s the volume under the bivanate above and to the right of

the default thresholds given by — DD, , and —DD,,
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Calculating Distance to Default from the Outset to Maturity
3

0 DDn

DDOV=-1.4

-3 -2 -101273
DD(H=-26

dda

Figure 4.6 Calculating DD from the Outset to Maturity

By symmetry, this can be calculated as the volume to the left and below DDCH and

DDom. Hence,

N2(- AT1(CEDFh),DDom, p)=1- CEDFm  Equation 4-50

| the borrower does not default at the horizon, then its new cumulative quasi-EDF term
structure must be derived conditional on its realised distance-to-default at the horizon.
Only when this is calculated can all the cash flows from //to M be valued.

We interpolate to calculate all values CQDF(H,t), the cumulative quasi-EDF to date t
between H and M:

CQDFH+1- (I—CQDFHMy+  Equation 4-51

All values CQDF(H} t), the cumulative quasi-EDF to date t between H and M may be
obtained using this interpolation. The facility values at the horizon date can then be
calculated and hence the portfolio value. Repeated simulation yields the portfolio value
distribution.
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4.4 Checking the Successful Replication of the KMV

Modelling Framework

The model described above was implemented 1n a Matlab environment using a portfolio
of ninety loans of $5m each to ninety different B-rated obligors with maturities varying
between five and ten years each offering a 1 5% spread The modelling horizon was set
to one year and the portfolio value distnbution at the horizon date was obtained by
using Monte Carlo simulation with 100,000 tnals The same portfolio was modelled 1n
Portfolio Manager and, once again, the portfolio value distribution at the horizon date

was derived

The summary output from Portfolio Manager 1s presented in Figure 4 7 below It shows
that the portfolio of loans with a par value of $450m has a market value of $447 9m
This value 1s obtained from the analytic calculation shown earlier This exact same

value 1s obtained within the newly constructed model

The portfolio yields a total spread of 203bp which 1s eroded by an expected loss of 98bp
to yield an expected spread of 105bp over the one-year horizon The standard deviation
of loss, the unexpected loss, 1s 239bp and, hence, the Sharpe ratio, which equals the
expected spread divided by unexpected loss, 1s 105/239 =0 438

An 1item of particular importance to portfolio managers and regulators alike'is the
economic capital required to support the portfolio Economic capital 1s typically set at a
level such that the debt which ranks ahead of the economic capital can achieve a
particular rating, or, equivalently, a probability of default at the horizon of a given level
In this nstance, a default probability of 10bp at the one-year horizon 1s chosen as the
target default probability for the debt Thus, the 99 9™ percentile on the portfolio loss
distribution 1s measured The difference between the mean portfolio value and the 99 9™
percentile 1s the loss from which the debt must be protected at the horizon The present
value of this amount represents the economic capital, which 1s the amount which we

must set aside now to absorb portfolio losses over the modelling horizon
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f Portfolio Overview - C:\Personal\Thesis\KMV\KMV Target f... [-H

=) Copy k) Savetofile Hrint | Close
No. Exposures 90
No. Expired Exposures 0
No Borrowers 90

Commitments 450000,000
Exposure 450,000,000

MTM Exposure 447 902,425
Book Value Drawn 450,000,000
Market Value Drawn 447,902,425

Total Spread Revenue, Annualized 9,090,968

Expected Lgs"s, Annualized 4,407,690

Expected Spread Revenue, Annualized 4,683,278
Unexpected Loss (Simulated) 10,685,779

Capital (10.00 bp in excess of Expected Loss) 47,689,875
Current

Non-Zero Records 90

Total Spread, Annualized 002030

Expected Loss, Annualized 000984

Expected Spread, Annualized 001046

Unexpected Loss (Simulated) 002386

Capital (10.00 bp in excess of Expected Loss) 010647
Sharpe Ratio 043827

RORAC, Annualized 0.12092

Figure 4.7 PortfolioManager Summary Output

The capital required to support the portfolio equals 10.65% of the market value of the
portfolio. Furthermore, the return on risk-adjusted capital (RORAC) which equals
expected spread divided by the capital plus the risk-free rate equals 1.05%/10.65% +
2.21% = 12.09%.

The two portfolio distributions are shown in Figure 4.8 below:
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Figure 4.8 Portfolio Manager and Modelled Distributions Compared

Itis clear from the above that the model captures the portfolio dynamic embedded in the
KMV modelling methodology and that the differences hetween the distributions are
attributable to simulation error.

This portfolio capital is, in turn, allocated to the individual facilities that comprise the
portfolio. The capital allocation methodology adopted by KMV is the standard
contribution to variance methodology applied in most VaR contexts.

_duL, WP LIV oo

RC="an oL UL,

=pipULi  Equation 4-52

where

RC1is the risk contribution of facility z the fraction of portfolio capital which is
attributed to facility z

Wt is the weight of the facility in the portfolio,
ULi,ULj and ULp are the standard deviations of the facility values z ] and the
portfolio, respectively,

and p. is the correlation between the value of facility i and the value of the portfolio.
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The sum of all the capital attributed to the facilities equals the capital for the portfolio:

n n
YYWVYF}rL)J/LUILJ n nwnULUI « «
<>= Mr «<

Equation 4-53

Risk contribution can be interpreted as the portion of the individual facility’s risk that
remains after diversification. This is the key focus of managerial attention.

Therefore, in addition to checking that the portfolio distribution is calculated in a
manner consistent with that employed by KMV, a check on capital attribution is
necessary to ensure that individual facilities are being modelled with similar
consistency. To that end, the capital attributed to individual facilities under the model
and that attributed by KMV in Portfolio Manager are compared. The results of that
comparison are plotted in Figure 4.9:

Figure 4.9 Comparison of Capital Allocation under New Model and rortfolio

Manager

Again, the results confirm consistency between the two models at the facility level. This
IS a necessary pre-requisite to extending the modelling approach into a multi-period
framework. This confirms the successful replication of the KMV modelling framework.
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4.5 Using the Model to Address Key Credit Portfolio Issues

The primary concern of this thesis 1s CDO tranche valuation This requires that a single
period credit portfolio model be created as a first step towards the building of the multi-

period model necessary for CDO tranche valuation

However, the availability of this single period model affords insights into other areas of
interest 1n the credit portfolio management field In particular, having such a portfolio
model enables us answer four questions that have long challenged academe and industry

alike

J How can a new facility be assessed 1n the context of the portfolio to which 1t will
be added?

. What capital attribution methodology 1s most appropnate in the context of a bank
credit portfolio which 1s financed largely with debt?

o What 1s the optimal amount of a new syndicated loan for which a bank should
subscribe given 1ts portfolio composition? Or, equivalently, and of more relevance
to the bank’s biggest customers, what penalty 1s being mcurred by holding a

facility which 1s larger than the optimal size?

e  What framework should a bank use to set limits on the amount of exposure 1t
should be willing to accept to different borrowers, sectors and geographies

consistent with 1ts rnisk appetite?

451 Determining the Marginal Impact of a Loan on a Debt Portfolio

Standard portfolio management software 1s run centrally and in 1solation from the
business line Those who compete for business have little appreciation of the impact of
the new facilities which they consider writing on the portfolio The best that can be
achieved 1n such circumstances 1s to give the business line general instructions about the
concentrations which exist in the portfolio to guide their market positioning and loan

pricing decisions

However, with the model that has just been built, all the inputs necessary to guide the
pricing decision are available The value of the new loan at the outset can be calculated
using the formula outlined at 43 1 above The new loan value distnbution at the
modelling horizon can be obtained by using the stored realisations for the 120 random

variables for the 100,000 iterations
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Thus, the value distribution for the new loan and for the portfolio including the
proposed new loan may be calculated using the stored portfolio values This provides all
the nputs required for the calculation of Risk Contribution and facility capital as

described in 44 above This, i turn, enables the facility Sharpe ratio,

Expected Spread . and facility RORAC, Expected Spread

+ Risk — free rate, to be
Risk Contribution Capitalisation Rate

calculated Finally, having facility capital allows us calculate the facility Economic
Value Added (EVA)

None of these measures 1s available to the business line from Portfolio Manager or
other credit portfolio software offerings at present Having these values available before
the decision to provide the loan has to be made allows all new loan-granting decisions
to be made 1n the full knowledge of their portfolio 1impact This can turn the portfolio
management function from 1ts current reactive stance of trying to mitigate the worst
effects of low RORAC facilities after they have been wrtten to identifying them 1n

advance and avoiding taking them into the portfolio

In summary, portfolio management 1s primarily about identifying the capital required to
support individual facihities According as the concentration of a facility in a portfolio
increases, the capitalisation rate for that facility increases and the facility becomes less
desirable Knowing the capital required to support a putative new facility ex ante has the

potential to transform the loan portfolio management business

4 52 An Alternative Capital Attribution Framework

Capatal 1s fundamentally a portfolio concept Allocating capital to a facility requires an
attribution methodology The challenge of devising a logical attribution methodology
has been faced in a trading room environment for many years The methodology of
choice for distnbuting himits across desks, for example, has been to use the covanance

of the desk returns with the trading room returns

KMYV and many others 1n the credit marketplace have adopted this methodology But, 1s
this appropriate? The instruments dealt 1n a trading room context are all liquid and the
trading horizon 1s short In these circumstances, the distribution of returns 1s
approximately normal This differs sigmficantly from the situation with bank loan
portfolios A typical bank portfolio compnses very 1lliquid loans - indeed, some would

venture to suggest that the role of banks 1s hquidity intermediation — so the modelling
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horizon 1s much longer than that considered by trading desks In fact, the primary
justification offered for the one-year modelling horizon which 1s the standard used 1n
the marketplace 1s that one year 1s a period long enough to allow the bank to be

recapitalised 1f 1ts loan portfolio dechines significantly 1n value

Loan portfolio distributions are skewed and fat-tailed over the one year modelling
horizon A bank 1s a highly leveraged institution It 1s concerned not only about standard
deviation, 1t 1s also concerned about becoming decapitalised Capital 1s fundamentally
about 1nsulating the bank from extreme losses But the nisk contribution methodology
penalises facilities based on their contribution to varniance and not on their contribution

to those scenarios for which capital 1s actually required

A further consideration relates to the nature of capital, while capital is sef by reference
to an extreme loss percentile, such as 99 9% or 99 95% depending on the bank’s target
debt rating, the bank will be economically bankrupt at much lower loss levels Thus,
while the amount of capital 1s set by reference to an extreme percentile, a less extreme
percentile 1s a more relevant threshold for a bank which concerned about 1ts economic

independence

4 521 Capital Allocation Based on Contribution to ETL

An alternative 1s suggested adopt an expected tail loss (ETL) approach which allocates
capital to facilities based on their contribution to portfolio outcomes below a chosen

portfolio threshold

ETL,=E|L| L>Threshold| Equation 4-54

In other words, the expected tail loss 1s the average of the portfolio losses, L, for those

scenartos where the portfolio loss 1s beyond the chosen threshold
Portfolio capital, C,, 1s then allocated to facilities, C,, based on the extent to which the

average facility value 1n the scenarios which give rise to a portfolio loss greater than the

portfolio loss threshold 1s below the facility’s unconditional average

E|L,|L, > Threshold
C =
ETL, ’

Equation 4-55

Once again, this measure satisfies the requirement that Z C =C,

1
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This proposed capital allocation methodology has two desirable properties. Firstly, it
satisfies the sub-additivity, homogeneity and monotonicity requirements for a coherent
risk measure specified by Artzner et al (1997, 1999). Secondly, it is more sensitive to
exposure concentrations. A criticism that is often levelled at the contribution to variance
methodology is that concentrations have to increase significantly before a noticeable
increase in allocated capital is observed.

There is no published work of which the author is aware which suggests how sensitive a
portfolio should be to exposure size. However, industry practice is that single-name
exposures greater than four times the average exposure size are seldom held voluntarily.
This rule of thumb is based on the view that exposures of this size will wipe out the net
income contribution of over 300 exposures, assuming a 40% LGD and 0.4% net
income. However, this rule assumes a portfolio with thousands of exposures; in a
portfolio ofjust 90 exposures, the four times multiplier would certainly be reduced.

This point is borne out in Figure 4.10 below:

Figure 4.10 Capital Allocation: ETL and Risk Contribution methodologies
compared

When a €5m facility is added to a €450m portfolio of 90 loans of €5m each, the
capitalisation rate for the facility is 6.9% under the ETL allocation approach and 8.3%

149



under the Risk Contribution approach However, as the facility size increases, the ETL-
based capitalisation rate increases faster and by the time the facility has increased to
€50m representing 10% of the total portfolio, the capitalisation rate has increased to
37 9% compared to 21 7% under the Risk Contnbution approach While the example 1s
stylised 1n the sense that corporate banking portfolios are much more diversified with,
typically, thousands or tens of thousands of facilities, the same pattern 1s repeated when
tested on a typical bank portfolio of corporate loans This alternative allocation
methodology ensures that taking on exposures significantly larger than the average size
within the portfolio will exhibit low RORAC and consequently will not be undertaken
This accords with typical bank policy whereby larger exposures are only extended to

high-grade borrowers or to low-grade borrowers on a secured basis

453 Determining the Optimal Hold Level and the Concentration Penalty

The model outlined at 4521 above determines the capital required to support a
putatrve new facility to be added to a loan portfolio However, in many instances, 1t 1s
the amount of the loan that 1s at 1ssue, and not whether or not to grant the loan For
example, when participating 1n a syndicated loan, we need to determine the optimal
level of participation Likewise, when extending facilities to a relationship customer, we
need to understand what costs are icurred by making credit available which exceeds
the optimal hold level What 1s required 1s a framework for determining both these

quantities

The credit portfolio model provides just such a framework Typically, loans will be
1ssued at a spread in excess of their true value given by the formula at 4 3 1 above
However, according as the facility size increases, 1t becomes a source of concentration
1 the portfolio and the capital increases at an increasing rate as shown in Figure 4 11

below for the same €450m portfolio described above

The average capitalisation rate increases and the marginal capitalisation rate increases at
an even faster rate, as demonstrated in Figure 4 12 below The increased capitalisation
rate translates into an increased cost of writing incremental exposure Figure 4 13
demonstrates that the increased capitalisation requirements translate into higher costs
for the bank as exposure increases, the marginal cost of assuming additional exposure
increases until it exceeds the spread, and, at still lngher exposure levels, the average cost

exceeds the spread
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Capital vs Exposure

€0 €2,000,000 €4,000,000 €6,000,000 €8,000,000 €10,000,000
Exposure

Figure 4.11 Capital as a function of Exposure

Capitalisation Rate vs Exposure

Exposure

Figure 4.12 Marginal and Average Capitalisation Rates as a function of Exposure
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Margin and Costs vs Exposure

Exposure

Figure 4.13 Marginal and Average Cost as a function of Exposure

EVA is the primary measure of value in most banks. It is calculated by subtracting the
cost of capital times the amount of capital from the expected spread. It is a measure of
annualised value added. The EVA in Figure 4.14 rises at first before peaking where the
expected spread equals the cost of capital times the marginal capitalisation rate. Beyond
that exposure level, the net revenue turns negative as the marginal cost of capital
exceeds the expected spread. Clearly, the optimal exposure is that at which the EVA per
unit of regulatory capital consumed is above the threshold set by management. If Tier 1
equity- and hence, regulatory capital - is not constrained, then the optimal exposure is
that which maximises EVA.

In the €450m portfolio under consideration, EVA is at a maximum for a particular
facility at an exposure size of €5.9m. But, the maximum desirable exposure size scales
with portfolio size and with the number and diversity of exposures. Thus, larger
institutions can comfortably accommodate much larger exposures before detracting
from EVA. Likewise, better diversified portfolios will reduce the correlation between
the value of a new facility and that of the portfolio.
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EVA vs Exposure

Exposure

Figure 4.14 Economic Value Added vs Exposure

However, according as the facility becomes a larger fraction of the total portfolio, the
benefits of diversification are eroded and that facility’s marginal EVA will decline and
eventually turn negative. This approach enables a bank to determine two important
facts:

»  The optimal amount of a syndicated loan to assume is that which maximises EVA
or which ensures the marginal EVA per unit of exposure just exceeds the
threshold set by management.

«  The cost of exceeding the optimal hold level for a relationship customer is the
EVA destroyed on the exposure beyond the optimal.

By implementing a loan pricing model linked to the marginal capitalisation rates, the
business line will have an incentive to buy credit protection against the names where the
exposure exceeds the optimal. It also creates an alignment of interest between the
portfolio management function and the business line.

4.5.4 Limit-Setting in Debt Portfolios

The measure of risk of relevance to a bank is economic capital. Thus, economic capital,
it is suggested, provides an obvious basis for setting limits to borrowers, sectors and
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geographies. No further exposure may be assumed if the economic capital required to
support the exposure to the obligor exceeds the agreed capital threshold. Such a
framework would provide a far more coherent basis for limit setting than the exposure-
based limits currently in use which are linked to customer grade based on rather vague
qualitative factors.

4.6 Implications for Bank Regulation

The framework created in this chapter demonstrates the impact of portfolio composition
on capital. Under Basel II, regulatory capital depends on the obligor PD and on the
LGD, exposure at default (EAD) and maturity (M) of the facility. This chapter
highlights that facility capital is dependent not just on these variables but, crucially, on
the composition of the portfolio also. Poorly diversified portfolios will require
significantly more capital than well diversified ones. While this has been understood in
regulatory circles for a long time, this framework enables the debate to move from
being purely qualitative in nature to quantitative. The regulators, understandably, are
reluctant to commit to a quantitative approach until they are satisfied about data quality,
modelling and backtesting. However, it is suggested that this approach could be
employed as the basis for setting capital in the future.

4.7 Conclusion

In this chapter, a single period credit portfolio model was developed which replicated
the current state-of-the-art model.

The KMV approach to the modelling of a portfolio of debt securities over a single time
period was replicated based on outline descriptions of their approach in the literature.
The success of this modelling effort is confirmed by comparing the loan value
distributions at maturity and the value, expected loss, unexpected loss and risk
contribution of each loan in the portfolio produced by running the portfolio through
KMV’s Portfolio Manager software.

This model was then used to propose a modification to current market practice and two
significant extensions to the state-of-the-art. The capital attribution methodology
adopted by industry and embedded in KMV’s portfolio model allocates capital in
accordance with contribution to variance. This model, the standard in market risk
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environments, implicitly assumes that variability of value around the mean is the
investor’s main concern.

However, this author argues that for leveraged portfolios, contribution to extreme
outcomes is of much more concern and proposes an allocation scheme based on
expected tail loss. This has the effect of penalising concentrations more severely than
the market standard framework and offers a concentration sensitivity that is more
consistent with intuition and market practice.

The single period model which KMV offers models portfolios ex post. Unfortunately,
this tells the portfolio manager the effect of individual facilities on the portfolio after
they have already been added to the portfolio and the manager has no opportunity to
influence the decision. This thesis creates a framework in which the impact of a facility
on the portfolio can be measured ex ante giving the portfolio manager the ability to
influence the decision on whether to add the facility before the fact.

In reality, however, the decision to extend a facility to a customer is seldom a Yes/No.
Particularly in syndicated lending, the key concern is “How much?” not “Whether or
not”; the issue is one of deciding what size of facility should be made available.
Likewise, a bank’s best relationship customers will require facilities that exceed those
which can be economically accommodated within the bank’s portfolio. The bank’s
appetite will vary depending on the size and composition of its book.

This thesis proposes a model that enables the portfolio manager to determine the impact
of aloan increment on the portfolio. As the capitalisation rate increases, the cost of the
incremental capital drives the total cost of holding the facility on balance sheet higher
than the spread on offer.

This provides the line with a signal as to what the optimal hold amount is. This accords
with intuition that suggests that limits not be set as absolute amounts: rather, they
should ensure that the return per unit of risk of the last increment of exposure is greater
than the minimum threshold. A larger hold amount is warranted if the spread on offer is
wider.

Likewise, it measures the cost of holding an excessive exposure to a given obligor. This
‘concentration penalty’ can be levied on the relationship manager. The penalty provides
the portfolio manager with adequate income to spend on the purchase of protection on
that name should a CDS market exist.
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Finally, 1t provides the basis for setting borrower lmuts, an 1ssue with which the market
has long struggled Typically such limits have been set as absolute amounts of exposure
This thesis suggests that a single capital amount can be used to set limits regardless of

the borrower grade

Having replicated the KMV modelling approach 1n a single time period framework, the
next step 1s to extend this approach 1n two ways (1) First, model the assets that comprise
the portfolio To achieve this, the portfolio model must be converted from a single- to a
multi-period framework This will enable the cash flowing from the portfolio over time
to be determined (1) Then, model the habilities Build a cash flow model to disburse
the cash from the assets to the CDO tranches 1n accordance with the cash flow waterfall

specified 1n the CDO 1ndenture

The development of this new model 1s the subject of the next chapter
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Chapter 5. Developing a Multi-Period Credit Portfolio
Model to Value CDO Tranches

5.1 Chapter Overview

In this chapter, a new model 1s developed which will enable the valuation of CDO
tranches using a multi-time step Monte Carlo modelling approach in a risk-neutral

framework

5.2 Motivation for Building a New Model

This thesis grew from dissatisfaction with the process that the rating agencies applied to

rating CDO tranches

. The models they employ rely heavily on the rating of the assets contained 1n the
SPV That asset rating process was already seen to be overly heuristic and had
failed to 1dentify on a timely basis many assets whose quality had materially

changed

. The assumptions regarding asset correlation, the manner in which the portfolio
characteristics are distilled into their binomial framework — described more fully
in Chapter 6 — and the use of the expected loss measure to assign grade seemed to

the author to be overly simplistic

It seemed unlikely that a process that relied on such asset ratings and a rather arbitrary
approach to the assessment of portfolio interactions could successfully grade as

complex a structured debt product as a CDO tranche

Nor does the market seem much more enlightened The analysis undertaken by many of
the systems most commonly used 1n the market — Intex, /CDO and CDO Vantage, for
example - amounts to nothing more than scenario analysis supported by a cash flow
model Most purchasers of senior tranches settle for an assessment that suggests full
repayment as long as the number of defaults 1n the first three years 1s less than a given
multiple of historical loss levels for collateral of that quality No attempt 1s made to
analyse the portfolio interactions, 1t 1s hoped that the rating agency requirements
regarding industry limits will avoid losses due to concentration that will penetrate the

semor tranche
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The author was attracted to the structural approach that potentially offered a more

rigorous alternative to the rating agency approach The adoption of this approach

required appropriate data and 1t was decided to use KMV data because of 1ts widespread

acceptance in the market and its potential to offer a more rigorous approach to

modelling the correlation of credit risks

5.3 Outline of Task of Extending the Single Period Model to a

Multi-Period Framework

The single period credit portfolio model developed in Chapter 4 used KMV estimates of

probability of default — 1its EDF measure — and of asset correlation The steps taken 1n

developing that model can be summarised as follows

/7
0'.

The assets are valued at the outset using the risk-comparable approach This
mvolved the discounting of expected cash flows using a rnisk-neutral approach that
increased the probability of default to account for the systematic risk that they

contamed

The evolution of each obligor’s credit term structure was simulated under the true

risk measure — that 1s under the Cumulative Expected Default Frequency measure,

CEDF,, , to the modelling horizon

»  If the obligor defaulted — 1n other words, 1f the random obligor return was
more negative than the negative of the obligor’s DD - recovery was
modelled as a drawing from a beta distribution with the mean and standard

dewiation specified

»  If the obligor survived, the term structure of the obligor’s credit risk was re-
computed based on the realised random return over the modelling period
With thas new credit term structure, the value of the debt instrument 1s re-

computed using the same risk-neutral approach as was applied at the outset

The simulation applied a factor model approach to embed the KMV asset

correlation measures

The frequency distribution of facility values and portfolio values at the modelling
horizon 1s calculated An analysis of these distributions produces a number of key

performance measurcs
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»  Calculating the portfolio average and the average for each of the imndividual
facilities enables the expected portfolio return and expected return for each

facility to be calculated in a mark-to-model framework

» The standard deviation of the facility and portfolio values — called
unexpected loss - may be computed The expected return and unexpected
loss measures can be combined to obtain the Sharpe ratio The Sharpe ratio
1s a measure of portfolio performance and of facility performance This 1s a

key metric for investors 1n unleveraged debt portfolios

»  Where mvestment 1n debt portfolios 1s financed largely by debt — as 1s the
case 1n the banking sector — the Sharpe ratio alone 1s 1nsufficient to inform
the investor about the desirability of a given investment since 1t 1s focused
on value volatility In these circumstances, portfolio capital is set by
reference to the present value of the difference between the expected
portfolio value and some extreme percentile of the distnbution Investment

performance 1s then measured by RORAC

Logic would suggest that a stmilar approach could be applied to the valuation of a CDO
tranche and to the measurement of its risk characteristics However, a number of 1ssues

complicate this approach

2

% The value of a tranche at the start of the modelling period can no longer be

calculated 1n the formulaic manner applied to the valuation of loans

> It 13 no longer possible to determine the amount and the timing of cash
flows ex ante The cash flows will derive from the evolution of the portfolio
over many time periods in the future Thus, rather than modelling over one
period as previously, the portfolio must be modelled over every period at
which cash 1s disbursed to the tranches until all the underlying portfolio

assets have matured or defaulted

»  The modelling must occur under the risk-neutral measure and not the true
measure as previously since the focus for now 1s on valuation and not on

risk

xS

%

Measuring the risk of a tranche 1s more complicated still

»  As for the single period model, the probability distribution of security

values at the horizon must be calculated
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. This requires that the portfolio of underlying securities be simulated

under the true measure out to the investor’s risk horizon

s At the horizon, each tranche must be revalued However, this task 1s a repeat of
that undertaken at the start of the modelling period described above Hence,
valuation at honizon demands that a Monte Carlo simulation be undertaken for
each pomt on the probability distribution Thus, the calculation of a tranche
Sharpe ratio 1s a ‘Monte Carlo squared’ problem Obtamning a Sharpe ratio

estimate for a CDO tranche with the same precision as was obtained for an
individual facility 1n the single period model would require 100,000°= 10,000

million multi-period simulations If the underlying portfolio contains ten-year
maturity assets and the CDO tranches receive quarterly payments, a total of 400
billion simulations are necessary It 1s clear that lesser accuracy must be accepted

or a good approximation methodology developed

This thesis 1s focused on the valuation of CDO tranches and therefore concentrates on

the first of these challenges The latter will be addressed 1n subsequent research

5.4 Modelling to Horizon in a Risk-Neutral Framework

In the single pertod credit portfolic model, stmulation took place n actual default space
Such modelling 1s described 1n the literature as occurring under the true measure, to
distinguish 1t from modelling under the risk-neutral which 1s undertaken when value,
and not nisk, 1s the focus of concern The focus of this model 1s the valuation of CDO
tranches and thus, all the modelling 1n this chapter will occur under the risk-neutral
measure The first task, therefore, 1s to adapt the modelling paradigm of Chapter 4 for

use 1n a nsk-neutral framework

As was done previously i the single period model, the portfolio value distribution at
honizon must be calculated However, unlike previously, the portfolio must be simulated
under the nisk-neutral measure to determine whether default has occurred for each
individual loan since our mnterest 1s 1n portfolio valuation, and later, tranche valuation
This will depend on whether the realised 2, for an obligor causes the borrower to fall
below 1ts nsk-neutral default threshold Clearly, the probability of default will be higher
1n the nsk-neutral framework since CODF will be greater than CEDF
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541 Exposure Value in the Default State

The value of the facility in default 1s obtained 1n exactly the same way as described

previously n 4 3 51 Making a drawing from a beta distribution simulates the LGD

542 Forward CQDF in the Non-Default State

Once again, the value of the facility at the modelling honzon 1s a function of the shape

of the credit curve and the simulated asset return, &, over the period

However, 1n Equation 4-50 above, modelling occurred under the true measure, so we
had

N,(- N'(CEDF,),DD, ,,, p)=1- CEDF,,  Equation 5-1

where CEDF,, and CEDF,, are the true cumulative default probability to the horizon
and facihity matunty, respectively, DD, ,, 1s the DD over the pertod to facility maturity,

and p 1s the correlation between the Browman processes at horizon and maturty,

respectively

Now, when modelling under the risk-neutral measure, we have
N, (- N"(C@DF, ), DDE,,, p)=1-CODF,, Equation 5-2

where the variables are as 1n Equation 5-1 except they are now measured under the nsk-
neutral measure The relationship between the risk-neutral and true cumulative default

probabihity measures was given m Equation 4-8 above as
CODF,=N{N"(CEDF,)+ iRJi) ~ Equation 5-3

By the same token, under the true measure, the impact of &,, on the DD was captured n

Equation 4-48 above as

Ey—RANM -H Equation 5-4

DD
DD. . = oM P
HM \/1_’02 +,\/]—p2

Under the nsk-neutral measure, this formula 1s modified to

DD?,, .

PP e Jr\/l—p2

gy Equation 5-5
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since no additional adjustment needs to be made for systematic risk

Hence,

coprg, = N(-DDZ ) Equation 5-6

5.5 Modelling to Subsequent Horizons

From 5 4 2, we have the cumulative quasi-default probability from the first modelling
hornzon to maturity However, we are no longer interested in valuing the potential future
cash flows at the first horizon 1nstead, we wish to model the portfolio over the next
time period Thus, we wish to determine the probability of default under the risk-neutral
measure from one horizon to the next For CDO valuation purposes, the modelling
horizons correspond to the dates on which cash 1s paid to the tranches, this typically

occurs quarterly or semi-annually

We determine the cumulative quasi probability of default from H to 2H by interpolating

between H and M using the same interpolation scheme as we used previously mn4 3 52

CODFZ,, =1-(1- CODFZ,, )" Equation 5-7
This allows us to repeat the modelling procedure at the second and subsequent

modelling horizons

5.6 Modelling the Liabilities

The procedure outlined above allows the cash flows from the assets to be modelied The
next stage 1s to distribute the available cash to the vanous tranches 1in accordance with
the CDO indenture

The most important factors to incorporate are the O/C and the I/C tests Breaching these
tests will cause the cash available from the assets to be diverted to more senior tranches
Breaching the mezzanine O/C test will see the residual cash flow used to repay the most
sentor outstanding principal or outstanding interest should there be any Likewise,
breaching the semior O/C test causes all cash beyond that required to pay senior interest

to be used to repay senior principal

The overall result is that all the cash flowing from the assets is disbursed to the

liabihties
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5.7 Implementing the Model

This new model is now applied to the valuation of the portfolio modelled above in 4.4,
This portfolio comprises ninety loans of $5m each, rated B1 to B3 by Moody’s, paying
Libor + 250bp. The loans have maturities between 4.5 and 10 years. The portfolio is
financed by $360m of Aaa-rated senior notes paying Libor + 50bp and $40m of
mezzanine paying Libor + 150bp. The senior O/C test is 1.2 while the corresponding
mezzanine test is 1.05. The senior I/C test is 1.8 and mezzanine 1/C is 1.2.

The model which has been developed can cater for any combination of asset
characteristics and securitisation structures. However, the portfolio chosen has the
characteristics of a typical arbitrage cash flow CDO. These comprise 80-100 loans to
sub-investment grade names with maturities in the five- to ten-year bracket. Likewise
the O/C and I/C tests are set at levels typically seen in the market. The results which
follow should therefore be representative of those for the securitisation class.

5.7.1 Tranche Cash Flows

An example of the cash flow waterfall is shown in Figure 5.1 and Figure 5.2 below. The
two figures give the key cash flows, balance sheet values and O/C and 1/C test values
from five simulations semi-annually over the ten year period:

The cash inflow to the structure comes from three sources: (i) Interest from the assets,
(ii) principal from maturing assets; and (iii) principal recovered from defaulting assets.

On the cash outflow side of the structure, the cash is distributed to the tranches in
priority: (i) Senior tranche interest is paid first, (i) Subject to passing all relevant tests,
mezzanine tranche interest is paid, (iii) Outstanding interest, if any, is paid, (iv)
Principal - both recovered and maturing - is channelled to the tranches in priority order,
and (v) should all relevant tests be passed and there not be any interest outstanding on
any tranche, equity is entitled to the residual.

Interest from Assets gives the amount of interest flowing from the underlying loans. It
declines over time as assets default or mature. No assets mature during the first five
years. When assets default, a random draw is made to determine the recovery amount.

I the senior tranche O/C or 1/C tests are breached, no cash is paid to the mezzanine or
equity tranches. Instead, that cash is diverted to pay down the senior tranche principal.
The amount of interest due to the mezzanine tranche accrues in the outstanding interest
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account which 1s repaid as soon as interest payments can be resumed Only 1if all tests

are 1 compliance will any cash be paid to the equity tranche

All recoveries and maturing principal amounts are applied to the semior tranche first
Only when the senior 1s fully repaid 1s any cash paid to the mezzanine tranche Finally,
if all the notes are repaid, all remaining interest and principal flowing from the assets 1s

applied to equity

57 2 Tranche Valuation

Since all the cash flows are modelled in risk-neutral space, their present value may be

obtained by discounting at the risk-free interest rate

The average present value of the cash flow from the assets equals the value of the assets
calculated using the method outlined 1n 4 3 13 above The sum of the tranche values
will clearly equal the value of the assets since all the cash flows from the assets are

distributed to the tranches

Thus, we are able to value each of the tranches across all the simulations

164



Period 0 Syrs 1 Oyrs 1 Syrs 2 Oyrs 2 Syrs 3 Oyrs 3 Syrs 4 0yrs 4 Syrs S Oyrs
Interest from Assets
5360 445 8217371 9150238 9318501 10189465 10528497 11119619 10911098 11495779 11527019
5645 787 8703 104 10308438 10649715 11678524 12052359 12906553 12274985 12776047 12500832
5579902 8 605 070 10192049 10649715 11808587 12190892 129063553 13184244 13890651 13 636946
5663 769 8 704 915 10312587 10770735 11946718 12190892 12906553 12881158 13572974 13636946
5496 975 8413919 9502 834 9560 540 9667 720 9558767 10239300 10304926 10862032 10877810
Maturing Principal
0 0 0 0 0 0 0 0 0 § 000 000
0 0 Q 0 0 0 0 0 0 5000000
0 0 Q 0 0 0 0 0 0 5000000
0 0 0 0 0 0 0 0 0 5000000
0 0 0 0 0 0 0 0 0 5000000
Recovered Principal
17 505 843 10907 881 5320132 4117917 0 1591939 9537496 0 1071235 0
2809 588 0 1904 581 2103797 0 0 17376312 3782068 10828924 0
4916 840 0 0 0 0 3208 881 0 0 7445723 0
1582 635 0 0 0 2677941 3640 746 6461 381 0 3783 681 1 488 952
7904989 13 800 046 8463083 17457026 8181 557 0 3487 667 0 3627266 9482618
Semor Tranche Interest
4396 851 5154578 6331 848 6174 989 7213624 7213624 7920 588 7596 588 8 246 847 8127541
4396 851 5375759 6884 364 6847 648 8055596 8055 596 8984 469 8542439 9169 215 8 770 555
4396 851 5344 044 6843 750 6843 750 8098 967 8 098 967 8951212 8951212 9717425 93511802
4 396 851 5394 225 6908 012 6908 012 8175016 8113935 §956 920 8792551 9545183 9440692
4396 851 5299072 6520180 6.299 579 6982 440 6734582 7439 288 7279338 7818886 7634675
Mezzamne Tranche Interest
628 539 0 0 2618824 1052 346 Q 0 3314510 ¢ 2685 606
628 539 742 005 910946 910 946 1052 346 1052 346 1157 547 1157 547 0 2528023
628 539 742 005 910 946 910 946 1052 346 1052346 1157 547 1157547 1244 647 1244 647
628 539 742 003 910 946 910 846 1052 346 1052 346 1157 547 1157547 1244647 1244 647
628 539 742 005 0 0 0 0 0 Q 0 3243136
Cash te Equity
335055 0 0 524 688 1923 495 0 0 [t} ¢ 713872
620398 2 585 340 2513127 2891121 2570582 2944417 2764 538 2575000 g 1202254
554513 2519021 2437353 2895019 2657275 3039579 2797795 3075 485 2928579 2880497
638 380 2568 685 2493 629 2951777 2718357 3024610 2792 087 2931060 2783 144 2951607
471 585 2372842 0 0 0 0 0 0 Q 0
Imbally Semior Tranche Prancipal Qutstanding
360000000] 342494157 328523483 320384962 316267044 316267044 311360232 298623706 298623706 294303539 289303539
360000000 357 190412 357190412 355285431 353181634 353181634 353181634 335805322 332023254 317587498 312587498
360000000] 355083160 255083160 355083160 355083160 355083160 351874280 351874280 351874280 344428556 339428556
360000000] 358417365 358417365 358417365 358417365 355739424 352098678 345637297 345637297 341853616 335364664
360000000] 352095011 338294965 326849228 306131241 295264403 292440218 286152540 283126952 276456539 261973921
Imbally Mezzamine Tranche Principal Outstanding
40 000000] 40000000 40000 000 40000000 40000000 40000000 40000000 40000000 40000000 40000000 40000 0C0
40000000] 40000000 40000 000 40000000 40000000 40000000 40000000 40000000 40000000 40000000 40000 000
40000 000] 40000000 40000 000 40000000 40000000 40000000 40000000 40000000 40000000 40000000 40000000
40000000 40000000 40 000 000 40000000 40000000 40000000 40000000 40000000 40000000 40000000 40 0CO 000
40000000] 40000000 40000 000 40000000 40000000 40000000 40000000 40000000 40000000 40000000 40000000
SemorTrancheOCMatrix
1226 1191 1191 1202 1202 1192 1193 1 206 1193 1210
1246 1246 1238 1232 1232 1232 1206 1205 1199 1216
123% 123% 1239 1239 1239 1236 1236 1236 121% 1223
1242 1242 1242 1242 1237 1235 1230 1230 1229 1223
1221 1212 1198 1164 1158 1168 1177 1188 119% 1202
MezzTranchelnterestOutstanding Matrix
0 742 005 1669 849 0 0 1052346 2240346 148 215 1397474 0
0 0 0 0 0 0 ¢ 0 1244 647 0
0 0 0 0 0 0 ¢ 0 0 0
0 0 0 0 [ 0 4] 0 0 Q
0 0 910 946 1842638 2943461 4073245 5348 666 6660 996 8112908 6366 863
SemorTranchelnterestOutstandingMatrix
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 Q 0 0
0 0 0 0 0 0 0 0 0 4
0 0 0 0 0 0 0 0 0 0
MezzTranchelCMatrix
1939 0 000 0000 1588 1508 0000 0000 1457 0000 142
1981 1822 1660 1650 1567 1567 1480 1476 0000 1447
1968 1811 1661 1661 1577 1572 1525 1525 1469 1470
1975 1817 1 666 1666 1575 1571 1514 1514 1479 1468

Figure 5 1 Key Varable Values for Five Random Asset Paths
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Penod 5 Syrs 6 Oyrs 6 Syrs 7 Oyrs 7 Syrs 8 Ovrs 8 Syrs 9 Qyrs 9 Syrs 10 Oyrs
Interest from Assets
9925103 8734004 7535 300 6072 407 4936 487 4213410 3499 155 2390 046 1374962 1213990
10780 39> 6270099 7867179 6362710 5096 092 3953 406 2955799 1836975 799 500 883 709
11791020 10209925 § 826 709 7028 960 5938235 5036 970 4155 855 3053 599 1878 547 1213990
11688 002 9666 739 7806713 6205657 5272230 4478 250 4015243 2920 349 1 668 343 1070 756
8918014 7407 288 6542246 > 287962 4285793 3830932 2906 728 2233019 1240472 740 862

Maturing Principai
20000000 40000000 55000000 35000000 25000000 30000000 40000000 35000000 10000000 40000000
35000000 45000000 45000000 40000000 30000000 30000000 35000000 35000000 0 30000000

35000000 55000000 60000000 40000000 35000000 35000000 40000000 45000000 20000000 40000 000

30000000 50000000 60000000 35000000 30000000 20000000 40000000 45000000 25000000 30000 000

25000000 30000000 50000000 35000000 20000000 30000000 25000000 35000000 20000000 25000000
Recovered Principal

3940454 1353330 0 2063 424 3236287 0 0 0 0 1
0 6470920 9467020 2095703 13448 111 8622 853 1717 668 0 0 0
0 0 3726301 4} 0 0 0 0 4061107 Q

13911 077 6974 849 0 0 0 0 0 0 0 4930 540

11066 558 0 0 0 0 3160 143 0 0 0

Semior Tranche Interest

6289 945 5769 439 4870 349 3674556 2868 735 2254831 1602 580 732913 0 0

6796178 6035219 4916 154 3731950 2816719 1872084 1032 358 234 054 0 4}

7379747 6618788 5422996 4037479 3167 812 2 406 853 1 645 894 776 227 0 0

7291391 6336 691 5032737 3728236 2967 277 2315027 1880193 1010 526 32150 0

5695753 4911 606 4259355 3172271 2411312 1976 479 1255522 711980 0 0

Mezzapine Tranche Interest
1009 667 1 009 667 1 009 667 1 009 667 1009 667 1 009 667 1009 667 1 009 667 977 107 724 690
1009 667 1009 667 1 009 667 1 009 667 1009 667 1009 667 1009 667 1 009 667 397941 397941
1009 667 1009 667 1009 667 1009 667 1009 667 1009 667 1009 667 1 009 667 774977 167 634
1009 667 1009 667 1009 667 1009 667 1009 667 1009 667 1009 667 1 009 667 1009 667 415 95!
3222261 2495682 2282891 2115691 1703 431 1 009 667 1009 667 1 009 667 952 803 447970
(Cash to Equity
2625491 1954897 1655285 1388184 1058 085 948912 886 908 647 466 397856 11779256
2974 550 2225213 1941357 1621093 1269 707 1071655 913774 593 254 401559 14720 545
3401 606 2581 469 2394 046 1981814 1760 756 1 620 450 1500 264 1 267 705 1103571 34405208

3386944 2320381 1764 309 1467754 1295 286 1153 556 1125382 900 116 626525 19106 607
0 0 Q 0 171 050 844 786 641 539 511373 287 668 7 545672
Imtially Semor Tranche Priccipal Qutstanding

360 000 000] 265363086 224009755 169009755 131946332 103710044 73710044 33710044 Q
360 000 000) 277587498 226116578 171649558 129553855 86105744 47482891 10765223 0
360 000 000] 304 428 556 249428556 185702256 14>702256 110702256 75702256 35702256 0
360 000 000) 291453587 231478738 171478738 136478738 106478738 86478 738 46478 738 1478 738
360 000 000] 225907 364 195907 364 145907364 110907364 90907364 57747221 32747221 0
Imially Mezzamne Tranche Principal Outstanding

oo ocoo
[= =R -]

40 000 000§ 40000000 40000000 40000000 40000000 40000000 40000000 40000000 38710044 28710044 0
40000000 40000000 40000000 40000000 40000000 40000000 40000000 40000000 15765223 15765223 0
40 000 000§ 40000000 40000000 40000000 40000000 40000000 40000000 40000000 30702256 6 641 148 0
40 000 000§ 40000000 40000000 40000000 40000000 40000000 40000000 40000000 40000000 16478 738 0
40000000] 40000000 40000000 40000000 40000000 40000000 40000000 40000000 37747221 17747221 0
SemorTrancheOCMatrix
1225 1250 1331 1 402 1495 1 696 2522 NaN NaN NaN
1243 1283 1369 1 467 1684 221 6 038 NaN NaN NaN
1248 1303 1400 1510 1671 1981 308! NaN NaN NaN
1235 1253 1341 1429 1350 1677 2259 40 575 NaN NaN
1217 1251 1336 1443 1540 1818 2443 NaN NaN NaN
MezzTranchelnterestQutstandingMatrix
0 0 0 0 0 0 0 0 0 0
0 0 0 ¢ 0 0 0 0 4] 0
0 0 0 Y 4} 0 0 0 ¢ 0
0 0 0 ] 4} 0 0 0 0 0
4314979 2937882 1738 816 676 683 0 0 0 0 ¢ 0
SemorTranchelnterestOutstandingMatnx
4} 0 0 0 0 0 ¢ 0 0 [
0 0 0 0 0 0 0 0 0 [}
0 0 0 1] 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 4 0 0 0 0
MezzTranchelCMatnx
1522 1512 1525 1514 1507 1319 1548 1624 1752 NaN
1554 1553 1573 1576 1597 1632 1659 2393 2393 NaN
1581 1604 1635 1672 1719 1793 1955 2662 7574 NaN
1555 1523 154] 1 556 1575 1593 1650 1828 2671 NaN

Figure 5 2 Key Variable Values for Five Random Asset Paths (contd )

5.8 Comparison with Alternative CDO Valuation Approaches

The best-selling CDO valuation software in the market 1s CDO Manager from

RiskMetrics This model applies a copula approach to determine the time of default for

166



each asset 1n the portfolio This approach 1s decidely easier to implement since each
simulation produces a time at which each asset defaults This obviates the need for
multi-period simulation If the asset defaults beyond its maturity date, 1t repays the full
principal amount Knowing when the assets default or mature, all the cash flows can be
derived Equity correlation 1s used in place of asset correlation to generate the correlated
random vanables which simulate the default time RiskMetrics then apply a cash flow
waterfall 1n a similar manner to that described above More frequently, however, CDO
Manager 1s used to value synthetic CDOs — this simplifies matters still further since

only the premium payments and payments on default need to be recorded

This method has become the market standard Its simplicity 1s 1ts attraction However, 1t
needs CDS spreads 1n order to provide the risk-neutral default probability term structure
measure necessary to inform the model For the names which are mcluded 1n synthetic
securitisation structures, these are spreads readily available But for the sub-investment
grade names which comprise arbitrage securitisation structures, this information 1s
absent Banks are obliged to rely on their internal ratings to determine the default
probability and to make some — presumably heuristic — adjustments to these to make

them nisk-neutral

The author 1s unaware of any other CDO valuation model, details of which have been
published 1n the literature It 1s clear that many banks, particularly investment banks,

have bespoke models, these are presumably deemed to be proprietary and have not been
published

5.9 Model Results

The graphs that follow show the distributions of the relevant vanables
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5.9.1 Asset and Tranche Value Distributions

Asset Value Probability Distribution

0 @o
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Figure 5.3 Asset Value Probability Distribution

Figure 5.3 above shows the probability distribution of asset values. This variability in
asset values translates into variability of tranche values as shown in Figure 5.4, Figure
5.6 and Figure 5.7 below:

Senior Tranche Value Probability Distribution

Senior Tranche Value

Figure 5.4 Senior Tranche Value Probability Distribution
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The variability in senior tranche value arises from the variability in the timing of
principal repayment: the higher the incidence of asset default early in the life of the
structure, the earlier the senior repayments and the lower the value of the asset as the
senior tranche earns the spread for a shorter period. This may be seen clearly by plotting
the value of the senior tranche against average life: the value increases monotonically
with average life in Figure 5.5 below:

Average Life of Senior Tranche vs Senior Tranche Value
64
62
H 60
58
56

54

52
5 B ciziome»sviciri B U &F?LF?LgLO'\S yP%ﬁ%p
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Figure 5.5 Average Life vs Value of Senior Tranche

The mezzanine tranche value distribution is shown in Figure 5.6:
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Figure 5.6 Mezzanine Tranche Value Probability Distribution

The equity tranche value is extremely volatile as evidenced in Figure 5.7:
/ N

Equity Tranche Values

Figure 5.7 Equity Tranche Value Probability Distribution

The variability in the value of the underlying assets is transmitted to the tranches but not
in auniform manner as shown in Table 5-1:
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Assets Senior  Mezzanine Equity
Mean| 453,162,648 370,252,103 43,288,550 39,621,940

St Dev 18,098,251 476,154 2,876,867 16,384,908

Coefticient of Variation 3 99% 013% 6 65% 41 35%

Table 5-1 Variability of Asset and Tranche Values

The senior tranche 1s insulated from the volatility in the value of the underlying assets
by the subordinated tranches The equity and mezzanine tranches that are providing this
protection to the senior tranche experience significantly higher value volatility than the

underlying assets

This 1s seen more clearly 1n Figure 5 8 below When the underlying assets are arranged
in value order, the average senior tranche value in the lowest five percent range is
99 57% of the average senior tranche value 1n the highest five percent range In contrast,
the corresponding figure for the mezzanine 1s 76 63% and for equuty, 1t’s a mere 7 53%
The structure has functioned as intended the senior tranche remains immune to the

losses 1n the underlying collateral

By the same token, the equity tranche absorbs the losses until the collateral starts to
default at a very high rate The mezzanine value 1n the second lowest 5% bucket has a
value of 99 22% of the highest 5% bucket losses only penetrate the mezzanine tranche

when the equity has effectively been decimated
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Distribution of Asset Value across Tranches

80,000,000 371,000,000
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369,000,000
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Figure 5.8 Tranche Values vs Asset Value

This value redistribution from the junior tranches to the senior tranche is highlighted
again in Figure 5.9 below: whereas the senior receives only 77% of the value in the
highest 5% of asset value outcomes, it receives 90.5% in the lowest 5%. The equity
share declines from 13.9% to 1.2% over the same range.
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Distribution of Asset Value Across Tranches

Asset Value Percentile

Figure 5.9 Tranche Value Distribution vs Asset Value

5.9.2 The Nature of the Risk in CDO Tranches

The senior debt never experienced loss of principal in any of the simulations. However,
as alluded to already, there is some uncertainty regarding timing of receipt of principal,

The average principal profile is shown in Figure 5.10 below:
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Senior Tranche Principal
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Figure 5.10 Senior Tranche Principal Profile

However, there is some variation around this average that causes the variation
average life shown in Figure 5.11 below:

Figure 5.11 Probability Distribution of Senior Tranche Average Life
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The average cash received by the senior tranche varies widely dictated by the pattern of
defaults among the assets. The cash flow pattern is that of an amortising loan with an
uncertain amortisation schedule.

Senior Tranche Cash Flows
70.000.000

60.000.000
50.000.000
40.000.000
30.000.000

mCash Flow

20.000.000

10,000,000

1 1 1 ] 1 1 r
05 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9 95 10
Year

Figure 5.12 Senior Tranche Cash Flow Profile

Figure 5.6 shows that the mezzanine tranche trades in a tight value range much of the
time. However, when losses occur, they can be substantial as evidenced in Figure 5.13
below:
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Mezzanine Loss Given Default Distribution

»NO» N QNG §MOT AP GG ORI 3070
Loss Given Default

Figure 5.13 Probability Distribution of LGD for Mezzanine Tranche

While the average LGD is only 36.9%, in some cases the entire principal is lost. It i
this latter feature of mezzanine tranches that so concerns the regulator.

The cash flows to the mezzanine tranche resemble those of a bullet maturity bond as
shown in Figure 5.14 below. However, mezzanine debt can be PIKed, that is, paid in
kind: this occurs when interest is capitalised and the cash that was available to pay the
interest is used to pay down senior tranche principal. This means there is potential for

significant variation around this average cash flow, a major source of worry for
mezzanine debt purchasers.
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Mezzanine Tranche Cash Flows
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Figure 5.14 Average Mezzanine Tranche Cash Flow Profile

The uncertainty regarding timing of receipt of cash flows is a risk dimension unlike that
associated with typical corporate loans. This is shown in Figure 5.15 below which
graphs average interest outstanding over time:

Mezzanine Tranche Interest Outstanding
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Figure 5.15 Profile of Average Mezzanine Interest Outstanding

An appreciation of the variation around this average can be gained by graphing the
distribution of the number of periods in which the mezzanine tranche was PlKed.
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Mezzanine PIK Frequency Distribution
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Figure 5.16 Frequency Distribution of Mezzanine Tranche PIKing

Over 62% of the time, the mezzanine tranche will experience at least one occasion when
it does not receive interest due. In some cases, it becomes a zero-coupon bond for a
period of up to five years. This type of behaviour renders it unsuitable as an investment
product for many investors despite its relatively low loss experience.

5.10 The Expected Loss on Rated Tranches

Moody’s assign ratings to CDO tranches based on the expected loss of the tranche over
its life. This new model produces an expected loss value for the tranches also. We can
use the output to compare the Moody’s rating, derived in Chapter 6, with the
comparable rating implied by this model.

The expected loss for the senior debt across all simulations is 0%. This is not unusual
and it suggests a Moody’s Aaa rating.

The expected loss for the mezzanine debt is 1.28%. This can be seen to be the product
of the frequency of ‘default’ - though the term is nebulous for tranches - and LGD. In
6.05% of the simulations, there was a shortfall to some extent on the repayment of
principal and/or interest. The average loss in the event of default was 36.9%, though
that varied widely as indicated in Figure 5.13. This is the key output for comparing this
model with Moody’s.
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5.11 Conclusion

This chapter presents a newly created multi-pertod CDO model mn a structural
framework The model takes the existing state-of-the-art and adapts 1t to incorporate an
analysis of CDO tranches In so doing, 1t presents an alternative perspective on the CDO
rating question

)

% It enables the Moody’s CDO tranche rating methodology to be compared with a
new alternative

(7

% It also provides a richer framework for thinking about the nsk which CDO

tranches present

It concludes that the uni-dimensional view of risk — that of expected loss only — which
gudes the agency rating process fails to meet the needs of the regulator for a basis on
which to assign capital In fact, expected loss in banking 1s stmply regarded as a cost of
doing business and risk 1s measured by loss variability It 1s suggested that Moody’s
CDO ratings framework 1s flawed since 1t does not measure risk at all In particular, the
rating methodology fails to meet the regulator’s need for a measure on which to base 1ts

requirement for bank capital

In Chapter 6, the Moody’s rating framework will be developed and in Chapter 7, the

results of the two modelling approaches will be compared
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Chapter 6. Re-constructing Moody’s CDO Tranche
Rating Approach

6.1 Chapter Overview

Moody’s assign ratings to CDO tranches using their BET This approach was outlined
by Cifuentes and O’Connor (1996) and re-created in 3 9 above But, the outline, while
giving the basic Moody’s rating philosophy, 1s insufficient to enable their tranche
ratings to be replicated Neirther have they issued a model that embeds their CDO
tranche rating methodology

However, a model that 1s capable of replicating Moody’s approach 1s a requirement mn
order to enable comparison with the alternative methodology that has been developed 1n
this thesis In this chapter, the author builds a fully-functional BET model which can

accommodate the complete details which their papers do not specifically address

Moody’s further requirements - not specified in the hiterature but gleaned by the author
from conversations with Moody’s personnel, investment banks and other market
participants - were noted These requirements, together with Moody’s published
guidelines, were incorporated nto a new cash flow model designed to replicate the

Moody’s rating process

The success of the model 1n replicating their rating approach 1s then confirmed by
testing the model on newly 1ssued deals The model-derived ratings are very closely

aligned to the actual ratings granted by Moody’s to the rated tranches of the deals

6.2 Creating a Moody’s BET Model

The results shown in 3 9 1 1 prove that the models the author constructed produce the
same results as those quoted by Moody’s 1n their publications However, the structures
addressed by Moody’s 1n those three papers 1s very stylised and 1t 1ignores many of the

details that Moody’s take into account in practice

The tasks to be undertaken in constructing a full-blown BET model are sketched in
Figure 6 1 below
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Figure 6 1 Schematic for BET Replication

In developing the model, details of the 1dealised portfolio — the number of binomial
bonds, the default rate, the recovery rate on defaulted assets, the weighted average
matunty and the weighted average coupon — as discussed already must be combined
with details of the actual portfolio, including the value of the portfolio, the price paid
and the timing of the acquisition, the so-called ‘ramp-up’ period Other factors that are
also considered include (1) interest rate stresses, (1) expenses — management, rating
agency, accounting and trustee fees, (111) hedging (if any), (1v) hquidity requirements,
and (v) tax

The model that was built tracks the vanous cash flows from the 1dealised portfohio as

described below

6 21 Pnincipal Cash Flows

Principal denives from three separate sources (1) redemption of collateral, (1)
recoveries, and (111) excess spread On the other hand, principal amounts may be applied

to pay down note principal or to remvest 1n new assets during the reinvestment period
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6 22 Revenue Cash Flows

In the BET framework, there are five sources of revenue (1) collateral interest income,
(11) remvestment income, (11) revenue from hedging, (1v) drawings on the hquidity

reserve, and (v) release of the liquidity reserve at maturity

Revenue 1s used to (1) pay semor expenses, (1) pay note interest hiabilities, (i)
replemish the liquidity reserve, and (1v) pay surplus to the holder of the equity Excess

spread may be diverted to the principal ledger 1n particular circumstances

6 23 Other Cash Flow Modelling Stresses

Moody’s require that the default timing be varied The standard test has 50% of total
defaults occurning 1n the first year with 10% occurring annually thereafter for the next
five years While this proves to be the most severe timing for most tranches, Moody’s
oblige that back-end loaded defaults and mid-loaded defaults be undertaken 1n addition
to the standard front-loading and the most conservative rating outcome 1s applied to the
tranche The complete list of default scenarios which must be examined are outlined 1n

Table 6-1 below

Scenario | Year 1 Year 2 Year 3 Year 4 Year 5 Year 6
1 50% 10% 10% 10% 10% 10%
2 10% 50% 10% 10% 10% 10%
3 10% 10% 50% 10% 10% 10%
4 10% 10% 10% 50% 10% 10%
5 10% 10% 10% 10% 50% 10%
6 10% 10% 10% 10% 10% 50%

Table 6-1 Default Timing Scenarios

6.3 Replicating Moody’s Rating Results

The model tracks the cash flows from the assets to the various tranches over time Each
scenario assumes a different number of defaults The cash flows received by each
tranche are discounted at Libor plus the promised tranche spread, 1f no losses occur, the
tranche value will equal par The loss incurred by each tranche weighted by the
binomial probability of the loss occurring will equal the tranche expected loss Thus

expected loss 1s compared to the average loss incurred by debt of similar maturity mn
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Moody’s loss database The rating whose loss matches the expected loss of the tranche

1s the rating that 1s assigned to the tranche

A sample of the intermediate calculations follows to indicate how these calculations

were undertaken

6.4 Discussion of Modelling Details

The figures which follow summartse the results for a single scenario The diversity
score 18 47 based on the industry and country composition of the 90-loan portfolio, the
weighted average rating 1s B2 and the weighted average life 1s 725 years, or 29
quarters The scenario shown nvolves front-loaded defaults — 50% 1 the first year and
10% per annum 1n the five subsequent years — and six of the 47 idealised loans

defaulting

Figure 6 2 shows a high default rate over the first four quarters followed by a lower
default rate over the remaining quarters until the end of year 6 The assets which have
not defaulted are assumed to be redeemed as bullet payments at the end of the weighted

average life The LGD 1s assumed to be 45% and occurs after a one-year delay

The Class A notes are the semior notes in the structure and the Class B are the
mezzanme If the senior O/C or I/C test 1s breached — as happens in Quarters 4, 5 and 6 -
the mezzanine tranche 1s not paid interest and any cash beyond that required to pay the
senior 1nterest 1s diverted to pay down senior principal until the test 1s corrected If the
senior O/C and I/C tests are passed but the mezzanine tests are not, no cash 1s paid to
equity and the residual 1s diverted to pay down the semor principal The senior expenses

include rating agency costs, trustee fees and management fees

The last rows of Figure 6 6 and Figure 6 7 give the total cash — comprising interest and
principal — recerved quaterly over the 29 quarters of the structure’s life The present
value of each cash flow stream, discounted at the promised yield, gives the value of the
senior and mezzanine notes The shortfall from par, expressed as a percentage of par

gives the loss rate incurred
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641 Account Ledgers

Quarter 1 2 3 4 5 6 7 8 9 10 11 12| 13 14 15]
Assets

Opening Balance 450 000 000 442 819 149 435638 298 428 457447 421276596 419 840426 418 404255 416968 085 415531915 414095 745 412 659 574 411223404 409 787 234 408 351 064 406 914 894
Start Defaults 7 180 851 7 180 851 7 180 851 7180851 1436170 1436170 1436170 1436 170 1436 170 1436 170 1436 170 1436 170 1436170 1436170 1436170
Redemptions 0 0 0 0 0 [4] 0 0 Q 0 0 0 4] 0 0
Closing Balance 442 819 149 435 638 298 428 457 447 421276596 419 840426 418404255 416968 085 415531915 414095745 412659 574 411 223 404 409 787 234 408 351 064 406 914,894 405 478 723
Class A Notes

Opening Balance 360 000 000 360 000,000 360 000 000 360 000 000 358 004,648 352 181 510 346284 534 342 335066 338 385598 337595705 336805811 336015917 335226024 334436 130 333 646 236
Redemptions 0 0 0 1995352 5823137 5806976 3,949 468 3 949 468 789 894 789 894 789 894 789 894 789 894 789 894 789 894
Closing Balance 360 000 000 360 000 000 360 000 000 358 004 648 352 181 510 346284 534 342335066 338 385598 337595705 336805811 336015917 335226024 334436130 333 646 236 332 856 343
Class B Notes

QOpentng Balance 40000 000 40 000 000 40 000 000 40000 000 40 000 000 40 000 000 40 000 000 40 000 000 40 000 000 40 000 000 40 000 000 40 000 000 40 000 000 40 000 000 40 000 000
Redemptions 0 0 0 0 0 0 0 0 0 0 0 0 4] 0 0
Closmg Balance 40000 000 40 000 000 40 000000 40000000 40 000000 40 000 000 40 000 000 40 000 000 40 000 000 40 000 000 40 000 000 40 000 000 40 000000 40 000 000 40 000 000
Seller Equity

Opening Balance 50 000 000 50000000 50000000 50000000 50000000 50000000 50000000 50000000 50000000 50000000 50000000 50000,000 50000000 50000000 50000000
Redemptions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Closing Balance 50000000 50000000 S0000000 50000000 50000000 50000000 50000000 50000000 50000000 50000000 50000000 50000000 50000000 50000000 50000000

Figure 6 2 The Securitisation Balance Sheet
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|Quarter 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29}
Assets

Opening Balance 406914 894 405 478 723 404 042 553 402 606 383 401170213 399 734 043 398 297 872 396 861 702 395 425 532 393989 362 392 553 191 392 553 191 392553 191 392553191 392553 191
Start Defauits 1436170 1436170 1436170 1436 170 1436170 1436170 1436170 1436170 1436 170 1436170 0 0 0 0 0
Redemptions 0 0 0 4] 0 0 0 0 0 0 0 0 0 0 392553191
Closing Balance 405 478 723 404 042 553 402 606383 401170213 399 734 043 398297 872 396 861 702 395425532 393 989 362 392 553 191 392553191 392553191 392553191 392 553 191 0
Class A Notes

Opening Balance 333 646 236 332 856 343 332 066449 331276 556 330486 662 329 696 768 328 906 875 328 116 981 327327088 326 537 194 325747 300 324 957407 324 167513 323 377619 322 587 726
Redemptions 789 894 789 894 789 894 789 894 789 894 789 894 789 894 789 894 789 894 789 894 789 894 789 894 789 894 789 894 322 587 726
Closing Balance 332 856343 332 066449 331276556 330486 662 329 696 768 328 906 875 328 116981 327327 088 326537 194 325 747 300 324 957407 324 167513 323 377 619 322 587 726 0
Class B Notes

Opemng Balance 40 000 000 40 000 000 40 000 000 40000 000 40000 000 40 000 000 40000000 40000000 40000 000 40 000 000 40 000 000 40 000 000 40 000 000 40 000 000 40 000 000
Redemptions 0 0 0 0 4] 0 0 0 0 0 Q 0 0 0 40 Q00 000
Closing Balance 40 000 000 40 000000 40000000 40000000 40000000 40000000 40000000 40000000 40000000 40000000 40000000 40000000 40000000 40 000 000 0
Seller Equity

Opening Balance 50000000 50000000 50000000 50000000 50000000 50000000 50000000 50000000 50000000 50000000 50000000 50000000 50000000 50000000 50000000
Redemptions 0 0 0 0 0 0 [¢] 0 0 0 0 0 0 0 29965 466
Closing Balance 50 000000 50 000000 50000000 50000000 50000000 S0000000 50000000 50000000 50000000 50000000 S0000000 50000000 50000000 50000000 20034534

Figure 6 3 The Securitisation Balance Sheet (contd )
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642 Cash Flow Waterfall

[Quarter 1 2 3 4 s 6 7 8 9 10 11 12 13 14 15|
PRINCIPAL

Source

Opening Balance J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Redemptions 0 0 0 0 0 0 0 0 [ Q 0 0 0 0 0
Recoveries 0 0 0 0 3949468 3949468 3949468 3949468 789 894 789 894 789 894 789 894 789 894 789,894 789 894
Receipt of Seller Revenue 0 0 0 1995352 1873669 1947 508 0 0 0 0 0 0 0 0 0
Closing Balance 0 0 0 1995352 5823137 5896976 3949468 3949 468 789 8§94 789 894 789 894 789 894 789 894 789 894 789 894
Application

Opening Balance 0 0 0 1995352 5823137 5896976 3949468 3949 468 789 894 789 894 789 894 789 894 789 894 789 894 789,894
Class A Notes 0 0 0 1995352 5823137 5896976 3949468 3949468 789 854 789 894 789 894 789 894 789 894 789 894 789 894
Class B Notes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Seller Equity 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INTEREST

Source

Opening Balance I ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Portfolio Yield 10395000 10229122 10063245 9897367 9731489 9698314 9665138 9631963 9598787 9565612 9532436 9499261 9466085 9432910 9,399734
Laguidity Drawings 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Closing Balance 10395000 10229122 10063245 9897367 9731489 9698314 9665138 9631963 9598787 9565612 9532436 9499 261] 9466085 9432910 9399734
Apphcation

Openng Balance 10395000 10229122 10063245 9897367 9731489 9698314 9665138 9631963 9598787 9565612 9532436 9499261 9466085 9432910 9399734
Senior Expenses 556 250 548 172 540 093 532015 523 936 522320 520 705 519 089 517473 515 858 514 242 512 626 511011 509 395 507 779
Class A Notes 6516000 6516000 6516000 6516000 -6479884 6374485 6267750 6196265 6124779 6110482 6096185 -6081888] 6067591 6053294 6038997
Class B Notes 854 000 854,000 854 000 854 000 854 000 854 000 854 000  -854 000 854 000 854 000 854 000 854 000 854,000 854 000 854 000
Diversion of Seller Revenue 0 0 0 1995352 1873669 1947508 0 0 0 0 0 0 Q 0 Q
Seller Lquity 2468750 2310951 2153152 0 0 0 2022683 2062609 2102535 2085272 2068009 -2050746 2033483 2016221 1998958

Figure 6 4 Cash Flow Waterfall

186



lguarter 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
PRINCIPAL

Source

Opening Balance 4 0 0 0 0 0 0 0 0 0 Y 0 0 0 0
Redemptions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 392553191
Recovenes 789 894 789 854 789 894 789 894 789 894 789 894 789 894 789 894 789 894 789 894 789 894 785 894 789 894 789 894 0
Receipt of Seller Revenue 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Closing Balance 789 854 789 894 789 894 789 894 789 894 789 894 789 894 789 894 789 894 789 894 789 894 789 894 789 894 789,894 392 553 191
Apphcation

Opening Balance 789 894 789 894 789,894 789 894 789 894 789 894 789 894 789 894 789 894 789 894 789 894 789 894 789 894 789894 392 553 191
Class A Notes 789 894 789 894 789 894 789 894 789 894 789 894 789894  -789894 789 894 789 894 789 894 789,894 789 894 789 894 322 587 726
Class B Notes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 000 000
Seller Equity 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 965 466
INTEREST

Source

Opening Balance 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Portfolio Yield 9399734 9366559 9333383 9300207 9267032 9233856 9200681 9167505 9134330 9,101 154] 9067979 9067979 9067979 9067979 9067979
Ligudity Drawings 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Closing Balance 9399734 936655% 9333383 9300207 9267032 9233856 9200681 9167505 9134330 9101154] 9067979 9067979 9067979 9067979 9067979
Application

Opening Balance 9399734 9366559 9333383 9300207 9267032 9233856 9200681 9167505 9134330 9101154 9067979 9067979 9067979 9067979 9067 979
Senior Expenses 507 779 506 164 504 548 502 932 501 316 499 701 498 085 496 469 494 854 493 238 491 622 491 622 491 622 491 622 -491 622
Class A Notes 6038997 6024700 6010403 5996106 5981809 5,967512 5953214 -5938917 5924620 5910323] 5896026 5,881 729 S867432 5853135 5838838
Class B Notes 854 000 854 000 854 000 854 000 854 000 854 000 854 000 854 000 854,000 854 000 854 000 854 000 854 000 854 000 -854 000
Diversion of Seller Revenue 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Seller Equity 1998958 1981695 1964432 1947170 1929907 1912644 1895381 1878119 1860856 1843593 -1826330 1840627 1854924 1869221 1883519

Figure 6 5 Cash Flow Waterfall (contd )
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6.4.3 Cash Flow and Coverage Tests

Quarter 1 2 3 4 5 6 7 8 9 10 il 2 13 14 5
Expenses
Senior Expenses 556,250 548,172 540,093 532015 523936 522,320 520,705 519,089 517,473 515858 514,242 512626 511011 509395 507,779

Class A Note Interest 6,516,000 6,516,000 6,516,000 6,516,000 6,479,884 6374485 6,267,750 6,196,265 6,124,779 6,110,482 6,096,185 6,081,888 6,067,591 6,053,294 6,038,997
Class B Note Interest 854000 854,000 854,000 854,000 854,000 854,000 854000 854,000 854,000 854000 854000 854,000 854,000 854,000 854,000

Total Expenses 7926250 7918172 7910093 7,902,015 7,857,820 7,750,806 7642455 7,569,354 7496253 7,480,340 7464427 7448514 7432602 7,416,689 7,400,776
Interest Coverage

Class A Notes 147% 145% 143% 140% 139% 141% 142% 143% 145% 144% 144% 144% 144% 144% 144%
Class B Notes 131% 129% 121% 125% 124% 125% 126% 127% 128% 128% 128% 128% 127% 127% 127%
Breach FALSE ~ FALSE ~ FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE
Overcollateralisation

Class A Notes 125% 123% 121% 119% 118% 119% 121% 122% 123% 123% 123% 122% 122% 122% 122%
Class B Notes 113% 111% 109% 107% 106% 107% 108% 109% 110% 110% 110% 109% 109% 109% 109%
Breach FALSE ~ FALSE  FALSE TRUE TRUE TRUE ~ FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE
Liquidity Drawings

Senior Expenses 556,250  -548,172  -540,093  -532,015  -523936  -522,320  -520,705  -519,089  -517,473  -515858  -514242 512,626  -511011  -509,395  -507,779
Note Interest -7,370,000 -7,370,000 -7,370,000 -7,370,000 -7,333,884 -7,228,485 -7,121,750 -7,050,265 -6,978,779 -6,964,482 -6,950,185 -6,935888 -6,921,591 -6,907,294 -6,892,997
Total Expenses 71926250 -7918172 -7,910,093 -7.902,015 -7.857,820 -7,750,806 -7,642,455 -7569,354 -7,496,253 -7,480,340 -7464,427 -7,448514 7432602 -7416,689 -7,400,776
Available Revenue 10,395,000 10,229,122 10,063,245 9,897,367 9,731,489 9,698,314 9,665,138 9,631,963 9,598,787 9,565,612 9,532,436 9499261 9,466,085 9,432,910 9,399,734
RESULTS

Principal & Interest

Class A Notes 6,516,000 6516000 6516000 8511352 12,303,021 12,271,461 10,217,218 10145733 6,914,673 6,900,376 6,886,079 6,871,782 6857485 6,843188 6,628,890
Class B Notes 854,000 854,000 854,000 854,000 854,000 854,000 854,000 854,000 854,000 854,000 854,000 854,000 854,000 854,000 854,000
Seller Equity 2,468,750 2,310,951 2,153,152 0 0 0 2022683 2,062,609 2102535 2,085272 2,068,009 2,050,746 2033483 2,016,221 1,998,958

Figure 6.6 Cash Flow and Coverage Tests
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Quarter 15 16 17 i8 19 20 21 22 23 24 25 26 27 28 29
Expenses

Senior Expenses 507779 506 164 504 548 502 932 501 316 499 701 498 085 496 469 494 854 493 238 491 622 491 622 491 622 491 622 491 622
Class A Note Interest 6038997 6024700 6010403 5996106 5981809 5967512 5953214 5938917 5924620 5910323 5896026 5881729 5867432 5853135 5838 838
Class B Note Interest 854 000 854 000 854 000 854 000 854 000 854 000 854 000 854 000 854 000 854 000 854 000 854 000 854 000 854 000 854 000
Total Expenses 7400776 7384863 7368951 7353038 7337125 7321212 7305300 7289387 7273474 7257561 7241648 7227351 7213054 7198757 7 184 460
Interest Coverage

Class A Notes 144% 143% 143% 143% 143% 143% 143% 142% 142% 142% 142% 142% 143% 143% 143%
Class B Notes 127% 127% 127% 126% 126% 126% 126% 126% 126% 125% 125% 125% 126% 126% 126%
Breach FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSF FALSE FALSE FALSE FALSE
Overcollateralisation

Class A Notes 122% 122% 122% 122% 121% 121% 121% 121% 121% 121% 121% 121% 121% 121% 122%
Class B Notes 109% 109% 109% 108% 108% 108% 108% 108% 108% 107% 107% 108% 108% 108% 108%
Breach FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
Liquidity Dravangs

Senior Expenses 507779 506 164 504 548 502 932 501 316 493701 498 085 -496 469 494 854 493 238 491 622 491 622 491 622 491 622 -491 622
Note Interest -6892997 6878700 6864403 6850106 6835809 6821512 6807214 6792917 6778620 6764323 6750026 6735729 6721432 6707135 6692 838
lotal Expenses 7400776 7384863 7368951 7353038 7337125 7321212 7305300 7289387 7273474 7257561 7241648 7227351 7213054 7198 757 7 184 460
Available Revenve 9399734 9366559 9333383 9300207 9267032 9233856 9200681 9167505 9134330 9101154 9067979 9067979 9067979 9067979 9067979
RESULTS

Principal & Interest

Class A Notes 6828890 6814593 6800296 6785999 6771702 6757405 6743108 6728811 6714514 6700217 6685920 6671623 6657326 6643029 328 426 564
Class B Notes 854 000 854 000 854 000 854 000 854 000 854 000 854 000 854 000 854 000 854 000 854 000 854 000 854 000 854 000 40 854 000
Seller Equity 1998958 1981,695 1964432 1947170 1929907 1912644 1895381 1878119 1860856 1843593 1826330 1840627 1854924 1869221 31848984

Figure 6 7 Cash Flow and Coverage Tests (contd )
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6.4.4 Tranche Losses under the Various Scenarios

Loss %6 Loss %6 Scenario
Scenario No Senior Notes Mezz. Notes Probability

0.000%

0 0.0 0.0
1 0.0 0.0 .000%
2 0.0 0.0 0.000%
3 0.0 0.0 0.000%
4 0.0 0.0 0.001%
5 0.0 0.0 0.005%
6 0.0 0.0 0.021%
7 0.0 0.0 0.071%
8 0.0 0.0 0.205%
9 0.0 0.0 0.509%
10 0.0 0.0 1.110%
11 0.0 0.0 2.141%
12 0.0 0.0 3.686%
13 0.0 0.0 5.695%
14 0.0 0.0 7.936%
15 0.0 0.0 10.018%
16 0.0 0.0 11.496%
17 0.0 0.0 12.029%
18 0.0 0.0 11.504%
19 0.0 6.2 10.075%
20 0.0 105 8.094%
21 0.0 14.7 5971%
22 0.0 19.0 4.049%
23 0.0 23.5 2.525%
24 0.0 28.1 1.449%
25 0.0 32.1 0.765%
20 0.0 36.9 0.371%
21 0.0 41.6 0.166%
28 0.0 46.5 0.068%
29 0.1 54.9 0.026%
30 0.6 59.7 0.009%
31 16 60.5 0.003%
32 2.0 61.2 0.001%
33 3.6 61.7 0.000%
34 4.7 62.1 0.000%
3H 5.1 62.6 0.000%
36 6.7 62.8 0.000%
37 7.8 62.9 0.000%
38 8.2 63.0 0.000%
39 9.3 03.2 0.000%
40 10.3 63.4 0.000%
41 114 63.5 0.000%
42 125 63.7 0.000%
43 135 63.9 0.000%
44 14.6 64.1 0.000%
45 15.1 64.2 0.000%
46 16.8 64.2 0.000%
47 17.8 64.2 0.000%
Loss % 0.00023% 2.14226% 100.00%
Implied Rating Aaa Baa3

Table 6-2 The Binomial Probability Loss Weighting Scheme
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The expected loss on the senior and mezzanine tranches are 0.00023% and 2.14226%
implying ratings of Aaa and Baa3, respectively.

65 Checking the Replication of Moody’s BET

The model described above attempts to replicate Moody’s approach to the rating of
CDO tranches. In order to gauge the success of the replication effort, the model was
used to rate the tranches of four securitisations

CDO Tranche NFle%?:jnés Model Rating
Galway Bay Class | Aaa Aaa
Class Il A2 A3
Class I Baa2 Baa3
Class IV Ba3 Ba3
Clare Island Class | Aaa Aaa
Class Il Aa? Aal
Class Il Baa2 Baa2
Class IV Ba3 Ba2
Cashel Rock Al Aaa Aaa
A2 A3 A3
A3 Baa? Baa3
Tara Hill Class | Aaa Aaa
Class Il Aa? Aa2
Class Il Baa2 Baa2
Class IV Ba3 Bl

Table 6-3 Comparison between Model Ratings to Moody’s Ratings

Comparing the model tranche ratings to those which Moody’s assigned, it is observed
that the ratings assigned by Moody’s were replicated exactly for 10 of the 15 tranches
while in each of the five remaining tranches, the difference in ratings was one notch,

In order to determine whether this represents a good replication performance, S&P and
Moody’s ratings were compared for 104 CDO tranches. Of these tranches, 75 received
the same rating from both agencies, 25 differed by one notch and four differed by two
notches.

Set against this background, the replication appears successful. It may be concluded that
the model is capable of inferring Moody’s ratings to CDO tranches.
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6.6 Conclusion

This chapter described how Moody’s BET was replicated Such a model will be
necessary 1f we are to be able to examine the source of any difference in tranche quality
assessment between the multi-period structural model developed m Chapter 5 and
Moody’s

The comparison between the assessment of the new multi-period structural model

developed 1n this thesis and that of Moody’s 1s the subject of Chapter 7
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Chapter 7. Comparing the CDO Model Results with
Moody’s Rating and Market Prices

7.1 Chapter Overview

In Chapter 5, a new model was developed which extended the existing state-of-the-art
credit portfolio modelling paradigm to a multi-period framework and incorporated the
details of the indenture 1n disbursing the cash flows to the multiple CDO tranches This

enabled CDO tranches to be valued and the ratings implied to the tranches

In Chapter 6, Moody’s BET was successfully replicated This allows a Moody’s rating

to be attributed to tranches of any proposed securitisation

The aim of this chapter 1s to compare the tranche ratings imphed from the multi-pertod
credit portfolio model with Moody’s ratings The differences between the two ratings

will be examined and the reasons for these differences explored

7.2 Comparing Model Outputs

The Moody’s ratings for the senior and mezzanine tranches are Aaa and Baa3 based on
loss rates of 0 00023% and 2 14%, respectively The corresponding loss rates under the
new CDO valuation model are 0% and 1 28% suggesting ratings of Aaa and Baa2 for

the senior and mezzanine tranches, respectively

At first glance, the differences appear small — differences of one notch for the same
tranche between the rating agencies are commonplace - suggesting that the two models
are capturing a stmilar dynamic, albeit 1n completely different ways However, this may

not be the result of a close alignment of methodologies

721 Comparing Default Probability Assumptions

Moody’s default rates are derived from their expected loss table in Table 3-8 above The
assumption underlying these expected loss rates 1s of a LGD of 55% Based on these
figures, the probability of default attributed to B-rated assets over a seven-year period

are calculated m Table 7-1
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Seven-year

P
Bl 19.13%
B2 24.01%
B3 31.00%

Table 7-1 Moody’s Default Probabilities

The distribution of Moody’s and KMV’s default probabilities of the assets in the
portfolio is plotted in Figure 7.1:

Histogram of 7-Year Cumulative Default Probabilities
40

% vy B
20 average Portfolio of 90 Credits

B |y B3

2 KMVEDF
é Moody's Ratings

10

g B &
7-Year Cumulative Default Probability

Figure 7.1 Distribution of KMV and Moody’s Default Probabilities in the Portfolio

The Moody’s average cumulative default probability over the seven-year period is
23.91% compared to KMV’s average of 10.67%. This probably reflects the fact that the
date of the analysis is September 2004, a benign point in the credit cycle.

KMV have observed that the average default probability within agency rating categories
moves with the stage in the credit cycle. Figure 7.2 below shows the evolution of the
Moody’s B-rated universe over the five-year period from November 1999 to November
2004. The median one-year probability of default is 0.76% compared to the long-term
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average of approximately 3%. KMV’s analysis suggests that Moody’s will
systematically over-estimate default probability in the benign phase of the cycle and
under-estimate it during the stressed stage. Moody’s stated ‘through the cycle’ approach
to creditworthiness estimation lends further support to this view.

In view of the fundamental difference between Moody’s and KMV’s assessment of
default probability, it is unlikely that there will ever be a close alignment between the
ratings of structured debt based on the two different modelling approaches. Equally,
Moody’s assumption that the portfolio’s default characteristics can be summarised in
one single number differs significantly from the KMV approach where each borrower is
modelled individually. Given the PD range in Figure 7.1 which KMV estimates exists,
the assumption appears untenable.

Moody's B

EDF 10th Percentile EDF 25th Percentile EDF 50th Percentile EDF 75th Percentile

Figure 7.2 EDF Percentiles for Moody’s B-rated debt over time

Given this disparity in the fundamental input to the portfolio model, it is unlikely that it
would ever be possible to reconcile the ratings under the two approaches.

7.2.2 Comparing Correlation Assumptions

A section of asset correlation matrix embedded in the KMV factor model
implementation is shown in Figure 7.3 below. The average asset correlation among all
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obligor pairs is 0.148. Likewise, the average default correlation among all obligors
equals 0.019. A section of the default correlation matrix is given in Figure 7.4.

101 102 103 104 105 106 108 109 110 111 112 113 114 116 117 118 119 120
101 1.00 0.7 0.09 0.09 0.08 0.3 0.07 012 0.14 012 0.0 0.09 0.0 0.16 010 011 011 0.11
102 0.17 1.00 0.16 0.16 0.15 0.24 0.15 0.22 0.26 0.22 0.18 0.16 0.19 0.30 0.16 0.20 0.20 0.20
103 0.09 0.6 1.00 0.09 009 0.14 0.8 0.12 015 0.13 010 0.9 011 0.16 0.08 0.12 011 0.12
104 0.09 0.16 0.09 1.00 0.12 0.4 0.09 012 015 0.2 0.10 0.09 011 0.6 0.08 0.2 0.10 0.1
105 0.08 0.5 0.09 012 1.00 0.4 0.08 011 0.14 0.2 0.10 0.8 0.10 0.5 0.08 011 0.10 0.11
106 0.13 024 0.14 0.14 014 100 012 018 023 019 0.18 0.4 0.17 0.24 0.13 0.18 0.16 0.18
108 007 0.15 0.08 0.09 0.08 0.2 12.00 0.11 0.15 0.12 0.08 0.8 0.10 0.14 0.07 0.1 0.09 0.10
109 012 022 012 0.2 011 018 011 100 0.19 016 013 012 0.14 021 0.12 0.15 0.15 0.15
110 0.14 0.26 0.15 015 0.14 023 0.5 0.19 1.00 020 0.6 0.5 0.17 025 0.13 0.19 0.17 0.18
111 012 022 013 012 012 0.19 0.2 016 020 1.00 0.14 0.12 0.4 022 0.12 0.16 0.5 0.16
112 0.10 0.8 0.0 0.10 0.10 0.18 0.08 0.13 0.16 0.4 100 0.0 0.12 0.8 0.09 0.3 0.12 0.13
113 009 0.16 0.09 0.09 0.08 0.14 008 0.12 0.15 012 0.10 1.00 011 0.16 0.08 0.11 011 0.1
114 010 019 011 011 010 0.7 0.10 0.4 017 014 012 011 1200 0.9 0.10 0.13 0.13 0.13
116 0.16 0.30 0.16 0.16 0.15 0.24 0.14 021 025 022 0.18 0.16 0.19 1.00 0.16 0.20 0.20 0.21
117 010 0.16 0.08 0.08 0.08 0.13 007 0.12 0.3 012 0.09 008 0.0 0.6 1.00 011 011 0.11
118 011 020 012 012 011 0.8 011 0.5 019 016 013 011 013 020 011 100 0.14 0.14
119 011 020 011 0.0 0.0 0.16 0.9 015 0.7 0.5 012 011 013 020 011 0.14 1.00 0.14
120 011 020 012 011 011 0.18 0.10 015 0.8 0.16 013 011 013 021 011 0.4 0.14 1.00

Figure 7.3 Asset Correlation Matrix

101 102 103 104 105 106 108 109 110 111 112 113 114 116 117 118 119 120
101 1.00 0.02 0.01 001 001 0.02 001 003 0.03 001 0.00 001 001 0.02 0.02 0.03 001 0.02
102 0.02 1.00 0.01 0.2 001 0.03 0.02 0.05 0.05 0.02 001 002 0.02 0.04 0.03 0.04 001 0.03
103 001 001 1.00 001 0.0 001 0.0 001 001 001 0.00 001 001 001 001 001 0.00 0.01
104 0.01 0.02 001 1.00 001 0.02 001 0.03 0.03 001 001 001 001 0.2 0.02 003 001 0.02
105 0.01 001 0.00 001 1.00 0.01 001 001 001 001 0.0 001 001 001 001 001 0.0 0.01
106 0.02 0.03 0.01 002 001 1.00 001 0.04 0.04 002 001 0.02 0.2 002 0.02 003 001 0.02
108 0.01 0.02 0.00 001 001 001 100 0.3 0.03 001 0.0 001 001 001 0.01 0.02 0.00 0.01
109 0.03 0.05 0.01 003 001 0.04 003 1.00 0.06 0.02 001 0.03 0.03 0.04 0.05 0.06 0.01 0.04
110 003 0.05 0.01 003 001 0.04 003 0.06 1.00 002 001 0.03 003 0.04 0.03 005 001 0.03
111 001 002 001 001 001 002 001 0.02 0.02 1.00 0.00 0.01 001 0.2 0.01 0.02 0.00 0.01
112 0.00 001 0.00 001 0.0 001 000 001 0.01 000 1.00 0.00 001 001 001 001 0.00 0.01
113 001 0.02 001 001 001 0.02 001 0.03 0.03 001 0.00 100 001 0.02 0.02 0.02 0.00 0.02
114 001 0.02 001 001 001 0.02 001 0.03 0.03 001 001 001 1.00 0.02 0.02 0.03 001 0.02
116 0.02 0.04 001 0.2 001 0.02 001 0.04 0.04 0.02 001 0.02 0.02 1.00 0.02 0.03 0.01 0.02
117 0.02 003 001 0.02 001 0.02 001 0.05 0.03 001 001 0.02 0.02 0.02 1.00 0.04 0.01 0.02
118 0.03 0.04 0.01 0.03 001 0.03 0.02 0.6 0.05 002 001 0.02 0.03 0.03 004 1.00 001 0.03
119 001 001 0.00 001 0.0 001 0.00 0.01 0.01 0.00 0.00 0.00 001 001 001 001 12.00 0.01
120 0.02 0.03 001 0.02 001 0.2 001 0.04 0.03 001 001 0.02 0.02 0.02 0.02 003 0.01 1.00

Figure 7.4 Default Correlation Matrix

To the author’s knowledge, there is no obvious way to compare Moody’s Diversity
Score with asset correlation or default correlation. Moody’s distil the portfolio of ninety
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names down to a portfolio of forty-seven independent entities. Equally, Moody’s would
suggest the same Diversity Score regardless of the firms within the industry. On the
other hand, KMV’s correlation value will be heavily dependent on company size: larger
companies are found to have higher R-squared.

73 Comparing Implied Spreads to Market Spreads

As shown in Table 5-1 above, the senior tranche, which has a par value of €360m and
pays a 50bp spread over Libor, was valued at €370.25m while the mezzanine tranche
has a par value of€40m, pays a 150bp spread and is valued at €43.29m.

The senior and mezzanine tranches would trade at par if they were to be paid spreads of
24.9bp and 98.4bp, respectively. The spreads chosen for the tranches were typical of
spreads available for similarly-rated tranches in 2003. Spreads in the CDO market have
tightened considerably since then, though not nearly as much as spreads on individual
corporate names. Current spreads on Aaa- and Baa2-rated CDO tranches based on an
asset pool with an average maturity of seven years are approximately 30bp and 110bp,
respectively.

The model spreads are narrower than the market is demanding. However, the spread
difference is small especially when considered in the light of spreads demanded in the
market only two years ago. Furthermore, there is likely to be some additional spread
required as compensation for the illiquidity of the tranches vis-a-vis equally-rated
corporate debt.

7.4 Conclusion

In this chapter, the tranche ratings implied by the newly developed CDO valuation
model are compared with the ratings attributed to these tranches by Moody’s and the
model-implied spreads are compared to those available in the market:

« ltis suggested that the differences in the default probability assessment of the
underlying assets will make it extremely unlikely that the rating agency rating will
align with the model-implied rating based on the model expected loss.

» The factor model framework makes the correlation measurement in the new
model explicit. The rating agency approach is heuristic and it is impossible to
make any comparison between the two methodologies.
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. The model-implied spreads are less than, but nevertheless quite close to, those
available 1n the market for similarly-rated CDO tranches This is reassuring the
extra margin demanded 1n the market 1s no more than could be explained by

liqudity differences

In summary, the market prices seem to provide reassurance that the model outputs are

realistic
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Chapter 8. Conclusions and Suggestions for Further

Research

8.1 Chapter Overview

This thesis developed a new model that 1s capable of valuing CDO tranches using the
current state-of-the-art framework The model-implied tranche ratings were compared to
those assigned to the tranches by Moody’s using their BET approach The results from
the two approaches differed, the reasons for these differences were explored and the

implications for the rating agency approach were assessed

Likewise, the spreads suggested by the model were compared to those demanded 1n the
marketplace The differences were, once again analysed and reasons were suggested

which could explain these differences

This final chapter
. summarises the contribution of this thesis to the literature,
o examines other applications of the modelling framework developed 1n this thess,

. looks back on the research approach which was adopted and critically examines

the weaknesses of the approach, and

. suggests how the modelling framework that has been built can be extended to

evaluate other securities

8.2 Contribution of the Thesis to the Literature
The primary aims of this thesis were twofold

o Extend the market-leading structural approach to credit portfolio modelling from
1ts single peniod framework 1nto a multi-period nisk-neutral framework capable of

pricing structured debt

. Use this multi-period model to gauge whether the rating agency assessment of
CDO tranche credit quality accurately captures the risks that such investments

present
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8 21 Model Construction
The approach that was adopted involved the development of three major models

The first model required that the single-period model developed by KMV be re-
constructed Such a re-construction has never previously been published This stems
from the fact that KMV have divulged very little regarding their actual approach their
limited public utterances were couched 1n very generic terms The model results aligned
almost completely with those produced by KMV 1n their Portfolio Manager software
offering The labelling of their approach as ‘black box’ - a criticism which has been
frequently been levelled at them because of their unwillingness to publish their portfolio
modelling approach — now seems nappropriate These results confirm that KMV’s
methodology 1s firmly rooted in the standard factor model implementation of the

Markowitz framework

The second major model and the key extension to the current literature 1s the conversion
of the single-period model mto a nsk-neutral multi-period model capable of valuing
structured debt While the model addresses CDOs specifically, the framework 1s
sufficiently generic to accommodate any credit product whose cash flows depend on

portfolio interactions over many time periods

The final model was a re-creation of Moody’s BET that they employ to rate CDOs This
re-construction was necessary in order to allow a Moody’s rating to be assigned to the
various tranches of the CDOs that were modelled The successful replication was

confirmed by rating structures previously rated by Moody’s

8 2.2 Assessment of Agency Rating for CDO Tranches

The completion of the multi-period portfolio model enabled the calculation of the
expected loss for the CDO tranche This same measure 1s also an output from the
Moody’s BET model and 1s the basis on which they assign their rating A comparison of
these expected loss measures provides the basis for comparing the two assessments of
CDO tranche quality This offers an alternative perspective on tranche quality to that
provided by the agencies Potentially, the expected loss measure from the new model
ought to be more theoretically-sound than Moody’s measure which 1s based on an
heunistic approach Reference to market prices offers an independent assessment of the

sSame 1ssue
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8.2.3 Assessment of Validity of Agency Approach to the Rating of CDO

Tranches

The nature of the cash flows from the various tranches points to the multi-dimensional
nature of CDO tranche risk. The multi-period model shows that the risks presented by
CDOs are significantly more complex than those presented by the loans which comprise
the portfolio. The potential for mezzanine debt, for example, not to receive the interest
due to it in the current period - to receive ‘payment-in-kind’ - substantially complicates
risk assessment for the investor. This points to inadequacies in the expected loss-based
measure to summarise the risks that the tranche presents.

More fundamentally, the agency view that expected loss is a measure of risk i
questioned. The view is expressed that expected loss is merely a cost of doing business.
As such, the Moody’s rating tells the portfolio manager very little of relevance about the
risk which the tranche presents. This problem is worse still for the regulator for whom
expected loss is a matter of indifference since expected loss is a cost borne by bank
shareholders. The only real concern to regulators is systemic risk, the potential for loss
substantially higher than the expected to occur which arises when multiple obligors
default during the period of interest.

The results of this research confirm the view expressed in the recent Basel Il publication
that the risks of CDO tranches differ significantly from those of similarly rated
corporate debt. Subordinated tranches of CDOs embed significantly higher unexpected
loss than equally rated corporate debt. Furthermore, AAA-rated senior tranches built on
poorly diversified loan portfolios - ‘non-granular’ portfolios in Basel-speak - contain
more systematic risk than AAA-rated corporate loans. The very notion of rating is
compromised.

If the agency rating concept is to be redeemed, it will need to be enriched. While the
current rating could continue to be used as a measure of expected loss, the rating should
be qualified to indicate the extent of variation around the expected loss. A separate
qualifier may be of interest to those managing the institution’s liquidity for whom
interruption of cash flows may represent unacceptable risk. However, it is hard to see
how any meaningful measure of risk can be obtained which would satisfy the regulatory
need for an assessment of systemic risk embedded in the tranche. The agency
methodology is too contrived to be capable of adaptation to measure tranche risk in the
context of hank portfolio.
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8 24 Additional Insights for the Credit Portfolio Manager

The single-period model offers two sigmficant additional insights to the credit portfolio
manager which are not available from the current models available in the market
Furthermore, the analysis which the model accommodates supports two

recommendations for changes to the way in which credit portfolios are managed

Marginal impact of a new facility on a debt portfolio The model developed enables the

effect of adding a new facility to a debt portfolio to be measured and the facility Sharpe
ratio to be evaluated having taken the portfolio characteristics into account This
addresses the key concermn of portfolio managers, namely, to measure the effect of

adding a new facility to the existing portfolio

This new approach 1s developed in a structural framework using the KMV measure of
obligor quality, and their measure of asset correlation Heretofore, most research has

relied on the reduced form approach

The further benefit of this approach 1s that 1t greatly expands the universe of obligors
that can be accommodated The reduced form approach requires that a lhiqud credit
default swap market exist However, such a market exists only for well-known names
that have access to the bond market and typically to not avail of bank loans The
framework developed addresses the needs of the typical bank since the portfolio impact

can be determined for all companies whether or not they have quoted debt securnties

Optimal Hold Level Almost all banks impose arbitrary limits on facility size They

have no mechamsm for determining the exposure size at which 1t becomes

uneconomical to assume further exposure

Using the model developed in this thesis and the approach advocated, the appropriate
lim1t on exposure amount to a given counterparty may be set by comparing the available
market spread to the cost of wnting new business at the marginal capital rate The
exposure threshold can be set at some mimimum EVA Spread taking explicit account of

the portfolio composition

Relationship managers 1n banks constantly argue for further limits to secure other
income from clients This framework provides a basis for determining the cost of
excessive exposure to a relationship client and the basis for levying a concentration

penalty While most banks that do not implement ‘hard’ limits levy a ‘hog tax’ on these
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customers, such penalties are usually based on intuition rather than quantitative
approaches.

New Capital Attribution Framework: The model enables a new capital attribution
methodology - namely, contribution to ETL - to be tested. The proposed new
methodology is far more sensitive to concentrations and gives results which are much
more aligned with market intuition.

Limit-Setting in Portfolios: Finally, it is suggested that this new measure of capital
forms an appropriate basis on which to set limits on exposure to customers, sectors and
geographies which is consistent with the bank’s risk appetite.

83 Assessment of the Modelling Assumptions

The complexity of the credit portfolio interactions addressed in this thesis and the
paucity of data necessitated that certain assumptions and approximations be made.
Among the most significant of these are the following:

Deterministic Interest Rates: Interest rates were assumed to evolve in a deterministic
fashion. The potential mismatch between fixed- and floating-rate assets and liabilities is
not addressed. It is naively assumed that the interest rate mismatch that exists between
the assets and liabilities is perfectly hedged. In reality, this will never occur because the
swap can never be structured to cater for all potential defaults and prepayments. The
interest rate mis-match would require modelling the joint movement of interest rate and
credit quality.

Prepayment due to Credit Quality Improvement: The option for the underlying assets to
prepay was ignored. Thus, the prepayment of loans and calling of bonds that accompany
credit quality improvement were not addressed. This would cause the actual portfolio
losses to he under-estimated as the portfolio manager is obliged to re-invest in new
loans during the re-investment period. Furthermore, the effect beyond the reinvestment
period will be to cause earlier de-leveraging and paydown of the senior debt with
consequent higher risk for the subordinate tranches.

Prepayment due to Declines in Interest Rates: Fixed-rate bonds will often be redeemed
if interest rates decline. An interest rate model would need to he integrated into the
current model to capture this aspect of prepayment risk.
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Credit Quality Migration Assumptions: The KMV EDF measure is the key assessment
of default probability over various time periods. Unfortunately, this measure assumes
that the obligor’s liability structure is constant while it models the impact of asset value.
This ignores the potential for a firm to take on significant new debt if its fortunes
improve, as many companies are wont to do. Thus, an improvement in a company’s
fortunes will not necessarily convert into an improvement in the value of its debt if the
equity-holders seize the opportunity to re-leverage. Unfortunately, there is no way
around this problem without access to KMV’s database of EDF migration histories.

Manager Gamesmanship: The model has not attempted to model manager
gamesmanship. In practice, some managers may attempt to game the O/C test by selling
assets which are trading above par and buying assets which are trading below par.
Effectively, they are capitalising on circumstances where the rating agencies are slow to
downgrade or upgrade; since the O/C test is based on par values, all similarly-rated
bonds count equally, regardless of market price. In this way, the manager can keep the
cash flowing to equity in circumstances where the collateral quality has deteriorated
significantly. Since most managers are themselves equity-holders, they will find it in
their interest to do so. Moody’s have recognised this and now identify in their research
those managers who most egregiously engage in such activity. However, it would be
very difficult to capture this type ofbehaviour in the current model.

8.4 Suggestions for Further Research

The model that was developed was applied to the valuation of tranches of a CDO
structure. However, the framework is sufficiently general to allow the model to be
applied to many different types of structured debt securities.

A financial institution’s equity interest in its portfolio of debt securities is the
most obvious candidate for evaluation using this approach. This could provide a
novel approach to the valuation ofbank portfolios.

»  Many investment funds - for example, split-capital investment trusts - are
structured to take leveraged positions in portfolios of debt securities. The model
developed here is capable of being adapted to incorporate the market value
triggers instead of the over-collateralisation triggers of the CDO structure. This
would enable the valuation of the equity, senior debt and zero-dividend preference
shares that comprise the fund’s liabilities.
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. When the credit quality of an obligor with a floating-rate loan improves, the
obligor will often choose to prepay the loan This feature could be readily
incorporated into the model once data was acquired to parameterise this

behaviour

. It 1s well documented 1n the literature — see, for example, Altman et a/ (2002) -
that there 1s a strong link between default rate and recovery rates In other words,
recovery rates decline when default rates in the economy are higher than average
This 1s intuitive — the value of assets realised in the event of default 1s less 1n a
more stressed credit environment as many firms find themselves as forced sellers
Making the beta distribution from which the LGD 1s drawn correlated with the
portfolio default frequency easily incorporates this correlation between portfolio
default rates and LGD

. CDOs of CDOs, or CDO-squared as they have become known 1n the marketplace,
are a particularly difficult debt instrument to value The methodologies that the
rating agencies employ are merely extensions of their current, heuristic CDO
rating methodologies The current model could easily accommodate the additional
complexity presented by the multiple layering A second waterfall would need to
be overlaid on the individual CDO waterfalls to determine what cash would flow
to the individual CDO-squared tranches Clearly, the challenge of collating all the
underlying data would be substantial, but the additional modelling effort should

not be overly onerous

o The use of expected loss as a measure of the risk of CDO tranches has been
questioned A more theoretically correct approach would be to measure the
variability of tranche loss A more relevant measure for a portfolio manager
would be a measure of tranche loss contribution to the portfolio Simuilarly,
regulators would want to measure tranche loss contribution to credit portfolios 1n
stressed credit environments The task of producing such measures — a huge

number of stmulations 1s required — 1s challenging and will require new nsights

8.5 Final Comment

The 1974 Merton approach — subsequently called the structural approach —was framed
around a single obligor Subsequent work, most notably by KMV and CreditMetrics,
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moved forward from that single obligor view to a multi-obligor portfolio view 1n a

single-period time-frame which could assess the behaviour of corporate debt portfolios

This thesis builds on this portfolio view by extending 1t to a multi-period time frame
capable of valuing structured debt As such, 1t 1s a natural extension of previous research
efforts However, 1t takes previous research down a path which has been somewhat
1gnored of late because of the spectacular growth which has occurred in the CDS market
and the associated price transparency Unfortunately, the lure of plentiful data and
robust pricing methodologies has drawn researchers to focus of the liquid sector of the
market — the investment-grade market primarly — 1gnoring the bulk of bank obligors,
those sub-1nvestment-grade names whose debt 1s seldom, if ever, traded It 1s hoped that

this thesis goes some way towards redressing that imbalance
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Appendix The CreditMetrics Credit Portfolio
Modelling Approach

CreditMetrics rely on a model which connects rating changes and defaults to
movements 1n an obhigor’s asset value “This allows us to model jomnt rating
changes across multiple obligors without relying on historical rating change or
bond spread data ” (Gupton e? al, p81) They do so because of the problems with
alternative approaches such as non-parametric methods using direct estimation of
joint credit moves and estimates based on bond spreads They summarise their

two-step asset value model for joint probabilities of credit rating changes

. They propose an underlying process which drives credit rating changes
They attempt to establish a connection between the events that they
ultimately want to describe (rating changes), but which are not readily

observable, and a process that they understand and can observe

o They estimate the parameters from the process above “If we have been
successful m the first part, this should be easier than estimating the joint

rating change probabiulities directly ” (p 85)



Figure 8.1 S&P’s Rating Changes vs Asset Returns over One Year

They propose that a firm’s asset value be the process that drives its credit rating
changes and defaults, a model they claim is essentially Merton’s option theoretic
model. However, since their focus is on portfolio value changes resulting from
changes in credit rating as well as default, they do not concentrate solely on the
default threshold but identify all the rating boundaries. They assume that there are
asset levels such that they can construct a mapping from asset value in one year’s
time to rating in one year’s time. Knowing the asset thresholds that correspond to
rating boundaries, “we only need to model the company’s change in asset value in
order to describe its credit rating evolution.” (p86)

They then state a fundamental premise on which their model’s validity rests: “To
do this [modelling], we assert that the percentage changes in asset value (that s,
asset “returns”, which we will denote by R) are normally distributed, and
parameterised by a mean \x and standard deviation (or volatility) cr.” (p86) They
can then define the rating thresholds as corresponding to a cumulative probability
of the standard normal distribution. Using S&P’s transition matrix, they establish
the rating thresholds corresponding to asset return values. An example of these
thresholds is shown in Figure 8.1. They comment that for one obligor, they only



need the transition probabilities to describe the evolution of credit rating changes,
and the asset value process is not necessary. The benefit of the asset value
process, they claim, is only in the consideration of multiple obligors.

They assume that the asset returns for a two-asset portfolio are bivariate normally
distributed though they note that any multivariate distribution (including those
incorporating fat tails or skewness effects) where the joint movements of asset
values can be characterised fully by one correlation parameter would be
applicable. By extension, they assume that the joint distribution of the asset
returns of any collection of firms is multivariate normal. By way of example, they
assume a two-asset portfolio comprising a BB- and an A-rated obligor with a
correlation of 0.3 hetween their asset returns. The distribution is sketched in
Figure 8.2:

Figure 8.2 Bivariate Normal Distribution of Asset Returns

They calculate the probabilities that the two assets will be in the various
combinations of credit states by integrating under the probability density surface.
The results are shown in Table 8-1:



Obhigor A

AAA

AA

A

BBB

BB

B

ccC

Def

Total

AA

BBB
BB

Obliger BB

CCC
Def]

0 00%
000%
000%
002%
007%
000%
0 00%
0 00%

000%
001%
004%
035%
179%
008%
001%
001%

003%
013%
061%
7 10%
73 65%
7 80%
086%
089%

000%
0 00%
001%
020%
424%
079%
011%
013%

000%
000%
0 00%
002%
0 56%
013%
002%
002%

000%
000%
000%
001%
019%
005%
001%
001%

0 00%
000%
0 00%
000%
001%
000%
000%
0 00%

0 00%
000%
0 00%
0 00%
004%
001%
000%
0 00%

003%
0 14%
067%
769%
80 53%
887%
100%
107%

Total

009%

22%%

91 06%

548%

075%

026%

001%

006%

100 00%

Table 8-1 Jomnt Rating Change Probabilities for BB- and A-rated Obhgors

The results shown in Table 8-1 are fundamentally dependent on the asset
correlation estimate CreditMetrics suggest a variety of approaches could be taken
to the estimation of asset correlation, from a simple average correlation approach
to one that uses equity correlations “One fundamental — and typically very
observable — source of firm-specific correlation information 1s equity returns”
(p93) They use the correlation between equity returns as a proxy for the
correlation of asset returns While they acknowledge that this method has the
drawback of overlooking the differences between equity and asset correlations,
they assert that 1t 1s more accurate than using a fixed correlation and 1s based on
more readily available data than credit spreads or actual joint rating changes They
accept that 1t would be desirable if they could produce correlations for any pair of
obligors, but assert that scarcity of data for many oblhigors as well as the
impossibility of storing a correlation matrix of the size that would be necessary,
would make this approach untenable Therefore, they “resort to a methodology
which relies on correlations within a set of indices and a mapping scheme to build

the obligor-by-obligor correlations from the index correlations  (p93)

Thus, to produce individual obligor correlations, the correlation between industry
indices 1n particular countries 1s calculated Then they map individual obligors by
industry participation They also calculate the volatility of each index and the
correlation between each index pair In these calculations, they use the last 190
weekly returns and weight each of these equally Their motivation for using this
approach, they say, 1s that they are interested m computing correlations which are
valid over the longer horizons for which CreditMetrics will be used The statistics
tend to be more stable over time, they claim, and reflect longer term trends,
whereas the statistics i RiskMetrics vary more from day to day, and capture

shorter term behaviour
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They summarise their stmulation approach as follows

o Assign weights to each obligor according to 1its participation 1n countries
and industries, and specify how much of the obligor’s equity movements are

not explained by the relevant indices

. Express the standardised returns for each obligor as a weighted sum of the

returns on the indices and a company-specific component

o  Use the weights along with the index correlations to compute the

correlations between obligors

“By specifying the amount of an obligor’s equity price movements not explained
by the relevant indices, we are describing the obligor’s firm-specific, or

1diosyncratic, risk ” (p98)



