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The use of intra-subject variability as a means of identifying performance 
enhancement interventions - Gary F Park

Background The most common method used to identify performance determining 
biomechanical factors has been to compare differences between individuals This 
group analysis approach assumes that the movement strategy for all individuals is the 
same However, not every athlete has the same neuromuscular capacity, 
anthropometries and muscle morphology It may be more appropriate to make 
inferences about an individual’s movement strategy by treating each individual as 
their own experiment group, examining differences between repetitions of an 
individual’s own performance, referred to as individual analysis The aim of the 
study is to identify the performance determining biomechanical factors of 
countermovement vertical jumping, at both a group level and individual level and to 
highlight the commonality and differences between the two approaches The study 
also aims to determine whether drop jumps (DJs) overload the performance driving 
kinetic factors of the countermovement jump (CMJ), thereby assessing the 
appropriateness of DJs as a training method

Experiment Eighteen male university students performed 15 countermovement 
jumps (CMJ), 15 drop jumps from 0 30m (DJ30) and 15 from 0 50m (DJ50) From 
ground reaction force and motion data, kinematic, kinetic and coordination parameters 
were calculated for the whole body, hip, knee and ankle Correlation analysis was 
used to identify the biomechanical factors that may explain differences in jump height 
achieved, both between individuals (inter-subject) and within repetitions of an 
individual (intra-subject) Differences in kinetic factors between the CMJ, the DJ30 
and the DJ50 at a group level was assessed using a two-way repeated measures 
ANOVA, and at an individual level using a single subject repeated measures 
ANOVA

Results A number of biomechanical factors were found to be significantly correlated 
with CMJ height at a group level These however, were not always correlated at the 
individual level, and visa versa Opposing relationships were evident at the individual 
level, both between individuals and compared to the group analysis Knee kinetic 
parameters were significantly greater in the DJ than the CMJ at a group level and for 
the majority of subjects at an individual level In contrast, both ankle and hip kinetics 
were not overloaded in the DJ at the group level, although an overload of ankle 
kinetic parameters was achieved by a number of individuals

Conclusion Results from a group and individual analysis are not always 
comparable A considerable amount of important information may be lost regarding 
individual performance strategies when only a group analysis is employed However, 
the use of solely an individual analysis based approach would not reveal any 
performance factors relating to differences between subjects, and a case for a group 
based analysis to be used to supplement an individual analysis therefore exist Knee 
kinetic factors were overloaded in the DJ compared to the CMJ, while hip kinetics 
factors were not and the overload of ankle kinetic factors was found to be dependent 
on the DJ technique employed

Key words vertical jump performance, countermovement jump, drop jump, mtra- 
subject variability, individualised technique, rate of force development
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1 1 Rational

Endeavours to continually improve an athlete’s performance rely on structured, 

progressive training programs, encompassing enhancement of both movement 

technique and neuromuscular output capacity Athletes and coaches seek to 

determine which factors determine performance success and which training exercise 

protocols can be utilised to develop these factors Methods of identifying 

performance driving or performance limiting factors have predominantly focused on 

group based analyse, either citing the performance strategy of elite athletes as the 

‘gold standard’ to which individuals should aspire (Hay, 1995), or identifying 

differences between individuals (Dowling and Vamos, 1993) This de-emphasises the 

importance of the individual and pertains to an “abstract” or “average” optimal 

movement strategy that can be applied to all individuals (Dufek et al, 1995)

However, not every individual has the same neuromuscular capacity (e g individual 

joint power, rate of power production and joint dominance), anthropometries (e g 

limb length and relative mass) and muscle morphology (e g percentage muscle fibre 

type) The unique physical characteristics of individuals, coupled with the multi­

functional degrees of freedom associated with the human body, means that there are a 

large number of possible movement strategies Dufek and Zhang (1996) found a 

model formulated to explain forces upon landing from a jump, using the group 

approach, was suitable for some individuals but not for all This approach would be 

valid if everyone was identical Therefore, it may be inappropriate to assume one 

optimal movement strategy to be suitable for all It may be more appropriate to 

identify an optimum performance strategy for an individual based on differences 

between repetitions of the individual’s own performance If this principle is accepted, 

it follows that the individual should be the focus of examinations While this may not 

be appropriate for all individuals, it may be for elite level performers where minor 

refinements of technique are sought and any deviation between what is required to 

increase performance for the individual and what was required for the group as a 

whole might be unacceptable (Bates, 1996, Hopkins, 1985) By studying each 

individual separately, the differences in physical characteristics are controlled and any 

change in performance must be due to the movement strategy employed A second 

problem with a group based analysis is that, if different movement strategies exist
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between individuals, it is possible that they may numerically cancel out each other at 

the group level, resulting in neither strategies being identified as important

In the present study the CMJ was selected as a model to examine and compare group 

and individual based biomechanical analysis This was because it is a relatively 

simple and well-learnt task where performance is clearly and objectively defined In 

addition, it is evident in many sporting activities The existence of individual 

performance strategies in vertical jumping is evident in the literature (Aragon-Vargas 

and Gross, 1997b, Hubley & Wells, 1983, Jensen et al, 1991), but only one study 

compared the results of both a group and individual analysis (Aragon-Vargas and 

Gross, 1997a, 1997b) This study used multiple regression as the statistical method to 

identify factors related to vertical jump performance When the sole objective is the 

formulation of a model for prediction, multiple regression is suitable However, with 

multiple regression the potential exists of the exclusion of relevant variables or 

inclusion of an erroneous relationship between a variable and jump height Therefore, 

multiple regression may not be the best approach for the identification of 

biomechanical parameters that determine jump height and the results of studies using 

multiple regression must be viewed with caution Instead, the present study used 

bivariate correlation analysis to examine the relationship between each parameter and 

jump height

The height achieved in vertical jumping is not simply dependant on the movement 

technique employed but also the neuromuscular system’s capacity to produce force 

(Tomioka et al, 2001, Walshe et al, 1998) The neuromuscular output capacity is 

improved through a progressive overload, using actions that conform well with the 

target movement in respect to the muscle groups used, the coordination pattern, the 

joint range of motion (ROM), the velocity of contraction and the muscle action 

employed (Bobbert, 1990) One such training intervention, which has been 

extensively employed, purportedly providing effective overload, is the drop jump 

(DJ) However, there are contrasting findings from studies regarding the extent, if 

any, of an enhancement in the CMJ following DJ training programs (Blatter and 

Noble, 1979, Brown et al, 1986, Matavuji et al, 2001) This may be due to 

differences between individuals’ technique For some individuals the joint kinetics 

may be overloaded in the DJ compared to the CMJ, while in others no change or a
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reduction in joint kinetics may be evident Additionally, the kinetic parameters that 

are overloaded in the DJ may not be kinetic parameters that require to be trained for 

improvements in jump height To date no study appears to have determined if drop 

jumps overloads the factors related to CMJ performance at an individual level

Therefore the aims of the present study were to -

(1 ) Identify the biomechanical factors that correlate with jump performance, at 

both a group and an individual level 

(n) To identify the kinetic factors that are overloaded in the DJ, at both the

group and the individual level 

(1 1 1 ) To assess whether the biomechanical (kinetic) factors correlated with jump 

height in the CMJ are overloaded in the DJ

(iv) To determine if the kinetic parameters are overloaded more in the DJ50 

than the DJ30

(v) To examine the extent to which the results of a group and an individual 

analysis are comparable, both for factors that correlate with jump height 

and differences in jump conditions

12 Hypothesis

The biomechanical factors that relate to differences in CMJ height at an individual 

level of analysis do not always match those at a group level of analysis

A number of joint kinetic parameters are greater in the DJ than the CMJ at both the 

group level and the individual level of analysis

A number of joint kinetic parameters are greater in the DJ50 than the DJ30 at both the 

group level and the individual level of analysis

The performance determining (kinetic) factors of the CMJ are overloaded in the DJ
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1 3  Limitations

Correlation measures the extent to which two parameters vary in relation to each 

other It does not signify that the change in one parameter causes the change in the 

other The precise relationship must be established through systematically altering the 

biomechanical parameter while monitoring changes in the jump height achieved 

However, for the purposes of discussion in the present study, the theoretical 

implications of a causal relationship, which mirrors the findings of the correlation 

analysis, will be additionally discussed Bivanate correlation analysis only reveals 

linear patterns, the possibility exists that a non-1 inear pattern may be present Visual 

examination of scatter plots of each variable and jump height was undertaken Where 

a non-linear pattern was suspected, the residuals were plotted against the expected 

values from bivariate regression analysis, and the pattern was examined 

(Montgomery, 1991) No non-linear patterns were observed for any variable

Limited instruction was given m regards to jump technique during the course of the 

experiment, so as not to influence the strategy employed The movement technique 

employed in the DJ has been shown to influence the overload of joint kinetics 

compared to the CMJ (Bobbert et al, 1987a) Further instruction may have enabled 

great overload of joint kinetics, however, it was the response relating to the freely 

chosen movement strategy that was of interest
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2 0 Introduction

In all facets of human movement no two attempts of the same movement action result 

in exactly the same movement kinematics, kinetics or performance outcome 

Performance outcomes lie somewhere on a continuous spectrum from worst 

performance to best, it is the essence of sports performance to strive for the later 

Endeavours to continually reach and surpass the athlete’s best performance rely on 

structured, progressive, training programs encompassing enhancement of both 

neuromuscular output capacity and movement technique Identification of which 

aspect of technique should be trained to enhance performance has traditionally been 

based on identifying differences between individuals (Dowling and Vamos, 1993), 

often using_performances of elite athletes as the ‘gold standard’ to which individuals 

should aspire (Hay, 1995) However, individuals differ m their neuromuscular 

capacity (e g individual joint power, rate of power production and joint dominance) 

their anthropometries (e g limb length and relative mass) and their muscle 

morphology (e g percentage muscle fibre type) Therefore, it may be inappropriate to 

expect one technique to be suitable for all and it may be more appropriate to tailor 

training programs based on differences between repetitions of an individual’s own 

performance Similarly, in attempting to improve a specific neuromuscular 

component (e g knee joint power), differences may exist between individuals as to 

the extent the component is overloaded when different exercises are employed (e g 

drop jump from 30cm vs weighted vertical jumps vs drop jump from 60cm) Again 

it may not be appropriate to expect one training exercise to be suitable for all

This review will examine how variability has been viewed in biomechanical and 

motor control literature and the role it plays in optimising movement strategy from a 

dynamic systems approach The case for a single subject analysis approach will be 

put forward and the observed magnitudes of both inter- and intra- subject variability 

in the biomechanical literature will be outlined The use and misuse of variability in 

biomechanical studies to reveal mechanisms of performance enhancement will be 

briefly highlighted, with particular reference to multiple regression analysis

The vertical jump is evident in many sporting activities and has been used as a 

research model in numerous biomechanical studies (Bobbert et al, 1987a, Jensen and
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Phillips, 1991, van Ingen Schenau et al, 1987) due to it being a relatively simple and 

well learnt task, where maximum performance is clearly and objectively defined 

(Aragon-Vargas and Gross, 1997a) Vertical jumping outcome (i e jump height), is 

the combined result of the magnitude of mechanical output of the neuromuscular 

system and the coordination pattern (technique) employed This review will outline 

the biomechanical variables that have been examined in the study of vertical jumping 

and their relationship to jump height, along with a review of studies that have sought 

to investigate the coordination pattern employed

Finally, training methods employed to improve vertical jump performance will be 

examined, with a particular emphasis on drop jumping (DJ) How changes in the DJ 

technique or drop height can affect the magnitude of kinetic parameters will be 

examined Finally, a brief outline of results of training studies utilising the DJ will be 

detailed

2 1 Variability

This section will introduce the idea of variance and will briefly outline the various 

theories of movement control, which have been forwarded in the motor control 

literature The case will be put forward for viewing the control of the human body as 

a dynamic system and examine the role variability plays in shaping movement pattern 

formation The amount of variability observed in the biomechanical analysis of a 

variety of movements will be given, both between subjects (inter-subject) and within 

repeated performances by an individual (intra-subject) Statistical methods, which 

utilise variance as a means of identifying trends in the data, will be briefly evaluated, 

outlining their merits and limitations

2 11 Variability in movement

Several attempts to solve the same motor task will inevitably lead to different patterns 

of movement actions, including kinematic, kinetic, muscle activation (Latash et al, 

2002) and movement outcome Bernstein (1967) referred to this as ‘repetition 

without repetition’, meaning each repetition involves a unique, nonrepetitive 

movement pattern (Latash et al, 2002) This tendency for repetitions to differ from
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each other is referred to as variability (Orr, 1995) and is a natural occurring 

phenomenon associated with all types of human movement (DeVita & Bates, 1988) 

Variability within an individual’s performances is referred to as intra-subject 

variability (Aragon-Vargas & Gross, 1997a & b, DeVita & Skelly, 1990) or within- 

subject variability (Borzelli et al, 1999, Heiderscheit, 2000), while variability between 

individuals is referred to as inter-subject variability (Aragon-Vargas & Gross, 1997a 

& b, Borzelli et al, 1999) or between-subject variability (Hopkins et al, 1999) In 

spite of the widespread evidence of variability in movement, it has not been given the 

same theoretical and operational significance that invariance has procured, based on 

the belief that consistency of response is indicative of a motor strategy

2 12 Movement control theories

Some theories of motor control have long proposed that movement is controlled by 

centrally stored patterns (or prescriptions), which function with little or no sensory 

input during completion of the task (Gentner, 1987) This suggests that for each 

possible movement-environment combination a separate motor program must exist 

However, this would lead to immense memory storage requirements In 

acknowledgement of this limitation, Schmidt (1975) forwarded the notion of a 

generalised motor program for a given class of movement, rather than each specific 

movement These generalised motor programs present pre-structured commands for a 

number of movements, which can be adjusted for velocity and force requirements 

when specific response parameters are provided (Schmidt, 1975) Relative timing 

invariance in the kinematics of movement has been cited as evidence to support the 

generalised motor program theory (Schmidt, 1985) However, a number of authors 

have clearly shown that timing invariance is not apparent in many movements 

(Burgess-Limerick et al, 1992, Genter, 1987, Maraj et al, 1993) and the procedures 

used previously to support the general motor program were inappropriately applied 

(Gentner, 1987)

Over the last three decades there has been substantial work by ecological 

psychologists rejecting the idea of invariance in favour of a the concept of functional 

variability The introduction of concepts and methods of nonlinear dynamics and 

chaos theory has led to the interpretation of movement variability as more than merely
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noise but as being necessary for movement pattern optimisation and driven by a 

deterministic process It has been suggested that the problem of movement pattern 

selection and production can be resolved by conceptualising the human movement 

system as a complex dynamic system (Clark et al, 1989, Diedrich and Warren, 1995, 

Newell and Slifkin, 1998, Stergiou et al, 2001) Complex systems such as the human 

body exhibit many fundamental attributes, including many degrees of freedom which 

are free to vary, many different interacting levels of the system (neural, perceptual 

and muscular-skeletal), non-linear output and the capacity for stable and unstable 

patterns as it spontaneously shifts between coordination states through processes of 

self-orgamsation (David et al, 2000)

Complex systems are seen as open non-conservative systems with variable amounts 

of kinetic energy dissipated around its components at any given moment The energy 

already in the system interacts with instantaneously available forces in the 

environment, such as reactive forces and gravity The energy entering the system can 

interact with energy already within the system to produce chaotic and unpredictable 

effects on the system However, there appears to be a surprising amount of stability 

within the systems, suggesting that processes of self-organisation are present which 

maintain the stability

From a dynamic systems viewpoint, movement pattern formation is the result of the 

self-organisation of the neuromusculoskeletal system confronted with the specific 

dynamic constraints of the task and environment, as opposed to spatio-temporal 

prescriptions from a hierarchical control system (Temprado et al, 1997) Variability 

in the system should not be considered merely as noise but predominantly as a 

functional property, which allows the system to explore new movement patterns 

From this perspective variability can be viewed as an index of fluctuation necessary to 

allow the movement system to adapt to changing constraints from one situation to the 

next (Button et al, 2003) Given the functional nature of variability, higher levels of 

variability m certain parameters may be indicative of a highly skilled adaptation to 

task constraints, rather than merely a reflection of motor system noise (Davids et al, 

2000) Clearly, since variability may be the result of the system exploring new 

movement patterns, variability may provide a window for the identification of 

optimum movement patterns
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2 13  Variability in Biomechanics studies

Variability, both inter-subject and intra-subject, is evident in all movements Tables 

2 1 to 2 6 detail examples of both inter-subject and intra-subject variability reported 

for biomechanical parameters for gross motor tasks Table 2 1 and table 2 2 report 

magnitudes of variability experienced in a variety of movements, while tables 2 3 to 

table 2 6 specifically detail jumping tasks Table 2 1 examines the initial impact peak 

forces for a variety of landing actions The ratio of intra-subject variability to mter- 

subject variability ranges from approximately half (Dufek et al, 1995) to comparable 

magnitudes (Dufek and Bates, 1990, Lees and Bouracier, 1994)

Table 2 1 Coefficient of variance (CV) [%] of initial impact forces in selective 
landing actions__________  _ _ _________
Study Inter Intra Intra

Mean Range
Running

Stergiou et al (2001) 126
Lees & Bouracier (1994) 9 1 93 5 5 - 14 1
Miller (1990) 12 1
Dufek et al (1995) 20 9 88 6 3 -1 0 5

Walking
Ham ill & McNiven (1990) 5 3
Hamill et al (1984) 93

Landing from vertical drop (60cm)
Dufek & Bates ( 1990) 143 29 1 23 6 -3 3  1
Dufek & Bates ( 1991 ) 25 9
Dufek et al (1995) 26 9 140 8 31 -2 3  2

A considerable amount of variability exists in the kinetics of movement both inter- 

subject and intra-subject Lees and Bouracier (1994) found the average intra-subject 

coefficient of variability (CV) for vertical impact force to be approximately the same 

magnitude as the inter-subject CV However, individual levels of intra-subject CV 

ranged from 60 4% to 154 9 % of the inter-subject CV observed At a segmental 

level, DeVita and Skelly (1990) found the intra-subject CV for joint moments to be 

58%, 44% and 47% of the inter-subject variation for hip, knee and joint moments, 

respectively, during the support phase of running
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Table 2 2 CV [%] of stride length during running at various running velocities
Study 2 5m/s 3m/s 3 5m/s

Inter 4 6 45 12 2
Craib et al (1994) Intra 25 22 23

1 3-3 3 1 7-3 3 1 2-4 3
Cavanagh & Kram (1989) Inter 57 5 9
Heiderscheit et al (2002) Inter 6 1
Schieb (1986) Inter
Note Velocities have been reported to nearest 0 5m/s
Average and range of individuals intra-subject variability is outlined for Craib et al (1994)

Table 2 2 shows the magnitude of inter-subject variability in stride length during 

running at selected velocities Intra-subject variability is also detailed for Craib et al

(1994), where similar percentages of intra-subject CV to inter-subject CV of stride 

length for running velocities of 2 7m/s and 3 1 m/s were found (54% and 49% 

respectively) At a higher velocity of 3 5m/s the intra-subject CV was relatively 

smaller compared with inter-subject CV This can be attributed to a greater range of 

stride lengths chosen by individuals at the higher velocity, thus increasing mter- 

subject variance Since the individual CV of stride length did not significantly differ 

across velocities, the reduction in the percentage can be attributed to a change in inter- 

subject variance alone No data for intra-subject variability was reported for the other 

studies

Table 2 3 outlines the inter-subject CV for vertical jump height achieved in the 

countermovement jump (CMJ) Additionally, intra-subject data for Aragon-Vargas & 

Gross (1997b) is reported, which is of a reduced magnitude compared to inter-subject 

variability

Table 2 3 Inter-subject and intra-subject standard deviation [m] and CV[%] for height 
attained in the CMJ

Study number of variance SD CV
__________________subjects type_______

Aragon-Vargas & Gross (1997a) 52 Inter 0 070 13 4
Aragon-Vargas & Gross (1997b) 50 trials Intra 0013 3 1
Dowling & Vamos (1993) 97 Inter 0 101 34 0
Jaric et al (1989) 39 Inter 0 050 132
Robertson & Fleming (1987) 6 Inter 0 850 170
Rodacki et al (2001) 20 Inter 0 044 13 2
Nagano et al (1998) 6 Inter 0018 52
Van Soest et al (1985) 10 Inter 0 060 11 1
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Variability in the duration of the concentric phase in the CMJ is shown in table 2 4 as 

an example of temporal variability for a jumping task Only one study could be found 

that detailed both inter- and intra-subject variability (Aragon-Vargas & Gross, 1997a, 

1997b) As with the height attained in the CMJ outlined in table 2 3, inter-subject 

variability is greater than intra-subject variability

Study Inter Mean Intra Range Intra
Aragon-Vargas & Gross (1997) 196 6 4 5 6-6 8
Jaric et al (1989) 192
Rodacki et al (2001) 144
Van Soest et al (1985) 15 85

Table 2 5 details inter-subject variability observed in a single study by Van Soest et al 

(1985) for joint kinematic and kinetic parameters in the CMJ Comparisons can be 

made across variables as each was produced from the sample group Lower 

variability was observed for the joint angle data (kinematic measure) than moment, 

power and work data (kinetic measure) There does not appear to be a difference 

between the joints in terms of the magnitude of variability This is supported in 

general, in analysis of joint moment and power data for the CMJ (table 2 6)

Table 2 5 Inter-subject CV[%] of segmental data for the CMJ (van Soest et al, 1985)
Hip Knee Ankle

Angle @ JR 16 13 17 39 991
Peak Moment 16 25 18 39 16 90
Peak Power 23 47 21 06 26 53
% Work 18 23 22 02 24 15
Note JR = joint reversal (point where angular motion of the joint reverses

Table 2 6 Inter-subject CV [%] for joint moment and power in the CMJ
Study Joint Peak moment Peak Power

Hip 25 1 28 4
Aragon-Vargas & Gross Knee 35 1 30 1
(1997a) Ankle 197 29 1

Hip 11 5 14 2
Ravn et al (1999) Knee 70 9 1

Ankle 183 20 8
Hip 21 3 28 3

Rodano & Roberto (2002) Knee 20 0 23 7
Ankle 14 2 15 8
Hip 163 23 5

Van Soest at al (1985) Knee 184 21 1
Ankle 16 9 26 5
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2 14  The use of variability in movement assessment

Human movement performance is dependent on the interaction of numerous 

biomechanical factors Vertical jump height is predominately determined by the 

vertical velocity of the body’s centre of mass (BCOM) at take-off Whole body 

vertical velocity in vertical jumping is in part a function of individual joint angular 

velocities, which in turn are in part dependent on individual joint kinetics Joint 

kinetics has been seen to vary both between individuals and within repetitions by an 

individual for vertical jumping (Rodano and Roberto, 2002, Van Soest et al, 1985) 

Likewise, variability has been observed in performance outcome (table 2 3) As the 

performance outcome is dependent on a number of biomechanical factors, it seems 

intuitive to assume the variability in performance outcome may be the result of 

variability in these underlying joint kinematics and kinetics, and knowledge of how 

they vary in relation to each other may provide a means of identifying differences in 

performance

Variance has normally been viewed as a nuisance, requiring additional measurements 

to obtain a representative value and the use of statistical inference to determine 

differences However, variance may reveal information about the movement pattern 

and can be used as a means of analysis Variance with respect to the interrelationship 

among variables is called covariance and examines the extent to which two sets of 

variables exhibit similar tendencies to differ (Orr, 1995) Two statistical methods that 

are based on covariance are correlation and regression

Correlation was first put forward by Galton in 1888 in his paper to The Royal Society 

of London, referring to it as an “index of co-relation” (Stigler, 1986) Correlation 

measures the extent to which the variance of one parameter can be explained by the 

variance of another

An extension of correlation is bivariate linear regression, which involves producing 

the equation of a line that passes through the data plotted on a Cartesian plane such 

that the squared deviation of the observed points about the line are minimised 

Bivariate regression can be simply viewed as a line that best represents the trend in 

the data However, as the number of parameters increase it becomes difficult to
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visualise the model of best fit for the data, but formulation of a mathematical model of 

the relationship is still possible via multiple regression and has been used in a number 

of biomechanical studies (Aragon-Vargas and Gross, 1997a, Dowling and Vamos, 

1993, Dufek et al, 1995, Hay et al, 1978, Tomioka et al, 2001) Multiple regression 

always explains at least as much variability in the dependant variable as bivariate 

regression, but the potential of a sample specific relationships increases with the 

number of variables that are included in the model Clearly it would be beneficial to 

have a method to reduce the number of variables entering the model The most 

commonly employed method of variable elimination in biomechanical studies is by 

stepwise regression (Aragon-Vargas & Gross, 1997a, Dufek et al, 1995, Hay et al, 

1978) This can take the form of backwards or forward elimination, resulting in either
t

variables being removed from a model containing all the variables or variables being 

added to the bivariate model containing the variable most strongly correlated with the 

dependent variable

Aragon-Vargas and Gross (1997a) used multiple regression to identify the 

biomechanical factors that distinguish differences in jump height between 52 

individuals The three regression models that explained the largest amount of 

variance in jump height along with the best single variable predictor at both a whole 

body and segmental level were reported In a subsequent study they examined the 

biomechanical factors that determined jump height within individuals and selected 

three subjects to represent the best, worst and average performers (subject B, subject 

W and subject A, respectively) Factors contained within the regression models of at 

least two of the three subjects were tested to determine it they significantly related to 

jump height for a further five subjects

Even though the model obtained with multiple regression may be the best possible for 

prediction, stepwise regression is pure empirical selection and may not include all 

theoretically relevant variables One of the biggest problems involved in multiple 

regression is the predictor variables being correlated with each other, which is 

referred to as multicollinearity (Grimm & Yamold, 1995) When multicollinearity is 

present, variables strongly correlated with each other may not be included together 

because when one of the variables is already in the model, the inclusion of the other 

may contribute only a diminished source of explained variance in the dependant
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variable This may increase the likelihood of inclusion of variables primarily as the 

result of being uncorrelated with the existing variables in the model and at the 

expense of variables more strongly related to the dependant variable This was 

highlighted in the study of vertical jumping by Aragon-Vargas and Gross (1997a) 

where the amplitude of the BCOM was the best single predictor of jump height for 

subject A (r = 0 557) but was not included with other variables in the best three 

multiple regression model

A greater problem occurs when two variables, highly negatively correlated with each 

other, are included in a regression model together This may result in the coefficient 

of one variable changing sign to accommodate the other within the model (Hair et al,

1987), thus predicting the opposite relationship the parameter has with the dependant 

variable This occurred in the group regression models explaining the variation in 

jump height in Aragon-Vargas and Gross (1997a) Both peak hip moment and hip 

moment at the point where the joint reverses direction, termed joint reversal (JR), 

were positively correlated with jump height on their own (r = 0 524 and r = 0 484, 

respectively), but when included with other variables (models 16 and 17, p36) 

displayed a negative relationship within the model While this does not cause a 

problem when the model is used for purely prediction but misleading information may 

be drawn about the individual relationship a variable has with jump height

Multiple regression analysis is suitable if the sole objective is the formulation of a 

model for prediction, but when used to gam insight into the effect of various 

parameters on a dependant variable, monitoring of multicollinearity is critical Of the 

biomechanical studies mentioned above, only Dufek et al (1995) and Tomioka et al 

(2001) investigated whether the variables entered into the stepwise process were 

uncorrelated Aragon-Vargas & Gross (1997a, 1997b) and Dowling and Vamos 

(1993) in their analysis of vertical jump performance entered a multitude of 

biomechanical parameters into the stepwise process with no stated consideration 

given to whether the variables were correlated or uncorrelated In light of the inter­

related nature of the human movement system, the assumption of uncorrelated 

predictor variables is highly likely to have been violated

Aragon-Vargas and Gross (1997a) stated “the purpose of this study was to identify the 

relevant predictors and not necessarily to build the most accurate model” (p32), after
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previously stating, “since most factors proposed as relevant to VJP (vertical jump 

performance) are interrelated in a complex fashion, a sensible approach to their study 

is the use of a multiple-regression analysis technique” (p26) In light of their aim, 

instead of rejecting multiple regression due to the potential effects posed by 

multicollinearity, which they acknowledge may be present, they utilised a technique 

that has the potential for excluding relevant variables from the model This was 

illustrated by only including the ankle and hip angle at take-off in one model, 

explaining differences in the vertical height difference of the BCOM between 

standing and take-off, and the knee angle being included in another model Multiple 

regression does not allow for the fact that potentially a relevant predictor may not be 

included in any model due to the inclusion of another factor, nor does it protect 

against the reversal of the sign of the relationship as highlighted above with respect to 

peak hip moment and hip moment at JR This makes multiple regression an 

unsuitable means of identifying relevant factors of jump performance Findings from 

studies, which use multiple regression with no reference to the degree that predictor 

variables are correlated, must be viewed with caution

To avoid multicollinearity, the selection of variables that measure the same (or 

similar) factors must be eliminated To reduce the effect of multicollinearity a 

number of approaches may be employed including transformation of the data or the 

use of techniques such as factor analysis (e g principle component analysis) Factor 

analysis combines individual parameters into new uncorrelated parameters, which can 

be subsequently used in regression techniques (Freund & Minton, 1979) These new 

parameters, called factors, form linear combinations of the original parameters 

Kollias et al (2001) used principle component analysis to investigate the effect of 

changes in strength and coordination m vertical jumping but did not relate the new 

factors to changes in performance While satisfying the conditions of regression 

techniques, these new factors introduce complications in interpretation of the results, 

as often no meaningful combinations are produced

One way of protecting against these potential pit-falls of multicollinearity, while still 

gaining insight into the mechanics of performance enhancement, is to examine the 

relationship between each parameter and changes in the performance outcome 

individually by means of bivariate correlation analysis This approach has been used
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in a number of biomechanical studies (Dowling and Vamos, 1993, Harman et al,

1990, Jane etal, 1989)

4 15 Group analysis verses individual subject analysis

The group approach to technique analysis presumes that a single, ‘abstract’ optimal 

movement strategy exists and it can be applied to all individuals This would be true if 

everyone was physically identical However, individuals differ in their neuromuscular 

capacity (e g individual joint power, rate of power production and joint dominance) 

their anthropometries (e g limb length and relative mass) and their muscle 

morphology (e g percentage muscle fibre type, angle of muscle pennation) The 

unique physical characteristics of individuals, coupled with the multi-functional 

degrees of freedom associated with the human body, allow the possibility of diverse 

movement strategies to exist A strategy is a neuromusculoskeletal solution for a 

given performance task, resulting in a unique pattern of movement and variability due 

to biomechanical, morphological and environmental constraints (Bates, 1996) 

Evidence of individual strategies is abundant in the literature for jumping (Aragon- 

Vargas and Gross, 1997b, Jensen and Phillips, 1991, Rodacki et al, 2002), landing 

(Lees, 1981, Dufek and Bates, 1991, Dufek and Zhang, 1996, Dufek et al, 1995) and 

running (Dufek et al, 1995, Lees and Bouracier, 1994)

Dufek and Bates (1991) assessed the impact properties of four types of sports and 

found the impact forces across subjects did not follow a consistent trend for all shoe 

conditions While one shoe was determined as the best for the group the same shoe 

was not best for all individuals within the group Lees (1981) also found variation in 

landing pattern between subjects and analysed in detail the two extreme cases, hard 

and soft landings Dufek et al (1995) also found different landing strategies for 

individuals Lees and Bouracier (1994) while investigating the shock absorbing 

characteristics of individuals during running found differences in the braking force 

between experienced and non-experienced runners Such changes in shock absorbing 

strategies would potentially obscure the effect of an intervention investigating 

footwear Jensen and Phillips (1991) in their study of coordination of jumping 

activity found no constant pattern of joint reversal for all subjects While hip-knee 

sequencing was stable across jumps for all subjects, only two of the six subjects
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maintained the sequence of extension between the ankle and knee joint Changes in 

the pattern of joint reversal between individuals were also observed by Aragon- 

Vargas and Gross (1997a) and Rodacki et al (2002)

Dufek et al (1995) found that a single mechanical parameter explained variance in 

both the first and second impact peak experiences during landing at a group level 

However, only two of the six subjects used the same landing strategy as the group 

model for the first impact peak and none of the individuals used the group strategy for 

the second impact peak During running Dufek et al (1995) found none of the six 

individuals performed like the group average, where a single knee variable explained 

the variance in the impact peak, instead three distinct strategies of shock attenuation 

were observed at the individual level, none of which included the group predictor 

They concluded that the group approach produced a mythical “average” performer, 

which did little to explain the performance strategies for individual subjects

Aragon-Vargas and Gross (1997a) used multiple regression to identify the 

biomechanical parameters at both the whole body and joint level that distinguished 

differences in jump height between 52 individuals and between repetitions of an 

individuals own movement (Aragon-Vargas and Gross, 1997b) The best whole body 

predictors of jump height at a group level (peak and average power), were also 

significant predictors for all individuals examined Amplitude of movement, while 

present in the prediction models at a group level, was not significant for six of the 

eight individuals examined At the group level, peak hip power was the best 

segmental predictor of jump height but at an individual level was only a significant 

predictor for six of the eight subjects Additionally, while ankle joint kinetics 

appeared in numerous models of jump height at an individual level, no ankle kinetic 

parameters appeared in the models at the group level
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2 2 Biomechamcs of vertical jumping

Numerous biomechanical variables have been examined at the whole body and 

segmental level in an effort to gain insight into factors that determine vertical jump 

performance The magnitude of the biomechanical variables and where possible their 

relationship with jump height observed in these studies are outlined in this section

&

Figure 2 1 Stick diagram with vertical ground reaction force (vGRF) trace 
overlaid for a ) squat jump (SJ), b ) countermovement jump (CMJ) and c ) 
drop jump (DJ) (Voigt et al, 1995)

Three types of vertical jump have commonly been used in biomechamcal studies, the 

squat jump (SJ), the countermovement jump (CMJ) and the drop jump (DJ) In the 

squat jump (SJ) the subject starts from a stationary, semi-squatted position with knees 

and hip flexed for a few seconds, before vigorously extending causing the BCOM to 

rise vertically When subjects are asked to jump for maximum height, predominately 

a countermovement is spontaneously employed (Bobbert, 1990) The 

countermovement jump (CMJ) starts with the subject in an erect position from which 

they lower their BCOM quickly, before vigorously rising again as the joints are 

extended In the DJ increasing the initial height that the BCOM is held above that of 

standing increases the amount of negative work further The body dropping under the
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force of gravity starts the DJ and upon landing, a jump for maximum height is 

performed Drop jumping will be discussed in section 2 4, while section 2 2 and 2 3 

will focus primarily on the mechanics of the CMJ

2 2 1 Vertical jump mechanics

Jumping for height is a skill involved in many sporting activities and dance Most 

healthy individuals can jump and a capacity for jumping is evident from an early age 

(Clark et al, 1989) Differences in height achieved during jumping are evident both 

between individuals and within repeated jumps by an individual Numerous possible 

movement strategies exist and knowledge of which strategy yields the greatest jump 

height would be of benefit to coaches and athletes in order to guide training programs 

to maximise jump height Once knowledge of the mechanisms that enhance jump 

performance is gained, more informed and specific training interventions could be 

formulated

The aim of vertical jumping is to raise the BCOM as high as possible above the 

ground This is achieved by exerting a vertical force greater than the weight of the 

body against the ground by means of the neuromuscular system However, the human 

body is a multi-task machine, capable of performing many diverse movements and is 

not only designed to project the body vertically Due to this multi-functionality, the 

muscles’ line of action are not oriented specifically to exert a force directly 

downwards, thus the body must reorganise itself though a well coordinated series of 

carefully timed rotations of the various body segments to exert a collective force 

downwards To achieve this, the body must take into consideration the anatomical 

constraints the structure of the body imposes in light of additional constraints related 

to the task

Jump height is determined by vertical velocity of the BCOM at take-off and it’s 

vertical position above the ground at take-off (Dowling & Vamos, 1993, Hay et al, 

1978) The relative contribution of the rise of the BCOM above standing height at 

take-off has been found to be between 25% (Bobbert et al, 1996) and 29% (Hannan et 

al, 1990) of the total height achieved The vertical velocity of the BCOM, is 

determined by the vertical impulse exerted in excess of that needed to support the
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mass of the body The vertical impulse in turn is sum of the angular impulses exerted 

by the individual joints (Hay et al, 1979) The angular impulse is the product of the 

average joint moment during the propulsion phase and the time of movement To 

gain insight into the factors affecting jump height achievement, not only do the forces 

and velocity acting on the whole body before take-off need to be examined, but also 

examination of individual joints is required

2 2 2 Whole body kinematics

The amplitude of movement of the BCOM is the distance over which the BCOM 

travels during the concentric phase The greater the movement amplitude of the 

BCOM, the further the distance over which the body can exert a force and the greater 

the potential take-off velocity The amplitude the BCOM moves during the 

concentric phase has been examined in numerous studies (Aragon-Vargas and Gross, 

1997a, Bobbert et al, 1986a, Bobbert et al, 1987a, Bobbert et al, 1996, Nagano et al, 

1998, Rodacki et al, 2001) These studies have been in close agreement, reporting 

that the amplitude the BCOM travels of approximately 0 35m However, Nagano et al 

(1998) and Rodacki et al (2001) found greater amplitudes of 0 49m and 0 48m, 

respectively Only one of these vertical jumping studies examined how different 

amplitudes affected the jump height achieved Aragon-Vargas and Gross (1997a) 

used multiple regression techniques to identify relevant predictors of jump height and 

found almost all models included this amplitude moves as a predictor of jump height

Vertical jumping is a ballistic movement taking less than a second to perform (Bedi et 

al, 1987, Bobbert et al, 1987a, Rodacki et al, 2001) A greater amount of time is 

spent during the vertical deceleration of the body (eccentric phase) than the 

propulsion (concentric phase) The eccentric phase lasts on average between 0 45s 

(Bosco and Komi, 1979) and 0 72s (Rodacki et al, 2001), while the concentric phase 

lasts on average between 0 2s and 0 3s (Bedi et al, 1987, Bobbert et al, 1987a, Jane et 

al, 1989) (table 2 6)
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Table 2 7 Duration of the eccentric and concentric phases of the CMJ

Study
Number of 
subjects

Eccentric
phase
(seconds)

Concentric
phase
(seconds)

Total

(seconds)
Aragon-Vargas and Gross (1997) 52 na 0 32 na
Bedi et al (1987) 32 0 64 0 20 0 84
Bobbert et al (1987a) 10 0 55 0 29 0 84
Bobbert et al (1996) 6 na 0 33 na
Bosco & Komi (1979) 34 0 45 0 22 0 67
Fukashiro & Komi (1987) 1 na 0 26 na
Jane et al (1989) 39 0 53 0 26 0 79
Rodacki et al (2001) 20 0 71 0 28 0 99

2 2 3 Whole body Kinetics

Through the impulse-momentum relationship vertical impulse, normalised for body 

weight, is directly related to vertical velocity at take-off Table 2 7 outlines typical 

magnitudes of the average vertical ground reaction force (vGRF) and vertical impulse 

reported in the literature Relatively consistent magnitudes of impulse have been 

reported, ranging between 280Ns and 380Ns (Bedi et al, 1987, Harman et al, 1990, 

Rodacki et al, 2002) The greater impulse observed by Bobbert et al (1987a) is 

consistent with the greater jump height and longer concentric phase observed in that 

study

Table 2 8 Average whole body vGRF and vertical impulse during concentric phase 
of the CMJ
Study Number of 

subjects
Average Force 

N N/kg
Impulse

(Ns)
Bedi et al (1987) 32 1836 23 6 369
Bobbert et al (1987a) 10 1715 20 2 497
Bosco & Komi (1979) 34 1017 12 9 na
Harman et al (1990) 18 na na 281
Rodacki et al (2002) 11 na na 300

Hay et al (1979) examined vertical impulse over eight separate phases of the CMJ and 

only found that the vertical impulse during the concentric phase was correlated with 

jump height Bosco and Komi (1979) however, found net vertical impulse in both the 

eccentric phase (r = 0 62) and concentric phase (r = 0 78) to be correlated with jump
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height Findings that positive impulse correlates with jump height adds little to the 

knowledge of how to enhance jump performance as it is directly related to vertical 

velocity at take-off (Impulse-momentum relationship) Dowling and Vamos (1993) 

examined the ratio of negative to positive impulse to gain additional insight and found 

the ratio to be correlated with jump height (r -  -0 514), but impulse in the negative 

phase alone was not correlated with jump height and the findings may have purely 

reflected a greater positive impulse rather than a factor of mechanical enhancement 

The lack of significance for the negative impulse led Dowling and Vamos (1993) to 

conclude that the countermovement phase is purely to take up the slack in the muscles 

at the onset of the concentric phase and to allow the muscle enough time to reach 

maximum activation at the joint angle that allows the greatest moment

Note a) box approximation of total positive force B W body weight

Figure 2 2 Quantitive measures of total force used by Dowling and Vamos (1993)

The force-time curve is a complex function and reveals information such as minimum 

and maximum values and the rate of force development (RFD), while the area under 

the curve quantifies the total magnitude of force applied (Figure 2 2) To simplify the 

force-time relationship many authors have focused on discrete information from the 

curve or taken a more simplistic approach to quantify the total magnitude of force 

applied To get an indication of the total force applied Bobbert et al (1987a) and 

Bosco and Komi (1979) examined the average force during the concentric phase, 

while Dowling and Vamos (1993) examined the area contained in a box which 

enclosed the force curve (Figure 2 1) A single point estimate measures have also 

been used including peak force (Fukashiro and Komi, 1987, Harman et al, 1990, 

Robertson and Fleming, 1987), and peak force expressed relevant to body weight 

(Bobbert et al, 1987a) Harman et al (1990) and Robertson and Fleming (1987) report
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values of peak force approximately 2 3 times body weight (BW) A greater average 

peak value found by Bobbert et al (1987a) (2 52 BW) is consistent with the greater 

impulse observed in that study

Table 2 9 Peak vGRF during vertical jumping
Study Number of Peak Force Relative peak

subjects (N) force (N/kg)
Fukashiro & Komi (1987) 1 2146 29 0
Harman et al (1990) 18 1697 22 7
Bobbert et al (1987a) 10 2094 24 7

Both peak force (r = 0 519, p< 0 01) and the time from peak to take-off (r = -0 274, p< 

0 01) have been found to be significantly correlated with jump height (Dowling and 

Vamos, 1993) Achievement of peak acceleration of the BCOM or peak force late in 

the movement may be optimal when high end point velocity is required, but this may 

require considerably more muscular power and may be limited due to physiological 

constraints (Dowling & Vamos, 1993) Although Dowling and Vamos (1993) found 

maximum force to be significantly correlated with jump height, some jumps with a 

large peak force did not result in a corresponding greater jump height

The rate of isometric force development for the knee joint as measured by greatest 

change in force has been found to be related to jump performance (r = 0 825)

(Paasuke et al, 2001) If a poor correlation between maximum force and the rate of 

force development exist this would explain why individuals with a high peak force 

exhibited poor jump performance Rate of force development will be discussed in 

detail in section 2 2 6 Pandy and Zajac (1991) suggested a rapid increase in vertical 

force at the start of the concentric phase sustained close to take-off is optimum in 

vertical jumping

Since vertical jumping requires both high forces and velocity, it is believed that high 

values of power are desirable (power = force x velocity) Power can be seen as the 

combination of strength and speed and represents the ability to produce a high level of 

work through a given distance (Kerin, 2002) (work = force x distance) Bosco and 

Komi (1979) found average power to be a better predictor ofjump height than 

average vGRF (r = 0 74 and r = 0 51, respectively) Peak whole body power has been
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found to be the best mechanical predictor ofjump height explaining between 52% and 

86% of the variance in height achieved (Aragon-Vargas and Gross, 1997a, Dowling 

and Vamos, 1993, Harman et al, 1990) (r = 0 72, p < 001, r = 0 928, p <0 01 and r =

0 84, p <0 01 respectively) Peak whole body power was also found to be 

significantly correlated with jump height at an individual level for the ten subjects 

examined by Aragon-Vargas and Gross (1997b) However, these authors did not find 

it to be the best predictor ofjump height for the three representative individuals 

examined in detail, instead they found that peak negative impulse, amplitude the 

BCOM travelled and average power were the best predictor ofjump height for the 

three individuals This study (Aragon-Vargas and Gross, 1997b) is the only study to 

examine factors that correlate with jump height at an individual subject level, and 

clearly indicates that individuals differ in which factors are important for success in 

jump height achievement

Given such a strong association between peak power and jump height, surprisingly 

peak power has not been evaluated in many jump studies Bosco and Komi (1979) 

and Harman et al (1990) are in close agreement reporting peak values of 2984W,

3216W (43 W/kg) and 3260W, respectively, while a higher average peak value of 

3863 W (52 W/kg) was reported by Aragon-Vargas and Gross (1997a) In light of the 

strong relationship between peak power and jump height, Dowling and Vamos (1993) 

suggested that simply increasing strength may not be enough to ensure improvement 

in jump performance, but strength should be increased specifically at high velocities 

Zajac (1993) examined the influence of muscular strength and speed on vertical squat 

jump performance using an optimal control model (mathematical based) They found 

that when strength and speed were enhanced independently by 100%, jump height 

increased more (120%) from strength enhancement than from speed enhancement 

(60%)

Table 2 10 Total work done during the concentric phase
Study Number of Work done Relative work

subjects (J) done (J/kg)
Hubley and Wells (1983) 6 679 85
Fukashiro & Komi (1987) 1 658 89
Bosco & Komi (1979) 34 656 84
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Three studies have examined the total amount of work done in the concentric phase 

(Bosco and Komi, 1979, Fukashiro and Komi, 1987, Hubley and Wells, 1983) (table 

2 10) The greater amount of work done by the subject examined by Fukashiro and 

Komi (1987) is consistent with the greater jump height observed compared to Bosco 

and Komi (1979) No comparisons can be made with the study by Hubley and Wells 

(1983) as no jump performance data is available

While a greater amount of work done can be assumed to increase jump height, 

provided the distance over which the body moves remains the same, no studies appear 

to have examined this relationship While Aragon-Vargas and Gross (1997a) did not 

directly examine the relationship between the amount of work done and jump height, 

average whole body power and the duration of the concentric phase appeared in 

tandem within their prediction models for jump height The direct relationship 

between jump height and work done, both in the eccentric and concentric phase, has 

yet to be examined

2 2 4 Segmental kinematics

Segmental kinematics and kinetics are the result of how an individual’s nervous 

system uses their neuromuscular capacity to maximise jump height (Aragon-Vargas 

and Gross, 1997a) The amplitude the BCOM travels, as discussed earlier, is the 

result of the combined effect of an individual joint’s maximum angular displacement, 

and determines the distance over which work can be done While numerous studies 

have reported the peak joint angle attained in vertical jumping (table 2 11), none of 

these have examined the effect changes in peak joint angles have on jump height The 

greater the peakjoint angle the further the distance over which work can be done 

However, a greater knee angle may not necessarily be optimum Bobbert et al (1996) 

found a reduced jump height when a lower position of the BCOM at the start of the 

concentric phase was utilised in a SJ compared to a SJ where the height that was 

freely chosen in a CMJ was used Factors other than the distance over which to apply 

force may be important in the selection of the greater angle the knee joint attains in 

the CMJ Thorstensson et al (1976) determined an optimum knee angle exists for 

isometric force production, while Bosco et al (1981) found a reduced knee angle 

enabled better utilisation of the stretch-shorten cycle (SSC) However, due to
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differences in anthropometries and neuromuscular capacities between individuals, the 

optimum joint configurations at the start of the concentric phase may differ between 

individuals, and analysis at an individual level may be more beneficial

Table 2 11 Peak joint angle during vertical jump
Study Number of 

subjects
Radians Degrees

Hip 1 12 64 2
Bobbert et al (1996) 6 Knee 1 31 75 1

Ankle 126 72 2
Hip 1 23 70 5

Bobbert et al(1987a) 10 Knee 1 40 80 2
Ankle 1 23 70 5
Hip 1 75 100 0

Jaric et al(l 989) 39 Knee 1 71 98 0
Ankle na na
Hip 1 20 68 6

Rodacki et al (2001) 20 Knee 1 56 89 5
Ankle 1 64 94 1

Angular velocities of individual joints act in combination to maximize the vertical 

velocity of the BCOM Table 2 12 outlines peak angular velocity of the joints of the 

lower extremities during vertical jumping To maximize vertical velocity of the 

BCOM it appears that these peak joint angular velocities need to be carefully 

coordinated in both sequence and timing, a factor discussed in 2 3 1

Table 2 12 Peak angular velocity of joints during concentric phase
Study Number of 

subjects
Radi an/s Degree/s

Hip 11 1 636
Bobbert et al (1987a) 10 Knee 167 956

Ankle 16 1 922
Hip 85 487

Rodacki, et al(2001) 20 Knee 12 5 716
Ankle 102 584

2 2 5 Segmental kinetics

The force that the whole body exerts against the ground is the sum of the moments at 

each joint The net muscle moments about a joint is the sum of moments exerted by 

agonists, antagonist and passive structures around the joint such as the joint capsule, 

ligaments and tendons (Bobbert and van Ingen Schenau, 1988) It is of limited use to 

know that an increase in the total force exerted enhances vertical jump performance
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Understanding how each joint contributes to this total force provides more significant 

information, as it may identify areas of deficiency in jump performance for an 

individual and guide future training interventions Investigations into the mechanisms 

of jump height achievement have seldom focused on activity at a segmental level 

Hay et al (1979) found the average moment for the hip and knee joints during the first 

half of the concentric phase were significantly related to jump height (p <0 001), but 

the magnitude of the correlations were not reported However, no significant 

relationship was observed for the second half of the concentric phase, suggesting a 

rapid development of force early in the movement is desired

Table 2 13 Peak joint moments during concentric phase of CMJ
Study Number of 

subjects
Nm NM/kg

Hip 295 5 40
Aragon-Vargas & Gross (1997) 52 Knee 220 8 3 0

Ankle 244 8 33
Hip 403 0 48

Bobbert et al (1987a) 10 Knee 3140 37
Ankle 263 0 3 1
Hip 3130 4 2

Fukashiro & Komi (1987) 1 Knee 153 0 2 1
Ankle 125 0 1 7
Hip 227 0 30

Ravn et al (1999) 6 Knee 438 9 5 8
Ankle 98 4 1 3
Hip 152 8 22

Rodano & Roberto (2002) 9 Knee 138 8 2 0
Ankle 113 0 1 6

An additional joint kinetic parameter that has been examined in biomechanical studies 

of vertical jumping is peak joint moment, which provides a dynamic measure of the 

functional strength available to an individual during jumping The magnitude of peak 

joint moment is approximately balanced between joints in the study by Aragon- 

Vargas and Gross (1997a) (table 2 12) However, the single subject in Fukashiro and 

Komi (1987) had a peak hip moment nearly 2 5 times that of the ankle, while Ravn et 

al (1999) observed an average peak knee moment nearly 4 5 times that of the ankle 

joint In light of the inter-subject variability observed in other studies (Aragon- 

Vargas and Gross, 1997a, Rodano and Roberto, 2002), the magnitudes observed by 

Fukashiro and Komi (1987) may be particular to that individual Three of the six
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subjects in the study by Ravn et al (1999) were professional ballet dancers who 

performed numerous jumps daily with the trunk held vertical for aesthetic reasons, 

thus increasing the required contribution of knee extensors within these jumps This 

may have provided a training effect resulting in the ability to achieve a greater knee 

joint moment

Aragon-Vargas and Gross (1997a) found that peak hip joint moment was the best 

joint moment predictor of jump height (r = 0 524) and they also included many 

multiple regression predictor models No knee or ankle moment parameters were 

evident in any of the regression models reported However, there was an abundance 

of knee power and isometric knee joint strength parameters within the models In 

light of the significant correlation that was observed between isometric knee strength 

and dynamic knee moments during jumping (Aragon-Vargas and Gross, 1997a, Jaric 

et al, 1989), it is possible that knee moment parameters may have been obscured for 

statistical reasons However, at an individual level, where strength parameters were 

not included, peak knee joint moment was significantly correlated with jump height 

for one of the representative subjects (subject W r = 0 35, p < 0 015) (Aragon-Vargas 

and Gross, 1997b) Peak joint moment in vertical jumping needs further examination 

without the interaction of other variables, to determine whether a relationship with 

jump height exists

The joint moment when angular motion of the joint reverses direction, termed joint 

reversal (JR) (Aragon-Vargas and Gross, 1997a) was proposed as important in the 

utilisation of the SSC in vertical jumping (Bosco and Komi, 1979) and influences the 

total positive impulse during the concentric phase (Bobbert et al, 1996) Aragon- 

Vargas and Gross (1997a) found hip moment at JR to be significantly correlated with 

jump height (r = 0 48, p < 0 001) and was evident in several of the best predictor of 

jump height at a group level Hip moment at JR was also evident in one of the three 

best regression models for two of the three individuals (Subject A and Subject W) 

(Aragon-Vargas and Gross, 1997b) However, due to the statistical methodology 

employed in both studies, it is unknown if a relationship with any other joint moment 

at JR was present As is evident from the studies outlined in table 2 14, joint 

moments at joint reversal are similar in magnitude to peak joint moments (table 2 13) 

If a correlation between joint moment at JR and peak joint moments exists, the
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inclusion of a peak joint moment within a model including joint moment at JR may 

not occur

Table 2 14 Joint moments at time of joint reversal in the CMJ
Study Number of 

subjects
Nm Nm/kg

Hip 280 3 3 77
Aragon-Vargas & Gross (1997) 52 Knee 206 1 2 77

Ankle 215 3 2 90
Hip 403 0 4 75

Bobbert et al (1987a) 10 Knee 3140 3 70
Ankle 263 0 3 10
Hip 330 0 4 15

Bobbert et al (1996) 6 Knee 289 0 3 63
Ankle 220 0 2 76

Table 2 14 outlines four studies that have monitored peak joint power In all the 

studies reviewed, peak power of the hip joint is lower than that of the knee and ankle 

In contrast, Gregoire et al (1984) found the power in the knee joint to be less than that 

of the hip and the ankle, but the magnitude of the differences was not provided

Table 2 15 Peak joint power during concentric phase of the CMJ
Study Number of 

subjects
W W/kg W/BW

Aragon-Vargas & Gross (1997) Hip 1204 16 2 1 65
52 Knee 1487 20 0 2 04

Ankle 1916 25 8 2 63
Bobbert et al (1987a) Hip 1524 180 1 83

10 Knee 2549 30 1 3 06
Ankle 2449 28 9 2 94

Rodacki et al (2001) Hip 1 28
20 Knee 1 70

Ankle 1 87
Rodano & Roberto (2002) Hip 513 73 0 74

9 Knee 982 13 9 1 41
Ankle 834 11 8 1 20

As peak whole body power was found to be better correlated with jump height than 

peak vGRF (Dowling and Vamos, 1993, Harman, 1990), the same may hold true at 

the segmental level, however, segmental peak power may not be as strongly related to 

jump height due to ineffective energy transfer between segments (Dowling and 

Vamos, 1993) Aragon-Vargas and Gross (1997a) found peak hip power to be the 

best single segmental predictor of jump height (r = 0 67) at a group level and in two
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of the three individuals examined (subject B r = 0 6, subject W r =0 44) (Aragon- 

Vargas and Gross, 1997b) The group model was not representative for all 

individuals Peak hip power was only reported to be a significant predictor for only 

five of the eight individuals examined (Aragon-Vargas and Gross, 1997b) Peak knee 

power was also evident in prediction models at a group level, while ankle power was 

not as relevant (Aragon-Vargas and Gross, 1997a) In contrast, at an individual 

subject level, ankle power was included regression models for two of the three 

individuals (subject A and subject B) and was the best single predictor for vertical 

velocity at take-off for the other individual (subject W) (Aragon-Vargas and Gross, 

1997b) However, while the prediction model for the subject B suggested a positive 

relationship between peak ankle power and jump height, a negative relationship was 

presented for subject A In light of the problems associated with multiple regression 

(Section 2 1 4), the relationship between individual joint powers and jump height 

from these models is unclear Peak hip power and peak hip moment were found to be 

the best segmental predictors of jump height at both a group and an individual level 

(Aragon-Vargas and Gross, 1997a, b) Due to the correlation observed between joint 

isometric kinetics (Jane et al, 1989) and the effect of inter-joint forces and power flow 

(Zajac, 1993), possible interaction between joint kinetic parameters may exist This 

interaction between variables may introduce multicollmearity and would potentially 

impede the entry of significant parameters into the regression models in the studies by 

Aragon-Vargas and Gross (1997a, b) For this reason the effect of changes in joint 

kinetics with respect to jump height needs to be examined in isolation for each 

variable

Since the sum of work done by all the lower extremities approximates total work 

done, it would be of interest to know how much work is done at individual joints 

Table 2 15 outlines three studies detailing the amount of work done at each joint The 

data provided by Bobbert et al (1986a) for the CMJ was dividend into two groups 

based on subsequent performance of a DJ, both groups performed the same skill in the 

CMJ The greatest amount of work done appears to be done at the hip joint This is 

not surprising given that the greatest muscle mass crosses hip joint In addition to 

knowledge of the magnitude of work done at each joint, the relative contribution of 

each joint to total work done may provide additional insight into the movement
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Table 2 16 Absolute amount of work performed by the joints during the concentric 
phase in the CMJ____________________________________________
Study Number of 

subjects
J J/kg

6 Hip 234 3 1
counter Knee 193 26
group Ankle 171 23

Bobbert et al (1985a) 7 Hip 189 25
bounce Knee 163 2 1
group Ankle 158 2 1

Hip 340 46
Fukashiro & Komi (1987) 1 Knee 116 1 6

Ankle 102 1 4
Hip 188 24

Hubley and Wells (1983) 6 Knee 330 4 1
Ankle 161 20

Note Counter group utilised amplitude of movement of the BCOM in DJ comparable 
to the CMJ while a reduced amplitude with a shorter concentric phase was used in the 
Bounce group

(
2 2 5 Relative segmental contribution

Knowledge of the relative contribution of a muscle group to the total force or work 

done is necessary to objectively define which muscle group is dominant at both a 

group level and for a given individual for a task (Hubley and Wells, 1983) Several 

techniques have been used to establish the relative contribution of individual joints in 

vertical jumping Segmental techniques (Luhtanen and Komi, 1979, Miller and East,

1976) are influenced by the mass of the segment, therefore the importance of the 

trunk may be over estimated Luhtanen and Komi (1978) alternatively examined the 

contribution of individual joints to total impulse by examining the impulse developed 

in jumps involving each joint moving in isolation and concluded knee extension 

contributed 56% Under these highly constrained movements this result is hardly 

surprising, since of all the conditions, knee extension moved the BCOM through the 

greatest distance

An alternative approach to examining the contribution of each joint to vertical 

jumping was employed by Bangerter (1968) This involved altering the strength 

levels of the extensor muscles about each jomt Subjects undertook an eight-week 

training program focusing on one of the extensor muscle groups, included in the
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experiment was a control group and one group exercising all leg extensors Of the 

single muscle exercise groups Bangerter (1968) found that increases in strength of the 

hip and knee extensors resulted in a greater increase in height jumped, concluding that 

knee and hip extensors contribute most to vertical jump achievement However, no 

direct measurement of the mechanism of the enhancement was made

The amount of mechanical work performed at each joint has commonly been used to 

determine the relative contribution of individual joints (Bobbert et al, 1986a, 

Fukashiro and Komi, 1987, Hubley and Wells, 1983) (table 2 17)

Table 2 17 Relative contribution of each joint to total work during concentric phase of 
the CMJ

Study Number of Joint Percentage
subjects contribution

6 Hip 39
counter Knee 32
group Ankle 29

Bobbert et al (1986a) 7 Hip 37
bounce Knee 32
group Ankle 31

Fukashiro & Komi Hip 51
(1987) 1 Knee 33

Ankle 16
Hubley and Wells Hip 27
(1983) 6 Knee 49

Ankle 23
Nagano et al (1998) Hip 41

6 Knee 12
Ankle 47

Robertson & Fleming 6 Hip 40
(1987) (4 male, Knee 24

2 female) Ankle 36

Hubley and Wells (1983) showed the relative contribution to work done by each joint 

during the concentric phase of the CMJ to be approximately 28%, 49% and 23% for 

the hip, knee and ankle respectively While the knee was the main contributor, the 

combination of the other two joints cannot be discounted as they made up 

approximately 51% of total work done However, this pattern did not hold true for 

every subject, with relative contribution for the knee ranging from 69% to 28% The 

decrease in the relative contribution of the knee was normally accommodated by an 

increase at the hip, with the ankle showing least change In contrast, Robertson and
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Fleming (1987) found the knee extensors to contribute least toward work done, 24% 

compared to 40% and 36% for hip and ankle, respectively Given the inter-subject 

variability in the pattern observed by Hubley and Wells (1983) and the fact Robertson 

and Fleming only examined 3 subjects (two female, one male), it is possible these 

subjects were uncharacteristic of the general population In addition, it should be 

noted that an increase in work done does not necessarily equate with an increase in 

jump height If a greater ROM is employed, greater work must be done to jump the 

same height

2 2 6 Rate of force development (RFD)

Not only is the magnitude of force development important in maximising vertical 

jumping height, the ability to generate force rapidly is purportedly a major component 

(Kraemer and Newton, 1994) Siff and Verkhoshansky (1998) suggest that for 

ballistic movements peak force needs to be as high as possible and achieved as 

quickly as possible Additionally, they contend that in exercises such as jumping, 

which involve a combination of both eccentric and concentric muscular work, the 

ability to generate high forces in the transition from eccentric to concentric work is 

also important To examine the rate of force development (RFD) the slope between 

two predetermined points of the force-time curve (Dowling and Vamos, 1993, 

Häkkinen et al, 1991) or the time to reach a certain force has been used (Matavulj et 

al, 2001, Ugarkovic et al, 2002) Maximal RFD has been examined through analysis 

of the steepest slope of the force-time curve (Dnss et al, 1998, Paasuke et al, 2001, 

Wilson et al, 1995) Jane et al (1989) used the exponential coefficient of the force 

curve While vertical jumping is a dynamic movement, the RFD has typically been 

quantified by means of isometric strength testing of isolated joints (Jane et al, 1989, 

Paasuke et al, 2001, Tomioka et al, 2001) Contrasting findings have been observed 

for the relationship between the RFD and jump height Jaric et al (1989) found 

significant correlations between RFD at all three lower extremity joints and jump 

height (hip r = 0 54, knee r = 0 46, ankle r = 0 38, all p< 0 05) Paasuke et al (2001) 

found the peak RFD of the knee joint to be significantly correlated with CMJ height 

(trained r = 0 83, untrained r = 0 79, both p <0 05) Marcora and Miller (2000) 

found the isometric RFD of the knee joint was correlated with CMJ height when a
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knee angle of 120° was tested (r = 0 69, p <0 05) but not for a knee angle of 90° (r =

0 37, p >0 05) Driss et al (1998) found the time interval from 25% peak force to 50% 

peak force was correlated with jump height for the left leg (r=-0 63, p <0 01) but was 

not for the right leg (r=0 15, p>0 05) In contrast, Driss et al (1998) found no 

relationship between isometric knee extension maximum RFD (steepest slope over 

20ms) and jump height (0 20 < r < 0 30, p >0 05) Similarly, Izquierdo et al (1999) 

found no correlation between maximum RFD and CMJ height for young or middle 

aged men (0 07 < r < 0 29) The RFD, measured as the time interval between 10% 

and 90% peak force was not found to be correlated with jump height (Matavulj et al, 

2001, Ugarkovic et al, 2002)

However, even if isometric RFD does correlate with jump height, the use of isometric 

strength testing to determine the RFD of muscle groups to predict performance of a 

dynamic movement, such as vertical jumping, is problematic Firstly, the question 

arises over which joint angle should be used to predict performance of a dynamic 

movement which utilises a relatively large range of joint motion (Kraemer and 

Newton, 1994) Secondly, power flows between joints in dynamic movements and 

the efficacy of this power flow has been proposed to be important for success in 

vertical jumping (Gregoire et al, 1984) Isometric strength testing is a uniarticular 

action where power flow is negligible Thirdly, jumping is a multiarticular movement 

which involves leg extensors contracting in a coordinated fashion and requires 

stabilising action of the trunk and pelvis (Young, 1995) In contrast, with isometric 

testing other joints are maintained stable throughout testing procedures Finally, the 

CMJ involves both eccentric and concentric contractions, which differs from the 

muscular contraction employed in isometric tests, where some authors found 

correlations with jump height

The importance of RFD in the CMJ itself needs to be examined, only one study 

appears to have done this Dowling and Vamos (1993) examined the average slope of 

the force-time curve from the minimum value to peak value but found no significant 

correlation with jump height (r = 0 027, p > 0 01) However, only onejump was 

undertaken for each subject, Rodano and Roberto (2002) found that at least twelve 

samples were needed to find a representative value of jump kinetics Additionally,
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Dowling and Vamos (1993) only examined whole body RFD, the RFD at an 

individual joint may still be important and needs to be examined 

Wilson et al (1995) used a modified smith machine positioned over a force platform 

to measure whole body dynamic RFD during a CMJ They defined RFD as the force 

developed over 30ms, the impulse over 100ms and the steepest gradient of the force 

time curve over 5ms The maximum RFD in the CMJ was not found to be correlated 

with the RFD in an isometric squat test (0 33 < r < 0 36, p >0 05) However, the 

authors did not examine whether either the dynamic RFD or the isometric RFD 

correlated with CMJ jump height

A number of other measures of the RFD have been put forward explosive strength, 

reactive strength and reactive coefficient Siff and Verkhoshansky (1998) defined 

‘explosive strength’ as the ability to produce maximal force in a minimal time and is 

measured as peak force divided by the time taken to reach it The ability to use the 

SSC effectively has been termed ‘reactive strength’ (Young, 1995) or ‘reactive 

ability’ (Siff and Verkhoshansky, 1998) The RFD with respect to body weight was 

termed ‘Reactivity Coefficient’ (Siff and Verkhoshansky, 1998) The slope of the 

force up to half the maximum force and the slope from half to peak force was also put 

forward as a measure of RFD (Siff and Verkhoshansky, 1998) However, no studies 

appear to have directly investigated the importance of these measures to jump height
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2 2 7 Enhancement of jump height due to countermovement

The squat jump is seen as a purely concentric action, however, exercises seldom 

involve isometric, concentric or eccentric contractions in isolation (Komi, 2000) In 

many movements body segments are subject to external forces such as gravity acting 

on the muscles as they lengthen This lengthening phase, where the muscles are 

acting eccentrically, is often followed by a concentric action of the muscle This 

forms a natural type of muscle function called the stretch-shortening cycle (SSC) 

(Komi, 2000, Bosco et al, 1981) The SSC has been shown to enhance performance 

compared to the concentric contraction alone (Bosco and Komi, 1979, Bosco et al, 

1981, Bosco et al, 1982, Cavagna, 1977) In the CMJ the extensor muscles of the 

lower extremities act eccentrically to actively resist the downward movement during 

the countermovement

There is ample evidence of jump performance being improved by the use of a 

countermovement (Asmussen and Bonde-Petersen, 1974, Bobbert et al, 1996, Bosco 

and Komi, 1979, Bosco et al, 1982b, Fukashiro and Komi, 1987, Harman et al, 1990) 

Reported increases in jump height achieved in the CMJ over that of the SJ have 

ranged from 1 7cm (Harman et al, 1990) to 14cm (Fukashiro & Komi, 1987) 

Comparison between the SJ and the CMJ provides insight into the mechanisms of 

enhancement due to the countermovement in the CMJ There have been a number of 

explanations put forward for this enhancement

The freely chosen starting position of the BCOM during SJ is higher than the 

minimum height of the BCOM attained during the push-off in the CMJ (Bobbert et al, 

1996, Harman et al, 1990), reducing the distance over which force can be produced, 

therefore reducing the distance over which the BCOM can accelerate However, 

Bobbert et al (1996) found that when a comparable starting position to that of the 

CMJ was utilised in the SJ the height achieved was still less that of the CMJ 

Moreover, when a lower position of the BCOM than that of the CMJ was utilised 

prior to the concentric phase in a SJ, Bobbert et al (1996) found that the jump height 

was still on average 3 2 cm less than the CMJ
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2 2 7 1 Enhancement of mechanical variables

Given that the CMJ will result m greater jump height than the SJ, it follows that a 

more effective use of the countermovement may result in a greater jump height in the 

CMJ Many mechanical factors have been shown to be greater in the CMJ than the SJ 

including peak ground reaction force (Fukashiro and Komi, 1987), force at the start 

of the concentric phase (Bobbert et al, 1996), average force during the concentric 

phase (Bosco et al, 1981) and mechanical work done (Asmussen and Bonde-Petersen, 

1974, Fukashiro and Komi, 1987, Hubley and Wells, 1983) However, the 

relationship between varying use of the countermovement and jump height 

achievement has not been fully examined

The average positive force difference between the CMJ and the SJ has been used as a 

reflection of the mechanical enhancement due to pre-stretching of the muscles (Bosco 

et al, 1981, Bosco et al, 1982a) Bosco et al (1981) found that for jumps of similar 

knee amplitude (mean 71°), the average positive force was 66% greater in the CMJ 

compared to the SJ Bosco and Komi (1979) found a 40% greater average force with 

a larger sample (34 PE students) Possible reasons for the lower differences observed 

by Bosco and Komi (1979) were i ) the knee amplitude was not controlled between 

the SJ and the CMJ, and 1 1) with the use of power athletes in the study by Bosco et al

(1981) in comparison to merely physical education students by Bosco and Komi 

(1979), the power athletes may have been able to utilise the countermovement more 

effectively When examining the effect of knee amplitude on enhancement, Bosco et 

al (1982a) found the average force enhancement associated with the CMJ over the SJ 

was 49% and 75% for large (SJ 87 3°, CMJ 89 2°) and small knee (SJ 55 3°, CMJ 

51 3°) amplitudes, respectively

There is a greater enhancement of average concentric force in the CMJ over the SJ 

when a larger force is developed at the end of the eccentric phase (Bosco et al, 1981, 

Bosco et al, 1982) The enhancement of average force has been found to be greater 

the larger the instantaneous force at the end of the stretch (r = 0 5 1 , p < 0  001) and the 

faster the pre-stretch of the muscle (r=0 53, P<0 001) (Bosco et al, 1981)
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Average power has also been found to be higher during the CMJ in comparison to the 

SJ (Bosco et al, 1981, Bosco and Komi, 1979, Harman et al, 1990) Enhancements 

of between 81% (Bosco et al, 1981) and 15% (Harman et al, 1990) have been 

observed in the CMJ over that of the SJ However, as knee angle was not controlled 

between the SJ and the CMJ these enhancement values may be misleading Harman 

et al (1990) however, did not find any significant difference in peak force or peak 

power between the CMJ and the SJ

Since the vGRF is a function of individual joint forces, greater insight may be gained 

from examination of joint kinetics Two studies compared the joint kinetics of the 

CMJ and SJ (Hubley and Wells, 1983, Fukashiro and Komi, 1987) Fukashiro and 

Komi (1987), when testing a single individual subject, found total mechanical work 

done by the subject during concentric phase of the CMJ was 25% more than the work 

done during the SJ The amount of work done at the knee and ankle joints was similar 

between the CMJ and the SJ, and the increase in work was brought about by extra 

work done at the hip The amount of extra work done at the hip was 116J of the 132J 

of total extra work done, corresponding to 88% of the total extra work done in the 

CMJ In contrast, Hubley and Wells (1993) found no significant difference at a group 

level between the total amount of work done during the concentric phase of the CMJ 

to that of the SJ, and at the segmental level no clear enhancement pattern was 

observed when knee flexion amplitude was controlled At an individual level, for one 

subject the enhancement ratio for the hip and knee joints were 1 23 and 0 79, 

respectively, while for another subject the opposite pattern was observed with ratios 

of 0 76 and 1 96 for the hip and knee joints respectively The rank order of magnitude 

of work done by the joints (hip-knee-ankle) was maintained for the single subject in 

the study by Fukashiro and Komi (1987) for both the SJ and the CMJ but the pattern 

was only maintained for 3 of the 6 subjects in the study by Hubley and Wells (1983)

2 2 7 2 Possible mechanisms for enhancement

Enhancement in the performance outcome, and the average concentric force and work 

done that produces it has been attributed to a number of factors greater force at the 

start of the concentric phase (Bobbert et al, 1996), storage of elastic energy (Bosco 

and Komi, 1979, Bosco et al, 1981), contractile component “potentiation” (Cavagna,
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1977), spinal reflex of the muscles (Bobbert et al, 1996) and better control of 

movement (Bobbert et al, 1996) Each of these factors is briefly outlined below

Force at the start of the concentric phase

In general, during maximum muscle contractions it takes time before peak force can 

be reached This is due to the finite rate of muscle stimulation by the central nervous 

system, the time constants of the stimulation-active state coupling and the interaction 

between the contractile elements and series elastic elements (Bobbert et al, 1996) If 

the active state of the muscle only begins to rise at the start of the concentric 

contraction, part of the shortening distance is travelled at a sub maximum level, 

resulting in less work done The muscle may build up a maximum active state by 

isometric contraction or as a result of an eccentric contraction via a countermovement 

Therefore, a higher level of force can be achieved in the muscles at the start of the 

concentric phase in the CMJ in comparison to the SJ (Bobbert et al, 1996) In 

consequence this facilitates greater work done during the CMJ than the SJ Bobbert et 

al (1996) found greater moments at the hip, knee and ankle at the start of the 

concentric phase in jumps involving a countermovement phase in comparison to a SJ, 

even when the body position at the start of the concentric was the same They 

concluded the increase in force at the start of the concentric phase provided the 

majority of the enhancement

However, attributing the enhancement in the total amount of work done in the 

concentric phase to a greater amount of force at the start of the concentric phase may 

be misleading Walshe et al (1998), with the use of an isokinetic squatting machine, 

compared the work output of an isokinetic contraction preceded by three differing 

forms of muscular contraction, isometric, SSC and rest The SSC condition involved 

the subject making downward movement similar to that of the CMJ prior to the 

isokinetic contraction In the isometric condition the force and knee angle was 

matched to those experienced at the start of the concentric phase in the SSC condition 

(mean force at start of concentric phase isometric 1169N, SSC 1193N, not 

significantly different) More work was done in the first 300ms following the pre­

stretch in the SSC condition compared to the isometric condition Additionally, a 

greater amount of power was developed earlier in the movement They concluded 

that not only the amount of force developed at the start of the concentric phase was
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important but also the manner in which it was developed Enhancement factors 

relating to the active pre-stretch of the muscle prior to the concentric phase are 

outlined below

Storage of elastic energy

The enhancement in jump performance has also been attributed to the release of 

elastic energy stored in the muscle during the eccentric phase, which is reutilised 

during the concentric phase (Bosco et al, 1981, 1982, Cavagna et al, 1965, 1968)

The eccentric contraction of the muscle causes storage of elastic energy in the series 

elastic component, mainly the protein titin, the tendons and the cross-bridges (Bosco 

& Komi, 1979) The myosin filaments are rotated backwards against their natural 

tendency during the stretch to a position of higher potential energy This in essence 

causes mechanical work to be stored in the sarcomere cross-bridges that can be reused 

during the concentric phase, provided the muscles are allowed to shorten immediately 

after the stretch (Bosco et al, 1982a)

Potentiation

Improvement in performance may also be due to the stretching of active muscle 

during the eccentric phase, which alters the contractile machinery of the muscle 

(Bobbert et al, 1996), referred to as “Potentiation” or the “Cavagna effect “ (Cavagna,

1977) The exact means by which the contractile machinery is altered does not appear 

to have been fully explained

Spinal reflex

Active stretching of the muscles during the eccentric phase may trigger spinal 

reflexes, as well as longer-latency responses, which increase muscle stimulation 

during the concentric phase (Bobbert et al, 1996) With the increased stimulation the 

muscles can produce higher forces and thus greater work can be done during the 

concentric phase

These enhancements are possible provided the muscles are allowed to shorten 

immediately after the stretch (Bosco et al, 1982a) The lengthened cross-bridges can 

become detached if the stretch is maintained for too long, or may cause sarcomere 

“slipping” if the range of stretch is too great (Bosco et al, 1981) Therefore the
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transition period between the eccentric and concentric phase, called “coupling time” 

(Bosco et al, 1981) must be kept short A negative correlation (r =-0 35, p < 0 01) has 

been found between the enhancement in average force in the CMJ over that of the SJ 

(Bosco et al,1981)

Bosco et al (1981) found coupling time to last on average 23 0±14 7ms in the CMJ 

and increased with greater the movement amplitudes (r = 0 46, P<0 001) Bosco et al 

(1982a) found coupling times of 18 9ms and 44ms corresponding to knee angular 

displacements of 55 3° and 87 3 0 respectively Coupling time was reduced with 

greater force in the eccentric phase (r = -0 47, P<0 001), as the increases in stiffness 

made the transition from the eccentric to the concentric phase take place faster (Bosco 

et al, 1981)

Variations in the relative amount of muscle fibre type between individuals have been 

proposed as a possible reason of differences in response to effective utilisation of the 

SSC between individuals (Bosco et al, 1982a) Fast twitch (FT) and slow twitch (ST) 

muscle fibers are characterized by different visco-elastic properties resulting in 

different response to the SSC, depending on the speed of movement (Bosco et al,

1982a) Bosco et al (1982a) found significantly greater force at the start of concentric 

phase for subjects with more fast twitch fibers in jumps of small amplitude (FT =

30 2±4 8 N kg 1 and ST 25 9±4 8 N kg \  p<0 05) but no difference was found for 

jumps of large amplitude A positive correlation between the %FT and the force at 

the start of concentric phase for small amplitude jumps was evident (r = 0 57, 

p<0 05), but no relationship was present for large amplitudes Despite the difference 

in the force at the start of the concentric phase, the relative (percentage) enhancement 

of force between CMJ and SJ did not differ with fiber type in small amplitude jumps 

However, there was a greater relative enhancement in jump height with large 

amplitudes for individuals with a predominance of slow twitch fibres Bosco et al

(1982) suggested that since the eccentric phase of small amplitude jumps is short, the 

greater force at the start of the concentric phase in the FT group is due to faster 

recruitment of motor units The duration of the eccentric phase, which was relatively 

long (mean 147ms) was not a limiting factor in jumps of large amplitude, allowing ST 

fibres enough time to be stimulated The reason for differences in relative 

enhancement of force between groups was attributed to the attachment-detachment
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cycle of the sarcomere cross-bridges For small amplitude jumps the coupling time 

was small (18 9±10 7ms) and was unlikely to be a limiting factor for either fiber 

types Jumps of larger amplitude are characterized by longer coupling times 

(44 0±16 8ms) which favours ST fibres as they retain their cross-bridge attachment 

longer However, a greater number of fibres detach in the FT fibre group, resulting in 

greater relative utilization of store energy in the ST group

Control of movement

One additional explanation for greater height achieved in the CMJ than the SJ is that 

the squat jump is a less practiced movement (Bobbert et al, 1996) If a non-optimal 

control is selected it may affect the movement pattern, resulting in the amount of 

work done by the muscles being transformed to effective energy being submaximal 

(Bobbert et al, 1996)

2 3 Coordination

The human movement system is made up of many subsystems including the neural, 

perceptual and muscular-skeletal systems A motor task is the result of the central 

nervous system sending impulse volleys to the muscles in light of the expected and 

actual mechanical demands of the task (Bobbert & van Ingen Schenau, 1988) 

Coordination has been the focus of both biomechanical and motor control 

neuroscience studies Biomechanical studies have centred on examining how body 

segments and muscles interact to perform motor tasks (Hudson, 1986) in order to 

explain how performance is enhanced or injuries occur (Hamill et al, 1999, Schache et 

al, 1999)

The previous section (2 2) reviewed studies, which investigated the magnitude of the 

mechanical output of the lower extremities in vertical jump performance However, 

mechanical output in maximum effort multi-joint movements is not simply a 

reflection of the mechanical capacity of the neuromuscular system’s ability to produce 

force but also dependent upon the coordination pattern employed to effectively utilise 

the work capacity of the muscles (Tomioka et al, 2001, Walshe et al, 1998) 

Coordination is the process where the multiple and different component parts of a
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system are brought into proper alignment in temporal space and time (Turvey, 1990) 

and refers to the timing and sequence of segmental movements Therefore it is 

necessary to examine both the muscle mechanical output and the coordination pattern 

employed to gam a comprehensive insight in to the factors effecting jump 

performance

The importance of both coordination and mechanical capacity in vertical jumping has 

been highlighted m three separate studies, which used forward dynamic control 

models of vertical jumping Bobbert and Van Soest (1994) increased peak isometric 

force in all lower extremity muscles resulting in an increase in jump height, but only 

when the pattern of muscle activation was re-optimised When the muscle activation 

pattern from the original neuromuscular capacity was used, the jumping movement 

was disrupted, resulting in a lower jump height than that with the original 

neuromuscular capacity Nagano and Gerritsen (2001) altered peak isometric muscle 

force, peak muscle shortening velocity and the number of motor units recruited, and 

re-optimised the muscle activation pattern with each alteration The optimal timing 

pattern of muscle activation changed with each alteration of the neuromuscular 

parameters The change was greatest with alterations of peak isometric muscle force 

and not so evident for shortening velocity When the optimal muscle activation 

pattern from the original model was applied to the model with altered strength, 

enhancement of jump height was only 14 15cm, compared to 16 62cm when re­

optimisation had occurred Finally, Pandy et al (1990) showed with the use of an 

optimal control model that when the activation of the vasti (knee extensor) was 

delayed by 10%, vertical jump height was significantly reduced The trunk rotated 

past the vertical and the angular velocity of the thigh was reduced, resulting m the 

joints not being fully extended at take-off In light of the results of these three studies 

it is possible that in addition to examination of mechanical output variables, the 

variation in the patterns of coordination may also reveal and explain differences in 

jump performance

2 3 1 Constraints influencing movement pattern

For a given movement task many constraints are imposed on the system Under the 

dynamics systems framework functional patterns of coordination emerge under task,
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information and environmental constraints of the neuro-musculoskeletal system that 

places a requirement on the system to change it’s organizational state (Davids et al, 

2000) Constraints are defined as specific requirements of an anatomical, neuronal or 

biomechanical origin, which impose restrictions on the possible muscle actions of the 

movement system (Jacobs and van Ingen Schenau, 1992) These constraints provide 

the limits or conditions for the self-organising processes, reducing the possible 

movement combinations (Clark et al, 1989) Dealing with these constraints is an 

important goal in the organisation of muscle actions (Bobbert and van Ingen Schenau,

1988) and should be considered when examining vertical jumping performance 

Some mechanical constraints that influence the coordination pattern in vertical 

jumping are outlined below

Intersegmental dynamics

A force generated by a muscle will not only cause acceleration at the joint it spans but 

also other joints due to the dynamic coupling arising from the multi-articular nature of 

the body (Zajac et al, 2002) An example of this is in flat foot standing near vertical 

posture, the soleus can act to accelerate the knee into flexion by accelerating the thigh 

and shank into extension even though it only spans the ankle This is achieved due to 

inertia forces being transmitted from one segment to another via joint reaction forces 

(Zajac, 1993)

Task constraint

During the flight phase, neglecting energy losses due to air resistance, the effective 

energy of the BCOM remain constant The effective energy refers to the sum of 

kinetic energy and potential energy (Bobbert and van Ingen Schenau, 1988) The aim 

of the jump is to maximise the effective energy at take-off, the kinetic energy depends 

on vertical velocity of the BCOM at take-off, while potential energy is dependent on 

height of the BCOM above the ground at take-off (Bobbert and van Soest, 2001) The 

aim is to maximise effective energy as a whole and not one element at the expense of 

the other

The vertical velocity of the BCOM is most strongly affected by the vertical velocity 

of the centre of mass (COM) of the upper body, as the upper body has the greatest 

relative mass During the first part of the jump the increase in vertical velocity of the
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COM of the upper body is mainly due to the vertical velocity difference between the 

upper body COM and the hip joints The difference reaches a peak at about 190ms 

before toe-off, with relatively constant angular velocity thereafter (Bobbert and van 

Ingen Schenau, 1988) At this point the hip joint has moved through 20°, which is 

only part of the shortening range and work capacity of the hip joint If extension of 

the lower legs was not possible the effective energy of the BCOM would plateau and 

take-off would occur soon after However, extension of the lower legs is possible and 

it is at this point that the knee joint begins to extend Extension of the knee joint 

increases the vertical velocity difference between the hip and the ankle, which 

exceeds the decline in the velocity difference between the upper body’s COM and the 

hip joints, thus enabling the vertical velocity of the upper body’s COM to increase 

However, in spite of increasing angular velocity of the knee joint, the velocity 

difference between the upper body’s COM and the ankle joint peaks at 60ms before 

take-off At this instant the knee angle is only approximately at 125° on average, far 

from maximum extension and only part of the knee’s work capacity is used Again 

the effective energy would plateau if no plantar flexion were possible However, 

plantar flexion is possible and increases the vertical velocity difference between the 

ankle and the metatarsal heads, again this exceeds the decrease in vertical velocity 

difference between the upper body’s COM and the ankles, allowing the vertical 

velocity of the upper body’s COM to continue to increase At about 30ms before 

take-off the vertical velocity difference between the ankle and the metatarsal head 

reaches a peak (Bobbert and van Ingen Schenau, 1988) It is flexion of the toes that 

stops ground contact from being lost prematurely but at this stage the magnitude of 

the vGRF is below body weight so decrease in the vertical velocity is inevitable It is 

suggested that in order to maximise performance the vertical velocity difference 

between ends of each segment should peak in a proximal-to-distal sequence (Hudson,

1986) In this way it is hypothesised that uniarticular hip extensors, knee extensors 

and plantar flexors shorten over their full range and release as much energy as 

possible to contribute to the body’s effective energy at take-off (Bobbert and van 

Ingen Schenau, 1988)

Anatomical constraint

To prevent injury associated with hyperextension of the joints, the joint’s angular 

velocity has to decelerate to zero at full extension This has been described as an
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‘anatomical constraint’ (Van Ingen Schenau et al, 1987) If uniarticular muscles were 

only available to decelerate the segments, continued contraction of the extensor 

muscles towards full extension of the joint would not only be wasteful, but would also 

be dangerous, as structures that traverse the joint would run the risk of damage 

(Bobbert and van Ingen Schenau, 1988) Additionally, power would be lost to heat 

due to excessive eccentric contraction of the flexor muscles (van lngen Schenau et al,

1987) Biarticular muscles play an important role in not only decelerating a joint, but 

also transferring energy to a more distal joint to aid in joint extension For example, 

the biarticular gastrocnemius muscle plays an important role toward the end of the 

propulsion phase by decelerating knee extension and increasing plantar flexor 

moments (van Ingen Schenau, 1987)

Geometrical constraint

The aim of the concentric phase is to attain the maximum vertical velocity of the 

BCOM at take-off The only way to generate linear velocity is to give the segments 

an angular velocity (Bobbert and van Soest, 2001) The amount the rotation of a 

segment contributes to the position of the BCOM is dependant on geometric factors 

Figure 2 3 shows a segment with proximal end p , distal end of and length /

The vertical difference between p  and d  is given by

(yp-yd) = / s i n #

where / is the distance between p  and d, while 0 is the angle the segment’s 

longitudinal axis makes with the horizontal The vertical velocity difference between 

p  and d  is given by

(y P - V d ) =  I COSO) 

where to is the angular velocity of the segment and v is linear velocity

Figure 2 3 Geometrical configurations of typical segment
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When 0 is 90°, the vertical difference between p  and d is I (since sm 0 = 1) and the 

velocity difference is zero no matter how high the angular velocity is (since cos © =

0) As a result the vertical velocity difference between the segment end points may 

peak and decline in spite of constant or increasing angular velocity Dealing with this 

phenomenon is an important goal in organising muscle actions (Bobbert and van 

Ingen Schenau, 1988) In vertical jumping when the knee approaches full extension 

the velocity difference between the hip and the ankle will approach zero and the 

transformation of knee angular velocity to translation of the BCOM will be less 

effective

Vertical jumping is initiated by the acceleration of the trunk through activation of the 

gluteus maximus Due to geometrical constraints the effect of the angular velocity of 

the trunk on the rise of the BCOM decreases as it approaches the vertical At this 

point the angular velocity of the trunk is decelerated by activation of the rectus 

femons This allows the gluteus maxims to remain active while also transporting 

power to the knee via the rectus femons, thus maintaining the rise of the BCOM If 

the jump were performed without plantar flexion the body would leave the ground at 

the instant the vertical velocity difference between the hip and the ankle reached a 

maximum (Van Ingen Schenau et al, 1987) The larger body segments would pull the 

smaller segments from the ground when they reached a critical velocity with respect 

to the ground (Bobbert et al, 1986a) Bobbert et al (1986b) found peak vertical 

velocity difference between the BCOM and the ankle joint to occur at a mean knee 

angle of 128° Van Ingen Schenau et al (1987) found the velocity difference between 

the hip and the ankle to peak at a mean knee angle of 132°, and the mean knee joint 

angle at the start of the push-off phase to be 82° This corresponds to only 50° of a 

total possible extension range of 98° (from 82° to 180°), thus a large part of the knee 

extensor’s capacity to shorten and liberate energy could not be used for external work 

(Bobbert et al, 1986) Due to fast plantar flexion, the hip joint can accelerate up to 

25ms before take-off (Van Ingen Schenau et al, 1987), thus enhancing jump height

Moment distribution constraint

During vertical jumping the vGRF must be directed more or less vertically through 

the midline of the body through the BCOM If forces are directed elsewhere the 

whole body would rotate and/or energy would be dissipated horizontally This would
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result in a significant reduction in jump height During the countermovement the 

body has a tendency to rotate forward which must be counteracted by directing the 

resultant vGRF vector in front of the BCOM, while in the concentric phase the body 

has a tendency to rotate backwards which must be counteracted by directing the 

resultant vGRF vector behind the BCOM (Voigt et al, 1995)

2 3 2 Biarticular muscles

Uniarticular muscles will always act to rotate a joint it spans in the direction of 

applied muscle moment consistent to its anatomical classification However, 

biarticular muscles may also act to rotate a joint in the opposite direction than the 

muscle moment due to muscle moments of other joints inducing a stronger counter 

angular acceleration of the joint (Zajac et al, 2002) Muscles can redistribute 

segmental energy by accelerating some segments and decelerating others such that the 

energy reduction due to deceleration of one equals the energy increase of the other 

(Putnam, 1991, Zajac et al, 2002) Zajac (1993) suggest that in jumping, uniarticular 

extensor muscles provide most of the propulsive mechanical energy, uniarticular 

flexors are virtually non-contributory and biarticular muscles fine-tune the 

coordination The extent to which energy transfer occurs has been controversially 

viewed

In vertical jumping energy transfer is able to occur because during plantar flexion, the 

knee and hip joints have high angular velocity This results in a lower shortening 

velocity for the biarticular muscles than the mono-articulator muscles This allows 

the biarticular muscles to deliver more force and consequently allows power 

generated by the gluteus maximus to extend the knee joint through seemingly 

opposing actions of the gluteus maximus and the rectus femons (van Ingen Schenau 

et al, 1985) Timely activation of the rectus femons decreases the angular 

acceleration of the trunk and coupled with the onset of knee extension, transfers 

power from the hip to the knee A similar mechanism allows power to be transferred 

from the knee to the ankle via the gastrocnemius (van Ingen Schenau et al, 1985) 

During the last 20-40ms of the propulsive phase of the jump the extensor forces of the 

knee and ankle reach peak velocity and are not able to deliver notable force at such
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velocities It is the biarticular muscles, which deliver power during this period, that 

exhibit relatively slow contractile velocities due to the opposing effect on muscle 

length by the motion of the joints crossed (Gregoire et al, 1984)

2 3 3 Coordination in Vertical jump

The optimum coordination of a given task falls somewhere on a continuum from 

sequential to simultaneous It is proposed that a task where the object is light or 

where the distal end is open employs a sequential pattern (proximal to distal)

(Hudson, 1986) A proximal-to-distal sequential pattern has been found for kicking 

(Davids et al, 2000), throwing (Button et al, 2003) and the volleyball serve (Temprado 

et al, 1997) When the object is heavy or the distal end is closed, such as in weight 

lifting, it is proposed that the optimum pattern is more simultaneous (Hudson, 1986) 

Tasks where velocity is important the pattern is expected to be more sequential 

However, when large forces or accuracy is required the pattern is expected to be more 

simultaneous Both patterns have been hypothesised for maximal vertical jumping 

(Hudson, 1986)

From vGRF data, Bobbert and van Ingen Schenau (1988) found that the BCOM rises 

linearly up to about 30ms before take-off During the first part of the push-off phase, 

the rise in the BCOM is primarily due to the extension of the trunk The relative 

contribution of the trunk decreases in the course of the push-off as the relative 

importance of leg extension increases Extension of the legs not only contributes via 

a rise in the COM of the legs but mainly due to raising the hip joints, thereby 

increasing the height of the COM of the upper body (Bobbert & van Ingen Schenau, 

1988)

A few studies have examined the timing and sequence of electromyographic activity 

of key lower extremity muscles during vertical jump performance (Bobbert and van 

Ingen Schenau, 1988, Ravn et al, 1999, van Soest et al, 1985) However, it is at the 

joint kinematic and kinetic level, where the final movement pathway is observed, is 

the area where the coordination pattern has been most frequently examined (Bobbert 

and van Ingen Schenau, 1988, Hudson, 1986, Rodacki et al, 2001) The following
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section outlines the subsequent coordination pattern that has been observed in the 

CMJ in light of the various constraints imposed on the system

2 3 3 1 Pattern of joint extension

The initiation of joint extension, also refer to as joint reversal (JR), has been reported 

to occur for the CMJ in a proximal-to-distal sequence, starting with the hips, then the 

knees followed by the ankles (Gregoire et al, 1984) This pattern is in close 

agreement with the findings from dynamic optimisation models (Bobbert and van 

Soest, 2001) One explanation for the sequential pattern observed is that all extensor 

muscles are activated simultaneously but the upper body obtains additional vertical 

acceleration, which exerts a downward force on the lower limb restricting extension 

or even causing additional flexion Hudson (1986) found additional flexion in the 

lower limbs in 13 of the 20 subjects tested However, Bobbert and van Soest (2001) 

disputed this idea suggesting if a simultaneous pattern was desired in the CMJ, surely 

a muscle activation pattern to achieve it would have been learnt by now

Results of electromyographic analysis also do not support the hypothesis that extensor 

muscles are activated simultaneously, rather they become maximally activated in the 

sequence of hip extensors, knee extensors and plantar flexors (Bobbert and van Ingen 

Schenau, 1988) Bobbert and van Ingen Schenau (1988) found that m gluteus 

maximus, a hip extensor muscle, was maximally active at the start of the push-off 

phase, while the knee extensor, m vastus medialis, was only 62% activated and the 

plantar flexor, m soleus was only 26% activated Approximately 90ms were 

observed between peak activation of these muscles (m vastus medialis was 190ms 

before take-off, m soleus was 100ms before take-off)

Table 2 18 Timing of joint reversal to take-off (absolute and relative to total duration)
Study number of Hip Knee Ankle

subjects (s) (s) (s)
Jensen et al (1994)* 6 male abs 0 28 021 0 19

rel 0 44 0 59 0 62
Rodacki et al (2001) 20 male abs 0 38 0 28 0 27

rel 0 62 0 72 0 73
Rodacki et al (2002) 11 male abs 0 39 031 0 27

rel 0 59 0 66 0 71
Note * = data from Jensen and Phillips (1991) study
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A proximal-to-distal sequence of joint extension has been reported for vertical 

jumping (Jensen and Phillips, 1991, Rodacki et al, 2002) Rodacki et al (2001) found 

the reversal of the hip joint occurred on average 100±6ms before the knee joint, which 

occurred on average 7±44ms before the ankle joint However, a proximal-to-distal 

pattern was not always observed, with the ankle preceding the knee in 3 of the 12 

subjects In a subsequent study, Rodacki et al (2002) found delays of 74±13ms and 

45±40ms between the hip and knee, and the knee and the ankle respectively While 

these intervals are longer than reported by Rodacki et al (2001), the interval between 

the extension of the knee and the ankle was variable and in some cases ankle 

extension preceeded that of the knee Likewise, Jensen and Phillips (1991) found a 

proximal-to-distal sequence on average, but this pattern was not always present 

Clarke et al (1989) reported that the hip joint reversal was always before the knee for 

the 12 female volleyball players and gymnasts examined Even greater variability 

was evident in a study of 52 physically active male college students by Aragon- 

Vargas and Gross (1997) In 23 of the subjects a proximal-to-distal pattern was 

observed, however, for 21 subjects while the hip was extended first, the ankles were 

extended before the knee joints The remaining 8 subjects used another pattern 

including one subject utilising a distal-to-proximal sequence

Aragon-Vargas and Gross (1997a) did not find the sequence of joint reversal to be 

related to jump height achieved when differences between individuals were examined 

However, when differences in repetitions of a subject’s own movement was examined 

the sequence of joint reversal was found to be a significant predictor of jump height 

for three of the eight individuals examined (Aragon-Vargas and Gross, 1997b), 

including it being the best single segmental predictor of jump height for one 

individual (subject A r = 0 65, p< 0 001) Aragon-Vargas and Gross (1997a) 

measured the coordination of joint reversal from a purely qualitative perspective and 

did not measure the extent to which deviations from a given pattern affected jump 

performance Often when a sequence is reported the time interval between events has 

been within the ±1 frame measurement error (Jensen and Phillips, 1991, Rodacki et 

al, 2001) Therefore, many of the results involving close occurrences of events must 

be viewed with caution
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Hudson (1986) when examining the coordination pattern of segments, found jumps 

typically to be initiated with extension of the trunk (HAT) followed by the thighs then 

the shank at intervals of 44ms and 39ms, respectively The interval between segment 

extensions was highly variable with a range of between 170ms and 220ms for the time 

difference between the trunk and thigh, and the thigh and shank, respectively The 

absolute timing between the trunk and the thigh and the thigh and shank was about 

50ms The pattern was not consistent for all subjects Of the 20 subjects examined, 8 

initiated thigh extension prior to the HAT, 2 initiated thigh extension prior to the 

trunk, while 2 extended the shank before the thigh Bobbert and van Ingen Schenau 

(1988) also examined the initiation of extension of the segments and found that at a 

group level the trunk began to extend 330ms before toe-off followed by the thigh 

(270ms), the shank (200ms) and the foot (150ms) The time delays between the trunk 

and thigh (60ms) and between the thigh and the shank (70ms) were greater than those 

reported by Hudson (1986)

2 3 3 2 Timing of peak angular velocity

Maximizing velocity of joint rotations may be important from a mechanical 

perspective (Bobbert and van Ingen Schenau, 1988), likewise as with timing of joint 

reversal, correct timing of peak angular velocity may be necessary Hudson (1986) 

found the angular velocity of the trunk was first to peak followed by the thigh and 

then the shank, at intervals of approximately 29ms and 6ms, respectively Variability 

was evident at the hip, but a consist coordination pattern was observed at the knee 

with a range of only 30ms between the thigh and the shank Again this sequential 

pattern was not observed in all of the 20 subjects, with 11 subjects reaching peak 

velocity of the thigh before the trunk and one reaching peak velocity of the shank 

before the thigh Bobbert and Van Ingen Schenau (1988) found angular velocity of 

the trunk to peak at 190ms on average before take-off, with the rest of the segments 

peaking 30ms before take-off
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) Table 2 19 Mean timing of peak joint velocities (absolute and relative to total 
d u r a t i o n ) _______ ______________________________________
Study number of Hip Knee Ankle

subjects _ _ (s) (s) (s)
Jensen et al (1994) 6 male abs

rel
0 040 0 037 0 030

Rodacki et al (2001) 20 male abs 0 080 0 068 0 080
rel 0 92 0 93 0 920

Rodacki et al (2002) 11 male abs 0 074 0 066 0 067
rel 0 928 0 929 0 928

Table 2 19 shows the timing of peak angular velocity of each joint for three studies 

Timing of peak joints velocities appear to occur in close proximity Jensen and 

Phillips (1991) found that for 5 of the 6 subjects they tested, all joint angular 

velocities peaked within 12ms of each other Clarke et al (1989) also reported the 

delay in peak angular velocity between the knee and ankle was on average within the 

measurement error

Since segments are different lengths, rotation of each segment will contribute 

differentially to the rise in the BCOM For this reason Bobbert and Van Ingen 

Schenau (1988) examined the vertical velocity difference between the proximal and 

distal ends of each segment A proximal-to-distal sequence was found for the peak 

vertical velocity difference between proximal and distal ends of each segment 

Bobbert & Van Ingen Schenau (1988) suggested that as the purpose of segmental 

rotations during the concentric phase of the jump was to increase the vertical height of 

the BCOM, the vertical difference between proximal and distal ends may peak and 

decline in spite of constant angular velocity of the segment due to geometric factors, 

dealing with this may be an important goal in the organisation of muscle actions A 

proximal-to-distal pattern was observed in the peak velocity difference, with the trunk 

segment peaking at 190ms before take-off followed by the thigh, shank and foot at 

intervals of 80ms, 70ms and 10ms, respectively (Bobbert and Van Ingen Schenau,

1988) Aragon-Vargas and Gross (1997) also reported a proximal-to-distal sequence 

in peak vertical velocity difference between the proximal and the distal ends of a 

segment in 42 of the 52 subjects examined, however, no values of delay were given
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2 3 3 3 Timing of peak joint power

The temporal delay between peak joint power and take-off in the CMJ for three 

studies are outlined in table 2 20

Table 2 20 Mean timing of peak joint power prior to take-off (absolute and relative to 
total duration) _______________________________________________
Study number of subjects Hip

_ (s)
Knee

(s)
Ankle

(s)
Rodacki et al (2001) 20 male abs 0 300 0 113 0 090

rei 0 700 0 890 0910
Rodacki et al (2002) 11 male abs 0 204 0 116 0 070

rei 0 780 0 880 0 930
Bobbert et al (1986c) 10 male abs na na 0 050
Bobbert and van Ingen 10 male abs 0 170 0 600 0 050
Schenau (1988)

Rodacki et al (2001, 2002) found a proximal-to-distal pattern in peak joint power in 

the CMJ, with delays of approximately 100ms observed between joints Low 

variability was observed at the ankle and knee suggesting a robust pattern Bobbert 

and Van Ingen Schenau (1988) also found a proximal-to-distal sequence of joint 

power to occur for 10 male volleyball players studied The temporal sequence in peak 

joint power occur first with the hip at approximately 170ms before toe-off followed 

by a delay of 110ms for the knee joint (60ms before take-off) and the ankle shortly 

after at 50ms before toe-off However, the delay between the knee and the ankle was 

within ±1 frame measurement error No measure of variability in timing was given, 

nor was it stated if this pattern was observed in all subjects Gregoire et al (1984) 

found peak power in the hips to occur before that of the ankles, however, the extent of 

the delay was not stated They reported that the power of the knee joint showed a 

dramatic drop in the last part of the jump, at the same instant the ankle joint peaked
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2 3 4 Coordination as a predictor of jump height

Aragon-Vargas & Gross (1997a) found that the time difference between joint reversal 

was not a significant predictor of jump height between individuals This is in contrast 

to the findings of Hudson (1986) who suggested very small delays between adjacent 

segments are desired, however, no correlation was give with jump performance 

However, Aragon-Vargas & Gross (1997) examined only the timing between the first 

and last joint reversals, while Hudson (1986) examined adjacent segments When 

examining individual subjects Aragon-Vargas and Gross (1997b) did however find 

the sequence of joint reversal was the best single predictor of jump height accounting 

for 42% of the variation for one of the individuals and was included in a predictor 

model for another individual This was purely a qualitative measure and the extent to 

which the pattern varied from a proximal-to-distal sequence was not examined There 

was a negative relationship between the occurrence of a proximal-to-distal sequence 

and jump height, which is in disagreement with other studies where a proximal-to- 

distal sequence was assumed optimal (Bobbert & van Ingen Schenau, 1988, Hudson,

1986)

Tomioka et al (2001) calculated the quadratic term of the average relative phase angle 

based on the expectation that the relationship was non-linear Both the quadratic 

(r=0 71, p=0 01) and linear terms (r=-0 64, p=0 03) were correlated with maximum 

jump height during the concentric phase, but no relationship was found for the counter 

movement phase There was no significant relationship between isokinetic knee 

strength and coordination (r=0 32, p=0 31), both contributed independently to vertical 

jump height This is in disagreement with finding of Bobbert and Van Soest (1994) 

and Nagano and Gerritsen (2001) who with the use of dynamic optimisation models 

found that that changes in strength need to be accompanied by changes in 

coordination pattern to utilise the increased strength In light of the importance of 

optimal coordination for a given neuromuscular capacity, the effect of changes in the 

timing of key events of adjacent joints should be examined in relation to jump height 

achievement
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2 4 Training interventions to increase jump height

In vertical jumping, as in any sporting task, it is the properties of the 

neuromusculoskeletal system and the control of the movement that ultimately 

determine the potential performance outcome, which in the case of vertical jumping is 

the height achieved (Bobbert and van Soest, 1994) Control of the movement refers to 

the technique, timing and coordination of the movement (Bobbert and van Soest,

1994) and can be improved with guided repetition of the movement (Bobbert, 1990) 

The properties of the neuromusculoskeletal system include anatomical characteristics 

(e g mass distributions, limb length and muscle moment arms), biochemical 

characteristics (e g , enzyme activities and substrate concentrations in the muscles), 

physiological characteristics (e g muscle strength, muscle fibre composition)

(Bobbert and Van Soest, 1994) and neural characteristics (e g motor unit recruitment, 

firing rate) Anatomical characteristics are more or less given but training may 

enhance many of the biochemical, physiological and neural characteristics 

Many components of the neuromuscular system have been proposed to influence 

jump height achievement, both relating to the concentric phase alone and the SSC as a 

single neuromuscular action The height an athlete achieves is determined primarily 

by the vertical velocity of the BCOM at take-off Through the impulse-momentum 

relationship, it is clear a large amount of force is required In vertical jumping the 

athlete has a limited time to apply force before leaving the ground, therefore a large 

amount of force must be applied as quickly as possible For this reason athletes seek 

to maximise power Since power is the product of the amount of force and the 

velocity of the movement, it is often reasoned that increasing the maximum amount of 

force applied is all that is required of a strength training program (Plisk, 2001) There 

is a clear relationship between the cross-sectional area of the muscle and the greatest 

amount of force that can be produced (Fry and Newton, 2002) Once the athlete has 

achieved the upper limit for specific muscle tension for a given cross-sectional area 

(40-45Ncm ]) hypertrophy is required (Plisk, 2001) The most common form of 

training to achieve hypertrophy is heavy resistance training involving repetition of a 

load 60-80% of one repetition maximum (1RM) (Häkkinen, 2002) Wiscoff et al 

(2004) found 1RM half squat to be significantly correlated with jump height (r=0 78, 

p<0 02) Additionally, isometric strength has been found to be sigmfiacntly 

correlated with vertical jump height (Driss et al, 1998, Eisenman, 1978, Häkkinen,
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1991, Jane et al, 1989) in direct contrast however, a number of studies have found 

no significant relationship between isometric strength and jump height (Marcora and 

Millar, 2000, Paasuke et al, 2001, Young et al, 1999a), suggesting other elements of 

the neuromuscular system are more important m vertical jump performance

Since the time available to apply force in vertical jumping is limited, high amounts of 

force need to be applied as early in the movement as possible Therefore, training ts 

often aimed at improving the RFD and to move the force-time curve up and to the left 

resulting in a greater impulse during the limited duration (Plisk, 2001) In a 

movement of high velocity the ability to produce force at higher velocities is 

paramount Häkkinen (1991) stated that for explosive movements the principle of 

specificity of training must be followed, utilising light loads which may be moved 

quicker, the muscles are highly activated and contract at high velocity Both 

isokinetic strength at velocities in excess of 360° s 1 (Saliba and Hrysomallis, 2001) 

and RFD (Jaric et al, 1989, Marcora and Millar, 2000, Paasuke et al, 2001) have been 

found to be significantly correlated with jump performance

The use of a countermovement prior to the concentric phase has been shown to 

enhance vertical jump height (section 2 2 7) Pre-stretching the muscle has been 

proposed to increase the amount of energy stored in the muscle (Ausmussen and 

Bonde-Petersen, 1974, Bosco and Komi, 1979) and increases the neural stimulation of 

the muscle via the stretch reflex (Bosco et al, 1982, Cavagna, 1977) The extent to 

which these factors enhance jump height are dependant on elements of the 

neuromuscular capacity, such as the capacity to control and utilise high eccentric 

loads, coupling time between the eccentric and concentric phase and the ability to 

store and utilise elastic energy

The essence of strength resistance training is to enable the muscles to release more 

energy Assuming the distance over which the muscles shorten and the duration of 

the concentric phase remain the same or reduce, the only way the muscles can release 

more energy is if they increase the ability to produce a greater power output (Bobbert, 

1990) In order to increase the power output capacity of the muscles an overload must 

be induced This implies that exercises chosen must result in the muscles producing a 

higher mechanical output (higher forces and power) than during the CMJ
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Adaptations to the neuromuscular system and resulting improvements in the 

performance are specific to the form of training employed Due to the specificity of 

the adaptations of the neuromuscular system the training intervention employed must 

be a close match to the CMJ This match includes the muscle groups used, the 

movement pattern employed, the ROM the joints are brought through, the velocity of 

contraction and the type of muscle action employed (Fry and Newton, 2002) 

Additionally, the emphases placed at different points of the movement may need to be 

similar to the CMJ For example the joint angles where peak moment occurs may 

need to be similar between the chosen exercise and the CMJ

2 4 1 Training methods to improve neuromuscular capacity

Several forms of neuromuscular training have been employed to enhance CMJ 

performance via the enhancement of some if not all of the above components These 

include heavy resistance training (Blattner and Noble, 1979, Toumi et al, 2001), 

power training (Plisk, 2001), ballistic training (Hunter and Marshall, 2002, Hakkmen 

et al, 1985) and plyometric training (Blattner and Noble, 1979, Brown et al, 1986, 

Matavuh et al, 2001) or a combination of the above (Clutch et al, 1983, Hunter and 

Marshall, 2002)

Heavy resistance training involves moving a heavy load (close to the athletes single 

repetition maximum (1 RM)) through a given range at relatively slow velocities Due 

to the velocity specificity of training effect, heavy resistance training may mainly be 

beneficial at the start of the concentric phase where the movement is slower, with a 

lesser effect at higher velocities (Newton, 1998) For activities such as vertical 

jumping where the time available to apply force is limited, the muscles must exert as 

much force a possible in a short period of time Therefore, a high rate of force 

development (RFD) is desired While heavy resistance strength training may enhance 

maximum force it may come at the expense of a decrease in rate of force development 

(fig 2 4) (Kraemer and Newton, 1994, Kerin, 2002)

In contrast to heavy resistance training, power training or “explosive” resistance 

training involves moving a lighter load but at higher velocities (Fry and Newton,
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2002) This has been proposed to result in improvements in both RFD and peak 

force, shifting the force-time curve up and to the left However, changes at the high 

force portion are smaller than those resulting from heavy resistance training but may 

enable faster development of forces in the early portion of the movement These 

specific changes may be due to explosive resistance training causing an increase in 

the amount of neural input This increase is due to rapid voluntary and/or reflex 

induced enhancement during a short period of time This is evident in the shift in 

EMG-time curves (Fry and Newton, 2002)

In both heavy resistance and explosive power training, the load is decelerated towards 

the end of the range of joint extension In the traditional bench press the bar is 

decelerating for 24% of the concentric phase for maximum loads and 52% for lighter 

loads (Newton, 1998) The problem of deceleration can be overcome if the athlete 

throws the weight or jumps at the end of the extension phase This has been termed 

“ballistic” resistance training (Newton, 1998) Ballistic training for jumping may take 

the form of a movement from a squatting position rapidly lifting a weight so as the 

feet leave the ground as the body becomes upright or jumping with a weighted vest 

(Hunter and Marshall, 2002) Ballistic training may present problems of high forces 

upon landing or when catching the falling weight
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Another aspect of strength for jumpers may be elastic or reactive strength (Moura and 

Moura, 2001) Reactive strength can be defined as the ability to utilise the stretching 

of the muscle during the eccentric phase and the ability to change from an eccentric to 

a concentric contraction (Young, 1995) Vertical jump performance has been shown 

to respond to training which involves performing a SSC movement with a greater 

eccentric load and a more rapid stretch than which they are accustomed to (Kerin, 

2002) These activities, termed plyometncs are thought to develop the capability for 

enhancement of muscular power production and strengthen the neuromuscular system 

due to the virtue of greater forces imposed upon the system (Lees and Fahmi, 1994) 

One of the most popular plyometric drills is drop jumping (DJ), which involves 

falling from a raised platform and upon landing immediately performing a vertical 

jump (Bobbert, 1990) The dynamic characteristics and coordination of drop jumping 

are thought to provide qualitative specificity to the CMJ (Bobbert, 1990, Kiren, 2002, 

Young et al, 1999) Additionally, drop jump training purportedly enhances the ability 

to utilise the SSC and increases the overall neural stimulation The delay between the 

eccentric and concentric contractions is due to a electromechanical delay in the 

muscles and is referred to as the “amortization” (Toumi et al, 2001) or “coupling” 

phase (Bosco et al, 1981) Drop jumping has been proposed to train the 

neuromuscular system to make a rapid transition from eccentric to concentric 

contractions, reducing the coupling time and allows greater utilisation of the SSC 

(Kerin, 2002)

2 4 2 Changes in kinetic parameters m drop jumps

The enhancement in jump height following a training program that includes drop 

jumps has been suggested to be due to an improvement in the mechanical output of 

the muscles, triggered by an overload of the muscles during drop jumping (Bobbert et 

al, 1987b) A number of studies have reported greater jump height in the DJ 

compared to the CMJ (Asmussen and Bonde-Petersen, 1974, Lees and Fahmi, 1995) 

but few studies have examined the difference in the kinetics that may have caused the 

increase in height achieved (Bobbert et al, 1986a, Bobbert et al, 1987a, Lees and 

Fahmi, 1994, Voigt et al, 1995)
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2 4 2 1 Drop jump technique

The magnitude of the enhancement in the jump kinetics in the DJ over the CMJ has 

been found to be influenced by the drop jump technique employed (Bobbert et al,

1986a) Bobbert et al (1986a) asked subjects to perform drop jumps and observed 

that some subjects chose a jumping strategy that employed a movement amplitude of 

the BCOM comparable to that utilised during the CMJ The duration of the 

concentric phase lasted longer than 260ms (mean CMJ 280ms), referred to as a 

counter drop jump (CDJ) Others individuals preferred a movement with a small 

amplitude and a positive phase lasting less than 200ms, referred to as the bounce drop 

jump (BDJ) The choice of the DJ technique seemed arbitrary and was not related to 

anthropometrical variables The magnitude of kinematics and kinetics reported by 

Bobbert et al (1986a) and (Bobbert et al, 1987a) where individuals were directed to 

perform a CMJ and both the CDJ and the BDJ are outlined at a whole body level in 

table 2 21 and at a segmental level in table 2 22 and table 2 23

Table 2 21 Comparison of whole body concentric phase parameters between CMJ and 
DJ for the two groups in the study by Bobbert et al (1986a) study and the three 
conditions in Bobbert et al (1987a)_____ _____________________________________

Bobbert et al (1986a) 
counter group bounce group

Bobbert et al (1987a)

CMJ DJ CMJ DJ CMJ CDJ BDJ
Movement amplitude (m) 0 35 0 33 033 021* 0 37 0 25* 0 13 * o
Phase duration (s) 0 28 0 28 0 28 0 17* 0 29 021* 0 13 *o
vGRF at start of phase (N) 1792 1941 1613 3052* 2012 2612* 4015*o
Mean phase vGRF (N) 1555 1562 1531 2082* 1715 1918* 2561*o
Note * value differs from the CMJ

o value differs from CDJ
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Table 2 22 Kinematic and kinetic output of CMJ and DJ (Bobbert et al, 1986a)
Counter group Bounce group 

CMJ DJ CMJ DJ
Hip 1 21 1 38 1 44 2 06*

Angle at JR Knee 1 34 132 1 48 1 76*
(rad) Ankle 1 34 1 39* 1 3 1 32

Hip 343 351 269 270
Moment at JR Knee 247 308 229 407 *
(Nm) Ankle 236 249 193 420 *

Hip 366 368 344 305
Peak Moment Knee 279 331 276 414*
(Nm) Ankle 266 279 246 440 *

Hip 1551 1338 1405 1203
Peak Power Knee 1657 1762 1481 1936*
(W) Ankle 1886 1776 1829 2425

Hip 234 187 * 189 84 *
Work Knee 193 215 163 146
(J) Ankle 171 157 158 203 *
Note * value differs from the CMJ

For the individuals that utilised the CDJ technique, the amplitude of movement and 

duration of concentric phase did not differ to that of the CMJ resulting in similar 

kinematics, with the exception of less dorsi-flexion and a reduced but not statistically 

significant hip flexion This resulted in less hip work done, the only kinetic difference 

observed In contrast, the BDJ was characterised by reduced amplitude of movement 

and a shorter duration of the concentric phase This resulted in a greater vGRF at the 

start of the concentric phase and higher mean force but less work done due to the 

reduced amplitude of movement The reduction in the amplitude is attributed to a 

reduction in knee and hip flexion As less time was available to decelerate the BCOM 

greater vGRF were evident at the start of the concentric phase, which were manifested 

in greater knee and ankle joint moments at joint reversal Both average moment and 

peak moment at the knee and ankle joints were greater than during the CMJ The 

knee joint was the only joint that exhibited an increase in peak joint power during the 

BDJ compared to the CMJ, while a large but non-significant increase was evident at 

the ankle joint Peak hip joint power was also reduced

In light of DJ technique altering the kinetics of the jump, Bobbert et al (1987a) 

conducted a more controlled study where subjects were asked to perform a series of
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jumps from 20cm utilising both the CDJ and the BDJ, which were compared to the 

CMJ Kinematic and kinetic variables reported by Bobbert et al (1987a) are outlined 

in tables 2 21 for whole body parameters and table 2 23 for segmental parameters 

Three points that must be noted when comparisons are made with the previous study 

relating to technique Firstly, drop height was reduced by 20cm (see section 2 2 7 for 

more detailed discussion on changes with drop height) Secondly, given that trained 

volleyball players were used as opposed to handball players, training specificity may 

have lead to different responses to drop jumping The skill level appears to be greater 

in the volleyball group, evident by a 5cm greater CMJ height on average Finally, a 

shorter duration of the concentric phase and amplitude of movement of the BCOM 

was utilised in both forms of drop jumping compared to the CDJ in the study by 

Bobbert et al (1986a) The mean duration of the CDJ (210±30ms) approached the 

criteria for the BDJ (<200ms) set out in the previous study It appears both forms of 

drop jumping exhibit characteristics of the BDJ in the previous study, which must be 

taken into account when examining the response to the drop jumping stimulus on the 

kinetic parameters The CDJ m the study by Bobbert et al (1986a) did not differ from 

the CMJ with respect to the amplitude of movement of the BCOM or duration of the 

concentric phase, whereas the CDJ in the study by Bobbert et al (1987a) did and for 

this reason should be viewed as larger amplitude BDJ
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Table 2 23 Mean kinematic and kinetic variables from CMJ and DJ (20cm)

(from Bobbert et al, 1987a)
CMJ CDJ BDJ

Hip 1 23 1 74 * 2 29 *o
Angle at JR Knee 1 40 1 51 * 1 93 *o
(rad) Ankle 1 23 1 25 1 26

Hip 403 326 287 *
Moment at JR Knee 314 473 * 546 *o
(Nm) Ankle 263 349 * 586 *o

Hip 422 367 * 310 * o
Peak Moment Knee 366 488 * 558 *o
(Nm) Ankle 310 361 * 602 *o

Hip 1524 1255 1165
Peak Power Knee 2549 2796 3004 *o
(W) Ankle 2449 2482 4529 *o
Note * value differs from the CMJ 

o value differs from CDJ

In Bobbert et al (1987a) for both forms of DJ the amplitude of movement of the 

BCOM, the duration of both the eccentric and concentric phases and the maximum 

joint angle attained by the hip and the knee were less than during those of the CMJ, 

and the changes were greater in the BDJ Increases in knee and ankle joint moments 

at joint reversal and peak values were evident in both forms of drop jumps, consistent 

with the results for the BDJ found by Bobbert et al (1986a) Additionally, a lower 

peak hip joint moment was present in both forms of drop jumps and a reduced hip 

joint moment at joint reversal was evident in the BDJ, but the change experienced in 

the CDJ was not statistically significant (p>0 05) In contrast, peak joint power was 

not significantly different to that of the CMJ for the CDJ but was significantly greater 

for the knee and ankle joints in the BDJ

While Bobbert and his colleagues identified two distinct techniques, when individuals 

are asked to perform an unrestricted DJ for maximum jump height, they chose a 

technique on a continuum from a jump with a small amplitude and short ground 

contact time to a jump at the other end of the spectrum (Hunter and Marshall, 2002)

It has been shown that variance in the duration of the concentric phase of the CMJ 

also exists (Jane et al, 1989, van Soest et al, 1985) The use of absolute cut-off 

durations for the categorisation of jump strategy seems inappropriate Categorisation 

based on the change in a jump parameter between jump conditions, such as amplitude
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of movement or duration of a phase may provide a more robust mechanism As a DJ 

is an example of a SSC movement, categorisation based on the duration of the 

eccentric phase may prove more appropriate as it may provide a better representation 

of the characteristics of the stretch applied, while the amplitude of movement 

provides another means

2 4 2 2 Drop jump height

The enhancement m mechanical output over that of the CMJ in jumps similar to the 

BDJ, outlined by Bobbert et al (1986a) is due to factors relating to the SSC, which 

increase with the velocity of the stretch of the active muscles in the eccentric phase 

and decrease with the coupling phase duration The velocity of stretch the muscle 

experiences is dependent on the peak negative velocity of the BCOM, which may be 

varied by increasing the drop height preceding the jump (Bobbert et al, 1987b)

Asmussen and Bonde-Petersen (1974) compared the effect of dropping from three 

different heights (0 233m, 0 404m and 0 69m) to a CMJ and examined the effect on 

the jump height achieved and positive phase energy produced They found jump 

height increased from that attained in the CMJ following a drop from 0 233m and 

increased further following a drop from 0 404m However, following a drop from 

0 69m the jump height did not statistically differ from the height attained in the CMJ 

At an individual subject level, drop jumping did not result in a greater jump height 

than that of the CMJ for two individuals, while six individuals continued to increase 

jump height up to a drop from 0 69m Lees and Fahmi (1995) also found a greater 

jump height for the DJ than the CMJ when they examined drop heights of 0 12m,

0 24m, 0 36m, 0 46m, 0 58m, and 0 68m, but not for all drop heights The greatest 

height achieved was from the lowest drop height of 0 12m and jump height 

diminished as the drop height increased Heights above 0 46m resulted in lower jump 

heights being achieved than in the CMJ Voigt et al (1995) found no difference in 

jump height following a drop from 0 3m compared to the CMJ, and a decrease when 

drop height increased to 0 6m and again to 0 9m In contrast to these findings, many 

studies have found no difference in jump height following a drop from various heights 

(Bedi et al, 1987, Bobbert et al, 1987b) Bedi et al (1987) found no difference m
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jump height achieved following drops of between 0 25m and 0 85m at 0 lm 

increments, while Bobbert et al (1987b) found no difference in jump height between 

drops of 0 2m, 0 4m and 0 6m For both studies no comparison was made with a 

CMJ

Selection of an optimum drop height has traditionally been based on which drop 

height allowed the greatest jump height achieved (Asmussen and Bonde-Petersen, 

1974, Bedi et al, 1987, Young et al, 1999b) In light of the findings by Bobbert et al 

(1986a) that a drop jump technique utilising a large amplitude of movement may 

benefit jump height and another technique with a reduced amplitude may benefit the 

overload of mechanical output of the muscles, selection of drop height based on jump 

height achieved may not be the best option Young et al (1999b) examined drop 

heights of 0 3m, 0 45m, 0 6m and 0 75m and found that jump height achieved was 

greatest at 0 6m but resulted in the second longest contact time However, the lowest 

drop height (0 3m) resulted in the best reactive strength (jump height divided by 

contact time) It has been suggested that the larger the reactive strength load the 

greater the mechanical overload on the muscles (Young et al, 1999b), however, no 

measurement of joint kinetics were recorded to support this view Few studies have 

reported changes in kinetics following drops from different heights (Bobbert et al, 

1987b, Lees and Fahmi, 1994, Voigt et al, 1995) Lees and Fahmi (1994) found that 

the lowest drop height examined (0 12m) resulted in the greatest combined 

enhancement based on the height achieved, the peak vGRF, the peak vertical velocity 

of the BCOM and the peak whole body power Average mechanical power was found 

to be enhanced during DJ in comparison to CMJ (Voigt et al, 1995) following a drop 

of 0 3m and 0 6m, which were both greater than the average mechanical power in 

jumps from 0 9m Optimal drop height is likely to be dependant on the current 

neuromuscular capacity and past experiences of an individual From an evolutionary 

sense the human body may be better tuned neuromuscularly to impacts originating 

from lower heights, akin to running, hopping and skipping (Lees and Fahmi, 1994) 

There is no a priori reason why the neuromuscular system would respond more 

favourably to greater rather than lesser drop heights Lees and Fahmi (1994) 

concluded that if an optimum drop height exists as a natural biomechanical feature of 

human neuromuscular system, it is more likely to be lower rather than higher
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The kinematics of the jump has been found to differ between drop heights (Bobbert et 

al, 1987a, Lees and Fahmi, 1994) Bobbert et al (1987b) found no statistical 

difference in the duration of the eccentric phase between drop heights but the duration 

of the concentric phase took longer following a drop of 0 6m than it did following 

0 4m Much of this could be attributed to a reduced amplitude of movement of the 

BCOM following a drop of 0 4m (0 03m, p <0 05), brought about by a reduced ROM 

of the knee joint (0 1 lrad, p <0 05) Reduced amplitude of movement of the BCOM 

(0 04m) was also observed by Lees and Fahmi (1994) but only at the lowest drop 

height of 0 12m, and increased thereafter possibly to absorb the increase m vGRF 

upon landing from the greater drop heights This was achieved by increasing the 

ROM of the knee and hip joints

At whole body kinetic level Bobbert et al (1987b) found no difference in the vGRF at 

the start of the concentric phase between drop heights However, peak vGRF was 

statistically greater following a drop of 0 4m than 0 2m, and greater again following a 

drop of 0 6m However, these values appear to be the first impact peak observed and 

would be unlikely to be related to jump performance The net impulse during the 

eccentric phase was found to increase with drop height (DJ20 1 97 N s kg 1 < DJ40 

2 47 N s kg 1 < DJ60 3 09 N s kg \  p < 0 05) but no statistical difference was 

observed during the concentric phase

When examining the joint moment at reversal, peak joint moment and peak joint 

power, Bobbert et al (1987b) only found peak ankle joint moment and peak ankle 

joint power to be statistically different between drop heights Peak ankle joint 

moment was on average 56N greater following a drop of 0 4m compared to 0 6m and 

peak ankle joint power was on average 184W greater following a drop of 0 4m 

compared to 0 6m However, while not statistically significant both peak ankle joint 

moment and power following a drop of 0 4m was greater than that developed 

following a drop of 0 2m At both the knee and hip joints no statistically significant 

differences were observed between drop heights However, the mean knee joint 

moment at joint reversal, peak knee joint moment and knee joint power were greater 

following a drop of 0 4m but not statistically different compared 0 2m and 0 6m 

possibly be due to greater variability observed at the knee joint Likewise a greater 

but not statistically significant ankle joint moment at joint reversal and peak value
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was observed after a drop of 0 4m compared to 0 2m and 0 6m The greater mean 

differences and variability observed m these measures suggest there may have been an 

enhancement for some individuals However, as individual data was not reported it is 

not possible to make any conclusions on this matter

The enhancement of kinetic variables following a drop of 0 4m was matched by 

reduced but not statistically significant amplitude of movement of the BCOM and 

duration of both the eccentric and concentric phases at that drop height This is 

consistent with the finding by Bobbert et al (1986a) regarding drop jump technique 

It is possible that the other two heights (0 2m and 0 6m) did not either provide enough 

stimulus or were too excessive to allow rapid deceleration of the BCOM following 

landing, possibly requiring a longer duration and amplitude to dissipate the excessive 

vGRF upon landing It must be noted that the subjects performed all the jumps in 

bare feet and it is possible the vGRF experienced was too great to accommodate 

Lees and Fahmi (1994) found subjects were reluctant to contact the force platform 

vigorously with bare feet At greater impact forces the human body is obliged to 

protect it’s structures and as a result may lose the ability to recover energy stored in 

these structure (Less and Fahmi, 1994) Comparisons between drop heights between 

studies may be misleading due to differing techniques imposing a greater stretch load 

for comparable drop heights (Young et al, 1999)

2 4 3 Drop jump training studies

Some studies have found that drop jump training enhances vertical jump height in the 

CMJ (Blatter and Noble, 1979, Brown et al, 1986, Clutch et al, 1983, Gehri et al, 

1998, Matavulj et al, 2001) A summary of results of DJ training is outlined in table 

2 24 While a degree of enhancement was observed in all studies, enhancements were 

not statistically significant for all Brown et al (1986) only found a statistical 

significant enhancement for jumps involving an arm swing, while a 5 5cm 

enhancement was observed in jumps without the use of arms, the enhancement did not 

prove to be statistically different The greater variability in jumps without the arms 

may have been responsible for the lack of statistical significance Clutch et al (1983)
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found a significant increase m jump height for untrained subjects, but found no 

significant increase in skilled jumpers

Table 2 24 Effect of drop jump training on CMJ performance
Study number of 

subiects
Training Drop height ACMJ height Statistical 

significance

Blatter & Noble 
(1979)

11 DJ
12 isokinetic 
15 control

(3x10 DJ) x 3 sessions x8 weeks 0 86m 2 1 cm yes

Brown et al 
(1986)

13 DJ 
13 control

(3 x 10 DJ) x 2 sessions xl2 weeks 0 45m 5 5cm no A

12 subjects CMJ, DJ30, DJ (75, 110) 0 30m 3 35cm yes

Clutch et al 2 sessions x 4 weeks each condition 0 75m & 1 lm 2 97cm yes

(1983) Skilled 8 (4x10 DJ) x 2 sessions xl6 weeks 0 75m & 1 lm 3 73cm no
Unskilled 8 (4 xlO DJ) x 2 sessions xl6 weeks 0 75m & 1 lm 3 21cm yes

Gehri et al 
(1998)

11 DJ
7 CMJ 
10 control

see note *  below 0 40m 2 13cm yes

DJ 50 (3 x 10 DJ) x 3 sessions x6 weeks 0 50m 4 8cm yes

Matavulj et al 
(2001)

DJ 100 
Control

(3 x 10 DJ) x 3 sessions x6 weeks 1 00m 5 6cm yes

Note A jumps without the use o f arm were not significantly enhanced with DJ training but jumps 
with the use o f the arms were 

*  2 sessions per week for 12 weeks, 2 x 8  jumps for first 2 weeks, then 4 x 8  jumps

The differences between studies and lack of response in others may have been due to 

differences in the way DJs were performed It has been shown that DJ technique 

influences the overloading of joint kinetics (Bobbert et al, 1987a) While some of the 

studies instructed individuals to jump as soon as possible after landing (Blatter and 

Noble, 1979, Matavulj et al, 2001, Young et al, 1999b), no instruction was given by 

Brown et al (1986) In light of the findings of Bobbert et al (1986a) where some 

individuals utilise a technique with an amplitude of the movement of the BCOM 

comparable to the CMJ which did not overload joint kinetics, it is possible that the 

technique of some of the individuals within the Brown et al (1986) study may have 

been the reason no significant enhancement in jump height was observed

In light of the potential differences in training effect due to DJ technique Young et al 

(1999b) examined two DJ techniques during a six week DJ training program The 

aim of the first technique was to maximise rebound height (DJ-H) and the second 

technique aimed to achieve the best combination of rebound height and minimum 

contact time (DJ-H/t) Thirty five subjects training for six weeks utilising the DJ-H 

technique and thirty five utilising the DJ-H/t technique along with a control group of
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thirty five who did not undertake any form of jump training were studied After six 

weeks of training CMJ height increased by 0 9cm in the DJ-H/t group, however, this 

enhancement was not found to differ in either the DJ-H or the control group Due to 

the high number of subjects dropping out of the study in this group the low number of 

subjects may be partly responsible for lack of statistical significance However, the 

enhancement in CMJ height achieved is much lower than other studies (Blatter and 

Noble, 1979, Brown et al 1986, Clutch et al, 1983, Gehn et al, 1998) These studies 

did have longer training programs but, the amount of jumps is comparable to Matavulj 

et al (2001) which achieved an enhancement of 4 8cm and 5 6cm for DJ from 0 5m 

and lm, respectively It is possible that the greater drop height used provided a 

greater overload along with the relatively young age of the subjects enabled the 

greater enhancement observed by Matavulj et al (2001) Additionally, the CMJ used 

to test enhancement due to training allowed the use of the arms while in the DJ 

training employed the arms were restricted The only significant enhancement was a 

greater reactive strength (rebound height/contact time) for the DJ-H/t group, which 

supports the specificity of training When neuromuscular capacity is altered the 

coordination pattern needs to be re-optimised (Bobbert and Van Soest, 1994, Nagano 

and Gerritsen, 2001), it is possible that the coordination pattern for the CMJ utilising 

the arm swing post training may have been at a sub-optimised level for the enhanced 

neuromuscular capacity A possible reason for the lack of a significant enhancement 

in the DJ-H group is that the drop height/technique combination was not enough to 

induce an overload in the jump kinetics While drop heights used for training where 

not stated, heights chosen were those that maximised rebound height while the height 

chosen for the DJ-H/t group maximised the best combination of rebound height and 

minimum contact time From the data reported for the DJ-H/t group it appears 

different drop heights may have been used in the training between groups
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Two forms of analysis to identify factors that correlate with jump performance were 

undertaken, group analysis (inter-subject) based on differences between individuals 

and individual subject analysis (intra-subject) based on differences within repetitions 

of an individual’s own movement The group analysis was further divided into two 

approaches found in the literature for selecting a representative value for each subject 

A single value per subject was selected two ways, the mean value of the 15 jumps 

undertaken (G m) and the best jump of the 15 (G b) Comparison of these three 

approaches was made

31 Subjects

Eighteen male subjects (age 23 5±5 3 years and mass 75 2±11kg), who were not 

currently involved in any form of jump training, participated in the study Ethical 

approval was received from Dublin City University Information regarding testing 

was given to all subjects and informed consent was received from all subjects prior to 

testing All subjects were injury free at the time of the test

3 2 Experimental protocols

Each subject performed three categories of jumps, differing in the amount of eccentric 

loading the counter movement jump (CMJ) and drop jumps (DJ) from two different 

heights (0 3m and 0 5m) During the CMJ, the subject lowered their body’s centre of 

mass (BCOM) from a standing upright position by flexing of the lower extremity 

joints (see section 2 2 for more detailed description) Increased eccentric loading was 

introduced in the DJ by increasing the amount the velocity of the BCOM had to 

decrease during the eccentric phase This was achieved by stepping down from boxes 

whos heights were 0 3m (DJ30) and 0 5m (DJ50) Subjects were instructed to step off 

the boxes with their dominate foot and land with both feet simultaneously contacting 

a separate force plate These heights were selected as they were evident in the 

literature for novice jumpers (Brown et al, 1986, Gehn et al, 1998) Subjects attended 

on two occasions, the first to familiarise themselves with the protocols, the second 

involved the collection of data
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Figure 3 1 Diagram of experimental set-up

Subjects were instructed to jump maximally in all jumps and to jump immediately 

upon landing during the DJ No additional instructions were given to insure self- 

selection of technique and elimination of any investor-induced bias into the 

experiment In all jumps the subject placed their hands on their hips to reduce the use 

of arms allowing the jump height to be predominately due to the contribution of the 

leg muscle groups (Bobbert et al, 1986a) Feet were kept parallel with the x-axis of 

the force platform, restricting motion to the sagittal plane as much as possible Jumps 

were accepted for analysis when both the subject and the investigator deemed that 

effort was maximal, take-off and landing occurred in approximately the same position 

and balance was maintained

Each subject performed 15 acceptable trials under each jump condition This number 

of trials was found by Moran (1998) using sequential estimation techniques (Hamill 

and McNiven, 1990) to allow determination of representative jump kinematic and 

kinetic data The order of each jump conditions were block randomised for each 

subject to eliminate any condition-sequence interaction A 30 second rest between 

CMJs and 60 seconds between DJs, and at least 3 minutes between conditions was 

imposed to reduce the likelihood of fatigue The trial number was recorded to check
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for sampling specific trends in the jump height achieved Subjects wore brief shorts 

and their own sports shoes

3 3 Data Acquisition

Locations of anatomical landmarks were marked on the skin to enable markers to be 

accurately replaced in the original location in the event of displacement during 

testing Five reflective spherical skin mounted markers were place on anatomical 

landmarks of both sides of the body - fifth metatarsal joint, lateral malleolus, lateral 

femoral epicondyle of the knee, the most prominent protuberance of the greater 

trochanter and the glenohumeral joint indicating the joint centres of the toe, ankle, 

knee, hip and shoulder, respectively (Bobbert et al, 1986) Additionally, a sixth 

marker was placed on the heel, level with the toe marker (Robertson and Fleming,

1987) Markers were fixed to the skin using medical tape

A VICON motion analysis (VICON 512 M, Oxford Metrics Ltd, England) system 

was used in conjunction with an AMTI force platform mounted in the ground (BP- 

600900, AMTI, MA, USA) and AMTI amplifier VICON software controlled 

simultaneous sampling of motion and force data at 250Hz Eight cameras placed 

evenly around the sampling area emitted infrared light from diode stroboscopes in 

each camera, which was reflected back to the cameras by the reflective spherical skin 

markers Two-dimensional co-ordinate data was calculated for each camera and 

subsequently three dimensional co-ordinate data for the captured motion was 

calculated by direct linear transformation (VICON v4 6, Oxford Metrics Ltd,

England)

Raw co-ordinate data and force data were exported to Excel and subsequently applied 

to a number of specially designed in-house computer programs developed by the 

author The data was filtered using a recursive second-order low pass butterworth 

digital filter (Winter, 1990) The once filtered data was filtered again, but in the 

reverse direction of time, so as to introduce an equal and opposite phase lead so as to 

result in a net phase shift of zero (Winter, 1990) The force plate data was filtered at 

70Hz (Moran, 1998) The marker positional data was filtered at different values 

(table 3 1), found using residual analysis to minimise the root mean square (RMS) of
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the difference between the filtered and unfiltered data over a range of cut-off 

frequencies (Moran, 1998) The same cut-off frequency for the toe marker was used 

for the heel marker as both were not subject to skin movement

Table 3 1 Cut off frequencies of each joint marker (Moran, 1998)
Toe Heel Ankle Knee Hip Shoulder

CMJ 6 62 6 62 7 52 921 8 50 6 64
DJ 6 61 6 61 7 48 9 14 8 38 6 41

3 4 Data analysis

The body was modelled as a rigid-body, planar system consisting of four segments 

linked by fnctionless hinge joints The four-segment model of the body has been 

used in numerous jumping experiments (Aragon-Vargas & Gross, 1997, Hubley and 

Wells, 1983, Jaric et al, 1989) The four segments were the foot, shank, thigh and 

head-arms-trunk (HAT) separated by the ankle, knee and hip joints, respectively The 

lower legs were conceptionahsed as a ‘single equivalent muscle’ model (Robertson 

and Fleming, 1987), where the three joints were viewed as having six ‘muscles’ 

arranged in pairs crossing each joint, one of each pair representing tissues that act as 

extensors and the others as flexors

The eccentric and concentric phases of the jump were defined with respect to the 

vertical velocity of the BCOM the eccentric phase started with the initiation of 

negative vertical velocity of the BCOM and ended when the velocity reached zero and 

the BCOM was at a minimum height (Hudson, 1988), the concentric phase began the 

instant that the BCOM obtained positive vertical velocity and ended when the toes 

lost contact with the force platform
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The vertical height achieved in the jump was calculated as the vertical difference 

between the BCOM when standing and at the apex of the jump (Bobbert et al, 1987a) 

The vertical height of the BCOM (Y bcom ) was calculated as

Ybcom = £ (/?; *YCOM)
Equation 3 1

Where
R, was the ratio of segment weight to whole body weight (table 3 1, pp56-57, 
Winter 1990)
YCOM, was the vertical height of the COM of segment i

Figure 3 2 Diagram for body segments and angle conventions

Segment angles were calculated in an anti-clockwise direction from the right 

horizontal with the distal end point of the segment as the origin The segments angles 

were defined as 0foot, Qshank, Gthigh, Ghat (for the upper body) (Figure 3 2) The joint 

angles were calculated as the angle between adjacent segments

Oankle — 71 — Oshank “1* Ofoot Equation 3 2

Oknee — 7 t  — Oshank "1" Othigh Equation 3 3

Qhip =  71 — O h  a t  +  Gthigh Equation 3 4

Shouldej

Knee Knee
angle

Foot
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Joint and segment kinetics were calculated by inverse dynamics from kinematic 

(Johnson and Buckley, 2001, Winter, 1990), ground reaction force data and 

anthropometric data (table 3 1, pp56-57, Winter 1990) Counter-clockwise moments 

acting on the segments distal to the joint were considered to be positive Joint 

reaction forces and moments were calculated as follows

Fxp =  ( Mass * Ax)  +  Fxd Equation 3 5

Fyp =  {Mass * A y )  +  F yd+  (m  * g )  Equation 3 6

Where
Fxp, Fyp = proximal joint reaction force in the x or y direction 
Fxd, Fyd = distal joint reaction force in the x or y direction 
Ax, Ay = acceleration in x or y direction 
m = mass of segment 
g = acceleration due to gravity

Fxp

d2

d1

I----------------1-------------- 1
d3 d4

Figure 3 3 Free body diagram for generic body segment

M P = Md + (Fxd * d \ )  + {Fxp* d l )  -  t Fyd * d 3) -  (FyP * d4) + l a Equation 3 7

Where
Mp = joint moment at proximal 
Md = joint moment at distal end 
I = moment of inertia about the segment centre of mass 
a = segment angular acceleration
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Hip extensor, knee extensor and ankle plantar flexor moments were defined as 

positive (Bobbert et al, 1987a) Net joint muscle power for each joint was calculated 

as the product of the net muscle moment and the joint angular velocity (Fukashiro and 
Komi, 1987)

Work done by the muscles during each phase was equal to the integral of power with 

respect to time (van Ingen Schenau et al, 1985) Integration was performed using the 
trapezium rule with work calculated for positive and negative phases separately

3 5 Variable selection

Kinematic and kinetic variables were evaluated in terms of both magnitude and

timing The variables selected for analysis were sub-divided into five main phases
i Kinematics and kinetics during the eccentric phase

n Kinematics and kinetics at the start of the concentric phase
in Kinematics and kinetics during the concentric phase
iv Body position at take-off
v Rise in the BCOM after take-off

Additionally, the duration of phases i and 111 (above) and the delay between the 

eccentric and concentric phases, defined as ‘coupling’ time (Bosco and Komi, 1979), 

were analysed Kinetic variables were normalised for body mass to control for 
differences in body weight

Kinematics and kinetics during the eccentric phase

The actions of the muscles during the eccentric phase strongly influences muscle 

actions during the concentric phase (Bosco et al, 1981, Cavagna et al, 1965) The 

variables selected for analysis were Peak negative vertical velocity of the BCOM, 

peak whole body power, peak joint angular velocity, total and individual joint work

P  =  M jCOj Equation 3 8

Equation 3 9
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done and the percentage of total work done at each joint (Bobbert et al, 1987b, 

Harman et al, 1990)

Kinematics and kinetics at the start of the concentric phase

Kinematics and kinetics at the start of the concentric phase have been shown to affect 

the kinetics during the concentric phase (Asmussen and Blonde-Petrsen, 1974, Bosco 
and Komi, 1979) The variables selected for analysis were amplitude of movement 
of the BCOM, minimum joint angle (joint reversal), force (vGRF) at start of positive 

phase, the joint moment at joint reversal (Aragon-Vargas & Gross, 1997, Bobbert et 

al, 1987a, Bosco et al, 1981, Jane et al, 1989) and coupling time (the time taken for 

the joint to rotate from one degree prior to joint reversal to one degree after joint 

reversal) (Bosco et al, 1981)

Kinematics and kinetics during the positive phase

The height the BCOM attains after take-off is dependent primarily on the vertical 

velocity of the BCOM at take-off Kinematic and kinetic factors which directly and 

indirectly affect this were examined peak vGRF, peak joint moment, total and 

individual joint peak power, total and individual joint work done and the percentage 

of total work done by each joint (Aragon-Vargas and Gross, 1997, Bobbert et al, 

1987a, Fukashiro and Komi, 1987, Robertson and Fleming, 1987, Rodano and 

Roberto, 2002)

Body position at take-off

The height the BCOM attains post take-off is dependent on the kinetic and potential 
energy at take-off (Bobbert and van Ingen Schenau, 1988) The potential energy is 

determined by how high the BCOM is located at take-off, therefore the vertical height 
difference of BCOM at take-off from that of standing was examined

Rise in the BCOM after take-off
Jump height was defined as the difference between the peak height the BCOM 

attained at the apex of the jump and that at standing (Bobbert et al, 1987a) This was 

taken as the measure ofjump performance
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Coordination is a major factor in proficient execution of a motor task and refers to the 

timing and sequence of segmental movements Coordination was analysed at the joint 

level by examining the time delay between key events of adjacent joint pairings hip 

and knee, knee and ankle The following variables were examined initiation ofjoint 
extension (Rodacki et al, 2002), peak joint angular velocity (Jensen et al, 1994), peak 

joint moment and peak joint power (Bobbert and van Ingen Schenau, 1988) Absolute 

timing difference between events was taken In addition to negate the effect of the 

total duration of the movement, timing delays were also examined as a proportion of 

total concentric phase duration (relative timing) (Rodacki et al, 2001)

Figure 3 4 Measures of rate of force development

The rate of force development (RFD) was calculated as the rate of change in the 

magnitude ofjoint moment or vGRF over selected time intervals The rate of power 
development was calculated for individual joints as the increase in joint power in the 
first 60ms of the concentric phase The selected intervals (Figure 3 4) were -

• From joint reversal (or start of concentric phase) to the instant of take-off (A 
and E)

• From the minimum vGRF to joint reversal (or the start of concentric phase) (B 
and F)

• From the instance of minimum vGRF to peak moment (or peak vGRF) (C and 
G)

• From the instance of minimum vGRF to 50% peak moment (or peak vGRF) 
(D1 and HI)
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• From 50% peak moment/vGRF to peak moment (or peak vGRF) (D2 and H2)

Since isometric tests examine the RFD without eccentric loading, it was of interest to 

determine if a relationship exists between jump height and neuromuscular output in 

the concentric phase only in the CMJ From JR to peak force is the only portion of 

the jump where force is developed by solely a concentric contraction However, the 

interval from JR to peak joint moment (or vGRF) was not included because for many 

subject these two events occurred simultaneously or the peak occurred prior to JR

2 6 Statistical analysis

Descriptive statistics (mean magnitude and variance) were calculated for the jump 

height achieved and each biomechanical jump parameter at both a group level (G b 

and G m) and individual subject level Pearson product moment correlations were 

performed between the biomechanical parameters and the jump height achieved An 

a = 0 05 level was adopted for statistical significance Bivariate regression techniques 

were applied to calculate the slope of the relationship to jump mechanical parameters 

found to be significantly correlated with jump height achieved The residuals from 
the bivariate analysis were plotted against the predicted values to verify that the basic 

assumptions of normality were met The influence of outliners was assessed by visual 

observation of plotted values against jump height and in borderline cases using 

Cook’s distance, outliers where subsequently omitted from analysis Visual 

examination of scatter plots of each variable and jump height was undertaken to 

determine weather a linear pattern was present, and was verified by plotting the 
residuals against the predicted values from the bivariate regression analysis 

(Montgomery, 1991) Hypothesis concerning differences between jump conditions 
were tested using a two-way repeated measures analyses of variance (ANOVA) in the 
case of group analyse and a one-way repeated measures ANOVA in the case of 
individual analyse An a = 0 05 level was adopted for statistical significance Where 

statistical differences were observed a Tukey’s post-hoc analysis was employed All 

statistical analysis was performed using SPSS (version 10)

83



Results

84



The group mean, the inter-subject variability and the mean intra-subject variability for 
the biomechanical parameters of the CMJ are detailed below Results of correlation 

analysis at the group level using both the mean magnitude for each of the 18 subjects 

(G m), and the data from each subject’s best performance (G b) are presented In 

addition, individual subject correlation analyse utilising all 15 jumps undertaken by 

each subject are presented Where no correlation is reported, that parameter was not 

found to be correlated with jump height (a = 0 05 significance level The data is 

sectionalised in the following phases

(i) the eccentric phase

(11) the transition phase between the eccentric and concentric phases 
(in) the concentric phase

Differences in jump kinetics between CMJ and DJ from 0 3m and 0 5m will be 

outlined to investigate the possible use of drop jumping as a means of stressing 

specific neuromuscular parameters for training purposes Time history of selected 

joint variables (angle, angular velocity, moment and power) for a CMJ of a 
representative subject is presented in Figure 4 1
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4 1 Variability and the relationship with jump performance

The following section outlines the extent to which the kinematic and kinetic variables 
varied both between subjects (inter-subject) and within repeated individual 

performances (intra-subject) Variability is presented in the units of the variable 

(standard deviation, SD) and standardised as a percentage of the variable’s mean 

(coefficient of variation CV) These are presented along with the overall group 

mean Results of bivanate statistical analysis for the relationship between the 

magnitude of the kinematic and kinetic parameters and the magnitude of jump height 

are also presented All correlations where an increase in jump height was observed 

with an increase in the magnitude of a parameter are reported as positive Analysis at 

the group level used inter-subject data based on both the mean values (G m) and 

values from the best jump (G b) Where no correlation coefficient and level of 

significance are reported in a table, this indicates that no significant correlation was 

evident (a = 0 05) This gives a visual representation of the distribution of significant 

parameters Subjects were ranked according to their mean CMJ jump height (e g 

subject 1 greatest mean jump height, subject 18 lowest mean jump height)

Kinetics during the negative phase

Table 4 1 outlines the mean magnitude observed for peak negative velocity of the 

BCOM, the duration of the eccentric phase, the peak negative whole body power and 

the total negative work done during the eccentric phase Variability was notably 

lower at the individual subject level than at the group level, with the exception of 

whole body peak power where no notable difference was evident

Table 4 1 Mean and variance values of whole body kinematics and kinetics for the 
group and average variance for individuals during the eccentric phase_________

Group________________ Individual
Mean SD CV Mean SD Mean CV

Peak negative velocity (ms ) -1 03 0 32 -30 8 0 09 -9 3
Phase Duration (s) 0 54 0 19 34 8 0 08 15 6
Peak Power (W) -19 78 8 03 -40 6 7 30 -39 1
Work done (J) -2 45 0 60 -24 5 021 -9 4
Note SD Standard deviation

CV Coefficient of variability
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Table 4 2 below details the correlation coefficient (r) and level of statistical 

significance (p) for the relationship between jump height and the peak negative

vertical velocity of the BCOM, the duration of the eccentric phase, the peak negative
whole body power and the total negative work done during eccentric phase

Table 4 2 Correlation (r) and level of significance (p) for the relationship between 
jump height and whole body kinematics and kinetics during the eccentric phase

Peak velocity Phase duration Peak power Work done
r P r P r P r P

Gb 0 52 0 026
G m 0 60 0 008 -0 47 0 050 0 58 0010

1 0 82 0 007 0 53 0 036
2 0 53 0 035
3 0 61 0 009
4 0 65 0 007 0 69 0 003
5
£

0 68 0 003
0
7 " ”0 60 0 036

—  - — —  — ---------------------- ■ -----------

8 0 57 0 035 -0 67 0 007
9 -0 57 0 022
10
11
12
13
14
15
16
17
18 0 84 0 008 -0 58 0 019 0 80 <0 001

Note G b Group data based on the best performance of each individual
G m Group data based on the mean values of all 15 jumps for each individual

Peak velocity, phase duration and peak power were all found to be correlated with 

jump height at a group level (inter-subject) when the mean values of each subject’s 15 

jumps (G m) were analysed, while only peak velocity was correlated at a group level 
when the best jump by each subject was analysis (G b) In contrast to the group 
analysis, only three of the 18 subjects had significant correlations between jump 
height and either peak velocity or phase durations at an individual subject level (mtra- 

subject) Peak power was not found to be correlated with jump height for any 

individuals Total work done during the eccentric phase did not provide a means of 

differentiating between individuals at a group level with respect to mean jump height, 

however a correlation was apparent for six subjects at an individual level
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Table 4 3 outlines the mean values for the peak angular velocity and the total work 

done during the eccentric phase for each joint Measures of inter-subject variability 

and mean values of intra-subject variability are presented Greater variability was 

observed between individuals (inter-subject) compared to within an individuals own 

performance (intra-subject) In addition, greater variability between individuals was 

observed at the ankle joint compared to the knee and hip joints This also held true at 

°the intra-subject level for the work done at the ankle, but peak angular velocity at the 

ankle was not seen to be more variable than at the other joints

Table 4 3 Mean and variance values of joint kinematics and kinetics during the
eccentric phase for the group and average variance for individuals

Group Individual
Mean SD CV Mean SD Mean CV

Ankle peak velocity (rad s ‘) -1 37 0 76 -55 6 0 23 -15 5
Knee peak velocity (rad s ') -2 64 0 90 -34 2 0 23 -14 3
Hip peak velocity (rad s ]) -3 40 0 86 -25 4 0 34 -105
Ankle work done (J kg ) -0 29 0 18 -61 8 0 07 -25 6
Knee work done (J kg]) 
Hip work done (J kg )

-0 91 0 38 -42 5 0 11 -12 8
-1 25 0 47 -37 8 0 18 -165

Table 4 4 details the correlation coefficient (r) and level of significance (p) for the 

relationship between jump height and the peak angular velocity, and the amount of 

negative work done at the ankle, knee and hip joints during the eccentric phase At a 

group level only peak hip angular velocity was significantly correlated with jump 

height and only when mean values (G m) were employed in the analysis This 
relationship was also evident at an individual level in four of the 18 subjects While 

angular velocity at other joints were not significantly correlated with jump height at a 

group level, significant correlations were observed for two and three individuals for 
the ankle and knee joints, respectively Total negative work done was not correlated 

with jump height at the group level for any joint Work done at the ankle was only 
correlated for one individual, while work done at the knee and hip joints were 

correlated with jump height for five and seven individuals, respectively Three of the 
five individuals that exhibited a correlation between knee negative work done and 

jump height had a positive correlation, while six of the seven had a positive 

correlation in the case of the hip joint
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Table 4 4 Correlation (r) and level of significance (p) for the relationship between jump height and selected segmental parameters during eccentric 
phase_____________________________________ _______________ __________________ _______________ __________________

Ankle peak velocity Knee peak velocity Hip peak velocity Ankle work done Knee work done Hip work done
r______ P_________ r______ p  r______ p_________ r p_________ r p_________ r______

Gb 
G m 0 64 0 004

1
2
3

‘ 4
5
6

_

0 58 0 036

0 68 0 004
" " 0 59 “ 0 0f6 

0 68 0 004

0 64 
” 0 67 

0 68 
0 53

0 005 
0004 
0 004 
0 034

-- - y " 
8 
9

0 62 0 013 061 0 004
-0 56 _ 0 023

10
11
12

~ -062 0 015

13
14
15

0 59 0016 0 59 0016 -0 54 0 029 0 57 0 021
_

17
18 0 52 0 045 0 77 <0 001 0 83 <0 001 -0 51 <0 001 0 84 <0 001 0 82 <0 001
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Kinematics and kinetics at start of concentric phase

Table 4 5 below details the mean amplitude of the BCOM, the vertical ground 

reaction force (vGRF) at the start of the concentric phase, and the joint angles and 
instantaneous joint moments at joint reversal (JR) for each joint The point where the 
BCOM reversed its vertical direction was taken to be the start of the concentric phase 

of the whole body The point where the rotation of the joint changed direction, called 

joint reversal (JR), was taken to represent the start of the concentric phase for an 
individual joint Measures of inter-subject and mean values of intra-subject 

variability are presented Inter-subject variability was approximately three times the 

intra-subject variability The angle of the hip at JR was more variable at both inter- 

subject and intra-subject levels compared to the ankle and knee joints, suggesting less 

of a consistency in temporal strategies employed at the hip

Table 4 5 Mean and variance values of whole body and segmental kinematics and 
kinetics for the group and average variance for individuals at the start of the 
concentric phase_________________________________________________

Group Individual
Mean SD CV Mean SD Mean CV

Amplitude (m) 0 33 0 07 20 2 0 02 66
vGRF (N kg ') ___ __ 10 72 271 25 3 0 84 85
Ankle angle (rad) 0 96 " 0 09 90 0 03" 2 6
Knee angle (rad) 1 38 0 25 18 1 0 05 42
Hip angle (rad) 1 11 0 30 27 3 0 09 96
Coupling time ankle (s) 0 12 0 04 33 8 0 03 27 6
Coupling time knee (s) 0 09 0 03 29 7 0 02 186
Coupling time hip (s) 0 07 0 02 24 9 0 01 100
Ankle moment (N m kg ') 2 57 0 83 32 4 0 34 14 1
Knee moment (N m kg ') 
Hip moment (Nmkg )

2 78 1 02 36 6 0 32 123
3 44 1 00 29 1 0 35 11 2
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Table 4 6 details the correlation coefficient (r) and level of significance (p) for the 

relationship between jump height, and amplitude of movement of the BCOM, joint 

angles at JR, the vGRF at the start of the concentric phase and the joint moments at 

JR A negative correlation between jump height and joint angle at JR suggests a 

greater joint flexion was observed in jumps of greater height While no direct 

measure of joint range of motion (ROM) was taken, starting position was 

standardised, therefore a lesser joint angle at JR can be assumed to be a greater ROM 

None of the kinematic parameters outlined were significantly correlated with jump 

height at the group level However, at the individual level five subjects had a 

significant correlation between jump height and amplitude of movement, while two, 

six and five had significant correlations between jump height and the ankle, knee and 

hip angles at JR, respectively The majority of correlations between jump height and 

the amplitude of movement were positive, suggesting greater amplitude occurred on 

average in jumps of greater height, while there were predominately negative 

correlations between jump height and the joint angle at JR, suggesting greater joint 

flexion was evident in jumps of greater height The exception to this were subjects 

nine and 14, for subject nine the opposite relationship was observed for both 
amplitude of movement of the BCOM and knee angle, additionally for subject 14 

knee angle was positively correlated with jump height, suggesting jumps greater 

height also had on average less knee flexion

The vGRF at the start of the concentric phase was found to be correlated with jump 

height at a group level when the mean of each subjects 15 jumps were used in the 

analysis (G m) At a segmental level, only the ankle joint instantaneous moment at JR 
was marginally correlated with jump height at a group level (G m and G b) The 
number of significant correlations at an individual level was three and four for the 
moment at ankle and hip joints at JR respectively, while no significant correlation 

between jump height and the moment at the knee joint at JR was found for any 

individual At the group level coupling time was only found to be correlated with 

jump height at the hip joint (G m r = -0 48, p = 0 43) At an individual level, the 

coupling time of the ankle joint was found to be correlated with jump height for a 

single individual (subject 1 r = -0 56, p = 0 025) and at the hip joint for two (subject 

14 r = -0 53, p = 0 035, subject 18 r = -0 73, p = 0 002)
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Table 4 6 Correlation (r) and level of significance (p) for the relationship between jump height and kinematic variables at the start of the concentric
phase ____________ ____________________________________________ ________________ ___________________________________

Amplitude Ankle ROM Knee ROM Hip ROM vGRF at start Ankle moment Knee moment Hip moment
of phase at JR at JR at JR

r P r P r P r P r P r P r P r P
Gb 
G m 0 47 0 048

0 47 
0 49

0 050 
0 038

1
2
3
4 "
5
6

0 66 
0 69 
0 76

0 004 
0 003 
0 001 0 53 0 034

0 64 
0 64

0 007 “ 
0 008

0 69 
0 67 
0 80

0 002 
0 0Ö5 

<0 001

-

0 68 

-0 60

0 004 

0015

--------------- ------------------

7~ " 
8 
9
10""
11
12

-0 56 0 023 --------- -------- -0 57 0 021 ------ — -----
0 53 0 041

- -
0 62 001

13
14
15 0 52 0 047

-0 57 
0 64

0 021 
0014

0 63 0 009
0 64 0011 0 57 0 027 0 64 

0 71
0015 
0 005

16
17
18 0 84 <0 001 0 80 <0 001 0 84 <0 001 0 91 <0 001
Note JR joint reversal

vGRF Vertical ground reaction force
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Kinematics and kinetics during the concentric phase

Table 4 7 below outlines the mean rise in the BCOM from standing to take-off 

(BCOMs to), the duration of the concentric phase, the peak vGRF, the peak whole 

body power and the total positive work done during the concentric phase Measures 

of inter-subject and mean values of intra-subject variability are presented As can be 
seen from table 4 7 greater variability between subjects for whole body kinetics 

during the concentric phase exists compared to intra-subject variability

Table 4 7 Group mean, SD and CV and individual SD and CV for whole body 
kinematics and kinetics for during the concentric phase _________

Mean
Group

SD CV
Individual 

SD Mean CV
BCOMs-to (m) 0 11 0 02 13 0 001 88
Phase duration (s) 0 29 0 06 19 8 0 02 66
Peak vGRF (N kg') 11 88 2 07 174 0 57 5 0
Peak Power (W kg') 
Work Done (J kgY)

48 94 6 92 14 1 1 71 3 5
6 02 0 83 139 0 33 60

Note BCOMs-to Difference in height of BCOM between standing and take-off
Peak vGRF Peak vertical ground reaction force

Table 4 8 shows the correlation coefficient and corresponding level of statistical 

significance for the relationship between jump height and the BCOMs t0, the duration 

of the concentric phase, the peak vGRF, the peak whole body power and the total 

positive work done during the concentric phase The BCOMs t0, the duration of the 

concentric phase, the peak vGRF and the peak whole body power were not correlated 
with jump height at a group level but were significantly correlated with jump height 

for six, five and three individuals, respectively In contrast, the peak whole body 

power and the total work done were positively correlated with jump height at both the 
group level (G m and G b) and for nine and eleven individuals, respectively The 
positive correlation between jump height and phase duration for four of the five 
individuals suggests jumps of greater height also had on average a longer concentric 

phase For one individual (subject 9) a negative correlation between jump height and 

the duration of the concentric phase was evident, suggesting jumps of greater height 

had shorter concentric phases on average for this individual
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Table 4 8 Correlation (r) and level of significance (p) between jump height and whole 
body kinematics and kinetics during the concentric phase______________________

BCOMs-to Phase duration Peak vGRF Peak Power Work Done
r P r P r P r P r P

Gb 0 50 0 035
G m 0 56 0014 0 48 0 043

1 0 73 0 001
2 0 66 0 005
3 0 83 <0 001
4 0 66 0 009 0 83 <0 001
5 0 71 0 002 -0 66 0 006 0 77 0 001
6 0 62 0 01 0 72 0 002 0 80 <0 001
7
Q

0 63 0 009 0 67 0 005
O
9 -0 56 0 024_ 0 77 <0 001
10 0 80 <0 OOf 0 61 0 016
11 0 69 0 005
12 0 74 0 002 0 52 0 044
13 0 71 0 003 0 62 0013
14 0 79 <0 001 081 <0 001 0 86 <0 001
15 0 65 0 009 0 83 <0 001 0 75 oo°i
16 0 72 Ö oof
17 0 54 0 037
18 0 67 0 005 0 67 0 004 -0 68 0 004 0 86 <0 001

Table 4 9 below outlines the mean values for the peak joint moments and powers and 

the amount of work done at each joint during the concentric phase Measures of mter- 

subject variability and mean values of intra-subject variability are presented Inter- 

subject variability was over two-fold that of intra-subject variability In addition, 

comparison to the equivalent whole body measures outlined in table 4 7 reveal there 

was also a greater than two-fold increase in variability of segmental measures

Table 4 9 Mean and variance of segmental kinematics and kinetic for group and 
average variance for individuals during the concentric phase_______________

Mean
Group

SD CV
Individual 

Mean SD Mean CV
Peak ankle moment (N m kg ') 3 10 0 56 18 1 0 23 75
Peak knee moment (N m kg ’) 
Peak hip moment (Nmkg )

3 15 0 85 26 9 0 34 112
3 74 0 89 23 7 0 29 84

Peak ankle power (W kg ') 22 11 4 98 22 5 2 04 " 9 2
Peak knee power (W kg !) 
Peak hip power (W kg )

14 42 4 10 28 4 1 63 11 5
13 71 3 80 27 7 1 42 11 0

Ankle work done (J kg]) 2 01 0 42 " 21 1 0 19 9 2
Knee work done (J kg ]) 
Hip work done (J kg )

1 68 0 57 34 2 0 19 11 7
2 33 0 81 34 8 0 29 13 8
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Table 4 10 details the correlation coefficient and corresponding level of statistical 

significance for the relationship between jump height and peak moment, peak power 

and positive work done at all three joints Both peak ankle moment and peak ankle 
power were found to be correlated with jump height at the group level (G m and G b) 

and at an individual subject level for six and five individuals, respectively Five of 

the six individuals exhibited a positive correlation between jump height and peak 

ankle moment, as inline with the group analysis, while subject 18 had a negative 

correlation Peak knee moment was not found to be significantly correlated with 
jump height at a group level, but two subjects had individual negative correlations 

These two individuals also exhibited a positive relationship between knee angle at JR 

and jump height outlined in table 4 6 Peak knee power was significantly correlated 

with jump height at the group level but only when the best jumps were used in the 

analysis (G b) and also for two individuals, but contrasting relationships were 

observed (subject 4 r = -0 50, subject 15 r = 0 66) Neither peak hip moment nor 

power were significantly correlated at a group level with jump height but was 

significantly correlated at an individual level for five and six individuals, respectively

The amount of positive work done at the ankle joint was positively correlated with jump 

height at a group level (G m and G b) and for eight individuals, suggesting jumps of 

greater height also had more work was done on average Both knee and hip work done 

were not significantly correlated at a group level (G m and G b), however, hip work 

done was found to be positively correlated with jump height for six individuals While a 

significant correlation between knee work done and jump height was evident for four 

individuals, contrasting relationships were observed For two individuals jumps of 

greater height had more work done at the knee on average, while the opposite was true 
for a further two subjects The two individuals whose knee work done was negatively 
correlated with jump height, also had a positive correlation between jump height and 
knee joint angle at JR, and between jump height and negative knee work done (tables 
4 6 and 4 4 respectively), suggesting a lesser knee joint ROM and less knee work was 

done in jumps of greater height
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Table 4 10 Correlation (r) and level of significance (p) between jump height and segmental kinematics and kinetics during the concentric phase
Peak ankle Peak knee Peak hip Peak ankle Peak knee Peak hip Ankle work Knee work Hip work
moment moment moment power power power done done done
r p______ r p______ r p______ r p______ r p _r p______ r p_______r p_______r p

G b  
G m

0 48 
051

0 042 
0 030

0 53 
0 58

0 025 
0012

0 52 0 028 061 
0 58

0 007 
0012

1 0 59 0 020 0 58 0018
2 0 55 0 026 0 58 0 020
3 0 55 0 021 0 70 0 002
4

_ - -
0 048 081 <0 001

5 0 65 0 007
6 0 64 0 008 0 57 0 022 0 59 0016 0 55 0 027

"7 " 0 ^6  "~0 025 0 58 0018
8 0 6 0  0018
9 -0 59 0015 0 64 0 008 0 54 0 029 -0 69 0 003
10
11 0 56 0 031
12 0 70 0 003 0 70 0 004
13 0 69 0 007 0 70 0 004
14 0 65 0 006 0 57 0 021 0 73 0 001 0 73 0 001 0 86 <0 001 -0 56 0 026 071 0 002
15 0 59 0 021 0 57 0 026 0 66 0 007 0 68 0 005 0 69 0 005
16 05 8  0015
17
18 -0 65 0 006 -0 66 0 005 0 93 <0 001 0 85 <0 001 0 67 0 004 0 85 <0 001

97



The total amount of work done is the summation of the amount of work done at the 

individual joints Alteration in the relative contribution of each joint to total work 
done may affect jump height, table 4 11 outlines for all subjects the average 

percentage contribution of each joint Differences in the relative contribution of each 

joint to total work done are evident between subjects For example, for subject two 

the relative contribution of the ankle joint to total work done was 49 5% but was only 

22 8% for subject nine, the hip joint contribution ranged from 56 5% for subject 16 to 

14 0% for subject five No correlation was observed at the group level (G m and G b) 
between jump height and the relative contributions of each joint to total work done 

At an individual level correlations are outlined in table 4 11, when no value is present 

a non-significant correlation was observed

Table 4 11 Percentage of total work done by each joint and correlation with jump 
height_______________________________________________

% work % work % work % ankle % knee % hip
ankle knee hip r r r

G m 33 8 27 9 38 3
Gb 34 8 26 7 38 5

1 32 9 27 0 40 1
2 49 5 21 2 29 3
3 28 8 25 4 45 8 -0 53 0 48
4 27 4 20 8 51 8 -0 56 0 71
5 41 9 44 1 140 0 54
6 52 8 32 4 14 8
7 34 0 31 2 34 8
8 31 9 22 0 46 1 -0 60 0 60
9 22 8 38 8 38 4 0 57 -0 69 0 63
10 41 5 26 5 32 0
11 29 5 24 3 46 2
12 26 1 38 5 35 4 0 56
13 28 0 28 0 44 0
14 33 9 37 3 28 8
15 36 5 195 44 0 0 73 -0 77 0 55

~ 16 28 7 14 8 56 5 “
17 29 4 14 8 55 8 0 45
18 33 2 35 6 31 2 -0 78 -0 84 0 86
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4 11 Jump predictors based on group analysis

Investigation into which biomechanical parameters determine jump performance has 

predominantly been focused on a group level The biomechanical parameters 

correlated at a group level may differ to those found at an individual level Table 4 12 

details the slope and level of significance of the linear relationship for variables that 

exhibited a significant correlation with jump height at a group level (G m and G b) 

and the number of subjects that exhibited a correlation with jump height for these 

parameters at an individual level

Table 4 12 Descriptions of relationship between jump height and mechanical 
parameters that where correlated at a group level and number of individuals that also 
exhibited a correlation with jump height for these parameters_____

Gb G m
Number of 
individuals with sig  
correlation (p<0 05)

Peak whole body power Slope 0 003 0 005 9
concentric phase (W) p-value 0 010 <0 001
Peak negative velocity Slope -0 070 -0 087 4
ofBCOM(ms') p-value 0 026 0 008
Peak power eccentric Slope 0 000 0
phase (W) p-value 0015
Whole body positive Slope 0 027 0 026 11
work done (J) p-value 0 035 0 043
vGRF at start on con Slope 0 008 2

phase (N) p-value 0 048
Duration Eccentric Slope -0 114 4
phase (s) p-value 0 050
Peak negative hip Slope -0 030 4
angular velocity (rad s ) p-value 0 004
Positive ankle work Slope 0 058 0 062 8
done (J) p-value 0 007 0012
Peak Ankle Power (W) Slope 0 004 0 005 5

p-value 0 025 0012
Peak Ankle moment Slope 0 030 0 042 6
(Nm) p-value 0 042 0 030
Ankle moment @ JR Slope 0 025 0 027 3
(rad) p-value 0 050 0 038
Peak knee power (W) Slope 0 006 0

p-value 0 028
Hip coupling time (s) Slope -1 309 2

p-value 0 043
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4 12 Selection of jump parameter to alter to enhance jump height

When making a decision of which biomechanical parameter to train, four questions 

must be taken into consideration Firstly, how strong is the relationship between the 

biomechanical factor and jump height7 Secondly, how much will a change in the 
biomechanical factor increase jump height7 Thirdly, by how much can the 

biomechanical factor be trained7 Fourthly, what is the magnitude of biomechanical 

factor for the individual relative to the group mean7 The strength of the relationship 

between a biomechanical factor and jump height is revealed by the correlation 

coefficient The amount, by which an increase in one unit of a parameter corresponds 

to an increase in jump height, is determined by the slope of the relationship While 

the standard deviation and the CV don’t directly answer how much the factor can be 

varied they provide a measure into how much the factor varied

The four parameters outlined in table 4 13 provide good examples of differing 

relationships regarding variability and the relationship between changes in the 

parameter and jump height Where no slope for an individual is present, that 

parameter was not found to be significantly correlated with jump height for that 

individual In order to compare slopes across parameters of differing units the 

‘Adjusted slope’ was taken as the slope divided by the mean of the parameter As can 

be observed from the CV and the mean absolute value of the slope, hip negative work 

done exhibits a relatively large variability and a steep slope on average In contrast, 

peak ankle moment has a relatively small variance and a gentler gradient for the 
relationship of the change with jump height Peak knee angle at JR and peak hip 

power provide examples of low variability/steep slope and high variability/shallow 

slope, respectively However, these patterns did not hold for all individuals For the 
knee angle at JR, which in general had a steep slope and low variability, different 
relationships were demonstrated at an individual level Subject 15 had a low variance 

and steep slope, while subject four had a large variance and a gentler slope
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Table 4 13 Mean, variance and slope for selected parameters to highlight issue regarding selection parameters to altering to achieve increases in jump height

Subject
Hip negative work done (J) 

Mean SD CV slope
Knee angle at JR (radian) 

Mean SD CV slope
Peak ankle moment (Nm) 

Mean SD CV slope Mean
Peak hip power (W) 

SD CV slope
1 0 54 0 15 27 8 I 14 0 03 26 3 39 0 35 103 0 050 14 14 1 48 10 5
2 0 36 0 12 33 3 1 65 0 04 24 4 49 0 12 2 7 0 021 13 44 1 02 76
3 0 66 0 18 27 3 -0 048 1 44 0 04 2 8 3 21 0 17 5 3 21 64 1 77 82
4 0 70 0 32 45 7 -0 024 1 60 0 09 56 -0 081 2 62"”” 0 22 84 18 79 1 26 67
5 0 24 0 07 29 2 -0 133 1 50 0 05 3 3 -0 161 2 80 0 22 79 7 11 0 79 11 1
6 0 22 0 08 36 4 -0 121 1 46 0 04 2 7 4 01 021 5 2 8 36 0 79 94 0013
7 ‘"0 55 0 12 21 8 1 49 0 04 27 3 13 0 23 73 13 03 1 65 12 7
8 0 62 0 16 25 8 1 54 0 11 7 1 3 37 0 16 4 7 15 72 1 04 66 0 003
9 0 43 0 17 39 5 0 90 0 04 44 0 053 2 21 0 47 21 3 0 056 11 55 1 24 107 0 005
10” 0 38 0 33 86 8 ”l 35" 0 07 " 52”” 3 65 0 20 5 5 13 47 1 33 99 “
11 0 65 0 24 36 9 1 45 0 06 4 1 2 84 031 109 16 83 1 80 10 7
12 0 49 0 14 28 6 0 88 0 04 45 3 39 0 48 142 11 12 1 68 15 1
13 ~ 0 52 0 13 25 0 ”” "130 ‘ 0 05" 3 8 2 65 0 14 5 3 14 02 1 17 8 3
14 0 34 031 912 -0 087 0 98 0 05 5 1 0 223 2 67 0 15 5 6 0 094 10 52 2 63 25 0 0013
15 0 61 0 09 14 8 1 67 0 02 1 2 -0 464 321 0 17 53 0 050 14 19 0 93 66
16 0 73 0 18 24 7 1 57 0 05 32 2 82 0 18 64 18 35 1 16 63 ÒÒÓ4
17 0 64 0 26 40 6 1 56 0 05 32 2 74 0 18 66 15 51 2 33 15 0
18 0 42 0 37 88 1 -0 063 1 40 0 09 64 -0 250 2 64 0 25 95 -0 073 8 94 1 91 21 4 0 130

Mean 40 2 0 080 3 9 0 205 79 0 057 11 2 0 028
Adjusted slope 0 157 0 149 0018 0 002

Note Mean of slope, calculated from absolute values of slope 
Adjusted slope = slope / mean
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4 13 Variability and parameter identification

Table 4 14 details the mean jump height, standard deviation and range of jump 

heights observed for each individual Also included is the average coefficient of 

variability (CV) of all the kinematic and kinetic parameters examined, the number of 

significant relationships with jump height observed for each individual and of those 

the number them that are also evident in the group model, irrespective of the sign of 
the relationship, are presented

Table 4 14 Mean, standard deviation and range of jump height observed for each 
individuals and the number of significant relationships observed________ ____

Jump Height (m) Variables
Number of Number also in

Subject Mean SD Range Mean CV significant group model
1 051 001 0 03 75 4 3
2 0 50 001 0 05 93 7 5
3 0 49 001 0 05 83 7 1
4 0 49 0 01 0 05 11 7 11 2
5 0 46 0 01 0 04 92 13 2
6 0 43 0 02 0 07 84 8 4
7 0 42 " 0 02 ” 006 113 "5 4
8 0 42 001 0 03 80 5 4
9 0 42 0 01 0 04 11 9 10 2
10 0 42 0 02 0 05 9 1 3 1
11 041 0 02 0 08 145 2 2
12 041 0 02 0 06 109 4 4
13 0 40 0 02 0 06 120 6 3
14 0 40 0 02 0 08 103 18 7
15 0 39 001 0 06 89 10 5
16 0 38 0 01 0 03 114 2 1
17 0 36 0 01 0 04 104 1 0
18 0 34 0 03 0 11 159 21 5

Mean 0 43 0 02 0 06 105 76 30

The range in jump heights observed was found to be significantly correlated with the 
number of significant variables found for an individual (r = 0 59, p = 0 009)

However, no significant correlations were found when the standard deviation of jump 

height was examined This suggests that individuals who displayed a greater range of 

jump heights during the experiment also exhibited a greater number significant 

correlations between jump height
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4 2 Coordination and jump performance

Table 4 15 details the mean timing delay between key events of adjacent joint 
pairings The time delays are defined as the time occurrence of an event at the 

proximal joint less the time occurrence of the same event at the distal joint The key 

events selected were the timing of joint reversal (JR.), the peak instantaneous joint 

moment, the peak instantaneous joint power and the peak joint angular velocity 

during the concentric phase (MV) A negative value indicates that the event occurred 

in the proximal joint prior to the distal joint Measures of inter-subject and mean 

values of intra-subject variability are presented The timing of peak angular velocity 

was least variable, while the timing of peak joint moment was most variable

Table 4 15 Mean timing of joint pairings for key events and measures of inter-subject 
and intra-subject variability ______________________________________

Group Individual
Variable Mean SD c v Mean SD Mean CV

knee-ankle JR (s) 001 0 10 9 0 0 04 1 0
hip-knee JR (s) -0 03 0 04 -1 2 0 02 -0 2
knee-ankle Peak moment (s) -0 03 0 12 -3 9 0 09 -8 5
hip-knee Peak moment (s) -0 07 0 13 -1 8 0 08 0 7
knee-ankle Peak power (s) -0 03 0 02 -0 7 001 -0 3
hip-knee Peak power (s) -0 07 0 04 -0 6 0 03 -1 2
knee-ankle MV (s) -0 02 0 01 -0 4 001 -0 4
hip-knee MV (s) -0 03 0 01 -0 4 001 -0 3
Note JR Joint reversal

MV Peak angular velocity of the joint
knee-ankle time delay from event occurring at the knee to event occurring at the ankle 
hip-knee time delay from event occurring at the hip to event occurring at the knee

A proximal-to-distal sequence was observed on average for all individuals for both 
the sequencing of peak angular velocity and peak joint power However, the order of 
sequencing was not so distinctive and consistent for the initiation of joint extension 
(JR) The group on average extended the hip before the ankle, and the ankle joint 
began to extend before the knee However, at an individual level variation in this 
pattern was present Nine individuals exhibited a proximal-to-distal sequence on 

average in all three joints, two exhibited a distal-to-proximal in all three joints, while 

seven did not have a proximal-to-distal or a distal-to-proximal sequential pattern but a 

combination (5 individuals H-A-K, 1 individual K-H-A and 1 individual A-H-K)
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No significant correlation with jump height was observed for any of the temporal joint 

pairing at a group level (G m and G b) At an individual level a number of 

correlations between temporal joint pairings and jump height were observed but were 

predominately limited to only one or two individuals One individual (subject 10) 

exhibited a significant correlation between jump height and the time delay between JR 

of the knee and the ankle joint (r = 0 53) and the timing between the hip and the knee 

joint (r = - 0 83) with delays of 0 003s and -0 026s, respectively suggesting jumps of 

greater height also had longer delays (a minus value in delay indicates the proximal 

joint extended before the distal joint) Another individual (subject 11) exhibited a 

positive correlation between jump height and the time delay between JR of the hip 

joint and JR of the knee joint (r =0 54), which occurred with an average delay of 

0 127s

Correlations between jump height and the delay between peak moments of adjacent 

joints were only significant for one individual (subject 14), the delay between the 

knee and the ankle peak moments (r = 0 84) and between the hip and the knee joints (r 

= -0 71) occurred with average delays of -0 253s and 0 223s, suggesting jumps of 

greater height had shorter delays

The delay between the peak power of the hip joint and the knee joint was negatively 

correlated with jump height (subject 18 r = -0 712) for one individual and positive 

for another (subject 16 r = 0 490), with average delays of -0 115s and -0 089s, 
respectively suggest a longer delay for subject 18 and shorter for subject 16 Finally, 

the delay between peak angular velocity of the knee and the ankle joint was 

negatively correlated with jump height (subject 9 r = -0 546) for one individual 
occurring with an average delay of -0 013s While the delay between peak angular 
velocity of the hip joint and that of the knee joint was negatively correlated for three 

individuals with average delays of -0 039s, -0 029s and -0 059s All correlations 
suggested jumps of greater height also had longer delays
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4 3 Rate of force development and CMJ performance

Table 4 16 below details the mean RFD over the intervals A, B, C, Dl, D2, E, F, G, 

HI and H2 (Figure 3 4), and the rate of power development over the first 60ms of the 

concentric phase, for the ankle, knee and hip joints, and the whole body Measures of 
inter-subject variability and mean values of intra-subject variability are presented

Table 4 16 Mean and variance values of RFD of ankle, knee and hip joint moments, 
and whole body vGRF ___________________________________________

Mean
Group

SD CV
Individual 

Mean SD Mean CV
Ankle JR to TO (E) -2 49 1 14 -45 8 0 55 -22 3
Knee JR to TO (E) -2 43 1 22 -50 1 0 39 -15 9
Hip JR to TO (E) -2 60 1 00 -38 4 0 32 -124
Whole body JR toTO(A) -15 36 6 48 -42 2 1 68 -109
Ankle min to JR (F) 0 68 " 0 08 115 “ 0 13 19 1
Knee min to JR (F) 0 59 0 10 174 0 13 22 0
Hip mm to JR (F) 0 95 0 09 95 0 16 168
Whole body min to JR (B) 4 36 0 56 129 0 91 20 9
Ankle min to peak (G) " 0 69 0 11 16 3 " Ö 13~ 19 0
Knee min to peak (G) 0 57 0 10 182 0 15 25 8
Hip min to peak (G) 0 99 0 10 102 0 18 177
Whole body min to peak (C ) 4 36 0 53 122 0 94 21 6
Ankle min to 50% (HI) 1 17 0 15 13 1 021 179
Knee min to 50% (D2) 1 14 0 20 180 0 23 20 3
Hip min to 50% (D2) 1 88 0 28 15 0 0 30 160
Whole body min to 50% (Dl) 9 36 1 32 14 1 1 94 20 7
Ankle 50% to peak (H2) ~ ‘ 0 85 0 20 23 5 0 25 29 4
Knee 50% to peak (H2) 0 66 0 21 31 9 0 33 49 4
Hip 50% to peak (H2) 1 07 0 17 164 041 37 9
Whole body 50% to peak (D2) 4 17 0 55 13 2 1 49 35 6
Ankle power in first 60ms "9 51 “ 6 59 69 2 14 85 156 2
Knee power in first 60ms 19 88 3 96 199 8 26 41 6
Hip power in first 60ms 43 86 4 58 104 5 87 13 4

Table 4 17 indicates the significant correlations observed between jump height and 

the rate of force development (RFD) The RFD over the interval from JR to take-off 

was negatively correlated with jump height for ankle and hip joint moments, and for 

the whole body vGRF (ankle r = -0 53, hip r = -0 53, whole body r = -0 50) The 

RFD for the knee joint was correlated with jump height only when the best jump was 

put forward for analysis (r = -0 47) The negative correlations indicate that jumps of
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greater height a more rapid decline in force (Figure 3 4, A and E) A positive 

correlation over the intervals B, C, D, F, G and H, suggests that a greater RFD was 

observed in jumps of greater height The RFD from the instance of minimum vGRF 
to JR was correlated with jump height for the ankle and hip joint moment and the 

whole body vGRF (ankle r = 0 52, hip r = 0 57, whole body r = 0 55) Similarly, 

correlations were observed between jump height and RFD from the instance of 

minimum vGRF to peak force for the ankle and hip joint moment and the whole body 

vGRF (ankle r = 0 51, hip r = 0 55, whole body r = 0 52) The interval between the 

minimum and maximum force was sub-divided into two phases, from minimum 

vGRF to 50% peak moment (or vGRF) and from 50% peak moment (or vGRF) to 

peak moment (or vGRF) Correlations with jump height were observed for all joints 

and whole body for only the first phase (ankle r = 0 52, knee r = 0 53, hip r = 0 66, 

whole body r = 0 63), while no significant correlations were observed over the 

second phase The only correlation at a group level between the rate of power 

development (RPD) and jump height was observed for the hip joint (r = 0 48)
A number of individual correlations were observed but were at best only present in six 

individuals in the case of minimum vGRF to peak moment for the hip, and in 

development of knee power over the first 60ms of the concentric phase For a number 

of parameters both positive and negative correlations were observed, suggesting that 

for some individuals a greater RFD was desired while for others it was detrimental
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Table 4 17 Correlation (r) between jump height and (1) rate of force development and (11) power development over selected intervals

JR to TO min to JR
Moment or vGRF 

min to peak mm to 50% 50% to peak
Power 

JR to JR+60ms
A K H W A K H W > X $ A K H W A K H W A K H

G b -0 55 -0 47 0 47 -0 53 0 52

G m -0 53 -0 52 -0 50 0 52 0 57 0 55 0 51 0 55 0 52 0 52 0 53 0 66 0 63 0 48

1 0 59

2 0 59

_3_ 0_80__ 0 82 061 0 78 0 63 0 77 0 74 0 72 0 77 0 62

4 0 69

5 -0 49

__ 6__ -0 49

7 0 66
8 0 53 0 57 0 62 0 57 0 64 0 59 061 0 55 0 58 0 64

9 061 -0 56 -0 65

10

11 0 56 -0 57

12 0 56 -0 57

13 -0 60 -0 53 0 57 0 73 0 66 0 62 0 58 0 74 0 59 0 60
14 0 56 0 56
15 -0 53 0 79 -0 67 0 67 051 0 63 0 49 0 64 0 59 0 58 0 52 0 52 0 65

16

17 -0 81 -0 81

18 0 56 -0 71 0 55 -0 56 0 73 0 57 -0 58 0 86
Note A = ankle, K -  knee, H = hip, W = whole body 

JR = joint reversal 
TO = take-off
min = instant where vGRF was at minim
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4 4 Comparisons of kinetics between the CMJ and the DJ

The magnitude of selected kinematics and joint kinetics were compared between the 

CMJ and drop jumps from 30cm (DJ30) and 50cm (DJ50), to determine the suitability 

of DJs as a means of training to enhance CMJ performance Table 4 18 details the 

mean changes in the magnitude of jump height, amplitude of the BCOM, duration of 

the eccentric and concentric phases, peak negative and positive whole body power in 

the DJ (DJ30 and DJ50) compared to the CMJ Table 4 19 details the mean changes 

in magnitude of joint moment at JR, peak joint moment and peak joint power for the 

ankle, knee and hip joint in the DJ (DJ30 and DJ50) compared to the CMJ All values 

are given as the magnitude observed in the DJ less that observed in the CMJ (negative 

values indicates DJ less the CMJ) Finally, table 4 20 summaries the results from 

table 4 19 also indicating the parameters which were found to be significantly 

correlated with jump height in the CMJ as outlined in section 4 1

As can be seen from table 4 18, jump height during DJ30 did not differ significantly 

from the CMJ at the group level but DJ50 was on average 2cm lower than the CMJ 

At an individual level, nine subjects achieved a reduced jump height for the DJ30 and 

the DJ50, while three and two individuals achieved greater jump height during the 

DJ30 and DJ50, respectively The DJ30 was executed with reduced amplitude of 

movement of the BCOM at the group level, and for 11 of the 18 individuals There 

was no significant difference in amplitude of movement between DJ50 and CMJ at 

the group level, but reduced amplitude was evident for 10 of the 18 individuals In 

contrast, greater amplitude of movement was observed for three and four individuals 

for DJ30 and DJ50, respectively In comparison to the CMJ reduced duration on 

average was observed for both the eccentric and concentric phases for both drop 

heights at the group level of analysis No significant difference was observed 

between DJ30 and DJ50 for the duration of the eccentric phase but the duration of the 

concentric phase was on average longer in the DJ50 than the DJ30 (G m) At an 

individual level, no subject used an extended eccentric phase during a DJ, however, 

three individuals had an extended concentric phase for DJ50 The vGRF at the start 

of the concentric phase in the DJ did not differ to CMJ at a group level for both DJ30 

and DJ50 (G m and G b) At an individual level, eight subjects had greater vGRF at 

the start of the concentric phase, while six experienced greater in the DJ50
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Table 4 18 Differences in jump height achieved and whole body kinematics and kinetics between CMJ and DJ from 0 3m and 0 5m
ump height (m) Amplitude (m) Duration Eccentric Duration concentric vGRF at start o f Peak whole body Peak whole body

phase (s) phase (s) concentric phase (N) negative power (W) positive power (W)
30 50 30 50 30 50 30 50 30 50 30 50 30 50

G b -0 01 -0 01 -0 06* -0 04 -031* -0 32* -0 06 * -0 05* 0 32 -0 09 -39 89* -72 24*o -3 26 -3 67
G m -0 01 -0 02* -0 05*o -0 04*o -0 31* -031* -0 06* -0 04*o 0 23 -0 05 -37 10* -75 50*o -3 70* -5 00*o

1 -0 01* OOlo -0 16* -0 09*o -0 28* -0 27* -0 12* -0 08*o -0 19 001 -28 18* -50 25*o 0 60 -1 76*o
2 -0 06* -0 08*o -0 07* -0 07* -0 17 -0 17* -0 06* -0 06* 1 63* 1 67* -45 71* -98 12*o -4 98* -6 25*
3 -0 04* -0 04* -0 12* -0 13* -0 27* -0 27* -0 10* -0 11* 2 25* 2 20* -39 17* -88 95*o -1 01 0 00
4 -0 02* -0 04*0 -0 15* -0 15*” -0 22“* “ -0 22* -0 13* -0 13* 5 06* 5 10* -47 48*“ -102 50* o” 1 94* " " 6 6 1 * “
5 -0 05* -0 03* -0 00 0 00 -0 13* -0 13* 001 0 02* -3 10* -2 51* -24 93* -50 52*o -11 95* -10 93*
6 0 00 -0 06*o 0 03* 0 07*o -0 24* -0 21* 001 0 05*o -2 15* -3 20*o -40 69* -88 88*o -7 98* -13 65*o
7 -0 01 -0 04*o -0 04* -OOlo -0 38* -0 36 -0 06* -OOlo 2 86* 0 63o -55 65* -10241*o -6 92* -9 40*o
8 001* 0 03*o -0 01 0 07*o -0 24* -0 23*o -0 08* -0 04o -3 30* -3 11* -12 56* -26 75*o -11 12* -1274*o
9 -0 02* -0 04* -0 05 -0 06 -0 73* -0 73* -0 08* -0 06*o 2 48* 2 63* -27 82* -57 02*o -7 70* -6 86*
10'~ “ ”-0 03*“ "-0 04* ” " -0 16* -5 15* " -0" 34* ” -0 32* -0 11* " -0 11* 2 96* 3 17*“" -51 37* " -56 94*“ ' 8 71* 7 37* "
11 0 01 -0 02o 0 00 -0 04*0 -0 33* -0 37* -0 04* -0 06* -0 62 -0 32 -55 62* -117 20*o -3 62* -4 82*
12 -0 01 -0 01 -0 04* -0 00o -0 18* -0 15*o -0 02* OOOo -3 15* -3 24* -22 30* -43 56*o -4 49* -5 43*
13 0 02* OOlo -0 06* -0 04*o -0 32* -0 26* -0 06* -0 02*o -0 09 -1 19*o -35 71* -102 67*o -1 36* -3 48*o
14 001 -0 00 -0 07* -0 04*o -0 54* -0 52* -0 10* -0 08* 091* 0 72 -26 55* -72 76*o -2 46 -5 07*o
15 0 06* 0 03*o 0 06* 0 07* -0 27* -0 24* -0 00 0 02*o 1 96* 0 54 -35 08* -65 80*o -1 20* -6 62
16 -0 01 0 00 ~ 0 02* ‘ " 0 02* -0 47“* “ " -0 46* 0 00~ 0 01 -0 21 -0 58 -42 38*” -78 76*o -5" 33 -4 96*
17 -0 03* -0 02* -0 09* -0 09* -0 33* -0 34 -0 11* -0 12* 1 05 1 38* -34 02* -80 28*o -3 84* -3 81*
18 -0 02* -0 01 -0 09* -0 06*o -0 26* -0 31* -0 09* -0 05*o -0 42 -0 92* -36 81* -89 66*o -2 34* -2 89*

Note * = differs from CMJ at a  = 0 05 level o f significance 
o = differs from DJ30 at a  = 0 05 level o f  significance 
-ve = CMJ > DJ
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Peak whole body negative power was greater in the DJ30 than the CMJ and greater 

again in the DJ50 This pattern was also present at an individual level for all subjects 

except one (subject 10) that did not exhibit a difference between the DJ30 and the 

DJ50 (G m and G b) At a group level peak whole body positive power was less in 

the DJ30 than the CMJ and less again in the DJ50 (G m only) At an individual level 

lower peak whole body positive power was observed for 12 and 14 subjects for DJ30 

and DJ50, respectively, while five of these exhibited a reduced power in the DJ50 

than the DJ30

The use of DJ as a training intervention is primarily to provide an overload to specific 

elements of the neuromuscular system For DJ to be an appropriate means of 

overloading desired elements of the neuromuscular system, magnitudes of segmental 

kinetic parameters need to be greater in the DJ than those experienced during the 

CMJ Table 4 19 details the difference in joint moment at JR, peak joint moment and 

peak joint power for the ankle, knee and hip between the DJ and the CMJ (DJ - CMJ) 

A visual summary is provided in table 4 20

At the group level, ankle moment at JR was not found to be significantly different in 

the DJ compared to the CMJ However, at an individual level ankle moment was 

greater for seven and eight of the 18 individuals for the DJ30 and the DJ50, 

respectively, while it was found to be lower in a further four and five for the DJ30 and 

the DJ50, respectively More similarity in the results between the group and 

individuals analysis was observed at the knee and hip joints At the group level, knee 

moment at JR was greater in the DJ than the CMJ and was found to be less for the hip 

joint These patterns were replicated for the majority of subjects at an individual level 

(knee DJ30 = 15, DJ50 = 12, hip DJ30 = 13, DJ50 =15) No significant difference 

was observed for peak ankle moment between the DJ and the CMJ at the group level 

However, at an individual level greater peak ankle moments were observed for both 

DJ30 and DJ50 than during CMJ in four individuals Peak knee moments were found 

to be greater during the DJ at the group level of analysis and the pattern was 

replicated at the individual level in 12 of the 18 individuals Peak hip moment was 

found to be less in the DJ than the CMJ at both the group level, and for 17 of the 18 

individuals for both the DJ30 and the DJ50
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Table 4 19 Differences in joint kinetics between CMJ and DJ from 0 3m and 0 5m
Ankle moment at JR 

(Nm)
30 50

Knee moment at JR 
(Nm)

30 50

Hip moment at JR 
(Nm)

30 50

Peak ankle moment 
(Nm)

30 50

Peak knee moment 
(Nm)

30 50

Peak hip moment 
(Nm)

30 50

Peak ankle power 
(W)

30 50

Peak knee power 
(W)

30 50

Peak hip power 
(W)

30 50

G b 0 05 0 05 0 96* 0 67*o -1 19* 1 06* -0 18 -0 12 0 79* 0 65 -1 51* -1 14* 461* -5 28* 11 08* 10 63* -6 95* -6 00*

G m 0 22 0 12 1 03* 0 83*o -1 17* -1 03* -0 08 0 13 0 87* 0 86* -1 38* -1 17* 3 34* -4 26*o 9 44* 9 47* -6 24* -5 72*

1 0 57* 0 43* 0 76* 0 53* -1 32* -0 52*o 0 72* 0 49* 1 08* 0 88* -1 19* -0 35*o 1 70 -1 04o 7 89* 7 68* -5 71* 401*

2 0 42* 0 44* 2 22* 2 20* -2 16* -1 95* 0 16 0 20 1 93* 2 03* -3 46* -3 45* -4 06* -3 92* 13 86* 15 77* -8 82* 9 48*

3 0 86* 1 07* 1 64* 2 35* -1 09* 1 28* 0 63* 0 82* 1 76* 2 13* -1 04* -1 21* -1 54 -1 11 9 67* 13 27* 6 00* -8 18*

4 2 95* 2 97* 3 28* 3 26* -2 62* -241* 201* 2 05* 2 89* 2 73* -3 62* 361* 5 56* 5 70* 16 16* 18 07* -14 25* 1491*

5 -0 92* -0 96* 001 -0 06 -1 63* 1 42* -0 94* 0 99* 0 12 0 13 -1 53* -1 31* -1102* ■11 53* 9 05* 11 31*o -5 26*o -4 50*

6 -0 33 -0 97*o 0 35* 0 09o -061* 0 68* -0 52* -0 90*o 0 15 -0 02 -0 79* -0 90* 8 66* - 11 53*o 8 00* 4 99*o -2 28* -3 21*

~T Ó 48* OOlo l“07* ~0 49*o 0 33 0 30” -0 04“ -0 32*o” ” 0 3 4 “ 5 09 " -0 29”' “ -0 38* 5 65* "-6Ì8* 7 24* T84*o~ 0Tr  ” -~2 57*~

8 -0 57* -0 70* 0 20 0 06 2 86* 2 36*o -0 76* 0 95* -0 85 -0 98 -2 64* -2 14*o -9 05 -11 21 -0 53 -0 81 -11 04* -9 76*

9 0 34 0 08 1 40* 1 71* 0 15 0 24 0 05 -0 12 0 63* 0 96* -0 52* -0 49* 251* -3 02* 4 30* 3 66* -3 04* -2 76*

10 1 36* 1 63* 2 50* "202“ “ 2 57*0” -1 97* 0 98* "T 41* r6 7 * " ”l ì  4*“ -3 46* -2 00*o 5 08* “4 27*
- y 4 32~ - 18 59* 10 69* ”” -8 17*o

11 -0 02 -0 12 1 11* 0 95* -0 39 -0 56* 0 20 -0 19 0 36* 0 57* -0 66* -0 65* -2 59 -3 01 9 37* 7 62* -7 32* -741*

12 -0 80* -1 05* 0 08 -0 31 -1 42* -1 07* -0 56* -0 65* 0 12 0 26 -1 40* -1 07* -3 88* -4 38* 9 79* 8 19* -5 05* -2 65*o

~ r r 0 18 -0 20 0 98* 0 46*o -1 47* -1 44* -0 06 -0 31*o 0 92* 0 45*o -1 40* -1 35* -1 30 -3 86*o 11 77* 11 92* -6 16* -5 70*

14 0 32 0 49* 0 55* 0 29 -0 30 0 lOo -0 41* -0 42* 0 47* 0 24* -0 79* -0 33*o -3 07* -3 99* 9 74* 6 44*o -4 16* -2 20*o

15 0 73* 0 94* 2 14* 1 47*o -0 67* -0 80* -051* -0 30* 1 90* 1 40*o -0 70* 0 65* -6 89* -6 74* 10 68* 7 88*o -5 49* -4 13*o

16 “ -0 33* -0 57* 0 58*“ 0 38* " -0 13 ~0 40* ~ -“0 31*“ ~ -0 50*o~ ~ 004 0 08 “ ~ -048* ~0 69* ” " “ 4 56* ~-5~3~9*~~■“  3 88* ““ 5 70*o -5 59* -5 02*

17 021 0 36* 1 28* 1 26* -091* -0 37o -0 21 -0 06 1 18* 1 37* -061* -0 13o -6 17* -6 07* 11 97* 10 49* -7 24* -5 95*

18 0 16 -0 07 0 58* 0 19o -1 47* 0 94*o 0 12 -O il 0 82* 0 57*o -1 51* 1 07*o -1 20 -3 42*o 1001* 9 26* -4 98* -3 98*

Note * = differs from CMJ at a  = 0 05 level o f significance
o = differs from DJ30 at a = 0 05 level o f significance
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At a group level of analysis both peak ankle joint power and peak hip joint power 

were found to be lower in both the DJ30 and the DJ50 compared to the CMJ This 

was evident at the individual level for all subjects for hip power and, 11 and 12 of the 

18 subjects, respectively, for the DJ30 and the DJ50 However, for two individuals 

(subject 4 and 10) peak ankle joint power was greater in the DJ than the CMJ 

Increases in the magnitude of peak knee joint power were also observed in the DJ 

compared to the CMJ at both the group level and at an individual level for 17 of the 

18 subjects Differences between peak knee joint power in the DJ30 and the DJ50 

were evident in six individuals but not at a group level However, four exhibited a 

greater peak knee power in the DJ50, while another two exhibited greater magnitude 

in the DJ30 Differences between the DJ30 and the DJ50 were also observed for the 

peak ankle power at both the group level (G m only) and at the individual level for 

four subjects, all with greater magnitude in the DJ30 No difference was observed in 

peak hip joint power at a group level but five subjects exhibited greater magnitude in 

the DJ30 at the individual level

While a number of kinetic variables have been seen to be overloaded in the DJ (DJ30 

and DJ50) in comparison to the CMJ, both at a group and individual level, in order for 

DJs to produce a positive enhancement in the CMJ performance, the variables 

overloaded must be limiting factors of CMJ performance For detail of the 

identification of performance limiting factors, we refer the reader to the section 4 1 

Table 4 20 details the significant differences between the CMJ and the DJ, indicates 

the kinetic parameters were been found to be correlated with jump performance

Of the two of individuals that exhibited positive correlations between ankle moment 

at JR and jump height, only one was overloaded in the DJ and in the case of hip 

moment at JR none of the four While four individuals that were positively 

correlation between peak ankle moment and jump height, only one showed 

overloaded in the DJ compared to the CMJ None of individuals positively correlated 

between jump height and peak hip moment, peak ankle power or peak hip power, 

exhibited an overload of these parameters in the DJ compared to the CMJ However, 

subject 14 who was positively correlated between jump height and peak knee joint 

power had a greater magnitude of peak knee joint power in the DJ50 compared to the 

CMJ, and greater again in the DJ30
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Table 4 20 Kinetic parameters overloaded in the DJ compared to the CMJ, with parameters significantly correlated with jump height m CMJ 
indicated

vGRFstart Ankle Knee Hip Peak ankle Peak knee Peak hip Peak Peak Peak ankle Peak knee Peak
concentric moment at moment at moment at moment moment moment negative positive power power pov
phase (N) JR (Nm) JR (Nm) JR (Nm) (Nm) (Nm) (Nm) power (W) power (W) (W) (W) (W

Gb • <50<30 '0 ns • <30 10 ^0 <30 <50 >0 '*) < 30, 50 M)
G m • ns • <50<30 0̂ Sh ns • < 30, 50 50 <30 <50 • " 10 Si # < 30, 50 30

1 <30, 50 <30, 50 SO *0 <30, 50 • <30, 50 so <30 <50 n ̂ <30, 50 ''O
2 <30, 50 <30,50 • <30, 50 tn Oh • <30, 50 io ' <30 <50 10 <30,50 :o
3 <30, 50 <30, 50 < 30, 50 *0 so <30, 50 <30, 50 >0 sn • <30 <50 ns hs <30, 50 30
4 <30, 50 <30, 50 <30, 50 X*) n* <30, 50 <30, 50 '0 <30 <50 <30, 50 <30, 50 <30,50 o o
5 10 H) j() s( o ns '0 10 <0 n** "0 S; <30 <50 ' * *0 10 J <30, 50 1(;
6 10 50 ;o so <30 JO  SO _ ru 10 “O <30 <50 >0 SO • 30 * ) • <50<30 30_  _

<50<30 <30 <50 <30 n so n  • <30 <50 >0 so • H) *0 <50<30 3*
8 SO • H) ns *0 io  So us s{) .0 <30 <50 Mi -{) A) s ) IN >0
9 <30, 50 r <30, 50 m • n <30<50 o 10 so <30 <50 ns • M) S'* • <30, 50 10

16” <30, 50“ <30,50 < 30, 50 <30750 <30, 50 S() >* <30 <50 <30,50 • <30, 50 <30, 50 so
11 ns rK <30, 50 fO <30, 50 so <30 <50 m sn • n> <30, 50 »30
12 <30, 50 *0 SO ns H) -0 XQ -o ns »30 v* <30 <50 *0 ~0 • 10 so • <30, 50 5 L
13" :0  V ns • <50<30 30 "■‘0 • m) <50 <30 i7)~ >) • <30 <50 10 so <30, 50 1 d
14 <30 <50 <30 lb 10 SO • <30, 50 50 >0 <30 <50 ">0 • 30 • <50<30 • V)
15 <30 <30, 50 <50<30 M) -o <50 <30 30 '»l • <30 <50 "0__ • 10 M> • <50<30 , so.

” 16“ rw <50, 30 1 *>u • is i{) ~ <30 <50 " • <30<50
17 <50 <50 <30, 50 ns <30, 50 3>i <30 <50 'U "0 *0 M) <30, 50 30
18 i s <30 50 io • ns o <50 <30 o M) ^0 • <30 <50 *  ̂ **0 SO <30, 50 yv

Note < = magnitude o f parameter greater in the DJ than the CMJ
•  = positive correlation between parameter and CMJ jump height at a = 0 05 level o f significance 
o = negative correlation between parameter and CMJ jump height at a  = 0 05 level o f significance
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Discussion
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The predominate methodology that has been utilised in biomechanical analysis, is to 

compare differences between individuals, referred to as group analysis This group 

approach assumes that the movement strategy for all individuals is the same 
However, not every athlete has the same neuromuscular capacity (e g individual joint 

power, rate of power production and joint dominance), anthropometries (e g limb 

length and relative mass) and muscle morphology (e g percentage muscle fibre type), 

and diverse movement strategies have been observed It may be more appropriate to 

make inferences about an individual’s movement strategy by treating each individual 

as their own experiment group, examining differences between repetitions of an 

individual’s own performance, referred to as individual analysis The results of the 

two approaches will be discussed, firstly, in relation to what biomechanical factors 

correlate with countermovement jump (CMJ) performance and secondly, the 

difference in the kinetics between the CMJ and the drop jump (DJ)

The section will start with a discussion of the differences between the magnitude of 
inter-subject and intra-subject variability The factors found to be correlated with 

jump height at a group level will be compared with the factors found at an individual 

level Possible reasons will be outlined for the discrepancies between the two forms 

of analysis Questions that need to be addressed over the selection of which 

biomechanical parameter to be trained with a view to enhancing CMJ performance 

will be outlined Finally, the results comparing the neuromuscular overload in the DJ, 
over that of the CMJ, will be discussed in relation to the potential use of the DJ as a 

training intervention to enhance CMJ performance

5 1 Inter-subject verses Intra-subject variance

As expected, variability was evident both between the 18 subjects (inter-subject 
variability) and within the 15 jumps of each individual (intra-subject variability) 

Across all parameters there was greater inter-subject variability than intra-subject 

variability In many cases inter-subject variability was two to three times that of 

intra-subject, which was similar to the differences found by Aragon-Vargus and Gross 

(1997a, 1997b) for vertical jump kinematics and kinetics The inter-subject 

variability reflects not only the varying strategies employed, but also differences due
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to neuromuscular capacity, anthropometries and muscle morphology, while mtra- 

subject variability reflects changes only in the jump strategy used

Whole body kinematics and kinetics were generally less variable than the 

corresponding joint measures, both at the inter-subject and intra-subject level This 

can be partly attributed to the compensating ability of the multilinked human system, 

allowing whole body kinetics to be maintained in the face of changes at one joint 

being offset by changes at another (Dowling and Vamos, 1993) Kinetic measures 

were found to be in general more variable than kinematic measures These findings 

have also been observed in other studies of vertical jumping (Aragon-Vargas and 

Gross, 1997a, Rodacki et al, 2001, van Soest et al, 1985) and other movements such 

as walking and running (DeVita and Skelly, 1990, Dufek et al, 1995) Again this is 

likely to be a reflection of maintaining an overall kinematic movement strategy, 

which can be produced through a variety of joint kinetic strategies

There was greater variability in parameters in the eccentric phase than the concentric 

phase Since one of the requirements for maximizing jump height is to maximise 

mechanical energy at take-off (Bobbert and van Ingen Schenau, 1988), this results in 

a relatively consistent configuration of the body at take-off, with all the joints of the 

lower extremities being nearly fully extended (Bobbert and Van Soest, 2001) The 

use of a greater variability in the eccentric phase and at the transition between the 

phases may be due to variations having a smaller effect on jump performance, or that 

the performer has less capacity to integrate information from the eccentric phase than 

the concentric phase to optimise jump performance

5 2 Group analysis

A statistical analysis at the group level, where differences between individuals have 
been examined, has predominantly been employed in identifying factors that relate to 

performance success In the biomechanical literature the selection of a representative 

value for an individual has predominately taken two forms the mean magnitude of 
values observed and the value corresponding to the best performance Table 4 12 

outlines the mechanical parameters that were correlated with jump height at the group
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level, using the best performance (G b) and the mean values (G m) In general the 

biomechanical factors revealed when using the best performance were also revealed 

when using the mean values However, the converse was not true, just over half the 

biomechanical factors revealed using the mean values were also revealed using the 

values from the best jump When the values from the best performance were used, 

the magnitude of all biomechanical parameters from that jump are regressed against 

the jump height achieved, not just those parameters that were responsible for 

achieving that height As a number of diverse biomechanical strategies may be 

selected to maximise jump height, the use of the values from the best jump may 

obscure the identification of factors relating to jump height at the group level The 

presence of individual strategies still persists when mean values are used, but as it is 

the “typical” characteristics that are put forward for analysis, it may prove a more 

robust method

In the present study, the group approach identified a number of parameters that were 

significantly correlated with jump height (table 4 15), peak negative vertical velocity 

of the BCOM (r= 0 60), peak positive power (r= 0 56), peak negative power (r= 0 58), 

positive work done during the concentric phase (r= 0 48), vGRF at the start of the 

concentric phase (r= 0 47) and the duration of the eccentric phase (r= -0 47)

Taking the eccentric phase first, the related factors of a high peak vertical velocity and 

power, and a short duration, may be beneficial to improving jump height Only two 

studies appear to have directly examined the relationship between mechanical 

parameters of the eccentric phase and jump performance Dowling and Vamos (1993) 

found both peak vertical velocity (r= 0 29) and power (r = 0 30) to be correlated with 

jump height but the strength of the relationships were less than those reported in the 
present study While Aragon-Vargas and Gross (1997a) did not explicitly examine 
the negative velocity of the BCOM, they did find peak negative impulse to correlate 

with jump height (p<0 02) These findings are also consistent with the observation 
that improvements in jump height in the CMJ over that of the squat jump (SJ) are 

greater with faster and shorter eccentric phases (Bosco et al, 1981, Cavagna, 1977, 

Komi, 2000)
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Vertical ground reaction force (vGRF) at the start of the concentric phase was found 

to be correlated with jump height (r= 0 47) This is inconsistent with the findings of 

Dowling and Vamos (1993) who found no significant correlation Bobbert et al 

(1996) examined improvements in jump height in the CMJ over the SJ using 

mathematical modelling based on actual jump data They attributed the enhancement 

to greater force at the start of the concentric phase in the CMJ, allowing larger joint 

moments during the first part of joint extension At the whole body level both peak 

positive power and positive work done were found to correlate with jump height 

Other researchers have also reported peak power to correlate with jump height 

(Aragon-Vargas and Gross, 1997a, Dowling and Vamos, 1993, Harman et al, 1990)

In these studies correlations (r) of 0 68, 0 93 and 0 86, respectively, were reported, 

compared to 0 76 within the present study One possible reason for the lower 

correlation found by Aragon-Vargas and Gross (1997a) is they did not normalise for 

body weight When power was not normalised for body weight within the present 

study, the correlation fell to 0 56 The strong association between jump height and 

peak power indicates that high forces need to be accompanied by rapid execution 

This would suggest that training should aim to develop strength specifically at high 

velocities (Dowling and Vamos, 1993) In contrast to the present study, previous 

studies have found peak vGRF to correlate significantly with jump height (Dowling 

and Vamos, 1993, Harman et al, 1990) The amount of positive work done in the 

concentric phase was positively correlated with jump height m the present study No 

previous studies appear to have examined how a change in the amount of work done 

was relates to jump performance While Aragon-Vargas and Gross (1997a) did not 
explicitly examine work done, they found average power and phase duration were 

positively related to jump height in many prediction models As work done is the 

product of average power and duration, a relationship between jump height and work 
done may have existed

No relationship was found between the duration of the concentric phase and jump 
height, supporting previous findings by Dowling and Vamos (1993) However, 

Aragon-Vargas and Gross (1997a) included concentric phase duration as part of a 

prediction model for take-off velocity, suggesting it was negatively related to jump 

height at a group level
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While knowledge of the relationships between jump height and jump mechanics at the 
whole body level is important, more specific information can be achieved by 

examining the relationship at the joint level At the joint level a number of parameters 

correlated significantly with jump height peak angular velocity of the hip during the 

eccentric phase (r= 0 64), ankle positive work done (r= 0 58), peak ankle power 

(r=0 58), peak knee power (r= 0 52), peak ankle moment (r= 0 51), ankle moment at 

joint reversal (r= 0 49) and coupling time at the hip (r= -0 48)

In the present study the joint that exhibited the greatest number of significant 

correlations with jump height was the ankle joint In contrast, Aragon-Vargas and 

Gross (1997a) found hip kinetic parameters (peak hip power and peak hip moment) 

exhibited the strongest correlations, with peak knee power only included within 

models already containing hip kinetic parameters None of their models included 

ankle kinetic measures However, at an individual level many of their models contain 

peak ankle power and peak ankle moment, but hip kinetic parameters still dominated 
their models (Aragon-Vargas and Gross, 1997b) Variation between individuals in 

the relative contribution of each joint to total work done has been found (see table

4 11) (Hubley and Wells, 1983) It is possible that the joints showing significant 

correlations with jump height may be specific to each sample group of individuals

5 3 Comparison between group and individual level

If comparable results are observed for both the group analysis and the individual 

analysis, this would suggest that all individuals perform alike and the group approach 

may be suitable for identifying performance strategies for all individuals However, it 
was found that no parameter that was significantly correlated with jump height at the 
group level was also significantly correlated for all subjects at an individual level 

The two variables with the greatest degree of correspondence between the two forms 
of analysis were total positive work done and peak positive power, correlating at an 
individual level in 11 and 9 of the 18 individuals, respectively Aragon-Vargas and 

Gross (1997b) similarly found peak whole body power to be a significant predictor of 

jump height for all eight individuals they examined While they did not examine
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work done per se, average power and duration of the concentric phase were also 

significant for all individuals

For the eccentric and the transition phases, few subjects exhibited significant 

correlations at an individual level for the whole body parameters that were found to 

correlate significantly at the group level Only four subjects exhibited a correlation at 

an individual level for peak velocity and eccentric phase duration, while no 

individuals had correlations for peak negative power Additionally, in contrast to the 

concentric phase, where consistencies in the direction of the relationships were 
observed, directly opposing relationships were observed in the eccentric phase Three 

individuals exhibited a negative correlation between jump height and the duration of 

the eccentric phase, matching the results of the group analysis, while a single subject 

(subject 4) exhibited a positive relationship A negative relationship suggests a fast 

and forceful downwards movement of the body in the eccentric phase would benefit 

jump performance, enabling a high velocity of stretch of the muscles and greater force 

at the start of the concentric phase, which have been previously reported to enhance 

jump height (Bosco et al, 1979, Bosco et al, 1982a, Komi, 2000) The positive 

relationship observed for subject four is in contradiction to this However, the 

relationship can be explained by an interaction of some of the parameters In 

additional to the correlation with phase duration, the amplitude of movement of the 

BCOM was also correlated with jump height (r= 0 69) for this subject To 
accommodate the greater range of motion over which to develop force, extended 

eccentric and concentric phases were therefore employed This suggests the presence 

of two different strategies, one involving a rapid and shallow movement which 

utilises the SSC, and the other which involves greater movement amplitude, providing 

a greater distance over which to apply force

The results of the group and individual analysis appear to be less comparable at the 

joint level than at the whole body level (table 4 12), with at best eight individuals 
exhibiting a correlation for a parameter that was also revealed at the group level (i e 

ankle work done) Additionally, there were a greater number of parameters exhibiting 

opposite relationships with jump height between individuals (e g ankle moment at 

JR) Differences were more evident in the eccentric and transition phases than the 
concentric phase Aragon-Vargas and Gross (1997a and 1997b) also found a reduced

9
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comparability between the two forms of analysis at the joint level However, the 

biomechanical parameter they found to exhibit the strongest correlation with jump 

height at the group level was still evident m six of the eight subjects at the individual 

level, and was also the single best predictor of jump height for one individual (subject 

W) (Aragon-Vargas and Gross, 1997a) The reduced comparability between the 

results of the group and individual analyses at the joint level is possibly a reflection of 

the compensatory ability of the multi-segmental nature of the human body, allowing 

the same whole body kinetic pattern to be achieved using numerous combinations of 

joint kinetic strategies (Hubley and Wells, 1983)

In the present study, several parameters were also found to be significantly correlated 

with jump height for a number of subjects at an individual level, but were not 
significantly correlated at a group level The amplitude of movement of the BCOM, 

the vertical difference of the BCOM from standing to take-off, the duration of the 

concentric phase (table 4 8), peak hip moment, peak hip power and work done at the 

hip (table 4 10), were all found to be correlated with jump height in at least five 

individuals, but not at the group level Aragon-Vargas and Gross (1997a and 1997b) 

found this same pattern for the amplitude of movement of the BCOM, the vertical 

difference of the BCOM from standing to take-off and the duration of the concentric 

phase However, while Aragon-Vargas and Gross (1997b) also found peak hip power 

and peak hip moment to be related to jump height at an individual level, correlations 
were also observed at the group level (Aragon-Vargas and Gross, 1997a)

At the group level, the hip joint was found on average to contribute the most to total 
work done, but this was not observed in all subjects The relative contribution that 

each joint made to the total work done was not found to be correlated with jump 
height, for any joints at a group level However, a number of significant correlations 
were observed at the individual level (table 4 11), suggesting while no ideal pattern 

may exist for all individuals, an optimum pattern particular to an individual may still 
exist In addition, both positive and negative correlations were observed between 

jump height and work done at various joints
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5 4 Coordination

At a group level the hip extends on average 0 03 seconds before the knee, with the 

ankle extending 0 01 seconds before the knee However, when the average sequence 

for an individual was calculated, this hip-ankle-knee sequence was only exhibited by 

five subjects Nine individuals had a proximal to distal sequence and two subjects 

had a distal to proximal sequence Two subjects had some other combination of joint 
extension This mixed pattern of joint reversal (JR) has been previously observed 

(Aragon-Vargus & Gross, 1997a, Jensen et al, 1991, Rodacki et al, 2001, Rodacki et 

al, 2002) Rodacki et al (2001) found that three of the twelve subjects in their study 

extended the ankle before the knee, and 21 of the 52 subjects in the study by Aragon- 
Vargus & Gross (1997a) extended the joints in a hip-ankle-knee pattern A shorter 

delay between the JR of the hip and the knee was observed in the present study (knee 

0 03s after the hip), compared to other studies (Jensen et al, 1994, Rodacki et al,

2001, Rodacki et al, 2002)

Peakjoint moments followed a proximal to distal sequence, with the peak hip moment 

occurring on average 0 07 seconds before the knee, followed by the peak ankle 
moment on average 0 03 seconds later A proximal to distal sequence was only 

observed in ten individuals However, a proximal to distal sequence of peakjoint 

power was found in all individuals, which is consistent with the findings of Rodacki 

et al (2001) and Rodacki et al (2002) The delay is also comparable to the 0 023 

seconds and 0 046 seconds found by Rodacki et al (2001) and Rodacki et al (2002), 

respectively However, while Rodacki et al (2002) found a delay between peak knee 

power and peak hip power of 0 088 seconds, which is comparable to the average 

delay of 0 07 seconds in this study, Rodacki et al (2001) found a slightly greater delay 
of 0 187 seconds

A proximal to distal sequence of peakjoint angular velocity was also found at the 
group level and in all individuals, in the present study, which is consistent with the 

findings of Jensen et al (1994) However, a proximal to distal sequence was not 

observed by Rodacki et al (2001), where peak hip angular velocity occurred 0 01 

seconds before the ankle and knee, nor was it observed by Rodacki et al (2002), 

where hip and ankle peak velocities occurred simultaneously, followed by the knee
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0 012 seconds later While small delays were evident in these studies (see table 2 19), 

marginally greater delays occurred in the present study

None of the time delays were correlated with jump height at a group level Two 

possible explanations for this are, firstly, that the sequencing is already optimised as 

the skill is well learnt Secondly, that while an optimal timing may exist for an 

individual, these optimal sequences differ between individuals, perhaps due to 

differences in neuromuscular capacity and anthropometries

While no significant relationship was observed at a group level between jump height 

and the delay in JR between adjacent joints, significant correlations were observed for 

two individuals One individual had a positive correlation between jump height and 

the delay between knee JR and ankle JR (r=0 529), and a negative correlation with the 

delay between the hip JR and the knee JR (r= -0 832) Another individual had a 

positive correlation between jump height and the delay between hip JR and knee JR 

(r=0 537) It is unknown how much the delay should be altered as correlations only 

report the sign/direction of a change, but not the magnitude of change It is possible 

the relationship may change once a critical delay is achieved This is one of the 

limitations of the correlation method

5 5 Inter-subject analysis verses Intra-subject analysis

The predominant approach to identifying performance driving or performance 

limiting biomechanical factors is to undertake a group based analysis By comparing 

individuals, it is assumed that a significant relationship reflects a more optimum 
movement strategy Similarly, if no relationship is present for a given variable, it is 
assumed that the magnitude of the variable does not affect performance This group 
based approach presumes that a single, ‘abstract’ optimal movement strategy exists 

and it can be applied to all individuals This would be true if everyone was physically 
identical However, individuals differ in their neuromuscular capacity (e g individual 

joint power, rate of power production and joint dominance) their anthropometries (e g 

limb length and relative mass) and their muscle morphology (e g percentage muscle 

fibre type) Therefore, no single optimal movement strategy may be present In
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consequence, the negative effect of a group based analysis may be that it identifies an 

‘optimal’ movement strategy that is in fact detrimental to the performance of an 

individual In addition, a movement strategy that would benefit many individuals 

may not be observed in a group analysis, simply due to a contrasting strategy from a 

few individuals masking its occurrence Given that the present study clearly found 

differences in results using a group based in comparison to an individual based 

correlation analysis, it is important to at least examine the theoretic implications of a 

causal relationship being revealed when the biomechanical parameters are 

systematically altered and the relationship with jump height follows the same pattern 

as observed in the correlation analysis

The identification of a casual relationship may not always provide a definitive answer 

as to whether the parameter should or should not be trained to enhance jump 

performance When a mechanical parameter is related to jump height at the group 

level (Figure 5 la), it is suggested that all individuals should train this parameter 
However, this may not always be the case, a situation may arise where a strategy 

present in a majority of individuals (e g 80%) dominates the group analysis, 

suggesting all individuals (Figure 5 lb) should train this biomechanical factor 

However, the training of this biomechanical factor may not be beneficial to the 

minority (e g 20%) of the other individuals in the group, or may in fact be detrimental 

to their performance Similarly, when no relationship is present at a group level it 

does not necessarily imply that this parameter is not related to jump performance for 

some individuals Firstly, a case where contrasting strategies between individuals 

mask each others detection with correlation analysis may exist (Figure 5 lc) For 

example, some individuals may increase power at the hip joint while others find it 

more fruitful to increase the power of the ankle joint, resulting in jumps of greater 
height with both low and high peak ankle power, potentially obscuring the strategies 
at the group level Secondly, if little variability in the mechanical parameter is present 
at the group level, an underlying relationship may not be revealed by correlation 
analysis (Figure 5 Id) This low variance may be due to an optimum existing and be 
widely employed, resulting in the mean for each individual being centred on a 

common point A selection of a more heterogeneous sample group may increase the 

variability and the underlying relationship may be revealed
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Figure 5 1 Possible relationships between jump height and a mechanical parameter

If a relationship between the magnitude of a biomechanical parameter and jump 

height is observed at an individual level, this suggests that the strategy of altering this 

factor could increase jump height, indicating the benefits to training this factor 

Conversely, if no relationship is found for an individual, it may suggest that this factor 

should not be trained However, an underlying relationship with jump height may 

still exist, and may not have been revealed in the correlation analysis purely due to 

insufficient intra-subject variability The low intra-subject variability may be caused 

by the current and limited level in neuromuscular capacity imposing a constraint or 

the individual may have settled into a none optimum, invariant movement pattern 

simply because they have never attempted other movement strategies

While it is possible that the same kinematic and kinetic strategy would be revealed 

using both a group and an intra-subject analysis, results from the present study 

indicate little commonality (table 4 12) For example, peak eccentric power 

correlated significantly at a group level, but no individuals exhibited a significant 
correlation When comparing the results of a group and an individual analysis a 
number of outcomes are possible, table 5 1 represents the six possible scenarios

Table 5 1 Representation of possible scenarios between group and individual analysis
GROUP CORRELATION

YES NO
INDIVIDUAL
CORRELATION

ALL 1 2
SOME 3 4
NONE 5 6
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At one end of the spectrum, scenario 1 refers to when a parameter is significantly 

correlated with jump height at both the group level and for all subjects at an 

individual level, explaining both why some individuals jump higher and why some 

jumps of an individual are higher than other jumps At the other end of the spectrum 

of possible responses, scenario 6 refers to where no correlation with jump height at 

either the group or the individual level is present Neither of these scenarios occurred 

for any of the variables in the present study Scenario 5 is where a correlation is 

present at a group level, but not at an individual level for any subjects, this is the case 

within the present study for peak eccentric whole body power Since differences were 

observed between individuals, this may reflect differences in neuromuscular 

capacities Scenario 2 is the case where the parameter is correlated for all subjects at 
an individual level, but not at a group level This suggests all subjects should tram 
this factor Two possible explanations may be put forward to why no correlation was 

observed at the group level Firstly, the magnitude of the mechanical factor may 

indeed be important in jump height achievement, but the individuals’ means were 

centred on a common point, possibly an optimum level, thus reducing group 

variability Secondly, the level of the mechanical factor is important, but individuals 

have different optimums The differing optimums may be related to the differences in 

physical characteristics of the individuals, or due to differing strategies being 

employed by individuals For example, one individual may use a large range of 

movement and small eccentric loading, while another may use a small range of 

movement and large eccentric loading, but both individuals may produce the same 

jump height

In the present study the majority of parameters fall under scenario 3 and 4, where not 

every individual performed the same Scenario 3 presents a situation where a 
parameter is correlated with jump height at both the group level and at the individual 
level for a number of subjects This was the case for ankle positive work done in the 

present study Scenario 4 is where some individuals exhibit a correlation, but no 
correlation was observed at the group level, as was the case in the present study for 

peak hip power
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The results of the group analysis may suggest that the better performers utilised a 

certain strategy but it may not be true to say that, if all individuals utilised that 
strategy they would increase performance, as the strategy may not be suitable for 

them given their physical characteristics While differing strategies may be the result 

of individual perceptions of performance outcome, it is the physical characteristics of 

an individual that may play the greatest role in the selection and success of a given 

strategy It is possible that these physical characteristics may predispose individuals 

to certain strategies and therefore different optimums Due to differences in limb 

length corresponding position of the BCOM at the start of the concentric phase 

between individuals may require different knee angles (Alexander, 1995), in turn the 

optimum knee angle may depend on the current neuromuscular capacity 

(Thorstenssen et al, 1976) and muscle morphology (Bosco et al, 1982a) of the 

individual

Bosco et al (1982a) found that for individuals with a high percentage of fast twitch 

muscles, jumps of smaller knee amplitude resulted in a greater enhancement of 
kinetics than larger amplitudes in the concentric phase of a CMJ over that of a SJ 

However, for individuals with greater number of slow twitch fibres jumps of larger 

amplitude allowed more time for force to build up and resulted in a greater percentage 

relative enhancement of kinetics than jumps of small amplitude Therefore for a 

group of individuals with diverse muscle morphology and stature, potentially jumps 

of differing amplitude of movement will result in jumps of greater height for these 

individuals, as highlighted by the differing relationships observed for amplitude of 

movement of the BCOM (table 4 6) and duration of the eccentric phase (table 4 2)
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5 6 Questions arising over the selection of which parameters to alter

Four questions should be considered when deciding whether a biomechanical 
parameter is worth training to enhance jump height Firstly, how strong is the 

relationship between the biomechanical factors related to differences in jump height9 

Secondly, how much will a change in the biomechanical factor increase jump height9 

Thirdly, by how much can the biomechanical factor be trained9 Fourthly, what is the 

magnitude of biomechanical factor for the individual relative to the group mean9 An 

indication of the strength of the relationship between the biomechanical parameter 
and jump height can be revealed by the correlation coefficient (r), the larger 

correlation coefficient (r) the more of the variability in jump height can be explained 

by the variability in the biomechanical parameter If a strong and significantly 

relationship is revealed through correlation, the extent to which a change in the 

mechanical parameter causes a change in jump height must be examined Information 

regarding the possible extent of the change is available from the slope of the bivariate 

relationship The steeper the slope, the more jump height seen to increases when a 

change in the biomechanical parameter occurs As can be observed in figure 5 1, 

greater jump height is achieved in ‘scenario c’ compared to ‘scenario a’, and in 

‘scenario d’ compared to scenario b \ for comparable changes in the biomechanical 

parameter However, as can also be observed, a greater increase in jump height is 

achieved in ‘d’ than in ‘a’, with a corresponding slope, by virtue of a greater range 
over which the biomechanical parameter is altered An indication of the potential 

range over which the biomechanical parameter can be altered may be revealed by the 

sample variance, both intra-subject and inter-subject From the four scenarios 
outlined in figure 5 1, it is evident that a large slope is not enough to achieve a large 

increase in jump height, but the correct combination of slope and variation in the 
biomechanical parameter is required Finally, the magnitude of the biomechanical 
factor for the individual, relative to the group, must be considered If an individual 

already produces a high magnitude in comparison to the group, there may be less 
scope for improvement in comparison to an individual demonstrating a lower 

magnitude This is evident in a number of training studies, which have shown that the 

neuromuscular training response is largest in those who have not previously training 

(Plisk, 2001)
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Figure 5 2 Interaction of variability and slope of relationship between jump height (y 
axis) and a mechanical jump parameter (x axis)

Examples of the interaction of slope and variance are illustrated in table 4 13 The 

mean magnitude, amount of variance (standard deviation [SD] and coefficient of 

variability [CV]) and slope, are reported for four jump parameters peak ankle 

moment, hip negative work done, peak hip power and knee angle at JR In relation to 

figure 5 1, peak ankle moment represents ‘scenario a’, peak hip power ‘scenario b’, 
knee angle at JR ‘scenario c \ and hip negative work done ‘scenario d’ A comparison 

of negative work done at the hip revealed that for subjects 5 and 6, a greater slope of 

the relationship with jump height than that for subjects 3,4, 14 and 18 Furthermore, 
the variance and mean magnitude is lower For these two individuals, it appears that 
training this parameter may provide a greater increase in jump height than training 

another parameter This is true, providing the amount of negative work done can be 

increased further In respect to the group mean, this appears possible In the case of 
subject 16, for peak hip power, both the variance and the slope of the relationship 

with jump height are low In this case, it may not be prudent to spend time training 

this already high magnitude, and training should centre on a different variable
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5 7 The use of drop jumps as a means of training the CMJ

The drop jump (DJ) has been used as a training method to enhance countermovement 
jump (CMJ) performance, with differing levels of success For example, Blatter and 

Noble (1979) found that CMJ height increased on average 2 1cm after a training 

program involving DJs, while Matavuji et al (2001) observed a 5 6cm increase after a 
comparable training program However, Brown et al (1986) found no significant 

increase after a more extensive training program For DJs to be a successful method 

of enhancing CMJ performance they must (1) have a similar movement pattern (in 
relation to the muscle groups used, the coordination pattern, the joint range of motion 

(ROM), the velocity of contraction and the muscle action), (11) provide an overload of 

the neuromuscular system, and (in) tram those factors that are related to CMJ height 

The DJ clearly provides a close qualitative match with the CMJ in relation to the 

movement pattern employed The extent to which the kinetics are overloaded in the 

DJ, and the ability of the DJ to overload the specific jump kinetic parameters that 
relate to differences in performance success in the CMJ are discussed below In 

addition, the implications of the differences in findings at a group and individual level 

are addressed

Peak whole body negative power was found to be significantly enhanced with 

increases in eccentric loading, with the greatest magnitudes produced in the DJ50, 
followed by the DJ30 and then CMJ These findings were consistent at both the 

group level and the individual level, for all but one subject This result is hardly 

surprising since when landing in the DJ the BCOM has a higher negative vertical 

velocity than that experienced in the CMJ, and increases with drop height

All three knee joint kinetic parameters examined (knee moment at JR, peak knee 
moment, peak knee power) were greater in the DJ compared to the CMJ, both at the 

group level and for the majority of individuals This is consistent with the findings of 

Bobbert et al (1986a) at a group level for the bounce drop jump (BDJ) and Bobbert et 

al (1987a) for both the counter drop jump (CDJ) and the bounce drop jump (BDJ) 

Only one difference was evident at the group level between DJ30 and DJ50, with a 

significantly greater knee joint moment at JR produced from DJ30 than DJ50 At an 

individual level, drop height had a significant effect on only a small number of
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subjects knee moment at JR (n = 2), peak knee moment (n = 2) and peak knee power 

(n = 6) It appears that while DJs provide a suitable means of overloading the knee 

joint kinetics, the effect of drop height may be minimal In contrast to the knee joint, 

hip joint kinetics (hip moment at JR, peak hip moment, peak hip power) were lower in 

the DJ than the CMJ at a group level, and for the majority of subjects at the individual 

analysis level In contrast, Bobbert et al (1986a) found no difference in hip joint 

kinetics between the DJ and the CMJ While Bobbert et al (1987a) also found no 

difference in peak hip power, they did find lower hip moments at JR for the BDJ and 

lower peak hip moments for both the CDJ and the BDJ

At a group level, the vGRF at the start of the concentric phase, ankle moment at joint 

reversal and peak ankle moment, were not different in the DJs in comparison to the 

CMJ, while peak whole body power and peak ankle power were significantly lower in 

the DJ than the CMJ The lack of increase in these parameters is consistent with the 

results of Bobbert et al (1986a) for DJs employing comparable movement amplitudes 

as the CMJ (CDJ) However, Bobbert et al (1986a, 1987a) observed increased 

magnitudes in DJs that utilised a significantly reduce movement amplitude, but 

increased peak ankle power was only observed by Bobbert et al (1987a) for DJs with 

a greater reduction in movement amplitude (BDJ = 24cm reduction) In the present 

study, for these same kinetic measures, a number of individuals exhibited greater 

magnitudes in the DJ in comparison to the CMJ Interestingly, these subjects tended 

to use a smaller amplitude of movement, which in light of the findings by Bobbert et 

al (1986a, 1987a) may explain these findings For example, nine subjects had an 
increase in ankle joint moment at JR in the DJ compared to the CMJ, with a further 

five exhibiting a reduction Of the nine individuals that displayed an increase in ankle 

moment at JR, eight utilised a DJ technique with a smaller amplitude of movement, 
while four of the five with a reduced ankle moment at JR utilised a larger movement 
amplitude than that of the CMJ Similarly, only four individuals had a greater peak 

ankle moment in the DJ than the CMJ and all of these individuals employed 10cm 
less amplitude of movement in the DJ than the CMJ (the only four individuals in the 

study with such a reduction) Finally, two individuals (subject 4 and subject 10) who 

had greater peak positive whole body and ankle power in the DJ compared to the 

CMJ, utilised a substantial reduction in movement amplitude (16cm)
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A possible explanation for the effect of a smaller amplitude of movement enhancing 

the magnitude of overload in the DJ over the CMJ for selected kinetic variables, may 

be that when a small amplitude is used the BCOM must decelerate quicker This may 

result in the time that elapses between the peak stretch of the muscles and the start of 

the concentric muscle contraction being kept short Bosco et al (1982a) found that a 

higher velocity of stretch in the eccentric phase and a higher vGRF at the start of the 

concentric phase occurred in jumps with less knee range of motion A short 

“coupling time” and a fast stretch have been found to enhance the kinetics on the 

concentric phase (Bosco et al, 1981, Cavagna et al, 1968)

The only differences in jump kinetics at a group level between the two drop heights 

were a lower whole body peak power, ankle peak power and peak knee moment at JR 

in DJ50 than DJ30 A number of differences were observed at the individual level, 

the majority suggesting lower kinetics in the DJ50 than the DJ30 It appears that 

increasing the amount of negative work done by altering the drop height did not 

appear to be a successful method of overloading kinetics

5 8 The suitability of drop jump as a means of training the CMJ

While a number of kinetic variables have been seen to be overloaded in the DJ (DJ30 

and DJ50) in comparison to the CMJ, both at a group and individual level, in order for 

DJs to produce a positive enhancement in the CMJ performance, the variables 
overloaded must be limiting factors of CMJ performance Examination of table 4 17 

clearly shows that at a group level, of the five kinetic parameters correlated with jump 

height, only peak negative power was overloaded This suggests that DJs provide a 
suitable means of training peak negative power to enhance CMJ height, however, the 
use of DJ to train the other kinetic parameters does not seem worthwhile At an 

individual level, only three subjects experienced an overload in a kinetic parameter 

that was correlated with the CMJ height for them It appears that DJs would only 
provide a suitable means of training the CMJ for these individual However, DJ 

training may provide a suitable training stimulus for the CMJ for more individuals 

When a biomechanical parameter is correlated with jump height at a group level, it 

reflects not only differences in strategies employed but also differences in the
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neuromuscular capacities between individuals Therefore, a significant correlation at 

a group level, may suggest all individuals should train that kinetic factor (e g peak 

ankle moment) While overload was not observed at a group level, it was for some 
individuals and the possibility exist that alteration of the DJ technique of the other 

individuals may induce an overload Examination of an individual in isolation may 

help in explaining why a lack of response to DJ training However, comparison of an 

individuals overload pattern in the DJ to that of other individuals may help to guide 

future training interventions using the DJ to provide a training stimulus to enhance 

CMJ height

5 9 Conclusion

A number of biomechanical factors were found to be significantly correlated with 

CMJ jump height at a group level Those factors that were correlated with jump 

height at the group level however, were not always correlated at the individual level, 

and visa versa A number of diverse movement strategies were evident at the 

individual level, either involving different biomechanical factors or the same factors 

but with the opposite relationship with jump height The existence of opposing 

strategies may mask the identification of a key strategy at the group level, but also 

potentially identify a strategy as being optimal when in fact it may be detrimental to 

the performance of some individuals Similar discrepancies between the group and 

individual analysis approach were observed for shock attenuation in landing (Dufek et 

al, 1995, Lees, 1981) and running (Dufek et al, 1995, Lees and Bouracier, 1994) and 

for jump height achievement in the CMJ (Aragon-Vargas and Gross, 1997a, 1997b) 

Discrepancies between the results of a group and an individual analysis were also 
evident in the extent to which kinetic parameters were overloaded in the DJ compared 
to the CMJ Knee joint kinetics were significantly overloaded in the DJ at both a 

group level and for the majority of individuals While no significant overload was 
apparent for ankle kinetics at a group level, overload was achieved by a number of 
individuals when a reduced amplitude of movement was used At the hip joint, no 

overload in joint kinetics was apparent at either a group or individual level 

increasing drop height did not appear to provide an greater overload of joint kinetics 

It appears that considerable differences were evident between the group and the

133



individual analyses for both identification of the performance determining factors of 

the CMJ and the extent to which the DJ overloaded these factors This may partially 

explain the contrasting findings from a number of training studies (Blatter and Noble, 
1979, Brown et al, 1986, Matavuji et al, 2001) examining the use of DJs to enhance 

CMJ performance

A considerable amount of important information may be lost regarding individual 

performance strategies when a group analysis is employed However, the use of 

solely individual analyses would not reveal any performance a factor relating to 

differing neuromuscular capacities between subjects, and a case for a group analysis 

to be used to supplement an individual analysis therefore exists This clearly requires 

further research involving training studies to examine which of the two approaches 

(group and individual analyses), or what combination of the two, is most appropriate

5 10 Future research

1 ) Once a causal relationship has been established between a biomechanical 

parameter and jump height Examine whether individual analysis provides important 

biomechanical information that can be used to optimise training interventions (more 

so than a group analysis) This can be realised through a number of study designs

a ) Train a large number of individuals and examine if an increase in jump 
height is greater in those individuals who a relationship exists between jump 

height and the trained (overloaded) joint kinetic variable

b ) Train two groups, one group of individuals who all exhibit a relationship 

between jump height and the joint kinetic variable being overloaded and one 
group with no relationship, and examine if there is a difference in the response 

to training between the two groups

2 ) Examine a wider range of drop heights and skill levels to determine if that changes 

the extent to which an individual's joint kinetics are overloaded
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3 ) Examine the extent to which exercises to overload the neuromuscular system, 

other than the DJ, overload the joint kinetics produced during the CMJ, and to 

whether the results differ between a group analysis and an individual subject analysis

If drop height or skill level (research area 2) and exercise (research area 3) change to 

varying degrees, the extent to which joint kinetics are overloaded at an individual 

subject level, then the results should drive further research into identifying optimal 
training interventions (research area 1)

4 ) Examine for other sporting actions, other than the vertical CMJ (e g long jump, 

high jump), if those correlated with performance success differ at the group and 

individual level of analysis
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Appendix

X I



INVESTIGATION OF WITHIN-SUBJECT VARIABILITY AS A MEAN TO 

IDENTIFY PERFORMANCE INHANCEMENT INTERVENTIONS

I n v e s t i g a t o r  Gary Park 

S u p e r v i s o r  Kieren Moran

1 I have been requested by Gary Park to participate in a research study part o f his Master 
degree program The testing will occur at the department o f Sports Science and Health,
Dublin City University

2 The purpose o f the study is to assess the effect o f a tailored training program to enhance 
vertical jump performance based on the individual’s strengths and weaknesses

3 Experimental protocol

I will be required to perform 20 to 30 maximal effort vertical jumps in the laboratory 
Lightweight reflexive marks will be placed at various locations on the body with adhesive 
tape Film data will be recorded by motion analysis system and all jumps will be recorded on 
a force platform Subjects will be placed into groups based on jumping style I will then 
undertake an eight-week training program, 3 times per week At the completion of the 
training program, I will return to the laboratory and the initial test session will be repeated

4 I understand that there are foreseeable risks to my safety if I agree to participate in the 
study The major risk involved is an accident while jumping

5 I understand that there are no feasible alternative procedures available for this study

6 1 understand that any data or video footage collected from my involvement in the study 
will only be available to the investigator or project supervisor and will be kept within their 
custody

7 I understand that the results o f the study may be published but that my name or identity 
will not be revealed

8 I have been informed that any questions I have concerning the study or my participation in 
it, before or after my consent, will be answered

9 1 understand that I am under no obligation and am free to withdraw consent and to 
discontinue participation in the study at any time without penalty or loss of benefit to myself

10 I have read and understand the above information The nature, demands, risks and 
benefits o f the study have been explained to me In signing this consent form, I am not 
waiving any legal claims, rights or remedies A copy o f this consent form will be given to me 
on request

S u b j e c t ’s n a m e  (block capitals)

S u b j e c t ’s  s i g n a t u r e  D a te

11 I certify that I have explained to the above individual the nature and purpose, the 
potential benefit and possible risks associated with participation in the study I have answered 
any questions that have been raised, and have witnessed the above signature

I n v e s t i g a t o r ’s  s i g n a t u r e D a te
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EXCEL DATA FILTER CODE

Insert Raw data from VICON in csv format

Sub Filter()

'delete graphs after examining them

Sheets(Array("LSHO", "RSHO", "LASI", "RASI", "LKNE", "RKNE", "LANK", "LHEE", 
"LTOE", _

"RANK", "RHEE", "RTOE")) Select 
Sheets("LKNE") Activate 
ActiveWindow SelectedSheets Delete

'filter the data
Sample filter (note first 4 data points do not use previous filtered data only raw)
=IF(LTOE_Z "", (0 006181*LTOE_Z) + (0 012361*[Raw data(LTOE_Z) -  1]) +
(0 006181*[Raw data(LTOE__Z) -2)+(l 7656*[filtered data(LTOE_Z) -  1 ])
+(-0 79034*[filtereddata(LTOE_Z)-2 ] ) )

Dim intEntryCount As Integer 
Dim strCopyl As String 
Dim strCopy2 As String

intEntryCount = Range("B2") Value 
strCopyl = "AV6 BN" & CStr(intEntryCount + 5)

Range(strCopyl) Select 
Application CutCopyMode = False 
Selection Copy 
ActiveWindow Scroll Row = 1 
Range("BP6") Select
Selection PasteSpecial Paste =xlValues, Operation =xlNone, SkipBlanks = _

False, Transpose -False 
Application CutCopyMode = False
Selection Sort Keyl -Range("BP6"), Order 1 =xlDescending, Header =xlGuess _

, OrderCustom =1, MatchCase -False, Orientation =xlTopToBottom

strCopy2 = "CJ6 DB” & CStr(intEntryCount + 5)
Range(strCopy2) Select 
Selection Copy 
ActiveWindow Scroll Row = 1 
Range("DD6") Select
Selection PasteSpecial Paste =xlValues, Operation =xlNone, SkipBlanks = _

False, Transpose =False 
Application CutCopyMode = False
Selection Sort Keyl =Range("DD6"), Order 1 =xlAscending, Header =xlGuess, _ 

OrderCustom =1, MatchCase =False, Orientation ^xlTopToBottom

Filter again (Sample filter)
=IF(LTOE_Z = " " , ( 0  006181 *LTOE_Z) + (0 012361*[Raw data(LTOE_Z) -  1]) +
(0 006181 *[Raw data(LTOE_Z) -2)+(l 7656*[filtered data(LTOE_Z) -  1])
+(-0 79034*[filtered data(LTOE_Z) -  2]))

End Sub
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EXCEL CODE CALCULATION OF KINEMATIC AND KINETIC DATA

Import filtered data from filtering program

Sample calculation for data point 21

COPxd =1F(0R(R21="”,V 2 1 -”'),""5((P21*R21)+(T21*V21))/X21)

Foot Length =IF(Toe Y="", SQRT((Heel Y-Toe Y)A2+(Heel X-Toe X)A2))

Shank Length =IF(Ankle Y="M, "M, SQRT((Knee Y-Ankle Y)A2+(Knee X-Ankle X)A2))

Thigh Length =IF(Knee Y=,M\  (SQRT((Hip Y-Knee Y)A2+(Hip X-Knee X)A2)))

Trunk Length =IF(Hip Y=M", SQRT((shoulder Y-Hip Y)A2+(shoulder X-Hip X)A2))

Foot Angle =IF(Toe Y=,M\  ASIN((Heel Y-Toe Y)/Foot_Length))

Shank Angle =IF(Ankle Y=m\  ,M,S 3 141592654-ASIN((Knee Y-Ankle Y)/Shank_Length))

Thigh Angle =IF(Knee Y=m7 H,,(ASIN(Hip Y-Knee Y)/Thigh_Length))

Trunk Angle =IF(Hip Y=,M*, ,M\  3 141592654-ASIN((shoulder Y-Hip Y)/Trunk_Length))

Ankle Angle =IF(Foot_Angle " \  (3 141592654-Shank_Angle)+Foot_Angle)

Knee Angle =IF(Thigh_Angle "",(3  141592654-Shank_Angle)+Thigh_Angle)

Hip Angle =IF(Thigh_AngIe = ,M\  ,,H, (3 141592654-Trunk_Angle)+Thigh_Angle)

AA Foot =IF(OR(AD20="", AD22 = (AD22-(2*Foot_Angle)+AD20)/tA2)

AA Shank =IF(OR(AE20=,m, AE22 = (AE22-(2*Shank_Angle)+AE20)/tA2)

AA Thigh =IF(OR(AF20="") AF22 = (AF22-(2*Thigh_Angle)+AF20)/tA2)

AV Ankle =IF(OR(AH20=M", AH22 = (AH22-AH20)/(2*t))

AV Knee -IF(OR(AI20=,m, AI22 = (AI22-AI20)/(2*t))

AV Hip =IF(OR(AJ20="", AJ22 = (AJ22-AJ20)/(2*t))

Afx Foot Xd = COPxd

Afx Foot Y =1F(0R(Ankle Y COPxd = (((Ankle Y-Toe Y)/(Ankle X-Toe X)*(COPxd-

Toe X))+Toe Y))

CoMFoot X =IF(Ankle X ,M\  0 5*(Ankle X-Toe X)+Toe X)

CoMFoot Y =IF(Ankle Y 0 5*(Ankle Y-Toe Y)+Toe Y)

Foot Vx =IF(C>R(AT20 AT22 = (AT22-AT20)/(2*t))

Foot Vy =IF(C)R(AU20 AU22 -  (AU22-AU20)/(2*t))

Foot Ax =IF(OR(AT20 = " , AT22 = ’ ) , (AT22-(2*CoMFoot X)+AT20)/tA2)

Foot Ay =IF(OR(AT20 =,m, AT22 -  * " ) , (AU22-(2*CoMFoot Y)+AU20)/tA2)

Foot dl =IF(CoMFoot Y=,,M,m,,IF( Fyd>l 5,CoMFoot'Y,CoMFoot Y-Toe Y))

Foot d2 =IF(Ankle Y Ankle Y-CoMFoot Y)

Foot d3 =IF(OR('Afx Foot Xd’ ’CoMFoot X’ = m\  IFCFyd^lS, CoMFoot X-Afx Foot Xd, 

CoMFoot Y-Toe X))

Foot d4 =IF(Ankle X =m\  Ankle X-CoMFootX)
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CoMShank X =IF(Knee X 0 567*(Knee X-Ankle X)+Ankle X)

CoMShank Y =IF(Knee Y ,M\  0 567*(Knee Y-Ankle Y)+Ankle Y)

Shank Vx =IF(OR(BD20 BD22 = "" ),,M’, (BD22-BD20)/(2*t))

Shank Vy =IF(C)R(BE20 -  BE22 = (BE22-BE20)/(2*t))

Shank Ax =IF(OR(BD20 BD22 = (BD22-(2*CoMShank X)+BD20)/tA2)

Shank Ay =IF(OR(BE20 BE22 = " " ) ,,M\  (BE22-(2* CoMShank Y)+BE20)/tA2)

Shank dl -IF(CoMShank Y =H", m\  CoMShank Y-Ankle Y)

Shank d2 =IF(Knee Y ="H, H” , Knee Y-CoMShank Y)

Shank d3 =IF(CoMShank X m', Ankle X-CoMShank X)

Shank d4 =IF(Knee X m\  CoMShank X-Knee X)

CoMThigh X =IF(Hip X 0 567*(Hip X-Knee X)+Knee X)

CoMThigh Y =IF(Hip Y = 0 567*(Hip Y-Knee Y)+Knee Y)

Thigh Vx =IF(C)R(BN20 = BN22 = (BN22-BN20)/(2*t))

Thigh Vy =IF(C)R(B020 = ,,H, B022 = m’), (B022-B020)/(2*t))

Thigh Ax =IF(C)R(BN20 = ,M\  BN22 = ""), m\  (BN22-(2*CoMThigh X)+BN20)/tA2)

Thigh Ay =IF(OR(B020 = B022 = ""), m\  (B022-(2*CoMThigh Y)+B020)/tA2)

Thigh dl -IF(CoMThigh Y = m\  CoMThigh Y-'Knee Y')

Thigh d2 =IF(CoMThigh Y = ,,M, H i p  Y-CoMThigh Y)

Thigh d3 -IF(CoMThigh X = "", CoMThigh X-'Knee X')

Thigh d4 =IF(Hip X = ,M\  Hip X-CoMThigh X)

Foot Fxp =lF(OR(Foot Ax = Fxd = ""), (Foot_Mass*Foot Ax)-Fxd)

Foot Fyp =IF(OR(Foot Ay = Fyd = (Foot_Mass*Foot Ay>Fyd+(Foot_Mass*9 81))

Foot I alpha =IF(AA_Foot = Inertia_Foot*AA_Foot)

Shank Fxp =IF(OR(Shank Ax = Foot Fxp = (Shank_Mass* Shank Ax)+Foot Fxp)

Shank Fyp =IF(OR(Shank Ay = Foot Fyp = ""),

(Shank_Mass* Shank Ay)+FootFyp+(Shank_Mass*9 81))

Shank Ialpha =IF(AA_Shank = m\  Inertia_Shank*AA_Shank)

Thigh Fxp =IF(OR(Thigh Ax = Shank Fxp = " " ) , (Thigh_Mass*'Thigh Ax')+Shank Fxp)

Thigh Fyp =IF(OR(Thigh Ay = Shank F y p = ""),

(Thigh_Mass*'Thigh Ay')+Shank Fyp+(Thigh_Mass*9 81))

Thigh Ialpha =IF(AA_Thigh = Inertia_Thigh*AA_Thigh)

M Ankle = -(Fxd*Foot dl)+(Foot Fxp*FooLd2)+(Fyd*Foot d3)-(Foot Fyp*Foot d4)+Foot Ialpha 

M Knee =

M Ankle+(Foot Fxp* Shank dl)+(Shank Fxp* Shank d2)+(Foot Fyp*Shank d3)+(Shank Fyp*Shank d4)+Shank lal 

pha)
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M Hip = M Knee+(Shank Fxp*Thigh dl)+(Thigh Fxp*Thigh d2)-(Shank Fyp*Thigh.d3)- 

(Thigh Fyp*Thigh.d4)+Thigh Ialpha

P Ankle =IF(OR(AV_Ankle= M Ankle = M Ankle*AV_Ankle)

P Knee =IF(OR(AV_Knee = M Knee = H"), M Knee*AV_Knee)

P Hip =IF(OR(AV_Hip= M Hip = M Hip*AV_Hip)
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