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Abstract

The major theories of finance leading into the main body of this research are 

discussed and our experiments on studying the risk and co-movements among 

stocks are presented

This study leads to the application of Random Matrix Theory (RMT) The idea 

of this theory refers to the importance of the empirically measured correlation (or 

covariance) matrix, C, in finance and particularly in the theory of optimal 

portfolios However, this matrix has recently come into question, as a large part 

of it does not contain useful information but rather noise Therefore, recent work 

has indicated that the theory of optimal portfolios, which depends on C, is not 

adequate We use RMT in order to measure the noise component of C, and then 

we examine the methods of differentiating noise from information We go on to 

develop a novel technique of stability analysis for the eigenvectors of C after 

noise removal

Further, changes in the portfolio associated with the riskiest position, (as given 

by the largest eigenvalue and associated eigenvector), are investigated using the 

results of the previous chapters From the results, we observe periods of co­

movements of stocks, which change regularly because of some key events m the 

market These periods are characterised by a linear relationship between price 

and eigenvalue change However, the residuals in this model are strongly 

dependent on granularity (1 e sampling rate) with fit breaking down at rates 

smaller than five days Possible reasons for this breakdown are presented m 

detail
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Chapter 1
I n t r o d u c t i o n

A financial market is a market where financial assets are traded Although the 

existence of a financial market is not a necessary condition for the creation and 

exchange of an asset, in most economies, assets are created and consequently traded 

in some type of financial market

The role of financial market is to indicate how the funds should be allocated among 

assets as well as providing an environment, which forces or motivates an investor to 

sell an asset [Fabozzi et a l, 1998] Because of these properties, it is said that a 

financial market offers liquidity [Fabozzi et al, 1998], which is the ability of an asset 

to be converted into cash quickly [Investor, 2003]

1



1 1 Stock Markets around the world

In terms of market value, the stock markets of the United States and Japan are the 

largest in the world The third largest market, but far behind the United States and 

Japan, is the UK market

Trading of common stock occurs in a number of trading locations such as “national 

stock exchanges” or “over-the-counter” (OTC) markets [Teweles et a l, 1998] Stock 

exchanges are made up of members who use the facilities to exchange certain 

common stocks To be listed, a company must apply and satisfy requirements 

established by the exchange [Fabozzi et a l, 1998] To have the right to trade stocks 

on the floor of the exchanges, firms or individuals must buy a seat on the exchange, 

l e they must become a member of the exchange A member firm may trade for its 

own account or on behalf of a customer In the latter case it is acting as broker 

The top national stock exchange in the United States is the New York Stock 

Exchange (NYSE), popularly referred to as the Big Board It is the largest exchange 

with over 3,000 companies’ shares listed

Unlisted stocks are also traded electronically in an over-the-counter market There 

are about 5,000 common stocks included in the NASDAQ, the electronic quotation 

system with a total market value of over $2 trillion (reported in NASDAQ web site 

2003 [NASDAQ, 2003])

1 2 Stock Market Indicators

A stock market indicator (or index) is a statistical construct that measures price 

changes and/ or returns in stock market The purpose of the index calculation is 

usually to provide a single number whose behaviour is representative of the 

movement of prices of all listed stocks and indicative of behaviour of the market as a 

whole

The most commonly quoted stock market indicator is the Dow Jones Industrial 

Average (DJIA) Other stock market indicators cited in the financial press are the 

Standard & Poor’s 500 Composite (S&P 500), the New York Stock Exchange 

Composite Index (NYSE Composite), the American Stock Exchange Market Value 

Index (AMEX), the NASDAQ Composite Index, and FTSE 100
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In general, market indices represent only stocks listed on one exchange Examples 

are DJIA and the NYSE Composite, which represent only stocks listed on the Big 

Board By contrast, the NASDAQ includes only stocks traded over the counter But 

the most popular index is the S&P 500 as it contains both NYSE - listed and OTC - 

traded shares The DJIA uses only 30 of the NYSE-traded shares, while the NYSE 

Composite includes every one of the listed shares [Teweles et a l, 1998] The 

NASDAQ also includes all shares in its universe, while the S&P 500 has a sample 

that contains only 500 of the more than 8000 shares [Teweles et a l, 1998] FTSE 100 

includes 100 most highly capitalised blue chip companies, representing 

approximately 80% of the UK market [FTSE, 2003]

1 3 Derivatives

Derivative (or derivative security) is a financial instrument whose value depends on 

the values of another asset Derivative markets have an important role in ‘risk 

management’ and 'price discovery’ [Hull, 2000, Chance, 1995] as they enable 

investors with a lower level of risk preference to transfer the risk to the investors 

with higher level of risk preference “Future” and “forward” contracts are agreements 

whereby two parties agree to transact some financial assets at a predetermined price 

at a specified future date One party agrees to buy the financial asset, the other agrees 

to sell the financial asset Both are obligated to perform, and neither party charges a 

fee unless they do not want to perform the contract

Option contract, the other substantial derivative, gives the owner of the contract the 

right, but not obligation, to buy (or sell) a financial asset at a specified price from (or 

to) another party The buyer of the contract must pay the seller a fee, which is called 

the option price

1 4 Market declines

When a crash occurs on the market all the people around the world suffer directly or 

indirectly and millions of Dollars are lost Investors lose their money overnight and 

the entire economy is affected The largest single day decline in the history of most 

of the world’s stock markets, occurred on Monday, October 18, 1987 On that day,
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popularly referred to as Black Monday the DJIA lost 22 6% and S&P500, 20 5% of 

their total values and other market indexes declined to a similar extent [Roll, 1988] 

On Black Monday Wall Street lost 15,000 jobs in the financial industry [Facts, 2002] 

and all outstanding US stocks declined to approximately one trillion dollars [Sopns, 

2002] Also a record loss of £50 6 billion on the London Stock Exchange was 

proceeded by the fall of Wall Street [Guardian, 2003]

Market situation at present is represented by a prolonged decline plus a high 

volatility that analysts describe it as a period of low returns and high risk, which will 

be continued far into the future [Business, 2003c] This critical decline is exposed in 

the S&P500, which has lost 45% of its value from March 2000 to March 2003 

together with considerable volatility, six declines and five rises over the three years 

The rallies and declines show how fast the market is changing investors’ portfolio 

values In contrast to the last decade, the average length of the rallies over the last 

year was only 74 days before the market slumped 10% whereas for 7 years when the 

market climbed from October 1990 to October 1997 there was no decline of this size 

[Business, 2003a] Stocks are swinging up and down now, more often than any time 

since 1938 [Business, 2003b] As recently as 1995, the S&P 500 traded all year 

without once changing 2% in a day but in 2002, it swung that much or more on 52 

days [Business, 2003b]

Clearly, war with Iraq, and threat of terrorism made for a nervous market during last 

year Millions of buy-and-hold investors, who have been a major stabilising force in 

the stock market, are bailing out [Business, 2003b]

Figure 1 1 represents evolution of the four major indexes around the world over the 

last decade The volatility and decline of the market are clearly seen over recent 

years, in comparison with previously The other general message, here, is that the 

market is reverting to pre-mid 90’s levels
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Figure 1 1 A decade market evolution of (a) DJIA, (b) NASDAQ Composite, (c) S&P500 and (d)
FTSE 100

Also it is useful to look at the currency situation, where Euro has been hardly 

appreciating versus US Dollar since last year Figure 1 2 shows Euro-US-Dollar 

movement over the last three years The US Dollar is in a worsening condition 

against the Euro such that as of time of writing1 it has hit a 4-year low against Euro

1 To the date of 10 March 2003
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2000 2001 2002

Figure 1 2 US Dollar dropping versus Euro over last three years The lowest is the last day shown l e
10 March 2003

However, market volatility is the investors’ intensive concern as it determines 

whether profit or loss on their portfolios is going to take place Today, a financial 

analysts’ job is to determine a reasonable estimation of what the future market 

behaviour will be and how the customers’ portfolio value is going to change He or 

she will design the best portfolio for their clients to optimise the nsk-return 

relationship on the combined assets in the portfolio That is the importance of 

analysing and predicting the market future, which has reached a significant place in 

the field of finance Estimating the future value of a portfolio and the probability of 

how likely it is to be realised requires some features and instruments that have 

introduced a new field in finance, known as portfolio management or investment 

strategy [Fuller et a l, 1987] The first element of investment strategy is how to 

combine assets to gain the most return with respect to the level of risk associated 

with each investment Indeed, different investors have different levels of risk 

preferences [Fuller et a l, 1987] Some people prefer to deal with a low-risk 

investment even though it has a lower level of return Others prefer the chance of 

gaining high return from their investment despite increased risk An optimisation 

process, however, can imply sets of assets that result in either most return for a fixed 

level of risk (dependent on the investor’s risk preference) or the lowest amount of 

risk for a fixed level of return [Elton et a l, 1981 ] In any such process, the way that 

stocks move together is an essential element to be studied The problem of how 

stocks mter-relate is determined by the correlation coefficient, which measures co­

movements between different stocks [Elton et a l, 1981] For a set of assets combined
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in a portfolio, the correlation coefficients between each pair of stocks can be 

displayed in a correlation matrix

1 5 Scope o f the thesis

In Chapter 2, we talk about theories of portfolio management citing key literature on 

the area More details about the important role of the correlation matrix of stocks in 

the portfolio management are explained, and the difficulties in calculating this matrix 

are demonstrated

In Chapter 3, of this thesis, we discuss error problems inherent in the structure of 

such correlation matrices This error problem occurs for several reasons, such as the 

finite number of records in the stock’s prices To distinguish the error in the 

correlation matrix, C, a technique, known to random matrix theory (RMT), is applied 

[Laloux et a l, 1999] This allows us to differentiate the error from true information 

In this chapter, also, we demonstrate a simulation approach to study the result of 

RMT, when scattering (or noise) in stock’s prices is not in the same

In Chapter 4, methods of removing errors m C are investigated However, the 

stability of the matrix is the important matter, which should be preserved in all cases 

Accordingly, we apply a statistical model introduced by Krzanowski (1984) to 

examine the stability of C after removing errors from that Our results indicate that 

the stability of the matrix notably reduces and therefore, the analysis on that cannot 

be, simply, reliable The method deals with the stability of eigenvalues and 

eigenvectors of C, in which for a small change in an eigenvalue, it measures the 

changes of eigenvectors Concerning this method, we extract a new method of 

removing errors in the way that stability of the matrix is mostly kept

In the last chapter we take the most reliable part of the correlation matrix, which is 

the maximum eigenvalue, to study the movement of the market The largest 

eigenvalue of the correlation matrix is always an effective measure of risk and the 

corresponding eigenvector represents the most-risky combination of stocks 

Therefore we focus on the daily changes of the maximum eigenvalue to investigate
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the risk on the set of stocks This study is based on a theorem in linear algebra called 

the Spectral Theorem, and suggests a method to measure the day-to-day changes of 

the correlation matrices Our results demonstrate a linear relationship between the 

changes m eigenvalues’ ratio and the changes in the prices of the stocks We model 

this relationship and discuss possible causes and breakdowns of the model

Finally, an overall conclusion plus some explanation about the future work is 

presented
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Chapter 2

Literature Review

In order to gain the most return from the set of assets of which it consist a portfolio 

we need to estimate the risk and return of the portfolio In this chapter, we review the 

literature in “portfolio theory” [Elton et a l , 1981] that leads to the problem of risk 

prediction Different parts of this process include the study of correlations among 

stocks and the risks associated with individual assets In this study, also, we review 

other risk measurements used in “Capital Asset Pricing Model” [Fuller et a l , 1987], 

which is one of the most important models in finance This chapter leads up to the 

point of my project and a history about that We start by considering “Markowitz 

portfolio theory” [Markowitz, 1991]
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2 1 A  re v ie w  o f  M a r k o w itz  p o r t fo l io  th e o ry

The modern portfolio theory developed by Markowitz m the early 50s [Markowitz, 

1952] shows how to measure the risk associated with various securities and how to 

combine these securities in a portfolio to get the maximum return for a level of risk 

that investors are willing to accept

The cornerstone of the theory of Markowitz is the concept of “diversification” 

Diversification is a portfolio strategy to reduce the risk by combining a variety of 

investments It implies that as the number of various stocks gets higher, the overall 

risk of the combined portfolio gets lower Strongin et al (2000) indicate that the risk

of the portfolio is always a function of where N  is the number of distinct

assets

One of the results of the theory of Markowitz is the clarification of the definition of 

risk Before hts theory of modern portfolio, there were other definitions for risk like 

the one suggested by Graham et al (1962) Graham et al defined risk as a “margin of 

safety”, based on the idea that the analyst should independently estimate the value 

for the security in respect of its earning power and financial characteristics and 

despite the market price

Also another definition by Sharpe (1981) considers the below-the-mean variability, 

since, for most investors, risk is related to the chance that future portfolio values will 

be “less” than expected However, empirical studies have shown [Blume, 1970] that 

it makes little difference whether one measures variability of returns on one side or 

both sides of the expected return Since working with the below-the-mean variability 

is not easy, total variability of returns has been used widely as a proxy for risk and 

the most commonly used measures have been the variance and standard deviation of 

return [Fuller et a l , 1987] In general standard deviation is preferable because the 

standard deviation of a portfolio’s return can be determined from the standard 

deviations of the returns of its component securities [Sharpe, 1981] No other 

variability measures are as simple to use as standard deviation Therefore the risk or 

variability of a portfolio consist of N  assets is measured as
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N N
^ X , X t a ik ’ (2 1)

1=1 i=l k =1 k*i

(where o]  is the variance of component security i and X t are the fractions of the 

investor’s funds invested in the security i and o lk is the covariance between security

1 T
l and security k expressed as o ik -  — ̂  (rtJ -  jut )(rkj -  juk) , m which T is the number

T J=i

of records for each asset and jut is the average of assets / records and r is the return 

on the ilh asset)

2 2 A review  o f  Capital M arket T heories and p red icting  m odels

After the theory of Markowitz developed, there was a need to implement it in the real 

world Sharpe in 1961 in his PhD dissertation created the basis for a practical model 

called the “single-index model” or “one-factor model” The major assumption of this 

simplified model is that all the co-movements of stocks can be explained by a single 

factor One version of the model called the “market model”, uses a market index 

such as the S&P 500 as the factor affecting stock movements [Elton et a l , 1981] 

According to the market model it is assumed that when the market goes up most 

stocks tend to increase m price, and when the market goes down, most stocks tend to 

decrease in price

As well as the single-index model, King (1966) presented evidences on the existence 

of other factors beyond the market factor He measured effects of common 

movements among stocks beyond market effects and found an additional covariation 

of stocks associated with industry This model is one of the family of “multi-index 

model” [Elton et a l , 1981] Although multi-index models attempt to capture some of 

the non-market factors and, hence to incorporate additional information, they fail to 

provide a better description of the stocks behaviour That is because the cost of 

introducing additional indices increases the chance to pick up random noise rather 

than real information Elton et al (1973), and (1978) study “averaging techniques” to 

predict the co-movements among stocks Such techniques smooth the entries in the
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historical correlation matrix to reduce random noise and so provide a better forecast 

However, the disadvantage of averaging models is that real information may be lost 

All the models described above are statistical and are used to explain the covariance1 

between asset returns There is also an economic model of equilibrium returns which 

includes Capital Asset Pricing Model (or CAPM), one of the most famous of all 

financial models [Fuller, 1987] This model has been developed by Sharpe (1964), 

Lintner (1965), and Mossin (1966) in 1960s and it is based on the idea that investors 

demand additional expected return (called risk premium) if asked to accept additional 

risk The expected return of a stock equals the rate on a risk-free asset plus a risk 

premium According to CAPM, risk is defined in terms of volatility, and it is 

measured by the investment’s f i 2 coefficient, which is the ratio of covariance 

between stock’s return and market’s return to the variance (or volatility) of the 

market This type of risk was identified by Sharpe (1964) to be “systematic risk”, and 

also known as “market risk” Since systematic risk is only associated with the 

market, it cannot be diversified away Beside the systematic risk, there is 

“unsystematic risk”, which is the risk specific to a company’s fortunes and can be 

reduced by increasing the number of various assets

An alternative asset-pricing model to the CAPM was created by Ross (1976) and it is 

called the Arbitrage Pricing Model (or APT) Unlike CAPM, APT may specify 

return on an asset as a (linear) function of more than one single factor The strength 

of this model lies in the fact that it is based on the no-arbitrage condition, which 

means that two identical or similar items cannot be sold at different prices on 

different markets

2 3 H istorical covariance m atrix , A  problem

Implicitly, in all the theories and models we have mentioned so far, the calculation of 

the covariance matrix is required as a practical stage For example in the first step of 

calculating the historical portfolio risk one needs to construct the covariance matrix

1 A measure of the co-movements of two assets

2 = -̂ V2tm , m which Covtm is the covariance between ith stock and market and <j2m is the
crM

variance o f the market
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on a past period Also for estimating ¡3 in the models mentioned, the need to 

calculate the historical covariances between a huge number of stocks can be seen 

Studying the correlation3 (or covariance) matrix, C, is also of great interest in data 

analysis in order to extract information from experimental signals or observations 

e g in pattern recognition [Theodondis et a l , 1999], weather forecasting [Jolliffe et 

a l , 2003], and economic data analyses [Laloux et a l , 1999] Moreover, many 

statistical tools such as principal component analysis and factor analysis [Kim et a l ,

1979] try to obtain the meaningful part of the signals in a correlation matrix in order

to reduce the dimensionality of the data set

However, use of this matrix, C, which has been widespread over decades, came into 

question as two different research groups realised that a large part of it does not 

include useful information but rather significant errors [Laloux et a l , 1999, Plerou et 

a l , 1999] Laloux et al (1999) and Plerou et al (1999) simultaneously worked on the 

application of some physical theories, (discussed below), in the field of finance and 

concluded that C does not include pure information In particular, the difficulties 

associated with determining the true correlations between financial assets arise 

primarily due to

• Non-stationary4 nature of the correlations between stocks

• A finite number of observations of asset price movements

The issue then becomes how to identify the true correlated assets when there is error 

in the measured correlations

2 3 1 Physical history

In their book, Mantegna and Stanley (2000) stated that, since 1990, a growing 

number of physicists have attempted to analyse and model financial markets The 

interest of these people in financial systems was initially stimulated by work such as 

that of Majorana (1942) on the essential analogy between statistical laws in physics 

and in the social sciences In 1999 similarities between correlations in financial and 

physical time series were noted by two different groups of physicists [Bouchaud et

3 which differ from covariance matrices in having the variance normalised out
4 It means the correlation between any two pairs of stocks changes with time
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a l , 2000, Plerou et a l , 1999] Plerou et al (2000a) explained that financial markets 

are examples of complex systems in which a huge amount of data exist The 

correlations between the price changes of stocks can be compared to those of 

movements of molecules in a box containing many gas molecules, in which there are 

some random pair-wise bonds between some of the gas molecules Alternatively, in a 

more complicated system, not just random pair-wise bonds are involved, but rather 

bonds connecting clusters of molecules, which evolve over time Thus, new 

molecules are connected to the existent clusters and others, which are part of one 

cluster, connect to different clusters

In all these cases one can calculate the empirical measured correlation matrices but in 

Finance, unlike for most physical systems [Plerou et a l , 2000b], there is no 

algorithm to calculate the “interaction strength” between two companies and there 

are difficulties in quantifying stock correlations

A further difficulty is that of strictly limited number of observations, which causes 

random errors in correlation matrices (as mentioned above)

In nuclear physics, the problem of understanding the properties of matrices with 

random entries has a rich history beginning with the work of Wigner (1951a, 1951b, 

and 1956) and subsequently Dyson (1962, 1963) and Mehta (1963, 1991) In the 

fifties, physicists faced the problem of understanding (and measuring) the energy 

levels of complex nuclei5, which existing sub-atomic particle models failed to 

explain Large amounts of data on the energy levels were becoming available but 

were too complex to be explained by model calculations because the exact nature of 

the interactions was unknown To solve this problem, Wigner (1951a, 1951b) made 

the assumption that the interactions between the constituents comprising the nucleus 

are so complex that they can be modelled as random Then, he assumed that the 

Hamiltonian6 describing a heavy nucleus7 could be described by a matrix H with 

independent random elements Based on this assumption, Wigner (1956) derived 

properties for the statistics of eigenvalues of the random matrix H whose elements

5 The nucleus, like the atom, has discrete energy levels [Ernest Orlando Lawrence Berkeley 

National Laboratory, http //wwvv lbl gov/abc/wallchart/teachersguide/pdf/Ch06- 

EncrgyLevcls%20doc pdf ]

d Hamiltonian is a scries of operators associated with the system energy

7 Heavy nuclei are composed of many interacting constituents
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are mutually independent random variables Eventually he found these properties in 

remarkable agreement with experimental data [Wigner, 1956]

A long time of about three decades after this result in nuclear physics, Laloux et al 

(1999) applied Random Matrix Theory (RMT) to finance and showed that C can be 

partitioned into noisy and non-noisy components From a more formal mathematical 

point of view, this phenomenon was studied also by a group at the University of 

Boston by Plerou et al (1999) In their own independent research they used the 

method of RMT to study the correlations of stock price changes 

Based on this earlier work on RMT in Finance, Bouchaud and Potters (2000) argued 

that Markowitz’s theory of optimal portfolio is not adequate on its own Therefore, in 

[Laloux et a l , 2000] the authors introduced a technique to remove noise from the 

matrix by cleaning the noisy band and they suggest that the risk of the optimised 

portfolio obtained using a cleaned correlation matrix is more reliable They, 

therefore, claim that the cleaned correlation matrix is more stable Plerou et al 

(2000b, 2001b) and Mounfield et al (2001) discuss the stability of C by examining 

the overlap (i e measured by scalar product) of its eigenvectors over two consecutive 

sub-periods For those showing higher overlap (values near unit) over two sub­

periods, the stability is assumed to be higher and for those showing lower overlap 

values, stability is lower The evidence suggests that the part of C known as noisy (in 

RMT), tends to show lower level of stability (in overlap)

In research on techniques of Principal Component Analysis [Jolliffe, 1986] the 

stability of the eigenvectors is also studied Green (1977) and Bibby (1980) discuss 

the rounding effect of Principal Components (PCs) on the variance (eigenvalues) of 

the matrix They show that rounding PCs to a few decimal places does not make a 

great change though the Principal Components are no longer exactly orthogonal 

Krzanowski (1984), however, considers the opposite problem Instead of looking at 

the effect of small changes in the eigenvectors on the eigenvalues, he examines the 

effect of small changes of the eigenvalues on the eigenvectors He then argues that 

this gives important information on the stability of Principal Components [Jolliffe, 

1986] It is thus possible, using the Krzanowski technique, to examine the stability of 

C before removing noise and afterwards This demonstrates how noise-removing 

methods can effect the stability of the modified correlation matrix and how a 

cleaning method, in general, can preserve the stability behaviour of the correlation
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matrix This is discussed in detail in the following chapters with experimental results 

used to demonstrate these points for our data

The focus of this review has been

(a) topics in our project and literature on the area,

(b) noise m the correlation matrix,

(c) stability behaviour of the correlation matrix

Practical implementations are demonstrated in the following chapters Further, we 

bring together a number of these features in the study of co-operative behaviour in 

market, [Crane et a l , 2002, Keogh et a l , 2003] in chapter 5
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Chapter 3
R a n d o m  M a tr ix  T h e o ry

We study the basis for applying Random Matrix Theory (RMT) on an empirically- 

measured correlation matrix, C, of financial data type and demonstrate that this 

matrix contains a large amount of noise

Firstly, we simulate a set of data and add different volumes of random noise to see 

the results of the theory on each data set

Secondly, we apply RMT on empirical data and estimate the percentage of noise in C 

using eigenvalue and eigenvector analysis The experimental results for each of them 

are presented
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3 1 R a n d o m  M a t r ix  p re d ic t io n

Wigner (1956) and Dyson et al (1963) describe Random Matrix predictions as an 

average of all possible interactions in a nucleus Additionally, they explain that 

deviations from the universal predictions of “Random Matrix Theory” identify non- 

random properties that are specific to the considered system

Agreement between the distribution of the eigenvalues of a matrix M, with those 

from a matrix made up of random entries implies that M  has entries that contain a 

considerable degree of randomness, as has been shown in the literature [Plerou et a l , 

2000b, Laloux et a l , 1999] This matrix made up of random entries with unit 

variance and zero mean is called a random matrix [Mehta, 1991] In the case of a 

correlation matrix, agreement between eigenvalues’ distribution of C and those from 

a random matrix, represents randomness (or noise) and therefore deviations from 

RMT represent genuine correlation [Plerou et a l , 2000a] This is exactly our 

problem, to identify the true information ( 1  e correlated assets) among noise (or 

randomness) in the financial correlation matrix The method is to compare the 

distribution of eigenvalues of correlation matrix against the “null hypothesis” of a 

random matrix Since the correlation matrix is symmetric the random matrix, which 

it is compared to, should also be symmetric [Plerou et a l , 2001b] Any agreements 

between them should pinpoint noise and any deviations should reflect genuine 

correlated assets In other words, the part of the correlation matrix that has the same 

behaviour as the random matrix is considered to be the noisy part while that which 

contains information, is considered to be non-noisy

3 2 E m pirically-m easured  correlation m atrix

Normally, the price changes (or return) of stocks are employed to quantify the 

empirical correlation matrix [Plerou et a l , 2001a] Therefore, we need to calculate 

the price changes of assets /= /, , N over a time scale At For a price S t(t) of the

ith asset at time /, one can define its price change/ return G, (/) as

Gf(0 = ln S, (/ + Af)“ ln St (t) (3 1)
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It should be noticed that the terms “return” and “price changes” are sometimes used

interchangeably (as in [Plerou et a l , 2001a] for instance) but strictly speaking, they 

are different

Also, it needs to be mentioned that different stocks have varying levels of volatilities 

In the literature review chapter (chapter 2), we explained that volatility or risk 

associated with the stock’s price changes can be measured by its variance (or 

alternatively standard deviation) With respect to various standard deviations for 

different time series, one usually defines a normalised return to standardise the 

different stock volatilities Therefore, we normalise G, with respect to variance cr 

as follows

where <rt is the standard deviation of G, for assets i=J, ,N and G, is the time 

average of Gt over the period studied

There is a standard definition [Plerou et a l , (2000b), (2001a)] for the correlation 

matrix C, with elements Cy,

Here the bar denotes a time average over the period studied In matrix notation, the 

correlation matrix can be expressed as

where G is an N x f  matrix with elements {g,(/w)> l ~ \  , N i m = 0, ,7 - 1 ) ,  T is 

the number of records and G T denotes the transpose of G

(3 2)

C 9 = g , ( t ) g J ( 0 (3 3)

C = —GGr , 
7

(3 4)
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3 3 E ig e n v a lu e  d is t r ib u t io n  o f  the  c o r re la t io n  m a tr ix

As stated above, our aim is to extract real information about correlations from C So, 

the properties of C are compared with those of a random correlation matrix as has 

been done by Laloux et al (1999) and Plerou et al (1999) According to Equation 

3 5 a  “random” correlation matrix R is considered [Plerou et a l , 2001b] as,

R = j AAt (3 5)

where A is an N  x T matrix containing N  time series of 7 random elements with zero 

mean and unit variance, which are mutually uncorrelated Statistical properties of 

random matrices such as R have been known for many years in physical literature 

[Dyson, 1971, Edelman, 1988, Sengupta et a l , 1999] Particularly, under the

Tcondition of 7 ->oo, N -»ao  and providing that q ~  —  > 1 is fixed, it was shown

[Sengupta et a l , 1999] that the distribution of eigenvalues A of the random 

correlation matrix R is given by

2 n a l
0

A
2  < X <X.

elsewhere
(3 6)

where a 2 is the variance of the elements of G, (in the case of a normalised matrix G, 

it is therefore equal to unity), and Am:n and Amax are the minimum and maximum 

eigenvalues of R respectively, given by

¿max = CT2(1+ —± 2  E )  (3 7)
m in q y q

These are the theoretical maximum and minimum eigenvalues that determine the 

bounds of the theoretical distribution of eigenvalues All the eigenvalues of the
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random matrix are located between these two values. If eigenvalues of C are beyond 

it is said that they deviate from the random (or theoretical) bound.

To see the results of RMT in practice we apply it first on generated data (a novel 

approach) and second on a set of real data. With generating data and having the 

advantage of controlling the volume of noise, we aim to examine the effect of 

different volume of added noise on the result of RMT. While using real data is the 

main purpose to approximate noise in a real historical correlation matrix.

3.4 S im ulation

In order to see the results of RMT on a correlation matrix made up of a simulated 

data we generate a set of sinusoidal random time series. A set of 450 sinusoidal time 

series with 1500 observations (i.e. the same size as our real data set) is generated 

with random amplitude and random phase. Figure 3.1 shows some of these time 

series.

1000
Observations

Figure 3.1 Randomly generated sinusoidal time series

1500
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Figure 3 2 A sinusoidal tunc scries with added random noise (a) with noise standard deviation equal 

to 0 02, (b) with noise standard deviation equal to 4
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Next, we add some random noise normally distributed with zero mean and a 

particular standard deviation to the time series We control the volume of noise 

added to the generated data by changing its standard deviation Figure 3 2 shows one 

of the time series with two different volumes of added noise In Figure 3 2(a) the 

time series is quite clear, while, in Figure 3 2(b), it is mainly dominated by noise We 

study the behaviour of the correlation matrix constructed from those noisy time 

series by applying RMT in order to see the effect of different volumes of noise in 

time series on noise in C

First by using Equation 3 3 the correlation matrix C is constructed Since the number 

of observations is T=1500 and the number of time series is N=450 the inequality

q ~ -jj; > 1 is satisfied Therefore, we can apply the RMT to our generated data and

plot the distribution of the eigenvalues of C

0 0 5  1 15 2 25
Eigenvalues

Figure 3 3 The theoretical distribution of the eigenvalues of the generated random matrix
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Figure 3.4 (a) The empirical distribution (solid line) and the theoretical distribution (diamonds) of 

eigenvalues, (b) a closer look at the beginning part of the graphs.
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Using Equation 3 6 the theoretical distribution of the eigenvalues of the correlation 

matrix is calculated This distribution is shown in Figure 3 3 The actual (empirical) 

distribution of the eigenvalues of C is also calculated and together with the 

theoretical one is shown in Figure 3 4 In this experiment some random noise with 

standard deviation equal to 0 02, (Figure 3 2(a)), is added to the generated sinusoidal 

time series It is observable, from Figure 3 4, that a large part of the empirical graph 

is similar to the theoretical one This part (Figure 3 4(a)) that is carrying noise 

corresponds to the noisy band of the correlation matrix

However, there are some eigenvalues that deviate from the theoretical graph, which 

are called non-noisy eigenvalues corresponding to that part of the correlation matrix 

that contains real information

In the case that the standard deviation of the noise, crN, is 0 02, the number of 

deviated eigenvalues is 7 out of 450 ( 1  e about 1 6%)

3 4 1 Experimental analysis

In the next stage, we increase the volume of the added noise by increasing its 

standard deviation The largest amount of noise added to the time series has a 

standard deviation equal to 4 The same time series of Figure 3 2(a) with this new 

(increased) volume of added noise is shown in Figure 3 2(b) The distribution of the 

eigenvalues of the correlation matrix made up of this noisy data for both the 

theoretical and empirical cases are shown in Figure 3 5 The number of deviated 

eigenvalues is 18, which is 4% of the total number of eigenvalues 

However, in order to estimate the exact effect of the added noise we increase the 

volume of noise gradually Starting from 0 02, standard deviations of 0 05, 0 08, 0 5, 

1, 1 5, 2, 2 5, 3, 3 5 and 4 are examined and the number of deviated eigenvalues is 

estimated The results are presented in Table 1 and plotted in Figure 3 6(a)

At the beginning, by increasing a N an increase in the number of deviated

eigenvalues is observed This is shown in figure 3 6(a) for the standard deviations 

from 0 02 to 0 08 However, for crv varying from 0 08 to 4 no dramatic increase is

observed From this we deduce that except for small values of added noise, the 

volume of the added noise has no effect on the number of deviated eigenvalues
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Consequently, we conclude that the number of non-noisy eigenvalues is independent 

of added noise. On the other hand, in Figure 3.5 it is shown that the maximum 

eigenvalue of C, say max(e), for the case when crN= 4, is closer to the A ^ ,

theoretical maximum value from Equation 3.6, than max(e) when <7̂  =0.02, Figure 

3.4(a). This motivates us to investigate the effect of the volume of added noise on the 

distance between A ^  and max(e). For the same experiments as Table 3.1 this 

distance is examined and the result is plotted in Figure 3.6(b). Again it is seen that 

after the first few points, which show the maximal differences, the rest of them fall 

on an almost horizontal line. Again showing that ( A ^ -  max(e)) is almost 

independent of added noise.

We also computed the eigenvalues of an ideal C with absolutely no noise. Only two 

of the largest eigenvalues are non-zero and the rest are all zeroes. Additionally, those 

non-zero eigenvalues are much larger than A^ . This means that as C approaches the

ideal correlation matrix, more eigenvalues approach zero and the difference between 

the smallest and largest eigenvales (that has a value of about 260) is significant. That 

is the reason why we see less deviated eigenvalues for a very low volume of noise in 

our experiments, i.e. g n =0.02.

Eigenvalues

Figure 3.5 The empirical distribution of eigenvalues (solid line) and the theoretical distribution 
(diamonds). Added noise with standard deviation equal to 4
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Figure 3.6 Relationship between the number of deviated eigenvalues from the noise band and the
volume of noise
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Noise STDV 0 02 0 05 0 08 05 1 1 5 2 2 5 3 3 5 4
# deviated 

eigenvalues 7 15 17 17 18 18 18 17 18 17 18

Table 3 1 The volume of noise versus the number of deviated eigenvalues

The implications really are that the strong signal core is shown by this method and is 

contained in a few relatively unaffected values

3 5 A pplication to em pirical data

The set of data we have for our experiments consists of 30-minute intra-day prices 

from S&P500 over the period started from the beginning of April 1997 to the 

beginning of April 1999 Since the number of observations (records) is important for 

using RMT, the intra-day data can provide a large number of records on an even 

small period of time This set of data with about N=450 companies, and over 

1=1500 observations is appropriate for our purpose since according to the constraint

on using Equation 3 5, q - - ~ >  1 is satisfied 

3 6 N um erical results

Firstly, we construct the empirically-measured correlation matrix C by using the 

Equation 3 6 as in the previous section, and then compute the eigenvalues Xk where 

k=l, , N  is in ascending order

The distribution of the eigenvalues of the corresponding random correlation matrix is 

also calculated using Equation 3 6 Figure 3 7 shows the results of our experiments 

on the 30-minute data for 452 stocks and 1500 records The same as the results of 

RMT on the simulated data we can observe two things from Figure 3 7

• The bulk of the eigenvalues of C conform to those of a random matrix with 

graphs consistent with the latter This consistency means that there is a measure 

of randomness in the bulk of the eigenvalues Therefore, as stated in [Laloux et 

a l , 1999] we conclude that the corresponding part of eigenvalues is random and 

we consider this part as the noisy band
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Eigenvalues

(a)

Eigenvalues

(b)

Figure 3.7 (a) Eigenvalue distribution for C constructed from the 30-minute prices for 452 stocks of 
S&P 500 for 1500 records started from April 1997. The diamond curve shows the RMT result for

Pr(%) in Equation 3.6. Several eigenvalues outside the RMT upper hound can be seen, (b) a
wider view of the graph (a) including the highest eigenvalue
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• In Figure 3 7(a) and (b), which represent the same quantity on different scales, 

deviations from RMT for a small number of the largest eigenvalues can be 

clearly seen Our experiments indicate that 22 eigenvalues are beyond the noise 

band and the rest are consistent with RMT results In other words, just 4 7 % of 

the eigenvalues deviate from the RMT prediction 

This is in agreement with literature, e g  [Laloux et a l , 1999] which argues that at 

most 6% of the eigenvalues are non-noisy

In the case of our data, approximately 95 3% of the total number of eigenvalues fall 

in the region where the theoretical formula (3 6) applies Thus, less than 5% of the 

eigenvalues appear to carry most of the information These are similar to the results 

of Laloux et al (1999) and Plerou et al (2000b)

In addition, the noise and information content of the correlation matrix can be 

examined by eigenvector analysis This looks at the structure of the eigenvectors and 

compares the eigenvector component distribution with those of the random matrix

3 6 1 Eigenvector analysis

The eigenvector components of the random matrix are normally distributed with 

zero mean1 as stated by Laloux et al (1999) Thus, it is expected that the 

eigenvectors corresponding to the noise band of the correlation matrix follow a 

similar distribution to the random ones Figure 3 8 represents the distribution of the 

eigenvector components corresponding to our actual correlation matrix The 

eigenvectors associated with the largest eigenvalue, and some of the smaller ones are 

shown It is seen that the distribution of the market eigenvector2, in black, does not 

follow the same structure as the others The components of the market eigenvector 

are distributed around a mean of 0 045 and a variance of 0 05, whereas the other 

eigenvector components are distributed with zero mean and a much wider variance 

In fact the dispersion of the components around the mean gets broader as one 

examines eigenvectors associated with progressively smaller eigenvalues

1 This distribution is independent of the distribution of the random matrix elements
2 The eigenvector associated with the largest eigenvalue which has approximately equal 
component values
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Although the eigenvector analysis we have done is not as precise as the eigenvalue 

analysis above, it does suggest that the market eigenvector behaves differently to the 

eigenvectors of the random matrix and, therefore, represents the most reliable part of 

the correlation matrix.

So far, it has been shown that the results from the theory of random matrices are of 

great interest in understanding the statistical structure of the empirical correlation 

matrices. The central result of this study is in recognising that there exists a large 

amount of noise in the eigenvalues and corresponding eigenvectors of C.
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Eigenvector components

Figure 3.8
Distribution of eigenvector components

3.7 R M T  prediction  and portfolio  theory

We have noted specifically that the risk associated with a particular portfolio 

consisting of N  assets, which can be expressed (in some sense) as the total variance 

cr2p , in which the risk is directly associated with the correlations between stocks. In
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portfolio optimisation, <j2 should be minimised for a given value of the return of the

portfolio, Rp The result of the optimisation analysis indicates that the smallest

eigenvalue is associated with the “least risky portfolio” and the corresponding 

eigenvector determines the weights (or fraction) of stocks in the portfolio (as stated 

in [Chan et a l , 1999, Alexander, 2001] for instance) Therefore, the composition of 

the “least risky portfolio” has a large weight on the eigenvectors of C corresponding 

to the smallest eigenvalues

However, from the RMT results, we saw that the smallest eigenvalues of C and 

corresponding eigenvectors are not trustworthy, as they contain a large amount of 

noise Therefore, Markowitz’s portfolio theory, which depends on a purely historical 

correlation matrix, comes into question as the smallest eigenvalues of C (determining 

the smallest nsk-portfolio) are dominated by noise

This shows the importance of differentiating noise from information in C In the next 

chapter we use the suggested noise removal method by Bouchaud et al (2000) and 

discuss on it in detail

3 8 C onclusion

We have applied Random Matrix Theory to determine the noise in an empirically- 

measured correlation matrix, C For a set of actual data from S&P500 we found that 

approximately 95% of eigenvalues of C do not hold useful information and can 

considered as noisy and less than 5% of them carry useful information This is 

supported by the evidence from literature [Bouchaud et a l , 2000], which 

demonstrates that at most 6% of C carries useful information Our results are based 

on an eigenvalue analysis of C The corresponding eigenvector analysis specifies that 

the market eigenvector (the eigenvector corresponding to the largest eigenvalue) has 

a different construction to other eigenvectors and this implies that the market 

eigenvector represents most of the information of C

In addition, we examined RMT results in simulated data with various volumes of 

noise Interestingly, we observed that the number of deviated eigenvalues from the 

random bound does not depend on the volume of the added noise In general, all 

noise volumes considered gave almost the same number of deviated eigenvalues 

This means that when actual data sets, which naturally contain various amount of

32



noise, are used to construct C, the ratio of noisy part of eigenvalues of C to the non- 

noisy part is identical The correlation matrix always holds a constant amount of 

noise
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Chapter 4
M a tr ix  S ta b i l i ty

In the previous chapter we observed that a large number of the eigenvalues and 

eigenvectors of an empirically-measured correlation matrix, C, for financial data, 

contain noise We explained how the noisy eigenvalues and eigenvectors of C can 

make the results of the optimisation process1 inaccurate We now concentrate on the 

separation of the noisy part from the non-noisy part in C Differentiating noise from 

information, in the first instance and then removing the noise, makes the optimisation 

process more reliable and this leaves the analyst in a better position to estimate the 

risk of the constructed portfolio However, the suggested technique by Bouchaud et 

al (2000) for cleaning (removing noise in) C needs to be studied We apply this 

technique of cleaning C on the previous data set from S&P500 and then discuss its 

associated problems A statistical model suggested by Krzanowski (1984) is used 

then to study the stability of the cleaned C

1 To optimise risk-retum relationship in a portfolio
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4 1 N o is e  re m o v a l f ro m  c o r re la t io n  m a tr ix

We wish to differentiate and separate C into two parts

• The part of C that conforms to the properties of a random correlation matrix 

(“noise”)

• The part of C that deviates from that predicted by RMT (“information”)

In the first approximation, as stated by Laloux et al (1999), the location of the 

theoretical (or random) edge, determined by the theoretical maximum and minimum 

eigenvalues, allows us to distinguish “information” from “noise” Indeed, the edge of 

theoretical eigenvalues differentiates the eigenvalues consistent with the random 

bound from those that deviate

After separating the noisy and non-noisy parts, we go on to remove the noisy part of 

C For this purpose we use the method that Bouchaud et al have applied in 

[Bouchaud et a l , 2000] The idea is to replace the restriction of the empirical 

correlation matrix to the noise band subspace by the identity matrix with a coefficient 

such that the trace of the matrix is conserved The idea behind this technique is that 

the eigenvalues corresponding to the noise band are not expected to contain real 

information, so one should not distinguish between the different eigenvalues in this 

sector In effect, they suggest flattening, (see Figure 4 1), the noise part by replacing 

it with a multiple of identity matrix, while keeping the trace the same Maintaining 

the same trace is important since the trace or the sum of all eigenvalues is always 

equal to the trace of the correlation matrix, because

(where V is the matrix of eigenvectors on the columns, D the diagonal matrix of the 

eigenvalues, and VT is the transpose of V)

Then taking the trace of both sides of (3 8), we get

C = V t DV  , (4 1)

ticice(C) = t/ace(VT D V ) , (4 2)
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By the rules of matrix tracing, we know that for square matrices A, 5, and C 

trace(ABC)= trace(BCA)= trace(CAB). Since W T = 1, for normalised eigenvalues 

we have,

trace(C) = trace(W T D) 
= trace(D).

(4.3)

rank

Figure 4.1 Flattening of eigenvalues for noisy part. The non-noisy largest values are untouched, but 
other parts have been replaced by their average. Inset: The eigenvalues of the original C in descending

order.

Equation (4.3) indicates that the sum of eigenvalues should always be fixed. So if 

trace (D) equals 7 7 , therefore we can write

£ 4  =n or
1=1
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Z ' t ,  + Z ^ ,  = v (4 4)

m non-noisy (N-ni) noisy
items items

^  /I, + // + // + + // = ?/, where j u ~ -
N - m

(4 5)

N-ni

It is evident from the analysis above how the method is applied and that the noisy 

part of the eigenvalues is replaced by the mean of those items (Figure 4 1)

After replacing noisy eigenvalues by their mean, we need to compute the cleaned-C, 

which is calculated by substituting cleaned-D in the equation (4 1)

Finally this cleaned-C, where the noise has been removed, will be used to construct 

an optimal portfolio

Figure 4 2 The procedure of cleaning C and remov ing the noise according to the Bouchaud et al
[Bouchaud et al 2000] technique

To implement this idea m practice we use Laloux et al ’s suggestion in [Laloux et a l , 

2000] where the prediction of risk obtained using noisy-C is compared with that of
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cleaned-C (Figure 4.3). In this way, we divide the total available time period into two 

equal sub-periods. So we can take the return in the second sub-period as an estimate 

of the future return i.e. bootstrapping effectively when we are using the first set of 

data from the first sub-period. By taking the return in the second sub-period, 

therefore, we have assumed that the investor has “perfect” predictions on the future 

average returns.

4.1.1 Experimental analysis

The data set we used for RMT prediction tests is also used for the rest of 

experiments, but with the restriction that a smaller window of the set is considered. It 

is just to avoid a heavy time consuming computation.

First of all, we construct the correlation matrix using the first 600 data points for 200 

stocks.

Risk

Figure 4.3 (a) Portfolio return versus risk for the family of optimal portfolios constructed from the 
original matrix C. The top curve shows the predicted risk of the family of optimal portfolios 

calculated using 30-min returns started from 01/04/1997. The bottom curve shows the realised risk.
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Risk

(Continued from last page) (b) Risk-retum relationship for the optimal portfolios constructed using 
cleaned correlation matrix. The top curve shows the predicted risk and the bottom curve shows the

realised risk.

Next, we clean the matrix by following the procedure above (Figure 4.2). 

Subsequently, we need to extract the optimal portfolios and efficient frontiers of both 

noisy (original) and cleaned-C to compare their prediction of risks. The so-called 

efficient frontier refers to the set of portfolios that will be preferred by all investors 

who exhibit risk avoidance and who prefer more return to less and it is given by

=0 (4.6)
pi=p*

(where p i and p * denote the asset weights and Gp is the mean return and

N

Dp = ^  PjPjCj j , and £ is some parameter).

Here, we define the expressions “predicted risk” and “realised risk”, which will be 

used frequently in the reminder of this chapter. The efficient frontier calculated using
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the return on the second sub-period and the correlation matrix for the first sub-period 

is called prediction of the portfolio (Figure 4 4(a)) and the associated risk is called 

the predicted risk Using the return and correlation matrix calculated using the 

second sub-period combined with the weights of the same family of portfolios as the 

predicted ones, we design another set of portfolios, which is called in the literature 

[Laloux et a l , 2000] the teeth sat ton of the portfolio, Figure 4 4(b) The associated 

risk is also known as teahsedask

(a)

(b)

Figure 4 4 definition of (a) portfolio prediction and (b) portfolio realisation

Laloux et al (2000) state that the predicted and realised risks get closer (Figure 

4 3(b)) when the cleaned matrix is used in delineating the efficient frontier as would 

be desired They attribute the closeness of the mentioned curves to the power of 

cleaned_C in predicting the future risk and they conclude that the stability of the 

cleaned_C is higher than the stability of the original C
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Figure 4.5 The same quantity as the figure 4.3b, but with the assumption that only three eigenvalues 
are non-noisy and therefore, untouched in the cleaning process. The curves are very close.

We have replaced more eigenvalues (i.e. 197) with their average and it is interesting 

to observe, in Figure 4.5, the increasing closeness between the two curves. Therefore, 

the conclusion about the higher stability of the cleaned-C seems unlikely to be true 

because it seems that the reason for the closeness of the curves is related to the 

similarities of the replaced eigenvalues.

Hence (as we go on to show) we believe that not only does the suggested technique 

by Bouchaud et al (2000) not improve the stability of C but it could actually reduce

4.2  O ptim al portfolio: A stability  approach

In this section we study the correlation matrix from a stability point of view. The 

stability of the correlation matrix is in fact an important aspect that should always be 

considered. In the statistical literatures e.g. [Jolliffe, 1986] it is stated that 

eigenvectors and principal components can only be confidently interpreted if they are 

stable. Now the question is: what would happen to the stability of C after cleaning it?
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Is the stability of cleaned-C higher or lower? If it is lower how can we remove noisy 

elements from C such that the most stability is conserved?

In a number of published articles, (such Lee, 2001), on this subject the overlap of the 

eigenvectors of two consecutive time sub-periods is considered to study the 

consistency (or convergence) of the eigenvectors Overlap of two vectors means the 

amount of rotation of the second vector with respect to the first one (Figure 4 6) In 

the case where the vectors are normalised, the dot product of the vectors represents 

the cosine of the angle between them and gives a measure of the overlap If the 

eigenvectors’ directions remain similar over the two sub-periods, then the cosine 

value should be significant (very much closer to unity) Otherwise, it will be small 

(close to zero)

We compare the overlap of eigenvectors over two consecutive sub-periods for our 

real data set, section 4 1 1 The first sub-period is the first 600 records of our data for 

200 stocks and the second is the second 600 records Figure 4 7 shows that after first 

few eigenvectors (corresponding to the first largest eigenvalues), the overlap falls 

below a line, which is called in the literature [Strongin et a l , 2000] the noise level

and it is measured by ■—= ,  where N  is the number of eigenvectors

The first eigenvectors, as we argued earlier in this chapter, are the ones that deviate 

from the random bound and they are considered as providing information in contrast 

to the next eigenvectors, which are considered noisy As expected, the eigenvectors 

associated with the largest eigenvalues show more stability and the degree of overlap 

is significant

Figuic 4 6 the angle between two vectors and v2 indicates their overlap
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Figure 4.7 Eigenvector overlap between the two sub-periods. The horizontal line is the noise level

However, to measure more formally the stability of a matrix and its eigenvectors, we 

employ another approach in the literature on principal components suggested by 

Krzanowski (1984). Krzanowski (1984) examines the effect on vk (k111 eigenvector)

of small changes in the value of Xk (kth eigenvalue) and he argues that this is

important because it gives information on the stability of the principal components. 

The principal components can only be securely interpreted if they are stable with 

respect to small changes in the values of the Xk ’s. Specifically, he investigates the 

perturbation of an eigenvector derived for a small reduce/ increase, £ , in the 

corresponding eigenvalues. He determines the component, v(i), which diverges as 

much as possible from the ith eigenvector, v-, but whose eigenvalue is at most €

greater/ less than that of v., such that the angle 6 between v(i) and v, can be 

calculated by equation (4.7).
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C O S # ~ ^  (4 7)

n + ---------- )~1/2 i f  s  iS increased to X
; 2 1 A,-i ~ A,

(1 + ---- ----- ) 1/2 if s  is decreased from Xx

where X] > X2 > > Xn This equation demonstrates that the effect on vf of an e

change in Xt is an inverse function of X} ~ Al+] Thus it is not the absolute size of the

eigenvalue which determines whether that component is stable or not but rather its 

separation in terms of eigenvalue from the next component Relatively isolated 

(early) components with large eigenvalues should therefore be fairly stable, but later 

components all of which have similar non-zero variances will not be stable So the 

largest non-zero eigenvalue and corresponding eigenvector can be used to find the 

smallest perturbation in vr which leads to a change s in Xx

4 2 1 Stability of the correlation matrix

In this section we study the stability of C for our real data using the Krzanowski’s 

model [Krzanowski, 1984] in equation 4 7 The angle between eigenvector i of 

original C and v(i) is calculated, where v(i) is the perturbation of /th eigenvector 

derived for a small change in Xx (Figure 4 8) Also l is determined by the empirical

changes in the average of Xx from the first sub period to the second sub period It

approximates to 0 2% in our experiments So, effectively a perturbation method is 

implied
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Cosine 9

Figure 4 8 Cosine 9 for eigenvectors of original correlation matrix where 9 represents the 
perturbation of vt derived for the change of 0 2 % in A}

As expected, Figure 4 8 shows that the first (largest) eigenvectors are the most stable 

ones (<cos 9 large) Also the last (smallest) eigenvectors show higher stability than the 

middle ones, which is because the smallest eigenvalues approach zero and therefore 

in Equation 4 7, cos 9 represents greater values

Examining figure 4 3(a) again one can see that the top end of the predicted and 

realised curves are further apart whereas the bottom and the middle area are closer 

(about 19% of the top distance) Since the area of the efficient frontier associated 

with the highest risk, is corresponding to the largest eigenvalues, and the largest ones 

are the most stable ones, then we can conclude that as stability gets progressively 

lower the curves gets progressively closer This contradicts the conclusion of 

Bouchaud et al (2000) They attribute the closeness of the mentioned curves to the 

higher stability whereas we conclude that it is due to reduction in stability We now 

discuss this in greater detail
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4.2.2 Stability of the cleaned correlation matrix

According to Equation 4.7 we examine the stability of cleaned_C where the method 

of Bouchaud et al (2000) is used for cleaning (Figure 4.9).

Cosine 6

Figure 4.9 cosine 6 for eigenvectors of original C (solid blue curve) and cleaned_C (dashed red 
curve) where 6 represents the perturbation of V, derived for the change of 0.2 % in .

It can be seen from the Figure 4.9 that the stability of the eigenvectors of cleaned_C 

has declined noticeably to a low point after the 11th eigenvector (the edge of the 

noisy/ non-noisy determined of RMT prediction).

That happens because the noisy band of eigenvalues is replaced by their average, 

which means no separations between the eigenvalues at all.

Also Figure 4.9 (in contrast to Figure 4.3b) again illustrates the negative relationship 

between stability of eigenvectors (and therefore C) and the distance between two 

predicted and realised curves. As the stability decreases, the two curves get closer 

and conversely when stability increases the distance between curves gets larger.
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4 3 A  n e w  a p p ro a ch  to  m a tr ix  f i l t e r in g

We propose a new method of filtering C to preserve the stability of the matrix as 

much as possible The principle is to replace the noisy eigenvalues with components 

that have most separation from each other, while maintaining a fixed sum (according 

to Equation 4 3, the sum of eigenvalues should be constant) In Figure 4 10 the noisy 

part of the graph is changed to an oblique line The slope is determined so that on 

one hand the most separation between components is attained and on the other hand 

none of the eigenvalues is replaced by negative values (as all the eigenvalues of the 

correlation matrix are positive)

To have an idea of how the method works, Figure 4 11 shows the eigenvalues of filtered_C 

(or cleaned_C)

Eigenvalue

2 
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1 6
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1 2

1

0 8  
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20 40 60 80 100 120 140 160 180 200

Figure 4 10 Replacement of eigenvalues The non-noisy largest values are untouched, but other parts 
have been replaced such that each two ones arc kept in the most distance
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Eigenvalue

Figure 4 11 Eigenvalues of filtered_C Eigenvalue after 11th oscillate since each two ones are kept in
the most distance as possible

To observe the stability of this new filtered_C we compute its cosO (in Equation

4 7) This is shown in Figure 4 12 As can be seen the stability of noisy eigenvectors

of the original matrix is higher than those of the filtered matrix up to approximately

150th eigenvector and it is lower after 150th Thus, this method keeps stability much

higher in comparison with the flattening of the eigenvalues, (the method of

Bouchaud et al (2000)) Concerning the previous results from section 4 2 1, we

expect that the predicted and realised risk-return curves are closer on graph in the

interval between 11th to 150th and farther apart after 150th in comparison to those of

original C
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Cosine 6

Figure 4.12 Cosine 6 for the original matrix C (solid line) and filtered-C by the method based on
Krzanowski results (dashed line)

Again the largest eigenvalues correspond to the riskiest portfolios exposed in the top 

area of the efficient frontier in Figure 4.13. Equally the smallest eigenvalues 

correspond to the least risky portfolios, exposed in the lower area. As can be seen, 

the upper end, d^lt, of the curves in Figure 4.13 converge whereas the middle parts,

d{H*, are less close than those for original_C. This is another indication of the 

validity of our assertion that stability has an inverse relation to the distance between 

the predicted and realised risks. As the stability gets higher the closeness between 

curves decreases and vice versa. If d™g stands for the distance between the upper

end of the curves for original_C, and d°^R for those of middle parts, then we have 

found that:

Table 4.1 % Closeness of curves

¿ r = 6 3 %  c  

¿¿ f '= 68% d f*
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We conclude from these findings is that the method of cleaning C suggested by 

Bouchaud et al (2000) has a detrimental impact on the stability of C. Furthermore, 

the closeness of the predicted and realised curves does not necessarily represent the 

power of prediction of risk in future. Indeed, when the correlation matrix is less 

stable, the predicted and realised curves are closer than the case with more stability.

(a) Risk

Figure 4.13 (a) Portfolio return versus risk for the family of optimal portfolios constructed from the 
original matrix C (red and blue curves) and filtered_C (triangle-green and circle-magenta curves).
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0.025 0.03 0.035 0.04 0.045
(c ) Risk

(Continued from last page.) (b) A closer look at the top of the graph of (a); d/jlt is smaller than 

d y ,g (c) The closer look at the bottom area of the graph (a); d ^ lg is smaller than d ̂ lt.
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4 4 C o n c lu s io n

In this chapter we have examined the principally-used technique of noise removal for 

the correlation matrix, C This technique, which proposes flattening the noisy part of 

the eigenvalues, largely decreases the level of stability of C We have applied 

Krzanowski’s stability model to study the stability of the financial correlation matrix 

after removing the noise According to this model, we have discovered that the 

advocated technique for noise removal destroys the stability of C 

Based on the Krzanowski’s model we proposed a novel technique to filter C such 

that the stability of the matrix is preserved This model keeps the noisy eigenvalues 

at maximum separation from each other while the trace of C is kept the same 

To see the effect of noise removal, Bouchaud et al (2000) have suggested comparing 

the realised and the predicted optimal portfolios They have found a shorter distance 

between the realised risk and the predicted risk for the cleaned_C than that of the 

original C They have attributed this as a higher stability of the cleaned_C 

In our study we have shown on a set of itra-day data from S&P500 that this is not the 

case and in fact there is a negative relationship between the stability of C and the 

closeness of the predicted and realised risks This assertion is also demonstrated 

through experiments of filtering C based on the Krzanowski’s model Therefore the 

common technique of noise removal not only does not promote the stability and 

hence power of prediction, but actually leads to a noticeable deterioration and should 

be avoided
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Chapter 5 
E p o c h s

This chapter is about co-movement among stocks as influenced by market price 

changes We propose a new approach to study market reaction to high volatility and 

use the Spectral Theorem [Strang, 1988] to measure the day-to-day co-movement of 

stocks A new concept of epochs is introduced where these represent patterns defined 

in terms of daily change m the largest eigenvalue and daily change in market sector 

prices The evidence suggests a strong linear relationship between price and the 

largest eigenvalue in the epochs but the error terms m the linear models show 

correlated behaviour Therefore, a modified model is introduced Further, some break 

points are observed in the modified model, for which we discuss possible reasons
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5 1 V o la t i l i t y

After the crash of October 1987, few people would argue that stock market volatility 

changes randomly over time Researchers (beginning with Black (1976)) have found 

evidence that stock prices are negatively correlated with volatility A price drop 

increases the risk of a company going bankrupt, and its stock therefore becomes 

more volatile It is also said, [Nelson, 1991], that volatility tends to rise in response 

to bad news and to fall in response to good news The economic reason for this is 

unclear Although it has been long understood [Christie, 1982] that financial leverage 

plays a role, it has not been possible to explain the extent of the asymmetric response 

of volatility to large sudden positive and negative returns

What is known is that large negative stock returns are more common than large 

positive ones, so stock returns are negatively skewed (For example, according to an 

investigation by [Cutler et a l , 1989], 8 out of 10 largest movements in the S&P500 

have involved declines since World War 2, and only two have increased )

However, we have found work [Black, 1976][Chnstie, 1982][Campbell et a l , 

1992][Bekaert et a l , 2000] on volatility and crashes to be reticent on the effect of 

price changes on “market movements” What we mean by “market movement” is 

combined upward or downward behaviour of stocks This is the quantity measured 

by the largest eigenvalue of the covariance matrix1 made up of the stocks prices/ 

price changes [Alexander, 2001]

Regarding chapter 3 and 4, we know that the largest eigenvalue of the covariance 

matrix is the most “reliable” eigenvalue, 1 e the most deviated one from the noise 

band Therefore, although the covariance matrix contains much noise, the largest 

eigenvalue appears to contain true information about correlated movements of stocks 

and, unlike other eigenvalues, all the analyses depending on that are likely to be 

adequate In this study we propose a novel approach to risk recognition (or risk 

response) The suggested method is based on measuring the day-to-day changes of 

the riskiest position on stock combinations, which is determined by the largest 

eigenvalue of the covariance matrix

1 It should be mentioned that the covariance and correlation matrices are most of the time 
used interchangeably They have the same properties except that the correlation matrix 
removes the variances by normalisation
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5 1 1 R is k

Investors should not and indeed do not hold a single asset (or even asset class) 

Holding a multiple-asset portfolio, on the other hand, makes returns on assets 

‘uncertain’, since two assets yielding different ‘certain’ returns cannot both be 

available (as everyone will want to invest in the higher yielding asset and no one will 

purchase the lower yielding one) If everyone knew with certainty the returns on all 

assets, then a general framework for a rational portfolio selection could be 

introduced In the case of common stocks it is impossible to predict the value of 

portfolio at any future date The best an investor can do is guess the most likely 

estimates In this case, it is said that the investor bears risk In order not to incur risk, 

an investor might hold a portfolio of Treasury Bills, and of course, face no 

uncertainty, because the value of the portfolio at the maturity of the securities will be 

identical with the predicted value In the literature review earlier, we explained that 

variance (or standard deviation) of return is the most common feature to measure the 

risk From Markowitz diversification [Markowitz, 1991], the variance (and hence 

overall risk) of a combination of two assets can be even less than the variance of 

either of the assets, themselves This is because the risk of a combination of assets is 

calculated from equation 2 1 For the case when the portfolio of assets is equally 

weighted, the equation 2 1 can reduce to

<J
N

+ <j . (5 1)

(where bar notation denotes a time average and N  is the number of assets ) Hence, 

when the number of assets gets large enough, the variance of a selection of assets 

depends only on the average of the covariances between stocks To calculate the 

covariance between assets price/ price change, similar to the previous chapters we 

have

= G .(0 G ,(0 . (5 2)
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(where G; represents assets price or price change (dependent on what is used in

practice) and the bar denotes a time average over the period studied) In matrix 

notation the covariance matrix can be calculated as following,

C ' = j G G T, (5 3)

(where G is an N x T  matrix with elements G, (t) , j=l3 ,N, t=l, ,T )

It should be mentioned that the matrix of the assets time series, G, is not normalised 

with respect to the variance as in Equation 3 1 The normalisation process includes 

removing the volatility information on co-movements of stocks, which is not 

particularly useful for our experiments here since we aim to study the volatility 

behaviour itself Therefore, the covariance matrix that we construct is not a 

normalised covariance matrix

5 2 M ethodology

From the spectral theorem we know that any N x N  symmetric matrix can be 

decomposed into

i=i
N (5 4)

= ' L à>p .

(where p t = vtv^ , the outer product of the eigenvectors) Since the covariance matrix 

is symmetric, therefore spectral decomposition can be used, 1 e

(5 5)
1=1

Hence, the N * N  covariance matrix is decomposed into a product of its eigenvalues 

and eigenvectors
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Our suggested method to measure the day-to-day variation of co-movements of 

stocks is to take the difference between the two covariance matrices corresponding to 

two consecutive days/ observations and examine the effect on the maximum 

eigenvalue It means that if C 'm represents the covariance matrix corresponding to m 

recent days ( 1  e an average based on a window of m days) and C*m+\ represents the 

covariance matrix corresponding to days, then the difference between C #«+i 

and C*m will be the covariance matrix on day m-\ 1 With respect to the spectral 

theorem we can write

- C \  = J A ; +V r  W  (5 6)
»=] 1 = 1

= i - c v r 1 - ¿ w +l + i » r '  -  I  k p :  (s t>
l-l 1=1 !=1 (=1

= £  ( ¿ r 1 -  a;- ) / r +l + £  ̂  cp,m+l -  Pr ) (5 s)
1 = 1 ¡=i

Equation 5 8 clearly shows how the daily variation of prices can be reflected in the 

daily variation of the eigenvalues of the covariance matrix As we have mentioned 

earlier m this chapter, our analysis focuses on the most reliable eigenvalue, which 

contains information about the co-operation of the stocks Also, for more 

convenience, the study of -  A™, where i gets values from 1 to N, can be replaced

by the study of —̂ ( s h o w n  in appendix A)
K

To our belief use of the daily changes of the largest eigenvalue as a barometer of the 

'risk perception’ by the market is a novel approach We define these changes of the 

maximum eigenvalues as the change in cohesion As the largest eigenvalue reflects 

the high level of coherent trading activity in the market, we consider the degree of
jT-rl

uniformity in response to the coherence Therefore, in our study is recognised
"̂ max

as the change in cohesion with time and is denoted lsCohT
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5 3 E xperim ental results 

5 3 1 Epochs Definition

The data set we use for this part, is daily market sector prices from the Dow Jones 

EURO STOXX2 over a time period started from the first of January 1996 to the first 

of October 2002 This data set is divided into different market sectors allowing us to 

examine change m cohesion for each

First, we take an initial time window of one year (i e 260 days) and step-by-step 

move on to construct the covariance matrices on each day using Equation 5 3 Next, 

calculating the change in cohesion (as mentioned by the ratio of consecutive 

maximum eigenvalues) over consecutive time periods, we plot it versus the price for 

each market sector index Figure 5 1 shows the daily change in cohesion against 

price for Technology, Telecom, and Industry indices An interesting result is the 

linear relationships between the price index and the change in cohesions, which may 

be clearly observed Also additional patterns are seen in plots, which seem to show 

how the market is organising itself We call these growth patterns “epochs” Epochs 

are the focus of our discussion here, and we will characterise them and seek to 

explain their occurrence

2 http //www stoxx com
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(continued from the last page).

5.3.2 Epochs: Discussion

The linear relationship between price changes and the cohesion degree changes of 

particular points, where the coherence appears to return to a lower value at the end of 

each epoch. In addition, it seems that epochs are characterised by progressively 

higher slopes until this expansion or inflation can no longer be maintained in the 

prices. This also supports the indecisive parts of the end of the epochs, which tend to 

happen after a period of maximum prices and for which no higher degree of cohesion 

can be observed.

For a better understanding of this phenomenon, it is instructive to pinpoint the 

turning point/ end of each epoch. For this purpose, we measure the statistics of the 

progressive regression fits. If linear fits start from a couple of points at the beginning 

of data and move toward the next point every time, there should appear a sharp drop 

in the value of R-Squared3 at a particular point. We consider this sudden fall as the 

turning point of each epoch. In fact the progressive fits continue to maintain a stable

3 A measure of how good a fit is.

450
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or constant value until the point where the relationship between price and cohesion 

changes and the model fits start to diminish. As a measure of how good a model fit 

is, we use the R-Squared statistic. Therefore, by looking at the progressive R- 

Squared values we determine where the model fits tend to fall. Before getting to the 

turning point, the values of R-Squared tend to improve and in some stages they show 

stabilising behaviour (i.e. getting to a consistent value of R-Squared). As they get to 

a turning point, a sudden drop in the R-Squared value is observed. Figure 5.2 shows 

the change of R-Squared for one of the epochs observed in Figure 5.1(a). Before the 

40th point (Figure 5.2), an improvement in the model fits is observed but at 40th point 

a sudden drop occurred. This point is associated with the date of 14/09/1998, which 

we believe should be one of the key turning points. Some of these identified points 

are presented in Table 5.1. In order to determine what happened on these days we 

searched the archive of newspapers or weekly news such as ‘Guardian’, ‘Irish 

Times’, and ‘Business Week’. The results of that are shown in Table 5.1. For 

example the date of 14/09/1998 is corresponding to the ‘global crisis’ when markets 

all around the world were in decline due to the Asian Crisis.

Days

Figure 5.2 Progressive R-Squared values corresponding to the Technology- Cohesion graph. A 
sudden drop on the point of 40th day is observed.
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Figure 5.3 The time dependence of epochs for Technology plot

It should be mentioned, however, that some of the epochs are very volatile and 

identifying an exact turning point is sometimes difficult. In addition, the identified 

points in a few cases are not consistent with what one sees. This appears to be the 

case mostly in the epoch with the largest slope. What one sees is different from what 

theory describes (Table 5.1). But if we plot a 3-dimension graph of epochs, where a 

time dimension is added to the two other dimensions, it could be easier to distinguish 

the turning points of epochs. Figure 5.3 shows the 3-dimensional plot of figure 

5.1(a), when the time axis is the third dimension.

However, the model fits should be specified and its parameters estimated, while 

assumptions and conditions underlying the model should be explored. As each epoch 

is identified earlier data should be dropped to identify the next one.
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Table 5 1 The identified turning points of epochs corresponding to key events in the market

Date Event

06/02/1996 Apple Computer in decline

17/03/1997 Fall of Dow Jones after the Warren Buffet’s speech, UK pre-election

period

31/07/1997 European markets fell sharply, worrying about the Greenspan report to

Congress

29/08/1997 Fears of higher German interest rates

20/04/1998 Microsoft fear of splitting

20/07/1998 European markets fall Japanese and Russian economic crisis

14/09/1998 Global crisis due to Asian crisis

25/05/1999 China-US relationship crisis

23/07/1999 Market slump after Greenspan address

14/10/1999 Inflation, interest rate rise fear and a warning from Greenspan

24/04/2000 Backlash behind the anxiety over Globalisation

01/05/2000 Fall of Dot-com

12/12/2000 US Supreme Court Judgment Ratifies President Bush

18/12/2000 Tech slump

28/03/2001 Cut in Federal Reserve rate

11/09/2001 September 11th

02/07/2002 Scandal in Worldcom unfolding

12/07/2002 European markets tumbled after the SAP-Deutschland warning

5 3 3 Epochs Models

Cohesion graphs in Figure 5 1 appear to be characterised by periods of linear 

regression fits between price and change in cohesion The linear regression model is 

of the form

Yt =at X t +bt +et (5 9)

(where Yt is the daily price, X t is the daily change in cohesion, s t is a random error 

term with zero mean and at and bt are regression coefficients, both functions of
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time) In this model, the random errors should be independently distributed 1 e 

cov{e( , s t }=0 for all i, j, i * j  [Neter et a l , 1990] To test for independence of

error in the regression model, it is usually suggested [Neter et a l , 1990] to prepare a 

time plot of residuals The purpose of plotting residuals versus time is to see if there 

is any auto-correlation between the error terms over time If a trend can be seen in 

the residuals, it is concluded that the errors are non-independent, otherwise they are 

presumed to be independent Therefore, we need to calculate and plot the residuals of 

our model over time Figure 5 4 shows two samples of these plots calculated from 

06/02/1996 to 17/03/1997 and the other from 29/08/1997 to 20/04/1998 It should be 

mentioned that these four dates are obtained from Table 5 1

From Figure 5 4 it is evident that there is a correlation between the error terms 

Negative residuals are associated mainly with the early trails, and positive residuals 

with the later trails4 It clearly can be observed that there is a trend in Figure 5 4 (a) 

and (b) This means, therefore, that s t are not independent Although we have got

good fits (R_Squared values between 0 45- 0 66) for most market sectors, the 

dependency of error terms is against the model’s assumptions and, therefore, should 

be eliminated In this case, a transformation that is often helpful to remedy such 

dependence is to work with first differences of the model Hence, we take the first 

differences of the Equation 5 9

Y ^ y X ’t + p + S i t X y  (5 10)

(where /? is found to be typically small and positive and y , 8 are large and 

negative, positive respectively)

The Durbin-Watson5 (DW) test is then applied to test whether the error terms for the 

transformed model are uncorrelated We re-examine the transformed model and find 

that the DW statistic is satisfied with the values very much close to 2 Therefore, 

there are no more patterns in the residuals left (white noise) However, the regression

4 When the error term arc independent it is expected that the residuals fluctuate in a more 
random pattern around the base line zero
5 It is a test for serially correlated (or autocorrelated) residuals If the residuals are 
uncorrelated, the expectcd DW statistic is 2
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model shows poorer fit with the R-Squared values smaller after modifying the 

regression model.

5.3.4 Sampling rate analysis

We tried to examine different sampling rates other than daily rates to see the effect of 

differencing on the lower sampling rates. Two days, 5 days, 10 days and monthly 

sampling rates are tested. Table 5.2 represents the reduction of the R-Squared for the 

Technology market sector index. As can be seen, DW statistics were obtained for a 

variety of granularities.
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Figure 5.4 Residual- time plots illustrating nonindependence of error terms, (a) The residuals 
associated with the model fitted over the period from 06/02/1996 to 17/03/1997 and (b) from

29/08/1997 to 20/04/1998.
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Table 5.2 Model fit statistic for technology at different sampling rates

Sampling Rate R-Squared DW Statistic

Monthly 0.46 1.97

Every 10 Days 0.40 2.05

Every 5 Days 0.40 2.20

Every 2 Days 0.20 2.05

What can be seen in Table 5.2 is that the goodness of fit is reduced for the higher 

resolution data. This might suggest that there exists a high volatility in data, which 

induces the poor fit for higher sampling rates. In other words, although at daily rates, 

modifying the model results satisfactorily in white noise, the prediction power of the 

modified model is poorer.

The model failure for fine granularity is discussed in the following section.

5.4 Possib le reasons for m odel failure 

Possible reasons for regression model breakdown can be:
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1 Day of the week, which means that market behavior on particular days of the 

week, is reflecting the different level of activities affected by closing, starting or 

mid-week time

2 Outliers, which means that large price changes, are only reflected in the high 

resolution data

The first case can be rejected because the eigenvalue changes show high variability 

on all days of the week, and there is distinctive pattern for variability over particular 

days The second one is refuted too, since the model fits are satisfactory for lower 

resolution though not for higher ones Also the epoch skeleton can be observed for 

all the sampling rates including the monthly case (Figure 5 5)

Furthermore, outlying points seem to have little effect on the R-Squared and DW 

statistic, as their number is very small compared to the overall number of 

observations

Change in Cohesion 

Figure 5 5 Epoch skeleton for monthly sampling rate is retained

Finally, there exist some periods (of a few-days-length) in the market data, which 

reflect the failure of the general model fits Clearly, these periods, where the short­

term volatility increases, are associated with changes in cohesion As we explained in
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the previous sections ^ ax could be considered as a measure of volatility and 

therefore, the change in cohesion ACohT is interpreted as the proportional change in 

volatility This high volatility naturally represents ‘short-term7 lack of co-operative 

behaviour Since coherence describes the change in common perception of risk, lack 

of common perception provides fluctuations over the short-term and this reduces the 

goodness of fit In the epoch plots, the coherence (or co-operative behaviour in 

market trading) is clearly lower at the end of epochs, which is due to the lack of 

common perception of risk However, it is suggested that the breakdown in 

coherence can be used as a measure of critical market uncertainty

5 5 C onclusion

In this chapter we introduced the concept of cohesion, which is co-operative 

behaviour in market trading and also demonstrated the existence of epochs or growth 

patterns in the Dow Jones Euro STOXX market sector Epochs represent the linear 

relationship between the sector price change and the daily change in cohesion They 

are defined in all market sectors but can be observed more strongly in Technology, 

Telecom and Industry (less so in “defensive” sectors such as Food or Automobile) 

The end of each epoch, where the coherence or cohesion has returned to a lower 

value, represents a relatively critical situation in the market However, the existence 

of high volatility, which is naturally dominant over short-term periods, diminishes 

the power of predictability of sustained changes
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Chapter 6
C o n c lu s io n s  a n d  F u tu re  w o r k

The overall goal of this thesis was to study the risk and co-movements of financial 

stocks We have studied the role of the correlation matrix in order to determine the 

risk on a set of assets The major theories in finance are based on a true measure of 

correlations among assets We have shown that the so-called historical correlation 

matrix, C, contains a large amount noise and we applied the theory of random 

matrices to determine the noise in C For a set of actual data from S&P500 we 

realised that approximately 95% of eigenvalues of C do not contain true information 

This is supported to some extent by other work [Plerou et a l , 1999][Laloux et a l , 

1999], which considers that at most 6% of C carries useful information The noise 

involved in C is due to the finite number of records and the non-stationary 

correlations between stock prices We also performed an eigenvector analysis m
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complement to the correlation matrix analysis, where we expect that the eigenvector 

corresponding to the maximum eigenvalue has a different construction from those 

representing true information

In order to see the result of RMT on different volumes of noise involved in financial 

data, we presented simulations creating a sinusoidal time series By adding different 

volumes of random noise controlled by the amount of standard deviation, different 

noise volumes in time series were studied and RMT applied to each The evidence 

suggests that the number of deviated eigenvalues from the random bound does not in 

general depend on the volume of the added noise All volumes of noise examined 

gave approximately the same number of deviated eigenvalues These were associated 

with the non-noisy part of C and the value of RMT here would appear to be in 

distinguishing the non-noisy or information-rich values

After applying RMT and identifying the amount of noise in C, some techniques are 

needed to separate and remove the information from the noise We used the principal 

technique of noise removal [Laloux et a l , 2000], which proposed flattening the noisy 

part of the eigenvalues However, in examination of the stability of the matrix after 

noise was removed, we concluded that the standard method may actually destroy 

stability On the basis of results for stability obtained from the Krzanowski’s stability 

model, we therefore proposed a technique to filter C such that the stability of the 

matrix is preserved This model keeps the noisy eigenvalues at maximum separation 

from each other while the trace of C is kept the same

To test the effects of noise removal, Bouchaud et al (2000) have suggested 

comparing the realised and the predicted optimal portfolios They have found a 

shorter distance between the realised risk and the predicted risk for the cleaned_C 

than that of the original C They have attributed this to higher stability of the 

cleanedC

In our study we have demonstrated that this is not the case and, in fact, there is a 

negative relationship between the stability of C and the closeness of the predicted 

and realised risks This assertion is also showen by experiments in filtering C based 

on Krzanowski’s model We conclude therefore that the common technique of noise 

removal not only does not promote the stability and therefore the power of 

prediction, but actually leads to some deterioration
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•  A  p ra c tic a l a p p lic a t io n  fo r  th e  re s u lt  o f  R M T

With respect to principal component analysis, we know that the minimum eigenvalue 

of the correlation matrix is associated with the least risky position on a stocks 

combination and the maximum eigenvalue is associated with the most risky position 

The result from RMT tells us that the combination of assets corresponding to the 

most risky position is the most reliable one Therefore, unlike for minimum 

eigenvalues, analyses dependent on the maximum eigenvalue are likely to be 

adequate

By studying the daily changes of the riskiest position on stocks combinations, we 

have aimed to study the market risk behaviour New concepts of ‘cohesion\ and 

cepochs' have been introduced We have demonstrated the existence of epochs in 

EURO-STOXX market sector data, for which linear relationships between change in 

cohesion and market sector prices are observed The end of each epoch, sees a fall in 

coherence representing a relatively critical situation in the market The evidence 

supports a relationship between volatility and the change in the cohesion, but 

volatility is naturally dependent on short-time periods and therefore the existence of 

high volatility, diminishes the predictability of the model fits 

As a final note, it is suggested that coherence provides a measure that can be directly 

linked to critical market uncertainty

•  F u tu re  w o rk

Some analysts would claim that noise is a reflection of the various trading strategies 

of the investors in the market [Long et a l , 1990] In order to estimate the causes of 

noise, we have considered the use of fractional calculus, (which deals with 

applications of integral/ derivatives of arbitrary order) The recent application of 

fractional calculus model in finance has provided the modelling of non-Gaussian 

probability distributions, as are found in financial data where large fluctuations are to 

be expected In the case of the correlation matrix, application of the fractional 

calculus model will draw on more detailed analysis of the statistical feature of nsk-
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return on combination of assets in relation to time-dependent behaviour of the 

eigenvalues, which reflect stock movements
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G lossary

P  the ratio of covariance between stock’s return and market’s return to the 

variance (or volatility) of the market

Broker an individual or firm, which facilitates a deal between a buyer and seller 

Change in cohesion the change of the maximum eigenvalue 

Cleaned correlation matrix the correlation matrix re-constructed after removing 

noise also expressed as cleaned_C

Co-operative behaviour the common understanding of selling/ buying stocks in a 

market

Derivatives Derivative (or derivative security) is a financial instrument whose value 

depends on the values of another asset

Dividend taxable payments declared by a company’ s board of managers given to its 

shareholders out of the earning of the company at the present Usually quarterly and 

given as cash

Efficient frontier the line on a nsk-return graph comprised of all optimal portfolios 

Epochs progressive patterns defined in terms of daily change in the largest 

eigenvalue and daily change in market sector prices

Financial assets financial assets are instruments to claim amount of cash at some 

future time The price of a financial asset equals the present value of all cash 

dividends that the asset provides its owners

Indicator a statistical construct that measures price changes and/ or returns in stock 

market

Liquidity the ability of an asset to be converted into cash quickly 

Listed stock Stocks that are traded on an exchange are said to be listed stocks 

Market value the value of a company’s outstanding shares, as measured by shares 

times the current price Also known as market capitalisation

Optimal portfolio a portfolio that provides the greatest expected return for a given 

level of risk, or equivalently, the lowest risk for a given expected return, also called 

efficient portfolio

Price change the difference between asset’s values on two consecutive days
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Rate of return the annual rate of return on an asset expressed as a percentage of the 

total amount invested, also called return

Return return for a particular time period is equal to the sum of the price change 

divided by the price at the beginning of the time period
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Appendix A

Suppose

L”+l
= \ + £ (*)

It means that if X™ =1 , then /l™+ l= l  + £, and £ is a negligible part With 

multiplying X™ in both hands we have A|"+l = X™ + sA” , and therefore 

A r l ~ ^  Since £ vanishes, any finite multiplication of that vanishes, thus

X™̂ -  X™ = s m Finally from equation * we can conclude that

——  «  1 + (A|”+1 -  A” ) , which implies the study of -J -^- is the same as the study of
Xm Xm



Appendix B

%%%
%%% This function calls for other functions 
%%% to construct the portfolio prediction and portfolio realisation 
%%% and plot the graphs 
%%%

load SPnonzero %getting the data set from S&P500 intraday 
data=dataSP’,

%selectmg the first 200 time series over the first sub-period of 600 days 
dl=data(l 200, 1 600),
% the same 200 time series over the next sub-period of 600 days 
d2=data(l 200, 601 1200), 
clear dataSP data
remove3 % removing those zero entries 
clear dl d2
covl=covar(ddl), %constructing the covariance matrix on the first sub-period 
cov2==covar(dd2), %constructing the covariance matrix on the second sub­
period
ret2=findreturn(dd2), %calculating daily returns on the second sub-period
clear ddl dd2
[VI, Dl]=eig(covl),
[V2, D2]=eig(cov2),
[VI, Dl]=sort_correl(Vl, Dl), %sortmg the eigenvalues 
[V2, D2]=sort_correl(V2, D2),

figure
plot(diag(Dl)), %plotting the eigenvalues 
%cleamng C using Bouchaud technique 
[C_bl, V_bl, D_b 1 ]=get_clean 1 (V1, D l, 3),
[C_b2, V_b2, D_b2]=get_cleanl (V2, D2, 3),

%constructing portfolio prediction using original C 
[PortRiskl, PortReturnl, PortWtsl]=portopt(ret2, covl, 5),

%constructing portfolio realisation using original C 
[PortRisk2, PortReturn2]=portstats(ret2, cov2, PortWtsl),

%constructing portfolio prediction using cleaned-C 
[PortRisk_bl, PortReturn^bl, PortWts_bl]=portopt(ret2, C_bl, 5),

%constructing portfolio realisation using cleaned-C 
[PortRisk_b2, PortReturn_b2]=portstats(ret2, C_b2, PortWts bl),

C_kl=clean_matnxlO(Vl, D l, 11), %filtermg C using Krzanowski technique 
C_k2=clean_matnxlO(V2, D2, 11),
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%constructing portfolio prediction using filtered-C 
[PortRiskkl, PortReturn k 1, PortWts_kl]=portopt(ret2, C_kl, 5),

%constructing portfolio realisation using filtered-C 
[PortRisk_k2, PortReturn_k2]=portstats(ret2, C_k2, PortWtsJd), 
figure 
hold on
plot(PortRiskl, PortReturnl, 'b-'), 
plot(PortRisk2, PortReturn2, 'r—’), 
hold off

figure 
hold on
plot(PortRisk_bl, PortReturn_b 1, 'mA '), 
plot(PortRisk_b2, PortReturn_b2, 'g* ’), 
hold off

figure 
hold on
plot(PortRiskl, PortReturnl, 'b-'), 
plot(PortRisk2, PortReturn2, 'r~')5 
plot(PortRisk_kl, PortReturn kl, 'mA-'), 
plot(PortRisk_k2, PortReturn_k2, 'go-'), 
hold off
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function covr=covar(data)
% This function makes the covariance matrix for chapter4 

size_data=size(data),
obsr=size__data(2)-l, %the number of observations 
n=:size_data(l), % the number of time series (or stocks) 
forj=l obsr 

for i=l n
data(i,j)=(data(i,j+l))-(data(i,j)), %calculating the price changes 

end 
end
data=data(, 1 obsr), 
covr=cov(data'),

function ret=findreturn(data)
%To calculate daily return on data 
data_size=size(data, 1), 
obs_size=size(data, 2),
ret=D,
ret_sum=0, 
for i=l data size 

ret_sum=0, 
for j= l obs_size-l 

ret_sum=ret_sum+((data(i, j+l)-data(i, j))/data(i, j)), 
end
ret(i)=ret_sum,

end

function [C_cl, Vc, Dc, sorted_cov]=get_cleanl(V, D, n)
% This function calculates the cleaned-C 
% V is the matrix of eigenvectors 
% D is the matrix of eigenvalues 
% n is the number of nonnoisy eigenvalues

[Vs, Ds]=sort_correI(V, D), %To sort the eigenvalues 
sortedco v=Vs*D s* V s', 
clear V D
C_cl=clean_matnx(Vs, Ds, n), %C_cl is the cleaned-C 
clear Vs Ds
%Vc and Dc are eigenvectors and eigenvalues of the cleaned-C 
[Vc, Dc]=eig(C_cl),
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function C_cl=clean_matrix(V, D, n)
% This function gets the matrices of eigenvalues (D) and eigenvectors (V) 
% and returns the cleaned-C 
% n is the number of non-noisy eigenvalues 
% C cl is the cleaned-C

D_size=size(D, 1),

% D jnean is the mean of the noisy eigenvalues 
D_mean=mean(diag(D(n+l D_size, n+1 D size))),

% D_cl is the cleaned eigenvalue matrix 
D_cl=zeros(D_size),

% Non-noisy part 
for j= l n 

for i=l n 
D_cl(i, j)=D(i, j), 

end 
end

% Noisy part is replaced by the identity matrix * mean of the noisy eigenvalues 
forj=n+l D_size 

for i=l D size 
if (j==i) & (i>n)

D_cl(i, j)=D_mean, 
end 

end 
end 
figure 
hold on
plot(diag(D_cl)) 
title('Cleaned "eigenvalues'") 
hold off 
% Cleaning C 
C_cl=V*D__cl*V',
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function C_cl=clean_matrixlO(V, D, n)
% using Krzanowski technique with respect to the constraint that eigenvalues 
%shouldn't become zero
% This function gets the matrices of eigenvalues (D) and eigenvectors (V)
% and returns the cleaned-C 
% n is the number of non-noisy eigenvalues 
% C cl is the cleaned-C

[V, D]=sort_correl(V, D),
D_size=size(D, 1), 
small_n=D_size-n,

D_sum=sum(diag(D(n+l D_size, n+1 D size))), 
big_noisy_ev=l e-8,

% D_cl is to be the cleaned eigenvalue matrix 
D_cl=zeros(D_size),
increase_step=(2/(small_n*(small_n-l)))*(D_sum-small_n*big_noisy_ev)

% Non-noisy part 
for i=l n

Dlcl(i, 0=D(i, i),
end

% Biggest noisy eigenvalue 
D_cl(D_size, D_size)=big_noisy_ev,

% Noisy part
for j=D_size-l -1 n+1

D_cl(j j  )=D_cl(]'+1, J+ 1 )+increase_step, 
end

figure,
plot(real(diag(D_cl)))
sum(diag(D))
sum(diag(D_cl))

C_cl=V*D_cl*V',
[Vc, Dc]=eig(C_cl), 
hold on
plot(real(diag(Dc))),
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function eign =epoch(filename, start_date, ending_date)
%%%
%%% This function calculate day-to-day C and day-to-day eigenvalues
%%% and eigenvectors
%%% for the purpose of plotting "epochs"
%%%
% filename is the file of data set, which is a text file with 3 headerlines 
% eign is the day-to-day eigenvalues of C 
% start_date/ ending_date determines the time-period to study

[Date, Bas, Consuml, Energy ,Indust, Consum2, Tech, Util, Autom, Bank , 
Chemic , Telecom, Constr, Health , Financ, Food ,Insur, Media 
, Retail ]=textread(fi lename,' % s% f% P/o P/o P/o P/o f% f% P/o P/o f% f% f% P/o f% f% f% f 
%f,'headerlines',3,'delimiter',V),

market=[Bas, Consuml, Energy ,Indust, Consum2, Tech, Util, Autom, Bank , 
Chemic , Telecom, Constr, Health , Financ, Food ,Insur, Media ,Retail],

size_m=size(market), 
size_row=size_m( 1), 
n=sizejn(2)

%%% To construct covariance matrices on the progressive windows

start_date=strcat(start_date),
ending_date=strcat(ending_date),

%% Attempt to find the given dates (firt_point and ending_date) on the data set 

w in_end=l,
while sum(start_date=char(aa(win_end, 1)))— 10 

wm_end=win_end+1, 
end

1 ast_poi nt=win_end,
while sum(ending__date=char(aa(Iast_point,l)))~=10 

last_point=last_pomt+l, 
end

%%

% To go further on the time-windows 

increased_step=l,
while win_end+increased_step<last_point+1 

sub=market(l win_end+increased_step-l, ), 
covr=cov(sub),

% % % If a normalised correlation matrix is needed
% % % for count col=l n
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% % % for countjrow ^l n
% % % corr(count_row,
%%%count_col)=covr(count_row,count_col)/sqrt(covr(count_row, 
%%%count_row)*covr(count_col, count_col)),
% % % end
% % % end 

[ev, d]=eig(covr), 
eign(mcreased_step,n)=d(n,n), 
increased_step=increased_step+l, 

end
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function plot_epoch(eigen_file,sec_name)
% This function plot epochs
% eigen_file is the file o f saved day-to-day eigenvalues 
% sec_name is the name o f the sector to study

for i=l size(eigen_file, 1)-1
ratio(i)=eigen_file(i-H)/eigen_file(i),

end

[Bas, Consuml, Energy ,lndust, Consum2, Tech, Util, Autom, Bank , Chemic , 
Telecom, Constr, Health , Financ, Food ,Insur, Media ,Retail] 
=textread('UpTol0_2002 txt',
yo*s%f%f%P/oP/oP/of/of%P/oP/of%f%f%f%f%f%f%f%f,,headerhnes',3,'delimit 
er',7),

ratio=ratio', 
switch secjiam e 
case 1

sec=Bas(263 1991, ), 
case 2

sec=Consum 1(263 1991,), 
case 3

sec=Energy(263 1991, ), 
case 4

sec=Indust(263 1991, ), 
case 5

sec=Consum2(263 1991,), 
case 6

sec=Tech(263 1991, ), 
case 7

sec=Util(263 1991,), 
case 8

sec=Autom(263 1991,), 
case 9 

sec=Bank(263 1991,), 
case 10

sec=Chemic(263 1991, ), 
case 11

sec=Telecom(263 1991,), 
case 12

sec=Constr(263 1991, ), 
case 13

sec=Health(263 1991, ), 
case 14

sec=Finance(263 1991,), 
case 15

sec=Food(263 1991,), 
case 16

sec=Insur(263 1991,), 
case 17
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sec=Media(263 1991,), 
case 18

sec=Retail(263 1991, ), 
end 
figure
plot (ratio, sec, 'r '),

function [b,stats]= findfit(x, y)
% This function is to find a linear fit to a set of data

x_matnx=[ones(size(x)),x]5
[b,bint,r,rint,stats] = regress (y,x_matnx),
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function stats = pinpoint(E,sector, c l, c2)
%To pinpoint the turning point of epochs 
% sector is the name of sector e g Tech 
% E is the file of maximum eigenvalue
%% cl may start from 1 and c2 usually takes the value from 100 or 200

for i=l size(E, 1)-1 
ratio(i)=E(i+l)/E(i), 

end
ratio=ratio',

[Bas, Consuml, Energy ,Indust, Consum2, Tech, Util, Autom, Bank , Chemic , 
Telecom, Constr, Health , Fmanc, Food ,lnsur, Media ,Retail] 
=textread('UpTol0_2002 txt',
'% * s%f%P/of%f%P/of%f)/of%f)/of%P/of%f)/oP/of%f%ft)/of, 'headerlmes', 3,'delimit
erV;),
switch sector 
case 1

sec=Bas(263 1991, ), 
case 2

sec=Consum 1(263 1991, ), 
case 3

sec=Energy(263 1991,), 
case 4

sec=lndust(263 1991,), 
case 5

sec=Consum2(263 1991,), 
case 6

sec=Tech(263 1991,), 
case 7

sec=Util(263 1991, ), 
case 8

sec=Autom(263 1991, ), 
case 9 

sec=Bank(263 1991,), 
case 10

sec=Chemic(263 1991, ), 
case 11

sec=Telecom(263 1991, ), 
case 12

sec=Constr(263 1991,), 
case 13

sec=Health(263 1991, ), 
case 14

sec=Finance(263 1991, ), 
case 15

sec=Food(263 1991,), 
case 16

sec=Insur(263 1991, ), 
case 17
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sec=Media(263 1991,), 
case 18

sec=Retail(263 1991,), 
end

J=l,

%% contr_point2 should be greater than contr_pointl and c2 should be less than
%%1728, the number of records
contrjpomtl = c l,
for contr_point2 = cl+1 c2

sector=sec(contr jDoint 1 contr_point2), 
ratio 1 =ratio(contr__pomt 1 contr_point2),
[b( ,j),stats(j, )]=findfit(ratiol, sector),

%% b ( l , ) is the tangent slope of the fitted line and b (2 ,) is the y- 
%%intercept
%% statsfj, 1) gives R_2 at each stage(j=l, )

n + 1 ,
end
figure
plot(stats(, l),'c*'), %statsl shows the R_2 of the fitting line
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function m_point=densityrmt(covr, 1)
% To plot the density of eigenvalues in RMT and empirical

sizcov=size(covr),
n=sizcov(l)
q=l/n,
[v,el]=eig(covr), 
disp 'eig finished' 
for i=l n 

e(i)=el(i, 1), 
end
maxee=max(e),
minee=min(e),
sigma=l,

% To calculate the theoretical max and min eigenvalues 
emax=sigma* (1+1 / q+2 * sqrt( 1 /q)) 
emin=sigma*(l+l/q-2*sqrt(l/q)),

%To plot the density o f the theoretical ones 
for i=l n

pd(i)=q*sqrt((emax-e(i))*(e(i)-emin))/(2*pi*e(i)* sigma), 
end 
Figure
for k=l size(e, 2) 

if (e(k)<=emax) 
plot(e(k), pd(k),

'bdVLineWidth',l,'MarkerEdgeColorVbVMarkerFaceColorVbVMarkerSize’,3),
end

end
%

% To count the number of deviated eigenvalues from noise bound 
e_deviate=0, 
for i=l size(e, 2) 

if e(i)>emax 
e_deviate=e_deviate+l, 

end 
end
e_dev\ate
%

% To plot the empirical density o f eigenvalues
w=Q 05, 
k=0,

sum(l 8000)=0,

while (k+l)*w<=max(e)+w
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1-1+1,
sum(i)=sum(i-l), 
forj= l n

if (e(j)>k*w) & (e(j)<=(k+l)*w) 
sum(i)=sum(i)+l, 

end 
end
k=k+l,

end
num_mtval=i, 
sum=sum/n, 
m_point(l, l)=w/2, 
m_point(l, 2)=sum (l)a

forj=2 num_intval 
m_point(j, l)=m_potnt(]-l, l)+w, 
mj3oint(j, 2)=(sum(j)-sum(j-l))/w, 

end

hold on,
plot(m_point(, 1), m _point(, 2), 'r-', 'Linewidth',
1, 'MarkerEdgeColor', 'r', 'MarkerF aceColor', 'r', 'MarkerS ize', 1 ), 
hold off,
%
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function a=generate_sinus(n, T)
% This function generates n time series of sinusoidal waves 
% with T observation

for i=l n 
r=randn(l), 
omega=randn(l), 
fortheta=l T 

th=theta*pi/180, 
a(i, theta)=r*sin(th+omega), 

end 
end

function a=add_noise(a, zanb)
% This function adds noise to a time series a

for i=l size(a, 1)
%randn('state',sum(100*clock)), 

fo rj= l size(a, 2) 
p=zarib*randn(l), 
r=randn(l),
% r= l,
a(i, j)=a(i, j)+p*r, 

end 
end
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function covr=correlation(data)
% This function makes the correlation matrix

siz=size(data), 
t=siz(2)-l, 
n=siz(l), 
for j=l t 

for i=l n
data(ij)=(data(i,j+l))-(data(i,j)), %/data(ij)), 

end 
end

data=data(, 1 1),
STD=diag((l/t)*(data*data')),
covr=cov(data'),
for i=l n

dmean=mean(data(i, )), 
varn=var(data(i, )),

% if varn==0 
% i 
% end

data(i, )=(data(i, )-dmean)/sqrt(varn), 
end
disp ('normalized'), 

covr=cov(data'),
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E p och s in  M arket S ector  In d ex  D a ta  
- E m p irica l or O p tim istic?

G Keogh, S Sharifi, H Ruskm, M Crane

School of Computer Applications, 
Dublin City University,

Dublin, Ireland

Abstract We introduce here the concept of “epochs” in market move­
ments (1 e periods of co-movements of stocks) These periods m EURO- 
STOXX market sector data are characterised by linear relationships be­
tween price and eigenvalue change The evidence suggests strong time 
dependence in the linear model coefficients but residuals are strongly 
dependent on granularity (1 e sampling rate) with fit breaking down at 
rates smaller than five days Possible reasons for this breakdown are 
presented together with additional arguments on the relative merits of 
correlation and variance-covariance matrix eigen analyses m measuring 
co-movements of stocks

1 IN T R O D U C T IO N

The leverage effect (i e the fact th a t at-the-money volatilities tend to increase for 
asset price drops) m financial markets has been much studied over recent years 
This increase has been shown to apply for different forecasting horizons, depen­
dent on whether studies focus on the volatility m auto-correlations of actual 
stock prices or on those of index data  The literature is reticent, however, about 
the effect of price changes on the combined upward or downward movements of 
shares and it is this aspect which we address Specifically, we have developed, for 
different market sector d ata  from Dow Jones EURO STOXX, a  novel approach 
to  the way in which the market recognises and responds to  risk This, implicitly, 
reflects the volatility, where risk reaction clearly changes as prices rise or fall 
or crashes occur The method is based on examining change in the riskiest po­
sition, as determined by the maximum eigenvalue from an eigenanalysis of the 
vanance-covanance m atrix from day-to-day, and relating this to  effects on prices 
for the various sectors The change in the largest eigenvalue acts, in some sense, 
as a barometer of market risk

Results to  date indicate th a t there are periods m the sector data, for which 
change in the largest eigenvalue varies linearly with price As each period appears 
to end, the relationship changes and a  smaller change m the eigenvalue is required 
to  bring about the same change m price In the limit and during a crash, the slope 
is still positive (and quite large) This is evidence, we believe, th a t crash patterns 
are well-defined, due to  common perception of risk change, while upward trends
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are less predictable Evidence tends to  support an implicit relationship between 
the instantaneous volatility and the daily changes in the eigenvalues, not least 
because alternative analysis of the correlation matrix, (for the d ata  normalised 
with respect to  the variance), results m a disappearance of these periods The 
above effects vary from sector to sector, being seen to  be most pronounced m 
the technology and telecoms sectors and less so m more defensive sectors

In summary, evidence of periods in eigenvalue-price correlations is presented 
together with additional arguments on the relative merits of correlation and 
variance-covariance matrix analyses in measuring co-movements of stocks

2 T H E  B A S IC S

In order to  make money (or more euphemistically “maximise their utility” ) on 
stock markets, investors buy and sell assets As the overall risk associated with a 
portfolio of stocks can be shown [Elton et al (2002)] to  decrease with the number 
of assets, more is better when it comes to assets However, by having more 
assets, the investor will potentially take on more risk in order to  generate higher 
expected returns A balance needs to  be struck, therefore, between the risk a 
new asset will add to  the portfolio and the expected return This problem of 
balance requires a  knowledge of the volatility of and correlation between the 
assets, quantities th a t only become available (if then ') with time

In order to  measure the correlation between assets, we use the variance- 
covariance m atrix C  based on a dataset from EURO-STOXX market sector 
indices The covariance m atrix is updated daily and the individual covariances 
thus calculated a t time T  and over a  time horizon M  are given by (see for 
example [Litterman & Winkelmann(1998)])

cZ{M)  =  ^ o V r - S t . r - . r , , ! - ,  (1)
1 - i

where r lyr  is the daily return on the îth  asset at date T  and w t  is  the weight 
applied at date T

For our purposes, we use asset (1 e index) price instead of return, r îtj and 
take unit weights for previous days’ d ata  (1 e w t ~s = 1 for all s,T) in the 
calculation of covariances

As regards volatility measurement, it has been known for some time (see e g 
[Bouchaud & P o tters(2000)]) th a t the eigenstates of the correlation m atrix of 
assets are useful in the estimation of risk in a portfolio made up of those assets 
In this paper, we suggest using the covariance m atrix C because, as we will show, 
this seems to  contain more long term  information on co-movements of stocks as 
the covariances retain volatility information which is lost m the normalisation 
process Furthermore, the need to  use correlation does not apply for indices 
For volatility, we suggest the use of day-to-day (or period-to-period) change 
in the largest eigenvalue of the covariance m atrix as a measure of the change 
in the riskiest position as perceived by the m ajority of market participants 
This, we believe to  be novel, up to now, while it has been recognised th a t the
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largest eigenvalue (A^oz) and corresponding eigenvector (¿max) represented “the 
m arket” (with the eigenvector representing in some way the riskiest portfolio), 
the change m A^aa; over time has not (to our knowledge) been used before as a 
barometer of the perception of risk in the market

Specifically, we define the change in cohesion, AC T+\ as being

\ T + 1

AC t +i =  =  (2)
^max

3 R E S U L T S  A N D  D IS C U S S IO N

3 1 E pochs D efin ition  and Possible C auses

We have taken as our data, daily market sector index prices from EURO-STOXX 
covering 18 different market sectors1 and, starting with a time hori7on of 200 
days, have calculated the covariance matrices for successive days as per Equa­
tion 1 By calculating the ratio of the change m largest eigenvalue Amax over 
successive time periods, and plotting this against the price of the particular 
market sector index, we obtain a view of how the market is tending to  organise 
itself Referring to  Figure 1, which shows the daily change in Ama;c for the telecom 
and technology indices, we see evidence for the epochs mentioned above Central 
to  the idea of the epochs is the notion th a t “there are many ways for a market 
to go up but just one to  go down” Various authors ([Zumbach et al (1999)] and 
others) have identified key events which can have an (occasionally dispropor­
tionate) impact on financial markets Similarly we have identified events which 
have acted as market breakpoints and can be clearly identified as marking the 
end of epochs Some of these are given in Table 1

Table 1 Key Events as Breakers m Market Cohesion

Date Event

07/97 - 11/97 Asian Market Crisis
14/09/98 Bad News from South America
23/07/99 Plunge after Market Highs & Greenspan Address
12/12/00 US Supreme Court Judgement Ratifies President Bush
28/03/01 Cut in Federal Reserve Rate
18/09/01 Post September 11th Reaction

It should be emphasised, however, th a t not all these events appear to  be seen 
by the market as bad per se Often, it seems to  be just a pause for breath or a 
lack of any particular cohesion Successive epochs seem to be characterised by 
progressively higher slopes in price change for an increased degree of cohesion, 
each epoch being brought to  an end by a particular event Finally, it would

1 c f www stoxx com

1 0 0



appear that, as extreme prices are reached, further increases in cohesion become 
impossible and an avalanche will occur with cohesion and price both falling 
together

3 2 E pochs M odels and B reakdow n

From Figure 1 , it will be apparant th a t cohesion graphs such as those shown, are 
characterised by periods of simple linear correlation between price and changes 
in cohesion Fitting a  simple linear model of the form

Y t  =  OLT +  f a X i  +  ¿ t  ( 3 )

(where a j , fa  are functions of time, Yt  are the daily prices, X t , the daily 
change in cohesion and et are the errors) we get a good fit (R 2 «  0 45 — 0 6 6 ) for 
most m arket sectors However, et, which should be independently distributed, 
actually follows a random walk There is clearly, therefore, time-dependence of 
order one in et with partial auto-correlation function (PACF) at lag one very 
close to  one and a Durbin-W atson2 (DW) statistic d very much less than  2

Eigenvalue Chang« ECttG

(a) Telecoms Sector (b) Technology Sector

Fig 1  Daily Change in Cohesion vs Price for Different Market Sectors

Hence, this implies we should take first differences of Equation 3

A Y f  =  £ +  7  A X T + 6 A ( T X r ) (4)

(where ¡3 is small and positive and 7 ,5 are large and (negative, positive) re­
spectively) Re-examining the modified model we find th a t the DW statistic is 
satisfied d & 2 so this is now consistent with the null hypothesis of no positive 
autocorrelation and with no remaining systematic pattern  in the residuals (white 
noise) However, a t the daily sampling rate, the model fit becomes very poor af­
ter taking first differences Examining different sampling rates (see Table 2), the 
degradation in R 2 can be clearly seen for the technology market sector index

2 testing for positive autocorrelation m the residuals
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T able  2 Model Fit Statistics for Technology at Different Sampling Rates

Sampling Rate R2 Statistic DW Statistic

Monthly 0 46 1 97
Every 10 Days 0 40 2 05
Every 5 Days 0 40 2 20
Every 2 Days 0 20 2 05

This d ata  suggests th a t the variability (or volatility) increases markedly as 
the resolution increases and conversely th a t there is a settling period after which 
short term  effects do not have an impact on subsequent data

3 3 Possible Reasons for Model Breakdown

As we have seen above, the simple linear regression models break down for fine 
granularity of sampling There are several possible reasons for this

-  Day of the week It seems possible th a t market behaviour on certain days of 
the week, is subject to increased/reduced activity, reflecting start-up, closure 
and similarly We rejected this explanation, however, as eigenvalue changes 
and hence changes in cohesion were highly variable for all same-day data  
without exception

-  Statistical leverage or outliers This presumes th a t extreme values occurring 
a t certain time points or reflecting abnormally large localised price fluctu­
ations are peculiar to  a high sampling rate This does not seem to be the 
case, since even very coarse-grained sampling, (i e monthly), retains the 
epoch skeleton Furthermore, while epoch turning points are clearly signifi­
cant, the fit is satisfactory for lower sampling rates, but not for high ones 
Similarly, outlying points appear to  have little influence on the R 2 or Durbin- 
Watson statistics for all rates and, in any case, are relatively few in number 
It does seem likely, however, th a t there exists a settling period m the market, 
a few days m length, during which high variability diminishes the fit

-  Other systematic features Even at the daily rate, (fine-grained sampling), 
first-order filtering satisfactorily results in white noise Unfortunately, the 
relatively poor level of fit achieved for these higher sampling rates indicate 
th a t the model is significantly less reliable in terms of predictability value

W hat does seem clear is th a t the increased variability over a few days, reflects 
high volatility associated with changes m cohesive or co-operative behaviour, 
with frequent changes of the sign of the largest eigenvalue, (the linear trend is 
in any case strictly non-monotomc) It is, therefore, instructive to  consider the 
nature of the volatility measure in more detail

Clearly, implied/price volatilities will change no matter what so th a t the his­
torical basis should be relatively bias free Equally, A^oz is an effective measure 
of volatility, so th a t the change AC  r+ i m the coherence is equivalent to  looking 
at proportional change in volatility Typically, these high-frequency fluctuations
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are self-correcting, representing d short-term  and not particularly far-reaching 
lack of cohesive m arket behaviour, 1 e AC t +\ w 1 In other words, if coherence 
represents the change in commonly-perceived risk, deviation from the common 
perception is sufficient to ensure fluctuating variability over the short-term  and 
corresponding reduction in fit, as observed for our data

While this position is usually resolved over a slightly longer period, it is the 
lack of a sustained common perception of risk, (1 e lack of coherence), which 
leads to  a  drop in price The quantity ACj +i  is clearly large and negative at 
the turning point of an epoch, corresponding to  large change m the maximum 
eigenvalue, as well as a change of sign, since no change of sign for A^aa. between 
consecutive time points implies th a t C is incremented Unfortunately, since high 
variability is naturally associated with short-term  effects, as mentioned previ­
ously, it is non-tnvial to  determine whether a sustained change can be deter­
mined in advance A number of points are worth noting, however Firstly, use of 
the covariance measure exposes the detail of these changes The epochs, while 
present to some extent in the correlation m atrix information, are far less dis­
tinct and thus less useful for our purposes, while dimensionality considerations 
do not arise for indices Secondly, we note th a t outliers are few, so th a t toler­
ances can more readily be established on the size of high-frequency fluctuations 
(It seems clear th a t the price change distributions involved do not scale sim­
ply, since volatility is dependent on the time interval as usual) It is suggested 
th a t coherence provides an intermediate measure which can be directly linked 
to  critical market uncertainty

4 C onclusions

We dem onstrate the existence of epochs in EURO-STOXX market sector data, 
where the change m the largest eigenvalue of the covariance m atrix of daily 
prices, varies linearly with time The evidence supports an implicit relationship 
between instantaneous volatility and the change in the maximum eigenvalue, but 
volatility patterns are, typically, dependent on the time intervals observed At 
the end of an epoch, the relationship changes, with smaller eigenvalue changes 
leading to the same price change Epochs are present in all market sectors, 
but are most strongly defined in the less-defensive sectors, such as technology, 
telecoms The epoch end is followed by a return to  low coherence in market 
trading, due to  disparate perception of risk Co-operative behaviour (or strong 
coherence) in market trading suggests th a t up-turn patterns are more varied and 
hence less easy to  predict, whereas down-turn patterns are well-defined, due to  a 
common perception of risk change As a  final note, it should be mentioned th a t 
we attem pted to  replicate the results for exchange rate data  but as data  were 
limited, partial support only was obtained for results reported here
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Noise in the correlation matrix: A simulation approach

Saba Sharifi Atid Shamaie Martin Crane
School of Computer Applications 
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The lesults ot apphing Random Matrix Theory (RMT) m finance suggest that the historical correlation matrix, , 
carnes a large amount ot noise The purpose of RM1 is to compart the statistical properties oi with those ol a 
random matrix By applying RM f we study how responds to the ditfeient volumes of noise in data

Wc generate a set of 4^0 random 
sinusoidal time series and add 
some random noise normally 
distributed with zero mean and a 
particular standard deviation The 
volume ot noise is controlled b> its 
standard deviation

Maximum 
11 eigenvalue devnted
1 from nndom bind

i .  3 i______ i______ i.______i____I________ ,____ I0 5 10_ 15 20 25 30 35Eigenvalues

500 1000Observations

The distributions of the eigenvalues m historical and random 
cases are plotted A large part of the histoncal graph is similar 
to the random one This part that is carrying noise 
corresponds to the noisy band of There are some 
eigenvalues that deviate trom the random graph These 
eigenvalues and the corresponding part ot have information 
and are known as the non-noisy band To estimate the exact 
effect of the added noise v\e increase the volume of noise 
gradually Starting from 0 02 11 diiierent values of standard 
deviation are examined and the number of deviated 
eigenvalues is estimated

1500

2 3Noise standard deviation

At the beginning by increasing the standard 
deviation an increase u\ the number ot deviated 
eigenvalues is observed But for the standard 
deviation varying from 0 08 to 4 no dramatic change 
is observed Therefore it indicates that fiom a 
particular point onward there is no relationship 
between the volume of noise and the number of non 
noisy eigenvalues or in the othei words, amount ot 
noise has no eftect on the number of noisy 
eigenvalues
Consequently we conclude that the volume of noise m the data has almost no effect on the genuine information 
part of the eigenvalues oi the correlation matrix This represents that except for very small volumes of noise 
involved in data RMT result is the same tor different amounts of noise In the case of stock markets we 
conclude that RMT result does not depend on the different volumes ol noise involved in stocks prices 
Whatever noisy the stocks pi ices are RMT estimates the same percentage oi the deviated eigenvalues ot trom 
the noisy bound
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