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Abstract

One of the advantages of having information 1n digital form 1s that 1t lends 1tself
readily to content-based access This applies to information stored in any media,
though content searching through information stored in a structured database or as
text 1s more developed than content searching through information stored 1n other
media such as music In practice, the most common way to index and provide
retrieval on digital music 1s to use 1ts metadata such as title, performer, etc , as has
been done 1n Napster

My research has lead to the development of a digital music information retrieval
system called CEOLAIRE which can index monophonic music files Music files are
analysed for notes on the equal tempering scale, where note changes are observed
and recorded as being up (U), down (D) or the same (S) relative to the previous note
These note changes are then indexed 1n a search engine At query time, notes are
generated by a user using a web based interface These notes form the query for the
retrieval engine A user 1s presented with a ranked list of highly scored documents

This thesis explores the building and evaluation of the CEOLAIRE system
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Chapter 1

Inform ation R etrieval

1.1 Introduction

To date, human intellectual progression has posed many challenges and opportu-
nities. One of the most important inventions of all time was the development of
printing press by Johann Gutenberg in 1436. No longer was information the in-
tellectual property of an elite few in society. A new era emerged, bringing with it
a society where information was becoming accessible to everybody, even globally.
Later, Martin Luther translated and disseminated the basic principles of the bible
to lay people, to give them the opportunity to read and interpret information which
previously had been the exclusive domain of the church hierarchy. Luther’s stance is
an example of how disseminating information gives power to people by giving people the
ability to discuss and develop their own ideas rather than relying on a centralised source
interpreting it for them. W ith the ability to disseminate, inform ation is no longer cen-
trally controlled, rather it is distributed and once information becomes distributed,
the need to manage it effectively also becomes apparent.

After the World Wars, Western society experienced a massive industrial expan-
sion. Europe was rebuilding itself after a destructive war, while the United States,
which was relatively unscathed by the war on its territory, embarked on a research
frenzy. This led to the generation of vast quantities of scientific literature. At that
time, retrieval of information could only be achieved manually. As the quantity of

information grew, so did the need to manage it. People were growing frustrated with
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the inability to manage information effectively The computer revolution brought
with 1t an ability to automate the process of 1nformation retrieval Thus a new field
of research emerged and information retrieval was born

Microfiche was mvented by Carl Carlson 1in 1961 However microfiche 1s only
a method for browsing information, as 1t 1s a representation that 1s not directly
swtable for information retrieval The development of the WWW was the next
major advancement in the history of information dissemination, making information
more accessible to more and more people, potentially reaching every person in the world
The 1mportant tool for web retrieval 1s the use of search engines which try to create
an index for the web However, the nature of web data makes this a difficult task
A lot of traditional text search engine tasks have been explored and clever solutions
have been developed and adapted, including issues of scale as search engines are now
able to mndex bilhons of documents Today, information retrieval covers more than
jJust access to text Now 1t mncludes multimedia, audio and image and even video
which integrates image, audio and text The problem which we are concerned with
1n this thesis, 1s that of automatic information retrieval of audio and within that,
specifically music, rather than speech Figure 1 1 shows a taxonomy of the different

media upon which we can perform information retrieval

Information Retrieval

I
[ 1 I 1

Text Image Audio Video

—— [ r !

Speech| | Music Text Image Audio

Figure 11 Different information retrieval media

1.2 Information Retrieval

Information retrieval can be undertaken on information extracted from sources which
can be structured, unstructured or semi-structured An example of a structured
source of information 1s a relational database A relational database structures

mformation into tables Within tables, data 1s stored 1n attributes (columns) The
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unit of information is normally a tuple (a row) or part of a tuple of data from
a database. Querying information from a structured database of information is
achieved using a query language (such as a structured query language or SQL). An
example SQL query is shown in Figure 1.2. Retrieving information from a database
is a relatively straightforward task. As data is stored in cells as rows and columns,

the location of every piece of related data is known exactly.

EMPLOYEES QUERY
1k
INAVE  FNAME  SAURY SELECT * FROM EMPLOYEES
WHERE SALARY = 10,000
Brown John 11,000
Case Paul 10,000
Charles Andrew 12,000 RESULT SET
Hansen Karen 13.000
Hanley Mary 11.000
Smith Joe 15.000 LNAME FNAME  SALARY
White Charlie 10.000
Case Paul 10,000
White Charlie 10,000

Figure 1.2: An example SQL query

Performing information retrieval on text, such as text taken from the WW W, is
more problematic. The information resides in documents so we are not concerned with
information retrieval, rather we are concerned with document retrieval. Documents from
the web are semi-structured. The content of a web document is marked-up using
a hypertext mark-up language, HTML, which infers a structure on a document.
[Baeza-Yates et al.,, 99b, p369] identifies a number of challenges with data on the

web. These include:

e« Distributed data. Web data sits on many different types of computers and
platforms, without any predefined topology. Bandwidth and network reliabil-

ity to allow access to WW W data is not guaranteed.

 Volatile data. Web servers are constantly being added and removed to and
from the web. The same applies to the content of web documents, many
of which are in a constant flux, with their content being updated, deleted
and augmented. Content can be relocated and documents can be moved or

renamed.
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e Large volume. Since its inception, the WW W has consistently undergone

growth in content on an exponential scale.

e Unstructured and redundant data. A HTML document is not well struc-
tured. That is, the content ofthe document is marked up using mostly form at-

ting tags, rather than tags which describe exactly their structure and content.

* Quality of data. Due to the lack ofa central editorial process for inform ation
on the web, data can be false, invalid, poorly written and can easily contain

gramm atical errors.

« Heterogeneity of the data. The WW W s global, therefore it draws from

a multi-lingual and multi-alphabet domain.

These challenges illustrate that building a process to allow for the searching of
W W W text data is by no means trivial.

Unstructured information sources are sources of information which have not had
their content marked up using a mark-up language. Raw multimedia data is unstruc-
tured. By this we mean the content has not been marked up. In fact the data may contain
structure but this structure has to be observed (automatically or manually). In recent
years we have seen research into how we can structure this type of information so
that it can be processed effectively. For example, dealing with news-wire text, raw
audio [Smeaton et al.,, 98] and video [Smeaton et al.,, 01]. Although analysis and
conversion of these data sources is possible, historically it has been a manual process,
as in the case for video where humans edit and tag content-bearing information.

In the work reported in this thesis, as we wish to perform information retrieval on
music, we can ask whether music is structured or unstructured? The answer depends
on which format we use when storing music. Formats like MP3, WAV etc. contain no
mark-up tags from which we can extract information relating to content. A format
like MIDI has some structural information which can be used when attempting
retrieval. These include properties like tempo and which instrument should be
utilised when playing notes. The amount of music on the web does grow, but not to

the same extent that HTML web documents do. The popularity of Napster brought
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an enormous amount of music to the Internet, but the Internet as a channel for
music distribution has not yet proved commercially viable, except perhaps for the
case of radio stations broadcasting Internet music streams over TCP/IP. Neither
are music documents subject to the same flux of change in terms of content: once
a piece of music has been composed and stored somewhere - whether on the web or
in a database or a repository - it is rarely modified or updated. This stability that
music documents have removes at least one of the complexities that text inform ation

retrieval on the web has to overcome.

1.3 Principle Components of an IR System

The process of automatic information retrieval can be broken into four important
components: input, processing, output and relevance feedback. The input compo-
nent comprises of documents and user queries. The processing component is facili-
tated by documents (indexing) and queries (matching queries against documents).
The output component consists of a ranked list of documents which the process-
ing component deems relevant to the user query. The relevance feedback component
takes relevance judgements by a user to further expand or limit the answer set. The four
principle components of an information retrieval system are shown in Figure 1.3.
If we take a closer look at this model, we can break the components down into
4 distinguishable functions, gathering, indexing, searching and management [Agosti
et al., 00]. Documents first have to be retrieved to generate a corpus. Once a corpus
is available the documents are indexed, so that they can be searched. W ith a system
in place, it has to be managed effectively to ensure that the index is always up to

date and correct if the document collection or corpus is anything but unchanging.

1.3.1 Gathering

Documents can be collected automatically or manually. Manual gathering implies
that a collection of documents is available somewhere and is static. Automatic doc-
ument gathering is usually performed on a non-static collection e.g. the WW W,

by a spider or a crawler which crawls the web seeking out and downloading new
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System Controlled i Feedback

together

Figure 1 3 Principle components of an information retrieval system

documents Once documents are downloaded, some pre-indexing tasks can be un-
dertaken, such as irrelevant mark-up removal, stop-word removal and stemming
The collection we used as part of our researched was manually gathered and 1s

static

132 Indexing

When the corpus of documents which have been gathered 1s ready to be indexed,
documents are processed to generate an index A variety of data structures and pro-
gramming languages can be used to achieve this Typically, compiled languages (C,
C++) rather than interpreted languages (Java, PERL) are used to implement these
processes This 1s for speed and memory storage requirements, as programs written
using compiled languages usually run faster and have lower memory requirements

than those written using interpreted languages

133 Searching

The searching component of an information retrieval system takes a user’s informa-
tion need expressed as a query and applies some kind of relevance estimate (Boolean,

vector space or probabilistic similarity) against the corpus This process usually re-
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sults 1n a hst of documents (answer set) deemed relevant by the system If the
relevance estimate 1s Boolean, then no meaning can be inferred from the ranking
in the answer set The probabilistic model and vector space models both return a
ranked hst of documents, with the high scoring documents ranked first Relevance
feedback 1s also part of the searching component whereby judgements made by a user about
the relevance of documents can be used to automatically modify a query The underlying
assumption behind most relevance feedback theories 1s based around the occurrence of
terms in documents that a user deems relevant The terms which occur more frequently
i relevant documents than n non-relevant documents can be used to help retrieve other
relevant documents Relevance feedback could play an important within a music informa-
tion retrieval system However, within the scope of this dissertation, relevance feedback

plays no role

134 Management

It 15 not enough to simply gather a corpus and index 1t for subsequent retrieval The
source for a corpus may naturally change over time, so the gathering and indexing
component will have to be re-run frequently In the case of the WWW, we have
discussed the nature of the data and we can also observe that links between web
documents die sporadically, connections fall, documents move, document content

changes, etc An information retrieval system has to try and overcome all of this

1.4 Indexing

As we have already seen, one of the central components of an information retrieval
system 18 to create an index for a corpus of documents, where a user can consult
the index 1n the form of a query to locate the occurrence of a term 1n a document
within the corpus Important factors when deciding the data structure for an index
are speed and storage requirements There are a number of ways in which we can

index documents
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141 Orgmal Format -

The simplest way we could implement a text based information retrieval system
1s to store the documents as text files and every time a query 1s 1ssued, a string
comparison could be undertaken to match every word in every document against
every word 1n the query While this naive approach could be deemed an information
retrieval system, 1t would be unsustainable for large collections of documents, as 1t
could take days to resolve a query

More efficient methods have been developed, including using intermediary data
structures to store the data, which speeds up the process of resolving a query One

such data structure 1s an inverted file

142 Inverted File

An mverted file [Berry et al, 99, pp 27-29] 1s a data structure which allows n-
formation retrieval systems to track which documents contain a particular term
within a corpus Traditionally, terms belong to documents but with an nverted
file, documents belong to terms: For every term in the index, an associated hst
of documents, which contain that particular term, 1s recorded This index 1s an
alphabetically sorted data structure from “a” to “2” Every time a new term 1s en-
countered, 1ts index location 1s calculated and a document 1dentifier 1s added to
the hst of identifiers associated with that term Inverted files are very powerful
and essential features of an information retrieval system, as they allow for the swaft
look-up at query time, of the list of documents associated with a particular term
An 1nverted file can have weights associated with each document identifier which
can be used by the query manager when deciding how to rank documents in order
of relevance to a query An 1nverted file 1s 1llustrated in Figure 14 The main
disadvantages with inverted files are that updates to the index are slow They also
have expensive storage requirements The storage requirements for an inverted file
can be up to half that of the original text [Witten et al , 99, pp 114-115] Another
approach to indexing documents which can 1esult 1n a storage requirement as low

as 10% of the original text corpus 18 the use of a signature file
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Figure 1.4: Inverted file

1.4.3 Signature Files

Signature files [Berry et al.,, 99, pp 27-29] are another approach which allow a
corpus of documents to be converted into an intermediate representation for subse-
guent search. Central to the use of signature files are hash signatures or hash values.
Signature files work by breaking the input text into fixed length blocks and for each
term in each block, applying a hash function to generate a hash value for that term.
The hash values (which is a binary number) for each term are OR’ed to produce a
signature for the block. Figure 1.5 shows how binary signatures are generated after
the hash function is applied on a block of terms.

Original Text
Central to the use of signature files are hash signatures or values

1 Central to the 2 use of signature 3 files are hash 4 signatures or values
H(Central) = 100010 H(use) =001011 H(fles) = 111000 H(sfgnatures) = 100100
() =101010 H(of) = 100001 H(are) = 001000 H(or) S 110000
H(the) =001101 H(signature) = 100001 H(hash) = 110001 H(values) = 100000
o 10on 1oL 10

Figure 1.5: Signature files

At query time, a query term is processed by the same hash function generating
a binary hash-number. Signature file hashes and the query hash are compared
sequentially using the bit-wise AND operator, allowing for exact or partial matching.
If the digits are the same, any bit-string hash value when AND 'ed with another bit-
string hash-value will result in the generation of the same number. Figure 1.6 shows
a query being matched and the occurrence of a false-drop (when an incorrect match

is found). If the result is the same as the query term’s number, then it is assumed to
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be a potential match A potential match has to be confirmed as a match to ensure
1t 1s not a false-drop and the block 1s checked to ensure that the term 1s present
A false-drop occurs on the first comparison but 1t can be resolved by checking the

hash values of the other terms in the block

Block
(1] 101111 |[2] 1otot1  |[3] 111001 ][4] 110100 islgmum
AND AND AND AND
[ ooto11 | [ oozoir | | ootoxi | [ __ooto11 Is,g‘}“;‘t‘fm
| oo1011 | [ ooro1r | [ ootemr -] | ooocoo- |
False Drop Match

Figure 1 6 Term matching in a signature file

A Iimitation of signature files 1s that they do not have the potential to scale to
the same extent as inverted files as the search through the file 1s sequential As the file
grows, the search time also grows, but they are more efficient for phrase searching as
the spatial location of terms is kept intact We will not use signature files within this
dissertation, rather we have included an explanation so the reader 1s aware of alternative

methods which retrieval can be undertaken

1.5 Retrieval

The task of retrieval 1s as follows given a number of documents, how can we se-
lect documents that best match the user’s information need expressed as a query
Currently we select documents by scoring them using corpus and query weights
Three popular approaches to implementing the retrieval component of an informa-
tion retrieval system are the Boolean model, vector space model and the probabilistic

model

151 Boolean Model

Boolean model information retrieval systems are simple retrieval systems based on
set theory and Boolean algebra [Baeza-Yates et al , 99b, pp 25-27] The Boolean

model formulates a query as a combination of terms, conjugated using the Boolean
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operators AND, OR and NOT Finding documents 1n a corpus about “Audio Re-
trieval” which do not contain the word “Speech”, would result 1n a Boolean query
“(audio AND retrieval) AND NOT speech”, matching indexed terms based on
whether they are present 1n a document or not Figure 1 7 shows a set theory repre-

sentation of the Boolean expression “(audio AND retrieval) AND NOT speech”

Figure 1 7 Boolean set theory

A feature of the Boolean model 1s that an answer set can easily contain too
many, or too few results A document which may not match a Boolean query 100%,
may still be relevant A substantial improvement 1n retrieval can be achieved if an
information retrieval system were able to partially match queries to documents One

method to achieve partial matching 1s to use the vector space model

152 Vector Space Model

The vector space model [Salton et al , 75] can partially match queries against doc-
uments This 1s achieved by implementing a non-binary term weighting scheme to
estimate the degree of similarity between a query and the documents indexed by
the processor The concept 1s shown graphically in Figure 1 8 where we can see
that document 1 has a higher similanty to Q than document 2 This can observed by
the fact that the angle between Q and djis smaller than the angle between Q and d» and
thus the dy 1s deemed closer the query Q Allowing for degrees of similarity between
documents and a query, allows the processor to rank the output in terms of higher

scoring documents
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d, (Vector for document 2)

d, (Vector for document 1)

@ (Vector for the query)

Figure 1 8 Vector space model showing similanty between two documents and a
query

One of the more popular methods for generating the weights behind the vector
space model makes use of tf*idf weighting ¢f*1df weighting revolves around the 1dea
that the more often a term appears 1n a document (the higher its term frequency
or tf), the more that term describes the content of the document It also takes
mto account how often that term appears in all documents (the inverse document,

frequency or 1df) The simple formula for ¢f*;df weighting 1s

N
Wy = tfz] (&E)

where

w,, = weight of term 7 1n document 2

tf,; = occurrence count of term 7 1n document :
N 1s the number of documents in the corpus

df, = the number of documents 1n the corpus which contain term j

The 1dea behind #f*1df weighting 1s straightforward It makes use of a number
of important, yet easily computed factors The first of these 1s the number of times
a particular term appears 1 a given document (tf,,), the second 1s the number of
documents that contain this term at least once (df,) and finally the total number of
documents (N) The basic 1dea 1s, that a term which appears across many (if not

all) documents, 1s not a good document discriminator and should be ranked low A



15 Retrieval ! 13

term which occurs often 1n a few documents, should however be ranked higher By
assigning N=2000, ¢f,, =20 and df, =10, then w,, = 20 (¥%2) =400 Here term 2
occurs in a few documents (10 1n total) so 1t gets a high weighting Now, 1f we assign
N=2000, tf,, =20 and df; =1900, then wy = 20 (28) =211 It should be clear
that the more frequent a term appears across all documents, the lower 1ts weighting
Query weights are generated using the above formula and retrieval 1s achieved by
scoring the query term weights by document term weights This 1s implemented by
multiplying the query term weights against the appropriate document term weights,
resulting 1n a list of documents which can be ranked 1n decreasing order by scores
Other methods exist for generating information retrieval scoring weights One

such model attempts to define the retrieval paradigm within a probabihistic frame-

work, known as the Probabilistic model

153 Probabilistic Model

The Probabilistic model [Robertson et al, 76] 1s an alternative model which can
be used for information retrieval Scoring weights are generated for documents by
attempting to predict the probability that a given document will be relevant for a
particular query Documents are then ranked in decreasing order of their probability
of relevance, through the use of decreasing scores The probabilistic model assumes
binary relevance and mutual independence, that 1s, a document 1s either relevant
or not relevant to a query The relevance of one document has no bearing on the
relevance of another As with the vector space model, term frequency and document
frequency are used as indicators of relevance A common implementation of the
probabilistic model 1s BM25 BM25 uses different formulae for generating weights

for query terms and index terms The formula used for generating weights at index

time 18
ki+1 tf, 2
wzj:%%—)f;i where K =k [(1_b)+b'aé—uz]
where

tf,, 15 the frequency of term 7 1 document 3
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Wij is the weight for term j in document i

b and kiare parameters

li is a count of the number of terms in the document

K is a figure which represents the ratio between the length of document i and
the mean collection document length (advl)

advl is the mean collection document length which is the average number of

terms per document

The formula used for generating weights at query tim e is:

(N—f
dfi

where

w(qg is the weight for term j in the query, g

tfgk is the frequency of term h in the query q
is a parameter

N is the number of documents in the corpus

dfj is the number of documents which contain the term j

There are quite a few other models for information retrieval and the area of
developing these models is quite an active topic. For example, Bayesian networks,
logical models and language modelling are all hot topics in information retrieval

research, but these are beyond the scope of this discussion.

1.6 Evaluation

An important step in the process of building an information retrieval system is to
evaluate its performance with respect to the quality ofthe answer set. The answer set
is the list ofdocuments ranked in terms ofweighting scores, that the processor deems
relevant to a users query. Two different indicators can be used to evaluate retrieval

performance, precision and recall [van Rijsbergen, 79, pp 114-115]. Precision and
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recall are indicators of the quality of retrieval at a given point in the answer set.

1.6.1 Precision

Precision is used to give an indication of the relevance of the answer set. It is
the number of relevant documents in the answer set, divided by the total number
of documents in the answer set. See Figure 1.9 for a graphical representation of
precision. In this figure we are observing two shades. The darker shaded portion
of the figure represents all the documents within the answer set while the lighter shaded

portion represents the documents in the answer set which are relevant.

Precision of rel inthe amswer st
! #o?%mnsm answer set

Dataset

Figure 1.9: Demonstrating precision

1.6.2 Recall

Recall gives an indication of how many of the documents returned are correct. It is
defined as the number of documents that the processor deems relevant (number of
documents in the answer set), divided by the number of documents that are relevant
within the corpus. See Figure 1.10 for a graphical representation of recall. The darker

shaded portion of the figure represents all the documents within the corpus which are
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relevant while the lighter shaded portion represents the documents in the answer set which

are relevant.

Recall & ( orFIr%@\mm inirr}]ﬁ%rglr\ﬁrﬁset

Dataset \

Figure 1.10: Demonstrating recall

1.6.3 Plotting Precision Versus Recall

If the answer set is ranked with the highest scoring document first, precision and
recall values will vary as the user steps through the answer set. These values can be
plotted against each other, resulting in a graph showing the strength of the answer
set. The upper bound for both precision and recall is 1. W ith regard to precision, a
value of 1 means that all of the documents in the answer set are relevant and with
recall it means that all of the relevant documents in the corpus have been retrieved.

Consider a case where an information retrieval system retrieves 12 documents
in response to a particular query, and a specialist has deemed 10 documents within
the corpus as relevant. If the first document in the answer set is one of the relevant
ones, then at that point there is a precision of 1 and arecall of .1 (10% of all relevant
the documents are retrieved). If the second document is relevant, then the system
has a precision value of 1 and .2 recall. If the third document returned by system s

not marked as relevant, then the system has .66 precision and .2 recall (2 out of 3
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retrieved documents are relevant and 2 out of 10 relevant documents are retrieved)
A typical precision versus recall graph averaged over a set of queries (50 for example)

15 shown 1n Figure 1 11

Precision Recall Graph

01 02 03 04 05 06 07 08 09 1
Recall

Figure 1 11 Precision versus Recall

When evaluating an information retrieval system, precision versus recall figures
are usually generated for each query submitted to the system and these are then
averaged to compute an average set of precision and recall values Given the fact that a
user often only views the top 10 ranked documents resulting from a search then averaging
the precision figure at 10 documents could be a useful measure of retrieval performance,
1e how many documents ranked in the top 10 results are actually relevant This 1s often
carried out at certain cut-off values such as 5, 10, 15, 20, 30, 100, 200, 500 and 1000
documents

A Limitation of using recall 1s that knowledge of all documents relevance to queries
1n the collection 1s assumed 1n advance However, 1t simply may not be possible to

discover this knowledge for large collections

1.7 Goal of Thesis

The goal of this dissertation 1s to explore how we can build and evaluate an 1n-
formation retrieval system for music We are concerned with Western music only,

that 1s, music with 12 notes between each octave, although the principles we will
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apply can be adapted to other musical scales We are dealing with music as an
unstructured medium from which we will automatically extract note information
As we will discover later, musical melody can be represented using strings With
this in mind, we can thus index music using traditional information retrieval tech-
niques for subsequent retrieval We have built a music information retrieval system
called CEOLAIRE which can index music taken from raw audio files for subsequent
retrieval Throughout this dissertation, we present the reader with the CEOLAIRE
systemn which we have used as a vehicle for experimenting with various aspects of
music information retrieval We aim to show through our performance evaluations of
CEOLAIRE, a framework for building and evaluating a musical information retrieval

system

1.8 Summary

This chapter has set the scene for the rest of this dissertation We have defined
what mformation retrieval 1s about and the components required to build a basic
mformation retrieval system We have reviewed some of the more common ap-
proaches applied to both indexing and retrieval Finally, we discussed evaluation of
an information retrieval system

The rest of this thesis 1s organised as follows Chapter 2 presents the reader with
an introduction to audio and audio processing we will look at how audio which
15 a continuous signal can be recorded in order to be manipulated In Chapter
3 we take an in-depth look into how we can gain access to musical content from
audio files Chapter 4 presents a literature review of some of the different music
information retrieval systems, both past and present In Chapter 5 we introduce
the CEOLAIRE music information retrieval system which we developed and upon
which this dissertation 1s based Chapter 6 and 7 are concerned with the evaluation
of CEOLAIRE, Chapter 6 evaluates CEOLAIRE’S extraction engine while Chapter 7

evaluates CEOLAIRE’S retrieval performance



Chapter 2

Audio and Audio Processing

2.1 Introduction

This chapter presents an introduction to audio and some of the properties associated
with audio Later on we explore how audio can be stored, mampulated and processed
digitally, but first we will present some basic principles relating to the physics of
sound

Sound exists as pressure waves travelling through a medium e g air or water
It 1s a continuous wave consisting of compressions and rarefactions of neighbouring
particles of the medium through which 1t 1s traveling In the upper part of Figure
21 we can see the compressions and rarefactions of the neighbouring particles of
the medium that sound travels through In the lower part of the same figure we
can see what this look hikes when plotted as a graph In between compressions
and rarefactions, the lack of dots show that there are neither compressions nor

rarefactions

19
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Figure 21 Sound as a continuous wave of compressions and rarefactions

2.2 Properties of Sound

Sound 1s a pressure wave as shown above Figure 2 2 below shows a picture of a sine
wave 1dentifying the crest, the highest displacement of the wave from the medium,

and the trough, the lowest

Crest
1- ™
)
T
2
ol f >Time
£
<
- WJ

Trough

Figure 2 2 Crest and trough

221 Phase

A full rotation within a circle goes through 360° and a sine wave can also be measured
in degrees A sine wave goes through a 360° phase shift before 1t starts to repeat

Figure 2 3 1llustrates some of the different phases of a sine wave until 1t repeats
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0° 90° 180° 270° 360°

Figure 2.3: Different phases of a sine wave

2.2.2 Frequency

The frequency of a wave is the number of times it repeats per second. The unit of
measurement for frequency is Hertz (Hz). The frequency ofthe wave shown in Figure
2.4 is 4 Hz, this means that it repeats four times every second. A property which
is related to frequency is pitch. The perceived pitch of a sound is the ear’s response to
frequency and can be observed in absolute terms whereby the pitch of a sound is recognised
without any other sounds present or in relative terms where the pitch is recognised by the
interval (difference) between two sounds. That is, if one sound has a higher frequency
than another, it is said that it has a higher pitch. Conversely, if one sound has a

lower frequency than another it has a lower pitch.

Figure 2.4: Frequency of a sine wave

2.2.3 Amplitude

The am plitude of a wave is the distance from the medium to the top ofthe crest or
the bottom of the trough. It is the maximum displacement in either direction from
the equilibrium position. In the case of simple sine waves, the distance is normally
equal, but it can vary for more complex waves. Figure 2.5 shows amplitude. In the

case of sound waves it represents loudness i.e. the louder a sound the greater the
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maximum displacement
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Figure 25 Amplitude of a wave

224 Wavelength
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Figure 2 6 Wavelength

The wavelength of a wave 1s the distance from one crest or trough to the next

225 Period

The period of a wave 1s the time taken for the wave to complete one cycle, that 1s,

the time taken for the wave to rotate through a 360° phase shift Period 1s directly

related to frequency as 1ts reciprocal, pertod = For example, a wave with

1
frequency

a frequency of 4 Hz, that 1s, 1t repeats 4 times second, has period of 0 25 seconds

It takes 0 25 seconds for the wave to go through a 360° phase shift
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Figure 27 Period

The properties we have explored here lay the foundation for the understanding of
the basic principles of audio needed when we later review methods for content
based access to digital audio In particular, phase, frequency / pitch and

amplitude

2.3 How We Hear Sound

Humans and animals have evolved a complex bio-mechanical mechanism to allow us
to “hear” sounds The ears are used to channel continuous sound from the medium
they are travelling through to the inner structures of the ear where they are converted
mnto electrical impulses interpretable by the brain The ear can be divided into 3

distinct sections

e The Outer ear
e The Middle ear

e The Inner ear
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Middle

Figure 2.8: The human ear
Reproduced from [Glenbrook, 02]

The outer ear simply collects and channels sound to the middle ear, which in
turn transforms the sound energy into the internal vibrations of the bone structure
of the middle ear. These vibrations then create compressional waves within the
fluid of the inner ear which are transformed into nerve impulses, which in turn are

transmitted to the brain. The middle ear is an air filled cavity consisting of the

eardrum and three tiny bones, namely

e The Hammer
e The Anvil
e« The Stirrup

The eardrum is a tightly stretched membrane which vibrates when a sound wave
exerts pressure on it. Remember a sound wave is made up of compression and
rarefactions. A compression exerts a push inwards and a rarefaction exerts a pull
outwards. This motion is picked up by the eardrum and sets the hammer, anvil and
stirrup vibrating at the same frequency as the sound wave. The vibrations are then
transferred to the fluid of the inner ear creating a compression within the fluid.

The inner ear consists of:

« The Cochlea
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¢« The Semi-circular Canals

e« The Auditory Nerve

The cochlea is a small snail-like organ containing about 20,000 hair-like nerves.
The nerve cells differ in length by miniscule amounts and have different degrees of
resiliency to the fluid which passes over them. Each hair-like nerve has a natural
frequency and when a compression wave with a frequency that matches that natural
frequency passes over it, it resonates with a larger amplitude of vibration. This
then causes an electrical impulse to be sent on the auditory nerve to the brain. The
semi-circular canals provide no help in hearing, rather they assist with balance and
in detecting accelerated movements. The human ear is capable of detecting sounds
in the range of 20 Hz to 20,000 Hz.

The difference between the intensities of the quietest sound that we can hear and
the loudest non-damaging sound is on a linear ratio of 1 : 1.2*1012, although the
ear is not actually capable of distinguishing between this many sound intensities.
Rather, sound is perceived logarithmically, that is, the difference between two sounds
is not simply the difference between the two intensities, but the ratio of the logs of
the two intensities. For example, when comparing values from Table 2.1 for the
intensity level of a street with no traffic with that of a normal conversation we can
see that the two intensities differ by a factor of a thousand, yet we do not perceive
them differing by this much. In fact, one sounds twice as loud as the other. What
happens is that the perceived difference between the two sounds is the ratio of the

logarithm of their relative intensities

Zo£10(1,000) : /o#i0(1,000,000)
3:6

1:2

Thus, sound intensity is measured in decibels (dB), based on a logarithmic scale.
The lowest sound that we can hear, called the threshold of hearing, is assigned the

value of 0 dB, with the loudest non-damaging sound assigned the value of 120 dB.
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The average person is able to distinguish sound pressure level differences of about 3

Sound Level Decibels Intensity
Threshold of hearing OdB 1
Leaves rustling 10 dB 10
Someone whispering (Im) 20 dB 100
City street with no traffic 30 dB 103
Classroom, office 50 dB 105
Conversation 60 dB 106
Busy city street 70 dB 107
Jackhammer (Im) 90 dB 109
Pop concert 110 dB 1011
Threshold of pain 120 dB 1012
Jet engine (< 50m) 130 dB  “ 101*

Table 2.1: Decibel levels and their sound intensities
Intensities are relative to 10~I12W atts/m eter2

Table taken from [Haliday et al., 97]

The ear is most sensitive to frequencies between 500 Hz and 4,000 Hz and tends
to amplify them more than frequencies outside of that range. This band corresponds
closely to the band of frequencies which governs speech. If two sounds of different
frequencies but of the same amplitude were played, one at around 3,000 Hz and the

other at 8,000 Hz, the 3,000 Hz signal would be perceived as being louder.

2.4 Sampling

Audio is a continuous signal and must therefore be sampled in order for it to be stored
digitally. Sampling involves measuring and recording pressure waves at successive
moments in time while quantifying the continuous signal as a series of discrete values

so it can be stored and manipulated digitally.

Figure 2.9: Sampling
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The parameters of sampling are the sampling rate (the number of times per second
that the signal 1s sampled) and the bit resolutzon (number of bits used 1n each

sample) A related parameter 1s whether the signal 1s a mono or stereo signal

241 Sampling Rate

The sampling rate 1s the number of samples recorded per second The more sam-
ples that are recorded, the more accurate a reproduction of the original audio that
can be generated If enough samples are not recorded per second, the reproduced
signal will be less accurate This 1s known as under-sampling and Figure 2 10 shows

the effect of under-sampling a signal

Original Signal Reproduced Signal

Figure 2 10 Under-sampling

To reproduce sounds accurately, the sampling rate must be at least twice that
of the highest frequency that 1s to be recorded This rule 1s known as the “Nyqvist
theorem” [Kientzle, 98, p24] and exists because for every sample, we have to record
both the positive amplitude value as well as the negative amplitude of the wave for

each pertod This 1s shown in Figure 2 11

+

\/

Figure 2 11 Recording the amplitude of the crest as well as the trough

For speech quality sound recordings, the sampling rate 1s 11,025 samples per

second which allows for sounds with frequencies from 0 Hz up to 5,512 Hz to be
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captured. This covers the frequency range of the human voice which lies between
50 Hz and 5,000 Hz. Telephone lines typically operate at between 300 Hz and 3,000
Hz. CD quality recordings are sampled at a rate of 44,100 samples per second,
capturing frequencies in the range from 0 Hz to 22,050 Hz. This is adequate as the
average human ear has a frequency response between 0 Hz and 20,000 Hz. Al of
this illustrates that there is a trade off between sampling rate and the quality of the
audio being recorded. Another factor which will influence the quality of digitised

audio is the bit resolution which we now examine.

2.4.2 Bit Resolution

The number of bits used in each audio sample strongly influences the fidelity and
clarity of recorded audio. When using 8 bits per sample, audio can be represented
using numbers in the range of -128 to +127, which means the sampling mechanism
can only detect a maximum of 256 different loudness levels. Increasing this to 16
bits per sample means the representation range increases to -32,768 to +32,767,
allowing for the recording of up to 65,536 different loudness levels. It should be
clear from Figure 2.12 that when sampling, a clearer resolution of the original audio
can be gained by increasing the number of bits used to hold the sample, that is, it
gives a better representation of the continuous pressure waves which means that at

playback time a more accurate rendition of the original audio is generated.

Figure 2.12: Increase in fidelity as a result of using more bits when sampling

The quality of recorded audio is a function of the sampling rate and the bit
resolution, but sampling is also subject to a quantisation error, an error which is
introduced when converting a continuous audio waveform into a discrete binary
value. The occurrence ofthe error is depicted in Figure 2.13 where it should be seen
that the quantisation error is the difference between the analogue signal at sampling

time and the nearest discrete value it is assigned. Also shown is the fact that as the
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number of bits used increases, the size of quantisation error decreases. This can be
seen when comparing Figure 2.13 (a) to 2.13 (b). Observe that the distance from the
signal’s quantised value to what it actually should be is larger in Figure 2.13 (a) than in

Figure 2.13 (b).

Figure 2.13: Quantisation error

The greater the number of bits available, the smaller the quantisation error.
In the worst case scenario the quantisation error is half the value of the smallest
distance between the two intervals. The worst case value for signal to quantisation

noise can be calculated as:
SQNR = 20
= 20log2~=1
= N * 20log2
= 6.02NdB
(where N is the number of bits used)

Quantisation errors are very noticeable in quiet audio samples using low bit
rates, but digitising devices such as sound cards can overcome this by adding a little
noise during the sampling process to help amplify the quiet sounds, otherwise the
reproduced audio can end up sounding uneven.

When sampling, the difference between the loudest possible signal and the softest

possible signal is known as the dynamic range. The quietest possible signal is also
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the quantisation error As we saw earlier, the human ear has a dynamic range of
120 dB, that 1s, 1t can hear sounds as loud as 120 dB Each additional bit used
adds 6 dB to the dynamic range, while also decreasing the quantisation error 8
bit recordings support a dynamic range of 48 dB, 16 bit recordings support 96 dB
16 bits 1s adequate for consumer applications, as most people find the quality of
CDs acceptable It 1s worth noting though that 96 dB 1s a theoretical hmit of the
dynamic range of a 16 bit sound card In practice, most 16 bit consumer sound
cards only support a dynamic range of approximately 90 dB This 1s partly due to
production 1ssues with low priced components AM quality radio has a dynamic
range of 48 dB, hence the impression that 1t 1s of low quality, while conventional

cassette tapes are only able to support a dynamic range of 65 dB

243 Channels

Audio can be recorded in either mono or stereo If 1t 1s acceptable that the
recording 1s of a low quality such as speech then mono may be used and one channel
1s adequate If stereo quality audio 1s required two channels are used, one for the

left and one for the right, both of which are independent of each other

244 Alasing

During the sampling process, distortion can be mtroduced when any frequencies
greater than half the sampling rate are present in the analogue signal, 1e with a
sampling rate of 22,050 Hz, having frequencies present which are greater than 11,025
Hz This distortion 1s known as aliasing and results 1n any unwanted frequencies
wrapping around In the case where a signal 15 being sampled with a Nyqvist cut-off
of 6 Hz, a 7 Hz signal will wrap around to look like a 5 Hz one The effect of aliasing s
shown 1n Figure 2 14 Once ahasing has occurred 1t can not be removed To prevent
1ts occurrence in the first place, the signal to be sampled must be subjected to a
filtering process, thus removing any frequency components above half the sampling

rate
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1 Second

Figure 2.14: A signal subject to aliasing

Low pass filters are used to combat aliasing. A low pass filter allows everything
below the cut-off frequency through, while removing everything above the cut-off
frequency. Unfortunately the cut-off point is not exact, rather there exists a transi-

tion area, from where the filter starts until its desired effect actually kicks in. This

is shown in Figure 2.15.

Transition Band

Figure 2.15: Low pass filter showing transition band

This is one of the reasons why CD quality sampling is done at 44,100 Hz and
not 40,000 Hz. (44,100 Hz / 2) - 20,000 Hz = 2,050 Hz transition band. Other
storage formats like the Digital Audio Tape record at a sampling rate of 48,000 Hz.
This allows for a wider transition band (48,000 Hz / 2) - 20,000 Hz = 4,000 Hz,

giving a wider transition area which does less damage when filtering out the higher

frequencies.

2.4.5 Clipping

Clipping is another unpleasant form of audio distortion which can be introduced

when sampling. Clipping occurs when the amplitude of the signal being sampled
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is greater than the maximum amplitude that the Analogue to Digital converter
supports. There is a cut-off point when the maximum amplitude is reached and
any sounds louder than this will be assigned the maximum loudness value, resulting
in a flat sounding sample, a bit like what is heard when someone speaks too close
to a microphone. Clipping is depicted in Figure 2.16 using an increasing sine wave
until the maximum amplitude is reached. Once clipping has occurred it cannot be

rectified.

Figure 2.16: A signal subject to clipping

2.5 Storing and Compressing Digital Audio

2.5.1 Pulse Code Modulation

Pulse Code Modulation (PCM) is the format that raw audio or the waveform data
is stored as. Storing CD quality PCM audio without any compression occupies
176,400 bytes per second, 10,584,000 bytes per minute or about 635 MB per hour.
The huge demand to store and transmit audio in multimedia applications and on
the Internet has led to the development of codecs (compressors and decompressors)
reducing these storage requirements. Codecs are implemented in hardware and/or
software and are used to compress raw audio for storage or transmission and then
decompressing it back to raw audio before playback. Compression can be lossy or
loss-less, that is, the reproduction loses some of the data or it is exactly the same
as the original. Traditional loss-less compression methods developed for general
file compression (Huffman [Huffman, 52], Lempel-Ziv [Lempel et al.,, 77] etc.) are
not efficient for compressing audio because audio files do not usually have many
repeated sequences such as are present in text files for which general file compression

algorithms work well. Even two short snippets of audio which may sound identical
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can have substantially different waveform values

The goal of lossy compression 1s to remove irrelevant data from the original audio
samples, thus saving space, but 1n a way which protects the perceived quality of the
audio so when 1t 1s played back 1t sounds like the original There 1s a trade-off
between file size and the quahty of playback of lossy compressed audio, as the more
an audio file 1s compressed, the greater the loss of fidelity Different methods are
avallable for implementing lossy compression including techniques such as bit rate
reduction and sub-band coding with the removal of irrelevant information based
on psychoacoustic principles Some of the different types of loss-less compression
methods available include speech compression, non linear Pulse Code Modulation,
Differential Pulse Code Modulation, Adaptive Differential Pulse Code Modulation

and Predictor based compression

252 Speech Compression

Speech compression can be achieved using a number of methods One of the simplest
1s silence detection and can lead to the compression of up to 50% [Kientzle, 98, p45]
of the oniginal data, by storing sﬂen'ce as simple codes whenever silence 1s detected
Another method of compressing speech 1s to create a mathematical model of the
human vocal tract and to build an analysis engine that can create parameters to
model the given speech This type of encoding of voice audio aims to transmit only
the minimal amount of information such that when 1t 1s synthesised, 1t 1s perceived
to be accurate Two common implementations of voice coders or vocoders are Linear
Predictor Coding (LPC) and Code Excited Linear Predictor (CELP)

LPC achieves a compression rate as low as 2 4 kbps [Tucker et al , 99] with the
use of a model of the human vocal tract and parameterismg the spoken audio over
the model Only the parameters of the model are then transmitted The voice 1s
regenerated at the receiving end using the vocal tract model and the transmitted
parameters, synthesising the spoken audio CELP 1s similar to LPC, as 1t performs
the same linear prediction, but 1t also transmits an error value CELP can achieve

bit rates as low as 4 8 kbps [Atal et al , 84]
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253 Non-linear PCM

Linear coding of a continuous signal to 1ts binary representation encodes audio sam-
ples on an equidistant scale, that 1s, the amphtude values are quantised 1n equal
sized steps Non-linear encoding schemes have the advantage that they can offer the
lower amplitudes greater resolution, although at the cost of the louder ones This
1s also the way humans perceive audioc We are more sensitive to small changes at
low volumes than similar changes at high volumes Imagine a person talking qui-
etly, nearly whispering On a linear scale, 1t 1s conceivable that a quietly spoken
passage will experience difficulties during the quantisation process Encoding the
same passage non-linearly offers the ability to increase the resolution for the quieter
portions while at the same time maintaining a large enough range to encode the
higher amplitudes Figure 2 17 shows the basic difference between linear encoding
and non-Imear encoding It should be clear from this figure that non-hinear en-
coding uses a non-uniform amplitude scale while linear encoding 1s undertaken on
a equidistant one The most common implementations of non-linear encoding are
p-Law and A-Law, which are both international telephony encoding standards with
North America and Japan using u-Law encoding while Europe and the rest of the
world use A-Law encoding [Kientzle, 98, p82]

A-Law encoding divides the the input range into 7 segments The smallest
segment contains 32 intervals, while the remaining 6 each contain 16 intervals The
interval size doubles from one segment to the next The first segment has an 1nterval
size of 2, with 32 intervals The last segment has an interval size of 128, with 16
mtervals Figure 2 17 (a) illustrates the concept of non-linear encoding showing

three segments with four intervals 1n each
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Figure 2 17 Non-hnear versus linear encoding

Using 12 bits to encode audio generates a range of 2'2 or 4096 loudness levels 8
bit A-Law encoding can also achieve this range through the use of the non-uniform
interval size Observing the addition of the interval ranges from Table 2 2, A-Law

achieves a total range of 4,096, equivalent to the 12 bit linear PCM

| Segment | # Intervals | Interval Size | Interval Range |

1 32 ? 64
) 16 4 64

3 16 _ 8 128
1 16 16 256
5 16 32 512
6 16 64 1024
7 16 128 2048

Table 2 2 A-Law segments

254 Differential PCM

Dufferential PCM (DPCM) 1s a method that only stores the difference between
contiguous PCM samples 1n an audio file, thus reducing the number of bits needed
for every recorded sample The difference between contiguous samples at a high
sampling rate can be small as a sound may not change that much in 1/44,100 of a
second, hence DPCM 1s most effective at high sampling rates The same data can
be quantised, using a fewer number of bits Typical savings of DPCM compresses

64 kbps down to 56 kbps |Kientzle, 98, p98|
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255 Adaptive DPCM

Adaptwe Differential Pulse Code Modulation (ADPCM) compresses PCM signals
with varying power over time It 1s more efficient than DPCM as the quantiser
1s not fixed This means that 1t adapts the number of bits needed based on the
changing amplitude of the mput signal The power when samphng speech can vary
a lot during the course of a sentence ADPCM adapts the quantiser to respond
appropriately There are different implementations of ADPCM which are governed
by the International Telecommunication Umon (ITU) and offer a variety of com-
pression rates Basic ADPCM achieves a 32 kbps compression rate [ITU, 90| but
1t also allows for the encoding of higher quality speech (between 50 Hz and 7 kHz)
by splitting the input into two sub-bands and implementing ADPCM on the two

sub-bands, incurring an overall bit rate of 64 kbps

256 Predictor Compression

Predictor-based compression works by predicting what the next bit of data will
be based on what has gone before and both the compressor and the decompressor
predict what the next sample should be The compressor predicts the next sample
and if 1t 15 correct 1t outputs a bit indicating that 1t 1s correct If 1t 1s wrong 1t
outputs a “wrong” bit and the actual sample With a well designed predictor the

output will be much smaller than the mmput

257 Perceptual Compression

Perceptual-based compression 1s a lossy compression method which works by 1den-
tifying and removing information which 1s deemed perceptually 1rrelevant based on
psychoacoustic principles which include frequency and temporal masking Tempo-
ral masking 1s the phenomenon where, if we hear a loud sound and 1t subsequently
stops, a short time transpires before we can hear a soft tone nearby Frequency
masking occurs when a lot of signal energy 15 present at one frequency with lower

energy at nearby frequencies the ear cannot hear the lower frequencies
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2.5.8 Sub-Band Coding

Sub-band coding is achieved by compressing different bands of frequencies. It does
this by exploiting well-known facts about human hearing. Human hearing is sensitive
from 20 Hz to 20 kHz, but it is most sensitive between 1.5 kHz and 5 kHz. The
human ear is more sensitive to some frequencies and less sensitive to others and
exploiting this fact allows for the preservation of sub-bands where human hearing is
most sensitive and the compression or removal of sub-bands where human hearing
is not as sensitive. Sub-band coding can also make use of frequency compression

within bands.

2.5.9 Bit Reduction

B it reduction can also be used when trying to reduce the size of sampled audio. It is
not always necessary to use the full number of bits available when storing an audio
sample. The problem with reducing the number of bits is that it raises the noise
floor. The noise floor is that background noise or “hum” which can be heard in low
guality recordings, which exists as noise within the system. This noise is normally
masked by sound but as the sound level drops the noise floor becomes audible.
Reducing the number of bits also increases the quantisation error. As we saw earlier
(Section 2.4.2), the quantisation error is introduced during sampling and is a result
of the quantisation process, the rounding of a continuous value to a discrete one. As
we are using fewer bits, the quantisation error becomes more audible. Employing
fewer bits also decreases the dynamic range of sound levels that can be stored, again
for every bit lost, the dynamic range decreases by around 6 dB. All of these factors
have to be taken into account when deciding how many bits to reduce by. The goal
of bit reduction is to keep the fidelity of the audio intact while raising the noise floor

to just below the audible signal.

2.6 Music File Formats

There are many different formats available for storing music or speech but we con-

centrate on those developed specifically for music. Further details on these can be
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found 1n [Kientzle, 98] These clude AIFF, AU, WAV, VOC, Real Audio, MP3,
Windows Media Format, MIDI and ABC for musical stave notation

261 AIFF

Apple adapted the Electronic Arts Interchange File Format, which 1s a multimedia
file format for their Audio Interchange File Format (AIFF) to store high quality
sampled sound for their Macintosh computers AIFF contains uncompressed raw
audio data 1n the PCM format broken up into chunks with an associated common
chunk describing properties that apply to all chunks Some of the important fields

from the AIFF common chunk are

e sumChannels - Stereo / mono
e sumSampleFrames - Number of samples 1 total
e sampleSize - Number of bits used (8 or 16)

e sampleRate - Sampling rate, up to 48,000 Hz

The AIFF format supports a number of different chunks 1n addition to the common
chunk The file starts with a Form chunk, containing information about the format
of the file and every other chunk, followed by a Format Version chunk Other chunks
exist, including a MIDI chunk for embedding MIDI System Exclusive messages, an
Instrument chunk that can be used to synthesise sounds, a Marker chunk to point
to positions in the file, a Comments chunk and a Text chunk for comments and
information relating to author and copyright as well as a Sound Data chunk which
holds the raw audio Data stored in an AIFF file 1s stored in big-endian format
Apple later extended the AIFF format with a version called AIFF-C, which 1s AIFF

supporting a number of different compression methods

262 WAV

Microsoft introduced 1ts own version of the Electronic Arts IFF standard to Windows

3 1 called the Resource Interchange File Format The WAV file format 1s part of the
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RIFF standard WAV 1s very similar to the AIFF file format comprising different
chunks or blocks It 1s normally used to store PCM samples 1n blocks with a header
for each block WAV also has a common block called the Format block containing
information pertinent to the file’s playback WAV supports a variety of sampling
rates up to 44,100 Hz, with 8 and 16 bit sample sizes and utilising erther one or two

channels

263 AU

The AU file format was developed by Sun Miciosystems It can store baoth linear
and non-linear sampled audio Employing non-lmear storage, 1t encapsulates a level
of compression as 1t 1s said that 1t reduces 12 bits down to 8 by storing audio
loganthmically Standard implementations of the AU format uses y-Law encoding
which 1s also the international standard telephony encoding format u-Law was
covered 1n Section 2 5 3

The AU format 1s also a versatile format allowing for 8, 16, 24 and 32 bit linear
PCM encoding, as well as 8 bit p-Law and A-Law It also supports a number
of different 1mplementations of ADPCM Despite 1ts versatihity, the format 1s not

widely used outside of the UNIX derived operating systems

264 VOC

The VQOC file format was developed by Creative Labs for use with their early sound
cards The format 1s optimised for the Intel platform A VOC file 1s segmented 1nto a
header block followed by data blocks Some of the blocks that VOC supports include

uncompressed sound data, silence blocks, repeater blocks and comment blocks

265 MIDI

During the 1970s and early 1980s, music synthesisers became recognised as legit-
mmate musical mstruments Combined with the advances in technology and cost-
efficiency, synthesiser technology became affordable to more and more people The

push behind MIDI was to be able to layer sounds without the need for expensive



2 6 Music File Formats v 40

studio equipment This would also allow musicians create music from one source,
triggering instruments to play sounds at their request (through the use of messages)

This means of sending messages from one synthesiser to another was standardised
as the Musical Instrument Digital Interface or MIDI MIDI 1s in widespread use
today and can also found 1n a variety of products, including electronic keyboards,
synthesisers, drum machines and sequencers

MIDI files are unique among audio files 1n that they do not actually store sampled
audio, rather they store an operational representation of the music MIDI 1s actually
a control system, containing mstructions to perform particular commands, such as
note on and off, preset changes, events and timing information

MIDI 1s divided up into three parts the hardware interface, the communications
protocol and the distribution format We are only concerned with the distribution
format of MIDI, specifically the MIDI file A MIDI file 1s made up of tracks which
contain meta-data and timing information A track can contain up to 16 channels
which store information relating to an instrument which 1s playing MIDI files can
play notes from a bank of up to 128 different instruments Three different types of
MIDI files exist Type 0, Type 1 and Type 2

A Type 0 MIDI file consists of a single track with the tempo and time signature
information included i the track A Type 1 MIDI file contains multiple tracks,
with the tempo and time signature information only included in the first track and
the synthesiser must combine the data into an event stream before 1t 1s synthesised
Finally, a Type 2 MIDI file contains multiple tracks, with the tempo and time
signature information included with each track The basic structure of the different
types of MIDI files are shown m Figure 2 18 The 16 channels are included 1n the
track data
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Figure 2.18: The different types of MID I files

26.6 ABC

ABC is an ASCIll-based musical notation language. It was designed to notate pri-
m arily Western European folk and traditional tunes which can be written on one
musical staff in standard classical notation. One of its discerning features is that
it is one of the few methods of encoding music which is readable by both humans
and computers. Other advantages of encoding music in ABC is that it can be easily
ported to other formats e.g. MIDI. It is a format which easily can be mailed or

posted to web sites for discussion and distribution because it is easy to read.

2.6.7 MP3

MP3 is the popular name for the MPEG-1 layer 3 standard. Currently it is the most
popular way to transmit audio files over the Internet and for the home storage of
digitised music collections. W ith the advent of Napster and its subsequent closure,
consumer-generated distribution of copyright music in MP3 is forcing the recording
industry to re-think its traditional distribution channels.

The MP3 codec performs lossy compression on PCM audio samples, that is,
the reconstructed samples are different to the original, although perceptually, they
sound the same. Compression is achieved using sub-band compression and bit re-
duction and Huffman encoding. The MPEG-1 Layer 3 standard allows compressed
audio at bit rates between 32,000 bps and 320,000 bps, compared to 1,400,000 bps
for CD quality PCM, thus achieving rates of compression from 2.7 to 44. MP3 com-

pression at about 12:1 or 112,000 bps is indistinguishable from CD quality audio for
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most people It 1s worth noting though that audio compressed to a rate of 32 kbps
18 of poor quality and a listener would not get much enjoyment from audio com-
pressed and decompressed at this rate The MP3 encoding and decoding process
15 llustrated in Figure 2 19 It feeds PCM samples to a polyphase filter bank with
32 equal width frequency sub-bands, while simultaneously passing them through
a psychoacoustic model to determine Signal-to-Mask ratios for bit reduction The
next step uses the Signal-to-Mask ratios to calculate the number of bits required to
represent the signal without raising the noise floor so that 1t becomes audible and
thus degrading the quality of the sound The resulting data 1s then compressed using
the Huffman encoding algorithm The compressed MP3 data can then be stored,

played or streamed
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Audio | Tme to frequency ! Bit / noise allocaticn > Bitstream Bitstream
mapping fifter bank quantiser coder o formatting
1 E Extra data
1 (o required
.| Psychoacoustic i( ured)
model '
i
PCM
Bitstream P Frequency sample R Frequency to Audio N
Encoded' unpacking - reconstructon time mapping
Bitstream E Exira data
{ (f present)
|
v

Figure 219 MP3 encoding and decoding process
Reproduced from [Pan, 95]

Decompression 1s the reconstruction of the signal back to the perceptually
equivalent original and works by first unpacking the bitstream, reversing the
Huffman encoding, reconstructing the frequency bands and then converting the
frequency information back into time domamn PCM samples

Using MP3 as format for music information retrieval may lead to problems
whereby some 1naudible frequencies may disappear, although a detailed discussion
on how this impacts on music information retrieval 1s beyond the scope of this dis-
sertation We present some results relating to the use of MP3 as a format for music

wmformation retrieval 1in Chapter 6
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2.7 Streaming Audio

We have looked at the different file formats employed for recording audio and have
seen how raw audio files with high bit-rates can be compressed without any per-
ceived loss in quality Now we will take a look at some common file formats for
streaming audio Streaming audio over the Internet has become very popular in
recent years and many radio stations are now providing some form of streaming of
therr traditional analog based content Some stations have increased the amount
of content they provide with supplementary channels and other Internet only radio
stations have sprung up P4 [P4, 02], the largest independent radio station in Nor-
way streams 1ts live stream plus three additional content specific channels Radio 1
Oslo [minradio, 02] streams Internet channels only, each of different genres of mu-
sic The use of the Internet allows traditional radio stations to bypass government
restrictions and reach a potentially world-wide audience for a relatively low cost
Streaming digital audio 1s an expanding and lucrative market The importance of
open standards 1s underestimated as major players position themselves to take as

much of the market as they can

271 RealNetworks

The RealAudio format was developed as a method for compressing and dehivering
voice over low bandwidth transmission hnes Early versions used the GSM 06 10
standards and the Code Excited Linear Predictor algorithm RealNetworks then
developed their patented plugable codecs for music as well as for video Figure 2 20
shows RealNetworks “One” media player which can be used for streaming audio and

video as well as playing multimeda files

Figure 2 20 RealNetwocks “One” player



27 Streaming Audio 44

272 Windows Media

Whilst a lot of the implementation details of the Windows Media format are un-
known, from information based on the patents held by Microsoft Research, Windows
Media encoding 1s based on lapped orthogonal vector quantisation, that 1s, sampled
audio 1s encoded using a non-scalar vector quantiser producing transform vectors
The 1nverse 1s applied for the decoding process Microsoft are further extending
their Media player and the Windows platform with digital rights management in an
attempt to bolster confidence 1 their format as a secure method of digital music
distribution The MS Windows Media encoder allows for the compression of 44,100
Hz, 16 bit stereo encoded PCM at rates from 48 kbps to 160 kbps Figure 2 21
shows the MS Media Player which can be used for streaming audio and video as

well as playing multimedia files

Figure 2 21 MS Media Player

273 MP3 Streaming

Streaming MP3 has become a popular alteinative to both Windows Media and
RealNetworks solutions The quality of the audio streams 1s that of normal MP3
Clients that can be used for MP3 streaming include xmms, x11Amp and winAmp
Figure 2 22 shows the X-window based open source audio player, xmms, streaming
content from 1FM in Molde, Norway [1Fm, 02] The mam advantage of MP3 1s that
1t 15 a format that computer users are aware of and it has been openly implemented

on many platforms
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Figure 2 22 xmms audio player streaming MP3

274 OggVorbis

OggVorbis [Ogg, 02| 1s a mult: platform open source audio streaming codec Its cre-
ators goal 1s to deliver a general purpose codec for mid to high quality audio sources
(samphing rates from 8 kHz to 48 kHz with 16 bits and more) which are patent and
royalty free The codec 1s released under a BSD [BSD, 02] style licence Plugins are
available for most audio players including xmms, winAmp, x11Amp, Somque and
FreeAMP BBC [BBCOGG, 02] 1s testing Ogg Vorbis streams of two of their popular
channels, Radio 1 and Radio 4 OggVorbis has the opportunity to become a major
consideration 1 the ever increasing audio streaming market as 1its codec has been
implemented for most operating Systems, UNIX, Linux, Windows, Macintosh, and
BeOS The creators of OggVorbis are currently reviewing an implementation of an
open source video codec

The thing that all of these file formats have in common 1s that they compress
audio 1n order to reduce bandwidth requirements for transmission over the Internet
but there 15 a trade-off between compression and perceived sound quahty The
different formats have their own methods of implementing their codec’s but they

have similar performance

2.8 Summary

This chapter presented an introduction to some of the basic properties of sound,
how they relate to our hearing and the associated implications for the storage and
manipulation of digital audio We also looked at how audio has to be sampled to

be stored and some of the 1ssues governing the sampling process We then looked at
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storage and compression and observed how compression algorithms have evolved to
reduce the high bit rates needed for raw audio 1e MP3 reduces a 1 4 Mbps audio
file down to 128 kbps with virtually no loss 1 1ts perceived sound quality We also
observed that music sharing has become a consumer driven reality, posing challenges
for the record industry We looked at the file formats available for storing music, 1in
raw, compressed and 1n notation form Finally, we covered the importance of digital
music streaming with a look at the most popular Internet music streaming clients
In the next chapter we will take a look at the content of digital audio, in particular
the different methods of gaining access to 1ts underlying structure, after which, we
will review some of the music information retrieval systems in operation, both past

and present



Chapter 3

Technical Background to Digital
Music Analysis

3.1 Introduction

This chapter 1s divided up 1nto 2 sections In the first section we build on the audio
fundamentals from the previous chapter and we will review methods for generating
frequency spectra and 1ssues associated with their generation We will take a de-
tailed look at Fourier transforms and how they can be implemented to run quickly
We will also review other popular methods which can be used to gain access to
frequency information including filters and wavelets This provides the context for
our explanation of music and musical notes and the differences between notes n
terms of audio waveform frequencies In the second part of the chapter we will
observe how we can represent the notes played in music as strings using interval or
contour, followed by a review of the approaches to string matching, both exact and

approximate

3.2 Frequency Analysis of Digital Audio

Before any form of retrieval can be performed on audio information, a deep analysis
has to be performed in order to gam access to the actual content of the audio

Audio exists simultaneously in two domains, the tzme domain and the frequency

47
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domain The time domain presents us with limited information upon which we can
build a content based information retrieval system, however it 1s intuitive to us that
the frequency domain 1s where content-based retrieval should be performed The

reasons for this will become clear as we progress through this chapter

321 Time Doman

The time domain does not present us with much useful information that can be
used for retrieval, rather 1t shows us how the loudness of the recorded audio varies
over time Figure 31 (a) shows a time domain representation of a 12 second piano
accompaniment What 1s being plotted 1s how the amphtude varies over time
Observing the figure, we can see when a note starts to play and how the power of
the note dissipates over time until another note begins to play We cannot infer the
pitch of the accompaniment from this time versus amplitude based representation
Figure 3 1 (b) shows part of the same song where the waveform 1s more defined
The time domain uses a series of quar'ltlsed discrete values to represent the continuous
waveform of a sound (Quantisation of a continuous signal was covered mn Section
242) The time doman 1s useful for editing sounds, copying and pasting sections,
overlapping, and also for scaling sounds, for example, making them louder / queter

and fading parts of a sound 1n and out

322 Frequency Domain

A frequency domain representation of a number of audio samples 1s presented
through the use of frequency spectra, which quantify the amphtude of any fre-
quencies present 1 a sampled sound A frequency spectrum is shown in Figure
32 Here we can observe that we are plotting frequency versus amplitude for a
sound at a given time, while 1n the time domain we plot amplitude versus time We
use a number of frequency spectra generated contiguously to observe how a song’/s
frequency components vary over time The figure illustrates that the sound under
analysis has a single frequency component

Meanngful mustcal analysts has to use the frequency domain in some form
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Figure 31 Time domain representation of audio
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Figure 32 A frequency spectrum
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Figure 3 3 shows a frequency spectrum of the same piano segment shown 1n Figure
31 The pmitch contour of a song 1s the change 1n pitch throughout the song (Pitch
15 covered m Section 2 2 2) Under the frequency domain, the pitch contour of the
melody n Figure 3 4 becomes clear It can be seen that the first note played 1s lower
than the second, the third has the same pitch as the second and so on This pitch
contour 18 not clear from Figure 3 1, which shows really only the onset of a note and

how the power dissipates, followed by another note onset etc

(a) ()

Figure 33 Frequency domain representation of audio

A frequency transform takes a time domain signal and generates a frequency
spectrum for that signal A frequency spectrum from 0 Hz up to half the sampling
rate in Hz can be generated for a sampled sound using a frequency transform For
example, observe Figure 34 On the left-hand side we have a signal representing
a sampled sound in the time domain This 1s demonstrated by a sine wave with
a frequency of 4 Hz, that 1s, the signal repeats 4 times every second Applying a
frequency transform on this sound generates the output on the right, a frequency
spectrum with all the frequencies (covered by the transform) and their corresponding
amplitudes This 1s a simplified example, but serves to demonstrate the principle
that a transform 1s used to generate a frequency spectrum

A frequency spectrum 1s divided up into a number of bins with each bin repre-
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Figure 34 A frequency transform

senting a range of frequencies The greater the number of bins, the more fine grained
the spectrum This 1s shown 1n Figure 3 5 where we can see a relationship between
the information obtained from a spectrum and the number of bins used to hold the
spectrum The more bins that we choose to use, the more informative the spectrum
Observing, the spectrum on the left we can see there 1s a strong amplitude presence
between 2,500 Hz and 5,000 Hz Comparing this to the spectrum on the right, we
can see that the bulk of this amplitude actually lies between 2,500 Hz and 3,750
Hz, with the remainder between 3,750 Hz and 5,000 Hz We can also observe the
bulk of amplitude between 7,500 Hz and 10,000 Hz actually resides between 7,500
Hz and 8,750 Hz If we were to continue with this process we would end up with a

more detailed spectrum

Amplitude
Amplitude

OHz 25 kHz 7 5 kHz 20kHz 0 Hz 7 5 kHz 20kHz

375kHz
2S5 kHz

Frequency Frequency

Figure 3 5 Frequency spectrum bins

At the heart of frequency transforms 1s the use of sine and cosme waves A
complex wave can be made up of a number of simpler sine waves Figure 3 6 shows
how by combining 2 simple sine waves a third complex wave can be generated This
can also be viewed 1n reverse, where a complex wave 1s really only the combination of

a number of simple sine waves The measurement of the amplhtudes of any sine waves
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which are present 1n a sampled sound is the principle upon which frequency analysis
1s built Frequency transforms are basically a way of expressing a complicated wave

as a function of a number of simpler waves
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Figure 36 A wave made up of a number of stmple sine waves

Other than content-based imdexing, an example of where one would use the
frequency domain would be to remove clicks or hisses which may be present in an
analog recording

Before frequency spectra are generated through the use of a transform, they must
first be “windowed” to ensure that the introduction of noise as a side effect of the

transform process 1s limited

323 Wimdowing

Before analysis of a sampled signal can be undertaken, the start and end points of
that signal must not have any unwanted sharp transitions, as such transitions can be
regarded as noise Figure 3 7 (a) shows a sampled sound with a sharp jump at the
beginning and at the end The sampled signal can not be analysed reliably unless
the signal converges to zero at both end points Therefore, before processing 1t must
be windowed, that 1s, the transitions at the beginning and at the end of the window
are smoothed, minimising the introduction of noise A windowed signal 1s shown 1n
Figure 37 (b) This convergence 1s achieved by using a weighting function One

such function 1s the Hamming Window [Foote, 99b] which uses the formula



3 2 Frequency Analysis of Digital Audio 53

0 56 — 0 46cos(——22L )

samplesize—1

A Hamming function smooths out the signal at both ends, with httle effect on the
frequency Other windowing functions exist including Hanning, Blackman,

Tniangle, Rectangle, Kaiser and Blackman-Harris [Harns, 78]
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Figure 37 Effect of windowing a signal

324 Dascrete Fourier Transform

The Discrete Fourier Transform (DFT) 1s a method of decomposing a signal nto
the weighted sum of a number of waves The principle 1dea behind the DFT 1s
wave multiplication and addition If two sine waves of the same frequency and
phase are multiphed and the resulting product samples are added together, then
the resulting addition will be a positive number as any negative amphtude values 1n
both waves when multiplied will result in an overall positive value This 1s shown
m Figure 38 (a) Similarly, this can also be appled to a more complex wave If
a complex wave contains the test frequency, when each value in the complex wave
1s multiphed by each value in the test frequency and added, the overall result will
be positive If the waves are of differing frequencies, when multiplied, the sum of
the resulting product samples will be zero This 1s because the positive amplitude
values will cancel out with the negative amplitude values This 1s shown 1n Figure
38 (b)

This method of multiphication and addition can be used to measure the amplitude
(or loudness) of one frequency component at a time To generate an entire frequency
spectrum with a DFT, we would have to call the DF'T for each frequency component

we wish to analyse
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Figure 3 8 Multiplying two waves

As we saw earlier, we can measure the amplitude of a particular frequency n a
signal by multiplying two waves and adding the product samples The formula for
the DFT to calculate the amplitude A™ of a given frequency k |Kientzle, 98] and
[TCLEX, 95] 1s

= 2k
AL = E $pCO8 ( )
n=0 N

where

N represents the number of time domain samples
n 1s the sample number (0 > n < (N —1) )

s, represents the amphtude of sample n

k 1s frequency under investigation

A" indicates that this 1s a real number (rather than a complex one)
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However, this only gives us the amplitude Founer transforms can indirectly
calculate the phase (phase 1s covered in Section 22 1) of a wave as well This 1s

achieved by using complex numbers and the cosine and sine functions

N-1
2mnk 2rnk
Ak:nzzosncos( 7;\7; )—zsnsm< 7;\7 )

where

1=+/—1

cos(z) +1 san(z) 15 a complex number which can be used to represent a point on

a complex plane with the x coordinate calculated using z = Re{A,} = s,cos ()
and the y coordinate calculated using y = Im{Ax} = —s,smn (22%) The magnitude

of a complex number, hence the amphtude of the frequency in question, can be

calculated using the formula

magnitude = \/Re{A}? + Im{A;}?

Figure 3 9 shows a point on a complex plane It should be clear that the am-
plitude can be calculated as the length of the hypotenuse The phase of the wave
1s then the angle between the horizontal line to the hypotenuse The phase can be

calculated as

The formula

N-1

2nnk 2mnk
A = Z $,€08 < ) -1 8,81 ( )
e N N

can be simphfied into a more cryptic but equivalent formula
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Figure 39 Calculating magmtude and phase on a complex plane

=

Ak = gne(—ﬂz\’lmk)

3
Il
=

as €% = cos(z) — 1 sin(z)

The 1nverse of a DF'T' can be applied to the DFT’d data to regenerate the original

signal using the formula
) Ve (s
k) ==Y Agel"F
s(k) Nﬂ; K€

When undertaking the IDFT, we must divide the summation by % This is a
side effect of the summation 1n the DFT resulting in a value which 1s N times larger

than the original

The output of a Fourier transform 1s mirrored, that 18, the real values of the
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complex numbers on the right hand side of the spectrum are mirrored values of
the left hand side, while the imagmnary values are conjugated This phenomenon
1s shown 1n Figure 3 10 The real values below N/2 are mirrored above N/2 Not

shown are the conjugated imaginary values

Amplitude

0 Hz N/4 Hz N/2 Hz 3N/4 Hz NHz

Frequency (Hz)

Figure 3 10 Mirrored output of a Fourier transform

The disadvantage of using the Discrete Fourier Transform for spectra generation
1s that the summation has to be done for every frequency, thus an entire frequency
spectrum will require N*N calculations with a complexity of O (n?)

A Founer Transform assumes that the data 1s subject to a period of N, that 1s,
the signal repeats after N samples A common implementation of the DFT 1s the
Fast Fourier Transform which can be implemented to run very quickly 1if the number

of samples (N) 1s a power of 2

325 Fast Fourier Transform

The Fast Fourler Transform (FFT) [Cooley et al , 65] computes an entire spectrum
with a complexity of O(NlogN), by eliminating many of the repeated calculations
of the DFT

Remember we are expressing a complex wave decomposed as a number of sim-
pler waves These simpler waves are expressed in terms of sine and cosine waves
Observing Figures 3 11 and 3 12 we can draw both a sine wave and a cosine wave

from a circle
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Figure 3 11 Drawing a sine wave from a circle
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Figure 3 12 Drawing a cosine wave from a circle
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3600

If we divide a circle into N segments, each segment 15 ==~ For every point on

the circle, n(22), then (n x k) (%2) 1s the same powmt for values of k where n*k
modulo N 1s the same number 4 « 1% = 180°,(4 * 3) (ggg) = 540°, and so on, are

the same point on a circle This 1s shown 1 Figure 3 13

1809 s40°

Figure 3 13 Segmenting a circle

Using 27 (m = 180°= 3 141592654 ), we can represent 360° in radians rather

than degrees cos(%) can be used to represent a wave Observing the values k&
and n, k 1s the number of times we wish to rotate through the circle, hence 1s related
to frequency If k=5, and 1if 1t takes 1 second to rotate through the circle 5 times,
then 1t has frequency of 5 Hz n 1s the evenly displaced point on the circle and varies

from 0 to N-1 We can observe that

cos (mr(;)(q) = cos (2«(3)(4)) — cos (M) -1

8 8

Figure 3 14 shows this What this means 1s that anytime we have to calculate
cos (21%)(—42) we know that the same answer applies to cos (2”(2#) and any other
cos function which has the same value when nk 1s modulo’d with N Using the

—12wnk

formula e™** = cos(z) — + sin(z), the above formula 1s also expressible as e~ ~

The next stage 1n the process 1s to mampulate values of » and % in the formula

We can take n and £ out

as (e2*?) = (e?)®
It should then be observed that e =¥~ becomes a constant value once N 1s defined
Continuing our discussion on how the FFT 1s quicker than a DFT requires the

repeated presentation of e ¥ To keep the discussion on the FFT easy to read
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Figure 3 14 Fourier expansion of a wave

and with the fact that e 3" 15 a constant value, we will rename e ® as M This

allows us to 1illustrate the workings of the FFT without getting bogged down in the
complexity
Using N=8, we can observe thée following computations to calculate an entire

frequency spectrum using the DFT

Ag = s(0)M°+s(1) MO +5(2)M® +5(3)M® +s(4)M° +s(5)M® +5(6)M° +5(7)M°
Ay = s(0)MOP+s(1)M! +5(2)M? +s(3)M3® +s(4)M* +5(5)M> +5(6)M® +s(7) M7
Ao = s(0)MO+s(1) M2 +5(2) M* +5(3)M® +5(4) M® +5(5) M +5(6) M 2 +5(7) M
Az = s(0)M°+s(1)M3+5(2)M® +5(3)M°® +s(4) M2 +5(5) M +5(6) M B+5(T) M*
Ay = s(0)M°+s(1)M*+5(2) M8 +5(3) M2 +5(4) M0 +5(5) M?°+5(6) M +5(T) M?
As = s(0)MO+s(1) M3+5(2) MO+ 5(3) M P +5(4) M+ 5(5) M% +5(6) M3 +s(T) M
As = s(0) M +5(1)MC+5(2) M2+ 5(3) M8 +5(4) M?*+5(5) M° +5(6) M35+ 5(7) M*2
A7y = s(0)M +s(1)MT+5(2) MM+ 5(3) M2 +5(4) M2 +5(5) M +5(6) M*2 4 5(T) M

Figure 3 15 DFT calculations with N=8

To make the process easier to follow we will look at the above calculations in a
table with Ay to A7 on the left and n across the top These values are shown in

Table 3 1

We can see from Table 3 1 that there are only 24 different exponent of M cal-
culations We saw earher that M? = MY = M?N and M! = MY = pM2VH
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O « ) ) B K «£) )
ojM® M M° M M M M MO
1fnMe M M2 M3 MY MY OMS M7
2| a0 M2 MY RMS ME O OMIO M2 MU
3 MO M3 MG MQ MU MIS MIS Mil
al m® Mt M M2 M6 M0 M 38
S| MO 5 MIO MU M B2 B0 M3
6 MD MG Mu MIS M.H MBU M36 M42
7 MD M? M 14 MQI M 3 MBS M42 M49

Table 31 Exponent calculations for the DFT

Therefore, for every nk which we modulo with N, we only need to perform the

multiphication once as no matter what value exponent we have, 1t can always be

expressed as an exponent m the range 0 to N-1 Applying modulo N to Table 3 1

produces Table 3 2 This reduces the number of different multiphcations which have

to be carried out The next step 1s to reduce the number of actual multiplications

undertaken

O «) €2 3) (D ) ) )
o(m® M® MO m® MO MO MO MO
1m0 nM! M2 M3 MY MS M M
2| M0 M2 M4t MS MO M2 MY M
3lM® oM omM® oMb oMt M oM?omM?
4l M Mt MO omt MO Mt MO Mt
S{M0 M3 M2 M7 oMt M! OME M3
6| MO MS MY M2 MO MS M* M2
7| M P omMm¢ M oMt ME MR Ml

Table 3 2 Exponent values after applying modulo n

The first step of this process 1s to divide the table into odd and even values of

n This 1s shown 1n Table 3 3

Mathematically, this process can be expressed using the formula

=127
e N

2nk
)+

L

>

n=0

=127 2k(”+1)
()

which can be reduced to
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£ <D €4) <5 D K3 K5 O
0o 1 2 3 0 1 2 3
0|M® M M M o|M M M M
1M MR MY MO M MO OMT
2 M M M 2| M M MR OME
3|v® ME MY MR 3IVM® M M M
4V M MC OO 4(mMt MY MY MY
5|M° MR MY OME s|M° M MM
60 M M M 6| M MR MG ME
7iM M MY MR 7|M M N M
Even Odd

Table 3 3 Dividing exponents mmto odd and even values of n

N N
71 e 2t
—127 n —127
Ak = Sn (62( N )) -+ ‘) Sn (32( N
n=0 n=0
N N
z-1 z 7!

which can be reduced to

then we factor in the n
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and seeing as k does not change with >, we can move that part outside

N
?—1

:5@1 nk L k —127 nk
A = Sn (e T ) + (eT) Z Sn <e:§r>

Now, for both the even values and odd values of n we only have to multiply in M,
16 times (32 operation in total) Instead of multiplying by 8 points of the wave, we
now only have to multiply by 4 of them We make up the difference by multiplying
the odd samples by a 45° phase shift (360/8) This 1s 1llustrated in Figure 3 16 and

can also be seen 1n Table 3 4

-
-,

R Rt
/- - -

TR

it

ry

-

=~

™

mf e
S

<7

PUS [PUITRTAI. S PR

0
/

Figure 3 16 45° phase shift of the odd samples

f
0 <D (@) «6) M 0 () (4 6)
0 1 2 3 0o 1 2 3
olM® M M MP ol M M0 M
1M M2 MY M 1M M MY M
2IM M M M 2| M M
3 M MY OMP M M Mt M
4(n0 MO MO MO 4|M MP MO MO
5/ M oMt M 5iM® M2 oMY M
6(M MY M M 6N MY M MMt
7IM ME NP MB 7INMG NP MY NB
Even Odd

Table 34 Multiplying 1n the first phase shift
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Continuing this process, we can save on even more computation Again, we

divide Table 3 4 into odd and even values of n, which produces Table 3 5

Table 3 5 Further dividing into odd and even

L0 «32) s4) «6)
0 1 0 1
oM WP TS
1M ME 1| MY M
2| M 2| M W
3|M M 3| Mt M2
4 (M0 NP 4| NP MP
5|M° M2 5|t ME
6N MM 6| M0 M
7|M ME 7| MY M2
Even Odd
Even

Mf

L K3 3 «D
0 1 0 1
ojM® M oM M
1{M M2 LMY ME
2| M Mt 2| M M
3IM0 M 3| MY WP
4 (M MO 40 M
sIM M2 5| MY OME
6|M MY 6|M M
TI{M® ME 7| MY MR
Even Odd
Odd

Now, for both the even and odd sets, instead of multiplying by 4 points of the

wave, we are now only multiplying 2 of them For the even side, we multiply the

odd samples by a 90° phase shift (360/4) For the odd side, the odd samples are

also subjected to the same 90° phase shift The final values are shown in Table 3 6

"-—JO\U‘I-&-L;«JM»—-D'
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Table 3 6 Final table for the FFT
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This process can be expressed with the formula

N_1 N_q
4 —127 nk —127k 4 —127 nk
A _ N n N
E= Sp,le ™ +le T sple ™
n=0 n=0
N _ N _
4 ! —127 nk —127k k 4 ! —12r nk
=i2nk N N N
+(6N) Esn(eT) +(6T) sn<eT)
n=0 n=0

Using the FFT' we have reduced the number of calculations from 64 calculations
to 24 Instead of multiplying by 8 points of the wave, we are now only multiplying
by 2 of them, making up the difference using phase shifting We have to undertake
the e;ﬂérn_k multiplication only 4 times These elNZ;Lk are shown i Table 3 6 as
(n=0, k=0), (n=1, k=0), (n=0, k=1), (n=1, k=1) Then using these calculations,
they can be appled to all other original pair wise values of n  (n=2, n=6), (n=3,
n=7), (n=1, n=5) For (n=2, n=6) we have to multiply in a 90° phase shift, for
(n=1, n=5) we have to multiply 1n a 45° degiee phase shift and for (n=3, n=7) we
have to multiply both a 45 and then a 90° phase shift to make up the difference

Diagrammatically, we can view this phase shifting as in Figure 3 17
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Figure 3 17 Final phase shifting for the FFT

Before we can apply a FFT on an audio file, there are a number of things to

consider First, remember that the FF'T can only generate a spectrum from 0 Hz
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to half the sampling rate Secondly, the length of the transform determines the
frequency ranges

For example, using a 1,024 point fast Fourier transform on a number of audio
samples, sampled at rate of 44,100 samples per second, the frequency spectrum
1s divided up nto buckets from 0 Hz to 22,050 Hz, with each bucket holding the
amplitude n steps of 431 Hz A 16,384 point fast Fourier transform on the same
samples gives a frequency resolution of 2 723 Hz for each bucket The larger the fast
Fourier transform, the finer gramed a spectrum can be generated Some example

parameters for FFT audio file processing are shown in Table 3 7

rSwe | Sampling Rate [ Step Size | Range |
8 11,025 1378 125 Hz | 0 - 5,512 Hz
1,024 11,025 10 77 Hz 0- 5512 Hz
32,768 11,025 34 Hz 0- 5,512 Hz
8 22,050 2756 25 Hz | 0- 11,025 Hz
1,024 22,050 21 54 Hz 0 - 11,025 Hz
32,768 22,050 67 Hz 0-11,025 Hz
8 44,100 5512 5 Hz 0 - 22,050 Hz
1,024 44,100 43 08 Hz 0 - 22,050 Hz
32,768 44,100 .| 134 Hz 0 - 22,050 Hz

Table 3 7 Some parameters for a fast Fourler transform

326 Short Time Fourier Transform

The Short Time Fourier Transform (STFT) 1s a method which attempts to evaluate
how the frequency content of sound samples change over time Basically 1t works
by breaking the signal into shorter pieces and applying a Fourier transform to each
piece It shows how the frequency content evolves through the generation of a
number of spectra which are plotted contiguously The STFT 1s shown in Figure
318 As we will see later, this 1s the method which we will use to generate frequency

spectra as part of CEOLAIRE’S melody extrac tion engine

327 Tilters

Filters can be used to remove certain frequencies from a signal There are three

basic type of filters which can be used A Low Pass filter (See Figure 3 19 (a)) cuts
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Figure 3 18 Combining single spectra to create a time varying spectrum

out all signals above a certain frequency while allowing all the frequencies below this
threshold through A High Pass filter (See Figure 3 19 (c)) removes all frequencies
below a certain cut-off point allowing everything above 1t through Band Pass Filters
(See Figure 3 19 (b)) set up a “passable” range, allowing all frequencies within the
pass range through, while blocking all others The basic 1dea behind auadio filters 1s
that 1t multiphes the undesirable frequencies by zero Filters are another method

which can be used by CEOLAIRE to filter out musical note imformation

Transkion Band Transkion Bands Transkion Band

0Hz 20 kMz oMz ) 20 kHz 0 Hz 20 kHz

(a) Low Pass (b) Band Pass (c) High Pass

Figure 3 19 Three different types of filters

328 Wayvelets

Wavelets are another method besides the traditional Fourier derived methods for
generating frequency spectra Wavelets differ from traditional Fourier analysis in
that they introduce the notion of scaling to the spectrum and they approximate
functions within a finite domain  With Fourier analysis, we assume the signal repeats

forever Wavelets work using basis functions Basis functions are the combination of
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sine and cosine functions of varying frequencies and amphtudes that are orthogonal,
that 1s, their inner products add up to zero

Unlike Fourier analysis, wavelets have varying sizes for the windows of frequency
components Wavelets allow for both short high-frequency basis functions and long
low-frequency ones, as well as allowing windows to be constructed with rough edges
This allows for better approximations of real world signals Wavelet basis functions
are a particular type of basis functions

Wavelet transforms convert a signal into a series of wavelets Signals processed
by the wavelet transform can be stored moie efficiently than those processed by
Fourier transforms

We have just reviewed a number of methods which CEOLAIRE’S melody extrac-
tion engine could use to generate frequency information, namely the DFT, FFT,
STFT, filters and wavelets All can be used to achieve the same final goal, but the
choice of which to use comes down speed and ease of use The discussion of which to
use 1s left to Chapter 5 and unt.] we have further explored 1ssues relating to music
and music information retrieval Now, we will move away from the digital signa:
processing topics of this dlssertgtlon zind concentrate on what we can achieve now

that we can access frequency mnformation from audio files We start with a common

tuning system for instruments called Equal Temperament

329 Equal Temperament

Western music 1s played by tuning instruments to a musical system known as Equal
Tempering which evolved from the music theories of the ancient Greek mathemati-
cians, although 1t was not until the 20 century that 1t became the common tuning
scale for pranos Equal Tempering s divided into octaves with 12 notes between each
octave A piano standard, for example, has 88 notes across 8 octaves The Equal
Tempering system assumes that the note known as middle A has a frequency of 440
Hz, two octaves down and the first note C starts at 32 70 Hz For the purpose of
this dissertation, we hmit the number of octaves in the Equal Temperament system
to seven octaves, although more exist This 1s shown 1n Figure 3 20

Two corresponding notes 1n adjacent octaves differ in that one frequency 1s twice
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{Octave:t| C [C#| D [D#| E | F [F#| G |G#| AfAar][B] C]

|octaver2]| C [c#[D [p# | E [ F[Fe|G[G#[ AfA#] B[ C |

loctavé3[ C [c#| D [D#] E [ F |F#| G |G#] A‘fA#[ B|C|

[octaverd] Cc [c#[ D[] E[F[Fe[ G Jee] AJas[ B[ C]

|[Octave5] Cc fc#| D [p#[ E[F e[ G [Ge[ A Ja#][ B[ C|

s

[Octaveje] C [c#[ D [D#[ E[F{Fre[ G [ aa#] B[ C|

[oewa7] c [c#] b [oF[ E[F [F#] G [GF[ ATm[ 5] C]

Figure 3 20 Notes and octaves

that of the other, 1e they have a ratio of 21 The values that make up notes for

the Equal Tempering system frequencies are calculated around a reference frequency

using a difference of /2 between frequencies Taking A=440 Hz as the reference

frequency, the next note will be /2440 = 466 16 Hz, the prior note 1s /2 —440 =

415 31 Hz and so on The frequencies that make up the Equal Tempering system

are shown i Table 3 8

[ Note [ Octave 1 | Octave 2 | Octave 3 | Octave 4 | Octave 5 | Octave 6 | Octave 7 |

C 3270 65 41 130 81 261 63 535 25 1046 50 2093 00
C# 34 65 69 30 138 59 277 18 554 36 1108 73 2217 46
D 36 71 73 42 146 83 293 66 587 33 1174 66 2349 32
D# 38 89 7778 155 56 31113 622 25 1244 51 2489 02
E 41 20 8241 164 81 329 63 659 25 1318 51 2637 02
F 43 65 87 31 174 61 349 3 698 46 1396 91 2793 83
F# 46 25 92 50 185 00 369 99 739 99 1479 98 2959 96
G 49 00 98 00 196 00 391 69 783 99 1567 98 3135 96
G# 51 91 103 83 207 65 415 1 830 61 1661 22 3322 44
A 55 00 110 00 220 00 440 060 880 00 1760 00 3520 00
A# 58 27 116 54 233 08 466 16 932 33 1864 65 3729 31
B 61 74 123 47 246 94 493 88 987 77 1975 53 3951 07
C 65 41 130 81 261 63 523 25 1046 50 2093 00 4186 01

Table 3 8 Equal tempering frequencies
Reproduced from [Kientzle, 98, p18|

CEOLAIRE’S extraction engine 18 built around the values in Table 3 8 to help

1t 1dentafy notes We will see later (Section 521 2) how using Table 3 8, we can

identify the occurrence of particular frequencies and hence musical notes

Once

we have defined which musical notes are present, the next question 1s “How do we

represent this information?”
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3.3 Representing Music and Melody

Music or the notes that make up the content of a musical song or melody can be
represented by Contour or by Interval Contour 1s the representation of musical
notes by the change or lack of change of contiguous notes over time Representing
music or melody by Interval means representing musical notes based on the difference

between adjacent notes

331 Representing Melody as Contour

Using Contour, the melody of a song can be defined by comparing the change from
one note to the next over time These changes between adjacent notes and melodies
are recorded as a note either going up (U), going down (D), or remaining the same
(S) relative to the previous note, 1rrespective of any timing or duration imformation
This language of three symbols 1s known as Parsons notation [McNab et al , 97
As the first note has no previous note, the Parsons notation starts with the change
from the first note to the second For example, Figure 3 21 shows an array of notes

and their Parsons equivalence

“7Notes«4 64, 65, 67, 72, 72, 67, 65, 64

oy
i 4

%R%%?ﬁgﬁl *U,U,U,5DD,D

Figure 3 21 Representing musical notes using Parsons notation

When faced with the task of generating a musical query, which will itself have to
be turned nto some musical notation, a user will find 1t easier to generate a query
using Parsons notation than having to recall exact note values Observing Figure
3 21, 1t should be clear that the cognitive load of generating a query using the exact
note values 1s higher than trying to generate a query using Parsons notation 1if the
user has to generate the query manually In the case of a query-by-example system,
the cogmtive load between the two methods may not be subject to the same kind
of difference

Parsons 1s essentially a language with three symbols It can be further extended

to a 5 symbol alphabet to allow for a stronger representation of music by defining
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not only the note change, but qualifying that change based on how large a change

occurred This 1s 1llustrated in Table 3 9

| Symbol | Effect B
-2 Large change downwards
-1 Small change downwards
0 No change
1 Small change downwards
2 Large change downwards

Table 39 Extended Parsons using five symbols

Using Parsons as a representation for music melodies incurs a loss 1n accuracy as
the Parsons language only has 3 letters 1n 1ts alphabet We will take a more detailed
look at Parsons as a valid representation for music retrieval in Section 52 13 If we
have access to music 1 a pitch like representation or where whole notes are 1dentified
by numbers, then 1t 1s a trivial task to convert 1t into Parsons All one has to do 1s

observe the change from one note to the next

3 32 Representing Melody as Interval

With the interval representation, melody 1s defined by the difference between two

adjacent notes 1n a melody Interval representation 1s shown in Figure 3 22

iNotesi® 64, 65, 67, 72, 72, 67, 65, 64
~Inteérval’| +1, +2, 45,0, -5, -2, -1

I

Figure 3 22 Representing musical notes using an Interval representation

As with Parsons, 1f we have a whole number representation, then 1t 1s a straight
forward task to discover the Interval structure of a song The drawback with Interval
18 that a user 1s required to have a strong musical ability when generating musical
queries We will observe the effects of using Interval as a representation for melody

fragments 1n Section 521 3
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333 Measuring Distance Between Musical Strings

We have seen that we can define music as a string, using the letters “U”, “D” and
“S” A string 1s defined as being a sequence of characters over a finite alphabet For
example, the string “UDDDUSSUDDDU” 1s a string over the alphabet {U,D,S}
The general problem of string matching is to locate all occurrences of a target string
t, 1 a larger string R (drawn from the same alphabet), called the reference string
Given three strings x, y and z, x 1s a prefiz of the string xy, a suffiz of the string yx,
and a factor of yxz

In this section we review some of the more common methods for measuring
occurrences and distances between strings, which could be the representation for
melody using either contour or interval, starting with the methods used for exact
string matching and how approximate string matching can be implemented to help

rank strings in terms of their similarity to a query string

3331 ZExact String Matching

At 1ts simplest, string matching can be undertaken using “brute force” Brute force
string matching 1s shown 1 Figure 3 23 Here we can see the target string “abcacab”
1s being compared to a reference string “abcacaabcabcabcacabcab” The target string
1s laid out below the reference string and the characters in both are compared If
a match 1s not found, the target string 1s moved across by one character and we
compare again This “compare and move” process of matching character by character

1s undertaken continmuously until a match 1s found

This 1s a computationally expensive process with a lot of unnecessary work being
undertaken, requiring 1n the worst case, a total of m*n comparisons, where m 1s the
number of characters in the reference string and n 1s the number of characters in
the target string

Brute force matching requires a lot of comparisons which can be avoided and
one way to cut down on the number of string comparisons 1s to match only when
we have a potential match One such approach to achieve this 1s the Boyer-Moore

algorithm
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Figure 3 23 Brute force string matching
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3332 Boyer-Moore Algorithm

The Boyer-Moore algorithm [Boyer et al , 77] works by shding a window containing
the target string across the reference string using a slide forward, compare backwards
strategy The Boyer-Moore algorithm shdes forward through the reference string
Within every window, a backwards search 1s undertaken, matching characters be-
tween the current location in the reference string and the target string The fact that
we are starting at the end of the window and working backwards means that there
1s a potential reduction 1n the number of actual character comparisons which have
to be undertaken For example, take the word “stapler” as the window and “stapled”
as the target string The “r” and the “d” mismatch so it 1s known straight away
after only one comparison that there 1s no need to continue comparing characters
As long as the character in the reference string that mismatched does not appear
anywhere 1n the target string, we can shde the window the length of the window for-
ward 1n the reference string If the character {that mismatched does occur inside the
reference string we must shift the target string to the point in the reference string so
that the mismatched character 1s ahgned m both strings A backward comparison
1s then undertaken again This process 1s then continued until a match 1s found or
the end of the reference string has been found An example implementation of the
Boyer-Moore algorithm to find the target string “abcacab” in the reference string
“abcacaabcabcacabcab” 1s shown m Figure 3 24

The steps to locate the string are as follows

1 A mismatch occurs straight away between “a” and “b” The mismatching

character “a” does occur 1n the target siring so we must align “a” with “a”

2 We start comparing backwards again and the mismatch occurs after the third
comparison between “a” and “c” Again we forward align the target string to

match “a” with “a”

3 Immediately, a mismatch occurs between “c” and “b” so we forward align the

target string to align “c” with “c”

4 The next mismatch occurs after 4 comparisons between “b” and “a” Again,
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Figure 3 24 Boyer-Moore algorithm

forward ahignment for “b” to “b”

5 Straight away, a mismatch occurs between “a” and “b” Forward alignment for

‘(a” and ‘(a”

6 Again, immediate mismatch occurs between “c” and “b” Forward alignment

takes place for “c” and “c”

7 Match found!

Boyer-Moore has a worst case runming trme of O(n +m) Another method for com-
puting whether or not a target string occurs 1nside a reference string was discovered

by Knuth, Morris and Pratt

3333 Knuth-Morris-Pratt (KMP)

The Knuth-Morns-Pratt algonthm [Knuth et al, 77] works by shding a window
incrementaly through the reference string, comparing characters in a forward direc-
tion  KMP employs a “failure function” which 1s used to decide where to position

the target string against the reference string when a mismatch occurs
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The purpose of the failure function 1s to compute the count of characters of the

longest prefix of the target string that 1s a suffix within 1tself Basically, what 1s the

largest sub-string starting from the 0% character, that exists within the string The

failure function 1s computed by comparing the target string against itself Every

tume a character matches, 1t 1s assigned an incremental cost of how many of the

previous contiguous characters have matched The failure function for the string

“abcacab” 1s shown in Table 3 10 It 1s computed as follows

1

2

Compare the 1°¢ character to the 0** character T[0] # T[1}, so ff(1) =0
Compare the 2™ character to the 0" character T[0} # T[2], so ff(2) =0
Compare the 3¢ character to the 0" character T[0] =T[3],s0 ff(3) =1
Compare the 4" character to the 1** character T[1] # T[4], so ff(4) =0
Compare the 5" character to the 0% character T[0] = T[5], so ff(5) =1

Compare the 6% character to the 1% character T[1] = T[6], so ff(6) = 1 -+
the value of ff(5) ff(6) =2

L J [0]1]2]3]4]5]6]
Thl |a|b]clajclal|b
ff(j) (000 |1(0]1]2

Table 3 10 KMP failure function

The failure function informs that 1f a mismatch occurs between the window and

the reference string then the window can be shifted forwards to where the mismatch

occurred, and then shifted back by the amount indicated 1n the failure function An

example of the KMP algorithm 1s shown 1n Figure 3 25

KMP 1s implemented as follows

1

Start comparing forwards A mismatch occurs between the “a” and the “b”
on the 6" character of the target string The failure function 1s consulted, 1t
states that a mismatch on the 6** character incurs a shift of 2 The window 1s
then shifted forward to where the mismatch occurred minus the amount from

the failure function
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Figure 3 25 Knuth-Morris-Pratt algorithm

2 Now, we know that from the failure function there 1s no need to compare “a”
and “a” We continue comparing forwards A mismatch occurs between the

“a” and the “b” The failure function 1s consulted and has a shift cost of 0

3 The target string 1s aligned where the mismatch occurred, but this time we do
not pull the target string backwards Then, after 5 comparisons a mismatch
occurs between “b” and “c” Consulting the failure function, we observe a shift

cost of 2

4 We compare forwards again, starting at “b” Match found'

The KMP algorithm has a worst case running time of O(n + m)

3334 Bit-Parallelism

Bit-parallelism 1s a method which can be used to quickly compute the occurrence
of a target string in a reference string if the length of the target string 1s smaller
than the word s1ze of the computer One of the early bit-parallelism methods 1s the
Sft-Or algorithm [Baeza-Yates et al, 99b} The algorithm works with two word
level bit-vector operations of computer hardware, SHIFT and OR The techmque 1s
called bit-parallelism since we are simulating a cost column 1n a single word Both
the SHIFT and the OR operations are undertaken in parallel at the bit level The

operations are 1nplemented column by column from left to right until the entire
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reference string has been processed or the bottom row of the vector contains a 0,
indicating a match has been found

Shift-Or starts off by initialising a bit array showing the indices of all the char-
acters 1n the target string The Bit-Array for the string “cacb” 1s shown in Figure

3 26

~|o|~|oE]

Figure 3 26 Shift-Or bit array

The next step 1s to imitialise a word sized vector E to all 1’s , which 1s used 1n

conjunction with the Bit-Array when applying the SHIFTs and ORs An example

of running through the algorithm applying the Shift and Or operations is shown 1n
Figure 3 27

Figure 3 27 Shifi-Or table

Shift-Or starts by shifting the E vector by one (introducing a 0 at the top),
then a vector from the Bit-Array corresponding to the character under observation
1s placed beside 1t The OR operator 1s applied to both, resulting in the next E
column This process 1s repeated until the bottom row of the E vector 1s 0 or until
there are no characters left in the reference string

This SHIFTing and ORing ensures that whenever a partial match 1s found a 0
1s repeatedly passed on to the next E column and down by 1 Then when the final
row of the E vector contains a 0 we know that we have a complete match

Shift-Or has a linear running time but as 1t uses hardware operations 1s very

fast
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The algorithms we have looked at so far have one thing in common They perform
exact string matching, that 1s, they only find strings which are exactly the same A
music information retrieval may want a certain level of “fuzziness” associated with
1t, exact string matching can be too lmiting Take for example a query string
“UUDDUSD” presented to a music information retrieval system There may not an
exact match to that query string, but a similar string “UUDUUSD” may exist A
pointer to the file containing this string could then be returned as part of a ranked
list of similar files, ranked by the number of characters mis-matching This type of

string matching 1s known as approximate string matching

3335 Approximate String Matching

The goal of approximate string matching 1s to find the occurrences of a target string
1n a reference string, while the target and 1ts occurrence in the reference string can
have a limited number of differences The three popular approaches to approximate

string matching are

e String matching with k mismatches
e String matching with k differences

e String matching with don’t cares

String matching with k mismatches allows for matches where up to k characters
i the target string do not match the reference string String matching with k
differences requires that the target string has an edit-distance from the reference
string with a value of k or less String matching with don’t cares allow don’t care
characters to match any character The latter two matching functions are basically
the problem of finding the longest-common-subsequence between the target string
and the reference string Examples of the three approaches to approximate string

matching are shown n Figure 3 28

3336 K Mismatches

The problem of matching strings with k mismatches 1s to compare a target string

against a reference string where at most k positions in both strings have differ-
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a[bTc[d] =[z]b]c]d] = [a]b[[d] # [a[zld]

String matchung with k mismatches (k=1)

a[bc]d) =[a[b[ald] =[a]elc]d] #[alclbld]

String matching with k differences (k=1)
P[] =[]z

18] = [3Eld) £EhEE]

String matching with dont cares

Figure 3 28 Dafferent approaches to approximate string matching

ent characters k=2, would allow the strings “abcd” and “azzd” to be equivalent
String matching with k differences does not allow for insertions or deletions of char-
acters, only substitutions One method for computing the difference between two
strings of equal length 1s to use a distance metric known as the Hamming distance
[Hammuing, 50|, which 1s the number of positions with different characters When
comparing two strings, the Hammng distance 1s the count of characters that differ
between the two strings

Another way to compute whether two strings match with k mismatches 1s to use

a version of the Baeza-Yates’ Shuft-or algorithm [Baeza-Yates et al , 99a]

3337 K Differences And Don’t Cares

String matching with k differences requires that the target string has an edit-
distance or Levenshteimn Distance [Levenshtemn, 65] from the reference string
with a value of k or less An edit-distance or edit-cost 1s the number of edit op-
erations that can be performed to turn one string into another An edit operation
can be the insertion of a character, the deletion of a character or the substitution
of a character to another character The words “stable” and “staple” are similar
and one can be morphed into the other with the substitution of just a single letter
(“b” to “p”) Further the word “staple” can be converted nto the word “stale” with

[{3g))

the deletion of a single character (“p”) Conversely “stale” can be changed to “sta-
ple” with the wnsertion of a single character (“p”) It 1s the assignment of costs to
these editing mutations which gives an overall “distance” between the two strings
being compared The edit-distance 1s defined as the mimmum number of character

mutations required to transform a target string into a reference string
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The edit-distance uses dynamic programming to find an optimal solution to
the mimimum number of edits when turning one string into another Dynamic
programing can for some problems reduce a problem with an exponential running
time to a polynomial running time It does this by first breaking the problem nto
repeated sub-problems, finding the optimal solution for the sub-problems and then
finding the overall optimal solution At the heart of the edit-distance algorithm 1s
the use of a distance table

An example of finding the edit-distance between the strings “abcded” and “abddf”
1s shown 1n Figure 3 29 The algorithm works by first creating a matrix of size m*n,
where m=size of “abcded” and n=size of “abddf” The first row 1s initialised with the
values 0 m and the first column with values 0 n The table 1s processed column
by column Starting with 1=1, =1, for every entry 1, J (1=row, j=column), 1f the
character represented by j 1s equal to the character represented by the row 1, the
cost 15 set to 0, if they are not equal the cost 15 1 A value 1s then assigned to the

distance matrix dist[1|[j] using the mimimum of

dest]s — 1][5] + 1
minamum duste|]ly — 1]+ 1

distfs — 1][y — 1] + cost

Repeatedly calculating the distance values leads to the matrix shown in Figure
329 The actual distance 1s the number 1n the bottom right hand corner of the
matrx, distim-1]|n-1] In this case the edit-distance 1s 3 The morphing operations

({92

undertaken are two substitutions (“c” to “d” and “e” to “f”) and one 1nsertion (insert

13 d”)

lg?@%ﬁo fz 345
b1]{o|{1]2(3|4
s?éi‘;z 1{1]1]2]2
Wi 3[2(2]1]2]2
“$24|313(2(2]|3

Figure 3 29 Edit-distance of two strings
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It should be clear how the edit distance can be used to undertake string matching
with k differences It can also be used for stiing matching with k don’t-cares as 1if
we discover a don’t care while calculating the distances, we simply treat any don’t
care character as a match

Figure 3 30 shows the calculation of the edit distance with 2 don’t cares between
the strings “abcded” and “ab??f” The matrix 1s calculated as earlier with the same
rules, but every time we encounter a don’t care symbol, we treat 1t as matching
symbol, assigning a cost of 0 The edit distance between the strings “abcded” and

“ab??{” 18 2

s e g

“raxjsbilicylidilieildi

1

)alo|1|2|3(4]5
7 1{o|1{2{3]4
[2]1]of1]2]3
@263]2(1|0j1]2
dial1]|2(1]1]2

Figure 3 30 Edit distance with two don’t cares

3.4 Summary

We started this chapter by exploring the differences between the time domain and
frequency domain followed by an introduction to different methods of gaining access
to musical content from digital music sources using frequency spectra generation
and analysis We also explored some of the issues relating to their generation, for
instance how signals have to be windowed before they can be rehably analysed We
also took an 1 depth review of how Fourier transforms are derived and implemented
Following that we looked at how music 1s played by tuning instruments to the equal
tempering scale and how we can derive the values for that scale We also looked
at how we can represent music by using both interval or contour and how music
retrieval can be reduced to the task of string matching

Next, we will undertake a hiterature review which concentrates on some of the

early work on music information retrieval and some of the systems that have been
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implemented, both systems that work with MIDI and recent attempts to implement

systems working on raw polyphonic musical sources



Chapter 4

Review of Previous Research in

Music IR

4.1 Introduction

This chapter explores a number of different music information retrieval systems,
from the early ones up to those currently under investigation by reseaichers We
will see that MIDI as a format 1s still popular from a retrieval perspective, but that
music 1nformation retrieval 1s moving towards allowing queries to be run against
monophonic and polyphonic sources of raw o1 compressed audio signals rather than
just MIDI tunes (which can be both monophonic or polyphonic) We will also cover
score based systems such as Guido, and we will finish up the review by looking at
some more commerciahised approaches

Table 4 1 shows a summary comparison of some of the different music information
retrieval systems which we review and how they compare to the system we built,

CEOLAIRE

4.2 MELDEX

MELDEX 1s the New Zealand Digital Library Melody Index [McNab et al, 97] It
was designed to retrieve melodies from a database on the basis of a few notes sung

into a microphone A user uploads or gives MELDEX a URL of a file which contains

84
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User Index Web | Collection | Music Type Matching
Interface denved based Size
MIDI | RAW Mono | Poly | Approx | Exact
Arthur N/A No Yes | No 100 No Yes Yes N/A
MelodyHound | Whisting | Yes | No Yes 10,000 Yes No Yes Yes
Graphtcal
ThemeFinder Yes | No Yes N/A Yes No Yes Yes
OMRAS N/A No Yes | No N/A Yes Yes N/A N/A
QBH Humming | Yes | No No 183 Yes_ | No Yes Yes
Meldex Singing Yes |No Yes 100,000s | Yes No Yes Yes
Upload file
QPD Graphical | Yes | No Yes 183 Yes No Yes Yes
SEMEX N/A Yes No No N/A Yes Yes No Yes
Ceolaire Graphical | Yes |Yes |Yes 9,354 Yes |[No Yes Yes
{(NZDL)

Table 4 1 Comparing some of the different MIR systems

a sampled acoustic signal Melody transcription 1s then performed by segmenting
the acoustic stream 1dentifying frequencies, applying pitch labels and note durations

For music transcription, only the fundamental frequency of the input 1s needed
The mput 1s filtered to remove as many harmonics as possible, while still leaving
the fundamental frequency mtact This 1s achieved by converting the mput file’s
sampling rate to 22 kHz followed by 1ts quantication to an 8-bit linear representation
Singing voice hmits, ranging from F, (87 31 Hz) to G5 (784 Hz), are used when
analysing a query and any note otitside the human singing range are not catered for

The acoustic stream 15 low-pass filtered with a cut-off frequency of 1,000 Hyg,
which has the effect of removing all frequency components above 1,000 Hz (including
the harmonics) which aides in pitch discovery Pitch 1s discovered with the use of a
pitch tracker, identifying pitches by the observation of repeating pitch periods which
make up the overall waveform

Once pitches are 1dentified, note start and end timings are determined MELDEX
achieves this by depending on the user separating each note by singmg either da or
ta as this forces a short duration silence between notes as consonant sounds cause
a drop 1n amplitude for 60 ms or more at each note boundary Adaptive thresholds
can then be used to determmne the note onsets and offsets Figure 4 1 shows the
use of amplitude to segment a series of notes The rhythmic values are assigned by
quantifying each note to the nearest mimmimum note duration, which 1s set by the
user

MELDEX has a number of databases The Folksong database consists of 9,354
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Figure 41 Note onsets and offsets of a query in the MELDEX system
Type 0 MIDI files taken from the following categories

e North American (and British) folk songs
e German ballads and folk songs
e Chinese ethnic and provincial songs

o Insh folk songs

MELDEX also has a Fake Book collection of approximately 1,200 popular tunes, a
MidiMin1 collection and a MidiTheme collection which has over 17,000 MIDI files
A lot of modern songs contain a “hook”, that memorable portion of the song that
stays mn your head Very commonly the hook 1s the chorus and therefore this i1s the
portion of the song that a lot of people will want to search for MELDEX allows for
search on either the explicit beginning of a song or at any location within a tune
MELDEX uses Parsons notation to build its index and this yields what 1s called
the melodic contour or pitch profile A tune 1s effectively represented as a string
from a vocabulary of 3 letters, thereby reducing the retrieval operation to the task
of string matching Approximate rather than exact string matching algorithms are
deployed in MELDEX as a query could easily have a Parsons symbol (a letter) out
of place This type of error 1s introduced by the user forgetfing a note, inserting a
false note or substituting a wrong note 1n place of a correct one Hence the basic

operations used 1n the string matching algorithms are deletion of a single symbol,
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wnsertion of a smgle symbol and substitution of one symbol with another The three
operations have associated costs which can be fixed or dependent on what the value
of the current symbol 1s It 1s worth noting that these kinds of errors can not occur
as the result of incorrect representations of melodies within the database, as the
representations are taken directly from MIDI representations of the song

Some of MELDEX’s advanced query features include note duration and tempo,
search from the beginning of a song or anywhere 1n the song and interval rather con-
tour matching MELDEX can also perform exact matching of interval and rhythm,
mterval regardless of rhythm, contour and rhythm, contour regardless of rhythm

and approximate matching of interval and rhythm and contour and rhythm

4.3 Musclefish

Musclefish 1s a commercial application from Musclefish LLC which allows for content
based retrieval of digital aud.o [Wold et al , 96] Musclefish achieves this by allowing

access to sounds using the following properties

e Simaule A simile 1s where sounds have some common characteristics, therefore
they are stmilar Sounds can be classified 1n groups For example a sound can

belong to the class of speech sounds or to the class of applause sounds

e Acoustical / perceptual features This 1avolves describing the sound in terms
of commonly understood physical characteristics such as brightness, pitch and

loudness

o Subjectwe features This imnvolves describing sounds using a personal descrip-
tive language by training the system to understand the meaning of a particular
term For example a user can train the system to know what a shimmering

sound 18

e Onomatopoera Here, the system can retrieve a sound similar in some quality to
the sound we are looking for For example, a buzzing noise could be presented

as a query to find the sound of bees
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The Musclefish audio database was built so that 1t could match and compare aural

properties, not just melodies The system analyses sound to discover the following

properties

Loudness 1s approximated using the signal’s root-mean-square (RMS) level in
decibels This 1s calculated by breaking the sound up into a number of frames
and computing the square root of the sum of the squares of the windowed

sample values

Pitch 1s determined by taking a series of short-time Fourier magmtude spec-
tra The pitch 1s retrieved by using an approximate greatest common divisor

algorithm on the frequencies and amplitudes of the peaks

Brightness 1s computed as the centroid of the short-time Fourier magnitude
spectra, stored as a log frequency Basically this 1s a measure of the higher

frequency content of a signal

Bandundth 1s computed as the magnitude-weighted average of the differences

between the spectral comﬁBﬁ'enig and the centroid

Harmonicity 1s the difference between harmonic spectra (vowels and most mu-
sical sounds), in-harmonic spectra (metallic sounds), and noise (spectra that
seem to vary randomly 1n frequency and time) Harmonicity can be computed
by measuring the deviation of the sound’s line spectrum from a perfectly har-

monic¢ spectrum

Some of the apphcations that the Musclefish system can be used for include

Audio database browser
Search sounds for different properties
Audio editors

Allow sound editors a level of knowledge about the content of sound they are

working with
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e Surveillance
e Senses for an alarm system that listens for sounds, e g glass breaking
e Automatic segmentation of audio and video

e Detecting scene changes within video using audio

4.4 Query by Humming

The Query by Humming (QBH) system which was developed at Cornell University
allows for musical information retrieval against a musical database [Ghias et al , 97)

The architecture of the QBH system 1s shown 1n Figure 4 2

P m’ﬁwww
[ ﬁummedaqueryf@J

ffau‘c:ﬂ y
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5

Figure 42 Architecture of the QBH system
QBH consists of 3 main components
1 Pitch tracking module
2 Melody database
3 Query engine

Queries are hummed before submission to the QBH system for analysis A pitch

tracking module 1solates and tracks the pitch of a user’s hummed query using a
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modified version of an auto correlation function The pitch tracking 1s implemented
using Matlab, 1solating and tracking peak energy levels of the signal resulting 1n an
estimation of the pitch The query 1s then reduced to a string of Parsons notation
The musical database consists of only 183 MIDI files which are pre-processed
mto Parsons notation and stored separately in different files Matching a query to
strings 1n the database 1s implemented with a degree of fuzziness The reason being
to combat any errors which may be introduced by the way people hum and for any
errors 1n the representation of the song itself The actual searching of the database
18 achieved using the Baeza-Yates approximate string matching algorithm, which

can take transposition, drop-out and duplication errors into account

4.5 Query by Pitch Dynamics

Query by Pitch Dynamics (QPD), developed by The Link Group at Carnegie Mellon
University [Beeferman, 97| 1s a system allowing for the automatic indexing of music
by 1ts tonal content so that 1t can be searched as well as analysed off-line QPD
derives the tonal content of a ?:E";‘ng§ from a single discrete stream of pitch values
which correspond to frequencies or notes from a musical file This one-dimensional
time series sequence of elements 1s indexed based on the relative values of nearby
elements, rather than absolute values These sequences are obtained from MIDI
files

QPD stores note information in P-structuies, where a P-structure 1s a pattern of
notes from a tune An example P-structure from QPD 18 shown in Figure 4 3 The
second note 1s the same as the first, the third 1s higher than the second, the fourth

1s lower than the third and so on It 1s basically a contour representation of a tune

ﬂ
RS
N

O m—

Figure 4 3 P-Structure for part of the tune “Happy Birthday”

It can be seen from the diagram that a P-structure shows only the relative

difference between notes, not exact note values This takes some effort off the



4 5 Query by Pitch Dynamics -~ 91

user when formulating a query, as users aré not expected to remember exact note
sequences, only how the notes are approximately related

A crude estimate of the contour of a P-structure can be easily generated First
the P-structure 1s divided into two parts, the left and right The sum of the ranks
on the left hand side are compared with the sum on the right If the sum of the left
has value greater than or equal to that of the nght, a 0 1s encoded, otherwise a 1

This 1s shown 1n Figure 4 4

A A

&

11(21]43 11
2 3|7 | 2

5 9

Figure 4 4 Estimating the contour of a P-Structure

The QPD system consists of a core engine which can run in one of four modes

o Check Mode simply scans ail MIDI files looking for duplicates or corrupt files,

which 1t discards It then produces the index

e In Tramning Mode the engine imtialises the database and adds the index nto

the database

e Query Mode allows a user to perform exact and approximate matching on
sequences 1n the database The sub-sequence recogniser can match songs based
on a few successive notes In comparison with speech recognition software 1t
can fail because notes can be inserted, deleted or substituted Sub-sequence

quertes are matched based on note relativity rather than exactness

e Cluster Mode searches the database for clusters This 1s achieved by analysing

each window for 1ts nearest neighbour

The system can be used to cluster songs that have similar melodic phrases or themes
and to discover old or emerging genres of music It can also be used to identify

different renderings of the same piece of music
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QPD 1ndexes a file using a shding window to generate and record a P-structure
for each window Each extracted P-structure 1s converted to a pomnt in a feature
space with a transform similar to that of the Haar wavelet transform [Flannery et
al, 92| The points are then indexed 1n an R-tree and the Euclidean distance 1s used

as the distance metric at query time

4.6 ThemeFinder

ThemeFinder [Kornstadt, 98] 1s a web-based melody search system [Themefinder,
02] allowing searching of music using a variety of methods Music can be searched
using pitch, mterval, scale degree (do, re, mu etc ), contour and refined contour,
either from the beginning only or from anywhere within the song Searches can also
be key dependent in either a major or minor mode or both The user interface for
the ThemeFmder system 1s shown 1 Figure 4 5 ThemeFinder searches against a

database of classical, folk song or Renaissance tunes
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4.7 MelodyHound

MelodyHound [Melodyhound, 02] 1s a web-based music information retrieval system
which allows users to retrieve songs by either entering Parsons notation directly or
by whistling a query A user downloads a Java applet which allows the recording of
a whistled tune This tune 1s then analysed by the applet for frequency information
and Parsons notation 1s automatically derived from this frequency information The
Parsons notation 1s then submitted to the melodyhound database which consists
of about 10,000 classical songs, 100 popular songs, 10 folk songs and 100 national
anthems When the answer set 1s returned, the user 1s presented with a link to
purchase the music at an online music store or to purchase the score of the song

The MelodyHound 1interface 1s shown in Figure 4 6
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Figure 4 6 The user interface for the MelodyHound system
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4.8 ARTHUR

ARTHUR [Foote, 00] 1s an experimental audio retrieval-by-example system designed
for orchestral music It 1s named after Arthur G Lintgen who was able to identafy
phonographic recordings by the softer and louder passages, which are visible in the
grooves of an LP ARTHUR was designed to do the same, retrieve audio based on
1ts long term structure The experiments carried out on ARTHUR were done using
a number of different classical CDs Audio energy versus time 1n one or a number of
frequency bands 1s one way to determine the long-term structure of audio At the
core of ARTHUR 1s the use of a dynamic programming algorithm called “Discrete
Time Warping”, which 1s used 1n speech recognition to help account for variations
in speech timing and pronunciation Dynamic Programming 1s useful where signal
amplitudes do not match exactly and relative timing 1s divergent, as 1s the case
when two different orchestras perform the same piece

Two signals are aligned to each other via a lattice, the test signal on the vertical
ax1s and the reference on the horizontal Every point (1, j) in the lattice corresponds
to how well the reference signal at time 1 corresponds to the test signal at time
The Dynamic Programming algorithm returns the best aligned path that converts
one signal into the other and the cost of that path If the 2 signals are 1dentical, the
cost will be 0 and the resulting line will be diagonal Increasing dissimilarity will
have increased costs associated with the best aligned path

[Foote, 99b] also has an excellent review of audio information retrieval with a

section dedicated to music information retrieval

4.9 SEMEX

SEMEX [Lemstrom et al , 00] 1s an efficient music retrieval prototype which uses bit-
parallel algorithms for locating transposition imvariant monophonic queries within
monophonic or polyphonic musical databases SEMEX uses pitch levels for music
representation Pitch levels are represented as small integers, making up the lan-
guage of the system The architecture of the SEMEX system 1s shown in Figure
47
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Figure 4 7 Architecture of the SEMEX system

If the database 1s comprised of monophonic music representations, SEMEX ap-
phes an adaptation of Myers algorithm |[Myers, 98] Myers algorithm 1s a fast bit-
vector algorithm for approximate string matching based on dynamic programming
The matching algorithm was modified so that 1t only reports positions where the
edit distance does not grow and positions which are not followed by a better match
This 1s known as pruning The pruned resulis must first be venfied before the re-
sults are returned to the user This 1s because Myers algorithm only computes edit
distances The matching position j 1s passed to the dynamic programming algorithm
to resolve a match

Retrieval of polyphonic sources in SEMEX can be accomplished using one of
two methods First, the music database 1s reduced to a monophonic one Poly
to monophonic reduction 1s achieved by simply selecting the highest notes of the
chords Retrieval can then be performed using the monophonic techniques Al-
ternatively, SEMEX can leave the database in 1ts polyphonic form and search for
transposed exact occurrences using its MonoPoly algorithm The MonoPoly algo-
rnithm 1s a two-phase algorithm The first phase pre-processes the source and the
second phase applies a filtering technique and consists of two sub-phases The first
of these sub-phases 1s the marking phase which performs bit-parallel searches for
possible occurrences of a given query pattern These possible occurrences, when
found, are called candidates The second of the two sub-phases, the checking phase,
then scans through the candidates looking for actual occurrences The speed of
the MonoPoly algorithm 1s heavily dependent on the output of the marking phase

SEMEX uses MIDI files with an average polyphony degree varying between 1 and
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3 The maximum polyphony degree observed was 41

4.10 OMRAS

Online Music-Recogmtion and Searching (OMRAS) is a cross-disciplinary research
project covering computational musicology, computer science and hbrary science to
answer the problem of a digital music library, the mability to search the content
of the collections for music 1tself Ome of the goals of OMRAS 1s to offer access
to and retrieval of polyphonic sources with recent work by [Plumbley, 01] allowing
access to raw polyphonic music sources and a framework for performing retrieval on

polyphonic sources [Dovey, 01]

4.11 Sheet Music Searching

The systems we have looked at so far have mostly been concerned with retrieving
music using contour or interva! We may also want to search music 1n sheet form
which exists on a mus:cal staft

One system which allows music to be searched for i this form 1s Guido [GUIDO,
02] Gudo [Hoos et al , 01] 1s a music information retrieval system which supports

the following types of queries

e Absolute pitch (c1, d#2, etc)
e Intervals (minor third, major sixth, etc )

e Interval Types (second, fourth, etc )

Interval classes (equal, small, medium, large)

e Melodic trend (upwards, downwards, static)

Absolute durations (1/4, 1/8 , etc )

Relative durations (1 2, 4 3, etc )

Rhythmic trends (shorter, longer, equal)
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Guido uses 1ts own language to represent music Gudio performs retrieval using a
probabilistic model (Hidden Markov Model) It can also be used to generate graphics
of music on a musical staff In Figure 4 8 we can observe the Guido Java applet

bemg employed to create sheet notation representing a query
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Figure 4 8 Gudio note composer

4.12 Prominent Search Engines

Prominent search engine companies hike Altavista [Altavista, 02] and FAST Search
and Transfer ASA [Alltheweb, 02] provide text based searching of musical metadata

Examples of metadata searching include
e Band, Artist, Title, Album,
o File type

o lile s1ze
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e Duration

Other recent advances in music 1nformation retrieval include Philips audio finger-
printing system [Philips, 01] which creates s digital fingerprint of a song so that
when a user presents a song to the system, the song 1s 1dentified and the user 1s pre-
sented with the option to buy the album containing the song Digital fingerprinting
18 achieved by breaking the song into segments of 10 milhiseconds and then measur-
ing the energy of 33 frequency bands of each segment Using a special algorithm,
the energies are transformed into a code, which 1s umque to each song Similarly,
[Starcd, 02] has a system which continuously listens to and 1dentifies songs playing
on a number of popular American radio stations, allowing a user to purchase music
that 1s currently playing on a particular station or to browse through an archive of

time stamped songs

4.13 Napster

The Napster [Napster, 02| online music service was founded in May of 1999 as a
peer-to-peer file sharing service, allowing users to easily trade music encoded n the
MP3 format MP3 was growing in popularnty and Diamond Multimedia had already
introduced their portable MP3 player This meant that people could now not just
store their MP3’s on their computers but they could carry them on their person
Napster was to become a thorn 1n the side of the recording industry as 1t allowed
users to trade their music files over the Internet The problem that Napster faced
was that their service was being used to share copyright material and as a result
they were eventually forced under law to shut down their file swapping services

Currently Napster 1s reviewing 1ts technologies to re launch as a fee based service

4.14 Summary

In this chapter we reviewed the early work on music information retrieval and some
of the systems that have been implemented, both systems that work with MIDI and

recent attempts to implement systems working on raw polyphonic musical sources
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What can be observed from this literature review 1s that the current trend 1s to-
wards building systems which can successfully negotiate features or structures from
polyphonic sources In the last few years the field of music information retrieval
has been extended by incorporating the use of raw or compressed music files as a
basis for experimentation [Foote, 00] [Plumbley, 01}, although the use of MIDI as a
musical format for music information retrieval 1s of particular use m testing proof
of concepts for both polyphonic [Doraisamy, 01] and monophonic music sources as
1ts structure 1s easily extracted

This chapter finished up our discussion and background information for music
retrieval In the next chapter we will take a look at CEOLAIRE, the music information
retrieval system we built based on the principles we have observed so far and the

system upon which this dissertation 1s based



Chapter 5

CEOLAIRE

5.1 Introduction

In this chapter we introduce and review the CEOLAIRE music information retrieval
system, which we built to implement the 1deas on music information retrieval de-
scribed 1n this dissertation The system can be described in terms of three interre-

lated components

e Music File Processing
e Search Engine

o User Interface

Figure 51 shows the core components of CEOLAIRE The preliminary stage of
building an information retrieval system 1s to gather documents for indexing Once
music files have been gathered, they are processed, turmng raw music files into
“documents” suitable for indexing The second stage takes the documents that have
been processed and submits them to the indexing queue and builds a music index
The search engine consists of a query manager which undertakes retrieval using the
if*1df weighting scheme mcorporating document length normalisation The third
component 1s the user interface consisting of a Java applet allowing users to generate,
view and review music queries, which are in essence music fragments, before they

are submtted for retrieval

100
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Indexable Documents,

‘ Images and
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Figure 51 The core components of CEOLAIRE
5.2 Music File Processing
The goals of music file processing are threefold It has to

1 Generate a png format graphic of the music file (for presentation in the answer

set)

2 Generate vahd indexable documents of music fragments consisting of overlap

ping n-grams
3 Create a record for this music file in the meta-data database

Figure 5 2 1llustrates the components of the Music File Processing stage, which are
achieved using two important components, the first being melody eztraction, the

second being meta-data generation

Music File Processing

Music

Files Melody Extraction Frequency Spectra
: 1 Generation

Frequency Spectra i
Note Detection

Notes* Note%

Meta-data N-Gram Image
Extraction [ Generation

y

_ Search Engine
*. ‘m ~ e

Figure 52 Music file processing
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521 Melody Extraction

Melody 1s extracted from the music files using a two stage process The first gen-
erates frequency spectra while the second takes a frequency spectrum and 1dentifies
notes on the Equal Tempering scale Equal Tempering filtering was covered 1n sec-

tion329

5211 Frequency Spectra Generation

In section 3 2 we discussed a number of different methods which could be used to
gamn access to the frequency information of a PCM encoded music file There are
a number of approaches which can be used to achieve this goal We could use the
Discrete Fourier Transform to generate spectra, but the processing time would be
excessive As we saw earlier, the running time would be mn the order of O (n?)
Another approach available to us 1s to use a series of band-pass filters, to filter out
notes with their corresponding harmonics, but this would require the generation of
filters for each note on the Equal Tempering scale We could also have used wavelets,
but 1n the end our preferred method for a number of reasons was to use the fast
Fourier transform (FFT) as frequency spectra are easily generated using the FFT
with a running time of O(nlogn) This allows us to generate detailed frequency
spectra quickly, to which we are able to apply a note filtering function Figure 5 3

lustrates the steps required to generate frequency spectra They are

1 Window samples
2 Apply Hamming function to windowed samples
3 Apply a 32,768 point FFT to windowed samples

4 Increment window reference in music file and repeat

Generating Frequency Spectra

Read Window Hamming 32,768

samples | ®| samples Function

Figure 5 3 Generating trequency spectra,
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Music files are processed incrementally with a non-overlapping shding window
The si1ze of each window 1s set so as to allow for the accommodation of at least 20
processed windows per second Each window 1s moved forward by 0 05 seconds In
the case of a music file with a sampling rate of 32,000 Hz, the window size 1s 1,600
samples Stereo channels are averaged into one channel

A Hamming function 1s applied to each window to converge the sampled signal
towards zero at both end points, reducing any sharp jumps that may be present,
as they would result in the introduction of noise This processed window 1s then
passed to a 32,768 point FFT function, generating a frequency spectrum for the
given window We 1mplemented a 32,768 point FFT function as this enables us
to generate fine-grained spectra with a minumum resolution of 13 Hz Frequency
resolution 1s calculated by dividing the sampling rate by the size of the FFT

We have already seen that the frequency spectrum generated as a result of a
FFT 1s dependent on two things in particular, the sampling rate and the size of the
FET For example, 1f the sampling rate 1s 44,100 Hz and the FFT 1s a 32,768 point
FFT then the spectrum 1s divided up into frequency ranges of 1 3 Hz In the case of
a music file sampled at a rate of 5?,000 Hz with a 32,768 point FE'T, the resulting
spectrum 1s divided up into frequency ranges with each range represented in steps
of 09 Hz It can be observed that the lower the sampling rate with a constant sized
number of FFT points, the more informative the frequency spectrum

13 Hz 1s the smallest acceptable increment that can be used with our Equal
Tempering filtering algornithm The difference between C and C# 1n the first octave
(as used within CEOLAIRE) 1s 1 95 Hz, Note C being 32 70 Hz and Note C# being
3465 Hz We would simply not be able to reliably analyse notes 1n this octave
without using this many points for the FFT We don’t believe there 1s a need to go
any lower than 32 70 Hz as most music 1s played 1n the octaves around the reference
frequency However as we will see 1n the next section, we are not interested in the
entire spectrum, just a portion of it The spectrum 1s then passed to the Equal

Tempering filtering function
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5212 Note Extraction

This stage of the melody extraction process filters out Equal Tempering notes The
algorithm can be adapted around other music scales with different reference fre-
quencies and for microtonal scales such as are found in Indian music which has
twenty-two notes 1n an octave Western music has twelve notes 1n each octave, with
the interval between each note called a semi-tone Currently CEOLAIRE 18 hmited
to analysing Equal Tempering notes, but the principles that our extraction engine
1s built upon can be extended to work for other musical scales, Indian music for
example Analysing the frequency spectrum of a sound created by an instrument
shows a strong presence of a fundamental frequency (the note being played) followed

by a decaying amphtude presence at mteger multiples of the fundamental frequency

3| —

Harmonics

Amplitude

Figure 54 Fundamental frequency with harmonics

This fact 1s the basis of CEOLAIRE’S extraction engine If we know that a note
has a pre-defined amplitude presence m the frequency domain when 1t 1s played, then
we can analyse the frequency domain for this occurrence CEOLAIRE’S extraction
engine exploits this fact for instruments tuned to this temperament, although not all
instruments have harmonics at exact multiple intervals of the fundamental frequency
Sounds created by a prano, for example, can be subject to the phenomenon known
as stretched partials In chapters 6 and 7 we present results which show how this
process which can be subject to errors effects extraction and retrieval effectiveness

Equal tempering filtering 1s a two stage process First, a two dimensional note
discrimination table 1s dynamically built This table 1s dependent on the sampling

rate and the size of the FF'T employed Each column in the table corresponds to
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| Fundambental Frequency | 3270 Hz |

Harmomic 1 65 41 Hz
Harmontc 2 98 10 Hz
Harmonic 3 130 81 Hz
Harmomnc 4 163 50 Hz
Harmonic 5 196 20 Hz
Harmonic 6 228 90 Hz

Table 51 The first six harmonics of note C (Octave 1) as played on a piano

a particular note on the equal tempering scale, while each row corresponds to the
presence of either a fundamental frequency or one of 1ts harmonics

This 1s the basis of the equal tempering filtering algorithm we employ and 1s
llustrated mm Figure 54 The figure shows that there 1s a fundamental frequency
which has a strong amplitude presence, with decreasing amphtude presence at each
of the harmonics Rather than just picking out the strongest frequency component,
the filtering algorithm explicitly searches for the presence of a fundamental frequency
with 1ts corresponding harmonics When filtering out notes 1n the presence of other
sounds or notes in a sample, this method may prove to be more robust Currently
the algorithm limits the note def‘ectfon range 1o 72 notes over 7 octaves, but this car
easily be extended to include more notes at a cost which 1s measured 1n processing
time, although this would be unlikely to prove useful This note range 1s adequate
for the dataset which we employ as all the notes fall within the 72 note range We
will go 1nto a lot more detail about the dataset in Section 5213 The filtering
table 1s comprised of a column representing each note FEach row i the column
corresponds to a particular frequency from 0 to half the sampling rate and contains
a weighted value for the presence or lack of presence of a note Figure 5 5 shows the
structure of the table

The pseudocode algorithm for building the Equal Tempering filtering table 1s
shown as Algonthm 1

We know that the Equal Tempering scale 1s defined by Middle A = 440Hz This
means that the frequency of the first note C can be calculated It 1s equal to 32 70
Hz To allow for minor imperfections in tuning and stretched partials, the algorithm

sets a lower and upper bound where the amplitude presence should lie, rather than
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3

Algorithm 1 Building the note discriminating table

-- Variable Declaration
MAX_NOTES 1int {constant}
MAX_STEPS int {constant}

note int
step int
harmonic int
upper_note int
lower_note int

noteRefTable [MAX_NOTES] [MAX_STEPS]  float
-- Varaiable Initialisation
upper_note = 33 658183138
lower_note = 31 769094476
note_inc 1 059463094
-- Algorathm
for note = 0 to MAX_NOTES, increment by 1
for harmonic = 1 to 10, increment by 1
upper_limit = upper_notexharmonic
lower_limat lower_limit*harmonic
for step = 0 to MAX_STEPS, increment by 1
test=step*hz_per_step
1f test >lower AND test < upper then
noteRefTable[step] [harmonic] =1 0/(step*harmonic)
endaf
endfor
endfor
upper_note = upper_note*note_increment
lower_note lower_note*note_increment
endfor

I
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1 2 3 12 n

Figure 5.5: Equal tempering filtering table

explicitly assigning weights at the predefined points. It can be observed that note
C in Algorithm 1 is defined by a lower bound limit of 31.77 Hz and an upper bound
limit of 33.66 Hz.

The algorithm starts by assigning a weight for the fundamental of the first note
C, followed by decreasing weights for each harmonic. It repeatedly does this for each
note. The table is constructed each time a file is processed as each row represents a
frequency which is dependent on the size of the FFT and the sampling rate. In the
case of a music file sampled at 44,100 Hz and employing a 32,768 point FFT, each
row represents steps of 1.3 Hz. Similarly, if the music file is sampled at 32,000 Hz
then each row represents steps of 0.9 Hz.

The frequency spectrum from the FFT function is passed to the note discrim-
inating filter. Both the filtering table and the frequency spectrum are stored as
arrays. The filter function takes an empty array and the FFT’d samples as param-
eters. The empty array, called notes_present, holds the relative amplitude of any
note which may be discovered. Each row in this array corresponds to a note on the
equal tempering scale. Each entry in the notes_present array contains the sum
of the multiplication of the FFT’d samples by the array corresponding to current
note. This is shown in Figure 5.6. If the overall result of this multiplication and

addition is positive, then the note is considered to be present. The pseudocode for
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the notes filtering algorithm 1s shown as Algorithm 2

note_present
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Figure 5 6 Note detection

The output of the note filtering algorithm 1s an array contamming the relative
amplitude of any notes which are present The next step of the process 1s to analyse

the notes for contour and 1nterval before generating indexable documents

5213 Document Generation

Central to any information retrieval system 1s the use of a corpus of documents
A web search engine for example uses HTML documents, a video retrieval system
video clips, an 1mage retrieval system uses image files and a music retrieval system
utilises music files The 1mtial raw or compressed files are usually processed to
develop structures which describe content upon which we perform retrieval

The corpus of music files which we employ for our experiments are taken from
the NZDL folk-song collection [McNab et al , 97] This collection of files consists of
9,354 music files from a mix of American, Chinese and European folk-songs which
makes 1t representative of music from various cultures and the collection has been
processed by McNab so that 1t does not contain any duplicate songs The collection
18 1n the MIDI format which means that 1t 1s easily transferred as the entire collection

1s only 38 MB We calculated the total amount of music to be i excess of 62 hours
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Algorithm 2 Algorithm to determine if a note 1s present

-- Parameters

MAX_NOTES int {constant}
MAX_SAMPLES int {constant}
result {MAX_NOTES] float

samples [MAX_SAMPLES] int

-- Variable Declaration

MAX_NOTES int {constant}
MAX_STEPS int {constant}
note int
step int

noteRefTable [MAX_NOTES] [MAX_STEPS] float

-- Algorithm
for note = 0 to MAX_NOTES, increment by 1

result[note] = 0

for step = 0 to MAX_STEPS, increment by 1

result[note] = result[note] +

(fft_samples[step] * noteRefTable[note][step])

endfor
endfor

X

Ceolaire 1s sensitive only to western music or more exphcitly music played using
equal tempering Traditional Indian music 1s not played using equal tempering
and therefore falls outside the the equal tempering filtering algorithm Arab and
Chinese music also have their own scales which developed over time We view the
extraction engine as a basic model which can be changed to adapt to other scales
and 1nstruments

CEOLAIRE uses the tf*idf weighting scheme incorporating document length nor-
malisation to weight terms for retrieval ¢f*idf has been used with success by text
based information retrieval systems In such systems each term in the corpus repre-
sents a word and every term has semantic content In some cases, this content can
be verified by the use of a dictionary or thesaurus If its semantic context cannot
be verified through a source the term may be discarded An example of a term
with no semantic content 18 a misspelled word Terms in CEOLAIRE do not have
semantic content, there 1s no dictionary which can be consulted, rather they are
simply sub-string melody representations of an overall melody We have seen how

CEOLAIRE dertves this contour during the pre-processing stage The sub-strmgs are
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melody fragments When tf*idf was developed, 1t was assumed that the more fre-
quently a particular term appears 1n a document the more likely that term 1s a good
descriptor of the document It 1s worth noting that while the term frequency (tf) part of
tf*1df can clearly be used for indexing music sub-strings, the use of 1df is not as clear-cut
The frequency of a terms occurrence 1n a text document can be used indicate that terms
significance to the content, of the document Terms with a high frequency of occurrence are
considered to be too common while terms with a low frequency occurrence are considered
to be too rare to contribute to the retrieval process The terms which do contribute lie
between the two extremes, the mid-frequency terms While 1t 1s clear that this applies
to English language documents, 1t 1s not clear whether this applies to music documents
composed of sub-strings Terms which appear a«ross many documents will influence the
ranking process less than rarely occurring terms, which 1s a consequence of using 1df We
use tf*idf to index music documents, however we are aware that 1t was designed for use
with English language text, not music sub-strings

A 1indexable document to CEOLAIRE 1s a document containing music fragments
represented using either Parsons or Interval notation Both Parsons and Interval
notation are abstract descriptions of a music file CEOLAIRE segments this notation
into sub-strings, effectively creating sub-strings of music fragments We accept thai
the terms do not have semantic content when generating the tf*df weights for
them Based on the theory behind tf*1df for text retrieval, we assume that the
more frequently a melody fragment occurs 1n a music file, the better that melody
fragment describes the music file In essence, what we are providing 1s a form
of melody fragment searching within a corpus consisting of documents of melody
fragments

The Document Generation stage 1s divided mnto two similar processes The first 1s
to generate indexable documents using Parsons, the second using Interval Parsons
notation 1s used for simple searching where a user has hmited knowledge about
music while Interval notation 1s for more experienced users who feel they have a
mmtimate knowledge of music For both, the input into the Document Generation
process 1s the note present array for each of the time slices in the music file under
wnvestigation Currently CEOLAIRE utilises a monophonic music corpus so it is a

relatively straightforward task to define the music contour The note _present arrays
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are analysed consecutively Wheh a note change 1s detected 1t 1s recorded 1n Parsons
notation as up (U), down (D) or same (S) relative to the previous note This leads
to a single string of Parsons notation Similaily, for interval derived documents the
difference between note changes 1s recorded, generating a string of note changes
The next step 1s to convert the abstract melody fragments into n-grams

N-grams have found many uses 1n the field of information retrieval, from cryptog-
raphy [Pratt et al , 42| to stemming [Adamson et al , 84] to language 1dentification
|[Damashek, 95] and so on N-grams can also be used to 1dentify spelling errors and
attempt to correct these within a information retrieval system [Angell et al, 83]
[Mclllroy, 82] [Morrs et al , 75] [Peterson, 80] etc

To generate n-grams of a term, that term 1s segmented 1nto smaller overlapping

terms of fixed length n This 1s shown 1n Table 5 2

n-grams

marmalade n
ma ar rm ma ai la ad de n
mar arm rma mal ala lad ade n
marm arma rmal mala alad lade n

=

I
B QO NS —

{l

. Table 52 Different n-grams for the word "marmalade"

One way that misspelling 1n quertes can be accommodated 1n a conventional 1n-
formation retrieval system 1s by using n-grams to index both the documents and the
quertes When using n-grams all indexable terms are first broken up into overlap-
ping fragments of the original term, or n-grams Before submitting a query to the
search engine, 1t also 1s broken up 1nto the same size n-grams The retrieval process
then ranks the documents 1n the order of their similarity to the query where this
similarnty 1s calculated based on the number of n-grams which 1s shared between
documents and query

Misspellings in user queries can also be accommodated by using string matching
or dynamic programming techniques to evaluate how close a misspelled word 1s to a
dictionary of correctly spelt words In fact, a lot of the techniques applied to match-
ing music in different systems are based on sub-string matching techniques Some
of the systems we have reviewed which employ this technique include [McNab et al ,

97] and [Ghias et al , 95] These systems use approximate string matching to rank
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songs based on their similanity” Approximate rather than exact string matching can
be used to overcome himitations where people generate incorrect queries, although
[McNab et al , 97] also allow exact string matching of melody fragments for the more
musically gifted user

CEOLAIRE can use approximate or exact string matching to rank documents
By default, the similanty matching 1s exact, which 1s a consequence of using tf*1df
melody fragment weighting, but by employing the use of smaller overlapping n-
grams, the system takes on the role of an approximate string matching system

When a user creates a music query, such as a query to a music information
retrieval system like CEOLAIRE, errors can be introduced These errors include
forgetting a note in the query, imnserting an incorrect note, or repeating a note
These types of errors are referred to as insertion, deletion and duplication and are

shown 1n Table 5 3

| Insertion ‘ Deletion | Duplication ]

[ marmalxade | marniade | marmalaade i

Table 53 Examples of insertion, deletion and duplication errors of the word “mar-
malade”

Whether or not a music information retrieval system should try to accommodate
and allow for these errors 1s debatable, but it 1s something that a user-friendly
system should strive to achieve CEOLAIRE makes a two-fold attempt to address
the 1ssue of malformed queries First, the interface 1s designed to help minimise the
introduction of a malformed query before 1t 1s submitted to the retrieval process with
a hear, mew and review strategy The user hears the melody of the query as 1t 1s
being generated He/she can also mew the graphical representation of the query on
the paint area of the query input screen and finally the user can play the query back
(review) before submitting 1t to the search engine By adding these extra features,
the CEOLAIRE query handler puts a lot more emphasis on the query generation
stage than one would normally find 1n an information retrieval system Second,
the use of overlapping n-grams relaxes the requirement that a user has to enter a
correct query melody fragment, but at the cost of increasing the size of the answer

set It should be clear that by using smaller sized n-grams, we introduce a negative
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effect on precision as new, probably non-relevant documents are introduced nto the
answer set There should be a mimimum effect on recall as the answer set may grow
to mcorporate an approximately matched melody fragment, but these music files
would not find their way into the already highly ranked documents Basically the
high-ranking documents will continue to score highly and documents introduced as
a result of smaller n-grams will rank lower and the system’s ability to discriminate
documents deteriorates

Analysing the corpus of music files in the collection which we have used for our
music information retrieval experiments (which we discuss in detail in Chapters 6
and 7), there are a number of factors which we can observe The first thing we
discover 1s that within the collection most notes hie between the third and fifth
octaves This can can be seen 1n Figure 5 7 which shows the count of note
occurrences where notes have been given an integer label between 1 and 72 This

vahdates the fact that CEOLAIRE hmits note detection to 72 notes for this dataset
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Figure 57 Note occurrence on the equal tempering scale

Another factor worth noting 1s the distribution of notes within an octave The
relevance of this 1s to see if any note has a particular higher occurrence suggesting
that perhaps weighting could be set to be shightly more biased around that note As
1t turns out, no note has a substantial higher share of the note count A graph of the
note distribution 1s shown 1n Figure 5 8 It 1s worth noting that the notes represented

by black keys on the piano all have a lower occurrence than those represented by
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white keys
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Figure 5 8 Note distribution

We can make a third observation about the dataset regarding the different in-
terval values that occur between adjacent notes in our music database Figure 59
shows that most note changes occur within an interval of 5 Most note changes with
an nterval value greater than 12 occur with a frequency of less than 1% of all note
changes Most note changes occur within 1 octave When indexing by Parsons, there
25 a loss of resolution by reducing the number of symbols available to our alphabet
from 72 down to 3, but seeing as we can observe that most note changes have an
interval jump less than 15 the real loss of resolution 1s closer to 15 down to 3 as
opposed to 72 down to 3 Terms in Parsons notation draw from a fimte alphabet
of 3 symbols, but the alphabet could be expanded to a 5-symbol extended Parsons
notation or the use of the interval could be employed Remember, when employing
Parsons we are indexing based on the contour change from one note to the next If
we were to extend the alphabet, 1t would make 1t more difficult for non-musically
trained users to generate queries, and with an increase in the number of symbols
representing music would come a corresponding increase i the number of errors
which could be introduced at query time so retrieval performance could decrease
For the more musically inclined users of the system we allow the system to search
by Interval

In our dataset, the music file with the shortest duration 1s 5% seconds while the
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longest music file 15 84 seconds The average length of a music file 1s 23 seconds
Observing some of the files which are short we discovered that the dataset consists
of both songs (in the sense that they are drawn out) and short melody snippets (in
that they only lasted a few seconds) This explains the small average length of a
music file It 1s worth noting that these observations apply only to this dataset

Another important aspect worth noting is the spatial implication of notes Terms
are regarded as melody fragments, not semantizally attributable tokens Within a
melody fragment, the spatial locations of notes are important Using n-grams of
notes preserves the spatial location of notes but, as 1s the case with text retrieval,
the spatial location of melody fragments 1s lost

Table 5 4 shows some observations undertaken on the dataset, namely the num-
ber of unique n-grams One observation 1s that up to n-grams of size 8, the dataset
contains every combination of n-grams possible, after that there 1s a decreasing pro-
portion of n-gram combinations for every n-gram size The count of n-grams from
2 to 20 falls linearly, which 1s to be expected The abihity of the system to discrimi-
nate between documents based on n-grams can also be observed from Table 5 4 by
looking at the difference between unique and average unique values For example,
with n-grams of size 2 and 3, the average unique count of terms per document 1s
similar to the unique count of terms, indicating that nearly all combinations of that
term appear in most documents This improves considerably up to n=20

All Parsons combinations of terms are present up to and including n-gram terms
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of size 8. After that, not all the possible terms are present in the corpus.

The count of the number of terms decreases as the value for n increases. This is
to be expected. Observing values for n-grams of size 3, less than 0.005% of terms
are unique. Observing the values for n=20, we can see that 95% of the terms are
uniqgue. This means that there is a negative effect on precision as the answer will
be a lot bigger for smaller values of n than for larger values of n. We will study
this effect in more detail in Chapter 7. We also observe that the average number
of unique n-grams per file rises and then falls. This is a consequence of the length
of the files as shorter melody snippets do not have the length to be accommodated

in the larger n-gram sizes. These figures are based on 7,299,513 terms across 9,354

documents.
n Count Unique Possible Unique Average Unique
2 483,121 9 9 8
3 473,986 27 27 17
4 464,851 81 81 26
5 455,716 243 243 32
6 446,581 729 729 36
7 437,446 2,187 2,187 38
8 428,311 6,561 6,561 40
9 419,177 19,423 19,683 41
10 410,044 52,393 59,049 45
11 400,914 110,978 177,145 51
12 391,788 178,938 531,441 58
13 382,665 237,159 1,594,323 64
14 373,545 277,802 4,782,969 67
15 364,435 301,614 14,348,907 69
16 355,332 312,756 43,046,721 70
17 346,251 315,608 129,140,163 69
18 337,192 313,600 387,420,489 68
19 328,158 308,926 1,162,261,467 67
20 319,156 302,851 3,486,784,401 66

Table 5.4: Observations of n-grams within the dataset using Parsons

Using Interval as the basis for an index, a different picture emerges. The same
observations for Interval are shown in Table 5.5. The count of n-grams from 2 to 20
falls linearly, which is also to be expected. With Interval and n-grams of size 2 we

have over 692 different combinations, which is a large improvement over the parsons



5 2 Music File Processing o 117

| n | Count | Umque | Average Umque |
2 | 483,121 692 25
3 | 473,986 | 5001 34
4 [ 464,851 | 22053 33
5 | 455,716 | 65408 39
6 | 446 581 | 139,717 40
7 | 437,446 | 226,047 40
8 | 428,311 | 295,142 40
9 | 419,177 | 333,909 40
10 | 410,044 | 349,679 39
11 | 400,914 | 353,713 39
12 | 391,788 | 352,669 38
13 | 382,665 | 349,336 38
14 | 373,545 | 344,870 37
15| 364,435 | 339,516 36
16 | 355,332 | 333,554 36
17 | 346,251 | 327,120 35
18 | 337,192 | 320,352 34
19 | 328,158 | 313,275 33
20 | 319,156 | 305,945 32

Table 55 Observations of n-grams within the dataset using Interval

n-gram which has 9

The count of the number of terms decreases as the value for n increases This 13
to be expected Observing values for n-grams of size 3, less than 2% of terms are
unique Observing the values for n=20, we can see that 96% of the terms are unique
Throughout the table we can see that interval has a greater number of unique terms
which can only benefit document discrimination

Comparing Parsons documents to Interval documents for retrieval, we can see
that the system’s ability to discriminate effectively 1s a lot stronger for Interval
More information 1s hidden 1n the Parsons UDS than in Interval, which employs a
larger alphabet

Other observations, external to this disseitation yet relevant to this discussion,
are based around the work of Stephen Downie [Downie, 00] using the Cranfield
model for information retrieval evaluation on the same dataset as used here with
information extracted from the files in the MIDI format Dowme recommends the

optimal length of an n-gram query, if the presence of errors 1s deemed 1rrelevant,
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to be 6 To maximise fault tolerance where errors are deemed relevant, the length
should be 4 Basically, the smaller the n-gram, the greater the fault tolerance When
1t comes to the length of a query a user should remember that, when generating a
query, the longer the query the better, but if the system 1s unconcerned with query
error occurrences then Downie has found that shorter queries of length 6, 8 and 10
have very good retrieval performance

Interestingly, Downie found that the location of the query within the melody of
the song has no bearing on performance so the entire song should be indexed rather
than incipits (the opening notes of a song) Downie’s observations are based around
variable length n-grams and different classifications of n-grams

Based on these observations, CEOLAIRE uses a minimum n-gram size of 4, a
maximum n-gram size of 20 and 1ndexes entire songs The upper limit can be easily

be extended 1if needed

5214 A Quck Introduction to Music Notation

We present a very brief introduction to music manuscript reading This 1s only
intended to help the reader understand a worked example later in the chapter It 1,
a sumplified introduction and by no means a complete review of music manuscript
reading, nor 1s 1t intended to be

Figure 5 10 shows'a music staff and notes are drawn on the music staff The
staff 1s denoted by a treble clef on the left Other clefs exist, but for the moment we
will only concern ourselves with the treble clef The treble clef defines (usually) the
notes above middle C, which are usually played with the right hand (on a piano)
unless otherwise marked

If a note appears on a line 1n the staff, then 1t can be one of the following, E, G,
B, D or F If the note appears on a space, 1t can be either F;, A, C or E Notes can
also be drawn on ledger lines, which are extra lines added above or below the staff
to indicate other higher or lower notes The sharps are denoted by the occurrence
of a hash (#) symbol either on the line or between the lines The same applies to
flats which are denoted using the flat (l’ ) symbol The exact positions of the notes
and the sharp symbol are shown 1n Figure 5 10, where we can see that F# and C#
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have been defined on the music'staff This 1s called key signature

[

Figure 5 10 Music staff notation

The hne of music 15 broken up 1nto bars, represented by a vertical line through
the horizontal ones Each bar has a number of beats (notes) in 1t The rhythm, or
time signature 1s dertved from the numbers on the left hand side of the staff beside
the clef In Figure 5 10 the time signature 1s 4/4 This means that each bar contains
4 crotchet beats The occurrence of a note can be denoted by certain types of notes,
for example a crotchet, a quaver or a semi-quaver Others exist, but we will himit
our discussion to these and a minum, which 1s equal to two crotchet beats The
relationship between them 1s th‘dt one crotchet beat can be equal to 2 quavers or 4

semi-quavers This 1s shown 1n Figure 5 11

J Crotchet

I’l \\‘
/ \
I I Quaver
)// \\\
I f f f Semi -Quaver

Figure 5 11 Relationship between a quaver, crotchet and a semi-quaver

The hne of music 1s made up of bars with a number of beats in each bar The
tempo of the song specifies the beats per minute (bpm) For a song with a tempo
of 80bpm, then one beat should last about 3/4 of a second If the note 1s above
the middle line, then the stem points downwards from the head, otherwise 1t points

upwards, but there are exceptions to this rule
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5215 Extracting the Note Information in CEOLAIRE

CEOLAIRE uses a different internal representation for music than traditional music
staff notation It 1s a lot more simphstic and less expressive The notation 1s
not meant for trained musicians who have an intimate knowledge of music, 1t 1s a
representation which helps non-musically trained users undertake retrieval Note
occurrences are discovered and recorded as integer numbers 1n the range of 1 to
72 CEOLAIRE discards note duration, although 1t 1s available if needed Rhythm
information could also be observed by the note change rate

We will now step through an example of how part of a song would be mdexed
by CEOLAIRE Figure 5 12 shows the first eight bars from Eric Clapton’s 1991 hit

song “Tears 1n Heaven”
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Figure 5 12 Music manuscript of “Tears i1n Heaven”
(c) Copynight 1991 E C Music Ltd & Blue Sky Rider Songs Ltd
Taken from “90’s Hits” ISBN 0-7119-6606-0

The first thing that we observe 1s that the time signature defines a 4/4 rhythm
Not shown 1s the tempo which has a value of 80 bpm Note also, here the key
signature defines that all F’'s must be played as F# This means that the song 1s 1n
the key of G As we saw earlier, every bar must contain 4 crotchet beats per bar

We can translate the music manuscript one bar at a time as follows

1 The first bar starts with one crotchet beat rest, followed by two quavers, one
at note B and then one at note G Next we can observe a crotchet of note D

followed by two quavers, one at note D and the other at note B The fact that
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note B 1s joined to another note B in the next bar by a line known as a tie,
means that this note 1s 1s held over for the time defined by the second note,

but not replayed

2 Bar two starts with the continuation of note B from the previous bar as a
quaver, followed by a quaver of note A, then a crotchet of note G The bar

ends with a two crotchet (also known as minim) rest

3 In bar three, we can observe a crotchet rest, followed by two quavers of note

C Next, we have four quavers, at note B, note A, note G and again note B
4 Bar four starts with a minim of note A followed by a minim rest

5 Bar five starts with a crotchet rest followed by two quavers, note B then note
G After that a crotchet of note D and two quavers, note A and note B Again

note B 1s tied to the first note 1n bar sis

6 The first note of bar s1x 1s tied to the last note in the previous bar, followea

by a quaver of note A, a croichet of note G and a minim rest

7 Bar seven starts with a crotchet beat rest, two note C quavers and then quavers

of the notes B, A, G and B

8 Finally bar eight has a mimim of note A followed by a minim rest

¥

Figure 5 13 shows the notes and their durations If this piece was rendered with a
piano (for example) and the resulting rendition was recorded, 1t could be submitted
to CEOLAIRE’S extraction engine for subsequent indexaing This piece 1s defined
using the treble clef, so we expect that the piece would be rendered within the
fourth octave of CEOLAIRE’S music system CEOLAIRE’S extraction engine would
then pick out the note occurrences as shown 1n Figure 5 14 The structure 1s a single
long array of note identifiers

The onginal Equal Tempering notes, that 1s notes such as C, C#, D and so
on are shown i Figure 515 Again, this 1s shown as a single long string of note

occurrences
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Bar 2 Bar 3 Bar 4
[ENote.| Beats]| [iNotei|:Beatd] [’NoGtes|-Beaty]

B 1 Rest 1 A | 2

B Y2 A Y2 Cc 7] Rest 2
G Y2 G 2 Cc Y
D 1 Rest 2 B 2
D 2 A 2
B Va G Y2
B Va2

Bar 7 Bar 8

[Enotei[Eseat;] [iNoten[sBEats]

Rest 1 A 2

B 13 A 2 c V2 Rest 2
G 2 G V2 C 2
D 1 Rest 2 B 2
A 7] A 2
B 2 G s
B 12

Figure 5 13 Translation of notes by bar
B|G|DID|BIA|G|C|C|B|A|(GIB]|A|B|G|D|A|B{A|[G|C|C|B|A|G|B|A
Figure 5 14 Note structure
59155|50{50/59{57]55{48|48{59{57|55(59|57]59|%5|50,57|59]|57]55|4848]59|57|55|59 (57

Figure 5 15 Equal tempering notes of the notes structure
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The notes are then subjected to a Parsons and Interval evaluation The Parsons
evaluation examines how a note changes from one note to the next resulting 1n a
overall melody contour sequence The length of this sequence 1s 26 characters and 1s
shown 1n Figure 5 16 The Interval evaluation 1s similar, quantifymg the difference
between notes as both positive and negative numbers The Interval structure 1s

shown 1n Figure 5 17

*ID|DIS|uU|D|D|D|S|UID|DIU|U|U|D|D|U|U|DID|Df{S|UD|D|U|D

Figure 5 16 Parsons structure

*|-41-51019(-2]-2]|-7]|0 [11]|-2]-2|4 |2 |2} 4|-5|7]|2|-2]|-2|-7| 0 |11}-2]-2] 4 [-2

Figure 5 17 Interval structure

This melody sequence 1s then processed into n-grams, that i1s an overlapping
window 1s shifted across the string, generating sub-strings The size of the window,
or the value for n varies from four to twenty The result of th.s process is an
indexable document for each n-gram size 'These documents are then submitted
to their corresponding search engine indexing queues tor subsequent indexing An
example of generating Parsons index files for =5 and n=20 1s shown 1n Figure 5 18
The same procedure 1s applied when generating Interval index files

To summarise, the CEOLAIRE system generates indexable documents from raw
music monophonic files by processing each file, identifying and extracting the melody,
converting this melody into Parsons notation and segmenting the overall string of

Parsons notation into smaller overlapping variable length sub-strings or n-grams

522 Document Descriptors

There are three different document descriptor stores in CEOLAIRE The first 1s a
database which stores meta-data relating to each mmdividual music file The second
1s a cached copy of the music file as downloaded, 1n case the original link 1s removed
Finally 1mages of the music structure are generated automatically and stored A
link to the image store and local copy of the file 1s kept 1n the meta-data database

Figure 5 19 shows the three document descriptor stores
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Figure 5 18 N-grammg the Parsons notation

Document Descriptors

Figure 519 Document descriptors
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5221 Music Meta Data

The meta-data database 1s a Postgresql database The following meta-data at-

tributes are retrieved and stored

o Music File Identifier (Integer Number)
e [ile Name

e File Format

e Sampling Rate

e Size in Bytes

e Time (Length of the file 1n seconds)

e Ornginal Source Location (URL)

e Local Copy Location

e Other Information

The music file 1dentifier 1s an integer which mcrements for every new song that we
come across The name 1s taken from the filename The format 1s discovered using
the Unix “file” command which can detect the format of the file Any files which
are not supported are discarded Currently the system supports all the different
sampling rates and bit size of the WAV format and MP3 with the use of the xaudio
MP3 library [xaudio, 02] The sampling rate, file size and duration are discovered as
a result of automatic meta-data extraction For MP3, the xaudio hibrary provides
an 1nterface to achieve this Original Source Location, Local Copy Location and
the Other Information field are stored n a text file along with the music file The
meta-data 1s used at query time after the ranked list of results have been generated
The query handler queries the database for each document 1dentifier 1n the result

set, to produce the final result set
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5222 Music Images

Music images are created for each notes file These images show how the melody
contour changes over time, but are drawn as the original Equal Tempering notes
Images are created on a white background with the exact notes represented as black
dots Exact notes were used rather than the contour to give the user the exact
representation of the song and 1mages are stored in the png format Images are
generated using the JIMI package which now comes as standard with the JDK 1 3
An example music 1mage 1s shown 1n Figure 5 20 It 1s taken from the NZDL The

song 1n question 1s identified as 2354

Figure 5 20 Music structure image

5.3 Search Engine

CEOLAIRE’S search engine supports both exact and approximate string matching
for both contour and interval searches It utilises a number of different indices to
achieve this Indices exist for both Parsons and Interval The user chooses at
query time 1f the search 1s to be approximate or exact and against which indices 1t
should be executed

The search engine 1s written in GNU C++ making use of the Standard Template
Library (STL) wherever possible The STL is a library of advanced templates and
functions whose purpose 1s to provide tried and tested solutions to common algo-
rithms and data structure problems Examples include vectors, lists, queues and
stacks The core of CEOLAIRE’S architecture consists of the Indexer which indexes
documents generated as a result of the melody extraction process and the Query
Manager which handles retrieval and other support functions The components of

the search engine are shown 1n Figure 5 21
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ne

Manager

Figure 5 21 Search engine components

531 Indexing

We have seen how CEOLAIRE can transform music data into strings, changing music
from 1ts raw format into a representation suitable for indexing through the melody
extraction process To CEOLAIRE, an indexable document 1s a text file consisting
of overlapping n-grams A term 1s a single instance of one of these n-grams, 1€
“udduu” contained within a document

CEOLAIRE’S index 1s rebuilt when new music files are added CEOLAIRE searches
the mdex-queue directory for new documents FEach document consists of variable
length n-grams, but there also exists a corresponding text file containing associated
meta-data The meta-data 1s added to the database and the file descriptor associated
with that file 1s kept for the indexer

The goal of the indexing stage 1s to build a Doc-Term weighted matrix Each
row 1n the Doc-Term matrix represents a document and each column, a term A
weighted Doc-Term matrix 1s one which has a cost weighting associated with every
entry m the matrix Document vectors are created for every music document A
document vector 1s a matrix with each row representing a term and the value of the
row entry 1s the frequency occurrence count of a term within the document The

data structures needed to build a tf*idf weighted index are

o Term List
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e Document List
e Document Vector

e Index Vector

The Term List 1s a hist of alphabetically sorted unique terms with a corresponding
term 1dentifier associated with each term It allows CEOLAIRE to reference term
1dentifiers during both indexing and retrieval The Document Identifier 1s a sim-
ilar structure assigning a unique integer identifier to each new document as it 1s
processed It also maps the document 1dentifier to the physical location of the doc-
ument The Document Vector maps a term’s frequency of occurrence within a given
document A Document Vector 1s created for every document, and 1s used in the
generation of the Index Vector, which maps a given document and term 1dentifier
to that terms occurrence within a document This vector 1s generated across the

entire corpus The data structures are described 1n Figure 5 22

Termbst ______ Doclist________
i '
[fefm] [10¥]: i [Doc] [1D]!
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' TermiD| [FF#rs] | 1 [{Tem7iDocyID! 5
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\ | 7655 4+— 6 |1 1| 7770, 7994 »12 |
) 1 ] 1

Figure 5 22 Data structures used for indexing

The Indexer 1s given a directory to traverse Files are processed incrementaly

until all documents have been visited A processed document of music fragments as
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n-grams 1s opened and terms are Tead consecutively The occurrence of a term m
the current document 1ncurs an increment of 1 which corresponds to incrementing
tf,, for that term The term 1s checked against the TermList using a binary search,
checking 1f 1t has been assigned an 1dentifier If no 1dentifier has been assigned,
then the term 1s 1nserted into the alphabetically sorted list and assigned a 1dentifier,
otherwise the 1dentifier 1s retrieved and the term’s 1dentifier 1s added the Document
Vector If this identifier exists within the document vector, 1ts occurrence count 1s
incremented by 1, otherwise 1t 1s added to the vector and the occurrence count 1s set
to 1 When the current document has been processed, the document vector 1s used
to generate the Index Vector CEOLAIRE then writes the index to disk so that the
index 1s persistent and does not have to be generated every time the search engine

1s mitialised The process of building the index 1s shown as Algorithm 3

532 Retrieval

Retrieval 1s achieved using a query manager whose role 1s threefold First, 1t reads
in and 1mitialises the retrieval engine using the Index Vector from Section 531
Second, 1t accepts queries from the query generator and calculates ¢f*1df weighting
scores comparing the query to documents 1n the corpus to generate a ranked hst of
high scoring documents The query 1s a music fragment and 1s matched against an
index of music fragments Third, for every document 1n the answer set, 1t retrieves
corresponding meta-data from the database and includes the appropriate music
structure 1mage

While the query manager 1s runnming, 1ts goal is to take queries from a user
and resolve them The query manager takes a single string of Parsons notation or
Interval notation and passes i1t to a query handler which segments 1t into n-grams
before resolving the query If the query 1s to be resolved using exact matching,
the string 1s not segmented, otherwise 1t 1s segmented 1nto overlapping n-grams for
approximate matching

One reason for making the query manage) (rather than the interface) responsi-
ble for query segmentation 1s that 1t allows the interface to be independent of the

retrieval process It 1s a lot easier to plugin new methods of query generation and
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Algorithm 3 Generating the index
-- Variable Declaration

termlID int

docID int

term String (variable length)
termID = 0

nexttermID = 0

docID = 0

while (more documents exist) do
Open next document
while (another term exists) do
term = readNextTerm()
1f term does not exists in Term_List{term}{?} then
Add term to Term_List{term}{nextTermID}
termID = nextTermID
nextTermID = nextTermID + 1
else
termID = Term_List{term}{?}
endif
1f termID exasts in DocVector{termID}{count} then
DocVector{termID}{count} += 1
else
DocVector{termID}{count} = 1
endaf
endwhile

for each (DocVector{termID}{count})
IndexVector{docID}{termID}{count} = DocVector{termID}{count}
endforeach
docID = docID + 1
endwhale
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interaction 1nto the system by treating the components as independent layers within
the retrieval framework The applet submits the query string using a HT'TP request
calling and passing the string as a parameter to a PHP script It 1s this PHP script
which acts as the role of query manager The query 1s then sent to the query handler
over a TCP/IP connection which takes the query and attempts to resolve it This s
outhned 1n Figure 5 23 Music files 1dentafied as being stmilar to the user’s query are
returned as a ranked list The output 1s ranked with highly scored documents first,
with high scores representing the importance of the similarity between the query

and the document set

Query Flow

Browser Query Manager

Figure 5 23 Flow of query fron: applet to answer set

The retrieval process has been augmented beyond that of a typical information
retrieval system by allowing the user to automatically view a representation of the
content of each song1e the music structure Each entry in the answer set includes
a png 1mage showing the actual note structure pertaining to a song, along with the
corresponding meta-data A screenshot of the answer set generated as a result of
the query “uudduu” 1s shown mn Figure 5 24

When the search engine 1s initialised, 1t uses the Index Vector to generate a
weighted Doc-Term matrix A weighted Doc-Term matrix is a two-dimensional
matrix with each column representing a term and each row a document The first
step of this process 1s to generate a Doc-Term matrix which holds the tf,, values
for every term and every document A Doc-Term matrix 1s shown i Figure 5 25
Document 1dentifiers are shown row-wise, while term 1dentifiers are shown column-

wise
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Figure 5 24 Screenshot of the ranked list of results
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The Index Vector holds the occurrencecount of a particular term within a given
document for every term in every document It 1s processed sequentially, so for
every document 1dentifier and term 1dentifier, each cell ¢f,; 1s set to the occurrence
count for that term 1n that document The next step of generating a weighted Doc-
Term matrix 1s to weight each cell This 1s achieved using the formula w,, =10+
log(tf,,) log (%) Each cell 1s processed to produce a weighted value representing
the similanty between the term and the document A weighted Doc-Term Matrix

18 shown n Figure 5 26
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Figure 5 26 A weighted Doc-Term matrix

CEOLAIRE uses compressed storage matrices as implementing a two-dimensional

matrix demands excessive storage requirements

533 Management

Music files are downloaded from the web or inserted into the processing queue au-
tomatically A cron job checks for the presence of files in the queue every night
If new files are present, the index 1s rebult to include them The music files are
subjected to the document pre-processing and indexing components, resulting in a

new 1ndex for the search engine
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5.4 User Interface

CEOLAIRE has a web 1nterface which utilises a Java applet to aid the user when
generating a music query The interface 1s shown in Figure 527 Here we can
observe that middle C 1s marked with a small red line This can be seen on the
left hand side of the screen Only four octaves are presented to the user for query
formulation CEOLAIRE allows for the indexing of up to 72 notes, but we have
already seen how most note changes occur within one octave so the presentation
of the four octaves for query formulation 1s adequate As users can hear the notes
while generating a query, they may have a pieference as to which octave 1t should

be composed in
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Figure 5 27 CEOLAIRE’S interface

5401 Query Formulation

CEOLAIRE’S query generation interface helps the user when generating a query This
1s achieved by displaying the query graphically to the user as 1t 1s being formulated

A query note 1s assumed to be a candidate note and 1s drawn 1n red on the painting
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screen until 1t 1s commutted as an‘actual query note The query screen 1s sphit up
into three parts the virtual keyboard, the paint screen and the command
buttons The command buttons are used to delete notes, reset the query, play the
query notes and submit the query to the search engine A query can be formulated
by either playing notes on the virtual keyboard or drawing the notes directly on the
paimnting screen 'Two radio buttons are also presented to the user, one to choose
approximate or exact matching and the other to decide 1f the search 1s to be against

the Interval or Parsons index

5402 Virtual Keyboard

When formulating a search query, the user 1s presented with a virtual keyboard As
a user moves the mouse pointer over the keyboard the display 1s updated with the
position of the candidate note on the paint screen This 1s depicted by the presence
of a red circle which moves up and down as the user moves the mouse pointer over
the keyboard When the user presses a key, the note 1s no longer assumed to be
a candidate note and 1s committed as a query note A timer 1s then initiated and
counts 1 milliseconds until the uéer lets go of the key When this event occurs,
the end time 1s subtracted from the start time and the note 1s drawn on the paint
screen Different colours and sizes are used to indicate different note durations The

values are shown in Table 5 6

| Duration (s) | Length (pixels) | Colour |

0>n<1 6 Blue
1>=n<?2 9 Green
2>=n<3 12 Red

n>=3 15 Black

Table 56 How note durations are represented

When a key 1s pressed, 1t gives the impression that 1t has been pushed down
The red helper ball then moves on to the next note position helping the user to guide

the note to 1ts next position Up to 28 notes can be drawn on the query screen
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5403 Pamnmt Screen

The paint screen can also be used to manually draw a query The user achieves this
by either clicking and inserting notes one at a time or by pressing a mouse button,
holding 1t and dragging the mouse within the paint screen, drawing a contour line
The paint screen can also be used to refine a query that was generated using the

keyboard, by chicking on a note and dragging 1t etther up or down

5.5 System Hardware

CEOLAIRE runs on a IBM S/390 Linux instance The S/390 1n use 1s the 9672 model
with an RB4 processor which 1s capable of about 63 MIPS The machine has 1 GB
RAM and 800 GB of hard drive space CEOLAIRE’S virtual instance uses SuSE
Linux version 70 The instance has 128 MB RAM and 80 GB hard drive space

available to 1t

5.6 Summary

In this chapter we have explored the core components of CEOLAIRE, the system
we built to test the effectiveness of music information retrieval and the results of
which we present 1n the next chapters We looked at some of the important factors
regarding the music collection which we have utilised, which justify the indexing
approach undertaken Importantly, we saw most note changes occur within an
interval of 5 We observed how a piece of manuscript music would be treated by
CEOLAIRE up to the indexing stage

We have also seen how the music file pre-processing stage 1s used to generate png
images, indexable documents by spectra generation, note-filtering and overlapping
n-gram extraction Then we looked at the search engine and how the documents are
indexed and retrieval 1s achieved Finally, we looked at the interface, introducing
the different components and how they can be used to help combat the introduction
of errors 1n a user’s query From an end-users perspective, Interval matching 1s

provided for a user with a strong knowledge of music and who has the ability to
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formulate music queries with a modest amount of certainty, while Parsons matching
allows the less musically inchned user undertake melody retrieval We also provide
both exact and approximate matching

The mam differences between CEOLAIRE and the systems we reviewed earlier
is that CEOLAIRE 1ndexes music from the WAV / MP3 file format automatically
extracting the note structure Ceolaire has both approximate and exact matching
capabilities Most of the previous systems work on music m the MIDI format

Next we review the methodology and implementation behind the evaluation of

the core component of CEOLAIRE, the extraction engine



Chapter 6

Evaluating the Melody Extraction

Engine

6.1 Introduction

In this chapter we will review the méthodology and 1mplementation behind the
evaluation of one of the core componerts of CEOLAIRE, namely the melody extrac-
tion engine We aim to prove that the representations for music indexed by the
CEOLAIRE system, which have been computed by our melody identification and ex-
traction engine and used as part of the retrieval process, are a reasonably accurate
representation of the original melody The primary goal for developing CEOLAIRE
was to allow us to work with raw audio files and to research and develop retrieval
techniques which stem from melody analysis at the signal level, allowing us to ob-
serve the impact of variations in our melody extraction and indexing techniques
To measure the effectiveness of CEOLAIRE and how accurately 1t really represents
the melody being indexed in a song, we need to determine 1if the representation
chosen for indexing (Parson and Interval) 1s true to the original Any evaluation of
a music retrieval system should first start with an evaluation of how 1t generates
1its 1ndex and content describing structures As our index 1s derived from encoded
digital music {(as opposed to note extraction from MIDI files), we must be able to
quantify to a given degree the process which automatically transcribes the encoded
music 1mto a representation suitable for indexing Thus, we need to evaluate the

138
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performance or “correctness” of our melody 1dentification and extraction process

CEOLAIRE underwent a number of experiments as part of this evaluation The
goal was to compare CEOLAIRE’S music representation, which 1s derived automat-
ically from raw audio files, against a music representation which we know to be
correct This 1s a big problem within music information retrieval as having access
to an underlying representation which we can use as a reference or ground truth, 1s
not readily available The approach we took was to employ the use of MIDI files
as the ground-truth, an approach which has also been used by other researchers
when evaluating the performance of a melody extraction engine [Plumbley et al,
01] We synthesised WAV files using MIDI files which 1n turn are subjected to
CEOLAIRE’S automatic melody extraction engine producing music representations
These representations are then compared to the reference representations

Central to our evaluation process 1s the use of a number of different files with
different representations of melodies produced as a result of CEOLAIRE’S melody

extraction process
e Notes files
e Parsons files
e Duration redundant notes files

A notes file 1s generated as a result of the melody extraction process which also acts
as input to the Parsons and Interval evaluation processes (this 1s covered in Section
5212) Recall, the output of the extraction engine 1s the relative amplitude of any
note that may have been found during the melody extraction process This output
1s stored 1n a file as contiguous arrays consisting of 72 floating-point numbers with
the array index representing the note identifier while the corresponding element
represents the amplitude The notes file 1s then processed to produce a new notes
file consisting of overlapping n-grams of length 5 A notes file 1s shown 1n Figure 6 1
A Parsons file consists of a string of Parsons notation before 1t 1s subjected to the
n-grammg process and a duration redundant notes file 1s a notes file which 1s
processed to record only the contiguous onset of each new note Each representation

15 explained 1n more detail later
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Figure 6 1 A notes file

In Section 2 6 5 we reviewed the formats and basic structure of MIDI files and
how they can store music as note on and note off events These events can be
readily extracted directly from a MIDI file Start and end times from MIDI files
are used to generate MIDI based notes files, Parsons files and duration independent
notes files Both sets of files (MIDI and WAV pairs) set their timings so that each

time shice 1s equal to 0 G5 seconds

6.2 Pre-Analysis

We have to generate suitable representations before any experiments measuring the
melody extraction process can be undertaken We took our test collection from the
NZDL folk-song collection This collection consists of 9,354 MIDI files Using an
open source MIDI synthesiser called Timidity [Timidity, 02|, we were able to syn-
thesise 9,135 songs, but instead of playing the output on a sound card and speakers,
1t was captured and encoded as WAV files Timdity experienced difficulties in pro-
cessing 219 of the files so they were removed from the collection This will have
no notable effect on the results produced The WAV files were generated with a
samphng rate of 32,000 Hz, using 16 bits per sample and in stereo which are the
default parameters for Timidity

The WAV files were then subjected to CEOLAIRE’S melody extraction engine
generating a notes file for each WAV file as described earhier in Section 521 3

The MIDI files were processed using a program called mftext [mftext, 02] which
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Timidity

Figure 6 2 Generating WAV files

generates a listing of start and end events for a MIDI file The listing produced
as a result of mftext was then processed to generate notes files for each MIDI file
which we then used as our ground truth against which notes files derived through
CEOLAIRE processing could be compared This 1s shown in Figure 6 3 All the
experiments undertaken to measure our melody extraction engine use these pairs
of files, evaluating how similar one notes file 1s to the other With a collection
of reference files (our ground-truth) and files produced as a result of CEOLAIRE’S

melody extraction process we are able to proceed with our evaluations

Timidity

Melody
Extraction

v

Experiments

Figure 6 3 Generating MIDI-WAV pairs
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6.3 Engine Evaluation

Rather than undertaking a simple difference comparison between the pamrs of notes
files, different processed representations of both the MIDI and WAV notes file out-
puts are used to generate a more 1nformative comparison between them The mo-
tivation behind this evaluation 1s to quantify the extraction engine’s “correctness”
If 1t 15 100% correct 1 1dentifying notes, then everywhere a MIDI note appears, we
should be able to observe the presence of a CEOLAIRE derived note If this 1s not
the case, then 1t does not necessarily imply that the extraction engine 1s incapable of
doing 1ts job Attempting a straight match 1s too naive, as a note could be 1dentified
as a wrong note, the extraction engine could end a note too early etc

In all, four sets of experiments were carried out to measure the melody extraction
engine’s level of correctness The comparison operator chosen for the experiments
was the minimal edit distance function (covered i Section 3 3 3 7) which can
evaiuate similarity between two strings It achieves this by allowing the assignment
of costs to the insertion, deletion and replacement of characters when converting
one string into another The cost of an 1nsertion, deletion or replacement was set, to

1 for all experiments

631 Exact Note Matching

The first experiment undertaken was to evaluate the similarity between the notes
file generated directly from the MIDI file and the notes file generated automatically
from the WAV file, which in turn 1s generated from the MIDI synthestsed audio
of the original file This was computed based on the occurrence of precise notes
and tested for approximate matches The purpose of this was to determine if, at
any given time 1n the WAV notes file, a corresponding similar n-gram exists with 1ts
counterpart created from the MIDI file Both sets of n-grams used the same value for
n, n=5 N-gram pairs were compared using the minimal edit distance function
The distance between a pair of n-grams 1s divided by the length of the n-gram giving
n-gram similarity The distance figures were added for every n-gram pair and this

total was then divided by the total number of n-grams to give a percentage of how
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close the sets of n-grams actually are This evaluation 1s shown 1n Figure 6 4
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Figure 6 4 Exact note matching experiment

6 32 Octave Irrelevant Matching

The second experiment undertaken was to evaluate similanty after normalising all
note occurrences down to one octave This was done by using the modulus operator
with the note identifier and the number 12 (12 being the number of notes pe.
octave) This brings the original alphabet of notes of size 72 down to a size of 12
by mapping each note occurrence into a single octave, or computing 1t modulo 12
The use of a smaller alphabet could enhance a music search engine by allowing for
octave-irrelevant melody searches We have already seen that most note changes
occur within one octave anyway (See Section 521 3) The note C 1n any octave
would simply be represented as C A jump from note C 1n the fifth octave to
note C 1n the sixth octave would be recorded as CC rather than C5Cy for such a
representation of melody A query would be treated in exactly the same way at
query time 1 e mapped to a single octave The experiment used the same costing
as the first experiment The distance between a pair of n-grams i1s divided by the
length of the n-gram giving n-gram similarity The distance figures were added for
every n-gram pair and this total was then divided by the total number of n-grams
to give a percentage of how close the sets of n-grams actually are The experiment

18 described 1n Figure 6 5



6 3 Engine Evaluation 144

[7(1]9]11]7] 2|9 |11[a]o]o]11] 9] 7] wav Notes file (Notesn12)

[7]u]s]o]7]2][911]9]0]0]11]9 [ 7] MiDK Notes file (Notemn12)

COST

[7]11] o[ 11] 7 > edw Distance @ 7 Jui] o [11[ 7] [o]
[11| RE ZJP‘!EdR Dstance|<|i1 9]0 ZJ_ZJ [ ]

~ S
~ .
~. ~.
N ~ ~o N
~. ~ ~,
~ N

~
~.

~ S
~

"Bl [a ] M ewosmmel e [ 5[5 7] [ ]

Figure 6 5 Octave irrelevant matching

6 33 Note Onset Matching

The third set of expertments we undertook to measure the effectiveness of the melody
extraction engine was to evaluate the similarity between notes files based on ex-
act note contour This experiment simplifies the structure of the representation of
melody by ignoring the duration of notes It records only the fact that a note has
changed and what that note 1s This experiment will show how well CEOLAIRE
extracts individual notes irrespective of the note’s duration This 1s important 1f
the timing or duration of the original notes were to differ from that produced by
the extraction engine Any user-friendly music information retrieval system should
attempt to minimise the need for a user to formulate music queries with the exact
length of a note as we have already seen that users have difficulty generating queries
[McNab et al , 97] In our experiments, string sequences were created for both sets
of notes files (WAV and MIDI derived) The mimmal edit distance was used to
compare the sequences and the cost was set to 1 for every edit operation The total
cost of an individual MIDI-WAV notes file comparison was divided by the length of
the longest sequence, giving a percentage figure indicative of the similarity between

the two sequences The evaluation 1s shown in Figure 6 6
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Figure 6 6 Note onsets experiment

This experiment 1s important as 1t allows us to discover if CEOLAIRE’S melody
