
w A l a n g u a g e b a s e d o n t h e 7 r - c a lc u lu s

David Tunney, BSc
Supervisor Dr David Gray

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF SCIENCE

in the School
of

Computing
D C U

August 2005

A bstract

The exponential increase in the volum e and sensitiv ity of data transm itted over

electronic m edia has resulted in a corresponding increase m attem p ts to secure

these inherently insecure transm issions Num erous networking protocols and

associated m echanism s have been used but im plem enting distributed system s is

a notoriously error prone exercise A ttem pts to ensure the relevant properties

are present in distributed system s can be m ade by the application o f formal

m ethods However this application o f formal m ethods is m ade to the specifica

tion o f a distributed system , not its actual im plem entation Typically, a wide

gulf exists between the specification of a distributed system and its actual im ple

m entation, and this gulf can result in the introduction of potentially devastating

errors A m ethod o f bridging this gulf is required in order that the application of

formal m ethods to distributed system s can becom e more widespread and more

accessible We propose a general purpose program m ing language that is based

on one of the more popular formal notations used to specify distributed sys

tem s, the 7r-calculus W ith this approach we allow the integration of com plex

sequential com putations into 7r-calculus specifications of distributed system s to

produce system s that are capable of execution in a distributed and concurrent

fashion The im plem entation of this proposal is facilitated by designing the

language such that fragm ents of Java code can be integrated into a 7r-calculus

framework

I hereby certify that this m aterial, which I now subm it for assessm ent on the

program m e of study leading to the award of M asters o f Science is entirely my

own work and has not been taken from the work of others save and to the extent

that such work has been cited and acknowledged w ithin the tex t o f my work.

Signed:

ID No.: ^7 °\.0%0

Date: O îM îO O S

Acknowledgements

This thesis and my M asters degree would not have been possible w ithout the

help, support and understanding of my family and o f Glenda, nor w ithout the

never ending patience and guidance of my supervisor Dr Gray Many thanks

to you all, I ’m eternally grateful

u

Contents

1 In tro d u c tio n 1

1 1 O bjectives 2

1 2 O utline of the thesis 2

2 Background

T h e 7r and Spi calculus 4

2 1 T he 7r-calcuius 4

2 1 1 Introducing the 7r-calculus 4

2 1 2 Syntax and Sem antics 6

2 1 3 Basic Exam ples 10

2 1 4 Exam ple 14

2 2 Extensions and variations of the 7r-calculus 17

2 2 1 The Fusion calculus 17

2 2 2 T he Spi calculus 18

2 2 3 T he Am bient calculus 18

2 3 T he Spi calculus 18

2 3 1 Introducing the Spi calculus 18

2 3 2 Syntax additions 19

2 3 3 Cryptographic assum ptions 22

2 3 4 Operational sem antics 22

2 3 5 Exam ple 23

2 4 Conclusions 24

2 5 Further Reading 25

3 R e la ted Research 26

3 1 JP iccola 29

3 1 1 Forms and Services 29

3 1 2 Concurrency and Interaction 30

3 1 3 T he Host language 31

3 1 4 JP iccola Summary 31

111

i

3 2 P iet

3 2 1 Processes and channels

3 2 2 B uilt in types

3 2 3 Process definitions

3 2 4 P iet Sum m ary

3 3 Nom adic P iet

3 3 1 Agents, Sites and M igration

3 3 2 Channel A ctions

3 3 3 Nom adic P iet Sum mary

3 4 Sum mary

3 5 Conclusions

4 w - T h e la n g u a g e

4 1 W hat is w 7

4 1 1 A bstract Syntax and Sem antics of vd

4 1 2 Concrete Syntax

4 2 vo features

4 2 1 Sequential C om putations

4 2 2 M obility and Channels

4 2 3 D istribution o f w system s

4 3 Exam ple System

4 3 1 A bstract syntax

4 3 2 Concrete syntax - Code

4 4 Language design decisions

4 4 1 Sequential C om putations

4 4 2 Nam es and channels

5 w - T h e im p le m e n ta t io n

5 1 Required Functionality

5 1 1 D istribution

5 1 2 Processes

5 1 3 Channels

5 1 4 C om putations

5 1 5 Environm ent

5 1 6 Summary

5 2 Provision of Required Functionality

5 2 1 Channels

5 2 2 Processes

5 2 3 C om putations

5 2 4 T he Environm ent

33

33

35

37

37

38

39

40

42

44

44

4 6

48

48

56

58

58

59

60

61

61

61

63

63

64

65

66

66

67

68

70

70

70

71

71

77

80

82

IV

5 3 Language Im plem entation D ecisions 84

5 3 1 Channel m igration and term ination 84

5 3 2 SyncServer 84

5 3 3 Channels and Security 85

5 3 4 Process m igration 85

5 4 xu and the classification criteria 85

5 4 1 Syntax and Sem antics 85

5 4 2 M obility 85

5 4 3 Synchronous vs asynchronous com m unications 86

5 4 4 D istribution 86

5 4 5 Sequential com putations 86

5 5 w and the classification categories 86

6 w e x a m p le s 8 7

6 1 Exam ple 1 - Certificate A uthority 88

6 2 Exam ple 2 - Certificate A uthority and Service Provider 92

6 2 1 The processes 92

6 2 2 T he protocol 95

6 2 3 T he service request 97

6 3 D eveloping zu system s 99

6 3 1 Reuse in w system s 100

6 4 Conclusions 101

7 C o n c lu s io n s 102

7 1 Further work 103

7 1 1 Sequential C om putation notation 103

7 1 2 Compiler support 103

A B u ild in g a n d u s in g ta 1 0 4

A 1 Building the m com piler and libraries 104

A 2 U sing the w com piler/B uildm g a w system 106

A 3 Running a w system 107

B E x a m p le 1 c o d e 109

B 1 w code 109

B 2 Java code 112

B 2 1 CA java 112

B 2 2 C ertlssuer java 117

B 2 3 Client java 119

v

E x a m p le 2 c o d e 1 2 7

C l VD code 127

C 2 w code 127

C 3 Java code 136

C 3 1 CA java 136

C 3 2 C ertlssuer java 141

C 3 3 Client java 143

C 3 4 SP java 156

C 3 5 PkiB ase java 164

C 3 6 Enc java 165

R e fe r e n c e s 1 6 7

VI

List of Figures

2 1 Learning processes 5

2 2 Resource Access Control 11

2 3 Resource Access Control 12

2 4 Printer exam ple 14

5 1 G rowth o f a system 68

5 2 Processing of requests 69

5 3 D istributed interaction 71

5 4 D istributed interaction 73

5 5 A W rite R equest 74

5 6 A Read R equest 74

5 7 Synchronous operation of channels 75

5 8 M ultiple R equests 75

5 9 Pi-calculus replication 79

5 10 tu replication 79

5 11 Storing and restoring names 82

6 1 A bstract behaviour o f exam ple System 1 88

6 2 Exam ple 2 93

V ll

Chapter 1

Introduction

Formal M ethods are the applied m athem atics of software developm ent “For

mal M ethods bring to software and hardware design the sam e advantages that

other engineering endeavours have exploited m athem atical analysis based on

m odelsi” (Butler, Caldwell, Carreno, Holloway & Miner 1995) T he use of For

mal M ethods allows software developers to create m odels o f the system s that

they intend to im plem ent and then to reason about this m odels - proving that

certain properties hold true for the system s

Formal M ethods, as the name suggests, are a broad and diverse collection

of techniques that “are solidly based on m athem atical logic system s and precise

rules o f inference” (Black, Hall, Jones & W indley 1996) A Formal M ethod

usually consists of a language that can be used to describe the system that is

to be im plem ented, as well as a set of axiom s and rules that allow properties

of the system to be proved W hile the concepts behind the various Formal

M ethods, and the notations that they use to describe the system s, vary m as

sively from Formal M ethod to Formal M ethod, as does the dom ain for which

the specific Formal M ethod is suitable, their purpose remains the sam e, “the

fundam ental goal of Formal M ethods is to capture requirements, designs, and

im plem entations m a m athem atically based m odel that can be analysed in a

rigorous manner” (Butler, Caldwell, Carreno, Holloway & Miner 1998)

T he overall goal o f the conception and application o f Formal M ethods, both

as a group and individually, is to improve the standard of software delivered

by increasing the ability of those im plem enting software system s to design their

system s m sufficient detail and to prove that these system s possess the desired

properties

W hile individual Formal M ethods m ay be only very recently conceived, the

concept of a Formal M ethod on the whole is not new Formal M ethods have

been around for som e tim e and have yielded im pressive results m fields such

1

\

as micro-chip design, aviation and aerospace (Butler et al 1995, Butler e t al

1998, JPL n d , H eitm eyer 1998) am ongst others Projects m which Formal

M ethods have been em ployed have seen reduced costs, increased reliability and

more predictable delivery dates Taking into account the benefits that Formal

M ethods can bring to a project one could be forgiven for expecting that the

application o f Formal M ethods would be the industry standard in the software

developm ent world This, however, is not the case - their application is the

exception not the rule

T he traditional reason for the non-application o f Formal m ethods is cost

(Hall 1990) It is w idely held that it takes tim e, m oney and expertise to tram

people in the application of Formal M ethods to software developm ent and in

the actual application itself W ith m ost software projects being highly cost

and tim e sensitive Formal M ethods are often overlooked in an attem pt to keep

w ithin the constraints of a project’s budget If, however, the application of

Formal M ethods m software projects was not as costly then, perhaps, they may

not be as frequently overlooked

One such possible m echanism for reducing the difficulty, and therefore cost,

o f applying Formal Methods could, possibly, be to bridge the gap between the

paradigms used in the design of the software system s and those that are used

in the im plem entation of those system s Currently such a gap exists as the

program m ing languages used m the im plem entation o f software system s are

largely procedural or object-oriented in nature while the Formal M ethods used to

specify the system s often are based on unique paradigm s which are irreconcilable

with those o f the program m ing languages used in the im plem entation of the

specified system s

1 1 Objectives

Proposed is a program m ing language that is based on a popular Formal M ethod

- the 7r-calculus It is hoped that this program m ing language will exhibit all the

recognisable qualities of the Formal M ethod m question m addition to being

usable, robust, expressive and providing a high level o f support for distributed

com puting It is desired that by possessing these properties that this program

m ing language will make Formal M ethods more accessible and increase their

likelihood of being used

1.2 Outline of the thesis

• C h ap ter one Introduction to the research

2

• C h a p te r tw o Introduction to the 7r-calculus as well as variants and ex

tensions of it

• C h a p te r th r e e This chapter presents a number o f existing related im

plem entations

• C h a p te r fo u r The design and theory of the program m ing language is

presented in this chapter

• C h a p te r fiv e T he im plem entation behind the design and theory is ex

plained in this chapter

• C h a p te r s ix This chapter contains a number of exam ple system s impl-

m ented in this program m ing language

• C h a p te r s e v e n T he conclusions o f this research

3

Chapter 2

Background:
The 7T and Spi calculus

2.1 The 7r-calculus

In the late 1980s a unique form o f distributed system s were becom ing increas

ingly com m on-place and im portant, but the nature o f these distributed system s

differed significantly from the traditional distributed system s This new breed

of distributed system was not static w ith regard to topology, it was contin

ually changing Links between agents m the system s would grow and die in

a seem ingly organic fashion and these caused traditional m odelling notations

for distributed system s to struggle w ith this new strain o f concurrent system

This lim itation o f existing tools for m odelling concurrent system s led Robin

M ilner, Joachim Parrow and David Walker to devise a process algebra called

the 7r-calculus T he 7r-calculus is heavily influenced by Milners earlier work

on CCS (Milner 1989) and it retains m any positive aspects of CCS and also

adds, am ongst other things, the notion o f m obility M obility being the ability

of system s to grow and alter dynam ically during their execution D ue to the

unique nature of the 7r-calculus, it is quite capable of capturing the essence of

these system s that were dubbed Mobile Systems A m obile system tends to be

distributed across a network and involves the concurrent execution o f a number

of agents, agents between who links can move

2 1 1 Introducing the 7r-calculus

As seem ingly dem anded by any m odelling tool for m obile system s the basic

com putational operation m the 7r-calculus is the exchange o f a com m unications

link between processes It is this capability to send links from one process to

4

another that sets the 7r-calculus apart from other process algebras, such as CCS

and CSP (Hoare 1985), which do not allow the com m unication o f links, and it is

only by receiving a link that a process can acquire a capability to interact with

processes which were previously unknown to it In the exam ple system , Figure

2 1, process A and process C are both connected to process B but not to each

other, however they wish to be linked together This can be achieved by the

creation of a link z by one of the processes, lets say process A After creation

it is sent over x to process B who forwards it onto process C on y Now both

process A and process C know of the link z and they can now interact with each

other w ithout an interm ediary party An act of “learning” has taken place and

two previously unconnected processes are now linked It is this m oving o f links

that earns the 7r-calculus the title o f calculus of mobile systems

Figure 2 1 Learning processes

In the 7r-calculus there is the notion o f a name and the intricacies o f this

notion contribute significantly to the expressive powers of the 7r-calculus A

name is the most prim itive entity m the 7r-calculus and is atomic in nature, i e

it has no structure A nam e represents a link, or a channel, between processes

but a name also is the data that is transm itted on these channels This dual

nature of names is what allows the extrusion of scope1 of names m the 7r-calculus,

and it is this scope extrusion that allows new links to be learnt by processes

A 7r-calculus process can be thought o f as a collection of 7r-calculus actions

that com bined achieve a specific task B y grouping a number of processes to

gether and allowing them to interact the 7r-calculus allows system s to accom plish

their goals W hile this m ay seem very sim plistic the 7r-calculus is more expres

sive than it first appears and it has been shown that the A-calculus can be

represented in its entirety w ithin the 7r-calculus (Milner 1993)

W hen m obility and m obile com puting are usually discussed the idea of m o

bile devices is what is generally thought o f However the concept o f m obility

is not lim ited to devices that can be moved, m obility also covers the notion

1 Scope extrusion is a concept vital to the 7r-calculus and will be explained later in this
section

5

of a series o f stationary devices, between which links grow, die and are passed

about T he 7r-calculus is capability o f handling both forms of m obility, however

its primary applications have been in scenarios similar to the latter

2 1 2 Syntax and Sem antics

S y n ta x

It is assum ed m the 7r-calculus that there is an infinite number of nam es and in

the following section lower-case letters are used to represent names Also, while

the 7r-calculus has no concept o f process nam es, upper-case letters are used to

indicate processes

There are a lim ited number of actions that a 7r-calculus process can perform,

and these are collectively referred to as action prefixes, (a) A ction prefixes can

be assem bled to form processes, and processes can be further assem bled to form

larger processes This construction of processes from action prefixes and larger

processes from sub-processes is governed by the syntax o f the 7r-calculus

A c t io n P r e f ix e s

a = x(z) Input prefix, z is received on x

x z Output prefix, 2 is sent on x

r An unobservable action

P r o c e s s e s

P = 0 Null process

a P Prefix

P + Q Sum

P | Q C om position

[x = = y]P M atch

(v x)P R estriction

!P R eplication

• N u l l p r o c e s s The em pty process, it cannot perform any actions

• P r e f ix The process P is prefixed by one o f the valid prefixes - input,

output or an unobservable action

• S u m Interaction can occur with either P or Q but not both Sum is

often also referred to as the choice operator

• P a r a l le l c o m p o s it io n Represents the com bined behaviour of the pro

cesses P and Q executing concurrently Processes running in parallel can

interact w ith each other, or with third party processes, or a com bination

of both

6

• M a tc h If x is equal to y then the process behaves as P, otherw ise it

blocks, l e does nothing

• R e s t r ic t io n (vx)P behaves as P, but with the nam e x being local to P
and only P

• R e p lic a t io n T he process !P is equivalent to P \ fP In other words fP
behaves as an infinite number of instances o f P all executing in parallel

to one another

F re e a n d b o u n d n a m e s

In both x(y) P and (vy)P both the names x and y are bound w ithm the scope of

P A name is said to be bound in a process if it is either (1) a binding occurrence,

l e x(y) or (v y), or (11) it is within the scope o f a binding occurrence A bound

name can only be referenced from withm the scope o f its binding occurrence

and as such it cannot be used to com m unicate with a process that lies outside

this binding occurrence, unless its scope is extruded to include that process

A name is a free nam e if it is not a bound one T he free nam es o f a process,

P, are denoted by fn (P), and the bound names are denoted bn(P)

W hen interaction occurs between processes a substitution generally occurs

A substitution is a function from names to names { z / y } indicates a substitution

that replaces y w ith z and leaves all other names untouched

e g x(y) P I xz 0 P { z / y }
P { z / y } behaves as P w ith all occurrences of y replaced by z, alpha-conversion

of already existing occurrences o f z m ay be necessary A lpha-conversion being

the conversion o f a process by renam ing elem ents o f that process in a consistent

manner

S tr u c tu r a l C o n g r u e n c e

It is necessary to be able to equate processes that differ only in term s of organisa

tion A m ethod o f identifying processes which represent the sam e com putations

is required, 1 e ây 0 | a (a;) 0 and by 0 | b(x) 0 are intuitively the sam e and

should be identified as such This is achieved in the 7r-calculus via structural
congruence, = Structural congruence identifies only processes where it is clear

from their structure that they are the sam e

Structural congruence is defined as the sm allest congruence th at satisfies the

following rules

1 If Q can be obtained by alpha-conversion of P, then P = Q

2 (a) C om m utativity of parallel com position, P | Q = Q | P

7

(b) A ssociativ ity o f parallel com position, (P | Q) | R = P | (Q | R)

(c) C om m utativity o f sum, P + Q = Q + P

(d) A ssociativity of sum, (P -1- Q) + R = P + (Q 4- R)

3 Scope extrusion laws

(vx)0 = 0

Intuitively these two terms are equivalent as since there is nothing to

restrict m 0 then the presence o f a restriction operator cannot have

an effect on 0

(v x)(P | Q) = P | (vx)Q if x i fn(P)

If a nam e is not free in a process then the act o f restricting, or not /

restricting, the nam e on that process will not have an effect on that

process

(vx) (P + Q) = P + (vx)Q if x g fn(P)

If a name is not free m a process then the act o f restricting, or not

restricting, the name on that process will not have an effect on that

process

(v x)[a = = y]P = [a = = y](v x)P if x ^ a, x ^ y

If a restriction does not operator on elem ents o f a m atch operator

then the positioning of the restriction relative to the m atch will not

have an im pact o f the behaviour o f the m atch operation

Sem antics

In the sam e m anner as m ost process algebra the operational sem antics o f the t t-

calculus is given via a reduction sem antics T he following sem antics are specified

using reduction sem antics R eduction sem antics is a m ethod o f formal sem an

tic specification which works by transform ing com plex expressions into simpler

ones Each step in this process is called a ’reduction’ and once an expression is

fully reduced and the reduction process has term inated then the expression is

said to be in its normal form A com plex expression is equivalent to its reduced

form, and this reduced form is sim pler to reason about

T he rules of this reduction sem antics are

8

E x p la n a t io n s

1 [S tru ct] If the occurrence of an action causes the process P to reduce to

the process <2, then a process that is structurally congruent to P can be

reduced to a process that is structurally congruent to Q on the occurrence

of the sam e action

2 [P refix] A process that is prefixed by an action reduces to that process

after the occurrence o f the specific action

3 [Par] If a process, P, can reduce to another process, P \ after the occur

rence of an action then P can reduce to P* regardless o f w hat processes

are running concurrent to it when that action, a , occurs

4 [Sum] If a process, P, can reduce to another process, P } after the occur

rence of an action then the sum of P and any other processes will reduce

to P ’ on the occurrence o f a

5 [C om] If a process P reduces to P* on an input action on a specific name

and if the process Q reduccs to Q ’ on an output action on that sam e

name then P m parallel to Q will reduce to P ’ in parallel to Q ’ after an

unobservable action occurs

6 [R es] If P reduces to the process P* on an action, and the nam e x is not

involved in this action, then the reduction will still occur if the name ts
restricted in both processes

7 [M atch] If a process reduces to another process on an action, then this

reduction will still occur if the nam es being com pared are the sam e O th

erwise nothing will happen

8 [R ep] A replicated process reduces to that sam e replicated process w ith

a non-rephcated instance of the sam e process in parallel

2 1 3 Basic Exam ples

Consider the process

S im p le I /O xa 0 | a(b) bv0 [x(y) yz 0

T he above process is comprised o f three sub-processes, and although the n-
calculus processes are not named for this explanation we will refer to them as

P, Q and R, as read from left to right In all three sub-processes the names x
and fl are free, all occurrences of x and a in the three sub-processes all refer to

the sam e names It is these free names that allow the interaction of P and R
(over the nam e e) to occur, likewise for the interaction o f P and Q (over the

name a
The act o f reading a nam e over another nam e is said to bind that name in

the process that follows the input action For exam ple in the process R the

action x(y) binds the nam e y in the remainder of the process, yz 0 In reality

the name y will never actually be used m the remainder o f the process as y is

only a placeholder that indicates where the name read in on the channel x m

the action x(y) should be substituted m the process

It is worth noting at this stage that in the original 7r-calculus the act o f

exchanging a name over a channel is a synchronous one - for every input there

m ust be a corresponding output and vice versa and w ithout the correspond

ing action any attem pt to input or output will sim ply block until there is a

corresponding action

In order for the process to reach its final sta te there m ust be a certain am ount

of interaction between processes T hese interactions proceed as follows

10

xa 0 | a(b) b v 0 | x(y) yz 0
0 | a(b) bv 0 | az 0
0 | zv 0 | 0

The reason that the above processes could interact successfully is that they

shared a certain am ount o f knowledge of names If the inform ation that was

shared was restricted between specific processes then the execution would have

been quite different The following process is virtually identical to the previous

one except that the name x is restricted to the process P and Q, that is the

nam e x that appears in P and Q is a different x to the one in process R

R e s t r ic t io n (vx)(xa 0 | a(b) 0)| x(y) yz 0

Since the occurrence o f x in P\Q is a different x to the one in R no interaction

is possible This restriction of names allows the creation o f private channels

between processes, a feature that proves invaluable for when dealing w ith con

current, distributed system s The real value o f how the 7r-calculus handles

restriction of names is only appreciated when one considers the unique concept

o f scope extrusion

S c o p e e x tr u s io n (vy) ((v s) (x(m) \ yx) \ y(p) po)

In the above exam ple the process x(m) can be considered as a resource, the

process yx can be considered an access control unit for the resource and the

process y(p) po can be viewed as an agent wishing to access the resource, Figure

22

Figure 2 2 Resource Access Control

T he resource in question can only be accessed via the nam e x, the only

entities that in itially are included in the scope of this nam e are the ACU and

the resource itself but by sending the name x over the name y the scope of the

name x can be extruded to include the User process T he User process can now

access the resource m question, Figure 2 3

S c o p e e x tr u d e d (vy)(vx)(x(m) | 0) | xo)
T he notions of acccss control and resources play a m ajor part in concurrent

11

Figure 2 3 Resource Access Control

com puting and the ease w ith which the 7r-calculus allows these ideas to be

expressed highlights once again the benefits o f using the 7r-calculus when dealing

w ith concurrent and distributed system s

In any real world concurrent system there is always a possibility that either

one thing or another will happen, that a choice will be needed to be m ade

between certain actions Choices like these can be expressed in the 7r-calculus

via the choice (+) operator

C h o ic e P + Q

In the above process either process P or Q is started and the choice o f which

process to start is made m a non-determ m istic fashion, that is the result o f the

operation cannot be predicted before its execution C hoosing a process in a

com pletely arbitrary manner is o f lim ited use and as a result it is much more

com m on to see a guarded choice expression

G u a r d e d C h o ic e x a P + y a Q + w(b) R

Once again the above expression will result in either process P , Q or R being

started, however m this case the choice is not a non-determ m istic one, but rather

is based on which action occurs first x a , ya or w(b) W hichever action com pletes

first results in the associated process being started A guarded choice expression

consists of an arbitrary number of possible branches of execution, or choice

options For exam ple m xa P + ya Q + w(b) R there are three possibilities

xa P, ya Q and w(b) R E xactly one of these options m ust be executed, and

interaction between options is not perm itted, 1 e in the process x(a) P + x b Q ,

the reduction to { 6 /a } P + Q cannot occur

Should the sam e action occur in m ore than one place in an expression, a

non-determ im stic choice is m ade between these options should the associated

action prove successful Any com bination of input and output actions are valid

as prefixes to processes m a choice expression and these prefixes are said to

“guard” the respective processes

A concurrent system can som etim es involve m ultiple copies o f the sam e pro

12

cess running in parallel Som etim es the number o f instances m ay be an arbitrary

one, one that cannot be known m advance, and a m echanism to capture this

behaviour is required This m echanism com es m the form of the replication op

erator, (]) A process that is replicated behaves as if there are an infinite number

of copies o f the process ready to run at any stage, once one starts another is

im m ediately ready to start A replicated process]P can be expanded to P\ 'P

R e p lic a tio n (l) 1xa \ x(b) P \ x(c) Q

T he execution of the above process could proceed as
}xa | x(b) P | x(c) Q — >
xa | 1xa \ x(b) P \ x(c) Q — >

xa | xa \ }xa \ x(b) P \ x(c) Q —^

0 \ xa \ }xa | P { a /b } | x(c) Q —^

0 | 0 | 'xo | P {a /b j | Q {a /c }

Think back to the access control exam ple, it only worked for one connection

from a user to the resource, this is not a realistic system A more realistic system

is one in which m ultiple users want to make m ultiple separate connections to

the resource

R ep lica tio n (2) (v y)(, (vrc)(a:(m) P \ y x) |(vo)(*t/(p) po))

M ultiple users,]y(p) po, are now able to access the resource by m eans of mul

tiple, access control process/resource pairings, '(va:)(a;(m) | yx) Each tim e a

user process kicks off another one is ready to take its place Each replicated user

process receives its own private channel for com m unicating w ith the resource

as the entire access control/resource process is replicated including the restric

tion As a result the system can now handle m ultiple users m aking m ultiple

connections to the resource

(vy)('(v x)(x (m) P \ yx) \ '{vo){y(p) po))

(vy)((vz)(z(m) P | yz) | '{vx){x(m) P \ yx) \ [{vo)(y(p) po))

(vy)((vz)(z (m) P \ y z) \ '(vx)(x(m) P \ yx) \ (vq)(y(p) pq) \ '(vo(;/(p) po))

(vy)((vz)(z (m) P \ 0) | '(vx)(x (m) P \ yx) \ (\q)(zq) I '(vo(j/(p) po))
T ^

(vy){vz)({vq)(P{q/m} \ 0) | ' (vx){x(m) P \ yx) \ 0 | '(\o(y(p) po))
T

(vy)(vz)((vq)(P{q/m}) \ '(vx)(x (m) P \ yx) \ '(vo(y(p) po))

13

2 1 4 E xam ple

Im agine a system involving an arbitrary number o f users which can access an

arbitrary number of printers Users wish to print only one job at a tim e and do

not care which printer performs the task Printers can only handle one job at a

tim e and following com pletion o f one job are ready to print another one Users

m ust pay per print job and billing is performed by routing all print requests

through a central access control unit (ACU)

N users

Figure 2 4 Printer exam ple

T he following is a 7r-calculus specification for the above system

n —1
Sy s tem = (vy)(vx)('U ser \ ACU \ U.l=Q Printer (i))
User = (va)(v&)(rca a(c) ck 0)

Printer (j) = (vq)(yq q(e)) Pr inter(j)
A CU = x{b)y(c) be ACU

n — 1

T his exam ple introduces a syntactic shortcut o f the 7r-calculus, Ul=,0 In

this exam ple there will be n printers running in parallel in the system , and

rather than writing (Printer(1) | P r in ter (2) | | Printer(n)) it is much more
n—1

convenient to write n»= o, which is merely shorthand for the more lengthy and

com plex expression involving n printers in parallel being explicitly described

Another form of syntactic sugaring is also introduced in this exam ple, that is the

use of param etensed processes, e g Printer (j) Param eterisation o f processes

14

allows a generic definition o f a process to be used in m any specific cases where

the only differences between the instances o f the process is the value o f the

param eter(s) supplied to it

A nother new concept introduced m this exam ple is the notion of tail recur

sion, e g Printer (j) — (vq)(yq q(e)) Pr inter(j) The occurrence o f Printer at

the end of this expression is referred to as tail recursion Tail recursion captures

the idea that once a process has finished executing it m ay be required to return

to its original state and be ready to execute again

T he system consists of three entities - users, printers and an Access Control

U nit (ACU) Users cannot im m ediately interact directly with printers, they m ust

first go through the ACU A channel x is shared by the User processes and the

ACU, likewise another channel y is shared by Printer processes and the ACU

User processes in the System process are replicated to reflect the possibility of

m any users

T he first thing that a User process does is extend the scope o f the nam e a
to include the ACU by sending this name over the channel x This nam e will be

used for all future com m unications w ith the ACU N ext the user reads another

nam e in over the channel a This new name, c, will be used to transm it the

print job, represented by the name k, to the printer, as the nam e c is known to

both the printer and the user

A Printer process creates a name q, this name is the name that will ultim ately

be used to receive the print job from the user Once a print job is received it is

deem ed to be printed A printer process sends the nam e q to the ACU via the

shared nam e y It then waits to receive a name on the channel q This name,

once received, is the print job that should be printed Once this print job is

printed the printer is ready to receive more jobs

T he ACU process is designed to allow users and printers to eventually inter

act It reads the relevant inform ation from both users and printers and passes

the relevant inform ation onto the correct parties

15

P r in te r exam ple reduction

Let n = 2

(vx) (y) (]U ser \ A C U [printer(l) \printer(2))

(vx)(vy)((vwp)(xw w(c) cp 0) | 1User \ x(b) y(c) be ACU
|(\ m) y m m (e) printer[l)\pr inter (2))

r 1 * "

(\x) (vy)((vwp)(w(c) cp 0) |]User \ y(c) we ACU
\ (vm)ym m(e) printer(\) \printer(2))

T

(va;)(vi/)((vti;p)(w(c) cp 0) |]User | (v m) (w m ACU
|m (e) printer(l) \pr inter (2)))

r ^

(vx)(vy)((vwpm)(rnp 0) |]User | A CU
|m (e) p r in ier (l)|p rzr iier(2))

wrn^

(vx){vy)(lUser \ ACU\prmter(l) \prmter(2))

16

2.2 Extensions and variations of the 7r-calculus

Following the publication of the in itial research on the 7r-calculus m any aca

dem ics recognised the benefits of the 7r-calculus and much further research was

undertaken into the 7r-calculus, a fact which is quickly apparent from the sheer

volum e of publications now available on the field A large proportion o f this

research involved the creation of variants and extensions o f the 7r-calculus The

creators of these variants and extensions felt that the m odifications that they

m ade, which were som etim es m ajor and som etim es minor, either did the sam e

as the 7r-calculus only b etter/n ea ter /q u ick er/etc or that the 7r-calculus was a

sub-set of their creation which did all that the Tr-calculus could and more Many

such extensions exist, som e were short-lived and not widespreadly recognised or

adopted by som e becom e more established Four o f the more well known exten

sions/variants are the Fusion calculus (Parrow & V ictor 1998), the Join calculus

(Fournet & Gonthier 1996), the Am bient calculus (Parrow & V ictor 1998) , and

the Spi calculus

2 2 1 The Fusion calculus

The Fusion calculus is an extension to the 7r-calculus that was devised by Parrow

and Victor (Parrow k V ictor 1998) The goal o f the Fusion calculus was to

create an extension to the 7r-calculus that sim plifies the 7r-calculus and allows

sim pler m odelling o f system s that involve shared state For the m ain part this

was achieved by the addition o f a m echanism which allows the updating and

m aintaining o f sta te and enforces sym m etry between input and output actions

T his m echanism is provided by the addition of a new class o f action called

’’fusions” T he Fusion calculus also proved popular and it too has spawned

extensions and variations of its own

T h e Join Calculus

Fournet and Gonthier (Fournet & Gonthier 1996) aimed to create an extension

of the 7r'calculus that retains the expressivity of the 7r-calculus, m ore specifi

cally the asynchronous sum m ation free 7r-calculus This extension was to be

more am enable than the 7r-calculus to being used as the basic of a com plete

im plem entation o f a distributed program m ing language T hey believed that the

7r-calculus m its original form was not im plem entable, and that it would be nec

essary to bring the specification notation down a few levels closer to that o f a

program m ing language before it could be im plem ented T he Join calculus also

proved to be popular and extensions and im plem entations of it exist

17

2 2 2 T h e Spi calculus

The Spi calculus was created by Abadi and Gordon (Abadi k Gordon 1997) as

an extension to the 7r-calculus that was specifically designed w ith the task of

im plem enting security protocols m mind T hey believed that the inclusion of

cryptographic prim itives and operations m the syntax and sem antics o f the 7r-

calculus would make the Spi calculus much more capable of m odelling security

related system s

2 2 3 The Am bient calculus

The creators of the Am bient calculus, Cardelli and Gordon (Cardelh k Gordon

1998), believed that existing process calculi were neglecting w hat they felt was

a central concept of m obility - the m obility o f processes T hey believed that the

ability for agents to m igrate from location to location was key to any m obility

orientated process calculi, and that this m igration should occur in a clearly

defined and controlled m anner This m igration is provided by a construct which

represents location - the am bient

W hile a detailed exam ination of all, or even som e, of the 7r-calculus exten

sions and variations that exist is beyond the scope of this docum ent, a detailed

exam ination o f one such extension will be given for a sense o f com pleteness

T his extension is the Spi calculus There were a number o f reasons why the Spi

calculus was chosen to be exam ined in more depth

1 The Spi calculus features the addition of sequential com putations, albeit

lim ited sequential com putations, to the syntax and sem antics o f the ir-

calculus

2 W ith the exception of the addition of the m echanism for performing se

quential com putations the syntax and sem antics o f the Spi calculus is

largely identical to that of the 7r-calculus

3 The Spi calculus is used to m odel system s involving security protocols, the

im plem entation of security protocols is u ltim ately one o f the target uses

o f w

2 3 The Spi calculus

2 3 1 Introducing the Spi calculus

T he Spi calculus is an extension of the 7r-calculus The primary purpose of the

Spi calculus is the description and analysis o f cryptographic protocols W hile

the 7r-calculus allowed an abstract overview of a protocol, the Spi calculus allows

18

a much more detailed view of a cryptographic protocol To facilitate this more

detailed approach to cryptography a full com plem ent of cryptographic prim itives

are provided in the Spi calculus, including

S ym m etric encryption Sym m etric encryption is the encryption and de

cryption o f data using a secret key The sam e key is used both for the

encryption and the decryption

A sy m m e tric encryption A sym m etric encryption involves the use of key

pairs for the encryption and decryption of data D ata encrypted w ith one

part of a key pair can only be decrypted with the corresponding part of

that pair, and vice versa One part of the key pair is kept secret, the

“private” key, while the other is freely distributed, the “public” key

H ashing A hash function is a m athem atical one-way function W hen data

is hashed a cryptographically unique value o f a fixed length is acquired /

This value is different for each different input data, and the sam e input

data will always yield the sam e hash

For the purposes of this docum ent the Spi calculus is, in essence, identical to

the 7r-calculus bar the addition of cryptographic prim itives to the syn tax of the

7r-calculus The concepts of names, channels and processes rem ain the sam e and

any valid yr-calculus specification is also a valid Spi calculus one

T he Spi calculus is particular suited to specifying security protocols as its

“m odel of protocols takes into account the possibility o f attacks but does not

require writing explicit specifications for an attack” (Abadi h Gordon 1997)
Anyone familiar with security protocols and formal m ethods will instantly recog

nise the benefits o f this property of the Spi calculus, by avoiding the need to

explicitly define the capabilities o f attackers one avoids the dangers of m issing

capabilities o f the attacker This property com bined w ith the rest of the prop

erties o f the 7r-calculus make the Spi calculus a very useful tool for describing

security protocols

2 3 2 Syntax additions

The syntax o f the Spi calculus is virtually identical to that o f the 7r-calculus

except for the addition of cryptographic prim itives T hese additions com e in

two forms, those concerned w ith terms, and those concerned w ith processes

In the 7r-calculus there are only names, operations can only be performed on

names, however this is not the case in the Spi calculus W hile the 7r-calculus

refers to nam es, the Spi calculus refers to terms, where a term is

19

n a name

M » Sym m etric encryption

H(M) Hashing

M+ T he public part o f a key-pair

M ~ T he private part of a key-pair

{ \M\}n A sym m etric encryption

[{M }]jv Private-key signature

T he other addition to the syntax is the set of actions that can prefix a

process

a =

case L of {x } n in P Sym m etric decryption

case L o f { |x |} ^ m P A sym m etric decryption

case N of [{x)] m m P Signature checking

1 S y m m e tr ic e n c r y p t io n If a process wishes to send som e data, Af, to

another process and it requires that the data is encrypted using som e sort

of sym m etric cipher under a specific key, n , this is represented by writing

{M}n

Exam ple d(m) c{m}k

T he name m is read over the channel d This nam e is encrypted using a

sym m etric cipher with the name k as the key, and the cipher-text resulting

from this operation is then sent over the channel c

2 H a s h in g The result o f hashing, or digesting, a nam e is term H(M)

E xam ple d(m) c(H(m))

T he name m is read over the channel d This name is then hashed and

the resulting hash is send over the channel c

3 P u b lic k e y A key-pair com prises of a shared and a secret part, or a public

and private part A key-pair in the Spi calculus is represented by a single

name so som e m ethod o f accessing both parts is needed

Exam ple (vk)(dk+)

A key-pair k is created and then the public part of that key pair, k+, is

sent over the channel d

4 P r iv a te k ey B oth parts of a key pair need to be accessed even though

the public part is generally the only part that is passed around

20

Exam ple ((\k) (dk)

A key-pair k is created and then the private part o f that key pair, k ~ , is

sent over the channel d Care should be taken that the private parts of

keys are kept secret

5 A s y m m e tr ic e n c r y p t io n { |M |};v represents the encryption o f the term

M under the public key N T he result o f this action can be sent and

received on channels as any other name, could be

Exam ple d(m)c{\m\}k

The name m is read over the channel d and is then encrypted with the

public-key k and the resulting cipher-text is transm itted over the name c

6 P r iv a te k e y s ig n a tu r e T he signing of data involves the encryption of

the data using the private-key This data can only be decrypted by using

the associated public-key and the act of successful decrypting the data

using the public-key ensures that it was, in fact, “signed” by the relevant

party

Exam ple d(m) c[{m}}k

The nam e m is read m over the channel d, this nam e is then signed using

the private key k and the resulting signature is then sent over the channel

c

7 A s y m m e tr ic d e c r y p t io n In case M o f { |x |}jv m P^ M is m fact

the result of encrypting a nam e with the relevant public-key then it will be

of the form { |0 |} iv , this value of 0 , i e the decrypted data, is substituted

for all occurrences o f x in P If it is not then this action blocks indefinitely

Exam ple d(m) case m o f { |z |} n m dx

The term m is read in over the name d, an attem pt is m ade to decrypt the

nam e using the key n, if this attem pt succeeds then the resulting p lain-text

is sent over the name d

8 S y m m e tr ic d e c r y p t io n In case M o f {z }* in P> if M is in fact

the result of encrypting a name with the key k then it will be of the

form {<9};v, this value o f O, i e the decrypted data, is substituted for all

occurrences o f x m P If it is not then this action blocks indefinitely

Exam ple d(m) case m o f {rc}n m dx

T he name m is read in over the nam e d, an attem p t is m ade to decrypt the

name using the key n, if this attem pt succeeds then the resulting p lain-text

is sent over the name d

21

9 S ig n a tu r e c h e c k in g Checking a signature is much like asym m etric de

cryption except that the key used to decrypt the data is a public key rather

than a private key Bar this difference, and the syntactic difference, sig

nature checking is the sam e as asym m etric decryption

2 3 3 Cryptographic assum ptions

T he creators of the Spi calculus m ade som e significant, yet reasonable assum p

tions with regard to cryptographic prim itives and operations

• For data encrypted with a sym m etric cipher, it is assum ed that the only

way to decrypt that data is to know the correct key

• For data encrypted with an asym m etric cipher, it is assum ed that the only

way to decrypt that data is to know the corresponding private key
%

• T hat sufficient redundancy is present in m essages so that it can be detected

if a cipher-text was encrypted with a specific key

• T hat the data used to create a hash cannot be recovered from the hash

• T hat no two d istinct pieces of data will yield the sam e hash

• T hat a private-key cannot be obtained from its public-key

2 3 4 Operational sem antics

The sem antics of the 7r-calculus are a sub-set of the sem antics of the Spi calculus

and everything valid m the 7r-calculus is also valid in the Spi calculus There are,

however, three additional rules m the operational sem antics o f the Spi calculus

[SymDec]
L = \ M } n

case L o f {^}at in P — > P { M / x }

[AsymDec]
l = {\m \}n +

[SigCheck]
case L o f [{x}]jy+ *n P — > P { M /x }

E x p la n a t io n s

1 [S y m D ec] If a term, L, is the result of encrypting the term, M, w ith a

sym m etric cipher and the key N, then the result is the process P, w ith all

occurrences of x replaced by M

2 [A sy m D e c] If a term, L, is the result of encrypting the term , M, w ith an

asym m etric cipher such as RSA and the public part of the key pair TV, the

result is the process P w ith all occurrences of x replaced w ith M

3 [S igC h eck] If a term, L , is the result o f the term M being signed with

the private part of the key-pair TV then the process P continues w ith all

occurrences of x being replaced by M

2 3 5 Exam ple

Consider the printer exam ple given m section 2 1 4 , the 7r-calculus exam ple

Suppose that it was a requirement, for whatever reason, o f this system that

all jobs sent from users to printers m ust be encrypted T he following is a Spi

calculus system that achieves this

n—1
S ys tem = (\ K \ c u)(vxy)(]U ser | A C U | Ht=oPrinter(i))

User = (v o j / f u) (x { |a |} j i+ AC[; a{\Ku\}K+ACV a(c)

case c o f { z } Ku m z {]} k u 0

Pr in te r (3) = (vqKp){y{\q\}K+ACUq{\Kp\}K+ACUq(d)
case d of {Kp}k p m q(e) case e o/{p}ku m 0

AC U = (\ K ^ c u){x{m) m(n)casenof { \Km \ } k A c u in

y(d) d(e)caseeof { \ K d \ } k a c u 171
f d { K m}Kd rnd ACU)

The topology of this system remains unchanged, the different processes are

connected in the sam e way and they learn of channels m the sam e m anner and

order However, the interaction between the different processes is significantly

more com plex as keys and encrypted data are exchanged in an effort to ensure

secrecy

A t the top level the system has only one change - all User and Printers now

know the public key belonging to the ACU This will allow all Users and Printers

to encrypt their transm ission to the ACU and allow the secure exchange of keys

for use w ith sym m etric ciphers

An instance o f the User process wants to set up a channel and a key that

will be used to transm it securely the print job to the printer This set-up is

achieved by sending a channel to the ACU, and by then sending a session key,

also encrypted, to the ACU on this channel It then receives a channel which has

been encrypted with the session key and it is on this channel that the encrypted

print job will be sent directly to the printer

23

A printer process also wants to establish the session key and a channel on

which it will receive the print job It also does this by sending a channel and a

session key, both encrypted, to the ACU It then receives back from the ACU

another session key which is encrypted w ith the key that was sent to the ACU

It is this session key that will be used to decrypt the print job once it is received

on the channel that was sent to the ACU Once a printer has dealt w ith the

received print job it returns to its in itial state, ready to com plete the procedure

all over again

The ACU process is easily the m ost com plex o f all the processes m the system

as it has to interact with both User and Printer processes to facilitate the secure

exchange of channels and the establishm ent of session keys

T he first step of the ACU process is to receive a name from the User process

Using this nam e another nam e is read from the User This nam e is the session

key for this user session that was generated by the User and was encrypted

using the public key of the ACU Once this session key has been received and

decrypted the ACU reads a name from the Printer process Sim ilarly another

name is read then from the Printer using this nam e This nam e is the session

key for the printer session Using this printer session-key the user session-key

is encrypted and then sent on the channel that is shared between the ACU and

the printer Once this occurs this sam e shared name is sent to the User process

so that the User process can com m unicate w ith the Printer

Once the ACU process is finished the ACU process also returns to its initial

sta te ready to facilitate more transactions between users and printers

2.4 Conclusions

By now the expressive capabilities of the 7r-calculus should be clear A large

range of powerful constructs and operations are available in the 7r-calculus

However concepts such as replication, channels and the 7r~calculus approach

to interaction between concurrently execution processes, which are sim ple and

transparent to use in the 7r-calculus are not present m conventional program m ing

languages and would prove rather cum bersom e and troublesom e to im plem ent

and use m these conventional program m ing languages W hile these absent el

em ents could possibly be written as com ponents and plugged into som e of the

conventional program m ing languages and the functionality of the constructs

may be approxim ated, an unbridgeable gulf between the syntax and sem antics

of the 7r-calculus and those o f the conventional program m ing language even

with the added functionality would still exist This gulf and the problem that it

poses for the task o f com paring 7r-calculus specifications w ith their im plem enta

tions m conventional program m ing languages creates a niche for program m ing

24

languages which are based directly on the 7r-calculus and its derivatives

2.5 Further Reading

The 7r-calculus

T he theory behind the 7r-calculus is m assive This introduction is intended only

to give a brief overview o f the syntax, sem antics and purpose of the 7r-calculus

and entire sections o f the 7r-calculus have been om itted as they are beyond the

scope of this docum ent In order for any reader to get a true understanding of

the 7r-calculus it would be necessary to read one or more o f the following texts

(increasing com plexity)

• An Introduction to the pi-Calculus(Parrow 2001)

• T he Polyadic pi-Calculus A Tutorial (Milner 1993)

• Com m unicating and M obile System s The Pi-calculus(M ilner 1999)

• A Calculus o f M obile Processes Parts I and II(M ilner, Parrow & Walker

1989)

• The 7r-calculus A Theory o f M obile Processes(Sangiorgi & Walker 2001)

The Spi calculus

As the Spi calculus is based upon the 7r-calculus a full understanding of the

7r-calculus is required before m oving on to the Spi calculus T he theory behind

the Spi calculus is considerable and a lot of the im portant aspects of the Spi

calculus haven’t even been m entioned in this docum ent If a reader desired a

greater knowledge o f the Spi calculus the following texts would be a good place

to start

• A Calculus for Cryptographic Protocols The Spi C alculus(Abadi &; Gordon

1997)

• A Calculus for Cryptographic Protocols T he Spi Calculus (SRC Tech

report) (Abadi & Gordon 1998)

25

Chapter 3
/

Related Research

Following the publication of the in itial research on the 7r-calculus m any deriva

tives of the 7r-calculus quickly em erged (Cardelh & Gordon 1998, Parrow &

Victor 1998, Fournet h Gonthier 1996), and after som e tim e im plem entations

of the 7r-calculus, and these derivatives, began to appear W hile all of these im

plem entations are, in som e way, each unique w ith regard to how they approach

the im plem entation of their underlying process calculus, it is possible to group

the vast m ajority o f these im plem entations into one of three categories based on

various classification criteria M ost of these im plem entations are based on the

7r-calculus, although some were inspired by more exotic variants or extensions

of the 7r-calculus
The creation of these classification criteria occurred as the research into

related work was taking place It was felt that these particular classification

criteria would allow the fundam ental differences between im plem entations to

be determ ined and for the im plem entations to be subsequently grouped accord

ingly into categories Following the exam ination o f related research it becam e

clear that these classification criteria resulted in im plem entations falling into

one of three categories Before stating w hat the three categories are the clas

sification criteria will be exam ined and justified The classification criteria for

these im plem entations are

S y n ta x

W hen inspecting the syntax of a language that is supposedly based on the

7r-calculus the primary concern is whether or not the syntax is sim ilar to

that of the 7r-calculus If they are sim ilar there will be a visual likeness be

tween the 7r-calculus and the im plem entation, i e they will look the sam e

It was felt that this was im portant so that a com parison between specifi

cation and im plem entation would be as sim ple as possible and w ithout a

26

need for translation

S e m a n t ic s

An exam ination of the sem antics of a 7r-calculus inspired language should,

ideally, reveal a significant resem blance to those of the 7r-calculus The

closer the sem antics of a language to the sem antics o f the 7r-calculus, the

more similar the behaviour of the language will be to the behaviour of the

7r-calculus, 1 e they will act the sam e T he im portance of this property is

due to the desire to sim plify the com parison process

M o b il i ty

T he 7r-calculus concept o f m obility is just one approach to m obility and

various im plem entations incorporate a different process calculus concept

of m obility rather than that of the 7r-calculus How an im plem entation

handles m obility has a significant im pact on its ties to the 7r-calculus

S y n c h r o n o u s v s a sy n c h r o n o u s c o m m u n ic a t io n s

The com m unication of data over channels can be done in one of two ways,

in a synchronous fashion, or in an asynchronous m anner Versions o f the

7r-calculus exist that are either synchronous or asynchronous in nature

Similarly im plem entations o f the 7r-calculus differ on this depending on

which version o f the 7r-calculus they are based on

D is t r ib u t io n

Some im plem entations of the 7r-calculus were designed to be used in the

im plem entation of distributed system s and as such constructs, operators

and environm ental features were provided to allow this distribution Some

im plem entations were only m eant for use m system s whose execution

would occur entirely on one host T hese distribution oriented languages

are closer m spirit to the 7r-calculus T he absence/presence o f support

for d istribu tion is an easily determ ined classification criterion, and given

that the 7r-calculus is intended for use in m odelling distributed system s,

an im portant one

S e q u e n t ia l c o m p u t a t io n s

T he 7r-calculus does not provide a m echanism for performing com plex

sequential com putations such as cryptographic operations or even text

m anipulation Such a m echanism is necessary to be present in an im

plem entation of the 7r-calculus for that im plem entation to be of use in a

real world scenario, however such a m echanism is not alw ays provided by

im plem entations o f the Tr-calculus

27

T he m ajority of im plem entations fall into one of three m am categories when

classified using the above criteria

C ateg o ry 1

A program m ing language belonging to category one is capable o f perform

ing com plex sequential com putations in a sim ple and transparent manner

However is not designed for use in im plem enting distributed system s and

it is not strictly based on the 7r-calculus

C ateg o ry 2

A category two program ming language is syntactically and sem antically

similar to the 7r-calculus but it is not capable of performing sequential

com putations m a simplej fashion nor is it intended for use in im plem enting

distributed system s

C ategory 3

C ategory three program m ing languages are syntactically and sem antically

similar to the Tr-calculus and are also m eant to be used in im plem enting

distributed system s However they are not capable of performing com plex

sequential com putations

A representative im plem entation from each will be exam ined m detail

• Prom category one - JP iccola (Nierstrasz, Acherm ann & K neubuehl n d)

• From category two - P iet (Pierce & Turner 2000 o)

• And from category three - Nom adic P iet (W ojciechowski & Sewell 1999)

28

3.1 JPiccola

JPiccola (Nierstrasz et al n d) is a language designed for constructing appli

cations from existing software com ponents that are already w ritten m another

program m ing language All actual work is achieved via this host language, Java,

and JP iccola sim ply provides a framework for linking these com ponents The

reasoning behind this is that existing m ethods of creating pluggable com ponent

architectures lack flexibility and lim it designers to particular architectural styles

and com ponent m odels

T he core of JP iccola does not provide any program m ing language features,

only som e m echanism s which facilitate the com position o f com ponents to create

applications T hese m echanism s are related to aspects of the 7r-calculus, nam ely

agents and channels Obviously since these m echanism s only allow the struc

turing o f com ponents and the com m unications between them , som e m ethod of

performing actual com putations is required JP iccola provides this by m eans

of a H ost program m ing language, the Java program m ing language B y writing

wrappers around Java code it is possible to access the functionality of the Java

program m ing language In order to sim plify the task of performing com pu

tations JPiccola provides som e basic data types, such as strings, integers and

Booleans, along w ith som e basic control structures T hese are provided via

standard JP iccola m odules which perform the required wrappings

JP iccola differs from the 7r-calculus in terms o f both syn tax and sem antics

However, the 7r-calculus concept of mobility, static agents yet dynam ic links

betw een them , is present in JPiccola JPiccola is also not distributed in na

ture, and all com m unications over channels in it are asynchronous in nature

JPiccolas mam strength comes from its ability to perform com plex sequential

com putations via a “host” language, nam ely the Java program m ing language

3 1 1 Forms and Services

Central to JP iccola is the concept of a form A form in JP iccola consists of a

series of name-value bindings and services that allow.. these forms to be invoked

e g

p e r s o n =

name = ‘ ‘ joh n doe ’ !

age = 31

prm tN an ie
p r i n t In ‘ ‘ Name ’ ’ + name

p r i n t D e t a i l s

29

p r i n t ‘ ‘ Name ’ J + name
p r i n t l n ‘ ‘ Age ’ ’ + age

pe r son p r i n t Name ()
pe r son p r i n t D e t a i l s ()

T he above JP iccola code creates a form, person, which contains two name-

value bindings and two services The two services, pnntName and printDetails,
are then invoked to yield the output

Name joh n doe
Name j ohn doe Age 31

Much like inheritance in object-oriented languages forms can extend other

forms, thereby gaining the services and nam e-value bindings o f other forms

s t u d e n t =
pe r s on
s t u n o = 99999999

p r i n t D e t a i l s
p r i n t “ Name ’ ’ + pe r son name
p r i n t ‘ ‘ Age ” -1- pe r son age
p r i n t l n ‘ ‘ ID No ’ ’ + s t u n o

s t u d e n t p r i n t Name ()
s t u d e n t p r i n t D e t a i l s ()

The form student can access all the nam e-value bindings created in the

person form, and it can also access all the services that person provides Name-

value bindings m ust be explicitly referenced while services do not Services can

also be overridden, e g the printDetails service m the student form

3 1 2 Concurrency and Interaction

JPiccola is heavily influenced by the 7r-calculus and as such interaction and

concurrency m JP iccola is achieved m a m anner sim ilar to that of the 7r-calculus

Concurrency in JP iccola is achieved by invoking run on a service, this causes

the service m question to be executed in parallel to the rest of the invoking entity

e g

run (do s t u d e n t p r i n t D e t a i l s ())
run (do pe r son p r i n t D e t a i l s ())

This code sets the two services, student printDetails and person printDetails,
running concurrently to the invoking service The result of the above will be the

printing of both sets of details to the screen in an arbitrary order Obviously

services that can be more com plex are possible to be invoked in a concurrent

3 0

)

fashion, and no bounds are placed on how deep nested concurrent invocations

can be

W hen dealing with m ultiple agents running concurrently the issue arises of

com m unication and interaction between these agents JP iccola once again turns

to the 7r-calculus for the solution The concept of a channel was introduced

to JPiccola, and agents can com m unicate with each other over these Channel

com m unications in JP iccola are done in an asynchronous fashion Any attem pts

to send inform ation on a channel are deem ed to have succeeded instantly and do

not block, while reads are done in a blocking fashion JP iccola channels allow

only the com m unication o f forms, but since everything in JP iccola is a form this

is not a problem

e g
c = newChanne l ()

run (do p r m t l n c r e c e i v e Q)

run (do c send (‘ * hey from over h e r e 1’))

3 1 3 The H ost language

JPiccola has no built in m eans of performing com putations, rather it delegates

all com putations to a host language, Java Everything that is possible in the

Java program m ing language can be achieved m JP iccola by m eans o f wrappers

Wrappers for the m ost com m on data-types are supplied with JP iccola, and it is

via these wrappers that the “built-in” types like numbers, strings and Booleans

are supplied In order to access other types of Java objects it is necessary to use

the Host class service This service returns a form and all functions available

to the Java object are available as services that can be invoked on the form

e g
d ig = H ost c l a s s (‘ ‘ j a v a s e c u r i t y M e ssa g e D ig e s t ’ ’) g e t l n s t a n c e (‘ ‘ SHAl ’ ’)
d ig u p d a t e (“ t h i s i s a s t n n g ’ ’ g e t B y t e s ())
r e s = d i g d i g e s t ()

By com bining this m ethod of utilising the Java program m ing language along

with JPiccolas built in control structures and array access m ethods, the full

expressivity of the Java program m ing language can be accessed and used

f
3 1 4 JPiccola Summ ary

For som e tim e there has been som e concern with regard to the m anner in which

the Java program m ing language handles com m unications and interactions be

tween concurrently executing threads JP iccola m anages to overcom e this prob

lem with the addition of channels This addition ensures that all interaction

31

between concurrent agents is achieved m a transparent fashion As JP iccola

also allows the full com putational power of the Java program m ing language to

be harnessed it could be argued that it is possible to achieve more m it than m

pure Java This ability to include Java code in JPiccola programs, albeit in a

round about m anner, is one of the distinguishing features o f JP iccola and it is

this capability that ensures that JP iccola is actually o f som e use to program

mers

W hile JP iccola allows access to the capabilities of the Java program ming

language, and while it also includes certain aspects o f the 7r-calculus, it is vi

sually similar to neither T his, com bined with the m inim al influence o f the

7r-calculus seem s to have had on it, m eans that JP icco la’s value to the formal

m ethods com munity, and more specifically to those concerned w ith im plem ent

ing 7r-calculus specifications, is rather lim ited It could also be argued that for

w hat JP iccola does, that it is overly com plex

However the m ost significant drawback o f JPiccola is that it does not cater

for distributed system s JPiccola is prim arily designed for users im plem ent

ing stand-alone applications, which may perhaps be concurrent in nature The

primary concern of the 7r-calculus is the specification of protocols and interac

tion between distributed entities and as such the 7r-calculus is o f lim ited use

with regard to system s that will only be executed on a single m achine The

non-distributed nature o f JP iccola significantly reduces its attraction to those

involved m the specification and im plem entation of distributed system s

C la s s if ic a t io n o f J P ic c o la

S y n ta x N ot similar to 7r-calculus

S e m a n t ic s N ot similar to 7r-calculus

M o b il i ty 7r-calculus mobility present

C h a n n e ls Asynchronous

D is t r ib u te d No

S e q u e n t ia l c o m p u t a t io n s via “host” language, expressive and powerful

32

3.2 Piet

P iet was developed by B Pierce and D Turner m the late 1990’s(P ierce k
Turner 20006, P ierce 1997) as an experim ent to see w hat a language based on the

7r~calculus would look like T he idea behind P iet was to design and im plem ent a

high level language purely in terms o f the 7r-calculus and as such P iet is intended

to be to the 7r-calculus w hat Lisp (Seibel 2005), ML (Paulson 1996) or Haskell

(Thom pson 1999) are to the A-calculus (Thom pson 1999) As would be expected

goals, P iet is very sim ilar, syntactically and sem antically to the 7r-calculus

Another result of this intention is that the traditional 7r-calculus form o f m obility

is present in P iet However this intention is also the source of one of the major

problem s w ith P iet - its inability to perform com plex sequential com putations

Sequential com putations in P iet are achieved via P ie t’s own notation , which

is, in effect, an extension to the 7r-calculus Finally, like JP iccola, P iet is not

distributed in nature and channel com m unications are asynchronous

Code written m P iet is visually very similar to 7r-calculus specifications and

concepts present in the 7i*-calculus are, for the m ost part, present in P iet This

allows nearly everything possible in the 7r-calculus to be done in P iet P iet is

a com pletely self-contained language which allows everything, com m unications

and com putations, to be achieved m its own notation This unique notation is,

sim ultaneously, one of the strengths and weaknesses of P iet

P iet code is com piled into C code, and from C into executables Once com

piled, these strongly typed programs run in a uniprocessor *NIX environm ent

like any other traditional C programs

3 2 1 Processes and channels

In P iet, much like m the 7r-calculus, everything is arranged in term s of processes

A lso m a sim ilar manner to the 7r-calculus is the construction of processes

Processes are made up of a number of actions and a number o f sub-processes,

and the arrangem ent of these sub-processes and actions is done m a fashion

similar to that of the 7r-calculus P iet also allows the concurrent execution of

an arbitrary number of processes

E x a m p le
run (p r i n t 1“ h e l l o | p r i n t 1 ‘ 1 wor ld ’ ’)

T he P iet version of the standard Hello world exam ple program is a process

which involves the parallel execution of two sub-processes - one that prints

“hello” and one that prints “world” However, as would be expected of two

processes executing in parallel w ithout any form o f interaction, the ordering of

the output is non-determ im stic - one tim e it m ay say “hello world” , the next it

m ay say “world hello” As can be seen processes in P iet are invoked by enclosing

33

them in parentheses and separating them with the parallel operator, after

having prefixed the entire expression with the keyword run Even at this early

stage it is quite obvious of the syntactic and sem antic sim ilarities between P iet

and the 7r-calculus

P rocesses in P iet have, like their 7r-calculus equivalents, only one m ethod

of inter-process interaction available to them - channels Channels in P iet are

notably different to channels in the conventional 7r-calculus as P iet channels are

both asynchronous in nature and strongly typed Each channel m ay be used

to send and receive values of only one type, and this restriction removes the

possib ility o f im plem enting som e very reasonable and useful programs This

restriction does reduce the expressiveness of P iet but it is claim ed that not

restricting it would have resulted m m ajor im plem entation issues(P ierce &

Turner 20006, Pierce 1997) Asynchronous channels still allow the com m unica

tion of data between processes, but have a slightly reduced capacity for allowing

processes to synchronise their execution

E xam ple
new x []
run (x ? [] = p n n t ' ^ H e l l o w o r l d ’ ’ | x ' [])

There is another P iet version of the Hello World exam ple program This

version also consists o f two sub-processes running concurrently, however in this

case one o f the sub-processes prints “Hello W orld1” after receiving data on a

channel, while the other sub-processes sim ply invokes the other by outputting

on the shared channel

In P iet there is a d istinction between nam es and channels, and creating a

new channel requires an explicit declaration of its identifier and its type, 1 e the

type o f d ata that will be transm itted on it In the above exam ple the channel

x is created and it is given a type of Q, this means that the channel will not

actually carry any data, but rather will only be used to “invoke” the printing

process

E xam ple
new x * S t r i n g
run (x ?y = p n n t ' y | x 1 ‘ ‘ Hel l o W o r l d ’ ’)

The previous Hello world exam ple logically leads onto this one In this

version not only is the sub-process that prints the m essage invoked by another

sub-process but the data that it is to print is also sent to it by the invoking

channel action In the above exam ple the channel x is created w ith the capability

of transm itting data of type String and only data of type string, any attem p t

to do otherwise will cause a com pilation error

E xam p le .

34

new x ~ S t r i n g >
new q S t r i n g
run (q ’x | q ?y — y ?‘ ‘ h e l l o w o r l d ’ ’ | x ? a = p r i n t l a)

The com m unication of channels from one process to another is also allowed

in P iet, this allows processes to learn of new channels and introduces the con

cept of m obility to P ie t In this exam ple a channel is received by one of the

sub-processes and then this channel is used to com m unicate w ith a previously

unavailable process The result of this exam ple is the same as the others, the

printing of “hello w orld” to the screen

3 2 2 B uilt in types

A num ber of built-m types are included m P iet, including the m ost commonly

used types, strings, integers and Booleans The usual operations can be per

formed on these types, b u t these operations are perform ed in a unique P iet

fashion

In tegers

Integers in P ie t are considered to be processes th a t are “located” a t specific

channels The values of these num bers can be gamed by querying these processes

over the channels

E xam ple 1
new r * I n t
run (+ ’ [2 3 (r chan r)] | r ?x = p r i n t i ' x)

In the above exam ple the num bers 2 and 3 are to be thought of as processes

located a t the channels 2 and 5, while r is thought of as channel to a process

which sums its argum ents and then makes the result, in this case 5 available on

the channel r O ther operations, such as m ultiplication, division, sub traction ,

etc, etc, are available using the same op*[abw] no tation Integers m P ie t are
prin ted via the prm ti com m and, ra th e r than the print com m and which is only

used with strings

Strings

Norm al String operations are possible m P iet, these include

C oncatenation
new x " S t r i n g
run (x 1‘ ‘ h e l l o ’ ’ | x * ‘ ' wor ld * ’ | x ? a = x ?b = p r i n t 1 (b a))

lfThe use of the keyword rchan is not directly related to Integers but rather to process
definitions Channels used with defined processes can sometimes be required to be of a special
type, rchan forces a normal channel to act as one of these special channels

35

In this concatenation example, the final sub-process reads two strings m over

the channel x, and then prin ts the result of joining these two strings together,

“hello world”

S ub-S tring ing
new x * S t r i n g
run (x 111 h e l l o wor ld t e s t ’ ’ | x ? a S p r i n t 1 (s t r i n g sub a 0 11))

The ability to ob tain sub-strings from strings is an operation th a t is vital

to any im plem entation of strings, P ie t’s im plem entation of S trings does provide

this capability via the string sub com m and, which takes the string and the s ta r t

and end index of the sub-string to be go tten from the string m question

S u b -S trin g tests

Sometimes when dealing with strings is it necessary to te s t if a string contains

a certain sub-string, P ie t im plem entation of Strings allows th is by using the

string m com m and

new x * S t r i n g
r u n (x 1 ‘ ‘ h e l l o w orld t e s t ’ ’ | x ?a = i f (s t r i n g m ‘ ‘ h e l l o ’ ’ a)

t hen p r i n t 1 ‘ ‘ T here ’ ’ e l s e p r i n t 1 ‘ ‘ Not t h e r e ’ ’)

This exam ple also introduces one of the control structu res present in P iet, the

if sta tem ent If sta tem ents in P ie t can include an a rb itra ry num ber of else-if

options This additional control s truc tu re com plim ents those already present in

the 7r-calculus

O th e r types

These examples are by no means intended to be an exhaustive explanation of

the built-in types in P iet, ra th e r a brief in troductory glance a t how certain

operations are perform ed in P ie t I t is intended to give an im pression of how

tasks are com pleted in P iet, ra th er than detail all the available operations and

prim itives as P ie t provides a large num ber of built-in types, and allows a vast

a rray of operations to be perform ed on these types

O ther built-m types include

• Booleans

• Lists

• Characters

• F loats

• B ytes

36

• Queues

• Arrays

• GUI related types

3 2 3 Process definitions

P ie t allows the explicit definition of processes, much like a function call in an

object oriented language these definitions reduce the am ount of code in program s

and make it much more convenient to write larger program s

E xam ple
d ef w hatlsM ax c * In t = c ? a — c ?b = i f (> > a b) th en c* a e l s e c ’ b

new f * I n t ,
run (w h a tlsM a x 'f | f ' 3 | f T 4 | f ? a = p r i n t i ’ a)

Process definitions save b o th tim e and effort when w riting P ie t program s

and of course should be used wherever there is duplication of code

3 2 4 P iet Summ ary

P iet is an invaluable experim ent m the investigation into languages based on the

7r-calculus It looks and behaves m a very similar m anner to the 7r-calculus and

the essential concepts of the 7r-calculus, such as processes, channels and names,

are present in Piet, albeit m a slightly altered form

It is these slightly altered forms th a t som ewhat reduce the usefulness of P iet,

the strongly typed, asynchronous channels restric t the set of im plem entable

system s, and greatly com plicate some of the rem aining possible system s

One of the key features of P ie t is th a t everything it does, it does via its

own no ta tion - no host languages or the like are used All com m unications and

com putations are achieved via this unique no tation However there are negative

aspects to this approach T he no tation used is som ewhat complex and counter

intuitive in places and is also ra th er lim ited in w hat can be achieved, basic

com putations and GUI related program s aie possible b u t some im plem entations

would be far beyond the capabilities of P iet, e g a complex cryptographic

com putation

P ie t has substan tia l theory and docum entation behind it, which makes it not

only a good in troduction to program m ing languages based on the 7r-calculus, bu t

also to the 7r-calculus itself However the lack of support for d istribu ted system s

and com m unications in P ie t m eans th a t P ie t is not the m ost useful language to

use when im plem enting concurrent and d istribu ted 7r-calculus specified system s

37

C lassification o f P iet

S y n ta x Comparable to the 7r-calculus

S e m a n t ic s Comparable to 7r-calculus

M o b il i ty 7r-calculus mobility present

C h a n n e ls Asynchronous

D is t r ib u te d No

S e q u e n t ia l c o m p u t a t io n s Limited

3.3 Nomadic P iet

Nom adic P iet (W ojciechowski & Sewell 1999) was developed by W ojciechowski,

Sewell and Pierce in 2000 It is intended to be a program m ing language that

is based on the 7r-calculus that allows the concurrent and distributed execution

of system s that are im plem ented in it Nom adic P iet is built on the program

m ing language P ie t and P iet prim itives are used to express com putations within

Nom adic P iet agents

Nom adic P iet uses agents as the building blocks for system s A gents can be

viewed as collections of com m unications and com putations required to achieve

specific goals T hese agents are m obile and can “m igrate” from one host machine

to another

As P iet is used for all com putations in Nom adic P iet, the only aspect of

Nom adic P iet not previously covered is the com m unication o f agents, both dis

tributed and non-distnbuted T he additions and alterations to Nom adic P iet

can be grouped into two m ain sections Agents, Sites h M igration, and Channel

Actions

A lthough Nom adic P iet is based on P iet, the syntax and sem antics have

been so drastically altered that the syntax and sem antics of Nom adic P iet are

no longer similar to those of the 7r-calculus Furthermore, changes to how the

asynchronous channels of P iet operate, the traditional 7r-calculus form of mo

bility is absent m Nom adic P iet However, a form of m obility is present, the

form o f m obility that arises from the ability o f agents to re-locate from one

point of execution to another Nom adic P iet, being based on P iet, inherits the

problem s associated w ith P ie t’s approach to sequential com putations - it can

not perform com plex sequential com putations However, unlike P iet, N om adic

P iet is distributed in nature and agents of a system can be executed in an arbi

trary, concurrent, and distributed m anner In short, Nom adic P iet draws more

from other process calculi than it does from the 7r-calculus, nam ely the Am bient

calculus (Cardelh & Gordon 1998)

38
\

3 3 1 A gents, Sites and M igration

Three concepts not present m standard P iet are introduced into N om adic P iet

in order to facilitate distribution com m unications - agents, sites and m igration

An agent m Nom adic P iet is a unit o f executing code and each unit has a distinct

name, which refers to a body com prised Nom adic P ict/stan d ard P iet actions

Since system s im plem ented in Nom adic P iet will be distributed am ongst many

m achines m an arbitrary fashion, som e m ethod o f representing the possible

locations o f aspects of the system s is required, each possible location is called

a stte C om m unication between different agents residing in different sites is

possible though not in the 7r-calculus sense, however a different form of m obility

is also available in Nom adic P iet Agents in Nom adic P iet have the capability

of migrating from one site to another, they can change the m achine on which

they are executed

E xam ple

program param [S i t e S i t e] =

(
val s i t e O n e = (g e t . s i t e 0)
val s i t eTwo = (g e t - s i t e 1)

new answ er ~ S t r i n g

a g e n t homeBody =

(
a g e n t d e s e r t e r =

(
mi g r a t e to s i t eTwo
(p r i n t 1 ‘ ‘ S iteT w o up and r u n n i n g ’ ’ |
< one@ siteO ne> answ er 1 ‘ 1 hey f rom s iteT w o ’ *)

)
(p r i n t * ‘ ‘ Si t eOne up and r u n n i n g ”
| answer ? 1 = p r i n t 1 1)

)
m ())

This exam ple dem onstrates the m ajority of the additions to P iet that com

prise Nom adic P iet, as sites, agents, m igration and one form of m ter-agent

channel com m unications are all covered in it The above system is intended to

be run on two separate sites, or Nom adic P iet virtual m achines T he system

is started from one site and the agent homeBody remains on this site where

it prints a m essage and will eventually print another m essage once it has been

39

received from the agent deserter The deserter agent m igrates to the second

site where it prin ts its message to the screen and then transm its a message back

to the homeBody agent th a t is still running on the first site

A site in Nomadic P ie t represents a specific instance of the Nomadic P iet

v irtual m achine These various instances may be running on the same machine,

o r on m any d istribu ted machines, the topology of the system does not affect its

execution Inform ation on the location of sites is gathered from a configuration

file, and th is inform ation is used to ensure th a t agents m igrate to the correct

machines

Agents m Nomadic P ie t are assigned unique names T he com bination of

an agent nam e and a site nam e makes up the com plete identifier of an agent,

and it is this complete nam e th a t is used when agents are com m unicating I t is

possible for m ultiple instances of the same agents to run m a system , bo th on the

same site and on different sites For example, m the above system the complete

identifiers of the two agents are homeBody @siteOne and deserter@siteTwo

3 3 2 Channel A ctions

C hannel O u tp u t

Com plete identifiers are im portan t in Nomadic P ie t because of the m anner in

which it perform s inter-agent com m unications In the tt — calculus, and indeed

in Piet, there is only one way m which to transm it d a ta on channels, however

in Nomadic P ie t there are five ways in which this can be achieved
1 x]y Behaves as the s tan d ard P ie t send

2 i f local < a > x'y then P else Q C onditional transm ission of y on x
3 < a > x]y y sent on x to agent a on this site

4 < > x]y y sent on x to agent a on site s
5 x@a'y O u tp u t on x to

agent a

E xplanations

x 'y Transm its the nam e y m a non-blocking m anner on the channel x This

form of channel o u tp u t does not work for inter-agent com m unications, bu t

ra th er only for com m unications between processes in the same agent

lflocal < a > x !y then P else Q If the agent a resides on the sam e site as

the agent th a t is a ttem pting to transm it the nam e y on x , the transm ission

occurs successfully and then the process P is s ta rted , if the agent a is not

on the same site then no com m unication occurs and the processes Q is

s ta rted \

40

3 < a > x*y If the agent a is on the same site as the agent th a t is a ttem p ting

to transm it the nam e y on x then the action succeeds, if it is not on the

same site then it fails silently, 1 e blocks

4 < a@s > x ’y If the agent a is on the site 5 then the o u tp u t action succeeds,

if the agent a is not on th a t site the o u tp u t actions fails and nothing

happens

5 x@a*y This particu lar type of o u tp u t action differs from all the others in

th a t it is not an im plem ented low-level prim itive in Nomadic P iet, bu t

ra th e r it is a high-level construct th a t requires a specific im plem enta

tion of it to be included in a system th a t a ttem p ted to perform location-

independent o u tp u t The creators of Nomadic P ie t have included two such

im plem entations th a t can be used

Consider the Nomadic P ie t example give above, one occurrence of an inter-agent

com m unication action occurs, and the line

< one@ siteO ne> answ er 1 1 ‘ Hey from s i t eTwo ’ ’

could have been replaced w ith one of four o ther possibilities The following

illustrates the alternative possibilities and highlights the effects of using them

to replace this line

• a n s w e r1 “H e y f ro m s ite T w o "

This form of o u tp u t is only suitable for inter-agent com m unications and

as such th is a ttem p t a t o u tp u t fails

• if lo ca l < h o m e B o d y > a n s w e r1 “H e y f ro m s i te T w o " th e n () e lse ()

W hile th is form of o u tp u t is suitable for in ter-agent com m unications, it is

only suitable for com m unications between agents th a t reside on the same

host, however the failure of the o u tp u t action is not a com plete failure as

this failure is detected and results in an alternative branch of execution

being pursued

• < h o m e B o d y > answ er* “H e y f ro m s ite T w o "

This form of o u tp u t is suitable for in tra-agent com m unications, it is only

suitable for com m unications between agents th a t reside on the same host

Should the intended recipient not reside on the same host, th is action fails

silently

• a n s w e r^ îh o m e B o d y ^ H e y f ro m s ite T w o "

This is a location independent o u tp u t action I t is intended to deliver

the message to the agent in question regardless of the site on which the

sending agent is located

41

C hannel Input

W hile there are a num ber of ways in which d a ta can be sent on a channel

m Nomadic P iet, there are only two ways in which d a ta can be read from a

channel One way to do so is in the same m anner m which channel input

actions are perform ed in standard P ie t The o ther m ethod for reading from

channels involves the possibility of a read tim ing ou t A process waits for a

predeterm ined am ount of tim e for d a ta to be available on a specific channel and

if no such d a ta becomes available then a lternative actions are perform ed

wai t x 7y = p r i n t 1 ‘ ‘ Value r e c e i v e d ’ ’
t i m e o u t 100 —> p r i n t 1‘ ‘ No va l ue r e c e i v e d ’ ’

In the above fragm ent of Nomadic P ie t code, the process will wait for 100

seconds for a value to be read on the channel x If a nam e is read before the

tim e expires then the message “Value received” is p rin ted , if none is received

then the alternative course of action is taken and “No value received” is prin ted

3 3 3 Nom adic P iet Summary

Nomadic P ie t is an extension of P ie t and, like P iet, it is very similar to the

7r-calculus m term s of intended sem antics Since it is an extension of P ie t it

also retains all the capabilities of P ie t with regard to perform ing sequential

com putations However Nomadic P ie t has a d istinct advantage over P ie t in

th a t it is d istribu ted in natu re Nomadic P ie t is a com pletely self-contained

d istribu ted program m ing language th a t is based, loosely, on a derivative of

the 7r-calculus and as such is a valuable tool for those concerned w ith formal

m ethods

However as Nomadic P ie t is so closely bound to P ie t it also retains a lot of

the difficulties associated w ith P ie t The strongly typed asynchronous channels

still discount a lot of useful system s th a t, while possible in the 7r-calculus, are

not possible in Nomadic P ie t The lim ited num ber of prim itives, and possible

operations, on these prim itives also lim its w hat can be achieved in th is language

Nomadic P iets unique approach to channels, d istribu tion of agents, and

in ter-agent com m unication also raises some questions An agent wishing to

com m unicate w ith another a rb itra ry agent m ust not only know a channel th a t

is also known to the o ther agent, it m ust also have explicit knowledge of the

o ther agent, and im plicit knowledge of its location These ex tra restrictions on

in ter-agent com m unications drastically lim it the usefulness of this language

C lassification o f N om ad ic P ie t

42

Syntax Not similar to the 7r-calculus

Sem antics Not similar to the 7r-calculus

M o b ility 7r-calculus m obility absent,

alternative form present

C hannels Asynchronous

D is tr ib u te d yes

Sequential com putations Lim ited

43

3.4 Summary

W hile nearly all im plem entations of a process calculi are valuable to those wish

ing to learn more about process calculi and formal m ethods, the usefulness of

a lot of these im plem entations to those concerned w ith actually im plem enting

d istribu ted system s is ra th e r lim ited

T he m ajor lim iting factor of m ost im plem entations is their non-d istnbu ted

natu re , m ost of the im plem entations are designed so th a t system s w ritten in

them will run on only one m achine In the world of security protocols this

approach is alm ost useless as security protocols are only required for the tran s

mission of d a ta between m ultiple machines

Yet another significant lim iting a ttr ib u te of the m ajority of im plem entations

is the poor expressive capabilities of some of the languages w ith regard to sequen

tial com putations The bulk of the languages choose to perform all sequential

com putations th rough prim itives and operations of their design, however these

languages tend not to have the num ber, or diversity, of prim itives or operations,

required to im plem ent complex and com putational intensive systems

Combined these lim iting factors results in existing im plem entations of lan

guages based on the 7r-calculus being of little real-world use, w hat is required is a

language th a t is b o th based on the 7r-calculus and th a t is also highly expressive

3 5 Conclusions

T he language presented m the following sections is one th a t is syntactically and

sem antically very similar to the 7r-calculus I t is one m which the trad itional ir-
calculus concept of mobility is present, and is one in which all com m unications

are synchronous m natu re I t supports the d istribu tion of system s w ritten in

it, and it allows the arb itrary deploym ent of d istribu ted system s It also pro

vides a m echanism for perform ing complex sequential com putations in a m anner

reconcilable w ith the 7r-calculus
Once the language design(chapter four) and the language im plem entation(chapter

five) have been outlined and explained vj will be ra ted against the classification

c riteria described in this chapter

D esired C lassification o f zo

44

Syntax Very similar to the 7r-calculus

Sem antics Very sim ilar to the 7r-calculus

M o b ility 7r-calculus m obility present

Channels Synchronous

D is tr ib u te d yes

Sequential com putations Powerful and expressive

45

Chapter 4

w - The language
/
\

D istribu ted system s are becom ing increasingly comm onplace T he use of formal

notations and their associated formal m ethods, such as the 7r-calculus, and its

derivatives, in ensuring th a t these d istribu ted system s are in fact secure is also

becoming more routine and established Yet no program m ing language th a t is

suitably usable, expressive, d istribu tion oriented and incorporates the 7r-calculus

notion of mobility, exists and as such there is a niche for such a program m ing

language th a t is based on the 7r-calculus

Such a language would have to satisfy two criteria T he first being th a t it

should have a close relationship w ith the 7r-calculus T he second being th a t it

should be capable of im plem enting distribu ted system s in a simple and tran s

paren t m anner In order to fulfil these two end goals a series of sub-goals m ust

be satisfied

T he typical d istribu ted system requires th a t a num ber of complex opera

tions be perform ed These com plex operations, such as the generation of keys,

encryption and decryption of d a ta , hashing, creating and verifying signatures,

transm ission of data, etc, are com plex and com putationally intensive Vari

ous program m ing languages contain a num ber of cryptographic and networking
prim itives and operations th a t greatly simplify the program m ing of these dis

tr ibu ted system s W hile the 7r-calculus is com putationally com plete and it is

theoretically possible to express cryptographic operations m it, it would be im

practical to do so given the size and num ber of 7r-calculus sta tem ents th a t would

be required The addition of m echanisms for perform ing these cryptographic

operations to the com m unications capabilities of the 7r-calculus would yield the

desired result - a powerful and expressive program m ing language based on the

7r-calculus suitable for use in im plem enting d istribu ted system s

So in order for a language to be “capable of im plem enting d istribu ted system s

in a simple and transparen t m anner” , it m ust provide an appara tus for handling

46

the distributed nature of the target system s while also supplying m echanism s

for performing com plex operations

It is also desired that the program m ing language is closely m odelled on the

7r-calculus, that it looks and acts in a m anner sim ilar to the 7r-calculus, while

also being com putationally more usable This close m odelling m ay allow the

application of the formal techniques associated with the 7r-calculus in order

to verify the correctness of protocols In other words, despite any additions

required in order for the im plem entation of distributed system s, the syntax and

sem antics of the program m ing language m ust be as similar as possible to those of

the 7r-calculus Further still, this sim ilarity m ust be attained in a m anner which

will allow the language to be closely coupled w ith extensions o f the 7r-calculus,

such as the Spi-calculus, and not just the core calculus itself

Central to achieving the desired syntactic and sem antic sim ilarities between

this language and the 7r-calculus is the integration of com putations into the

com m unications aspect of system s This integration is m ade possible by the

dual nature o f data item s in this program m ing language In one form these

data item s exist as nam es, and in the com m unications aspect they can be used

m the transm ission of nam es either as the transm itter, or that which is being

transm itted W hile m their other form they are sim ply objects in an object-

oriented program m ing language An object created in the com putational code

and be brought into the com m unications code and transformed into a name,

and likewise, a nam e created in the com m unications code can be pushed into a

com putation and transformed into an object This dual nature of data item s is

a pivotal concept in this language, and as such is vital to the understanding of

its syntax and sem antics

A t first glance the com pletion of these two goals appears to be som ewhat

m utually exclusive T he presence of m echanism s for performing com plex com

putations would seem to be at odds with m aintaining the syntax and sem antics

of the 7r-calculus It is felt that the language, tu, should achieve both these

goals An attem pt was made to satisfy these goals via the language definition

and the im plem entation o f zu T he design and structure of the program m ing

language ensured the sim ilarities between it and the 7r-calculus were present,

and also solved the problem o f reconciling a m echanism for performing com pu

tations w ith the syntax and sem antics o f the 7r-calculus The issues related to

the distributed nature of the program m ing language were resolved v ia the actual

im plem entation of the program ming language, as were som e aspects o f integrat

ing sequential com putations into the syntax and sem antics o f the 7r-calculus

T hose requirem ents that were satisfied via the first approach are covered in this

chapter, while those that were solved by the second m ethod are covered m a

later chapter

47

4 1 W hat is w**

The 7r-calculus is com putationally com plete, that is, it is theoretically possible

to perform any com putation using only the existing syntax and sem antics of

the 7r-calculus However there is a m assive difference betw een com putability

and usability, and while it is theoretically possible to, for exam ple, com pute

the result of encrypting som e d ata using existing 7r-calculus features it m ost

certainly isn ’t realistic to do so

w (var-pi) is the result of an attem pt to facilitate the performing o f sequential

com putations, sim ply and transparently, in a 7r-calculus influenced framework

It is hoped that vu could be viewed as the 7r-calculus with com putations Or

given that the set of sequential com putations available in the Spi-calculus is a

subset of those available in U7, it is also hoped that it could be viewed as the

Spi-calculus w ith a broader range o f sequential com puting capabilities

4 1 1 A bstract Syntax and Sem antics of w

A goal central to the success of w is the concept of a close coupling between

the specification language, the 7r-calculus, and the im plem entation language, w
itself Obviously in order to ensure that w looks and acts in a m anner akin to

the 7r-calculus it m ust have a syntax and sem antics that are sim ilar to those

of the 7r-calculus However, as the 7r-calculus is a specification tool and vo is

a program m ing language, it is inevitable that the actual syntax and sem antics

of w will be more com plex than that of the 7r-calculus - brackets, com m as,

braces, colons and the like all becom e, unfortunately, necessary As such at this

stage the abstract syntax o f w will be used in any com parisons made with the

7r-calculus T he concrete syn tax o f w will be given later

This abstract syntax can then be used for the in itial analysis and com parison

between the 7r-calculus and w After inspecting the syntax and sem antics o f ud
it should becom e clear that a w system will look and behave sim ilarly to its

original 7r-calculus specification

A b strac t syntax

In the following description o f the w syntax we let m, n range over nam es, x,y
range over variables, and let /, g range over the set of valid function identifiers

48

T e rm s

L,M ,N = n

x

name

variable

O u tp u t A c t io n

a — N < M > O utput action

I n p u t A c t io n

ß = N (M) Input action

P r o c e s s e s

P,Q = a P Input prefix

P P O utput prefix

r P Unobservable prefix

!P Replication

(i/n)P R estriction o f channels

(f {Li L m)(x i £ 0))P R estriction of non-channels

l e performing a sequential

com putation

P | Q C om position

a P -f a Q Guarded sum

[N = = JV']P + Q M atch

0 Null process

Explanation

1 I n p u t p r e f ix T he relevant input action is performed, and the process

continues as P w ith any necessary substitutions being m ade m P

2 O u tp u t p r e f ix The relevant output action is performed, and the process

continues as P

3 U n o b s e r v a b le p r e f ix An unobservable interaction occurs and the pro

cess continues as P

4 R e p lic a t io n T he process fP is equivalent to P \ fP In other words fP
behaves as an arbitrary number of instances o f P all executing in parallel

49

1

to one another

5 R e s t r ic t io n o f c h a n n e ls Create a new name, n , o f type channel and

binds it m P

6 R e s t r ic t io n o f n o n -c h a n n e ls Creation of nam es o f the type non

channel is achieved by the execution o f sequential com putations In this

form of restriction / is a com putation It takes a series o f input terms

Li , L m, which it pushes down into the com putation in question which

yields a series of names These produced names then replace the series of

input variables x \ , ,x0 in P

7 P a r a l le l C o m p o s it io n B oth the processes P and Q are executed con

currently These processes can interact with each other and with other

processes

8 G u a r d e d s u m Interaction can happen w ith either P or Q but not both

W hich process is started depends entirely on which input action occurs

first

9 M a tc h If the N is equal to N* then the process behaves as P, otherwise

the next option in the Match statem ent is processed, this m ay be another

m atch condition or the default process, Q

10 N u l l p r o c e s s The em pty process, it cannot do anything

S tr u c tu r a l C o n g r u e n c e

As can be im agined it is very possible to construct two processes that behave in

an identical fashion but yet are syntactically dissim ilar A structural congruence

is used to equate these processes that intuitively represent the sam e process

Tw o processes P and Q are said to be structurally congruent, = , if P = Q can

be inferred from the axiom s listed below, and by alpha conversion T hese axiom s

allow m anipulation of term structure and are not reliant on the sem antics of

the language

50

SC-SUM -ASSO C Pi + (Pa + f t) = (f t + f t) + f t
SC-SUM -COM Pi + f t = f t + Pi

SC-SUM -INACT P + 0 = P

SC-CO M -ASSO C f t l (f t l f t) = (f tlf t) lf t
SC-COM -COM M P,\P2 = P2 |f t

SC-C O M -IN ACT O III *0

SC-REP I p = p \ \ p

SC-RES (i/m)(i/n)P = (vn)(i/ m)P

SC -R ES-IN A C T (i/n)0 = 0

SC-RES-CO M P (! /n) (f t | f t) = ftl M P 2, if n * fn (f t

SC-M ATCH [n = = n]P = P

Discussion

A brief visual com parison between the abstract syntax of given above, and

the syntax of the 7r-calculus, given m section 2 1 2 , clearly shows the sim ilarities

between the two syntaxes B y and large the syntax o f w is alm ost identical to

that of the 7r-calculus, bar the addition of variables, and could even be m istaken

for the syntax of a variant of the traditional synchronous 7r-calculus, in particular

the Spi-calculus, rather than an im plem entation o f it

System s are still organised as a series of processes running m parallel, pro

cesses are still constructed from a series o f valid actions, and processes can still

be replicated The actions available to be performed by a process remain the

sam e, (nam es can be sent and received on channels and internal reaction can

occur in a process), as do the m ethods for invoking other processes, (choices

can be made between processes, processes can be executed concurrently and

processes can be invoked only after an equality test is satisfied)

For reasons that will be outlined at a later stage it was necessary to break
t

nam es into two categories - channels and non-channels As such names in w
are either of type channel or of type data T he difference being that nam es

of type data do not have the capability to com m unicate other names, while

names of type channel do Due to the com plications introduced by the ability

to com m unicate names at run-tim e it was felt that the type checking would be

more suited to run-tim e rather than com pile tim e

As can be seen the syntax o f tu differs from that of the 7r-calculus m only a few

places The first, and m ost significant, being the introduction of a rudim entary

typing system and the addition of a second form of restriction T he next, and

less significant, difference is the im position of a constraint on sum m ations in

tv In w all sum m ations m ust be guarded sum m ations, and furthermore these

guards m ust always be input actions, the reasoning behind the restrictions on

51

sum m ations is explained later m this chapter T he final difference between

the syntax o f xu and that o f the 7r-calculus is the addition o f the notion of a

“default” process in a m atch statem ent T hat is, should all the m atch conditions

in a m atch statem ent fail then there is a process present that will be invoked m

this case The im pact of these new elem ents will be discussed in section 4 1 1

However, this sim ilarity m syntax only shows that the two look the sam e, m

order to dem onstrate that they act in the sam e way the sem antics of w m ust

be exam ined

O p e r a t io n a l S e m a n t ic s

P' = P, P ^ Q , Q = Q'
P' - A Q'

a P - A P

[Struct]

[Prefix]

[Par]
P Q) P f

P \ Q ^ P ' \ Q

[Match 1]

[Match 2]

[Resi]

[Res2]

[Sum]

Explanations

i==x]P

[x==y\P+Q — > Q

P - ^ - P ' , x j a
(~vx)P (vx)P '

(f(Li L0)(xi %)) P A (v m

a \P P

a \ P + a.<iQ —^ P

1 [S tru ct] If the occurrence o f an action causes the process P to reduce to

52

the process Q, then a process that is structurally congruent to P can be

reduced to a process that is structurally congruent to Q on the occurrence

of the sam e action

2 [P refix] A process that is prefixed by an action reduces to that process

after the occurrence of the specific action

3 [Par] If a process, P, can reduce to another process, P \ after the occur

rence o f an action then P will reduce to P } regardless o f w hat processes

are running concurrent to it when that action, a, occurs

4 [C om] If a process P reduces to P ’ on an input action on a specific name,

which is o f type channel and if the process Q reduces to Q } on an output

action on that sam e name then P m parallel to Q will reduce to P ’ in

parallel to Q ’ after an unobservable action occurs

5 [M a tc h l] A process prefixed by a m atch statem ent will reduce to the

process if the names are the sam e

6 [M atch 2] A process prefixed by a m atch statem ent in parallel w ith an

other process will reduce to the other process if the names are not the

sam e

7 [R e s l] If P reduces to the process P J on an action, and the name x is not

involved in this action, then the reduction will only occur if the name x is

restricted m both processes

8 [R es2] / is a com putation A com putation uses a series o f input terms to

create a specified number of names Once created these nam es replaces

all occurrences o f the indicated variables in the remainder of the process

9 [Sum] If a process, P, can reduce to another process, P \ after the occur

rence o f an input action then the sum o f P and any other processes can

reduce to P ' on the occurrence o f that input action

If a com parison is m ade between the sem antics o f w outlined above and the

sem antics of the 7r-calculus given in chapter two, it becom es im m ediately obvious

that these two sets of sem antic rules are sim ilar T he differences between them

arise from the constraints placed on sum m ations, the insistence that nam es used

to transm it other names are of type channel, and the addition o f an additional

rule for the restriction of names of type non-channel T he im pact of these

differences will also de discussed in section 4 1 1

In fact the sem antics of vo are so close to those o f the traditional 7r-calculus

that they could easily be m istaken from the sem antics o f a variant of the 7r-

calculus rather than those o f a program m ing language based on it As desired

53

the addition of m echanism s for performing com plex sequential com putations has

had minimal im pact m the syntax and sem antics o f w
T his sim ilarity of sem antics is much more im portant than any syntactic

sim ilarities as it is more im portant that zu and the 7r-calculus act the sam e than

they look the same

Syntactic and sem antic differences

Considerable efforts were made to ensure that w and the 7r-calculus look and

behave in a com parable fashion However divergences between the two were

inescapable and the two do in fact differ on three issues

D ifference O ne - S um m ation

Some variants of the 7r-calculus perm it sum m ations o f an unguarded nature to

occur, unguarded m eaning that processes occurring in sum m ation need not be

prefixed by an action, e g P + Q However more variants o f the 7r-calculus use

guarded sum s instead o f unguarded sum s as the theory behind the 7r-calculus is

simplified som ewhat by this decision(Parrow 2001) As the choice as to which

process is started in an unguarded sum m ation is a non-determ im stic choice,

unguarded sum m ations would be of little use in a real world program m ing lan

guage where totally random actions of this kind are rarely desired, and often

discouraged As such the constraint that all sum m ations m ust be guarded was

im posed on sum m ations m w
However guarded sum m ations are not w ithout their im plem entation issues

Guarded sums are often said to be “unrealistic from an im plem entation per

sp ective” (Parrow 2001), as the decision as to which guard in a sum m ation

occurs can prove to be a non-trivial problem T he problem results from at

tem pting to m atch input actions to output actions when both types o f action

are conditional This, com bined w ith m ultiple sum m ations in parallel, results

in the general form o f guarded sum m ations not being a realistic operation from

an im plem entation point o f view In particular m a distributed environm ent, if

sum m ations in which m ixed guards are allowed to occur in parallel to each other,

it is possible, that no action will occur No realistic m ethod of im plem enting

a m ixed guarded sum m ation that is stable, reliable, and whose behaviour was

guaranteed, exists Consequentially it was decided that the only valid guards

for statem ents m a sum m ation in vo would be input prefixes, m other words

output actions are always guaranteed to occur, while the com pletion of input

actions can be conditional

A quick com parison between the relevant aspects of both syntaxes and se

m antics reveals that this difference is not a m ajor one, but rather m erely a

54

minor restriction placed on w hat constitutes a valid sum m ation m w B y p lac

ing this restriction on the guards of a sum m ation this im possible problem of

m ixed guards is avoided with the minimum loss o f expressiveness In fact

nearly all system s involving m ixed guards in a sum m ation can be re-written

to include only input guards T he exceptions arising when both “ends” of a

com m unication are both m sum m ations In these scenarios the original b e

haviour can not be approxim ated using only input guards However this loss of

expressivity is not an overly significant one and only occurs in system s such as

(ax P + b(y) Q) | (a(z) R + bw S)

D ifference Tw o - T yp in g

T he m ajor difference between the syntax and, more im portantly, the sem antics

of the 7r-calculus and o f vj is the introduction of a rudimentary typing system

to w
The vd typing system divides all names in a w system into two types -

those names that have the capability of acting as channels, and the names

that do not have this capability W hile only nam es that have the capability

of acting as channels can be used to com m unicate other nam es, names of both

types can be com m unicated on channels This typing system was im posed

solely for im plem entation reasons, and the im position o f it greatly simplified

the im plem entation o f w This typing system does however have an effect on

the flexibility o f w Greater attention must be paid to the use o f channels than

in the 7r-calculus in order to avoid run-tim e errors

W ith regard to the sem antics of tu, the typing system only affects two o f the

sem antic rules - the new rule that governs the restriction of fresh non-channel

nam es and the one related to the interaction of concurrent processes over a

specific channel T he former rule was required to be added to the set o f sem antic

rules in order that fresh names o f type non-channel could be created In the

latter the changes to the corresponding 7r-calculus rule are even more minor

- it now insists that all names used for com m unicating other nam es between

processes be of the type channel, 1 e that they have the capability o f acting as

a channel, a sim ple and obvious requirement

This difference between the syntax and sem antics o f the 7r-calculus and ru,

the addition of a typing system , does not result in w and the 7r-calculus being

irreconcilable, far from it in fact as any 7r-calculus specification can be rewritten

in G7 if one uses only w names o f type channel

55

D ifference T hree - In line C ode

The final syntactic and sem antic difference between vo and the 7r-calculus is vos
ability to “inline code” into the com m unications aspect o f w processes This

“m im ing o f code” refers to the capability o f w processes to perform com plex

sequential com putations m a sim ple, transparent and intu itive fashion, 1 e via

the restriction of non-channels operator This capability has such a significant

im pact on w that it will be covered in great detail m section 4 2 1

4 1 2 Concrete Syntax

One of the prim ary uses of an abstract syntax is to allow properties o f a language,

or a program written in that language, to be reasoned about In this case less is

indeed more and the less detail that appears in an abstract syntax the simpler

the reasoning process is However this high level description o f the form o f a

language is not a sufficient blueprint to use in im plem enting both the language

and programs written m that language As such a more fine grained syntax

is required This syntax is known as a concrete syntax Generally speaking a

concrete syntax could be viewed as the abstract syntax w ith the addition of

keywords, delim iters, scope boundaries, constructs for process abstraction and

other real world syntactic necessities It is also com m on for a rule that appears

m the abstract syntax to be broken down into more than one syntactic rule m

the concrete syntax

As would be expected, and as can be seen below, the concrete syntactic

rules o f vo are m any tim es more com plex, and m any tim es more num erous, than

their abstract counterparts However, while this concrete syntax may be more

detailed and com plex than the associated abstract syntax, a sim ple reduction

and merging process can yield the abstract syntax from these concrete syntactic

rules

56

Syntactic R ules

System = [Im ports] TopLevelProcess (E xphcitProcess |

JavaBlock)*

Im ports = ” { ” (javaPackageNam e ”,”) +

TopLevelProcess = ’’System ” processld ” { ” (ChannelDec ” ”)*

Processlnvocation

E xphcitProcess = ’’Process” processld ” (” [list] ”)

” {” ProcessB ody

Process = P rocessB ody | ProcessReference

ProcessB ody = (ProcessStm)* (Processlnvocation |

ProcessChoice | M atchStart | nullProcess)

ProcessReference = P rocessld ” (” [list] ”)”

P rocesslnvocation = ” (” [] Process (” |” [] Process)* ”)”

ProcessChoice = (” + ” ” (” C hannelAction Processlnvocation”)”) +

M atchStart = (” [” nam e ” = = ” nam e ”]” P rocesslnvocation)+

Processlnvocation

ProcessStm - (ChannelDec | JavaCode | Sim pleChoice |

C hannelAction) ” ”

ChannelDec = ’’Channel” list

JavaCode ” < ” (code | JavaReference) ” > ” ” (” [list] ”)”

” (” [l i s t] ”)”

Sim pleChoice = list ” (” name ”)”

C hannelA ction = nam e ” (” nam e ”)”

= name ” < ” nam e ” > ”

JavaReference = name | P rocessld

name = lowerCaseLetter (alphaN um enc)*

P rocessld = upperCaseLetter (alphaN um enc) *

list = null — name nam e)*

nullProcess 0

JavaBlock - ” C ode” ” (” [list] ”)” ” (” [list] ”)” code ” } !

code — Java code enclosed in ” /& ” and ”& /”
where

• ” ” indicates th a t4 h e contents are a literal

• [] indicates that the contents are optional

• + one or more o f the preceding statem ent

• * zero or more of the preceding statem ent

57

• | choice between statem ents

4.2 w features

4 2 1 Sequential C om putations

The absence o f the promised m echanism for performing com plex sequential com

putations m ay have been noticed by this stage However this perceived absence

is a result o f the subtle manner in which the m echanism has been added to

zu A m echanism for performing sequential com putations is present in w , as

whenever a name of type non-channel is created it is created as a result of a

sequential com putation As such the body of the second restriction operator,

[RES2], generally will consist of “inline code” , or a reference to a collection of

such code, that will yield the necessary fresh nam e(s) given a, possibly em pty,

sequence of existing names

The minimal im pact of the addition of this m echanism to zu is a direct

consequence of the separation of the com m unications aspect o f zu from the

com putations part of it Paradoxically com plete separation o f com putations

and com m unications allowed the seam less integration of them and the benefits

of this com plete separation of com m unications and com putations are not lim ited

to allowing the m echanism to be added with only inconsequential alterations to

the sem antics of zu, the benefits are, in fact, varied and far-reaching

One o f the more obvious advantages of the separation of com putational code

from com m unications related code is that this separation allows the separate

developm ent of both aspects of a system Separate developm ent of com puta

tions and com m unications allows them to be developed in a correct and proper

m anner, testing the result of a com plex com putation when that com putation

is em bedded in the middle o f a highly com plex protocol can be problem atic at

best Separate developm ent can help to ensure that not only does the protocol

operate as desired but the sequential com putations act as expected In effect the

developm ent o f a tu system could be viewed as two separate developm ent tasks,

each w ith different goals which are achieved using two different program m ing

languages This sim plification of the developm ent process can yield significant

savings m tim e and effort for reasonable sized projects

Yet another benefit of developing the com putational side o f a system sep

arate to the com m unications aspect o f that system is that the developm ent of

both need not be done by the sam e m dividual(s) People com pletely unfamiliar

with formal m ethods, the 7r-calculus, distributed system s, and indeed even of

zu, can develop the bulk of the com putational aspects of a system , leaving more

experienced, and expensive, people with less work required to m erge the com pu

58

tations and com m unications, thus reducing the cost of im plem enting system s

C om plete separation of com m unications and com putations allows the m ech

anism for performing these sequential com putations to be added to w w ithout

“polluting” the syntax and sem antics of w w ith regard to the 7r-calculus It is

this unique approach to performing sequential com putations in a language based

on the 7r-calculus that allows the syntax and sem antics of the com m unications

aspects of w to be kept as sim ple as possible

The sequential com putations in w are com pleted by using an “embedded

language” , that is fragm ents o f the Java program m ing are used to perform

the necessary calculations B y using Java as the em bedded language even the

m ost com plex sequential com putations can be performed m w W hile the Java

program m ing language was the language chosen in this case, it would have been

possible to have used any program ming language in its place

Another benefit o f using snippets of Java code to perform sequential com pu

tations arises from Java being such a popular and familiar language which will

accelerate the w learning curve

It was necessary to place certain restrictions on w hat can be achieved in

Java to ensure that the 7r-calculus m odel is not invalidated O bviously the

actual integration of Java fragm ents into the com m unications part o f zu, and

the im position of restrictions on these Java fragm ents, is rather com plex and as

such is covered in the im plem entation chapter

Finally, the com plete separation o f com putations from com m unications re

sults in im plem entations of system s that are very readable and understandable,

which is ideal for com paring vo im plem entations to 7r-calculus specifications

As previously m entioned the integration of the two disjoint aspects of w is

achieved, m part, by the dual nature of data item s in w T hey can be either

names or objects depending on the context m which they are viewed in This

ability to pull objects up from sequential com putations and transform them into

nam es for use in com m unications, and likewise the ability to push names into

com putations and transform them into usable objects, is w hat makes sequential

com putations possible, and powerful in w However this duality o f data item s

in w does have the consequence o f causing names to be statefu l - a concept not

present in the 7r-calculus

4 2 2 M obility and Channels

The concept of m obility is a com m on one in process calculi M obility o f one

form or another exists m m ost process calculi and the introduction of the con

cept of m obility was an attem pt to capture the dynam ic nature of d istributed

concurrent system s

59

M obility com es in m any guises, the two m ain forms being m obile agents and

m obile links W hen the notion of m obility was being mulled over som e choose

to perceive m obility as series of agents that were free to m igrate from m achine

to m achine while m aintain the sam e links between these processes Others

choose to im agine a world in which the agents o f a system rem ained fixed in

position but the links between these agents were constantly changing It is this

latter form o f m obility that is present m the 7r-calculus, and it is this form of

m obility that is also present in v j W hile the argum ent could be made that the

presence of both forms of m obility in v j would be beneficial, im plem entation

issues surrounding the m igration o f processes put this idea beyond the reach of

this im plem entation

O bviously since the m obility property stem s from the links, or channels, in

a system , the im plem entation o f these links is o f vital im portance and every

endeavour m ust be m ade to ensure that the operation o f this links is as close

as possible to their behaviour in the 7r-calculus First and forem ost channels

should be allowed to be shared am ongst agents o f a system , they should be able

to be learnt by agents that did not previously know o f them - in other words

they should facilitate the 7r-calculus concept of m obility Secondly, it should not

be necessary to know which agent is “at the other end” o f the link It should

be possible to send a m essage on a channel w ithout knowing which agent, if

any, is “listening” on the other end Finally, channels should be synchronous

in nature T he m ajority of im plem entations of the 7r-calculus (Nierstrasz et al

n d , W ojciechowski & Sewell 1999, Pierce & Turner 2000 a) insist on forcing

channels to operate in an asynchronous nature which restricts the usefulness of

channels som ew hat significantly Channels in w operate in a fashion identical

to the behaviour o f their m onadic 7r-calculus cousins

4 2 3 D istribution of w system s

Im plem entations of system s specified in the 7r-calculus are generally intended

to be deployed in a distributed fashion This necessity was recognised at an

early stage m the developm ent of v j and as such v j caters for such distributed

and concurrent system s by providing a m echanism for deploying system s in an

arbitrary distributed manner

This m echanism is provided via the low levels o f the im plem entation of v j

rather than via any language construct or feature of the language Since the

apparatus that provides the distribution of v j system s exists m the im plem en

tation o f v j it is more fitting to postpone detailed discussion on this feature

of v j until the actual im plem entation o f v j i s delved into m greater detail m a

later chapter However it is worth m entioning at this stage that v j allows the

60

distribution of processes m a system Processes in a system do not know the

location o f the other processes in that system , in fact they do not know what

processes even exist m that system It is the im plem entation o f channels in zu
that facilitates the distribution of processes m a w system

4 3 Example System

In general a zu system consists of a System , one or more Processes and possibly

som e Java Code blocks, where a Java Code block is a m echanism for the sim ple

and quick re-use of sequential com putations - much like a m ethod in Java

T he System specifies which of the Processes are at the top-level, 1 e m ust be

started by their environm ent A Process m ay perform various actions, start

other Processes and invoke Java Code
The following is a very basic xu System, it allows two users to com m unicate

over shared channels W hile this exam ple is very sim plistic it does dem onstrate

various key aspects of zu - replication, sequential com putations, com m unication

over channels, and the integration o f Java code into zu, while also giving a “feel”

for what can be accom plished in zu
The Ytalk system consists o f two top-level processes that m ust be started

by their environm ent W ithin the scope of these two processes are two channels

that the processes will use to com m unicate on Each o f these two top-level

processes start two more processes, but this tim e m a replicated fashion, one

process for reading m essages, one process for sending m essages T hese two

com m on processes both perform the necessary channel actions and Java actions

to allow the two users to com m unicate with each other

4 3 1 A bstract syntax

(vab)((}(f readMsg()(msg) b < m s g >) | ' (a(msg) f Pr%ntM8g(rnsg)Q))

\('(b(msg) f p r t n t M s 9 (m 8 9) Q) I K f r e a d M s g O i m s g) a < m s g >)))

4 3 2 Concrete syntax - Code
Sys t em Y ta lk

{
Channel a , b

(P roces s A (a , b) j P roce s s A (b , a))

}

P r o c e s s P r o c e s s A (i n , o u t)

{
/ * S t a r t a s u b - p r o c e s s to h a n d l e i nc o m in g me ssages

61 /

V

♦and a n o t h e r one fo r o u t g o i n g m e s s a g e s * /

(1 Send Mess age (ou t) j 1 Read Mess age (in))

}
P r o c e s s SendMessage (o u t)

{
/ ♦ I n p u t message v i a J a v a —code and t hen s end i t * /
C re a d M e s sa g e > () (m s g)
ou t <msg >
0

}

P r o c e s s ReadMessage (in)

{
/ ♦ I n p u t message v i a c h a n n e l and t hen

♦ p r i n t i t v i a J a v a —c o d e ^ /
in (msg)
< p r i n t M e s s a g e > (m s g) ()
0

}

Code r e a d M es sa g e () (m e s s a g e)

{
/&
t r y

{
I n p u t S t r e a m R e a d e r i s r = new I n p u t S t r e a m R e a d e r (Syst em in) ,
L in eN um b er Re ad e r I n r = new L in e N u m be rR ea de r (i s r) ,
mes sage = new S t r i n g (I n r r e a d L i n e ()) ,

}
c a t c h (E x c e p t i o n e)

{
e p n n t S t a c k T r a c e () ,

}
&/

Code p r i n t M e s s a g e (message) ()

{
/&
i f (m e s s a g e g e t C l a s s () g e t N am e () e q u a l s (‘ ‘ j a v a l a ng S t r i n g ’ ’))

{
Syst em ou t p r i n t (‘ ‘ O th e r ’ ’) ,
Syst em ou t p r i n t l n ((S t r i n g) mes sage),

}
&/

62

V

E xp lan a tio n

The YTalk system consists of two top-level process instances, both o f which are

instances of Process A that m ust be started by their environm ent, 1 e by the

users that w ish to use them W ithin the scope o f the system are two channels

that will be used by the two halves of the system to com m unicate on

As can been seen m the above exam ple possibilities for errors to occur in

sequential com putations exist If an error should occur this results m the process

that is performing the sequential com putation to block, 1 e it ceases to execute

The bodies of these two top-level processes are identical, they both start

another two processes SendMessage and ReadMessage m a replicated fashion,

that is an arbitrary number of instances of these processes are started depending

on dem and

The purpose of the SendMessage process is to use a Java-code fragm ent to

obtain a m essage from the standard input and to “pull up” this object from the

Java-code into the com m unications code and to then transm it this new name

on one of the shared channels This shared channel will link 'this instance of

SendMessage to an instance of ReadMessage in the other half of the system

The ReadMessage process reads a nam e m over a channel, which links to

an instance of SendMessage m the other half o f the system This name is then

“pushed in to” a sequential com putation that transforms the nam e back into the

original m essage and outputs it to the standard output

During the execution o f the system the actual work will be achieved by the

interactions between various instances of the replicated processes, SendMessage
and ReadMessage, over the channels that are shared between the two halves of

the system , the ProcessA half and the ProcessB half

4 4 Language design decisions

Im plem enting a program m ing language requires that a series of decisions and

com prom ises be m ade on the way from the in itial conception of the desired

properties o f the language to the final result yielded at the end of the process

T he design and im plem entation of zu was no different in this respect D ecisions

and com prom ises were necessary at both the language design and the language

im plem entation phases

4 4 1 Sequential C om putations

One of the first decisions that had to be made with regard to the language

design o f w was related to the m echanism that was to be provided by w for

63

performing sequential com putations Two approaches to providing this m echa

nism were considered The first approach that was considered was the creation

of a notation that would encom pass all aspects o f performing sequential com

putations in vo This approach would have resulted m all aspects o f w system s

falling under one set o f syntactic and sem antics rules, as well as im posing tighter

controls on the actions possible to be performed in sequential com putations

However the im plem entation cost o f this approach m eant that an alternative

approach to providing the m echanism for performing sequential com putations

was required This alternative approach involved the re-use o f an existing pro

gram m ing language for performing the sequential com putations m w W hile

this alternative approach m ay not have been the originally desired approach, it

is felt that it still allows the prim ary goals of w to be achieved

A com plication that resulted from this decision was reconciling the strongly

typed Java program m ing language and the weakly typed com m unications aspect

of w The only approach to solving this problem that could be found w hat to

equate names to the superset of objects that are available m Java, and to equate

channels to a specific type of object This approach facilitates the reconciliation

of the two conflicting typing system s and allows the integration o f com putational

code in the com m unications code with only the m inim um o f im pact to the

desired syntax and sem antics of zo

4 4 2 N am es and channels

In zj not every nam e can act as a channel, names m ust be explicitly declared as

channels if they are required to act as channels However in the 7r-calculus each

and every nam e m ay act as a channel This disconnect betw een zd and the 7r-

calculus is perhaps one of the m ost significant com prom ises th at was required to

be m ade in the design of^the w language It was originally desired that all nam es

in vj would have the capability to act as channels but a direct consequence o f the

decision m ade with respect to sequential com putations was that a m echanism

for allowing this could not be devised

64

Chapter 5

w - The implementation

T he syntax and sem antics of m, as previously described, outline the appearance

of w processes and system s, and the interaction that m ay occur between a

series o f these processes when they are constructed as a w system W hile the

form ulation o f these syntactic and sem antic rules is a significant m ilestone in the

developm ent process of the w program m ing language, it forms m erely one half

of the entire set of deliverables necessary for the creation o f the w programm ing

language T he second half of the developm ent process revolves around the actual

im plem entation o f the language, which is the transform ation o f the definition of

the im plem entation and its execution provided by the sem antics in to a concrete

and com plete program ming language

The im plem entation of w m ust take into account a number of requirements

m addition to those im plicit to any program m ing language w ith the previously

described syntax and sem antics These additional requirem ents contribute sig

nificantly to the com plexity o f the final im plem entation and this com plexity

is reflected in the size o f the im plem entation and the number o f technologies

required to create it

T he w im plem entation m ust supply a m echanism to transform valid vj code

into an executable form, and it m ust provide an environm ent in which the

execution of this code can take place To further com plicated m atters one of the

dem ands m ade of w is that it should allow the creation o f m odularised system s,

system s which can be distributed and concurrently executed Further still,

the functionality should be provided which allows real-tim e com m unications to

occur between these various com ponents o f these distributed and concurrently

executing system s Given the desire for the channel based com m unications to

be synchronous in nature real-tim e com m unications are a requirem ent

This im plem entation, which should satisfy the above requirem ents, consists

of two m ain parts - the com piler and the runtim e libraries B oth these aspects

65

are required for the generation of system s that are structured in the required

fashion and behave in the desired m anner The com piler generates code that

creates such system s, and this generated code relies heavily on the libraries to

provide the necessary functionality, as well as aspects of the runtim e environ

ment

As the v j im plem entation is large and rather com plex, and not every part o f it

is directly related to providing the desired functionality o f the language As such

a prudent approach to the exam ination and discussion of the im plem entation

of the zu program m ing language is the description of each aspect of the desired

functionality followed by an explanation o f how these aspects were provided,

rather than an investigation into the operation of the program m ing language in

its entirety

5.1 Required Functionality

T he topic of investigation m this section is not the structure of v j processes

and system s, nor the behaviour of these entities, but rather the underlying in

frastructure that facilitates the creation and operation of these processes and

system s - the portion of w that is “under the hood” so to speak This infrastruc

ture can be divided in a few m am categories - d istribution, processes, channels,

com putations and the environm ent

5 1 1 D istribution

One of the primary desired properties of a v j system is that it should be capable

of being executed m a distributed fashion Com ponents of a system should be

able to be deployed m an arbitrary topographical arrangem ent and it should be

possible to make the decision as to this arrangem ent at run-tim e rather than at

com pile tim e In order to cater for these requirem ents a number o f sub goals

are required to be satisfied

For a v j system to be capable to be distributed over a series of m achines it

m ust first be possible to identify and separate the various parts o f the system

that could be distributed As such it is required the executable m odules yielded

by the com pilation of a v j system m ust be independently executable The only

dependency that one m odule, or node m the system , should have on another

node is to facilitate the com pletion of the synchronous com m unications between

processes

If a v j system , when operating in a distributed fashion, consisted o f m erely a

number o f standalone applications, each executing m com plete and utter isola

tion, then the act of distributing a system would be a pointless one As touched

6 6

upon above, each “site” in a distributed w system m ust to able to interact with

other sites, that is the capability for inter-site com m unications m ust be present

T he im portance of com m unications between sites m a w system cannot be over

stated as it forms one of the lynch-pins of the execution of w system s It is worth

m entioning that each “site” in a distributed executing a w system is sim ply a

w process that resides at the top of the system s process hierarchy

5 1 2 Processes

w system s are constructed using processes as the basic unit o f construction

A logical extension o f this is that the basic unit o f execution for w system s

should be the process T he execution of w system s is com pletely process ori

ented and every single item that can be executed is a process Therefore the zu
im plem entation m ust provide a m eans to transform the source for a process into

an executable object W hile the behaviours exhibited by processes are merely

consequences of the sem antics that define them , the issues surrounding incor

porating these sem antic rules into the w im plem entation is a non-tn via l task

and deserves further m ention

In addition, one of the properties that makes the w syn tax and sem antics

so powerful and expressive is the ability to concurrently execute processes, 1 e

allowing processes to run in parallel Obviously the underlying im plem entation

of vj also has to support this notion of concurrently executing processes, whether

this execution is occurring on one m achine, or is distributed over a series of

machines /

R eplication is a m assively useful tool in the theory behind the 7r-calculus

and the w program m ing language T he ability to have an infinite number of

identical copies of a process, and to have each required instance running just

as you need it, allows the expression o f processes that are otherw ise com plex,

lengthy and error-prone, in a few lines of sim ple, self-explanatory code However

serious issues surrounding the im plem entation of this form of replication are

im m ediately obvious Overcom ing these obstacles while still m aintaining the

concept of replication is m ost certainly a non-tn via l task

The ability to have concurrent execution of processes, the provision o f a

m echanism to replicate these processes, the possibility of distributing these pro

cesses, and the capability for inter site com m unications are not the only require

m ents o f the te? infrastructure Processes also have to be able to interact w ith

each other w ithout knowing o f each other, 1 e there should be knowledge-less

inter-process com m unications, which is that a process should not be concerned

with w hat process is on the other end of a link, but rather it should be satisfied

that there is another end to the link This requirem ent, in conjunction w ith the

67

necessity for links in w system s to grow and die m a seem ingly organic manner

dem ands a com plete and reliable im plem entation o f these links - channels

5 1 3 Channels

Channels are the workhorse of the w im plem entation T hey provide m echa

nism s that supply a significant proportion o f the functionality required of the

vj im plem entation V irtually every aspect o f the w im plem entation that is not

directly concerned with the execution of processes and the perform ance of com

putations is provided, either partially or com pletely, by the im plem entation of

channels

Chief am ongst the solutions provided by channels is the solution to the

problem of distribution As previously m entioned in this section, support for

distribution is a key requirement o f the w im plem entation and w channels

provide practically all o f the functionality required to support this distribution

of system s As a m echanism for the provision of distribution in vo system s the

im plem entation of channels m ust facilitate com m unications between the various

processes that will com prise a w system

Figure 5 1 Growth of a system

One of the key purposes of channel based com m unications is to enable the

growth of links in a system between processes of that system , for exam ple F ig

5 1 tu channels, like their 7r-calculus cousins, m ust be capable o f both trans

m itting other channels and also of being transm itted them selves B y possessing

both these properties w channels can make the seem ingly organic expansion,

and reduction, o f connections m w system s possible

All com m unications between processes in a w system m ust occur via vj chan

nels Consequently the im plem entation o f these channels m ust be robust and

reliable D ata cannot be lost, com m unications cannot be left half com pleted,

and the behaviour o f these channels m ust be consistent T he fact that zu chan-y
nels are synchronous m nature, as well as the availability of the choice operator

in w , m eans that the possibility of partially com pleted com m unications is a very

6 8

/

real obstacle, one which m ust be overcome if the im plem entation of channels is

to be usable in any fashion Another logical conclusion, given the im portance

of channels to the w im plem entation, is that w channels m ust be stable and

robust Channels m ust be capable of copm g w ith high levels o f usage and signif

icant loads and they m ust also rem ain operational even under the m ost extrem e

of conditions

Another noteworthy aspect of channels is that at any one tim e during the

lifetim e o f a channel m ultiple read requests may be m ade o f a channel, while

sim ultaneously m ultiple write requests m ay also be being m ade Synchronous

channels can, by definition, only accom m odate one read and one write request

at a tim e It is therefore a requirement o f the im plem entation of channels that

it can accom m odate m ultiple read and write requests occurring sim ultaneously

and that it can process these requests in a non-determ m istic and guaranteed

fashion, F ig 5 2 However, further constraints are placed upon the operation of

channels m that the operation of these channels m ust always be deadlock free

W hen a channel is used m conjunction with a sum m ation m w a read operation

can effectively be “backed out o f” T hat is a process can indicate its readiness

to recieve information on a specific channel and then revoke that indication

should another channel com plete a read operation first D eadlocks could occur

if the im plem entation of channels did not restrict the conditions under which

processes are “backed out of” as a process could, potentially, back out o f all

read operations and be left idle with no possibility of resum ing execution, 1 e

deadlocked

Figure 5 2 Processing of requests

A dditionally the operation o f these channels m ust be as transparent as pos

sible, and that their operation must appear intu itive to som eone familiar with

traditional 7r-calculus channels W hile these requirem ents m ay seem quite triv

ial, they are still necessary to allow the com plete w im plem entation to remain

com parable to the 7r-calculus

69

Additionally, what use are m echanism s for allowing concurrent, distributed and

replicated processes, and m ethods that facilitate the com m unications between

these processes, w ithout a way m which to carry out calculations - to have som e

thing to com m unicate Som e purpose m ust be given to these com m unicating

distributed processes The final task is to allow com putations to occur, and to

facilitate the com m unication o f the results o f these com putations between the

various processes

5 1 5 Environm ent

w system s execute m the Java execution environm ent However this execution

environm ent “as is” is not sufficient to m eet the requirem ents of executing w
system s Additional dem ands such as the initial setup and synchronisation and

also the term ination and clean-up of w system s are m ade of the execution envi

ronment T hese dem ands m ust be m et by providing a w execution environm ent

which sits on top of the Java environm ent This new execution environm ent is

also responsible for enforcing the w com m unications m odel

5 1 6 Summ ary

Taking the required functionality outlined above into account, the exam ination

of the zu im plem entation will focus o f the following topics

• Channels and the distribution of processes

• Channels and the synchronisation between processes

• Channels and the com m unications between processes

• Channels and the sum m ations in processes

• Processes and the execution of these processes m a concurrent fashion

• The replication of processes

• T he invocation of processes

• Perform ing sequential com putations via in-lining m ethods and code blocks

• The execution environm ent and the in itial setup and synchronisation of

processes and channels

• Term ination of system s in the execution environm ent

5 1 4 C o m p u ta t io n s

70

• Security, enforcem ent of w com m unication restrictions m the execution

environm ent, 1 e channels are the only available m echanism for com m u

nication between processes

5.2 Provision of Required Functionality

5 2 1 Channels

W hen considering how best to im plem ent distribution m w it is worth reflecting

on what exactly will be distributed and how the distributed entities will inter

act In a w system the distributable entities are the top-level processes o f that

system , where a top-level process is one which resides at the root of the process

hierarchy, one which is invoked by a user rather than another process These

top-level processes, and indeed all processes, can interact with other processes

in two possible ways Firstly, a process m ay invoke other processes T he invoca

tion o f another process results in that process executing on the sam e site as the

“parent” process and as such this form of interaction is not concerned with the

distribution of system s as only the invocation to top-level processes can affect

the topology of a system It was originally desired that all processes m a w

system could be distributed m an arbitrary manner regardless o f their position

in the processes hierarchy for a system The m anagem ent o f this fine grained

process distribution would have to be either m anually m anaged via configura

tion files or dynam ically m anaged by a distributed load balancing m echanism

On the grounds that the first approach would be too cum bersom e and awkward

and the second approach too com plex and beyond the scope o f this work the

more restrictive, and realistic, approach o f only allowing top-level processes to

determ ine the topology of the system was the approach taken However the sec

ond form of interaction, com m unications over channels, is very much concerned

with distributed interaction as the processes com m unicating over these channels

m ay be residing on separate host m achines, F ig 5 3

Seeing as channels are an intricate part of every com m unication between

71

possibly distributed processes it seem s only fitting that the onus should be

placed on channels to facilitate this distribution In order to make these dis

tributed com m unications possible a channel m ust be visible to all processes that

are required to use it, and the physical location of the actual channel, (for it

m ust reside som ewhere), should have no im pact on how the various distributed

processes interact w ith it

Java R M I

The interaction between applications running in a distributed fashion has be

com e so com m onplace that Sun M icro-System s extended the Java program m ing

language to include a technology called Java R em ote M ethod Invocation, or

Java RMI Java RMI is heavily used in the facilitation of com m unications over

channels in w and as such a brief overview of Java RMI is required1

In Java RMI rem ote objects are created by servers and the server makes

references to these rem ote objects available T hese references may be passed

around the distributed application and clients can use these references to invoke

m ethods on the rem ote objects as if they were local objects For a client to

use a reference to a rem ote object it m ust first obtain the reference by one of

two m ethods It can get a copy o f the reference by either looking the object

up in Java R M I’s sim ple nam ing service known as rmiregistry, or by receiving

the reference as an argum ent or as a return value Once the rem ote ob ject’s

reference has been obtained it can be passed around applications just like any

other object, and more im portantly this reference behaves as if it was the actual

rem ote object itself Java RMI provides the m echanism s necessary for the server

and clients to com m unicate and consequently allow the reference to behave as

the rem ote object

Channels and Java R M I

Java RMI provides a m echanism for rem ote objects to appear local via refer

ences, and also provides two ways to discover references to these rem ote objects

This is exactly w hat is required to im plem ent w channels The use o f m ultiple

im m utable references which all refer to the sam e rem ote object allows the vj
m odel o f distribution to be im plem ented m a transparent and intuitive manner

The ability to obtain references either by lookup or by param eter passing also

perm its the fundam ental differences between top-level processes and all other

processes to be overcom e, that is that top-level processes are started by the

user and not another process and as such cannot obtain references to rem ote

^ o r e detailed information on Java RMI can be obtained on the website
http / / j avasun com/products/ jdk/rmi/

72

objects by param eter passing All in all Java RMI is a vital tool required for

the im plem entation of w channels

B y using Java RMI in the im plem entation o f w channels and by m aking the

Java class that represents w channels im plem ent the R em ote object interface

the task o f allowing distributed processes to interact is greatly simplified P ro

cesses now use local references to rem ote objects, which represent channels, to

com m unicate with each other Therefore from the perspective o f a process there

are no rem ote interaction occurring, m erely the invocation of m ethods on local

objects

Exam ple

Process A creates a channel C Process A then obtains a reference to this newly

created rem ote object which it then sends over an existing channel to Process

B B oth Process A and Process B can now use their corresponding references

to the rem ote object, which represents channel C, to interact w ith each other,

Fig 5 4

Figure 5 4 D istributed interaction

In the above exam ple the rem ote channel object ’C ’ is shown to reside on a

specific m achine, M achine 1 This is because the process in which the channel

associated w ith this rem ote channel object was created also resided on M achine

1 T he rem ote channel object will reside on this m achine until term ination of

the system or Java R M I’s garbage collection removes it

One of the advantages o f w channels being accessible as references, and as if

they were local objects, is the ease in which inter-process com m unications can

be im plem ented W hen a process wishes to write som e data to a w channel

it sim ply invokes the write m ethod o f the local reference and supplies it with

the relevant data, F ig 5 5 The underlying Java RM I m echanism s handle the

transm ission of the data to the actual rem ote object

73

Figure 5 5 A W rite Request

Likewise when a process wishes to read data from a channel it calls the read
m ethod of the local reference which will return data when it is available, Fig

5 6 Again Java RMI deals with the actual transm ission o f d ata from the rem ote

object

Figure 5 6 A Read Request

The previous description of inter-process com m unications over channels was

a sim plification It proved a useful exam ple to outline the rough concepts behind

w channels However further issues surrounding the com m unications between

processes over channels exist A m ongst these issues is the im plem entation of

the synchronous nature o f w channels Given this synchronous nature it is an

obvious necessity that when a read request is made of a channel that there m ust

be a corresponding write request, l e som ething m ust have put the d ata on the

channel m the first place, and if no data is present then the read request is forced

to wait for som e to becom e available In an asynchronous im plem entation of

channels this would be the only requirement made of channels w ith regard to

their behaviour, that is in order for a read operation to com plete there m ust

be data present There would be no restrictions placed on write operations,

they would m erely write their data to the channel regardless o f whether there

is a corresponding read operation ready to com plete the transaction or not and

74

continue on. However w channels are synchronous in nature and as such it

is essential for a write operation to occur that there m ust be a corresponding

read operation ready to occur as well. In short no channel operation can occur

w ithout the opposite operation also occurring on the sam e channel, F ig 5.7.

This problem is solved using a series o f locks and notifies on the Java objects

used to im plem ent channels. Further detail o f this solution is provided later in

this chapter.

Write
Request / a

BLOCKS

Figure 5.7: Synchronous operation of channels

However the behaviour of channels is further com plicated as a result o f the

possibility that m ultiple read and write requests m ay be m ade of a channel at

the sam e tim e, Fig 5.8. The im plem entation o f channels m ust allow m ultiple

requests of both kinds to be m ade sim ultaneously and to process these requests

in pairs, one read and one write, and also m aintain a queue o f requests that

remain to be processed.

Write Read

Figure 5.8: M ultiple Requests

The first requirement in im plem enting the read and write m ethods of w
channel is that only one request o f either type may be active at any one time.

T hat us a read operation cannot be occurring at the sam e tim e that a write

operation is occurring and vice versa. Likewise only one read request may

be occurring at any one tim e, and only one write operation can occur at the

sam e tim e. Conveniently the Java program m ing language provides a m echanism

to ensure that this happens, the synchronize statement. The contents of both

75

sum m ation, a(x)P + b(z)Q, m eans that the invocation of processes depends on

the occurrence of associated actions, a(x) occurring starts P and b(z) occurring

starts Q The problem arises here from the fact that the above read algo

rithm does not provide a m echanism for a read operation to “back ou t” w ithout

com pleting and indicating that the operation has successfully com pleted This

m echanism is necessary m order to avoid undefined and unexpected behavioural

consequences Out o f all the m put actions in a guarded sum m ation exactly one

of these actions should be allowed to com plete and the remainder o f the input

actions should be able to “back ou t” w ithout having any negative effects on the

behaviour of the system This new m echanism is catered for by the provision of

a conditionalRead m ethod in channels which should be used in sum m ations

C onditional Read algorithm
S y n c h r o n i z e r eadLock

S y n c h r o n i z e a c t i o n L o c k
1 f d a t a p r e s e n t

s e t t a s k done
el se

wa i t on a c t i o n L o c k
s e t t a s k done

i f 1 s t o p p e d
wa i t u n t i l s t o p p e d

i f t a s k done by me
n o t i f y on a c t i o n L o c k

C onditional reads from zu channels require the use o f two additional classes

- the Task class and the Reader class B oth o f these classes play pivotal roles

in allowing conditional reads to occur The use of the Reader class is nec

essary to orchestrate the m ultiple blocking requests to be m ade of numerous

channels which are required to allow conditional reads to occur Som e way of

m ulti-threading these requests is necessary and the Reader class provides this

functionality

The reasoning behind the necessity and functionality of the Task classes is (

rather m ore com plex In brief the Task class is responsible for determ ining

which m put action is the one that will occur, it is also responsible for informing

that input action that it should occur and finally the Task class is responsible

for term inating all reader threads successful or otherwise

5 2 2 Processes

Given that in w the im plem entation of channels is responsible for providing

the functionality required for com m unications and synchronisation between the

distributed processes of system s the only topics that are related to processes that

77

m ethods are enclosed in synchronize statem ents and this ensures that the desired

behaviour is provided In addition the synchronize statem ent also provides the

autom atic queuing o f other requests

T he second priority in im plem enting these m ethods is to ensure that on

com pletion of a channel operation that both read and write m ethods com plete

at the sam e tim e regardless of which request was made first There are two

possible orderings o f the requests and each one m ust be catered for

W rite firs t, read second

The write m ethod sets the data and then waits for the data to be read

The read m ethod gets the data, indicates that the data has been read and

both m ethods com plete

R ead firs t, w rite second

The read m ethod attem pts to get the data, none is present so it m ust

wait for som e to be made available T he write m ethod now sets the data,

it indicates that the data has been set which results in the read m ethod

waking and reading the data Finally the read m ethod indicates that the

data has been read and both m ethods com plete

In both these scenarios the following algorithm s result in the desired be

haviour, these algorithm s were produced as the result of much analysis o f the

problem at hand and m any prototypical im plem entations, in hindsight tim e

and effort could have been saved by tim ely consultation of literature related to

concurrent program m ing

W rite algorithm
S y n c h r o n i z e w r i t e L o c k

S y n c h r o n i z e a c t i o n L o c k
s e t d a t a
n o t i f y on a c t i o n L o c k
wa i t on a c t i o n L o c k

Read algorithm
S y n c h r o n i z e r eadLock

S y n c h r o n i z e a c t i o n L o c k
1 f d a t a p r e s e n t

ge t d a t a
e l s e

w a i t on a c t i o n L o c k
ge t d a t a

n o t i f y on a c t i o n L o c k

Using only the above algorithm s as the basis for an im plem entation o f the

read and write m ethods of tx; channels would suffice were it not for the presence

of guarded sum m ations in the syntax and sem antics o f w If wc recall a guarded

76

remain to be discussed are how processes execute concurrently, how processes

are replicated and an explanation of the different ways m which w processes

can be invoked

C oncurren t Execution

Concurrent execution in w involves the execution o f an arbitrary number of

process in parallel Given that the primary intended use of w is in the im ple

m entation of distributed system s, it is extrem ely likely that each site m a w

system will play host to a number o f processes, all of which are required to be

running m parallel to each other, som e m ethod o f m ulti-threading the execution

of these processes is necessary Once again the Java program m ing language

provides a m echanism which aides us in overcom ing yet another problem The

Java program m ing language provides a way to create m ultiple threads, where a

thread is a single d istinct strand o f execution, and to have these threads execut

ing concurrently B y making each process in w a Java thread and by starting

these threads in a concurrent m anner it is possible for the concurrent execution

of processes to occur in w However given the nature o f Java m ultithreading

this would not be considered “true” concurrency from a 7r-calculus perspective,

however to the user it would appear so

Traditionally a problem existed w ith having m ultiple threads executing cur

rently in Java T hese threads lacked a guaranteed and reliable m ethod to com

m unicate and synchronise with other threads However the use o f w channels

in the Java m ulti-threaded environm ent has solved both the problems o f com

m unications and synchronisation between concurrently executing threads

R ep lica tio n

R eplication m the strictest 7r-calculus interpretation is not feasible from an im

plem entation point of view The idea of an arbitrary, possibly infinite, number

of instances of a specific process all ready to run, in fact all running and merely

w aiting to interact w ith other processes, F ig 5 9, is not a concept that is recon

cilable with real world com puting and com puters As a result it was necessary

to im plem ent replication differently This different approach to im plem enting

replication still results in the sam e casual observable behavioural properties but

a more realistic approach was necessary to achieve these properties Instead of

having an arbitrary number of processes ready for execution w replication only

ever has exactly one more instance that w hat is presently needed executing

This approach allows the replication process to behave in the sam e m anner but

it is not as resource intensive

This approach is m ade possible as a result o f the manner in which the Java

78

<D

oo
CZ)
CA
Oo
£

A A

Figure 5 9 P i-calculus replication

threads that represent w processes are generated Since each thread is tailored

specifically to each individual process it is possible to add the capability for

replication to each process by ensuring that each instance o f a replicated process

invokes exactly one other instance o f itself after it performs its first action, be it

an input, an output or a Java action, F ig 5 10 This results in there always being

one more instance of a process running than is currently required By always

having one more than necessary future dem and for interaction with additional

instances of a process is always catered for However this approach does result in

issues surrounding the term ination o f w system s, these issues will be investigated

later

<D

cow
OO
Oi-t

cu

A

Figure 5 10 zu replication

I n v o c a t io n

There are a number o f different scenarios m which a process m ay invoke, or

start, another process A process may be started as the only “child” process of

79

another process, or a process may be started m a replicated fashion, or a process

m ay be started (and possibly replicated) in parallel to a series of other processes

These scenarios for starting processes have been previously explained, but the

workings o f two additional scenarios m which processes m ay be started have not

yet been touched upon - starting processes via a choice statem ent and starting

processes via a m atch statem ent

M a tc h s ta rt

A m atch statem ent consists of a number of condition statem ents, each w ith an

associated process invocation statem ent and also a default process invocation

statem ent T he conditions are evaluated from left to right and the first condi

tion statem ent that is satisfied has its associated process invocation statem ent

performed Should none of the condition statem ents be satisfied then the default

process invocation is performed

W hen a condition statem ent is being evaluated the actual testing o f equality

of nam es is done by reference not by value As such condition statem ents, and

indeed m atch statem ents, are m ainly o f use when com paring channel names as

opposed to non-channel names

Choice s ta rt

The choice statem ent is a very useful and powerful statem ent It allows the

execution of a system to be affected by the occurrence, or non-occurrence, o f

various input actions A choice statem ent consists o f a number of input actions,

and each input action has an associated process invocation statem ent Once

one o f these input actions occurs, and only one o f them can ever occur, the

process invocation statem ent associated w ith the input action is performed

This triggers a whole new set of process instances to be started T he possibly

com plex task of im plem enting choice statem ents was greatly simplified as a

result of the m anner in which w channels were im plem ented By using the

conditional read functionality of w channels and the existing functionality for

invoking processes the im plem entation of input guarded sum m ations in v j was

achieved

5 2 3 C om putations

The ability to integrate strongly typed com putations into an untyped com m u

nications framework is one of the m am attractions of the w im plem entation

W hile these com putations can be performed in one of two ways, inline or code

blocks, the m ajority of the issues surrounding com putations are com m on to

both

8 0

The m ajor issue that arises from this integration is the typing problem,

the com m unications code is untyped - where everything is a name, and the

com putational code, written m Java, which can contain any com bination of

types from a very rich set of types This problem is overcom e by using more

features of the Java problem language - class casts and the Serializable interface

W hen a name is passed in a com putation in w the Java code contained in

the com putation can access the nam e as a Serializable object Also, regardless

o f w hat the com putation does, all names created in the com m unications code

are also Serializable objects As the only other way to create a nam e is to create

a channel, and all channels are also Serializable This ensures that all objects

m the com m unications code are only ever of one type - Serializable This allows

the strongly typed aspect o f com putations to be reconciled with the untyped

com m unications

This of course requires the Java code inside a com putation to cast its param

eters into more varied types A chieving any task of worth in a Java program that

works solely w ith Serializable objects would be rather difficult On first glance

this may seem like a serious problem as the possibility for class cast exceptions

exists However on closer inspection the risk is no greater than extracting and

using the various elem ents of a heterogeneous Java Vector - care m ust sim ply

be taken in writing and testing system s and processes

N am es, d is trib u tio n and consistency '

W hen a nam e is created, either by a sequential com putation or by creating a

new channel, and com m unicated am ongst various distributed processes the task

of ensuring the consistency of this name across these sites becom es a formidable

one A far sim pler and neater solution to the problem of ensuring consistency

of nam es across rem ote sites is to insist that all names are im m utable B y doing

so the functionality to reflect changes m names m ade m one site on all other

sites is not required Now once a name is created it cannot be changed, it can

be “forgotten” and replaced but never changed

In order to enforce this policy o f im m utable names it is necessary to take a

snapshot of all names that a com putation can access, for it is only in a com

putation that the possibility o f altering names arises, before the com putation

is performed, and restoring this snapshot after the com putation has been com

pleted, F ig 5 11 An additional beneficial consequence of this approach is that

no unexpected side effects can arise from the com putation o f calculations

81

I

<DC

a Create snapshot

Computation

Restore snapshot

(Data)

Figure 5 11 Storing and restoring names

Failu re and fau lt tolerance

A process m a w system can fail for a number o f reasons, these include network

issues, I /O problem s, and exceptions and errors thrown from Java fragm ents

The result o f a process failing is the sam e regardless of the reason for failure

- the process blocks More specifically the process m question term inates and

frees any resources that it m ay be using However the process is no longer in a

sta te to interact further with other processes in the system It is possible that

the lack of these further interactions will have no effect on the other processes

in the system , however it is more likely that the non-occurrence o f channel

o u tp u t/in p u t as a result of the term ination of the failed process will cause other

processes in the system to block, 1 e to wait indefinitely on specific channel

actions These blocking processes will cause the system to halt No m echanism

for the notification o f such failures nor the recovery from such failures exists

5 2 4 The Environm ent

In order to allow the execution of vj system s it is necessary to provide an

execution environm ent The w execution environm ent is responsible for the

in itial pre-execution setup of system s and for the p ost execution term ination of

the various sites as well as enforcing the com m unications m odel T hese setup

and term ination phases rely on the use o f a lightweight centralised application,

the location of which is known to all top-level processes

82

Setup

Before a w system can begin execution som e setup is required This setup

is m ainly concerned with the channels that are shared am ongst the top-level

processes Since these top-level processes cannot receive references to the rem ote

objects that represent channels by param eter passing they m ust obtain these

references by the look-up m ethod instead In order to look-up a reference it

is necessary to know the site on which the rem ote object resides Once this

inform ation is known the actual act of look-up is rather sim ple The initial

setup phase of the execution o f a w system deals w ith the distribution o f this

inform ation to the various concerned top-level processes However, before the

inform ation about the actual physical location of channels can be dealt out the

responsibility for these channels must first be allocated This allocation is done

using a specific allocation algorithm which takes into account a number of factors

before allocating responsibility for a channel These factors include whether

the process uses the channel, whether the process is replicated, and the existing

load on the site that hosts the process Preference is given to non-replicated

processes with m inim al loading of their sites that use the channel in question

Once all the setup information has been distributed the actual execution of the

system can begin

T erm in a tio n

Term ination in w is not so much concerned with the term ination of individual

processes but rather w ith the com plete term ination o f all execution on a specific

site Since a site may be responsible for channels that other processes are using

even though there are no more active processes on the site, it is necessary for

all sites to remain “up” until all the sites in a system are all inactive W hen

this happens all the sites that make up a system can “com e down” There is,

however, one exception T hat is a site that plays host to a top-level process

that is replicated and not responsible for any channels that are shared at the

highest level m ay term inate once all processes executing on that site finish

T he m igration of channels from site to site was briefly considered but was

dism issed as the cost o f im plem enting this would far outweigh the value of it

Security

In the 7r-calculus the only m ethod for com m unicating between processes is by

the use of channels It is therefore a necessity that in w that the only way that

processes can com m unicate is also by the use of channels This com m unication

m odel needs to be enforced at a low level and is done so by im plem enting a

Java security m anager that m onitors and regulates all network connections and

83

\

com m unicates and ensures that nothing is done to breach the desired com m uni

cations m odel The Security m anager class has available to it the signatures of

all m ethods involved m any attem pt to perform network I /O and by exam ining

the collection of signatures involved in any attem pt to perform network I /O the

security m anager class can prevent undesired network I /O

5.3 Language Im plem entation Decisions

As would be expected once the core language design decisions were m ade and the

design o f the language im plem entation started a number of decisions regarding

the language im plem entation were required to be m ade W hile m ost of the

design decisions resulted in the features in question being incorporated into the

im plem entation som e com prom ises were required to be made around a number

of issues

5 3 1 Channel m igration and term ination

As has been previously explained when a channel is created the Java RMI

rem ote object that represents the channel is hosted on the m achine on which

the creating process resides A feature that was originally desired for the w

im plem entation was the ability for channels to effectively m igrate from one host

to another This would allow a simpler and more robust to the term ination of a

site in a r o system As it stands all sites m a w system m ust signal their desire

to term inate before a single site can do so This is to ensure that channels that

in use by processes on different sites are not affected by the term ination o f a

specific site If channels were able to m igrate from one site this problem would

be avoided However due to im plem entation difficulties surrounding this feature

it had to be descoped from the project

5 3 2 SyncServer

Presently there is a requirement for a central m mi-server in each w system to

facilitate synchronisation at system initialisation and term ination Currently

a ” syncserver” is required to aid in the com m unication o f inform ation related

to top-level channels am ongst the various top-level process during in itialisation

and in establishing agreem ent as to when a system can term inate com pletely

W hile allowing the m igration o f channels as previously described would remove

the requirement for the SyncServer in system term ination, in the present design

of the w im plem entation there would still be a need for it in the in itialisation

of w system s W hile no m echanism which would avoid the requirem ent for a

SyncServer during system initialisation was identified it would be desired if the

84

need for this central server could be avoided, however it is d istinctly possible

that this m ay not be feasible

5 3 3 Channels and Security

During the in itial design phase of the zu language im plem entation the idea of

attem pting to secure, using various cryptographic protocols, com m unications

occurring over channels arose However it was realised that a secure system ,

one w ritten using established security protocols, would be secure regardless o f

the m edium used to transm it inform ation between elem ents o f the system and

as such there was no real requirement to encrypt data transm itted on channels

in G7

5 3 4 Process m igration

In the present zu im plem entation processes execute on the sam e hosts as the

processes that invoke them Some investigation into balancing the execution

load of these processes am ongst the various hosts that con stitute a zu system

was originally undertaken It was determ ined following this investigation that

the functionality required to facilitate this m igration of processes would require

considerable effort and m ay in fact introduce som e security related issues into

w system s As such the concept of process m igration was rem oved from the

design of the zu language im plem entation

5 4 w and the classification criteria

As both the zu language and its im plem entation have now been presented it

is now possible to exam ine the zu language against the classification criteria

outlined in chapter three

5 4 1 Syntax and Sem antics

It was desired that the syntax and sem antics of the 7r-calculus and that of zu
would be similar W hile they are quite similar there are a number o f divergences

between the two T hese differences, which have been previously discussed, do

not however make the syntax and sem antics of both to be irreconcilable

5 4 2 M obility

The 7r-calculus concept of m obility allows processes in a system to dynam ically

learn o f new links between elem ents of that system at run-tim e This m echanism

is present m zu and central to the operation of zu

85

5 4 3 Synchronous vs asynchronous com m unications

Com m unications over channels can be performed m either a synchronous or

asynchronous fashion W hile the im plem entation o f asynchronous channels

would have be significantly sim pler than im plem enting synchronous channels

the extra effort was deemed necessary and as such the w channel im plem enta

tion is synchronous in nature

5 4 4 D istribution

supports d istributed system s However the m anner in which these system s

may be distributed is restricted As previously explained the decision as to the

distribution of a system m ust be m ade with respect to top-level processes and

cannot be made at a lower level W hile this should not negatively affect the

execution o f zu system s it does restrict how w system s can be distributed

5 4 5 Sequential com putations

w allows even the m ost com plex sequential com putation to be performed in it

via the use o f fragm ents of the Java programm ing language W hile this achieves

the goal o f providing a m echanism for performing sequential com putations it is

not the m ost pleasing of solutions As described m the language design decisions

it would be preferred if the sam e level of support for sequential com putations

could provided but via a new notation more fitting to w

5.5 zu and the classification categories

Given the classification categories laid out m chapter three and given the results

yielded when exam ining w against the classification criteria also laid out in

chapter three it becom es apparent that w does not fit into any o f the three

categories previously identified As such the classification categories presented

in chapter three m ust be extended to allow the categorisation of w

C a te g o r y 4

A program m ing language belonging to category four is syntactically and

sem antically sim ilar to the 7r-calculus It provides a high level of sup

port for the im plem entation of distributed system s and it also provides a

m echanism for performing com plex sequential com putations Com m uni

cations over channels in a category four program m ing language occur m a

synchronous m anner and also facilitate the 7r-calculus concept of m obility

8 6

/

Chapter 6

w examples

W hen previously exam ining the various aspects of the w language, they have

been exam ined in isolation In order to obtain a true understanding o f how

these various com ponents of vo can be used together and how they interact with

one another it is necessary to observe larger, richer exam ple system s 1ln the

following exam ple system s the following aspects o f w will be am ongst those used

and exam ined

• R eplicated top level processes

• Use of sequential com putations via code blocks

• Use of sequential com putations via m ime code statem ents

• R eplicated invocation o f standard processes

• Invocation o f standard processes

• Channel operations - input and output

• Sum m ations - process choice

guide to compiling, debugging and deploying w system is supplied in the appendices

87

6.1 Example 1 - Certificate Authority

The goal o f this w system (A full listing o f code for this system is in appendix

B), is to provide an im plem entation o f a system that allows X509 certificates

to be requested by an arbitrary number of clients, and for these requests to be

fulfilled by the issuing o f certificates by a central static entity - a Certificate

Authority

Figure 6 1 A bstract behaviour of exam ple System 1

This type of system lends itself to dem onstrating various aspects of the w
language, in particular the replication of top-level processes, the replication of

standard processes, sequential com putations and basic channel operations

T he com m unications part o f this system , the processes and their interactions,

is rather sim ple and consists o f only four processes, one of which is the System

process
i Syst em Sys

2{
3 Channel a
4
5 (C e r t A u t h (a) | 1 C l i e n t C r e a t e C e r t (a))

7 P r o c e s s C e r t A u th (c e r t)

»{
s < g e t I n f o > () (f i l e n a m e , p a s s p h r a s e)

10 < g e t l s s u e r > (f i l e n a m e , p a s s p h r a s e) (c a)
1 1 (1 I s s u e r (c e r t , ca))
12}
n P r o c e s s I s s u e r (i n , i s s u e r)
14 {
1 5 in (c h a n n e l)
16 c h a n n e l (c e r t R e q u e s t)
1 7 < i s s u e C e r t > (i s s u e r , c e r t Re q u e s t) (c e r t)
is c h a n n e l < c e r t >
19 0
20 }

8 8

2 1 P r o c e s s C l i e n t C r e a t e C e r t (chan)
22 {
23 < loadC A Ce r t > () (c a c e r t)
24 <c r e a t e C e r t i f i c a t e A n d Re q u e s t > () (c l i e n t , r e q)
25

26 Channe l tmp
27 ch an< tm p>
28 t m p < r e q >
29 tmp(c e r t)
30 < s t o r e C l i e n t > (c e r t , c l i e n t , c a c e r t) ()
31 0

32 }

As would be expected the first step in both branches of execution are con

cerned with set-up and in itialisation The CertAuth process uses two sequential

com putations to load and configure the data that is required so that a repli

cated process that will handle all the certificate requests can be invoked The

first o f these sequential com putations, invoked from line 9, prom pts a user to

enter the location o f the encrypted data store that contains all relevant keys and

certificates required to operate the CertAuth , and it also prom pts the user for

the passphrase that will allow the data store to be decrypted and its contents

used

Listing Code-block called from line 9
33Code g e t l n f o () (fn , pp)
34 {

x 36 /&
36 L in eN um be rR e ad e r I n r =
37 new L ine N um ber Rea de r (new I n p u t S t r e a m R e a d e r (Syst em i n)) ,
38 Sys t em out p n n t l n (‘ ‘ E n t e r t he ca n a m e ’ ’) ,
39 fn = l n r r e a d L i n e () ,
40 Syst em out p r i n t l n (‘ ‘ E n t e r t he p a s s p h r a s e ,
41 pp = l n r r e a d L i n e () ,
42 &/
43}

Once these pieces of data have been obtained it is necessary to load and

decrypt the data store (line 10) in order to create the entity required to actually

issue certificates T he invoked sequential com putation creates a sim ple CA

object and then uses this object to create the object which will be used to issue

certificates This separation of CA and issuer is present as while there will be

m ultiple instances of issuers, as the process that uses them is replicated, it is

desired that there is only ever one actual CA This separation becom es more

relevant in system s which include functionality for certificate revocation

Listing Code-block called from line 10
4 4 Code g e t l s s u e r (f n > pp) (i s s u e r)
45 {

89

4 6 / &

47 CA theCA = new CA((S t r i n g) fn ,(S t r i n g) pp),
48 C e r t l s s u e r ca = theCA c r e a t e l s s u e r () ,
4 9

so i s s u e r — ca ,
51 & /

5 2 }

Once this sequential com putation has been com pleted the CertAuth pro

cess starts a replication Issuer processes (line 11) It is instances o f this Issuer
process that interact w ith instances of the replicated client process, ChentCre-
ateCert, in order to facilitate the actual requesting and issuing o f certificates

T he operation and interaction of these two processes occurs as follows

The Client Create Cert process loads the certificate belonging to the Certifi

cate Authority, which was distributed out-of-band, using a sequential com pu

tation (line 23) The sequential com putation prom pts the user for the location

of the CAs certificate which it then loads as a byte[] and pushes back up into

the com m unications The certificate is loaded as a byte[] as opposed to a java

Certificate object because of the requirement that all objects pushed into the

com m unications code be serializable This is not checked at com pile tim e but

would rather m anifest itself as a runtime error as there is no type checking of

this kind, l e what can be com m unicated on channels, at com pile tim e

Listing Code-block called from line 23
53Code l oadC ACe r t () (c e r t)
54 {

55 / & .

56 S t r i n g f i l e n a m e = C l i e n t ge tCAFi l eName () ,
57 b y t e [] c e r t _ b y t e s = C l i e n t l o a d C A C e r t (f i l e n a m e),
58 c e r t = c e r t - b y t e s ,
5 9 & /

60 }

O nce the certificate belonging to the certificate authority has been loaded

the next step is for the client process to create the actual certificate request that

will be sent to the CA (line 24)

Listing Code-block called from line 24
61 Code c r e a t e C e r t i f i c a t e A nd R e q u e s t () (c l i e n t >r eq)
6 2 {

63 / &

64 C l i e n t c = new C l i e n t () ,
65 b y t e [] name = C l i e n t getName () ,
ee S t r i n g pwd = C l i e n t g e t C h a l l e n g e () ,
67 b y t e [] tmp — c g e n e r a t e C e r t i f i c a t e R e q u e s t (n a me , p w d),
68

69 c l i e n t = c ,
70 r eq — tmp,

90

71 & /

72 }

In order to create the certificate request it is first necessary to get the fully

qualified nam e of the intended subject of the certificate that is being requested

via a m ethod m the Client class (line 65) Following this is it necessary to

obtain a challenge password A challenge password is used m the attributes of

the certificate request in order to supply user credentials w ith the request (line

66) Once this has been obtained from the user the Client class is then again

used to b oth generate the certificate request and the associated RSA key-pair

(line 67) T he functionality for this is supplied m a series o f Java class files

that were specifically written for this exam ple Following this the newly created

client object and the certificate request are pushed back into the com m unications

code

The com m unications aspect o f this code then creates and distributes a chan

nel that will be used solely for this transaction (line 26) Once created and sent,

this channel is then used to send the certificate request created on line 24 to the

certificate authority All that remains for the client to do is to read back the

issued certificate, if it was issued (line 29) and to then store the certificate along

with the associated key-pair (line 30) The m ethod that stores this inform ation

has to obtain both the location in which to store it (line 82) and the passphrase

that will be used to protect the sensitive inform ation (line 83)

Listing Code-block called from line 30
7 3 Code s t o r e C l i e n t (c e r t , c l i e n t , c a c e r t) ()
74 {

7 5 j h

76 b y t e [] t heCA Cer t = (b y t e []) c a c e r t ,
77 b y t e [] t h e C e r t = (b y t e []) c e r t ,
78 C l i e n t c = (C l i e n t) c l i e n t ,
79

80 c s e t C e r t i f i c a t e (t h e C e r t , t h eCACer t),
si S t r i n g pp = C l i e n t g e t P a s s P h r a s e () ,
82 S t r i n g fn = C l i e n t g e t F i l e n a m e () ,
83 c s t o r e (p p , f n) ,
84 & /

85 }

On the other side o f the transaction the Issuer process reads (line 15) the

“session” channel that was sent by the Client Create Cert on line 26 T he Issuer
process then reads the certificate request (line 16) Once read this certificate

request is pushed into a sequential com putation (line 17)

Listing Code-block called from line 17
86Code i s s u e C e r t (i s s u e r , r e q u e s t)(c e r t)
8 7 {

91

88 /&
89 Ce r t l s s u e r 1 = (C e r t l s s u e r) i s s u e r ,
90 byte [] req = (b y t e []) r eques t ,
91

92 cer t = i p r o c e s s Ce r t i f i c a t e Re q u e s t (req),
93 & /

9 4 }

After the certificate is created it is then sent back to the ChentCreateCert pro

cess

T he replicated nature of the ChentCreateCert process and the Issuer process

in this system allows this certificate request/issue cycle to occur as often as

required

6.2 Example 2 - Certificate Authority and Ser
vice Provider

This exam ple 2 builds upon the previous exam ple by taking the certificate is

suing infrastructure and using it to enable authentication and security in a dis

tributed system This new system allows client processes to request the services

of a service provider in a secure and m utually authenticated manner

In this exam ple system there are three m am types o f entity - the Certificate

Authority, the Service provider and the client The certificate authority issues

certificates both for the clients and for the Service provider It also facilitates

the distribution of the certificate associated with the Service provider The

Service provider interacts w ith the Certificate authority to obtain a certificate

and it then uses this certificate m a cryptographic protocol which provides the

m echanism for the required m utual authentication w ith clients and for the secure

exchange o f a session key

The client aspect of the system is split m to two parts One part requests

and obtains certificates from the certificate authority and the other part uses

this certificate in the protocol used to secure com m unications with the Service

provider

6 2 1 The processes

In order to reuse the processes from the previous exam ples only a minor change

was required to be made to the CertAuth process, and in order to accom m odate

the new behavioural requirem ents of the system two new top-level processes and

som e new top-level channels were required

2A full listing of code for this system is in appendix C

92

Certificate
Authority

Certificate
request

Certificate

Service
Provider

Service

Cert Service
Client Client

Figure 6 2 Exam ple 2

95 System Sys
96 { A

97 Channel a , b , c , w
98 (Cert Auth (a , b , c) | 1 C l i e n t C r e a t e C e r t (a) }
99 S e r v i c e P r o v i d e r (b , w) | ' C I i e n t S e r v i c e R e q u e s t (c , w))

100 }
101

io2Process CertAuth (ce r t , spCer t , sp C er t O u t)
103 {

104 < g e t I n f o > () (f i l ename , passphrase)
105 < c r e a te C A > (f i l e n a m e , passphrase)(ca)
106 < g e t l s s u e r > (c a) (i)
107

108 (’ I s s u e r (c e r t , i)| S e r v i c e P r o v i d e r l s s u e r (spC er t , i , s p C e r t O u t))
109 }

no
in Process S e r v i c e P r o v i d e r l s s u e r (i n , i ssuer ,^out)
112 {
113 in (channel)
114 channel (c e r tR eq u es t)
115 < i s s u e C e r t > (i s s u e r , ce r tRe qu es t)(ce r t)
lie c h an n e l <c e r t >
117 (’ D i s t r i b u t e C e r t (out , c e r t))

118 }

119

i2oProcess Cl len tS er v i c eR e q ue s t (ce r t , work)
121 {
122 CloadCACer t > () (c a c e r t)
123 < l o a d S e l f > (c a c e r t)(se 1 f)
124

125 ce r t (spCer t)
126

127 < v e r i f y C e r t I s s u e r > (c a c e r t , spCer t) ()
128

129 C c r e a t e C l i e n t R e q u e s t > (s p C er t , se 1 f) (packet l , randA)
1 30

131 Channel chan

93

132 workCchan >

133

134 < g e t O w n C e r t > (s e I f) (o w n C e r t)

135 c h an <o w nC e rt >

136 c h a n < p a c k e t l >
137

138 chan (p a c k e t2)

139 < p r o c e s s S e r v i c e R e s p o n s e > (p a c k e t 2 , s p C e r t , s e l f , rand A)(p a c k e t 3)

140 c h a n < p a c k e t3 >
141

142 c h a n (e n c K e y)

143 chan (s e r v i c e 1)

144 chan (s e r v i c e 2)
145

146 < e x t r a c t K e y > (s p C e r t , e nc Ke y , se I f) (key)
147

148 < w h i c h S e r v i c e > (s e r v i c e l , s e r v i c e 2)(s e r v i c e)
149

150 Cha nne l chan

151 s e r v i c e < c h a n >

152 chan (r e s p)

153

154 < / & S y s t e m out p r i n t i n ((S t r i n g) r e s p) , & / > (r e s p) ()

155 0

156 }

157

158 P r o c e s s S e r v i c e P r o v i d e r (c ha n , work)

159 {

160 < l o a d C A C e r t > ()(c a c e r t)

161

1 6 2 < c r e a t e C e r t i f i c a t e A n d R e q u e s t S P > (c a c e r t) (s p , r e q)

(163

164 Channel tmp
165 ch an< tm p>
166

167 t m p < r e q >
168

169 tmp(c e r t)
170

171 < s e t C e r t i f i c a t e > (c e r t , s p , c a c e r t) (newSP)
172 (1 S er v i c e r (work , newSP))
173 }

174

w s P r o c e s s S e r v i c e r (work , s e 1 f)
176 {

177 work (c h a n n e l)

178 c h a n n e l (c l i e n t C e r t)

179 c h a n n e l (p a d)

180

1 8 1 < p r o c e s s C l i e n t R e q u e s t > (c l ien t C e r t p a d s e l f) (r a n d A)

94

182 < c r e a t e S e r v i c e R e s p o n s e > (c h e n t C e r t >s e l f , rand A) (pac2 , r andB)
183 c h a n n e l < p a c 2 >
184

185 c h a n n e l (r e s)
186 < p r o c e s s C l i e n t R e s p o n s e >(c l i e n t C e r t , s e l f , r e s , r andB) (encKey , key)
187 c h a n n e K e n c K e y >
188

189 Channe l s e r v i c e l , s e r v i c e 2
190 c h a n n e l < s e r v i c e l >
19 1 c h a n n e l < s e r v i c e 2 >
192

19 3 + (s e r v i c e l (a) (S e r v i c e l (a))) + (s e r v i c e 2 (b) (S e r v i c e 2 (b)))
194 }

Now instead of starting only a replicated Issuer process the CertAuth pro

cess also starts an instance of a ServiceProviderlssuer (line 108) This Service-
\

Providerlssuer process (line 111) is identical to the Issuer process that has been

docum ented in the previous exam ple with the exception the process invocation

statem ent that appears at the end of it (line 117) Instead of merely receiving

the certificate request from a Service Provider and sending the issued certificate

back to it, this process now invokes a replicated process (line 120) whose sole

function is to output the certificate that was issued to the Service provider on

a channel that is known by all entities in the system This m echanism uses

lazy evaluation to fill the channel w ith an infinite number of certificates This

distribution of the Service providers certificate is required for the successful ex

ecution of the cryptographic protocol that will be used between the client that

is requesting services and the service provider that is providing them

As the procedure for the requesting and issuing of certificates has previously

been explained the rem aining item of interest in this exam ple is the interaction

between the Service provider and the Client process that requests its services

T he first task for a ServiceProvider to com plete is the requesting and obtain

ing of a certificate from the certificate authority This is done m a very similar

m anner as the requesting o f a clients certificate, lines 160 to 171 Once the cer

tificate has been requested and obtained the actual interactions betw een service

provider and client begin via the replicated invocation of a Servicer process on

line 172

6 2 2 The protocol

The authentication protocol that is used in this exam ple is a well docum ented

(Schneier 1996) three-way protocol that makes extensive use of the X509 cer

tificates previously issued

In the following protocol 3

3In this version of the protocol the need for timestamps has been eliminated and as such

95

R x indicates the random number generated by x
Tx indicates the tim e stam p generated by x
I x indicates the identity of X
Cx indicates the X509 certificate belonging to x
D x (N) is the result o f encrypting N w ith the private key belonging to x
E X(N) is the result o f encrypting N w ith the public key belonging to x

Before this protocol can be used the certificate o f the service provider m ust

be distributed to all entities that wish to com m unicate w ith it, this is done

by m eans of the replicated process that is invoked in the ServiceProviderlssuer
process

Step 1

T he client(C SR) generates a random number, a tim e stam p and som e

random data This random data is encrypted using the public key of the

service provider(SP) which is extracted from the distributed certificate

Once this is done the random number, the tim e stam p, the identity of

the service provider, and the encrypted data are all encrypted using the

private key of the client, this effectively signs the entire block of data In

the system this is done in one sequential com putation called from line 129

Once this is created the certificate of the client and the encrypted/signed

d ata is sent to the service provider, line 136

Client — > Service provider, Cc s r , D c s r (M), where

M = {Tcsr, R csr, I sp , Esp(d))

Step 2

W hen the service provider receives the encrypted block o f data from the

client along with its certificate the first thing the service provider m ust

do is to verify the certificate was issued by the correct CA Once this test

occurs the service provider then decrypts the d a ta using the public key

extracted from the certificate belonging to the client Following this the

service provider m ust check that the value I s p is in fact its own identity,

and that the data E s p (d) can be decrypted using its own private key If

these tests are successful the Service provider generates a random number

and tim e stam p o f its own and uses these to construct a m essage that

consists of its tim e stam p, its random number, the identity o f the client,

the random number of the client and som e random data encrypted w ith the

public key of the client This m essage is then encrypted with the private

key of the service provider and sent back to the client, line 183 This

all timestamps are 0

96

processing of the received data and the creation o f the d ata packet that

is to be returned to the client takes place m two sequential com putations,

lines 181 and 182

Service Provider — > Client, D s p {M '), where

M 1 = (TSp, R s p , Ic s r , R c s r , EcsR{d))

Step 3

T he client, on receipt o f the encrypted data, line 138, decrypts the m essage

and verifies the value of Ic s r and R c s r and also that it can decrypt

E csR(d) If these tests are successful then the client encrypts the random

number R sp w ith its private key, and returns it to the service provider,

line 140 The processing of the data received from the service provider

and the creation of the packet that will be returned to it occurs on line

139

Client — > Service provider, D c s r (R s p)

Step 4

Finally the service provider decrypts the data and verifies the value of

R s p , line 186 After this stage m utual authentication has occurred

Following the occurrence of the authentication protocol the service provider

creates a session key, also in the sequential com putation invoked from line 186

In the sam e sequential com putation the session key is encrypted w ith the public

key of the client and signed w ith the private key o f the service provider This

encrypted and signed key is then sent to the client process along with two newly

created channels

6 2 3 The service request

Once the client receives the encrypted session key, it decrypts and verifies it to

yield a usable session key (line 146) The client process has also received two

channels from the service provider - each channel representing a service that

the service provider provides The client prom pts the user as to which service

it wishes to avail of, line 148 The selection of the user d ictates which channel

is used, that therefore which service is requested Once the service is requested,

th is is done by sending a channel over the relevant channel, the client process

waits for a response from the service, line 152, and then prints the response to

the screen For the purposes o f this exam ple the services that were requested

97

were kept to their m ost absolute sim plest - 1 e sim ple strings are returned for

each request

The interesting aspect of a service request takes place on the service providers

part o f the interaction On line 193 the service provider makes use o f a sum m a

tion statem ent - in a sum m ation the course of execution of the system depends

entirely on which input action in the statem ent occurs T he guards in this sum

m ation are input actions involving the two channels that were sent to the client

process T he client process responds on one o f these channels depending on

which service it wishes to request As such the process that the service provider

invokes depends which channel action occurs Should the client respond on the

channel associated with service one then the service provider starts the process

that represents service one, likewise for service two

T he replicated nature o f the ServiceProvider process and the ChentSer-
viceRequest process m this system allows this service requesting/granting cycle

to occur as often as required

98

6 3 Developing w system s

In the above exam ples the following steps to developing the system s were fol

lowed

1 A 7r-calculus specification for the system was written This specification

captured all the processes that would make up the system and the inter

actions over channels that would occur between them

2 A detailed description of each process that would be part o f the system

was m ade This description outlined the sequential com putations that

would be required to be processed so that the relevant inform ation would

be available to send on channels An in p u t/ou tp u t contract was developed

for each sequential com putation, l e given input inform ation o f a various

format the sequential com putation would guarantee output of a particular

format

3 The various sequential com putations were sorted into logical groupings

and Java classes were created for each grouping The bulk of the processing

that makes up the sequential com putations was placed into these classes to

m inim ise the com plexity o f the statem ents in the w processes them selves

4 Once written the Java classes were unit tested to ensure that they m et

the in p u t/ou tp u t contract previously arrived at for them

5 A stripped down version of the w system was written This stripped down

version only contained com m unications code Following the im plem enta

tion of this version o f the system the w code for it would be m anually

compared to the pi-calculus specification to inform ally ensure that the

specification and im plem entation m atched Ideally a formal process for

the verification of im plem entation against specification would have been

performed at this stage However the developm ent o f such a process fell

outside the scope o f this project and could therefore not be performed

6 The various sequential com putation invocations required were added to

the com m unications code T hese invocations were added at the points

identified m the process analysis phase

7 The entire w system would then be com piled Following the successful

com pilation of the vj system , it would then be deployed to a test environ

m ent and executed to ensure that the system behaved as expected

99

6 3 1 Reuse in w system s

Once a w system has been written aspects of it can be reused If identical

functional requirements are m ade of processes m two separate system s then the

sam e process can be used in both system s The process in question is sim ply

written m a separate file and included in the com pilation o f both system s 4

Likewise if identical requirements are made of sequential com putations these

can be expressed as CodeBlocks and these can then be included m m ultiple w
system s

4The compilation of va systems is detailed in the appendices

100

In the previous exam ples the m ajority of the functionality of the w program m ing

language have been used and dem onstrated and the process for writing system s

using the w program m ing language has also been covered

6.4 Conclusions

101

Chapter 7

Conclusions

The goal of this research was to develop a program m ing language that was based

on the 7r-calculus The nature of this program m ing language was intended to

allow it to be used as a general purpose program m ing language although its

primary use was to be m the im plem entation o f large scale distributed system s

A number of objectives had to be com pleted in order to develop such a

program m ing language The first was that a syntax and sem antics that were

similar to those of the 7r-calculus had to be devised The next objective, which

was achieved m tandem with the first, was that a m echanism for performing

com plex sequential com putations had to be integrated into the syntax and se

m antics o f the program m ing language m such a manner as to allow the syntax

and sem antics of the program m ing language to still be reconcilable with those

of the 7r-calculus

Another objective was that system s written in this program m ing language

should be capable of being distributed with the m inim um am ount o f effort and

the m axim um am ount of transparency to the developer as possible This re

quired the provision o f m echanism s to enable distribution o f system s at the

lowest levels o f the program m ing language B y providing a high level of support

and by doing it at a low level this objective was achieved

Following investigation into the 7r-calculus and existing im plem entations

based on it a set o f additional desired qualities for the new language were de

vised These additional properties becam e objectives in their own right that

had to be satisfied by the language

The final, and arguable the m ost im portant, object was that the language

devised should be sim ple to use and easy to understand This last objective had

consequences for all aspects o f the programm ing language, ranging from having

to have a clear and concise syntax and sem antics to ensuring that the com piler

was easy to use and that the deploym ent process for system s written in this

102

language was sim ple to follow

Overall it is felt that these objectives were achieved and that a usable, com

putationally powerfully program m ing language that is capable o f supporting

large scale distributed system s was produced, and that this program m ing lan

guage was based on the 7r-calculus

7.1 Further work

W hile all the desired properties were incorporated into the language and while

all the objectives, major and minor, of the language were com pleted it is felt

that certain areas o f the language could be expanded upon in further work

7 1 1 Sequential C om putation notation

It could be desirable to extend the syntax and sem antics o f w to include a nota

tion that could be used in performing sequential com putations in w This could

be beneficial as it m ay result in a simpler, and more controllable, m echanism

for performing sequential com putations and could also make the integration of

the separate com m unications and com putation aspects o f vj cleaner and more

elegant

7 1 2 Com piler support

As it stands com pilation, debugging and deploym ent of zu system s m ust be done

via the com m and line T he integration o f the zu language into a developm ent en

vironm ent would increase the ease with which the coding, com piling, debugging

and deploym ent of w could be achieved T he developm ent of such an environ

m ent, or the developm ent of a series of plug-m s for an existing environm ent,

would be a significant addition to w

103

Appendix A

Building and using w

A .l Building the w compiler and libraries

The source for the w distribution is divided into three categories - the javacc

code for the compiler, the Java code used by this com piler and the Java code

which makes up the libraries that are used during run tim e To build the entire

w d istribution all three categories of code m ust be built in different ways and

the generated output files m ust then be bundled up into a jar file which will be

the w distribution 1

To build the com piler and libraries the following steps can be followed or the

included makefile can be used

1 Com pile the java code used by the compiler (this and all other com pilation

steps should be performed from the root o f the source directory)

(a) javac varp i/h elpers/* java

2 Com pile the runtim e libraries

(a) javac varp i/im p /classS erver/* java

(b) javac varp i/im p /* java

(c) rmic varpi imp iChannel

(d) rmic varpi imp iTask

3 Com pile the compiler

(a) mkdir varpi/parser

*In order to build the w distribution JDK1 4 x and Javacc 2 1 must be installed on the
system

104

(b) javacc parser jj

(c) javac varp i/p arser/* java

4 Prepare the jar file

(a) jar cv f varpi jar varp i/im p /* class varp i/im p /c lassS erver/* class varp i/h elpers/* class

varp i/parser/* class

~\

105

A .2 Using the w com piler/Building a w system
;

1 (O ptional) If an java classes have been written that will be used by the w
system being built then these classes m ust first be com piled

2 T he varpi source files m ust be com piled In order to do this the nam es of

these files are supplied to the w com piler T he only restriction place on

the order in which these filenam es are passed to the com piler is that the

first file name m ust be that of the file that contains the w System process

The usage of the vj com piler is

java -cp Cvarpi jar location> varpi parser Parser -sync < sn a m e> -debug

< filenam es >

where

• <varj>% jar location> is the location o f the jar file built that represents

the vd d istribution

• <sname> is what the syncServer for the generated system should be

called

• <fiienames> are the filenames of all the w source files

W hen using the w com piler the -debug sw itch is optional and its use sim ply

results m additional debug inform ation being generated and included m

the system which will be displayed at runtim e

\
3 The successful com pilation o f a w system results m the generation of a

number of java classes T he final com pulsory step m the com pilation of a

vj system involves the com pilation of these generated java files In order

for this com pilation to success the jar file built for the w distribution and

any external java classes required must be included in the classpath The

com pilation is performed by typing javac * java from the directory from

the working directory

4 (O ptional) If desired the class files resulting from the com pilation o f the

generated java files can be packaged into a jar file for ease of d istribution

This step is recomm ended

106

\

A .3 Running a w system

1 D is t r ib u t e r e q u ir e d file s

In order to run the w system on numerous distributed hosts it is necessary

for the libraries for both the w distribution and for the system in question

to be present on each o f the m achines that will form part o f the system

T his distribution is done ’’out of band”

2 R m ir e g is t r y

As the w d istribution makes use of Java RMI rem ote objects it is required

that an instance of the rm iregistry is running on each host m achine Ad

ditionally the location o f the jar file for the w d istribution m ust be in the

classpath for the rm iregistry

3 S y n c S e r v e r r u n n in g

Each w system requires a w syncServer to be running T he compiler

of a w system results m the generation o f a tailored syncServer This

generated syncServer has the snam e name as that which is supplied to the

w com piled via the -syncServer sw itch The invocation o f a syncServer

is a simple process as syncServer only requires a single argum ent - the

number of a free port on the host machine

U s a g e java -cp <location of w jar> <syncServer name> <port>

where

• <locatton of w jar> is the location of the jar file for the w distribu

tion

• <syncServer> is the nam e o f the syncServer class

• <port> is the number of a free port on the host m achine It is also

required that the port im m ediately above this port is also free

4 T o p le v e l p r o c e s s e s s ta r te d

A w system , when com piled, will generated a number of java classes which

contain a public stat void m am m ethod One such class is generated for

each top level process in the system T hese generated executable classes

are named the sam e as the top level processes but with the word ’’Starter”

attached to the end of the name

In order for the execution of a w system to com m ence each top level

process, bar replicated top-level processes, must first be started The

m anner of doing so is identical for each top level process

107

java -cp <classpath> <tlpStarter> <port> <jar> <ssip> <ssport> <local
ip >

where

• <classpath> is the classpath required to run the program, it m ust

include the location of the w distribution jar, the jar file for this

system , and any external java classes required

• < tlpStarter> is the name of the executable class file to run (top level

process nam e plus the string ” Starter”

• <port> is the number o f a free port on the host m achine

• <jar> is the location of the w distribution jar file

• <ssip> is the ip address o f the sync server

• <ssport> is the number of the port on which the syncServer is lis

tening

• <local ip > is the local ip address

By starting the rm iregistry and each of the top-level processes as detailed

above the execution o f the w system in question should begin Term ination of

the system is handled autom atically by the system

;

108

Appendix B

Example 1 code

B .l w code
>{
2 pki *,
3 j a v a s e c u r i t y c e r t *,
4 j a v a s e c u r i t y *,
5 j a v a x c r y p t o spec *,
6 j a v a x c r y p t o *,

8
9Sys t e m Sys

10 {
11 Channe l a
12
13 (C e r t A u t h (a) | ' C h e n t C r e a t e C e r t (a))
14}
IB
l e P r o c e s s C e r t A u t h (c e r t)
17 {
is < g e t I n f o > () (f i l e n a m e , p a s s p h r a s e)
19 < g e t l s s u e r > (f i l e n a m e , p a s s p h r a s e) (i)
20
21 (1 I s s u e r (c e r t > 1))
22 }
23
24 Pr oces s I s s u e r (i n , i s s u e r)
25 {
26 i n (c h a n n e l)
27 c h a n n e l (c e r t R e q u e s t)
28 < i s s u e C e r t > (i s s u e r , c e r t R e q u e s t)(c e r t)
29 c h a n n e l < c e r t >
30 0

31 }
32

109

33 Code i s s u e C e r t (i s s u e r , r e q u e s t)(c e r t)
34 {
35 / &

36 C e r t l s s u e r i = (C e r t l s s u e r) i s s u e r ,
37 b y t e [] r eq = (b y t e []) r e q u e s t ,
38

39 c e r t = i p r o c e s s C e r t i f i c a t e R e q u e s t (r e q) ,
4 0 & /

4 1 }

42
43Code g e t l s s u e r (fn , pp)(i s s u e r)
44 {
45 f&l
46 CA t heCA = new CA((S t r i n g) fn ,(S t r i n g) pp) ,
47 C e r t l s s u e r i = t heCA c r e a t e l s s u e r (},
48

49 i s s u e r = i ,
50 & /

5 1 }

52

53Code g e t i n f o () (fn , pp)
54 {

55 /&
56 t r y
57 {
58 L i n e Nu mb e r Re a d e r l n r =
59 new L i n e Nu mb e r Re a d e r (n e w I n p u t S t r e a m R e a d e r (Sys t e m i n)) ,
60 Sys t em out p r i n t l n (” E n t e r t h e ca n a me ”),
61 fn = l n r r e a d L i n e () ,
62 Sys t em out p r i n t l n (” E n t e r t h e p a s s p h r a s e ”),
63 pp = l n r r e a d L i n e () ,
64 }

65 c a t c h (E x c e p t i o n e)
66 {
67 e p r i n t S t a c k T r a c e () ,
68 }
69 & /

7 0 }

71
72
73 P r o c e s s C l i e n t C r e a t e C e r t (chan)
74 {
75 < l o a d C A C e r t > () (c a c e r t)
76 C c r e a t e C e r t i f i c a t e A n d R e q u e s t > () (c l i e n t , r e q)
77

78 Channe l tmp
79 c h a n < t m p >

80
8i t m p < r e q >
83

110

83 tm p(c e r t)
84

85 < s t o r e C l i e n t > (c e r t , c l i e n t , c a c e r t) ()

86 0

8 7 }

89

8 9 C o d e l o a d C A C e r t () (c e r t)

90 {

91 / &

92 S t r i n g f i l e n a m e = C l i e n t g e t C A F i l e N a m e () ,

93 b y t e [] c e r t - b y t e s = C l i e n t l o a d C A C e r t (f i l e n a m e) ,

94 c e r t = c e r t - b y t e s ,

95 & /

96 }

97

98

9 9 C o d e c r e a t e C e r t i f i c a t e A n d R e q u e s t () (c l i e n t , r e q)

100 {
101 /&
1 0 2 C l i e n t c = n e w C l i e n t () ,

1 0 3 b y t e [] n a m e = C l i e n t g e t N a m e () ,

104

1 0 5 b y t e [] t m p = c g e n e r a t e C e r t i f i c a t e R e q u e s t (n a m e) ,

106

1 0 7 c l i e n t = c ,

lo s r e q = t m p ,

109 & /

110 }
111

1 1 2 C o d e s t o r e C h e n t (c e r t , c l i e n t , c a c e r t) ()

113 {

114 / &

1 1 5 b y t e [] t h e C A C e r t = (b y t e []) c a c e r t ,

116

1 1 7 b y t e [] t h e C e r t = (b y t e []) c e r t ,

u s C l i e n t c = (C l i e n t) c l i e n t ,

119

1 2 0 c s e t C e r t i f i c a t e (t h e C e r t , t h e C A C e r t) ,

121

1 2 2 S t r i n g p p = C l i e n t g e t P a s s P h r a s e () ,

1 2 3 S t r i n g f n = C l i e n t g e t F i l e n a m e () ,

124

1 2 5 c s t o r e (p p , f n) ,

126 & /

127 }

111

B 2 Java code

B 2 1 CA java
i package p k i ,
2
3im port pki *,
4

B i m p o r t j a v a s e c u r i t y c e r t * ,

e i m p o r t j a v a s e c u r i t y * ,

7 i mpor t j a v a x c r yp t o spec *,
s i m p o r t j a v a x c r yp t o *,
e i mp o r t j a v a 1 0 *,

l o i mpor t l a i k pkcs pkcslO C e r t i f i c a t e R e q u e s t
n i m p o r t l a i k asnl s t r u c t u r e s *,
i2 i mpor t l a i k asnl *,
13

i 4 i mpor t j a v a u t i l *,
15 i m p o r t j a v a m a t h * ,

16

17

i s pub l i c c l a s s CA impl ement s S e r i a l i z a b l e
19 {

20 p r i v a t e KeyPai r m.keys ,
21 p r i v a t e X 5 0 9 C e r t i f i c a t e m. ce r t ,
22 p r i v a t e S t r i ng m_f i l ename ,
23

24 pub l i c CA(St r i ng f i l ename , S t r i ng pp)
25 {

26

27

28)

29

30 pub l i c Publ i cKey g e t P u b l i c ()
31 {

32 r e t u r n m.keys g e t P u b l i c () ,
33 }

34

36 pub l i c X 5 0 9 C e r t i f i c a t e g e t C e r t ()
36 {

37 r e t u r n m. ce r t ,
38 }

39

40 pub l i c void l o a d l n f o (S t r i ng pp)
41 (
42 t r y

43 {

44 F i l e l n p u t S t r e a m f i s =
45 new F i l e l n p u t S t r e a m (m. f i l ename + ” i n f o ”),
46

47 i n t b = f i s read () ,

m - f i l e n a m e — f i l e n a m e

l o a d l n f o (p p) ,

112

48

49

50
51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
67

68
69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86
87

88
89

90

91

92

93

94

95

96

B7

Byt eAr r ayOut pu t St r eam baos = new Byt eAr r a yOut pu t St r e am () ,

whi le (b ' = - 1)

{
baos wr i t e (b) ,
b — f i s r ead () ,

}
//DECRYPT
byte [] i v . b y t e s = " t h i s is the i v ” g e t B y t e s () ,
Secre t KeySpec sks = new Secre t KeySpec (pp g e t B y t e s () , 0, 8, ” DES”),
I v P a r a me t e r S p e c ap = new I v Pa r a me t e r Spe c (i v_by t es , 0, 8),

Ci pher c = Ci pher g e t l n s t a n c e (” DES/CBC/PKCS5Padding”),
SecureRandom sr = new SecureRandom(” Thi s is a very bad s e e d ” g e t B y t e s ()) ,
c i n i t (Ci phe r DECRYPTJVIODE, s k s , ap , s r) ,

byt e [] f i n a l - b y t e s = c d o F i n a l (b a o s t oByt eAr r a y ()) ,

By t e Ar r a y l npu t S t r e a m bai s = new By t e Ar r a y l npu t S t r e a m (fi n a l _ b y t e s),
O b j e c t l n p u t S t r e a m oi s = new O b j e c t l n p u t S t r e a m (ba i s),

m.keys = (K e y P a i r) o i s r e a d Ob j e c t () ,
m- cer t = (X 5 0 9 C e r t i f i c a t e) ois r e a d Ob j e c t () ,

}
ca t ch (Except i on e)

{
e p r i n t S t a c k T r a c e () ,

}
}

pub l i c s t a t i c void gene r a t e AndSt o r e (S t r i ng pa s s p h r a s e , S t r i ng f i l e na me)

{
t r y

{
St r i ng seed = new S t r i n g () ,
seed + = System c u r r e n t T i m e M i l h s () ,

SecureRandom s ec . r andom = new SecureRandom(seed g e t B y t e s ()) ,

Ke y P a i r Ge n e r a t o r key. gen = Ke y P a i r Ge n e r a t o r g e t l n s t a n c e (”RSA”),
key. gen i n i t i a l i z e (512, s e c . r a n d o m) ,
KeyPai r k e y . p a i r = key. gen g e n e r a t e K e y P a i r () ,

Name n = new Name () ,
n addRDN(Objec t ID c o u n t r y , ” I E ”),
n addRDN(Object ID l o c a l i t y , "DUBLIN”),
n addRDN (Object ID o r g a n i z a t i o n , ” DCU”),
n addRDN (Object ID o r g a n i za t i on al U n 1 1 , ” PG”),

113

98

99

100

101

102
103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

126
129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

n addEDN(Objec t ID commonName , ” CA”),

l a ik x509 X 5 0 9 C e r t i f i c a t e ce r t = new l a i k x509 X 5 0 9 C e r t i f i c a t e () ,
ce r t s e t l s s u e r D N (n) ,
ce r t s e t S u b j e c t DN(n) ,
ce r t s e t P u b h c K e y (k e y _ p a i r g e t P u b l i c ()) ,
ce r t se t Ser i a l Nu mbe r (new B i g l n t e g e r (” 000000000001”)),
Gr e g o r i a n C a l e n d a r da t e = (G r e g o r i a n Ca l e n d a r) Ca l enda r g e t l n s t a n c e () ,

da t e a d d (Ca l e n d a r MONTH, - 1) ,
c e r t s e t V a l i d N o t B e f o r e (d a t e getTime ()) ,
da t e add (Ca l enda r MOMH, 5) ,
ce r t s e t V a h d N o t A f t e r (d a t e getTime ()) ,
c e r t s ign (A l g o n t h ml D shal Wi t hRSAEncr ypt i on , k e y . p a i r g e t P n v a t e ()) ,

Byt eAr r ayOut put St r eam baos = new Byt eAr r ayOut pu t St r eam () ,
Ob j e c t Ou t pu t S t r e a m oos = new O b j e c t O u t p u t S t r e a m(baos),

oos w n t e O b j e c t (k e y - p a i r),
oos w r i t e O b j e c t (c e r t) ,
System out p n n t l n (c e r t g e t C l a s s () getName ()) ,
oos c l ose () ,

byt e [] i v_by t e s = ’’ t h i s is the i v ” g e t B y t e s () ,
Secre tKeySpec sks = new Secre tKeySpec (pa s s ph r a s e g e t B y t e s () , 0, 8, ” DES”),
I vPa r a me t e r Spe c ap = new I vPa r a me t e r Spe c (i v_by t es , 0, 8),

Ci pher c = Ci pher g e t l n s t a n c e (” DES/CBC/PKCS5Padding”),
SecureRandom sr = new SecureRandom(” This is a very bad s e e d ” g e t B y t e s ()) ,
c i m t (Ci phe r ENCRYPT-MODE, s k s , ap , s r) ,

byt e [] f i n a l . b y t e s — c d o F m a l (b a o s t oByt eAr r a y ()) ,

F i l e Ou t p u t S t r e a m fos = new F i l e Ou t p u t S t r e a m (f i l e name + ” i n f o ”),
fos wr i t e (f i n a l _ b y t e s),
fos c l ose () ,

fos = new F i l e Ou t p u t S t r e a m (fi l e name + ” c r t ”),
fos w r i t e (c e r t t oByt eAr r ay ()) ,
fos c l ose () ,

F i l e f = new F i le (f i l e name + ” c r l ”),
f c r e a t e Ne wFi l e () ,

}
ca t ch (Except i on e)
{

}
e p r m t S t a c k T r a c e () ,

}

114

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

pub l i c s t a t i c void p r i n t CAI nf o (S t r i ng pa s s p h r a s e , S t r i n g f i l e n a me)
{

t r y

{
F i l e l n p u t S t r e a m f i s = new F i l e l n p u t S t r e a m (f i l e name + ” i n f o ”),

i n t b = f i s read () ,

By t eAr r ayOut pu t St r eam baos = new Byt eAr r ayOut pu t St r eam () ,

whi le (b 1 = — 1)
{

baos wr i t e (b),
b= f i s r ead () ,

}
//DECRYPT
byte [] i v - b y t e s = ” t h i s is the i v ” g e t B y t e s () ,
Secre t KeySpec sks = new Secre tKeySpec (pa s s ph r a s e g e t B y t e s () , 0, 8, ” DES”),
I vPa r a me t e r Spe c ap — new I v Pa r a me t e r Spe c (i v - b y t e s , 0, 8) ,

Ci pher c = Ci pher g e t l n s t a n c e (”DES/CBC/PKCS5Paddmg”),
SecureRandom sr = new SecureRandom(” This is a very bad s e e d ” g e t B y t e s ()) ,
c m i t (Ci phe r DECRYPT_MODE, s ks , ap , sr),

byt e [] f i n a l - b y t e s = c d o F i n a l (b a o s t oByte Array ()) ,

Byte Ar r a y l npu t S t r e a m bai s — new Byte Ar r a y l n p u t S t r e a m (fi n a l - b y t e s),
O b j e c t l n p u t S t r e a m oi s = new O b j e c t l n p u t S t r e a m (ba i s),

KeyPai r kp = (K e y P a i r) o i s r e a d Ob j e c t () ,
Obj ec t ce r t = ois r e a d O b j e c t () ,
System out p r i n t l n (c e r t g e t C l a s s () ge t Na me ()) ,

System out p n n t l n (”-- ”),
System out p n n t l n (c e r t),
System out pr l n11 n(”-- ”),

}
ca t ch (Exc ep t i on e)
{

e p n n t S t a c k T r a c e () ,
}

pub l i c C e r t l s s u e r c r e a t e l s s u e r ()

{
r e t u r n new Cer t l s s u e r (m.keys , m . c e r t) ,

}

pub l i c s t a t i c void ma i n (S t r i n g drgs [])

115

198 {

199 CA gener a t e AndSt or e (args [0], a r g s [l]) ,
200 CA p n n t C Alnfo (args [0] , a r g s [l]) ,
201 }
202 }

116

I

B 2 2 C ertlssuer java

2 pa ckage p k i ,
3

4 i m p o r t pki *,
5

6 i m p o r t j a v a s e c u r i t y *,
7 i m p o r t j a v a x c r y p t o spec *,
« i m p o r t j a v a x c r y p t o * ,
s i m p o r t j a v a 10 *,

l o i m p o r t l a i k pkcs pkcs l O C e r t i fi c a t e R e q u e s t ,
n i m p o r t l a i k a s n l s t r u c t u r e s *,
12 i m p o r t l a i k a s n l * ,
i 3 i m p o r t j a v a s e c u r i t y c e r t *,
14

i 5 i m p o r t j a v a u t i l *,
is i m p o r t j a v a mat h *,
17

i s p u b l i c c l a s s C e r t l s s u e r i mp l e me n t s S e r i a l i z a b l e
19 {

20 p r i v a t e Ke y P a i r m . k e y s ,
21 p r i v a t e X 5 0 9 C e r t i f i c a t e m_cer t ,
22
23 p u b l i c C e r t l s s u e r (Ke y Pa i r k e y s , X 509 Ce r t i fi c a t e c e r t)
24

25 m_keys — keys
26 m . c e r t = c e r t

i
27

28

29

30

31

32

33

34

35

i

p u b l i c P u b l i c Ke y g e t P u b h c ()

r e t u r n m_keys g e t P u b l i c () ,

p u b l i c X 5 0 9 C e r t i f i c a t e g e t C e r t ()

r e t u r n m . c e r t ,

p u b l i c b y t e [] p r o c e s s C e r t i fi c a t e R e q u e s t (by te [] r e q u e s t)
38

39

40

41 t r y

42 {
43 C e r t i f i c a t e R e q u e s t c e r t . r e q u e s t = new Ce r t l fi c a t e R e q u e s t (r e q u e s t),
44

45 Name s u b j e c t = c e r t . r e q u e s t g e t S u b j e c t () ,
46 P u b l i c Ke y pk = c e r t . r e q u e s t g e t P u b l i c K e y () ,
47

48 S t r i n g 1 = new S t r i n g () ,
40 1 - f = Sys t em c u r r e n t T i m o M i l l i s () ,

117

50 j

si SecureRandom sr = new SecureRandom(1 g e t B y t e s ()) ,
52 S t r i ng s e r i a l = new S t r i ng () ,
53 s e r i a l + = sr ne x t Lo n g () ,
54

55 i a i k x509 X 5 0 9 C e r t i f i c a t e t . c e r t
56 = new lai k x509 X 5 0 9 C e r t i f i c a t e (m- cer t get Encoded ()) ,
5 7 i a i k asnl s t r u c t u r e s Name i s s u e r
58 = (i a i k asnl s t r u c t u r e s Name) t _ce r t ge t Subj ec t DN () ,
59

eo i a i k x509 X 5 0 9 C e r t i f i c a t e ce r t = new i a i k x509 X 5 0 9 C e r t i f i c a t e () ,
61 c e r t s e t l s s u e r D N (i s s u e r) ,
62 c e r t s e t S u b j e c t D N (s u b j e c t),
es c e r t s e t P u b l i c K e y (p k) ,
64 ce r t s e t S e r i a l N u m b e r (new B i g l n t e g e r (s e r i a l)) ,
65 Gr e g o r i a n C a l e n d a r dat e = (G r e g o n a n C a l e n d a r) Ca l enda r g e t l n s t a n c e () ,
ee da t e add (Ca l e n d a r MONTH, - 1) ,
67 ce r t set Va l i d No t Be f o r e (da t e g e t T i m e ()) ,
68 da t e add (Ca l e n d a r MONIH, 5) ,
69 ce r t s e t V a l i d N o t Af t e r (d a t e g e t T i m e ()) t
70 c e r t s ign (Algor i t hmID sha l Wi t hRSAEncr ypt i on , m.keys g e t P r i va t e ()) ,
71

72 r e t u r n ce r t t oByt eAr r ay () ,
73 }

74 ca t ch (Except i on e)
75 { I

76 e p r i n t S t a c k T r a c e () ,

}
78 r e t u r n nul l ,
79 }

80 }

118

B 2 3 Client java
i p a c k a g e p k i ,

2
3 i m p o r t p k i * ,

4

s i m p o r t j a v a s e c u r i t y *,
e i m p o r t j a v a x c r y p t o spec *,
7 i m p o r t j a v a x c r y p t o *,

s i m p o r t j a v a 1 0 * ,

9 i m p o r t i a i k p k c s p k c s l O C e r t i f i c a t e R e q u e s t ,

l o i m p o r t l a i k a s n l s t r u c t u r e s * ,

u i m p o r t l a i k a s n l * ,

i 2 i m p o r t j a v a s e c u r i t y c e r t * ,

13

i 4 p u b l i c c l a s s C l i e n t i mp l e me n t s S e r i a l i z a b l e
15 {

16 p r i v a t e Ke y Pa i r m. keys = n u l l ,
17 p r i v a t e X 5 0 9 C e r t i f i c a t e m . c e r t = n u l l ,
is p r i v a t e X 5 0 9 C e r t i f i c a t e c a . c e r t = n u l l ,
19

20 p u b l i c C l i e n t ()
21 {
22 / / C a s e 1

23 }

24

25 p u b l i c C l i e n t (S t r i n g p a s s p h r a s e , S t r i n g f i l e n a m e , S t r i n g c a f i l e n a m e)
26 {

27 t r y
28 {

29 F i l e l n p u t S t r e a m f i s = new F i l e I n p u t S t r e a m (f i l e n a m e + ” c r t ”),
30 Byt eAr r ayOut put St r eam bt = new Byt eAr r ayOut pu t St r eam () ,
31

32 i n t b = fi s read () ,
33

34 whi l e (b ' = — 1)
35 {

36 bt wr i t e (b),
37 b = f l s read () ,

38 }

30

40 f i s c l o s e () ,

41 bt c l ose () ,
42

43 byte [] c e r t . b y t e s = bt t oByt eAr r ay () ,
44 f i s = new F i l e l n p u t S t r e a m (ca f i l e na me + ” c r t ”),
45 bt = new Byt eAr r ayOut pu t St r eam () ,
46

47 b = f i s read () ,
48

48 whi le (b ' = - 1)

119

I

50
51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
67

68
69

70

71

72

73

74

75

76

77

78

79

80
81

82

83

84

85

86
87

88
89

90

91

92

93

94

95

96

97

98

99

)

{
bt wr i t e (b),
b = f i s read () ,

}

f i s c l ose () ,
bt c l ose () ,

byt e [] c a c e r t - b y t e s = bt to Byte Ar r ay () ,
f i s = new F i l e l n p u t S t r e a m (f i l ename + ” k e y ”),
bt = new Byt eAr r ayOut put St r eam () ,

b = f i s read () ,

whi le (b f= — 1)
{

bt wr i t e (b),
b = f i s r ead () ,

}

byte [] i v . b y t e s = ” t h i s is the i v ” g e t B y t e s () ,
Secre tKeySpec sks = new Secre tKeySpec (pa s s p h r a s e g e t B y t e s () , 0, 8, ” DES”),
I vPa r a me t e r Spe c ap = new I vPa r a me t e r Spe c (i v_by t es , 0, 8),

Ci pher c = Ci pher g e t l n s t ance (” DES/CBC/PKCS5Padding”),
SecureRandom sr = new SecureRandom(” This is a very bad s e e d ” g e t B y t e s ()) ,
c i n i t (Ci phe r DECRYPT-MODE, s k s , ap , s r) ,

byt e [] f i n a l _ b y t e s = c d o F i n a l f b t t oByt eAr r ay ()) ,

By t e Ar r a y l npu t S t r e a m bai s = new By t e Ar r a y l npu t S t r e a m (f i n a l - b y t e s),
O b j e c t l n p u t S t r e a m ois = new O b j e c t l n p u t S t r e a m (ba i s),

KeyPai r kp = (K e y P a i r) o i s r e a d Ob j e c t () ,
C e r t i f i c a t e F a c t o r y cf = C e r t i f i c a t e F a c t o r y ge t l ns t ance (” X509 ”),
By t e Ar r a y l npu t S t r e a m cba i s = new Byt e Ar r a y l npu t S t r e a m (c e r t _ b y t es),
X509 Cer ti fi c a t e ce r t — (X5 0 9 Ce r ti f i c a t e) cf ge ne r a t e C e r t 1 f i c a t e (cba i s),

c ba i s = new By t e Ar r a y l npu t S t r e a m (c a c e r t - b y t e s),
X 5 0 9 C e r t i f i c a t e c a c e r t — (X 5 0 9 C e r t i f i c a t e) cf g e n e r a t e C e r t 1 f i c a t e (cba i s),

c e r t v e r i f y (c a c e r t g e t P u b h c Ke y ()) ,
m- cer t = ce r t ,
m-keys = k p ,
c a . c e r t = c a c e r t ,

}
ca t ch (Except i on e)

{
e p n n t S t a c k T r a c e () ,

120

100

101

102

103

104

105

106

107

108

109

110
111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

}
}

pub l i c Cl i e n t (by t e [] c e r t B y t e s , byt e [] ke y p a i r , S t r i n g p a s s p h r a s e)
{

t r y

{
byte [] i v_by t e s = ’’ t h i s is the i v ” g e t B y t e s () ,
Secr e t KeySpec sks = new Secre t KeySpec (pa s s p h r a s e g e t B y t e s () , 0, 8, ” DES”),
I v P a r a me t e r S p e c ap = new I vPa r a r ae t e r Spec (i v_by t es , 0, 8),

Ci pher c = Ci pher get I n s t a n c e (” DES/CBC/PKCS5Padding ”),
SecureRandom sr = new SecureRandom(” This is a very bad s e e d ” g e t B y t e s ()) ,
c i m t (C i p h e r DECRYPT-MODE, s k s , ap , s r) ,

byt e [] f m a l . b y t e s = c doFi na l (k e y p a i r),

By t e Ar r a y l npu t S t r e a m bai s = new By t e Ar r a y l npu t S t r e a m (f i n a l . b y t e s),
O b j e c t l n p u t S t r e a m oi s = new O b j e c t l n p u t S t r e a m (bai s),

KeyPai r kp = (K e y P a i r) o i s r e a d Ob j e c t () ,
C e r t i f i c a t e F a c t o r y cf = C e r t i f i c a t e F a c t o r y g e t l n s t a n c e (” X509 ”),
By t e Ar r a y l npu t S t r e a m c ba i s = new By t e Ar r a y l npu t S t r e a m (c e r t B y t e s),
X 5 0 9 C e r t i f i c a t e ce r t = (X 5 0 9 Ce r t i f i c a t e) cf g e n e r a t e C e r t i f i c a t e (cba i s),

m. ce r t = ce r t ,
m.keys = k p ,

}
ca t ch (Except i on e)

{
e p r i n t S t a c k T r a c e () ,

}
}

pub l i c KeyPai r g e n e r a t e Ke y P a i r (i n t l en)

{
t r y
{

S t r i n g seed = new S t r i n g () ,
seed + = System c u r r e n t T i m e M i l l i s () ,
SecureRandom se c . r a ndom = new SecureRandom(seed g e t B y t e s Q) ,

Ke y P a i r Ge n e r a t o r key. gen = Ke y P a i r Ge n e r a t o r g e t l n s t a n c e (” RSA”),
key-gen i n i t i a l i z e (l en , s e c . r a ndom),
m.keys = key-gen g e n e r a t e Ke y P a i r () ,

}
ca t ch (Except i on e)

{
e p r i n t S t a c k T r a c e ()

121

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

190

r e t u r n m- k e y s ,
}

pub l i c byt e [] g e n e r a t e C e r t i f i c a t e R e q u e s t (by t e [] name)

{
t r y

{
i f (m_keys — — n u l l)

{
g e n e r a t e K e y P a i r (5 1 2) ,

}
Name n = new Name (name) ,
C e r t i f i c a t e R e q u e s t c = new Ce r t i f i c a t e R e q u e s t (m.keys g e t P u b l i c () , n),
c s ign (Al g o n t h mI D sha l Wi t hRSAEncr ypt i on , m.keys g e t P r i v a t e ()) ,

by t e [] by t e s = c t oByt eAr r ay () ,

r e t u r n b y t e s ,

}
ca t ch (Except i on e)

{
e p n n t S t a c k T r a c e () ,
r e t u r n nul l ,

}
}

pub l i c void s e t C e r t i f i c a t e (byt e [] c , byt e [] ca)

{
t r y

{
C e r t i f i c a t e F a c t o r y cf = Cer ti fi c a t e F ac t o r y g e t l n s t a n c e (” X509 ”),
By t e Ar r a y l npu t S t r e a m bai s = new By t e Ar r a y l n p u t S t r e a m (c),
X5 0 9 Ce r ti f i ca t e ce r t = (X 5 0 9 C e r t i f i c a t e) cf ge n e r a t e C e r t i f i c a t e (bai s),

ba i s = new Byte Ar r a y l npu t S t r e a m (ca),
X 5 0 9 C e r t i f i c a t e c a c e r t = (X 5 0 9 C e r t i f i c a t e) cf g e n e r a t e C e r t i f i c a t e (bai s),

s e t C e r t i f i c a t e (c e r t , c a c e r t),

}
ca t ch (Except i on e)
{

e p r i n t S t a c k T r a c e () ,
}

}

pub l i c void s e t C e r t i f i c a t e (X5 0 9 Cer 11 f i c a t e c , X50 9 Cer ti f i c a t e ca) t h r ows Except ion

{
c v e r i f y (c a g e t P u b h c Ke y ()) , * ^

}

122

200
201

202
203

204

205

206

207

208

209

210
211
212
213

214

215

216

217

218

219

220
221
222
223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

246

246

247

248

249

i f (c ge t Pub l i cKey () equa l s (m.keys g e t P ubl i c ()))

{
m- cer t = c ,

}
el se

{
t hrow new Except i on (” In va l i d c e r t ”),

}
}

\
pub l i c void s t o r e (S t r i n g pas s ph r a s e , S t r i ng p r e f i x)

{
t r y

{

i f (m.keys 1 = nul l)

{
Byt eAr r ayOut put St r eam baos = new Byt eAr r ayOut pu t St r eam (),
Ob j e c t Ou t pu t S t r e a m oos = new Ob j e c t Ou t pu t S t r e a m (baos),

oos w r i t e O b j e c t (m.keys),
oos c l ose (),

Secre t KeySpec new-sks = new Secre t KeySpec (pa s s p h r a s e g e t B y t e s () , 0, 8, ” DES”),
SecureRandom sr = new SecureRandom(” t h i s is a very bad s e e d ” g e t B y t e s ()) ,
byt e [] l v . b y t e s = ’’ t h i s is t he i v ” g e t B y t e s () ,

I vPa r a me t e r Spe c ap — new I vPa r a me t e r Spe c (î v - b y t es , 0 ,8),
Ci pher c = Ci pher g e t l n s t ance (” DES/CBC/PKCS5Padding”),
c l n 1 1 (Ci pher ENCRYPT.MODE, new. sks , a p , sr),
byt e [] by t e s = c d o F i n a l f b a o s t oByte Array ()) ,

F i l e Ou t p u t S t r e a m fos = new F i l e Ou t p u t S t r e a m (new S t r i n g (p r e f i x 4- ” k e y ”)) ,
fos wr i t e (byt es),

fos c l ose () ,
}

l f (m. ce r t 1 = n u l l)
{

F i l e Ou t p u t S t r e a m fos = new F i l e O u t p u t S t r e a m (new S t r i n g (p r e f i x + ” c r t ”)) ,
fos wr i t e (m_ c e r t get Encoded ()) ,
fos c l ose (),

}
}
ca t ch (Except i on e)

{
e p r i n t S t a c k T r a c e () ,

}

123

!

250

251

252

253

254

265

256

257

258

259

200
261

202
263

204

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

268

289

290

291

292
293

294

295

296

297

298

S83

}

pub l i c X5 0 9 C e r t i f i c a t e g e t C e r t ()

{
r e t u r n m. ce r t ,

}

pub l i c KeyPai r getKeys ()

{
r e t u r n m.keys ,

}

pub l i c s t a t i c b y t e [] load C A Cert (S t r i n g f i l e n a me)

{
t r y
{

F i l e l n p u t S t r e a m fis = new Fi l e l n p u t S t r e a m (fi l e n a me + ” c r t ”),
By t eAr r ayOut pu t St r eam bt = new Byt eAr r ayOut pu t St r eam () ,

in t b — fls read () ,

whi le (b 1 = - 1) ^

{
bt w r i t e (b) ,
b = f i s read () ,

}

f i s c l ose () ,
bt c l ose () ,

byt e [] c e r t . b y t e s = bt t oByt eAr r ay () ,

r e t u r n c e r t - b y t e s ,

}
ca t c h (Except i on e)

{
e p n n t S t a c k T r a c e () ,
r e t u r n nul l ,

}
}

pub l i c s t a t i c S t r i n g getCAFi leName ()
{

t r y

{
LineNumberReader l nr =

new LineNumberReader (new I npu t S t r e amRea de r (System i n)) ,
System out p r i n t l n (” Ent e r t he l o c a t i o n of t he CA c e r t i f i c a t e ”),
S t r i ng c a c e r t f i l e n a m e = lnr r e a d L i n e () ,

124

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

34£>

r e t u r n c a c e r tfi 1 en ame ,

ca t ch (Except i on e)

{
e p r i n t S t a c k T r a c e () ,
r e t u r n nul l ,

}
}

pub l i c s t a t i c byte [] gefcName()

{
t r y

{
LineNumberReader Inr =

new Li neNumberReader (new I npu t S t r e amRea de r (System i n)) ,

System out p r i n t l n (” Enter coun t r y code e g I E ”),
S t r i ng cc = l nr r e a d L i n e () ,
System out p r i n t l n (” Ent e r l o c a l i t y e g D u b l i n ”),
S t r i n g loc = l nr r e a d L i n e () ,
System out p r i n t l n (” Ent e r o r g a n i z a t i o n e g DCU”),
S t r i ng org = l nr r e a d L i n e () ,
System out p r i n t l n (” Ent e r o r g a n i z a t i o n a l un i t e g POSTGRAD”),
S t r i ng un i t = lnr r e a d L i n e () ,
System out p ri n 11 n (” Ent e r common name e g John Doe”),
S t r i n g cn = l nr r e a d L i n e () ,

Name name = new Name () ,
name addRDN(Object ID c o u n t r y , cc),
name addRDN (Object ID l o c a l i t y , l o c) ,
name addRDN (Object ID o r g a n i z a t i o n , o r g) ,
name addRDN(Object ID o r g a m z at ion al Un 1 1 , u n i t) ,
name addRDN(Object ID commonName , cn),

r e t u r n name get Encoded () ,

}
ca t c h (Except i on e)
{

e p r i n t S t a c k T r a c e () ,
}
r e t u r n nul l ,

}

pub l i c s t a t i c S t r i ng get Pas s P h r a s e ()
{

t r y
{

LineNumberReader l nr =
new LineNumberReader (new I npu t S t r e amRea de r (System i n)) ,

}

125

/

3 5 0 System out p r i n t l n (” Enter your pa s s p h r a s e ”),
35 1 S t r i n g pp = Inr r e a d L i n e () ,
35 2

353 r e t u r n p p ,
35 4 }

35 5 ca t ch (Except i on e)
356 {

3 5 7 r e t u r n nul l ,
358 }

3 5 9 }

360

361 pub l i c s t a t i c S t r i n g g e t F i l e n a me ()
36 2 {

363 t r y
36 4 {

365 LineNumberReader l nr =
366 new Li neNumberReader (new I npu t S t r e amRea de r (System i n)) ,
367

368

369 System out p r i n tl n (” Ent e r the p r e f i x for a l l c l i e n t f i l e s ”),
370 S t r i ng pp = lnr r e a d L i n e () ,
371

37 2 r e t u r n p p ,
37 3 }

3 7 4 ca t ch (Except i on e)
3 7 5 {

376 r e t u r n nul l ,
377 }

3 7 8 }

37 9 }

126

Appendix C

Example 2 code

C .l w code

C.2 w code

2 p k i * ,

3 j ava s e c u r i t y ce r t *,
4 j a v a s e c u r i t y * ,

s j a v a x c r y p t o s p e c * ,

6 j a v a x c r y p t o * ,

•o
8
9System Sys

10 {
11 Channel a , b , c ,w
12
13 (Cer t Aut h (a , b , c) | 1 C l i e n t C r e a t e C e r t (a)
14 | S e r v i c e P r o v i d e r (b , w) | 1 C l i e n t S e r v i c e R e q u e s t (c , w))
15}
16
17 Proces s Cer t Aut h (c e r t , s p Ce r t , sp Cer t Out)
18 {
19 < g e t I n f o >() (f i l ename , pa s s ph r a s e)
20 <c r e a t e CA>(f i l e n a me , pa s s ph r a s e) (ca)
21 < g e t l s s u e r > (c a) (i)
22
23 (' I s s u e r (c e r t , i)| S e r v i c e P r o v i d e r l s s u e r (s pCer t , 1 , s p C e r t O u t))
24}
25 ^
2e P r o c e s s I s s u e r (i n , i s s u e r)
27 {

28 i n (c ha nne l)
29

127

30 channe l (c e r t Re q u e s t)
31

32 < i s s u e C e r t > (j s s u e r , cer t Re ques t)(c e r t)
33

34 c h a n n e l Cc e r t >
35 0

36 }

37

3sProcess Servi c e P r o v i d e r I s sue r (in , i s s u e r , o u t)
3 9 {

40 in (channe l)
41

42 channe l (c e r t Re q u e s t)
43

44 < i s s u e C e r t > (i s s u e r , c e r t Re q u e s t)(ce r t)
45

46 c h a n n e l Cc e r t >
4 7 (1 D i s t n b u t e C e r t (out , c e r t))
4 8 }

49

50 Process D i s t n b u t e C e r t (ou t , c e r t)
51 {

52 o u t < c e r t >

53 0

5 4 }

55

56Process S e r v i c e P r o v i d e r (chan ¡work)
57 {

58 Cl oadCACer t >() (c a c e r t)
59

60 < c r e a t e C e r t i f i c a t e A n d R e q u e s t S P > (c a c e r t) (s p , r e q)

61

62 Channel tmp
63 chan<tmp>
64

65 tmp<req>
66
67 tmp(ce r t)
68
69 < s e t C e r t i f i c a t e > (c e r t , sp , c a c e r t) (newSP)
70 (1 S e r v l c e r (work , newSP))

72

73Process Ser vi cer (work , s e 1 f)
74 {

75 work (cha nne l)
76 channe l (c l i e n t C e r t)
77 channe l (p a d)
78

79 < p r o c e s s C l i e n t R e q u e s t > (c l i e n t C e r t , p a d , s e I f) (r a n d A)

128

s i < c r e a t e S e r v i c e R e s p o n s e > (c l i e n t C e r t , s e l f , r a n d A) (p a c 2 , r a n d B)

82

83 c h a n n e l < p a c 2 >

84

85 c h a n n e l (r e s)

86
s r < p r o c e s s C l i e n t R e s p o n s e > (c l i e n t C e r t , s e l f , r e s , r a n d B) (e n c K e y , k e y)

88
89 c h a n n e l < e n c K e y >

90

9 1 C h a n n e l s e r v i c e 1 , s e r v i c e 2

9 2

93 c h a n n e l < s e r v i c e 1 >

94 c h a n n e l < s e r v i c e 2 >

9 5

9 6 + (s e r v i c e l (a) (S e r v i c e l (a))) + (s e r v i c e 2 (b) (S e r v i c e 2 (b)))

9 7 }

98

99 P r o c e s s S e r v i c e l (i n)

1 0 0 {

1 0 1 C c r e a t e R e s p o n s e l > () (r e s)

1 0 2 i n < r e s >

103 0

104 }

105

l o e P r o c e s s S e r v i c e 2 (i n)

1 0 7 {

1 0 8 C c r e a t e R e s p o n s e l > () (r e s)

1 0 9 i n < r e s >

1 1 0 0

1 1 1 }

1 1 2

1 1 3 P r o c e s s C l i e n t C r e a t e C e r t (c h a n)

114 {

1 1 5 < l o a d C A C e r t > () (c a c e r t)

1 16

1 1 7 C c r e a t e C e r t i f i c a t e A n d R e q u e s t > () (c l i e n t , r e q)

118

1 1 9 C h a n n e l t m p

1 2 0 c h a n < t m p >

1 2 1

1 2 2 t m p < r e q >

123

1 2 4 t m p (c e r t)

125

1 2 6 < s e t C e r t i f i c a t e > (c e r t , c l i e n t , c a c e r t) (n e w C l i e n t)

1 2 7 < s t o r e C l i e n t > (n e w C l i e n t) ()

12 8

129 0

80

129

130 }

131

i32process C l i e n t S e r vi c e Re q u e s t (ce r t , work)
133 {

1 34 C l o a d C A C e r t > () (c a c e r t)

1 3 5 C l o a d S e l f > (c a c e r t) (s e I f)

13 6

1 3 7 cert (spCert)
138

1 39 < v e n f y C e r t I s s u e r > (c a c e r t , s p C e r t) ()

140

1 4 1 / / --S t a r t P r o t o c o l

142 C c r e a t e C h e n t R e q u e s t > (s p C e r t , s e 1 f) (p a c k e t l , r a n d A)

143

144 C h a n n e l c h a n

145

146 work<chan>
147

148 < g e t O w n C e r t > (s e 1 f) (o w n C e r t)

149 c h a n < o w n C e r t >

i s o c h a n < p a c k e t l >

151

1 5 2 c h a n (p a c k e t 2)

153

1 54 < p r o c e s s S e r v i c e R e s p o n s e > (p a c k e t 2 , s p C e r t , s e l f , r a n d A) (p a c k e t 3)

155

156 c h a n < p a c k e t 3 >

157

158 c h a n (e n c K e y)

159

160 c h a n (s e r v i c e l)

1 61 c h a n (s e r v i c e 2)

162

163 < e x t r a c t K e y > (s p C e r t , e n c K e y , s e 1 f) (k e y)

164

165 < w h i c h S e r v i c e > (s e r v i c e l , s e r v i c e 2) (s e r v i c e)

166

167 C h a n n e l c h a n

168

169 s e r v i c e < c h a n >

170

1 7 1 c h a n (r e s p)

172

1 7 3 < / & S y s t e m o u t p r m t l n ((S t r i n g) r e s p) , & / > (r e s p) ()

174 0

175 }

176

1 7 7 C o d e w h i c h S e r v i c e (s i , s 2) (s)

178 {

1 79 j h

130

v

1

180 j f (Cl i en t c h o o s e F i r s t ())
181 S = S1 ,
182 e l se
18 3 s = s 2 ,
184 & /

185 }

186
187Code e x t r a c t Ke y (s pCe r t , encKey , s) (k)
188 {
189 / &

190 Cl i e n t c = (C l i e n t) s ,
191
192 byt e [] ks = c e x t r a c t Ke y ((byt e []) s pCer t ,(byt e []) encKey),
193
194 k = ks ,
195 & /

196 }

197

i98Code p r o c e s s S e r v i c e Re s p o n s e (pac , c e r t , se 1 f } rand) (r e t u r n P a c)
199 {

200 /&
201 Cl i en t c = (Cl i en t) s e l f ,
202
203 r e t u r n P a c = c c r e a t e C l i e n t R e s p o n s e ((byt e []) ce r t ,(byt e (]) pac ,(Long) r and),
2 0 4 & /

20 5 }

20 6

207 Code getOwnCer t (se 1 f)(c e r t)
2 0 8 {

2 0 9 / &

210 PkiBase base = (P k i Ba s e) se 1 f ,
211
2 12 c e r t = base g e t C e r t B y t e s () ,
213 &/
214 }
21 5

2 ieCode c r e a t e C l i e n t R e q u e s t (p r o v i d e r , se 1 f)(packet , r and)
2 1 7 {

218 f h
21 9 Cl i e n t c = (Cl i en t) s e l f ,
220 Long 1 = new Long(Sys t em c u r r e n t T i m e M i l l i s ()) ,
221
222 packet = c c r e a t e R e q u e s t ((byt e []) p r o v i d e r , 1),
223 rand = 1 ,
22 4 & /

2 2 5 }

226
2 2 7 Code v e r i f y C e r t I s s u e r (c a c e r t , s p C e r t) ()
2 2 8 {

2 2 9

131

\

230 Cl i e n t v e r i f y C e r t I s s u e r ((b y t e []) c a c e r t >(byte []) s p C e r t),
2 3 1 & : /

23 2 }

233
234 Code l o a d S e l f (c a c e r t)(se l f)
235 {
2 3 6 l&C

237 S t r i ng pp = Cl i e n t g e t P a s s P h r a s e () ,
238 S t r i ng fn = Cl i e n t g e t F i l e na me () ,
2 3 9

240 Cl i e n t c = new Cl i e n t (pp , fn ,(byt e []) c a c e r t),
241

242 s e l f = c,
2 4 3 & /

244 }
2 4 5

246Code i s s u e C e r t (i s s u e r , r e q u e s t)(ce r t)
2 4 7 {

2 4 8 / &

249 C e r t l s s u e r i = (C e r t l s s u e r) i s s u e r ,
250 byt e [) req = (byt e []) r e q u e s t ,
251

252 c e r t = l p r o c e s s C e r t i f i c a t e R e q u e s t (req) ,

253 &/
25 4 }

25 5

256Code i s s u r e C e r t (i s s u e r , r e q) (c e r t)
2 5 7 {

2 5 8 / &

259 C e r t l s s u e r l = (Ce r t I s s u e r) 1 ss u er ,
260 byt e [] t h e - r e q u e s t = (by t e []) r eq ,
261

262 c e r t = p r o c e s s C e r t i f i c a t e R e q u e s t (t h e - r e q u e s t),
26 3 & /

2 6 4 }

2 6 5

266 Code g e t l s s u e r (c a) (i s s u e r)
267 {

26 8 /&E

269 CA theCA ~ (CA)ca,
270 C e r t l s s u e r i = theCA c r e a t e l s s u e r () ,
271
272 i s s u e r = l ,

2 7 3 & /

2 7 4 }

275

276 Code creat eCA (fn , pp) (ca)
27 7 {

27 8 / &

279 CA theCA = new CA((St r i ng) fn , (S t r i ng) pp),

132

280 ca = theCA,
281 &/
2 8 2 }

283
284 Code g e t ln fo () (fn , pp)
2 8 5 {

2 8 6 / &

287 t r y

2 8 8 {

289 LineNumberReader l nr =
290 new LineNumberReader (new I npu t S t r e amRea de r (System i n)) .
291 System out p r i n 11 n (” Enter the ca name”),
292 fn = l n r r e a d L i n e () ,
293 System out p r i n t l n (” Ent e r the p a s s p h r a s e ”),
294 pp = l nr r e a d L i n e () ,
295 }
296 ca t ch (Except i on e)
2 9 7 {

298 e p r m t S t a c k T r a c e () ,
2 9 9 }

3 0 0 & /

301 }

3 0 2

3 0 3 Code c r e a t e Re s p o n s e l () (res)
3 0 4 {

3 0 5 / &

306 res = new S t r i ng (” RES1 ”),
3 0 7 & /

3 0 8 }

30 9

310 Code c r e a t e Re s pons e 2 () (res)
311 {

3 1 2 / &

313 res = new S t r i ng (” RES2”),
3 1 4 & /

3 1 5 }

316
317 Code p r o c e s s C h e n t Re s pons e (c e r t , s e l f , pac , r a n d) (ekey , k e y)
3 1 8 {

3 1 9 / &

320 SP sp = (SP) s e l f ,
321

322 byt e [] keyBytes = sp p r o c e s s C l l e n t R e s p o n s e ((byt e []) ce r t ,(byt e []) pac ,(Long) rand),
32 3

324 ekey = sp e nc r y p t Ke y By t e s ((byt e []) c e r t , k e yBy t e s) ,
325 key = keyBytes ,
3 2 6 & /

3 2 7 }

32 8

3 2 9 Code c r e a t e S e r v i c e R e s p o n s e (cc , s , r A) (p , r B)

133

3 3 0 {

331 / &

3 3 2 SP S p = (SP) S ,
333 Long 1 = new L o ng (Sy s t e m c u r r e n t T i m e M i l l i s ()) ,
3 3 4

335 p = sp c r e a t e S e r v i c e R e s p o n s e ((Long) rA , 1 ,(byt e []) cc),
3 3 6 rB = 1 ,

3 3 7 & /

3 3 8 }

3 3 9

340 Code p r o c e s s Cl i e n t Re q ue s t (c l i e n t C e r t , packet , s e l f) (rand A)
341 {

3 4 2 / &

343 SP sp = (S P) s e l f ,
344 randA = sp p r o c e s s C l i e n t R e q u e s t ((byte []) packet , (byte []) c l l e n t C e r t),
3 4 5 & /

3 4 6 }

34 7

348 Code c r e a t e C e r t i f i c a t e A n d R e q u e s t S P (c a) (r e t , r e q)
3 4 9 {

3 5 0 / &

351 SP sp = new SP((b y t e []) ca),
35 2

353 byt e [] tmp = sp g e n e r a t e C e r t i f i c a t e R e q u e s t () ,
35 4

355 r e t = sp ,
356 req — tmp,
3 5 7 & /

3 5 8 }

35 9

36oCode l o a d C ACe r t () (c e r t)
361 {

3 6 2 / &

3 6 3 S t r i n g f i l ename — Cl i e n t getCAFi leName () ,
364 byte [] c e r t - b y t e s = Cl i e n t l oa dCACe r t (f i l ename),
365 ce r t = c e r t . b y t e s ,
3 6 6 & /

3 6 7 }

36 8

36 9

370Code c r e a t e C e r t i f i c a t e A n d R e q u e s t () (c l i e n t , r eq)
371 {

3 7 2 / &

373 Cl i e n t c = new Cl i e n t () ,
374 byt e [] name = Cl i e n t ge t Name() ,
37 5

376 b y t e [j tmp = c g e n e r a t e C e r t i f i c a t e R e q u e s t (n a me) ,
37 7

378 c l i e n t = c ,
379 req — tmp,

134

)

3 8 0 & /

381 }

38 2

383 Code s e t C e r t i f i c a t e (c e r t , c l i e n t , c a c e r t)(new Cl i en t)
3 8 4 {

3 8 5 / &

386 t r y
3 8 7 {

388 byte [] theCACert = (byte []) c a c e r t ,
3 8 9

390 byte [] t h e C e r t = (byt e []) ce r t ,
391 PkiBase c = (PkiBase) cl i en t ,
3 9 2

393 c s e t C e r t i f i c a t e (t h e C e r t , theCACert),
39 4

395 newCl i en t = c ,
3 9 6 }

397 ca t ch (Except i on e)
3 9 8 {

399 e p r i n t S t a c k T r a c e (),
4 0 0 }

401 & /

4 0 2 }

4 0 3

4 0 4 Code s t o r e C h e n t (c l i e n t) ()
4 0 5 {

406 /&
407 C l i e n t c = (C h e n t) c l i e n t ,
40 8

409 S t r i n g pp = Cl i en t g e t P a s s P h r a s e () ,
4 1 0 S t r i ng fn = Cl i e n t ge t F i l e n a me (),
411

412 c s t o r e (pp , fn),
4 1 3 & /

4 1 4 }

135

C.3 Java code
f.

C 3 1 CA java
i p a c k a g e p k i ,
2
3 i m p o r t pki * ,
4

s i m p o r t j a v a s e c u r i t y c e r t *,
6 i m p o r t j a v a s e c u r i t y *,
7 i m p o r t j a v a x c r y p t o spec *,
s i m p o r t j a v a x c r y p t o *,
g i m p o r t j a v a 10 *,

l o i m p o r t l a i k pkcs pkcs l O C e r t i f i c a t e R e q u e s t ,
n i m p o r t l a i k a s n l s t r u c t u r e s *,
i2 i m p o r t l a i k a s n l *,
13
14 i m p o r t j a v a u t i l * ,
i 5 i m p o r t j a v a mat h *,
16
17

i s p u b l i c c l a s s CA i mp l e me n t s S e r i a l i z a b l e
19 {

20 p r i v a t e Ke y P a i r m_ k e y s ,
21 p r i v a t e X 5 0 9 C e r t i f i c a t e m_cer t ,
22 p r i v a t e S t r i n g m_ f i l en ame ,
23
24 p u b l i c C A (S t r i n g f i l e n a m e , S t r i n g pp)
25 {

26 m . f i l e n a m e = f i l e n a m e ,
27 l o a d l n f o (p p) ,
28 }
29
30 p u b l i c P u b l i c Ke y g e t P u b l i c ()
31 {
32 r e t u r n m_keys g e t P u b l i c () ,
33 }

34

35 pub l i c X 5 0 9 C e r t i f i c a t e g e t C e r t ()
36 {

37 r e t u r n m_cer t ,
38 }

39

40 p u b l i c vo i d l o a d l n f o (S t r i n g pp)
41 {
42 t r y
43 {

44 F i l e l n p u t S t r e a m f i s =
45 new F i l e l n p u t S t r e a m (m_f i l e name + ”
4 6

47 i n t b = fi s r e ad ()

\

i n f o ”),

136

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
67

68
69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86
87

88
89

9 0

91

92

93

94

95

96

97

Byt eAr r ayOut pu t St r eam baos = new Byt eAr r a yOut pu t St r e am () ,

whi le (b ' = - 1)

{
baos wr i t e (b),
b = f i s read () ,

}
//DECRYPT
byte [] l v . b y t e s = ’’ t h i s is t he i v ” g e t B y t e s () ,
Secre t KeySpec sks = new Secre t KeySpec (pp g e t B y t e s () , 0, 8, ” DES”),
I vPa r a me t e r Spe c ap = new I vPa r a me t e r Spe c (i v_by t es , 0, 8) ,

Ci pher c = Ci pher g e t l n s t a n c e (”DES/CBC/PKCS5Padding”),
SecureRandom sr = new SecureRandom (” Thi s is a very bad s e e d ” g e t B y t e s ()) ,
c i n i t (Ci phe r DECRYPTJVIODE, s k s , ap , s r) ,

byt e [] f i n a l . b y t e s = c d o F i n a l (b a o s t oByt eAr r a y ()) ,

By t e Ar r a y l npu t S t r e a m bai s = new By t e Ar r a y l npu t S t r e a m (f i n a l - b y t e s), ,
O b j e c t l n p u t S t r e a m oi s = new Ob j e c t l n p u t S t r e a m (ba i s),

m-keys = (K e y P a i r) o i s r e a d Ob j e c t (),
m- cer t = (X5 0 9Ce r t i fi c a t e) o l s r e a d Ob j e c t () ,

}
ca t ch (Except i on e)

{
e p r i n t S t a c k T r a c e () ,

}
}

pub l i c s t a t i c void gene r a t e AndSt o r e (S t r i n g pa s s p h r a s e , S t r i n g f i l e na me)

{
t r y

{
St r i ng seed = new S t r i ng () ,
seed + = System c u r r e n t T i me Mi l l i s () ,

SecureRandom sec- r andom = new SecureRandom(seed g e t B y t e s ()) ,

Ke y P a i r Ge n e r a t o r key-gen = Ke y P a i r Ge n e r a t o r g e t l n s t a n c e (”RSA”),
key-gen i n i t i a l i z e (512, sec . r a ndom),
KeyPai r k e y . p a i r = key_gen g e n e r a t e Ke y P a i r () ,

i
Name n = new Name() ,
n addRDN(Object ID c o u n t r y , ” I E ”),
n addRDN(Objec t ID l o c a l i t y , ’’DUBLIN”),
n addRDN(Objec t ID o r g a n i z a t i o n , ” DCU”),
n addRDN(Objec t ID o r g a n i z a t i o n a l Un i t , ” PG”),
n addRDN (O bject ID commonName , ” CA”) ,

137

98

99

100

101

102
103

104

105
106

107

108
10 9

110
111
112
113

114

115

116

117

118

11 9

120
121
122
123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

14 3

144

145

146

147

i a i k x509 X 5 0 9 C e r t i f i c a t e ce r t = new i ai k x509 X 5 0 9 C e r t i f i c a t e () ,
ce r t s e t l s s u e r D N (n) ,
ce r t s e t S u b j e c t D N(n) ,
ce r t s e t P u b h c K e y (k e y . p a i r g e t P u b l i c ()) ,
ce r t s e t S e r i a l Nu mb e r (new B i g l n t e g e r (” 000000000001”)),
G r e g o r i a n C a l e n d a r da t e = (Gr e g o r i a n C a l e n d a r) Ca l enda r g e t l n s t a n c e () ,

da t e a d d (Ca l e n d a r MONTH, - 1) ,
ce r t s e t V a h d N o t B e f o r e (da t e g e t T i m e ()) ,
da t e add (Ca l e n d a r MONIH, 5) ,
c e r t s e t V a h d N o t Af t e r (da t e g e t T i m e ()) ,
c e r t s ign (Al gor i t hmID s ha l Wi t hRSAEncr ypt i on , k e y . p a i r g e t P r i v a t e ()) ,

Byte Array O u t pu t S t r eam baos = new Byte Array Out pu t S t ream () ,
Ob j e c t Ou t pu t S t r e a m oos = new O b j e c t O u t p u t S t r e a m (b a o s),

oos w r i t e O b j e c t (k e y _ p a i r) ,
oos wri t e O b j e c t (c e r t),
System out p r i n t l n (c e r t g e t C l a s s f) g e t Na me ()) ,
oos c l ose () ,

byte [] l v - b y t e s = ” t h i s is the i v ” g e t B y t e s () ,
Secre tKeySpec sks = new Secre tKeySpec (pa s s ph r a s e g e t B y t e s () , 0, 8, ” DES”),
I v Pa r a me t e r Spe c ap = new I vPa r a me t e r Spe c (i v . b y t e s , 0, 8) ,

Ci pher c = Ci pher g e t l n s t a n c e (” DES/CBC/PKCS5Padding”),
SecureRandom sr = new SecureRandom(” This is a very bad s e e d ” g e t B y t e s ()) ,
c m i t (Ci phe r ENCRYPTJVIODE, s k s , ap , s r) ,

byt e [] f i n a l . b y t e s = c d o F i n a l (b a o s t oByt eAr r a y ()) ,

F i l e Ou t p u t S t r e a m fos = new F i l e Ou t p u t S t r e a m (fi l e n a me + ” i n f o ”),
fos wr i t e (f i n a l - b y t e s) ,
fos c l ose () ,

fos = new F i l e O u t p u t S t r e a m (f i l ename + ” c r t ”),
fos w r i t e (c e r t t o B y t e A r r a y ()) ,
fos c l ose () ,

F i l e f = new F i l e (f i l e n a m e + ” c r l ”),
f c r e a t e Ne wFi l e () ,

}
ca t ch (Except i on e)

{
e p n n t S t a c k T r a c e () ,

}

138

154

165

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

pub l i c s t a t i c void p r i n t CAI nf o (S t r i ng pa s s ph r a s e , S t r i n g f i l e n a me)
{

t r y
{

F i l e l n p u t S t r e a m f i s = new F i l e l n p u t S t r e a m (f i l e name + ” i n f o ”),

i n t b = f i s read (),

By t eAr r ayOut pu t St r eam baos = new Byt eAr r ayOut pu t St r eam (),

whi le (b - 1)

{
baos w r i t e (b) ,
b — f l s read (),

}
//DECRYPT
byt e [] î v - b y t e s — ’’ t h i s is the î v" g e t B y t e s () ,
Secre t KeySpec sks = new Secre tKeySpec (pa s s ph r a s e g e t B y t e s () , 0, 8, ” DES”),
I vPa r a me t e r Spe c ap = new I vPa r a me t e r Spe c (î v _ b y tes , 0, 8),

Ci pher c = Ci pher get I ns t ance (” DES/CBC/PKCS5Padding ”),
SecureRandom sr = new SecureRandom(” This is a very bad s e e d ” g e t B y t e s ()) ,
c m i t (Ci phe r DECRYPT-MODE, s ks , a p , s r) ,

byt e [] f i n a l - b y t e s = c d o F i n a l (b a o s t oByt eAr r ay ()) ,

By t e Ar r a y l npu t S t r e a m bai s = new By t e Ar r a y l npu t S t r e a m (f i n a l - b y t e s),
O b j e c t l n p u t S t r e a m ois = new Ob j e c t l n p u t S t r e a m (ba i s),

KeyPai r kp = (K e y P a i r) o i s r e a d Ob j e c t () ,
Obj ec t c e r t = ois r e a d Ob j e c t () ,
System out p r i n t l n (c e r t g e t C l a s s Q g e t Na me ()) ,

System out p r i n t i n g ---”),
System out p r i n t l n (c e r t) ,
System out p r i n 11 n (---”),

}
ca t ch (Except i on e)
{

e p n n t S t a c k T r a c e () ,
}

}

pub l i c C e r t l s s u e r c r e a t e l s s u e r Q
{

r e t u r n new C e r t l s s u e r (m.keys , m_cer t),

}

}

139

198

199 p u b l i c s t a t i c voi d main (S t r i n g a r g s [])
200 {

201 CA g e n e r a t e A n d S t o r e (a r g s [0] , a r g s [l }) ,
202 CA p r i n t C Al n f o (a r g s [0] , a r g s (l j) ,
2 0 3 }

2 0 4 }

140

C 3 2 C ertlssuer java
i p a c k a g e p k i ,
2
3 i m p o r t pk i * ,
4

5 i m p o r t j a v a s e c u r i t y *, i
6 i m p o r t j a v a x c r y p t o spec *,
7 i m p o r t j a v a x c r y p t o *,
8 i m p o r t j a v a 10 *, <
Qi mpo r t l a i k pkcs pkcs l O C e r t i f i c a t e R e q u e s t ,

l o i m p o r t l a i k a s n l s t r u c t u r e s *,
n i m p o r t l a i k a s n l *,
i2 i m p o r t j a v a s e c u r i t y c e r t *,
13

14 i m p o r t j a v a u t i l * ,
1 5 i m p o r t j a v a ma t h *,
16

i 7 p u b l i c c l a s s C e r t l s s u e r i mp l e me n t s S e r i a l i z a b l e
18 {

19 p r i v a t e Ke y P a i r m- keys ,
20 p r i v a t e X 5 0 9 C e r ti fi c a t e m . c e r t ,
21
22 p u b l i c C er t l s s u e r (K e y P a u k e y s , X5 0 9 C er t i fi c a t e c e r t)
23

24 m- keys = keys
25 m . c e r t = c e r t
26

27

28

29

30

31

32

pub l i c Pu b h c Ke y g e t P u b l i c ()

r e t u r n m_keys g e t P u b l i c () ,

>ublic X 5 0 9 C e r t i fi c a t e g e t C e r t Q

r e t u r n m. ce r t ,

publ ic byte [] p r oc e s s Ce r t i f i c a t e R e q u e s t (by te [] r e q u e s t)
39

40 t r y
41 {

42 Ce r t i fi c a t e R e q u es t c e r t . r e q u e s t = new Cer ti fi c a t e Req ue s t (r e q u e s t)
43

44 Name s u b j e c t = c e r t . r e q u e s t g e t S u b j e c t () ,
45 Pu b h c Ke y pk = c e r t . r e q u e s t ge t Pub l i cKey () ,
46

47 S t r i n g 1 = new S t r i ng () ,
48 1 - f= System c u r r e n t T i m e M i l h s () ,

141

so SecureRandom sr = new SecureRandom(1 g e t B y t e s ()) ,
5 1 S t r i ng s e r i a l = new S t r i n g () ,
52 s e r i a l + = sr ne x t Lo n g () ,
53

54 i a i k x509 X 5 0 9 C e r t i f i c a t e t . c e r t =
&5 new i a i k x509 X 5 0 9 Ce r t i f i ca t e (m. c e r t get Encoded ()) ,
56 i a i k as n l s t r u c t u r e s Name i s s u e r =
57 (i a i k asnl s t r u c t u r e s Name) t _ce r t ge t Subj ec t DN () ,
58

59 i a i k x509 X 5 0 9 C e r t i f i c a t e ce r t = new i a i k x509 X 5 0 9 C e r t l f i c a t e () ,
eo ce r t s e t l s s u e r DN (i s s u e r) ,
61 ce r t s e t S u b j e c t D N (s u b j e c t),
62 c e r t s e t P u b l i c K e y (p k) ,
63 ce r t s e t S e r i a l Nu mb e r (new B i g l n t e g e r (s e r i a l)) ,
64 G r e g o n a n C a l e n d a r da t e = (Gr e g o r i a n C a l e n d a r) Ca l enda r g e t l n s t a n c e () ,
65 da t e add (Ca l e n d a r MONIH, - 1) ,
66 ce r t set Va l i d No t Be f o r e (dat e g e t T i m e ()) ,
67 da t e a d d (Ca l e n d a r MONIH, 5) ,
68 c e r t s e t V a h d N o t A f t e r (da t e g e t T i m e ()) ,
69 c e r t s i gn (A l g o r i t h mI D s h a l Wi t h R S A E n c r y p t i o n , m- keys g e t P r i v a t e ()) ,
70

71 r e t u r n ce r t t oByt eAr r ay () ,
72 }

73 ca t ch (Except i on e)
74 {

75 e p r i n t S t a c k T r a c e () ,
76 }

77 r e t u r n n u l l ,
78 }

7 9 }

142

C 3 3 Client java
i p a c k a g e p k i ,

2
3 i mpor t pki * ,
4

s i m p o r t j a v a s e c u r i t y *,
6 i mpor t j a v a s e c u r i t y i n t e r f a c e s * ,
Timpor t j a v a x c r yp t o spec *,
s i m p o r t j a va x c r yp t o *,
e i mpor t j a v a 1 0 * ,

l o i m p o r t l a i k pkcs pkcslO Ce r t i f i c a t e Requ es t ,
l i i m p o r t l a i k a s n l s t r u c t u r e s * ,

i 2 i m p o r t l a i k a s n l * ,

i 3i m p o r t j a v a s e c u r i t y c e r t * ,

14

i s p u b l i c c l a s s Cl i e n t impl ement s S e r i a 11 za b 1 e , PkiBase
16 {
17 p r i v a t e KeyPai r m.keys = nul l ,
is p r i v a t e X 5 0 9 C e r t i f i c a t e m_cer t = nul l ,
is p r i v a t e X 5 0 9 C e r 1 1 f i ca t e c a - c e r t = n u l l ,
20
21 pub l i c Cl i e n t () { }
22
23 pub l i c Cl i e n t (S t r i ng pa s s ph r a s e , S t r i ng f i l e n a m e , S t r i n g ca f n)
2 4 {

25 t r y {
26 F i l e l n p u t S t r e a m fis = new F i l e l npu t S t r e a m (cafn + ” c r t ”),
27 Byt eAr r ayOut put St r eam bt = new Byt eAr r ayOut pu t St r eam () ,
28

29 i n t b = f i s read () ,
30

si whi le (b 1 = - 1)
32 {

33 bt wr i t e (b),
34 b = fi s read () ,
35 }

36

37 f i s c l ose () ,
38 bt c l ose () ,
39

40 b y t e [] c a c e r t - b y t e s = b t t o B y t e A r r a y () ,
41

42 f i s = new F i l e l n p u t S t r e a m (f i l e n a m e + ” c r t ”),
43 bt = new B y t e A r r a y O u t p u t S t r e a m () ,
44

45 b = f i s r e a d () ,

47 wh i l e (b *= — 1)
48 {

40 b t w r i t e (b),

143

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
67

68
69

70

71

72

73

74

75

76

77

78

79
8 0

81

82

83

84

85

86
87

88
89

9 0

91

92

93

94

95

96

97

98

99

b = f i s read () ,

}

f i s c l ose () ,
bt c l ose () ,

byt e [] c e r t . b y t e s = bt t oByt eAr r ay () ,

f i s = new F i l e l n p u t S t r e a m (f i l e name -i- ” k e y ”),
bt = new Byte Ar r ayOut put St r eam () ,

b = f i s read () ,

whi le (b 1 — — 1)

{
bt w r i t e (b) ,
b = f i s read () ,

}

byte [] i v_by t e s = ” t h i s is the i v ” g e t B y t e s () ,
Secre t KeySpec sks = new Secre t KeySpec (pa s s p h r a s e g e t B y t e s () , 0, 8, ” DES”),
I vPa r a me t e r Spe c ap = new I v P a r a m e t e r S p e c (1 v_by t e s , 0, 8) ,

Ci pher c = Ci pher g e t l n s t a n c e (” DES/CBC/PKCS5Padding”),
SecureRandom sr = new SecureRandom(” This is a very bad s e e d ” g e t B y t e s ()) ,
c i n i t (Ci phe r DECRYPT.MODE, s k s , ap , s r) ,

byt e [] f i n a l . b y t e s = c d o F i n a l (b t t oByt eAr r ay ()) ,

By t e Ar r a y l npu t S t r e a m bai s = new By t e Ar r a y l npu t S t r e a m (f i n a l . b y t es),
O b j e c t l n p u t S t r e a m ois = new Ob j e c t l n p u t S t r e a m (ba i s),

KeyPai r kp = (K e y P a i r) o i s r e a d Ob j e c t () ,
C e r t i f i c a t e F a c t o r y cf = C e r t i f i c a t e F a c t o r y g e t l n s t ance (” X509 ”),
By t e Ar r a y l npu t S t r e a m cba i s = new By t e Ar r a y l npu t S t r e a m (c e r t . b y t es),
X 5 0 9 C e r t i f i c a t e ce r t = (X5 09 Cer 11 f i c a t e) cf ge ne r a t e C e r t i fic a t e (cba i s),

cba i s = new Byt e Ar r a y l npu t S t r e a m (c a c e r t - b y t e s),
X 5 0 9 C e r t i f i c a t e c a c e r t = (X 5 0 9 C e r t i f i c a t e) c f g e n e r a t e C e r t i f i c a t e (c b a i s) ,

c e r t ve r i fy (c a c e r t g e t P u b h c Ke y ()) ,
m_cer t = ce r t ,
m.keys = k p ,
c a - c e r t = c a c e r t ,

1
ca t ch (Except i on e) { e p r i n t S t a c k T r a c e () , } ')

}

pub l i c Cl i e n t (S t r i n g p a s s p h r a s e , S t r i n g f i l e n a m e , byt e [] c a c e r t - b y t e s)

{

144

100
101
102
103

104

105

106

10 7

108

109

110
111
112
113

114

115

116

117

118

119

120
121
122
123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

14 2

143

144

145

14 6

147

148

149

t r y

{
F i l e l n p u t S t r e a m f i s = new F i l e l n p u t S t r e a m (f i l e n a me + ” c r t ”),
By t eAr r ayOut pu t St r eam bt = new Byt eAr r a yOut pu t St r e am () ,

l n t b = f i s read () ,

whi le (b ' = - 1)

{
bt w r i t e (b) ,
b = fi s read () ,

}

f i s c l ose () ,
bt c l ose () ,

byt e [] c e r t _ b y t e s — bt t oByt eAr r ay () ,
t

f i s = new F i l e l n p u t S t r e a m (f i l ename + ” k e y ”),
bt — new Byt eAr r ayOut pu t St r eam () ,

b = f i s read () ,

whi le (b ’= - 1)
{

bt w r i t e (b) ,
b = f i s r ead () ,

}

byte [] i v_by t e s = ” t h i s is the i v " g e t B y t e s () ,
Secre t KeySpec sks = new Secre tKeySpec (pa s s ph r a s e g e t B y t e s () , 0, 8, ” DES”),
I vPa r a me t e r Spe c ap = new I vPa r a me t e r Spe c (i v . b y t e s , 0, 8) ,

Ci pher c = Ci pher g e t l n s t a n c e (” DES/CBC/PKCS5Padding”),
SecureRandom sr = new SecureRandom(” This is a very bad s e e d ” g e t B y t e s ()) ,
c i n i t (C i p h e r DECRYPT.MODE, s k s , ap , s r) ,

byt e [] f i n a l . b y t e s = c d o F i n a l (b t t oByt eAr r ay ()) ,

By t e Ar r a y l npu t S t r e a m bai s = new By t e Ar r a y l npu t S t r e a m (f i n a l - b y t e s),
O b j e c t l n p u t S t r e a m ois = new Ob j e c t l n p u t S t r e a m (ba i s),

KeyPai r kp = (Ke y P a i r) o i s r e a d Ob j e c t () ,
C e r t i f i c a t e F a c t o r y cf = C e r t i f i c a t e F a c t o r y g e t l n s t a n c e (” X509 ”),
By t e Ar r a y l npu t S t r e a m cba i s = new Byte Ar r a y l n p u t S t r e a m (c e r t - b y t e s),
X 5 0 9 C e r t i f i c a t e ce r t = (X 5 0 9 C e r t i fi c a t e) cf ge ne r a t e Ce r t i fic a t e (cba i s),

cba i s = new By t e Ar r a y l npu t S t r e a m (c a c e r t - b y t e s),
X 5 0 9 C e r t i f i c a t e c a c e r t — (X 5 0 9 Ce r t 1 f i c a t e) cf g e n e r a t e C e r t i f i c a t e (cba i s),

145

151

152

153

154

155

156

157

IBB
159

160

161

162

163

164

165

166

167

168

16 9

170

171

172

173

174

17 5

176

177

178

179

180

181

182

183

184

185

186

187

188

18 9

190

191

192

193

194

195

196

197

198

19 9

c e r t v e r i f y (c a c e r t ge t Pub l i cKey ()) ,
m- cer t = c e r t ,
m.keys = k p ,
c a . c e r t = c a c e r t ,

}
ca t ch (Except i on e)

{
e p r i n t S t a c k T r a c e () ,

}
}

pub l i c Cl i en t (byte [] c e r t B y t e s , byt e [] k e y p a i r , S t r i n g pa s s p h r a s e)

{
t r y

{
byte [] l v - b y t e s = ’’ t h i s is the i v ” g e t B y t e s () ,
Secre t KeySpec sks = new Secre t KeySpec (pa s s ph r a s e g e t B y t e s () , 0, 8, ” DES”),
I v P a r a me t e r S p e c ap = new I v Pa r a me t e r Spe c (i v - by t es , 0, 8) ,

Ci pher c = Ci pher get I n s t a n ce (” DES/CBC/PKCS5Padding ”),
SecureRandom sr = new SecureRandom(” This is a very bad s e e d ” g e t B y t e s ()) ,
c m i t (Ci phe r DECRYPT_MODE, s k s , ap , s r) ,

byt e [] f i n a l - b y t e s = c doFi nal (keypa i r),

By t e Ar r a y l npu t S t r e a m bai s = new By t e Ar r a y l npu t S t r e a m (f i n a l - b y t e s),
O b j e c t l n p u t S t r e a m oi s = new O b j e c t l n p u t S t r e a m (ba i s),

KeyPai r kp = (K e y P a i r) o i s r e a d Ob j e c t () ,
C e r t i f i c a t e F a c t o r y cf = C e r t i f i c a t e F a c t o r y g e t l n s t a n c e (” X509 ”),
By t e Ar r a y l npu t S t r e a m cba i s = new By t e Ar r a y l npu t S t r e a m (c e r t B y t e s),
X 5 0 9 C e r t i f i c a t e ce r t = (X509 Cer ti f i c a t e) cf ge ne r a t e C e r t i fi c a t e (cba i s),

m. c e r t = ce r t ,
m.keys = k p ,

}
ca t ch (Except i on e)
{

e p r i n t S t a c k T r a c e () ,

}
}

pub l i c KeyPai r g e n e r a t e K e y P a i r (i n t l en)

{
t r y

{
St r i n g seed = new S t r i ng () ,
seed -f-= System c u r r e n t T i m e M i l l i s () ,
SecureRandom sec- r andom = new SecureRandom (seed g e t B y t e s ()) ,

146

200

201

202

20 3

2 0 4

20 5

20 6

2 07

2 0 8

2 09

210

211

212

21 3

21 4

21 5

21 6

21 7

2 1 8

210

220

221

222

22 3

224

22 5

22 6

227

228

220

23 0

231

23 2

23 3

2 3 4

235

236

2 3 7

238

23 0

24 0

241

242

243

244

2 4 5

2 4 6

24 7

24 8

24£>

Key Pa i r Genera tor key. gen — Key Pa i r Genera tor g e t l n s t a n c e (”RSA”),
key-gen i n i t i a l i z e (l en , s e c . r a ndom),
m.keys = key. gen g e n e r a t e Ke y P a i r () ,

}
ca t ch (Except i on e)

{
e p r i n t S t a c k T r a c e () ,

}
r e t u r n m . k e y s ,

}

pub l i c byte [] g e n e r a t e C e r 1 1 f i c a t e R e q u e s t (byt e [] name)

{
t r y

{
l f (m.keys = — n u l l)
{

ge n e r a t e Ke y P a i r (1028) ,
}
Name n = new Name (name) ,
C e r t i f i c a t e R e q u e s t c = new C e r t i f i c a t e R e q u e s t (m.keys g e t P u b l i c () , n),
c s ign (Algor i t hmID sha l Wi t hRSAEncr ypt i on , m. keys g e t P r i va t e ()) ,

byte [] byt es = c t oByt eAr r ay () ,

S
r e t u r n b y t e s ,

}
ca t ch (Except i on e)

{
e p r i n t S t a c k T r a c e () ,
r e t u r n nul l ,

}
}

pub l i c void se t Ce r t i fi c a t e (byt e [] c , byt e [] ca)

{
t r y
{

C e r t i f i c a t e F a c t o r y cf = C e r t i f i c a t e F a c t o r y g e t l n s t a n c e (” X509 ”),
By t e Ar r a y l npu t S t r e a m bai s = new By t e Ar r a y l npu t S t r e a m (c),
X5 0 9 Ce r t i f i ca t e ce r t = (X50 9 Ce r ti fi c a t e) c f ge n e r a t e C er 11 fic a t e (bai s),

ba i s = new By t e Ar r a y l npu t S t r e a m (ca),
X 5 0 9 C e r t i f i c a t e c a c e r t = (X509 Ce r t i fi c a t e) c f g e n e r a t e Ce r t l fi c a t e (ba i s),

s e t C e r t i f i c a t e (cer t , c a c e r t) ,

}
ca t ch (Excep t i on e)
{

147

2 5 0

251

2 5 2

25 3

2 5 4

2 5 5

25 6

25 7

25 8

25 9

2 6 0

261

26 2

26 3

26 4

26 5

26 6

26 7

26 8

26 9

27 0

271

272

273

2 7 4

27 5

27 6

277

278

2 7 9

28 0

281

28 2

2 8 3

284

285

28 6

28 7

28 8

2 8 9

2 6 0

291

29 2

29 3

29 4

295

296

29 7

2 9 8

QOD

e p r i n t S t a c k T r a c e () ,

}

pub l i c s t a t i c void ve r i fy C e r t l s s u e r (byt e [] c a by t e s , by t e [] b y t e s) t h r ows Except ion
{

C e r t i f i c a t e F a c t o r y cf = Cer ti f i c a t e F a c t o r y g e t l n s t a n c e (” X509 ”),
By t e Ar r a y l npu t S t r e a m bai s = new Byte Ar r a y l npu t S t r e a m (ca by t e s),
X 5 0 9 C e r t i f i c a t e c a c e r t = (X 5 0 9 C e r t i f i c a t e) c f g e n e r a t e C e r t i f i c a t e (b a i s) ,

bai s = new Byte Ar r a y l npu t S t r e a m (by tes),
X 5 0 9 C e r t i f i c a t e ce r t = (X 5 0 9 C e r t i f i c a t e) cf g e n e r a t e C e r t i f i c a t e (bai s),

ce r t v e r i f y (c a c e r t g e t P u b h c K e y ()) ,

}

pub l i c void se t C e r 11 fi c a t e (X 5 0 9 C e r t i f i ca t e c , X50 9 Ce r t i f i c a t e ca) t hr ows Except ion
{

c v e r i f y (c a g e t P u b h c Ke y ()) ,

i f (c g e t P u b h c Ke y () equa l s (m.keys g e t P u b l i c ()))

{
m. ce r t = c ,

}
e l se

{
throw new Except i on (” In va l i d c e r t ”),

}
}

pub l i c void s t o r e (S t r i n g pa s s ph r a s e , S t r i n g p r e f i x)

{
t r y

{

l f (m.keys 1 = nu l l)
{

Byt eAr r ayOut pu t St r eam baos = new Byt eAr r a yOut pu t St r e am () ,
Ob j e c t Ou t pu t S t r e a m oos = new Ob j e c t Ou t p u t S t r e a m(baos),

oos w r i t e O b j e c t (m.keys),
oos c l ose () ,

Secre t KeySpec new. sks = new Secre t KeySpec (pa s s p h r a s e g e t B y t e s () , 0, 8, ” DES”),
SecureRandom sr = new SecureRandom(” t h i s is a very bad s e e d ” g e t B y t e s ()) ,
byt e [] l v . b y t e s = ” t h i s is the i v ” g e t B y t e s () ,

I v Pa r a me t e r Sp e c ap = new I v Pa r a me t e r Sp e c (1 v_ b y t e s , 0 , 8) ,
Ci pher c = Ci pher g e t l n s t ance (” DES/CBC/PKCS5Padding ”),
c in i t (Ci phe r ENCRYPTJVIODE, new-sks , ap , sr),

}

148

301

30 2

30 3

30 4

30 5

30 6

30 7

30 8

30 9

31 0

311

31 2

31 3

31 4

31 5

31 6

31 7

31 8

31 9

32 0

321

32 2

32 3

324

32 5

32 6

32 7

32 8

32 9

33 0

331

33 2

33 3

33 4

33 5

33 6

337

33 8

33 9

34 0

341

34 2

34 3

34 4

34 5

34 6

34 7

34 8

byte [] byt es = c doF i na l (baos t oByt eAr r ay ()) r

F i l e Ou t p u t S t r e a m fos = new F i l e O u t p u t S t r e a m (new S t r i n g (p r e f i x + ” k e y ”)) ,
fos wr i t e (by t e s),
fos c l ose () ,

}

l f (m. ce r t 1 = n u l l)

{
F i l e Ou t p u t S t r e a m fos = new F i l e Ou t p u t S t r e a m (new S t r i n g (p r e f i x + ” c r t ”)) ,
fos w n t e (m _ c e r t get Encoded ()) ,
fos c l ose () ,

}
}
ca t ch (Except i on e)

{
e p r i n t S t a c k T r a c e () ,

}
}

pub l i c byte [] g e t C e r t B y t e s ()

{
t r y

{
r e t u r n g e t C e r t () get Encoded () ,

}
ca t ch (Excep t i on e)

{
e p r i n t S t a c k T r a c e () ,
r e t u r n nul l ,

}
}

pub l i c X 5 0 9 C e r t i f i ca t e g e t C e r t ()

{
r e t u r n m_cer t ,

}

pub l i c KeyPai r ge t Ke ys ()
{

r e t u r n m_keys ,

}

pub l i c s t a t i c byt e [] l oa dCACe r t (S t r i ng f i l e na me)

{
t r y

{
F i l e l n p u t S t r e a m f i s = new F i l e l n p u t S t r e a m (f i l e na me -f ” c r t ”),
By t eAr r ayOut pu t St r eam bt = new Byt eAr r a yOut pu t St r e am () ,

149

351

3 5 2

3 5 3

35 4

35 5

35 6

35 7

35 8

3 5 9

3 6 0

361

3 6 2

36 3

364

36 5

366

367

368

3 6 9

3 7 0

371

372

373

374

375

376

377

378

379

3 8 0

381

382

383

3 8 4

385

386

387

388

389

390

391

392

393

394

395

396

397

398

3 9 9

i

i n t b = f is read () ,

whi le (b ' = — 1)

{
bt wr i t e (b),
b = f i s read (),

}

f i s c l ose (),
bt c l ose (),

byt e [] c e r t . b y t e s = bt t oByt eAr r ay () ,

r e t u r n c e r t . b y t e s ,

}
ca t ch (Except i on e)

{
e p n n t S t a c k T r a c e (),
r e t u r n nul l ,

}
}

pub l i c s t a t i c S t r i ng getCAFi leName ()
{

t r y

{
Li neNumberReader Inr — ^

new LineNumberReader (new I npu t S t r e amRea de r (System i n)) ,
System out p r i n 11 n (” Ent e r the l o c a t i o n of t he CA c e r t i f i c a t e ”),
S t r i n g c a c e r t f i l e n a m e = lnr r e a d L i n e () ,

r e t u r n c a c e r t f i l e n a m e ,

}
ca t ch (Excep t i on e)

{
e p r i n t S t a c k T r a c e () ,
r e t u r n nul l ,

}
}

pub l i c s t a t i c byt e [] getName()
{

t r y
{

LineNumberReader l nr =
new LineNumberReader (new I npu t S t r e amRea de r (System in)),

System out p ri n tl n (” Enter coun t r y code e g I E ”),
S t r i ng cc = l nr r e a d L i n e () ,

150

40 0

401

40 2

40 3

4 0 4

40 5

40 6

40 7

4 0 8

4 0 9

4 1 0

411

4 1 2

4 1 3

414

4 1 5

4 1 6

417

418

4 1 9

4 2 0

421

42 2

4 2 3

42 4

42 5

4 2 6

4 2 7

4 2 8

4 2 9

4 3 0

431

4 3 2

4 3 3

4 3 4

4 3 5

4 3 6

4 3 7

43 8

43 9

44 0

441

4 4 2

4 4 3

4 4 4

445

446

447

4 4 8

449

System out p r i n 1 1 n (” Enter l o c a l i t y e g D u b l i n ”),
S t r i ng loc = Inr r e a d L i n e () ,
System out pr i n 1 1 n (” Ent e r o r g a n i z a t i o n e g DCU”),
S t r i ng org = lnr r e a d L i n e () ,
System out p r i n t l n (” Ent e r o r g a n i z a t i o n a l un i t e g POSTGRAD”),
S t r i ng un i t = l nr r e a d L i n e () ,
System out p r i n t l n (” Ent e r common name e g John Doe”),
S t r i ng cn = l nr r e a d L i n e () ,

Name name = new Name() ,
name addRDN (Object ID c o u n t r y , cc),
name addRDN(Object ID l o c a l i t y , l o c) ,
name addRDN(Object ID o r g a n i z a t i o n , org),
name addRDN (Object ID o r g a n i z a t i o n a l U n i t , u n i t) ,
name addRDN(Object ID commonName , cn),

r e t u r n name get Encoded () ,

}
ca t ch (Except i on e)

{
e p r i n t S t a c k T r a c e () ,

}
r e t u r n n u l l ,

}

pub l i c s t a t i c S t r i ng g e t P a s s P h r a s e ()

{
t r y

{
Li neNumberReader l nr — new Lt neNumberReader (new I npu t S t r e amRea de r (System i n)) ,

System out pr i n11 n (” Ent e r your pa s s ph r a s e ”),
S t r i ng pp = lnr r e a d L i n e () ,

r e t u r n p p ,

}
ca t ch (Except i on e)
{

r e t u r n n u l l ,

}
}

pub l i c s t a t i c S t r i n g g e t F i l e na me ()

{
t r y

{
Li neNumberReader lnr = new LineNumberReader (new I npu t S t r e a mRe a de r (System i n)) ,

System out p r i n t i n g ’ Ent e r the p r e f i x for a l l c l i e n t f i l e s ”),
S t r i n g pp = Inr r e a d Li n G() ,

151

4 5 0

45 1

45 2

4 53

4 54

4 55

4 56

4 5 7

4 5 8

4 5 9

4 6 0

461

4 6 2

4 6 3

4 6 4

4 6 5

4 6 6

46 7

4 6 8

469

470

471

472

473

47 4

4 7 5

4 7 6

47 7

47 8

4 7 9

4 8 0

481

4 8 2

483

484

48 5

4 8 6

48 7

48 8

48 9

49 0

491

492

4 9 3

4 9 4

495

49 6

4 9 7

49 8

49 9

r e t u r n p p ,

ca t ch (Except i on e)

{
r e t u r n nul l ,

}
}

pub l i c byt e [] c r e a t e R e q u e s t (byt e [] s e r v i c e C e r t B y tes , Long 1)

{
t r y
{

C e r t i f i c a t e F a c t o r y cf — C e r t i f i c a t e F a c t o r y g e t l n s t a n c e (” X509 ”),
By t e Ar r a y l npu t S t r e a m bai s = new Byte Ar r a y l npu t S t r e a m (s e r v i c e C e r t B y t es),
X 5 0 9 C e r t i f i c a t e ce r t = (X 5 0 9 C e r ti fi c a t e) c f ge n er a t e Ce r t i fi c a t e (ba i s),

By t eAr r ayOut pu t St r eam baos = new Byt eAr r ayOut put St r eam (),
Da t a Out pu t S t r eam dos = new D a t a Ou t p u t S t r e a m(baos),

dos w r i t e l n t (0),
dos wr i t e Lo n g (l l ongVal ue ()),

P r i n c i p a l n = (P r i n c i p a l) ce r t ge t Subj ec t DN (),
System out p n n t l n (n ge t Na me ()) ,

dos wr i t eUTF(n ge t Na me ()) ,

byte [] da t a = (new S t r i ng (" da t a ”)) g e t B y t e s () ,

byte [] encData = Enc e n c r y p t D a t a (da t a , c e r t g e t P u b h c K e y ()),

dos w r i t e l n t (encDat a l e ng t h),
dos wr i t e (encDat a , 0, encData l e n g t h) ,

dos c l ose (),

byt e [] to_enc = baos t oByt eAr r ay () ,

byt e [] t o _ r e t u r n = Enc e n c r y p t Da t a (t o . e n c , m.keys ge t P r i va t e ()) ,

r e t u r n t o _ r e t u r n ,

}
ca t ch (Except i on e)

{
e p r i n t S t a c k T r a c e () ,

}
r e t u r n nul l ,

}

}

152

5 00

501

50 2

5 0 3

5 0 4

5 0 5

50 6

50 7

50 8

50 9

51 0

511

51 2

51 3

5 1 4

515

5 1 6

517

518

519

520

521

52 2

523

52 4

52 5

52 6

5 2 7

528

529

530

531

532

533

534

53 5

53 0

537

53 8

53 9

54 0

541

542

543

544

545

546

547

54 8

54 9

pub l i c byte [] c r e a t e C h e n t R e s p o n s e (byte [] s e r v i c e C e r t B y t es , byt e [] p a c k e t , Long randA)
{

t r y v

{
C e r t i f i c a t e F a c t o r y cf = C e r t i f i c a t e F a c t o r y g e t l n s t a n c e (” X509 ”),
By t e Ar r a y l npu t S t r e a m bai s = new By t e Ar r a y l npu t S t r e a m (s e r v i c e C e r t B y tes),
X 5 0 9 C e r t i f i c a t e c e r t = (X 5 0 9 C e r t i f i c a t e) cf g e n e r a t e C e r t i f i c a t e (ba i s),

byt e [] decData = Enc d e c r y p t Da t a (packet , c e r t ge t Pub l i cKey ()) ,
ba i s = new By t e Ar r a y l npu t S t r e a m (decData) ,
Da t a l n p u t S t r e a m di s = new D a t a l n p u t S t r e a m (ba i s),

Long randB = new Long(d i s r eadLong ()) ,
System out pr i n t i n (randB) ,

S t r i ng i b = di s readUTF () ,
S t r i ng i a = dis readUTF () ,

Long r andATes t = new Long(d i s r e a d L o n g ()) ,

i n t l enEnc = di s r e a d l n t () ,
byt e [] encData = new byte [l enEnc] ,
di s read (encData ,0 , l enEnc),

byt e [] dummyData = Enc d e c r y p t Da t a (e n c Da t a , m.keys g e t P r i va t e ()) ,
sun s e c u r i t y x5Q9 X5O0Name t e s t l a

= (sun s e c u r i t y x509 X500Name) m. c e r t ge t Subj ec t DN () ,
sun s e c u r i t y x509 XSOOName t e s t l b

= (sun s e c u r i t y x509 X500Name) c e r t ge t Subj ec t DN () ,

i f (' i b equa l s (t e s t l b ge t Na me ()))
t hrow new Except i on (’’NAMES NOT EQUAL”),

i f (' i a equa l s (t e s t l a ge t Name()))
throw new Except i on (’’NAMES NOT EQUAL’5),

l f (' r andATes t equa l s (r andA))
throw new Except i on (’’RANDOM CHALLENGE FAILED”),

By t eAr r ayOut pu t St r eam baos — new Byt eAr r ayOut pu t St r eam () ,
Da t a Out pu t S t r eam dos = new Da t a Out pu t S t r eam(baos),

dos w n t e L o n g (randB l ongVal ue ()) ,
dos c l ose () ,

by t e [] t o . r e t u r n = Enc e n c r y p t Da t a (baos t oByte Ar r ay () , m.keys g e t P r i va t e ()) ,

r e t u r n t o . r e t u r n ,

}

153

551

55 2

55 3

55 4

55 5

55 6

55 7

55 8

569
5 6 0

561

562

563

564

565

5 6 6

56 7

56 8

5 6 9

5 7 0

571

57 2

57 3

5 7 4

575

576

5 7 7

578

5 7 9

5 8 0

581

5 8 2

583

5 8 4

5 8 5

586

587

588

589

590

591

592

593

594

595

596

597

598

599

ca t ch (Except i on e)

{
e p r i n t S t a c k T r a c e (),

}

r e t u r n nul l ,

}

pub l i c byte [] e x t r a c t K e y (byt e [] s e r v i c e C e r t B y t e s , byt e [] encKey)
{

t r y

{
C e r 1 1 f i c a t e F a c t o r y cf = Cer t i fi c a t e F a c t o r y g e t l n s t a n c e (” X509 ”),
By te Ar r a y l npu t S t r e a m bai s = new By t e Ar r a y l npu t S t r e a m (s e r v i c e C e r t B y t es),
X 5 0 9 C e r t i f i c a t e ce r t = (X 5 0 9 C e r 1 1 f i c a t e) cf g e n e r a t e C e r t i f i c a t e (bai s),

byt e [] decData = Enc d e c r yp t Da t a (e nc Ke y , ce r t ge t Pub l i cKey ()) ,

byt e [] t o . r e t u r n = Enc d e c r y p t D a t a (decData , m.keys get P r i v a t e ()) ,
byte [] t o - r e t u r n = c doF i na l (decData),

r e t u r n t o . r e t u r n ,

}
ca t ch (Except i on e)

{
e p r i n t S t a c k T r a c e () ,

}
r e t u r n nul l ,

}

pub l i c s t a t i c bool ean c h o o s e F i r s t ()

{
t r y

{
System out p r i n t l n (” Use s e r v i c e one (Y/N) ”),

Li neNumberReader l nr = new Li neNumberReader (new I npu t S t r e amRea de r (System i n)) ,

S t r i ng resp = l nr r e a d L i n e () ,

whi le (' ((r esp e q u a l s ! g n o r e C a s e (”Y ”)) | | (r e sp e q u a l s I g n o r e C a s e (”N”))))
{

System out p r i n t l n (” Use s e r v i c e one (Y/N) ”),
r esp = lnr r e a d L i n e () ,

}

i f (r e s p e q u a l s I g n o r e C a s e (”Y”))
r e t u r n t r u e ,

e l se
r e t u r n f a l s e ,

}

154

6 0 0 ca t ch (Except i on e)
601 {

602 e p r i n t S t a c k T r a c e () ,
6 0 3 }

60 4

605 r e t u r n t r ue ,
6 0 6 }

6 0 7 }

155

i package p k i ,
2
3im port pki *,
4

simport java s e c u r i t y * ,
eimport javax crypto spec *,
7import javax crypto *,
simport java 10 *,
9 import laik pkcs pkcslO C er t i f i c a te R eq u e s t ,

loimport laik asnl s t r u c t u r e s *,
n imp ort laik asnl *,
i2 import java s e c u r i t y cert *,
13
Mpubl i c c l a s s SP impl ement s S e r i a l i z a b 1 e , PkiBase
15 {
16 p r i v a t e KeyPai r m_keys = nul l ,
17 pr ivate X50 9 C er t i fi cate m.cert = null ,
is pr ivate X 5 0 9 C e r t i f i ca te c a . c e r t = null ,
10
20 pub l i c S P (b y t e [] c a - c e r t - b y t e s)
21 {

C 3 4 SP java

22 t r y
23 {
24 Cer ti f i c a t e F a c t o r y cf = Cer 11 f i c a t e F a c t o r y g e t l n s t a n c e (” X509 ”),
25 By te Ar r a y l npu t S t r e a m bai s = new By te Ar r a y l n p u t S t r e a m (c a _ c e r t _ b y t es),
26 c a _ c e r t = (X 50 9 C er t 1 fi c a t e) c f ge ne r a t e C e r t î fi c a t e (ba i s),
27 }

28 ca t ch (Except i on e)
29 {
30 e p n n t S t a c k T r a c e (),
31 }

32 }
33

34 pub l i c KeyPai r g e n e r a t e Ke y P a i r (i n t l en)
35 {
36 t r y
37 {

38 S t r i n g seed = new S t r i ng () ,
39 seed + = System c u r r e n t T i m e M i l l i s () ,
40 SecureRandom s e c . r a ndom = new SecureRandom (seed g e t B y t e s ()) ,
41

42 Ke y P a i r Ge n e r a t o r key. gen = Ke y P a i r Ge n e r a t o r g e t l n s t a n c e (” RSA”),
43 key-gen l n 1 1 1 a 11 z e (len , s e c . r a n d o m) ,

44 m.keys = key. gen g e n e r a t e Ke y P a i r () ,
45 }

46 ca t ch (Except i on e)
47 {

48 e p n n t S t a c k T r a c e () ,
49 }

156

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

6 5

66

67

68

6 9

70

71

72

73

74

75

76

77

78

79

8 0

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

r e t u r n m- k e y s ,

pub l i c byte [] g e n e r a t e C e r t i f i c a t e R e q u e s t ()
{

t r y

{
l f (m.keys = — n u l l)

{
g e n e r a t e K e y P a i r (1 0 2 8) ,

}
Name n = new Name(t h i s getName ()) ,
C e r 1 1 f i c a t e R e q u e s t c = new Ce r 1 1 f i c a t e R e q u e s t (m. keys g e t P u b l i c () , n),
c s ign (Al gor i t hmID sha l Wi t hRSAEncr ypt i on , m.keys g e t P r i v a t e ()) ,

byt e [] by t e s = c t oByt eAr r ay () ,

r e t u r n b y t e s ,

}
ca t ch (Except i on e)

{
e p r i n t S t a c k T r a c e () ,
r e t u r n nul l ,

} N
}

pub l i c void se t C e r t i f i c a t e (byte [] c , by t e [] ca)

{
t r y

{
C e r t i f i c a t e ? a c t o r y cf = C e r t i f i c a t e F a c t o r y g e t l n s t a n c e (” X509”),
By t e Ar r a y l npu t S t r e a m bai s = new By t e Ar r a y l npu t S t r e a m (c),
X5 0 9 Ce r t i f i c a t e ce r t = (X5 09Ce r 11 fi c a t e) c f g e n e r a t e C e r t i f i c a t e (bai s),

bai s = new Byte Ar r a y l npu t S t r e a m (ca),
X 5 0 9 C e r t i f i c a t e c a c e r t = (X 5 0 9 C e r t i f i c a t e) cf g e n e r a t e C e r t i f i c a t e (ba i s),

s e t C e r t i f i c a t e (c e r t , c a c e r t),
}
ca t ch (Except i on e)
{

e p r i n t S t a c k T r a c e () ,
}

}

pub l i c void se t C e r t i f i c a t e (X 5 0 9 Ce r t i fi c a t e c , X 5 0 9 C e r t i f i c a t e ca) t hr ows Except i on

{
c v e r i f y (c a g e t P u b l i c K e y ()) ,

i f (c ge t Pub l i cKey () equa l s (m.keys g e t P u b l ic ()))

}

157

100

101

102

103

104

105

106

107

108
109

110

1 1 1

112

113

114

115

116

117

118

119

120

121

122
123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

m. c e r t = c ,

}
el se

{
throw new Except i on (” In va l i d c e r t ”),

}
}

pub l i c byte [] g e t C e r t B y t e s ()
{

t r y

{
r e t u r n g e t C e r t () get Encoded () ,

}
ca t ch (Except i on e)

{
e p r i n t S t a c k T r a c e (),
r e t u r n nu l l ,

}
}

pub l i c X 5 0 9 C e r t i f i c a t e g e t C e r t ()
{

r e t u r n m_cer t ,

}

pub l i c KeyPai r ge t Ke y s Q
{

r e t u r n m . k e y s ,

}

pub l i c s t a t i c b y t e [] l oa dCACe r t (S t r i ng f i l e n a me)

{
t r y

{
Fi l e l n p u t S t r e a m f i s = new F i l e l n p u t S t r e a m (f i l e na me + ” c r t ”),
By t eAr r ayOut pu t St r eam bt = new Byt eAr r ayOut pu t St r eam (),

l n t b = f i s read () ,

whi l e (b 1 = —1)

{
bt wr i t e (b),
b = f i s read () ,

}

f i s c l ose () ,
bt c l ose (),

{

158

1G0
151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

19fl

byte [] ce r t_ b y te s = bt toByteArray () ,

r e t u r n c e r t - b y t e s ,

}
c a t c h (E x c e p t i o n e)

{
e p r i n t S t a c k T r a c e () ,
r e t u r n n u l l ,

}
}

p u b l i c s t a t i c S t r i n g ge t CAFi l eName ()

{
t r y

{
L i n e Nu mb e r Re a d e r l n r = new L me N u mb e r R e a d e r (n e w I n p u t S t r e a m R e a d e r (Sys t em i n)) ,
Sys t e m o u t p n n t l n (” E n t e r t he l o c a t i o n of t he CA c e r t i f i c a t e ”) ,
S t r i n g c a c e r t f i l e n a m e = l n r r e a d L i n e () ,

r e t u r n c a c e r t f i l e n a m e ,

}
c a t c h (E x c e p t i o n e)

{
e p r i n t S t a c k T r a c e () ,
r e t u r n n u l l ,

>
}

p u b l i c s t a t i c b y t e [] g e t Name ()

{
t r y

{
L i n e Nu mb e r Re a d e r l n r =

new Li ne Nu mb e r Re a d e r (n e w I n p u t S t r e a m R e a d e r (Sys t em i n)) ,

S t r i n g cc = ” le ” ,
S t r i n g loc = ’’ D u b l i n ” ,
S t r i n g org = ”DCU” ,
S t r i n g u n i t = ’’ P o s t G r a d ” ,
S t r i n g cn = ’’ Exampl e S e r v i c e P r o v i d e r ” ,

Name name = new Na me() ,
name addRDN (Ob j e c t I D c o u n t r y , cc) ,
name addRDN(O b j e c t I D l o c a l i t y , l o c) ,
name addRDN(Ob j e c t I D o r g a n i z a t i o n , org) ,
name addRDN (Ob j e c t I D o r g a n i z a t i o n a l U n i t , u m t) ,
name addRDN (O b j e c t I D commonName >cn) ,

r e t u r n name ge t E n c o d e d () ,

}

159

200 c a t c h (E x c e p t i o n e)
201 {
202 e p r i n t S t a c k T r a c e () ,

2 0 3 }

204 r e t u r n n u l l ,
2 0 5 }

2 0 6

207 p u b l i c s t a t i c S t r i n g g e t P a s s P h r a s e ()
20 8 {

209 t r y

210 {
211 L i n e Nu mb e r Re a d e r I n r =
212 new L] n e Nu mb e r Re a d e r (new I n p u t S t r e a m R e a d e r (Sys t em i n)) ,
2 1 3

214 S ystem out p r i n t l n (” E n t e r yo u r p a s s p h r a s e ”),
215 S t r i n g pp = l n r r e a d L i n e () ,
216

217 r e t u r n p p ,
2 1 8 }

219 c a t c h (E x c e p t i o n e)
220 {
221 r e t u r n n u l l ,
222 }
2 2 3 }

2 2 4

2 2 5 p u b l i c s t a t i c S t r i n g g e t F i l e n a m e ()
2 2 6 {

227 t r y

2 2 8 {

229 L i n e Nu mb e r Re a d e r l n r =
230 new L me N u mb e r Re a d e r (n e w I n p u t S t r e a m R e a d e r (Sys t e m i n)) ,
231

232 Sys t em ou t p n n t l n (” E n t e r t h e p r e f i x f o r a l l c l i e n t f i l e s ”),
233 S t r i n g pp = l n r r e a d L i n e () ,
2 34

235 r e t u r n p p ,
2 3 6 }

237 c a t c h (E x c e p t i o n e)
2 3 8 {

239 r e t u r n n u l l ,
2 4 0 }

241 }

242

243 p u b l i c b y t e [] e n c r y p t K e y B y t e s (b y t e [] c h e n t C e r t B y t e s , b y t e [] k e y B y t e s)
2 4 4 {

245 t r y
2 4 6 {

247 C e r t i f i c a t e P a c t o r y c f = C e r t i f i c a t e F a c t o r y g e t I n s t a n c e (” X509 ”),
248 B y t e A r r a y l n p u t S t r e a m b a i s = new Byt e A r r a y l n p u t S t r e a m (cl i e n t C e r t B y t e s) ,
249 X 5 0 9 C e r t i f i c a t e c e r t = (X 5 0 9 C e r t i f i c a t e) c f ge ne r a t e Ce r t i fi c a t e (b a i s) ,

160

250

251

2 52

2 53

254

255

256

257

258

259

260

261

2 6 2

2 6 3

264

265

266

267

268

269

270

271

272

273

274

2 7 5

276

277

278

279

2 8 0

281

282

283

2 8 4

285

2 8 6

287

288

289

290

291

292

293

2 9 4

295

2 9 6

2 9 7

2 9 8

2 9 9

by t e [] e n c Da t a = Enc e n c r y p t D a t a (k e y B y t e s , c e r t g e t P u b l i c K e y ()) ,
b y t e [] t o . r e t u r n — Enc e n c r y p t D a t a (e n c Da t a , m. keys g e t P r i v a t e ()) ,
r e t u r n t o . r e t u r n ,

c a t c h (E x c e p t i o n e)

{
e p r i n t S t a c k T r a c e () ,

}

r e t u r n n u l l ,

}

p u b l i c b y t e [] p r o c e s s C l i e n t R e s p o n s e (b y t e [] c l i e n t C e r t B y t e s , b y t e [] p a c k e t , Long r andB)

{
t r y

{
C e r t i f i c a t e F a c t o r y c f = C e r t i f i c a t e F a c t o r y g e t l n s t a n c e (” X509 ”),
B y t e A r r a y l n p u t S t r e a m b a i s = new B y t e A r r a y l n p u t S t r e a m (c l i e n t C e r t B y t e s),
X 5 0 9 C e r t i f i c a t e c e r t = (X 5 0 9 C e r t i f i c a t e) c f g e n e r a t e C e r t i f i c a t e (ba i s),

b y t e [] d e c Da t a = Enc d e c r y p t D a t a (p a c k e t , c e r t g e t P u b l i c K e y ()) ,

b a i s = new Byt e A r r a y l n p u t S t r e a m (d e c Da t a),
D a t a l n p u t S t r e a m d i s = new D a t a l n p u t S t r e a m (b a i s) ,

Long t e s t R a n d B = new L o n g (d i s r e a d L o n g ()) ,

l f (» t e s t R a n d B e q u a l s (r andB))
t h r ow new E x c e p t i o n (’’RANDOMS NOT THE SAME”),

Secur eRandom r andom = Sec ur eRandom g e t l n s t a n c e (’’SHA1PRNG”),
b y t e [] key = new b y t e [1 6] ,
r andom se t Seed (Sys t em c u r r e n t T i m e M i l l i s ()) ,

r andom n e x t By t e s (key) ,

r e t u r n key ,

}
c a t c h (E x c e p t i o n e)

{
e p r i n t S t a c k T r a c e () ,

}

r e t u r n n u l l ,

}

p u b l i c b y t e [] c r e a t e S e r v i c e R e s p o n s e (Long r andA , Long r a n d B , b y t e [] c l i e n t C e r t B y t e s)

{
t r y

}

161

/

3 00

301

302

303

304

305

306

307

308

309

310

311

3 1 2

313

314

315

316

3 1 7

318

319

3 2 0

321

322

323

324

325

320

327

328

329

330

331

332

333

334

335

336

337

338

3 3 9

340

341

3 4 2

343

344

345

346

3 4 7

348

346

C e r t i f i c a t e F a c t o r y c f = C e r t i f i c a t e F a c t o r y g e t l n s t a n c e (” X509 ”),
B y t e A r r a y l n p u t S t r e a m b a i s = new Byt e A r r a y l n p u t S t r e a m (c l i e n t C e r t By t e s),
X 5 0 9 C e r t i f i c a t e c e r t = (X 5 0 9 C e r t i f i c a t e) c f g e n e r a t e C e r t l f i c a t e (b a i s),

b y t e [] e n c Da t a = Enc e n c r y p t D a t a (r andB t o S t r i n g () g e t B y t e s () , c e r t g e t P u b l i c K e y ()) ,
B y t e A r r a y O u t p u t S t r e a m baos = new B y t e A r r a y O u t p u t S t r e a m () ,
D a t a O u t p u t S t r e a m dos = new D a t a O u t p u t S t r e a m (baos),

sun s e c u r i t y x509 X500Name lb = (s un s e c u r i t y x509 XSOOName) m . c e r t g e t S u b j e c t DN () ,
sun s e c u r i t y x509 X50OName la = (s un s e c u r i t y x509 X500Name) c e r t g e t S u b j e c t D N () ,

dos wr i t e L o n g (r andB l o n g Va l u e ()) ,
Sys t em out p r i n 1 1 n (r andB),

dos w r i t e U T F (i b g e t N a m e ()) ,

dos w r i t e U T F (i a g e t N a m e ()) ,

dos w r i t e L o n g (r andA long Va l u e ()) ,

dos w r i t e l n t (e n c D a t a l e n g t h) ,
dos w r i t e (e n c D a t a , 0 , e n c Da t a l e n g t h) ,

dos c l o s e () ,

b y t e [] t o . r e t u r n — Enc e n c r y p t D a t a (b a o s t o B y t e A r r a y () , m .keys g e t P r i v a t e ()) ,
r e t u r n t o . r e t u r n ,

,)
c a t c h (E x c e p t i o n e)

{
e p r i n t S t a c k T r a c e () ,
r e t u r n n u l l ,

}
}

p u b l i c Long p r o c e s s C l i e n t R e q u e s t (b y t e [] r e q u e s t , b y t e [] c l i e n t C e r t B y t e s)

{
t r y

{
C e r t i f i c a t e F a c t o r y c f = C e r t i f i c a t e F a c t o r y g e t l n s t a n c e (" X509 ”),
B y t e A r r a y l n p u t S t r e a m b a i s = new Byt e A r r a y l n p u t S t r e a m (c 1 l e n t C e r t B y t e s),
X 5 0 9 C e r t i f i c a t e c e r t = (X 5 0 9 C e r t i f i c a t e) c f g e n e r a t e C e r t i fi c a t e (b a i s) ,

b y t e [] d e c Da t a = Enc d e c r y p t D a t a (r e q u e s t , c e r t g e t P u b l i c K e y ()) ,
B y t e A r r a y l n p u t S t r e a m e n c l n = new Byt e A r r a y l n p u t S t r e a m (r e q u e s t),
D a t a l n p u t S t r e a m e nc Di s = new D a t a l n p u t S t r e a m (e n c l n) ,

b a i s = new B y t e A r r a y l n p u t S t r e a m (d e c Da t a),

{

162

35 0 D a t a l n p u t S t r e a m d i s = new D a t a I n p u t S t r e a m (b a i s) ,
351

352 i n t t a — d i s r e a d l n t () ,
353

354 l ong 1 = d i s r e a d L o n g () ,
355

356 S t r i n g i b = d i s r e a d U T F () ,
357

358 sun s e c u r i t y x509 X500Name t o T e s t
3 5 9 = (s un s e c u r i t y x509 X500Name) m . c e r t g e t S u b j e c t D N () ,
3 6 0

361 i f (' i b e q u a l s (t o T e s t g e t N a m e ()))
362 t h r ow new E x c e p t i o n (’’NOT MEANT FOR ME”),
3 63

364 i n t l en2 = d i s r e a d l n t () ,
3 65

366 b y t e [] e n c Da t a = new b y t e [l e n 2] ,
3 67

368 d i s r ead (e n c Da t a ,0 , l en2) ,
3 69

3 7 0 b y t e [] dum m yData = Enc d e c r y p t D a t a (e n c Da t a , m .keys g e t P r i v a t e ()) ,
371 r e t u r n new L o n g (l) ,
3 7 2 }

373 c a t c h (E x c e p t i o n e)
3 7 4 {

3 7 5 e p n n t S t a c k T r a c e () ,
3 7 6 }

377 r e t u r n n u l l ,
3 7 8 }

3 7 9 }

163

i p a c k a g e p k i ,
2

s i m p o r t j a v a s e c u r i t y *,
4 i m p o r t j a v a x c r y p t o spec *,
s i m p o r t j a v a x c r y p t o *,
e i m p o r t j a v a io *,
7 i m p o r t l a i k pkcs pkcs l O C e r t i f i c a t e R e q u e s t ,
s i m p o r t l a i k a s n l s t r u c t u r e s *,
9 i m p o r t l a i k a s n l * ,

10 i m p o r t j a v a s e c u r i t y c e r t * ,
11
i 2 p u b l i c i n t e r f a c e P k i Ba s e e x t e n d s S e r i a l i z a b l e
13 {
14 p u b l i c vo i d se t C e r 1 1 fi c a t e (b y t e [] c , b y t e [] ca) ,
15

16 p u b l i c b y t e [] g e t C e r t B y t e s () ,

C 3 5 PkiBase java

164

i p a c k a g e p k i ,
2

3 i m p o r t j a v a s e c u r i t y *,
4 i m p o r t j a v a s e c u r i t y i n t e r f a c e s *,
5 i m p o r t j a v a x c r y p t o spec *,
e i m p o r t j a v a x c r y p t o *,
7 i m p o r t j a v a 1 0 *,
8 i m p o r t î a i k pkcs pkcs l O C e r t i f i c a t e R e q u e s t ,
9 i m p o r t î a i k a s n l s t r u c t u r e s * ,

î o i m p o r t î a i k a s n l *,
î i i m p o r t j a v a s e c u r i t y c e r t *,
12

13 p u b l i c c l a s s Enc
14 {

15 p u b l i c s t a t i c b y t e [] d e c r y p t D a t a (b y t e [] d a t a , Key k) t h r o w s E x c e p t i o n
16 {

C 3 6 Enc java

17 i n t b l o c k s i z e = 32,
18

19 By te A r r a y l n p u t S t r e a m b a i s = new B y t e A r r a y l n p u t S t r e a m (d a t a),
20 O b j e c t l n p u t S t r e a m oi s = new O b j e c t I n p u t S t r e a m (b a i s),
21

22 Ob j e c t o = o i s r e a d O b j e c t () ,
23 C i p h e r c = C i p h e r g e t l n s t a n c e (” RSA”) ,
24 c m i t (C i p h e r DECRYPT.MODE, k),
25

20 B y t e A r r a y O u t p u t S t r e a m baos = new B y t e A r r a y O u t p u t S t r e a m () ,
27

28 w h i l e (o ' = n u l l)
29 {

30 b y t e [] b y t e s = (b y t e []) o ,
31

32 b y t e [] d e c Da t a = c d o F i n a l (b y t e s),
33

34 b aos wr i t e (d e c Da t a , 0 , d e c Da t a l e n g t h) ,
35

36 t r y
37 {

38 o — oi s r e a d O b j e c t () ,
39 }

40 c a t c h (E x c e p t i o n e)
41 {

42 o = n u l l ,
43 }

44 }

45 r e t u r n baos t o B y t e A r r a y () ,
4 6 }

4 7

48 p u b l i c s t a t i c b y t e [] e n c r y p t D a t a (b y t e [] d a t a , Key k) t h r o ws E x c e p t i o n

* {

165

50 i n t b l o c k s i z e = 32,
51

52 B y t e A r r a y O u t p u t S t r e a m baos = new B y t e A r r a y O u t p u t S t r e a m ()
53 O b j e c t O u t p u t S t r e a m oos = new O b j e c t O u t p u t S t r e a m (baos) ,
54

55 C i p h e r c = C i p h e r g e t l n s t a n c e (” RSA”),
56

57 c i n i t (C i p h e r ENCRYPTJVIODE, k) ,
58

i n t c o u n t = 0
60

61 f o r (c o u n t = 0, c o u n t < (d a t a l e n g t h — b l o c k s i z e) , c o u n t + = b l o c k s i z e)
6 2 {

63 b y t e [] e n c Da t a = c d o F i nal (d a t a , c o u n t , b 1 o c k s i ze),
64 oos w r i t e O b j e c t (e n c Da t a),
65 }

66 b y t e [] f i n a l - d a t a = c d o F i nal (d a t a , c o u n t , (d a t a l e n g t h — c o u n t)) ,
67 oos w r i t e O b j e c t (f m a l - d a t a) ,
es r e t u r n b aos t o B y t e A r r a y () ,
69 }

7 0 }

166

Bibliography

Abadi, M &; Gordon, A D (1997), A calculus for cryptographic protocols The

spi calculus, %n ‘Fourth ACM Conference on C om puter and C om m unica

tions Security’, ACM Press, pp 36-47

Abadi, M & Gordon, A D (1998), A calculus for cryptographic protocols The

spi calculus, Technical R eport 149, digital System s Research C entre

Black, P E , Hall, K M , Jones, M D Sz Wmdley, T N L P J (1996), A brief

introduction to formal m ethods, m ‘Proceedings of the IE E E 1996 Custom

In tegrated C ircuits Conference’, p 377

Butler, R W , Caldwell, J L , Carreno, V A , Holloway, C M & Miner,

P S (1995), NASA langley’s research and technology-transfer program in

formal m ethods, in ‘Proceedings of Tenth A nnual Conference on C om puter

Assurance (COM PASS 95)’, NASA Langley Research C enter

Butler, R W , Caldwell, J L , Carreno, V A , Holloway, C M & M iner, P S

(1998), ‘N asa langley’s research and technology-transfer program in formal

m ethods (updated version of 1995 paper of same nam e)’

Cardelli, L & Gordon, A D (1998), Mobile am bients, m ‘Foundations of Soft

ware Science and C om putation S tructures F irs t In ternational Conference,

FOSSACS ’98’, Springer-Verlag, Berlin Germ any

*citeseer ist psu edu/cardelh98m obile htm l

Fournet, C &; G onthier, G (1996), The reflexive CHAM and the join-calculus,

m ‘Proceedings of the 23rd ACM Sym posium on Principles of Program m ing

Languages’, ACM Press, pp 372-385

*citeseer ist psu edu/fournet95reflexive htm l

Hall, A (1990), ‘Seven m yths of formal system s’, IE EE Software p 11

H eitm eyer, C (1998), On the need for practical formal m ethods, m ‘Proceedings

of the 5 th In ternational Formal Techniques in Real-tim e and Real-tim e

fau lt-to leran t system s Sym posium ’, p 18

168

Hoare, C (1985), Communicating Sequential Processes, P ren tice Hall

JP L , N (n d) , ‘Formal m ethods specification and verification guidebook for

software and com puter system s, volume 1 P lanning and technology inser

tion ’, Available from h ttp / /e is jpl nasa gov /quality /F orm aL M ethods/

Accessed 28th April 2003

M ilner, R (1989), Communication and Concurrency, P rentice Hall

M ilner, R (1993), The polyadic pi-calculus A tu toria l, m F L B auer,

W B rauer L H Schwichtenberg, e d s , ‘Logic and A lgebra of Specification’,

Springer, Berlin Heidelberg, pp 203-246

M ilner, R (1999), Communicating and Mobile Systesm The Pi-calculus, C am

bridge University Press

M ilner, R , Parrow , J & W alker, D (1989), A calculus of mobile processes parts

i and n, Technical R eport -86, University of Edinburgh

N ierstrasz, O , Acherm ann, F &: K neubuehl, S (n d), ‘A guide to jpiccola’

*citeseer ist psu edu/m erstrasz03guide htm l ~

Parrow , J (2001), Handbook of Process Algebra, B ergstra Ponse Smolka, chapter

An In troduction to the pi-Calculus, p 479

Parrow , J & Victor, B (1998), The fusion calculus Expressiveness and sym

m etry in mobile processes, m ‘Logic m C om puter Science’, pp 176-185

*citeseer ist psu edu/parrow 97fusion htm l

Paulson, L C (1996), ML for the Working Programmer , Cam bridge University

Press

Pierce, B C (1997), Program m ing in the pi-calculus A tu to ria l in troduction

to P iet

Pierce, B C & Turner, D N (2000a), P ie t A program m ing language based on

the pi-calculus, m G P lotkin, C Stirling &; M Tofte, eds, ‘Proof, Language

and In teraction Essays m Honour of Robin M ilner’, M IT Press

*citeseer ist psu edu/pierce97pict htm l

Pierce, B C & Turner, D N (20006), P ie t A program m ing language based on

the pi-calculus, m G P lotkin, C Stirling & M Tofte, eds, ‘Proof, Language

and Interaction Essays in Honour of Robm M ilner’, M IT Press

Sangiorgi, D & W alker, D (2001), The ir-calculus A Theory of Mobile Pro
cesses, Cam bridge University Press

169

Schneier, B (1996), Applied Cryptography, Wiley, chapter 24 Exam ple Im ple

m entations, p 576

Seibel, P (2005), Practical Common Lisp , A Press

Thom pson, S (1999), Haskell The Craft of Functional Programming , Addison

Wesley

Wojciechowski, P & Sewell, P (1999), Nomadic pict Language and infrastruc

tu re design for mobile agents, m ‘F irst In ternational Sym posium on Agent

System s and Applications (ASA’9 9)/T h ird In ternational Sym posium on

Mobile Agents (M A’99)’, Palm Springs, CA, USA

*citeseer ist psu edu/wojciechowskiOOnomadic htm l

170

