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A bstract

The exponential increase in the volum e and sensitiv ity  of data transm itted over 

electronic m edia has resulted in a corresponding increase m attem p ts to secure 

these inherently insecure transm issions Num erous networking protocols and 

associated m echanism s have been used but im plem enting distributed system s is 

a notoriously error prone exercise A ttem pts to ensure the relevant properties 

are present in distributed system s can be m ade by the application o f formal 

m ethods However this application o f formal m ethods is m ade to the specifica

tion o f a distributed system , not its actual im plem entation Typically, a wide 

gulf exists between the specification of a distributed system  and its actual im ple

m entation, and this gulf can result in the introduction of potentially  devastating  

errors A m ethod o f bridging this gulf is required in order that the application of 

formal m ethods to distributed system s can becom e more widespread and more 

accessible We propose a general purpose program m ing language that is based  

on one of the more popular formal notations used to specify distributed sys

tem s, the 7r-calculus W ith this approach we allow the integration of com plex  

sequential com putations into 7r-calculus specifications of distributed system s to 

produce system s that are capable of execution in a distributed and concurrent 

fashion The im plem entation of this proposal is facilitated by designing the 

language such that fragm ents of Java code can be integrated into a 7r-calculus 

framework
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Chapter 1

Introduction

Formal M ethods are the applied m athem atics of software developm ent “For

mal M ethods bring to software and hardware design the sam e advantages that 

other engineering endeavours have exploited m athem atical analysis based on  

m odelsi” (Butler, Caldwell, Carreno, Holloway & Miner 1995) T he use of For

mal M ethods allows software developers to create m odels o f the system s that 

they intend to im plem ent and then to reason about this m odels - proving that  

certain properties hold true for the system s

Formal M ethods, as the name suggests, are a broad and diverse collection  

of techniques that “are solidly based on m athem atical logic system s and precise 

rules o f inference” (Black, Hall, Jones & W indley 1996) A Formal M ethod  

usually consists of a language that can be used to describe the system  that is 

to be im plem ented, as well as a set of axiom s and rules that allow properties 

of the system  to be proved W hile the concepts behind the various Formal 

M ethods, and the notations that they use to describe the system s, vary m as

sively from Formal M ethod to Formal M ethod, as does the dom ain for which 

the specific Formal M ethod is suitable, their purpose remains the sam e, “the  

fundam ental goal of Formal M ethods is to capture requirements, designs, and 

im plem entations m a m athem atically based m odel that can be analysed in a 

rigorous manner” (Butler, Caldwell, Carreno, Holloway & Miner 1998)

T he overall goal o f the conception and application o f Formal M ethods, both  

as a group and individually, is to  improve the standard of software delivered  

by increasing the ability of those im plem enting software system s to design their 

system s m sufficient detail and to prove that these system s possess the desired  

properties

W hile individual Formal M ethods m ay be only very recently conceived, the 

concept of a Formal M ethod on the whole is not new Formal M ethods have 

been around for som e tim e and have yielded im pressive results m fields such
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as micro-chip design, aviation and aerospace (Butler et al 1995, Butler e t al 

1998, JPL n d , H eitm eyer 1998) am ongst others Projects m which Formal 

M ethods have been em ployed have seen reduced costs, increased reliability and  

more predictable delivery dates Taking into account the benefits that Formal 

M ethods can bring to a project one could be forgiven for expecting that the 

application o f Formal M ethods would be the industry standard in the software 

developm ent world This, however, is not the case - their application is the 

exception  not the rule

T he traditional reason for the non-application o f Formal m ethods is cost 

(Hall 1990) It is w idely held that it takes tim e, m oney and expertise to tram  

people in the application of Formal M ethods to software developm ent and in 

the actual application itself W ith m ost software projects being highly cost 

and tim e sensitive Formal M ethods are often overlooked in an attem pt to keep 

w ithin the constraints of a project’s budget If, however, the application of 

Formal M ethods m software projects was not as costly then, perhaps, they may 

not be as frequently overlooked

One such possible m echanism  for reducing the difficulty, and therefore cost, 

o f  applying Formal Methods could, possibly, be to bridge the gap between the 

paradigms used in the design of the software system s and those that are used 

in the im plem entation of those system s Currently such a gap exists as the 

program m ing languages used m the im plem entation o f software system s are 

largely procedural or object-oriented in nature while the Formal M ethods used to  

specify the system s often are based on unique paradigm s which are irreconcilable 

with those o f the program m ing languages used in the im plem entation of the 

specified system s

1 1 Objectives

Proposed is a program m ing language that is based on a popular Formal M ethod  

- the 7r-calculus It is hoped that this program m ing language will exhibit all the 

recognisable qualities of the Formal M ethod m question m  addition to being  

usable, robust, expressive and providing a high level o f support for distributed  

com puting It is desired that by possessing these properties that this program 

m ing language will make Formal M ethods more accessible and increase their 

likelihood of being used

1.2 Outline of the thesis

•  C h ap ter one Introduction to the research
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•  C h a p te r  tw o  Introduction to the 7r-calculus as well as variants and ex

tensions of it

•  C h a p te r  th r e e  This chapter presents a number o f existing related im 

plem entations

• C h a p te r  fo u r  The design and theory of the program m ing language is 

presented in this chapter

•  C h a p te r  fiv e  T he im plem entation behind the design and theory is ex

plained in this chapter

•  C h a p te r  s ix  This chapter contains a number of exam ple system s impl- 

m ented in this program m ing language

• C h a p te r  s e v e n  T he conclusions o f this research

3



Chapter 2

Background: 
The 7T and Spi calculus

2.1 The 7r-calculus

In the late 1980s a unique form o f distributed system s were becom ing increas

ingly com m on-place and im portant, but the nature o f these distributed system s  

differed significantly from the traditional distributed system s This new breed 

of distributed system  was not static w ith regard to topology, it was contin

ually changing Links between agents m the system s would grow and die in 

a seem ingly organic fashion and these caused traditional m odelling notations 

for distributed system s to struggle w ith this new strain o f concurrent system  

This lim itation  o f existing tools for m odelling concurrent system s led Robin  

M ilner, Joachim  Parrow and David Walker to devise a process algebra called  

the 7r-calculus T he 7r-calculus is heavily influenced by Milners earlier work 

on CCS (Milner 1989) and it retains m any positive aspects of CCS and also 

adds, am ongst other things, the notion o f m obility M obility being the ability  

of system s to grow and alter dynam ically during their execution  D ue to the 

unique nature of the 7r-calculus, it is quite capable of capturing the essence of 

these system s that were dubbed Mobile Systems A m obile system  tends to be 

distributed across a network and involves the concurrent execution o f a number 

of agents, agents between who links can move

2 1 1  Introducing the 7r-calculus

As seem ingly dem anded by any m odelling tool for m obile system s the basic 

com putational operation m the 7r-calculus is the exchange o f a com m unications 

link between processes It is this capability to send links from one process to
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another that sets the 7r-calculus apart from other process algebras, such as CCS 

and CSP (Hoare 1985), which do not allow the com m unication o f links, and it is 

only by receiving a link that a process can acquire a capability to interact with  

processes which were previously unknown to it In the exam ple system , Figure 

2 1, process A and process C are both connected to process B but not to  each  

other, however they wish to be linked together This can be achieved by the 

creation of a link z by one of the processes, lets say process A After creation  

it is sent over x  to process B who forwards it onto process C on y Now both  

process A and process C know of the link z and they can now interact with each 

other w ithout an interm ediary party An act of “learning” has taken place and 

two previously unconnected processes are now linked It is this m oving o f links 

that earns the 7r-calculus the title o f calculus of mobile systems

Figure 2 1 Learning processes

In the 7r-calculus there is the notion o f a name and the intricacies o f this 

notion contribute significantly to the expressive powers of the 7r-calculus A 

name is the most prim itive entity m the 7r-calculus and is atomic in nature, i e 

it has no structure A nam e represents a link, or a channel, between processes 

but a name also is the data that is transm itted on these channels This dual 

nature of names is what allows the extrusion of scope1 of names m the 7r-calculus, 

and it is this scope extrusion that allows new links to be learnt by processes 

A 7r-calculus process can be thought o f as a collection of 7r-calculus actions 

that com bined achieve a specific task B y grouping a number of processes to

gether and allowing them  to interact the 7r-calculus allows system s to accom plish  

their goals W hile this m ay seem  very sim plistic the 7r-calculus is more expres

sive than it first appears and it has been shown that the A-calculus can be 

represented in its entirety w ithin the 7r-calculus (Milner 1993)

W hen m obility and m obile com puting are usually discussed the idea of m o

bile devices is what is generally thought o f However the concept o f m obility  

is not lim ited to devices that can be moved, m obility also covers the notion

1 Scope extrusion is a concept vital to the 7r-calculus and will be explained later in this 
section

5



of a series o f stationary devices, between which links grow, die and are passed  

about T he 7r-calculus is capability o f handling both  forms of m obility, however 

its primary applications have been in scenarios similar to the latter

2 1 2  Syntax and Sem antics 

S y n ta x

It is assum ed m the 7r-calculus that there is an infinite number of nam es and in 

the following section lower-case letters are used to represent names Also, while 

the 7r-calculus has no concept o f process nam es, upper-case letters are used to  

indicate processes

There are a lim ited number of actions that a 7r-calculus process can perform, 

and these are collectively referred to as action prefixes, (a) A ction prefixes can 

be assem bled to form processes, and processes can be further assem bled to form  

larger processes This construction of processes from action prefixes and larger 

processes from sub-processes is governed by the syntax o f the 7r-calculus

A c t io n  P r e f ix e s

a =  x(z)  Input prefix, z is received on x

x z  Output prefix, 2 is sent on x

r  An unobservable action

P r o c e s s e s

P =  0 Null process

a  P Prefix

P +  Q Sum

P | Q C om position

[x = = y ]P  M atch

(v x )P  R estriction

!P R eplication

• N u l l  p r o c e s s  The em pty process, it cannot perform any actions

• P r e f ix  The process P  is prefixed by one o f the valid prefixes - input, 

output or an unobservable action

• S u m  Interaction can occur with either P or Q but not both  Sum is 

often also referred to as the choice operator

•  P a r a l le l  c o m p o s it io n  Represents the com bined behaviour of the pro

cesses P  and Q executing concurrently Processes running in parallel can  

interact w ith each other, or with third party processes, or a com bination  

of both
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•  M a tc h  If x  is equal to y  then the process behaves as P, otherw ise it 

blocks, l e does nothing

•  R e s t r ic t io n  (vx)P  behaves as P, but with the nam e x  being local to P  
and only P

•  R e p lic a t io n  T he process !P  is equivalent to P \ fP  In other words fP  
behaves as an infinite number of instances o f P  all executing in parallel 

to  one another

F re e  a n d  b o u n d  n a m e s

In both x(y) P  and (vy)P  both the names x  and y are bound w ithm  the scope of 

P  A name is said to be bound in a process if it is either (1) a binding occurrence, 

l e x(y)  or (v y ), or (11) it is within the scope o f a binding occurrence A bound  

name can only be referenced from withm  the scope o f its binding occurrence 

and as such it cannot be used to com m unicate with a process that lies outside 

this binding occurrence, unless its scope is extruded to include that process 

A name is a free nam e if it is not a bound one T he free nam es o f a process, 

P, are denoted by fn (P ), and the bound names are denoted bn(P )

W hen interaction occurs between processes a substitution generally occurs 

A substitution  is a function from names to names { z / y } indicates a substitution  

that replaces y w ith z and leaves all other names untouched  

e g x(y) P  I xz  0 P { z / y }
P { z / y }  behaves as P  w ith all occurrences of y replaced by z, alpha-conversion  

of already existing occurrences o f z m ay be necessary A lpha-conversion being  

the conversion o f a process by renam ing elem ents o f that process in a consistent 

manner

S tr u c tu r a l C o n g r u e n c e

It is necessary to be able to  equate processes that differ only in term s of organisa

tion A m ethod o f identifying processes which represent the sam e com putations  

is required, 1 e ây 0 | a (a;) 0 and by 0 | b(x) 0 are intuitively the sam e and 

should be identified as such This is achieved in the 7r-calculus via structural 
congruence, = Structural congruence identifies only processes where it is clear 

from their structure that they are the sam e

Structural congruence is defined as the sm allest congruence th at satisfies the 

following rules

1 If Q can be obtained by alpha-conversion of P, then P  =  Q

2 (a) C om m utativity of parallel com position, P  | Q =  Q | P
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(b) A ssociativ ity  o f parallel com position, (P | Q) | R =  P  | (Q | R)

(c) C om m utativity o f sum, P +  Q =  Q +  P

(d) A ssociativity of sum, (P -1- Q) +  R =  P +  (Q 4- R)

3 Scope extrusion laws

(vx )0  =  0

Intuitively these two terms are equivalent as since there is nothing to 

restrict m 0 then the presence o f a restriction operator cannot have 

an effect on 0

(v x )(P  | Q) =  P  | (vx )Q  if x i  fn(P)

If a nam e is not free in a process then the act o f restricting, or not / 

restricting, the nam e on that process will not have an effect on that 

process

(vx) (P +  Q) =  P +  (vx)Q  if x g fn(P)

If a name is not free m a process then the act o f restricting, or not 

restricting, the name on that process will not have an effect on that 

process

(v x )[a = = y ]P  =  [a = = y ](v x )P  if x ^  a, x  ^  y

If a restriction does not operator on elem ents o f a m atch operator 

then the positioning of the restriction relative to the m atch will not 

have an im pact o f the behaviour o f the m atch operation

Sem antics

In the sam e m anner as m ost process algebra the operational sem antics o f the t t- 

calculus is given via a reduction sem antics T he following sem antics are specified  

using reduction sem antics R eduction sem antics is a m ethod o f formal sem an

tic specification which works by transform ing com plex expressions into simpler 

ones Each step in this process is called a ’reduction’ and once an expression is 

fully reduced and the reduction process has term inated then the expression is 

said to be in its normal form A com plex expression is equivalent to  its reduced  

form, and this reduced form is sim pler to reason about 

T he rules of this reduction sem antics are

8



E x p la n a t io n s

1 [S tru ct] If the occurrence of an action causes the process P  to  reduce to  

the process <2, then a process that is structurally congruent to P  can be 

reduced to a process that is structurally congruent to Q on the occurrence 

of the sam e action

2 [P refix] A process that is prefixed by an action reduces to that process 

after the occurrence o f the specific action

3 [Par] If a process, P, can reduce to another process, P \  after the occur

rence of an action then P  can reduce to P* regardless o f w hat processes 

are running concurrent to it when that action, a , occurs

4 [Sum ] If a process, P, can reduce to another process, P } after the occur

rence of an action then the sum of P  and any other processes will reduce 

to P ’ on the occurrence o f a

5 [C om ] If a process P  reduces to P* on an input action on a specific name 

and if the process Q reduccs to Q ’ on an output action on that sam e



name then P  m parallel to  Q will reduce to P ’ in parallel to Q ’ after an 

unobservable action occurs

6 [R es] If P  reduces to the process P* on an action, and the nam e x  is not 

involved in this action, then the reduction will still occur if the name ts 
restricted in both processes

7 [M atch ] If a process reduces to another process on an action, then this 

reduction will still occur if the nam es being com pared are the sam e O th

erwise nothing will happen

8 [R ep] A replicated process reduces to that sam e replicated process w ith  

a non-rephcated instance of the sam e process in parallel

2 1 3  Basic Exam ples

Consider the process

S im p le  I /O  xa  0 | a(b) bv0 [ x(y) yz  0

T he above process is comprised o f three sub-processes, and although the n- 
calculus processes are not named for this explanation we will refer to them  as 

P, Q and R, as read from left to right In all three sub-processes the names x 
and fl are free, all occurrences of x and a in the three sub-processes all refer to 

the sam e names It is these free names that allow the interaction of P  and R  
(over the nam e e )  to  occur, likewise for the interaction o f P  and Q (over the  

name a
The act o f reading a nam e over another nam e is said to bind that name in 

the process that follows the input action For exam ple in the process R  the 

action x(y) binds the nam e y in the remainder of the process, yz  0 In reality 

the name y will never actually be used m the remainder o f the process as y is 

only a placeholder that indicates where the name read in on the channel x  m  

the action x(y) should be substituted  m the process

It is worth noting at this stage that in the original 7r-calculus the act o f  

exchanging a name over a channel is a synchronous one - for every input there 

m ust be a corresponding output and vice versa and w ithout the correspond

ing action any attem pt to input or output will sim ply block until there is a 

corresponding action

In order for the process to reach its final sta te there m ust be a certain am ount 

of interaction between processes T hese interactions proceed as follows
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xa 0 | a(b) b v 0 | x(y) yz 0 
0 | a(b) bv 0 | az 0 
0 | zv 0 | 0

The reason that the above processes could interact successfully is that they  

shared a certain am ount o f knowledge of names If the inform ation that was 

shared was restricted between specific processes then the execution  would have 

been quite different The following process is virtually identical to the previous 

one except that the name x is restricted to the process P  and Q, that is the 

nam e x that appears in P  and Q is a different x  to  the one in process R

R e s t r ic t io n  (vx )(xa  0 | a(b) 0 )| x(y) yz  0

Since the occurrence o f x  in P\Q  is a different x to  the one in R  no interaction  

is possible This restriction of names allows the creation o f private channels 

between processes, a feature that proves invaluable for when dealing w ith con

current, distributed system s The real value o f how the 7r-calculus handles 

restriction of names is only appreciated when one considers the unique concept 

o f scope extrusion

S c o p e  e x tr u s io n  (vy) ( (v s )  (x(m) \ yx) \ y(p) po)

In the above exam ple the process x(m)  can be considered as a resource, the 

process yx  can be considered an access control unit for the resource and the 

process y(p) po can be viewed as an agent wishing to access the resource, Figure 

22

Figure 2 2 Resource Access Control

T he resource in question can only be accessed via the nam e x, the only  

entities that in itially are included in the scope of this nam e are the ACU and 

the resource itself but by sending the name x  over the name y the scope of the  

name x  can be extruded to include the User process T he User process can now  

access the resource m question, Figure 2 3

S c o p e  e x tr u d e d  (vy)(vx)(x(m)  | 0) | xo)
T he notions of acccss control and resources play a m ajor part in concurrent
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Figure 2 3 Resource Access Control

com puting and the ease w ith which the 7r-calculus allows these ideas to be 

expressed highlights once again the benefits o f using the 7r-calculus when dealing  

w ith concurrent and distributed system s

In any real world concurrent system  there is always a possibility that either 

one thing or another will happen, that a choice will be needed to be m ade 

between certain actions Choices like these can be expressed in the 7r-calculus 

via the choice (+ )  operator

C h o ic e  P  + Q

In the above process either process P  or Q is started and the choice o f which 

process to  start is made m a non-determ m istic fashion, that is the result o f the 

operation cannot be predicted before its execution C hoosing a process in a 

com pletely arbitrary manner is o f lim ited use and as a result it  is much more 

com m on to see a guarded choice expression

G u a r d e d  C h o ic e  x a P  + y a Q  + w(b) R

Once again the above expression will result in either process P , Q or R  being  

started, however m this case the choice is not a  non-determ m istic one, but rather 

is based on which action occurs first x a , ya  or w(b) W hichever action com pletes  

first results in the associated process being started A guarded choice expression  

consists of an arbitrary number of possible branches of execution, or choice 

options For exam ple m xa P  +  ya Q +  w(b) R  there are three possibilities 

xa P, ya Q and w(b) R  E xactly  one of these options m ust be executed, and  

interaction between options is not perm itted, 1 e in the process x(a) P  + x b Q , 

the reduction to { 6 /a } P  +  Q cannot occur

Should the sam e action occur in m ore than one place in an expression, a 

non-determ im stic choice is m ade between these options should the associated  

action prove successful Any com bination of input and output actions are valid 

as prefixes to  processes m  a choice expression and these prefixes are said to  

“guard” the respective processes

A concurrent system  can som etim es involve m ultiple copies o f the sam e pro
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cess running in parallel Som etim es the number o f instances m ay be an arbitrary  

one, one that cannot be known m advance, and a m echanism  to capture this 

behaviour is required This m echanism  com es m the form of the replication op

erator, (]) A process that is replicated behaves as if there are an infinite number 

of copies o f the process ready to run at any stage, once one starts another is 

im m ediately ready to start A replicated process ]P  can be expanded to P\ 'P

R e p lic a tio n ( l)  1xa \ x(b) P  \ x(c) Q

T he execution of the above process could proceed as 
}xa  | x(b) P  | x(c) Q — >
xa  | 1xa \ x(b) P  \ x(c) Q — >

xa  | xa \ }xa \ x(b) P  \ x(c) Q —^

0 \ xa \ }xa  | P { a /b } | x(c) Q —^

0 | 0 | 'xo | P {a /b j  | Q {a /c }

Think back to the access control exam ple, it only worked for one connection  

from a user to the resource, this is not a realistic system  A more realistic system  

is one in which m ultiple users want to make m ultiple separate connections to  

the resource

R ep lica tio n (2 ) (v y )( , (vrc)(a:(m) P  \ y x ) |(vo)(*t/(p) po))

M ultiple users, ]y(p) po, are now able to access the resource by m eans of mul

tiple, access control process/resource pairings, '(va:)(a;(m) | yx)  Each tim e a 

user process kicks off another one is ready to take its place Each replicated user 

process receives its own private channel for com m unicating w ith the resource

as the entire access control/resource process is replicated including the restric

tion As a result the system  can now handle m ultiple users m aking m ultiple 

connections to the resource

(vy )('(v x )(x (m ) P  \ yx ) \  '{vo){y(p) po))

(vy)((vz)(z(m) P  | yz) | '{vx){x(m) P \ yx) \ [{vo)(y(p) po)) 

(vy )((vz )(z (m ) P \ y z ) \  '(vx)(x(m) P  \ yx) \ (vq)(y(p) pq) \ '(vo(;/(p) po)) 

(vy )((vz )(z (m ) P  \ 0) | '(vx )(x (m ) P  \ yx) \ (\q)(zq) I '(vo(j/(p) po))
T ^

(vy){vz)({vq)(P{q/m} \ 0) | ' (vx){x(m) P \ yx) \ 0 | '(\o(y(p) po))
T

(vy)(vz)((vq)(P{q/m}) \ '(vx )(x (m ) P \ yx) \ '(vo(y(p) po))
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2 1 4  E xam ple

Im agine a system  involving an arbitrary number o f users which can access an 

arbitrary number of printers Users wish to print only one job at a tim e and do 

not care which printer performs the task Printers can only handle one job at a 

tim e and following com pletion o f one job are ready to print another one Users 

m ust pay per print job and billing is performed by routing all print requests 

through a central access control unit (ACU)

N users

Figure 2 4 Printer exam ple

T he following is a 7r-calculus specification for the above system

n —1
Sy s tem  =  (vy)(vx)( 'U ser \ ACU \ U.l=Q Printer  (i))
User  =  (va)(v&)(rca a(c) ck 0)

Printer  (j) = (vq)(yq q(e)) Pr inter(j )
A CU  =  x{b)y(c) be ACU

n — 1

T his exam ple introduces a syntactic shortcut o f the 7r-calculus, Ul=,0 In 

this exam ple there will be n printers running in parallel in the system , and 

rather than writing (Printer(1) | P r in ter (2) | | Printer(n))  it is much more
n—1

convenient to write n»= o, which is merely shorthand for the more lengthy and  

com plex expression involving n printers in parallel being explicitly  described  

Another form of syntactic sugaring is also introduced in this exam ple, that is the 

use of param etensed processes, e g Printer (j) Param eterisation o f processes
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allows a generic definition o f a process to  be used in m any specific cases where 

the only differences between the instances o f the process is the value o f the 

param eter(s) supplied to it

A nother new concept introduced m this exam ple is the notion of tail recur

sion, e g Printer  (j) — (vq)(yq q(e)) Pr inter(j )  The occurrence o f Printer  at 

the end of this expression is referred to as tail recursion Tail recursion captures 

the idea that once a process has finished executing it m ay be required to return 

to  its original state and be ready to execute again

T he system  consists of three entities - users, printers and an Access Control 

U nit (ACU) Users cannot im m ediately interact directly with printers, they m ust 

first go through the ACU A channel x  is shared by the User processes and the 

ACU, likewise another channel y is shared by Printer processes and the ACU  

User processes in the System  process are replicated to reflect the possibility of  

m any users

T he first thing that a User process does is extend the scope o f the nam e a 
to include the ACU by sending this name over the channel x This nam e will be 

used for all future com m unications w ith the ACU N ext the user reads another 

nam e in over the channel a This new name, c, will be used to transm it the  

print job, represented by the name k, to  the printer, as the nam e c is known to  

both the printer and the user

A Printer process creates a name q, this name is the name that will ultim ately  

be used to receive the print job from the user Once a print job is received it is 

deem ed to be printed A printer process sends the nam e q to  the ACU via the 

shared nam e y It then waits to receive a name on the channel q This name, 

once received, is the print job that should be printed Once this print job is 

printed the printer is ready to receive more jobs

T he ACU process is designed to allow users and printers to eventually inter

act It reads the relevant inform ation from both users and printers and passes 

the relevant inform ation onto the correct parties
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P r in te r  exam ple reduction

Let n  =  2

(vx) (y ) ( ]U ser \ A C U  [ printer(l ) \printer(2))

(vx)(vy)( (vwp)(xw w(c) cp 0) | 1User \ x(b) y(c) be ACU  
|( \ m ) y m  m (e) printer[l )\pr inter (2))

r 1 * "

( \x) (vy)( (vwp)(w(c)  cp 0) | ]User \ y(c) we ACU  
\ (vm)ym m(e ) printer(\ ) \printer(2))

T

(va;)(vi/)((vti;p)(w(c) cp 0) | ]User  | (v m ) ( w m  ACU  
|m (e) printer(l ) \pr inter (2)))

r  ^

(vx)(vy)( (vwpm)(rnp  0) | ]User  | A CU  
|m (e) p r in ier (l)|p rzr iier(2 ))

wrn^

(vx){vy)( lUser \ ACU\prmter(l ) \prmter(2))
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2.2 Extensions and variations of the 7r-calculus

Following the publication of the in itial research on the 7r-calculus m any aca

dem ics recognised the benefits of the 7r-calculus and much further research was 

undertaken into the 7r-calculus, a fact which is quickly apparent from the sheer 

volum e of publications now available on the field A large proportion o f this 

research involved the creation of variants and extensions o f the 7r-calculus The 

creators of these variants and extensions felt that the m odifications that they  

m ade, which were som etim es m ajor and som etim es minor, either did the sam e 

as the 7r-calculus only b etter/n ea ter /q u ick er/etc  or that the 7r-calculus was a 

sub-set of their creation which did all that the Tr-calculus could and more Many 

such extensions exist, som e were short-lived and not widespreadly recognised or 

adopted by som e becom e more established Four o f the more well known exten

sions/variants are the Fusion calculus (Parrow & V ictor 1998), the Join calculus 

(Fournet & Gonthier 1996), the Am bient calculus (Parrow & V ictor 1998) , and 

the Spi calculus

2 2 1 The Fusion calculus

The Fusion calculus is an extension  to the 7r-calculus that was devised by Parrow  

and Victor (Parrow k  V ictor 1998) The goal o f the Fusion calculus was to  

create an extension  to the 7r-calculus that sim plifies the 7r-calculus and allows 

sim pler m odelling o f system s that involve shared state For the m ain part this 

was achieved by the addition o f a m echanism  which allows the updating and 

m aintaining o f sta te and enforces sym m etry between input and output actions 

T his m echanism  is provided by the addition of a new class o f action called  

’’fusions” T he Fusion calculus also proved popular and it too  has spawned  

extensions and variations of its own

T h e  Join Calculus

Fournet and Gonthier (Fournet & Gonthier 1996) aimed to create an extension  

of the 7r'calculus that retains the expressivity of the 7r-calculus, m ore specifi

cally the asynchronous sum m ation free 7r-calculus This extension  was to be 

more am enable than the 7r-calculus to being used as the basic of a com plete 

im plem entation o f a distributed program m ing language T hey believed that the 

7r-calculus m its original form was not im plem entable, and that it would be nec

essary to bring the specification notation  down a few levels closer to that o f a 

program m ing language before it could be im plem ented T he Join calculus also 

proved to be popular and extensions and im plem entations of it exist
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2 2 2 T h e  Spi calculus

The Spi calculus was created by Abadi and Gordon (Abadi k  Gordon 1997) as 

an extension  to the 7r-calculus that was specifically designed w ith the task of 

im plem enting security protocols m mind T hey believed that the inclusion of 

cryptographic prim itives and operations m the syntax and sem antics o f the 7r- 

calculus would make the Spi calculus much more capable of m odelling security  

related system s

2 2 3 The Am bient calculus

The creators of the Am bient calculus, Cardelli and Gordon (Cardelh k  Gordon 

1998), believed that existing process calculi were neglecting w hat they felt was 

a central concept of m obility - the m obility o f processes T hey believed that the  

ability for agents to m igrate from location to location  was key to any m obility  

orientated process calculi, and that this m igration should occur in a clearly 

defined and controlled m anner This m igration is provided by a construct which 

represents location - the am bient

W hile a detailed exam ination of all, or even som e, of the 7r-calculus exten

sions and variations that exist is beyond the scope of this docum ent, a detailed  

exam ination o f one such extension will be given for a sense o f  com pleteness 

T his extension is the Spi calculus There were a number o f reasons why the Spi 

calculus was chosen to be exam ined in more depth

1 The Spi calculus features the addition of sequential com putations, albeit 

lim ited sequential com putations, to the syntax and sem antics o f the ir- 

calculus

2 W ith  the exception of the addition of the m echanism  for performing se

quential com putations the syntax and sem antics o f the Spi calculus is 

largely identical to that of the 7r-calculus

3 The Spi calculus is used to m odel system s involving security protocols, the  

im plem entation of security protocols is u ltim ately one o f the target uses 

o f w

2 3 The Spi calculus

2 3 1 Introducing the Spi calculus

T he Spi calculus is an extension  of the 7r-calculus The primary purpose of the 

Spi calculus is the description and analysis o f cryptographic protocols W hile 

the 7r-calculus allowed an abstract overview of a protocol, the Spi calculus allows
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a much more detailed view  of a cryptographic protocol To facilitate this more 

detailed approach to cryptography a full com plem ent of cryptographic prim itives 

are provided in the Spi calculus, including

S ym m etric  encryption  Sym m etric encryption is the encryption and de

cryption o f data using a secret key The sam e key is used both  for the  

encryption and the decryption

A sy m m e tric  encryption  A sym m etric encryption involves the use of key 

pairs for the encryption and decryption of data D ata  encrypted w ith one 

part of a key pair can only be decrypted with the corresponding part of 

that pair, and vice versa One part of the key pair is kept secret, the  

“private” key, while the other is freely distributed, the “public” key

H ashing A hash function is a m athem atical one-way function W hen data

is hashed a cryptographically unique value o f a fixed length  is acquired /

This value is different for each different input data, and the sam e input 

data will always yield the sam e hash

For the purposes of this docum ent the Spi calculus is, in essence, identical to  

the 7r-calculus bar the addition of cryptographic prim itives to the syn tax  of the 

7r-calculus The concepts of names, channels and processes rem ain the sam e and 

any valid yr-calculus specification is also a valid Spi calculus one

T he Spi calculus is particular suited to specifying security protocols as its 

“m odel of protocols takes into account the possibility o f attacks but does not 

require writing explicit specifications for an attack” (Abadi h  Gordon 1997)
Anyone familiar with security protocols and formal m ethods will instantly recog

nise the benefits o f this property of the Spi calculus, by avoiding the need to  

explicitly  define the capabilities o f attackers one avoids the dangers of m issing  

capabilities o f the attacker This property com bined w ith the rest of the prop

erties o f the 7r-calculus make the Spi calculus a very useful tool for describing  

security protocols

2 3 2 Syntax additions

The syntax o f  the Spi calculus is virtually identical to  that o f the 7r-calculus 

except for the addition of cryptographic prim itives T hese additions com e in 

two forms, those concerned w ith terms, and those concerned w ith processes 

In the 7r-calculus there are only names, operations can only be performed on  

names, however this is not the case in the Spi calculus W hile the 7r-calculus 

refers to  nam es, the Spi calculus refers to  terms, where a term  is
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n a name

M » Sym m etric encryption

H(M ) Hashing

M+ T he public part o f a key-pair

M ~ T he private part of a key-pair

{ \M\}n A sym m etric encryption

[{M }]jv Private-key signature

T he other addition to the syntax is the set of actions that can prefix a 

process

a =

case L of {x } n  in P Sym m etric decryption

case L o f { |x |} ^  m P A sym m etric decryption

case N of [{x ) ] m  m P Signature checking

1 S y m m e tr ic  e n c r y p t io n  If a process wishes to send som e data, Af, to 

another process and it requires that the data is encrypted using som e sort 

of sym m etric cipher under a specific key, n , this is represented by writing  

{M}n

Exam ple d(m) c{m}k

T he name m  is read over the channel d This nam e is encrypted using a 

sym m etric cipher with the name k as the key, and the cipher-text resulting

from this operation is then sent over the channel c

2 H a s h in g  The result o f hashing, or digesting, a nam e is term  H(M ) 

E xam ple d(m) c(H(m))

T he name m  is read over the channel d This name is then hashed and

the resulting hash is send over the channel c

3 P u b lic  k e y  A key-pair com prises of a shared and a secret part, or a public 

and private part A key-pair in the Spi calculus is represented by a single 

name so som e m ethod o f accessing both  parts is needed

Exam ple (vk )(dk+ )

A key-pair k  is created and then the public part of that key pair, k+, is 

sent over the channel d

4 P r iv a te  k ey  B oth  parts of a key pair need to be accessed even though  

the public part is generally the only part that is passed around

20



Exam ple ( ( \k ) (dk  )

A key-pair k is created and then the private part o f that key pair, k ~ , is 

sent over the channel d Care should be taken that the private parts of 

keys are kept secret

5 A s y m m e tr ic  e n c r y p t io n  { |M |};v  represents the encryption o f the term  

M  under the public key N  T he result o f this action  can be sent and  

received on channels as any other name, could be

Exam ple d(m)c{\m\}k

The name m  is read over the channel d and is then encrypted with the 

public-key k and the resulting cipher-text is transm itted over the name c

6 P r iv a te  k e y  s ig n a tu r e  T he signing of data involves the encryption of 

the data using the private-key This data can only be decrypted by using  

the associated public-key and the act of successful decrypting the data  

using the public-key ensures that it was, in fact, “signed” by the relevant 

party

Exam ple d(m) c[{m}}k

The nam e m  is read m over the channel d, this nam e is then signed using  

the private key k and the resulting signature is then sent over the channel 

c

7 A s y m m e tr ic  d e c r y p t io n  In case M  o f  { |x |}jv  m  P^ M  is m fact 

the result of encrypting a nam e with the relevant public-key then it will be 

of the form { |0 |} iv ,  this value of 0 , i e the decrypted data, is substituted  

for all occurrences o f x  in P  If it  is not then this action  blocks indefinitely

Exam ple d(m) case m  o f  { |z |} n  m  dx

The term  m is read in over the name d, an attem pt is m ade to decrypt the 

nam e using the key n, if this attem pt succeeds then the resulting p lain-text 

is sent over the name d

8 S y m m e tr ic  d e c r y p t io n  In case M  o f  {z }*  in P> if  M  is in fact 

the result of encrypting a name with the key k then it will be of the 

form {<9};v, this value o f O, i e the decrypted data, is substituted  for all 

occurrences o f x  m P  If it is not then this action blocks indefinitely

Exam ple d(m) case m  o f  {rc}n m  dx

T he name m  is read in over the nam e d, an attem p t is m ade to decrypt the 

name using the key n, if this attem pt succeeds then the resulting p lain-text 

is sent over the name d
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9 S ig n a tu r e  c h e c k in g  Checking a signature is much like asym m etric de

cryption except that the key used to decrypt the data is a public key rather 

than a private key Bar this difference, and the syntactic difference, sig

nature checking is the sam e as asym m etric decryption

2 3 3 Cryptographic assum ptions

T he creators of the Spi calculus m ade som e significant, yet reasonable assum p

tions with regard to cryptographic prim itives and operations

• For data encrypted with a sym m etric cipher, it is assum ed that the only 

way to decrypt that data is to  know the correct key

• For data encrypted with an asym m etric cipher, it is assum ed that the only

way to decrypt that data is to know the corresponding private key
%

• T hat sufficient redundancy is present in m essages so that it can be detected  

if a cipher-text was encrypted with a specific key

• T hat the data used to create a hash cannot be recovered from the hash

•  T hat no two d istinct pieces of data will yield the sam e hash

• T hat a private-key cannot be obtained from its public-key

2 3 4 Operational sem antics

The sem antics of the 7r-calculus are a sub-set of the sem antics of the Spi calculus 

and everything valid m the 7r-calculus is also valid in the Spi calculus There are, 

however, three additional rules m the operational sem antics o f the Spi calculus

[SymDec]
L  =  \ M } n

case L o f  {^}at in P  — > P { M / x }

[AsymDec]
l  = {\m \}n +

[SigCheck]
case L o f  [{x}]jy+ *n P  — > P { M /x }

E x p la n a t io n s

1 [S y m D ec] If a term, L, is the result of encrypting the term, M, w ith a 

sym m etric cipher and the key N, then the result is the process P, w ith all 

occurrences of x  replaced by M



2 [A sy m D e c ]  If a term, L, is the result of encrypting the term , M, w ith an 

asym m etric cipher such as RSA and the public part of the key pair TV, the  

result is the process P  w ith all occurrences of x  replaced w ith M

3 [S igC h eck ] If a term, L , is the result o f the term  M  being signed with  

the private part of the key-pair TV then the process P  continues w ith all 

occurrences of x  being replaced by M

2 3 5 Exam ple

Consider the printer exam ple given m section 2 1 4 ,  the 7r-calculus exam ple 

Suppose that it was a requirement, for whatever reason, o f this system  that 

all jobs sent from users to printers m ust be encrypted T he following is a Spi 

calculus system  that achieves this

n—1
S ys tem  =  ( \ K \ c u )( vxy )(]U ser  | A C U  | Ht=oPrinter(i ))

User  =  ( v o j / f u) (x { |a |} j i+ AC[; a{\Ku\}K+ACV a(c) 

case c o f  { z } Ku m  z {]} k u 0

Pr in te r (3) =  (vqKp){y{\q\}K+ACUq{\Kp\}K+ACUq(d)
case d of {Kp}k p m  q(e) case e o/{p}ku m  0

AC U  = ( \ K ^ c u ){x{m) m(n)casenof  { \Km \ } k A c u in  

y(d) d(e)caseeof { \ K d \ } k a c u 171 
f d { K m}Kd rnd ACU)

The topology of this system  remains unchanged, the different processes are 

connected in the sam e way and they learn of channels m the sam e m anner and 

order However, the interaction between the different processes is significantly  

more com plex as keys and encrypted data are exchanged in an effort to ensure 

secrecy

A t the top level the system  has only one change - all User and Printers now  

know the public key belonging to the ACU This will allow all Users and Printers 

to encrypt their transm ission to the ACU and allow the secure exchange of keys 

for use w ith sym m etric ciphers

An instance o f the User process wants to set up a channel and a key that  

will be used to transm it securely the print job to the printer This set-up is 

achieved by sending a channel to the ACU, and by then sending a session key, 

also encrypted, to the ACU on this channel It then receives a channel which has 

been encrypted with the session key and it is on this channel that the encrypted  

print job will be sent directly to the printer
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A printer process also wants to establish the session key and a channel on 

which it will receive the print job It also does this by sending a channel and a 

session key, both encrypted, to  the ACU It then receives back from the ACU  

another session key which is encrypted w ith the key that was sent to  the ACU  

It is this session key that will be used to decrypt the print job once it is received 

on the channel that was sent to the ACU Once a printer has dealt w ith the 

received print job it returns to its in itial state, ready to com plete the procedure 

all over again

The ACU process is easily the m ost com plex o f all the processes m  the system  

as it has to interact with both  User and Printer processes to  facilitate the secure 

exchange of channels and the establishm ent of session keys

T he first step of the ACU process is to  receive a name from the User process 

Using this nam e another nam e is read from the User This nam e is the session  

key for this user session that was generated by the User and was encrypted  

using the public key of the ACU Once this session key has been received and 

decrypted the ACU reads a name from the Printer process Sim ilarly another 

name is read then from the Printer using this nam e This nam e is the session  

key for the printer session Using this printer session-key the user session-key  

is encrypted and then sent on the channel that is shared between the ACU and 

the printer Once this occurs this sam e shared name is sent to  the User process 

so that the User process can com m unicate w ith the Printer

Once the ACU process is finished the ACU process also returns to its initial 

sta te ready to facilitate more transactions between users and printers

2.4 Conclusions

By now the expressive capabilities of the 7r-calculus should be clear A large 

range of powerful constructs and operations are available in the 7r-calculus 

However concepts such as replication, channels and the 7r~calculus approach  

to  interaction between concurrently execution processes, which are sim ple and  

transparent to use in the 7r-calculus are not present m conventional program m ing  

languages and would prove rather cum bersom e and troublesom e to im plem ent 

and use m these conventional program m ing languages W hile these absent el

em ents could possibly be written as com ponents and plugged into som e of the  

conventional program m ing languages and the functionality of the constructs  

may be approxim ated, an unbridgeable gulf between the syntax and sem antics  

of the 7r-calculus and those o f the conventional program m ing language even  

with the added functionality would still exist This gulf and the problem  that it 

poses for the task o f com paring 7r-calculus specifications w ith their im plem enta

tions m conventional program m ing languages creates a niche for program m ing
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languages which are based directly on the 7r-calculus and its derivatives

2.5 Further Reading 

The 7r-calculus

T he theory behind the 7r-calculus is m assive This introduction is intended only 

to  give a brief overview o f the syntax, sem antics and purpose of the 7r-calculus 

and entire sections o f the 7r-calculus have been om itted  as they are beyond the 

scope of this docum ent In order for any reader to get a true understanding of 

the 7r-calculus it would be necessary to read one or more o f the following texts  

(increasing com plexity)

•  An Introduction to the pi-Calculus(Parrow 2001)

•  T he Polyadic pi-Calculus A Tutorial (Milner 1993)

•  Com m unicating and M obile System s The Pi-calculus(M ilner 1999)

• A Calculus o f M obile Processes Parts I and II(M ilner, Parrow & Walker 

1989)

•  The 7r-calculus A Theory o f M obile Processes(Sangiorgi & Walker 2001) 

The Spi calculus

As the Spi calculus is based upon the 7r-calculus a full understanding of the  

7r-calculus is required before m oving on to the Spi calculus T he theory behind  

the Spi calculus is considerable and a lot of the im portant aspects of the Spi 

calculus haven’t even been m entioned in this docum ent If a reader desired a 

greater knowledge o f the Spi calculus the following texts would be a good place 

to start

•  A Calculus for Cryptographic Protocols The Spi C alculus(Abadi &; Gordon  

1997)

•  A Calculus for Cryptographic Protocols T he Spi Calculus (SRC Tech 

report) (Abadi & Gordon 1998)
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Chapter 3
/

Related Research

Following the publication of the in itial research on the 7r-calculus m any deriva

tives of the 7r-calculus quickly em erged (Cardelh & Gordon 1998, Parrow & 

Victor 1998, Fournet h  Gonthier 1996), and after som e tim e im plem entations  

of the 7r-calculus, and these derivatives, began to appear W hile all of these im 

plem entations are, in som e way, each unique w ith regard to how they approach  

the im plem entation of their underlying process calculus, it is possible to group 

the vast m ajority o f these im plem entations into one of three categories based on  

various classification criteria M ost of these im plem entations are based on the  

7r-calculus, although some were inspired by more exotic variants or extensions 

of the 7r-calculus
The creation of these classification criteria occurred as the research into 

related work was taking place It was felt that these particular classification  

criteria would allow the fundam ental differences between im plem entations to  

be determ ined and for the im plem entations to be subsequently grouped accord

ingly into categories Following the exam ination o f related research it becam e 

clear that these classification criteria resulted in im plem entations falling into 

one of three categories Before stating w hat the three categories are the clas

sification criteria will be exam ined and justified The classification criteria for 

these im plem entations are

S y n ta x

W hen inspecting the syntax of a language that is supposedly based on the 

7r-calculus the primary concern is whether or not the syntax is sim ilar to  

that of the 7r-calculus If they are sim ilar there will be a visual likeness be

tween the 7r-calculus and the im plem entation, i e they will look the sam e 

It was felt that this was im portant so that a com parison between specifi

cation and im plem entation would be as sim ple as possible and w ithout a
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need for translation

S e m a n t ic s

An exam ination of the sem antics of a 7r-calculus inspired language should, 

ideally, reveal a significant resem blance to those of the 7r-calculus The 

closer the sem antics of a language to the sem antics o f the 7r-calculus, the  

more similar the behaviour of the language will be to the behaviour of the  

7r-calculus, 1 e they will act the sam e T he im portance of this property is 

due to the desire to sim plify the com parison process

M o b il i ty

T he 7r-calculus concept o f m obility is just one approach to m obility and 

various im plem entations incorporate a different process calculus concept 

of m obility rather than that of the 7r-calculus How an im plem entation  

handles m obility has a significant im pact on its ties to  the 7r-calculus

S y n c h r o n o u s  v s  a sy n c h r o n o u s  c o m m u n ic a t io n s

The com m unication of data over channels can be done in one of two ways, 

in a synchronous fashion, or in an asynchronous m anner Versions o f the  

7r-calculus exist that are either synchronous or asynchronous in nature 

Similarly im plem entations o f the 7r-calculus differ on this depending on  

which version o f the 7r-calculus they are based on

D is t r ib u t io n

Some im plem entations of the 7r-calculus were designed to be used in the 

im plem entation of distributed system s and as such constructs, operators 

and environm ental features were provided to allow this distribution Some 

im plem entations were only m eant for use m system s whose execution  

would occur entirely on one host T hese distribution oriented languages 

are closer m spirit to  the 7r-calculus T he absence/presence o f support 

for d istribu tion  is an easily determ ined classification criterion, and given 

that the 7r-calculus is intended for use in m odelling distributed system s, 

an im portant one

S e q u e n t ia l  c o m p u t a t io n s

T he 7r-calculus does not provide a m echanism  for performing com plex  

sequential com putations such as cryptographic operations or even text  

m anipulation Such a m echanism  is necessary to be present in an im 

plem entation of the 7r-calculus for that im plem entation to be of use in a 

real world scenario, however such a m echanism  is not alw ays provided by 

im plem entations o f  the Tr-calculus
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T he m ajority of im plem entations fall into one of three m am  categories when 

classified using the above criteria

C ateg o ry  1

A program m ing language belonging to category one is capable o f perform

ing com plex sequential com putations in a sim ple and transparent manner 

However is not designed for use in im plem enting distributed system s and  

it  is not strictly based on the 7r-calculus

C ateg o ry  2

A category two program ming language is syntactically  and sem antically  

similar to the 7r-calculus but it is not capable of performing sequential 

com putations m a simplej fashion nor is it intended for use in im plem enting  

distributed system s

C ategory  3

C ategory three program m ing languages are syntactically  and sem antically  

similar to the Tr-calculus and are also m eant to be used in im plem enting  

distributed system s However they are not capable of performing com plex  

sequential com putations

A representative im plem entation from each will be exam ined m detail

•  Prom category one - JP iccola  (Nierstrasz, Acherm ann & K neubuehl n d )

•  From category two - P iet (Pierce & Turner 2000 o)

•  And from category three - Nom adic P iet (W ojciechowski & Sewell 1999)
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3.1 JPiccola

JPiccola  (Nierstrasz et al n d ) is a language designed for constructing appli

cations from existing software com ponents that are already w ritten m another 

program m ing language All actual work is achieved via this host language, Java, 

and JP iccola  sim ply provides a framework for linking these com ponents The 

reasoning behind this is that existing m ethods of creating pluggable com ponent 

architectures lack flexibility and lim it designers to particular architectural styles 

and com ponent m odels

T he core of JP iccola  does not provide any program m ing language features, 

only som e m echanism s which facilitate the com position o f com ponents to  create 

applications T hese m echanism s are related to aspects of the 7r-calculus, nam ely  

agents and channels Obviously since these m echanism s only allow the struc

turing o f com ponents and the com m unications between them , som e m ethod of 

performing actual com putations is required JP iccola  provides this by m eans 

of a H ost program m ing language, the Java program m ing language B y writing  

wrappers around Java code it is possible to access the functionality of the Java 

program m ing language In order to sim plify the task of performing com pu

tations JPiccola provides som e basic data types, such as strings, integers and  

Booleans, along w ith som e basic control structures T hese are provided via  

standard JP iccola  m odules which perform the required wrappings

JP iccola  differs from the 7r-calculus in terms o f  both syn tax  and sem antics 

However, the 7r-calculus concept of mobility, static agents yet dynam ic links 

betw een them , is present in JPiccola JPiccola is also not distributed in na

ture, and all com m unications over channels in it are asynchronous in nature 

JPiccolas mam strength comes from its ability to perform com plex sequential 

com putations via a “host” language, nam ely the Java program m ing language

3 1 1  Forms and Services

Central to  JP iccola  is the concept of a form A form in JP iccola  consists of a 

series of name-value bindings and services that allow.. these forms to be invoked  

e g

p e r s o n  =

name =  ‘ ‘ joh n  doe ’ ! 

age =  31

prm tN an ie
p r i n t  In ‘ ‘ Name ’ ’ +  name

p r i n t D e t a i l s
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p r i n t  ‘ ‘ Name ’ J +  name 
p r i n t l n  ‘ ‘ Age ’ ’ +  age

pe r son  p r i n t Name () 
pe r son  p r i n t D e t a i l s  ()

T he above JP iccola  code creates a form, person, which contains two name- 

value bindings and two services The two services, pnntName  and printDetails, 
are then invoked to yield the output 

Name joh n  doe 
Name j ohn doe Age 31

Much like inheritance in object-oriented languages forms can extend other 

forms, thereby gaining the services and nam e-value bindings o f other forms

s t u d e n t  =  
pe r s on
s t u n o  =  99999999

p r i n t D e t a i l s
p r i n t  “ Name ’ ’ +  pe r son  name 
p r i n t  ‘ ‘ Age ”  -1- pe r son  age 
p r i n t l n  ‘ ‘ ID No ’ ’ +  s t u n o

s t u d e n t  p r i n t Name () 
s t u d e n t  p r i n t D e t a i l s  ()

The form student can access all the nam e-value bindings created in the 

person form, and it can also access all the services that person provides Name- 

value bindings m ust be explicitly referenced while services do not Services can 

also be overridden, e g the printDetails service m the student  form

3 1 2  Concurrency and Interaction

JPiccola  is heavily influenced by the 7r-calculus and as such interaction and 

concurrency m JP iccola  is achieved m a m anner sim ilar to that of the 7r-calculus 

Concurrency in JP iccola  is achieved by invoking run on a service, this causes 

the service m question to be executed in parallel to the rest of the invoking entity

e g

run (do s t u d e n t  p r i n t D e t a i l s  ( ) )  
run ( do pe r son  p r i n t D e t a i l s  ( ) )

This code sets the two services, student printDetails and person printDetails, 
running concurrently to the invoking service The result of the above will be the 

printing of both  sets of details to the screen in an arbitrary order Obviously  

services that can be more com plex are possible to be invoked in a concurrent

3 0



)

fashion, and no bounds are placed on how deep nested concurrent invocations 

can be

W hen dealing with m ultiple agents running concurrently the issue arises of 

com m unication and interaction between these agents JP iccola  once again turns 

to the 7r-calculus for the solution The concept of a channel was introduced  

to JPiccola, and agents can com m unicate with each other over these Channel 

com m unications in JP iccola  are done in an asynchronous fashion Any attem pts  

to  send inform ation on a channel are deem ed to have succeeded instantly and do 

not block, while reads are done in a blocking fashion JP iccola  channels allow  

only the com m unication o f forms, but since everything in JP iccola  is a form this 

is not a problem  

e g
c =  newChanne l ( )

run (do p r m t l n  c r e c e i v e Q )

run (do c send ( ‘ * hey from over  h e r e 1’ ))

3 1 3  The H ost language

JPiccola has no built in m eans of performing com putations, rather it delegates 

all com putations to a host language, Java Everything that is possible in the 

Java program m ing language can be achieved m JP iccola  by m eans o f wrappers 

Wrappers for the m ost com m on data-types are supplied with JP iccola, and it is 

via these wrappers that the “built-in” types like numbers, strings and Booleans 

are supplied In order to access other types of Java objects it is necessary to use 

the Host class service This service returns a form and all functions available 

to  the Java object are available as services that can be invoked on the form

e g
d ig  =  H ost c l a s s  ( ‘ ‘ j a v a  s e c u r i t y  M e ssa g e D ig e s t ’ ’ ) g e t l n s t a n c e  ( ‘ ‘ SHAl ’ ’ ) 
d ig  u p d a t e  ( “ t h i s i s a s t n n g ’ ’ g e t B y t e s ( ) )  
r e s  =  d i g  d i g e s t  ()

By com bining this m ethod of utilising the Java program m ing language along  

with JPiccolas built in control structures and array access m ethods, the full 

expressivity of the Java program m ing language can be accessed and used

f
3 1 4  JPiccola Summ ary

For som e tim e there has been som e concern with regard to the m anner in which  

the Java program m ing language handles com m unications and interactions be

tween concurrently executing threads JP iccola  m anages to overcom e this prob

lem with the addition of channels This addition ensures that all interaction
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between concurrent agents is achieved m a transparent fashion As JP iccola  

also allows the full com putational power of the Java program m ing language to 

be harnessed it could be argued that it is possible to achieve more m it than m  

pure Java This ability to  include Java code in JPiccola programs, albeit in a 

round about m anner, is one of the distinguishing features o f JP iccola  and it is 

this capability that ensures that JP iccola is actually o f som e use to program 

mers

W hile JP iccola  allows access to  the capabilities of the Java program ming 

language, and while it also includes certain aspects o f the 7r-calculus, it is vi

sually similar to neither T his, com bined with the m inim al influence o f the 

7r-calculus seem s to have had on it, m eans that JP icco la’s value to the formal 

m ethods com munity, and more specifically to  those concerned w ith im plem ent

ing 7r-calculus specifications, is rather lim ited It could also be argued that for 

w hat JP iccola  does, that it is overly com plex

However the m ost significant drawback o f JPiccola is that it does not cater 

for distributed system s JPiccola is prim arily designed for users im plem ent

ing stand-alone applications, which may perhaps be concurrent in nature The  

primary concern of the 7r-calculus is the specification of protocols and interac

tion between distributed entities and as such the 7r-calculus is o f lim ited use 

with regard to system s that will only be executed on a single m achine The  

non-distributed nature o f JP iccola  significantly reduces its attraction  to those 

involved m the specification and im plem entation of distributed system s

C la s s if ic a t io n  o f  J P ic c o la

S y n ta x N ot similar to 7r-calculus

S e m a n t ic s N ot similar to 7r-calculus

M o b il i ty 7r-calculus mobility present

C h a n n e ls Asynchronous

D is t r ib u te d No

S e q u e n t ia l  c o m p u t a t io n s via “host” language, expressive and powerful
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3.2 Piet

P iet was developed by B Pierce and D Turner m the late 1990’s(P ierce k  
Turner 20006, P ierce 1997) as an experim ent to see w hat a language based on the 

7r~calculus would look like T he idea behind P iet was to design and im plem ent a 

high level language purely in terms o f the 7r-calculus and as such P iet is intended  

to  be to the 7r-calculus w hat Lisp (Seibel 2005), ML (Paulson 1996) or Haskell 

(Thom pson 1999) are to the A-calculus (Thom pson 1999) As would be expected  

goals, P iet is very sim ilar, syntactically  and sem antically to  the 7r-calculus 

Another result of this intention is that the traditional 7r-calculus form o f m obility  

is present in P iet However this intention is also the source of one of the major 

problem s w ith P iet - its inability to  perform com plex sequential com putations 

Sequential com putations in P iet are achieved via P ie t’s own notation , which 

is, in effect, an extension to the 7r-calculus Finally, like JP iccola, P iet is not 

distributed in nature and channel com m unications are asynchronous

Code written m P iet is visually very similar to 7r-calculus specifications and 

concepts present in the 7i*-calculus are, for the m ost part, present in P iet This 

allows nearly everything possible in the 7r-calculus to be done in P iet P iet is 

a com pletely self-contained language which allows everything, com m unications 

and com putations, to be achieved m its own notation  This unique notation is, 

sim ultaneously, one of the strengths and weaknesses of P iet

P iet code is com piled into C code, and from C into executables Once com 

piled, these strongly typed programs run in a uniprocessor *NIX environm ent 

like any other traditional C programs

3 2 1 Processes and channels

In P iet, much like m the 7r-calculus, everything is arranged in term s of processes 

A lso m a sim ilar manner to the 7r-calculus is the construction of processes 

Processes are made up of a number of actions and a number o f sub-processes, 

and the arrangem ent of these sub-processes and actions is done m a fashion  

similar to that of the 7r-calculus P iet also allows the concurrent execution  of 

an arbitrary number of processes 

E x a m p le
run ( p r i n t 1“  h e l l o  | p r i n t  1 ‘ 1 wor ld ’ ’ )

T he P iet version of the standard Hello world exam ple program  is a process 

which involves the parallel execution  of two sub-processes - one that prints 

“hello” and one that prints “world” However, as would be expected  of two  

processes executing in parallel w ithout any form o f interaction, the ordering of 

the output is non-determ im stic - one tim e it m ay say “hello world” , the next it 

m ay say “world hello” As can be seen processes in P iet are invoked by enclosing
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them  in parentheses and separating them  with the parallel operator, after 

having prefixed the entire expression with the keyword run Even at this early 

stage it is quite obvious of the syntactic and sem antic sim ilarities between P iet 

and the 7r-calculus

P rocesses in P iet have, like their 7r-calculus equivalents, only one m ethod  

of inter-process interaction available to them  - channels Channels in P iet are 

notably different to  channels in the conventional 7r-calculus as P iet channels are 

both  asynchronous in nature and strongly typed Each channel m ay be used 

to  send and receive values of only one type, and this restriction removes the 

possib ility  o f im plem enting som e very reasonable and useful programs This 

restriction does reduce the expressiveness of P iet but it is claim ed that not 

restricting it would have resulted m m ajor im plem entation issues(P ierce & 

Turner 20006, Pierce 1997) Asynchronous channels still allow the com m unica

tion of data between processes, but have a slightly reduced capacity for allowing  

processes to synchronise their execution

E xam ple
new x []
run ( x ? [] =  p n n t ' ^ H e l l o  w o r l d ’ ’ | x ' [ ] )

There is another P iet version of the Hello World exam ple program This 

version also consists o f two sub-processes running concurrently, however in this 

case one o f the sub-processes prints “Hello W orld1” after receiving data on a 

channel, while the other sub-processes sim ply invokes the other by outputting  

on the shared channel

In P iet there is a d istinction between nam es and channels, and creating a 

new channel requires an explicit declaration of its identifier and its type, 1 e the  

type o f d ata  that will be transm itted on it In the above exam ple the channel 

x  is created and it is given a type of Q, this means that the channel will not 

actually carry any data, but rather will only be used to “invoke” the printing  

process

E xam ple
new x * S t r i n g
run ( x ?y =  p n n t ' y  | x 1 ‘ ‘ Hel l o  W o r l d ’ ’ )

The previous Hello world exam ple logically leads onto this one In this 

version not only is the sub-process that prints the m essage invoked by another 

sub-process but the data that it is to print is also sent to  it by the invoking 

channel action In the above exam ple the channel x  is created w ith the capability  

of transm itting data of type String and only data of type string, any attem p t 

to do otherwise will cause a com pilation error

E xam p le .
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new x ~ S t r i n g  >
new q S t r i n g
run ( q ’x | q ?y — y ?‘ ‘ h e l l o  w o r l d ’ ’ | x ? a = p r i n t l a)

The com m unication of channels from one process to  another is also allowed 

in P iet, this allows processes to learn of new channels and introduces the con

cept of m obility to P ie t In this exam ple a  channel is received by one of the 

sub-processes and then this channel is used to com m unicate w ith a  previously 

unavailable process The result of this exam ple is the same as the others, the 

printing of “hello w orld” to the screen

3 2 2 B uilt in types

A num ber of built-m  types are included m P iet, including the m ost commonly 

used types, strings, integers and Booleans The usual operations can be per

formed on these types, b u t these operations are perform ed in a unique P iet 

fashion

In tegers

Integers in P ie t are considered to be processes th a t are “located” a t  specific 

channels The values of these num bers can be gamed by querying these processes 

over the channels

E xam ple  1
new r * I n t
run ( +  ’ [2 3 ( r chan  r ) ] | r ?x =  p r i n t i ' x )

In the above exam ple the num bers 2 and 3 are to be thought of as processes 

located a t  the channels 2 and 5, while r  is thought of as channel to a  process 

which sums its argum ents and then  makes the result, in this case 5 available on 

the channel r O ther operations, such as m ultiplication, division, sub traction , 

etc, etc, are available using the same op*[abw] no tation  Integers m  P ie t are 
prin ted  via the prm ti com m and, ra th e r than  the  print com m and which is only 

used with strings

Strings

Norm al String operations are possible m P iet, these include

C oncatenation
new x " S t r i n g
run ( x 1‘ ‘ h e l l o ’ ’ | x * ‘ ' wor ld * ’ | x ? a =  x ?b =  p r i n t  1 ( b a ) )

lfThe use of the keyword rchan is not directly related to Integers but rather to process 
definitions Channels used with defined processes can sometimes be required to be of a special 
type, rchan forces a normal channel to act as one of these special channels
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In this concatenation example, the final sub-process reads two strings m  over 

the channel x, and then  prin ts the result of joining these two strings together, 

“hello world”

S ub-S tring ing
new x * S t r i n g
run ( x 111 h e l l o  wor ld t e s t ’ ’ | x ? a S p r i n t 1 ( s t r i n g  sub a 0 11) )

The ability to ob tain  sub-strings from strings is an  operation  th a t is vital

to any im plem entation of strings, P ie t’s im plem entation of S trings does provide 

this capability  via the string sub com m and, which takes the string and the s ta r t 

and end index of the sub-string to be go tten  from the string  m  question

S u b -S trin g  tests

Sometimes when dealing with strings is it necessary to  te s t if a string  contains 

a  certain  sub-string, P ie t im plem entation of Strings allows th is by using the 

string m  com m and

new x * S t r i n g
r u n (  x 1 ‘ ‘ h e l l o  w orld t e s t ’ ’ | x ?a =  i f (  s t r i n g  m  ‘ ‘ h e l l o ’ ’ a)

t hen  p r i n t  1 ‘ ‘ T here  ’ ’ e l s e  p r i n t  1 ‘ ‘ Not  t h e r e ’ ’ )

This exam ple also introduces one of the control structu res present in P iet, the 

if sta tem ent If sta tem ents in P ie t can include an a rb itra ry  num ber of else-if 

options This additional control s truc tu re  com plim ents those already present in 

the 7r-calculus

O th e r types

These examples are by no means intended to be an exhaustive explanation of 

the built-in types in P iet, ra th e r a  brief in troductory  glance a t how certain  

operations are perform ed in P ie t I t is intended to give an  im pression of how 

tasks are com pleted in P iet, ra th er than  detail all the available operations and 

prim itives as P ie t provides a  large num ber of built-in  types, and allows a  vast 

a rray  of operations to  be perform ed on these types 

O ther built-m  types include

•  Booleans

• Lists

•  Characters

•  F loats

•  B ytes
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•  Queues

•  Arrays

•  GUI related  types

3 2 3 Process definitions

P ie t allows the explicit definition of processes, much like a  function call in an 

object oriented language these definitions reduce the am ount of code in program s 

and make it  much more convenient to write larger program s

E xam ple
d ef w hatlsM ax c * In t =  c ? a — c ?b =  i f ( > >  a b)  th en  c* a  e l s e  c ’ b 

new f * I n t  ,
run ( w h a tlsM a x 'f  | f ' 3 | f T 4 | f ? a =  p r i n t i ’ a)

Process definitions save b o th  tim e and effort when w riting P ie t program s 

and of course should be used wherever there is duplication of code

3 2 4 P iet Summ ary

P iet is an invaluable experim ent m the investigation into languages based on the 

7r-calculus It looks and behaves m a  very similar m anner to  the  7r-calculus and 

the essential concepts of the 7r-calculus, such as processes, channels and names, 

are present in Piet, albeit m a slightly altered  form

It is these slightly altered forms th a t som ewhat reduce the usefulness of P iet, 

the  strongly typed, asynchronous channels restric t the  set of im plem entable 

system s, and greatly  com plicate some of the rem aining possible system s

One of the key features of P ie t is th a t everything it does, it does via its 

own no ta tion  - no host languages or the like are used All com m unications and 

com putations are achieved via this unique no tation  However there  are negative 

aspects to this approach T he no tation  used is som ewhat complex and counter

intuitive in places and is also ra th er lim ited in w hat can be achieved, basic 

com putations and GUI related  program s aie possible b u t some im plem entations 

would be far beyond the capabilities of P iet, e g  a complex cryptographic 

com putation

P ie t has substan tia l theory and docum entation  behind it, which makes it not 

only a  good in troduction  to  program m ing languages based on the 7r-calculus, bu t 

also to  the 7r-calculus itself However the lack of support for d istribu ted  system s 

and com m unications in P ie t m eans th a t P ie t is not the m ost useful language to  

use when im plem enting concurrent and d istribu ted  7r-calculus specified system s
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C lassification  o f P iet

S y n ta x Comparable to the 7r-calculus

S e m a n t ic s Comparable to 7r-calculus

M o b il i ty 7r-calculus mobility present

C h a n n e ls Asynchronous

D is t r ib u te d No

S e q u e n t ia l  c o m p u t a t io n s Limited

3.3 Nomadic P iet

Nom adic P iet (W ojciechowski & Sewell 1999) was developed by W ojciechowski, 

Sewell and Pierce in 2000 It is intended to be a program m ing language that 

is based on the 7r-calculus that allows the concurrent and distributed execution  

of system s that are im plem ented in it Nom adic P iet is built on the program

m ing language P ie t and P iet prim itives are used to express com putations within  

Nom adic P iet agents

Nom adic P iet uses agents as the building blocks for system s A gents can be 

viewed as collections of com m unications and com putations required to achieve 

specific goals T hese agents are m obile and can “m igrate” from one host machine 

to another

As P iet is used for all com putations in Nom adic P iet, the only aspect of 

Nom adic P iet not previously covered is the com m unication o f agents, both  dis

tributed and non-distnbuted  T he additions and alterations to Nom adic P iet 

can be grouped into two m ain sections Agents, Sites h  M igration, and Channel 

Actions

A lthough Nom adic P iet is based on P iet, the syntax and sem antics have 

been so drastically altered that the syntax and sem antics of Nom adic P iet are 

no longer similar to those of the 7r-calculus Furthermore, changes to how the 

asynchronous channels of P iet operate, the traditional 7r-calculus form of mo

bility is absent m Nom adic P iet However, a form of m obility is present, the 

form o f m obility that arises from the ability o f agents to re-locate from one 

point of execution to another Nom adic P iet, being based on P iet, inherits the 

problem s associated w ith P ie t’s approach to sequential com putations - it can

not perform com plex sequential com putations However, unlike P iet, N om adic  

P iet is distributed in nature and agents of a system  can be executed in an arbi

trary, concurrent, and distributed m anner In short, Nom adic P iet draws more 

from other process calculi than it does from the 7r-calculus, nam ely the Am bient 

calculus (Cardelh & Gordon 1998)
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3 3 1 A gents, Sites and M igration

Three concepts not present m  standard P iet are introduced into N om adic P iet  

in order to facilitate distribution com m unications - agents, sites and m igration  

An agent m Nom adic P iet is a unit o f executing code and each unit has a distinct 

name, which refers to a body com prised Nom adic P ict/stan d ard  P iet actions 

Since system s im plem ented in Nom adic P iet will be distributed am ongst many 

m achines m an arbitrary fashion, som e m ethod o f representing the possible 

locations o f aspects of the system s is required, each possible location  is called  

a stte C om m unication between different agents residing in different sites is 

possible though not in the 7r-calculus sense, however a different form of m obility  

is also available in Nom adic P iet Agents in Nom adic P iet have the capability  

of migrating from one site to  another, they can change the m achine on which  

they are executed

E xam ple

program  param  [ S i t e  S i t e ]  =

(
val  s i t e O n e  =  ( g e t . s i t e  0) 
val  s i t eTwo =  ( g e t - s i t e  1)

new answ er ~ S t r i n g

a g e n t  homeBody =

(
a g e n t  d e s e r t e r  =

(
mi g r a t e  to s i t eTwo 
( p r i n t  1 ‘ ‘ S iteT w o up and r u n n i n g  ’ ’ |
< one@ siteO ne> answ er 1 ‘ 1 hey f rom s iteT w o  ’ *)

)
( p r i n t *  ‘ ‘ Si t eOne  up and r u n n i n g  ”
| answer ?  1 =  p r i n t 1 1)

)
m  ( ) )

This exam ple dem onstrates the m ajority of the additions to P iet that com 

prise Nom adic P iet, as sites, agents, m igration and one form of m ter-agent 

channel com m unications are all covered in it The above system  is intended to  

be run on two separate sites, or Nom adic P iet virtual m achines T he system  

is started from one site and the agent homeBody remains on this site where 

it prints a m essage and will eventually print another m essage once it has been
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received from the agent deserter The deserter agent m igrates to the second 

site where it prin ts its message to the screen and then  transm its a  message back 

to the homeBody agent th a t is still running on the first site

A site in Nomadic P ie t represents a  specific instance of the Nomadic P iet 

v irtual m achine These various instances may be running on the same machine, 

o r on m any d istribu ted  machines, the topology of the system  does not affect its 

execution Inform ation on the location of sites is gathered from a  configuration 

file, and th is inform ation is used to  ensure th a t agents m igrate to the  correct 

machines

Agents m Nomadic P ie t are assigned unique names T he com bination of 

an agent nam e and a  site nam e makes up the com plete identifier of an  agent, 

and it is this complete nam e th a t is used when agents are com m unicating I t  is 

possible for m ultiple instances of the same agents to run  m a  system , bo th  on the 

same site and on different sites For example, m the above system  the complete 

identifiers of the two agents are homeBody @siteOne and deserter@siteTwo

3 3 2 Channel A ctions 

C hannel O u tp u t

Com plete identifiers are im portan t in Nomadic P ie t because of the m anner in 

which it perform s inter-agent com m unications In the tt — calculus, and indeed 

in Piet, there is only one way m which to transm it d a ta  on channels, however 

in Nomadic P ie t there are five ways in which this can be achieved
1 x ]y Behaves as the  s tan d ard  P ie t send

2 i f  local < a > x'y then P  else Q C onditional transm ission of y on x
3 < a >  x ]y y sent on x to agent a on this site

4 < >  x ]y y sent on x  to agent a on site s
5 x@a'y O u tp u t on x to

agent a

E xplanations

x 'y  Transm its the nam e y m a  non-blocking m anner on the channel x  This 

form of channel o u tp u t does not work for inter-agent com m unications, bu t 

ra th er only for com m unications between processes in the  same agent

lflocal <  a >  x !y  then  P  else Q  If the agent a resides on the sam e site as 

the agent th a t is a ttem pting  to transm it the nam e y on x , the  transm ission 

occurs successfully and then  the process P  is s ta rted , if the agent a is not 

on the same site then  no com m unication occurs and the processes Q is 

s ta rted  \
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3 <  a  >  x*y If the  agent a is on the same site as the agent th a t is a ttem p ting  

to transm it the nam e y on x then  the action succeeds, if it  is not on the 

same site then  it fails silently, 1 e blocks

4 <  a@s >  x ’y  If the agent a is on the site 5 then  the  o u tp u t action succeeds, 

if the agent a is not on th a t site the o u tp u t actions fails and nothing 

happens

5 x@a*y This particu lar type of o u tp u t action differs from all the others in 

th a t it is not an im plem ented low-level prim itive in Nomadic P iet, bu t 

ra th e r it is a  high-level construct th a t requires a  specific im plem enta

tion of it to  be included in a  system  th a t a ttem p ted  to  perform  location- 

independent o u tp u t The creators of Nomadic P ie t have included two such 

im plem entations th a t can be used

Consider the Nomadic P ie t example give above, one occurrence of an  inter-agent 

com m unication action occurs, and the line 

< one@ siteO ne> answ er 1 1 ‘ Hey from s i t eTwo ’ ’

could have been replaced w ith one of four o ther possibilities The following 

illustrates the alternative possibilities and highlights the effects of using them  

to replace this line

• a n s w e r1 “H e y  f ro m  s ite T w o "

This form of o u tp u t is only suitable for inter-agent com m unications and 

as such th is a ttem p t a t o u tp u t fails

•  if lo ca l <  h o m e B o d y  >  a n s w e r1 “H e y  f ro m  s i te T w o "  th e n  () e lse  ()

W hile th is form of o u tp u t is suitable for in ter-agent com m unications, it is 

only suitable for com m unications between agents th a t reside on the same 

host, however the  failure of the  o u tp u t action is not a com plete failure as 

this failure is detected and results in an  alternative branch of execution 

being pursued

•  <  h o m e B o d y  >  answ er* “H e y  f ro m  s ite T w o "

This form of o u tp u t is suitable for in tra-agent com m unications, it  is only 

suitable for com m unications between agents th a t reside on the same host 

Should the intended recipient not reside on the same host, th is action fails 

silently

•  a n s w e r^ îh o m e B o d y ^ H e y  f ro m  s ite T w o "

This is a location independent o u tp u t action I t is intended to deliver 

the message to the agent in question regardless of the site on which the 

sending agent is located
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C hannel Input

W hile there are a  num ber of ways in which d a ta  can be sent on a  channel 

m Nomadic P iet, there are only two ways in which d a ta  can be read from a 

channel One way to do so is in the same m anner m which channel input 

actions are perform ed in standard  P ie t The o ther m ethod for reading from 

channels involves the possibility of a  read tim ing ou t A process waits for a 

predeterm ined am ount of tim e for d a ta  to be available on a  specific channel and 

if no such d a ta  becomes available then a lternative actions are perform ed

wai t  x 7y = p r i n t  1 ‘ ‘ Value r e c e i v e d ’ ’
t i m e o u t  100 —> p r i n t 1‘ ‘ No va l ue  r e c e i v e d ’ ’

In the above fragm ent of Nomadic P ie t code, the process will wait for 100 

seconds for a value to  be read on the channel x  If a  nam e is read  before the 

tim e expires then the message “Value received” is p rin ted , if none is received 

then the alternative course of action is taken and “No value received” is prin ted

3 3 3 Nom adic P iet Summary

Nomadic P ie t is an extension of P ie t and, like P iet, it is very similar to  the 

7r-calculus m term s of intended sem antics Since it is an  extension of P ie t it 

also retains all the capabilities of P ie t with regard  to  perform ing sequential 

com putations However Nomadic P ie t has a d istinct advantage over P ie t in 

th a t it  is d istribu ted  in natu re  Nomadic P ie t is a  com pletely self-contained 

d istribu ted  program m ing language th a t is based, loosely, on a  derivative of 

the 7r-calculus and as such is a valuable tool for those concerned w ith formal 

m ethods

However as Nomadic P ie t is so closely bound to  P ie t it also retains a  lot of 

the difficulties associated w ith P ie t The strongly typed asynchronous channels 

still discount a lot of useful system s th a t, while possible in the 7r-calculus, are 

not possible in Nomadic P ie t The lim ited num ber of prim itives, and possible 

operations, on these prim itives also lim its w hat can be achieved in th is language

Nomadic P iets unique approach to channels, d istribu tion  of agents, and 

in ter-agent com m unication also raises some questions An agent wishing to 

com m unicate w ith another a rb itra ry  agent m ust not only know a  channel th a t 

is also known to  the o ther agent, it  m ust also have explicit knowledge of the 

o ther agent, and im plicit knowledge of its location These ex tra  restrictions on 

in ter-agent com m unications drastically  lim it the usefulness of this language

C lassification o f N om ad ic  P ie t
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Syntax Not similar to  the 7r-calculus

Sem antics Not similar to  the 7r-calculus

M o b ility 7r-calculus m obility absent, 

alternative form present

C hannels Asynchronous

D is tr ib u te d yes

Sequential com putations Lim ited
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3.4 Summary

W hile nearly all im plem entations of a  process calculi are valuable to  those wish

ing to  learn  more about process calculi and formal m ethods, the  usefulness of 

a  lot of these im plem entations to  those concerned w ith actually  im plem enting 

d istribu ted  system s is ra th e r lim ited

T he m ajor lim iting factor of m ost im plem entations is their non-d istnbu ted  

natu re , m ost of the im plem entations are designed so th a t system s w ritten  in 

them  will run  on only one m achine In the world of security protocols this 

approach is alm ost useless as security protocols are only required for the tran s

mission of d a ta  between m ultiple machines

Yet another significant lim iting a ttr ib u te  of the m ajority  of im plem entations 

is the poor expressive capabilities of some of the languages w ith regard  to  sequen

tial com putations The bulk of the  languages choose to  perform  all sequential 

com putations th rough prim itives and operations of their design, however these 

languages tend not to  have the num ber, or diversity, of prim itives or operations, 

required to im plem ent complex and com putational intensive systems

Combined these lim iting factors results in existing im plem entations of lan

guages based on the 7r-calculus being of little  real-world use, w hat is required is a 

language th a t is b o th  based on the 7r-calculus and th a t is also highly expressive

3 5 Conclusions

T he language presented m the following sections is one th a t is syntactically  and 

sem antically very similar to  the 7r-calculus I t  is one m  which the trad itional ir- 
calculus concept of mobility is present, and is one in which all com m unications 

are synchronous m natu re  I t supports the d istribu tion  of system s w ritten  in 

it, and it allows the arb itrary  deploym ent of d istribu ted  system s It also pro

vides a m echanism for perform ing complex sequential com putations in a  m anner 

reconcilable w ith the 7r-calculus
Once the language design(chapter four) and the language im plem entation(chapter 

five) have been outlined and explained vj will be ra ted  against the  classification 

c riteria  described in this chapter

D esired  C lassification o f zo
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Syntax Very similar to the 7r-calculus

Sem antics Very sim ilar to the 7r-calculus

M o b ility 7r-calculus m obility present

Channels Synchronous

D is tr ib u te d yes

Sequential com putations Powerful and expressive
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Chapter 4

w - The language
/
\

D istribu ted  system s are becom ing increasingly comm onplace T he use of formal 

notations and their associated formal m ethods, such as the  7r-calculus, and its 

derivatives, in ensuring th a t these d istribu ted  system s are in fact secure is also 

becoming more routine and established Yet no program m ing language th a t is 

suitably usable, expressive, d istribu tion  oriented and incorporates the 7r-calculus 

notion of mobility, exists and as such there is a niche for such a  program m ing 

language th a t is based on the 7r-calculus

Such a  language would have to  satisfy two criteria  T he first being th a t it 

should have a  close relationship w ith the 7r-calculus T he second being th a t it 

should be capable of im plem enting distribu ted  system s in a simple and tran s

paren t m anner In order to  fulfil these two end goals a  series of sub-goals m ust 

be satisfied

T he typical d istribu ted  system  requires th a t a  num ber of complex opera

tions be perform ed These com plex operations, such as the  generation of keys, 

encryption and decryption of d a ta , hashing, creating and verifying signatures, 

transm ission of data, etc, are com plex and com putationally intensive Vari

ous program m ing languages contain a  num ber of cryptographic and networking 
prim itives and operations th a t greatly  simplify the program m ing of these dis

tr ibu ted  system s W hile the 7r-calculus is com putationally  com plete and it  is 

theoretically possible to  express cryptographic operations m it, it would be im 

practical to do so given the size and num ber of 7r-calculus sta tem ents th a t would 

be required The addition of m echanisms for perform ing these cryptographic 

operations to  the com m unications capabilities of the 7r-calculus would yield the 

desired result - a  powerful and expressive program m ing language based on the 

7r-calculus suitable for use in im plem enting d istribu ted  system s

So in order for a  language to  be “capable of im plem enting d istribu ted  system s 

in a  simple and transparen t m anner” , it m ust provide an appara tus for handling
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the distributed nature of the target system s while also supplying m echanism s 

for performing com plex operations

It is also desired that the program m ing language is closely m odelled on the  

7r-calculus, that it looks and acts in a m anner sim ilar to the 7r-calculus, while 

also being com putationally more usable This close m odelling m ay allow the  

application of the formal techniques associated with the 7r-calculus in order 

to verify the correctness of protocols In other words, despite any additions 

required in order for the im plem entation of distributed system s, the syntax and 

sem antics of the program m ing language m ust be as similar as possible to  those of 

the 7r-calculus Further still, this sim ilarity m ust be attained  in a m anner which 

will allow the language to be closely coupled w ith extensions o f the 7r-calculus, 

such as the Spi-calculus, and not just the core calculus itself

Central to  achieving the desired syntactic and sem antic sim ilarities between  

this language and the 7r-calculus is the integration of com putations into the  

com m unications aspect of system s This integration is m ade possible by the 

dual nature o f data item s in this program m ing language In one form these 

data item s exist as nam es, and in the com m unications aspect they can be used 

m  the transm ission of nam es either as the transm itter, or that which is being  

transm itted W hile m their other form they are sim ply objects in an object- 

oriented program m ing language An object created in the com putational code 

and be brought into the com m unications code and transformed into a name, 

and likewise, a nam e created in the com m unications code can be pushed into a  

com putation and transformed into an object This dual nature of data item s is 

a pivotal concept in this language, and as such is vital to the understanding of  

its syntax and sem antics

A t first glance the com pletion of these two goals appears to be som ewhat 

m utually exclusive T he presence of m echanism s for performing com plex com 

putations would seem  to be at odds with m aintaining the syntax and sem antics 

of the 7r-calculus It is felt that the language, tu, should achieve both these 

goals An attem pt was made to satisfy these goals via the language definition  

and the im plem entation o f zu T he design and structure of the program m ing 

language ensured the sim ilarities between it and the 7r-calculus were present, 

and also solved the problem o f reconciling a m echanism  for performing com pu

tations w ith the syntax and sem antics o f the 7r-calculus The issues related to  

the distributed nature of the program m ing language were resolved v ia  the actual 

im plem entation of the program ming language, as were som e aspects o f integrat

ing sequential com putations into the syntax and sem antics o f  the 7r-calculus 

T hose requirem ents that were satisfied via the first approach are covered in this 

chapter, while those that were solved by the second m ethod are covered m a 

later chapter
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4 1 W hat is w**

The 7r-calculus is com putationally com plete, that is, it is theoretically possible 

to  perform any com putation using only the existing syntax and sem antics of  

the 7r-calculus However there is a m assive difference betw een com putability  

and usability, and while it is theoretically possible to, for exam ple, com pute 

the result of encrypting som e d ata  using existing 7r-calculus features it m ost 

certainly isn ’t realistic to do so

w  (var-pi) is the result of an attem pt to facilitate the performing o f sequential 

com putations, sim ply and transparently, in a 7r-calculus influenced framework 

It is hoped that vu could be viewed as the 7r-calculus with com putations Or 

given that the set of sequential com putations available in the Spi-calculus is a 

subset of those available in U7, it is also hoped that it could be viewed as the  

Spi-calculus w ith a broader range o f sequential com puting capabilities

4 1 1  A bstract Syntax and Sem antics of w

A goal central to  the success of w  is the concept of a close coupling between  

the specification language, the 7r-calculus, and the im plem entation language, w  
itself Obviously in order to ensure that w  looks and acts in a m anner akin to  

the 7r-calculus it m ust have a  syntax and sem antics that are sim ilar to those 

of the 7r-calculus However, as the 7r-calculus is a specification tool and vo is 

a program m ing language, it is inevitable that the actual syntax and sem antics 

of w  will be more com plex than that of the 7r-calculus - brackets, com m as, 

braces, colons and the like all becom e, unfortunately, necessary As such at this 

stage the abstract syntax o f w  will be used in any com parisons made with the 

7r-calculus T he concrete syn tax  o f w  will be given later

This abstract syntax can then be used for the in itial analysis and com parison  

between the 7r-calculus and w  After inspecting the syntax and sem antics o f ud 
it should becom e clear that a w  system  will look and behave sim ilarly to its 

original 7r-calculus specification

A b strac t syntax

In the following description o f the w  syntax we let m, n range over nam es, x,y 
range over variables, and let /, g range over the set of valid function identifiers
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T e rm s  

L,M ,N = n

x

name

variable

O u tp u t  A c t io n

a  — N  <  M  >  O utput action

I n p u t  A c t io n

ß = N ( M )  Input action

P r o c e s s e s

P,Q =  a  P  Input prefix

P P O utput prefix

r  P Unobservable prefix

!P  Replication

(i/n)P  R estriction o f channels

( f {Li  L m)(x i £ 0))P  R estriction of non-channels

l e performing a sequential 

com putation

P | Q C om position

a  P -f a  Q Guarded sum

[N = =  JV']P +  Q M atch 

0 Null process

Explanation

1 I n p u t  p r e f ix  T he relevant input action is performed, and the process 

continues as P  w ith any necessary substitutions being m ade m P

2 O u tp u t  p r e f ix  The relevant output action is performed, and the process 

continues as P

3 U n o b s e r v a b le  p r e f ix  An unobservable interaction occurs and the pro

cess continues as P

4 R e p lic a t io n  T he process fP  is equivalent to P \ fP  In other words fP  
behaves as an arbitrary number of instances o f P  all executing in parallel
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1

to  one another

5 R e s t r ic t io n  o f  c h a n n e ls  Create a new name, n , o f type channel and 

binds it m P

6 R e s t r ic t io n  o f  n o n -c h a n n e ls  Creation of nam es o f the type non

channel is achieved by the execution o f sequential com putations In this 

form of restriction /  is a com putation It takes a series o f input terms 

Li ,  L m, which it pushes down into the com putation in question which 

yields a series of names These produced names then replace the series of 

input variables x \ , ,x0 in P

7 P a r a l le l  C o m p o s it io n  B oth  the processes P  and Q are executed con

currently These processes can interact with each other and with other 

processes

8 G u a r d e d  s u m  Interaction can happen w ith either P or Q but not both  

W hich process is started depends entirely on which input action occurs 

first

9 M a tc h  If the N  is equal to  N* then the process behaves as P, otherwise  

the next option in the Match statem ent is processed, this m ay be another 

m atch condition or the default process, Q

10 N u l l  p r o c e s s  The em pty process, it cannot do anything  

S tr u c tu r a l C o n g r u e n c e

As can be im agined it is very possible to  construct two processes that behave in 

an identical fashion but yet are syntactically dissim ilar A structural congruence 

is used to equate these processes that intuitively represent the sam e process 

Tw o processes P  and Q are said to be structurally congruent, = ,  if  P  =  Q can  

be inferred from the axiom s listed below, and by alpha conversion T hese axiom s 

allow m anipulation of term  structure and are not reliant on the sem antics of 

the language
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SC-SUM -ASSO C Pi + (Pa + f t )  = ( f t  + f t )  + f t
SC-SUM -COM Pi + f t  = f t  + Pi

SC-SUM -INACT P  + 0 = P

SC-CO M -ASSO C f t l ( f t l f t )  = ( f tlf t) lf t
SC-COM -COM M P,\P2 = P2 |f t

SC-C O M -IN ACT O III *0

SC-REP I p  = p \ \ p

SC-RES (i/m)(i/n)P = (vn)(i/ m )P

SC -R ES-IN A C T (i/n)0 = 0

SC-RES-CO M P ( ! /n ) ( f t | f t )  = ftl M  P 2, if n * fn ( f t

SC-M ATCH [n = =  n]P = P

Discussion

A brief visual com parison between the abstract syntax of given above, and 

the syntax of the 7r-calculus, given m  section 2 1 2 ,  clearly shows the sim ilarities 

between the two syntaxes B y and large the syntax o f w  is alm ost identical to 

that of the 7r-calculus, bar the addition of variables, and could even be m istaken  

for the syntax of a variant of the traditional synchronous 7r-calculus, in particular 

the Spi-calculus, rather than an im plem entation o f it

System s are still organised as a series of processes running m parallel, pro

cesses are still constructed from a series o f valid actions, and processes can still 

be replicated The actions available to be performed by a process remain the 

sam e, (nam es can be sent and received on channels and internal reaction can  

occur in a process), as do the m ethods for invoking other processes, (choices 

can be made between processes, processes can be executed concurrently and  

processes can be invoked only after an equality test is satisfied)

For reasons that will be outlined at a later stage it was necessary to break
t

nam es into two categories - channels and non-channels As such names in w  
are either of type channel or of type data T he difference being that nam es 

of type data do not have the capability to com m unicate other names, while 

names of type channel do Due to the com plications introduced by the ability  

to com m unicate names at run-tim e it was felt that the type checking would be 

more suited to run-tim e rather than com pile tim e

As can be seen the syntax o f tu  differs from that of the 7r-calculus m only a few  

places The first, and m ost significant, being the introduction of a rudim entary  

typing system  and the addition of a second form of restriction T he next, and  

less significant, difference is the im position of a constraint on sum m ations in 

tv In w  all sum m ations m ust be guarded sum m ations, and furthermore these 

guards m ust always be input actions, the reasoning behind the restrictions on
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sum m ations is explained later m this chapter T he final difference between  

the syntax o f xu and that o f the 7r-calculus is the addition o f the notion of a 

“default” process in a m atch statem ent T hat is, should all the m atch conditions 

in a m atch statem ent fail then there is a process present that will be invoked m  

this case The im pact of these new elem ents will be discussed in section 4 1 1  

However, this sim ilarity m syntax only shows that the two look the sam e, m  

order to dem onstrate that they act in the sam e way the sem antics of w  m ust 

be exam ined

O p e r a t io n a l S e m a n t ic s

P' = P, P ^ Q ,  Q = Q' 
P' - A  Q'

a P  - A  P

[Struct]

[Prefix]

[Par]
P Q ) P f

P \ Q ^ P ' \ Q

[Match 1] 

[Match 2]

[Resi]

[Res2]

[Sum]

Explanations

i==x]P

[x==y\P+Q — > Q

P - ^ - P ' ,  x j a  
(~vx)P (vx)P '

(f(Li L0)(xi % ) ) P A ( v m

a \P  P

a \ P  +  a.<iQ —^  P

1 [S tru ct] If the occurrence o f an action causes the process P to reduce to
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the process Q, then a process that is structurally congruent to P  can be 

reduced to a process that is structurally congruent to Q on the occurrence 

of the sam e action

2 [P refix] A process that is prefixed by an action reduces to that process 

after the occurrence of the specific action

3 [Par] If a process, P, can reduce to another process, P \  after the occur

rence o f an action then P  will reduce to P } regardless o f w hat processes 

are running concurrent to it when that action, a, occurs

4 [C om ] If a process P  reduces to P ’ on an input action on a specific name, 

which is o f type channel and if the process Q reduces to Q } on an output 

action on that sam e name then P  m parallel to  Q will reduce to P ’ in 

parallel to Q ’ after an unobservable action occurs

5 [M a tc h l]  A process prefixed by a m atch statem ent will reduce to the  

process if the names are the sam e

6 [M atch 2] A process prefixed by a m atch statem ent in parallel w ith an

other process will reduce to the other process if the names are not the 

sam e

7 [R e s l]  If P  reduces to the process P J on an action, and the name x  is not 

involved in this action, then the reduction will only occur if the name x  is 

restricted m  both  processes

8 [R es2] /  is a com putation A com putation uses a series o f input terms to  

create a specified number of names Once created these nam es replaces 

all occurrences o f the indicated variables in the remainder of the process

9 [Sum ] If a process, P, can reduce to another process, P \  after the occur

rence o f an input action then the sum  o f P  and any other processes can  

reduce to P ' on the occurrence o f that input action

If a com parison is m ade between the sem antics o f w  outlined above and the 

sem antics of the 7r-calculus given in chapter two, it becom es im m ediately obvious 

that these two sets of sem antic rules are sim ilar T he differences between them  

arise from the constraints placed on sum m ations, the insistence that nam es used  

to transm it other names are of type channel, and the addition o f an additional 

rule for the restriction of names of type non-channel T he im pact of these  

differences will also de discussed in section 4 1 1

In fact the sem antics of vo are so close to those o f the traditional 7r-calculus 

that they could easily be m istaken from the sem antics o f a variant of the 7r- 

calculus rather than those o f a  program m ing language based on it As desired
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the addition of m echanism s for performing com plex sequential com putations has 

had minimal im pact m the syntax and sem antics o f w
T his sim ilarity of sem antics is much more im portant than any syntactic  

sim ilarities as it is more im portant that zu and the 7r-calculus act the sam e than  

they look the same

Syntactic  and sem antic differences

Considerable efforts were made to ensure that w  and the 7r-calculus look and 

behave in a com parable fashion However divergences between the two were 

inescapable and the two do in fact differ on three issues

D ifference O ne - S um m ation

Some variants of the 7r-calculus perm it sum m ations o f an unguarded nature to  

occur, unguarded m eaning that processes occurring in sum m ation need not be 

prefixed by an action, e g  P  +  Q However more variants o f the 7r-calculus use 

guarded sum s instead o f  unguarded sum s as the theory behind the 7r-calculus is 

simplified som ewhat by this decision(Parrow 2001) As the choice as to  which 

process is started in an unguarded sum m ation is a non-determ im stic choice, 

unguarded sum m ations would be of little use in a real world program m ing lan

guage where totally  random actions of this kind are rarely desired, and often  

discouraged As such the constraint that all sum m ations m ust be guarded was 

im posed on sum m ations m w
However guarded sum m ations are not w ithout their im plem entation issues 

Guarded sums are often said to be “unrealistic from an im plem entation per

sp ective” (Parrow 2001), as the decision as to  which guard in a sum m ation  

occurs can prove to be a non-trivial problem  T he problem  results from at

tem pting to m atch input actions to output actions when both types o f  action  

are conditional This, com bined w ith m ultiple sum m ations in parallel, results 

in the general form o f guarded sum m ations not being a realistic operation from  

an im plem entation point o f view  In particular m a distributed environm ent, if 

sum m ations in which m ixed guards are allowed to occur in parallel to each other, 

it is possible, that no action will occur No realistic m ethod of im plem enting  

a m ixed guarded sum m ation that is stable, reliable, and whose behaviour was 

guaranteed, exists Consequentially it was decided that the only valid guards 

for statem ents m a sum m ation in vo would be input prefixes, m other words 

output actions are always guaranteed to occur, while the com pletion of input 

actions can be conditional

A quick com parison between the relevant aspects of both  syntaxes and se

m antics reveals that this difference is not a m ajor one, but rather m erely a
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minor restriction placed on w hat constitutes a valid sum m ation m w  B y  p lac

ing this restriction on the guards of a sum m ation this im possible problem  of 

m ixed guards is avoided with the minimum  loss o f expressiveness In fact 

nearly all system s involving m ixed guards in a sum m ation can be re-written  

to include only input guards T he exceptions arising when both  “ends” of a 

com m unication are both m sum m ations In these scenarios the original b e

haviour can not be approxim ated using only input guards However this loss of 

expressivity is not an overly significant one and only occurs in system s such as 

(ax P  +  b(y) Q) | (a(z ) R  +  bw S)

D ifference Tw o  - T yp in g

T he m ajor difference between the syntax and, more im portantly, the sem antics 

of the 7r-calculus and o f vj is the introduction of a rudimentary typing system  

to  w
The vd typing system  divides all names in a w  system  into two types - 

those names that have the capability of acting as channels, and the names 

that do not have this capability W hile only nam es that have the capability  

of acting as channels can be used to com m unicate other nam es, names of both  

types can be com m unicated on channels This typing system  was im posed  

solely for im plem entation reasons, and the im position o f it greatly simplified  

the im plem entation o f w  This typing system  does however have an effect on 

the flexibility o f w  Greater attention  must be paid to the use o f channels than  

in the 7r-calculus in order to avoid run-tim e errors

W ith regard to the sem antics of tu, the typing system  only affects two o f the 

sem antic rules - the new rule that governs the restriction of fresh non-channel 

nam es and the one related to the interaction of concurrent processes over a 

specific channel T he former rule was required to be added to the set o f sem antic 

rules in order that fresh names o f type non-channel could be created In the 

latter the changes to the corresponding 7r-calculus rule are even more minor 

- it now insists that all names used for com m unicating other nam es between  

processes be of the type channel, 1 e that they have the capability o f acting as 

a channel, a sim ple and obvious requirement

This difference between the syntax and sem antics o f the 7r-calculus and ru, 

the addition of a typing system , does not result in w  and the 7r-calculus being  

irreconcilable, far from it in fact as any 7r-calculus specification can be rewritten  

in G7 if one uses only w  names o f type channel
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D ifference T hree - In line C ode

The final syntactic and sem antic difference between vo and the 7r-calculus is vos 
ability to “inline code” into the com m unications aspect o f w  processes This 

“m im ing o f code” refers to the capability o f w  processes to  perform com plex  

sequential com putations m a sim ple, transparent and intu itive fashion, 1 e via  

the restriction of non-channels operator This capability has such a significant 

im pact on w  that it will be covered in great detail m  section 4 2 1

4 1 2  Concrete Syntax

One of the prim ary uses of an abstract syntax is to allow properties o f a language, 

or a program written in that language, to  be reasoned about In this case less is 

indeed more and the less detail that appears in an abstract syntax the simpler 

the reasoning process is However this high level description o f the form o f a 

language is not a sufficient blueprint to use in im plem enting both  the language 

and programs written m  that language As such a more fine grained syntax  

is required This syntax is known as a concrete syntax Generally speaking a 

concrete syntax could be viewed as the abstract syntax w ith the addition of  

keywords, delim iters, scope boundaries, constructs for process abstraction and  

other real world syntactic necessities It is also com m on for a rule that appears 

m the abstract syntax to be broken down into more than one syntactic rule m  

the concrete syntax

As would be expected, and as can be seen below, the concrete syntactic  

rules o f vo are m any tim es more com plex, and m any tim es more num erous, than  

their abstract counterparts However, while this concrete syntax may be more 

detailed and com plex than the associated abstract syntax, a sim ple reduction  

and merging process can yield the abstract syntax from these concrete syntactic  

rules
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Syntactic R ules

System = [ Im ports ] TopLevelProcess (E xphcitProcess |

JavaBlock)*

Im ports = ” { ” (javaPackageNam e ”,”) +

TopLevelProcess = ’’System ” processld  ” { ” (ChannelDec ” ” )*

Processlnvocation

E xphcitProcess = ’’Process” processld ” (” [ list ] ”)

” {” ProcessB ody

Process = P rocessB ody | ProcessReference

ProcessB ody = (ProcessStm )* ( Processlnvocation  |

ProcessChoice | M atchStart | nullProcess )

ProcessReference = P rocessld  ” (” [list] ”)”

P rocesslnvocation = ” (” [ ] Process ( ” |” [ ] Process )* ”)”

ProcessChoice = (” + ” ” (” C hannelAction Processlnvocation” )”) +

M atchStart = (” [” nam e ” = = ” nam e ”]” P rocesslnvocation)+

Processlnvocation

ProcessStm - (ChannelDec | JavaCode | Sim pleChoice |

C hannelAction) ” ”

ChannelDec = ’’Channel” list

JavaCode ” < ” (code | JavaReference) ” > ” ” (” [ list ] ” )”

” (” [ l i s t ]  ” )”

Sim pleChoice = list ” (” name ” )”

C hannelA ction = nam e ” (” nam e ” )”

= name ” < ” nam e ” > ”

JavaReference = name | P rocessld

name = lowerCaseLetter (alphaN um enc)*

P rocessld = upperCaseLetter (alphaN um enc) *

list = null —  name nam e )*

nullProcess 0

JavaBlock - ” C ode” ” (” [ list ] ” )” ” (” [ list ] ” )” code ” } !

code — Java code enclosed in ” /& ” and ”& /”
where

•  ” ” indicates th a t4 h e  contents are a literal

•  [ ] indicates that the contents are optional

• +  one or more o f the preceding statem ent

•  * zero or more of the preceding statem ent
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•  | choice between statem ents

4.2 w  features 

4 2 1 Sequential C om putations

The absence o f the promised m echanism  for performing com plex sequential com 

putations m ay have been noticed by this stage However this perceived absence 

is a result o f the subtle manner in which the m echanism  has been added to  

zu A m echanism  for performing sequential com putations is present in w , as 

whenever a name of type non-channel is created it is created as a result of a 

sequential com putation As such the body of the second restriction operator, 

[RES2], generally will consist of “inline code” , or a reference to a collection of 

such code, that will yield the necessary fresh nam e(s) given a, possibly em pty, 

sequence of existing names

The minimal im pact of the addition of this m echanism  to zu is a direct 

consequence of the separation of the com m unications aspect o f zu from the  

com putations part of it Paradoxically com plete separation o f com putations 

and com m unications allowed the seam less integration of them  and the benefits 

of this com plete separation of com m unications and com putations are not lim ited  

to  allowing the m echanism  to be added with only inconsequential alterations to  

the sem antics of zu, the benefits are, in fact, varied and far-reaching

One o f the more obvious advantages of the separation of com putational code 

from com m unications related code is that this separation allows the separate 

developm ent of both  aspects of a system  Separate developm ent of com puta

tions and com m unications allows them  to be developed in a correct and proper 

m anner, testing the result of a com plex com putation when that com putation  

is em bedded in the middle o f a highly com plex protocol can be problem atic at 

best Separate developm ent can help to ensure that not only does the protocol 

operate as desired but the sequential com putations act as expected  In effect the  

developm ent o f a tu system  could be viewed as two separate developm ent tasks, 

each w ith different goals which are achieved using two different program m ing  

languages This sim plification of the developm ent process can yield significant 

savings m tim e and effort for reasonable sized projects

Yet another benefit of developing the com putational side o f a system  sep

arate to the com m unications aspect o f that system  is that the developm ent of 

both  need not be done by the sam e m dividual(s) People com pletely unfamiliar 

with formal m ethods, the 7r-calculus, distributed system s, and indeed even of  

zu, can develop the bulk of the com putational aspects of a system , leaving more 

experienced, and expensive, people with less work required to m erge the com pu
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tations and com m unications, thus reducing the cost of im plem enting system s 

C om plete separation of com m unications and com putations allows the m ech

anism  for performing these sequential com putations to be added to w  w ithout 

“polluting” the syntax and sem antics of w  w ith regard to the 7r-calculus It is 

this unique approach to performing sequential com putations in a language based  

on the 7r-calculus that allows the syntax and sem antics of the com m unications 

aspects of w  to be kept as sim ple as possible

The sequential com putations in w  are com pleted by using an “embedded  

language” , that is fragm ents o f the Java program m ing are used to perform  

the necessary calculations B y using Java as the em bedded language even the 

m ost com plex sequential com putations can be performed m  w  W hile the Java 

program m ing language was the language chosen in this case, it would have been  

possible to have used any program ming language in its place

Another benefit o f using snippets of Java code to perform sequential com pu

tations arises from Java being such a popular and familiar language which will 

accelerate the w  learning curve

It was necessary to place certain restrictions on w hat can be achieved in 

Java to ensure that the 7r-calculus m odel is not invalidated O bviously the  

actual integration of Java fragm ents into the com m unications part o f zu, and  

the im position of restrictions on these Java fragm ents, is rather com plex and as 

such is covered in the im plem entation chapter

Finally, the com plete separation o f com putations from com m unications re

sults in im plem entations of system s that are very readable and understandable, 

which is ideal for com paring vo im plem entations to 7r-calculus specifications 

As previously m entioned the integration of the two disjoint aspects of w  is 

achieved, m part, by the dual nature of data item s in w  T hey can be either 

names or objects depending on the context m which they are viewed in This  

ability to pull objects up from sequential com putations and transform  them  into  

nam es for use in com m unications, and likewise the ability to  push names into  

com putations and transform them  into usable objects, is w hat makes sequential 

com putations possible, and powerful in w  However this duality o f data item s 

in w  does have the consequence o f causing names to be statefu l - a concept not 

present in the 7r-calculus

4 2 2 M obility and Channels

The concept of m obility is a com m on one in process calculi M obility o f  one 

form or another exists m m ost process calculi and the introduction of the con

cept of m obility was an attem pt to capture the dynam ic nature of d istributed  

concurrent system s
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M obility com es in m any guises, the two m ain forms being m obile agents and 

m obile links W hen the notion of m obility was being mulled over som e choose  

to  perceive m obility as series of agents that were free to m igrate from m achine 

to  m achine while m aintain the sam e links between these processes Others 

choose to im agine a world in which the agents o f a system  rem ained fixed in  

position but the links between these agents were constantly changing It is this 

latter form o f m obility that is present m the 7r-calculus, and it is this form of 

m obility that is also present in v j  W hile the argum ent could be made that the 

presence of both forms of m obility in v j  would be beneficial, im plem entation  

issues surrounding the m igration o f processes put this idea beyond the reach of  

this im plem entation

O bviously since the m obility property stem s from the links, or channels, in 

a system , the im plem entation o f these links is o f vital im portance and every  

endeavour m ust be m ade to ensure that the operation o f this links is as close 

as possible to their behaviour in the 7r-calculus First and forem ost channels 

should be allowed to be shared am ongst agents o f a system , they should be able 

to  be learnt by agents that did not previously know o f them  - in other words 

they should facilitate the 7r-calculus concept of m obility Secondly, it should not 

be necessary to know which agent is “at the other end” o f the link It should  

be possible to send a m essage on a channel w ithout knowing which agent, if  

any, is “listening” on the other end Finally, channels should be synchronous 

in nature T he m ajority of im plem entations of the 7r-calculus (Nierstrasz et al 

n d , W ojciechowski & Sewell 1999, Pierce & Turner 2000 a) insist on forcing 

channels to  operate in an asynchronous nature which restricts the usefulness of  

channels som ew hat significantly Channels in w  operate in a fashion identical 

to  the behaviour o f their m onadic 7r-calculus cousins

4 2 3 D istribution of w system s

Im plem entations of system s specified in the 7r-calculus are generally intended  

to  be deployed in a distributed fashion This necessity was recognised at an 

early stage m the developm ent of v j  and as such v j  caters for such distributed  

and concurrent system s by providing a m echanism  for deploying system s in an  

arbitrary distributed manner

This m echanism  is provided via the low levels o f the im plem entation of v j  

rather than via any language construct or feature of the language Since the  

apparatus that provides the distribution of v j  system s exists m the im plem en

tation o f v j  it is more fitting to postpone detailed discussion on this feature 

of v j  until the actual im plem entation o f v j  i s  delved into m greater detail m a 

later chapter However it is worth m entioning at this stage that v j  allows the
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distribution of processes m a system  Processes in a system  do not know the 

location o f the other processes in that system , in fact they do not know what 

processes even exist m that system  It is the im plem entation o f  channels in zu 
that facilitates the distribution of processes m a w  system

4 3 Example System

In general a zu system  consists of a System , one or more Processes and possibly  

som e Java Code blocks, where a  Java Code block is a m echanism  for the sim ple 

and quick re-use of sequential com putations - much like a m ethod in Java 

T he System  specifies which of the Processes are at the top-level, 1 e m ust be 

started by their environm ent A Process m ay perform various actions, start 

other Processes and invoke Java Code
The following is a very basic xu System, it allows two users to  com m unicate 

over shared channels W hile this exam ple is very sim plistic it  does dem onstrate 

various key aspects of zu - replication, sequential com putations, com m unication  

over channels, and the integration o f Java code into zu, while also giving a “feel” 

for what can be accom plished in zu
The Ytalk system  consists o f two top-level processes that m ust be started  

by their environm ent W ithin the scope of these two processes are two channels 

that the processes will use to com m unicate on Each o f these two top-level 

processes start two more processes, but this tim e m  a replicated fashion, one 

process for reading m essages, one process for sending m essages T hese two 

com m on processes both  perform the necessary channel actions and Java actions 

to  allow the two users to com m unicate with each other

4 3 1 A bstract syntax

(vab)((}( f readMsg()(msg) b < m s g  > )  | ' (a(msg) f Pr%ntM8g(rnsg)Q))

\('(b(msg) f p r t n t M s 9 ( m 8 9 ) Q )  I K f r e a d M s g O i m s g )  a <  m s g  >)))

4 3 2 Concrete syntax - Code
Sys t em Y ta lk  

{
Channel  a , b

( P roces s  A ( a , b ) j P roce s s  A ( b , a ) )

}

P r o c e s s  P r o c e s s A ( i n  , o u t )

{
/ *  S t a r t  a s u b - p r o c e s s  to h a n d l e  i nc o m in g  me ssages
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♦and a n o t h e r  one fo r  o u t g o i n g  m e s s a g e s * /

( 1 Send Mess age ( ou t  ) j 1 Read Mess age ( in ))

}
P r o c e s s  SendMessage ( o u t )

{
/ ♦ I n p u t  message  v i a  J a v a —code and t hen  s end  i t * /  
C re a d M e s sa g e  > () ( m s g ) 
ou t  <msg >
0

}

P r o c e s s  ReadMessage (  in )

{
/ ♦ I n p u t  message  v i a  c h a n n e l  and t hen  

♦ p r i n t  i t  v i a  J a v a —c o d e ^ /  
in (msg)
< p r i n t M e s s a g e > ( m s g ) ()
0

}

Code r e a d M es sa g e  ( ) (  m e s s a g e )

{
/&
t r y

{
I n p u t S t r e a m R e a d e r  i s r  =  new I n p u t S t r e a m R e a d e r  ( Syst em in ) ,  
L in eN um b er Re ad e r  I n r  =  new L in e N u m be rR ea de r (  i s r  ) ,  
mes sage  =  new S t r i n g  ( I n r  r e a d L i n e ( ) ) ,

}
c a t c h  ( E x c e p t i o n  e)

{
e p n n t S t a c k T r a c e  ( ) ,

}
&/

Code p r i n t M e s s a g e  ( message  ) (  )

{
/&
i f ( m e s s a g e  g e t C l a s s ( )  g e t N am e ( )  e q u a l s  ( ‘ ‘ j a v a  l a ng  S t r i n g ’ ’ ) )  

{
Syst em ou t  p r i n t  ( ‘ ‘ O th e r  ’ ’ ) ,
Syst em ou t  p r i n t l n  ((  S t r i n g  ) mes sage  ),

}
&/
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E xp lan a tio n

The YTalk system  consists of two top-level process instances, both  o f which are 

instances of Process A  that m ust be started by their environm ent, 1 e by the  

users that w ish to use them  W ithin the scope o f the system  are two channels 

that will be used by the two halves of the system  to com m unicate on

As can been seen m the above exam ple possibilities for errors to occur in 

sequential com putations exist If an error should occur this results m the process 

that is performing the sequential com putation to block, 1 e it ceases to execute 

The bodies of these two top-level processes are identical, they both  start 

another two processes SendMessage and ReadMessage m a replicated fashion, 

that is an arbitrary number of instances of these processes are started depending  

on dem and

The purpose of the SendMessage process is to use a Java-code fragm ent to 

obtain a m essage from the standard input and to “pull up” this object from the 

Java-code into the com m unications code and to then transm it this new name 

on one of the shared channels This shared channel will link 'this instance of 

SendMessage to an instance of ReadMessage in the other half of the system  

The ReadMessage process reads a nam e m over a channel, which links to  

an instance of SendMessage m the other half o f the system  This name is then  

“pushed in to” a sequential com putation that transforms the nam e back into the 

original m essage and outputs it to  the standard output

During the execution  o f the system  the actual work will be achieved by the 

interactions between various instances of the replicated processes, SendMessage 
and ReadMessage, over the channels that are shared between the two halves of 

the system , the ProcessA half and the ProcessB half

4 4 Language design decisions

Im plem enting a program m ing language requires that a series of decisions and  

com prom ises be m ade on the way from the in itial conception of the desired  

properties o f the language to the final result yielded at the end of the process 

T he design and im plem entation of zu was no different in this respect D ecisions 

and com prom ises were necessary at both  the language design and the language 

im plem entation phases

4 4 1 Sequential C om putations

One of the first decisions that had to be made with regard to the language 

design o f w  was related to the m echanism  that was to be provided by w  for
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performing sequential com putations Two approaches to providing this m echa

nism  were considered The first approach that was considered was the creation  

of a notation  that would encom pass all aspects o f performing sequential com 

putations in vo This approach would have resulted m all aspects o f w  system s  

falling under one set o f syntactic and sem antics rules, as well as im posing tighter 

controls on the actions possible to  be performed in sequential com putations 

However the im plem entation cost o f this approach m eant that an alternative  

approach to providing the m echanism  for performing sequential com putations 

was required This alternative approach involved the re-use o f an existing pro

gram m ing language for performing the sequential com putations m w  W hile 

this alternative approach m ay not have been the originally desired approach, it 

is felt that it still allows the prim ary goals of w  to  be achieved

A com plication that resulted from this decision was reconciling the strongly  

typed Java program m ing language and the weakly typed com m unications aspect 

of w  The only approach to solving this problem that could be found w hat to  

equate names to the superset of objects that are available m Java, and to equate 

channels to  a specific type of object This approach facilitates the reconciliation  

of the two conflicting typing system s and allows the integration o f com putational 

code in the com m unications code with only the m inim um  o f im pact to  the 

desired syntax and sem antics of zo

4 4 2 N am es and channels

In zj  not every nam e can act as a  channel, names m ust be explicitly declared as 

channels if  they are required to act as channels However in the 7r-calculus each  

and every nam e m ay act as a channel This disconnect betw een zd  and the 7r- 

calculus is perhaps one of the m ost significant com prom ises th at was required to 

be m ade in the design of^the w  language It was originally desired that all nam es 

in vj would have the capability to  act as channels but a direct consequence o f the 

decision m ade with respect to sequential com putations was that a m echanism  

for allowing this could not be devised
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Chapter 5

w  - The implementation

T he syntax and sem antics of m, as previously described, outline the appearance 

of w  processes and system s, and the interaction that m ay occur between a 

series o f these processes when they are constructed as a w  system  W hile the 

form ulation o f these syntactic and sem antic rules is a significant m ilestone in the 

developm ent process of the w  program m ing language, it forms m erely one half 

of the entire set of deliverables necessary for the creation o f the w  programm ing 

language T he second half of the developm ent process revolves around the actual 

im plem entation o f the language, which is the transform ation o f the definition of  

the im plem entation and its execution provided by the sem antics in to a concrete 

and com plete program ming language

The im plem entation of w  m ust take into account a number of requirements 

m addition to those im plicit to any program m ing language w ith the previously  

described syntax and sem antics These additional requirem ents contribute sig

nificantly to the com plexity o f the final im plem entation and this com plexity  

is reflected in the size o f the im plem entation and the number o f technologies 

required to create it

T he w  im plem entation m ust supply a m echanism  to transform  valid vj code 

into an executable form, and it m ust provide an environm ent in which the  

execution  of this code can take place To further com plicated m atters one of the 

dem ands m ade of w  is that it should allow the creation o f m odularised system s, 

system s which can be distributed and concurrently executed Further still, 

the functionality should be provided which allows real-tim e com m unications to 

occur between these various com ponents o f these distributed and concurrently  

executing system s Given the desire for the channel based com m unications to  

be synchronous in nature real-tim e com m unications are a requirem ent

This im plem entation, which should satisfy the above requirem ents, consists  

of two m ain parts - the com piler and the runtim e libraries B oth  these aspects
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are required for the generation of system s that are structured in the required 

fashion and behave in the desired m anner The com piler generates code that 

creates such system s, and this generated code relies heavily on the libraries to  

provide the necessary functionality, as well as aspects of the runtim e environ

ment

As the v j  im plem entation is large and rather com plex, and not every part o f it 

is directly related to providing the desired functionality o f the language As such  

a prudent approach to the exam ination and discussion of the im plem entation  

of the zu program m ing language is the description of each aspect of the desired 

functionality followed by an explanation o f how these aspects were provided, 

rather than an investigation into the operation of the program m ing language in 

its entirety

5.1 Required Functionality

T he topic of investigation m this section is not the structure of v j  processes 

and system s, nor the behaviour of these entities, but rather the underlying in

frastructure that facilitates the creation and operation of these processes and 

system s - the portion of w  that is “under the hood” so to speak This infrastruc

ture can be divided in a few m am  categories - d istribution, processes, channels, 

com putations and the environm ent

5 1 1  D istribution

One of the primary desired properties of a v j  system  is that it should be capable 

of being executed m a distributed fashion Com ponents of a system  should be 

able to be deployed m an arbitrary topographical arrangem ent and it should be 

possible to  make the decision as to this arrangem ent at run-tim e rather than at 

com pile tim e In order to cater for these requirem ents a number o f sub goals 

are required to be satisfied

For a v j  system  to be capable to be distributed over a series of m achines it  

m ust first be possible to  identify and separate the various parts o f the system  

that could be distributed As such it is required the executable m odules yielded  

by the com pilation of a v j  system  m ust be independently executable The only  

dependency that one m odule, or node m the system , should have on another 

node is to  facilitate the com pletion of the synchronous com m unications between  

processes

If a v j  system , when operating in a distributed fashion, consisted o f m erely a 

number o f standalone applications, each executing m com plete and utter isola

tion, then the act of distributing a system  would be a pointless one As touched
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upon above, each “site” in a distributed w  system  m ust to  able to  interact with  

other sites, that is the capability for inter-site com m unications m ust be present 

T he im portance of com m unications between sites m a w  system  cannot be over

stated  as it forms one of the lynch-pins of the execution of w  system s It is worth 

m entioning that each “site” in a distributed executing a w  system  is sim ply a 

w  process that resides at the top of the system s process hierarchy

5 1 2  Processes

w  system s are constructed using processes as the basic unit o f construction  

A logical extension  o f this is that the basic unit o f execution  for w  system s 

should be the process T he execution of w  system s is com pletely process ori

ented and every single item  that can be executed is a process Therefore the zu 
im plem entation m ust provide a m eans to transform the source for a process into  

an executable object W hile the behaviours exhibited by processes are merely 

consequences of the sem antics that define them , the issues surrounding incor

porating these sem antic rules into the w  im plem entation is a non-tn via l task  

and deserves further m ention

In addition, one of the properties that makes the w  syn tax  and sem antics 

so powerful and expressive is the ability to concurrently execute processes, 1 e 

allowing processes to  run in parallel Obviously the underlying im plem entation  

of vj also has to support this notion of concurrently executing processes, whether 

this execution is occurring on one m achine, or is distributed over a series of 

machines /

R eplication is a m assively useful tool in the theory behind the 7r-calculus 

and the w  program m ing language T he ability to  have an infinite number of 

identical copies of a process, and to have each required instance running just 

as you need it, allows the expression o f  processes that are otherw ise com plex, 

lengthy and error-prone, in a few lines of sim ple, self-explanatory code However 

serious issues surrounding the im plem entation of this form of replication are 

im m ediately obvious Overcom ing these obstacles while still m aintaining the 

concept of replication is m ost certainly a non-tn via l task

The ability to  have concurrent execution of processes, the provision o f a 

m echanism  to replicate these processes, the possibility of distributing these pro

cesses, and the capability for inter site com m unications are not the only require

m ents o f the te? infrastructure Processes also have to be able to interact w ith  

each other w ithout knowing o f each other, 1 e there should be knowledge-less 

inter-process com m unications, which is that a process should not be concerned  

with w hat process is on the other end of a link, but rather it should be satisfied  

that there is another end to the link This requirem ent, in conjunction w ith the
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necessity for links in w  system s to grow and die m a seem ingly organic manner 

dem ands a com plete and reliable im plem entation o f these links - channels

5 1 3  Channels

Channels are the workhorse of the w  im plem entation T hey provide m echa

nism s that supply a significant proportion o f the functionality required of the 

vj im plem entation V irtually every aspect o f the w  im plem entation that is not 

directly concerned with the execution of processes and the perform ance of com 

putations is provided, either partially or com pletely, by the im plem entation of 

channels

Chief am ongst the solutions provided by channels is the solution to the  

problem  of distribution As previously m entioned in this section, support for 

distribution is a key requirement o f the w  im plem entation and w  channels 

provide practically all o f the functionality required to support this distribution  

of system s As a m echanism  for the provision of distribution in vo system s the 

im plem entation of channels m ust facilitate com m unications between the various 

processes that will com prise a w  system

Figure 5 1 Growth of a system

One of the key purposes of channel based com m unications is to  enable the 

growth of links in a system  between processes of that system , for exam ple F ig  

5 1 tu channels, like their 7r-calculus cousins, m ust be capable o f both  trans

m itting other channels and also of being transm itted them selves B y possessing  

both  these properties w  channels can make the seem ingly organic expansion, 

and reduction, o f connections m w  system s possible

All com m unications between processes in a w  system  m ust occur via vj chan

nels Consequently the im plem entation o f these channels m ust be robust and  

reliable D ata cannot be lost, com m unications cannot be left half com pleted, 

and the behaviour o f these channels m ust be consistent T he fact that zu chan-y
nels are synchronous m nature, as well as the availability of the choice operator 

in w , m eans that the possibility of partially com pleted com m unications is a very
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real obstacle, one which m ust be overcome if the im plem entation of channels is 

to  be usable in any fashion Another logical conclusion, given the im portance 

of channels to the w  im plem entation, is that w  channels m ust be stable and 

robust Channels m ust be capable of copm g w ith  high levels o f usage and signif

icant loads and they m ust also rem ain operational even under the m ost extrem e  

of conditions

Another noteworthy aspect of channels is that at any one tim e during the 

lifetim e o f a channel m ultiple read requests may be m ade o f a channel, while 

sim ultaneously m ultiple write requests m ay also be being m ade Synchronous 

channels can, by definition, only accom m odate one read and one write request 

at a tim e It is therefore a requirement o f the im plem entation of channels that 

it  can accom m odate m ultiple read and write requests occurring sim ultaneously  

and that it can process these requests in a non-determ m istic and guaranteed  

fashion, F ig 5 2 However, further constraints are placed upon the operation of 

channels m that the operation of these channels m ust always be deadlock free 

W hen a channel is used m conjunction with a sum m ation m w a  read operation  

can effectively be “backed out o f” T hat is a process can indicate its readiness 

to  recieve information on a specific channel and then revoke that indication  

should another channel com plete a read operation first D eadlocks could occur 

if  the im plem entation of channels did not restrict the conditions under which  

processes are “backed out of” as a process could, potentially, back out o f all 

read operations and be left idle with no possibility of resum ing execution, 1 e 

deadlocked

Figure 5 2 Processing of requests

A dditionally the operation o f these channels m ust be as transparent as pos

sible, and that their operation must appear intu itive to som eone familiar with  

traditional 7r-calculus channels W hile these requirem ents m ay seem  quite triv

ial, they  are still necessary to allow the com plete w  im plem entation to remain  

com parable to the 7r-calculus
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Additionally, what use are m echanism s for allowing concurrent, distributed and 

replicated processes, and m ethods that facilitate the com m unications between  

these processes, w ithout a way m which to carry out calculations - to have som e

thing to com m unicate Som e purpose m ust be given to these com m unicating  

distributed processes The final task is to  allow com putations to occur, and to  

facilitate the com m unication o f the results o f these com putations between the 

various processes

5 1 5  Environm ent

w  system s execute m the Java execution environm ent However this execution  

environm ent “as is” is not sufficient to  m eet the requirem ents of executing w  
system s Additional dem ands such as the initial setup and synchronisation and 

also the term ination and clean-up of w  system s are m ade of the execution envi

ronment T hese dem ands m ust be m et by providing a w  execution  environm ent 

which sits on top of the Java environm ent This new execution  environm ent is 

also responsible for enforcing the w  com m unications m odel

5 1 6  Summ ary

Taking the required functionality outlined above into account, the exam ination  

of the zu im plem entation will focus o f the following topics

•  Channels and the distribution of processes

•  Channels and the synchronisation between processes

•  Channels and the com m unications between processes

•  Channels and the sum m ations in processes

•  Processes and the execution of these processes m a concurrent fashion

•  The replication of processes

•  T he invocation of processes

• Perform ing sequential com putations via in-lining m ethods and code blocks

•  The execution environm ent and the in itial setup and synchronisation of  

processes and channels

•  Term ination of system s in the execution environm ent

5 1 4  C o m p u ta t io n s
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•  Security, enforcem ent of w  com m unication restrictions m the execution  

environm ent, 1 e channels are the only available m echanism  for com m u

nication between processes

5.2 Provision of Required Functionality  

5 2 1 Channels

W hen considering how best to  im plem ent distribution m  w  it is worth reflecting 

on what exactly  will be distributed and how the distributed entities will inter

act In a w  system  the distributable entities are the top-level processes o f that 

system , where a top-level process is one which resides at the root of the process 

hierarchy, one which is invoked by a user rather than another process These 

top-level processes, and indeed all processes, can interact with other processes 

in two possible ways Firstly, a process m ay invoke other processes T he invoca

tion o f another process results in that process executing on the sam e site as the 

“parent” process and as such this form of interaction is not concerned with the 

distribution of system s as only the invocation to top-level processes can affect 

the topology of a system  It was originally desired that all processes m a w  

system  could be distributed m an arbitrary manner regardless o f their position  

in the processes hierarchy for a system  The m anagem ent o f this fine grained  

process distribution would have to be either m anually m anaged via configura

tion files or dynam ically m anaged by a distributed load balancing m echanism  

On the grounds that the first approach would be too cum bersom e and awkward 

and the second approach too com plex and beyond the scope o f this work the 

more restrictive, and realistic, approach o f only allowing top-level processes to 

determ ine the topology of the system  was the approach taken However the sec

ond form of interaction, com m unications over channels, is very much concerned  

with distributed interaction as the processes com m unicating over these channels 

m ay be residing on separate host m achines, F ig 5 3

Seeing as channels are an intricate part of every com m unication between
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possibly distributed processes it seem s only fitting that the onus should be 

placed on channels to facilitate this distribution In order to make these dis

tributed com m unications possible a channel m ust be visible to all processes that  

are required to use it, and the physical location of the actual channel, (for it  

m ust reside som ewhere), should have no im pact on how the various distributed  

processes interact w ith it

Java R M I

The interaction between applications running in a distributed fashion has be

com e so com m onplace that Sun M icro-System s extended the Java program m ing 

language to include a technology called Java R em ote M ethod Invocation, or 

Java RMI Java RMI is heavily used in the facilitation of com m unications over 

channels in w  and as such a brief overview of Java RMI is required1

In Java RMI rem ote objects are created by servers and the server makes 

references to these rem ote objects available T hese references may be passed  

around the distributed application and clients can use these references to  invoke 

m ethods on the rem ote objects as if they were local objects For a client to 

use a reference to a rem ote object it m ust first obtain  the reference by one of 

two m ethods It can get a copy o f the reference by either looking the object 

up in Java R M I’s sim ple nam ing service known as rmiregistry, or by receiving  

the reference as an argum ent or as a return value Once the rem ote ob ject’s 

reference has been obtained it can be passed around applications just like any 

other object, and more im portantly this reference behaves as if it was the actual 

rem ote object itself Java RMI provides the m echanism s necessary for the server 

and clients to  com m unicate and consequently allow the reference to behave as 

the rem ote object

Channels and Java R M I

Java RMI provides a m echanism  for rem ote objects to appear local via refer

ences, and also provides two ways to discover references to these rem ote objects 

This is exactly  w hat is required to im plem ent w  channels The use o f m ultiple 

im m utable references which all refer to the sam e rem ote object allows the vj 
m odel o f distribution to be im plem ented m a transparent and intuitive manner 

The ability to obtain  references either by lookup or by param eter passing also 

perm its the fundam ental differences between top-level processes and all other 

processes to be overcom e, that is that top-level processes are started by the  

user and not another process and as such cannot obtain  references to rem ote

^ o r e  detailed information on Java RMI can be obtained on the website 
http / / j avasun  com/products/ jdk/rmi/

72



objects by param eter passing All in all Java RMI is a vital tool required for 

the im plem entation of w  channels

B y using Java RMI in the im plem entation o f w  channels and by m aking the 

Java class that represents w  channels im plem ent the R em ote object interface 

the task o f allowing distributed processes to  interact is greatly simplified P ro

cesses now use local references to rem ote objects, which represent channels, to  

com m unicate with each other Therefore from the perspective o f a process there 

are no rem ote interaction occurring, m erely the invocation of m ethods on local 

objects

Exam ple

Process A creates a channel C Process A then obtains a reference to this newly 

created rem ote object which it then sends over an existing channel to  Process 

B B oth Process A and Process B can now use their corresponding references 

to  the rem ote object, which represents channel C, to  interact w ith each other, 

Fig 5 4

Figure 5 4 D istributed interaction

In the above exam ple the rem ote channel object ’C ’ is shown to reside on a 

specific m achine, M achine 1 This is because the process in which the channel 

associated w ith this rem ote channel object was created also resided on M achine 

1 T he rem ote channel object will reside on this m achine until term ination of  

the system  or Java R M I’s garbage collection removes it

One of the advantages o f w  channels being accessible as references, and as if  

they were local objects, is the ease in which inter-process com m unications can  

be im plem ented W hen a process wishes to write som e data to a w  channel 

it sim ply invokes the write m ethod o f the local reference and supplies it with  

the relevant data, F ig 5 5 The underlying Java RM I m echanism s handle the 

transm ission of the data to the actual rem ote object
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Figure 5 5 A W rite Request

Likewise when a process wishes to read data from a channel it calls the read 
m ethod of the local reference which will return data when it is available, Fig  

5 6 Again Java RMI deals with the actual transm ission o f d ata  from the rem ote 

object

Figure 5 6 A Read Request

The previous description of inter-process com m unications over channels was 

a sim plification It proved a useful exam ple to outline the rough concepts behind  

w  channels However further issues surrounding the com m unications between  

processes over channels exist A m ongst these issues is the im plem entation of 

the synchronous nature o f w  channels Given this synchronous nature it is an 

obvious necessity that when a read request is made of a channel that there m ust 

be a corresponding write request, l e som ething m ust have put the d ata  on the  

channel m the first place, and if no data is present then the read request is forced 

to  wait for som e to becom e available In an asynchronous im plem entation of 

channels this would be the only requirement made of channels w ith regard to  

their behaviour, that is in order for a read operation to com plete there m ust 

be data present There would be no restrictions placed on write operations, 

they would m erely write their data to the channel regardless o f whether there 

is a corresponding read operation ready to com plete the transaction or not and
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continue on. However w  channels are synchronous in nature and as such it 

is essential for a write operation to occur that there m ust be a corresponding  

read operation ready to occur as well. In short no channel operation can occur 

w ithout the opposite operation also occurring on the sam e channel, F ig 5.7. 

This problem is solved using a series o f locks and notifies on the Java objects 

used to im plem ent channels. Further detail o f this solution is provided later in 

this chapter.

Write
Request / a

BLOCKS

Figure 5.7: Synchronous operation of channels

However the behaviour of channels is further com plicated as a result o f the 

possibility that m ultiple read and write requests m ay be m ade of a channel at 

the sam e tim e, Fig 5.8. The im plem entation o f channels m ust allow m ultiple 

requests of both  kinds to be m ade sim ultaneously and to process these requests 

in pairs, one read and one write, and also m aintain a queue o f  requests that 

remain to be processed.

Write Read

Figure 5.8: M ultiple Requests

The first requirement in im plem enting the read and write m ethods of w  
channel is that only one request o f either type may be active at any one time. 

T hat us a read operation cannot be occurring at the sam e tim e that a write 

operation is occurring and vice versa. Likewise only one read request may 

be occurring at any one tim e, and only one write operation can occur at the  

sam e tim e. Conveniently the Java program m ing language provides a m echanism  

to  ensure that this happens, the synchronize statement. The contents of both
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sum m ation, a(x)P  +  b(z)Q, m eans that the invocation of processes depends on  

the occurrence of associated actions, a(x)  occurring starts P  and b(z) occurring 

starts Q The problem  arises here from the fact that the above read algo

rithm  does not provide a m echanism  for a read operation to “back ou t” w ithout 

com pleting and indicating that the operation has successfully com pleted This 

m echanism  is necessary m order to avoid undefined and unexpected behavioural 

consequences Out o f all the m put actions in a guarded sum m ation exactly  one 

of these actions should be allowed to com plete and the remainder o f the input 

actions should be able to “back ou t” w ithout having any negative effects on the 

behaviour of the system  This new m echanism  is catered for by the provision of 

a conditionalRead m ethod in channels which should be used in sum m ations 

C onditional Read algorithm  
S y n c h r o n i z e  r eadLock

S y n c h r o n i z e  a c t i o n L o c k
1 f d a t a  p r e s e n t

s e t  t a s k  done
el se

wa i t  on a c t i o n L o c k  
s e t  t a s k  done

i f  1 s t o p p e d
wa i t  u n t i l  s t o p p e d

i f  t a s k  done by me
n o t i f y  on a c t i o n L o c k

C onditional reads from zu channels require the use o f two additional classes 

- the Task class and the Reader class B oth  o f these classes play pivotal roles 

in allowing conditional reads to occur The use of the Reader class is nec

essary to orchestrate the m ultiple blocking requests to  be m ade of numerous 

channels which are required to allow conditional reads to  occur Som e way of 

m ulti-threading these requests is necessary and the Reader class provides this 

functionality

The reasoning behind the necessity and functionality of the Task classes is ( 

rather m ore com plex In brief the Task class is responsible for determ ining  

which m put action is the one that will occur, it is also responsible for informing 

that input action that it should occur and finally the Task class is responsible 

for term inating all reader threads successful or otherwise

5 2 2 Processes

Given that in w  the im plem entation of channels is responsible for providing  

the functionality required for com m unications and synchronisation between the  

distributed processes of system s the only topics that are related to processes that

77



m ethods are enclosed in synchronize statem ents and this ensures that the desired  

behaviour is provided In addition the synchronize statem ent also provides the  

autom atic queuing o f other requests

T he second priority in im plem enting these m ethods is to  ensure that on  

com pletion of a channel operation that both  read and write m ethods com plete 

at the sam e tim e regardless of which request was made first There are two 

possible orderings o f the requests and each one m ust be catered for

W rite  firs t, read second

The write m ethod sets the data and then waits for the data to be read 

The read m ethod gets the data, indicates that the data has been read and  

both  m ethods com plete

R ead  firs t, w rite  second

The read m ethod attem pts to get the data, none is present so it m ust 

wait for som e to be made available T he write m ethod now sets the data, 

it indicates that the data has been set which results in the read m ethod  

waking and reading the data Finally the read m ethod indicates that the 

data has been read and both m ethods com plete

In both these scenarios the following algorithm s result in the desired be

haviour, these algorithm s were produced as the result of much analysis o f the 

problem  at hand and m any prototypical im plem entations, in hindsight tim e 

and effort could have been saved by tim ely consultation of literature related to 

concurrent program m ing 

W rite algorithm
S y n c h r o n i z e  w r i t e L o c k

S y n c h r o n i z e  a c t i o n L o c k  
s e t  d a t a
n o t i f y  on a c t i o n L o c k  
wa i t  on a c t i o n L o c k

Read algorithm  
S y n c h r o n i z e  r eadLock

S y n c h r o n i z e  a c t i o n L o c k  
1 f d a t a  p r e s e n t  

ge t  d a t a
e l s e

w a i t  on a c t i o n L o c k  
ge t  d a t a  

n o t i f y  on a c t i o n L o c k

Using only the above algorithm s as the basis for an im plem entation o f the 

read and write m ethods of tx; channels would suffice were it not for the presence 

of guarded sum m ations in the syntax and sem antics o f w  If wc recall a guarded
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remain to be discussed are how processes execute concurrently, how processes 

are replicated and an explanation of the different ways m which w  processes 

can be invoked

C oncurren t Execution

Concurrent execution in w  involves the execution  o f an arbitrary number of  

process in parallel Given that the primary intended use of w  is in the im ple

m entation of distributed system s, it is extrem ely likely that each site m a w  

system  will play host to a number o f processes, all of which are required to be 

running m parallel to  each other, som e m ethod o f  m ulti-threading the execution  

of these processes is necessary Once again the Java program m ing language  

provides a m echanism  which aides us in overcom ing yet another problem  The  

Java program m ing language provides a way to create m ultiple threads, where a 

thread is a single d istinct strand o f execution, and to have these threads execut

ing concurrently B y making each process in w  a Java thread and by starting  

these threads in a concurrent m anner it is possible for the concurrent execution  

of processes to occur in w  However given the nature o f Java m ultithreading  

this would not be considered “true” concurrency from a 7r-calculus perspective, 

however to the user it would appear so

Traditionally a problem  existed w ith having m ultiple threads executing cur

rently in Java T hese threads lacked a  guaranteed and reliable m ethod to com 

m unicate and synchronise with other threads However the use o f w  channels 

in the Java m ulti-threaded environm ent has solved both the problems o f com 

m unications and synchronisation between concurrently executing threads

R ep lica tio n

R eplication m the strictest 7r-calculus interpretation is not feasible from an im

plem entation point of view  The idea of an arbitrary, possibly infinite, number 

of instances of a specific process all ready to run, in fact all running and merely 

w aiting to interact w ith other processes, F ig 5 9, is not a concept that is recon

cilable with real world com puting and com puters As a result it was necessary  

to im plem ent replication differently This different approach to im plem enting  

replication still results in the sam e casual observable behavioural properties but 

a more realistic approach was necessary to achieve these properties Instead of  

having an arbitrary number of processes ready for execution  w  replication only  

ever has exactly  one more instance that w hat is presently needed executing  

This approach allows the replication process to  behave in the sam e m anner but 

it is not as resource intensive

This approach is m ade possible as a result o f the manner in which the Java
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threads that represent w  processes are generated Since each thread is tailored  

specifically to each individual process it is possible to add the capability for 

replication to each process by ensuring that each instance o f a  replicated process 

invokes exactly  one other instance o f itself after it performs its first action, be it 

an input, an output or a Java action, F ig 5 10 This results in there always being  

one more instance of a process running than is currently required By always 

having one more than necessary future dem and for interaction with additional 

instances of a process is always catered for However this approach does result in 

issues surrounding the term ination o f w  system s, these issues will be investigated  

later
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Figure 5 10 zu replication

I n v o c a t io n

There are a number o f different scenarios m which a process m ay invoke, or 

start, another process A process may be started as the only “child” process of
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another process, or a process may be started m a replicated fashion, or a process 

m ay be started (and possibly replicated) in parallel to a series of other processes 

These scenarios for starting processes have been previously explained, but the 

workings o f two additional scenarios m which processes m ay be started have not 

yet been touched upon - starting processes via a choice statem ent and starting  

processes via a m atch statem ent

M a tc h  s ta rt

A m atch statem ent consists of a number of condition statem ents, each w ith an 

associated process invocation statem ent and also a default process invocation  

statem ent T he conditions are evaluated from left to  right and the first condi

tion statem ent that is satisfied has its associated process invocation statem ent 

performed Should none of the condition statem ents be satisfied then the default 

process invocation is performed

W hen a condition statem ent is being evaluated the actual testing o f  equality  

of nam es is done by reference not by value As such condition statem ents, and 

indeed m atch statem ents, are m ainly o f use when com paring channel names as 

opposed to non-channel names

Choice s ta rt

The choice statem ent is a very useful and powerful statem ent It allows the 

execution of a system  to be affected by the occurrence, or non-occurrence, o f  

various input actions A choice statem ent consists o f a number of input actions, 

and each input action has an associated process invocation statem ent Once 

one o f these input actions occurs, and only one o f them  can ever occur, the 

process invocation statem ent associated w ith the input action  is performed 

This triggers a whole new set of process instances to be started T he possibly  

com plex task of im plem enting choice statem ents was greatly simplified as a 

result of the m anner in which w  channels were im plem ented By using the  

conditional read functionality of w  channels and the existing functionality for 

invoking processes the im plem entation of input guarded sum m ations in v j  was 

achieved

5 2 3 C om putations

The ability to integrate strongly typed com putations into an untyped com m u

nications framework is one of the m am  attractions of the w  im plem entation  

W hile these com putations can be performed in one of two ways, inline or code

blocks, the m ajority of the issues surrounding com putations are com m on to  

both
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The m ajor issue that arises from this integration is the typing problem, 

the com m unications code is untyped - where everything is a name, and the 

com putational code, written m Java, which can contain any com bination of  

types from a very rich set of types This problem  is overcom e by using more 

features of the Java problem language - class casts and the Serializable interface

W hen a name is passed in a com putation in w  the Java code contained in 

the com putation can access the nam e as a Serializable object Also, regardless 

o f w hat the com putation does, all names created in the com m unications code 

are also Serializable objects As the only other way to create a nam e is to create 

a channel, and all channels are also Serializable This ensures that all objects 

m the com m unications code are only ever of one type - Serializable This allows 

the strongly typed aspect o f com putations to be reconciled with the untyped  

com m unications

This of course requires the Java code inside a com putation to cast its param 

eters into more varied types A chieving any task of worth in a Java program that 

works solely w ith Serializable objects would be rather difficult On first glance 

this may seem  like a serious problem  as the possibility for class cast exceptions  

exists However on closer inspection the risk is no greater than extracting and  

using the various elem ents of a heterogeneous Java Vector - care m ust sim ply  

be taken in writing and testing system s and processes

N am es, d is trib u tio n  and consistency '

W hen a nam e is created, either by a sequential com putation or by creating a 

new channel, and com m unicated am ongst various distributed processes the task  

of ensuring the consistency of this name across these sites becom es a formidable 

one A far sim pler and neater solution to the problem of ensuring consistency  

of nam es across rem ote sites is to  insist that all names are im m utable B y doing  

so the functionality to reflect changes m  names m ade m one site on all other 

sites is not required Now once a name is created it cannot be changed, it  can  

be “forgotten” and replaced but never changed

In order to enforce this policy o f im m utable names it is necessary to take a 

snapshot of all names that a com putation can access, for it is only in a com 

putation  that the possibility o f altering names arises, before the com putation  

is performed, and restoring this snapshot after the com putation has been com 

pleted, F ig 5 11 An additional beneficial consequence of this approach is that 

no unexpected side effects can arise from the com putation o f calculations
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Figure 5 11 Storing and restoring names

Failu re  and fau lt tolerance

A process m a w  system  can fail for a number o f reasons, these include network 

issues, I /O  problem s, and exceptions and errors thrown from Java fragm ents 

The result o f a process failing is the sam e regardless of the reason for failure 

- the process blocks More specifically the process m question term inates and  

frees any resources that it m ay be using However the process is no longer in a 

sta te to interact further with other processes in the system  It is possible that  

the lack of these further interactions will have no effect on the other processes 

in the system , however it is more likely that the non-occurrence o f channel 

o u tp u t/in p u t as a result of the term ination of the failed process will cause other 

processes in the system  to block, 1 e to wait indefinitely on specific channel 

actions These blocking processes will cause the system  to halt No m echanism  

for the notification o f such failures nor the recovery from such failures exists

5 2 4 The Environm ent

In order to allow the execution of vj system s it is necessary to provide an 

execution environm ent The w  execution environm ent is responsible for the  

in itial pre-execution setup of system s and for the p ost execution  term ination of 

the various sites as well as enforcing the com m unications m odel T hese setup  

and term ination phases rely on the use o f a lightweight centralised application, 

the location of which is known to all top-level processes
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Setup

Before a w  system  can begin execution som e setup is required This setup  

is m ainly concerned with the channels that are shared am ongst the top-level 

processes Since these top-level processes cannot receive references to  the rem ote 

objects that represent channels by param eter passing they m ust obtain  these 

references by the look-up m ethod instead In order to  look-up a reference it 

is necessary to know the site on which the rem ote object resides Once this 

inform ation is known the actual act of look-up is rather sim ple The initial 

setup phase of the execution  o f a w  system  deals w ith the distribution o f this 

inform ation to the various concerned top-level processes However, before the 

inform ation about the actual physical location of channels can be dealt out the 

responsibility for these channels must first be allocated This allocation is done 

using a specific allocation algorithm  which takes into account a number of factors 

before allocating responsibility for a channel These factors include whether 

the process uses the channel, whether the process is replicated, and the existing  

load on the site that hosts the process Preference is given to non-replicated  

processes with m inim al loading of their sites that use the channel in question  

Once all the setup information has been distributed the actual execution of the 

system  can begin

T erm in a tio n

Term ination in w  is not so much concerned with the term ination of individual 

processes but rather w ith the com plete term ination o f all execution on a specific 

site Since a site may be responsible for channels that other processes are using  

even though there are no more active processes on the site, it  is necessary for 

all sites to  remain “up” until all the sites in a system  are all inactive W hen  

this happens all the sites that make up a system  can “com e down” There is, 

however, one exception  T hat is a site that plays host to a top-level process 

that is replicated and not responsible for any channels that are shared at the 

highest level m ay term inate once all processes executing on that site finish 

T he m igration of channels from site to site was briefly considered but was 

dism issed as the cost o f im plem enting this would far outweigh the value of it

Security

In the 7r-calculus the only m ethod for com m unicating between processes is by 

the use of channels It is therefore a necessity that in w  that the only way that 

processes can com m unicate is also by the use of channels This com m unication  

m odel needs to be enforced at a low level and is done so by im plem enting a 

Java security m anager that m onitors and regulates all network connections and
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com m unicates and ensures that nothing is done to breach the desired com m uni

cations m odel The Security m anager class has available to  it the signatures of 

all m ethods involved m any attem pt to perform network I /O  and by exam ining  

the collection of signatures involved in any attem pt to perform network I /O  the 

security m anager class can prevent undesired network I /O

5.3 Language Im plem entation Decisions

As would be expected once the core language design decisions were m ade and the  

design o f the language im plem entation started a number of decisions regarding 

the language im plem entation were required to be m ade W hile m ost of the  

design decisions resulted in the features in question being incorporated into the 

im plem entation som e com prom ises were required to be made around a number 

of issues

5 3 1 Channel m igration and term ination

As has been previously explained when a channel is created the Java RMI 

rem ote object that represents the channel is hosted on the m achine on which 

the creating process resides A feature that was originally desired for the w  

im plem entation was the ability for channels to effectively m igrate from one host 

to  another This would allow a simpler and more robust to the term ination of a 

site in a r o  system  As it stands all sites m a w  system  m ust signal their desire 

to term inate before a single site can do so This is to ensure that channels that 

in use by processes on different sites are not affected by the term ination o f a 

specific site If channels were able to m igrate from one site this problem would 

be avoided However due to im plem entation difficulties surrounding this feature 

it had to be descoped from the project

5 3 2 SyncServer

Presently there is a requirement for a central m mi-server in each w  system  to  

facilitate synchronisation at system  initialisation and term ination Currently  

a ” syncserver” is required to aid in the com m unication o f inform ation related  

to  top-level channels am ongst the various top-level process during in itialisation  

and in establishing agreem ent as to when a system  can term inate com pletely  

W hile allowing the m igration o f channels as previously described would remove 

the requirement for the SyncServer in system  term ination, in the present design  

of the w  im plem entation there would still be a need for it in the in itialisation  

of w  system s W hile no m echanism  which would avoid the requirem ent for a 

SyncServer during system  initialisation was identified it would be desired if the
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need for this central server could be avoided, however it is d istinctly  possible 

that this m ay not be feasible

5 3 3 Channels and Security

During the in itial design phase of the zu language im plem entation the idea of  

attem pting to secure, using various cryptographic protocols, com m unications 

occurring over channels arose However it was realised that a secure system , 

one w ritten  using established security protocols, would be secure regardless o f 

the m edium  used to transm it inform ation between elem ents o f the system  and  

as such there was no real requirement to encrypt data transm itted  on channels 

in G7

5 3 4 Process m igration

In the present zu im plem entation processes execute on the sam e hosts as the 

processes that invoke them  Some investigation into balancing the execution  

load of these processes am ongst the various hosts that con stitute a zu system  

was originally undertaken It was determ ined following this investigation  that 

the functionality required to facilitate this m igration of processes would require 

considerable effort and m ay in fact introduce som e security related issues into  

w  system s As such the concept of process m igration was rem oved from the 

design of the zu language im plem entation

5 4 w  and the classification criteria

As both  the zu language and its im plem entation have now been presented it 

is now possible to exam ine the zu language against the classification criteria  

outlined in chapter three

5 4 1 Syntax and Sem antics

It was desired that the syntax and sem antics of the 7r-calculus and that of zu 
would be similar W hile they are quite similar there are a number o f divergences 

between the two T hese differences, which have been previously discussed, do 

not however make the syntax and sem antics of both  to be irreconcilable

5 4 2 M obility

The 7r-calculus concept of m obility allows processes in a system  to dynam ically  

learn o f new links between elem ents of that system  at run-tim e This m echanism  

is present m zu and central to the operation of zu
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5 4 3 Synchronous vs asynchronous com m unications

Com m unications over channels can be performed m either a synchronous or 

asynchronous fashion W hile the im plem entation o f asynchronous channels 

would have be significantly sim pler than im plem enting synchronous channels 

the extra effort was deemed necessary and as such the w  channel im plem enta

tion is synchronous in nature

5 4 4 D istribution

supports d istributed system s However the m anner in which these system s  

may be distributed is restricted As previously explained the decision as to the 

distribution of a system  m ust be m ade with respect to  top-level processes and 

cannot be made at a lower level W hile this should not negatively affect the  

execution  o f zu system s it does restrict how w  system s can be distributed

5 4 5 Sequential com putations

w  allows even the m ost com plex sequential com putation to be performed in it 

via the use o f fragm ents of the Java programm ing language W hile this achieves 

the goal o f providing a m echanism  for performing sequential com putations it is 

not the m ost pleasing of solutions As described m the language design decisions 

it  would be preferred if the sam e level of support for sequential com putations 

could provided but via a new notation more fitting to w

5.5 zu and the classification categories

Given the classification categories laid out m chapter three and given the results 

yielded when exam ining w  against the classification criteria also laid out in 

chapter three it becom es apparent that w  does not fit into any o f the three 

categories previously identified As such the classification categories presented  

in chapter three m ust be extended to allow the categorisation of w

C a te g o r y  4

A program m ing language belonging to category four is syntactically  and 

sem antically sim ilar to the 7r-calculus It provides a high level of sup

port for the im plem entation of distributed system s and it also provides a 

m echanism  for performing com plex sequential com putations Com m uni

cations over channels in a category four program m ing language occur m a 

synchronous m anner and also facilitate the 7r-calculus concept of m obility
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Chapter 6

w  examples

W hen previously exam ining the various aspects of the w  language, they have 

been exam ined in isolation In order to obtain  a true understanding o f how  

these various com ponents of vo can be used together and how they interact with  

one another it is necessary to observe larger, richer exam ple system s 1ln  the 

following exam ple system s the following aspects o f w  will be am ongst those used  

and exam ined

• R eplicated top level processes

•  Use of sequential com putations via code blocks

•  Use of sequential com putations via m ime code statem ents

•  R eplicated invocation o f standard processes

•  Invocation o f standard processes

•  Channel operations - input and output

• Sum m ations - process choice

guide to compiling, debugging and deploying w  system is supplied in the appendices
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6.1 Example 1 - Certificate Authority

The goal o f this w  system  (A full listing o f code for this system  is in appendix  

B ), is to  provide an im plem entation o f a system  that allows X509 certificates 

to  be requested by an arbitrary number of clients, and for these requests to be 

fulfilled by the issuing o f certificates by a central static entity  - a Certificate 

Authority

Figure 6 1 A bstract behaviour of exam ple System  1

This type of system  lends itself to dem onstrating various aspects of the w
language, in particular the replication of top-level processes, the replication of

standard processes, sequential com putations and basic channel operations

T he com m unications part o f this system , the processes and their interactions,

is rather sim ple and consists o f only four processes, one of which is the System

process 
i Syst em Sys

2{
3 Channel  a
4
5 ( C e r t A u t h (  a ) | 1 C l i e n t C r e a t e C e r t ( a ) )

7 P r o c e s s  C e r t A u th  ( c e r t  )

»{
s < g e t I n f o > ( ) (  f i l e n a m e  , p a s s p h r a s e )

10 < g e t l s s u e r > ( f i l e n a m e , p a s s p h r a s e ) ( c a )
1 1  ( 1 I s s u e r  ( c e r t  , ca ))
12}
n P r o c e s s  I s s u e r ( i n ,  i s s u e r )
14 {
1 5  in ( c h a n n e l  )
16 c h a n n e l  ( c e r t R e q u e s t  )
1 7  < i s s u e C e r t > (  i s s u e r ,  c e r t  Re q u e s t )  ( c e r t )
is c h a n n e l < c e r t  >
19 0
20 }
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2 1 P r o c e s s  C l i e n t C r e a t e C e r t  ( chan  )
22 {
23 < loadC A Ce r t  > ( ) ( c a c e r t  )
24 <c  r e a t e C e r t i f i c a t e A n d  Re q u e s t  > ( ) (  c l i e n t  , r e q )
25

26 Channe l  tmp
27 ch an< tm p>
28 t m p < r e q >
29 tmp(  c e r t  )
30 < s t o r e C l i e n t > ( c e r t ,  c l i e n t ,  c a c e r t ) ( )
31 0

32 }

As would be expected  the first step in both branches of execution are con

cerned with set-up and in itialisation The CertAuth process uses two sequential 

com putations to load and configure the data that is required so that a repli

cated process that will handle all the certificate requests can  be invoked The 

first o f these sequential com putations, invoked from line 9, prom pts a user to 

enter the location o f the encrypted data store that contains all relevant keys and 

certificates required to operate the CertAuth , and it also prom pts the user for 

the passphrase that will allow the data store to be decrypted and its contents 

used

Listing Code-block called from line 9
33Code g e t l n f o  ()  ( fn , pp)
34 {

x 36 /&
36 L in eN um be rR e ad e r  I n r  =
37 new L ine N um ber Rea de r ( new  I n p u t S t r e a m R e a d e r  ( Syst em i n ) ) ,
38 Sys t em out  p n n t l n  ( ‘ ‘ E n t e r  t he  ca n a m e ’ ’ ) ,
39 fn =  l n r  r e a d L i n e ( ) ,
40 Syst em out  p r i n t l n  ( ‘ ‘ E n t e r  t he  p a s s p h r a s e  ,
41 pp =  l n r  r e a d L i n e ( ) ,
42 &/
43}

Once these pieces of data have been obtained it is necessary to load and  

decrypt the data store (line 10) in order to create the entity required to actually  

issue certificates T he invoked sequential com putation creates a sim ple CA  

object and then uses this object to create the object which will be used to issue 

certificates This separation of CA and issuer is present as while there will be 

m ultiple instances of issuers, as the process that uses them  is replicated, it is 

desired that there is only ever one actual CA This separation becom es more 

relevant in system s which include functionality for certificate revocation

Listing Code-block called from line 10 
4 4 Code g e t l s s u e r ( f n  > pp )  ( i s s u e r )
45 {
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4 6  / &

47  CA theCA =  new CA( ( S t r i n g  ) fn ,( S t r i n g  ) pp ),
48 C e r t l s s u e r  ca =  theCA c r e a t e l s s u e r  ( ) ,
4 9

so i s s u e r  — ca ,
51 & /

5 2 }

Once this sequential com putation has been com pleted the CertAuth  pro

cess starts a replication Issuer processes (line 11) It is instances o f this Issuer 
process that interact w ith instances of the replicated client process, ChentCre- 
ateCert, in order to facilitate the actual requesting and issuing o f certificates 

T he operation and interaction of these two processes occurs as follows 

The Client Create Cert process loads the certificate belonging to the Certifi

cate Authority, which was distributed out-of-band, using a sequential com pu

tation  (line 23) The sequential com putation prom pts the user for the location

of the CAs certificate which it then loads as a byte[] and pushes back up into

the com m unications The certificate is loaded as a byte[] as opposed to a java  

Certificate object because of the requirement that all objects pushed into the 

com m unications code be serializable This is not checked at com pile tim e but 

would rather m anifest itself as a runtime error as there is no type checking of 

this kind, l e what can be com m unicated on channels, at com pile tim e

Listing Code-block called from line 23
53Code l oadC ACe r t  ( ) ( c e r t  )
54 {

55  / & .

56 S t r i n g  f i l e n a m e  =  C l i e n t  ge tCAFi l eName  ( ) ,
57 b y t e  [] c e r t _ b y t e s  =  C l i e n t  l o a d C A C e r t ( f i l e n a m e  ),
58 c e r t  =  c e r t - b y t e s  ,
5 9  & /

60  }

O nce the certificate belonging to the certificate authority has been loaded  

the next step is for the client process to  create the actual certificate request that  

will be sent to the CA (line 24)

Listing Code-block called from line 24
61 Code c r e a t e C e r t i  f i c a t e  A nd R e q u e s t  ( ) (  c l i e n t  >r eq )
6 2  {

63  / &

64 C l i e n t  c =  new C l i e n t  ( ) ,
65 b y t e  [] name =  C l i e n t  getName ( ) ,
ee S t r i n g  pwd =  C l i e n t  g e t C h a l l e n g e  ( ) ,
67 b y t e  [] tmp — c g e n e r a t e C e r t i f i c a t e R e q u e s t  ( n a me , p w d ),
68

69 c l i e n t  =  c ,
70 r eq  — tmp,
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71 & /

72 }

In order to create the certificate request it is first necessary to get the fully 

qualified nam e of the intended subject of the certificate that is being requested  

via a m ethod m the Client class (line 65) Following this is it necessary to  

obtain  a challenge password A challenge password is used m the attributes of  

the certificate request in order to supply user credentials w ith the request (line 

66) Once this has been obtained from the user the Client class is then again  

used to  b oth  generate the certificate request and the associated RSA key-pair 

(line 67) T he functionality for this is supplied m a series o f Java class files 

that were specifically written for this exam ple Following this the newly created  

client object and the certificate request are pushed back into the com m unications 

code

The com m unications aspect o f this code then creates and distributes a chan

nel that will be used solely for this transaction (line 26) Once created and sent, 

this channel is then used to send the certificate request created on line 24 to the 

certificate authority All that remains for the client to  do is to  read back the 

issued certificate, if it was issued (line 29) and to then store the certificate along  

with the associated key-pair (line 30) The m ethod that stores this inform ation  

has to obtain  both the location  in which to store it (line 82) and the passphrase 

that will be used to protect the sensitive inform ation (line 83)

Listing Code-block called from line 30
7 3 Code s t o r e C l i e n t ( c e r t  , c l i e n t  , c a c e r t  ) ( )
74 {

7 5  j h

76 b y t e  [ ] t heCA Cer t  =  ( b y t e  []) c a c e r t  ,
77 b y t e  [ ] t h e C e r t  =  ( b y t e  [] )  c e r t  ,
78 C l i e n t  c =  ( C l i e n t ) c l i e n t  ,
79

80 c s e t C e r t i f i c a t e ( t h e C e r t ,  t h eCACer t  ),
si S t r i n g  pp =  C l i e n t  g e t P a s s P h r a s e  ( ) ,
82 S t r i n g  fn =  C l i e n t  g e t F i l e n a m e  ( ) ,
83 c s t o r e ( p p , f n ) ,
84  & /

85  }

On the other side o f the transaction the Issuer process reads (line 15) the  

“session” channel that was sent by the Client Create Cert on line 26 T he Issuer 
process then reads the certificate request (line 16) Once read this certificate 

request is pushed into a sequential com putation (line 17)

Listing Code-block called from line 17
86Code i s s u e C e r t  ( i s s u e r  , r e q u e s t  )(  c e r t  )
8 7  {
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88 /&
89 Ce r t l s s u e r  1 = ( C e r t l s s u e r ) i s s u e r ,
90 byte [] req = ( b y t e [ ] )  r eques t ,
91

92 cer t  = i p r o c e s s Ce r t i f i c a t e Re q u e s t  ( req ),
93  & /

9 4 }

After the certificate is created it is then sent back to the ChentCreateCert pro

cess

T he replicated nature of the ChentCreateCert process and the Issuer process

in this system  allows this certificate request/issue cycle to  occur as often as

required

6.2 Example 2 - Certificate Authority and Ser
vice Provider

This exam ple 2 builds upon the previous exam ple by taking the certificate is

suing infrastructure and using it to  enable authentication  and security in a dis

tributed system  This new system  allows client processes to  request the services 

of a service provider in a secure and m utually authenticated manner

In this exam ple system  there are three m am  types o f entity - the Certificate 

Authority, the Service provider and the client The certificate authority issues 

certificates both  for the clients and for the Service provider It also facilitates  

the distribution of the certificate associated with the Service provider The  

Service provider interacts w ith the Certificate authority to obtain  a certificate 

and it then uses this certificate m a cryptographic protocol which provides the  

m echanism  for the required m utual authentication  w ith  clients and for the secure 

exchange o f a session key

The client aspect of the system  is split m to two parts One part requests 

and obtains certificates from the certificate authority and the other part uses 

this certificate in the protocol used to secure com m unications with the Service 

provider

6 2 1 The processes

In order to reuse the processes from the previous exam ples only a minor change 

was required to be made to the CertAuth  process, and in order to accom m odate  

the new behavioural requirem ents of the system  two new top-level processes and  

som e new top-level channels were required

2A full listing of code for this system is in appendix C
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95 System Sys
96  { A

97 Channel a , b , c , w
98 ( Cert  Auth ( a , b , c ) | 1 C l i e n t C r e a t e C e r t ( a ) }
99 S e r v i c e P r o v i d e r ( b , w ) | ' C I i e n t S e r v i c e R e q u e s t ( c , w ) )

100 }
101

io2Process CertAuth ( ce r t  , spCer t  , sp C er t O u t)
103 {

104 < g e t I n f o  > ( ) (  f i l ename  , passphrase  )
105 < c r e a te C A > ( f i l e n a m e  , passphrase  )( ca )
106 < g e t l s s u e r > ( c a ) (  i )
107

108 ( ’ I s s u e r ( c e r t  , i )| S e r v i c e P r o v i d e r l s s u e r  ( spC er t  , i  , s p C e r t O u t ))
109 } 

no
in Process  S e r v i c e P r o v i d e r l s s u e r ( i n , i ssuer ,^out )
112 {
113 in ( channel  )
114 channel  ( c e r tR eq u es t  )
115 < i s s u e C e r t > ( i s s u e r  , ce r tRe qu es t  )( ce r t  ) 
lie c h an n e l <c e r t  >
117 ( ’ D i s t r i b u t e C e r t  ( out  , c e r t  ) )

118 }

119

i2oProcess  Cl  len tS er v i  c eR e q ue s t  ( ce r t  , work)
121 {
122 CloadCACer t  > ( ) (  c a c e r t  )
123 < l o a d S e l f > ( c a c e r t  )( se 1 f  )
124

125 ce r t  ( spCer t  )
126

127 < v e r i f y C e r t I s s u e r > ( c a c e r t  , spCer t  ) ( )
128

129 C c r e a t e C l i e n t R e q u e s t  > ( s p C er t  , se 1 f  ) ( packet l  , randA)
1 30

131 Channel chan
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132 workCchan >

133

134 < g e t O w n C e r t > (  s e  I f ) ( o w n C e r t )

135 c h an <o w nC e rt  >

136 c h a n < p a c k e t l  >
137

138 chan ( p a c k e t2 )

139 < p r o c e s s S e r v i c e R e s p o n s e > ( p a c k e t 2 , s p C e r t  , s e l f  , rand A )( p a c k e t  3 )

140 c h a n < p a c k e t3 >
141

142 c h a n ( e n c K e y )

143 chan ( s e r v i c e  1 )

144 chan ( s e r v i c e 2 )
145

146 < e x  t r a c t  K e y  > ( s p C e r t  , e nc Ke y  , se  I f  ) ( key )
147

148 < w h i c h S e r v i c e > ( s e r v i c e l  , s e r v i c e 2 )( s e r v i c e  )
149

150 Cha nne l  chan

151 s e r v i c e < c h a n >

152 chan ( r e s p  )

153

154 < / & S y s t e m  out p r i  n t i n  (( S t r i n g  ) r e s p ) , & / > (  r e s p  ) ( )

155 0

156 }

157

158 P r o c e s s  S e r v i c e P r o v i d e r  (c ha n , work)

159 {

160 < l o a d C A C e r t > ()( c a c e r t  )

161

1 6 2  < c r e a t e C e r t i f i c a t e A n d R e q u e s t S P > ( c a c e r t ) ( s p , r e q )

(  163

164 Channel tmp
165 ch an< tm p>
166

167 t m p < r e q >
168

169 tmp( c e r t  )
170

171 < s e t C e r t i f i c a t e > ( c e r t  , s p  , c a c e r t  ) ( newSP )
172 (1 S er  v i c e  r ( work , newSP ))
173 }

174

w s P r o c e s s  S e r  v i  c e r  ( work , s e 1 f )
176 {

177 work ( c h a n n e l  )

178 c h a n n e l  ( c l i e n t C e r t  )

179 c h a n n e l  ( p a d  )

180

1 8 1  < p r o c e s s C l i e n t R e q u e s t  > ( c l  ien t C e r t  p a d  s e l f ) ( r a n d A )
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182 < c r e a t e S e r v i c e R e s p o n s e > ( c h e n t C e r t >s e l f ,  rand A ) ( pac2 , r andB )
183 c h a n n e l < p a c 2 >
184

185 c h a n n e l  ( r e s  )
186 < p r o c e s s C l i e n  t R e s p o n s e  >(  c l i e n t C e r t , s e l f , r e s ,  r andB ) ( encKey , key )
187 c h a n n e K e n c K e y  >
188

189 Channe l  s e r v i c e l  , s e r v i c e 2
190 c h a n n e l < s e r v i c e l >
19 1  c h a n n e l < s e r v i c e 2  >
192

19 3  + ( s e r v i c e l  ( a ) ( S e r v i c e l ( a ) ) )  +  ( s e r v i c e 2 ( b ) ( S e r v i c e 2 ( b ) ) )
194 }

Now instead of starting only a replicated Issuer process the CertAuth pro

cess also starts an instance of a ServiceProviderlssuer (line 108) This Service-
\

Providerlssuer process (line 111) is identical to  the Issuer process that has been  

docum ented in the previous exam ple with the exception  the process invocation  

statem ent that appears at the end of it (line 117) Instead of merely receiving  

the certificate request from a Service Provider and sending the issued certificate 

back to it, this process now invokes a replicated process (line 120) whose sole 

function is to  output the certificate that was issued to the Service provider on  

a channel that is known by all entities in the system  This m echanism  uses 

lazy evaluation to fill the channel w ith an infinite number of certificates This 

distribution of the Service providers certificate is required for the successful ex 

ecution of the cryptographic protocol that will be used between the client that 

is requesting services and the service provider that is providing them

As the procedure for the requesting and issuing of certificates has previously 

been explained the rem aining item  of interest in this exam ple is the interaction  

between the Service provider and the Client process that requests its services 

T he first task for a ServiceProvider to  com plete is the requesting and obtain

ing of a certificate from the certificate authority This is done m a very similar 

m anner as the requesting o f a clients certificate, lines 160 to 171 Once the cer

tificate has been requested and obtained the actual interactions betw een service 

provider and client begin via the replicated invocation of a Servicer process on  

line 172

6 2 2 The protocol

The authentication protocol that is used in this exam ple is a well docum ented  

(Schneier 1996) three-way protocol that makes extensive use of the X509 cer

tificates previously issued  

In the following protocol 3

3In this version of the protocol the need for timestamps has been eliminated and as such
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R x indicates the random  number generated by x  
Tx indicates the tim e stam p generated by x 
I x  indicates the identity of X  
Cx indicates the X509 certificate belonging to x
D x (N ) is the result o f encrypting N  w ith the private key belonging to x  
E X(N)  is the result o f encrypting N  w ith the public key belonging to x  

Before this protocol can be used the certificate o f the service provider m ust 

be distributed to all entities that wish to com m unicate w ith it, this is done 

by m eans of the replicated process that is invoked in the ServiceProviderlssuer 
process

Step 1

T he client(C SR ) generates a random number, a tim e stam p and som e 

random  data This random  data is encrypted using the public key of the 

service provider(SP) which is extracted from the distributed certificate 

Once this is done the random  number, the tim e stam p, the identity of  

the service provider, and the encrypted data are all encrypted using the 

private key of the client, this effectively signs the entire block of data In 

the system  this is done in one sequential com putation called from line 129 

Once this is created the certificate of the client and the encrypted/signed  

d ata is sent to the service provider, line 136

Client — > Service provider, Cc s r , D c s r (M),  where 

M  = {Tcsr, R csr, I sp ,  Esp(d))

Step 2

W hen the service provider receives the encrypted block o f data from the 

client along with its certificate the first thing the service provider m ust 

do is to verify the certificate was issued by the correct CA Once this test 

occurs the service provider then decrypts the d a ta  using the public key 

extracted from the certificate belonging to the client Following this the  

service provider m ust check that the value I s p  is in fact its own identity, 

and that the data E s p ( d ) can be decrypted using its own private key If 

these tests are successful the Service provider generates a random  number 

and tim e stam p o f its own and uses these to construct a m essage that 

consists of its tim e stam p, its random  number, the identity o f the client, 

the random  number of the client and som e random data encrypted w ith the 

public key of the client This m essage is then encrypted with the private 

key of the service provider and sent back to the client, line 183 This

all timestamps are 0
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processing of the received data and the creation o f the d ata  packet that 

is to be returned to the client takes place m two sequential com putations, 

lines 181 and 182

Service Provider — > Client, D s p {M '), where 

M 1 = (TSp, R s p , Ic s r , R c s r , EcsR{d))

Step 3

T he client, on receipt o f the encrypted data, line 138, decrypts the m essage 

and verifies the value of Ic s r  and R c s r  and also that it can decrypt 

E csR(d)  If these tests are successful then the client encrypts the random  

number R sp  w ith its private key, and returns it to  the service provider, 

line 140 The processing of the data received from the service provider 

and the creation of the packet that will be returned to it occurs on line 

139

Client — > Service provider, D c s r (R s p )

Step 4

Finally the service provider decrypts the data and verifies the value of  

R s p , line 186 After this stage m utual authentication has occurred

Following the occurrence of the authentication protocol the service provider 

creates a session key, also in the sequential com putation invoked from line 186 

In the sam e sequential com putation the session key is encrypted w ith the public 

key of the client and signed w ith the private key o f the service provider This 

encrypted and signed key is then sent to the client process along with two newly  

created channels

6 2 3 The service request

Once the client receives the encrypted session key, it decrypts and verifies it  to 

yield a usable session key (line 146) The client process has also received two 

channels from the service provider - each channel representing a service that 

the service provider provides The client prom pts the user as to which service 

it wishes to avail of, line 148 The selection of the user d ictates which channel 

is used, that therefore which service is requested Once the service is requested, 

th is is done by sending a channel over the relevant channel, the client process 

waits for a response from the service, line 152, and then prints the response to  

the screen For the purposes o f this exam ple the services that were requested
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were kept to their m ost absolute sim plest - 1 e sim ple strings are returned for 

each request

The interesting aspect of a service request takes place on the service providers 

part o f the interaction On line 193 the service provider makes use o f a sum m a

tion statem ent - in a sum m ation the course of execution  of the system  depends 

entirely on which input action in the statem ent occurs T he guards in this sum 

m ation are input actions involving the two channels that were sent to  the client 

process T he client process responds on one o f these channels depending on  

which service it wishes to request As such the process that the service provider 

invokes depends which channel action occurs Should the client respond on the 

channel associated with service one then the service provider starts the process 

that represents service one, likewise for service two

T he replicated nature o f the ServiceProvider process and the ChentSer- 
viceRequest process m this system  allows this service requesting/granting cycle 

to occur as often as required
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6 3 Developing w  system s

In the above exam ples the following steps to developing the system s were fol

lowed

1 A 7r-calculus specification for the system  was written This specification  

captured all the processes that would make up the system  and the inter

actions over channels that would occur between them

2 A detailed description of each process that would be part o f the system  

was m ade This description outlined the sequential com putations that 

would be required to be processed so that the relevant inform ation would  

be available to send on channels An in p u t/ou tp u t contract was developed  

for each sequential com putation, l e given input inform ation o f a various 

format the sequential com putation would guarantee output of a particular 

format

3 The various sequential com putations were sorted into logical groupings 

and Java classes were created for each grouping The bulk of the processing  

that makes up the sequential com putations was placed into these classes to  

m inim ise the com plexity o f the statem ents in the w  processes them selves

4 Once written the Java classes were unit tested  to ensure that they m et 

the in p u t/ou tp u t contract previously arrived at for them

5 A stripped down version of the w  system  was written This stripped down 

version only contained com m unications code Following the im plem enta

tion of this version o f the system  the w  code for it would be m anually 

compared to the pi-calculus specification to inform ally ensure that the 

specification and im plem entation m atched Ideally a formal process for 

the verification of im plem entation against specification would have been  

performed at this stage However the developm ent o f such a process fell 

outside the scope o f this project and could therefore not be performed

6 The various sequential com putation invocations required were added to 

the com m unications code T hese invocations were added at the points 

identified m the process analysis phase

7 The entire w  system  would then be com piled Following the successful 

com pilation of the vj system , it would then be deployed to a test environ

m ent and executed to ensure that the system  behaved as expected
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6 3 1 Reuse in w system s

Once a w  system  has been written aspects of it  can be reused If identical 

functional requirements are m ade of processes m two separate system s then the  

sam e process can be used in both system s The process in question is sim ply  

written m a separate file and included in the com pilation o f both  system s 4 

Likewise if identical requirements are made of sequential com putations these 

can be expressed as CodeBlocks and these can then be included m m ultiple w  
system s

4The compilation of va systems is detailed in the appendices
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In the previous exam ples the m ajority of the functionality of the w  program m ing  

language have been used and dem onstrated and the process for writing system s 

using the w  program m ing language has also been covered

6.4 Conclusions
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Chapter 7

Conclusions

The goal of this research was to develop a program m ing language that was based  

on the 7r-calculus The nature of this program m ing language was intended to  

allow it to be used as a general purpose program m ing language although its 

primary use was to be m the im plem entation o f large scale distributed system s

A number of objectives had to be com pleted in order to develop such a 

program m ing language The first was that a syntax and sem antics that were 

similar to those of the 7r-calculus had to be devised The next objective, which 

was achieved m tandem  with the first, was that a m echanism  for performing 

com plex sequential com putations had to be integrated into the syntax and se

m antics o f the program m ing language m such a manner as to allow the syntax  

and sem antics of the program m ing language to still be reconcilable with those 

of the 7r-calculus

Another objective was that system s written in this program m ing language 

should be capable of being distributed with the m inim um  am ount o f effort and  

the m axim um  am ount of transparency to the developer as possible This re

quired the provision o f m echanism s to enable distribution o f system s at the 

lowest levels o f the program m ing language B y providing a high level of support 

and by doing it at a low level this objective was achieved

Following investigation into the 7r-calculus and existing im plem entations 

based on it a set o f additional desired qualities for the new language were de

vised These additional properties becam e objectives in their own right that 

had to be satisfied by the language

The final, and arguable the m ost im portant, object was that the language 

devised should be sim ple to use and easy to understand This last objective had  

consequences for all aspects o f the programm ing language, ranging from having  

to  have a clear and concise syntax and sem antics to  ensuring that the com piler 

was easy to use and that the deploym ent process for system s written in this
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language was sim ple to  follow

Overall it is felt that these objectives were achieved and that a usable, com 

putationally powerfully program m ing language that is capable o f supporting  

large scale distributed system s was produced, and that this program m ing lan

guage was based on the 7r-calculus

7.1 Further work

W hile all the desired properties were incorporated into the language and while 

all the objectives, major and minor, of the language were com pleted it is felt 

that certain areas o f the language could be expanded upon in further work

7 1 1  Sequential C om putation notation

It could be desirable to  extend the syntax and sem antics o f w  to include a nota

tion that could be used in performing sequential com putations in w  This could  

be beneficial as it m ay result in a simpler, and more controllable, m echanism  

for performing sequential com putations and could also make the integration of  

the separate com m unications and com putation aspects o f vj cleaner and more 

elegant

7 1 2  Com piler support

As it stands com pilation, debugging and deploym ent of zu system s m ust be done 

via the com m and line T he integration o f the zu language into a developm ent en

vironm ent would increase the ease with which the coding, com piling, debugging  

and deploym ent of w  could be achieved T he developm ent of such an environ

m ent, or the developm ent of a series of plug-m s for an existing environm ent, 

would be a significant addition to w
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Appendix A

Building and using w

A .l Building the w  compiler and libraries

The source for the w  distribution is divided into three categories - the javacc 

code for the compiler, the Java code used by this com piler and the Java code 

which makes up the libraries that are used during run tim e To build the entire 

w  d istribution all three categories of code m ust be built in different ways and 

the generated output files m ust then be bundled up into a jar file which will be 

the w  distribution 1

To build the com piler and libraries the following steps can be followed or the 

included makefile can be used

1 Com pile the java code used by the compiler (this and all other com pilation  

steps should be performed from the root o f the source directory)

(a) javac varp i/h elpers/*  java

2 Com pile the runtim e libraries

(a) javac varp i/im p /classS erver/*  java

(b) javac varp i/im p /*  java

(c) rmic varpi imp iChannel

(d) rmic varpi imp iTask

3 Com pile the compiler

(a) mkdir varpi/parser

*In order to build the w  distribution JDK1 4 x and Javacc 2 1 must  be installed on the 
system
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(b) javacc parser jj

(c) javac varp i/p arser/*  java

4 Prepare the jar file

(a) jar cv f varpi jar varp i/im p /*  class varp i/im p /c lassS erver/*  class varp i/h elpers/*  class 

varp i/parser/*  class

~\
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A .2 Using the w  com piler/Building a w  system
;

1 (O ptional) If an java classes have been written that will be used by the w  
system  being built then these classes m ust first be com piled

2 T he varpi source files m ust be com piled In order to do this the nam es of  

these files are supplied to the w  com piler T he only restriction place on 

the order in which these filenam es are passed to the com piler is that the  

first file name m ust be that of the file that contains the w  System  process

The usage of the vj com piler is

java -cp Cvarpi jar location>  varpi parser Parser -sync < sn a m e>  -debug  

<  filenam es >

where

• <varj>% jar location> is the location o f the jar file built that represents 

the vd d istribution

•  <sname>  is what the syncServer for the generated system  should be 

called

•  <fiienames> are the filenames of all the w  source files

W hen using the w  com piler the -debug sw itch is optional and its use sim ply  

results m additional debug inform ation being generated and included m  

the system  which will be displayed at runtim e

\
3 The successful com pilation o f a w  system  results m the generation of a 

number of java classes T he final com pulsory step m the com pilation of a 

vj system  involves the com pilation of these generated java files In order 

for this com pilation to success the jar file built for the w  distribution and 

any external java classes required must be included in the classpath The 

com pilation is performed by typing javac * java from the directory from  

the working directory

4 (O ptional) If desired the class files resulting from the com pilation o f the 

generated java files can be packaged into a jar file for ease of d istribution  

This step is recomm ended
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A .3 Running a w  system

1 D is t r ib u t e  r e q u ir e d  file s

In order to run the w  system  on numerous distributed hosts it  is necessary 

for the libraries for both the w  distribution and for the system  in question  

to  be present on each o f the m achines that will form part o f the system  

T his distribution is done ’’out of band”

2 R m ir e g is t r y

As the w  d istribution makes use of Java RMI rem ote objects it is required 

that an instance of the rm iregistry is running on each host m achine Ad

ditionally the location o f the jar file for the w  d istribution m ust be in the  

classpath for the rm iregistry

3 S y n c S e r v e r  r u n n in g

Each w  system  requires a  w  syncServer to be running T he compiler 

of a w  system  results m the generation o f a tailored syncServer This 

generated syncServer has the snam e name as that which is supplied to the 

w  com piled via the -syncServer sw itch The invocation o f a syncServer 

is a simple process as syncServer only requires a single argum ent - the 

number of a free port on the host machine

U s a g e  java -cp <location of w  jar> <syncServer name> <port> 

where

• <locatton of w  jar>  is the location  of the jar file for the w  distribu

tion

• <syncServer>  is the nam e o f the syncServer class

•  <port> is the number of a free port on the host m achine It is also 

required that the port im m ediately above this port is also free

4 T o p  le v e l  p r o c e s s e s  s ta r te d

A w  system , when com piled, will generated a number of java classes which  

contain a  public stat void m am  m ethod One such class is generated for 

each top level process in the system  T hese generated executable classes 

are named the sam e as the top level processes but with the word ’’Starter” 

attached to the end of the name

In order for the execution of a w  system  to com m ence each top level 

process, bar replicated top-level processes, must first be started The  

m anner of doing so is identical for each top level process
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java -cp <classpath> <tlpStarter> <port> <jar> <ssip> <ssport> <local 
ip >

where

•  <classpath> is the classpath required to run the program, it m ust 

include the location of the w  distribution jar, the jar file for this 

system , and any external java classes required

•  <  tlpStarter>  is the name of the executable class file to  run (top level 

process nam e plus the string ” Starter”

•  <port> is the number o f a free port on the host m achine

•  <jar>  is the location  of the w  distribution jar file

•  <ssip> is the ip address o f the sync server

•  <ssport> is the number of the port on which the syncServer is lis

tening

•  <local ip >  is the local ip address

By starting the rm iregistry and each of the top-level processes as detailed  

above the execution o f the w  system  in question should begin Term ination of 

the system  is handled autom atically by the system

;
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Appendix B

Example 1 code

B .l  w  code
>{
2 pki  *,
3 j a v a  s e c u r i t y  c e r t  *,
4 j a v a  s e c u r i t y  *,
5 j a v a x  c r y p t o  spec  *,
6 j a v a x  c r y p t o  *,

8
9Sys t e m Sys 

10 {
11 Channe l  a
12
13 ( C e r t A u t h ( a )  | ' C h e n t C r e a t e C e r t ( a ) )
14}
IB
l e P r o c e s s  C e r t A u t h ( c e r t )
17 {
is < g e t I n f o > ( ) (  f i l e n a m e  , p a s s p h r a s e  )
19 < g e t l s s u e r > ( f i l e n a m e ,  p a s s  p h r a s e  ) ( i )
20
21 ( 1 I s s u e r  ( c e r t  > 1 ) )
22 }
23
24 Pr oces s  I s s u e r ( i n ,  i s s u e r )
25 {
26 i n ( c h a n n e l  )
27 c h a n n e l  ( c e r t R e q u e s t  )
28 < i s s u e C e r t > ( i s s u e r  , c e r t R e q u e s t  )(  c e r t  )
29 c h a n n e l < c e r t >
30  0

31 }
32
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33 Code i s s u e C e r t (  i s s u e r  , r e q u e s t  )(  c e r t  )
34 {
35  / &

36 C e r t l s s u e r  i =  ( C e r t l s s u e r  ) i s s u e r  ,
37 b y t e  [] r eq  =  ( b y t e  [ ] ) r e q u e s t ,
38

39 c e r t  =  i p r o c e s s C e r t i f i c a t e R e q u e s t ( r e q ) ,
4 0  & /

4 1 }

42
43Code g e t l s s u e r  ( fn , pp )(  i s s u e r  )
44 {
45 f&l
46 CA t heCA =  new CA( ( S t r i n g  ) fn ,( S t r i n g  ) pp  ) ,
47 C e r t l s s u e r  i =  t heCA c r e a t e l s s u e r  (},
48

49 i s s u e r  =  i ,
50  & /

5 1 }

52

53Code g e t i n f o  ( ) ( fn , pp)
54  {

55 /&
56 t r y
57 {
58 L i n e Nu mb e r Re a d e r  l n r  =
59 new L i n e Nu mb e r Re a d e r ( n e w I n p u t S t r e a m R e a d e r  ( Sys t e m i n ) ) ,
60 Sys t em out  p r  i n t l  n ( ” E n t e r  t h e  ca n a me ” ),
61 fn =  l n r  r e a d L i n e ( ) ,
62 Sys t em out  p r i n t l n  ( ” E n t e r  t h e  p a s s p h r a s e  ” ),
63 pp =  l n r  r e a d L i n e ( ) ,
64  }

65 c a t c h  ( E x c e p t i o n  e)
66 {
67 e p r i n t S t a c k T r a c e  ( ) ,
68 }
69  & /

7 0 }

71
72
73 P r o c e s s  C l i e n t C r e a t e C e r t (  chan )
74 {
75 < l o a d C A C e r t > ( ) (  c a c e r t  )
76 C c r e a t e C e r t i f i c a t e  A n d R e q u e s t  > ( ) (  c l i e n  t , r e q )
77

78 Channe l  tmp
79 c h a n < t m p >

80
8i t m p < r e q >
83
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83 tm p( c e r t  )
84

85  < s t o r e C l i e n t > ( c e r t  , c l i e n t  , c a c e r t  ) ( )

86 0  

8 7 }

89

8 9 C o d e  l o a d C A C e r t  ( )  (  c e r t )

90 {

91 / &

92  S t r i n g  f i l e n a m e  =  C l i e n t  g e t C A F i l e N a m e  ( ) ,

93  b y t e  [ ]  c e r t - b y t e s  =  C l i e n t  l o a d C A C e r t (  f i l e n a m e  ) ,

94  c e r t  =  c e r t - b y t e s ,

95  & /

96  }

97

98

9 9 C o d e  c r e a t e C e r t i f i c a t e A n d R e q u e s t  ( ) (  c l i e n t  , r e q )

100 {
101 /&
1 0 2  C l i e n t  c  =  n e w  C l i e n t  ( ) ,

1 0 3  b y t e  [ ]  n a m e  =  C l i e n t  g e t N a m e ( ) ,

104

1 0 5  b y t e [ ]  t m p  =  c  g e n  e r  a t e  C e r t i  f i  c  a t e  R e q u e s t  ( n a m e ) ,

106

1 0 7  c l i e n t  =  c  , 

lo s  r e q  =  t m p ,

109 & /

110 }
111

1 1 2 C o d e  s t o r e C h e n t ( c e r t  , c l i e n t  , c a c e r t  ) ( )

113 {

114  / &

1 1 5  b y t e [ ]  t h e C A C e r t  =  (  b y t e  [ ] )  c a c e r t  ,

116

1 1 7  b y t e [ ]  t h e C e r t  =  (  b y t e  [ ] )  c e r t  ,

u s  C l i e n t  c  =  (  C l i e n t  )  c  l i  e n  t  ,

119

1 2 0  c  s e t  C e r t  i f  i c a t e  ( t h e C e r t , t h e C A C e r t ) ,

121

1 2 2  S t r i n g  p p  =  C l i e n t  g e t P a s s P h r a s e  ( )  ,

1 2 3  S t r i n g  f n  =  C l i e n t  g e t F i l e n a m e  ( ) ,

124

1 2 5  c  s t o r e  ( p p  , f n  ) ,

126  & /

127 }
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B 2 Java code

B 2 1 CA java
i package  p k i ,
2
3im port pki *,
4

B i m p o r t  j a v a  s e c u r i t y  c e r t  * ,  

e i m p o r t  j a v a  s e c u r i t y  * ,

7 i mpor t  j a v a x  c r yp t o  spec *, 
s i m p o r t  j a v a x  c r yp t o  *, 
e i mp o r t  j a v a  1 0  *,

l o i mpor t  l a i k  pkcs pkcslO C e r t i f i c a t e R e q u e s t  
n i m p o r t  l a i k  asnl  s t r u c t u r e s  *, 
i2 i mpor t  l a i k  asnl  *,
13

i 4 i mpor t  j a v a  u t i l  *,
15 i m p o r t  j a v a  m a t h  * ,

16 

17

i s pub l i c  c l a s s  CA impl ement s  S e r i a l i z a b l e
19 {

20 p r i v a t e  KeyPai r  m.keys ,
21 p r i v a t e  X 5 0 9 C e r t i f i c a t e  m. ce r t  ,
22 p r i v a t e  S t r i ng  m_f i l ename ,
23

24 pub l i c  CA( St r i ng  f i l ename  , S t r i ng  pp)
25 {

26

27

28 )

29

30 pub l i c  Publ i cKey g e t P u b l i c ( )
31 {

32 r e t u r n  m.keys g e t P u b l i c ( ) ,
33 }

34

36 pub l i c  X 5 0 9 C e r t i f i c a t e  g e t C e r t ( )
36 {

37 r e t u r n  m. ce r t  ,
38 }

39

40 pub l i c  void l o a d l n f o  ( S t r i ng  pp)
41 (
42  t r y

43 {

44 F i l e l n p u t S t r e a m  f i s  =
45 new F i l e l n p u t S t r e a m  ( m. f i l ename + ” i n f o ” ),
46

47 i n t  b = f i s  read () ,

m - f i l e n a m e  — f i l e n a m e  

l o a d l n f o ( p p ) ,
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48

49

50
51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
67

68
69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86
87

88
89

90

91

92

93

94

95

96

B7

Byt eAr r ayOut pu t St r eam baos =  new Byt eAr r a yOut pu t St r e am ( ) ,

whi le ( b ' =  - 1 )

{
baos wr i t e  ( b ) , 
b — f i s r ead ( ) ,

}
//DECRYPT
byte  [] i v . b y t e s  =  " t h i s  is the i v ” g e t B y t e s ( ) ,
Secre t KeySpec  sks = new Secre t KeySpec  (pp g e t B y t e s ( ) ,  0,  8,  ” DES” ),
I v P a r a me t e r S p e c  ap = new I v Pa r a me t e r Spe c  ( i v_by t es  , 0,  8 ),

Ci pher  c =  Ci pher  g e t l n s t a n c e  (” DES/CBC/PKCS5Padding” ),
SecureRandom sr  = new SecureRandom(” Thi s  is a very bad s e e d ” g e t B y t e s ( ) ) ,  
c i n i t  ( Ci phe r  DECRYPTJVIODE, s k s ,  ap , s r ) ,

byt e  [] f i n a l - b y t e s  =  c d o F i n a l ( b a o s  t oByt eAr r a y  ( ) ) ,

By t e Ar r a y l npu t S t r e a m bai s  =  new By t e Ar r a y l npu t S t r e a m ( fi n a l _ b y  t e s  ),  
O b j e c t l n p u t S t r e a m oi s  =  new O b j e c t l n p u t S t r e a m ( ba i s  ),

m.keys =  ( K e y P a i r ) o i s  r e a d Ob j e c t  ( ) ,  
m- cer t  =  ( X 5 0 9 C e r t i f i c a t e )  ois r e a d Ob j e c t  ( ) ,

}
ca t ch  ( Except i on e)

{
e p r i n t S t a c k T r a c e  ( ) ,

}
}

pub l i c  s t a t i c  void gene r a t e AndSt o r e  ( S t r i ng  pa s s p h r a s e  , S t r i ng  f i l e na me )

{
t r y

{
St r i ng  seed =  new S t r i n g ( ) ,
seed + =  System c u r r e n t T i m e M i l h s  ( ) ,

SecureRandom s ec . r andom =  new SecureRandom( seed g e t B y t e s ( ) ) ,

Ke y P a i r Ge n e r a t o r  key. gen = Ke y P a i r Ge n e r a t o r  g e t l n s t a n c e  (”RSA” ), 
key. gen i n i t i a l i z e  ( 512,  s e c . r a n d o m) ,
KeyPai r  k e y . p a i r  =  key. gen g e n e r a t e K e y P a i r  () ,

Name n =  new Name ( ) ,  
n addRDN( Objec t ID c o u n t r y ,  ” I E ” ), 
n addRDN( Object ID l o c a l i t y ,  "DUBLIN” ), 
n addRDN ( Object ID o r g a n i z a t i o n  , ” DCU” ), 
n addRDN ( Object ID o r g a n  i za t i  on al U n 1 1 , ” PG” ),
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98

99

100

101

102
103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

126
129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

n addEDN( Objec t ID commonName , ” CA” ),

l a ik x509 X 5 0 9 C e r t i f i c a t e  ce r t  = new l a i k  x509 X 5 0 9 C e r t i f i c a t e  ( ) ,  
ce r t  s e t l s s u e r D N ( n ) ,  
ce r t  s e t S u b j e c t DN( n ) ,
ce r t  s e t P u b h c K e y ( k e y _ p a i r  g e t P u b l i c ( ) ) ,
ce r t  se t Ser i a l  Nu mbe r  ( new B i g l n t e g e r ( ” 000000000001” )),
Gr e g o r i a n C a l e n d a r  da t e  = ( G r e g o r i a n Ca l e n d a r )  Ca l enda r  g e t l n s t a n c e  ( ) ,

da t e  a d d ( Ca l e n d a r  MONTH, - 1 ) ,
c e r t  s e t V a l i d N o t B e f o r e ( d a t e  getTime ( ) ) ,
da t e  add ( Ca l enda r  MOMH, 5) ,
ce r t  s e t V a h d N o t A f t e r ( d a t e  getTime ( ) ) ,
c e r t  s ign ( A l g o n t h ml D shal  Wi t hRSAEncr ypt i on , k e y . p a i r  g e t P n v a t e  ( ) ) ,

Byt eAr r ayOut put St r eam baos = new Byt eAr r ayOut pu t St r eam ( ) ,  
Ob j e c t Ou t pu t S t r e a m oos =  new O b j e c t O u t p u t S t r e a m( baos ),

oos w n t e O b j e c t (  k e y - p a i r  ), 
oos w r i t e O b j e c t ( c e r t  ) ,
System out  p n n t l n ( c e r t  g e t C l a s s ( )  getName ( ) ) ,  
oos c l ose  () ,

byt e  [] i v_by t e s  = ’’ t h i s  is the i v ” g e t B y t e s ( ) ,
Secre tKeySpec sks =  new Secre tKeySpec ( pa s s ph r a s e  g e t B y t e s ( ) ,  0,  8,  ” DES” ), 
I vPa r a me t e r Spe c  ap = new I vPa r a me t e r Spe c  ( i v_by t es  , 0,  8 ),

Ci pher  c =  Ci pher  g e t l n s t a n c e  (” DES/CBC/PKCS5Padding” ),
SecureRandom sr  =  new SecureRandom(” This  is a very bad s e e d ” g e t B y t e s ( ) ) ,  
c i m t  ( Ci phe r  ENCRYPT-MODE, s k s ,  ap , s r ) ,

byt e  [] f i n a l . b y t e s  — c d o F m a l ( b a o s  t oByt eAr r a y  ( ) ) ,

F i l e Ou t p u t S t r e a m fos =  new F i l e Ou t p u t S t r e a m ( f i l e name  +  ” i n f o ” ),  
fos wr i t e  ( f i n a l _ b y t e s  ), 
fos c l ose  () ,

fos = new F i l e Ou t p u t S t r e a m ( fi l e name  + ” c r t ” ), 
fos w r i t e ( c e r t  t oByt eAr r ay  ( ) )  , 
fos c l ose  () ,

F i l e  f =  new F i le ( f i l e name  + ” c r l ” ), 
f c r e a t e Ne wFi l e  ( ) ,

}
ca t ch  ( Except i on  e )
{

}
e p r m t S t a c k T r a c e  ( ) ,

}
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148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

pub l i c  s t a t i c  void p r i n t CAI nf o  ( S t r i ng  pa s s p h r a s e  , S t r i n g  f i l e n a me )
{

t r y

{
F i l e l n p u t S t r e a m  f i s  = new F i l e l n p u t S t r e a m  ( f i l e name  +  ” i n f o ” ), 

i n t b =  f i s read () ,

By t eAr r ayOut pu t St r eam baos = new Byt eAr r ayOut pu t St r eam ( ) ,

whi le ( b 1 =  — 1)
{

baos wr i t e  ( b ), 
b= f i s r ead ( ) ,

}
//DECRYPT
byte  [] i v - b y t e s  = ” t h i s  is the i v ” g e t B y t e s ( ) ,
Secre t KeySpec  sks =  new Secre tKeySpec ( pa s s ph r a s e  g e t B y t e s ( ) ,  0,  8,  ” DES” ), 
I vPa r a me t e r Spe c  ap — new I v Pa r a me t e r Spe c  ( i v - b y t e s  , 0,  8 ) ,

Ci pher  c = Ci pher  g e t l n s t a n c e  (”DES/CBC/PKCS5Paddmg” ),
SecureRandom sr  =  new SecureRandom(” This  is a very bad s e e d ” g e t B y t e s ( ) ) ,  
c m i t  ( Ci phe r  DECRYPT_MODE, s ks ,  ap , sr  ),

byt e  [] f i n a l - b y t e s  =  c d o F i n a l ( b a o s  t oByte  Array ( ) ) ,

Byte Ar r a y l npu t S t r e a m bai s  — new Byte Ar r a y l n p u t S t r e a m ( fi n a l - b y t e s  ), 
O b j e c t l n p u t S t r e a m oi s  =  new O b j e c t l n p u t S t r e a m ( ba i s  ),

KeyPai r  kp =  ( K e y P a i r ) o i s  r e a d Ob j e c t  () ,
Obj ec t  ce r t  = ois r e a d O b j e c t ( ) ,
System out  p r i n t l n ( c e r t  g e t C l a s s ( )  ge t Na me ( ) ) ,

System out  p n n t l n ( ”---------------------------------------- ”),
System out  p n n t l n ( c e r t  ),
System out  pr l  n11 n(”---------------------------------------- ”),

}
ca t ch  ( Exc ep t i on  e)
{

e p n n t S t a c k T r a c e  ( ) ,
}

pub l i c  C e r t l s s u e r  c r e a t e l s s u e r ( )

{
r e t u r n  new Cer  t l s s u  e r ( m.keys , m . c e r t ) ,

}

pub l i c  s t a t i c  void ma i n ( S t r i n g  drgs [] )
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198 {

199 CA gener a t e  AndSt or e  ( args  [ 0 ], a r g s [ l ] ) ,
200 CA p n n t C  Alnfo ( args  [ 0 ] , a r g s [ l ] ) ,
201 }
202 }
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I

B 2 2 C ertlssuer java

2 pa ckage  p k i ,
3

4 i m p o r t  pki  *,
5

6 i m p o r t  j a v a  s e c u r i t y  *,
7 i m p o r t  j a v a x  c r y p t o  spec  *,
« i m p o r t  j a v a x  c r y p t o  * , 
s i m p o r t  j a v a  10 *,

l o i m p o r t  l a i k  pkcs  pkcs l O C e r t i  fi c a t e  R e q u e s t  ,
n  i m p o r t  l a i k  a s n l  s t r u c t u r e s  *,
12 i m p o r t  l a i  k a s n l  * ,
i 3 i m p o r t  j a v a  s e c u r i t y  c e r t  *,
14

i 5 i m p o r t  j a v a  u t i l  *,
is i m p o r t  j a v a  mat h  *,
17

i s p u b l i c  c l a s s  C e r t l s s u e r  i mp l e me n t s  S e r i a l i z a b l e
19 {

20 p r i v a t e  Ke y P a i r  m . k e y s ,
21 p r i v a t e  X 5 0 9 C e r t i f i c a t e  m_cer t  ,
22
23 p u b l i c  C e r t l s s u e r  ( Ke y Pa i r  k e y s ,  X 509 Ce r t  i fi c a t e  c e r t )
24

25 m_keys — keys
26 m . c e r t  =  c e r t

i
27

28

29

30

31

32

33

34

35

i

p u b l i c  P u b l i c Ke y  g e t P u b h c ( )  

r e t u r n  m_keys g e t P u b l i c ( ) ,

p u b l i c  X 5 0 9 C e r t i f i c a t e  g e t C e r t  () 

r e t u r n  m . c e r t  ,

p u b l i c  b y t e  [] p r o c e s s  C e r t i  fi c a t e R e q u e s t  ( by te [ ] r e q u e s t )
38

39

40

41 t r y

42 {
43 C e r t i f i c a t e R e q u e s t  c e r t . r e q u e s t  = new Ce r t  l fi c a t e R e q u e s t  ( r e q u e s t  ),
44

45 Name s u b j e c t  =  c e r t . r e q u e s t  g e t S u b j e c t  ( ) ,
46 P u b l i c Ke y  pk =  c e r t . r e q u e s t  g e t P u b l i c K e y  ( ) ,
47

48 S t r i n g  1 =  new S t r i n g  ( ) ,
40 1 - f =  Sys t em c u r r e n t T i m o M i l l i s  ()  ,
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50 j

si SecureRandom sr  = new SecureRandom( 1 g e t B y t e s ( ) ) ,
52 S t r i ng  s e r i a l  = new S t r i ng  ( ) ,
53 s e r i a l  + =  sr  ne x t Lo n g ( ) ,
54

55 i a i k  x509 X 5 0 9 C e r t i f i c a t e  t . c e r t
56 = new lai  k x509 X 5 0 9 C e r t i f i c a t e (  m- cer t  get  Encoded ( ) ) ,
5 7  i a i k  asnl  s t r u c t u r e s  Name i s s u e r
58 = ( i a i k  asnl  s t r u c t u r e s  Name ) t _ce r t  ge t Subj ec t DN ( ) ,
59

eo i a i k  x509 X 5 0 9 C e r t i f i c a t e  ce r t  = new i a i k  x509 X 5 0 9 C e r t i f i c a t e  ( ) ,
61 c e r t  s e t l s s u e r D N  ( i s s u e r  ) ,
62 c e r t  s e t S u b j e c t D N ( s u b j e c t  ),
es c e r t  s e t P u b l i c K e y ( p k ) ,
64 ce r t  s e t S e r i a l N u m b e r ( new B i g l n t e g e r ( s e r i a l ) ) ,
65 Gr e g o r i a n C a l e n d a r  dat e  =  ( G r e g o n a n C a l e n d a r )  Ca l enda r  g e t l n s t a n c e  () ,
ee da t e  add ( Ca l e n d a r  MONTH, - 1 ) ,
67 ce r t  set  Va l i d No t Be f o r e (  da t e  g e t T i m e ( ) ) ,
68 da t e  add ( Ca l e n d a r  MONIH, 5 ) ,
69 ce r t  s e t V a l i d N o t  Af t e r  ( d a t e  g e t T i m e ( ) ) t
70 c e r t  s ign ( Algor i t hmID sha l  Wi t hRSAEncr ypt i on , m.keys g e t P r i  va t e  ( ) ) ,
71

72 r e t u r n  ce r t  t oByt eAr r ay  ( ) ,
73 }

74 ca t ch  ( Except i on  e)
75 { I

76 e p r i n t S t a c k T r a c e  ( ) ,

}
78 r e t u r n  nul l  ,
79 }

80 }
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B 2 3 Client java
i p a c k a g e  p k i ,

2
3 i m p o r t  p k i  * ,

4

s i m p o r t  j a v a  s e c u r i t y  *,  
e i m p o r t  j a v a x  c r y p t o  spec  *,
7 i m p o r t  j a v a x  c r y p t o  *,  

s i m p o r t  j a v a  1 0  * ,

9 i m p o r t  i a i k  p k c s  p k c s l O  C e r t i f i c a t e R e q u e s t  ,

l o i m p o r t  l a i k  a s n l  s t r u c t u r e s  * ,

u i m p o r t  l a i k  a s n l  * ,

i 2 i m p o r t  j a v a  s e c u r i t y  c e r t  * ,

13

i 4 p u b l i c  c l a s s  C l i e n t  i mp l e me n t s  S e r i a l i z a b l e
15 {

16 p r i v a t e  Ke y Pa i r  m. keys  =  n u l l ,
17 p r i v a t e  X 5 0 9 C e r t i f i c a t e  m . c e r t  =  n u l l ,
is p r i v a t e  X 5 0 9 C e r t i f i c a t e  c a . c e r t  =  n u l l  ,
19

20 p u b l i c  C l i e n t  ()
21 {
22 / / C a s e  1

23 }

24

25 p u b l i c  C l i e n t  ( S t r i n g  p a s s p h r a s e  , S t r i n g  f i l e n a m e ,  S t r i n g  c a f i l e n a m e )
26 {

27 t r y
28 {

29 F i l e l n p u t S t r e a m  f i s  = new F i l e I n p u t S t r e a m ( f i l e n a m e  +  ” c r t ” ),
30 Byt eAr r ayOut put St r eam bt  =  new Byt eAr r ayOut pu t St r eam ( ) ,
31

32 i n t  b =  fi s read () ,
33

34 whi l e ( b ' =  — 1)
35 {

36 bt  wr i t e  ( b ),
37 b =  f l s read ( ) ,

38 }

30

40 f i s  c l o s e  ( ) ,

41 bt  c l ose  ( ) ,
42

43 byte  [] c e r t . b y t e s  = bt  t oByt eAr r ay  ( ) ,
44 f i s  = new F i l e l n p u t S t r e a m  ( ca f i l e na me  + ” c r t ” ),
45 bt  =  new Byt eAr r ayOut pu t St r eam () ,
46

47 b =  f i s read ( ) ,
48

48 whi le ( b ' =  - 1 )
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99

)

{
bt  wr i t e  (b ), 
b =  f i s  read ( ) ,

}

f i s  c l ose  ( ) ,  
bt  c l ose  ( ) ,

byt e  [] c a c e r t - b y t e s  = bt  to Byte Ar r ay () ,
f i s  = new F i l e l n p u t S t r e a m  ( f i l ename  +  ” k e y ” ),
bt  = new Byt eAr r ayOut put St r eam () ,

b =  f i s  read () ,

whi le ( b f=  — 1)
{

bt  wr i t e  (b ), 
b = f i s  r ead ( ) ,

}

byte [ ] i v . b y t e s  =  ” t h i s  is the i v ” g e t B y t e s ( ) ,
Secre tKeySpec sks = new Secre tKeySpec ( pa s s p h r a s e  g e t B y t e s ( ) ,  0,  8,  ” DES” ), 
I vPa r a me t e r Spe c  ap = new I vPa r a me t e r Spe c  ( i v_by t es  , 0,  8 ),

Ci pher  c =  Ci pher  g e t l n s t  ance  (” DES/CBC/PKCS5Padding” ),
SecureRandom sr  = new SecureRandom(” This  is a very bad s e e d ” g e t B y t e s ( ) ) ,  
c i n i t  ( Ci phe r  DECRYPT-MODE, s k s ,  ap , s r ) ,

byt e  [] f i n a l _ b y t e s  =  c d o F i n a l f b t  t oByt eAr r ay  ( ) ) ,

By t e Ar r a y l npu t S t r e a m bai s  =  new By t e Ar r a y l npu t S t r e a m ( f i n a l - b y  t e s  ), 
O b j e c t l n p u t S t r e a m ois =  new O b j e c t l n p u t S t r e a m ( ba i s  ),

KeyPai r  kp =  ( K e y P a i r ) o i s  r e a d Ob j e c t  () ,
C e r t i f i c a t e F a c t o r y  cf  =  C e r t i f i c a t e F a c t o r y  ge t l  ns t  ance  ( ” X509 ” ), 
By t e Ar r a y l npu t S t r e a m cba i s  = new Byt e Ar r a y l npu t S t r e a m ( c e r t _ b y  t es  ),
X509 Cer  ti fi c a t e  ce r t  — ( X5 0 9 Ce r  ti  f i c a t e ) cf  ge ne  r a t e  C e r t  1 f i c a t e  ( cba i s  ),

c ba i s  = new By t e Ar r a y l npu t S t r e a m ( c a c e r t - b y t e s  ),
X 5 0 9 C e r t i f i c a t e  c a c e r t  — ( X 5 0 9 C e r t i f i c a t e ) cf  g e n e r a t e C e r t  1 f i c a t e  ( cba i s  ),

c e r t  v e r i f y  ( c a c e r t  g e t P u b h c Ke y  ( ) )  , 
m- cer t  =  ce r t  , 
m-keys =  k p , 
c a . c e r t  =  c a c e r t ,

}
ca t ch  ( Except i on  e )

{
e p n n t S t a c k T r a c e  ( ) ,
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144

145

146
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148

149

}
}

pub l i c  Cl i e n t  ( by t e  [] c e r t B y t e s  , byt e  [ ] ke y p a i r  , S t r i n g  p a s s p h r a s e )
{

t r y

{
byte  [] i v_by t e s  =  ’’ t h i s  is the i v ” g e t B y t e s ( ) ,
Secr e t KeySpec  sks = new Secre t KeySpec  ( pa s s p h r a s e  g e t B y t e s ( ) ,  0,  8,  ” DES” ), 
I v P a r a me t e r S p e c  ap = new I vPa r a r ae t e r Spec  ( i v_by t es  , 0,  8 ),

Ci pher  c = Ci pher  get  I n s t a n c e  (” DES/CBC/PKCS5Padding ” ),
SecureRandom sr  =  new SecureRandom(” This  is a very bad s e e d ” g e t B y t e s ( ) ) ,  
c i m t ( C i p h e r  DECRYPT-MODE, s k s ,  ap , s r ) ,

byt e  [] f m a l . b y t e s  =  c doFi na l  ( k e y p a i r  ),

By t e Ar r a y l npu t S t r e a m bai s  = new By t e Ar r a y l npu t S t r e a m ( f i n a l . b y t e s  ), 
O b j e c t l n p u t S t r e a m oi s  =  new O b j e c t l n p u t S t r e a m ( bai s  ),

KeyPai r  kp =  ( K e y P a i r ) o i s  r e a d Ob j e c t  ( ) ,
C e r t i f i c a t e F a c t o r y  cf  =  C e r t i f i c a t e F a c t o r y  g e t l n s t a n c e  (” X509 ” ), 
By t e Ar r a y l npu t S t r e a m c ba i s  = new By t e Ar r a y l npu t S t r e a m ( c e r t B y t e s  ),  
X 5 0 9 C e r t i f i c a t e  ce r t  = ( X 5 0 9 Ce r t i  f i c a t e ) cf  g e n e r a t e C e r t i f i c a t e  ( cba i s  ),

m. ce r t  = ce r t  , 
m.keys = k p ,

}
ca t ch  ( Except i on  e)

{
e p r i n t S t a c k T r a c e  ( ) ,

}
}

pub l i c  KeyPai r  g e n e r a t e Ke y P a i r  ( i n t  l en)

{
t r y
{

S t r i n g  seed =  new S t r i n g ( ) ,
seed + =  System c u r r e n t T i m e M i l l i s  ( ) ,
SecureRandom se c . r a ndom =  new SecureRandom( seed g e t B y t e s Q ) ,

Ke y P a i r Ge n e r a t o r  key. gen = Ke y P a i r Ge n e r a t o r  g e t l n s t a n c e  (” RSA” ), 
key-gen i n i t i a l i z e  ( l en  , s e c . r a ndom ), 
m.keys =  key-gen g e n e r a t e Ke y P a i r  ( ) ,

}
ca t ch  ( Except i on  e )

{
e p r i n t S t a c k T r a c e  ()
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r e t u r n  m- k e y s ,
}

pub l i c  byt e  [] g e n e r a t e C e r t i f i c a t e R e q u e s t  ( by t e  [] name)

{
t r y

{
i f (m_keys  — — n u l l )

{
g e n e r a t e K e y P a i r ( 5 1 2 ) ,

}
Name n = new Name (name) ,
C e r t i f i c a t e R e q u e s t  c =  new Ce r t i  f i c a t e R e q u e s t  ( m.keys g e t P u b l i c  ( ) ,  n ), 
c s ign ( Al g o n t h mI D sha l Wi t hRSAEncr ypt i on  , m.keys g e t P r i v a t e  ( ) )  ,

by t e [ ]  by t e s  =  c t oByt eAr r ay  ( ) ,

r e t u r n  b y t e s ,

}
ca t ch ( Except i on e)

{
e p n n t S t a c k T r a c e  ( ) ,  
r e t u r n  nul l  ,

}
}

pub l i c  void s e t C e  r t i f i c a t e  ( byt e  [] c ,  byt e  [] ca)

{
t r y

{
C e r t i f i c a t e F a c t o r y  cf = Cer  ti fi c a t e F  ac t  o r y  g e t l n s t a n c e  (” X509 ” ),
By t e Ar r a y l npu t S t r e a m bai s  =  new By t e Ar r a y l n p u t S t r e a m ( c ),
X5 0 9 Ce r  ti  f i ca t e  ce r t  = ( X 5 0 9 C e r t i f i c a t e )  cf ge n e r a t  e C e r t  i f i c  a t e  ( bai s  ),

ba i s  =  new Byte Ar r a y l npu t S t r e a m ( ca ),
X 5 0 9 C e r t i f i c a t e  c a c e r t  = ( X 5 0 9 C e r t i f i c a t e )  cf g e n e r a t e C e r t i f i c a t e  ( bai s  ), 

s e t C e r t i f i c a t e ( c e r t  , c a c e r t  ),

}
ca t ch  ( Except i on  e )
{

e p r i n t S t a c k T r a c e  ( ) ,
}

}

pub l i c  void s e t C e r t i f i c a t  e ( X5 0 9 Cer  11 f i c a t e  c ,  X50 9 Cer  ti  f i c a t e  ca ) t h r ows  Except ion 

{
c v e r i f y ( c a  g e t P u b h c Ke y  ( ) )  , * ^

}
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i f (  c ge t Pub l i cKey  ( ) equa l s  ( m.keys g e t P  ubl i c  ( ) ) )

{
m- cer t  =  c ,

}
el se

{
t hrow new Except i on (” In va l i d  c e r t ” ),

}
}

\
pub l i c  void s t o r e ( S t r i n g  pas s ph r a s e  , S t r i ng  p r e f i x )

{
t r y

{

i f ( m.keys 1 = nul l  )

{
Byt eAr r ayOut put St r eam baos =  new Byt eAr r ayOut pu t St r eam ( ),
Ob j e c t Ou t pu t S t r e a m oos =  new Ob j e c t Ou t pu t S t r e a m ( baos ),

oos w r i t e O b j e c t (  m.keys ), 
oos c l ose  ( ),

Secre t KeySpec  new-sks  =  new Secre t KeySpec  ( pa s s p h r a s e  g e t B y t e s ( ) ,  0,  8,  ” DES” ), 
SecureRandom sr  =  new SecureRandom(” t h i s  is a very bad s e e d ” g e t B y t e s ( ) ) ,  
byt e  [] l v . b y t e s  =  ’’ t h i s  is t he  i v ” g e t B y t e s ( ) ,

I vPa r a me t e r Spe c  ap — new I vPa r a me t e r Spe c  ( î v - b y  t es  , 0 ,8 ),
Ci pher  c =  Ci pher  g e t l n s t  ance  (” DES/CBC/PKCS5Padding” ), 
c l n 1 1 ( Ci pher  ENCRYPT.MODE, new. sks  , a p , sr  ),  
byt e  [] by t e s  = c d o F i n a l f b a o s  t oByte  Array ( ) )  ,

F i l e Ou t p u t S t r e a m fos =  new F i l e Ou t p u t S t r e a m ( new S t r i n g  ( p r e f i x  4- ” k e y ” ) ) ,  
fos wr i t e  ( byt es  ), 

fos c l ose  ( ) ,
}

l f ( m. ce r t  1 =  n u l l )
{

F i l e Ou t p u t S t r e a m fos =  new F i l e O u t p u t S t r e a m ( new S t r i n g  ( p r e f i x  +  ” c r t ” ) ) ,  
fos wr i t e ( m_ c e r t  get Encoded ( ) ) , 
fos c l ose  ( ),

}
}
ca t ch  ( Except i on  e )

{
e p r i n t S t a c k T r a c e  ( ) ,

}
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}

pub l i c  X5 0 9 C e r t i f i c a t e  g e t C e r t ( )

{
r e t u r n  m. ce r t  ,

}

pub l i c  KeyPai r  getKeys  ()

{
r e t u r n  m.keys ,

}

pub l i c  s t a t i c  b y t e [ ]  load C A Cert  ( S t r i n g  f i l e n a me )

{
t r y
{

F i l e l n p u t S t r e a m  fis =  new Fi l e l n p u t S t r e a m  ( fi l e n a me  + ” c r t ” ), 
By t eAr r ayOut pu t St r eam bt  = new Byt eAr r ayOut pu t St r eam ( ) ,

in t b — fls read ( ) ,

whi le ( b 1 = - 1 )  ^

{
bt  w r i t e ( b ) ,  
b =  f i s read ( ) ,

}

f i s  c l ose  ( ) ,  
bt  c l ose  ( ) ,

byt e  [] c e r t . b y t e s  =  bt  t oByt eAr r ay  ( ) ,  

r e t u r n  c e r t - b y t e s  ,

}
ca t c h  ( Except i on e)

{
e p n n t S t a c k T r a c e  ( ) ,  
r e t u r n  nul l  ,

}
}

pub l i c  s t a t i c  S t r i n g  getCAFi leName ()
{

t r y

{
LineNumberReader  l nr  =

new LineNumberReader (new I npu t S t r e amRea de r  ( System i n ) ) ,
System out  p r i n t l n  (” Ent e r  t he l o c a t i o n  of  t he CA c e r t i f i c a t e  ” ),  
S t r i ng  c a c e r t f i l e n a m e  =  lnr  r e a d L i n e ( ) ,

124



300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328
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344

345
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348

34£>

r e t u r n  c a c e r  tfi  1 en ame  ,

ca t ch  ( Except i on  e )

{
e p r i n t S t a c k T r a c e  ( ) ,  
r e t u r n  nul l  ,

}
}

pub l i c  s t a t i c  byte [] gefcName()

{
t r y

{
LineNumberReader  Inr  =

new Li neNumberReader (new I npu t S t r e amRea de r  ( System i n ) ) ,

System out  p r i n t l n  ( ” Enter  coun t r y  code e g I E ” ),
S t r i ng  cc =  l nr  r e a d L i n e ( ) ,
System out  p r i n t l n  (” Ent e r  l o c a l i t y  e g D u b l i n ” ),
S t r i n g  loc =  l nr  r e a d L i n e ( ) ,
System out  p r i n t l n  (” Ent e r  o r g a n i z a t i o n  e g DCU” ),
S t r i ng  org = l nr  r e a d L i n e ( ) ,
System out  p r i n t l n  ( ” Ent e r  o r g a n i z a t i o n a l  un i t  e g POSTGRAD” ), 
S t r i ng  un i t  = lnr  r e a d L i n e ( ) ,
System out  p ri n 11 n ( ” Ent e r  common name e g John Doe” ),
S t r i n g  cn =  l nr  r e a d L i n e ( ) ,

Name name =  new Name ( ) ,
name addRDN( Object  ID c o u n t r y ,  cc ),
name addRDN ( Object  ID l o c a l i t y ,  l o c ) ,
name addRDN ( Object  ID o r g a n i z a t i o n  , o r g ) ,
name addRDN( Object ID o r g a m  z at  ion al Un 1 1 , u n i t ) ,
name addRDN( Object ID commonName , cn ),

r e t u r n  name get Encoded ( ) ,

}
ca t c h  ( Except i on e )
{

e p r i n t S t a c k T r a c e  ( ) ,
}
r e t u r n  nul l  ,

}

pub l i c  s t a t i c  S t r i ng  get  Pas s  P h r a s e  ()
{

t r y
{

LineNumberReader  l nr  =
new LineNumberReader (new I npu t S t r e amRea de r  ( System i n ) ) ,

}
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/

3 5 0 System out  p r i n t l n  ( ” Enter  your  pa s s p h r a s e  ” ),
35 1 S t r i n g  pp =  Inr  r e a d L i n e ( ) ,
35 2

353 r e t u r n  p p ,
35 4  }

35 5  ca t ch  ( Except i on  e)
356 {

3 5 7  r e t u r n  nul l  ,
358 }

3 5 9  }

360

361 pub l i c  s t a t i c  S t r i n g  g e t F i l e n a me ( )
36 2  {

363 t r y
36 4  {

365 LineNumberReader  l nr  =
366 new Li neNumberReader (new I npu t S t r e amRea de r  ( System i n ) ) ,
367

368

369 System out  p r i n tl  n (” Ent e r  the p r e f i x  for  a l l  c l i e n t  f i l e s  ” ),
370 S t r i ng  pp = lnr  r e a d L i n e ( ) ,
371

37 2  r e t u r n  p p ,
37 3  }

3 7 4  ca t ch  ( Except i on  e)
3 7 5  {

376 r e t u r n  nul l  ,
377 }

3 7 8  }

37 9  }
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Appendix C

Example 2 code

C .l w  code

C.2 w  code

2 p k i  * ,

3 j ava  s e c u r i t y  ce r t  *,
4 j a v a  s e c u  r i t y  * ,  

s j a v a x  c r y p t o  s p e c  * ,

6 j a v a x  c r y p t o  * ,

•o
8
9System Sys 

10 {
11  Channel  a , b , c ,w
12
13 ( Cer t Aut h ( a , b , c ) | 1 C l i e n t C r e a t e C e r t ( a )
14 | S e r v i c e P r o v i d e r ( b , w )  | 1 C l i e n t S e r v i c e R e q u e s t  ( c , w ) )
15}
16
17 Proces s  Cer t Aut h  ( c e r t  , s p Ce r t  , sp Cer t  Out )
18 {
19 < g e t I n f o  >( ) (  f i l ename  , pa s s ph r a s e  )
20 <c r e a t e CA>( f i l e n a me  , pa s s ph r a s e  ) ( ca )
21 < g e t l s s u e r > ( c a ) (  i )
22
23 ( '  I s s u e r ( c e r t  , i )|  S e r v i c e P r o v i d e r l s s u e r  ( s pCer t  , 1 , s p C e r t O u t ))
24}
25 ^
2e P r o c e s s  I s s u e r ( i n ,  i s s u e r )
27  {

28 i n ( c ha nne l  )
29

127



30 channe l  ( c e r t Re q u e s t  )
31

32 < i s s u e C e r t > ( j s s u e r ,  cer t  Re ques t  )( c e r t )
33

34 c h a n n e l Cc e r t  >
35  0

36  }

37

3sProcess  Servi  c e P r o v i d e r  I s sue  r ( in , i s s u e r , o u t )
3 9  {

40 in ( channe l  )
41

42 channe l  ( c e r t Re q u e s t  )
43

44  < i s s u e C e r t > ( i s s u e r  , c e r t Re q u e s t  )( ce r t  )
45

46 c h a n n e l Cc e r t  >
4 7  ( 1 D i s t n b u t e C e r t  ( out  , c e r t  ))
4 8 }

49

50 Process  D i s t n b u t e C e r t  ( ou t  , c e r t  )
51 {

52 o u t < c e r t >

53  0  

5 4 }

55

56Process  S e r v i c e P r o v i d e r  (chan ¡work)
57  {

58 Cl oadCACer t >( ) (  c a c e r t  )
59

60 < c r e a t e C e r t i f i c a t e A n d R e q u e s t S P > ( c a c e r t ) ( s p , r e q )

61

62 Channel  tmp
63 chan<tmp>
64

65 tmp<req>
66
67 tmp(  ce r t  )
68
69 < s e t C e r t i f i c a t e > ( c e r t  , sp , c a c e r t  ) ( newSP )
70 ( 1 S e r v l c e r ( work , newSP ))

72

73Process Ser vi cer ( work , s e 1 f )
74  {

75 work ( cha nne l  )
76 channe l  ( c l i e n t C e r t )
77 channe l  ( p a d  )
78

79 < p r o c e s s C l i e n t R e q u e s t > ( c l i e n t C e r t  , p a d  , s e  I f  ) ( r a n d  A )
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s i  < c r e a t e S e r v i c e R e s p o n s e > ( c l i e n t C e r t  , s e l f ,  r a n d  A )  (  p a c 2  , r a n d B  )

82

83  c h a n n e l < p a c 2  >

84

85  c h a n n e l  (  r e s  )

86
s r  < p r o c e s s C l i e n t R e s p o n s e > ( c l i e n t C e r t ,  s e l f ,  r e s ,  r a n d B  )  (  e n c K e y  , k e y  )  

88
89  c h a n n e l < e n c K e y  >

90

9 1  C h a n n e l  s e r v i c e 1 , s e r v i c e 2

9 2

93  c h a n n e l < s e r v i c e  1 >

94  c h a n n e l < s e r v i c e 2  >

9 5

9 6  + ( s e r v i c e l ( a ) ( S e r v i c e l ( a ) ) ) + ( s e r v i c e 2 ( b ) ( S e r v i c e 2 ( b ) ) )

9 7 }

98

99 P r o c e s s  S e r v i c e l ( i n )

1 0 0  {

1 0 1  C c r e a t e R e s p o n s e l  > ( ) (  r e s  )

1 0 2  i n < r e s >

103  0

104 }

105

l o e P r o c e s s  S e r v i c e 2 ( i n )

1 0 7  {

1 0 8  C c r e a t e R e s p o n s e l  > ( ) (  r e s  )

1 0 9  i n < r e s >

1 1 0  0  

1 1 1 }

1 1 2

1 1 3  P r o c e s s  C l i e n t C r e a t e C e r t ( c h a n )

114 {

1 1 5  < l o a d C A C e r t > ( ) (  c a c e r t  )

1 16

1 1 7  C c r e a t e C e r t i f i c a t e A n d R e q u e s t  > ( ) (  c l i e n t  , r e q )

118

1 1 9  C h a n n e l  t m p

1 2 0  c h a n < t m p >

1 2 1

1 2 2  t m p < r e q >

123

1 2 4  t m p (  c e r t )

125

1 2 6  < s e t C e r t i f i c a t e > ( c e r t  , c l i e n t  , c a c e r t ) (  n e w  C l i e n t )

1 2 7  < s t o r e C l i e n t > ( n e w C l i e n t  ) ( )

12 8

129 0

80
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130  }

131

i32process  C l i  e n t S e r  vi c e Re q u e s t  ( ce r  t , work)
133 {

1 34 C l o a d C A C e r t  > ( ) (  c a c e r t  )

1 3 5  C l o a d S e l f > ( c a c e r t ) (  s e I f  )

13 6

1 3 7  cert ( spCert )
138

1 39 < v e n f y C e r t I s s u e r > ( c a c e r t  , s p C e r t  ) ( )

140

1 4 1  / / ------------------------------------------S t a r t  P r o t o c o l

142 C c r e a t e C h e n t R e q u e s t  > ( s p C e r t  , s e  1 f  ) ( p a c k e t l  , r a n d A )

143

144 C h a n n e l  c h a n

145

146 work<chan>
147

148 < g e t O w n C e r t > (  s e  1 f  ) ( o w n C e r t  )

149 c h a n < o w n C e r t  >

i s o  c h a n < p a c k e t l  >

151

1 5 2  c h a n  ( p a c k e t 2 )

153

1 54 < p r o c e s s S e r v i c e R e s p o n s e > ( p a c k e t 2 , s p C e r t  , s e l f  , r a n d A )  ( p a c k e t 3 )

155

156 c h a n < p a c k e t 3 >

157

158 c h a n  ( e n c K e y  )

159

160 c h a n  ( s e r v i c e l  )

1 61 c h a n  ( s e r v i c e 2 )

162

163 < e x t r a c t K e y > ( s p C e r t  , e n c K e y  , s e  1 f ) ( k e y  )

164

165 < w h i c h S e r v i c e > ( s e r v i c e l  , s e r v i c e 2 ) (  s e r v i c e  )

166

167 C h a n n e l  c h a n

168

169 s e r  v i c e < c h a n >

170

1 7 1  c h a n  ( r e s p  )

172

1 7 3  < / & S y s t e m  o u t  p r m t l n ( ( S t r i n g ) r e s p ) , & / > ( r e s p ) ( )

174  0

175 }

176

1 7 7 C o d e  w h i c h S e r v i c e  ( s i  , s 2 ) ( s )

178 {

1 79  j h
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1

180 j f  ( Cl i en t  c h o o s e F i r s t  ( ))
181 S =  S1 ,
182 e l se
18 3  s =  s 2  ,
184 & /

185 }

186
187Code e x t r a c t Ke y  ( s pCe r t  , encKey , s ) ( k )
188 {
189  / &

190 Cl i e n t  c =  ( C l i e n t  ) s ,
191
192 byt e  [] ks =  c e x t r a c t Ke y  (( byt e  []) s pCer t  ,( byt e  []) encKey ),
193
194 k =  ks ,
195 & /

196  }

197

i98Code p r o c e s s S e r v i c e Re s p o n s e  ( pac , c e r t  , se 1 f } rand ) ( r e t u r n P a c  )
199  {

200 /&
201 Cl i en t  c =  ( Cl i en t  ) s e l f  ,
202
203 r e t u r n P a c  = c c r e a t e C l i e n t R e s p o n s e  (( byt e  []) ce r t  ,( byt e  (]) pac ,( Long) r and ),
2 0 4  & /

20 5  }

20 6

207 Code getOwnCer t  ( se 1 f )( c e r t )
2 0 8  {

2 0 9  / &

210 PkiBase base =  ( P k i Ba s e ) se 1 f ,
211
2 12  c e r t  = base g e t C e r t B y t e s  ( ) ,
213 &/
214 }
21 5

2 ieCode c r e a t e C l i e n t R e q u e s t  ( p r o v i d e r  , se 1 f )( packet  , r and)
2 1 7  {

218 f h
21 9 Cl i e n t  c =  ( Cl i en t  ) s e l f  ,
220 Long 1 = new Long(Sys t em c u r r e n t T i m e M i l l i s  ( ) ) ,
221
222 packet  =  c c r e a t e R e q u e s t  (( byt e  []) p r o v i d e r  , 1 ),
223 rand =  1 ,
22 4  & /

2 2 5  }

226
2 2 7 Code v e r i f y C e r t I s s u e r ( c a c e r t , s p C e r t ) ( )
2 2 8  {

2 2 9
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230 Cl i e n t  v e r i f y C e r t I s s u e r ( ( b y t e  []) c a c e r t  >( byte  []) s p C e r t ),
2 3 1  & : /

23 2  }

233
234 Code l o a d S e l  f ( c a c e r t  )( se l  f )
235 {
2 3 6  l&C

237  S t r i ng  pp =  Cl i e n t  g e t P a s s P h r a s e  ( ) ,
238 S t r i ng  fn =  Cl i e n t  g e t F i l e na me  ( ) ,
2 3 9

240 Cl i e n t  c =  new Cl i e n t  (pp , fn ,( byt e  []) c a c e r t  ),
241

242 s e l f  = c,
2 4 3  & /

244 }
2 4 5

246Code i s s u e C e r t (  i s s u e r  , r e q u e s t  )( ce r t  )
2 4 7  {

2 4 8  / &

249 C e r t l s s u e r  i = ( C e r t l s s u e r )  i s s u e r ,
250 byt e  [) req =  ( byt e  [ ]) r e q u e s t ,
251

252 c e r t  =  l p r o c e s s C e r t i  f i c a t e R e q u e s t  ( req ) ,

253 &/
25 4  }

25 5

256Code i s s u r e C e r t ( i s s u e r  , r e q ) ( c e r t )
2 5 7  {

2 5 8  / &

259 C e r t l s s u e r  l =  ( Ce r t  I s s u e r  ) 1 ss u er  ,
260 byt e  [] t h e - r e q u e s t  =  ( by t e  []) r eq ,
261

262 c e r t  =  p r o c e s s C e r t i f i c a t e R e q u e s t  ( t h e - r e q u e s t  ),
26 3  & /

2 6 4  }

2 6 5

266 Code g e t l s s u e r ( c a ) (  i s s u e r )
267  {

26 8  /&E

269 CA theCA ~  (CA)ca,
270 C e r t l s s u e r  i = theCA c r e a t e l s s u e r  () ,
271
272 i s s u e r  =  l ,

2 7 3  & /

2 7 4  }

275

276 Code creat eCA ( fn , pp)  ( ca)
27 7  {

27 8  / &

279 CA theCA =  new CA( ( St r i  ng ) fn , ( S t r i  ng ) pp ),
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280 ca =  theCA,
281 &/
2 8 2  }

283
284 Code g e t ln fo  () ( fn , pp)
2 8 5  {

2 8 6  / &

287 t r y

2 8 8  {

289 LineNumberReader  l nr  =
290 new LineNumberReader (new I npu t S t r e amRea de r  ( System i n ) ) .
291 System out  p r i n 11 n ( ” Enter  the ca name” ),
292 fn =  l n r  r e a d L i n e ( ) ,
293 System out  p r i n t l n  ( ” Ent e r  the p a s s p h r a s e ” ),
294 pp =  l nr  r e a d L i n e ( ) ,
295 }
296 ca t ch  ( Except i on  e)
2 9 7  {

298 e p r m t S t a c k T r a c e  ( ) ,
2 9 9  }

3 0 0  & /

301 }

3 0 2

3 0 3  Code c r e a t e Re s p o n s e l  () ( res  )
3 0 4  {

3 0 5  / &

306 res  = new S t r i ng  ( ” RES1 ” ),
3 0 7  & /

3 0 8  }

30 9

310 Code c r e a t e Re s pons e 2  () ( res  )
311 {

3 1 2  / &

313 res  = new S t r i ng  ( ” RES2” ),
3 1 4  & /

3 1 5  }

316
317 Code p r o c e s s C h e n t  Re s pons e  ( c e r t ,  s e l f ,  pac , r a n d ) ( ekey , k e y )
3 1 8  {

3 1 9  / &

320 SP sp =  (SP) s e l f  ,
321

322 byt e  [] keyBytes  = sp p r o c e s s C l l e n t R e s p o n s e  (( byt e  []) ce r t  ,( byt e  []) pac ,( Long) rand ),
32 3

324 ekey = sp e nc r y p t Ke y By t e s ( (  byt e  []) c e r t ,  k e yBy t e s ) ,
325 key = keyBytes  ,
3 2 6  & /

3 2 7  }

32 8

3 2 9 Code c r e a t e S e r v i c e R e s p o n s e  (cc , s , r A ) ( p , r B )
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3 3 0  {

331  / &

3 3 2 SP S p  = (SP) S ,
333 Long 1 =  new L o ng ( Sy s t e m c u r r e n  t T i m e M i l l i s  ( ) ) ,
3 3 4

335 p =  sp c r e a t e S e r v i c e R e s p o n s e  (( Long) rA , 1 ,( byt e  [] ) cc ),
3 3 6  rB =  1 ,

3 3 7  & /

3 3 8  }

3 3 9

340 Code p r o c e s s Cl i e n t  Re q ue s t  ( c l i e n t C e r t  , packet  , s e l f ) (  rand A)
341  {

3 4 2  / &

343 SP sp =  ( S P ) s e l f ,
344 randA =  sp p r o c e s s C l i e n t R e q u e s t  (( byte  [ ] )  packet  , (  byte  [] )  c l l e n t C e r t  ),
3 4 5  & /

3 4 6  }

34 7

348 Code c r e a t e C e r t i f i c a t e A n d R e q u e s t S P ( c a ) ( r e t , r e q )
3 4 9  {

3 5 0  / &

351 SP sp =  new SP( ( b y t e  []) ca ),
35 2

353 byt e  [] tmp =  sp g e n e r a t e C e r t i f i c a t e R e q u e s t  ( ) ,
35 4

355 r e t  =  sp ,
356 req — tmp,
3 5 7  & /

3 5 8  }

35 9

36oCode l o a d C ACe r t  () ( c e r t  )
361  {

3 6 2  / &

3 6 3 S t r i n g  f i l ename  — Cl i e n t  getCAFi leName ( ) ,
364 byte  [] c e r t - b y t e s  =  Cl i e n t  l oa dCACe r t ( f i l ename  ),
365 ce r t  =  c e r t . b y t e s  ,
3 6 6  & /

3 6 7  }

36 8

36 9

370Code c r e a t e C e r t i f i c a t e A n d R e q u e s t  ( ) (  c l i e n t  , r eq)
371  {

3 7 2  / &

373 Cl i e n t  c =  new Cl i e n t  ( ) ,
374 byt e  [] name =  Cl i e n t  ge t Name( ) ,
37 5

376 b y t e [ j  tmp = c g e n e r a t e C e r t i f i c a t e R e q u e s t  ( n a me ) ,
37 7

378 c l i e n t  = c ,
379 req — tmp,
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)

3 8 0  & /

381  }

38 2

383 Code s e t C e r t i f i c a t e  ( c e r t  , c l i e n t  , c a c e r t  )( new Cl i en t )
3 8 4  {

3 8 5  / &

386 t r y
3 8 7  {

388 byte  [] theCACert  = ( byte []) c a c e r t  ,
3 8 9

390 byte  [] t h e C e r t  =  ( byt e  []) ce r t  ,
391 PkiBase c =  ( PkiBase)  cl i en t ,
3 9 2

393  c s e t C e r t i f i c a t e ( t h e C e r t ,  theCACert  ),
39 4

395 newCl i en t  =  c ,
3 9 6  }

397 ca t ch  ( Except i on e)
3 9 8  {

399 e p r i n t S t a c k T r a c e  ( ),
4 0 0  }

401  & /

4 0 2  }

4 0 3

4 0 4  Code s t o r e C h e n t ( c l i e n t ) ( )
4 0 5  {

406 /&
407 C l i e n t  c = ( C h e n t ) c l i e n t ,
40 8

409 S t r i n g  pp = Cl i en t  g e t P a s s P h r a s e  ( ) ,
4 1 0  S t r i ng  fn = Cl i e n t  ge t F i l e n a me  ( ),
411

412 c s t o r e  (pp , fn ),
4 1 3  & /

4 1 4  }
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C.3 Java code
f.

C 3 1 CA java
i p a c k a g e  p k i ,
2
3 i m p o r t  pki  * ,
4

s i m p o r t  j a v a  s e c u r i t y  c e r t  *,
6 i m p o r t  j a v a  s e c u r i t y  *,
7 i m p o r t  j a v a x  c r y p t o  spec  *,  
s i m p o r t  j a v a x  c r y p t o  *,  
g i m p o r t  j a v a  10  *,

l o i m p o r t  l a i k  pkcs  pkcs l O C e r t i f i c a t e R e q u e s t  , 
n i m p o r t  l a i k  a s n l  s t r u c t u r e s  *,  
i2 i m p o r t  l a i k  a s n l  *,
13
14 i m p o r t  j a v a  u t i l  * , 
i 5 i m p o r t  j a v a  mat h  *,
16
17

i s p u b l i c  c l a s s  CA i mp l e me n t s  S e r i a l i z a b l e
19 {

20 p r i v a t e  Ke y P a i r  m_ k e y s ,
21 p r i v a t e  X 5 0 9 C e r t i f i c a t e  m_cer t  ,
22 p r i v a t e  S t r i n g  m_ f i l en ame  ,
23
24 p u b l i c  C A ( S t r i n g  f i l e n a m e  , S t r i n g  pp)
25  {

26 m . f i l e n a m e  =  f i l e n a m e ,
27 l o a d l n f o  ( p p ) ,
28 }
29
30 p u b l i c  P u b l i c Ke y  g e t P u b l i c  ()
31 {
32 r e t u r n  m_keys g e t P u b l i c ( ) ,
33  }

34

35  pub l i c  X 5 0 9 C e r t i f i c a t e  g e t C e r t ( )
36  {

37  r e t u r n  m_cer t  ,
38  }

39

40 p u b l i c  vo i d  l o a d l n f o  ( S t r i n g  pp)
41 {
42 t r y
43  {

44 F i l e l n p u t S t r e a m  f i s  =
45 new F i l e l n p u t S t r e a m  ( m_f i l e name  +  ”
4 6

47 i n t  b =  fi s r e ad  ()

\

i n f o ” ),
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48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
67

68
69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86
87

88
89

9 0

91

92

93

94

95

96

97

Byt eAr r ayOut pu t St r eam baos =  new Byt eAr r a yOut pu t St r e am ( ) ,

whi le ( b ' =  - 1 )

{
baos wr i t e  ( b ), 
b =  f i s  read ( ) ,

}
//DECRYPT
byte  [] l v . b y t e s  =  ’’ t h i s  is t he i v ”  g e t B y t e s ( ) ,
Secre t KeySpec  sks = new Secre t KeySpec  (pp g e t B y t e s ( ) ,  0,  8,  ” DES” ), 
I vPa r a me t e r Spe c  ap =  new I vPa r a me t e r Spe c  ( i v_by t es  , 0,  8 ) ,

Ci pher  c = Ci pher  g e t l n s t a n c e  ( ”DES/CBC/PKCS5Padding” ),
SecureRandom sr  =  new SecureRandom (” Thi s  is a very bad s e e d ” g e t B y t e s ( ) ) ,  
c i n i t  ( Ci phe r  DECRYPTJVIODE, s k s ,  ap , s r ) ,

byt e  [] f i n a l . b y t e s  =  c d o F i n a l ( b a o s  t oByt eAr r a y  ( ) ) ,

By t e Ar r a y l npu t S t r e a m bai s  =  new By t e Ar r a y l npu t S t r e a m ( f i n a l - b y t e s  ), ,
O b j e c t l n p u t S t r e a m oi s  =  new Ob j e c t l n p u t S t r e a m ( ba i s  ),

m-keys =  ( K e y P a i r ) o i s  r e a d Ob j e c t  ( ), 
m- cer t  = ( X5 0 9Ce r  t i fi c a t e  ) o l s r e a d Ob j e c t  () ,

}
ca t ch  ( Except i on e)

{
e p r i n t S t a c k T r a c e  ( ) ,

}
}

pub l i c  s t a t i c  void gene r a t e AndSt o r e  ( S t r i n g  pa s s p h r a s e  , S t r i n g  f i l e na me )  

{
t r y

{
St r i ng  seed =  new S t r i ng  ( ) ,
seed + =  System c u r r e n  t T i me Mi l l i s  ( ) ,

SecureRandom sec- r andom =  new SecureRandom( seed g e t B y t e s ( ) ) ,

Ke y P a i r Ge n e r a t o r  key-gen = Ke y P a i r Ge n e r a t o r  g e t l n s t a n c e  ( ”RSA” ), 
key-gen i n i t i a l i z e  ( 512,  sec . r a ndom ),
KeyPai r  k e y . p a i r  = key_gen g e n e r a t e Ke y P a i r  () ,

i
Name n = new Name() ,  
n addRDN( Object ID c o u n t r y ,  ” I E ” ), 
n addRDN( Objec t ID l o c a l i t y ,  ’’DUBLIN” ), 
n addRDN( Objec t ID o r g a n i z a t i o n  , ” DCU” ), 
n addRDN( Objec t ID o r g a n i z a t i o n a l  Un i t  , ” PG” ), 
n addRDN ( O bject ID commonName , ” CA” ) ,
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98

99

100

101

102
103

104

105
106

107

108
10 9

110
111
112
113

114

115

116

117

118

11 9

120
121
122
123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

14 3

144

145

146

147

i a i k  x509 X 5 0 9 C e r t i f i c a t e  ce r t  = new i ai k x509 X 5 0 9 C e r t i f i c a t e ( ) ,  
ce r t  s e t l s s u e r D N ( n ) ,  
ce r t  s e t S u b j e c t D N( n ) ,
ce r t  s e t P u b h c K e y  ( k e y . p a i r  g e t P u b l i c  ( ) ) ,
ce r t  s e t S e r i a l Nu mb e r  (new B i g l n t e g e r  ( ” 000000000001” )),
G r e g o r i a n C a l e n d a r  da t e  = ( Gr e g o r i a n C a l e n d a r )  Ca l enda r  g e t l n s t a n c e ( ) ,

da t e  a d d ( Ca l e n d a r  MONTH, - 1 ) ,
ce r t  s e t V a h d N o t B e f o r e ( da t e  g e t T i m e ( ) ) ,
da t e  add ( Ca l e n d a r  MONIH, 5) ,
c e r t  s e t V a h d N o t  Af t e r  ( da t e  g e t T i m e ( ) ) ,
c e r t  s ign ( Al gor i t hmID s ha l Wi t hRSAEncr ypt i on  , k e y . p a i r  g e t P r i v a t e  ( ) ) ,

Byte Array O u t pu t S t r eam baos = new Byte Array Out pu t S t  ream ( ) ,  
Ob j e c t Ou t pu t S t r e a m oos = new O b j e c t O u t p u t S t r e a m ( b a o s ),

oos w r i t e O b j e c t ( k e y _ p a i r ) ,  
oos wri  t e O b j e c t  ( c e r t  ),
System out  p r i n t l n ( c e r t  g e t C l a s s f )  g e t Na me ( ) ) ,  
oos c l ose  ( ) ,

byte [] l v - b y t e s  =  ” t h i s  is the i v ” g e t B y t e s ( ) ,
Secre tKeySpec sks = new Secre tKeySpec ( pa s s ph r a s e  g e t B y t e s ( ) ,  0,  8,  ” DES” ), 
I v Pa r a me t e r Spe c  ap = new I vPa r a me t e r Spe c  ( i v . b y t e s  , 0,  8 ) ,

Ci pher  c =  Ci pher  g e t l n s t a n c e  (” DES/CBC/PKCS5Padding” ),
SecureRandom sr  = new SecureRandom(” This  is a very bad s e e d ” g e t B y t e s ( ) ) ,  
c m i t  ( Ci phe r  ENCRYPTJVIODE, s k s ,  ap , s r ) ,

byt e  [] f i n a l . b y t e s  =  c d o F i n a l ( b a o s  t oByt eAr r a y  ( ) ) ,

F i l e Ou t p u t S t r e a m fos =  new F i l e Ou t p u t S t r e a m ( fi l e n a me  + ” i n f o ” ), 
fos wr i t e  ( f i n a l - b y  t e s  ) , 
fos c l ose  ( ) ,

fos =  new F i l e O u t p u t S t r e a m ( f i l ename  +  ” c r t ” ), 
fos w r i t e ( c e r t  t o B y t e A r r a y ( ) ) ,  
fos c l ose  ( ) ,

F i l e  f =  new F i l e ( f i l e n a m e  +  ” c r l ” ), 
f c r e a t e Ne wFi l e  ( ) ,

}
ca t ch  ( Except i on  e )

{
e p n n t S t a c k T r a c e  ( ) ,

}
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154

165

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

pub l i c  s t a t i c  void p r i n t CAI nf o  ( S t r i ng  pa s s ph r a s e  , S t r i n g  f i l e n a me )
{

t r y
{

F i l e l n p u t S t r e a m  f i s  =  new F i l e l n p u t S  t r e a m ( f i l e name  +  ” i n f o ” ), 

i n t  b =  f i s  read ( ),

By t eAr r ayOut pu t St r eam baos =  new Byt eAr r ayOut pu t St r eam ( ),

whi le ( b - 1 )

{
baos w r i t e ( b ) ,  
b — f l s read ( ),

}
//DECRYPT
byt e  [] î v - b y t e s  — ’’ t h i s  is the î v"  g e t B y t e s ( ) ,
Secre t KeySpec  sks =  new Secre tKeySpec ( pa s s ph r a s e  g e t B y t e s ( ) ,  0,  8,  ” DES” ), 
I vPa r a me t e r Spe c  ap = new I vPa r a me t e r Spe c  ( î v _ b y tes  , 0,  8 ),

Ci pher  c =  Ci pher  get  I ns t  ance  (” DES/CBC/PKCS5Padding ” ),
SecureRandom sr  =  new SecureRandom(” This  is a very bad s e e d ” g e t B y t e s ( ) ) ,  
c m i t  ( Ci phe r  DECRYPT-MODE, s ks ,  a p , s r ) ,

byt e  [] f i n a l - b y t e s  = c d o F i n a l ( b a o s  t oByt eAr r ay  ( ) )  ,

By t e Ar r a y l npu t S t r e a m bai s  =  new By t e Ar r a y l npu t S t r e a m ( f i n a l - b y t e s  ), 
O b j e c t l n p u t S t r e a m ois =  new Ob j e c t l n p u t S t r e a m ( ba i s  ),

KeyPai r  kp =  ( K e y P a i r ) o i s  r e a d Ob j e c t  ( ) ,
Obj ec t  c e r t  = ois r e a d Ob j e c t  () ,
System out  p r i n t l n ( c e r t  g e t C l a s s Q  g e t Na me ( ) ) ,

System out  p r i n t i n g -----------------------------------------”),
System out  p r i n t l n ( c e r t ) ,
System out  p r i n 11 n ( -----------------------------------------”),

}
ca t ch ( Except i on e )
{

e p n n t S t a c k T r a c e  ( ) ,
}

}

pub l i c  C e r t l s s u e r  c r e a t e l s s u e r Q  
{

r e t u r n  new C e r t l s s u e r  ( m.keys , m_cer t  ),

}

}
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198

199 p u b l i c  s t a t i c  voi d  main ( S t r i n g  a r g s  [] )
200 {

201 CA g e n e r a t e A n d S t o r e  ( a r g s  [ 0 ] ,  a r g s [ l } ) ,
202 CA p r i n t C  Al n f o  ( a r g s  [ 0 ] , a r g s ( l j ) ,
2 0 3  }

2 0 4  }
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C 3 2 C ertlssuer java
i p a c k a g e  p k i ,
2
3 i m p o r t  pk i  * ,
4

5 i m p o r t  j a v a  s e c u r i t y  *,  i
6 i m p o r t  j a v a x  c r y p t o  spec  *,
7 i m p o r t  j a v a x  c r y p t o  *,
8 i m p o r t  j a v a  10 *,  <
Qi mpo r t  l a i k  pkcs  pkcs l O C e r t i f i c a t e R e q u e s t  , 

l o i m p o r t  l a i k  a s n l  s t r u c t u r e s  *,  
n  i m p o r t  l a i k  a s n l  *,  
i2 i m p o r t  j a v a  s e c u r i t y  c e r t  *,
13

14 i m p o r t  j a v a  u t i l  * ,
1 5  i m p o r t  j a v a  ma t h  *,
16

i 7 p u b l i c  c l a s s  C e r t l s s u e r  i mp l e me n t s  S e r i a l i z a b l e  
18 {

19 p r i v a t e  Ke y P a i r  m- keys  ,
20 p r i v a t e  X 5 0 9 C e r  ti  fi c a t e  m . c e r t  ,
21
22 p u b l i c  C er  t l s s u e r  ( K e y P a u  k e y s ,  X5 0 9  C er  t i  fi c a t e  c e r t )
23

24 m- keys  =  keys
25 m . c e r t  =  c e r t
26

27

28

29

30

31

32

pub l i c  Pu b h c Ke y  g e t P u b l i c ( )  

r e t u r n  m_keys g e t P u b l i c ( ) ,

>ublic X 5 0 9 C e r t i  fi c a t e  g e t C e r t Q  

r e t u r n  m. ce r t  ,

publ ic byte  [] p r oc e s s  Ce r t i  f i c a t e R e q u e s t  ( by te [ ] r e q u e s t )
39

40 t r y
41 {

42 Ce r t i  fi c a t e R e q  u es t c e r t . r e q u e s t  =  new Cer  ti fi c a t e  Req ue s t  ( r e q u e s t  )
43

44 Name s u b j e c t  =  c e r t . r e q u e s t  g e t S u b j e c t ( ) ,
45 Pu b h c Ke y  pk =  c e r t . r e q u e s t  ge t Pub l i cKey  ( ) ,
46

47 S t r i n g  1 =  new S t r i ng  ( ) ,
48 1 - f= System c u r r e n t T i m e M i l h s  () ,
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so SecureRandom sr  = new SecureRandom(1 g e t B y t e s ( ) ) ,
5 1  S t r i ng  s e r i a l  = new S t r i n g ( ) ,
52 s e r i a l  + =  sr  ne x t Lo n g ( ) ,
53

54 i a i k  x509 X 5 0 9 C e r t i f i c a t e  t . c e r t  =
&5 new i a i k  x509 X 5 0 9 Ce r t i  f i ca t e  ( m. c e r t  get Encoded ( ) ) ,
56 i a i k  as n l  s t r u c t u r e s  Name i s s u e r  =
57 ( i a i k  asnl  s t r u c t u r e s  Name ) t _ce r t  ge t Subj ec t DN () ,
58

59 i a i k  x509 X 5 0 9 C e r t i f i c a t e  ce r t  = new i a i k  x509 X 5 0 9 C e r t l f i c a t e  ( ) ,
eo ce r t  s e t l s s u e r DN ( i s s u e r  ) ,
61 ce r t  s e t S u b j e c t D N ( s u b j e c t ),
62 c e r t  s e t P u b l i c K e y ( p k ) ,
63 ce r t  s e t S e r i a l Nu mb e r  (new B i g l n t e g e r  ( s e r i a l  ) ) ,
64 G r e g o n a n C a l e n d a r  da t e  =  ( Gr e g o r i a n C a l e n d a r )  Ca l enda r  g e t l n s t a n c e  ( ) ,
65 da t e  add ( Ca l e n d a r  MONIH, - 1 ) ,
66 ce r t  set  Va l i d No t Be f o r e (  dat e  g e t T i m e ( ) ) ,
67 da t e  a d d ( Ca l e n d a r  MONIH, 5 ) ,
68 c e r t  s e t V a h d N o t A f t e r ( da t e  g e t T i m e ( ) ) ,
69 c e r t  s i gn  ( A l g o r i t h mI D  s h a l Wi t h R S A E n c r y p t i o n  , m- keys  g e t P r i  v a t e  ( ) )  ,
70

71 r e t u r n  ce r t  t oByt eAr r ay  ( ) ,
72 }

73 ca t ch  ( Except i on e)
74 {

75 e p r i n t S t a c k T r a c e  ( ) ,
76  }

77 r e t u r n  n u l l ,
78 }

7 9 }
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C 3 3 Client java
i p a c k a g e  p k i  ,

2
3 i mpor t  pki  * ,
4

s i m p o r t  j a v a  s e c u r i t y  *,
6 i mpor t  j a v a  s e c u r i t y  i n t e r f a c e s  * ,
Timpor t  j a v a x  c r yp t o  spec *, 
s i m p o r t  j a va x  c r yp t o  *, 
e i mpor t  j a v a  1 0  * ,

l o i m p o r t  l a i k  pkcs pkcslO Ce r t i  f i c a t e  Requ es t  , 
l i  i m p o r t  l a i k  a s n l  s t r u c t u r e s  * ,  

i 2 i m p o r t  l a i k  a s n l  * ,  

i 3i m p o r t  j a v a  s e c u r i t y  c e r t  * ,

14

i s p u b l i c  c l a s s  Cl i e n t  impl ement s  S e r i a  11 za b  1 e , PkiBase 
16 {
17 p r i v a t e  KeyPai r  m.keys =  nul l  ,
is p r i v a t e  X 5 0 9 C e r t i f i c a t e  m_cer t  = nul l  ,
is p r i v a t e  X 5 0 9 C e r 1 1 f i ca t e  c a - c e r t  =  n u l l ,
20
21 pub l i c  Cl i e n t  () { }
22
23 pub l i c  Cl i e n t  ( S t r i ng  pa s s ph r a s e  , S t r i ng  f i l e n a m e ,  S t r i n g  ca f n )
2 4  {

25 t r y  {
26 F i l e l n p u t S t r e a m  fis =  new F i l e l npu  t S t r e a m ( cafn + ” c r t ” ),
27 Byt eAr r ayOut put St r eam bt  = new Byt eAr r ayOut pu t St r eam ( ) ,
28

29 i n t  b = f i s  read ( ) ,
30

si whi le ( b 1 = -  1)
32  {

33 bt  wr i t e  ( b ),
34 b = fi s read ( ) ,
35  }

36

37  f i s  c l ose  ( ) ,
38 bt  c l ose  ( ) ,
39

40 b y t e  [] c a c e r t - b y t e s  =  b t  t o B y t e A r r a y  ()  ,
41

42 f i s  =  new F i l e l n p u t S t r e a m  ( f i l e n a m e  +  ” c r t ” ),
43 bt  =  new B y t e A r r a y O u t p u t S t r e a m  ( ) ,
44

45 b =  f i s  r e a d  ( ) ,

47 wh i l e  ( b *= — 1)
48  {

40 b t  w r i t e  ( b ),
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50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
67

68
69

70

71

72

73

74

75

76

77

78

79
8 0

81

82

83

84

85

86
87

88
89

9 0

91

92

93

94

95

96

97

98

99

b = f i s read ( ) ,

}

f i s  c l ose  ( ) ,  
bt  c l ose  ( ) ,

byt e  [] c e r t . b y t e s  = bt  t oByt eAr r ay  ( ) ,

f i s  =  new F i l e l n p u t S t r e a m  ( f i l e name  -i- ” k e y ” ), 
bt  =  new Byte Ar r ayOut put St r eam () ,

b = f i s  read ( ) ,

whi le ( b 1 — — 1)

{
bt  w r i t e ( b ) ,  
b =  f i s  read ( ) ,

}

byte  [] i v_by t e s  =  ” t h i s  is the i v ” g e t B y t e s ( ) ,
Secre t KeySpec  sks = new Secre t KeySpec  ( pa s s p h r a s e  g e t B y t e s ( ) ,  0,  8,  ” DES” ), 
I vPa r a me t e r Spe c  ap =  new I v P a r a m e t e r S p e c ( 1  v_by t e s  , 0,  8 ) ,

Ci pher  c =  Ci pher  g e t l n s t a n c e  (” DES/CBC/PKCS5Padding” ),
SecureRandom sr  = new SecureRandom(” This  is a very bad s e e d ” g e t B y t e s ( ) ) ,  
c i n i t  ( Ci phe r  DECRYPT.MODE, s k s ,  ap , s r ) ,

byt e  [] f i n a l . b y t e s  =  c d o F i n a l ( b t  t oByt eAr r ay  ( ) ) ,

By t e Ar r a y l npu t S t r e a m bai s  = new By t e Ar r a y l npu t S t r e a m ( f i n a l . b y  t es  ),
O b j e c t l n p u t S t r e a m ois = new Ob j e c t l n p u t S t r e a m ( ba i s  ),

KeyPai r  kp =  ( K e y P a i r ) o i s  r e a d Ob j e c t  ( ) ,
C e r t i f i c a t e F a c t o r y  cf  = C e r t i f i c a t e F a c t o r y  g e t l n s t  ance  (” X509 ” ),
By t e Ar r a y l npu t S t r e a m cba i s  = new By t e Ar r a y l npu t S t r e a m ( c e r t . b y  t es  ),
X 5 0 9 C e r t i f i c a t e  ce r t  =  ( X5 09 Cer  11 f i c a t e ) cf  ge ne  r a t e  C e r t i  fic a t  e ( cba i s  ),

cba i s  =  new Byt e Ar r a y l npu t S t r e a m ( c a c e r t - b y t e s  ),
X 5 0 9 C e r t i f i c a t e  c a c e r t  =  ( X 5 0 9 C e r t i f i c a t e ) c f  g e n e r a t e C e r t i f i c a t e ( c b a i s ) ,

c e r t  ve r i  fy ( c a c e r t  g e t P u b h c Ke y  ( ) )  , 
m_cer t  =  ce r t  , 
m.keys =  k p , 
c a - c e r t  =  c a c e r t ,

1
ca t ch  ( Except i on e ) { e p r i n t S t a c k T r a c e ( ) , }  '  )

}

pub l i c  Cl i e n t  ( S t r i n g  p a s s p h r a s e ,  S t r i n g  f i l e n a m e ,  byt e  [] c a c e r t - b y t e s  )

{
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100
101
102
103

104

105

106

10 7

108

109

110
111
112
113

114

115

116

117

118

119

120
121
122
123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

14 2

143

144

145

14 6

147

148

149

t r y

{
F i l e l n p u t S t r e a m  f i s  =  new F i l e l n p u t S t r e a m  ( f i l e n a me  +  ” c r t ” ), 
By t eAr r ayOut pu t St r eam bt  = new Byt eAr r a yOut pu t St r e am ( ) ,

l n t  b =  f i s read ( ) ,

whi le ( b ' =  - 1 )

{
bt  w r i t e ( b ) ,  
b =  fi s read ( ) ,

}

f i s c l ose  ( ) ,  
bt  c l ose  ( ) ,

byt e  [] c e r t _ b y t e s  — bt  t oByt eAr r ay  ( ) ,
t

f i s  =  new F i l e l n p u t S t r e a m  ( f i l ename +  ” k e y ” ), 
bt  — new Byt eAr r ayOut pu t St r eam ( ) ,

b =  f i s  read ( ) ,

whi le ( b ’=  - 1 )
{

bt  w r i t e ( b ) ,  
b =  f i s  r ead ( ) ,

}

byte  [] i v_by t e s  = ” t h i s  is the i v " g e t B y t e s ( ) ,
Secre t KeySpec  sks =  new Secre tKeySpec ( pa s s ph r a s e  g e t B y t e s ( ) ,  0,  8,  ” DES” ), 
I vPa r a me t e r Spe c  ap =  new I vPa r a me t e r Spe c  ( i v . b y t e s  , 0,  8 ) ,

Ci pher  c =  Ci pher  g e t l n s t a n c e  (” DES/CBC/PKCS5Padding” ),
SecureRandom sr  = new SecureRandom(” This  is a very bad s e e d ” g e t B y t e s ( ) ) ,  
c i n i t ( C i p h e r  DECRYPT.MODE, s k s ,  ap , s r ) ,

byt e  [] f i n a l . b y t e s  =  c d o F i n a l ( b t  t oByt eAr r ay  ( ) ) ,

By t e Ar r a y l npu t S t r e a m bai s  = new By t e Ar r a y l npu t S t r e a m ( f i n a l - b y t e s  ), 
O b j e c t l n p u t S t r e a m ois = new Ob j e c t l n p u t S t r e a m ( ba i s  ),

KeyPai r  kp =  ( Ke y P a i r ) o i s  r e a d Ob j e c t  ( ) ,
C e r t i f i c a t e F a c t o r y  cf  =  C e r t i f i c a t e F a c t o r y  g e t l n s t a n c e  (” X509 ” ), 
By t e Ar r a y l npu t S t r e a m cba i s  =  new Byte Ar r a y l n p u t S t r e a m ( c e r t - b y t e s  ), 
X 5 0 9 C e r t i f i c a t e  ce r t  =  ( X 5 0 9 C e r t i  fi c a t e ) cf  ge ne r a t e  Ce r t  i fic a t  e ( cba i s  ),

cba i s  =  new By t e Ar r a y l npu t S t r e a m ( c a c e r t - b y t e s  ),
X 5 0 9 C e r t i f i c a t e  c a c e r t  — ( X 5 0 9 Ce r t  1 f i c a t e ) cf  g e n e r a t e C e r t i f i c a t e  ( cba i s  ),
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151

152

153

154

155

156

157

IBB
159

160

161

162

163

164

165

166

167

168

16 9

170

171

172

173

174

17 5

176

177

178

179

180

181

182

183

184

185

186

187

188

18 9

190

191

192

193

194

195

196

197

198

19 9

c e r t  v e r i f y  ( c a c e r t  ge t Pub l i cKey  ( ) ) ,  
m- cer t  = c e r t  , 
m.keys =  k p , 
c a . c e r t  =  c a c e r t ,

}
ca t ch  ( Except i on e )

{
e p r i n t S t a c k T r a c e  ( ) ,

}
}

pub l i c  Cl i en t  ( byte  [] c e r t B y t e s  , byt e  [] k e y p a i r ,  S t r i n g  pa s s p h r a s e  )

{
t r y

{
byte  [] l v - b y t e s  =  ’’ t h i s  is the i v ” g e t B y t e s ( ) ,
Secre t KeySpec  sks = new Secre t KeySpec  ( pa s s ph r a s e  g e t B y t e s ( ) ,  0,  8,  ” DES” ), 
I v P a r a me t e r S p e c  ap = new I v Pa r a me t e r Spe c  ( i v - by  t es  , 0,  8 ) ,

Ci pher  c = Ci pher  get  I n s t a n  ce (” DES/CBC/PKCS5Padding ” ),
SecureRandom sr  = new SecureRandom(” This  is a very bad s e e d ” g e t B y t e s ( ) ) ,  
c m i t  ( Ci phe r  DECRYPT_MODE, s k s ,  ap , s r ) ,

byt e  [] f i n a l - b y t e s  =  c doFi  nal  ( keypa i  r ),

By t e Ar r a y l npu t S t r e a m bai s  =  new By t e Ar r a y l npu t S t r e a m ( f i n a l - b y t e s  ), 
O b j e c t l n p u t S t r e a m oi s  =  new O b j e c t l n p u t S t r e a m ( ba i s  ),

KeyPai r  kp =  ( K e y P a i r ) o i s  r e a d Ob j e c t  ( ) ,
C e r t i f i c a t e F a c t o r y  cf  =  C e r t i f i c a t e F a c t o r y  g e t l n s t a n c e  ( ” X509 ” ), 
By t e Ar r a y l npu t S t r e a m cba i s  =  new By t e Ar r a y l npu t S t r e a m ( c e r t B y t e s  ), 
X 5 0 9 C e r t i f i c a t e  ce r t  = ( X509 Cer  ti  f i c a t e ) cf  ge ne  r a t e  C e r t i  fi c a t  e ( cba i s  ),

m. c e r t  = ce r t  , 
m.keys =  k p ,

}
ca t ch  ( Except i on  e )
{

e p r i n t S t a c k T r a c e  ( ) ,

}
}

pub l i c  KeyPai r  g e n e r a t e K e y P a i r ( i n t  l en)

{
t r y

{
St r i n g  seed = new S t r i ng  ( ) ,
seed -f-= System c u r r e n t T i m e M i l l i s  ( ) ,
SecureRandom sec- r andom = new SecureRandom ( seed g e t B y t e s ( ) ) ,
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200

201

202

20 3

2 0 4

20 5

20 6

2 07

2 0 8

2 09

210

211

212

21 3

21 4

21 5

21 6

21 7

2 1 8

210

220

221

222

22 3

224

22 5

22 6

227

228

220

23 0

231

23 2

23 3

2 3 4

235

236

2 3 7

238

23 0

24 0

241

242

243

244

2 4 5

2 4 6

24 7

24 8

24£>

Key Pa i r  Genera  tor  key. gen — Key Pa i r  Genera  tor  g e t l n s t a n c e  (”RSA” ),  
key-gen i n i t i a l i z e  ( l en  , s e c . r a ndom ), 
m.keys =  key. gen g e n e r a t e Ke y P a i r  ( ) ,

}
ca t ch  ( Except i on  e )

{
e p r i n t S t a c k T r a c e  ( ) ,

}
r e t u r n  m . k e y s ,

}

pub l i c  byte  [] g e n e r a t e C e r 1 1 f i c a t e R e q u e s t  ( byt e  [] name)

{
t r y

{
l f ( m.keys =  — n u l l )
{

ge n e r a t e Ke y P a i r  ( 1028) ,
}
Name n = new Name (name) ,
C e r t i f i c a t e R e q u e s t  c =  new C e r t i f i c a t e R e q u e s t  ( m.keys g e t P u b l i c  ( ) ,  n ), 
c s ign ( Algor i t hmID sha l Wi t hRSAEncr ypt i on  , m. keys  g e t P r i  va t e  ( ) ) ,

byte [] byt es  =  c t oByt eAr r ay  () ,

S
r e t u r n  b y t e s ,

}
ca t ch  ( Except i on  e)

{
e p r i n t S t a c k T r a c e  ( ) ,  
r e t u r n  nul l  ,

}
}

pub l i c  void se t Ce r t i fi c a t e ( byt e  [ ] c ,  byt e  [] ca)

{
t r y
{

C e r t i f i c a t e F a c t o r y  cf = C e r t i f i c a t e F a c t o r y  g e t l n s t a n c e  (” X509 ” ), 
By t e Ar r a y l npu t S t r e a m bai s  =  new By t e Ar r a y l npu t S t r e a m ( c ),
X5 0 9 Ce r t i  f i ca t e  ce r t  =  ( X50 9 Ce r ti fi c a t e ) c f ge n e r a t e  C er  11 fic a t  e ( bai s  ),

ba i s  =  new By t e Ar r a y l npu t S t r e a m ( ca ),
X 5 0 9 C e r t i f i c a t e  c a c e r t  =  ( X509 Ce r t i  fi c a t e ) c f g e n e r  a t e  Ce r t  l fi c a t e  ( ba i s  ),  

s e t C e r t i f i c a t e  ( cer t  , c a c e r t  ) ,

}
ca t ch  ( Excep t i on  e)
{

147



2 5 0

251

2 5 2

25 3

2 5 4

2 5 5

25 6

25 7

25 8

25 9

2 6 0

261

26 2

26 3

26 4

26 5

26 6

26 7

26 8

26 9

27 0

271

272

273

2 7 4

27 5

27 6

277

278

2 7 9

28 0

281

28 2

2 8 3

284

285

28 6

28 7

28 8

2 8 9

2 6 0

291

29 2

29 3

29 4

295

296

29 7

2 9 8

QOD

e p r i n t S t a c k T r a c e  ( ) ,

}

pub l i c  s t a t i c  void ve r i  fy C e r t l s s u e r  ( byt e  [ ] c a by t e s  , by t e  [] b y t e s )  t h r ows  Except ion 
{

C e r t i f i c a t e F a c t o r y  cf  =  Cer  ti f i c a t e F a c t o r y  g e t l n s t a n c e  ( ” X509 ” ),
By t e Ar r a y l npu t S t r e a m bai s  =  new Byte Ar r a y l npu t S t r e a m ( ca by t e s  ),
X 5 0 9 C e r t i f i c a t e  c a c e r t  = ( X 5 0 9 C e r t i f i c a t e ) c f  g e n e r a t e C e r t i f i c a t e ( b a i s ) ,

bai s  = new Byte Ar r a y l npu t S t r e a m ( by tes ),
X 5 0 9 C e r t i f i c a t e  ce r t  = ( X 5 0 9 C e r t i f i c a t e )  cf  g e n e r a t e C e r t i f i c a t e  ( bai s  ), 

ce r t  v e r i f y  ( c a c e r t  g e t P u b h c K e y ( ) ) ,

}

pub l i c  void se t C e r 11 fi c a t  e ( X 5 0 9 C e r t  i f i ca t e  c ,  X50 9 Ce r t i  f i c a t e  ca ) t hr ows  Except ion 
{

c v e r i f y ( c a  g e t P u b h c Ke y  ( ) )  ,

i f (  c g e t P u b h c Ke y  () equa l s  ( m.keys g e t P u b l i c  ( ) ) )

{
m. ce r t  = c ,

}
e l se

{
throw new Except i on (” In va l i d  c e r t ” ),

}
}

pub l i c  void s t o r e ( S t r i n g  pa s s ph r a s e  , S t r i n g  p r e f i x )

{
t r y

{

l f ( m.keys 1 =  nu l l )
{

Byt eAr r ayOut pu t St r eam baos =  new Byt eAr r a yOut pu t St r e am ( ) ,
Ob j e c t Ou t pu t S t r e a m oos = new Ob j e c t Ou t p u t S t r e a m(  baos ),

oos w r i t e O b j e c t (  m.keys ),  
oos c l ose  ( ) ,

Secre t KeySpec  new. sks  =  new Secre t KeySpec  ( pa s s p h r a s e  g e t B y t e s ( ) ,  0,  8,  ” DES” ), 
SecureRandom sr  =  new SecureRandom(” t h i s  is a very bad s e e d ” g e t B y t e s ( ) ) ,  
byt e  [] l v . b y t e s  =  ” t h i s  is the i v ” g e t B y t e s ( ) ,

I v Pa r a me t e r Sp e c  ap =  new I v Pa r a me t e r Sp e c  ( 1  v_ b y t e s  , 0 , 8 ) ,
Ci pher  c =  Ci pher  g e t l n s t  ance  ( ” DES/CBC/PKCS5Padding ” ), 
c in i t  ( Ci phe r  ENCRYPTJVIODE, new-sks  , ap , sr  ),

}
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301

30 2

30 3

30 4

30 5

30 6

30 7

30 8

30 9

31 0

311

31 2

31 3

31 4

31 5

31 6

31 7

31 8

31 9

32 0

321

32 2

32 3

324

32 5

32 6

32 7

32 8

32 9

33 0

331

33 2

33 3

33 4

33 5

33 6

337

33 8

33 9

34 0

341

34 2

34 3

34 4

34 5

34 6

34 7

34 8

byte  [] byt es  = c doF i na l  ( baos t oByt eAr r ay  ( ) )  r

F i l e Ou t p u t S t r e a m fos =  new F i l e O u t p u t S t r e a m ( new S t r i n g  ( p r e f i x  +  ” k e y ” ) ) ,  
fos wr i t e  ( by t e s  ), 
fos c l ose  ( ) ,

}

l f ( m. ce r t  1 =  n u l l )

{
F i l e Ou t p u t S t r e a m fos =  new F i l e Ou t p u t S t r e a m ( new S t r i n g  ( p r e f i x  + ” c r t ” ) ) ,  
fos w n t e ( m _ c e r t  get Encoded ( ) ) ,  
fos c l ose  ( ) ,

}
}
ca t ch  ( Except i on  e )

{
e p r i n t S t a c k T r a c e  ( ) ,

}
}

pub l i c  byte  [] g e t C e r t B y t e s  ()

{
t r y

{
r e t u r n  g e t C e r t ( )  get Encoded ( ) ,

}
ca t ch  ( Excep t i on  e)

{
e p r i n t S t a c k T r a c e  ( ) ,  
r e t u r n  nul l  ,

}
}

pub l i c  X 5 0 9 C e r t i f i ca t e  g e t C e r t ( )

{
r e t u r n  m_cer t  ,

}

pub l i c  KeyPai r  ge t Ke ys ( )
{

r e t u r n  m_keys ,

}

pub l i c  s t a t i c  byt e  [] l oa dCACe r t ( S t r i ng  f i l e na me )

{
t r y

{
F i l e l n p u t S t r e a m  f i s  =  new F i l e l n p u t S t r e a m  ( f i l e na me  -f ” c r t ” ), 
By t eAr r ayOut pu t St r eam bt  =  new Byt eAr r a yOut pu t St r e am ( ) ,
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351

3 5 2

3 5 3

35 4

35 5

35 6

35 7

35 8

3 5 9

3 6 0

361

3 6 2

36 3

364

36 5

366

367

368

3 6 9

3 7 0

371

372

373

374

375

376

377

378

379

3 8 0

381

382

383

3 8 4

385

386

387

388

389

390

391

392

393

394

395

396

397

398

3 9 9

i

i n t  b = f is read ( ) ,

whi le ( b ' =  — 1 )

{
bt  wr i t e  (b ), 
b =  f i s  read ( ),

}

f i s  c l ose  ( ),  
bt  c l ose  ( ),

byt e  [] c e r t . b y t e s  =  bt  t oByt eAr r ay  ( ) , 

r e t u r n  c e r t . b y t e s ,

}
ca t ch ( Except i on e)

{
e p n n t S t a c k T r a c e  ( ), 
r e t u r n  nul l  ,

}
}

pub l i c  s t a t i c  S t r i ng  getCAFi leName ()
{

t r y

{
Li neNumberReader  Inr  — ^

new LineNumberReader (new I npu t S t r e amRea de r  ( System i n ) ) ,
System out  p r i n 11 n ( ” Ent e r  the l o c a t i o n  of t he CA c e r t i f i c a t e  ” ),  
S t r i n g  c a c e r t f i l e n a m e  = lnr  r e a d L i n e ( ) ,

r e t u r n  c a c e r t f i l e n a m e ,

}
ca t ch  ( Excep t i on  e)

{
e p r i n t S t a c k T r a c e  ( ) ,  
r e t u r n  nul l  ,

}
}

pub l i c  s t a t i c  byt e  [] getName()
{

t r y
{

LineNumberReader  l nr  =
new LineNumberReader  (new I npu t S t r e amRea de r  ( System in ) ),

System out  p ri n tl  n ( ” Enter  coun t r y  code e g I E ” ),
S t r i ng  cc =  l nr  r e a d L i n e ( ) ,
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40 0

401

40 2

40 3

4 0 4

40 5

40 6

40 7

4 0 8

4 0 9

4 1 0

411

4 1 2

4 1 3

414

4 1 5

4 1 6

417

418

4 1 9

4 2 0

421

42 2

4 2 3

42 4

42 5

4 2 6

4 2 7

4 2 8

4 2 9

4 3 0

431

4 3 2

4 3 3

4 3 4

4 3 5

4 3 6

4 3 7

43 8

43 9

44 0

441

4 4 2

4 4 3

4 4 4

445

446

447

4 4 8

449

System out  p r i n 1 1 n (” Enter  l o c a l i t y  e g D u b l i n ” ),
S t r i ng  loc =  Inr  r e a d L i n e ( ) ,
System out  pr i  n 1 1 n ( ” Ent e r  o r g a n i z a t i o n  e g DCU” ),
S t r i ng  org =  lnr  r e a d L i n e ( ) ,
System out  p r i n t l n  (” Ent e r  o r g a n i z a t i o n a l  un i t  e g POSTGRAD” ),
S t r i ng  un i t  =  l nr  r e a d L i n e ( ) ,
System out  p r i n t l n  (” Ent e r  common name e g John Doe” ),
S t r i ng  cn = l nr  r e a d L i n e ( ) ,

Name name = new Name() ,
name addRDN ( Object  ID c o u n t r y ,  cc ),
name addRDN(Object ID l o c a l i t y ,  l o c ) ,
name addRDN( Object ID o r g a n i z a t i o n  , org ),
name addRDN ( Object ID o r g a n i z a t i o n a l U n i t  , u n i t ) ,
name addRDN( Object ID commonName , cn ),

r e t u r n  name get Encoded ( ) ,

}
ca t ch  ( Except i on e)

{
e p r i n t S t a c k T r a c e  ( ) ,

}
r e t u r n  n u l l ,

}

pub l i c  s t a t i c  S t r i ng  g e t P a s s P h r a s e  ()

{
t r y

{
Li neNumberReader  l nr  — new Lt neNumberReader (new I npu t S t r e amRea de r  ( System i n ) ) ,

System out  pr i  n11 n (” Ent e r  your  pa s s ph r a s e  ” ),
S t r i ng  pp =  lnr  r e a d L i n e ( ) ,

r e t u r n  p p ,

}
ca t ch ( Except i on  e )
{

r e t u r n  n u l l  ,

}
}

pub l i c  s t a t i c  S t r i n g  g e t F i l e na me  ()

{
t r y

{
Li neNumberReader  lnr  = new LineNumberReader (new I npu t S t r e a mRe a de r  ( System i n ) ) ,

System out  p r i n t i n g ’ Ent e r  the p r e f i x  for  a l l  c l i e n t  f i l e s  ” ),
S t r i n g  pp =  Inr  r e a d Li n G( ) ,
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4 5 0

45 1

45 2

4 53

4 54

4 55

4 56

4 5 7

4 5 8

4 5 9

4 6 0

461

4 6 2

4 6 3

4 6 4

4 6 5

4 6 6

46 7

4 6 8

469

470

471

472

473

47 4

4 7 5

4 7 6

47 7

47 8

4 7 9

4 8 0

481

4 8 2

483

484

48 5

4 8 6

48 7

48 8

48 9

49 0

491

492

4 9 3

4 9 4

495

49 6

4 9 7

49 8

49 9

r e t u r n  p p ,

ca t ch  ( Except i on  e )

{
r e t u r n  nul l  ,

}
}

pub l i c  byt e  [] c r e a t e R e q u e s t  ( byt e  [] s e r v i c e C e r t B y tes  , Long 1)

{
t r y
{

C e r t i f i c a t e F  a c t o r y  cf  — C e r t i f i c a t e F a c t o r y  g e t l n s t a n c e  (” X509 ” ), 
By t e Ar r a y l npu t S t r e a m bai s  =  new Byte Ar r a y l npu t S t r e a m ( s e r v i c e C e r t B  y t es  ), 
X 5 0 9 C e r t i f i c a t e  ce r t  =  ( X 5 0 9 C e r ti fi c a t e  ) c f ge n er  a t e  Ce r t i  fi c a t  e ( ba i s  ),

By t eAr r ayOut pu t St r eam baos =  new Byt eAr r ayOut put St r eam ( ),  
Da t a Out pu t S t r eam dos = new D a t a Ou t p u t S t r e a m( baos ),

dos w r i t e l n t  (0 ),
dos wr i t e Lo n g ( l  l ongVal ue ( ) ),

P r i n c i p a l  n =  ( P r i n c i p a l  ) ce r t  ge t Subj ec t DN ( ),
System out  p n n t l n ( n  ge t Na me ( ) ) ,

dos wr i t eUTF( n ge t Na me ( ) ) ,

byte [ ] da t a  = (new S t r i ng  (" da t a  ” ) ) g e t B y t e s ( ) ,

byte [] encData  =  Enc e n c r y p t D a t a (  da t a  , c e r t  g e t P u b h c K e y  ( ) ),

dos w r i t e l n t  ( encDat a  l e ng t h  ),
dos wr i t e  ( encDat a  , 0,  encData  l e n g t h ) ,

dos c l ose  ( ),

byt e  [] to_enc = baos t oByt eAr r ay  ( ) ,

byt e  [] t o _ r e t u r n  =  Enc e n c r y p t Da t a  ( t o . e n c  , m.keys ge t P r i  va t e  ( ) ) , 

r e t u r n  t o _ r e t u r n  ,

}
ca t ch  ( Except i on e )

{
e p r i n t S t a c k T r a c e  ( ) ,

}
r e t u r n  nul l  ,

}

}

152



5 00

501

50 2

5 0 3

5 0 4

5 0 5

50 6

50 7

50 8

50 9

51 0

511

51 2

51 3

5 1 4

515

5 1 6

517

518

519

520

521

52 2

523

52 4

52 5

52 6

5 2 7

528

529

530

531

532

533

534

53 5

53 0

537

53 8

53 9

54 0

541

542

543

544

545

546

547

54 8

54 9

pub l i c  byte  [] c r e a t e C h e n t R e s p o n s e  ( byte  [] s e r v i c e C e r t B y  t es  , byt e  [] p a c k e t ,  Long randA) 
{

t r y  v

{
C e r t i f i c a t e F a c t o r y  cf = C e r t i f i c a t e F a c t o r y  g e t l n s t a n c e  ( ” X509 ” ), 
By t e Ar r a y l npu t S t r e a m bai s  = new By t e Ar r a y l npu t S t r e a m ( s e r v i c e C e r t B y  tes  ), 
X 5 0 9 C e r t i f i c a t e  c e r t  =  ( X 5 0 9 C e r t i f i c a t e )  cf g e n e r a t e C e r t i  f i c a t e  ( ba i s  ),

byt e  [] decData  =  Enc d e c r y p t Da t a (  packet  , c e r t  ge t Pub l i cKey  ( ) ) ,  
ba i s  = new By t e Ar r a y l npu t S t r e a m ( decData  ) ,
Da t a l n p u t S t r e a m di s  =  new D a t a l n p u t S t r e a m ( ba i s  ),

Long randB = new Long( d i s  r eadLong ( ) ) ,
System out  pr i  n t i n  ( randB ) ,

S t r i ng  i b =  di s  readUTF ( ) ,
S t r i ng  i a =  dis  readUTF ( ) ,

Long r andATes t  = new Long( d i s  r e a d L o n g ( ) ) ,

i n t  l enEnc = di s  r e a d l n t ( ) ,
byt e  [] encData  =  new byte  [ l enEnc ] ,
di s  read ( encData  ,0 , l enEnc ),

byt e  [] dummyData = Enc d e c r y p t Da t a ( e n c Da t a  , m.keys g e t P r i  va t e  ( ) )  , 
sun s e c u r i t y  x5Q9 X5O0Name t e s t  l a

=  (sun s e c u r i t y  x509 X500Name) m. c e r t  ge t Subj ec t DN () ,
sun s e c u r i t y  x509 XSOOName t e s t l b

= (sun s e c u r i t y  x509 X500Name) c e r t  ge t Subj ec t DN ( ) ,

i f ( '  i b equa l s  ( t e s t l b  ge t Na me ( ) ) )
t hrow new Except i on  (’’NAMES NOT EQUAL” ),

i f ( ' i a  equa l s  ( t e s t l a  ge t Name( ) ) )
throw new Except i on  (’’NAMES NOT EQUAL’5),

l f ( '  r andATes t  equa l s  ( r andA))
throw new Except i on  (’’RANDOM CHALLENGE FAILED” ),

By t eAr r ayOut pu t St r eam baos — new Byt eAr r ayOut pu t St r eam () ,
Da t a Out pu t S t r eam dos =  new Da t a Out pu t S t r eam(  baos ),

dos w n t e L o n g  ( randB l ongVal ue ( ) )  , 
dos c l ose  () ,

by t e [ ]  t o . r e t u r n  =  Enc e n c r y p t Da t a  ( baos t oByte  Ar r ay ( ) ,  m.keys g e t P r i  va t e  ( ) ) ,  

r e t u r n  t o . r e t u r n  ,

}
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551

55 2

55 3

55 4

55 5

55 6

55 7

55 8

569
5 6 0

561

562

563

564

565

5 6 6

56 7

56 8

5 6 9

5 7 0

571

57 2

57 3

5 7 4

575

576

5 7 7

578

5 7 9

5 8 0

581

5 8 2

583

5 8 4

5 8 5

586

587

588

589

590

591

592

593

594

595

596

597

598

599

ca t ch  ( Except i on  e )

{
e p r i n t S t a c k T r a c e  ( ),

}

r e t u r n  nul l  ,

}

pub l i c  byte  [] e x t r a c t K e y (  byt e  [] s e r v i c e C e r t B y t e s ,  byt e  [ ] encKey )
{

t r y

{
C e r 1 1 f i c a t e F a c t o r y  cf  = Cer  t i fi c a t e F  a c t o r y  g e t l n s t a n c e  (” X509 ” ),
By te Ar r a y l npu t S t r e a m bai s  = new By t e Ar r a y l npu t S t r e a m ( s e r v i c e C e r t B y  t es  ),  
X 5 0 9 C e r t i f i c a t e  ce r t  = ( X 5 0 9 C e r 1 1 f i c a t e ) cf g e n e r a t e C e r t i f i c a t e  ( bai s  ),

byt e  [ ] decData  =  Enc d e c r yp t Da t a ( e nc Ke y  , ce r t  ge t Pub l i cKey  ( ) ) ,

byt e  [] t o . r e t u r n  =  Enc d e c r y p t D a t a ( decData  , m.keys get  P r i v a t e  ( ) ) ,  
byte [] t o - r e t u r n  =  c doF i na l  ( decData  ),

r e t u r n  t o . r e t u r n  ,

}
ca t ch  ( Except i on  e)

{
e p r i n t S t a c k T r a c e  ( ) ,

}
r e t u r n  nul l  ,

}

pub l i c  s t a t i c  bool ean c h o o s e F i r s t  ()

{
t r y

{
System out  p r i n t l n ( ” Use s e r v i c e  one (Y/N) ” ),

Li neNumberReader  l nr  =  new Li neNumberReader (new I npu t S t r e amRea de r  ( System i n ) ) ,  

S t r i ng  resp = l nr  r e a d L i n e ( ) ,

whi le ( ' (  ( r esp e q u a l s ! g n o r e C a s e ( ”Y ” ))  | | ( r e sp  e q u a l s I g n o r e C a s e ( ”N” ) ) ) )
{

System out  p r i n t l n ( ” Use s e r v i c e  one (Y/N) ” ),  
r esp =  lnr  r e a d L i n e ( ) ,

}

i f ( r e s p  e q u a l s I g n o r e C a s e ( ”Y” )) 
r e t u r n  t r u e  , 

e l se
r e t u r n  f a l s e  ,

}
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6 0 0  ca t ch  ( Except i on e)
601  {

602 e p r i n t S t a c k T r a c e  ( ) ,
6 0 3  }

60 4

605 r e t u r n  t r ue  ,
6 0 6  }

6 0 7  }
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i package  p k i ,
2
3im port pki *,
4

simport  java s e c u r i t y  * , 
eimport javax crypto spec *,
7import javax crypto *, 
simport  java 10 *,
9 import laik pkcs pkcslO C er t i f i c a te R eq u e s t  , 

loimport laik asnl  s t r u c t u r e s  *,
n imp ort  laik asnl  *, 
i2 import java s e c u r i t y  cert  *,
13
Mpubl i c  c l a s s  SP impl ement s  S e r i a l i z a b  1 e , PkiBase
15 {
16 p r i v a t e  KeyPai r  m_keys = nul l  ,
17 pr ivate  X50 9 C er t i fi cate m.cert  =  null  ,
is pr ivate  X 5 0 9 C e r t i f i ca te  c a . c e r t  =  null  ,
10
20 pub l i c  S P ( b y t e [ ]  c a - c e r t - b y t e s  )
21 {

C 3 4 SP  java

22 t r y
23 {
24 Cer  ti f i c a t e F a c t o r y  cf = Cer  11 f i c a t e F a c  t o r y  g e t l n s t a n c e  (” X509 ” ),
25 By te Ar r a y l npu t S t r e a m bai s  = new By te Ar r a y l n p u t S t r e a m ( c a _ c e r t _ b y  t es  ),
26 c a _ c e r t  = ( X 50 9 C er t  1 fi c a t e )  c f ge ne r a t  e C e r t  î fi c a t  e ( ba i s  ),
27  }

28 ca t ch ( Except i on  e)
29 {
30 e p n n t S t a c k T r a c e  ( ),
31 }

32 }
33

34 pub l i c  KeyPai r  g e n e r a t e Ke y P a i r  ( i n t  l en)
35 {
36 t r y
37  {

38 S t r i n g  seed =  new S t r i ng  ( ) ,
39 seed + =  System c u r r e n t T i m e M i l l i s  ( ) ,
40 SecureRandom s e c . r a ndom =  new SecureRandom ( seed g e t B y t e s ( ) ) ,
41

42 Ke y P a i r Ge n e r a t o r  key. gen =  Ke y P a i r Ge n e r a t o r  g e t l n s t a n c e  (” RSA” ),
43 key-gen l n 1 1 1  a 11 z e ( len , s e c . r a n d o m)  ,

44 m.keys =  key. gen g e n e r a t e Ke y P a i r  ( ) ,
45  }

46 ca t ch  ( Except i on  e)
47  {

48 e p n n t S t a c k T r a c e  ( ) ,
49  }
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50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

6 5

66

67

68

6 9

70

71

72

73

74

75

76

77

78

79

8 0

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

r e t u r n  m- k e y s ,

pub l i c  byte  [] g e n e r a t e C e r t i f i c a t e R e q u e s t  ()
{

t r y

{
l f ( m.keys =  — n u l l )

{
g e n e r a t e K e y P a i r ( 1 0 2 8 ) ,

}
Name n =  new Name( t h i s  getName ( ) ) ,
C e r 1 1 f i c a t e R e q u e s  t c =  new Ce r 1 1 f i c a t e R e q u e s t  ( m. keys  g e t P u b l i c  ( ) ,  n ),  
c s ign ( Al gor i t hmID sha l Wi t hRSAEncr ypt i on  , m.keys g e t P r i v a t e  ( ) ) ,

byt e  [] by t e s  =  c t oByt eAr r ay  () ,

r e t u r n  b y t e s ,

}
ca t ch  ( Except i on e)

{
e p r i n t S t a c k T r a c e  ( ) ,  
r e t u r n  nul l  ,

} N
}

pub l i c  void se t C e r t i  f i c a t e  ( byte [] c ,  by t e [ ]  ca)

{
t r y

{
C e r t i f i c a t e ? a c t o r y  cf =  C e r t i f i c a t e F a c t o r y  g e t l n s t a n c e  (” X509” ), 
By t e Ar r a y l npu t S t r e a m bai s  = new By t e Ar r a y l npu t S t r e a m ( c ),
X5 0 9 Ce r t i  f i c a t e  ce r t  =  ( X5 09Ce r  11 fi c a t e ) c f  g e n e r a t e C e r t i f i c a t e  ( bai s  ),

bai s  = new Byte Ar r a y l npu t S t r e a m ( ca ),
X 5 0 9 C e r t i f i c a t e  c a c e r t  =  ( X 5 0 9 C e r t i f i c a t e ) cf  g e n e r a t e C e r t i  f i c a t e  ( ba i s  ),  

s e t C e r t i f i c a t e ( c e r t  , c a c e r t  ),
}
ca t ch  ( Except i on e )
{

e p r i n t S t a c k T r a c e  ( ) ,
}

}

pub l i c  void se t C e r t i  f i c a t e  ( X 5 0 9 Ce r t i  fi c a t e  c ,  X 5 0 9 C e r t  i f i c a t e  ca ) t hr ows  Except i on  

{
c v e r i f y ( c a  g e t P u b l i c K e y ( ) ) ,

i f (  c ge t Pub l i cKey  () equa l s  ( m.keys g e t P u b l  ic ( ) ) )

}
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100

101

102

103

104

105

106

107

108
109

110

1 1 1

112

113

114

115

116

117

118

119

120

121

122
123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

m. c e r t  =  c ,

}
el se

{
throw new Except i on ( ” In va l i d  c e r t ” ),

}
}

pub l i c  byte  [] g e t C e r t B y t e s ( )
{

t r y

{
r e t u r n  g e t C e r t ( )  get Encoded ( ) ,

}
ca t ch  ( Except i on  e )

{
e p r i n t S t a c k T r a c e  ( ),  
r e t u r n  nu l l  ,

}
}

pub l i c  X 5 0 9 C e r t i f i c a t e  g e t C e r t ( )
{

r e t u r n  m_cer t  ,

}

pub l i c  KeyPai r  ge t Ke y s Q 
{

r e t u r n  m . k e y s ,

}

pub l i c  s t a t i c  b y t e [ ]  l oa dCACe r t ( S t r i ng f i l e n a me )

{
t r y

{
Fi l e l n  p u t S t r e a m f i s  = new F i l e l n p u t S  t r e a m ( f i l e na me  +  ” c r t ” ), 
By t eAr r ayOut pu t St r eam bt  =  new Byt eAr r ayOut pu t St r eam ( ),

l n t b =  f i s  read ( ) ,

whi l e  ( b 1 =  —1)

{
bt  wr i t e  (b ), 
b =  f i s  read ( ) ,

}

f i s  c l ose  ( ) ,  
bt  c l ose  ( ),

{
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1G0
151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

19fl

byte [] ce r t_ b y te s  =  bt toByteArray ( ) ,

r e t u r n  c e r t - b y t e s  ,

}
c a t c h  ( E x c e p t i o n  e )

{
e p r i n t S t a c k T r a c e  ( ) ,  
r e t u r n  n u l l  ,

}
}

p u b l i c  s t a t i c  S t r i n g  ge t CAFi l eName  ()

{
t r y

{
L i n e Nu mb e r Re a d e r  l n r  =  new L me N u mb e r R e a d e r ( n e w  I n p u t S t r e a m R e a d e r  ( Sys t em i n ) ) ,  
Sys t e m o u t  p n n t l n  ( ” E n t e r  t he  l o c a t i o n  of  t he  CA c e r t i f i c a t e  ” ) ,
S t r i n g  c a c e r t f i l e n a m e  =  l n r  r e a d L i n e ( ) ,

r e t u r n  c a c e r t f i l e n a m e ,

}
c a t c h  ( E x c e p t i o n  e)

{
e p r i n t S t a c k T r a c e  ( ) ,  
r e t u r n  n u l l  ,

>
}

p u b l i c  s t a t i c  b y t e  [] g e t Name ( )

{
t r y

{
L i n e Nu mb e r Re a d e r  l n r  =

new Li ne Nu mb e r Re a d e r ( n e w I n p u t S t r e a m R e a d e r  ( Sys t em i n ) ) ,

S t r i n g  cc =  ” le ” ,
S t r i n g  loc =  ’’ D u b l i n ” ,
S t r i n g  org  =  ”DCU” ,
S t r i n g  u n i t  =  ’’ P o s t G r a d ” ,
S t r i n g  cn =  ’’ Exampl e  S e r v i c e  P r o v i d e r ” ,

Name name =  new Na me( ) ,
name addRDN ( Ob j e c t I D c o u n t r y ,  cc ) ,
name addRDN( O b j e c t I D  l o c a l i t y ,  l o c ) ,
name addRDN( Ob j e c t I D o r g a n i z a t i o n  , org  ) ,
name addRDN ( Ob j e c t I D o r g a n i z a t i o n a l  U n i t  , u m t ) ,
name addRDN ( O b j e c t I D  commonName >cn) ,

r e t u r n  name ge t E n c o d e d  ()  ,

}
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200 c a t c h  ( E x c e p t i o n  e)
201 {
202 e p r i n t S t a c k T r a c e  ( ) ,

2 0 3  }

204 r e t u r n  n u l l  ,
2 0 5  }

2 0 6

207 p u b l i c  s t a t i c  S t r i n g  g e t P a s s P h r a s e  ()
20 8  {

209 t r y

210 {
211  L i n e Nu mb e r Re a d e r  I n r  =
212 new L] n e Nu mb e r Re a d e r (  new I n p u t S t r e a m R e a d e r  ( Sys t em i n ) ) ,
2 1 3

214 S ystem  out  p r i n t l  n ( ” E n t e r  yo u r  p a s s p h r a s e  ” ),
215 S t r i n g  pp =  l n r  r e a d L i n e ( ) ,
216

217 r e t u r n  p p ,
2 1 8  }

219 c a t c h  ( E x c e p t i o n  e)
220 {
221 r e t u r n  n u l l ,
222 }
2 2 3  }

2 2 4

2 2 5  p u b l i c  s t a t i c  S t r i n g  g e t F i l e n a m e ( )
2 2 6  {

227 t r y

2 2 8  {

229 L i n e Nu mb e r Re a d e r  l n r  =
230 new L me N u mb e r Re a d e r ( n e w  I n p u t S t r e a m R e a d e r  ( Sys t e m i n ) ) ,
231

232 Sys t em ou t  p n n t l n  ( ” E n t e r  t h e  p r e f i x  f o r  a l l  c l i e n t  f i l e s  ” ),
233 S t r i n g  pp =  l n r  r e a d L i n e ( ) ,
2 34

235 r e t u r n  p p ,
2 3 6  }

237 c a t c h  ( E x c e p t i o n  e)
2 3 8  {

239 r e t u r n  n u l l ,
2 4 0  }

241 }

242

243 p u b l i c  b y t e  [] e n c r y p t K e y B y t e s  ( b y t e  [ ] c h  e n t C e r t B  y t e s  , b y t e  [] k e y B y t e s )
2 4 4  {

245 t r y
2 4 6  {

247 C e r t i f i c a t e P a c t o r y  c f  =  C e r t i f i c a t e F a c t o r y  g e t  I n s  t a n c e  ( ” X509 ” ),
248 B y t e A r r a y l n p u t S t r e a m  b a i s  =  new Byt e  A r r a y l n p u t S t r e a m  ( cl i e n t C e r t B  y t e s  ) ,
249 X 5 0 9 C e r t i f i c a t e  c e r t  =  ( X 5 0 9 C e r t i f i c a t e )  c f  ge  ne  r a t e  Ce  r t i fi c a t e  ( b a i s  ) ,
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250

251

2 52

2 53

254

255

256

257

258

259

260

261

2 6 2

2 6 3

264

265

266

267

268

269

270

271

272

273

274

2 7 5

276

277

278

279

2 8 0

281

282

283

2 8 4

285

2 8 6

287

288

289

290

291

292

293

2 9 4

295

2 9 6

2 9 7

2 9 8

2 9 9

by t e  [] e n c Da t a  =  Enc e n c r y p t D a t a (  k e y B y t e s  , c e r t  g e t P u b l i c K e y  ( ) )  , 
b y t e  [] t o . r e t u r n  — Enc e n c r y p t D a t a ( e n c Da t a  , m. keys  g e t P r i v a t e  ( ) ) ,  
r e t u r n  t o . r e t u r n  ,

c a t c h  ( E x c e p t i o n  e )

{
e p r i n t S t a c k T r a c e  ( ) ,

}

r e t u r n  n u l l  ,

}

p u b l i c  b y t e  [] p r o c e s s C l i e n t R e s p o n s e  ( b y t e  [] c l i e n t C e r t B y t e s  , b y t e  [] p a c k e t ,  Long r andB)  

{
t r y

{
C e r t i f i c a t e F a c t o r y  c f  =  C e r t i f i c a t e F a c t o r y  g e t l n s t a n c e ( ” X509 ” ),
B y t e A r r a y l n p u t S t r e a m  b a i s  =  new B y t e A r r a y l n p u t S t r e a m  ( c l i e n t C e r t B y t e s  ),  
X 5 0 9 C e r t i f i c a t e  c e r t  =  ( X 5 0 9 C e r t i f i c a t e ) c f  g e n e r a t e C e r t i  f i c a t e  ( ba i s  ),

b y t e  [] d e c Da t a  =  Enc d e c r y p t D a t a  ( p a c k e t  , c e r t  g e t P u b l i c K e y  ( ) ) ,

b a i s  =  new Byt e  A r r a y l n p u t S t r e a m  ( d e c Da t a  ),
D a t a l n p u t S t r e a m  d i s  =  new D a t a l n p u t S t r e a m ( b a i s  ) ,

Long t e s t R a n d B  =  new L o n g ( d i s  r e a d L o n g ( ) ) ,

l f (» t e s t R a n d B  e q u a l s  ( r andB ))
t h r ow new E x c e p t i o n  ( ’’RANDOMS NOT THE SAME” ),

Secur eRandom r andom =  Sec ur eRandom g e t l n s t a n c e  ( ’’SHA1PRNG” ), 
b y t e [] key =  new b y t e [ 1 6 ] ,
r andom se t  Seed  ( Sys t em c u r r e n t T i m e M i l l i s  ( ) ) ,  

r andom n e x t  By t e s  ( key ) , 

r e t u r n  key ,

}
c a t c h  ( E x c e p t i o n  e )

{
e p r i n t S t a c k T r a c e  ( ) ,

}

r e t u r n  n u l l  ,

}

p u b l i c  b y t e  [] c r e a t e S e r  v i c e R e s p o n s e  ( Long r andA , Long r a n d B ,  b y t e  [] c l i e n t C e r t B y t e s )

{
t r y

}
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3 00

301

302

303

304

305

306

307

308

309

310

311

3 1 2

313

314

315

316

3 1 7

318

319

3 2 0

321

322

323

324

325

320

327

328

329

330

331

332

333

334

335

336

337

338

3 3 9

340

341

3 4 2

343

344

345

346

3 4 7

348

346

C e r t i f i c a t e F a c t o r y  c f  =  C e r t i f i c a t e F a c t o r y  g e t l n s t a n c e  (” X509 ” ),  
B y t e A r r a y l n p u t S t r e a m  b a i s  =  new Byt e  A r r a y l n p u t S t r e a m  ( c l i e n t  C e r t  By  t e s  ),  
X 5 0 9 C e r t i f i c a t e  c e r t  =  ( X 5 0 9 C e r t i f i c a t e ) c f  g e n e r a t e C e r t l f i c a t e  ( b a i s  ),

b y t e  [] e n c Da t a  =  Enc e n c r y p t D a t a  ( r andB t o S t r i n g ( )  g e t B y t e s  ( ) ,  c e r t  g e t P u b l i c K e y  ( ) ) ,  
B y t e A r r a y O u t p u t S t r e a m  baos =  new B y t e A r r a y O u t p u t S t r e a m  ( ) ,
D a t a O u t p u t S t r e a m  dos  =  new D a t a O u t p u t S t r e a m (  baos  ),

sun s e c u r i t y  x509 X500Name lb =  ( s un  s e c u r i t y  x509 XSOOName) m . c e r t  g e t S u b j e c t DN ( ) ,
sun s e c u r i t y  x509 X50OName la =  ( s un  s e c u r i t y  x509 X500Name) c e r t  g e t S u b j e c t D N  ( ) ,

dos  wr i t e L o n g  ( r andB l o n g Va l u e  ( ) )  ,
Sys t em out  p r  i n 1 1 n ( r andB ),

dos  w r i t e U T F ( i b  g e t N a m e ( ) ) ,

dos  w r i t e U T F ( i a  g e t N a m e ( ) ) ,

dos  w r i t e L o n g  ( r andA long Va l u e  ( ) ) ,

dos  w r i t e l n t  ( e n c D a t a  l e n g t h ) ,
dos  w r i t e  ( e n c D a t a  , 0 , e n c Da t a  l e n g t h ) ,

dos  c l o s e  ( ) ,

b y t e  [] t o . r e t u r n  — Enc e n c r y p t D a t a ( b a o s  t o B y t e A r r a y  ( ) ,  m .keys g e t P r i v a t e  ( ) ) ,  
r e t u r n  t o . r e t u r n  ,

, )
c a t c h  ( E x c e p t i o n  e)

{
e p r i n t S t a c k T r a c e  ( ) ,  
r e t u r n  n u l l  ,

}
}

p u b l i c  Long p r o c e s s C l i e n t R e q u e s t  ( b y t e  [] r e q u e s t ,  b y t e [ ]  c l i e n t C e r t  B y t e s )

{
t r y

{
C e r t i f i c a t e F a c t o r y  c f  =  C e r t i f i c a t e F a c t o r y  g e t l n s t a n c e  (" X509 ” ),  
B y t e A r r a y l n p u t S t r e a m  b a i s  =  new Byt e  A r r a y l n p u t S t r e a m  ( c 1 l e n t C e r t B  y t e s  ),  
X 5 0 9 C e r t i f i c a t e  c e r t  =  ( X 5 0 9 C e r t i f i c a t e ) c f  g e n  e r a t e  C e r t i  fi c a t e  ( b a i s  ) ,

b y t e  [] d e c Da t a  =  Enc d e c r y p t D a t a (  r e q u e s t  , c e r t  g e t P u b l i c K e y  ( ) ) ,
B y t e A r r a y l n p u t S t r e a m  e n c l n  =  new Byt e  A r r a y l n p u t S t r e a m  ( r e q u e s t  ),
D a t a l n p u t S t r e a m  e nc Di s  =  new D a t a l n p u t S t r e a m  ( e n c l n  ) ,

b a i s  =  new B y t e A r r a y l n p u t S t r e a m  ( d e c Da t a  ),

{
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35 0  D a t a l n p u t S t r e a m  d i s  =  new D a t a I n p u t S t r e a m ( b a i s  ) ,
351

352 i n t  t a  — d i s  r e a d l n t ( ) ,
353

354 l ong  1 =  d i s  r e a d L o n g ( ) ,
355

356 S t r i n g  i b =  d i s  r e a d U T F ( ) ,
357

358 sun s e c u r i t y  x509 X500Name t o T e s t
3 5 9 =  ( s un  s e c u r i t y  x509 X500Name) m . c e r t  g e t S u b j e c t D N  ()  ,
3 6 0

361 i f  ( ' i b  e q u a l s  ( t o T e s t  g e t N a m e ( ) ) )
362 t h r ow new E x c e p t i o n  ( ’’NOT MEANT FOR ME” ),
3 63

364 i n t  l en2  =  d i s  r e a d l n t ( ) ,
3 65

366 b y t e  [] e n c Da t a  =  new b y t e [ l e n 2 ] ,
3 67

368 d i s  r ead  ( e n c Da t a  ,0 , l en2 ) ,
3 69

3 7 0  b y t e [ ]  dum m yData =  Enc d e c r y p t D a t a ( e n c Da t a  , m .keys g e t P r i v a t e  ( ) ) ,
371  r e t u r n  new L o n g ( l ) ,
3 7 2  }

373 c a t c h  ( E x c e p t i o n  e)
3 7 4  {

3 7 5 e p n n t S t a c k T r a c e  ()  ,
3 7 6  }

377 r e t u r n  n u l l  ,
3 7 8  }

3 7 9  }
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i p a c k a g e  p k i ,
2

s i m p o r t  j a v a  s e c u r i t y  *,
4 i m p o r t  j a v a x  c r y p t o  spec  *,  
s i m p o r t  j a v a x  c r y p t o  *,  
e i m p o r t  j a v a  io *,
7 i m p o r t  l a i k  pkcs  pkcs l O C e r t i f i c a t e R e q u e s t  , 
s i m p o r t  l a i k  a s n l  s t r u c t u r e s  *,
9 i m p o r t  l a i k  a s n l  * ,

10 i m p o r t  j a v a  s e c u r i t y  c e r t  * ,
11
i 2 p u b l i c  i n t e r f a c e  P k i Ba s e  e x t e n d s  S e r i a l i z a b l e
13 {
14 p u b l i c  vo i d  se t C e r 1 1 fi c a t  e ( b y t e  [ ] c ,  b y t e  [] ca ) ,
15

16 p u b l i c  b y t e  [] g e t C e r t B y t e s  ( ) ,

C 3 5 PkiBase java
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i p a c k a g e  p k i ,
2

3 i m p o r t  j a v a  s e c u r i t y  *,
4 i m p o r t  j a v a  s e c u r i t y  i n t e r f a c e s  *,
5 i m p o r t  j a v a x  c r y p t o  spec  *,  
e i m p o r t  j a v a x  c r y p t o  *,
7 i m p o r t  j a v a  1 0  *,
8 i m p o r t  î a i k  pkcs  pkcs l O C e r t i f i c a t e R e q u e s t  ,
9 i m p o r t  î a i k  a s n l  s t r u c t u r e s  * , 

î o i m p o r t  î a i k  a s n l  *,  
î i i m p o r t  j a v a  s e c u r i t y  c e r t  *,
12

13 p u b l i c  c l a s s  Enc
14 {

15 p u b l i c  s t a t i c  b y t e  [] d e c r y p t D a t a (  b y t e  [] d a t a ,  Key k)  t h r o w s  E x c e p t i o n
16 {

C 3 6 Enc java

17 i n t  b l o c k s i z e  =  32,
18

19 By te A r r a y l n p u t S t r e a m  b a i s  =  new B y t e A r r a y l n p u t S t r e a m  ( d a t a  ),
20 O b j e c t l n p u t S t r e a m  oi s  =  new O b j e c t I n p u t S t r e a m ( b a i s  ),
21

22 Ob j e c t  o =  o i s  r e a d O b j e c t  ()  ,
23 C i p h e r  c =  C i p h e r  g e t l n s t a n c e  ( ” RSA” ) ,
24 c m i t  ( C i p h e r  DECRYPT.MODE, k ),
25

20 B y t e A r r a y O u t p u t S t r e a m  baos  =  new B y t e A r r a y O u t p u t S t r e a m  ( ) ,
27

28 w h i l e ( o  ' =  n u l l )
29 {

30 b y t e  [] b y t e s  =  ( b y t e [ ] ) o ,
31

32 b y t e  [] d e c Da t a  =  c d o F i n a l  ( b y t e s  ),
33

34 b aos wr i  t e  ( d e c Da t a  , 0 , d e c Da t a  l e n g t h ) ,
35

36 t r y
37  {

38 o — oi s  r e a d O b j e c t  ( ) ,
39  }

40 c a t c h  ( E x c e p t i o n  e)
41 {

42 o =  n u l l  ,
43  }

44  }

45 r e t u r n  baos t o B y t e A r r a y  ()  ,
4 6  }

4 7

48 p u b l i c  s t a t i c  b y t e [ ]  e n c r y p t D a t a (  b y t e  [] d a t a ,  Key k)  t h r o ws  E x c e p t i o n  

*  {
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50 i n t  b l o c k s i z e  =  32,
51

52 B y t e A r r a y O u t p u t S t r e a m  baos =  new B y t e A r r a y O u t p u t S t r e a m  ()
53  O b j e c t O u t p u t S t r e a m  oos  =  new O b j e c t O u t p u t S t r e a m ( baos  ) ,
54

55 C i p h e r  c =  C i p h e r  g e t l n s t a n c e  ( ” RSA” ),
56

57 c i n i t  ( C i p h e r  ENCRYPTJVIODE, k ) ,
58

i n t  c o u n t  =  0
60

61 f o r ( c o u n t  =  0,  c o u n t  < ( d a t a  l e n g t h  — b l o c k s i z e ) ,  c o u n t  + =  b l o c k s i z e )
6 2  {

63 b y t e  [] e n c Da t a  =  c d o F i  nal  ( d a t a  , c o u n t , b 1 o c k s i  ze ),
64 oos  w r i t e O b j e c t  ( e n c Da t a  ),
65  }

66 b y t e  [] f i n a l - d a t a  =  c d o F i  nal  ( d a t a  , c o u n t  , (  d a t a  l e n g t h  — c o u n t ) ) ,
67 oos w r i t e O b j e c t ( f m a l - d a t a  ) ,
es r e t u r n  b aos t o B y t e A r r a y  ( ) ,
69  }

7 0 }
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