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Abstract

Hemodynamic forces generated by the flow of blood are crucial in maintaining homeostasis 

within the blood vessel wall These forces, namely cyclic strain and shear stress are intricately involved 

in vascular remodeling, a process which underlies the pathogenesis of cardiovascular diseases such as 

atherosclerosis and restenosis Since degradation of the extracellular matrix scaffold enables reshaping of 

tissue, the role matrix metalloproteinases (MMPs) has become the object of intense recent interest in 

relation to physiological and pathological vascular remodeling The culminating data indicates that 

hemodynamic forces are important regulators of MMP expression and activity A more complete 

understanding of the hemodynamic regulation of MMPs may advance the understanding of pathological 

vascular remodeling

We have investigated the effect of cyclic strain on the endothelial cell migration and angiogenic 

activity and the role of gelatinases in mediating these responses We have shown that exposure of bovine 

aortic endothelial cells (BAEC) to cyclic strain promoted migration and tubule formation with concurrent 

increases in MMP-2 and MMP-9 activity Additionally, we have revealed that cyclic strain-induced 

increases in migration and tube formation are dependent on Gi-protein and integrin signaling However, 

cyclic strain stimulated increases in MMP-2 expression involve different signaling mechanisms, which in 

part, stimulate both p38- and ERK-dependent pathways through activation of Gpy and tyrosine kinase in 

BAEC

The participation of gelatinases in strain-induced increases in BAEC migration and tube 

formation was determined by inhibition of MMP activity using either a broad spectrum MMP inhibitor 

(GM6001) or siRNA targeted specifically to MMP-2 or MMP-9 We have shown that cyclic strain- 

induced increases in BAEC migration are independent of MMP activity In addition, we have 

demonstrated that MMP-9 but not MMP-2 is the key angiogenic switch involved in evoking cyclic strain- 

induced angiogenesis

In conclusion, we examined the role of BAEC derived factors in regulating bovine aortic smooth 

muscle cell (BASMC) migration Our data has shown that exposure of BASMC to conditioned media 

from cyclically strained BAEC inhibits SMC migration compared to controls and that MMP-2 is an 

important factor in mediating this inhibition These findings clearly demonstrate that increases in MMP 

expression and activity associated with cyclic strain are important in modulating both BAEC and BASMC 
phenotype
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11 Introduction

Cardiovascular disease (CVD), principally heart disease and stroke, is one o f the 

worlds leading killers for both men and women among all racial and ethnic groups 

According to the World Health Organization, cardiovascular disease claims 15 3 million 

lives a year, or 30% o f all deaths worldwide In America alone treatment o f  these 

conditions costs $274 billion each year Cardiovascular Disease includes dysfunctional 

conditions o f the heart, arteries, and veins that supply oxygen to vital life-sustaining 

areas of the body like the brain, the heart itself, and other vital organs If oxygen doesn't 

arrive the tissue or organ will die Ireland is known to have a particularly high mortality 

rate from CVD especially when compared to other countries o f the European Union 

Vascular diseases currently account for over 40% of all deaths in Ireland and o f this 

ischemic heart disease is by far the most common accounting for 25% of all deaths 

(Table 1 1)

Males % Females % Total %
Vascular Disease 6,835 41 5 6,356 42 7 ! 13,191 42 1
Cardiovascular Disease* 4,350 26 4 3,399 22 9 7,749 24 7
Cerebrovascular Disease 1,073 65 1,507 101 2,580 8 2
Other Vascular Disease 1,412 8 6 1,450 9 8 2,862 9 1
Malignant Neoplasms 4 022 24 4 3,471 23 3 7,493 23 9
Respiratory Disorders 1,183 7 2 1,419 9 5 2,601 8 3
Injuries 1,101 6 7 439 3 0 1,540 4 9  !
Other 3,341 20 3 3,185 2 1 4 6,526 20 8
Total 16,482 ! 100 14,870 100 31,352 100

Table 1 1 Principal causes o f death in Ireland, 1998 Distribution by gender (available 
from http //www mshheart le)

Many risk factors such as elevated cholesterol levels paiticularly LDL, elevated 

blood triglycende levels, smoking, high blood pressure, diet, sedentary lifestyle, obesity 

and stiess aie all causative factors in the development o f CVD Other factors which 

may influence development o f CVD include age, medical history, genetic influences 

and ethnicity Hemodynamic forces within the vasculature may also influence CVD 

These forces associated with the flow o f blood through the vasculature affect the 

initiation and progression o f CVD including atherosclerosis, hypeitension and

1



pathological vasculai remodelling [Lusis et a l , 2000, Frangos et a ! , 1999, Galis et a l , 

2003] The i elevante o f hemodynamic forces to physiological and pathological 

scenanos within the vascuiatuie has gained mcieasmg attention [Itoh et al ,1998, Lijnen 

et a l , 2001 Lusis et a l, 2000] Thus, these foices will be discussed in greater detail in 

the following sections and particularly their connection with matrix metalloproteinases 

(MMPs), a group of enzymes with multiple functions within the vasculature

1 2 Blood Flow

Norm al blood vessels are exposed to two types o f m echanical forces a) 

circumferential stretch acting tangentially on the vascular wall and directly related to 

pressure and dimensions o f the vessel and b) shear stress acting longitudinally at the 

blood/endothelium interface which is related to the velocity o f flow Both o f these 

factors are essential for the maintenance o f a healthy vessel

Blood pressure is described as the force that the circulating blood exerts on the 

walls o f the arteries It is the major determinant o f vessel stretch, which involves the 

rhythmic distension o f the vessel wall Blood pressure creates strain on the vessel wall 

m a d irection perpendicular to the endolum m al surface These forces are 

counterbalanced by mtraparietal tangential forces in longitudinal and circumferential 

directions exerted by different elements o f the vessel wall, opposing the distending 

effects o f blood pressure All elem ents o f the arterial wall are exposed to 

circumferential tension, each layer bearing differing degrees o f this tension The 

tension per unit length can be described by Laplace’s law T = Pr/h where, T is the wall 

tension, P is blood pressure, r is vessel radius, and h is thickness o f the wall Hence 

circumferential force is dependent on blood pressure, vessel geometry, and position 

within the vessel wall [Lehoux et a l , 2003]

Blood flow exerts a frictional force on the lummal surface o f the endothelium 

This frictional drag is referred to as shear stress and is defined m terms o f blood 

viscosity and velocity Laminar blood flow within a vessel can be described by the



equation x = 4\xQ / Jtr3 where x  is shear stress, ¡u is blood viscosity, Q is flow rate and r 

is the vessel radius It is worth noting that the term r is raised to the third power thus 

where Q is constant a small change in r will result m a large change in x  [Lehoux et a l , 

2003]

a)

Figure 1 2 Shear Stress and cyclic strain

a) Diagrammatic representation o f laminar shear stress withm an artery Frictional 

forces between blood and the vessel wall causes a reduction in blood velocity at the 

vessel wall with the fastest blood velocity at the center o f the vessel

b) Blood pressure results in the distension o f the vessel wall in a direction perpendicular 

to the direction o f flow, this pressure causes the circumferential stretch acting on the 

vessel wall



12 1 Circumferential Strain

Thoma m 1893 first observed that blood vessel diameter was regulated by the 

magnitude of blood flow while vessel thickness was dependent on blood pressure This 

observation was confirmed by comparing the thickness o f the pulmonary artery and 

aorta pre and post birth In utero, both vessels experience similar pressures and are 

almost identical in size, however, after birth the aorta thickens proportionally to 

increases in systemic pressure while the pulmonary artery undergoes atrophy following 

the fall m pressure post partum [Leung et a l , 1977]

The relationship between circumferential stress and the structure of the wall has 

been well established Increases m arterial pressure are associated with SMC 

hypertrophy and increases in extracellular matrix (ECM) production Conversely 

decreases in arterial pressure result in vessel atrophy [Bomberger et a l , 1980] In a 

cultured rabbit aorta model it was found that under conditions of low intralum inal 

pressure SMC markers such as, h-caldesmon and filamm were dramatically decreased 

compared to aortas maintained under normal intraluminal pressure [Birukov et a l , 

1998] Continual mechanical stimulation appears to be essential to m aintaining a 

contractile phenotype m SMC Whilst a certain level o f stretching may be essential for 

SMC maintenance, over stretching may initiate adaptive processes [Lehoux et a l , 

1998] Mechanical stretch is a strong determinant o f vascular structure in conjunction 

with autocrine and paracrine factors During arterial stenosis high blood pressure 

proximal to the coarctation is associated with thickening o f the arterial wall while areas 

distal to the stenosis have normal blood pressure and unchanged vessel thickness 

[Tedgui et a l , 1992] It has also been observed that sustained hypertension leads to 

thickening o f the arterial wall due to SMC hypertrophy, hyperplasia and changes in 

matrix proteins leading to altered arterial function [Levy et a l , 1988] Recalling the 

equation T = Pr/h [Lehoux et a l , 2003], it can be seen that in a hypertensive state, m 

order to maintain normal tensile stress m the vessel when blood pressure (P) increases 

so to must the thickness (h) of the vessel with a resultant reduction in vessel radius(r)

4



The fact that endothelial cells are the principal recipients o f  shear stress does not 

imply that mechanical stretch has no influence on the endothelium. Cyclic stretch 

increases EC sensitivity to shear stress resulting in a lowered threshold level required to 

provoke structural changes and ultimately, both cyclic stretch and shear stress are 

required to produce maximal responses in the vessel [Zhao et al., 1995]. The effects o f  

circumferential stress on ECs have been investigated by applying cyclic stretch to 

endothelial cells cultured on an elastic membrane mounted in a stretch device.

Bk>Rex® 
CUttur« Plate

BioFlex® Baseplate & Gasket

SIDE V)fW TOP VIEW

\ ■■■■■■....... .— Hwg-I .Hr■ HO
0mm  r«**

Fig 1.3: In vitro cyclic strain device

Studies from such in vitro experiments demonstrate that cyclic strain increases 

the expression o f  nitric oxide synthase (NOS), matrix metal loproteinase-2 (MMP-2), 

m atrix m etalloproteinase-14 (MM P-14), m onocyte chemotactic protein-1 (M CP-I), 

platelet derived growth factor-BB (PDGF-BB), endothelin - l(E T -l) , intracellular 

adhesion m olecu le-1 (ICAM -I), and plasm inogen activator inh ib ito r-1 (PAI-1) 

[Awoleski et a l ,  1995; Cheng et al., 1996; Cheng et a l ,  1996; de Jonge et al., 2002; 

Sumpio et al., 1998; Wang et al., 2003; Wung et al., 2001]. The complexity o f  these 

cyclic strain-induced events have not been completely elucidated but the ability o f  cells 

to response to cyclic strain is believed to play a role in a number o f pathologies 

including atherosclerosis, hypertension or restenosis following balloon angioplasty.
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The oxidative state o f the blood vessel is a m ajor contributor to vascular 

remodelling and disease Under diseased conditions, levels o f reactive oxygen species 

(ROS) have been found to be increased, for example from macrophage foam cells, the 

interaction o f NO with these ROS such as superoxide may result m the formation o f 

peroxym tnte with associated rupture m athersclerotic plaques [Rajagopalan et a l , 

1996] ROS have been found to be sensitive to changes in the hem odynam ic 

environment Cyclic strain has been shown to increase levels o f ROS ROS are 

believed to be an important m ediator in modulating signaling pathways and gene 

expression by redox sensitive m olecules such as PYK2 [Cheng et a l , 2002] 

M echanical stretch was found to increase expression o f MMP-2 via a mechanism 

involving reactive oxygen species derived from NAD(P)H oxidase [Grote et a l , 2003] 

Cyclic stram-mduced increases in ROS have been linked to the regulation of a number 

o f vasoactive compounds, signaling molecules and transcription factors [Awoleski et 

a l , 1995, Chien et a l , 1998, Cheng et al 1996, W ang et a l , 2003, Wung et al 

2001,Wung e ta l ,  1999]

Cellular responses to cyclic strain may not be mediated solely by ROS The 

release of NO from endothelial cells in response to changes in mechanical strain was 

one of the first responses identified [Leung et a l , 1977, Galis et a l , 1998] Other 

molecules secreted in response to cyclic strain include endopeptidases, Et-1, P A I-1 ,11-8 

and M CP-1 [Sum pio et a l , 1998, Cheng et al , 1996, O kada et a l , 1998] 

Intracellularly cyclic strain is responsible for the recruitment of a variety of signaling 

m olecules Sum pio et al reported that cyclic strain increases the tyrosine 

phosphorylation of focal adhesion kinase (FAK) and paxillin in ECs with a concurrent 

cell elongation and the alignment of F-actin, FAK, and paxillin Cyclic strain has also 

been found to activate extracellular signal-regulated kinase (ERK), c-jun N-terminal 

kinases (JNK), and p38 [Wung et a l , 1999, Kito et a l , 2000, Li et a l , 1999] This 

family of enzymes is involved in recruiting the transcription of a number of cyclic 

strain-induced genes and will be discussed in greater detail in section 1 4



exposed to turbulent flow, oscillatory shear stress and eddy currents all o f  which can 

abrogate the protective effects o f lam inar shear One o f the m ost dram atic 

demonstrations o f flow-dependent regulation o f vessel structure is the arteriovenous 

fistula Arteriovenous fistulae (AVF) are characterized by abnormal shunting o f blood 

between the arterial system and the venous system, without the presence o f a normal 

intervening capillary bed The capillary bed represents the source of resistance to blood 

flow in the circulatory system, as such AVF are low resistance, high flow lesions In 

this model the flow rate can be amplified by a factor o f eight, the increase m shear stress 

subsequently being compensated for by an increase m vessel diameter [Tronc et a l , 

1996] This can be explained by flow-associated release o f vasoactive compounds with 

allow reorganization o f the vessel structure As vessel diameter increases the wall shear 

stress is reduced and so the stimulus for vessel remodeling is diminished

In vitro studies in which endothelial monolayers have been subjected to defined 

levels o f shear stress have been essential to our understanding o f shear stress related 

molecular responses The complexity o f the shear stress response is only now being 

elucidated and some o f the best-characterized responses include, reorganization o f actin 

containing stress fibers, alterations in metabolic activities and changes in cell cycle 

kinetics [Davies et a l , 1993, Davies et a l , 1995] Shear related effects can be broadly 

categorized into two responses, a) reorganization or regulation o f pre-existing proteins 

and b) de novo protein synthesis and gene expression, the latter is usually associated 

with delayed or chronic shear-mediated responses

One o f the best-described responses, which falls into category a), is the 

regulation o f endothelial nitric oxide synthease (eNOS) eNOS catalyses the formation 

o f NO from L-argm me, a process which can occur within m illiseconds Flow- 

dependent activation of eNOS has been observed both in vitro and in vivo, and the 

resultant release o f NO has been related to SMC relaxation as a response to increases in 

flow In conjunction with flow-mediated increases in vasodilators such as NO, levels of 

vasoconstrictors including ET-1, have been found to be decreased A number o f genes 

involved in thrombosis, homeostasis, and inflammation such as thrombomodulin, tissue
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plasm inogen activator (t-PA) [Sjogren et a l , 2000] and vascular cell adhesion 

molecule-1 (VCAM-1) [Chiu et a l , 2004], have all been identified as being shear 

responsive Thus, sheai stress profoundly affects the health and functions o f the 

endothelium

Exposure o f the endothelium to fluid mechanical forces may alter the rate of 

transcription o f a specific subset of genes Investigation o f the promoter regions o f 

these genes has identified the presence of a cis-element, which is inducible by shear 

stress The identity o f a shear stress response element (SSRE) as GAGACC was 

achieved by a series o f transfections involving deletion mutants o f the PDGF-B 

promoter [Resmck et al , 1993] Other examples o f SSREs include a divergent TRE in 

the prom oter region o f MCP-1 with the sequence TGACTCC, necessary for shear 

mducibihty [Shyy et a l , 1995] Functional analysis o f the tissue factor (TF) gene has 

identified a G C -nch region containing three copies o f the Egr-1 and Sp-1 sites 

Deletion o f the Sp-1 but not the Egr-1 attenuates shear stress activation o f this gene [Lm 

et a l , 1997] Thus it can be seen that multiple cis-elements may regulate shear stress 

responsiveness in different genes

The response o f EC gene expression e g c-fos, ICAM-1 and C-type natriuretic 

peptide, to shear stress is known to be a function o f the magnitude o f the force Gene 

activation in vascular ECs may vary as a function of shear magnitude For example, t- 

PA expression is only increased above 5dynes/cm2 [Diamond et a l , 1990] whereas ET- 

1 secretion is increased at shear stresses less than 5 dynes/cm2 [Kuchan et a l , 1993] 

This may be explained by the fact that the magnitude o f shear stress may vary 

depending on the location within the vasculature Therefore in situations where shear 

stresses may be low increases in ET-1 will promote vasoconstriction to increase blood 

flowrate through that section of the vessel The use o f DNA microarray technology has 

perm itted  analysis o f extensive differential gene expression in response to 

hemodynamic forces Fifty-two flow sensitive genes have recently been identified in 

HUVECs with prostaglandin and cytochrome p450 the most strongly up-regulated and 

ET-1 and MCP-1 the most strongly down-regulated [McCormick et al, 2001] 143
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genes have been identified in HUVECs, which are differentially expressed in the 

presence o f static, laminar, or turbulent flow [Garcia-Cardena et a l , 2001] In vivo , the 

expression o f a num ber o f genes, such as transform ing growth factor-(3 (TGF-(3) 

[Negishi et a l , 2001], PDGF-A, PDGF-B [Tulis et a l , 1998], and urokinase 

plasminogen activator (uPA) have been found to be shear sensitive Further studies 

involving microarray technology may lead to a more complete elucidation o f cellular 

responses to mechanical forces by identifying the cellular participants in regulating cell 

function m hemodynamic environments Although there may be some discrepancies 

between using vein and artery preparations or between in vitro and in vivo models these 

studies clearly indicate the importance of mechanical forces to gene regulation within 

the vasculature

Hemodynamic forces such as cyclic strain and shear stress can induce changes 

in autocrine and paracrine hormonal factors Alterations in these factors allow blood 

vessels to adapt to variations in mechanical forces, the objective of these changes being 

to return the vessel to its normal hemodynamic state 4 The ability o f vessels to detect 

and respond to changes in their hemodynamic environment involves a process referred 

to as mechanotransduction, which will be discussed m the following section

1 3 M echanotransduction

Vascular cells respond to mechanical forces namely cyclic strain and shear 

stress Before a vascular cell can respond to a hemodynamic stimulus it must first o f all 

be able to detect them This is facilitated by mechanically sensitive receptors present in 

vascular cells These receptors, which fall into a number o f categories, can then elicit a 

signaling pathway, which culminates in the recruitment o f an effector molecule(s) to 

mediate a cellular response This process is referred to as m echanotransduction  

Mechanical forces initiate complex signal transduction cascades leading to functional 

changes in the cell, often triggered by receptors such as G-proteins, integrms, and 

protein tyrosine kinases, which will be discussed in greater detail
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Mechanical Force, 
Cyclic Strain/Shear Stress

Essential to the coordination o f  cellular functions in response to hemodynamic 

stimuli is the ability o f  cells to com m unicate with each other. The process o f  

intercellular signaling is achieved through num erous m olecules, which interact 

specifically with specialized docking sites on the cell surface, called receptor proteins. 

The source o f  these molecules may be; i) autocrine secretion o f  a signaling molecule, 

that targets the secretory cell itself ii) paracrine secretion o f  a signaling molecule that 

targets a cell close to the signal releasing cell or iii) endocrine secretion o f  a signaling 

molecule from a gland, that targets a cell distant from itself. Intracellular signaling, 

results in the coordination o f  and synchronization o f cell function within the vessel wall. 

Following the binding o f  a ligand to a receptor, intracellular effector molecules are 

activated leading to alterations in cell structure and function [Stone et al., 1998].
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A number of receptors exist which may exhibit mechano-sensitivity,

• Receptors linked to G-proteins - the largest group o f plasm a m embrane 

receptors, over 1000 such receptors have been identified to date with a diverse 

range of potential agonists

• Integrins - Integrms comprise a large family o f cell surface receptors most 

widely known for their role as receptors for ECM proteins

• Enzyme-linked receptors -  Receptors with intrinsic enzyme activity

I  Receptors with intrinsic kmase activity these receptors have an intrinsic 

tyrosine kmase activity within the molecule itself M embers o f this 

group include the epidermal growth factor (EGF), the fibroblast growth 

factor (FGF) and the platelet growth factor (PDGF)

I I  Receptors with associated tyrosine kinase activities These receptors do 

not possess intrinsic tyrosine kinase activity but have an associated 

partner protein which does Examples o f this class o f receptors include 

those responsible for binding prolactin, growth hormone and numerous 

cytokines

in Receptors with intrinsic protein tyrosine phosphotase activity These 

receptors play a crucial role in dephosphorylating phosphotyrosine 

residues in signaling pathways An example o f this class o f receptor is 

the CD45 protein o f T lymphocytes 

iv  Receptors with intrinsic serine/threomne kinase activities this is a broad 

class of receptors, which together comprise of the TGF-j3 superfamily

• Ion channel receptors - In addition to being regulated by G-proteins some ion 

channels function as receptor molecules them selves Examples o f these 

receptors include serotonin-gated cation channels and acetylcholine receptor

13 1 Heterotnmenc G-proteins

G-protem signaling represents a highly sophisticated molecular system with the 

ability to receive, integrate, and process information from extracellular stimului It 

comprises o f a G-protem  coupled receptor (GPCR), the hetero tnm enc G-protem
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complex and the effector(s) in addition to the more recently identified regulators o f G- 

protem signaling (RGS-proteins) and activators o f G-protein signaling (AGS-proteins) 

[Offermanns et al 2003] GPCRs play a pivotal role in cardiovascular signaling

GDP+Pi

Fig 1 5 G-protein coupled receptor comprising o f seven transmembrane domains 

Following binding o f a ligand, the activated receptor catalyses GDP/GTP exchange at 

the a  subunit which promotes dissociation of the complex, the a  and (3y subunits which 

subsequently activate their effectors Following hydrolyses o f GTP by the a  subunit the 

heterotnmer reassociates

All o f these receptors have seven membrane spanning elem ents that use 

intracellular loops and their C-termmal tails for interaction with heterotnm eric G- 

proteins, which consists o f a a ,  (3 and y subunits The p and y subunit forms an 

undissociable complex which represents a functional subunit Ligand activated
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receptors catalyse the GDP/GTP exchange at the a  subunit o f a coupled G-protein and 

promote dissociation o f the a  and (3y components [Wieland et a l , 2003] The duration 

o f a G-protein activation is controlled by the intrinsic GTPase activity o f G a  

Following GTP hydrolysis the G a  subunit returns to the GDP-bound conformation and 

reassociates with the G(3y subunit
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Figure 1 6 G-protem subunits their effector molecules and downstream processes 

( available from http //www genmapp org/)

More than twenty G-protem a-subunits have been described which have been 

loosely divided into four families based on structural and functional homologies, a ,/0, 

a s, a q, and cti2 The majority o f GPCRs are capable o f activating more than one G-
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protein subtype, which leads to initiation of various signaling cascades There are some 

characteristic patterns o f G-protem activation by specific receptors, the cellular or 

physiological effect of a receptor is dependent on which G-protem sub-type it is coupled 

to

The a  subunits

• Gas- family There are two members o f this family, a s and a 0if as well as four 

known splice variants Upon activation, this group stimulates adenylyl cyclase 

to increase levels o f intracellular cAMP and to activate calcium channels a s is 

ubiquitously expressed while a 0if  is restricted to neuronal cells specifically 

olfactory sensory neurons

• Gai/o family This family consists o f a ,i, a , 2 , a l3, a 0i, a o2, a trod, «tcono «gust 

and a z all o f  which are highly homologous and have the ability to inhibit 

adenylyl cyclase, m addition to activation o f potassium channels The high 

degree o f hom ology between sub-types may suggest partially  redundant 

functions Expression o f the various sub-types may be very diverse 

depending on tissue examine e g a , 2 is predominant in the mammalian heart A 

defining characteristic o f this family o f a,/0 subunits is sensitivity to pertussis 

toxin Pertussis toxin is produced by Bordetella pertussis and catalyzes the 

adenosine diphosphate (ADP)-nbosylation o f a , and a 0 subunits at a cysteine 

residue near the C-terminus resulting in uncoupling of receptor and G-protem 

a z unlike the other members of this family has been found to be pertussis toxin 

insensitive and is expressed in various tissues It can inhibit adenylyl cyclase 

but its physiological function is somewhat ambiguous, although a z deficient 

mice point to roles in platelet activation

• Gaq family This family stimulates phosphohpase C in a pertussis-toxm  

insensitive manner a q and a n  are ubiquitously expressed and receptors 

activating a q family members do not discriminate between a q and a n  [Wange et
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a l , 1991] a  1 5 / 1 6  are only expressed m hematopoietic cells and a n  is restricted to 

the kidney, lungs and testis 

• Gal2 family a l2  and a l3  constitute the members of this family and appear to 

be widely expressed The function o f these proteins is somewhat unclear, one 

recently discovered function is the interaction o f these proteins with cadherms 

causes the release of transcriptional activator p-catemn [Meigs et a l , 2001]

The Gpy subunit

This complex is assembled from a repertoire o f five P subunits and twelve y 

subunits The sequence similarity is higher between p subunits (79-90% homology) 

than y subunits and it is not yet clear how many combinations will actually form stable 

dimers [Clapham et a l , 1993] p-subumts are believed to posses a propeller structure 

formed by seven p sheets The y subunit is located at one end o f the propeller and 

associates with the p-subunit by a coiled coil structure [Bohm et a l , 1997] py 

Sensitive effectors include adenylyl cyclase, phospholipase C, phospholipase A, 

potassium channels, a calcium pump, and phosphomositide 3 kinase (PI-3 kinase) [ 

Tang et a l , 1991, Exton et a l , 1996, Yamada et al 1989, Lotersztajn et a l , 1992] 

With a few exceptions there appears to be no major differences between different py 

combinations m their ability to activate effector enzymes

13 12 Heterotrimenc G-proteins in Mechanotransduction

G-protems have been implicated in the transduction o f number o f flow-induced 

responses in vascular cells G-protein activation by mechanical forces represents one of 

the earliest mechanotransduction events reported In both cyclic strain and shear stress 

models the use o f photoreactive radiolabeling and immunoprecipitation has identified 

G a q/a ii, Ga,i and G a,3 /a 0 as the G proteins activated This indicates that both PTX- 

msensitive (G a q) and PTX-sensitive (Ga,) subunits are involved in this rapid response 

[Gudi et a l , 1996, Clark et a l , 2002, Gudi et a l , 1998] Cyclic strain activation of G- 

protems has been found to be dependent on the magnitude and rate o f the strain [Clark
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et a l , 2002, Gudi et a l , 1998] When G proteins are isolated and reconstituted in a 

phospholipid bilayer in the absence o f cytoskeletal elements or other receptors, G a q and 

Ga, respond specifically to fluid shear stress Cellular localization and rapid activation 

strongly implicate G proteins as a primary sensor o f hemodynamic forces [Gudi et a l ,

1996] G-protems may detect mechanical forces via GPCR or may be stim ulated 

directly by the deform ation o f either the actin cytoskeleton or the m em brane 

phospholipid bilayer during exposure to such stimuli Gudi et al dem onstrated the 

ability o f the phospholipid bilayer to mediate the shear stress-induced activation o f 

m em brane-bound G proteins in the absence of protein receptors and that bilayer 

physical properties modulate this response

Shear stress and cyclic strain-induced activation of G-protems results in several 

flow-initiated responses which function in the regulation o f vascular tone, including 

release o f vasodilators such as NO and PGI2 or vasoconstrictors such as ET-1 [Liu et 

a l , 2003, Pirotton et a l , 1987] Changes in G-protem expression have been observed 

within the physiological range o f cyclic strain and shear stress These changes have 

been correlated with enhanced NO and PGI2 release as well as increased G-protem 

functionality [Redmond et a l , 1998,] Cyclic strain has been found to activate all the 

members o f the MAP kinase family Cyclic strain activation of the different members 

o f this family follows different temporal and magnitude dependent patterns [Kito et a l , 

2000] Activation o f Ras and Rac following exposure to cyclic strain has been found to 

precede MAP kinase activation [Li et a l , 1999] More recently, several studies have 

shown the activation o f the mitogen-activated protein kinase pathway in response to 

shear stress is dependent on G-protem, protein kinase and a tyrosine kinase [Ishida et 

a l , 1996, Takahashi et a l , 1996] Gudi et al (2003) found that G-protems mediate the 

rapid activation of RAS by fluid shear stress This activation is believed to occur via 

the Gpy subunit dissociated from flow activated Gaq Similarly, Jo et al (1997) found 

that the Gpy subunit was involved in the activation o f JNK in response to shear stress 

Flow-mduced increases in angiogenesis has been linked with G-protem  signaling 

interestingly this response was found to be attenuated when Gal proteins were inhibited 

but intensified when the G(3y subunit was inhibited, indicating that both subunits are
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involved in regulating flow-induced angiogenesis [Cullen et a l , 2 0 0 2 ] G-proteins play 

a vital role in the detection of mechanical signals which mediate cell function such as 

angiogenesis, SMC proliferation, release of vasodilators such as NO and PGI2 and 

activation of intracellular pathways such as the MAP kinase pathway

Clinical situations that highlight the importance of G-protein signaling within 

the vasculature include mtimal hyperplasia, cardiac hypertrophy, and vascular 

restenosis Inhibition of the G|3y subunit by the (3ARK-ct (a G(3y subunit scavenger) 

was found to inhibit vein graft mtimal hyperplasia and subsequent vein graft failure 

[Davies et al 1998] Similarly a novel receptor, the mtimal thickness-related receptor 

(ITR) which has the characteristic seven transmembrane domains of GPCRs was found 

to be increased m mtimal thickening and ITR-knockout mice were resistant to mtimal 

thickening [Tsukada et a l , 2003] G aq inhibition or downregulation of GPCR by 

overexpression of GPCR kinase-2 (GRK-2) were found to inhibit cardiac hypertrophy 

and SMC proliferation m neointimal hyperplasia [Keys et a l , 2002, Peppel et a l ,

2000] The extensive study of G-protein activation during different hemodynamic 

conditions both in vivo and in vitro has highlighted their importance in the process of 

mechanotransduction

13 2 Integrms

Integrms comprise a large family of cell surface receptors that are found in a 

variety of animal species They are noncovalent heterodimeric receptors, the majority 

of which bind to extracellular matrix proteins The heterodimer comprises of one of 

eighteen a  and one of eight (3 subunits not including splice variants Each possible 

combination of subunits has its own binding specificity and signalling properties 

[Giancotti et a l, 1999] These subunits can form twenty four different integrms, sixteen 

of which are reportedly involved in the vasculature with seven expressed in endothelial 

cells [Rupp et al 2001]
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Each subunit consists of a large NH2-terminal extracellular domain, a single 

membrane spanning domain and a COOH-termmal cytoplasmic tail [Shattil et a l ,

1997] Integrms are most widely known for their role as receptors for ECM proteins, 

such as fibronectin, vitronectin, collagen, lammin, fibrinogen, thrombospondm and 

osteopontin Most integrms have the ability to recognise several ECM proteins and 

most ECM proteins will bind more than one mtegrin

ß chain a chain Ligands
ßi a l Collagens, Lamimns

a l Collagens, Lainmins
a3 Laminins, Fibronectm, 

Thrombospondm
a4 Fibronectm, VCAM
a5 Fibronectin
a6 Latmnms
a l Lamimns
a8 Fibronectm, Tenascm
a9 Tenascin
alO Collagens
a l l Collagens
av Fibronectm, Vitronectin

ß2 aL ICAMs
aM Fibrinogen, ICAMs
aX Fibrinogen
aD VCAMs, ICAMS
allb Collagens* Fibronectm, 

Vitronectin, Fibrinogen, Von 
wiHebrand factor, 
Thrombospondm

ß3 av

i

Fibronectm, Vitronectin, 
Fibrinogen, Von willebrand 
factor, Thrombospondm

ß4 a6 Lamimns
ß5 av Vitronectin
ß6 av Fibronectm, Tenascin
ß7 a4 Fibronectm, VCAM

aE E-cadherin
ß8 av Collagens, Lamimns, Fibronectm

Table 1 2 The 24 possible mtegrin subunit combinations and their potential ligands 

(available at http //integrms hypermart net)
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Integrm signalling is a crucial component in development, maintenance and 

function of the vascular system [Ruoslahti et a l , 1997] Binding of an extracellular 

ligand to the integrin results in localised clustering of mtegrms m the plasma membrane 

Integrins have the unique characteristic that they can signal through the cell membrane 

in either direction, essentially forming a bridge between the ECM and the cell 

cytoskeleton Integrins may act like a traditional receptor in binding an agonist and 

activating an intracellular response The cytoplasmic tail of mtegrms are generally 

devoid of enzymatic activity As a result of this, integrins transduce signals via adaptor 

proteins which connect the integrm to the cytoskeleton, cytoplasmic kinases and 

transmembrane growth factors [Giancotti et a l , 1999] Integrins can also elicit an 

extracellular effector response coincident with ligand engagement Ligand binding is 

tightly regulated by cellular signalling mechanisms m a process referred to as integrm 

activation or inside-out signalling Thus intracellular signals are translated into an 

extracellular effect Integrm activation can therefore result in either changes m the 

integrm affinity or avidity Affinity refers to mtegrin/ligand binding due to the 

conformation of the integrm whereas avidity refers to integrm clustering resulting m 

increased ligand binding [Shattil et a l , 1997]

Fig 1 7 Integrm comprising of alpha and beta chains linked to the actin cytoskeleton 

via adaptor proteins and the ECM
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Integrms are capable of eliciting a signal response by associating with kinases 

through adapter proteins or as part of complexes with growth factor receptors Receptor 

tyrosine kinases (RTKs) are capable of physically interacting with integrms In 

migrating EC stimulated with PDGF-BB, the av|33 mtegrm was found to coprecipitate 

with the PDGF recpetor (PDGF-Rp) [Woodward et a l , 1998] The VEGF receptor 

(VEGFR2) was found to co-precipitate with the avp3 mtegrm When this association 

was inhibited by neutralizing antibodies there was a marked reduction in cell migration 

and proliferation [Soldi et a l , 1999] Binding of mtegrm receptors by either ECM 

components or antibodies has been found to stimulate the phosphorylation of EGF 

receptor leading to activation of the MAP kinase pathway Protein levels and mRNA 

expression of membrane type-1 MMP can be altered by mtegrm activation Other 

membrane proteins such as urokinase plasminogen activator receptor (uPAR), CD47, 

CD36, and CD46 can exist as mtegrm associated proteins which modulate mtegrm 

responses and regulate intracellular signalling Integrm signalling has been implicated 

in a variety of cellular responses such as modulation of cyclin-dependent kinases in cell 

proliferation, regulation of cell death by inhibiting pro-apoptotic proteins such as Bcl-2, 

and regulation of cell migration through activation of the Rho-family of proteins 

[Schwartz et a l , 2001, Aoudjita et a l , 2001, Keely et a l , 1997]

13 2 1 Integrms in Mechanotransduction

The ECM is an important contributor to mechanotransduction, containing 

components which are displaced by pulsatile stretch and shear stress and which interact 

with integrms Mechanical stresses can stimulate conformational activation of integrms 

and increase cell binding to the ECM Evidence for mechanical activation of integrms 

is provided by both direct assessment of mtegrm conformational changes in response to 

these forces and blockade of the induced responses by antibodies or blocking peptides 

such as the Arg-Gly-Asp (RGD) peptide [Lehoux et a l , 1998]

SMC grown on fibronectm or vitronectin and exposed to cyclic strain had 

increased cellular proliferation, which, can be attenuated by incubating the cells in the
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presence of (35 or av(33 blocking antibodies Cyclic stretch induces expression of the 

SM-1 isoform of myosin heavy chain in SMC grown on lamirun rather than collagen or 

fibronectin In SMC plated on collagen, serum induced expression of c-fos and cell 

proliferation is equal in strained or unstrained cells, however when grown on elastin 

stretch abated SMC proliferation Variations in cellular response depending on the 

composition of the ECM highlights the importance of which mtegrin is activated during 

the cells exposure to cyclic strain [Lehoux, et a l , 2003]

Shear stress also induces mtegrin specific signaling cascades The positive 

lmmunostaining of WOW-1, which reacts specifically with unoccupied av03 mtegrin in 

a high-affmity state, provides direct evidence of mtegrin activation [Pampori et a l ,

1999] Tzima et a l , (2001) have shown an increased lmmunostaining of WOW-1 in 

sheared ECs, indicating a modulation of mtegrin affinity by shear stress Binding of pi 

and p3 has demonstrated that shear stress causes an increase in mtegrin avidity in ECs 

Blocking mtegrms with RGD peptide abolishes the shear stress-induced secretion of 

basic fibroblast growth factor [Gloe et a l , 2002] and the anti-apoptotic effect of shear 

stress [Urbich et a l , 2000] In addition to modulating the avidity and affinity of 

mtegrms, shear stress also increases the mRNA and protein levels of the a5 and pi 

mtegrms in ECs [Urbich et a l, 2000]

Disturbances m mtegrin-matnx interactions may contribute to many vascular 

pathologies Balloon angioplasty in rat carotid arteries has been found to result in 

increased production of MMPs m SMC concomitant with increases in p3 mtegrin 

expression and SMC migration This supports the idea that mtegrms play an important 

role in MMP-dependent SMC migration associated with restenosis following balloon 

angioplasty [Bendeck et a l , 2000] Blockage of this response may be a valuable 

approach to alter late arterial narrowing [Slepian et a l , 1998] Many 

mechanically-activated signaling events depend on the actin-based cytoskeleton FAK 

and She are two molecules associated with both the cytoskeleton and mtegrms that have 

been shown to mediate the shear stress activation of downstream mitogen-activated 

protein kinases (MAPKs) In addition these molecules have an increased association
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with mtegrins in response to shear stress [Chen et a l , 1999] These molecules may 

elicit their effect through effector molecules including Rapl, which is a member of Ras 

family of G proteins An intact actin-cytoskeleton is necessary for many, if not all, 

mechanotransduction processes One possible explanation is that the cytoskeletal 

network facilitates the translocation of various signaling molecules from the focal 

adhesion site to the cytoplasm The tensegrity (tensile-integrity) model suggests that the 

F-actm can be used for transmitting forces from mtegrins to intracellular organelles 

[Stenmark et a l , 1997] Integrm signaling is an integral part of mechanotransduction 

lntegrin signaling is a complex scenario in which crosstalk between different 

mechanoreceptors may occur e g co-precipitation with PDGFR or activation of G- 

protems such as RhoA Re-arrangement of the cytoskeleton may intensify signaling by 

integrm clustering in response to mechanical forces Similarly variations in the ECM 

composition, which may also be changed by mechanical stimuli, can cause changes in 

integrm avidity When considering all these factors it can be concluded that the cell in 

its entirety may be considered as a mechanosensor, which, alters its cytoskeleton, the 

composition of the ECM and cross talk between receptors m response to mechanical 

stimuli to maintain the homeostasis within the vascular wall

13 3 Protein Tyrosine Kinases (PTK)

Protem tyrosine phosphorylation has been established as a crucial step in the 

regulation of normal cell proliferation, migration, differentiation, and survival Specific 

tyrosine phosphorylation events are triggered by extracellular stimuli such as 

hemodynamic stimuli and growth factors that are processed by intracellular signal 

transducers [Waltenberger et a l , 1999] Thus, protem tyrosine kinases play an 

important role in the signaling process This can be demonstrated by inhibition of shear 

stress induced ERK and INK activation by gemstein, a PTK inhibitor PTKs are crucial 

in the shear stress regulation of cell shape and stress fibers Cellular PTKs are generally 

divided into two major categories, l ) receptor tyrosine kinases and 11 ) nonreceptor 

tyrosine kinases



1) Receptor tyrosine kinases

These enzyme linked membrane receptors are distinguished by the presence of 

an intrinsic tyrosine kinase activity Receptors of this class generally respond to 

circulating hormonal stimuli which trigger the activation of intracellular signalling 

pathways leading to cell shift in metabolism, proliferation and/or differentiation 

Members of this family of receptors include the insulin-like growth factor receptor 

(ILGFR), the epidemal growth factor receptor (EGFR) and the platelet derived growth 

factor receptor (PDGFR) These receptors have an extracellular domain responsible for 

the binding of a ligand, a transmembrane domain and an intracellular domain with a 

tyrosine kinase activity Phosphorylation of tyrosine is a tightly regulated process 

involving interplay between tyrosine kmases and tyrosine phosphatases

One of the best characterised members of this family of receptors is the insulin 

receptor This receptor exists as a heterodimer consisting of two a  and two p chains 

The a  domains bind insulin Following the binding process a conformational change 

occurs in the p chains and results m the autophosphorylation of the cytoplasmic domain 

Autophosphorylation causes the activation of the tyrosine kinase activity, in addition to 

creating binding sites for intracellular adapter molecules which bring other signalling 

molecules into close proximity which are subsequently recruited and activated Other 

members m this family of receptors exist as monomers m the cell membrane e g EGF 

receptor In this case binding of a ligand to the receptor leads to dimenzation of two 

receptors, the tyrosine kinase activity of the dimer is subsequently activated and leads to 

activation of downstream signalling cascades [Stone et a l, 1998]
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Fig 1.8: Activation of the receptor by ligand binding brings about a conformational 

change in the receptor leading to dimerization and phosphorylation of a tyrosine(s) on 

the tyrosine kinase domain of the receptor. This results in the recruitment of other 

signaling proteins involved in the signaling cascade (http://www.uic.edu)

2) Non receptor tyrosine kinases:

Unlike RTKs this class of PTK are intracellular enzymes which possess 

an intrinsic tyrosine kinase activity but that do not have an extracellular domain. These 

enzymes may be activated in response to a number of stimuli. Examples of these 

molecules include the FAK, src and Jak families. These molecules may phosphorylate 

receptors, which lack intrinsic tyrosine kinase activity or may recruit other downstream 

signaling molecules such as PI-3 kinase [Stone et al., 1998].

http://www.uic.edu


13  3 1 PTKs in Mechanotransduction

Recent reports indicate that the activities of PTKs in cardiac myocytes, 

platelets, and ECs are increased by mechanical stimuli such as cyclic stretch and shear 

stress [Sadoshima et a l , 1993, Ishida et a l , 1996] PTKs seem to play important roles 

in the signaling events elicited by mechanical forces Tyrosine kinases have been 

implicated in hemodynamic force-induced changes in EC function [Ravichandran et a l ,

2001] Shear stress induced a rapid and transient tyrosine phosphorylation of Flk-1 and 

its concomitant association with the adaptor protein She [Labrador et a l, 2003, 

Ravichandran et a l, 2001] The adapter protein She is implicated m signaling via many 

different types of receptors, such as growth factor receptors, antigen receptors, cytokine 

receptors, G-protein coupled receptors, hormone receptors, mtegrins and tyrosine 

kinases [Lopez-Ilasaca et a l , 1998] PTK mediated mechanotransduction often 

involves the participation of other receptors such as mtegrins and G-proteins 

[Woodward et a l , 1998, Soldi et a l , 1999, Linseman et a l , 1995, Eguchi et a l , 1998, 

Zwick et a l, 1997] Based on dominant negative studies and mouse embryos deficient 

in ShcA, a clear role for She m leading to ERK activation has been established 

[Awoleski et a l , 1994] Moreover, cyclic strain has been shown to induce PYK2 

activity m EC [Cheng et a l , 2002]

Focal adhesion associated tyrosine kinases, eg, FAK and c-Src, are rapidly 

activated in ECs by shear stress [Li et a l , 1997, Jalali et a l , 1998] Activation of FAK 

has been linked to recruitment of MAP kinases via the growth factor receptor binding 

protein 2 (Grb2) In addition to this FAK signaling has been associated with EC 

directional migration following mechanical stimulation [Polanowka-Grabowska et a l , 

2003]

p60src plays a cntical role in the shear stress activation of MAPK pathways and 

induction of Activating Protein-1 (AP-1)/TRE and Elk-l/SRE-mediated transcription in 

ECs [Jalali et a l , 1998] Flow mediated activation of c-Src has also been found to be 

dependent on ROS [Tai et a l , 2002] Tyrosine kmase phosphorylation of eNOS is

96



believed to play an important role m shear stress-induced increases in NO production 

[Corson et a l, 1996] Inhibition of these tyrosine kmases with gemstein, tyrphosin A25 

ctc can prevent cyclic strain mediated gene induction of IL-8 and MCAF/MCP-1, ET-1 

mediated contraction or COX-1 involvement m platelet reactivity and may indicate a 

novel target for therapeutic intervention [Okada et a l , 1998, Zubkow et a l , 2000, 

Santos et a l , 2000] Clinically, PTKs such as IGFR, PDGFR and FGFR have been 

linked to multiple vascular pathologies, including atherosclerosis, hypertension, 

restenosis, angiogenesis, arteriogenesis and diabetic vascular disease [Okura et a l , 

2001, Patel et a l , 2001, Rajkumar et a l , 1996, Fath et a l , 1993, Grant et a l , 1996] 

The use of RTK blockers e g PDGF receptor kinase blockers are potential targets for 

the treatment of pathological vascular smooth muscle proliferation in atherosclerotic 

and restenotic processes

13 4 Ion Channels

Two different mechano-sensitive channels have been identified in vascular cells 

shear stress activated potassium channels and stretch activated cationic channels 

Inhibition of ion channel activation can attenuate strain induced SMC proliferation 

Stretch activated phospholipase C activity was found to involve the influx of calcium 

via gadolinium sensitive channels Similarly, Ang II activation of MAPK is calcium 

dependent in VSMC [Lehoux et a l , 1998] The exact mechanisms by which 

mechanical forces regulate ion channel conformation remains vague The deformation 

of the cytoskeleton is thought to be an important contributor in this regulation This 

hypothesis is supported by a number of studies which demonstrate cytoskeleton-G- 

protein coupling m shear-induced potassium channel opening and mtegrin-cytoskeleton 

activation of ion channels [Lehoux et a l , 2001] The physiological role of many ion 

channels within the vasculature may be dependent on the hemodynamic forces of the 

circulation
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1 4 Mitogen-activated protein kinase

Activation of mechano-receptors enable vessels to distinguish changes in the 

hemodynamic environment resulting in the activation of different mechanotransduction 

cascades, dependent on the type, magnitude, and duration of the mechanical load [Jalil 

et a l , 1998, Surapisitchat et a l, 2001, Jo et a l , 1997] Changes in the organization of 

the cell cytoskeleton brought about by changes in the composition of the ECM can 

bring about alterations m the activation and localization of mtegrins and associated 

kinases Many intracellular signaling cascades, such as the MAPK pathway, which are 

activated by mechanical stimuli initiate transcription factors and subsequent gene 

expression [Cowan et a l, 2003]

The mitogen-activated protein kmase (MAPK) signaling cascade is an important 

pathway by which the initial mechanical stimuli having being detected by a 

mechanically sensitive protein (e g G-protein, mtegrin) can lead to or stimulate gene 

transcription and/or protein synthesis The MAPK super-family is comprised of three 

mam and distinct signaling pathways the extracellular signal-regulated protein kmase 

(ERK), the c-jun N-terminal kinases or stress-activated protein kinases (JNK/SAPK), 

and the p38 family of kinases Each of the MAPK modules operates as a three-tier 

system (Figure 1 9) The MAPK module is activated by a MAPK kmase (MAPKK), 

which is a dual-specific kmase, which phosphorylates ERK, JNK and p38 at both 

Ser/Thr and Tyr sites, targeting a Thr-X-Tyr motif where X is glutamate, prohne or 

glycine The MAPKK is activated by a MAPKK kmase (MAPKKK), which receives its 

stimulus from receptors on the cell surface MAPK have a key role in the regulation of 

many genes because the end targets of these cascades are often nuclear proteins or 

transcription factors [Cowan et a l , 2003]
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Figure 1.9: Three tier system to MAPK signaling cascade.

1.4.1 MAPK in Mechanotransduction:

The sensitivity of the MAPKs to mechanical forces is well established in both in 

vivo and in vitro models. Cyclic stretch activates Erkl/2 and JNK in cultured SMC and 

are transiently activated in arterial wall by acute hypertension [Xu et al, 1996]. Kito et 

al (2000) found that cyclic strain activated Erkl/2, JNK and p38 in pulmonary ECs 

with subsequent AP-l/TRE activation and was found to modulate the Egr-1 

transcription factor. Using rabbit facial vein segments Loufrani et al. (1999) 

demonstrated that stretch induces Erkl/2 activation via a calcium-dependent pathway 

involving a tyrosine kinase. MAPK activation also occurs in response to shear stress. 

A shear stress of 12 dynes/cm2 was found to activate ERK1/2 and p38 but to reduce 

activity of JNK [Surapisitchat et al, 2001]. Shear stress has been reported to regulate 

ERK1/2 and JNK differentially with regards to duration of activation and levels of shear 

required to elicit a response [Jo et al., 1997].

Activation of the MAPK pathway in response to mechanical stimuli may occur 

by various means including G-proteins, integrins, receptor tyrosine kinases and 

cytoskeleton-associated non-receptor tyrosine kinases. Phosphorylation of the a  or |3y



subunit of a G-protein can lead to MAPK activation [Crespo et al, 1994]. Shear stress 

has been found to activate ERK1/2 via a Gia/Ras pathway and JNK via a Gpy/Ras 

tyrosine kinase pathway [Jo et al, 1997]. Similarly, small GTPases such as Ras or 

RhoA are stimulated by mechanical strain and may regulate ERK1/2 or JNK activation 

[Wunge/a/., 1999; Numaguchi et al., 1999].

Similarly integrins have been shown to be involved in the activation of members 

of the MAPK family. The ability of cyclic stretch to activate MAPK is dependent on 

the substrate on which the cells are seeded, e.g. ERK1/2 and JNK are activated in 

cyclically stretch SMC grown on pronectin but not on laminin [Reusch et al., 1996]. 

Chen et al observed an increase in the association of a vp3 integrin with the adapter 

protein She and subsequent activation of ERK1/2 and JNK. Shear stress increases the 

tyrosine phosphorylation of FAK as well as its kinase activity. This increase in FAK 

activity is associated with increases in MAPK activity and is attenuated by inhibition of 

integrin signaling [Li et al., 1997]. Disruption of the cytoskeleton by cytochalasin-D 

inhibits strain-induced increases in ERK1/2 possibly by preventing downstream 

signaling from integrin receptors [Ingram et al., 2000]. Despite the importance of G- 

proteins and integrins in the mechanical regulation of MAPK, multiple pathways exist. 

Downregulation of PKC or inhibition of tyrosine kinase activity prevents activation of 

ERK1/2 by shear stress [Traub et al., 1997]. Cyclic strain induced release of reactive 

oxygen species can also modulate the ERK1/2 pathway. Following phosphorylation of 

MAPK the downstream effects are varied. Phosphorylated ERK1/2 can transfer to the 

nucleus where it can activate transcription factors and thus regulated gene expression 

[Wung et al., 1999]. Both JNK and ERK1/2 can bind to the serum response element 

(SRE) to increase transcriptional activity. Activation of ERK1/2 leads to an increase in 

the expression of c-fos and c-jun which form the Activating protein-1 (AP-1) 

transcription factor which plays a significant role in the expression of a number of genes 

[Proud et al, 1994],
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Figure 110 Summary of MAPK signaling pathways showing cross talk between 

modules (Cowan et a l , 2003)

Clinically, changes m the activation of the MAPK family has been linked to a 

number of pathologies in which the hemodynamic environment is altered Augmented 

SMC proliferation and migration associated with neomtimal formation and hyperplasia 

following balloon angioplasty has been linked to increases in MAPK activity [Onashi et 

a l , 2000, Gennaro et a l , 2003, Goetze et a l , 1999] PKC and ERK interactions are 

thought to play a major role in cardioprotection by the inhibition the phosphorylation of 

the pro-apoptotic protein, Bad [Baines et a l , 2002] Both p38 and ERK 1/2 are involved 

in the transcriptional activation of MMP-9, an enzyme which is linked to plaque rupture 

and neomtimal formation in arterial lesions [Cho et a l , 2000] In the heart, enhanced 

activation of p38 MAPK is associated with ischemia/reperfusion injury p38 MAPK 

plays a pivotal role in the signal transduction pathway mediating post ischemic 

myocardial apoptosis Attenuation of this signaling may result in increased protection



against myocardial ischemic injury [Liao et al 2002, Ma et a l , 1999, Martin et a l ,

2001]

The process of mechanotransduction provides the means by which blood vessels 

are capable of adapting to changes m their local environment A family of enzymes, 

which are believed to be important in the adaptation of blood vessels to changes in the 

hemodynamic forces, are the matrix metalloproteinases, which will be discussed in 

greater detail in the following section

I 5 Overview of Matrix Metalloproteinases

Essential to cell survival and function is the ability to interact properly with the 

immediate environment This environment includes other cells and the mesh work of 

specialized proteoglycans and glycoproteins m which they are co-assembled, 

collectively referred to as the extracellular matrix (ECM) This matrix provides a 

structural support about which cells may grow and is usually divided into two parts, i) 

the basement membrane and n) the interstitial connective tissue The ECM also plays 

important roles in a number of cell fate decisions such as migration, proliferation and 

differentiation The modification of the ECM can be effected by a number of enzymatic 

activities including, l) cysteine protemases, 11) serine proteinases 111) aspartyl proteinases 

and iv) matrix metalloproteinases



Name MMP Substrates Chromosome Mol. Wt.

Collaeenases
Collagenase 1 MMP-1 Collagen I,II,III,VII,X Gelatin, 

Proteoglycans
Ilq22-q23 55-45

Collagenase 2 MMP-8 Collagen U IJII 11q21-22 75-58
Collagenase 3 MM P-13 Collagen II 1lq22 3 65-55

Gelatinases
Gelatinase A MMP-2 Gelatin, Collagen IY,V, VI5X 

Elastm Fibronectm 16ql3 72-66

Gelatmase B MMP-9 Gelatin, collagen IV, V , elastm 2 0 q l1 2-q l3 1

1

92-86

Strom elvsins
Stromelysin 1 MMP-3 Proteoglycans, Laminm, 

fibronectm, gelatin, collagen III, 
IV,V, X

1 lq23 57-45

Stromelysin 2 M M P-10 Proteoglycans,fibronectm, gelatin, 
collagen III, IV,V

1lq22 3-q23 57-44

Stromelysin 3 M M P-11 Lamtmn, fibronectm 2 2 q l12 51-44

Matrilysins
Matrilysm i,pump I 

M atnlysin 2

MMP-7

MMP-26

Proteoglycans, lammm/ibronectm, 
gelatins, elastm, collagen IV, 
entactm
Collagen IV, Fibrin, fibronectm

11q21-22 

1 Iql 5

28-19

28-18

Membraue-tVDe M M P
MT1-MMP M M P-14 CD44 63
MT2-MMP M M P-15 Unknown 14ql l-q l2 72
MT3-MMP MMP-16 Unknown 15ql3-q21 64
MT4-MMP M M P-17 Unknown 8q21 70
MT5-MMP MMP-24 Proteoglycan ECMcomponents 12q24 3 60
MT6-MMP MMP-25 Unknown 2 0 q l12  

16ql3 3 62
Others

N o trivial name M M P-19 Gelatms, Aggrecan, cartilage 12ql4 «
Enamelysm MMP-20 Amelogemn, Aggrecan 11q22 3 54
No Name M M P-21 Unknown ND
N o Name MMP-23 Unknown lp36 3 28
Epilysm MMP28 Caesm 17q21 1 59

Table 1 2 MMP trivial names, substrate specificity, chromosomal location and

molecular weight



The matrix metalloproteinases (MMPs) are a highly conserved family of zinc- 

dependent proteases, which are capable of cleaving numerous pericellular substrates 

including other proteinases, clotting factors, cell surface receptors, growth factors and 

virtually all components of the basement membrane and interstitial extra cellular matrix 

Due to their ability to be secreted into the extracellular space and function under normal 

physiological conditions in conjunction with their varied substrate specificities, MMPs 

are believed to be the primary contributors to ECM degradation Thus by virtue of their 

ability to modify a wide variety of bioactive peptides as well as the ECM, MMPs 

influence diverse physiological and pathological processes [Stemlicht et a l , 2001]

MMPs require close regulation In addition to differential transcriptional 

regulation, MMPs are regulated at the protein level by their endogenous activators and 

inhibitors and by factors, which alter secretion, cellular localization and degradation 

The multiplicity of the MMPs with distinct but overlapping functions may act as a 

safeguard against loss in regulatory control These redundancies often complicate the 

full elucidation of MMP function [Stemlicht et a l , 2001] In vivo genetic experiments 

have shown that selective gams or losses in MMP function may promote initial stages 

of cancer but may decrease the ultimate severity of the malignancy [Coussens et a l ,

2000] The importance of MMPs in both the progression of diseases and in maintaining 

cellular function is undeniable However the exact mechanisms by which they affect 

their influence as well as how they are influenced under different conditions still 

remains largely unresolved A more complete understanding of MMP function and 

regulation will undoubtedly result in new and more practical therapeutic agents for a 

wide range of disease states

1 5  1 S tructu re  and function

The metzincm superfamily comprises of 4 multigene families, l) the serralysins, 

11)  the astacins, i n )  the ADAMs/adamalysins and i v )  the MMPs The metzincm 

superfamily is distinguished by a highly conserved motif m which three histidine 

residues bind a zinc molecule at the active site and a conserved methionine turn beneath



the active site zinc [Stoker et a l , 1995] The conserved zinc-binding site 

(HEBXHXBGBXHZ) comprises of nonvariant histidine (H), glutamic acid (E) and 

glycine (G) residues, a large hydrophobic region (B), a variable residue (X) and a 

family specific amino acid (Z), which is serme for nearly all members of the MMPs 

[Stoker et a l , 1995]

The MMPs are a growing multigene family, which at present comprise of 25 

secreted and cell surface enzymes The first MMP activity to be observed was in the 

tail of a tadpole undergoing metamorphosis [Gross et a l , 1962] Since then, in addition 

to the 25 vertebrate and 22 human homologues which have been identified there also 

exists a number of non vertebrate MMPs [Nagase et a l , 1999] The MMPs can be 

identified by the following shared characteristics i )  In addition to the zinc binding 

motif and methionine turn they share added stretches of common ammo acid sequences, 

1 1) They exist as either a secreted or trans-membrane pro-enzyme, which requires 

activation, in) The active site contains a zmc ion and usually requires a second metal 

cofactor and i v )  They can be inhibited by a family of proteins known as tissue inhibitors 

of metalloprotemases (TIMPs)

MMPs are referred to by their common or trivial names or according to a 

sequential numerical nomenclature In addition, they are often grouped on the basis of 

their modular domain structure MMPs generally consist of an N-termmal 

“pre”domain, which directs their synthesis to the endoplasmic reticulum, and 

subsequently to secretory vesicles where they are destined for release Following the 

“pre” domain is the “pro” domain, which maintains the latency of the enzyme until it is 

removed or disrupted, and a catalytic domain, containing the conserved zmc binding 

site The substrate specificity of the MMP is determined by a number of sub-site 

pockets that bind amino acid residues either side of the scissile peptide bond Excluding 

MMP-7, MMP-26 and MMP-23, all MMPs have a hemopexin/vitronectm-hke domain, 

which is connected to the catalytic domain by a hinge region [Gururajan et a l , 1998] 

On the basis of substrate specificity, domain organization, and sequence similarity 

MMPs can be divided into six groups [Visse et a l, 2003]



15  11 Collagenases

The key feature of this group is the ability to degrade interstitial collagens I, II 

and III at a specific site close to the substrate N-terminus The hemopexin domain, 

which is linked to the catalytic domain via a short variable hmge region is thought to be 

involved in substrate interaction, TIMP binding and membrane activation The 

collagenolytic activity requires initial binding and orientation of the collagen fibril, 

unwinding of the triple helix structure and sequential cleavage of the alpha-chain 

[Woessner et a l , 2001] The hemopexin domain is thought to participate in all but the 

last of these processes Other members of this group include MMP-13 and MMP-18

15 12 Gelatmases

This group currently contains only two members, these are MMP-2 (gelatinase 

A) and MMP-9 (gelatinase B) first separated from collagenase activity by Sellers et al 

m 1978 These enzymes are distinguishable by the presence of three head-to-tail 

cysteine rich insertions into the catalytic site These inserts resemble collagen-binding 

type II repeats of fibronectin and are required for the binding of gelatin, laminin and 

collagen in addition to the cleavage of elastm [Murphy et a l , 1994, Shipley et a l ,

1996] MMP-9 has another unique feature, the catalytic region contains a unique type 

V collagen-like insert, the biological significance of which has yet to be determined

These enzymes degrade denatured collagens and are specific for the degradation 

of type IV basement membrane collagen MMP-2 is expressed by all cell types of the 

vasculature and is frequently associated with the rupture of atherosclerotic plaques, 

inflammation responses and in aortic aneurysm It was first cloned in 1988 by Coiler et 

al, from a human X phage library It is secreted as a 72kDa pro-enzyme and is activated 

in vivo by the formation of complexes with TIMP-2 and MT1-MMP Once activated it 

preferentially degrades gelatin, Collagen IV, V, VII and fibronectin MMP-9 was 

traditionally thought to be a macrophage-specific gelatinase but its expression has also 

been widely reported in the vascular cell types Initially identified in 1972 by Harris et



al from rheumatoid synovial fluid, it was purified in 1983 by Rantala and subsequently

cloned by Willhelm et al in 1989 from SV-40 transformed human lung fibroblasts Like

MMP-2, it is a secreted MMP with a molecular weight of 92kDa and degrades gelatin,
*

and collagen IV and V as well as elastm 

1 5  1 3  Strom elysins

This sub-class contains MMP-3, -10, -11 (stromelysin 1, 2, 3) which are capable 

of cleaving proteoglycans, collagens and fibronectin MMP-3 was first identified in 

1985 as a secreted MMP, induced by oncogenes MMP-3 and MMP-10 have a very 

high degree of homology (71%) [Breathnach et a l , 1987] in both ammo acid sequence 

and substrate specificity, however MMP-3 has a much greater proteolytic efficiency 

than that of MMP-10 [Park et a l , 2000] Despite the similarities between the two 

enzymes both genes are regulated very differently and neither has the ability to degrade 

native type I collagen

15 14 Matnlysins

The matnlysins can be identified based on the absence of the hemopexin 

domain These enzymes are sometimes referred to as minimal domain MMPs and 

include MMP-7 (matrilysin 1) and MMP-26 (matrilysm 2) Matnysins have one of the 

broadest substrate specificity ranges and will degrade collagen, proteoglycans and 

glycoproteins MMP-7 processes cell surface molecules such as pro-a-defensin, FAS 

ligand and E-cadherm [Itoh et a l, 1999] It has been shown to play an important role in 

the progression of many biological processes including the progression of many tumour 

types
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Figure 1.11: Domain Structure of MMPs: Pre signal sequence, Pro peptide with free 

zinc-ligating thiol group, F Furin susceptible site, Zn Zinc binding site, FN Fibronectin 

like domain, TM transmembrane domain, C cytoplasmic tail, GPI glycophosphatidyl 

inositol anchoring domain, C/P [adapted from Visse et al., 2003]



15 15  Membrane Type MMPs (MT-MMPs)

This sub group contain a transmembrane domain at the carboxyl termini 

localizing the enzymes to the plasma membrane The structure of these enzymes is 

unique 1) between the pre-pro domain there is an eleven ammo acid insertion which is 

recognized by furin and facilitates the activation of these enzymes in vitro 11) Within 

the catalytic site is an 8 ammo acid insertion the function of which has yet to be 

determined 111) The C terminus contains a hydrophobic ammo acid sequence facilitating 

transmembrane anchorage Four of the MT-MMPs are type I transmembrane proteins 

(MT1-MMP, MT2-MMP, MT3-MMP and MT5-MMP), the other two members are 

glycophosphatidylmositol (GPI)-anchored proteins (MT-4 and MT-6) [Itoh et a l , 1999, 

Kojima et a l , 2000] The expression of these enzymes varies somewhat, MT5-MMP is 

brain specific while MT6-MMP is expressed only in the peripheral blood leukocytes 

and anaplastic astrocytomas [Onuchi et al 1997] The substrate specificities of these 

enzymes is still largely unclear although MT1-MMP has been found to contain some 

collagenolytic activity [Pepper et a l , 2001, Kolb et a l , 1997]

15 16 Other MMPs

The sixth and final category contains the MMPs, which cannot be classified by 

any of the above categories This category contains several members of the MMP 

family that have only recently been discovered and includes, MMP-12, MMP-18, 

MMP-19, MMP-20, MMP-21, MMP-22, MMP-23, MMP26 and MMP-27

15 2 Other MMP Substrates

The targets of MMPs extends further than the ECM components and have been 

found to degrade many substrates including other proteinases (uPA), clotting factors, 

chemotactic factors, latent growth factors (TNF-alpha), cell surface receptors, cell-cell 

adhesion molecules and proteinase inhibitors [Patterson et al 1997] MMP-9 has been 

found to inhibit angiogenesis by hydrolyzing plasminogen producing angiostatm



fragments. The discovery that MMPs function in biological processes other than ECM 

modification has lead to a better understanding of the many roles MMPs have such as in 

inflammation responses, cell migration, apoptosis and angiogenesis [Blobel et al.,

1997].

1.5.3 The ADAMS Family:

ADAMs are a family of membrane associated multidomain zinc-dependent 

metalloproteinases with a high sequence homology to adamlysin sub-group o f the 

metzincin superfamily [Primakoff et al., 2000; Pan et al., 1997]. ADAM, stands for A 

Disintegrin And Metalloprotienase, which are the two key domains of these enzymes. 

These cell surface proteins are distinctive in that they contain aspects of both adhesive 

proteins and proteinases. There are currently 29 characterized members of the ADAMs 

family, which implicated in cell adhesion, fusion processes and shedding of cell surface 

proteins [Kaushal et al., 2000]. 17 of the ADAMs are thought to have functional 

proteolytic activity as cDNA studies indicate the presence of a metalloproteinase active 

site. The remaining are thought to be non-functional [Pan et al., 1997].

Figure 1.12: Typical ADAM structure comprising of a prodomain, metalloproteinase 

domain, disintegrin domain, cysteine rich domain, EGF-like, transmembrane and 

cytoplasmic domains

ADAMTs (A Disintegrin and Metalloproteinase with Thrombospondin motifs), 

contain unique thrombospondin type I motifs and lack some of the structural similarities 

to ADAMs. They have been identified in a number of biological processes such as skin 

development, angiogenesis and vascular development. ADAMTS 1 -/- mice have been 

found to have reduced body size and altered kidney structure. The thrombospondin 

repeats may function in conjunction with the disintegrin domain to maintain these 

proteins in an appropriate position within the ECM. [Kaushal et al, 2000].
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15  4 Substrate Specificities

The specificities of MMPs have been identified by the cleavage of protein 

substrates or synthetic peptide substrates Generally speaking, MMPs will cleave a 

peptide bond before a residue with a hydrophobic side chain (Leu, Met, Phe) These 

hydrophobic side chains are involved in the binding to the S I’ pocket, the size and 

shape of which varies considerably depending on the MMP [Pei et a l , 1995] Non- 

catalytic domain components, such as the fibronectm type repeat of MMP-2, the 

hemopexm domain, or the RWTNNFREY domains of MMP-1 play key roles in the 

function of these enzymes The overlapping substrate specificities of MMPs probably 

serve as a defense mechanism against losses in regulatory control by providing 

redundant and compensatory mechanisms While advantageous to the organism it 

clearly makes it difficult to accurately understand how individual MMPs function

15 5 Three Dimensional Structure

The 3-D structure of a number of MMPs has been determined by the use of X- 

ray crystallography and NMR The structure of the pro-domain (for MMP-2, -3 and -9) 

has been found to consist of three alpha helices and connecting loops The region 

between the first and second helix has been found to be protease sensitive The third 

helix has been found to he m the substrate-binding cleft of the catalytic domain This 

region contains the cysteine switch, which binds to the active site zinc and is 

responsible for maintaining enzyme latency The catalytic domain comprises of five 

Beta-pleated sheets, three alpha helices and connecting loops The substrate-binding 

cleft is formed by the fourth beta sheet and by helix B as well as the extended loop 

region of helix B The conserved Met turn is located in the loop region In MMP-2 and 

MMP-9 fibronectm like repeats are found inserted between the fifth Beta strand and the 

catalytic site helix The hemopexm repeats are found to have a four bladed beta- 

propeller fold with a single disulfide bond between blade one and four Beta propeller 

domains are common in a number of proteins such as G-proteins and are commonly
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involved in protein-protein interactions, such as those seen between MMP-2 and 

fibronectin or in the pro-MMP-2 activation via TIMP-2 recruitment [Visse et al., 2002].

Figure 1.13: 3D structure of MMPs: ribbon diagram of MMP structures. A, ProMMP- 

2-TIMP-2 complex (1GXD) is shown. Orange indicates propeptide; green, catalytic 

domain; pink, fibronectin domains; red, hemopexin domain; and blue, TIMP-2. Zinc 

atoms are pink, and calcium atoms are gray. B, In the MMP-2 propeptide,40 the 

cysteine of the cysteine switch motif is shown. The arrow indicates the position of the 

initial cleavage resulting in partial activation [adapted from Nagase et al., 1999]
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15 6 Activation

MMPs are typically secreted as latent enzymes, which can be activated by other 

proteinases (including other MMPs), reactive oxygen species, low pH and exposure to 

chemical substances such as thiol-modifymg reagents Activation of MMPs requires 

the removal of the “cysteine switch” which blocks the catalytic site by a zinc/cysteine 

interaction The pro-domain is folded so that the cysteine residue forms a complex with 

the active site zinc Disruption of the pro-domain by the means mentioned above causes 

a conformational change, which destabilizes the propeptide and disrupts the 

cysteine/zinc interaction, forming an MMP intermediate This intermediate is then fully 

activated by other MMP intermediates or fully active MMPs [Strongin et a l , 1995] 

The term cysteine switch refers to the fact that cysteine residue is responsible for 

turning the enzyme activity “on” or “o ff’ Once displaced, the thiol group of the 

cysteine is replaced by a water molecule, which can attack the scissile bond of MMP 

target molecules

Figure 114 Pro-MMP activation occurs in a stepwise manner Secreted proMMPs are 

partially activated by disruption of the propeptide (black line) cysteine switch by 

proteolytic or chemical means Full activation requires complete removal of the 

propeptide region by other MMPs

Although the majority of MMPs are constitutively secreted as pro-enzymes there 

a number of MMPs such as MMP-11, MMP27 and the MT-MMPs which contain a



furin recognition site (KXR/KR), which allows them to be activated intracellularly by 

serme proteinases prior to being secreted [Lijnen et a l , 2001, Strongin et a l , 1995] 

The extra cellular activation of MMPs is initiated by a number of protemases including 

other MMPs One of the most common protemases involved m MMP activation is 

plasmm, a 90kDa serme proteinase Plasmin is generated from plasminogen by the 

plasmm cascade, which involves the urokinase plasminogen activator (uPA), its 

inhibitors plasminogen activator inhibitor (PAI-1, -2) and tissue plasminogen activator 

(tPA) Plasmm has been linked to the activation of proMMP-9, proMMPIO and pro- 

MMP13 [Lijnen et a l , 2001] It has also been implicated m the activation of pro-MMP- 

2 when it is bound by MT1-MMP complex

15 7 Regulation

For either their normal or pathological functions MMPs must be present in the 

correct cell type and pericellular location MMPs are separately and very tightly 

regulated at both the transcriptional, translational and post-translational levels 

Moreover, their expression is highly tissue-specific

15 71 Transcriptional Regulation

Transcriptional regulation of MMPs is known to be affected by numerous 

stimulatory and repressive factors The expression of various MMPs has been shown to 

be up or down regulated in response to cytokines, adhesion molecules, growth factors, 

mtegrin derived signals, phorbol esters and changes in cell shape [Nagase et a l , 1999] 

Differences in the temporal, spatial and inducible expression of MMPs are often 

indicative of their unique roles The majority of MMPs are tightly regulated at the level 

of transcription The exception to this is MMP-2, which is constitutively expressed and 

is controlled in a complex mechanism involving MMP-2, MT1-MMP and TIMP-2, 

which will be discussed later The basal expression of these three molecules also 

appears to be co-regulated [Crawford et al 1996 Una et a l , 1998] However, arteries 

incubated under pressure displayed significant increases in the levels of MMP-2
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expression and activity while simultaneously degrading elastm suggesting that both 

MMP-2 expression and matrix degradation are locally enhanced at higher transmural 

pressures [Drau et a l , 2002, Seliktar et a l, 2001 ]

Many of the factors which influence MMP expression such as VEGF, PDGF, 

TNF-a and EMMPIN induce the activation of AP-1, transcription factor which has 

binding sites in the promoters of many of the MMPs with the exception of MMP-2 and 

MMP-11 [Fan et a l , 2002] Normally c-jun and c-fos proteins are transiently expressed 

following a stimulus, such as shear stress, and bind to the AP-1 site resulting in 

transcription of the MMP gene Some members of the jun and fos proteins may also act 

as suppressors of transcription Somejun/fos complexes are only weak activators and 

therefore block binding of more potent activators In some cases one signal may 

differentially regulate different MMPs, TGF-p suppresses transcription of MMP-1 and 

MMP-3 but induces MMP-13 [Hongwei et a l , 1999] How an MMP gene responds to a 

particular stimulus will ultimately depend on the structure of its promoter and the 

presence or absence of other signals

A second activating protein complex (AP-2) has also been found to play a 

significant role m the regulation of MMP-2 AP-2 in conjunction with Spl and Sp3 

have been reported to be required for the constitutive expression of this protein Loss of 

AP-2 transcriptional control has been correlated to increased MMP-2 production in 

association with increased VSMC migration and increased melanoma metastasis There 

are three members to the AP-2 family comprising of Ap-2a, Ap-2p and Ap-2y, which 

bind to sites (GGCN3GGC) distmct to AP- 1  binding sites (TGAGTCA) [Hongewi et a l , 

1999, Nyormoi et a l , 2003, Price et al 2001] Several other regulatory elements have 

been found withm the promoter regions of MMP genes such as TGF-P inhibitory 

elements, NF-kB, Polyoma enhancing factor 3 (PEA-3), or retmoic acid response 

elements Both basal and inducible levels of MMP gene expression can be influenced 

by genetic variation, which have also been implicated m development or progression of 

several diseases A number of single nucleotide polymorphisms (SNPs), which 

influence the rate of transcription, have been identified in several MMP promoters For
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example, a SNP 1306bp upstream of the start codon of MMP-2 disrupts the Sp-1 

binding site thus resulting in a 50% reduction m promoter activation [Price et a l , 2001] 

Activation of certain MMPs, such as MMP-2 may be regulated by the transcriptional 

control of other genes For example shear induced MMP-2 activity may be attributed to 

shear mediated PDGF release due to the presence of a Shear Stress Response Element 

(GAGACC) in its promoter region [Bassiouny et al 1998] Notwithstanding the many 

advances in our understanding of MMP gene regulation, the cross-talk between many 

signaling pathways the gene regulatory elements and nuclear factors involved are yet to 

be fully elucidated

1 5 7 2 Post Transcriptional Regulation

MMP expression, m addition to being regulated by complex transcriptional 

mechanism can also be regulated post-transcnptionaly Following secretion the 

majority of extra cellular MMPs may be activated by either already activated MMPs or 

by several serine proteases that can cleave peptide bonds within the MMP pro-domain

MMP-2 is not readily activated by protemases and its activation involves a 

complicated interaction between MT1-MMP, pro-MMP-2 and TIMP-2 MT1-MMP is 

very efficient activator of MMP-2, MT2-MMP and MT4-MMP are the only MT-MMPs 

unable to activate MMP-2 [Zucker et a l , 1998] Activation of MMP-2 has been 

extensively studied Activated MT1-MMP on the cell surface binds the N-terminal of 

TIMP-2 and is subsequently inhibited by this binding The C-termmal domain of 

TIMP-2 is free to bind the hemopexin domain of pro-MMP-2 Adjacent MT1-MMP 

which is not bound by TIMP-2 is then free to cleave and activate pro-MMP-2 

Following the initial cleavage of pro-MMP-2 a residual portion of the propeptide is 

removed by another MMP-2 molecule to yield a fully mature form of MMP-2 

[Deryugina et a l , 2001] While activation of MT1-MMP has been assumed to be 

required for activation of MMP-2, it has been found that the propeptide domain of 

MT1-MMP is required for the binding of TIMPs and for the activation of MMP-2, 

however the propeptide domain does not need to be covalently attached Thus it has

46



been proposed that the propeptide domain may be required for the efficient trafficking 

of MT1-MMP to the cell surface [Cao et a l , 2000] The C-termmal domam of TIMP-2 

participates in the docking and activation of MMP-2, however the N-termmal region is 

an MMP inhibitor Low levels of TIMP-2 may piomote MMP-2 activation while higher 

levels of TIMP-2 leads to inhibition by saturation of MT1-MMP binding sites, required 

for removal of the propeptide domam of MMP-2 [Fan et a l , 2001] MT2-MMP 

activation of MMP-2 does not require the intervention of TIMP-2

Figure 1 15 proMMP-2 activation Binding of TIMP-2 to MT1-MMP causing 

dimerisation of MT1-MMP molecules The hemopexin domam of proMMP-2 binds to 

the C-termmal end of TIMP-2 forming a tertiary structure The secomd MT1-MMP 

cleaves the pro-domam of of proMMP-2 partially activating it MMP-2 then dissociates 

from the complex and is fully activated [adapted from Visse et a l , 2003]
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15  8 Tissue Inhibitors of Metalloproteinases

MMPs act primarily on the cell surface or m the extracellular space and their 

activities are controlled by endogenous inhibitors such as a 2 -macroglobulm and the 

TIMPs Mammalian TIMPs are two-domain molecules having N-terminal domains of 

approxiamtely 125 ammo acids and a smaller C-terminal domain of about 65 ammo 

acids [Williamson et a l , 1990] There are currently four TIMPs identified in 

mammalian systems (TIMP-1 to TIMP-4) which are expressed in a wide variety of cell 

types such as endothelial cells, fibroblasts, keratmocytes and osteoblasts [Pohar et a l , 

1999] The expression of these molecules is also tightly regulated and is controlled 

during tissue remodelling and physiologiocal conditions to maintain a balance m the 

metabolism of the ECM The TIMPs represent a family of four secreted proteins 

ranging in size from 20-29kDa These proteins have the ability to reversibly inhibit 

MMPs in a 1 1 stoichiometric fashion TIMPs show a 30-40% ammo acid sequence 

homology and share a conserved gene structure and have 1 2  conserved cysteine 

residues These cysteine residues are essential in forming a six loop/two domain 

structure associated with TIMPs The overall shape of the TIMP molecule is wedge- 

like which slots into the active site of the MMP molecule Studies including X-ray 

crystalography and mutational analysis have identified the N-terminal domain as 

containing the inhibitory activity, however both domains influence enzyme-inhibitor 

binding [Brew et a l, 2002]

TIMPs vary in their ability to inhibit the various MMPs, while they share a high 

degree of homology differences in their inhibitory profile have been reported For 

example MT1-MMP is inhibited by TIMP2 and TIMP3 but not by TIMP1 TIMP3 

appears to have the most potent inhibition of MMP-9, it is also capable of inhibiting 

members of the ADAM family The identification of differing inhibitory roles for the 

vaious TIMPs may suggest that they have differing biological functions [Brew et a l , 

2002, Kashivagi et a l , 2001]

48



As they have the ability ot tightly regulate MMP activity, TIMPs play a major 

role in tissue remodelling and have been shown to inhibit invasion, tumourgenesis, 

metastasis and angiogenesis TIMPs play roles m a variety of vascular situations 

TIMP 1 for example has been found to be asssociated with increased aneurysm 

formation but reduced athersclerotic plaque formation, whilst TIMP 2 has been found to 

be expressed to counteract MMP activity in rabbits fed on a high cholesterol diet 

[Feldman et a l , 2001] TIMP 3 is associated with increased plaque stability and 

inhibition of neointima formation Vascular injury has also been shown to regulate 

TIMP-4 activity Loss of TIMP-4 from the cardiac myocyte leads to an increase in net 

myocardial MMP activity that contributes to acute myocardial stunning injury [Dollery 

et a l , 1999]

TIMPs may also be involved in cellular events whereby they are not required for 

MMP inhibition TIMP-2 but not TIMP-1 has been found to inhibit endothelial cell 

growth stimulated by bFGF TIMP-3 is known to possess pro-apoptotic activity while 

TIMP-1 and -2  have anti-apoptotic activity [Smith et al 1997, Lee et a l , 2003] The 

pro-apoptotic activity of TIMP-3 is related to the stabilization of TNF-alpha receptors 

TIMP-3 has also been implicated in Sorsby’s fundus dystrophy [Majid et a l , 2002] and 

TIMP -1,-2 and -3 have been found to inhibit tumour growth

15 81 Other endogenous inhibitors of MMPs

a 2 -macroglobulin is an abundant plasma protein which inhibits a wide range of 

endopeptidases , MMP-1 has a greater affinity with this moleculae than TIMP-1 It 

represents the major inhibitor of MMPs in tissue fluids and unlike TIMP inhibition is 

not reversibile [Stemhcht et al 2001]

Tissue factor pathway inhibitor-2 is a serine proteinase which inhibits MMPs 

Cleavage of the procollagen C terminal proteinase enhancer protein (PCPE) releases a 

fragment with anti-MMP activity [Mott et a l , 2000] RECK a GPI anchored 

glycoprotein that downregulates MMP-9 and MMP-2 has been found to suppress
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angiogenic sprouting leading to tumour cell death The NCI domain of type IV 

collagen has also been found to have anti-MMP activity, however their ability to inhibit 

MMP-2 is substantially lower than TIMPs and their physiological relevance has yet to 

be fully established [Netzer et a l, 1998]

1 5 8 2 Catabolism and Clearance

Proteolytic cleavage of MMPs plays an important role in their regulation 

Proteolytic cleavage by enzymes such as by plasmin can lead to MMP activation 

however, others proteolytic cleavages may lead to the production of inactive or 

truncated enzymes, such as removal of the hemopexm domain, resulting in MMPs with 

limited activity In addition these truncated enzymes may have reduced affinities for 

their specific inhibitors as seen with c-terrmnally truncated MMP-2 [Itoh et a l , 1998] 

If membrane-bound MMPs become truncated this may reduce their ability to localize to 

the cell membrane

Binding to, and subsequent clearance of, MMPs by other proteins is another 

means of MMP regulation Thrombospondm 1 has been the most extensively studied 

TSP protein to date TSP1 contains a numerous sites of action that have been implicated 

in interactions with cell surface and matrix proteins, including structural proteins (e g 

collagen and fibronectm), cell surface receptors (eg  mtegnns,syndecans, and CD36), 

enzymes (e g elastase and plasmin),and cytokines (e g transforming growth factor-p 1 ) 

The ability of TSP 1 to inhibit MMP3-dependent activation of pro-MMP9 and thrombin- 

induced activation of pro-MMP2 suggests that the TSPs may inhibit MMP activity by 

preventing activation of the MMP2 and MMP9 zymogens [Bern et a l , 2000] 

Similarly, TSP-2 has been found to regulate clearance of MMPs TSP-2 knockout mice 

produce elevated levels of MMP-2, most likely suggesting a role for TSP-2 in removal 

of MMP-2 TSP-2 is normally endocytosed by the low-density lipoprotein receptor- 

related protein (LRP) carrying any bound MMP-2 with it [Yang et a l , 2001] Thus, 

MMPs are tightly regulated by several well-characterized mechanisms
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15 9 MMPs in physiological processes m the vasculature

MMPs are produced by all cell types of the cardiovascular system including 

endothelial cells (EC), smooth muscle cells (SMC), fibroblasts and cardic myocytes 

Consequently, they play pivitol roles in a number of vascular processes MMPs exhibit 

their influence on cells m a number of ways including alteration of ECM cell 

interactions, the release, activation or deactivation of signalling molecules, activation of 

receptors and the production of bioactive molecules from the ECM

Cell 
recruitment

Activation/Deactivation of 
^  ^  chemoattractants,

^  ^  ^  angiogeneic factors, 
cytokines & inhibitors

Receptor 
Activation/Deactivation

Cell-Cell & 
Cell-Matrix

ECM degradtion Interactions
production of

Bioactive m olecules^ " \  ^  V ,

Figure 1 16 Roles of MMP activity

15 9 1 MMPs in Angiogenesis

Angiogenesis is the process by which new blood vessels develop from the 

existing vascular bed It plays a fundamental role in the growth, survival and function 

of normal and pathological tissues Angiogenesis occurs naturally in the body for 

wound healing events and for restoring blood flow to tissues after injury It is also an 

important part of the reproductive cycle and during pregnancy, building of the placenta 

and circulation betwen mother and fetus Angiogenesis occurs by a series of sequential
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events in response to a suitable stimuli and is controlled by a balance of angiogenic 

growth factors and angiogenic inhibitors When angiogenic growth factors are 

produced in excess of inhibitors angiogeneis is promoted, the normal helathy body tends 

to maintain a perfect balance of angiogeneic modulators and as such angiogenesis is 

turned “off’ [Pepper, 2001, Nguyen et a l , 2001 ]

Angiogenic Growth Factors Angiogenic Inhibitors

Angwgetim^'i ?
! " P 8  ̂ ~ 5

Angioarrestm
£  ̂ n * * 

Angiopoietin-l Angiostatin

bFGFr Endostatm

IL-8  ' " ’* Fibronectm Fragment
n

Leptm  ̂  ̂ ^ Gro-p

PDGF-BB i Interleukin-12

TGFam  : J 1 ?* f Interferon a/p/y

TOF-a j TIMPs

VEGF~ * , PA1-1

Table 1 3 Typical pro and anti-angiogemc factors

Loss of control over angiogenesis can result in a number of serious disease 

states Angiogenesis-dependent diseases occur as a result of either excessive or 

msufficent angiogenesis Excessive angiogenesis occurs when diseased cells produce 

abnormal amounts of angiogenic growth factors This results m the formation of new 

blood vessels which feed diseased tissues and destroy normal tissue Excessive 

angiogenesis occurs m over 70 conditions including cancer, diabetic blindness and 

rheumatoid arthritis Insufficent angiogenesis occurs when tissues cannot produce 

adequete amounts of angiogeneic growth factors resulting in inadequate blood vessel 

growth and insufficent circulation This is observed in diseased states such as coronary 

artery disease and stroke [Pepper, 1997]

The process of angiogenesis occurs as an orderly series of events
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i Release of angiogenic growth factors diffuse from nearby tissue and bind to

receptors on EC of nearby blood vessels Binding of growth factors cause EC 

activation and they begin to produce molecules required for angiogenesis

II Enzymes including MMPs have dissolve tiny holes in the basement membrane 

and EC begin to proliferate and migrate through the dissolved holes towards the 

source of the angiogenic stimulus

III Adhesion molecules and mtegrms help the sprouting blood vessel to move 

forward MMPs dissolve the tissue in front of the sprouting vessel tip, the tissue 

is then remolded around the vessel It has been suggested that MMP-9 is 

secreted m short bursts from storage vesicles to locally degrade basment 

membrane This is tightly regulated as uncontrolled proteolysis prevents the 

necessary EC/ECM interactions for capillary formation Sprouting EC roll up to 

form a blood vessel tube

lv Type I collagen the predominant constituent of the stroma causes upregulation

of MT1-MMP and activation of MMP-2, which continues until the newly 

formed capillary secretes its basement membrane thus ending the contact 

between the type I collagen and the EC layer It seems that type I collagen 

facilitates its own destruction by activating MMP-2 and stimulating EC 

migration and tube formation [Nguyen et al, 2001] Finally newly formed blood 

vessels are stabilized by SMC that provide structural support Blood flow may 

then begin

MMPs are vitial to the angiogenic response, support for this has been firmly 

established MMP inhibitors such as marimastat, TIMP-3, BB-94, and 1,10- 

phenanthrohne have all been shown to block endothelial tube formation m chick 

embryo chorioallantoic membrane (CAM) and collagen-based assays [Schnaper et a l , 

1999, Haas et a l , 1998] However virtually all of these inhibitors lack specificity for a 

single MMP resulting in some confusion as to the importance of individual MMPs 

Furthermore, MMPs have also been implicated in the production of anti-angiogemc 

protein fragments including endostatin and angiostatin MMP-12, MMP-9 and MMP-7



are all capable of converting plasminogen into the angiogenic inhibitor, angiostatin 

[Chakraborti et al 2003]
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Figure 1 17 Angiogenesis (available from http //cpmcnet Columbia edu)

The significance of gelatinase activity m angiogenesis has been demonstrated in 

a rat Swarm chondrosarcoma model In this model increased angiogenic phenotype was 

associated with increases m MMP-2 activity [Fang et a l , 2000] Moreover, specific 

antisense MMP-2 oligonucleotides have been shown to inhibit tumour angiogenesis 

Development of inhibitors with increasing specificity has lead to the production of 

cyclic peptides (His-Trp-Gly-Phe) which are potent inhibitors of MMP-2 and MMP-9, 

capable of inhibiting EC migration and invasion m a tumour model [Pepper et a l ,

2001] Additionally genetic studies in mice have shown that MMP-2 and MMP-9 

knockout mice both have a distinct angiogenic phenotype MMP-2 deficient mice had a 

marked reduction in tumour-induced angiogenesis and in MMP-9 deficient mice there
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was a significant reduction in bone growth plate angiogenesis [Itoh et a l, 1998]. 

Exogenous MMP-9 but not MMP-2 has been found to cause release of VEGF from a 

carcinoma cell eliciting an angiogenic response with co-cultured endothelial cells. 

MMP-2 may also affect angiogenesis by cleaving cell surface receptors such as FGF 

receptor, thus generating a circulating binding protein which can regulate FGF 

availability and thus its angiogenic potency [Stemlicht et al., 2001].

Angiogenesis is an adaptive process, one of the principal factors which 

contributes to the induction of angiogenesis is the hemodynamic environment e.g. high 

shear stress can increase the size and number of collaterals formed in an AV shunt 

model [Brown et al., 2003] Evidence suggests that angiogenesis associated with 

exercise may be due to increases in capillary shear stress [Chen et al., 2001]. Cullen et 

al (2002) demonstrated that shear stress induced EC migration and capillary tube 

formation was dependent on the magnitude of the flow. Shear stress plays an important 

role in modulating EC morphology, cytoskeleton and ECM remodeling, all of which are 

important in angiogenesis. DNA microarray analysis of EC subjected to shear stress 

has found that shear stress modulates a number of genes involved in EC remodeling 

including MMP-1, cytoskeletal proteins and integrin subunits [Chen et al., 2001]. The 

involvement of shear stress in angiogenesis may also occur by initiating the release of 

pro-migratory and pro-angiogenic factors such as VEGF or FGF. Evidence that cyclic 

strain is a stimulus for angiogenesis comes from both in vitro and in vivo studies [Rivilis 

et al., 2002; Zheng et al., 1999; Vailhe et al., 1996; Banai et al., 1994]. Conditioned 

media from cyclically strained myocytes in vitro has been found to stimulate tube 

formation in coronary endothelial cells, a feature of ECs demonstrating an angiogenic 

profile. In vivo studies have demonstrated that short term exercise, leading to increases 

levels of mechanical load on the vessel wall resulted in increased angiogenesis in 

skeletal muscle of Sprague-Dawley rats. Angiogenesis associated with cyclic strain is 

believed to involve a number of contributors such as MMP-2, VEGF, FGF, and TGF-P 

and may be associated with a number of conditions in which blood flow is affected 

including ischemia and bradycardia [Bani et al., 1994; Ausprunk et al., 1977; Pepper et 

al., 1997; Egginton et al., 2001].



Both shear stress and cyclic strain may stimulate angiogenic growth in 

vivo and m vitro, however, the process of capillary growth may differ significantly 

depending on which force acts as the predominant stimulus Capillary growth is 

described conventionally to begin with endothelial cell activation, which initiates 

proteolysis of the basement membrane, enabling abluminal sprout formation, cell 

proliferation, and subsequent growth of a new capillary [Pepper et a l , 1997, Egginton 

et a l , 2001] This process is the predominant mechanism of capillary growth in 

muscles activated by chronic electrical stimulation or in stretched muscle, with the 

exception that endothelial cell proliferation precedes proteolysis and sprout formation 

[Haas et a l , 2000, Zhou et a l, 1998]

1 5 9 2 MMPs in vascular remodelling

Vascular remodelling can be described as any enduring change in the size or 

composition of an adult blood vessel Remodelling of the blood vessel may occur to 

accomodate and adapt to changes in hemodynamic forces or as a response to 

inflammation or injury Inappropriate remodelling of the blood vessel is currently 

thought to be a major contributing factor to a number of pathological scenarios such as 

those seen in atherosclerosis and restenosis [Gibbons et a l , 1994] In order to facilitate 

both physiological and pathological remodelling there must be degradation and 

reorganization of the ECM, thus MMPs are believed to be a crucial part m these 

processes In addition to degrading the ECM to facilitate migration/proliferation, 

MMPs may also contribute to remodelling by the production of vasoactive compounds, 

MMP-2 has been found to produce a potent vasoconstricor by cleavage of calcitonin 

gene-related peptide [Femandez-Patron et a l, 2000] In vitro studies with cultured cells 

or histological observations of both normal and diseased vessels indicate the presence of 

MMPs in both vascular and inflammatory cells Human diseased arteries were found to 

have increased expression of a number of MMPs in conjunction with significant 

morphological changes compared to normal arteries This may suggest pathological 

remodelling of the artery involves MMPs
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Figure 1.18. MMPs and in constrictive and expansive arterial remodeling (Galis et al.9
2002)

Vascular remodelling may occur in response to a number of stimuli such as 

haemodynamics, injury, inflammation and oxidative stress [Lijnen et al., 2001; Galis et 

al., 1994; Rajagopalan et al., 1996]. These stimuli have also been found to regulate 

MMP expression and activity. It has been suggested that hemodynamic forces resulting 

from blood flow may be the most important regulator of MMP expression and activity 

in vascular cells. Inhibition of MMP activity inhibits the expansive remodelling at the 

site of rat ateriovenous fistulae [Abbruzzese et al., 1998], whereas upregulation of 

MMP-9 associated with cessation of flow resulted in expansive remodelling [Godin et 

al., 2000]. Increases in transmural pressure (pressure across the wall of a blood vessel) 

induced the activity of MMP-2 and MMP-9 suggesting that MMPs may be involved in 

remodelling associated with hypertension [Chesler et al., 1999]. Targeted disruption of 

the MMP-9 gene leads to impaired SMC migration and arterial remodelling [Galis et 

al., 2002]. Upregulation of MMP-2 and MMP-9 caused by variation in the 

hemodynamic environment is thought to be the causitive factor in saphenous vein graft 

failure.
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Figure 1.19: Flow induced vascular remodeling in mouse carotid arteries 

(http://www.u.arizona.edu)

The oxidative state of the blood vessel is a major contributor to vascular 

remodelling and in the regulation of MMPs. Reactive oxygen species (ROS) have been 

found to be sensitive to changes in the hemodynamic environment. ROS have been 

indicated in activation of MMPs, mechanical stretch was found to increase expression 

of MMP-2 via a mechanism involveing reactive oxygen species derived from NAD(P)H 

oxidase [Grote et a l , 2003]. Oxidative stress can drive vascular remodeling and is 

believed to be involved in expansive remodeling associated with myocardial ischemia. 

Nitric oxide plays an important and complex role in vascular remodeling. eNOS null 

mice did not exhibit compensatory remodeling while overexpression of eNOS reduces 

SMC migration associated with vascular remodeling with concurrent reductions in 

MMP-2 and MMP-9. Under diseased conditions, interaction of NO with ROS such as 

superoxide may result in the formation of peroxynitrite found to activate latent MMPs 

resulting in remodelling [Rajagopalan et al, 1996].

MMP expression and activation is tightly controlled in vascular events. 

However, certain triggers, such as changes in the hemodynamic environment or levels 

of ROS such as those seen in certain diseased states, may tip the balance of control in 

favour of MMP activation and lead to excessive and pathological remodelling.

http://www.u.arizona.edu


1.5.9.3 MMPs in Atherosclerosis

Atherosclerosis is a progressive disease characterised by the accumuation of 

lipids and fibrous elements in large arteries. Early lesions consist of subendothelial 

accumulations of cholesterol ladened macrophages called “foam cells”. These fatty 

steaks develop over time into plaques comprising of a lipd rich necrotic core and 

typically have a fibrous cap consisting of SMCs and ECM. Plaques become 

increasingly complex and can grow sufficently large enough to occlude blood flow. 

One of the more common clinical complications is occulsion due to formation of a 

thrombus caused by rupture of a plaque [Lusis et al., 2000].

1 : Normal section o f  artery 2: Initial fatty deposits 3: Partial occlusion

4: Cracks/Fissures appear in 5: Exposure o f  elements o f  the necrotic
fibrous cap core result in thrombus formation

Figure 1.20: Progression of atherosclerosis from fatty streak formation to thrombus and 

artery occlusion (http://www.nlm.nih.gov).

Atherosclerotic lesions do not occur at random locations in the vasculature. 

Hemodynamic forces interacting with an an active vascular endothelium are responsible 

for localizing lesions in a non-random pattern of distrubtion. Shear stress and cyclic 

strain are the predominant forces which have been characterized in the vasculature.
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Tubular regions of the artery are exposed to blood flow which is laminar, cells in these 

regions are ellipsoid and grow in the direction of flow. Laminar shear stress has been 

associated with having a protective effect on the endothelium preventing the formation 

of fatty streaks and progression of atherosclerosis. There are five major regions of 

arterial plaque formation:

i. The comary arteries

ii. The major branches of the aortic arch

iii. The major branches of the abdominal aorta

iv. Visceral extremity branches of the abdominal aorta

v. Lower extremity branches of the abdominal aorta

Atherosclerotic plaque formation predominatly occurs in these locations due to 

changes in the hemodynamic environment brought about by arterial curvature, extensive 

branching (bifurcations) and in the case of comary arteries, mechanical torsions during 

the normal cardiac cycle. It has been found that high shear stress is inversely

proportional to the formation of lesions i.e lesions localize in areas where shear stress is

low such as at branch points and high shear stress protects against atherogenesis. Due 

to the low levels of shear stress, the endothelium may be exposed to atherogenic lipds, 

monocytes and platelets for an increased period of time [Dzau et al., 2002].

Figure 1.21: Non-random localization of early 
atherosclerotic lesions in a Watanabe heritable 
hyperlipidemic (WHHL) rabbit. The aorta has been 
stained with Oil-Red-O, which shows lipid-rich 
atherosclerotic lesions in the arterial wall. Despite 
the systemic nature of the hyperlipidemia, the
lesions in this animal are largely confined to areas
around curvatures and branch points, suggesting that 
patterns of blood flow are important in localizing 
this disease. The upper arrow indicates the arch of 
the thoracic aorta, which has been opened up to 
display the intimal lining en face. The lower arrow 
indicates the localized nature of the atherosclerotic 
lesions adjacent to the paired ostia of the intercostal 
arteries originating from the descending thoracic 
aorta.



This increased exposure may be a causitive factor in atherogenesis at these sites 

Similarly oscillatory shear stress and the formation of eddy currents are believed to be a 

contributory factors in the progression of atherosclerotic lesions Changes m the 

curvature and branching withm the vasculature also effects the degree of cyclic strain 

withm the vessel wall which in turn may regulate a number of pro-atherogenic 

molecules including ICAM-1, ROS and MCP-1 A greater understanding of these 

forces might provide better insight into the progression of athersclerosis

MMP activity has been identified within athersclerotic plaques and may be 

modulated by pro-atherogenic molecules such as Oxidised LDL (oxLDL) OxLDL 

which accumulates m atherosclerotic plaques has been found to regulate the expression 

of MMPs, including MMP-1 m endothelial cells and MMP-9 in macrophages [Xu et a l , 

1999] Withm the plaque both MT1-MMP and MT3-MMP expression have been found 

to be increased, in addition to the expression of MMP-1, MMP-2, MMP-8 and MMP-9 

derived from foam cells, EC and SMC [Rajavashisth et a l , 1999, Uzui et a l , 2 0 0 2 ] 

Atherosclerosis is often viewed as a vascular injury and initiates an inflammatory 

response Progression of atherosclerosis involves the recruitment of monocytes and 

lymphocytes to the lumen wall Both oxLDL and the hemodynamic environment can 

modulate this inflammatory response These stimuli can cause changes m adhesion 

molecule expression such as VCAM-1 and PCAM-1 m addition to MCP-1 which, may 

mediate recruitment of these inflammatory cells [Lusis et a l, 2000] The mechanisms 

by which these inflammatory cells infiltrate the endothelial layer are thought to be 

largely faciltated by MMPs In vitro interactions between T-cells and endothelial cells 

was shown to increase secretion of MMP-2 Cyclic stretch mediated increases in MMP- 

2 was shown to be regulated by TNF-a a potent inflammatory cytokine [Wang et a l, 

2003] MMP degration of the EC basement membrane could contribute to decreased 

endothelial barrier function, such as that seen at arterial bifurcations, permitting 

increased influx of lipoproteins, plasma proteins and foam cells



1 5 9 4 MMPs in Plaque rupture

Rupture of the fibrous cap overlying an atherosclerotic plaque accounts for 60- 

80% of all thrombotic events The demise of the plaque stabilty occurs through 

structural breakdown of the arterial wall leading to rupture of the fibrous cap and 

exposure of the pro thrombotic core The identification of strong MMP expression 

withm plaques and their ability to degrade ECM proteins has implicated their role in 

plaque rupture Plaque rupture involves two processes, firstly, a reduction in collagen 

synthesis and secondly, an increase in MMP expression and activity The identity of the 

MMPs involved m weakening of the plaque remains elusive due to the large number of 

MMPs and their multiple substrate specificities

Macrophage-derived foam cells resident within plaques are known as a major 

source of MMP-1, MMP-2, MMP-3 and MMP-7 [Galis et a l , 1995, Galis et a l , 1998] 

Increased blood level of MMP-2 and MMP-9 have been associated with acute comary 

syndrome and MMP-9 has been found in lesions of patients with unstable angina The 

mam structural components of the fibrous cap are mtersitial collagen I and III 

conferring tensile strength Therefore, traditionally mtersitial collagenases, MMP-1 and 

MMP-13, were thought to be the principal contributors to plaque rupture However, 

MMP-2 and MMP-9, derived mamly from inflammatory cells has been shown to 

degrade fibrillar collagen and fragmented mtersitial collagen and therefore may be more 

important m destabilization of plaques Overexpression of these enzymes has been 

reported within vulnerable sites of human atheromas [Falk et a l , 1995] In stark 

contrast to the widely accepted notion that MMPs are responsible for plaque rupture by 

destabilizing the fibrous cap, overexpression of MMP-1 m ApoE-null mice did not 

induce plaque rupure and led to a reduction of athersclerosis [Hofmann et a l , 2001] 

Other studies have shown that MMP inhibition in arterial injury models resulted in a 

marked reduction in collagen deposition and SMC migration A complete mechanistic 

understanding of the plaque rupture remains somewhat incomplete, although the 

evidence of a central role for MMPs m this process is mounting
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1 5 9 5 MMPs in aortic aneurysm

Arterial aneurysm (AA) is a common and lethal disorder which is manifested as 

arterial dilation, wall thickening and a dramatic reduction m elastin/collagen ratio and as 

such can be considered a dynamic remodelling process These changes are 

accompanied by excessive production of matrix metalloprotemases Aortic aneurysm is 

an extreme form of outward remodelling, the trigger for which is believed to be the 

physiological tendency of blood vessels to optimize shear stress and wall tension 

Medial SMC isolated from AA tissue were found to produce significantly higher levels 

of MMP-2 and MMP-9 MMP-2 and MMP-9 null mice have been shown to be 

protected from aortic aneurysm confirming an important role for MMPs in the 

progression of AA Freestone et al (1996) have demonstrated that MMP-2 is the 

principal MMP activity m small aneurysms Similar studies have revealed an increase 

in both expression and activity of MMP-2 in aortic aneurysms with concurrent increases 

m MT1-MMP and TIMP-2 [Goodall et a l , 2001] A number of animal models exist 

which emulate this condition and involve increased expression of MMP-2 and MMP-9, 

local matrix destruction and local inflammation As previously mentioned, MMP-2 and 

MMP-9 null mice have been shown to be resistant to aneurysm formation This 

occurence could be reversed in MMP-9 but not MMP-2 knockouts by infusion with 

wildtype macrophages This suggests that MMP-2 and MMP-9 may be derived from 

different sources but work in concert to produce aortic aneursyms [Longo et a l , 2002]

1 5 10 Therapeutic possiblities in MMP inhibition

MMPs have been implicated in a number of physiological conditions such as 

apoptosis, reproduction and angiogenesis in addition to pathological conditions which 

include rheumatoid arthritis, restenosis, plaque instability, unstable angina, myocardial 

infarction, stroke, atherosclerosis and cancer Given their widespread expression 

through differing cell types and involvement in a number of vascular cell fate decisions 

targeted inhibition of these enzymes to arrest the progression of a number of diseases is 

of great interest
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One of the earliest broad spectrum synthetic MMP inhibitors, SC-44463 was 

found to inhibit metastasis m mice Batimatstat [BB-94] (British Biotech Inc Oxford, 

UK) a broad spectrum hydroxamic-acid derivative became the first MMP inhibitor to be 

tested on humans This inhibitor was found to have poor solubility and had to 

administered mtrapleurally, because of this batimastat was replaced by orally 

administered manmastat, which has been shown to be effective against colon, 

pancreatic and prostate cancer Long-term usage of these drugs have been found to 

result m inflammation and pain in joints and tendons, these drugs are broad spectrum 

and as such may have other long term side effects which have yet to be elucidated 

Thus, the development of more specific MMP inhibitors in conjunction with improved 

ability to target drugs is an area of growing interest

As previously discussed, MMPs play a major role in vascular function and 

disease As such, a number of studies have attempted MMP inhibition as a means of 

counteracting a number of pathological conditions such as atherosclerosis, left 

ventncule remodelling following myocardial infarction, and constricive remodelling 

following ballon angioplasty Despite its long term detrimental effects, BB-94 was 

found to attenuate experimental thrombolysis induced haemorrage and significantly 

reduced late lumen loss after balloon angioplasty by inhibition of constrictive arterial 

remodeling, whereas neointima formation was not inhibited by MMP inhibition [Bart et 

a l , 2000] Fluvastatin, a 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitor 

decreases MMP-1 expression in human vascular ECs through inhibition of Rho [Ikeda 

et al 2000] MMP inhibition with fluvastatin has been used to some effect in 

attenuating left ventricular remodeling and failure after experimental myocardial 

infarction m mouse models Thus, long-term treatment with fluvastatin might be 

beneficial also in patients with heart failure and might improve their long-term survival 

[Hayashidam et a l , 2002] MMP inhibition by PD 166793 or CP-471474 (Pfizer Inc, 

MW 368) was also found to be beneficial in attenuating left ventricle hypertrophy 

[Chanency et a l , 2002, Lindsey et a l , 2002] Statins, such as cenvastatm and 

lovastatin inhibit secretion of several MMPs from both SMCs and macrophages, which 

may contribute to their plaque-stabilizing effects [Hu, et a l , 2001] Doxycycline
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penetrated atherosclerotic plaques with acceptable tissue levels This resulted in a 

reduction in MMP-1 concentration because of decreased expression [Axisa et a l , 2002]

TIMPs were initially considered as potential therapeutics in situations of 

exaggerated MMP activity, however their large size and short half life rendered them 

unsuitable Advances in the adenoviral vector-mediated gene delivery has led to an 

increased interest in TIMP gene transfer as a means of MMP inhibition Local TIMP-2 

gene transfer significantly reduces vein graft diameter, 1 e remodeling of an artery-like 

vessel via MMP inhibition [Hu et a l , 2001] Adenovirus-mediated human TIMP-2 

gene transfer inhibits SMC invasiveness in vitro and in vivo and delays neomtimal 

development after carotid injury [Cheng et a l , 1998] Overexpression of TIMP-3 in 

human saphenous veins prior to grafting into cartoid arteries was found to reduce 

neointima formation by 84% TIMP-2 however was not found to effect neointima 

formation in this model, thus highlighting the possible therapeutic potential for the 

prevention of late vein graft failure [George et al 2000] Atherosclerotic lesions in 

atherosclerosis-susceptible hypercholesterolemia apoE2/2 mice were significantly 

reduced by adenovirus mediated elevation in the circulating levels of TIMP-1 

Histological and immunohistologic analyses of these atherosclerotic lesions revealed 

increases in collagen, elastin, and smooth muscle a-actin associated with reduced MMP 

activity TIMP-1 infiltration from plasma to arterial ultima, specifically m lesions, 

draws attention to possible use of this technology in the stabilization of atherosclerotic 

plaques [Rouis et a l , 1999] Gene transfer may be used directly or indirectly as a 

means of combating excessive MMP activity Targeted disruption of the MMP-9 gene 

was found to impair smooth muscle cell migration and geometrical remodeling of 

mouse carotid arteries MMP-9 deficiency was also found to decrease mtimal 

hyperplasia and reduced late lumen loss [Galis et a l , 2002] Endothelial nitric oxide 

synthase (eNOS) gene transfer decreased MMP-2 and MMP-9 activities with concurrent 

increases in TIMP-2 secretion This shift in MMP activity favors inhibition of cell 

migration by reducing the degradation of the ECM [Gurjar et a l , 1999] Other indirect 

methods of inhibiting MMP activities include the use of tyrosine kinase receptor 

inhibitors Non-specific tyrosine kinase inhibition was found to have unwanted side
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effects, chemical modification of these compounds have led to the production of a 

number of new drugs Herceptin (Genentech, USA) has been found to have no side 

effects in clinical trials It is believed that these compounds target the AP-1 complex 

thus inhibiting transcription of a number of MMP genes

1 6 Summary

The enzymatic properties of the MMP family are becoming more clearly 

understood however the complex regulation of these enzymes and their seemingly 

multiplicitous roles in the vasculature remains poorly understood To date, MMP 

activities have been identified in a number of scenarios involving vascular remodelling 

including angiogenesis, atherosclerosis and aortic aneurysm Several reports have 

indicated that MMP-2 and MMP-9 are involved in a number of vascular fate decisions 

and in particular m angiogenesis and migration Hemodynamic forces generated by 

blood flow play an important role in regulating vascular cell fate decisions and are 

believed to be one of the predominant regulators of MMP expression Precise 

information on the mechanisms by which hemodynamic forces regulate the expression 

and activities of these enzymes may aid in the development of therapeutic strategies 

against the progression of cardiovascular disease

1 7 Thesis Overview

The research presented in the following chapters examines the regulation of 

MMP-2 expression and activity in bovine aortic endothelial cells in response to 

mechanical forces It also identifies the roles of endothelial derived MMPs in 

regulating EC tube formation and the migration of both EC and SMC The findings of 

this research has been divided into three mam chapters

• Chapter 3

Examination into the ability of mechanical forces to regulate bovine aortic 

endothelial cells phenotype and the effects of these forces on MMP-2 and MMP-9 

expression and activity



• Chapter 4

A through investigation into the signalling pathways involved in the cyclic strain- 

induced increases in MMP-2 expression and activity

• Chapter 5

Examination of the mechano-receptors involved in mediating cyclic strain-induced 

changes in angiogenesis and the involvement of MMP-2 and MMP-9 in these 

events The identifiaction of a role for endothelial cell derived MMP-2 in regulating 

smooth muscle migration



Chapter 2



2 0 Material & Methods

All reagents used in this study were of the highest purity comraencally available 

and were of cell culture standard when applicable

2 1 Materials

AGB Scientific (Dublin, Ireland)

Whatmann Chromatography paper

Amersham Pharmacia Biotech (Buckinghamshire, UK)

Anti-mouse 2° antibody, HRP conjugated 

Anti-rabbit 2° antibody, HRP conjugated 

ECL Hybond nitrocellulose membrane 

ECL Hyperfilm

Rainbow molecular weight marker, broad range (6-175kDa)

Bachem UK Ltd (St Helens. UK)

Linear RGD peptide 

Cyclic RGD peptide

Bio Sciences Ltd (Dun Laoghaire, Ireland)

DMEM

dNTP’s

DEPC-treated water 

Tnzol® reagent

Calbiochem ÍSan Diego, CA)

PD98059

PD169316

Gensitein
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Pertussis toxin 

NF023

Anti-ppERK antibody 

Anti-ppP38 antibody

Cayman Chemical Company (Michigan. USA) 

eNOS polyclonal antibody

Chemicon (Temecula, CA)

Anti-MMP-2 antibody 

Recombinant MMP-2/MMP-9 standard

Cornell Cell Repository (NJ, USA)

Bovine Aortic Endothelial Cells (BAECs) 

Bovine aortic smooth muscle cells (BASMC)

Dunn Labortechnik GmBH (Asbach, Germany) 

6 -well Bioflex® plates

Flexcell International Corn (Hillsborough, NC) 

Flexercell® Tension Plus™ FX-4000T™ system

Guthrie cDNA Resource Centre (Sayre. PA)

Gial-G202T

Gia2-G203T

Gia3-G202T

Invitrogen (Groningen, The Netherlands) 

Lipofectamine reagent 

Lipofectamine 2000 reagent
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Scientific Imaging Systems (Eastman Kodak Group, Rochester, NY) 

Kodak ID image analysis software

MWG Biotech (Milton Keynes, UK)

MMP-2 primer set 

MMP-9 primer set 

MT1-MMP primer set 

(3-actin primer set 

GAPDH primer set 

MMP-2 siRNA duplex 

MMP-9 siRNA duplex 

Control sequence X

Neuroprobe, Gaithersburg (MD USA)

AA10 transwell chamber 

8 ^m and 1 2 |Lim filters

PALL Corporation (Dun Laoghaire, Ireland)

Biotrace nitrocellulose membrane

Pierce Chemicals (Cheshire, UK)

BCA protein assay kit

Supersignal West Pico chemilumescent substrate 

Plamids

Shc-SH2 was the generous gift of Professor John Shyy (University of California, 

Riverside)

GFP and p-ARK-ct were the generous gifts of Dr John Cullen (University of Rochester 

Medical Centre, Rochester NY)

Promega (Madison. WI)
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Taq DNA Polymerase 

MLV-RT 

RNase H 

Oligo dT

Sarstedt (Drinagh, Wexford. Ireland)

T25 tissue culture flasks

T75 tissue culture flasks

T175 tissue culture flasks

6 -well tissue culture plates

5,10 and 25ml serological pipettes

15 and 50ml falcone tubes

Sigma Chemical Company (Poole, Dorset, England) 

P-glycerophosphate 

2 -mercaptoethanol 

Acetic Acid 

Acetone 

Agarose

Ammonium Persulphate

Methanol

Recombinant MMP-2 

Pemcillin-Streptomycin (lOOx) 

Ponceau S 

Potassium Chloride 

Potassium Iodide

Bisacrylamide

Bovine Serum Albumin

Bnghtline Haemocytometer

Bromophenol blue

Chloroform

EDTA

EGTA

Ethidium Bromide 

Fibronectm 

Foetal Calf Serum

Potassium Phosphate (Dibasic)

Rat tail type I collagen

RPMI-1640

Sodium Chloride

Sodium Hydroxide

Sodium Orthovanadate

Sodium Phosphate

Sodium Pyrophosphate

SDS

TEMED
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Bovme Gelatm

Glycerol

Glycine

Hanks Balanced Salt Solution 

Hydrochloric acid 

Isopropanol 

Leupeptm

Tns Acetate 

Tns Base 

Tns Cl 

Triton X-100

Trypsin-EDTA solution (lOx) 

Tween 20
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2 2 Cell Culture Methods

All cell culture techniques were carried out in a clean and sterile environment 

using a Bio air 2000 MAC laminar flow cabinet Cells were visualized using an 

Olympus CK30 phase contrast microscope

2 2 1 Culture of bovine aortic endothelial cells (BAECs)

Differentiated BAEC were obtained from Conell Cell Repository, New Jersey, 

USA (CAT NO AG08500) The cells are derived from a one-year-old male Hereford 

cow The thoracic aorta was removed immediately post-mortem on 10/22/85 Cells 

were maintained in RPMI-1640 supplemented with 10% (v/v) fetal bovine serum 

(FBS), lOOU/ml penicillin and lOO^xg/ml Streptomycin Cells were cultured in 

T175cm , T75cm , T25cm and 6 well plates In the case of cyclic strain experiments 

cells were grown on Bioflex® series culture plates which have a flexible, pronectin- 

bonded growth surface Cells between passage 8 -1 7  were used in these experiments

BAECs are a strongly adherent cell line As such trypsinisation was necessary 

for sub-culturing or harvesting of cells For trypsinisation, growth media was removed 

from the flask and the cells were gently washed three times in Hanks buffered saline 

solution (HBSS) to remove a-macroglobulin, a trypsin inhibitor present m FBS A 

suitable volume of trypsm/ethylenediamine tetracetic acid (EDTA) (10% v/v trpsin 

EDTA m HBSS) was added to the flask and incubated for 5-10 minutes or until all the 

cells were removed from the flask surface Trypsin was inactivated by the addition of 

growth medium and the cells were removed from suspension by centrifugation at 2500g 

for 5 minutes Cells were then resuspended m culture medium and typically diluted 1 5 

into culture flasks, or cryogeniclly preserved Cells were incubated in a humidified 

atmosphere 5% v/v CO2 at 37°C
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2 2 2 Culture of bovine aortic smooth muscle cells (BASMC)

Differentiated BASMC were obtained from Conell Cell Repository, New Jersey, 

USA (AG08504) The cells were derived from a one-year-old Angus cow The thoracic 

aorta was removed immediately post-mortem on 10/22/85 Cells were maintained in 

RPMI-1640 supplemented with 10% (v/v) fetal bovine serum (FBS), lOOU/ml penicillin 

and 100[xg/ml Streptomycin BASMCs are a strongly adherent cell line, as such 

trypsimsation was necessary for sub-culturing or harvesting of cells A 1 5 sub-culture 

ratio was generally used Cells were incubated in a humidified 5% v/v C 0 2 atmosphere 

at 37°C Cells between passages 10 -20  were used in these experiments

2 2 3 Cyclic strain and laminar shear stress studies

For cyclic strain studies, BAECs were seeded into 6 -well Bioflex® plates (Dunn 

Labortechmk GmBH - Asbach, Germany) at a density of approximately 6X105 

cells/well, allowed to adhere for 24 hours and grown to confluency After 24 hours, the 

media was removed and replaced with serum-free media and the cells exposed to 

varying levels of cyclic strain Bioflex™ plates contain a pronectin-coated silicon 

membrane bottom that enables precise deformation of cultured cells by microprocessor- 

controlled vacuum When cells had reached approximately 100% confluency, a 

Flexercell™ Tension Plus™ FX-4000T™ system (Flexcell International Corp - 

Hillsborough, NC) was employed to apply a physiological level of cyclic strain to each 

plate (0-10% strain, 60 cycles/min, 0-24 h) providing equibiaxial tension using the 

‘Heartbeat’ ™ Simulation protocol

For laminar shear stress studies, BAECs were seeded onto cell culture grade 

petri dishes and allowed to adhere for 24 h and grown to confluency After this the 

media was removed and replaced with fresh culture media before exposure to laminar 

shear stress The petri dishes were sealed and placed on an orbital shaker (Stuart 

Scientific Mini Orbital Shaker S05) A suitable RPM to produce a shear stress of 

10dynes/cm2 was determined from the equation [Hendrickson et al 1999]
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Shear Stress = a^lpn(2jtf)J

Where a  = radius of rotation in cm

p = density of liquid in g/1 

n = 7 5X103 dynes/cm2 @ 37°C 

f = rotation per second

2 2 4 Cryogenic preservation and recovery of cells

For longterm storage of cells BAECs were maintained in liquid nitrogen in a 

cryofreezer unit Cells to be stored were centrifuged following trypsmisation and the 

resultant pellet was resuspended in 20% (v/v) FBS containing dimetylsulphoxide 

(DMSO) at a final concentration of 10% (v/v) 1ml aliquots were transferred to sterile 

cryovials and frozen in a -80°C freezer at a rate of -l°C/mmute usmg a Nalgene cryo 

freezing container Following overnight freezing at -80°C, the cryovials were 

transferred to a cyrofreeze unit (Thermoylen locator jr cryostorage system) Cells were 

recovered from longterm storage by rapid thawing at 37°C and resuspension m 5ml of 

growth medium followed by centrifugation at 3500rpm for 5 minutes The resultant cell 

pellet was resuspended in fresh medium and transferred to a culture flasks The 

following day the media was removed, the cells were washed in HBSS and fresh culture 

media added

2 2 5 Cell counts

Cells counts were performed usmg a Sigma brightlme haemocytometer slide 

Trypan blue exclusion dye was routinely used to determine cell viability 20^1 of trypan 

blue was added to 100|li1 of cell suspension, the mixture was left to incubate for two 

minutes 2 0 x̂1 of this mixture was loaded to the counting chamber of the 

haemocytometer and cells visualized by light microscopy Viable cells excluded the

7S



dye while dead cells stained blue The number of cells was calculated using the 

following equation

Aveiage Cell No x I 2 (dilution factor) x lxlO4 (area under cover slip mm3) = Viable 

cells/ml

2 2 6 Treatment with pharmacological inhibitors

Cells were routinely cultured for at least 2 passages prior to treatment with 

pharmacological inhibitors For these experiments, BAECs were grown until 

approximately 70-80% confluent after which the growth media was removed and cells 

rmsed 3 times in HBSS Inhibitors were diluted in RPMI-1640 supplemented with 

antibiotics For DMSO-soluble inhibitors, a suitable stock concentration was prepared 

so that the final concentration of DMSO in working solutions was less than 0 5% Cells 

were exposed to inhibitors for 1 hour prior to exposure to cyclic strain and were present 

in the media during the course of the mechanical strain experiment Following 24 hours 

of 5% cyclic strain cells were harvested for total RNA/protein and conditioned media 

Inhibitors used were pertussis toxin (lOOng/ml), NF023 (10|mM), PD98069 (10[mM), 

PD169316 (IOm-M), GM001 , RGD peptide (0 5mM), cyclic RGD (IOOjxM) and 

gensitem (50jxM) Concentrations used were taken from current literature or based on 

manufacturers recommendations

2 2 7 Preparation of whole cell lysates

Following trypsmisation as described in section 2 1 1, the cell pellet was washed 

in IX PBS to remove any trace levels of FBS The cell suspension was then centrifuged 

at 2500g for 5 minutes The PBS supernatant was removed and the cells were 

resuspended m IX lysis buffer (20mM Tns, 150mM NaCl, ImM Na2EDTA, ImM 

EGTA, 1% Triton X-100 (v/v), 2 5mM sodium pyrophosphate, ImM (3- 

glycerophosphate, ImM sodium orthovanadate, l^ig/ml leupeptin) The resulting 

lystaes were frozen and thawed three times followed by three cycles of ultrasomcation
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for 5 seconds on ice using a sonic disembrator (Vibra Cell, Somes and materials Inc) 

Samples were stored at -20°C for short-term storage or -80°C for long-term storage

2 2 8 Bicinchonmic Acid (BCA) protein microassav

In this assay Cu1 f reacts with the protein under alkaline conditions to produce 

Cu+, which in turn reacts with BCA to produce a coloured product [Pierce , 1997] Two 

separate reagents were supplied in this commercially available assay kit (Pierce 

Chemicals), A, an alkaline bicarbonate solution and B, a copper sulphate solution 1 

part solution B is mixed with 50 parts solution A, 200|ul of this mixture is added to 10¡wl 

of protein lysate or BSA standards (standard curve in the range 0-2mg/ml) The plate is 

incubated at 37°C for 30 minutes and the absorbance read at 560nm using a microtitre 

plate reader

2 2 9 Lactate dehydrogenase (LDH) Assay

Lactate dehydrogenase (LDH) is a cytosolic enzyme present within all 

mammalian cells Frequently used as a marker for plasma membrane damage or 

“leakage” In vitro release of LDH from cells subsequently provides an accurate 

measure of cell membrane integrity and cell viability [Racher et a l , 1998] This assay 

was used to assess the effects of mechanical strain on viability of bovine aortic 

endothelial cell cultures The release of LDH into culture supernatant correlates with 

the amount of cell death and membrane damage, providing an accurate measure of the 

cellular damaged induced by the experimental conditions 

This assay is based upon the ability of LDH to catalyze the reaction

Pyruvate + NADH + H(+) --> Lactate(+) + NAD(+)

Briefly, 5 îl of cell lysate or 50jutl of conditioned media was added to 900\x\ of 

0 2M Tns-HCl pH7 3, 100̂ ,1 of 1 ImM (3-NADH and 20|ji1 of 115mM sodium pyruvate 

The samples were mixed by inversion and the absorbance read at 340nm every 20
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seconds for 5 minutes LDH activity can be derived from the rate of changes m optical 

absorbance (AOD/sec)

2 3 RNA prepartion methods 

2 3 1 RNA isolation

Tnzol is a ready to use reagent for the isolation of total RNA,DNA and/or 

protein from cells and tissues RNA isolation was developed by Chomczynski and 

Sacchi [Chomczynski et a l , 1987] Tnzol reagent maintains the integrity of the RNA 

while disrupting the cells and dissolving the cell components

Cells were lysed directly m culture plates by the addition of 1ml of Trizol per 

10cm2 A volume less than this can result m contamination of the RNA with DNA To 

ensure complete homogenization, cells were lysed by passing through a pipette a 

number of times The samples were then incubated for 5 minutes at room temperature 

to allow complete dissociation of nucleoprotem complexes 0  2 ml of chloroform was 

added per ml of Trizol reagent used and was then mixed vigorously for 15 seconds 

before being incubated for 5 minutes at room temperature Samples were then 

centrifuged at 12,000xg for 15 minutes at 4°C The mixture separated into a lower red, 

phenol-chloroform phase, an interphase and an upper colourless aqueous phase RNA 

remains exclusively in the aqueous phase

The aqueous phase was carefully removed and transferred to a fresh, sterile tube 

The RNA was precipitated out of solution by the addition of 0 5ml of isopropanol per 

lml of Trizol used Samples were incubated for 15 minutes at room temperature and 

then centrifuged at 12,000xg for 10 minutes at 4°C The RNA precipitate forms a gel- 

like pellet on the side of the tube The supernatant was removed and the pellet washed 

in lml of 75% ethanol per ml of Trizol used followed by centrifugation at 7,500xg for 5 

minutes at 4°C The resultant pellet was air-dried for 5-10 minutes before being 

resuspended in DEPC-treated water The sample was then stored at -80°C until used
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The concentration o f total RNA was determined by UV spectrophotometry as outlined 

m section 2 111

2 3 2 Spectrophotometric analysis of nucleic acids

DNA or RNA concentrations were determined by measuring the absorbance at 

260nm, the wavelength at which nucleic acids absorb light maximally (k  max) A 

50(Lig/ml solution o f DNA or 40|ng/ml solution o f RNA has an absorbence reading o f 1 0 

at this wavelength In order to calculate the concentration o f DNA/RNA in samples the 

following calculations were used,

DNA - Abs @2 6 0nm x50x200 ( dilution factor, i e 5^1 of sample m 995\x\ H2 O) = fxg/ml 

RNA - Abs @260nm x  40 x  200 (  dilution factor , i e 5pd o f  sample in 995(it H2O) = fig/ml

The purity o f the DNA or RNA samples was established by reading the 

absorbence at 260nm and the absorbence at 280nm and then determining the ratio 

between the two (ABS2 6 0/ABS2 8 0) Pure DNA which has no protein impurities has a 

ratio o f 1 8 whereas pure RNA has a ratio of 2 0 Lower ratios indicate the presence of 

proteins, higher ratios imply the presence o f organic reagents

2 3 3 Reverse transcription polymerase chain reaction (RT-PCR)

PCR has over the last 20 years proved to be an important and powerful tool for 

amplifying small quantities o f DNA for analysis RT-PCR is a m odification o f this 

technique in which small quantities of specific messenger RNA (mRNA) are analysed 

Total RNA is isolated using oligo dT primers, which is subsequently converted to copy 

DNA (cDNA) using the enzyme reverse transcriptase cDNA of interest was amplified 

by PCR using gene specific primers The PCR was semi-quantitative, GAPDH (a 

house-keepmg gene) expression was monitored m tandem with the gene o f interest, the 

ratio o f gene X to GAPDH served as a means of determining relative amounts o f the 

target genes m each reaction
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2 3 4 Reverse Transcription

Reverse transcription was preformed using M oloney Murme Leukemia Virus 

Reverse Transcriptase (M-MLV RT) in accordance with manufacturers specifications 

with some minor modifications [Roth et a l , 1985, Sambrook et a l , 1989] 0 5\xg o f 

total RNA (isolated as described in section 2 1 9) was mixed with 0 125jutg oligo dT 

primers and the reaction mixture brought to a final volume of \2 \i\ with DEPC water 

This mixture was heated for 10 minutes at 70°C to allow annealing to oligo dT primers 

to poly A tail o f mRNA Following this, tubes were immediately cooled on ice and the 

remaining components of the reaction were added as follows 

MLV 5X Reaction Buffer 5yd

lOmMdNTP 3^1

MLV-RT 200umts

The mixture was then made up to a final volume o f 25 ¡wl using DEPC water and 

incubated for 60 minutes at 42°C Contaminating RNA was subsequently removed by 

the addition o f lfxl of RNase H (2umts/^il) at 37°C for 20 minutes cDNA samples were 

then either used immediately or stored at -80°C until required

2 3 5 Polymerase Chain Reaction

A 50̂ x1 PCR reaction mixture was prepared as follows,

RNase free water 36 5 ^ 1

1 OX reaction buffer 5\x\

lOmM dNTP l^il

25mM MgCI 3|ul

1 0 ( u M  Forward primer 1 ^ 1

lOfiM Reverse primer 1 (Lll

Taq Polymerase 0  5^jl1

cDNA sample 2|j.l

80



The mixture was overlaid with 50|li1 o f mineral oil and then placed in a Hybaid 

PCR Thermocycler (SPRT 001) Samples were subjected to an initial incubation of 

92°C for 2 minutes followed by 30 cycles comprising of the following steps 92°C for 1 

minute, annealing temperature for 2 minutes and 72°C for 3 minutes PCR products 

were removed from beneath the mineral oil and placed in fresh tubes before being 

subjected to agarose gel electrophoresis

Target Gene Primer Sequence Product

size

Annealing 

Temp (°C)

Bovine

MMP-2

5’ tgg caa ccc cga cgt gg 3’ 

5 ’ gca ggg ctg tcc gtc gg 3 ’

534 bp 55°C

Bovine

MMP-9

5 ’ tag gaa ccg ctt gca ttt c 3 ’ 

5’ gat cca cct tct gtg tct t 3 ’

349 bp 54 5°C

GAPDH 5’agg tea tcc atg acc act tt T  

5’ttg aag teg cag gag aca a 3 '

337 bp 54°C

2 3 6 Agarose gel electrophoresis

Agarose gels were prepared by boiling the appropriate quantity o f agarose in 

100ml o f IX  TAE buffer (40mM Tns-A cetate pH 8 2, ImM  EDTA), gels were 

generally 1-2% (w/v) depending on the size o f the DNA being visualised Gels 

contained 0 5^ig ethidium bromide per 1ml o f agarose for visualization o f DNA within 

the gel When the gel was hand-hot the gel was cast m a GibcoBRL Horizion 20 25 gel 

electrophoresis apparatus

Samples were mixed with 6X gel loading buffer (40% w/v sucrose, 0 25% w/v 

bromophenol blue) 12 5̂ ,1 o f PCR product was mixed with 3|ml o f loading buffer and 

subsequently loaded The gel was run at 100V in IX  TAE buffer until the blue dye 

front was approximately 0 5cm from the end o f the gel DNA was visualized on a 

transillummator and photographed for densitometric analysis using the Kodak ID  gel 

docum entation system  (Scientific Im aging System s, Eastm an K odak Group, 

Rochester,NY)
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2 4 Polyacrylamide electrophoresis

2 4 1  Western Blotting

SDS-PAGE was performed as described by Laemmli using 10% polyacrylamide 

gels [Laemmh , 1970] 10% resolving and 5% stacking gels were prepared as follows

Resolving Gel 1 5ml Buffer A (1 5M Tns pH8 8)

1 5ml 40% acrylamide stock

3ml distilled water

60(il 10% (w/v) SDS

30|il 10% (w/v) ammonium persulphate

7fil TEMED

Stacking Gel 0 75ml Buffer B (0 5M Tns pH6 8)

0 375ml 40% acrylamide stock

1 85ml distilled water

30(il 10% (w/v) SDS

15 jil 10% (w/v) ammonium persulphate

7|il TEMED

For analysis o f equal volumes of conditioned media, samples were concentrated 

by Amicon centrifugal filters (MW cut off lOkDa) and loaded on gels For analysis o f 

cell lysate protein concentration was determined by BCA assay and a equal amounts of 

protein were resolved on the gel

Samples were mixed with 4X loading buffer (8% SDS, 20% (3-mercatoethanol, 

40% glycerol, Brilliant Blue R i n O  32M Tns pH6 8) and boiled at 95°C for 5 minutes, 

then immediately placed on ice The gel was electrophoresed in resevior buffer 

(0 025M Tns pH 8 3, 0 192M Glycine, 0 1% (w/v) SDS) at 40 milliamps (mA) per gel 

using an Atto vertical mmi-electrophoresis system until the dye front reached the 

bottom o f the gel
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Following electrophoresis the gel was soaked for 15 minutes m cold transfer 

buffer (0 025M Tris pH8 3, 0 192M Glycine, 15% v/v methanol) N itrocelluose 

membrane and 16 sheets o f Whatmann filter paper were cut to the same size as the gel 

and soaked in transfer buffer Proteins were transferred to the membrane for 30 minutes 

at 100V in an ATTO semi-dry transfer system Following transfer membranes were 

soaked in Ponceau S solution to confirm transfer of protein to the membrane and also to 

normalize for variations in protein loading

Membranes were blocked for 1 hour m blocking solution [5% (w/v) skimmed 

milk in Tns Buffered Saline [TBS],10mM Tris pH8 0, 150mM NaCl)] M embranes 

were then incubated either overnight at 4°C or for 3-4 hours at room temperature, with 

primary antibody diluted according to manufacturers instructions in blocking solution 

The blots were then vigorously washed in three changes o f TBST (0 05% (v/v) Tween 

m TBS) and then incubated for 2 hours at room temperature with a suitable HRP linked 

secondary antibody diluted in TBST Following incubation in secondary antibody, the 

blots were again washed in three changes of TBST

A ntibody-antigen complexes were detected by incubation in W est Pico 

Supersignal reagent (Pierce Chemicals) Briefly, an equal volume o f solution A and B 

were mixed and the blot was incubated for 5 minutes at room temperature Blots were 

exposed to autoradiographic film (Amersham Hyperfilm  ECL) to visualize bands 

present on the blot and developed (Amersham Hyperprocessor Automatic Developer) 

Bands of interest were identified either by use o f an antigenic positive control or based 

on molecular weight markers Exposure times varied depending on the antibody being 

used but were typically between 1-2 minutes

2 4 2 Zymographv

Zymography is an electrophoretic method for measuring proteolytic activity 

The method is based on a sodium dodecyl sulfate gel impregnated with a protein 

substrate which is degraded by the proteases resolved during the incubation period 

Coomassie blue staining of the gel reveals sites o f proteolysis as white bands on a dark 

blue background Within a certain range the band intensity can be related linearly to the



am ount o f protease loaded [Liota et a l , 1990] The gel was prepared by the 

incorporation o f enzyme substrate (gelatin) withm the polymerized acryl amide mix 

10% gels were used and details for one gel are given below

Conditioned media was centrifuged at 5000xg for 5 minutes to remove any cells 

Equal volumes o f media from each experimental condition were mixed with 4X loading 

buffer (0 25M Tris pH 6 8, 20% glycerol, 2% SDS and lOjjig/ml bromophenol blue) and 

dH20

The gels were run at 80V, 90mA m reservoir buffer (0 025M Tris, 0 19M 

Glycine, 0 1% SDS) until the dye front reached the bottom o f the gel Following 

electrophoresis gels were washed in two 20 minute changes o f 2 5% Triton X-100 and 

one wash in dH20 The gels were then incubated overnight (16-18hours) at 37°C m

Figure 2 1 Commaassie blue staining of zymography gel 
reveals areas of proteolysis as white bands on a dark 
background

Resolving Gel 1 5 ml Buffer A (1 5M Tris pH 8 8)

1 ml 6mg/ml gelatin stock

1 5 ml 40% acrylamide stock

2 ml distilled water

30 |il ammonium persulphate

7 \i\ TEMED

Staking Gel 0 75 ml Buffer B (0 5M Tns pH 6 8)

0 375 ml 40% acrylamide stock

1 85 ml distilled water

30 (il ammonium persulphate

7 nl TEMED



incubation buffer (50mM Tns pH 8 0, 50mM NaCl, and lOmM C a C y  before being 

stained with 0 25mg/ml Brilliant Blue R m 30% acetic acid, 10% isopropanol
i

G elatinolytic activity  was visualized as clear bands on a blue background 

Densitometric analysis was performed using Kodak ID image analysis software Bands 

were identifed as Pro-M M P2 and MMP-2 by Chemicon geltainase zymography 
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2 5 DNA preparation methods

2 5 1 Transformation of competent cells

lOng of plasmid DNA of interest was placed in a sterile microfuge tube To this 

was added 1 OOjitl o f competent JM109 E Coli The mixture was gently mixed and 

placed on ice for 30 minutes The cells were heat-shocked by placing the tube in a 

waterbath at 42°C for 45-50 seconds after which they were placed on ice for 2 minutes

Cells were grown for 1 hour at 37°C with agitation (200 rpm) in 1ml o f sterile 

Luria Bertram (LB) broth [1% (w/v) tryptone, 0 5%(w/v) yeast extract, l% (w/v) NaCl, 

pH 7 5] The cells were then centrifuged at 5000g for 1 minute and the supernatant 

removed The resultant pellet was resuspended m 0 2ml o f LB broth and spread plated 

either 150pil or 50fxl on LB agar plus ampicillin [LB medium containing 1 5%(w/v) agar 

plus 35^g/m l ampicillm] The plates were incubated at 37°C overnight and for no 

longer than 18 hours to prevent colasence o f colonies As a control for each 

transformation a mock transformation was included, in which no DNA was added to the 

competent cells

2 5 2 Plasmid DNA Mini-preparation

Plasmid DNA was isolated as specified by Qiagen Plasm id Kit protocol 

[Sambrook et a l , 1989, Ausubel et a l , 1991, Bimboim et a l , 1983] Single colonies of 

transform ed cells were rem oved from plates and grown in 3ml o f  LB broth 

supplemented with 35|ig/ml ampicillin These mini-cultures were grown at 37°C for 8 

hours with gently agitation (<200rpm) 1 5ml o f the final culture was used for the

generation o f glycerol stocks The rem ainder was diluted in 100ml o f LB broth 

supplemented with 35^ig/ml ampicillin and grown at 37°C overnight at 250rpm The 

following day the cells were harvested by centrifugation at 6000rpm for 15 minutes at 

4°C

The pellet was resuspended m 4ml o f Buffer PI [50mM Tris-HCl, pH 8 0, 

lOmM EDTA, 100|tig/ml RNase A] The resuspended cells were lysed by gently
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inversion with 4 ml of Buffer P2 [200mM NaOH, 1% SDS] and was incubated at room 

temperature for 10 minutes Protein was precipitated by the addition o f 4 ml o f pre- 

chilled Buffer P3 [3M potassium acetate, pH5 5], gentle mixing and incubation on ice 

for 5 minutes Protein precipitates were removed by high-speed centrifugation, 

13000rpm for 30 minutes at 4°C The supernatant was removed and centrifuged at 

13,000rpm for 30 minutes at 4°C to ensure complete removal of all protein

Once the supernatant had been removed it was applied to a Qiagen tip -100, 

which has been equilibrated with Buffer QBT [750mM NaCl, 50mM MOPS, pH 7 0, 

15% isopropanol, 0 15% triton X-100] The sample was allowed to enter the column by 

gravity flow and the column washed with 2 x 10 ml washes o f Buffer QC [1M NaCl, 

50mM MOPS, pH 7 0, 15% isopropanol] Finally, DNA was eluted from the column 

using 5 ml of Buffer QF [1 25M NaCl, 50mM Tns-HCl, pH 8 3, 15% isopropanol]

DNA was precipitated from the eluate by the addition o f 3 5ml o f isopropanol at 

room temperature The mixture was centrifuged at 12,000rpm for 30 minutes at 4°C, to 

yield a glassy pellet The supernatant was removed carefully so as not to disturb the 

isopropanol pellet The pellet was then washed in 2ml o f 70% ethanol, to remove 

precipitated salts and to make reconstitution o f the pellet easier and then centrifuged at 

12,000rpm for 10 minutes The pellet was air-dried for 5-10 minutes after removal of 

the supernatant and then redissolved in sterile Tris-EDTA (TE) buffer [lOmM Tns-HCl 

pH8 0, Im M ED TA]

2 5 3 Restriction digests

DNA was digested with restriction endonucleases for identification o f purified 

plasmid DNA l(ig  of DNA was prepared in a reaction solution containing 10X 

reaction buffer (supplied with each enzyme, by the manufacturer) along with ljxl o f 

restriction enzyme The digest was incubated at a suitable temperature (enzyme- 

specific) for 30 minutes to one hour, the reaction was typically stopped by heating the 

reaction mixture to 72°C In the case o f multiple digests, following incubation with the 

first enzyme, linearised DNA was precipitated and then exposed to subsequent enzymes

87



to overcome problems with differing reaction buffers The products of the digest were 

then resolved by electrophoresis on a 2% agarose gel with appropriate size standards

2 5 4 Transient Transfection

Lipofectamine™ reagent is a polycatiomc liposome as such it is suitable for 

transfection o f DNA into eukaryotic cells (Invitrogen-Gronmgen, Netherlands) The 

day prior to transfection, 1 5x l06 cells were plated on a T25cm2 flask, and grown 

overnight in RPMI-1640 supplemented with serum and antibiotics

When cells had reached approximately 70% confluent they were transfected 

with plasmid DNA For transfection purposes plasmid DNA was diluted in 150 \x\ o f 

DMEM without FCS or antibiotics such that there would be l^ g  o f DNA per 10cm o f 

surface area In a separate tube lO^il o f lipofectamine reagent (4 /J per 10cm2) was 

diluted in 150^1 o f DMEM without FCS or antibiotics The diluted DNA was then 

mixed with diluted lipofectamine reagent and incubated at room temperature for 30 

minutes This time permits the formation o f DNA-liposome complexes

While the DNA complexes were forming the cells were washed three times m 

HBSS followed by one wash in DMEM This was to remove any antibiotics from the 

flask, which may impede transfection efficiency The DNA/hpofectamine mixture was 

made up to a final volume of 2ml, which is just enough media to cover the surface area 

o f the flask The contents of the tube were then added to the culture flask The cells 

were incubated for 4 hours m transfection media, following this, the media was 

removed and replaced with normal RPMI-1640 growth media The cells were allowed 

to recover overnight following which, they were exposed to experimental conditions 

Cells were routinely co-transfected with either a Lac Z or green fluorescent protein 

(GFP) encoding plasmid as a means to determine approximate levels of transfection

2 5 5 B-galactosidase assay

Lac Z a plasmid encoding (3-galactosidase was used to monitor transfection 

levels Increased levels o f j3-galactosidase activity was attributed to successful
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transfection o f the gene o f interest Following trasnsfection and cell lysis, a 30jil 

sample was added to 3 \i\ o f 100X Mg solution [0 1M M gCl2 and 4 5M (3 

mercaptoethanol], 66^1 o f IX  OPNG (o-mtrophenyl-p-D-galactopyranosidase)[4mg/ml 

ONPG in 0 1M sodium phosphate, pH 7 5] and 201^1 o f 0 1M sodium phosphate The 

reaction was incubated for 4-6 hours at 37°C until a yellow colour developed The 

reaction was subsequently stopped with 500 \x\ o f Na2 CC>3 , and optical density read at 

420nm Suitable positive and negative controls were included in this assay

2 6 Transfection with si RNA

RNAi mediated gene silencing has grown rapidly m popularity as a method of 

analyzing gene function This procedure involves the transfection o f cells with small 

interfering RNA (siRNA) duplexes These duplexes are 21 nucleotides m length and 

are designed to specifically target an individual mRNA of interest siRNA are effective 

at much lower quantities than other gene silencing methods including antisense and 

nbozym e based protocols [Yu et a l , 2002, Yang et a l , 1999] siRNA used in these 

studies was supplied as a 2 ’-deprotected, annealed oligonucleotide in a desalted form

2 6 1  Design of siRNA Duplex

A sequence is selected in the open reading frame o f the cDNA which is at least 

75-100 bp downstream of the start codon Untranslated regions near the start codon 

may be richer m regulatory protein binding sites, which may interfere with binding of 

the siRNP endonuclease complex The first AA dimer is located and the next 19 

nucleotides are recorded The G/C content of the AA-N 1 9 base sequence is determined 

Ideally the G/C content must be greater than 30% and less than 70% If the sequence 

does not meet these criteria, a sequence further downstream starting with an AA dimer 

is analysed This is continued until a sequence is found which meets all o f the above 

conditions
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Figure 2 2 Mode of action of siRNA

Following this the 21 base sequence is subjected to a BLAST search to ensure 

that only one gene is targeted In this case o f MMP-2 a sequence was chosen at position 

364 m the MMP-2 sequence (Accesion number NM_174745) This section was chosen 

as it contains part o f the functional peptidase region o f the enzyme The target sequence 

o f MMP-9 siRNA is at position 488 in the Bos Taurus sequence (Accesion number, 

NM _174744) located in the peptidase region o f the enzyme
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Name Sequence of SiRNA Duplex GC

Content

Mol. Weight

MMP-2 GAA CCA GAU CAC AUA CAG G dTdT 

dTdT CUU GGU CUA GUG UAU GUC C

42 8% 13302 2g/mol

MMP-9 GCU GAC AUU GUC AUC CAG U UU 

UU CGA CUG UAA CAG UAG GUC A

42 9% 13308 0g/mol

Control

X

AUU CUA UCA CUA GCG UGA C UU 

UU UAA GAU AGU GAU CGC ACU G

42% 13373 0g/mol

2 6 2 Transfection of siRNA Duplex

siRNA was transfected into BAECs using lipofectamine™  2000 siRNA was 

diluted in 5X universal buffer [200mM KC1, 30mM HEPES-KOH pH 7 5, Im M  

M gCb] and RNase free water to a final concentration o f 20fxM (20pmoles/|j,l) The 

following procedure is for transfection m a 6-well format 8X105 cells were plated per 

well to achieve 70-80%  confluency at time o f transfection siRNA/hpofectamme ™ 

2000 complexes were prepared as follows

• 5[uil (100pmoles/10cm2) o f siRNA was diluted m 395^1 o f  DME medium 

without serum or antibiotics, the presence of antibiotics during transfection 

causes cell death The mixture was then gently mixed

• Lipofectamine ™ 2000 was mixed prior to use and subsequently 5\i\ was diluted 

in 395(li1 of DME medium and incubated for 5 minutes at room temperature

• The two mixtures were then combined and mixed gently The mixture was 

incubated for 30 minutes at room tem perature to allow the form ation o f 

siRNA/hpofectamme ™ 2000 complexes

• The 800^1 of siRNA/hpofectamme ™ 2000 complexes were added to the well 

and mixed gently by slowly rocking the plate back and forward to ensure 

complete coverage of the cells Cells were incubated for 3 hours at 37°C in a 

CO2  incubator
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• After the 3 hour incubation the media was removed and replaced with growth 

medium and cells were recovered overnight Following recovery, media was 

replaced with fresh growth media and cells and media were harvested 24 hours 

later for analysis

A commercially available non-specific control siRNA sequence (MW G-Biotech) was 

transfected into control cells

2 7 Transwell migration assay

Transw ell m igration was assessed using a AA10 chem otaxis cham ber 

(Neuroprobe) This is a modified Boyden chamber which comprises o f top and bottom 

plates and a silcone gasket A single 25 x 80mm piece o f porous filter membrane is 

placed between the top and bottom plates, and a gasket is positioned over the filter to 

create a seal Cells are inoculated into the top chamber After incubation the migrated 

adherent cells on bottom side of the filter are stained and counted This chamber has the 

advantage over other multichamber chemotaxis chambers of having a reasonably large 

surface area 50mm2

12 [Am pores

Figure 2 3 Diagrammatic representation o f transwell migration
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2 71 EAEC migration

To analyze BAEC migration, an 8{xm polycarbonate filter membrane was 

coated with 0 02jutg/jml human fibronectin protein overnight Following exposure to 

experimental conditions BAECs were harvested from experiments and seeded at a 

density o f 3X104 cells per well Cells were allowed to migrate for 16-18 hours in a 

humidified atmosphere o f 5% v/v C 0 2 at 37°C

Following this, non migrated cells were removed from the top side o f the filter 

using a cell scraper Briefly, the top side o f the filter was washed three times with IX 

PBS and was scraped quickly so that cells would not dry on the filter Migrated cells 

were fixed on the filter by incubation with 3 7% formaldehyde for 20 minutes The 

filter was then washed with dH20 and permitted to air dry When the filter was dry it 

was stained with Harris Hematoxylin solution for 20 minutes, followed by two washes 

in dH20 The wet filter was placed on a microscope slide and allowed to dry

After fixing and staining the number o f migrated cells was manually counted by 

using a microscope (Olympus, CM20) Cells in 5 random high power fields (hpf) for 

each well were counted to determine the average number o f migrated cells Data are 

reported as the number o f BAECs counted per 5 hpf and are expressed as a percentage 

o f control, where control indicates BAECs exposed to static conditions unless otherwise 

stated

2 7 2 BASMC M igration

To analyze BASMC migration, a 12¡mm polycarbonate filter membrane was 

coated with 0 02^ig/^il human fibronectin protein overnight BASMC were harvested 

and 5X103 cells were seeded per well In this series o f experiments conditioned media 

from BAEC cyclic strain experiments was used as a chem oattractant m the lower 

chamber

Fixing, staining and analysis were the same as in section 2 6 1



2 7 3 Scratch-wound healing assay

BAEC migration can also observed by this assay [de Jonge et a l , 2002] Cells 

were grown m 6-well plates and in vitro wounds were created by scraping BAEC 

monolayers with a yellow tip After injury, the wound was photographed at 5 distinct 

positions and the distance between the two wound edges calculated using NIH image 

Cells were then exposed to fresh growth media m the absence or presence o f inhibitors 

for 9h Following this, the wound was again photographed at 5 distinct locations and 

the distance between the two wound edges calculated BAEC migration was assessed 

by comparing distance between wound edges before and after treatement

2 8 In vitro tube formation assay 

2 8 1  Preparation of three-dimensional collagen gels

Collagen gels were prepared as previously described [Yang et a l , 1999, Zheng 

et al 2001] Briefly, a neutralized collagen mixture was prepared by mixing stock 

(1 5mg/ml m lOmM acetic acid) type 1 rat tail collagen, with growth medium and IN 

NaOH Typical mixture 600(xl of collagen+ 60̂ x1 o f culture medium+ 50ja1 o f IN 

NaOH The mixture was poured into twenty four-well tissue culture plates (100|il/well) 

and allowed to gel in an incubator containing 5% C 0 2-95% ambient air at 37°C for 1 

hour After polymerization the gels were then incubated with growth medium overnight 

at 37°C before use

2 8 2 Tube formation assay

Following treatm ent under differing experimental conditions, BAECs were 

trypsimzed as previously described Cell counts were preformed and 1 5X104 cells 

were seeded per well m RPMI 1640 supplem ented with 10% FBS Cells were 

incubated overnight for 16-18 hours before assessment o f tube formation Cells were
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photographed using a JVC colour video camera KY-F55B Four random fields o f 

vision were photographed from each gel and length o f tube formation was quantified by 

measuring the length ot the network of connected cells in each well with the use o f NIH

image

Angiogenic cells Control cells

Figure 2 4 In vitro tube formation assay Arrow identify tube formation

2 9 Statistical analysis

Results are expressed as mean ±SEM of a minimum of three independent 

experiments (n=3) unless otherwise stated Statistical comparisons between groups of 

normalized densitometric data were perfomed using both unpaired Student’s f-test and 

Wilcoxon signed rank test A value of P< 0 05 was significant
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Chapter 3



3 1 Introduction

Blood flow results in the generation o f hemodynamic forces, namely cyclic 

strain due to pulsatile nature o f blood flow and shear stress, the frictional force caused 

by blood flow as it drags against the cells, (see section 1 2) Blood vessels are 

permanently exposed to these stresses and, as such, both o f these forces are required for 

maintaining vascular homeostatis As such, the phenotype o f the endothelium  is 

sensitive to the hemodynamic environment m which it exists, with alteration in this 

environment leading to changes in vascular cell fate

Angiogenesis is the formation of new capillaries from existing vasculature and is 

fundamental for the correct function, growth and survival o f tissues [Pepper et a l , 

2001] This process occurs by a series o f sequential events m response to specific 

stimuli Following EC activation, there is increased secretion o f proteolytic enzymes 

including MMPs and serme proteinases and subsequent degration o f ECM proteins 

ECM modification facilitates EC migration, an essential process for the progression o f 

capillary formation into the mtersitial stroma The cells at the tip of sprout are usually 

non-proliferative and cell division is usually confined to the trailing cells [Nguyen et a l , 

2001] Both cyclic strain and shear stress have been previously shown to drive 

endothelial cells to a migratory/angiogenic phenotype [Zheng et a l , 2001, Rivilis et a l , 

2002, Zheng et al 1999] The regulation of a number o f factors thought to contribute 

to the formation of new blood vessels including VEGF, FGF, tPA, mtegnn subunits, and 

a number o f MMPs have also been shown to be sensitive to these forces [Vailhe et a l , 

1996, Banai et a l , 1994, Ausprunk et al ,1977, Pepper et a l , 1997, Egginton et a l , 

2001] The importance o f the gelatmases (MMP-2 and MMP-9) in angiogenesis and 

cell migration has been clearly demonstrated m a number of in vivo and in vitro studies 

[Haas et a l , 1998, Chakraborti et al 2003, Fang et a l , 2000, Pepper , 2001]

The aim o f  this chapter was to examine the regulatory effects o f  cyclic strain 

and shear stress on the migratory and angiogenic profile o f  BAECs and to determine 

the sensitivity o f  MMP-2 and MMP-9 produced by these cells to mechanical forces
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3 2 Results 

3 2 1 Hemodynamic regulation of pro-MMP-2, MMP-2 and pro-MMP-9

The regulatory effects o f either 5% cyclic strain or 10 dynes/cm2 laminar shear 

stress on MMP expression in BAEC were determined by measuring pro-MMP-2, MMP-

2 and pro-M M P-9 activity in cell lysates and conditioned media Analysis o f 

conditioned media showed no increase m the presence o f LDH, indicating cell integrity 

during the course o f the experiments Gelatin zymography revealed that BAECs 

preferentially secreted pro-M M P-2 in conditioned m edia under the experim ental 

conditions In addition, it was found that there was a significant 2 3±0 6 fold (n=3 

P<0 05) increase o f pro-MMP-2 in media from cyclically strained cells but not in media 

from cells exposed to laminar shear stress (Figure 3 1) The active form o f MMP-2 was 

also observed by gelatin zymography but was present m much lower quantities (Figure

3 3) As expected, levels o f the active enzyme correlated to strain-induced increases in 

pro-MMP-2 In this study we have focused on pro-MMP-2

The regulatory effect o f cyclic strain on pro-MMP-2 was examined at the level 

o f message, protein and enzyme activity Semi quantitative RT-PCR was used to 

estimate mRNA levels GAPDH, a housekeeping gene was used as an internal control 

and to normalize the amount o f pro-MMP-2 mRNA m static controls and cyclically 

strained samples Figure 3 2 (d) illustrates that 5% cyclic strain had no effect on 

GAPDH and resulted in a 1 5±0 1 fold (n=3 P <0 05) increase in pro-M M P-2 mRNA 

levels The increases in mRNA were mirrored by a 1 7±0 3 fold (n=3 P<0 05) increase 

in pro-MMP-2 protein as determined by zymography using cell lysate (Figure 3 2 b) In 

addition western blot and zymographic analysis o f conditioned media confirmed a 

significant increase m levels o f pro-MMP-2 enzyme activity and protein secreted from 

cyclically strained cells (Figure 3 2 a-c)

The eNOS protein has previously been shown to be upregulated in response to 

both shear stress and cyclic strain We have also demonstrated a hemodynamic up- 

regulation o f this enzyme in our experiments, providing a positive control for
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mechanical experiments Initial experiments were carried out in serum free culture 

media in order to eliminate mitogemc influences Hence, any observed changes in 

levels o f the enzymes of interest could be attributed to mechanical stimuli It was found 

however that strain-induced increases in pro-MMP-2 could be detected m the absence 

or presence of serum Interestingly, pro-MMP-9 activity could only be detected in the 

presence o f serum 5% cyclic strain significantly up-regulated levels o f pro-M M P-9 

activity 1 8±0 3 fold (n=3 P <0 05) compared to unstrained controls (Figure 3 3)

3 2 2 Time and force-dependent increases in pro-MMP-2

The release of pro-M M P-2 from BAEC was found to be a time-dependent 

phenomena, with detectable levels occurring as early as 3h after commencement o f 

strain (Figure 3 4) pro-MMP-2 is a constitutively secreted enzyme and a significant 

increase in pro-MMP-2 activity was observed over time Levels o f pro-M M P-2 

activity and protein were significantly increased (2 9±0 6 and 3 2±0 4 fold, respectively 

n=3 P <0 05) m 24h conditioned media compared to 3h conditioned m edia from 

unstrained cells Similarly, levels o f pro-MMP-2 activity and protein were significantly 

increased (7 2±0 2 and 4 9±0 6 fold, respectively n=3 ^< 0 05) in 24h conditioned media 

compared to 3h conditioned media from strained cells Three hours o f  mechanical 

strain is sufficient to observe significant changes in levels o f pro-M M P-2 protein 

(3 2±0 4 fold n -3  P<0 05) but not activity compared to unstrained control

The rate o f MMP-2 secretion from BAECs was found to be dependent on the 

mechanical load BAECs were exposed to varying degrees o f cyclic strain 0 -  10% and 

conditioned media examined by zymography and western blot (Figure 3 5) Exposure to 

2 5% cyclic strain resulted in a robust but non-significant increase m pro-M M P-2 

activity and protein Significant increases m pro-MMP-2 activity and protein were only 

observed following 5% (2 1±0 2 and 4 4±0 6 fold, respectively n=3 P <0 05) or 10% 

(3 4±0 5 and 9 0±1 5 fold, respectively n=3 P<0 05) cyclic strain when compared to 

unstrained controls

QR
i-



3 2 3 Hemodynamic regulation of endothelial cell migration and tube formation

The regulatory effect o f shear stress and cyclic strain on the m igratory and 

angiogenic profile of BAECs was assessed in vitro by transwell migration and collagen 

tube formation assays Increases in migration and capillary network formation on ECM 

gels are generally associated with an angiogenic phenotype We first examined changes 

in BAEC phenotype following exposure to 10 dynes/cm2 laminar shear stress Shear 

stress of this magnitude was found to result in a 3 6±0 7 fold (n=3 P<0 05) increase in 

BAEC transwell migration (Figure 3 6) This increase in migration was associated with 

a 2 0±0 1 fold (n=3 P <0 05) increase in the ability o f BAEC to form three-dimensional 

structures (tubes) on collagen-based gels (Figure 3 7) Angiogenesis is expressed as 

tubule formation on collagen and the mean length o f tube formation was quantified by 

measuring the length o f the network o f connected cells in each well using NIH image 

Similarly following exposure to 5% cyclic strain for 24 hours, there was an observed 

1 8±0 1 fold (n=3 P <0 05) increase in BAEC transwell migration with a concomitant 

1 9±0 1 fold (n=3 P <0 05) increase m tube formation (Figure 3 8 and 3 9) The increase 

in cell m igration and tube form ation is believed to be an inherent capacity o f  

mechanically challenged cells as these responses were found in the absence or presence 

of conditioned media from these cells

3 2 4 Force dependent increase in EC migration

Cyclic strain was shown to increase the rate o f transwell migration m BAECs 

This cyclic strain-induced increase in migration was found to be force dependent 

BAECs were exposed to 1%, 5% or 10% cyclic strain for 24h and their m igratory 

profile was examined by transwell migration assay Following 1% cyclic strain, BAEC 

migration was increased (1 2±0 1 fold n=3 P<0 05), albeit insignificantly However, 

significant increases in BAEC migration were found after 5% or 10% cyclic strain 

(2 0±0 15 fold and 2 6±0 1 fold respectively n=3 P <0 05) compared to unstrained 

controls 10% cyclic strain augmented BAEC migration compared to 5% cyclic strain,
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although this increase was not significant, it does however clearly suggest a direct 

relationship between magnitude o f mechanical load and BAEC migration (Figure 3 10)
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Figure 3 1 Secretion of pro-M M P-2 is increased following cyclic strain but not 
shear stress Following exposure to either 5% cyclic strain or laminar shear stress of 
10dynes/cm2 conditioned media was monitored for pro-MMP-2 activity Cyclic strain 
but not shear stress was found to cause a significant increase m pro-MMP-2 activity 
(c), while both stimuli increased expression o f the eNOS protein (b) (a) pro-MMP-2 
and MMP-2 activities identified by gelatin zymography m conjunction with 
commercial standards (gel is inverted for clarity) Histogram represents mean values 
from three independent experiments ±SEM , *p<0 05 compared to controls
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Figure 3 2 Cyclic strain-induced upregulation of pro-M M P-2 in B A E C  
conditioned media, cell lysate and m R N A  Following cyclic strain (5%, 24 h), 
conditioned media, cell lysates and total RNA were harvested MMP activities were 
monitored in (a) conditioned media and (b) cellular lysates (pro-MMP-2) in response 
to cyclic strain Cyclic strain-dependent increases in (c) MMP-2 protein (in 
conditioned media) and (d) MMP-2 mRNA expression were determined by Western 
blot and RT-PCR, respectively (mRNA gels are inverted for clanty) Histogram 
represents cumulative data in the form o f band densitometry readings taken from 
three independent expenments ±SEM , *P^0  05 versus unstrained controls All gels 
are representative
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Figure 3 3 Cyclic strain induced increases m active MMP-2 and pro-MMP-9
BAEC s were exposed to 5% cyclic strain at I Hz or held static (Control) for 24 hrs 
Following this conditioned media was examined by zymography for active MMP-2 
and MMP-9 Representative zymograms show a strain-induced increase in MMP-2
(a) and pro-MMP-9 (b) Densitometnc analysis o f induced increases in pro-MMP-9 
is also shown (c) Histogram represents mean values from three independent 
experiments ±  SEM , * P  <0 05 compared to controls

102



Time(h) ,  R - ,
3 8 24 3 8 24

Control 5% Strain

16

12I <*>O
t  §
3 2 8
8 £Q
o
-4->
Oh

O 4 -

Q  Zymography

Western Blot

§ _§

I I
24 hrs 3 24 hrs

Control 5% Strain

Figure 3 4 Time dependent release of pro-MMP-2 from strained and unstrained 
BAECs Time course o f strain-induced increases in Pro-MMP2 B A E C s were 
exposed to 5% cyclic strain at 1 Hz or held under static conditions (Control) for 3hrs, 
8hrs or 24hrs Conditioned media was analyzed by zymography (a) or western blot
(b) for Pro-MMP2 activity and protein respectively Histogram represents mean 
values from three independent expenments ± SEM , * P  <0 05 compared to controls 
§p<0/05 compared to 3h control
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Figure 3 5 Cyclic strain dependent upregulation of pro-MMP-2 in BAECs
B AEC s were exposed to 2 5% , 5% or 10%  cyclic strain at 1Hz or held under static 
conditions (Control) for 24hrs Conditioned media was analyzed by zymography (a) 
or western blot (b) for Pro-MMP2 activity or protein respectively Histogram 
represents mean values from three independent experiments ±  SEM  * P <0 05 
compared to controls
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Static Control 10 dynes/cm2

Fig 3 6 Shear Stress-induced increase in B A E C  migration Force-dependent 
elevation o f  B A E C  migration as determined by transwell migration assay, following 
exposure to laminar shear stress at 0 dynes/cm2 or 10 dynes/cm2 for 24h Results are 
expressed as fold change in migration relative to control (Static cells) Representative 
fields o f vision are shown and arrows indicate migratory cells Magnified section 
identifying B A E C  and pore on transwell membrane Histogram represents mean 
values from three independent experiments ±  SEM , *P<0 05 compared to controls
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Control

Figure 3 7 Shear Stress-induced increase in B A E C  Tube form ation Force- 
dependent increase in endothelial cell tube formation following exposure to laminar 
shear stress at 0 dynes/cm2 or 10 dynes/cm2 for 24h Results are expressed as fold 
change in tube formation relative to control (Static cells) Representative fields o f 
vision are shown and arrows indicate tube formation Magnified section identifying 
B A E C  and tubule formation Histogram represents mean values from three 
independent experiments ± SEM , * P  <0 05 compared to controls
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Figure 3 8 Cyclic strain-induced increase in B A E C  migration Force-dependent 
elevation o f B A EC  migration as determined by transwell migration assay, following 
exposure to 0%(control) or 5% eqibiaxial cyclic strain for 24h at 1Hz (Cardiac 
stimulation-waveform) Results are expressed as fold change in migration relative to 
control Representative fields o f vision are shown and arrows indicate migratory cells 
Histogram represents mean values from three independent experiments ±  SEM , *P 
<0 05 compared to controls
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Figure 3 9 Cyclic Stram-induced increase in BAEC Tube formation
Force-dependent increase in B A EC  tube formation following exposure to 0%(control) 
or 5% eqibiaxial cyclic strain for 24h at 1Hz (Cardiac stimulation-waveform) Results 
are expressed as fold change relative to control Representative fields o f  vision are 
shown and arrows indicate tube formation Histogram represents mean values from 
three independent experiments ± SEM „ *P<0 05 compared to controls
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Figure 3 10 Cyclic strain-induced increases in BAEC migration

Force-dependent elevation o f B A EC  migration as determined by transwell migration 
assay, following exposure to 0%(control) 1% , 5% or 10%  cyclic strain for 24h at 1Hz 
Results are expressed as fold change relative to control (unstrained cells) 
Representative fields o f  vision are shown and arrows indicate migratory cells 
Histogram represents mean values from three independent experiments ± SEM
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3 3 Discussion

In this chapter we examined the sensitivity o f M M P-2 and M M P-9 to 

mechanical stimuli by exposing BAECs to either cyclic strain or non-pulsatile laminar 

shear stress Given the importance o f mechanical stimuli in regulating vascular cell fate 

decisions and the relevance of MMP-2 and MMP-9 to cell migration and angiogenesis 

we determined the ability o f these mechanical forces to change the phenotype o f static 

endothelial cells to a migratory/angiogenic state

In vitro and in vivo, vascular EC and SMC produce M M P’s [Galis et a l , 2002, 

Beaudeux et a l , 2003] MMP-1, - 2, -3, and -9 have been shown to degrade ECM 

components after proteolytic activation if not inhibited by TIMPs Short collagens and 

elastm, which are major components o f the ECM, are degraded by MMP-2 and MMP-9 

[Visse et a l , 2003, Galis et a l , 2002, Beaudeux et a l , 2003] While several studies have 

addressed the direct effects of cyclic strain on vascular SMC, few studies have reported 

on the effects o f cyclic strain on EC The role o f MMPs and particularly gelatinases in 

angiogenesis has been well documented The gelatinases (MMP-2 and -9 ) are believed 

to be the principal MMPs involved m angiogenesis [Hass et a l , 1998, Chakraborti et 

a l , 2003, Fang let a l , 2000, Pepper et a l , 2001] As such, we determined the 

production o f these enzymes from BAEC in response to cyclic strain and shear stress 

Analysis of the MMP profile in static and hemodynamically challenged cells identified 

that pro-MMP-2 was predominantly secreted, the active form o f the enzyme was also 

detectable m conditioned media but was present in much lower quantities This 

observation appears to concur with other studies m that pro-MMP-2 is constitutively 

expressed by a number o f vascular cell types including ECs with active MMP-2 being 

present to a lesser degree [Grote et a l , 2003, Haseneen et a l , 2003] Initial experiments 

were conducted in serum-free media The rationale for this was that any observed 

changes in MMPs would not be associated with mitogenic stimuli from serum and thus 

any observed effects could be attributed to mechanical stimuli When cells were grown 

in the absence or presence of serum pro-MMP-2 was the predominant MMP observed 

However, pro-MMP-9 was only observed when cells were grown in serum-containing
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media A possible explanation is that MMP-9 requires mitogemc stimulation for 

detectable quantities to be produced Galis et al (1994) confirm  this theory by 

demonstrating constitutive secretion of MMP-2 from vascular SMC but secretion of 

MMP-9 only following treatment with IL-1 or TN F-a

Secretion o f pro-MMP-2 was found to be sensitive to cyclic strain but not to 

shear stress Western blot analysis of the eNOS protein confirmed that experimental 

conditions were having an effect on the cells, with substantial increases in eNOS protein 

expression observed following either cyclic strain or shear stress as previously reported 

[Awoleski et al 1995, Ziegler et a l , 1998] The regulation o f MMP-2 by shear stress 

has been extensively studied, however there is a considerable amount of contradicting 

information Bassiony et al (1998) claim that low but not high shear stress causes 

significant increases in MMP-2, whilst Tronc et al (2000) demonstrate a significant 

increase in MMP-2 production in an arteriovenous fistulae model (l e high shear 

model) Contrary to both o f these studies shear stress has also been shown to 

significantly decrease MMP-2 production [Palumbo et a l , 2000] Disparities in these 

findings may also be attributed to differences m model (l e non-pulstaile laminar shear 

stress or pulsatile laminar shear stress) or differences between species Rivilis et a l 

verify the results presented here, increased levels o f shear were accompanied with 

increases in angiogenesis but with no significant changes m MMP-2 They attribute this 

fact to differences in the mechamsm(s) by which different mechanical forces induce 

angiogenesis Shear stress resulting m longitudinal splitting of the capillary and not by 

ablurmnal sprouting as observed following cyclic strain [Brown et a l , 2003]

Further examination of cyclic strain-mediated regulation of MMP-2 indicated 

that cyclic strain elicits its effects on MMP-2 at a number of levels Cyclic strain 

regulates MMP-2 expression at the level of mRNA as determined by RT-PCR, protein 

translation as determined by analysis of cell lysates and finally secretion as determined 

by zymography and western blot of conditioned media
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MMP-2 is a constitulively secreted protein, and as such it is not generally 

regulated at the level of transcription We have found however that cyclic strain causes 

an up regulation in MMP-2 mRNA when compared to static controls A number of 

other studies have shown relatively similar increases in MMP-2 mRNA by Northern 

blot and cDNA microarray analysis following exposure to cyclic strain [Grote et a l , 

2003, Wang et a l , 2003, Haseneen et a l , 2003] Wang et al (2003) has also confirmed 

strain-induced increases in MMP-2 mRNA levels are as a result of changes in mRNA 

expression and not stability Pro-MMP-2 activation is believed to involve a process 

involving M T1-MM P and TIM P-2, where the three molecules are co-regulated 

However, other studies have found an up-regulation o f MMP-2 mRNA without a 

concurrent increase in MT-1 MMP mRNA One explanation has been proposed by 

Grote et al (2003) who suggest that ROS produced from NADP(H) oxidase are 

responsible for the cyclic strain induced increases in MMP-2 expression

Analysis of conditioned media by western blot and zymography indicated a 

significant increase in both pro and active M MP-2 activity following 24h of cyclic 

strain It may be tempting to surmise that cyclic strain increases the activation of pro- 

MMP-2, however, this may not be the case as levels of active enzyme may increase 

proportionally with levels of pro-enzyme The fold increases as determined by both 

methods were different, however, levels of protein expression and protein activity may 

often be different The increases in pro-MMP-2 activity in conditioned media were 

mirrored by an increase in pro-MMP-2 protein m cell lysates This, coupled with the 

RT-PCR and LDH assay data suggests that cyclic strain-induced increases in pro-MMP- 

2 activity and protein are a result of transcriptional and translational events and is not 

due to accumulation of pro-MMP-2 in media due to loss of cell integrity Similarly, 

analysis of conditioned media following exposure to cyclic strain revealed significant 

increases in pro-M M P-9 activity, previous studies have also reported cyclic strain 

induced increases in MMP-9 [Berry et a l , 2003, Fujisawa et a l , 1999] This is an 

important observation as both MMP-2 and MMP-9 are believed to be important in 

angiogenesis and other vascular remodeling processes As such coincidental increases
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in MMP-2, MMP-9 and EC tube formation suggest a possible link between the two 

phenomena, something that will be looked at in greater detail in chapter 5

Secretion o f pro-MMP-2 activity was found to be time-dependent which concurs 

with its’ constitutively secreted nature Detectable levels were observable in media as 

early as three hours after initiation of experiments and continued to increase over 24 

hours Cyclic strain was found to amplify the time dependent release following only 

three hours exposure but was more defined at later time points Our data appears to 

concur with other studies where cyclic strain augments the temporal release o f MMP-2 

following 3 to 12h o f strain and levels o f MMP-2 remain elevated for up to 24 hours 

[Grote et a l , 2003, Wang et a l , 2003]

We have demonstrated a relationship between magnitude o f cyclic strain and 

pro-MMP-2 secretion Our data suggests that there is a minimum threshold o f cyclic 

strain required to promote MMP-2 production Cyclic strain o f 2 5% was found to 

cause a slight but not significant increase m pro-MMP-2 activity However, 5% and 

10% cyclic strain resulted in significant increase Wang et al (2003) observed that 10% 

cyclic strain caused no change in MMP-2 production in HUVECs and significant 

increases in expression and activity could only be observed following 20% cyclic strain 

Unlike the sinusoidal waveform employed by Wang et al this study used a heart pulse 

pressure waveform, this may result m recruitment o f different mechano-transduction 

pathways with resultant differences m cellular response In addition to this, our study 

used 5% cyclic strain, which, is generally accepted as being physiological, 20% cyclic 

strain is likely to be more associated with pathological conditions Asanuma et al 

(2003) highlight the importance o f strain regime In their study, they found that 5% 

uniaxial stationary strain resulted in a significant increase in MMP-2 expression and 

activity in SMC, however 5% uniaxial cyclic strain had the opposite effect Unlike the 

present study we used 5% equibiaxial strain, which means that the distribution o f cyclic 

strain is more equal over the cell surface possibly accounting for observed differences in 

cyclic strain regulation o f MMP-2 in BAECs
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Both shear stress and cyclic strain promote EC migration to similar degrees as 

determined by transwell migration This response was similar to previously reported 

effects of cyclic strain and shear stress on EC migration [Cullen et a l , 2002, Zheng et 

a l , 2001, Shyy et a l , 2002, Urbich et a l , 2002, Carmeliet et a l , 2000] Increases in 

EC migration are characteristic of cells with an angiogenic phenotype [Carmeliet et a l , 

2000] Thus we examined the ability of cyclic strain and shear stress to promote 

angiogenesis by the formation of three-dimensional structures (tubes) on collagen gels 

Consistent with previous reports, we found that both cyclic strain and shear stress 

promoted EC tube formation an established indicator of an angiogiogenic phenotype 

[Cullen et a l , 2002, Rivihs et a l , 2002, Shyy et a l , 2002, Milkiewicz et a l , 2001J In 

conjunction with this study we found that EC m igration was dependent on the 

magnitude of cyclic strain Coincidental force dependency in MMP expression and EC 

migration may suggest a possible link between the two phenomena

3 4 Conclusion,

We have demonstrated that both cyclic strain and shear stress promote EC 

m igration and tube formation In addition, we have clearly shown that BAECs 

constitutively produce pro-MMP-2 but can also produce pro-MMP-9 in the presence of 

serum Cyclic strain but not shear stress can up-regulate expression and activity o f pro- 

MMP-2 and pro-M M P-9 We have established that 5% cyclic strain augmented 

constitutive secretion o f MMP-2 in a time-dependent manner Finally, we have shown a 

positive relationship between magnitude o f cyclic strain and MMP-2 secretion EC 

migration has also been shown to be sensitive to the magmUide of cyclic strain applied

Our data suggests that hemodynamic forces play an important role in dictating 

the phenotype o f BAECs However, cyclic strain and not laminar shear stress appears 

to be the more prevalent in the regulation o f MMP activity Cyclic stram-induced 

increases in pro-M M P-2, MMP-2 and pro-M M P-9 with coincidental increases in 

migration and tube formation suggest a possible link between the two phenomena This 

relationship is to be investigated m more detail in the following chapters
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Chapter 4



4 1 Introduction

Vascular cells have the ability to respond to mechanical forces namely cyclic 

strain and shear stress The ability to respond to mechanical forces is facilitated by 

mechanically sensitive receptors or “mechanoreceptor” present in vascular cells This 

process by which mechanical forces are detected and converted into a cell signal to 

elicit a response is referred to as “mechanotransduction” [Lehoux et a l , 2001] This 

process facilitates changes in cellular phenotype m response to changes in their 

hemodynamic environment Mechanotransduction requires the activation o f mechano- 

sensitive receptors, which may be activated directly by the mechanical force, disruption 

o f the ECM, or distortion of the cell membrane and cytoskelton G-proteins, mtegrins 

and PTKs have all demonstrated mechano-sensitivity As such they have formed the 

focus o f this study as a means of elucidating the signaling pathway involved in cyclic 

strain -m ediated regulation of MMP-2

Following initiation o f a mechano-transduction process, downstream signaling 

molecules must be recruited to transduce the signal ’to the cell nucleus and elicit a 

cellular response A number o f studies have demonstrated the recruitment o f the She 

adapter molecule by a number o f receptors in response to mechanical stimuli [Shyy, et 

a l , 2002, Labrador et a l , 2003] Similarly, the M APK family of proteins have been 

shown to be recruited by both cyclic strain and shear stress [Jalil et a l , 1998,  

Surapisitchat et a l , 2001, Jo et a l , 1997] Thus, we have examined the possible 

recruiutment o f She and the M APK pathway by G-proteins, mtegrins and PTKs in 

regulating MMP-2 production in response to cyclic strain

The specific aim o f  this chapter was to investigate the roles o f  G-proteins, 

integrins9 PTKs, She and M APK in the signaling mechanisms involved in cyclic 

strain-induced increases in MMP-2 expression and activity
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4 2 Results

4 2 1 Cyclic Strain Increases pro-MMP-2 Activity m a G ia -protein Independent 

Manner

In order to determine the involvement o f Gi a  protein subunits in cyclic strain- 

induced increases m pro-MMP-2 activity, BAEC were initially pretreated for 4h with 

pharmacological inhibitors o f Gi-proteins, pertussis toxm (PTX, lOOng/ml) or a suramin 

analogue, NF023 (10[iM), before the cells were exposed to 5% cyclic strain for a further 

24 h in the absence or presence of the inhibitors In both cases, pretreatment with either 

Gi-protem inhibitor did not have any significant effect on strain-induced increases m 

pro-M M P-2 activity or M M P-2 expression in conditioned m edia (Figure 4 1) 

Moreover, both treatments failed to significantly alter basal levels of in-gel pro-MMP-2 

activity m unstrained cells

A more complete evaluation o f the role o f G ia-protein activation in modulating 

strain-induced changes m pro-MMP-2 activity, was achieved by selective inhibition of 

G ia  (G ia  1-3) subunits with dominant negative mutants for G ia  proteins (G ial-G 202T, 

Gia2-G203T and Gict3-G202T) BAEC were transiently  transfected with the 

appropriate mutants before the cells were exposed to cyclic strain Although difficulties 

m the transient transfection o f some vascular cell types exist, we have successfully 

transfected BAEC with high efficiency (50%) as demonstrated by co-transfection with a 

plasmid expressing GFP or LacZ (Figure 4 3) Transfection with the mutant constructs 

enhanced the expression o f the specific G ia  subunit in the absence of any effect on the 

other G proteins as compared to mock controls (Figure 4 2) [58] Over expression of 

mutant G ia  subunits failed to alter basal levels or cyclic strain-induced increases in pro- 

MMP-2 activity as compared to mock transfected cells (Figure 4 2)
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4 2 2 Cyclic Strain Stimulates pro-MMP-2 Activity in a Gpy-dependent M anner

To examine the possible role o f Gpy subunits in regulating MMP-2 expression, 

BAEC were transfected with |3-Ark-ct, a 194-ammo-acid peptide which functions by 

binding to and sequestering the Gpy subunit, as previously described Transfection with 

|3-Ark-ct resulted in a minor decrease in basal levels o f pro-M M P-2 activity in 

conditioned media Following 5% strain however, levels o f pro-MMP-2 activity were 

reduced by 83±3% (n=3 P <0 05) as compared to mock transfected cells A similar result 

was also observed for pro-MMP-2 in cell lysates following over-expression o f (3-Ark-ct 

(Figure 4 3)

4 2 3 Cyclic Strain Increases ERK and p38 Activity m a Gi a  -independent, Gpy- 

dependent Manner

Due to the involvement o f Ras and the M APK family o f enzymes in strained- 

induced processes, the effect of cyclic strain on MAPK activity was examined in BAEC 

by determining phospho-ERK-1, -ERK-2 and -p38 activity by western blot in these 

cells Exposure to 5% cyclic strain for 24 h resulted in a significant increase in 

phospho-ERK-1 and -ERK-2 activity 1 7 ±  0 13 fold (n=3 P <0 05) as compared to 

unstrained cells (Figure 4 4) However, over-expression o f inhibitory G ia  mutant 

subunit Gia2-G203T or transfection with p-Ark-ct failed to significantly alter strain- 

induced phospho-ERK activity in these cells as compared to mock-transfected strained 

cells (Figure 4 4) In parallel studies, cyclic strain significantly increased phospho-p38 

activity after 24 h exposure Furthermore, transfection with (3-Ark-ct significantly 

decreased (56±18% n=3 P <0 05) the strain-induced phospho-p38 activity as compared 

to mock-transfected strained cells (Figure 4 5)

4 2 4 Cyclic Strain Increases pro-MMP-2 Activity and Expression in a MAPK- 

dependent Manner

Following the observed cyclic strain-induced increases in both phospho-ERK
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and -p38 activity in these cells, the effect o f pharmacological inhibition o f ERK and p38 

activity on strain-induced changes in MMP-2 expression was determined (Figure 4 6) 

BAEC were exposed to 5% cyclic strain for 24 h m the absence or presence o f either 

PD98059 (IO^iM) or PD169316 (IOjxM), specific inhibitors o f MEK and p38 kinase, 

respectively [322, 323] Treatment o f BAEC with either PD98059 or P D 169316 

treatment significantly decreased cyclic strain-induced increases in MMP-2 expression 

by 64% ± 17% (n=3 P <0 05) and 57 ± 8% (n=3 P <0 05) respectively, as compared to 

unstrained cells

4 2 5 Cyclic Strain Stimulates pro-MMP-2 Expression in an RGD-independent 

Manner

Activation o f ERK1/2 and p38 M APK is involved m cyclic strain-induced 

increases in pro-MMP-2 activity We investigated the upstream signaling mechanism(s) 

that lead(s) to the activation of ERK1/2 and p38 MAPK in response to cyclic strain In 

this regard, the relevance o f mtegrins to the transduction o f mechanical stimuli into 

intracellular signals is particularly significant and has been highlighted in a number o f 

studies [Frangos et a l , 2001] The RGD sequence is the target epitope o f several 

selective m tegrm  receptor inhibitors including blocking antibodies and inhibitory 

peptides

We examined the effects o f synthetic linear and cyclic RGD peptides on cyclic 

strain-induced changes m MMP-2 expression and activity (Figure 4 7) Pre-treatment of 

cells with a linear RGD peptide (H-Arg-Gly-Asp-OH) failed to significantly inhibit 

cyclic strain-induced increases m pro-MMP-2 activity Pre-treatment o f cells with a 

cyclic RGD peptide (Cyclo-Arg-Gly-Asp-D-Phe-Val) also failed to inhibit cyclic strain- 

mduced pro-MMP-2 activity, despite being capable of inhibiting BAEC wound healing
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Protein tyrosine kinase (PTK) phosphorylation is one o f the most important 

events that lead to the transduction o f extracellular signals to the nucleus A number of 

studies highlight the relevance o f PTKs in m echanically stim ulated processes in 

vascular cells [Anneren et a l , 2003] Recent evidence also suggests that PTK may 

mediate their cellular responses through multiple intracellular signaling pathways 

involving cyto-skeletal associated proteins such as FAK and including the 

Shc/Grb2/Sos-ERK-2 pathway [Shyy et a l , 2002]

We investigated the role o f tyrosine kinase phosphorylation and o f  the 

Shc/MAPK pathway on cyclic stram-mduced changes in MMP-2 expression (Figure 

4 8) To understand whether PTK plays a role in the activation of ERK and MMP-2, 

BAEC were pre-mcubated with 50jaM gemstein (a PTK inhibitor) before phospho-ERK 

activity and pro-MMP levels were determined Gemstein caused a significant reduction 

in cyclic stram-mduced phospho-ERK-2 activity (83±8% n=3 ^<0 05) (Figure 4 9) with 

no significant changes observed m stram-mduced increases in phospo-P38 (Figure 

4 10) Moreover, gemstein significantly attenuated cyclic stram-mduced pro-MMP-2 

activity (73±9% n=3 P <0 05) without any significant effect on baseline unstrained 

levels

The adaptor protein She is an immediate substrate o f tyrosine kinase and may 

play an important role in linking activated tyrosine kinases to downstream signaling 

pathways Indeed, She has previously been shown to activate the ERK pathway via 

tyrosine kinase Grb2/SOS signaling complexes [Shyy et a l , 2002, Sayeski et al 2003] 

Elucidation of whether She directly mediates cyclic stram-induced MMP-2 expression, 

was examined by transfection o f BAEC with Shc-SH2, a dominant negative adapter 

protein encoding the SH2 domain o f She (Figure 4 11) Inhibition o f She activity 

resulted in a significant reduction m cyclic stram-mduced increases in phospho-ERK 

activity (88 ± 11% n=3 P <0 05) concomitant with a significant decrease in both basal 

and strain-induced increases in pro-MMP-2 activity and expression (Figure 4 11)

4 2 6 Cyclic Strain Stimulates pro-MMP-2 activity in a Tyrosine Kinase-dependent

M anner
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Figure 4 1  The effect of G-protein inhibitors on strain-induced increases in Pro- 
M M P2 activity and protein expression BAEC s were pretrcated with either pertussis 
toxm(100ng/ml) or NF023(10uM ) prior to 5% cyclic strain for 24hrs (a) Zymography 
gels and Western blot (b) showing lack o f effect o f either PTX or NF023 on strain- 
induced increases in pro-MMP-2 activity or protein expression Histogram represents 
mean values from three independent experiments ± SEM , *p<0 05 compared to 
controls N S = not significant
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Figure 4 2 The effect o f G ia  subunit inhibition on strain-induced increases in 
pro-M M P-2 activity BAEC s were transfected as described in methods with Gi a l -  
G202T, G ia2-G 203T  and G ia3-G 202T  prior to exposure to 5% cyclic strain for 
24hrs (a) Western blot showing overexpression o f G ia  subunit following 
transfection (b-c) Zymograms showing the lack o f effect o f Gia-subunit dominant 
negative mutants, G ia l-G 202T , G ia2-G 203T  and G ia3-G 202T  on strain-induced 
increases in pro-MMP-2 activity (conditioned media) following 5% strain for 24 h 
Histogram represents mean values from three independent experiments ±  SEM, 
*p<0 05 compared to controls NS = not significant
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Figure 4.3 The effect of park-ct transfection on strain-induced increases m pro- 
MMP2 activity B A E C s were transfected as described in methods with park-ct pnor 
to exposure to 5%  cyclic strain for 24hrs (a) Transfection effeciency was assesed by 
co-transfection with GFP, arrows indicate GFP transfected cells Representative 
zymogram o f (b) cell lystae and (c) culture media Histogram represents densitometric 
analysis o f  (c) and mean values from three independent experiments ± SEM , *p<0 05 
compared to controls **p<0 05 compared to 5%strain

122



Figure 4 4 The effect of inhibitory Gia2 protein mutant and {JArk-ct on cyclic 
strain-induced increases in ERK-1/2 activity B A E C  were transfected with either 
Gict2-G203T, pArk-ct, or mock transfected The transfected cells were exposed to 
0% (control) and 5% cyclic strain for 24 h (a) Representative Western blot shows 
the levels o f phospho-ERK-1/2 in mock and transfected cells following exposure to 
5% cyclic strain Histogram represents mean values from three independent 
experiments ±  SEM , *p<0 05 compared to controls
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Figure 4 S The effect of (JArk-ct on cyclic strain-induced increases in p38 
M A P K  activity BAEC s were transfected with (3Ark-ct or mock transfected The 
transfected cells were exposed to 0% (control) and 5% cyclic strain for 24 h 
(a)Phospho-p38 activity was determined by Western blot analysis using a phospho 
specific p38 antibody Histogram data represents ratio o f  phosphorylated to total p38 
and represents mean values from three independent experiments ±  SEM , *p<0 05 
compared to controls, **p<0 05 compared to 5% cyclic strain
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Figure 4 6 The effect of M AP kinase inhibition on strain-induced increases in Pro- 
M M P2 activity and protein expression B A E C s were treated with either PD98059 
(10[iM ) or PD 16 9316  (lOjiM), following this, cells were exposed to either static o f  5%  
cyclic strain conditions for 24hrs (a) Representative zymogram shows effect o f 
inhibitors on pro-MMP-2 activity m conditioned media (b) Western blot for pro-MMP-2 
protein in conditioned media following treatment with inhibitors Histogram represents 
mean values from three independent expenments ±  SEM , *p<0 05 compared to controls, 
**p<0 05 compared to 5%Strain
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Figure 4 7 The effect of integrin blocking peptides on strain-induced increases in 
pro-M M P2 activity BA EC s were pretreated with either (a) linear RGD peptide 
(0 5mM) or (b)cychc RGD peptide (100|xM) prior to 5% cyclic strain for 24hrs 
Representative zymograms show the detection o f pro-MMP2 activity in the culture 
media Histogram represents densitometric analysis o f zymograms and represents 
mean values from three independent experiments ± SEM „ *p<0 05 compared to 
controls cRGD  peptide functionality was demonstrated m wound healing assay (c)
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Figure 4 8 The effect of PTK inhibition on cyclic strain-induced increases in 
pro-MMP-2 activity B A EC  were treated with 50fxM gemstein and were exposed 
to 0% (control) and 5% cyclic strain for 24h (a) Representative zymogram show 
detection o f pro-MMP-2 in culture media Histogram represents mean values from 
three independent experiments ± SEM , *p<0 05 compared to controls, **p<0 05 
compared to 5% cyclic strain
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Figure 4 9 The effect of P T K  inhibition on cyclic strain-induced increases in pp- 
E R K -1/2  B A E C  were treated with 50fxM gemstem and were exposed to 0% 
(control) and 5% cyclic strain for 24 h ER K  activity was then determined by Western 
blot using a specific phospho-ERK antibody (a) Representative Western blot o f 
phospho-ERK-1/2 in control and gemstem treated cells following exposure to cyclic 
strain Histogram represents mean data from three independent expenments ±  SEM , 
*p<0 05 compared to controls, **p<0 05 compared to 5% cyclic strain
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Figure 4 10  The effect of P T K  inhibition on cyclic strain-induced increases in
p38 M A PK . B A E C  were treated with 50^iM gemstein and were exposed to 0% 
(control) and 5% cyclic strain for 24 h p38 activity was then determined by Western 
blot using a specific phospho-p38 antibody Representative Western blot of phospho- 
p38 in control and treated cells is presented Histogram represents ratio o f 
phosphorylated to total p38 and represents mean values from three independent 
experiments ±  SEM , *p<0 05 compared to controls, **p<0 05 compared to 5%  cyclic 
strain
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Figure 4 1 1  The effect of She inhibition on strain-induced increases in Pro- 
M M P2 BA EC s were transfected as described in methods with Shc-SH2 (a dominant 
negative construct) The transfected cells were then exposed to static conditions or 
5% cyclic strain for 24hrs (a) Western blot confirming overexpression o f  the She 
protein (b) Representative zymogram demonstrating inhibition of pro-MMP-2 activty 
following Shc-SH2 transfection (c) Representative Western blot revealed
concomitant decreases in ppERKl/2 following Shc-SH2 transfection Histogram 
represents mean values from three independent experiments ±  SEM , *p<0 05 
compared to controls, **p<0 05 compared to 5%  cyclic strain
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4 3 Discussion

Structural adaptation o f the vasculature occurs in response to both 

physiological and pathological changes m blood pressure and flow [Schwartz et a l , 

1995, Libby et a l , 2003] We have already discussed at length the role o f MMPs m 

vascular remodeling in section 1 5 8 2 We have clearly demonstrated that cyclic strain 

increases endothelial cell pro-MMP-2 activity and expression in a force- and time- 

dependent manner In this chapter we have investigated G-protems, mtegrms, PTKs, 

She and the MAP kinases as possible components o f the mechanical signalling cascade 

involved in mechano-regulation o f MMP-2 in BAECs

With respect to Gi-protems, previous studies have demonstrated the rapid 

activation o f Gi-proteins in HUVEC by cyclic uniaxial strain in a time- and strain rate- 

dependent manner [Gudi et a l , 2003] Moreover, pertussis toxin-sensitive G-protems 

have been implicated m MMP production m several cell types [Conant et a l , 2002, 

Guenzi et a l , 2003] In the current study, selective ablation o f individual Gi-protein 

subunits with dominant negative mutants suggests that strain-dependent upregulation 

o f MMP-2 activity and expression was independent o f G ia  protein signaling These 

findings confirm our observations with pharmacological inhibitors o f G ia  proteins 

(PTX and NF023), and reinforce the lack o f significant involvement o f multiple G ia  

protein subunits m transduction o f these events

Cyclic strain-induced pro-MMP-2 activity and expression was significantly 

attenuated following inhibition o f Gpy with pArk-ct implicating Gpy signaling in 

transducing the strain response Recent studies suggest that the rapid, shear-induced 

activation o f Ras is mediated through the activity of Gpy subunits m human vascular 

EC [Gudi et a l , 2003], suggesting that Gpy activation o f the Ras/ERK pathway could 

putatively mediate cyclic strain-induced increases in pro-MMP-2 However, this seems 

unlikely as the inhibitory effect of pArk-ct was independent o f changes in downstream 

ERK activity In contrast, cyclic strain increased phospho-p38 activity m BAEC and 

inhibition of p38 activity with a selective inhibitor, PD 169316, significantly reduced

m



strain-induced changes in pro-MMP-2 activity and expression Since inhibition o f Gpy 

functionality with pArk-ct resulted in inhibition o f strain-induced phospho-p38, these 

data suggest that Gpy proteins increase cyclic strain-induced MMP-2 levels, in part, 

via a p3 8-dependent pathway

Previously, two distinct and complementary signaling mechanisms mediating 

the induction o f M M P’s in fibroblasts have been reported A P-1-dependent 

transcriptional activation via the ERK1/2 pathway and AP-1-independent enhancement 

via p38 alpha M APK by mRNA stabilization [Reunanen et a l , 2002] As p38 

inhibition attenuates strain-induced MMP-2 responses m BAECs, it is possible that 

activated Gpy-subumts impact on stress activated protein kinase/c-jun N-terminal 

kinase (SAPKs/JNKs) and p38 pathways m these cells The recent findings o f Wang et 

al (2003) are noteworthy in this regard as they demonstrate that selective JNK 

inhibition leads to ablation of strain-mediated increases in MMP-2 expression m 

HUVECs W hile SAPKs/JNKs and p38 are also activated by Gpy-subumts in a 

pathway involving Rho proteins, including RhoA, R acl and Cdc42 [Tangkijvamch et 

a l , 2003, Smith et a l , 2003], inhibition o f Rho kinase with specific inhibitors did not 

attenuate MMP-2 activity or expression m myofibroblasts [Tangkijvamch et a l , 2003] 

In addition, since PTKs are also important regulators o f MMP activity and expression 

in response to a variety o f stimuli [Wagner et a l , 2003, Wang et a l , 2001] and are 

regulated by GPy subunits [Schmitt et a l , 2002], it is possible that GPy signaling also 

affects PTK activity in these cells Moreover, because cell membrane-mediated MMP- 

2 activation also requires MT1-MMP and low amounts o f TIMP-2 [Visse et a l , 2003, 

Galis et a l , 2002, Beaudeux et a l , 2003] an effect o f Gpy subunits on MT1-MMP and 

TIMP-2 cannot be ruled out Further work will be required to delineate the precise 

mechanism of p38/Gpy activation of MMP-2 m these cells following cyclic strain

Consistently, MMP activity and expression is inhibited following M APK 

kmase (MEK) inhibition suggesting that ERK may also regulate strain-induced 

changes in MMP activity and expression [Kito et a l , 2000, Visse et a l , 2003, Galis et 

al 2002, Beaudeux et al 2003] Moreover, pharmacological inhibition with specific

n ?



ERK inhibitors significantly attenuated cyclic strain-induced changes in MMP-2 

activity and expression, thereby confirming an important role for ERK in mediating

these events

integrms may serve as mechanosensors in EC leading to the activation o f ERK 

or p38 activity in these cells Indeed, shear stress causes mtegrin-Shc association and 

assembly o f the signaling complex that then leads to ERK activation [Shyy, et a l , 

2002, Labrador et a l , 2003] Moreover, a5(31 and a2(31 integrms play an important 

role in transducing mechanical stimuli into intracellular signals in EC where cyclic 

strain led to a reorganization o f a 5  and a l  integrms in a linear pattern in HUVECs 

seeded on fibronectin or collagen, respectively [Shyy, et a l , 2002, Labrador et a l , 

2003] In the current study, when BAEC were seeded on pronectin™  plates and 

exposed to cyclic strain, the strain-induced changes in pro-MMP-2 expression were 

unaffected following pre-treatment with linear or cyclic RGD peptides that selectively 

target the epitope o f several mtegrm receptors Our data suggest that cyclic strain 

promotes pro-M M P-2 expression and activity in BAEC in an RGD-independent 

manner

Tyrosine kinases have been implicated m hemodynamic force-induced changes 

in EC function [Labrador et a l , 2003] Shear stress induced a rapid and transient 

tyrosine phosphorylation o f Flk-1 and its concomitant association with the adaptor 

protein She [Shyy, et a l , 2002, Labrador et a l , 2003] The adapter protein She is 

implicated in signaling via many different types o f receptors, such as growth factor 

receptors, antigen receptors, cytokine receptors, G-protein coupled receptors, hormone 

receptors, integrms and tyrosine kinases [Ravichandran et al 2001] Based on 

dominant negative studies and ShcA-deficient mice, a clear role for She m leading to 

ERK activation has been established [Lopez-Ilasaca et a l , 1998] Moreover, cyclic 

strain has been shown to induce PYK2 activity in EC [Cheng et a l , 2002] Our 

findings are in agreement with studies demonstrating that stretch-induced increases in 

ERK activity were attenuated by inhibition of tyrosine kinases [Wang et a l , 2001] 

Our data further demonstrated that inhibition o f She signaling with a dom inant
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negative peptide significantly attenuated cyclic strain-induced changes in pro-MMP-2 

expression and activity in BAEC while concomitantly inhibiting phospho-ERK 

activity in these cells As inhibition of ERK activity results in inhibition o f strain- 

induced pro-MMP-2 expression, it is likely that PTK/Shc is responsible, in part, for the 

strain-induced pro-MMP-2 response m these cells Indeed, a role for tyrosine kinase in 

controlling MMP-2 expression following stimulation with magnesium has recently 

been reported [Yue et a l , 2003] These data confirm the potential importance of PTK 

as mechanosensors for MMP-2 production m EC and suggest that protein tyrosine 

kinases may serve as mechanosensors to transduce mechanical stimuli into chemical 

signals via their association with She and ERK Indeed, cyclic strain has recently been 

shown to enhance contraction o f bovine coronary arteries via through an epidermal 

growth factor receptor (EGFR)/srcdependent m echanism  involving an NAD(P)H 

oxidase-mediated activation of ERK [Oeckler et a l , 2003]

4 4 Conclusion

In conclusion, our data demonstrate that cyclic strain stimulates BAEC pro- 

MMP-2 activity and expression in vitro Moreover, the strain-induced increases in 

pro-M M P-2 activity were independent of G ia-protem  activation but dependent on 

G|3y/p38, and PTK/ERK/Shc interactions m these cells It is tempting to speculate that 

strain-induced changes m endothelial M APK signaling may functionally regulate 

endothelial cell phenotype in vivo by modulating MMP production following exposure 

to strain This possibility and potential targets for strain-induced endothelial MMP-2 

remain to be determined

134



Chapter 5



5 1 Introduction

Angiogenesis occurs in an orderly sequence o f events and is a tightly controlled 

process It requires an initiatory stimulus such as hypoxia, ischemia or changes in blood 

flow following which a strictly controlled set o f events occurs The ability o f 

mechanical forces to stimulate angiogenesis would strongly suggest that mechano- 

sensitive receptors such as G-proteins, m tegrins and PTKs may function in the 

regulation of angiogeneic processes The involvement of these mechano-receptors has 

been well established m a number o f models [Slepian et a l , 1998, Urbich et a l , 

2002, Gao et a l , 2000, Benndorf et a l , 2003, Kanda et a l , 2000, D allabnda et a l , 

2000, Kronenwett et a l , 2002] We have previously demonstrated the regulatory effect 

of cyclic strain on BAEC migration and tube formation Here we examine the roles o f 

G-protems, mtegrins and PTKs m regulating cyclic strain-induced increases in these fate 

decisions

Many studies have demonstrated roles for MMPs m angiogenesis and migration 

o f a number o f cell types both in vivo and in vitro We have shown previously the 

mechanical regulation o f MMP-2 and MMP-9 m BAEC Therefore, we have examined 

if  M M P-2 and/or MMP-9 are involved in cyclic strain-induced angiogenesis and 

migration

Vascular endothelial cells due to their location m the blood vessel are subject to 

mechanical forces generated by blood flow These forces regulate the production o f a 

variety of vasoactive compounds, cytokines and growth factors which may regulate cell 

function in a paracrine and autocrine manner [Awoleski et a l , 1995, Wang et a l , 2003, 

Wung et a l , 2001, Sumpio et a l , 1998, de Jonge et a l , 2002] These molecules affect 

the phenotype o f endothelial cells and the phenotype o f the underlining SMC, this may 

help to explain why shear stress may cause vascular remodeling although SMC are not 

in direct contact with shear stress Due to their ability to interpret mechanical load and 

to elicit a cellular response EC may be responsible for regulating SMC function by 

producing vasoactive factors in response mechanical stimuli A number o f studies have

n s



demonstrated the importance of ECs m regulating SMC proliferation, migration and cell 

morphology [Cucina et a l , 2003, Powell et a l , 1998, Fillinger et a l , 1997] We have 

already demonstrated cyclic strain increases levels o f pro-MMP-2 and pro-MMP-9 and 

therefore, we have investigated the involvement o f EC derived M M Ps in SMC 

migration

The specific aims o f  this chapter were i) examine the roles o f  G-proteins, 

integrms and PTK in strain-induced BAEC migration and tube formation, u) identify 

the involvement o f  M M P-2 and M M P-9 in these events m) determine a possib le  

paracrine role fo r  BAEC derived MMPs on BASM C migration



5 2 Results

The regulatory effects of cyclic strain on BAEC migration have been described 

m Chapter 3 (Figure 3 8, Figure 3 10) In this study, we have examined the roles of 

mechanically sensitive receptors in mediating this response To determine the role o f 

G ia-pro teins, m tegrins and PTKs m strain-induced BAEC migration, cells were 

pretreated with, PTX, cRGD peptide or gemstein respectively, prior to exposure to 5% 

cyclic strain Pretreatment with either lOO^M cRGD peptide or 50(j,M gemstein did not 

result in any significant changes in BAEC migration (Figure 5 3 and Figure 5 5) 

However, G ia  inhibition was found to significantly decrease basal (42±6% n=3 P<0 05) 

and strain-induced increases (117±17% n=3 P < 0 05) in BAEC transwell m igration 

(Figure 5 1)

5 2 2 Cyclic strain increases BAEC tube formation in a Gia-protein/RGD- 

dependent and PTK-independent manner

BAEC tube formation was monitored following the same treatments as above 

In this case it was found that G ia-protein  inhibition also resulted in a significant 

(75±7% n=3 P <0 05) decrease m strain-induced tube formation (Figure 5 2) Similarly 

treatment with cRGD peptide caused a significant (87±8% n=3 P <0 05) decrease in 

strain-induced tube formation (Figure 5 4) This attenuation o f tube formation may be 

attributed to inhibition o f m tegnn interactions with the collagen matrix following 

treatm ent with the cRGD peptide The lack of an ECM matrix m the transwell 

m igration assay may explain why m tegnn inhibition had no effect o f strain-induced 

migration However, PTK inhibition with gemstein did not have a significant effect on 

strain-induced tube formation (Figure 5 6)

5 2 1 Cyclic strain increases BAEC migration in a Gia-protein-dependent,

RGD/PTK-mdependent manner
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5 2 3 Cyclic strain-induced increases in BAEC tube formation, but not migration, 

are MMP dependent

We have previously demonstrated that cyclic strain causes increase in pro-MMP- 

2 and pro-MMP-9 activity (Figures 3 1 and 3 3) with concurrent increases in migration 

and tube formation (Figures 3 8 -  3 10) To investigate a possible link between these 

two events we have used GM-6001, also known as Ilomastat, a broad-spectrum MMP 

inhibitor, with inhibition constants in the subnanomolar range for many MMPs We 

subjected cells to cyclic strain m the absence and presence o f this inhibitor and assessed 

its effect on BAEC migration and tube formation It was found that treatment with this 

inhibitor significantly inhibited pro-M M P-2 activity as determined by zymography 

(Figure 5 7) Analysis o f BAEC migration showed no significant changes in either 

basal or stram-mduced events (Figure 5 7) However, treatment with GM-6001 caused 

a marked reduction (46±7% n=3 P <0 05) in strain-induced tube formation (Figure 5 8) 

This data suggests that MMPs are involved m strain-induced BAEC tube formation but 

not transwell migration

5 2 4 Cyclic strain and shear stress-induced increases in BAEC migration and tube 

formation are independent of MMP-2

Following the observed decrease in tube formation after MMP inhibition with 

GM-6001, we ascertained the specific involvement of MMP-2 in cyclic strain and shear 

stress mediated increases in migration and tube formation siRNA targeted specifically 

at MMP-2 mRNA resulted m significant reduction in MMP-2 activity and expression as 

seen m Figure 5 9 Following transfection, cells were exposed to cyclic strain or shear 

stress and their migratory and angiogenic profile assessed Inhibition o f MMP-2 was 

subsequently not found to have significantly reduced either cyclic strain (Figures 5 9- 

5 10) or shear stress-induced (5 11-5 12) increases in migration or tube formation



MMP-2 knockdown was not found to be involved in cyclic strain induced 

migration and tube formation Previous studies have indicated the involvement of 

MMP-9 in angiogenesis [Pepper et a l , 2001, Johnson et a l , 2004], our study has shown 

that pro-MMP-9 activity was up-regulated in response to 5% cyclic strain, therefore, we 

investigated the possible role of MMP-9 in strain-induced migration and tube formation 

Cells were transfected with siRNA targeted to MMP-9 mRNA prior to exposure to 5% 

cyclic strain Following transfection, MMP-9 expression and activity was markedly 

reduced (Figure 5 13) Transfection with MMP-9 siRNA did not cause a significant 

decrease m strain-induced migration (Figure 5 14) However, a significant (40±10% 

n=3 P <0 05) decrease in BAEC tube formation was observed (Figure 5 15) This 

decrease is similar to that observed following treatment with GM-6001 which may 

suggest that MMP-9 was the target of GM-6001 inhibition

5 2 6 Cyclically strained endothelial cell conditioned media inhibits SMC migration

Hem odynamic forces associated with blood flow play a critical role in 

endothelium-mediated control of vascular tone, remodelling and associated pathologies 

The vascular endothelial cell (EC) monolayer, by virtue of its unique location, 

constitutes a dynamic interface between the vessel wall and bloodstream, regulating the 

physiological balance between vessel wall remodelling processes and hemodynamic 

forces Consequently, EC-m ediated mechanotransduction may impact on vascular 

smooth muscle cell (SMC) fate decisions such as migration and proliferation We have 

therefore investigated the possible role of MMP-2 released from BAEC during exposure 

to cyclic strain in mediating BASMC fate decisions

To investigate this hypothesis we used EC conditioned m edia as a 

chem oattractant in BASMC transwell migration assays We found that BASM C 

migration was markedly reduced (40 ± 5% n=3 P<0 05) when conditioned media from

HQ

5 2 5 Cyclic strain increases BAEC migration and tube formation are MMP-9-

dependent



strained EC was used as a chemo attractant when compared to media from static 

controls (Figure 5 16)

5 2 7 Cyclic strain conditioned media inhibition of SMC migration is MMP-2 but 

not MMP-9 dependent

The data in section 5 2 6 indicates that conditioned media from cyclically 

strained BAEC had an inhibitory effect on BASMC migration Here we attempt to 

elucidate the involvement of MMP-2 in these events Our data demonstrates that 

inhibition of MMP-2 activty by either treatment with gensitein or targeted siRNA 

‘knockdown’ of MMP-2 expression and activity in BAECs prior to strain was found to 

completely reverse the inhibitory effects of conditioned media on BASMC migration 

relative to controls (Figure 5 17 and Figure 5 18) Conversely, inhibition of M M P-9 

with siRNA knockdown had no observed effects on BASMC migration (Figure 5 19)

5 2 8 The involvement of MMP-2 in the inhibition of SMC migration occurs during 

cyclic strain

To characterize the role o f MMP-2 in m ediating the inhibition o f BASMC 

m igration we examined baseline BASMC transwell m igration in the absence or 

presence of recombinant MMP-2 in a concentration range o f 0 -  lOOng/ml (Figure 

5 20) The addition o f MMP-2 in this concentration range had no effect on BASMC 

migration Furthermore, reversal of the siRNA effect on BASMC migration was not 

observed when MMP-2 depleted conditioned media was supplemented with active 

recombinant MMP-2 (lOOng/ml) prior to the BASMC transwell migration assay (Figure 

5 21) These data suggest that M M P-2 is not directly involved in the BASM C 

migration event, rather, it is indirectly involved at the BAEC level, most likely during 

straining

To investigate this hypothesis BAECs which were transfected with M MP-2 

siRNA were exposed to 5% cyclic strain in the absence or presence o f active
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recombinant MMP-2 The presence of recombinant MMP-2 during the strain regime 

resulted m a reversal o f the siRNA effect (75 ±10% n=3 P<0 05) on BASMC migration 

(Figures 5 22a & b)
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Figure 5 1 The effect of G-protein inhibition on strain-induced increases in 
BAEC migration Force-dependent increase in BA  EC migration following exposure 
to 0% (control) or 5% cyclic strain in the absence or presence o f pertussis toxin 
(100ng/ml) Cells were exposed to strain for 24 h prior to transwell migration assay 
BA EC  migration is expressed as number o f cells that have migrated through the filter 
per 5 hpf and are expressed as a percentage o f control Representative hpf from each 
treatment is shown and arrows indicate the presence o f migrated cells Histogram 
represents mean values from three independent experiments* SEM , *^<0 05 
compared to controls **P<0 05 compared to 5%Stram
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Figure 5 2 The effect of G-protein inhibition on strain-induced increases in B A E C  
tube form ation Force-dependent increase in endothelial cell tube formation following 
exposure to 0% or 5% cyclic strain in the presence or absence o f pertussis toxin 
(1 OOng/ml) Cells were exposed to strain for 24 h prior to tube formation assay Results 
are expressed as tubule formation on collagen where four random fields o f  vision were 
photographed from each gel and the mean length o f tube formation was quantified by 
measuring the length o f  the network o f connected cells in each well using NIH image 
Representative fields of vision are shown for each treatment and arrows indicate tubule 
formation Results are expressed as fold change relative to control unstrained cells and 
histogram represents mean values from three independent expenments± SEM , *P< 0 05 
compared to controls **P<0 05 compared to 5%Strain
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Figure 5 3 The lack of effect of mtegnn blocking peptide on strain-induced 
increases m BAEC migration Force-dependent increase in B A E C  migration 
following exposure to 0% (control) or 5% cyclic strain in the absence or presence o f 
cRGD peptide (lOO^M) Cells were exposed to strain for 24 h prior to transwell 
migration assay B A EC  migration is expressed as number o f cells that have migrated 
through the Filter per 5 hpf and are expressed as a percentage o f control 
Representative hpf for each treatment is shown and arrows indicate the presence o f 
migrated cells Histogram represents mean values from three independent 
experiments* SEM , */><0 05 compared to controls
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Figure 5 4 The effect of mtegrin blocking peptide on strain-induced increases in 
B A E C  tube formation Force-dependent increase in endothelial cell tube formation 
following exposure to 0% or 5% cyclic strain in the presence or absence o f cRGD 
peptide(lOOfiM) Cells were exposed to strain for 24 h prior to tube formation assay 
Results are expressed as tubule formation on collagen where four random fields o f 
vision were photographed from each gel and the mean length o f tube formation was 
quantified by measuring the length o f the network o f  connected cells in each well 
using NIH image Representative fields o f  vision are shown for each treatment and 
arrows indicate tubule formation Results are expressed as fold change relative to 
control unstrained cells and histogram represents mean values from three independent 
experiments* SEM , *P<0 05 compared to controls **P<0 05 compared to 5%Strain
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Figure 5 5 The lack of effect of genistein on strain-induced increases in BAEC 
migration Force dependent increase in B A EC  migration following exposure to 0% 
(control) or 5% cyclic strain in the absence or presence o f genistein (50(iM) Cells were 
exposed to strain for 24 h prior to transwell migration assay B A E C  migration is 
expressed as number o f  cells that have migrated through the filter per 5 hpf and are 
expressed as a percentage o f control Representative hpf o f each treatment are shown 
and arrows indicate the presence o f migrated cells Histogram represents mean values 
from three independent experiments* SEM , *P< 0 05 compared to controls **P< 0 05 
compared to 5%Strain
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Figure 5 6 The lack of effect of genistein on strain-induced increases in B A E C  
tube formation Force-dependent increase in endothelial cell tube formation 
following exposure to 0% or 5% cyclic strain in the presence or absence o f  gen site in 
(50fiM) Cells were exposed to strain for 24 h prior to tube formation assay Results 
are expressed as tubule formation on collagen where four random fields o f vision were 
photographed from each gel and the mean length o f tube formation was quantified by 
measuring the length of the network o f connected cells in each well using NIH image 
Representative fields o f vision are shown for each treatment and arrows indicate 
tubule formation Results are expressed as fold change relative to control unstrained 
cells and histogram represents mean values from three independent experiments* 
SEM , *P< 0 05 compared to controls
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Figure 5 7 The effect of M M P inhibition on strain-induced increases in B A E C  
migration Force-dependent increase in B A EC  migration following exposure to 0% 
(control) or 5% cyclic strain in the absence or presence o f GM 6001 Cells were exposed to 
strain for 24 h pnor to transwell migration assay B A E C  migration is expressed as number 
o f  cells that have migrated through the filter per 5 hpf and are expressed as a percentage 
o f control Representative hpf from each treatment is shown and arrows indicate the 
presence o f  migrated cells Representai ve zymogram demonstrates inhibition o f pro- 
MMP-2 activity in conditioned media following treatment with GM -6001 Histogram 
represents mean values from three independent experiments* SEM , *P<0 05 compared to 
controls
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Figure 5 8 The effect of M M P inhibition on strain-induced increases in B A E C  
tube formation Force-dependent increase in endothelial cell tube formation following 
exposure to 0% or 5% cyclic strain in (he presence or absence o f GM -6001 Results are 
expressed as tubule formation on collagen where four random fields o f  vision were 
photographed from each gel and the mean length o f tube formation was quantified by 
measuring the length o f the network o f connected cells in each well using NIH image 
Representative fields o f vision are shown for each treatment and arrows indicate tubule 
formation Results are expressed as fold change relative to control unstrained cells and 
histogram represents mean values from three independent experiments* SEM , 
*P<0 05 compared to controls **P<0 05 compared to 5%Strain
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Figure S 9 The effect of M M P-2 inhibition on strain-induced increases in B A E C  
migration Force-dependent increase in B A E C  migration following exposure to 0% 
(control) or 5% cyclic strain in the absence or presence o f MMP-2 siRNA Cells were 
exposed to strain for 24 h prior to transwell migration assay B A E C  migration is 
expressed as number o f  cells that have migrated through the filter per 5 hpf and are 
expressed as a percentage of control Representative hpf for each treatment is shown 
and arrows indicate the presence o f migrated cclls Represntative zymograghy and RT- 
PCR gels demonstrate knockdown in pro-MMP 2 activity and expression Histogram 
represents mean values from three independent experiments* SEM , *P< 0 05 compared 
to controls
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Figure 5 10  The effect of M M P-2 inhibition on strain-induced increases in B A E C  
tube form ation Force-dependent increase in endothelial cell tube formation following 
exposure to 0% or 5% cyclic strain in the presence or absence o f MMP-2 siRN A 
Results are expressed as tubule formation on collagen where four random fields o f 
vision were photographed from each gel and the mean length o f  tube forma ton was 
quantified by measuring the length o f the network o f connected cells in each well 
using NIH image Representative fields of vision are shown for each treatment and 
arrows indicate tubule formation Results are expressed as fold change relative to 
control unstrained cells and histogram represents mean values from three independent 
experiments* SEM , *P<0 05 compared to controls
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Figure 5 11 The effect MMP-2 inhibition on shear stress-induced increases in 
BAEC m igration Force-dependent increase in BAEC migration following exposure to 
0 or 10dynes/cm2 non-pulsatile laminar shear stress in the absence or presence o f 
MMP-2 siRNA Cells were exposed to non-pulsatile laminar shear stress for 24 h prior 
to transwell migration assay BAEC migration is expressed as number of cells that have 
migrated through the filter per 5 hpf and are expressed as a percentage of control 
Representative hpf for each treatment is shown and arrows indicate the presence of 
migrated cells Histogram represents mean values from three independent 
experiments* SEM, */)<0 05 compared to control
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Figure 5 12 The effect of MM P-2 inhibition on shear stress-induced increases in 
BAEC tube form ation Force-dcpendent increase in endothelial cell tube formation 
following exposure to 0 or 10 dynes/cm2 non-pulsatile laminar shear stress in the 
presence or absence of MMP-2 siRNA Results are expressed as tubule formation on 
collagen where four random fields of vision were photographed from each gel and the 
mean length of tube formation was quantified by measuring the length of the network 
of connected cells in each well using NIH image Representative fields of vision are 
shown for each treatment and arrows indicate tubule formation Results are expressed 
as fold change relative to control unstrained cells and histogram represents mean 
values from three independent experiments* SEM, *P<0 05 compared to controls
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Figure 5 13 MMP-9 knockdown following transfection with M M P-9 siRNA
(a) Representative zymogram demonstrating knockdown o f pro-MMP-9 activity 
following transfection with 100 pmoles of MMP-9 siRNA (b) Histogram 
representing Real-tune PCR data indicating a marked reduction in MMP-9 
expression post transfection
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Figure 5 14 The effect of MM P-9 inhibition on strain-induced increases in BAEC 
m igration Force-dependent increase in BAEC migration following exposure to 0% 
(control) or 5% cyclic strain in the absence or presence of MMP-9 siRNA Cells were 
exposed to strain for 24 h prior to transwell migration assay BAEC migration is 
expressed as number of cells that have migrated through the filter per 5 hpf and are 
expressed as a percentage o f  BAEC exposed to control Representative hpf o f each 
treatment are shown and arrows indicate the presence of migrated cells Histogram 
represents mean values from three independent experiments* SEM, *p<0 05 compared 
to controls **p<0 05 compared to 5%Strain
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Figure 5 15 The effect of MM P-9 inhibition on strain-induced increases in BAEC 
tube form ation Force-dependent increase in endothelial cell tube formation following 
exposure to 0% or 5% cyclic strain in the presence or absence of MMP-9 siRNA 
Results are expressed as tubule formation on collagen where four random fields of 
vision were photographed from each gel and the mean length of tube formation was 
quantified by measuring the length of the network of connected cells in each well using 
o f  NIH image Representative fields o f vision for each treatment are shown and arrows 
indicate tubule formation Results are expressed as fold change relative to control 
unstrained cells and histogram represents mean values from three independent 
experiments* SEM, *p<0 05 compared to controls **p<0 05 compared to 5%Strain
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Figure 516 The effect of strained BAEC-conditioned media on BASMC migration
Following exposure to either 0% or 5% cyclic strain for 24h the resultant BA EC 
conditioned media was employed as a chemoattractant in BASMC migration assays 
BASMC migration is expressed as number of cells that have migrated through the filter 
per 5 hpf and are expressed as a percentage of control Representaive fields o f vision 
from each treatment are shown and arrows indicate the presence of migrated cells 
Histogram represents mean values from three independent experiments* SEM, *P<0 05 
compared to controls
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Figure 5 17 The effect MMP-2 siRNA strained BAEC conditioned m edia on SMC 
m igration BAEC were transfected with MMP-2 siRNA prior to exposure to either 0% or 
5% cyclic strain for 24h, the resultant BAEC conditioned media was employed as a 
chemoattractant in BA SMC migration assays BASMC migration is expressed as number 
of cells that have migrated through the filter per 5 hpf and are expressed as a percentage of 
control Representative hpf for cach treatment are shown and arrows indicate the presence 
of migrated cells Histogram represents mean values from three independent experiments* 
SEM, *^<0 05 compared to controls **P<0 05 compared to 5% strain
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Figure 5 18 The effect of PTK inhibition on strained BAEC conditioned m edia on 
BASMC m igration BAEC were exposured to either 0% or 5% cyclic strain for 24h in 
the absence or presence of gemstein (50^M) The resultant BAEC conditioned media 
was employed as a chemoattractant in BASMC migration assays BASMC migration is 
expressed as number of cells that have migrated through the filter per 5 hpf and are 
expressed as a percentage of control Representative hpf o f each treatment are shown and 
arrows indicate the presence of migrated cells Hostogram represents mean values from 
three independent experiments* SEM, *P<0 05 compared to controls **P<0 05 
compared to 5% strain
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Figure 5 19 The effect of MMP-9 siRNA post strain  conditioned media on SMC 
migration BAECs were transfected with MMP-9 siRNA prior to exposure to either 0% 
oi 5% cyclic strain for 24h, the resultant conditioned media was employed as a 
chemoattractant in BASMC migration assays BASMC migration is expressed as number 
of cells that have migrated through the filter per 5 hpf and are expressed as a percentage 
control Representative hpf of each treatment are shown and arrows indicate the presence 
of migrated cells Histogram represents mean values from three independent 
experiments* SEM *P<0 05 compared to controls
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Figure 5 20 The effect of exogenous recom binant MMP-2 on basal BASMC 
m igration BASMC migration was examined in the presence of exogenous recombinant 
MMP-2 (0-I00ng/mI) BASMC migration is expressed as number o f cells that have 
migrated through the filter per 5 hpf and are expressed as a percentage of control 
Representative hpf of each treatment are shown and arrows indicate the presence of 
migrated cells Histogram represents mean values from three independent experiments* 
SEM *P<0 05 compared to controls
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Figure 5 2 1 The effect of recombinant M M P-2 “ add back”  to post strain conditioned 
media on B A SM C  migration B A EC  were transfected with MMP-2 siRN A pnor to 
exposure to 5% cyclic strain for 24h, the resultant B A EC  conditioned media was 
employed as a chemoattractant in B A SM C  migration assays 100ng/ml exogenous MMP- 
2 was ‘added back”  to MMP-2 depleted media prior to migration assay BASM C 
migration is expressed as number o f cells that have migrated through the filter per 5 hpf 
and are expressed as a percentage o f control Representative hpf o f each treatment are 
shown and arrows indicate the presence o f migrated cells Histogram represents mean 
values from three independent experiments* SEM , *P<0 05 compared to controls
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Figure 5 22 (a) To characterise the effects on BASMC m igration of supplementing 
BAEC with recom binant M MP-2, following siRNA blockade of M M P-2 BAEC were 
transfected with MMP-2 siRNA pnor to exposure and grown in the absence or presence 
of lOOng/ml recombinant MMP-2 for 24h The resultant BAEC conditioned media was 
employed as a chemoattractant in BASMC migration assays BASMC migration is 
expressed as number of cells that have migrated through the filter per 5 hpf and are 
expressed as a percentage of control Representative hpf of each treatment are shown and 
arrows indicate the presence o f  migrated cells Histogram represents mean values from 
three independent experiments* SEM, *P<0 05 compared to controls
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Figure 5 22 (b) To characterise the effects on BASMC m igration of supplem enting 
BAEC with recom binant MMP-2, following siRNA blockade of MMP-2 BAEC were 
transfected with MMP-2 siRNA pnor to exposure to either 0% or 5% cyclic strain for 24h 
in the absence or presence of lOOng/ml recombinant MMP-2 The resultant BAEC 
conditioned media was employed as a chemoattractant in BASMC migration assays 
BASMC migration is expressed as number of cells that have migrated through the filter 
per, 5 hpf and are expressed as a percentage of control Representative hpf of each 
treatment are shown and arrows indicate the presence o f migrated cells Histogram 
represents mean values from three independent expen men ts± SEM, *P<0 05 compared to 
5%Stram ** P < 0 05 compared to 5%Strain + MMP-2 siRNA
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5 3 Discussion

We have clearly demonstrated that mechanical stimuli such as cyclic strain and 

shear stress promote a pro-migratory and pro-angiogenic phenotype in BAECs We 

have also established that cyclic strain modulates MMP-2 by two different pathways 

involving G-protem subunits and p38 MAPK or PTK and ERK1/2 M APK In this 

chapter we examine the roie o f G-protems, mtegrins, PTKs and MMPs m modulating 

cyclic strain-induced increases in migration and tube formation EC can influence the 

phenotype and contractile features of SMCs In vivo EC are in direct contact with the 

bloodstream and release a variety o f growth factors in response to shear stress and 

cyclic strain [Palumbo et a l , 2002, Vouyouka et a l , 2003] Therefore, we have also 

investigated the role of cyclic strain derived factors from BAEC on BASMC migration

To elucidate the signaling mechanisms involved in cyclic strain-induced 

increases in BAEC migration and tube formation, we examined the putative role of Gi- 

protems m mediating this effect The rapid activation o f Gi-proteins by cyclic strain has 

been demonstrated in previous studies [Gudi et a l , 2003] Inhibition of GPCRs by PTX 

or Thromboxane A 2 has been found to inhibit basal EC migration and tube formation 

[Gao et a l , 2000, Benndorf et a l , 2003] Similarly small GTPases have been found to 

be crucial to the progression EC migration [Seasholtz et a l , 1999] The involvement of 

Gi-proteins m mediating mechanically stimulated EC migration was demonstrated by 

Cullen et al This study is in agreement with these findings and as inhibition of cyclic 

strain-induced BAEC migration and tube formation following treatment with PTX 

suggests that these events are Gia~protem dependent

A vital mechanism of cell migration and tube formation is the interaction o f the 

cell with its ECM Integrms play a pivitol role m cell/ECM interactions and so are 

believed to be important in these cell fate decisions Previously, it has been 

demonstrated that treatment with a cyclic RGD peptide will not inhibit SMC migration 

but will inhibit SMC invasion (where invasion requires migration through an ECM) 

[Slepian et al 1998, Kanda et a l , 2000] Selective inhibition o f the (33 subunit using
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antisense oligonucleotides inhibits EC tube formation on fibrin but not on matrigel 

suggesting the involvement of mtegrins may depend on the composition of the ECM 

[Dallabrida et a l , 2000, Kronenwett et a l , 2002] Urbich et al demonstrated that shear 

stress-induced migration assessed by wound-healmg assays could be attenuated by 

treatment with cRGD peptide In the current study it was found that cyclic strain- 

induced transwell migration could not be inhibited by pre-treatment with cRGD peptide, 

however, cyclic stram -m duced tube formation was significantly attenuated In 

agreem ent with the work o f Urbich et al we found that cRGD peptide could 

significantly inhibit wound-healmg Taken together, these data imply that transwell 

migration and wound-healmg migration are regulated by different mechanisms

One possible explanation for the differences between the two types o f migration 

may relate to the fact that following injury EC phenotype may be dramatically different 

to that o f uninjured cells The release o f inflammatory cytokines such as T N F-a or 

interleukins in response to injury may promote m igration via m tegrm -dependent 

pathways which would not occur in uninjured cells IL-1B and IL-3 induce migration in 

VSMC via increases in PGE2 and VEGF respectively [Bnzzi et a l , 2001, Yamamoto et 

al 1999] A characteristic of the cytokines is the coupling of their activity to cell-cell 

interactions therefore blocking of these interactions with cRGD peptide may inhibit 

their effect In addition migration observed during wound-healmg involves the 

migration of an EC monolayer, as such there is extensive cell-cell communication The 

ability of cRGD peptide to inhibit wound-healmg may he in its ability to interrupt 

suitable cell/cell communication Our data does not imply that mtegrins are not 

involved in the process of cell migration, however it does infer that the ability o f cyclic 

strain to induce a migratory phenotype m BAECs is integrin independent

The observed inhibition o f tube formation following pre-treatment with cRGD 

peptide is, in agreement with previous studies The av|33 integrin is a receptor for a 

number of proteins with an exposed Arg-Gly-Asp (RGD) tripeptide moiety, including 

vitronectin, fibronectm and fibrinogen In vivo, this receptor is not widely expressed 

The appearance o f this tripeptide occurs predom inantly on cytokine-activated
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endothelial cells [Varner et a l , 1996] The vitronectin receptors (av(33, av p 5 ) are 

expressed during in vivo angiogenesis and markers for an angiogenic phenotype 

Blocking o f the av(33 integrin leads to the inhibition o f tumour- and growth factor- 

induced angiogenesis in vivo [Chavakis et a l , 2002] There is a large amount of 

contradicting data concerning the involvement o f integrins m angiogenesis as abalation 

o f integrin subunits m mice failed to inhibit angiogenesis [Hynes , 2002] However 

other studies have dem onstrated that (31, a  1 and a 5  integrins are involved in 

angiogenesis One proposed explanation is that a functional redundancy exists between 

integrins The ability of integrins to mediate angiogenesis may be due to their ability to 

effect and be affected by pro-angiogemc cytokines such as bFGF, VEGF and TGF-J31 

Engagement of integrins can increase the production o f pro-angiogenic cytokines such 

as VEGF [Chung et a l , 2004, Murphy et a l , 2003], moreover these cytokines can 

increase expression of the a v  and (33 subunits m endothelial cells [Basson et al f 1992, 

Swerlick et a l , 1992, Sepp et a l , 1994, Senger et a l , 1996] In addition, a v p 3  

antagonists have been shown to markedly inhibit angiogenesis induced by bFGF and 

TN F-a in the chicken chorioallantoic membrane and rabbit corneal micropocket assays 

[Brooks et a l , 1994, Fnendlander et a l , 1996] Integrin antagonists such as cRGD 

peptides may inhibit cyclic strain-induced tube formation by inhibiting production of 

pro-angiogenic factors

Angiogenesis is a carefully balanced sequence o f events Vascular growth 

factors are capable o f regulating this process in a dynamic model o f blood vessel 

form ation VEGF m concert w ith other angiogenic molecules including the 

angiopoietins effect and modulate blood vessel formation Both receptor tyrosine 

kinases and non-receptor tyrosine kinases have been identified as being important to the 

progression o f angiogenesis Selective inhibition of non-receptor tyrosine kmases such 

as FAK or RTKs such as KDR/Flk-1, Tie-2 or the PDGF receptor inhibits angiogenesis 

in a number o f models [Nakatsu et al 2003, Miura et a l } 2004, Dudley et a l , 2003, 

Banai et a l , 1998, Kim et a l , 2000, Bohnsack et al 2003] However, in this study we 

found that cyclic strain-induced migration and tube formation occurred independently of 

PTK activation, as treatment with gemstein failed to inhibit these cell fates



Overall we have demonstrated that cyclic strain-induced m igration is a Gi- 

protein dependent process and is independent o f mtegrins and PTK However, both Gi- 

protein and integrm signaling appear to be important to cyclic strain-induced tube 

formation Whether or not they control cyclic strain-induced angiogenesis by two 

different pathways has yet to be elucidated However, associations between mtegrins 

and G-proteins have been well documented [Stouffer et a l , 2003, Fujiwara et a l , 2004] 

and integrm recruitment of Gi-proteins during exposure to cyclic strain driving EC to an 

angiogenic phenotype is feasible Integrms may regulate cyclic strain-induced 

angiogenesis by concentrating Gi-proteins at focal adhesions or may orientate them so 

as to be in close proximity to effector molecules Alternatively GPCR which are 

activated by cyclic strain may subsequently activate integrm subunits

Cyclic strain leads to an increase in BAEC migration and angiogenesis with a 

concurrent mcrease in pro-MMP-2 activity However, the signaling pathways involved 

m mediating these responses are distinctly separate Therefore we investigated if  the 

release o f pro-MMP-2 during cyclic strain is linked to cyclic strain-induced migration 

and angiogenesis The involvement o f MMPs m angiogenesis and specifically 

gelatmases has been discussed in detail in section 15  We have demonstrated that 

cyclic stram-induced tube formation but not migration is an MMP dependent event and 

more specifically this event is MMP-9 but not MMP-2 dependent

Cell migration is an event which requires the modification o f the ECM As such 

it is believed that MMPs play a pivotal role in ECM modification to facilitate migration 

However, our data contradicts a number o f reports that indicate a role for MMP-2 in 

migration [Gurjar et al 1999, Palumbo et al 2000, Bohnsack et al 2003, Johnson et 

al 2004, Kuzuya et a l , 2003, Lee et al 2003] Conversely, in vitro studies report that 

inhibition of MMP-2 blocks migration across a matrix barrier, such as a collagen plug, 

whereas migration m the absence of a matrix barrier was unaffected by MMP inhibition 

[Lee et al 2003, Koike et a l , 2002] These reports corroborate our observations that 

MMP-2 inhibition had no effect on transwell migration m the absence o f a matrix 

barrier The involvement o f MMP-2 in migration may therefore require suitable
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orientation and attachment to a 3D matrix Angiogenesis requires EC to invade and 

migrate into the surrounding stroma, which comprises of ECM protem s such as 

collagen, which can bind to receptors on the endothelial cell surface Considering this 

model of EC migration during angiogenesis m conjunction with the data presented 

above, it may be inferred that interaction of EC with components of the ECM is a 

requirement for MMP-2 dependent migration

MMP inhibition using a broad spectrum inhibitor such as GM-6001 identified 

that MMP activity is an important aspect of in vitro tube formation Selective inhibition 

o f MMP-2 uing siRNA duplexes indicated that MMP-2 is not a key angiogenic 

regulator m either cyclic strain- or shear stress-induced tube form ation This 

observation is in agreement with the gensitem study m which MMP-2 was inhibited by 

PTK blockage with no effect on migration or tube formation These data contradict the 

work of Rivihs et a l , (2002) who indicate that MMP-2 is required for cyclic strain but 

not shear stress-induced tube formetion

In addition, other studies have highlighted the importance of M MP-2 in 

angiogenesis In MMP-2 deficient mice, reduced retinal angiogenesis and tumour- 

induced angiogenesis was observed [Pepper et a l , 2001, Matsui et a l , 2003] Increased 

angiogenesis with associated increases m MMP-2 have also been observed in hypoxia-, 

tumour- and exercise-mduced models of angiogenesis [Rivihs et al 2002, Brown et a l , 

2003, Ben-Yosef et a l , 2002] However, increased MMP-2 activity may also be 

associated with inhibition of angiogenesis via the production of anti-angiogeneic factors 

such as angiostatin and endostatin in response to NO depletion or exercise [Matsunaga 

et al 2002, Gu et al 2004] Moreover, increases in ROS and/or NO such as those seen 

following cyclic strain may induce angiogenesis [Ushio-Fukai et a l , 2002, M auhk et 

a l , 2002] and may offer an alternative to MMP-2-dependent angiogenesis It can be 

seen that t)ie involvement of MMP-2 m angiogenesis may depend greatly upon the 

initiating stimulus and model used Whereas some studies have shown cyclic strain- 

m duced angiogenesis in vivo is M M P-2-dependent [Rivihs et a l , 2002], our data 

demonstrates that in vitro cyclic strain of EC monocultures may stimulate angiogenesis
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independently of MMP-2 Indeed Seo et al have established that T1MP-2 may inhibit 

angiogenesis independently of MMPs

Conversely, selective inhibition of MMP-9, using siRNA duplexes clearly 

identifies the involvement of MMP-9 in strain-induced tube formation Our data 

indicate that MMP-9 is an important factor in regulating strain-induced angiogenesis 

There is considerable evidence to support the opinion that MMP-9 is a key regulator of 

angiogenesis The inhibition o f MMP-9 with cyclic peptides (His-Trp-Gly-Phe), are 

capable of inhibiting EC migration and invasion in a tumour model Additionally 

genetic studies in mice have shown that MMP-9 knockout mice had a distinct 

angiogenic phenotype and there was a significant reduction in bone growth plate 

angiogenesis [Pepper et a l , 2001] Studies with R iplTag2 mice, which develop 

pancreatic beta-cell tumours that are neither lymphangiogemc nor metastatic, show that 

MMP-9 and not MMP-2 is the angiogenic switch m pancreatic beta-cell carcinogenesis 

[Pepper et a l , 2001] Angiogenesis triggered by tissue ischemia requires MMP-9, 

which may be involved m capillary branching [Johnson et a l , 2004] In addition, 

exogenous MMP-9 ( but not MMP-2) has been found to cause release of VEGF from a 

carcinoma cell eliciting an angiogenic response with co-cultured endothelial cells 

[Sternlicht et al 2001] These studies confirm the significance o f M M P-9 to 

angiogenesis They also substantiate our hypothesis that MMP-9 and not MMP-2 is the 

k ty  angiogenic switch involved in evoking cyclic strain-induced angiogenesis

Due to their position in the vessel, ECs are exposed directly to mechanical 

forces As such they may act as intermediates in the mechano-regulation of SMC fate 

decisions by the production of growth factors, cytokines and enzymes etc which may 

subsequently will alter SMC phenotype Therefore, suitable communication between 

ECs and SMCs is essential for maintaining vessel homeostasis e g increases in 

en do the lia l (a potent vasoconstrictor) expression in response to low shear stress will 

promote vasoconstriction to increase blood flowrate In this example SMC adopt a 

contractile phenotype in response to ET-1 to maintain homeostasis in the vessel We 

have hypothesized that conditioned media from ECs exposed to cyclic  strain may
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influence SMC migration A number of in vitro studies have demonstrated that co­

culture of ECs with SMC or exposure of SMC to EC conditioned media may alter 

dramatically, SMC migration, proliferation, morphology, mRNA and protein synthesis 

[Cucina et a l , 2003, Filhnger et a l , 1997, Proia et al 2002, Vouyouka et a l , 2003] In 

hemodynamic models it has been demonstrated that SMC migration is increased in the 

presence o f conditioned media from EC exposed to non-pulsatile shear stress 

Conversely, SMC migration was not altered when co-cultured with EC and exposed to 

pulsatile flow [Palumbo et al 2002, Redmond et a l , 2001]

Our data has shown that exposure of SMC to conditioned media from cyclically 

strained EC inhibits SMC migration compared to controls The involvement of MMP-2 

m this process was demonstrated by conditioned media from MMP-2 siRNA transfected 

cells The absence of MMP-2 but not MMP-9 from cyclic strain conditioned media 

attenuated the inhibition of SMC migration However, MMP-2 does not directly 

influence SMC migration as addition o f exogenous recombinant MMP-2 had no effect 

on SMC transwell migration which, is m agreement with previous studies [Lee et a l , 

2003, Koike et a l , 2002] Thus, it appears that MMP-2 is required during the 

conditioning of EC media This would suggest that MMP-2 is involved in controlling 

the production, activation or inhibition o f EC-derived migratory factors

One possible group o f enzymes which may provide more insight into the 

involvem ent o f MMP-2 in SMC m igration is the u rokinase-type plasminogen 

activator/inhibitor system, comprising urokinase plasminogen activator (uPA) and 

plasminogen activator inhibitor type-1 (PAI-1), in vascular ECs [Pepper et a l , 2001, 

Proia et a l , 2002] The extensive cross-talk between these components during 

hemodynamically-mediated events is highly significant Redmond et al (1999) have 

shown the combined involvement of uPA/MMP signalling in the vascular remodelling 

process and have clearly demonstrated a role for EC-derived PAI-1 in the reduction of 

shear force-induced vascular SMC migration [Redmond et a l , 2001] Also noteworthy 

is the probable role of integrins in modulating interactions between MMP-2 and the uPA 

system Studies have consistently demonstrated transcriptional and functional mter-
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dependence of mtegrins (e g , aV(33) with MMP-2 [Brooks et a l , 1998] and the uPA 

system [Reumng et a l , 2003]

5 4 Conclusion

Our data demonstrates that cyclic strain stimulates endothelial cell migration and 

tube formation in vitro Cyclic stram-induced migration is dependent on G ia-protein 

activation but independent o f mtegrin or PTK signaling However, both Gia-protein 

and mtegrin signaling appear to be important to cyclic strain-induced tube formation It 

is tempting to speculate that the strain-induced increases m BAEC migration and tube 

form ation are associated with the stram -induced increases in M M Ps described 

previously We have demonstrated that strained-induced increases in transwell 

migration occur independently o f MMP activity and that stram-induced increases in 

angiogenesis are dependent on MMP-9 but not MMP-2 We have also established that 

MMP-2 derived from strained BAECs indirectly causes the inhibition o f BASMC 

migration Overall, we have discovered that cyclic strain denved-MMPs are involved in 

regulating both BAEC and BASMC cell fate decisions
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6 1 Final Summary

Hemodynamic forces generated by the flow o f blood are crucial m maintaining 

homeostasis within the blood vessel wall Cyclic strain and shear stress are intricately 

involved in vascular rem odeling, a process which underlies the pathogenesis of 

cardiovascular diseases such as atherosclerosis and restenosis [Schwartz et a l , 1995, 

L ibby  et a l , 2003] Vascular remodeling requires degradation/modification o f the 

extracellular matrix The ECM is a dynamic environment that serves as an anchoring 

mechanism for cells but also presents cells with an array o f growth factors and other 

signaling molecules The ECM is important m maintaining the integrity o f the blood 

vessel in addition, alterations in cellular interactions with the ECM brought about by 

changes in blood flow may contribute to vascular pathologies Normal biological 

processes such as growth, wound healing and angiogenesis require remodeling o f the 

ECM to allow space for growing and advancing cells Appropriate modification o f the 

ECM to facilitate these processes involves a num ber o f proteinases including 

m etalloprotem ases, which collectively are capable o f  degrading the entire ECM 

Therefore, tight regulation o f the MMPs by the cells from which they are secreted is 

necessary as deviant expression has been associated with vascular disease [Gibbons et 

al 1994, Rajavashisth et a l , 1999, Uzui et a l , 2002, Freestone et a l , 1995]

Considering the importance o f MMPs to ECM modification, the relevance of 

this to normal physiological processes such as EC migration and angiogenesis and the 

ability o f hemodynamic forces to alter cell phenotype the initial aim o f this study was to 

determ ine the m echano-sensitivity o f M M P-2 to cyclic strain and shear stress 

Following this we determined the effect o f hemodynamic forces on BAEC cell fate 

decisions, namely migration and tube formation Furthermore we investigated the 

involvement o f MMP-2 and MMP-9 in these events The final component o f this study 

was to determine a role o f MMP-2 and -9 derived from strained BAEC m regulating 

BASMC migration
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Figure 6.1: Diagramtic representation o f  experimental approach. The regulation o f 

MMPs, migration and tube formation in response to cyclic strain and shear stress was 

investigated. Identification o f  signaling pathways involved in cyclic strain-induced 

increases in pro-MMP-2 activity, BAEC migration and tube formation The involvement 

o f  MMP-2 and MMP-9 in strain-induced migration and tube formation was determined. 

Finally the ability o f  BAEC derived MMPs in regulating BASMC m igration was 

investigated.

This thesis describes studies on hemodynamic regulation o f  endothelial cell 

migration and angiogeneic activity and the roles o f gelatinases in these processes. The 

initial component o f  this study was to investigate if  the use o f  in vitro models to 

simulate cyclic strain and shear stress could alter BAEC derived MMPs. Analysis o f 

conditioned media from these experim ents revealed that pro-M M P-2 and M MP-2 

activity were significantly up-regulated following exposure to cyclic strain but not shear 

stress. M oreover, the observed increase in M MP-2 activity was associated with 

increases in protein expression and steady state mRNA levels. We observed that both 

cyclic strain and shear stress resulted in significant increases in BAEC migration and 

tube form ation com pared to static controls. Cyclic strain and shear stress have
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previously been reported to induce angiogenesis by differing mechanisms [Rivilis et a l , 

2002, Brown et a l , 2003] cyclic strain-induced angiogenesis is M M P-2 dependent 

while shear stress-induced angiogenesis is not Enhanced pro-M M P-2 activity in 

conditioned media following cyclic strain was found to be a time and force-dependent 

process Additionally, cyclic strain was found to increase M M P-9 activity  in 

conditioned media, this was however only observed when cells were strained in serum- 

contammg media

M any studies have demonstrated that MMP-2 is sensitive to shear stress and 

indeed Bassiony et al (1998) believe that changes in blood flow are the most important 

regulators o f MMP-2 expression Moreover, the sensitivity o f MMP-2 to changes in 

shear stress has been demonstrated both in vitro and in vivo [Palumbo et a l , 2000, Sho 

et a l , 2002] Conversely, Rivilis et al (2002) established that changes in M M P-2 

expression were associated with cyclic strain and not shear stress The differences in 

the regulation o f MMP-2-were attributed to the differential involvement o f MMP-2 in 

cyclic strain and shear stress-induced angiogenesis There are considerable deviations 

in data presented in these studies, as high blood flow appears to increase, decrease or 

have on effect on MMP-2 activity [Sho et a l , 2002, Bassiony et a l , 1998, Rivilis et a l ,

2002] The variations in MMP-2 activity in response to changes in shear stress may be 

linked to the method by which increased shear stress was administered Increases in 

shear stress brought about by AVF may have considerably different effects to changes 

brought about by ligation or by the administration of prazosm The magnitude of AVF- 

mduced increases in blood flow (8 fold) [Tronc et a l , 2000] is substantially greater than 

prazosm-induced increases in blood flow (2-4 fold) [Rivilis et al 2002] which may 

account for observed differences in MMP-2 activity following both treatm ents 

Exposure o f EC to physiological levels o f shear stress (10-70 dynes/cm 2) may not 

greatly alter MMP-2 activity while shear stresses outside this range may be more 

influential However, given the range o f reported observations considerable doubt 

rem ains over the regulation o f MMP-2 in response to altered shear stress Our 

observations lead to the conclusion that non-pulsatile laminar shear stress does not 

regulate MMP-2 production However, preliminary findings withm our laboratory have
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demonstrated that MMP-2 activity is regulated by pulsatile laminar shear stress These 

data in conjunction with the data presented in this thesis imply that the cyclic strain 

component o f pulsatile blood flow is the key hemodynam ic regulator o f M MP-2 

activity

Angiogenesis is an adaptive process that requires m odification o f the ECM 

Inhibition" o f M M P activities has been im portant in identifying their roles m 

angiogenesis MMP activity has been associated with both pro- and anti-angiogeneic 

processes [Yang et a l , 2001, Haas et a l , 1998] More specifically the gelatinases 

(MMP-2 and MMP-9) are thought to be o f particular significance m angiogenesis 

Considerable data exists which identify MMP-2 and MMP-9 as being potent regulators 

o f angiogenesis in a number-of experimental models [Chakraborti et a l , 2003, Fang et 

a l , 2000, Pepper et a l , 2001, Wang et al-, 2003, Nguyen et a l , 2001] Hemodynamic 

stimuli modulate both angiogenesis and MMP activity and indeed may be the most 

important regulator o f MMP expression and activity m vascular cells Alteration in the 

hemodynamic environment causes upregulation o f MMP-2 and MMP-9 associated with 

failure o f saphenous vem graft failure and vascular remodelling linked to hypertension 

[Zucker et a l , 1998, Godin et al t 2000] Since degradation o f the extracellular matrix 

scaffold enables reshaping o f tissue, the role o f matrix metalloproteinases (MMPs) has 

become the object o f intense recent interest in relation to physiological and pathological 

vascular remodeling A more complete understanding o f the hemodynamic regulation 

of MMPs may advance the understanding o f vascular remodeling Both shear stress and 

cyclic strain may stimulate angiogenic growth in vivo and in vitro Substantial evidence, 

has identified that mechanical forces regulate EC morphology, cytoskeleton, and ECM 

remodeling in addition to_ modulation o f pro-migratory and pro-angiogenic factors 

including VEGF, FGF, mtegrin subunits, TGF-p and M M Ps [Matthew et a l , 1991, 

Schanper et a l , 2003, Brown et a l , 2003, Chen et a l , 2001, Zheng et a l , 2001, Rivilis 

e ta l ,  2002 Vailhe et a l , 1996, Banai et a l , 1994]

Bearing in mind the relevance o f both cyclic strain and MMPs and specifically 

MMP-2 to angiogenesis, we endeavored to elucidate the signaling mechanisms involved

o
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in cyclic strain-induced increases in pro-MMP-2 activity We examined the putative 

involvement o f G ia-proteins in mediating this response, and determined that stram- 

m duced increases in M M P-2 occurred independently o f G ia  protein subunits 

However, inhibition o f G(3y dimer significantly attenuated pro-MMP-2 activity in both 

static controls and cyclically strained cells In this study, it was observed that G(3y 

inhibition did not attenuate strain-induced increases in phospho-ERK l/2 However, 

inhibition o f G(3y activity resulted in diminished phosho-p38 activity with concominant 

decreases in MMP-2 activity in response to cyclic strain Similarly, selective inhibition 

o f p38 activity significantly reduced strain-induced increases in pro-MMP-2 activity 

-These data suggest that strain-induced changes in MMP-2 expression and activity may 

in part occur via a G(3y/p38 dependent pathway PTK inhibition significantly attenuated 

strain-induced increases_in pro-MMP-2 activity with concurrent decreases in phospho- 

ERK1/2 activity but not phospho-p38 activity MMP activity has previously been 

linked to changes m M EK [Kito et a l , 2000, Visse et a l , 2003, Galis et a l , 2002, 

Beaudeux et a l , 2003], and selective inhibition o f ERK significantly attenuated strain- 

induced changes m pro-MMP-2 activity and protein levels, together these data confirm 

an important role for ERK in mediating these events These data suggest that cyclic 

strain stimulates pro-MMP-2 expression, m part, by stimulating both p38- and ERK- 

dependent pathways through activation o f Gpy and tyrosine kinase in BAEC (see Figure 

6 2)

Inhbition of either the G(3y subunit or PTK both attenuate strain-induced increases m 

pro-MMP-2 activity by similar amounts Similarly, inhibition or either p38 or ERK1/2 

attenuates pro-MMP-2 activity by comparable amounts This may suggest a possible 

redundancy mechanism for the regulation of M M P-2 in response to cyclic strain 

Alternatively and more likely the activation of both p38 and ERK 1/2 is required for 

cyclic strain-induced increases in MMP-2 In support of this hypothesis, previous 

studies have identified that both p38 and Erkl/2 activation are involved in increases in 

MMP-2 and MMP-9 in response to a number of stimuli [Donmni et a l , 2004, Esparza 

et a l , 1999, Wang et a l , 2002] Inhibition of PI-3 kinase, ERK 1/2 or p38 all have 

profound effects on the MMP-2 and MMP-9 activity [Esparza et al_, 1999] Ruhul



Amin et a l , (2003) have demonstrated that activation o f ERK1/2 and p38 is required for 

MMP-2 secretion in response to concanavalm-A, however they do not determine why 

simultaneous activation o f these MAPKs is required for these events Similarly, 

secretion o f MMP-9 following injury could only be attenuated by inhibition o f both p38 

and ERK1/2 [Wang et a l , 2002] Lee et a l , (2002) infer that p38 M APK may have a 

regulatory role in ERK1/2 activation and subsequent regulation of MMP-2, MMP-9 and 

uPA ERK1/2 activation o f Ap-1 has a stimulatory effect on MMP-2 expression 

[Donnim et a l , 2004] The expression o f c-fos and c-jun the two components o f the 

AP-1 conplex are regulated by p38 [Fngo et a l , 2004] Thus, increased expression o f 

c-fos and c-jun via p38 signalling and subsequent activation via ERK1/2 may bring 

about increases m MMP-2 expression

We have demonstrated that the adapter protein She is important m mediating 

strain-induced changes in pro-MMP-2 activity and ERK-1/2 phosphorylation Previous 

studies have demonstrated the regulation o f ERK via the recruitment o f She by mtegrins 

(avp3) and PTKs (Flk-1, FAK) [Giancotti et a l , 1999, Chen et a l , 1999] GPCRs may 

phosphorylate She leading to the activation o f Ras [Gudi et a l , 2003] which may 

subsequently activate p38 and/or ERK1/2 [Ruhul Amin et al 2003] Thus, She may 

play a pivotal role in the activation o f ERK-1/2 via a PTK or the activation of p38 via 

Gpy Previous studies have indicated the relevance o f mtegrins in activation o f the 

MAP kinase pathways [Shyy et a l , 2002, Labrador et a l , 2003] In addition mtegrin 

signaling has been associated with G-proteins and PTKs However, m this study strain- 

induced changes in pro-MMP-2 were found to be independent of mtegrin signaling

Regulation o f MMP-2 secretion and activation seems to involve an intricate 

process We have identified two pathways o f equal importance which regulate strain- 

induced increases in MMP-2 The reason for the existence of two pathways exists is not 

yet understood One explanation is that the two pathways are in fact one more complex 

pathway However this is speculative and will require further work to identify links 

between the two pathways

0
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Figure 6.2: Possible EC signaling mechanisms following cyclic strain. Gpv/p38 and 

PTK/ERK-1/2 regulation o f MMP-2, which plays a role in SMC migration. Integrin 

and G ia  signaling is involved in EC tube formation. Cyclic strain leads to increases in 

MMP-9, the signaling pathway was not elucidated, but it plays a role in strain-induced 

tube formation. (------- ) signifies possible associations or interactions.

The m echanism s by which cyclic strain m ediates changes in pro-M M P-2 

expression/activity appear to somewhat different from those governing migration and 

angiogenic activity. Strain-induced changes in BAEC migration and tube formation
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were sensitive to G ia-protein and integrin signaling W hether these receptors work in 

concert or independently m this context has yet to elucidated Thus, while cyclic strain- 

induced increases in pro-M M P-2 activity occur concurrently with strain-induced 

m igration and tube formation they occur via independent signaling pathways To 

elucidate if  strain-derived MMPs were involved in strain-induced migration and tube 

formation, we attenuated MMP by using either a broad-spectrum inhibitor (GM-6001) 

or selectively using siRNA targeted to either MMP-2 or MMP-9 We have established 

that strain-induced transwell migration was an M M P-mdependent process however, 

tube formation was MMP-dependent and more specifically MMP-9 dependent

We have determined that increased MMP-2 activity associated with cyclic strain 

did not contribute to strain-induced m igrationor tube formation However, we believe 

that strain-induced increases in MMP-2 activity may play a role in endothelial function 

Under normal physiological conditions hemodynamic forces generally offer a protective 

effect Exposure of EC to physiological levels of cyclic strain (5 - 10%) suppresses 

apoptosis via a PI-3 kinase / Akt dependent pathway Exposure to higher magnitudes of 

cyclic strain (20%) has been shown to induce apoptosis [Haga et a l , 2003, Chen et a l , 

2001, Liu et a l , 2003] The ability of physiologic cyclic stretch to inhibit EC apoptosis 

may provide a previously unrecognized mechanism by which hemodynamic forces exert 

an anti-atherogenic effect The recruitment of PI-3 kinase and Akt by integrin subunits 

has been well documented Suitable interaction of mtegrins with components of the 

ECM is required for cell survival and loss of ECM attachment leads to apoptosis 

Therefore, cyclic strain-induced increases in M M P-2 activity may play a role in 

suppressing apoptosis by suitably modifying the ECM to promote cell survival Cyclic 

strain has also been linked to increases m the proliferation of a number of cell types 

including endothelial cells [Vouyouka et a l , 1998, Murata et a l , 1996] Cyclic strain 

may enhance cellular proliferation by inhibiting protein phosphatase 2A as well as 

stimulating protein kinase C [Murata et a l , 1996] Conversely, conditioned media from 

strained EC has been found to inhibit the proliferation m a TGF-(3 independent manner 

[Vouyouka et a l , 1998] Cell growth requires modification of the ECM and increased 

activity of MMP-2 has been linked to increases in proliferation [Li et a l , 2003] Thus,

o
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strain-induced increases in MMP-2 activity may play a role in maintaining suitable 

levels of cell growth and cell death within the endothelial monolayer.

Vascular rem odeling in response to hem odynam ic forces requires SMC 

migration/proliferation [Galis et a l ,  2002]. Many m olecules secreted from EC in 

response to mechanical forces may affect SMC phenotype [Wang et al., 2003; Wung et 

a l,  2001; Sumpio et al., 1998; Cheng et a l, 1996; Cucina et a l ,  2003; Powell et a l ,  

1998; Fillinger et a l,  1997]. EC-derived MMP may play a role in modifying the ECM 

to facilitate SMC migration. Therefore, we investigated the effect o f conditioned media 

from cyclically strained BAEC on BASMC migration and particularly focused on the 

relevance o f  MMPs in this process. We determined that post-strain BAEC-conditioned 

media significantly inhibited SMC migration. Moreover, MMP-2 but not MMP-9 plays 

an important role in eliciting this response but does not act directly on SMCs.

Strain-induced 
release of 
MMP-2

interactions o f  MMP-2 
with cell receptors such 
as avß3 integrin

Release o f anti-
migratory
molecules.

F.CM

Alterations in 
ECM/integrin 
interactions

Production o f anti- 
migratory 
molecules 
e.g.endostatin,

Figure 6.3: Possible m echanism s by which EC derived MMP-2 may effect SMC 

migration
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The ability o f MMP-2 to indirectly inhibit BASMC migration may come from 

its ability to generate anti-migratory molecules such as angiostatin or endostatin from 

plasminogen and collagen respectively Alternatively MMP-2 activity may effect 

production o f anti-m igratory cytokines from BAECs by altering m tegrin/ECM  

interactions MMP-2 may also bind to mtegrin receptors such as a v p 3  on the cell 

surface [Stem hcht et a l , 2001] Interactions such as this may trigger the release o f 

migratory mhibtors

As previously discussed in Chapter 5 the uPA system may be o f particular 

importance in the MMP-2 dependent effects on SMC migration Considerable cross 

talk exists between the components o f the uPA system and MMPs [Siconolfi et a l ,

2003] and significant evidence exists indicating their roles m hem odynam ically 

mediated events [Redmond et al 1999, Redmond et a l , 2001] MMP-2 involvement 

with vasoactive molecules such as NO and ET-1, ROS and growth factors such as 

VEGF or bFGF may provide new insights into the ability o f EC to mediate SMC fate 

decisions

Nitric oxide (NO) has been demonstrated to play a central role in vascular 

biology Endothelial NO synthases (eNOS) expression and activation is regulated in 

part by mechanical forces such as cyclic strain NO can modulate a number o f cellular 

events m response to cyclic strain such as inhibition o f M APK activity or regulating 

MCP-1 expression [Ingram et a l , 2000, Wung et a l , 2001] The ability o f NO to 

modulate SMC migration is believed to occur via regulation o f MMP-2 and MMP-9 -  

activities Inhibition o f NO during AVF stimulated arterial enlargement resulting in 

decreased MMP activity with reduced remodeling [Tronc et a l , 2000] Gurjar et a l , 

(1999) on the other hand demonstrated that overexpression of eNOS inhibited SMC 

migration by inhibition o f MMP-2 and MMP-9 In conjunction with our data, these 

findings suggest that interactions between NO and MMPs possibly in conjunction with 

ROS derived from cyclically strained EC may play a role m regulating SMC migration

0
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VEGF is a potent cytokine which is sensitive to changes in mechanical forces 

{Brown et al ,2003, Rivilis et a l , 2002] This cytokine has been linked to increased 

angiogenesis, proliferation, and migration o f both EC and SMC The expression o f  

M M P-2 and VEGF appears to be intrinsically linked Brown et a l , (2 0 0 3 )  

demonstrated that cyclic strain-mduced angiogenesis was associated with increases in 

VEGF and MMP-2 The release o f VEGF may also be regulated by MMP-2 [Belotti et 

a l , 2003] Thus strain induced increases in MMP-2 may influence release o f VEGF 

from EC with subsequent effects on SMC migration

T im  study identifies the roles of some m echanically sensitive pathways in 

strain-induced increases in migration, angiogenesis and M MP-2 Future work may 

involve a more complete analysis of the components of these pathways In addition, the 

mechanism by which cyclic strain-induced increases in MMP-9 occur need to be 

determined as it plays an important part in strain-induced angiogenesis Expansion of 

this study to work with human endothelial cells or in vivo models o f enhanced cyclic 

strain may provide a greater insight into the relevance of these pathways in MMP 

regulation In addition, the use of a human cell line would permit the employment of 

gene chip analysis for the identification of genes regulated by cyclic strain which may 

be important in angiogenesis The development o f a co-culture model would give a 

better understanding o f EC/SMC interactions during exposure to cyclic strain This 

combined with the ability to specifically target MMPs in either o f the cell types would 

identify the source and roles of MMPs m mediating either EC angiogenesis or SMC 

migration

In conclusion our data suggests that cyclic strain plays an important role in the 

regulation of MMPs in BAEC These MMPs are important in mediating cell functions 

m both BAEC and BASMC The identification o f the mechanisms by which cyclic 

strain regulates MMPs and angiogenesis may lead to possible new drug targets that can 

promote/mhibit angiogenesis in vivo Similarly a more complete understanding o f how 

EC and SMC interact m response to hemodynam ic forces may lead to a better 

understanding of pathological vascular remodeling
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