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Abstract

The aim of this study was to investigate immune responses as a result of infection 

with the parasitic helminth, Fasciola hepatica Analysis of IL-4 and Interferon-y 

cytokines described a predominant type 2 immune response m BALB/c mice 

infected with metacercana of F hepatica Levels of IL-4 mRNA assessed by 

reverse transcnption-polymerase chain reaction (RT-PCR) provide the first 

evidence that the immune response becomes polarised 1 day post infection We 

also investigated immune responses to F hepatica derived antigens IL-4 and 

Interferon-y cytokine production revealed a polarised type 2 response m BALB/c 

mice immunised with F  hepatica excretory/secretory (ES) products As type 1 

immune responses have been associated with protection against infection with F  

hepatica (Mulcahy et a l , 1998), we established a polarised type 1 immune 

response in BALB/c mice by immunising with cathepsm L in combination with 

various adjuvants
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I l l  Introduction

Parasitic helminthic worms comprise a diverse group of metazoan organisms, 

which represent an enormous burden on human and ruminant health in most 

tropical countries and can cause senous disease in infected populations (Allen & 

Maizels, 1997) The impact of helminthic infections is more as a result of the large 

numbers of individuals infected, than that of the seventy of the disease (Allen & 

Maizels, 1996) While clinical symptoms of infection may not always be 

displayed by the infected individual, disease may anse from an overwhelming 

burden of infection, or as a result of an mappropnate immune response 

Individuals may become infected concurrently with multiple helminth species, and 

can accommodate parasites for several years (Allen & Maizels, 1997) Among the 

parasitic helminths, Fasciola hepatica, the causative agent of fascioliasis, exhibits 

a wide range of distnbution, with humans, livestock and wild animal infections 

being reported on the five continents (Rondelaud et a l , 2000)

Fascioliasis is one of the most common helminth infections of cattle and 

sheep, and can result m productivity losses impacting on the economy of the 

livestock industry Economic losses include costs of anti-helmmthics and land 

drainage, and losses in productivity as a result of mortality, including reduction m 

meat, milk and wool production (Salehaa, 1991) It has been estimated that losses 

due to fascioliasis may amount to more than $200 million dollars annually 

(Spithill & Dalton, 1998) Fascioliasis is widespread in Ireland and is a particular 

problem in areas where high rainfall and poor draining soils combine to 

exacerbate the situation However, the prevalence of infection is significantly 

higher m developing countnes (MacDonald et a l , 2002)



Fascioliasis is also recognised as an important disease in humans, with an 

estimated 17 million people considered to be infected (Hopkms, 1992) and a 

further 180 million at nsk of infection Humans may contract infection via the 

consumption of raw vegetables or the consumption of contaminated water 

Infections are hypoendemic in areas of South Amenca, Iran, Egypt, Portugal and 

France (Esteban et a l , 1997) In Bolivia and Peru, prevalence of infection is 

considered to be hyperendemic, and fascioliasis is considered to be a serious 

health problem The most sinking levels of infection are recorded m the Bolivian 

Altiplano, m which prevalences between 72 and 100% have been observed (Mas 

Comma et a l , 1999) It has been estimated that over a quarter of a million humans 

are infected in the Bolivian altiplano alone (Hillyer & Apt 1997, O’Neill et a l ,

1998) Human fasciolosis has also been observed in the European countnes of 

France and Spam (Aqona et a l , 1995)

12 1 Life-Cycle of F  hepatica

The complex life cycle of F hepatica involves two distinct stages within two 

different hosts, the pnmary or definitive host and the secondary or intermediate 

host F  hepatica, in general, persists for years in the bile duct of its definitive 

host (e g sheep, cattle or human) where it undergoes sexual reproduction The life 

cycle entails passage from the pnmary host, into the secondary intermediate host 

or vector, an invertebrate (lymnaeid snail) F hepatica utilises the intermediary 

host to increase its numbers by asexual reproduction before re-establishment in a 

definitive host, where it reproduces sexually thus completing its life cycle

Eggs produced by the mature fluke are passed from the bile duct into the 

duodenum and into the faeces of the definitive vertebrate host Embryonation of
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the eggs occurs once they have exited the definitive host A temperature of 

between 10-30°C is required for embryonation In the absence of water eggs will 

desiccate rapidly Eggs can remain viable in faeces from three weeks to several 

months before they are liberated by the action of ram, deposition of faeces in 

water and the trampling of faeces by animals A “hatching” enzyme (Rowan, 

1956) aids in the hatching of the egg, and liberation of the miracidia Hatching 

occurs m the presence of light (Roberts, 1950) and ambient temperatures (Gold & 

Goldberg, 1976) The free-swimming miracidia need to find a secondary host 

within 24 hours of hatching (Hope Cawdery et a l , 1978)

The secondary host is usually Lymnea truncatula (Boray, 1966), although 

other lymnaeid snails may also be infected The snails’ habitat is usually close to 

the edge of small ponds or marshy land The mincidium is photosensitive, and 

tends to move towards light sources This ensures that it will not waste time 

exploring the deeper areas of ponds where L truncatuala does not reside 

Stimulant molecules exist in the mucus of snails (Wilson et a l , 1971) to which 

miracidia are attracted A positive chemotactic response by the mincidia occurs 

up to a distance of 15 cm (Nehanus, 1953) Specific attachment and subsequent 

penetration in L truncatuala is due to the texture of the epidermis (Mattes, 1936) 

Penetration of the snail is achieved by mechanical boring by the mincidial anterior 

papilla, which are aided by the secretion of proteolytic enzymes (Smith & Halton,

1983) Tissue at the point of penetration is observed to be degraded (Wilson et a l , 

1971)

Upon entry the mencidium transforms to the next larval stage, termed the 

sporocyst and migrates to the digestive gland where it proceeds to develop into the 

next larval stage, the redia The existence of F  hepatica m the secondary host



results in several detrimental effects on the intermediate host, including castration 

or decrease in fecundity, increased mortality, destruction of the digestive gland, 

metabolic changes (re-allocation of energy from reproduction and growth, 

inducing gigantism), increased sensitivity to environmental stress (Gutierrez et a l , 

2000) Expenmental infections have demonstrated that the F hepatica induces 

higher mortality in snails originating from populations with low natural 

prevalences than those with high prevalences (Bargues et a l , 1997), indicating 

that co-adaptation between host and parasite may occur The redia move actively 

in the hosts tissue and cause considerable damage Redia multiply to form 

germinal cell balls from which the final larval stage, the cercana, is produced 

Fully developed cercana emerge from the snail by way of the birth pore The 

mobile, tadpole-like cercana usually leave the snail 4 -7 weeks after infection

Between a few minutes and 2 hours after emergence from the snail, the 

cercana attaches by means of a vertical sucker to vanous object including blades 

of grass Once attached the body contracts inwards and the outer layer of the cyst 

is formed Simultaneously, as the embryonic “epithelium” is shed and the outer 

layer is established, the tail separates from the body The cyst is immediately 

infective to the definitive host Longevity of the encysted metacercana, while 

waiting to be consumed by the definitive host, depends on vanous climatic 

conditions Survival for long penods (several weeks-several months) is mainly 

dependant on sufficient moisture and moderate temperatures Major sources of 

infection for the definitive hosts are plants associated with water, such as 

watercress (Roneldaud et a l , 2000)
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Withm an hour of infection, metacercana begin to excyst in the small 

intestine Metacercanal excystation involves intrinsic factors such as secretions by 

the fluke, and extnnsic factors including elevated temperature, pCo2, reducing 

conditions, pH and the presence of bile salts There are two stages of excystation , 

a passive active stage and an active emergence stage (Smith, 1981) The 

activation stage occurs in the stomach prior to emergence, and is stimulated by 

high levels of C02 temperature of about 39°C and reducing conditions The 

mincidia empties its caecal contents (Sukhedo & Mettnck, 1986), which contain 

secretions which affect the inner cyst wall, aiding emergence Bile may be 

influential in the emergence phase, and may activate an enzyme secreted by the 

parasite enhancing muscular movements of the young fluke (Dixon, 1966) Within 

two hours of infection the juvenile liver flukes have bored through the wall of the 

intestine by breaking down epithelial cells, connective tissue and muscle fibres, 

causing extensive haemorrhage, and can be found m the abdominal cavity en route 

to the

liver Once through the liver capsule, the flukes burrow through the liver tissue 

for 5-6 weeks causing extensive haemorrhage and fibrosis The flukes reach the 

bile ducts withm 7 weeks of infection where they develop into sexually mature 

adults Flukes become established for a considerable time m the liver Flukes 

residing for a period of 11 years have been recorded m sheep by Durbin (1952) 

The fluke is hermaphroditic and self-matmg may occur Eggs are produced by 

each fluke after approximately one more week of development The embryonated 

eggs are passed from the bile duct into the duodenum and subsequently into the 

faeces, thus completing the life cycle
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Fig 1 1 Life-cycle o f F hepatica (A ndrew s, 1999)
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13 1 Pathology of F hepatica infection

Flukes travel within and between organs, for a period of 12-16 weeks as they 

develop An individual fluke may pass trough the same area of the liver several 

times, and as a result, fresh lesions caused by sequential damage may be found in 

the same section of tissue The size of the tracts and the extent of the resulting 

damage will increase as the fluke grows to matunty Tracts have been observed 

composed of blood cells, cellular debns and infiltrate of numerous eosinophils, 

macrophages and CD3+ lymphocytes, plasma cells and proliferation of fibrous 

connective tissue (Martinez-Moreno et a l , 1999) Eosinophilia is observed at the 

early stages, and thereafter during F hepatica infections Eosinophilia increases 

rapidly at the parenchymal stage, and persists at an elevated level after the flukes 

have entered the bile ducts (Ross et a l , 1966) Experiments involving sheep have 

demonstrated how juvenile flukes induce the formation of granulomatous lesions 

in hepatic parenchyma (Chauvin & Boulard, 1996) Fluke migration leads to 

immune mediated damage of liver tissue as infiltrates of immune cells replace 

wide areas of hepatic parenchyma (Martinez-Moreno et a l , 1996) The extent of 

the inflammatory response increases as the fluke increases m size The level of 

infection also affects the pathology, with heavy burdens causing more severe 

pathology and earlier termination by death, especially m the case of sheep 

Secondarily infected hosts exhibit more severe hepatic damage than that of 

primarily infected animals (Martmez-Moreno et a l , 1996)

The seventy of disease vanes depending on the level of infection, the 

nutntional plane of the animals and also vanes between animals in a group Acute 

fasciohasis may cause sudden death of stock, especially m sheep An early 

indication of infection may be the presence of abdominal pain or ascites Sub-



acute disease is a haemorrhagic anaemia which is slightly more protracted than the 

acute disease Acute haemonchosis also causes a fatal anaemia Calves may suffer 

from acute fasciolosis in heavy infestations Pallor of mucous membranes, ventral 

oedema, wool break, and weight loss are associated with chronic disease Chronic 

disease is uncommon in cattle but may manifest m production loss, however sheep 

with chronic disease die with obvious signs including the presence of eggs in 

faeces

Changes in blood constitution is observed m infected hosts F hepatica 

infection is known to cause anaemia m infected individuals, and anaemic 

responses have been observed m the presence of late immature and mature flukes 

m the bile duct of infected hosts (Martmez-Moreno et al, 1996) Direct feeding on 

host blood results in blood loss at a rate of 0 2-0 5ml per day per fluke (Dawes & 

Hughes, 1964) Anaemia is not usually associated with the parenchymal stage of 

the disease, except in mice (Dawes, 1963), unless the infection burden is severe, in 

which case significant mortality coincides with hepatic haemorrhages when the 

flukes are migrating to the bile duct

Albumin and immunoglobulins are the major protein components of 

plasma Serum albumin is only produced by the liver whereas leucocytes are 

produced at a variety of sites m the body Therefore, hypoalbummaemia and 

hyperglobulinaemia regularly occur in liver fluke infections in all hosts Liver 

damage caused by migrating flukes at the parenchymal stage of infection 

compromises liver function Studies by Dalton & Heffeman (1989) demonstrated 

that migrating flukes secrete endo-proteinases which may function m parasite 

migration Bersain et al (1997) described Cathepsm LI, secreted by F hepatica as 

being capable of degrading extracellular matrix and membrane components and
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thus aids m parasite migration through the tissue of the host In sheep and calves 

this parenchymal damage is reflected in the decline in plasma albumin 

concentrates (Anderson et a l , 1977) During the biliary stage of the infection, loss 

of blood is so severe that the functional capability of the liver is insufficient to 

replace lost albumin Although the liver parenchymal tissue has healed by this 

stage, more metacercanae from subsequent infections further damage the liver 

Plasma albumin is progressively diminished in infected hosts An elevation m the 

levels of immunoglobulins occurs several weeks after infection and 

immunoglobulins including IgM, IgGl, and IgE persist throughout the infection 

(Holmes et a l , 1968)

Activities m the serum of the hepatocyte enzymes glutamate 

dehydrogenase and glutamate-oxaloacetate aminotransferase increase markedly 

during early infection, peaking towards the end of the parenchymal stage (Thorpe, 

1965) Damage to the bile duct can be indicated by the presence of y-glutamyl 

transferase, an enzyme produced by the epithelium of the bile duct, in blood The 

peak of y-glutamyl transferase activity follows the peak of hepatocyte enzymes 

(Anderson et a l , 1977) The extent to which hepatic enzymes found m the blood 

as a result of damage to the liver tissuehas been used to monitor the progress of 

infection

Most of the damage caused to the liver tissue appears to be as a direct 

consequence of the spines and prehensile sucker action of the liver fluke 

Haemorrhaging induced by this damage may result in the death of the host In 

infections of mice (Dawes, 1963c), cattle (Dow et a l , 1967) and sheep (Sinclair, 

1967) desquamation and ulceration were observed in liver tissue close to the spmy 

body of flukes In some cases indentation of spmes in the tissue was observed
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The fluke obtains the majority of its nutrition by means of its oral sucker, in a 

process which can cause considerable damage to the liver Oral suckers are the 

mam organ involved in tissue damage It has been observed by Sukhedo et al 

(1988), that chronic ulceration and haemorrhage were associated with areas of 

tissue adjacent to oral suckers The ventral sucker which the fluke uses as a hold­

fast organ has also been observed to inflict damage on host tissue (Dawes, 1963) 

Enlargement of the bile duct wall and lumen as a result of hyperplasia of the 

epithelial and sub-epithelial cells occurs long before the maturing fluke enters the 

bile ducts (Dawes, 1963a) Increased concentrations of the ammo acid proline 

appear to be an important factor m this process Infusion of proline in rats 

mimicked in part, enlargement of the bile duct by flukes (Modavi & Isseroff,

1984)

An inflammatory response mounted by the host coincides with mechanical 

damage caused by the migrating fluke (Dawes, 1963) Studies in sheep (Sinclair, 

1968, 1975) demonstrated that an inflammatory response plays a protective role 

against damage caused by the invading fluke Fluke tracks fill with cellular debris 

and damage to the cells surrounding the tracks is evident Macrophages and 

fibroblasts accumulate m older areas of tracks forming scar tissue In hosts with a 

heavy burden, fibrosis of the liver becomes severe, and is more evident in cattle 

than m other hosts Fibrosis may restnct movement of the fluke Once flukes have 

entered the bile ducts the parenchymal tissue recovers and inflammation is 

restncted to the epitheha of the bile ducts Treatment of infected sheep with 

dexamethasone, an anti-mflammatory agent that kills lymphocytes, permitted 

more rapid development of the fluke, and resulted in increased physical damage to 

the liver In treated sheep there was extensive haemorrhaging, little hepatic
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fibrosis, and no thickening of the bile duct wall The sheep displayed clinical 

signs of illness such as pallor, weakness, weight loss and anaemia These clnical 

signs were not observed in infected controls

While the inflammatory response has an important role m the response of 

the host to the invading parasite there is also evidence that this response also leads 

to hepatic dysfunction Many aspects of liver dysfunction, including bio-energetic 

abnormalities, accumulation of non-estenfied fatty acids and depletion of 

phospholipids do not occur m fluke infection where the hosts T-cell function was 

inhibited (Hanisch et a l , 1991) Oxidative stress imposed on infected rat livers is 

as a result of inflammatory cells such as neutrophils, macrophages and 

eosinophils, which produce oxygen free radicals, nitric acid and their products It 

is important that the host strikes a balance between the protective inflammatory 

response against fluke damage to the liver, and the inflammatory response which 

leads to dysfunction of the liver

The liver has many functions including metabolism of ammo acids, 

carbohydrate and lipid balance, urea synthesis, ketogenesis and detoxification 

Therefore, liver fluke infection and subsequent damage to the liver may induce 

many systemic changes, leading to reduced productivity m livestock The 

magnitude of the systemic changes generally depends on the extent of the 

infection Reduced weight gam m cattle and sheep have two mam causes reduced 

feed conversion and anorexia Fluke burdens <200 in sheep do not induce severe 

anorexia (Sinclair, 1975), indicating that loss of weight is due to compromised 

feed conversion In sheep with a higher fluke burden anorexia is a consistent 

feature of chronic fasciolosis Animals on poorer diets display more severe 

disease symptoms than those on a higher level of nutrition (Berry & Dargie,
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1976) Experiments (Dargie et a l , 1979) involving heavy fluke burdens of 1000 

metacercana in sheep, showed that nitrogen retention was lower after week 8 of 

infection, which could account for the difference m body weight, and that the loss 

of nitrogen was as a result of increased urinary excretion rather than decreased 

intestinal absorption

The liver is important in controlling the concentration of blood glucose 

This function is especially important in ruminants as glucose is not acquired 

directly from the diet, but is manufactured from a glucose precursor, by the 

process of gluconeogenesis Dysfunction m hepatic carbohydrate metabolism may 

occur as a direct result of infection with F hepatica Infected rats show lower 

levels of glycogen throughout infection than that of control ammals (Gameel, 

1982) A study of infected sheep (Lenton et a l , 1996) showed that levels of 

glucogenesis m the left lobe was impaired, while that of the nght lobe functioned 

as normal Therefore in low to moderate infections of sheep, carbohydrate 

metabolism, while compromised m the left lobe, may be compensated for by 

activity m the less affected area

1 4 1  Introduction to Immunology

Immunity refers to the mechanisms employed by the body to protect against 

environmental agents which are foreign to the body The primary function of the 

immune system is to eliminate infectious agents and to minimise the damage they 

cause Animals evolved immune defences to protect against viruses, bacteria, 

fungi, protozoa and helminths The immune responses can be classified as either 

innate immunity or adaptive immunity



1 5 1  Innate immunity

Innate immunity is a product of evolution Its function does not require a learning 

process or active recollection of previous encounters by the individual The 

effectiveness of the innate protection is determined by such features as the species 

of the individual and the non-specific activity of its tissue cells Innate immunity is 

referred to as the defensive elements with which an individual is bom and which 

are always present and available at short notice to protect the individual from 

challenges by foreign invaders These elements include the skm, surface mucous 

layers, and the cough reflex, which present effective barriers to environmental 

agents Chemical influences such as pH and secreted fatty acids provide effective 

barriers against invasion by many micro-organisms

Innate immunity is also concerned with the early phase of immune responses 

dunng which the body employs phylogemtically conserved receptors to identify 

and respond to a wide range of components of organisms (Medzhitov & Janeway 

J r , 2000) This early response results in a rapid activation of immune system cells 

and the subsequent release of a variety of inflammatory mediators Components 

of the innate immune system include dendritic cells (DCs), macrophages and 

natural killer (NK) cells Immature DCs are among the first cells to detect 

invading microbes (Pulendran et a l , 2001) DCs utilize various receptors to detect 

potential pathogens and respond by secreting a number of cytokines (Banchereau 

et a l , 2000) Cytokmes are molecules involved m signalling between cells dunng 

immune responses All are proteins or peptides, some with sugar molecules 

attached (glycopeptides) There are a number of categones of cytokmes 

including, (i) Interferons (IFNs), which are involved in immune responses to 

certain bactenal and viral infections Interferons are involved in the early stages of
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immune responses and are considered to be the first line of resistance to many 

viruses (11) Interleukins (IL), are a large group of cytokines produced mamly by 

T-cells, and have a variety of functions, most of which involve the direction of 

other cells to divide and differentiate Each interleukin acts specifically on a 

limited group of cells which express the appropriate receptor for that interleukin, 

and (111) Tumour necrosis factors (TNF) have several functions, including 

mediating inflammation and cytotoxic reactions Cytokines such as Interleukin-1 

(IL-1), IL-6, IL-12, and IL-18 stimulate the growth of T-helper cells to 

differentiate along the type 1 immune response

Cellular components of the innate immune system can detect microbes via 

cell-surface receptors Stimulation of macrophage receptors for 

lipopolysacchandes m the membrane surface of gram-negative bacteria, induces 

the synthesis of chemical signals or cytokines Macrophages also release 

regulatory and effector molecules that can influence the innate response including 

IL-12 and NO production (Mittrucker & Kauffmann, 2000), and are a major 

component of infiltrate tumors, and promote tumor progression (Mantovam et a l ,

1992) Resident macrophages which reside m tissue, and neutrophils which 

migrate in blood to sites of infection, and are crucial in the innate defence against 

bacterial pathogens through their removal and destruction (Aderhem & Underhill, 

1999) NK cells are employed early in the immune response as they are the major 

source of Interferon-y, a critical macrophage activating cytokine (Schwacha et a l ,

1998) Also, NK cells have been shown to produce NO (Cifone, 1999), which is 

functional m the innate immune response as a regulator of IL-12 mediated 

activation of NK cells (Diefenbach et a l , 1999) The critical elements 

characteristic of the innate immune responses are controlled by intracellular
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interactions between DCs, NK cells and macrophages (al-Ramadi et a l , 2003) 

Mast cells and basophils can be activated to secrete cytokines such as IL-4, thus 

playing a role in the innate immune response (Wedemeyer et a l , 2000) IL-5 

secretion stimulates the release of eosinophils (Behm & Ovington, 2000) 

Eosinophils travel m blood to the site of infection where they become activated 

and secrete cytokines, degranulate to release cytotoxic products, and phagocytose 

particulate material Their primary function is in the defence against organisms too 

large to be phagocytosed (Behm & Ovington, 2000)

The complement system is the major soluble protein component of the 

innate immune system It consists of a group of serum proteins that activate each 

other in an enzyme cascade system, where the product of one system is the 

enzymatic catalyst of the next, to generate biologically active molecules capable 

of lysing cells by attacking and forming pores m membranes, inducing 

inflammatory responses and opsomsing targets for phagocytosis by granulocytes 

and macrophages Complement can be activated m one of three pathways (l) the 

classical pathway which is initiated by antigen-antibody complexes, (u) the 

alternative pathway, m which complement components become activated by the 

cell walls of bactena or yeast, and (111) the lectm pathway that activates the 

classical pathway of complement in the absence of the C lq component (Mastellos 

& Lambns, 2002) Once activated, the complement system generates peptides 

which have the following effects, (l) opomsation of micro-organisms for uptake by 

phagocytosis (11) attraction of phagocytes to sites of infection (m) increased blood 

flow to the site of activation and elevated levels of permeability in capillaries to 

plasma molecules and ( i v )  damage in plasma membranes of cells Complement 

acts as an effecter system in host defence against invading pathogens, contributes
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through its activation products to the release of inflammatory mediators, promotes 

tissue injury at sites of inflammation, and has been implicated in the pathogenesis 

of several autoimmune and vascular diseases (Arlaud et al., 1998). Complement 

has been identified as providing a link between innate and acquired immunity by 

augmenting the humoral response to T-cell dependant antigens and affecting the 

threshold of B-cell activation (Dempsey et al., 1996).

1.6.1 A cq u ire d  im m u n ity

Acquired immunity is more specialised than innate immunity, and it supplements 

the protection provided by the innate system. In contrast to the innate immune 

system the acquired immune system displays specificity, diversity, memory and 

discrimination between self and non-self. The efficiency of acquired immunity 

depends on the recognition of foreign or new material by specialised cells of the 

lymphoid system which once activated differentiate into effector cells which 

synthesise functional molecules and memory cells which can be activated 

specifically in the event of a second encounter. Central to the adaptive immune 

response are a subset of leucocytes, the lymphocytes. Lymphocytes specifically 

recognise individual pathogens, whether they are inside the host cells or in the 

tissue fluids or blood. Lymphocytes can be categorised as B lymphocytes (B 

cells) or T lymphocytes (T cells). Immunity is acquired by contact with the 

invader and is specific to that invader only. The initial contact with the foreign 

agent leads to the activation of lymphocytes and the synthesis of proteins which 

exhibit specific reactivity towards the invading agent. In this manner the 

individual acquires the immunity to defend against a subsequent attack by the 

same invading agent. An adaptive immune response is initiated when T cells
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recognise foreign peptides bound to self-MHC molecules expressed on antigen- 

presentmg cells (APCs), with the aid of co-stimulatory molecules such as CD80 

(Barton & Medzhitov, 2002) T-lymphocytes kill their targets by secreting 

cytokines that can ligate pro-apopotic receptors on the target cell, or by recruiting 

inflammatory cells into the area of infection (Santamana, 2001) DCs recognise 

signs of infection and serve as antigen presenting cell for the activation of naive T- 

cells (le Bon & Tough, 2002), which is a critical event m the induction of an 

adaptive immune response Also, DCs can detect indirect indicators of infections 

such as the expression of cytokines by infected cells (Banchereau et al, 2000)

Lymphocytes circulate in the blood and migrate to sites of entrapped 

antigen m secondary lymphoid tissue such as the spleen, lymph nodes and Peyers 

patches (Clark & Ledbetter, 1994) B lymphocytes combat extra cellular 

pathogens and their products They are capable of recognising a broad range of 

foreign antigens while ignoring self antigens (Kelly & Cahn, 2000) They possess 

a receptor which allows them to bind to antigen on pathogens or to secreted 

pathogen products Following binding, the antigen-receptor complex is 

internalised and the antigen is processed by proteolytic cleavage m the endosomes 

Basophils and mast cells are associated with acquired immunity involving 

antibody-associated immune responses (Wedemeyer et a l , 2000) They are 

involved m production and secretion of cytokines (Kmet, 1999), and are regulated 

by IgE antibody (Galli & Lantz, 1999) Also, basophils are involved in acute-IgE- 

associated allergic reactions and contnbute to the expression of aspects of 

acquired immune responses that develop over hours, or days to weeks, for 

example chronic allergic inflammation (Galli & Lantz 1999)
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There is a considerable amount of interaction between the innate and the 

acquired immune responses and as a result most immune responses to infectious 

organisms consist of a combination of innate and acquired responses Innate 

responses predominate in the earlier stages of infection, before the lymphocytes 

begin to generate an adaptive immune response Co-stimulatory molecules, needed 

for the initiation of an adaptive immune response are regulated by receptors for 

microbial products, thereby linking innate recognition of non-self with induction 

of adaptive immunity (Janeway, 1989) The magnitude and quality of the adaptive 

immune response depends on signals derived from the innate response to infection 

(Medzhitov & Janeway, 1997) The principal cell type associated with the 

translation of information from the innate immune response to that of the acquired 

system is the dendntic cell (DC)

1 7 1  Th-cell dichotomy

Regulation of immune response is multi-factorial involving appropriate activation, 

co-stimulation and the presence of specific soluble factors Mossman and 

Coffinan (1989) observed that Th clones differentiated into two distinct 

populations (Thl & Th2), according to the type of cytokines they produced The 

Thl/Th2 paradigm subdivides T cell immune responses into those specialised for 

defence against intracellular pathogens such as viruses and bacteria (Thl), and a 

second involved in the defence against larger extra-cellular pathogens such as 

helminths (Th2) Although both populations are derived from a common pre 

curser (ThO cells), they exhibit phenotypic and functional differences The 

selective differentiation of CD4+ T cells into effector Thl and Th2 cells is 

established during the early stimulation of these cells and is manipulated by
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various extra-cellular influences including the dose of antigen, the source of co- 

stimulation and the cytokine environment (Constant & Botomly, 1997) Among 

these the most influential polarising factor is the cytokine environment

Thl responses employ the cytokines IL-12 and IFN-y to mediate a range of 

biological effects designed for intracellular immunity Interferon-y promotes 

germlme transcription at the IgG2a locus and increases the overall frequency of 

IgG2a expressing cells (Sevennson et a l , 1990) Interferon-y stimulates the 

production of IgG2a and IgG3 by B cells which may activate the classical 

complement pathway, and induces phagocytosis of microbes via binding to the Fc 

receptor on macrophages Interferon-y may also promote the cytocidal and 

microbicidal activity of macrophages and hence their ability to produce nitric 

oxide This antibody-independent type of immune defence by activated 

macrophages is associated with cell-mediated immunity to intracellular organisms 

It can also be employed against extracellular parasites such as helminths (James et 

a l , 1982) However the killing is non-specific and host cells m the vicinity of the 

reaction may also be damaged hence macrophage activation by type 1 responses 

is often associated with pathological conditions (delayed type II hypersensitivity 

reaction) such as those observed m chronic infections

In contrast, Th2 responses are characterised by the production of IL-4, IL- 

5, IL-6, IL-9, IL-10 and IL-13 These cytokines aid m B-cell proliferation and the 

secretion of IgGl and IgE IL-4 influences the differentiation of naive T-helper 

cells into Th2 cells, and has also been shown to play a major role m the expression 

of IgGl (Finkelman et a l , 1988), and it has been demonstrated (Kuhn et a l , 1991) 

that IgGl is produced at a much lower level in mice lacking IL-4 Th2 responses 

cause inflammatory processes designed to expel larger parasites and promote the
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mobilisation of eosinophils which can release toxic cationic compounds that are 

important m the control of helminth infections IL-3 plays a crucial role m the 

promotion of allergic inflammatory eosinophilia reactions through IgE isotype 

switching (Levy et a l , 1997) However, the stimulation of these cells may also 

induce allergic and atopic manifestations, which correlates with the findings that 

Th2 derived cytokines may induce airway hyperactivity as well as the production 

of IgE (Sher & Coffman, 1992) IL-13 is also functional m the production of

inflammatory cytokines, the induction of B-cell proliferation and differentiation, 

inducing IgE production and m the enhancement of the expression of CD23 and 

MHC class 11 molecules (major histocompatabihty complex class 2) (De Vnes & 

Zurawski, 1995) The Th2 cytokine IL-10 has been associated with the down- 

regulation of cellular immune responses, and as a result affects the outcome of 

infection of bactenal and viral infections by the inhibition of Thl-associated 

cytokines

Thl and Th2 immune responses tend to counter-regulate one another 

through the action of the cytokines that are specific to each type of response IFN- 

y down regulates Th2 responses, and conversely IL-4, IL-10 and IL-3 can inhibit 

the effects of IFN-y, and the development of Thl responses As a result of the 

counter-regulation of the opposing cytokines, a polarisation of the immune 

response occurs

1 8 1  Immunology of helminth infection

It has been established that in terms of T-cell responses to helminth infection, Th2 

activation correlates with disease (Heinzel et a l , 1998) with a subsequent down 

regulation of Thl responses It remains unclear whether Th2 response provide
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protective immunity against the invading parasite, or are responsible for immune 

related pathology, or both (Allen & Maizels, 1996). For example IL-4 knockout 

mice generally do not produce protective immunity to helminth infections (Brunett 

et a l , 1999). In murine schistosomiasis, an early Thl response is superseded by a 

more prevalent Th2 response after egg production.

The development of an immune response to helminth infection may result 

in pathological alterations which lead to the primary signs of the disease 

(MacDonald et al, 2002). For example, eggs produced by Schistosoma mansoni 

may become trapped in the sinusoids of of the liver inducing a Th2 response, 

which results in the development of granulomatous lesions (Cheever et al., 2000). 

However, infected mice, incapable of producing granulomatous lesions die as a 

result of toxic effects of egg protein on hepatocytes (Amiri et al, 1992). The 

granulomata function by segregating the egg and allowing continued function of 

liver tissue. After the egg has been destroyed, the granulomata resolve, and 

fibrosis develops (Cheever et a l 2000). This may lead to the formation of 

varices, the bleeding of which is the most common cause of death in 

schistosomiasis (MacDonald et a l,2002).

Elevation of immunoglobulin IgE and tissue eosinophilia are characteristic 

of immune responses to helminth infections (Sher & Colley, 1989), and these 

responses are regulated by the Th2 subset cytokines, IL-5, IL-4 and IL-3. Infection 

with the nematode Nippostrongylus brasiliensis increases IgE serum levels 100 

fold over 14 days in rodents (Maizels et a l , 1993). Helminth parasites can be 

killed in vitro by IgE-regulated mechanisms, involving platelets, mast cells, 

basophils, eosinophils and macrophages (Capron & Dessaint, 1985). IgE-mediated
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hypersensitivity is associated with pathology rather than resistance in human gut 

tnchunasis infections (Cooper et a l , 1991)

The primary function of eosinophils is thought to be in the immune 

defence against large organisms such as helminths This observation is based on 

the facts that (1) eosinophils can degranulate and kill helminths in vitro (11) 

eosinophils aggregate m areas of helminth infection and (111) degranulate in the 

vicinity of invading helminths (Butterworth, 1984) However, direct evidence for 

eosinophils m host protection in vivo is lacking (Meeusen & Balic, 2000)

1 9 1  Immunology of Fasciola hepatica infection

Although many mammalian species may be infected with Fasciola, there is 

variation in the degree of susceptibility to infection, and m the ability to mount an 

effective immune response For example, sheep often die from acute fasciolosis, 

while some infections may last for as long as 11 years (Pantelouns, 1965) 

Different genetic backgrounds may be causative in the differing levels of 

susceptibility to infection (Boyce et a l , 1978) In contrast, cattle rarely die from 

infection with liver fluke, and display a “ self cure” between 9 and 26 months after 

infection This self-cure may be due to the observed thickening by calcification of 

the bile duct walls, in chronically infected cattle This immune strategy employed 

by cattle is not observed m sheep, and may explain the higher mortality rates 

associated with infection of sheep In general, infection m humans tends to cause 

high morbidity, and persists in hosts for lengthy periods (Maizels et a l , 1993), 

rather than causing high mortality rates

Infection with F  hepatica induces a predominant Th2 response It has 

been observed that Th cell clones specific for F hepatica enhanced IgG synthesis
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through IL-4 expression (Brown et a l, 1999), a characteristic Th2 cytokine 

response The capacity to produce IgG2 is associated with the production of IFN-y 

(Estes et a l , 1994), and as a result of a polarised Th2 response, the production of 

IFN-y, and consequently IgG2 is inhibited This observation is consistent with the 

polarised Th2 response observed m chronically infected animals (Clery et a l ,

1996), where IgGl was shown to be the dominant isotype produced in response to 

Fasciola infection Elevated levels of protection against expenmental challenge 

have been associated with IgG2 antibodies (Mulcahy et a l , 1998), however this 

protective response is down-regulated in the polarised Th2 response characteristic 

of infection with F hepatica

Susceptibility to a secondary infection and chromcity is a common feature 

of Fasciola infection For example, the relationship between pathogenesis of 

disease and host immune responses was observed m primary and secondary F  

hepatica infections of goats (Martinez-Moreno et a l , 1999) The extent to which 

infection had been established, measured as the percentage of recovered flukes at 

the necropsy, was similar m animals during primary and secondary infections, 

however liver damage was much more severe m secondarily infected animals 

Primary infection was observed to evolve to chronic fasciolosis that did not induce 

the development of resistance, as animals were highly susceptible to secondary 

infection, exhibiting severe and acute hepatic lesions that ultimately led to the 

death of some of the animals (Martinez-Moreno et a l , 1999) It was also observed 

that secondary infection failed to induce any difference in either IgG response or 

m the composition of cellular infiltrate of hepatic lesions, although lesions were 

more extended m the secondarily infected animals There was no significant 

correlation between the level of antibody titres and the number of flukes recovered
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at necropsy, suggesting that antibodies have no protective function against 

Fasciola infection m primary or secondary infection (Martmez-Moreno et a l ,

1999), this correlates with the observations by Dalton et a l , (1996) who reported 

that no correlation was observed between antibody titres and protection against F  

hepatica Animals chronically infected with F  hepatica do not acquire a 

protective immune response (Clery et a l , 1996), and it has been suggested (Ortiz 

et a l , 2000) that animals with chronic infections remain as susceptible to Fasciola 

infection as naive animals A similar response to re-infection has also been 

observed in sheep (Chauvm et a l , 1995) m experiments in which infected animals 

did not develop resistance against secondary infection

While immunohistochemical features of Fasciola infection appear to 

suggest vigorous cellular responses against the invading parasite (Martmez- 

Moreno et a l , 1999), these responses are not observed to be protective, as there is 

no evidence of effective destruction of Fasciola flukes at any stage of 

development The effector mechanism of protective immunity has not been 

clearly established, however reported data suggests that it may occur at the early 

stage of infection m three different sites, the wall of the intestine (Charbon et a l , 

1991), the peritoneal cavity (Burden et a l , 1983) and the liver surface of the 

parenchyma (Keegan & Trudgett, 1992) The effector response is believed to be 

mtnc oxide-mediated killing which involves attachment of the effector cells 

(eosinophils, neutrophils and macrophages) to the tegument (Spithill et a l , 1997) 

Eosmophiha is a common feature of Fasciola infection, and eosinophils 

have been observed in close association with the surface of damaged newly 

excysted juveniles (NEJ), suggesting a role for this cell type in resistance to 

Fasciola infection (Burden et a l , 1983) However, Hughes (1987) remarked that
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there is only circumstantial evidence which shows eosinophils are functional in the 

killing of F hepatica NEJ’s Furthermore, it has been demonstrated in vitro that 

eosinophils fail to induce irreversible damage on NEJ of F hepatica (Glauert et al,

1985) The fact that the immune responses are induced, but are ineffective against 

Fasciola implies that the immune response is ineffective due to a defensive 

capability of the parasite (O'Neill et a l , 2001)

1 10 1 Immunological evasive strategies of F hepatica

Flukes may persist in their definitive hosts for extensive periods of time and 

therefore must possess means of evading prolonged attack from the hosts’ immune 

system F hepatica has developed various mechanisms of immune modulation 

allowing its establishment and survival in the liver causing a severe hepatic 

disease (Meussen et al ,1995)

While the parasite ultimately resides m the bile duct of the liver, it must 

first find safe passage as it migrates through the intestinal wall and liver tissue 

Adult worms are generally more resistant to immune effector mechanisms than the 

earlier larva stages, suggesting that it has developed more efficient mechanisms 

for evasion of the hosts’ immune response As the tegument of the liver fluke is 

involved m most of the interactions between the parasite and the host, the liver 

fluke surface plays an important role m protection against immune attack Liver 

fluke tegumental membrane is covered by a poly anionic glycocalyx consisting of 

ganglioside terminating in sialic acids (Threadgold, 1976) Two experimental 

approaches have demonstrated the significance of glycosylation m helminth 

infections First, immunodominant glycosylated epitopes are often the major 

targets of natural and experimental host humoral responses, as demonstrated by
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the loss of antibody recognition through deglycosylation of the parasitic 

glycoprotein antigens or destruction of the glyco-epitopes by periodate oxidation 

Second, immuno-staining by glycan-recognising monoclonal antibodies or lectins 

against whole parasite or parasite derived extracts may show developmental stage- 

specific expression profiles of glycosylation

The tegumental glycocalyx may aid in immune evasion in several ways, (1) 

Antigen switching, composition of the gly cocalyx changes during the 

development of the parasite m the host, thus presenting the hosts’ immune system 

with a changing target For example, the glycocalyx coat changes in composition 

from Tl-type tegumental cells to T2-type tegumental cells as the fluke migrates 

from liver tissue to that of the bile duct Changes in the fluke surface are reflected 

m changes in the immune system Host antibodies specific to the Tl-denved 

components peak between 3 and 5 weeks after infection, and following their 

decline, anti-T2 antibodies can be observed Anti-T2 antibody production in 

infected rats declines after the parasite has entered the bile duct (Hanna, 1980) 

Various isotypic responses are observed as a result of parasite-induced stimulation 

of different lymphoid compartments IgE responses are significantly greater in the 

hepatic lymph nodes m comparison with that of the mesenteric lymph nodes or the 

spleen, while IgA responses are higher in the mesenteric lymph nodes This 

provides evidence of a unique regulation of the cytokines secreted by T cells m 

each of these micro-environments It has been suggested (Meeussen & Brandon,

1994) that by migrating between different tissue types, which are predisposed to a 

specific type of immune response, the flukes may be protected from tackling a 

single immune response that would otherwise become increasingly efficient as the 

parasite migrates
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(n) Antigen shedding, as a result of the flukes altenng glycocalyx, 

antibody-bound immune effector cells, such as eosinophils and neutrophils may 

not bind sufficiently with the parasite to allow degranulation and damage to the to 

the surface, but are shed with the glycocalyx (Duffus & Franks, 1980, Hanna 

1980) Glycocalyx turnover slows down once the bile duct is reached, as 

migration is completed and the fluke is no longer under such vigorous attack (111) 

Antigen decoy, shed products of the glycocalyx may act to “mop up” circulating 

anti-fluke antibodies preventing their participation m direct attack on the fluke 

(Duffus & Franks, 1980)

Newly excysted juveniles are highly resistant to complement Terminal sialic 

acids in the glycocalyx prevent the activation of complement by the alternative 

pathway (Baeza et a l , 1994a) The shedding of antibody from the flukes surface 

may prevent activation of complement by the classical pathway

It has been observed (Maarmez-Moreno et a l , 1999), that immune 

inflammatory cells are rarely found m close association with the flukes, which 

would otherwise be expected to be instrumental m mounting a destructive strategy 

towards the invading pathogen This suggests an evasive strategy employed by the 

fluke in avoiding contact with the immune inflammatory cells This may be 

explained by the lack of CD3+ T cells in the infiltrate surrounding tracts made by 

migrating parasites inhibits immune inflammatory cells from migrating through 

the liver parenchyma This hypothesis is supported by the involvement of Fasciola 

excretory/secretory products m the suppression of peripheral blood lympocytes 

(PBL) proliferation (Martmez-Moreno et a l , 1996) A further possible evasion 

strategy employed by the fluke is the rapid migration by the parasite through the 

liver, as has been previously reported in goats (Maannez-Moreno et a l , 1999) and
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sheep (Meeusen et a l , 1995), which makes it impossible for the leucocytic 

infiltration around the parasite (Chauvm et a l , 1995)

Liver flukes also possess an ability to disable immune effector cells, for 

example by inactivating the toxic reactive oxygen products of the respiratory burst 

of leukocytes (eosmophila and neutrophils) and macrophages or reactive nitrogen 

intermediates generated by macrophages (Piedrafita et a l , 2000) Oxygen 

scavenging enzymes such as superoxide dismutase (SOD) may be involved m the 

inactivation of oxygen species (Brophy et a l , 1990) Piedrafita (PhD Thesis,

1995) observed increased activity of SOD m extracts of newly excysted juveniles 

SOD has also been detected in the excretory/secretory product of adult flukes 

(Tang et a l , 1994) It has been observed (McGomgle et a l , 1997) that adult 

flukes release a peroxiredoxm-like enzyme which may protect flukes against 

hydrogen peroxidase and other reactive oxygen intermediates

Goose (1978) observed that medium in which liver fluke had been cultured 

in was toxic to spleen cells He observed that these excretory/secretory ES 

products could prevent in vitro killing of newly excysted juveniles by pentoneal- 

mflammatory cells m the presence of immune serum by inhibiting the binding of 

effector cells to parasites Dalton and Heffeman (1989) demonstrated that liver 

flukes secrete two cysteine proteinase activities which are involved m host tissue 

penetration and feeding as well as immune evasion Subsequent studies showed 

these enzymes were cathepsm L proteinases, termed cathepsin LI and cathepsin L 

2 These molecules can specifically cleave immunoglobulins (Dowd et a l , 1994) 

It was also demonstrated that purified cathepsm L could inhibit the antibody 

mediated attachment of eosinophils to newly excysted juveniles (Carmona et a l ,

1993)
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1111  F hepatica excretory/secretory products

Proteases catalyse the cleavage internal peptide bonds between peptides and 

proteins and are involved in a wide range of eukaryotic processes Proteases are 

also known to required for the virulence of pathogenic agents including helminth 

infections It has been demonstrated (Dalton & Heffeman, 1989) that immature 

and mature flukes secrete endo-protemases into culture medium when maintained 

in vitro Several functions have been suggested for the role of these enzymes 

including functioning in migration through host tissue (Dalton & Heffeman, 

1989), the acquisition of nutnent (Smith et al, 1993) and evasion of host immune 

responses (Dalton & Heffeman, 1989) Two cysteine proteases were isolated and 

characterised as having physiochemical properties similar with the mammalian 

lysosomal cathepsin L protemases (Dowd et a l , 1994) The two enzymes were 

observed to differ m their specificities for hydrolysing peptide bonds (Dowd et a l ,

1994) and as a result were termed cathepsm LI and cathepsm L2

McGomgle and Dalton (1995) isolated another antigen containing a haem 

group from flukes maintained m culture medium, which was shown to be a liver 

fluke haemoglobin (Hb) (Dalton and McGomgle, 1995) Hb is involved in the 

aerobic respiration of immature flukes and egg production m adult flukes 

(Bjorkman and Thorsell, 1963) Because the cathepsm LI, cathepsm LI and Hb 

molecules are involved m processes functional in the survival of the parasite in the 

host, they have been used as potential targets for liver fluke Investigations have 

been earned out to test the viability of these molecules for use as vaccines (Dalton 

et a l , 1996), where individual molecules, and combinations of the molecules 

were given to cattle, to investigate their immunoprophylactic potential It was 

observed that cattle immunised with cathepsm LI induced protection against
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experimental challenge of 53 7%, while animals vaccinated with cathepsin L2 and 

Hb were also protected A combinational vaccine containing cathepsin L2 and Hb 

induced the highest level of protection (72 4%) Flukes recovered from this group 

were smaller in size than that of control groups, indicating that vaccination had 

stunted fluke growth, and as a result less liver damage was observed

In a similar study (Wyffels et a l , 1994) in sheep it was observed that 

animals immunised with a thiol-cathepsin-related proteinase of M(r) 28,000, 

developed antibodies to the cysteine ptoteinase prior to infection with 

metacercana of F  hepatica On completion of the tnal, there was no difference in 

worm burden between animals which had been immunised prior to infection and 

that of infected animals which did not received the proteinase However, faecal 

egg counts and therefore worm fecundity was significantly decreased in the 

immunised animals

Diagnosis of fasciohasis m the human host is achieved by the observation 

of eggs in faeces As flukes begin to release eggs 8 weeks after infection, 

diagnosis of the disease by coprological methods can not be achieved pnor to this 

time point Purified protemases secreted by the parasite have recently been used in 

the diagnosis of human fasciohasis An IgG4-ELISA has been established 

(O’Neill et a l , 1998) which uses purified cathepsin LI or recombinant protein 

expressed m yeast as antigen The result of this report demonstrated the potential 

for the development of a standardised assay for the diagnosis of fasciohasis in 

humans

Cathepsin LI, one of the major molecules of fluke excretory/secretory 

product, is secreted at each stage in the development of the parasite, and has 

shown to be highly immunogenic in infected animals This molecule has the
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ability to cleave host immunoglobulin and can inhibit in vitro attachment of 

eosinophils to newly excysted juveniles (Carmona et a l , 1993) Cathepsin LI is 

also capable of degrading extracellular matrix and basal membrane components 

and thus aids in parasite migration through the tissue of the host (Berasam et al

1997) The ability of cathepsin LI and cathepsin L2 to produce vasoactive kinnms 

in alkaline pH may qualify them as factors of virulence in fascioliasis, since the 

intrinsic vasodilation activity exhibited by kirnns, associated with endothelial 

leakage and anti aggregation platlet activity might assist m the migration and 

survival of the parasite in the tissue of hosts

Adult flukes secrete a cysteine protease capable of cleaving host IgG close 

to the papain binding site, and this hampers the hosts immune response to the 

invading parasite Immature flukes also secrete a papain or cathepsin B-like 

proteolytic enzyme which cleaves immunoglobulins of mice, rats and sheep in 

vitro (Chapman & Mitchell, 1982)
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Materials and Methods
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2 11 Materials

Sigma-Aldrich Ireland Ltd (Tallaght, Dublin)

Di-sodium Hydrogen phosphate, Ethanol, Ethidium bromide, Extra Avadin, 

Foetal Calf Serum, Isopropanol, Mercaptho-ethanol, p-Nitrophenyl Phosphate 

Tablet Sets, PCR master mix, Potassium Chloride, Phorbol Mynstyl Acetate, 

RNAse free water, Sodium Chlonde, N,N,N\N'-tetramethylethylenediamme, 

Tn-reagent, Trypan Blue

Stratagene (La Jolla, California, U S A )

IL-4 p-Actm and Interferon-y forward and reverse pnmers

Bachem Limited (Merseyside, England)

Z-phe-arg-MHMec

Becton Dickinson & Co (Oxford, England)

Purified rat anti-mouse IL-4, Purified rat anti-mouse IL-5 Purified rat anti­

mouse IL-10, Purified rat anti-mouse Interferon-y, Biotm conjugated rat anti­

mouse IL-4, Biotm conjugated rat anti-mouse Interferon-y, Biotm conjugated rat 

anti-mouse IL-5, Biotm conjugated rat anti-mouse IL-10, Anti-Mouse IgGl, 

Anti-mouse IgG2a

Harlan U K Limited (Blackthorn, England)

BALB/c Mice
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Campton Paddock Laboraties (Thatcham, England)

Fasciola hepatica Metacercanae

GibcoBRL, Life Technologies (Paisley, England)

Penicillm-Streptomycin(5000jLi/5000(ig),L-Glutamme(200mM)J 

RoswelPark Memorial Institute(RPMI) 1640 Medium

Pierce and Warrmer (Chester, England)

Amv Reverse transcriptase, Bicimchonmic acid (BCA) Protein Assay Reagent 

Kit, Mixed set nucleotides(dATP, dGTP, dCTP, dTTP), lOObp DNA Ladder

Amersham Biosciences U K. Limited (Bucks, England)

High Resolution Sephacryl Gel S-300
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Methods 

2 12  Preparation of F hepatica whole somatic antigen

Adult flukes were obtained from the infected livers of condemned cattle at a local 

abbattoir Flukes were washed six times in phosphate-buffered saline (PBS) (0 14 

M NaCl, 2 7MKCL, 1 5mM KH2P04 and 8 ImM Na2P04H), pH 7 3 in order to 

remove debris They were then homogenised in a Thyrister Regler homogemser 

with 10 ml of stenle PBS The homogenate was centrifuged at 13,000 X g for 30 

minutes The supernatant containing soluble antigen, termed liver fluke 

homogenate (LFH) products was removed, ahquoted into 1ml vials and stored at 

20°C (Dalton & Heffeman, 1989) Protein concentration of the liver fluke antigen 

was calculated using BCA protein assay reagent kit (Section 2 2)

2 12  1 Preparation of excretory-secretory products

Excretory-secretory products were prepared as described by Dalton and 

Heffeman, (1989) Adult flukes were cultured in vitro for 24 hours in 150 ml of 

RPMI-1640, pH 7 3, containing 2% glucose, 30mM Hepes and 25jig/ml 

gentamycm at 37°C The culture media was renewed after eight hours, and the 

flukes were incubated for a further 12 hours The culture media from both 

incubations were pooled and centrifuged at 13,000 X g for 30 minutes to remove 

eggs The supematent (E S products) was filter sterilised and concentrated to 10 

ml using an Amicon 8500 Ultrafiltration unit Amicons containing Ym3 filtration 

membranes with a 3,000 mw cut-off point Aliquots of 1 ml of concentrated 

antigen were then stored at -20°C
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2 12  2 Separation of ES antigens by molecular weight using a high 

performance sephacryl gel filtration Column.

A haemoprotem fraction and cathepsm L were purified from ES products as 

described by Dowd et a l , (1994) and Smith et a l , (1983) The ES sample (4ml) 

was applied to a Sepacryl S300HR gel filtration column (2 5cm x 55cm) 

equilibrated m phosphate buffered saline (PBS), pH 7 2 Fractions of 3 mis were 

collected after a void volume of 45mls was passed Each of the fractions were 

monitored for protein concentration using a BCA protein assay reagent kit and an 

Amicon 2001 micro-titre plate reader set to 560nm Fractions were monitored for 

cathepsm L activity using the fluorogemc substrate, Z-phe-arg-NHMec (Section 

2 3) Fractions containing the higher molecular weight bands and no cysteine 

protease activity were pooled and concentrated to 5ml using an Amicon 

ultrafiltration umt and termed peak 1 Fractions containing cysteine protease 

activity were pooled, concentrated and termed peak 2

2 1 3  Recombinant CL1 and Mutant CL1

recFheCLl and mutFheCLl were purified from yeast medium using affinity 

chromatography for the HiS6 tag using Ni-NTA agarose (Qiagen) Gene sequences 

for both recFheCLl and mutFheCLl were cloned into a Pichia pas tons vector 

containing the a-factor yeast signal sequence After transformation into GS115 

strain of P pas tons, clones were grown in YPD (yeast extract, peptone, dextrose) 

media and secretion of the cathepsm proteins induced by addition of 1% methanol 

(Collins et a l , in press)

A 1 ml column was equilibrated by passing 10ml 50mM sodium phosphate 

buffer, pH 8 0, containing 300mM NaCl and lOmM imidazole, through the
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column A 40ml sample of the same buffer/NaCl/imidazole mix with yeast media 

supernatant (10ml) was then added to the column The column was washed with 

15ml 50mM sodium phosphate buffer, pH 8 0, containing 20mM imidazole and 

300mM NaCl The purified protein was eluted using 50mM sodium phosphate 

buffer, pH 7 0, containing 250mM imidazole and 300mM NaCl Purified 

recombinant proteins were then dialysed into IX Phosphate Buffered Saline 

(PBS)

2 2 1 BCA measurement of protein concentration

Protein concentrations (0 2-2mg/ml) were calculated using a BCA Protein Assay 

Reagent Kit according to the manufacturers instructions Briefly, lOfil of sample 

of unknown concentration and standard was added to wells on a 96-well micro- 

titre plate Bovine serum albumin was used as a protein standard (0 2-2 0mg/ml) 

BCA reagent (1 part reagent B 50 parts reagent A) was added m 200|il volumes, 

and the plates were incubated at room temperature for 30 minutes The 

absorbance of the reaction solution was measured at 560nm on an Anthos 2001 

micro-titre plate reader Protein concentrations were determined by comparison of 

the absorbance of the unknown samples to the standard curve prepared using the 

protein standards

2 2 2 Bradford assay measurement of protein concentration

Protein concentrations within the range of 10|ig/ml-1000jag/ml were measured 

using a Bradford protein assay (Bradford et a l , 1976) Briefly, lOjil of unknown 

sample was brought to a final volume of 800|il with water The protein standards
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employed were bovine serum albumin at concentrations of 1 Ofig/ml-1 OOOug/ml 

200jj1 of concentrated Biorad reagent was added and the sample was allowed to 

incubate for 5 minutes Samples were measured at 595 nm on an Anthos 2001 

micro-titre plate reader Protein concentration was determined by companson of 

the absorbance of the unknown samples to the standard curve prepared using the 

BSA standards

2 3 1 Measurement of cathepsm-L activity using the fluorogenic substrate Z- 

phe-arg-NHMec

Cathepsin L activity was measured flourometncally using Z-phe-arg-MHMec as 

substrate (Barrett & Kirschke, 1980) Assays (210|al volume) were performed 

with substrate at a final concentration of 10]Lim m 0 1 M, Tns-HCL, pH 7 0, 

contaimng 0 5mM dithiothreitol on a 96 well micro-titre plate Plates were 

incubated at 37°C for 30 minutes and the reaction stopped by the addition of 50|il 

of 10% acetic acid The amount of 7-amino-4-methylcouramm (NHMec) released 

was measured using a Perkin-Elmer fluorescence spectrophotometer with 

excitation set at 370 nm and emission at 440nm One unit of enzyme activity was 

defined as the amount which catalysed one jimole of NHMec per minute at 37°C

2 41 Sodium dodecyl sulfate polyacrylamide gel electrophesis (SDS-PAGE)

ES, peak 1 and peak 2 were analysed by one dimensional, denatunng 12% SDS- 

PAGE, using the buffer system of Laemmli, (1970) The running gel was 

prepared using 12% (w/v) acrylamide, 0 27% (w/v) bisacrylamide, 0 373 M Tns- 

HCL, pH 8, 0 1% (w/v) SDS, 0 03% (w/v) ammonium persulphate and 0 08% 

TEMED The stacking gel contained 3% (w/v) acrylamide, 0 08% (w/v)
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bisacrylamide, 0 125 M Tns-HCL, pH 6 8, 0 075% (w/v) ammonium persulphate, 

0 1% (w/v) SDS and 0 023% (w/v) TEMED Samples were prepared in reducing 

sample buffer (0 12 M Tns-HCL, pH 6 8, containing 5% (w/v) SDS, 10% (w/v) 

glycerol, 0 01% (w/v) bromophenol and 5% 2-mercapthoethanol) Samples were 

boiled for two minutes Gels were run in a vertical slab gel apparatus m electrode 

buffer (25 mM Tns-Hcl, 192mM glycine and 0 1% SDS, pH 8 3) at 25 mA at 

room temperature A voltage of 8V/cm2 was applied and the gel was run until the 

bromophenol blue dye reached the bottom of the gel Proteins were visualised by 

soaking the gel m a solution containing 0 1% (v/v) Coomaissie Bnlliant Blue R, 

20% (w/v) methanol and 10% acetic acid for one hour at room temperature The 

gel was destained with 20% (v/v) methanol and 10% (v/v) acetic acid

2 51 Infection and immunisation of Mice

Female BALB/c mice (aged 8-12 weeks) were purchased from Harlan U K Ltd 

(Blackthorn, Engalnd) All mice were maintained under the guidelines of the 

Department of Health and Children and were 8-12 weeks old at the initiation of 

each expenment Animals were infected with metacercana of F  hepatica 

purchased from Campton Paddock Laboratones (Thatchem, England), 15 

metacercana were administered orally to individual animals Immunised animals 

were injected mtrapentoneally with antigen denved from F hepatica 

excretory/secretory products The mice were sacnficed by cervical dislocation, 

and the spleens, hepatic lymph nodes and mesentenc lymph nodes removed 

Blood was collected by cardiac puncture and serum was obtained following 

centrifugation at 2,000 X g for 5 minutes



2 61 Stimulation of murine spleen and lymph node cells with antigen

Spleens and lymph nodes were removed aseptically Cells were crushed on a wire 

grid to form single cell suspensions m RPMI 1640 medium containing 8% heat 

inactivated foetal calf serum, penicillin (lOOug/ml), streptomycin (lOOug/ml) 

glutamine (2mM) and 2ME (5X105 M) Cell debns was allowed to settle for 10 

minutes, after which time the supernatants were removed and centrifuged at 

12,000 revolutions per mmute The cells were then washed with 2ml of RPMI 

The number of viable cells was determined by creating a mixture of 96|il 

Bromophenol Blue, 100|il RPMI 1640 medium (containing penicillin (100 U/ml), 

streptomycin (lOOug/ml) glutamine (2nM) and 2ME (5X105 M) 2% glucose), and 

4|il of cell suspension The number of viable cells (transparent) or non-viable 

cells (blue) were counted by using direct microscopic counts with a 

haemocytometer and an Olympus B201 microscope, and the concentration 

adjusted to 1 X106/ml for spleen cells and 2 X 106 /ml for lymph nodes Spleen 

and lymph nodes were stimulated in vitro m 96 well plates by the addition of 

varying concentrations of antigen (ES l-10|ag/ml, LFH 1-lOjig/ml, peak 1 1- 

lOjig/ml, peak 2 1-lOfig/ml, Peak 3 l-10|ig/ml, mutFheCLl l-10|ig/ml and 

recFheCLI l-10|ig/ml PMA/a-CD3 and stenle PBS were added to additional 

wells as positive and negative controls, respectively The cells were incubated in a 

CO2 incubator for three days at 37°C 50jil of supernatant was removed after 72 

hours to measure IL-4, IL-5, IL10 and IFN-y cytokine production All tests were 

performed in triplicate and experiments repeated 2-3 times
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2 71 Measurement of murine cytokine by capture ELISA

Antigen-specific and non-specific IL-4 and IFN-y were measured by capture 

ELISA Plates were coated with 50|il of capture antibody (Beckton Dickenson & 

Co ) (l^g/ml), and allowed to incubate at 4°C overnight Plates were washed six 

times m PBS 10 1% Tween 20 Excess protein binding sites were blocked with 

200|al of skimmed milk (lmg/ml) The wash step was repeated and 50jal of 

supernatant or standard (recombinant IL-4/IFN-y) (Beckton & Dickenson & Co ) 

were added m triplicate and the plates incubated overnight at 4°C The washing 

step was repeated and the biotm labelled anti-IL-4/IFN-y monoclonal detector 

antibody (ljjg/ml) (Beckton & Dickenson & C o) m IX PBS was added to each 

well and the plates incubated at room temperature for an hour After a further 

washing step 100|il of avidin-alkalme phosphatase (0 4(al/ml) in IX PBS, was 

added to each well and the plates incubated at room temperature for 30 minutes 

The washing step was repeated and IOOjliI of p-Nitrophenyl Phosphate (pNpp) 

(Sigma Aldnch) (lmg/ml) in 0 2 M Tns buffer was added to each well to detect 

bound antibody The plates were allowed to develop m the dark until the top 

standard displayed an absorbance value of 1 absorbance unit at 405nm Standard 

curves were used to determine cytokine concentrations Concentration values for 

IL-4 and IFN-y were expressed as pg/ml and ng/ml, respectively
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2 81 Measurement of IgGl and IgG2a isotypes

Microtitre-plates were coated with 100|al of ES or CL1 (5jag/ml) and allowed to 

incubate overnight at 37°C The plates were washed and excess protein binding 

sites were blocked by adding 200jal of skimmed milk (lmg/ml) to each well for 

two hours at room temperature After a further wash step, serum samples were 

titred at a dilution of 1 100- 1 218,700, and left to incubate for one hour at 37°C 

The wash step was repeated and alkaline phosphatase conjugated anti-mouse IgGl 

and IgG2a (Beckton Dickenson & C o ) (diluted at 1 500, 1 1000 respectively in 

IX PBS) were added The plates were incubated at 37°C for one hour After a 

final washing, IOO jlxI  of p-Nitrophenyl Phosphate (pNpp) (lmg/ml) in 0 2 M Tns 

buffer was added to the plates to detect bound antibodies The plates were read 

on an Anthos 2001 microtitre plate reader at 405nm The antibody titre was 

expressed as log titre

2 91 Examination of liver pathology

At post mortem examination, hepatic tissue was fixed m 10% neutral-buffered- 

formahn Following fixation the tissues were paraffin embedded, cut at 4|im and 

stained with haematoxyhn and eosin

2 101 Reverse transcriptase Polynuclear chain reaction (rtPCR)

Total RNA was extracted from cell preparations of spleen and lymph node tissue 

using the one step method as described by Chomczynski and Sacchi (1987) 

Briefly, cells (IX 106) were lysed m Tn-Reagent (Sigma) Nucleic acid was 

separated from proteins by the addition of chloroform (200jal), and incubated at 

room temperature for 15 minutes, followed by centrifuging at 12,000 X g for 15
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minutes The aqueous layer was removed and RNA precipitated by incubation at 

room temperature for 10 mm m the presence of isopropanol, followed by a 

centrifugal step at 12,000 X g for 15 mm The supematent was removed and the 

RNA pellet washed by the addition of 75% ethanol and centrifuged at 7,500 X g 

for 10 mm The resultant was resuspended in 50|il of RNAse free water and 

stored at -20°C

Complementary DNA was prepared by reverse transcription using the 

following components in sterile 0 5ml microfuge tubes 2 (il 10X reaction buffer, 

4 jil 5mM MgCh, 2 |il ImM DNTP, 3 jil OhgoDT(lug/ml), 50 units RNAse 

inhibitor, 1 \x\, 20 umts AMV Reverse transcriptase and l|ig  RNA cDNA 

reaction mixtures were incubated for 10 mm at room temperature to facilitate 

binding of oligodT primer, and cDNA was transcribed at 42°C for lh The AMV 

reverse transcnptase was heated to 99°C for 5 mm

A 5|il aliquot of cDNA was subjected to PCR with forward and reverse 

primers specific to IL-4, IFN-y, and p-Actm (Table 2 1) Each PCR reaction 

contained the following IX PCR Buffer, 0 2mMdNTP, 1 5mM MgCh 25 units 

taq and RNAse free water to a final volume of 25|il DNA was amplified using a 

thermocycle (PCR Express-Thermo Hybrid), under the following conditions, 95°C 

for five minutes, followed by five cycles at 95°C, 55°C and 72°C, respectively 

each for a duration of one minute, and a final extension step of 72°C for 7 min 

PCR products were separated on a 1% agarose gel (w/v m IX TAE) by 

electrophoresis, and visualised using ethidium bromide
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Table 2 1 PCR pnmers

Primer Sequence 5’-3’ Product size 

(bp)

p-Actin

forward

AT GG AT G ACGAT ATCGCT 600

p-Actin

reverse

ATGAGGT AGTCTGTC AGGT

IL-4 forward ACGGAGATGGATGTGCCAAA

CG

279

IL-4 reverse CGAGTAATCCATTTGCATGA

TGC

IFN-y forward TATTGCCACGGCACAGTCAT

TGA

405

IFN-y reverse GCAGCGACTCCTTTCCGCTTC

CT

2 11 Statistical Analysis

All statistical analysis was performed using SPSS for windows (version 110) 

Analysis of the effects of antigen concentration, antigens and time were performed 

using factorial analysis of variance Post-hoc significance testing was by Tukey’s 

HSD
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2 12 Determination of cellular profiles

Intra-pentoneal cellular profiles were determined by counting cells in three fields 

of vision per sample An average number of cells was determined per sample
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Results

3.1.1

Cytokine, antibody and pathology profile in 

BALB/c mice infected with F. hepatica.
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Introduction

3 1 1 1  Fasciolosis is associated with the induction of T-cell responses polarised 

towards the Th2 subtype Th2 clones, but not Thl clones have been isolated from 

chronically infected cattle (Brown et a l , 1994, Clery et a l , 1996, Mulcahy et al,

1999) Previous investigations performed m our laboratory, by O’Neill et a l , 

(2001) demonstrated a polarised type 2 immune response as a result of F hepatica 

infection m rodents, with significant levels of the type 2 cytokine, IL-4 recorded 

21 days post infection, while production of the type 1 cytokine, IFN-y was not 

observed

In the present study we investigated the T-cell and antibody production of 

BALB/c mice exposed to infection of F  hepatica over a penod of 21 days We 

also sought to determine at what stage of infection the immune response becomes 

polarised towards a type 2 response, by measuring early IL-4 mRNA levels Our 

data confirms that a polansed type 2 immune response is induced by infection 

with F  hepatica, and that this response can be detected as early as day 1 post 

infection Histological investigations of liver tissue taken from F hepatica 

infected mice, demonstrated the extent of tissue damage as a result of infection

Experimental design

3 12  1 To examine the cytokine profile of BALB/c mice infected with F  

hepatica over a penod of three weeks, 16 female BALB/c mice (8-10 weeks) were 

orally infected with 10 metacercana of F hepatica Four animals were sacnficed 

by cervical dislocation on days 7, 10, 14 and 21 Groups of four non-infected mice 

were used as controls at each time point Isolated spleen cells (5xl06/ml) were
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stimulated in vitro at 37°C with ES (5|ng/ml, 1 jig/ml), LFH (5jug/ml, l|ig/ml) and 

PMA/anti-CD3 as a positive control and medium as a negative control 

Supernatant samples were removed after 72 hours and the amount of IL-4 and 

IFN-y cytokines that were secreted into culture media was measured (Fig 3 1) 

Serum was obtained via cardiac puncture, and circulating anti-fluke IgGl and 

IgG2a antibodies were measured Liver tissue samples were obtained and 

examined using haematoxyhn and eosin Liver tissue damage and cellular 

infiltration during F  hepatica infection was measured at days 7, 10, 14 and 21 

Groups of four non-infected (control) mice were included at each time point as 

negative controls Isolated livers were fixed in formalin, cut at 4 jam and stained 

with haemotoxyhn and eosm

In order to measure early cytokine responses to infection with F hepatica, 

the levels of mRNAs associated with cytokine production were assessed by 

reverse transcnption-polymerase chain reaction (rtPCR), at 0, 1, 2, 4 and 8 days 

post infection in lymph node tissue of F  hepatica infected mice An infection of 

10 metacercana of F  hepatica was administered orally to 15 BALB/c mice aged 

8-10 weeks Groups of three animals were sacrificed by cervical dislocation on 

each of days, 0, 1,2,  4, and 8 Groups of three non-infected mice were used as 

controls at each time point RNA was extracted from cells of mouse hepatic lymph 

nodes and mesenteric lymph nodes at each time point, and mRNA production with 

specificity for IL-4 and IFN-y was investigated The positive control, p-Actin 

proved positive for each sample at each of the time points
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Results

3 13 11 IL-4 and interferon-y cytokine production by spleen cells of BALB/c 

mice infected with 10 metacercana of Fasciola hepatica at day 7, 10, 14 and 

21

The results (Fig 3 1) demonstrate that spleen cells of infected mice stimulated 

with ES and LFH, exhibit a predominant type 2 immune response, with significant 

amounts of IL-4 cytokine being produced The amount of IL-4 cytokine produced 

increased with time from infection, with the greatest cytokine response observed 

at day 21 Also, cells stimulated with the higher concentration of antigen (5|ig/ml) 

produced a greater cytokine response than that of cells stimulated with the lower 

concentration (l|ig/ml) Cells stimulated with LFH produced a greater response 

than that of cells stimulated with ES Levels of IFN-y cytokine secretion was 

lower than that expected of a positive response Spleen cells from naive mice 

(controls) did not secrete either IL-4 or IFN-y cytokines m response to Fasciola 

antigen Stimulation of spleen cells with PMA and anti-CD3 demonstrated that all 

cells were capable of producing both Thl and Th2 cytokines (data not shown) 

Analysis of the effects of antigens, antigen concentration and time were earned 

out by factonal analysis of vanance Post-hoc significance was by Tukey HSD 

Cytokine production was expressed as the mean cytokine concentration of four 

mice per group tested in tnphcate

4 9



50 

45 

1  40
O )

|  35 
E
S 30
co
® 25
d)

^ 20 

15 

10 

5 

0

□  E S  1 ug/m l 

M E S  5 ug /m l 

H L F H  1 ug/m l 

B  LFH 5 ug/m l

D ay  7 D ay  10 D ay  14 D ay  21

B

□  ES 1 ug/ml 

^ E S  5 ug/ml 
^  LFH 1 ug/ml 
■  LFH 5 ug/ml

Day 7 Day 10 Day 14 Day 21

Fig 3 1

Fig 3 1 Antigen-specific IL-4 (A) and IFN-y (B) cytokine released from spleen 

cells obtained from BALB/c mice infected with 10 / hepatica metacercaria
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Spleen cells were culture in vitro with ljig/ml and 5 jag/ml LFH and ES antigen, 

and the supernatant removed after 72 hours for measurement of cytokine 

production by ELISA All tests were earned out in tnphcate, and the expenment 

repeated twice

3 13 12  IgGl and IgG2a antibody production in serum of F hepatica 

infected mice

Specific antibody isotypes charactenstic of Thl (IgG2a) and Th2 (IgGl) responses 

were measured in serum samples taken from mice infected with 10 F  hepatica, 

metacrcanae at days 7, 10, 14 and 21 Titres were measured against ES in all 

samples Antibodies of the IgGl subtype were detected in all infected animals at 

days, 10, 14 and 21 (Fig 3 2) Antibody production observed at days 14 and 21 

was higher than levels recorded on day 0, 7 or 14 The most significant levels of 

antibody production were observed at days, 14 and 21 No anti-ESIgG2a antibody 

production was detected at any stage over the course of infection No specific 

IgGl nor IgG2a antibodies were detected m non-infected mice which were 

established as controls at each time point
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Fig 3 2 Titres of IgGl and IgG2a antibody production specific for ES, in serum 

of BALB/c mice infected with 10 metacercana of F hepatica Titrations were 

performed on days 7,10,14 and 21 All tests were performed in triplicate
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A summary of the pathology observed in the liver is descnbed in Table 2 1 

Tracts were observed in all infected mice at each time point, with the number of 

tracts increasing as the course of infection progressed Multiple tracts were 

observed m the livers of mice sacrificed at days 14 and 21 As expected no tracts 

were observed m control mice Neutrophils were present in each of the infected 

mice at each time point with dense aggregations observed on day 14 and day 21 

(Fig 3 6 (A)) In contrast no neutrophils were recorded m control mice 

Mononuclear cells were present in tracts of infected mice on day 7, and were 

present m surrounding tissue at later time points, but were not observed in the 

tracts Mononuclear cells were observed m the livers of all control animals 

Damaged hepatocytes were observed in livers at all time points (Figs 3 4 (D), 

3 5, (A), and 3 6 (B)) however no hepatocytes were observed in the tracts after day 

14 As expected no damaged hepatocytes were observed m non-infected mice 

No eosinophils were observed in the livers of infected or control mice

3 13 13  Pathology of liver tissue of mice infected with metacercariae of F

hepatica
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Table 3 1 Liver pathology recorded in mice infected with 10 metacercana of F

hepaiica. Liver tissue was isolated on days 7,10,14 and 21

Infected Control

Tracts Tracts were observed in all 

samples at each time point 

Multiple tracts were 

observed on day 14 and day 

21

Normal architecture was 

observed in all samples

Neutrophils Observed m all samples at 

each time point Dense 

aggregations were noted on 

day 14 and day 21

None observed

Mononuclear cells Observed in 100%, of 

animals on day 7 with cells 

not observed in tracts after 

this time point but could be 

observed m surrounding 

tissue

Observed in all control 

animals

Hepatocytes Damaged hepatocytes 

observed in 60% and 50% 

of animals on day 7 and day 

10 respectively Were 

absent at later time points

None observed

Eosinophils None observed None observed
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Fig 3 4 Liver pathology day 7 post infection Photom icrograph representing a 

section o f  liver from  B A LB /c m ice 7 days post infection w ith  10 m etacercanae o f  F  

hepatica  Photom icrograph illustrates (A) a m igrating parasite, (B) a section o f  the F  

hepatica  adjacent to an aggregation o f  degenerating neutrophils, (C ) a parasitic  tract, 

(D) three parasitic  tracts w ithin the parenchym a, (E) a region o f  acute coagulative 

necrosis o f  hepatocytes
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57



Fig. 3.5 Day 10 post infection.

Photom icrograph representing a section o f  liver from  BA LB/c m ice 10 days post 

infection w ith  10 m etacercanae o f  F  hepatica  Photom icrograph illustrates (A) a 

region o f  acute coagulative necrosis o f  hepatocytes This region is bordered by  a 

neutrophil-rich inflam m atory cell infiltration, (B) a parasite in a tract surrounded by  a 

large num ber o f  neutrophils, (C) a region o f  acute coagulative necrosis o f  

hepatocytes in w hich there are infiltrations o f  degenerating hepatocytes
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Fig. 3.6: Photom icrograph representing a section o f  liver from BA LB/c m ice 

14 days post infection with 10 m etacercaria o f  F. hepatica. Photom icrograph 

illustrates (A) a parasitic tract containing neutrophils, fibrin and som e red blood 

cells. At the periphery o f  this tract neutrophil-rich infiltrates are noted in the 

sinuses.



A.

B.

C.

(H & E) (X I00) B ar5 0 n m

(H & E) (X 40) Bar 50nm

(H & E) (X 200) Bar 50nm

Fig. 3.7 Day 14 & 21 post infection.

¡MraHoir 4

6 0



Fig 3 7 Photom icrograph representing a section o f  liver from  B A LB /c m ice 21 

days post infection w ith  10 m etacercanae o f  F  hepatica  Photom icrograph 

illustrates (A) a parasitic tract w hich  is bordered by  a region o f  acute coagulative 

necrosis o f  hepatocytes (B) illustrates m assive and bridging coagulative necrosis 

(C) illustrates extensive acute coagulative necrosis o f  hepatocytes Sm all regions 

adjacent b lood vessels o f  the periportal regions are spared
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m R N A  production in the m esenteric lym ph nodes show ed a dom inant IL-4 

response as early as day 1 post infection, w ith strong responses also observed on 

days 4 and 8 (Fig 3 7) N o significant IFN-y specific m R N A w as observed, 

although faint bands w ere visible on days 4 and 8 N o significant levels o f  IL-4 or 

IFN-y m R N A  w ere observed at any tim e poin t in the non-infected anim als The 

experim ent w as repeated thnce  w ith  sim ilar results in each case

A  dom inant IL-4 response w as observed in the hepatic lym ph nodes on day 2 

post infection, w ith  sim ilar bands observed on days 4 and 8 (Fig 3 8) N o IFN-y 

m R N A w as observed at any tim e point N o significant levels o f  IL-4 or IFN-y 

m RN A  w ere observed at any tim e point in the non-infected anim als m RN A  

production in spleen cells o f  F  hepatica  infected m ice was also investigated 

H ow ever, as control levels o f  m R N A  production w as sim ilar to that o f  m R N A  

representing IL-4 and IFN-y the data could not be presented w ith  this experim ental 

data Also, as system ic infections influence cytokine production in the 

com partm ent o f  the spleen, and therefore m ay not represent cytokine production 

as a direct result o f  Fasciola  infection, the data w as not relevant to this study 

The experim ent w as repeated thnce  w ith  sim ilar results in each case

3 13 14  Early cytokine profile in BALB/c mice infected with F hepatica
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Fig 3.7. Expression o f  m R N A  in the m esenteric lym ph nodes obtained from 

BA LB/c m ice infected with 10 m etacercariae o f  F  hepatica  Lym ph node cells 

were isolated on days 0, 1, 2, 4 and 8 post infection Experim ents w ere repeated 

thrice and the figure represents the m RNA expression per tim e point



Day

F ig  3 8 Expression o f  m RN A  in the hepatic lymph nodes obtained from BALB/c 

m ice infected with 10 m etacercariae o f  F  hepcitica Lym ph node cells w ere isolated 

on days 0, 1 , 2 , 4  and 8 o f  infection Experim ents w ere repeated thrice with sim ilar 

results in each case



3 14  Discussion

Fasciolosis is associated w ith  the induction o f  T-cell responses polarised tow ards 

the Th2 subset Previous studies (O ’N eill et a l , 1999), dem onstrated a dom inant 

type 2 im m une response in BA LB/c m ice as a result o f  infection w ith  F hepatica, 

w ith high levels o f  the type 2 cytokine, IL-4, and undetectable IFN-y production 

by spleen cells Studies in sheep (Chauvin et a l , 1995) and cattle (Brow n et a l ,

1994) in w hich anim als w ere exposed to infection F  hepatica also describe a type 

2 response Correlating w ith  previous data, results from  the present study defines a 

polarised type 2 im m une response as a result o f  Fasciola infection Type 1 and 

type 2 im m une responses counter-regulate one another through the action o f  

specific cytokines (Sher & Coffm an, 1992), and in  the context o f  this experim ent, 

type 1 im m une responses, m easured by  quantification o f  IFN-y production, w ere 

not observed at any tim e point investigated Significant levels o f  IL-4 w ere 

recorded in the spleens o f  m ice infected w ith  m etacercanae o f  F hepatica, as 

early as day 7 post infection Increased levels o f  IL-4 w ere recorded as infection 

progressed, w ith  the greatest IL-4 response recorded on day 21 post infection 

Spleen cells w ere stim ulated in vitro w ith  (1 jig/m l and 5 jig/m l) ES and LFH 

Both stim ulating antigens produced sim ilar levels o f  IL-4, w ith the greatest 

cytokine production observed as a result o f  stim ulation w ith  the greater antigen 

concentration N o significant levels o f  IFN-y production w as observed at any tim e 

point Sim ilar suppressive effects on T cell proliferation have been observed in 

infected sheep (Z im m erm an et a l , 1983 and rats (Poitou et a l , 1992) Studies 

investigating cytokine production m  F  hepatica infected rats by  T liba et a l , 

(2002), describe a m ixed response at day 7, w ith  increased levels o f  both  IFN-y
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and IL-4 cytokines observed H ow ever, by  day 14, IL-4 levels w ere m ore 

pronounced w hile no IFN-y production w as observed

A ntibody responses to F  hepatica  illustrate a m arked predom inance o f  

IgG l (type 2) over IgG 2a (type 1) isotypes (C lery et a l , 1996) A  degree o f  

protection has been associated w ith  IgG2 antibodies (M ulcahy et a l , 1998), 

how ever this protective response is dow n-regulated in the polarised Th2 response 

characteristic o f  infection w ith  F  hepatica  In conjunction w ith  the polarised type 

2 cytokine response observed in the current study, antibody profiles o f  serum  

sam ples obtained from  F  hepatica  infected m ice exhibited a predom inant type 2, 

IgG l response W hile a significant level o f  IgG l was not recorded at day 7, IgG l 

antibody was observed on  days, 10, 14 and 21 Production o f  the type 1 antibody, 

IgG 2a w as not observed at any tim e point under investigation Studies by  C lery et 

a l , (1996), also show ed Ig G l to be the dom inant im m unoglobulin  isotype in cattle 

infected w ith  F  hepatica  These observations indicate that F  hepatica  actively 

inhibits a type 1 im m une response R egulation o f  im m unoglobulin  subclasses by 

antigen specific helper T-cells w as observed m  studies by  Purkerson & Isakson 

(1992) Studies investigating helm inth  infections such as, Schistosom iasis 

(C aulada-B eneditti et a l , 1998) observed that IL-4 is associated w ith  secretion o f  

IgG l w hereas IFN-y is associated w ith secretion o f  IgG 2a In accordance with 

these results, w e observed that all m ice observed eliciting a predom inant type 2 

cytokine profile also exhibited anti-fluke IgG l antibodies in their serum

D uring the m igratory  period  o f  infection, bo th  natural (sheep, cattle), and 

expenm ental (m ice) hosts develop a cellu lar response against the parasite  The 

m ost sink ing  feature o f  tissue architecture m liver tissue, obtained from  infected 

anim als, is the occurrence o f  m igratory tracts In a study investigating liver
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pathology as a result o f  infection w ith  F  hepatica  in goats, M artinez-M oreno et 

a l , (1999), recorded tracts m  the hepatic surface and parenchym a In the present 

study, tracts w ere observed at each tim e point, w ith m ultiple tracts observed as 

infection progressed Tracts are the result o f  coagulative necrosis follow ed by  the 

dissolution o f  hepatocytes In som e o f  the liver tissue obtained from  F  hepatica  

infected m ice, parasites w ere visible in the lum ina o f  tracts

N eutrophils have been suggested to p lay  a role in  the im m une process or in 

tissue repair (M eeusen et a l , 1995) D uring acute prim ary infections in sheep, 

neutrophils have been observed infiltrating to the tracts produced by  the m igrating 

flukes M artm ez-M oreno et a l , (1999) also observed neutrophils m  the tracts o f  

m igrating parasites m  infected goats Lloyd and O ppenheim , (1992) observed that 

neutrophils release a range o f  im m unom odulatory cytokines and can aid 

significantly in the initiation and am plification o f  cellular and hum oral im m une 

responses In the present study neutrophils w ere found m  the liver parenchym a at 

all tim e points A t day 7, acute inflam m atory cells, m ainly  neutrophils, were 

observed both in  the lum m a o f  tracts, on the periphery and w ithin adjacent sinuses 

B y day 10, neutrophil-rich  aggregations w ere also noted, usually  adjacent or 

encom passing vascular structures D ense neutrophil aggregations w ere observed 

at days 14 and 21 Jefferies et a l , (1996) observed neutrophils surrounding or 

invading hepatocytes that appeared either still norm al or had becom e non-viable 

I f  cell death is due to the surrounding neutrophils, then neutrophil proliferation in 

the current study m ay be responsible for som e o f  the pathology associated w ith the 

disease, particularly  at the later tim e points, w here dense aggregations o f  

neutrophils and increased liver dam age are observed Also, m  this context, the
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dense aggregation o f  neutrophils observed at days 14 and 21 post infection m ay 

explain the lack o f  dam aged hepatocytes in the tracts o f  m igrating flukes

E osinophiha is defined as an increase m  the num ber o f  eosinophils m  the 

blood or tissues and has h istorically  been recognised as a distinctive feature o f  

helm inth infections m m am m als (Behm  & O vm gton, 2000) B lood and tissue 

eosinophiha are generally  associated w ith helm inth infection D unng  helm inth 

infections eosinophils are released m ore rapidly from  the bone m arrow , their 

survival in tissue is enhanced, and the rate o f  entry o f  eosinophils into infected and 

inflam ed tissues is considerably upregulated, this results m  tissue eosinophiha 

Evidence that eosinophils are capable o f  killing m any different species o f  

m etazoan parasites, including Schistosom a m ansom  by  an antibody or 

com plem ent dependant m echanism , suggests a role for eosinophils in defence 

against these organism s The hypothesis that the prim ary function o f  eosinophils is 

to protect the host from  infection by  relatively large organism s, such as parasitic 

helm inths is based on the accum ulation o f  observations that (l) eosinophils 

degranulate and kill helm inths in vivo  (1 1 ) they aggregate in the vicinity  o f  

helm inths in vivo (ill) they are observed to degranulate in the v icinity  of, or on the 

surface o f  helm inths in vivo  (Butterw orth, 1984)

The type 2 im m une response cytokine, IL-5 plays a key role in  the 

developm ent and m aturation o f  the eosinophil population (Behm  & Ovm gton, 

2000) IL-5 controls or influences the developm ent, m aturation and survival o f  

eosinophils during a Th2 cytokine response H ow ever direct evidence o f  a role for 

eosinophils m  host protection against helm inths in vivo  is lacking Studies in 

w hich IL-5 cytokine production w as inhibited, reduced the developm ent o f  

eosinophils in response to helm inth infection, but had little affect on the survival

68



or reproduction o f  a num ber o f  nem atodes and trem atodes Studies by  P iedrafita 

et a l , (2000), w ere unable to dem onstrate irreversible dam age to juven ile  F  

hepatica  flukes by  eosinophils These results suggest that either eosinopihc attack 

is an ineffective m eans o f  com bating helm inth infection, or that helm inths possess 

the ability to evade or inhibit eosinophilic attack

One hypothesis to account for the different im m une responses to eosinophilia 

is that helm inths w ith  rapid transit through host tissues do not usually  encounter 

large populations o f  activated eosinophils, as it m ay take the host seven days or 

m ore post infection to m ount an eosm ophilopoietic response Therefore, rapidly 

m igrating parasites w ould  not have been under evolutionary pressure to develop 

protective m echanism s against attack from  eosinophils, as a result o f  the speed o f  

m igration For exam ple w hen larvae o f rapid transit parasites such as 

N ippostrongylus brasihensis  encounter large populations o f  eosinophils w ithm  

hours o f  inoculation into IL-5 transgenic m ice, they have inadequate protective 

m echanism s and are dam aged or killed I f  the “rapid transit” theory is true, one 

prediction w ould  be that helm inths that reside in the host tissue for longer periods, 

such as F  hepatica , w ould be the ones selected during evolution to express 

protective m echanism s that allow them  to survive eosinophilic attack, and thus 

w ould not be adversely affected by  hypereosinophihc m ice O ne such protective 

m echanism  against eosinophilic attack is dem onstrated by  F  hepatica  derived 

cystem e proteases, w hich have been observed to cleave im m unoglobulins in vitro, 

and inhibit the in vitro  adherence o f  eosinophils to juven ile  flukes m  the presence 

o f  im m une serum  (C arm ona et a l , 1993) Studies by  C ully et a l , (2000),

suggested that helm inths m ay em ploy m echanism s to inhibit eosinophil 

recruitm ent, to prolong survival m  the host Eotaxin is a potent eosinophil
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chem o attract ant, w hich acts through the receptor CCR3, expressed on eosinophils 

(Sallusto et a l , 2001), and is involved in the stim ulation o f  eosinophils from  bone 

m arrow, m ediating their selective recruitm ent at sites o f  inflam m ation (U gucciom  

et a l , 1997) C ulley et a l , (2000), suggested an im m uno-evasive strategy

em ployed by  helm inths, in w hich production o f  enzym es inactivate eotaxin 

prevents recruitm ent and activation o f  eosinophils at the site o f  infection 

Inhibition o f  eosinophilic responses w ere also observed m  m unne  studies by  L im a 

et a l , (2002), in w hich m ice im m unised w ith helm inth w orm  extract had a 

profound inhibitory effect on eotaxm  production, resulting in reduction o f  

eosinophil num bers Studies by Carm ona et a l , (1993) dem onstrated that 

cathepsm  L I contained in ES products cleaved Ig at the hinge region and could 

prevent the antibody m ediated attachm ent o f  eosinophils to juven ile  flukes

In the present study, eosm ophiha was not observed m  the com partm ent o f  the 

liver o f  F  hepatica  infected BA LB/c m ice M ice w ere infected w ith 10 

m etacercanae o f  F  hepatica , and liver sam ples w ere investigated 7, 10, 14 and 21 

days post infection Eosm ophiha w as not observed at any tim e poin t in the liver 

tissue, in either control or infected anim als This observation coincides w ith the 

“rapid transit” theory, in so far as F  hepatica  resides m  host tissue for relatively 

extensive periods o f  tim e, and as a result m ay have developed a m ethod o f  

surviving eosinophilic attack

A nother explanation as to the lack o f  eosinophils in the livers o f  Fasciola- 

m fected m ice is that the parasitic tracts are the result o f  coagalative necrosis 

follow ed by  the d isolution o f  hepatocytes As this is prim arily  a necrotic reaction, 

it has the potential to draw  neutrophils to the site as the first cell population
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Therefore the local reaction observed is possibly not driven by  a system ic 

response to parasites but by the parasite’s ability to cause hepatocyte necrosis

W e also studied the early developm ent o f  the cellular response w ith  respect 

to type 1 and type 2 cytokine m RN A  levels Early  cytokine production was 

m easured m  the hepatic lym ph nodes (HLN) and m esenteric lym ph nodes (M LN) 

o f  B A LB /c m ice during the first 8 days o f  experim ental infection w ith F  hepatica  

This study w as perform ed w ith  the aim  o f  determ ining at w hat tim e poin t the 

im m une response becom es predisposed tow ards a type 2 im m une response A lso, 

the early im m une responses are the m ost likely to provide insight, and to 

determ ine the outcom e o f  the im m une response initiated locally to the area 

contaim ng the parasite

As the ELISA  m ethod for analysing cytokine production was not 

sufficiently sensitive to m easure cytokine production m  this early infection tim e- 

course, we assessed cytokine production by reverse transcnption-polym erase 

chain reaction (rtPCR) W e investigated the levels o f  m R N A  for cytokine m arkers 

in the H LN  and M LN , at 0, 1, 2, 4 and 8 days post infection Prelim inary tests 

w ere earn ed  out on early cytokm e production in spleens o f  m ice expenm entally  

infected w ith  F  hepatica  (data not shown) H ow ever, as the im m une responses 

observed m  the spleen m ay not be specific, m the context o f  Fasciola  infection, 

and m ay represent o ther peripheral im m une responses, results w ere disregarded

A  po lansed  type 2 response w as observed m the H L N  as early as 2 days 

post infection w ith  elevated levels o f  the m R N A  encoding IL-4 observed at 2 days 

post infection, w ith  levels rem aining constant throughout the study N o detectable 

m R N A  encoding IFN-y w as observed at any tim e point A  predom inant type 2 

response m the M L N  w as detected at 1 day post infection w ith  sim ilar elevated

71



levels recorded on days 4 and 8 post infection N o significant levels o f  IFN-y 

w ere present at any tim e point, although m inor levels w ere observed at days 4 and 

8 post infection R esults from  the current study, consistent w ith  the data from  the 

previous experim ent, illustrate a polarised type 2 im m une response as a result o f  

infection w ith  F  hepatica  The induction o f  a type 1 response appears to be down- 

regulated as early as 1-2 days post infection It appears logical that a polarised 

type 2 response w as observed m  the M LN  1 day prior to detection in the HLN , as 

the m igratory  path  o f  the fluke involves the fluke entering the intestine, and 

therefore stim ulating a response m  the local M LN , before m igrating tow ards the 

hepatic tissue, and the subsequent stim ulation o f  the H L N  A  study in rats by 

T liba et a l , (2002) described significant levels o f  IL-4 and IFN-y m  the H LN  at 4 

days post infection, w hich rem ained constant throughout the 14 day infection

R esults presented m  this study provide the first evidence that the im m une 

response to infection w ith  F  hepatica  becom e polarised tow ards the type 2 sub- 

type as early as 1 day post infection O nce initiated, the production o f  the type 2 

cytokine, IL-4 acts as a potent stim ulus o f  Th2 responses (A llen & M acD onald, 

1998), and progression tow ards a type 2 im m une response is induced IL-4 

production is also believed to p lay  a crucial role m the dow n-regulation o f  IFN-y, 

and therefore in the inhibition m  a type 1 im m une response (B rady et a l , 1999) 

This result is consistent w ith  studies by  O ’N eill et a l , (2000) m  w hich  the 

im portance o f  IL-4 in driving the polarised type 2 im m une response is 

dem onstrated in IL-4 deficient m ice IL-4 deficient m ice exposed to F  hepatica  

produce significantly  h igher levels o f  IFN-y, w hile the type 2 cytokines, IL-5 and 

IL-10 are dow nregulated, suggesting that the polarisation o f  the im m une response
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tow ards the type 2 sub-set in fascioliasis, is dependant on IL-4 (O ’N eill et a l , 

2000)

In this study w e dem onstrated that infection w ith  F  hepatica  induces a pre 

dom inant type 2 im m une response as early as 1 day post infection, and therefore 

provides a m odel for studying type 2 im m une responses O ther helm inthic 

infections, such as schistosom iasis, also induce a pre dom inant type 2 response, 

but only at later stages o f  infection w hen eggs are produced (B aulada-B enedetti et 

a l , 1991) Sher et a l , (1991), descnbe eggs as the m ajor stim ulus o f  the strong 

type 2 cytokine production in response to infection w ith  Schistosom a m ansom  

Filariasis  also induces a pre dom inant type 2 im m une response, but elem ents o f  a 

type 1 responses are also observed Therefore, w ith  the early polarisation tow ards 

type 2 im m une responses, and the significant levels o f  type 2 cytokines recorded, 

infection w ith  F  hepatica  provides an ideal m odel for the study o f  type 2 im m une 

responses O ther benefits o f  this m odel include a) laboratory rodents are relatively 

inexpensive, b) can be easily  infected and c) m any reagents are available for 

exam ination o f  im m unological responses m  these hosts

W hile data derived from  these experim ents have dem onstrated a polarised 

type 2 response as a result o f  infection w ith  F  hepatica , the next logical step is to 

determ ine the source o f  the type 2 im m une response The follow ing experim ents, 

investigate im m une responses to elem ents o f  antigens derived from  F  hepatica

73



3.2

Comparison of immune responses to F. hepatica 

and that of F. hepatica excretory/secretory (ES)

products.
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Introduction

3 .2 1  Several investigators (Jeffenes et al, 1997, M ilboum e & H ow ell, 1997, 

O ’N eill et a l , 2001) have dem onstrated the lm m nogem city o f  Fasciola 

excretory/secretory products (ES) Previous studies perform ed in our laboratory by 

O ’N eill et a l (2001), dem onstrated that F  hepatica  d enved  (ES) products w ere 

capable o f  m im icking the suppressive effect o f  infection w ith  F  hepatica  on type 

1 im m une responses, by  the production o f  a type 2 cytokine repertoire Also, ES 

products have been  show n to induce eosinophiha in m ice and rats (M ilboum e & 

How el, 1997)

In this expenm ent we com pared im m une responses o f  F  hepatica  infected 

m ice to that o f  m ice im m unised w ith  F  hepatica  excretory secretory products 

Our results show that both  m ice infected w ith  F  hepatica , and m ice im m unised 

w ith ES, induce a polarised type 2 im m une response W e also investigated 

cellular proliferation o f  m ice injected w ith F  hepatica  d enved  ES Significant 

increases m  proliferation o f  neutrophils, eosinophils and m onocytes w ere observed 

in anim als injected w ith  ES

Experimental design

3 2 2 E xpenm ental groups w ere established to com pare im m une responses 

betw een F  hepatica  infected m ice and that o f  m ice im m unised w ith  ES Four 

BA LB/c m ice aged 8-10 weeks w ere infected w ith 10 m etacercanae o f  F  

hepatica , and a further 4 m ice w ere im m unised w ith  ES A  control group o f  4 

non-infected m ice w as established A ll anim als w ere sacnficed  by cervical 

d islocation 14 days post-infection Spleens w ere rem oved and cultured in vitro

75



w ith ES and PM A /antiCD 3 Cytokine production in the supernatants was 

quantified by  ELISA  (Fig 3 9)

Intra-pentoneal cellu lar profiles in response to injection w ith  F  hepatica  

excretory/secretory (ES) products was exam ined m  a group o f  four m ice, each 

receiving ES (100 |ig) A  control group o f  four non-infected (control) m ice w as 

also used A ll m ice w ere sacrificed by  cervical dislocation 24 hours after 

adm inistration o f  ES Peritoneal lavages w ere perform ed on each m ouse by 

flushing out the peritoneal cavity w ith  lOmls o f  sterile phosphate buffered saline 

Cells sam ples o f  lOOjil w ere p laced on a glass slide and spun on a cytospin Cells 

w ere counted as descnbed  in section 2 6

Results

3 2 3 1 Comparison of IL-4 and interferon-y cytokine production by spleen 

cells of BALB/c mice infected with 10 metacercanae of Fasciola, and that of 

mice immunised with ES

The greatest levels o f  IL-4 cytokine w as observed in m ice im m unised w ith  ES 

(Fig 3 9) Infected anim als also produced significant levels o f  IL-4 N o IFN-y 

response w as observed in either the infected or im m unised m ice Stim ulation o f  

spleen cells w ith  PM A  and anti-CD3 dem onstrated that all cells w ere capable o f 

producing both  IL-4 and IFN-y cytokines N either IL-4 nor IFN-y production was 

recorded m  non-m fected/im m um sed m ice Results w ere the m ean o f  four 

individual m ice for triplicate cultures o f  spleen cells
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Fig 3 9 C om panson  o f  IL-4 and IFN-y production in spleen cells o f  B A LB /c 

m ice infected w ith  10 F  hepatica m etacercana, and that o f  m ice im m unised w ith 

F  hepatica  derived ES Cells w ere isolated 14 days post infection or 

im m unisation and stim ulated in vitro  at 37°C for 72 hours w ith  5jng/ml ES 

products and PM A /antiCD 3 Tests w ere earned  out m  tnphca te
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3 2 3 2 Intra-peritoneal cellular profiles in response to administeration of F 

hepatica excretory/secretory products

Cell counts show  lym phocyte, m onocyte, m ast-cell, eosinphil and neutrophil 

proliferation as a percentage o f  all cells recorded (Fig 3 10) The total num ber o f  

peritoneal exudate cells counted m  infected m ice after 72 hours was alm ost tw ice 

that recorded m  control anim als The total num ber o f  peritoneal exudate cells in 

control anim als w as 3 5 x 106, com pared to 6 0 x 106 in infected anim als This 

result dem onstrates that ES is instrum ental m  the change in cellular profiles 

observed in F asciola  infections B etw een 80% and 95%  o f  cells observed w ere 

lym phocytes, w ith  sim ilar levels o f  proliferation observed in control and infected 

m ice, although a h igher percentage w as observed in control m ice Significantly 

higher levels o f  m onocytes w ere observed in infected m ice than in controls 

(P>0 0001) Eosinophil profiles w ere significantly  greater in infected than in 

control m ice (P>0 0001) Levels o f  neutrophils w ere significantly greater in 

infected m ice than control am m als (P>0 00001) N o m ast cells w ere observed in 

either control or infected m ice
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Fig. 3.12: Intra-peritoneal cellular proliferation o f  non-infected (control) mouse. 

C ells w ere isolated 24 hours post infection. Tests were carried out thrice with sim ilar 

results in each case. (H & E)

M onocy te

L ym phocy te

N eutrophil

L ym phocy te

Fig. 3.11: Intra-peritoneal cellular proliferation o f  BA LB/c m ouse infected with 

lOOjug F  .hepatica  excretory/secretory product. Cells were isolated 72 hours post 

infection. Tests were carried out thrice with sim ilar results in each case. (H & E)
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Fasciola  excretory/secretory (ES) products are believed to be involved in several 

aspects o f  tissue penetration, im m une evasion and pathogenesis (D alton & 

H effem an, 1989), and m any studies have investigated the im m unom odulatory role 

o f  ES products in parasitic infections (Fukum oto et a l , 1997) A dditionally , ES 

has been observed to inhibit superoxide output in hum an neutrophils (Jefferies et 

a l , 1997) Therefore, we w ould  expect ES products to be involved m the 

stim ulation o f  the h o s ts ’ im m une response In light o f  experim ents perform ed by 

M ilboum e and H ow ell (1997), in w hich ES products w ere suggested to induce 

eosinophiha, it has been suggested that ES antigens are the m am  source o f  

im m une stim ulatory m aterial m  the host D ata from  the previous studies 

dem onstrated that a type-2 im m une response is observed in response to infection 

w ith F  hepatica  In this study w e sought to investigate the im m une response 

induced by antigens excreted and secreted by the parasite, and to com pare any 

resulting response to that induced by  infection w ith F  hepatica  W ith this m m ind, 

BA LB/c m ice w ere injected w ith  ES antigens, and the resulting im m une response 

com pared to that o f  m ice infected w ith m etacercariae o f  F  hepatica

A s in  the previous experim ents, a polarised type 2 im m une response was 

observed m  infected m ice Cytokine production was m onitored 14 days post 

infection, w ith  significant levels o f  IL-4 production recorded in all infected m ice 

B A LB/c m ice im m unised w ith ES also produced a po lansed  type-2 im m une 

response, w ith  elevated levels o f  IL-4 observed 14 days post im m unisation w ith  

ES S ignificantly  m ore IL-4 production was observed m  m ice im m unised w ith ES 

than that o f  infected m ice N o IFN-y cytokine production w as detected m  either 

infected or im m unised m ice N o significant levels o f  IL-4 or IFN-y w ere recorded

3.2 4 Discussion
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in control m ice O ’N eill et a l , (2001), dem onstrated that the suppression o f  a type 

1 im m une response by  F  hepatica  is m ediated by  m olecules liberated by  the 

parasite The data presented in this study show that F  hepatica  infection 

stim ulates a type 2 im m une response and that ES antigens can act in a sim ilar 

m anner Therefore, it m ay be deduced that the type 2 response observed m 

fasciohasis m ay not be as a direct result o f  the presence o f  the parasite, but m ay be 

stim ulated by  antigens secreted or excreted by  the invading fluke

The effects o f  F  hepatica  excretory/secretory products on cellu lar profiles 

in the pen toneal cavity  w ere also investigated Studies by  M eeuseen, et a l , 

(1995) and Jeffenes, et a l , (1996) dem onstrated that dunng  acute infections in 

sheep, neutrophils infiltrate into the prim ary tracts produced by  the m igrating 

fluke, suggesting that neutrophils m ay be involved in the im m une response to 

infection These observations are supported by  those o f  L loyd and O ppenheim , 

(1992), w ho also im plicated neutrophils in an im m uno-responsive role to F  

hepatica  infection In the present study a significantly greater num ber o f  

neutrophils w ere recorded m  m ice injected w ith ES than that o f  control m ice In 

infected m ice, 21%  o f  total cells counted w ere neutrophils, com pared to 4%  in 

non-im m unsed control m ice, indicating an up-regulation o f  neutrophil 

proliferation in response to Fasciola  infection or a m igration o f  neutrophils to the 

site o f  infection

Several studies have dem onstrated that F  hepatica  can have a suppressive 

effect on the im m une system  o f  the host in w hich they reside (Chauvm , et a l ,

1995) It has also been observed that lym phocyte populations m ay be affected by 

infection w ith  F  hepatica  (Brady, et a l , 1999) W ork by  Jeffenes et a l , (1996) 

observed that ES products decreased lym phocyte proliferation in  sheep and hum an
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cells In  the present study, lym phocytes w ere the m ost num erous cell type 

observed in both  control and im m unised anim als H ow ever, significantly  few er 

lym phocytes w ere recorded in ES-im m nuised m ice than in the non-im m um sed 

controls thus im plying a dow n-regulation o f  lym phocyte proliferation in m ice 

im m unised w ith  ES products

As described in section (3 1) eosinophha is generally  associated w ith 

helm inth infection A lthough, eosinophils w ere not observed in the com partm ent 

o f  the liver in our studies, significant increases in the num ber o f  eosinophils 

observed as a result o f  im m unisation w ith ES w ere detected in the peritoneal 

cavity W hile no eosinophils w ere detected in the pen toneal cavity  o f  non- 

im m unised m ice, 8% o f  the total cells counted in m ice im m unised w ith ES were 

eosinophils This observation is m  contrast to observations in the previous 

section, in w hich no eosinophils w ere observed m  the com partm ent o f  the liver m  

m ice infected w ith  m etacercana o f  F  hepatica  The occurrence o f  eosinophils in 

the pen toneal cavity, m  response to injection w ith  ES, indicates a difference in the 

local and system ic im m une response

Significantly  greater num bers o f  m onocytes w ere observed m  the pen toneal 

cavity o f  B A LB /c m ice im m unised w ith  ES than that o f  control m ice M onocytes 

are the pre-cursor o f  m acrophages, w hich m ay act to phagocytose parasites

In the current study, the im m une response as a result o f  im m unisation w ith 

ES products w ere investigated O ur data confirm s that ES induces a type-2 

im m une response, sim ilar to that o f  anim als infected w ith  F  hepatica  In  the next 

section, expenm ents w ill descnbe im m une responses to antigen denved  from  ES, 

m  order to evaluate further the im m unostim ulatory effects o f  ES products
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3.3

Immune responses to F. hepatica derived antigens.

s.
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Introduction

3.3 1 ES contains m olecules w hich are are secreted by all stages o f  liver fluke 

(D alton & H effem an, 1989) and have im portant roles in facilitating parasite 

m igration (tissue degration), feeding and im m unoevasion F or exam ple studies by 

Jefferies et a l , (1997), observed ES products involved in  the inhibition o f  

superoxide output by  neutrophils As oxygen scavenging enzym es such as 

superoxide dism utase have been suggested to have a protective role against 

invading parasites, inhibition o f  superoxide output m ay provide a m eans o f  

im m une evasion for an invading helm inth As dem onstrated m experim ents by  

M ilboum e & H ow ell (1997) and O ’N eill et a l , (2001), ES products are know n to 

illicit a stim ulatory effect on im m une responses, w hich are sim ilar to im m une 

responses observed m  infection w ith  F  hepatica  For exam ple M ilboum e and 

H ow ell (1997), recorded eosinophilia m  rats as result o f  injection w ith  ES, and 

also as a result o f  infection w ith F  hepatica  Therefore, it m ay be assum ed that 

im m une responses to F asciola  infection m ay in part be  due to the production o f  

ES by the invading parasite V anous fractions o f  ES w ere p un fied  in order to 

com pare vanous com ponents o f  ES m term s o f  induced im m une responses, and to 

investigate elem ents o f  F  hepatica  denved  antigen w hich stim ulate type 2 

im m une responses

In this study, spleen cells taken from  F  hepatica-m iQ ctcd  B A LB /c mice, 

w ere analysed for T-cell cytokine production (IL-4 & Interferon-y) in response to 

stim ulation w ith  vanous F  hepatica-denved  antigen A lso, T -cell cytokine and 

antibody production w as investigated m  BA LB/c m ice im m unised w ith  vanous F  

hepatica-denved  antigen
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3 3 2 ES w as purified  on a gel filtration colum n, and the resulting fractions w ere 

isolated m  term s o f  m olecular weight, protein concentration and cysteine protease 

activity  ES w as separated on a Sephacryl S300, high resolution gel ultra- 

filtration colum n “peak 1” and “peak 2” w ere established by  m onitoring fractions 

for protein concentration and cathepsin-L  activity  Fractions containing a high 

protein  concentration and no cystem e protease w ere pooled and term ed peak 1, 

w hile fractions containing cystem e protease activity w ere pooled and term ed peak 

2 (Fig 3 13) F asciola  antigens are show n in F ig 3 14

To investigate the im m une response o f  cells o f  F  hepatica  infected m ice, 

stim ulated w ith  F  hepatica  denved  antigen, four m ice aged 8-10 w eeks, w ere 

infected w ith  10 m etacercana  o f  F  hepatica  A  control group o f  four non-infected 

m ice was established A ll m ice w ere sacrificed by  cervical dislocation 14 days 

post infection Spleen cells w ere stim ulated in vitro  at 37°C w ith  ES (10 jig/m l), 

peak 1 (10 |ig /m l), and peak 2 (10^g/m l), Stim ulation o f  spleen cells w ith PM  A 

and anti-CD3 dem onstrated that all cells w ere capable o f  producing both  T h l and 

Th2 cytokines Cells w ere stim ulated w ith culture m edia to act as a negative 

control The am ount o f  IL-4 and IFN-y secreted into the culture m edia was 

m easured by bio-assay  (Fig 3 13)

In order to establish the type o f  im m une response to m ice im m unised w ith  F  

hepatica  denved  antigen, three groups o f  four B A LB /c m ice aged 8-10 weeks 

were im m unised w ith  ES, peak 1, and peak 2, respectively A  control group o f  

four non-im m um sed m ice w as established Spleens w ere rem oved 14 days post 

im m unisation and stim ulated w ith  (5(ig/ml) ES, peak 1 and peak 2 Cells w ere 

stim ulated w ith  PM A  and anti-CD3 as a positive control and culture m edia  as a

negative control Supernatants w ere rem oved and the levels o f  IL-4 and IFN-y

Experimental design

87



cytokines secreted into the culture m edia w as recorded by  bio-assay Results 

show a po lansed  Th2 (IL-4 cytokine) response m  all im m unised groups (Fig 

3 14) No IFN-y w as recorded m  any o f  the im m unised groups (Figs 3 15) 

Results w ere expressed as the m ean cytokine concentration o f  four m ice per group 

tested m  triplicate

To investigate antibody production in response to im m unisation w ith  F  

hepatica  d enved  antigen, serum  sam ples w ere analysed for Ig G l and IgG 2a 

isotype production from  three different groups o f  B A LB /c m ice follow ing m tra- 

pentoneal im m unisation w ith F  hepatica  d enved  antigen (G roup 1 m ice that 

w ere im m unised w ith  ES, G roup 2 m ice w hich received peak 1, G roup 3 m ice 

im m unised w ith  peak 2, and a control group o f  non-im m um sed m ice) Serum  

sam ples w ere obtained 14 days post im m unisation A nalysis o f  IgG l and IgG 2a 

antibody production w as perform ed on each m ouse A ntibody titrations were 

perform ed using each o f  the im m unising antigen as antigen for the titrations, 

including PM A /antiC D 3 and m edia as positive and negative controls, respectively 

Fig 3 16 show s the m ean antibody levels o f  each group obtained w ith serum  

dilutions o f  1 25000
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Fig  3 13 Purification profile o f peak l and peak 2 from  F  hepatica  

excretory/secretory products on a high resolution gel-filtration colum n Protein 

concentration and C athepsm -L activity o f  ES fractions w ere recorded Fractions 

containing a high protein  concentration and no cysteine protease activity (fractions, 

22-43) w ere pooled  and term ed peak 1 Fractions containing a h igh  protein 

concentration and cysteine protease activity (fractions, 44-96) w ere pooled and 

term ed peak 2
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SDS PAGE analysis of the ES antigen

lk b  Ladder ES P e a k  1 P eak  2

- ± r  1 1 1

Fig. 3.14: Separation o f  F. hepatica  derived antigen by SDS gel (15%  running 

gel, 5% stacking gel), show ing the m ajor proteins secreted by the parasite. 5\i\ 

(lO jig/m l) sam ples w ere applied w ith lOjul o f  lk b  m olecular marker. The 

haem oprotein is visible in peak 1, while a Cathepsin-L  band is visible in peak 2.



3 3 3 3 Antigen specific cytokine production in spleen cells of mice infected 

with metacercanae of F hepatica

A  predom inant type 2 cytokine response w as observed in infected m ice w ith  cells 

stim ulated by  ES, peak 1, and peak 2 (Fig 3 15) Cells stim ulated w ith ES 

produced the greatest cytokine (IL-4) response N o significant levels o f  IFN-y was 

detected m  infected  m ouse cells stim ulated w ith F  hepatica  derived antigen 

Spleen cells from  the non-m fected (control) m ice did not secrete either T h l (IFN- 

y) or Th2 (IL-4) cytokines m  response to stim ulation w ith F  hepatica  derived 

antigen R esults w ere the m ean o f  four m ice tested m  triplicate
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Fig 3 1 5  IL-4 and IFN-y cytokine production by spleen cells o f  B A LB /c m ice 

infected w ith  10 m etacercanae o f  F  hepatica  Cells w ere isolated 14 days post 

infection and stim ulated in vitro  for 72 hours at 37°C, w ith  lOjag/ml ES, lOjug/ml 

peak 1, 10jug/ml peak 2, 10(ig/ml and PM A /antiCD 3 A ll tests w ere ea rn ed  out 

m tnp licate
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3.3.3.4 : Antigen-specific cytokine production in spleen cells of mice 

immunised with F. hepatica derived antigen.

Results show a polarised type 2 (IL-4 cytokine) response in all im m unised groups 

(Fig. 3.16). N o IFN-y w as recorded in any o f  the im m unised groups (Fig. 3.17). 

Results are expressed as the m ean cytokine concentration o f  four m ice per group 

tested in triplicate.
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Fig. 3.16
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Fig 3.16: IL-4 production in spleen cells taken from  m ice im m unised w ith  (A) ES, 

(B) peak 1, and (C) peak 2. A  non-im m unised control group (D) w as established. 

Cells w ere isolated 14 days post-infection and stim ulated in vitro  for 72 hours at 

37°C, w ith (5 |ig /m l) ES, peak 1, peak 2, PM A /antiCD 3. Results w ere expressed 

as the m ean cytokine concentration o f  four m ice per group tested in triplicate.
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Fig. 3.17: IFN-y production in spleen cells taken from  m ice im m unised w ith  (A) 

ES, (B) peak 1, and (C) peak 2. A  non-im m unised control group (D) was 

established. Cells w ere isolated 14 days post infection and stim ulated in vitro  for 

72 hours at 37°C, w ith  (5|ng/ml) ES, peak 1, peak 2, PM A /antiCD 3. Results were 

expressed as the m ean cytokine concentration o f  four m ice per group tested in 

triplicate.
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3.3.3.S IgGl and IgG2a antibody production in serum of mice immunised 

with F. hepatica derived antigens

A ntibody analysis o f  im m unised groups, stim ulated w ith ES (Fig. 3 .17-A) 

dem onstrated a pre dom inant IgG l response to im m unisation. M ice im m unised 

w ith ES produced the highest levels o f  Ig G l. A nim als im m unised w ith peak 1 and 

peak 2, also produced significant levels i f  I gGl .  IgG 2a production w as also 

observed in anim als im m unised w ith ES, peak 1 and peak 2. N o antibody 

production was recorded in control anim als.

Serum  stim ulated w ith peak 1 (Fig. 3.17-B) displayed a polarised Th2 

response in all im m unised groups. Low levels o f  IgG 2a w as observed in m ice 

im m unised w ith ES, peak 1 and peak 2. N o antibody response was observed in 

control mice.

A nalysis o f  serum  sam ples stim ulated w ith peak 2 (Fig. 3.17-C) dem onstrated 

a polarised Th2 response w ith  the greatest antibody production observed in the 

group im m unised w ith ES. Low levels o f  IgG 2a w ere observed in m ice im m unised 

w ith ES and peak 2. No antibody production was observed in control m ice. Results 

are the m ean o f  four individual m ice, tested in triplicate.
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Fig. 3.18: (A) IgG l and IgG 2a antibody production w ith  specificity  for F. hepatica  

excretory/secretory products, in serum  taken from  im m unised B A LB /c m ouse cells. 

M ice w ere im m unised w ith  excretory/secretory products, peak 1, and peak 2. All 

tests w ere perform ed in triplicate. (B) IgG l and IgG 2a antibody production w ith 

specificity for peak 1, in serum  taken from  im m unised B A LB /c m ouse cells. M ice 

w ere im m unised w ith excretory/secretory products, p e a k l, and peak 2. A ll tests 

w ere perform ed in triplicate. (C ) Ig G l and IgG 2a antibody production  w ith 

specificity for peak 2, in serum  taken from im m unised B A LB /c m ouse cells. M ice 

w ere im m unised w ith excretory/secretory products, peak 1, and peak 2. A ll tests 

were perform ed in triplicate.
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Sections 3.1 and 3.2 described the polarised type 2 im m une response observed in 

response to infection w ith F. hepatica. A lso investigated, was the predom inant type 2 

response induced by im m unisation w ith F. hepatica  derived ES. In the current study we 

investigated im m une responses to isolated fractions o f  purified ES (peak 1 and peak 2), 

in order to further investigate the source o f  the type 2 im m une response. Studies 

involving various helm inth antigens including antigens contained in ES have been 

perform ed by several investigators. A  type 2 response was observed in w ork by  Cervi 

et al (1999) in w hich rats w ere im m unised w ith F. hepatica  derived glutathione-S- 

transferase. M ice im m unised w ith recom binant fatty acid b inding protein  from F. 

hepatica  exhibit antibody production characteristic o f  type 1 im m une responses (A bane 

et a l ., 2000). A  high m olecular sized antigen secreted by adult flukes into culture 

m edium  was isolated by M cG onigle and D alton (1995). This m olecule contained a 

hem e group, and w as classified as a liver fluke haem oglobin  (Hb) (M cG onigle & 

Dalton, 1995). Hb is involved in the aerobic respiration o f  juven ile  flukes w hen present 

in the liver. In adult flukes, it aids in oxygen-independent functions such as egg 

production (B jorkm an & Thorsell, 1963). This hem eprotein  (a conjugated protein 

linked to an iron-porphyrin com pound), is present in the current study contained in 

peak 1. Studies by  D alton et a l ,  (1996) dem onstrated that two cathepsin L proteinases, 

cathepsin L I (CL1), and cathepsin L2 (CL2), w hich are contained in peak 2, in the 

context o f  this experim ent, m ay be involved in host tissue penetration, nutrition  and 

im m une evasion. B entancor et a l ,  (2002) observed a type 1 im m une response in rats 

im m unised w ith  cathepsin L I and cathepsin L2. CL1 and CL2 differ in their 

specificities for hydrolysing peptide bonds (Dowd, et a l ,  1994). In studies by D alton 

et a l ,  (1996), C athepsin L2 was observed to cleave peptide bonds w ith greater 

efficiency than that o f  cathepsin L I . For exam ple, cathepsin L2 cleaved several

3.3.4 : Discussion



peptide bonds w ith  a proline in the P-2 position that w ere poorly  cleaved by  cathepsin 

L I (D ow d et a l ., 1994). The difference in observed specificities m ay indicate that the 

two cysteine proteases have different roles in digestion, tissue penetration or im m une 

evasion (D alton et al., 1996).

In the previous experim ents, all cytokine and antibody production as a result o f  

Fasciola  infection, w as m easured w ith specificity for F. hepatica  ES. In the current 

studies cytokine and antibody production stim ulated by Fasciola infection was 

m easured w ith specificity  to ES and ES-derived antigen. These experim ents aim ed to 

determ ine and com pare the im m unogenicity o f  the various Fasciola derived antigens.

Spleen cells obtained from  F. hepatica  infected BA LB/c m ice w ere stim ulated 

w ith F. hepatica  derived antigen. As in our previous experim ents, high levels o f  ES- 

specific IL-4 production w ere observed in spleen cells o f  infected m ice. The ES- 

derived peak 1 and peak 2 produced sim ilar levels o f  IL-4, although production was not 

as great as that observed by ES-stim ulated spleen cells.

The hem e protein contained in peak 1 m ay be in part, responsible for the 

polarisation o f  the im m une response tow ards the type 2 sub-type, observed with 

stim ulation w ith peak 1. The type 2 response elicited by spleen cells obtained from 

m ice infected w ith F. hepatica  and stim ulated w ith peak 2, is in contrast to w ork by 

Bentancor et a l, (2002), in w hich a type 1 response w as observed in response to 

im m unisation w ith  CL1 and CL2 cysteine proteinases, present in the context o f  this 

experim ent, in peak 2. (Fig. 3.16). The type-2 im m une response observed in the 

current study m ay be as a result o f  the com bination o f  the two proteases, the im m une 

response to w hich was not investigated by Bentancor, e/ a l , (2002). A lso, other 

m olecules present in peak 2, w hich are yet to be identified, m ay be involved in the 

stim ulation o f  a type 2 response.
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This study also investigated the im m une responses o f  B A LB /c m ice to F. 

hepatica  derived ES, peak 1 and peak 2. A  sim ilar type 2 response w as observed in 

m ice im m unised w ith ES antigens to that o f  F. hepatica  infected m ice stim ulated with 

ES antigens. Cytokine production was m easured in im m unised m ice, w ith specificity 

for each o f  the Fasciola antigens. Each o f  the im m unising antigens produced a 

predom inant type 2 response. Sim ilar levels o f  IL-4 cytokine w ere observed in m ice 

im m unised w ith  ES and peak 1. Low er, levels o f  IL-4 production w as recorded in m ice 

im m unised w ith peak 2. Stim ulation o f  im m unised m ouse spleen cells w ith  each o f  the 

antigens had sim ilar effects on IL-4 cytokine production. As expected, no IFN-y 

production w as detected in any o f  the im m unisation groups.

A ntigen-specific antibody production in F. hepatica-dzrived antigen-im m unised 

m ice was also investigated (Fig. 3.18). A  polarised type 2 antibody profile was 

observed in response to im m unisation w ith each o f  the antigens. A ntigen specific IgG l 

antibody production w as recorded in each o f  the im m unised groups for each o f  the 

stim ulating antigens.
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3.4

Immunisation with F. hepatica-derived antigen and

various adjvuvants.
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Introduction

3.4.1: W hile a type 2 im m une response is associated w ith F. hepatica  infection, a 

type 1 response has been suggested as being involved in protection against the 

parasite. Studies by M ulcahy et al., (1998) dem onstrate a protective function for 

type 1 im m une response associated antibody isotypes (IgG2). The aim  o f  this 

experim ent w as to establish a predom inant type 1 im m une response in BA LB/c 

m ice by im m unising w ith various com binations o f  adjuvants and antigen (m utant 

CL1). A djuvants help antigen to elicit an early, high and long-lasting im m une 

response w ith  less antigen (G upta & Siber, 1995). The adjuvants used in the 

current experim ent w ere alum  (alum inium  hydroxide), heptavac (A Clostridium  

perforingens  vaccine) and oligodeoxynucleotides w ith  cpg m otifs (unm ethyiated 

CpG  m otifs).

Experimental design

3.4.2: Experim ental groups o f  4 BA LB/c m ice w ere established. (G roup 1: m ice 

that w ere im m unised w ith  m utFheC L l and cpg; Group 2: m ice im m unised w ith 

m u tF h eC L l, alum , cpg and heptavac; G roup 3: m ice received m u tF heC L l, alum 

and cpg; G roup 4; m ice that received m utF heC L l, alum  and heptavac; G roup 5 : 

m ice im m unised w ith  m utFheC L l and alum. A  control group o f  four non­

im m unised m ice w as established. All im m unised m ice received booster 

im m unisations at days 21 and 42 post initial im m unisation. All anim als were 

sacrificed after 61 days by  cervical dislocation. Isolated spleen cells w ere stim ulated 

in vitro  at 37°C w ith recFheC L l (10 |ig /m l, 5(ig/ml, ljug/ml) and m utFheC L l 

(5jig/m l, 1 jig/m l). Supernatants w ere rem oved and the am ount o f  IL-4 and 

interferon-y secreted into the culture m edia w as determ ined by  m eans o f  ELISA .
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The antibody responses to im m unisation w ere investigated 61 days post­

im m unisation. The titre o f  IgG  subclasses was determ ined using m utF heC L l and 

Clostridium  perfringens  as antigen in antibody titrations (Fig. 3.21-22).

3.4.3 Results

3.4.3.1: IL-4 and Inteferon-y cytokine production in mice immunised with F. 

hepatica-derixed antigen and various adjuvants

The results dem onstrate that predom inant type-1 response can be induced in 

spleen cells o f  m ice stim ulated w ith recF heC L l, w ith significant am ounts o f  IFN-y 

cytokine being produced (Fig. 3.19). The greatest am ount o f  IFN-y produced was 

observed in m ice im m unised w ith m utF heC L l, alum , cpg and heptavac. 

Generally, cells stim ulated w ith  a h igher concentration o f  antigen resulted in a 

h igher level o f  cytokine production. No significant level o f  IL-4 cytokine 

production w as recorded (Fig. 3.36). Low levels o f  IL-4 was observed in m ice 

im m unised w ith m u tF heC L l, alum , cpg and heptavac. N o significant levels o f  

interferon-y or IL-4 w ere observed in im m unised m ice stim ulated w ith 

m utFheC L l (Figs. 3.38 and 3.39). Results w ere expressed as the m ean cytokine 

concentration o f  four m ice per group tested in triplicate.
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Fig. 3.19: C ytokine production by  spleen cells o f  B A LB /c m ice im m unised w ith 

various antigen and adjuvants. M ice received booster im m unisations on days 21 

and 42. All anim als w ere sacrificed on day 61. Spleen cells w ere isolated and 

stim ulated in vitro  for 72 hours at 37°C w ith 1 jag/ml, 5 |ig /m l and 10jig/ml 

recF heC L l. Sam ples o f  supernatant w ere m easured for IL-4 (Fig. 3.36) and 

interferon-y (Fig. 3.37) cytokines. Results w ere expressed as the m ean cytokine 

concentration. Tests w ere carried out in triplicate.
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Fig. 3.20 : IL-4 (Fig. 3.38) and Interferon-y (3.39) cytokine production in spleen 

cells taken from  m ice im m unised w ith various antigen and adjuvants. M ice 

received booster im m unisations an days 21 and 42. All anim als w ere sacrificed on 

day 61. Spleen cells w ere isolated and stim ulated in vitro for 72 hours at 37°C 

with ljiig/ml, 5|^g/ml and 10|ag/ml m utF heC L l. Results w ere expressed as the 

m ean cytokine. Tests w ere carried out in triplicate.
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3.4.3.2: IgGl and IgG2a antibody production in serum of immunised mice.

A  pre-dom inant Ig G l antibody response w as observed in response to stim ulation 

w ith m utFheC L l (3.21). Significant levels o f  IgG l w ere observed in all 

experim ental groups w ith the exception o f  m ice im m unised w ith heptavac where 

low levels o f  antibody production w ere observed. There w ere no significant 

m utF heC L l-specific  IgG 2a antibodies detected in the serum  o f  im m unised mice. 

N o antibody production w as observed in control non-im m unised m ice. Results 

w ere expressed as the m ean antibody titration o f  four m ice per group tested in 

triplicate.

In serum  stim ulated w ith C. perforingens  a predom inant I i l l  response was 

observed in response to im m unisation (3.22). The highest levels o f  IgG l antibody 

production w ere observed in m ice im m unised w ith (i) m u tF h eC L l, alum  and 

heptavac, (ii)m utF heC L l, alum , cpg and heptavac and (iii) cpg and heptavac. No 

antibody production w as observed in control, non-infected m ice. R esults were 

expressed as the m ean antibody titre o f  four m ice per group tested in triplicate.
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Figs. 3.21-3.22: IgG l and IgG 2a antibody production in serum  taken from  m ice 

im m unised w ith various antigen and adjuvants. M ice w ere sacrificed 61 days post 

infection and serum  obtained. Results in fig. 3.21 show antibody production 

specific for Fasciola  m u tF heC L l. Results in fig. 3.22 show antibody production 

specific for C. perforingens  bacteria. Results are expressed as the m ean antibody 

titre o f  four m ice per group tested in triplcate.
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O bservations by  Berquist, et a l ,  (2002) in relation to im m une responses in 

helm inth infections suggest that there are desirable, antigen-specific im m une 

responses that w ould be valuable in a vaccine, but that there are also im m une 

responses that should be avoided. The polarised type 2 im m une responses in 

helm inthic infections, and subsequent inhibition o f  type 1 im m une responses m ay 

be advantageous to the parasite, as type 1 responses have been suggested to have a 

protective role in infections such as schistosom iasis (Cjaja, et a l ,  1989). Studies 

by C lery et al., (1996) show ed the type 2 antibody, Ig G l to be the dom inant 

isotype in F. hepatica -infected cattle. H ow ever, this type 2 im m une m echanism  

appeared to be a non-protective response. W hile natural infections in cattle and 

sheep appear to elicit non-protective type 2 im m une responses, studies by 

M ulachy et al, (1998) indicate that the protection induced by  vaccination involves 

elem ents o f  a type 1 response. Capron and Capron (1994), suggested that T-cell 

m ediated im m unity involving IFN-y and IL -12-dependant m echanism s (type 1 

response) m ight be m ore advantageous in helm inth infections. This observation 

is in agreem ent w ith studies by W ynn and H offm ann (2000), w hich dem onstrate 

that im m unity to helm inth infections is h ighly dependant on the production o f  

IFN-y from  CD 4+ T-cells. A lso, Sm ythies et a l (1992) dem onstrated decreased 

im m nity to helm inth infections in m ice deficient in IFN-y. A  positive correlation 

betw een fluke-specific serum  IgG l levels and fluke burden w as recorded in w ork 

by M ulcahy et a l ,  (1998), w hile a strong IgG2 (type 2) response w as associated 

w ith low fluke burdens. The results o f  this study are further evidence o f  the non- 

protective status o f  specific im m une responses in cattle follow ing infection w ith F.

3.4.4 : Discussion
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hepatica, and dem onstrate that vaccination m ay induce a protective response 

(M ulcahy et al., 1998).

Studies by  D alton, et a l ., (1996), dem onstrated that a significant degree o f  

protection could be achieved in cattle against infection w ith F. hepatica, by 

im m unising w ith various F. hepatica  derived antigens. C athepsin L proteases, 

cathepsin L I , cathepsin L 2, secreted by liver flukes, and liver fluke haem oglobin 

(Hb), w ere used in conjunction w ith Freunds com plete and Freunds incom plete 

adjuvants. The initial trial dem onstrated that cattle vaccinated w ith cathepsin L I 

induced 53.7%  protection against a heterologous challenge w ith F. hepatica. A 

subsequent trial show ed that a com bination o f  cathepsin L I and Hb could also 

elicit a protective im m une response. The m ost significant level o f  protection 

(72.4% ) w as observed in anim als vaccinated w ith a com bination o f  cathepsin L2 

and Hb. A nim als vaccinated in theses studies, displaying a level o f  protection 

against fascioliasis, exhibited an antibody profile predisposed tow ards a type 1 

subset, w ith  significant levels o f  IgG2 antibody recorded. The fact that the 

im m une response o f  these vaccinated anim als exhibited a polarised type 1 im m une 

response m ay in part be due to the use o f  Freunds adjuvants, w hich are know n to 

influence im m une responses in favour o f  the type 1 sub type.

W ith these observations in m ind, the current study sought to establish a 

type 1 im m une response in BA LB/c m ice by im m unising w ith F. hepatica  derived 

antigens and 2 types o f  adjuvants. Investigations w ere perform ed in m ice as few er 

reagents w ould by  required to perform  the investigation than that required in 

cattle, and also due to the lesser cost o f  mice. As Freunds adjuvant has been 

know n to cause pathology in hum ans w e investigated the possib ility  o f  using a 

different adjuvant w hich w ould still provide type 1 im m une response-inducing
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properties. Studies by N ear et a l ., 2002 observed that oligodeoxynucleotides w ith 

cpg m otifs (cpg), used as an adjuvant aided in the prom otion o f  a type 1 im m une 

response, w ith elevated levels o f  IFN-y recorded. C pg’s w ere em ployed in the 

current study as an adjuvant.

H eptavac is com m ercially available as a vaccine against the bacterial 

infection, C. Perfoingens. P relim inary studies (data not shown) investigated the 

ability o f  heptavac to stim ulate a type 1 im m une response in im m unised m ice, 

how ever no polarised response was observed. H eptavac w ith a com bination o f  

other adjuvants and antigen, was established as an adjuvant in the current study. 

A lum  hydroxide w as also used as a com parative adjuvant.

A nim als w ere im m unised w ith a com bination o f  various adjuvants and 

recF heC L l. C ytokine production w as m onitored w ith specificity for two form s o f  

cathepsin L, the active form , recFheC L l and inactive form, m utFheC L l (Collins, 

et a l in press).

IL-4 and IFN-y cytokine analysis in spleen cells o f  im m unised BA LB/c 

m ice, stim ulated w ith recFheC L l exhibited a polarised type 1 im m une response in 

m ice im m unised w ith (i) CL1 and cpg, (ii) CL1, alum , cpg and heptavac, (iii) 

CL1, alum  and cpg and (iv) CL1, alum  and heptavac. As expected, low er levels o f  

IFN-y w ere recorded in m ice im m unised w ith CL1 and alum. N o significant 

levels i f  IL-4 w ere detected. Cytokine analysis o f  im m unised m ouse spleen cells, 

stim ulated w ith  m utFheC L l failed to produce significant levels o f  IL-4 or IFN-y. 

These results dem onstrate that the inactive form o f  cathepsin L, m utF heC L l fails 

to elicit a t-cell stim ulatory effect (Fig. 3.20), w hile the active form, recF heC L l 

induces a polarised type 1 response (Fig. 3.19) w hen em ployed in conjunction 

w ith the appropriate adjuvants.
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A ntibody analysis o f  serum  obtained from im m unised m ice w ith 

specificity for m utF heC L l, also exhibited a polarised type 1 im m une response 

(Fig. 3.21). Significant levels o f  IgG 2a antibody w ere detected in anim als 

im m unised w ith  (i) CL1 and cpg, (ii) CL1, alum , cpg and heptavac, (iii), CL1, 

alum  and cpg, (iv) CL1, alum  and heptavac, (v) CL1, alum  and PBS. W e also 

investigated antibody production w ith specificity for clostridium  bacteria. Only 

m ice im m unised w ith (i) CL1, alum  and heptavac and (ii) CL1, alum , heptavac 

and cpg, produced clostridium  specific IgG2a. H ow ever clostridium -specific 

antibody production was significantly low er than that o f  antibody production w ith 

specificity for m utF heC L l.
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4.1

General Discussion
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4.1.1: Im m une responses to m ost helm inths elicit sim ilar responses, w hich are 

characterised by the production o f  type 2 associated cytokines (IL-4, IL-5, IL-9, 

IL-10, IL-13), and antibodies (IgG l in m ice, IgG4 in hum ans and IgE in both 

species). O nce initiated type 1 and type 2 im m une responses tend to counter- 

regulate one another through the action o f  the cytokines that are specific to each 

type o f  response. Several helm inthic antigens have been associated w ith  the 

induction o f  type 2 responses. Cervi et al., (1999) observed a type 2 response in 

rats im m unised w ith F. hepatica-denved glutathione-S-transferase, w hile 

M ilboum e and H ow ell (1997) recorded type 2 responses in rats im m unised w ith 

ES products o f  F. hepatica. In contrast A bane et al., (2000) observed an antibody 

profile characteristic o f  type 1 im m une responses in m ice im m unised w ith 

recom binant fatty acid b inding protein.

In the current study w e com pared the im m une responses o f  m ice infected 

w ith  F. hepatica to that o f  m ice im m unised w ith F. hepatica ES. Results show 

that ES is capable o f  m im icking the type 2 im m une response observed in Fasciola 

infection, and as such, m ay be in part responsible for im m unopathology associated 

w ith  Fasciola infection (M ilboum e & H ow ell, 1997). M ice im m unised w ith 

various F. hepatica derived antigens displayed a type 2 response as a result o f  

im m unisation w ith each o f  the antigens. Cytokine and antibody profiles indicated 

a predom inant type 2 im m une response in m ice im m unised w ith  each o f  ES, peak 

(1) and peak (2). The m ost significant response was observed in m ice im m unised 

w ith ES. ES, peak 1 and peak 2 specific responses w ere also observed in Fasciola 

infected m ice.

Discussion
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ES injected into the peritoneal cavity o f  BA LB/c m ice w as also observed to 

stim ulate the production o f  eosinophilia, a cellular response characteristic o f  

helm inth infections (Behm  & Ovington, 2000). H ow ever, an eosinophilic 

response w as not observed in the com partm ent o f  the liver in BA LB/c m ice 

infected w ith m etacercariae o f  F. hepatica. This difference in eosinophilic 

responses suggests that m ature flukes in the liver m ay possess an im m uno-evasive 

strategy that inhibits the recruitm ent o f  eosinophils w hich m ight otherw ise be 

harm ful to the parasite. Injected ES products w ere also observed to have a 

stim ulatory effect on neutrophils, w ith increased num bers o f  neutrophils recorded 

in injected m ice. Jefferies et al, (1997), observed stim ulation o f  neutrophil 

populations in sheep injected w ith ES.

As both  infection w ith F. hepatica and im m unisation w ith  F. hepatica 

derived antigens result in the polarisation o f  the im m une responses tow ards the 

type 2 subtype, it has been suggested that parasite products act to divert a possible 

protective type 1 response tow ards a type 2 phenotype in order to prolong survival 

w ithin the host.

In the current study w e also investigated im m une responses to m ice infected 

w ith F. hepatica. O ur findings are consistent w ith previous studies in cattle 

(Brow n et al., 1994; C lery et al., 1996; M ulcahy et al, 1999) and m ice (O ’N eill et 

al, 2001), in dem onstrating a polarised type 2 im m une response in anim als 

infected w ith F. hepatica. O ur results show a type 2 im m une response in both 

cytokine and antibody profiles o f  infected m ice. Studies in rats by T liba et al, 

(2002), observed polarisation o f  the im m une response 14 days post infection, w ith 

IL-4 m R N A  recorded in the hepatic lym ph nodes. In the current study, IL-4 and 

IFN-y m R N A  levels in m ice infected w ith m etacercaria o f  F. hepatica suggest that
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the im m une response becom es polarised 1 day post infection, and as such 

fascioliasis m ay be considered an excellent m odel for use in the study o f  type 2 

im m une responses.

In contrast, im m une responses associated w ith other helm inths such as 

Schistosoma mansoni show m ixed and elevated type 1 and type 2 associated 

im m une responses at the early stages o f  infection, before the induction o f  a 

polarised type 2 im m une response (Baulada-B enedetti et al., 1991). These results 

suggest that potential vaccines against schistosom iasis should be linked to 

induction o f  both  type 1 and type 2 associated im m une responses. Conversely, as 

type 2 responses in fascioliasis appear to be linked w ith pathology, our current 

studies investigated the induction o f  a polarised type 1 response, w ith the aim  o f  

providing protection against infection w ith F. hepatica.

The relationship betw een pathology and im m une expulsion in parasitic 

infections rem ains controversial. A  fundam ental obstacle to vaccine developm ent 

in parasitic infections is the lack o f  understanding as to w hat type o f  im m une 

response should be evoked. It is unclear in m any parasitic infections w hich type 

o f  im m une response is required by the host in order to achieve protection against 

an invading parasite. A lso, an effective response elicited by  a particular parasite 

m ay not provide sim ilar protection against another parasitic infection. For 

exam ple, type 2 responses are generally associated w ith expulsion o f  Trichinella 

spiralis (Law rence et al., 2000), and in infections involving a num ber o f  

gastrointestinal nem atodes, Th2 responses are generally associated w ith  

protection, w hile T h l responses are associated w ith susceptibility  (G arside et al., 

2000). Sim ilarly  im m une expulsion o f  gastrointestinal helm inths is generally 

associated w ith  type 2 responses (Law rence et al., 1998). G irod et al.,(2003),
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suggested that a localised type 2 response m ight be im portant in a protective 

response against Neactor americanus. In contrast, in testinal pathology observed in 

m any other disease m odels is sim ilar to that observed in helm nith infections, but 

has been associated w ith type 1 cytokines. For exam ple, studies by M ulcahy et 

al., (1998), suggest a protective role for type 1 responses against infection w ith F. 

hepatica. Also, type 2 responses are not considered effective in expulsion o f  

Brugia malayi (Law rence et al, 1995).

Current m ethods o f  controlling helm inth diseases em ploy the use o f  anti­

helm inthic drugs. H ow ever, issues in relation to the evolution o f  drug resistant 

parasites, and the presence o f  pesticides in food products has m otivated research 

into investigating the possib ility  o f  em ploying m olecular vaccines against these 

parasites (D alton et al., 2003). The ability to purify m R N A  from  different parasite 

life cycle stages and the developm ent o f  cD N A  expression libraries from  m RN A  

has proven essential to the identification o f  im m unogenic parasite proteins, w hich 

m ay be used as vaccine candidates (Knox et al., 2001). Several anti-parasite 

vaccines have been previously  developed, e.g., the recom binant EG95 oncosphere 

proteins against Echinococcus granulosis and the Bm 86 vaccine against Boophilus 

microplus. The cysteine proteases, cathepsin L I and cathepsin L2, w hich have 

im portant roles in host-parasite interactions, have been tw o o f  the m ost prom ising 

F. hepatica vaccine candidates to date. D alton et al., (1996), observed levels o f  

protection up to 72.4%  protection against infection w ith F. hepatica w hen these 

cathepsins w ere used in conjunction w ith liver fluke haem oglobin, the resulting 

im m une response being predisposed tow ards a type 1 im m une response. 

A ntibodies associated w ith  type 1 im m une responses have also been  associated 

w ith  a degree o f  protection against infection w ith  F. hepatica (M ulcahy et al.,
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1998). Sim ilarly, B ossaert et al., (2000) suggested that IgG l production has no 

significant protective effect against infection w ith  F. hepatica. In  the current 

study w e investigated the ability o f  recom binant cathepsin L, com bined w ith 

various adjuvants to establish a type 1 im m une response in B A LB /c m ice. A 

polarised type 1 response w ith specificity for recF heC L l, w as observed in five 

experim ental groups. The m ost significant type 1 response was observed in m ice 

im m unised w ith CL1, A lum , cpg, and heptavac. This study also suggested that the 

recom binant cathepsin L, and not the inactive m utant cathepsin L is involved in 

im m unostim ulation.
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F u tu re  reco m m e n d a tio n s

4.2.1: Further investigations related to our current studies should be perform ed in 

order to provide a be tter understanding o f  the im m une responses in individuals 

infected w ith F. hepatica. (i)W hile type 2 im m une responses w ere observed in 

response to ES, peak 1 and peak 2, further purification on these products should be 

perform ed to investigate their im m unostim ulatory properties. SDS PA G E analysis 

o f  peak 2 dem onstrated several unidentified bands w hich should be isolated and 

investigated w ith reference to their im m unostim ulatory properties, (ii) Our 

experim ents involving the use o f  cathepsin L w ith various adjuvants established a 

predom inant type 1 response. Future investigation should determ ine w hether this 

response provides protection against Fasciola  infection, (iii) Im m unisation w ith 

Fasciola  antigens attached to agarose beads in order to facilitate the prolonged 

release o f  antigen over tim e, and thus sim ulate the release o f  ES products, should 

provide a useful insight into the effects o f  F. hepatica  excretory/secretory products 

released during infection.
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